Theory SepAuto

(*
  File: SepAuto.thy
  Author: Bohua Zhan
*)

section ‹Separation logic›

theory SepAuto
  imports SepLogic_Base "HOL-Imperative_HOL.Imperative_HOL"
begin

text ‹
  Separation logic for Imperative\_HOL, and setup of auto2. The development of
  separation logic here follows cite"Separation_Logic_Imperative_HOL-AFP" by Lammich and Meis.
›

subsection ‹Partial Heaps›

datatype pheap = pHeap (heapOf: heap) (addrOf: "addr set")
setup add_simple_datatype "pheap"

fun in_range :: "(heap × addr set)  bool" where
  "in_range (h,as)  (aas. a < lim h)"
setup add_rewrite_rule @{thm in_range.simps}

text ‹Two heaps agree on a set of addresses.›
definition relH :: "addr set  heap  heap  bool" where [rewrite]:
  "relH as h h' = (in_range (h, as)  in_range (h', as) 
     (t. aas. refs h t a = refs h' t a  arrays h t a = arrays h' t a))"

lemma relH_D [forward]:
  "relH as h h'  in_range (h, as)  in_range (h', as)" by auto2

lemma relH_D2 [rewrite]:
  "relH as h h'  a  as  refs h t a = refs h' t a"
  "relH as h h'  a  as  arrays h t a = arrays h' t a" by auto2+
setup del_prfstep_thm_eqforward @{thm relH_def}

lemma relH_dist_union [forward]:
  "relH (as  as') h h'  relH as h h'  relH as' h h'" by auto2

lemma relH_ref [rewrite]:
  "relH as h h'  addr_of_ref r  as  Ref.get h r = Ref.get h' r"
  by (auto intro: relH_D2 arg_cong simp: Ref.get_def)

lemma relH_array [rewrite]:
  "relH as h h'  addr_of_array r  as  Array.get h r = Array.get h' r"
  by (auto intro: relH_D2 arg_cong simp: Array.get_def)

lemma relH_set_ref [resolve]:
  "relH {a. a < lim h  a  {addr_of_ref r}} h (Ref.set r x h)"
  by (simp add: Ref.set_def relH_def)

lemma relH_set_array [resolve]:
  "relH {a. a < lim h  a  {addr_of_array r}} h (Array.set r x h)"
  by (simp add: Array.set_def relH_def)

subsection ‹Assertions›

datatype assn_raw = Assn (assn_fn: "pheap  bool")

fun aseval :: "assn_raw  pheap  bool" where
  "aseval (Assn f) h = f h"
setup add_rewrite_rule @{thm aseval.simps}

definition proper :: "assn_raw  bool" where [rewrite]:
  "proper P = (
    (h as. aseval P (pHeap h as)  in_range (h,as)) 
    (h h' as. aseval P (pHeap h as)  relH as h h'  in_range (h',as)  aseval P (pHeap h' as)))"

fun in_range_assn :: "pheap  bool" where
  "in_range_assn (pHeap h as)  (aas. a < lim h)"
setup add_rewrite_rule @{thm in_range_assn.simps}

typedef assn = "Collect proper"
@proof @have "Assn in_range_assn  Collect proper" @qed

setup add_rewrite_rule @{thm Rep_assn_inject}
setup register_wellform_data ("Abs_assn P", ["proper P"])
setup add_prfstep_check_req ("Abs_assn P", "proper P")

lemma Abs_assn_inverse' [rewrite]: "proper y  Rep_assn (Abs_assn y) = y"
  by (simp add: Abs_assn_inverse)

lemma proper_Rep_assn [forward]: "proper (Rep_assn P)" using Rep_assn by auto

definition models :: "pheap  assn  bool" (infix  50) where [rewrite_bidir]:
  "h  P  aseval (Rep_assn P) h"

lemma models_in_range [resolve]: "pHeap h as  P  in_range (h,as)" by auto2

lemma mod_relH [forward]: "relH as h h'  pHeap h as  P  pHeap h' as  P" by auto2

instantiation assn :: one begin
definition one_assn :: assn where [rewrite]:
  "1  Abs_assn (Assn (λh. addrOf h = {}))"
instance .. end

abbreviation one_assn :: assn (emp) where "one_assn  1"

lemma one_assn_rule [rewrite]: "h  emp  addrOf h = {}" by auto2
setup del_prfstep_thm @{thm one_assn_def}

instantiation assn :: times begin
definition times_assn where [rewrite]:
  "P * Q = Abs_assn (Assn (
    λh. (as1 as2. addrOf h = as1  as2  as1  as2 = {} 
                   aseval (Rep_assn P) (pHeap (heapOf h) as1)  aseval (Rep_assn Q) (pHeap (heapOf h) as2))))"
instance .. end

lemma mod_star_conv [rewrite]:
  "pHeap h as  A * B  (as1 as2. as = as1  as2  as1  as2 = {}  pHeap h as1  A  pHeap h as2  B)" by auto2
setup del_prfstep_thm @{thm times_assn_def}

lemma aseval_ext [backward]: "h. aseval P h = aseval P' h  P = P'"
  apply (cases P) apply (cases P') by auto

lemma assn_ext: "h as. pHeap h as  P  pHeap h as  Q  P = Q"
@proof @have "Rep_assn P = Rep_assn Q" @qed
setup add_backward_prfstep_cond @{thm assn_ext} [with_filt (order_filter "P" "Q")]

setup del_prfstep_thm @{thm aseval_ext}

lemma assn_one_left: "1 * P = (P::assn)"
@proof
  @have "h as. pHeap h as  P  pHeap h as  1 * P" @with
    @have "as = {}  as"
  @end
@qed

lemma assn_times_comm: "P * Q = Q * (P::assn)"
@proof
  @have "h as. pHeap h as  P * Q  pHeap h as  Q * P" @with
    @case "pHeap h as  P * Q" @with
      @obtain as1 as2 where "as = as1  as2" "as1  as2 = {}" "pHeap h as1  P" "pHeap h as2  Q"
      @have "as = as2  as1"
    @end
    @case "pHeap h as  Q * P" @with
      @obtain as1 as2 where "as = as1  as2" "as1  as2 = {}" "pHeap h as1  Q" "pHeap h as2  P"
      @have "as = as2  as1"
    @end
  @end
@qed

lemma assn_times_assoc: "(P * Q) * R = P * (Q * (R::assn))"
@proof
  @have "h as. pHeap h as  (P * Q) * R  pHeap h as  P * (Q * R)" @with
    @case "pHeap h as  (P * Q) * R" @with
      @obtain as1 as2 where "as = as1  as2" "as1  as2 = {}" "pHeap h as1  P * Q" "pHeap h as2  R"
      @obtain as11 as12 where "as1 = as11  as12" "as11  as12 = {}" "pHeap h as11  P" "pHeap h as12  Q"
      @have "as = as11  (as12  as2)"
    @end
    @case "pHeap h as  P * (Q * R)" @with
      @obtain as1 as2 where "as = as1  as2" "as1  as2 = {}" "pHeap h as1  P" "pHeap h as2  Q * R"
      @obtain as21 as22 where "as2 = as21  as22" "as21  as22 = {}" "pHeap h as21  Q" "pHeap h as22  R"
      @have "as = (as1  as21)  as22"
    @end
  @end
@qed

instantiation assn :: comm_monoid_mult begin
  instance apply standard
  apply (rule assn_times_assoc) apply (rule assn_times_comm) by (rule assn_one_left)
end

subsubsection ‹Existential Quantification›

definition ex_assn :: "('a  assn)  assn" (binder A 11) where [rewrite]:
  "(Ax. P x) = Abs_assn (Assn (λh. x. h  P x))"

lemma mod_ex_dist [rewrite]: "(h  (Ax. P x))  (x. h  P x)" by auto2
setup del_prfstep_thm @{thm ex_assn_def}

lemma ex_distrib_star: "(Ax. P x * Q) = (Ax. P x) * Q"
@proof
  @have "h as. pHeap h as  (Ax. P x) * Q  pHeap h as  (Ax. P x * Q)" @with
    @case "pHeap h as  (Ax. P x) * Q" @with
      @obtain as1 as2 where "as = as1  as2" "as1  as2 = {}" "pHeap h as1  (Ax. P x)" "pHeap h as2  Q"
      @obtain x where "pHeap h as1  P x"
      @have "pHeap h as  P x * Q"
    @end
  @end
@qed

subsubsection ‹Pointers›

definition sngr_assn :: "'a::heap ref  'a  assn" (infix r 82) where [rewrite]:
  "r r x = Abs_assn (Assn (
    λh. Ref.get (heapOf h) r = x  addrOf h = {addr_of_ref r}  addr_of_ref r < lim (heapOf h)))"

lemma sngr_assn_rule [rewrite]:
  "pHeap h as  r r x  (Ref.get h r = x  as = {addr_of_ref r}  addr_of_ref r < lim h)" by auto2
setup del_prfstep_thm @{thm sngr_assn_def}

definition snga_assn :: "'a::heap array  'a list  assn" (infix a 82) where [rewrite]:
  "r a x = Abs_assn (Assn (
    λh. Array.get (heapOf h) r = x  addrOf h = {addr_of_array r}  addr_of_array r < lim (heapOf h)))"

lemma snga_assn_rule [rewrite]:
  "pHeap h as  r a x  (Array.get h r = x  as = {addr_of_array r}  addr_of_array r < lim h)" by auto2
setup del_prfstep_thm @{thm snga_assn_def}

subsubsection ‹Pure Assertions›

definition pure_assn :: "bool  assn" () where [rewrite]:
  "b = Abs_assn (Assn (λh. addrOf h = {}  b))"

lemma pure_assn_rule [rewrite]: "h  b  (addrOf h = {}  b)" by auto2
setup del_prfstep_thm @{thm pure_assn_def}

definition top_assn :: assn (true) where [rewrite]:
  "top_assn = Abs_assn (Assn in_range_assn)"

lemma top_assn_rule [rewrite]: "pHeap h as  true  in_range (h, as)" by auto2
setup del_prfstep_thm @{thm top_assn_def}

setup del_prfstep_thm @{thm models_def}

subsubsection ‹Properties of assertions›

abbreviation bot_assn :: assn (false) where "bot_assn  False"

lemma top_assn_reduce: "true * true = true"
@proof
  @have "h. h  true  h  true * true" @with
    @have "addrOf h = addrOf h  {}"
  @end
@qed

lemma mod_pure_star_dist [rewrite]:
  "h  P * b  (h  P  b)"
@proof
  @case "h  P  b" @with
    @have "addrOf h = addrOf h  {}"
  @end
@qed

lemma pure_conj: "(P  Q) = P * Q" by auto2

subsubsection ‹Entailment and its properties›

definition entails :: "assn  assn  bool" (infix A 10) where [rewrite]:
  "(P A Q)  (h. h  P  h  Q)"

lemma entails_triv: "A A A" by auto2
lemma entails_true: "A A true" by auto2
lemma entails_frame [backward]: "P A Q  P * R A Q * R" by auto2
lemma entails_frame': "¬ (A * F A Q)  A A B  ¬ (B * F A Q)" by auto2
lemma entails_frame'': "¬ (P A B * F)  A A B  ¬ (P A A * F)" by auto2
lemma entails_equiv_forward: "P = Q  P A Q" by auto2
lemma entails_equiv_backward: "P = Q  Q A P" by auto2
lemma entailsD [forward]: "P A Q  h  P  h  Q" by auto2
lemma entails_trans2: "A A D * B  B A C  A A D * C" by auto2

lemma entails_pure': "¬(b A Q)  (¬(emp A Q)  b)" by auto2
lemma entails_pure: "¬(P * b A Q)  (¬(P A Q)  b)" by auto2
lemma entails_ex: "¬((Ax. P x) A Q)  (x. ¬(P x A Q))" by auto2
lemma entails_ex_post: "¬(P A (Ax. Q x))  x. ¬(P A Q x)" by auto2
lemma entails_pure_post: "¬(P A Q * b)  P A Q  ¬b" by auto2

setup del_prfstep_thm @{thm entails_def}

subsection ‹Definition of the run predicate›

inductive run :: "'a Heap  heap option  heap option  'a  bool" where
  "run c None None r"
| "execute c h = None  run c (Some h) None r"
| "execute c h = Some (r, h')  run c (Some h) (Some h') r"
setup add_case_induct_rule @{thm run.cases}
setup fold add_resolve_prfstep @{thms run.intros(1,2)}
setup add_forward_prfstep @{thm run.intros(3)}

lemma run_complete [resolve]:
  "σ' r. run c σ σ' (r::'a)"
@proof
  @obtain "r::'a" where "r = r"
  @case "σ = None" @with @have "run c None None r" @end
  @case "execute c (the σ) = None" @with @have "run c σ None r" @end
@qed

lemma run_to_execute [forward]:
  "run c (Some h) σ' r  if σ' = None then execute c h = None else execute c h = Some (r, the σ')"
@proof @case_induct "run c (Some h) σ' r" @qed

setup add_rewrite_rule @{thm execute_bind(1)}
lemma runE [forward]:
  "run f (Some h) (Some h') r'  run (f  g) (Some h) σ r  run (g r') (Some h') σ r" by auto2

setup add_rewrite_rule @{thm Array.get_alloc}
setup add_rewrite_rule @{thm Ref.get_alloc}
setup add_rewrite_rule_bidir @{thm Array.length_def}

subsection ‹Definition of hoare triple, and the frame rule.›

definition new_addrs :: "heap  addr set  heap  addr set" where [rewrite]:
  "new_addrs h as h' = as  {a. lim h  a  a < lim h'}"

definition hoare_triple :: "assn  'a Heap  ('a  assn)  bool" (<_>/ _/ <_>) where [rewrite]:
  "<P> c <Q>  (h as σ r. pHeap h as  P  run c (Some h) σ r 
    (σ  None  pHeap (the σ) (new_addrs h as (the σ))  Q r  relH {a . a < lim h  a  as} h (the σ) 
     lim h  lim (the σ)))"

lemma hoare_tripleD [forward]:
  "<P> c <Q>  run c (Some h) σ r  as. pHeap h as  P 
     (σ  None  pHeap (the σ) (new_addrs h as (the σ))  Q r  relH {a . a < lim h  a  as} h (the σ) 
     lim h  lim (the σ))"
  by auto2
setup del_prfstep_thm_eqforward @{thm hoare_triple_def}

abbreviation hoare_triple' :: "assn  'r Heap  ('r  assn)  bool" (<_> _ <_>t) where
  "<P> c <Q>t  <P> c <λr. Q r * true>"

theorem frame_rule [backward]:
  "<P> c <Q>  <P * R> c <λx. Q x * R>"
@proof
  @have "h as σ r. pHeap h as  P * R  run c (Some h) σ r 
                    (σ  None  pHeap (the σ) (new_addrs h as (the σ))  Q r * R 
                     relH {a . a < lim h  a  as} h (the σ)  lim h  lim (the σ))" @with
    @obtain as1 as2 where "as = as1  as2" "as1  as2 = {}" "pHeap h as1  P  pHeap h as2  R"
    @have "relH as2 h (the σ)"
    @have "new_addrs h as (the σ) = new_addrs h as1 (the σ)  as2"
  @end
@qed

text ‹This is the last use of the definition of separating conjunction.›
setup del_prfstep_thm @{thm mod_star_conv}

theorem bind_rule:
  "<P> f <Q>  x. <Q x> g x <R>  <P> f  g <R>"
@proof
  @have "h as σ r. pHeap h as  P  run (f  g) (Some h) σ r 
                    (σ  None  pHeap (the σ) (new_addrs h as (the σ))  R r 
                     relH {a . a < lim h  a  as} h (the σ)  lim h  lim (the σ))" @with
    ― ‹First step from h to h'›
    @obtain σ' r' where "run f (Some h) σ' r'"
    @obtain h' where "σ' = Some h'"
    @let "as' = new_addrs h as h'"
    @have "pHeap h' as'  Q r'"

    ― ‹Second step from h' to h''›
    @have "run (g r') (Some h') σ r"
    @obtain h'' where "σ = Some h''"
    @let "as'' = new_addrs h' as' h''"
    @have "pHeap h'' as''  R r"
    @have "as'' = new_addrs h as h''"
  @end
@qed

text ‹Actual statement used:›
lemma bind_rule':
  "<P> f <Q>  ¬ <P> f  g <R>  x. ¬ <Q x> g x <R>" using bind_rule by blast

lemma pre_rule':
  "¬ <P * R> f <Q>  P A P'  ¬ <P' * R> f <Q>"
@proof @have "P * R A P' * R" @qed

lemma pre_rule'':
  "<P> f <Q>  P' A P * R  <P'> f <λx. Q x * R>"
@proof @have "<P * R> f <λx. Q x * R>" @qed

lemma pre_ex_rule:
  "¬ <Ax. P x> f <Q>  (x. ¬ <P x> f <Q>)" by auto2

lemma pre_pure_rule:
  "¬ <P * b> f <Q>  ¬ <P> f <Q>  b" by auto2

lemma pre_pure_rule':
  "¬ <b> f <Q>  ¬ <emp> f <Q>  b" by auto2

lemma post_rule:
  "<P> f <Q>  x. Q x A R x  <P> f <R>" by auto2

setup fold del_prfstep_thm [@{thm entailsD}, @{thm entails_frame}, @{thm frame_rule}]

text ‹Actual statement used:›
lemma post_rule':
  "<P> f <Q>  ¬ <P> f <R>  x. ¬ (Q x A R x)" using post_rule by blast

lemma norm_pre_pure_iff: "<P * b> c <Q>  (b  <P> c <Q>)" by auto2
lemma norm_pre_pure_iff2: "<b> c <Q>  (b  <emp> c <Q>)" by auto2

subsection ‹Hoare triples for atomic commands›

text ‹First, those that do not modify the heap.›
setup add_rewrite_rule @{thm execute_assert(1)}
lemma assert_rule:
  "<(R x)> assert R x <λr. (r = x)>" by auto2

lemma execute_return' [rewrite]: "execute (return x) h = Some (x, h)" by (metis comp_eq_dest_lhs execute_return)
lemma return_rule:
  "<emp> return x <λr. (r = x)>" by auto2

setup add_rewrite_rule @{thm execute_nth(1)}
lemma nth_rule:
  "<a a xs * (i < length xs)> Array.nth a i <λr. a a xs * (r = xs ! i)>" by auto2

setup add_rewrite_rule @{thm execute_len}
lemma length_rule:
  "<a a xs> Array.len a <λr. a a xs * (r = length xs)>" by auto2

setup add_rewrite_rule @{thm execute_lookup}
lemma lookup_rule:
  "<p r x> !p <λr. p r x * (r = x)>" by auto2

setup add_rewrite_rule @{thm execute_freeze}
lemma freeze_rule:
  "<a a xs> Array.freeze a <λr. a a xs * (r = xs)>" by auto2

text ‹Next, the update rules.›
setup add_rewrite_rule @{thm Ref.lim_set}
lemma Array_lim_set [rewrite]: "lim (Array.set p xs h) = lim h" by (simp add: Array.set_def)

setup fold add_rewrite_rule [@{thm Ref.get_set_eq}, @{thm Array.get_set_eq}]
setup add_rewrite_rule @{thm Array.update_def}

setup add_rewrite_rule @{thm execute_upd(1)}
lemma upd_rule:
  "<a a xs * (i < length xs)> Array.upd i x a <λr. a a list_update xs i x * (r = a)>" by auto2

setup add_rewrite_rule @{thm execute_update}
lemma update_rule:
  "<p r y> p := x <λr. p r x>" by auto2

text ‹Finally, the allocation rules.›
lemma lim_set_gen [rewrite]: "lim (hlim := l) = l" by simp

lemma Array_alloc_def' [rewrite]:
  "Array.alloc xs h = (let l = lim h; r = Array l in (r, (Array.set r xs (hlim := l + 1))))"
  by (simp add: Array.alloc_def)

setup fold add_rewrite_rule [
  @{thm addr_of_array.simps}, @{thm addr_of_ref.simps}, @{thm Ref.alloc_def}]

lemma refs_on_Array_set [rewrite]: "refs (Array.set p xs h) t i = refs h t i"
  by (simp add: Array.set_def)

lemma arrays_on_Ref_set [rewrite]: "arrays (Ref.set p x h) t i = arrays h t i"
  by (simp add: Ref.set_def)

lemma refs_on_Array_alloc [rewrite]: "refs (snd (Array.alloc xs h)) t i = refs h t i"
  by (metis (no_types, lifting) Array.alloc_def refs_on_Array_set select_convs(2) snd_conv surjective update_convs(3))

lemma arrays_on_Ref_alloc [rewrite]: "arrays (snd (Ref.alloc x h)) t i = arrays h t i"
  by (metis (no_types, lifting) Ref.alloc_def arrays_on_Ref_set select_convs(1) sndI surjective update_convs(3))

lemma arrays_on_Array_alloc [rewrite]: "i < lim h  arrays (snd (Array.alloc xs h)) t i = arrays h t i"
  by (smt Array.alloc_def Array.set_def addr_of_array.simps fun_upd_apply less_or_eq_imp_le
          linorder_not_less simps(1) snd_conv surjective update_convs(1) update_convs(3))

lemma refs_on_Ref_alloc [rewrite]: "i < lim h  refs (snd (Ref.alloc x h)) t i = refs h t i"
  by (smt Ref.alloc_def Ref.set_def addr_of_ref.simps fun_upd_apply less_or_eq_imp_le
          linorder_not_less select_convs(2) simps(6) snd_conv surjective update_convs(3))

setup add_rewrite_rule @{thm execute_new}
lemma new_rule:
  "<emp> Array.new n x <λr. r a replicate n x>" by auto2

setup add_rewrite_rule @{thm execute_of_list}
lemma of_list_rule:
  "<emp> Array.of_list xs <λr. r a xs>" by auto2

setup add_rewrite_rule @{thm execute_ref}
lemma ref_rule:
  "<emp> ref x <λr. r r x>" by auto2

setup fold del_prfstep_thm [
  @{thm sngr_assn_rule}, @{thm snga_assn_rule}, @{thm pure_assn_rule}, @{thm top_assn_rule},
  @{thm mod_pure_star_dist}, @{thm one_assn_rule}, @{thm hoare_triple_def}, @{thm mod_ex_dist}]
setup del_simple_datatype "pheap"

subsection ‹Definition of procedures›

text ‹ASCII abbreviations for ML files.›
abbreviation (input) ex_assn_ascii :: "('a  assn)  assn" (binder EXA 11)
  where "ex_assn_ascii  ex_assn"

abbreviation (input) models_ascii :: "pheap  assn  bool" (infix |= 50)
  where "h |= P  h  P"

ML_file "sep_util.ML"

ML structure AssnMatcher = AssnMatcher(SepUtil)
structure SepLogic = SepLogic(SepUtil)
val add_assn_matcher = AssnMatcher.add_assn_matcher
val add_entail_matcher = AssnMatcher.add_entail_matcher
val add_forward_ent_prfstep = SepLogic.add_forward_ent_prfstep
val add_rewrite_ent_rule = SepLogic.add_rewrite_ent_rule
val add_hoare_triple_prfstep = SepLogic.add_hoare_triple_prfstep
setup AssnMatcher.add_assn_matcher_proofsteps
setup SepLogic.add_sep_logic_proofsteps

ML_file "sep_steps_test.ML"

attribute_setup forward_ent = setup_attrib add_forward_ent_prfstep
attribute_setup rewrite_ent = setup_attrib add_rewrite_ent_rule
attribute_setup hoare_triple = setup_attrib add_hoare_triple_prfstep

setup fold add_hoare_triple_prfstep [
  @{thm assert_rule}, @{thm update_rule}, @{thm nth_rule}, @{thm upd_rule},
  @{thm return_rule}, @{thm ref_rule}, @{thm lookup_rule}, @{thm new_rule},
  @{thm of_list_rule}, @{thm length_rule}, @{thm freeze_rule}]

text ‹Some simple tests›

theorem "<emp> ref x <λr. r r x>" by auto2
theorem "<a r x> ref x <λr. a r x * r r x>" by auto2
theorem "<a r x> (!a) <λr. a r x * (r = x)>" by auto2
theorem "<a r x * b r y> (!a) <λr. a r x * b r y * (r = x)>" by auto2
theorem "<a r x * b r y> (!b) <λr. a r x * b r y * (r = y)>" by auto2
theorem "<a r x> do { a := y; !a } <λr. a r y * (r = y)>" by auto2
theorem "<a r x> do { a := y; a := z; !a } <λr. a r z * (r = z)>" by auto2
theorem "<a r x> do { y  !a; ref y} <λr. a r x * r r x>" by auto2
theorem "<emp> return x <λr. (r = x)>" by auto2

end