The Stern-Brocot Tree

Peter Gammie Andreas Lochbihler

February 10, 2022

Abstract

The Stern-Brocot tree contains all rational numbers exactly once and in their lowest terms. We formalise the Stern-Brocot tree as a coinductive tree using recursive and iterative specifications, which we have proven equivalent, and show that it indeed contains all the numbers as stated. Following Hinze, we prove that the Stern-Brocot tree can be linearised looplessly into Stern’s diatonic sequence (also known as Dijkstra’s fusc function) and that it is a permutation of the Bird tree.

The reasoning stays at an abstract level by appealing to the uniqueness of solutions of guarded recursive equations and lifting algebraic laws point-wise to trees and streams using applicative functors.

Contents

1 A codatatype of infinite binary trees 2
1.1 Applicative functor for \(a\ tree\) 3
1.2 Standard tree combinators 6
 1.2.1 Recurse combinator 6
 1.2.2 Tree iteration 6
 1.2.3 Tree traversal 7
 1.2.4 Mirroring 8
1.3 Pointwise arithmetic on infinite binary trees 8
 1.3.1 Constants and operators 9
 1.3.2 Algebraic instances 10

2 The Stern-Brocot Tree 13
2.1 Specification via a recursion equation 14
2.2 Basic properties 15
2.3 All the rationals 15
2.4 No repetitions 16
2.5 Equivalence of recursive and iterative version 22
Acknowledgements Thanks to Dave Cock for a fruitful discussion about unique fixed points.

1 A codatatype of infinite binary trees

theory Cotree imports
 Main
 Applicative-Lifting.Applicative
 HOL−Library.BNF-Corec
 HOL−Library.Adhoc-Overloading
begin

context notes [[bnf-internals]]
begin
 codatatype 'a tree = Node (root: 'a) (left: 'a tree) (right: 'a tree)
end

lemma rel-treeD:
 assumes rel-tree A x y
 shows rel-tree-rootD: A (root x) (root y)
 and rel-tree-leftD: rel-tree A (left x) (left y)
 and rel-tree-rightD: rel-tree A (right x) (right y)
 using assms
 by(cases x y rule: tree.exhaust[case-product tree.exhaust], simp-all)+

lemmas [simp] = tree.map-val tree.map-comp

lemma set-tree-induct[consumes 1, case-names root left right]:
 assumes x: x ∈ set-tree t
 and root: ∃t. P (root t) t
 and left: ∃x t. [x ∈ set-tree (left t); P x (left t)] ⇒ P x t
 and right: ∃x t. [x ∈ set-tree (right t); P x (right t)] ⇒ P x t
 shows P x t
 using x
 proof(rule tree.set-induct)
 fix l x r
 from root[of Node x l r] show P x (Node x l r) by simp
 qed(auto intro: left right)
lemma \texttt{corec-tree-cong}:
assumes $\forall x. \text{stopL} x \implies \text{STOPL} x = \text{STOPL}' x$
and $\forall x. \neg \text{stopL} x \implies \text{LEFT} x = \text{LEFT}' x$
and $\forall x. \text{stopR} x \implies \text{STOPR} x = \text{STOPR}' x$
and $\forall x. \neg \text{stopR} x \implies \text{RIGHT} x = \text{RIGHT}' x$
shows \texttt{corec-tree ROOT stopL STOPL LEFT stopR STOPR RIGHT} =
\texttt{corec-tree ROOT stopL STOPL' LEFT' stopR STOPR' RIGHT'}
(is \ ?lhs = \ ?rhs)

proof
define x
show \ ?lhs $x = \ ?rhs$ x
 by (coinduction arbitrary; x rule: \texttt{tree.coinduct-strong})(auto simp add: assms)
qed

context defines $g1 :: 'a \Rightarrow 'b$
and $g22 :: 'a \Rightarrow 'a$
and $g32 :: 'a \Rightarrow 'a$
begin

\textbf{corec unfold-tree} :: 'a \Rightarrow 'b \texttt{tree}
where
\texttt{unfold-tree} a = \texttt{Node} ($g1$ a) ($\texttt{unfold-tree}$ ($g22$ a)) ($\texttt{unfold-tree}$ ($g32$ a))

\begin{enumerate}
\item \textbf{Applicative functor for }'a tree
\end{enumerate}

\begin{enumerate}
\item \textbf{Applicative functor for }'a tree
\end{enumerate}

\textbf{context} defines $x :: 'a$
\textbf{begin}
\textbf{corec pure-tree} :: 'a \texttt{tree}
where
\texttt{pure-tree} = \texttt{Node} x \texttt{pure-tree} \texttt{pure-tree}
\textbf{end}

\textbf{lemmas} \texttt{pure-tree-unfold} = \texttt{pure-tree.code}

\textbf{lemma} \texttt{pure-tree-simps} [simp]:
root (pure-tree x) = x
left (pure-tree x) = pure-tree x
right (pure-tree x) = pure-tree x
by (subst pure-tree-unfold; simp; fail)+

adhoc-overloading pure pure-tree

lemma pure-tree-parametric [transfer-rule]: (rel-fun A (rel-tree A)) pure pure
by (rule rel-fun)(coinduction, auto)

lemma map-pure-tree [simp]: map-tree f (pure x) = pure (f x)
by (coinduction arbitrary; x) auto

lemmas pure-tree-unique = pure-tree.unique

primcorec (transfer) ap-tree :: ('a + 'b) tree ⇒ 'a tree ⇒ 'b tree
where
 root (ap-tree f x) = root f (root x)
 | left (ap-tree f x) = ap-tree (left f) (left x)
 | right (ap-tree f x) = ap-tree (right f) (right x)

adhoc-overloading Applicative.ap ap-tree

unbundle applicative-syntax

lemma ap-tree-pure-Node [simp]:
 pure f ⋄ Node x l r = Node (f x) (pure f ⋄ l) (pure f ⋄ r)
by (rule tree.expand) auto

lemma ap-tree-Node-Node [simp]:
 Node f fl fr ⋄ Node x l r = Node (f x) (fl ⋄ l) (fr ⋄ r)
by (rule tree.expand) auto

Applicative functor laws

lemma map-tree-ap-tree-pure-tree:
 pure f ⋄ u = map-tree f u
by (coinduction arbitrary; u) auto

lemma ap-tree-identity:
 pure id ⋄ t = t
by (simp add: map-tree-ap-tree-pure-tree.map-id)

lemma ap-tree-composition:
 pure (⋄) ⋄ r1 ⋄ r2 ⋄ r3 = r1 ⋄ (r2 ⋄ r3)
by (coinduction arbitrary; r1 r2 r3) auto

lemma ap-tree-homomorphism:
 pure f ⋄ pure x = pure (f x)
by (simp add: map-tree-ap-tree-pure-tree)
lemma ap-tree-interchange:
 t ▷ pure x = pure (λf. f x) ▷ t
by (coinduction arbitrary: t) auto

lemma ap-tree-K-tree: pure (λx y. x) ▷ u ▷ v = u
by (coinduction arbitrary: u v) (auto)

lemma ap-tree-C-tree: pure (λf x y. x) ▷ u ▷ v ▷ w = u ▷ w ▷ v
by (coinduction arbitrary: u v w) (auto)

lemma ap-tree-W-tree: pure (λf x. f x x) ▷ f ▷ x ▷ x = f ▷ x ▷ x
by (coinduction arbitrary: f x) (auto)

applicative tree (K, W) for
 pure: pure-tree
 ap: ap-tree
 rel: rel-tree
 set: set-tree

proof –
 fix R :: 'b ⇒ 'c ⇒ bool and f :: ('a ⇒ 'b) tree and g x
 assume [transfer-rule]: rel-tree (rel-fun (eq-on (set-tree x)) R) f g
 have [transfer-rule]: rel-tree (eq-on (set-tree x)) x x by (rule tree.rel-refl-strong)
 simp
 show rel-tree R (f ◦ x) (g ◦ x) by transfer-prover
qeda(rule ap-tree-homomorphism ap-tree-composition[unfolded o-def[abs-def]] ap-tree-K-tree
ap-tree-W-tree ap-tree-interchange pure-tree-parametric)+

declare map-tree-ap-tree-pure-tree[symmetric, applicative-unfold]

lemma ap-tree-strong-extensional:
 (∀x. f ◦ pure x = g ◦ pure x) ⇒ f = g
proof (coinduction arbitrary: f g)
 case [rule-format]: (Eq-tree f g)
 have root f = root g
 proof
 fix x
 show root f x = root g x
 using Eq-tree[of x] by (subst (asm) (1 2) ap-tree.ctr) simp
 qed
 moreover {
 fix x
 have left f ◦ pure x = left g ◦ pure x
 using Eq-tree[of x] by (subst (asm) (1 2) ap-tree.ctr) simp
 }
 moreover {
 fix x
 have right f ◦ pure x = right g ◦ pure x
 using Eq-tree[of x] by (subst (asm) (1 2) ap-tree.ctr) simp
 }
 ultimately show ?case by simp
qed
lemma ap-tree-extensional:
\((\forall x. f \circ x = g \circ x) \implies f = g \)
by (rule ap-tree-strong-extensional) simp

1.2 Standard tree combinators

1.2.1 Recurse combinator

This will be the main combinator to define trees recursively

Uniqueness for this gives us the unique fixed-point theorem for guarded recursive definitions.

lemma map-unfold-tree [simp]: fixes l r x defines unf ≡ unfold-tree (λf. f x) (λf. f \circ l) (λf. f \circ r)
shows map-tree G (unf F) = unf (G \circ F)
by (coinduction arbitrary: F G) (auto 4 3 simp add: unf-def o-assoc)

friend-of-corec map-tree :: (′a ⇒ ′a) ⇒ ′a tree ⇒ ′a tree
where
map-tree f t = Node (f (root t)) (map-tree f (left t)) (map-tree f (right t))

subgoal by (rule tree.expand; simp)

subgoal by (fold relation-eq; transfer-prover)
done

corec tree-recurse :: ′a tree
where
tree-recurse = Node x (map-tree l tree-recurse) (map-tree r tree-recurse)
end

lemma tree-recurse-simps [simp]:
root (tree-recurse l r x) = x
left (tree-recurse l r x) = map-tree l (tree-recurse l r x)
right (tree-recurse l r x) = map-tree r (tree-recurse l r x)
by (subst tree-recurse.code; simp; fail)+

lemma tree-recurse-unfold:
\(\text{tree-recurse } l \, r \, x = \text{Node } (\text{map-tree } l \, (\text{tree-recurse } l \, r \, x)) \, (\text{map-tree } r \, (\text{tree-recurse } l \, r \, x)) \)
by (fact tree-recurse.code)

lemma tree-recurse-fusion:
assumes \(h \circ l = l' \circ h \) and \(h \circ r = r' \circ h \)
shows map-tree h (tree-recurse l r x) = tree-recurse l' r' (h x)
by (rule tree-recurse.unive)(simp add: tree.expand assms)

1.2.2 Tree iteration

context fixes l :: ′a ⇒ ′a and r :: ′a ⇒ ′a and x :: ′a begin
corec tree-iterate :: ′a tree
where
tree-iterate s = Node x (map-tree l (tree-iterate l r x)) (map-tree r (tree-iterate l r x))
end

lemma tree-iterate-simps [simp]:
root (tree-iterate l r x) = x
left (tree-iterate l r x) = map-tree l (tree-iterate l r x)
right (tree-iterate l r x) = map-tree r (tree-iterate l r x)
by (subst tree-recurse.code; simp; fail)+

lemma tree-iterate-unfold:
\(\text{tree-iterate } l \, r \, x = \text{Node } (\text{map-tree } l \, (\text{tree-iterate } l \, r \, x)) \, (\text{map-tree } r \, (\text{tree-iterate } l \, r \, x)) \)
by (fact tree-recurse.code)

lemma tree-iterate-fusion:
assumes \(h \circ l = l' \circ h \) and \(h \circ r = r' \circ h \)
shows map-tree h (tree-iterate l r x) = tree-iterate l' r' (h x)
by (rule tree-recurse.unive)(simp add: tree.expand assms)
lemma unfold-tree-tree-iterate:
\[\text{unfold-tree out } l \ r = \text{map-tree out } \circ \text{tree-iterate } l \ r \]
by (rule ext)(rule unfold-tree-unique[symmetric]; simp)

lemma tree-iterate-fusion:
assumes \(h \circ l = l' \circ h \)
assumes \(h \circ r = r' \circ h \)
shows \(\text{map-tree } h \ (\text{tree-iterate } l \ r \ x) = \text{tree-iterate } l' \ r' \ (h \ x) \)
apply(coinduction arbitrary: \(x \))
using assms by(auto simp add: fun-eq-iff)

1.2.3 Tree traversal

datatype dir = L | R

type-synonym path = dir list
definition traverse-tree :: path ⇒ 'a tree ⇒ 'a tree
where traverse-tree path ≡ foldr (λd f . f \circ case-dir left right d) path id

lemma traverse-tree-simps[simp]:
\begin{align*}
\text{traverse-tree } [] &= \text{id} \\
\text{traverse-tree } (d \ # \ \text{path}) &= \text{traverse-tree } \text{path } \circ (\text{case } d \ \text{of left } ⇒ L \ | \ \text{right } ⇒ R)
\end{align*}
by (simp-all add: traverse-tree-def)

lemma traverse-tree-map-tree [simp]:
\begin{align*}
\text{traverse-tree } (\text{map-tree } f \ t) &= \text{map-tree } f \ (\text{traverse-tree } \text{path } t) \\
\end{align*}
by (induct path arbitrary: \(t \)) (simp-all split: dir.splits)

lemma traverse-tree-append [simp]:
\begin{align*}
\text{traverse-tree } (\text{path } @ \text{ext}) \ t &= \text{traverse-tree ext } (\text{traverse-tree } \text{path } t) \\
\end{align*}
by (induct path arbitrary: \(t \)) simp-all

\text{traverse-tree} \text{ is an applicative-functor homomorphism.}

lemma traverse-tree-pure-tree [simp]:
\begin{align*}
\text{traverse-tree } (\text{pure } x) &= \text{pure } x \\
\end{align*}
by (induct path arbitrary: \(x \)) (simp-all split: dir.splits)

lemma traverse-tree-ap [simp]:
\begin{align*}
\text{traverse-tree } (f \circ x) &= \text{traverse-tree } f \circ \text{traverse-tree } \text{path } x \\
\end{align*}
by (induct path arbitrary: \(f \ x \)) (simp-all split: dir.splits)

context fixes \(l \ r :: 'a ⇒ 'a \) begin

primrec traverse-dir :: dir ⇒ 'a ⇒ 'a
where
\begin{align*}
\text{traverse-dir } L &= l \\
\text{traverse-dir } R &= r
\end{align*}
abbreviation traverse-path :: path ⇒ 'a ⇒ 'a
where traverse-path ≡ fold traverse-dir

end

lemma traverse-tree-tree-iterate:
traverse-tree path (tree-iterate l r s) =
 tree-iterate l r (traverse-path l r path s)
by (induct path arbitrary: s) (simp-all split: dir.splits)

shows that if the tree construction function is suitably monoidal then
recursion and iteration define the same tree.

lemma tree-recurse-iterate:
assumes monoid:
 ∀ x y z. f (f x y) z = f x (f y z)
 ∀ x. f x ε = x
 ∀ x. f ε x = x
shows tree-recursion (f l) (f r) ε = tree-iterate (λx. f x l) (λx. f x r) ε
apply(rule tree-recursion.unique[symmetric])
apply(rule tree.expand)
apply(simp add: tree-iterate-fusion[where r' = λx. f x r and l' = λx. f x l] fun-eq-iff monoid)
done

1.2.4 Mirroring

primcorec mirror :: 'a tree ⇒ 'a tree
where
 root (mirror t) = root t
| left (mirror t) = mirror (right t)
| right (mirror t) = mirror (left t)

lemma mirror-unfold:
mirror (Node x l r) = Node x (mirror r) (mirror l)
b y(rule tree.expand) simp

lemma mirror-pure:
mirror (pure x) = pure x
b y(coinduction rule: tree.coinduct) simp

lemma mirror-ap-tree:
mirror (f ⨿ x) = mirror f ⨿ mirror x
b y(coinduction arbitrary: f x) auto

end

1.3 Pointwise arithmetic on infinite binary trees

theory Cotree-Algebra
imports Cotree
begin
1.3.1 Constants and operators

instantiation tree :: (zero) zero begin
definition [applicative-unfold]: 0 = pure-tree 0
instance ..
end

instantiation tree :: (one) one begin
definition [applicative-unfold]: 1 = pure-tree 1
instance ..
end

instantiation tree :: (plus) plus begin
definition [applicative-unfold]: plus x y = pure (+) ⊙ x ⊙ (y :: 'a tree)
instance ..
end

lemma plus-tree-simps [simp]:
root (t + t') = root t + root t'
left (t + t') = left t + left t'
right (t + t') = right t + right t'
by(simp-all add: plus-tree-def)

friend-of-corec plus where t + t' = Node (root t + root t') (left t + left t') (right t + right t')
subgoal by(rule tree.expand; simp)
subgoal by transfer-prover
done

instantiation tree :: (minus) minus begin
definition [applicative-unfold]: minus x y = pure (−) ⊙ x ⊙ (y :: 'a tree)
instance ..
end

lemma minus-tree-simps [simp]:
root (t − t') = root t − root t'
left (t − t') = left t − left t'
right (t − t') = right t − right t'
by(simp-all add: minus-tree-def)

instantiation tree :: (uminus) uminus begin
definition [applicative-unfold tree]: uminus = ((⊙) (pure uminus) :: 'a tree ⇒ 'a tree)
instance ..
end

instantiation tree :: (times) times begin
definition [applicative-unfold]: times x y = pure (∗) ⊙ x ⊙ (y :: 'a tree)
instance ..
end
lemma times-tree-simps [simp]:
 root (t * t') = root t * root t'
 left (t * t') = left t * left t'
 right (t * t') = right t * right t'
by(simp-all add: times-tree-def)

instance tree :: (Rings dvd) Rings dvd ..

instantiation tree :: (modulo) modulo begin
definition [applicative-unfold]: x div y = pure-tree (div) o x o (y :: 'a tree)
definition [applicative-unfold]: x mod y = pure-tree (mod) o x o (y :: 'a tree)
instance ..
end

lemma mod-tree-simps [simp]:
 root (t mod t') = root t mod root t'
 left (t mod t') = left t mod left t'
 right (t mod t') = right t mod right t'
by(simp-all add: modulo-tree-def)

1.3.2 Algebraic instances

instance tree :: (semigroup-add) semigroup-add
 using add.assoc by intro-classes applicative-lifting

instance tree :: (ab-semigroup-add) ab-semigroup-add
 using add.commute by intro-classes applicative-lifting

instance tree :: (semigroup-mult) semigroup-mult
 using mult.assoc by intro-classes applicative-lifting

instance tree :: (ab-semigroup-mult) ab-semigroup-mult
 using mult.commute by intro-classes applicative-lifting

instance tree :: (monoid-add) monoid-add
 by intro-classes (applicative-lifting, simp)+

instance tree :: (comm-monoid-add) comm-monoid-add
 by intro-classes (applicative-lifting, simp)

instance tree :: (comm-monoid-diff) comm-monoid-diff
 by intro-classes (applicative-lifting, simp add: diff-diff-add)+

instance tree :: (monoid-mult) monoid-mult
 by intro-classes (applicative-lifting, simp)+

instance tree :: (comm-monoid-mult) comm-monoid-mult
 by intro-classes (applicative-lifting, simp)

10
instance tree :: (cancel-semigroup-add) cancel-semigroup-add
proof
 fix a b c :: 'a tree
 assume a + b = a + c
 thus b = c
proof (coinduction arbitrary: a b c)
 case (Eq-tree a b c)
 hence root (a + b) = root (a + c)
 left (a + b) = left (a + c)
 right (a + b) = right (a + c)
 by simp-all
 thus b = c by (auto)
qed
next
fix a b c :: 'a tree
assume b + a = c + a
thus b = c
proof (coinduction arbitrary: a b c)
 case (Eq-tree a b c)
 hence root (b + a) = root (c + a)
 left (b + a) = left (c + a)
 right (b + a) = right (c + a)
 by simp-all
 thus b = c by (auto)
qed
qed

instance tree :: (cancel-ab-semigroup-add) cancel-ab-semigroup-add
by intro-classes (applicative-lifting, simp add: diff-diff-eq)+

instance tree :: (cancel-comm-monoid-add) cancel-comm-monoid-add ..

instance tree :: (group-add) group-add
by intro-classes (applicative-lifting, simp)+

instance tree :: (ab-group-add) ab-group-add
by intro-classes (applicative-lifting, simp)+

instance tree :: (semiring) semiring
by intro-classes (applicative-lifting, simp add: ring-distrib)+

instance tree :: (mult-zero) mult-zero
by intro-classes (applicative-lifting, simp)+

instance tree :: (semiring-0) semiring-0 ..

instance tree :: (semiring-0-cancel) semiring-0-cancel ..
instance tree :: (comm-semiring) comm-semiring
by intro-classes(rule distrib-right)

instance tree :: (comm-semiring-0) comm-semiring-0 ..
instance tree :: (comm-semiring-0-cancel) comm-semiring-0-cancel ..

lemma pure-tree-inject[simp]: pure-tree x = pure-tree y ⟷ x = y
proof
 assume pure-tree x = pure-tree y
 hence root (pure-tree x) = root (pure-tree y) by simp
 thus x = y by simp
qed simp

instance tree :: (zero-neq-one) zero-neq-one
by intro-classes (applicative-unfold tree)

instance tree :: (semiring-1) semiring-1 ..
instance tree :: (comm-semiring-1) comm-semiring-1 ..
instance tree :: (semiring-1-cancel) semiring-1-cancel ..
instance tree :: (comm-semiring-1-cancel) comm-semiring-1-cancel
by (intro-classes; applicative-lifting, rule right-diff-distrib)

instance tree :: (ring) ring ..
instance tree :: (comm-ring) comm-ring ..
instance tree :: (ring-1) ring-1 ..
instance tree :: (comm-ring-1) comm-ring-1 ..
instance tree :: (numeral) numeral ..
instance tree :: (neg-numeral) neg-numeral ..
instance tree :: (semiring-numeral) semiring-numeral ..

lemma of-nat-tree: of-nat n = pure-tree (of-nat n)
proof (induction n)
 case 0 show ?case by (simp add: zero-tree-def)
next
 case (Suc n)
 have 1 + pure (of-nat n) = pure (1 + of-nat n) by applicative-nf rule
 with Suc.IH show ?case by simp
qed
instance tree :: (semiring-char-0) semiring-char-0 by intro-classes (simp add: inj-on-def of-nat-tree)

lemma numeral-tree-simps [simp]:
 root (numeral n) = numeral n
 left (numeral n) = numeral n
 right (numeral n) = numeral n
by (induct n) (auto simp add: numeral.simps plus-tree-def one-tree-def)

lemma numeral-tree-conv-pure [applicative-unfold]: numeral n = pure (numeral n)
by (rule pure-tree-unique) (rule tree.expand; simp)

instance tree :: (ring-char-0) ring-char-0 ..
end

2 The Stern-Brocot Tree

theory Stern-Brocot-Tree
imports
 HOL.Rat
 HOL/Library.Sublist
 Cotree-Algebra
 Applicative-Lifting.Stream-Algebra
begin
The Stern-Brocot tree is discussed at length by Graham et al. (1994, §4.5).
In essence the tree enumerates the rational numbers in their lowest terms by constructing the mediant of two bounding fractions.
type-synonym fraction = nat × nat
definition mediant :: fraction × fraction ⇒ fraction
where mediant ≡ λ((a, c), (b, d)). (a + b, c + d)
definition stern-brocot :: fraction tree
where
 stern-brocot = unfold-tree
 (λ(lb, ub). mediant (lb, ub))
 (λ(lb, ub). (lb, mediant (lb, ub)))
 (λ(lb, ub). (mediant (lb, ub), ub))
 ((0, 1), (1, 0))

This process is visualised in Figure 2. Intuitively each node is labelled with the mediant of it’s rightmost and leftmost ancestors.
Our ultimate goal is to show that the Stern-Brocot tree contains all rationals (in lowest terms), and that each occurs exactly once in the tree. A proof is sketched in Graham et al. (1994, §4.5).
2.1 Specification via a recursion equation

Hinze (2009) derives the following recurrence relation for the Stern-Brocot tree. We will show in §2.5 that his derivation is sound with respect to the standard iterative definition of the tree shown above.

abbreviation succ :: fraction ⇒ fraction
where succ ≡ λ(m, n). (m + n, n)

abbreviation recip :: fraction ⇒ fraction
where recip ≡ λ(m, n). (n, m)

corec stern-brocot-recurse :: fraction tree
where
stern-brocot-recurse =
 Node (1, 1)
 (map-tree recip (map-tree succ (map-tree recip stern-brocot-recurse)))
 (map-tree succ stern-brocot-recurse)

Actually, we would like to write the specification below, but (⋄) cannot be registered as friendly due to varying type parameters

lemma stern-brocot-unfold:
stern-brocot-recurse =
 Node (1, 1)
 (pure recip ⋄ (pure succ ⋄ (pure recip ⋄ stern-brocot-recurse)))
 (pure succ ⋄ stern-brocot-recurse)
by (fact stern-brocot-recurse.code[unfolded map-tree-ap-tree-pure-tree[symmetric]])

lemma stern-brocot-simps [simp]:
root stern-brocot-recurse = (1, 1)
left stern-brocot-recurse ≡ pure recip ⋄ (pure succ ⋄ (pure recip ⋄ stern-brocot-recurse))
right stern-brocot-recurse ≡ pure succ ⋄ stern-brocot-recurse
by (subst stern-brocot-unfold, simp)+

lemma stern-brocot-conv:
\begin{verbatim}
stern-brocot-recurse = tree-recurse (recip o succ o recip) succ (1, 1)
apply(rule tree-recurse.unique)
apply(subst stern-brocot-unfold)
apply(simp add: o-assoc)
apply(rule conjI; applicative-nf; simp)
done

2.2 Basic properties

The recursive definition is useful for showing some basic properties of the
tree, such as that the pairs of numbers at each node are coprime, and have
non-zero denominators. Both are simple inductions on the path.

\textbf{lemma} stern-brocot-denominator-non-zero:
\texttt{case root (traverse-tree path stern-brocot-recurse) of}
\texttt{(m, n) \Rightarrow m > 0 \land n > 0}
\textbf{by} (induct path) (auto split: dir.splits)

\textbf{lemma} stern-brocot-coprime:
\texttt{case root (traverse-tree path stern-brocot-recurse) of}
\texttt{(m, n) \Rightarrow coprime m n}
\textbf{by} (induct path) (auto split: dir.splits simp add: coprime-iff-gcd-eq-1, metis
gcd.commute gcd-add1)

2.3 All the rationals

For every pair of positive naturals, we can construct a path into the Stern-
Brocot tree such that the naturals at the end of the path define the same
rational as the pair we started with. Intuitively, the choices made by Euclid’s
algorithm define this path.

\textbf{function} mk-path :: nat \Rightarrow nat \Rightarrow path \texttt{where}
\texttt{m = n \Rightarrow mk-path (Suc m) (Suc n) = []}
\texttt{| m < n \Rightarrow mk-path (Suc m) (Suc n) = L # mk-path (Suc m) (n - m)}
\texttt{| m > n \Rightarrow mk-path (Suc m) (Suc n) = R # mk-path (m - n) (Suc n)}
\texttt{| mk-path 0 - = undefined}
\texttt{| mk-path - 0 = undefined}
\textbf{by} atomize-clim(auto, arith)
\textbf{termination} mk-path \texttt{by} lexicographic-order

\textbf{lemmas} mk-path-induct\texttt{[case-names equal less greater] = mk-path.induct}

\textbf{abbreviation} rat-of :: fraction \Rightarrow rat
\texttt{where} rat-of \equiv \lambda(x, y). Fract (int x) (int y)

\textbf{theorem} stern-brocot-rationals:
\texttt{[m > 0; n > 0] \Rightarrow}
root (traverse-tree (mk-path m n) (pure rat-of o stern-brocot-recurse)) = Fract
(int m) (int n)
\textbf{proof}(induction m n rule: mk-path-induct)
case (less m n)
\end{verbatim}
2.4 No repetitions

We establish that the Stern-Brocot tree does not contain repetitions, i.e.,
that each rational number appears at most once in it. Note that this prop-
erty is stronger than merely requiring that pairs of naturals not be repeated,
though it is implied by that property and stern-brocot-coprime.

Intuitively, the tree enjoys the binary search tree ordering property when
we map our pairs of naturals into rationals. This suffices to show that
each rational appears at most once in the tree. To establish this seems to
require more structure than is present in the recursion equations, and so
we follow Backhouse and Ferreira (2008) and Hinze (2009) by introducing
another definition of the tree, which summarises the path to each node using
a matrix.

We then derive an iterative version and use invariant reasoning on that.
We begin by defining some matrix machinery. This is all elementary and
primitive (we do not need much algebra).

type-synonym matrix = fraction × fraction

type-synonym vector = fraction

definition times-matrix :: matrix ⇒ matrix ⇒ matrix (infixl ⊗ 70)
where times-matrix = (λ((a, c), (b, d)) ((a', c'), (b', d'))).
((a * a' + b * c', c * a' + d * c'),
(a * b' + b * d', c * b' + d * d'))

definition times-vector :: matrix ⇒ vector ⇒ vector (infixr ⊗ 70)
where times-vector = (λ((a, c), (b, d)) (a', c')). (a * a' + b * c', c * a' + d * c')

context begin

private definition F :: matrix where F = ((0, 1), (1, 0))
private definition I :: matrix where I = ((1, 0), (0, 1))
private definition LL :: matrix where LL = ((1, 1), (0, 1))
private definition UR :: matrix where UR = ((1, 0), (1, 1))

definition Det :: matrix ⇒ nat where Det ≡ λ((a, c), (b, d)). a * d - b * c

lemma Dets [iff]:

with stern-brocot-denominator-non-zero[where path=mk-path (Suc m) (n - m)]
show ?case
 by (simp add: eq-rat field-simps of-nat-diff split: prod.split-asn)

next
case (greater m n)
with stern-brocot-denominator-non-zero[where path=mk-path (m - n) (Suc n)]
show ?case
 by (simp add: eq-rat field-simps of-nat-diff split: prod.split-asn)

qed (simp-all add: eq-rat)
\begin{itemize}
\item $\text{Det} I = 1$
\item $\text{Det} LL = 1$
\item $\text{Det} UR = 1$
\end{itemize}

unfolding $\text{Det-def I-def LL-def UR-def}$ by simp-all

lemma LL-UR-Det:
\begin{itemize}
\item $\text{Det} m = 1 \implies \text{Det} (m \otimes LL) = 1$
\item $\text{Det} m = 1 \implies \text{Det} (LL \otimes m) = 1$
\item $\text{Det} m = 1 \implies \text{Det} (m \otimes UR) = 1$
\item $\text{Det} m = 1 \implies \text{Det} (UR \otimes m) = 1$
\end{itemize}
by (cases m, simp add: Det-def LL-def UR-def times-matrix-def split-def field-simps)

lemma mediant-I-F [simp]:
\begin{itemize}
\item $\text{mediant} F = (1, 1)$
\item $\text{mediant} I = (1, 1)$
\end{itemize}
by (simp-all add: F-def I-def mediant-def)

lemma times-matrix-I [simp]:
\begin{itemize}
\item $I \otimes x = x$
\item $x \otimes I = x$
\end{itemize}
by (simp-all add: times-matrix-def I-def split-def)

lemma $\text{times-matrix-assoc}$ [simp]:
\begin{itemize}
\item $(x \otimes y) \otimes z = x \otimes (y \otimes z)$
\end{itemize}
by (simp add: times-matrix-def field-simps split-def)

lemma LL-UR-pos:
\begin{itemize}
\item $0 < \text{snd} (\text{mediant} m) \implies 0 < \text{snd} (\text{mediant} (m \otimes LL))$
\item $0 < \text{snd} (\text{mediant} m) \implies 0 < \text{snd} (\text{mediant} (m \otimes UR))$
\end{itemize}
by (cases m) (simp-all add: LL-def UR-def times-matrix-def split-def field-simps mediant-def)

lemma recip-succ-recip: $\text{recip} \circ \text{succ} \circ \text{recip} = (\lambda (x, y). (x, x + y))$
by (clarsimp simp: fun-eq_iff)

Backhouse and Ferreira work with the identity matrix I at the root. This has the advantage that all relevant matrices have determinants of 1.

definition $\text{stern-brocot-iterate-aux}$:: $\text{matrix} \Rightarrow \text{matrix tree}$
where $\text{stern-brocot-iterate-aux} \equiv \text{tree-iterate} (\lambda s. s \otimes LL) (\lambda s. s \otimes UR)$

definition $\text{stern-brocot-iterate}$:: fraction tree
where $\text{stern-brocot-iterate} \equiv \text{map-tree mediant} (\text{stern-brocot-iterate-aux} I)$

lemma $\text{stern-brocot-recurse-iterate}$: $\text{stern-brocot-recurse} = \text{stern-brocot-iterate}$ (is \ ?lhs = \ ?rhs)

proof
\begin{itemize}
\item have \ ?rhs = \ map-tree mediant (tree-recurse (\ (\otimes) LL) (\ (\otimes) UR) I)
using tree-recurse-iterate[where \ f=(\otimes) and \ l=LL and \ r=UR and \ e=I]
\item by (simp add: stern-brocot-iterate-def stern-brocot-iterate-aux-def)
\end{itemize}
also have . . .= tree-recurse ((⊙) LL) ((⊙) UR) (1, 1)
unfolding mediant-1-F[2][symmetric]
by (rule tree-recurse-fusion)(simp-all add: fun-eq-iff mediant-def times-matrix-def
times-vector-def LL-def UR-def)[2]
also have . . . = ?lhs
by (simp add: stern-brocot-conv recip-succ-recip times-vector-def LL-def UR-def)
finally show ?thesis by simp
qed

The following are the key ordering properties derived by Backhouse and Ferreira (2008). They hinge on the matrices containing only natural numbers.

lemma tree-ordering-left:
assumes DX: Det X = 1
assumes DY: Det Y = 1
assumes MX: 0 < snd (mediant X)
shows rat-of (mediant (X ⊗ LL ⊗ Y)) < rat-of (mediant X)
proof −
from DX DY have F: 0 < snd (mediant (X ⊗ LL ⊗ Y))
by (auto simp: Det-def times-matrix-def LL-def split-def mediant-def)
obtain x11 x12 x21 x22 where X: X = ((x11, x12), (x21, x22)) by (cases X)
auto
obtain y11 y12 y21 y22 where Y: Y = ((y11, y12), (y21, y22)) by (cases Y)
auto
from DX DY have *: (x12 * x21) * (y12 + y22) < (x11 * x22) * (y12 + y22)
by (simp add: X Y Det-def)(cases y12, simp-all add: field-simps)
from DX DY MX F show ?thesis
apply (clarsimp simp: Det-def times-matrix-def LL-def UR-def mediant-def
split-def)
using * by (simp add: field-simps)
qed

lemma tree-ordering-right:
assumes DX: Det X = 1
assumes DY: Det Y = 1
assumes MX: 0 < snd (mediant X)
shows rat-of (mediant X) < rat-of (mediant (X ⊗ UR ⊗ Y))
proof −
from DX DY have F: 0 < snd (mediant (X ⊗ UR ⊗ Y))
by (auto simp: Det-def times-matrix-def UR-def split-def mediant-def)
obtain x11 x12 x21 x22 where X: X = ((x11, x12), (x21, x22)) by (cases X)
auto
obtain y11 y12 y21 y22 where Y: Y = ((y11, y12), (y21, y22)) by (cases Y)
auto
show ?thesis using DX DY MX F
apply (clarsimp simp: Det-def times-matrix-def LL-def UR-def mediant-def split-def
algebra-simps)
apply (simp add: add-mult-distrib2[symmetric] mult.assoc[symmetric])
apply (cases y21; simp)

done

qed

lemma stern-brocot-iterate-aux-Det:
 assumes Det m = 1 0 < snd (mediant m)
 shows Det (root (traverse-tree path (stern-brocot-iterate-aux m))) = 1
 and 0 < snd (mediant (root (traverse-tree path (stern-brocot-iterate-aux m))))
 using assms
 by (induct path arbitrary: m)

lemma stern-brocot-iterate-aux-decompose:
 \exists m''. m \otimes m'' = root (traverse-tree path (stern-brocot-iterate-aux m)) \land Det m'' = 1

proof (induction path arbitrary: m)
 case Nil
 next
 case (Cons d ds m)
 from Cons.IH [where m = m \otimes UR] Cons.IH [where m = m \otimes LL] show ?case

qed

lemma stern-brocot-fractions-not-repeated-strict-prefix:
 assumes root (traverse-tree path stern-brocot-iterate) = root (traverse-tree path' stern-brocot-iterate)
 assumes pp': strict-prefix path path'
 shows False

proof
 from pp' obtain d ds where pp': path' = path \oplus [d] \oplus ds by (auto elim!: strict-prefixE')
 define m where m = root (traverse-tree path (stern-brocot-iterate-aux I))
 then have Dm: Det m = 1 and Pm: 0 < snd (mediant m)
 using stern-brocot-iterate-aux-Det[where path = path and m = I] by simp-all
 define m' where m' = root (traverse-tree path' (stern-brocot-iterate-aux I))
 then have Dm': Det m' = 1
 using stern-brocot-iterate-aux-Det[where path = path' and m = I] by simp
 let ?M = case d of L \Rightarrow m \otimes LL | R \Rightarrow m \otimes UR
 from pp' have root (traverse-tree ds (stern-brocot-iterate-aux ?M)) = m'
 by (simp add: m-def m'-def stern-brocot-iterate-aux-def traverse-tree-iterate split: dir.splits)
 then obtain m'' where mm'm'': ?M \otimes m'' = m' and Dm'': Det m'' = 1
 using stern-brocot-iterate-aux-decompose[where path = ds and m = ?M] by clar simp
 hence case d of L \Rightarrow rat-of (mediant m') < rat-of (mediant m) | R \Rightarrow rat-of (mediant m) < rat-of (mediant m')
using \(\text{tree-ordering-left}[OF \ Dm \ Dm'' \ Pm]\) \(\text{tree-ordering-right}[OF \ Dm \ Dm'' \ Pm]\)
by (simp split: dir.splits)
with assms show False
by (simp add: stern-brocot-iterate-def m-def m'-def split: dir.splits)
qed

lemma stern-brocot-fractions-not-repeated-parallel:
assumes root (traverse-tree path stern-brocot-iterate) = root (traverse-tree path'
stern-brocot-iterate)
assumes \(p: \text{path} = \text{pref} \oplus d \# \text{ds}\)
assumes \(p': \text{path}' = \text{pref} \oplus d' \# \text{ds'}\)
assumes \(\text{add}': d \neq d'\)
shows False
proof –
define \(m\) where \(m = \text{root (traverse-tree \text{pref} (stern-brocot-iterate-aux I)})\)
then have \(Dm: \text{Det} m = 1\) and \(Pm: 0 < \text{snd (mediant m)}\)
using stern-brocot-iterate-aux-def[where \(\text{path=}\text{pref}\) and \(m=I\)] by simp
define \(pm\) where \(pm = \text{root (traverse-tree path (stern-brocot-iterate-aux I)})\)
then have \(Dpm: \text{Det} pm = 1\)
using stern-brocot-iterate-aux-def[where \(\text{path=}\text{path}\) and \(m=I\)] by simp
let \(?M = \text{case } d \text{ of } L \Rightarrow m \otimes LL | R \Rightarrow m \otimes UR\)
from \(p\)
have root (traverse-tree \(\text{ds (stern-brocot-iterate-aux } \?M)\) = \(pm\)
by (simp add: stern-brocot-iterate-aux-def m-def pm-def traverse-tree-tree-iterate
def split: dir.splits)
then obtain \(pm'\)
where \(pm': ?M \otimes pm' = pm\) and \(Dpm': \text{Det} pm' = 1\)
using stern-brocot-iterate-aux-decompose[where \(\text{path=}\text{ds}\) and \(m=?M\)] by clar-simp
hence case \(d\) of \(L \Rightarrow \text{rat-of (mediant pm)} < \text{rat-of (mediant m)} | R \Rightarrow \text{rat-of (mediant m)} < \text{rat-of (mediant pm)}\)
using tree-ordering-left[\(OF \ Dm \ Dpm' \ Pm, \text{unfolded } pm'\] tree-ordering-right[\(OF \ Dm \ Dpm' \ Pm, \text{unfolded } pm'\]
by (simp split: dir.splits)
moreover
define \(p'm\) where \(p'm = \text{root (traverse-tree path' (stern-brocot-iterate-aux I)})\)
then have \(Dp'm: \text{Det} p'm = 1\)
using stern-brocot-iterate-aux-def[where \(\text{path=}\text{path'}\) and \(m=I\)] by simp
let \(?M' = \text{case } d' \text{ of } L \Rightarrow m \otimes LL | R \Rightarrow m \otimes UR\)
from \(p'\)
have root (traverse-tree \(\text{ds' (stern-brocot-iterate-aux } \?M')\) = \(p'm\)
by (simp add: stern-brocot-iterate-aux-def m-def p'm-def traverse-tree-tree-iterate
def split: dir.splits)
then obtain \(p'm'\)
where \(p'm': ?M' \otimes p'm' = p'm\) and \(Dp'm': \text{Det} p'm' = 1\)
using stern-brocot-iterate-aux-decompose[where \(\text{path=}\text{ds'}\) and \(m=?M'\)] by clar-simp
hence case \(d'\) of \(L \Rightarrow \text{rat-of (mediant p'm)} < \text{rat-of (mediant m)} | R \Rightarrow \text{rat-of (mediant m)} < \text{rat-of (mediant p'm)}\)
using tree-ordering-left[OF Dm Dp'm' Pm, unfolded pm']
 tree-ordering-right[OF Dm Dp'm' Pm, unfolded pm']
by (simp split: dir.splits)
ultimately show False using pm' p'm' assms
 by(simp add: m-def pm-def p'm-def stern-brocot-iterate-def split: dir.splits)
qed

lemma lists-not-eq: assumes xs ≠ ys
 obtains (c1) strict-prefix xs ys
 | (c2) strict-prefix ys xs
 | (c3) ps x y zs' ys'
 where xs = ps @ x # xs' and ys = ps @ y # ys' and x ≠ y
using assms
by (cases xs ys rule: prefix-cases)
 (blast dest: parallel-decomp prefix-order.neq-le-trans)+

lemma stern-brocot-fractions-not-repeated: assumes root (traverse-tree path stern-brocot-iterate) = root (traverse-tree path' stern-brocot-iterate)
 shows path = path'
p proof(rule ccontr)
 assume path ≠ path'
 then show False using assms
 by (cases path path' rule: lists-not-eq)
 (blast intro: stern-brocot-fractions-not-repeated-strict-prefix sym
 stern-brocot-fractions-not-repeated-parallel)+
qed

The function Fract is injective under certain conditions.

lemma rat-inv-eq: assumes Fract a b = Fract c d
 assumes b > 0
 assumes d > 0
 assumes coprime a b
 assumes coprime c d
 shows a = c ∧ b = d
p proof
 from ⟨b > 0, d > 0⟩ (Fract a b = Fract c d)
 have *: a * d = c * b by (simp add: eq-rat)
 from arg-cong[where f=sgn, OF this] ⟨b > 0, d > 0⟩
 have sgn a = sgn c by (simp add: sgn-mult)
 with * show *thesis
 using ⟨b > 0, d > 0⟩ coprime-crossproduct-int[OF ⟨coprime a b⟩ ⟨coprime c d⟩]
 by (simp add: abs-sgn)
q e d
Theorem stern-brocot-rationals-not-repeated:

- **Assumes** root (traverse-tree path (pure rat-of ⋄ stern-brocot-recurse)) = root (traverse-tree \(path'\) (pure rat-of ⋄ stern-brocot-recurse))
- **Shows** \(path = path'\)

Using assms

Using stern-brocot-coprime[where \(path = path'\)]
- stern-brocot-coprime[where \(path = path'\)]
- stern-brocot-denominator-non-zero[where \(path = path'\)]

2.5 Equivalence of recursive and iterative version

Hinze shows that it does not matter whether we use \(I\) or \(F\) at the root provided we swap the left and right matrices too.

Definition stern-brocot-Hinze-iterate :: fraction tree

where stern-brocot-Hinze-iterate = map-tree mediant (tree-iterate (λs. s ⊗ UR) (λs. s ⊗ LL) F)

Lemma mediant-times-F: mediant ◦ (λs. s ⊗ F) = mediant
By (simp add: times-matrix-def F-def mediant-def split-def o-def add.commute)

Lemma stern-brocot-iterate: stern-brocot = stern-brocot-iterate

Proof –

- Have stern-brocot = stern-brocot-Hinze-iterate
 - **Unfolding** stern-brocot-def stern-brocot-Hinze-iterate-def
 By (subst unfold-tree-tree-iterate) (simp add: F-def times-matrix-def mediant-def UR-def LL-def split-def)
 - Also have \(\ldots = \) map-tree mediant (map-tree (λs. s ⊗ F) (tree-iterate (λs. s ⊗ LL) (λs. s ⊗ UR) F))
 - **Unfolding** stern-brocot-Hinze-iterate-def
 By (subst tree-iterate-fusion[where \(t' = \lambda s. s ⊗ UR\) and \(r' = \lambda s. s ⊗ LL\)])
 (simp-all add: fun-eq-iff times-matrix-def UR-def LL-def F-def I-def)
 - Also have \(\ldots = \) stern-brocot-iterate
 By (simp only: tree.map-comp mediant-times-F stern-brocot-iterate-def stern-brocot-iterate-aux-def)
 - Finally show \(?thesis\).

Qed

Theorem stern-brocot-mediant-recurse: stern-brocot = stern-brocot-recurse

By (simp add: stern-brocot-recurse-iterate stern-brocot-iterate)

End

No-notation times-matrix (infixl ⊗ 70)

and times-vector (infixl ⊗ 70)
3 Linearising the Stern-Brocot Tree

3.1 Turning a tree into a stream

```ml
corec tree-chop :: 'a tree ⇒ 'a tree
where tree-chop t = Node (root (left t)) (right t) (tree-chop (left t))
```

lemma tree-chop-sel [simp]:
 root (tree-chop t) = root (left t)
 left (tree-chop t) = right t
 right (tree-chop t) = tree-chop (left t)
by (subst tree-chop.code; simp; fail)+

```
tree-chop is a idiom homomorphism
```

lemma tree-chop-pure-tree [simp]:
 tree-chop (pure x) = pure x
by (coinduction rule: tree.coinduct-strong) auto

lemma tree-chop-ap-tree [simp]:
 tree-chop (f ⋄ x) = tree-chop f ⋄ tree-chop x
by (coinduction arbitrary: f x rule: tree.coinduct-strong) auto

lemma tree-chop-plus:
 tree-chop (t + t') = tree-chop t + tree-chop t'
by (simp add: plus-tree-def)

```ml
corec stream :: 'a tree ⇒ 'a stream
where stream t = root t ## stream (tree-chop t)
```

lemma stream-sel [simp]:
 shd (stream t) = root t
 stl (stream t) = stream (tree-chop t)
by (subst stream.code; simp; fail)+

```
stream is an idiom homomorphism.
```

lemma stream-pure [simp]: stream (pure x) = pure x
by coinduction auto

lemma stream-ap [simp]: stream (f ⋄ x) = stream f ⋄ stream x
by (coinduction arbitrary: f x) auto

lemma stream-plus [simp]: stream (t + t') = stream t + stream t'
by (simp add: plus-stream-def plus-tree-def)

lemma stream-minus [simp]: stream (t - t') = stream t - stream t'
by (simp add: minus-stream-def minus-tree-def)

lemma stream-times [simp]: stream (t * t') = stream t * stream t'
by (simp add: times-stream-def times-tree-def)
lemma stream-mod [simp]: stream (t mod t') = stream t mod stream t'
by(simp add: modulo-stream-def modulo-tree-def)

lemma stream-1 [simp]: stream 1 = 1
by(simp add: one-tree-def one-stream-def)

lemma stream-numeral [simp]: stream (numeral n) = numeral n
by(induct n)(simp-all only: numeral.simps stream-plus stream-1)

3.2 Split the Stern-Brocot tree into numerators and denominators

corec num-den :: bool ⇒ nat tree
where
 num-den x =
 Node 1
 (if x then num-den True else num-den True + num-den False)
 (if x then num-den True + num-den False else num-den False)

abbreviation num where num ≡ num-den True
abbreviation den where den ≡ num-den False

lemma num-unfold: num = Node 1 num (num + den)
by(subst num-den.code; simp)

lemma den-unfold: den = Node 1 (num + den) den
by(subst num-den.code; simp)

lemma num-simps [simp]:
 root num = 1
 left num = num
 right num = num + den
by(subst num-unfold, simp)+

lemma den-simps [simp]:
 root den = 1
 left den = num + den
 right den = den
by (subst den-unfold, simp)+

lemma stern-brocot-num-den:
 pure-tree Pair ◦ num ◦ den = stern-brocot-recurse
apply(rule stern-brocot-recurse.unique)
apply(subst den-unfold)
apply(subst num-unfold)
apply(simp; intro conjI)
apply(applicative-lifting; simp)+
done
lemma den-eq-chop-num: den = tree-chop num
by (coinduction rule: tree.coinduct-strong) simp

lemma num-conv: num = pure fst ○ stern-brocot-recurse
unfolding stern-brocot-num-den[symmetric]
apply (simp add: map-tree-ap-tree-pure-tree stern-brocot-num-den[symmetric])
apply (applicative-lifting; simp)
done

lemma den-conv: den = pure snd ○ stern-brocot-recurse
unfolding stern-brocot-num-den[symmetric]
apply (simp add: map-tree-ap-tree-pure-tree stern-brocot-num-den[symmetric])
apply (applicative-lifting; simp)
done

corec num-mod-den :: nat tree
where num-mod-den = Node 0 num num-mod-den

lemma num-mod-den-simps [simp]:
root num-mod-den = 0
left num-mod-den = num
right num-mod-den = num-mod-den
by (subst num-mod-den.code; simp; fail) +

The arithmetic transformations need the precondition that den contains only positive numbers, no 0. Hinze (2009, p502) gets a bit sloppy here; it is not straightforward to adapt his lifting framework Hinze (2010) to conditional equations.

lemma mod-tree-lemma1:
fixes x :: nat tree
assumes ∀ i ∈ set-tree y. 0 < i
shows x mod (x + y) = x
proof -
 have rel-tree (=) (x mod (x + y)) x by applicative-lifting(simp add: assms)
 thus ?thesis by (unfold tree.rel-eq)
qed

lemma mod-tree-lemma2:
fixes x y :: 'a :: unique-euclidean-semiring tree
shows (x + y) mod y = x mod y
by applicative-lifting simp

lemma set-tree-pathD: x ∈ set-tree t =⇒ ∃ p. x = root (traverse-tree p t)
by (induct rule: set-tree-induct)(auto intro: exI[where x=[]] exI[where x=L # p for p] for p | exI[where x=R # p for p])

lemma den-gt-0: 0 < x if x ∈ set-tree den
proof -
 from that obtain p where x = root (traverse-tree p den) by (blast dest: set-tree-pathD)
with stern-brocot-denominator-non-zero[of p] show \(0 < x \) by(simp add: den-conv split-beta)
qed

lemma num-mod-den: num mod den = num-mod-den
by(rule num-mod-den.unique)(rule tree.expand, simp add: mod-tree-lemma2 mod-tree-lemma1 den-gt-0)

lemma tree-chop-den: tree-chop den = num + den - 2 * (num mod den)
proof –
 have le: \(0 < y \implies 2 * (x mod y) \leq x + y \) for \(x y :: nat \)
 by (simp add: mult-2 add-mono)
We switch to \(\textit{int} \) such that all cancellation laws are available.

define den' where den' = pure int \(\diamond \) den
define num' where num' = pure int \(\diamond \) num
define num-mod-den' where num-mod-den' = pure int \(\diamond \) num-mod-den

have [simp]: root num' = 1 left num' = num' unfolding den'-def num'-def by simp-all
have [simp]: right num' = num' + den' unfolding den'-def num'-def ap-tree.sel
 pure-tree-simps num-simps
 by applicative-lifting simp

have num-mod-den'-simp[simp]: root num-mod-den' = 0 left num-mod-den' = num' right num-mod-den' = num-mod-den'
 by(simp-all add: num-mod-den'-def num'-def)
have den'-eq-chop-num': den' = tree-chop num' by(simp add: den'-def num'-def den-eq-chop-num)
 have num'-plus-den'-minus-chop-den': num' + den' - tree-chop den' = 2 *
 num-mod-den'
 by(corec-unique)(rule tree.expand; simp)
 have num'-plus-den'-minus-chop-den': num' + den' - tree-chop den' = 2 *
 num-mod-den'
 by(rule num-mod-den'2-unique)(rule tree.expand, simp add: tree-chop-plus den'-eq-chop-num')

have tree-chop den = pure nat \(\diamond \) (tree-chop den')
 unfolding den-conv tree-chop-ap-tree tree-chop-pure-tree den'-def by applicative-nf simp
also have tree-chop den' = num' + den' - tree-chop den' + tree-chop den' - 2 *
 num-mod-den'
 by(subst num'-plus-den'-minus-chop-den') simp
also have \(\ldots = num' + den' - 2 * (num' mod den') \)
 unfolding num-mod-den'-def num'-def den'-def num-mod-den[symmetric]
 by applicative-lifting(simp add: zmod-int)
also have [unfolded tree.rel-eq]: rel-tree (=) \(\ldots \) (pure int \(\diamond \) (num + den - 2 *
 (num mod den))]
 unfolding num'-def den'-def by(applicative-lifting)(simp add: of-nat-diff zmod-int
 le den-gt-0)
also have pure nat ⌣ (pure int ⌣ (num + den − 2 * (num mod den))) = num + den − 2 * (num mod den) by (applicative-nf) simp

finally show thesis.

qed

3.3 Loopless linearisation of the Stern-Brocot tree.

This is a loopless linearisation of the Stern-Brocot tree that gives Stern’s diatomic sequence, which is also known as Dijkstra’s fusc function Dijkstra (1982a,b). Loopless à la Bird (2006) means that the first element of the stream can be computed in linear time and every further element in constant time.

friend-of-corec smap :: (′a ⇒ ′a) ⇒ ′a stream
where smap f xs = SCons (f (shd xs)) (smap f (stl xs))
subgoal by (rule stream.expand) simp
subgoal by (fold relator-eq) (transfer-prover)
done

definition step :: nat × nat ⇒ nat × nat
where step = (λ(n, d). (d, n + d − 2 * (n mod d)))

corec stern-brocot-loopless :: fraction stream
where stern-brocot-loopless = (1, 1) ## smap step stern-brocot-loopless

lemmas stern-brocot-loopless-rec = stern-brocot-loopless.code

friend-of-corec plus where s + s' = (shd s + shd s') ## (stl s + stl s')
subgoal by (rule stream.expand; simp add: plus-stream-shd plus-stream-stl)
subgoal by transfer-prover
done

friend-of-corec minus where t − t' = (shd t − shd t') ## (stl t − stl t')
subgoal by (rule stream.expand; simp add: minus-stream-def)
subgoal by transfer-prover
done

friend-of-corec times where t * t' = (shd t * shd t') ## (stl t * stl t')
subgoal by (rule stream.expand; simp add: times-stream-def)
subgoal by transfer-prover
done

friend-of-corec modulo where t mod t' = (shd t mod shd t') ## (stl t mod stl t')
subgoal by (rule stream.expand; simp add: modulo-stream-def)
subgoal by transfer-prover
done

corec fusc' :: nat stream
where fusc' = 1 ## (((1 ## fusc') + fusc') − 2 * ((1 ## fusc') mod fusc'))

27
definition fusc where fusc = 1 \#\# fusc’

lemma fusc-unfold: fusc = 1 \#\# fusc’ by (fact fusc-def)

lemma fusc’-unfold: fusc’ = 1 \#\# (fusc + fusc’ − 2 * (fusc mod fusc’))
by (subst fusc’.code) (simp add: fusc-def)

lemma fusc-simps [simp]:
 shd fusc = 1
 stl fusc = fusc’
by (simp-all add: fusc-unfold)

lemma fusc’-simps [simp]:
 shd fusc’ = 1
 stl fusc’ = fusc + fusc’ − 2 * (fusc mod fusc’)
by (subst fusc’-unfold, simp+)

3.4 Equivalence with Dijkstra’s fusc function

lemma stern-brocot-loopless-siterate:
 stern-brocot-loopless = siterate step (1, 1)
by (rule stern-brocot-loopless.unique[symmetric]) (rule stream.expand; simp add: smap-siterate[symmetric])

lemma fusc-fusc’-iterate: pure Pair \circ fusc \circ fusc’ = stern-brocot-loopless
apply (rule stern-brocot-loopless.unique)
apply (rule stream.expand; simp add: step-def)
apply (applicative-lifting; simp)
done

theorem stern-brocot-loopless:
 stream stern-brocot-recurse = stern-brocot-loopless (is ?lhs = ?rhs)
proof (rule stern-brocot-loopless.unique)
have eq: ?lhs = stream (pure-tree Pair \circ num \circ den) by (simp only: stern-brocot-num-den)
 have num: stream num = 1 \#\# stream den
 by (rule stream.expand) (simp add: den-eq-chop-num)
 have den: stream den = 1 \#\# (stream num + stream den − 2 * (stream num mod stream den))
 by (rule stream.expand) (simp add: tree-chop-den)
 show ?lhs = (1, 1) \#\# smap step ?lhs unfolding eq
qed

end
4 The Bird tree

We define the Bird tree following Hinze (2009) and prove that it is a permutation of the Stern-Brocot tree. As a corollary, we derive that the Bird tree also contains all rational numbers in lowest terms exactly once.

theory Bird-Tree imports Stern-Brocot-Tree begin

corec bird :: fraction tree
where
 bird = Node (1, 1) (map-tree recip (map-tree succ bird)) (map-tree succ (map-tree recip bird))

lemma bird-unfold:
 bird = Node (1, 1) (pure recip ∘ (pure succ ∘ bird)) (pure succ ∘ (pure recip ∘ bird))

lemma bird-simps [simp]:
 root bird = (1, 1)
 left bird = pure recip ∘ (pure succ ∘ bird)
 right bird = pure succ ∘ (pure recip ∘ bird)
by(subst bird-unfold, simp)+

lemma mirror-bird: mirror bird = pure recip ∘ bird (is ?lhs = ?rhs)
proof(rule sym)
 let ?F = λt. Node (1, 1) (map-tree succ (map-tree recip t)) (map-tree recip (map-tree succ t))
 have ∗: mirror bird = ?F (mirror bird)
 by(rule tree.expand; simp add: mirror-ap-tree mirror-pure map-tree-ap-tree-pure-tree[symmetric])
 show t = mirror bird when t = ?F t for t using that by corec-unique (fact ∗)
 show pure recip ∘ bird = ?F (pure recip ∘ bird)
 by(rule tree.expand; simp add: map-tree-ap-tree-pure-tree; applicative-lifting; simp add: split-beta)
qed

primcorec even-odd-mirror :: bool ⇒ 'a tree ⇒ 'a tree
where
 \x even. root (even-odd-mirror even t) = root t
 | \x even. left (even-odd-mirror even t) = even-odd-mirror (∼ even) (if even then right t else left t)
 | \x even. right (even-odd-mirror even t) = even-odd-mirror (∼ even) (if even then left t else right t)

definition even-mirror :: 'a tree ⇒ 'a tree
where even-mirror = even-odd-mirror True

definition odd-mirror :: 'a tree ⇒ 'a tree
where odd-mirror = even-odd-mirror False

29
lemma even-mirror-simps [simp]:
\[
\begin{align*}
\text{root }\ (\text{even-mirror } t) &= \text{root } t \\
\text{left }\ (\text{even-mirror } t) &= \text{odd-mirror }\ (\text{right } t) \\
\text{right }\ (\text{even-mirror } t) &= \text{odd-mirror }\ (\text{left } t)
\end{align*}
\]
and odd-mirror-simps [simp]:
\[
\begin{align*}
\text{root }\ (\text{odd-mirror } t) &= \text{root } t \\
\text{left }\ (\text{odd-mirror } t) &= \text{even-mirror }\ (\text{left } t) \\
\text{right }\ (\text{odd-mirror } t) &= \text{even-mirror }\ (\text{right } t)
\end{align*}
\]
by (simp-all add: even-mirror-def odd-mirror-def)

lemma even-odd-mirror-pure [simp]: fixes even shows
\[
\text{even-odd-mirror even}\ (\text{pure-tree } x) = \text{pure-tree } x
\]
by (coinduction arbitrary: even) auto

lemma even-odd-mirror-ap-tree [simp]: fixes even shows
\[
\text{even-odd-mirror even}\ (f \odot x) = \text{even-odd-mirror even } f \odot \text{even-odd-mirror even } x
\]
by (coinduction arbitrary: even f x) auto

fun even-mirror-path :: path ⇒ path
and odd-mirror-path :: path ⇒ path
where
\[
\begin{align*}
\text{even-mirror-path } [] &= [] \\
| \text{even-mirror-path } (d \# ds) &= (\text{case } d \text{ of } L ⇒ R | R ⇒ L) \# \text{odd-mirror-path } ds \\
| \text{odd-mirror-path } [] &= [] \\
| \text{odd-mirror-path } (d \# ds) &= d \# \text{even-mirror-path } ds
\end{align*}
\]
lemma even-mirror-traverse-tree [simp]:
\[
\text{root }\ (\text{traverse-tree path } (\text{even-mirror } t)) = \text{root }\ (\text{traverse-tree } (\text{even-mirror-path }\ t)\ t)
\]
and odd-mirror-traverse-tree [simp]:
\[
\text{root }\ (\text{traverse-tree path } (\text{odd-mirror } t)) = \text{root }\ (\text{traverse-tree } (\text{odd-mirror-path }\ t)\ t)
\]
by (induct path arbitrary: t) (simp-all split: dir.splits)

lemma even-odd-mirror-path-involution [simp]:
\[
\text{even-mirror-path } (\text{even-mirror-path } path) = path \\
\text{odd-mirror-path } (\text{odd-mirror-path } path) = path
\]
by (induct path) (simp-all split: dir.splits)
lemma even-odd-mirror-path-injective [simp]:
 even-mirror-path path = even-mirror-path path' \iff path = path'
odd-mirror-path path = odd-mirror-path path' \iff path = path'
by (induct path arbitrary; path') (case_tac path', simp-all split; dir.splits)+

lemma odd-mirror-bird-stern-brocot:
odd-mirror bird = stern-brocot-recurse
proof –
let ?rsrs = map-tree (recip ◦ succ ◦ recip ◦ succ)
let ?rssr = map-tree (recip ◦ succ ◦ succ ◦ recip)
let ?srrs = map-tree (succ ◦ recip ◦ recip ◦ succ)
let ?srsr = map-tree (succ ◦ recip ◦ succ ◦ recip)
let ?R = λt. Node (1, 1) (Node (1, 2) (?rssr t) (?rsrs t)) (Node (2, 1) (?srsr t) (?srrs t))

have *: stern-brocot-recurse = ?R stern-brocot-recurse
 by(rule tree.expand; simp; intro conjI; rule tree.expand; simp; intro conjI) —
Expand the tree twice
 (applicative-lifting, simp add: split-beta)+
show f = stern-brocot-recurse when f = ?R f for f using that * by corec-unique
show odd-mirror bird = ?R (odd-mirror bird)
 by(rule tree.expand; simp; intro conjI; rule tree.expand; simp; intro conjI) —
Expand the tree twice
 (applicative-lifting; simp)+
qed

theorem bird-rationals:
 assumes m > 0 n > 0
 shows root (traverse-tree (odd-mirror-path (mk-path m n))) (pure rat-of ◦ bird))
 = Fract (int m) (int n)
using stern-brocot-rationals[OF assms]
by (simp add: odd-mirror-bird-stern-brocot[symmetric])

theorem bird-rationals-not-repeated:
 root (traverse-tree path (pure rat-of ◦ bird)) = root (traverse-tree path' (pure rat-of ◦ bird))
 \implies path = path'
using stern-brocot-rationals-not-repeated[where path=odd-mirror-path path and
path'=odd-mirror-path path']
by (simp add: odd-mirror-bird-stern-brocot[symmetric])
end

References

Roland Backhouse and João F. Ferreira. Recounting the rationals: Twice!
 In Philippe Audebaud and Christine Paulin-Mohring, editors, Mathemat-

