Theory Weak_Cong_Semantics
theory Weak_Cong_Semantics
imports Tau_Chain
begin
definition weakCongTrans :: "ccs ⇒ act ⇒ ccs ⇒ bool" (‹_ ⟹_ ≺ _› [80, 80, 80] 80)
where "P ⟹α ≺ P' ≡ ∃P'' P'''. P ⟹⇩τ P'' ∧ P'' ⟼α ≺ P''' ∧ P''' ⟹⇩τ P'"
lemma weakCongTransE:
fixes P :: ccs
and α :: act
and P' :: ccs
assumes "P ⟹α ≺ P'"
obtains P'' P''' where "P ⟹⇩τ P''" and "P'' ⟼α ≺ P'''" and "P''' ⟹⇩τ P'"
using assms
by(auto simp add: weakCongTrans_def)
lemma weakCongTransI:
fixes P :: ccs
and P'' :: ccs
and α :: act
and P''' :: ccs
and P' :: ccs
assumes "P ⟹⇩τ P''"
and "P'' ⟼α ≺ P'''"
and "P''' ⟹⇩τ P'"
shows "P ⟹α ≺ P'"
using assms
by(auto simp add: weakCongTrans_def)
lemma transitionWeakCongTransition:
fixes P :: ccs
and α :: act
and P' :: ccs
assumes "P ⟼α ≺ P'"
shows "P ⟹α ≺ P'"
using assms
by(force simp add: weakCongTrans_def)
lemma weakCongAction:
fixes a :: name
and P :: ccs
shows "α.(P) ⟹α ≺ P"
by(auto simp add: weakCongTrans_def)
(blast intro: Action tauChainRefl)
lemma weakCongSum1:
fixes P :: ccs
and α :: act
and P' :: ccs
and Q :: ccs
assumes "P ⟹α ≺ P'"
shows "P ⊕ Q ⟹α ≺ P'"
using assms
apply(auto simp add: weakCongTrans_def)
apply(case_tac "P=P''")
apply(force simp add: tauChain_def dest: Sum1)
by(force intro: tauChainSum1)
lemma weakCongSum2:
fixes Q :: ccs
and α :: act
and Q' :: ccs
and P :: ccs
assumes "Q ⟹α ≺ Q'"
shows "P ⊕ Q ⟹α ≺ Q'"
using assms
apply(auto simp add: weakCongTrans_def)
apply(case_tac "Q=P''")
apply(force simp add: tauChain_def dest: Sum2)
by(force intro: tauChainSum2)
lemma weakCongPar1:
fixes P :: ccs
and α :: act
and P' :: ccs
and Q :: ccs
assumes "P ⟹α ≺ P'"
shows "P ∥ Q ⟹α ≺ P' ∥ Q"
using assms
by(auto simp add: weakCongTrans_def)
(blast dest: tauChainPar1 Par1)
lemma weakCongPar2:
fixes Q :: ccs
and α :: act
and Q' :: ccs
and P :: ccs
assumes "Q ⟹α ≺ Q'"
shows "P ∥ Q ⟹α ≺ P ∥ Q'"
using assms
by(auto simp add: weakCongTrans_def)
(blast dest: tauChainPar2 Par2)
lemma weakCongSync:
fixes P :: ccs
and α :: act
and P' :: ccs
and Q :: ccs
assumes "P ⟹α ≺ P'"
and "Q ⟹(coAction α) ≺ Q'"
and "α ≠ τ"
shows "P ∥ Q ⟹τ ≺ P' ∥ Q'"
using assms
apply(auto simp add: weakCongTrans_def)
apply(rule_tac x= "P'' ∥ P''a" in exI)
apply auto
apply(blast dest: tauChainPar1 tauChainPar2)
apply(rule_tac x="P''' ∥ P'''a" in exI)
apply auto
apply(rule Comm)
apply auto
apply(rule_tac P'="P' ∥ P'''a" in tauChainAppend)
by(blast dest: tauChainPar1 tauChainPar2)+
lemma weakCongRes:
fixes P :: ccs
and α :: act
and P' :: ccs
and x :: name
assumes "P ⟹α ≺ P'"
and "x ♯ α"
shows "⦇νx⦈P ⟹α ≺ ⦇νx⦈P'"
using assms
by(auto simp add: weakCongTrans_def)
(blast dest: tauChainRes Res)
lemma weakCongRepl:
fixes P :: ccs
and α :: act
and P' :: ccs
assumes "P ∥ !P ⟹α ≺ P'"
shows "!P ⟹α ≺ P'"
using assms
apply(auto simp add: weakCongTrans_def)
apply(case_tac "P'' = P ∥ !P")
apply auto
apply(force intro: Bang simp add: tauChain_def)
by(force intro: tauChainRepl)
end