File ‹Tools/Qelim/cooper.ML›
signature COOPER =
sig
type entry
val get: Proof.context -> entry
val del: term list -> attribute
val add: term list -> attribute
exception COOPER of string
val conv: Proof.context -> conv
val tac: bool -> thm list -> thm list -> Proof.context -> int -> tactic
end;
structure Cooper: COOPER =
struct
type entry = simpset * term list;
val allowed_consts =
[\<^term>‹(+) :: int => _›, \<^term>‹(+) :: nat => _›,
\<^term>‹(-) :: int => _›, \<^term>‹(-) :: nat => _›,
\<^term>‹(*) :: int => _›, \<^term>‹(*) :: nat => _›,
\<^term>‹(div) :: int => _›, \<^term>‹(div) :: nat => _›,
\<^term>‹(mod) :: int => _›, \<^term>‹(mod) :: nat => _›,
\<^term>‹HOL.conj›, \<^term>‹HOL.disj›, \<^term>‹HOL.implies›,
\<^term>‹(=) :: int => _›, \<^term>‹(=) :: nat => _›, \<^term>‹(=) :: bool => _›,
\<^term>‹(<) :: int => _›, \<^term>‹(<) :: nat => _›,
\<^term>‹(<=) :: int => _›, \<^term>‹(<=) :: nat => _›,
\<^term>‹(dvd) :: int => _›, \<^term>‹(dvd) :: nat => _›,
\<^term>‹abs :: int => _›,
\<^term>‹max :: int => _›, \<^term>‹max :: nat => _›,
\<^term>‹min :: int => _›, \<^term>‹min :: nat => _›,
\<^term>‹uminus :: int => _›,
\<^term>‹Not›, \<^term>‹Suc›,
\<^term>‹Ex :: (int => _) => _›, \<^term>‹Ex :: (nat => _) => _›,
\<^term>‹All :: (int => _) => _›, \<^term>‹All :: (nat => _) => _›,
\<^term>‹nat›, \<^term>‹int›,
\<^term>‹Num.One›, \<^term>‹Num.Bit0›, \<^term>‹Num.Bit1›,
\<^term>‹Num.numeral :: num => int›, \<^term>‹Num.numeral :: num => nat›,
\<^term>‹0::int›, \<^term>‹1::int›, \<^term>‹0::nat›, \<^term>‹1::nat›,
\<^term>‹True›, \<^term>‹False›];
structure Data = Generic_Data
(
type T = simpset * term list;
val empty = (HOL_ss, allowed_consts);
fun merge ((ss1, ts1), (ss2, ts2)) =
(merge_ss (ss1, ss2), Library.merge (op aconv) (ts1, ts2));
);
val get = Data.get o Context.Proof;
fun add ts = Thm.declaration_attribute (fn th => fn context =>
context |> Data.map (fn (ss, ts') =>
(simpset_map (Context.proof_of context) (fn ctxt => ctxt addsimps [th]) ss,
merge (op aconv) (ts', ts))))
fun del ts = Thm.declaration_attribute (fn th => fn context =>
context |> Data.map (fn (ss, ts') =>
(simpset_map (Context.proof_of context) (fn ctxt => ctxt delsimps [th]) ss,
subtract (op aconv) ts' ts)))
fun simp_thms_conv ctxt =
Simplifier.rewrite (put_simpset HOL_basic_ss ctxt addsimps @{thms simp_thms});
val FWD = Drule.implies_elim_list;
val true_tm = \<^cterm>‹True›;
val false_tm = \<^cterm>‹False›;
val presburger_ss = simpset_of (\<^context> addsimps @{thms zdvd1_eq});
val lin_ss =
simpset_of (put_simpset presburger_ss \<^context>
addsimps (@{thms dvd_eq_mod_eq_0 add.assoc [where 'a = int] add.commute [where 'a = int] add.left_commute [where 'a = int]
mult.assoc [where 'a = int] mult.commute [where 'a = int] mult.left_commute [where 'a = int]
}));
val iT = HOLogic.intT
val bT = HOLogic.boolT;
val dest_number = HOLogic.dest_number #> snd;
val perhaps_number = try dest_number;
val is_number = can dest_number;
val [miconj, midisj, mieq, mineq, milt, mile, migt, mige, midvd, mindvd, miP] =
map (Thm.instantiate' [SOME \<^ctyp>‹int›] []) @{thms "minf"};
val [infDconj, infDdisj, infDdvd,infDndvd,infDP] =
map (Thm.instantiate' [SOME \<^ctyp>‹int›] []) @{thms "inf_period"};
val [piconj, pidisj, pieq,pineq,pilt,pile,pigt,pige,pidvd,pindvd,piP] =
map (Thm.instantiate' [SOME \<^ctyp>‹int›] []) @{thms "pinf"};
val [miP, piP] = map (Thm.instantiate' [SOME \<^ctyp>‹bool›] []) [miP, piP];
val infDP = Thm.instantiate' (map SOME [\<^ctyp>‹int›, \<^ctyp>‹bool›]) [] infDP;
val [[asetconj, asetdisj, aseteq, asetneq, asetlt, asetle,
asetgt, asetge, asetdvd, asetndvd,asetP],
[bsetconj, bsetdisj, bseteq, bsetneq, bsetlt, bsetle,
bsetgt, bsetge, bsetdvd, bsetndvd,bsetP]] = [@{thms "aset"}, @{thms "bset"}];
val [cpmi, cppi] = [@{thm "cpmi"}, @{thm "cppi"}];
val unity_coeff_ex = Thm.instantiate' [SOME \<^ctyp>‹int›] [] @{thm "unity_coeff_ex"};
val [zdvd_mono,simp_from_to,all_not_ex] =
[@{thm "zdvd_mono"}, @{thm "simp_from_to"}, @{thm "all_not_ex"}];
val [dvd_uminus, dvd_uminus'] = @{thms "uminus_dvd_conv"};
val eval_ss =
simpset_of (put_simpset presburger_ss \<^context>
addsimps [simp_from_to] delsimps [insert_iff, bex_triv]);
fun eval_conv ctxt = Simplifier.rewrite (put_simpset eval_ss ctxt);
datatype fm = And of cterm*cterm| Or of cterm*cterm| Eq of cterm | NEq of cterm
| Lt of cterm | Le of cterm | Gt of cterm | Ge of cterm
| Dvd of cterm*cterm | NDvd of cterm*cterm | Nox
fun whatis x ct =
( case Thm.term_of ct of
Const(\<^const_name>‹HOL.conj›,_)$_$_ => And (Thm.dest_binop ct)
| Const (\<^const_name>‹HOL.disj›,_)$_$_ => Or (Thm.dest_binop ct)
| Const (\<^const_name>‹HOL.eq›,_)$y$_ => if Thm.term_of x aconv y then Eq (Thm.dest_arg ct) else Nox
| Const (\<^const_name>‹Not›,_) $ (Const (\<^const_name>‹HOL.eq›,_)$y$_) =>
if Thm.term_of x aconv y then NEq (funpow 2 Thm.dest_arg ct) else Nox
| Const (\<^const_name>‹Orderings.less›, _) $ y$ z =>
if Thm.term_of x aconv y then Lt (Thm.dest_arg ct)
else if Thm.term_of x aconv z then Gt (Thm.dest_arg1 ct) else Nox
| Const (\<^const_name>‹Orderings.less_eq›, _) $ y $ z =>
if Thm.term_of x aconv y then Le (Thm.dest_arg ct)
else if Thm.term_of x aconv z then Ge (Thm.dest_arg1 ct) else Nox
| Const (\<^const_name>‹Rings.dvd›,_)$_$(Const(\<^const_name>‹Groups.plus›,_)$y$_) =>
if Thm.term_of x aconv y then Dvd (Thm.dest_binop ct ||> Thm.dest_arg) else Nox
| Const (\<^const_name>‹Not›,_) $ (Const (\<^const_name>‹Rings.dvd›,_)$_$(Const(\<^const_name>‹Groups.plus›,_)$y$_)) =>
if Thm.term_of x aconv y then
NDvd (Thm.dest_binop (Thm.dest_arg ct) ||> Thm.dest_arg) else Nox
| _ => Nox)
handle CTERM _ => Nox;
fun get_pmi_term t =
let val (x,eq) =
(Thm.dest_abs_global o Thm.dest_arg o snd o Thm.dest_abs_global o Thm.dest_arg)
(Thm.dest_arg t)
in (Thm.lambda x o Thm.dest_arg o Thm.dest_arg) eq end;
val get_pmi = get_pmi_term o Thm.cprop_of;
val p_v' = (("P'", 0), \<^typ>‹int ⇒ bool›);
val q_v' = (("Q'", 0), \<^typ>‹int ⇒ bool›);
val p_v = (("P", 0), \<^typ>‹int ⇒ bool›);
val q_v = (("Q", 0), \<^typ>‹int ⇒ bool›);
fun myfwd (th1, th2, th3) p q
[(th_1,th_2,th_3), (th_1',th_2',th_3')] =
let
val (mp', mq') = (get_pmi th_1, get_pmi th_1')
val mi_th =
FWD (Drule.instantiate_normalize
(TVars.empty, Vars.make [(p_v,p),(q_v,q), (p_v',mp'),(q_v',mq')]) th1) [th_1, th_1']
val infD_th =
FWD (Drule.instantiate_normalize (TVars.empty, Vars.make [(p_v,mp'), (q_v, mq')]) th3) [th_3,th_3']
val set_th =
FWD (Drule.instantiate_normalize (TVars.empty, Vars.make [(p_v,p), (q_v,q)]) th2) [th_2, th_2']
in (mi_th, set_th, infD_th)
end;
val inst' = fn cts => Thm.instantiate' [] (map SOME cts);
val infDTrue = Thm.instantiate' [] [SOME true_tm] infDP;
val infDFalse = Thm.instantiate' [] [SOME false_tm] infDP;
val cadd = \<^cterm>‹(+) :: int => _›
val cmulC = \<^cterm>‹(*) :: int => _›
val cminus = \<^cterm>‹(-) :: int => _›
val cone = \<^cterm>‹1 :: int›
val [addC, mulC, subC] = map Thm.term_of [cadd, cmulC, cminus]
val [zero, one] = [\<^term>‹0 :: int›, \<^term>‹1 :: int›];
fun numeral1 f n = HOLogic.mk_number iT (f (dest_number n));
fun numeral2 f m n = HOLogic.mk_number iT (f (dest_number m) (dest_number n));
val [minus1,plus1] =
map (fn c => fn t => Thm.apply (Thm.apply c t) cone) [cminus,cadd];
fun decomp_pinf x dvd inS [aseteq, asetneq, asetlt, asetle,
asetgt, asetge,asetdvd,asetndvd,asetP,
infDdvd, infDndvd, asetconj,
asetdisj, infDconj, infDdisj] cp =
case (whatis x cp) of
And (p,q) => ([p,q], myfwd (piconj, asetconj, infDconj) (Thm.lambda x p) (Thm.lambda x q))
| Or (p,q) => ([p,q], myfwd (pidisj, asetdisj, infDdisj) (Thm.lambda x p) (Thm.lambda x q))
| Eq t => ([], K (inst' [t] pieq, FWD (inst' [t] aseteq) [inS (plus1 t)], infDFalse))
| NEq t => ([], K (inst' [t] pineq, FWD (inst' [t] asetneq) [inS t], infDTrue))
| Lt t => ([], K (inst' [t] pilt, FWD (inst' [t] asetlt) [inS t], infDFalse))
| Le t => ([], K (inst' [t] pile, FWD (inst' [t] asetle) [inS (plus1 t)], infDFalse))
| Gt t => ([], K (inst' [t] pigt, (inst' [t] asetgt), infDTrue))
| Ge t => ([], K (inst' [t] pige, (inst' [t] asetge), infDTrue))
| Dvd (d,s) =>
([],let val dd = dvd d
in K (inst' [d,s] pidvd, FWD (inst' [d,s] asetdvd) [dd],FWD (inst' [d,s] infDdvd) [dd]) end)
| NDvd(d,s) => ([],let val dd = dvd d
in K (inst' [d,s] pindvd, FWD (inst' [d,s] asetndvd) [dd], FWD (inst' [d,s] infDndvd) [dd]) end)
| _ => ([], K (inst' [cp] piP, inst' [cp] asetP, inst' [cp] infDP));
fun decomp_minf x dvd inS [bseteq,bsetneq,bsetlt, bsetle, bsetgt,
bsetge,bsetdvd,bsetndvd,bsetP,
infDdvd, infDndvd, bsetconj,
bsetdisj, infDconj, infDdisj] cp =
case (whatis x cp) of
And (p,q) => ([p,q], myfwd (miconj, bsetconj, infDconj) (Thm.lambda x p) (Thm.lambda x q))
| Or (p,q) => ([p,q], myfwd (midisj, bsetdisj, infDdisj) (Thm.lambda x p) (Thm.lambda x q))
| Eq t => ([], K (inst' [t] mieq, FWD (inst' [t] bseteq) [inS (minus1 t)], infDFalse))
| NEq t => ([], K (inst' [t] mineq, FWD (inst' [t] bsetneq) [inS t], infDTrue))
| Lt t => ([], K (inst' [t] milt, (inst' [t] bsetlt), infDTrue))
| Le t => ([], K (inst' [t] mile, (inst' [t] bsetle), infDTrue))
| Gt t => ([], K (inst' [t] migt, FWD (inst' [t] bsetgt) [inS t], infDFalse))
| Ge t => ([], K (inst' [t] mige,FWD (inst' [t] bsetge) [inS (minus1 t)], infDFalse))
| Dvd (d,s) => ([],let val dd = dvd d
in K (inst' [d,s] midvd, FWD (inst' [d,s] bsetdvd) [dd] , FWD (inst' [d,s] infDdvd) [dd]) end)
| NDvd (d,s) => ([],let val dd = dvd d
in K (inst' [d,s] mindvd, FWD (inst' [d,s] bsetndvd) [dd], FWD (inst' [d,s] infDndvd) [dd]) end)
| _ => ([], K (inst' [cp] miP, inst' [cp] bsetP, inst' [cp] infDP))
fun provelin ctxt t = Goal.prove ctxt [] [] t
(fn _ => EVERY [simp_tac (put_simpset lin_ss ctxt) 1, TRY (Lin_Arith.tac ctxt 1)]);
fun linear_cmul 0 tm = zero
| linear_cmul n tm = case tm of
Const (\<^const_name>‹Groups.plus›, _) $ a $ b => addC $ linear_cmul n a $ linear_cmul n b
| Const (\<^const_name>‹Groups.times›, _) $ c $ x => mulC $ numeral1 (fn m => n * m) c $ x
| Const (\<^const_name>‹Groups.minus›, _) $ a $ b => subC $ linear_cmul n a $ linear_cmul n b
| (m as Const (\<^const_name>‹Groups.uminus›, _)) $ a => m $ linear_cmul n a
| _ => numeral1 (fn m => n * m) tm;
fun earlier [] x y = false
| earlier (h::t) x y =
if h aconv y then false else if h aconv x then true else earlier t x y;
fun linear_add vars tm1 tm2 = case (tm1, tm2) of
(Const (\<^const_name>‹Groups.plus›, _) $ (Const (\<^const_name>‹Groups.times›, _) $ c1 $ x1) $ r1,
Const (\<^const_name>‹Groups.plus›, _) $ (Const (\<^const_name>‹Groups.times›, _) $ c2 $ x2) $ r2) =>
if x1 = x2 then
let val c = numeral2 Integer.add c1 c2
in if c = zero then linear_add vars r1 r2
else addC$(mulC$c$x1)$(linear_add vars r1 r2)
end
else if earlier vars x1 x2 then addC $ (mulC $ c1 $ x1) $ linear_add vars r1 tm2
else addC $ (mulC $ c2 $ x2) $ linear_add vars tm1 r2
| (Const (\<^const_name>‹Groups.plus›, _) $ (Const (\<^const_name>‹Groups.times›, _) $ c1 $ x1) $ r1, _) =>
addC $ (mulC $ c1 $ x1) $ linear_add vars r1 tm2
| (_, Const (\<^const_name>‹Groups.plus›, _) $ (Const (\<^const_name>‹Groups.times›, _) $ c2 $ x2) $ r2) =>
addC $ (mulC $ c2 $ x2) $ linear_add vars tm1 r2
| (_, _) => numeral2 Integer.add tm1 tm2;
fun linear_neg tm = linear_cmul ~1 tm;
fun linear_sub vars tm1 tm2 = linear_add vars tm1 (linear_neg tm2);
exception COOPER of string;
fun lint vars tm = if is_number tm then tm else case tm of
Const (\<^const_name>‹Groups.uminus›, _) $ t => linear_neg (lint vars t)
| Const (\<^const_name>‹Groups.plus›, _) $ s $ t => linear_add vars (lint vars s) (lint vars t)
| Const (\<^const_name>‹Groups.minus›, _) $ s $ t => linear_sub vars (lint vars s) (lint vars t)
| Const (\<^const_name>‹Groups.times›, _) $ s $ t =>
let val s' = lint vars s
val t' = lint vars t
in case perhaps_number s' of SOME n => linear_cmul n t'
| NONE => (case perhaps_number t' of SOME n => linear_cmul n s'
| NONE => raise COOPER "lint: not linear")
end
| _ => addC $ (mulC $ one $ tm) $ zero;
fun lin (vs as _::_) (Const (\<^const_name>‹Not›, _) $ (Const (\<^const_name>‹Orderings.less›, T) $ s $ t)) =
lin vs (Const (\<^const_name>‹Orderings.less_eq›, T) $ t $ s)
| lin (vs as _::_) (Const (\<^const_name>‹Not›,_) $ (Const(\<^const_name>‹Orderings.less_eq›, T) $ s $ t)) =
lin vs (Const (\<^const_name>‹Orderings.less›, T) $ t $ s)
| lin vs (Const (\<^const_name>‹Not›,T)$t) = Const (\<^const_name>‹Not›,T)$ (lin vs t)
| lin (vs as _::_) (Const(\<^const_name>‹Rings.dvd›,_)$d$t) =
HOLogic.mk_binrel \<^const_name>‹Rings.dvd› (numeral1 abs d, lint vs t)
| lin (vs as x::_) ((b as Const(\<^const_name>‹HOL.eq›,_))$s$t) =
(case lint vs (subC$t$s) of
(t as _$(m$c$y)$r) =>
if x <> y then b$zero$t
else if dest_number c < 0 then b$(m$(numeral1 ~ c)$y)$r
else b$(m$c$y)$(linear_neg r)
| t => b$zero$t)
| lin (vs as x::_) (b$s$t) =
(case lint vs (subC$t$s) of
(t as _$(m$c$y)$r) =>
if x <> y then b$zero$t
else if dest_number c < 0 then b$(m$(numeral1 ~ c)$y)$r
else b$(linear_neg r)$(m$c$y)
| t => b$zero$t)
| lin vs fm = fm;
fun lint_conv ctxt vs ct =
let val t = Thm.term_of ct
in (provelin ctxt ((HOLogic.eq_const iT)$t$(lint vs t) |> HOLogic.mk_Trueprop))
RS eq_reflection
end;
fun is_intrel_type T = T = \<^typ>‹int => int => bool›;
fun is_intrel (b$_$_) = is_intrel_type (fastype_of b)
| is_intrel (\<^term>‹Not›$(b$_$_)) = is_intrel_type (fastype_of b)
| is_intrel _ = false;
fun linearize_conv ctxt vs ct = case Thm.term_of ct of
Const(\<^const_name>‹Rings.dvd›,_)$_$_ =>
let
val th = Conv.binop_conv (lint_conv ctxt vs) ct
val (d',t') = Thm.dest_binop (Thm.rhs_of th)
val (dt',tt') = (Thm.term_of d', Thm.term_of t')
in if is_number dt' andalso is_number tt'
then Conv.fconv_rule (Conv.arg_conv (Simplifier.rewrite (put_simpset presburger_ss ctxt))) th
else
let
val dth =
case perhaps_number (Thm.term_of d') of
SOME d => if d < 0 then
(Conv.fconv_rule (Conv.arg_conv (Conv.arg1_conv (lint_conv ctxt vs)))
(Thm.transitive th (inst' [d',t'] dvd_uminus))
handle TERM _ => th)
else th
| NONE => raise COOPER "linearize_conv: not linear"
val d'' = Thm.rhs_of dth |> Thm.dest_arg1
in
case tt' of
Const(\<^const_name>‹Groups.plus›,_)$(Const(\<^const_name>‹Groups.times›,_)$c$_)$_ =>
let val x = dest_number c
in if x < 0 then Conv.fconv_rule (Conv.arg_conv (Conv.arg_conv (lint_conv ctxt vs)))
(Thm.transitive dth (inst' [d'',t'] dvd_uminus'))
else dth end
| _ => dth
end
end
| Const (\<^const_name>‹Not›,_)$(Const(\<^const_name>‹Rings.dvd›,_)$_$_) => Conv.arg_conv (linearize_conv ctxt vs) ct
| t => if is_intrel t
then (provelin ctxt ((HOLogic.eq_const bT)$t$(lin vs t) |> HOLogic.mk_Trueprop))
RS eq_reflection
else Thm.reflexive ct;
val dvdc = \<^cterm>‹(dvd) :: int => _›;
fun unify ctxt q =
let
val (e,(cx,p)) = q |> Thm.dest_comb ||> Thm.dest_abs_global
val x = Thm.term_of cx
val ins = insert (op = : int * int -> bool)
fun h (acc,dacc) t =
case Thm.term_of t of
Const(s,_)$(Const(\<^const_name>‹Groups.times›,_)$c$y)$ _ =>
if x aconv y andalso member (op =)
[\<^const_name>‹HOL.eq›, \<^const_name>‹Orderings.less›, \<^const_name>‹Orderings.less_eq›] s
then (ins (dest_number c) acc,dacc) else (acc,dacc)
| Const(s,_)$_$(Const(\<^const_name>‹Groups.times›,_)$c$y) =>
if x aconv y andalso member (op =)
[\<^const_name>‹Orderings.less›, \<^const_name>‹Orderings.less_eq›] s
then (ins (dest_number c) acc, dacc) else (acc,dacc)
| Const(\<^const_name>‹Rings.dvd›,_)$_$(Const(\<^const_name>‹Groups.plus›,_)$(Const(\<^const_name>‹Groups.times›,_)$c$y)$_) =>
if x aconv y then (acc,ins (dest_number c) dacc) else (acc,dacc)
| Const(\<^const_name>‹HOL.conj›,_)$_$_ => h (h (acc,dacc) (Thm.dest_arg1 t)) (Thm.dest_arg t)
| Const(\<^const_name>‹HOL.disj›,_)$_$_ => h (h (acc,dacc) (Thm.dest_arg1 t)) (Thm.dest_arg t)
| Const (\<^const_name>‹Not›,_)$_ => h (acc,dacc) (Thm.dest_arg t)
| _ => (acc, dacc)
val (cs,ds) = h ([],[]) p
val l = Integer.lcms (union (op =) cs ds)
fun cv k ct =
let val (tm as b$s$t) = Thm.term_of ct
in ((HOLogic.eq_const bT)$tm$(b$(linear_cmul k s)$(linear_cmul k t))
|> HOLogic.mk_Trueprop |> provelin ctxt) RS eq_reflection end
fun nzprop x =
let
val th =
Simplifier.rewrite (put_simpset lin_ss ctxt)
(Thm.apply \<^cterm>‹Trueprop› (Thm.apply \<^cterm>‹Not›
(Thm.apply (Thm.apply \<^cterm>‹(=) :: int => _› (Numeral.mk_cnumber \<^ctyp>‹int› x))
\<^cterm>‹0::int›)))
in Thm.equal_elim (Thm.symmetric th) TrueI end;
val notz =
let val tab = fold Inttab.update
(ds ~~ (map (fn x => nzprop (l div x)) ds)) Inttab.empty
in
fn ct => the (Inttab.lookup tab (ct |> Thm.term_of |> dest_number))
handle Option.Option =>
(writeln ("noz: Theorems-Table contains no entry for " ^
Syntax.string_of_term ctxt (Thm.term_of ct)); raise Option.Option)
end
fun unit_conv t =
case Thm.term_of t of
Const(\<^const_name>‹HOL.conj›,_)$_$_ => Conv.binop_conv unit_conv t
| Const(\<^const_name>‹HOL.disj›,_)$_$_ => Conv.binop_conv unit_conv t
| Const (\<^const_name>‹Not›,_)$_ => Conv.arg_conv unit_conv t
| Const(s,_)$(Const(\<^const_name>‹Groups.times›,_)$c$y)$ _ =>
if x=y andalso member (op =)
[\<^const_name>‹HOL.eq›, \<^const_name>‹Orderings.less›, \<^const_name>‹Orderings.less_eq›] s
then cv (l div dest_number c) t else Thm.reflexive t
| Const(s,_)$_$(Const(\<^const_name>‹Groups.times›,_)$c$y) =>
if x=y andalso member (op =)
[\<^const_name>‹Orderings.less›, \<^const_name>‹Orderings.less_eq›] s
then cv (l div dest_number c) t else Thm.reflexive t
| Const(\<^const_name>‹Rings.dvd›,_)$d$(r as (Const(\<^const_name>‹Groups.plus›,_)$(Const(\<^const_name>‹Groups.times›,_)$c$y)$_)) =>
if x=y then
let
val k = l div dest_number c
val kt = HOLogic.mk_number iT k
val th1 = inst' [Thm.dest_arg1 t, Thm.dest_arg t]
((Thm.dest_arg t |> funpow 2 Thm.dest_arg1 |> notz) RS zdvd_mono)
val (d',t') = (mulC$kt$d, mulC$kt$r)
val thc = (provelin ctxt ((HOLogic.eq_const iT)$d'$(lint [] d') |> HOLogic.mk_Trueprop))
RS eq_reflection
val tht = (provelin ctxt ((HOLogic.eq_const iT)$t'$(linear_cmul k r) |> HOLogic.mk_Trueprop))
RS eq_reflection
in Thm.transitive th1 (Thm.combination (Drule.arg_cong_rule dvdc thc) tht) end
else Thm.reflexive t
| _ => Thm.reflexive t
val uth = unit_conv p
val clt = Numeral.mk_cnumber \<^ctyp>‹int› l
val ltx = Thm.apply (Thm.apply cmulC clt) cx
val th = Drule.arg_cong_rule e (Thm.abstract_rule (fst (dest_Free x )) cx uth)
val th' = inst' [Thm.lambda ltx (Thm.rhs_of uth), clt] unity_coeff_ex
val thf = Thm.transitive th
(Thm.transitive (Thm.symmetric (Thm.beta_conversion true (Thm.cprop_of th' |> Thm.dest_arg1))) th')
val (lth,rth) = Thm.dest_comb (Thm.cprop_of thf) |>> Thm.dest_arg |>> Thm.beta_conversion true
||> Thm.beta_conversion true |>> Thm.symmetric
in Thm.transitive (Thm.transitive lth thf) rth end;
val emptyIS = \<^cterm>‹{}::int set›;
val insert_tm = \<^cterm>‹insert :: int => _›;
fun mkISet cts = fold_rev (Thm.apply insert_tm #> Thm.apply) cts emptyIS;
val eqelem_imp_imp = @{thm eqelem_imp_iff} RS iffD1;
val [A_v,B_v] =
map (fn th => Thm.cprop_of th |> funpow 2 Thm.dest_arg
|> Thm.dest_abs_global |> snd |> Thm.dest_arg1 |> Thm.dest_arg
|> Thm.dest_abs_global |> snd |> Thm.dest_fun |> Thm.dest_arg
|> Thm.term_of |> dest_Var) [asetP, bsetP];
val D_v = (("D", 0), \<^typ>‹int›);
fun cooperex_conv ctxt vs q =
let
val uth = unify ctxt q
val (x,p) = Thm.dest_abs_global (Thm.dest_arg (Thm.rhs_of uth))
val ins = insert (op aconvc)
fun h t (bacc,aacc,dacc) =
case (whatis x t) of
And (p,q) => h q (h p (bacc,aacc,dacc))
| Or (p,q) => h q (h p (bacc,aacc,dacc))
| Eq t => (ins (minus1 t) bacc,
ins (plus1 t) aacc,dacc)
| NEq t => (ins t bacc,
ins t aacc, dacc)
| Lt t => (bacc, ins t aacc, dacc)
| Le t => (bacc, ins (plus1 t) aacc,dacc)
| Gt t => (ins t bacc, aacc,dacc)
| Ge t => (ins (minus1 t) bacc, aacc,dacc)
| Dvd (d,_) => (bacc,aacc,insert (op =) (Thm.term_of d |> dest_number) dacc)
| NDvd (d,_) => (bacc,aacc,insert (op =) (Thm.term_of d|> dest_number) dacc)
| _ => (bacc, aacc, dacc)
val (b0,a0,ds) = h p ([],[],[])
val d = Integer.lcms ds
val cd = Numeral.mk_cnumber \<^ctyp>‹int› d
fun divprop x =
let
val th =
Simplifier.rewrite (put_simpset lin_ss ctxt)
(Thm.apply \<^cterm>‹Trueprop›
(Thm.apply (Thm.apply dvdc (Numeral.mk_cnumber \<^ctyp>‹int› x)) cd))
in Thm.equal_elim (Thm.symmetric th) TrueI end;
val dvd =
let val tab = fold Inttab.update (ds ~~ (map divprop ds)) Inttab.empty in
fn ct => the (Inttab.lookup tab (Thm.term_of ct |> dest_number))
handle Option.Option =>
(writeln ("dvd: Theorems-Table contains no entry for" ^
Syntax.string_of_term ctxt (Thm.term_of ct)); raise Option.Option)
end
val dp =
let val th = Simplifier.rewrite (put_simpset lin_ss ctxt)
(Thm.apply \<^cterm>‹Trueprop›
(Thm.apply (Thm.apply \<^cterm>‹(<) :: int => _› \<^cterm>‹0::int›) cd))
in Thm.equal_elim (Thm.symmetric th) TrueI end;
local
val insI1 = Thm.instantiate' [SOME \<^ctyp>‹int›] [] @{thm "insertI1"}
val insI2 = Thm.instantiate' [SOME \<^ctyp>‹int›] [] @{thm "insertI2"}
in
fun provein x S =
case Thm.term_of S of
Const(\<^const_name>‹Orderings.bot›, _) => error "Unexpected error in Cooper, please email Amine Chaieb"
| Const(\<^const_name>‹insert›, _) $ y $ _ =>
let val (cy,S') = Thm.dest_binop S
in if Thm.term_of x aconv y then Thm.instantiate' [] [SOME x, SOME S'] insI1
else Thm.implies_elim (Thm.instantiate' [] [SOME x, SOME S', SOME cy] insI2)
(provein x S')
end
end
val al = map (lint vs o Thm.term_of) a0
val bl = map (lint vs o Thm.term_of) b0
val (sl,s0,f,abths,cpth) =
if length (distinct (op aconv) bl) <= length (distinct (op aconv) al)
then
(bl,b0,decomp_minf,
fn B => (map (fn th =>
Thm.implies_elim (Thm.instantiate (TVars.empty, Vars.make2 (B_v,B) (D_v,cd)) th) dp)
[bseteq,bsetneq,bsetlt, bsetle, bsetgt,bsetge])@
(map (Thm.instantiate (TVars.empty, Vars.make2 (B_v,B) (D_v,cd)))
[bsetdvd,bsetndvd,bsetP,infDdvd, infDndvd,bsetconj,
bsetdisj,infDconj, infDdisj]),
cpmi)
else (al,a0,decomp_pinf,fn A =>
(map (fn th =>
Thm.implies_elim (Thm.instantiate (TVars.empty, Vars.make2 (A_v,A) (D_v,cd)) th) dp)
[aseteq,asetneq,asetlt, asetle, asetgt,asetge])@
(map (Thm.instantiate (TVars.empty, Vars.make2 (A_v,A) (D_v,cd)))
[asetdvd,asetndvd, asetP, infDdvd, infDndvd,asetconj,
asetdisj,infDconj, infDdisj]),cppi)
val cpth =
let
val sths = map (fn (tl,t0) =>
if tl = Thm.term_of t0
then Thm.instantiate' [SOME \<^ctyp>‹int›] [SOME t0] refl
else provelin ctxt ((HOLogic.eq_const iT)$tl$(Thm.term_of t0)
|> HOLogic.mk_Trueprop))
(sl ~~ s0)
val csl = distinct (op aconvc) (map (Thm.cprop_of #> Thm.dest_arg #> Thm.dest_arg1) sths)
val S = mkISet csl
val inStab = fold (fn ct => fn tab => Termtab.update (Thm.term_of ct, provein ct S) tab)
csl Termtab.empty
val eqelem_th = Thm.instantiate' [SOME \<^ctyp>‹int›] [NONE,NONE, SOME S] eqelem_imp_imp
val inS =
let
val tab = fold Termtab.update
(map (fn eq =>
let val (s,t) = Thm.cprop_of eq |> Thm.dest_arg |> Thm.dest_binop
val th =
if s aconvc t
then the (Termtab.lookup inStab (Thm.term_of s))
else FWD (Thm.instantiate' [] [SOME s, SOME t] eqelem_th)
[eq, the (Termtab.lookup inStab (Thm.term_of s))]
in (Thm.term_of t, th) end) sths) Termtab.empty
in
fn ct => the (Termtab.lookup tab (Thm.term_of ct))
handle Option.Option =>
(writeln ("inS: No theorem for " ^ Syntax.string_of_term ctxt (Thm.term_of ct));
raise Option.Option)
end
val (inf, nb, pd) = divide_and_conquer (f x dvd inS (abths S)) p
in [dp, inf, nb, pd] MRS cpth
end
val cpth' = Thm.transitive uth (cpth RS eq_reflection)
in Thm.transitive cpth' ((simp_thms_conv ctxt then_conv eval_conv ctxt) (Thm.rhs_of cpth'))
end;
fun literals_conv bops uops env cv =
let fun h t =
case Thm.term_of t of
b$_$_ => if member (op aconv) bops b then Conv.binop_conv h t else cv env t
| u$_ => if member (op aconv) uops u then Conv.arg_conv h t else cv env t
| _ => cv env t
in h end;
fun integer_nnf_conv ctxt env =
nnf_conv ctxt then_conv literals_conv [HOLogic.conj, HOLogic.disj] [] env (linearize_conv ctxt);
val conv_ss =
simpset_of (put_simpset HOL_basic_ss \<^context>
addsimps (@{thms simp_thms} @ take 4 @{thms ex_simps} @
[not_all, all_not_ex, @{thm ex_disj_distrib}]));
fun conv ctxt p =
Qelim.gen_qelim_conv ctxt
(Simplifier.rewrite (put_simpset conv_ss ctxt))
(Simplifier.rewrite (put_simpset presburger_ss ctxt))
(Simplifier.rewrite (put_simpset conv_ss ctxt))
(cons o Thm.term_of) (Misc_Legacy.term_frees (Thm.term_of p))
(linearize_conv ctxt) (integer_nnf_conv ctxt)
(cooperex_conv ctxt) p
handle CTERM _ => raise COOPER "bad cterm"
| THM _ => raise COOPER "bad thm"
| TYPE _ => raise COOPER "bad type"
fun add_bools t =
let
val ops = [\<^term>‹(=) :: int => _›, \<^term>‹(<) :: int => _›, \<^term>‹(<=) :: int => _›,
\<^term>‹HOL.conj›, \<^term>‹HOL.disj›, \<^term>‹HOL.implies›, \<^term>‹(=) :: bool => _›,
\<^term>‹Not›, \<^term>‹All :: (int => _) => _›,
\<^term>‹Ex :: (int => _) => _›, \<^term>‹True›, \<^term>‹False›];
val is_op = member (op =) ops;
val skip = not (fastype_of t = HOLogic.boolT)
in case t of
(l as f $ a) $ b => if skip orelse is_op f then add_bools b o add_bools l
else insert (op aconv) t
| f $ a => if skip orelse is_op f then add_bools a o add_bools f
else insert (op aconv) t
| Abs _ => add_bools (snd (Term.dest_abs_global t))
| _ => if skip orelse is_op t then I else insert (op aconv) t
end;
fun descend vs (abs as (_, xT, _)) =
let val ((xn', _), p') = Term.dest_abs_global (Abs abs)
in ((xn', xT) :: vs, p') end;
local structure Proc = Cooper_Procedure in
fun num_of_term vs (Free vT) = Proc.Bound (Proc.nat_of_integer (find_index (fn vT' => vT' = vT) vs))
| num_of_term vs (Term.Bound i) = Proc.Bound (Proc.nat_of_integer i)
| num_of_term vs \<^term>‹0::int› = Proc.C (Proc.Int_of_integer 0)
| num_of_term vs \<^term>‹1::int› = Proc.C (Proc.Int_of_integer 1)
| num_of_term vs (t as Const (\<^const_name>‹numeral›, _) $ _) =
Proc.C (Proc.Int_of_integer (dest_number t))
| num_of_term vs (Const (\<^const_name>‹Groups.uminus›, _) $ t') =
Proc.Neg (num_of_term vs t')
| num_of_term vs (Const (\<^const_name>‹Groups.plus›, _) $ t1 $ t2) =
Proc.Add (num_of_term vs t1, num_of_term vs t2)
| num_of_term vs (Const (\<^const_name>‹Groups.minus›, _) $ t1 $ t2) =
Proc.Sub (num_of_term vs t1, num_of_term vs t2)
| num_of_term vs (Const (\<^const_name>‹Groups.times›, _) $ t1 $ t2) =
(case perhaps_number t1
of SOME n => Proc.Mul (Proc.Int_of_integer n, num_of_term vs t2)
| NONE => (case perhaps_number t2
of SOME n => Proc.Mul (Proc.Int_of_integer n, num_of_term vs t1)
| NONE => raise COOPER "reification: unsupported kind of multiplication"))
| num_of_term _ _ = raise COOPER "reification: bad term";
fun fm_of_term ps vs (Const (\<^const_name>‹True›, _)) = Proc.T
| fm_of_term ps vs (Const (\<^const_name>‹False›, _)) = Proc.F
| fm_of_term ps vs (Const (\<^const_name>‹HOL.conj›, _) $ t1 $ t2) =
Proc.And (fm_of_term ps vs t1, fm_of_term ps vs t2)
| fm_of_term ps vs (Const (\<^const_name>‹HOL.disj›, _) $ t1 $ t2) =
Proc.Or (fm_of_term ps vs t1, fm_of_term ps vs t2)
| fm_of_term ps vs (Const (\<^const_name>‹HOL.implies›, _) $ t1 $ t2) =
Proc.Imp (fm_of_term ps vs t1, fm_of_term ps vs t2)
| fm_of_term ps vs (\<^term>‹(=) :: bool => _ › $ t1 $ t2) =
Proc.Iff (fm_of_term ps vs t1, fm_of_term ps vs t2)
| fm_of_term ps vs (Const (\<^const_name>‹Not›, _) $ t') =
Proc.Not (fm_of_term ps vs t')
| fm_of_term ps vs (Const (\<^const_name>‹Ex›, _) $ Abs abs) =
Proc.E (uncurry (fm_of_term ps) (descend vs abs))
| fm_of_term ps vs (Const (\<^const_name>‹All›, _) $ Abs abs) =
Proc.A (uncurry (fm_of_term ps) (descend vs abs))
| fm_of_term ps vs (\<^term>‹(=) :: int => _› $ t1 $ t2) =
Proc.Eq (Proc.Sub (num_of_term vs t1, num_of_term vs t2))
| fm_of_term ps vs (Const (\<^const_name>‹Orderings.less_eq›, _) $ t1 $ t2) =
Proc.Le (Proc.Sub (num_of_term vs t1, num_of_term vs t2))
| fm_of_term ps vs (Const (\<^const_name>‹Orderings.less›, _) $ t1 $ t2) =
Proc.Lt (Proc.Sub (num_of_term vs t1, num_of_term vs t2))
| fm_of_term ps vs (Const (\<^const_name>‹Rings.dvd›, _) $ t1 $ t2) =
(case perhaps_number t1
of SOME n => Proc.Dvd (Proc.Int_of_integer n, num_of_term vs t2)
| NONE => raise COOPER "reification: unsupported dvd")
| fm_of_term ps vs t = let val n = find_index (fn t' => t aconv t') ps
in if n > 0 then Proc.Closed (Proc.nat_of_integer n) else raise COOPER "reification: unknown term" end;
fun term_of_num vs (Proc.C i) = HOLogic.mk_number HOLogic.intT (Proc.integer_of_int i)
| term_of_num vs (Proc.Bound n) = Free (nth vs (Proc.integer_of_nat n))
| term_of_num vs (Proc.Neg t') =
\<^term>‹uminus :: int => _› $ term_of_num vs t'
| term_of_num vs (Proc.Add (t1, t2)) =
\<^term>‹(+) :: int => _› $ term_of_num vs t1 $ term_of_num vs t2
| term_of_num vs (Proc.Sub (t1, t2)) =
\<^term>‹(-) :: int => _› $ term_of_num vs t1 $ term_of_num vs t2
| term_of_num vs (Proc.Mul (i, t2)) =
\<^term>‹(*) :: int => _› $ HOLogic.mk_number HOLogic.intT (Proc.integer_of_int i) $ term_of_num vs t2
| term_of_num vs (Proc.CN (n, i, t')) =
term_of_num vs (Proc.Add (Proc.Mul (i, Proc.Bound n), t'));
fun term_of_fm ps vs Proc.T = \<^term>‹True›
| term_of_fm ps vs Proc.F = \<^term>‹False›
| term_of_fm ps vs (Proc.And (t1, t2)) = HOLogic.conj $ term_of_fm ps vs t1 $ term_of_fm ps vs t2
| term_of_fm ps vs (Proc.Or (t1, t2)) = HOLogic.disj $ term_of_fm ps vs t1 $ term_of_fm ps vs t2
| term_of_fm ps vs (Proc.Imp (t1, t2)) = HOLogic.imp $ term_of_fm ps vs t1 $ term_of_fm ps vs t2
| term_of_fm ps vs (Proc.Iff (t1, t2)) = \<^term>‹(=) :: bool => _› $ term_of_fm ps vs t1 $ term_of_fm ps vs t2
| term_of_fm ps vs (Proc.Not t') = HOLogic.Not $ term_of_fm ps vs t'
| term_of_fm ps vs (Proc.Eq t') = \<^term>‹(=) :: int => _ › $ term_of_num vs t'$ \<^term>‹0::int›
| term_of_fm ps vs (Proc.NEq t') = term_of_fm ps vs (Proc.Not (Proc.Eq t'))
| term_of_fm ps vs (Proc.Lt t') = \<^term>‹(<) :: int => _ › $ term_of_num vs t' $ \<^term>‹0::int›
| term_of_fm ps vs (Proc.Le t') = \<^term>‹(<=) :: int => _ › $ term_of_num vs t' $ \<^term>‹0::int›
| term_of_fm ps vs (Proc.Gt t') = \<^term>‹(<) :: int => _ › $ \<^term>‹0::int› $ term_of_num vs t'
| term_of_fm ps vs (Proc.Ge t') = \<^term>‹(<=) :: int => _ › $ \<^term>‹0::int› $ term_of_num vs t'
| term_of_fm ps vs (Proc.Dvd (i, t')) = \<^term>‹(dvd) :: int => _ › $
HOLogic.mk_number HOLogic.intT (Proc.integer_of_int i) $ term_of_num vs t'
| term_of_fm ps vs (Proc.NDvd (i, t')) = term_of_fm ps vs (Proc.Not (Proc.Dvd (i, t')))
| term_of_fm ps vs (Proc.Closed n) = nth ps (Proc.integer_of_nat n)
| term_of_fm ps vs (Proc.NClosed n) = term_of_fm ps vs (Proc.Not (Proc.Closed n));
fun procedure t =
let
val vs = Term.add_frees t [];
val ps = add_bools t [];
in (term_of_fm ps vs o Proc.pa o fm_of_term ps vs) t end;
end;
val (_, oracle) =
Theory.setup_result (Thm.add_oracle (\<^binding>‹cooper›,
(fn (ctxt, t) =>
(Thm.cterm_of ctxt o Logic.mk_equals o apply2 HOLogic.mk_Trueprop)
(t, procedure t))));
val comp_ss =
simpset_of (put_simpset HOL_ss \<^context> addsimps @{thms semiring_norm});
fun strip_objimp ct =
(case Thm.term_of ct of
Const (\<^const_name>‹HOL.implies›, _) $ _ $ _ =>
let val (A, B) = Thm.dest_binop ct
in A :: strip_objimp B end
| _ => [ct]);
fun strip_objall ct =
case Thm.term_of ct of
Const (\<^const_name>‹All›, _) $ Abs _ =>
let val (a,(v,t')) = (apsnd Thm.dest_abs_global o Thm.dest_comb) ct
in apfst (cons (a,v)) (strip_objall t')
end
| _ => ([],ct);
local
val all_maxscope_ss =
simpset_of (put_simpset HOL_basic_ss \<^context>
addsimps map (fn th => th RS sym) @{thms "all_simps"})
in
fun thin_prems_tac ctxt P =
simp_tac (put_simpset all_maxscope_ss ctxt) THEN'
CSUBGOAL (fn (p', i) =>
let
val (qvs, p) = strip_objall (Thm.dest_arg p')
val (ps, c) = split_last (strip_objimp p)
val qs = filter P ps
val q = if P c then c else \<^cterm>‹False›
val ng = fold_rev (fn (a,v) => fn t => Thm.apply a (Thm.lambda v t)) qvs
(fold_rev (fn p => fn q => Thm.apply (Thm.apply \<^cterm>‹HOL.implies› p) q) qs q)
val g = Thm.apply (Thm.apply \<^cterm>‹(==>)› (Thm.apply \<^cterm>‹Trueprop› ng)) p'
val ntac = (case qs of [] => q aconvc \<^cterm>‹False›
| _ => false)
in
if ntac then no_tac
else
(case \<^try>‹Goal.prove_internal ctxt [] g (K (blast_tac (put_claset HOL_cs ctxt) 1))› of
NONE => no_tac
| SOME r => resolve_tac ctxt [r] i)
end)
end;
local
fun isnum t = case t of
Const(\<^const_name>‹Groups.zero›,_) => true
| Const(\<^const_name>‹Groups.one›,_) => true
| \<^term>‹Suc›$s => isnum s
| \<^term>‹nat›$s => isnum s
| \<^term>‹int›$s => isnum s
| Const(\<^const_name>‹Groups.uminus›,_)$s => isnum s
| Const(\<^const_name>‹Groups.plus›,_)$l$r => isnum l andalso isnum r
| Const(\<^const_name>‹Groups.times›,_)$l$r => isnum l andalso isnum r
| Const(\<^const_name>‹Groups.minus›,_)$l$r => isnum l andalso isnum r
| Const(\<^const_name>‹Power.power›,_)$l$r => isnum l andalso isnum r
| Const(\<^const_name>‹Rings.modulo›,_)$l$r => isnum l andalso isnum r
| Const(\<^const_name>‹Rings.divide›,_)$l$r => isnum l andalso isnum r
| _ => is_number t orelse can HOLogic.dest_nat t
fun ty cts t =
if not (member (op =) [HOLogic.intT, HOLogic.natT, HOLogic.boolT] (Thm.typ_of_cterm t))
then false
else case Thm.term_of t of
c$l$r => if member (op =) [\<^term>‹(*)::int => _›, \<^term>‹(*)::nat => _›] c
then not (isnum l orelse isnum r)
else not (member (op aconv) cts c)
| c$_ => not (member (op aconv) cts c)
| c => not (member (op aconv) cts c)
val term_constants =
let fun h acc t = case t of
Const _ => insert (op aconv) t acc
| a$b => h (h acc a) b
| Abs (_,_,t) => h acc t
| _ => acc
in h [] end;
in
fun is_relevant ctxt ct =
subset (op aconv) (term_constants (Thm.term_of ct), snd (get ctxt))
andalso
forall (fn Free (_, T) => member (op =) [\<^typ>‹int›, \<^typ>‹nat›] T)
(Misc_Legacy.term_frees (Thm.term_of ct))
andalso
forall (fn Var (_, T) => member (op =) [\<^typ>‹int›, \<^typ>‹nat›] T)
(Misc_Legacy.term_vars (Thm.term_of ct));
fun int_nat_terms ctxt ct =
let
val cts = snd (get ctxt)
fun h acc t = if ty cts t then insert (op aconvc) t acc else
case Thm.term_of t of
_$_ => h (h acc (Thm.dest_arg t)) (Thm.dest_fun t)
| Abs _ => Thm.dest_abs_global t ||> h acc |> uncurry (remove (op aconvc))
| _ => acc
in h [] ct end
end;
fun generalize_tac ctxt f = CSUBGOAL (fn (p, _) => PRIMITIVE (fn st =>
let
fun all x t =
Thm.apply (Thm.cterm_of ctxt (Logic.all_const (Thm.typ_of_cterm x))) (Thm.lambda x t)
val ts = sort Thm.fast_term_ord (f p)
val p' = fold_rev all ts p
in Thm.implies_intr p' (Thm.implies_elim st (fold Thm.forall_elim ts (Thm.assume p'))) end));
local
val ss1 =
simpset_of (put_simpset comp_ss \<^context>
addsimps @{thms simp_thms} @
[@{thm "nat_numeral"} RS sym, @{thm int_dvd_int_iff [symmetric]}, @{thm "of_nat_add"}, @{thm "of_nat_mult"}]
@ map (fn r => r RS sym) [@{thm "int_int_eq"}, @{thm "zle_int"}, @{thm "of_nat_less_iff" [where ?'a = int]}]
|> Splitter.add_split @{thm "zdiff_int_split"})
val ss2 =
simpset_of (put_simpset HOL_basic_ss \<^context>
addsimps [@{thm "nat_0_le"}, @{thm "of_nat_numeral"},
@{thm "all_nat"}, @{thm "ex_nat"}, @{thm "zero_le_numeral"},
@{thm "le_numeral_extra"(3)}, @{thm "of_nat_0"}, @{thm "of_nat_1"}, @{thm "Suc_eq_plus1"}]
|> fold Simplifier.add_cong [@{thm "conj_le_cong"}, @{thm "imp_le_cong"}])
val div_mod_ss =
simpset_of (put_simpset HOL_basic_ss \<^context>
addsimps @{thms simp_thms
mod_eq_0_iff_dvd mod_add_left_eq mod_add_right_eq
mod_add_eq div_add1_eq [symmetric] div_add1_eq [symmetric]
mod_self mod_by_0 div_by_0
div_0 mod_0 div_by_1 mod_by_1
div_by_Suc_0 mod_by_Suc_0 Suc_eq_plus1
ac_simps}
|> Simplifier.add_proc \<^simproc>‹cancel_div_mod_nat›
|> Simplifier.add_proc \<^simproc>‹cancel_div_mod_int›)
val splits_ss =
simpset_of (put_simpset comp_ss \<^context>
addsimps [@{thm minus_div_mult_eq_mod [symmetric]}]
|> fold Splitter.add_split
[@{thm "split_zdiv"}, @{thm "split_zmod"}, @{thm "split_div'"},
@{thm "split_min"}, @{thm "split_max"}, @{thm "abs_split"}])
in
fun nat_to_int_tac ctxt =
simp_tac (put_simpset ss1 ctxt) THEN_ALL_NEW
simp_tac (put_simpset ss2 ctxt) THEN_ALL_NEW
simp_tac (put_simpset comp_ss ctxt);
fun div_mod_tac ctxt = simp_tac (put_simpset div_mod_ss ctxt);
fun splits_tac ctxt = simp_tac (put_simpset splits_ss ctxt);
end;
fun core_tac ctxt = CSUBGOAL (fn (p, i) =>
let
val cpth =
if Config.get ctxt quick_and_dirty
then oracle (ctxt, Envir.beta_norm (Envir.eta_long [] (Thm.term_of (Thm.dest_arg p))))
else Conv.arg_conv (conv ctxt) p
val p' = Thm.rhs_of cpth
val th = Thm.implies_intr p' (Thm.equal_elim (Thm.symmetric cpth) (Thm.assume p'))
in resolve_tac ctxt [th] i end
handle COOPER _ => no_tac);
fun finish_tac ctxt q = SUBGOAL (fn (_, i) =>
(if q then I else TRY) (resolve_tac ctxt [TrueI] i));
fun tac elim add_ths del_ths = Subgoal.FOCUS_PARAMS (fn {context = ctxt, ...} =>
let
val simpset_ctxt =
put_simpset (fst (get ctxt)) ctxt delsimps del_ths addsimps add_ths
in
Method.insert_tac ctxt (rev (Named_Theorems.get ctxt \<^named_theorems>‹arith›))
THEN_ALL_NEW Object_Logic.full_atomize_tac ctxt
THEN_ALL_NEW CONVERSION Thm.eta_long_conversion
THEN_ALL_NEW simp_tac simpset_ctxt
THEN_ALL_NEW (TRY o generalize_tac ctxt (int_nat_terms ctxt))
THEN_ALL_NEW Object_Logic.full_atomize_tac ctxt
THEN_ALL_NEW (thin_prems_tac ctxt (is_relevant ctxt))
THEN_ALL_NEW Object_Logic.full_atomize_tac ctxt
THEN_ALL_NEW div_mod_tac ctxt
THEN_ALL_NEW splits_tac ctxt
THEN_ALL_NEW simp_tac simpset_ctxt
THEN_ALL_NEW CONVERSION Thm.eta_long_conversion
THEN_ALL_NEW nat_to_int_tac ctxt
THEN_ALL_NEW core_tac ctxt
THEN_ALL_NEW finish_tac ctxt elim
end 1);
local
fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K ();
val constsN = "consts";
val any_keyword = keyword constsN
val thms = Scan.repeats (Scan.unless any_keyword Attrib.multi_thm);
val terms = thms >> map (Thm.term_of o Drule.dest_term);
fun optional scan = Scan.optional scan [];
in
val _ =
Theory.setup
(Attrib.setup \<^binding>‹presburger›
((Scan.lift (Args.$$$ "del") |-- optional (keyword constsN |-- terms)) >> del ||
optional (keyword constsN |-- terms) >> add) "data for Cooper's algorithm"
#> Arith_Data.add_tactic "Presburger arithmetic" (tac true [] []));
end;
end;