File ‹Tools/Old_Datatype/old_rep_datatype.ML›
signature OLD_REP_DATATYPE =
sig
val derive_datatype_props : Old_Datatype_Aux.config -> string list ->
Old_Datatype_Aux.descr list -> thm -> thm list list -> thm list list -> theory ->
string list * theory
val rep_datatype : Old_Datatype_Aux.config -> (string list -> Proof.context -> Proof.context) ->
term list -> theory -> Proof.state
val rep_datatype_cmd : Old_Datatype_Aux.config ->
(string list -> Proof.context -> Proof.context) -> string list -> theory -> Proof.state
end;
structure Old_Rep_Datatype: OLD_REP_DATATYPE =
struct
fun prove_casedist_thms (config : Old_Datatype_Aux.config)
new_type_names descr induct case_names_exhausts thy =
let
val _ = Old_Datatype_Aux.message config "Proving case distinction theorems ...";
val descr' = flat descr;
val recTs = Old_Datatype_Aux.get_rec_types descr';
val newTs = take (length (hd descr)) recTs;
val maxidx = Thm.maxidx_of induct;
val induct_Ps =
map head_of (HOLogic.dest_conj (HOLogic.dest_Trueprop (Thm.concl_of induct)));
fun prove_casedist_thm (i, (T, t)) =
let
val dummyPs = map (fn Var (_, \<^Type>‹fun A _›) => Abs ("z", A, \<^Const>‹True›)) induct_Ps;
val P =
Abs ("z", T, HOLogic.imp $ HOLogic.mk_eq (Var (("a", maxidx + 1), T), Bound 0) $
Var (("P", 0), \<^Type>‹bool›));
val insts = take i dummyPs @ (P :: drop (i + 1) dummyPs);
in
Goal.prove_sorry_global thy []
(Logic.strip_imp_prems t)
(Logic.strip_imp_concl t)
(fn {context = ctxt, prems, ...} =>
let
val insts' = map (#1 o dest_Var) induct_Ps ~~ map (Thm.cterm_of ctxt) insts;
val induct' =
refl RS
(nth (Old_Datatype_Aux.split_conj_thm (infer_instantiate ctxt insts' induct)) i
RSN (2, rev_mp));
in
EVERY
[resolve_tac ctxt [induct'] 1,
REPEAT (resolve_tac ctxt [TrueI] 1),
REPEAT ((resolve_tac ctxt [impI] 1) THEN (eresolve_tac ctxt prems 1)),
REPEAT (resolve_tac ctxt [TrueI] 1)]
end)
end;
val casedist_thms =
map_index prove_casedist_thm (newTs ~~ Old_Datatype_Prop.make_casedists descr);
in
thy
|> Old_Datatype_Aux.store_thms_atts "exhaust" new_type_names
(map single case_names_exhausts) casedist_thms
end;
fun prove_primrec_thms (config : Old_Datatype_Aux.config) new_type_names descr
injects_of constr_inject (dist_rewrites, other_dist_rewrites) induct thy =
let
val _ = Old_Datatype_Aux.message config "Constructing primrec combinators ...";
val big_name = space_implode "_" new_type_names;
val thy0 = Sign.add_path big_name thy;
val descr' = flat descr;
val recTs = Old_Datatype_Aux.get_rec_types descr';
val used = fold Term.add_tfree_namesT recTs [];
val newTs = take (length (hd descr)) recTs;
val induct_Ps =
map head_of (HOLogic.dest_conj (HOLogic.dest_Trueprop (Thm.concl_of induct)));
val big_rec_name' = "rec_set_" ^ big_name;
val rec_set_names' =
if length descr' = 1 then [big_rec_name']
else map (prefix (big_rec_name' ^ "_") o string_of_int) (1 upto length descr');
val rec_set_names = map (Sign.full_bname thy0) rec_set_names';
val (rec_result_Ts, reccomb_fn_Ts) = Old_Datatype_Prop.make_primrec_Ts descr used;
val rec_set_Ts =
map (fn (T1, T2) => (reccomb_fn_Ts @ [T1, T2]) ---> \<^Type>‹bool›) (recTs ~~ rec_result_Ts);
val rec_fns =
map (uncurry (Old_Datatype_Aux.mk_Free "f")) (reccomb_fn_Ts ~~ (1 upto length reccomb_fn_Ts));
val rec_sets' =
map (fn c => list_comb (Free c, rec_fns)) (rec_set_names' ~~ rec_set_Ts);
val rec_sets =
map (fn c => list_comb (Const c, rec_fns)) (rec_set_names ~~ rec_set_Ts);
fun make_rec_intr T rec_set (cname, cargs) (rec_intr_ts, l) =
let
fun mk_prem (dt, U) (j, k, prems, t1s, t2s) =
let val free1 = Old_Datatype_Aux.mk_Free "x" U j in
(case (Old_Datatype_Aux.strip_dtyp dt, strip_type U) of
((_, Old_Datatype_Aux.DtRec m), (Us, _)) =>
let
val free2 = Old_Datatype_Aux.mk_Free "y" (Us ---> nth rec_result_Ts m) k;
val i = length Us;
in
(j + 1, k + 1,
HOLogic.mk_Trueprop (HOLogic.list_all
(map (pair "x") Us, nth rec_sets' m $
Old_Datatype_Aux.app_bnds free1 i $
Old_Datatype_Aux.app_bnds free2 i)) :: prems,
free1 :: t1s, free2 :: t2s)
end
| _ => (j + 1, k, prems, free1 :: t1s, t2s))
end;
val Ts = map (Old_Datatype_Aux.typ_of_dtyp descr') cargs;
val (_, _, prems, t1s, t2s) = fold_rev mk_prem (cargs ~~ Ts) (1, 1, [], [], []);
in
(rec_intr_ts @
[Logic.list_implies (prems, HOLogic.mk_Trueprop
(rec_set $ list_comb (Const (cname, Ts ---> T), t1s) $
list_comb (nth rec_fns l, t1s @ t2s)))], l + 1)
end;
val (rec_intr_ts, _) =
fold (fn ((d, T), set_name) =>
fold (make_rec_intr T set_name) (#3 (snd d))) (descr' ~~ recTs ~~ rec_sets') ([], 0);
val ({intrs = rec_intrs, elims = rec_elims, ...}, thy1) =
thy0
|> Sign.concealed
|> Named_Target.theory_map_result Inductive.transform_result
(Inductive.add_inductive
{quiet_mode = #quiet config, verbose = false, alt_name = Binding.name big_rec_name',
coind = false, no_elim = false, no_ind = true, skip_mono = true}
(map (fn (s, T) => ((Binding.name s, T), NoSyn)) (rec_set_names' ~~ rec_set_Ts))
(map dest_Free rec_fns)
(map (fn x => (Binding.empty_atts, x)) rec_intr_ts) [])
||> Sign.restore_naming thy0;
val _ = Old_Datatype_Aux.message config
"Proving termination and uniqueness of primrec functions ...";
fun mk_unique_tac ctxt ((((i, (tname, _, constrs)), elim), T), T') (tac, intrs) =
let
val distinct_tac =
if i < length newTs then
full_simp_tac (put_simpset HOL_ss ctxt addsimps (nth dist_rewrites i)) 1
else full_simp_tac (put_simpset HOL_ss ctxt addsimps (flat other_dist_rewrites)) 1;
val inject =
map (fn r => r RS iffD1)
(if i < length newTs then nth constr_inject i else injects_of tname);
fun mk_unique_constr_tac n (cname, cargs) (tac, intr :: intrs, j) =
let
val k = length (filter Old_Datatype_Aux.is_rec_type cargs);
in
(EVERY
[DETERM tac,
REPEAT (eresolve_tac ctxt @{thms ex1E} 1), resolve_tac ctxt @{thms ex1I} 1,
DEPTH_SOLVE_1 (ares_tac ctxt [intr] 1),
REPEAT_DETERM_N k (eresolve_tac ctxt [thin_rl] 1 THEN rotate_tac 1 1),
eresolve_tac ctxt [elim] 1,
REPEAT_DETERM_N j distinct_tac,
TRY (dresolve_tac ctxt inject 1),
REPEAT (eresolve_tac ctxt [conjE] 1), hyp_subst_tac ctxt 1,
REPEAT
(EVERY [eresolve_tac ctxt [allE] 1, dresolve_tac ctxt [mp] 1, assume_tac ctxt 1]),
TRY (hyp_subst_tac ctxt 1),
resolve_tac ctxt [refl] 1,
REPEAT_DETERM_N (n - j - 1) distinct_tac],
intrs, j + 1)
end;
val (tac', intrs', _) =
fold (mk_unique_constr_tac (length constrs)) constrs (tac, intrs, 0);
in (tac', intrs') end;
val rec_unique_thms =
let
val rec_unique_ts =
map (fn (((set_t, T1), T2), i) =>
\<^Const>‹Ex1 T2 for
‹absfree ("y", T2) (set_t $ Old_Datatype_Aux.mk_Free "x" T1 i $ Free ("y", T2))››)
(rec_sets ~~ recTs ~~ rec_result_Ts ~~ (1 upto length recTs));
val insts =
map (fn ((i, T), t) => absfree ("x" ^ string_of_int i, T) t)
((1 upto length recTs) ~~ recTs ~~ rec_unique_ts);
in
Old_Datatype_Aux.split_conj_thm (Goal.prove_sorry_global thy1 [] []
(HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj rec_unique_ts))
(fn {context = ctxt, ...} =>
let
val induct' =
infer_instantiate ctxt
(map (#1 o dest_Var) induct_Ps ~~ map (Thm.cterm_of ctxt) insts) induct;
in
#1 (fold (mk_unique_tac ctxt) (descr' ~~ rec_elims ~~ recTs ~~ rec_result_Ts)
(((resolve_tac ctxt [induct'] THEN_ALL_NEW Object_Logic.atomize_prems_tac ctxt) 1 THEN
rewrite_goals_tac ctxt [mk_meta_eq @{thm choice_eq}], rec_intrs)))
end))
end;
val rec_total_thms = map (fn r => r RS @{thm theI'}) rec_unique_thms;
val big_reccomb_name = "rec_" ^ space_implode "_" new_type_names;
val reccomb_names =
map (Sign.full_bname thy1)
(if length descr' = 1 then [big_reccomb_name]
else map (prefix (big_reccomb_name ^ "_") o string_of_int) (1 upto length descr'));
val reccombs =
map (fn ((name, T), T') => Const (name, reccomb_fn_Ts @ [T] ---> T'))
(reccomb_names ~~ recTs ~~ rec_result_Ts);
val (reccomb_defs, thy2) =
thy1
|> Sign.add_consts (map (fn ((name, T), T') =>
(Binding.name (Long_Name.base_name name), reccomb_fn_Ts @ [T] ---> T', NoSyn))
(reccomb_names ~~ recTs ~~ rec_result_Ts))
|> fold_map Global_Theory.add_def
(map
(fn ((((name, comb), set), T), T') =>
(Binding.name (Thm.def_name (Long_Name.base_name name)),
Logic.mk_equals (comb, fold_rev lambda rec_fns (absfree ("x", T)
\<^Const>‹The T' for ‹absfree ("y", T') (set $ Free ("x", T) $ Free ("y", T'))››))))
(reccomb_names ~~ reccombs ~~ rec_sets ~~ recTs ~~ rec_result_Ts))
||> Sign.parent_path;
val _ = Old_Datatype_Aux.message config
"Proving characteristic theorems for primrec combinators ...";
val rec_thms =
map (fn t =>
Goal.prove_sorry_global thy2 [] [] t
(fn {context = ctxt, ...} => EVERY
[rewrite_goals_tac ctxt reccomb_defs,
resolve_tac ctxt @{thms the1_equality} 1,
resolve_tac ctxt rec_unique_thms 1,
resolve_tac ctxt rec_intrs 1,
REPEAT (resolve_tac ctxt [allI] 1 ORELSE resolve_tac ctxt rec_total_thms 1)]))
(Old_Datatype_Prop.make_primrecs reccomb_names descr thy2);
in
thy2
|> Sign.add_path (space_implode "_" new_type_names)
|> Global_Theory.note_thms ""
((Binding.name "rec", [Named_Theorems.add \<^named_theorems>‹nitpick_simp›]), [(rec_thms, [])])
||> Sign.parent_path
|-> (fn (_, thms) => pair (reccomb_names, thms))
end;
fun prove_case_thms (config : Old_Datatype_Aux.config)
new_type_names descr reccomb_names primrec_thms thy =
let
val _ = Old_Datatype_Aux.message config
"Proving characteristic theorems for case combinators ...";
val ctxt = Proof_Context.init_global thy;
val thy1 = Sign.add_path (space_implode "_" new_type_names) thy;
val descr' = flat descr;
val recTs = Old_Datatype_Aux.get_rec_types descr';
val used = fold Term.add_tfree_namesT recTs [];
val newTs = take (length (hd descr)) recTs;
val T' = TFree (singleton (Name.variant_list used) "'t", \<^sort>‹type›);
fun mk_dummyT dt = binder_types (Old_Datatype_Aux.typ_of_dtyp descr' dt) ---> T';
val case_dummy_fns =
map (fn (_, (_, _, constrs)) => map (fn (_, cargs) =>
let
val Ts = map (Old_Datatype_Aux.typ_of_dtyp descr') cargs;
val Ts' = map mk_dummyT (filter Old_Datatype_Aux.is_rec_type cargs)
in \<^Const>‹undefined ‹Ts @ Ts' ---> T'›› end) constrs) descr';
val case_names0 = map (fn s => Sign.full_bname thy1 ("case_" ^ s)) new_type_names;
fun def_case ((((i, (_, _, constrs)), T), name), recname) (defs, thy) =
let val Tcon = dest_Type_name T in
if is_some (Ctr_Sugar.ctr_sugar_of ctxt Tcon) then
(defs, thy)
else
let
val (fns1, fns2) = split_list (map (fn ((_, cargs), j) =>
let
val Ts = map (Old_Datatype_Aux.typ_of_dtyp descr') cargs;
val Ts' = Ts @ map mk_dummyT (filter Old_Datatype_Aux.is_rec_type cargs);
val frees' = map2 (Old_Datatype_Aux.mk_Free "x") Ts' (1 upto length Ts');
val frees = take (length cargs) frees';
val free = Old_Datatype_Aux.mk_Free "f" (Ts ---> T') j;
in
(free, fold_rev (absfree o dest_Free) frees' (list_comb (free, frees)))
end) (constrs ~~ (1 upto length constrs)));
val caseT = map (snd o dest_Free) fns1 @ [T] ---> T';
val fns = flat (take i case_dummy_fns) @ fns2 @ flat (drop (i + 1) case_dummy_fns);
val reccomb = Const (recname, (map fastype_of fns) @ [T] ---> T');
val decl = ((Binding.name (Long_Name.base_name name), caseT), NoSyn);
val def =
(Binding.name (Thm.def_name (Long_Name.base_name name)),
Logic.mk_equals (Const (name, caseT),
fold_rev lambda fns1
(list_comb (reccomb,
flat (take i case_dummy_fns) @ fns2 @ flat (drop (i + 1) case_dummy_fns)))));
val (def_thm, thy') =
thy
|> Sign.declare_const_global decl |> snd
|> Global_Theory.add_def def;
in (defs @ [def_thm], thy') end
end;
val (case_defs, thy2) =
fold def_case (hd descr ~~ newTs ~~ case_names0 ~~ take (length newTs) reccomb_names)
([], thy1);
fun prove_case t =
Goal.prove_sorry_global thy2 [] [] t (fn {context = ctxt, ...} =>
EVERY [rewrite_goals_tac ctxt (case_defs @ map mk_meta_eq primrec_thms),
resolve_tac ctxt [refl] 1]);
fun prove_cases T ts =
(case Ctr_Sugar.ctr_sugar_of ctxt (dest_Type_name T) of
SOME {case_thms, ...} => case_thms
| NONE => map prove_case ts);
val case_thms =
map2 prove_cases newTs (Old_Datatype_Prop.make_cases case_names0 descr thy2);
fun case_name_of (th :: _) =
dest_Const_name (head_of (fst (HOLogic.dest_eq (HOLogic.dest_Trueprop (Thm.prop_of th)))));
val case_names = map case_name_of case_thms;
in
thy2
|> Context.theory_map
((fold o fold) (Named_Theorems.add_thm \<^named_theorems>‹nitpick_simp›) case_thms)
|> Sign.parent_path
|> Old_Datatype_Aux.store_thmss "case" new_type_names case_thms
|-> (fn thmss => pair (thmss, case_names))
end;
fun prove_split_thms (config : Old_Datatype_Aux.config)
new_type_names case_names descr constr_inject dist_rewrites casedist_thms case_thms thy =
let
val _ = Old_Datatype_Aux.message config "Proving equations for case splitting ...";
val descr' = flat descr;
val recTs = Old_Datatype_Aux.get_rec_types descr';
val newTs = take (length (hd descr)) recTs;
fun prove_split_thms ((((((t1, t2), inject), dist_rewrites'), exhaustion), case_thms'), T) =
let
val _ $ (_ $ lhs $ _) = hd (Logic.strip_assums_hyp (hd (Thm.prems_of exhaustion)));
val ctxt = Proof_Context.init_global thy;
val exhaustion' = exhaustion
|> infer_instantiate ctxt [(#1 (dest_Var lhs), Thm.cterm_of ctxt (Free ("x", T)))];
val tac =
EVERY [resolve_tac ctxt [exhaustion'] 1,
ALLGOALS (asm_simp_tac
(put_simpset HOL_ss ctxt addsimps (dist_rewrites' @ inject @ case_thms')))];
in
(Goal.prove_sorry_global thy [] [] t1 (K tac),
Goal.prove_sorry_global thy [] [] t2 (K tac))
end;
val split_thm_pairs =
map prove_split_thms
(Old_Datatype_Prop.make_splits case_names descr thy ~~ constr_inject ~~
dist_rewrites ~~ casedist_thms ~~ case_thms ~~ newTs);
val (split_thms, split_asm_thms) = split_list split_thm_pairs
in
thy
|> Old_Datatype_Aux.store_thms "split" new_type_names split_thms
||>> Old_Datatype_Aux.store_thms "split_asm" new_type_names split_asm_thms
|-> (fn (thms1, thms2) => pair (thms1 ~~ thms2))
end;
fun prove_case_cong_weaks new_type_names case_names descr thy =
let
fun prove_case_cong_weak t =
Goal.prove_sorry_global thy [] (Logic.strip_imp_prems t) (Logic.strip_imp_concl t)
(fn {context = ctxt, prems, ...} =>
EVERY [resolve_tac ctxt [hd prems RS arg_cong] 1]);
val case_cong_weaks =
map prove_case_cong_weak (Old_Datatype_Prop.make_case_cong_weaks case_names descr thy);
in thy |> Old_Datatype_Aux.store_thms "case_cong_weak" new_type_names case_cong_weaks end;
fun prove_nchotomys (config : Old_Datatype_Aux.config) new_type_names descr casedist_thms thy =
let
val _ = Old_Datatype_Aux.message config "Proving additional theorems for TFL ...";
fun prove_nchotomy (t, exhaustion) =
let
fun tac ctxt i 0 =
EVERY [TRY (resolve_tac ctxt [disjI1] i), hyp_subst_tac ctxt i,
REPEAT (resolve_tac ctxt [exI] i), resolve_tac ctxt [refl] i]
| tac ctxt i n = resolve_tac ctxt [disjI2] i THEN tac ctxt i (n - 1);
in
Goal.prove_sorry_global thy [] [] t
(fn {context = ctxt, ...} =>
EVERY [resolve_tac ctxt [allI] 1,
Old_Datatype_Aux.exh_tac ctxt (K exhaustion) 1,
ALLGOALS (fn i => tac ctxt i (i - 1))])
end;
val nchotomys =
map prove_nchotomy (Old_Datatype_Prop.make_nchotomys descr ~~ casedist_thms);
in thy |> Old_Datatype_Aux.store_thms "nchotomy" new_type_names nchotomys end;
fun prove_case_congs new_type_names case_names descr nchotomys case_thms thy =
let
fun prove_case_cong ((t, nchotomy), case_rewrites) =
let
val \<^Const_>‹Pure.imp for tm _› = t;
val \<^Const_>‹Trueprop for \<^Const_>‹HOL.eq _ for _ Ma›› = tm;
val nchotomy' = nchotomy RS spec;
val [v] = Term.add_var_names (Thm.concl_of nchotomy') [];
in
Goal.prove_sorry_global thy [] (Logic.strip_imp_prems t) (Logic.strip_imp_concl t)
(fn {context = ctxt, prems, ...} =>
let
val nchotomy'' =
infer_instantiate ctxt [(v, Thm.cterm_of ctxt Ma)] nchotomy';
val simplify = asm_simp_tac (put_simpset HOL_ss ctxt addsimps (prems @ case_rewrites))
in
EVERY [
simp_tac (put_simpset HOL_ss ctxt addsimps [hd prems]) 1,
cut_tac nchotomy'' 1,
REPEAT (eresolve_tac ctxt [disjE] 1 THEN
REPEAT (eresolve_tac ctxt [exE] 1) THEN simplify 1),
REPEAT (eresolve_tac ctxt [exE] 1) THEN simplify 1 ]
end)
end;
val case_congs =
map prove_case_cong
(Old_Datatype_Prop.make_case_congs case_names descr thy ~~ nchotomys ~~ case_thms);
in thy |> Old_Datatype_Aux.store_thms "case_cong" new_type_names case_congs end;
local
fun make_dt_info descr induct inducts rec_names rec_rewrites
(index, (((((((((((_, (tname, _, _))), inject), distinct),
exhaust), nchotomy), case_name), case_rewrites), case_cong), case_cong_weak),
(split, split_asm))) =
(tname,
{index = index,
descr = descr,
inject = inject,
distinct = distinct,
induct = induct,
inducts = inducts,
exhaust = exhaust,
nchotomy = nchotomy,
rec_names = rec_names,
rec_rewrites = rec_rewrites,
case_name = case_name,
case_rewrites = case_rewrites,
case_cong = case_cong,
case_cong_weak = case_cong_weak,
split = split,
split_asm = split_asm});
in
fun derive_datatype_props config dt_names descr induct inject distinct thy2 =
let
val flat_descr = flat descr;
val new_type_names = map Long_Name.base_name dt_names;
val _ =
Old_Datatype_Aux.message config
("Deriving properties for datatype(s) " ^ commas_quote new_type_names);
val (exhaust, thy3) = thy2
|> prove_casedist_thms config new_type_names descr induct
(Old_Datatype_Data.mk_case_names_exhausts flat_descr dt_names);
val (nchotomys, thy4) = thy3
|> prove_nchotomys config new_type_names descr exhaust;
val ((rec_names, rec_rewrites), thy5) = thy4
|> prove_primrec_thms config new_type_names descr
(#inject o the o Symtab.lookup (Old_Datatype_Data.get_all thy4)) inject
(distinct,
Old_Datatype_Data.all_distincts thy2 (Old_Datatype_Aux.get_rec_types flat_descr)) induct;
val ((case_rewrites, case_names), thy6) = thy5
|> prove_case_thms config new_type_names descr rec_names rec_rewrites;
val (case_congs, thy7) = thy6
|> prove_case_congs new_type_names case_names descr nchotomys case_rewrites;
val (case_cong_weaks, thy8) = thy7
|> prove_case_cong_weaks new_type_names case_names descr;
val (splits, thy9) = thy8
|> prove_split_thms config new_type_names case_names descr
inject distinct exhaust case_rewrites;
val inducts = Project_Rule.projections (Proof_Context.init_global thy2) induct;
val dt_infos =
map_index
(make_dt_info flat_descr induct inducts rec_names rec_rewrites)
(hd descr ~~ inject ~~ distinct ~~ exhaust ~~ nchotomys ~~
case_names ~~ case_rewrites ~~ case_congs ~~ case_cong_weaks ~~ splits);
val dt_names = map fst dt_infos;
val prfx = Binding.qualify true (space_implode "_" new_type_names);
val simps = flat (inject @ distinct @ case_rewrites) @ rec_rewrites;
val named_rules = flat (map_index (fn (i, tname) =>
[((Binding.empty, [Induct.induct_type tname]), [([nth inducts i], [])]),
((Binding.empty, [Induct.cases_type tname]), [([nth exhaust i], [])])]) dt_names);
val unnamed_rules = map (fn induct =>
((Binding.empty, [Rule_Cases.inner_rule, Induct.induct_type ""]), [([induct], [])]))
(drop (length dt_names) inducts);
val ctxt = Proof_Context.init_global thy9;
val case_combs =
map (Proof_Context.read_const {proper = true, strict = true} ctxt) case_names;
val constrss = map (fn (dtname, {descr, index, ...}) =>
map (Proof_Context.read_const {proper = true, strict = true} ctxt o fst)
(#3 (the (AList.lookup op = descr index)))) dt_infos;
in
thy9
|> Global_Theory.note_thmss ""
([((prfx (Binding.name "simps"), []), [(simps, [])]),
((prfx (Binding.name "inducts"), []), [(inducts, [])]),
((prfx (Binding.name "splits"), []), [(maps (fn (x, y) => [x, y]) splits, [])]),
((Binding.empty, [Simplifier.simp_add]),
[(flat case_rewrites @ flat distinct @ rec_rewrites, [])]),
((Binding.empty, [iff_add]), [(flat inject, [])]),
((Binding.empty, [Classical.safe_elim NONE]),
[(map (fn th => th RS notE) (flat distinct), [])]),
((Binding.empty, [Simplifier.cong_add]), [(case_cong_weaks, [])]),
((Binding.empty, [Induct.induct_simp_add]), [(flat (distinct @ inject), [])])] @
named_rules @ unnamed_rules)
|> snd
|> Code.declare_default_eqns_global (map (rpair true) rec_rewrites)
|> Old_Datatype_Data.register dt_infos
|> Context.theory_map (fold2 Case_Translation.register case_combs constrss)
|> Old_Datatype_Data.interpretation_data (config, dt_names)
|> pair dt_names
end;
end;
local
fun prove_rep_datatype config dt_names descr raw_inject half_distinct raw_induct thy1 =
let
val raw_distinct = (map o maps) (fn thm => [thm, thm RS not_sym]) half_distinct;
val new_type_names = map Long_Name.base_name dt_names;
val prfx = Binding.qualify true (space_implode "_" new_type_names);
val (((inject, distinct), [(_, [induct])]), thy2) =
thy1
|> Old_Datatype_Aux.store_thmss "inject" new_type_names raw_inject
||>> Old_Datatype_Aux.store_thmss "distinct" new_type_names raw_distinct
||>> Global_Theory.note_thmss ""
[((prfx (Binding.name "induct"), [Old_Datatype_Data.mk_case_names_induct descr]),
[([raw_induct], [])])];
in
thy2
|> derive_datatype_props config dt_names [descr] induct inject distinct
end;
fun gen_rep_datatype prep_term config after_qed raw_ts thy =
let
val ctxt = Proof_Context.init_global thy;
fun constr_of_term (Const (c, T)) = (c, T)
| constr_of_term t = error ("Not a constant: " ^ Syntax.string_of_term ctxt t);
fun no_constr (c, T) =
error ("Bad constructor: " ^ Proof_Context.markup_const ctxt c ^ "::" ^
Syntax.string_of_typ ctxt T);
fun type_of_constr (cT as (_, T)) =
let
val frees = Term.add_tfreesT T [];
val (tyco, vs) = (apsnd o map) dest_TFree (dest_Type (body_type T))
handle TYPE _ => no_constr cT
val _ = if has_duplicates (eq_fst (op =)) vs then no_constr cT else ();
val _ = if length frees <> length vs then no_constr cT else ();
in (tyco, (vs, cT)) end;
val raw_cs =
AList.group (op =) (map (type_of_constr o constr_of_term o prep_term thy) raw_ts);
val _ =
(case map_filter (fn (tyco, _) =>
if Symtab.defined (Old_Datatype_Data.get_all thy) tyco then SOME tyco else NONE) raw_cs of
[] => ()
| tycos => error ("Type(s) " ^ commas_quote tycos ^ " already represented inductively"));
val raw_vss = maps (map (map snd o fst) o snd) raw_cs;
val ms =
(case distinct (op =) (map length raw_vss) of
[n] => 0 upto n - 1
| _ => error "Different types in given constructors");
fun inter_sort m =
map (fn xs => nth xs m) raw_vss
|> foldr1 (Sorts.inter_sort (Sign.classes_of thy));
val sorts = map inter_sort ms;
val vs = Name.invent_names Name.context Name.aT sorts;
fun norm_constr (raw_vs, (c, T)) =
(c, map_atyps
(TFree o (the o AList.lookup (op =) (map fst raw_vs ~~ vs)) o fst o dest_TFree) T);
val cs = map (apsnd (map norm_constr)) raw_cs;
val dtyps_of_typ = map (Old_Datatype_Aux.dtyp_of_typ (map (rpair vs o fst) cs)) o binder_types;
val dt_names = map fst cs;
fun mk_spec (i, (tyco, constr)) =
(i, (tyco, map Old_Datatype_Aux.DtTFree vs, (map o apsnd) dtyps_of_typ constr));
val descr = map_index mk_spec cs;
val injs = Old_Datatype_Prop.make_injs [descr];
val half_distincts = Old_Datatype_Prop.make_distincts [descr];
val ind = Old_Datatype_Prop.make_ind [descr];
val rules = (map o map o map) Logic.close_form [[[ind]], injs, half_distincts];
fun after_qed' raw_thms =
let
val [[[raw_induct]], raw_inject, half_distinct] =
unflat rules (map Drule.zero_var_indexes_list raw_thms);
in
Proof_Context.background_theory_result
(prove_rep_datatype config dt_names descr raw_inject half_distinct raw_induct)
#-> after_qed
end;
in
ctxt
|> Proof.theorem NONE after_qed' ((map o map) (rpair []) (flat rules))
end;
in
val rep_datatype = gen_rep_datatype Sign.cert_term;
val rep_datatype_cmd = gen_rep_datatype Syntax.read_term_global;
end;
val _ =
Outer_Syntax.command \<^command_keyword>‹old_rep_datatype›
"register existing types as old-style datatypes"
(Scan.repeat1 Parse.term >> (fn ts =>
Toplevel.theory_to_proof (rep_datatype_cmd Old_Datatype_Aux.default_config (K I) ts)));
end;