Theory Singleton
section "A Theory of Singletons"
text‹
In the following, we formalize the specification of the singleton pattern as described in~\<^cite>‹"Marmsoler2018c"›.
›
theory Singleton
imports DynamicArchitectures.Dynamic_Architecture_Calculus
begin
subsection Singletons
text ‹
In the following we formalize a variant of the Singleton pattern.
›
locale singleton = dynamic_component cmp active
for active :: "'id ⇒ cnf ⇒ bool" (‹∥_∥⇘_⇙› [0,110]60)
and cmp :: "'id ⇒ cnf ⇒ 'cmp" (‹σ⇘_⇙(_)› [0,110]60) +
assumes alwaysActive: "⋀k. ∃id. ∥id∥⇘k⇙"
and unique: "∃id. ∀k. ∀id'. (∥id'∥⇘k⇙ ⟶ id = id')"
begin
subsubsection "Calculus Interpretation"
text ‹
\noindent
@{thm[source] baIA}: @{thm baIA [no_vars]}
›
text ‹
\noindent
@{thm[source] baIN1}: @{thm baIN1 [no_vars]}
›
text ‹
\noindent
@{thm[source] baIN2}: @{thm baIN2 [no_vars]}
›
subsubsection "Architectural Guarantees"
definition "the_singleton ≡ THE id. ∀k. ∀id'. ∥id'∥⇘k⇙ ⟶ id' = id"
theorem ts_prop:
fixes k::cnf
shows "⋀id. ∥id∥⇘k⇙ ⟹ id = the_singleton"
and "∥the_singleton∥⇘k⇙"
proof -
{ fix id
assume a1: "∥id∥⇘k⇙"
have "(THE id. ∀k. ∀id'. ∥id'∥⇘k⇙ ⟶ id' = id) = id"
proof (rule the_equality)
show "∀k id'. ∥id'∥⇘k⇙ ⟶ id' = id"
proof
fix k show "∀id'. ∥id'∥⇘k⇙ ⟶ id' = id"
proof
fix id' show "∥id'∥⇘k⇙ ⟶ id' = id"
proof
assume "∥id'∥⇘k⇙"
from unique have "∃id. ∀k. ∀id'. (∥id'∥⇘k⇙ ⟶ id = id')" .
then obtain i'' where "∀k. ∀id'. (∥id'∥⇘k⇙ ⟶ i'' = id')" by auto
with ‹∥id'∥⇘k⇙› have "id=i''" and "id'=i''" using a1 by auto
thus "id' = id" by simp
qed
qed
qed
next
fix i'' show "∀k id'. ∥id'∥⇘k⇙ ⟶ id' = i'' ⟹ i'' = id" using a1 by auto
qed
hence "∥id∥⇘k⇙ ⟹ id = the_singleton" by (simp add: the_singleton_def)
} note g1 = this
thus "⋀id. ∥id∥⇘k⇙ ⟹ id = the_singleton" by simp
from alwaysActive obtain id where "∥id∥⇘k⇙" by blast
with g1 have "id = the_singleton" by simp
with ‹∥id∥⇘k⇙› show "∥the_singleton∥⇘k⇙" by simp
qed
declare ts_prop(2)[simp]
lemma lNact_active[simp]:
fixes cid t n
shows "⟨the_singleton ⇐ t⟩⇘n⇙ = n"
using lNact_active ts_prop(2) by auto
lemma lNxt_active[simp]:
fixes cid t n
shows "⟨the_singleton → t⟩⇘n⇙ = n"
by (simp add: nxtAct_active)
lemma baI[intro]:
fixes t n a
assumes "φ (σ⇘the_singleton⇙(t n))"
shows "eval the_singleton t t' n [φ]⇩b" using assms by (simp add: baIANow)
lemma baE[elim]:
fixes t n a
assumes "eval the_singleton t t' n [φ]⇩b"
shows "φ (σ⇘the_singleton⇙(t n))" using assms by (simp add: baEANow)
lemma evtE[elim]:
fixes t id n a
assumes "eval the_singleton t t' n (◇⇩b γ)"
shows "∃n'≥n. eval the_singleton t t' n' γ"
proof -
have "∥the_singleton∥⇘t n⇙" by simp
with assms obtain n' where "n'≥⟨the_singleton → t⟩⇘n⇙" and "(∃i≥n'. ∥the_singleton∥⇘t i⇙ ∧
(∀n''≥⟨the_singleton ⇐ t⟩⇘n'⇙. n'' ≤ ⟨the_singleton → t⟩⇘n'⇙ ⟶ eval the_singleton t t' n'' γ)) ∨
¬ (∃i≥n'. ∥the_singleton∥⇘t i⇙) ∧ eval the_singleton t t' n' γ" using evtEA[of n "the_singleton" t] by blast
moreover have "∥the_singleton∥⇘t n'⇙" by simp
ultimately have
"∀n''≥⟨the_singleton ⇐ t⟩⇘n'⇙. n'' ≤ ⟨the_singleton → t⟩⇘n'⇙ ⟶ eval the_singleton t t' n'' γ" by auto
hence "eval the_singleton t t' n' γ" by simp
moreover from ‹n'≥⟨the_singleton → t⟩⇘n⇙› have "n'≥n" by (simp add: nxtAct_active)
ultimately show ?thesis by auto
qed
lemma globE[elim]:
fixes t id n a
assumes "eval the_singleton t t' n (□⇩b γ)"
shows "∀n'≥n. eval the_singleton t t' n' γ"
proof
fix n' show "n ≤ n' ⟶ eval the_singleton t t' n' γ"
proof
assume "n≤n'"
hence "⟨the_singleton ⇐ t⟩⇘n⇙ ≤ n'" by simp
moreover have "∥the_singleton∥⇘t n⇙" by simp
ultimately show "eval the_singleton t t' n' γ"
using ‹eval the_singleton t t' n (□⇩b γ)› globEA by blast
qed
qed
lemma untilI[intro]:
fixes t::"nat ⇒ cnf"
and t'::"nat ⇒ 'cmp"
and n::nat
and n'::nat
assumes "n'≥n"
and "eval the_singleton t t' n' γ"
and "⋀n''. ⟦n≤n''; n''<n'⟧ ⟹ eval the_singleton t t' n'' γ'"
shows "eval the_singleton t t' n (γ' 𝔘⇩b γ)"
proof -
have "∥the_singleton∥⇘t n⇙" by simp
moreover from ‹n'≥n› have "⟨the_singleton ⇐ t⟩⇘n⇙ ≤ n'" by simp
moreover have "∥the_singleton∥⇘t n'⇙" by simp
moreover have
"∃n''≥⟨the_singleton ⇐ t⟩⇘n'⇙. n'' ≤ ⟨the_singleton → t⟩⇘n'⇙ ∧ eval the_singleton t t' n'' γ ∧
(∀n'''≥⟨the_singleton → t⟩⇘n⇙. n''' < ⟨the_singleton ⇐ t⟩⇘n''⇙ ⟶
(∃n''''≥⟨the_singleton ⇐ t⟩⇘n'''⇙. n'''' ≤ ⟨the_singleton → t⟩⇘n'''⇙ ∧ eval the_singleton t t' n'''' γ'))"
proof -
have "n'≥⟨the_singleton ⇐ t⟩⇘n'⇙" by simp
moreover have "n' ≤ ⟨the_singleton → t⟩⇘n'⇙" by simp
moreover from assms(3) have "(∀n''≥⟨the_singleton → t⟩⇘n⇙. n'' < ⟨the_singleton ⇐ t⟩⇘n'⇙ ⟶
(∃n'''≥⟨the_singleton ⇐ t⟩⇘n''⇙. n''' ≤ ⟨the_singleton → t⟩⇘n''⇙ ∧ eval the_singleton t t' n''' γ'))"
by auto
ultimately show ?thesis using ‹eval the_singleton t t' n' γ› by auto
qed
ultimately show ?thesis using untilIA[of n "the_singleton" t n' t' γ γ'] by blast
qed
lemma untilE[elim]:
fixes t id n γ' γ
assumes "eval the_singleton t t' n (γ' 𝔘⇩b γ)"
shows "∃n'≥n. eval the_singleton t t' n' γ ∧ (∀n''≥n. n'' < n' ⟶ eval the_singleton t t' n'' γ')"
proof -
have "∥the_singleton∥⇘t n⇙" by simp
with ‹eval the_singleton t t' n (γ' 𝔘⇩b γ)› obtain n' where "n'≥⟨the_singleton → t⟩⇘n⇙" and
"(∃i≥n'. ∥the_singleton∥⇘t i⇙) ∧
(∀n''≥⟨the_singleton ⇐ t⟩⇘n'⇙. n'' ≤ ⟨the_singleton → t⟩⇘n'⇙ ⟶ eval the_singleton t t' n'' γ) ∧
(∀n''≥⟨the_singleton ⇐ t⟩⇘n⇙. n'' < ⟨the_singleton ⇐ t⟩⇘n'⇙ ⟶ eval the_singleton t t' n'' γ') ∨
¬ (∃i≥n'. ∥the_singleton∥⇘t i⇙) ∧
eval the_singleton t t' n' γ ∧ (∀n''≥⟨the_singleton ⇐ t⟩⇘n⇙. n'' < n' ⟶ eval the_singleton t t' n'' γ')"
using untilEA[of n "the_singleton" t t' γ' γ] by auto
moreover have "∥the_singleton∥⇘t n'⇙" by simp
ultimately have
"(∀n''≥⟨the_singleton ⇐ t⟩⇘n'⇙. n'' ≤ ⟨the_singleton → t⟩⇘n'⇙ ⟶ eval the_singleton t t' n'' γ) ∧
(∀n''≥⟨the_singleton ⇐ t⟩⇘n⇙. n'' < ⟨the_singleton ⇐ t⟩⇘n'⇙ ⟶ eval the_singleton t t' n'' γ')" by auto
hence "eval the_singleton t t' n' γ" and "(∀n''≥n. n'' < n' ⟶ eval the_singleton t t' n'' γ')" by auto
with ‹eval the_singleton t t' n' γ› ‹n'≥⟨the_singleton → t⟩⇘n⇙› show ?thesis by auto
qed
end
end