Theory Inst_Ex_Assn
section ‹Tactic for instantiating existentials›
theory Inst_Ex_Assn
imports Separation_Logic_Imperative_HOL.Assertions
begin
thm ent_ex_postI
text ‹
Coinduction proofs in Isabelle often lead to proof obligations with nested conjunctions and
existential quantifiers, e.g. \<^prop>‹∃x y. P x y ∧ (∃z. Q x y z)› .
The following tactic allows instantiating these existentials with a given list of witnesses.
This tactic was adjusted to work with the assertion specific prop‹∃⇩A›
›
ML_file ‹inst_ex_assn.ML›
method_setup inst_ex_assn = ‹
Scan.lift (Scan.repeat Parse.term) >>
(fn ts => fn ctxt => SIMPLE_METHOD' (Inst_Ex_Assn.tac ctxt
(map (Syntax.read_term ctxt) ts)))
›
end