File ‹state_space.ML›
signature STATE_SPACE =
sig
val distinct_compsN : string
val getN : string
val putN : string
val injectN : string
val namespaceN : string
val projectN : string
val valuetypesN : string
val namespace_definition :
bstring ->
typ ->
(xstring, string) Expression.expr * (binding * string option * mixfix) list ->
string list -> string list -> theory -> theory
val define_statespace :
string list ->
string ->
((string * bool) * (string list * bstring * (string * string) list)) list ->
(string * string) list -> theory -> theory
val define_statespace_i :
string option ->
string list ->
string ->
((string * bool) * (typ list * bstring * (string * string) list)) list ->
(string * typ) list -> theory -> theory
val statespace_decl :
((string list * bstring) *
(((string * bool) * (string list * xstring * (bstring * bstring) list)) list *
(bstring * string) list)) parser
val neq_x_y : Proof.context -> term -> term -> thm option
val distinctNameSolver : Simplifier.solver
val distinctTree_tac : Proof.context -> int -> tactic
val distinct_simproc : Simplifier.simproc
val is_statespace : Context.generic -> xstring -> bool
val get_comp' : Context.generic -> string -> (typ * string list) option
val get_comp : Context.generic -> string -> (typ * string) option
val get_comps : Context.generic -> (typ * string list) Termtab.table
val silent : bool Config.T
val gen_lookup_tr : Proof.context -> term -> string -> term
val lookup_swap_tr : Proof.context -> term list -> term
val lookup_tr : Proof.context -> term list -> term
val lookup_tr' : Proof.context -> term list -> term
val gen'_update_tr :
bool -> bool -> Proof.context -> string -> term -> term -> term
val gen_update_tr :
bool -> Proof.context -> string -> term -> term -> term
val update_tr : Proof.context -> term list -> term
val update_tr' : Proof.context -> term list -> term
val trace_data: Context.generic -> unit
end;
structure StateSpace : STATE_SPACE =
struct
val distinct_compsN = "distinct_names"
val namespaceN = "_namespace"
val valuetypesN = "_valuetypes"
val projectN = "project"
val injectN = "inject"
val getN = "get"
val putN = "put"
val project_injectL = "StateSpaceLocale.project_inject";
fun fold1 f xs = fold f (tl xs) (hd xs)
fun fold1' f [] x = x
| fold1' f xs _ = fold1 f xs
fun sorted_subset eq [] ys = true
| sorted_subset eq (x::xs) [] = false
| sorted_subset eq (x::xs) (y::ys) = if eq (x,y) then sorted_subset eq xs ys
else sorted_subset eq (x::xs) ys;
fun comps_of_distinct_thm thm = Thm.prop_of thm
|> (fn (_$(_$t)) => DistinctTreeProver.dest_tree t) |> map (fst o dest_Free) |> sort_strings;
fun insert_tagged_distinct_thms tagged_thm tagged_thms =
let
fun ins t1 [] = [t1]
| ins (t1 as (names1, _)) ((t2 as (names2, _))::thms) =
if Ord_List.subset string_ord (names1, names2) then t2::thms
else if Ord_List.subset string_ord (names2, names1) then ins t1 thms
else t2 :: ins t1 thms
in
ins tagged_thm tagged_thms
end
fun join_tagged_distinct_thms tagged_thms1 tagged_thms2 =
tagged_thms1 |> fold insert_tagged_distinct_thms tagged_thms2
fun tag_distinct_thm thm = (comps_of_distinct_thm thm, thm)
val tag_distinct_thms = map tag_distinct_thm
fun join_distinct_thms (thms1, thms2) =
if pointer_eq (thms1, thms2) then thms1
else join_tagged_distinct_thms (tag_distinct_thms thms1) (tag_distinct_thms thms2) |> map snd
fun insert_distinct_thm thm thms = join_distinct_thms (thms, [thm])
fun join_declinfo_entry name (T1:typ, names1:string list) (T2, names2) =
let
fun typ_info T names = @{make_string} T ^ " " ^ Pretty.string_of (Pretty.str_list "(" ")" names);
in
if T1 = T2 then (T1, distinct (op =) (names1 @ names2))
else error ("statespace component '" ^ name ^ "' disagrees on type:\n " ^
typ_info T1 names1 ^ " vs. " ^ typ_info T2 names2
)
end
fun guess_name (Free (x,_)) = x
| guess_name _ = "unknown"
val join_declinfo = Termtab.join (fn t => uncurry (join_declinfo_entry (guess_name t)))
type statespace_info =
{args: (string * sort) list,
parents: (typ list * string * string option list) list,
components: (string * typ) list,
types: typ list
};
structure Data = Generic_Data
(
type T =
(typ * string list) Termtab.table *
thm list Symtab.table *
statespace_info Symtab.table;
val empty = (Termtab.empty, Symtab.empty, Symtab.empty);
fun merge ((declinfo1, distinctthm1, statespaces1), (declinfo2, distinctthm2, statespaces2)) =
(join_declinfo (declinfo1, declinfo2),
Symtab.join (K join_distinct_thms) (distinctthm1, distinctthm2),
Symtab.merge (K true) (statespaces1, statespaces2));
);
val get_declinfo = #1 o Data.get
val get_distinctthm = #2 o Data.get
val get_statespaces = #3 o Data.get
val map_declinfo = Data.map o @{apply 3(1)}
val map_distinctthm = Data.map o @{apply 3(2)}
val map_statespaces = Data.map o @{apply 3(3)}
fun trace_data context =
tracing ("StateSpace.Data: " ^ @{make_string}
{declinfo = get_declinfo context,
distinctthm = get_distinctthm context,
statespaces = get_statespaces context})
fun update_declinfo (n,v) = map_declinfo (fn declinfo =>
let val vs = apsnd single v
in Termtab.map_default (n, vs) (join_declinfo_entry (guess_name n) vs) declinfo end);
fun expression_no_pos (expr, fixes) : Expression.expression =
(map (fn (name, inst) => ((name, Position.none), inst)) expr, fixes);
fun prove_interpretation_in ctxt_tac (name, expr) thy =
thy
|> Interpretation.global_sublocale_cmd (name, Position.none) (expression_no_pos expr) []
|> Proof.global_terminal_proof
((Method.Basic (fn ctxt => SIMPLE_METHOD (ctxt_tac ctxt)), Position.no_range), NONE)
|> Proof_Context.theory_of
fun add_locale name expr elems thy =
thy
|> Expression.add_locale (Binding.name name) (Binding.name name) [] expr elems
|> snd
|> Local_Theory.exit;
fun add_locale_cmd name expr elems thy =
thy
|> Expression.add_locale_cmd (Binding.name name) Binding.empty [] (expression_no_pos expr) elems
|> snd
|> Local_Theory.exit;
fun is_statespace context name =
Symtab.defined (get_statespaces context) (Locale.intern (Context.theory_of context) name)
fun add_statespace name args parents components types =
map_statespaces (Symtab.update_new (name, {args=args,parents=parents, components=components,types=types}))
val get_statespace = Symtab.lookup o get_statespaces
val the_statespace = the oo get_statespace
fun mk_free ctxt name =
if Variable.is_fixed ctxt name orelse Variable.is_declared ctxt name
then
let
val n' = Variable.intern_fixed ctxt name |> perhaps Long_Name.dest_hidden;
val free = Free (n', Proof_Context.infer_type ctxt (n', dummyT))
in SOME (free) end
else (tracing ("variable not fixed or declared: " ^ name); NONE)
fun get_dist_thm context name =
Symtab.lookup_list (get_distinctthm context) name
|> map (Thm.transfer'' context)
fun get_dist_thm2 ctxt x y =
(let
val dist_thms = [x, y] |> map (#1 o dest_Free)
|> maps (get_dist_thm (Context.Proof ctxt));
fun get_paths dist_thm =
let
val ctree = Thm.cprop_of dist_thm |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2;
val tree = Thm.term_of ctree;
val x_path = the (DistinctTreeProver.find_tree x tree);
val y_path = the (DistinctTreeProver.find_tree y tree);
in SOME (dist_thm, x_path, y_path) end
handle Option.Option => NONE
val result = get_first get_paths dist_thms
in
result
end)
fun get_comp' context name =
mk_free (Context.proof_of context) name
|> Option.mapPartial (fn t =>
let
val declinfo = get_declinfo context
in
case Termtab.lookup declinfo t of
NONE =>
AList.lookup (fn (x, Free (n,_)) => n = x | _ => false) (Termtab.dest declinfo) name
| some => some
end)
fun get_comp ctxt name =
get_comp' ctxt name |> Option.map (apsnd (fn ns => if null ns then "" else hd ns))
val get_comps = get_declinfo
fun neq_x_y ctxt x y =
(let
val (dist_thm, x_path, y_path) = the (get_dist_thm2 ctxt x y);
val thm = DistinctTreeProver.distinctTreeProver ctxt dist_thm x_path y_path;
in SOME thm
end handle Option.Option => NONE)
fun distinctTree_tac ctxt = SUBGOAL (fn (goal, i) =>
(case goal of
Const (\<^const_name>‹Trueprop›, _) $
(Const (\<^const_name>‹Not›, _) $
(Const (\<^const_name>‹HOL.eq›, _) $ (x as Free _) $ (y as Free _))) =>
(case neq_x_y ctxt x y of
SOME neq => resolve_tac ctxt [neq] i
| NONE => no_tac)
| _ => no_tac));
val distinctNameSolver = mk_solver "distinctNameSolver" distinctTree_tac;
val distinct_simproc =
\<^simproc_setup>‹passive distinct_simproc ("x = y") =
‹fn _ => fn ctxt => fn ct =>
(case Thm.term_of ct of
Const (\<^const_name>‹HOL.eq›,_) $ (x as Free _) $ (y as Free _) =>
Option.map (fn neq => DistinctTreeProver.neq_to_eq_False OF [neq])
(neq_x_y ctxt x y)
| _ => NONE)››;
fun interprete_parent name dist_thm_name parent_expr thy =
let
fun solve_tac ctxt = CSUBGOAL (fn (goal, i) =>
let
val distinct_thm = Proof_Context.get_thm ctxt dist_thm_name;
val rule = DistinctTreeProver.distinct_implProver ctxt distinct_thm goal;
in resolve_tac ctxt [rule] i end);
fun tac ctxt =
Locale.intro_locales_tac {strict = true, eager = true} ctxt [] THEN ALLGOALS (solve_tac ctxt);
in
thy |> prove_interpretation_in tac (name, parent_expr)
end;
fun namespace_definition name nameT parent_expr parent_comps new_comps thy =
let
val all_comps = parent_comps @ new_comps;
val vars = (map (fn n => (Binding.name n, NONE, NoSyn)) all_comps);
val dist_thm_name = distinct_compsN;
val dist_thm_full_name = dist_thm_name;
fun type_attr phi = Thm.declaration_attribute (fn thm => fn context =>
(case context of
Context.Theory _ => context
| Context.Proof ctxt =>
let
val declinfo = get_declinfo context
val tt = get_distinctthm context;
val all_names = comps_of_distinct_thm thm;
val thm0 = Thm.trim_context thm;
fun upd name = Symtab.map_default (name, [thm0]) (insert_distinct_thm thm0)
val tt' = tt |> fold upd all_names;
val context' =
Context_Position.set_visible false ctxt
|> Simplifier.add_proc distinct_simproc
|> Context_Position.restore_visible ctxt
|> Context.Proof
|> map_declinfo (K declinfo)
|> map_distinctthm (K tt');
in context' end));
val attr = Attrib.internal ⌂ type_attr;
val assume =
((Binding.name dist_thm_name, [attr]),
[(HOLogic.Trueprop $
(Const (\<^const_name>‹all_distinct›, Type (\<^type_name>‹tree›, [nameT]) --> HOLogic.boolT) $
DistinctTreeProver.mk_tree (fn n => Free (n, nameT)) nameT
(sort fast_string_ord all_comps)), [])]);
in
thy
|> add_locale name ([], vars) [Element.Assumes [assume]]
|> Proof_Context.theory_of
|> interprete_parent name dist_thm_full_name parent_expr
end;
fun encode_dot x = if x = #"." then #"_" else x;
fun encode_type (TFree (s, _)) = s
| encode_type (TVar ((s,i),_)) = "?" ^ s ^ string_of_int i
| encode_type (Type (n,Ts)) =
let
val Ts' = fold1' (fn x => fn y => x ^ "_" ^ y) (map encode_type Ts) "";
val n' = String.map encode_dot n;
in if Ts'="" then n' else Ts' ^ "_" ^ n' end;
fun project_name T = projectN ^"_"^encode_type T;
fun inject_name T = injectN ^"_"^encode_type T;
fun add_declaration name decl thy =
thy
|> Named_Target.init [] name
|> (fn lthy =>
Local_Theory.declaration {syntax = true, pervasive = false, pos = Position.thread_data ()}
(decl lthy) lthy)
|> Local_Theory.exit_global;
fun parent_components thy (Ts, pname, renaming) =
let
fun rename [] xs = xs
| rename (NONE::rs) (x::xs) = x::rename rs xs
| rename (SOME r::rs) ((x,T)::xs) = (r,T)::rename rs xs;
val {args, parents, components, ...} = the_statespace (Context.Theory thy) pname;
val inst = map fst args ~~ Ts;
val subst = Term.map_type_tfree (the o AList.lookup (op =) inst o fst);
val parent_comps =
maps (fn (Ts',n,rs) => parent_components thy (map subst Ts', n, rs)) parents;
val all_comps = rename renaming (parent_comps @ map (apsnd subst) components);
in all_comps end;
fun statespace_definition state_type args name parents parent_comps components thy =
let
val full_name = Sign.full_bname thy name;
val all_comps = parent_comps @ components;
val components' = map (fn (n,T) => (n,(T,full_name))) components;
fun parent_expr (prefix, (_, n, rs)) =
(suffix namespaceN n, (prefix, (Expression.Positional rs,[])));
val parents_expr = map parent_expr parents;
fun distinct_types Ts =
let val tab = fold (fn T => fn tab => Typtab.update (T,()) tab) Ts Typtab.empty;
in map fst (Typtab.dest tab) end;
val Ts = distinct_types (map snd all_comps);
val arg_names = map fst args;
val valueN = singleton (Name.variant_list arg_names) "'value";
val nameN = singleton (Name.variant_list (valueN :: arg_names)) "'name";
val valueT = TFree (valueN, Sign.defaultS thy);
val nameT = TFree (nameN, Sign.defaultS thy);
val stateT = nameT --> valueT;
fun projectT T = valueT --> T;
fun injectT T = T --> valueT;
val locinsts = map (fn T => (project_injectL,
((encode_type T,false),(Expression.Positional
[SOME (Free (project_name T,projectT T)),
SOME (Free ((inject_name T,injectT T)))],[])))) Ts;
val locs = maps (fn T => [(Binding.name (project_name T),NONE,NoSyn),
(Binding.name (inject_name T),NONE,NoSyn)]) Ts;
val constrains = maps (fn T => [(project_name T,projectT T),(inject_name T,injectT T)]) Ts;
fun interprete_parent_valuetypes (prefix, (Ts, pname, _)) thy =
let
val {args,types,...} = the_statespace (Context.Theory thy) pname;
val inst = map fst args ~~ Ts;
val subst = Term.map_type_tfree (the o AList.lookup (op =) inst o fst);
val pars = maps ((fn T => [project_name T,inject_name T]) o subst) types;
val expr = ([(suffix valuetypesN name,
(prefix, (Expression.Positional (map SOME pars),[])))],[]);
in
prove_interpretation_in (fn ctxt => ALLGOALS (solve_tac ctxt (Assumption.all_prems_of ctxt)))
(suffix valuetypesN name, expr) thy
end;
fun interprete_parent (prefix, (_, pname, rs)) =
let
val expr = ([(pname, (prefix, (Expression.Positional rs,[])))],[])
in prove_interpretation_in
(fn ctxt => Locale.intro_locales_tac {strict = true, eager = false} ctxt [])
(full_name, expr) end;
fun declare_declinfo updates lthy phi ctxt =
let
fun upd_prf ctxt =
let
fun upd (n,v) =
let
val nT = Proof_Context.infer_type (Local_Theory.target_of lthy) (n, dummyT)
in Context.proof_map
(update_declinfo (Morphism.term phi (Free (n,nT)),v))
end;
val ctxt' = ctxt |> fold upd updates
in ctxt' end;
in Context.mapping I upd_prf ctxt end;
fun string_of_typ T =
Pretty.pure_string_of
(Syntax.pretty_typ (Config.put show_sorts true (Syntax.init_pretty_global thy)) T);
val fixestate = (case state_type of
NONE => []
| SOME s =>
let
val fx = Element.Fixes [(Binding.name s,SOME (string_of_typ stateT),NoSyn)];
val cs = Element.Constrains
(map (fn (n,T) => (n,string_of_typ T))
((map (fn (n,_) => (n,nameT)) all_comps) @
constrains))
in [fx,cs] end
)
in thy
|> namespace_definition
(suffix namespaceN name) nameT (parents_expr,[])
(map fst parent_comps) (map fst components)
|> Context.theory_map (add_statespace full_name args (map snd parents) components [])
|> add_locale (suffix valuetypesN name) (locinsts,locs) []
|> Proof_Context.theory_of
|> fold interprete_parent_valuetypes parents
|> add_locale_cmd name
([(suffix namespaceN full_name ,(("",false),(Expression.Named [],[]))),
(suffix valuetypesN full_name,(("",false),(Expression.Named [],[])))],[]) fixestate
|> Proof_Context.theory_of
|> fold interprete_parent parents
|> add_declaration full_name (declare_declinfo components')
end;
fun read_typ ctxt raw_T env =
let
val ctxt' = fold (Variable.declare_typ o TFree) env ctxt;
val T = Syntax.read_typ ctxt' raw_T;
val env' = Term.add_tfreesT T env;
in (T, env') end;
fun cert_typ ctxt raw_T env =
let
val thy = Proof_Context.theory_of ctxt;
val T = Type.no_tvars (Sign.certify_typ thy raw_T)
handle TYPE (msg, _, _) => error msg;
val env' = Term.add_tfreesT T env;
in (T, env') end;
fun gen_define_statespace prep_typ state_space args name parents comps thy =
let
val _ = writeln ("Defining statespace " ^ quote name ^ " ...");
val ctxt = Proof_Context.init_global thy;
fun add_parent (prefix, (Ts, pname, rs)) env =
let
val prefix' =
(case prefix of
("", mandatory) => (pname, mandatory)
| _ => prefix);
val full_pname = Sign.full_bname thy pname;
val {args,components,...} =
(case get_statespace (Context.Theory thy) full_pname of
SOME r => r
| NONE => error ("Undefined statespace " ^ quote pname));
val (Ts',env') = fold_map (prep_typ ctxt) Ts env
handle ERROR msg => cat_error msg
("The error(s) above occurred in parent statespace specification "
^ quote pname);
val err_insts = if length args <> length Ts' then
["number of type instantiation(s) does not match arguments of parent statespace "
^ quote pname]
else [];
val rnames = map fst rs
val err_dup_renamings = (case duplicates (op =) rnames of
[] => []
| dups => ["Duplicate renaming(s) for " ^ commas dups])
val cnames = map fst components;
val err_rename_unknowns = (case subtract (op =) cnames rnames of
[] => []
| rs => ["Unknown components " ^ commas rs]);
val rs' = map (AList.lookup (op =) rs o fst) components;
val errs =err_insts @ err_dup_renamings @ err_rename_unknowns
in
if null errs then ((prefix', (Ts', full_pname, rs')), env')
else error (cat_lines (errs @ ["in parent statespace " ^ quote pname]))
end;
val (parents',env) = fold_map add_parent parents [];
val err_dup_args =
(case duplicates (op =) args of
[] => []
| dups => ["Duplicate type argument(s) " ^ commas dups]);
val err_dup_components =
(case duplicates (op =) (map fst comps) of
[] => []
| dups => ["Duplicate state-space components " ^ commas dups]);
fun prep_comp (n,T) env =
let val (T', env') = prep_typ ctxt T env handle ERROR msg =>
cat_error msg ("The error(s) above occurred in component " ^ quote n)
in ((n,T'), env') end;
val (comps',env') = fold_map prep_comp comps env;
val err_extra_frees =
(case subtract (op =) args (map fst env') of
[] => []
| extras => ["Extra free type variable(s) " ^ commas extras]);
val defaultS = Sign.defaultS thy;
val args' = map (fn x => (x, AList.lookup (op =) env x |> the_default defaultS)) args;
fun fst_eq ((x:string,_),(y,_)) = x = y;
fun snd_eq ((_,t:typ),(_,u)) = t = u;
val raw_parent_comps = maps (parent_components thy o snd) parents';
fun check_type (n,T) =
(case distinct (snd_eq) (filter (curry fst_eq (n,T)) raw_parent_comps) of
[] => []
| [_] => []
| rs => ["Different types for component " ^ quote n ^ ": " ^
commas (map (Syntax.string_of_typ ctxt o snd) rs)])
val err_dup_types = maps check_type (duplicates fst_eq raw_parent_comps)
val parent_comps = distinct (fst_eq) raw_parent_comps;
val all_comps = parent_comps @ comps';
val err_comp_in_parent = (case duplicates (op =) (map fst all_comps) of
[] => []
| xs => ["Components already defined in parents: " ^ commas_quote xs]);
val errs = err_dup_args @ err_dup_components @ err_extra_frees @
err_dup_types @ err_comp_in_parent;
in if null errs
then thy |> statespace_definition state_space args' name parents' parent_comps comps'
else error (cat_lines errs)
end
handle ERROR msg => cat_error msg ("Failed to define statespace " ^ quote name);
val define_statespace = gen_define_statespace read_typ NONE;
val define_statespace_i = gen_define_statespace cert_typ;
val silent = Attrib.setup_config_bool \<^binding>‹statespace_silent› (K false);
fun gen_lookup_tr ctxt s n =
(case get_comp' (Context.Proof ctxt) n of
SOME (T, _) =>
Syntax.const \<^const_name>‹StateFun.lookup› $
Syntax.free (project_name T) $ Syntax.free n $ s
| NONE =>
if Config.get ctxt silent
then Syntax.const \<^const_name>‹StateFun.lookup› $
Syntax.const \<^const_syntax>‹undefined› $ Syntax.free n $ s
else raise TERM ("StateSpace.gen_lookup_tr: component " ^ quote n ^ " not defined", []));
fun lookup_tr ctxt [s, x] =
(case Term_Position.strip_positions x of
Free (n,_) => gen_lookup_tr ctxt s n
| _ => raise Match);
fun lookup_swap_tr ctxt [Free (n,_),s] = gen_lookup_tr ctxt s n;
fun lookup_tr' ctxt [_ $ Free (prj, _), n as (_ $ Free (name, _)), s] =
(case get_comp' (Context.Proof ctxt) name of
SOME (T, _) =>
if prj = project_name T
then Syntax.const "_statespace_lookup" $ s $ n
else raise Match
| NONE => raise Match)
| lookup_tr' _ _ = raise Match;
fun gen'_update_tr const_val id ctxt n v s =
let
fun pname T = if id then \<^const_name>‹Fun.id› else project_name T;
fun iname T = if id then \<^const_name>‹Fun.id› else inject_name T;
val v = if const_val then (Syntax.const \<^const_name>‹K_statefun› $ v) else v
in
(case get_comp' (Context.Proof ctxt) n of
SOME (T, _) =>
Syntax.const \<^const_name>‹StateFun.update› $
Syntax.free (pname T) $ Syntax.free (iname T) $
Syntax.free n $ v $ s
| NONE =>
if Config.get ctxt silent then
Syntax.const \<^const_name>‹StateFun.update› $
Syntax.const \<^const_syntax>‹undefined› $ Syntax.const \<^const_syntax>‹undefined› $
Syntax.free n $ v $ s
else raise TERM ("StateSpace.gen_update_tr: component " ^ n ^ " not defined", []))
end;
val gen_update_tr = gen'_update_tr true
fun update_tr ctxt [s, x, v] =
(case Term_Position.strip_positions x of
Free (n, _) => gen'_update_tr true false ctxt n v s
| _ => raise Match);
fun update_tr' ctxt
[_ $ Free (prj, _), _ $ Free (inj, _), n as (_ $ Free (name, _)), (Const (k, _) $ v), s] =
if Long_Name.base_name k = Long_Name.base_name \<^const_name>‹K_statefun› then
(case get_comp' (Context.Proof ctxt) name of
SOME (T, _) =>
if inj = inject_name T andalso prj = project_name T then
Syntax.const "_statespace_update" $ s $ n $ v
else raise Match
| NONE => raise Match)
else raise Match
| update_tr' _ _ = raise Match;
local
val type_insts =
Parse.typ >> single ||
\<^keyword>‹(› |-- Parse.!!! (Parse.list1 Parse.typ --| \<^keyword>‹)›)
val comp = Parse.name -- (\<^keyword>‹::› |-- Parse.!!! Parse.typ);
fun plus1_unless test scan =
scan ::: Scan.repeat (\<^keyword>‹+› |-- Scan.unless test (Parse.!!! scan));
val mapsto = \<^keyword>‹=›;
val rename = Parse.name -- (mapsto |-- Parse.name);
val renames = Scan.optional (\<^keyword>‹[› |-- Parse.!!! (Parse.list1 rename --| \<^keyword>‹]›)) [];
val parent =
Parse_Spec.locale_prefix --
((type_insts -- Parse.name) || (Parse.name >> pair [])) -- renames
>> (fn ((prefix, (insts, name)), renames) => (prefix, (insts, name, renames)));
in
val statespace_decl =
Parse.type_args -- Parse.name --
(\<^keyword>‹=› |--
((Scan.repeat1 comp >> pair []) ||
(plus1_unless comp parent --
Scan.optional (\<^keyword>‹+› |-- Parse.!!! (Scan.repeat1 comp)) [])));
val _ =
Outer_Syntax.command \<^command_keyword>‹statespace› "define state-space as locale context"
(statespace_decl >> (fn ((args, name), (parents, comps)) =>
Toplevel.theory (define_statespace args name parents comps)));
end;
end;