Theory Cong_Tactic
theory Cong_Tactic
imports
"Main"
"HOL-Eisbach.Eisbach_Tools"
begin
text ‹ Simple congruence prover
Replaces a goal of the shape:
\<^term>‹f x (g y) (λx. x + 1) = f x' (i y') (λz. z + Suc 0)›
by
\<^term>‹x = x'›
\<^term>‹g y = i y'›
\<^term>‹1 = Suc 0›
The tactic essentially applies @{thm cong}, but using first-order matching.
›
ML ‹
fun fo_cong_tac ctxt = CSUBGOAL (fn (cgoal, i) =>
let
val goal = Thm.term_of cgoal;
in
(case Logic.strip_assums_concl goal of
_ $ (_ $ t $ s) =>
let
val (f, xs) = strip_comb t
val (g, ys) = strip_comb s
in
if f aconv g andalso length xs = length ys
then REPEAT_DETERM_N (length xs) (cong_tac ctxt i)
THEN resolve_tac ctxt [@{thm refl}] i
else no_tac
end
| _ => no_tac)
end);
fun abs_cong_tac ctxt = CSUBGOAL (fn (cgoal, i) =>
let
val goal = Thm.term_of cgoal;
in
(case Logic.strip_assums_concl goal of
_ $ (_ $ Abs _ $ Abs _) => resolve_tac ctxt [@{thm ext}] i
| _ => no_tac)
end);
›
method_setup app_cong =
‹Scan.succeed (fn ctxt => Method.SIMPLE_METHOD' (fo_cong_tac ctxt))›
"congruence method"
method_setup abs_cong =
‹Scan.succeed (fn ctxt => Method.SIMPLE_METHOD' (abs_cong_tac ctxt))›
"congruence method"
method cong_step = (app_cong | abs_cong | rule refl | rule eq_reflection)
method cong = (cong_step ; cong?)
text ‹ Preserve context information from ‹[cong]› rules›
ML ‹
fun const_cong ctxt = CSUBGOAL (fn (cgoal, i) =>
let
val goal = Thm.term_of cgoal;
in
(case Logic.strip_assums_concl goal of
_ $ (_ $ t $ s) => (case (head_of t, head_of s) of
(Const (c, _), Const (c', _)) =>
if c = c'
then
case AList.lookup (op =) (Simplifier.dest_congs (simpset_of ctxt)) (true, c) of
SOME thm =>
resolve_tac ctxt [Thm.transfer' ctxt thm RS meta_eq_to_obj_eq] i
| NONE => no_tac
else no_tac
| _ => no_tac
)
| _ => no_tac)
end);
›
method_setup const_cong =
‹Scan.succeed (fn ctxt => Method.SIMPLE_METHOD' (const_cong ctxt))›
"congruence method (constant with [cong])"
method cong_context_step = (const_cong | cong_step | rule simp_impliesI)
method cong_context = (cong_context_step ; cong_context?)
end