Spivey's Generalized Recurrence for Bell Numbers

Lukas Bulwahn 📧

May 4, 2016

This is a development version of this entry. It might change over time and is not stable. Please refer to release versions for citations.

Abstract

This entry defines the Bell numbers as the cardinality of set partitions for a carrier set of given size, and derives Spivey's generalized recurrence relation for Bell numbers following his elegant and intuitive combinatorial proof.

As the set construction for the combinatorial proof requires construction of three intermediate structures, the main difficulty of the formalization is handling the overall combinatorial argument in a structured way. The introduced proof structure allows us to compose the combinatorial argument from its subparts, and supports to keep track how the detailed proof steps are related to the overall argument. To obtain this structure, this entry uses set monad notation for the set construction's definition, introduces suitable predicates and rules, and follows a repeating structure in its Isar proof.

License

BSD License

Topics

Session Bell_Numbers_Spivey