
Verified Enumeration of Trees

Nils Cremer

April 12, 2024

Abstract

This thesis presents the verification of enumeration algorithms for
trees. The first algorithm is based on the well known Prüfer-correspondence
and allows the enumeration of all possible labeled trees over a fixed
finite set of vertices. The second algorithm enumerates rooted, unla-
beled trees of a specified size up to graph isomorphisms. It allows for
the efficient enumeration without the use of an intermediate encod-
ing of the trees with level sequences, unlike the algorithm by Beyer
and Hedetniemi [1] it is based on. Both algorithms are formalized and
verified in Isabelle/HOL. The formalization of trees and other graph
theoretic results is also presented.

Contents
1 Graphs and Trees 2

1.1 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 Connected components . . . . . . . . . . . . . . . . . . . . . . 15
1.9 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.10 Graph Isomorphism . . . . . . . . . . . . . . . . . . . . . . . 28

2 Enumeration of Labeled Trees 30
2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 Totality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Distinction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1



3 Rooted Trees 39
3.1 Rooted Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Rooted Graph Isomorphism . . . . . . . . . . . . . . . . . . . 47
3.3 Conversion between unlabeled, ordered, rooted trees and tree

graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Injectivity with respect to isomorphism . . . . . . . . . . . . 65

4 Enumeration of Rooted Trees 71
4.1 Enumeration is monotonically decreasing . . . . . . . . . . . . 73
4.2 Size preservation . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Setup for termination proof . . . . . . . . . . . . . . . . . . . 74
4.4 Algorithms for enumeration . . . . . . . . . . . . . . . . . . . 75
4.5 Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.6 Totality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.7 Distinctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

1 Graphs and Trees
theory Tree-Graph

imports Undirected-Graph-Theory.Undirected-Graphs-Root
begin

1.1 Miscellaneous
definition (in ulgraph) loops :: ′a edge set where

loops = {e∈E . is-loop e}

definition (in ulgraph) sedges :: ′a edge set where
sedges = {e∈E . is-sedge e}

lemma (in ulgraph) union-loops-sedges: loops ∪ sedges = E
unfolding loops-def sedges-def is-loop-def is-sedge-def using alt-edge-size by

blast

lemma (in ulgraph) disjnt-loops-sedges: disjnt loops sedges
unfolding disjnt-def loops-def sedges-def is-loop-def is-sedge-def by auto

lemma (in fin-ulgraph) finite-loops: finite loops
unfolding loops-def using fin-edges by auto

lemma (in fin-ulgraph) finite-sedges: finite sedges
unfolding sedges-def using fin-edges by auto

lemma (in ulgraph) edge-incident-vert: e ∈ E =⇒ ∃ v∈V . vincident v e
using edge-size wellformed by (metis empty-not-edge equals0I vincident-def inci-

dent-edge-in-wf )

2



lemma (in ulgraph) Union-incident-edges: (
⋃

v∈V . incident-edges v) = E
unfolding incident-edges-def using edge-incident-vert by auto

lemma (in ulgraph) induced-edges-mono: V 1 ⊆ V 2 =⇒ induced-edges V 1 ⊆ in-
duced-edges V 2

using induced-edges-def by auto

definition (in graph-system) remove-vertex :: ′a ⇒ ′a pregraph where
remove-vertex v = (V − {v}, {e∈E . ¬ vincident v e})

lemma (in ulgraph) ex-neighbor-degree-not-0 :
assumes degree-non-0 : degree v 6= 0

shows ∃ u∈V . vert-adj v u
proof−

have ∃ e∈E . v ∈ e using degree-non-0 elem-exists-non-empty-set
unfolding degree-def incident-sedges-def incident-loops-def vincident-def by

auto
then show ?thesis

by (metis degree-non-0 in-mono is-isolated-vertex-def is-isolated-vertex-degree0
vert-adj-sym wellformed)
qed

lemma (in ulgraph) ex1-neighbor-degree-1 :
assumes degree-1 : degree v = 1
shows ∃ !u. vert-adj v u

proof−
have card (incident-loops v) = 0 using degree-1 unfolding degree-def by auto
then have incident-loops: incident-loops v = {} by (simp add: finite-incident-loops)
then have card-incident-sedges: card (incident-sedges v) = 1 using degree-1

unfolding degree-def by simp
obtain u where vert-adj: vert-adj v u using degree-1 ex-neighbor-degree-not-0

by force
then have u 6= v using incident-loops unfolding incident-loops-def vert-adj-def

by blast
then have u-incident: {v,u} ∈ incident-sedges v using vert-adj unfolding in-

cident-sedges-def vert-adj-def vincident-def by simp
then have incident-sedges: incident-sedges v = {{v,u}} using card-incident-sedges

by (simp add: comp-sgraph.card1-incident-imp-vert comp-sgraph.vincident-def )
have vert-adj v u ′ =⇒ u ′ = u for u ′

proof−
assume v-u ′-adj: vert-adj v u ′

then have u ′ 6= v using incident-loops unfolding incident-loops-def vert-adj-def
by blast

then have {v,u ′} ∈ incident-sedges v using v-u ′-adj unfolding incident-sedges-def
vert-adj-def vincident-def by simp

then show u ′ = u using incident-sedges by force
qed
then show ?thesis using vert-adj by blast

3



qed

lemma (in ulgraph) degree-1-edge-partition:
assumes degree-1 : degree v = 1
shows E = {{THE u. vert-adj v u, v}} ∪ {e ∈ E . v /∈ e}

proof−
have card (incident-loops v) = 0 using degree-1 unfolding degree-def by auto
then have incident-loops: incident-loops v = {} by (simp add: finite-incident-loops)
then have card (incident-sedges v) = 1 using degree-1 unfolding degree-def

by simp
then have card-incident-edges: card (incident-edges v) = 1 using incident-loops

incident-edges-union by simp
obtain u where vert-adj: vert-adj v u using ex1-neighbor-degree-1 degree-1 by

blast
then have {v, u} ∈ {e ∈ E . v ∈ e} unfolding vert-adj-def by blast
then have edges-incident-v: {e ∈ E . v ∈ e} = {{v, u}} using card-incident-edges

card-1-singletonE singletonD
unfolding incident-edges-def vincident-def by metis

have u: u = (THE u. vert-adj v u) using vert-adj ex1-neighbor-degree-1 degree-1
by (simp add: the1-equality)

show ?thesis using edges-incident-v u by blast
qed

lemma (in sgraph) vert-adj-not-eq: vert-adj u v =⇒ u 6= v
unfolding vert-adj-def using edge-vertices-not-equal by blast

1.2 Degree
lemma (in ulgraph) empty-E-degree-0 : E = {} =⇒ degree v = 0
using incident-edges-empty degree0-inc-edges-empt-iff unfolding incident-edges-def

by simp

lemma (in fin-ulgraph) handshaking: (
∑

v∈V . degree v) = 2 ∗ card E
using fin-edges fin-ulgraph-axioms

proof (induction E)
case empty
then interpret g: fin-ulgraph V {} .
show ?case using g.empty-E-degree-0 by simp

next
case (insert e E ′)
then interpret g ′: fin-ulgraph V insert e E ′ by blast
interpret g: fin-ulgraph V E ′ using g ′.wellformed g ′.edge-size finV by (unfold-locales,

auto)
show ?case
proof (cases is-loop e)

case True
then obtain u where e: e = {u} using card-1-singletonE is-loop-def by blast
then have inc-sedges:

∧
v. g ′.incident-sedges v = g.incident-sedges v unfolding

g ′.incident-sedges-def g.incident-sedges-def by auto

4



have
∧

v. v 6= u =⇒ g ′.incident-loops v = g.incident-loops v unfolding
g ′.incident-loops-def g.incident-loops-def using e by auto

then have degree-not-u:
∧

v. v 6= u =⇒ g ′.degree v = g.degree v using inc-sedges
unfolding g ′.degree-def g.degree-def by auto

have g ′.incident-loops u = g.incident-loops u ∪ {e} unfolding g ′.incident-loops-def
g.incident-loops-def using e by auto

then have degree-u: g ′.degree u = g.degree u + 2 using inc-sedges insert(2 )
g.finite-incident-loops g.incident-loops-def unfolding g ′.degree-def g.degree-def by
auto

have u ∈ V using e g ′.wellformed by blast
then have (

∑
v∈V . g ′.degree v) = g ′.degree u + (

∑
v∈V−{u}. g ′.degree v)

by (simp add: finV sum.remove)
also have . . . = (

∑
v∈V . g.degree v) + 2 using degree-not-u degree-u sum.remove[OF

finV ‹u∈V ›, of g.degree] by auto
also have . . . = 2 ∗ card (insert e E ′) using insert g.fin-ulgraph-axioms by

auto
finally show ?thesis .

next
case False
obtain u w where e: e = {u,w} using g ′.obtain-edge-pair-adj by fastforce
then have card-e: card e = 2 using False g ′.alt-edge-size is-loop-def by auto
then have u 6= w using card-2-iff using e by fastforce
have inc-loops:

∧
v. g ′.incident-loops v = g.incident-loops v

unfolding g ′.incident-loops-alt g.incident-loops-alt using False is-loop-def by
auto

have
∧

v. v 6= u =⇒ v 6= w =⇒ g ′.incident-sedges v = g.incident-sedges v
unfolding g ′.incident-sedges-def g.incident-sedges-def g.vincident-def using

e by auto
then have degree-not-u-w:

∧
v. v 6= u =⇒ v 6= w =⇒ g ′.degree v = g.degree v

unfolding g ′.degree-def g.degree-def using inc-loops by auto
have g ′.incident-sedges u = g.incident-sedges u ∪ {e}

unfolding g ′.incident-sedges-def g.incident-sedges-def g.vincident-def using
e card-e by auto

then have degree-u: g ′.degree u = g.degree u + 1
using inc-loops insert(2 ) g.fin-edges g.finite-inc-sedges g.incident-sedges-def
unfolding g ′.degree-def g.degree-def by auto

have g ′.incident-sedges w = g.incident-sedges w ∪ {e}
unfolding g ′.incident-sedges-def g.incident-sedges-def g.vincident-def using

e card-e by auto
then have degree-w: g ′.degree w = g.degree w + 1

using inc-loops insert(2 ) g.fin-edges g.finite-inc-sedges g.incident-sedges-def
unfolding g ′.degree-def g.degree-def by auto

have inV : u ∈ V w ∈ V−{u} using e g ′.wellformed ‹u 6=w› by auto
then have (

∑
v∈V . g ′.degree v) = g ′.degree u + g ′.degree w + (

∑
v∈V−{u}−{w}.

g ′.degree v)
using sum.remove finV by (metis add.assoc finite-Diff )

also have . . . = g.degree u + g.degree w + (
∑

v∈V−{u}−{w}. g.degree v) +
2

using degree-not-u-w degree-u degree-w by simp

5



also have . . . = (
∑

v∈V . g.degree v) + 2 using sum.remove finV inV by
(metis add.assoc finite-Diff )

also have . . . = 2 ∗ card (insert e E ′) using insert g.fin-ulgraph-axioms by
auto

finally show ?thesis .
qed

qed

lemma (in fin-ulgraph) degree-remove-adj-ne-vert:
assumes u 6= v

and vert-adj: vert-adj u v
and remove-vertex: remove-vertex u = (V ′,E ′)

shows ulgraph.degree E ′ v = degree v − 1
proof−

interpret G ′: fin-ulgraph V ′ E ′ using remove-vertex wellformed edge-size finV
unfolding remove-vertex-def vincident-def

by (unfold-locales, auto)
have E ′: E ′ = {e ∈ E . u /∈ e} using remove-vertex unfolding remove-vertex-def

vincident-def by simp
have incident-loops ′: G ′.incident-loops v = incident-loops v unfolding inci-

dent-loops-def
using ‹u 6=v› E ′ G ′.incident-loops-def by auto

have uv-incident: {u,v} ∈ incident-sedges v using vert-adj ‹u 6=v› unfolding
vert-adj-def incident-sedges-def vincident-def by simp
have uv-incident ′: {u, v} /∈ G ′.incident-sedges v unfolding G ′.incident-sedges-def

vincident-def using E ′ by blast
have e ∈ E =⇒ u ∈ e =⇒ v ∈ e =⇒ card e = 2 =⇒ e = {u,v} for e

using ‹u 6=v› obtain-edge-pair-adj by blast
then have {e ∈ E . u ∈ e ∧ v ∈ e ∧ card e = 2} = {{u,v}} using uv-incident

unfolding incident-sedges-def by blast
then have incident-sedges v = G ′.incident-sedges v ∪ {{u,v}} unfolding G ′.incident-sedges-def

incident-sedges-def vincident-def using E ′ by blast
then show ?thesis unfolding G ′.degree-def degree-def using incident-loops ′

uv-incident ′ G ′.finite-inc-sedges G ′.fin-edges by auto
qed

lemma (in ulgraph) degree-remove-non-adj-vert:
assumes u 6= v

and vert-non-adj: ¬ vert-adj u v
and remove-vertex: remove-vertex u = (V ′, E ′)

shows ulgraph.degree E ′ v = degree v
proof−
interpret G ′: ulgraph V ′ E ′ using remove-vertex wellformed edge-size unfolding

remove-vertex-def vincident-def
by (unfold-locales, auto)

have E ′: E ′ = {e ∈ E . u /∈ e} using remove-vertex unfolding remove-vertex-def
vincident-def by simp

have incident-loops ′: G ′.incident-loops v = incident-loops v unfolding inci-
dent-loops-def

6



using ‹u 6=v› E ′ G ′.incident-loops-def by auto
have G ′.incident-sedges v = incident-sedges v unfolding G ′.incident-sedges-def

incident-sedges-def vincident-def
using E ′ ‹u 6=v› vincident-def vert-adj-edge-iff2 vert-non-adj by auto

then show ?thesis using incident-loops ′ unfolding G ′.degree-def degree-def by
simp
qed

1.3 Walks
lemma (in ulgraph) walk-edges-induced-edges: is-walk p =⇒ set (walk-edges p) ⊆
induced-edges (set p)

unfolding induced-edges-def is-walk-def by (induction p rule: walk-edges.induct)
auto

lemma (in ulgraph) walk-edges-in-verts: e ∈ set (walk-edges xs) =⇒ e ⊆ set xs
by (induction xs rule: walk-edges.induct) auto

lemma (in ulgraph) is-walk-prefix: is-walk (xs@ys) =⇒ xs 6= [] =⇒ is-walk xs
unfolding is-walk-def using walk-edges-append-ss2 by fastforce

lemma (in ulgraph) split-walk-edge: {x,y} ∈ set (walk-edges p) =⇒
∃ xs ys. p = xs @ x # y # ys ∨ p = xs @ y # x # ys
by (induction p rule: walk-edges.induct) (auto, metis append-Nil doubleton-eq-iff ,

(metis append-Cons)+)

1.4 Paths
lemma (in ulgraph) is-gen-path-wf : is-gen-path p =⇒ set p ⊆ V

unfolding is-gen-path-def using is-walk-wf by auto

lemma (in ulgraph) path-wf : is-path p =⇒ set p ⊆ V
by (simp add: is-path-walk is-walk-wf )

lemma (in fin-ulgraph) length-gen-path-card-V : is-gen-path p =⇒ walk-length p ≤
card V
by (metis card-mono distinct-card distinct-tl finV is-gen-path-def is-walk-def length-tl

list.exhaust-sel order-trans set-subset-Cons walk-length-conv)

lemma (in fin-ulgraph) length-path-card-V : is-path p =⇒ length p ≤ card V
by (metis path-wf card-mono distinct-card finV is-path-def )

lemma (in ulgraph) is-gen-path-prefix: is-gen-path (xs@ys) =⇒ xs 6= [] =⇒ is-gen-path
(xs)

unfolding is-gen-path-def using is-walk-prefix
by (auto, metis Int-iff distinct.simps(2 ) emptyE last-appendL last-appendR last-in-set

list.collapse)

lemma (in ulgraph) connecting-path-append: connecting-path u w (xs@ys) =⇒ xs
6= [] =⇒ connecting-path u (last xs) xs

7



unfolding connecting-path-def using is-gen-path-prefix by auto

lemma (in ulgraph) connecting-path-tl: connecting-path u v (u # w # xs) =⇒
connecting-path w v (w # xs)

unfolding connecting-path-def is-gen-path-def using is-walk-drop-hd distinct-tl
by auto

lemma (in fin-ulgraph) obtain-longest-path:
assumes e ∈ E

and sedge: is-sedge e
obtains p where is-path p ∀ s. is-path s −→ length s ≤ length p

proof−
let ?longest-path = ARG-MAX length p. is-path p
obtain u v where e: u 6= v e = {u,v} using sedge card-2-iff unfolding

is-sedge-def by metis
then have inV : u ∈ V v ∈ V using ‹e∈E› wellformed by auto
then have path-ex: is-path [u,v] using e ‹e∈E› unfolding is-path-def is-open-walk-def

is-walk-def by simp
obtain p where p-is-path: is-path p and p-longest-path: ∀ s. is-path s −→ length

s ≤ length p
using path-ex length-path-card-V ex-has-greatest-nat[of is-path [u,v] length gorder ]

by force
then show ?thesis ..

qed

1.5 Cycles
context ulgraph
begin

definition is-cycle2 :: ′a list ⇒ bool where
is-cycle2 xs ←→ is-cycle xs ∧ distinct (walk-edges xs)

lemma loop-is-cycle2 : {v} ∈ E =⇒ is-cycle2 [v, v]
unfolding is-cycle2-def is-cycle-alt is-walk-def using wellformed walk-length-conv

by auto

end

lemma (in sgraph) cycle2-min-length:
assumes cycle: is-cycle2 c
shows walk-length c ≥ 3

proof−
consider c = [] | ∃ v1 . c = [v1 ] | ∃ v1 v2 . c = [v1 , v2 ] | ∃ v1 v2 v3 . c = [v1 , v2 ,

v3 ] | ∃ v1 v2 v3 v4 vs. c = v1#v2#v3#v4#vs
by (metis list.exhaust-sel)

then show ?thesis using cycle walk-length-conv singleton-not-edge unfolding
is-cycle2-def is-cycle-alt is-walk-def by (cases, auto)
qed

8



lemma (in fin-ulgraph) length-cycle-card-V : is-cycle c =⇒ walk-length c ≤ Suc
(card V )

using length-gen-path-card-V unfolding is-gen-path-def is-cycle-alt by fastforce

lemma (in ulgraph) is-cycle-connecting-path: is-cycle (u#v#xs) =⇒ connecting-path
v u (v#xs)

unfolding is-cycle-def connecting-path-def is-closed-walk-def is-gen-path-def us-
ing is-walk-drop-hd by auto

lemma (in ulgraph) cycle-edges-notin-tl: is-cycle2 (u#v#xs) =⇒ {u,v} /∈ set
(walk-edges (v#xs))

unfolding is-cycle2-def by simp

1.6 Subgraphs
locale ulsubgraph = subgraph VH EH VG EG +

G: ulgraph VG EG for VH EH VG EG

begin

interpretation H : ulgraph VH EH

using is-subgraph-ulgraph G.ulgraph-axioms by auto

lemma is-walk: H .is-walk xs =⇒ G.is-walk xs
unfolding H .is-walk-def G.is-walk-def using verts-ss edges-ss by blast

lemma is-closed-walk: H .is-closed-walk xs =⇒ G.is-closed-walk xs
unfolding H .is-closed-walk-def G.is-closed-walk-def using is-walk by blast

lemma is-gen-path: H .is-gen-path p =⇒ G.is-gen-path p
unfolding H .is-gen-path-def G.is-gen-path-def using is-walk by blast

lemma connecting-path: H .connecting-path u v p =⇒ G.connecting-path u v p
unfolding H .connecting-path-def G.connecting-path-def using is-gen-path by

blast

lemma is-cycle: H .is-cycle c =⇒ G.is-cycle c
unfolding H .is-cycle-def G.is-cycle-def using is-closed-walk by blast

lemma is-cycle2 : H .is-cycle2 c =⇒ G.is-cycle2 c
unfolding H .is-cycle2-def G.is-cycle2-def using is-cycle by blast

lemma vert-connected: H .vert-connected u v =⇒ G.vert-connected u v
unfolding H .vert-connected-def G.vert-connected-def using connecting-path by

blast

lemma is-connected-set: H .is-connected-set V ′ =⇒ G.is-connected-set V ′

unfolding H .is-connected-set-def G.is-connected-set-def using vert-connected by
blast

9



end

lemma (in graph-system) subgraph-remove-vertex: remove-vertex v = (V ′, E ′) =⇒
subgraph V ′ E ′ V E

using wellformed unfolding remove-vertex-def vincident-def by (unfold-locales,
auto)

1.7 Connectivity
lemma (in ulgraph) connecting-path-connected-set:

assumes conn-path: connecting-path u v p
shows is-connected-set (set p)

proof−
have ∀w∈set p. vert-connected u w
proof

fix w assume w ∈ set p
then obtain xs ys where p = xs@[w]@ys using split-list by fastforce
then have connecting-path u w (xs@[w]) using conn-path unfolding connect-

ing-path-def using is-gen-path-prefix by (auto simp: hd-append)
then show vert-connected u w unfolding vert-connected-def by blast

qed
then show ?thesis using vert-connected-rev vert-connected-trans unfolding

is-connected-set-def by blast
qed

lemma (in ulgraph) vert-connected-neighbors:
assumes {v,u} ∈ E
shows vert-connected v u

proof−
have connecting-path v u [v,u] unfolding connecting-path-def is-gen-path-def

is-walk-def using assms wellformed by auto
then show ?thesis unfolding vert-connected-def by auto

qed

lemma (in ulgraph) connected-empty-E :
assumes empty: E = {}

and connected: vert-connected u v
shows u = v

proof (rule ccontr)
assume u 6= v
then obtain p where conn-path: connecting-path u v p using connected un-

folding vert-connected-def by blast
then obtain e where e ∈ set (walk-edges p) using ‹u 6=v› connecting-path-length-bound

unfolding walk-length-def by fastforce
then have e ∈ E using conn-path unfolding connecting-path-def is-gen-path-def

is-walk-def by blast
then show False using empty by blast

qed

10



lemma (in fin-ulgraph) degree-0-not-connected:
assumes degree-0 : degree v = 0

and u 6= v
shows ¬ vert-connected v u

proof
assume connected: vert-connected v u
then obtain p where conn-path: connecting-path v u p unfolding vert-connected-def

by blast
then have walk-length p ≥ 1 using ‹u 6=v› connecting-path-length-bound by metis
then have length p ≥ 2 using walk-length-conv by simp
then obtain w p ′ where p = v#w#p ′ using walk-length-conv conn-path un-

folding connecting-path-def
by (metis assms(2 ) is-gen-path-def is-walk-not-empty2 last-ConsL list.collapse)

then have inE : {v,w} ∈ E using conn-path unfolding connecting-path-def
is-gen-path-def is-walk-def by simp

then have {v,w} ∈ incident-edges v unfolding incident-edges-def vincident-def
by simp

then show False using degree0-inc-edges-empt-iff fin-edges degree-0 by blast
qed

lemma (in fin-connected-ulgraph) degree-not-0 :
assumes card V ≥ 2

and inV : v ∈ V
shows degree v 6= 0

proof−
obtain u where u ∈ V and u 6= v using assms

by (metis card-eq-0-iff card-le-Suc0-iff-eq less-eq-Suc-le nat-less-le not-less-eq-eq
numeral-2-eq-2 )

then show ?thesis using degree-0-not-connected inV vertices-connected by blast
qed

lemma (in connected-ulgraph) V-E-empty: E = {} =⇒ ∃ v. V = {v}
using connected-empty-E connected not-empty unfolding is-connected-set-def
by (metis ex-in-conv insert-iff mk-disjoint-insert)

lemma (in connected-ulgraph) vert-connected-remove-edge:
assumes e: {u,v} ∈ E
shows ∀w∈V . ulgraph.vert-connected V (E − {{u,v}}) w u ∨ ulgraph.vert-connected

V (E − {{u,v}}) w v
proof

fix w assume w∈V
interpret g ′: ulgraph V E − {{u,v}} using wellformed edge-size by (unfold-locales,

auto)
have inV : u ∈ V v ∈ V using e wellformed by auto
obtain p where conn-path: connecting-path w v p using connected inV ‹w∈V ›

unfolding is-connected-set-def vert-connected-def by blast
then show g ′.vert-connected w u ∨ g ′.vert-connected w v
proof (cases {u,v} ∈ set (walk-edges p))

11



case True
assume walk-edge: {u,v} ∈ set (walk-edges p)
then show ?thesis
proof (cases w = v)

case True
then show ?thesis using inV g ′.vert-connected-id by blast

next
case False

then have distinct: distinct p using conn-path by (simp add: connect-
ing-path-def is-gen-path-distinct)

have u ∈ set p using walk-edge walk-edges-in-verts by blast
obtain xs ys where p-split: p = xs @ u # v # ys ∨ p = xs @ v # u # ys

using split-walk-edge[OF walk-edge] by blast
have v-notin-ys: v /∈ set ys using distinct p-split by auto
have last p = v using conn-path unfolding connecting-path-def by simp

then have p: p = (xs@[u]) @ [v] using v-notin-ys p-split last-in-set last-appendR
by (metis append.assoc append-Cons last.simps list.discI self-append-conv2 )

then have conn-path-u: connecting-path w u (xs@[u]) using connecting-path-append
conn-path by fastforce

have v /∈ set (xs@[u]) using p distinct by auto
then have {u,v} /∈ set (walk-edges (xs@[u])) using walk-edges-in-verts by

blast
then have g ′.connecting-path w u (xs@[u]) using conn-path-u

unfolding g ′.connecting-path-def connecting-path-def g ′.is-gen-path-def
is-gen-path-def g ′.is-walk-def is-walk-def by blast

then show ?thesis unfolding g ′.vert-connected-def by blast
qed

next
case False
then have g ′.connecting-path w v p using conn-path
unfolding g ′.connecting-path-def connecting-path-def g ′.is-gen-path-def is-gen-path-def

g ′.is-walk-def is-walk-def by blast
then show ?thesis unfolding g ′.vert-connected-def by blast

qed
qed

lemma (in ulgraph) vert-connected-remove-cycle-edge:
assumes cycle: is-cycle2 (u#v#xs)

shows ulgraph.vert-connected V (E − {{u,v}}) u v
proof−
interpret g ′: ulgraph V E − {{u,v}} using wellformed edge-size by (unfold-locales,

auto)
have conn-path: connecting-path v u (v#xs) using cycle is-cycle-connecting-path

unfolding is-cycle2-def by blast
have {u,v} /∈ set (walk-edges (v#xs)) using cycle unfolding is-cycle2-def by

simp
then have g ′.connecting-path v u (v#xs) using conn-path
unfolding g ′.connecting-path-def connecting-path-def g ′.is-gen-path-def is-gen-path-def

g ′.is-walk-def is-walk-def by blast

12



then show ?thesis using g ′.vert-connected-rev unfolding g ′.vert-connected-def
by blast
qed

lemma (in connected-ulgraph) connected-remove-cycle-edges:
assumes cycle: is-cycle2 (u#v#xs)
shows connected-ulgraph V (E − {{u,v}})

proof−
interpret g ′: ulgraph V E − {{u,v}} using wellformed edge-size by (unfold-locales,

auto)
have g ′.vert-connected x y if inV : x ∈ V y ∈ V for x y
proof−

have e: {u,v} ∈ E using cycle unfolding is-cycle2-def is-cycle-alt is-walk-def
by auto

show ?thesis using vert-connected-remove-cycle-edge[OF cycle] vert-connected-remove-edge[OF
e] g ′.vert-connected-trans g ′.vert-connected-rev inV by metis

qed
then show ?thesis using not-empty by (unfold-locales, auto simp: g ′.is-connected-set-def )

qed

lemma (in connected-ulgraph) connected-remove-leaf :
assumes degree: degree l = 1

and remove-vertex: remove-vertex l = (V ′, E ′)
shows ulgraph.is-connected-set V ′ E ′ V ′

proof−
interpret g ′: ulgraph V ′ E ′ using remove-vertex wellformed edge-size

unfolding remove-vertex-def vincident-def by (unfold-locales, auto)
have V ′: V ′ = V − {l} using remove-vertex unfolding remove-vertex-def by

simp
have E ′: E ′ = {e∈E . l /∈ e} using remove-vertex unfolding remove-vertex-def

vincident-def by simp
have u ∈ V ′ =⇒ v ∈ V ′ =⇒ g ′.vert-connected u v for u v
proof−

assume inV ′: u ∈ V ′ v ∈ V ′

then have inV : u ∈ V v ∈ V using remove-vertex unfolding remove-vertex-def
by auto

then obtain p where conn-path: connecting-path u v p using vertices-connected-path
by blast

show ?thesis
proof (cases u = v)

case True
then show ?thesis using g ′.vert-connected-id inV ′ by simp

next
case False

then have distinct: distinct p using conn-path unfolding connecting-path-def
is-gen-path-def by blast

have l-notin-p: l /∈ set p
proof

assume l-in-p: l ∈ set p

13



then obtain xs ys where p: p = xs @ l # ys by (meson split-list)
have l 6= u l 6= v using inV ′ remove-vertex unfolding remove-vertex-def

by auto
then have xs 6= [] using p conn-path unfolding connecting-path-def by

fastforce
then obtain x where last-xs: last xs = x by simp
then have x 6= l using distinct p ‹xs 6=[]› by auto

have {x,l} ∈ set (walk-edges p) using walk-edges-append-union ‹xs 6=[]›
unfolding p

by (simp add: walk-edges-append-union last-xs)
then have xl-incident: {x,l} ∈ incident-sedges l using conn-path ‹x 6=l›
unfolding connecting-path-def is-gen-path-def is-walk-def incident-sedges-def

vincident-def by auto

have ys 6= [] using ‹l 6=v› p conn-path unfolding connecting-path-def by
fastforce

then obtain y ys ′ where ys: ys = y # ys ′ by (meson list.exhaust)
then have y 6= l using distinct p by auto

then have {y,l} ∈ set (walk-edges p) using p ys conn-path walk-edges-append-ss1
by fastforce

then have yl-incident: {y,l} ∈ incident-sedges l using conn-path ‹y 6=l›
unfolding connecting-path-def is-gen-path-def is-walk-def incident-sedges-def

vincident-def by auto

have card-loops: card (incident-loops l) = 0 using degree unfolding de-
gree-def by auto

have x 6= y using distinct last-xs ‹xs 6=[]› unfolding p ys by fastforce
then have {x,l} 6= {y,l} by (metis doubleton-eq-iff )
then have card (incident-sedges l) 6= 1 using xl-incident yl-incident

by (metis card-1-singletonE singletonD)
then have degree l 6= 1 using card-loops unfolding degree-def by simp
then show False using degree ..

qed
then have set (walk-edges p) ⊆ E ′ using walk-edges-in-verts conn-path E ′

unfolding connecting-path-def is-gen-path-def is-walk-def by blast
then have g ′.connecting-path u v p using conn-path V ′ l-notin-p

unfolding g ′.connecting-path-def connecting-path-def g ′.is-gen-path-def
is-gen-path-def g ′.is-walk-def is-walk-def by blast

then show ?thesis unfolding g ′.vert-connected-def by blast
qed

qed
then show ?thesis unfolding g ′.is-connected-set-def by blast

qed

lemma (in connected-sgraph) connected-two-graph-edges:
assumes u 6= v

and V : V = {u,v}
shows E = {{u,v}}

proof−

14



obtain p where conn-path: connecting-path u v p using V vertices-connected-path
by blast

then obtain p ′ where p: p = u # p ′ @ [v] using ‹u 6=v› unfolding connect-
ing-path-def is-gen-path-def

by (metis append-Nil is-walk-not-empty2 list.exhaust-sel list.sel(1 ) snoc-eq-iff-butlast
tl-append2 )
have distinct p using conn-path ‹u 6=v› unfolding connecting-path-def is-gen-path-def

by auto
then have p ′ = [] using V conn-path is-gen-path-wf append-is-Nil-conv last-in-set

self-append-conv2
unfolding connecting-path-def p by fastforce

then have edge-in-E : {u,v} ∈ E using ‹u 6=v› conn-path
unfolding p connecting-path-def is-gen-path-def is-walk-def by simp

have E ⊆ {{}, {u}, {v}, {u,v}} using wellformed V by blast
then show ?thesis using two-edges edge-in-E by fastforce

qed

1.8 Connected components
context ulgraph
begin

abbreviation vert-connected-rel ≡ {(u,v). vert-connected u v}

definition connected-components :: ′a set set where
connected-components = V // vert-connected-rel

definition connected-component-of :: ′a ⇒ ′a set where
connected-component-of v = vert-connected-rel ‘‘ {v}

lemma vert-connected-rel-on-V : vert-connected-rel ⊆ V × V
using vert-connected-wf by auto

lemma vert-connected-rel-refl: refl-on V vert-connected-rel
unfolding refl-on-def using vert-connected-rel-on-V vert-connected-id by simp

lemma vert-connected-rel-sym: sym vert-connected-rel
unfolding sym-def using vert-connected-rev by simp

lemma vert-connected-rel-trans: trans vert-connected-rel
unfolding trans-def using vert-connected-trans by blast

lemma equiv-vert-connected: equiv V vert-connected-rel
unfolding equiv-def using vert-connected-rel-refl vert-connected-rel-sym vert-connected-rel-trans

by blast

lemma connected-component-non-empty: V ′ ∈ connected-components =⇒ V ′ 6=
{}
unfolding connected-components-def using equiv-vert-connected in-quotient-imp-non-empty

15



by auto

lemma connected-component-connected: V ′∈ connected-components =⇒ is-connected-set
V ′

unfolding connected-components-def is-connected-set-def using quotient-eq-iff [OF
equiv-vert-connected, of V ′ V ′] by simp

lemma connected-component-wf : V ′ ∈ connected-components =⇒ V ′ ⊆ V
by (simp add: connected-component-connected is-connected-set-wf )

lemma connected-component-of-self : v ∈ V =⇒ v ∈ connected-component-of v
unfolding connected-component-of-def using vert-connected-id by blast

lemma conn-comp-of-conn-comps: v ∈ V =⇒ connected-component-of v ∈ con-
nected-components
unfolding connected-components-def quotient-def connected-component-of-def by

blast

lemma Un-connected-components: connected-components = connected-component-of
‘ V
unfolding connected-components-def connected-component-of-def quotient-def by

blast

lemma connected-component-subgraph: V ′ ∈ connected-components =⇒ subgraph
V ′ (induced-edges V ′) V E

using induced-is-subgraph connected-component-wf by simp

lemma connected-components-connected2 :
assumes conn-comp: V ′ ∈ connected-components
shows ulgraph.is-connected-set V ′ (induced-edges V ′) V ′

proof−
interpret subg: subgraph V ′ induced-edges V ′ V E using connected-component-subgraph

conn-comp by simp
interpret g ′: ulgraph V ′ induced-edges V ′ using subg.is-subgraph-ulgraph ul-

graph-axioms by simp
have

∧
u v. u ∈ V ′ =⇒ v ∈ V ′ =⇒ g ′.vert-connected u v

proof−
fix u v assume u ∈ V ′ v ∈ V ′

then obtain p where conn-path: connecting-path u v p using connected-component-connected
conn-comp unfolding is-connected-set-def vert-connected-def by blast

then have u-in-p: u ∈ set p unfolding connecting-path-def is-gen-path-def
is-walk-def by force

then have set-p: set p ⊆ V ′ using connecting-path-connected-set[OF conn-path]
in-quotient-imp-closed[OF equiv-vert-connected] conn-comp ‹u ∈ V ′›

unfolding is-connected-set-def connected-components-def by blast
then have set (g ′.walk-edges p) ⊆ induced-edges V ′

using walk-edges-induced-edges induced-edges-mono conn-path unfolding
connecting-path-def is-gen-path-def by blast

then have g ′.connecting-path u v p

16



using set-p conn-path
unfolding g ′.connecting-path-def g ′.connecting-path-def g ′.is-gen-path-def

g ′.is-walk-def
unfolding connecting-path-def connecting-path-def is-gen-path-def is-walk-def

by auto
then show g ′.vert-connected u v unfolding g ′.vert-connected-def by blast

qed
then show ?thesis unfolding g ′.is-connected-set-def by blast

qed

lemma vert-connected-connected-component: C ∈ connected-components =⇒ u ∈
C =⇒ vert-connected u v =⇒ v ∈ C
unfolding connected-components-def using equiv-vert-connected in-quotient-imp-closed

by fastforce

lemma connected-components-connected-ulgraphs:
assumes conn-comp: V ′ ∈ connected-components
shows connected-ulgraph V ′ (induced-edges V ′)

proof−
interpret subg: subgraph V ′ induced-edges V ′ V E using connected-component-subgraph

conn-comp by simp
interpret g ′: ulgraph V ′ induced-edges V ′ using subg.is-subgraph-ulgraph ul-

graph-axioms by simp
show ?thesis using conn-comp connected-component-non-empty connected-components-connected2

by (unfold-locales, auto)
qed

lemma connected-components-partition-on-V : partition-on V connected-components
using partition-on-quotient equiv-vert-connected unfolding connected-components-def

by blast

lemma Union-connected-components:
⋃

connected-components = V
using connected-components-partition-on-V unfolding partition-on-def by blast

lemma disjoint-connected-components: disjoint connected-components
using connected-components-partition-on-V unfolding partition-on-def by blast

lemma Union-induced-edges-connected-components:
⋃

(induced-edges ‘ connected-components)
= E
proof−

have ∃C∈connected-components. e ∈ induced-edges C if e ∈ E for e
proof−

obtain u v where e: e = {u,v} by (meson ‹e ∈ E› obtain-edge-pair-adj)
then have vert-connected u v using that vert-connected-neighbors by blast

then have v ∈ connected-component-of u unfolding connected-component-of-def
by simp

then have e ∈ induced-edges (connected-component-of u) using connected-component-of-self
wellformed ‹e∈E› unfolding e induced-edges-def by auto

then show ?thesis using conn-comp-of-conn-comps e wellformed ‹e∈E› by

17



auto
qed
then show ?thesis using connected-component-wf induced-edges-ss by blast

qed

lemma connected-components-empty-E :
assumes empty: E = {}
shows connected-components = {{v} | v. v∈V }

proof−
have ∀ v∈V . vert-connected-rel‘‘{v} = {v} using vert-connected-id connected-empty-E

empty by auto
then show ?thesis unfolding connected-components-def quotient-def by auto

qed

lemma connected-iff-connected-components:
assumes non-empty: V 6= {}

shows is-connected-set V ←→ connected-components = {V }
proof

assume is-connected-set V
then have ∀ v∈V . connected-component-of v = V unfolding connected-component-of-def

is-connected-set-def using vert-connected-wf by blast
then show connected-components = {V } unfolding quotient-def connected-component-of-def

connected-components-def using non-empty by auto
next

show connected-components = {V } =⇒ is-connected-set V
using connected-component-connected unfolding connected-components-def

is-connected-set-def by auto
qed

end

lemma (in connected-ulgraph) connected-components[simp]: connected-components
= {V }

using connected connected-iff-connected-components not-empty by simp

lemma (in fin-ulgraph) finite-connected-components: finite connected-components
unfolding connected-components-def using finV vert-connected-rel-on-V finite-quotient

by blast

lemma (in fin-ulgraph) finite-connected-component: C ∈ connected-components
=⇒ finite C

using connected-component-wf finV finite-subset by blast

lemma (in connected-ulgraph) connected-components-remove-edges:
assumes edge: {u,v} ∈ E
shows ulgraph.connected-components V (E − {{u,v}}) =
{ulgraph.connected-component-of V (E − {{u,v}}) u, ulgraph.connected-component-of

V (E − {{u,v}}) v}
proof−

18



interpret g ′: ulgraph V E − {{u,v}} using wellformed edge-size by (unfold-locales,
auto)

have inV : u ∈ V v ∈ V using edge wellformed by auto
have ∀w∈V . g ′.connected-component-of w = g ′.connected-component-of u ∨

g ′.connected-component-of w = g ′.connected-component-of v
using vert-connected-remove-edge[OF edge] g ′.equiv-vert-connected equiv-class-eq

unfolding g ′.connected-component-of-def by fast
then show ?thesis unfolding g ′.connected-components-def quotient-def g ′.connected-component-of-def

using inV by auto
qed

lemma (in ulgraph) connected-set-connected-component:
assumes conn-set: is-connected-set C

and non-empty: C 6= {}
and

∧
u v. {u,v} ∈ E =⇒ u ∈ C =⇒ v ∈ C

shows C ∈ connected-components
proof−

have walk-subset-C : is-walk xs =⇒ hd xs ∈ C =⇒ set xs ⊆ C for xs
proof (induction xs rule: rev-induct)

case Nil
then show ?case by auto

next
case (snoc x xs)
then show ?case
proof (cases xs rule: rev-exhaust)

case Nil
then show ?thesis using snoc by auto

next
fix ys y assume xs: xs = ys @ [y]
then have is-walk xs using is-walk-prefix snoc(2 ) by blast
then have set-xs-C : set xs ⊆ C using snoc xs is-walk-not-empty2 hd-append2

by metis
have yx-E : {y,x} ∈ E using snoc(2 ) walk-edges-app unfolding xs is-walk-def

by simp
have x ∈ C using assms(3 )[OF yx-E ] set-xs-C unfolding xs by simp
then show ?thesis using set-xs-C by simp

qed
qed
obtain u where u ∈ C using non-empty by blast
then have u ∈ V using conn-set is-connected-set-wf by blast
have v ∈ C if vert-connected: vert-connected u v for v
proof−
obtain p where connecting-path u v p using vert-connected unfolding vert-connected-def

by blast
then show ?thesis using walk-subset-C [of p] ‹u∈C › is-walk-def last-in-set

unfolding connecting-path-def is-gen-path-def by auto
qed
then have connected-component-of u = C using assms ‹u∈C › unfolding con-

nected-component-of-def is-connected-set-def by auto

19



then show ?thesis using conn-comp-of-conn-comps ‹u∈V › by blast
qed

lemma (in ulgraph) subset-conn-comps-if-Union:
assumes A-subset-conn-comps: A ⊆ connected-components

and Un-A:
⋃

A = V
shows A = connected-components

proof (rule ccontr)
assume A 6= connected-components
then obtain C where C-conn-comp: C ∈ connected-components C /∈ A using

A-subset-conn-comps by blast
then obtain v where v ∈ C using connected-component-non-empty by blast
then have v /∈ V using A-subset-conn-comps Un-A connected-components-partition-on-V

C-conn-comp
using partition-onD4 by fastforce

then show False using C-conn-comp connected-component-wf ‹v∈C › by auto
qed

lemma (in connected-ulgraph) exists-adj-vert-removed:
assumes v ∈ V

and remove-vertex: remove-vertex v = (V ′,E ′)
and conn-component: C ∈ ulgraph.connected-components V ′ E ′

shows ∃ u∈C . vert-adj v u
proof−

have V ′: V ′ = V − {v} and E ′: E ′ = {e∈E . v /∈ e} using remove-vertex
unfolding remove-vertex-def vincident-def by auto
interpret subg: subgraph V − {v} {e∈E . v /∈ e} V E using subgraph-remove-vertex

remove-vertex V ′ E ′ by metis
interpret g ′: ulgraph V − {v} {e∈E . v /∈ e} using subg.is-subgraph-ulgraph

ulgraph-axioms by blast
obtain c where c ∈ C using g ′.connected-component-non-empty conn-component

V ′ E ′ by blast
then have c ∈ V ′ using g ′.connected-component-wf conn-component V ′ E ′ by

blast
then have c ∈ V using subg.verts-ss V ′ by blast
then obtain p where conn-path: connecting-path v c p using ‹v∈V › ver-

tices-connected-path by blast
have v 6= c using ‹c∈V ′› remove-vertex unfolding remove-vertex-def by blast
then obtain u p ′ where p: p = v # u # p ′ using conn-path
by (metis connecting-path-def is-gen-path-def is-walk-def last.simps list.exhaust-sel)
then have conn-path-uc: connecting-path u c (u#p ′) using conn-path connect-

ing-path-tl unfolding p by blast
have v-notin-p ′: v /∈ set (u#p ′) using conn-path ‹v 6=c› unfolding p connect-

ing-path-def is-gen-path-def by auto
then have g ′.connecting-path u c (u#p ′) using conn-path-uc v-notin-p ′ walk-edges-in-verts
unfolding g ′.connecting-path-def connecting-path-def g ′.is-gen-path-def is-gen-path-def

g ′.is-walk-def is-walk-def
by blast

then have g ′.vert-connected u c unfolding g ′.vert-connected-def by blast

20



then have u ∈ C using ‹c∈C › conn-component g ′.vert-connected-connected-component
g ′.vert-connected-rev unfolding V ′ E ′ by blast
have vert-adj v u using conn-path unfolding p connecting-path-def is-gen-path-def

is-walk-def vert-adj-def by auto
then show ?thesis using ‹u∈C › by blast

qed

1.9 Trees
locale tree = fin-connected-ulgraph +

assumes no-cycles: ¬ is-cycle2 c
begin

sublocale fin-connected-sgraph
using alt-edge-size no-cycles loop-is-cycle2 card-1-singletonE connected
by (unfold-locales, metis, simp)

end

locale spanning-tree = ulgraph V E + T : tree V T for V E T +
assumes subgraph: T ⊆ E

lemma (in fin-connected-ulgraph) has-spanning-tree: ∃T . spanning-tree V E T
using fin-connected-ulgraph-axioms

proof (induction card E arbitrary: E)
case 0
then interpret g: fin-connected-ulgraph V edges by blast
have edges: edges = {} using g.fin-edges 0 by simp
then obtain v where V : V = {v} using g.V-E-empty by blast
interpret g ′: fin-connected-sgraph V edges using g.connected edges by (unfold-locales,

auto)
interpret t: tree V edges using g.length-cycle-card-V g ′.cycle2-min-length g.is-cycle2-def

V by (unfold-locales, fastforce)
have spanning-tree V edges edges by (unfold-locales, auto)
then show ?case by blast

next
case (Suc m)
then interpret g: fin-connected-ulgraph V edges by blast
show ?case
proof (cases ∀ c. ¬g.is-cycle2 c)

case True
then have spanning-tree V edges edges by (unfold-locales, auto)
then show ?thesis by blast

next
case False
then obtain c where cycle: g.is-cycle2 c by blast

then have length c ≥ 2 unfolding g.is-cycle2-def g.is-cycle-alt walk-length-conv
by auto

then obtain u v xs where c: c = u#v#xs by (metis Suc-le-length-iff nu-

21



meral-2-eq-2 )
then have g ′: fin-connected-ulgraph V (edges − {{u,v}}) using finV g.connected-remove-cycle-edges
by (metis connected-ulgraph-def cycle fin-connected-ulgraph-def fin-graph-system.intro

fin-graph-system-axioms.intro fin-ulgraph.intro ulgraph-def )
have {u,v} ∈ edges using cycle unfolding c g.is-cycle2-def g.is-cycle-alt

g.is-walk-def by auto
then obtain T where spanning-tree V (edges − {{u,v}}) T using Suc

card-Diff-singleton g ′ by fastforce
then have spanning-tree V edges T unfolding spanning-tree-def spanning-tree-axioms-def

using g.ulgraph-axioms by blast
then show ?thesis by blast

qed
qed

context tree
begin

definition leaf :: ′a ⇒ bool where
leaf v ←→ degree v = 1

definition leaves :: ′a set where
leaves = {v. leaf v}

definition non-trivial :: bool where
non-trivial ←→ card V ≥ 2

lemma obtain-2-verts:
assumes non-trivial
obtains u v where u ∈ V v ∈ V u 6= v
using assms unfolding non-trivial-def
by (meson diameter-obtains-path-vertices)

lemma leaf-in-V : leaf v =⇒ v ∈ V
unfolding leaf-def using degree-none by force

lemma exists-leaf :
assumes non-trivial
shows ∃ v∈V . leaf v

proof−
obtain p where is-path: is-path p and longest-path: ∀ s. is-path s −→ length s
≤ length p

using obtain-longest-path
by (metis One-nat-def assms connected connected-sgraph-axioms connected-sgraph-def

degree-0-not-connected
is-connected-setD is-edge-or-loop is-isolated-vertex-def is-isolated-vertex-degree0

is-loop-def
n-not-Suc-n numeral-2-eq-2 obtain-2-verts sgraph.two-edges vert-adj-def )

then obtain l v xs where p: p = l#v#xs
by (metis is-open-walk-def is-path-def is-walk-not-empty2 last-ConsL list.exhaust-sel)

22



then have lv-incident: {l,v} ∈ incident-edges l using is-path
unfolding incident-edges-def vincident-def is-path-def is-open-walk-def is-walk-def

by simp
have

∧
e. e∈E =⇒ e 6= {l,v} =⇒ e /∈ incident-edges l

proof
fix e
assume e-in-E : e ∈ E

and not-lv: e 6= {l,v}
and incident: e ∈ incident-edges l

obtain u where e: e = {l,u} using e-in-E obtain-edge-pair-adj incident
unfolding incident-edges-def vincident-def by auto

then have u 6= l using e-in-E edge-vertices-not-equal by blast
have u 6= v using e not-lv by auto
have u-in-V : u ∈ V using e-in-E e wellformed by blast
then show False
proof (cases u ∈ set p)

case True
then have u ∈ set xs using ‹u 6=l› ‹u 6=v› p by simp
then obtain ys zs where xs = ys@u#zs by (meson split-list)
then have is-cycle2 (u#l#v#ys@[u])

using is-path ‹u 6=l› ‹u 6=v› e-in-E distinct-edgesI walk-edges-append-ss2
walk-edges-in-verts

unfolding is-cycle2-def is-cycle-def p is-path-def is-closed-walk-def is-open-walk-def
is-walk-def e walk-length-conv

by (auto, metis insert-commute, fastforce+)
then show ?thesis using no-cycles by blast

next
case False
then have is-path (u#p) using is-path u-in-V e-in-E

unfolding is-path-def is-open-walk-def is-walk-def e p by (auto, (metis
insert-commute)+)

then show False using longest-path by auto
qed

qed
then have incident-edges l = {{l,v}} using lv-incident unfolding incident-edges-def

by blast
then have leaf : leaf l unfolding leaf-def alt-degree-def by simp
then show ?thesis using leaf-in-V by blast

qed

lemma tree-remove-leaf :
assumes leaf : leaf l

and remove-vertex: remove-vertex l = (V ′,E ′)
shows tree V ′ E ′

proof−
interpret g ′: ulgraph V ′ E ′ using remove-vertex wellformed edge-size unfolding

remove-vertex-def vincident-def
by (unfold-locales, auto)

interpret subg: ulsubgraph V ′ E ′ V E using subgraph-remove-vertex ulgraph-axioms

23



remove-vertex
unfolding ulsubgraph-def by blast

have V ′: V ′ = V − {l} using remove-vertex unfolding remove-vertex-def by
blast

have E ′: E ′ = {e∈E . l /∈ e} using remove-vertex unfolding remove-vertex-def
vincident-def by blast

have ∃ v∈V . v 6= l using leaf unfolding leaf-def
by (metis One-nat-def is-independent-alt is-isolated-vertex-def is-isolated-vertex-degree0

n-not-Suc-n radius-obtains singletonI singleton-independent-set)
then have V ′ 6= {} using remove-vertex unfolding remove-vertex-def vinci-

dent-def by blast
then have g ′.is-connected-set V ′ using connected-remove-leaf leaf remove-vertex

unfolding leaf-def by blast
then show ?thesis using ‹V ′6={}› finV subg.is-cycle2 V ′ E ′ no-cycles by (unfold-locales,

auto)
qed

end

lemma tree-induct [case-names singolton insert, induct set: tree]:
assumes tree: tree V E

and trivial:
∧

v. tree {v} {} =⇒ P {v} {}
and insert:

∧
l v V E . tree V E =⇒ P V E =⇒ l /∈ V =⇒ v ∈ V =⇒ {l,v} /∈

E =⇒ tree.leaf (insert {l,v} E) l =⇒ P (insert l V ) (insert {l,v} E)
shows P V E
using tree

proof (induction card V arbitrary: V E)
case 0
then interpret tree V E by simp
have V = {} using finV 0 (1 ) by simp
then show ?case using not-empty by blast

next
case (Suc n)
then interpret t: tree V E by simp
show ?case
proof (cases card V = 1 )

case True
then obtain v where V : V = {v} using card-1-singletonE by blast
then have E = {}
using True subset-antisym t.edge-incident-vert t.vincident-def t.singleton-not-edge

t.wellformed
by fastforce

then show ?thesis using trivial t.tree-axioms V by simp
next

case False
then have card-V : card V ≥ 2 using Suc by simp
then obtain l where leaf : t.leaf l using t.exists-leaf t.non-trivial-def by blast
then obtain e where inc-edges: t.incident-edges l = {e}

unfolding t.leaf-def t.alt-degree-def using card-1-singletonE by blast

24



then have e-in-E : e ∈ E unfolding t.incident-edges-def by blast
then obtain u where e: e = {l,u} using t.two-edges card-2-iff inc-edges

unfolding t.incident-edges-def t.vincident-def
by (metis (no-types, lifting) empty-iff insert-commute insert-iff mem-Collect-eq)
then have l 6= u using e-in-E t.edge-vertices-not-equal by blast
have u ∈ V using e e-in-E t.wellformed by blast
let ?V ′ = V − {l}
let ?E ′ = E − {{l,u}}
have remove-vertex: t.remove-vertex l = (?V ′, ?E ′)
using inc-edges e unfolding t.remove-vertex-def t.incident-edges-def by blast

then have t ′: tree ?V ′ ?E ′ using t.tree-remove-leaf leaf by blast
have l ∈ V using leaf t.leaf-in-V by blast
then have P ′: P ?V ′ ?E ′ using Suc t ′ by auto
show ?thesis using insert[OF t ′ P ′] Suc leaf ‹u∈V › ‹l 6=u› ‹l ∈ V › e e-in-E

by (auto, metis insert-Diff )
qed

qed

context tree
begin

lemma card-V-card-E : card V = Suc (card E)
using tree-axioms

proof (induction V E)
case (singolton v)
then show ?case by auto

next
case (insert l v V ′ E ′)
then interpret t ′: tree V ′ E ′ by simp
show ?case using t ′.finV t ′.fin-edges insert by simp

qed

end

lemma card-E-treeI :
assumes fin-conn-sgraph: fin-connected-ulgraph V E

and card-V-E : card V = Suc (card E)
shows tree V E

proof−
interpret G: fin-connected-ulgraph V E using fin-conn-sgraph .
obtain T where T : spanning-tree V E T using G.has-spanning-tree by blast
show ?thesis
proof (cases E = T )

case True
then show ?thesis using T unfolding spanning-tree-def by blast

next
case False
then have card E > card T using T G.fin-edges unfolding spanning-tree-def

spanning-tree-axioms-def

25



by (simp add: psubsetI psubset-card-mono)
then show ?thesis using tree.card-V-card-E T card-V-E unfolding span-

ning-tree-def by fastforce
qed

qed

context tree
begin

lemma add-vertex-tree:
assumes v /∈ V

and w ∈ V
shows tree (insert v V ) (insert {v,w} E)

proof −
let ?V ′ = insert v V and ?E ′ = insert {v,w} E

have cardV : card {v,w} = 2 using card-2-iff assms by auto
then interpret t ′: ulgraph ?V ′ ?E ′

using wellformed assms two-edges by (unfold-locales, auto)

interpret subg: ulsubgraph V E ?V ′ ?E ′ by (unfold-locales, auto)

have connected: t ′.is-connected-set ?V ′

unfolding t ′.is-connected-set-def
using subg.vert-connected t ′.vert-connected-neighbors t ′.vert-connected-trans
t ′.vert-connected-id vertices-connected t ′.ulgraph-axioms ulgraph-axioms assms

t ′.vert-connected-rev
by simp metis

then have fin-connected-ulgraph: fin-connected-ulgraph ?V ′ ?E ′ using finV by
(unfold-locales, auto)

from assms have {v,w} /∈ E using wellformed-alt-fst by auto
then have card ?E ′ = Suc (card E) using fin-edges card-insert-if by auto
then have card ?V ′= Suc (card ?E ′) using card-V-card-E assms wellformed-alt-fst

finV card-insert-if by auto

then show ?thesis using card-E-treeI fin-connected-ulgraph by auto
qed

lemma tree-connected-set:
assumes non-empty: V ′ 6= {}

and subg: V ′ ⊆ V
and connected-V ′: ulgraph.is-connected-set V ′ (induced-edges V ′) V ′

shows tree V ′ (induced-edges V ′)
proof−

interpret subg: subgraph V ′ induced-edges V ′ V E using induced-is-subgraph
subg by simp

interpret g ′: ulgraph V ′ induced-edges V ′ using subg.is-subgraph-ulgraph ul-

26



graph-axioms by blast
interpret subg: ulsubgraph V ′ induced-edges V ′ V E by unfold-locales
show ?thesis using connected-V ′ subg.is-cycle2 no-cycles finV subg non-empty

rev-finite-subset by (unfold-locales) (auto, blast)
qed

lemma unique-adj-vert-removed:
assumes v ∈ V

and remove-vertex: remove-vertex v = (V ′,E ′)
and conn-component: C ∈ ulgraph.connected-components V ′ E ′

shows ∃ !u∈C . vert-adj v u
proof−
interpret subg: ulsubgraph V ′ E ′ V E using remove-vertex subgraph-remove-vertex

ulgraph-axioms ulsubgraph.intro by metis
interpret g ′: ulgraph V ′ E ′ using subg.is-subgraph-ulgraph ulgraph-axioms by

simp
obtain u where u ∈ C and adj-vu: vert-adj v u using exists-adj-vert-removed

using assms by blast
have w = u if w ∈ C and adj-vw: vert-adj v w for w
proof (rule ccontr)

assume w 6= u
obtain p where g ′-conn-path: g ′.connecting-path w u p using ‹u∈C › ‹w∈C ›

conn-component
g ′.connected-component-connected g ′.is-connected-setD g ′.vert-connected-def

by blast
then have v-notin-p: v /∈ set p using remove-vertex unfolding g ′.connecting-path-def

g ′.is-gen-path-def g ′.is-walk-def remove-vertex-def by blast
have conn-path: connecting-path w u p using g ′-conn-path subg.connecting-path

by simp
then obtain p ′ where p: p = w # p ′ @ [u] unfolding connecting-path-def

using ‹w 6=u›
by (metis hd-Cons-tl last.simps last-rev rev-is-Nil-conv snoc-eq-iff-butlast)

then have walk-edges (v#p@[v]) = {v,w} # walk-edges ((w # p ′) @ [u,v]) by
simp

also have . . . = {v,w} # walk-edges p @ [{u,v}] unfolding p using walk-edges-app
by (metis Cons-eq-appendI )

finally have walk-edges: walk-edges (v#p@[v]) = {v,w} # walk-edges p @
[{v,u}] by (simp add: insert-commute)

then have is-cycle (v#p@[v]) using conn-path adj-vu adj-vw ‹w 6=u› ‹v∈V ›
g ′.walk-length-conv singleton-not-edge v-notin-p

unfolding connecting-path-def is-cycle-def is-gen-path-def is-closed-walk-def
is-walk-def p vert-adj-def by auto

then have is-cycle2 (v#p@[v]) using ‹w 6=u› v-notin-p walk-edges-in-verts
unfolding is-cycle2-def walk-edges

by (auto simp: doubleton-eq-iff is-cycle-alt distinct-edgesI )
then show False using no-cycles by blast

qed
then show ?thesis using ‹u∈C › adj-vu by blast

qed

27



lemma non-trivial-card-E : non-trivial =⇒ card E ≥ 1
using card-V-card-E unfolding non-trivial-def by simp

lemma V-Union-E : non-trivial =⇒ V =
⋃

E
using tree-axioms

proof (induction V E)
case (singolton v)
then interpret t: tree {v} {} by simp
show ?case using singolton unfolding t.non-trivial-def by simp

next
case (insert l v V ′ E ′)
then interpret t: tree V ′ E ′ by simp
show ?case
proof (cases card V ′ = 1 )

case True
then have V : V ′ = {v} using insert(3 ) card-1-singletonE by blast
then have E : E ′ = {} using t.fin-edges t.card-V-card-E by fastforce
then show ?thesis unfolding E V by simp

next
case False
then have t.non-trivial using t.card-V-card-E unfolding t.non-trivial-def by

simp
then show ?thesis using insert by blast

qed
qed

end

lemma singleton-tree: tree {v} {}
proof−

interpret g: fin-ulgraph {v} {} by (unfold-locales, auto)
show ?thesis using g.is-walk-def g.walk-length-def by (unfold-locales, auto simp:

g.is-connected-set-singleton g.is-cycle2-def g.is-cycle-alt)
qed

lemma tree2 :
assumes u 6= v

shows tree {u,v} {{u,v}}
proof−

interpret ulgraph {u,v} {{u,v}} using ‹u 6=v› by unfold-locales auto
have fin-connected-ulgraph {u,v} {{u,v}} by unfold-locales
(auto simp: is-connected-set-def vert-connected-id vert-connected-neighbors vert-connected-rev)

then show ?thesis using card-E-treeI ‹u 6=v› by fastforce
qed

1.10 Graph Isomorphism
locale graph-isomorphism =

28



G: graph-system VG EG for VG EG +
fixes VH EH f
assumes bij-f : bij-betw f VG VH

and edge-preserving: ((‘) f ) ‘ EG = EH

begin

lemma inj-f : inj-on f VG

using bij-f unfolding bij-betw-def by blast

lemma VH-def : VH = f ‘ VG

using bij-f unfolding bij-betw-def by blast

definition inv-iso ≡ the-inv-into VG f

lemma graph-system-H : graph-system VH EH

using G.wellformed edge-preserving bij-f bij-betw-imp-surj-on by unfold-locales
blast

interpretation H : graph-system VH EH using graph-system-H .

lemma graph-isomorphism-inv: graph-isomorphism VH EH VG EG inv-iso
proof (unfold-locales)

show bij-betw inv-iso VH VG unfolding inv-iso-def using bij-betw-the-inv-into
bij-f by blast
next
have ∀ v∈VG. the-inv-into VG f (f v) = v using bij-f by (simp add: bij-betw-imp-inj-on

the-inv-into-f-f )
then have ∀ e∈EG. (λv. the-inv-into VG f (f v)) ‘ e = e using G.wellformed

by (simp add: subset-iff )
then show ((‘) inv-iso)‘ EH = EG unfolding inv-iso-def by (simp add: edge-preserving[symmetric]

image-comp)
qed

interpretation inv-iso: graph-isomorphism VH EH VG EG inv-iso using graph-isomorphism-inv
.

end

fun graph-isomorph :: ′a pregraph ⇒ ′b pregraph ⇒ bool (infix ' 50 ) where
(VG,EG) ' (VH ,EH) ←→ (∃ f . graph-isomorphism VG EG VH EH f )

lemma (in graph-system) graph-isomorphism-id: graph-isomorphism V E V E id
by unfold-locales auto

lemma (in graph-system) graph-isomorph-refl: (V ,E) ' (V ,E)
using graph-isomorphism-id by auto

lemma graph-isomorph-sym: symp (')
using graph-isomorphism.graph-isomorphism-inv unfolding symp-def by fast-

29



force

lemma graph-isomorphism-trans: graph-isomorphism VG EG VH EH f =⇒ graph-isomorphism
VH EH V F EF g =⇒ graph-isomorphism VG EG V F EF (g o f )
unfolding graph-isomorphism-def graph-isomorphism-axioms-def using bij-betw-trans

by (auto, blast)

lemma graph-isomorph-trans: transp (')
using graph-isomorphism-trans unfolding transp-def by fastforce

end

2 Enumeration of Labeled Trees
theory Labeled-Tree-Enumeration

imports Tree-Graph
begin

definition labeled-trees :: ′a set ⇒ ′a pregraph set where
labeled-trees V = {(V ,E)| E . tree V E}

2.1 Algorithm

Prüfer sequence to tree
definition prufer-sequences :: ′a list ⇒ ′a list set where

prufer-sequences verts = {xs. length xs = length verts − 2 ∧ set xs ⊆ set verts}

fun tree-edges-of-prufer-seq :: ′a list ⇒ ′a list ⇒ ′a edge set where
tree-edges-of-prufer-seq [u,v] [] = {{u,v}}
| tree-edges-of-prufer-seq verts (b#seq) =

(case find (λx. x /∈ set (b#seq)) verts of
Some a ⇒ insert {a,b} (tree-edges-of-prufer-seq (remove1 a verts) seq))

definition tree-of-prufer-seq :: ′a list ⇒ ′a list ⇒ ′a pregraph where
tree-of-prufer-seq verts seq = (set verts, tree-edges-of-prufer-seq verts seq)

definition labeled-tree-enum :: ′a list ⇒ ′a pregraph list where
labeled-tree-enum verts = map (tree-of-prufer-seq verts) (List.n-lists (length verts
− 2 ) verts)

2.2 Correctness

Tree to Prüfer sequence
definition remove-vertex-edges :: ′a ⇒ ′a edge set ⇒ ′a edge set where

remove-vertex-edges v E = {e∈E . ¬ graph-system.vincident v e}

lemma find-in-list[termination-simp]: find P verts = Some v =⇒ v ∈ set verts
by (metis find-Some-iff nth-mem)

30



lemma [termination-simp]: find P verts = Some v =⇒ length verts − Suc 0 <
length verts

by (meson diff-Suc-less length-pos-if-in-set find-in-list)

fun prufer-seq-of-tree :: ′a list ⇒ ′a edge set ⇒ ′a list where
prufer-seq-of-tree verts E =
(if length verts ≤ 2 then []
else (case find (tree.leaf E) verts of
Some leaf ⇒ (THE v. ulgraph.vert-adj E leaf v) # prufer-seq-of-tree (remove1

leaf verts) (remove-vertex-edges leaf E)))

locale valid-verts =
fixes verts
assumes length-verts: length verts ≥ 2
and distinct-verts: distinct verts

locale tree-of-prufer-seq-ctx = valid-verts +
fixes seq
assumes prufer-seq: seq ∈ prufer-sequences verts

lemma (in valid-verts) card-verts: card (set verts) = length verts
using length-verts distinct-verts distinct-card by blast

lemma length-gt-find-not-in-ys:
assumes length xs > length ys

and distinct xs
shows ∃ x. find (λx. x /∈ set ys) xs = Some x

proof−
have card (set xs) > card (set ys)

by (metis assms card-length distinct-card le-neq-implies-less order-less-trans)
then have ∃ x∈set xs. x /∈ set ys

by (meson finite-set card-subset-not-gt-card subsetI )
then show ?thesis by (metis find-None-iff2 not-Some-eq)

qed

lemma (in tree-of-prufer-seq-ctx) tree-edges-of-prufer-seq-induct ′:
assumes

∧
u v. P [u, v] []

and
∧

verts b seq a.
find (λx. x /∈ set (b # seq)) verts = Some a
=⇒ a ∈ set verts =⇒ a /∈ set (b # seq) =⇒ seq ∈ prufer-sequences

(remove1 a verts)
=⇒ tree-of-prufer-seq-ctx (remove1 a verts) seq =⇒ P (remove1 a verts)

seq =⇒ P verts (b # seq)
shows P verts seq
using tree-of-prufer-seq-ctx-axioms

proof (induction verts seq rule: tree-edges-of-prufer-seq.induct)
case (2 verts b seq)
then interpret tree-of-prufer-seq-ctx verts b # seq by simp

31



obtain a where a-find: find (λx. x /∈ set (b # seq)) verts = Some a
using length-gt-find-not-in-ys[of b#seq verts] distinct-verts prufer-seq
unfolding prufer-sequences-def by fastforce

then have a-in-verts: a ∈ set verts by (simp add: find-in-list)
have a-not-in-seq: a /∈ set (b#seq) using a-find by (metis find-Some-iff )
have prufer-seq ′: seq ∈ prufer-sequences (remove1 a verts)
using prufer-seq a-in-verts set-remove1-eq length-verts a-not-in-seq distinct-verts
unfolding prufer-sequences-def by (auto simp: length-remove1 )

have length verts ≥ 3 using prufer-seq unfolding prufer-sequences-def by auto
then have length (remove1 a verts) ≥ 2 by (auto simp: length-remove1 )
then have valid-verts-seq ′: tree-of-prufer-seq-ctx (remove1 a verts) seq

using prufer-seq ′ distinct-verts by unfold-locales auto
then show ?case using a-find assms(2 ) a-in-verts a-not-in-seq prufer-seq ′ 2 (1 )

by blast
qed (auto simp: assms tree-of-prufer-seq-ctx-def tree-of-prufer-seq-ctx-axioms-def
valid-verts-def prufer-sequences-def )

lemma (in tree-of-prufer-seq-ctx) tree-edges-of-prufer-seq-tree:
shows tree (set verts) (tree-edges-of-prufer-seq verts seq)
using tree-of-prufer-seq-ctx-axioms

proof (induction rule: tree-edges-of-prufer-seq-induct ′)
case (1 u v)
then show ?case using tree2 unfolding tree-of-prufer-seq-ctx-def valid-verts-def

by fastforce
next

case (2 verts b seq a)
interpret tree-of-prufer-seq-ctx verts b # seq using 2 (7 ) .
interpret tree set (remove1 a verts) tree-edges-of-prufer-seq (remove1 a verts)

seq
using 2 (5 ,6 ) by simp

have a-not-in-verts ′: a /∈ set (remove1 a verts) using distinct-verts by simp
have a 6= b using 2 by auto
then have b-in-verts ′: b ∈ set (remove1 a verts) using prufer-seq unfolding

prufer-sequences-def by auto
then show ?case using a-not-in-verts ′ add-vertex-tree[OF a-not-in-verts ′ b-in-verts ′]

2 (1 ,2 ) distinct-verts
by (auto simp: insert-absorb insert-commute)

qed

lemma (in tree-of-prufer-seq-ctx) tree-of-prufer-seq-tree: (V ,E) = tree-of-prufer-seq
verts seq =⇒ tree V E

unfolding tree-of-prufer-seq-def using tree-edges-of-prufer-seq-tree by auto

lemma (in valid-verts) labeled-tree-enum-trees:
assumes VE-in-labeled-tree-enum: (V ,E) ∈ set (labeled-tree-enum verts)
shows tree V E

proof−
obtain seq where seq ∈ set (List.n-lists (length verts − 2 ) verts) and tree-of-seq:

tree-of-prufer-seq verts seq = (V ,E)

32



using VE-in-labeled-tree-enum unfolding labeled-tree-enum-def by auto
then interpret tree-of-prufer-seq-ctx verts seq

using List.set-n-lists by (unfold-locales) (auto simp: prufer-sequences-def )
show ?thesis using tree-of-prufer-seq-tree using tree-of-seq by simp

qed

2.3 Totality
locale prufer-seq-of-tree-context =

valid-verts verts + tree set verts E for verts E
begin

lemma prufer-seq-of-tree-induct ′:
assumes

∧
u v. P [u,v] {{u,v}}

and
∧

verts E l. ¬ length verts ≤ 2 =⇒ find (tree.leaf E) verts = Some l =⇒
tree.leaf E l

=⇒ l ∈ set verts =⇒ prufer-seq-of-tree-context (remove1 l verts) (remove-vertex-edges
l E)

=⇒ P (remove1 l verts) (remove-vertex-edges l E) =⇒ P verts E
shows P verts E
using prufer-seq-of-tree-context-axioms

proof (induction verts E rule: prufer-seq-of-tree.induct)
case (1 verts E)
then interpret ctx: prufer-seq-of-tree-context verts E by simp
show ?case
proof (cases length verts ≤ 2 )

case True
then have length-verts: length verts = 2 using ctx.length-verts by simp
then obtain u w where verts: verts = [u,w]

unfolding numeral-2-eq-2 by (metis length-0-conv length-Suc-conv)
then have E = {{u,w}} using ctx.connected-two-graph-edges ctx.distinct-verts

by simp
then show ?thesis using assms(1 ) verts by blast

next
case False
then have ctx.non-trivial using ctx.distinct-verts distinct-card

unfolding ctx.non-trivial-def by fastforce
then obtain l where l: find ctx .leaf verts = Some l using ctx.exists-leaf

by (metis find-None-iff2 not-Some-eq)
then have leaf-l: ctx.leaf l by (metis find-Some-iff )
then have l-in-verts: l ∈ set verts using ctx.leaf-in-V by simp
then have length-verts ′: length (remove1 l verts) ≥ 2 using False unfolding

length-remove1 by simp
have tree (set (remove1 l verts)) (remove-vertex-edges l E) using ctx.tree-remove-leaf [OF

leaf-l]
unfolding ctx.remove-vertex-def remove-vertex-edges-def using ctx.distinct-verts

by simp
then have ctx ′: prufer-seq-of-tree-context (remove1 l verts) (remove-vertex-edges

l E)

33



unfolding prufer-seq-of-tree-context-def valid-verts-def
using ctx.distinct-verts length-verts ′ by simp

then have P (remove1 l verts) (remove-vertex-edges l E) using 1 False l by
simp

then show ?thesis using assms(2 )[OF False l leaf-l l-in-verts ctx ′] by simp
qed

qed

lemma prufer-seq-of-tree-wf : set (prufer-seq-of-tree verts E) ⊆ set verts
using prufer-seq-of-tree-context-axioms

proof (induction rule: prufer-seq-of-tree-induct ′)
case (1 u v)
then show ?case by simp

next
case (2 verts E l)
then interpret ctx: prufer-seq-of-tree-context verts E by simp
let ?u = THE u. ctx.vert-adj l u
have l-u-adj: ctx.vert-adj l ?u using ctx.ex1-neighbor-degree-1 2 (3 ) unfolding

ctx.leaf-def by (metis theI )
then have ?u ∈ set verts unfolding ctx.vert-adj-def using ctx.wellformed-alt-snd

by blast
then show ?case using 2 ctx .ex1-neighbor-degree-1 2 (3 )

by (auto, meson in-mono notin-set-remove1 )
qed

lemma length-prufer-seq-of-tree: length (prufer-seq-of-tree verts E) = length verts
− 2
proof (induction rule: prufer-seq-of-tree-induct ′)

case (1 u v)
then show ?case by simp

next
case (2 verts E l)
then show ?case unfolding prufer-seq-of-tree.simps[of verts] by (simp add:

length-remove1 )
qed

lemma prufer-seq-of-tree-prufer-seq: prufer-seq-of-tree verts E ∈ prufer-sequences
verts
using prufer-seq-of-tree-wf length-prufer-seq-of-tree unfolding prufer-sequences-def

by blast

lemma count-list-prufer-seq-degree: v ∈ set verts =⇒ Suc (count-list (prufer-seq-of-tree
verts E) v) = degree v

using prufer-seq-of-tree-context-axioms
proof (induction rule: prufer-seq-of-tree-induct ′)

case (1 u v)
then interpret ctx: prufer-seq-of-tree-context [u, v] {{u, v}} by simp
show ?case using 1 (1 ) unfolding ctx.alt-degree-def ctx.incident-edges-def ctx.vincident-def

by (simp add: Collect-conv-if )

34



next
case (2 verts E l)
then interpret ctx: prufer-seq-of-tree-context verts E by simp
interpret ctx ′: prufer-seq-of-tree-context remove1 l verts remove-vertex-edges l E

using 2 (5 ) by simp
let ?u = THE u. ctx.vert-adj l u
have l-u-adj: ctx.vert-adj l ?u using ctx.ex1-neighbor-degree-1 2 (3 ) unfolding

ctx.leaf-def by (metis theI )
show ?case
proof (cases v = ?u)

case True
then have v 6= l using l-u-adj ctx.vert-adj-not-eq by blast

then have count-list (prufer-seq-of-tree verts E) v = ulgraph.degree (remove-vertex-edges
l E) v

using 2 True by simp
then show ?thesis using 2 ctx.degree-remove-adj-ne-vert ‹v 6=l› True l-u-adj
unfolding ctx.remove-vertex-def remove-vertex-edges-def prufer-seq-of-tree.simps[of

verts] by simp
next

case False
then show ?thesis
proof (cases v = l)

case True
then have l /∈ set (remove1 l verts) using ctx.distinct-verts by simp
then have l /∈ set (prufer-seq-of-tree (remove1 l verts) (remove-vertex-edges

l E)) using ctx ′.prufer-seq-of-tree-wf by blast
then show ?thesis using 2 False True unfolding ctx.leaf-def prufer-seq-of-tree.simps[of

verts] by simp
next

case False
then have ¬ ctx.vert-adj l v using ‹v 6=?u› ctx.ex1-neighbor-degree-1 2 (3 )

l-u-adj
unfolding ctx.leaf-def by blast

then show ?thesis using False 2 ‹v 6=?u› ctx.degree-remove-non-adj-vert
unfolding prufer-seq-of-tree.simps[of verts] ctx ′.remove-vertex-def remove-vertex-edges-def

ctx.remove-vertex-def by auto
qed

qed
qed

lemma not-in-prufer-seq-iff-leaf : v ∈ set verts =⇒ v /∈ set (prufer-seq-of-tree verts
E) ←→ leaf v

using count-list-prufer-seq-degree[symmetric] unfolding leaf-def by (simp add:
count-list-0-iff )

lemma tree-edges-of-prufer-seq-of-tree: tree-edges-of-prufer-seq verts (prufer-seq-of-tree
verts E) = E

using prufer-seq-of-tree-context-axioms
proof (induction rule: prufer-seq-of-tree-induct ′)

35



case (1 u v)
then show ?case by simp

next
case (2 verts E l)
then interpret ctx: prufer-seq-of-tree-context verts E by simp
have tree-edges-of-prufer-seq verts (prufer-seq-of-tree verts E)
= tree-edges-of-prufer-seq verts ((THE v. ctx.vert-adj l v) # prufer-seq-of-tree

(remove1 l verts) (remove-vertex-edges l E)) using 2 by simp
have find (λx. x /∈ set (prufer-seq-of-tree verts E)) verts = Some l using

ctx.not-in-prufer-seq-iff-leaf 2 (2 )
by (metis (no-types, lifting) find-cong)

then have tree-edges-of-prufer-seq verts (prufer-seq-of-tree verts E)
= insert {The (ctx.vert-adj l), l} (tree-edges-of-prufer-seq (remove1 l verts)

(prufer-seq-of-tree (remove1 l verts) (remove-vertex-edges l E)))
using 2 by auto

also have . . . = E using 2 ctx.degree-1-edge-partition unfolding remove-vertex-edges-def
vincident-def ctx.leaf-def by simp

finally show ?case .
qed

lemma tree-in-labeled-tree-enum: (set verts, E) ∈ set (labeled-tree-enum verts)
using prufer-seq-of-tree-prufer-seq tree-edges-of-prufer-seq-of-tree List.set-n-lists

unfolding prufer-sequences-def labeled-tree-enum-def tree-of-prufer-seq-def by
fastforce

end

lemma (in valid-verts) V-labeled-tree-enum-verts: (V ,E) ∈ set (labeled-tree-enum
verts) =⇒ V = set verts
unfolding labeled-tree-enum-def by (metis Pair-inject ex-map-conv tree-of-prufer-seq-def )

theorem (in valid-verts) labeled-tree-enum-correct: set (labeled-tree-enum verts) =
labeled-trees (set verts)
using labeled-tree-enum-trees V-labeled-tree-enum-verts prufer-seq-of-tree-context.tree-in-labeled-tree-enum

valid-verts-axioms
unfolding labeled-trees-def prufer-seq-of-tree-context-def by fast

2.4 Distinction
lemma (in tree-of-prufer-seq-ctx) count-prufer-seq-degree:

assumes v-in-verts: v ∈ set verts
shows Suc (count-list seq v) = ulgraph.degree (tree-edges-of-prufer-seq verts seq)

v
using v-in-verts tree-of-prufer-seq-ctx-axioms

proof (induction rule: tree-edges-of-prufer-seq-induct ′)
case (1 u w)
then interpret tree-of-prufer-seq-ctx [u, w] [] by simp
interpret tree {u,w} {{u,w}} using tree-edges-of-prufer-seq-tree by simp
show ?case using 1 (1 ) by (auto simp add: incident-edges-def vincident-def Col-

36



lect-conv-if )
next

case (2 verts b seq a)
interpret tree-of-prufer-seq-ctx verts b # seq using 2 (8 ) .
interpret tree set verts tree-edges-of-prufer-seq verts (b#seq)

using tree-edges-of-prufer-seq-tree by simp
interpret ctx ′: tree-of-prufer-seq-ctx remove1 a verts seq using 2 (5 ) .
interpret T ′: tree set (remove1 a verts) tree-edges-of-prufer-seq (remove1 a verts)

seq
using ctx ′.tree-edges-of-prufer-seq-tree by simp

show ?case
proof (cases v = b)

case True
have ab-not-in-T ′: {a, b} /∈ tree-edges-of-prufer-seq (remove1 a verts) seq

using T ′.wellformed-alt-snd distinct-verts by (auto, metis doubleton-eq-iff )
have incident-edges v = insert {a,b} {e ∈ tree-edges-of-prufer-seq (remove1 a

verts) seq. v ∈ e}
unfolding incident-edges-def vincident-def using 2 (1 ) True by auto

then have degree v = Suc (T ′.degree v)
unfolding T ′.alt-degree-def alt-degree-def T ′.incident-edges-def vincident-def
using ab-not-in-T ′ T ′.fin-edges by (simp del: tree-edges-of-prufer-seq.simps)

then show ?thesis using 2 True by auto
next

case False
then show ?thesis
proof (cases v = a)

case True
also have incident-edges a = {{a,b}} unfolding incident-edges-def vinci-

dent-def
using 2 (1 ) T ′.wellformed distinct-verts by auto

then show ?thesis unfolding alt-degree-def True using 2 (3 ) by auto
next

case False
then have incident-edges v = T ′.incident-edges v
unfolding incident-edges-def T ′.incident-edges-def vincident-def using 2 (1 )

‹v 6= b› by auto
then show ?thesis using False ‹v 6= b› 2 unfolding alt-degree-def by simp

qed
qed

qed

lemma (in tree-of-prufer-seq-ctx) notin-prufer-seq-iff-leaf :
assumes v ∈ set verts
shows v /∈ set seq ←→ tree.leaf (tree-edges-of-prufer-seq verts seq) v

proof−
interpret tree set verts tree-edges-of-prufer-seq verts seq

using tree-edges-of-prufer-seq-tree by auto
show ?thesis using count-prufer-seq-degree assms count-list-0-iff unfolding

leaf-def by fastforce

37



qed

lemma (in valid-verts) inj-tree-edges-of-prufer-seq: inj-on (tree-edges-of-prufer-seq
verts) (prufer-sequences verts)
proof

fix seq1 seq2
assume prufer-seq1 : seq1 ∈ prufer-sequences verts
assume prufer-seq2 : seq2 ∈ prufer-sequences verts
assume trees-eq: tree-edges-of-prufer-seq verts seq1 = tree-edges-of-prufer-seq

verts seq2
interpret tree-of-prufer-seq-ctx verts seq1 using prufer-seq1 by unfold-locales

simp
have length-eq: length seq1 = length seq2 using prufer-seq1 prufer-seq2 unfold-

ing prufer-sequences-def by simp
show seq1 = seq2

using prufer-seq1 prufer-seq2 trees-eq length-eq tree-of-prufer-seq-ctx-axioms
proof (induction arbitrary: seq2 rule: tree-edges-of-prufer-seq-induct ′)

case (1 u v)
then show ?case by simp

next
case (2 verts b seq a)
then interpret ctx1 : tree-of-prufer-seq-ctx verts b # seq by simp
interpret ctx2 : tree-of-prufer-seq-ctx verts seq2 using 2 by unfold-locales blast

obtain b ′ seq2 ′ where seq2 : seq2 = b ′ # seq2 ′ using 2 (10 ) by (metis
length-Suc-conv)

then have find (λx. x /∈ set seq2 ) verts = Some a
using ctx2 .notin-prufer-seq-iff-leaf 2 (9 ) 2 (1 ) ctx1 .notin-prufer-seq-iff-leaf [symmetric]

find-cong by force
then have edges-eq: insert {a, b} (tree-edges-of-prufer-seq (remove1 a verts)

seq)
= insert {a, b ′} (tree-edges-of-prufer-seq (remove1 a verts) seq2 ′)

using 2 seq2 by simp
interpret ctx1 ′: tree-of-prufer-seq-ctx remove1 a verts seq using 2 (5 ) .
interpret T1 : tree set (remove1 a verts) tree-edges-of-prufer-seq (remove1 a

verts) seq
using ctx1 ′.tree-edges-of-prufer-seq-tree by blast

have a /∈ set seq2 ′ using seq2 2 ctx1 .notin-prufer-seq-iff-leaf ctx2 .notin-prufer-seq-iff-leaf
by auto

then interpret ctx2 ′: tree-of-prufer-seq-ctx remove1 a verts seq2 ′

using seq2 2 (8 ) 2 (2 ) ctx1 .distinct-verts
by unfold-locales (auto simp: length-remove1 prufer-sequences-def )

interpret T2 : tree set (remove1 a verts) tree-edges-of-prufer-seq (remove1 a
verts) seq2 ′

using ctx2 ′.tree-edges-of-prufer-seq-tree by blast

have a-notin-verts ′: a /∈ set (remove1 a verts) using ctx1 .distinct-verts by
simp

then have ab ′-notin-edges: {a,b ′} /∈ tree-edges-of-prufer-seq (remove1 a verts)
seq using T1 .wellformed by blast

38



then have b = b ′ using edges-eq by (metis doubleton-eq-iff insert-iff )

have {a,b} /∈ tree-edges-of-prufer-seq (remove1 a verts) seq2 ′ using T2 .wellformed
a-notin-verts ′ by blast

then have (tree-edges-of-prufer-seq (remove1 a verts) seq) = tree-edges-of-prufer-seq
(remove1 a verts) seq2 ′

using edges-eq ab ′-notin-edges
by (simp add: ‹b = b ′› insert-eq-iff )

then have seq = seq2 ′ using 2 .IH [of seq2 ′] ctx1 ′.prufer-seq ctx2 ′.prufer-seq
2 (10 ) ctx1 ′.tree-of-prufer-seq-ctx-axioms

unfolding seq2 by simp
then show ?case using ‹b = b ′› seq2 by simp

qed
qed

theorem (in valid-verts) distinct-labeld-tree-enum: distinct (labeled-tree-enum verts)
using inj-tree-edges-of-prufer-seq distinct-n-lists distinct-verts
unfolding labeled-tree-enum-def prufer-sequences-def tree-of-prufer-seq-def
by (auto simp add: distinct-map set-n-lists inj-on-def )

lemma (in valid-verts) cayleys-formula: card (labeled-trees (set verts)) = length
verts ^ (length verts − 2 )
proof−

have card (labeled-trees (set verts)) = length (labeled-tree-enum verts)
using distinct-labeld-tree-enum labeled-tree-enum-correct distinct-card by fast-

force
also have . . . = length verts ^ (length verts − 2 ) unfolding labeled-tree-enum-def

using length-n-lists by auto
finally show ?thesis .

qed

end

3 Rooted Trees
theory Rooted-Tree
imports Tree-Graph HOL−Library.FSet
begin

datatype tree = Node tree list

fun tree-size :: tree ⇒ nat where
tree-size (Node ts) = Suc (

∑
t←ts. tree-size t)

fun height :: tree ⇒ nat where
height (Node []) = 0
| height (Node ts) = Suc (Max (height ‘ set ts))

Convenient case splitting and induction for trees

39



lemma tree-cons-exhaust[case-names Nil Cons]:
(t = Node [] =⇒ P) =⇒ (

∧
r ts. t = Node (r # ts) =⇒ P) =⇒ P

by (cases t) (metis list.exhaust)

lemma tree-rev-exhaust[case-names Nil Snoc]:
(t = Node [] =⇒ P) =⇒ (

∧
ts r . t = Node (ts @ [r ]) =⇒ P) =⇒ P

by (cases t) (metis rev-exhaust)

lemma tree-cons-induct[case-names Nil Cons]:
assumes P (Node [])

and
∧

t ts. P t =⇒ P (Node ts) =⇒ P (Node (t#ts))
shows P t

proof (induction size-tree t arbitrary: t rule: less-induct)
case less
then show ?case using assms by (cases t rule: tree-cons-exhaust) auto

qed

fun lexord-tree where
lexord-tree t (Node []) ←→ False
| lexord-tree (Node []) r ←→ True
| lexord-tree (Node (t#ts)) (Node (r#rs))←→ lexord-tree t r ∨ (t = r ∧ lexord-tree
(Node ts) (Node rs))

fun mirror :: tree ⇒ tree where
mirror (Node ts) = Node (map mirror (rev ts))

instantiation tree :: linorder
begin

definition
tree-less-def : (t::tree) < r ←→ lexord-tree (mirror t) (mirror r)

definition
tree-le-def : (t :: tree) ≤ r ←→ t < r ∨ t = r

lemma lexord-tree-empty2 [simp]: lexord-tree (Node []) r ←→ r 6= Node []
by (cases r rule: tree-cons-exhaust) auto

lemma mirror-empty[simp]: mirror t = Node [] ←→ t = Node []
by (cases t) auto

lemma mirror-not-empty[simp]: mirror t 6= Node [] ←→ t 6= Node []
by (cases t) auto

lemma tree-le-empty[simp]: Node [] ≤ t
unfolding tree-le-def tree-less-def using mirror-not-empty by auto

lemma tree-less-empty-iff : Node [] < t ←→ t 6= Node []
unfolding tree-less-def by simp

40



lemma not-tree-less-empty[simp]: ¬ t < Node []
unfolding tree-less-def by simp

lemma tree-le-empty2-iff [simp]: t ≤ Node [] ←→ t = Node []
unfolding tree-le-def by simp

lemma lexord-tree-antisym: lexord-tree t r =⇒ ¬ lexord-tree r t
by (induction r t rule: lexord-tree.induct) auto

lemma tree-less-antisym: (t::tree) < r =⇒ ¬ r < t
unfolding tree-less-def using lexord-tree-antisym by blast

lemma lexord-tree-not-eq: lexord-tree t r =⇒ t 6= r
by (induction r t rule: lexord-tree.induct) auto

lemma tree-less-not-eq: (t::tree) < r =⇒ t 6= r
unfolding tree-less-def using lexord-tree-not-eq by blast

lemma lexord-tree-irrefl: ¬ lexord-tree t t
using lexord-tree-not-eq by blast

lemma tree-less-irrefl: ¬ (t::tree) < t
unfolding tree-less-def using lexord-tree-irrefl by blast

lemma lexord-tree-eq-iff : ¬ lexord-tree t r ∧ ¬ lexord-tree r t ←→ t = r
using lexord-tree-empty2 by (induction t r rule: lexord-tree.induct, fastforce+)

lemma mirror-mirror : mirror (mirror t) = t
by (induction t rule: mirror .induct) (simp add: map-idI rev-map)

lemma mirror-inj: mirror t = mirror r =⇒ t = r
using mirror-mirror by metis

lemma tree-less-eq-iff : ¬ (t::tree) < r ∧ ¬ r < t ←→ t = r
unfolding tree-less-def using lexord-tree-eq-iff mirror-inj by blast

lemma lexord-tree-trans: lexord-tree t r =⇒ lexord-tree r s =⇒ lexord-tree t s
proof (induction t s arbitrary: r rule: lexord-tree.induct)

case (1 t)
then show ?case by auto

next
case (2 va vb)
then show ?case by auto

next
case (3 t ts s ss)
then show ?case by (cases r rule: tree-cons-exhaust) auto

qed

41



instance
proof

fix t r s :: tree
show t < r ←→ t ≤ r ∧ ¬ r ≤ t unfolding tree-le-def using tree-less-antisym

tree-less-irrefl by auto
show t ≤ t unfolding tree-le-def by simp
show t ≤ r =⇒ r ≤ t =⇒ t = r unfolding tree-le-def using tree-less-antisym

by blast
show t ≤ r ∨ r ≤ t unfolding tree-le-def using tree-less-eq-iff by blast
show t ≤ r =⇒ r ≤ s =⇒ t ≤ s unfolding tree-le-def tree-less-def using

lexord-tree-trans by blast
qed

end

lemma tree-size-children: tree-size (Node ts) = Suc n =⇒ t ∈ set ts =⇒ tree-size
t ≤ n

by (auto simp: le-add1 sum-list-map-remove1 )

lemma tree-size-ge-1 : tree-size t ≥ 1
by (cases t) auto

lemma tree-size-ne-0 : tree-size t 6= 0
by (cases t) auto

lemma tree-size-1-iff : tree-size t = 1 ←→ t = Node []
using tree-size-ne-0 by (cases t rule: tree-cons-exhaust) auto

lemma length-children: tree-size (Node ts) = Suc n =⇒ length ts ≤ n
by (induction ts arbitrary: n, auto, metis add-mono plus-1-eq-Suc tree-size-ge-1 )

lemma height-Node-cons: height (Node (t#ts)) ≥ Suc (height t)
by auto

lemma height-0-iff : height t = 0 =⇒ t = Node []
using height.elims by blast

lemma height-children: height (Node ts) = Suc n =⇒ t ∈ set ts =⇒ height t ≤ n
by (metis List.finite-set Max-ge diff-Suc-1 finite-imageI height.elims imageI nat.simps(3 )

tree.inject)

lemma height-children-le-height: ∀ t ∈ set ts. height t ≤ n =⇒ height (Node ts) ≤
Suc n

by (cases ts) auto

lemma mirror-iff : mirror t = Node ts ←→ t = Node (map mirror (rev ts))
by (metis mirror .simps mirror-mirror)

42



lemma mirror-append: mirror (Node (ts@rs)) = Node (map mirror (rev rs) @
map mirror (rev ts))

by (induction ts) auto

lemma lexord-tree-snoc: lexord-tree (Node ts) (Node (ts@[t]))
by (induction ts) auto

lemma tree-less-cons: Node ts < Node (t#ts)
unfolding tree-less-def using lexord-tree-snoc by simp

lemma tree-le-cons: Node ts ≤ Node (t#ts)
unfolding tree-le-def using tree-less-cons by simp

lemma tree-less-cons ′: t ≤ Node rs =⇒ t < Node (r#rs)
using tree-less-cons by (simp add: order-le-less-trans)

lemma tree-less-snoc2-iff [simp]: Node (ts@[t]) < Node (rs@[r ]) ←→ t < r ∨ (t =
r ∧ Node ts < Node rs)

unfolding tree-less-def using mirror-inj by auto

lemma tree-le-snoc2-iff [simp]: Node (ts@[t]) ≤ Node (rs@[r ]) ←→ t < r ∨ (t = r
∧ Node ts ≤ Node rs)

unfolding tree-le-def by auto

lemma lexord-tree-cons2 [simp]: lexord-tree (Node (ts@[t])) (Node (ts@[r ])) ←→
lexord-tree t r

by (induction ts) (auto simp: lexord-tree-irrefl)

lemma tree-less-cons2 [simp]: Node (t#ts) < Node (r#ts) ←→ t < r
unfolding tree-less-def using lexord-tree-cons2 by simp

lemma tree-le-cons2 [simp]: Node (t#ts) ≤ Node (r#ts) ←→ t ≤ r
unfolding tree-le-def using tree-less-cons2 by blast

lemma tree-less-sorted-snoc: sorted (ts@[r ]) =⇒ Node ts < Node (ts@[r ])
unfolding tree-less-def by (induction ts rule: rev-induct, auto,

metis leD lexord-tree-eq-iff sorted2 sorted-wrt-append tree-less-def ,
metis dual-order .strict-iff-not list.set-intros(2 ) nle-le sorted2 sorted-append

tree-less-def )

lemma lexord-tree-comm-prefix[simp]: lexord-tree (Node (ss@ts)) (Node (ss@rs))
←→ lexord-tree (Node ts) (Node rs)

using lexord-tree-antisym by (induction ss) auto

lemma less-tree-comm-suffix[simp]: Node (ts@ss) < Node (rs@ss) ←→ Node ts <
Node rs

unfolding tree-less-def by simp

43



lemma tree-le-comm-suffix[simp]: Node (ts@ss) ≤ Node (rs@ss) ←→ Node ts ≤
Node rs

unfolding tree-le-def by simp

lemma tree-less-comm-suffix2 : t < r =⇒ Node (ts@t#ss) < Node (r#ss)
unfolding tree-less-def using lexord-tree-comm-prefix by simp

lemma lexord-tree-append[simp]: lexord-tree (Node ts) (Node (ts@rs)) ←→ rs 6= []
using lexord-tree-irrefl by (induction ts) auto

lemma tree-less-append[simp]: Node ts < Node (rs@ts) ←→ rs 6= []
unfolding tree-less-def by simp

lemma tree-le-append: Node ts ≤ Node (ss@ts)
unfolding tree-le-def by simp

lemma tree-less-singleton-iff [simp]: Node (ts@[t]) < Node [r ] ←→ t < r
unfolding tree-less-def by simp

lemma tree-le-singleton-iff [simp]: Node (ts@[t]) ≤ Node [r ] ←→ t < r ∨ (t = r ∧
ts = [])

unfolding tree-le-def by auto

lemma lexord-tree-nested: lexord-tree t (Node [t])
proof (induction t rule: tree-cons-induct)

case Nil
then show ?case by auto

next
case (Cons t ts)
then show ?case by (cases t rule: tree-cons-exhaust) auto

qed

lemma tree-less-nested: t < Node [t]
unfolding tree-less-def using lexord-tree-nested by auto

lemma tree-le-nested: t ≤ Node [t]
unfolding tree-le-def using tree-less-nested by auto

lemma lexord-tree-iff :
lexord-tree t r ←→ (∃ ts t ′ ss rs r ′. t = Node (ss @ t ′ # ts) ∧ r = Node (ss @ r ′

# rs) ∧ lexord-tree t ′ r ′) ∨ (∃ ts rs. rs 6= [] ∧ t = Node ts ∧ r = Node (ts @ rs))
(is ?l ←→ ?r)
proof

show ?l =⇒ ?r
proof−

assume lexord: lexord-tree t r
obtain ts where ts: t = Node ts by (cases t) auto
obtain rs where rs: r = Node rs by (cases r) auto

44



obtain ss ts ′ rs ′ where prefix: ts = ss @ ts ′ ∧ rs = ss @ rs ′ ∧ (ts ′ = [] ∨ rs ′

= [] ∨ hd ts ′ 6= hd rs ′) using longest-common-prefix by blast
then have ts ′ = [] ∨ lexord-tree (hd ts ′) (hd rs ′) using lexord unfolding ts rs

by (auto, metis lexord-tree.simps(1 ) lexord-tree.simps(3 ) list.exhaust-sel)
then show ?thesis using prefix
by (metis append.right-neutral lexord lexord-tree.simps(1 ) lexord-tree-comm-prefix

list.exhaust-sel rs ts)
qed
show ?r =⇒ ?l by auto

qed

lemma tree-less-iff : t < r ←→ (∃ ts t ′ ss rs r ′. t = Node (ts @ t ′ # ss) ∧ r =
Node (rs @ r ′ # ss) ∧ t ′ < r ′) ∨ (∃ ts rs. rs 6= [] ∧ t = Node ts ∧ r = Node (rs
@ ts)) (is ?l ←→ ?r)
proof

show ?l =⇒ ?r
unfolding tree-less-def using lexord-tree-iff [of mirror t mirror r , unfolded

mirror-iff ]
by (simp, metis append-Nil lexord-tree-eq-iff mirror-mirror)

next
show ?r =⇒ ?l

by (auto simp: order-le-neq-trans tree-le-append,
meson dual-order .strict-trans1 tree-le-append tree-less-comm-suffix2 )

qed

lemma tree-empty-cons-lt-le: r < Node (Node [] # ts) =⇒ r ≤ Node ts
proof (induction ts arbitrary: r rule: rev-induct)

case Nil
then show ?case by (cases r rule: tree-rev-exhaust) auto

next
case (snoc x xs)
then show ?case
proof (cases r rule: tree-rev-exhaust)

case Nil
then show ?thesis by auto

next
case (Snoc rs r1 )

then show ?thesis using snoc by (auto, (metis append-Cons tree-less-snoc2-iff )+)
qed

qed

fun regular :: tree ⇒ bool where
regular (Node ts) ←→ sorted ts ∧ (∀ t∈set ts. regular t)

definition n-trees :: nat ⇒ tree set where
n-trees n = {t. tree-size t = n}

definition regular-n-trees :: nat ⇒ tree set where

45



regular-n-trees n = {t. tree-size t = n ∧ regular t}

3.1 Rooted Graphs
type-synonym ′a rpregraph = ( ′a set) × ( ′a edge set) × ′a

locale rgraph = graph-system +
fixes r
assumes root-wf : r ∈ V

locale rtree = tree + rgraph
begin

definition subtrees :: ′a rpregraph set where
subtrees =
(let (V ′,E ′) = remove-vertex r
in (λC . (C , graph-system.induced-edges E ′ C , THE r ′. r ′ ∈ C ∧ vert-adj r r ′))

‘ ulgraph.connected-components V ′ E ′)

lemma rtree-subtree:
assumes subtree: (S ,ES ,rS) ∈ subtrees
shows rtree S ES rS

proof−
obtain V ′ E ′ where remove-vertex: remove-vertex r = (V ′, E ′) by fastforce
interpret subg: ulsubgraph V ′ E ′ V E unfolding ulsubgraph-def using sub-

graph-remove-vertex subtree ulgraph-axioms remove-vertex by blast
interpret g ′: fin-ulgraph V ′ E ′

by (simp add: fin-graph-system-axioms fin-ulgraph-def subg.is-finite-subgraph
subg.is-subgraph-ulgraph ulgraph-axioms)

have conn-component: S ∈ g ′.connected-components using subtree remove-vertex
unfolding subtrees-def by auto
then interpret subg ′: subgraph S ES V ′ E ′ using g ′.connected-component-subgraph

subtree remove-vertex unfolding subtrees-def by auto
interpret subg ′: ulsubgraph S ES V ′ E ′ by unfold-locales
interpret S : connected-ulgraph S ES using g ′.connected-components-connected-ulgraphs

conn-component subtree remove-vertex unfolding subtrees-def by auto
interpret S : fin-connected-ulgraph S ES using subg ′.verts-ss g ′.finV by un-

fold-locales (simp add: finite-subset)
interpret S : tree S ES using subg.is-cycle2 subg ′.is-cycle2 no-cycles by (unfold-locales,

blast)
show ?thesis using theI ′[OF unique-adj-vert-removed[OF root-wf remove-vertex

conn-component]]
subtree remove-vertex by unfold-locales (auto simp: subtrees-def )

qed

lemma finite-subtrees: finite subtrees
proof−

obtain V ′ E ′ where remove-vertex: remove-vertex r = (V ′, E ′) by fastforce
then interpret subg: subgraph V ′ E ′ V E using subgraph-remove-vertex by auto

46



interpret g ′: fin-ulgraph V ′ E ′

by (simp add: fin-graph-system-axioms fin-ulgraph-def subg.is-finite-subgraph
subg.is-subgraph-ulgraph ulgraph-axioms)
show ?thesis using g ′.finite-connected-components remove-vertex unfolding sub-

trees-def by simp
qed

lemma remove-root-subtrees:
assumes remove-vertex: remove-vertex r = (V ′,E ′)

and conn-component: C ∈ ulgraph.connected-components V ′ E ′

shows rtree C (graph-system.induced-edges E ′ C ) (THE r ′. r ′ ∈ C ∧ vert-adj r
r ′)
proof−

interpret subg: ulsubgraph V ′ E ′ V E unfolding ulsubgraph-def using sub-
graph-remove-vertex remove-vertex ulgraph-axioms by blast

interpret g ′: fin-ulgraph V ′ E ′

by (simp add: fin-graph-system-axioms fin-ulgraph-def subg.is-finite-subgraph
subg.is-subgraph-ulgraph ulgraph-axioms)

interpret subg ′: ulsubgraph C graph-system.induced-edges E ′ C V ′ E ′

by (simp add: conn-component g ′.connected-component-subgraph g ′.ulgraph-axioms
ulsubgraph.intro)

interpret C : fin-connected-ulgraph C graph-system.induced-edges E ′ C
by (simp add: fin-connected-ulgraph.intro fin-ulgraph.intro g ′.fin-graph-system-axioms

g ′.ulgraph-axioms subg ′.is-finite-subgraph subg ′.is-subgraph-ulgraph conn-component
g ′.connected-components-connected-ulgraphs)

interpret C : tree C graph-system.induced-edges E ′ C using subg.is-cycle2 subg ′.is-cycle2
no-cycles by (unfold-locales, blast)

show ?thesis using theI ′[OF unique-adj-vert-removed[OF root-wf remove-vertex
conn-component]] by unfold-locales simp
qed

end

3.2 Rooted Graph Isomorphism
fun app-rgraph-isomorphism :: ( ′a ⇒ ′b) ⇒ ′a rpregraph ⇒ ′b rpregraph where

app-rgraph-isomorphism f (V ,E ,r) = (f ‘ V , ((‘) f ) ‘ E , f r)

locale rgraph-isomorphism =
G: rgraph VG EG rG + graph-isomorphism VG EG VH EH f for VG EG rG

VH EH rH f +
assumes root-preserving: f rG = rH

begin

interpretation H : graph-system VH EH using graph-system-H .

lemma rgraph-H : rgraph VH EH rH

using root-preserving bij-f G.root-wf VH-def by unfold-locales blast

47



interpretation H : rgraph VH EH rH using rgraph-H .

lemma rgraph-isomorphism-inv: rgraph-isomorphism VH EH rH VG EG rG inv-iso

proof−
interpret iso: graph-isomorphism VH EH VG EG inv-iso using graph-isomorphism-inv

.
show ?thesis using G.root-wf inj-f inv-iso-def root-preserving the-inv-into-f-f

by unfold-locales fastforce
qed

end

fun rgraph-isomorph :: ′a rpregraph ⇒ ′b rpregraph ⇒ bool (infix 'r 50 ) where
(VG,EG,rG) 'r (VH ,EH ,rH) ←→ (∃ f . rgraph-isomorphism VG EG rG VH EH

rH f )

lemma (in rgraph) rgraph-isomorphism-id: rgraph-isomorphism V E r V E r id
using graph-isomorphism-id rgraph-isomorphism.intro rgraph-axioms
unfolding rgraph-isomorphism-axioms-def by fastforce

lemma (in rgraph) rgraph-isomorph-refl: (V ,E ,r) 'r (V ,E ,r)
using rgraph-isomorphism-id by auto

lemma rgraph-isomorph-sym: G 'r H =⇒ H 'r G
using rgraph-isomorphism.rgraph-isomorphism-inv by (cases G, cases H ) fast-

force

lemma rgraph-isomorphism-trans: rgraph-isomorphism VG EG rG VH EH rH f
=⇒ rgraph-isomorphism VH EH rH V F EF rF g =⇒ rgraph-isomorphism VG

EG rG V F EF rF (g o f )
using graph-isomorphism-trans unfolding rgraph-isomorphism-def rgraph-isomorphism-axioms-def

by fastforce

lemma rgraph-isomorph-trans: transp ('r)
using rgraph-isomorphism-trans unfolding transp-def by fastforce

lemma (in rtree) rgraph-isomorphis-app-iso: inj-on f V =⇒ app-rgraph-isomorphism
f (V ,E ,r) = (V ′,E ′,r ′) =⇒ rgraph-isomorphism V E r V ′ E ′ r ′ f

by unfold-locales (auto simp: bij-betw-def )

lemma (in rtree) rgraph-isomorph-app-iso: inj-on f V =⇒ (V , E , r) 'r app-rgraph-isomorphism
f (V , E , r)

using rgraph-isomorphis-app-iso by fastforce

3.3 Conversion between unlabeled, ordered, rooted trees and
tree graphs

datatype ′a ltree = LNode ′a ′a ltree list

48



fun ltree-size :: ′a ltree ⇒ nat where
ltree-size (LNode r ts) = Suc (

∑
t←ts. ltree-size t)

fun root-ltree :: ′a ltree ⇒ ′a where
root-ltree (LNode r ts) = r

fun nodes-ltree :: ′a ltree ⇒ ′a set where
nodes-ltree (LNode r ts) = {r} ∪ (

⋃
t∈set ts. nodes-ltree t)

fun relabel-ltree :: ( ′a ⇒ ′b) ⇒ ′a ltree ⇒ ′b ltree where
relabel-ltree f (LNode r ts) = LNode (f r) (map (relabel-ltree f ) ts)

fun distinct-ltree-nodes :: ′a ltree ⇒ bool where
distinct-ltree-nodes (LNode a ts) ←→ (∀ t∈set ts. a /∈ nodes-ltree t) ∧ distinct ts
∧ disjoint-family-on nodes-ltree (set ts) ∧ (∀ t∈set ts. distinct-ltree-nodes t)

fun postorder-label-aux :: nat ⇒ tree ⇒ nat × nat ltree where
postorder-label-aux n (Node []) = (n, LNode n [])
| postorder-label-aux n (Node (t#ts)) =
(let (n ′, t ′) = postorder-label-aux n t in

case postorder-label-aux (Suc n ′) (Node ts) of
(n ′′, LNode r ts ′) ⇒ (n ′′, LNode r (t ′#ts ′)))

definition postorder-label :: tree ⇒ nat ltree where
postorder-label t = snd (postorder-label-aux 0 t)

fun tree-ltree :: ′a ltree ⇒ tree where
tree-ltree (LNode r ts) = Node (map tree-ltree ts)

fun regular-ltree :: ′a ltree ⇒ bool where
regular-ltree (LNode r ts) ←→ sorted-wrt (λt s. tree-ltree t ≤ tree-ltree s) ts ∧

(∀ t∈set ts. regular-ltree t)

datatype ′a stree = SNode ′a ′a stree fset

lemma stree-size-child-lt[termination-simp]: t |∈| ts =⇒ size t < Suc (
∑

s∈fset
ts. Suc (size s))

using sum-nonneg-leq-bound zero-le finite-fset Suc-le-eq less-SucI by metis

lemma stree-size-child-lt ′[termination-simp]: t ∈ fset ts =⇒ size t < Suc (
∑

s∈fset
ts. Suc (size s))

using stree-size-child-lt by metis

fun stree-size :: ′a stree ⇒ nat where
stree-size (SNode r ts) = Suc (fsum stree-size ts)

definition n-strees :: nat ⇒ ′a stree set where
n-strees n = {t. stree-size t = n}

49



fun root-stree :: ′a stree ⇒ ′a where
root-stree (SNode a ts) = a

fun nodes-stree :: ′a stree ⇒ ′a set where
nodes-stree (SNode a ts) = {a} ∪ (

⋃
t∈fset ts. nodes-stree t)

fun tree-graph-edges :: ′a stree ⇒ ′a edge set where
tree-graph-edges (SNode a ts) = ((λt. {a, root-stree t}) ‘ fset ts) ∪ (

⋃
t∈fset ts.

tree-graph-edges t)

fun distinct-stree-nodes :: ′a stree ⇒ bool where
distinct-stree-nodes (SNode a ts) ←→ (∀ t∈fset ts. a /∈ nodes-stree t) ∧ dis-

joint-family-on nodes-stree (fset ts) ∧ (∀ t∈fset ts. distinct-stree-nodes t)

fun ltree-stree :: ′a stree ⇒ ′a ltree where
ltree-stree (SNode r ts) = LNode r (SOME xs. fset-of-list xs = ltree-stree |‘| ts ∧

distinct xs ∧ sorted-wrt (λt s. tree-ltree t ≤ tree-ltree s) xs)

fun stree-ltree :: ′a ltree ⇒ ′a stree where
stree-ltree (LNode r ts) = SNode r (fset-of-list (map stree-ltree ts))

definition tree-graph-stree :: ′a stree ⇒ ′a rpregraph where
tree-graph-stree t = (nodes-stree t, tree-graph-edges t, root-stree t)

function stree-of-graph :: ′a rpregraph ⇒ ′a stree where
stree-of-graph (V ,E ,r) =
(if ¬ rtree V E r then undefined else
SNode r (Abs-fset (stree-of-graph ‘ rtree.subtrees V E r)))

by pat-completeness auto

termination
proof (relation measure (λp. card (fst p)), auto)

fix r :: ′a and V :: ′a set and E :: ′a edge set and S :: ′a set and ES :: ′a edge
set and rS :: ′a

assume rtree: rtree V E r
assume subtree: (S , ES , rS) ∈ rtree.subtrees V E r
interpret rtree V E r using rtree .
obtain V ′ E ′ where remove-vertex: remove-vertex r = (V ′, E ′) by fastforce
then interpret subg: subgraph V ′ E ′ V E using subgraph-remove-vertex by

simp
interpret g ′: fin-ulgraph V ′ E ′ using fin-ulgraph.intro subg.is-finite-subgraph

fin-graph-system-axioms subg.is-subgraph-ulgraph ulgraph-axioms by blast
have S ∈ g ′.connected-components using subtree remove-vertex unfolding sub-

trees-def by auto
then have card-C-V ′:card S ≤ card V ′ using g ′.connected-component-wf g ′.finV

card-mono by metis
have card V ′ < card V using remove-vertex root-wf finV card-Diff1-less unfold-

ing remove-vertex-def by fast

50



then show card S < card V using card-C-V ′ by simp
qed

definition tree-graph :: tree ⇒ nat rpregraph where
tree-graph t = tree-graph-stree (stree-ltree (postorder-label t))

fun relabel-stree :: ( ′a ⇒ ′b) ⇒ ′a stree ⇒ ′b stree where
relabel-stree f (SNode r ts) = SNode (f r) ((relabel-stree f ) |‘| ts)

lemma root-ltree-wf : root-ltree t ∈ nodes-ltree t
by (cases t) auto

lemma root-relabel-ltree[simp]: root-ltree (relabel-ltree f t) = f (root-ltree t)
by (cases t) simp

lemma nodes-relabel-ltree[simp]: nodes-ltree (relabel-ltree f t) = f ‘ nodes-ltree t
by (induction t) auto

lemma finite-nodes-ltree: finite (nodes-ltree t)
by (induction t) auto

lemma root-stree-wf : root-stree t ∈ nodes-stree t
by (cases t) auto

lemma tree-graph-edges-wf : e ∈ tree-graph-edges t =⇒ e ⊆ nodes-stree t
using root-stree-wf by (induction t rule: tree-graph-edges.induct) auto

lemma card-tree-graph-edges-distinct: distinct-stree-nodes t =⇒ e ∈ tree-graph-edges
t =⇒ card e = 2

using root-stree-wf card-2-iff by (induction t rule: tree-graph-edges.induct) (auto,
fast+)

lemma nodes-stree-non-empty: nodes-stree t 6= {}
by (cases t rule: nodes-stree.cases) auto

lemma finite-nodes-stree: finite (nodes-stree t)
by (induction t rule: nodes-stree.induct) auto

lemma finite-tree-graph-edges: finite (tree-graph-edges t)
by (induction t rule: tree-graph-edges.induct) auto

lemma root-relabel-stree[simp]: root-stree (relabel-stree f t) = f (root-stree t)
by (cases t) auto

lemma nodes-stree-relabel-stree[simp]: nodes-stree (relabel-stree f t) = f ‘ nodes-stree
t

by (induction t) auto

lemma tree-graph-edges-relabel-stree[simp]: tree-graph-edges (relabel-stree f t) =

51



((‘) f ) ‘ tree-graph-edges t
by (induction t) (simp add: image-image image-Un image-Union)

lemma nodes-stree-ltree[simp]: nodes-stree (stree-ltree t) = nodes-ltree t
by (induction t) (auto simp: fset-of-list.rep-eq)

lemma distinct-sorted-wrt-list: ∃ xs. fset-of-list xs = A ∧ distinct xs ∧ sorted-wrt
(λt s. (f t :: ′b::linorder) ≤ f s) xs
proof−

obtain xs where fset-of-list xs = A ∧ distinct xs
by (metis finite-distinct-list finite-fset fset-cong fset-of-list.rep-eq)

then have fset-of-list (sort-key f xs) = A ∧ distinct (sort-key f xs) ∧ sorted-wrt
(λt s. f t ≤ f s) (sort-key f xs)

using sorted-sort-key sorted-wrt-map by (simp add: fset-of-list.abs-eq, blast)
then show ?thesis by blast

qed

abbreviation ltree-stree-subtrees ts ≡ SOME xs. fset-of-list xs = ltree-stree |‘| ts
∧ distinct xs ∧ sorted-wrt (λt s. tree-ltree t ≤ tree-ltree s) xs

lemma fset-of-list-ltree-stree-subtrees[simp]: fset-of-list (ltree-stree-subtrees ts) =
ltree-stree |‘| ts

using someI-ex[OF distinct-sorted-wrt-list] by fast

lemma set-ltree-stree-subtrees[simp]: set (ltree-stree-subtrees ts) = ltree-stree ‘ fset
ts

using fset-of-list-ltree-stree-subtrees by (metis (mono-tags, lifting) fset.set-map
fset-of-list.rep-eq)

lemma distinct-ltree-stree-subtrees: distinct (ltree-stree-subtrees ts)
using someI-ex[OF distinct-sorted-wrt-list] by blast

lemma sorted-wrt-ltree-stree-subtrees: sorted-wrt (λt s. tree-ltree t ≤ tree-ltree s)
(ltree-stree-subtrees ts)

using someI-ex[OF distinct-sorted-wrt-list] by blast

lemma nodes-ltree-stree[simp]: nodes-ltree (ltree-stree t) = nodes-stree t
by (induction t) auto

lemma stree-ltree-stree[simp]: stree-ltree (ltree-stree t) = t
by (induction t) (simp add: fset.map-ident-strong)

lemma nodes-tree-graph-stree: tree-graph-stree t = (V , E , r) =⇒ V = nodes-stree
t

by (induction t) (simp add: tree-graph-stree-def )

lemma relabel-stree-stree-ltree: relabel-stree f (stree-ltree t) = stree-ltree (relabel-ltree
f t)

by (induction t) (auto simp add: fset-of-list-elem)

52



lemma relabel-stree-relabel-ltree: relabel-ltree f t1 = t2 =⇒ relabel-stree f (stree-ltree
t1 ) = stree-ltree t2

using relabel-stree-stree-ltree by blast

lemma app-rgraph-iso-tree-graph-stree: app-rgraph-isomorphism f (tree-graph-stree
t) = tree-graph-stree (relabel-stree f t)

unfolding tree-graph-stree-def using image-iff mk-disjoint-insert
by (induction t) (auto, fastforce+)

lemma (in rtree) root-stree-of-graph[simp]: root-stree (stree-of-graph (V ,E ,r)) = r
using rtree-axioms by (simp split: prod.split)

lemma (in rtree) nodes-stree-stree-of-graph[simp]: nodes-stree (stree-of-graph (V ,E ,r))
= V

using rtree-axioms
proof (induction (V ,E ,r) arbitrary: V E r rule: stree-of-graph.induct)

case (1 V T ET r)
then interpret t: rtree V T ET r by simp
obtain V ′ E ′ where VE ′: t.remove-vertex r = (V ′, E ′) by (simp add: t.remove-vertex-def )
interpret subg: subgraph V ′ E ′ V T ET using t.subgraph-remove-vertex VE ′ by

metis
interpret g ′: fin-ulgraph V ′ E ′ using fin-ulgraph.intro subg.is-finite-subgraph

t.fin-graph-system-axioms subg.is-subgraph-ulgraph t.ulgraph-axioms by blast

have finite (stree-of-graph ‘ t.subtrees) using t.finite-subtrees by blast
then have nodes-stree (stree-of-graph (V T , ET , r)) = {r} ∪ V ′

using 1 using VE ′ t.rtree-subtree g ′.Union-connected-components by (simp
add: Abs-fset-inverse t.subtrees-def )

then show ?case using VE ′ t.root-wf unfolding t.remove-vertex-def by auto
qed

lemma (in rtree) tree-graph-edges-stree-of-graph[simp]: tree-graph-edges (stree-of-graph
(V ,E ,r)) = E

using rtree-axioms
proof (induction (V ,E ,r) arbitrary: V E r rule: stree-of-graph.induct)

case (1 V T ET r)
then interpret t: rtree V T ET r by simp
obtain V ′ E ′ where VE ′: t.remove-vertex r = (V ′, E ′) by (simp add: t.remove-vertex-def )
interpret subg: subgraph V ′ E ′ V T ET using t.subgraph-remove-vertex VE ′ by

metis
interpret g ′: fin-ulgraph V ′ E ′ using fin-ulgraph.intro subg.is-finite-subgraph

t.fin-graph-system-axioms subg.is-subgraph-ulgraph t.ulgraph-axioms by blast

have finite (stree-of-graph ‘ t.subtrees) using t.finite-subtrees by blast
then have fset-Abs-fset-subtrees[simp]: fset (Abs-fset (stree-of-graph ‘ t.subtrees))

= stree-of-graph ‘ t.subtrees by (simp add: Abs-fset-inverse)

53



have root-edges: (λx. {r , root-stree x}) ‘ stree-of-graph ‘ t.subtrees = {e∈ET . r
∈ e} (is ?l = ?r)

proof−
have e ∈ ?l if e ∈ ?r for e
proof−

obtain r ′ where e: e = {r , r ′} using ‹e∈?r›
by (metis (no-types, lifting) CollectD insert-commute insert-iff singleton-iff

t.obtain-edge-pair-adj)
then have r ′ 6= r using t.singleton-not-edge ‹e∈?r› by force

then have r ′∈ V ′ using e ‹e∈?r› VE ′ t.remove-vertex-def t.wellformed-alt-snd
by fastforce

then obtain C where C-conn-component: C ∈ g ′.connected-components and
r ′ ∈ C using g ′.Union-connected-components by auto

have t.vert-adj r r ′ unfolding t.vert-adj-def using ‹e∈?r› e by blast
then have (THE r ′. r ′∈ C ∧ t.vert-adj r r ′) = r ′ using t.unique-adj-vert-removed[OF

t.root-wf VE ′ C-conn-component] ‹r ′∈C › by auto
then show ?thesis using e ‹r ′∈C › C-conn-component rtree.root-stree-of-graph

t.rtree-subtree VE ′ unfolding t.subtrees-def by (auto simp: image-comp)
qed

then show ?thesis using t.unique-adj-vert-removed[OF t.root-wf VE ′] t.rtree-subtree
VE ′

unfolding t.subtrees-def t.vert-adj-def by (auto, metis (no-types, lifting) theI )
qed
have (

⋃
S∈t.subtrees. tree-graph-edges (stree-of-graph S)) = E ′

using 1 VE ′ t.rtree-subtree g ′.Union-induced-edges-connected-components
unfolding t.subtrees-def by simp

then have tree-graph-edges (stree-of-graph (V T ,ET ,r)) = {e∈ET . r ∈ e} ∪ E ′

using root-edges 1 (2 ) by simp
then show ?case using VE ′ unfolding t.remove-vertex-def t.vincident-def by

blast
qed

lemma (in rtree) tree-graph-stree-of-graph[simp]: tree-graph-stree (stree-of-graph
(V ,E ,r)) = (V ,E ,r)
using nodes-stree-stree-of-graph tree-graph-edges-stree-of-graph root-stree-of-graph

unfolding tree-graph-stree-def by blast

lemma postorder-label-aux-mono: fst (postorder-label-aux n t) ≥ n
by (induction n t rule: postorder-label-aux.induct) (auto split: prod.split ltree.split,

fastforce)

lemma nodes-postorder-label-aux-ge: postorder-label-aux n t = (n ′, t ′) =⇒ v ∈
nodes-ltree t ′ =⇒ v ≥ n

by (induction n t arbitrary: n ′ t ′ rule: postorder-label-aux.induct,
auto split: prod.splits ltree.splits,
(metis fst-conv le-SucI order .trans postorder-label-aux-mono)+)

lemma nodes-postorder-label-aux-le: postorder-label-aux n t = (n ′, t ′) =⇒ v ∈

54



nodes-ltree t ′ =⇒ v ≤ n ′

by (induction n t arbitrary: n ′ t ′ rule: postorder-label-aux.induct,
auto split: prod.splits ltree.splits,
metis Suc-leD fst-conv order-trans postorder-label-aux-mono,
blast)

lemma distinct-nodes-postorder-label-aux: distinct-ltree-nodes (snd (postorder-label-aux
n t))
proof (induction n t rule: postorder-label-aux.induct)

case (1 n)
then show ?case by (simp add: disjoint-family-on-def )

next
case (2 n t ts)
obtain n ′ t ′ where t ′: postorder-label-aux n t = (n ′, t ′) by fastforce
obtain n ′′ r ts ′ where ts ′: postorder-label-aux (Suc n ′) (Node ts) = (n ′′, LNode

r ts ′) by (metis eq-snd-iff ltree.exhaust)
then have r ≥ Suc n ′ using nodes-postorder-label-aux-ge by auto
then have r-notin-t ′: r /∈ nodes-ltree t ′ using nodes-postorder-label-aux-le[OF t ′]

by fastforce
have distinct-subtrees: distinct (t ′#ts ′) using 2 t ′ ts ′ nodes-postorder-label-aux-le[OF

t ′]
nodes-postorder-label-aux-ge[OF ts ′] by (auto, meson not-less-eq-eq root-ltree-wf )

have disjoint-family-on nodes-ltree (set (t ′#ts ′)) using 2 t ′ ts ′ nodes-postorder-label-aux-le[OF
t ′]

nodes-postorder-label-aux-ge[OF ts ′] by (simp add: disjoint-family-on-def ,
meson disjoint-iff not-less-eq-eq)

then show ?case using 2 t ′ ts ′ r-notin-t ′ distinct-subtrees by simp
qed

lemma distinct-nodes-postorder-label: distinct-ltree-nodes (postorder-label t)
unfolding postorder-label-def using distinct-nodes-postorder-label-aux by simp

lemma distinct-nodes-stree-ltree: distinct-ltree-nodes t =⇒ distinct-stree-nodes (stree-ltree
t)

by (induction t) (auto simp: fset-of-list.rep-eq disjoint-family-on-def , fast)

fun distinct-edges :: ′a stree ⇒ bool where
distinct-edges (SNode a ts) ←→ inj-on (λt. {a, root-stree t}) (fset ts)
∧ (∀ t∈fset ts. disjnt ((λt. {a, root-stree t}) ‘ fset ts) (tree-graph-edges t))
∧ disjoint-family-on tree-graph-edges (fset ts)
∧ (∀ t∈fset ts. distinct-edges t)

lemma distinct-nodes-inj-on-root-stree: distinct-stree-nodes (SNode r ts) =⇒ inj-on
root-stree (fset ts)

by (auto simp: disjoint-family-on-def , metis IntI emptyE inj-onI root-stree-wf )

lemma distinct-nodes-disjoint-edges:
assumes distinct-nodes: distinct-stree-nodes (SNode a ts)
shows disjoint-family-on tree-graph-edges (fset ts)

55



proof−
have tree-graph-edges t1 ∩ tree-graph-edges t2 = {}

if t1-in-ts: t1 ∈ fset ts and t2-in-ts: t2 ∈ fset ts and t1 6= t2 for t1 t2
proof−

have ∀ e∈tree-graph-edges t1 . e /∈ tree-graph-edges t2
proof

fix e assume e-in-edges-t1 : e ∈ tree-graph-edges t1
then have e 6= {} using t1-in-ts card-tree-graph-edges-distinct distinct-nodes

by fastforce
then have ∃ v∈nodes-stree t1 . v ∈ e using tree-graph-edges-wf e-in-edges-t1

by blast
then show e /∈ tree-graph-edges t2 using ‹t1 6=t2 › distinct-nodes t1-in-ts

t2-in-ts tree-graph-edges-wf
by (auto simp: disjoint-family-on-def , blast)

qed
then show ?thesis by blast

qed
then show ?thesis unfolding disjoint-family-on-def by blast

qed

lemma card-nodes-edges: distinct-stree-nodes t =⇒ card (nodes-stree t) = Suc
(card (tree-graph-edges t))
proof (induction t rule: tree-graph-edges.induct)

case (1 a ts)
let ?t = SNode a ts
have inj-on (λt. {a, root-stree t}) (fset ts) using distinct-nodes-inj-on-root-stree[OF

1 (2 )]
unfolding inj-on-def doubleton-eq-iff by blast

then have card-root-edges: card ((λt. {a, root-stree t}) ‘ fset ts) = card (fset ts)
using card-image by blast

have finite-Un: finite (
⋃

t∈fset ts. nodes-stree t) using finite-Union finite-nodes-stree
finite-fset by auto

then have card (nodes-stree ?t) = Suc (card (
⋃

t∈fset ts. nodes-stree t)) using
1 (2 ) card-insert-disjoint finite-Un by simp
also have . . . = Suc (

∑
t∈fset ts. card (nodes-stree t)) using 1 (2 ) card-UN-disjoint ′

finite-nodes-stree finite-fset by fastforce
also have . . . = Suc (

∑
t∈fset ts. Suc (card (tree-graph-edges t))) using 1 by

simp
also have . . . = Suc (card (fset ts) + (

∑
t∈fset ts. card (tree-graph-edges t)))

by (metis add.commute sum-Suc)
also have . . . = Suc (card ((λt. {a, root-stree t}) ‘ fset ts) + (

∑
t∈fset ts. card

(tree-graph-edges t)))
using card-root-edges by simp

also have . . . = Suc (card ((λx. {a, root-stree x}) ‘ fset ts) + card (
⋃

(tree-graph-edges
‘ fset ts)))

using distinct-nodes-disjoint-edges[OF 1 (2 )] card-UN-disjoint ′ finite-tree-graph-edges
by fastforce

also have . . . = Suc (card ((λx. {a, root-stree x}) ‘ fset ts ∪ (
⋃

(tree-graph-edges
‘ fset ts)))) (is Suc (card ?r + card ?Un) = Suc (card (?r ∪ ?Un)))

56



proof−
have ∀ t ∈ fset ts. ∀ e ∈ tree-graph-edges t. a /∈ e using 1 (2 ) tree-graph-edges-wf

by auto
then have disjnt: disjnt ?r ?Un using disjoint-UN-iff by (auto simp: disjnt-def )

show ?thesis using card-Un-disjnt[OF - - disjnt] finite-tree-graph-edges by
fastforce

qed
finally show ?case by simp

qed

lemma tree-tree-graph-edges: distinct-stree-nodes t =⇒ tree (nodes-stree t) (tree-graph-edges
t)
proof (induction t rule: tree-graph-edges.induct)

case (1 a ts)
let ?t = SNode a ts
have

∧
e. e ∈ tree-graph-edges ?t =⇒ 0 < card e ∧ card e ≤ 2 using card-tree-graph-edges-distinct

1 by (metis order-refl pos2 )
then interpret g: fin-ulgraph nodes-stree ?t tree-graph-edges ?t using tree-graph-edges-wf

finite-nodes-stree by (unfold-locales) blast+
have g.vert-connected a v if t: t ∈ fset ts and v: v ∈ nodes-stree t for t v
proof−

interpret t: tree nodes-stree t tree-graph-edges t using 1 t by auto
interpret subg: ulsubgraph nodes-stree t tree-graph-edges t nodes-stree ?t tree-graph-edges

?t using t by unfold-locales auto
have conn-root-v: g.vert-connected (root-stree t) v using subg.vert-connected v

root-stree-wf t.vertices-connected by blast
have {a, root-stree t} ∈ tree-graph-edges ?t using t by auto
then have g.vert-connected a (root-stree t) using g.vert-connected-neighbors

by blast
then show ?thesis using conn-root-v g.vert-connected-trans by blast

qed
then have ∀ v∈nodes-stree ?t. g.vert-connected a v using g.vert-connected-id by

auto
then have g.is-connected-set (nodes-stree ?t) using g.vert-connected-trans g.vert-connected-rev

unfolding g.is-connected-set-def by blast
then interpret g: fin-connected-ulgraph nodes-stree ?t tree-graph-edges ?t by

unfold-locales auto
show ?case using card-E-treeI card-nodes-edges 1 (2 ) g.fin-connected-ulgraph-axioms

by blast
qed

lemma rtree-tree-graph-edges:
assumes distinct-nodes: distinct-stree-nodes t
shows rtree (nodes-stree t) (tree-graph-edges t) (root-stree t)

proof−
interpret tree nodes-stree t tree-graph-edges t using distinct-nodes tree-tree-graph-edges

by blast
show ?thesis using root-stree-wf by unfold-locales blast

qed

57



lemma rtree-tree-graph-stree: distinct-stree-nodes t =⇒ tree-graph-stree t = (V ,E ,r)
=⇒ rtree V E r

using rtree-tree-graph-edges unfolding tree-graph-stree-def by blast

lemma rtree-tree-graph: tree-graph t = (V ,E ,r) =⇒ rtree V E r
unfolding tree-graph-def using distinct-nodes-postorder-label rtree-tree-graph-stree

distinct-nodes-stree-ltree by fast

Cardinality of the resulting rooted tree is correct
lemma ltree-size-postorder-label-aux: ltree-size (snd (postorder-label-aux n t)) =
tree-size t
by (induction n t rule: postorder-label-aux.induct) (auto split: prod.split ltree.split)

lemma ltree-size-postorder-label: ltree-size (postorder-label t) = tree-size t
unfolding postorder-label-def using ltree-size-postorder-label-aux by blast

lemma distinct-nodes-ltree-size-card-nodes: distinct-ltree-nodes t =⇒ ltree-size t =
card (nodes-ltree t)
proof (induction t)

case (LNode r ts)
have finite (

⋃
(nodes-ltree ‘ set ts)) using finite-nodes-ltree by blast

then show ?case using LNode disjoint-family-on-disjoint-image
by (auto simp: sum-list-distinct-conv-sum-set card-UN-disjoint ′)

qed

lemma distinct-nodes-stree-size-card-nodes: distinct-stree-nodes t =⇒ stree-size t
= card (nodes-stree t)
proof (induction t)

case (SNode r ts)
have finite (

⋃
(nodes-stree ‘ fset ts)) using finite-nodes-stree by auto

then show ?case using SNode disjoint-family-on-disjoint-image
by (auto simp: fsum.F .rep-eq card-UN-disjoint ′)

qed

lemma stree-size-stree-ltree: distinct-ltree-nodes t =⇒ stree-size (stree-ltree t) =
ltree-size t

by (simp add: distinct-nodes-ltree-size-card-nodes distinct-nodes-stree-ltree dis-
tinct-nodes-stree-size-card-nodes)

lemma card-tree-graph-stree: distinct-stree-nodes t =⇒ tree-graph-stree t = (V ,E ,r)
=⇒ card V = stree-size t

by (simp add: distinct-nodes-stree-size-card-nodes) (metis nodes-tree-graph-stree)

lemma card-tree-graph: tree-graph t = (V ,E ,r) =⇒ card V = tree-size t
unfolding tree-graph-def using ltree-size-postorder-label stree-size-stree-ltree card-tree-graph-stree
by (metis distinct-nodes-postorder-label distinct-nodes-stree-ltree)

58



lemma [termination-simp]: (t, s) ∈ set (zip ts ss) =⇒ size t < Suc (size-list size
ts)

by (metis less-not-refl not-less-eq set-zip-leftD size-list-estimation)

fun obtain-ltree-isomorphism :: ′a ltree ⇒ ′b ltree ⇒ ( ′a ⇀ ′b) where
obtain-ltree-isomorphism (LNode r1 ts) (LNode r2 ss) = fold (++) (map2 ob-

tain-ltree-isomorphism ts ss) [r1 7→r2 ]

fun postorder-relabel-aux :: nat ⇒ ′a ltree ⇒ nat × (nat ⇀ ′a) where
postorder-relabel-aux n (LNode r []) = (n, [n 7→ r ])
| postorder-relabel-aux n (LNode r (t#ts)) =
(let (n ′, f t) = postorder-relabel-aux n t;

(n ′′, f ts) = postorder-relabel-aux (Suc n ′) (LNode r ts) in
(n ′′, f t ++ f ts))

definition postorder-relabel :: ′a ltree ⇒ (nat ⇀ ′a) where
postorder-relabel t = snd (postorder-relabel-aux 0 t)

lemma fst-postorder-label-aux-tree-ltree: fst (postorder-label-aux n (tree-ltree t)) =
fst (postorder-relabel-aux n t)
by (induction n t rule: postorder-relabel-aux.induct) (auto split: prod.split ltree.split)

lemma dom-postorder-relabel-aux: dom (snd (postorder-relabel-aux n t)) = nodes-ltree
(snd (postorder-label-aux n (tree-ltree t)))
proof (induction n t rule: postorder-relabel-aux.induct)
case (1 n r)

then show ?case by (auto split: if-splits)
next

case (2 n r t ts)
obtain n ′ f-t where f-t: postorder-relabel-aux n t = (n ′, f-t) by fastforce
then obtain t ′ where t ′: postorder-label-aux n (tree-ltree t) = (n ′, t ′)

using fst-postorder-label-aux-tree-ltree by (metis fst-eqD prod.exhaust-sel)
obtain n ′′ f-ts where f-ts: postorder-relabel-aux (Suc n ′) (LNode r ts) = (n ′′,

f-ts) by fastforce
then obtain ts ′ r ′ where ts ′: postorder-label-aux (Suc n ′) (tree-ltree (LNode r

ts)) = (n ′′, LNode r ′ ts ′)
using fst-postorder-label-aux-tree-ltree by (metis fst-eqD prod.exhaust-sel ltree.exhaust)

show ?case using 2 f-t f-ts t ′ ts ′ by auto
qed

lemma ran-postorder-relabel-aux: ran (snd (postorder-relabel-aux n t)) = nodes-ltree
t
proof (induction n t rule: postorder-relabel-aux.induct)

case (1 n r)
then show ?case by (simp add: ran-def )

next
case (2 n r t ts)
obtain n ′ f-t where f-t: postorder-relabel-aux n t = (n ′, f-t) by fastforce
obtain n ′′ f-ts where f-ts: postorder-relabel-aux (Suc n ′) (LNode r ts) = (n ′′,

59



f-ts) by fastforce
have dom f-t ∩ dom f-ts = {} using dom-postorder-relabel-aux f-t f-ts
by (metis disjoint-iff fst-eqD fst-postorder-label-aux-tree-ltree nodes-postorder-label-aux-ge

nodes-postorder-label-aux-le not-less-eq-eq prod.exhaust-sel snd-conv)
then show ?case using 2 f-t f-ts by (simp add: ran-map-add)

qed

lemma relabel-ltree-eq: ∀ v∈nodes-ltree t. f v = g v =⇒ relabel-ltree f t = rela-
bel-ltree g t

by (induction t) auto

lemma relabel-postorder-relabel-aux: relabel-ltree (the o snd (postorder-relabel-aux
n t)) (snd (postorder-label-aux n (tree-ltree t))) = t
proof (induction n t rule: postorder-relabel-aux.induct)

case (1 n r)
then show ?case by auto

next
case (2 n r t ts)
obtain n ′ f-t where f-t: postorder-relabel-aux n t = (n ′, f-t) by fastforce
then obtain t ′ where t ′: postorder-label-aux n (tree-ltree t) = (n ′, t ′)

using fst-postorder-label-aux-tree-ltree by (metis fst-eqD prod.exhaust-sel)
obtain n ′′ f-ts where f-ts: postorder-relabel-aux (Suc n ′) (LNode r ts) = (n ′′,

f-ts) by fastforce
then obtain ts ′ r ′ where ts ′: postorder-label-aux (Suc n ′) (tree-ltree (LNode r

ts)) = (n ′′, LNode r ′ ts ′)
using fst-postorder-label-aux-tree-ltree by (metis fst-eqD prod.exhaust-sel ltree.exhaust)
have ts ′-in-f-ts: ∀ v∈nodes-ltree (LNode r ′ ts ′). v ∈ dom f-ts using f-ts ts ′

dom-postorder-relabel-aux
by (metis snd-conv)

have ∀ v∈nodes-ltree t ′. v /∈ dom f-ts using f-ts t ′ ts ′ f-t dom-postorder-relabel-aux
by (metis nodes-postorder-label-aux-ge nodes-postorder-label-aux-le not-less-eq-eq

snd-conv)
then show ?case using 2 f-t f-ts t ′ ts ′ ts ′-in-f-ts
by (auto intro!: relabel-ltree-eq simp: map-add-dom-app-simps(3 ) map-add-dom-app-simps(1 ),

smt (verit, ccfv-threshold) map-add-dom-app-simps(1 ) map-eq-conv rela-
bel-ltree-eq)
qed

lemma relabel-postorder-relabel: relabel-ltree (the o postorder-relabel t) (postorder-label
(tree-ltree t)) = t
unfolding postorder-relabel-def postorder-label-def using relabel-postorder-relabel-aux

by auto

lemma relabel-postorder-aux-inj: distinct-ltree-nodes t =⇒ inj-on (the o snd (postorder-relabel-aux
n t)) (nodes-ltree (snd (postorder-label-aux n (tree-ltree t))))
proof (induction n t rule: postorder-relabel-aux.induct)

case (1 n r)
then show ?case by auto

next

60



case (2 n r t ts)
have disjoint-family-on-ts: disjoint-family-on nodes-ltree (set ts) using 2 (3 ) by

(simp add: disjoint-family-on-def )
obtain n ′ f-t where f-t: postorder-relabel-aux n t = (n ′, f-t) by fastforce
then obtain t ′ where t ′: postorder-label-aux n (tree-ltree t) = (n ′, t ′)

using fst-postorder-label-aux-tree-ltree by (metis fst-eqD prod.exhaust-sel)
obtain n ′′ f-ts where f-ts: postorder-relabel-aux (Suc n ′) (LNode r ts) = (n ′′,

f-ts) by fastforce
then obtain ts ′ r ′ where ts ′: postorder-label-aux (Suc n ′) (tree-ltree (LNode r

ts)) = (n ′′, LNode r ′ ts ′)
using fst-postorder-label-aux-tree-ltree by (metis fst-eqD prod.exhaust-sel ltree.exhaust)

have t ′-in-dom-f-t: nodes-ltree t ′ ⊆ dom f-t using f-t t ′ dom-postorder-relabel-aux
by (metis order-refl snd-conv)

have ∀ v∈nodes-ltree t ′. v /∈ dom f-ts using f-ts ts ′ t ′ dom-postorder-relabel-aux
by (metis nodes-postorder-label-aux-ge nodes-postorder-label-aux-le not-less-eq-eq

snd-conv)
then have f-t ′: ∀ v∈nodes-ltree t ′. the ((f-t ++ f-ts) v) = the (f-t v)

by (simp add: map-add-dom-app-simps(3 ))
have inj-on (λv. the (f-t v)) (nodes-ltree t ′) using 2 ts ′ f-ts f-t t ′ disjoint-family-on-ts

by auto
then have inj-on-t ′: inj-on (λv. the ((f-t ++ f-ts) v)) (nodes-ltree t ′)

by (metis (mono-tags, lifting) inj-on-cong f-t ′)
have ts ′-in-dom-f-ts: ∀ v∈nodes-ltree (LNode r ′ ts ′). v ∈ dom f-ts using f-ts ts ′

dom-postorder-relabel-aux
by (metis snd-conv)

then have f-ts ′: ∀ v∈nodes-ltree (LNode r ′ ts ′). the ((f-t ++ f-ts) v) = the (f-ts
v)

by (simp add: map-add-dom-app-simps(1 ))
have inj-on (λv. the (f-ts v)) (nodes-ltree (LNode r ′ ts ′)) using 2 ts ′ f-ts f-t

disjoint-family-on-ts by simp
then have inj-on-ts ′: inj-on (λv. the ((f-t ++ f-ts) v)) (nodes-ltree (LNode r ′

ts ′)) using f-ts ′ inj-on-cong by fast

have (λv. the ((f-t ++ f-ts) v)) ‘ nodes-ltree t ′ ∩ (λv. the ((f-t ++ f-ts) v)) ‘
nodes-ltree (LNode r ′ ts ′) = {}

proof−
have (λv. the ((f-t ++ f-ts) v)) ‘ nodes-ltree t ′ = (λv. the (f-t v)) ‘ nodes-ltree

t ′ using f-t ′ by simp
also have . . . ⊆ ran f-t using t ′-in-dom-f-t ran-def by fastforce
also have . . . = nodes-ltree t by (metis f-t ran-postorder-relabel-aux snd-conv)
finally have f-nodes-t ′: (λv. the ((f-t ++ f-ts) v)) ‘ nodes-ltree t ′ ⊆ nodes-ltree

t .

have (λv. the ((f-t ++ f-ts) v)) ‘ nodes-ltree (LNode r ′ ts ′) = (λv. the (f-ts v))
‘ nodes-ltree (LNode r ′ ts ′)

using f-ts ′ by (simp del: nodes-ltree.simps)
also have . . . ⊆ ran f-ts using ts ′-in-dom-f-ts ran-def by fastforce
also have . . . = nodes-ltree (LNode r ts) by (metis f-ts ran-postorder-relabel-aux

61



snd-conv)
finally have f-nodes-ts ′: (λv. the ((f-t ++ f-ts) v)) ‘ nodes-ltree (LNode r ′ ts ′)

⊆ nodes-ltree (LNode r ts) .

have nodes-ltree t ∩ nodes-ltree (LNode r ts) = {} using 2 (3 ) by (auto simp
add: disjoint-family-on-def )

then show ?thesis using f-nodes-t ′ f-nodes-ts ′ by blast
qed
then have inj-on (λv. the ((f-t ++ f-ts) v)) (nodes-ltree t ′ ∪ nodes-ltree (LNode

r ′ ts ′)) using inj-on-t ′ inj-on-ts ′ inj-on-Un by fast
then show ?case using f-t t ′ f-ts ts ′ by simp

qed

lemma relabel-postorder-inj: distinct-ltree-nodes t =⇒ inj-on (the o postorder-relabel
t) (nodes-ltree (postorder-label (tree-ltree t)))
unfolding postorder-relabel-def postorder-label-def using relabel-postorder-aux-inj

by blast

lemma (in rtree) distinct-nodes-stree-of-graph: distinct-stree-nodes (stree-of-graph
(V ,E ,r))

using rtree-axioms
proof (induction (V ,E ,r) arbitrary: V E r rule: stree-of-graph.induct)

case (1 V T ET r)
then interpret t: rtree V T ET r by simp
obtain V ′ E ′ where VE ′: t.remove-vertex r = (V ′, E ′) by (simp add: t.remove-vertex-def )
interpret subg: subgraph V ′ E ′ V T ET using t.subgraph-remove-vertex VE ′ by

metis
interpret g ′: fin-ulgraph V ′ E ′ using fin-ulgraph.intro subg.is-finite-subgraph

t.fin-graph-system-axioms subg.is-subgraph-ulgraph t.ulgraph-axioms by blast

have finite (stree-of-graph ‘ t.subtrees) using t.finite-subtrees by blast
then have fset-Abs-fset-subtrees[simp]: fset (Abs-fset (stree-of-graph ‘ t.subtrees))

= stree-of-graph ‘ t.subtrees by (simp add: Abs-fset-inverse)

have r-notin-subtrees: ∀ s∈t.subtrees. r /∈ nodes-stree (stree-of-graph s)
proof

fix s assume subtree: s ∈ t.subtrees
then obtain S ES rS where s: s = (S ,ES ,rS) using prod.exhaust by metis
then interpret s: rtree S ES rS using t.rtree-subtree subtree by blast

have S ∈ g ′.connected-components using subtree VE ′ unfolding s t.subtrees-def
by auto

then have nodes-stree (stree-of-graph (S ,ES ,rS)) ⊆ V ′ using s.nodes-stree-stree-of-graph
g ′.connected-component-wf by auto

then show r /∈ nodes-stree (stree-of-graph s) using VE ′ unfolding s t.remove-vertex-def
by blast

qed

have nodes-stree (stree-of-graph s1 ) ∩ nodes-stree (stree-of-graph s2 ) = {}
if s1-subtree: s1 ∈ t.subtrees and s2-subtree: s2 ∈ t.subtrees and ne: stree-of-graph

62



s1 6= stree-of-graph s2 for s1 s2
proof−

obtain V1 E1 r1 where s1 : s1 = (V1 ,E1 ,r1 ) using prod.exhaust by metis
then interpret s1 : rtree V1 E1 r1 using t.rtree-subtree s1-subtree by blast
have V1-conn-comp: V1 ∈ g ′.connected-components using s1-subtree VE ′ un-

folding t.subtrees-def s1 by auto
then have s1-conn-comp: nodes-stree (stree-of-graph s1 ) ∈ g ′.connected-components

unfolding s1 using s1 .nodes-stree-stree-of-graph by auto
obtain V2 E2 r2 where s2 : s2 = (V2 ,E2 ,r2 ) using prod.exhaust by metis
then interpret s2 : rtree V2 E2 r2 using t.rtree-subtree s2-subtree by blast
have V2-conn-comp: V2 ∈ g ′.connected-components using s2-subtree VE ′ un-

folding t.subtrees-def s2 by auto
have V1 6= V2 using s1 s2 s1-subtree s2-subtree VE ′ ne unfolding t.subtrees-def

by auto
then have V1 ∩ V2 = {} using V1-conn-comp V2-conn-comp g ′.disjoint-connected-components

unfolding disjoint-def by blast
then show ?thesis using s1 s2 s1 .nodes-stree-stree-of-graph s2 .nodes-stree-stree-of-graph

by simp
qed
then have disjoint-family-on nodes-stree (stree-of-graph ‘ t.subtrees)

unfolding disjoint-family-on-def by blast
then show ?case using 1 t.rtree-subtree r-notin-subtrees by auto

qed

lemma disintct-nodes-ltree-stree: distinct-stree-nodes t =⇒ distinct-ltree-nodes (ltree-stree
t)
using distinct-ltree-stree-subtrees by (induction t) (auto simp: disjoint-family-on-def ,

metis disjoint-iff )

lemma (in rtree) tree-graph-tree-of-graph: tree-graph (tree-ltree (ltree-stree (stree-of-graph
(V ,E ,r)))) 'r (V ,E ,r)
proof−

define t where t = (V ,E ,r)
define s where s = stree-of-graph t
define l where l = ltree-stree s
define l ′ where l ′ = postorder-label (tree-ltree l)
define s ′ where s ′ = stree-ltree l ′
define t ′ where t ′ = tree-graph-stree s ′

obtain V ′ E ′ r ′ where t ′: t ′ = (V ′,E ′,r ′) using prod.exhaust by metis
interpret t ′: rtree V ′ E ′ r ′ using t ′ rtree-tree-graph unfolding tree-graph-def

t ′-def s ′-def l ′-def by simp
have distinct-ltree-nodes l using distinct-nodes-stree-of-graph disintct-nodes-ltree-stree

unfolding l-def s-def t-def by blast
then obtain f where inj-on-l ′: inj-on f (nodes-ltree l ′) and relabel-l ′: relabel-ltree

f l ′ = l
unfolding l ′-def using relabel-postorder-relabel relabel-postorder-inj by blast

then have relabel-stree f s ′ = s unfolding l-def s ′-def
using relabel-stree-relabel-ltree by fastforce

then have app-rgraph-iso: app-rgraph-isomorphism f t ′= t unfolding s-def t ′-def

63



t-def
using t ′ tree-graph-stree-of-graph by (simp add: app-rgraph-iso-tree-graph-stree)

have inj-on f (nodes-stree s ′) unfolding s ′-def using inj-on-l ′ by simp
then have inj-on-V ′: inj-on f V ′ using t ′ nodes-tree-graph-stree unfolding t ′-def

by fast
have (V ′,E ′,r ′) 'r (V ,E ,r) using app-rgraph-iso t ′.rgraph-isomorph-app-iso

inj-on-V ′ unfolding t ′ t-def by auto
then show ?thesis using t ′ unfolding tree-graph-def t-def s-def l-def l ′-def s ′-def

t ′-def by auto
qed

lemma (in rtree) stree-size-stree-of-graph[simp]: stree-size (stree-of-graph (V ,E ,r))
= card V
using distinct-nodes-stree-of-graph by (simp add: distinct-nodes-stree-size-card-nodes

del: stree-of-graph.simps)

lemma inj-ltree-stree: inj ltree-stree
proof

fix t1 :: ′a stree
and t2 :: ′a stree

assume ltree-stree t1 = ltree-stree t2
then show t1 = t2
proof (induction t1 arbitrary: t2 )

case (SNode r1 ts1 )
obtain r2 ts2 where t2 : t2 = SNode r2 ts2 using stree.exhaust by blast

then show ?case using SNode by (simp, metis SNode.prems stree.inject
stree-ltree-stree)

qed
qed

lemma ltree-size-ltree-stree[simp]: ltree-size (ltree-stree t) = stree-size t
using inj-ltree-stree by (induction t) (auto simp: sum-list-distinct-conv-sum-set[OF

distinct-ltree-stree-subtrees] fsum.F .rep-eq,
smt (verit, best) inj-on-def stree-ltree-stree sum.reindex-cong)

lemma tree-size-tree-ltree[simp]: tree-size (tree-ltree t) = ltree-size t
by (induction t) (auto, metis comp-eq-dest-lhs map-cong)

lemma regular-ltree-stree: regular-ltree (ltree-stree t)
using sorted-wrt-ltree-stree-subtrees by (induction t) auto

lemma regular-tree-ltree: regular-ltree t =⇒ regular (tree-ltree t)
by (induction t) (auto simp: sorted-map)

lemma (in rtree) tree-of-graph-regular-n-tree: tree-ltree (ltree-stree (stree-of-graph
(V ,E ,r))) ∈ regular-n-trees (card V ) (is ?t ∈ ?A)
proof−

have size-t: tree-size ?t = card V by (simp del: stree-of-graph.simps)
have regular ?t using regular-ltree-stree regular-tree-ltree by blast

64



then show ?thesis using size-t unfolding regular-n-trees-def by blast
qed

lemma (in rtree) ex-regular-n-tree: ∃ t∈regular-n-trees (card V ). tree-graph t 'r

(V ,E ,r)
using tree-graph-tree-of-graph tree-of-graph-regular-n-tree by blast

3.4 Injectivity with respect to isomorphism
lemma app-rgraph-isomorphism-relabel-stree: app-rgraph-isomorphism f (tree-graph-stree
t) = tree-graph-stree (relabel-stree f t)

unfolding tree-graph-stree-def by simp

Lemmas relating the connected components of the tree graph with the root
removed to the subtrees of an stree.
context

fixes t r ts V ′ E ′

assumes t: t = SNode r ts
assumes distinct-nodes: distinct-stree-nodes t
and remove-vertex: graph-system.remove-vertex (nodes-stree t) (tree-graph-edges

t) r = (V ′,E ′)
begin

interpretation t: rtree nodes-stree t tree-graph-edges t r using rtree-tree-graph-edges[OF
distinct-nodes] unfolding t by simp

interpretation subg: ulsubgraph V ′ E ′ nodes-stree t tree-graph-edges t using re-
move-vertex t.subgraph-remove-vertex t.ulgraph-axioms ulsubgraph-def t by blast

interpretation g ′: ulgraph V ′ E ′ using subg.is-subgraph-ulgraph t.ulgraph-axioms
by blast

lemma neighborhood-root: t.neighborhood r = root-stree ‘ fset ts
unfolding t.neighborhood-def t.vert-adj-def using distinct-nodes tree-graph-edges-wf

root-stree-wf t
by (auto, blast, fastforce, blast, blast)

lemma V ′: V ′ = nodes-stree t − {r}
using remove-vertex distinct-nodes unfolding t.remove-vertex-def by blast

lemma E ′: E ′ =
⋃

(tree-graph-edges ‘ fset ts)
using tree-graph-edges-wf distinct-nodes remove-vertex t unfolding t.remove-vertex-def

t.vincident-def by auto

lemma subtrees-not-connected:
assumes s-in-ts: s ∈ fset ts

and e: {u, v} ∈ E ′

and u-in-s: u ∈ nodes-stree s
shows v ∈ nodes-stree s

65



proof−
have {u,v} ∈ tree-graph-edges s using e u-in-s tree-graph-edges-wf s-in-ts dis-

tinct-nodes t unfolding E ′

by (auto simp: disjoint-family-on-def ,
smt (verit, del-insts) insert-absorb insert-disjoint(2 ) insert-subset tree-graph-edges-wf )

then show ?thesis using tree-graph-edges-wf u-in-s by blast
qed

lemma subtree-connected-components:
assumes s-in-ts: s ∈ fset ts
shows nodes-stree s ∈ g ′.connected-components

proof−
interpret s: rtree nodes-stree s tree-graph-edges s root-stree s using rtree-tree-graph-edges

distinct-nodes s-in-ts t by auto
interpret subg ′: ulsubgraph nodes-stree s tree-graph-edges s V ′ E ′ using dis-

tinct-nodes s-in-ts t by unfold-locales (auto simp: V ′ E ′)
have conn-set: g ′.is-connected-set (nodes-stree s) using s.connected subg ′.is-connected-set

by blast
then show ?thesis using subtrees-not-connected s-in-ts g ′.connected-set-connected-component

nodes-stree-non-empty by fast
qed

lemma connected-components-subtrees: g ′.connected-components = nodes-stree ‘
fset ts
proof−

have nodes-ts-ss-conn-comps: nodes-stree ‘ fset ts ⊆ g ′.connected-components
using subtree-connected-components by blast

have Un-nodes-ts:
⋃
(nodes-stree ‘ fset ts) = V ′ unfolding V ′ using dis-

tinct-nodes t by auto
show ?thesis using g ′.subset-conn-comps-if-Union[OF nodes-ts-ss-conn-comps

Un-nodes-ts] by simp
qed

lemma induced-edges-subtree:
assumes s-in-ts: s ∈ fset ts
shows graph-system.induced-edges E ′ (nodes-stree s) = tree-graph-edges s

proof−
have graph-system.induced-edges E ′ (nodes-stree s) = {e ∈

⋃
(tree-graph-edges

‘ fset ts). e ⊆ nodes-stree s} using subg.H .induced-edges-def E ′ by auto
also have . . . = tree-graph-edges s

using s-in-ts distinct-nodes tree-graph-edges-wf t
by (auto simp: disjoint-family-on-def ,

metis card.empty card-tree-graph-edges-distinct inf .bounded-iff nat.simps(3 )
numeral-2-eq-2 subset-empty)

finally show ?thesis .
qed

lemma root-subtree:
assumes s-in-ts: s ∈ fset ts

66



shows (THE r ′. r ′ ∈ (nodes-stree s) ∧ t.vert-adj r r ′) = root-stree s
proof
show root-stree s ∈ nodes-stree s ∧ t.vert-adj r (root-stree s) unfolding t.vert-adj-def

using t root-stree-wf s-in-ts by auto
next

fix r ′

assume r ′: r ′ ∈ nodes-stree s ∧ t.vert-adj r r ′

then have edge-in-root-edges: {r , r ′} ∈ (λt. {r , root-stree t}) ‘ fset ts
unfolding t.vert-adj-def using distinct-nodes tree-graph-edges-wf t by fastforce

have ∀ s ′∈fset ts. s ′ 6= s −→ r ′ /∈ nodes-stree s ′

using distinct-nodes s-in-ts r ′ unfolding t by (auto simp: disjoint-family-on-def )
then show r ′= root-stree s using edge-in-root-edges root-stree-wf by (smt (verit)

doubleton-eq-iff image-iff )
qed

lemma subtrees-tree-subtrees: t.subtrees = tree-graph-stree ‘ fset ts
unfolding t.subtrees-def tree-graph-stree-def using remove-vertex
by (simp add: connected-components-subtrees image-comp induced-edges-subtree

root-subtree)

end

lemma stree-of-graph-tree-graph-stree[simp]: distinct-stree-nodes t =⇒ stree-of-graph
(tree-graph-stree t) = t
proof (induction t)

case (SNode r ts)
define t where t: t = SNode r ts
then have root-t[simp]: root-stree t = r by simp
have distinct-t: distinct-stree-nodes t using SNode(2 ) t by blast
interpret t: rtree nodes-stree t tree-graph-edges t r using SNode(2 ) rtree-tree-graph-edges

t by (metis root-stree.simps)
obtain V ′ E ′ where remove-vertex: t.remove-vertex r = (V ′,E ′) by fastforce

have stree-of-graph (tree-graph-stree t) = SNode r ts unfolding tree-graph-stree-def
using SNode t.rtree-axioms t.rtree-subtree
by (simp add: subtrees-tree-subtrees[OF t distinct-t remove-vertex] image-comp

fset-inverse)
then show ?case unfolding t .

qed

lemma distinct-nodes-relabel: distinct-stree-nodes t =⇒ inj-on f (nodes-stree t)
=⇒ distinct-stree-nodes (relabel-stree f t)

by (induction t) (auto simp: image-UN disjoint-family-on-def inj-on-def , metis
IntI empty-iff )

lemma relabel-stree-app-rgraph-isomorphism:
assumes distinct-stree-nodes t

and inj-on f (nodes-stree t)
shows relabel-stree f t = stree-of-graph (app-rgraph-isomorphism f (tree-graph-stree

67



t))
using assms by (auto simp: app-rgraph-isomorphism-relabel-stree distinct-nodes-relabel)

lemma (in rgraph-isomorphism) app-rgraph-isomorphism-G: app-rgraph-isomorphism
f (VG,EG,rG) = (VH ,EH ,rH)

using bij-f edge-preserving root-preserving unfolding bij-betw-def by simp

lemma tree-graphs-iso-strees-iso:
assumes tree-graph-stree t1 'r tree-graph-stree t2

and distinct-t1 : distinct-stree-nodes t1
and distinct-t2 : distinct-stree-nodes t2

shows ∃ f . inj-on f (nodes-stree t1 ) ∧ relabel-stree f t1 = t2
proof−
obtain f where rgraph-isomorphism (nodes-stree t1 ) (tree-graph-edges t1 ) (root-stree

t1 ) (nodes-stree t2 ) (tree-graph-edges t2 ) (root-stree t2 ) f
using assms unfolding tree-graph-stree-def by auto

then interpret rgraph-isomorphism nodes-stree t1 tree-graph-edges t1 root-stree
t1 nodes-stree t2 tree-graph-edges t2 root-stree t2 f .

have inj: inj-on f (nodes-stree t1 ) using bij-f bij-betw-imp-inj-on by blast
have relabel-stree f t1 = t2
unfolding relabel-stree-app-rgraph-isomorphism[OF distinct-t1 inj] tree-graph-stree-def

app-rgraph-isomorphism-G
using stree-of-graph-tree-graph-stree[OF distinct-t2 , unfolded tree-graph-stree-def ]

by blast
then show ?thesis using inj by blast

qed

Skip the ltree representation as it introduces complications with the proofs
fun tree-stree :: ′a stree ⇒ tree where

tree-stree (SNode r ts) = Node (sorted-list-of-multiset (image-mset tree-stree
(mset-set (fset ts))))

fun postorder-label-stree-aux :: nat ⇒ tree ⇒ nat × nat stree where
postorder-label-stree-aux n (Node []) = (n, SNode n {||})
| postorder-label-stree-aux n (Node (t#ts)) =
(let (n ′, t ′) = postorder-label-stree-aux n t in

case postorder-label-stree-aux (Suc n ′) (Node ts) of
(n ′′, SNode r ts ′) ⇒ (n ′′, SNode r (finsert t ′ ts ′)))

definition postorder-label-stree :: tree ⇒ nat stree where
postorder-label-stree t = snd (postorder-label-stree-aux 0 t)

lemma fst-postorder-label-stree-aux-eq: fst (postorder-label-stree-aux n t) = fst (postorder-label-aux
n t)

by (induction n t rule: postorder-label-stree-aux.induct) (auto split: prod.split
stree.split ltree.split)

lemma postorder-label-stree-aux-eq: snd (postorder-label-stree-aux n t) = stree-ltree
(snd (postorder-label-aux n t))

68



by (induction n t rule: postorder-label-aux.induct) (simp, simp split: prod.split
stree.split ltree.split,

metis fset-of-list-map fst-conv fst-postorder-label-stree-aux-eq sndI stree.inject
stree-ltree.simps)

lemma postorder-label-stree-eq: postorder-label-stree t = stree-ltree (postorder-label
t)
using postorder-label-stree-aux-eq unfolding postorder-label-stree-def postorder-label-def

by blast

lemma postorder-label-stree-aux-mono: fst (postorder-label-stree-aux n t) ≥ n
by (induction n t rule: postorder-label-stree-aux.induct) (auto split: prod.split

stree.split, fastforce)

lemma nodes-postorder-label-stree-aux-ge: postorder-label-stree-aux n t = (n ′, t ′)
=⇒ v ∈ nodes-stree t ′ =⇒ v ≥ n

by (induction n t arbitrary: n ′ t ′ rule: postorder-label-stree-aux.induct,
auto split: prod.splits stree.splits,
(metis fst-conv le-SucI order .trans postorder-label-stree-aux-mono)+)

lemma nodes-postorder-label-stree-aux-le: postorder-label-stree-aux n t = (n ′, t ′)
=⇒ v ∈ nodes-stree t ′ =⇒ v ≤ n ′

by (induction n t arbitrary: n ′ t ′ rule: postorder-label-stree-aux.induct,
auto split: prod.splits stree.splits,
metis Suc-leD fst-conv order-trans postorder-label-stree-aux-mono,
blast)

lemma distinct-nodes-postorder-label-stree-aux: distinct-stree-nodes (snd (postorder-label-stree-aux
n t))
proof (induction n t rule: postorder-label-stree-aux.induct)

case (1 n)
then show ?case by (simp add: disjoint-family-on-def )

next
case (2 n t ts)
obtain n ′ t ′ where t ′: postorder-label-stree-aux n t = (n ′, t ′) by fastforce
obtain n ′′ r ts ′ where ts ′: postorder-label-stree-aux (Suc n ′) (Node ts) = (n ′′,

SNode r ts ′)
by (metis eq-snd-iff stree.exhaust)

then have r ≥ Suc n ′ using nodes-postorder-label-stree-aux-ge by auto
then have r-notin-t ′: r /∈ nodes-stree t ′ using nodes-postorder-label-stree-aux-le[OF

t ′] by fastforce
have disjoint-family-on nodes-stree (insert t ′ (fset ts ′))
using 2 t ′ ts ′ nodes-postorder-label-stree-aux-le[OF t ′] nodes-postorder-label-stree-aux-ge[OF

ts ′]
by (auto simp add: disjoint-family-on-def , fastforce+)

then show ?case using 2 t ′ ts ′ r-notin-t ′ by simp
qed

lemma distinct-nodes-postorder-label-stree: distinct-stree-nodes (postorder-label-stree

69



t)
unfolding postorder-label-stree-def using distinct-nodes-postorder-label-stree-aux

by simp

lemma tree-stree-postorder-label-stree-aux: regular t =⇒ tree-stree (snd (postorder-label-stree-aux
n t)) = t
proof (induction t rule: postorder-label-stree-aux.induct)

case (1 n)
then show ?case by auto

next
case (2 n t ts)
obtain n ′ t ′ where nt ′: postorder-label-stree-aux n t = (n ′, t ′) by fastforce
obtain n ′′ r ts ′ where nt ′′: postorder-label-stree-aux (Suc n ′) (Node ts) = (n ′′,

SNode r ts ′)
using stree.exhaust prod.exhaust by metis

have t ′ /∈ fset ts ′ using nodes-postorder-label-stree-aux-le[OF nt ′] nodes-postorder-label-stree-aux-ge[OF
nt ′′]

by (auto, meson not-less-eq-eq root-stree-wf )
then show ?case using 2 nt ′ nt ′′ by (auto simp: insort-is-Cons)

qed

lemma tree-ltree-postorder-label-stree[simp]: regular t =⇒ tree-stree (postorder-label-stree
t) = t

using tree-stree-postorder-label-stree-aux unfolding postorder-label-stree-def by
blast

lemma inj-relabel-subtrees:
assumes distinct-nodes: distinct-stree-nodes (SNode r ts)

and inj-on-nodes: inj-on f (nodes-stree (SNode r ts))
shows inj-on (relabel-stree f ) (fset ts)

proof
fix t1 t2
assume t1-subtree: t1 ∈ fset ts

and t2-subtree: t2 ∈ fset ts
and relabel-eq: relabel-stree f t1 = relabel-stree f t2

then have nodes-stree (relabel-stree f t1 ) = nodes-stree (relabel-stree f t2 ) by
simp

then have f ‘ nodes-stree t1 = f ‘ nodes-stree t2 by simp
then have nodes-stree t1 = nodes-stree t2 using inj-on-nodes t1-subtree t2-subtree

inj-on-image[of f nodes-stree ‘ fset ts]
by (simp, meson image-eqI inj-onD)

then show t1 = t2 using distinct-nodes nodes-stree-non-empty t1-subtree t2-subtree
by (auto simp add: disjoint-family-on-def , force)

qed

lemma inj-on-subtree: inj-on f (nodes-stree (SNode r ts)) =⇒ t ∈ fset ts =⇒ inj-on
f (nodes-stree t)

unfolding inj-on-def by simp

70



lemma tree-stree-relabel-stree: distinct-stree-nodes t =⇒ inj-on f (nodes-stree t)
=⇒ tree-stree (relabel-stree f t) = tree-stree t
proof (induction t)

case (SNode r ts)
then have IH : ∀ t∈# mset-set (fset ts). tree-stree (relabel-stree f t) = tree-stree

t
using inj-on-subtree[OF SNode(3 )] elem-mset-set finite-fset by auto

show ?case using inj-relabel-subtrees[OF SNode(2 ) SNode(3 )]
by (auto simp add: mset-set-image-inj, metis IH image-mset-cong)

qed

lemma tree-ltree-relabel-ltree-postorder-label-stree: regular t =⇒ inj-on f (nodes-stree
(postorder-label-stree t)) =⇒ tree-stree (relabel-stree f (postorder-label-stree t)) = t

using tree-stree-relabel-stree distinct-nodes-postorder-label-stree by fastforce

lemma postorder-label-stree-inj: regular t1 =⇒ regular t2 =⇒ inj-on f (nodes-stree
(postorder-label-stree t1 )) =⇒ relabel-stree f (postorder-label-stree t1 ) = postorder-label-stree
t2 =⇒ t1 = t2

using tree-ltree-relabel-ltree-postorder-label-stree by fastforce

lemma tree-graph-inj-iso: regular t1 =⇒ regular t2 =⇒ tree-graph t1 'r tree-graph
t2 =⇒ t1 = t2
using postorder-label-stree-inj tree-graphs-iso-strees-iso distinct-nodes-postorder-label

distinct-nodes-stree-ltree postorder-label-stree-eq unfolding tree-graph-def by
metis

lemma tree-graph-inj:
assumes regular-t1 : regular t1

and regular-t2 : regular t2
and tree-graph-eq: tree-graph t1 = tree-graph t2

shows t1 = t2
proof−

obtain V E r where g: tree-graph t1 = (V ,E ,r) using prod.exhaust by metis
then interpret rtree V E r using rtree-tree-graph by auto
have tree-graph t1 'r tree-graph t2 using tree-graph-eq g rgraph-isomorph-refl

by simp
then show ?thesis using tree-graph-inj-iso regular-t1 regular-t2 by simp

qed

end

4 Enumeration of Rooted Trees
theory Rooted-Tree-Enumeration

imports Rooted-Tree
begin

Algorithm inspired by works of Beyer and Hedetniemi [1], performing the
same operations but directly on a recursive tree data structure instead of

71



level sequences.
definition n-rtree-graphs :: nat ⇒ nat rpregraph set where

n-rtree-graphs n = {(V ,E ,r). rtree V E r ∧ card V = n}

Recursive definition on the tree structure without using level sequences
fun trim-tree :: nat ⇒ tree ⇒ nat × tree where

trim-tree 0 t = (0 , t)
| trim-tree (Suc 0 ) t = (0 , Node [])
| trim-tree (Suc n) (Node []) = (n, Node [])
| trim-tree n (Node (t#ts)) =
(case trim-tree n (Node ts) of
(0 , t ′) ⇒ (0 , t ′) |
(n1 , Node ts ′) ⇒

let (n2 , t ′) = trim-tree n1 t
in (n2 , Node (t ′#ts ′)))

lemma fst-trim-tree-lt[termination-simp]: n 6= 0 =⇒ fst (trim-tree n t) < n
by (induction n t rule: trim-tree.induct, auto split: prod.split nat.split tree.split,

fastforce)

fun fill-tree :: nat ⇒ tree ⇒ tree list where
fill-tree 0 - = []
| fill-tree n t =

(let (n ′, t ′) = trim-tree n t
in fill-tree n ′ t ′ @ [t ′])

fun next-tree-aux :: nat ⇒ tree ⇒ tree option where
next-tree-aux n (Node []) = None
| next-tree-aux n (Node (Node [] # ts)) = next-tree-aux (Suc n) (Node ts)
| next-tree-aux n (Node (Node (Node [] # rs) # ts)) = Some (Node (fill-tree (Suc
n) (Node rs) @ (Node rs) # ts))
| next-tree-aux n (Node (t # ts)) = Some (Node (the (next-tree-aux n t) # ts))

fun next-tree :: tree ⇒ tree option where
next-tree t = next-tree-aux 0 t

lemma next-tree-aux-None-iff : next-tree-aux n t = None ←→ height t < 2
proof (induction n t rule: next-tree-aux.induct)

case (1 n)
then show ?case by auto

next
case (2 n ts)
then show ?case by (cases ts) auto

next
case (3 n rs ts)
then show ?case by (auto simp: Max-gr-iff )

next
case (4 n vc vd vb ts)

72



then show ?case
by (metis One-nat-def Suc-n-not-le-n dual-order .trans height-Node-cons le-add1

less-2-cases
next-tree-aux.simps(4 ) option.simps(3 ) plus-1-eq-Suc)

qed

lemma next-tree-Some-iff : (∃ t ′. next-tree t = Some t ′) ←→ height t ≥ 2
using next-tree-aux-None-iff by (metis linorder-not-less next-tree.simps not-Some-eq)

4.1 Enumeration is monotonically decreasing
lemma trim-id: trim-tree n t = (Suc n ′, t ′) =⇒ t = t ′

by (induction n t arbitrary: n ′ t ′ rule: trim-tree.induct) (auto split: prod.splits
nat.splits tree.splits)

lemma trim-tree-le: (n ′, t ′) = trim-tree n t =⇒ t ′ ≤ t
using trim-id by (induction n t arbitrary: n ′ t ′ rule: trim-tree.induct)
(auto split: prod.splits tree.splits nat.splits simp: order-less-imp-le tree-less-cons ′,

fastforce)

lemma fill-tree-le: r ∈ set (fill-tree n t) =⇒ r ≤ t
using trim-tree-le by (induction n t rule: fill-tree.induct) (auto, fastforce)

lemma next-tree-aux-lt: height t ≥ 2 =⇒ the (next-tree-aux n t) < t
proof (induction n t rule: next-tree-aux.induct)

case (1 n)
then show ?case by auto

next
case (2 n ts)
then show ?case using tree-less-cons ′ by (cases ts) auto

next
case (3 n rs ts)
then show ?case using tree-less-comm-suffix2 tree-less-cons by simp

next
case (4 n vc vd vb ts)
have height (Node (Node (vc # vd) # vb)) ≥ 2 unfolding numeral-2-eq-2
by (metis dual-order .antisym height-Node-cons less-eq-nat.simps(1 ) not-less-eq-eq)

then show ?case using 4 tree-less-cons2 by simp
qed

lemma next-tree-lt: height t ≥ 2 =⇒ the (next-tree t) < t
using next-tree-aux-lt by simp

lemma next-tree-lt ′: next-tree t = Some t ′ =⇒ t ′ < t
using next-tree-lt next-tree-Some-iff by fastforce

4.2 Size preservation
lemma size-trim-tree: n 6= 0 =⇒ trim-tree n t = (n ′, t ′) =⇒ n ′ + tree-size t ′ = n

73



by (induction n t arbitrary: n ′ t ′ rule: trim-tree.induct) (auto split: prod.splits
nat.splits tree.splits)

lemma size-fill-tree: sum-list (map tree-size (fill-tree n t)) = n
using size-trim-tree by (induction n t rule: fill-tree.induct) (auto split: prod.split)

lemma size-next-tree-aux: height t ≥ 2 =⇒ tree-size (the (next-tree-aux n t)) =
tree-size t + n
proof (induction n t rule: next-tree-aux.induct)

case (1 n)
then show ?case by auto

next
case (2 n ts)
then show ?case by (cases ts) auto

next
case (3 n rs ts)
then show ?case using size-fill-tree by (auto simp del: fill-tree.simps)

next
case (4 n vc vd vb ts)
have height-t: height (Node (Node (vc # vd) # vb)) ≥ 2 unfolding numeral-2-eq-2
by (metis dual-order .antisym height-Node-cons less-eq-nat.simps(1 ) not-less-eq-eq)

then show ?case using 4 by auto
qed

lemma size-next-tree: height t ≥ 2 =⇒ tree-size (the (next-tree t)) = tree-size t
using size-next-tree-aux by simp

lemma size-next-tree ′: next-tree t = Some t ′ =⇒ tree-size t ′ = tree-size t
using size-next-tree next-tree-Some-iff by fastforce

4.3 Setup for termination proof
definition lt-n-trees n ≡ {t. tree-size t ≤ n}

lemma n-trees-eq: n-trees n = Node ‘ {ts. tree-size (Node ts) = n}
proof−

have n-trees n = {Node ts | ts. tree-size (Node ts) = n} unfolding n-trees-def
by (metis tree-size.cases)

then show ?thesis by blast
qed

lemma lt-n-trees-eq: lt-n-trees (Suc n) = Node ‘ {ts. tree-size (Node ts) ≤ Suc n}
proof−

have lt-n-trees (Suc n) = {Node ts | ts. tree-size (Node ts) ≤ Suc n} unfolding
lt-n-trees-def by (metis tree-size.cases)

then show ?thesis by blast
qed

lemma finite-lt-n-trees: finite (lt-n-trees n)

74



proof (induction n)
case 0
then show ?case unfolding lt-n-trees-def using not-finite-existsD not-less-eq-eq

tree-size-ge-1 by auto
next

case (Suc n)
have ∀ ts∈{ts. tree-size (Node ts) ≤ Suc n}. set ts ⊆ lt-n-trees n unfolding

lt-n-trees-def using tree-size-children by fastforce

have {ts. tree-size (Node ts) ≤ Suc n} = {ts. tree-size (Node ts) ≤ Suc n ∧ set
ts ⊆ lt-n-trees n ∧ length ts ≤ n} unfolding lt-n-trees-def using tree-size-children
length-children by fastforce

then have finite {ts. tree-size (Node ts) ≤ Suc n} using finite-lists-length-le[OF
Suc.IH ] by auto

then show ?case unfolding lt-n-trees-eq by blast
qed

lemma n-trees-subset-lt-n-trees: n-trees n ⊆ lt-n-trees n
unfolding n-trees-def lt-n-trees-def by blast

lemma finite-n-trees: finite (n-trees n)
using n-trees-subset-lt-n-trees finite-lt-n-trees rev-finite-subset by metis

4.4 Algorithms for enumeration
fun greatest-tree :: nat ⇒ tree where

greatest-tree (Suc 0 ) = Node []
| greatest-tree (Suc n) = Node [greatest-tree n]

function n-tree-enum-aux :: tree ⇒ tree list where
n-tree-enum-aux t =
(case next-tree t of None ⇒ [t] | Some t ′⇒ t # n-tree-enum-aux t ′)

by pat-completeness auto

fun n-tree-enum :: nat ⇒ tree list where
n-tree-enum 0 = []
| n-tree-enum n = n-tree-enum-aux (greatest-tree n)

termination n-tree-enum-aux
proof (relation measure (λt. card {r . r < t ∧ tree-size r = tree-size t}), auto)

fix t t ′ assume t-t ′: next-tree-aux 0 t = Some t ′

then have height-t: height t ≥ 2 using next-tree-Some-iff by auto
then have t ′ < t using t-t ′ next-tree-lt by fastforce
have size-t ′-t: tree-size t ′ = tree-size t using size-next-tree height-t t-t ′ by fast-

force
let ?meas-t ′ = {r . r < t ′ ∧ tree-size r = tree-size t ′}
let ?meas-t = {r . r < t ∧ tree-size r = tree-size t}
have fin: finite ?meas-t using finite-n-trees unfolding n-trees-def by auto
have ?meas-t ′ ⊆ ?meas-t using ‹t ′ < t› size-t ′-t by auto

75



then show card {r . r < t ′ ∧ tree-size r = tree-size t ′} < card {r . r < t ∧
tree-size r = tree-size t}

using fin ‹t ′ < t› psubset-card-mono size-t ′-t by auto
qed

definition n-rtree-graph-enum :: nat ⇒ nat rpregraph list where
n-rtree-graph-enum n = map tree-graph (n-tree-enum n)

4.5 Regularity
lemma regular-trim-tree: regular t =⇒ regular (snd (trim-tree n t))

by (induction n t rule: trim-tree.induct, auto split: prod.split nat.split tree.split,
metis dual-order .trans tree.inject trim-id trim-tree-le)

lemma regular-trim-tree ′: regular t =⇒ (n ′, t ′) = trim-tree n t =⇒ regular t ′

using regular-trim-tree by (metis snd-eqD)

lemma sorted-fill-tree: sorted (fill-tree n t)
using fill-tree-le by (induction n t rule: fill-tree.induct) (auto simp: sorted-append

split: prod.split)

lemma regular-fill-tree: regular t =⇒ r ∈ set (fill-tree n t) =⇒ regular r
using regular-trim-tree ′ by (induction n t rule: fill-tree.induct) auto

lemma regular-next-tree-aux: regular t =⇒ height t ≥ 2 =⇒ regular (the (next-tree-aux
n t))
proof (induction n t rule: next-tree-aux.induct)

case (1 n)
then show ?case by auto

next
case (2 n ts)
then show ?case by (cases ts) auto

next
case (3 n rs ts)
then have regular-rs: regular (Node rs) by simp
have ∀ t ∈ set ts. Node (rs) < t using 3 (1 ) tree-less-cons[of rs Node []] by auto
then show ?case using 3 sorted-fill-tree regular-fill-tree[OF regular-rs] fill-tree-le

by (auto simp del: fill-tree.simps simp: sorted-append, meson dual-order .trans
tree-le-cons)
next

case (4 n vc vd vb ts)
have height-t: height (Node (Node (vc # vd) # vb)) ≥ 2 unfolding numeral-2-eq-2
by (metis dual-order .antisym height-Node-cons less-eq-nat.simps(1 ) not-less-eq-eq)
then show ?case using 4 by (auto, meson height-t dual-order .strict-trans1

next-tree-aux-lt nless-le)
qed

lemma regular-next-tree: regular t =⇒ height t ≥ 2 =⇒ regular (the (next-tree t))
using regular-next-tree-aux by simp

76



lemma regular-next-tree ′: regular t =⇒ next-tree t = Some t ′ =⇒ regular t ′

using regular-next-tree next-tree-Some-iff by fastforce

lemma regular-n-tree-enum-aux: regular t =⇒ r ∈ set (n-tree-enum-aux t) =⇒
regular r
proof (induction t rule: n-tree-enum-aux.induct)

case (1 t)
then show ?case
proof (cases next-tree-aux 0 t)

case None
then show ?thesis using 1 by auto

next
case (Some a)
then show ?thesis using 1 regular-next-tree ′ by auto

qed
qed

lemma regular-n-tree-greatest-tree: n 6= 0 =⇒ greatest-tree n ∈ regular-n-trees n
proof (induction n)

case 0
then show ?case by auto

next
case (Suc n)
then show ?case unfolding regular-n-trees-def n-trees-def by (cases n) auto

qed

lemma regular-n-tree-enum: t ∈ set (n-tree-enum n) =⇒ regular t
using regular-n-tree-enum-aux regular-n-tree-greatest-tree unfolding regular-n-trees-def

by (cases n) auto

lemma size-n-tree-enum-aux: n 6= 0 =⇒ r ∈ set (n-tree-enum-aux t) =⇒ tree-size
r = tree-size t
proof (induction t rule: n-tree-enum-aux.induct)

case (1 t)
then show ?case
proof (cases next-tree-aux 0 t)

case None
then show ?thesis using 1 by auto

next
case (Some a)
then show ?thesis using 1 size-next-tree ′ by auto

qed
qed

lemma size-greatest-tree[simp]: n 6= 0 =⇒ tree-size (greatest-tree n) = n
by (induction n rule: greatest-tree.induct) auto

77



lemma size-n-tree-enum: t ∈ set (n-tree-enum n) =⇒ tree-size t = n
using size-n-tree-enum-aux size-greatest-tree by (cases n, auto, fastforce)

4.6 Totality
lemma set (n-tree-enum n) ⊆ regular-n-trees n
using regular-n-tree-enum size-n-tree-enum unfolding regular-n-trees-def n-trees-def

by blast

lemma greatest-tree-lt-Suc: n 6= 0 =⇒ greatest-tree n < greatest-tree (Suc n)
by (induction n rule: greatest-tree.induct) (auto simp: tree-less-nested)

lemma greatest-tree-ge: tree-size t ≤ n =⇒ t ≤ greatest-tree n
proof (induction n arbitrary: t rule: greatest-tree.induct)

case 1
then show ?case by (cases t rule: tree-cons-exhaust) (auto simp: tree-size-ne-0 )

next
case (2 v)
then show ?case
proof (cases t rule: tree-rev-exhaust)

case Nil
then show ?thesis by simp

next
case (Snoc ts r)
then have r-le-greatest-Suc-v: r ≤ greatest-tree (Suc v) using 2 by auto
then show ?thesis
proof (cases r = greatest-tree (Suc v))

case True
then have ts = [] using 2 (2 ) Snoc by (simp add: tree-size-ne-0 )
then show ?thesis using Snoc r-le-greatest-Suc-v by auto

next
case False
then show ?thesis using r-le-greatest-Suc-v Snoc by auto

qed
qed

next
case 3
then show ?case by (simp add: tree-size-ne-0 )

qed

fun least-tree :: nat ⇒ tree where
least-tree (Suc n) = Node (replicate n (Node []))

lemma regular-n-tree-least-tree: n 6= 0 =⇒ least-tree n ∈ regular-n-trees n
proof (induction n)

case 0
then show ?case by auto

next
case (Suc n)

78



then show ?case unfolding regular-n-trees-def n-trees-def by (cases n) auto
qed

lemma height-lt-2-least-tree: t ∈ regular-n-trees n =⇒ height t < 2 =⇒ t =
least-tree n
proof (induction n arbitrary: t)

case 0
have regular-n-trees 0 = {} unfolding regular-n-trees-def n-trees-def using

tree-size.elims by auto
then show ?case using 0 by blast

next
case (Suc n)
then show ?case
proof (cases n = 0 )

case True
then show ?thesis using Suc tree-size.elims unfolding regular-n-trees-def

n-trees-def
by (auto, metis leD length-children length-greater-0-conv)

next
case False

then have t-non-empty: t 6= Node [] using Suc(2 ) unfolding regular-n-trees-def
n-trees-def by auto

then have height-t: height t = 1 using Suc(3 )
by (metis One-nat-def gr0-conv-Suc height.elims less-2-cases less-numeral-extra(3 ))
obtain s ts where s-ts: t = Node (s # ts) using t-non-empty by (meson

height.elims)
then have height s = 0 by (metis Suc-le-eq height-Node-cons less-one height-t)
then have s: s = Node [] using height-0-iff by simp
then have regular-ts: Node ts ∈ regular-n-trees n using Suc(2 ) unfolding s-ts

regular-n-trees-def n-trees-def by auto
have height (Node ts) < 2 using height-t height-children height-children-le-height

unfolding s-ts One-nat-def by fastforce
then have Node ts = least-tree n using Suc(1 ) regular-ts by blast
then show ?thesis using False gr0-conv-Suc s s-ts by auto

qed
qed

lemma least-tree-le: n 6= 0 =⇒ tree-size t ≥ n =⇒ least-tree n ≤ t
proof (induction n arbitrary: t rule: less-induct)

case (less n)
then obtain n ′ where n: n = Suc n ′ using least-tree.cases by blast
then obtain ts where t: t = Node ts by (cases t) auto
then show ?case
proof (cases n ′)

case 0
then show ?thesis using n by simp

next
case (Suc n ′′)
then show ?thesis

79



proof (cases ts rule: rev-exhaust)
case Nil
then show ?thesis using less t n by auto

next
case (snoc rs r)
then show ?thesis
proof (cases r = Node [])

case True
then have tree-size (Node rs) ≥ n ′′ using less(3 ) unfolding n t Suc snoc

by auto
then show ?thesis using less True unfolding n t Suc snoc

by (auto simp: simp: replicate-append-same[symmetric], force)
next

case False
then show ?thesis using less False unfolding n t Suc snoc

by (auto simp: replicate-append-same[symmetric] tree-less-empty-iff )
qed

qed
qed

qed

lemma trim-id ′: n ≥ tree-size t =⇒ trim-tree n t = (n ′, t ′) =⇒ t ′ = t
proof (induction n t arbitrary: n ′ t ′ rule: trim-tree.induct)

case (1 t)
then show ?case by auto

next
case (2 t)
then have t = Node [] using le-Suc-eq tree-size-1-iff tree-size-ne-0 by simp
then show ?case using 2 by auto

next
case (3 v)
then show ?case by auto

next
case (4 va t ts)
then show ?case using size-trim-tree[OF - 4 (4 )] size-trim-tree

by (auto split: prod.splits nat.splits simp: tree-size-ne-0 , fastforce)
qed

lemma tree-ge-lt-suffix: Node ts ≤ r =⇒ r < Node (t#ts) =⇒ ∃ ss. r = Node (ss
@ ts)
proof (induction ts arbitrary: r rule: rev-induct)

case Nil
then show ?case by (cases r rule: tree-rev-exhaust) auto

next
case (snoc x xs)
then show ?case using tree-le-empty2-iff

by (cases r rule: tree-rev-exhaust)
(simp-all, metis Cons-eq-appendI tree.inject tree-less-antisym tree-less-snoc2-iff )

qed

80



lemma trim-tree-0-iff : fst (trim-tree n t) = 0 ←→ n ≤ tree-size t
using size-trim-tree trim-id tree-size-ge-1
by (induction n t rule: trim-tree.induct, auto split: prod.split nat.split tree.split,

fastforce+)

lemma trim-tree-greatest-le: tree-size r ≤ n =⇒ r ≤ t =⇒ r ≤ snd (trim-tree n
t)
proof (induction n t arbitrary: r rule: trim-tree.induct)

case (1 t)
then show ?case by auto

next
case (2 t)
then show ?case using tree-size-ne-0 tree-size-1-iff by (simp add: le-Suc-eq)

next
case (3 v)
then show ?case by auto

next
case (4 va t ts)
obtain n1 t1 where nt1 : trim-tree (Suc (Suc va)) (Node ts) = (n1 , t1 ) by

fastforce
then show ?case
proof (cases n1 )

case 0
then show ?thesis
proof (cases r ≤ Node ts)

case True
then show ?thesis using 4 0 nt1 by simp

next
case False

then obtain ss s where r : r = Node (ss @ s # ts) using 4 (4 ) tree-ge-lt-suffix
by (metis append.assoc append-Cons append-Nil nle-le rev-exhaust tree-le-def )

then have tree-size (Node ts) ≥ Suc (Suc va) using nt1 trim-tree-0-iff
unfolding 0 by fastforce

then have tree-size r > Suc (Suc va) using tree-size-ne-0 unfolding r
by (auto simp: add-strict-increasing trans-less-add2 )

then show ?thesis using 4 (3 ) by auto
qed

next
case (Suc nat)
then have t1 : t1 = Node ts using trim-id nt1 by blast
then obtain n2 t2 where nt2 : trim-tree n1 t = (n2 , t2 ) by fastforce
then show ?thesis
proof (cases r ≤ Node ts)

case True
then show ?thesis using 4 Suc nt1 t1
by (auto split: prod.split simp: tree-le-cons, meson dual-order .trans tree-le-cons)

next
case False

81



then obtain ss s where r : r = Node (ss @ s # ts) using 4 (4 ) tree-ge-lt-suffix
by (metis append.assoc append-Cons append-Nil nle-le rev-exhaust tree-le-def )
have size-s: tree-size s ≤ Suc nat using 4 (3 ) Suc size-trim-tree[OF - nt1 ] t1

unfolding r by auto
have s ≤ t using 4 (4 ) unfolding r by (meson order .trans tree-le-append

tree-le-cons2 )
have s ≤ t2 using 4 .IH (2 )[OF nt1 [symmetric] Suc t1 size-s ‹s≤t›] nt2

unfolding Suc by auto
then show ?thesis
proof (cases s = t2 )

case True
then have ss = []
proof (cases t2 = t)

case True
then show ?thesis using 4 (4 ) nle-le tree-le-append unfolding r ‹s=t2 ›

True by auto
next

case False
then have n2 = 0 using nt2 trim-id by (cases n2 ) auto
then show ?thesis using size-trim-tree[OF - nt1 ] size-trim-tree[OF - nt2 ]

Suc 4 (3 ) tree-size-ne-0 unfolding r t1 ‹s=t2 › by auto
qed
then show ?thesis using nt1 Suc t1 nt2 unfolding r True by auto

next
case False
then show ?thesis using ‹s≤t2 › nt1 nt2 t1 Suc unfolding r

by (auto simp: order-less-imp-le tree-less-comm-suffix2 )
qed

qed
qed

qed

lemma fill-tree-next-smallest: tree-size (Node rs) ≤ Suc n =⇒ ∀ r∈set rs. r ≤ t
=⇒ Node rs ≤ Node (fill-tree n t)
proof (induction n t arbitrary: rs rule: fill-tree.induct)

case (1 uu)
have rs = [] using tree-size-1-iff 1 (1 ) tree.inject by fastforce
then show ?case by auto

next
case (2 v t)
obtain n ′ t ′ where nt ′: trim-tree (Suc v) t = (n ′, t ′) by fastforce
then show ?case
proof (cases rs rule: rev-exhaust)

case Nil
then show ?thesis by auto

next
case (snoc rs ′ r ′)
then show ?thesis
proof (cases n ′)

82



case 0
then show ?thesis
proof (cases r ′ = t ′)

case True
then have rs ′ = [] using 0 2 (2 ) size-trim-tree[OF - nt ′] unfolding snoc

by (auto simp: tree-size-ne-0 )
then show ?thesis using nt ′ 0 unfolding snoc True by simp

next
case False
then show ?thesis using 2 trim-tree-greatest-le nt ′ 0 tree-less-comm-suffix2

unfolding snoc
by (auto, metis nless-le not-less-eq-eq snd-eqD trans-le-add2 )

qed
next

case (Suc nat)
then show ?thesis using 2 nt ′ trim-id[OF nt ′[unfolded Suc]] size-trim-tree[OF

- nt ′] unfolding snoc by auto
qed

qed
qed

fun fill-twos :: nat ⇒ tree ⇒ tree where
fill-twos n (Node ts) = Node (replicate n (Node []) @ ts)

lemma size-fill-twos: tree-size (fill-twos n t) = n + tree-size t
by (cases t) (auto simp: sum-list-replicate)

lemma regular-fill-twos: regular t =⇒ regular (fill-twos n t)
by (cases t) (auto simp: sorted-append)

lemma fill-twos-lt: n 6= 0 =⇒ t < fill-twos n t
using tree-less-append by (cases t) auto

lemma fill-twos-less: r < Node (t#ts) =⇒ t 6= Node [] =⇒ fill-twos n r < Node
(t#ts)
proof (induction n)

case 0
then show ?case by (cases r) auto

next
case (Suc n)
then show ?case by (cases r rule: tree.exhaust, simp,

meson leD linorder-less-linear list.inject tree.inject tree-empty-cons-lt-le)
qed

lemma next-tree-aux-successor : tree-size r = tree-size t + n =⇒ regular r =⇒ r
< t =⇒ height t ≥ 2 =⇒ r ≤ the (next-tree-aux n t)
proof (induction n t arbitrary: r rule: next-tree-aux.induct)

case (1 n)
then show ?case by auto

83



next
case (2 n ts)
have size-r : tree-size r ≤ tree-size (Node ts) + Suc n using 2 (2 ) by auto
have height-ts: height (Node ts) ≥ 2 using 2 (5 ) by (cases ts) auto
then show ?case using 2 size-r tree-empty-cons-lt-le by fastforce

next
case (3 n rs ts)
then show ?case
proof (cases r < Node ts)

case True
then show ?thesis by (auto, meson dual-order .trans order .strict-implies-order

tree-le-append tree-le-cons)
next

case False
then obtain ss where r : r = Node (ss @ ts) using 3 (3 ) tree-ge-lt-suffix by

fastforce
show ?thesis
proof (cases ss rule: rev-exhaust)

case Nil
then show ?thesis unfolding r by (simp, meson order-trans tree-le-append

tree-le-cons)
next

case (snoc ss ′ s ′)
have s ′-le-rs: s ′ ≤ Node rs using 3 (3 ) tree-empty-cons-lt-le unfolding r snoc

by (metis (mono-tags, lifting) append.assoc append-Cons append-self-conv2
dual-order .order-iff-strict linorder-not-less order-less-le-trans tree-le-append

tree-less-cons2 )
show ?thesis
proof (cases s ′ = Node rs)

case True
then show ?thesis using 3 (1 ,2 ) fill-tree-next-smallest unfolding r snoc

by (auto simp del: fill-tree.simps simp: sorted-append)
next

case False
then show ?thesis using s ′-le-rs unfolding r snoc by (auto, meson

tree-le-def tree-less-iff )
qed

qed
qed

next
case (4 n vc vd vb ts)
define t where t = Node (Node (vc # vd) # vb)
have height-t: height t ≥ 2 unfolding numeral-2-eq-2 t-def
by (metis dual-order .antisym height-Node-cons less-eq-nat.simps(1 ) not-less-eq-eq)

then show ?case
proof (cases r < Node ts)

case True
then show ?thesis by (auto, meson dual-order .trans order .strict-implies-order

tree-le-append tree-le-cons)

84



next
case False
then obtain ss where r : r = Node (ss @ ts) using 4 (4 ) tree-ge-lt-suffix by

fastforce
then show ?thesis
proof (cases ss rule: rev-exhaust)

case Nil
then show ?thesis using tree-le-cons unfolding r by auto

next
case (snoc ss ′ s ′)
have s ′ < t using 4 (4 )[folded t-def ] unfolding r snoc

by (auto, metis antisym-conv3 append.left-neutral dual-order .strict-trans
less-tree-comm-suffix not-tree-less-empty tree-less-cons2 )

show ?thesis
proof (cases tree-size s ′ = tree-size t + n)

case True
then have ss ′ = [] using 4 (2 )[folded t-def ] tree-size-ne-0 unfolding r snoc

by auto
then show ?thesis using 4 .IH True 4 (3 ) ‹s ′<t› height-t tree-le-cons2

unfolding r snoc t-def by auto
next

case False
obtain us where s ′: s ′ = Node us using tree.exhaust by blast
— s” is greater than s’ but has the same size as t so the IH can be used on it.
define s ′′ where s ′′ = fill-twos (tree-size t + n − tree-size s ′) s ′

have size-s ′: tree-size s ′≤ tree-size t + n using 4 (2 )[folded t-def ] unfolding
r snoc by simp

then have size-s ′′: tree-size s ′′ = tree-size t + n unfolding s ′′-def using
size-fill-twos by auto

have regular-s ′′: regular s ′′ using regular-fill-twos 4 (3 ) unfolding s ′′-def r
snoc by auto

have s ′′ < t using fill-twos-less ‹s ′<t› unfolding t-def s ′′-def by auto
have s ′ < s ′′ using fill-twos-lt False size-fill-twos size-s ′′ unfolding s ′′-def

by auto
then show ?thesis using 4 .IH [folded t-def , OF size-s ′′ regular-s ′′ ‹s ′′<t›

height-t]
unfolding r snoc t-def by (simp add: order-less-imp-le tree-less-comm-suffix2 )

qed
qed

qed
qed

lemma next-tree-successor : tree-size r = tree-size t =⇒ regular r =⇒ r < t =⇒
next-tree t = Some t ′ =⇒ r ≤ t ′

using next-tree-aux-successor next-tree-Some-iff by force

lemma set-n-tree-enum-aux: t ∈ regular-n-trees n =⇒ set (n-tree-enum-aux t) =
{r∈regular-n-trees n. r ≤ t}
proof (induction t rule: n-tree-enum-aux.induct)

85



case (1 t)
then show ?case
proof (cases next-tree t)

case None
have n 6= 0 using 1 (2 ) tree-size-ne-0 unfolding regular-n-trees-def n-trees-def

by auto
have t = least-tree n using height-lt-2-least-tree next-tree-aux-None-iff 1 None

by simp
then show ?thesis using next-tree-Some-iff 1 None least-tree-le ‹n 6=0 ›

unfolding regular-n-trees-def n-trees-def by (auto simp: antisym)
next

case (Some t ′)
then have set (n-tree-enum-aux t) = insert t {r ∈ regular-n-trees n. r ≤ t ′}
using 1 regular-next-tree ′ size-next-tree ′ unfolding regular-n-trees-def n-trees-def

by auto
also have . . . = {r∈regular-n-trees n. r ≤ t} using next-tree-successor 1 (2 )

Some unfolding regular-n-trees-def n-trees-def
by (auto, meson Some less-le-not-le next-tree-lt ′ order .trans)

finally show ?thesis .
qed

qed

theorem set-n-tree-enum: set (n-tree-enum n) = regular-n-trees n
proof (cases n)

case 0
then show ?thesis unfolding regular-n-trees-def n-trees-def using tree-size-ne-0

by simp
next

case (Suc nat)
then show ?thesis using set-n-tree-enum-aux regular-n-tree-greatest-tree great-

est-tree-ge
unfolding regular-n-trees-def n-trees-def by auto

qed

theorem n-rtree-graph-enum-n-rtree-graphs: G ∈ set (n-rtree-graph-enum n) =⇒
G ∈ n-rtree-graphs n

using set-n-tree-enum rtree-tree-graph card-tree-graph
unfolding n-rtree-graph-enum-def n-rtree-graphs-def regular-n-trees-def n-trees-def
by (auto, metis)

theorem n-rtree-graph-enum-surj:
assumes n-rtree-graph: G ∈ n-rtree-graphs n
shows ∃G ′ ∈ set (n-rtree-graph-enum n). G ′ 'r G

proof−
obtain V E r where G = (V ,E ,r) using prod.exhaust by metis
then show ?thesis using n-rtree-graph set-n-tree-enum rtree.ex-regular-n-tree
unfolding n-rtree-graphs-def n-rtree-graph-enum-def by (auto simp: rtree.ex-regular-n-tree)

qed

86



4.7 Distinctness
lemma n-tree-enum-aux-le: r ∈ set (n-tree-enum-aux t) =⇒ r ≤ t
proof (induction t rule: n-tree-enum-aux.induct)

case (1 t)
then show ?case
proof (cases next-tree t)

case None
then show ?thesis using 1 by auto

next
case (Some a)
then show ?thesis using next-tree-lt ′ 1 by fastforce

qed
qed

lemma sorted-n-tree-enum-aux: sorted-wrt (>) (n-tree-enum-aux t)
proof (induction t rule: n-tree-enum-aux.induct)

case (1 t)
then show ?case
proof (cases next-tree t)

case None
then show ?thesis by simp

next
case (Some a)
then show ?thesis using 1 Some next-tree-lt ′ n-tree-enum-aux-le by fastforce

qed
qed

lemma distinct-n-tree-enum-aux: distinct (n-tree-enum-aux t)
using sorted-n-tree-enum-aux strict-sorted-iff distinct-rev sorted-wrt-rev by blast

theorem distinct-n-tree-enum: distinct (n-tree-enum n)
using distinct-n-tree-enum-aux by (cases n) auto

theorem distinct-n-rtree-graph-enum: distinct (n-rtree-graph-enum n)
using tree-graph-inj distinct-n-tree-enum set-n-tree-enum unfolding n-rtree-graph-enum-def

regular-n-trees-def
by (simp add: distinct-map inj-on-def )

theorem inj-iso-n-rtree-graph-enum:
assumes G-in-n-rtree-graph-enum: G ∈ set (n-rtree-graph-enum n)

and H-in-n-rtree-graph-enum: H ∈ set (n-rtree-graph-enum n)
and G 'r H

shows G = H
proof−
obtain tG where t-G: regular tG tree-graph tG = G using G-in-n-rtree-graph-enum

regular-n-tree-enum
unfolding n-rtree-graph-enum-def by auto

obtain tH where t-H : regular tH tree-graph tH = H using H-in-n-rtree-graph-enum
regular-n-tree-enum

87



unfolding n-rtree-graph-enum-def by auto
then show ?thesis using t-G tree-graph-inj-iso ‹G 'r H › by auto

qed

theorem ex1-iso-n-rtree-graph-enum: G ∈ n-rtree-graphs n =⇒ ∃ !G ′∈ set (n-rtree-graph-enum
n). G ′ 'r G
using inj-iso-n-rtree-graph-enum rgraph-isomorph-trans rgraph-isomorph-sym n-rtree-graph-enum-surj

unfolding transp-def by blast

end

References

[1] T. Beyer and S. M. Hedetniemi. Constant time generation of rooted
trees. SIAM Journal on Computing, 9(4):706–712, 1980.

88


	Graphs and Trees
	Miscellaneous
	Degree
	Walks
	Paths
	Cycles
	Subgraphs
	Connectivity
	Connected components
	Trees
	Graph Isomorphism

	Enumeration of Labeled Trees
	Algorithm
	Correctness
	Totality
	Distinction

	Rooted Trees
	Rooted Graphs
	Rooted Graph Isomorphism
	Conversion between unlabeled, ordered, rooted trees and tree graphs
	Injectivity with respect to isomorphism

	Enumeration of Rooted Trees
	Enumeration is monotonically decreasing
	Size preservation
	Setup for termination proof
	Algorithms for enumeration
	Regularity
	Totality
	Distinctness


