Theory Alpha_Beta_Lattice

chapter ‹Distributive Lattices›

theory Alpha_Beta_Lattice
imports Alpha_Beta_Linear
begin

class distrib_bounded_lattice = distrib_lattice + bounded_lattice

(* For quickcheck: *)
instance bool :: distrib_bounded_lattice ..
instance ereal :: distrib_bounded_lattice ..
instance set :: (type) distrib_bounded_lattice ..

unbundle lattice_syntax

section ‹Game Tree Evaluation›

fun sups :: "('a::bounded_lattice) list  'a" where
"sups [] = " |
"sups (x#xs) = x  sups xs"

fun infs :: "('a::bounded_lattice) list  'a" where
"infs [] = " |
"infs (x#xs) = x  infs xs"

fun supinf :: "('a::distrib_bounded_lattice) tree  'a"
and infsup :: "('a::distrib_bounded_lattice) tree  'a" where
"supinf (Lf x) = x" |
"supinf (Nd ts) = sups (map infsup ts)" |
"infsup (Lf x) = x" |
"infsup (Nd ts) = infs (map supinf ts)"


section ‹Distributive Lattices›

lemma sup_inf_assoc:
  "(a::_::distrib_lattice)  b  a  (x  b) = (a  x)  b"
by (metis inf.orderE inf_sup_distrib2)

lemma sup_inf_assoc_iff:
  "(a::_::distrib_lattice)  x  b = a  y  b  (a  x)  b = (a  y)  b"
by (metis (no_types, opaque_lifting) inf.left_idem inf_commute inf_sup_distrib1 sup.left_idem sup_inf_distrib1)

text ‹Generalization of Knuth and Moore's equivalence modulo:›
abbreviation
  eq_mod :: "('a::lattice)  'a  'a  'a  bool" ((_ / _/ '(mod _,_')) [51,51,0,0]) where
 "eq_mod x y a b  a  x  b = a  y  b"

notation (latex output) eq_mod ((_ / _/ '(latex‹\textup{mod}› _,_')) [51,51,0,0])

text ab› is bounded by v› mod a,b›, or the other way around.›
abbreviation "bounded (a::_::lattice) b v ab  b  v  ab  ab  a  v"

abbreviation bounded2 :: "('a::lattice)  'a  'a  'a  bool" ((_ / _/ '(mod _,_')) [51,51,0,0])
where "bounded2 ab v a b  bounded a b v ab"

notation (latex output) bounded2 ((_ / _/ '(latex‹\textup{mod}› _,_')) [51,51,0,0])

lemma bounded_bot_top:
fixes v ab :: "'a::distrib_bounded_lattice"
shows "bounded   v ab  ab = v"
by (simp add: order_eq_iff)

text bounded› implies eq-mod, but not the other way around:›

text bounded› implies eq-mod:›
lemma eq_mod_if_bounded: assumes "bounded a b v ab"
shows "a  ab  b = a  v  (b::_::distrib_lattice)"
proof(rule antisym)
  have "a  a  v  b" by simp
  moreover have "ab  b  a  v  b"
  proof -
    have "ab  b  (a  v)  b" by(fact inf_mono[OF conjunct2[OF assms] order.refl])
    also have " = a  b  v  b" by (fact inf_sup_distrib2)
    also have "  a  v  b" by (fact sup.mono[OF  inf.cobounded1 order.refl])
    finally show ?thesis .
  qed
  ultimately show "a  ab  b  a  v  b" by(metis sup.bounded_iff)
next
  have "a  a  ab  b" by simp
  moreover have "v  b  a  ab  b"
  proof -
    have "v  b = (v  b)  b" by simp
    also have "  ab  b" by(metis inf.commute inf.mono[OF conjunct1[OF assms] order.refl])
    also have "  a  ab  b" by simp
    finally show ?thesis .
  qed
  ultimately show "a  v  b  a  ab  b" by(metis sup.bounded_iff)
qed

text ‹Converse is not true, even for linorder›, even if a < b›:›
lemma "let a=0; b=1; ab=2; v=1
  in a  ab  b = a  v  (b::nat)  ¬(b  v  ab  ab  a  v)"
by eval

text ‹Because for linord› we have:
  bounded = fishburn› (@{thm fishburn_iff_min_max}) and eq_mod = knuth› (@{thm mm_iff_knuth})
  but we know fishburn› is stronger than knuth›.

These equivalences do not even hold as implications in distrib_lattice›, even if a < b›.
(We need to redefine knuth› and fishburn› for distrib_lattice› first)
›

context
begin

definition
 "knuth' (a::_::distrib_lattice) b x y ==
  ((y  a  x  a)  (a < y  y < b  y = x)  (b  y  b  x))"

lemma "let a={}; b={1::int}; ab={}; v={0}
  in ¬ (a  ab  b = a  v  b  knuth' a b v ab)"
by eval

lemma "let a={}; b={1::int}; ab={0}; v={1}
  in ¬ (knuth' a b v ab  a  ab  b = a  v  b)"
by eval

definition
 "fishburn' (a::_::distrib_lattice) b v ab ==
  ((ab  a  v  ab)  (a < ab  ab < b  ab = v)  (b  ab  ab  v))"

text ‹Same counterexamples as above:›

lemma "let a={}; b={1::int}; ab={}; v={0}
  in ¬ (bounded a b v ab  fishburn' a b v ab)"
by eval

lemma "let a={}; b={1::int}; ab={0}; v={1}
  in ¬ (fishburn' a b v ab  bounded a b v ab)"
by eval

end

subsection ‹Fail-Hard›

subsubsection "Basic ab_sup›"

text ‹Improved version of Bird and Hughes. No squashing in base case.›

fun ab_sup :: "'a  'a  ('a::distrib_lattice)tree  'a" and ab_sups and ab_inf and ab_infs where
"ab_sup a b (Lf x) = x" |
"ab_sup a b (Nd ts) = ab_sups a b ts" |
"ab_sups a b [] = a" |
"ab_sups a b (t#ts) = (let a' = a  ab_inf a b t in if a'  b then a' else ab_sups a' b ts)" |
"ab_inf a b (Lf x) = x" |
"ab_inf a b (Nd ts) = ab_infs a b ts" |
"ab_infs a b [] = b" |
"ab_infs a b (t#ts) = (let b' = b  ab_sup a b t in if b'  a then b' else ab_infs a b' ts)"

lemma ab_sups_ge_a: "ab_sups a b ts  a"
apply(induction ts arbitrary: a)
by (auto simp: Let_def)(use le_sup_iff in blast)

lemma ab_infs_le_b: "ab_infs a b ts  b"
apply(induction ts arbitrary: b)
by (auto simp: Let_def)(use le_inf_iff in blast)

lemma eq_mod_ab_val_auto:
shows "a  ab_sup a b t  b = a  supinf t  b"
and "a  ab_sups a b ts  b = a  supinf (Nd ts)  b"
and "a  ab_inf a b t  b = a  infsup t  b"
and "a  ab_infs a b ts  b = a  infsup (Nd ts)  b"
proof(induction a b t and a b ts and a b t and a b ts rule: ab_sup_ab_sups_ab_inf_ab_infs.induct)
  case (4 a b t ts)
  then show ?case
    apply(simp add: Let_def)
    by (smt (verit, ccfv_threshold) ab_sups_ge_a inf.absorb_iff2 inf_left_commute inf_sup_distrib2 sup.left_idem sup_absorb1 sup_absorb2 sup_assoc sup_inf_assoc_iff)
next
  case (8 a b t ts)
  then show ?case
    apply(simp add: Let_def)
    by (smt (verit) ab_infs_le_b inf.absorb_iff2 inf_assoc inf_commute inf_right_idem sup.absorb1 sup_inf_distrib1)
qed auto

text ‹A readable proof. Some steps still tricky.
Complication: sometimes a ⊔ x ⊓ b› is better and sometimes (a ⊔ x) ⊓ b›.›
lemma eq_mod_ab_val:
shows "a  ab_sup a b t  b = a  supinf t  b"
and "a  ab_sups a b ts  b = a  supinf (Nd ts)  b"
and "a  ab_inf a b t  b = a  infsup t  b"
and "a  ab_infs a b ts  b = a  infsup (Nd ts)  b"
proof(induction a b t and a b ts and a b t and a b ts rule: ab_sup_ab_sups_ab_inf_ab_infs.induct)
  case (8 a b t ts)
  let ?abt = "ab_sup a b t" let ?abts = "ab_infs a (b  ?abt) ts"
  let ?vt = "supinf t" let ?vts = "infsup (Nd ts)"
  show ?case
  proof (cases "b  ?abt  a")
    case True
    hence b: "a  ?vt  b = a" using "8.IH"(1) True by (metis sup_absorb1 inf_commute)
    have "a  ab_infs a b (t#ts)  b = a  b  ?abt  b" using True by (simp)
    also have " = a  ?abt  b" by (simp add: inf_commute)
    also have " = a  ?vt  b" by (simp add: "8.IH"(1))
    also have " = a  (?vt  ?vt  ?vts)  b" by (simp)
    also have " = a  (?vt  b  ?vt  ?vts  b)" by (metis inf_sup_distrib2)
    also have " = a  ?vt  b  ?vt  ?vts  b" by (metis sup_assoc)
    also have " = a  ?vt  ?vts  b" by (metis b)
    also have " = a  infsup (Nd (t # ts))  b" by (simp)
    finally show ?thesis .
  next
    case False
    from "8.IH"(2)[OF refl False] ab_infs_le_b
    have IH2': "a  ?abts  b = a  ?vts  ?abt  b"
      by (metis (no_types, lifting) inf_absorb1 inf_assoc inf_commute inf_idem)
    have "a  ab_infs a b (t#ts)  b = a  ?abts  b" using False by (simp)
    also have " = a  ?abt  ?vts  b" using IH2' by (metis inf_commute)
    also have " = a  ?vt  ?vts  b" using "8.IH"(1)
      by (metis (no_types, lifting) inf_assoc inf_commute sup_inf_distrib1)
    also have " = a  infsup (Nd (t # ts))  b" by (simp)
    finally show ?thesis .
  qed
next
  case (4 a b t ts)
  let ?abt = "ab_inf a b t" let ?abts = "ab_sups (a   ?abt) b ts"
  let ?vt = "infsup t" let ?vts = "supinf (Nd ts)"
  show ?case
  proof (cases "b  a   ?abt")
    case True
    have IH1': (a  ?abt)  b = (a  ?vt)  b by(metis sup_inf_assoc_iff "4.IH"(1))
    hence b: "(a  ?vt)  b = b" using True inf_absorb2 by metis
    have "(a  ab_sups a b (t#ts))  b = (a  (a  ?abt))  b" using True by (simp)
    also have " = (a  ?abt)  b" by (simp)
    also have " = (a  ?vt)  b" by (simp add: IH1')
    also have " = (a  ?vt  ?vts)  (a  ?vt)  b" by (simp add: inf.absorb2)
    also have " = (a  ?vt  ?vts)  b" by (simp add: b inf_assoc)
    also have " = (a  supinf (Nd (t # ts)))  b" by (simp add: sup.assoc)
    finally show ?thesis
      using sup_inf_assoc_iff by blast
  next
    case False
    from "4.IH"(2)[OF refl False] ab_sups_ge_a
    have IH2': "(a  ?abts)  b = (a  ?abt  ?vts)  b"
      by (smt (verit, best) le_sup_iff sup_absorb2 sup_inf_assoc_iff)
    have "(a  ab_sups a b (t#ts))  b = (a  ?abts)  b" using False by (simp)
    also have " = (a  ?abt  ?vts)  b" using IH2' by blast
    also have " = a  b  ?abt  b  ?vts  b" by (simp add: inf_sup_distrib2)
    also have " = (a  ?abt  b)  b  ?vts  b" by (metis inf_sup_distrib2 inf.right_idem)
    also have " = (a  ?vt  b)  b  ?vts  b" using "4.IH"(1) by simp 
    also have " = (a  ?vt  ?vts)  b" by (simp add: inf_sup_distrib2)
    also have " = (a  supinf (Nd (t # ts)))  b" by (simp add: sup_assoc)
    finally show ?thesis
      using sup_inf_assoc_iff by blast
  qed
qed (simp_all)

corollary ab_sup_bot_top: "ab_sup   t = supinf t"
by (metis eq_mod_ab_val(1) inf_top_right sup_bot.left_neutral)

text ‹Predicate @{const knuth} (and thus @{const fishburn}) does not hold:›
lemma "let a = {False}; b = {False, True}; t = Nd [Lf {True}];
  ab = ab_sup a b t; v = supinf t in v = {True}  ab = {True,False}  b  ab  ¬ b  v"
by eval

text ‹Worse: @{const fishburn} (and @{const knuth}) only caters for a ``linear'' analysis where ab› lies wrt a < b›.
But ab› may not satisfy either of the 3 alternatives in @{const fishburn}:›
lemma "let a = {}; b = {True}; t = Nd [Lf {False}]; ab = ab_sup a b t; v = supinf t in
  v = {False}  ab={False}  ¬ aba  ¬ abb  ¬ (a<ab  ab < b)"
by eval


subsubsection "A stronger correctness property"

text ‹The stronger correctness property @{const bounded}:›

lemma (*bounded_val_ab:*)
shows "bounded a b (supinf t) (ab_sup a b t)"
and   "bounded a b (supinf (Nd ts)) (ab_sups a b ts)"
and   "bounded a b (infsup t) (ab_inf a b t)"
and   "bounded a b (infsup (Nd ts)) (ab_infs a b ts)"
proof(induction a b t and a b ts and a b t and a b ts rule: ab_sup_ab_sups_ab_inf_ab_infs.induct)
  case (4 a b t ts)
  thus ?case
    apply(simp add: Let_def inf.coboundedI1 sup.coboundedI1)
    by (smt (verit, best) ab_sups_ge_a inf_sup_distrib1 sup.absorb_iff2 sup_assoc sup_commute)
next
  case (8 t ts a b)
  thus ?case
    apply(simp add: Let_def inf.coboundedI1 sup.coboundedI1)
    by (smt (verit) ab_infs_le_b inf.absorb_iff2 inf_commute inf_left_commute sup_inf_distrib1)
qed auto

lemma bounded_val_ab:
shows "bounded a b (supinf t) (ab_sup a b t)"
and   "bounded a b (supinf (Nd ts)) (ab_sups a b ts)"
and   "bounded a b (infsup t) (ab_inf a b t)"
and   "bounded a b (infsup (Nd ts)) (ab_infs a b ts)"
proof(induction a b t and a b ts and a b t and a b ts rule: ab_sup_ab_sups_ab_inf_ab_infs.induct)
  case (4 a b t ts)
  let ?abt = "ab_inf a b t" let ?abts = "ab_sups (a  ?abt) b ts"
  let ?vt = "infsup t" let ?vts = "sups (map infsup ts)"
  have "b  supinf (Nd (t # ts))  ab_sups a b (t # ts)"
  proof -
    have "b  supinf (Nd (t # ts)) = b  (?vt  ?vts)" by(simp)
    also have " = b  ?vt  b  ?vts" by (fact inf_sup_distrib1)
    also have "  ?abt  b  ?vts" using "4.IH"(1) by (metis order.refl sup.mono)
    also have "  ab_sups a b (t # ts)"
    proof cases
      assume "b  a  ?abt"
      have "?abt  b  ?vts  a  ?abt  b  ?vts" by (simp add: sup_assoc)
      also have " = a  ?abt" using b  a  ?abt by (meson le_infI1 sup.absorb1)
      also have " = ab_sups a b (t # ts)" using b  a  ?abt by simp
      finally show ?thesis .
    next
      assume "¬ b  a  ?abt"
      have "?abt  b  ?vts  ?abt  ?abts"
        using "4.IH"(2)[OF refl ¬ b  a  ?abt] sup.mono by auto
      also have "  ?abts" by (meson ab_sups_ge_a le_sup_iff order_refl)
      also have " = ab_sups a b (t # ts)" using ¬ b  a  ?abt by simp
      finally show ?thesis .
    qed
    finally show ?thesis .
  qed
  moreover
  have "ab_sups a b (t # ts)  a  supinf (Nd (t # ts))"
  proof cases
    assume "b  a  ?abt"
    then have "ab_sups a b (t # ts) = a  ?abt" by(simp add: Let_def)
    also have "  a  ?vt" using "4.IH"(1) by simp
    also have "  a  ?vt  ?vts" by simp
    also have " = a  supinf (Nd (t # ts))" by (simp add: sup_assoc)
    finally show ?thesis .
  next
    assume "¬ b  a  ?abt"
    then have "ab_sups a b (t # ts) = ?abts" by(simp add: Let_def)
    also have "  a  ?abt  ?vts" using "4.IH"(2)[OF refl ¬ b  a  ?abt] by simp
    also have "  a  ?vt  ?vts" using "4.IH"(1)
      by (metis sup.mono inf_sup_absorb le_inf_iff sup.cobounded2 sup.idem)
    also have " = a  supinf (Nd (t # ts))" by (simp add: sup_assoc)
    finally show ?thesis .
  qed
  ultimately show ?case ..
next
  case 8 thus ?case
    apply(simp add: Let_def)
    by (smt (verit) ab_infs_le_b inf.absorb_iff2 inf.cobounded2 inf.orderE inf_assoc inf_idem sup.coboundedI1 sup_inf_distrib1)
qed auto


subsubsection "Bird and Hughes"

(* Exercise \ref{exer:ABlat:BH} (Bird and Hughes) for lattices *)

fun ab_sup2 :: "('a::distrib_lattice)  'a  'a tree  'a" and ab_sups2 and ab_inf2 and ab_infs2 where
"ab_sup2 a b (Lf x) = a  x  b" |
"ab_sup2 a b (Nd ts) = ab_sups2 a b ts" |

"ab_sups2 a b [] = a" |
"ab_sups2 a b (t#ts) = (let a' = ab_inf2 a b t in if a' = b then b else ab_sups2 a' b ts)" |

"ab_inf2 a b (Lf x) = (a  x)  b" |
"ab_inf2 a b (Nd ts) = ab_infs2 a b ts" |

"ab_infs2 a b [] = b" |
"ab_infs2 a b (t#ts) = (let b' = ab_sup2 a b t in if a = b' then a else ab_infs2 a b' ts)"

lemma eq_mod_ab2_val:
shows "ab  ab_sup2 a b t = a  (supinf t  b)"
and "ab  ab_sups2 a b ts = a  (supinf (Nd ts)  b)"
and "ab  ab_inf2 a b t = (a  infsup t)  b"
and "ab  ab_infs2 a b ts = (a  infsup(Nd ts))  b"
proof(induction a b t and a b ts and a b t and a b ts rule: ab_sup2_ab_sups2_ab_inf2_ab_infs2.induct)
  case 4 thus ?case
    apply (simp add: Let_def)
    by (smt (verit, best) inf_commute inf_sup_distrib2 sup_assoc sup_inf_absorb sup_inf_assoc)
next
  case 8 thus ?case
    apply (simp add: Let_def)
    by (smt (verit, del_insts) inf_assoc inf_commute inf_sup_absorb sup_inf_assoc sup_inf_distrib1)
qed simp_all

corollary ab_sup2_bot_top: "ab_sup2   t = supinf t"
using eq_mod_ab2_val(1)[of  ] by simp

text ‹Simpler proof with sets; not really surprising.›
lemma ab_sup2_bounded_set:
shows "a(b:: _ set)  ab_sup2 a b t = a  (supinf t  b)"
and "ab  ab_sups2 a b ts = a  (supinf (Nd ts)  b)"
and "ab  ab_inf2 a b t = (a  infsup t)  b"
and "ab  ab_infs2 a b ts = (a  infsup(Nd ts))  b"
proof(induction a b t and a b ts and a b t and a b ts rule: ab_sup2_ab_sups2_ab_inf2_ab_infs2.induct)
qed (auto simp: Let_def)


subsubsection "Delayed Test"

(* Exercise: delayed test, version for distributive lattices; no proof (yet)! *)

fun ab_sup3 :: "('a::distrib_lattice)  'a  'a tree  'a" and ab_sups3 and ab_inf3 and ab_infs3 where
"ab_sup3 a b (Lf x) = x" |
"ab_sup3 a b (Nd ts) = ab_sups3 a b ts" |

"ab_sups3 a b [] = a" |
"ab_sups3 a b (t#ts) = (if a  b then a else ab_sups3 (a  ab_inf3 a b t) b ts)" |

"ab_inf3 a b (Lf x) = x" |
"ab_inf3 a b (Nd ts) = ab_infs3 a b ts" |

"ab_infs3 a b [] = b" |
"ab_infs3 a b (t#ts) = (if a  b then b else ab_infs3 a (b  ab_sup3 a b t) ts)"

(* Unused. In case they are needed for the failed proof directly below. *)
lemma ab_sups3_ge_a: "ab_sups3 a b ts  a"
apply(induction ts arbitrary: a)
by (auto simp: Let_def)(use le_sup_iff in blast)

lemma ab_infs3_le_b: "ab_infs3 a b ts  b"
apply(induction ts arbitrary: b)
by (auto simp: Let_def)(use le_inf_iff in blast)

(* Failed to prove it. Probably needs lemmas *)
lemma ab_sup3_ab_sup:
shows "a<b  ab_sup3 a b t = ab_sup a b t"
and "a<b  ab_sups3 a b ts = ab_sups a b ts"
and "a<b  ab_inf3 a b t = ab_inf a b t"
and "a<b  ab_infs3 a b ts = ab_infs a b ts"
quickcheck[expect=no_counterexample]
oops
(*
proof(induction a b t and a b ts and a b t and a b ts rule: ab_sup3_ab_sups3_ab_inf3_ab_infs3.induct)
  case (4 a b t ts)
  show ?case
  proof (cases ts)
    case Nil
    then show ?thesis using 4 by (auto simp add: Let_def dest: leD)
  next
    case Cons
    then show ?thesis using 4 apply (auto simp add: Let_def )
  qed
next
  case (8 a b t ts)
  show ?case
  proof (cases ts)
    case Nil
    then show ?thesis using 8 by (simp add: Let_def)
  next
    case Cons
    then show ?thesis using 8 by (auto simp add: Let_def min_le_iff_disj)
  qed
qed auto
*)


subsubsection "Bird and Hughes plus delayed test"

(* Exercise Bird and Hughes, delayed! - unused in book, a bit esoteric *)

fun ab_sup4 :: "('a::distrib_lattice)  'a  'a tree  'a" and ab_sups4 and ab_inf4 and ab_infs4 where
"ab_sup4 a b (Lf x) = a  x  b" |
"ab_sup4 a b (Nd ts) = ab_sups4 a b ts" |

"ab_sups4 a b [] = a" |
"ab_sups4 a b (t#ts) = (if a = b then a else ab_sups4 (ab_inf4 a b t) b ts)" |

"ab_inf4 a b (Lf x) = (a  x)  b" |
"ab_inf4 a b (Nd ts) = ab_infs4 a b ts" |

"ab_infs4 a b [] = b" |
"ab_infs4 a b (t#ts) = (if a = b then b else ab_infs4 a (ab_sup4 a b t) ts)"

(* TODO: no need for ‹a≤b› for linord *)
lemma ab_sup4_bounded:
shows "ab  ab_sup4 a b t = a  (supinf t  b)"
and "ab  ab_sups4 a b ts = a  (supinf (Nd ts)  b)"
and "ab  ab_inf4 a b t = (a  infsup t)  b"
and "ab  ab_infs4 a b ts = (a  infsup(Nd ts))  b"
proof(induction a b t and a b ts and a b t and a b ts rule: ab_sup4_ab_sups4_ab_inf4_ab_infs4.induct)
  case 3 thus ?case by (simp add: sup_absorb1)
next
  case 4 thus ?case
    apply (simp add: sup_absorb1)
    by (metis (no_types, lifting) inf_sup_distrib2 sup_assoc sup_inf_assoc)
next
  case 7 thus ?case by (simp add: inf.absorb2)
next
  case (8 a b t ts)
  then show ?case
  apply (simp add: inf.absorb2)
  by (simp add: inf_assoc inf_commute sup_absorb2 sup_inf_distrib1)
qed simp_all

lemma ab_sup4_bounded_set:
shows "a(b:: _ set)  ab_sup4 a b t = a  (supinf t  b)"
and "ab  ab_sups4 a b ts = a  (supinf (Nd ts)  b)"
and "ab  ab_inf4 a b t = (a  infsup t)  b"
and "ab  ab_infs4 a b ts = (a  infsup(Nd ts))  b"
by (induction a b t and a b ts and a b t and a b ts rule: ab_sup4_ab_sups4_ab_inf4_ab_infs4.induct)
   auto


subsection ‹Fail-Soft›

fun ab_sup' :: "'a::distrib_bounded_lattice  'a  'a tree  'a" and ab_sups' ab_inf' ab_infs' where
"ab_sup' a b (Lf x) = x" |
"ab_sup' a b (Nd ts) = ab_sups' a b  ts" |

"ab_sups' a b m [] = m" |
"ab_sups' a b m (t#ts) =
  (let m' = m  (ab_inf' (m  a) b t) in if m'  b then m' else ab_sups' a b m' ts)" |

"ab_inf' a b (Lf x) = x" |
"ab_inf' a b (Nd ts) = ab_infs' a b  ts" |

"ab_infs' a b m [] = m" |
"ab_infs' a b m (t#ts) =
  (let m' = m  (ab_sup' a (m  b) t) in if m'  a then m' else ab_infs' a b m' ts)"


lemma ab_sups'_ge_m: "ab_sups' a b m ts  m"
apply(induction ts arbitrary: a b m)
by (auto simp: Let_def)(use le_sup_iff in blast)

lemma ab_infs'_le_m: "ab_infs' a b m ts  m"
apply(induction ts arbitrary: a b m)
by (auto simp: Let_def)(use le_inf_iff in blast)

text ‹Fail-soft correctness:›

lemma bounded_val_ab':
shows "bounded (a) b (supinf t) (ab_sup' a b t)"
and   "bounded (a  m) b (supinf (Nd ts)) (ab_sups' a b m ts)"
and   "bounded a b (infsup t) (ab_inf' a b t)"
and   "bounded a (b  m) (infsup (Nd ts)) (ab_infs' a b m ts)"
proof(induction a b t and a b m ts and a b t and a b m ts rule: ab_sup'_ab_sups'_ab_inf'_ab_infs'.induct)
  case (4 a b m t ts)
  then show ?case
    apply(simp add: Let_def inf.coboundedI1 sup.coboundedI1)
    by (smt (verit) ab_sups'_ge_m inf_sup_distrib1 sup.absorb_iff1 sup_commute sup_left_commute)
next
  case (8 a b m t ts)
  then show ?case
    apply(simp add: Let_def inf.coboundedI1 sup.coboundedI1)
    by (smt (verit) ab_infs'_le_m inf.absorb_iff2 inf_assoc inf_left_commute sup_inf_distrib1)
qed auto

corollary "ab_sup'   t = supinf t"
by (rule bounded_bot_top[OF bounded_val_ab'(1)])

lemma eq_mod_ab'_val:
shows "a  ab_sup' a b t  b = a  supinf t  b"
and "(m  a)  ab_sups' a b m ts  b = (m  a)  supinf (Nd ts)  b"
and "a  ab_inf' a b t  b = a  infsup t  b"
and "a  ab_infs' a b m ts  (m  b) = a  infsup (Nd ts)  (m  b)"
  apply (meson bounded_val_ab'(1) eq_mod_if_bounded)
  apply (metis bounded_val_ab'(2) eq_mod_if_bounded sup_commute)
  apply (meson bounded_val_ab'(3) eq_mod_if_bounded)
  by (metis bounded_val_ab'(4) eq_mod_if_bounded inf_commute)
(* direct proof also possible:
proof(induction a b t and a b m ts and a b t and a b m ts rule: ab_sup'_ab_sups'_ab_inf'_ab_infs'.induct)
  case (4 a b m t ts)
  then show ?case
    apply(simp add: Let_def)
    apply rule
    apply (smt (verit, ccfv_threshold) inf.absorb_iff2 inf_sup_absorb le_infE sup.idem sup_assoc sup_commute sup_inf_distrib1)
    by (smt (verit, ccfv_SIG) ab_sups'_ge_m inf_sup_distrib2 sup.cobounded1 sup.orderE sup_assoc sup_commute sup_inf_assoc_iff)
next
  case (8 a b m t ts)
  then show ?case
    apply( simp add: Let_def)
    apply rule
    apply (smt (verit, ccfv_SIG) inf.coboundedI1 inf_assoc inf_left_commute sup.orderE sup_inf_assoc_iff sup_inf_distrib1)
    by (smt (verit, ccfv_SIG) ab_infs'_le_m inf.cobounded1 inf.orderE inf_assoc inf_commute sup_inf_assoc_iff)
next
  case 3 thus ?case
    by (metis bounded_val_ab'(2) eq_mod_if_bounded sup.commute)
qed auto
*)

(* useful? *)
lemma ab_sups'_le_ab_sups: "ab_sups' a b c t  b  ab_sups (a  c) b t"
by (smt (verit, best) ab_sups_ge_a bounded_val_ab(2) eq_mod_ab'_val(2) inf_commute sup.absorb_iff2 sup_assoc sup_commute)

(* useful? *)
lemma ab_sup'_le_ab_sup: "ab_sup' a b t  b  ab_sup a b t"
by (metis ab_sup'.elims ab_sup.simps(1) ab_sup.simps(2) ab_sups'_le_ab_sups inf.cobounded1 sup_bot_right)


subsubsection ‹Towards bounded› of Fail-Soft›

theorem bounded_ab'_ab:
  shows "bounded (a) b (ab_sup' a b t)   (ab_sup a b t)"
    and "bounded a b (ab_sups' a b m ts) (ab_sups (sup m a) b ts)"
    and "bounded a b (ab_inf' a b t)   (ab_inf a b t)"
    and "bounded a b (ab_infs' a b m ts) (ab_infs a (inf m b) ts)"
oops


section ‹De Morgan Algebras›

text ‹Now: also negation. But still not a boolean algebra but only a De Morgan algebra:›

(* Modified copy of ‹de_morgan_order›; cannot be shared because of max vs sup *)
class de_morgan_algebra = distrib_bounded_lattice + uminus
opening lattice_syntax +
assumes de_Morgan_inf: "- (x  y) = - x  - y"
assumes neg_neg[simp]: "- (- x) = x"
begin

lemma de_Morgan_sup: "- (x  y) = - x  - y"
by (metis de_Morgan_inf neg_neg)

lemma neg_top[simp]: "-  = "
by (metis bot_eq_sup_iff de_Morgan_inf inf_top.right_neutral neg_neg)

lemma neg_bot[simp]: "-  = "
using neg_neg neg_top by blast

lemma uminus_eq_iff[simp]: "-a = -b  a = b"
by (metis neg_neg)

lemma uminus_le_reorder: "(- a  b) = (- b  a)"
by (metis de_Morgan_sup inf.absorb_iff2 le_iff_sup neg_neg)

lemma uminus_less_reorder: "(- a < b) = (- b < a)"
by (metis order.strict_iff_not neg_neg uminus_le_reorder)

lemma minus_le_minus[simp]: "- a  - b  b  a"
by (metis neg_neg uminus_le_reorder)

lemma minus_less_minus[simp]: "- a < - b  b < a"
by (metis neg_neg uminus_less_reorder)

lemma less_uminus_reorder: "a < - b  b < - a"
by (metis neg_neg uminus_less_reorder)

end

instantiation ereal :: de_morgan_algebra
begin

instance
proof (standard, goal_cases)
  case 1
  thus ?case by (simp add: min_def)
next
  case 2
  thus ?case by (simp)
qed

end

instantiation set :: (type)de_morgan_algebra
begin

instance
proof (standard, goal_cases)
  case 1
  thus ?case by (simp)
next
  case 2
  thus ?case by (simp)
qed

end

fun negsup :: "('a :: de_morgan_algebra)tree  'a" where
"negsup (Lf x) = x" |
"negsup (Nd ts) = sups (map (λt. - negsup t) ts)"

fun negate :: "bool  ('a::de_morgan_algebra) tree  'a tree" where
"negate b (Lf x) = Lf (if b then -x else x)" |
"negate b (Nd ts) = Nd (map (negate (¬b)) ts)"

lemma negate_negate: "negate f (negate f t) = t"
by(induction t arbitrary: f)(auto cong: map_cong)

lemma uminus_infs:
  fixes f :: "'a  'b::de_morgan_algebra"
shows "- infs (map f xs) = sups (map (λx. - f x) xs)"
by(induction xs) (auto simp: de_Morgan_inf)

lemma supinf_negate: "supinf (negate b t) = - infsup (negate (¬b) (t::(_::de_morgan_algebra)tree))"
by(induction t) (auto simp: uminus_infs cong: map_cong)

lemma negsup_supinf_negate: "negsup t = supinf(negate False t)"
by(induction t) (auto simp: supinf_negate cong: map_cong)


subsection ‹Fail-Hard›

fun ab_negsup :: "'a  'a  ('a::de_morgan_algebra)tree  'a" and ab_negsups where
"ab_negsup a b (Lf x) = x" |
"ab_negsup a b (Nd ts) = ab_negsups a b ts" |

"ab_negsups a b [] = a" |
"ab_negsups a b (t#ts) =
  (let a' = a  - ab_negsup (-b) (-a) t
   in if a'  b then a' else ab_negsups a' b ts)"

text ‹A direct bounded› proof:›

lemma ab_negsups_ge_a: "ab_negsups a b ts  a"
apply(induction ts arbitrary: a)
by (auto simp: Let_def)(use le_sup_iff in blast)

lemma bounded_val_ab_neg:
shows "bounded (a) b (negsup t) (ab_negsup (a) b t)"
and "bounded a b (negsup (Nd ts)) (ab_negsups (a) b ts)"
proof(induction a b t and a b ts rule: ab_negsup_ab_negsups.induct)
  case (4 a b t ts)
  then show ?case
    apply(simp add: Let_def inf.coboundedI1)
    by (smt (verit, ccfv_threshold) ab_negsups_ge_a de_Morgan_sup de_morgan_algebra_class.neg_neg inf.absorb_iff2 inf_sup_distrib1 le_iff_sup sup_commute sup_left_commute)
qed auto

text ‹An indirect proof:›

theorem ab_sup_ab_negsup:
shows "ab_sup a b t = ab_negsup a b (negate False t)"
and   "ab_sups a b ts = ab_negsups a b (map (negate True) ts)"
and   "ab_inf a b t = - ab_negsup (-b) (-a) (negate True t)"
and   "ab_infs a b ts = - ab_negsups (-b) (-a) (map (negate False) ts)"
proof(induction a b t and a b ts and a b t and a b ts rule: ab_sup_ab_sups_ab_inf_ab_infs.induct)
  case 8 then show ?case
    by(simp add: Let_def de_Morgan_sup de_Morgan_inf uminus_le_reorder)
qed (simp_all add: Let_def)

corollary ab_negsup_bot_top: "ab_negsup   t = negsup t"
by (metis ab_sup_bot_top ab_sup_ab_negsup(1) negate_negate negsup_supinf_negate)

text ‹Correctness statements derived from non-negative versions:›

corollary eq_mod_ab_negsup_supinf_negate:
  "a  ab_negsup a b t  b = a  supinf (negate False t)  b"
by (metis eq_mod_ab_val(1) ab_sup_ab_negsup(1) negate_negate)

corollary bounded_negsup_ab_negsup:
  "bounded a b (negsup t) (ab_negsup a b t)"
by (metis negate_negate ab_sup_ab_negsup(1) bounded_val_ab(1) negsup_supinf_negate)


subsection ‹Fail-Soft›

fun ab_negsup' :: "'a  'a  ('a::de_morgan_algebra)tree  'a" and ab_negsups' where
"ab_negsup' a b (Lf x) = x" |
"ab_negsup' a b (Nd ts) = (ab_negsups' a b  ts)" |

"ab_negsups' a b m [] = m" |
"ab_negsups' a b m (t#ts) = (let m' = sup m (- ab_negsup' (-b) (- sup m a) t) in
      if m'  b then m' else ab_negsups' a b m' ts)"

text ‹Relate un-negated to negated:›

theorem ab_sup'_ab_negsup':
shows "ab_sup' a b t = ab_negsup' a b (negate False t)"
and   "ab_sups' a b m ts = ab_negsups' a b m (map (negate True) ts)"
and   "ab_inf' a b t = - ab_negsup' (-b) (-a) (negate True t)"
and   "ab_infs' a b m ts = - ab_negsups' (-b) (-a) (-m) (map (negate False) ts)"
proof(induction a b t and a b m ts and a b t and a b m ts rule: ab_sup'_ab_sups'_ab_inf'_ab_infs'.induct)
  case (4 a b m t ts)
  then show ?case
    by(simp add: Let_def de_Morgan_sup de_Morgan_inf uminus_le_reorder)
next
  case (8 a b m t ts)
  then show ?case
    by(simp add: Let_def de_Morgan_sup de_Morgan_inf uminus_le_reorder)
qed auto

lemma ab_negsups'_ge_a: "ab_negsups' a b m ts  m"
apply(induction ts arbitrary: a b m)
by (auto simp: Let_def)(use le_sup_iff in blast)

theorem bounded_val_ab'_neg:
shows "bounded a b (negsup t) (ab_negsup' a b t)"
  and "bounded (sup a m) b (negsup (Nd ts)) (ab_negsups' a b m ts)"
proof(induction a b t and a b m ts rule: ab_negsup'_ab_negsups'.induct)
 case (4 a b m t ts)
  then show ?case
    apply (auto simp add: Let_def inf.coboundedI1 sup.coboundedI1)
    apply (smt (verit, ccfv_threshold) de_Morgan_sup neg_neg inf.coboundedI1 le_iff_sup sup.cobounded1 sup_assoc sup_commute)
    apply (metis (no_types, lifting) ab_negsups'_ge_a de_Morgan_sup neg_neg inf.coboundedI1 inf_sup_distrib1 le_iff_sup le_sup_iff)
    by (smt (verit, ccfv_threshold) de_Morgan_inf de_morgan_algebra_class.neg_neg inf.orderE le_iff_sup sup.idem sup_commute sup_left_commute)
qed auto

(* Can also derive ‹bounded_ab_negsup'_negsup(1)› from the corresponding un-negated thm: *)
corollary "bounded a b (negsup t) (ab_negsup' a b t)"
by (metis negate_negate ab_sup'_ab_negsup'(1) bounded_val_ab'(1) negsup_supinf_negate)
(* But why not (it seems) ‹bounded_ab_negsup'_negsup(2)› ? *)

(* Just as unproved as ‹bounded a b (ab_sup' t a b) (ab_sup a b t)› *)
theorem bounded_ab_neg'_ab_neg:
shows "bounded a b (ab_negsup' a b t) (ab_negsup a b t)"
  and "bounded (sup a m) b (ab_negsups' a b m ts) (ab_negsup (a  m) b (Nd ts))"
oops

end