Theory Param_Tool
section ‹Basic Parametricity Reasoning›
theory Param_Tool
imports Relators
begin
subsection ‹Auxiliary Lemmas›
lemma tag_both: "⟦ (Let x f,Let x' f')∈R ⟧ ⟹ (f x,f' x')∈R" by simp
lemma tag_rhs: "⟦ (c,Let x f)∈R ⟧ ⟹ (c,f x)∈R" by simp
lemma tag_lhs: "⟦ (Let x f,a)∈R ⟧ ⟹ (f x,a)∈R" by simp
lemma tagged_fun_relD_both:
"⟦ (f,f')∈A→B; (x,x')∈A ⟧ ⟹ (Let x f,Let x' f')∈B"
and tagged_fun_relD_rhs: "⟦ (f,f')∈A→B; (x,x')∈A ⟧ ⟹ (f x,Let x' f')∈B"
and tagged_fun_relD_lhs: "⟦ (f,f')∈A→B; (x,x')∈A ⟧ ⟹ (Let x f,f' x')∈B"
and tagged_fun_relD_none: "⟦ (f,f')∈A→B; (x,x')∈A ⟧ ⟹ (f x,f' x')∈B"
by (simp_all add: fun_relD)
subsection ‹ML-Setup›
ML ‹
signature PARAMETRICITY = sig
type param_ruleT = {
lhs: term,
rhs: term,
R: term,
rhs_head: term,
arity: int
}
val dest_param_term: term -> param_ruleT
val dest_param_rule: thm -> param_ruleT
val dest_param_goal: int -> thm -> param_ruleT
val safe_fun_relD_tac: Proof.context -> tactic'
val adjust_arity: int -> thm -> thm
val adjust_arity_tac: int -> Proof.context -> tactic'
val unlambda_tac: Proof.context -> tactic'
val prepare_tac: Proof.context -> tactic'
val fo_rule: thm -> thm
val param_rule_tac: Proof.context -> thm -> tactic'
val param_rules_tac: Proof.context -> thm list -> tactic'
val asm_param_tac: Proof.context -> tactic'
type param_net
val net_empty: param_net
val net_add: thm -> param_net -> param_net
val net_del: thm -> param_net -> param_net
val net_add_int: Context.generic -> thm -> param_net -> param_net
val net_del_int: Context.generic -> thm -> param_net -> param_net
val net_tac: param_net -> Proof.context -> tactic'
val add_dflt: thm -> Context.generic -> Context.generic
val add_dflt_attr: attribute
val del_dflt: thm -> Context.generic -> Context.generic
val del_dflt_attr: attribute
val get_dflt: Proof.context -> param_net
val cfg_use_asm: bool Config.T
val cfg_single_step: bool Config.T
val setup: theory -> theory
end
structure Parametricity : PARAMETRICITY = struct
type param_ruleT = {
lhs: term,
rhs: term,
R: term,
rhs_head: term,
arity: int
}
fun dest_param_term t =
case
strip_all_body t |> Logic.strip_imp_concl |> HOLogic.dest_Trueprop
of
@{mpat "(?lhs,?rhs):?R"} => let
val (rhs_head,arity) =
case strip_comb rhs of
(c as Const _,l) => (c,length l)
| (c as Free _,l) => (c,length l)
| (c as Abs _,l) => (c,length l)
| _ => raise TERM ("dest_param_term: Head",[t])
in
{ lhs = lhs, rhs = rhs, R=R, rhs_head = rhs_head, arity = arity }
end
| t => raise TERM ("dest_param_term: Expected (_,_):_",[t])
val dest_param_rule = dest_param_term o Thm.prop_of
fun dest_param_goal i st =
if i > Thm.nprems_of st then
raise THM ("dest_param_goal",i,[st])
else
dest_param_term (Logic.concl_of_goal (Thm.prop_of st) i)
fun safe_fun_relD_tac ctxt = let
fun t a b = fo_resolve_tac [a] ctxt THEN' resolve_tac ctxt [b]
in
DETERM o (
t @{thm tag_both} @{thm tagged_fun_relD_both} ORELSE'
t @{thm tag_rhs} @{thm tagged_fun_relD_rhs} ORELSE'
t @{thm tag_lhs} @{thm tagged_fun_relD_lhs} ORELSE'
resolve_tac ctxt @{thms tagged_fun_relD_none}
)
end
fun adjust_arity i thm =
if i = 0 then thm
else if i<0 then funpow (~i) (fn thm => thm RS @{thm fun_relI}) thm
else funpow i (fn thm => thm RS @{thm fun_relD}) thm
fun NTIMES k tac =
if k <= 0 then K all_tac
else tac THEN' NTIMES (k-1) tac
fun adjust_arity_tac n ctxt i st =
(if n = 0 then K all_tac
else if n>0 then NTIMES n (DETERM o resolve_tac ctxt @{thms fun_relI})
else NTIMES (~n) (safe_fun_relD_tac ctxt)) i st
fun unlambda_tac ctxt i st =
case try (dest_param_goal i) st of
NONE => Seq.empty
| SOME g => let
val n = Term.strip_abs (#rhs_head g) |> #1 |> length
in NTIMES n (resolve_tac ctxt @{thms fun_relI}) i st end
fun prepare_tac ctxt =
Subgoal.FOCUS (K (PRIMITIVE (Drule.eta_contraction_rule))) ctxt
THEN' unlambda_tac ctxt
fun could_param_rl rl i st =
if i > Thm.nprems_of st then NONE
else (
case (try (dest_param_goal i) st, try dest_param_term rl) of
(SOME g, SOME r) =>
if Term.could_unify (#rhs_head g, #rhs_head r) then
SOME (#arity r - #arity g)
else NONE
| _ => NONE
)
fun param_rule_tac_aux ctxt rl i st =
case could_param_rl (Thm.prop_of rl) i st of
SOME adj => (adjust_arity_tac adj ctxt THEN' resolve_tac ctxt [rl]) i st
| _ => Seq.empty
fun param_rule_tac ctxt rl =
prepare_tac ctxt THEN' param_rule_tac_aux ctxt rl
fun param_rules_tac ctxt rls =
prepare_tac ctxt THEN' FIRST' (map (param_rule_tac_aux ctxt) rls)
fun asm_param_tac_aux ctxt i st =
if i > Thm.nprems_of st then Seq.empty
else let
val prems = Logic.prems_of_goal (Thm.prop_of st) i |> tag_list 1
fun tac (n,t) i st = case could_param_rl t i st of
SOME adj => (adjust_arity_tac adj ctxt THEN' rprem_tac n ctxt) i st
| NONE => Seq.empty
in
FIRST' (map tac prems) i st
end
fun asm_param_tac ctxt = prepare_tac ctxt THEN' asm_param_tac_aux ctxt
type param_net = (param_ruleT * thm) Item_Net.T
local
val param_get_key = single o #rhs_head o #1
in
val net_empty = Item_Net.init (Thm.eq_thm o apply2 #2) param_get_key
end
fun wrap_pr_op f context thm = case try (`dest_param_rule) thm of
NONE =>
let
val msg = "Ignoring invalid parametricity theorem: "
^ Thm.string_of_thm (Context.proof_of context) thm
val _ = warning msg
in I end
| SOME p => f p
val net_add_int = wrap_pr_op Item_Net.update
val net_del_int = wrap_pr_op Item_Net.remove
val net_add = Item_Net.update o `dest_param_rule
val net_del = Item_Net.remove o `dest_param_rule
fun net_tac_aux net ctxt i st =
if i > Thm.nprems_of st then
Seq.empty
else
let
val g = dest_param_goal i st
val rls = Item_Net.retrieve net (#rhs_head g)
fun tac (r,thm) =
adjust_arity_tac (#arity r - #arity g) ctxt
THEN' DETERM o resolve_tac ctxt [thm]
in
FIRST' (map tac rls) i st
end
fun net_tac net ctxt = prepare_tac ctxt THEN' net_tac_aux net ctxt
structure dflt_rules = Generic_Data (
type T = param_net
val empty = net_empty
val merge = Item_Net.merge
)
fun add_dflt thm context = dflt_rules.map (net_add_int context thm) context
fun del_dflt thm context = dflt_rules.map (net_del_int context thm) context
val add_dflt_attr = Thm.declaration_attribute add_dflt
val del_dflt_attr = Thm.declaration_attribute del_dflt
val get_dflt = dflt_rules.get o Context.Proof
val cfg_use_asm =
Attrib.setup_config_bool @{binding param_use_asm} (K true)
val cfg_single_step =
Attrib.setup_config_bool @{binding param_single_step} (K false)
local
open Refine_Util
val param_modifiers =
[Args.add -- Args.colon >> K (Method.modifier add_dflt_attr ⌂),
Args.del -- Args.colon >> K (Method.modifier del_dflt_attr ⌂),
Args.$$$ "only" -- Args.colon >>
K {init = Context.proof_map (dflt_rules.map (K net_empty)),
attribute = add_dflt_attr, pos = ⌂}]
val param_flags =
parse_bool_config "use_asm" cfg_use_asm
|| parse_bool_config "single_step" cfg_single_step
in
val parametricity_method =
parse_paren_lists param_flags |-- Method.sections param_modifiers >>
(fn _ => fn ctxt =>
let
val net2 = get_dflt ctxt
val asm_tac =
if Config.get ctxt cfg_use_asm then
asm_param_tac ctxt
else K no_tac
val RPT =
if Config.get ctxt cfg_single_step then I
else REPEAT_ALL_NEW_FWD
in
SIMPLE_METHOD' (
RPT (
(assume_tac ctxt
ORELSE' net_tac net2 ctxt
ORELSE' asm_tac)
)
)
end
)
end
fun fo_rule thm = case Thm.concl_of thm of
@{mpat "Trueprop ((_,_)∈_→_)"} => fo_rule (thm RS @{thm fun_relD})
| _ => thm
val param_fo_attr = Scan.succeed (Thm.rule_attribute [] (K fo_rule))
val setup = I
#> Attrib.setup @{binding param}
(Attrib.add_del add_dflt_attr del_dflt_attr)
"declaration of parametricity theorem"
#> Global_Theory.add_thms_dynamic (@{binding param},
map #2 o Item_Net.content o dflt_rules.get)
#> Method.setup @{binding parametricity} parametricity_method
"Parametricity solver"
#> Attrib.setup @{binding param_fo} param_fo_attr
"Parametricity: Rule in first-order form"
end
›
setup Parametricity.setup
subsection ‹Convenience Tools›
ML ‹
fun cnv_relAPP t = let
fun consider (Var ((name,_),T)) =
if String.isPrefix "p_" name then false
else (
case T of
Type(@{type_name set},[Type(@{type_name prod},_)]) => true
| _ => false)
| consider _ = true
fun strip_rcomb u : term * term list =
let
fun stripc (x as (f$t, ts)) =
if consider t then stripc (f, t::ts) else x
| stripc x = x
in stripc(u,[]) end;
val (f,a) = strip_rcomb t
in
Relators.list_relAPP a f
end
fun to_relAPP_conv ctxt = Refine_Util.f_tac_conv ctxt
cnv_relAPP
(fn goal_ctxt => ALLGOALS (simp_tac
(put_simpset HOL_basic_ss goal_ctxt addsimps @{thms relAPP_def})))
val to_relAPP_attr = Thm.rule_attribute [] (fn context => let
val ctxt = Context.proof_of context
in
Conv.fconv_rule (Conv.arg1_conv (to_relAPP_conv ctxt))
end)
›
attribute_setup to_relAPP = ‹Scan.succeed (to_relAPP_attr)›
"Convert relator definition to prefix-form"
end