Theory Strong_Sim_Pres
theory Strong_Sim_Pres
imports Strong_Sim
begin
lemma actPres:
fixes P :: ccs
and Q :: ccs
and Rel :: "(ccs × ccs) set"
and a :: name
and Rel' :: "(ccs × ccs) set"
assumes "(P, Q) ∈ Rel"
shows "α.(P) ↝[Rel] α.(Q)"
using assms
by(fastforce simp add: simulation_def elim: actCases intro: Action)
lemma sumPres:
fixes P :: ccs
and Q :: ccs
and Rel :: "(ccs × ccs) set"
assumes "P ↝[Rel] Q"
and "Rel ⊆ Rel'"
and "Id ⊆ Rel'"
shows "P ⊕ R ↝[Rel'] Q ⊕ R"
using assms
by(force simp add: simulation_def elim: sumCases intro: Sum1 Sum2)
lemma parPresAux:
fixes P :: ccs
and Q :: ccs
and Rel :: "(ccs × ccs) set"
assumes "P ↝[Rel] Q"
and "(P, Q) ∈ Rel"
and "R ↝[Rel'] T"
and "(R, T) ∈ Rel'"
and C1: "⋀P' Q' R' T'. ⟦(P', Q') ∈ Rel; (R', T') ∈ Rel'⟧ ⟹ (P' ∥ R', Q' ∥ T') ∈ Rel''"
shows "P ∥ R ↝[Rel''] Q ∥ T"
proof(induct rule: simI)
case(Sim a QT)
from ‹Q ∥ T ⟼a ≺ QT›
show ?case
proof(induct rule: parCases)
case(cPar1 Q')
from ‹P ↝[Rel] Q› ‹Q ⟼a ≺ Q'› obtain P' where "P ⟼a ≺ P'" and "(P', Q') ∈ Rel"
by(rule simE)
from ‹P ⟼a ≺ P'› have "P ∥ R ⟼a ≺ P' ∥ R" by(rule Par1)
moreover from ‹(P', Q') ∈ Rel› ‹(R, T) ∈ Rel'› have "(P' ∥ R, Q' ∥ T) ∈ Rel''" by(rule C1)
ultimately show ?case by blast
next
case(cPar2 T')
from ‹R ↝[Rel'] T› ‹T ⟼a ≺ T'› obtain R' where "R ⟼a ≺ R'" and "(R', T') ∈ Rel'"
by(rule simE)
from ‹R ⟼a ≺ R'› have "P ∥ R ⟼a ≺ P ∥ R'" by(rule Par2)
moreover from ‹(P, Q) ∈ Rel› ‹(R', T') ∈ Rel'› have "(P ∥ R', Q ∥ T') ∈ Rel''" by(rule C1)
ultimately show ?case by blast
next
case(cComm Q' T' a)
from ‹P ↝[Rel] Q› ‹Q ⟼a ≺ Q'› obtain P' where "P ⟼a ≺ P'" and "(P', Q') ∈ Rel"
by(rule simE)
from ‹R ↝[Rel'] T› ‹T ⟼(coAction a) ≺ T'› obtain R' where "R ⟼(coAction a) ≺ R'" and "(R', T') ∈ Rel'"
by(rule simE)
from ‹P ⟼a ≺ P'› ‹R ⟼(coAction a) ≺ R'› ‹a ≠ τ› have "P ∥ R ⟼τ ≺ P' ∥ R'" by(rule Comm)
moreover from ‹(P', Q') ∈ Rel› ‹(R', T') ∈ Rel'› have "(P' ∥ R', Q' ∥ T') ∈ Rel''" by(rule C1)
ultimately show ?case by blast
qed
qed
lemma parPres:
fixes P :: ccs
and Q :: ccs
and Rel :: "(ccs × ccs) set"
assumes "P ↝[Rel] Q"
and "(P, Q) ∈ Rel"
and C1: "⋀S T U. (S, T) ∈ Rel ⟹ (S ∥ U, T ∥ U) ∈ Rel'"
shows "P ∥ R ↝[Rel'] Q ∥ R"
using assms
by(rule_tac parPresAux[where Rel''=Rel' and Rel'=Id]) (auto intro: reflexive)
lemma resPres:
fixes P :: ccs
and Rel :: "(ccs × ccs) set"
and Q :: ccs
and x :: name
assumes "P ↝[Rel] Q"
and "⋀R S y. (R, S) ∈ Rel ⟹ (⦇νy⦈R, ⦇νy⦈S) ∈ Rel'"
shows "⦇νx⦈P ↝[Rel'] ⦇νx⦈Q"
using assms
by(fastforce simp add: simulation_def elim: resCases intro: Res)
lemma bangPres:
fixes P :: ccs
and Rel :: "(ccs × ccs) set"
and Q :: ccs
assumes "(P, Q) ∈ Rel"
and C1: "⋀R S. (R, S) ∈ Rel ⟹ R ↝[Rel] S"
shows "!P ↝[bangRel Rel] !Q"
proof(induct rule: simI)
case(Sim α Q')
{
fix Pa α Q'
assume "!Q ⟼α ≺ Q'" and "(Pa, !Q) ∈ bangRel Rel"
hence "∃P'. Pa ⟼α ≺ P' ∧ (P', Q') ∈ bangRel Rel"
proof(nominal_induct arbitrary: Pa rule: bangInduct)
case(cPar1 α Q')
from ‹(Pa, Q ∥ !Q) ∈ bangRel Rel›
show ?case
proof(induct rule: BRParCases)
case(BRPar P R)
from ‹(P, Q) ∈ Rel› have "P ↝[Rel] Q" by(rule C1)
with ‹Q ⟼α ≺ Q'› obtain P' where "P ⟼α ≺ P'" and "(P', Q') ∈ Rel"
by(blast dest: simE)
from ‹P ⟼α ≺ P'› have "P ∥ R ⟼α ≺ P' ∥ R" by(rule Par1)
moreover from ‹(P', Q') ∈ Rel› ‹(R, !Q) ∈ bangRel Rel› have "(P' ∥ R, Q' ∥ !Q) ∈ bangRel Rel"
by(rule bangRel.BRPar)
ultimately show ?case by blast
qed
next
case(cPar2 α Q')
from ‹(Pa, Q ∥ !Q) ∈ bangRel Rel›
show ?case
proof(induct rule: BRParCases)
case(BRPar P R)
from ‹(R, !Q) ∈ bangRel Rel› obtain R' where "R ⟼α ≺ R'" and "(R', Q') ∈ bangRel Rel" using cPar2
by blast
from ‹R ⟼α ≺ R'› have "P ∥ R ⟼α ≺ P ∥ R'" by(rule Par2)
moreover from ‹(P, Q) ∈ Rel› ‹(R', Q') ∈ bangRel Rel› have "(P ∥ R', Q ∥ Q') ∈ bangRel Rel" by(rule bangRel.BRPar)
ultimately show ?case by blast
qed
next
case(cComm a Q' Q'' Pa)
from ‹(Pa, Q ∥ !Q) ∈ bangRel Rel›
show ?case
proof(induct rule: BRParCases)
case(BRPar P R)
from ‹(P, Q) ∈ Rel› have "P ↝[Rel] Q" by(rule C1)
with ‹Q ⟼a ≺ Q'› obtain P' where "P ⟼a ≺ P'" and "(P', Q') ∈ Rel"
by(blast dest: simE)
from ‹(R, !Q) ∈ bangRel Rel› obtain R' where "R ⟼(coAction a) ≺ R'" and "(R', Q'') ∈ bangRel Rel" using cComm
by blast
from ‹P ⟼a ≺ P'› ‹R ⟼(coAction a) ≺ R'› ‹a ≠ τ› have "P ∥ R ⟼τ ≺ P' ∥ R'" by(rule Comm)
moreover from ‹(P', Q') ∈ Rel› ‹(R', Q'') ∈ bangRel Rel› have "(P' ∥ R', Q' ∥ Q'') ∈ bangRel Rel" by(rule bangRel.BRPar)
ultimately show ?case by blast
qed
next
case(cBang α Q' Pa)
from ‹(Pa, !Q) ∈ bangRel Rel›
show ?case
proof(induct rule: BRBangCases)
case(BRBang P)
from ‹(P, Q) ∈ Rel› have "(!P, !Q) ∈ bangRel Rel" by(rule bangRel.BRBang)
with ‹(P, Q) ∈ Rel› have "(P ∥ !P, Q ∥ !Q) ∈ bangRel Rel" by(rule bangRel.BRPar)
then obtain P' where "P ∥ !P ⟼α ≺ P'" and "(P', Q') ∈ bangRel Rel" using cBang
by blast
from ‹P ∥ !P ⟼α ≺ P'› have "!P ⟼α ≺ P'" by(rule Bang)
thus ?case using ‹(P', Q') ∈ bangRel Rel› by blast
qed
qed
}
moreover from ‹(P, Q) ∈ Rel› have "(!P, !Q) ∈ bangRel Rel" by(rule BRBang)
ultimately show ?case using ‹!Q ⟼ α ≺ Q'› by blast
qed
end