Theory Word_Lib.Sgn_Abs
theory Sgn_Abs
imports Most_significant_bit
begin
lemma not_0_sless_minus_1 [simp]:
‹¬ 0 <s - 1›
by transfer simp
lemma not_0_sless_eq_minus_1 [simp]:
‹¬ 0 ≤s - 1›
by transfer simp
section ‹@{const sgn} and @{const abs} for @{typ "'a word"}›
subsection ‹Instances›
text ‹@{const sgn} on words returns -1, 0, or 1.›
instantiation word :: (len) sgn
begin
lift_definition sgn_word :: ‹'a word ⇒ 'a word›
is ‹λk. sgn (signed_take_bit (LENGTH('a) - Suc 0) k)›
by (simp flip: signed_take_bit_decr_length_iff)
instance ..
end
lemma sgn_word_if:
‹sgn w = (if w = 0 then 0 else if 0 <s w then 1 else - 1)›
by transfer (simp only: flip: signed_take_bit_decr_length_iff, auto simp add: sgn_if)
text ‹Simplificattion setup for sgn on numerals›
lemma word_sgn_0[simp]:
"sgn 0 = (0::'a::len word)"
by transfer simp
lemma word_sgn_1[simp]:
"sgn 1 = (1::'a::len word)"
by (transfer; cases ‹LENGTH('a) - Suc 0›) simp_all
lemma word_sgn_max_word[simp]:
"sgn (- 1) = (-1::'a::len word)"
by transfer simp
lemma word_sgn_numeral [simp]:
‹sgn (numeral n) = (if numeral n = (0 :: 'a::len word) then 0
else if (0 :: 'a::len word) <s numeral n then 1 else (- 1 :: 'a::len word))›
by (fact sgn_word_if)
text ‹@{const abs} on words is the usual definition.›
instantiation word :: (len) abs
begin
lift_definition abs_word :: ‹'a word ⇒ 'a word›
is ‹λk. ¦signed_take_bit (LENGTH('a) - Suc 0) k¦›
by (simp flip: signed_take_bit_decr_length_iff)
instance ..
end
lemma abs_word_if:
‹abs w = (if w ≤s 0 then - w else w)›
by transfer (simp only: flip: signed_take_bit_decr_length_iff,
auto simp add: abs_of_pos signed_take_bit_minus)
text ‹Simplification setup for abs on numerals›
lemma word_abs_0[simp]:
"¦0¦ = (0::'a::len word)"
by transfer simp
lemma word_abs_1[simp]:
"¦1¦ = (1::'a::len word)"
by (transfer; cases ‹LENGTH('a) - Suc 0›) simp_all
lemma word_abs_max_word[simp]:
"¦- 1¦ = (1::'a::len word)"
by transfer simp
lemma word_abs_msb:
"¦w¦ = (if msb w then - w else w)" for w :: "'a::len word"
by transfer
(simp add: abs_of_neg msb_int_def signed_take_bit_eq_take_bit_minus take_bit_minus flip: take_bit_diff [of _ ‹2 ^ LENGTH('a)›])
lemmas word_abs_numeral[simp] = word_abs_msb[where w="numeral w" for w]
subsection ‹Properties›
lemma word_sgn_0_0:
"sgn a = 0 ⟷ a = 0" for a::"'a::len word"
by (simp add: sgn_word_if)
lemma word_sgn_1_pos:
"1 < LENGTH('a) ⟹ sgn a = 1 ⟷ 0 <s a" for a::"'a::len word"
by (simp add: sgn_word_if)
lemma word_sgn_1_neg:
"sgn a = - 1 ⟷ a <s 0"
by (cases a rule: word_length_one) (auto simp add: sgn_word_if)
lemma word_sgn_pos[simp]:
"0 <s a ⟹ sgn a = 1"
by transfer simp
lemma word_sgn_neg[simp]:
"a <s 0 ⟹ sgn a = - 1"
by (simp only: word_sgn_1_neg)
lemma word_abs_sgn:
"¦k¦ = k * sgn k" for k :: "'a::len word"
by (auto simp add: sgn_word_if abs_word_if)
lemma word_sgn_greater[simp]:
"0 <s sgn a ⟷ 0 <s a" for a::"'a::len word"
by (cases a rule: word_length_one) (simp_all add: sgn_word_if)
lemma word_sgn_less[simp]:
"sgn a <s 0 ⟷ a <s 0" for a::"'a::len word"
by (cases a rule: word_length_one) (auto simp add: sgn_word_if)
lemma word_abs_sgn_eq_1[simp]:
"a ≠ 0 ⟹ ¦sgn a¦ = 1" for a::"'a::len word"
by (simp add: sgn_word_if)
lemma word_abs_sgn_eq:
"¦sgn a¦ = (if a = 0 then 0 else 1)" for a::"'a::len word"
by simp
lemma word_sgn_mult_self_eq[simp]:
"sgn a * sgn a = of_bool (a ≠ 0)" for a::"'a::len word"
by (cases "0 <s a") simp_all
end