Theory Bisimulation

theory Bisimulation
  imports Simulation
begin

text ‹This file is a (heavily modified) variant of the theory {\it Psi\_Calculi.Bisimulation}
from~\cite{DBLP:journals/afp/Bengtson12}.›

context env begin

lemma monoCoinduct: "x y xa xb xc P Q Ψ.
                      x  y 
                      (Ψ  Q ↝[{(xc, xb, xa). x xc xb xa}] P) 
                     (Ψ  Q ↝[{(xb, xa, xc). y xb xa xc}] P)"
  apply(rule impI)
  apply(rule monotonic)
  by(auto dest: le_funE)

coinductive_set bisim :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"
  where
    step: "(insertAssertion (extractFrame P)) Ψ F (insertAssertion (extractFrame Q) Ψ);
          Ψ  P ↝[bisim] Q;
          Ψ'. (Ψ  Ψ',  P, Q)  bisim; (Ψ, Q, P)  bisim  (Ψ, P, Q)  bisim"
    monos monoCoinduct

abbreviation
  bisimJudge (‹_  _  _› [70, 70, 70] 65) where "Ψ  P  Q  (Ψ, P, Q)  bisim"
abbreviation
  bisimNilJudge (‹_  _› [70, 70] 65) where "P  Q  SBottom'  P  Q"

lemma bisimCoinductAux[consumes 1]:
  fixes F :: 'b
    and P :: "('a, 'b, 'c) psi"
    and Q :: "('a, 'b, 'c) psi"
    and X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

assumes "(Ψ, P, Q)  X"
  and   "Ψ P Q. (Ψ, P, Q)  X  insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ 
                                    (Ψ  P ↝[(X  bisim)] Q) 
                                    (Ψ'. (Ψ  Ψ', P, Q)  X  (Ψ  Ψ', P, Q)  bisim) 
                                    ((Ψ, Q, P)  X  (Ψ, Q, P)  bisim)"

shows "(Ψ, P, Q)  bisim"
proof -
  have "X  bisim = {(Ψ, P, Q). (Ψ, P, Q)  X  (Ψ, P, Q)  bisim}" by auto
  with assms show ?thesis
    by coinduct simp
qed

lemma bisimCoinduct[consumes 1, case_names cStatEq cSim cExt cSym]:
  fixes F :: 'b
    and P :: "('a, 'b, 'c) psi"
    and Q :: "('a, 'b, 'c) psi"
    and X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

assumes "(Ψ, P, Q)  X"
  and   "Ψ' R S. (Ψ', R, S)  X  insertAssertion (extractFrame R) Ψ' F insertAssertion (extractFrame S) Ψ'"
  and   "Ψ' R S. (Ψ', R, S)  X  Ψ'  R ↝[(X  bisim)] S"
  and   "Ψ' R S Ψ''. (Ψ', R, S)  X  (Ψ'  Ψ'', R, S)  X  (Ψ'  Ψ'', R, S)  bisim"
  and   "Ψ' R S. (Ψ', R, S)  X  (Ψ', S, R)  X  (Ψ', S, R)  bisim"

shows "(Ψ, P, Q)  bisim"
proof -
  have "X  bisim = {(Ψ, P, Q). (Ψ, P, Q)  X  (Ψ, P, Q)  bisim}" by auto
  with assms show ?thesis
    by coinduct simp
qed

lemma bisimWeakCoinductAux[consumes 1]:
  fixes Ψ :: 'b
    and P :: "('a, 'b, 'c) psi"
    and Q :: "('a, 'b, 'c) psi"
    and X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

assumes "(Ψ, P, Q)  X"
  and   "Ψ P Q. (Ψ, P, Q)  X  insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ 
                                     Ψ  P ↝[X] Q 
                                    (Ψ'. (Ψ  Ψ', P, Q)  X)  (Ψ, Q, P)  X"

shows "(Ψ, P, Q)  bisim"
  using assms
  by(coinduct rule: bisimCoinductAux) (blast intro: monotonic)

lemma bisimWeakCoinduct[consumes 1, case_names cStatEq cSim cExt cSym]:
  fixes F :: 'b
    and P :: "('a, 'b, 'c) psi"
    and Q :: "('a, 'b, 'c) psi"
    and X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

assumes "(Ψ, P, Q)  X"
  and   "Ψ P Q. (Ψ, P, Q)  X  insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ"
  and   "Ψ P Q. (Ψ, P, Q)  X  Ψ  P ↝[X] Q"
  and   "Ψ P Q Ψ'. (Ψ, P, Q)  X  (Ψ  Ψ', P, Q)  X"
  and   "Ψ P Q. (Ψ, P, Q)  X  (Ψ, Q, P)  X"

shows "(Ψ, P, Q)  bisim"
proof -
  have "X  bisim = {(Ψ, P, Q). (Ψ, P, Q)  X  (Ψ, P, Q)  bisim}" by auto
  with assms show ?thesis
    by(coinduct rule: bisimCoinduct) (blast intro: monotonic)+
qed

lemma bisimE:
  fixes P  :: "('a, 'b, 'c) psi"
    and Q  :: "('a, 'b, 'c) psi"
    and Ψ  :: 'b
    and Ψ' :: 'b

assumes "(Ψ, P, Q)  bisim"

shows "insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ"
  and "Ψ  P ↝[bisim] Q"
  and "(Ψ  Ψ', P, Q)  bisim"
  and "(Ψ, Q, P)  bisim"
  using assms
  by(auto simp add: intro: bisim.cases)

lemma bisimI:
  fixes P :: "('a, 'b, 'c) psi"
    and Q :: "('a, 'b, 'c) psi"
    and Ψ :: 'b

assumes "insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ"
  and   "Ψ  P ↝[bisim] Q"
  and   "Ψ'. (Ψ  Ψ', P, Q)  bisim"
  and   "(Ψ, Q, P)  bisim"

shows "(Ψ, P, Q)  bisim"
  using assms
  by(auto intro: bisim.step)

lemma bisimReflexive:
  fixes Ψ :: 'b
    and P :: "('a, 'b, 'c) psi"


shows "Ψ  P  P"
proof -
  let ?X = "{(Ψ, P, P) | Ψ P. True}"
  have "(Ψ, P, P)  ?X" by simp
  then show ?thesis
    by(coinduct rule: bisimWeakCoinduct, auto intro: reflexive)
qed

lemma bisimClosed:
  fixes Ψ :: 'b
    and P :: "('a, 'b, 'c) psi"
    and Q :: "('a, 'b, 'c) psi"
    and p :: "name prm"

assumes PBisimQ: "Ψ  P  Q"

shows "(p  Ψ)   (p  P)  (p  Q)"
proof -
  let ?X = "{(p  Ψ, p  P, p  Q) | (p::name prm) Ψ  P Q. Ψ  P  Q}"
  from PBisimQ have "(p  Ψ, p  P, p  Q)  ?X" by blast
  then show ?thesis
  proof(coinduct rule: bisimWeakCoinduct)
    case(cStatEq Ψ P Q)
    have "Ψ P Q (p::name prm). insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ 
          insertAssertion (extractFrame(p  P)) (p  Ψ) F insertAssertion (extractFrame(p  Q)) (p  Ψ)"
      by(drule FrameStatEqClosed) (simp add: eqvts)

    with (Ψ, P, Q)  ?X show ?case by(blast dest: bisimE)
  next
    case(cSim Ψ P Q)
    {
      fix p :: "name prm"
      fix Ψ P Q
      have "eqvt ?X"
        apply(clarsimp simp add: eqvt_def)
        by (metis (no_types, opaque_lifting) pt_name2)
      moreover assume "Ψ  P ↝[bisim] Q"
      then have "Ψ  P ↝[?X] Q"
        apply(rule monotonic[where A=bisim], auto)
        by(rule exI[where x="[]::name prm"]) auto
      ultimately have "((p::name prm)  Ψ)  (p  P) ↝[?X] (p  Q)"
        by(rule simClosed)
    }
    with (Ψ, P, Q)  ?X show ?case
      by(blast dest: bisimE)
  next
    case(cExt Ψ P Q Ψ')
    {
      fix p :: "name prm"
      fix Ψ P Q Ψ'
      assume "Ψ'. (Ψ  Ψ', P, Q)  bisim"
      then have "((p  Ψ)  Ψ', p  P, p  Q)  ?X"
        apply(clarsimp)
        apply(rule exI[where x=p])
        apply(rule exI[where x="Ψ  (rev p  Ψ')"])
        by(auto simp add: eqvts)
    }
    with (Ψ, P, Q)  ?X show ?case
      by(blast dest: bisimE)
  next
    case(cSym Ψ P Q)
    then show ?case
      by(blast dest: bisimE)
  qed
qed

lemma bisimEqvt[simp]:
  shows "eqvt bisim"
  by(auto simp add: eqvt_def bisimClosed)

lemma statEqBisim:
  fixes Ψ  :: 'b
    and P  :: "('a, 'b, 'c) psi"
    and Q  :: "('a, 'b, 'c) psi"
    and Ψ' :: 'b

assumes "Ψ  P  Q"
  and   "Ψ  Ψ'"

shows "Ψ'  P  Q"
proof -
  let ?X = "{(Ψ', P, Q) | Ψ P Q Ψ'. Ψ  P  Q  Ψ  Ψ'}"
  from Ψ  P  Q Ψ  Ψ' have "(Ψ', P, Q)  ?X" by auto
  then show ?thesis
  proof(coinduct rule: bisimCoinduct)
    case(cStatEq Ψ' P Q)
    from (Ψ', P, Q)  ?X obtain Ψ where "Ψ  P  Q" and "Ψ  Ψ'"
      by auto
    from Ψ  P  Q have PeqQ: "insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ"
      by(rule bisimE)

    obtain AP ΨP where FrP: "extractFrame P = AP, ΨP" and "AP ♯* Ψ" and "AP ♯* Ψ'"
      by(rule freshFrame[where C="(Ψ, Ψ')"]) auto
    obtain AQ ΨQ where FrQ: "extractFrame Q = AQ, ΨQ" and "AQ ♯* Ψ" and "AQ ♯* Ψ'"
      by(rule freshFrame[where C="(Ψ, Ψ')"]) auto

    from PeqQ FrP FrQ AP ♯* Ψ AQ ♯* Ψ Ψ  Ψ'
    have "AP, Ψ'  ΨP F AQ, Ψ'  ΨQ"
      by simp (metis frameIntComposition FrameStatEqTrans FrameStatEqSym)
    with FrP FrQ AP ♯* Ψ' AQ ♯* Ψ' show ?case by simp
  next
    case(cSim Ψ' P Q)
    from (Ψ', P, Q)  ?X obtain Ψ where "Ψ  P  Q" and "Ψ  Ψ'"
      by auto
    from Ψ  P  Q have "Ψ  P ↝[bisim] Q" by(blast dest: bisimE)
    moreover have "eqvt ?X"
      by(auto simp add: eqvt_def) (metis bisimClosed AssertionStatEqClosed)
    then have "eqvt(?X  bisim)" by auto
    moreover note Ψ  Ψ'
    moreover have "Ψ P Q Ψ'. Ψ  P  Q; Ψ  Ψ'  (Ψ', P, Q)  ?X  bisim"
      by auto
    ultimately show ?case
      by(rule statEqSim)
  next
    case(cExt Ψ' P Q Ψ'')
    from (Ψ', P, Q)  ?X obtain Ψ where "Ψ  P  Q" and "Ψ  Ψ'"
      by auto
    from Ψ  P  Q have "Ψ  Ψ''  P  Q" by(rule bisimE)
    moreover from Ψ  Ψ' have "Ψ  Ψ''  Ψ'  Ψ''" by(rule Composition)
    ultimately show ?case by blast
  next
    case(cSym Ψ' P Q)
    from (Ψ', P, Q)  ?X obtain Ψ where "Ψ  P  Q" and "Ψ  Ψ'"
      by auto
    from Ψ  P  Q have "Ψ  Q  P" by(rule bisimE)
    then show ?case using Ψ  Ψ' by auto
  qed
qed

lemma bisimTransitive:
  fixes Ψ :: 'b
    and P :: "('a, 'b, 'c) psi"
    and Q :: "('a, 'b, 'c) psi"
    and R :: "('a, 'b, 'c) psi"

assumes PQ: "Ψ  P  Q"
  and   QR: "Ψ  Q  R"

shows "Ψ  P  R"
proof -
  let ?X = "{(Ψ, P, R) | Ψ P Q R. Ψ  P  Q  Ψ  Q  R}"
  from PQ QR have "(Ψ, P, R)  ?X" by auto
  then show ?thesis
  proof(coinduct rule: bisimCoinduct)
    case(cStatEq Ψ P R)
    then show ?case by(blast dest: bisimE FrameStatEqTrans)
  next
    case(cSim Ψ P R)
    {
      fix Ψ P Q R
      assume "Ψ  P ↝[bisim] Q" and "Ψ  Q ↝[bisim] R"
      moreover have "eqvt ?X"
        by(force simp add: eqvt_def dest: bisimClosed)
      with bisimEqvt have "eqvt (?X  bisim)" by blast
      moreover have "?X  ?X  bisim" by auto
      ultimately have "Ψ  P ↝[(?X  bisim)] R"
        by(force intro: transitive)
    }
    with (Ψ, P, R)  ?X show ?case
      by(blast dest: bisimE)
  next
    case(cExt Ψ P R Ψ')
    then show ?case by(blast dest: bisimE)
  next
    case(cSym Ψ P R)
    then show ?case by(blast dest: bisimE)
  qed
qed

lemma weakTransitiveCoinduct[case_names cStatEq cSim cExt cSym, case_conclusion bisim step, consumes 2]:
  fixes Ψ :: 'b
    and P :: "('a, 'b, 'c) psi"
    and Q :: "('a, 'b, 'c) psi"
    and X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

assumes p: "(Ψ, P, Q)  X"
  and Eqvt: "eqvt X"
  and rStatEq: "Ψ P Q. (Ψ, P, Q)  X  insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ"
  and rSim: "Ψ P Q. (Ψ, P, Q)  X  Ψ  P ↝[({(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P' 
                                                                        (Ψ, P', Q')  X 
                                                                        Ψ  Q'  Q})] Q"
  and rExt: "Ψ P Q Ψ'. (Ψ, P, Q)  X  (Ψ  Ψ', P, Q)  X"
  and rSym: "Ψ P Q. (Ψ, P, Q)  X  (Ψ, Q, P)  X"

shows "Ψ  P  Q"
proof -
  let ?X = "{(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  (Ψ, P', Q')  X  Ψ  Q'  Q}"
  from p have "(Ψ, P, Q)  ?X"
    by(blast intro: bisimReflexive)
  then show ?thesis
  proof(coinduct rule: bisimWeakCoinduct)
    case(cStatEq Ψ P Q)
    then show ?case
      by(blast dest: rStatEq bisimE FrameStatEqTrans)
  next
    case(cSim Ψ P Q)
    {
      fix Ψ P P' Q' Q
      assume "Ψ  P ↝[bisim] P'"
      moreover assume P'RelQ': "(Ψ, P', Q')  X"
      then have "Ψ  P' ↝[?X] Q'" by(rule rSim)
      moreover from eqvt X P'RelQ' have "eqvt ?X"
        apply(clarsimp simp add: eqvt_def)
        apply(drule bisimClosed)
        apply(drule bisimClosed)
        apply(rule exI)
        apply(rule conjI)
         apply assumption
        apply(rule exI)
        by auto
      ultimately have "Ψ  P ↝[?X] Q'"
        by(force intro: transitive dest: bisimTransitive)
      moreover assume "Ψ  Q' ↝[bisim] Q"
      ultimately have "Ψ  P ↝[?X] Q" using eqvt ?X
        by(force intro: transitive dest: bisimTransitive)
    }
    with (Ψ, P, Q)  ?X show ?case
      by(blast dest: bisimE)
  next
    case(cExt Ψ P Q Ψ')
    then show ?case by(blast dest: bisimE intro: rExt)
  next
    case(cSym Ψ P Q)
    then show ?case by(blast dest: bisimE intro: rSym)
  qed
qed

lemma weakTransitiveCoinduct'[case_names cStatEq cSim cExt cSym, case_conclusion bisim step, consumes 2]:
  fixes Ψ :: 'b
    and P :: "('a, 'b, 'c) psi"
    and Q :: "('a, 'b, 'c) psi"
    and X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

assumes p: "(Ψ, P, Q)  X"
  and Eqvt: "eqvt X"
  and rStatEq: "Ψ P Q. (Ψ, P, Q)  X  insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ"
  and rSim: "Ψ P Q. (Ψ, P, Q)  X  Ψ  P ↝[({(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P' 
                                                                        (Ψ, P', Q')  X 
                                                                        Ψ  Q'  Q})] Q"
  and rExt: "Ψ P Q Ψ'. (Ψ, P, Q)  X  (Ψ  Ψ', P, Q)  X"
  and rSym: "Ψ P Q. (Ψ, P, Q)  X 
                      (Ψ, Q, P)  {(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  (Ψ, P', Q')  X  Ψ  Q'  Q}"

shows "Ψ  P  Q"
proof -
  let ?X = "{(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  (Ψ, P', Q')  X  Ψ  Q'  Q}"
  from p have "(Ψ, P, Q)  ?X"
    by(blast intro: bisimReflexive)
  then show ?thesis
  proof(coinduct rule: bisimWeakCoinduct)
    case(cStatEq Ψ P Q)
    then show ?case
      by(blast dest: rStatEq bisimE FrameStatEqTrans)
  next
    case(cSim Ψ P Q)
    {
      fix Ψ P P' Q' Q
      assume "Ψ  P ↝[bisim] P'"
      moreover assume P'RelQ': "(Ψ, P', Q')  X"
      then have "Ψ  P' ↝[?X] Q'" by(rule rSim)
      moreover from eqvt X P'RelQ' have "eqvt ?X"
        apply(clarsimp simp add: eqvt_def)
        apply(drule bisimClosed)
        apply(drule bisimClosed)
        apply(rule exI)
        apply(rule conjI)
         apply assumption
        apply(rule exI)
        by auto
      ultimately have "Ψ  P ↝[?X] Q'"
        by(force intro: transitive dest: bisimTransitive)
      moreover assume "Ψ  Q' ↝[bisim] Q"
      ultimately have "Ψ  P ↝[?X] Q" using eqvt ?X
        by(force intro: transitive dest: bisimTransitive)
    }
    with (Ψ, P, Q)  ?X show ?case
      by(blast dest: bisimE)
  next
    case(cExt Ψ P Q Ψ')
    then show ?case by(blast dest: bisimE intro: rExt)
  next
    case(cSym Ψ P Q)
    then show ?case
      apply clarsimp
      apply(drule rSym)
      apply clarsimp
      by(metis bisimTransitive bisimE(4))
  qed
qed

lemma weakTransitiveCoinduct''[case_names cStatEq cSim cExt cSym, case_conclusion bisim step, consumes 2]:
  fixes Ψ :: 'b
    and P :: "('a, 'b, 'c) psi"
    and Q :: "('a, 'b, 'c) psi"
    and X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

assumes p: "(Ψ, P, Q)  X"
  and Eqvt: "eqvt X"
  and rStatEq: "Ψ P Q. (Ψ, P, Q)  X  insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ"
  and rSim: "Ψ P Q. (Ψ, P, Q)  X  Ψ  P ↝[({(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P' 
                                                                        (Ψ, P', Q')  X 
                                                                        Ψ  Q'  Q})] Q"
  and rExt: "Ψ P Q Ψ'. (Ψ, P, Q)  {(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  (Ψ, P', Q')  X  Ψ  Q'  Q} 
                         (Ψ  Ψ', P, Q)  {(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  (Ψ, P', Q')  X  Ψ  Q'  Q}"
  and rSym: "Ψ P Q. (Ψ, P, Q)  {(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  (Ψ, P', Q')  X  Ψ  Q'  Q} 
                      (Ψ, Q, P)  {(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  (Ψ, P', Q')  X  Ψ  Q'  Q}"

shows "Ψ  P  Q"
proof -
  let ?X = "{(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  (Ψ, P', Q')  X  Ψ  Q'  Q}"
  from p have "(Ψ, P, Q)  ?X"
    by(blast intro: bisimReflexive)
  then show ?thesis
  proof(coinduct rule: bisimWeakCoinduct)
    case(cStatEq Ψ P Q)
    then show ?case
      by(blast dest: rStatEq bisimE FrameStatEqTrans)
  next
    case(cSim Ψ P Q)
    {
      fix Ψ P P' Q' Q
      assume "Ψ  P ↝[bisim] P'"
      moreover assume P'RelQ': "(Ψ, P', Q')  X"
      then have "Ψ  P' ↝[?X] Q'" by(rule rSim)
      moreover from eqvt X P'RelQ' have "eqvt ?X"
        apply(clarsimp simp add: eqvt_def)
        apply(drule bisimClosed)
        apply(drule bisimClosed)
        apply(rule exI)
        apply(rule conjI)
         apply assumption
        apply(rule exI)
        by auto
      ultimately have "Ψ  P ↝[?X] Q'"
        by(force intro: transitive dest: bisimTransitive)
      moreover assume "Ψ  Q' ↝[bisim] Q"
      ultimately have "Ψ  P ↝[?X] Q" using eqvt ?X
        by(force intro: transitive dest: bisimTransitive)
    }
    with (Ψ, P, Q)  ?X show ?case
      by(blast dest: bisimE)
  next
    case(cExt Ψ P Q Ψ')
    then show ?case by(rule rExt)
  next
    case(cSym Ψ P Q)
    then show ?case by(rule rSym)
  qed
qed

lemma transitiveCoinduct[case_names cStatEq cSim cExt cSym, case_conclusion bisim step, consumes 2]:
  fixes Ψ :: 'b
    and P :: "('a, 'b, 'c) psi"
    and Q :: "('a, 'b, 'c) psi"
    and X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

assumes p: "(Ψ, P, Q)  X"
  and Eqvt: "eqvt X"
  and rStatEq: "Ψ' R S. (Ψ', R, S)  X  insertAssertion (extractFrame R) Ψ' F insertAssertion (extractFrame S) Ψ'"
  and rSim: "Ψ' R S. (Ψ', R, S)  X  Ψ'  R ↝[({(Ψ', R, S) | Ψ' R R' S' S. Ψ'  R  R' 
                                                                        ((Ψ', R', S')  X  Ψ'  R'  S') 
                                                                        Ψ'  S'  S})] S"
  and rExt: "Ψ' R S Ψ''. (Ψ', R, S)  X  (Ψ'  Ψ'', R, S)  X  Ψ'  Ψ''  R  S"
  and rSym: "Ψ' R S. (Ψ', R, S)  X  (Ψ', S, R)  X  Ψ'  S  R"


shows "Ψ  P  Q"
proof -
  from p have "(Ψ, P, Q)  (X  bisim)"
    by blast
  moreover from eqvt X bisimEqvt have "eqvt (X  bisim)"
    by auto
  ultimately show ?thesis
  proof(coinduct rule: weakTransitiveCoinduct')
    case(cStatEq Ψ P Q)
    then show ?case
      by(blast intro: rStatEq dest: bisimE)
  next
    case(cSim Ψ P Q)
    then show ?case
      apply clarsimp
      apply (erule disjE)
       apply(blast intro: rSim)
      apply(drule bisimE(2))
      apply(rule monotonic, simp)
      by(force intro: bisimReflexive)
  next
    case(cExt Ψ P Q Ψ')
    then show ?case
      by(blast dest: bisimE rExt)
  next
    case(cSym Ψ P Q)
    then show ?case by(blast dest: bisimE rSym intro: bisimReflexive)
  qed
qed

lemma transitiveCoinduct'[case_names cStatEq cSim cExt cSym, case_conclusion bisim step, consumes 2]:
  fixes Ψ :: 'b
    and P :: "('a, 'b, 'c) psi"
    and Q :: "('a, 'b, 'c) psi"
    and X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

assumes p: "(Ψ, P, Q)  X"
  and Eqvt: "eqvt X"
  and rStatEq: "Ψ P Q. (Ψ, P, Q)  X  insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ"
  and rSim: "Ψ P Q. (Ψ, P, Q)  X  Ψ  P ↝[({(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P' 
                                                                        (Ψ, P', Q')  (X  bisim) 
                                                                        Ψ  Q'  Q})] Q"
  and rExt: "Ψ P Q Ψ'. (Ψ, P, Q)  X  (Ψ  Ψ', P, Q)  X  Ψ  Ψ'  P  Q"
  and rSym: "Ψ P Q. (Ψ, P, Q)  X 
                      (Ψ, Q, P)  {(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  ((Ψ, P', Q')  (X  bisim))  Ψ  Q'  Q}"

shows "Ψ  P  Q"
proof -
  from p have "(Ψ, P, Q)  (X  bisim)"
    by blast
  moreover from eqvt X bisimEqvt have "eqvt (X  bisim)"
    by auto
  ultimately show ?thesis
  proof(coinduct rule: weakTransitiveCoinduct')
    case(cStatEq Ψ P Q)
    then show ?case
      by(blast intro: rStatEq dest: bisimE)
  next
    case(cSim Ψ P Q)
    then show ?case
      apply -
      apply(cases "(Ψ, P, Q)  X")
       apply(rule rSim)
       apply simp
      apply(clarify)
      apply(drule bisimE(2))
      apply(rule monotonic, simp)
      by(force intro: bisimReflexive)
  next
    case(cExt Ψ P Q Ψ')
    then show ?case
      by(blast dest: bisimE rExt)
  next
    case(cSym Ψ P Q)
    then show ?case
      apply clarsimp
      apply (erule disjE)
       apply(drule rSym)
       apply clarsimp
      apply(rule exI[where x=Q])
      apply(simp add: bisimReflexive)
      apply(rule exI)
      by(auto intro: bisimReflexive dest: bisimE(4))
  qed
qed

lemma bisimSymmetric:
  fixes Ψ :: 'b
    and P :: "('a, 'b, 'c) psi"
    and Q :: "('a, 'b, 'c) psi"

assumes "Ψ  P  Q"

shows "Ψ  Q  P"
  using assms
  by(rule bisimE)

lemma eqvtTrans[intro]:
  assumes "eqvt X"

shows "eqvt {(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  ((Ψ, P', Q')  X  Ψ  P'  Q')  Ψ  Q'  Q}"
  using assms
  apply(clarsimp simp add: eqvt_def)
  apply(erule disjE)
   using ballE bisimClosed apply fastforce
  by(blast dest: bisimClosed)

lemma eqvtWeakTrans[intro]:
  assumes "eqvt X"

shows "eqvt {(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  (Ψ, P', Q')  X  Ψ  Q'  Q}"
  using assms
  apply(clarsimp simp add: eqvt_def)
  using ballE bisimClosed by fastforce

inductive_set
  rel_trancl :: "('b × ('a,'b,'c) psi × ('a,'b,'c) psi) set  ('b × ('a,'b,'c) psi × ('a,'b,'c) psi) set"  ((_) [1000] 999)
  for r :: "('b × ('a,'b,'c) psi × ('a,'b,'c) psi) set"
  where
    r_into_rel_trancl [intro, Pure.intro]: "(Ψ, P,Q) : r ==> (Ψ,P,Q) : r"
  | rel_trancl_into_rel_trancl [Pure.intro]: "(Ψ,P,Q) : r ==> (Ψ,Q,R) : r ==> (Ψ,P,R) : r"

lemma rel_trancl_transitive:
  assumes "(Ψ,P,Q)  Rel"
    and   "(Ψ,Q,R)  Rel"
  shows   "(Ψ,P,R)  Rel"
  using (Ψ,Q,R)  Rel (Ψ,P,Q)  Rel
  by(induct rule: rel_trancl.induct) (auto intro: rel_trancl_into_rel_trancl)

lemma rel_trancl_eqvt:
  assumes "eqvt X"
  shows   "eqvt(X)"
proof -
  {
    fix  p::"name prm"
      and Ψ P Q
    assume "(Ψ,P,Q)  X"
    then have   "(p(Ψ,P,Q))  X"
    proof(induct rule: rel_trancl.induct)
      case(r_into_rel_trancl Ψ P Q)
      with eqvt X have "(p(Ψ, P, Q))  X"
        unfolding eqvt_def by auto
      then show ?case by auto
    next
      case(rel_trancl_into_rel_trancl Ψ P Q R)
      from (Ψ, Q, R)  X eqvt X have "(p(Ψ, Q, R))  X"
        unfolding eqvt_def by auto
      then have "(p(Ψ, Q, R))  X"
        by auto
      with p  (Ψ, P, Q)  X show ?case by(auto dest: rel_trancl_transitive)
    qed
  }
  then show ?thesis unfolding eqvt_def
    by auto
qed

lemma bisimStarWeakCoinduct[consumes 2, case_names cStatEq cSim cExt cSym]:
  fixes F :: 'b
    and P :: "('a, 'b, 'c) psi"
    and Q :: "('a, 'b, 'c) psi"
    and X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

assumes "(Ψ, P, Q)  X"
  and   "eqvt X"
  and   rStatEq: "Ψ' R S. (Ψ', R, S)  X  insertAssertion (extractFrame R) Ψ' F insertAssertion (extractFrame S) Ψ'"
  and   rSim: "Ψ' R S. (Ψ', R, S)  X  Ψ'  R ↝[X] S"
  and   rExt: "Ψ' R S Ψ''. (Ψ', R, S)  X  (Ψ'  Ψ'', R, S)  X"
  and   rSym: "Ψ' R S. (Ψ', R, S)  X  (Ψ', S, R)  X"

shows "(Ψ, P, Q)  bisim"
proof -
  have "eqvt(X)" using eqvt X
    by(rule rel_trancl_eqvt)
  from (Ψ, P, Q)  X
  have "(Ψ, P, Q)  X"
    by force
  then show ?thesis
  proof(coinduct rule: bisimWeakCoinduct)
    case(cSim Ψ' R S)
    then show ?case
    proof(induct rule: rel_trancl.induct)
      case(r_into_rel_trancl Ψ P Q)
      then show ?case
        by(rule rSim)
    next
      case(rel_trancl_into_rel_trancl Ψ P Q R)
      note Ψ  P ↝[X] Q
      moreover from (Ψ, Q, R)  X have "Ψ  Q ↝[X] R"
        by(rule rSim)
      moreover note eqvt(X)
      moreover have "{(Ψ, P, R) |Ψ P R. Q. (Ψ, P, Q)  X  (Ψ, Q, R)  X}  X"
        by(blast intro: rel_trancl_transitive)
      ultimately show ?case
        using transitive by meson
    qed
  next
    case (cStatEq Ψ P Q)
    then show ?case
    proof(induct rule: rel_trancl.induct)
      case(r_into_rel_trancl Ψ P Q)
      then show ?case
        by(rule rStatEq)
    next
      case(rel_trancl_into_rel_trancl Ψ P Q R)
      from (Ψ, Q, R)  X have "insertAssertion (extractFrame Q) Ψ F insertAssertion (extractFrame R) Ψ"
        by(rule rStatEq)
      with insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ
      show ?case
        by(rule FrameStatEqTrans)
    qed
  next
    case(cExt Ψ P Q Ψ')
    then show ?case
    proof(induct rule: rel_trancl.induct)
      case(r_into_rel_trancl Ψ P Q)
      then have "(Ψ  Ψ', P, Q)  X" by(rule rExt)
      then show ?case
        by force
    next
      case(rel_trancl_into_rel_trancl Ψ P Q R)
      from (Ψ, Q, R)  X have "(Ψ  Ψ', Q, R)  X" by(rule rExt)
      then have "(Ψ  Ψ', Q, R)  X" by force
      with (Ψ  Ψ', P, Q)  X
      show ?case
        by(rule rel_trancl_transitive)
    qed
  next
    case(cSym Ψ P Q)
    then show ?case
    proof(induct rule: rel_trancl.induct)
      case(r_into_rel_trancl Ψ P Q)
      then have "(Ψ, Q, P)  X" by(rule rSym)
      then show ?case
        by force
    next
      case(rel_trancl_into_rel_trancl Ψ P Q R)
      from (Ψ, Q, R)  X have "(Ψ, R, Q)  X" by(rule rSym)
      then have "(Ψ, R, Q)  X" by force
      then show ?case using (Ψ, Q, P)  X
        by(rule rel_trancl_transitive)
    qed
  qed
qed

lemma weakTransitiveStarCoinduct[case_names cStatEq cSim cExt cSym, case_conclusion bisim step, consumes 2]:
  fixes Ψ :: 'b
    and P :: "('a, 'b, 'c) psi"
    and Q :: "('a, 'b, 'c) psi"
    and X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

assumes p: "(Ψ, P, Q)  X"
  and Eqvt: "eqvt X"
  and rStatEq: "Ψ P Q. (Ψ, P, Q)  X  insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ"
  and rSim: "Ψ P Q. (Ψ, P, Q)  X  Ψ  P ↝[({(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P' 
                                                                        (Ψ, P', Q')  X 
                                                                        Ψ  Q'  Q})] Q"
  and rExt: "Ψ P Q Ψ'. (Ψ, P, Q)  X  (Ψ  Ψ', P, Q)  X"
  and rSym: "Ψ P Q. (Ψ, P, Q)  X  (Ψ, Q, P)  X"

shows "Ψ  P  Q"
proof -
  let ?X = "{(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  (Ψ, P', Q')  X  Ψ  Q'  Q}"
  from p have "(Ψ, P, Q)  ?X"
    by(blast intro: bisimReflexive)
  moreover from eqvt X have "eqvt ?X" by auto
  ultimately show ?thesis
  proof(coinduct rule: bisimStarWeakCoinduct)
    case(cStatEq Ψ P Q)
    then show ?case
      by(blast dest: rStatEq bisimE FrameStatEqTrans)
  next
    case(cSim Ψ P Q)
    then obtain P' Q' where "Ψ  P  P'" and "(Ψ, P', Q')  X" and "Ψ  Q'  Q"
      by blast
    then have "Ψ  P ↝[bisim] P'" and "Ψ  Q' ↝[bisim] Q"
      by(auto dest: bisimE)
    {
      fix Ψ P Q
        and Q'::"('a,'b,'c) psi"
      assume "Ψ  P  Q"
        and  "(Ψ,Q,Q')  ?X"
      note (Ψ,Q,Q')  ?X Ψ  P  Q
      then have "(Ψ,P,Q')  ?X"
      proof(induct rule: rel_trancl.inducts)
        case(r_into_rel_trancl Ψ Q Q') then show ?case
          by(blast dest: bisimTransitive)
      next
        case(rel_trancl_into_rel_trancl Ψ P' Q Q')
        then show ?case
          by(blast dest: rel_trancl_transitive)
      qed
    }
    note tonic = this
    {
      fix Ψ P Q
        and Q'::"('a,'b,'c) psi"
      assume "(Ψ,P,Q)  ?X"
        and  "Ψ  Q  Q'"
      then have "(Ψ,P,Q')  ?X"
      proof(induct arbitrary: Q' rule: rel_trancl.inducts)
        case(r_into_rel_trancl Ψ P Q) then show ?case
          by(blast dest: bisimTransitive)
      next
        case(rel_trancl_into_rel_trancl Ψ P P' Q)
        from (Ψ, P', Q)  ?X Ψ  Q  Q' have "(Ψ, P', Q')  ?X"
          by(blast dest: bisimTransitive)
        then have "(Ψ, P', Q')  ?X"
          by blast
        with (Ψ, P, P')  ?X
        show ?case
          by(rule rel_trancl_transitive)
      qed
    }
    note tonic2 = this
    from (Ψ, P', Q')  X have "Ψ  P' ↝[?X] Q'"
      by(rule rSim)
    with Ψ  P ↝[bisim] P' have "Ψ  P ↝[?X] Q'"
      apply -
      apply(rule transitive)
         apply assumption
        apply assumption
       apply(rule rel_trancl_eqvt)
       apply(rule eqvt ?X)
      by(blast intro: tonic)
    with Ψ  Q' ↝[bisim] Q show ?case
      apply -
      apply(rule transitive)
         apply assumption
        apply assumption
       apply(rule rel_trancl_eqvt)
       apply(rule eqvt ?X)
      by(blast intro: tonic2)
  next
    case(cExt Ψ P Q Ψ')
    then show ?case by(blast dest: bisimE intro: rExt)
  next
    case(cSym Ψ P Q)
    then show ?case by(blast dest: bisimE intro: rSym)
  qed
qed

lemma weakTransitiveStarCoinduct'[case_names cStatEq cSim cExt cSym, case_conclusion bisim step, consumes 2]:
  fixes Ψ :: 'b
    and P :: "('a, 'b, 'c) psi"
    and Q :: "('a, 'b, 'c) psi"
    and X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

assumes p: "(Ψ, P, Q)  X"
  and Eqvt: "eqvt X"
  and rStatEq: "Ψ P Q. (Ψ, P, Q)  X  insertAssertion (extractFrame P) Ψ F insertAssertion (extractFrame Q) Ψ"
  and rSim: "Ψ P Q. (Ψ, P, Q)  X  Ψ  P ↝[({(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P' 
                                                                        (Ψ, P', Q')  X 
                                                                        Ψ  Q'  Q})] Q"
  and rExt: "Ψ P Q Ψ'. (Ψ, P, Q)  X  (Ψ  Ψ', P, Q)  X"
  and rSym: "Ψ P Q. (Ψ, P, Q)  X 
                      (Ψ, Q, P)  {(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  (Ψ, P', Q')  X  Ψ  Q'  Q}"

shows "Ψ  P  Q"
proof -
  let ?X = "{(Ψ, P, Q) | Ψ P P' Q' Q. Ψ  P  P'  (Ψ, P', Q')  X  Ψ  Q'  Q}"
  from p have "(Ψ, P, Q)  ?X"
    by(blast intro: bisimReflexive)
  moreover from eqvt X have "eqvt ?X" by auto
  ultimately show ?thesis
  proof(coinduct rule: bisimStarWeakCoinduct)
    case(cStatEq Ψ P Q)
    then show ?case
      by(blast dest: rStatEq bisimE FrameStatEqTrans)
  next
    case(cSim Ψ P Q)
    then obtain P' Q' where "Ψ  P  P'" and "(Ψ, P', Q')  X" and "Ψ  Q'  Q"
      by blast
    then have "Ψ  P ↝[bisim] P'" and "Ψ  Q' ↝[bisim] Q"
      by(auto dest: bisimE)
    {
      fix Ψ P Q
        and Q'::"('a,'b,'c) psi"
      assume "Ψ  P  Q"
        and  "(Ψ,Q,Q')  ?X"
      note (Ψ,Q,Q')  ?X Ψ  P  Q
      then have "(Ψ,P,Q')  ?X"
      proof(induct rule: rel_trancl.inducts)
        case(r_into_rel_trancl Ψ Q Q') then show ?case
          by(blast dest: bisimTransitive)
      next
        case(rel_trancl_into_rel_trancl Ψ P' Q Q')
        then show ?case
          by(blast dest: rel_trancl_transitive)
      qed
    }
    note tonic = this
    {
      fix Ψ P Q
        and Q'::"('a,'b,'c) psi"
      assume "(Ψ,P,Q)  ?X"
        and  "Ψ  Q  Q'"
      then have "(Ψ,P,Q')  ?X"
      proof(induct arbitrary: Q' rule: rel_trancl.inducts)
        case(r_into_rel_trancl Ψ P Q) then show ?case
          by(blast dest: bisimTransitive)
      next
        case(rel_trancl_into_rel_trancl Ψ P P' Q)
        from (Ψ, P', Q)  ?X Ψ  Q  Q' have "(Ψ, P', Q')  ?X"
          by(blast dest: bisimTransitive)
        then have "(Ψ, P', Q')  ?X"
          by blast
        with (Ψ, P, P')  ?X
        show ?case
          by(rule rel_trancl_transitive)
      qed
    }
    note tonic2 = this
    from (Ψ, P', Q')  X have "Ψ  P' ↝[?X] Q'"
      by(rule rSim)
    with Ψ  P ↝[bisim] P' have "Ψ  P ↝[?X] Q'"
      apply -
      apply(rule transitive)
         apply assumption
        apply assumption
       apply(rule rel_trancl_eqvt)
       apply(rule eqvt ?X)
      by(blast intro: tonic)
    with Ψ  Q' ↝[bisim] Q show ?case
      apply -
      apply(rule transitive)
         apply assumption
        apply assumption
       apply(rule rel_trancl_eqvt)
       apply(rule eqvt ?X)
      by(blast intro: tonic2)
  next
    case(cExt Ψ P Q Ψ')
    then show ?case by(blast dest: bisimE intro: rExt)
  next
    case(cSym Ψ P Q)
    then show ?case
      apply clarsimp
      apply(drule rSym)
      apply clarsimp
      by(metis bisimTransitive bisimE(4))
  qed
qed

lemma transitiveStarCoinduct[case_names cStatEq cSim cExt cSym, case_conclusion bisim step, consumes 2]:
  fixes Ψ :: 'b
    and P :: "('a, 'b, 'c) psi"
    and Q :: "('a, 'b, 'c) psi"
    and X :: "('b × ('a, 'b, 'c) psi × ('a, 'b, 'c) psi) set"

assumes p: "(Ψ, P, Q)  X"
  and Eqvt: "eqvt X"
  and rStatEq: "Ψ' R S. (Ψ', R, S)  X  insertAssertion (extractFrame R) Ψ' F insertAssertion (extractFrame S) Ψ'"
  and rSim: "Ψ' R S. (Ψ', R, S)  X  Ψ'  R ↝[({(Ψ', R, S) | Ψ' R R' S' S. Ψ'  R  R' 
                                                                        ((Ψ', R', S')  X  Ψ'  R'  S') 
                                                                        Ψ'  S'  S})] S"
  and rExt: "Ψ' R S Ψ''. (Ψ', R, S)  X  (Ψ'  Ψ'', R, S)  X  Ψ'  Ψ''  R  S"
  and rSym: "Ψ' R S. (Ψ', R, S)  X  (Ψ', S, R)  X  Ψ'  S  R"


shows "Ψ  P  Q"
proof -
  from p have "(Ψ, P, Q)  (X  bisim)"
    by blast
  moreover from eqvt X bisimEqvt have "eqvt (X  bisim)"
    by auto
  ultimately show ?thesis
  proof(coinduct rule: weakTransitiveStarCoinduct')
    case(cStatEq Ψ P Q)
    then show ?case
      by(blast intro: rStatEq dest: bisimE)
  next
    case(cSim Ψ P Q)
    then show ?case
      apply clarsimp
      apply (erule disjE)
       apply(blast intro: rSim)
      apply(drule bisimE(2))
      apply(rule monotonic, simp)
      by(force intro: bisimReflexive)
  next
    case(cExt Ψ P Q Ψ')
    then show ?case
      by(blast dest: bisimE rExt)
  next
    case(cSym Ψ P Q)
    then show ?case by(blast dest: bisimE rSym intro: bisimReflexive)
  qed
qed

end

end