Theory Strong_Sim_SC
theory Strong_Sim_SC
imports Strong_Sim
begin
lemma resNilLeft:
fixes x :: name
shows "⦇νx⦈𝟬 ↝[Rel] 𝟬"
by(auto simp add: simulation_def)
lemma resNilRight:
fixes x :: name
shows "𝟬 ↝[Rel] ⦇νx⦈𝟬"
by(auto simp add: simulation_def elim: resCases)
lemma test[simp]:
fixes x :: name
and P :: ccs
shows "x ♯ [x].P"
by(auto simp add: abs_fresh)
lemma scopeExtSumLeft:
fixes x :: name
and P :: ccs
and Q :: ccs
assumes "x ♯ P"
and C1: "⋀y R. y ♯ R ⟹ (⦇νy⦈R, R) ∈ Rel"
and "Id ⊆ Rel"
shows "⦇νx⦈(P ⊕ Q) ↝[Rel] P ⊕ ⦇νx⦈Q"
using assms
apply(auto simp add: simulation_def)
by(elim sumCases resCases) (blast intro: Res Sum1 Sum2 C1 dest: freshDerivative)+
lemma scopeExtSumRight:
fixes x :: name
and P :: ccs
and Q :: ccs
assumes "x ♯ P"
and C1: "⋀y R. y ♯ R ⟹ (R, ⦇νy⦈R) ∈ Rel"
and "Id ⊆ Rel"
shows "P ⊕ ⦇νx⦈Q ↝[Rel] ⦇νx⦈(P ⊕ Q)"
using assms
apply(auto simp add: simulation_def)
by(elim sumCases resCases) (blast intro: Res Sum1 Sum2 C1 dest: freshDerivative)+
lemma scopeExtLeft:
fixes x :: name
and P :: ccs
and Q :: ccs
assumes "x ♯ P"
and C1: "⋀y R T. y ♯ R ⟹ (⦇νy⦈(R ∥ T), R ∥ ⦇νy⦈T) ∈ Rel"
shows "⦇νx⦈(P ∥ Q) ↝[Rel] P ∥ ⦇νx⦈Q"
using assms
by(fastforce elim: parCases resCases intro: Res C1 Par1 Par2 Comm dest: freshDerivative simp add: simulation_def)
lemma scopeExtRight:
fixes x :: name
and P :: ccs
and Q :: ccs
assumes "x ♯ P"
and C1: "⋀y R T. y ♯ R ⟹ (R ∥ ⦇νy⦈T, ⦇νy⦈(R ∥ T)) ∈ Rel"
shows "P ∥ ⦇νx⦈Q ↝[Rel] ⦇νx⦈(P ∥ Q)"
using assms
by(fastforce elim: parCases resCases intro: Res C1 Par1 Par2 Comm dest: freshDerivative simp add: simulation_def)
lemma sumComm:
fixes P :: ccs
and Q :: ccs
assumes "Id ⊆ Rel"
shows "P ⊕ Q ↝[Rel] Q ⊕ P"
using assms
by(force simp add: simulation_def elim: sumCases intro: Sum1 Sum2)
lemma sumAssocLeft:
fixes P :: ccs
and Q :: ccs
and R :: ccs
assumes "Id ⊆ Rel"
shows "(P ⊕ Q) ⊕ R ↝[Rel] P ⊕ (Q ⊕ R)"
using assms
by(force simp add: simulation_def elim: sumCases intro: Sum1 Sum2)
lemma sumAssocRight:
fixes P :: ccs
and Q :: ccs
and R :: ccs
assumes "Id ⊆ Rel"
shows " P ⊕ (Q ⊕ R) ↝[Rel] (P ⊕ Q) ⊕ R"
using assms
by(intro simI, elim sumCases) (blast intro: Sum1 Sum2)+
lemma sumIdLeft:
fixes P :: ccs
and Rel :: "(ccs × ccs) set"
assumes "Id ⊆ Rel"
shows "P ⊕ 𝟬 ↝[Rel] P"
using assms
by(auto simp add: simulation_def intro: Sum1)
lemma sumIdRight:
fixes P :: ccs
and Rel :: "(ccs × ccs) set"
assumes "Id ⊆ Rel"
shows "P ↝[Rel] P ⊕ 𝟬"
using assms
by(fastforce simp add: simulation_def elim: sumCases)
lemma parComm:
fixes P :: ccs
and Q :: ccs
assumes C1: "⋀R T. (R ∥ T, T ∥ R) ∈ Rel"
shows "P ∥ Q ↝[Rel] Q ∥ P"
by(fastforce simp add: simulation_def elim: parCases intro: Par1 Par2 Comm C1)
lemma parAssocLeft:
fixes P :: ccs
and Q :: ccs
and R :: ccs
assumes C1: "⋀S T U. ((S ∥ T) ∥ U, S ∥ (T ∥ U)) ∈ Rel"
shows "(P ∥ Q) ∥ R ↝[Rel] P ∥ (Q ∥ R)"
by(fastforce simp add: simulation_def elim: parCases intro: Par1 Par2 Comm C1)
lemma parAssocRight:
fixes P :: ccs
and Q :: ccs
and R :: ccs
assumes C1: "⋀S T U. (S ∥ (T ∥ U), (S ∥ T) ∥ U) ∈ Rel"
shows "P ∥ (Q ∥ R) ↝[Rel] (P ∥ Q) ∥ R"
by(fastforce simp add: simulation_def elim: parCases intro: Par1 Par2 Comm C1)
lemma parIdLeft:
fixes P :: ccs
and Rel :: "(ccs × ccs) set"
assumes "⋀Q. (Q ∥ 𝟬, Q) ∈ Rel"
shows "P ∥ 𝟬 ↝[Rel] P"
using assms
by(auto simp add: simulation_def intro: Par1)
lemma parIdRight:
fixes P :: ccs
and Rel :: "(ccs × ccs) set"
assumes "⋀Q. (Q, Q ∥ 𝟬) ∈ Rel"
shows "P ↝[Rel] P ∥ 𝟬"
using assms
by(fastforce simp add: simulation_def elim: parCases)
declare fresh_atm[simp]
lemma resActLeft:
fixes x :: name
and α :: act
and P :: ccs
assumes "x ♯ α"
and "Id ⊆ Rel"
shows "⦇νx⦈(α.(P)) ↝[Rel] (α.(⦇νx⦈P))"
using assms
by(fastforce simp add: simulation_def elim: actCases intro: Res Action)
lemma resActRight:
fixes x :: name
and α :: act
and P :: ccs
assumes "x ♯ α"
and "Id ⊆ Rel"
shows "α.(⦇νx⦈P) ↝[Rel] ⦇νx⦈(α.(P))"
using assms
by(fastforce simp add: simulation_def elim: resCases actCases intro: Action)
lemma resComm:
fixes x :: name
and y :: name
and P :: ccs
assumes "⋀Q. (⦇νx⦈(⦇νy⦈Q), ⦇νy⦈(⦇νx⦈Q)) ∈ Rel"
shows "⦇νx⦈(⦇νy⦈P) ↝[Rel] ⦇νy⦈(⦇νx⦈P)"
using assms
by(fastforce simp add: simulation_def elim: resCases intro: Res)
inductive_cases bangCases[simplified ccs.distinct act.distinct]: "!P ⟼α ≺ P'"
lemma bangUnfoldLeft:
fixes P :: ccs
assumes "Id ⊆ Rel"
shows "P ∥ !P ↝[Rel] !P"
using assms
by(fastforce simp add: simulation_def ccs.inject elim: bangCases)
lemma bangUnfoldRight:
fixes P :: ccs
assumes "Id ⊆ Rel"
shows "!P ↝[Rel] P ∥ !P"
using assms
by(fastforce simp add: simulation_def ccs.inject intro: Bang)
end