# Theory Permutations

theory Permutations
imports Multiset Disjoint_Sets
```(*  Title:      HOL/Library/Permutations.thy
Author:     Amine Chaieb, University of Cambridge
*)

section ‹Permutations, both general and specifically on finite sets.›

theory Permutations
imports Multiset Disjoint_Sets
begin

subsection ‹Transpositions›

lemma swap_id_idempotent [simp]: "Fun.swap a b id ∘ Fun.swap a b id = id"
by (rule ext) (auto simp add: Fun.swap_def)

lemma inv_swap_id: "inv (Fun.swap a b id) = Fun.swap a b id"
by (rule inv_unique_comp) simp_all

lemma swap_id_eq: "Fun.swap a b id x = (if x = a then b else if x = b then a else x)"
by (simp add: Fun.swap_def)

lemma bij_swap_comp:
assumes "bij p"
shows "Fun.swap a b id ∘ p = Fun.swap (inv p a) (inv p b) p"
using surj_f_inv_f[OF bij_is_surj[OF ‹bij p›]]
by (simp add: fun_eq_iff Fun.swap_def bij_inv_eq_iff[OF ‹bij p›])

lemma bij_swap_compose_bij:
assumes "bij p"
shows "bij (Fun.swap a b id ∘ p)"
by (simp only: bij_swap_comp[OF ‹bij p›] bij_swap_iff ‹bij p›)

subsection ‹Basic consequences of the definition›

definition permutes  (infixr "permutes" 41)
where "(p permutes S) ⟷ (∀x. x ∉ S ⟶ p x = x) ∧ (∀y. ∃!x. p x = y)"

lemma permutes_in_image: "p permutes S ⟹ p x ∈ S ⟷ x ∈ S"
unfolding permutes_def by metis

lemma permutes_not_in: "f permutes S ⟹ x ∉ S ⟹ f x = x"
by (auto simp: permutes_def)

lemma permutes_image: "p permutes S ⟹ p ` S = S"
unfolding permutes_def
apply (rule set_eqI)
apply (simp add: image_iff)
apply metis
done

lemma permutes_inj: "p permutes S ⟹ inj p"
unfolding permutes_def inj_def by blast

lemma permutes_inj_on: "f permutes S ⟹ inj_on f A"
by (auto simp: permutes_def inj_on_def)

lemma permutes_surj: "p permutes s ⟹ surj p"
unfolding permutes_def surj_def by metis

lemma permutes_bij: "p permutes s ⟹ bij p"
unfolding bij_def by (metis permutes_inj permutes_surj)

lemma permutes_imp_bij: "p permutes S ⟹ bij_betw p S S"
by (metis UNIV_I bij_betw_subset permutes_bij permutes_image subsetI)

lemma bij_imp_permutes: "bij_betw p S S ⟹ (⋀x. x ∉ S ⟹ p x = x) ⟹ p permutes S"
unfolding permutes_def bij_betw_def inj_on_def
by auto (metis image_iff)+

lemma permutes_inv_o:
assumes permutes: "p permutes S"
shows "p ∘ inv p = id"
and "inv p ∘ p = id"
using permutes_inj[OF permutes] permutes_surj[OF permutes]
unfolding inj_iff[symmetric] surj_iff[symmetric] by blast+

lemma permutes_inverses:
fixes p :: "'a ⇒ 'a"
assumes permutes: "p permutes S"
shows "p (inv p x) = x"
and "inv p (p x) = x"
using permutes_inv_o[OF permutes, unfolded fun_eq_iff o_def] by auto

lemma permutes_subset: "p permutes S ⟹ S ⊆ T ⟹ p permutes T"
unfolding permutes_def by blast

lemma permutes_empty[simp]: "p permutes {} ⟷ p = id"
by (auto simp add: fun_eq_iff permutes_def)

lemma permutes_sing[simp]: "p permutes {a} ⟷ p = id"
by (simp add: fun_eq_iff permutes_def) metis  (*somewhat slow*)

lemma permutes_univ: "p permutes UNIV ⟷ (∀y. ∃!x. p x = y)"
by (simp add: permutes_def)

lemma permutes_inv_eq: "p permutes S ⟹ inv p y = x ⟷ p x = y"
unfolding permutes_def inv_def
apply auto
apply (erule allE[where x=y])
apply (erule allE[where x=y])
apply (rule someI_ex)
apply blast
apply (rule some1_equality)
apply blast
apply blast
done

lemma permutes_swap_id: "a ∈ S ⟹ b ∈ S ⟹ Fun.swap a b id permutes S"
unfolding permutes_def Fun.swap_def fun_upd_def by auto metis

lemma permutes_superset: "p permutes S ⟹ (∀x ∈ S - T. p x = x) ⟹ p permutes T"
by (simp add: Ball_def permutes_def) metis

lemma permutes_bij_inv_into: ✐‹contributor ‹Lukas Bulwahn››
fixes A :: "'a set"
and B :: "'b set"
assumes "p permutes A"
and "bij_betw f A B"
shows "(λx. if x ∈ B then f (p (inv_into A f x)) else x) permutes B"
proof (rule bij_imp_permutes)
from assms have "bij_betw p A A" "bij_betw f A B" "bij_betw (inv_into A f) B A"
by (auto simp add: permutes_imp_bij bij_betw_inv_into)
then have "bij_betw (f ∘ p ∘ inv_into A f) B B"
by (simp add: bij_betw_trans)
then show "bij_betw (λx. if x ∈ B then f (p (inv_into A f x)) else x) B B"
by (subst bij_betw_cong[where g="f ∘ p ∘ inv_into A f"]) auto
next
fix x
assume "x ∉ B"
then show "(if x ∈ B then f (p (inv_into A f x)) else x) = x" by auto
qed

lemma permutes_image_mset: ✐‹contributor ‹Lukas Bulwahn››
assumes "p permutes A"
shows "image_mset p (mset_set A) = mset_set A"
using assms by (metis image_mset_mset_set bij_betw_imp_inj_on permutes_imp_bij permutes_image)

lemma permutes_implies_image_mset_eq: ✐‹contributor ‹Lukas Bulwahn››
assumes "p permutes A" "⋀x. x ∈ A ⟹ f x = f' (p x)"
shows "image_mset f' (mset_set A) = image_mset f (mset_set A)"
proof -
have "f x = f' (p x)" if "x ∈# mset_set A" for x
using assms(2)[of x] that by (cases "finite A") auto
with assms have "image_mset f (mset_set A) = image_mset (f' ∘ p) (mset_set A)"
by (auto intro!: image_mset_cong)
also have "… = image_mset f' (image_mset p (mset_set A))"
by (simp add: image_mset.compositionality)
also have "… = image_mset f' (mset_set A)"
proof -
from assms permutes_image_mset have "image_mset p (mset_set A) = mset_set A"
by blast
then show ?thesis by simp
qed
finally show ?thesis ..
qed

subsection ‹Group properties›

lemma permutes_id: "id permutes S"
by (simp add: permutes_def)

lemma permutes_compose: "p permutes S ⟹ q permutes S ⟹ q ∘ p permutes S"
unfolding permutes_def o_def by metis

lemma permutes_inv:
assumes "p permutes S"
shows "inv p permutes S"
using assms unfolding permutes_def permutes_inv_eq[OF assms] by metis

lemma permutes_inv_inv:
assumes "p permutes S"
shows "inv (inv p) = p"
unfolding fun_eq_iff permutes_inv_eq[OF assms] permutes_inv_eq[OF permutes_inv[OF assms]]
by blast

lemma permutes_invI:
assumes perm: "p permutes S"
and inv: "⋀x. x ∈ S ⟹ p' (p x) = x"
and outside: "⋀x. x ∉ S ⟹ p' x = x"
shows "inv p = p'"
proof
show "inv p x = p' x" for x
proof (cases "x ∈ S")
case True
from assms have "p' x = p' (p (inv p x))"
by (simp add: permutes_inverses)
also from permutes_inv[OF perm] True have "… = inv p x"
by (subst inv) (simp_all add: permutes_in_image)
finally show ?thesis ..
next
case False
with permutes_inv[OF perm] show ?thesis
by (simp_all add: outside permutes_not_in)
qed
qed

lemma permutes_vimage: "f permutes A ⟹ f -` A = A"
by (simp add: bij_vimage_eq_inv_image permutes_bij permutes_image[OF permutes_inv])

subsection ‹Mapping permutations with bijections›

lemma bij_betw_permutations:
assumes "bij_betw f A B"
shows   "bij_betw (λπ x. if x ∈ B then f (π (inv_into A f x)) else x)
{π. π permutes A} {π. π permutes B}" (is "bij_betw ?f _ _")
proof -
let ?g = "(λπ x. if x ∈ A then inv_into A f (π (f x)) else x)"
show ?thesis
proof (rule bij_betw_byWitness [of _ ?g], goal_cases)
case 3
show ?case using permutes_bij_inv_into[OF _ assms] by auto
next
case 4
have bij_inv: "bij_betw (inv_into A f) B A" by (intro bij_betw_inv_into assms)
{
fix π assume "π permutes B"
from permutes_bij_inv_into[OF this bij_inv] and assms
have "(λx. if x ∈ A then inv_into A f (π (f x)) else x) permutes A"
by (simp add: inv_into_inv_into_eq cong: if_cong)
}
from this show ?case by (auto simp: permutes_inv)
next
case 1
thus ?case using assms
by (auto simp: fun_eq_iff permutes_not_in permutes_in_image bij_betw_inv_into_left
dest: bij_betwE)
next
case 2
moreover have "bij_betw (inv_into A f) B A"
by (intro bij_betw_inv_into assms)
ultimately show ?case using assms
by (auto simp: fun_eq_iff permutes_not_in permutes_in_image bij_betw_inv_into_right
dest: bij_betwE)
qed
qed

lemma bij_betw_derangements:
assumes "bij_betw f A B"
shows   "bij_betw (λπ x. if x ∈ B then f (π (inv_into A f x)) else x)
{π. π permutes A ∧ (∀x∈A. π x ≠ x)} {π. π permutes B ∧ (∀x∈B. π x ≠ x)}"
(is "bij_betw ?f _ _")
proof -
let ?g = "(λπ x. if x ∈ A then inv_into A f (π (f x)) else x)"
show ?thesis
proof (rule bij_betw_byWitness [of _ ?g], goal_cases)
case 3
have "?f π x ≠ x" if "π permutes A" "⋀x. x ∈ A ⟹ π x ≠ x" "x ∈ B" for π x
using that and assms by (metis bij_betwE bij_betw_imp_inj_on bij_betw_imp_surj_on
inv_into_f_f inv_into_into permutes_imp_bij)
with permutes_bij_inv_into[OF _ assms] show ?case by auto
next
case 4
have bij_inv: "bij_betw (inv_into A f) B A" by (intro bij_betw_inv_into assms)
have "?g π permutes A" if "π permutes B" for π
using permutes_bij_inv_into[OF that bij_inv] and assms
by (simp add: inv_into_inv_into_eq cong: if_cong)
moreover have "?g π x ≠ x" if "π permutes B" "⋀x. x ∈ B ⟹ π x ≠ x" "x ∈ A" for π x
using that and assms by (metis bij_betwE bij_betw_imp_surj_on f_inv_into_f permutes_imp_bij)
ultimately show ?case by auto
next
case 1
thus ?case using assms
by (force simp: fun_eq_iff permutes_not_in permutes_in_image bij_betw_inv_into_left
dest: bij_betwE)
next
case 2
moreover have "bij_betw (inv_into A f) B A"
by (intro bij_betw_inv_into assms)
ultimately show ?case using assms
by (force simp: fun_eq_iff permutes_not_in permutes_in_image bij_betw_inv_into_right
dest: bij_betwE)
qed
qed

subsection ‹The number of permutations on a finite set›

lemma permutes_insert_lemma:
assumes "p permutes (insert a S)"
shows "Fun.swap a (p a) id ∘ p permutes S"
apply (rule permutes_superset[where S = "insert a S"])
apply (rule permutes_compose[OF assms])
apply (rule permutes_swap_id, simp)
using permutes_in_image[OF assms, of a]
apply simp
apply (auto simp add: Ball_def Fun.swap_def)
done

lemma permutes_insert: "{p. p permutes (insert a S)} =
(λ(b, p). Fun.swap a b id ∘ p) ` {(b, p). b ∈ insert a S ∧ p ∈ {p. p permutes S}}"
proof -
have "p permutes insert a S ⟷
(∃b q. p = Fun.swap a b id ∘ q ∧ b ∈ insert a S ∧ q permutes S)" for p
proof -
have "∃b q. p = Fun.swap a b id ∘ q ∧ b ∈ insert a S ∧ q permutes S"
if p: "p permutes insert a S"
proof -
let ?b = "p a"
let ?q = "Fun.swap a (p a) id ∘ p"
have *: "p = Fun.swap a ?b id ∘ ?q"
by (simp add: fun_eq_iff o_assoc)
have **: "?b ∈ insert a S"
unfolding permutes_in_image[OF p] by simp
from permutes_insert_lemma[OF p] * ** show ?thesis
by blast
qed
moreover have "p permutes insert a S"
if bq: "p = Fun.swap a b id ∘ q" "b ∈ insert a S" "q permutes S" for b q
proof -
from permutes_subset[OF bq(3), of "insert a S"] have q: "q permutes insert a S"
by auto
have a: "a ∈ insert a S"
by simp
from bq(1) permutes_compose[OF q permutes_swap_id[OF a bq(2)]] show ?thesis
by simp
qed
ultimately show ?thesis by blast
qed
then show ?thesis by auto
qed

lemma card_permutations:
assumes "card S = n"
and "finite S"
shows "card {p. p permutes S} = fact n"
using assms(2,1)
proof (induct arbitrary: n)
case empty
then show ?case by simp
next
case (insert x F)
{
fix n
assume card_insert: "card (insert x F) = n"
let ?xF = "{p. p permutes insert x F}"
let ?pF = "{p. p permutes F}"
let ?pF' = "{(b, p). b ∈ insert x F ∧ p ∈ ?pF}"
let ?g = "(λ(b, p). Fun.swap x b id ∘ p)"
have xfgpF': "?xF = ?g ` ?pF'"
by (rule permutes_insert[of x F])
from ‹x ∉ F› ‹finite F› card_insert have Fs: "card F = n - 1"
by auto
from ‹finite F› insert.hyps Fs have pFs: "card ?pF = fact (n - 1)"
by auto
then have "finite ?pF"
by (auto intro: card_ge_0_finite)
with ‹finite F› card_insert have pF'f: "finite ?pF'"
apply (simp only: Collect_case_prod Collect_mem_eq)
apply (rule finite_cartesian_product)
apply simp_all
done

have ginj: "inj_on ?g ?pF'"
proof -
{
fix b p c q
assume bp: "(b, p) ∈ ?pF'"
assume cq: "(c, q) ∈ ?pF'"
assume eq: "?g (b, p) = ?g (c, q)"
from bp cq have pF: "p permutes F" and qF: "q permutes F"
by auto
from pF ‹x ∉ F› eq have "b = ?g (b, p) x"
by (auto simp: permutes_def Fun.swap_def fun_upd_def fun_eq_iff)
also from qF ‹x ∉ F› eq have "… = ?g (c, q) x"
by (auto simp: swap_def fun_upd_def fun_eq_iff)
also from qF ‹x ∉ F› have "… = c"
by (auto simp: permutes_def Fun.swap_def fun_upd_def fun_eq_iff)
finally have "b = c" .
then have "Fun.swap x b id = Fun.swap x c id"
by simp
with eq have "Fun.swap x b id ∘ p = Fun.swap x b id ∘ q"
by simp
then have "Fun.swap x b id ∘ (Fun.swap x b id ∘ p) = Fun.swap x b id ∘ (Fun.swap x b id ∘ q)"
by simp
then have "p = q"
by (simp add: o_assoc)
with ‹b = c› have "(b, p) = (c, q)"
by simp
}
then show ?thesis
unfolding inj_on_def by blast
qed
from ‹x ∉ F› ‹finite F› card_insert have "n ≠ 0"
by auto
then have "∃m. n = Suc m"
by presburger
then obtain m where n: "n = Suc m"
by blast
from pFs card_insert have *: "card ?xF = fact n"
unfolding xfgpF' card_image[OF ginj]
using ‹finite F› ‹finite ?pF›
by (simp only: Collect_case_prod Collect_mem_eq card_cartesian_product) (simp add: n)
from finite_imageI[OF pF'f, of ?g] have xFf: "finite ?xF"
by (simp add: xfgpF' n)
from * have "card ?xF = fact n"
unfolding xFf by blast
}
with insert show ?case by simp
qed

lemma finite_permutations:
assumes "finite S"
shows "finite {p. p permutes S}"
using card_permutations[OF refl assms] by (auto intro: card_ge_0_finite)

subsection ‹Permutations of index set for iterated operations›

lemma (in comm_monoid_set) permute:
assumes "p permutes S"
shows "F g S = F (g ∘ p) S"
proof -
from ‹p permutes S› have "inj p"
by (rule permutes_inj)
then have "inj_on p S"
by (auto intro: subset_inj_on)
then have "F g (p ` S) = F (g ∘ p) S"
by (rule reindex)
moreover from ‹p permutes S› have "p ` S = S"
by (rule permutes_image)
ultimately show ?thesis
by simp
qed

subsection ‹Various combinations of transpositions with 2, 1 and 0 common elements›

lemma swap_id_common:" a ≠ c ⟹ b ≠ c ⟹
Fun.swap a b id ∘ Fun.swap a c id = Fun.swap b c id ∘ Fun.swap a b id"
by (simp add: fun_eq_iff Fun.swap_def)

lemma swap_id_common': "a ≠ b ⟹ a ≠ c ⟹
Fun.swap a c id ∘ Fun.swap b c id = Fun.swap b c id ∘ Fun.swap a b id"
by (simp add: fun_eq_iff Fun.swap_def)

lemma swap_id_independent: "a ≠ c ⟹ a ≠ d ⟹ b ≠ c ⟹ b ≠ d ⟹
Fun.swap a b id ∘ Fun.swap c d id = Fun.swap c d id ∘ Fun.swap a b id"
by (simp add: fun_eq_iff Fun.swap_def)

subsection ‹Permutations as transposition sequences›

inductive swapidseq :: "nat ⇒ ('a ⇒ 'a) ⇒ bool"
where
id[simp]: "swapidseq 0 id"
| comp_Suc: "swapidseq n p ⟹ a ≠ b ⟹ swapidseq (Suc n) (Fun.swap a b id ∘ p)"

declare id[unfolded id_def, simp]

definition "permutation p ⟷ (∃n. swapidseq n p)"

subsection ‹Some closure properties of the set of permutations, with lengths›

lemma permutation_id[simp]: "permutation id"
unfolding permutation_def by (rule exI[where x=0]) simp

declare permutation_id[unfolded id_def, simp]

lemma swapidseq_swap: "swapidseq (if a = b then 0 else 1) (Fun.swap a b id)"
apply clarsimp
using comp_Suc[of 0 id a b]
apply simp
done

lemma permutation_swap_id: "permutation (Fun.swap a b id)"
proof (cases "a = b")
case True
then show ?thesis by simp
next
case False
then show ?thesis
unfolding permutation_def
using swapidseq_swap[of a b] by blast
qed

lemma swapidseq_comp_add: "swapidseq n p ⟹ swapidseq m q ⟹ swapidseq (n + m) (p ∘ q)"
proof (induct n p arbitrary: m q rule: swapidseq.induct)
case (id m q)
then show ?case by simp
next
case (comp_Suc n p a b m q)
have eq: "Suc n + m = Suc (n + m)"
by arith
show ?case
apply (simp only: eq comp_assoc)
apply (rule swapidseq.comp_Suc)
using comp_Suc.hyps(2)[OF comp_Suc.prems] comp_Suc.hyps(3)
apply blast+
done
qed

lemma permutation_compose: "permutation p ⟹ permutation q ⟹ permutation (p ∘ q)"
unfolding permutation_def using swapidseq_comp_add[of _ p _ q] by metis

lemma swapidseq_endswap: "swapidseq n p ⟹ a ≠ b ⟹ swapidseq (Suc n) (p ∘ Fun.swap a b id)"
by (induct n p rule: swapidseq.induct)
(use swapidseq_swap[of a b] in ‹auto simp add: comp_assoc intro: swapidseq.comp_Suc›)

lemma swapidseq_inverse_exists: "swapidseq n p ⟹ ∃q. swapidseq n q ∧ p ∘ q = id ∧ q ∘ p = id"
proof (induct n p rule: swapidseq.induct)
case id
then show ?case
by (rule exI[where x=id]) simp
next
case (comp_Suc n p a b)
from comp_Suc.hyps obtain q where q: "swapidseq n q" "p ∘ q = id" "q ∘ p = id"
by blast
let ?q = "q ∘ Fun.swap a b id"
note H = comp_Suc.hyps
from swapidseq_swap[of a b] H(3) have *: "swapidseq 1 (Fun.swap a b id)"
by simp
from swapidseq_comp_add[OF q(1) *] have **: "swapidseq (Suc n) ?q"
by simp
have "Fun.swap a b id ∘ p ∘ ?q = Fun.swap a b id ∘ (p ∘ q) ∘ Fun.swap a b id"
by (simp add: o_assoc)
also have "… = id"
by (simp add: q(2))
finally have ***: "Fun.swap a b id ∘ p ∘ ?q = id" .
have "?q ∘ (Fun.swap a b id ∘ p) = q ∘ (Fun.swap a b id ∘ Fun.swap a b id) ∘ p"
by (simp only: o_assoc)
then have "?q ∘ (Fun.swap a b id ∘ p) = id"
by (simp add: q(3))
with ** *** show ?case
by blast
qed

lemma swapidseq_inverse:
assumes "swapidseq n p"
shows "swapidseq n (inv p)"
using swapidseq_inverse_exists[OF assms] inv_unique_comp[of p] by auto

lemma permutation_inverse: "permutation p ⟹ permutation (inv p)"
using permutation_def swapidseq_inverse by blast

subsection ‹The identity map only has even transposition sequences›

lemma symmetry_lemma:
assumes "⋀a b c d. P a b c d ⟹ P a b d c"
and "⋀a b c d. a ≠ b ⟹ c ≠ d ⟹
a = c ∧ b = d ∨ a = c ∧ b ≠ d ∨ a ≠ c ∧ b = d ∨ a ≠ c ∧ a ≠ d ∧ b ≠ c ∧ b ≠ d ⟹
P a b c d"
shows "⋀a b c d. a ≠ b ⟶ c ≠ d ⟶  P a b c d"
using assms by metis

lemma swap_general: "a ≠ b ⟹ c ≠ d ⟹
Fun.swap a b id ∘ Fun.swap c d id = id ∨
(∃x y z. x ≠ a ∧ y ≠ a ∧ z ≠ a ∧ x ≠ y ∧
Fun.swap a b id ∘ Fun.swap c d id = Fun.swap x y id ∘ Fun.swap a z id)"
proof -
assume neq: "a ≠ b" "c ≠ d"
have "a ≠ b ⟶ c ≠ d ⟶
(Fun.swap a b id ∘ Fun.swap c d id = id ∨
(∃x y z. x ≠ a ∧ y ≠ a ∧ z ≠ a ∧ x ≠ y ∧
Fun.swap a b id ∘ Fun.swap c d id = Fun.swap x y id ∘ Fun.swap a z id))"
apply (rule symmetry_lemma[where a=a and b=b and c=c and d=d])
apply (simp_all only: swap_commute)
apply (case_tac "a = c ∧ b = d")
apply (clarsimp simp only: swap_commute swap_id_idempotent)
apply (case_tac "a = c ∧ b ≠ d")
apply (rule disjI2)
apply (rule_tac x="b" in exI)
apply (rule_tac x="d" in exI)
apply (rule_tac x="b" in exI)
apply (clarsimp simp add: fun_eq_iff Fun.swap_def)
apply (case_tac "a ≠ c ∧ b = d")
apply (rule disjI2)
apply (rule_tac x="c" in exI)
apply (rule_tac x="d" in exI)
apply (rule_tac x="c" in exI)
apply (clarsimp simp add: fun_eq_iff Fun.swap_def)
apply (rule disjI2)
apply (rule_tac x="c" in exI)
apply (rule_tac x="d" in exI)
apply (rule_tac x="b" in exI)
apply (clarsimp simp add: fun_eq_iff Fun.swap_def)
done
with neq show ?thesis by metis
qed

lemma swapidseq_id_iff[simp]: "swapidseq 0 p ⟷ p = id"
using swapidseq.cases[of 0 p "p = id"] by auto

lemma swapidseq_cases: "swapidseq n p ⟷
n = 0 ∧ p = id ∨ (∃a b q m. n = Suc m ∧ p = Fun.swap a b id ∘ q ∧ swapidseq m q ∧ a ≠ b)"
apply (rule iffI)
apply (erule swapidseq.cases[of n p])
apply simp
apply (rule disjI2)
apply (rule_tac x= "a" in exI)
apply (rule_tac x= "b" in exI)
apply (rule_tac x= "pa" in exI)
apply (rule_tac x= "na" in exI)
apply simp
apply auto
apply (rule comp_Suc, simp_all)
done

lemma fixing_swapidseq_decrease:
assumes "swapidseq n p"
and "a ≠ b"
and "(Fun.swap a b id ∘ p) a = a"
shows "n ≠ 0 ∧ swapidseq (n - 1) (Fun.swap a b id ∘ p)"
using assms
proof (induct n arbitrary: p a b)
case 0
then show ?case
by (auto simp add: Fun.swap_def fun_upd_def)
next
case (Suc n p a b)
from Suc.prems(1) swapidseq_cases[of "Suc n" p]
obtain c d q m where
cdqm: "Suc n = Suc m" "p = Fun.swap c d id ∘ q" "swapidseq m q" "c ≠ d" "n = m"
by auto
consider "Fun.swap a b id ∘ Fun.swap c d id = id"
| x y z where "x ≠ a" "y ≠ a" "z ≠ a" "x ≠ y"
"Fun.swap a b id ∘ Fun.swap c d id = Fun.swap x y id ∘ Fun.swap a z id"
using swap_general[OF Suc.prems(2) cdqm(4)] by metis
then show ?case
proof cases
case 1
then show ?thesis
by (simp only: cdqm o_assoc) (simp add: cdqm)
next
case prems: 2
then have az: "a ≠ z"
by simp
from prems have *: "(Fun.swap x y id ∘ h) a = a ⟷ h a = a" for h
by (simp add: Fun.swap_def)
from cdqm(2) have "Fun.swap a b id ∘ p = Fun.swap a b id ∘ (Fun.swap c d id ∘ q)"
by simp
then have "Fun.swap a b id ∘ p = Fun.swap x y id ∘ (Fun.swap a z id ∘ q)"
by (simp add: o_assoc prems)
then have "(Fun.swap a b id ∘ p) a = (Fun.swap x y id ∘ (Fun.swap a z id ∘ q)) a"
by simp
then have "(Fun.swap x y id ∘ (Fun.swap a z id ∘ q)) a = a"
unfolding Suc by metis
then have "(Fun.swap a z id ∘ q) a = a"
by (simp only: *)
from Suc.hyps[OF cdqm(3)[ unfolded cdqm(5)[symmetric]] az this]
have **: "swapidseq (n - 1) (Fun.swap a z id ∘ q)" "n ≠ 0"
by blast+
from ‹n ≠ 0› have ***: "Suc n - 1 = Suc (n - 1)"
by auto
show ?thesis
apply (simp only: cdqm(2) prems o_assoc ***)
apply (simp only: Suc_not_Zero simp_thms comp_assoc)
apply (rule comp_Suc)
using ** prems
apply blast+
done
qed
qed

lemma swapidseq_identity_even:
assumes "swapidseq n (id :: 'a ⇒ 'a)"
shows "even n"
using ‹swapidseq n id›
proof (induct n rule: nat_less_induct)
case H: (1 n)
consider "n = 0"
| a b :: 'a and q m where "n = Suc m" "id = Fun.swap a b id ∘ q" "swapidseq m q" "a ≠ b"
using H(2)[unfolded swapidseq_cases[of n id]] by auto
then show ?case
proof cases
case 1
then show ?thesis by presburger
next
case h: 2
from fixing_swapidseq_decrease[OF h(3,4), unfolded h(2)[symmetric]]
have m: "m ≠ 0" "swapidseq (m - 1) (id :: 'a ⇒ 'a)"
by auto
from h m have mn: "m - 1 < n"
by arith
from H(1)[rule_format, OF mn m(2)] h(1) m(1) show ?thesis
by presburger
qed
qed

subsection ‹Therefore we have a welldefined notion of parity›

definition "evenperm p = even (SOME n. swapidseq n p)"

lemma swapidseq_even_even:
assumes m: "swapidseq m p"
and n: "swapidseq n p"
shows "even m ⟷ even n"
proof -
from swapidseq_inverse_exists[OF n] obtain q where q: "swapidseq n q" "p ∘ q = id" "q ∘ p = id"
by blast
from swapidseq_identity_even[OF swapidseq_comp_add[OF m q(1), unfolded q]] show ?thesis
by arith
qed

lemma evenperm_unique:
assumes p: "swapidseq n p"
and n:"even n = b"
shows "evenperm p = b"
unfolding n[symmetric] evenperm_def
apply (rule swapidseq_even_even[where p = p])
apply (rule someI[where x = n])
using p
apply blast+
done

subsection ‹And it has the expected composition properties›

lemma evenperm_id[simp]: "evenperm id = True"
by (rule evenperm_unique[where n = 0]) simp_all

lemma evenperm_swap: "evenperm (Fun.swap a b id) = (a = b)"
by (rule evenperm_unique[where n="if a = b then 0 else 1"]) (simp_all add: swapidseq_swap)

lemma evenperm_comp:
assumes "permutation p" "permutation q"
shows "evenperm (p ∘ q) ⟷ evenperm p = evenperm q"
proof -
from assms obtain n m where n: "swapidseq n p" and m: "swapidseq m q"
unfolding permutation_def by blast
have "even (n + m) ⟷ (even n ⟷ even m)"
by arith
from evenperm_unique[OF n refl] evenperm_unique[OF m refl]
and evenperm_unique[OF swapidseq_comp_add[OF n m] this] show ?thesis
by blast
qed

lemma evenperm_inv:
assumes "permutation p"
shows "evenperm (inv p) = evenperm p"
proof -
from assms obtain n where n: "swapidseq n p"
unfolding permutation_def by blast
show ?thesis
by (rule evenperm_unique[OF swapidseq_inverse[OF n] evenperm_unique[OF n refl, symmetric]])
qed

subsection ‹A more abstract characterization of permutations›

lemma bij_iff: "bij f ⟷ (∀x. ∃!y. f y = x)"
unfolding bij_def inj_def surj_def
apply auto
apply metis
apply metis
done

lemma permutation_bijective:
assumes "permutation p"
shows "bij p"
proof -
from assms obtain n where n: "swapidseq n p"
unfolding permutation_def by blast
from swapidseq_inverse_exists[OF n] obtain q where q: "swapidseq n q" "p ∘ q = id" "q ∘ p = id"
by blast
then show ?thesis
unfolding bij_iff
apply (auto simp add: fun_eq_iff)
apply metis
done
qed

lemma permutation_finite_support:
assumes "permutation p"
shows "finite {x. p x ≠ x}"
proof -
from assms obtain n where "swapidseq n p"
unfolding permutation_def by blast
then show ?thesis
proof (induct n p rule: swapidseq.induct)
case id
then show ?case by simp
next
case (comp_Suc n p a b)
let ?S = "insert a (insert b {x. p x ≠ x})"
from comp_Suc.hyps(2) have *: "finite ?S"
by simp
from ‹a ≠ b› have **: "{x. (Fun.swap a b id ∘ p) x ≠ x} ⊆ ?S"
by (auto simp: Fun.swap_def)
show ?case
by (rule finite_subset[OF ** *])
qed
qed

lemma permutation_lemma:
assumes "finite S"
and "bij p"
and "∀x. x∉ S ⟶ p x = x"
shows "permutation p"
using assms
proof (induct S arbitrary: p rule: finite_induct)
case empty
then show ?case
by simp
next
case (insert a F p)
let ?r = "Fun.swap a (p a) id ∘ p"
let ?q = "Fun.swap a (p a) id ∘ ?r"
have *: "?r a = a"
by (simp add: Fun.swap_def)
from insert * have **: "∀x. x ∉ F ⟶ ?r x = x"
by (metis bij_pointE comp_apply id_apply insert_iff swap_apply(3))
have "bij ?r"
by (rule bij_swap_compose_bij[OF insert(4)])
have "permutation ?r"
by (rule insert(3)[OF ‹bij ?r› **])
then have "permutation ?q"
by (simp add: permutation_compose permutation_swap_id)
then show ?case
by (simp add: o_assoc)
qed

lemma permutation: "permutation p ⟷ bij p ∧ finite {x. p x ≠ x}"
(is "?lhs ⟷ ?b ∧ ?f")
proof
assume ?lhs
with permutation_bijective permutation_finite_support show "?b ∧ ?f"
by auto
next
assume "?b ∧ ?f"
then have "?f" "?b" by blast+
from permutation_lemma[OF this] show ?lhs
by blast
qed

lemma permutation_inverse_works:
assumes "permutation p"
shows "inv p ∘ p = id"
and "p ∘ inv p = id"
using permutation_bijective [OF assms] by (auto simp: bij_def inj_iff surj_iff)

lemma permutation_inverse_compose:
assumes p: "permutation p"
and q: "permutation q"
shows "inv (p ∘ q) = inv q ∘ inv p"
proof -
note ps = permutation_inverse_works[OF p]
note qs = permutation_inverse_works[OF q]
have "p ∘ q ∘ (inv q ∘ inv p) = p ∘ (q ∘ inv q) ∘ inv p"
by (simp add: o_assoc)
also have "… = id"
by (simp add: ps qs)
finally have *: "p ∘ q ∘ (inv q ∘ inv p) = id" .
have "inv q ∘ inv p ∘ (p ∘ q) = inv q ∘ (inv p ∘ p) ∘ q"
by (simp add: o_assoc)
also have "… = id"
by (simp add: ps qs)
finally have **: "inv q ∘ inv p ∘ (p ∘ q) = id" .
show ?thesis
by (rule inv_unique_comp[OF * **])
qed

subsection ‹Relation to ‹permutes››

lemma permutation_permutes: "permutation p ⟷ (∃S. finite S ∧ p permutes S)"
unfolding permutation permutes_def bij_iff[symmetric]
apply (rule iffI, clarify)
apply (rule exI[where x="{x. p x ≠ x}"])
apply simp
apply clarsimp
apply (rule_tac B="S" in finite_subset)
apply auto
done

subsection ‹Hence a sort of induction principle composing by swaps›

lemma permutes_induct: "finite S ⟹ P id ⟹
(⋀a b p. a ∈ S ⟹ b ∈ S ⟹ P p ⟹ P p ⟹ permutation p ⟹ P (Fun.swap a b id ∘ p)) ⟹
(⋀p. p permutes S ⟹ P p)"
proof (induct S rule: finite_induct)
case empty
then show ?case by auto
next
case (insert x F p)
let ?r = "Fun.swap x (p x) id ∘ p"
let ?q = "Fun.swap x (p x) id ∘ ?r"
have qp: "?q = p"
by (simp add: o_assoc)
from permutes_insert_lemma[OF insert.prems(3)] insert have Pr: "P ?r"
by blast
from permutes_in_image[OF insert.prems(3), of x]
have pxF: "p x ∈ insert x F"
by simp
have xF: "x ∈ insert x F"
by simp
have rp: "permutation ?r"
unfolding permutation_permutes
using insert.hyps(1) permutes_insert_lemma[OF insert.prems(3)]
by blast
from insert.prems(2)[OF xF pxF Pr Pr rp] qp show ?case
by (simp only:)
qed

subsection ‹Sign of a permutation as a real number›

definition "sign p = (if evenperm p then (1::int) else -1)"

lemma sign_nz: "sign p ≠ 0"
by (simp add: sign_def)

lemma sign_id: "sign id = 1"
by (simp add: sign_def)

lemma sign_inverse: "permutation p ⟹ sign (inv p) = sign p"
by (simp add: sign_def evenperm_inv)

lemma sign_compose: "permutation p ⟹ permutation q ⟹ sign (p ∘ q) = sign p * sign q"
by (simp add: sign_def evenperm_comp)

lemma sign_swap_id: "sign (Fun.swap a b id) = (if a = b then 1 else -1)"
by (simp add: sign_def evenperm_swap)

lemma sign_idempotent: "sign p * sign p = 1"
by (simp add: sign_def)

subsection ‹Permuting a list›

text ‹This function permutes a list by applying a permutation to the indices.›

definition permute_list :: "(nat ⇒ nat) ⇒ 'a list ⇒ 'a list"
where "permute_list f xs = map (λi. xs ! (f i)) [0..<length xs]"

lemma permute_list_map:
assumes "f permutes {..<length xs}"
shows "permute_list f (map g xs) = map g (permute_list f xs)"
using permutes_in_image[OF assms] by (auto simp: permute_list_def)

lemma permute_list_nth:
assumes "f permutes {..<length xs}" "i < length xs"
shows "permute_list f xs ! i = xs ! f i"
using permutes_in_image[OF assms(1)] assms(2)
by (simp add: permute_list_def)

lemma permute_list_Nil [simp]: "permute_list f [] = []"
by (simp add: permute_list_def)

lemma length_permute_list [simp]: "length (permute_list f xs) = length xs"
by (simp add: permute_list_def)

lemma permute_list_compose:
assumes "g permutes {..<length xs}"
shows "permute_list (f ∘ g) xs = permute_list g (permute_list f xs)"
using assms[THEN permutes_in_image] by (auto simp add: permute_list_def)

lemma permute_list_ident [simp]: "permute_list (λx. x) xs = xs"
by (simp add: permute_list_def map_nth)

lemma permute_list_id [simp]: "permute_list id xs = xs"
by (simp add: id_def)

lemma mset_permute_list [simp]:
fixes xs :: "'a list"
assumes "f permutes {..<length xs}"
shows "mset (permute_list f xs) = mset xs"
proof (rule multiset_eqI)
fix y :: 'a
from assms have [simp]: "f x < length xs ⟷ x < length xs" for x
using permutes_in_image[OF assms] by auto
have "count (mset (permute_list f xs)) y = card ((λi. xs ! f i) -` {y} ∩ {..<length xs})"
by (simp add: permute_list_def count_image_mset atLeast0LessThan)
also have "(λi. xs ! f i) -` {y} ∩ {..<length xs} = f -` {i. i < length xs ∧ y = xs ! i}"
by auto
also from assms have "card … = card {i. i < length xs ∧ y = xs ! i}"
by (intro card_vimage_inj) (auto simp: permutes_inj permutes_surj)
also have "… = count (mset xs) y"
by (simp add: count_mset length_filter_conv_card)
finally show "count (mset (permute_list f xs)) y = count (mset xs) y"
by simp
qed

lemma set_permute_list [simp]:
assumes "f permutes {..<length xs}"
shows "set (permute_list f xs) = set xs"
by (rule mset_eq_setD[OF mset_permute_list]) fact

lemma distinct_permute_list [simp]:
assumes "f permutes {..<length xs}"
shows "distinct (permute_list f xs) = distinct xs"
by (simp add: distinct_count_atmost_1 assms)

lemma permute_list_zip:
assumes "f permutes A" "A = {..<length xs}"
assumes [simp]: "length xs = length ys"
shows "permute_list f (zip xs ys) = zip (permute_list f xs) (permute_list f ys)"
proof -
from permutes_in_image[OF assms(1)] assms(2) have *: "f i < length ys ⟷ i < length ys" for i
by simp
have "permute_list f (zip xs ys) = map (λi. zip xs ys ! f i) [0..<length ys]"
by (simp_all add: permute_list_def zip_map_map)
also have "… = map (λ(x, y). (xs ! f x, ys ! f y)) (zip [0..<length ys] [0..<length ys])"
by (intro nth_equalityI) (simp_all add: *)
also have "… = zip (permute_list f xs) (permute_list f ys)"
by (simp_all add: permute_list_def zip_map_map)
finally show ?thesis .
qed

lemma map_of_permute:
assumes "σ permutes fst ` set xs"
shows "map_of xs ∘ σ = map_of (map (λ(x,y). (inv σ x, y)) xs)"
(is "_ = map_of (map ?f _)")
proof
from assms have "inj σ" "surj σ"
by (simp_all add: permutes_inj permutes_surj)
then show "(map_of xs ∘ σ) x = map_of (map ?f xs) x" for x
by (induct xs) (auto simp: inv_f_f surj_f_inv_f)
qed

subsection ‹More lemmas about permutations›

text ‹The following few lemmas were contributed by Lukas Bulwahn.›

lemma count_image_mset_eq_card_vimage:
assumes "finite A"
shows "count (image_mset f (mset_set A)) b = card {a ∈ A. f a = b}"
using assms
proof (induct A)
case empty
show ?case by simp
next
case (insert x F)
show ?case
proof (cases "f x = b")
case True
with insert.hyps
have "count (image_mset f (mset_set (insert x F))) b = Suc (card {a ∈ F. f a = f x})"
by auto
also from insert.hyps(1,2) have "… = card (insert x {a ∈ F. f a = f x})"
by simp
also from ‹f x = b› have "card (insert x {a ∈ F. f a = f x}) = card {a ∈ insert x F. f a = b}"
by (auto intro: arg_cong[where f="card"])
finally show ?thesis
using insert by auto
next
case False
then have "{a ∈ F. f a = b} = {a ∈ insert x F. f a = b}"
by auto
with insert False show ?thesis
by simp
qed
qed

― ‹Prove ‹image_mset_eq_implies_permutes› ...›
lemma image_mset_eq_implies_permutes:
fixes f :: "'a ⇒ 'b"
assumes "finite A"
and mset_eq: "image_mset f (mset_set A) = image_mset f' (mset_set A)"
obtains p where "p permutes A" and "∀x∈A. f x = f' (p x)"
proof -
from ‹finite A› have [simp]: "finite {a ∈ A. f a = (b::'b)}" for f b by auto
have "f ` A = f' ` A"
proof -
from ‹finite A› have "f ` A = f ` (set_mset (mset_set A))"
by simp
also have "… = f' ` set_mset (mset_set A)"
by (metis mset_eq multiset.set_map)
also from ‹finite A› have "… = f' ` A"
by simp
finally show ?thesis .
qed
have "∀b∈(f ` A). ∃p. bij_betw p {a ∈ A. f a = b} {a ∈ A. f' a = b}"
proof
fix b
from mset_eq have "count (image_mset f (mset_set A)) b = count (image_mset f' (mset_set A)) b"
by simp
with ‹finite A› have "card {a ∈ A. f a = b} = card {a ∈ A. f' a = b}"
by (simp add: count_image_mset_eq_card_vimage)
then show "∃p. bij_betw p {a∈A. f a = b} {a ∈ A. f' a = b}"
by (intro finite_same_card_bij) simp_all
qed
then have "∃p. ∀b∈f ` A. bij_betw (p b) {a ∈ A. f a = b} {a ∈ A. f' a = b}"
by (rule bchoice)
then obtain p where p: "∀b∈f ` A. bij_betw (p b) {a ∈ A. f a = b} {a ∈ A. f' a = b}" ..
define p' where "p' = (λa. if a ∈ A then p (f a) a else a)"
have "p' permutes A"
proof (rule bij_imp_permutes)
have "disjoint_family_on (λi. {a ∈ A. f' a = i}) (f ` A)"
by (auto simp: disjoint_family_on_def)
moreover
have "bij_betw (λa. p (f a) a) {a ∈ A. f a = b} {a ∈ A. f' a = b}" if "b ∈ f ` A" for b
using p that by (subst bij_betw_cong[where g="p b"]) auto
ultimately
have "bij_betw (λa. p (f a) a) (⋃b∈f ` A. {a ∈ A. f a = b}) (⋃b∈f ` A. {a ∈ A. f' a = b})"
by (rule bij_betw_UNION_disjoint)
moreover have "(⋃b∈f ` A. {a ∈ A. f a = b}) = A"
by auto
moreover from ‹f ` A = f' ` A› have "(⋃b∈f ` A. {a ∈ A. f' a = b}) = A"
by auto
ultimately show "bij_betw p' A A"
unfolding p'_def by (subst bij_betw_cong[where g="(λa. p (f a) a)"]) auto
next
show "⋀x. x ∉ A ⟹ p' x = x"
by (simp add: p'_def)
qed
moreover from p have "∀x∈A. f x = f' (p' x)"
unfolding p'_def using bij_betwE by fastforce
ultimately show ?thesis ..
qed

lemma mset_set_upto_eq_mset_upto: "mset_set {..<n} = mset [0..<n]"
by (induct n) (auto simp: add.commute lessThan_Suc)

― ‹... and derive the existing property:›
lemma mset_eq_permutation:
fixes xs ys :: "'a list"
assumes mset_eq: "mset xs = mset ys"
obtains p where "p permutes {..<length ys}" "permute_list p ys = xs"
proof -
from mset_eq have length_eq: "length xs = length ys"
by (rule mset_eq_length)
have "mset_set {..<length ys} = mset [0..<length ys]"
by (rule mset_set_upto_eq_mset_upto)
with mset_eq length_eq have "image_mset (λi. xs ! i) (mset_set {..<length ys}) =
image_mset (λi. ys ! i) (mset_set {..<length ys})"
by (metis map_nth mset_map)
from image_mset_eq_implies_permutes[OF _ this]
obtain p where p: "p permutes {..<length ys}" and "∀i∈{..<length ys}. xs ! i = ys ! (p i)"
by auto
with length_eq have "permute_list p ys = xs"
by (auto intro!: nth_equalityI simp: permute_list_nth)
with p show thesis ..
qed

lemma permutes_natset_le:
fixes S :: "'a::wellorder set"
assumes "p permutes S"
and "∀i ∈ S. p i ≤ i"
shows "p = id"
proof -
have "p n = n" for n
using assms
proof (induct n arbitrary: S rule: less_induct)
case (less n)
show ?case
proof (cases "n ∈ S")
case False
with less(2) show ?thesis
unfolding permutes_def by metis
next
case True
with less(3) have "p n < n ∨ p n = n"
by auto
then show ?thesis
proof
assume "p n < n"
with less have "p (p n) = p n"
by metis
with permutes_inj[OF less(2)] have "p n = n"
unfolding inj_def by blast
with ‹p n < n› have False
by simp
then show ?thesis ..
qed
qed
qed
then show ?thesis by (auto simp: fun_eq_iff)
qed

lemma permutes_natset_ge:
fixes S :: "'a::wellorder set"
assumes p: "p permutes S"
and le: "∀i ∈ S. p i ≥ i"
shows "p = id"
proof -
have "i ≥ inv p i" if "i ∈ S" for i
proof -
from that permutes_in_image[OF permutes_inv[OF p]] have "inv p i ∈ S"
by simp
with le have "p (inv p i) ≥ inv p i"
by blast
with permutes_inverses[OF p] show ?thesis
by simp
qed
then have "∀i∈S. inv p i ≤ i"
by blast
from permutes_natset_le[OF permutes_inv[OF p] this] have "inv p = inv id"
by simp
then show ?thesis
apply (subst permutes_inv_inv[OF p, symmetric])
apply (rule inv_unique_comp)
apply simp_all
done
qed

lemma image_inverse_permutations: "{inv p |p. p permutes S} = {p. p permutes S}"
apply (rule set_eqI)
apply auto
using permutes_inv_inv permutes_inv
apply auto
apply (rule_tac x="inv x" in exI)
apply auto
done

lemma image_compose_permutations_left:
assumes "q permutes S"
shows "{q ∘ p |p. p permutes S} = {p. p permutes S}"
apply (rule set_eqI)
apply auto
apply (rule permutes_compose)
using assms
apply auto
apply (rule_tac x = "inv q ∘ x" in exI)
apply (simp add: o_assoc permutes_inv permutes_compose permutes_inv_o)
done

lemma image_compose_permutations_right:
assumes "q permutes S"
shows "{p ∘ q | p. p permutes S} = {p . p permutes S}"
apply (rule set_eqI)
apply auto
apply (rule permutes_compose)
using assms
apply auto
apply (rule_tac x = "x ∘ inv q" in exI)
apply (simp add: o_assoc permutes_inv permutes_compose permutes_inv_o comp_assoc)
done

lemma permutes_in_seg: "p permutes {1 ..n} ⟹ i ∈ {1..n} ⟹ 1 ≤ p i ∧ p i ≤ n"
by (simp add: permutes_def) metis

lemma sum_permutations_inverse: "sum f {p. p permutes S} = sum (λp. f(inv p)) {p. p permutes S}"
(is "?lhs = ?rhs")
proof -
let ?S = "{p . p permutes S}"
have *: "inj_on inv ?S"
proof (auto simp add: inj_on_def)
fix q r
assume q: "q permutes S"
and r: "r permutes S"
and qr: "inv q = inv r"
then have "inv (inv q) = inv (inv r)"
by simp
with permutes_inv_inv[OF q] permutes_inv_inv[OF r] show "q = r"
by metis
qed
have **: "inv ` ?S = ?S"
using image_inverse_permutations by blast
have ***: "?rhs = sum (f ∘ inv) ?S"
by (simp add: o_def)
from sum.reindex[OF *, of f] show ?thesis
by (simp only: ** ***)
qed

lemma setum_permutations_compose_left:
assumes q: "q permutes S"
shows "sum f {p. p permutes S} = sum (λp. f(q ∘ p)) {p. p permutes S}"
(is "?lhs = ?rhs")
proof -
let ?S = "{p. p permutes S}"
have *: "?rhs = sum (f ∘ ((∘) q)) ?S"
by (simp add: o_def)
have **: "inj_on ((∘) q) ?S"
proof (auto simp add: inj_on_def)
fix p r
assume "p permutes S"
and r: "r permutes S"
and rp: "q ∘ p = q ∘ r"
then have "inv q ∘ q ∘ p = inv q ∘ q ∘ r"
by (simp add: comp_assoc)
with permutes_inj[OF q, unfolded inj_iff] show "p = r"
by simp
qed
have "((∘) q) ` ?S = ?S"
using image_compose_permutations_left[OF q] by auto
with * sum.reindex[OF **, of f] show ?thesis
by (simp only:)
qed

lemma sum_permutations_compose_right:
assumes q: "q permutes S"
shows "sum f {p. p permutes S} = sum (λp. f(p ∘ q)) {p. p permutes S}"
(is "?lhs = ?rhs")
proof -
let ?S = "{p. p permutes S}"
have *: "?rhs = sum (f ∘ (λp. p ∘ q)) ?S"
by (simp add: o_def)
have **: "inj_on (λp. p ∘ q) ?S"
proof (auto simp add: inj_on_def)
fix p r
assume "p permutes S"
and r: "r permutes S"
and rp: "p ∘ q = r ∘ q"
then have "p ∘ (q ∘ inv q) = r ∘ (q ∘ inv q)"
by (simp add: o_assoc)
with permutes_surj[OF q, unfolded surj_iff] show "p = r"
by simp
qed
from image_compose_permutations_right[OF q] have "(λp. p ∘ q) ` ?S = ?S"
by auto
with * sum.reindex[OF **, of f] show ?thesis
by (simp only:)
qed

subsection ‹Sum over a set of permutations (could generalize to iteration)›

lemma sum_over_permutations_insert:
assumes fS: "finite S"
and aS: "a ∉ S"
shows "sum f {p. p permutes (insert a S)} =
sum (λb. sum (λq. f (Fun.swap a b id ∘ q)) {p. p permutes S}) (insert a S)"
proof -
have *: "⋀f a b. (λ(b, p). f (Fun.swap a b id ∘ p)) = f ∘ (λ(b,p). Fun.swap a b id ∘ p)"
by (simp add: fun_eq_iff)
have **: "⋀P Q. {(a, b). a ∈ P ∧ b ∈ Q} = P × Q"
by blast
show ?thesis
unfolding * ** sum.cartesian_product permutes_insert
proof (rule sum.reindex)
let ?f = "(λ(b, y). Fun.swap a b id ∘ y)"
let ?P = "{p. p permutes S}"
{
fix b c p q
assume b: "b ∈ insert a S"
assume c: "c ∈ insert a S"
assume p: "p permutes S"
assume q: "q permutes S"
assume eq: "Fun.swap a b id ∘ p = Fun.swap a c id ∘ q"
from p q aS have pa: "p a = a" and qa: "q a = a"
unfolding permutes_def by metis+
from eq have "(Fun.swap a b id ∘ p) a  = (Fun.swap a c id ∘ q) a"
by simp
then have bc: "b = c"
by (simp add: permutes_def pa qa o_def fun_upd_def Fun.swap_def id_def
cong del: if_weak_cong split: if_split_asm)
from eq[unfolded bc] have "(λp. Fun.swap a c id ∘ p) (Fun.swap a c id ∘ p) =
(λp. Fun.swap a c id ∘ p) (Fun.swap a c id ∘ q)" by simp
then have "p = q"
unfolding o_assoc swap_id_idempotent by simp
with bc have "b = c ∧ p = q"
by blast
}
then show "inj_on ?f (insert a S × ?P)"
unfolding inj_on_def by clarify metis
qed
qed

subsection ‹Constructing permutations from association lists›

definition list_permutes :: "('a × 'a) list ⇒ 'a set ⇒ bool"
where "list_permutes xs A ⟷
set (map fst xs) ⊆ A ∧
set (map snd xs) = set (map fst xs) ∧
distinct (map fst xs) ∧
distinct (map snd xs)"

lemma list_permutesI [simp]:
assumes "set (map fst xs) ⊆ A" "set (map snd xs) = set (map fst xs)" "distinct (map fst xs)"
shows "list_permutes xs A"
proof -
from assms(2,3) have "distinct (map snd xs)"
by (intro card_distinct) (simp_all add: distinct_card del: set_map)
with assms show ?thesis
by (simp add: list_permutes_def)
qed

definition permutation_of_list :: "('a × 'a) list ⇒ 'a ⇒ 'a"
where "permutation_of_list xs x = (case map_of xs x of None ⇒ x | Some y ⇒ y)"

lemma permutation_of_list_Cons:
"permutation_of_list ((x, y) # xs) x' = (if x = x' then y else permutation_of_list xs x')"
by (simp add: permutation_of_list_def)

fun inverse_permutation_of_list :: "('a × 'a) list ⇒ 'a ⇒ 'a"
where
"inverse_permutation_of_list [] x = x"
| "inverse_permutation_of_list ((y, x') # xs) x =
(if x = x' then y else inverse_permutation_of_list xs x)"

declare inverse_permutation_of_list.simps [simp del]

lemma inj_on_map_of:
assumes "distinct (map snd xs)"
shows "inj_on (map_of xs) (set (map fst xs))"
proof (rule inj_onI)
fix x y
assume xy: "x ∈ set (map fst xs)" "y ∈ set (map fst xs)"
assume eq: "map_of xs x = map_of xs y"
from xy obtain x' y' where x'y': "map_of xs x = Some x'" "map_of xs y = Some y'"
by (cases "map_of xs x"; cases "map_of xs y") (simp_all add: map_of_eq_None_iff)
moreover from x'y' have *: "(x, x') ∈ set xs" "(y, y') ∈ set xs"
by (force dest: map_of_SomeD)+
moreover from * eq x'y' have "x' = y'"
by simp
ultimately show "x = y"
using assms by (force simp: distinct_map dest: inj_onD[of _ _ "(x,x')" "(y,y')"])
qed

lemma inj_on_the: "None ∉ A ⟹ inj_on the A"
by (auto simp: inj_on_def option.the_def split: option.splits)

lemma inj_on_map_of':
assumes "distinct (map snd xs)"
shows "inj_on (the ∘ map_of xs) (set (map fst xs))"
by (intro comp_inj_on inj_on_map_of assms inj_on_the)
(force simp: eq_commute[of None] map_of_eq_None_iff)

lemma image_map_of:
assumes "distinct (map fst xs)"
shows "map_of xs ` set (map fst xs) = Some ` set (map snd xs)"
using assms by (auto simp: rev_image_eqI)

lemma the_Some_image [simp]: "the ` Some ` A = A"
by (subst image_image) simp

lemma image_map_of':
assumes "distinct (map fst xs)"
shows "(the ∘ map_of xs) ` set (map fst xs) = set (map snd xs)"
by (simp only: image_comp [symmetric] image_map_of assms the_Some_image)

lemma permutation_of_list_permutes [simp]:
assumes "list_permutes xs A"
shows "permutation_of_list xs permutes A"
(is "?f permutes _")
proof (rule permutes_subset[OF bij_imp_permutes])
from assms show "set (map fst xs) ⊆ A"
by (simp add: list_permutes_def)
from assms have "inj_on (the ∘ map_of xs) (set (map fst xs))" (is ?P)
by (intro inj_on_map_of') (simp_all add: list_permutes_def)
also have "?P ⟷ inj_on ?f (set (map fst xs))"
by (intro inj_on_cong)
(auto simp: permutation_of_list_def map_of_eq_None_iff split: option.splits)
finally have "bij_betw ?f (set (map fst xs)) (?f ` set (map fst xs))"
by (rule inj_on_imp_bij_betw)
also from assms have "?f ` set (map fst xs) = (the ∘ map_of xs) ` set (map fst xs)"
by (intro image_cong refl)
(auto simp: permutation_of_list_def map_of_eq_None_iff split: option.splits)
also from assms have "… = set (map fst xs)"
by (subst image_map_of') (simp_all add: list_permutes_def)
finally show "bij_betw ?f (set (map fst xs)) (set (map fst xs))" .
qed (force simp: permutation_of_list_def dest!: map_of_SomeD split: option.splits)+

lemma eval_permutation_of_list [simp]:
"permutation_of_list [] x = x"
"x = x' ⟹ permutation_of_list ((x',y)#xs) x = y"
"x ≠ x' ⟹ permutation_of_list ((x',y')#xs) x = permutation_of_list xs x"
by (simp_all add: permutation_of_list_def)

lemma eval_inverse_permutation_of_list [simp]:
"inverse_permutation_of_list [] x = x"
"x = x' ⟹ inverse_permutation_of_list ((y,x')#xs) x = y"
"x ≠ x' ⟹ inverse_permutation_of_list ((y',x')#xs) x = inverse_permutation_of_list xs x"
by (simp_all add: inverse_permutation_of_list.simps)

lemma permutation_of_list_id: "x ∉ set (map fst xs) ⟹ permutation_of_list xs x = x"
by (induct xs) (auto simp: permutation_of_list_Cons)

lemma permutation_of_list_unique':
"distinct (map fst xs) ⟹ (x, y) ∈ set xs ⟹ permutation_of_list xs x = y"
by (induct xs) (force simp: permutation_of_list_Cons)+

lemma permutation_of_list_unique:
"list_permutes xs A ⟹ (x, y) ∈ set xs ⟹ permutation_of_list xs x = y"
by (intro permutation_of_list_unique') (simp_all add: list_permutes_def)

lemma inverse_permutation_of_list_id:
"x ∉ set (map snd xs) ⟹ inverse_permutation_of_list xs x = x"
by (induct xs) auto

lemma inverse_permutation_of_list_unique':
"distinct (map snd xs) ⟹ (x, y) ∈ set xs ⟹ inverse_permutation_of_list xs y = x"
by (induct xs) (force simp: inverse_permutation_of_list.simps)+

lemma inverse_permutation_of_list_unique:
"list_permutes xs A ⟹ (x,y) ∈ set xs ⟹ inverse_permutation_of_list xs y = x"
by (intro inverse_permutation_of_list_unique') (simp_all add: list_permutes_def)

lemma inverse_permutation_of_list_correct:
fixes A :: "'a set"
assumes "list_permutes xs A"
shows "inverse_permutation_of_list xs = inv (permutation_of_list xs)"
proof (rule ext, rule sym, subst permutes_inv_eq)
from assms show "permutation_of_list xs permutes A"
by simp
show "permutation_of_list xs (inverse_permutation_of_list xs x) = x" for x
proof (cases "x ∈ set (map snd xs)")
case True
then obtain y where "(y, x) ∈ set xs" by auto
with assms show ?thesis
by (simp add: inverse_permutation_of_list_unique permutation_of_list_unique)
next
case False
with assms show ?thesis
by (auto simp: list_permutes_def inverse_permutation_of_list_id permutation_of_list_id)
qed
qed

end
```