Theory AssocLists
theory AssocLists imports Main begin
section‹Preliminaries: association lists \label{sec:preliminaries}›
text‹Finite maps are used frequently, both in the representation of
syntax and in the program logics. Instead of restricting Isabelle's
partial map type $\alpha \rightharpoonup \beta$ to finite domains, we
found it easier for the present development to use the following adhoc
data type of association lists.›
type_synonym ('a,'b) AssList = "('a × 'b) list"
primrec lookup::"('a, 'b) AssList ⇒ 'a ⇒ ('b option)" (‹_↓_› [90,0] 90)
where
"lookup [] l = None" |
"lookup (h # t) l = (if fst h = l then Some(snd h) else lookup t l)"
lemma AL_lookup1[rule_format]:"∀ a b . (L↓a = Some b) ⟶ ((a,b) ∈ set L)"
by (induct L, simp_all)
lemma AL_Triv1:"a=b ⟹ L↓a = L↓b" by simp
lemma AL_Triv2: "⟦L↓a = X; L↓a = Y⟧ ⟹ X=Y" by simp
lemma AL_Triv3:"⟦L=M ; M↓b = X⟧ ⟹ L↓b = X" by clarsimp
lemma AL_Triv4:"⟦L=M ; L↓b = X⟧ ⟹ M↓b = X" by clarsimp
text‹The statement following the type declaration of ‹lookup›
indicates that we may use the infix notation ‹L↓a› for the
lookup operation, and asserts some precedence for bracketing. In a
similar way, shorthands are introduced for various operations
throughout this document.›
primrec delete::"('a, 'b) AssList ⇒ 'a ⇒ ('a, 'b) AssList"
where
"delete [] a = []" |
"delete (h # t) a = (if (fst h) = a then delete t a else (h # (delete t a)))"
lemma AL_delete1: "(delete L a) ↓ a = None"
by (induct L, auto)
lemma AL_delete2[rule_format]:"b ≠ a ⟶ (delete l a)↓b = l↓b"
by (induct l, simp, simp)
lemma AL_delete3: "L↓a = None ⟹ delete L a = L"
apply (induct L)
apply simp
apply clarsimp
apply (subgoal_tac "L↓a = None", clarsimp)
apply (case_tac "aa=a", clarsimp) apply clarsimp
done
lemma AL_delete4[simp]: "length(delete t a) < Suc(length t)"
by (induct t, simp+)
lemma AL_delete5[rule_format]:"[|b ≠ a; l↓b = x|] ==> (delete l a)↓b = x"
by (drule_tac l=l in AL_delete2, simp)
lemma AL_delete_idempotent: "delete M x = delete (delete M x) x"
by (induct M, auto)
lemma AL_delete_commutative: "delete (delete M c) x = delete (delete M x) c"
apply (induct M)
apply simp
apply simp
done
definition upd::"('a, 'b) AssList ⇒ 'a ⇒ 'b ⇒ ('a, 'b) AssList"
(‹_[_↦_]› [1000,0,0] 1000)
where "upd L a b = (a,b) # (delete L a)"
lemma AL_update1: "(L::('a, 'b) AssList)[a↦b]↓a = Some b"
by (simp add: upd_def)
lemma AL_update1a: "a=c ⟹ (L::('a, 'b) AssList)[a↦b]↓c = Some b" by (simp add: AL_update1)
lemma AL_update2: "a ≠ b ⟹ (L::('a, 'b) AssList)[a↦v]↓b = L↓b"
by (induct L, simp_all add: upd_def)
lemma AL_update3: "⟦(L::('a, 'b) AssList)[a↦v]↓b = X; a ≠ b⟧ ⟹ L↓b=X"
by (subgoal_tac "(L::('a, 'b) AssList)[a↦v]↓b = L↓b", clarsimp,erule AL_update2)
lemma AL_update4:"⟦ (L::('a, 'b) AssList)↓b = Some X; a ≠ b⟧⟹ L[a↦v]↓b = Some X"
by (subgoal_tac "(L::('a, 'b) AssList)[a↦v]↓b = L↓b", clarsimp, erule AL_update2)
lemma AL_update5: "⟦(L::('a, 'b) AssList)↓b = M; a ≠ b⟧ ⟹ L[a↦X]↓b = M"
apply (subgoal_tac "(L::('a, 'b) AssList)[a↦X]↓b = L↓b", simp)
apply (erule AL_update2)
done
text‹The empty map is represented by the empty list.›
definition emp::"('a, 'b)AssList"
where "emp = []"
lemma AL_emp1: "emp↓a = None"
by (simp add: emp_def)
definition AL_isEmp::"('a,'b) AssList ⇒ bool"
where "AL_isEmp l = (∀ a . l↓a = None)"
definition contained::"('a,'b) AssList ⇒ ('a,'b) AssList ⇒ bool"
where "contained L M = (∀ a b . L↓a = Some b ⟶ M↓a = Some b)"
text‹The following operation defined the cardinality of a map.›
fun AL_Size :: "('a, 'b) AssList ⇒ nat" (‹|_|› [1000] 1000) where
"AL_Size [] = 0"
| "AL_Size (h # t) = Suc (AL_Size (delete t (fst h)))"
lemma AL_Size_Zero: "|L| = 0 ⟹ None = L↓a"
by (induct L, simp, simp)
lemma AL_Size_Suc: "∀ n . |L| = Suc n ⟶ (∃ a b . L↓a = Some b)"
apply (induct L)
apply clarsimp
apply clarsimp
apply (rule_tac x=a in exI, simp)
done
lemma AL_Size_UpdateSuc:"L↓a = None ⟹ |L[a↦b]| = Suc |L|"
apply (induct L)
apply (simp add: upd_def)
apply (simp add: upd_def)
apply clarsimp
apply (case_tac "aa=a", clarsimp)
apply clarsimp
apply (drule AL_delete3) apply clarsimp
done
lemma AL_Size_SucSplit[rule_format]:
"∀ n . |L| = Suc n ⟶
(∃ a b M . |M| = n ∧ M↓a = None ∧ L↓a = Some b ∧ (∀ c . c≠ a ⟶ M↓c = L↓c))"
apply (induct L)
apply clarsimp
apply clarsimp
apply (rule_tac x=a in exI) apply simp
apply (rule_tac x="delete L a" in exI, clarsimp)
apply rule apply (rule AL_delete1)
apply clarsimp apply (erule AL_delete2)
done
lemma updSizeAux[rule_format]:
"∀ h a obj obj1 . |h[a↦obj1]| = n ⟶ h↓a = Some obj ⟶ |h| = n"
apply (induct n)
apply clarsimp
apply (drule_tac a=a in AL_Size_Zero) apply (simp add: AL_update1)
apply clarify
apply (case_tac h, clarify) apply (erule thin_rl) apply (simp add: AL_emp1)
apply clarify
apply (case_tac "aa=a", clarify) apply (erule thin_rl) apply (simp add: upd_def)
apply (subgoal_tac "(delete list a) = (delete (delete list a) a)", simp)
apply (rule AL_delete_idempotent)
apply (erule_tac x="delete list aa" in allE, erule_tac x=a in allE)
apply (erule_tac x=obj in allE, erule_tac x=obj1 in allE)
apply (erule impE) apply (simp add: upd_def)
apply (subgoal_tac "(delete (delete (delete list aa) a) a) = (delete (delete (delete list a) a) aa)", simp)
apply (subgoal_tac "(delete (delete list a) a) = (delete list a)", simp)
apply (subgoal_tac "delete (delete (delete list aa) a) a = delete (delete list aa) a", simp)
apply (rule AL_delete_commutative)
apply (subgoal_tac "delete (delete list aa) a = delete (delete (delete list aa) a) a", simp)
apply (rule AL_delete_idempotent)
apply (subgoal_tac "delete list a = delete (delete list a) a", simp)
apply (rule AL_delete_idempotent)
apply (erule impE) apply (simp add: upd_def) apply (rule AL_delete5) apply fast apply assumption
apply simp
done
lemma updSize: "h↓a = Some obj ⟹ |h[a↦obj1]| = |h|"
by (insert updSizeAux [of h a obj1 "|h[a↦obj1]|" obj], simp)
text‹Some obvious basic properties of association lists and their
operations are easily proven, but have been suppressed
during the document preparation.›
end