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Given two lists that are permutations of one another, the swap distance
(also known as the Kendall tau distance) is the minimum number of swap
operations of adjacent elements required to make the two lists the same.

Equivalently, the swap distance of two finite linear orders � and E is the
number of disagreements of the two orders, i.e. of pairs (x, y) such that x ≺ y
and y C x.

This article defines these two notions of swap distance as well as their
equivalence under the obvious isomorphism between lists and linear orders
given by interpreting a list as a ranking of elements in descending order.

An efficient O(n log n) algorithm to compute the swap distance is also
provided via the connection to the number of inversions of a list, for which
an efficient algorithm is already available in the AFP.
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1 The swap distance
theory Swap-Distance

imports Rankings.Rankings List-Inversions.List-Inversions
begin

The swap distance (also known as the Kendall tau distance) of two finite linear orders
R, S is the number of pairs (x, y) such that (x, y) ∈ R and (y, x) ∈ S.
By using the obvious correspondence between finite linear orders and lists of fixed length,
the notion is transferred to lists. In this case, an alternative interpretation of the swap
distance is as the smallest number of swaps of adjacent elements one can perform in
order to make one list match the other one.
The swap distance is strongly related to the number of inversions of a list of linearly-
ordered elements: if we rename the elements from 1 to n such that the first list becomes
[1, . . . , n], the swap distance is exactly the number of inversions in the second list.
This correspondence can be used to compute the swap distance in O(n log n) time using
the merge sort inversion count algorithm (which is available in the AFP).

1.1 Preliminaries
primrec find-index-aux :: nat ⇒ ( ′a ⇒ bool) ⇒ ′a list ⇒ nat where

find-index-aux acc P [] = acc
| find-index-aux acc P (x # xs) = (if P x then acc else find-index-aux (acc+1 ) P xs)

lemma find-index-aux-correct: find-index-aux acc P xs = find-index P xs + acc
by (induction xs arbitrary: acc) simp-all

lemma find-index-aux-code [code]: find-index P xs = find-index-aux 0 P xs
by (simp add: find-index-aux-correct)

lemma inversions-map:
fixes xs :: ′a :: linorder list
assumes strict-mono-on (set xs) f
shows inversions (map f xs) = inversions xs

proof −
have f-less-iff : f x < f y ←→ x < y if x ∈ set xs y ∈ set xs for x y

using strict-mono-onD[OF assms, of x y] strict-mono-onD[OF assms, of y x] that
by (metis not-less-iff-gr-or-eq order-less-imp-not-less)

show ?thesis
unfolding inversions-altdef by (auto simp: f-less-iff )

qed

lemma inversion-number-map:
fixes xs :: ′a :: linorder list
assumes strict-mono-on (set xs) f
shows inversion-number (map f xs) = inversion-number xs
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using inversions-map[OF assms] by (simp add: inversion-number-def )

lemma inversion-number-Cons:
inversion-number (x # xs) = length (filter (λy. y < x) xs) + inversion-number xs

proof −
have inversion-number (x # xs) = inversion-number ([x] @ xs)

by simp
also have . . . = inversion-number xs + inversion-number-between [x] xs

by (subst inversion-number-append) simp-all
also have inversion-number-between [x] xs =

card {(i, j). i = 0 ∧ j < length xs ∧ xs ! j < [x] ! i}
by (simp add: inversion-number-between-def inversions-between-def )

also have {(i, j). i = 0 ∧ j < length xs ∧ xs ! j < [x] ! i} =
(λj. (0 , j)) ‘ {j. j < length xs ∧ xs ! j < x}

by auto
also have card . . . = card {j. j < length xs ∧ xs ! j < x}

by (rule card-image) (auto simp: inj-on-def )
also have . . . = length (filter (λy. y < x) xs)

by (subst length-filter-conv-card) auto
finally show ?thesis

by simp
qed

fun (in preorder) inversion-number-between-sorted-aux :: nat ⇒ ′a list ⇒ ′a list ⇒ nat where
inversion-number-between-sorted-aux acc [] ys = acc
| inversion-number-between-sorted-aux acc xs [] = acc
| inversion-number-between-sorted-aux acc (x # xs) (y # ys) =

(if ¬less y x then
inversion-number-between-sorted-aux acc xs (y # ys)

else
inversion-number-between-sorted-aux (acc + length (x # xs)) (x # xs) ys)

lemma inversion-number-between-sorted-aux-correct:
inversion-number-between-sorted-aux acc xs ys = acc + inversion-number-between-sorted xs ys
by (induction acc xs ys rule: inversion-number-between-sorted-aux.induct) simp-all

lemma inversion-number-between-sorted-code [code]:
inversion-number-between-sorted xs ys = inversion-number-between-sorted-aux 0 xs ys
by (simp add: inversion-number-between-sorted-aux-correct)

1.2 The swap distance of two linear orders

We first define the set of “discrepancies” between the two orders.
definition swap-dist-relation-aux :: ( ′a ⇒ ′a ⇒ bool) ⇒ ( ′a ⇒ ′a ⇒ bool) ⇒ ( ′a × ′a) set
where

swap-dist-relation-aux R1 R2 = {(x,y). R1 x y ∧ ¬R1 y x ∧ R2 y x ∧ ¬R2 x y}
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On a linear order, the following simpler definition holds.
lemma swap-dist-relation-aux-def-linorder :

assumes linorder-on A R1 linorder-on A R2
shows swap-dist-relation-aux R1 R2 = {(x,y). R1 x y ∧ ¬R2 x y}

proof −
interpret R1 : linorder-on A R1 by fact
interpret R2 : linorder-on A R2 by fact
show ?thesis unfolding swap-dist-relation-aux-def

using R1 .antisymmetric R1 .total R2 .antisymmetric R2 .total
R1 .refl R2 .refl R1 .not-outside R2 .not-outside by metis

qed

lemma swap-dist-relation-aux-same [simp]: swap-dist-relation-aux R R = {}
by (auto simp: swap-dist-relation-aux-def )

lemma swap-dist-relation-aux-commute: swap-dist-relation-aux R1 R2 = prod.swap ‘ swap-dist-relation-aux
R2 R1

by (auto simp: swap-dist-relation-aux-def )

lemma swap-dist-relation-aux-commute ′: bij-betw prod.swap (swap-dist-relation-aux R1 R2 ) (swap-dist-relation-aux
R2 R1 )

by (rule bij-betwI [of - - - prod.swap]) (auto simp: swap-dist-relation-aux-def )

lemma swap-dist-relation-aux-dual:
swap-dist-relation-aux R1 R2 = prod.swap ‘ swap-dist-relation-aux (λx y. R1 y x) (λx y. R2 y

x)
unfolding swap-dist-relation-aux-def by auto

lemma swap-dist-relation-aux-triangle:
assumes linorder-on A R1 linorder-on A R2 linorder-on A R3
shows swap-dist-relation-aux R1 R3 ⊆ swap-dist-relation-aux R1 R2 ∪ swap-dist-relation-aux

R2 R3
proof −

interpret R1 : linorder-on A R1 by fact
interpret R2 : linorder-on A R2 by fact
interpret R3 : linorder-on A R3 by fact
show ?thesis

unfolding swap-dist-relation-aux-def
using R1 .not-outside(1 ,2 ) R2 .total R2 .antisymmetric by fast

qed

lemma finite-swap-dist-relation-aux:
assumes linorder-on A R1 finite A linorder-on B R2 finite B
shows finite (swap-dist-relation-aux R1 R2 )

proof (rule finite-subset)
interpret R1 : linorder-on A R1 by fact
interpret R2 : linorder-on B R2 by fact
show swap-dist-relation-aux R1 R2 ⊆ A × B

using R1 .not-outside R2 .not-outside unfolding swap-dist-relation-aux-def by blast
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qed (use assms in auto)

lemma split-Bex-pair-iff : (∃ z∈A. P z) ←→ (∃ x y. (x, y) ∈ A ∧ P (x, y))
by auto

lemma swap-dist-relation-aux-comap-relation:
assumes inj-on f A linorder-on A R linorder-on A S
shows swap-dist-relation-aux (comap-relation f R) (comap-relation f S) = map-prod f f ‘

swap-dist-relation-aux R S
(is ?lhs = ?rhs)

proof −
interpret R: linorder-on A R by fact
interpret S : linorder-on A S by fact
have (x, y) ∈ ?lhs ←→ (x, y) ∈ ?rhs for x y
unfolding swap-dist-relation-aux-def comap-relation-def map-prod-def image-iff case-prod-unfold

split-Bex-pair-iff mem-Collect-eq fst-conv snd-conv prod.inject
using inj-onD[OF assms(1 )] R.not-outside S .not-outside by smt

thus ?thesis
by force

qed

lemma swap-dist-relation-aux-restrict-subset:
swap-dist-relation-aux (restrict-relation A R) (restrict-relation A S) ⊆
swap-dist-relation-aux R S

unfolding swap-dist-relation-aux-def restrict-relation-def by blast

The swap distance is then simply the number of such discrepancies.
definition swap-dist-relation :: ( ′a ⇒ ′a ⇒ bool) ⇒ ( ′a ⇒ ′a ⇒ bool) ⇒ nat where

swap-dist-relation R1 R2 = card (swap-dist-relation-aux R1 R2 )

lemma swap-dist-relation-same [simp]: swap-dist-relation R R = 0
by (simp add: swap-dist-relation-def )

lemma swap-dist-relation-commute: swap-dist-relation R1 R2 = swap-dist-relation R2 R1
using bij-betw-same-card[OF swap-dist-relation-aux-commute ′[of R1 R2 ]]
by (simp add: swap-dist-relation-def )

lemma swap-dist-relation-dual:
swap-dist-relation R1 R2 = swap-dist-relation (λx y. R1 y x) (λx y. R2 y x)
unfolding swap-dist-relation-def
by (subst swap-dist-relation-aux-dual, subst card-image) auto

lemma swap-dist-relation-triangle:
assumes linorder-on A R1 linorder-on A R2 linorder-on A R3 finite A
shows swap-dist-relation R1 R3 ≤ swap-dist-relation R1 R2 + swap-dist-relation R2 R3

proof −
interpret R1 : linorder-on A R1 by fact
interpret R2 : linorder-on A R2 by fact
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interpret R3 : linorder-on A R3 by fact

have swap-dist-relation R1 R3 = card (swap-dist-relation-aux R1 R3 )
by (simp add: swap-dist-relation-def )

also {
have swap-dist-relation-aux R1 R3 ⊆ swap-dist-relation-aux R1 R2 ∪ swap-dist-relation-aux

R2 R3
by (rule swap-dist-relation-aux-triangle) fact+

moreover have finite (swap-dist-relation-aux R1 R2 ) finite (swap-dist-relation-aux R2 R3 )
using finite-swap-dist-relation-aux assms by blast+

ultimately have card (swap-dist-relation-aux R1 R3 ) ≤ card (swap-dist-relation-aux R1 R2
∪ swap-dist-relation-aux R2 R3 )

by (intro card-mono) auto
}
also have card (swap-dist-relation-aux R1 R2 ∪ swap-dist-relation-aux R2 R3 ) ≤

card (swap-dist-relation-aux R1 R2 ) + card (swap-dist-relation-aux R2 R3 )
by (rule card-Un-le)

also have . . . = swap-dist-relation R1 R2 + swap-dist-relation R2 R3
by (simp add: swap-dist-relation-def )

finally show ?thesis .
qed

lemma swap-dist-relation-aux-empty-iff :
assumes linorder-on A R linorder-on A S
shows swap-dist-relation-aux R S = {} ←→ R = S

proof (rule iffI )
fix x y :: ′a
assume ∗: swap-dist-relation-aux R S = {}
interpret R: linorder-on A R by fact
interpret S : linorder-on A S by fact
show R = S
proof (intro ext)

fix x y
from ∗ have ¬R x y ∨ R y x ∨ ¬S y x ∨ S x y ¬R y x ∨ R x y ∨ ¬S x y ∨ S y x

unfolding swap-dist-relation-aux-def by blast+
thus R x y ←→ S x y

using R.total[of x y] S .total[of x y] R.not-outside[of x y] S .not-outside[of x y]
R.antisymmetric[of x y] S .antisymmetric[of x y]

by metis
qed

qed auto

lemma swap-dist-relation-eq-0-iff :
assumes linorder-on A R linorder-on A S finite A
shows swap-dist-relation R S = 0 ←→ R = S
unfolding swap-dist-relation-def
using swap-dist-relation-aux-empty-iff [OF assms(1 ,2 )] finite-swap-dist-relation-aux[OF assms(1 ,3 ,2 ,3 )]
by (metis card-eq-0-iff )
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lemma swap-dist-relation-comap-relation:
assumes inj-on f A linorder-on A R linorder-on A S
shows swap-dist-relation (comap-relation f R) (comap-relation f S) = swap-dist-relation R S

proof −
interpret R: linorder-on A R by fact
interpret S : linorder-on A S by fact
have swap-dist-relation (comap-relation f R) (comap-relation f S) = card (map-prod f f ‘

swap-dist-relation-aux R S)
using assms by (simp add: swap-dist-relation-def swap-dist-relation-aux-comap-relation)

also have . . . = swap-dist-relation R S
unfolding swap-dist-relation-def

proof (rule card-image)
show inj-on (map-prod f f ) (swap-dist-relation-aux R S)
proof (rule inj-on-subset)

show inj-on (map-prod f f ) (A × A)
using assms(1 ) by (auto simp: inj-on-def )

show swap-dist-relation-aux R S ⊆ A × A
unfolding swap-dist-relation-aux-def using R.not-outside S .not-outside by blast

qed
qed
finally show ?thesis .

qed

lemma swap-dist-relation-le:
assumes preorder-on A R1 preorder-on A R2 finite A
shows swap-dist-relation R1 R2 ≤ (card A) choose 2

proof −
interpret R1 : preorder-on A R1 by fact
interpret R2 : preorder-on A R2 by fact
have swap-dist-relation R1 R2 = card (swap-dist-relation-aux R1 R2 )

by (simp add: swap-dist-relation-def )
also have card (swap-dist-relation-aux R1 R2 ) =

card ((λ(x,y). {x,y}) ‘ swap-dist-relation-aux R1 R2 )
by (rule card-image [symmetric])

(auto simp: inj-on-def swap-dist-relation-aux-def doubleton-eq-iff )
also have . . . ≤ card {X . X ⊆ A ∧ card X = 2}

by (rule card-mono)
(use ‹finite A› R1 .not-outside R2 .not-outside
in ‹auto simp: swap-dist-relation-aux-def card-insert-if ›)

also have . . . = (card A) choose 2
by (rule n-subsets) fact

finally show ?thesis .
qed

The swap distance reaches its maximum of n(n− 1)/2 if and only if the two orders are
inverse to each other.
lemma swap-dist-relation-inverse:

assumes linorder-on A R finite A
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shows swap-dist-relation R (λx y. R y x) = (card A) choose 2
proof −

interpret R: linorder-on A R by fact
have card (swap-dist-relation-aux R (λx y. R y x)) =

card ((λ(x, y). {x, y}) ‘ swap-dist-relation-aux R (λx y. R y x))
by (subst card-image) (auto simp: inj-on-def doubleton-eq-iff swap-dist-relation-aux-def )

also have (λ(x, y). {x, y}) ‘ swap-dist-relation-aux R (λx y. R y x) =
{X . X ⊆ A ∧ card X = 2}

using R.total R.not-outside R.antisymmetric
by (fastforce simp: swap-dist-relation-aux-def card-insert-if image-iff card-2-iff doubleton-eq-iff )

also have card . . . = (card A) choose 2
by (rule n-subsets) fact

finally show ?thesis
by (simp add: swap-dist-relation-def )

qed

lemma swap-dist-relation-maximal-imp-inverse:
assumes preorder-on A R1 preorder-on A R2 finite A
assumes swap-dist-relation R1 R2 ≥ (card A) choose 2
shows R2 = (λy x. R1 x y)

proof −
interpret R1 : preorder-on A R1 by fact
interpret R2 : preorder-on A R2 by fact

have ∗: (λ(x,y). {x,y}) ‘ swap-dist-relation-aux R1 R2 = {X . X ⊆ A ∧ card X = 2}
proof (rule card-subset-eq)

show finite {X . X ⊆ A ∧ card X = 2}
using assms(3 ) by simp

show (λ(x, y). {x, y}) ‘ swap-dist-relation-aux R1 R2 ⊆ {X . X ⊆ A ∧ card X = 2}
using R1 .not-outside R2 .not-outside by (auto simp: swap-dist-relation-aux-def card-insert-if )
have card ((λ(x, y). {x, y}) ‘ swap-dist-relation-aux R1 R2 ) = swap-dist-relation R1 R2

unfolding swap-dist-relation-def
by (rule card-image) (auto simp: inj-on-def swap-dist-relation-aux-def doubleton-eq-iff )

also have . . . = (card A) choose 2
using swap-dist-relation-le[OF assms(1−3 )] assms(4 ) by linarith

also have . . . = card {X . X ⊆ A ∧ card X = 2}
by (rule n-subsets [symmetric]) fact

finally show card ((λ(x, y). {x, y}) ‘ swap-dist-relation-aux R1 R2 ) =
card {X . X ⊆ A ∧ card X = 2} .

qed

show ?thesis
proof (intro ext)

fix x y :: ′a
show R2 y x ←→ R1 x y
proof (cases x ∈ A ∧ y ∈ A ∧ x 6= y)

case False
thus ?thesis

using R1 .refl R2 .refl R1 .not-outside R2 .not-outside by auto
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next
case True
hence {x, y} ∈ {X . X ⊆ A ∧ card X = 2}

by auto
also note ∗ [symmetric]
finally show ?thesis

using True by (auto simp: swap-dist-relation-aux-def doubleton-eq-iff )
qed

qed
qed

lemma swap-dist-relation-maximal-iff-inverse:
assumes linorder-on A R1 linorder-on A R2 finite A
shows swap-dist-relation R1 R2 = (card A) choose 2 ←→ R2 = (λy x . R1 x y)

proof −
interpret R1 : linorder-on A R1 by fact
interpret R2 : linorder-on A R2 by fact
note preorder = R1 .preorder-on-axioms R2 .preorder-on-axioms
show ?thesis
using swap-dist-relation-inverse[OF assms(1 ,3 )] swap-dist-relation-le[OF preorder(1 ,2 ) assms(3 )]

swap-dist-relation-maximal-imp-inverse[OF preorder(1 ,2 ) assms(3 )]
by metis

qed

lemma swap-dist-relation-restrict:
assumes linorder-on B R linorder-on B S finite B
shows swap-dist-relation (restrict-relation A R) (restrict-relation A S) ≤

swap-dist-relation R S
unfolding swap-dist-relation-def

proof (rule card-mono)
interpret R: linorder-on B R by fact
interpret S : linorder-on B S by fact
show finite (swap-dist-relation-aux R S)

by (rule finite-subset[of - B × B])
(use ‹finite B› R.not-outside S .not-outside in ‹auto simp: swap-dist-relation-aux-def ›)

qed (use swap-dist-relation-aux-restrict-subset[of A R S ] in auto)

If the restriction of two relations to some set A has the same swap distance as the full
relations, the two relations must agree everywhere except inside A.
lemma swap-dist-relation-restrict-eq-imp-eq:

fixes R S A B
assumes linorder-on A R linorder-on A S finite A
defines R ′ ≡ restrict-relation B R
defines S ′ ≡ restrict-relation B S
assumes swap-dist-relation R ′ S ′ ≥ swap-dist-relation R S
assumes xy: x /∈ B ∨ y /∈ B
shows R x y ←→ S x y

proof −
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have swap-dist-relation-aux R ′ S ′ = swap-dist-relation-aux R S
proof (rule card-subset-eq)

show finite (swap-dist-relation-aux R S)
by (rule finite-swap-dist-relation-aux[OF assms(1 ,3 ,2 ,3 )])

show swap-dist-relation-aux R ′ S ′ ⊆ swap-dist-relation-aux R S
unfolding R ′-def S ′-def by (rule swap-dist-relation-aux-restrict-subset)

have swap-dist-relation R ′ S ′ ≤ swap-dist-relation R S
unfolding R ′-def S ′-def by (rule swap-dist-relation-restrict[OF assms(1 ,2 ,3 )])

with assms have swap-dist-relation R ′ S ′ = swap-dist-relation R S
by linarith

thus card (swap-dist-relation-aux R ′ S ′) = card (swap-dist-relation-aux R S)
by (simp add: swap-dist-relation-def )

qed
hence ∗: (a, b) ∈ swap-dist-relation-aux R ′ S ′←→ (a, b) ∈ swap-dist-relation-aux R S for a

b
by force

interpret R: linorder-on A R by fact
interpret S : linorder-on A S by fact
show ?thesis

using xy ∗[of x y] ∗[of y x] R.not-outside[of x y] S .not-outside[of x y]
R.total[of x y] S .total[of x y] R.antisymmetric[of x y] S .antisymmetric[of x y]

unfolding swap-dist-relation-aux-def R ′-def S ′-def restrict-relation-def mem-Collect-eq prod.case
by metis

qed

1.3 The swap distance of two lists

The swap distance of two lists is defined as the swap distance of the relations they
correspond to when interpreting them as rankings of “biggest” to “smallest”.
definition swap-dist :: ′a list ⇒ ′a list ⇒ nat where

swap-dist xs ys =
(if distinct xs ∧ distinct ys ∧ set xs = set ys
then swap-dist-relation (of-ranking xs) (of-ranking ys) else 0 )

lemma swap-dist-le: swap-dist xs ys ≤ (length xs) choose 2
proof (cases set xs = set ys ∧ distinct xs ∧ distinct ys)

case True
hence length xs = length ys

using distinct-card by metis
interpret xs: linorder-on set xs of-ranking xs

by (rule linorder-of-ranking) (use True in auto)
interpret ys: linorder-on set xs of-ranking ys

by (rule linorder-of-ranking) (use True in auto)
show ?thesis

using swap-dist-relation-le[OF xs.preorder-on-axioms ys.preorder-on-axioms] True
‹length xs = length ys› by (auto simp: swap-dist-def distinct-card)

qed (auto simp: swap-dist-def )

lemma swap-dist-same [simp]: swap-dist xs xs = 0
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by (auto simp: swap-dist-def )

lemma swap-dist-commute: swap-dist xs ys = swap-dist ys xs
by (simp add: swap-dist-def swap-dist-relation-commute)

lemma swap-dist-rev [simp]: swap-dist (rev xs) (rev ys) = swap-dist xs ys
proof (cases distinct xs ∧ distinct ys ∧ set xs = set ys)

case True
show ?thesis

using True swap-dist-relation-dual[of of-ranking xs of-ranking ys]
by (simp add: of-ranking-rev[abs-def ] swap-dist-def )

qed (auto simp: swap-dist-def )

lemma swap-dist-rev-left: swap-dist (rev xs) ys = swap-dist xs (rev ys)
using swap-dist-rev by (metis rev-rev-ident)

lemma swap-dist-triangle:
assumes set xs = set ys distinct ys
shows swap-dist xs zs ≤ swap-dist xs ys + swap-dist ys zs
using swap-dist-relation-triangle[of set xs of-ranking xs of-ranking ys of-ranking zs] assms
unfolding swap-dist-def by (simp add: linorder-of-ranking)

lemma swap-dist-eq-0-iff :
assumes distinct xs distinct ys set xs = set ys
shows swap-dist xs ys = 0 ←→ xs = ys

proof −
have swap-dist xs ys = 0 ←→ swap-dist-relation (of-ranking xs) (of-ranking ys) = 0

using assms by (auto simp: swap-dist-def )
also have . . . ←→ xs = ys
using assms by (metis List.finite-set linorder-of-ranking ranking-of-ranking swap-dist-relation-eq-0-iff )

finally show ?thesis .
qed

lemma swap-dist-pos-iff :
assumes distinct xs distinct ys set xs = set ys
shows swap-dist xs ys > 0 ←→ xs 6= ys
using swap-dist-eq-0-iff [OF assms] by linarith

lemma swap-dist-map:
assumes inj-on f (set xs ∪ set ys)
shows swap-dist (map f xs) (map f ys) = swap-dist xs ys

proof (cases set xs = set ys ∧ distinct xs ∧ distinct ys)
case True
define A where A = set xs
have inj: inj-on f A

using assms True unfolding A-def by simp
have linorder : linorder-on A (of-ranking xs) linorder-on A (of-ranking ys)

unfolding A-def using True by (simp-all add: linorder-of-ranking)
have swap-dist (map f xs) (map f ys) =
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swap-dist-relation (comap-relation f (of-ranking xs)) (comap-relation f (of-ranking ys))
by (use inj True in ‹auto simp: swap-dist-def distinct-map of-ranking-map A-def ›)

also have . . . = swap-dist xs ys
by (subst swap-dist-relation-comap-relation[OF inj linorder ])

(use True in ‹auto simp: swap-dist-def ›)
finally show ?thesis .

next
case False
have inj: inj-on f (set xs) inj-on f (set ys)

by (rule inj-on-subset[OF assms(1 )]; simp; fail)+
show ?thesis using inj False inj-on-Un-image-eq-iff [OF assms]

by (auto simp: swap-dist-def distinct-map)
qed

The swap distance reaches its maximum of n(n − 1)/2 iff the two lists are reverses of
one another.
lemma swap-dist-rev-same:

assumes distinct xs
shows swap-dist xs (rev xs) = (length xs) choose 2

proof −
have swap-dist xs (rev xs) = swap-dist-relation (of-ranking xs) (λx y. of-ranking xs y x)

using assms by (simp add: swap-dist-def of-ranking-rev [abs-def ])
also have . . . = (length xs) choose 2

by (subst swap-dist-relation-inverse[where A = set xs])
(use assms in ‹simp-all add: linorder-of-ranking distinct-card›)

finally show ?thesis .
qed

lemma swap-dist-maximalD:
assumes set xs = set ys distinct xs distinct ys
assumes swap-dist xs ys ≥ (length xs) choose 2
shows ys = rev xs

proof −
interpret xs: linorder-on set xs of-ranking xs

by (rule linorder-of-ranking) (use assms in auto)
interpret ys: linorder-on set xs of-ranking ys

by (rule linorder-of-ranking) (use assms in auto)
have length xs = length ys

using assms by (metis distinct-card)
have of-ranking ys = (λx y. of-ranking xs y x)

using assms ‹length xs = length ys›
by (intro swap-dist-relation-maximal-imp-inverse[where A = set xs])

(use xs.preorder-on-axioms ys.preorder-on-axioms in ‹simp-all add: swap-dist-def dis-
tinct-card›)

also have . . . = of-ranking (rev xs)
by (simp add: fun-eq-iff )

finally have ranking (of-ranking ys) = ranking (of-ranking (rev xs))
by (rule arg-cong)

thus ?thesis
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using assms by (subst (asm) (1 2 ) ranking-of-ranking) auto
qed

lemma swap-dist-maximal-iff :
assumes set xs = set ys distinct xs distinct ys
shows swap-dist xs ys = (length xs) choose 2 ←→ ys = rev xs
using assms swap-dist-maximalD[OF assms] swap-dist-le[of xs ys] swap-dist-rev-same by metis

lemma swap-dist-append-left:
assumes distinct zs
assumes set zs ∩ set xs = {} set zs ∩ set ys = {}
shows swap-dist (zs @ xs) (zs @ ys) = swap-dist xs ys

proof (cases distinct xs ∧ distinct ys ∧ set xs = set ys)
case False
thus ?thesis using assms

by (auto simp: swap-dist-def )
next

case True
have swap-dist-relation-aux (of-ranking (zs @ xs)) (of-ranking (zs @ ys)) =

swap-dist-relation-aux (of-ranking xs) (of-ranking ys)
unfolding swap-dist-relation-aux-def of-ranking-append
using assms True of-ranking-imp-in-set[of xs] of-ranking-imp-in-set[of zs]
by blast

thus ?thesis
using True assms by (simp add: swap-dist-def swap-dist-relation-def )

qed

lemma swap-dist-append-right:
assumes distinct zs
assumes set zs ∩ set xs = {} set zs ∩ set ys = {}
shows swap-dist (xs @ zs) (ys @ zs) = swap-dist xs ys

proof (cases distinct xs ∧ distinct ys ∧ set xs = set ys)
case False
thus ?thesis using assms

by (auto simp add: swap-dist-def Int-commute)
next

case True
have swap-dist-relation-aux (of-ranking (xs @ zs)) (of-ranking (ys @ zs)) =

swap-dist-relation-aux (of-ranking xs) (of-ranking ys)
unfolding swap-dist-relation-aux-def of-ranking-append
using assms True of-ranking-imp-in-set[of xs] of-ranking-imp-in-set[of zs]
by blast

thus ?thesis
using True assms by (simp add: swap-dist-def swap-dist-relation-def Int-commute)

qed

lemma swap-dist-Cons-same:
assumes z /∈ set xs ∪ set ys
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shows swap-dist (z # xs) (z # ys) = swap-dist xs ys
using swap-dist-append-left[of [z] xs ys] assms by simp

lemma swap-dist-swap-first:
assumes distinct (x # y # xs)
shows swap-dist (x # y # xs) (y # x # xs) = 1

proof −
have swap-dist (x # y # xs) (y # x # xs) =

card (swap-dist-relation-aux (of-ranking (x # y # xs)) (of-ranking (y # x # xs)))
using assms by (simp add: swap-dist-def swap-dist-relation-def insert-commute)

also have swap-dist-relation-aux (of-ranking (x # y # xs)) (of-ranking (y # x # xs)) =
{(y,x)}

using assms of-ranking-imp-in-set[of xs] by (auto simp: swap-dist-relation-aux-def of-ranking-Cons)
finally show ?thesis

by simp
qed

1.4 The relationship between swap distance and inversions

The swap distance between a list xs containing the numbers 0, . . . , n − 1 and the list
[0, . . . , n− 1] is exactly the number of inversions of xs.
lemma swap-dist-zero-upt-n:

assumes mset xs = mset-set {0 ..<n}
shows swap-dist [0 ..<n] xs = inversion-number xs

proof −
define A where A = {xy∈{..<n}×{..<n}. fst xy > snd xy ∧ snd xy ≺[of-ranking xs] fst xy}
define B where B = {ij∈{..<n}×{..<n}. fst ij < snd ij ∧ xs ! fst ij > xs ! snd ij}
define f where f = (λi. xs ! i)

have distinct: distinct xs
using assms by (metis finite-atLeastLessThan mset-eq-mset-set-imp-distinct)

have set-xs: set xs = {0 ..<n}
using assms by (metis mset-eq-setD mset-upt set-upt)

have length-xs: length xs = n
using assms by (metis diff-zero length-upt mset-eq-length mset-upt)

have swap-dist ([0 ..<n]) xs = swap-dist-relation (of-ranking ([0 ..<n])) (of-ranking xs)
unfolding swap-dist-def using distinct set-xs by simp

also have . . . = card (swap-dist-relation-aux (of-ranking ([0 ..<n])) (of-ranking xs))
unfolding swap-dist-relation-def ..

also have swap-dist-relation-aux (of-ranking ([0 ..<n])) (of-ranking xs) = A
unfolding A-def swap-dist-relation-aux-def of-ranking-zero-upt-nat strongly-preferred-def by

auto
finally have swap-dist ([0 ..<n]) xs = card A .

also have bij-betw (map-prod f f ) B A
unfolding inversions-altdef case-prod-unfold A-def B-def

proof (rule bij-betw-Collect, goal-cases)
case 1
have bij-betw f {..<n} (set xs)

15



unfolding f-def by (rule bij-betw-nth) (use distinct in ‹simp-all add: length-xs›)
hence bij-betw f {..<n} {..<n}

by (simp add: set-xs atLeast0LessThan)
show bij-betw (map-prod f f ) ({..<n} × {..<n}) ({..<n} × {..<n})

by (rule bij-betw-map-prod) fact+
next

case (2 xy)
thus ?case

using distinct
by (auto simp: strongly-preferred-of-ranking-nth-iff f-def length-xs set-xs)

qed
hence card B = card A

by (rule bij-betw-same-card)
hence card A = card B ..
also have card B = inversion-number xs

unfolding inversion-number-def inversions-altdef B-def
by (rule arg-cong[of - - card]) (auto simp: set-xs length-xs)

finally show ?thesis .
qed

Hence, computing the swap distance of two arbitrary lists can be reduced to computing
the number of inversions of a list by renaming all the elements such that the first list
becomes [0, . . . , n− 1].
lemma swap-dist-conv-inversion-number :

assumes distinct: distinct xs distinct ys and set-eq: set xs = set ys
shows swap-dist xs ys = inversion-number (map (index xs) ys)

proof −
have length xs = length ys

using distinct set-eq by (metis distinct-card)
define n where n = length xs
have n = length ys

using ‹length xs = length ys› unfolding n-def by simp

define f where f = index xs
have inj: inj-on f (set xs)

unfolding f-def using inj-on-index[of xs] by simp

have swap-dist xs ys = swap-dist (map f xs) (map f ys)
by (rule swap-dist-map [symmetric]) (use set-eq inj in simp-all)

also have map f xs = [0 ..<n] unfolding f-def n-def
by (rule map-index-self ) fact+

also have swap-dist [0 ..<n] (map f ys) = inversion-number (map f ys)
proof (rule swap-dist-zero-upt-n)

show mset (map f ys) = mset-set {0 ..<n}
by (metis ‹map f xs = [0 ..<n]› distinct(1 ,2 ) mset-map mset-set-set mset-upt set-eq)

qed
finally show ?thesis

by (simp add: f-def )
qed
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lemma swap-dist-code ′ [code]:
swap-dist xs ys =

(if distinct xs ∧ distinct ys ∧ set xs = set ys then
inversion-number (map (index xs) ys) else 0 )

proof (cases distinct xs ∧ distinct ys ∧ set xs = set ys)
case False
thus ?thesis

by (auto simp: swap-dist-def )
next

case True
thus ?thesis

by (subst swap-dist-conv-inversion-number) auto
qed

1.5 Swapping adjacent list elements
definition swap-adj-list :: nat ⇒ ′a list ⇒ ′a list where

swap-adj-list i xs = (if Suc i < length xs then xs[i := xs ! Suc i, Suc i := xs ! i] else xs)

lemma length-swap-adj-list [simp]: length (swap-adj-list i xs) = length xs
by (simp add: swap-adj-list-def )

lemma distinct-swap-adj-list-iff [simp]:
distinct (swap-adj-list i xs) ←→ distinct xs
by (simp add: swap-adj-list-def )

lemma mset-swap-adj-list [simp]:
mset (swap-adj-list i xs) = mset xs
by (simp add: swap-adj-list-def mset-update)

lemma set-swap-adj-list [simp]:
set (swap-adj-list i xs) = set xs
by (simp add: swap-adj-list-def )

lemma swap-adj-list-append-left:
assumes i ≥ length xs
shows swap-adj-list i (xs @ ys) = xs @ swap-adj-list (i − length xs) ys
using assms by (auto simp: swap-adj-list-def list-update-append nth-append Suc-diff-le)

lemma swap-adj-list-Cons:
assumes i > 0
shows swap-adj-list i (x # xs) = x # swap-adj-list (i − 1 ) xs
using swap-adj-list-append-left[of [x] i xs] assms by simp

lemma swap-adj-list-append-right:
assumes Suc i < length xs
shows swap-adj-list i (xs @ ys) = swap-adj-list i xs @ ys
using assms by (auto simp: swap-adj-list-def list-update-append nth-append)
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lemma swap-dist-swap-adj-list:
assumes Suc i < length xs distinct xs
shows swap-dist xs (swap-adj-list i xs) = 1

proof −
define x y where x = xs ! i and y = xs ! Suc i
define ys zs where ys = take i xs and zs = drop (i+2 ) xs
have length ys = i

using assms(1 ) by (simp add: ys-def )
have 1 : xs = ys @ x # y # zs

unfolding x-def y-def ys-def zs-def using assms(1 ) by (simp add: Cons-nth-drop-Suc)
have 2 : swap-adj-list i xs = ys @ y # x # zs

by (simp add: swap-adj-list-def 1 list-update-append ‹length ys = i› nth-append)
have swap-dist xs (swap-adj-list i xs) =

swap-dist (ys @ x # y # zs) (ys @ y # x # zs)
by (subst 1 , subst 2 ) (rule refl)

also have . . . = 1
using assms by (simp add: 1 swap-dist-swap-first swap-dist-append-left)

finally show ?thesis .
qed

fun swap-adjs-list :: nat list ⇒ ′a list ⇒ ′a list where
swap-adjs-list [] xs = xs
| swap-adjs-list (i # is) xs = swap-adjs-list is (swap-adj-list i xs)

lemma length-swap-adjs-list [simp]: length (swap-adjs-list is xs) = length xs
by (induction is arbitrary: xs) simp-all

lemma distinct-swap-adjs-list-iff [simp]:
distinct (swap-adjs-list is xs) ←→ distinct xs
by (induction is arbitrary: xs) (auto simp: swap-adj-list-def )

lemma mset-swap-adjs-list [simp]:
mset (swap-adjs-list is xs) = mset xs
by (induction is arbitrary: xs) (auto simp: swap-adj-list-def mset-update)

lemma set-swap-adjs-list-list [simp]:
set (swap-adjs-list is xs) = set xs
by (induction is arbitrary: xs) (auto simp: swap-adj-list-def mset-update)

lemma swap-adjs-list-append:
swap-adjs-list (is @ js) xs = swap-adjs-list js (swap-adjs-list is xs)
by (induction is arbitrary: xs) simp-all

lemma swap-adjs-list-append-left:
assumes ∀ i∈set is. i ≥ length xs
shows swap-adjs-list is (xs @ ys) = xs @ swap-adjs-list (map (λi. i − length xs) is) ys
using assms by (induction is arbitrary: ys) (simp-all add: swap-adj-list-append-left)
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lemma swap-adjs-list-Cons:
assumes 0 /∈ set is
shows swap-adjs-list is (x # xs) = x # swap-adjs-list (map (λi. i − 1 ) is) xs

proof −
have ∀ i∈set is. Suc 0 ≤ i

using assms by (auto simp: Suc-le-eq intro!: Nat.gr0I )
thus ?thesis

using swap-adjs-list-append-left[of is [x] xs] by simp
qed

lemma swap-adjs-list-append-right:
assumes ∀ i∈set is. Suc i < length xs
shows swap-adjs-list is (xs @ ys) = swap-adjs-list is xs @ ys
using assms by (induction is arbitrary: xs) (simp-all add: swap-adj-list-append-right)

Swapping two adjacent elements either increases or decreases the swap distance by 1,
depending on the orientation of the swapped pair in the other relation.
lemma swap-dist-relation-of-ranking-swap:

assumes distinct (xs @ x # y # ys)
shows swap-dist-relation R (of-ranking (xs @ x # y # ys)) + (if y ≺[R] x then 1 else 0 ) =

swap-dist-relation R (of-ranking (xs @ y # x # ys)) + (if x ≺[R] y then 1 else 0 )
proof −

have swap-dist-relation-aux R (of-ranking (xs @ x # y # ys)) ∪ (if y ≺[R] x then {(y,x)} else
{}) =

swap-dist-relation-aux R (of-ranking (xs @ y # x # ys)) ∪ (if x ≺[R] y then {(x,y)} else
{})

(is ?lhs = ?rhs)
using assms

by (auto simp: swap-dist-relation-aux-def of-ranking-append of-ranking-Cons strongly-preferred-def
dest: of-ranking-imp-in-set)

moreover have card ?lhs = card (swap-dist-relation-aux R (of-ranking (xs @ x # y # ys)))
+ (if y ≺[R] x then 1 else 0 )

proof (subst card-Un-disjoint)
show finite (swap-dist-relation-aux R (of-ranking (xs @ x # y # ys)))
proof (rule finite-subset)

show swap-dist-relation-aux R (of-ranking (xs @ x # y # ys)) ⊆
set (xs @ x # y # ys) × set (xs @ x # y # ys)

unfolding swap-dist-relation-aux-def using of-ranking-imp-in-set[of (xs @ x # y # ys)]
by blast

qed auto
qed (auto simp: swap-dist-relation-aux-def of-ranking-append of-ranking-Cons)
moreover have card ?rhs = card (swap-dist-relation-aux R (of-ranking (xs @ y # x # ys)))

+ (if x ≺[R] y then 1 else 0 )
proof (subst card-Un-disjoint)

show finite (swap-dist-relation-aux R (of-ranking (xs @ y # x # ys)))
proof (rule finite-subset)

show swap-dist-relation-aux R (of-ranking (xs @ y # x # ys)) ⊆
set (xs @ y # x # ys) × set (xs @ y # x # ys)

unfolding swap-dist-relation-aux-def using of-ranking-imp-in-set[of (xs @ y # x # ys)]
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by blast
qed auto

qed (auto simp: swap-dist-relation-aux-def of-ranking-append of-ranking-Cons)
ultimately show ?thesis

unfolding swap-dist-relation-def by metis
qed

1.6 Swapping non-adjacent list elements

If x and y are two not necessarily adjacent elements that are “in the wrong order”,
swapping them always strictly decreases the swap distance.
lemma swap-dist-relation-swap-less:

assumes linorder-on A R finite A
assumes xy: R x y
assumes distinct: distinct (xs @ x # ys @ y # zs)
assumes subset: set (xs @ x # ys @ y # zs) = A
shows swap-dist-relation R (of-ranking (xs @ x # ys @ y # zs)) >

swap-dist-relation R (of-ranking (xs @ y # ys @ x # zs))
proof −

interpret R: linorder-on A R by fact
from distinct have [simp]: x 6= y y 6= x

by auto
have yx: ¬y �[R] x

using xy R.antisymmetric[of x y] by auto

define f where f = (λxs. swap-dist-relation-aux R (of-ranking xs))
have fin: finite (f xs) for xs

by (rule finite-subset[of - set xs × set xs])
(auto simp: f-def swap-dist-relation-aux-def dest: of-ranking-imp-in-set)

have f-eq: f xs = {(x, y). x ≺[R] y ∧ x �[of-ranking xs] y} for xs
unfolding f-def swap-dist-relation-aux-def by (auto simp: strongly-preferred-def )

have distinct xs distinct ys distinct zs
using distinct by auto

hence ∗: a ≺[of-ranking xs] b ←→ a 6= b ∧ of-ranking xs a b
a ≺[of-ranking ys] b ←→ a 6= b ∧ of-ranking ys a b
a ≺[of-ranking zs] b ←→ a 6= b ∧ of-ranking zs a b for a b

by (metis linorder-of-ranking linorder-on-def order-on.antisymmetric
strongly-preferred-def )+

have ∗∗: a ≺[R] b ←→ a 6= b ∧ R a b for a b
using R.antisymmetric R.total unfolding strongly-preferred-def by blast

define lhs where
lhs = f (xs @ x # ys @ y # zs) ∪ ({(y,b) |b. R y b ∧ b ∈ set ys} ∪ {(a,x) |a. R a x ∧ a ∈

set (y#ys)})
define rhs where

rhs = f (xs @ y # ys @ x # zs) ∪ ({(x,b) |b. R x b ∧ b ∈ set ys} ∪ {(a,y) |a. R a y ∧ a ∈
set (x#ys)})
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have lhs = rhs
proof −

have (a, b) ∈ lhs ←→ (a, b) ∈ rhs for a b
proof −

have (a, b) ∈ lhs ←→ (a, b) ∈ f (xs @ x # ys @ y # zs) ∨ R a b ∧ ((a = y ∧ (b = x ∨ b
∈ set ys)) ∨ (a ∈ set ys ∧ b = x))

unfolding lhs-def using subset by auto
also have . . . ←→ (a, b) ∈ f (xs @ y # ys @ x # zs) ∨ R a b ∧ ((a = x ∧ (b = y ∨ b ∈

set ys)) ∨ (a ∈ set ys ∧ b = y))
using distinct subset unfolding f-eq

by (force simp: of-ranking-strongly-preferred-Cons-iff of-ranking-strongly-preferred-append-iff

eq-commute not-strongly-preferred-of-ranking-iff ∗ ∗∗)
also have . . . ←→ (a, b) ∈ rhs

unfolding rhs-def using subset yx by auto
finally show (a, b) ∈ lhs ←→ (a, b) ∈ rhs .

qed
thus ?thesis

by auto
qed

define d1 where d1 = card {a. R a y ∧ R y a ∧ a ∈ set ys}
define d2 where d2 = card {a. R x a ∧ R a y ∧ a ∈ set ys}

have card lhs = card (f (xs @ x # ys @ y # zs)) +
card ({(y,b) |b. R y b ∧ b ∈ set ys} ∪ {(a,x) |a. R a x ∧ a ∈ set (y#ys)})

unfolding lhs-def
by (intro card-Un-disjoint fin)

(auto simp: f-def swap-dist-relation-aux-def of-ranking-Cons of-ranking-append
dest: of-ranking-imp-in-set)

also have card ({(y,b) |b. R y b ∧ b ∈ set ys} ∪ {(a,x) |a. R a x ∧ a ∈ set (y#ys)}) =
card {(y,b) |b. R y b ∧ b ∈ set ys} + card {(a,x) |a. R a x ∧ a ∈ set (y#ys)}

using distinct by (intro card-Un-disjoint) auto
also have {(y,b) |b. R y b ∧ b ∈ set ys} = (λb. (y,b)) ‘ {b. R y b ∧ b ∈ set ys}

by auto
also have card . . . = card {b. R y b ∧ b ∈ set ys}

by (rule card-image) (auto simp: inj-on-def )
also have {(a,x) |a. R a x ∧ a ∈ set (y#ys)} = (λa. (a,x)) ‘ {a. R a x ∧ a ∈ set (y#ys)}

by auto
also have card . . . = card {a. R a x ∧ a ∈ set (y#ys)}

by (rule card-image) (auto simp: inj-on-def )
also have {a. R a x ∧ a ∈ set (y#ys)} = {a. R a x ∧ a ∈ set ys}

using yx by auto
finally have 1 :

card lhs =
card (f (xs @ x # ys @ y # zs)) + card {a. R a x ∧ a ∈ set ys} + card {b. R y b ∧ b ∈

set ys}
by (simp only: add-ac)
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have card rhs = card (f (xs @ y # ys @ x # zs)) +
card ({(x,b) |b. R x b ∧ b ∈ set ys} ∪ {(a,y) |a. R a y ∧ a ∈ set (x#ys)})

unfolding rhs-def
by (intro card-Un-disjoint fin)

(auto simp: f-def swap-dist-relation-aux-def of-ranking-Cons of-ranking-append
dest: of-ranking-imp-in-set)

also have card ({(x,b) |b. R x b ∧ b ∈ set ys} ∪ {(a,y) |a. R a y ∧ a ∈ set (x#ys)}) =
card ({(x,b) |b. R x b ∧ b ∈ set ys}) + card ({(a,y) |a. R a y ∧ a ∈ set (x#ys)})

using distinct by (intro card-Un-disjoint) auto
also have {(x,b) |b. R x b ∧ b ∈ set ys} = (λb. (x,b)) ‘ {b. R x b ∧ b ∈ set ys}

by auto
also have card . . . = card {b. R x b ∧ b ∈ set ys}

by (rule card-image) (auto simp: inj-on-def )
also have {(a,y) |a. R a y ∧ a ∈ set (x#ys)} = (λa. (a,y)) ‘ {a. R a y ∧ a ∈ set (x#ys)}

by auto
also have card . . . = card {a. R a y ∧ a ∈ set (x#ys)}

by (rule card-image) (auto simp: inj-on-def )
also have {a. R a y ∧ a ∈ set (x#ys)} = {a. R a y ∧ a ∈ set ys} ∪ {x}

using xy by auto
also have card . . . = card {a. R a y ∧ a ∈ set ys} + 1

using distinct by (subst card-Un-disjoint) auto

finally have 2 :
card rhs =

card (f (xs @ y # ys @ x # zs)) + card {a. R a y ∧ a ∈ set ys} + card {b. R x b ∧ b ∈
set ys} + 1

by (simp only: add-ac)

have 3 : card {a. R a x ∧ a ∈ set ys} ≤ card {a. R a y ∧ a ∈ set ys}
by (rule card-mono) (use xy R.trans in auto)

have 4 : card {b. R y b ∧ b ∈ set ys} ≤ card {b. R x b ∧ b ∈ set ys}
by (rule card-mono) (use xy R.trans in auto)

have int (card lhs) = int (card rhs)
using ‹lhs = rhs› by (rule arg-cong)

hence int (card lhs) − card {a. R a x ∧ a ∈ set ys} − card {b. R y b ∧ b ∈ set ys} ≥
int (card rhs) − card {a. R a y ∧ a ∈ set ys} − card {b. R x b ∧ b ∈ set ys}

using 3 4 by linarith
hence card (f (xs @ x # ys @ y # zs)) > card (f (xs @ y # ys @ x # zs))

unfolding 1 2 by simp
thus ?thesis

unfolding f-def swap-dist-relation-def by simp
qed

lemma swap-dist-relation-swap-less ′:
assumes xy: R (ys ! i) (ys ! j) ←→ i < j
assumes R: finite-linorder-on A R
assumes distinct: distinct ys set ys = A
assumes ij: i < length ys j < length ys i 6= j
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shows swap-dist-relation R (of-ranking ys) >
swap-dist-relation R (of-ranking (ys[i := ys ! j, j := ys ! i]))

using ij xy
proof (induction i j rule: linorder-wlog)

case (le i j)
hence i < j

by linarith
interpret R: finite-linorder-on A R

by fact
define ys1 ys2 ys3 where ys1 = take i ys

and ys2 = take (j − i − 1 ) (drop (i+1 ) ys) and ys3 = drop (j+1 ) ys
have [simp]: length ys1 = i length ys2 = j − i − 1 length ys3 = length ys − j − 1

using le by (simp-all add: ys1-def ys2-def ys3-def )
define y y ′ where y = ys ! i and y ′ = ys ! j

have ys-eq: ys = ys1 @ y # ys2 @ y ′ # ys3
apply (subst id-take-nth-drop[of i])
subgoal by (use le in simp)
apply (subst id-take-nth-drop[of j − i − 1 drop (Suc i) ys])
apply (use le in ‹simp-all add: ys1-def ys2-def ys3-def y-def y ′-def ›)

done

have swap-dist-relation R (of-ranking (ys1 @ y # ys2 @ y ′ # ys3 )) >
swap-dist-relation R (of-ranking (ys1 @ y ′ # ys2 @ y # ys3 ))

proof (rule swap-dist-relation-swap-less)
show linorder-on A R ..
show R y y ′

unfolding y-def y ′-def using le by auto
show distinct (ys1 @ y # ys2 @ y ′ # ys3 )

using distinct unfolding ys-eq by simp
show set (ys1 @ y # ys2 @ y ′ # ys3 ) = A

using distinct unfolding ys-eq by simp
qed auto
also have ys1 @ y # ys2 @ y ′ # ys3 = ys

using ys-eq by simp
also have ys1 @ y ′ # ys2 @ y # ys3 = ys[i := y ′, j := y]

by (subst ys-eq) (use le ‹i < j› in ‹auto simp: list-update-append split: nat.splits›)
finally show ?case

unfolding swap-dist-def y-def y ′-def using distinct by simp
next

case (sym i j)
interpret R: finite-linorder-on A R

by fact
have swap-dist-relation R (of-ranking (ys[j := ys ! i, i := ys ! j])) <

swap-dist-relation R (of-ranking ys)
proof (rule sym.IH )

show R (ys ! j) (ys ! i) ←→ (j < i)
using sym.prems distinct R.antisymmetric R.total ′
by (metis less-imp-le-nat linorder-not-le nat-neq-iff nth-eq-iff-index-eq nth-mem)

23



qed (use sym.prems in auto)
thus ?case

using sym.prems by (simp add: list-update-swap)
qed

The following formulation for lists is probably the nicest one.
lemma swap-dist-swap-less:

assumes xy: of-ranking xs (ys ! i) (ys ! j) ←→ i < j
assumes distinct: distinct xs distinct ys set xs = set ys
assumes ij: i < length ys j < length ys i 6= j
shows swap-dist xs ys > swap-dist xs (ys[i := ys ! j, j := ys ! i])

proof −
have swap-dist-relation (of-ranking xs) (of-ranking ys) >

swap-dist-relation (of-ranking xs) (of-ranking (ys[i := ys ! j, j := ys ! i]))
by (rule swap-dist-relation-swap-less ′[where A = set xs])

(use assms in ‹auto intro: finite-linorder-of-ranking›)
thus ?thesis

using distinct by (simp add: swap-dist-def )
qed

1.7 Swap distance as minimal number of adjacent swaps to make two lists
equal

The swap distance between the original list and the list obtained after swapping adjacent
elements n times is at most n.
lemma swap-dist-swap-adjs-list:

assumes distinct xs
shows swap-dist xs (swap-adjs-list is xs) ≤ length is
using assms

proof (induction is arbitrary: xs)
case (Cons i is xs)
define ys where ys = swap-adj-list i xs
have swap-dist xs (swap-adjs-list (i#is) xs) =

swap-dist xs (swap-adjs-list is ys)
by (simp add: ys-def )

also have . . . ≤ swap-dist xs ys + swap-dist ys (swap-adjs-list is ys)
by (rule swap-dist-triangle) (use Cons.prems in ‹simp-all add: ys-def ›)

also have swap-dist xs ys ≤ 1
proof (cases Suc i < length xs)

case True
hence swap-dist xs ys = 1

unfolding ys-def by (intro swap-dist-swap-adj-list) (use Cons.prems in auto)
thus ?thesis

by simp
qed (auto simp: ys-def swap-adj-list-def )
also have swap-dist ys (swap-adjs-list is ys) ≤ length is

by (rule Cons.IH ) (use Cons.prems in ‹auto simp: ys-def ›)
finally show ?case
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by simp
qed simp-all

Phrased in another way, any sequence of adjacent swaps that makes two lists the same
must have a length at least as big as the swap distance of the two lists.
theorem swap-dist-minimal:

assumes distinct xs
assumes ∀ i∈set is. Suc i < length xs
assumes swap-adjs-list is xs = ys
shows length is ≥ swap-dist xs ys
using swap-dist-swap-adjs-list[of xs is] assms by blast

Next, we will show that this lower bound is sharp, i.e. there exists a sequence of swaps
that makes the two lists the same whose length is exactly the swap distance.
To this end, we derive an algorithm to compute a sequence of swaps whose effect is
equivalent to the permutation [0, 1, . . . , n− 1] 7→ [i0, i1, . . . , in−1].
We first define the following function, which returns a list of swaps that pulls the i-th
element of a list to the front, i.e. it corresponds to the permutation [0, 1, . . . , n − 1] 7→
[i, 0, 1, . . . , i− 1, i+ 1, . . . , n− 1].
definition pull-to-front-swaps :: nat ⇒ nat list where

pull-to-front-swaps i = rev [0 ..<i]

lemma length-pull-to-front-swaps [simp]: length (pull-to-front-swaps i) = i
by (simp add: pull-to-front-swaps-def )

lemma set-pull-to-front-swaps [simp]: set (pull-to-front-swaps i) = {0 ..<i}
by (simp add: pull-to-front-swaps-def )

lemma pull-to-front-swaps-0 [simp]: pull-to-front-swaps 0 = []
and pull-to-front-swaps-Suc: pull-to-front-swaps (Suc i) = i # pull-to-front-swaps i
by (simp-all add: pull-to-front-swaps-def )

lemma swap-adjs-list-pull-to-front:
assumes i < length xs
shows swap-adjs-list (pull-to-front-swaps i) xs = (xs ! i) # take i xs @ drop (Suc i) xs
using assms

proof (induction i arbitrary: xs)
case 0
have xs = xs ! 0 # drop (Suc 0 ) xs

using 0 by (cases xs) auto
thus ?case by simp

next
case (Suc i xs)
define x y where x = xs ! i and y = xs ! Suc i
define ys zs where ys = take i xs and zs = drop (i+2 ) xs
have [simp]: length ys = i

using Suc.prems by (simp add: ys-def )
have xs-eq: xs = ys @ x # y # zs
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unfolding x-def y-def ys-def zs-def using Suc.prems by (simp add: Cons-nth-drop-Suc)

have swap-adjs-list (pull-to-front-swaps (Suc i)) xs =
y # ys @ drop (Suc i) (xs[i := y, Suc i := x]) using Suc.prems

by (simp add: pull-to-front-swaps-Suc swap-adj-list-def Suc.IH x-def y-def ys-def zs-def )
also have drop (Suc i) (xs[i := y, Suc i := x]) = x # zs

by (simp add: xs-eq list-update-append)
also have y # ys @ x # zs = xs ! Suc i # take (Suc i) xs @ drop (Suc (Suc i)) xs

by (simp add: xs-eq nth-append)
finally show ?case .

qed

We now simply perform the “pull to front” operation so that the first element is the
desired one. We then do the same thing again for the remaining n − 1 indices (shifted
accordingly) etc. until we reach the end of the index list.
This corresponds to a variant of selection sort that only uses adjacent swaps, or it can
also be seen as a kind of reversal of insertion sort.
fun swaps-of-perm :: nat list ⇒ nat list where

swaps-of-perm [] = []
| swaps-of-perm (i # is) =

pull-to-front-swaps i @ map Suc (swaps-of-perm (map (λj. if j ≥ i then j − 1 else j) is))

lemma set-swaps-of-perm-subset: set (swaps-of-perm is) ⊆ (
⋃

i∈set is. {0 ..<i})
by (induction is rule: swaps-of-perm.induct; fastforce)

lemma swap-adjs-list-swaps-of-perm-aux:
fixes i :: nat
assumes mset (i # is) = mset-set {0 ..<n}
shows mset (map (λj. if i ≤ j then j − 1 else j) is) = mset-set {0 ..<n − 1}

proof −
define is1 where is1 = filter-mset (λj. i ≤ j) (mset is)
define is2 where is2 = filter-mset (λj. ¬(i ≤ j)) (mset is)

have i ∈# mset (i # is)
by simp

also have mset (i # is) = mset-set {0 ..<n}
by fact

finally have i: i < n
by simp

have mset-set {0 ..<n} = mset (i # is)
using assms by simp

also have . . . = add-mset i (mset is)
by simp

finally have mset is = mset-set {0 ..<n} − {#i#}
by simp

also have . . . = mset-set ({0 ..<n} − {i})
by (subst mset-set-Diff ) (use i in auto)

finally have mset-is: mset is = mset-set ({0 ..<n} − {i}) .
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have mset (map (λj. if i ≤ j then j − 1 else j) is) =
{#if i ≤ j then j − 1 else j. j ∈# mset is#}

by simp
also have mset is = is1 + is2

unfolding is1-def is2-def by (rule multiset-partition)
also have {#if i ≤ j then j − 1 else j. j ∈# is1 + is2#} =

{#j − 1 . j ∈# is1#} + {#j. j ∈# is2#} unfolding image-mset-union
by (intro arg-cong2 [of - - - - (+)] image-mset-cong) (auto simp: is1-def is2-def )

also have {#j − 1 . j ∈# is1#} = {#j − 1 . j ∈# mset-set {x. x < n ∧ x 6= i ∧ i ≤ x}#}
unfolding is1-def by (simp add: mset-is)

also have . . . = mset-set ((λj. j − 1 ) ‘ {x. x < n ∧ x 6= i ∧ i ≤ x})
by (intro image-mset-mset-set) (auto simp: inj-on-def )

also have {x. x < n ∧ x 6= i ∧ i ≤ x} = {i<..<n}
by auto

also have bij-betw (λj. j − 1 ) {i<..<n} {i..<n − 1}
by (rule bij-betwI [of - - - λi. i+1 ]) auto

hence (λj. j − 1 ) ‘ {i<..<n} = {i..<n − 1}
by (simp add: bij-betw-def )

also have {#j. j ∈# is2#} = mset-set {x. x < n ∧ x 6= i ∧ ¬ i ≤ x}
by (simp add: is2-def mset-is)

also have {x. x < n ∧ x 6= i ∧ ¬ i ≤ x} = {..<i}
using i by auto

also have mset-set {i..<n − 1} + mset-set {..<i} =
mset-set ({i..<n − 1} ∪ {..<i})

by (rule mset-set-Union [symmetric]) auto
also have {i..<n − 1} ∪ {..<i} = {0 ..<n − 1}

using i by auto
finally show ?thesis .

qed

The following result shows that the list of swaps returned by swaps-of-perm indeed have
the desired effect.
lemma swap-adjs-list-swaps-of-perm:

assumes mset is = mset-set {0 ..<length xs}
shows swap-adjs-list (swaps-of-perm is) xs = map (λi. xs ! i) is
using assms

proof (induction is arbitrary: xs rule: swaps-of-perm.induct)
case (1 xs)
thus ?case

by (simp add: mset-set-empty-iff )
next

case (2 i is xs)
define is ′ where is ′ = map (λj. if i ≤ j then j − 1 else j) is
have i: i < length xs
proof −

have i ∈# mset (i # is)
by simp

also have mset (i # is) = mset-set {0 ..<length xs}
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by fact
finally show ?thesis

by simp
qed
have distinct (i # is)

using 2 .prems by (metis distinct-upt mset-eq-imp-distinct-iff mset-upt)

have swap-adjs-list (swaps-of-perm (i # is)) xs =
swap-adjs-list (map Suc (swaps-of-perm is ′))
(swap-adjs-list (pull-to-front-swaps i) xs)

by (simp add: swap-adjs-list-append is ′-def )
also have swap-adjs-list (pull-to-front-swaps i) xs = xs ! i # take i xs @ drop (Suc i) xs

by (subst swap-adjs-list-pull-to-front) (use i in auto)
also have swap-adjs-list (map Suc (swaps-of-perm is ′)) . . . =

xs ! i # swap-adjs-list (swaps-of-perm is ′) (take i xs @ drop (Suc i) xs)
by (subst swap-adjs-list-Cons) (simp-all add: o-def )

also have swap-adjs-list (swaps-of-perm is ′) (take i xs @ drop (Suc i) xs) =
map ((!) (take i xs @ drop (Suc i) xs)) is ′

unfolding is ′-def
proof (rule 2 .IH )

have mset (map (λj. if i ≤ j then j − 1 else j) is) =
mset-set {0 ..<length xs − 1}

by (rule swap-adjs-list-swaps-of-perm-aux) (use 2 .prems in simp-all)
also have length xs − 1 = length (take i xs @ drop (Suc i) xs)

using i by simp
finally show mset (map (λj. if i ≤ j then j − 1 else j) is) =

mset-set {0 ..<length (take i xs @ drop (Suc i) xs)} .
qed
also have xs ! i # map ((!) (take i xs @ drop (Suc i) xs)) is ′ = map ((!) xs) (i # is)

by (rule nth-equalityI )
(use i ‹distinct (i # is)›
in ‹force simp: is ′-def o-def nth-append nth-Cons set-conv-nth split: nat.splits›)+

finally show ?case .
qed

The number of swaps returned by swaps-of-perm is exactly the number of inversions in
the input list (i.e. of the index permutation described by it).
lemma length-swaps-of-perm:

assumes mset is = mset-set {0 ..<length is}
shows length (swaps-of-perm is) = inversion-number is
using assms

proof (induction is rule: swaps-of-perm.induct)
case (2 i is)
define n where n = length is
define is ′ where is ′ = map (λj. if i ≤ j then j − 1 else j) is
have mset is ′ = mset-set {0 ..<Suc (length is)−1}

unfolding is ′-def by (rule swap-adjs-list-swaps-of-perm-aux) (use 2 .prems in simp-all)
also have Suc (length is) − 1 = length (map (λj. if i ≤ j then j − 1 else j) is)

by simp
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finally have is ′: mset is ′ = mset-set {0 ..<. . . } .

have i: i ≤ n
proof −

have i ∈# mset (i # is)
by simp

also have mset (i # is) = mset-set {0 ..n}
unfolding n-def using 2 .prems by (simp add: atLeastLessThanSuc-atLeastAtMost)

finally show ?thesis
by simp

qed

have mset-set {0 ..n} = mset (i # is)
using 2 .prems by (simp add: n-def atLeastLessThanSuc-atLeastAtMost)

also have . . . = add-mset i (mset is)
by simp

finally have mset is = mset-set {0 ..n} − {#i#}
by simp

also have . . . = mset-set ({0 ..n} − {i})
by (subst mset-set-Diff ) (use i in auto)

finally have mset-is: mset is = mset-set ({0 ..n} − {i}) .

have set-is: set is = {0 ..n} − {i}
proof −

have set is = set-mset (mset is)
by simp

also have . . . = {0 ..n} − {i}
by (subst mset-is) simp-all

finally show ?thesis .
qed

have length (swaps-of-perm (i # is)) = i + length (swaps-of-perm is ′)
by (simp add: is ′-def )

also have length (swaps-of-perm is ′) = inversion-number is ′

using is ′ unfolding is ′-def by (rule 2 .IH )
also have inversion-number is ′ = inversion-number is unfolding is ′-def

by (rule inversion-number-map) (auto intro!: strict-mono-onI simp: set-is split: if-splits)
finally have 1 : length (swaps-of-perm (i # is)) = i + inversion-number is

by simp

have inversion-number (i # is) = length (filter (λy. y < i) is) + inversion-number is
by (simp add: is ′-def inversion-number-Cons)

also have length (filter (λy. y < i) is) = size (filter-mset (λy. y < i) (mset is))
by (metis mset-filter size-mset)

also have . . . = card {x. x ≤ n ∧ x 6= i ∧ x < i}
by (subst mset-is) simp

also have {x. x ≤ n ∧ x 6= i ∧ x < i} = {0 ..<i}
using i by auto

also have card . . . = i
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by simp
finally have 2 : inversion-number (i # is) = i + inversion-number is .

show ?case
using 1 2 by metis

qed simp-all

Finally, we use the above to give a list of swap operations that map one list to another.
The number of swap operations produced by this is exactly the swap distance of the two
lists.
definition swaps-of-perm ′ :: ′a list ⇒ ′a list ⇒ nat list where

swaps-of-perm ′ xs ys = swaps-of-perm (map (index xs) ys)

theorem swaps-of-perm ′:
assumes distinct xs distinct ys set xs = set ys
shows ∀ i∈set (swaps-of-perm ′ xs ys). Suc i < length xs

swap-adjs-list (swaps-of-perm ′ xs ys) xs = ys
length (swaps-of-perm ′ xs ys) = swap-dist xs ys

proof −
have length-eq: length xs = length ys

using assms by (metis distinct-card)
have mset-eq: mset xs = mset ys

using assms by (simp add: set-eq-iff-mset-eq-distinct)

have mset-eq ′: image-mset (index xs) (mset ys) = mset-set {0 ..<length xs}
by (metis assms(1 ) map-index-self mset-eq mset-map mset-upt)

have swap-adjs-list (swaps-of-perm ′ xs ys) xs = map ((!) xs) (map (index xs) ys)
unfolding swaps-of-perm ′-def
by (rule swap-adjs-list-swaps-of-perm) (simp add: mset-eq ′)

also have . . . = map id ys
unfolding map-map by (intro map-cong) (simp-all add: assms)

finally show swap-adjs-list (swaps-of-perm ′ xs ys) xs = ys
by simp

have set (swaps-of-perm ′ xs ys) ⊆ (
⋃

i∈set (map (index xs) ys). {0 ..<i})
unfolding swaps-of-perm ′-def by (rule set-swaps-of-perm-subset)

also have set (map (index xs) ys) = {0 ..<length xs}
by (simp add: assms(1 ,3 ) index-image)

also have (
⋃

i∈{0 ..<length xs}. {0 ..<i}) ⊆ {i. Suc i < length xs}
by auto

finally show ∀ i∈set (swaps-of-perm ′ xs ys). Suc i < length xs
by blast

have length (swaps-of-perm ′ xs ys) = inversion-number (map (index xs) ys)
unfolding swaps-of-perm ′-def by (rule length-swaps-of-perm) (simp-all add: mset-eq ′ length-eq)

also have . . . = swap-dist xs ys
using assms by (simp add: swap-dist-conv-inversion-number)

finally show length (swaps-of-perm ′ xs ys) = swap-dist xs ys .
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qed

Finally, we can derive the alternative characterisation of the swap distance.
lemma swap-dist-altdef :

assumes distinct xs distinct ys set xs = set ys
shows swap-dist xs ys = (INF is∈{is. swap-adjs-list is xs = ys}. length is)

proof (rule antisym)
show swap-dist xs ys ≤ (INF is∈{is. swap-adjs-list is xs = ys}. length is)
proof (rule cINF-greatest)

show {is. swap-adjs-list is xs = ys} 6= {}
using swaps-of-perm ′[OF assms] by auto

show swap-dist xs ys ≤ length is if is ∈ {is. swap-adjs-list is xs = ys} for is
using that assms(1 ) swap-dist-swap-adjs-list by auto

qed
next

have (INF is∈{is. swap-adjs-list is xs = ys}. length is) ≤ length (swaps-of-perm ′ xs ys)
by (rule cINF-lower) (use swaps-of-perm ′[OF assms] in auto)

also have . . . = swap-dist xs ys
using swaps-of-perm ′[OF assms] by simp

finally show swap-dist xs ys ≥ (INF is∈{is. swap-adjs-list is xs = ys}. length is) .
qed

end
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