Theory Mk_Record_Simp
theory Mk_Record_Simp
imports Refine_Util Mpat_Antiquot
begin
lemma mk_record_simp_thm:
fixes f :: "'a ⇒ 'b"
assumes "f s = x"
assumes "r ≡ s"
shows "f r = x"
using assms by simp
ML ‹
fun mk_record_simp context thm = let
val ctxt = Context.proof_of context
val cert = Thm.cterm_of ctxt
in
case Thm.concl_of thm of
@{mpat "Trueprop (?f _=_)"} =>
let
val cf = cert f
val r = infer_instantiate ctxt [(("f", 0), cf)] @{thm mk_record_simp_thm}
val r = r OF [thm]
in r end
| _ => raise THM("",~1,[thm])
end
›
attribute_setup mk_record_simp =
‹Scan.succeed (Thm.rule_attribute [] (mk_record_simp))›
"Make simplification rule for record definition"
end