Eugene W. Stark 📧

January 6, 2020

This is a development version of this entry. It might change over time and is not stable. Please refer to release versions for citations.


Taking as a starting point the author's previous work on developing aspects of category theory in Isabelle/HOL, this article gives a compatible formalization of the notion of "bicategory" and develops a framework within which formal proofs of facts about bicategories can be given. The framework includes a number of basic results, including the Coherence Theorem, the Strictness Theorem, pseudofunctors and biequivalence, and facts about internal equivalences and adjunctions in a bicategory. As a driving application and demonstration of the utility of the framework, it is used to give a formal proof of a theorem, due to Carboni, Kasangian, and Street, that characterizes up to biequivalence the bicategories of spans in a category with pullbacks. The formalization effort necessitated the filling-in of many details that were not evident from the brief presentation in the original paper, as well as identifying a few minor corrections along the way.

Revisions made subsequent to the first version of this article added additional material on pseudofunctors, pseudonatural transformations, modifications, and equivalence of bicategories; the main thrust being to give a proof that a pseudofunctor is a biequivalence if and only if it can be extended to an equivalence of bicategories.

BSD License


Theories of Bicategory

Depends On