Theory Evaluate_Clock
section "Simplifiying the definition"
theory Evaluate_Clock
imports Evaluate_Termination
begin
hide_const (open) sem_env.v
lemma fix_clock:
"fix_clock s1 (s2, x) = (s, x) ⟹ clock s ≤ clock s1"
"fix_clock s1 (s2, x) = (s, x) ⟹ clock s ≤ clock s2"
unfolding fix_clock_alt_def by auto
lemma dec_clock[simp]: "clock (dec_clock st) = clock st - 1"
unfolding dec_clock_def by auto
context begin
private lemma fun_evaluate_clock0:
"clock (fst (fun_evaluate_match s1 env v p v')) ≤ clock s1"
"clock (fst (fun_evaluate s1 env e)) ≤ clock s1"
proof (induction rule: fun_evaluate_match_fun_evaluate.induct)
case (2 st env e1 e2 es)
obtain st' r where *[simp]: "fix_clock st (fun_evaluate st env [e1]) = (st', r)"
by force
show ?case
apply (auto split: prod.splits result.splits)
subgoal
using 2(2)[OF *[symmetric]]
by (smt "*" fix_clock(1) fix_clock.simps fst_conv le_trans prod.collapse)
subgoal
using 2(2)[OF *[symmetric]]
by (smt "*" fix_clock(1) fix_clock.simps fst_conv le_trans prod.collapse)
subgoal
by (metis "*" fix_clock(1) fix_clock.simps prod.collapse prod.sel(2))
done
next
case (5 st env e pes)
obtain st' r where *[simp]: "fix_clock st (fun_evaluate st env [e]) = (st', r)"
by force
show ?case
apply (auto split: prod.splits result.splits)
subgoal
by (metis "*" fix_clock(1) fix_clock.simps prod.collapse prod.sel(2))
subgoal
using 5(2)[OF *[symmetric]]
by (smt "*" "5.IH"(1) dual_order.trans eq_fst_iff error_result.exhaust error_result.simps(5) error_result.simps(6) fix_clock(2) fix_clock.simps)
done
next
case (9 st env op1 es)
obtain st' r where *[simp]: "fix_clock st (fun_evaluate st env (rev es)) = (st', r)"
by force
note do_app.simps[simp del]
show ?case
apply (auto split: prod.splits result.splits option.splits if_splits)
subgoal
by (metis "*" fix_clock(1) fix_clock.simps prod.collapse prod.sel(2))
subgoal
by (metis "*" fix_clock(1) fix_clock.simps prod.collapse prod.sel(2))
subgoal
by (smt "*" "9.IH"(2) One_nat_def Suc_pred dec_clock dual_order.trans fix_clock(1) fix_clock.simps fst_conv le_imp_less_Suc nat_less_le prod.collapse)
subgoal
by (metis "*" fix_clock(1) fix_clock.simps fst_conv prod.collapse)
subgoal
using 9(2)[OF *[symmetric], simplified]
by (smt "*" Suc_pred dual_order.trans fix_clock(1) fix_clock.simps le_imp_less_Suc less_irrefl_nat nat_le_linear prod.collapse prod.sel(2))
subgoal
by (metis "*" fix_clock(1) fix_clock.simps prod.collapse prod.sel(2))
subgoal
using 9(2)[OF *[symmetric], simplified]
by (smt "*" Suc_pred dual_order.trans fix_clock(1) fix_clock.simps le_imp_less_Suc less_irrefl_nat nat_le_linear prod.collapse prod.sel(2))
done
next
case (10 st env lop e1 e2)
obtain st' r where *[simp]: "fix_clock st (fun_evaluate st env [e1]) = (st', r)"
by force
show ?case
apply (auto split: prod.splits result.splits option.splits exp_or_val.splits)
subgoal
by (metis "*" fix_clock(1) fix_clock.simps fst_conv prod.collapse)
subgoal
using 10(2)[OF *[symmetric]]
by (metis (no_types, lifting) "*" dual_order.trans fix_clock(1) fix_clock.simps fstI prod.collapse)
subgoal
by (metis "*" fix_clock(1) fix_clock.simps prod.collapse snd_conv)
subgoal
by (metis "*" fix_clock(1) fix_clock.simps fst_conv prod.exhaust_sel)
done
next
case (11 st env e1 e2 e3)
obtain st' r where *[simp]: "fix_clock st (fun_evaluate st env [e1]) = (st', r)"
by force
show ?case
apply (auto split: prod.splits result.splits option.splits)
subgoal
by (metis "*" fix_clock(1) fix_clock.simps fst_conv prod.collapse)
subgoal
using 11(2)[OF *[symmetric]]
by (metis (no_types, lifting) "*" dual_order.trans eq_fst_iff fix_clock(1) fix_clock.simps)
subgoal
by (metis "*" fix_clock(1) fix_clock.simps fst_conv prod.exhaust_sel)
done
next
case (12 st env e pes)
obtain st' r where *[simp]: "fix_clock st (fun_evaluate st env [e]) = (st', r)"
by force
show ?case
apply (auto split: prod.splits result.splits option.splits)
subgoal
using 12(2)[OF *[symmetric]]
by (metis (no_types, lifting) "*" dual_order.trans eq_fst_iff fix_clock(1) fix_clock.simps)
subgoal
by (metis "*" fix_clock(1) fix_clock.simps fst_conv prod.exhaust_sel)
done
next
case (13 st env xo e1 e2)
obtain st' r where *[simp]: "fix_clock st (fun_evaluate st env [e1]) = (st', r)"
by force
show ?case
apply (auto split: prod.splits result.splits option.splits)
subgoal
using 13(2)[OF *[symmetric]]
by (metis (no_types, lifting) "*" dual_order.trans eq_fst_iff fix_clock(1) fix_clock.simps)
subgoal
by (metis "*" fix_clock(1) fix_clock.simps fst_conv prod.exhaust_sel)
done
qed (auto split: prod.splits result.splits option.splits match_result.splits)
lemma fun_evaluate_clock:
"fun_evaluate_match s1 env v p v' = (s2, r) ⟹ clock s2 ≤ clock s1"
"fun_evaluate s1 env e = (s2, r) ⟹ clock s2 ≤ clock s1"
using fun_evaluate_clock0 by (metis fst_conv)+
end
lemma fix_clock_evaluate[simp]:
"fix_clock s1 (fun_evaluate s1 env e) = fun_evaluate s1 env e"
unfolding fix_clock_alt_def
using fun_evaluate_clock by (fastforce split: prod.splits)
declare fun_evaluate.simps[simp del]
declare fun_evaluate_match.simps[simp del]
lemmas fun_evaluate_simps[simp] =
fun_evaluate.simps[unfolded fix_clock_evaluate]
fun_evaluate_match.simps[unfolded fix_clock_evaluate]
lemmas fun_evaluate_induct =
fun_evaluate_match_fun_evaluate.induct[unfolded fix_clock_evaluate]
lemma fun_evaluate_length:
"fun_evaluate_match s env v pes err_v = (s', res) ⟹ (case res of Rval vs ⇒ length vs = 1 | _ ⇒ True)"
"fun_evaluate s env es = (s', res) ⟹ (case res of Rval vs ⇒ length vs = length es | _ ⇒ True)"
proof (induction arbitrary: s' res and s' res rule: fun_evaluate_match_fun_evaluate.induct)
case (9 st env op1 es)
then show ?case
supply do_app.simps[simp del]
apply (fastforce
split: if_splits prod.splits result.splits option.splits exp_or_val.splits match_result.splits error_result.splits
simp: list_result_alt_def)
done
qed (fastforce
split: if_splits prod.splits result.splits option.splits exp_or_val.splits
match_result.splits error_result.splits)+
lemma fun_evaluate_matchE:
assumes "fun_evaluate_match s env v pes err_v = (s', Rval vs)"
obtains v where "vs = [v]"
using fun_evaluate_length(1)[OF assms]
by (cases vs) auto
end