Well-Quasi-Orders

Christian Sternagel*

April 18, 2024

Abstract

Based on Isabelle/HOL's type class for preorders, we introduce a type class for well-quasi-orders (wqo) which is characterized by the absence of "bad" sequences (our proofs are along the lines of the proof of Nash-Williams [1], from which we also borrow terminology). Our main results are instantiations for the product type, the list type, and a type of finite trees, which (almost) directly follow from our proofs of (1) Dickson's Lemma, (2) Higman's Lemma, and (3) Kruskal's Tree Theorem. More concretely:

- 1. If the sets A and B are work then their Cartesian product is work.
- 2. If the set A is wqo then the set of finite lists over A is wqo.
- 3. If the set A is word then the set of finite trees over A is word.

Contents

1	Infinite Sequences	2	
	1.1 Lexicographic Order on Infinite Sequences	3	
2	Minimal elements of sets w.r.t. a well-founded and transi-	4	
	tive relation	4	
3	Enumerations of Well-Ordered Sets in Increasing Order		
4	The Almost-Full Property	8	
	4.1 Basic Definitions and Facts	9	
	4.2 An equivalent inductive definition	10	
	4.3 Special Case: Finite Sets	16	
	4.4 Further Results	17	
5	Constructing Minimal Bad Sequences	20	

^{*}The research was funded by the Austrian Science Fund (FWF): J3202.

6	ΑF	Proof of Higman's Lemma via Open Induction	23		
	6.1	Some facts about the suffix relation	23		
	6.2	Lexicographic Order on Infinite Sequences	24		
7	Aln	nost-Full Relations	29		
	7.1	Adding a Bottom Element to a Set	29		
	7.2	Adding a Bottom Element to an Almost-Full Set	30		
	7.3	Disjoint Union of Almost-Full Sets	30		
	7.4	Dickson's Lemma for Almost-Full Relations	32		
	7.5	Higman's Lemma for Almost-Full Relations	33		
	7.6	Natural Numbers	34		
8	We	ll-Quasi-Orders	35		
	8.1	Basic Definitions	35		
	8.2	Equivalent Definitions	35		
	8.3	A Type Class for Well-Quasi-Orders	37		
	8.4	Dickson's Lemma	38		
	8.5	Higman's Lemma	39		
9	Krı	ıskal's Tree Theorem	41		
10	Inst	ances of Well-Quasi-Orders	48		
	10.1	The Option Type is Well-Quasi-Ordered	48		
	10.2	The Sum Type is Well-Quasi-Ordered	48		
	10.3	Pairs are Well-Quasi-Ordered	48		
	10.4	Lists are Well-Quasi-Ordered	48		
11	11 Multiset Extension of Orders (as Binary Predicates)				
12	12 Multiset Extension Preserves Well-Quasi-Orders				

1 Infinite Sequences

Some useful constructions on and facts about infinite sequences.

theory Infinite-Sequences imports Main begin

The set of all infinite sequences over elements from A.

definition SEQ $A = \{f:: nat \Rightarrow 'a. \forall i. f i \in A\}$

lemma SEQ-iff [iff]: $f \in SEQ \ A \iff (\forall i. f i \in A)$ **by** (auto simp: SEQ-def) The i-th "column" of a set B of infinite sequences.

definition *ith* B $i = \{f i \mid f. f \in B\}$

lemma *ithI* [*intro*]: $f \in B \Longrightarrow f \ i = x \Longrightarrow x \in ith B \ i$ **by** (*auto simp*: *ith-def*)

lemma *ithE* [*elim*]: $[x \in ith B i; \land f. [f \in B; f i = x]] \implies Q] \implies Q$ **by** (*auto simp*: *ith-def*)

lemma *ith-conv*: $x \in ith \ B \ i \longleftrightarrow (\exists f \in B. \ x = f \ i)$ by *auto*

The restriction of a set B of sequences to sequences that are equal to a given sequence f up to position i.

definition eq-upto :: $(nat \Rightarrow 'a)$ set $\Rightarrow (nat \Rightarrow 'a) \Rightarrow nat \Rightarrow (nat \Rightarrow 'a)$ set **where** eq-upto $B f i = \{g \in B. \forall j < i. f j = g j\}$

lemma eq-uptoI [intro]: $[g \in B; \Lambda j. j < i \Longrightarrow fj = gj] \Longrightarrow g \in eq$ -upto B f i **by** (auto simp: eq-upto-def)

lemma eq-uptoE [elim]: $\llbracket g \in eq$ -upto $B f i; \llbracket g \in B; \Lambda j. j < i \Longrightarrow f j = g j \rrbracket \Longrightarrow Q \rrbracket \Longrightarrow Q$ **by** (auto simp: eq-upto-def)

lemma eq-upto-Suc: $\llbracket g \in eq$ -upto $B f i; g i = f i \rrbracket \implies g \in eq$ -upto B f (Suc i)**by** (auto simp: eq-upto-def less-Suc-eq)

lemma eq-upto-0 [simp]: eq-upto B f 0 = B**by** (auto simp: eq-upto-def)

lemma eq-upto-cong [fundef-cong]: **assumes** $\bigwedge j$. $j < i \implies f j = g j$ and B = C **shows** eq-upto B f i = eq-upto C g i**using** assms by (auto simp: eq-upto-def)

1.1 Lexicographic Order on Infinite Sequences

definition LEX $P f g \leftrightarrow (\exists i::nat. P (f i) (g i) \land (\forall j < i. f j = g j))$ **abbreviation** LEXEQ $P \equiv (LEX P)^{==}$

lemma LEX-imp-not-LEX: assumes LEX P f g

```
and [dest]: \bigwedge x \ y \ z. \ P \ x \ y \Longrightarrow P \ y \ z \Longrightarrow P \ x \ z
   and [simp]: \bigwedge x. \neg P x x
 shows \neg LEX P g f
proof -
  { fix i j :: nat
   assume P(f i)(g i) and \forall k < i. f k = g k
     and P(g j)(f j) and \forall k < j. g k = f k
   then have False by (cases i < j) (auto simp: not-less dest!: le-imp-less-or-eq)
}
  then show \neg LEX P g f using (LEX P f g) unfolding LEX-def by blast
qed
lemma LEX-cases:
 assumes LEX P f g
 obtains (eq) f = g \mid (neq) \ k where \forall i < k. \ f \ i = g \ i and P(f \ k) \ (g \ k)
using assms by (auto simp: LEX-def)
lemma LEX-imp-less:
 assumes \forall x \in A. \neg P x x and f \in SEQ A \lor g \in SEQ A
```

```
and LEX P f g and \forall i < k. f i = g i and f k \neq g k
shows P (f k) (g k)
using assms by (auto elim!: LEX-cases) (metis linorder-neqE-nat)+
```

 \mathbf{end}

2 Minimal elements of sets w.r.t. a well-founded and transitive relation

```
theory Minimal-Elements
imports
  Infinite-Sequences
  Open-Induction. Restricted-Predicates
begin
locale minimal-element =
 fixes P A
 assumes po: po-on P A
   and wf: wfp-on P A
begin
definition min-elt B = (SOME x. x \in B \land (\forall y \in A. P \ y \ x \longrightarrow y \notin B))
lemma minimal:
 assumes x \in A and Q x
 \textbf{shows} \ \exists \ y \in A. \ P^{==} \ y \ x \ \land \ Q \ y \ \land \ (\forall \ z \in A. \ P \ z \ y \longrightarrow \neg \ Q \ z)
using wf and assms
proof (induction rule: wfp-on-induct)
  case (less x)
```

```
then show ?case
 proof (cases \forall y \in A. P \ y \ x \longrightarrow \neg Q \ y)
   case True
   with less show ?thesis by blast
 next
   case False
   then obtain y where y \in A and P y x and Q y by blast
   with less show ?thesis
      using po [THEN po-on-imp-transp-on, unfolded transp-on-def, rule-format,
of - y x] by blast
 qed
qed
lemma min-elt-ex:
 assumes B \subseteq A and B \neq \{\}
 shows \exists x. x \in B \land (\forall y \in A. P \ y \ x \longrightarrow y \notin B)
using assms using minimal [of - \lambda x. x \in B] by auto
lemma min-elt-mem:
 assumes B \subseteq A and B \neq \{\}
 shows min-elt B \in B
using some I-ex [OF min-elt-ex [OF assms]] by (auto simp: min-elt-def)
lemma min-elt-minimal:
 assumes *: B \subseteq A \ B \neq \{\}
 assumes y \in A and P y (min-elt B)
 shows y \notin B
using some I-ex [OF min-elt-ex [OF *]] and assms by (auto simp: min-elt-def)
A lexicographically minimal sequence w.r.t. a given set of sequences C
fun lexmin
where
 lexmin: lexmin C i = min-elt (ith (eq-upto C (lexmin C) i) i)
declare lexmin [simp del]
lemma eq-upto-lexmin-non-empty:
 assumes C \subseteq SEQ A and C \neq \{\}
 shows eq-up to C (lexmin C) i \neq \{\}
proof (induct i)
 case \theta
 show ?case using assms by auto
next
 let ?A = \lambda i. ith (eq-upto C (lexmin C) i) i
 case (Suc i)
 then have ?A \ i \neq \{\} by force
 moreover have equipto C (lexin C) i \subseteq equipto C (lexin C) 0 by auto
 ultimately have ?A i \subseteq A and ?A i \neq \{\} using assms by (auto simp: ith-def)
 from min-elt-mem [OF this, folded lexmin]
   obtain f where f \in eq-upto C (lexmin C) (Suc i) by (auto dest: eq-upto-Suc)
```

then show ?case by blast qed **lemma** *lexmin-SEQ-mem*: assumes $C \subseteq SEQ A$ and $C \neq \{\}$ shows lexmin $C \in SEQ A$ proof -{ fix ilet ?X = ith (eq.upto C (lexmin C) i) ihave $?X \subseteq A$ using assms by (auto simp: ith-def) **moreover have** $?X \neq \{\}$ using eq-upto-lexmin-non-empty [OF assms] by auto ultimately have lexmin $C i \in A$ using min-elt-mem [of ?X] by (subst lexmin) blast } then show ?thesis by auto qed **lemma** non-empty-ith: assumes $C \subseteq SEQ A$ and $C \neq \{\}$ shows ith (eq-upto C (lexmin C) i) $i \subseteq A$ and ith (eq-upto C (lexmin C) i) $i \neq \{\}$ using eq-upto-lexmin-non-empty [OF assms, of i] and assms by (auto simp: ith-def) **lemma** *lexmin-minimal*: $C \subseteq SEQ A \Longrightarrow C \neq \{\} \Longrightarrow y \in A \Longrightarrow P \ y \ (lexmin \ C \ i) \Longrightarrow y \notin ith \ (eq-upto$ C (lexmin C) i) iusing min-elt-minimal [OF non-empty-ith, folded lexmin]. lemma *lexmin-mem*: $C \subseteq SEQ A \Longrightarrow C \neq \{\} \Longrightarrow lexmin C \ i \in ith \ (eq-upto \ C \ (lexmin \ C) \ i) \ i$ using min-elt-mem [OF non-empty-ith, folded lexmin]. **lemma** *LEX-chain-on-eq-upto-imp-ith-chain-on*: assumes chain-on (LEX P) (eq-upto Cfi) (SEQ A)shows chain-on P (ith (eq-upto C f i) i) Ausing assms proof – { fix x y assume $x \in ith$ (eq-upto C f i) i and $y \in ith$ (eq-upto C f i) iand $\neg P x y$ and $y \neq x$ then obtain g h where $*: g \in eq$ -upto $C f i h \in eq$ -upto C f iand [simp]: $x = g \ i \ y = h \ i$ and eq: $\forall j < i$. $g \ j = f \ j \land h \ j = f \ j$ **by** (*auto simp: ith-def eq-upto-def*) with assms and $\langle y \neq x \rangle$ consider LEX P g h | LEX P h g by (force simp: chain-on-def) then have P y x**proof** (cases) assume LEX P g hwith eq and $\langle y \neq x \rangle$ have P x y using assms and ***by** (*auto simp: LEX-def*) (metis SEQ-iff chain-on-imp-subset linorder-neqE-nat minimal subsetCE)

```
with (¬ P x y) show P y x ..
next
assume LEX P h g
with eq and (y ≠ x) show P y x using assms and *
by (auto simp: LEX-def)
   (metis SEQ-iff chain-on-imp-subset linorder-neqE-nat minimal subsetCE)
qed }
then show ?thesis using assms by (auto simp: chain-on-def) blast
qed
```

 \mathbf{end}

end

3 Enumerations of Well-Ordered Sets in Increasing Order

theory Least-Enum imports Main begin

locale infinitely-many1 = fixes $P :: 'a :: wellorder \Rightarrow bool$ $assumes infm: <math>\forall i. \exists j > i. P j$ begin

Enumerate the elements of a well-ordered infinite set in increasing order.

fun enum :: nat \Rightarrow 'a where enum 0 = (LEAST n. P n) |enum (Suc i) = (LEAST n. n > enum i \land P n)

lemma enum-mono: shows enum i < enum (Suc i) using infm by (cases i, auto) (metis (lifting) LeastI)+

lemma enum-less: $i < j \implies$ enum i < enum jusing enum-mono by (metis lift-Suc-mono-less)

```
lemma enum-P:
   shows P (enum i)
   using infm by (cases i, auto) (metis (lifting) LeastI)+
```

end

```
locale infinitely-many2 =
fixes P :: 'a :: wellorder \Rightarrow 'a \Rightarrow bool
and N :: 'a
```

assumes $infm: \forall i \ge N$. $\exists j > i$. P i jbegin

Enumerate the elements of a well-ordered infinite set that form a chain w.r.t. a given predicate P starting from a given index N in increasing order.

```
fun enumchain :: nat \Rightarrow 'a where
 enumchain \theta = N
 enumchain (Suc n) = (LEAST m. m > enumchain n \land P (enumchain n) m)
lemma enumchain-mono:
 shows N \leq enumchain i \wedge enumchain i < enumchain (Suc i)
proof (induct i)
 case \theta
 have enumchain 0 \ge N by simp
 moreover then have \exists m > enumchain \ 0. P (enumchain 0) m using infm by
blast
 ultimately show ?case by auto (metis (lifting) LeastI)
next
 case (Suc i)
 then have N \leq enumchain (Suc i) by auto
 moreover then have \exists m > enumchain (Suc i). P (enumchain (Suc i)) m using
infm by blast
 ultimately show ?case by (auto) (metis (lifting) LeastI)
qed
lemma enumchain-chain:
 shows P (enumchain i) (enumchain (Suc i))
proof (cases i)
 case \theta
 moreover have \exists m > enumchain \ 0. \ P (enumchain \ 0) m using infm by auto
 ultimately show ?thesis by auto (metis (lifting) LeastI)
\mathbf{next}
 case (Suc i)
  moreover have enumchain (Suc i) > N using enumchain-mono by (metis
le-less-trans)
 moreover then have \exists m > enumchain (Suc i). P (enumchain (Suc i)) m using
infm by auto
 ultimately show ?thesis by (auto) (metis (lifting) LeastI)
qed
end
```

end

4 The Almost-Full Property

theory Almost-Full imports HOL-Library.Sublist HOL-Library.Ramsey Regular-Sets.Regexp-Method Abstract-Rewriting.Seq Least-Enum Infinite-Sequences Open-Induction.Restricted-Predicates begin

lemma *le-Suc-eq'*: $x \leq Suc \ y \longleftrightarrow x = 0 \lor (\exists x'. x = Suc \ x' \land x' \leq y)$ **by** (cases x) auto

lemma ex-leq-Suc: $(\exists i \leq Suc \ j. \ P \ i) \leftrightarrow P \ 0 \lor (\exists i \leq j. \ P \ (Suc \ i))$ **by** (auto simp: le-Suc-eq')

lemma ex-less-Suc: $(\exists i < Suc \ j. \ P \ i) \leftrightarrow P \ 0 \lor (\exists i < j. \ P \ (Suc \ i))$ **by** (auto simp: less-Suc-eq-0-disj)

4.1 Basic Definitions and Facts

An infinite sequence is good whenever there are indices i < j such that P(f i) (f j).

definition good :: $('a \Rightarrow 'a \Rightarrow bool) \Rightarrow (nat \Rightarrow 'a) \Rightarrow bool$ **where** good $P f \longleftrightarrow (\exists i j. i < j \land P (f i) (f j))$

A sequence that is not good is called *bad*.

abbreviation bad $P f \equiv \neg \text{ good } P f$

lemma goodI: $[[i < j; P(f i)(f j)]] \Longrightarrow$ good P f**by** (auto simp: good-def)

lemma goodE [elim]: good $P f \implies (\bigwedge i j. [[i < j; P(f i)(f j)]] \implies Q) \implies Q$ **by** (auto simp: good-def)

lemma badE [elim]: $bad P f \Longrightarrow ((\bigwedge i j. i < j \Longrightarrow \neg P (f i) (f j)) \Longrightarrow Q) \Longrightarrow Q$ **by** (auto simp: good-def)

definition almost-full-on :: $('a \Rightarrow 'a \Rightarrow bool) \Rightarrow 'a \ set \Rightarrow bool$ where

almost-full-on $P \land \longleftrightarrow (\forall f \in SEQ \land. good P f)$

lemma almost-full-onI [Pure.intro]: $(\bigwedge f. \forall i. f i \in A \Longrightarrow good P f) \Longrightarrow almost-full-on P A$ **unfolding** almost-full-on-def **by** blast

lemma almost-full-onD: **fixes** $f :: nat \Rightarrow 'a$ and $A :: 'a \ set$ **assumes** almost-full-on $P \ A$ and $\bigwedge i. f \ i \in A$ **obtains** $i \ j$ where i < j and $P \ (f \ i) \ (f \ j)$ **using** assms unfolding almost-full-on-def by blast

4.2 An equivalent inductive definition

```
inductive af for A
 where
   now: (\bigwedge x \ y. \ x \in A \Longrightarrow y \in A \Longrightarrow P \ x \ y) \Longrightarrow af A P
  | later: (\bigwedge x. x \in A \implies af A (\lambda y z. P y z \lor P x y)) \implies af A P
lemma af-imp-almost-full-on:
 assumes af A P
 shows almost-full-on P A
proof
  fix f :: nat \Rightarrow 'a assume \forall i. f i \in A
  with assms obtain i and j where i < j and P (f i) (f j)
 proof (induct arbitrary: f thesis)
   case (later P)
   define g where [simp]: g i = f (Suc i) for i
   have f \ \theta \in A and \forall i. g \ i \in A using later by auto
    then obtain i and j where i < j and P(g i) (g j) \lor P(f 0) (g i) using
later by blast
   then consider P(g i)(g j) | P(f 0)(g i) by blast
   then show ?case using \langle i < j \rangle by (cases) (auto intro: later)
 qed blast
  then show good P f by (auto simp: good-def)
\mathbf{qed}
lemma af-mono:
 assumes af A P
   and \forall x y. x \in A \land y \in A \land P x y \longrightarrow Q x y
 shows af A Q
  using assms
proof (induct arbitrary: Q)
  case (now P)
  then have \bigwedge x \ y. \ x \in A \implies y \in A \implies Q \ x \ y by blast
  then show ?case by (rule af.now)
\mathbf{next}
  case (later P)
 show ?case
```

```
proof (intro af.later [of A \ Q])
```

```
fix x assume x \in A
   then show af A (\lambda y \ z. Q y z \lor Q x y)
     using later(3) by (intro \ later(2) \ [of \ x]) auto
 qed
qed
lemma accessible-on-imp-af:
 assumes accessible-on P \land x
 shows af A (\lambda u v. \neg P v u \lor \neg P u x)
 using assms
proof (induct)
 case (1 x)
 then have af A (\lambda u v. (\neg P v u \lor \neg P u x) \lor \neg P u y \lor \neg P y x) if y \in A for y
   using that by (cases P y x) (auto intro: af.now af-mono)
 then show ?case by (rule af.later)
qed
lemma wfp-on-imp-af:
 assumes wfp-on P A
 shows af A (\lambda x \ y. \neg P \ y \ x)
  using assms by (auto simp: wfp-on-accessible-on-iff intro: accessible-on-imp-af
af.later)
lemma af-leq:
  af UNIV ((\leq) :: nat \Rightarrow nat \Rightarrow bool)
 using wf-less [folded wfP-def wfp-on-UNIV, THEN wfp-on-imp-af] by (simp add:
not-less)
definition NOTAF A P = (SOME x. x \in A \land \neg af A (\lambda y z. P y z \lor P x y))
lemma not-af:
 \neg af A P \Longrightarrow (\exists x y. x \in A \land y \in A \land \neg P x y) \land (\exists x \in A. \neg af A (\lambda y z. P y z))
\vee P x y))
 unfolding af.simps [of A P] by blast
fun F
 where
    F A P \theta = NOTAF A P
 | F A P (Suc i) = (let x = NOTAF A P in F A (\lambda y z. P y z \lor P x y) i)
lemma almost-full-on-imp-af:
 assumes af: almost-full-on P A
 shows af A P
proof (rule ccontr)
 assume \neg af A P
 then have *: F \land P n \in A \land
   \neg af A (\lambda y z. P y z \lor (\exists i \le n. P (F \land P i) y) \lor (\exists j \le n. \exists i. i < j \land P (F \land P i) y)
i) (F A P j)) for n
 proof (induct n arbitrary: P)
```

case θ **from** $\langle \neg af A P \rangle$ have $\exists x. x \in A \land \neg af A (\lambda y z. P y z \lor P x y)$ by (auto *intro:* af.intros) then have NOTAF A $P \in A \land \neg af A (\lambda y z. P y z \lor P (NOTAF A P) y)$ **unfolding** *NOTAF-def* **by** (*rule someI-ex*) with 0 show ?case by simp \mathbf{next} case (Suc n) **from** $\langle \neg af A P \rangle$ have $\exists x. x \in A \land \neg af A (\lambda y z. P y z \lor P x y)$ by (auto *intro: af.intros*) then have NOTAF A $P \in A \land \neg af A (\lambda y z. P y z \lor P (NOTAF A P) y)$ **unfolding** *NOTAF-def* **by** (*rule someI-ex*) from Suc(1) [OF this [THEN conjunct2]] show ?case by (fastforce simp: ex-leq-Suc ex-less-Suc elim!: back-subst [where $P = \lambda x$. $\neg af A x])$ qed then have $F \land P \in SEQ \land by auto$ from af [unfolded almost-full-on-def, THEN bspec, OF this] and not-af [OF * [THEN conjunct2]] show False unfolding good-def by blast \mathbf{qed} hide-const NOTAF F

lemma almost-full-on-UNIV: almost-full-on (λ - -. True) UNIV **by** (auto simp: almost-full-on-def good-def)

lemma almost-full-on-imp-reflp-on: assumes almost-full-on P A shows reflp-on A P using assms by (auto simp: almost-full-on-def reflp-on-def)

lemma almost-full-on-subset:

 $A \subseteq B \Longrightarrow almost-full-on P B \Longrightarrow almost-full-on P A$ by (auto simp: almost-full-on-def)

lemma almost-full-on-mono: **assumes** $A \subseteq B$ and $\bigwedge x \ y$. $Q \ x \ y \Longrightarrow P \ x \ y$ and almost-full-on $Q \ B$ **shows** almost-full-on $P \ A$ **using** assms by (metis almost-full-on-def almost-full-on-subset good-def)

Every sequence over elements of an almost-full set has a homogeneous subsequence.

lemma almost-full-on-imp-homogeneous-subseq: **assumes** almost-full-on P A**and** \forall $i::nat. f i \in A$

```
shows \exists \varphi :: nat \Rightarrow nat. \forall i j. i < j \longrightarrow \varphi i < \varphi j \land P(f(\varphi i))(f(\varphi j))
proof -
  define X where X = \{\{i, j\} \mid i j::nat. i < j \land P (f i) (f j)\}
  define Y where Y = -X
 define h where h = (\lambda Z. if Z \in X then \ 0 else Suc \ 0)
  have [iff]: \bigwedge x \ y. \ h \ \{x, \ y\} = 0 \longleftrightarrow \{x, \ y\} \in X by (auto simp: h-def)
 have [iff]: \Lambda x y. h \{x, y\} = Suc \ 0 \longleftrightarrow \{x, y\} \in Y by (auto simp: h-def Y-def)
 have \forall x \in UNIV. \forall y \in UNIV. x \neq y \longrightarrow h \{x, y\} < 2 by (simp add: h-def)
  from Ramsey2 [OF infinite-UNIV-nat this] obtain I c
   where infinite I and c < 2
   and *: \forall x \in I. \forall y \in I. x \neq y \longrightarrow h \{x, y\} = c by blast
  then interpret infinitely-many1 \lambda i. i \in I
   by (unfold-locales) (simp add: infinite-nat-iff-unbounded)
  have c = 0 \lor c = 1 using \langle c < 2 \rangle by arith
  then show ?thesis
  proof
   assume [simp]: c = 0
   have \forall i j. i < j \longrightarrow P (f (enum i)) (f (enum j))
   proof (intro allI impI)
     fix i j :: nat
     assume i < j
     from * and enum-P and enum-less [OF \langle i < j \rangle] have \{enum \ i, enum \ j\} \in
X by auto
     with enum-less [OF \langle i < j \rangle]
       show P(f(enum i))(f(enum j)) by (auto simp: X-def doubleton-eq-iff)
   qed
   then show ?thesis using enum-less by blast
  \mathbf{next}
   assume [simp]: c = 1
   have \forall i j. i < j \longrightarrow \neg P (f (enum i)) (f (enum j))
   proof (intro allI impI)
     fix i j :: nat
     assume i < j
     from * and enum-P and enum-less [OF \langle i < j \rangle] have \{enum \ i, enum \ j\} \in
Y by auto
     with enum-less [OF \langle i < j \rangle]
        show \neg P (f (enum i)) (f (enum j)) by (auto simp: Y-def X-def double-
ton-eq-iff)
   qed
   then have \neg good P (f \circ enum) by auto
   moreover have \forall i. f (enum i) \in A using assms by auto
  ultimately show ?thesis using \langle almost-full-on P A \rangle by (simp add: almost-full-on-def)
  qed
ged
```

Almost full relations do not admit infinite antichains.

```
lemma almost-full-on-imp-no-antichain-on:

assumes almost-full-on P A

shows \neg antichain-on P f A

proof

assume *: antichain-on P f A

then have \forall i. f i \in A by simp

with assms have good P f by (auto simp: almost-full-on-def)

then obtain i j where i < j and P (f i) (f j)

unfolding good-def by auto

moreover with * have incomparable P (f i) (f j) by auto

ultimately show False by blast

qed
```

If the image of a function is almost-full then also its preimage is almost-full.

lemma almost-full-on-map: **assumes** almost-full-on $Q \ B$ **and** $h \ A \subseteq B$ **shows** almost-full-on $(\lambda x \ y. \ Q \ (h \ x) \ (h \ y)) \ A$ (**is** almost-full-on $?P \ A$) **proof fix** f **assume** $\forall i::nat. \ f \ i \in A$ **then have** $\bigwedge i. \ h \ (f \ i) \in B$ **using** $\langle h \ A \subseteq B \rangle$ **by** auto **with** $\langle almost-full-on \ Q \ B \rangle$ [unfolded almost-full-on-def, THEN bspec, of $h \ \circ f$] **show** good $?P \ f$ **unfolding** good-def comp-def **by** blast **qed**

The homomorphic image of an almost-full set is almost-full.

```
lemma almost-full-on-hom:
 fixes h :: 'a \Rightarrow 'b
 assumes hom: \bigwedge x \ y. [x \in A; y \in A; P \ x \ y] \implies Q \ (h \ x) \ (h \ y)
   and af: almost-full-on P A
 shows almost-full-on Q(h'A)
proof
 fix f :: nat \Rightarrow 'b
 assume \forall i. f i \in h ' A
 then have \forall i. \exists x. x \in A \land f i = h x by (auto simp: image-def)
  from choice [OF this] obtain g
   where *: \forall i. g \ i \in A \land f \ i = h \ (g \ i) by blast
  show good Q f
 proof (rule ccontr)
   assume bad: bad Q f
    { fix i j :: nat
     assume i < j
     from bad have \neg Q (f i) (f j) using \langle i < j \rangle by (auto simp: good-def)
     with hom have \neg P(g i)(g j) using * by auto }
   then have bad P g by (auto simp: good-def)
   with af and * show False by (auto simp: good-def almost-full-on-def)
 qed
qed
```

The monomorphic preimage of an almost-full set is almost-full.

lemma *almost-full-on-mon*: assumes mon: $\land x y$. $[x \in A; y \in A] \implies P x y = Q (h x) (h y)$ bij-betw h A B and af: almost-full-on Q Bshows almost-full-on P A proof fix $f :: nat \Rightarrow 'a$ **assume** $*: \forall i. f i \in A$ then have **: $\forall i$. $(h \circ f)$ $i \in B$ using mon by (auto simp: bij-betw-def) **show** good P f**proof** (*rule ccontr*) **assume** bad: bad P f{ **fix** *i j* :: *nat* assume i < jfrom bad have $\neg P(f i)(f j)$ using $\langle i < j \rangle$ by (auto simp: good-def) with mon have $\neg Q$ (h (f i)) (h (f j)) **using** * **by** (*auto simp*: *bij-betw-def inj-on-def*) } then have bad Q $(h \circ f)$ by (auto simp: good-def) with af and ** show False by (auto simp: good-def almost-full-on-def) qed qed

Every total and well-founded relation is almost-full.

```
lemma total-on-and-wfp-on-imp-almost-full-on:

assumes totalp-on A \ P and wfp-on P \ A

shows almost-full-on P^{==} A

proof (rule ccontr)

assume \neg almost-full-on P^{==} A

then obtain f :: nat \Rightarrow 'a where *: \bigwedge i. f \ i \in A

and \forall i \ j. \ i < j \longrightarrow \neg P^{==} (f \ i) (f \ j)

unfolding almost-full-on-def by (auto dest: badE)

with \langle totalp-on A \ P \rangle have \forall i \ j. \ i < j \longrightarrow P (f \ j) (f \ i)

unfolding totalp-on-def by blast

then have \bigwedge i. \ P (f (Suc \ i)) (f \ i) by auto

with \langle wfp-on P \ A \rangle and * show False

unfolding wfp-on-def by blast

qed
```

```
lemma Nil-imp-good-list-emb [simp]:
  assumes f i = []
  shows good (list-emb P) f
proof (rule ccontr)
  assume bad (list-emb P) f
  moreover have (list-emb P) (f i) (f (Suc i))
    unfolding assms by auto
  ultimately show False
    unfolding good-def by auto
  qed
```

```
lemma ne-lists:
 assumes xs \neq [] and xs \in lists A
 shows hd xs \in A and tl xs \in lists A
 using assms by (case-tac [!] xs) simp-all
lemma list-emb-eq-length-induct [consumes 2, case-names Nil Cons]:
  assumes length xs = length ys
   and list-emb P xs ys
   and Q [] []
   and \bigwedge x \ y \ xs \ ys. \llbracket P \ x \ y; list-emb P \ xs \ ys; Q \ xs \ ys\rrbracket \implies Q \ (x \# xs) \ (y \# ys)
 shows Q xs ys
 using assms(2, 1, 3-) by (induct) (auto dest: list-emb-length)
lemma list-emb-eq-length-P:
  assumes length xs = length ys
   and list-emb P xs ys
 shows \forall i < length xs. P (xs ! i) (ys ! i)
using assms
proof (induct rule: list-emb-eq-length-induct)
 case (Cons x y xs ys)
 show ?case
 proof (intro allI impI)
   fix i assume i < length (x \# xs)
   with Cons show P((x\#xs)!i)((y\#ys)!i)
     by (cases i) simp-all
 qed
qed simp
```

4.3 Special Case: Finite Sets

Every reflexive relation on a finite set is almost-full.

```
lemma finite-almost-full-on:
 assumes finite: finite A
   and refl: reflp-on A P
 shows almost-full-on P A
proof
 fix f :: nat \Rightarrow 'a
 assume *: \forall i. f i \in A
 let ?I = UNIV::nat set
 have f ' ?I \subseteq A using * by auto
 with finite and finite-subset have 1: finite (f `?I) by blast
 have infinite ?I by auto
 from pigeonhole-infinite [OF this 1]
   obtain k where infinite \{j, f j = f k\} by auto
 then obtain l where k < l and f l = f k
   unfolding infinite-nat-iff-unbounded by auto
 then have P(f k)(f l) using refl and * by (auto simp: reflp-on-def)
 with \langle k < l \rangle show good P f by (auto simp: good-def)
qed
```

lemma eq-almost-full-on-finite-set:
 assumes finite A
 shows almost-full-on (=) A
 using finite-almost-full-on [OF assms, of (=)]
 by (auto simp: reflp-on-def)

4.4 Further Results

```
lemma af-trans-extension-imp-wf:
 assumes subrel: \bigwedge x y. P x y \Longrightarrow Q x y
   and af: almost-full-on P A
   and trans: transp-on A Q
 shows wfp-on (strict Q) A
proof (unfold wfp-on-def, rule notI)
 assume \exists f. \forall i. f i \in A \land strict Q (f (Suc i)) (f i)
 then obtain f where *: \forall i. f i \in A \land ((strict Q)^{-1-1}) (f i) (f (Suc i)) by blast
 from chain-transp-on-less[OF this]
  have \forall i j. i < j \longrightarrow \neg Q (f i) (f j) using trans using transp-on-conversep
transp-on-strict by blast
  with subrel have \forall i j. i < j \longrightarrow \neg P(f i)(f j) by blast
  with af show False
   using * by (auto simp: almost-full-on-def good-def)
\mathbf{qed}
lemma af-trans-imp-wf:
 assumes almost-full-on P A
   and transp-on A P
 shows wfp-on (strict P) A
 using assms by (intro af-trans-extension-imp-wf)
lemma wf-and-no-antichain-imp-qo-extension-wf:
  assumes wf: wfp-on (strict P) A
   and anti: \neg (\exists f. antichain-on P f A)
   and subrel: \forall x \in A. \forall y \in A. P x y \longrightarrow Q x y
   and qo: qo-on Q A
 shows wfp-on (strict Q) A
proof (rule ccontr)
 have transp-on A (strict Q)
   using qo unfolding qo-on-def transp-on-def by blast
  then have *: transp-on A ((strict Q)^{-1-1}) by simp
 assume \neg wfp-on (strict Q) A
 then obtain f :: nat \Rightarrow 'a where A: \bigwedge i. f i \in A
   and \forall i. strict \ Q \ (f \ (Suc \ i)) \ (f \ i) unfolding wfp-on-def by blast+
  then have \forall i. f i \in A \land ((strict Q)^{-1-1}) (f i) (f (Suc i)) by auto
  from chain-transp-on-less [OF this *]
```

using subrel and A by blast show False

have $*: \bigwedge i j. i < j \implies \neg P(f i)(f j)$

proof (*cases*) **assume** $\exists k. \forall i > k. \exists j > i. P (f j) (f i)$ then obtain k where $\forall i > k$. $\exists j > i$. P (f j) (f i) by auto **from** subchain [of k - f, OF this] **obtain** gwhere $\bigwedge i j$. $i < j \implies g i < g j$ and $\bigwedge i$. P (f (g (Suc i))) (f (g i)) by auto with * have $\bigwedge i$. strict P(f(g(Suc i)))(f(g i)) by blast with wf [unfolded wfp-on-def not-ex, THEN spec, of λi . f (q i)] and A show False by fast \mathbf{next} **assume** \neg ($\exists k. \forall i > k. \exists j > i. P(fj)(fi)$) then have $\forall k. \exists i > k. \forall j > i. \neg P(fj)(fi)$ by *auto* from choice [OF this] obtain hwhere $\forall k. h k > k$ and **: $\forall k. (\forall j > h k. \neg P (f j) (f (h k)))$ by auto define φ where [simp]: $\varphi = (\lambda i. (h \frown Suc i) 0)$ have $\bigwedge i. \varphi \ i < \varphi \ (Suc \ i)$ using $\langle \forall k. h k > k \rangle$ by (induct-tac i) auto then have mono: $\bigwedge i j$. $i < j \implies \varphi i < \varphi j$ by (metis lift-Suc-mono-less) then have $\forall i j. i < j \longrightarrow \neg P(f(\varphi j))(f(\varphi i))$ using ** by auto with mono [THEN *] have $\forall i j. i < j \longrightarrow incomparable P (f (\varphi j)) (f (\varphi i))$ by blast **moreover have** $\exists i j. i < j \land \neg$ *incomparable* $P(f(\varphi i))(f(\varphi j))$ using anti [unfolded not-ex, THEN spec, of λi . $f(\varphi i)$] and A by blast ultimately show False by blast qed qed **lemma** every-qo-extension-wf-imp-af: **assumes** ext: $\forall Q$. $(\forall x \in A. \forall y \in A. P x y \longrightarrow Q x y) \land$ qo-on $Q \land \longrightarrow wfp$ -on (strict $Q) \land A$ and go-on P Ashows almost-full-on P A proof **from** $\langle qo \text{-} on P A \rangle$ have refl: reflp-on A P and trans: transp-on A P **by** (*auto intro: qo-on-imp-reflp-on qo-on-imp-transp-on*) fix $f :: nat \Rightarrow 'a$ assume $\forall i. f i \in A$ then have $A: \bigwedge i. f i \in A$... **show** good P f**proof** (rule ccontr) **assume** \neg ?thesis then have bad: $\forall i j. i < j \longrightarrow \neg P(f i)(f j)$ by (auto simp: good-def) then have *: $\bigwedge i j$. $P(f i)(f j) \Longrightarrow i \ge j$ by (metis not-le-imp-less)

```
define D where [simp]: D = (\lambda x \ y, \exists i. x = f \ (Suc \ i) \land y = f \ i)
   define P' where P' = restrict-to P A
   define Q where [simp]: Q = (sup P' D)^{**}
   have **: \bigwedge i j. (D \ OO \ P'^{**})^{++} (f i) (f j) \Longrightarrow i > j
   proof –
     fix i j
     assume (D \ OO \ P'^{**})^{++} (f \ i) (f \ j)
     then show i > j
       apply (induct f i f j arbitrary: j)
      apply (insert A, auto dest!: * simp: P'-def reflp-on-restrict-to-rtranclp [OF
refl trans])
       apply (metis * dual-order.strict-trans1 less-Suc-eq-le refl reflp-on-def)
       by (metis le-imp-less-Suc less-trans)
   qed
   have \forall x \in A. \forall y \in A. P x y \longrightarrow Q x y by (auto simp: P'-def)
  moreover have qo-on Q A by (auto simp: qo-on-def reflp-on-def transp-on-def)
   ultimately have wfp-on (strict Q) A
       using ext [THEN spec, of Q] by blast
   moreover have \forall i. f i \in A \land strict Q (f (Suc i)) (f i)
   proof
     fix i
     have \neg Q (f i) (f (Suc i))
     proof
       assume Q(f i) (f (Suc i))
       then have (\sup P'D)^{**} (f i) (f (Suc i)) by auto
       moreover have (\sup P' D)^{**} = \sup (P'^{**}) (P'^{**} OO (D OO P'^{**})^{++})
       proof –
        have \bigwedge A B. (A \cup B)^* = A^* \cup A^* O (B O A^*)^+ by regerp
        from this [to-pred] show ?thesis by blast
       qed
       ultimately have sup (P'^{**}) (P'^{**} OO (D OO P'^{**})^{++}) (f i) (f (Suc i))
by simp
       then have (P'^{**} OO (D OO P'^{**})^{++}) (f i) (f (Suc i)) by auto
       then have Suc \ i < i
        using ** apply auto
      by (metis (lifting, mono-tags) less-le relcompp.relcompI tranclp-into-tranclp2)
      then show False by auto
     qed
     with A [of i] show f i \in A \land strict Q (f (Suc i)) (f i) by auto
   qed
   ultimately show False unfolding wfp-on-def by blast
 qed
qed
```

end

5 Constructing Minimal Bad Sequences

theory Minimal-Bad-Sequences imports Almost-Full Minimal-Elements begin

A locale capturing the construction of minimal bad sequences over values from A. Where minimality is to be understood w.r.t. *size* of an element.

locale mbs =fixes A :: ('a :: size) set begin

Since the *size* is a well-founded measure, whenever some element satisfies a property P, then there is a size-minimal such element.

```
lemma minimal:
 assumes x \in A and P x
 shows \exists y \in A. size y \leq size x \land P y \land (\forall z \in A. size z < size y \longrightarrow \neg P z)
using assms
proof (induction x taking: size rule: measure-induct)
 case (1 x)
 then show ?case
 proof (cases \forall y \in A. size y < size x \longrightarrow \neg P y)
   {\bf case} \ {\it True}
   with 1 show ?thesis by blast
  \mathbf{next}
   case False
   then obtain y where y \in A and size y < size x and P y by blast
   with 1.IH show ?thesis by (fastforce elim!: order-trans)
 qed
\mathbf{qed}
```

lemma less-not-eq [simp]: $x \in A \implies size \ x < size \ y \implies x = y \implies False$ **by** simp

The set of all bad sequences over A.

definition $BAD P = \{f \in SEQ A. bad P f\}$

lemma BAD-iff [iff]: $f \in BAD \ P \longleftrightarrow (\forall i. f i \in A) \land bad \ P f$ **by** (auto simp: BAD-def)

A partial order on infinite bad sequences.

definition geseq ::: $((nat \Rightarrow 'a) \times (nat \Rightarrow 'a))$ set where geseq = $\{(f, g). f \in SEQ \ A \land g \in SEQ \ A \land (f = g \lor (\exists i. size \ (g i) < size \ (f i) \land (\forall j < i. f j = g j)))\}$

The strict part of the above order.

definition gseq :: $((nat \Rightarrow 'a) \times (nat \Rightarrow 'a))$ set where $gseq = \{(f, g). f \in SEQ \ A \land g \in SEQ \ A \land (\exists i. size \ (g \ i) < size \ (f \ i) \land (\forall j < i) < i) \}$ i. f j = g j))lemma geseq-iff: $(f, g) \in geseq \longleftrightarrow$ $f \in SEQ \land A \land g \in SEQ \land A \land (f = g \lor (\exists i. size (g i) < size (f i) \land (\forall j < i. f j))$ = g j)))**by** (*auto simp*: *geseq-def*) **lemma** gseq-iff: $(f, g) \in gseq \longleftrightarrow f \in SEQ \land \land g \in SEQ \land \land (\exists i. size (g i) < size (f i) \land (\forall j)$ $\langle i. f j = g j \rangle$ **by** (*auto simp*: *gseq-def*) lemma geseqE: assumes $(f, g) \in geseq$ and $\llbracket \forall i. f i \in A; \forall i. q i \in A; f = q \rrbracket \Longrightarrow Q$ and $\bigwedge i$. $[\forall i. f i \in A; \forall i. g i \in A; size (g i) < size (f i); \forall j < i. f j = g j] \Longrightarrow$ Q shows Qusing assms by (auto simp: geseq-iff) **lemma** gseqE: assumes $(f, g) \in gseq$ and $\bigwedge i$. $\llbracket \forall i. f i \in A; \forall i. g i \in A; size (g i) < size (f i); \forall j < i. f j = g j \rrbracket \Longrightarrow$ Qshows Qusing assms by (auto simp: gseq-iff) sublocale min-elt-size?: minimal-element measure-on size UNIV A **rewrites** measure-on size $UNIV \equiv \lambda x y$. size x < size yapply (unfold-locales) apply (auto simp: po-on-def irreflp-on-def transp-on-def simp del: wfp-on-UNIV *intro*: *wfp-on-subset*) **apply** (*auto simp: measure-on-def inv-image-betw-def*) done context fixes $P :: 'a \Rightarrow 'a \Rightarrow bool$ begin

A lower bound to all sequences in a set of sequences B.

abbreviation $lb \equiv lexmin (BAD P)$

lemma eq-upto-BAD-mem: **assumes** $f \in eq$ -upto (BAD P) g i **shows** $f j \in A$ **using** assms by (auto)

Assume that there is some infinite bad sequence h.

context fixes $h :: nat \Rightarrow 'a$ assumes $BAD\text{-}ex: h \in BAD P$ begin

When there is a bad sequence, then filtering BAD P w.r.t. positions in lb never yields an empty set of sequences.

lemma eq-upto-BAD-non-empty: eq-upto (BAD P) lb $i \neq \{\}$ using eq-upto-lexmin-non-empty [of BAD P] and BAD-ex by auto

lemma non-empty-ith: **shows** ith (eq-upto (BAD P) lb i) $i \subseteq A$ **and** ith (eq-upto (BAD P) lb i) $i \neq \{\}$ **using** eq-upto-BAD-non-empty [of i] by auto

lemmas

lb-minimal = min-elt-minimal [OF non-empty-ith, folded lexmin] and lb-mem = min-elt-mem [OF non-empty-ith, folded lexmin]

lb is a infinite bad sequence.

lemma *lb-BAD*: $lb \in BAD P$ proof have $*: \bigwedge j$. lb $j \in ith (eq$ -upto (BAD P) lb j) j by (rule lb-mem) then have $\forall i. lb \ i \in A$ by (auto simp: *ith-conv*) (metis eq-upto-BAD-mem) moreover { assume good P lb then obtain i j where i < j and P(lb i)(lb j) by (auto simp: good-def) **from** * have $lb \ j \in ith \ (eq \text{-upto} \ (BAD \ P) \ lb \ j) \ j \ by \ (auto)$ then obtain g where $g \in eq$ -upto (BAD P) lb j and g j = lb j by force then have $\forall k \leq j$. g k = lb k by (auto simp: order-le-less) with $\langle i < j \rangle$ and $\langle P(lb i) (lb j) \rangle$ have P(g i) (g j) by auto with $\langle i < j \rangle$ have good P g by (auto simp: good-def) with $\langle g \in eq$ -upto (BAD P) $lb j \rangle$ have False by auto } ultimately show ?thesis by blast qed

There is no infinite bad sequence that is strictly smaller than lb.

lemma *lb-lower-bound*: $\forall g. (lb, g) \in gseq \longrightarrow g \notin BAD P$ **proof** (*intro allI impI*) fix g assume $(lb, g) \in gseq$ then obtain i where $g \ i \in A$ and $size \ (g \ i) < size \ (lb \ i)$ and $\forall j < i$. $lb \ j = g \ j$ by (auto simp: gseq-iff) moreover with lb-minimal have $g \ i \notin ith \ (eq$ -upto $(BAD \ P) \ lb \ i)$ i by auto ultimately show $g \notin BAD \ P$ by blast qed

If there is at least one bad sequence, then there is also a minimal one.

lemma lower-bound-ex: $\exists f \in BAD \ P. \ \forall g. (f, g) \in gseq \longrightarrow g \notin BAD \ P$ using lb-BAD and lb-lower-bound by blast

```
lemma gseq-conv:
```

 $(f, g) \in gseq \longleftrightarrow f \neq g \land (f, g) \in geseq$ by (auto simp: gseq-def geseq-def dest: less-not-eq)

There is a minimal bad sequence.

```
lemma mbs:

\exists f \in BAD \ P. \ \forall g. (f, g) \in gseq \longrightarrow good \ P g

using lower-bound-ex by (auto simp: gseq-conv geseq-iff)
```

end

end

end

 \mathbf{end}

6 A Proof of Higman's Lemma via Open Induction

theory Higman-OI imports Open-Induction.Open-Induction Minimal-Elements Almost-Full begin

6.1 Some facts about the suffix relation

lemma wfp-on-strict-suffix: wfp-on strict-suffix A by (rule wfp-on-mono [OF subset-refl, of - - measure-on length A]) (auto simp: strict-suffix-def suffix-def)

lemma po-on-strict-suffix:

po-on strict-suffix A by (force simp: strict-suffix-def po-on-def transp-on-def irreflp-on-def)

6.2 Lexicographic Order on Infinite Sequences

lemma antisymp-on-LEX: assumes irreflp-on A P and antisymp-on A P**shows** antisympoon (SEQ A) (LEX P) **proof** (rule antisymp-onI) fix f g assume SEQ: $f \in SEQ \ A \ g \in SEQ \ A$ and LEX P f g and LEX P g fthen obtain i j where P(f i)(g i) and P(g j)(f j)and $\forall k < i. f k = g k$ and $\forall k < j. g k = f k$ by (auto simp: LEX-def) then have $P(f(min \ i \ j))(f(min \ i \ j))$ using assms(2) and SEQ by (cases i = j) (auto simp: antisymp-on-def min-def, *force*) with assms(1) and SEQ show f = g by (auto simp: irreflp-on-def) qed lemma LEX-trans: assumes transp-on A P and $f \in SEQ$ A and $g \in SEQ$ A and $h \in SEQ$ A and LEX P f g and LEX P g hshows LEX P f husing assms by (auto simp: LEX-def transp-on-def) (metis less-trans linorder-neqE-nat) **lemma** *qo-on-LEXEQ*: transp-on $A \ P \Longrightarrow$ go-on (LEXEQ P) (SEQ A) by (auto simp: qo-on-def reflp-on-def transp-on-def [of - LEXEQ P] dest: LEX-trans) **context** *minimal-element* begin **lemma** *glb-LEX-lexmin*: assumes chain-on (LEX P) C (SEQ A) and $C \neq \{\}$ shows glb (LEX P) C (lexmin C) proof have $C \subseteq SEQ A$ using assms by (auto simp: chain-on-def) then have lexmin $C \in SEQ$ A using $\langle C \neq \{\} \rangle$ by (intro lexmin-SEQ-mem) **note** $* = \langle C \subseteq SEQ A \rangle \langle C \neq \{\} \rangle$ **note** lex = LEX-imp-less [folded irreflp-on-def, OF po [THEN po-on-imp-irreflp-on]] - lexmin C is a lower bound show lb (LEX P) C (lexmin C) proof fix f assume $f \in C$ then show LEXEQ P (lexmin C) f **proof** (cases f = lexmin C) define *i* where $i = (LEAST \ i. f \ i \neq lexmin \ C \ i)$ case False **then have** neq: $\exists i. f i \neq lexmin C i$ by blast **from** LeastI-ex [OF this, folded i-def]

and not-less-Least [where $P = \lambda i$. $f i \neq lexmin C i$, folded i-def] have neq: $f i \neq lexmin \ C i$ and $eq: \forall j < i. f j = lexmin \ C j$ by auto then have **: $f \in eq$ -upto C (lexmin C) if $i \in ith$ (eq-upto C (lexmin C) i) iusing $\langle f \in C \rangle$ by force+ moreover from ** have $\neg P(f i)$ (*lexmin C i*) using lexmin-minimal [OF *, of f i i] and $\langle f \in C \rangle$ and $\langle C \subseteq SEQ A \rangle$ by blastmoreover obtain g where $g \in eq$ -upto C (lexmin C) (Suc i) using eq-upto-lexmin-non-empty [OF *] by blast ultimately have P (lexmin C i) (f i) using neq and $\langle C \subseteq SEQ \rangle$ and assms(1) and lex [of g f i] and lex [of f f]g i] **by** (*auto simp: eq-upto-def chain-on-def*) with eq show ?thesis by (auto simp: LEX-def) qed simp qed - lexmin C is greater than or equal to any other lower bound fix f assume lb: lb (LEX P) C fthen show LEXEQ P f (lexmin C) **proof** (cases f = lexmin C) define *i* where $i = (LEAST \ i. f \ i \neq lexmin \ C \ i)$ case False then have neq: $\exists i. f i \neq lexmin C i$ by blast **from** LeastI-ex [OF this, folded i-def] and not-less-Least [where $P = \lambda i$. $f i \neq lexmin C i$, folded i-def] have neq: $f \ i \neq lexmin \ C \ i$ and $eq: \forall j < i. \ f \ j = lexmin \ C \ j$ by auto obtain h where $h \in eq$ -upto C (lexmin C) (Suc i) and $h \in C$ using eq-upto-lexmin-non-empty [OF *] by (auto simp: eq-upto-def) then have $[simp]: \bigwedge j. j < Suc \ i \Longrightarrow h \ j = lexmin \ C \ j$ by auto with lb and $\langle h \in C \rangle$ have LEX P f h using neq by (auto simp: lb-def) then have P(f i)(h i)using neq and eq and $\langle C \subseteq SEQ | A \rangle$ and $\langle h \in C \rangle$ by (intro lex) auto with eq show ?thesis by (auto simp: LEX-def) qed simp qed **lemma** *dc-on-LEXEQ*: dc-on (LEXEQ P) (SEQ A) proof fix C assume chain-on (LEXEQ P) C (SEQ A) and $C \neq \{\}$ then have chain: chain-on (LEX P) C (SEQ A) by (auto simp: chain-on-def) then have $C \subseteq SEQ A$ by (auto simp: chain-on-def) then have lexmin $C \in SEQ \ A \text{ using } \langle C \neq \{\} \}$ by (intro lexmin-SEQ-mem) have glb (LEX P) C (lexmin C) by (rule glb-LEX-lexmin [OF chain $\langle C \neq \{\}\rangle$]) then have glb (LEXEQ P) C (lexmin C) by (auto simp: glb-def lb-def) with $\langle lexmin \ C \in SEQ \ A \rangle$ show $\exists f \in SEQ \ A$. glb (LEXEQ P) C f by blast

qed

 \mathbf{end}

Properties that only depend on finite initial segments of a sequence (i.e., which are open with respect to the product topology).

```
lemma pt-open-onD:
```

 $\begin{array}{l} pt\text{-}open\text{-}on \ Q \ A \Longrightarrow Q \ f \Longrightarrow f \in A \Longrightarrow (\exists n. \ (\forall g \in A. \ (\forall i < n. \ g \ i = f \ i) \longrightarrow Q \\ g)) \\ \textbf{unfolding} \ pt\text{-}open\text{-}on\text{-}def \ \textbf{by} \ blast \end{array}$

lemma *pt-open-on-good*: pt-open-on (good Q) (SEQ A) **proof** (unfold pt-open-on-def, intro ballI) fix f assume $f: f \in SEQ A$ **show** good $Q f = (\exists n. \forall g \in SEQ A. (\forall i < n. g i = f i) \longrightarrow good Q g)$ proof assume good Q fthen obtain *i* and *j* where *: i < j Q (f i) (f j) by *auto* have $\forall g \in SEQ A$. $(\forall i < Suc j. g i = f i) \longrightarrow good Q g$ **proof** (*intro ballI impI*) fix q assume $q \in SEQ$ A and $\forall i < Suc j$. q i = f ithen show good Q g using * by (force simp: good-def) qed then show $\exists n. \forall g \in SEQ A. (\forall i < n. g i = f i) \longrightarrow good Q g$. \mathbf{next} **assume** $\exists n. \forall g \in SEQ A. (\forall i < n. g i = f i) \longrightarrow good Q g$ with f show good Q f by blast qed qed context minimal-element begin

lemma pt-open-on-imp-open-on-LEXEQ: **assumes** pt-open-on Q (SEQ A) **shows** open-on (LEXEQ P) Q (SEQ A) **proof fix** C **assume** chain: chain-on (LEXEQ P) C (SEQ A) **and** ne: $C \neq \{\}$ **and** $\exists g \in SEQ A$. glb (LEXEQ P) C $g \land Q g$ **then obtain** g **where** g: $g \in SEQ A$ **and** glb (LEXEQ P) C g **and** Q: Q g **by** blast **then have** glb: glb (LEX P) C g **by** (auto simp: glb-def lb-def) **from** chain **have** chain-on (LEX P) C (SEQ A) **and** C: $C \subseteq SEQ A$ **by** (auto simp: chain-on-def) **note** * = glb-LEX-lexmin [OF this(1) ne] **have** lexmin $C \in SEQ A$ **using** ne **and** C **by** (intro lexmin-SEQ-mem) from glb-unique [OF - g this glb *]and antisymp-on-LEX [OF po-on-imp-irreflp-on [OF po] po-on-imp-antisymp-on [OF po]]have [simp]: lexmin C = g by auto from assms [THEN pt-open-onD, OF Q g]obtain n :: nat where $**: \land h. h \in SEQ A \implies (\forall i < n. h i = g i) \longrightarrow Q h$ by blast from eq-upto-lexmin-non-empty [OF C ne, of n]obtain f where $f \in eq$ -upto C g n by auto then have $f \in C$ and Q f using ** [of f] and C by force+ then show $\exists f \in C. Q f$ by blast qed

lemma open-on-good: open-on (LEXEQ P) (good Q) (SEQ A) by (intro pt-open-on-imp-open-on-LEXEQ pt-open-on-good)

\mathbf{end}

lemma open-on-LEXEQ-imp-pt-open-on-counterexample: fixes $a \ b :: 'a$ defines $A \equiv \{a, b\}$ and $P \equiv (\lambda x \ y. \ False)$ and $Q \equiv (\lambda f. \ \forall i. \ f \ i = b)$ assumes [simp]: $a \neq b$ shows minimal-element P A and open-on (LEXEQ P) Q (SEQ A) and \neg pt-open-on Q (SEQ A) proof – show minimal-element P A by standard (auto simp: P-def po-on-def irreflp-on-def transp-on-def wfp-on-def) **show** open-on (LEXEQ P) Q (SEQ A) by (auto simp: P-def open-on-def chain-on-def SEQ-def glb-def lb-def LEX-def) **show** \neg *pt-open-on* Q (*SEQ* A) proof define $f :: nat \Rightarrow 'a$ where $f \equiv (\lambda x. b)$ have $f \in SEQ \ A$ by (auto simp: A-def f-def) moreover assume pt-open-on Q (SEQ A) ultimately have $Q f \longleftrightarrow (\exists n. (\forall q \in SEQ A. (\forall i < n. q i = f i) \longrightarrow Q q))$ unfolding *pt-open-on-def* by *blast* moreover have Q f by (*auto simp*: Q-def f-def) **moreover have** $\exists q \in SEQ A$. $(\forall i < n. q i = f i) \land \neg Q g$ for n by (intro bexI [of - f(n := a)]) (auto simp: f-def Q-def A-def) ultimately show False by blast qed qed lemma higman: assumes almost-full-on P A **shows** almost-full-on (list-emb P) (lists A) proof

interpret minimal-element strict-suffix lists A

by (unfold-locales) (intro po-on-strict-suffix wfp-on-strict-suffix)+ fix f presume $f \in SEQ$ (lists A) with qo-on-LEXEQ [OF po-on-imp-transp-on [OF po-on-strict-suffix]] and dc-on-LEXEQ and open-on-good **show** good (list-emb P) f **proof** (*induct rule: open-induct-on*) case (less f) define h where h i = hd (f i) for i show ?case **proof** (cases $\exists i. f i = []$) case False then have $ne: \forall i. f i \neq []$ by *auto* with $\langle f \in SEQ \ (lists \ A) \rangle$ have $\forall i. h \ i \in A$ by (auto simp: h-def ne-lists) **from** almost-full-on-imp-homogeneous-subseq [OF assms this] **obtain** $\varphi :: nat \Rightarrow nat$ where mono: $\bigwedge i j$. $i < j \Longrightarrow \varphi i < \varphi j$ and $P: \bigwedge i j. i < j \Longrightarrow P(h(\varphi i))(h(\varphi j))$ by blast define f' where f' $i = (if \ i < \varphi \ 0 \ then f \ i \ else \ tl \ (f \ (\varphi \ (i - \varphi \ 0)))))$ for i have $f': f' \in SEQ$ (lists A) using ne and $\langle f \in SEQ$ (lists A)> **by** (*auto simp: f'-def dest: list.set-sel*) have [simp]: $\bigwedge i. \varphi \ 0 \le i \Longrightarrow h \ (\varphi \ (i - \varphi \ 0)) \ \# f' \ i = f \ (\varphi \ (i - \varphi \ 0))$ $\bigwedge i. \ i < \varphi \ 0 \Longrightarrow f' \ i = f \ i \text{ using } ne \text{ by } (auto \ simp: f' - def \ h - def)$ moreover have strict-suffix $(f'(\varphi \ \theta)) (f(\varphi \ \theta))$ using ne by (auto simp: f' - defultimately have LEX strict-suffix f' f by (auto simp: LEX-def) with LEX-imp-not-LEX [OF this] have strict (LEXEQ strict-suffix) f' fusing po-on-strict-suffix [of UNIV] unfolding po-on-def irreflp-on-def transp-on-def by blast from less(2) [OF f' this] have good (list-emb P) f'. then obtain *i j* where i < j and *emb*: *list-emb* P(f'i)(f'j) by (*auto simp*: good-def) consider $j < \varphi \ 0 \mid \varphi \ 0 \leq i \mid i < \varphi \ 0$ and $\varphi \ 0 \leq j$ by arith then show ?thesis **proof** (*cases*) case 1 with $\langle i < j \rangle$ and emb show ?thesis by (auto simp: good-def) \mathbf{next} case 2with $\langle i < j \rangle$ and P have P $(h (\varphi (i - \varphi \ 0))) (h (\varphi (j - \varphi \ 0)))$ by auto with emb have list-emb P (h (φ ($i - \varphi$ 0)) # f' i) (h (φ ($j - \varphi$ 0)) # f' j) by auto then have list-emb P (f (φ ($i - \varphi$ 0))) (f (φ ($j - \varphi$ 0))) using 2 and (i $\langle j \rangle$ by auto moreover with 2 and $\langle i \langle j \rangle$ have $\varphi(i - \varphi \theta) < \varphi(j - \varphi \theta)$ using mono by auto ultimately show ?thesis by (auto simp: good-def) next case 3 with emb have list-emb P (f i) (f' j) by auto moreover have $f(\varphi(j - \varphi \theta)) = h(\varphi(j - \varphi \theta)) \# f'j$ using 3 by *auto* ultimately have list-emb P (f i) (f (φ ($j - \varphi$ 0))) by auto

```
moreover have i < \varphi (j - \varphi \ 0) using mono [of \ 0 \ j - \varphi \ 0] and 3 by force
ultimately show ?thesis by (auto simp: good-def)
qed
qed auto
qed
ged blast
```

end

7 Almost-Full Relations

```
theory Almost-Full-Relations
imports Minimal-Bad-Sequences
begin
```

lemma (in mbs) mbs': **assumes** \neg almost-full-on P A **shows** $\exists m \in BAD P$. $\forall g. (m, g) \in gseq \longrightarrow good P g$ **using** assms and mbs unfolding almost-full-on-def by blast

7.1 Adding a Bottom Element to a Set

definition with-bot :: 'a set \Rightarrow 'a option set (-_1 [1000] 1000) **where** $A_{\perp} = \{None\} \cup Some `A$

lemma with-bot-iff [iff]: Some $x \in A_{\perp} \longleftrightarrow x \in A$ by (auto simp: with-bot-def)

lemma NoneI [simp, intro]: None $\in A_{\perp}$ by (simp add: with-bot-def)

lemma not-None-the-mem [simp]: $x \neq None \implies the \ x \in A \iff x \in A_{\perp}$ **by** auto

lemma with-bot-cases: $u \in A_{\perp} \Longrightarrow (\bigwedge x. \ x \in A \Longrightarrow u = Some \ x \Longrightarrow P) \Longrightarrow (u = None \Longrightarrow P) \Longrightarrow P$ **by** auto

lemma with-bot-empty-conv [iff]: $A_{\perp} = \{None\} \longleftrightarrow A = \{\}$ **by** (auto elim: with-bot-cases)

lemma with-bot-UNIV [simp]: $UNIV_{\perp} = UNIV$ **proof** (rule set-eqI) fix x :: 'a optionshow $x \in UNIV_{\perp} \longleftrightarrow x \in UNIV$ by (cases x) auto qed

7.2 Adding a Bottom Element to an Almost-Full Set

fun option-le :: $('a \Rightarrow 'a \Rightarrow bool) \Rightarrow 'a option \Rightarrow 'a option \Rightarrow bool$ where option-le P None $y = True \mid$ option-le P (Some x) None = False | option-le P (Some x) (Some y) = P x y**lemma** None-imp-good-option-le [simp]: assumes f i = None**shows** good (option-le P) fby (rule goodI [of i Suc i]) (auto simp: assms) **lemma** almost-full-on-with-bot: assumes almost-full-on P A shows almost-full-on (option-le P) A_{\perp} (is almost-full-on ?P ?A) proof fix $f :: nat \Rightarrow 'a option$ assume $*: \forall i. f i \in ?A$ **show** good ?Pf**proof** (cases $\forall i. f i \neq None$) case True then have **: $\bigwedge i$. Some (the (f i)) = f iand $\bigwedge i$. the $(f i) \in A$ using * by auto with almost-full-onD [OF assms, of the \circ f] obtain i j where i < jand P (the (f i)) (the (f j)) by auto then have P (Some (the (f i))) (Some (the (f j))) by simp then have ?P(f i)(f j) unfolding **. with $\langle i < j \rangle$ show good ?P f by (auto simp: good-def) qed auto qed

7.3 Disjoint Union of Almost-Full Sets

fun sum-le :: $('a \Rightarrow 'a \Rightarrow bool) \Rightarrow ('b \Rightarrow 'b \Rightarrow bool) \Rightarrow 'a + 'b \Rightarrow 'a + 'b \Rightarrow bool$ where sum-le P Q (Inl x) (Inl y) = P x y | sum-le P Q (Inr x) (Inr y) = Q x y | sum-le P Q x y = False lemma not-sum-le-cases: assumes \neg sum-le P Q a b

and $\bigwedge x y$. $[a = Inl x; b = Inl y; \neg P x y] \Longrightarrow$ thesis and $\bigwedge x y$. $[a = Inr x; b = Inr y; \neg Q x y] \Longrightarrow$ thesis and $\bigwedge x \ y$. $[a = Inl \ x; \ b = Inr \ y]] \implies$ thesis and $\bigwedge x \ y$. $[a = Inr \ x; \ b = Inl \ y]] \implies$ thesis shows thesis using assms by (cases a b rule: sum.exhaust [case-product sum.exhaust]) auto

When two sets are almost-full, then their disjoint sum is almost-full.

lemma almost-full-on-Plus: assumes almost-full-on P A and almost-full-on Q B shows almost-full-on (sum-le P Q) ($A \ll B$) (is almost-full-on P A) proof fix $f :: nat \Rightarrow ('a + 'b)$ let ?I = f - `Inl `Alet ?J = f - 'Inr 'Bassume $\forall i. f i \in ?A$ then have *: ?J = (UNIV::nat set) - ?I by (fastforce) **show** good ?Pf**proof** (*rule ccontr*) assume bad: bad ?Pfshow False **proof** (cases finite ?I) assume finite ?I then have infinite ?J by (auto simp: *) then interpret infinitely-many1 λi . $f i \in Inr ' B$ **by** (*unfold-locales*) (*simp add: infinite-nat-iff-unbounded*) have [dest]: $\bigwedge i x. f (enum i) = Inl x \Longrightarrow False$ using enum-P by (auto simp: image-iff) (metis Inr-Inl-False) let $?f = \lambda i$. projr (f (enum i)) have B: $\bigwedge i$. ?f $i \in B$ using enum-P by (auto simp: image-iff) (metis sum.sel(2)) { **fix** *i j* :: *nat* assume i < jthen have enum i < enum j using enum-less by auto with bad have \neg ?P (f (enum i)) (f (enum j)) by (auto simp: good-def) then have $\neg Q$ (?f i) (?f j) by (auto elim: not-sum-le-cases) } then have bad Q ?f by (auto simp: good-def) moreover from $\langle almost-full-on \ Q \ B \rangle$ and B have good Q ?f by (auto simp: good-def almost-full-on-def) ultimately show False by blast next assume infinite ?I then interpret infinitely-many1 $\lambda i. f i \in Inl$ ' A **by** (unfold-locales) (simp add: infinite-nat-iff-unbounded) **have** [dest]: $\bigwedge i x. f (enum i) = Inr x \Longrightarrow False$ using enum-P by (auto simp: image-iff) (metis Inr-Inl-False) let $?f = \lambda i$. projl (f (enum i)) have A: $\forall i$. ?f $i \in A$ using enum-P by (auto simp: image-iff) (metis sum.sel(1)) { **fix** *i j* :: *nat*

assume i < j

```
then have enum i < enum j using enum-less by auto
with bad have \neg ?P (f (enum i)) (f (enum j)) by (auto simp: good-def)
then have \neg P (?f i) (?f j) by (auto elim: not-sum-le-cases) }
then have bad P ?f by (auto simp: good-def)
moreover from \langle almost-full-on P A \rangle and A
have good P ?f by (auto simp: good-def almost-full-on-def)
ultimately show False by blast
qed
```

```
qed
```

7.4 Dickson's Lemma for Almost-Full Relations

When two sets are almost-full, then their Cartesian product is almost-full.

```
definition
  prod-le :: ('a \Rightarrow 'a \Rightarrow bool) \Rightarrow ('b \Rightarrow 'b \Rightarrow bool) \Rightarrow 'a \times 'b \Rightarrow 'a \times 'b \Rightarrow bool
where
  prod-le P1 P2 = (\lambda(p1, p2) (q1, q2)). P1 p1 q1 \wedge P2 p2 q2)
lemma prod-le-True [simp]:
  prod-le P (\lambda- -. True) a b = P (fst a) (fst b)
 by (auto simp: prod-le-def)
lemma almost-full-on-Sigma:
  assumes almost-full-on P1 A1 and almost-full-on P2 A2
  shows almost-full-on (prod-le P1 P2) (A1 \times A2) (is almost-full-on ?P ?A)
proof (rule ccontr)
  assume \neg almost-full-on ?P ?A
  then obtain f where f: \forall i. f i \in ?A
   and bad: bad ?P f by (auto simp: almost-full-on-def)
  let ?W = \lambda x y. P1 (fst x) (fst y)
  let ?B = \lambda x y. P2 (snd x) (snd y)
  from f have fst: \forall i. fst (f i) \in A1 and snd: \forall i. snd (f i) \in A2
   by (metis SigmaE fst-conv, metis SigmaE snd-conv)
  from almost-full-on-imp-homogeneous-subseq [OF assms(1) fst]
   obtain \varphi :: nat \Rightarrow nat where mono: \bigwedge i j. i < j \Longrightarrow \varphi i < \varphi j
   and *: \bigwedge i j. i < j \implies ?W(f(\varphi i))(f(\varphi j)) by auto
  from snd have \forall i. snd (f (\varphi i)) \in A2 by auto
  then have snd \circ f \circ \varphi \in SEQ \ A2 by auto
  with assms(2) have good P2 (snd \circ f \circ \varphi) by (auto simp: almost-full-on-def)
  then obtain i j :: nat
   where i < j and PB(f(\varphi i))(f(\varphi j)) by auto
  with * [OF \langle i < j \rangle] have ?P(f(\varphi i))(f(\varphi j)) by (simp add: case-prod-beta
prod-le-def)
  with mono [OF \langle i < j \rangle] and bad show False by auto
qed
```

7.5 Higman's Lemma for Almost-Full Relations

lemma almost-full-on-lists: assumes almost-full-on P Ashows almost-full-on (list-emb P) (lists A) (is almost-full-on ?P ?A) proof (rule ccontr) interpret mbs ?A. assume \neg ?thesis from mbs' [OF this] obtain mwhere bad: $m \in BAD ?P$ and min: $\forall g. (m, g) \in gseq \longrightarrow good ?P g ...$ then have lists: $\land i. m i \in lists A$ and $ne: \land i. m i \neq []$ by auto

define $h \ t$ where $h = (\lambda i. \ hd \ (m \ i))$ and $t = (\lambda i. \ tl \ (m \ i))$ have $m: \bigwedge i. \ m \ i = h \ i \ \# \ t \ i$ using ne by $(simp \ add: \ h-def \ t-def)$

have $\forall i. h i \in A$ using *ne-lists* [*OF ne*] and *lists* by (*auto simp add: h-def*) from *almost-full-on-imp-homogeneous-subseq* [*OF assms this*] obtain $\varphi :: nat \Rightarrow nat$

where less: $\bigwedge i j$. $i < j \Longrightarrow \varphi i < \varphi j$ and $P: \forall i j$. $i < j \longrightarrow P(h(\varphi i))(h(\varphi j))$ by blast

have bad-t: bad $?P(t \circ \varphi)$ proof assume good $?P(t \circ \varphi)$ then obtain i j where i < j and $?P(t(\varphi i))(t(\varphi j))$ by auto moreover with P have $P(h(\varphi i))(h(\varphi j))$ by blast ultimately have $?P(m(\varphi i))(m(\varphi j))$ by (subst (1 2) m) (rule list-emb-Cons2, auto) with less and $\langle i < j \rangle$ have good ?P m by (auto simp: good-def) with bad show False by blast qed

define m' where $m' = (\lambda i. if i < \varphi \ 0 \ then \ m \ i \ else \ t \ (\varphi \ (i - \varphi \ 0)))$

have m'-less: $\bigwedge i$. $i < \varphi \ 0 \implies m' \ i = m \ i$ by $(simp \ add: m' - def)$ have m'-geq: $\bigwedge i$. $i \ge \varphi \ 0 \implies m' \ i = t \ (\varphi \ (i - \varphi \ 0))$ by $(simp \ add: m' - def)$

have $\forall i. m' i \in lists A$ using *ne-lists* [OF *ne*] and *lists* by (*auto simp: m'-def t-def*)

moreover have length $(m'(\varphi \ 0)) < \text{length} (m \ (\varphi \ 0))$ using ne by (simp add: t-def m'-geq)

moreover have $\forall j < \varphi \ 0. \ m' \ j = m \ j$ by (auto simp: m'-less) ultimately have $(m, m') \in gseq$ using lists by (auto simp: gseq-def) moreover have bad ?P m' proof assume good ?P m' then obtain $i \ j$ where i < j and emb: ?P $(m' \ i) \ (m' \ j)$ by (auto

then obtain i j where i < j and emb: ?P (m' i) (m' j) by (auto simp: good-def)

{ assume $j < \varphi \ \theta$ with $\langle i < j \rangle$ and emb have ?P(m i)(m j) by (auto simp: m'-less) with $\langle i < j \rangle$ and bad have False by blast } moreover { assume $\varphi \ \theta \leq i$ with $\langle i < j \rangle$ and emb have $P(t(\varphi(i - \varphi 0)))(t(\varphi(j - \varphi 0)))$ and $i - \varphi \ \theta < j - \varphi \ \theta$ by (auto simp: m'-geq) with bad-t have False by auto } moreover { assume $i < \varphi \ \theta$ and $\varphi \ \theta \leq j$ with (i < j) and emb have $?P(m i)(t(\varphi(j - \varphi 0)))$ by (simp add: m'-less m'-geq) **from** *list-emb-Cons* [*OF this, of* $h (\varphi (j - \varphi \theta))$] have $?P(m i) (m (\varphi (j - \varphi 0)))$ using ne by (simp add: h-def t-def) moreover have $i < \varphi (j - \varphi \ \theta)$ using less [of $0 j - \varphi 0$] and $\langle i < \varphi 0 \rangle$ and $\langle \varphi 0 \leq j \rangle$ by (cases $j = \varphi \ \theta$) auto ultimately have *False* using *bad* by *blast* } ultimately show False using $\langle i < j \rangle$ by arith qed ultimately show False using min by blast qed

7.6 Natural Numbers

```
lemma almost-full-on-UNIV-nat:
 almost-full-on (\leq) (UNIV :: nat set)
proof –
 let ?P = subseq :: bool \ list \Rightarrow bool \ list \Rightarrow bool
 have *: length '(UNIV :: bool list set) = (UNIV :: nat set)
   by (metis Ex-list-of-length surj-def)
 have almost-full-on (\leq) (length '(UNIV :: bool list set))
 proof (rule almost-full-on-hom)
   fix xs ys :: bool list
   assume ?P xs ys
   then show length xs \leq length ys
     by (metis list-emb-length)
 \mathbf{next}
   have finite (UNIV :: bool set) by auto
   from almost-full-on-lists [OF eq-almost-full-on-finite-set [OF this]]
     show almost-full-on ?P UNIV unfolding lists-UNIV.
 qed
 then show ?thesis unfolding * .
qed
```

 \mathbf{end}

8 Well-Quasi-Orders

```
theory Well-Quasi-Orders
imports Almost-Full-Relations
begin
```

8.1 Basic Definitions

 $\begin{array}{l} \textbf{definition} \ wqo\mbox{-}on :: ('a \Rightarrow 'a \Rightarrow bool) \Rightarrow 'a \ set \Rightarrow bool \ \textbf{where} \\ wqo\mbox{-}on \ P \ A \ \longleftrightarrow \ transp\mbox{-}on \ A \ P \ \land \ almost\mbox{-}full\mbox{-}on \ P \ A \end{array}$

lemma wqo-on-UNIV: wqo-on (λ - -. True) UNIV using almost-full-on-UNIV by (auto simp: wqo-on-def transp-on-def)

lemma wqo-onI [Pure.intro]: $[transp-on A P; almost-full-on P A] \implies$ wqo-on P A **unfolding** wqo-on-def almost-full-on-def **by** blast

lemma wqo-on-imp-reflp-on: wqo-on $P A \implies$ reflp-on A Pusing almost-full-on-imp-reflp-on by (auto simp: wqo-on-def)

lemma wqo-on-imp-transp-on: wqo-on $P A \Longrightarrow$ transp-on A Pby (auto simp: wqo-on-def)

lemma wqo-on-imp-almost-full-on: wqo-on $P A \implies$ almost-full-on P A**by** (auto simp: wqo-on-def)

lemma wqo-on-imp-qo-on: $wqo-on P A \implies qo-on P A$ **by** (metis qo-on-def wqo-on-imp-reflp-on wqo-on-imp-transp-on)

lemma wqo-on-imp-good: wqo-on $P A \Longrightarrow \forall i. f i \in A \Longrightarrow good P f$ **by** (auto simp: wqo-on-def almost-full-on-def)

lemma wqo-on-subset: $A \subseteq B \Longrightarrow wqo$ - $on P B \Longrightarrow wqo$ -on P A **using** almost-full-on-subset [of A B P] **and** transp-on-subset [of B P A] **unfolding** wqo-on-def **by** blast

8.2 Equivalent Definitions

Given a quasi-order P, the following statements are equivalent:

1. P is a almost-full.

2. *P* does neither allow decreasing chains nor antichains.

3. Every quasi-order extending P is well-founded.

```
lemma wqo-af-conv:
  assumes go-on P A
 shows wgo-on P \land \leftrightarrow almost-full-on P \land
 using assms by (metis qo-on-def wqo-on-def)
lemma wqo-wf-and-no-antichain-conv:
 assumes go-on P A
 shows wqo-on P \land \longleftrightarrow wfp-on (strict P) \land \land \neg (\exists f. antichain-on P f \land A)
 unfolding wqo-af-conv [OF assms]
  using af-trans-imp-wf [OF - assms [THEN qo-on-imp-transp-on]]
   and almost-full-on-imp-no-antichain-on [of P A]
   and wf-and-no-antichain-imp-qo-extension-wf [of P A]
   and every-go-extension-wf-imp-af [OF - assms]
   by blast
lemma wqo-extensions-wf-conv:
 assumes go-on P A
  shows woo-on P \land \longleftrightarrow (\forall Q. (\forall x \in A. \forall y \in A. P x y \longrightarrow Q x y) \land qo\text{-}on Q \land A)
\longrightarrow wfp-on (strict Q) A)
 unfolding wqo-af-conv [OF assms]
 using af-trans-imp-wf [OF - assms [THEN qo-on-imp-transp-on]]
   and almost-full-on-imp-no-antichain-on [of P A]
   and wf-and-no-antichain-imp-go-extension-wf [of P A]
   and every-qo-extension-wf-imp-af [OF - assms]
   by blast
```

lemma wqo-on-imp-wfp-on: wqo-on $P A \Longrightarrow$ wfp-on (strict P) A**by** (metis (no-types) wqo-on-imp-qo-on wqo-wf-and-no-antichain-conv)

The homomorphic image of a wqo set is wqo.

lemma wqo-on-hom: **assumes** transp-on (h ' A) Q **and** $\forall x \in A$. $\forall y \in A$. $P x y \longrightarrow Q$ (h x) (h y) **and** wqo-on P A **shows** wqo-on Q (h ' A) **using** assms **and** almost-full-on-hom [of A P Q h] **unfolding** wqo-on-def **by** blast

The monomorphic preimage of a wqo set is wqo.

lemma wqo-on-mon: **assumes** $*: \forall x \in A. \forall y \in A. P x y \leftrightarrow Q (h x) (h y)$ **and** bij: bij-betw h A B **and** wqo: wqo-on Q B **shows** wqo-on P A

```
\begin{array}{l} \mathbf{proof} & -\\ \mathbf{have} \ transp-on \ A \ P\\ \mathbf{proof} \ (rule \ transp-on I)\\ \mathbf{fix} \ x \ y \ z \ \mathbf{assume} \ [intro!]: \ x \in A \ y \in A \ z \in A\\ \mathbf{and} \ P \ x \ y \ \mathbf{and} \ P \ y \ z\\ \mathbf{with} \ * \ \mathbf{have} \ Q \ (h \ x) \ (h \ y) \ \mathbf{and} \ Q \ (h \ y) \ (h \ z) \ \mathbf{by} \ blast+\\ \mathbf{with} \ wqo-on-imp-transp-on \ [OF \ wqo] \ \mathbf{have} \ Q \ (h \ x) \ (h \ z)\\ \mathbf{using} \ bij \ \mathbf{by} \ (auto \ simp: \ bij-betw-def \ transp-on-def)\\ \mathbf{with} \ * \ \mathbf{show} \ P \ x \ z \ \mathbf{by} \ blast\\ \mathbf{qed}\\ \mathbf{with} \ assms \ \mathbf{and} \ almost-full-on-mon \ [of \ A \ P \ Q \ h]\\ \mathbf{show} \ ?thesis \ \mathbf{unfolding} \ wqo-on-def \ \mathbf{by} \ blast\\ \mathbf{qed} \end{array}
```

8.3 A Type Class for Well-Quasi-Orders

In a well-quasi-order (wqo) every infinite sequence is good.

```
class wqo = preorder +

assumes good: good (\leq) f

lemma wqo-on-class [simp, intro]:

wqo-on (\leq) (UNIV :: ('a :: wqo) set)

using good by (auto simp: wqo-on-def transp-on-def almost-full-on-def dest: or-

der-trans)
```

```
lemma wqo-on-UNIV-class-wqo [intro!]:
wqo-on P UNIV \implies class.wqo P (strict P)
by (unfold-locales) (auto simp: wqo-on-def almost-full-on-def, unfold transp-on-def, blast)
```

The following lemma converts between wqo-on (for the special case that the domain is the universe of a type) and the class predicate class.wqo.

```
lemma wqo-on-UNIV-conv:
  wqo-on P UNIV ↔ class.wqo P (strict P) (is ?lhs = ?rhs)
proof
  assume ?lhs then show ?rhs by auto
  next
  assume ?rhs then show ?lhs
    unfolding class.wqo-def class.preorder-def class.wqo-axioms-def
    by (auto simp: wqo-on-def almost-full-on-def transp-on-def)
  qed
```

The strict part of a wqo is well-founded.

```
\begin{array}{l} \textbf{lemma (in wqo) wfP (<)} \\ \textbf{proof} & - \\ \textbf{have } class.wqo \ (\leq) \ (<) \ .. \\ \textbf{hence } wqo \text{-}on \ (\leq) \ UNIV \\ \textbf{unfolding } less-le-not-le \ [abs-def] \ wqo \text{-}on-UNIV\text{-}conv \ [symmetric] \ .} \end{array}
```

```
from wqo-on-imp-wfp-on [OF this]
```

```
show ?thesis unfolding less-le-not-le [abs-def] wfp-on-UNIV.
\mathbf{qed}
lemma wqo-on-with-bot:
 assumes wqo-on P A
 shows wqo-on (option-le P) A_{\perp} (is wqo-on ?P ?A)
proof –
 { from assms have trans [unfolded transp-on-def]: transp-on A P
    by (auto simp: wqo-on-def)
   have transp-on ?A ?P
    by (auto simp: transp-on-def elim!: with-bot-cases, insert trans) blast }
 moreover
 { from assms and almost-full-on-with-bot
    have almost-full-on ?P ?A by (auto simp: wqo-on-def) }
 ultimately
 show ?thesis by (auto simp: wqo-on-def)
qed
lemma wqo-on-option-UNIV [intro]:
 wqo-on P UNIV \implies wqo-on (option-le P) UNIV
 using wqo-on-with-bot [of P UNIV] by simp
When two sets are woo, then their disjoint sum is woo.
lemma wqo-on-Plus:
 assumes wqo-on P A and wqo-on Q B
 shows wqo-on (sum-le P Q) (A \ll B) (is wqo-on P A)
proof –
 { from assms have trans [unfolded transp-on-def]: transp-on A P transp-on B
Q
    by (auto simp: wqo-on-def)
  have transp-on ?A ?P
    unfolding transp-on-def by (auto, insert trans) (blast+) }
 moreover
 { from assms and almost-full-on-Plus have almost-full-on ?P ?A by (auto simp:
wqo-on-def) }
 ultimately
 show ?thesis by (auto simp: wqo-on-def)
qed
lemma wqo-on-sum-UNIV [intro]:
```

```
wqo-on P UNIV \Longrightarrow wqo-on Q UNIV \Longrightarrow wqo-on (sum-le P Q) UNIV
using wqo-on-Plus [of P UNIV Q UNIV] by simp
```

8.4 Dickson's Lemma

lemma wqo-on-Sigma: fixes A1 :: 'a set and A2 :: 'b set assumes wqo-on P1 A1 and wqo-on P2 A2 shows wqo-on (prod-le P1 P2) (A1 × A2) (is wqo-on ?P ?A)
proof { from assms have transp-on A1 P1 and transp-on A2 P2 by (auto simp:
wqo-on-def)
hence transp-on ?A ?P unfolding transp-on-def prod-le-def by blast }
moreover
{ from assms and almost-full-on-Sigma [of P1 A1 P2 A2]
have almost-full-on ?P ?A by (auto simp: wqo-on-def) }
ultimately
show ?thesis by (auto simp: wqo-on-def)
qed

lemmas dickson = wqo-on-Sigma

```
lemma wqo-on-prod-UNIV [intro]:
wqo-on P UNIV \Longrightarrow wqo-on Q UNIV \Longrightarrow wqo-on (prod-le P Q) UNIV
using wqo-on-Sigma [of P UNIV Q UNIV] by simp
```

8.5 Higman's Lemma

lemma transp-on-list-emb: assumes transp-on A P shows transp-on (lists A) (list-emb P) using assms and list-emb-trans [of - - P] unfolding transp-on-def by blast

lemma wqo-on-lists:
 assumes wqo-on P A shows wqo-on (list-emb P) (lists A)
 using assms and almost-full-on-lists
 and transp-on-list-emb by (auto simp: wqo-on-def)

```
lemmas higman = wqo-on-lists
```

lemma wqo-on-list-UNIV [intro]: wqo-on P UNIV \implies wqo-on (list-emb P) UNIV using wqo-on-lists [of P UNIV] by simp

Every reflexive and transitive relation on a finite set is a wqo.

lemma finite-wqo-on: assumes finite A and refl: reflp-on A P and transp-on A P shows wqo-on P A using assms and finite-almost-full-on by (auto simp: wqo-on-def)

lemma finite-eq-wqo-on:
 assumes finite A
 shows wqo-on (=) A
 using finite-wqo-on [OF assms, of (=)]
 by (auto simp: reflp-on-def transp-on-def)

```
lemma wqo-on-lists-over-finite-sets:
  wqo-on (list-emb (=)) (UNIV::('a::finite) list set)
 using wqo-on-lists [OF finite-eq-wqo-on [OF finite [of UNIV::('a::finite) set]]] by
simp
lemma wqo-on-map:
  fixes P and Q and h
 defines P' \equiv \lambda x y. P x y \land Q (h x) (h y)
 assumes wgo-on P A
   and wgo-on Q B
   and subset: h ` A \subseteq B
 shows wqo-on P' A
proof
 let ?Q = \lambda x y. Q(h x)(h y)
 from \langle wgo\text{-}on P A \rangle have transp-on A P
   by (rule wqo-on-imp-transp-on)
  then show transp-on A P'
   using \langle wqo\text{-}on \ Q \ B \rangle and subset
   unfolding wqo-on-def transp-on-def P'-def by blast
  from \langle wqo-on P \land A \rangle have almost-full-on P \land A
   by (rule wqo-on-imp-almost-full-on)
  from \langle wqo\text{-}on \ Q \ B \rangle have almost-full-on Q \ B
   by (rule wqo-on-imp-almost-full-on)
 show almost-full-on P' A
 proof
   fix f
   assume *: \forall i:: nat. f i \in A
   from almost-full-on-imp-homogeneous-subseq [OF \langle almost-full-on P A \rangle this]
     obtain g :: nat \Rightarrow nat
     where g: \bigwedge i j. i < j \Longrightarrow g i < g j
     and **: \forall i. f (g i) \in A \land P (f (g i)) (f (g (Suc i)))
     using * by auto
   from chain-transp-on-less [OF ** \langle transp-on A P \rangle]
     have **: \bigwedge i j. i < j \implies P(f(g i))(f(g j)).
   let ?g = \lambda i. h(f(g i))
   from * and subset have B: \bigwedge i. ?g i \in B by auto
    with (almost-full-on Q B) [unfolded almost-full-on-def good-def, THEN bspec,
of ?g]
     obtain i j :: nat
     where i < j and Q (?g i) (?g j) by blast
   with ** [OF \langle i < j \rangle] have P'(f(g i))(f(g j))
     by (auto simp: P'-def)
   with g [OF \langle i < j \rangle] show good P' f by (auto simp: good-def)
 qed
qed
```

lemma *wqo-on-UNIV-nat*:

 $wqo-on (\leq) (UNIV :: nat set)$ unfolding wqo-on-def transp-on-def using almost-full-on-UNIV-nat by simp

 \mathbf{end}

9 Kruskal's Tree Theorem

theory Kruskal imports Well-Quasi-Orders begin

```
locale kruskal-tree =

fixes F :: ('b \times nat) set

and mk :: 'b \Rightarrow 'a \ list \Rightarrow ('a::size)

and root :: 'a \Rightarrow 'b \times nat

and args :: 'a \Rightarrow 'a \ list

and trees :: 'a \ set

assumes size-arg: t \in trees \implies s \in set \ (args \ t) \implies size \ s < size \ t

and root-mk: \ (f, \ length \ ts) \in F \implies root \ (mk \ f \ ts) = \ (f, \ length \ ts)

and args-mk: \ (f, \ length \ ts) \in F \implies args \ (mk \ f \ ts) = ts

and mk-root-args: \ t \in trees \implies mk \ (fst \ (root \ t)) \ (args \ t) = t

and trees-root: \ t \in trees \implies root \ t \in F

and trees-arity: \ t \in trees \implies s \in set \ (args \ t) \implies s \in trees
```

```
begin
```

```
\begin{array}{l} \textbf{lemma } mk\text{-}inject \; [iff]:\\ \textbf{assumes } (f,\; length\; ss) \in F \; \textbf{and } (g,\; length\; ts) \in F\\ \textbf{shows } mk\; f\; ss\; =\; mk\; g\; ts\; \longleftrightarrow f\; =\; g\; \land\; ss\; =\; ts\\ \textbf{proof}\; -\\ & \left\{ \begin{array}{l} \textbf{assume } mk\; f\; ss\; =\; mk\; g\; ts\\ \textbf{then have } root\; (mk\; f\; ss)\; =\; root\; (mk\; g\; ts)\\ \textbf{and } args\; (mk\; f\; ss)\; =\; args\; (mk\; g\; ts)\; \textbf{by } auto\; \right\}\\ \textbf{show } ?thesis\\ \textbf{using } root\text{-}mk\; [OF\; assms(1)]\; \textbf{and } root\text{-}mk\; [OF\; assms(2)]\\ \textbf{and } args\text{-}mk\; [OF\; assms(1)]\; \textbf{and } args\text{-}mk\; [OF\; assms(2)]\; \textbf{by } auto\; \end{array} \right\}\\ \end{array}
```

inductive emb for P

where

 $\begin{array}{l} arg: \llbracket (f, \ m) \in F; \ length \ ts = \ m; \ \forall \ t \in set \ ts. \ t \in \ trees; \\ t \in set \ ts; \ emb \ P \ s \ t \rrbracket \Longrightarrow \ emb \ P \ s \ (mk \ f \ ts) \ | \\ list-emb: \llbracket (f, \ m) \in F; \ (g, \ n) \in F; \ length \ ss = \ m; \ length \ ts = \ n; \\ \forall \ s \in set \ ss. \ s \in \ trees; \ \forall \ t \in set \ ts. \ t \in \ trees; \\ P \ (f, \ m) \ (g, \ n); \ list-emb \ (emb \ P) \ ss \ ts \rrbracket \Longrightarrow \ emb \ P \ (mk \ f \ ss) \ (mk \ g \ ts) \\ \textbf{monos} \ list-emb-mono \end{array}$

lemma almost-full-on-trees:

assumes almost-full-on P Fshows almost-full-on (emb P) trees (is almost-full-on ?P ?A) proof (rule ccontr) interpret mbs ?A. assume \neg ?thesis from mbs' [OF this] obtain m where bad: $m \in BAD$?Pand min: $\forall g. (m, g) \in gseq \longrightarrow good$?P g.. then have trees: $\bigwedge i. m i \in trees$ by auto

```
define r where r \ i = root \ (m \ i) for i
define a where a \ i = args \ (m \ i) for i
define S where S = \bigcup \{set \ (a \ i) \mid i. \ True\}
```

have $m: \bigwedge i. m \ i = mk \ (fst \ (r \ i)) \ (a \ i)$ by $(simp \ add: \ r-def \ a-def \ mk-root-args \ [OF \ trees])$ have $lists: \forall \ i. \ a \ i \in lists \ S$ by $(auto \ simp: \ a-def \ S-def)$ have $arity: \bigwedge i. \ length \ (a \ i) = snd \ (r \ i)$ using trees-arity $[OF \ trees]$ by $(auto \ simp: \ r-def \ a-def)$ then have $sig: \bigwedge i. \ (fst \ (r \ i), \ length \ (a \ i)) \in F$ using trees-root $[OF \ trees]$ by $(auto \ simp: \ a-def \ r-def)$ have a-trees: $\bigwedge i. \ \forall \ t \in set \ (a \ i). \ t \in trees$ by $(auto \ simp: \ a-def \ trees-args \ [OF \ trees])$

have almost-full-on ?P S **proof** (rule ccontr) **assume** \neg ?thesis then obtain $s :: nat \Rightarrow 'a$ where S: $\bigwedge i$. s $i \in S$ and bad-s: bad ?P s by (auto simp: almost-full-on-def) define *n* where $n = (LEAST \ n. \ \exists k. \ s \ k \in set \ (a \ n))$ have $\exists n. \exists k. s k \in set (a n)$ using S by (force simp: S-def) from LeastI-ex [OF this] obtain k where $sk: s \ k \in set \ (a \ n)$ by (auto simp: n-def) have args: $\bigwedge k$. $\exists m \geq n$. $s \ k \in set \ (a \ m)$ using S by (auto simp: S-def) (metis Least-le n-def) define m' where m' $i = (if \ i < n \ then \ m \ i \ else \ s \ (k + (i - n)))$ for i have m'-less: $\bigwedge i$. $i < n \implies m' i = m i$ by (simp add: m'-def) have m'-geq: $\bigwedge i. i \ge n \Longrightarrow m' i = s (k + (i - n))$ by (simp add: m'-def) have bad ?P m'proof assume good ?P m'then obtain i j where i < j and emb: ?P (m' i) (m' j) by auto { assume j < n

with $\langle i < j \rangle$ and emb have ?P(m i)(m j) by (auto simp: m'-less) with $\langle i < j \rangle$ and bad have False by blast }

```
moreover
     { assume n \leq i
       with \langle i < j \rangle and emb have P(s(k + (i - n)))(s(k + (j - n)))
        and k + (i - n) < k + (j - n) by (auto simp: m'-geq)
       with bad-s have False by auto }
     moreover
     { assume i < n and n \leq j
       with \langle i < j \rangle and emb have *: ?P (m i) (s (k + (j - n))) by (auto simp:
m'-less m'-geq)
       with args obtain l where l \ge n and **: s (k + (j - n)) \in set (a l) by
blast
       from emb.arg [OF sig [of l] - a-trees [of l] ***]
        have ?P(m i)(m l) by (simp add: m)
       moreover have i < l using \langle i < n \rangle and \langle n \leq l \rangle by auto
       ultimately have False using bad by blast }
     ultimately show False using \langle i < j \rangle by arith
   qed
   moreover have (m, m') \in gseq
   proof –
     have m \in SEQ? A using trees by auto
     moreover have m' \in SEQ ?A
        using trees and S and trees-args [OF trees] by (auto simp: m'-def a-def
S-def)
     moreover have \forall i < n. m i = m' i by (auto simp: m'-less)
     moreover have size (m' n) < size (m n)
       using sk and size-arg [OF trees, unfolded m]
       by (auto simp: m m'-geq root-mk [OF sig] args-mk [OF sig])
     ultimately show ?thesis by (auto simp: gseq-def)
   qed
   ultimately show False using min by blast
 aed
 from almost-full-on-lists [OF this, THEN almost-full-on-imp-homogeneous-subseq,
OF lists]
   obtain \varphi :: nat \Rightarrow nat
   where less: \bigwedge i j. i < j \Longrightarrow \varphi i < \varphi j
     and lemb: \bigwedge i j. i < j \implies list-emb \ ?P \ (a \ (\varphi \ i)) \ (a \ (\varphi \ j)) by blast
 have roots: \bigwedge i. r \ (\varphi \ i) \in F using trees [THEN trees-root] by (auto simp: r-def)
 then have r \circ \varphi \in SEQ \ F by auto
  with assms have good P(r \circ \varphi) by (auto simp: almost-full-on-def)
  then obtain i j
   where i < j and P(r(\varphi i))(r(\varphi j)) by auto
  with lemb [OF \langle i < j \rangle] have ?P(m(\varphi i))(m(\varphi j))
   using sig and arity and a-trees by (auto simp: m introl: emb.list-emb)
  with less [OF \langle i < j \rangle] and bad show False by blast
qed
```

inductive-cases

```
emb-mk2 [consumes 1, case-names arg list-emb]: emb P s (mk g ts)
```

inductive-cases

list-emb-Nil2-cases: list-emb P xs [] and *list-emb-Cons-cases: list-emb P xs* (y#ys)

lemma *list-emb-trans-right*:

assumes list-emb P xs ys and list-emb ($\lambda y z$. P y $z \land (\forall x. P x y \longrightarrow P x z)$) ys zs

shows list-emb P xs zs

using assms(2, 1) by (induct arbitrary: xs) (auto elim!: list-emb-Nil2-cases list-emb-Cons-cases)

```
lemma emb-trans:
 assumes trans: \bigwedge f g h. f \in F \Longrightarrow g \in F \Longrightarrow h \in F \Longrightarrow P f g \Longrightarrow P g h \Longrightarrow P
f h
  assumes emb \ P \ s \ t and emb \ P \ t \ u
  shows emb P s u
using assms(3, 2)
proof (induct arbitrary: s)
  case (arg f m ts v)
  then show ?case by (auto intro: emb.arg)
\mathbf{next}
  case (list-emb f m g n ss ts)
  note IH = this
  from \langle emb \ P \ s \ (mk \ f \ ss) \rangle
    show ?case
  proof (cases rule: emb-mk2)
    case arg
    then show ?thesis using IH by (auto elim!: list-emb-set intro: emb.arg)
  next
    case list-emb
  then show ?thesis using IH by (auto intro: emb.intros dest: trans list-emb-trans-right)
  qed
\mathbf{qed}
```

```
lemma transp-on-emb:
assumes transp-on F P
shows transp-on trees (emb P)
using assms and emb-trans [of P] unfolding transp-on-def by blast
```

```
lemma kruskal:
   assumes wqo-on P F
   shows wqo-on (emb P) trees
   using almost-full-on-trees [of P] and assms by (metis transp-on-emb wqo-on-def)
```

\mathbf{end}

end theory Kruskal-Examples imports Kruskal

begin

datatype 'a tree = Node 'a 'a tree list fun node where node (Node f ts) = (f, length ts) fun succs where succs (Node f ts) = tsinductive-set trees for A where $f \in A \Longrightarrow \forall t \in set ts. t \in trees A \Longrightarrow Node f ts \in trees A$ lemma [simp]: $trees \ UNIV = \ UNIV$ proof – **{ fix** *t* :: '*a* tree have $t \in trees \ UNIV$ **by** (*induct* t) (*auto intro: trees.intros*) } then show ?thesis by auto qed interpretation kruskal-tree-tree: kruskal-tree $A \times UNIV$ Node node succes trees A for Aapply (unfold-locales) apply *auto* **apply** (case-tac [!] t rule: trees.cases) apply *auto* by (metis less-not-refl not-less-eq size-list-estimation) thm kruskal-tree-tree.almost-full-on-trees thm kruskal-tree-tree.kruskal definition tree-emb A P = kruskal-tree-tree.emb A (prod-le P (λ - . True))

lemma wqo-on-trees:
 assumes wqo-on P A
 shows wqo-on (tree-emb A P) (trees A)
 using wqo-on-Sigma [OF assms wqo-on-UNIV, THEN kruskal-tree-tree.kruskal]
 by (simp add: tree-emb-def)

If the type 'a is well-quasi-ordered by P, then trees of type 'a tree are wellquasi-ordered by the homeomorphic embedding relation.

instantiation tree :: (wqo) wqo begin definition $s \leq t \iff tree\text{-emb UNIV} (\leq) s t$ **definition** $(s :: 'a \ tree) < t \leftrightarrow s \le t \land \neg (t \le s)$

instance

```
by (rule wqo.intro-of-class)
(auto simp: less-eq-tree-def [abs-def] less-tree-def [abs-def]
intro: wqo-on-trees [of - UNIV, simplified])
```

end

datatype ('f, 'v) term = Var 'v | Fun 'f ('f, 'v) term list

fun root **where** root (Fun f ts) = (f, length ts)

fun args **where** args (Fun f ts) = ts

```
inductive-set gterms for F
where
(f, n) \in F \Longrightarrow length \ ts = n \Longrightarrow \forall s \in set \ ts. \ s \in gterms \ F \Longrightarrow Fun \ f \ ts \in gterms \ F
```

interpretation kruskal-term: kruskal-tree F Fun root args gterms F for F
apply (unfold-locales)
apply auto
apply (case-tac [!] t rule: gterms.cases)
apply auto
by (metis less-not-refl not-less-eq size-list-estimation)

 ${\bf thm}\ kruskal\text{-}term.almost\text{-}full\text{-}on\text{-}trees$

```
inductive-set terms

where

\forall t \in set ts. t \in terms \Longrightarrow Fun f ts \in terms
```

interpretation kruskal-variadic: kruskal-tree UNIV Fun root args terms
apply (unfold-locales)
apply auto
apply (case-tac [!] t rule: terms.cases)
apply auto
by (metis less-not-refl not-less-eq size-list-estimation)

 ${\bf thm}\ kruskal\ variadic\ almost\ full\ on\ trees$

 $\mathbf{datatype} \ 'a \ exp = \ V \ 'a \ | \ C \ nat \ | \ Plus \ 'a \ exp \ 'a \ exp$

datatype 'a symb = v 'a | c nat | p

fun mk where mk (v x) [] = V x |mk (c n) [] = C n |mk p [a, b] = Plus a b

$\mathbf{fun} \ rt$

where rt (V x) = (v x, 0::nat) | rt (C n) = (c n, 0) |rt (Plus a b) = (p, 2)

$\mathbf{fun} \ ags$

where ags (V x) = [] | ags (C n) = [] |ags (Plus a b) = [a, b]

inductive-set *exps* where

 $V x \in exps |$ $C n \in exps |$ $a \in exps \Longrightarrow b \in exps \Longrightarrow Plus a b \in exps$

lemma [simp]: **assumes** length ts = 2 **shows** $rt \ (mk \ p \ ts) = (p, 2)$ **using** assms by (induct ts) (auto, case-tac ts, auto)

lemma [simp]: **assumes** length ts = 2 **shows** ags (mk p ts) = ts **using** assms **by** (induct ts) (auto, case-tac ts, auto)

interpretation kruskal-exp: kruskal-tree

 $\begin{array}{l} \{(v \; x, \; 0) \mid x. \; True\} \cup \{(c \; n, \; 0) \mid n. \; True\} \cup \{(p, \; 2)\} \\ mk \; rt \; ags \; exps \\ \textbf{apply} \; (unfold-locales) \\ \textbf{apply} \; auto \\ \textbf{apply} \; (case-tac \; [!] \; t \; rule: \; exps.cases) \\ \textbf{by} \; auto \end{array}$

 ${\bf thm} \ kruskal\text{-}exp.almost\text{-}full\text{-}on\text{-}trees$

hide-const (open) tree-emb V C Plus v c p

 \mathbf{end}

10 Instances of Well-Quasi-Orders

theory Wqo-Instances imports Kruskal begin

10.1 The Option Type is Well-Quasi-Ordered

instantiation option :: (wqo) wqo begin definition $x \leq y \longleftrightarrow$ option-le (\leq) x ydefinition (x :: 'a option) $< y \longleftrightarrow x \leq y \land \neg (y \leq x)$

instance

by (*rule wqo.intro-of-class*) (*auto simp*: *less-eq-option-def* [*abs-def*] *less-option-def* [*abs-def*]) **end**

10.2 The Sum Type is Well-Quasi-Ordered

instantiation sum :: (wqo, wqo) wqo begin definition $x \leq y \longleftrightarrow$ sum-le (\leq) (\leq) x ydefinition (x :: 'a + 'b) < $y \longleftrightarrow x \leq y \land \neg (y \leq x)$

instance

by (rule wqo.intro-of-class) (auto simp: less-eq-sum-def [abs-def] less-sum-def [abs-def]) end

10.3 Pairs are Well-Quasi-Ordered

If types 'a and 'b are well-quasi-ordered by P and Q, then pairs of type 'a \times 'b are well-quasi-ordered by the pointwise combination of P and Q.

instantiation prod :: (wqo, wqo) wqo begin definition $p \leq q \longleftrightarrow prod\ (\leq) (\leq) p q$ definition $(p :: 'a \times 'b) < q \longleftrightarrow p \leq q \land \neg (q \leq p)$

instance

by (rule wqo.intro-of-class)
 (auto simp: less-eq-prod-def [abs-def] less-prod-def [abs-def])
end

10.4 Lists are Well-Quasi-Ordered

If the type 'a is well-quasi-ordered by P, then lists of type 'a list are wellquasi-ordered by the homeomorphic embedding relation. instantiation list :: (wqo) wqo begin definition $xs \leq ys \iff list\text{-}emb \ (\leq) xs \ ys$ definition (xs :: 'a list) $< ys \iff xs \leq ys \land \neg (ys \leq xs)$

instance

by (rule wqo.intro-of-class)
 (auto simp: less-eq-list-def [abs-def] less-list-def [abs-def])
end

end

11 Multiset Extension of Orders (as Binary Predicates)

```
theory Multiset-Extension
imports
Open-Induction.Restricted-Predicates
HOL-Library.Multiset
begin
```

definition multisets :: 'a set \Rightarrow 'a multiset set where multisets $A = \{M. \text{ set-mset } M \subseteq A\}$

lemma in-multisets-iff: $M \in multisets \ A \iff set\text{-mset} \ M \subseteq A$ **by** (simp add: multisets-def)

lemma empty-multisets [simp]: $\{\#\} \in$ multisets F **by** (simp add: in-multisets-iff)

lemma multisets-union [simp]: $M \in multisets A \implies N \in multisets A \implies M + N \in multisets A$ **by** (auto simp add: in-multisets-iff)

definition $mulex1 :: ('a \Rightarrow 'a \Rightarrow bool) \Rightarrow 'a multiset \Rightarrow 'a multiset \Rightarrow bool where$ $<math>mulex1 \ P = (\lambda M \ N. \ (M, \ N) \in mult1 \ \{(x, \ y). \ P \ x \ y\})$

lemma mulex1-empty [iff]: mulex1 P M $\{\#\} \longleftrightarrow$ False using not-less-empty [of M $\{(x, y). P x y\}$] by (auto simp: mulex1-def)

lemma mulex1-add: mulex1 $P \ N \ (M0 + \{\#a\#\}) \Longrightarrow$ $(\exists M. mulex1 P M M0 \land N = M + \{\#a\#\}) \lor$ $(\exists K. (\forall b. b \in \# K \longrightarrow P b a) \land N = M0 + K)$ using less-add [of N a M0 {(x, y). P x y}] by (auto simp: mulex1-def)

lemma *mulex1-self-add-right* [*simp*]: mulex1 P A (add-mset a A)proof – let $?R = \{(x, y). P x y\}$ thm mult1-def have $A + \{\#a\#\} = A + \{\#a\#\}$ by simp moreover have $A = A + \{\#\}$ by simp **moreover have** $\forall b. b \in \# \{\#\} \longrightarrow (b, a) \in ?R$ by simp ultimately have $(A, add\text{-}mset \ a \ A) \in mult 1 \ ?R$ unfolding mult1-def by blast then show ?thesis by (simp add: mulex1-def) qed **lemma** *empty-mult1* [*simp*]: $(\{\#\}, \{\#a\#\}) \in mult1 R$ proof have $\{\#a\#\} = \{\#\} + \{\#a\#\}$ by simp moreover have $\{\#\} = \{\#\} + \{\#\}$ by *simp* **moreover have** $\forall b. b \in \# \{\#\} \longrightarrow (b, a) \in R$ by simp ultimately show ?thesis unfolding mult1-def by force qed **lemma** *empty-mulex1* [*simp*]: mulex1 $P \{\#\} \{\#a\#\}$ using empty-mult1 [of a {(x, y). P x y}] by (simp add: mulex1-def) **definition** mulex-on :: $('a \Rightarrow 'a \Rightarrow bool) \Rightarrow 'a \ set \Rightarrow 'a \ multiset \Rightarrow 'a \ multiset \Rightarrow$ bool where mulex-on $P A = (restrict-to (mulex1 P) (multisets A))^{++}$ **abbreviation** mulex :: $('a \Rightarrow 'a \Rightarrow bool) \Rightarrow 'a$ multiset $\Rightarrow 'a$ multiset $\Rightarrow bool$ where mulex $P \equiv$ mulex-on P UNIV **lemma** mulex-on-induct [consumes 1, case-names base step, induct pred: mulex-on]: assumes mulex-on $P \land M \land N$ and $\bigwedge M N$. $[M \in multisets A; N \in multisets A; mulex1 P M N] \implies Q M N$ and $\bigwedge L M N$. [mulex-on P A L M; Q L M; $N \in multisets A$; mulex1 P M N] $\implies Q \ L \ N$ shows Q M Nusing assms unfolding mulex-on-def by (induct) blast+ **lemma** mulex-on-self-add-singleton-right [simp]: assumes $a \in A$ and $M \in multisets A$ shows mulex-on $P \land M$ (add-mset a M) proof have mulex1 P M $(M + \{\#a\#\})$ by simp

```
with assms have restrict-to (mulex1 P) (multisets A) M (add-mset a M)
   by (auto simp: multisets-def)
 then show ?thesis unfolding mulex-on-def by blast
qed
lemma singleton-multisets [iff]:
 \{\#x\#\} \in multisets A \longleftrightarrow x \in A
 by (auto simp: multisets-def)
lemma union-multisetsD:
 assumes M + N \in multisets A
 shows M \in multisets A \land N \in multisets A
 using assms by (auto simp: multisets-def)
lemma mulex-on-multisetsD [dest]:
 assumes mulex-on P F M N
 shows M \in multisets \ F and N \in multisets \ F
 using assms by (induct) auto
lemma union-multisets-iff [iff]:
 M + N \in multisets \ A \longleftrightarrow M \in multisets \ A \land N \in multisets \ A
 by (auto dest: union-multisetsD)
lemma add-mset-multisets-iff [iff]:
 add-mset a M \in multisets A \iff a \in A \land M \in multisets A
 unfolding add-mset-add-single[of a M] union-multisets-iff by auto
lemma mulex-on-trans:
 mulex-on P \land L \land M \implies mulex-on P \land M \land N \implies mulex-on P \land L \land N
 by (auto simp: mulex-on-def)
lemma transp-on-mulex-on:
 transp-on B (mulex-on PA)
 using mulex-on-trans [of P A] by (auto simp: transp-on-def)
lemma mulex-on-add-right [simp]:
 assumes mulex-on P \land M \land N and a \in A
 shows mulex-on P \land M (add-mset a \land N)
proof –
 from assms have a \in A and N \in multisets A by auto
 then have mulex-on P \land N (add-mset a \land N) by simp
 with \langle mulex-on P A M N \rangle show ?thesis by (rule mulex-on-trans)
qed
lemma empty-mulex-on [simp]:
 assumes M \neq \{\#\} and M \in multisets A
 shows mulex-on P \land \{\#\} M
using assms
proof (induct M)
```

```
case (add \ a \ M)
 show ?case
 proof (cases M = \{\#\})
   assume M = \{\#\}
   with add show ?thesis by (auto simp: mulex-on-def)
 next
   assume M \neq \{\#\}
   with add show ?thesis by (auto intro: mulex-on-trans)
 qed
\mathbf{qed} \ simp
lemma mulex-on-self-add-right [simp]:
 assumes M \in multisets A and K \in multisets A and K \neq \{\#\}
 shows mulex-on P \land M (M + K)
using assms
proof (induct K)
 case empty
 then show ?case by (cases K = \{\#\}) auto
next
 case (add \ a \ M)
 show ?case
 proof (cases M = \{\#\})
   assume M = \{\#\} with add show ?thesis by auto
 next
   assume M \neq \{\#\} with add show ?thesis
     by (auto dest: mulex-on-add-right simp add: ac-simps)
 qed
qed
lemma mult1-singleton [iff]:
  (\{\#x\#\}, \{\#y\#\}) \in mult1 \ R \longleftrightarrow (x, y) \in R
proof
 assume (x, y) \in R
 then have \{\#y\#\} = \{\#\} + \{\#y\#\}
   and \{\#x\#\} = \{\#\} + \{\#x\#\}
   and \forall b. b \in \# \{\#x\#\} \longrightarrow (b, y) \in R by auto
 then show (\{\#x\#\}, \{\#y\#\}) \in mult1 \ R \text{ unfolding } mult1\text{-}def \text{ by } blast
next
  assume (\{\#x\#\}, \{\#y\#\}) \in mult1 \ R
  then obtain M0 K a
   where \{\#y\#\} = add-mset a M0
   and \{\#x\#\} = M0 + K
   and \forall b. b \in \# K \longrightarrow (b, a) \in R
   unfolding mult1-def by blast
 then show (x, y) \in R by (auto simp: add-eq-conv-diff)
qed
```

lemma mulex1-singleton [iff]: mulex1 $P \{\#x\#\} \{ \#y\#\} \longleftrightarrow P x y$

using mult1-singleton [of $x y \{(x, y). P x y\}$] by (simp add: mulex1-def) **lemma** *singleton-mulex-onI*: $P x y \Longrightarrow x \in A \Longrightarrow y \in A \Longrightarrow mulex-on P A \{\#x\#\} \{\#y\#\}$ **by** (*auto simp: mulex-on-def*) **lemma** reflclp-mulex-on-add-right [simp]: assumes $(mulex \text{-}on \ P \ A)^{==} M \ N$ and $M \in multisets \ A$ and $a \in A$ shows mulex-on $P \land M (N + \{\#a\#\})$ using assms by (cases M = N) simp-all **lemma** reflclp-mulex-on-add-right' [simp]: assumes $(mulex \text{-}on \ P \ A)^{==} M \ N$ and $M \in multisets \ A$ and $a \in A$ shows mulex-on $P \land M (\{\#a\#\} + N)$ using reflclp-mulex-on-add-right [OF assms] by (simp add: ac-simps) **lemma** *mulex-on-union-right* [*simp*]: assumes mulex-on P F A B and $K \in multisets F$ shows mulex-on P F A (K + B)using assms **proof** (*induct* K) case $(add \ a \ K)$ then have $a \in F$ and mulex-on P F A (B + K) by (auto simp: multisets-def ac-simps) then have mulex-on $P F A ((B + K) + \{\#a\#\})$ by simp then show ?case by (simp add: ac-simps) qed simp **lemma** *mulex-on-union-right'* [*simp*]: assumes mulex-on P F A B and $K \in multisets F$ shows mulex-on P F A (B + K)using mulex-on-union-right [OF assms] by (simp add: ac-simps) Adapted from $wf ?r \Longrightarrow \forall M. M \in Wellfounded.acc (mult1 ?r) in HOL-Library.Multiset.$ **lemma** *accessible-on-mulex1-multisets*: assumes wf: wfp - on P A**shows** $\forall M \in multisets A$. accessible-on (mulex1 P) (multisets A) M proof let ?P = mulex1 Plet ?A = multisets Alet ?acc = accessible-on ?P ?Ał fix $M M \theta a$ assume M0: ?acc M0 and $a \in A$ and $M\theta \in ?A$ and wf-hyp: $\land b$. $[\![b \in A; P \ b \ a]\!] \Longrightarrow (\forall M. ?acc (M) \longrightarrow ?acc (M + \{\#b\#\}))$ and acc-hyp: $\forall M. M \in ?A \land ?P M M0 \longrightarrow ?acc (M + \{\#a\#\})$ then have add-mset a $M0 \in ?A$ by (auto simp: multisets-def)

then have $?acc (add-mset \ a \ M\theta)$ **proof** (rule accessible-onI [of add-mset a M0]) fix Nassume $N \in ?A$ and ?P N (add-mset a M0) then have $(\exists M. M \in ?A \land ?P M M0 \land N = M + \{\#a\#\}) \lor$ $(\exists K. (\forall b. b \in \# K \longrightarrow P b a) \land N = M0 + K))$ using mulex1-add [of P N M0 a] by (auto simp: multisets-def) then show ?acc(N)**proof** (*elim exE disjE conjE*) fix M assume $M \in ?A$ and ?P M M0 and $N: N = M + \{\#a\#\}$ from acc-hyp have $M \in ?A \land ?P M M0 \longrightarrow ?acc (M + \{\#a\#\})$. with $\langle M \in ?A \rangle$ and $\langle ?P \ M \ M0 \rangle$ have $?acc \ (M + \{\#a\#\})$ by blast then show ?acc (N) by (simp only: N) \mathbf{next} fix Kassume $N: N = M\theta + K$ **assume** $\forall b. b \in \# K \longrightarrow P b a$ moreover from N and $\langle N \in ?A \rangle$ have $K \in ?A$ by (*auto simp: multisets-def*) ultimately have ?acc (M0 + K)**proof** (*induct* K) case *empty* from M0 show ?acc $(M0 + \{\#\})$ by simp next case $(add \ x \ K)$ from add.prems have $x \in A$ and P x a by (auto simp: multisets-def) with wf-hyp have $\forall M$. ?acc $M \longrightarrow$?acc $(M + \{\#x\#\})$ by blast moreover from add have ?acc (M0 + K) by (auto simp: multisets-def) ultimately show ?acc (M0 + (add-mset x K)) by simp qed then show ?acc N by (simp only: N) qed qed } note tedious-reasoning = this fix Massume $M \in ?A$ then show ?acc M**proof** (induct M) show ?acc $\{\#\}$ **proof** (*rule accessible-onI*) show $\{\#\} \in ?A$ by (auto simp: multisets-def) \mathbf{next} fix b assume $?P \ b \ \{\#\}$ then show $?acc \ b \ by \ simp$ qed \mathbf{next} case $(add \ a \ M)$ then have ?acc M by (auto simp: multisets-def) from add have $a \in A$ by (auto simp: multisets-def)

```
with wf have \forall M. ?acc M \longrightarrow ?acc (add-mset a M)
   proof (induct)
    case (less a)
    then have r: \land b. [\![b \in A; P \ b \ a]\!] \Longrightarrow (\forall M. ?acc \ M \longrightarrow ?acc \ (M + \{\#b\#\}))
by auto
     show \forall M. ?acc M \longrightarrow ?acc (add-mset a M)
     proof (intro allI impI)
      fix M'
      assume ?acc M'
      moreover then have M' \in ?A by (blast dest: accessible-on-imp-mem)
      ultimately show ?acc (add-mset a M')
        by (induct) (rule tedious-reasoning [OF - \langle a \in A \rangle - r], auto)
    qed
   qed
   with \langle ?acc (M) \rangle show ?acc (add-mset \ a \ M) by blast
 qed
qed
lemmas wfp-on-mulex1-multisets =
 accessible-on-mulex1-multisets [THEN accessible-on-imp-wfp-on]
lemmas irreflp-on-mulex1 =
 wfp-on-mulex1-multisets [THEN wfp-on-imp-irreflp-on]
lemma wfp-on-mulex-on-multisets:
 assumes wfp-on P A
 shows wfp-on (mulex-on P A) (multisets A)
 using wfp-on-mulex1-multisets [OF assms]
 by (simp only: mulex-on-def wfp-on-restrict-to-tranclp-wfp-on-conv)
lemmas irreflp-on-mulex-on =
 wfp-on-mulex-on-multisets [THEN wfp-on-imp-irreflp-on]
lemma mulex1-union:
 mulex1 P M N \implies mulex1 P (K + M) (K + N)
 by (auto simp: mulex1-def mult1-union)
lemma mulex-on-union:
 assumes mulex-on P \land M \land N and K \in multisets \land
 shows mulex-on P A (K + M) (K + N)
using assms
proof (induct)
 case (base M N)
 then have mulex1 P(K + M)(K + N) by (blast dest: mulex1-union)
 moreover from base have (K + M) \in multisets A
   and (K + N) \in multisets A by (auto simp: multisets-def)
 ultimately have restrict-to (mulex1 P) (multisets A) (K + M) (K + N) by
auto
 then show ?case by (auto simp: mulex-on-def)
```

\mathbf{next}

case (step L M N) then have mulex1 P(K + M)(K + N) by (blast dest: mulex1-union) **moreover from** step have $(K + M) \in multisets A$ and $(K + N) \in multisets$ A **by** blast+ultimately have (restrict-to (mulex1 P) (multisets A))⁺⁺ (K + M) (K + N)by *auto* moreover have mulex-on P A (K + L) (K + M) using step by blast ultimately show ?case by (auto simp: mulex-on-def) \mathbf{qed} **lemma** *mulex-on-union'*: assumes mulex-on $P \land M \land N$ and $K \in multisets \land$ shows mulex-on P A (M + K) (N + K)using mulex-on-union [OF assms] by (simp add: ac-simps) **lemma** *mulex-on-add-mset*: assumes mulex-on $P \land M \land N$ and $m \in A$ shows mulex-on P A (add-mset m M) (add-mset m N) **unfolding** add-mset-add-single[of m M] add-mset-add-single[of m N] apply (rule mulex-on-union') using assms by auto lemma union-mulex-on-mono: mulex-on $P F A C \Longrightarrow$ mulex-on $P F B D \Longrightarrow$ mulex-on P F (A + B) (C + D)by (metis mulex-on-multisetsD mulex-on-trans mulex-on-union mulex-on-union') lemma mulex-on-add-mset': assumes $P \ m \ n$ and $m \in A$ and $n \in A$ and $M \in multisets A$ shows mulex-on P A (add-mset m M) (add-mset n M) **unfolding** add-mset-add-single[of m M] add-mset-add-single[of n M] apply (rule mulex-on-union) using assms by (auto simp: mulex-on-def) **lemma** *mulex-on-add-mset-mono*: assumes $P \ m \ n$ and $m \in A$ and $n \in A$ and mulex-on $P \ A \ M \ N$ shows mulex-on P A (add-mset m M) (add-mset n N) **unfolding** add-mset-add-single[of m M] add-mset-add-single[of n N] apply (rule union-mulex-on-mono) using assms by (auto simp: mulex-on-def) **lemma** *union-mulex-on-mono1*: $A \in multisets \ F \Longrightarrow (mulex-on \ P \ F)^{==} \ A \ C \Longrightarrow mulex-on \ P \ F \ B \ D \Longrightarrow$ mulex-on P F (A + B) (C + D)by (auto intro: union-mulex-on-mono mulex-on-union) **lemma** *union-mulex-on-mono2*: $B \in multisets \ F \implies mulex-on \ P \ F \ A \ C \implies (mulex-on \ P \ F)^{==} \ B \ D \implies$ mulex-on P F (A + B) (C + D)

by (auto intro: union-mulex-on-mono mulex-on-union')

lemma *mult1-mono*: assumes $\bigwedge x \ y$. $[x \in A; \ y \in A; \ (x, \ y) \in R]] \Longrightarrow (x, \ y) \in S$ and $M \in multisets A$ and $N \in multisets A$ and $(M, N) \in mult 1 R$ shows $(M, N) \in mult 1 S$ using assms unfolding mult1-def multisets-def **by** *auto* (*metis* (*full-types*) *subsetD*) **lemma** *mulex1-mono*: assumes $\bigwedge x \ y$. $[x \in A; \ y \in A; \ P \ x \ y] \Longrightarrow Q \ x \ y$ and $M \in multisets A$ and $N \in multisets A$ and mulex1 P M Nshows mulex1 Q M N using mult1-mono [of $A \{(x, y) \colon P \mid xy\} \{(x, y) \colon Q \mid xy\} M N$] and assms unfolding mulex1-def by blast **lemma** *mulex-on-mono*: assumes *: $\bigwedge x y$. $[x \in A; y \in A; P x y] \Longrightarrow Q x y$ and mulex-on $P \land M N$ shows mulex-on Q A M N proof let $?rel = \lambda P$. (restrict-to (mulex1 P) (multisets A)) **from** $(mulex-on P \land M \land N)$ have $(?rel P)^{++} \land M \land by (simp add: mulex-on-def)$ then have $(?rel Q)^{++} M N$ proof (induct rule: tranclp.induct) case (r-into-trancl M N)then have $M \in multisets A$ and $N \in multisets A$ by auto from mulex1-mono [OF * this] and r-into-trancl show ?case by auto next case $(trancl-into-trancl \ L \ M \ N)$ then have $M \in multisets A$ and $N \in multisets A$ by auto from mulex1-mono [OF * this] and trancl-into-trancl have ?rel Q M N by auto with $\langle (?rel Q)^{++} L M \rangle$ show ?case by (rule tranclp.trancl-into-trancl) qed then show ?thesis by (simp add: mulex-on-def) qed **lemma** *mult1-reflcl*: assumes $(M, N) \in mult 1 R$ shows $(M, N) \in mult 1 \ (R^{=})$ using assms by (auto simp: mult1-def)

lemma mulex1-reflclp:

assumes mulex1 P M N shows mulex1 $(P^{==})$ M N using mulex1-mono [of UNIV $P P^{==} M N$, OF - - assms] **by** (*auto simp: multisets-def*) **lemma** *mulex-on-reflclp*: assumes mulex-on P A M N shows mulex-on $(P^{==}) \land M N$ using mulex-on-mono $[OF - assms, of P^{==}]$ by auto **lemma** *surj-on-multisets-mset*: $\forall M \in multisets A. \exists xs \in lists A. M = mset xs$ proof fix Massume $M \in multisets A$ then show $\exists xs \in lists A. M = mset xs$ **proof** (*induct* M) case empty show ?case by simp \mathbf{next} case $(add \ a \ M)$ then obtain xs where $xs \in lists A$ and M = mset xs by autothen have add-mset a M = mset (a # xs) by simp **moreover have** $a \# xs \in lists A$ using $\langle xs \in lists A \rangle$ and add by auto ultimately show ?case by blast qed qed **lemma** *image-mset-lists* [*simp*]: mset ' lists A = multisets Ausing surj-on-multisets-mset [of A] by auto (metis mem-Collect-eq multisets-def set-mset-mset subsetI) lemma multisets-UNIV [simp]: multisets UNIV = UNIV**by** (*metis image-mset-lists lists-UNIV surj-mset*) **lemma** non-empty-multiset-induct [consumes 1, case-names singleton add]: assumes $M \neq \{\#\}$ and $\bigwedge x$. $P \{ \#x \# \}$ and $\bigwedge x M$. $\stackrel{\frown}{P} M \Longrightarrow P$ (add-mset x M) shows P Musing assms by (induct M) auto **lemma** *mulex-on-all-strict*: assumes $X \neq \{\#\}$ assumes $X \in multisets A$ and $Y \in multisets A$ and $*: \forall y. y \in \# Y \longrightarrow (\exists x. x \in \# X \land P y x)$ shows mulex-on $P \land Y X$ using assms **proof** (*induction X arbitrary: Y rule: non-empty-multiset-induct*)

case (singleton x) then have mulex1 P Y $\{\#x\#\}$ unfolding mulex1-def mult1-def by auto with singleton show ?case by (auto simp: mulex-on-def) \mathbf{next} case $(add \ x \ M)$ let $?Y = \{ \# y \in \# Y. \exists x. x \in \# M \land P y x \# \}$ let ?Z = Y - ?Yhave Y: Y = ?Z + ?Y by (subst multiset-eq-iff) auto **from** $\langle Y \in multisets \ A \rangle$ have $?Y \in multisets \ A$ by (metis multiset-partition union-multisets-iff) **moreover have** $\forall y. y \in \# ?Y \longrightarrow (\exists x. x \in \# M \land P y x)$ by *auto* moreover have $M \in multisets A$ using add by auto ultimately have mulex-on P A ?Y M using add by blast moreover have mulex-on $P \land ?Z \{\#x\#\}$ proof have $\{\#x\#\} = \{\#\} + \{\#x\#\}$ by simp moreover have $?Z = \{\#\} + ?Z$ by simp moreover have $\forall y. y \in \# ?Z \longrightarrow P y x$ using add.prems by (auto simp add: in-diff-count split: if-splits) ultimately have mulex1 P ?Z $\{\#x\#\}$ unfolding mulex1-def mult1-def by blast**moreover have** $\{\#x\#\} \in multisets A using add.prems by auto$ moreover have $?Z \in multisets A$ using $\langle Y \in multisets A \rangle$ by (metis diff-union-cancelL multiset-partition union-multisetsD) ultimately show ?thesis by (auto simp: mulex-on-def) qed ultimately have mulex-on $PA(?Y + ?Z)(M + \{\#x\#\})$ by (rule union-mulex-on-mono) then show ?case using Y by (simp add: ac-simps) qed

The following lemma shows that the textbook definition (e.g., "Term Rewriting and All That") is the same as the one used below.

lemma *diff-set-Ex-iff*:

 $X \neq \{\#\} \land X \subseteq \# M \land N = (M - X) + Y \longleftrightarrow X \neq \{\#\} \land (\exists Z. M = Z + X \land N = Z + Y)$

by (*auto*) (*metis add-diff-cancel-left' multiset-diff-union-assoc union-commute*)

Show that *mulex-on* is equivalent to the textbook definition of multisetextension for transitive base orders.

lemma *mulex-on-alt-def*:

assumes trans: transp-on A P

shows mulex-on $P \land M \land \longrightarrow M \in multisets \land \land N \in multisets \land \land (\exists X Y Z).$

 $\begin{array}{l} X \neq \{\#\} \land N = Z + X \land M = Z + Y \land (\forall y. \ y \in \# Y \longrightarrow (\exists x. \ x \in \# X \land P \ y \ x)))\\ (\mathbf{is} \ ?P \ M \ N \longleftrightarrow \ ?Q \ M \ N) \end{array}$

proof assume ?P M N then show ?Q M N**proof** (induct M N) case (base M N) then obtain a M0 K where N: $N = M0 + \{\#a\#\}\$ and M: M = M0 + Kand $*: \forall b. b \in \# K \longrightarrow P b a$ and $M \in multisets A$ and $N \in multisets A$ by (auto simp: mulex1-def mult1-def) moreover then have $\{\#a\#\} \in multisets A \text{ and } K \in multisets A \text{ by } auto$ moreover have $\{\#a\#\} \neq \{\#\}$ by *auto* moreover have $N = M0 + \{\#a\#\}$ by fact moreover have M = M0 + K by fact moreover have $\forall y. y \in \# K \longrightarrow (\exists x. x \in \# \{\#a\#\} \land P y x)$ using * by autoultimately show ?case by blast next case (step L M N) then obtain X Y Zwhere $L \in multisets A$ and $M \in multisets A$ and $N \in multisets A$ and $X \in multisets A$ and $Y \in multisets A$ and M: M = Z + Xand L: L = Z + Y and $X \neq \{\#\}$ and $Y: \forall y. y \in \# Y \longrightarrow (\exists x. x \in \# X \land P y x)$ and mulex1 P M Nby blast from $\langle mulex1 \ P \ M \ N \rangle$ obtain a M0 K where N: N = add-mset a M0 and M': M = M0 + Kand $*: \forall b. b \in \# K \longrightarrow P b a$ unfolding mulex1-def mult1-def by blast have L': L = (M - X) + Y by (simp add: L M) have $K: \forall y. y \in \# K \longrightarrow (\exists x. x \in \# \{\#a\#\} \land P y x)$ using * by *auto*

The remainder of the proof is adapted from the proof of Lemma 2.5.4. of the book "Term Rewriting and All That."

let ?X = add-mset a (X - K)let ?Y = (K - X) + Yhave $L \in multisets A$ and $N \in multisets A$ by fact+ moreover have $?X \neq \{\#\} \land (\exists Z. N = Z + ?X \land L = Z + ?Y)$ proof – have $?X \neq \{\#\}$ by auto moreover have $?X \subseteq \# N$ using M N M' by (simp add: add.commute [of $\{\#a\#\}$]) (metis Multiset.diff-subset-eq-self add.commute add-diff-cancel-right) moreover have L = (N - ?X) + ?Yproof (rule multiset-eqI) fix x :: 'alet $?c = \lambda M$. count M xlet $?ic = \lambda x$. int (?c x)

from $\langle ?X \subseteq \# N \rangle$ have $*: ?c \{\#a\#\} + ?c (X - K) \leq ?c N$ by (auto simp add: subseteq-mset-def split: if-splits) from * have **: $?c(X - K) \leq ?c M0$ unfolding N by (auto split: if-splits) have ?ic (N - ?X + ?Y) = int (?c N - ?c ?X) + ?ic ?Y by simpalso have ... = int $(?c \ N - (?c \ \#a\#) + ?c \ (X - K))) + ?ic \ (K - X)$ +?ic Y by simp **also have** ... = $?ic N - (?ic \{\#a\#\} + ?ic (X - K)) + ?ic (K - X) + ?ic (K - X))$?ic Yusing of-nat-diff [OF *] by simp also have $\ldots = (?ic \ N - ?ic \ \{\#a\#\}) - ?ic \ (X - K) + ?ic \ (K - X) + ?ic$?ic Y by simp also have $\dots = (?ic \ N - ?ic \ \{\#a\#\}) + (?ic \ (K - X) - ?ic \ (X - K)) +$?ic Y by simp also have $\dots = (?ic \ N - ?ic \ \{\#a\#\}) + (?ic \ K - ?ic \ X) + ?ic \ Y$ by simpalso have $\ldots = (?ic \ N - ?ic \ ?X) + ?ic \ ?Y$ by $(simp \ add: N)$ also have $\ldots = ?ic L$ unfolding L' M' N**using** ** **by** (*simp add: algebra-simps*) finally show ?c L = ?c (N - ?X + ?Y) by simp qed ultimately show ?thesis by (metis diff-set-Ex-iff) qed **moreover have** $\forall y. y \in \# ?Y \longrightarrow (\exists x. x \in \# ?X \land P y x)$ **proof** (*intro allI impI*) fix y assume $y \in \# ?Y$ then have $y \in \# K - X \lor y \in \# Y$ by *auto* then show $\exists x. x \in \# ?X \land P y x$ proof assume $y \in \# K - X$ then have $y \in \# K$ by (rule in-diffD) with K show ?thesis by auto \mathbf{next} assume $y \in \# Y$ with Y obtain x where $x \in \# X$ and P y x by blast { assume $x \in \# X - K$ with $\langle P y x \rangle$ have ?thesis by auto } moreover { assume $x \in \# K$ with * have P x a by auto **moreover have** $y \in A$ using $\langle Y \in multisets A \rangle$ and $\langle y \in \# Y \rangle$ by (auto simp: multisets-def) **moreover have** $a \in A$ using $\langle N \in multisets A \rangle$ by (auto simp: N) **moreover have** $x \in A$ using $\langle M \in multisets A \rangle$ and $\langle x \in \# K \rangle$ by (auto simp: M' multisets-def) ultimately have P y a using $\langle P y x \rangle$ and trans unfolding transp-on-def by blast then have *?thesis* by *force* } **moreover from** $\langle x \in \# X \rangle$ have $x \in \# X - K \lor x \in \# K$ **by** (*auto simp add: in-diff-count not-in-iff*) ultimately show ?thesis by auto qed

qed ultimately show ?case by blast qed \mathbf{next} assume ?Q M N then obtain X Y Z where $M \in multisets A$ and $N \in multisets A$ and $X \neq \{\#\}$ and N: N = Z + X and M: M = Z + Yand $*: \forall y. y \in \# Y \longrightarrow (\exists x. x \in \# X \land P y x)$ by blast with mulex-on-all-strict [of $X \land Y$] have mulex-on $P \land Y X$ by auto **moreover from** $\langle N \in multisets \ A \rangle$ have $Z \in multisets \ A$ by (auto simp: N) ultimately show *?P M N* unfolding *M N* by (*metis mulex-on-union*) qed

end

12Multiset Extension Preserves Well-Quasi-Orders

```
theory Wqo-Multiset
imports
 Multiset-Extension
 Well-Quasi-Orders
begin
```

```
lemma list-emb-imp-reflclp-mulex-on:
 assumes xs \in lists A and ys \in lists A
   and list-emb P xs ys
 shows (mulex on P A)^{==} (mset xs) (mset ys)
using assms(3, 1, 2)
proof (induct)
 case (list-emb-Nil ys)
 then show ?case
   by (cases ys) (auto introl: empty-mulex-on simp: multisets-def)
\mathbf{next}
 case (list-emb-Cons xs ys y)
 then show ?case by (auto introl: mulex-on-self-add-singleton-right simp: multi-
sets-def)
\mathbf{next}
 case (list-emb-Cons2 x y xs ys)
 then show ?case
   by (force intro: union-mulex-on-mono mulex-on-add-mset
          mulex-on-add-mset' mulex-on-add-mset-mono
          simp: multisets-def)
```

```
qed
```

The (reflexive closure of the) multiset extension of an almost-full relation is almost-full.

```
lemma almost-full-on-multisets:
 assumes almost-full-on P A
 shows almost-full-on (mulex-on PA)<sup>==</sup> (multisets A)
```

```
proof –
 let ?P = (mulex on P A)^{==}
 from almost-full-on-hom [OF - almost-full-on-lists, of A P ?P mset,
   OF list-emb-imp-reflclp-mulex-on, simplified]
   show ?thesis using assms by blast
qed
lemma wqo-on-multisets:
 assumes wgo-on P A
 shows wqo-on (mulex-on P A)<sup>==</sup> (multisets A)
proof
 from transp-on-mulex-on [of multisets A P A]
   show transp-on (multisets A) (mulex-on P(A)^{==}
   unfolding transp-on-def by blast
\mathbf{next}
 from almost-full-on-multisets [OF assms [THEN wqo-on-imp-almost-full-on]]
   show almost-full-on (mulex-on P A)<sup>==</sup> (multisets A).
\mathbf{qed}
```

 \mathbf{end}

References

 C. S. J. A. Nash-Williams. On well-quasi-ordering finite trees. Proceedings of the Cambridge Philosophical Society, 59(4):833–835, 1963. doi:10.1017/S0305004100003844.