Abstract
We formalize a range of proof systems for classical propositional
logic (sequent calculus, natural deduction, Hilbert systems,
resolution) and prove the most important meta-theoretic results about
semantics and proofs: compactness, soundness, completeness,
translations between proof systems, cut-elimination, interpolation and
model existence.
License
Topics
Related publications
- Michaelis, J., & Nipkow, T. (2019). Formalized Proof Systems for Propositional Logic (Version 1.0). Schloss Dagstuhl β Leibniz-Zentrum fΓΌr Informatik. https://doi.org/10.4230/LIPICS.TYPES.2017.5
Session Propositional_Proof_Systems
- Formulas
- Sema
- Substitution
- Substitution_Sema
- CNF
- CNF_Formulas
- CNF_Sema
- CNF_Formulas_Sema
- CNF_To_Formula
- Tseytin
- Tseytin_Sema
- MiniFormulas
- MiniFormulas_Sema
- Consistency
- Compactness
- Compactness_Consistency
- Sema_Craig
- SC
- SC_Cut
- SC_Depth
- SC_Gentzen
- SC_Sema
- SC_Depth_Limit
- SC_Compl_Consistency
- ND
- ND_Sound
- ND_Compl_Truthtable
- ND_Compl_Truthtable_Compact
- HC
- HC_Compl_Consistency
- Resolution
- Resolution_Sound
- Resolution_Compl
- Resolution_Compl_Consistency
- HCSC
- SCND
- NDHC
- HCSCND
- LSC
- LSC_Resolution
- ND_FiniteAssms
- ND_Compl_SC
- Resolution_Compl_SC_Small
- Resolution_Compl_SC_Full
- MiniSC
- MiniSC_HC
- MiniSC_Craig