Theory Mapping_Str

(*
  File: Mapping_Str.thy
  Author: Bohua Zhan
*)

section ‹Mapping›

theory Mapping_Str
  imports "Auto2_HOL.Auto2_Main"
begin

text ‹
  Basic definitions of a mapping. Here, we enclose the mapping inside
  a structure, to make evaluation a first-order concept.
›

datatype ('a, 'b) map = Map "'a  'b option"

fun meval :: "('a, 'b) map  'a  'b option" (‹__ [90]) where
  "(Map f) h = f h"
setup add_rewrite_rule @{thm meval.simps}

lemma meval_ext: "x. Mx = Nx  M = N"
  apply (cases M) apply (cases N) by auto
setup add_backward_prfstep_cond @{thm meval_ext} [with_filt (order_filter "M" "N")]

definition empty_map :: "('a, 'b) map" where
  "empty_map = Map (λx. None)"
setup add_rewrite_rule @{thm empty_map_def}

definition update_map :: "('a, 'b) map  'a  'b  ('a ,'b) map" (‹ _ { _  _ } [89,90,90] 90) where
  "M {k  v} = Map (λx. if x = k then Some v else Mx)"
setup add_rewrite_rule @{thm update_map_def}

definition delete_map :: "'a  ('a, 'b) map  ('a, 'b) map" where
  "delete_map k M = Map (λx. if x = k then None else Mx)"
setup add_rewrite_rule @{thm delete_map_def}

subsection ‹Map from an AList›

fun map_of_alist :: "('a × 'b) list  ('a, 'b) map" where
  "map_of_alist [] = empty_map"
| "map_of_alist (x # xs) = (map_of_alist xs) {fst x  snd x}"
setup fold add_rewrite_rule @{thms map_of_alist.simps}

definition has_key_alist :: "('a × 'b) list  'a  bool" where [rewrite]:
  "has_key_alist xs a  (pset xs. fst p = a)"

lemma map_of_alist_nil [rewrite_back]:
  "has_key_alist ys x  (map_of_alist ys)x  None"
@proof @induct ys @qed
setup add_rewrite_rule_cond @{thm map_of_alist_nil} [with_term "(map_of_alist ?ys)⟨?x⟩"]

lemma map_of_alist_some [forward]:
  "(map_of_alist xs)k = Some v  (k, v)  set xs"
@proof @induct xs @qed

lemma map_of_alist_nil':
  "x  set (map fst ys)  (map_of_alist ys)x  None"
@proof @induct ys @qed
setup add_rewrite_rule_cond @{thm map_of_alist_nil'} [with_term "(map_of_alist ?ys)⟨?x⟩"]
    
subsection ‹Mapping defined by a set of key-value pairs›

definition unique_keys_set :: "('a × 'b) set  bool" where [rewrite]:
  "unique_keys_set S = (i x y. (i, x)  S  (i, y)  S  x = y)"

lemma unique_keys_setD [forward]: "unique_keys_set S  (i, x)  S  (i, y)  S  x = y" by auto2
setup del_prfstep_thm_eqforward @{thm unique_keys_set_def}

definition map_of_aset :: "('a × 'b) set  ('a, 'b) map" where
  "map_of_aset S = Map (λa. if b. (a, b)  S then Some (THE b. (a, b)  S) else None)"
setup add_rewrite_rule @{thm map_of_aset_def}
setup add_prfstep_check_req ("map_of_aset S", "unique_keys_set S")

lemma map_of_asetI1 [rewrite]: "unique_keys_set S  (a, b)  S  (map_of_aset S)a = Some b"
@proof @have "b. (a, b)  S" @have "∃!b. (a, b)  S" @qed

lemma map_of_asetI2 [rewrite]: "b. (a, b)  S  (map_of_aset S)a = None" by auto2

lemma map_of_asetD1 [forward]: "(map_of_aset S)a = None  b. (a, b)  S" by auto2

lemma map_of_asetD2 [forward]:
  "unique_keys_set S  (map_of_aset S)a = Some b  (a, b)  S" by auto2
setup del_prfstep_thm @{thm map_of_aset_def}

lemma map_of_aset_insert [rewrite]:
  "unique_keys_set (S  {(k, v)})  map_of_aset (S  {(k, v)}) = (map_of_aset S) {k  v}"
@proof
  @let "M = map_of_aset S" "N = map_of_aset (S  {(k, v)})"
  @have (@rule) "x. Nx = (M {k  v}) x" @with @case "Mx = None" @end
@qed

lemma map_of_alist_to_aset [rewrite]:
  "unique_keys_set (set xs)  map_of_aset (set xs) = map_of_alist xs"
@proof @induct xs @with
  @subgoal "xs = x # xs'"
    @have "set (x # xs') = set xs'  {x}"
  @endgoal @end
@qed

lemma map_of_aset_delete [rewrite]:
  "unique_keys_set S  (k, v)  S  map_of_aset (S - {(k, v)}) = delete_map k (map_of_aset S)"
@proof
  @let "T = S - {(k, v)}"
  @let "M = map_of_aset S" "N = map_of_aset T"
  @have (@rule) "x. Nx = (delete_map k M) x" @with
    @case "Mx = None" @case "x = k"
    @obtain y where "Mx = Some y" @have "(x, y)  T"
  @end
@qed

lemma map_of_aset_update [rewrite]:
  "unique_keys_set S  (k, v)  S 
   map_of_aset (S - {(k, v)}  {(k, v')}) = (map_of_aset S) {k  v'}" by auto2

lemma map_of_alist_delete [rewrite]:
  "set xs' = set xs - {x}  unique_keys_set (set xs)  x  set xs 
   map_of_alist xs' = delete_map (fst x) (map_of_alist xs)"
@proof @have "map_of_alist xs' = map_of_aset (set xs')" @qed

lemma map_of_alist_insert [rewrite]:
  "set xs' = set xs  {x}  unique_keys_set (set xs') 
   map_of_alist xs' = (map_of_alist xs) {fst x  snd x}"
@proof @have "map_of_alist xs' = map_of_aset (set xs')" @qed

lemma map_of_alist_update [rewrite]:
  "set xs' = set xs - {(k, v)}  {(k, v')}  unique_keys_set (set xs)  (k, v)  set xs 
   map_of_alist xs' = (map_of_alist xs) {k  v'}"
@proof @have "map_of_alist xs' = map_of_aset (set xs')" @qed

subsection ‹Set of keys of a mapping›

definition keys_of :: "('a, 'b) map  'a set" where [rewrite]:
  "keys_of M = {x. Mx  None}"

lemma keys_of_iff [rewrite_bidir]: "x  keys_of M  Mx  None" by auto2
setup del_prfstep_thm @{thm keys_of_def}

lemma keys_of_empty [rewrite]: "keys_of empty_map = {}" by auto2

lemma keys_of_delete [rewrite]:
  "keys_of (delete_map x M) = keys_of M - {x}" by auto2

subsection ‹Minimum of a mapping, relevant for heaps (priority queues)›

definition is_heap_min :: "'a  ('a, 'b::linorder) map  bool" where [rewrite]:
  "is_heap_min x M  x  keys_of M  (kkeys_of M. the (Mx)  the (Mk))"

subsection ‹General construction and update of maps›

fun map_constr :: "(nat  bool)  (nat  'a)  nat  (nat, 'a) map" where
  "map_constr S f 0 = empty_map"
| "map_constr S f (Suc k) = (let M = map_constr S f k in if S k then M {k  f k} else M)"
setup fold add_rewrite_rule @{thms map_constr.simps}

lemma map_constr_eval [rewrite]:
  "map_constr S f n = Map (λi. if i < n then if S i then Some (f i) else None else None)"
@proof @induct n @qed

lemma keys_of_map_constr [rewrite]:
  "i  keys_of (map_constr S f n)  (S i  i < n)" by auto2

definition map_update_all :: "(nat  'a)  (nat, 'a) map  (nat, 'a) map" where [rewrite]:
  "map_update_all f M = Map (λi. if i  keys_of M then Some (f i) else Mi)"

fun map_update_all_impl :: "(nat  'a)  (nat, 'a) map  nat  (nat, 'a) map" where
  "map_update_all_impl f M 0 = M"
| "map_update_all_impl f M (Suc k) =
   (let M' = map_update_all_impl f M k in if k  keys_of M then M' {k  f k} else M')"
setup fold add_rewrite_rule @{thms map_update_all_impl.simps}

lemma map_update_all_impl_ind [rewrite]:
  "map_update_all_impl f M n = Map (λi. if i < n then if i  keys_of M then Some (f i) else None else Mi)"
@proof @induct n @qed

lemma map_update_all_impl_correct [rewrite]:
  "ikeys_of M. i < n  map_update_all_impl f M n = map_update_all f M" by auto2

lemma keys_of_map_update_all [rewrite]:
  "keys_of (map_update_all f M) = keys_of M" by auto2

end