
The Sum-of-Squares Function and Jacobi’s
Two-Square Theorem

Manuel Eberl

March 10, 2025

Abstract

This entry defines the sum-of-squares function rk(n), which counts
the number of ways to write a natural number n as a sum of k squares
of integers. Signs and permutations of these integers are taken into
account, such that e.g. 12+22, 22+12, and (−1)2+22 are all different
decompositions of 5.

Using this, I then formalise the main result: Jacobi’s two-square
theorem, which states that for n > 0 we have r2(n) = 4(d1(3)−d3(n)),
where di(n) denotes the number of divisors m of n such that m =
i (mod 4).

Corollaries include the identities r2(2n) = r2(n) and r2(p
2n) =

r2(n) if p = 3 (mod 4) and the well-known theorem that r2(n) = 0 iff
n has a prime factor p of odd multiplicity with p = 3 (mod 4).

Contents
1 Sum-of-square decompositions and Jacobi’s two-squares The-

orem 2
1.1 Auxiliary material . 2
1.2 Decompositions into squares of integers 3
1.3 Decompositions into squares of positive integers 7
1.4 Decompositions into two squares 13

1.4.1 Gaussian integers on a circle 14
1.4.2 The number of divisors in a given congruence class . . 24
1.4.3 Jacobi’s two-square Theorem 29

1

1 Sum-of-square decompositions and Jacobi’s two-
squares Theorem

theory Sum_Of_Squares_Count
imports

"HOL-Library.Discrete_Functions"
"HOL-Library.FuncSet"
"Gaussian_Integers.Gaussian_Integers"
"Dirichlet_Series.Multiplicative_Function"
"List-Index.List_Index"

begin

1.1 Auxiliary material
lemma is_square_conv_sqrt: "is_square n ←→ floor_sqrt n ^ 2 = n"

by (metis is_nth_power_def floor_sqrt_inverse_power2)

lemma sum_replicate_mset_count_eq: "(
∑

x∈set_mset X. replicate_mset
(count X x) x) = X"

by (rule multiset_eqI) (auto simp: count_sum Multiset.not_in_iff)

lemma coprime_crossproduct_strong:
fixes a b c d :: "'a :: semiring_gcd"
assumes "coprime a d" "coprime b c"
shows "normalize (a * b) = normalize (c * d) ←→

normalize a = normalize c ∧ normalize b = normalize d"
proof

assume *: "normalize (a * b) = normalize (c * d)"
show "normalize a = normalize c ∧ normalize b = normalize d"
proof

have "a dvd c"
by (metis assms(1) * coprime_dvd_mult_left_iff dvd_mult_left dvd_refl

normalize_dvd_iff)
moreover have "c dvd a"

by (metis assms(2) * coprime_commute coprime_dvd_mult_left_iff
dvd_mult_left dvd_refl normalize_dvd_iff)

ultimately show "normalize a = normalize c"
by (intro associatedI)

next
have "b dvd d"

by (metis assms(2) * coprime_dvd_mult_left_iff dvd_mult_left dvd_refl

mult.commute normalize_dvd_iff)
moreover have "d dvd b"

by (metis assms(1) * coprime_commute coprime_dvd_mult_right_iff
dvd_normalize_iff

dvd_triv_right)
ultimately show "normalize b = normalize d"

by (intro associatedI)

2

qed
next

assume "normalize a = normalize c ∧ normalize b = normalize d"
thus "normalize (a * b) = normalize (c * d)"

by (meson associated_iff_dvd mult_dvd_mono)
qed

lemma divisor_coprime_product_decomp_normalize:
fixes d n1 n2 :: "'a :: factorial_semiring_gcd"
assumes "d dvd n1 * n2" "coprime n1 n2"
shows "normalize d = normalize (gcd d n1 * gcd d n2)"

proof -
obtain d3 d4 where d34: "d = d3 * d4" "d3 dvd n1" "d4 dvd n2"

using division_decomp[of d n1 n2] assms by auto
have "gcd d n1 = normalize d3"

using d34 assms
by (metis coprime_mult_right_iff dvd_div_mult_self gcd_mult_left_right_cancel

gcd_proj1_iff)
moreover have "gcd d n2 = normalize d4"

using d34 assms
by (metis coprime_commute coprime_mult_right_iff dvd_div_mult_self

gcd_mult_left_left_cancel gcd_proj1_iff)
ultimately show ?thesis

using d34 by simp
qed

lemma divisor_coprime_product_decomp:
fixes d n1 n2 :: nat
assumes "d dvd n1 * n2" "coprime n1 n2"
shows "d = gcd d n1 * gcd d n2"
using divisor_coprime_product_decomp_normalize[of d n1 n2] assms
by simp

1.2 Decompositions into squares of integers

The following definition gives the set of all the different ways to decompose
a natural number n into a sum of k squares of integers. The signs and
permutation of these integers is taken into account, i.e. 12+22, 22+12, and
12 + (−2)2 are all counted as different decompositions of 5.
definition sos_decomps :: "nat ⇒ nat ⇒ int list set" where

"sos_decomps k n = {xs. length xs = k ∧ int n = (
∑

x←xs. x ^ 2)}"

The following function that counts the number of such decompositions is
known as the “sum-of-squares function” in the literature, and frequently
denoted with rk(n).
definition count_sos :: "nat ⇒ nat ⇒ nat" where

"count_sos k n = card (sos_decomps k n)"

3

lemma finite_sos_decomps [simp, intro]: "finite (sos_decomps k n)"
proof (rule finite_subset)

show "sos_decomps k n ⊆ {xs. set xs ⊆ {-int n..int n} ∧ length xs
= k}"

proof safe
fix xs x assume xs: "xs ∈ sos_decomps k n" and x: "x ∈ set xs"
have "|x| ≤ x ^ 2"

using self_le_power[of "|x|" 2] by (cases "x = 0") auto
also have "x ^ 2 ≤ (

∑
x←xs. x ^ 2)"

by (rule member_le_sum_list) (use x in auto)
finally show "x ∈ {- int n..int n}"

using xs by (auto simp: sos_decomps_def)
qed (auto simp: sos_decomps_def)

next
show "finite {xs. set xs ⊆ {-int n..int n} ∧ length xs = k}"

by (rule finite_lists_length_eq) auto
qed

lemma sos_decomps_0_right [simp]: "sos_decomps k 0 = {replicate k 0}"
proof -

have "xs = replicate k 0" if "xs ∈ sos_decomps k 0" for xs
proof -

have xs: "length xs = k" "(
∑

x←xs. x ^ 2) = 0"
using that by (auto simp: sos_decomps_def)

have "∀ x∈set xs. x = 0"
using xs by (subst (asm) sum_list_nonneg_eq_0_iff) auto

thus ?thesis
using xs(1) by (intro replicate_eqI) auto

qed
thus ?thesis

by (auto simp: sos_decomps_def sum_list_replicate)
qed

lemma sos_decomps_0: "sos_decomps 0 n = (if n = 0 then {[]} else {})"
by (auto simp: sos_decomps_def)

lemma sos_decomps_1:
"sos_decomps (Suc 0) n = (if is_square n then {[floor_sqrt n], [-floor_sqrt

n]} else {})"
(is "?lhs = ?rhs")

proof (intro equalityI subsetI)
fix xs assume "xs ∈ ?lhs"
then obtain x where [simp]: "xs = [x]" and x: "int n = x ^ 2"

by (auto simp: sos_decomps_def length_Suc_conv)
have "int n = x ^ 2"

by fact
also have "x ^ 2 = int (nat |x| ^ 2)"

by auto

4

finally have n_eq: "n = nat |x| ^ 2"
by linarith

show "xs ∈ ?rhs"
using x by (auto simp: n_eq)

qed (auto simp: sos_decomps_def split: if_splits elim!: is_nth_powerE)

lemma bij_betw_sos_decomps_2: "bij_betw (λ(x,y). [x,y]) {(i,j). i2 +
j2 = int n} (sos_decomps 2 n)"

by (rule bij_betwI[of _ _ _ "λxs. (xs ! 0, xs ! 1)"])
(auto simp: length_Suc_conv eval_nat_numeral sos_decomps_def)

lemma sos_decomps_Suc:
"sos_decomps (Suc k) n =

(#) 0 ` sos_decomps k n ∪
(
⋃
i∈{1..floor_sqrt n}.

⋃
xs∈sos_decomps k (n - i ^ 2). {int i #

xs, (-int i) # xs})"
(is "?A = ?B ∪ ?C")

proof (intro equalityI subsetI)
fix xs assume "xs ∈ ?B ∪ ?C"
thus "xs ∈ ?A"

by (auto simp: sos_decomps_def of_nat_diff le_floor_sqrt_iff)
next

fix xs assume "xs ∈ ?A"
hence xs: "length xs = Suc k" "int n = (

∑
x←xs. x ^ 2)"

by (auto simp: sos_decomps_def)
then obtain x xs' where xs_eq: "xs = x # xs'"

by (cases xs) auto
show "xs ∈ ?B ∪ ?C"
proof (cases "x = 0")

case True
hence "xs ∈ ?B"

using xs by (auto simp: sos_decomps_def xs_eq)
thus ?thesis ..

next
case False
define y where "y = nat |x|"
have "y ∈ {1..floor_sqrt n}" and "y ^ 2 ≤ n"
proof -

have *: "x ^ 2 = int y ^ 2"
by (auto simp: y_def)

have "int y ^ 2 ≤ int n"
using xs by (auto simp: xs_eq * intro!: sum_list_nonneg)

thus "y ^ 2 ≤ n"
unfolding of_nat_power [symmetric] by linarith

moreover have "y ≥ 1"
using False by (auto simp: y_def)

ultimately show "y ∈ {1..floor_sqrt n}"
by (simp add: le_floor_sqrt_iff)

qed

5

have x_disj: "x = int y ∨ x = -int y"
by (auto simp: y_def)

hence "xs ∈ ?C"
using xs False ‹y ∈ _› ‹y ^ 2 ≤ n› x_disj
by (auto simp: sos_decomps_def xs_eq of_nat_diff intro!: bexI[of

_ "nat |x|"] exI[of _ xs'])
thus ?thesis ..

qed
qed

lemma count_sos_0_right [simp]: "count_sos k 0 = 1"
unfolding count_sos_def by simp

lemma count_sos_0 [simp]: "n > 0 =⇒ count_sos 0 n = 0"
unfolding count_sos_def by (subst sos_decomps_0) auto

lemma count_sos_1: "n > 0 =⇒ count_sos (Suc 0) n = (if is_square n then
2 else 0)"

unfolding count_sos_def by (subst sos_decomps_1) auto

lemma count_sos_2: "count_sos 2 n = card {(i,j). i2 + j2 = int n}"
using bij_betw_same_card[OF bij_betw_sos_decomps_2[of n]] by (simp add:

count_sos_def)

The following obvious recurrence for rk(n) allows us to compute rk(n) for
concrete k, n – albeit rather inefficiently:

rk+1(n) = rk(n) + 2

b
√
nc∑

i=1

rk(n− i2)

lemma count_sos_Suc:
"count_sos (Suc k) n = count_sos k n + 2 * (

∑
i=1..floor_sqrt n. count_sos

k (n - i ^ 2))"
proof -

have "count_sos (Suc k) n = card ((#) 0 ` sos_decomps k n ∪
(
⋃
i∈{1..floor_sqrt n}.

⋃
xs∈sos_decomps k (n - i2). {int i

xs, - int i # xs}))"
(is "_ = card (?A ∪ ?B)") unfolding count_sos_def sos_decomps_Suc

..
also have ". . . = card ?A + card ?B"

by (subst card_Un_disjoint) auto
also have "card ?A = count_sos k n"

unfolding count_sos_def by (subst card_image) auto
also have "card ?B = (

∑
i=1..floor_sqrt n. card (

⋃
xs∈sos_decomps k

(n - i2). {int i # xs, - int i # xs}))"
by (rule card_UN_disjoint) auto

also have ". . . = (
∑

i=1..floor_sqrt n. 2 * count_sos k (n - i ^ 2))"
by (rule sum.cong) (auto simp: card_UN_disjoint count_sos_def)

finally show ?thesis

6

by (simp add: sum_distrib_left)
qed

lemma count_sos_code [code]:
"count_sos k n = (if n = 0 then 1

else if k = 0 then 0
else if k = 1 then (if floor_sqrt n ^ 2 = n then 2 else 0)
else count_sos (k-1) n + 2 * (

∑
i=1..floor_sqrt n. count_sos (k-1)

(n-i^2)))"
unfolding is_square_conv_sqrt [symmetric] using count_sos_Suc[of "k-1"

n]
by (auto simp: count_sos_1)

1.3 Decompositions into squares of positive integers

It seems somewhat unnatural to allow (−x)n and xn as two different squares
(for nonzero x), and it may also seem strange to allow 02 in the decomposi-
tion. However, as we will see later, this notion of square decomposition has
some nice properties.
Still, we now introduce the perhaps more intuitively sensible definition of
the different ways to decompose n into k squares of positive integers, and
relate it to what we introduced above.
definition pos_sos_decomps :: "nat ⇒ nat ⇒ nat list set" where

"pos_sos_decomps k n = {xs. length xs = k ∧ 0 /∈ set xs ∧ n = (
∑

x←xs.
x ^ 2)}"

definition count_pos_sos :: "nat ⇒ nat ⇒ nat" where
"count_pos_sos k n = card (pos_sos_decomps k n)"

lemma finite_pos_sos_decomps [simp, intro]: "finite (pos_sos_decomps
k n)"
proof -

have "map int ` pos_sos_decomps k n ⊆ sos_decomps k n"
by (auto simp: pos_sos_decomps_def sos_decomps_def o_def simp flip:

sum_list_of_nat)
moreover have "finite (sos_decomps k n)"

by blast
ultimately have "finite (map int ` pos_sos_decomps k n)"

using finite_subset by blast
also have "?this ←→ finite (pos_sos_decomps k n)"

by (subst finite_image_iff) (auto intro!: inj_onI)
finally show ?thesis .

qed

lemma pos_sos_decomps_0_right: "pos_sos_decomps k 0 = (if k = 0 then
{[]} else {})"
proof (intro equalityI subsetI)

fix xs assume "xs ∈ pos_sos_decomps k 0"

7

hence "xs = [] ∧ k = 0"
by (cases xs) (auto simp: pos_sos_decomps_def)

thus "xs ∈ (if k = 0 then {[]} else {})"
by auto

qed (auto simp: pos_sos_decomps_def split: if_splits)

lemma pos_sos_decomps_0: "pos_sos_decomps 0 n = (if n = 0 then {[]} else
{})"

by (auto simp: pos_sos_decomps_def)

lemma pos_sos_decomps_1:
"pos_sos_decomps (Suc 0) n = (if is_square n ∧ n > 0 then {[floor_sqrt

n]} else {})"
(is "?lhs = ?rhs")

proof (intro equalityI subsetI)
fix xs assume "xs ∈ ?lhs"
then obtain x where [simp]: "xs = [x]" and n_eq: "n = x ^ 2" and "x

> 0"
unfolding pos_sos_decomps_def length_Suc_conv by force

show "xs ∈ ?rhs"
using ‹x > 0› by (auto simp: n_eq)

qed (auto simp: pos_sos_decomps_def split: if_splits elim!: is_nth_powerE)

lemma bij_betw_pos_sos_decomps_2:
"bij_betw (λ(x,y). [x,y]) {(i,j). i2 + j2 = n ∧ i > 0 ∧ j > 0} (pos_sos_decomps

2 n)"
by (rule bij_betwI[of _ _ _ "λxs. (xs ! 0, xs ! 1)"])

(auto simp: length_Suc_conv eval_nat_numeral pos_sos_decomps_def)

lemma pos_sos_decomps_Suc:
"pos_sos_decomps (Suc k) n =

(
⋃
i∈{1..floor_sqrt n}. ((#) i) ` pos_sos_decomps k (n - i ^ 2))"

(is "?A = ?B")
proof (intro equalityI subsetI)

fix xs assume "xs ∈ ?B"
thus "xs ∈ ?A"

by (auto simp: pos_sos_decomps_def of_nat_diff le_floor_sqrt_iff)
next

fix xs assume "xs ∈ ?A"
hence xs: "length xs = Suc k" "n = (

∑
x←xs. x ^ 2)" "0 /∈ set xs"

by (auto simp: pos_sos_decomps_def)
then obtain x xs' where xs_eq: "xs = x # xs'"

by (cases xs) auto

have "x ∈ {1..floor_sqrt n}" and "x ^ 2 ≤ n"
proof -

have "x ^ 2 ≤ int n"
using xs by (auto simp: xs_eq intro!: sum_list_nonneg)

thus "x ^ 2 ≤ n"

8

unfolding of_nat_power [symmetric] by linarith
moreover have "x ≥ 1"

using xs by (auto simp: xs_eq)
ultimately show "x∈ {1..floor_sqrt n}"

by (simp add: le_floor_sqrt_iff)
qed
thus "xs ∈ ?B"

using xs ‹x ∈ _› ‹x ^ 2 ≤ n›
by (auto simp: pos_sos_decomps_def xs_eq of_nat_diff intro!: bexI[of

_ x] exI[of _ xs'])
qed

lemma count_pos_sos_0_right: "count_pos_sos k 0 = (if k = 0 then 1 else
0)"

unfolding count_pos_sos_def by (simp add: pos_sos_decomps_0_right)

lemma count_pos_sos_0: " count_pos_sos 0 n = (if n = 0 then 1 else 0)"
unfolding count_pos_sos_def by (subst pos_sos_decomps_0) auto

lemma count_pos_sos_0_0 [simp]: "count_pos_sos 0 0 = 1"
and count_pos_sos_0_right' [simp]: "k > 0 =⇒ count_pos_sos k 0 = 0"
and count_pos_sos_0' [simp]: "n > 0 =⇒ count_pos_sos 0 n = 0"
by (simp_all add: count_pos_sos_0 count_pos_sos_0_right)

lemma count_pos_sos_1: "count_pos_sos (Suc 0) n = (if is_square n ∧
n > 0 then 1 else 0)"

unfolding count_pos_sos_def by (subst pos_sos_decomps_1) auto

lemma count_pos_sos_2: "count_pos_sos 2 n = card {(i,j). i2 + j2 = n
∧ i > 0 ∧ j > 0}"

using bij_betw_same_card[OF bij_betw_pos_sos_decomps_2[of n]]
by (simp add: count_pos_sos_def)

We get a similar recurrence for count_pos_sos as earlier:
lemma count_pos_sos_Suc:

"count_pos_sos (Suc k) n = (
∑

i=1..floor_sqrt n. count_pos_sos k (n
- i ^ 2))"
proof -

have "count_pos_sos (Suc k) n =
card ((

⋃
i∈{1..floor_sqrt n}. (#) i ` pos_sos_decomps k (n -

i2)))"
unfolding count_pos_sos_def pos_sos_decomps_Suc ..

also have ". . . = (
∑

i=1..floor_sqrt n. card ((#) i ` pos_sos_decomps
k (n - i2)))"

by (rule card_UN_disjoint) auto
also have ". . . = (

∑
i=1..floor_sqrt n. count_pos_sos k (n - i ^ 2))"

by (rule sum.cong) (auto simp: card_UN_disjoint count_pos_sos_def
card_image)

finally show ?thesis

9

by (simp add: sum_distrib_left)
qed

lemma count_pos_sos_code [code]:
"count_pos_sos k n = (if k = 0 ∧ n = 0 then 1

else if k = 0 ∨ n = 0 then 0
else if k = 1 then (if floor_sqrt n ^ 2 = n then 1 else 0)
else (

∑
i=1..floor_sqrt n. count_pos_sos (k-1) (n-i^2)))"

unfolding is_square_conv_sqrt [symmetric] using count_pos_sos_Suc[of
"k-1" n]

by (auto simp: count_pos_sos_1)

If we denote the number of decompositions of n into k squares of integers
as rk(n) and the number of decompositions of n into k positive integers as
r+k (n), we can show the following formula:

rk(n) =

k∑
j=0

2j
(
k

j

)
r+j (n)

There is a simple combinatorial argument for this: any decomposition of n
into k squares of integers can be produced by picking

• an integer j between 0 and k determining how many of the squares in
the decomposition will be non-zero

• a set X ⊆ [k] with |X| = j of their indices

• a function s : X → {−1, 1} determining the sign of each of the j
non-zero integers

• a decomposition of n into j squares, which determines the absolute
values of each of the j integers

The inverse of this process is also clear: given a decomposition of n into k
squares of integers, j is the number of non-zero integers in it, X is the set
of all indices with a non-zero integer, s(i) is the sign of the i-th integer, and
the absolute values of the j non-zero integers in the decomposition form a
decomposition of n into j squares of positive integers.
However, this proof is somewhat tedious to write down because it is not
so easy to, given a list xs with k elements and a set X ⊆ [k] of indices,
construct a list that has the elements of xs at the indices X left-to-right and
0 everywhere else.
Therefore, we simply use a straightforward induction on k instead, which is
also simple to do, albeit perhaps less insightful.
lemma count_sos_conv_count_pos_sos:

"count_sos k n = (
∑

j≤k. 2 ^ j * (k choose j) * count_pos_sos j n)"

10

proof (induction k arbitrary: n)
case (Suc k n)
define m where "m = floor_sqrt n"
have "(

∑
j≤Suc k. 2 ^ j * (Suc k choose j) * count_pos_sos j n) =

count_pos_sos 0 n +
(
∑

j≤k. 2 ^ Suc j * (k choose j) * count_pos_sos (Suc j) n) +
(
∑

j≤k. 2 ^ Suc j * (k choose Suc j) * count_pos_sos (Suc j)
n)"

by (subst sum.atMost_Suc_shift) (simp_all add: ring_distribs sum.distrib)
also have "(

∑
j≤k. 2 ^ Suc j * (k choose Suc j) * count_pos_sos (Suc

j) n) =
(
∑

j∈{1..Suc k}. 2 ^ j * (k choose j) * count_pos_sos j
n)"

by (intro sum.reindex_bij_witness[of _ "λj. j - 1" Suc]) auto
also have "(

∑
j≤k. 2 ^ Suc j * (k choose j) * count_pos_sos (Suc j)

n) =
(
∑

j≤k.
∑

i=1..m. 2 ^ Suc j * (k choose j) * count_pos_sos
j (n - i2))"

by (simp add: count_pos_sos_Suc sum_distrib_left mult.assoc m_def)
also have ". . . = (

∑
i=1..m.

∑
j≤k. 2 ^ Suc j * (k choose j) * count_pos_sos

j (n - i2))"
by (rule sum.swap)

finally have "(
∑

j≤Suc k. 2 ^ j * (Suc k choose j) * count_pos_sos j
n) =

count_pos_sos 0 n + (
∑

j=1..Suc k. 2 ^ j * (k choose j)
* count_pos_sos j n) +

(
∑

i=1..m.
∑

j≤k. 2 ^ Suc j * (k choose j) * count_pos_sos
j (n - i2))"

by Groebner_Basis.algebra
also have "count_pos_sos 0 n + (

∑
j=1..Suc k. 2 ^ j * (k choose j) *

count_pos_sos j n) =
(
∑

j∈insert 0 {1..Suc k}. 2 ^ j * (k choose j) * count_pos_sos
j n)"

by (subst sum.insert) auto
also have "insert 0 {1..Suc k} = {..Suc k}"

by auto
also have "(

∑
j≤Suc k. 2 ^ j * (k choose j) * count_pos_sos j n) =

(
∑

j≤k. 2 ^ j * (k choose j) * count_pos_sos j n)"
by (rule sum.mono_neutral_right) auto

also have "(
∑

j≤k. 2 ^ j * (k choose j) * count_pos_sos j n) +
(
∑

i = 1..m.
∑

j≤k. 2 ^ Suc j * (k choose j) * count_pos_sos
j (n - i2)) =

count_sos (Suc k) n"
by (simp add: count_sos_Suc Suc.IH sum_distrib_left mult.assoc m_def)

finally show ?case ..
qed (auto simp: count_pos_sos_0)

We can however, just for illustration, easily establish a bijection between the
the set of decompositions of n into k squares of integers and the set of pairs

11

consisting of a decomposition of n into k squares of positive integers and a
subset of [k] (indicating which of the integers were originally negative).
This shows that rk(n) ≥ 2kr+k (n) (although we could easily have derived
that fact from our identity relating rk(n) and r+k (n) as well).
lemma

fixes k n :: nat
fixes f :: "nat list × nat set ⇒ int list"
defines "f ≡ (λ(xs, X). map_index (λi x. if i ∈ X then -int x else int

x) xs)"
defines "A ≡ pos_sos_decomps k n × Pow {..<k}"
defines "B ≡ {xs∈sos_decomps k n. 0 /∈ set xs}"
shows bij_betw_pos_sos_deocmps_nonzero_sos_decomps: "bij_betw f A B"

and count_sos_ge_twopow_pos_sos: "count_sos k n ≥ 2 ^ k * count_pos_sos
k n"
proof -

define g :: "int list ⇒ nat list × nat set"
where "g = (λxs. (map (nat ◦ abs) xs, {i∈{..<k}. xs ! i < 0}))"

show "bij_betw f A B"
proof (rule bij_betwI[of _ _ _ g])

show "f ∈ A → B"
by (force simp: f_def A_def B_def sos_decomps_def pos_sos_decomps_def

map_map_index set_conv_nth sum_list_sum_nth
intro!: sum.cong split: if_splits)

next
show "g ∈ B → A"
proof

fix xs assume "xs ∈ B"
hence xs: "int n = (

∑
x←xs. x ^ 2)" "0 /∈ set xs" "length xs =

k"
by (simp_all add: B_def sos_decomps_def)

note xs(1)
also have "(

∑
x←xs. x ^ 2) = int (

∑
x←xs. (nat |x|) ^ 2)"

by (subst sum_list_of_nat [symmetric]) (simp_all add: o_def)
finally have "n = (

∑
x←xs. (nat |x|) ^ 2)"

by linarith
thus "g xs ∈ A"

using xs by (auto simp: A_def pos_sos_decomps_def g_def o_def)
qed

next
show "g (f xs_X) = xs_X" if "xs_X ∈ A" for xs_X
proof -

obtain X xs where [simp]: "xs_X = (xs, X)"
by (cases xs_X)

have "X = {i ∈ {..<k}. f (xs, X) ! i < 0}" using that
by (force simp: f_def A_def pos_sos_decomps_def set_conv_nth split:

if_splits)
moreover have "xs = map (nat ◦ abs) (f (xs, X))"

12

by (rule nth_equalityI) (use that in ‹auto simp: f_def A_def›)
ultimately show ?thesis

by (simp add: g_def)
qed

next
show "f (g xs) = xs" if "xs ∈ B" for xs using that

by (auto simp: f_def g_def map_index_map B_def sos_decomps_def intro!:
nth_equalityI)

qed

have "2 ^ k * count_pos_sos k n = card A"
by (simp add: A_def card_Pow count_pos_sos_def)

also have ". . . = card B"
using bij_betw_same_card[OF ‹bij_betw f _ _›] .

also have ". . . = card {xs∈sos_decomps k n. 0 /∈ set xs}"
by (simp add: B_def count_sos_def)

also have ". . . ≤ card (sos_decomps k n)"
by (rule card_mono) auto

also have ". . . = count_sos k n"
by (simp add: count_sos_def)

finally show "count_sos k n ≥ 2 ^ k * count_pos_sos k n" .
qed

value "map (count_pos_sos 2) [0..<100]"

1.4 Decompositions into two squares

For the rest of this development, we will focus on k = 2, i.e. decompositions
of n into two squares. There is an obvious relationship between these and
Gaussian integers with norm n.
To that end, recall that the Gaussian integers Z[i] are the subring of the
complex numbers of the form a + bi with a, b ∈ Z. Their integer-valued
norm is defined as N(a+ bi) = a2 + b2 (which is the square of the distance
of the complex number a+ bi to the origin).
lemma in_sos_decomps_2_conv_gauss_int_norm:

"[x, y] ∈ sos_decomps 2 n ←→ gauss_int_norm (of_int x + of_int y
* i�) = n"

by (auto simp: sos_decomps_def gauss_int_norm_def)

lemma sos_decomps_2_conv_gauss_int_norm:
"bij_betw (λz. [ReZ z, ImZ z]) {z. gauss_int_norm z = n} (sos_decomps

2 n)"
by (rule bij_betwI[of _ _ _ "λxs. of_int (xs ! 0) + of_int (xs ! 1)

* i�"])
(auto simp: sos_decomps_def length_Suc_conv gauss_int_norm_def

eval_nat_numeral gauss_int_eq_iff)

To make use of this connection, we will now develop some more theory on

13

Gaussian integers with a given norm n.

1.4.1 Gaussian integers on a circle

We define the set of all Gaussian integers with norm n, i.e. all complex
numbers with integer real and imaginary part that lie on a circle of radius
n2 around the origin.
definition gauss_ints_with_norm :: "nat ⇒ gauss_int set" where

"gauss_ints_with_norm n = gauss_int_norm -` {n}"

lemma gauss_ints_with_norm_0 [simp]: "gauss_ints_with_norm 0 = {0}"
by (auto simp: gauss_ints_with_norm_def)

lemma card_gauss_ints_with_norm_conv_count_sos: "card (gauss_ints_with_norm
n) = count_sos 2 n"

using bij_betw_same_card[OF sos_decomps_2_conv_gauss_int_norm[of n]]
by (simp add: gauss_ints_with_norm_def vimage_def count_sos_def)

For convenience, we also define the following variant where we restrict the
above set to the “standard” quadrant where the real part is positive and the
imaginary part is non-negative.
In other words: if we have a Gaussian integer z, there are three more copies
of it with the same norm in the other three quadrants, differing from z by
one of the unit factors −1, i, or −i. It makes sense to therefore only look at
the copy in the first quadrant as the “canonical” representative.
definition gauss_ints_with_norm' :: "nat ⇒ gauss_int set" where

"gauss_ints_with_norm' n = gauss_int_norm -` {n} ∩ {z. z 6= 0 ∧ normalize
z = z}"

lemma gauss_ints_with_norm'_subset:
"gauss_ints_with_norm' n ⊆ (λ(a,b). of_int a + of_int b * i�) ` ({0..int

n} × {0..int n})"
proof

fix z assume "z ∈ gauss_ints_with_norm' n"
hence *: "gauss_int_norm z = n" "normalize z = z"

by (auto simp: gauss_ints_with_norm'_def)
have nonneg: "ReZ z ≥ 0 ∧ ImZ z ≥ 0"

using *(2) by (simp add: normalized_gauss_int)
moreover {

have "ReZ z ≤ ReZ z ^ 2"
using self_le_power[of "ReZ z" 2] nonneg by (cases "ReZ z = 0")

auto
also have "ReZ z ^ 2 ≤ gauss_int_norm z"

by (simp add: gauss_int_norm_def)
finally have "ReZ z ≤ int n"

using * by simp
} moreover {

14

have "ImZ z ≤ ImZ z ^ 2"
using self_le_power[of "ImZ z" 2] nonneg by (cases "ImZ z = 0")

auto
also have "ImZ z ^ 2 ≤ gauss_int_norm z"

by (simp add: gauss_int_norm_def)
finally have "ImZ z ≤ int n"

using * by simp
}
ultimately have "ReZ z ∈ {0..int n}" "ImZ z ∈ {0..int n}"

by auto
thus "z ∈ (λ(a,b). of_int a + of_int b * i�) ` ({0..int n} × {0..int

n})"
by (intro rev_image_eqI[of "(ReZ z, ImZ z)"]) (simp_all add: gauss_int_eq_iff)

qed

lemma finite_gauss_ints_with_norm' [simp, intro]: "finite (gauss_ints_with_norm'
n)"

using gauss_ints_with_norm'_subset by (rule finite_subset) auto

lemma gauss_ints_with_norm'_0 [simp]: "gauss_ints_with_norm' 0 = {}"
by (auto simp: gauss_ints_with_norm'_def)

lemma gauss_ints_with_norm'_1 [simp]: "gauss_ints_with_norm' (Suc 0)
= {1}"

by (auto simp: gauss_ints_with_norm'_def gauss_int_norm_eq_Suc_0_iff
is_unit_normalize)

lemma unit_factor_eq_1_iff: "unit_factor x = 1 ←→ normalize x = x ∧
x 6= 0"

by (metis unit_factor_0 unit_factor_1_imp_normalized unit_factor_normalize
zero_neq_one)

lemma gauss_ints_with_norm_conv_norm':
assumes "n > 0"
shows "bij_betw (λ(c,z). c * z)

({z. is_unit z} × gauss_ints_with_norm' n) (gauss_ints_with_norm
n)"

by (rule bij_betwI[of _ _ _ "λz. (unit_factor z, normalize z)"])
(use assms in ‹auto simp: gauss_ints_with_norm'_def gauss_ints_with_norm_def

gauss_int_norm_mult gauss_int_norm_eq_Suc_0_iff
is_unit_normalize

unit_factor_eq_1_iff›)

lemma finite_gauss_ints_with_norm [simp, intro]: "finite (gauss_ints_with_norm
n)"
proof -

have "{z. is_unit z} = {1, -1, i�, -i�}"
by (auto simp: is_unit_gauss_int_iff)

thus ?thesis

15

using bij_betw_finite[OF gauss_ints_with_norm_conv_norm'[of n]]
by (cases "n = 0") auto

qed

lemma card_gauss_ints_with_norm_conv_norm':
assumes "n > 0"
shows "card (gauss_ints_with_norm n) = 4 * card (gauss_ints_with_norm'

n)"
proof -

define U where "U = {z :: gauss_int. is_unit z}"
have U_eq: "U = {1, -1, i�, -i�}"

by (auto simp: is_unit_gauss_int_iff U_def)
have [simp]: "finite U" "card U = 4"

by (auto simp: U_eq gauss_int_eq_iff)
have "card (gauss_ints_with_norm n) = card (U × gauss_ints_with_norm'

n)"
unfolding U_def
by (rule sym, rule bij_betw_same_card, rule gauss_ints_with_norm_conv_norm')

fact
thus ?thesis

by simp
qed

It now turns out that the number G(n) of Gaussian integers (up to units)
with norm n is a multiplicative function in n, meaning that G(0) = 0,
G(1) = 1, and G(mn) = G(m)G(n) if m and n are coprime.
lemma gauss_ints_with_norm'_mult_coprime:

assumes "coprime n1 n2"
shows "bij_betw (λ(x1,x2). normalize (x1 * x2))

(gauss_ints_with_norm' n1 × gauss_ints_with_norm' n2)
(gauss_ints_with_norm' (n1 * n2))"

unfolding bij_betw_def
proof

show "(λ(x, y). normalize (x * y)) ` (gauss_ints_with_norm' n1 × gauss_ints_with_norm'
n2) =

gauss_ints_with_norm' (n1 * n2)"
proof safe

fix z assume z: "z ∈ gauss_ints_with_norm' (n1 * n2)"
define x1 x2 where "x1 = gcd z (of_nat n1)" and "x2 = gcd z (of_nat

n2)"
have eq: "of_nat n1 * of_nat n2 = z * gauss_cnj z"

using z by (simp add: self_mult_gauss_cnj gauss_ints_with_norm'_def)
hence "z dvd of_nat n1 * of_nat n2"

by auto
hence z_eq: "normalize z = normalize (x1 * x2)"

unfolding x1_def x2_def
by (rule divisor_coprime_product_decomp_normalize)

(use assms in ‹simp_all add: coprime_of_nat_gauss_int›)
then obtain c where c: "is_unit c" "z = c * x1 * x2"

16

by (elim associatedE1) (simp add: algebra_simps)
have "(of_nat (n1 * n2) :: gauss_int) =

(c * gauss_cnj c) * (x1 * gauss_cnj x1) * (x2 * gauss_cnj
x2)"

by (simp add: eq c mult_ac)
also have ". . . = of_nat (gauss_int_norm x1 * gauss_int_norm x2)"

unfolding self_mult_gauss_cnj using c(1)
by (simp add: is_unit_gauss_int_iff')

finally have "n1 * n2 = gauss_int_norm x1 * gauss_int_norm x2"
by (simp only: of_nat_eq_iff)

moreover have "gauss_int_norm x1 dvd gauss_int_norm (of_nat n1)"
unfolding x1_def by (rule gauss_int_norm_dvd_mono) auto

hence "gauss_int_norm x1 dvd n1 ^ 2"
by simp

moreover have "gauss_int_norm x2 dvd gauss_int_norm (of_nat n2)"
unfolding x2_def by (rule gauss_int_norm_dvd_mono) auto

hence "gauss_int_norm x2 dvd n2 ^ 2"
by simp

ultimately have "n1 = gauss_int_norm x1 ∧ n2 = gauss_int_norm x2"
by (metis assms coprime_crossproduct_nat coprime_mult_left_iff coprime_mult_right_iff

dvd_div_mult_self power2_eq_square)
moreover have "x1 6= 0" "normalize x1 = x1" "x2 6= 0" "normalize x2

= x2"
using z by (auto simp: x1_def x2_def gauss_ints_with_norm'_def)

ultimately have "x1 ∈ gauss_ints_with_norm' n1" "x2 ∈ gauss_ints_with_norm'
n2"

"z = normalize (x1 * x2)"
using z_eq z unfolding gauss_ints_with_norm'_def by auto

thus "z ∈ (λ(x, y). normalize (x * y)) ` (gauss_ints_with_norm' n1
× gauss_ints_with_norm' n2)"

by fast
qed (auto simp: gauss_ints_with_norm'_def gauss_int_norm_mult)

next
show "inj_on (λ(x1, x2). normalize (x1 * x2)) (gauss_ints_with_norm'

n1 × gauss_ints_with_norm' n2)"
proof (safe intro!: inj_onI)

fix x1 x2 y1 y2 :: gauss_int
assume eq: "normalize (x1 * x2) = normalize (y1 * y2)"
assume x12: "x1 ∈ gauss_ints_with_norm' n1" "y1 ∈ gauss_ints_with_norm'

n1"
"x2 ∈ gauss_ints_with_norm' n2" "y2 ∈ gauss_ints_with_norm'

n2"

from eq have "normalize x1 = normalize y1 ∧ normalize x2 = normalize
y2"

proof (subst (asm) coprime_crossproduct_strong)
have "coprime (of_nat n1) (of_nat n2 :: gauss_int)"

using assms by (simp add: coprime_of_nat_gauss_int)
hence "coprime (x1 * gauss_cnj x1) (y2 * gauss_cnj y2)"

17

using x12 unfolding self_mult_gauss_cnj gauss_ints_with_norm'_def
by simp_all

thus "coprime x1 y2"
by simp

next
have "coprime (of_nat n2) (of_nat n1 :: gauss_int)"

using assms by (simp add: coprime_of_nat_gauss_int coprime_commute)
hence "coprime (x2 * gauss_cnj x2) (y1 * gauss_cnj y1)"

using x12 unfolding self_mult_gauss_cnj gauss_ints_with_norm'_def
by simp_all

thus "coprime x2 y1"
by simp

qed auto
thus "x1 = y1" "x2 = y2"

using x12 by (auto simp: gauss_ints_with_norm'_def)
qed

qed

interpretation gauss_ints_with_norm': multiplicative_function "λn. card
(gauss_ints_with_norm' n)"
proof

fix m n :: nat
assume coprime: "coprime m n"
show "card (gauss_ints_with_norm' (m * n)) =

card (gauss_ints_with_norm' m) * card (gauss_ints_with_norm' n)"
using bij_betw_same_card[OF gauss_ints_with_norm'_mult_coprime[OF

coprime]] by simp
qed auto

A similar multiplicativity result for r2(n) follows, namely

r2(mn) =
1

4
r2(m)r2(n)

for m,n positive and coprime.
corollary count_sos_2_mult_coprime:

"m > 0 =⇒ n > 0 =⇒ coprime m n =⇒ 4 * count_sos 2 (m * n) = count_sos
2 m * count_sos 2 n"

using gauss_ints_with_norm'.mult_coprime[of m n]
by (cases "m = 0 ∨ n = 0")

(auto simp: card_gauss_ints_with_norm_conv_norm'
simp flip: card_gauss_ints_with_norm_conv_count_sos)

Since G(n) is multiplicative, it is determined completely by the values it
takes on prime powers. We will therefore determine the value of G(pk) for
p being a (rational) prime next, and we distinguish the three cases p = 2,
p ≡ 1 (mod 1), and p ≡ 3 (mod 3), corresponding to the different ways in
which a rational prime p factors in Z[i]

The integer 2 factors into the prime factors into −i(1 + i)2 in Z[i] (where

18

1 + i is prime and −i is a unit), there is exactly one Gaussian integer with
norm 2n (up to units), namely (1 + i)n.
lemma gauss_ints_with_norm'_2_power: "gauss_ints_with_norm' (2 ^ n) =
{normalize ((1 + i�) ^ n)}"
proof -

define p where "p = 1 + i�"
have p: "p 6= 0" "gauss_int_norm p = 2" "prime p"

by (auto simp: p_def gauss_int_eq_iff gauss_int_norm_def prime_one_plus_i_gauss_int)
show ?thesis
proof (intro equalityI subsetI; (elim singletonE; hypsubst)?)

show "normalize ((1 + i�) ^ n) ∈ gauss_ints_with_norm' (2 ^ n)"
unfolding p_def [symmetric]
using p by (auto simp: gauss_ints_with_norm'_def gauss_int_norm_power)

next
fix z assume "z ∈ gauss_ints_with_norm' (2 ^ n)"
hence z: "gauss_int_norm z = 2 ^ n" "normalize z = z"

by (auto simp: gauss_ints_with_norm'_def)
from z have "2 ^ n = z * gauss_cnj z"

by (simp add: self_mult_gauss_cnj)
also have "2 = -i� * p ^ 2"

by (auto simp: p_def power2_eq_square algebra_simps)
also have ". . . ^ n = (-i�) ^ n * p ^ (2 * n)"

by (simp add: algebra_simps power_minus' flip: power_mult)
finally have "z dvd (-i�) ^ n * p ^ (2 * n)"

by auto
moreover have "is_unit ((-i�) ^ n)"

by auto
ultimately have "z dvd p ^ (2 * n)"

using dvd_mult_unit_iff' by blast
with ‹prime p› obtain i where i: "i ≤ 2 * n" "z = normalize (p ^

i)"
using divides_primepow_weak[of p z "2*n"] z by auto

with z p have "i = n"
by (simp add: gauss_int_norm_power)

with i show "z ∈ {normalize ((1 + gauss_i) ^ n)}"
by (simp add: p_def)

qed
qed

Rational primes p with p ≡ 3 (mod 4) are inert in Z[i], i.e. they are also
prime in Z[i]. Using this, we can show that there is no Gaussian integers
with norm p2n+1 and exactly one Gaussian integer (up to units) with norm
p2n, namely pn.
lemma gauss_ints_with_norm'_prime_power_cong_3:

assumes "prime p" "[p = 3] (mod 4)"
shows "gauss_ints_with_norm' (p ^ n) =

(if odd n then {} else {of_nat (p ^ (n div 2))})"
(is "?lhs = ?rhs")

19

proof (intro equalityI subsetI)
fix z assume "z ∈ ?rhs"
thus "z ∈ ?lhs" using assms

by (auto split: if_splits simp: gauss_ints_with_norm'_def gauss_int_norm_power

simp flip: power_mult of_nat_power)
next

fix z assume "z ∈ ?lhs"
hence z: "gauss_int_norm z = p ^ n" "normalize z = z"

by (auto simp: gauss_ints_with_norm'_def)
from z have "of_nat p ^ n = z * gauss_cnj z"

by (simp add: self_mult_gauss_cnj)
hence "z dvd of_nat p ^ n"

by simp
then obtain i where i: "i ≤ n" "z = of_nat p ^ i"

using divides_primepow_weak[of "of_nat p" z n] z assms prime_gauss_int_of_nat[of
p]

by (auto simp flip: of_nat_power)
with z have "p ^ (2 * i) = p ^ n"

by (simp add: gauss_int_norm_power flip: power_mult)
hence "n = 2 * i"

using assms prime_power_inj by blast
with i show "z ∈ ?rhs"

by auto
qed

Any rational prime p with p ≡ 1 (mod 4) factor into two conjugate prime
factors q and q̄ in Z[i], just like it was the case for 2. But unlike for 2, where
q = q̄ = 1 + i, we now have q = q̄.
Thus a Gaussian integer z has norm pn iff we have zz̄ = pn = qnq̄n, which
means that z must be of the form qiq̄n−i. This leaves us with n+ 1 choices
for i and therefore n+ 1 such Gaussian integers z.
lemma gauss_ints_with_norm'_prime_power_cong_1:

assumes "prime p" "[p = 1] (mod 4)"
obtains q :: gauss_int where "prime q" "gauss_int_norm q = p"

"bij_betw (λi. normalize (q ^ i * gauss_cnj q ^ (n - i))) {0..n} (gauss_ints_with_norm'
(p ^ n))"
proof -

interpret p: noninert_gauss_int_prime p
by standard fact+

obtain q q' where q: "prime q" "prime q'" "gauss_int_norm q = p" "gauss_int_norm
q' = p"

"prime_factorization (of_nat p) = {#q, q'#}"
and q'_def: "q' = i� * gauss_cnj q"
using p.prime_factorization by metis

have neq: "q' 6= q"
proof

assume "q' = q"

20

hence "ReZ q = ImZ q"
unfolding q'_def gauss_int_eq_iff times_gauss_int.sel gauss_i.sel

gauss_cnj.sel
by linarith

hence "even (gauss_int_norm q)"
by (simp add: gauss_int_norm_def nat_mult_distrib)

thus False
using q by (simp add: p.odd_p)

qed

have not_q_dvd: "¬q dvd gauss_cnj q"
using neq q by (metis prime_elem_dvd_mult_iff prime_imp_prime_elem

primes_dvd_imp_eq q'_def)
have [simp]: "multiplicity q (gauss_cnj q ^ i) = 0" for i

by (rule not_dvd_imp_multiplicity_0) (use not_q_dvd prime_dvd_power
q(1) in auto)

have [simp]: "multiplicity q' (gauss_cnj q) = 1"
proof -

have "multiplicity q' (gauss_cnj q) = multiplicity q' q'"
unfolding q'_def by (subst multiplicity_times_unit_right) auto

thus ?thesis
using q by simp

qed

show ?thesis
proof (rule that[of q])

show "bij_betw (λi. normalize (q ^ i * gauss_cnj q ^ (n - i))) {0..n}
(gauss_ints_with_norm' (p ^ n))"

proof (rule bij_betwI[of _ _ _ "multiplicity q"])
from q show "(λi. normalize (q ^ i * gauss_cnj q ^ (n - i))) ∈

{0..n} → gauss_ints_with_norm' (p ^ n)"
by (auto simp: gauss_ints_with_norm'_def gauss_int_norm_mult gauss_int_norm_power

simp flip: power_add)
next

show "multiplicity q ∈ gauss_ints_with_norm' (p ^ n) → {0..n}"
proof

fix z assume z: "z ∈ gauss_ints_with_norm' (p ^ n)"
from z have [simp]: "z 6= 0"

by (auto simp: gauss_ints_with_norm'_def)
from z have "gauss_int_norm z = p ^ n"

by (auto simp: gauss_ints_with_norm'_def)
hence "of_nat (p ^ n) = z * gauss_cnj z"

by (simp add: self_mult_gauss_cnj)
also have "of_nat (p ^ n) = ((q * gauss_cnj q) ^ n :: gauss_int)"

using q by (simp add: self_mult_gauss_cnj)
also have ". . . = q ^ n * gauss_cnj (q ^ n)"

by (simp add: algebra_simps)
finally have "q ^ n * gauss_cnj (q ^ n) = z * gauss_cnj z" .
hence "multiplicity q (q ^ n * gauss_cnj (q ^ n)) = multiplicity

21

q (z * gauss_cnj z)"
by (rule arg_cong)

also have "multiplicity q (q ^ n * gauss_cnj (q ^ n)) = n"
using q by (simp add: prime_elem_multiplicity_mult_distrib)

also have "multiplicity q (z * gauss_cnj z) = multiplicity q z
+ multiplicity q (gauss_cnj z)"

using q by (subst prime_elem_multiplicity_mult_distrib) auto
finally show "multiplicity q z ∈ {0..n}"

by simp
qed

next
fix i assume "i ∈ {0..n}"
thus "multiplicity q (normalize (q ^ i * gauss_cnj q ^ (n - i)))

= i"
using q by (simp add: prime_elem_multiplicity_mult_distrib)

next
fix z assume "z ∈ gauss_ints_with_norm' (p ^ n)"
hence [simp]: "z 6= 0" and z: "normalize z = z" "gauss_int_norm

z = p ^ n"
by (auto simp: gauss_ints_with_norm'_def)

define i where "i = multiplicity q z"
have subset: "prime_factors z ⊆ {q, q'}"
proof -

have "prime_factors z ⊆ prime_factors (z * gauss_cnj z)"
by (simp add: dvd_prime_factors)

also have "z * gauss_cnj z = of_nat p ^ n"
by (simp add: self_mult_gauss_cnj z)

also have "prime_factors . . . ⊆ prime_factors (of_nat p)"
by (cases "n = 0") (simp_all add: prime_factors_power)

also have ". . . = {q, q'}"
using q by simp

finally show ?thesis .
qed
have "normalize z = normalize (prod_mset (prime_factorization z))"

using ‹z 6= 0› by (rule prod_mset_prime_factorization_weak [symmetric])
also have "prod_mset (prime_factorization z) = (

∏
r∈prime_factors

z. r ^ multiplicity r z)"
by (subst prod_mset_multiplicity, rule prod.cong)

(auto simp: count_prime_factorization_prime prime_factors_multiplicity)
also have "(

∏
r∈prime_factors z. r ^ multiplicity r z) = (

∏
r∈{q,

q'}. r ^ multiplicity r z)"
by (rule prod.mono_neutral_left) (use subset q in ‹auto simp:

prime_factors_multiplicity›)
also have ". . . = q ^ i * q' ^ multiplicity q' z"

using q neq by (simp add: i_def)
finally have z_eq: "z = normalize (q ^ i * q' ^ multiplicity q' z)"

by (simp add: z(1))
have "gauss_int_norm z = p ^ (i + multiplicity q' z)"

by (subst z_eq) (use q in ‹simp_all add: gauss_int_norm_mult gauss_int_norm_power

22

power_add›)
also have "gauss_int_norm z = p ^ n"

using z by simp
finally have "n = i + multiplicity q' z"

using ‹prime p› prime_power_inj by blast
hence "multiplicity q' z = n - i"

by linarith
with z_eq have "z = normalize (q ^ i * q' ^ (n - i))"

by simp
also have ". . . = normalize (i� ^ (n - i) * (q ^ i * gauss_cnj q

^ (n - i)))"
by (simp add: q'_def mult_ac power_mult_distrib)

also have ". . . = normalize (q ^ i * gauss_cnj q ^ (n - i))"
by (rule normalize_mult_unit_left) auto

finally show "normalize (q ^ i * gauss_cnj q ^ (n - i)) = z" ..
qed

qed fact+
qed

Combining all of these results, we now know the value of G(pn) for any
rational prime p:
theorem card_gauss_ints_with_norm'_prime_power:

assumes "prime p"
shows "card (gauss_ints_with_norm' (p ^ n)) =

(if [p = 3] (mod 4) ∧ odd n then 0
else if [p = 1] (mod 4) then n + 1 else 1)"

using assms
proof (cases p rule: prime_cong_4_nat_cases)

case 2
thus ?thesis

using gauss_ints_with_norm'_2_power[of n]
by (simp add: cong_def)

next
case cong_1
then obtain q where q: "prime q" "gauss_int_norm q = p"

"bij_betw (λi. normalize (q ^ i * gauss_cnj q ^ (n - i))) {0..n} (gauss_ints_with_norm'
(p ^ n))"

using gauss_ints_with_norm'_prime_power_cong_1[of p n] assms by blast
have "card {0..n} = card (gauss_ints_with_norm' (p ^ n))"

by (rule bij_betw_same_card[OF q(3)])
thus ?thesis

using cong_1 by (simp add: cong_def)
next

case cong_3
thus ?thesis

using gauss_ints_with_norm'_prime_power_cong_3[of p n] assms
by (auto simp: cong_def)

qed

23

This allows us to compute G(n) efficiently given a prime factorisation of n.

1.4.2 The number of divisors in a given congruence class

Next, we introduce a variant of the divisor counting function σ0(n) that will
turn out to be useful for computing rk(n). This function counts the number
of divisors d of n with d ∼= i (mod m) for fixed i and m.
It is not quite a multiplicative function (unless i = 1) since it does not nec-
essarily return 1 for n = 1 (unless i = 1), but it is somewhat multiplicative
since it does distribute over coprime factors in a more general sense, as we
will see below.
definition divisor_count_cong :: "nat ⇒ nat ⇒ nat ⇒ nat" where

"divisor_count_cong i m n = card {d. d dvd n ∧ [d = i] (mod m)}"

lemma divisor_count_cong_0 [simp]:
assumes "m > 0"
shows "divisor_count_cong i m 0 = 0"

proof -
have "range (λk. m * k + i) ⊆ {d. [d = i] (mod m)}"

by (auto simp: cong_def)
moreover have "infinite (range (λk. m * k + i))"

by (subst finite_image_iff) (use assms in ‹auto intro!: injI›)
ultimately have "infinite {d. [d = i] (mod m)}"

using finite_subset by blast
thus ?thesis

by (simp add: divisor_count_cong_def)
qed

lemma divisor_count_cong_1:
"divisor_count_cong i m (Suc 0) = (if [i = 1] (mod m) then 1 else 0)"

proof -
have "{d. d dvd 1 ∧ [d = i] (mod m)} = (if [i = 1] (mod m) then {1}

else {})"
by (auto simp: divisor_count_cong_def cong_sym_eq)

thus ?thesis
by (simp add: divisor_count_cong_def)

qed

The following is an obvious but very helpful lemma that allows us to deter-
mine the value of the function on a prime power by determining the number
of exponents k such that pk ≡ i (mod m), which is quite easy for concrete
i, m, p.
lemma divisor_count_cong_prime_power:

assumes "prime p"
shows "divisor_count_cong i m (p ^ n) = card {k∈{0..n}. [p ^ k =

i] (mod m)}"
proof -

24

have "divisor_count_cong i m (p ^ n) = card {d. d dvd p ^ n ∧ [d =
i] (mod m)}"

by (simp add: divisor_count_cong_def)
also have bij: "bij_betw (λi. p ^ i) {k∈{0..n}. [p ^ k = i] (mod m)}

{d. d dvd p ^ n ∧ [d = i] (mod m)}"
by (rule bij_betwI[of _ _ _ "multiplicity p"])

(use assms in ‹auto simp: dvd_power_iff divides_primepow_nat›)
have "card {d. d dvd p ^ n ∧ [d = i] (mod m)} = card {k∈{0..n}. [p

^ k = i] (mod m)}"
using bij_betw_same_card[OF bij] by simp

finally show ?thesis .
qed

The following is a variant of the above lemma for the particular case where
p divides the modulus m but not i.
lemma divisor_count_cong_prime_power_dvd:

assumes "p dvd m" "prime p" "¬p dvd i"
shows "divisor_count_cong i m (p ^ n) = (if [i = 1] (mod m) then 1

else 0)"
proof -

have "divisor_count_cong i m (p ^ n) = card {k∈{0..n}. [p ^ k = i]
(mod m)}"

by (rule divisor_count_cong_prime_power) fact
also have "{k∈{0..n}. [p ^ k = i] (mod m)} = (if [i = 1] (mod m) then

{0} else {})"
proof (intro equalityI subsetI)

fix k assume k: "k ∈ {k∈{0..n}. [p ^ k = i] (mod m)}"
show "k ∈ (if [i = 1] (mod m) then {0} else {})"
proof (cases "k = 0")

case True
thus ?thesis

using k by (auto simp: cong_def)
next

case False
have "[p ^ k 6= i] (mod m)"

using False assms by (meson bot_nat_0.not_eq_extremum cong_dvd_iff
cong_dvd_modulus_nat dvd_power)

hence False
using k by auto

thus ?thesis ..
qed

qed (use assms in ‹auto split: if_splits simp: cong_sym›)
finally show ?thesis

by simp
qed

Next, we explore the way in which our function distributes over coprime
factors.
context

25

fixes D :: "nat ⇒ nat ⇒ nat set" and m :: nat
and F :: "nat ⇒ (nat × nat) set"
and count :: "nat ⇒ nat ⇒ nat"

assumes m: "m > 0"
defines "D ≡ (λi n. {d. d dvd n ∧ [d = i] (mod m)})"
defines "F ≡ (λi. {(j1,j2). j1 < m ∧ j2 < m ∧ [j1 * j2 = i] (mod m)})"
defines "count ≡ (λi. divisor_count_cong i m)"

begin

lemma finite_divisors_cong:
assumes "n > 0"
shows "finite (D i n)"

proof (rule finite_subset)
show "D i n ⊆ {..n}"

using assms by (auto simp: D_def)
qed auto

lemma bij_betw_divisors_cong_nat:
assumes "coprime n1 n2"
shows "bij_betw (λ(d1, d2). d1 * d2) (

⋃
(j1,j2)∈F i. D j1 n1 × D

j2 n2) (D i (n1 * n2))"
proof (rule bij_betwI[of _ _ _ "λd. (gcd d n1, gcd d n2)"])

show "(λ(d1, d2). d1 * d2) ∈ (
⋃

(j1, j2)∈F i. D j1 n1 × D j2 n2) →
D i (n1 * n2)"

unfolding F_def D_def
proof safe

fix a b j1 j2 :: nat
assume j12: "j1 < m" "j2 < m" "[j1 * j2 = i] (mod m)"
assume a: "a dvd n1" "[a = j1] (mod m)" and b: "b dvd n2" "[b = j2]

(mod m)"
show "a * b dvd n1 * n2"

using a b by auto
have "[a * b = j1 * j2] (mod m)"

by (intro cong_mult a b)
also have "[j1 * j2 = i] (mod m)"

by fact
finally show "[a * b = i] (mod m)" .

qed
next

show "(λd. (gcd d n1, gcd d n2)) ∈ D i (n1 * n2) → (
⋃

(j1, j2)∈F i.
D j1 n1 × D j2 n2)"

proof safe
fix d assume "d ∈ D i (n1 * n2)"
hence d: "d dvd n1 * n2" "[d = i] (mod m)"

by (auto simp: D_def)
define d1 d2 where "d1 = gcd d n1" and "d2 = gcd d n2"
have d_eq: "d = d1 * d2"

using divisor_coprime_product_decomp[of d n1 n2] d assms
by (simp_all add: d1_def d2_def)

26

have "[(d1 mod m) * (d2 mod m) = i] (mod m)"
proof -

have "[(d1 mod m) * (d2 mod m) = d1 * d2] (mod m)"
by (intro cong_mult) (auto simp: cong_def)

also have "[d1 * d2 = i] (mod m)"
using d_eq d by simp

finally show ?thesis .
qed
hence "(d1 mod m, d2 mod m) ∈ F i"

using m by (auto simp: F_def)
moreover have "d1 ∈ D (d1 mod m) n1" "d2 ∈ D (d2 mod m) n2"

using d_eq by (auto simp: D_def d1_def d2_def)
ultimately show "(d1, d2) ∈ (

⋃
(j1, j2)∈F i. D j1 n1 × D j2 n2)"

by blast
qed

next
fix d assume d: "d ∈ (

⋃
(j1, j2)∈F i. D j1 n1 × D j2 n2)"

obtain d1 d2 where [simp]: "d = (d1, d2)"
by (cases d)

have d12: "d1 dvd n1" "d2 dvd n2"
using d by (auto simp: D_def)

have "gcd (d1 * d2) n1 = d1"
using assms d12
by (metis coprime_mult_right_iff dvd_mult_div_cancel gcd_mult_left_right_cancel

gcd_nat.absorb_iff1)
moreover have "gcd (d1 * d2) n2 = d2"

using assms d12
by (metis coprime_commute coprime_mult_right_iff dvd_div_mult_self

gcd_mult_left_left_cancel gcd_nat.orderE)
ultimately show "(gcd (case d of (d1, d2) ⇒ d1 * d2) n1, gcd (case

d of (d1, d2) ⇒ d1 * d2) n2) = d"
by (auto simp: D_def)

next
fix d assume "d ∈ D i (n1 * n2)"
hence "d dvd n1 * n2"

by (auto simp: D_def)
hence "gcd d n1 * gcd d n2 = d"

using assms using divisor_coprime_product_decomp[of d n1 n2] by simp
thus "(case (gcd d n1, gcd d n2) of (d1, d2) ⇒ d1 * d2) = d"

using assms by (auto simp: D_def)
qed

lemma divisor_count_cong_mult_coprime:
assumes "coprime n1 n2"
shows "count i (n1 * n2) = (

∑
(j1,j2)∈F i. count j1 n1 * count j2

n2)"
proof (cases "n1 = 0 ∨ n2 = 0")

case False

27

hence [simp]: "n1 > 0" "n2 > 0"
by auto

have [intro]: "finite (F i)"
by (rule finite_subset[of _ "{..<m}×{..<m}"]) (auto simp: F_def)

have D_disjoint: "D j1 n ∩ D j2 n = {}" if "j1 6= j2" "j1 < m" "j2 <
m" for j1 j2 n

using that by (auto simp: D_def cong_def)

have "count i (n1 * n2) = card (D i (n1 * n2))"
unfolding count_def divisor_count_cong_def D_def ..

also have ". . . = card (
⋃
(j1,j2)∈F i. D j1 n1 × D j2 n2)"

by (rule sym, rule bij_betw_same_card, rule bij_betw_divisors_cong_nat)
fact

also have ". . . = (
∑

(j1,j2)∈F i. card (D j1 n1 × D j2 n2))"
proof (subst card_UN_disjoint)

show "∀ ia∈F i. ∀ j∈F i. ia 6= j −→
(case ia of (j1, j2) ⇒ D j1 n1 × D j2 n2) ∩
(case j of (j1, j2) ⇒ D j1 n1 × D j2 n2) = {}"

using D_disjoint[of _ _ n1] D_disjoint[of _ _ n2]
unfolding F_def by blast

qed (auto simp: case_prod_unfold intro!: finite_divisors_cong finite_cartesian_product)
also have ". . . = (

∑
(j1,j2)∈F i. count j1 n1 * count j2 n2)"

by (simp add: count_def D_def divisor_count_cong_def)
finally show ?thesis .

qed (use m in ‹auto simp: count_def›)

end

We now specialise the above relation to the particularly simple (but impor-
tant) cases of m = 4 and i = 1, 3.
context

fixes d :: "nat ⇒ nat ⇒ nat"
defines "d ≡ (λi. divisor_count_cong i 4)"

begin

lemma divisor_count_cong_1_mult_coprime:
assumes "coprime n1 n2"
shows "d 1 (n1 * n2) = d 1 n1 * d 1 n2 + d 3 n1 * d 3 n2"

proof -
have "{(j1 :: nat, j2). j1 < 4 ∧ j2 < 4 ∧ [j1 * j2 = 1] (mod 4)} =

Set.filter (λ(j1,j2). (j1 * j2) mod 4 = 1) ({..<4} × {..<4})"
by (auto simp: Set.filter_def cong_def)

also have ". . . = {(1,1), (3,3)}"
by code_simp

finally have *: "{(j1 :: nat, j2). j1 < 4 ∧ j2 < 4 ∧ [j1 * j2 = 1] (mod
4)} = {(1,1), (3,3)}" .

show ?thesis
unfolding d_def using assms
by (subst divisor_count_cong_mult_coprime) (use * in simp_all)

28

qed

lemma divisor_count_cong_3_mult_coprime:
assumes "coprime n1 n2"
shows "d 3 (n1 * n2) = d 1 n1 * d 3 n2 + d 3 n1 * d 1 n2"

proof -
have "{(j1 :: nat, j2). j1 < 4 ∧ j2 < 4 ∧ [j1 * j2 = 3] (mod 4)} =

Set.filter (λ(j1,j2). (j1 * j2) mod 4 = 3) ({..<4} × {..<4})"
by (auto simp: Set.filter_def cong_def)

also have ". . . = {(1,3), (3,1)}"
by code_simp

finally have *: "{(j1 :: nat, j2). j1 < 4 ∧ j2 < 4 ∧ [j1 * j2 = 3] (mod
4)} = {(1,3), (3,1)}" .

show ?thesis
unfolding d_def using assms
by (subst divisor_count_cong_mult_coprime) (use * in simp_all)

qed

1.4.3 Jacobi’s two-square Theorem

We are now ready to prove Jacobi’s two-square theorem, namely that the
number of ways in which a number n > 0 can be written as a sum of two
squares of integers is equal to 4(d1(n) − d3(n)), where di(n) denotes the
number of divisors of n that are congruent i modulo 4.
To that end, we first define the function f(n) as the number of divisors con-
gruent 1 modulo 4 minus the divisors congruent 3 modulo 4. This function
f(n) turns out to be multiplicative.
context

fixes f :: "nat ⇒ int"
defines "f ≡ (λn. int (d 1 n) - int (d 3 n))"

begin

interpretation f: multiplicative_function f
proof

show "f 0 = 0"
by (simp add: f_def d_def)

next
show "f 1 = 1"

by (simp add: f_def d_def divisor_count_cong_1 cong_def)
next

fix n1 n2 :: nat
assume n12: "n1 > 1" "n2 > 1" "coprime n1 n2"
show "f (n1 * n2) = f n1 * f n2"

unfolding f_def
by (simp only: divisor_count_cong_1_mult_coprime divisor_count_cong_3_mult_coprime

n12(3))
(simp add: algebra_simps)

qed

29

Next, we prove that in fact the number of Gaussian integers (up to units)
with norm n is exactly f(n). Since both functions are multiplicative, it
suffices to show that this holds for n being a prime power.
Since we have already done all the hard work for G(pk), it only remains to
evaluate f(pk) in each of the three cases.
lemma card_gauss_ints_with_norm': "int (card (gauss_ints_with_norm' n))
= f n"
proof -

define G where "G = (λn. card (gauss_ints_with_norm' n))"
have "multiplicative_function G"

unfolding G_def ..

have "int (G n) = f n"
proof (rule multiplicative_function_eqI)

show "multiplicative_function (λn. int (G n))"
unfolding G_def by (rule multiplicative_function_of_natI) standard

next
show "multiplicative_function f" ..

next
fix p k :: nat
assume p: "prime p" and k: "k > 0"
thus "int (G (p ^ k)) = f (p ^ k)"
proof (cases p rule: prime_cong_4_nat_cases)

case [simp]: 2
have "f (2 ^ k) = 1"

by (simp add: f_def d_def divisor_count_cong_prime_power_dvd cong_def)
thus ?thesis

by (simp add: G_def gauss_ints_with_norm'_2_power)
next

case cong_1
have mod: "(p ^ i) mod 4 = 1" for i
proof -

have "[p ^ i = 1 ^ i] (mod 4)"
by (intro cong_pow cong_1)

thus ?thesis
by (simp add: cong_def)

qed

have "d 1 (p ^ k) = Suc k"
using p by (simp add: d_def divisor_count_cong_prime_power cong_def

mod)
moreover have "d 3 (p ^ k) = 0"

using p by (simp add: d_def divisor_count_cong_prime_power cong_def
mod)

ultimately have "f (p ^ k) = Suc k"
by (simp add: f_def)

moreover have "G (p ^ k) = Suc k"
using cong_1 p by (simp add: G_def cong_def card_gauss_ints_with_norm'_prime_power)

30

ultimately show ?thesis
by simp

next
case cong_3
have mod: "(p ^ i) mod 4 = (if even i then 1 else 3)" for i
proof -

have "[int (p ^ i) = int (3 ^ i)] (mod (int 4))"
unfolding cong_int_iff using cong_3 by (intro cong_pow) auto

hence "[int p ^ i = 3 ^ i] (mod 4)"
by simp

also have "[3 ^ i = (-1 :: int) ^ i] (mod 4)"
by (intro cong_pow) (auto simp: cong_def)

also have "(-1) ^ i = (if even i then 1 else -1 :: int)"
by (auto simp: uminus_power_if)

also have "[. . . = (if even i then 1 else 3 :: int)] (mod 4)"
by (auto simp: cong_def)

finally have "[int (p ^ i) = int (if even i then 1 else 3)] (mod
(int 4))"

by (auto split: if_splits)
hence "[p ^ i = (if even i then 1 else 3)] (mod 4)"

unfolding cong_int_iff .
thus ?thesis

by (auto simp: cong_def)
qed

have "d 1 (p ^ k) = k div 2 + 1"
proof -

have "d 1 (p ^ k) = card {i. i ≤ k ∧ (p ^ i) mod 4 = 1}" us-
ing p

by (simp add: d_def divisor_count_cong_prime_power cong_def)
also have "{i. i ≤ k ∧ (p ^ i) mod 4 = 1} = {i. i ≤ k ∧ even

i}"
by (auto simp: mod)

also have "bij_betw (λi. i div 2) {i. i ≤ k ∧ even i} {0..k div
2}"

by (rule bij_betwI[of _ _ _ "λi. i * 2"]) auto
hence "card {i. i ≤ k ∧ even i} = card {0..k div 2}"

by (rule bij_betw_same_card)
finally show ?thesis

by simp
qed
moreover have "d 3 (p ^ k) = (k+1) div 2"
proof -

have "d 3 (p ^ k) = card {i. i ≤ k ∧ (p ^ i) mod 4 = 3}" us-
ing p

by (simp add: d_def divisor_count_cong_prime_power cong_def)
also have "{i. i ≤ k ∧ (p ^ i) mod 4 = 3} = {i. i ≤ k ∧ odd

i}"
by (auto simp: mod)

31

also have "bij_betw (λi. (i+1) div 2) {i. i ≤ k ∧ odd i} {1..(k+1)
div 2}"

by (rule bij_betwI[of _ _ _ "λi. i * 2 - 1"]) (auto elim!:
oddE)

hence "card {i. i ≤ k ∧ odd i} = card {1..(k+1) div 2}"
by (rule bij_betw_same_card)

finally show ?thesis
by simp

qed
ultimately have "f (p ^ k) = (if even k then 1 else 0)"

by (auto simp: f_def elim!: evenE oddE)
moreover have "G (p ^ k) = (if even k then 1 else 0)"

using cong_3 p by (simp add: G_def cong_def card_gauss_ints_with_norm'_prime_power)
ultimately show ?thesis

by simp
qed

qed
thus ?thesis

by (simp add: G_def)
qed

corollary card_gauss_ints_with_norm:
assumes "n > 0"
shows "int (card (gauss_ints_with_norm n)) = 4 * f n"
using card_gauss_ints_with_norm'[of n] assms
by (simp add: card_gauss_ints_with_norm_conv_norm')

end
end

We get the “Sum of Two Squares” Theorem as a simply corollary.
theorem sum_of_two_squares_eq:

assumes "n > 0"
shows "count_sos 2 n = 4 * (int (divisor_count_cong 1 4 n) - int (divisor_count_cong

3 4 n))"
unfolding card_gauss_ints_with_norm_conv_count_sos [symmetric]
using card_gauss_ints_with_norm[OF assms] .

The number of decompositions into two squares of positive numbers can be
computed similarly, but we need a “correction term” for the case that n
itself is a square.
corollary count_pos_sos_2_eq:

assumes "n > 0"
shows "count_pos_sos 2 n =

(int (divisor_count_cong 1 4 n) - int (divisor_count_cong
3 4 n) -

(if is_square n then 1 else 0))"
proof -

32

have "int (count_sos 2 n) = 4 * (count_pos_sos 2 n + (if is_square n
then 1 else 0))"

using assms by (auto simp: eval_nat_numeral count_sos_conv_count_pos_sos
count_pos_sos_1)

also have "int (count_sos 2 n) = 4 * (int (divisor_count_cong 1 4 n)
- int (divisor_count_cong 3 4 n))"

by (rule sum_of_two_squares_eq) fact
finally show ?thesis

by auto
qed

As a simple corollary, it follows that if p = 2 (for any k) or p ≡ 3 (mod 4) (for
even k), the numbers n and pkn have the same number of decompositions
into two squares.
corollary count_sos_times_prime_power:

assumes "p = 2 ∨ (prime p ∧ [p = 3] (mod 4) ∧ even k)"
shows "count_sos 2 (p ^ k * n) = count_sos 2 n"

proof (cases "n = 0")
case False
define i where "i = multiplicity p n"
define m where "m = n div p ^ i"
have 1: "n = p ^ i * m"

using False unfolding i_def m_def by (simp add: multiplicity_dvd)
have "p > 0" "p 6= Suc 0"

using assms by (auto intro: Nat.gr0I)
hence 2: "¬p dvd m"

using False multiplicity_decompose[of n p] unfolding m_def i_def by
auto

have "gauss_ints_with_norm' (p ^ k * n) = gauss_ints_with_norm' (p ^
(i + k) * m)"

by (simp add: 1 power_add mult_ac)
also have "card . . . = card (gauss_ints_with_norm' (p ^ (i + k))) * card

(gauss_ints_with_norm' m)"
by (rule gauss_ints_with_norm'.mult_coprime) (use 2 assms in ‹auto

simp: prime_imp_coprime›)
also have "card (gauss_ints_with_norm' (p ^ (i + k))) = card (gauss_ints_with_norm'

(p ^ i))"
by (subst (1 2) card_gauss_ints_with_norm'_prime_power) (use assms

in ‹auto simp: cong_def›)
also have ". . . * card (gauss_ints_with_norm' m) = card (gauss_ints_with_norm'

(p ^ i * m))"
by (rule gauss_ints_with_norm'.mult_coprime [symmetric])

(use 2 assms in ‹auto simp: prime_imp_coprime›)
finally show ?thesis using False ‹p > 0›

by (simp add: 1 card_gauss_ints_with_norm_conv_norm'
flip: card_gauss_ints_with_norm_conv_count_sos)

qed auto

corollary count_sos_2_double: "count_sos 2 (2 * n) = count_sos 2 n"

33

using count_sos_times_prime_power[of 2 1 n] by simp

And as yet another corollary, the following well-known fact follows: a positive
integer n can be written as a sum of two squares iff all the prime factors
congruent 3 modulo 4 have odd multiplicity.
corollary count_sos_2_eq_0_iff:

"count_sos 2 n = 0 ←→ (∃ p. prime p ∧ [p = 3] (mod 4) ∧ odd (multiplicity
p n))"
proof (cases "n = 0")

case False
define G where "G = (λn. card (gauss_ints_with_norm' n))"
define a where "a = (λp. multiplicity p n)"
have "count_sos 2 n = 4 * G n"

using False by (simp add: card_gauss_ints_with_norm_conv_norm' G_def
flip: card_gauss_ints_with_norm_conv_count_sos)

also have ". . . = 0 ←→ G n = 0"
by simp

also have "G n = (
∏

p∈prime_factors n. G (p ^ a p))"
using False gauss_ints_with_norm'.prod_prime_factors[of n] by (simp

add: G_def a_def)
also have ". . . = 0 ←→ (∃ p∈prime_factors n. G (p ^ a p) = 0)"

by simp
also have ". . . ←→ (∃ p∈prime_factors n. [p = 3] (mod 4) ∧ odd (a p))"

by (intro bex_cong refl)
(auto simp: prime_factors_multiplicity G_def card_gauss_ints_with_norm'_prime_power)

also have ". . . ←→ (∃ p. prime p ∧ [p = 3] (mod 4) ∧ odd (a p))" un-
folding Bex_def

by (intro arg_cong[of _ _ Ex]) (auto simp: prime_factors_multiplicity
fun_eq_iff a_def odd_pos)

finally show ?thesis unfolding a_def .
qed auto

end

References

[1] E. Grosswald. Representations of Integers as Sums of Squares.
Springer New York, 2012.

34

	Sum-of-square decompositions and Jacobi's two-squares Theorem
	Auxiliary material
	Decompositions into squares of integers
	Decompositions into squares of positive integers
	Decompositions into two squares
	Gaussian integers on a circle
	The number of divisors in a given congruence class
	Jacobi's two-square Theorem

