
Well-Quasi-Orders

Christian Sternagel∗

March 11, 2024

Abstract

Based on Isabelle/HOL’s type class for preorders, we introduce a
type class for well-quasi-orders (wqo) which is characterized by the
absence of “bad” sequences (our proofs are along the lines of the proof
of Nash-Williams [1], from which we also borrow terminology). Our
main results are instantiations for the product type, the list type, and
a type of finite trees, which (almost) directly follow from our proofs
of (1) Dickson’s Lemma, (2) Higman’s Lemma, and (3) Kruskal’s Tree
Theorem. More concretely:

1. If the sets A and B are wqo then their Cartesian product is wqo.
2. If the set A is wqo then the set of finite lists over A is wqo.
3. If the set A is wqo then the set of finite trees over A is wqo.

Contents
1 Infinite Sequences 2

1.1 Lexicographic Order on Infinite Sequences 3

2 Minimal elements of sets w.r.t. a well-founded and transi-
tive relation 4

3 Enumerations of Well-Ordered Sets in Increasing Order 7

4 The Almost-Full Property 8
4.1 Basic Definitions and Facts 9
4.2 An equivalent inductive definition 10
4.3 Special Case: Finite Sets . 16
4.4 Further Results . 17

5 Constructing Minimal Bad Sequences 20
∗The research was funded by the Austrian Science Fund (FWF): J3202.

1

6 A Proof of Higman’s Lemma via Open Induction 23
6.1 Some facts about the suffix relation 23
6.2 Lexicographic Order on Infinite Sequences 24

7 Almost-Full Relations 29
7.1 Adding a Bottom Element to a Set 29
7.2 Adding a Bottom Element to an Almost-Full Set 30
7.3 Disjoint Union of Almost-Full Sets 30
7.4 Dickson’s Lemma for Almost-Full Relations 32
7.5 Higman’s Lemma for Almost-Full Relations 33
7.6 Natural Numbers . 34

8 Well-Quasi-Orders 35
8.1 Basic Definitions . 35
8.2 Equivalent Definitions . 35
8.3 A Type Class for Well-Quasi-Orders 37
8.4 Dickson’s Lemma . 38
8.5 Higman’s Lemma . 39

9 Kruskal’s Tree Theorem 41

10 Instances of Well-Quasi-Orders 48
10.1 The Option Type is Well-Quasi-Ordered 48
10.2 The Sum Type is Well-Quasi-Ordered 48
10.3 Pairs are Well-Quasi-Ordered 48
10.4 Lists are Well-Quasi-Ordered 48

11 Multiset Extension of Orders (as Binary Predicates) 49

12 Multiset Extension Preserves Well-Quasi-Orders 62

1 Infinite Sequences

Some useful constructions on and facts about infinite sequences.
theory Infinite-Sequences
imports Main
begin

The set of all infinite sequences over elements from A.
definition SEQ A = {f ::nat ⇒ ′a. ∀ i. f i ∈ A}

lemma SEQ-iff [iff]:
f ∈ SEQ A ←→ (∀ i. f i ∈ A)

by (auto simp: SEQ-def)

2

The i-th "column" of a set B of infinite sequences.
definition ith B i = {f i | f . f ∈ B}

lemma ithI [intro]:
f ∈ B =⇒ f i = x =⇒ x ∈ ith B i

by (auto simp: ith-def)

lemma ithE [elim]:
[[x ∈ ith B i;

∧
f . [[f ∈ B; f i = x]] =⇒ Q]] =⇒ Q

by (auto simp: ith-def)

lemma ith-conv:
x ∈ ith B i ←→ (∃ f ∈ B. x = f i)

by auto

The restriction of a set B of sequences to sequences that are equal to a given
sequence f up to position i.
definition eq-upto :: (nat ⇒ ′a) set ⇒ (nat ⇒ ′a) ⇒ nat ⇒ (nat ⇒ ′a) set
where

eq-upto B f i = {g ∈ B. ∀ j < i. f j = g j}

lemma eq-uptoI [intro]:
[[g ∈ B;

∧
j. j < i =⇒ f j = g j]] =⇒ g ∈ eq-upto B f i

by (auto simp: eq-upto-def)

lemma eq-uptoE [elim]:
[[g ∈ eq-upto B f i; [[g ∈ B;

∧
j. j < i =⇒ f j = g j]] =⇒ Q]] =⇒ Q

by (auto simp: eq-upto-def)

lemma eq-upto-Suc:
[[g ∈ eq-upto B f i; g i = f i]] =⇒ g ∈ eq-upto B f (Suc i)

by (auto simp: eq-upto-def less-Suc-eq)

lemma eq-upto-0 [simp]:
eq-upto B f 0 = B

by (auto simp: eq-upto-def)

lemma eq-upto-cong [fundef-cong]:
assumes

∧
j. j < i =⇒ f j = g j and B = C

shows eq-upto B f i = eq-upto C g i
using assms by (auto simp: eq-upto-def)

1.1 Lexicographic Order on Infinite Sequences
definition LEX P f g ←→ (∃ i::nat. P (f i) (g i) ∧ (∀ j<i. f j = g j))
abbreviation LEXEQ P ≡ (LEX P)==

lemma LEX-imp-not-LEX :
assumes LEX P f g

3

and [dest]:
∧

x y z. P x y =⇒ P y z =⇒ P x z
and [simp]:

∧
x. ¬ P x x

shows ¬ LEX P g f
proof −

{ fix i j :: nat
assume P (f i) (g i) and ∀ k<i. f k = g k

and P (g j) (f j) and ∀ k<j. g k = f k
then have False by (cases i < j) (auto simp: not-less dest!: le-imp-less-or-eq)

}
then show ¬ LEX P g f using ‹LEX P f g› unfolding LEX-def by blast

qed

lemma LEX-cases:
assumes LEX P f g
obtains (eq) f = g | (neq) k where ∀ i<k. f i = g i and P (f k) (g k)

using assms by (auto simp: LEX-def)

lemma LEX-imp-less:
assumes ∀ x∈A. ¬ P x x and f ∈ SEQ A ∨ g ∈ SEQ A

and LEX P f g and ∀ i<k. f i = g i and f k 6= g k
shows P (f k) (g k)

using assms by (auto elim!: LEX-cases) (metis linorder-neqE-nat)+

end

2 Minimal elements of sets w.r.t. a well-founded
and transitive relation

theory Minimal-Elements
imports

Infinite-Sequences
Open-Induction.Restricted-Predicates

begin

locale minimal-element =
fixes P A
assumes po: po-on P A

and wf : wfp-on P A
begin

definition min-elt B = (SOME x. x ∈ B ∧ (∀ y ∈ A. P y x −→ y /∈ B))

lemma minimal:
assumes x ∈ A and Q x
shows ∃ y ∈ A. P== y x ∧ Q y ∧ (∀ z ∈ A. P z y −→ ¬ Q z)

using wf and assms
proof (induction rule: wfp-on-induct)

case (less x)

4

then show ?case
proof (cases ∀ y ∈ A. P y x −→ ¬ Q y)

case True
with less show ?thesis by blast

next
case False
then obtain y where y ∈ A and P y x and Q y by blast
with less show ?thesis

using po [THEN po-on-imp-transp-on, unfolded transp-on-def , rule-format,
of - y x] by blast

qed
qed

lemma min-elt-ex:
assumes B ⊆ A and B 6= {}
shows ∃ x. x ∈ B ∧ (∀ y ∈ A. P y x −→ y /∈ B)

using assms using minimal [of - λx. x ∈ B] by auto

lemma min-elt-mem:
assumes B ⊆ A and B 6= {}
shows min-elt B ∈ B

using someI-ex [OF min-elt-ex [OF assms]] by (auto simp: min-elt-def)

lemma min-elt-minimal:
assumes ∗: B ⊆ A B 6= {}
assumes y ∈ A and P y (min-elt B)
shows y /∈ B

using someI-ex [OF min-elt-ex [OF ∗]] and assms by (auto simp: min-elt-def)

A lexicographically minimal sequence w.r.t. a given set of sequences C
fun lexmin
where

lexmin: lexmin C i = min-elt (ith (eq-upto C (lexmin C) i) i)
declare lexmin [simp del]

lemma eq-upto-lexmin-non-empty:
assumes C ⊆ SEQ A and C 6= {}
shows eq-upto C (lexmin C) i 6= {}

proof (induct i)
case 0
show ?case using assms by auto

next
let ?A = λi. ith (eq-upto C (lexmin C) i) i
case (Suc i)
then have ?A i 6= {} by force
moreover have eq-upto C (lexmin C) i ⊆ eq-upto C (lexmin C) 0 by auto
ultimately have ?A i ⊆ A and ?A i 6= {} using assms by (auto simp: ith-def)
from min-elt-mem [OF this, folded lexmin]

obtain f where f ∈ eq-upto C (lexmin C) (Suc i) by (auto dest: eq-upto-Suc)

5

then show ?case by blast
qed

lemma lexmin-SEQ-mem:
assumes C ⊆ SEQ A and C 6= {}
shows lexmin C ∈ SEQ A

proof −
{ fix i

let ?X = ith (eq-upto C (lexmin C) i) i
have ?X ⊆ A using assms by (auto simp: ith-def)
moreover have ?X 6= {} using eq-upto-lexmin-non-empty [OF assms] by auto
ultimately have lexmin C i ∈ A using min-elt-mem [of ?X] by (subst lexmin)

blast }
then show ?thesis by auto

qed

lemma non-empty-ith:
assumes C ⊆ SEQ A and C 6= {}
shows ith (eq-upto C (lexmin C) i) i ⊆ A
and ith (eq-upto C (lexmin C) i) i 6= {}

using eq-upto-lexmin-non-empty [OF assms, of i] and assms by (auto simp: ith-def)

lemma lexmin-minimal:
C ⊆ SEQ A =⇒ C 6= {} =⇒ y ∈ A =⇒ P y (lexmin C i) =⇒ y /∈ ith (eq-upto

C (lexmin C) i) i
using min-elt-minimal [OF non-empty-ith, folded lexmin] .

lemma lexmin-mem:
C ⊆ SEQ A =⇒ C 6= {} =⇒ lexmin C i ∈ ith (eq-upto C (lexmin C) i) i

using min-elt-mem [OF non-empty-ith, folded lexmin] .

lemma LEX-chain-on-eq-upto-imp-ith-chain-on:
assumes chain-on (LEX P) (eq-upto C f i) (SEQ A)
shows chain-on P (ith (eq-upto C f i) i) A

using assms
proof −

{ fix x y assume x ∈ ith (eq-upto C f i) i and y ∈ ith (eq-upto C f i) i
and ¬ P x y and y 6= x

then obtain g h where ∗: g ∈ eq-upto C f i h ∈ eq-upto C f i
and [simp]: x = g i y = h i and eq: ∀ j<i. g j = f j ∧ h j = f j
by (auto simp: ith-def eq-upto-def)

with assms and ‹y 6= x› consider LEX P g h | LEX P h g by (force simp:
chain-on-def)

then have P y x
proof (cases)

assume LEX P g h
with eq and ‹y 6= x› have P x y using assms and ∗

by (auto simp: LEX-def)
(metis SEQ-iff chain-on-imp-subset linorder-neqE-nat minimal subsetCE)

6

with ‹¬ P x y› show P y x ..
next

assume LEX P h g
with eq and ‹y 6= x› show P y x using assms and ∗

by (auto simp: LEX-def)
(metis SEQ-iff chain-on-imp-subset linorder-neqE-nat minimal subsetCE)

qed }
then show ?thesis using assms by (auto simp: chain-on-def) blast

qed

end

end

3 Enumerations of Well-Ordered Sets in Increas-
ing Order

theory Least-Enum
imports Main
begin

locale infinitely-many1 =
fixes P :: ′a :: wellorder ⇒ bool
assumes infm: ∀ i. ∃ j>i. P j

begin

Enumerate the elements of a well-ordered infinite set in increasing order.
fun enum :: nat ⇒ ′a where

enum 0 = (LEAST n. P n) |
enum (Suc i) = (LEAST n. n > enum i ∧ P n)

lemma enum-mono:
shows enum i < enum (Suc i)
using infm by (cases i, auto) (metis (lifting) LeastI)+

lemma enum-less:
i < j =⇒ enum i < enum j
using enum-mono by (metis lift-Suc-mono-less)

lemma enum-P:
shows P (enum i)
using infm by (cases i, auto) (metis (lifting) LeastI)+

end

locale infinitely-many2 =
fixes P :: ′a :: wellorder ⇒ ′a ⇒ bool

and N :: ′a

7

assumes infm: ∀ i≥N . ∃ j>i. P i j
begin

Enumerate the elements of a well-ordered infinite set that form a chain w.r.t.
a given predicate P starting from a given index N in increasing order.
fun enumchain :: nat ⇒ ′a where

enumchain 0 = N |
enumchain (Suc n) = (LEAST m. m > enumchain n ∧ P (enumchain n) m)

lemma enumchain-mono:
shows N ≤ enumchain i ∧ enumchain i < enumchain (Suc i)

proof (induct i)
case 0
have enumchain 0 ≥ N by simp
moreover then have ∃m>enumchain 0 . P (enumchain 0) m using infm by

blast
ultimately show ?case by auto (metis (lifting) LeastI)

next
case (Suc i)
then have N ≤ enumchain (Suc i) by auto
moreover then have ∃m>enumchain (Suc i). P (enumchain (Suc i)) m using

infm by blast
ultimately show ?case by (auto) (metis (lifting) LeastI)

qed

lemma enumchain-chain:
shows P (enumchain i) (enumchain (Suc i))

proof (cases i)
case 0
moreover have ∃m>enumchain 0 . P (enumchain 0) m using infm by auto
ultimately show ?thesis by auto (metis (lifting) LeastI)

next
case (Suc i)
moreover have enumchain (Suc i) > N using enumchain-mono by (metis

le-less-trans)
moreover then have ∃m>enumchain (Suc i). P (enumchain (Suc i)) m using

infm by auto
ultimately show ?thesis by (auto) (metis (lifting) LeastI)

qed

end

end

4 The Almost-Full Property
theory Almost-Full
imports

HOL−Library.Sublist

8

HOL−Library.Ramsey
Regular−Sets.Regexp-Method
Abstract−Rewriting.Seq
Least-Enum
Infinite-Sequences
Open-Induction.Restricted-Predicates

begin

lemma le-Suc-eq ′:
x ≤ Suc y ←→ x = 0 ∨ (∃ x ′. x = Suc x ′ ∧ x ′ ≤ y)
by (cases x) auto

lemma ex-leq-Suc:
(∃ i≤Suc j. P i) ←→ P 0 ∨ (∃ i≤j. P (Suc i))
by (auto simp: le-Suc-eq ′)

lemma ex-less-Suc:
(∃ i<Suc j. P i) ←→ P 0 ∨ (∃ i<j. P (Suc i))
by (auto simp: less-Suc-eq-0-disj)

4.1 Basic Definitions and Facts

An infinite sequence is good whenever there are indices i < j such that P (f
i) (f j).
definition good :: (′a ⇒ ′a ⇒ bool) ⇒ (nat ⇒ ′a) ⇒ bool
where

good P f ←→ (∃ i j. i < j ∧ P (f i) (f j))

A sequence that is not good is called bad.
abbreviation bad P f ≡ ¬ good P f

lemma goodI :
[[i < j; P (f i) (f j)]] =⇒ good P f

by (auto simp: good-def)

lemma goodE [elim]:
good P f =⇒ (

∧
i j. [[i < j; P (f i) (f j)]] =⇒ Q) =⇒ Q

by (auto simp: good-def)

lemma badE [elim]:
bad P f =⇒ ((

∧
i j. i < j =⇒ ¬ P (f i) (f j)) =⇒ Q) =⇒ Q

by (auto simp: good-def)

definition almost-full-on :: (′a ⇒ ′a ⇒ bool) ⇒ ′a set ⇒ bool
where

almost-full-on P A ←→ (∀ f ∈ SEQ A. good P f)

9

lemma almost-full-onI [Pure.intro]:
(
∧

f . ∀ i. f i ∈ A =⇒ good P f) =⇒ almost-full-on P A
unfolding almost-full-on-def by blast

lemma almost-full-onD:
fixes f :: nat ⇒ ′a and A :: ′a set
assumes almost-full-on P A and

∧
i. f i ∈ A

obtains i j where i < j and P (f i) (f j)
using assms unfolding almost-full-on-def by blast

4.2 An equivalent inductive definition
inductive af for A

where
now: (

∧
x y. x ∈ A =⇒ y ∈ A =⇒ P x y) =⇒ af A P

| later : (
∧

x. x ∈ A =⇒ af A (λy z. P y z ∨ P x y)) =⇒ af A P

lemma af-imp-almost-full-on:
assumes af A P
shows almost-full-on P A

proof
fix f :: nat ⇒ ′a assume ∀ i. f i ∈ A
with assms obtain i and j where i < j and P (f i) (f j)
proof (induct arbitrary: f thesis)

case (later P)
define g where [simp]: g i = f (Suc i) for i
have f 0 ∈ A and ∀ i. g i ∈ A using later by auto
then obtain i and j where i < j and P (g i) (g j) ∨ P (f 0) (g i) using

later by blast
then consider P (g i) (g j) | P (f 0) (g i) by blast
then show ?case using ‹i < j› by (cases) (auto intro: later)

qed blast
then show good P f by (auto simp: good-def)

qed

lemma af-mono:
assumes af A P

and ∀ x y. x ∈ A ∧ y ∈ A ∧ P x y −→ Q x y
shows af A Q
using assms

proof (induct arbitrary: Q)
case (now P)
then have

∧
x y. x ∈ A =⇒ y ∈ A =⇒ Q x y by blast

then show ?case by (rule af .now)
next

case (later P)
show ?case
proof (intro af .later [of A Q])

10

fix x assume x ∈ A
then show af A (λy z. Q y z ∨ Q x y)

using later(3) by (intro later(2) [of x]) auto
qed

qed

lemma accessible-on-imp-af :
assumes accessible-on P A x
shows af A (λu v. ¬ P v u ∨ ¬ P u x)
using assms

proof (induct)
case (1 x)
then have af A (λu v. (¬ P v u ∨ ¬ P u x) ∨ ¬ P u y ∨ ¬ P y x) if y ∈ A for y

using that by (cases P y x) (auto intro: af .now af-mono)
then show ?case by (rule af .later)

qed

lemma wfp-on-imp-af :
assumes wfp-on P A
shows af A (λx y. ¬ P y x)
using assms by (auto simp: wfp-on-accessible-on-iff intro: accessible-on-imp-af

af .later)

lemma af-leq:
af UNIV ((≤) :: nat ⇒ nat ⇒ bool)
using wf-less [folded wfP-def wfp-on-UNIV , THEN wfp-on-imp-af] by (simp add:

not-less)

definition NOTAF A P = (SOME x. x ∈ A ∧ ¬ af A (λy z. P y z ∨ P x y))

lemma not-af :
¬ af A P =⇒ (∃ x y. x ∈ A ∧ y ∈ A ∧ ¬ P x y) ∧ (∃ x∈A. ¬ af A (λy z. P y z
∨ P x y))

unfolding af .simps [of A P] by blast

fun F
where

F A P 0 = NOTAF A P
| F A P (Suc i) = (let x = NOTAF A P in F A (λy z . P y z ∨ P x y) i)

lemma almost-full-on-imp-af :
assumes af : almost-full-on P A
shows af A P

proof (rule ccontr)
assume ¬ af A P
then have ∗: F A P n ∈ A ∧
¬ af A (λy z. P y z ∨ (∃ i≤n. P (F A P i) y) ∨ (∃ j≤n. ∃ i. i < j ∧ P (F A P

i) (F A P j))) for n
proof (induct n arbitrary: P)

11

case 0
from ‹¬ af A P› have ∃ x. x ∈ A ∧ ¬ af A (λy z. P y z ∨ P x y) by (auto

intro: af .intros)
then have NOTAF A P ∈ A ∧ ¬ af A (λy z. P y z ∨ P (NOTAF A P) y)

unfolding NOTAF-def by (rule someI-ex)
with 0 show ?case by simp

next
case (Suc n)
from ‹¬ af A P› have ∃ x. x ∈ A ∧ ¬ af A (λy z. P y z ∨ P x y) by (auto

intro: af .intros)
then have NOTAF A P ∈ A ∧ ¬ af A (λy z. P y z ∨ P (NOTAF A P) y)

unfolding NOTAF-def by (rule someI-ex)
from Suc(1) [OF this [THEN conjunct2]]
show ?case

by (fastforce simp: ex-leq-Suc ex-less-Suc elim!: back-subst [where P = λx.
¬ af A x])

qed
then have F A P ∈ SEQ A by auto
from af [unfolded almost-full-on-def , THEN bspec, OF this] and not-af [OF ∗

[THEN conjunct2]]
show False unfolding good-def by blast

qed

hide-const NOTAF F

lemma almost-full-on-UNIV :
almost-full-on (λ- -. True) UNIV

by (auto simp: almost-full-on-def good-def)

lemma almost-full-on-imp-reflp-on:
assumes almost-full-on P A
shows reflp-on A P

using assms by (auto simp: almost-full-on-def reflp-on-def)

lemma almost-full-on-subset:
A ⊆ B =⇒ almost-full-on P B =⇒ almost-full-on P A

by (auto simp: almost-full-on-def)

lemma almost-full-on-mono:
assumes A ⊆ B and

∧
x y. Q x y =⇒ P x y

and almost-full-on Q B
shows almost-full-on P A
using assms by (metis almost-full-on-def almost-full-on-subset good-def)

Every sequence over elements of an almost-full set has a homogeneous sub-
sequence.
lemma almost-full-on-imp-homogeneous-subseq:

assumes almost-full-on P A
and ∀ i::nat. f i ∈ A

12

shows ∃ϕ::nat ⇒ nat. ∀ i j. i < j −→ ϕ i < ϕ j ∧ P (f (ϕ i)) (f (ϕ j))
proof −

define X where X = {{i, j} | i j::nat. i < j ∧ P (f i) (f j)}
define Y where Y = − X
define h where h = (λZ . if Z ∈ X then 0 else Suc 0)

have [iff]:
∧

x y. h {x, y} = 0 ←→ {x, y} ∈ X by (auto simp: h-def)
have [iff]:

∧
x y. h {x, y} = Suc 0 ←→ {x, y} ∈ Y by (auto simp: h-def Y-def)

have ∀ x∈UNIV . ∀ y∈UNIV . x 6= y −→ h {x, y} < 2 by (simp add: h-def)
from Ramsey2 [OF infinite-UNIV-nat this] obtain I c

where infinite I and c < 2
and ∗: ∀ x∈I . ∀ y∈I . x 6= y −→ h {x, y} = c by blast

then interpret infinitely-many1 λi. i ∈ I
by (unfold-locales) (simp add: infinite-nat-iff-unbounded)

have c = 0 ∨ c = 1 using ‹c < 2 › by arith
then show ?thesis
proof

assume [simp]: c = 0
have ∀ i j. i < j −→ P (f (enum i)) (f (enum j))
proof (intro allI impI)

fix i j :: nat
assume i < j
from ∗ and enum-P and enum-less [OF ‹i < j›] have {enum i, enum j} ∈

X by auto
with enum-less [OF ‹i < j›]

show P (f (enum i)) (f (enum j)) by (auto simp: X-def doubleton-eq-iff)
qed
then show ?thesis using enum-less by blast

next
assume [simp]: c = 1
have ∀ i j. i < j −→ ¬ P (f (enum i)) (f (enum j))
proof (intro allI impI)

fix i j :: nat
assume i < j
from ∗ and enum-P and enum-less [OF ‹i < j›] have {enum i, enum j} ∈

Y by auto
with enum-less [OF ‹i < j›]

show ¬ P (f (enum i)) (f (enum j)) by (auto simp: Y-def X-def double-
ton-eq-iff)

qed
then have ¬ good P (f ◦ enum) by auto
moreover have ∀ i. f (enum i) ∈ A using assms by auto

ultimately show ?thesis using ‹almost-full-on P A› by (simp add: almost-full-on-def)
qed

qed

Almost full relations do not admit infinite antichains.

13

lemma almost-full-on-imp-no-antichain-on:
assumes almost-full-on P A
shows ¬ antichain-on P f A

proof
assume ∗: antichain-on P f A
then have ∀ i. f i ∈ A by simp
with assms have good P f by (auto simp: almost-full-on-def)
then obtain i j where i < j and P (f i) (f j)

unfolding good-def by auto
moreover with ∗ have incomparable P (f i) (f j) by auto
ultimately show False by blast

qed

If the image of a function is almost-full then also its preimage is almost-full.
lemma almost-full-on-map:

assumes almost-full-on Q B
and h ‘ A ⊆ B

shows almost-full-on (λx y. Q (h x) (h y)) A (is almost-full-on ?P A)
proof

fix f
assume ∀ i::nat. f i ∈ A
then have

∧
i. h (f i) ∈ B using ‹h ‘ A ⊆ B› by auto

with ‹almost-full-on Q B› [unfolded almost-full-on-def , THEN bspec, of h ◦ f]
show good ?P f unfolding good-def comp-def by blast

qed

The homomorphic image of an almost-full set is almost-full.
lemma almost-full-on-hom:

fixes h :: ′a ⇒ ′b
assumes hom:

∧
x y. [[x ∈ A; y ∈ A; P x y]] =⇒ Q (h x) (h y)

and af : almost-full-on P A
shows almost-full-on Q (h ‘ A)

proof
fix f :: nat ⇒ ′b
assume ∀ i. f i ∈ h ‘ A
then have ∀ i. ∃ x. x ∈ A ∧ f i = h x by (auto simp: image-def)
from choice [OF this] obtain g

where ∗: ∀ i. g i ∈ A ∧ f i = h (g i) by blast
show good Q f
proof (rule ccontr)

assume bad: bad Q f
{ fix i j :: nat

assume i < j
from bad have ¬ Q (f i) (f j) using ‹i < j› by (auto simp: good-def)
with hom have ¬ P (g i) (g j) using ∗ by auto }

then have bad P g by (auto simp: good-def)
with af and ∗ show False by (auto simp: good-def almost-full-on-def)

qed
qed

14

The monomorphic preimage of an almost-full set is almost-full.
lemma almost-full-on-mon:

assumes mon:
∧

x y. [[x ∈ A; y ∈ A]] =⇒ P x y = Q (h x) (h y) bij-betw h A B
and af : almost-full-on Q B

shows almost-full-on P A
proof

fix f :: nat ⇒ ′a
assume ∗: ∀ i. f i ∈ A
then have ∗∗: ∀ i. (h ◦ f) i ∈ B using mon by (auto simp: bij-betw-def)
show good P f
proof (rule ccontr)

assume bad: bad P f
{ fix i j :: nat

assume i < j
from bad have ¬ P (f i) (f j) using ‹i < j› by (auto simp: good-def)
with mon have ¬ Q (h (f i)) (h (f j))

using ∗ by (auto simp: bij-betw-def inj-on-def) }
then have bad Q (h ◦ f) by (auto simp: good-def)
with af and ∗∗ show False by (auto simp: good-def almost-full-on-def)

qed
qed

Every total and well-founded relation is almost-full.
lemma total-on-and-wfp-on-imp-almost-full-on:

assumes totalp-on A P and wfp-on P A
shows almost-full-on P== A

proof (rule ccontr)
assume ¬ almost-full-on P== A
then obtain f :: nat ⇒ ′a where ∗:

∧
i. f i ∈ A

and ∀ i j. i < j −→ ¬ P== (f i) (f j)
unfolding almost-full-on-def by (auto dest: badE)

with ‹totalp-on A P› have ∀ i j. i < j −→ P (f j) (f i)
unfolding totalp-on-def by blast

then have
∧

i. P (f (Suc i)) (f i) by auto
with ‹wfp-on P A› and ∗ show False

unfolding wfp-on-def by blast
qed

lemma Nil-imp-good-list-emb [simp]:
assumes f i = []
shows good (list-emb P) f

proof (rule ccontr)
assume bad (list-emb P) f
moreover have (list-emb P) (f i) (f (Suc i))

unfolding assms by auto
ultimately show False

unfolding good-def by auto
qed

15

lemma ne-lists:
assumes xs 6= [] and xs ∈ lists A
shows hd xs ∈ A and tl xs ∈ lists A
using assms by (case-tac [!] xs) simp-all

lemma list-emb-eq-length-induct [consumes 2 , case-names Nil Cons]:
assumes length xs = length ys

and list-emb P xs ys
and Q [] []
and

∧
x y xs ys. [[P x y; list-emb P xs ys; Q xs ys]] =⇒ Q (x#xs) (y#ys)

shows Q xs ys
using assms(2 , 1 , 3−) by (induct) (auto dest: list-emb-length)

lemma list-emb-eq-length-P:
assumes length xs = length ys

and list-emb P xs ys
shows ∀ i<length xs. P (xs ! i) (ys ! i)

using assms
proof (induct rule: list-emb-eq-length-induct)

case (Cons x y xs ys)
show ?case
proof (intro allI impI)

fix i assume i < length (x # xs)
with Cons show P ((x#xs)!i) ((y#ys)!i)

by (cases i) simp-all
qed

qed simp

4.3 Special Case: Finite Sets

Every reflexive relation on a finite set is almost-full.
lemma finite-almost-full-on:

assumes finite: finite A
and refl: reflp-on A P

shows almost-full-on P A
proof

fix f :: nat ⇒ ′a
assume ∗: ∀ i. f i ∈ A
let ?I = UNIV ::nat set
have f ‘ ?I ⊆ A using ∗ by auto
with finite and finite-subset have 1 : finite (f ‘ ?I) by blast
have infinite ?I by auto
from pigeonhole-infinite [OF this 1]

obtain k where infinite {j. f j = f k} by auto
then obtain l where k < l and f l = f k

unfolding infinite-nat-iff-unbounded by auto
then have P (f k) (f l) using refl and ∗ by (auto simp: reflp-on-def)
with ‹k < l› show good P f by (auto simp: good-def)

qed

16

lemma eq-almost-full-on-finite-set:
assumes finite A
shows almost-full-on (=) A
using finite-almost-full-on [OF assms, of (=)]
by (auto simp: reflp-on-def)

4.4 Further Results
lemma af-trans-extension-imp-wf :

assumes subrel:
∧

x y. P x y =⇒ Q x y
and af : almost-full-on P A
and trans: transp-on A Q

shows wfp-on (strict Q) A
proof (unfold wfp-on-def , rule notI)

assume ∃ f . ∀ i. f i ∈ A ∧ strict Q (f (Suc i)) (f i)
then obtain f where ∗: ∀ i. f i ∈ A ∧ ((strict Q)−1−1) (f i) (f (Suc i)) by blast
from chain-transp-on-less[OF this]
have ∀ i j. i < j −→ ¬ Q (f i) (f j) using trans using transp-on-conversep

transp-on-strict by blast
with subrel have ∀ i j. i < j −→ ¬ P (f i) (f j) by blast
with af show False

using ∗ by (auto simp: almost-full-on-def good-def)
qed

lemma af-trans-imp-wf :
assumes almost-full-on P A

and transp-on A P
shows wfp-on (strict P) A
using assms by (intro af-trans-extension-imp-wf)

lemma wf-and-no-antichain-imp-qo-extension-wf :
assumes wf : wfp-on (strict P) A

and anti: ¬ (∃ f . antichain-on P f A)
and subrel: ∀ x∈A. ∀ y∈A. P x y −→ Q x y
and qo: qo-on Q A

shows wfp-on (strict Q) A
proof (rule ccontr)

have transp-on A (strict Q)
using qo unfolding qo-on-def transp-on-def by blast

then have ∗: transp-on A ((strict Q)−1−1) by simp
assume ¬ wfp-on (strict Q) A
then obtain f :: nat ⇒ ′a where A:

∧
i. f i ∈ A

and ∀ i. strict Q (f (Suc i)) (f i) unfolding wfp-on-def by blast+
then have ∀ i. f i ∈ A ∧ ((strict Q)−1−1) (f i) (f (Suc i)) by auto
from chain-transp-on-less [OF this ∗]

have ∗:
∧

i j. i < j =⇒ ¬ P (f i) (f j)
using subrel and A by blast

show False

17

proof (cases)
assume ∃ k. ∀ i>k. ∃ j>i. P (f j) (f i)
then obtain k where ∀ i>k. ∃ j>i. P (f j) (f i) by auto
from subchain [of k - f , OF this] obtain g

where
∧

i j. i < j =⇒ g i < g j
and

∧
i. P (f (g (Suc i))) (f (g i)) by auto

with ∗ have
∧

i. strict P (f (g (Suc i))) (f (g i)) by blast
with wf [unfolded wfp-on-def not-ex, THEN spec, of λi. f (g i)] and A

show False by fast
next

assume ¬ (∃ k. ∀ i>k. ∃ j>i. P (f j) (f i))
then have ∀ k. ∃ i>k. ∀ j>i. ¬ P (f j) (f i) by auto
from choice [OF this] obtain h

where ∀ k. h k > k
and ∗∗: ∀ k. (∀ j>h k. ¬ P (f j) (f (h k))) by auto

define ϕ where [simp]: ϕ = (λi. (h ^^ Suc i) 0)
have

∧
i. ϕ i < ϕ (Suc i)

using ‹∀ k. h k > k› by (induct-tac i) auto
then have mono:

∧
i j. i < j =⇒ ϕ i < ϕ j by (metis lift-Suc-mono-less)

then have ∀ i j. i < j −→ ¬ P (f (ϕ j)) (f (ϕ i))
using ∗∗ by auto

with mono [THEN ∗]
have ∀ i j. i < j −→ incomparable P (f (ϕ j)) (f (ϕ i)) by blast

moreover have ∃ i j. i < j ∧ ¬ incomparable P (f (ϕ i)) (f (ϕ j))
using anti [unfolded not-ex, THEN spec, of λi. f (ϕ i)] and A by blast

ultimately show False by blast
qed

qed

lemma every-qo-extension-wf-imp-af :
assumes ext: ∀Q. (∀ x∈A. ∀ y∈A. P x y −→ Q x y) ∧

qo-on Q A −→ wfp-on (strict Q) A
and qo-on P A

shows almost-full-on P A
proof

from ‹qo-on P A›
have refl: reflp-on A P
and trans: transp-on A P
by (auto intro: qo-on-imp-reflp-on qo-on-imp-transp-on)

fix f :: nat ⇒ ′a
assume ∀ i. f i ∈ A
then have A:

∧
i. f i ∈ A ..

show good P f
proof (rule ccontr)

assume ¬ ?thesis
then have bad: ∀ i j. i < j −→ ¬ P (f i) (f j) by (auto simp: good-def)
then have ∗:

∧
i j. P (f i) (f j) =⇒ i ≥ j by (metis not-le-imp-less)

18

define D where [simp]: D = (λx y. ∃ i. x = f (Suc i) ∧ y = f i)
define P ′ where P ′ = restrict-to P A
define Q where [simp]: Q = (sup P ′ D)∗∗

have ∗∗:
∧

i j. (D OO P ′∗∗)++ (f i) (f j) =⇒ i > j
proof −

fix i j
assume (D OO P ′∗∗)++ (f i) (f j)
then show i > j

apply (induct f i f j arbitrary: j)
apply (insert A, auto dest!: ∗ simp: P ′-def reflp-on-restrict-to-rtranclp [OF

refl trans])
apply (metis ∗ dual-order .strict-trans1 less-Suc-eq-le refl reflp-on-def)
by (metis le-imp-less-Suc less-trans)

qed

have ∀ x∈A. ∀ y∈A. P x y −→ Q x y by (auto simp: P ′-def)
moreover have qo-on Q A by (auto simp: qo-on-def reflp-on-def transp-on-def)
ultimately have wfp-on (strict Q) A

using ext [THEN spec, of Q] by blast
moreover have ∀ i. f i ∈ A ∧ strict Q (f (Suc i)) (f i)
proof

fix i
have ¬ Q (f i) (f (Suc i))
proof

assume Q (f i) (f (Suc i))
then have (sup P ′ D)∗∗ (f i) (f (Suc i)) by auto
moreover have (sup P ′ D)∗∗ = sup (P ′∗∗) (P ′∗∗ OO (D OO P ′∗∗)++)
proof −

have
∧

A B. (A ∪ B)∗ = A∗ ∪ A∗ O (B O A∗)+ by regexp
from this [to-pred] show ?thesis by blast

qed
ultimately have sup (P ′∗∗) (P ′∗∗ OO (D OO P ′∗∗)++) (f i) (f (Suc i))

by simp
then have (P ′∗∗ OO (D OO P ′∗∗)++) (f i) (f (Suc i)) by auto
then have Suc i < i

using ∗∗ apply auto
by (metis (lifting, mono-tags) less-le relcompp.relcompI tranclp-into-tranclp2)
then show False by auto

qed
with A [of i] show f i ∈ A ∧ strict Q (f (Suc i)) (f i) by auto

qed
ultimately show False unfolding wfp-on-def by blast

qed
qed

end

19

5 Constructing Minimal Bad Sequences
theory Minimal-Bad-Sequences
imports

Almost-Full
Minimal-Elements

begin

A locale capturing the construction of minimal bad sequences over values
from A. Where minimality is to be understood w.r.t. size of an element.
locale mbs =

fixes A :: (′a :: size) set
begin

Since the size is a well-founded measure, whenever some element satisfies a
property P, then there is a size-minimal such element.
lemma minimal:

assumes x ∈ A and P x
shows ∃ y ∈ A. size y ≤ size x ∧ P y ∧ (∀ z ∈ A. size z < size y −→ ¬ P z)

using assms
proof (induction x taking: size rule: measure-induct)

case (1 x)
then show ?case
proof (cases ∀ y ∈ A. size y < size x −→ ¬ P y)

case True
with 1 show ?thesis by blast

next
case False
then obtain y where y ∈ A and size y < size x and P y by blast
with 1 .IH show ?thesis by (fastforce elim!: order-trans)

qed
qed

lemma less-not-eq [simp]:
x ∈ A =⇒ size x < size y =⇒ x = y =⇒ False
by simp

The set of all bad sequences over A.
definition BAD P = {f ∈ SEQ A. bad P f }

lemma BAD-iff [iff]:
f ∈ BAD P ←→ (∀ i. f i ∈ A) ∧ bad P f
by (auto simp: BAD-def)

A partial order on infinite bad sequences.
definition geseq :: ((nat ⇒ ′a) × (nat ⇒ ′a)) set
where

geseq =

20

{(f , g). f ∈ SEQ A ∧ g ∈ SEQ A ∧ (f = g ∨ (∃ i. size (g i) < size (f i) ∧ (∀ j
< i. f j = g j)))}

The strict part of the above order.
definition gseq :: ((nat ⇒ ′a) × (nat ⇒ ′a)) set where

gseq = {(f , g). f ∈ SEQ A ∧ g ∈ SEQ A ∧ (∃ i. size (g i) < size (f i) ∧ (∀ j <
i. f j = g j))}

lemma geseq-iff :
(f , g) ∈ geseq ←→

f ∈ SEQ A ∧ g ∈ SEQ A ∧ (f = g ∨ (∃ i. size (g i) < size (f i) ∧ (∀ j < i. f j
= g j)))

by (auto simp: geseq-def)

lemma gseq-iff :
(f , g) ∈ gseq ←→ f ∈ SEQ A ∧ g ∈ SEQ A ∧ (∃ i. size (g i) < size (f i) ∧ (∀ j

< i. f j = g j))
by (auto simp: gseq-def)

lemma geseqE :
assumes (f , g) ∈ geseq

and [[∀ i. f i ∈ A; ∀ i. g i ∈ A; f = g]] =⇒ Q
and

∧
i. [[∀ i. f i ∈ A; ∀ i. g i ∈ A; size (g i) < size (f i); ∀ j < i. f j = g j]] =⇒

Q
shows Q
using assms by (auto simp: geseq-iff)

lemma gseqE :
assumes (f , g) ∈ gseq

and
∧

i. [[∀ i. f i ∈ A; ∀ i. g i ∈ A; size (g i) < size (f i); ∀ j < i. f j = g j]] =⇒
Q

shows Q
using assms by (auto simp: gseq-iff)

sublocale min-elt-size?: minimal-element measure-on size UNIV A
rewrites measure-on size UNIV ≡ λx y. size x < size y
apply (unfold-locales)
apply (auto simp: po-on-def irreflp-on-def transp-on-def simp del: wfp-on-UNIV
intro: wfp-on-subset)
apply (auto simp: measure-on-def inv-image-betw-def)
done

context
fixes P :: ′a ⇒ ′a ⇒ bool

begin

A lower bound to all sequences in a set of sequences B.
abbreviation lb ≡ lexmin (BAD P)

21

lemma eq-upto-BAD-mem:
assumes f ∈ eq-upto (BAD P) g i
shows f j ∈ A
using assms by (auto)

Assume that there is some infinite bad sequence h.
context

fixes h :: nat ⇒ ′a
assumes BAD-ex: h ∈ BAD P

begin

When there is a bad sequence, then filtering BAD P w.r.t. positions in lb
never yields an empty set of sequences.
lemma eq-upto-BAD-non-empty:

eq-upto (BAD P) lb i 6= {}
using eq-upto-lexmin-non-empty [of BAD P] and BAD-ex by auto

lemma non-empty-ith:
shows ith (eq-upto (BAD P) lb i) i ⊆ A
and ith (eq-upto (BAD P) lb i) i 6= {}
using eq-upto-BAD-non-empty [of i] by auto

lemmas
lb-minimal = min-elt-minimal [OF non-empty-ith, folded lexmin] and
lb-mem = min-elt-mem [OF non-empty-ith, folded lexmin]

lb is a infinite bad sequence.
lemma lb-BAD:

lb ∈ BAD P
proof −

have ∗:
∧

j. lb j ∈ ith (eq-upto (BAD P) lb j) j by (rule lb-mem)
then have ∀ i. lb i ∈ A by (auto simp: ith-conv) (metis eq-upto-BAD-mem)
moreover
{ assume good P lb

then obtain i j where i < j and P (lb i) (lb j) by (auto simp: good-def)
from ∗ have lb j ∈ ith (eq-upto (BAD P) lb j) j by (auto)
then obtain g where g ∈ eq-upto (BAD P) lb j and g j = lb j by force
then have ∀ k ≤ j. g k = lb k by (auto simp: order-le-less)
with ‹i < j› and ‹P (lb i) (lb j)› have P (g i) (g j) by auto
with ‹i < j› have good P g by (auto simp: good-def)
with ‹g ∈ eq-upto (BAD P) lb j› have False by auto }

ultimately show ?thesis by blast
qed

There is no infinite bad sequence that is strictly smaller than lb.
lemma lb-lower-bound:
∀ g. (lb, g) ∈ gseq −→ g /∈ BAD P

proof (intro allI impI)

22

fix g
assume (lb, g) ∈ gseq
then obtain i where g i ∈ A and size (g i) < size (lb i)

and ∀ j < i. lb j = g j by (auto simp: gseq-iff)
moreover with lb-minimal

have g i /∈ ith (eq-upto (BAD P) lb i) i by auto
ultimately show g /∈ BAD P by blast

qed

If there is at least one bad sequence, then there is also a minimal one.
lemma lower-bound-ex:
∃ f ∈ BAD P. ∀ g. (f , g) ∈ gseq −→ g /∈ BAD P
using lb-BAD and lb-lower-bound by blast

lemma gseq-conv:
(f , g) ∈ gseq ←→ f 6= g ∧ (f , g) ∈ geseq
by (auto simp: gseq-def geseq-def dest: less-not-eq)

There is a minimal bad sequence.
lemma mbs:
∃ f ∈ BAD P. ∀ g. (f , g) ∈ gseq −→ good P g
using lower-bound-ex by (auto simp: gseq-conv geseq-iff)

end

end

end

end

6 A Proof of Higman’s Lemma via Open Induction
theory Higman-OI
imports

Open-Induction.Open-Induction
Minimal-Elements
Almost-Full

begin

6.1 Some facts about the suffix relation
lemma wfp-on-strict-suffix:

wfp-on strict-suffix A
by (rule wfp-on-mono [OF subset-refl, of - - measure-on length A])

(auto simp: strict-suffix-def suffix-def)

lemma po-on-strict-suffix:

23

po-on strict-suffix A
by (force simp: strict-suffix-def po-on-def transp-on-def irreflp-on-def)

6.2 Lexicographic Order on Infinite Sequences
lemma antisymp-on-LEX :

assumes irreflp-on A P and antisymp-on A P
shows antisymp-on (SEQ A) (LEX P)

proof (rule antisymp-onI)
fix f g assume SEQ: f ∈ SEQ A g ∈ SEQ A and LEX P f g and LEX P g f
then obtain i j where P (f i) (g i) and P (g j) (f j)

and ∀ k<i. f k = g k and ∀ k<j. g k = f k by (auto simp: LEX-def)
then have P (f (min i j)) (f (min i j))
using assms(2) and SEQ by (cases i = j) (auto simp: antisymp-on-def min-def ,

force)
with assms(1) and SEQ show f = g by (auto simp: irreflp-on-def)

qed

lemma LEX-trans:
assumes transp-on A P and f ∈ SEQ A and g ∈ SEQ A and h ∈ SEQ A

and LEX P f g and LEX P g h
shows LEX P f h

using assms by (auto simp: LEX-def transp-on-def) (metis less-trans linorder-neqE-nat)

lemma qo-on-LEXEQ:
transp-on A P =⇒ qo-on (LEXEQ P) (SEQ A)

by (auto simp: qo-on-def reflp-on-def transp-on-def [of - LEXEQ P] dest: LEX-trans)

context minimal-element
begin

lemma glb-LEX-lexmin:
assumes chain-on (LEX P) C (SEQ A) and C 6= {}
shows glb (LEX P) C (lexmin C)

proof
have C ⊆ SEQ A using assms by (auto simp: chain-on-def)
then have lexmin C ∈ SEQ A using ‹C 6= {}› by (intro lexmin-SEQ-mem)
note ∗ = ‹C ⊆ SEQ A› ‹C 6= {}›
note lex = LEX-imp-less [folded irreflp-on-def , OF po [THEN po-on-imp-irreflp-on]]
— lexmin C is a lower bound
show lb (LEX P) C (lexmin C)
proof

fix f assume f ∈ C
then show LEXEQ P (lexmin C) f
proof (cases f = lexmin C)

define i where i = (LEAST i. f i 6= lexmin C i)
case False
then have neq: ∃ i. f i 6= lexmin C i by blast
from LeastI-ex [OF this, folded i-def]

24

and not-less-Least [where P = λi. f i 6= lexmin C i, folded i-def]
have neq: f i 6= lexmin C i and eq: ∀ j<i. f j = lexmin C j by auto
then have ∗∗: f ∈ eq-upto C (lexmin C) i f i ∈ ith (eq-upto C (lexmin C) i)

i
using ‹f ∈ C › by force+

moreover from ∗∗ have ¬ P (f i) (lexmin C i)
using lexmin-minimal [OF ∗, of f i i] and ‹f ∈ C › and ‹C ⊆ SEQ A› by

blast
moreover obtain g where g ∈ eq-upto C (lexmin C) (Suc i)

using eq-upto-lexmin-non-empty [OF ∗] by blast
ultimately have P (lexmin C i) (f i)

using neq and ‹C ⊆ SEQ A› and assms(1) and lex [of g f i] and lex [of f
g i]

by (auto simp: eq-upto-def chain-on-def)
with eq show ?thesis by (auto simp: LEX-def)

qed simp
qed

— lexmin C is greater than or equal to any other lower bound
fix f assume lb: lb (LEX P) C f
then show LEXEQ P f (lexmin C)
proof (cases f = lexmin C)

define i where i = (LEAST i. f i 6= lexmin C i)
case False
then have neq: ∃ i. f i 6= lexmin C i by blast
from LeastI-ex [OF this, folded i-def]

and not-less-Least [where P = λi. f i 6= lexmin C i, folded i-def]
have neq: f i 6= lexmin C i and eq: ∀ j<i. f j = lexmin C j by auto
obtain h where h ∈ eq-upto C (lexmin C) (Suc i) and h ∈ C

using eq-upto-lexmin-non-empty [OF ∗] by (auto simp: eq-upto-def)
then have [simp]:

∧
j. j < Suc i =⇒ h j = lexmin C j by auto

with lb and ‹h ∈ C › have LEX P f h using neq by (auto simp: lb-def)
then have P (f i) (h i)

using neq and eq and ‹C ⊆ SEQ A› and ‹h ∈ C › by (intro lex) auto
with eq show ?thesis by (auto simp: LEX-def)

qed simp
qed

lemma dc-on-LEXEQ:
dc-on (LEXEQ P) (SEQ A)

proof
fix C assume chain-on (LEXEQ P) C (SEQ A) and C 6= {}
then have chain: chain-on (LEX P) C (SEQ A) by (auto simp: chain-on-def)
then have C ⊆ SEQ A by (auto simp: chain-on-def)
then have lexmin C ∈ SEQ A using ‹C 6= {}› by (intro lexmin-SEQ-mem)
have glb (LEX P) C (lexmin C) by (rule glb-LEX-lexmin [OF chain ‹C 6= {}›])
then have glb (LEXEQ P) C (lexmin C) by (auto simp: glb-def lb-def)
with ‹lexmin C ∈ SEQ A› show ∃ f ∈ SEQ A. glb (LEXEQ P) C f by blast

qed

25

end

Properties that only depend on finite initial segments of a sequence (i.e.,
which are open with respect to the product topology).
definition pt-open-on Q A ←→ (∀ f∈A. Q f ←→ (∃n. (∀ g∈A. (∀ i<n. g i = f i)
−→ Q g)))

lemma pt-open-onD:
pt-open-on Q A =⇒ Q f =⇒ f ∈ A =⇒ (∃n. (∀ g∈A. (∀ i<n. g i = f i) −→ Q

g))
unfolding pt-open-on-def by blast

lemma pt-open-on-good:
pt-open-on (good Q) (SEQ A)

proof (unfold pt-open-on-def , intro ballI)
fix f assume f : f ∈ SEQ A
show good Q f = (∃n. ∀ g∈SEQ A. (∀ i<n. g i = f i) −→ good Q g)
proof

assume good Q f
then obtain i and j where ∗: i < j Q (f i) (f j) by auto
have ∀ g∈SEQ A. (∀ i<Suc j. g i = f i) −→ good Q g
proof (intro ballI impI)

fix g assume g ∈ SEQ A and ∀ i<Suc j. g i = f i
then show good Q g using ∗ by (force simp: good-def)

qed
then show ∃n. ∀ g∈SEQ A. (∀ i<n. g i = f i) −→ good Q g ..

next
assume ∃n. ∀ g∈SEQ A. (∀ i<n. g i = f i) −→ good Q g
with f show good Q f by blast

qed
qed

context minimal-element
begin

lemma pt-open-on-imp-open-on-LEXEQ:
assumes pt-open-on Q (SEQ A)
shows open-on (LEXEQ P) Q (SEQ A)

proof
fix C assume chain: chain-on (LEXEQ P) C (SEQ A) and ne: C 6= {}

and ∃ g∈SEQ A. glb (LEXEQ P) C g ∧ Q g
then obtain g where g: g ∈ SEQ A and glb (LEXEQ P) C g

and Q: Q g by blast
then have glb: glb (LEX P) C g by (auto simp: glb-def lb-def)
from chain have chain-on (LEX P) C (SEQ A) and C : C ⊆ SEQ A by (auto

simp: chain-on-def)
note ∗ = glb-LEX-lexmin [OF this(1) ne]
have lexmin C ∈ SEQ A using ne and C by (intro lexmin-SEQ-mem)

26

from glb-unique [OF - g this glb ∗]
and antisymp-on-LEX [OF po-on-imp-irreflp-on [OF po] po-on-imp-antisymp-on

[OF po]]
have [simp]: lexmin C = g by auto
from assms [THEN pt-open-onD, OF Q g]
obtain n :: nat where ∗∗:

∧
h. h ∈ SEQ A =⇒ (∀ i<n. h i = g i) −→ Q h by

blast
from eq-upto-lexmin-non-empty [OF C ne, of n]
obtain f where f ∈ eq-upto C g n by auto
then have f ∈ C and Q f using ∗∗ [of f] and C by force+
then show ∃ f∈C . Q f by blast

qed

lemma open-on-good:
open-on (LEXEQ P) (good Q) (SEQ A)
by (intro pt-open-on-imp-open-on-LEXEQ pt-open-on-good)

end

lemma open-on-LEXEQ-imp-pt-open-on-counterexample:
fixes a b :: ′a
defines A ≡ {a, b} and P ≡ (λx y. False) and Q ≡ (λf . ∀ i. f i = b)
assumes [simp]: a 6= b
shows minimal-element P A and open-on (LEXEQ P) Q (SEQ A)

and ¬ pt-open-on Q (SEQ A)
proof −

show minimal-element P A
by standard (auto simp: P-def po-on-def irreflp-on-def transp-on-def wfp-on-def)

show open-on (LEXEQ P) Q (SEQ A)
by (auto simp: P-def open-on-def chain-on-def SEQ-def glb-def lb-def LEX-def)

show ¬ pt-open-on Q (SEQ A)
proof

define f :: nat ⇒ ′a where f ≡ (λx. b)
have f ∈ SEQ A by (auto simp: A-def f-def)
moreover assume pt-open-on Q (SEQ A)
ultimately have Q f ←→ (∃n. (∀ g∈SEQ A. (∀ i<n. g i = f i) −→ Q g))

unfolding pt-open-on-def by blast
moreover have Q f by (auto simp: Q-def f-def)
moreover have ∃ g∈SEQ A. (∀ i<n. g i = f i) ∧ ¬ Q g for n

by (intro bexI [of - f (n := a)]) (auto simp: f-def Q-def A-def)
ultimately show False by blast

qed
qed

lemma higman:
assumes almost-full-on P A
shows almost-full-on (list-emb P) (lists A)

proof
interpret minimal-element strict-suffix lists A

27

by (unfold-locales) (intro po-on-strict-suffix wfp-on-strict-suffix)+
fix f presume f ∈ SEQ (lists A)
with qo-on-LEXEQ [OF po-on-imp-transp-on [OF po-on-strict-suffix]] and dc-on-LEXEQ

and open-on-good
show good (list-emb P) f

proof (induct rule: open-induct-on)
case (less f)
define h where h i = hd (f i) for i
show ?case
proof (cases ∃ i. f i = [])

case False
then have ne: ∀ i. f i 6= [] by auto
with ‹f ∈ SEQ (lists A)› have ∀ i. h i ∈ A by (auto simp: h-def ne-lists)
from almost-full-on-imp-homogeneous-subseq [OF assms this]
obtain ϕ :: nat ⇒ nat where mono:

∧
i j. i < j =⇒ ϕ i < ϕ j

and P:
∧

i j. i < j =⇒ P (h (ϕ i)) (h (ϕ j)) by blast
define f ′ where f ′ i = (if i < ϕ 0 then f i else tl (f (ϕ (i − ϕ 0)))) for i
have f ′: f ′ ∈ SEQ (lists A) using ne and ‹f ∈ SEQ (lists A)›

by (auto simp: f ′-def dest: list.set-sel)
have [simp]:

∧
i. ϕ 0 ≤ i =⇒ h (ϕ (i − ϕ 0)) # f ′ i = f (ϕ (i − ϕ 0))∧

i. i < ϕ 0 =⇒ f ′ i = f i using ne by (auto simp: f ′-def h-def)
moreover have strict-suffix (f ′ (ϕ 0)) (f (ϕ 0)) using ne by (auto simp:

f ′-def)
ultimately have LEX strict-suffix f ′ f by (auto simp: LEX-def)
with LEX-imp-not-LEX [OF this] have strict (LEXEQ strict-suffix) f ′ f

using po-on-strict-suffix [of UNIV] unfolding po-on-def irreflp-on-def
transp-on-def by blast

from less(2) [OF f ′ this] have good (list-emb P) f ′ .
then obtain i j where i < j and emb: list-emb P (f ′ i) (f ′ j) by (auto simp:

good-def)
consider j < ϕ 0 | ϕ 0 ≤ i | i < ϕ 0 and ϕ 0 ≤ j by arith
then show ?thesis
proof (cases)

case 1 with ‹i < j› and emb show ?thesis by (auto simp: good-def)
next

case 2
with ‹i < j› and P have P (h (ϕ (i − ϕ 0))) (h (ϕ (j − ϕ 0))) by auto
with emb have list-emb P (h (ϕ (i − ϕ 0)) # f ′ i) (h (ϕ (j − ϕ 0)) # f ′

j) by auto
then have list-emb P (f (ϕ (i − ϕ 0))) (f (ϕ (j − ϕ 0))) using 2 and ‹i

< j› by auto
moreover with 2 and ‹i <j› have ϕ (i − ϕ 0) < ϕ (j − ϕ 0) using

mono by auto
ultimately show ?thesis by (auto simp: good-def)

next
case 3
with emb have list-emb P (f i) (f ′ j) by auto
moreover have f (ϕ (j − ϕ 0)) = h (ϕ (j − ϕ 0)) # f ′ j using 3 by auto
ultimately have list-emb P (f i) (f (ϕ (j − ϕ 0))) by auto

28

moreover have i < ϕ (j − ϕ 0) using mono [of 0 j − ϕ 0] and 3 by force
ultimately show ?thesis by (auto simp: good-def)

qed
qed auto

qed
qed blast

end

7 Almost-Full Relations
theory Almost-Full-Relations
imports Minimal-Bad-Sequences
begin

lemma (in mbs) mbs ′:
assumes ¬ almost-full-on P A
shows ∃m ∈ BAD P. ∀ g. (m, g) ∈ gseq −→ good P g

using assms and mbs unfolding almost-full-on-def by blast

7.1 Adding a Bottom Element to a Set
definition with-bot :: ′a set ⇒ ′a option set (-⊥ [1000] 1000)
where

A⊥ = {None} ∪ Some ‘ A

lemma with-bot-iff [iff]:
Some x ∈ A⊥ ←→ x ∈ A
by (auto simp: with-bot-def)

lemma NoneI [simp, intro]:
None ∈ A⊥
by (simp add: with-bot-def)

lemma not-None-the-mem [simp]:
x 6= None =⇒ the x ∈ A ←→ x ∈ A⊥
by auto

lemma with-bot-cases:
u ∈ A⊥ =⇒ (

∧
x. x ∈ A =⇒ u = Some x =⇒ P) =⇒ (u = None =⇒ P) =⇒ P

by auto

lemma with-bot-empty-conv [iff]:
A⊥ = {None} ←→ A = {}
by (auto elim: with-bot-cases)

lemma with-bot-UNIV [simp]:
UNIV⊥ = UNIV

proof (rule set-eqI)

29

fix x :: ′a option
show x ∈ UNIV⊥ ←→ x ∈ UNIV by (cases x) auto

qed

7.2 Adding a Bottom Element to an Almost-Full Set
fun

option-le :: (′a ⇒ ′a ⇒ bool) ⇒ ′a option ⇒ ′a option ⇒ bool
where

option-le P None y = True |
option-le P (Some x) None = False |
option-le P (Some x) (Some y) = P x y

lemma None-imp-good-option-le [simp]:
assumes f i = None
shows good (option-le P) f
by (rule goodI [of i Suc i]) (auto simp: assms)

lemma almost-full-on-with-bot:
assumes almost-full-on P A
shows almost-full-on (option-le P) A⊥ (is almost-full-on ?P ?A)

proof
fix f :: nat ⇒ ′a option
assume ∗: ∀ i. f i ∈ ?A
show good ?P f
proof (cases ∀ i. f i 6= None)

case True
then have ∗∗:

∧
i. Some (the (f i)) = f i

and
∧

i. the (f i) ∈ A using ∗ by auto
with almost-full-onD [OF assms, of the ◦ f] obtain i j where i < j

and P (the (f i)) (the (f j)) by auto
then have ?P (Some (the (f i))) (Some (the (f j))) by simp
then have ?P (f i) (f j) unfolding ∗∗ .
with ‹i < j› show good ?P f by (auto simp: good-def)

qed auto
qed

7.3 Disjoint Union of Almost-Full Sets
fun

sum-le :: (′a ⇒ ′a ⇒ bool) ⇒ (′b ⇒ ′b ⇒ bool) ⇒ ′a + ′b ⇒ ′a + ′b ⇒ bool
where

sum-le P Q (Inl x) (Inl y) = P x y |
sum-le P Q (Inr x) (Inr y) = Q x y |
sum-le P Q x y = False

lemma not-sum-le-cases:
assumes ¬ sum-le P Q a b

and
∧

x y. [[a = Inl x ; b = Inl y; ¬ P x y]] =⇒ thesis
and

∧
x y. [[a = Inr x; b = Inr y; ¬ Q x y]] =⇒ thesis

30

and
∧

x y. [[a = Inl x ; b = Inr y]] =⇒ thesis
and

∧
x y. [[a = Inr x; b = Inl y]] =⇒ thesis

shows thesis
using assms by (cases a b rule: sum.exhaust [case-product sum.exhaust]) auto

When two sets are almost-full, then their disjoint sum is almost-full.
lemma almost-full-on-Plus:

assumes almost-full-on P A and almost-full-on Q B
shows almost-full-on (sum-le P Q) (A <+> B) (is almost-full-on ?P ?A)

proof
fix f :: nat ⇒ (′a + ′b)
let ?I = f −‘ Inl ‘ A
let ?J = f −‘ Inr ‘ B
assume ∀ i. f i ∈ ?A
then have ∗: ?J = (UNIV ::nat set) − ?I by (fastforce)
show good ?P f
proof (rule ccontr)

assume bad: bad ?P f
show False
proof (cases finite ?I)

assume finite ?I
then have infinite ?J by (auto simp: ∗)
then interpret infinitely-many1 λi. f i ∈ Inr ‘ B

by (unfold-locales) (simp add: infinite-nat-iff-unbounded)
have [dest]:

∧
i x. f (enum i) = Inl x =⇒ False

using enum-P by (auto simp: image-iff) (metis Inr-Inl-False)
let ?f = λi. projr (f (enum i))

have B:
∧

i. ?f i ∈ B using enum-P by (auto simp: image-iff) (metis
sum.sel(2))

{ fix i j :: nat
assume i < j
then have enum i < enum j using enum-less by auto
with bad have ¬ ?P (f (enum i)) (f (enum j)) by (auto simp: good-def)
then have ¬ Q (?f i) (?f j) by (auto elim: not-sum-le-cases) }

then have bad Q ?f by (auto simp: good-def)
moreover from ‹almost-full-on Q B› and B

have good Q ?f by (auto simp: good-def almost-full-on-def)
ultimately show False by blast

next
assume infinite ?I
then interpret infinitely-many1 λi. f i ∈ Inl ‘ A

by (unfold-locales) (simp add: infinite-nat-iff-unbounded)
have [dest]:

∧
i x. f (enum i) = Inr x =⇒ False

using enum-P by (auto simp: image-iff) (metis Inr-Inl-False)
let ?f = λi. projl (f (enum i))

have A: ∀ i. ?f i ∈ A using enum-P by (auto simp: image-iff) (metis
sum.sel(1))

{ fix i j :: nat
assume i < j

31

then have enum i < enum j using enum-less by auto
with bad have ¬ ?P (f (enum i)) (f (enum j)) by (auto simp: good-def)
then have ¬ P (?f i) (?f j) by (auto elim: not-sum-le-cases) }

then have bad P ?f by (auto simp: good-def)
moreover from ‹almost-full-on P A› and A

have good P ?f by (auto simp: good-def almost-full-on-def)
ultimately show False by blast

qed
qed

qed

7.4 Dickson’s Lemma for Almost-Full Relations

When two sets are almost-full, then their Cartesian product is almost-full.
definition

prod-le :: (′a ⇒ ′a ⇒ bool) ⇒ (′b ⇒ ′b ⇒ bool) ⇒ ′a × ′b ⇒ ′a × ′b ⇒ bool
where

prod-le P1 P2 = (λ(p1 , p2) (q1 , q2). P1 p1 q1 ∧ P2 p2 q2)

lemma prod-le-True [simp]:
prod-le P (λ- -. True) a b = P (fst a) (fst b)
by (auto simp: prod-le-def)

lemma almost-full-on-Sigma:
assumes almost-full-on P1 A1 and almost-full-on P2 A2
shows almost-full-on (prod-le P1 P2) (A1 × A2) (is almost-full-on ?P ?A)

proof (rule ccontr)
assume ¬ almost-full-on ?P ?A
then obtain f where f : ∀ i. f i ∈ ?A

and bad: bad ?P f by (auto simp: almost-full-on-def)
let ?W = λx y. P1 (fst x) (fst y)
let ?B = λx y. P2 (snd x) (snd y)
from f have fst: ∀ i. fst (f i) ∈ A1 and snd: ∀ i. snd (f i) ∈ A2

by (metis SigmaE fst-conv, metis SigmaE snd-conv)
from almost-full-on-imp-homogeneous-subseq [OF assms(1) fst]

obtain ϕ :: nat ⇒ nat where mono:
∧

i j. i < j =⇒ ϕ i < ϕ j
and ∗:

∧
i j. i < j =⇒ ?W (f (ϕ i)) (f (ϕ j)) by auto

from snd have ∀ i. snd (f (ϕ i)) ∈ A2 by auto
then have snd ◦ f ◦ ϕ ∈ SEQ A2 by auto
with assms(2) have good P2 (snd ◦ f ◦ ϕ) by (auto simp: almost-full-on-def)
then obtain i j :: nat

where i < j and ?B (f (ϕ i)) (f (ϕ j)) by auto
with ∗ [OF ‹i < j›] have ?P (f (ϕ i)) (f (ϕ j)) by (simp add: case-prod-beta

prod-le-def)
with mono [OF ‹i < j›] and bad show False by auto

qed

32

7.5 Higman’s Lemma for Almost-Full Relations
lemma almost-full-on-lists:

assumes almost-full-on P A
shows almost-full-on (list-emb P) (lists A) (is almost-full-on ?P ?A)

proof (rule ccontr)
interpret mbs ?A .
assume ¬ ?thesis
from mbs ′ [OF this] obtain m

where bad: m ∈ BAD ?P
and min: ∀ g. (m, g) ∈ gseq −→ good ?P g ..

then have lists:
∧

i. m i ∈ lists A
and ne:

∧
i. m i 6= [] by auto

define h t where h = (λi. hd (m i)) and t = (λi. tl (m i))
have m:

∧
i. m i = h i # t i using ne by (simp add: h-def t-def)

have ∀ i. h i ∈ A using ne-lists [OF ne] and lists by (auto simp add: h-def)
from almost-full-on-imp-homogeneous-subseq [OF assms this] obtain ϕ :: nat ⇒

nat
where less:

∧
i j. i < j =⇒ ϕ i < ϕ j

and P: ∀ i j. i < j −→ P (h (ϕ i)) (h (ϕ j)) by blast

have bad-t: bad ?P (t ◦ ϕ)
proof

assume good ?P (t ◦ ϕ)
then obtain i j where i < j and ?P (t (ϕ i)) (t (ϕ j)) by auto
moreover with P have P (h (ϕ i)) (h (ϕ j)) by blast
ultimately have ?P (m (ϕ i)) (m (ϕ j))

by (subst (1 2) m) (rule list-emb-Cons2 , auto)
with less and ‹i < j› have good ?P m by (auto simp: good-def)
with bad show False by blast

qed

define m ′ where m ′ = (λi. if i < ϕ 0 then m i else t (ϕ (i − ϕ 0)))

have m ′-less:
∧

i. i < ϕ 0 =⇒ m ′ i = m i by (simp add: m ′-def)
have m ′-geq:

∧
i. i ≥ ϕ 0 =⇒ m ′ i = t (ϕ (i − ϕ 0)) by (simp add: m ′-def)

have ∀ i. m ′ i ∈ lists A using ne-lists [OF ne] and lists by (auto simp: m ′-def
t-def)

moreover have length (m ′ (ϕ 0)) < length (m (ϕ 0)) using ne by (simp add:
t-def m ′-geq)

moreover have ∀ j<ϕ 0 . m ′ j = m j by (auto simp: m ′-less)
ultimately have (m, m ′) ∈ gseq using lists by (auto simp: gseq-def)
moreover have bad ?P m ′

proof
assume good ?P m ′

then obtain i j where i < j and emb: ?P (m ′ i) (m ′ j) by (auto simp:
good-def)

33

{ assume j < ϕ 0
with ‹i < j› and emb have ?P (m i) (m j) by (auto simp: m ′-less)
with ‹i < j› and bad have False by blast }

moreover
{ assume ϕ 0 ≤ i

with ‹i < j› and emb have ?P (t (ϕ (i − ϕ 0))) (t (ϕ (j − ϕ 0)))
and i − ϕ 0 < j − ϕ 0 by (auto simp: m ′-geq)

with bad-t have False by auto }
moreover
{ assume i < ϕ 0 and ϕ 0 ≤ j
with ‹i < j› and emb have ?P (m i) (t (ϕ (j − ϕ 0))) by (simp add: m ′-less

m ′-geq)
from list-emb-Cons [OF this, of h (ϕ (j − ϕ 0))]

have ?P (m i) (m (ϕ (j − ϕ 0))) using ne by (simp add: h-def t-def)
moreover have i < ϕ (j − ϕ 0)

using less [of 0 j − ϕ 0] and ‹i < ϕ 0 › and ‹ϕ 0 ≤ j›
by (cases j = ϕ 0) auto

ultimately have False using bad by blast }
ultimately show False using ‹i < j› by arith

qed
ultimately show False using min by blast

qed

7.6 Natural Numbers
lemma almost-full-on-UNIV-nat:

almost-full-on (≤) (UNIV :: nat set)
proof −

let ?P = subseq :: bool list ⇒ bool list ⇒ bool
have ∗: length ‘ (UNIV :: bool list set) = (UNIV :: nat set)

by (metis Ex-list-of-length surj-def)
have almost-full-on (≤) (length ‘ (UNIV :: bool list set))
proof (rule almost-full-on-hom)

fix xs ys :: bool list
assume ?P xs ys
then show length xs ≤ length ys

by (metis list-emb-length)
next

have finite (UNIV :: bool set) by auto
from almost-full-on-lists [OF eq-almost-full-on-finite-set [OF this]]

show almost-full-on ?P UNIV unfolding lists-UNIV .
qed
then show ?thesis unfolding ∗ .

qed

end

34

8 Well-Quasi-Orders
theory Well-Quasi-Orders
imports Almost-Full-Relations
begin

8.1 Basic Definitions
definition wqo-on :: (′a ⇒ ′a ⇒ bool) ⇒ ′a set ⇒ bool where

wqo-on P A ←→ transp-on A P ∧ almost-full-on P A

lemma wqo-on-UNIV :
wqo-on (λ- -. True) UNIV
using almost-full-on-UNIV by (auto simp: wqo-on-def transp-on-def)

lemma wqo-onI [Pure.intro]:
[[transp-on A P; almost-full-on P A]] =⇒ wqo-on P A
unfolding wqo-on-def almost-full-on-def by blast

lemma wqo-on-imp-reflp-on:
wqo-on P A =⇒ reflp-on A P
using almost-full-on-imp-reflp-on by (auto simp: wqo-on-def)

lemma wqo-on-imp-transp-on:
wqo-on P A =⇒ transp-on A P
by (auto simp: wqo-on-def)

lemma wqo-on-imp-almost-full-on:
wqo-on P A =⇒ almost-full-on P A
by (auto simp: wqo-on-def)

lemma wqo-on-imp-qo-on:
wqo-on P A =⇒ qo-on P A
by (metis qo-on-def wqo-on-imp-reflp-on wqo-on-imp-transp-on)

lemma wqo-on-imp-good:
wqo-on P A =⇒ ∀ i. f i ∈ A =⇒ good P f
by (auto simp: wqo-on-def almost-full-on-def)

lemma wqo-on-subset:
A ⊆ B =⇒ wqo-on P B =⇒ wqo-on P A
using almost-full-on-subset [of A B P]

and transp-on-subset [of B P A]
unfolding wqo-on-def by blast

8.2 Equivalent Definitions

Given a quasi-order P, the following statements are equivalent:

1. P is a almost-full.

35

2. P does neither allow decreasing chains nor antichains.

3. Every quasi-order extending P is well-founded.

lemma wqo-af-conv:
assumes qo-on P A
shows wqo-on P A ←→ almost-full-on P A
using assms by (metis qo-on-def wqo-on-def)

lemma wqo-wf-and-no-antichain-conv:
assumes qo-on P A
shows wqo-on P A ←→ wfp-on (strict P) A ∧ ¬ (∃ f . antichain-on P f A)
unfolding wqo-af-conv [OF assms]
using af-trans-imp-wf [OF - assms [THEN qo-on-imp-transp-on]]

and almost-full-on-imp-no-antichain-on [of P A]
and wf-and-no-antichain-imp-qo-extension-wf [of P A]
and every-qo-extension-wf-imp-af [OF - assms]
by blast

lemma wqo-extensions-wf-conv:
assumes qo-on P A
shows wqo-on P A ←→ (∀Q. (∀ x∈A. ∀ y∈A. P x y −→ Q x y) ∧ qo-on Q A
−→ wfp-on (strict Q) A)

unfolding wqo-af-conv [OF assms]
using af-trans-imp-wf [OF - assms [THEN qo-on-imp-transp-on]]

and almost-full-on-imp-no-antichain-on [of P A]
and wf-and-no-antichain-imp-qo-extension-wf [of P A]
and every-qo-extension-wf-imp-af [OF - assms]
by blast

lemma wqo-on-imp-wfp-on:
wqo-on P A =⇒ wfp-on (strict P) A
by (metis (no-types) wqo-on-imp-qo-on wqo-wf-and-no-antichain-conv)

The homomorphic image of a wqo set is wqo.
lemma wqo-on-hom:

assumes transp-on (h ‘ A) Q
and ∀ x∈A. ∀ y∈A. P x y −→ Q (h x) (h y)
and wqo-on P A

shows wqo-on Q (h ‘ A)
using assms and almost-full-on-hom [of A P Q h]
unfolding wqo-on-def by blast

The monomorphic preimage of a wqo set is wqo.
lemma wqo-on-mon:

assumes ∗: ∀ x∈A. ∀ y∈A. P x y ←→ Q (h x) (h y)
and bij: bij-betw h A B
and wqo: wqo-on Q B

shows wqo-on P A

36

proof −
have transp-on A P
proof (rule transp-onI)

fix x y z assume [intro!]: x ∈ A y ∈ A z ∈ A
and P x y and P y z

with ∗ have Q (h x) (h y) and Q (h y) (h z) by blast+
with wqo-on-imp-transp-on [OF wqo] have Q (h x) (h z)

using bij by (auto simp: bij-betw-def transp-on-def)
with ∗ show P x z by blast

qed
with assms and almost-full-on-mon [of A P Q h]

show ?thesis unfolding wqo-on-def by blast
qed

8.3 A Type Class for Well-Quasi-Orders

In a well-quasi-order (wqo) every infinite sequence is good.
class wqo = preorder +

assumes good: good (≤) f

lemma wqo-on-class [simp, intro]:
wqo-on (≤) (UNIV :: (′a :: wqo) set)
using good by (auto simp: wqo-on-def transp-on-def almost-full-on-def dest: or-

der-trans)

lemma wqo-on-UNIV-class-wqo [intro!]:
wqo-on P UNIV =⇒ class.wqo P (strict P)
by (unfold-locales) (auto simp: wqo-on-def almost-full-on-def , unfold transp-on-def ,

blast)

The following lemma converts between wqo-on (for the special case that the
domain is the universe of a type) and the class predicate class.wqo.
lemma wqo-on-UNIV-conv:

wqo-on P UNIV ←→ class.wqo P (strict P) (is ?lhs = ?rhs)
proof

assume ?lhs then show ?rhs by auto
next

assume ?rhs then show ?lhs
unfolding class.wqo-def class.preorder-def class.wqo-axioms-def
by (auto simp: wqo-on-def almost-full-on-def transp-on-def)

qed

The strict part of a wqo is well-founded.
lemma (in wqo) wfP (<)
proof −

have class.wqo (≤) (<) ..
hence wqo-on (≤) UNIV

unfolding less-le-not-le [abs-def] wqo-on-UNIV-conv [symmetric] .

37

from wqo-on-imp-wfp-on [OF this]
show ?thesis unfolding less-le-not-le [abs-def] wfp-on-UNIV .

qed

lemma wqo-on-with-bot:
assumes wqo-on P A
shows wqo-on (option-le P) A⊥ (is wqo-on ?P ?A)

proof −
{ from assms have trans [unfolded transp-on-def]: transp-on A P

by (auto simp: wqo-on-def)
have transp-on ?A ?P

by (auto simp: transp-on-def elim!: with-bot-cases, insert trans) blast }
moreover
{ from assms and almost-full-on-with-bot

have almost-full-on ?P ?A by (auto simp: wqo-on-def) }
ultimately
show ?thesis by (auto simp: wqo-on-def)

qed

lemma wqo-on-option-UNIV [intro]:
wqo-on P UNIV =⇒ wqo-on (option-le P) UNIV
using wqo-on-with-bot [of P UNIV] by simp

When two sets are wqo, then their disjoint sum is wqo.
lemma wqo-on-Plus:

assumes wqo-on P A and wqo-on Q B
shows wqo-on (sum-le P Q) (A <+> B) (is wqo-on ?P ?A)

proof −
{ from assms have trans [unfolded transp-on-def]: transp-on A P transp-on B

Q
by (auto simp: wqo-on-def)

have transp-on ?A ?P
unfolding transp-on-def by (auto, insert trans) (blast+) }

moreover
{ from assms and almost-full-on-Plus have almost-full-on ?P ?A by (auto simp:

wqo-on-def) }
ultimately
show ?thesis by (auto simp: wqo-on-def)

qed

lemma wqo-on-sum-UNIV [intro]:
wqo-on P UNIV =⇒ wqo-on Q UNIV =⇒ wqo-on (sum-le P Q) UNIV
using wqo-on-Plus [of P UNIV Q UNIV] by simp

8.4 Dickson’s Lemma
lemma wqo-on-Sigma:

fixes A1 :: ′a set and A2 :: ′b set
assumes wqo-on P1 A1 and wqo-on P2 A2

38

shows wqo-on (prod-le P1 P2) (A1 × A2) (is wqo-on ?P ?A)
proof −

{ from assms have transp-on A1 P1 and transp-on A2 P2 by (auto simp:
wqo-on-def)

hence transp-on ?A ?P unfolding transp-on-def prod-le-def by blast }
moreover
{ from assms and almost-full-on-Sigma [of P1 A1 P2 A2]

have almost-full-on ?P ?A by (auto simp: wqo-on-def) }
ultimately
show ?thesis by (auto simp: wqo-on-def)

qed

lemmas dickson = wqo-on-Sigma

lemma wqo-on-prod-UNIV [intro]:
wqo-on P UNIV =⇒ wqo-on Q UNIV =⇒ wqo-on (prod-le P Q) UNIV
using wqo-on-Sigma [of P UNIV Q UNIV] by simp

8.5 Higman’s Lemma
lemma transp-on-list-emb:

assumes transp-on A P
shows transp-on (lists A) (list-emb P)
using assms and list-emb-trans [of - - - P]

unfolding transp-on-def by blast

lemma wqo-on-lists:
assumes wqo-on P A shows wqo-on (list-emb P) (lists A)
using assms and almost-full-on-lists

and transp-on-list-emb by (auto simp: wqo-on-def)

lemmas higman = wqo-on-lists

lemma wqo-on-list-UNIV [intro]:
wqo-on P UNIV =⇒ wqo-on (list-emb P) UNIV
using wqo-on-lists [of P UNIV] by simp

Every reflexive and transitive relation on a finite set is a wqo.
lemma finite-wqo-on:

assumes finite A and refl: reflp-on A P and transp-on A P
shows wqo-on P A
using assms and finite-almost-full-on by (auto simp: wqo-on-def)

lemma finite-eq-wqo-on:
assumes finite A
shows wqo-on (=) A
using finite-wqo-on [OF assms, of (=)]
by (auto simp: reflp-on-def transp-on-def)

39

lemma wqo-on-lists-over-finite-sets:
wqo-on (list-emb (=)) (UNIV ::(′a::finite) list set)
using wqo-on-lists [OF finite-eq-wqo-on [OF finite [of UNIV ::(′a::finite) set]]] by

simp

lemma wqo-on-map:
fixes P and Q and h
defines P ′ ≡ λx y. P x y ∧ Q (h x) (h y)
assumes wqo-on P A

and wqo-on Q B
and subset: h ‘ A ⊆ B

shows wqo-on P ′ A
proof

let ?Q = λx y. Q (h x) (h y)
from ‹wqo-on P A› have transp-on A P

by (rule wqo-on-imp-transp-on)
then show transp-on A P ′

using ‹wqo-on Q B› and subset
unfolding wqo-on-def transp-on-def P ′-def by blast

from ‹wqo-on P A› have almost-full-on P A
by (rule wqo-on-imp-almost-full-on)

from ‹wqo-on Q B› have almost-full-on Q B
by (rule wqo-on-imp-almost-full-on)

show almost-full-on P ′ A
proof

fix f
assume ∗: ∀ i::nat. f i ∈ A
from almost-full-on-imp-homogeneous-subseq [OF ‹almost-full-on P A› this]

obtain g :: nat ⇒ nat
where g:

∧
i j. i < j =⇒ g i < g j

and ∗∗: ∀ i. f (g i) ∈ A ∧ P (f (g i)) (f (g (Suc i)))
using ∗ by auto

from chain-transp-on-less [OF ∗∗ ‹transp-on A P›]
have ∗∗:

∧
i j. i < j =⇒ P (f (g i)) (f (g j)) .

let ?g = λi. h (f (g i))
from ∗ and subset have B:

∧
i. ?g i ∈ B by auto

with ‹almost-full-on Q B› [unfolded almost-full-on-def good-def , THEN bspec,
of ?g]

obtain i j :: nat
where i < j and Q (?g i) (?g j) by blast

with ∗∗ [OF ‹i < j›] have P ′ (f (g i)) (f (g j))
by (auto simp: P ′-def)

with g [OF ‹i < j›] show good P ′ f by (auto simp: good-def)
qed

qed

lemma wqo-on-UNIV-nat:

40

wqo-on (≤) (UNIV :: nat set)
unfolding wqo-on-def transp-on-def
using almost-full-on-UNIV-nat by simp

end

9 Kruskal’s Tree Theorem
theory Kruskal
imports Well-Quasi-Orders
begin

locale kruskal-tree =
fixes F :: (′b × nat) set

and mk :: ′b ⇒ ′a list ⇒ (′a::size)
and root :: ′a ⇒ ′b × nat
and args :: ′a ⇒ ′a list
and trees :: ′a set

assumes size-arg: t ∈ trees =⇒ s ∈ set (args t) =⇒ size s < size t
and root-mk: (f , length ts) ∈ F =⇒ root (mk f ts) = (f , length ts)
and args-mk: (f , length ts) ∈ F =⇒ args (mk f ts) = ts
and mk-root-args: t ∈ trees =⇒ mk (fst (root t)) (args t) = t
and trees-root: t ∈ trees =⇒ root t ∈ F
and trees-arity: t ∈ trees =⇒ length (args t) = snd (root t)
and trees-args:

∧
s. t ∈ trees =⇒ s ∈ set (args t) =⇒ s ∈ trees

begin

lemma mk-inject [iff]:
assumes (f , length ss) ∈ F and (g, length ts) ∈ F
shows mk f ss = mk g ts ←→ f = g ∧ ss = ts

proof −
{ assume mk f ss = mk g ts

then have root (mk f ss) = root (mk g ts)
and args (mk f ss) = args (mk g ts) by auto }

show ?thesis
using root-mk [OF assms(1)] and root-mk [OF assms(2)]

and args-mk [OF assms(1)] and args-mk [OF assms(2)] by auto
qed

inductive emb for P
where

arg: [[(f , m) ∈ F ; length ts = m; ∀ t∈set ts. t ∈ trees;
t ∈ set ts; emb P s t]] =⇒ emb P s (mk f ts) |

list-emb: [[(f , m) ∈ F ; (g, n) ∈ F ; length ss = m; length ts = n;
∀ s ∈ set ss. s ∈ trees; ∀ t ∈ set ts. t ∈ trees;
P (f , m) (g, n); list-emb (emb P) ss ts]] =⇒ emb P (mk f ss) (mk g ts)

monos list-emb-mono

lemma almost-full-on-trees:

41

assumes almost-full-on P F
shows almost-full-on (emb P) trees (is almost-full-on ?P ?A)

proof (rule ccontr)
interpret mbs ?A .
assume ¬ ?thesis
from mbs ′ [OF this] obtain m

where bad: m ∈ BAD ?P
and min: ∀ g. (m, g) ∈ gseq −→ good ?P g ..

then have trees:
∧

i. m i ∈ trees by auto

define r where r i = root (m i) for i
define a where a i = args (m i) for i
define S where S =

⋃
{set (a i) | i. True}

have m:
∧

i. m i = mk (fst (r i)) (a i)
by (simp add: r-def a-def mk-root-args [OF trees])

have lists: ∀ i. a i ∈ lists S by (auto simp: a-def S-def)
have arity:

∧
i. length (a i) = snd (r i)

using trees-arity [OF trees] by (auto simp: r-def a-def)
then have sig:

∧
i. (fst (r i), length (a i)) ∈ F

using trees-root [OF trees] by (auto simp: a-def r-def)
have a-trees:

∧
i. ∀ t ∈ set (a i). t ∈ trees by (auto simp: a-def trees-args [OF

trees])

have almost-full-on ?P S
proof (rule ccontr)

assume ¬ ?thesis
then obtain s :: nat ⇒ ′a
where S :

∧
i. s i ∈ S and bad-s: bad ?P s by (auto simp: almost-full-on-def)

define n where n = (LEAST n. ∃ k. s k ∈ set (a n))
have ∃n. ∃ k. s k ∈ set (a n) using S by (force simp: S-def)
from LeastI-ex [OF this] obtain k

where sk: s k ∈ set (a n) by (auto simp: n-def)
have args:

∧
k. ∃m ≥ n. s k ∈ set (a m)

using S by (auto simp: S-def) (metis Least-le n-def)

define m ′ where m ′ i = (if i < n then m i else s (k + (i − n))) for i

have m ′-less:
∧

i. i < n =⇒ m ′ i = m i by (simp add: m ′-def)
have m ′-geq:

∧
i. i ≥ n =⇒ m ′ i = s (k + (i − n)) by (simp add: m ′-def)

have bad ?P m ′

proof
assume good ?P m ′

then obtain i j where i < j and emb: ?P (m ′ i) (m ′ j) by auto
{ assume j < n

with ‹i < j› and emb have ?P (m i) (m j) by (auto simp: m ′-less)
with ‹i < j› and bad have False by blast }

42

moreover
{ assume n ≤ i

with ‹i < j› and emb have ?P (s (k + (i − n))) (s (k + (j − n)))
and k + (i − n) < k + (j − n) by (auto simp: m ′-geq)

with bad-s have False by auto }
moreover
{ assume i < n and n ≤ j

with ‹i < j› and emb have ∗: ?P (m i) (s (k + (j − n))) by (auto simp:
m ′-less m ′-geq)

with args obtain l where l ≥ n and ∗∗: s (k + (j − n)) ∈ set (a l) by
blast

from emb.arg [OF sig [of l] - a-trees [of l] ∗∗ ∗]
have ?P (m i) (m l) by (simp add: m)

moreover have i < l using ‹i < n› and ‹n ≤ l› by auto
ultimately have False using bad by blast }

ultimately show False using ‹i < j› by arith
qed
moreover have (m, m ′) ∈ gseq
proof −

have m ∈ SEQ ?A using trees by auto
moreover have m ′ ∈ SEQ ?A

using trees and S and trees-args [OF trees] by (auto simp: m ′-def a-def
S-def)

moreover have ∀ i < n. m i = m ′ i by (auto simp: m ′-less)
moreover have size (m ′ n) < size (m n)

using sk and size-arg [OF trees, unfolded m]
by (auto simp: m m ′-geq root-mk [OF sig] args-mk [OF sig])

ultimately show ?thesis by (auto simp: gseq-def)
qed
ultimately show False using min by blast

qed
from almost-full-on-lists [OF this, THEN almost-full-on-imp-homogeneous-subseq,

OF lists]
obtain ϕ :: nat ⇒ nat
where less:

∧
i j. i < j =⇒ ϕ i < ϕ j

and lemb:
∧

i j. i < j =⇒ list-emb ?P (a (ϕ i)) (a (ϕ j)) by blast
have roots:

∧
i. r (ϕ i) ∈ F using trees [THEN trees-root] by (auto simp: r-def)

then have r ◦ ϕ ∈ SEQ F by auto
with assms have good P (r ◦ ϕ) by (auto simp: almost-full-on-def)
then obtain i j

where i < j and P (r (ϕ i)) (r (ϕ j)) by auto
with lemb [OF ‹i < j›] have ?P (m (ϕ i)) (m (ϕ j))

using sig and arity and a-trees by (auto simp: m intro!: emb.list-emb)
with less [OF ‹i < j›] and bad show False by blast

qed

inductive-cases
emb-mk2 [consumes 1 , case-names arg list-emb]: emb P s (mk g ts)

43

inductive-cases
list-emb-Nil2-cases: list-emb P xs [] and
list-emb-Cons-cases: list-emb P xs (y#ys)

lemma list-emb-trans-right:
assumes list-emb P xs ys and list-emb (λy z . P y z ∧ (∀ x. P x y −→ P x z)) ys

zs
shows list-emb P xs zs
using assms(2 , 1) by (induct arbitrary: xs) (auto elim!: list-emb-Nil2-cases

list-emb-Cons-cases)

lemma emb-trans:
assumes trans:

∧
f g h. f ∈ F =⇒ g ∈ F =⇒ h ∈ F =⇒ P f g =⇒ P g h =⇒ P

f h
assumes emb P s t and emb P t u
shows emb P s u

using assms(3 , 2)
proof (induct arbitrary: s)

case (arg f m ts v)
then show ?case by (auto intro: emb.arg)

next
case (list-emb f m g n ss ts)
note IH = this
from ‹emb P s (mk f ss)›

show ?case
proof (cases rule: emb-mk2)

case arg
then show ?thesis using IH by (auto elim!: list-emb-set intro: emb.arg)

next
case list-emb

then show ?thesis using IH by (auto intro: emb.intros dest: trans list-emb-trans-right)
qed

qed

lemma transp-on-emb:
assumes transp-on F P
shows transp-on trees (emb P)
using assms and emb-trans [of P] unfolding transp-on-def by blast

lemma kruskal:
assumes wqo-on P F
shows wqo-on (emb P) trees
using almost-full-on-trees [of P] and assms by (metis transp-on-emb wqo-on-def)

end

end
theory Kruskal-Examples
imports Kruskal

44

begin

datatype ′a tree = Node ′a ′a tree list

fun node
where

node (Node f ts) = (f , length ts)

fun succs
where

succs (Node f ts) = ts

inductive-set trees for A
where

f ∈ A =⇒ ∀ t ∈ set ts. t ∈ trees A =⇒ Node f ts ∈ trees A

lemma [simp]:
trees UNIV = UNIV

proof −
{ fix t :: ′a tree

have t ∈ trees UNIV
by (induct t) (auto intro: trees.intros) }

then show ?thesis by auto
qed

interpretation kruskal-tree-tree: kruskal-tree A × UNIV Node node succs trees A
for A

apply (unfold-locales)
apply auto
apply (case-tac [!] t rule: trees.cases)
apply auto
by (metis less-not-refl not-less-eq size-list-estimation)

thm kruskal-tree-tree.almost-full-on-trees
thm kruskal-tree-tree.kruskal

definition tree-emb A P = kruskal-tree-tree.emb A (prod-le P (λ- -. True))

lemma wqo-on-trees:
assumes wqo-on P A
shows wqo-on (tree-emb A P) (trees A)
using wqo-on-Sigma [OF assms wqo-on-UNIV , THEN kruskal-tree-tree.kruskal]
by (simp add: tree-emb-def)

If the type ′a is well-quasi-ordered by P, then trees of type ′a tree are well-
quasi-ordered by the homeomorphic embedding relation.
instantiation tree :: (wqo) wqo
begin
definition s ≤ t ←→ tree-emb UNIV (≤) s t

45

definition (s :: ′a tree) < t ←→ s ≤ t ∧ ¬ (t ≤ s)

instance
by (rule wqo.intro-of-class)

(auto simp: less-eq-tree-def [abs-def] less-tree-def [abs-def]
intro: wqo-on-trees [of - UNIV , simplified])

end

datatype (′f , ′v) term = Var ′v | Fun ′f (′f , ′v) term list

fun root
where

root (Fun f ts) = (f , length ts)

fun args
where

args (Fun f ts) = ts

inductive-set gterms for F
where
(f , n) ∈ F =⇒ length ts = n =⇒ ∀ s ∈ set ts. s ∈ gterms F =⇒ Fun f ts ∈ gterms

F

interpretation kruskal-term: kruskal-tree F Fun root args gterms F for F
apply (unfold-locales)
apply auto
apply (case-tac [!] t rule: gterms.cases)
apply auto
by (metis less-not-refl not-less-eq size-list-estimation)

thm kruskal-term.almost-full-on-trees

inductive-set terms
where
∀ t ∈ set ts. t ∈ terms =⇒ Fun f ts ∈ terms

interpretation kruskal-variadic: kruskal-tree UNIV Fun root args terms
apply (unfold-locales)
apply auto
apply (case-tac [!] t rule: terms.cases)
apply auto
by (metis less-not-refl not-less-eq size-list-estimation)

thm kruskal-variadic.almost-full-on-trees

datatype ′a exp = V ′a | C nat | Plus ′a exp ′a exp

datatype ′a symb = v ′a | c nat | p

46

fun mk
where

mk (v x) [] = V x |
mk (c n) [] = C n |
mk p [a, b] = Plus a b

fun rt
where

rt (V x) = (v x, 0 ::nat) |
rt (C n) = (c n, 0) |
rt (Plus a b) = (p, 2)

fun ags
where

ags (V x) = [] |
ags (C n) = [] |
ags (Plus a b) = [a, b]

inductive-set exps
where

V x ∈ exps |
C n ∈ exps |
a ∈ exps =⇒ b ∈ exps =⇒ Plus a b ∈ exps

lemma [simp]:
assumes length ts = 2
shows rt (mk p ts) = (p, 2)
using assms by (induct ts) (auto, case-tac ts, auto)

lemma [simp]:
assumes length ts = 2
shows ags (mk p ts) = ts
using assms by (induct ts) (auto, case-tac ts, auto)

interpretation kruskal-exp: kruskal-tree
{(v x, 0) | x. True} ∪ {(c n, 0) | n. True} ∪ {(p, 2)}
mk rt ags exps

apply (unfold-locales)
apply auto
apply (case-tac [!] t rule: exps.cases)
by auto

thm kruskal-exp.almost-full-on-trees

hide-const (open) tree-emb V C Plus v c p

end

47

10 Instances of Well-Quasi-Orders
theory Wqo-Instances
imports Kruskal
begin

10.1 The Option Type is Well-Quasi-Ordered
instantiation option :: (wqo) wqo
begin
definition x ≤ y ←→ option-le (≤) x y
definition (x :: ′a option) < y ←→ x ≤ y ∧ ¬ (y ≤ x)

instance
by (rule wqo.intro-of-class)

(auto simp: less-eq-option-def [abs-def] less-option-def [abs-def])
end

10.2 The Sum Type is Well-Quasi-Ordered
instantiation sum :: (wqo, wqo) wqo
begin
definition x ≤ y ←→ sum-le (≤) (≤) x y
definition (x :: ′a + ′b) < y ←→ x ≤ y ∧ ¬ (y ≤ x)

instance
by (rule wqo.intro-of-class)

(auto simp: less-eq-sum-def [abs-def] less-sum-def [abs-def])
end

10.3 Pairs are Well-Quasi-Ordered

If types ′a and ′b are well-quasi-ordered by P and Q, then pairs of type ′a
× ′b are well-quasi-ordered by the pointwise combination of P and Q.
instantiation prod :: (wqo, wqo) wqo
begin
definition p ≤ q ←→ prod-le (≤) (≤) p q
definition (p :: ′a × ′b) < q ←→ p ≤ q ∧ ¬ (q ≤ p)

instance
by (rule wqo.intro-of-class)

(auto simp: less-eq-prod-def [abs-def] less-prod-def [abs-def])
end

10.4 Lists are Well-Quasi-Ordered

If the type ′a is well-quasi-ordered by P, then lists of type ′a list are well-
quasi-ordered by the homeomorphic embedding relation.

48

instantiation list :: (wqo) wqo
begin
definition xs ≤ ys ←→ list-emb (≤) xs ys
definition (xs :: ′a list) < ys ←→ xs ≤ ys ∧ ¬ (ys ≤ xs)

instance
by (rule wqo.intro-of-class)

(auto simp: less-eq-list-def [abs-def] less-list-def [abs-def])
end

end

11 Multiset Extension of Orders (as Binary Pred-
icates)

theory Multiset-Extension
imports

Open-Induction.Restricted-Predicates
HOL−Library.Multiset

begin

definition multisets :: ′a set ⇒ ′a multiset set where
multisets A = {M . set-mset M ⊆ A}

lemma in-multisets-iff :
M ∈ multisets A ←→ set-mset M ⊆ A
by (simp add: multisets-def)

lemma empty-multisets [simp]:
{#} ∈ multisets F
by (simp add: in-multisets-iff)

lemma multisets-union [simp]:
M ∈ multisets A =⇒ N ∈ multisets A =⇒ M + N ∈ multisets A
by (auto simp add: in-multisets-iff)

definition mulex1 :: (′a ⇒ ′a ⇒ bool) ⇒ ′a multiset ⇒ ′a multiset ⇒ bool where
mulex1 P = (λM N . (M , N) ∈ mult1 {(x, y). P x y})

lemma mulex1-empty [iff]:
mulex1 P M {#} ←→ False
using not-less-empty [of M {(x, y). P x y}]
by (auto simp: mulex1-def)

lemma mulex1-add: mulex1 P N (M0 + {#a#}) =⇒
(∃M . mulex1 P M M0 ∧ N = M + {#a#}) ∨
(∃K . (∀ b. b ∈# K −→ P b a) ∧ N = M0 + K)
using less-add [of N a M0 {(x, y). P x y}]

49

by (auto simp: mulex1-def)

lemma mulex1-self-add-right [simp]:
mulex1 P A (add-mset a A)

proof −
let ?R = {(x, y). P x y}
thm mult1-def
have A + {#a#} = A + {#a#} by simp
moreover have A = A + {#} by simp
moreover have ∀ b. b ∈# {#} −→ (b, a) ∈ ?R by simp
ultimately have (A, add-mset a A) ∈ mult1 ?R

unfolding mult1-def by blast
then show ?thesis by (simp add: mulex1-def)

qed

lemma empty-mult1 [simp]:
({#}, {#a#}) ∈ mult1 R

proof −
have {#a#} = {#} + {#a#} by simp
moreover have {#} = {#} + {#} by simp
moreover have ∀ b. b ∈# {#} −→ (b, a) ∈ R by simp
ultimately show ?thesis unfolding mult1-def by force

qed

lemma empty-mulex1 [simp]:
mulex1 P {#} {#a#}
using empty-mult1 [of a {(x, y). P x y}] by (simp add: mulex1-def)

definition mulex-on :: (′a ⇒ ′a ⇒ bool) ⇒ ′a set ⇒ ′a multiset ⇒ ′a multiset ⇒
bool where

mulex-on P A = (restrict-to (mulex1 P) (multisets A))++

abbreviation mulex :: (′a ⇒ ′a ⇒ bool) ⇒ ′a multiset ⇒ ′a multiset ⇒ bool
where

mulex P ≡ mulex-on P UNIV

lemma mulex-on-induct [consumes 1 , case-names base step, induct pred: mulex-on]:
assumes mulex-on P A M N

and
∧

M N . [[M ∈ multisets A; N ∈ multisets A; mulex1 P M N]] =⇒ Q M N
and

∧
L M N . [[mulex-on P A L M ; Q L M ; N ∈ multisets A; mulex1 P M N]]

=⇒ Q L N
shows Q M N
using assms unfolding mulex-on-def by (induct) blast+

lemma mulex-on-self-add-singleton-right [simp]:
assumes a ∈ A and M ∈ multisets A
shows mulex-on P A M (add-mset a M)

proof −
have mulex1 P M (M + {#a#}) by simp

50

with assms have restrict-to (mulex1 P) (multisets A) M (add-mset a M)
by (auto simp: multisets-def)

then show ?thesis unfolding mulex-on-def by blast
qed

lemma singleton-multisets [iff]:
{#x#} ∈ multisets A ←→ x ∈ A
by (auto simp: multisets-def)

lemma union-multisetsD:
assumes M + N ∈ multisets A
shows M ∈ multisets A ∧ N ∈ multisets A
using assms by (auto simp: multisets-def)

lemma mulex-on-multisetsD [dest]:
assumes mulex-on P F M N
shows M ∈ multisets F and N ∈ multisets F
using assms by (induct) auto

lemma union-multisets-iff [iff]:
M + N ∈ multisets A ←→ M ∈ multisets A ∧ N ∈ multisets A
by (auto dest: union-multisetsD)

lemma add-mset-multisets-iff [iff]:
add-mset a M ∈ multisets A ←→ a ∈ A ∧ M ∈ multisets A
unfolding add-mset-add-single[of a M] union-multisets-iff by auto

lemma mulex-on-trans:
mulex-on P A L M =⇒ mulex-on P A M N =⇒ mulex-on P A L N
by (auto simp: mulex-on-def)

lemma transp-on-mulex-on:
transp-on B (mulex-on P A)
using mulex-on-trans [of P A] by (auto simp: transp-on-def)

lemma mulex-on-add-right [simp]:
assumes mulex-on P A M N and a ∈ A
shows mulex-on P A M (add-mset a N)

proof −
from assms have a ∈ A and N ∈ multisets A by auto
then have mulex-on P A N (add-mset a N) by simp
with ‹mulex-on P A M N › show ?thesis by (rule mulex-on-trans)

qed

lemma empty-mulex-on [simp]:
assumes M 6= {#} and M ∈ multisets A
shows mulex-on P A {#} M

using assms
proof (induct M)

51

case (add a M)
show ?case
proof (cases M = {#})

assume M = {#}
with add show ?thesis by (auto simp: mulex-on-def)

next
assume M 6= {#}
with add show ?thesis by (auto intro: mulex-on-trans)

qed
qed simp

lemma mulex-on-self-add-right [simp]:
assumes M ∈ multisets A and K ∈ multisets A and K 6= {#}
shows mulex-on P A M (M + K)

using assms
proof (induct K)

case empty
then show ?case by (cases K = {#}) auto

next
case (add a M)
show ?case
proof (cases M = {#})

assume M = {#} with add show ?thesis by auto
next

assume M 6= {#} with add show ?thesis
by (auto dest: mulex-on-add-right simp add: ac-simps)

qed
qed

lemma mult1-singleton [iff]:
({#x#}, {#y#}) ∈ mult1 R ←→ (x, y) ∈ R

proof
assume (x, y) ∈ R
then have {#y#} = {#} + {#y#}

and {#x#} = {#} + {#x#}
and ∀ b. b ∈# {#x#} −→ (b, y) ∈ R by auto

then show ({#x#}, {#y#}) ∈ mult1 R unfolding mult1-def by blast
next

assume ({#x#}, {#y#}) ∈ mult1 R
then obtain M0 K a

where {#y#} = add-mset a M0
and {#x#} = M0 + K
and ∀ b. b ∈# K −→ (b, a) ∈ R
unfolding mult1-def by blast

then show (x, y) ∈ R by (auto simp: add-eq-conv-diff)
qed

lemma mulex1-singleton [iff]:
mulex1 P {#x#} {#y#} ←→ P x y

52

using mult1-singleton [of x y {(x, y). P x y}] by (simp add: mulex1-def)

lemma singleton-mulex-onI :
P x y =⇒ x ∈ A =⇒ y ∈ A =⇒ mulex-on P A {#x#} {#y#}
by (auto simp: mulex-on-def)

lemma reflclp-mulex-on-add-right [simp]:
assumes (mulex-on P A)== M N and M ∈ multisets A and a ∈ A
shows mulex-on P A M (N + {#a#})
using assms by (cases M = N) simp-all

lemma reflclp-mulex-on-add-right ′ [simp]:
assumes (mulex-on P A)== M N and M ∈ multisets A and a ∈ A
shows mulex-on P A M ({#a#} + N)
using reflclp-mulex-on-add-right [OF assms] by (simp add: ac-simps)

lemma mulex-on-union-right [simp]:
assumes mulex-on P F A B and K ∈ multisets F
shows mulex-on P F A (K + B)

using assms
proof (induct K)

case (add a K)
then have a ∈ F and mulex-on P F A (B + K) by (auto simp: multisets-def

ac-simps)
then have mulex-on P F A ((B + K) + {#a#}) by simp
then show ?case by (simp add: ac-simps)

qed simp

lemma mulex-on-union-right ′ [simp]:
assumes mulex-on P F A B and K ∈ multisets F
shows mulex-on P F A (B + K)
using mulex-on-union-right [OF assms] by (simp add: ac-simps)

Adapted from wf ?r =⇒ ∀M . M ∈Wellfounded.acc (mult1 ?r) in HOL−Library.Multiset.
lemma accessible-on-mulex1-multisets:

assumes wf : wfp-on P A
shows ∀M∈multisets A. accessible-on (mulex1 P) (multisets A) M

proof
let ?P = mulex1 P
let ?A = multisets A
let ?acc = accessible-on ?P ?A
{

fix M M0 a
assume M0 : ?acc M0

and a ∈ A
and M0 ∈ ?A
and wf-hyp:

∧
b. [[b ∈ A; P b a]] =⇒ (∀M . ?acc (M) −→ ?acc (M + {#b#}))

and acc-hyp: ∀M . M ∈ ?A ∧ ?P M M0 −→ ?acc (M + {#a#})
then have add-mset a M0 ∈ ?A by (auto simp: multisets-def)

53

then have ?acc (add-mset a M0)
proof (rule accessible-onI [of add-mset a M0])

fix N
assume N ∈ ?A

and ?P N (add-mset a M0)
then have ((∃M . M ∈ ?A ∧ ?P M M0 ∧ N = M + {#a#}) ∨

(∃K . (∀ b. b ∈# K −→ P b a) ∧ N = M0 + K))
using mulex1-add [of P N M0 a] by (auto simp: multisets-def)

then show ?acc (N)
proof (elim exE disjE conjE)

fix M assume M ∈ ?A and ?P M M0 and N : N = M + {#a#}
from acc-hyp have M ∈ ?A ∧ ?P M M0 −→ ?acc (M + {#a#}) ..
with ‹M ∈ ?A› and ‹?P M M0 › have ?acc (M + {#a#}) by blast
then show ?acc (N) by (simp only: N)

next
fix K
assume N : N = M0 + K
assume ∀ b. b ∈# K −→ P b a

moreover from N and ‹N ∈ ?A› have K ∈ ?A by (auto simp: multisets-def)
ultimately have ?acc (M0 + K)
proof (induct K)

case empty
from M0 show ?acc (M0 + {#}) by simp

next
case (add x K)
from add.prems have x ∈ A and P x a by (auto simp: multisets-def)
with wf-hyp have ∀M . ?acc M −→ ?acc (M + {#x#}) by blast
moreover from add have ?acc (M0 + K) by (auto simp: multisets-def)
ultimately show ?acc (M0 + (add-mset x K)) by simp

qed
then show ?acc N by (simp only: N)

qed
qed

} note tedious-reasoning = this

fix M
assume M ∈ ?A
then show ?acc M
proof (induct M)

show ?acc {#}
proof (rule accessible-onI)

show {#} ∈ ?A by (auto simp: multisets-def)
next

fix b assume ?P b {#} then show ?acc b by simp
qed

next
case (add a M)
then have ?acc M by (auto simp: multisets-def)
from add have a ∈ A by (auto simp: multisets-def)

54

with wf have ∀M . ?acc M −→ ?acc (add-mset a M)
proof (induct)

case (less a)
then have r :

∧
b. [[b ∈ A; P b a]] =⇒ (∀M . ?acc M −→ ?acc (M + {#b#}))

by auto
show ∀M . ?acc M −→ ?acc (add-mset a M)
proof (intro allI impI)

fix M ′

assume ?acc M ′

moreover then have M ′ ∈ ?A by (blast dest: accessible-on-imp-mem)
ultimately show ?acc (add-mset a M ′)

by (induct) (rule tedious-reasoning [OF - ‹a ∈ A› - r], auto)
qed

qed
with ‹?acc (M)› show ?acc (add-mset a M) by blast

qed
qed

lemmas wfp-on-mulex1-multisets =
accessible-on-mulex1-multisets [THEN accessible-on-imp-wfp-on]

lemmas irreflp-on-mulex1 =
wfp-on-mulex1-multisets [THEN wfp-on-imp-irreflp-on]

lemma wfp-on-mulex-on-multisets:
assumes wfp-on P A
shows wfp-on (mulex-on P A) (multisets A)
using wfp-on-mulex1-multisets [OF assms]
by (simp only: mulex-on-def wfp-on-restrict-to-tranclp-wfp-on-conv)

lemmas irreflp-on-mulex-on =
wfp-on-mulex-on-multisets [THEN wfp-on-imp-irreflp-on]

lemma mulex1-union:
mulex1 P M N =⇒ mulex1 P (K + M) (K + N)
by (auto simp: mulex1-def mult1-union)

lemma mulex-on-union:
assumes mulex-on P A M N and K ∈ multisets A
shows mulex-on P A (K + M) (K + N)

using assms
proof (induct)

case (base M N)
then have mulex1 P (K + M) (K + N) by (blast dest: mulex1-union)
moreover from base have (K + M) ∈ multisets A

and (K + N) ∈ multisets A by (auto simp: multisets-def)
ultimately have restrict-to (mulex1 P) (multisets A) (K + M) (K + N) by

auto
then show ?case by (auto simp: mulex-on-def)

55

next
case (step L M N)
then have mulex1 P (K + M) (K + N) by (blast dest: mulex1-union)
moreover from step have (K + M) ∈ multisets A and (K + N) ∈ multisets

A by blast+
ultimately have (restrict-to (mulex1 P) (multisets A))++ (K + M) (K + N)

by auto
moreover have mulex-on P A (K + L) (K + M) using step by blast
ultimately show ?case by (auto simp: mulex-on-def)

qed

lemma mulex-on-union ′:
assumes mulex-on P A M N and K ∈ multisets A
shows mulex-on P A (M + K) (N + K)
using mulex-on-union [OF assms] by (simp add: ac-simps)

lemma mulex-on-add-mset:
assumes mulex-on P A M N and m ∈ A
shows mulex-on P A (add-mset m M) (add-mset m N)
unfolding add-mset-add-single[of m M] add-mset-add-single[of m N]
apply (rule mulex-on-union ′)
using assms by auto

lemma union-mulex-on-mono:
mulex-on P F A C =⇒ mulex-on P F B D =⇒ mulex-on P F (A + B) (C + D)
by (metis mulex-on-multisetsD mulex-on-trans mulex-on-union mulex-on-union ′)

lemma mulex-on-add-mset ′:
assumes P m n and m ∈ A and n ∈ A and M ∈ multisets A
shows mulex-on P A (add-mset m M) (add-mset n M)
unfolding add-mset-add-single[of m M] add-mset-add-single[of n M]
apply (rule mulex-on-union)
using assms by (auto simp: mulex-on-def)

lemma mulex-on-add-mset-mono:
assumes P m n and m ∈ A and n ∈ A and mulex-on P A M N
shows mulex-on P A (add-mset m M) (add-mset n N)
unfolding add-mset-add-single[of m M] add-mset-add-single[of n N]
apply (rule union-mulex-on-mono)
using assms by (auto simp: mulex-on-def)

lemma union-mulex-on-mono1 :
A ∈ multisets F =⇒ (mulex-on P F)== A C =⇒ mulex-on P F B D =⇒

mulex-on P F (A + B) (C + D)
by (auto intro: union-mulex-on-mono mulex-on-union)

lemma union-mulex-on-mono2 :
B ∈ multisets F =⇒ mulex-on P F A C =⇒ (mulex-on P F)== B D =⇒

mulex-on P F (A + B) (C + D)

56

by (auto intro: union-mulex-on-mono mulex-on-union ′)

lemma mult1-mono:
assumes

∧
x y. [[x ∈ A; y ∈ A; (x, y) ∈ R]] =⇒ (x, y) ∈ S

and M ∈ multisets A
and N ∈ multisets A
and (M , N) ∈ mult1 R

shows (M , N) ∈ mult1 S
using assms unfolding mult1-def multisets-def
by auto (metis (full-types) subsetD)

lemma mulex1-mono:
assumes

∧
x y. [[x ∈ A; y ∈ A; P x y]] =⇒ Q x y

and M ∈ multisets A
and N ∈ multisets A
and mulex1 P M N

shows mulex1 Q M N
using mult1-mono [of A {(x, y). P x y} {(x, y). Q x y} M N]

and assms unfolding mulex1-def by blast

lemma mulex-on-mono:
assumes ∗:

∧
x y. [[x ∈ A; y ∈ A; P x y]] =⇒ Q x y

and mulex-on P A M N
shows mulex-on Q A M N

proof −
let ?rel = λP. (restrict-to (mulex1 P) (multisets A))
from ‹mulex-on P A M N › have (?rel P)++ M N by (simp add: mulex-on-def)
then have (?rel Q)++ M N
proof (induct rule: tranclp.induct)

case (r-into-trancl M N)
then have M ∈ multisets A and N ∈ multisets A by auto
from mulex1-mono [OF ∗ this] and r-into-trancl

show ?case by auto
next

case (trancl-into-trancl L M N)
then have M ∈ multisets A and N ∈ multisets A by auto
from mulex1-mono [OF ∗ this] and trancl-into-trancl

have ?rel Q M N by auto
with ‹(?rel Q)++ L M › show ?case by (rule tranclp.trancl-into-trancl)

qed
then show ?thesis by (simp add: mulex-on-def)

qed

lemma mult1-reflcl:
assumes (M , N) ∈ mult1 R
shows (M , N) ∈ mult1 (R=)
using assms by (auto simp: mult1-def)

lemma mulex1-reflclp:

57

assumes mulex1 P M N
shows mulex1 (P==) M N
using mulex1-mono [of UNIV P P== M N , OF - - - assms]
by (auto simp: multisets-def)

lemma mulex-on-reflclp:
assumes mulex-on P A M N
shows mulex-on (P==) A M N
using mulex-on-mono [OF - assms, of P==] by auto

lemma surj-on-multisets-mset:
∀M∈multisets A. ∃ xs∈lists A. M = mset xs

proof
fix M
assume M ∈ multisets A
then show ∃ xs∈lists A. M = mset xs
proof (induct M)

case empty show ?case by simp
next

case (add a M)
then obtain xs where xs ∈ lists A and M = mset xs by auto
then have add-mset a M = mset (a # xs) by simp
moreover have a # xs ∈ lists A using ‹xs ∈ lists A› and add by auto
ultimately show ?case by blast

qed
qed

lemma image-mset-lists [simp]:
mset ‘ lists A = multisets A
using surj-on-multisets-mset [of A]
by auto (metis mem-Collect-eq multisets-def set-mset-mset subsetI)

lemma multisets-UNIV [simp]: multisets UNIV = UNIV
by (metis image-mset-lists lists-UNIV surj-mset)

lemma non-empty-multiset-induct [consumes 1 , case-names singleton add]:
assumes M 6= {#}

and
∧

x. P {#x#}
and

∧
x M . P M =⇒ P (add-mset x M)

shows P M
using assms by (induct M) auto

lemma mulex-on-all-strict:
assumes X 6= {#}
assumes X ∈ multisets A and Y ∈ multisets A

and ∗: ∀ y. y ∈# Y −→ (∃ x. x ∈# X ∧ P y x)
shows mulex-on P A Y X

using assms
proof (induction X arbitrary: Y rule: non-empty-multiset-induct)

58

case (singleton x)
then have mulex1 P Y {#x#}

unfolding mulex1-def mult1-def
by auto

with singleton show ?case by (auto simp: mulex-on-def)
next

case (add x M)
let ?Y = {# y ∈# Y . ∃ x. x ∈# M ∧ P y x #}
let ?Z = Y − ?Y
have Y : Y = ?Z + ?Y by (subst multiset-eq-iff) auto
from ‹Y ∈ multisets A› have ?Y ∈ multisets A by (metis multiset-partition

union-multisets-iff)
moreover have ∀ y. y ∈# ?Y −→ (∃ x. x ∈# M ∧ P y x) by auto
moreover have M ∈ multisets A using add by auto
ultimately have mulex-on P A ?Y M using add by blast
moreover have mulex-on P A ?Z {#x#}
proof −

have {#x#} = {#} + {#x#} by simp
moreover have ?Z = {#} + ?Z by simp
moreover have ∀ y. y ∈# ?Z −→ P y x

using add.prems by (auto simp add: in-diff-count split: if-splits)
ultimately have mulex1 P ?Z {#x#} unfolding mulex1-def mult1-def by

blast
moreover have {#x#} ∈ multisets A using add.prems by auto
moreover have ?Z ∈ multisets A

using ‹Y ∈ multisets A› by (metis diff-union-cancelL multiset-partition
union-multisetsD)

ultimately show ?thesis by (auto simp: mulex-on-def)
qed
ultimately have mulex-on P A (?Y + ?Z) (M + {#x#}) by (rule union-mulex-on-mono)
then show ?case using Y by (simp add: ac-simps)

qed

The following lemma shows that the textbook definition (e.g., “Term Rewrit-
ing and All That”) is the same as the one used below.
lemma diff-set-Ex-iff :

X 6= {#} ∧ X ⊆# M ∧ N = (M − X) + Y ←→ X 6= {#} ∧ (∃Z . M = Z +
X ∧ N = Z + Y)

by (auto) (metis add-diff-cancel-left ′ multiset-diff-union-assoc union-commute)

Show that mulex-on is equivalent to the textbook definition of multiset-
extension for transitive base orders.
lemma mulex-on-alt-def :

assumes trans: transp-on A P
shows mulex-on P A M N ←→ M ∈ multisets A ∧ N ∈ multisets A ∧ (∃X Y

Z .
X 6= {#} ∧ N = Z + X ∧ M = Z + Y ∧ (∀ y. y ∈# Y −→ (∃ x. x ∈# X ∧

P y x)))
(is ?P M N ←→ ?Q M N)

59

proof
assume ?P M N then show ?Q M N
proof (induct M N)

case (base M N)
then obtain a M0 K where N : N = M0 + {#a#}

and M : M = M0 + K
and ∗: ∀ b. b ∈# K −→ P b a

and M ∈ multisets A and N ∈ multisets A by (auto simp: mulex1-def
mult1-def)

moreover then have {#a#} ∈ multisets A and K ∈ multisets A by auto
moreover have {#a#} 6= {#} by auto
moreover have N = M0 + {#a#} by fact
moreover have M = M0 + K by fact
moreover have ∀ y. y ∈# K −→ (∃ x. x ∈# {#a#} ∧ P y x) using ∗ by

auto
ultimately show ?case by blast

next
case (step L M N)
then obtain X Y Z

where L ∈ multisets A and M ∈ multisets A and N ∈ multisets A
and X ∈ multisets A and Y ∈ multisets A
and M : M = Z + X
and L: L = Z + Y and X 6= {#}
and Y : ∀ y. y ∈# Y −→ (∃ x. x ∈# X ∧ P y x)
and mulex1 P M N
by blast

from ‹mulex1 P M N › obtain a M0 K
where N : N = add-mset a M0 and M ′: M = M0 + K
and ∗: ∀ b. b ∈# K −→ P b a unfolding mulex1-def mult1-def by blast

have L ′: L = (M − X) + Y by (simp add: L M)
have K : ∀ y. y ∈# K −→ (∃ x. x ∈# {#a#} ∧ P y x) using ∗ by auto

The remainder of the proof is adapted from the proof of Lemma 2.5.4. of the book
“Term Rewriting and All That.”

let ?X = add-mset a (X − K)
let ?Y = (K − X) + Y

have L ∈ multisets A and N ∈ multisets A by fact+
moreover have ?X 6= {#} ∧ (∃Z . N = Z + ?X ∧ L = Z + ?Y)
proof −

have ?X 6= {#} by auto
moreover have ?X ⊆# N

using M N M ′ by (simp add: add.commute [of {#a#}])
(metis Multiset.diff-subset-eq-self add.commute add-diff-cancel-right)

moreover have L = (N − ?X) + ?Y
proof (rule multiset-eqI)

fix x :: ′a
let ?c = λM . count M x
let ?ic = λx. int (?c x)

60

from ‹?X ⊆# N › have ∗: ?c {#a#} + ?c (X − K) ≤ ?c N
by (auto simp add: subseteq-mset-def split: if-splits)

from ∗ have ∗∗: ?c (X − K) ≤ ?c M0 unfolding N by (auto split: if-splits)
have ?ic (N − ?X + ?Y) = int (?c N − ?c ?X) + ?ic ?Y by simp
also have . . . = int (?c N − (?c {#a#} + ?c (X − K))) + ?ic (K − X)

+ ?ic Y by simp
also have . . . = ?ic N − (?ic {#a#} + ?ic (X − K)) + ?ic (K − X) +

?ic Y
using of-nat-diff [OF ∗] by simp

also have . . . = (?ic N − ?ic {#a#}) − ?ic (X − K) + ?ic (K − X) +
?ic Y by simp

also have . . . = (?ic N − ?ic {#a#}) + (?ic (K − X) − ?ic (X − K)) +
?ic Y by simp

also have . . . = (?ic N − ?ic {#a#}) + (?ic K − ?ic X) + ?ic Y by simp
also have . . . = (?ic N − ?ic ?X) + ?ic ?Y by (simp add: N)
also have . . . = ?ic L

unfolding L ′ M ′ N
using ∗∗ by (simp add: algebra-simps)

finally show ?c L = ?c (N − ?X + ?Y) by simp
qed
ultimately show ?thesis by (metis diff-set-Ex-iff)

qed
moreover have ∀ y. y ∈# ?Y −→ (∃ x. x ∈# ?X ∧ P y x)
proof (intro allI impI)

fix y assume y ∈# ?Y
then have y ∈# K − X ∨ y ∈# Y by auto
then show ∃ x. x ∈# ?X ∧ P y x
proof

assume y ∈# K − X
then have y ∈# K by (rule in-diffD)
with K show ?thesis by auto

next
assume y ∈# Y
with Y obtain x where x ∈# X and P y x by blast
{ assume x ∈# X − K with ‹P y x› have ?thesis by auto }
moreover
{ assume x ∈# K with ∗ have P x a by auto
moreover have y ∈ A using ‹Y ∈ multisets A› and ‹y ∈# Y › by (auto

simp: multisets-def)
moreover have a ∈ A using ‹N ∈ multisets A› by (auto simp: N)
moreover have x ∈ A using ‹M ∈ multisets A› and ‹x ∈# K › by (auto

simp: M ′ multisets-def)
ultimately have P y a using ‹P y x› and trans unfolding transp-on-def

by blast
then have ?thesis by force }

moreover from ‹x ∈# X› have x ∈# X − K ∨ x ∈# K
by (auto simp add: in-diff-count not-in-iff)

ultimately show ?thesis by auto
qed

61

qed
ultimately show ?case by blast

qed
next

assume ?Q M N
then obtain X Y Z where M ∈ multisets A and N ∈ multisets A

and X 6= {#} and N : N = Z + X and M : M = Z + Y
and ∗: ∀ y. y ∈# Y −→ (∃ x. x ∈# X ∧ P y x) by blast

with mulex-on-all-strict [of X A Y] have mulex-on P A Y X by auto
moreover from ‹N ∈ multisets A› have Z ∈ multisets A by (auto simp: N)
ultimately show ?P M N unfolding M N by (metis mulex-on-union)

qed

end

12 Multiset Extension Preserves Well-Quasi-Orders
theory Wqo-Multiset
imports

Multiset-Extension
Well-Quasi-Orders

begin

lemma list-emb-imp-reflclp-mulex-on:
assumes xs ∈ lists A and ys ∈ lists A

and list-emb P xs ys
shows (mulex-on P A)== (mset xs) (mset ys)

using assms(3 , 1 , 2)
proof (induct)

case (list-emb-Nil ys)
then show ?case

by (cases ys) (auto intro!: empty-mulex-on simp: multisets-def)
next

case (list-emb-Cons xs ys y)
then show ?case by (auto intro!: mulex-on-self-add-singleton-right simp: multi-

sets-def)
next

case (list-emb-Cons2 x y xs ys)
then show ?case

by (force intro: union-mulex-on-mono mulex-on-add-mset
mulex-on-add-mset ′ mulex-on-add-mset-mono
simp: multisets-def)

qed

The (reflexive closure of the) multiset extension of an almost-full relation is
almost-full.
lemma almost-full-on-multisets:

assumes almost-full-on P A
shows almost-full-on (mulex-on P A)== (multisets A)

62

proof −
let ?P = (mulex-on P A)==

from almost-full-on-hom [OF - almost-full-on-lists, of A P ?P mset,
OF list-emb-imp-reflclp-mulex-on, simplified]
show ?thesis using assms by blast

qed

lemma wqo-on-multisets:
assumes wqo-on P A
shows wqo-on (mulex-on P A)== (multisets A)

proof
from transp-on-mulex-on [of multisets A P A]

show transp-on (multisets A) (mulex-on P A)==

unfolding transp-on-def by blast
next

from almost-full-on-multisets [OF assms [THEN wqo-on-imp-almost-full-on]]
show almost-full-on (mulex-on P A)== (multisets A) .

qed

end

References

[1] C. S. J. A. Nash-Williams. On well-quasi-ordering finite trees. Pro-
ceedings of the Cambridge Philosophical Society, 59(4):833–835, 1963.
doi:10.1017/S0305004100003844.

63

http://dx.doi.org/10.1017/S0305004100003844

	Infinite Sequences
	Lexicographic Order on Infinite Sequences

	Minimal elements of sets w.r.t. a well-founded and transitive relation
	Enumerations of Well-Ordered Sets in Increasing Order
	The Almost-Full Property
	Basic Definitions and Facts
	An equivalent inductive definition
	Special Case: Finite Sets
	Further Results

	Constructing Minimal Bad Sequences
	A Proof of Higman's Lemma via Open Induction
	Some facts about the suffix relation
	Lexicographic Order on Infinite Sequences

	Almost-Full Relations
	Adding a Bottom Element to a Set
	Adding a Bottom Element to an Almost-Full Set
	Disjoint Union of Almost-Full Sets
	Dickson's Lemma for Almost-Full Relations
	Higman's Lemma for Almost-Full Relations
	Natural Numbers

	Well-Quasi-Orders
	Basic Definitions
	Equivalent Definitions
	A Type Class for Well-Quasi-Orders
	Dickson's Lemma
	Higman's Lemma

	Kruskal's Tree Theorem
	Instances of Well-Quasi-Orders
	The Option Type is Well-Quasi-Ordered
	The Sum Type is Well-Quasi-Ordered
	Pairs are Well-Quasi-Ordered
	Lists are Well-Quasi-Ordered

	Multiset Extension of Orders (as Binary Predicates)
	Multiset Extension Preserves Well-Quasi-Orders

