Theory Native_Word.Code_Target_Integer_Bit

(*  Title:      Code_Target_Integer_Bit.thy
    Author:     Andreas Lochbihler, ETH Zurich
*)

chapter ‹Bit operations for target language integers›

theory Code_Target_Integer_Bit
  imports
    "HOL-Library.Word"
    "Code_Int_Integer_Conversion"
    "Word_Lib.Most_significant_bit"
    "Word_Lib.Generic_set_bit"
    "Word_Lib.Bit_Comprehension"
begin

text ‹TODO: separate›

lemmas [transfer_rule] =
  identity_quotient
  fun_quotient
  Quotient_integer[folded integer.pcr_cr_eq]

lemma undefined_transfer:
  assumes "Quotient R Abs Rep T"
  shows "T (Rep undefined) undefined"
using assms unfolding Quotient_alt_def by blast

bundle undefined_transfer = undefined_transfer[transfer_rule]


section ‹More lemmas about @{typ integer}s›

context
  includes integer.lifting
begin

lemma integer_of_nat_less_0_conv [simp]: "¬ integer_of_nat n < 0"
  by transfer simp

lemma int_of_integer_pow: "int_of_integer (x ^ n) = int_of_integer x ^ n"
  by transfer rule

lemma sub1_lt_0_iff [simp]: "Code_Numeral.sub n num.One < 0  False"
  by transfer (simp add: sub_negative)

lemma nat_of_integer_numeral [simp]: "nat_of_integer (numeral n) = numeral n"
  by transfer simp

lemma nat_of_integer_sub1_conv_pred_numeral [simp]:
  "nat_of_integer (Code_Numeral.sub n num.One) = pred_numeral n"
  by transfer (simp only: pred_numeral_def int_nat_eq numeral_One int_minus flip: int_int_eq, simp)

lemma nat_of_integer_1 [simp]: "nat_of_integer 1 = 1"
  by transfer simp

lemma dup_1 [simp]: "Code_Numeral.dup 1 = 2"
  by transfer simp

end


section ‹Target language implementations›

text ‹
  Unfortunately, this is not straightforward,
  because these API functions have different signatures and preconditions on the parameters:

  \begin{description}
  \item[Standard ML] Shifts in IntInf are given as word, but not IntInf.
  \item[Haskell] In the Data.Bits.Bits type class, shifts and bit indices are given as Int rather than Integer.
  \end{description}

  Additional constants take only parameters of type @{typ integer} rather than @{typ nat}
  and check the preconditions as far as possible (e.g., being non-negative) in a portable way.
  Manual implementations inside code\_printing perform the remaining range checks and convert
  these @{typ integer}s into the right type.

  For normalisation by evaluation, we derive custom code equations, because NBE
  does not know these code\_printing serialisations and would otherwise loop.
›

code_printing code_module Integer_Bit  (SML)
‹structure Integer_Bit : sig
  val test_bit : IntInf.int -> IntInf.int -> bool
  val set_bit : IntInf.int -> IntInf.int -> bool -> IntInf.int
  val shiftl : IntInf.int -> IntInf.int -> IntInf.int
  val shiftr : IntInf.int -> IntInf.int -> IntInf.int
end = struct

val maxWord = IntInf.pow (2, Word.wordSize);

fun test_bit x n =
  if n < maxWord then IntInf.andb (x, IntInf.<< (1, Word.fromLargeInt (IntInf.toLarge n))) <> 0
  else raise (Fail ("Bit index too large: " ^ IntInf.toString n));

fun set_bit x n b =
  if n < maxWord then
    if b then IntInf.orb (x, IntInf.<< (1, Word.fromLargeInt (IntInf.toLarge n)))
    else IntInf.andb (x, IntInf.notb (IntInf.<< (1, Word.fromLargeInt (IntInf.toLarge n))))
  else raise (Fail ("Bit index too large: " ^ IntInf.toString n));

fun shiftl x n =
  if n < maxWord then IntInf.<< (x, Word.fromLargeInt (IntInf.toLarge n))
  else raise (Fail ("Shift operand too large: " ^ IntInf.toString n));

fun shiftr x n =
  if n < maxWord then IntInf.~>> (x, Word.fromLargeInt (IntInf.toLarge n))
  else raise (Fail ("Shift operand too large: " ^ IntInf.toString n));

end; (*struct Integer_Bit*)›
code_reserved SML Integer_Bit

code_printing code_module Integer_Bit  (OCaml)
‹module Integer_Bit : sig
  val test_bit : Z.t -> Z.t -> bool
  val shiftl : Z.t -> Z.t -> Z.t
  val shiftr : Z.t -> Z.t -> Z.t
end = struct

(* We do not need an explicit range checks here,
   because Big_int.int_of_big_int raises Failure
   if the argument does not fit into an int. *)
let test_bit x n =  Z.testbit x (Z.to_int n);;

let shiftl x n = Z.shift_left x (Z.to_int n);;

let shiftr x n = Z.shift_right x (Z.to_int n);;

end;; (*struct Integer_Bit*)›
code_reserved OCaml Integer_Bit

code_printing code_module Data_Bits  (Haskell)
‹
module Data_Bits where {

import qualified Data.Bits;

{-
  The ...Bounded functions assume that the Integer argument for the shift
  or bit index fits into an Int, is non-negative and (for types of fixed bit width)
  less than bitSize
-}

infixl 7 .&.;
infixl 6 `xor`;
infixl 5 .|.;

(.&.) :: Data.Bits.Bits a => a -> a -> a;
(.&.) = (Data.Bits..&.);

xor :: Data.Bits.Bits a => a -> a -> a;
xor = Data.Bits.xor;

(.|.) :: Data.Bits.Bits a => a -> a -> a;
(.|.) = (Data.Bits..|.);

complement :: Data.Bits.Bits a => a -> a;
complement = Data.Bits.complement;

testBitUnbounded :: Data.Bits.Bits a => a -> Integer -> Bool;
testBitUnbounded x b
  | b <= toInteger (Prelude.maxBound :: Int) = Data.Bits.testBit x (fromInteger b)
  | otherwise = error ("Bit index too large: " ++ show b)
;

testBitBounded :: Data.Bits.Bits a => a -> Integer -> Bool;
testBitBounded x b = Data.Bits.testBit x (fromInteger b);

setBitUnbounded :: Data.Bits.Bits a => a -> Integer -> Bool -> a;
setBitUnbounded x n b
  | n <= toInteger (Prelude.maxBound :: Int) =
    if b then Data.Bits.setBit x (fromInteger n) else Data.Bits.clearBit x (fromInteger n)
  | otherwise = error ("Bit index too large: " ++ show n)
;

setBitBounded :: Data.Bits.Bits a => a -> Integer -> Bool -> a;
setBitBounded x n True = Data.Bits.setBit x (fromInteger n);
setBitBounded x n False = Data.Bits.clearBit x (fromInteger n);

shiftlUnbounded :: Data.Bits.Bits a => a -> Integer -> a;
shiftlUnbounded x n
  | n <= toInteger (Prelude.maxBound :: Int) = Data.Bits.shiftL x (fromInteger n)
  | otherwise = error ("Shift operand too large: " ++ show n)
;

shiftlBounded :: Data.Bits.Bits a => a -> Integer -> a;
shiftlBounded x n = Data.Bits.shiftL x (fromInteger n);

shiftrUnbounded :: Data.Bits.Bits a => a -> Integer -> a;
shiftrUnbounded x n
  | n <= toInteger (Prelude.maxBound :: Int) = Data.Bits.shiftR x (fromInteger n)
  | otherwise = error ("Shift operand too large: " ++ show n)
;

shiftrBounded :: (Ord a, Data.Bits.Bits a) => a -> Integer -> a;
shiftrBounded x n = Data.Bits.shiftR x (fromInteger n);

}›

  and ― ‹@{theory HOL.Quickcheck_Narrowing} maps @{typ integer} to
            Haskell's Prelude.Int type instead of Integer. For compatibility
            with the Haskell target, we nevertheless provide bounded and
            unbounded functions.›
  (Haskell_Quickcheck)
‹
module Data_Bits where {

import qualified Data.Bits;

{-
  The functions assume that the Int argument for the shift or bit index is
  non-negative and (for types of fixed bit width) less than bitSize
-}

infixl 7 .&.;
infixl 6 `xor`;
infixl 5 .|.;

(.&.) :: Data.Bits.Bits a => a -> a -> a;
(.&.) = (Data.Bits..&.);

xor :: Data.Bits.Bits a => a -> a -> a;
xor = Data.Bits.xor;

(.|.) :: Data.Bits.Bits a => a -> a -> a;
(.|.) = (Data.Bits..|.);

complement :: Data.Bits.Bits a => a -> a;
complement = Data.Bits.complement;

testBitUnbounded :: Data.Bits.Bits a => a -> Prelude.Int -> Bool;
testBitUnbounded = Data.Bits.testBit;

testBitBounded :: Data.Bits.Bits a => a -> Prelude.Int -> Bool;
testBitBounded = Data.Bits.testBit;

setBitUnbounded :: Data.Bits.Bits a => a -> Prelude.Int -> Bool -> a;
setBitUnbounded x n True = Data.Bits.setBit x n;
setBitUnbounded x n False = Data.Bits.clearBit x n;

setBitBounded :: Data.Bits.Bits a => a -> Prelude.Int -> Bool -> a;
setBitBounded x n True = Data.Bits.setBit x n;
setBitBounded x n False = Data.Bits.clearBit x n;

shiftlUnbounded :: Data.Bits.Bits a => a -> Prelude.Int -> a;
shiftlUnbounded = Data.Bits.shiftL;

shiftlBounded :: Data.Bits.Bits a => a -> Prelude.Int -> a;
shiftlBounded = Data.Bits.shiftL;

shiftrUnbounded :: Data.Bits.Bits a => a -> Prelude.Int -> a;
shiftrUnbounded = Data.Bits.shiftR;

shiftrBounded :: (Ord a, Data.Bits.Bits a) => a -> Prelude.Int -> a;
shiftrBounded = Data.Bits.shiftR;

}›
code_reserved Haskell Data_Bits

code_printing code_module Integer_Bit  (Scala)
‹object Integer_Bit {

def testBit(x: BigInt, n: BigInt) : Boolean =
  n.isValidInt match {
    case true => x.testBit(n.toInt)
    case false => sys.error("Bit index too large: " + n.toString)
  }

def setBit(x: BigInt, n: BigInt, b: Boolean) : BigInt =
  n.isValidInt match {
    case true if b => x.setBit(n.toInt)
    case true => x.clearBit(n.toInt)
    case false => sys.error("Bit index too large: " + n.toString)
  }

def shiftl(x: BigInt, n: BigInt) : BigInt =
  n.isValidInt match {
    case true => x << n.toInt
    case false => sys.error("Shift index too large: " + n.toString)
  }

def shiftr(x: BigInt, n: BigInt) : BigInt =
  n.isValidInt match {
    case true => x << n.toInt
    case false => sys.error("Shift index too large: " + n.toString)
  }

} /* object Integer_Bit */›

code_printing
  constant "Bit_Operations.and :: integer  integer  integer" 
  (SML) "IntInf.andb ((_),/ (_))" and
  (OCaml) "Z.logand" and
  (Haskell) "((Data'_Bits..&.) :: Integer -> Integer -> Integer)" and
  (Haskell_Quickcheck) "((Data'_Bits..&.) :: Prelude.Int -> Prelude.Int -> Prelude.Int)" and
  (Scala) infixl 3 "&"
| constant "Bit_Operations.or :: integer  integer  integer" 
  (SML) "IntInf.orb ((_),/ (_))" and
  (OCaml) "Z.logor" and
  (Haskell) "((Data'_Bits..|.) :: Integer -> Integer -> Integer)" and
  (Haskell_Quickcheck) "((Data'_Bits..|.) :: Prelude.Int -> Prelude.Int -> Prelude.Int)" and
  (Scala) infixl 1 "|"
| constant "Bit_Operations.xor :: integer  integer  integer" 
  (SML) "IntInf.xorb ((_),/ (_))" and
  (OCaml) "Z.logxor" and
  (Haskell) "(Data'_Bits.xor :: Integer -> Integer -> Integer)" and
  (Haskell_Quickcheck) "(Data'_Bits.xor :: Prelude.Int -> Prelude.Int -> Prelude.Int)" and
  (Scala) infixl 2 "^"
| constant "Bit_Operations.not :: integer  integer" 
  (SML) "IntInf.notb" and
  (OCaml) "Z.lognot" and
  (Haskell) "(Data'_Bits.complement :: Integer -> Integer)" and
  (Haskell_Quickcheck) "(Data'_Bits.complement :: Prelude.Int -> Prelude.Int)" and
  (Scala) "_.unary'_~"

definition integer_test_bit :: "integer  integer  bool"
  where "integer_test_bit x n = (if n < 0 then undefined x n else bit x (nat_of_integer n))"

lemma integer_test_bit_code [code]:
  "integer_test_bit x (Code_Numeral.Neg n) = undefined x (Code_Numeral.Neg n)"
  "integer_test_bit 0 0 = False"
  "integer_test_bit 0 (Code_Numeral.Pos n) = False"
  "integer_test_bit (Code_Numeral.Pos num.One)      0 = True"
  "integer_test_bit (Code_Numeral.Pos (num.Bit0 n)) 0 = False"
  "integer_test_bit (Code_Numeral.Pos (num.Bit1 n)) 0 = True"
  "integer_test_bit (Code_Numeral.Pos num.One)      (Code_Numeral.Pos n') = False"
  "integer_test_bit (Code_Numeral.Pos (num.Bit0 n)) (Code_Numeral.Pos n') =
   integer_test_bit (Code_Numeral.Pos n) (Code_Numeral.sub n' num.One)"
  "integer_test_bit (Code_Numeral.Pos (num.Bit1 n)) (Code_Numeral.Pos n') =
   integer_test_bit (Code_Numeral.Pos n) (Code_Numeral.sub n' num.One)"
  "integer_test_bit (Code_Numeral.Neg num.One)      0 = True"
  "integer_test_bit (Code_Numeral.Neg (num.Bit0 n)) 0 = False"
  "integer_test_bit (Code_Numeral.Neg (num.Bit1 n)) 0 = True"
  "integer_test_bit (Code_Numeral.Neg num.One)      (Code_Numeral.Pos n') = True"
  "integer_test_bit (Code_Numeral.Neg (num.Bit0 n)) (Code_Numeral.Pos n') =
   integer_test_bit (Code_Numeral.Neg n) (Code_Numeral.sub n' num.One)"
  "integer_test_bit (Code_Numeral.Neg (num.Bit1 n)) (Code_Numeral.Pos n') =
   integer_test_bit (Code_Numeral.Neg (n + num.One)) (Code_Numeral.sub n' num.One)"
  by (simp_all add: integer_test_bit_def bit_integer_def bit_0 flip: bit_not_int_iff')

lemma bit_integer_code [code]:
  "bit x n  integer_test_bit x (integer_of_nat n)"
  by (simp add: integer_test_bit_def)

code_printing constant integer_test_bit 
  (SML) "Integer'_Bit.test'_bit" and
  (OCaml) "Integer'_Bit.test'_bit" and
  (Haskell) "(Data'_Bits.testBitUnbounded :: Integer -> Integer -> Bool)" and
  (Haskell_Quickcheck) "(Data'_Bits.testBitUnbounded :: Prelude.Int -> Prelude.Int -> Bool)" and
  (Scala) "Integer'_Bit.testBit"

context
  includes integer.lifting and bit_operations_syntax
begin

lemma msb_integer_code [code]:
  "msb (x :: integer)  x < 0"
  by transfer (simp add: msb_int_def)

definition integer_set_bit :: "integer  integer  bool  integer"
where [code del]: "integer_set_bit x n b = (if n < 0 then undefined x n b else set_bit x (nat_of_integer n) b)"

lemma set_bit_integer_code [code]:
  "set_bit x i b = integer_set_bit x (integer_of_nat i) b"
by(simp add: integer_set_bit_def)

lemma set_bit_integer_conv_masks:
  fixes x :: integer shows
  "set_bit x i b = (if b then x OR (push_bit i 1) else x AND NOT (push_bit i 1))"
  by (transfer; rule bit_eqI) (simp add: bit_simps)

end

code_printing constant integer_set_bit 
  (SML) "Integer'_Bit.set'_bit" and
  (Haskell) "(Data'_Bits.setBitUnbounded :: Integer -> Integer -> Bool -> Integer)" and
  (Haskell_Quickcheck) "(Data'_Bits.setBitUnbounded :: Prelude.Int -> Prelude.Int -> Bool -> Prelude.Int)" and
  (Scala) "Integer'_Bit.setBit"

text ‹
  OCaml.Big\_int does not have a method for changing an individual bit, so we emulate that with masks.
  We prefer an Isabelle implementation, because this then takes care of the signs for AND and OR.
›

context
  includes bit_operations_syntax
begin

lemma integer_set_bit_code [code]:
  "integer_set_bit x n b =
  (if n < 0 then undefined x n b else
   if b then x OR (push_bit (nat_of_integer n) 1)
   else x AND NOT (push_bit (nat_of_integer n) 1))"
  by (auto simp add: integer_set_bit_def not_less set_bit_eq set_bit_def unset_bit_def)

end

definition integer_shiftl :: "integer  integer  integer"
where [code del]: "integer_shiftl x n = (if n < 0 then undefined x n else push_bit (nat_of_integer n) x)"

declare [[code drop: push_bit :: nat  integer  integer]]

lemma shiftl_integer_code [code]:
  fixes x :: integer shows
  "push_bit n x = integer_shiftl x (integer_of_nat n)"
by(auto simp add: integer_shiftl_def)

context
includes integer.lifting
begin

lemma shiftl_integer_conv_mult_pow2:
  fixes x :: integer shows
  "push_bit n x = x * 2 ^ n"
  by (fact push_bit_eq_mult)

lemma integer_shiftl_code [code]:
  "integer_shiftl x (Code_Numeral.Neg n) = undefined x (Code_Numeral.Neg n)"
  "integer_shiftl x 0 = x"
  "integer_shiftl x (Code_Numeral.Pos n) = integer_shiftl (Code_Numeral.dup x) (Code_Numeral.sub n num.One)"
  "integer_shiftl 0 (Code_Numeral.Pos n) = 0"
     apply (simp_all add: integer_shiftl_def numeral_eq_Suc)
  apply transfer
  apply (simp add: ac_simps)
  done

end

code_printing constant integer_shiftl 
  (SML) "Integer'_Bit.shiftl" and
  (OCaml) "Integer'_Bit.shiftl" and
  (Haskell) "(Data'_Bits.shiftlUnbounded :: Integer -> Integer -> Integer)" and
  (Haskell_Quickcheck) "(Data'_Bits.shiftlUnbounded :: Prelude.Int -> Prelude.Int -> Prelude.Int)" and
  (Scala) "Integer'_Bit.shiftl"

definition integer_shiftr :: "integer  integer  integer"
where [code del]: "integer_shiftr x n = (if n < 0 then undefined x n else drop_bit (nat_of_integer n) x)"

declare [[code drop: drop_bit :: nat  integer  integer]]

lemma shiftr_integer_conv_div_pow2:
  includes integer.lifting fixes x :: integer shows
  "drop_bit n x = x div 2 ^ n"
  by (fact drop_bit_eq_div)

lemma shiftr_integer_code [code]:
  fixes x :: integer shows
  "drop_bit n x = integer_shiftr x (integer_of_nat n)"
by(auto simp add: integer_shiftr_def)

code_printing constant integer_shiftr 
  (SML) "Integer'_Bit.shiftr" and
  (OCaml) "Integer'_Bit.shiftr" and
  (Haskell) "(Data'_Bits.shiftrUnbounded :: Integer -> Integer -> Integer)" and
  (Haskell_Quickcheck) "(Data'_Bits.shiftrUnbounded :: Prelude.Int -> Prelude.Int -> Prelude.Int)" and
  (Scala) "Integer'_Bit.shiftr"

lemma integer_shiftr_code [code]:
  includes integer.lifting
  shows
  "integer_shiftr x (Code_Numeral.Neg n) = undefined x (Code_Numeral.Neg n)"
  "integer_shiftr x 0 = x"
  "integer_shiftr 0 (Code_Numeral.Pos n) = 0"
  "integer_shiftr (Code_Numeral.Pos num.One) (Code_Numeral.Pos n) = 0"
  "integer_shiftr (Code_Numeral.Pos (num.Bit0 n')) (Code_Numeral.Pos n) =
   integer_shiftr (Code_Numeral.Pos n') (Code_Numeral.sub n num.One)"
  "integer_shiftr (Code_Numeral.Pos (num.Bit1 n')) (Code_Numeral.Pos n) =
   integer_shiftr (Code_Numeral.Pos n') (Code_Numeral.sub n num.One)"
  "integer_shiftr (Code_Numeral.Neg num.One) (Code_Numeral.Pos n) = -1"
  "integer_shiftr (Code_Numeral.Neg (num.Bit0 n')) (Code_Numeral.Pos n) =
   integer_shiftr (Code_Numeral.Neg n') (Code_Numeral.sub n num.One)"
  "integer_shiftr (Code_Numeral.Neg (num.Bit1 n')) (Code_Numeral.Pos n) =
   integer_shiftr (Code_Numeral.Neg (Num.inc n')) (Code_Numeral.sub n num.One)"
          apply (simp_all add: integer_shiftr_def numeral_eq_Suc drop_bit_Suc)
    apply transfer apply simp
   apply transfer apply simp
  apply transfer apply (simp add: add_One)
  done

context
  includes integer.lifting and bit_operations_syntax
begin

definition odd_integer :: integer  bool
  where odd_integer = odd

lemma odd_integer_code [code]:
  odd_integer i  i AND 1  0
  by (simp add: odd_integer_def and_one_eq odd_iff_mod_2_eq_one)

lemma odd_integer_code_nbe [code nbe]:
  odd_integer i  i mod 2  0
  by (simp add: odd_integer_def  odd_iff_mod_2_eq_one)

definition Bit_Cons_integer :: bool  integer  integer
  where Bit_Cons_integer b k = of_bool b + 2 * k

lemma bit_Bit_Cons_integer_iff:
  bit (Bit_Cons_integer b k) n  (if n = 0 then b else bit k (n - 1))
  by (simp add: Bit_Cons_integer_def bit_simps even_bit_succ_iff)

lemma Bit_Cons_integer_code [code]:
  "Bit_Cons_integer False i = push_bit 1 i"
  "Bit_Cons_integer True i = push_bit 1 i + 1"
  by (simp_all add: Bit_Cons_integer_def)

lemma bitAND_integer_unfold [code]:
  "x AND y =
   (if x = 0 then 0
    else if x = - 1 then y
    else Bit_Cons_integer (odd_integer x  odd_integer y) (drop_bit 1 x AND drop_bit 1 y))"
  apply (rule bit_eqI)
  apply (simp add: bit_simps bit_Bit_Cons_integer_iff odd_integer_def bit_0)
  done

lemma bitOR_integer_unfold [code]:
  "x OR y =
   (if x = 0 then y
    else if x = - 1 then - 1
    else Bit_Cons_integer (odd_integer x  odd_integer y) (drop_bit 1 x OR drop_bit 1 y))"
  apply (rule bit_eqI)
  apply (simp add: bit_simps bit_Bit_Cons_integer_iff odd_integer_def bit_0)
  done

lemma bitXOR_integer_unfold [code]:
  "x XOR y =
   (if x = 0 then y
    else if x = - 1 then NOT y
    else Bit_Cons_integer (¬ odd_integer x  odd_integer y) (drop_bit 1 x XOR drop_bit 1 y))"
  apply (rule bit_eqI)
  apply (auto simp add: bit_simps bit_Bit_Cons_integer_iff odd_integer_def bit_0)
  done

end

end