The Sigmoid Function and the Universal Approximation Theorem

Dustin Bryant, Jim Woodcock, and Simon Foster

September 1, 2025

Abstract

We present a machine-checked Isabelle/HOL development of the sigmoid function

 $\sigma(x) = \frac{e^x}{1 + e^x},$

together with its most important analytic properties. After proving positivity, strict monotonicity, C^{∞} smoothness, and the limits at $\pm \infty$, we derive a closed-form expression for the n-th derivative using Stirling numbers of the second kind, following the combinatorial argument of Minai and Williams [4]. These results are packaged into a small reusable library of lemmas on σ .

Building on this analytic groundwork we mechanise a constructive version of the classical Universal Approximation Theorem: for every continuous function $f \colon [a,b] \to \mathbb{R}$ and every $\varepsilon > 0$ there is a single-hidden-layer neural network with sigmoidal activations whose output is within ε of f everywhere on [a,b]. Our proof follows the method of Costarell and Spigler [2], giving the first fully verified end-to-end proof of this theorem inside a higher-order proof assistant.

Contents

1	Lim	its and Higher Order Derivatives	2
	1.1	ε - δ Characterizations of Limits and Continuity	2
	1.2	Nth Order Derivatives and $C^k(U)$ Smoothness	7
2	Def	inition and Analytical Properties	8
	2.1	Range, Monotonicity, and Symmetry	9
	2.2	Differentiability and Derivative Identities	10
	2.3	Logit, Softmax, and the Tanh Connection	11
3	Der	ivative Identities and Smoothness	12

4	Asymptotic and Qualitative Properties	19
	4.1 Limits at Infinity of Sigmoid and its Derivative	19
	4.2 Curvature and Inflection	20
	4.3 Monotonicity and Bounds of the First Derivative	21
	4.4 Sigmoidal and Heaviside Step Functions	23
	4.5 Uniform Approximation by Sigmoids	23
5	Universal Approximation Theorem	24
1	Limits and Higher Order Derivatives	
i	eory Limits-Higher-Order-Derivatives mports HOL-Analysis.Analysis gin	
1.	1 $\varepsilon ext{}\delta$ Characterizations of Limits and Continuity	
	mma tendsto-at-top-epsilon-def:	
(,	$f \longrightarrow L$) $at\text{-}top = (\forall \ \varepsilon > 0. \ \exists \ N. \ \forall \ x \ge N. \ (f \ (x::real)::real) - L < \varepsilon)$ by $(simp \ add: \ Zfun\text{-}def \ tends to\text{-}Zfun\text{-}iff \ eventually\text{-}at\text{-}top\text{-}linorder})$	
ler	mma tendsto-at-bot-epsilon-def:	
(,	$f \longrightarrow L$) $at\text{-}bot = (\forall \ \varepsilon > 0. \ \exists \ N. \ \forall \ x \le N. \ (f \ (x::real)::real) - L < \varepsilon)$ $\mathbf{by} \ (simp \ add: \ Zfun\text{-}def \ tends to\text{-}Zfun\text{-}iff \ eventually\text{-}at\text{-}bot\text{-}linorder})$	
ler	mma tendsto-inf-at-top-epsilon-def:	
($g \longrightarrow \infty$) at-top = $(\forall \ \varepsilon > 0. \ \exists \ N. \ \forall \ x \ge N. \ (g \ (x::real)::real) > \varepsilon)$ by (subst tendsto-PInfty', subst Filter.eventually-at-top-linorder, simp)	
ler	mma tendsto-inf-at-bot-epsilon-def:	
(.	$g \longrightarrow \infty$) at-bot = $(\forall \ \varepsilon > 0. \ \exists \ N. \ \forall \ x \le N. \ (g \ (x::real)::real) > \varepsilon)$ by $(subst \ tends to - PInfty', \ subst \ Filter. eventually - at-bot-linorder, \ simp)$	
ler	mma tendsto-minus-inf-at-top-epsilon-def:	
($g \longrightarrow -\infty$) at-top = $(\forall \ \varepsilon < 0. \ \exists \ N. \ \forall x \ge N. \ (g \ (x::real)::real) < \varepsilon)$ $\mathbf{py}(subst \ tendsto-MInfty', \ subst \ Filter.eventually-at-top-linorder, \ simp)$	
ler	mma tendsto-minus-inf-at-bot-epsilon-def:	
	$g \longrightarrow -\infty$) $at\text{-}bot = (\forall \ \varepsilon < 0. \ \exists \ N. \ \forall \ x \le N. \ (g \ (x::real)::real) < \varepsilon)$ by $(subst \ tendsto\text{-}MInfty', \ subst \ Filter.eventually\text{-}at\text{-}bot\text{-}linorder, \ simp)$	
	mma tendsto-at-x-epsilon-def:	
	ixes $f :: real \Rightarrow real$ and $L :: real$ and $x :: real$ hows $(f \longrightarrow L)$ $(at \ x) = (\forall \ \varepsilon > 0 \ . \ \exists \ \delta > 0 \ . \ \forall \ y \ . \ (y \neq x \land y - x < \delta) - $	f
<i>y</i> -	-L <arepsilon< td=""><td>7 J</td></arepsilon<>	7 J
	unfolding tendsto-def	
\mathbf{pr}	oof (subst eventually-at, safe)	

```
— First Direction — We show that the filter definition implies the \varepsilon-\delta
formulation.
  \mathbf{fix} \ \varepsilon :: real
  assume lim-neigh: \forall S. open S \longrightarrow L \in S \longrightarrow (\exists d > 0. \ \forall xa \in UNIV. \ xa \neq x \land A)
dist \ xa \ x < d \longrightarrow f \ xa \in S
  assume \varepsilon-pos: \theta < \varepsilon
  show \exists \delta > 0. \forall y. y \neq x \land |y - x| < \delta \longrightarrow |f y - L| < \varepsilon
  proof -
     Choose S as the open ball around L with radius \varepsilon.
    have open (ball L \varepsilon)
      by simp
     Confirm that L lies in the ball.
    moreover have L \in ball L \varepsilon
      unfolding ball-def by (simp add: \varepsilon-pos)
     By applying lim_neigh to the ball, we obtain a suitable \delta.
    ultimately obtain \delta where d-pos: \delta > 0
      and \delta-prop: \forall y. y \neq x \land dist y x < \delta \longrightarrow f y \in ball L \varepsilon
      by (meson UNIV-I lim-neigh)
     Since f(y) \in \text{ball}(L, \varepsilon) means |f(y) - L| < \varepsilon, we deduce the \varepsilon \delta condition.
    hence \forall y.\ y \neq x \land |y - x| < \delta \longrightarrow |f y - L| < \varepsilon
      by (auto simp: ball-def dist-norm)
    thus ?thesis
      using d-pos by blast
next
     — Second Direction — We show that the \varepsilon-\delta formulation implies the
filter definition.
  \mathbf{fix} \ S :: real \ set
  assume eps-delta: \forall \varepsilon > 0. \exists \delta > 0. \forall y. (y \neq x \land |y - x| < \delta) \longrightarrow |f y - L| < \varepsilon
  and S-open: open S
  and L-in-S: L \in S
     Since S is open and contains L, there exists an \varepsilon-ball around L contained
in S.
  from S-open L-in-S obtain \varepsilon where \varepsilon-pos: \varepsilon > 0 and ball-sub: ball L \varepsilon \subseteq S
    by (meson\ openE)
     Applying the \varepsilon-\delta assumption for this particular \varepsilon yields a \delta > 0 such
that for all y, if y \neq x and |y - x| < \delta then |f(y) - L| < \varepsilon.
  from eps-delta obtain \delta where \delta-pos: \delta > 0
    and \delta-prop: \forall y. (y \neq x \land |y - x| < \delta) \longrightarrow |f y - L| < \varepsilon
    using \varepsilon-pos by blast
     Notice that |f(y) - L| < \varepsilon is equivalent to f(y) \in \text{ball } L \varepsilon.
```

```
have \forall y. (y \neq x \land dist \ y \ x < \delta) \longrightarrow f \ y \in ball \ L \ \varepsilon
    using \delta-prop dist-real-def by fastforce
     Since ball(L,\varepsilon)\subseteq S, for all y with y\neq x and dist yx<\delta, we have
f y \in S.
  hence \forall y. (y \neq x \land dist \ y \ x < \delta) \longrightarrow f \ y \in S
    using ball-sub by blast
     This gives exactly the existence of some d (namely \delta) satisfying the filter
condition.
  thus \exists d > 0. \forall y \in UNIV. (y \neq x \land dist\ y\ x < d) \longrightarrow f\ y \in S
    using \delta-pos by blast
\mathbf{qed}
lemma continuous-at-eps-delta:
  fixes g :: real \Rightarrow real and y :: real
 shows continuous (at y) g = (\forall \varepsilon > 0. \exists \delta > 0. \forall x. |x - y| < \delta \longrightarrow |g \ x - g \ y|
<\varepsilon)
proof -
 have continuous (at y) g = (\forall \varepsilon > 0. \exists \delta > 0. \forall x. (x \neq y \land |x - y| < \delta) \longrightarrow |g|
|x - g|y| < \varepsilon
    by (simp add: isCont-def tendsto-at-x-epsilon-def)
  also have ... = (\forall \varepsilon > 0. \ \exists \delta > 0. \ \forall x. \ |x-y| < \delta \longrightarrow |g \ x-g \ y| < \varepsilon)
    by (metis abs-eq-0 diff-self)
  finally show ?thesis.
qed
{\bf lemma}\ tends to \hbox{-} divide\hbox{-} approaches\hbox{-} const:
  fixes f g :: real \Rightarrow real
  assumes f-lim:((\lambda x. f(x::real)) \longrightarrow c) at-top
    and g-lim: ((\lambda x. \ g \ (x::real)) \longrightarrow \infty) \ at\text{-}top
shows ((\lambda x. \ f \ (x::real) \ / \ g \ x) \longrightarrow 0) \ at\text{-}top
proof(subst tendsto-at-top-epsilon-def, clarify)
  fix \varepsilon :: real
  assume \varepsilon-pos: 0 < \varepsilon
  obtain M where M-def: M = abs \ c + 1 and M-gt-0: M > 0
    by simp
  obtain N1 where N1-def: \forall x \ge N1. abs (f x - c) < 1
    using f-lim tendsto-at-top-epsilon-def zero-less-one by blast
  have f-bound: \forall x > N1. abs (f x) < M
    using M-def N1-def by fastforce
  have M-over-\varepsilon-qt-0: M / \varepsilon > 0
    by (simp add: M-gt-0 \varepsilon-pos)
  then obtain N2 where N2-def: \forall x \geq N2. g x > M / \varepsilon
```

```
using g-lim tendsto-inf-at-top-epsilon-def by blast
  obtain N where N = max \ N1 \ N2 and N\text{-}ge\text{-}N1: N \ge N1 and N\text{-}ge\text{-}N2: N \ge
N2
    by auto
  show \exists N :: real. \ \forall x \geq N. \ |f x / g x - \theta| < \varepsilon
  proof(intro\ exI\ [where\ x=N],\ clarify)
    \mathbf{fix}\ x :: \mathit{real}
    assume x-ge-N: N \le x
    have f-bound-x: |f x| < M
      using N-ge-N1 f-bound x-ge-N by auto
    have g-bound-x: g x > M / \varepsilon
      using N2-def N-ge-N2 x-ge-N by auto
    have |f x / g x| = |f x| / |g x|
      using abs-divide by blast
    also have ... < M / |g x|
      using M-over-\varepsilon-gt-0 divide-strict-right-mono f-bound-x g-bound-x by force
    also have \dots < \varepsilon
        by (metis M-over-\varepsilon-gt-0 \varepsilon-pos abs-real-def g-bound-x mult.commute or-
der-less-irreft order-less-trans pos-divide-less-eq)
    finally show |f x / g x - \theta| < \varepsilon
      by linarith
 qed
qed
\mathbf{lemma}\ tends to \text{-} divide \text{-} approaches \text{-} const\text{-} at\text{-} bot:
  fixes f g :: real \Rightarrow real
  assumes f-lim: ((\lambda x. f(x::real)) \longrightarrow c) at-bot
   and g-lim: ((\lambda x.\ g\ (x::real)) \longrightarrow \infty) at-bot shows ((\lambda x.\ f\ (x::real)\ /\ g\ x) \longrightarrow \theta) at-bot
proof(subst tendsto-at-bot-epsilon-def, clarify)
  fix \varepsilon :: real
 assume \varepsilon-pos: \theta < \varepsilon
  obtain M where M-def: M = abs \ c + 1 and M-gt-0: M > 0
    by simp
  obtain N1 where N1-def: \forall x \leq N1. abs (f x - c) < 1
    using f-lim tendsto-at-bot-epsilon-def zero-less-one by blast
  have f-bound: \forall x \leq N1. abs (f x) < M
    using M-def N1-def by fastforce
```

have M-over- ε -gt- θ : $M / \varepsilon > 0$ **by** $(simp\ add:\ M$ -gt- θ ε -pos)

```
then obtain N2 where N2-def: \forall x \leq N2. g x > M / \varepsilon
    using g-lim tendsto-inf-at-bot-epsilon-def by blast
  obtain N where N = min \ N1 \ N2 and N-le-N1: N \le N1 and N-le-N2: N \le N1
N2
    by auto
  show \exists N :: real. \ \forall x \leq N. \ |f x / g x - \theta| < \varepsilon
  proof(intro\ exI\ [where\ x=N],\ clarify)
    \mathbf{fix} \ x :: real
    assume x-le-N: x \le N
    have f-bound-x: |f x| < M
      using N-le-N1 f-bound x-le-N by auto
    have g-bound-x: g x > M / \varepsilon
      using N2-def N-le-N2 x-le-N by auto
    have |f x / g x| = |f x| / |g x|
      using abs-divide by blast
    also have \dots < M / |g x|
      using M-over-\varepsilon-gt-0 divide-strict-right-mono f-bound-x g-bound-x by force
    also have \dots < \varepsilon
         by (metis M-over-\varepsilon-gt-0 \varepsilon-pos abs-real-def g-bound-x mult.commute or-
der-less-irreft order-less-trans pos-divide-less-eq)
    finally show |f x / g x - \theta| < \varepsilon
      by linarith
 qed
qed
lemma equal-limits-diff-zero-at-top:
  \begin{array}{ll} \textbf{assumes} \ \textit{f-lim} \colon (f \longrightarrow (L1 :: real)) \ \textit{at-top} \\ \textbf{assumes} \ \textit{g-lim} \colon (g \longrightarrow (L2 :: real)) \ \textit{at-top} \end{array}
  shows ((f-g) \longrightarrow (L1-L2)) at-top
proof -
  have ((\lambda x. f x - g x) \longrightarrow L1 - L2) at-top
    by (rule tendsto-diff, rule f-lim, rule g-lim)
  then show ?thesis
    by (simp add: fun-diff-def)
\mathbf{qed}
lemma equal-limits-diff-zero-at-bot:
 assumes f-lim: (f \longrightarrow (L1::real)) at-bot assumes g-lim: (g \longrightarrow (L2::real)) at-bot shows ((f - g) \longrightarrow (L1 - L2)) at-bot
  have ((\lambda x. f x - g x) \longrightarrow L1 - L2) at-bot
    by (rule tendsto-diff, rule f-lim, rule g-lim)
```

```
by (simp add: fun-diff-def)
qed
       Nth Order Derivatives and C^k(U) Smoothness
1.2
fun Nth-derivative :: nat \Rightarrow (real \Rightarrow real) \Rightarrow (real \Rightarrow real) where
  Nth-derivative 0 f = f
  Nth-derivative (Suc\ n)\ f = deriv\ (Nth-derivative n\ f)
lemma first-derivative-alt-def:
  Nth-derivative 1 f = deriv f
 by simp
\mathbf{lemma}\ second\text{-}derivative\text{-}alt\text{-}def:
  Nth-derivative 2 f = deriv (deriv f)
 by (simp add: numeral-2-eq-2)
lemma limit-def-nth-deriv:
 fixes f :: real \Rightarrow real and a :: real and n :: nat
 assumes n-pos: n > 0
     and D-last: DERIV (Nth-derivative (n-1) f) a :> Nth-derivative n f a
   ((\lambda x. (Nth-derivative (n-1) f x - Nth-derivative (n-1) f a) / (x-a))
       \longrightarrow Nth-derivative n f a) (at a)
  using D-last has-field-derivativeD by blast
definition C-k-on :: nat \Rightarrow (real \Rightarrow real) \Rightarrow real set \Rightarrow bool where
  C-k-on k f U \equiv
    (if k = 0 then (open U \wedge continuous-on U f)
     else (open U \wedge (\forall n < k. (Nth-derivative n f)) differentiable-on U
                      \land continuous-on U (Nth-derivative (Suc n) f))))
lemma C0-on-def:
  C-k-on 0 f U \longleftrightarrow (open U \land continuous\text{-}on U f)
 by (simp add: C-k-on-def)
lemma C1-cont-diff:
 assumes C-k-on\ 1\ f\ U
 shows f differentiable-on U \wedge continuous-on U (deriv f) \wedge
        (\forall y \in U. (f has-real-derivative (deriv f) y) (at y))
 using C-k-on-def DERIV-deriv-iff-real-differentiable assms at-within-open differ-
entiable-on-def by fastforce
lemma C2-cont-diff:
 fixes f :: real \Rightarrow real and U :: real set
 assumes C-k-on 2 f U
 shows f differentiable-on U \wedge continuous-on U (deriv f) \wedge
        (\forall y \in U. (f has-real-derivative (deriv f) y) (at y)) \land
```

then show ?thesis

```
deriv\ f\ differentiable-on\ U\ \land\ continuous-on\ U\ (deriv\ (deriv\ f))\ \land
        (\forall y \in U. (deriv f has-real-derivative (deriv (deriv f)) y) (at y))
 by (smt (verit, best) C1-cont-diff C-k-on-def Nth-derivative.simps(1,2) One-nat-def
assms less-2-cases-iff less-numeral-extra(1) nat-1-add-1 order.asym pos-add-strict)
lemma C2-on-open-U-def2:
  fixes f :: real \Rightarrow real
 assumes open U : open U
     {\bf and} \ \textit{diff-} f: f \ \textit{differentiable-} on \ U
     and diff-df: deriv f differentiable-on U
     and cont-d2f: continuous-on U (deriv (deriv f))
 shows C-k-on 2 f U
  by (simp add: C-k-on-def cont-d2f diff-df diff-f differentiable-imp-continuous-on
less-2-cases-iff open U)
lemma C-k-on-subset:
 assumes C-k-on k f U
 assumes open-subset: open S \wedge S \subset U
 shows C-k-on k f S
 using assms
 by (smt (verit) C-k-on-def continuous-on-subset differentiable-on-eq-differentiable-at
dual-order.strict-implies-order subset-eq)
definition smooth-on :: (real \Rightarrow real) \Rightarrow real \ set \Rightarrow bool \ \mathbf{where}
  smooth-on f U \equiv \forall k. C-k-on k f U
end
theory Sigmoid-Definition
imports HOL-Analysis. Analysis HOL-Combinatorics. Stirling Limits-Higher-Order-Derivatives
begin
```

2 Definition and Analytical Properties

```
definition sigmoid :: real \Rightarrow real where sigmoid x = exp \ x \ / \ (1 + exp \ x)

lemma sigmoid \cdot alt \cdot def : sigmoid \ x = inverse \ (1 + exp(-x)) proof -
have sigmoid \ x = (exp(x) * exp(-x)) \ / \ ((1 + exp(x)) * exp(-x)) unfolding sigmoid \cdot def by simp also have \dots = 1 \ / \ (1 * exp(-x) + exp(x) * exp(-x)) by (simp \ add : distrib \cdot right \ exp \cdot minus \cdot inverse) also have \dots = inverse \ (exp(-x) + 1) by (simp \ add : divide \cdot inverse \cdot commute \ exp \cdot minus) finally show ?thesis by simp qed
```

2.1 Range, Monotonicity, and Symmetry

Bounds

lemma sigmoid-pos: sigmoid x > 0

by (smt (verit) divide-le-0-1-iff exp-gt-zero inverse-eq-divide sigmoid-alt-def)

Prove that $\sigma(x) < 1$ for all x.

lemma sigmoid-less-1: sigmoid x < 1

by (smt (verit) le-divide-eq-1-pos not-exp-le-zero sigmoid-def)

The sigmoid function $\sigma(x)$ satisfies

$$0 < \sigma(x) < 1$$
 for all $x \in \mathbb{R}$.

 $\textbf{corollary} \ \textit{sigmoid-range:} \ 0 < \textit{sigmoid} \ x \land \ \textit{sigmoid} \ x < 1$

by (simp add: sigmoid-less-1 sigmoid-pos)

Symmetry around the origin: The sigmoid function σ satisfies

$$\sigma(-x) = 1 - \sigma(x)$$
 for all $x \in \mathbb{R}$,

reflecting that negative inputs shift the output towards 0, while positive inputs shift it towards 1.

lemma sigmoid-symmetry: sigmoid (-x) = 1 - sigmoid x **by** $(smt \ (verit, \ ccfv\text{-}SIG) \ add\text{-}divide\text{-}distrib \ divide\text{-}self\text{-}if}$ $exp\text{-}ge\text{-}zero \ inverse\text{-}eq\text{-}divide \ sigmoid\text{-}alt\text{-}def \ sigmoid\text{-}def})$

corollary sigmoid(x) + sigmoid(-x) = 1**by** $(simp\ add:\ sigmoid-symmetry)$

The sigmoid function is strictly increasing.

lemma sigmoid-strictly-increasing: $x1 < x2 \implies sigmoid \ x1 < sigmoid \ x2$

 $\mathbf{by} \ (unfold \ sigmoid-alt-def,$

 $smt\ (verit)\ add-strict-left-mono\ divide-eq-0-iff\ exp-gt-zero\ exp-less-cancel-iff\ inverse-less-iff-less\ le-divide-eq-1-pos\ neg-0-le-iff-le\ neg-le-iff-le\ order-less-trans\ real-add-le-0-iff)$

 ${\bf lemma}\ sigmoid\hbox{-} at\hbox{-} zero\colon$

sigmoid $\theta = 1/2$

by (simp add: sigmoid-def)

lemma sigmoid-left-dom-range:

assumes $x < \theta$

shows sigmoid x < 1/2

by (metis assms sigmoid-at-zero sigmoid-strictly-increasing)

 $\mathbf{lemma}\ sigmoid\text{-}right\text{-}dom\text{-}range:$

assumes $x > \theta$

shows sigmoid x > 1/2

by (metis assms sigmoid-at-zero sigmoid-strictly-increasing)

2.2 Differentiability and Derivative Identities

Derivative: The derivative of the sigmoid function can be expressed in terms of itself:

$$\sigma'(x) = \sigma(x) (1 - \sigma(x)).$$

This identity is central to backpropagation for weight updates in neural networks, since it shows the derivative depends only on $\sigma(x)$, simplifying optimisation computations.

```
lemma uminus-derive-minus-one: (uminus has-derivative (*) (-1 :: real)) (at a within A)
```

by (rule has-derivative-eq-rhs, (rule derivative-intros)+, fastforce)

```
lemma sigmoid-differentiable:
  (\lambda x. \ sigmoid \ x) \ differentiable-on \ UNIV
proof -
 have \forall x. sigmoid differentiable (at x)
 proof
   \mathbf{fix} \ x :: real
   have num-diff: (\lambda x. exp x) differentiable (at x)
    by (simp add: field-differentiable-imp-differentiable field-differentiable-within-exp)
   have denom-diff: (\lambda x. \ 1 + exp \ x) differentiable (at \ x)
     by (simp add: num-diff)
   hence (\lambda x. \ exp \ x \ / \ (1 + exp \ x)) differentiable (at \ x)
    by (metis add-le-same-cancel2 num-diff differentiable-divide exp-qe-zero not-one-le-zero)
   thus sigmoid differentiable (at x)
     unfolding sigmoid-def by simp
  qed
  thus ?thesis
   by (simp add: differentiable-on-def)
qed
lemma sigmoid-differentiable':
sigmoid\ field-differentiable at x
 {f by}\ (meson\ UNIV	ext{-}I\ differentiable-on-def}\ field-differentiable-def}\ real-differentiable E
sigmoid-differentiable)
lemma sigmoid-derivative:
 shows deriv sigmoid x = sigmoid \ x * (1 - sigmoid \ x)
 unfolding sigmoid-def
proof -
  from field-differentiable-within-exp
 have deriv (\lambda x. \exp x / (1 + \exp x)) x = (deriv (\lambda x. \exp x) x * (\lambda x. 1 + \exp x))
x - (\lambda x. \ exp \ x) \ x * deriv \ (\lambda x. \ 1 + exp \ x) \ x) / ((\lambda x. \ 1 + exp \ x) \ x)^2
   \mathbf{by}(rule\ deriv-divide,
      simp add: Derivative.field-differentiable-add field-differentiable-within-exp,
      smt (verit, ccfv-threshold) exp-gt-zero)
 also have ... = ((exp\ x)*(1 + exp\ x) - (exp\ x)*(deriv\ (\lambda w.\ ((\lambda v.\ 1)w + (\lambda\ u.
```

```
(exp \ u)w)) \ x)) \ / \ (1 + exp \ x)^2
   by (simp add: DERIV-imp-deriv)
 also have ... = ((exp\ x) * (1 + exp\ x) - (exp\ x) * (deriv\ (\lambda v.\ 1)\ x\ + deriv\ (\lambda v.\ 1))
u. \ exp \ u) \ x)) \ / \ (1 \ + \ exp \ x)^2
   by (subst deriv-add, simp, simp add: field-differentiable-within-exp, auto)
 also have ... = ((exp \ x) * (1 + exp \ x) - (exp \ x) * (exp \ x)) / (1 + exp \ x)^2
   by (simp add: DERIV-imp-deriv)
 also have ... = (exp \ x + (exp \ x)^2 - (exp \ x)^2) / (1 + exp \ x)^2
   by (simp add: ring-class.ring-distribs(1))
 also have ... = (exp \ x \ / \ (1 + exp \ x))*(1 \ / \ (1 + exp \ x))
   by (simp add: power2-eq-square)
 also have ... = exp \ x \ / \ (1 + exp \ x) * (1 - exp \ x \ / \ (1 + exp \ x))
   by (metis add.inverse-inverse inverse-eq-divide sigmoid-alt-def sigmoid-def sig-
moid-symmetry)
 finally show deriv (\lambda x. \ exp \ x \ / \ (1 + exp \ x)) \ x = exp \ x \ / \ (1 + exp \ x) * (1 - exp \ x)
exp x / (1 + exp x).
qed
lemma sigmoid-derivative': (sigmoid\ has-real-derivative (sigmoid\ x*(1-sigmoid\ 
(x) (at x)
 by (metis field-differentiable-derivI sigmoid-derivative sigmoid-differentiable')
lemma deriv-one-minus-sigmoid:
  deriv (\lambda y. 1 - sigmoid y) x = sigmoid x * (sigmoid x - 1)
 apply (subst deriv-diff)
   apply simp
  {f apply}\ (metis\ UNIV\mbox{-}I\ differentiable\mbox{-}on\mbox{-}def\ real\mbox{-}differentiable\mbox{-}Sigmoid\mbox{-}differentiable\mbox{-}
```

2.3 Logit, Softmax, and the Tanh Connection

field-differentiable-def)

definition $logit :: real \Rightarrow real$ where

then show sigmoid (logit p) = p

assume 0

done

Logit (Inverse of Sigmoid): The inverse of the sigmoid function, often called the logit function, is defined by

apply (metis deriv-const diff-0 minus-diff-eq mult-minus-right sigmoid-derivative)

$$\sigma^{-1}(y) = \ln(\frac{y}{1-y}), \quad 0 < y < 1.$$

This transformation converts a probability $y \in (0,1)$ (the output of the sigmoid) back into the corresponding log-odds.

```
logit p = (if \ 0 
lemma <math>sigmoid\text{-}logit\text{-}comp:
0 
proof <math>-
```

```
by (smt (verit, del-insts) divide-pos-pos exp-ln-iff logit-def real-shrink-Galois
sigmoid-def)
qed
lemma logit-sigmoid-comp:
 logit (sigmoid p) = p
 by (smt (verit, best) sigmoid-less-1 sigmoid-logit-comp sigmoid-pos sigmoid-strictly-increasing)
definition softmax :: real^{\prime}k \Rightarrow real^{\prime}k where
softmax \ z = (\chi \ i. \ exp \ (z \ \$ \ i) \ / \ (\sum \ j \in UNIV. \ exp \ (z \ \$ \ j)))
lemma tanh-sigmoid-relationship:
  2 * sigmoid (2 * x) - 1 = tanh x
proof -
 have 2 * sigmoid (2 * x) - 1 = 2 * (1 / (1 + exp (-(2 * x)))) - 1
   by (simp add: inverse-eq-divide sigmoid-alt-def)
 also have ... = (2 / (1 + exp (- (2 * x)))) - 1
   by simp
  also have ... = (2 - (1 + exp(-(2 * x)))) / (1 + exp(-(2 * x)))
   by (smt (verit, ccfv-SIG) diff-divide-distrib div-self exp-gt-zero)
 also have ... = (exp \ x * (exp \ x - exp \ (-x))) / (exp \ x * (exp \ x + exp \ (-x)))
  by (smt (z3) exp-not-eq-zero mult-divide-mult-cancel-left-if tanh-altdef tanh-real-altdef)
  also have ... = (exp \ x - exp \ (-x)) / (exp \ x + exp \ (-x))
   using exp-gt-zero by simp
 also have \dots = tanh x
   by (simp add: tanh-altdef)
 finally show ?thesis.
qed
```

3 Derivative Identities and Smoothness

```
{\bf theory} \ Derivative-Identities-Smoothness \\ {\bf imports} \ Sigmoid-Definition \\ {\bf begin}
```

end

Second derivative: The second derivative of the sigmoid function σ can be written as

$$\sigma''(x) = \sigma(x) (1 - \sigma(x)) (1 - 2\sigma(x)).$$

This identity is useful when analysing the curvature of σ , particularly in optimisation problems.

```
lemma sigmoid-second-derivative:

shows Nth-derivative 2 sigmoid x = sigmoid x * (1 - sigmoid x) * (1 - 2 * sigmoid x)

proof -

have Nth-derivative 2 sigmoid x = deriv ((\lambda w. deriv sigmoid w)) x

by (simp\ add:\ second-derivative-alt-def)
```

```
also have ... = deriv ((\lambda w. (\lambda a. sigmoid a) w * (((\lambda u.1) - (\lambda v. sigmoid v)) w))
))) x
   by (simp add: sigmoid-derivative)
  also have ... = sigmoid\ x * (deriv\ ((\lambda u.1) - (\lambda v.\ sigmoid\ v))\ x) + deriv\ (\lambda a.
sigmoid\ a)\ x*((\lambda u.1)-(\lambda v.\ sigmoid\ v))\ x
   by (rule deriv-mult,
       simp add: sigmoid-differentiable',
       simp add: Derivative.field-differentiable-diff sigmoid-differentiable')
 also have ... = sigmoid\ x * (deriv\ (\lambda y.\ 1 - sigmoid\ y)\ x) + deriv\ (\lambda a.\ sigmoid\ x)
a) x * ((\lambda u.1) - (\lambda v. \ sigmoid \ v)) \ x
   by (meson minus-apply)
 also have ... = sigmoid\ x * (deriv\ (\lambda y.\ 1 - sigmoid\ y)\ x) + deriv\ (\lambda a.\ sigmoid\ y)
a) x * (\lambda y. 1 - sigmoid y) x
   by simp
  also have ... = sigmoid \ x * sigmoid \ x * (sigmoid \ x - 1) + sigmoid \ x * (1 - 1)
sigmoid x) * (1 - sigmoid x)
   by (simp add: deriv-one-minus-sigmoid sigmoid-derivative)
  also have ... = sigmoid\ x * (1 - sigmoid\ x) * (1 - 2 * sigmoid\ x)
   by (simp add: right-diff-distrib)
  finally show ?thesis.
qed
```

Here we present the proof of the general *n*th derivative of the sigmoid function as given in the paper On the Derivatives of the Sigmoid by Ali A. Minai and Ronald D. Williams [4]. Their original derivation is natural and intuitive, guiding the reader step by step to the closed-form expression if one did not know it in advance. By contrast, our Isabelle formalisation assumes the final formula up front and then proves it directly by induction. Crucially, we make essential use of Stirling numbers of the second kindas formalised in the session Basic combinatorics in Isabelle/HOL (and the Archive of Formal Proofs) by Amine Chaieb, Florian Haftmann, Lukas Bulwahn, and Manuel Eberl.

```
theorem nth-derivative-sigmoid:

\bigwedge x. Nth-derivative n sigmoid x = (\sum k = 1..n+1. (-1)^n(k+1) * fact (k-1) * Stirling (n+1) k * (sigmoid x)^nk)

proof (induct n)

case 0

show ?case

by simp

next

fix n x

assume induction-hypothesis:

\bigwedge x. Nth-derivative n sigmoid x = (\sum k = 1..n+1. (-1)^n(k+1) * fact (k-1) * Stirling (n+1) k * (sigmoid x)^nk)

show Nth-derivative (Suc n) sigmoid x = (\sum k = 1..(Suc n)+1. (-1)^n(k+1) * fact (k-1) * Stirling ((Suc n)+1)
```

```
have sigmoid-pwr-rule: \bigwedge k. deriv (\lambda v. (sigmoid\ v)^{\hat{}}k) \ x = k * (sigmoid\ x)^{\hat{}}k
-1) * deriv (\lambda u. sigmoid u) x
       by (subst deriv-pow, simp add: sigmoid-differentiable', simp)
    have index-shift: (\sum j = 1..n+1. ((-1))(j+1+1) * fact (j-1) * Stirling
(n+1) \ j * j * ((sigmoid \ x) \hat{\ } (j+1)))) = \\ (\sum j = 2..n+2. \ (-1) \hat{\ } (j+1) * fact \ (j-2) * Stirling \ (n+1) \\ (j-1) * (j-1) * (sigmoid \ x) \hat{\ } j)
     by (rule sum.reindex-bij-witness[of - \lambda j. j - 1 \lambda j. j + 1], simp-all, auto)
   have simplified-terms: (\sum k = 1..n+1. ((-1))(k+1) * fact (k-1) * Stirling
(n+1) k * k * (sigmoid x)^k) +
                                      ((-1)\hat{\ }(k+1)*fact\ (k-2)*Stirling\ (n+1)
(k-1) * (k-1) * (sigmoid x) k) =
                           \sum_{k=1}^{n} (-1)^{n} (k+1) * fact (k-1) * Stirling
(n+2) k * (sigmoid x) k)
   proof -
     have equal-terms: \forall (k::nat) \geq 1.
      ((-1)^{\hat{k}+1}) * fact (k-1) * Stirling (n+1) k * k * (sigmoid x)^{\hat{k}}) +
       ((-1)^{\hat{}}(k+1) * fact (k-2) * Stirling (n+1) (k-1) * (k-1) * (sigmoid)
(x)^k =
      ((-1)\hat{k}+1) * fact (k-1) * Stirling (n+2) k * (sigmoid x)\hat{k}
     proof(clarify)
       fix k::nat
       assume 1 \le k
       have real-of-int ((-1) \hat{k} + 1) * fact (k-1) * int (Stirling (n+1) k)
* int k) * sigmoid x ^k +
             real-of-int ((-1) \hat{k} + 1) * fact (k-2) * int (Stirling (n+1) (k-1))
(k-1) * int (k-1) * sigmoid x \hat{k} = 1
             real-of-int (((-1) \hat{k} + 1) * ((fact (k-1) * int (Stirling (n+1)
k) * int k) +
                                 (fact (k-2) * int (Stirling (n+1) (k-1)) * int)
(k-1))))) * sigmoid x ^k
         by (metis (mono-tags, opaque-lifting) ab-semigroup-mult-class.mult-ac(1)
distrib-left mult.commute of-int-add)
      also have ... = real-of-int (((-1) \hat{k} + 1) * ((fact (k-1) * int (Stirling)))))
(n + 1) k) * int k) +
                                         ((int (k-1) * fact (k-2)) * int (Stirling))
(n+1)(k-1))))))* sigmoid x ^k
            by (simp add: ring-class.ring-distribs(1))
      also have ... = real-of-int (((-1) \hat{k} + 1) * ((fact (k-1) * int (Stirling)))))
(n + 1) k) * int k) +
```

 $k * (sigmoid x)^k$ **proof** -

```
(fact (k-1) * int (Stirling (n+1) (k-1)))
1))))))) * sigmoid x ^ k
        by (smt (verit, ccfv-threshold) Stirling.simps(3) add.commute diff-diff-left
fact-num-eq-if mult-eq-0-iff of-nat-eq-0-iff one-add-one plus-1-eq-Suc)
      also have ... = real-of-int (((-1)^{(k+1)} * fact (k-1)*
                        (Stirling (n+1) k * k + Stirling <math>(n+1) (k-1))
)) * sigmoid x \hat{k}
        by (simp add: distrib-left)
       also have ... = real-of-int ((-1) \hat{k} + 1) * fact (k-1) * int (Stirling)
(n + 2) k)) * sigmoid x ^k
            by (smt\ (z3)\ Stirling.simps(4)\ Suc-eq-plus1\ (1 \le k)\ add.commute
le-add-diff-inverse\ mult.commute\ nat-1-add-1\ plus-nat.simps(2))
      finally show real-of-int ((-1) \hat{k} + 1) * fact (k-1) * int (Stirling (n))
+1) k * int k) * sigmoid x \hat{k} +
        real-of-int ((-1) \hat{k} + 1) * fact (k-2) * int (Stirling (n+1) (k-1))
1)) * int (k - 1)) * sigmoid x ^ k =
        real-of-int ((-1) \hat{k} + 1) * fact (k-1) * int (Stirling (n+2) k)) *
sigmoid x \cap k.
     qed
     from equal-terms show ?thesis
      by simp
   qed
   have Nth-derivative (Suc n) sigmoid x = deriv (\lambda w. Nth-derivative n sigmoid
w) x
     \mathbf{by} simp
  also have ... = deriv(\lambda w. \sum k = 1..n+1.(-1))(k+1) * fact(k-1) * Stirling
(n+1) k * (sigmoid w)^k x
     using induction-hypothesis by presburger
    also have ... = (\sum k = 1..n+1. \ deriv \ (\lambda w. \ (-1)^{k+1}) * fact \ (k-1) *
Stirling (n+1) k * (sigmoid w) \hat{k} x
   by (rule deriv-sum, metis(mono-tags) DERIV-chain2 DERIV-cmult-Id field-differentiable-def
field-differentiable-power sigmoid-differentiable')
   also have ... = (\sum k = 1..n+1. (-1)^{n}(k+1) * fact (k-1) * Stirling (n+1)
k * deriv (\lambda w. (sigmoid w)^k) x)
   by (subst deriv-cmult, auto, simp add: field-differentiable-power sigmoid-differentiable')
   also have ... = (\sum k = 1..n+1. (-1)^{(k+1)} * fact (k-1) * Stirling (n+1)
k * (k * (sigmoid x) \hat{\ } (k-1) * deriv (\lambda u. sigmoid u) x))
     using sigmoid-pwr-rule by presburger
   also have ... = (\sum k = 1..n+1. (-1)^{(k+1)} * fact (k-1) * Stirling (n+1)
k * (k * (sigmoid x) \widehat{(k-1)} * (sigmoid x * (1 - sigmoid x))))
     using sigmoid-derivative by presburger
   also have ... = (\sum k = 1..n+1. (-1)^{n}(k+1) * fact (k-1) * Stirling (n+1)
k * (k * ((sigmoid \ x) \widehat{)}(k-1) * (sigmoid \ x) \widehat{)}) * (1 - sigmoid \ x)))
     by (simp add: mult.assoc)
   also have ... = (\sum k = 1..n+1. (-1)^{(k+1)} * fact (k-1) * Stirling (n+1)
k * (k * (sigmoid x) \overbrace{(k-1+1)} * (1 - sigmoid x)))
```

```
by (metis (no-types, lifting) power-add)
      also have ... = (\sum k = 1..n+1. (-1)^{n}(k+1) * fact (k-1) * Stirling (n+1)
k * (k * (sigmoid x) \hat{k} * (1 - sigmoid x)))
        by fastforce
       also have ... = (\sum k = 1..n+1. ((-1)^{n}(k+1) * fact (k-1) * Stirling)
(n+1) k * (k * (sigmoid x)^k)) * (1 + -sigmoid x))
         by (simp\ add:\ ab\text{-}semigroup\text{-}mult\text{-}class.mult\text{-}ac(1))
       also have ... = (\sum k = 1..n+1.)
                                                                            (-1) (k+1) * fact (k-1) * Stirling
(n+1) k * (k * (sigmoid x)^k) *1 +
                                                          (-1)^{n}(k+1) * fact (k-1) * Stirling (n+1) k *
                                                    ((
(k * (sigmoid x)^k)) * (-sigmoid x)))
        by (meson vector-space-over-itself.scale-right-distrib)
      also have ... = (\sum k = 1..n+1). ((-1)^{(k+1)} * fact (k-1) * Stirling
(n+1) k * (k * (sigmoid x)^k) +
                                                          (-1)^{\hat{}}(k+1) * fact (k-1) * Stirling (n+1) k *
(k * (sigmoid x)^k) * (-sigmoid x))
         by simp
      also have ... = (\sum k = 1..n+1. (-1)^{n}(k+1) * fact (k-1) * Stirling (n+1)
k * (k * (sigmoid x)^k)) +
                               (\sum k = 1..n+1. ((-1)^{k+1}) * fact (k-1) * Stirling (n+1) k
*(k*(sigmoid\ x)^k))*(-sigmoid\ x))
         by (metis (no-types) sum.distrib)
      also have ... = (\sum k = 1..n+1. (-1)^{n}(k+1) * fact (k-1) * Stirling (n+1)
k * (k * (sigmoid x)^k) +
                                (\sum k = 1..n+1. ((-1)^{(k+1)} * fact (k-1) * Stirling (n+1) k)
* k * ((sigmoid x)^k * (-sigmoid x))))
         by (simp add: mult.commute mult.left-commute)
      also have ... = (\sum k = 1..n+1. (-1)^{n}(k+1) * fact (k-1) * Stirling (n+1)
k * (k * (sigmoid x)^k) +
                               (\sum j = 1..n+1. ((-1)^{(j+1+1)} * fact (j-1) * Stirling (n+1))
j * j * ((sigmoid \ x) \widehat{\ } (j+1))))
         by (simp add: mult.commute)
      also have ... = (\sum k = 1..n+1. (-1)^{n}(k+1) * fact (k-1) * Stirling (n+1)
k * (k * (sigmoid x)^k)) +
                                 (\sum j = 2..n + 2. (-1)^{n} (j+1) * fact (j-2) * Stirling (n+1) (j-2)
(-1)*(j-1)*(sigmoid x)^{j}
         using index-shift by presburger
      also have ... = (\sum k = 1..n+1. (-1)^{n}(k+1) * fact (k-1) * Stirling (n+1)
k * k * (sigmoid x)^k) +
                                 (\sum j = 2..n+2. (-1)^{(j+1)} * fact (j-2) * Stirling (n+1) (j-2)
(-1)*(j-1)*(sigmoid x)^{j}
             by (smt\ (verit,\ ccfv\text{-}SIG)\ ab\text{-}semigroup\text{-}mult\text{-}class.mult\text{-}ac(1)\ of\text{-}int\text{-}mult
of-int-of-nat-eq sum.cong)
      also have ... = (\sum k = 1..n+1. (-1)^{n}(k+1) * fact (k-1) * Stirling (n+1)
k * k * (sigmoid x)^k) +
                                                      ((-1)^{(1+1)} * fact (1-2) * Stirling (n+1) (1-
1) * (1 - 1) * (sigmoid x)^1) +
                               (\sum k = 2..n+2. (-1)^{n}(k+1) * fact (k-2) * Stirling (n+1) (k+1)^{n}(k+1) * fact (k-2) * Stirling (n+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k+1)^{n}(k
```

```
(-1)*(k-1)*(sigmoid x)^k
         by simp
      also have ... = (\sum k = 1..n+1. (-1)^{n}(k+1) * fact (k-1) * Stirling (n+1)
k * k * (sigmoid x)^k) +
                                     (\sum k = 1..n+2. (-1)^{(k+1)} * fact (k-2) * Stirling (n+1)
(k-1) * (k-1) * (sigmoid x) k
            by (smt (verit) Suc-eq-plus1 Suc-leI add-Suc-shift add-cancel-left-left can-
cel\text{-}comm\text{-}monoid\text{-}add\text{-}class. diff\text{-}cancel\ nat\text{-}1\text{-}add\text{-}1\ of\text{-}nat\text{-}0\ sum. at Least\text{-}Suc\text{-}at Most
zero-less-Suc)
     also have ... = (\sum k = 1..n+1. (-1)^{n}(k+1) * fact (k-1) * Stirling (n+1)
k * k * (sigmoid x) \hat{k}) +
                                     (\sum k = 1..n+1. (-1)^{n}(k+1) * fact (k-2) * Stirling (n+1)
(k-1)*(k-1)*(sigmoid x)^k) +
                      ((-1)^n(n+2)+1) * fact ((n+2)-2) * Stirling (n+1) ((n+2)-1) *
((n+2)-1)*(sigmoid x)^(n+2)
         by simp
      also have ... = (\sum k = 1..n+1. ((-1)^{n}(k+1) * fact (k-1) * Stirling (n+1))
k * k * (sigmoid x)^k) +
                                                         ((-1)^{\hat{}}(k+1) * fact (k-2) * Stirling (n+1) (k-1)
*(k-1)*(sigmoid x)^k) +
                            ((-1)^{n}((n+2)+1) * fact ((n+2)-2) * Stirling (n+1) ((n+2)-1)
*((n+2)-1)*(sigmoid\ x)^{n+2}
         by (metis (no-types) sum.distrib)
      also have ... = (\sum k = 1..n+1. ((-1)^{(k+1)} * fact (k-1) * Stirling (n+2))
k * (sigmoid x) \hat{k}) +
                                                               ((-1)^{n}((n+2)+1) * fact ((n+2) - 2) * Stirling
(n+1) ((n+2)-1) * ((n+2)-1) * (sigmoid x) (n+2)
         using simplified-terms by presburger
      also have ... = (\sum k = 1..n+1. ((-1)^{n}(k+1) * fact (k-1) * Stirling ((Suc
n) + 1) k * (sigmoid x) k) +
            (\sum k = Suc \ n + 1..Suc \ n + 1.((-1)^{(k+1)} * fact \ (k-1) * Stirling \ ((Suc \ n + 1)^{(k+1)} * fact \ (k-1) * Stirling \ ((Suc \ n + 1)^{(k+1)} * fact \ (k-1) * Stirling \ ((Suc \ n + 1)^{(k+1)} * fact \ (k-1) * Stirling \ ((Suc \ n + 1)^{(k+1)} * fact \ (k-1) * Stirling \ ((Suc \ n + 1)^{(k+1)} * fact \ (k-1) * Stirling \ ((Suc \ n + 1)^{(k+1)} * fact \ (k-1) * Stirling \ ((Suc \ n + 1)^{(k+1)} * fact \ (k-1) * Stirling \ ((Suc \ n + 1)^{(k+1)} * fact \ (k-1) * Stirling \ ((Suc \ n + 1)^{(k+1)} * fact \ (k-1) * Stirling \ ((Suc \ n + 1)^{(k+1)} * fact \ (k-1) * Stirling \ ((Suc \ n + 1)^{(k+1)} * fact \ (k-1)^{(k+1)} * fact \ (k
n) + 1) k * (sigmoid x) \widehat{\phantom{a}}(k))
         \mathbf{by}(subst\ atLeastAtMost\text{-}singleton,\ simp)
       also have ... = (\sum k = 1..(Suc\ n) + 1.\ (-1)^{(k+1)} * fact\ (k-1) * Stirling
((Suc\ n)+1)\ k*(sigmoid\ x)^k)
          by (subst sum.cong[where B=\{1..n+1\}, where h=\lambda k. ((-1) \hat{k}+1) *
fact (k-1) * Stirling ((Suc n) + 1) k * (sigmoid x) \hat{k}), simp-all)
      finally show ?thesis.
   qed
qed
corollary nth-derivative-sigmoid-differentiable:
   Nth-derivative n sigmoid differentiable (at x)
proof -
    have (\lambda x. \sum k = 1..n+1. (-1)^n (k+1) * fact (k-1) * Stirling (n+1) k *
(sigmoid \ x) \hat{k}
     differentiable (at x)
   proof -
      have differentiable-terms: \bigwedge k. 1 \le k \land k \le n+1 \Longrightarrow
```

```
(\lambda x. (-1)^{\hat{}}(k+1) * fact (k-1) * Stirling (n+1) k * (sigmoid x)^{\hat{}}k) differ
entiable (at x)
       proof(clarify)
           \mathbf{fix} \ k :: nat
           assume 1 \leq k
           assume k \le n+1
            show (\lambda x. (-1)^{\hat{}}(k+1) * fact (k-1) * Stirling (n+1) k * (sigmoid x)^{\hat{}}k)
differentiable (at x)
               by (simp add: field-differentiable-imp-differentiable sigmoid-differentiable')
       \mathbf{qed}
       then show ?thesis
           \mathbf{by}(subst\ differentiable\text{-}sum, simp+)
    qed
    then show ?thesis
         using nth-derivative-sigmoid by presburger
qed
corollary next-derivative-sigmoid: (Nth-derivative n sigmoid has-real-derivative
Nth-derivative (Suc n) sigmoid x) (at x)
  by (simp add: DERIV-deriv-iff-real-differentiable nth-derivative-sigmoid-differentiable)
corollary deriv-sigmoid-has-deriv: (deriv sigmoid has-real-derivative deriv (deriv
sigmoid) x) (at x)
proof -
    have \forall f. Nth-derivative (Suc \theta) f = deriv f
       using Nth-derivative.simps(1,2) by presburger
    then show ?thesis
     by (metis (no-types) DERIV-deriv-iff-real-differentiable nth-derivative-sigmoid-differentiable)
qed
corollary sigmoid-second-derivative':
   (deriv\ sigmoid\ has\text{-real-}derivative\ (sigmoid\ x*(1-sigmoid\ x)*(1-2*sigmoid\ x))
x))) (at x)
   using deriv-sigmoid-has-deriv second-derivative-alt-def sigmoid-second-derivative
by force
corollary smooth-sigmoid:
    smooth-on sigmoid UNIV
    unfolding smooth-on-def
  \textbf{by} \ (meson \ C-k-on-def \ differentiable-imp-continuous-on \ differentiable-on-def \ nth-derivative-sigmoid-differentiable-imp-continuous-on \ differentiable-imp-continuous-on \ differentiable-imp-continuous
open-UNIV sigmoid-differentiable)
lemma tendsto-exp-neg-at-infinity: ((\lambda(x :: real). exp(-x)) \longrightarrow 0) at-top
    by real-asymp
```

end

4 Asymptotic and Qualitative Properties

theory Asymptotic-Qualitative-Properties imports Derivative-Identities-Smoothness begin

4.1 Limits at Infinity of Sigmoid and its Derivative

— Asymptotic Behaviour — We have

$$\lim_{x\to +\infty}\sigma(x)=1,\quad \lim_{x\to -\infty}\sigma(x)=0.$$

lemma lim-sigmoid-infinity: $((\lambda x. \ sigmoid \ x) \longrightarrow 1)$ at-top unfolding sigmoid-def by real-asymp

lemma lim-sigmoid-minus-infinity: (sigmoid $\longrightarrow 0$) at-bot unfolding sigmoid-def by real-asymp

```
lemma sig-deriv-lim-at-top: (deriv \ sigmoid \longrightarrow 0) at-top
proof (subst tendsto-at-top-epsilon-def, clarify)
  \mathbf{fix} \ \varepsilon :: real
  assume \varepsilon-pos: \theta < \varepsilon
    Using the fact that \sigma(x) \to 1 as x \to +\infty.
  obtain N where N-def: \forall x \geq N. |sigmoid\ x - 1| < \varepsilon / 2
   using lim-sigmoid-infinity[unfolded tends
to-at-top-epsilon-def] \varepsilon-pos
   by (metis half-gt-zero)
  have deriv-bound: \forall x \geq N. |deriv \ sigmoid \ x| \leq |sigmoid \ x - 1|
  proof (clarify)
   \mathbf{fix} \ x
   assume x \geq N
   hence |deriv \ sigmoid \ x| = |sigmoid \ x - 1 + 1| * |1 - sigmoid \ x|
     by (simp add: abs-mult sigmoid-derivative)
   also have ... \leq |sigmoid \ x - 1|
     by (smt (verit) mult-cancel-right1 mult-right-mono sigmoid-range)
   finally show |deriv \ sigmoid \ x| \leq |sigmoid \ x - 1|.
```

have $\forall x \geq N$. $|deriv \ sigmoid \ x| < \varepsilon$ proof (clarify) fix x assume $x \geq N$ hence $|deriv \ sigmoid \ x| \leq |sigmoid \ x - 1|$ using $deriv \ bound$ by simp also have ... $< \varepsilon \ / \ 2$ using $\langle x \geq N \rangle \ N \ def$ by simp also have ... $< \varepsilon$

```
using \varepsilon-pos by simp
    finally show |deriv \ sigmoid \ x| < \varepsilon.
  qed
  then show \exists N :: real. \ \forall x \geq N. \ |deriv \ sigmoid \ x - (0 :: real)| < \varepsilon
    by (metis diff-zero)
\mathbf{qed}
lemma sig-deriv-lim-at-bot: (deriv sigmoid \longrightarrow 0) at-bot
proof (subst tendsto-at-bot-epsilon-def, clarify)
  \mathbf{fix}\ \varepsilon :: \mathit{real}
  assume \varepsilon-pos: \theta < \varepsilon
     Using the fact that \sigma(x) \to 0 as x \to -\infty.
  obtain N where N-def: \forall x \leq N. |sigmoid x - \theta| < \varepsilon / 2
    using lim-sigmoid-minus-infinity[unfolded tendsto-at-bot-epsilon-def] \varepsilon-pos
    by (meson half-gt-zero)
  have deriv-bound: \forall x \leq N. |deriv \ sigmoid \ x| \leq |sigmoid \ x - \theta|
  proof (clarify)
    \mathbf{fix} \ x
    assume x \leq N
    hence |deriv \ sigmoid \ x| = |sigmoid \ x - \theta + \theta| * |1 - sigmoid \ x|
      \mathbf{by}\ (simp\ add\colon abs\text{-}mult\ sigmoid\text{-}derivative)
    also have ... \leq |sigmoid \ x - \theta|
      by (smt (verit, del-insts) mult-cancel-left2 mult-left-mono sigmoid-range)
    finally show |deriv \ sigmoid \ x| \leq |sigmoid \ x - \theta|.
  qed
  have \forall x \leq N. |deriv \ sigmoid \ x| < \varepsilon
  proof (clarify)
    \mathbf{fix} \ x
    assume x \leq N
    hence |deriv \ sigmoid \ x| \le |sigmoid \ x - \theta|
      using deriv-bound by simp
    also have ... < \varepsilon / 2
      using \langle x \leq N \rangle N-def by simp
    also have ... < \varepsilon
      using \varepsilon-pos by simp
    finally show |deriv \ sigmoid \ x| < \varepsilon.
  qed
  then show \exists N :: real. \ \forall x \leq N. \ |deriv \ sigmoid \ x - (0 :: real)| < \varepsilon
    by (metis diff-zero)
qed
```

4.2 Curvature and Inflection

```
lemma second-derivative-sigmoid-positive-on: assumes x < \theta
```

```
shows Nth-derivative 2 sigmoid x > 0
proof -
 have 1 - 2 * sigmoid x > 0
   using assms sigmoid-left-dom-range by force
 then show Nth-derivative 2 sigmoid x > 0
   by (simp add: sigmoid-range sigmoid-second-derivative)
qed
\mathbf{lemma}\ second\text{-}derivative\text{-}sigmoid\text{-}negative\text{-}on:
 assumes x > 0
 shows Nth-derivative 2 sigmoid x < 0
proof -
 have 1 - 2 * sigmoid x < 0
   by (smt (verit) assms sigmoid-strictly-increasing sigmoid-symmetry)
 then show Nth-derivative 2 sigmoid x < 0
   by (simp add: mult-pos-neg sigmoid-range sigmoid-second-derivative)
qed
lemma sigmoid-inflection-point:
  Nth-derivative 2 sigmoid 0 = 0
 by (simp add: sigmoid-alt-def sigmoid-second-derivative)
       Monotonicity and Bounds of the First Derivative
{\bf lemma}\ sigmoid\text{-}positive\text{-}derivative\text{:}
deriv\ sigmoid\ x>0
 by (simp add: sigmoid-derivative sigmoid-range)
lemma sigmoid-deriv-\theta:
deriv sigmoid 0 = 1/4
proof -
 have f1: 1 / (1 + 1) = sigmoid 0
   by (simp add: sigmoid-def)
  then have f2: \forall r. \ sigmoid \ 0 * (r + r) = r
   by simp
  then have f3: \forall n. \ sigmoid \ 0 * numeral \ (num.Bit0 \ n) = numeral \ n
   by (metis (no-types) numeral-Bit0)
 have f_4: \forall r. \ sigmoid \ r * sigmoid \ (-r) = deriv \ sigmoid \ r
   using sigmoid-derivative sigmoid-symmetry by presburger
 have sigmoid\ \theta = \theta \longrightarrow deriv\ sigmoid\ \theta = 1 / 4
   using f1 by force
  then show ?thesis
    using f4 f3 f2 by (metis (no-types) add.inverse-neutral divide-divide-eq-right
nonzero-mult-div-cancel-left one-add-one zero-neq-numeral)
{\bf lemma}\ deriv\text{-}sigmoid\text{-}increase\text{-}on\text{-}negatives:
 assumes x2 < \theta
 assumes x1 < x2
```

```
by(rule DERIV-pos-imp-increasing, simp add: assms(2), metis assms(1) de-
riv-sigmoid-has-deriv
          dual-order.strict-trans linorder-not-le nle-le second-derivative-alt-def sec-
ond-derivative-sigmoid-positive-on)
lemma deriv-sigmoid-decreases-on-positives:
  assumes \theta < x1
 assumes x1 < x2
 shows deriv sigmoid x2 < deriv sigmoid x1
  by(rule DERIV-neg-imp-decreasing, simp add: assms(2), metis assms(1) de-
riv-siqmoid-has-deriv
          dual-order.strict-trans linorder-not-le nle-le second-derivative-alt-def sec-
ond-derivative-sigmoid-negative-on)
lemma sigmoid-derivative-upper-bound:
 assumes x \neq 0
 shows deriv sigmoid x < 1/4
\mathbf{proof}(cases\ x\leq\theta)
 assume x \le \theta
  then have neg-case: x < \theta
   using assms by linarith
  then have deriv \ sigmoid \ x < deriv \ sigmoid \ \theta
  proof(rule DERIV-pos-imp-increasing-open)
  show \bigwedge xa::real.\ x < xa \Longrightarrow xa < 0 \Longrightarrow \exists y::real.\ (deriv sigmoid has-real-derivative
y) (at xa) \wedge \theta < y
       by (metis (no-types) deriv-sigmoid-has-deriv second-derivative-alt-def sec-
ond-derivative-sigmoid-positive-on)
   show continuous-on \{x..0::real\} (deriv sigmoid)
    by (meson DERIV-atLeastAtMost-imp-continuous-on deriv-sigmoid-has-deriv)
  then show deriv sigmoid x < 1/4
   by (simp add: sigmoid-deriv-0)
 assume \neg x \leq \theta
 then have \theta < x
   bv linarith
  then have deriv \ sigmoid \ x < deriv \ sigmoid \ \theta
 \mathbf{proof}(rule\ DERIV-neg-imp-decreasing-open)
  show \bigwedge xa::real. \ 0 < xa \Longrightarrow xa < x \Longrightarrow \exists y::real. (deriv sigmoid has-real-derivative
y) (at xa) \wedge y < 0
       by (metis (no-types) deriv-sigmoid-has-deriv second-derivative-alt-def sec-
ond-derivative-sigmoid-negative-on)
   show continuous-on \{0..x::real\} (deriv sigmoid)
    by (meson DERIV-atLeastAtMost-imp-continuous-on deriv-sigmoid-has-deriv)
  then show deriv sigmoid x < 1/4
   by (simp add: sigmoid-deriv-0)
qed
```

shows deriv sigmoid x1 < deriv sigmoid x2

```
corollary sigmoid-derivative-range:
  0 < deriv \ sigmoid \ x \land deriv \ sigmoid \ x \le 1/4
 by (smt (verit, best) sigmoid-deriv-0 sigmoid-derivative-upper-bound sigmoid-positive-derivative)
4.4
        Sigmoidal and Heaviside Step Functions
definition sigmoidal :: (real \Rightarrow real) \Rightarrow bool where
  sigmoidal \ f \equiv (f \longrightarrow 1) \ at\text{-top} \land (f \longrightarrow 0) \ at\text{-bot}
lemma sigmoid-is-sigmoidal: sigmoidal sigmoid
  unfolding sigmoidal-def
  by (simp add: lim-sigmoid-infinity lim-sigmoid-minus-infinity)
definition heaviside :: real \Rightarrow real where
  heaviside x = (if \ x < 0 \ then \ 0 \ else \ 1)
lemma heaviside-right: x > 0 \implies heaviside x = 1
  by (simp add: heaviside-def)
lemma heaviside-left: x < 0 \implies heaviside x = 0
 by (simp add: heaviside-def)
lemma heaviside-mono: x < y \Longrightarrow heaviside \ x \le heaviside \ y
  by (simp add: heaviside-def)
lemma heaviside-limit-neg-infinity:
  (heaviside \longrightarrow 0) \ at\text{-bot}
  \mathbf{by}(rule\ tendsto-eventually,\ subst\ eventually-at-bot-dense,\ meson\ heaviside-def)
lemma heaviside-limit-pos-infinity:
  (heaviside \longrightarrow 1) at-top
 by (rule tendsto-eventually, subst eventually-at-top-dense, meson heaviside-def or-
der.asym)
lemma heaviside-is-sigmoidal: sigmoidal heaviside
 by (simp add: heaviside-limit-neg-infinity heaviside-limit-pos-infinity sigmoidal-def)
4.5
        Uniform Approximation by Sigmoids
lemma sigmoidal-uniform-approximation:
  assumes sigmoidal \sigma
 assumes (\varepsilon :: real) > \theta and (h :: real) > \theta
 shows \exists (\omega :: real) > 0. \forall w \ge \omega. \forall k < length (xs :: real list).
          (\forall x. \ x - xs!k \ge h \ \longrightarrow |\sigma \ (w * (x - xs!k)) - 1| < \varepsilon) \land
          (\forall x. \ x - xs!k \le -h \longrightarrow |\sigma(w * (x - xs!k))| < \varepsilon)
proof -
```

```
By the sigmoidal assumption, we extract the limits
 \lim_{x\to +\infty} \sigma(x) = 1 \quad \text{(limit at\_top)} \quad \text{and} \quad \lim_{x\to -\infty} \sigma(x) = 0 \quad \text{(limit at\_bot)}.
  have lim-at-top: (\sigma \longrightarrow 1) at-top
   using assms(1) unfolding sigmoidal-def by simp
  then obtain Ntop where Ntop-def: \forall x \geq Ntop. |\sigma| x - 1 | < \varepsilon
   using assms(2) tendsto-at-top-epsilon-def by blast
  have lim-at-bot: (\sigma \longrightarrow \theta) at-bot
   using assms(1) unfolding sigmoidal-def by simp
  then obtain Nbot where Nbot-def: \forall x < Nbot. |\sigma x| < \varepsilon
   using assms(2) tendsto-at-bot-epsilon-def by fastforce
    Define \omega to control the approximation.
  obtain \omega where \omega-def: \omega = max (max \ 1 \ (Ntop \ / \ h)) \ (-Nbot \ / \ h)
  then have \omega-pos: \theta < \omega using assms(2) by simp
    Show that \omega satisfies the required property.
  show ?thesis
  proof (intro exI[where x = \omega] all impI conjI insert \omega-pos)
   fix w :: real and k :: nat and x :: real
   assume w-qe-\omega: \omega < w
   assume k-bound: k < length xs
    Case 1: x - xs!k \ge h.
   have w * h > Ntop
     using \omega-def assms(3) pos-divide-le-eq w-ge-\omega by auto
   then show x - xs!k \ge h \Longrightarrow |\sigma(w * (x - xs!k)) - 1| < \varepsilon
     using Ntop-def
     by (smt\ (verit)\ \omega-pos mult-less-cancel-left w-ge-\omega)
    Case 2: x - xs!k \le -h.
   have -w * h \le Nbot
     using \omega-def assms(3) pos-divide-le-eq w-ge-\omega
     by (smt (verit, ccfv-SIG) mult-minus-left)
   then show x - xs!k \le -h \Longrightarrow |\sigma (w * (x - xs!k))| < \varepsilon
     using Nbot-def
     by (smt\ (verit,\ best)\ \omega-pos minus-mult-minus mult-less-cancel-left w-ge-\omega)
  qed
qed
```

5 Universal Approximation Theorem

theory Universal-Approximation

end

${\bf imports}\ A symptotic \hbox{-} Qualitative \hbox{-} Properties \\ {\bf begin}$

In this theory, we formalize the Universal Approximation Theorem (UAT) for continuous functions on a closed interval [a,b]. The theorem states that any continuous function $f:[a,b] \to \mathbb{R}$ can be uniformly approximated by a finite linear combination of shifted and scaled sigmoidal functions. The classical result was first proved by Cybenko [3] and later constructively by Costarelli and Spigler [2], the latter approach forms the basis of our formalization. Their paper is available online at https://link.springer.com/article/10.1007/s10231-013-0378-y.

```
lemma uniform-continuity-interval:
  fixes f :: real \Rightarrow real
  assumes a < b
 assumes continuous-on \{a..b\} f
  assumes \varepsilon > 0
shows \exists \delta > 0. (\forall x \ y. \ x \in \{a..b\} \land y \in \{a..b\} \land |x - y| < \delta \longrightarrow |f \ x - f \ y| < \varepsilon)
proof -
  have uniformly-continuous-on \{a..b\} f
    using assms(1,2) compact-uniformly-continuous by blast
  thus ?thesis
    unfolding uniformly-continuous-on-def
    by (metis\ assms(3)\ dist-real-def)
qed
definition bounded-function :: (real \Rightarrow real) \Rightarrow bool where
  bounded-function f \longleftrightarrow bdd-above (range (\lambda x. |f x|))
definition unif\text{-}part :: real \Rightarrow real \Rightarrow nat \Rightarrow real \ list \ \mathbf{where}
  unif-part a b N =
     map (\lambda k. \ a + (real \ k - 1)) * ((b - a) / real \ N)) [0..< N+2]
value unif-part (0::real) 1 4
theorem sigmoidal-approximation-theorem:
  assumes sigmoidal-function: sigmoidal \sigma
  assumes bounded-sigmoidal: bounded-function \sigma
  assumes a-lt-b: a < b
  assumes contin-f: continuous-on \{a..b\} f
  assumes eps-pos: \theta < \varepsilon
  defines xs N \equiv unif\text{-}part \ a \ b \ N
  shows \exists N :: nat. \ \exists (w :: real) > \theta . (N > \theta) \land
           (\forall x \in \{a..b\}.
               |(\sum k \in \{2..N+1\}. (f(xs \ N \ ! \ k) - f(xs \ N \ ! \ (k-1))) * \sigma(w * (x-xs))||
N ! k)))
                              + f(a) * \sigma(w * (x - xs N! \theta)) - fx | < \varepsilon
proof-
```

```
by blast
 have \eta-pos: \eta > 0
   unfolding \eta-def
 proof -
   have sup-abs-nonneg: Sup ((\lambda x. |f x|) ` \{a..b\}) \ge 0
   proof -
     have \forall x \in \{a..b\}. |f x| \geq 0
       by simp
     hence bdd-above ((\lambda x. |f x|) ` \{a..b\})
          by (metis a-lt-b bdd-above-Icc contin-f continuous-image-closed-interval
continuous-on-rabs order-less-le)
     thus ?thesis
       by (meson a-lt-b abs-qe-zero atLeastAtMost-iff cSUP-upper2 order-le-less)
   have sup-\sigma-nonneg: Sup ((\lambda x. |\sigma x|) \cdot UNIV) \geq 0
   proof -
     have \forall x \in \{a..b\}. |\sigma x| \geq 0
       by simp
     hence bdd-above ((\lambda x. |\sigma x|) \cdot UNIV)
       using bounded-function-def bounded-sigmoidal by presburger
     thus ?thesis
       by (meson abs-ge-zero cSUP-upper2 iso-tuple-UNIV-I)
   qed
   obtain denom where denom-def: denom = (Sup ((\lambda x. |f x|) ` \{a..b\})) + (2 *
(Sup\ ((\lambda x.\ |\sigma\ x|)\ `UNIV)))\ +\ \mathcal{2}
     by blast
   have denom-pos: denom > 0
   proof -
     have two-sup-\sigma-nonneg: 0 \le 2 * (Sup((\lambda x. |\sigma x|) `UNIV))
       by (rule mult-nonneg-nonneg, simp, simp add: sup-\sigma-nonneg)
     have 0 \leq (Sup((\lambda x. |f x|) ` \{a..b\})) + 2 * (Sup((\lambda x. |\sigma x|) ` UNIV))
       by (rule add-nonneg-nonneg, smt sup-abs-nonneg, smt two-sup-\sigma-nonneg)
     then have denom \geq 2 unfolding denom\text{-}def
       by linarith
     thus denom > 0 by linarith
   qed
    then show 0 < \varepsilon / ((SUP \ x \in \{a..b\}. \ |f \ x|) + 2 * (SUP \ x \in UNIV \ . \ |\sigma \ x|)
     using eps-pos sup-\sigma-nonneg sup-abs-nonneg by auto
 qed
 have \exists \delta > 0. \forall x y. x \in \{a..b\} \land y \in \{a..b\} \land |x - y| < \delta \longrightarrow |f x - f y| < \eta
   by(rule uniform-continuity-interval,(simp add: assms(3,4))+, simp add: \eta-pos)
```

obtain η where η -def: $\eta = \varepsilon / ((Sup ((\lambda x. |f x|) ` \{a..b\})) + (2 * (Sup ((\lambda x. |f x|) ` \{a..b\}))) + (2 * (Sup ((\lambda x. |f x|) ` \{a..b\}))))$

 $|\sigma x|$) ' UNIV))) + 2)

```
then obtain \delta where \delta-pos: \delta > 0
   and \delta-prop: \forall x \in \{a..b\}. \forall y \in \{a..b\}. |x - y| < \delta \longrightarrow |f x - f y| < \eta
   by blast
  obtain N where N-def: N = (nat (|max 3 (max (2 * (b - a) / \delta) (1 / \eta))|))
+ 1)
   by simp
  have N-defining-properties: N > 2*(b-a) / \delta \wedge N > 3 \wedge N > 1 / \eta
   unfolding N-def
  proof -
   have max\ \mathcal{3}\ (max\ (2*(b-a)\ /\ \delta)\ (1\ /\ \eta)) \geq \mathcal{2}*(b-a)\ /\ \delta \ \land
         \max 3 (\max (2 * (b - a) / \delta) (1 / \eta)) \ge 2
         \max 3 \ (\max (2 * (b - a) / \delta) \ (1 / \eta)) \ge 1 / \eta
      unfolding max-def by simp
    then show 2*(b-a)/\delta < nat | max 3 (max (2*(b-a)/\delta) (1/\eta)) |
+1 \wedge
                                  3 < nat \mid max \ 3 \ (max \ (2 * (b - a) / \delta) \ (1 / \eta)) \mid +
1 \wedge
                         1 / \eta < nat | max 3 (max (2 * (b - a) / \delta) (1 / \eta)) | + 1
     by (smt (verit, best) floor-le-one numeral-Bit1 numeral-less-real-of-nat-iff nu-
meral\ -plus\ -numeral\ of\ -nat\ -1\ of\ -nat\ -add\ of\ -nat\ -nat\ one\ -plus\ -numeral\ real\ -of\ -int\ -floor\ -add\ -one\ -gt)
  qed
  then have N-gt-\beta: N > \beta
   by simp
  then have N-pos: N > \theta
   by simp
  obtain h where h-def: h = (b-a)/N
   by simp
  then have h-pos: h > 0
   using N-defining-properties a-lt-b by force
  have h-lt-\delta-half: h < \delta / 2
  proof -
   have N > 2 * (b - a) / \delta
     using N-defining-properties by force
   then have N/2 > (b-a)/\delta
     by (simp add: mult.commute)
   then have (N/2) * \delta > (b-a)
    by (smt (verit, ccfv-SIG) \delta-pos divide-less-cancel nonzero-mult-div-cancel-right)
   then have (\delta/2) * N > (b-a)
     by (simp add: mult.commute)
   then have (\delta/2) > (b-a)/N
    by (smt\ (verit,\ ccfv\text{-}SIG)\ \delta\text{-}pos\ a\text{-}lt\text{-}b\ divide\text{-}less\text{-}cancel\ nonzero\text{-}mult\text{-}div\text{-}cancel\text{-}right})
zero-less-divide-iff)
```

```
then show h < \delta / 2
     using h-def by blast
  qed
 have one-over-N-lt-eta: 1 / N < \eta
 proof -
 have f1: real \ N \ge max \ (2*(b-a) / \delta - 1) \ (1 / \eta)
   unfolding N-def by linarith
 have real N \ge 1 / \eta
   unfolding max-def using f1 max.bounded-iff by blast
 hence f2: 1 / real N \leq \eta
  using \eta-pos by (smt (verit, ccfv-SIG) divide-divide-eq-right le-divide-eq-1 mult.commute
zero-less-divide-1-iff)
 then show 1 / real N < \eta
   using N-defining-properties nle-le by fastforce
 qed
 have xs-eqs: xs N = map (\lambda k. \ a + (real \ k - 1) * ((b - a) / N)) [0..< N+2]
   using unif-part-def xs-def by presburger
 then have xs-els: \bigwedge k. k \in \{0..N+1\} \longrightarrow xs \ N \ ! \ k = a + (real \ k-1) * h
  by (metis (no-types, lifting) Suc-1 add-0 add-Suc-right at Least At Most-iff diff-zero
h-def linorder-not-le not-less-eq-eq nth-map-upt)
 have zeroth-element: xs N ! \theta = a - h
   by (simp add: xs-els)
 have first-element: xs \ N \ !1 = a
   by (simp add: xs-els)
 have last-element: xs \ N \ !(N+1) = b
 proof -
   have xs \ N \ !(N+1) = a + N * h
     using xs-els by force
   then show ?thesis
     by (simp add: N-pos h-def)
 \mathbf{qed}
 have difference-of-terms: \bigwedge j \ k \ . \ j \in \{1..N+1\} \ \land \ k \in \{1..N+1\} \ \land \ j \leq k \longrightarrow xs
N ! k - xs N ! j = h*(real k-j)
 proof(clarify)
   fix j k
   assume j-type: j \in \{1..N + 1\}
   assume k-type: k \in \{1..N + 1\}
   assume j-leq-k: j \leq k
```

```
using j-type xs-els by auto
    have k-th-el: xs \ N \ ! \ k = (a + (real \ k-1) * h)
      using k-type xs-els by auto
    then show xs N ! k - xs N ! j = h * (real k - j)
      by (smt (verit, del-insts) j-th-el left-diff-distrib' mult.commute)
  qed
  then have difference-of-adj-terms: \bigwedge k. k \in \{1..N+1\} \longrightarrow xs \ N \ ! \ k - xs \ N \ !
(k-1) = h
  proof -
    \mathbf{fix}\ k ::\ nat
    have k = 1 \longrightarrow k \in \{1..N + 1\} \longrightarrow xs \ N \ ! \ k - xs \ N \ ! \ (k - 1) = h
      using first-element zeroth-element by auto
    then show k \in \{1..N + 1\} \longrightarrow xs \ N \ ! \ k - xs \ N \ ! \ (k - 1) = h
      using difference-of-terms le-diff-conv by fastforce
  have adj-terms-lt: \bigwedge k. k \in \{1..N+1\} \longrightarrow |xs\ N!\ k - xs\ N!\ (k-1)| < \delta
  proof(clarify)
    \mathbf{fix} \ k
    assume k-type: k \in \{1..N + 1\}
    then have |xs \ N ! k - xs \ N ! (k - 1)| = h
      using difference-of-adj-terms h-pos by auto
    also have ... < \delta / 2
      using h-lt-\delta-half by auto
    also have \dots < \delta
      by (simp add: \delta-pos)
    finally show |xs N! k - xs N! (k-1)| < \delta.
  qed
   from difference-of-terms have list-increasing: \forall j \mid k : j \in \{1..N+1\} \land k \in \{1..N+1\}
\{1..N+1\} \land j \leq k \longrightarrow xs \ N \ ! \ j \leq xs \ N \ !k
    by (smt (verit, ccfv-SIG) h-pos of-nat-eq-iff of-nat-mono zero-less-mult-iff)
  have els-in-ab: \bigwedge k. k \in \{1..N+1\} \longrightarrow xs \ N \ ! \ k \in \{a..b\}
    using first-element last-element list-increasing by force
  from sigmoidal-function N-pos h-pos have \exists \omega > 0. \ \forall w \geq \omega. \ \forall k < length (xs
N).
             (\forall x. \ x - xs \ N \ !k \ge h \longrightarrow |\sigma \ (w * (x - xs \ N \ !k)) - 1| < 1/N) \land
             (\forall\,x.\,\,x-\,xs\,\,N!k\leq -h\,\,\longrightarrow |\sigma\,\,(w*(x-\,xs\,\,N!k))|<1/N)
    \mathbf{by}(subst\ sigmoidal\text{-}uniform\text{-}approximation,\ simp\text{-}all)
  then obtain \omega where \omega-pos: \omega > 0
    and \omega-prop: \forall w \geq \omega. \forall k < length (xs N).
                   (\forall x. \ x - xs \ N \ !k \ge h \longrightarrow |\sigma \ (w * (x - xs \ N \ !k)) - 1| < 1/N) \ \land
                   (\forall x. \ x - xs \ N \ !k \le -h \longrightarrow |\sigma \ (w * (x - xs \ N!k))| < 1/N)
```

have *j-th-el*: $xs \ N \ ! \ j = (a + (real \ j-1) * h)$

```
by blast
         then obtain w where w-def: w \ge \omega and w-prop: \forall k < length (xs N).
                                                                         (\forall x. \ x - xs \ N \ !k \ge h \longrightarrow |\sigma \ (w * (x - xs \ N \ !k)) - 1| < 1/N) \land
                                                                          (\forall x. \ x - xs \ N \ !k \le -h \longrightarrow |\sigma \ (w * (x - xs \ N!k))| < 1/N)
                                                                      and w-pos: w > 0
               by auto
       obtain G-Nf where G-Nf-def:
                 G-Nf \equiv (\lambda x).
                            (\sum k \in \{2..N+1\}. (f(xs N! k) - f(xs N! (k-1))) * \sigma(w * (x - xs N! k))) * \sigma(w * (x - xs N! k)) + f(xs N! k) 
k)))
                            + f (xs N ! 1) * \sigma (w * (x - xs N ! 0)))
               by blast
      show \exists N \ w. \ 0 < w \land 0 < N \land (\forall x \in \{a..b\}. | (\sum k = 2..N + 1. (f (xs \ N ! k) - 1)) | (xs \ N ! k) | (x
f(xs \ N \ ! \ (k-1))) * \sigma(w * (x - xs \ N \ ! \ k))) + fa * \sigma(w * (x - xs \ N \ ! \ \theta)) - f
          {f proof} (intro exI[where x=N] exI[where x=w] conjI allI impI insert w-pos
N-pos xs-def, safe)
              \mathbf{fix} x::real
               assume x-in-ab: x \in \{a..b\}
               have \exists i. i \in \{1..N\} \land x \in \{xs \ N \ ! \ i \ .. \ xs \ N \ ! \ (i+1)\}
               proof -
                      have intervals-cover: \{xs \ N \ ! \ 1 \dots xs \ N \ ! \ (N+1)\} \subseteq (\bigcup i \in \{1 \dots N\}. \ \{xs \ N! \ i \dots i \in \{n\}\}. \ \{n\} \in \{n\}\}.
xs \ N! \ (i+1)\})
                       proof
                               \mathbf{fix} \ x :: real
                               assume x-def: x \in \{xs \ N! \ 1 ... \ xs \ N \ ! \ (N+1)\}
                              then have lower-bound: x \ge xs \ N \ ! \ 1
                               from x-def have upper-bound: x \le xs \ N! \ (N+1)
                                       by simp
                              obtain j where j-def: j = (GREATEST j. xs N ! j \le x \land j \in \{1..N+1\})
```

```
by blast
       have nonempty-definition: \{j \in \{1..N+1\}. xs \ N \mid j \leq x\} \neq \{\}
         using lower-bound by force
       then have j-exists: \exists j \in \{1..N+1\}. xs \ N \ ! \ j \le x
         \mathbf{bv} blast
       then have j-bounds: j \in \{1..N+1\}
         by (smt (verit) GreatestI-nat atLeastAtMost-iff j-def)
       have xs-j-leq-x: xs N ! j \le x
      by (metis (mono-tags, lifting) GreatestI-ex-nat atLeastAtMost-iff empty-Collect-eq
j-def
             nonempty-definition)
       show x \in (\bigcup i \in \{1..N\}. \{xs \ N \ ! \ i..xs \ N \ ! \ (i+1)\})
       proof(cases j = N+1)
         show j = N + 1 \implies x \in (\bigcup i \in \{1..N\}. \{xs \ N \ ! \ i..xs \ N \ ! \ (i + 1)\})
           using N-pos els-in-ab last-element upper-bound xs-j-leg-x by force
         assume j-not-SucN:j \neq N + 1
         then have j-type: j \in \{1..N\}
           by (metis Suc-eq-plus1 atLeastAtMost-iff j-bounds le-Suc-eq)
         then have Suc\text{-}j\text{-}type: j + 1 \in \{2..N+1\}
           by (metis Suc-1 Suc-eq-plus1 atLeastAtMost-iff diff-Suc-Suc diff-is-0-eq)
         have equal-sets: \{j \in \{1..N+1\}. \ xs \ N \ ! \ j \leq x\} = \{j \in \{1..N\}. \ xs \ N \ ! \ j
\leq x
         proof
           show \{j \in \{1..N\}. \ xs \ N \mid j \le x\} \subseteq \{j \in \{1..N+1\}. \ xs \ N \mid j \le x\}
           show \{j \in \{1..N + 1\}. \ xs \ N \mid j \le x\} \subseteq \{j \in \{1..N\}. \ xs \ N \mid j \le x\}
         by (safe, metis (no-types, lifting) Greatest-equality Suc-eq-plus1 j-not-SucN
atLeastAtMost-iff j-def le-Suc-eq)
         qed
         have xs-j1-not-le-x: \neg (xs N ! (j+1) \le x)
         proof(rule ccontr)
           assume BWOC: \neg \neg xs \ N \ ! \ (j+1) \le x
           then have Suc\text{-}i\text{-}type'\text{:}j+1 \in \{1..N\}
             using Suc-j-type equal-sets add.commute by auto
           from j-def show False
               using equal-sets
                     by (smt (verit, del-insts) BWOC Greatest-le-nat One-nat-def
Suc-eq-plus1 Suc-j-type' Suc-n-not-le-n atLeastAtMost-iff mem-Collect-eq)
         then have x \in \{xs \ N \ ! \ j ... \ xs \ N \ ! \ (j+1)\}
           by (simp\ add:\ xs-j-leq-x)
         then show ?thesis
           using j-type by blast
       ged
     qed
     then show ?thesis
```

```
using first-element last-element x-in-ab by fastforce
\mathbf{qed}
then obtain i where i-def: i \in \{1..N\} \land x \in \{xs \ N \ ! \ i ... \ xs \ N \ ! \ (i+1)\}
 by blast
then have i-ge-1: i \geq 1
  using atLeastAtMost-iff by blast
have i-leq-N: i \leq N
  using i-def by presburger
then have xs-i: xs N ! i = a + (real i - 1) * h
  using xs-els by force
have xs-Suc-i: xs N ! (i + 1) = a + real i * h
proof -
 have (i+1) \in \{0..N+1\} \longrightarrow xs \ N \ ! \ (i+1) = a + (real \ (i+1) - 1) * h
   using xs-els by blast
  then show ?thesis
   using i-leq-N by fastforce
qed
from i-def have x-lower-bound-aux: x \geq (xs \ N \ ! \ i)
  using atLeastAtMost-iff by blast
then have x-lower-bound: x \ge a + real(i-1) * h
 by (metis xs-i i-ge-1 of-nat-1 of-nat-diff)
from i-def have x-upper-bound-aux: xs N! (i+1) \ge x
  using atLeastAtMost-iff by blast
then have x-upper-bound: a + real \ i * h \ge x
  using xs-Suc-i by fastforce
obtain L where L-def:
\bigwedge i. L i = (if i = 1 \lor i = 2 then
           (\lambda x. f(a) + (f(xs N!3) - f(xs N!2)) * \sigma(w * (x - xs N!3)) +
                        (f(xs N! 2) - f(xs N! 1)) * \sigma(w * (x - xs N! 2)))
            (\lambda x. (\sum k \in \{2..i-1\}. (f (xs N!k) - f (xs N!(k-1)))) + f(a) +
                 (\overline{f}(xs \ N \ ! \ i) - f(xs \ N \ ! \ (i-1))) * \sigma (w * (x - xs \ N \ ! \ i)) +
                (f(xs \ N \ ! \ (i+1)) - f(xs \ N \ ! \ i)) * \sigma(w * (x - xs \ N \ ! \ (i+1)))))
 by force
obtain I-1 where I-1-def: \bigwedge i.1 \leq i \wedge i \leq N \longrightarrow I-1 \ i = (\lambda x. | G-Nf \ x - L \ i)
  by force
obtain I-2 where I-2-def: \bigwedge i. 1 \le i \land i \le N \longrightarrow I-2 i = (\lambda x. |L | i | x - f | x|)
 by force
```

x|)

```
have triange-inequality-main: \bigwedge i \ x. \ 1 \le i \land i \le N \longrightarrow |G\text{-Nf} \ x - f \ x| \le I\text{-}1 \ i \ x + I\text{-}2 \ i \ x using I-1-def I-2-def by force
```

```
have x-minus-xk-ge-h-on-Left-Half:
     \forall k. \ k \in \{0..i-1\} \longrightarrow x - xs \ N \mid k \ge h
   proof (clarify)
     \mathbf{fix} \ k
     assume k-def: k \in \{0..i-1\}
     then have k-pred-lt-i-pred: real k-1 < real i-1
       using i-ge-1 by fastforce
     have x - xs \ N!k = x - (a + (real \ k - 1) * h)
     \mathbf{proof}(cases\ k=0)
       show k = 0 \Longrightarrow x - xs \ N \ ! \ k = x - (a + (real \ k - 1) * h)
         by (simp add: zeroth-element)
     \mathbf{next}
       assume k-nonzero: k \neq 0
       then have k-def2: k \in \{1..N+1\}
         using i-def k-def less-diff-conv2 by auto
       then have x - xs \ N \ ! \ k = x - (a + (real \ k - 1) * h)
         by (simp add: xs-els)
       then show ?thesis
         using k-nonzero by force
     qed
     also have \dots \geq h
     \mathbf{proof}(cases\ k=0)
       show k = 0 \Longrightarrow h \le x - (a + (real \ k - 1) * h)
         using x-in-ab by force
     next
       assume k-nonzero: k \neq 0
      then have k-type: k \in \{1..N\}
         using i-leq-N k-def by fastforce
       have difference-of-terms: (xs\ N!i) - (a+(real\ k-1)*h) = ((real\ i-1)-i)
(real \ k-1))*h
         by (simp add: xs-i left-diff-distrib')
      then have first-inequality: x - (a + (real \ k - 1) * h) \ge (xs \ N!i) - (a + (real \ k - 1) * h)
(k - 1)*h
         using i-def by auto
       have second-inequality: (xs\ N!i) - (a+(real\ k-1)*h) \ge h
         using difference-of-terms h-pos k-def k-nonzero by force
       then show ?thesis
         using first-inequality by auto
     qed
```

```
have x-minus-xk-le-neg-h-on-Right-Half:
     \forall k. \ k \in \{i+2..N+1\} \longrightarrow x - xs \ N \ ! \ k \le -h
   proof (clarify)
     \mathbf{fix} \ k
     assume k-def: k \in \{i+2..N+1\}
     then have i-lt-k-pred: i < k-1
     by (metis Suc-1 add-Suc-right atLeastAtMost-iff less-diff-conv less-eq-Suc-le)
     then have k-nonzero: k \neq 0
      by linarith
     from i-lt-k-pred have i-minus-k-pred-leq-Minus-One: i - real(k-1) \le -1
      by simp
     have x - xs \ N!k = x - (a + (real \ k - 1) * h)
     proof-
      have k-def2: k \in \{1..N+1\}
        using i-def k-def less-diff-conv2 by auto
      then have x - xs \ N \ ! \ k = x - (a + (real \ k - 1) * h)
        using xs-els by force
      then show ?thesis
        using i-lt-k-pred by force
     \mathbf{qed}
     also have \dots \leq -h
     proof -
      have x-upper-limit: (xs\ N!(i+1)) = (a+(real\ i)*h)
        using i-def xs-els by fastforce
      then have difference-of-terms: (xs\ N!(i+1)) - (a+(real\ k-1)*h) = ((real\ k-1)*h)
i) - (real k-1) *h
            by (smt (verit, ccfv-threshold) diff-is-0-eq i-lt-k-pred left-diff-distrib'
nat-less-real-le nle-le of-nat-1 of-nat-diff of-nat-le-0-iff)
       then have first-inequality: x - (a + (real \ k - 1) * h) \le (xs \ N!(i+1)) - i
(a+(real\ k-1)*h)
        using i-def by fastforce
      have second-inequality: (xs\ N!(i+1)) - (a+(real\ k-1)*h) \le -h
      by (metis diff-is-0-eq' difference-of-terms h-pos i-lt-k-pred i-minus-k-pred-leq-Minus-One
linorder-not-le\ mult.left-commute\ mult.right-neutral\ mult-minus 1-right\ nle-le\ not-less-zero
of-nat-1 of-nat-diff ordered-comm-semiring-class.comm-mult-left-mono)
      then show ?thesis
         by (smt (z3) combine-common-factor difference-of-terms first-inequality
x-upper-limit)
     finally show x - xs N ! k \le -h.
   qed
   have I1-final-bound: I-1 i x < (1 + (Sup((\lambda x. |f x|) ` \{a..b\}))) * \eta
```

finally show $h \leq x - xs \ N \mid k$.

proof -

```
have I1-decomp:
                      I-1 i \ x \le (\sum k \in \{2..i-1\}. |f(xs \ N! \ k) - f(xs \ N! \ (k-1))| * |\sigma(w*(x-1))| |f(xs \ N! \ k)| |f(xs \
xs \ N \ ! \ k)) - 1|)
                                                                       + |f(a)| * |\sigma(w * (x - xs N! \theta)) - 1|
                                                                     +(\sum_{i=1}^{n}k\in\{i+2..N+1\}. |f(xs N!k)-f(xs N!(k-1))| * |\sigma(w*(x+1))| |f(xs N!k)| |f(xs N!
 - xs N ! k))|)
                              proof (cases i < 3)
                                        assume i-lt-3: i < 3
                                        then have i-is-1-or-2: i = 1 \lor i = 2
                                                  using i-ge-1 by linarith
                                        then have empty-summation:
                                                             (\sum k = 2..i - 1. |f(xs N!k) - f(xs N!(k-1))| * |\sigma(w*(x-xs))|
N!k) - 1| = 0
                                                  by fastforce
                                      have Lix: L i x = f(a) + (f(xs N ! 3) - f(xs N ! 2)) * \sigma(w * (x - xs N ! 2))
(1.3) + (f(xs N ! 2) - f(xs N ! 1)) * \sigma(w * (x - xs N ! 2))
                                                  using L-def i-is-1-or-2 by presburger
                                        have I-1 i \ x = |G-Nf \ x - L \ i \ x|
                                                  by (meson I-1-def i-ge-1 i-leq-N)
                                         also have ... = |(\sum k \in \{2..N+1\}. (f (xs N! k) - f (xs N! (k-1))) * \sigma|
(w * (x - xs \ N \ ! \ k)))
                                                                                                                                                                                                                                                                                                                 + f (xs N ! 1) * \sigma (w * (x - xs))
N ! \theta))
                                                                                                                                                                                                                                        -(f(xs N ! 3) - f(xs N ! 2)) * \sigma(w * (x + f(x 
 - xs N ! 3)
                                                                                                                                                                                                                                          -(f(xs N! 2) - f(xs N! 1)) * \sigma(w * (x + f(x + 
 - xs N ! 2))
                                                  by (simp add: G-Nf-def Lix)
                                       also have ... = |(\sum k \in \{3..N+1\}, (f(xs N!k) - f(xs N!(k-1))) * \sigma|
(w * (x - xs N ! k)))
                                                                                                                                                                                                                                                                                                                  + f (xs N ! 1) * \sigma (w * (x - xs))
N ! \theta))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 -f(a)
                                                                                                                                                                                                                                         - xs N ! 3))
                                        proof -
                                                from N-pos have (\sum k \in \{2..N+1\}. (f(xs N!k) - f(xs N!(k-1))) *
\sigma (w * (x - xs N!k))) =
                                                                                                                                                      (f(xs N! 2) - f(xs N! 1)) * \sigma(w * (x - xs N! 2)) +
                                                                                 (\sum k \in \{3..N+1\}. (f(xs N!k) - f(xs N!(k-1))) * \sigma(w * (x-1)))
xs \ N \ ! \ k)))
                                                            \mathbf{by}(subst\ sum.atLeast\text{-}Suc\text{-}atMost,\ auto)
                                                  then show ?thesis
                                                            by linarith
                                        \mathbf{qed}
```

```
also have ... = |(\sum k \in \{4..N+1\}. (f (xs N! k) - f (xs N! (k-1))) * \sigma|
(w * (x - xs N ! k)))
                                                     + f (xs N ! 1) * \sigma (w * (x - xs))
N ! \theta))
                                                                              -f(a)
      proof -
         from N-gt-3 have (\sum k \in \{3..N+1\}. (f (xs N ! k) - f (xs N ! (k-1)))
* \sigma (w * (x - xs N! k))) =
                          (f(xs N!3) - f(xs N!2)) * \sigma(w * (x - xs N!3)) +
              (\sum k \in \{4..N+1\}. (f (xs N!k) - f (xs N!(k-1))) * \sigma (w * (x-1)))
xs \ N \ ! \ k)))
          \mathbf{by}(subst\ sum.atLeast\text{-}Suc\text{-}atMost,\ simp\text{-}all)
        then show ?thesis
          by linarith
       qed
       also have ... = |(\sum k \in \{4..N+1\}. (f (xs N! k) - f (xs N! (k-1))) * \sigma|
(w * (x - xs \ N \ ! \ k)))
                                                       + f(a) * (\sigma (w * (x - xs N !
(0)) - 1)
       proof -
         have \forall real1 \ real2 \ real3. (real1::real) + real2 * real3 - real2 = real1 +
real2 * (real3 - 1)
          by (simp add: right-diff-distrib')
        then show ?thesis
          using first-element by presburger
       also have ... \leq |(\sum k \in \{4..N+1\}. (f (xs N! k) - f (xs N! (k-1))) * \sigma|
(w * (x - xs N ! k)))
                                                      + |f(a)| * (\sigma(w * (x - xs N)!)
(0)) - 1)
       also have ... \leq (\sum k \in \{4..N+1\}. | (f(xs N!k) - f(xs N!(k-1))) * \sigma
(w * (x - xs \ N \ ! \ k))|)
                                                      + |f(a)| * (\sigma(w * (x - xs N)!)
(0)) -1)
        using add-mono by blast
      also have ... = (\sum k \in \{4..N+1\}. |(f(xs N!k) - f(xs N!(k-1)))| * |\sigma|
(w * (x - xs N ! k)))
                                                     + |f(a)| * |(\sigma(w * (x - xs N !
(0)) - 1)
        by (simp add: abs-mult)
      also have ... \leq (\sum k \in \{i+2..N+1\}. |(f(xs N!k) - f(xs N!(k-1)))| *
|\sigma (w * (x - xs N!k))|)
                                                     + |f(a)| * |(\sigma(w * (x - xs N !
(0)) -1)
       proof(cases i=1)
        assume i-is-1: i=1
        have union: \{i+2\} \cup \{4..N+1\} = \{i+2..N+1\}
        proof(safe)
```

```
using N-gt-3 i-is-1 by presburger
                                                   show \bigwedge n. \ n \in \{4..N+1\} \Longrightarrow n \in \{i+2..N+1\}
                                                          using i-is-1 by auto
                                                   show \bigwedge n. \ n \in \{i+2..N+1\} \Longrightarrow n \notin \{4..N+1\} \Longrightarrow n \notin \{\} \Longrightarrow n
= i + 2
                                                          using i-is-1 by presburger
                                          have (\sum k \in \{4..N+1\}. | (f(xs N! k) - f(xs N! (k-1)))| * | \sigma(w * (x + 1))| | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N! k) - f(xs N! k) | | f(xs N
- xs N ! k))|)
                                                                                                                                                                                                                                                                   + |f(a)| * |(\sigma(w * (x - xs N !
|\theta(0)| - |1| \le 1
                                                                 (\sum k \in \{i+2\}. |(f(xs N!k) - f(xs N!(k-1)))| * |\sigma(w*(x-xs))|
N \mid k))|)
                                                                      + |f(a)| * |(\sigma(w * (x - xs N !
(0)) -1)
                                         also have ... = (\sum k \in \{i+2..N+1\}. |(f(xs N!k) - f(xs N!(k-1)))|
* |\sigma (w * (x - xs N ! k))|)
                                                                                                                                                                                                                                                                   + |f(a)| * |(\sigma(w * (x - xs N !
(0)) -1)
                                                 have (\sum k \in \{i+2\}. |(f(xs N! k) - f(xs N! (k-1)))| * |\sigma(w * (x-1))|| * |\sigma(w * (x-1
xs \ N \ ! \ k))|) \ +
                                                                           - xs N ! k))|) =
                                                                        (\sum k \in (\{i+2\} \cup \{4..N+1\}). | (f(xs N!k) - f(xs N!(k-1))) | *
|\sigma (w * (x - xs N!k))|)
                                                          by (subst sum.union-disjoint, simp-all, simp add: i-is-1)
                                                  then show ?thesis
                                                          using union by presburger
                                          finally show ?thesis.
                                 next
                                          show i \neq 1 \Longrightarrow
                                                                           (\sum k = 4..N + 1. |f(xs N!k) - f(xs N!(k-1))| * |\sigma(w*(x+1))| |f(xs N!k) - f(xs N!k)| |f(xs N!k)| |f(x
- xs N ! k)))) + |f a| * |\sigma (w * (x - xs N ! 0)) - 1|
                                                                   \leq (\sum k = i + 2..N + 1. |f(xs N!k) - f(xs N!(k-1))| * |\sigma(w)|
*(x - xs \ N \ ! \ k))|) + |f \ a| * |\sigma (w * (x - xs \ N \ ! \ 0)) - 1|
                                                  using i-is-1-or-2 by auto
                                  qed
                                 finally show ?thesis
                                          using empty-summation by linarith
                                 assume main-case: \neg i < 3
                                 then have three-leq-i: i \geq 3
```

```
have disjoint: \{2..i-1\} \cap \{i..N+1\} = \{\}
                  by auto
              have union: \{2..i-1\} \cup \{i..N+1\} = \{2..N+1\}
              proof(safe)
                  show \bigwedge n. n \in \{2..i-1\} \Longrightarrow n \in \{2..N+1\}
                      using i-leq-N by force
                  show \bigwedge n. n \in \{i..N+1\} \Longrightarrow n \in \{2..N+1\}
                      using three-leq-i by force
                  show \bigwedge n. \ n \in \{2..N+1\} \Longrightarrow n \notin \{i..N+1\} \Longrightarrow n \in \{2..i-1\}
                by (metis Nat.le-diff-conv2 Suc-eq-plus1 atLeastAtMost-iff i-ge-1 not-less-eq-eq)
               qed
               have sum-of-terms: (\sum k \in \{2..i-1\}. (f(xs N!k) - f(xs N!(k-1)))
* \sigma (w * (x - xs N ! k))) +
                                                  (\sum_{i=1}^{N} k \in \{i..N+1\}. \quad (f \ (xs \ N \ ! \ k) - f \ (xs \ N \ ! \ (k-1))) * \sigma
(w * (x - xs \ N \ ! \ k))) =
                                                   (\sum k \in \{2..N+1\}. \quad (f(xs N!k) - f(xs N!(k-1))) * \sigma
(w * (x - xs N ! k)))
                     using sum.union-disjoint by (smt (verit, ccfv-threshold) disjoint union
finite-atLeastAtMost)
              have I-1 i \ x = |G-Nf \ x - L \ i \ x|
                  using I-1-def i-ge-1 i-leq-N by presburger
              also have ... = |G-Nf x - ((\sum k \in \{2..i-1\}, (f(xs N! k) - f(xs N! (k-1))))| |G-Nf x - ((\sum k \in \{2..i-1\}, (f(xs N! k) - f(xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k \in \{2..i-1\}, (f(xs N! k)) - f(xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k \in \{2..i-1\}, (f(xs N! k)) - f(xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k \in \{2..i-1\}, (f(xs N! k)) - f(xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k \in \{2..i-1\}, (f(xs N! k)) - f(xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k \in \{2..i-1\}, (f(xs N! k)) - f(xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k \in \{2..i-1\}, (f(xs N! k)) - f(xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k \in \{2..i-1\}, (f(xs N! k)) - f(xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k \in \{2..i-1\}, (f(xs N! k)) - f(xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k \in \{2..i-1\}, (f(xs N! k)) - f(xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k \in \{2..i-1\}, (f(xs N! k)) - f(xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k \in \{2..i-1\}, (f(xs N! k)) - f(xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k \in \{2..i-1\}, (f(xs N! k)) - f(xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k \in \{2..i-1\}, (f(xs N! k)) - f(xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k \in \{2..i-1\}, (f(xs N! k)) - f(xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k \in \{2..i-1\}, (f(xs N! k)) - f(xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k \in \{2..i-1\}, (f(xs N! k)) - f(xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k \in \{2..i-1\}, (f(xs N! k)) - f(xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k k (xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k (xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k (xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k (xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k (xs N! k)) - f(xs N! k)| |G-Nf x - ((\sum k (xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k (xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k (xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k (xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k (xs N! k)) - f(xs N! k)| |G-Nf x - ((\sum k (xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k (xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k (xs N! k)) - f(xs N! k)| |G-Nf x - ((\sum k (xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k (xs N! k)) - f(xs N! k)| |G-Nf x - ((\sum k (xs N! k)) - f(xs N! k))| |G-Nf x - ((\sum k (xs N! k)) - f(xs N! 
(1)))) + f(a) +
                                          (f(xs N!i) - f(xs N!(i-1))) * \sigma(w * (x - xs N!i)) +
                                       (f(xs \ N!(i+1)) - f(xs \ N!i)) * \sigma(w * (x - xs \ N!(i+1))))
                     by (smt (verit, ccfv-SIG) main-case L-def less-add-one nat-1-add-1 nu-
meral-Bit1 numeral-le-iff numerals(1) semiring-norm(70) three-leq-i)
              also have ... = |(\sum k \in \{2...i-1\})|. (f(xs N!k) - f(xs N!(k-1))) * \sigma
(w*(x-xs N!k))) +
                                             (\sum k \in \{i..N+1\}. \quad (f (xs N!k) - f (xs N!(k-1))) * \sigma (w)
 * (x - xs \ N \ ! \ k))) + f (xs \ N \ ! \ 1) * \sigma (w * (x - xs \ N \ ! \ 0)) - (\sum k \in \{2..i-1\}. (f (xs \ N \ ! \ k) - f (xs \ N \ ! \ (k-1)))) - f(a) 
- (f(xs N! i) - f(xs N! (i-1))) * \sigma(w * (x - xs N! i)) -
                                                                                                                                                                 (f (xs N !
(i+1)) - f(xs N!i)* \sigma(w*(x-xs N!(i+1)))
                  by (smt (verit, ccfv-SIG) G-Nf-def sum-mono sum-of-terms)
              also have ... = |((\sum k \in \{2...i-1\}) \cdot (f(xs N!k) - f(xs N!(k-1))) * \sigma|
(w * (x - xs N!k)))
                                                -(\sum k \in \{2..i-1\}. \quad (f (xs N!k) - f (xs N!(k-1)))) +
                                              (\sum k \in \{i..N+1\}. (f(xs N!k) - f(xs N!(k-1))) * \sigma(w)
*(x - xs N!k)) + f(xs N!1) * \sigma(w * (x - xs N!0))
```

by simp

```
- f(a) - (f(xs N! i) - f(xs N! (i-1))) * \sigma(w * (x-1))
xs N ! i)) -
                                                                                  (f(xs \ N \ ! \ (i+1)) - f(xs \ N \ ! \ i)) * \sigma(w * (x - xs \ N \ ! \ (i+1)))|
                                  by linarith
                          also have ... = |(\sum k \in \{2..i-1\}. (f (xs N! k) - f (xs N! (k-1))) * \sigma|
(w * (x - xs N ! k))
                                                                                                                                             -(f(xs N!k) - f(xs N!(k-1))))+
                                                                                    (\sum k \in \{i..N+1\}. \quad (f (xs N!k) - f (xs N!(k-1))) * \sigma (w)
*(x - xs \ N! \ k))) + f(xs \ N! \ 1) * \sigma(w * (x - xs \ N! \ 0))
                      -f(a) - (f(xs N!(i)) - f(xs N!(i-1))) * \sigma(w * (x - xs N!(i))) -
                                                          (f(xs \ N \ ! \ (i+1)) - f(xs \ N \ ! \ (i))) * \sigma(w * (x - xs \ N \ ! \ (i+1)))|
                                  by (simp add: sum-subtractf)
                           also have ... = |(\sum k \in \{2..i-1\}, (f(xs N!k) - f(xs N!(k-1))) * (\sigma)||
(w * (x - xs N! k)) - 1) +
                                                          (\sum k \in \{i..N+1\}. (f(xs N!k) - f(xs N!(k-1))) * \sigma(w * (x - 1)))
xs N ! k))) +
                                                            f(xs \ N \ ! \ 1) * \sigma(w * (x - xs \ N \ ! \ \theta)) -
                                                            f(a) –
                                                            (f(xs N!(i)) - f(xs N!(i-1))) * \sigma(w * (x - xs N!(i))) -
                                                             (f(xs \ N \ ! \ (i+1)) - f(xs \ N \ ! \ (i))) * \sigma(w * (x - xs \ N \ ! \ (i+1)))|
                                  by (simp add: right-diff-distrib')
                           also have ... = |(\sum k \in \{2..i-1\}, (f(xs N!k) - f(xs N!(k-1))) * (\sigma)||
(w * (x - xs N!k)) - 1)) +
                                                          (\sum k \in \{i..N+1\}. (f (xs N ! k) - f (xs N ! (k-1))) * \sigma (w * (x-1))) * \sigma (w * (x-1))) * \sigma (w * (x-1)) * \sigma (w 
xs N ! k))) +
                                                            f(a) * \sigma(w * (x - xs N ! \theta)) -
                                                            (f(xs N!(i)) - f(xs N!(i-1))) * \sigma(w * (x - xs N!(i))) -
                                                             (f(xs \ N \ ! \ (i+1)) - f(xs \ N \ ! \ (i))) * \sigma(w * (x - xs \ N \ ! \ (i+1)))|
                                  using first-element by fastforce
                            also have ... = |(\sum k \in \{2..i-1\}, (f(xs N!k) - f(xs N!(k-1))) * (\sigma)||
(w * (x - xs N!k)) - 1)) +
                                  (\sum k \in \{i..N+1\}. (f (xs N! k) - f (xs N! (k-1))) * \sigma (w * (x - xs N))) * \sigma (w * (x - xs N))
(k))) +
                                 f(a) * (\sigma(w * (x - xs N! \theta)) - 1)
                              -(f(xs N!(i)) - f(xs N!(i-1))) * \sigma(w * (x - xs N!(i)))
                               -(f(xs \ N \ ! \ (i+1)) - f(xs \ N \ ! \ (i))) * \sigma(w * (x - xs \ N \ ! \ (i+1)))|
                                 by (simp add: add-diff-eq right-diff-distrib')
                             also have ...= |(\sum k \in \{2...i-1\})|. (f(xs N!k) - f(xs N!(k-1))) * (\sigma)
(w * (x - xs N!k)) - 1)) +
                                                            f(a) * (\sigma(w * (x - xs N! \theta)) - 1) +
                                                          (\sum k \in \{i+1..N+1\}. (f (xs N!k) - f (xs N!(k-1))) * \sigma (w * (x + i))) * f (xs N!k) - f (xs N!k) + f (xs N!k) 
- xs N ! k)))
                                                           -(f(xs\ N\ !\ (i+1))-f(xs\ N\ !\ (i\ )))*\sigma(w*(x-xs\ N\ !\ (i+1)))|
                          proof -
                                   from i-leq-N have (\sum k \in \{i..N+1\}. (f(xs N!k) - f(xs N!(k-1)))
* \sigma (w * (x - xs N! k))) =
                                                      (f(xs N!(i)) - f(xs N!(i-1))) * \sigma(w * (x - xs N!(i))) +
                                                      (\sum k \in \{i+1..N+1\}. (f(xs N!k) - f(xs N!(k-1))) * \sigma(w * (x + i+1))) * \sigma(w * (x + i+1)) *
```

```
- xs N ! k)))
                                         \mathbf{by}(subst\ sum.atLeast\text{-}Suc\text{-}atMost,\ linarith,\ auto)
                                  then show ?thesis
                                         by linarith
                            ged
                             also have ...= |(\sum k \in \{2..i-1\}, (f(xs N! k) - f(xs N! (k-1))) * (\sigma)||
(w * (x - xs N!k)) - 1)) +
                                                                                        f(a) * (\sigma(w * (x - xs N! \theta)) - 1) +
                                                                                         (\sum k \in \{i+2..N+1\}. (f (xs N!k) - f (xs N!(k-1))) * \sigma
(w * (x - xs N ! k)))
                           proof -
                                      from i-leq-N have (\sum k \in \{i+1..N+1\}). (f(xs N ! k) - f(xs N ! (k - k)))
1))) * \sigma (w * (x - xs \ N \ ! \ k))) =
                                                       (f(xs N!(i+1)) - f(xs N!(i))) * \sigma(w * (x - xs N!(i+1))) +
                                                       (\sum k \in \{i+2..N+1\}. (f (xs N!k) - f (xs N!(k-1))) * \sigma (w * (x + 1))) * \sigma (w * (x + 1)) * \sigma (w * (x + 
- xs N ! k)))
                                         by(subst sum.atLeast-Suc-atMost, linarith, auto)
                                  then show ?thesis
                                         by linarith
                            qed
                           show ?thesis
                          proof -
                                      have inequality-pair: \left|\sum n=2..i-1.\right| (f (xs N!n) - f (xs N!(n-1))
1))) * (\sigma (w * (x - xs N! n)) - 1)| \le
                                                                                                                 (\sum_{i=1}^{n} n = 2...i - 1. | (f(xs N! n) - f(xs N! (n-1)))
\ast \ (\sigma \ (w \ast (x - \mathit{xs} \ N \ ! \ n)) - \ 1)|) \ \land \\
                                                                                                                         |f \ a * (\sigma \ (w * (x - xs \ N \ ! \ \theta)) - 1)| + |\sum n = i + i|
2..N + 1. (f (xs N! n) - f (xs N! (n-1))) * \sigma (w * (x - xs N! n))|
                                                                                                               \leq |f \ a * (\sigma \ (w * (x - xs \ N \ ! \ \theta)) - 1)| + (\sum n = i + i)|
2..N + 1. |(f(xs N!n) - f(xs N!(n-1))) * \sigma(w * (x - xs N!n))|)
                                         using add-le-cancel-left by blast
                                  have I-1 i x = |(\sum k \in \{2..i-1\}. (f (xs N!k) - f (xs N!(k-1))) * (\sigma k)||_{L^{\infty}}) |
(w * (x - xs N!k)) - 1)) +
                                                                                                                                                                               f(a) * (\sigma(w * (x - xs N! \theta)) - 1) +
                                                                                             (\sum k = i + 2..N + 1. (f (xs N!k) - f (xs N!(k-1))) *
\sigma (w * (x - xs N ! k)))|
                                         (x - xs \ N \ ! \ k)) - 1)) + f \ a * (\sigma \ (w * (x - xs \ N \ ! \ \theta)) - 1) + (\sum k = i + 1..N))
+ 1. (f(xs N!k) - f(xs N!(k-1))) * \sigma(w * (x - xs N!k))) - (f(xs N!k)) + 1. (f(xs N!k) - f(xs N!k))) + 1. (f(xs N!k) - f(xs N!k)) +
(i+1)) - f(xs N!i)) * \sigma(w*(x-xs N!(i+1)))| = |(\sum k=2..i-1.(f-1))|
(xs \ N \ ! \ k) - f \ (xs \ N \ ! \ (k-1))) * (\sigma \ (w * (x-xs \ N \ ! \ k)) - 1)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k))) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k))) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k))) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k))) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma \ (w \ k)) + f \ a * (\sigma 
* (x - xs \ N \ ! \ 0)) - 1) + (\sum k = i + 2...N + 1. (f (xs \ N \ ! \ k) - f (xs \ N \ ! \ (k - k) + 1.)))
1))) * \sigma (w * (x - xs \ N \ ! \ k)))
                                                       calculation by presburger
                                  also have ... \leq |(\sum k \in \{2..i-1\}, (f(xs N! k) - f(xs N! (k-1))) * (\sigma k)||
(w * (x - xs N!k)) - 1))
                                                                                  + |f(a) * (\sigma(w * (x - xs N! \theta)) - 1)|
                                                                                  +|(\sum k \in \{i+2..N+1\}. (f (xs N!k) - f (xs N!(k-1))) * \sigma
(w * (x - xs N ! k)))
```

```
by linarith
                                                      also have ... \le (\sum k \in \{2...i-1\}. | (f (xs N!k) - f (xs N!(k-1))) * (\sigma) |
(w * (x - xs N!k)) - 1))
                                                                                                                                 + |f(a) * (\sigma(w * (x - xs N! \theta)) - 1)|
                                                                                                                                       + (\sum k \in \{i+2..N+1\}. | (f (xs N!k) - f (xs N!(k-1))) *
\sigma (w * (x - xs N!k))|)
                                                                 using inequality-pair by linarith
                                                   also have ... \leq (\sum k \in \{2..i-1\}. |(f(xs N!k) - f(xs N!(k-1)))| * |(\sigma xs N!k) - f(xs N!(k-1))| | * |(\sigma xs N!k) - f(xs N!k)| | * |(\sigma xs N!k)| |
(w * (x - xs N ! k)) - 1))
                                                                                                                                 + |f(a)| * |\sigma(w * (x - xs N! \theta)) - 1|
                                                                                                                                   + (\sum k \in \{i+2..N+1\}. |(f (xs N!k) - f (xs N!(k-1)))| *
|\sigma (w * (x - xs N!k))|)
                                                      proof -
                                                                 have f1: \land k. \ k \in \{2..i-1\} \longrightarrow |(f(xs \ N \ ! \ k) - f(xs \ N \ ! \ (k-1))) *
(\sigma (w * (x - xs N! k)) - 1)| \le |f (xs N! k) - f (xs N! (k - 1))| * |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |\sigma (w * (x - xs N! k))| = |
 - xs N ! k)) - 1
                                                                          by (simp add: abs-mult)
                                                            have f2: \Lambda k. \ k \in \{i+2..N+1\} \longrightarrow |(f \ (xs \ N \ ! \ k) - f \ (xs \ N \ ! \ (k-1)))|
 *\sigma(w*(x-xs\ N!\ k))| \leq |f(xs\ N!\ k)-f(xs\ N!\ (k-1))|*|\sigma(w*(x-xs))|
N \mid k))
                                                                          by (simp add: abs-mult)
                                                                    have f3: |f(a) * (\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1)| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1| = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1| = |f(a)| * |\sigma(w * (x - xs N
 - xs N ! 0)) - 1
                                                                            using abs-mult by blast
                                                                 then show ?thesis
                                                                          by (smt (verit, best) f1 f2 sum-mono)
                                                      finally show ?thesis.
                                           qed
                                qed
                                also have ... < (\sum k \in \{2..i-1\}. \ \eta * (1/N)) +
                                                                                                                                       |f(a)| * |\sigma(w * (x - xs N! \theta)) - 1| +
                                                                                                                                  (\sum k \in \{i+2..N+1\}. \ \eta * (1/N))
                                proof(cases i \geq 3)
                                           assume i-geq-3: 3 \le i
                                           show (\sum k = 2..i - 1. |f(xs N! k) - f(xs N! (k-1))| * |\sigma(w * (x - 1))| |f(xs N! k) - f(xs N! k)| |\sigma(w * (x - 1))| |f(xs N! k)| |f(x
(xs\ N\ !\ k)) - 1|) + |f\ a| * |\sigma\ (w * (x - xs\ N\ !\ 0)) - 1| + |f\ a|
                                                                         (\sum k = i + 2..N + 1. |f(xs N!k) - f(xs N!(k-1))| * |\sigma(w*(x+1))| |f(xs N!k) - f(xs N!(k-1))| |f(xs N!k) - f(xs N!k)| |f(xs N!k) - f(xs N!k) |f(xs N!k) - f(xs N
 - xs N ! k))|)
                                                                  <(\sum k = 2..i - 1. \eta * (1 / N)) + |f a| * |\sigma (w * (x - xs N! 0)) -
 1| +
                                                                            (\sum k = i + 2..N + 1. \eta * (1 / N))
                                           \operatorname{\mathbf{proof}}(cases \ \forall \ k. \ k \in \{2..i-1\} \longrightarrow |\sigma \ (w * (x - xs \ N \ ! \ k)) - 1| = 0)
                                                        assume all-terms-zero: \forall k. \ k \in \{2..i-1\} \longrightarrow |\sigma \ (w * (x - xs \ N \ ! \ k))
 -1|=0
                                                      from i-geq-3 have (\sum k \in \{2..i-1\}. | f(xs N!k) - f(xs N!(k-1)) | *
|\sigma(w*(x-xs\ N!\ k))-1|)<(\sum k\in\{2..i-1\}.\ \eta*(1/N))
                                              by (subst sum-strict-mono, force+, (simp add: N-pos \eta-pos all-terms-zero)+)
```

show ?thesis

```
proof(cases i = N)
                                     assume i = N
                                     then show ?thesis
 \begin{array}{c} \mathbf{using} \, <\! (\sum k = 2..i - 1. \; |f\; (xs\; N\; !\; k) - f\; (xs\; N\; !\; (k-1))| * |\sigma\; (w\; * (x - xs\; N\; !\; k)) - 1|) < (\sum k = 2..i - 1. \; \eta * (1\; /\; N)) > \mathbf{by} \; auto \end{array} 
                                     assume i \neq N
                                     then have i-lt-N: i < N
                                          using i-leq-N le-neq-implies-less by blast
                                     show ?thesis
                                     \mathbf{proof}(\mathit{cases} \ \forall \, k. \ k \in \{i+2..N+1\} \longrightarrow |\sigma \ (w*(x-\mathit{xs}\ N \ ! \ k))| = \theta)
                                         assume all-second-terms-zero: \forall k. \ k \in \{i + 2..N + 1\} \longrightarrow |\sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w * (x + 2..N + 1)) | \sigma| (w *
 - xs N ! k))| = (0::real)
                                           from i-lt-N have (\sum k \in \{i+2..N+1\}. |f (xs N ! k) - f (xs N ! (k -
 |a(x)| + |a(x + xs N + k)| < (\sum k \in \{i+2..N+1\}, \eta * (1/N))
                                  by (subst sum-strict-mono, force+, (simp add: \eta-pos all-second-terms-zero)+)
                                          then show ?thesis
                                          proof -
                                                show ?thesis
                                                         using \langle (\sum k = 2..i - 1. | f(xs N!k) - f(xs N!(k-1)) | * | \sigma \rangle
 (w*(x-xs\ N\ !\ k))-1|)<(\sum k=2..i-1.\ \eta*(1\ /\ N))> \\ <(\sum k=i+2..N+1.\ |f\ (xs\ N\ !\ k)-f\ (xs\ N\ !\ (k-1))| \\ *|\sigma\ (w*(x-xs\ N\ !\ k))|)<(\sum k=i+2..N+1.\ \eta*(1\ /\ N))> \mathbf{by}\ linarith 
                                                 qed
                                    \mathbf{next}
                                         assume second-terms-not-all-zero: \neg (\forall k. \ k \in \{i+2..N+1\} \longrightarrow |\sigma|)
(w * (x - xs N ! k))| = 0)
                                             obtain NonZeroTerms where NonZeroTerms-def: NonZeroTerms =
 \{k \in \{i + 2..N + 1\}. |\sigma (w * (x - xs N!k))| \neq 0\}
                                                by blast
                                                obtain ZeroTerms where ZeroTerms-def: ZeroTerms = \{k \in \{i + i\}\}
2..N + 1. |\sigma (w * (x - xs N ! k))| = 0}
                                                by blast
                                          have zero-terms-eq-zero: (\sum k \in ZeroTerms. | f(xs N!k) - f(xs N!k) - f(xs N!k) - f(xs N!k) - f(xs N!k) | f(xs N!k) | f(xs N!k) - f(xs N!k) | f(xs N!k) - f(xs N!k) | f(xs N!k) - f(xs N!k) | f(xs N!
(k-1)| * |\sigma (w * (x - xs N!k))|) = 0
                                                by (simp add: ZeroTerms-def)
                                          have disjoint: ZeroTerms \cap NonZeroTerms = \{\}
                                                 using NonZeroTerms-def ZeroTerms-def by blast
                                          have union: ZeroTerms \cup NonZeroTerms = \{i+2..N+1\}
                                          proof(safe)
                                                 show \bigwedge n. \ n \in ZeroTerms \Longrightarrow n \in \{i + 2..N + 1\}
                                                      using ZeroTerms-def by force
                                                 show \bigwedge n. \ n \in NonZeroTerms \Longrightarrow n \in \{i + 2...N + 1\}
                                                      using NonZeroTerms-def by blast
                                                      show \bigwedge n. n \in \{i + 2..N + 1\} \Longrightarrow n \notin NonZeroTerms \Longrightarrow n \in
 ZeroTerms
                                                      using NonZeroTerms-def ZeroTerms-def by blast
                                          qed
```

```
have (\sum k \in \{i+2..N+1\}. |f(xs N!k) - f(xs N!(k-1))| * |\sigma(w)|
* (x - xs \ N \ ! \ k))|) < (\sum k \in \{i+2..N+1\}. \ \eta * ((1::real) / real \ N))
proof -
                             have (\sum k \in \{i+2..N+1\}. |f(xs N! k) - f(xs N! (k-1))| * |\sigma(w)|
*(x - xs \ N \ ! \ k))) =
                                       (\sum_{k \in NonZeroTerms.} |f(xs N ! k) - f(xs N ! (k-1))| * |\sigma(w)|
*(x - xs N ! k))|)
                                  proof
                                   have (\sum k \in \{i+2..N+1\}. |f(xs N! k) - f(xs N! (k-1))| * |\sigma|
(w * (x - xs N ! k))|) =
                                            \sum k \in Zero Terms. |f(xs N!k) - f(xs N!(k-1))| * |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k)| |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k)| |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k)| |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k)| |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k)| |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k)| |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k)| |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k)| |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) - f(xs N!k)| |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) - f(xs N!k)| |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) - f(xs N!k)| |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) | |\sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k)
(x - xs N ! k)))
                                          + (\sum k \in NonZeroTerms. | f(xs N!k) - f(xs N!(k-1)) | * | \sigma
(w * (x - xs \ N \ ! \ k))|)
                            by (smt disjoint finite-Un finite-atLeastAtMost union sum.union-disjoint)
                                   then show ?thesis
                                        using zero-terms-eq-zero by linarith
                                qed
                                also have ... < (\sum k \in NonZeroTerms. \ \eta * (1 / N))
                                proof(rule sum-strict-mono)
                                   show finite NonZeroTerms
                                        by (metis finite-Un finite-atLeastAtMost union)
                                   show NonZeroTerms \neq \{\}
                                        using NonZeroTerms-def second-terms-not-all-zero by blast
                                   assume y-subtype: y \in NonZeroTerms
                                    then have y-type: y \in \{i+2..N+1\}
                                       by (metis Un-iff union)
                                   then have y-suptype: y \in \{1..N + 1\}
                                        by simp
                                   have parts-lt-eta: \bigwedge k. k \in \{i+2..N+1\} \longrightarrow |(f(xs N!k) - f(xs N)k)| + f(xs N)k|
|(k-1)| < \eta
                                   proof(clarify)
                                        assume k-type: k \in \{i + 2..N + 1\}
                                        then have k-1 \in \{i+1..N\}
                                            by force
                                        then have |(xs \ N \ ! \ k) - (xs \ N \ ! \ (k-1))| < \delta \longrightarrow |f(xs \ N \ ! \ k)|
- f (xs N ! (k - 1)) | < \eta
                                                  using \delta-prop atLeastAtMost-iff els-in-ab le-diff-conv by auto
                                        then show |f(xs N! k) - f(xs N! (k-1))| < \eta
                                            using adj-terms-lt i-leg-N k-type by fastforce
                                    qed
                                   then have f-diff-lt-eta: |f(xs N ! y) - f(xs N ! (y - 1))| < \eta
```

```
using y-type by blast
                have lt-minus-h: x - xs \ N!y \le -h
                 using x-minus-xk-le-neg-h-on-Right-Half y-type by blast
                then have sigma-lt-inverseN: |\sigma (w * (x - xs N ! y))| < 1 / N
                proof -
                 have \neg Suc N < y
                    using y-suptype by force
                 then show ?thesis
                         by (smt (z3) Suc-1 Suc-eq-plus1 lt-minus-h add.commute
add.left-commute diff-zero length-map length-upt not-less-eq w-prop xs-eqs)
                qed
               show |f(xs N! y) - f(xs N! (y - 1))| * |\sigma(w * (x - xs N! y))|
< \eta * (1 / N)
                 using f-diff-lt-eta mult-strict-mono sigma-lt-inverseN by fastforce
          also have ... \leq (\sum k \in NonZeroTerms. \eta * (1 / N)) + (\sum k \in ZeroTerms.
\eta * (1 / N))
                using \eta-pos by force
              also have ... = (\sum k \in \{i+2..N+1\}. \ \eta * (1 / N))
           \mathbf{by}\;(smt\;disjoint\;finite\text{-}Un\;finite\text{-}atLeastAtMost\;union\;sum.union\text{-}disjoint})
              finally show ?thesis.
            qed
            then show ?thesis
              using \langle (\sum k = 2..i - 1. | f (xs N!k) - f (xs N!(k-1)) | * | \sigma (w) \rangle
* (x - xs \ N \ ! \ k)) - 1 \ ) < (\sum k = 2..i - 1. \ \eta * (1 \ / \ N)) > by linarith
          qed
         qed
       next
         assume first-terms-not-all-zero: \neg (\forall k. \ k \in \{2..i-1\} \longrightarrow |\sigma(w*(x-1))| )
xs \ N \ ! \ k)) - 1| = 0)
            obtain BotNonZeroTerms where BotNonZeroTerms-def: BotNonZe-
roTerms = \{k \in \{2..i - 1\}. | \sigma (w * (x - xs N! k)) - 1| \neq 0\}
          by blast
         obtain BotZeroTerms where BotZeroTerms-def: BotZeroTerms = \{k \in
\{2..i-1\}. |\sigma(w*(x-xs N!k))-1|=0\}
         have bot-zero-terms-eq-zero: (\sum k \in BotZeroTerms. | f(xs N!k) - f(xs N!k))
N ! (k - 1))| * |\sigma (w * (x - xs N! k)) - 1|) = 0
          by (simp add: BotZeroTerms-def)
         \mathbf{have}\ \mathit{bot\text{-}disjoint:}\ \mathit{BotZeroTerms}\ \cap\ \mathit{BotNonZeroTerms}\ =\ \{\}
          using BotNonZeroTerms-def BotZeroTerms-def by blast
         have bot-union: BotZeroTerms \cup BotNonZeroTerms = \{2..i - 1\}
         proof(safe)
          show \bigwedge n. \ n \in BotZeroTerms \Longrightarrow n \in \{2..i-1\}
```

```
show \bigwedge n. \ n \in BotNonZeroTerms \Longrightarrow n \in \{2..i-1\}
                                                        using BotNonZeroTerms-def by blast
                                                                   show \land n. n \in \{2..i - 1\} \implies n \notin BotNonZeroTerms \implies n \in
 BotZeroTerms
                                                        using BotNonZeroTerms-def BotZeroTerms-def by blast
                                        qed
                                      have (\sum k \in \{2..i - 1\}. |f(xs N! k) - f(xs N! (k - 1))| * |\sigma(w * (x + 1))| |f(xs N! k)| |f(x
 -xs \ N \ ! \ k)) \ -\overline{1}|) < \\ (\sum k \in \{2..i - 1\}. \ \eta * (1 \ / \ N)) 
                                       proof -
                                                     have disjoint-sum: sum (\lambda k. \eta * (1 / N)) BotNonZeroTerms + sum
(\lambda k. \ \eta * (1 / N)) \ BotZeroTerms = sum \ (\lambda k. \ \eta * (1 / N)) \ \{2..i - 1\}
                                                proof -
                                                          from bot-disjoint have sum (\lambda k. \eta * (1 / real N)) BotNonZeroTerms
+ sum (\lambda k. \eta * (1 / N)) BotZeroTerms =
                                                                        sum\ (\lambda k.\ \eta*(1\ /\ real\ N))\ (BotNonZeroTerms\cup\ BotZeroTerms)
                                                                     \mathbf{by}(subst\ sum.union-disjoint,\ (metis(mono-tags)\ bot-union\ finite-Un
finite-atLeastAtMost)+, auto)
                                                           then show ?thesis
                                                                                                       by (metis add.commute bot-disjoint bot-union finite-Un fi-
 nite-atLeastAtMost\ sum.union-disjoint)
                                                    qed
                                               have (\sum k \in \{2..i - 1\}. | f(xs N!k) - f(xs N!(k - 1)) | * | \sigma(w * (x + 1)) | | f(xs N!k) - f(xs N!k) | | f(xs N!k) - f(x
 - xs N ! k)) - 1|) =
(\sum_{k \in BotNonZeroTerms.} |f(xs N ! k) - f(xs N ! (k-1))| * |\sigma(w * (x - xs N ! k)) - 1|)
                                                   proof -
                                                      have (\sum k \in \{2..i - 1\}. |f(xs N!k) - f(xs N!(k - 1))| * |\sigma(w * 1)| + |\sigma(w * 1)| +
(x - xs \ N \ ! \ k)) - 1|) =
                                                                               (\sum k \in BotZeroTerms. | f(xs N!k) - f(xs N!(k-1)) | * | \sigma(w)
*(x - xs N!k)) -1|)
                                                                + (\sum k \in BotNonZeroTerms. | f(xs N!k) - f(xs N!(k-1)) | * | \sigma
 (w * (x - xs \ N \ | \overline{k})) - 1|)
                                                                                              by (smt bot-disjoint finite-Un finite-atLeastAtMost bot-union
 sum.union-disjoint)
                                                        then show ?thesis
                                                                using bot-zero-terms-eq-zero by linarith
                                                also have ... < (\sum k \in BotNonZeroTerms. \ \eta * (1 / N))
                                                \mathbf{proof}(rule\ sum\text{-}strict\text{-}mono)
                                                       {\bf show} \ \mathit{finite} \ \mathit{BotNonZeroTerms}
                                                               by (metis finite-Un finite-atLeastAtMost bot-union)
                                                       show BotNonZeroTerms \neq \{\}
                                                                using BotNonZeroTerms-def first-terms-not-all-zero by blast
                                                       \mathbf{fix} \ y
```

using BotZeroTerms-def by force

```
assume y-subtype: y \in BotNonZeroTerms
                              then have y-type: y \in \{2..i - 1\}
                                  by (metis Un-iff bot-union)
                              then have y-suptype: y \in \{1..N + 1\}
                                   using i-leq-N by force
                              have parts-lt-eta: \bigwedge k. k \in \{2..i-1\} \longrightarrow |(f(xs N!k) - f(xs N!(k) - f(xs N)!)|)|
|-1)))| < \eta
                              proof(clarify)
                                  \mathbf{fix} \ k
                                 assume k-type: k \in \{2..i-1\} then have |(xs\ N\ !\ k)-(xs\ N\ !\ (k-1))|<\delta\longrightarrow |f\ (xs\ N\ !\ k)-f
(xs \ N \ ! \ (k-1))| < \eta
                                        by (metis \delta-prop add.commute add-le-imp-le-diff atLeastAtMost-iff
diff-le-self dual-order.trans els-in-ab i-leq-N nat-1-add-1 trans-le-add2)
                                  then show |f(xs N! k) - f(xs N! (k-1))| < \eta
                                       using adj-terms-lt i-leq-N k-type by fastforce
                              then have f-diff-lt-eta: |f(xs N ! y) - f(xs N ! (y - 1))| < \eta
                                   using y-type by blast
                              have lt-minus-h: x - xs N!y \ge h
                                   using x-minus-xk-ge-h-on-Left-Half y-type by force
                              then have bot-sigma-lt-inverseN: |\sigma(w*(x-xs N!y))-1| < (1)
/N
                                      by (smt (z3) Suc-eq-plus1 add-2-eq-Suc' atLeastAtMost-iff diff-zero
length-map length-upt less-Suc-eq-le w-prop xs-eqs y-suptype)
                              then show |f(xs N! y) - f(xs N! (y - 1))| * |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! y) - f(xs N! y)| |\sigma(w * (x - xs N! 
|y)) - 1| < \eta * (1 / N)
                                  by (smt (verit, del-insts) f-diff-lt-eta mult-strict-mono)
                  also have ... \leq (\sum k \in BotNonZeroTerms. \eta * (1 / N)) + (\sum k \in BotZeroTerms.
\eta * (1 / N)
                              using \eta-pos by force
                          also have ... = (\sum k \in \{2..i - 1\}. \eta * (1 / N))
                              using sum.union-disjoint disjoint-sum by force
                          finally show ?thesis.
                      qed
                      show ?thesis
                      proof(cases i = N)
                          assume i = N
                          then show ?thesis
 \begin{array}{c} \mathbf{using} \,\, \langle (\sum k = 2..i - 1. \, | f \,\, (xs \,\, N \,\, ! \,\, k) - f \,\, (xs \,\, N \,\, ! \,\, (k-1)) | \, * \,\, | \sigma \,\, (w \,\, * \,\, (x-xs \,\, N \,\, ! \,\, k)) - 1 \,|) \,\, < (\sum k = 2..i - 1. \,\, \eta \,\, * \,\, (1 \,\, / \,\, N)) \rangle \,\, \mathbf{by} \,\, auto \end{array} 
                          assume i \neq N
                          then have i-lt-N: i < N
                              using i-leq-N le-neq-implies-less by blast
                          show ?thesis
```

```
\operatorname{proof}(cases \ \forall \ k. \ k \in \{i+2..N+1\} \longrightarrow |\sigma \ (w * (x - xs \ N \ ! \ k))| = \theta)
            assume all-second-terms-zero: \forall k. \ k \in \{i + 2..N + 1\} \longrightarrow |\sigma| (w * (x + 2..N + 1)) |
- |xs| N ! k))| = 0
             from i-lt-N have (\sum k \in \{i+2..N+1\}. | f(xs N!k) - f(xs N!(k-1)) |
1))| * |\sigma(w * (x - xs N!k))|) < (\sum k \in \{i+2..N+1\}. \eta * (1/N))
          by (subst sum-strict-mono, fastforce+, (simp add: \eta-pos all-second-terms-zero)+)
             then show ?thesis
              using \langle (\sum k = 2..i - 1. | f(xs N!k) - f(xs N!(k-1)) | * | \sigma(w) \rangle
* (x - xs \ N \ ! \ k)) - 1| < (\sum k = 2..i - 1. \ \eta * (1 \ / \ N)) by linarith
            assume second-terms-not-all-zero: \neg (\forall k. \ k \in \{i+2..N+1\} \longrightarrow |\sigma|)
(w * (x - xs N!k))| = 0)
            obtain TopNonZeroTerms where TopNonZeroTerms-def: TopNonZe-
roTerms = \{k \in \{i + 2..N + 1\}. |\sigma(w * (x - xs N!k))| \neq 0\}
              by blast
            obtain TopZeroTerms where TopZeroTerms-def: TopZeroTerms = \{k
\in \{i + 2..N + 1\}. |\sigma (w * (x - xs N!k))| = 0\}
              by blast
            have zero-terms-eq-zero: (\sum k \in TopZeroTerms. | f(xs N!k) - f(xs N)|)
||(k-1)|| * |\sigma (w * (x - xs N ! k))|| = 0
              by (simp add: TopZeroTerms-def)
            \mathbf{have}\ \mathit{disjoint:}\ \mathit{TopZeroTerms} \ \cap\ \mathit{TopNonZeroTerms} = \{\}
               using TopNonZeroTerms-def TopZeroTerms-def by blast
            have union: TopZeroTerms \cup TopNonZeroTerms = \{i+2..N+1\}
            proof(safe)
               show \bigwedge n. \ n \in TopZeroTerms \Longrightarrow n \in \{i + 2..N + 1\}
                using TopZeroTerms-def by force
               show \bigwedge n. \ n \in TopNonZeroTerms \Longrightarrow n \in \{i + 2..N + 1\}
                using TopNonZeroTerms-def by blast
              show \bigwedge n. n \in \{i + 2..N + 1\} \Longrightarrow n \notin TopNonZeroTerms \Longrightarrow n \in
TopZeroTerms
                using TopNonZeroTerms-def TopZeroTerms-def by blast
            have (\sum k \in \{i+2..N+1\}. |f(xs N! k) - f(xs N! (k-1))| * |\sigma(w)|
*(x - xs N ! k))) <
            (\sum\limits_{}^{}k\in\{i+2..N+1\}.\ \eta*(1\ /\ N)) proof -
             have (\sum k \in \{i+2..N+1\}. |f(xs N! k) - f(xs N! (k-1))| * |\sigma(w)|
*(x - xs N ! k))|) =
                  (\sum k \in TopNonZeroTerms. | f(xs N!k) - f(xs N!(k-1)) | * | \sigma
(w * (x - xs N ! k))|)
               proof
                 have (\sum k \in \{i+2..N+1\}. |f(xs N! k) - f(xs N! (k-1))| * |\sigma|
(w * (x - xs N ! k))|) =
                     (\sum k \in TopZeroTerms. | f(xs N!k) - f(xs N!(k-1))| * | \sigma
(w*(x-xs\ N\ !\ k))
                   +(\sum k \in TopNonZeroTerms. | f(xs N ! k) - f(xs N ! (k-1)) |
```

```
* |\sigma (w * (x - xs N ! k))|)
            \mathbf{by}\ (smt\ disjoint\ finite-Un\ finite-at Least At Most\ union\ sum.union-disjoint)
               then show ?thesis
                 using zero-terms-eq-zero by linarith
              qed
              also have ... < (\sum k \in TopNonZeroTerms. \ \eta * (1 / N))
              proof(rule sum-strict-mono)
               show finite TopNonZeroTerms
                 by (metis finite-Un finite-atLeastAtMost union)
               show TopNonZeroTerms \neq \{\}
                 using TopNonZeroTerms-def second-terms-not-all-zero by blast
               assume y-subtype: y \in TopNonZeroTerms
               then have y-type: y \in \{i+2..N+1\}
                 by (metis Un-iff union)
               then have y-suptype: y \in \{1..N + 1\}
                 bv simp
               have parts-lt-eta: \bigwedge k. k \in \{i+2..N+1\} \longrightarrow |(f(xs N!k) - f(xs N)k)| + f(xs N)k|
|(k-1))| < \eta
               proof(clarify)
                 assume k-type: k \in \{i + 2..N + 1\}
                 then have k-1 \in \{i+1..N\}
                   by force
                 then have |(xs \ N \ ! \ k) - (xs \ N \ ! \ (k-1))| < \delta \longrightarrow |f(xs \ N \ ! \ k)|
- f (xs N! (k-1)) | < \eta
                     using \delta-prop atLeastAtMost-iff els-in-ab le-diff-conv by auto
                 then show |f(xs N! k) - f(xs N! (k-1))| < \eta
                   using adj-terms-lt i-leq-N k-type by fastforce
               qed
                then have f-diff-lt-eta: |f(xs N ! y) - f(xs N ! (y - 1))| < \eta
                 using y-type by blast
               have lt-minus-h: x - xs \ N!y \le -h
                 using x-minus-xk-le-neg-h-on-Right-Half y-type by blast
               then have sigma-lt-inverseN: |\sigma(w*(x-xs N!y))| < 1 / N
               proof -
                 have \neg Suc N < y
                   using y-suptype by force
                 then show ?thesis
                        by (smt (z3) Suc-1 Suc-eq-plus1 lt-minus-h add.commute
add.left-commute diff-zero length-map length-upt not-less-eq w-prop xs-eqs)
               then show |f(xs N! y) - f(xs N! (y-1))| * |\sigma(w * (x - xs N) |
|y| < \eta * (1 / N)
                 by (smt (verit, best) f-diff-lt-eta mult-strict-mono)
                    also have ... \leq (\sum k \in TopNonZeroTerms. \ \eta * (1 / N)) +
(\sum k \in TopZeroTerms. \ \eta * (1 / N))
```

```
using \eta-pos by force
                               also have ... = (\sum k \in \{i+2..N+1\}. \ \eta * (1 / N))
                         \mathbf{by}\;(smt\;disjoint\;finite\text{-}Un\;finite\text{-}atLeastAtMost\;union\;sum.union\text{-}disjoint})
                               finally show ?thesis.
                           ged
                           then show ?thesis
                               using \langle (\sum k = 2..i - 1. | f(xs N!k) - f(xs N!(k-1)) | * | \sigma(w) \rangle
 * (x - xs \ N \ ! \ k)) - 1|) < (\sum k = 2..i - 1. \ \eta * (1 \ / \ N)) by linarith
                    qed
                qed
            next
                assume \neg \beta \leq i
                then have i-leq-2: i \leq 2
                    by linarith
                then have first-empty-sum: (\sum k = 2..i - 1. | f(xs N!k) - f(xs N!k) - f(xs N!k))
 |-1) | * |\sigma (w * (x - xs N! k)) - \overline{1}| | = 0
                    by force
                from i-leq-2 have second-empty-sum: (\sum k = 2..i - 1. \eta * (1 / N)) = 0
                    by force
                have i-lt-N: i < N
                    using N-defining-properties i-leq-2 by linarith
have (\sum k = i + 2..N + 1. |f(xs N! k) - f(xs N! (k - 1))| * |\sigma(w * (x - xs N! k))|) < (\sum k = i + 2..N + 1. \eta * (1 / N))
                \mathbf{proof}(\mathit{cases} \ \forall \ k. \ k \in \{i+2..N+1\} \longrightarrow |\sigma \ (w*(x-\mathit{xs}\ N \ ! \ k))| = \theta)
                          assume all-second-terms-zero: \forall k.\ k \in \{i+2..N+1\} \longrightarrow |\sigma|(w*(x+i))|
 - |xs| N ! |k\rangle | = 0
                            from i-lt-N have (\sum k \in \{i+2..N+1\}. | f(xs N!k) - f(xs N!(k-1)) | f(xs N!k) - f(xs N!k) | f(xs N!k) - f(xs N!k) | f(xs
 1))| * |\sigma (w * (x - xs \ N \ ! \ k))|) < (\sum k \in \{i+2..N+1\}. \ \eta * (1/N))
                      by (subst sum-strict-mono, fastforce+, (simp add: η-pos all-second-terms-zero)+)
                           then show ?thesis.
                       next
                           assume second-terms-not-all-zero: \neg (\forall k. \ k \in \{i+2..N+1\} \longrightarrow |\sigma|\}
 (w * (x - xs N ! k))| = 0)
                             obtain NonZeroTerms where NonZeroTerms-def: NonZeroTerms =
 \{k \in \{i + 2..N + 1\}. |\sigma (w * (x - xs N!k))| \neq 0\}
                               by blast
                               obtain ZeroTerms where ZeroTerms-def: ZeroTerms = \{k \in \{i + i\}\}
 2..N + 1. |\sigma(w * (x - xs N!k))| = 0
                              by blast
                             have zero-terms-eq-zero: (\sum k \in Zero\ Terms. \mid f(xs\ N \mid k) - f(xs\ N \mid k))
 (k-1)| * |\sigma (w * (x - xs N ! k))|) = 0
                               by (simp add: ZeroTerms-def)
                           have disjoint: ZeroTerms \cap NonZeroTerms = \{\}
                               using NonZeroTerms-def ZeroTerms-def by blast
```

```
have union: ZeroTerms \cup NonZeroTerms = \{i+2..N+1\}
             proof(safe)
                show \bigwedge n. n \in ZeroTerms \Longrightarrow n \in \{i + 2..N + 1\}
                  using ZeroTerms-def by force
                show \bigwedge n. \ n \in NonZeroTerms \Longrightarrow n \in \{i + 2...N + 1\}
                  using NonZeroTerms-def by blast
                 show \bigwedge n. n \in \{i + 2..N + 1\} \Longrightarrow n \notin NonZeroTerms \Longrightarrow n \in
Zero\,Terms
                  using NonZeroTerms-def ZeroTerms-def by blast
             qed
             have (\sum k \in \{i+2..N+1\}. |f(xs N! k) - f(xs N! (k-1))| * |\sigma(w)|
* (x - xs \ N \ ! \ k))|) < (\sum_{k \in \{i+2..N+1\}. \ \eta \ * \ (1 \ / \ N))}
proof -
              have (\sum k \in \{i+2..N+1\}. |f(xs N! k) - f(xs N! (k-1))| * |\sigma(w)|
* (x - xs \ N \ ! \ k))|) = (\sum_{k \in NonZeroTerms.} |f(xs \ N \ ! \ k) - f(xs \ N \ ! \ (k - 1))| * |\sigma(w)| * (x - xs \ N \ ! \ k))|
               proof
                 have (\sum k \in \{i+2..N+1\}. |f(xs N! k) - f(xs N! (k-1))| * |\sigma|
(w * (x - xs N ! k))|) =
                      (\sum k \in Zero\ Terms.\ |f\ (xs\ N\ !\ k)\ -f\ (xs\ N\ !\ (k\ -\ 1))|\ *\ |\sigma\ (w\ *
(x - xs N ! k))|)
                    + (\sum k \in NonZeroTerms. | f(xs N!k) - f(xs N!(k-1))| * | \sigma
(w*(x-xs\ N\ !\ k))|)
              by (smt disjoint finite-Un finite-atLeastAtMost union sum.union-disjoint)
                 then show ?thesis
                   using zero-terms-eq-zero by linarith
               qed
                also have ... < (\sum k \in NonZeroTerms. \ \eta * (1 / N))
                proof(rule sum-strict-mono)
                 show finite NonZeroTerms
                   by (metis finite-Un finite-atLeastAtMost union)
                 show NonZeroTerms \neq \{\}
                   \mathbf{using}\ \mathit{NonZeroTerms-def}\ \mathit{second-terms-not-all-zero}\ \mathbf{by}\ \mathit{blast}
                 \mathbf{fix} \ y
                 assume y-subtype: y \in NonZeroTerms
                 then have y-type: y \in \{i+2..N+1\}
                   by (metis Un-iff union)
                 then have y-suptype: y \in \{1..N + 1\}
                   by simp
                 have parts-lt-eta: \bigwedge k. k \in \{i+2..N+1\} \longrightarrow |(f(xs N!k) - f(xs N))|
|(k-1))| < \eta
                 proof(clarify)
                   \mathbf{fix} \ k
```

```
assume k-type: k \in \{i + 2..N + 1\}
                 then have k-1 \in \{i+1..N\}
                   by force
                 then have |(xs N! k) - (xs N! (k-1))| < \delta \longrightarrow |f(xs N! k)|
- f (xs N! (k-1)) | < \eta
                     using \delta-prop atLeastAtMost-iff els-in-ab le-diff-conv by auto
                 then show |f(xs N! k) - f(xs N! (k-1))| < \eta
                   using adj-terms-lt i-leq-N k-type by fastforce
               \mathbf{qed}
               then have f-diff-lt-eta: |f(xs N! y) - f(xs N! (y - 1))| < \eta
                 using y-type by blast
               have lt-minus-h: x - xs \ N!y \le -h
                 using x-minus-xk-le-neg-h-on-Right-Half y-type by blast
               then have sigma-lt-inverseN: |\sigma (w * (x - xs N ! y))| < 1 / N
               proof -
                 have \neg Suc N < y
                   using y-suptype by force
                 then show ?thesis
                        by (smt (z3) Suc-1 Suc-eq-plus1 lt-minus-h add.commute
add.left-commute diff-zero length-map length-upt not-less-eq w-prop xs-eqs)
               qed
               show |f(xs N ! y) - f(xs N ! (y - 1))| * |\sigma(w * (x - xs N ! y))|
< \eta * (1 / N)
                 using f-diff-lt-eta mult-strict-mono sigma-lt-inverseN by fastforce
          also have ... \leq (\sum k \in NonZeroTerms. \ \eta * (1 / N)) + (\sum k \in ZeroTerms.
\eta * (1 / N))
               using \eta-pos by force
              also have ... = (\sum k \in \{i+2..N+1\}. \ \eta * (1 / N))
           by (smt disjoint finite-Un finite-atLeastAtMost union sum.union-disjoint)
             finally show ?thesis.
            qed
            then show ?thesis.
          qed
          then show ?thesis
            using first-empty-sum second-empty-sum by linarith
     also have ... = |f(a)| * |\sigma(w * (x - xs N! 0)) - 1| + (\sum k \in \{2..i-1\}. \eta)
* (1/N)) + (\sum k \in \{i+2..N+1\}. \eta * (1/N))
      by simp
     also have ... \leq |f(a)| * |\sigma(w * (x - xs N! \theta)) - 1| + (\sum k \in \{2..N+1\}. \eta)
* (1/N)
     proof -
        have (\sum k \in \{2..i-1\}. \ \eta * (1/N)) + (\sum k \in \{i+2..N+1\}. \ \eta * (1/N)) \le
```

```
(\sum k \in \{2..N+1\}. \ \eta * (1/N))
       \mathbf{proof}(\mathit{cases}\ i \geq 3)
         assume \beta \leq i
         have disjoint: \{2..i-1\} \cap \{i+2..N+1\} = \{\}
         from i-leq-N have subset: \{2..i-1\} \cup \{i+2..N+1\} \subseteq \{2..N+1\}
          have sum-union: sum (\lambda k. \eta * (1 / N)) \{2...i-1\} + sum (\lambda k. \eta * (1 / N))\}
N)) \{i+2..N+1\} =
                          sum (\lambda k. \ \eta * (1 \ / \ N)) \ (\{2..i-1\} \cup \{i+2..N+1\})
           by (metis disjoint finite-atLeastAtMost sum.union-disjoint)
        from subset \eta-pos have sum (\lambda k. \ \eta * (1 / N)) \ (\{2..i-1\} \cup \{i+2..N+1\})
\leq sum (\lambda k. \eta * (1 / N)) \{2..N+1\}
           \mathbf{by}(subst\ sum\text{-}mono2,\ simp\text{-}all)
         then show ?thesis
           using sum-union by auto
       next
         assume \neg \beta \leq i
         then have i-leq-2: i \leq 2
           by linarith
         then have first-term-zero: (\sum k = 2..i - 1. \eta * (1 / N)) = 0
         from \eta-pos have (\sum k = i + 2..N + 1. \eta * (1 / N)) \le (\sum k = 2..N + 1.)
1. \eta * (1 / N)
           \mathbf{by}(subst\ sum-mono2,\ simp-all)
         then show ?thesis
           using first-term-zero by linarith
       then show ?thesis
         by linarith
     also have ... = |f(a)| * |\sigma(w * (x - xs N! \theta)) - 1| + (N * \eta * (1/N))
     proof -
       have (\sum k \in \{2..N+1\}. \ \eta * (1/N)) = (N * \eta * (1/N))
         \mathbf{by}(subst\ sum\text{-}constant,\ simp)
       then show ?thesis
         by presburger
     also have ... = |f(a)| * |\sigma(w * (x - xs N! \theta)) - 1| + \eta
       by (simp add: N-pos)
     also have ... \leq |f(a)| * (1/N) + \eta
       have |\sigma (w * (x - xs \ N \ ! \ \theta)) - 1| < 1/N
          by (smt\ (z3)\ Suc\text{-}eq\text{-}plus1\text{-}left\ \omega\text{-}prop\ add-2\text{-}eq\text{-}Suc'\ add-gr-0\ atLeastAt-
Most-iff diff-zero
            length-map length-upt w-def x-in-ab xs-eqs zero-less-one zeroth-element)
       then show ?thesis
         by (smt (verit, ccfv-SIG) mult-less-cancel-left)
     qed
```

```
also have ... \leq |f(a)| * \eta + \eta
      by (smt (verit, best) mult-left-mono one-over-N-lt-eta)
     also have ... = (1 + |f(a)|) * \eta
      by (simp add: distrib-right)
     also have ... \leq (1 + (SUP \ x \in \{a..b\}, |f \ x|)) * \eta
     proof -
       from a-lt-b have |f(a)| \leq (SUP \ x \in \{a..b\}. |f \ x|)
           by (subst cSUP-upper, simp-all, metis bdd-above-Icc contin-f continu-
ous-image-closed-interval continuous-on-rabs order-less-le)
       then show ?thesis
         by (simp \ add: \eta\text{-}pos)
     finally show ?thesis.
   qed
   have x-i-pred-minus-x-lt-delta: |xs \ N \ !(i-1) - x| < \delta
     have |xs \ N!(i-1) - x| \le |xs \ N!(i-1) - xs \ N!i| + |xs \ N!i - x|
       by linarith
     also have \dots \leq 2*h
     proof -
      have first-inequality: |xs \ N!(i-1) - xs \ N!i| \le h
         using difference-of-adj-terms h-pos i-ge-1 i-leq-N by fastforce
       have second-inequality: |xs \ N!i - x| \le h
            \mathbf{by} \ (\mathit{smt} \ (\mathit{verit}) \ \mathit{left-diff-distrib'} \ \mathit{mult-cancel-right1} \ \mathit{x-lower-bound-aux}
x-upper-bound-aux xs-Suc-i xs-i)
       show ?thesis
         using first-inequality second-inequality by fastforce
     qed
     also have \dots < \delta
       using h-lt-\delta-half by auto
     finally show ?thesis.
   qed
   have I2-final-bound: I-2 i x < (2 * (Sup ((\lambda x. |\sigma x|) `UNIV)) + 1) * \eta
   proof(cases i \geq 3)
    assume three-lt-i: 3 < i
    have telescoping-sum: sum (\lambda k. f(xs N!k) - f(xs N!(k-1))) \{2..i-1\}
+ f a = f (xs N ! (i-1))
    proof(cases i = 3)
      show i = 3 \Longrightarrow (\sum k = 2..i - 1. f(xs N!k) - f(xs N!(k-1))) + fa
= f (xs N! (i-1))
       using first-element by force
    next
      assume i \neq 3
      then have i-gt-\beta: i > \beta
       by (simp add: le-neq-implies-less three-lt-i)
     have sum (\lambda k. f (xs N! k) - f (xs N! (k-1))) \{2..i-1\} = f(xs N!(i-1))
- f(xs \ N!(2-1))
      proof -
```

```
have f1: 1 \leq i - Suc 1
           \mathbf{using}\ three\mbox{-}lt\mbox{-}i\ \mathbf{by}\ linarith
       have index-shift: (\sum k \in \{2..i-1\}. f(xs N!(k-1))) = (\sum k \in \{1..i-2\}.
               by (rule sum.reindex-bij-witness[of - \lambda j. j + 1 \lambda j. j - 1], simp-all,
presburger+)
        have sum (\lambda k. f (xs N ! k) - f (xs N ! (k - 1))) {2..i-1} =
             (\sum k \in \{2..i-1\}. f(xs N! k)) - (\sum k \in \{2..i-1\}. f(xs N! (k-1)))
           by (simp add: sum-subtractf)
        also have ... = (\sum k \in \{2..i-1\}. f (xs N!k)) - (\sum k \in \{1..i-2\}. f (xs N!k))
N ! k))
           using index-shift by presburger
        also have ... = (\sum k \in \{2..i-1\}. f(xs N!k)) - (f(xs N!1) + (\sum k \in 2..i-1). f(xs N!k)) - (f(xs N!1) + (\sum k \in 2..i-1). f(xs N!k))
\{2..i-2\}.\ f\ (xs\ N\ !\ k)))
           using f1 by (metis (no-types) Suc-1 sum.atLeast-Suc-atMost)
         also have ... = ((\sum k \in \{2..i-1\}. f (xs N! k)) - (\sum k \in \{2..i-2\}. f)
(xs \ N \ ! \ k))) - f (xs \ N \ ! \ 1)
           by linarith
          also have ... = (f(xs \ N \ ! \ (i-1)) + (\sum k \in \{2..i-2\}. \ f(xs \ N \ ! \ k)) -
(\sum k \in \{2..i-2\}. f(xs N!k))) - f(xs N!1)
        proof -
           have disjoint: \{2..i-2\} \cap \{i-1\} = \{\}
             by force
           have union: \{2..i-2\} \cup \{i-1\} = \{2..i-1\}
           proof(safe)
             show \bigwedge n. n \in \{2..i - 2\} \Longrightarrow n \in \{2..i - 1\}
               by fastforce
             using three-lt-i by force
             show \land n. \ n \in \{2..i-1\} \Longrightarrow n \notin \{2..i-2\} \Longrightarrow n \notin \{\} \Longrightarrow n=i
- 1
               by presburger
           qed
             have (\sum k \in \{2..i-2\}. \ f \ (xs \ N \ ! \ k)) + f \ (xs \ N \ ! \ (i-1)) = (\sum k \in \{2..i-2\}. \ f \ (xs \ N \ ! \ k)) + f \ (xs \ N \ ! \ k)) + f \ (xs \ N \ ! \ k)
\{2..i-2\}.\ f\ (xs\ N\ !\ k)) + (\sum k \in \{i-1\}.\ f\ (xs\ N\ !\ k))
           also have ... = (\sum k \in \{2..i-2\} \cup \{i-1\}. f (xs N! k))
             using disjoint by force
           also have ... = (\sum_{i=1}^{n} k \in \{2...i-1\}. \ f \ (xs \ N \ ! \ k))
             using union by presburger
           finally show ?thesis
             by linarith
        also have ... = f(xs \ N \ ! \ (i-1)) - f(xs \ N \ ! \ 1)
           by auto
         finally show ?thesis
           \mathbf{by} \ simp
       qed
       then show ?thesis
```

```
using first-element by auto
    \mathbf{qed}
    have I2\text{-}decomp: I\text{-}2\ i\ x = |L\ i\ x - f\ x|
      using I-2-def i-qe-1 i-leq-N by presburger
    also have ... = |(((\sum k \in \{2..i-1\}, (f(xs N!k) - f(xs N!(k-1)))) +
f(a)) +
                   (f(xs N! i) - f(xs N! (i-1))) * \sigma(w * (x - xs N! i)) +
                  (f(xs N!(i+1)) - f(xs N!i)) * \sigma(w * (x - xs N!(i+1))))
-fx
      using L-def three-lt-i by auto
    also have ... = | f(xs \ N! (i-1)) - fx +
                   (f(xs N! i) - f(xs N! (i-1))) * \sigma(w * (x - xs N! i)) +
                   (f(xs \ N \ ! \ (i+1)) - f(xs \ N \ ! \ i)) * \sigma(w * (x - xs \ N \ ! \ (i+1)))|
      using telescoping-sum by fastforce
    also have ... \leq |f(xs \ N \ ! (i-1)) - f \ x| +
                   |(f(xs N! i) - f(xs N! (i-1))) * \sigma(w * (x - xs N! i))| +
                  |(f(xs \ N!(i+1)) - f(xs \ N!i)) * \sigma(w * (x - xs \ N!(i+1)))||
      by linarith
    also have ... = | f(xs \ N! (i-1)) - fx | +
                  |(f(xs N! i) - f(xs N! (i-1)))| * | \sigma(w * (x - xs N! i))| +
                  |(f(xs N!(i+1)) - f(xs N!i))| * |\sigma(w * (x - xs N!(i+1)))|
      by (simp add: abs-mult)
    also have ... < \eta + \eta * | \sigma (w * (x - xs N ! i))| + \eta * | \sigma (w * (x - xs N ! i))|
!(i+1)))|
    proof
      from x-in-ab x-i-pred-minus-x-lt-delta
      have first-inequality: |f(xs \ N!(i-1)) - fx| < \eta
       by(subst \delta-prop,
            metis Suc-eq-plus1 add-0 add-le-imp-le-diff atLeastAtMost-iff els-in-ab
i-leq-N less-imp-diff-less linorder-not-le numeral-3-eq-3 order-less-le three-lt-i,
         simp-all)
      from els-in-ab i-leq-N le-diff-conv three-lt-i
      have second-inequality: |(f(xs N ! i) - f(xs N ! (i-1)))| < \eta|
       by (subst \delta-prop,
            simp-all,
             metis One-nat-def add.commute atLeastAtMost-iff adj-terms-lt i-qe-1
trans-le-add2)
      have third-inequality: |(f(xs N!(i+1)) - f(xs N!i))| < \eta
      \mathbf{proof}(subst\ \delta\text{-}prop)
       show xs \ N \ ! \ (i + 1) \in \{a..b\} and xs \ N \ ! \ i \in \{a..b\} and True
         using els-in-ab i-ge-1 i-leq-N by auto
       show |xs \ N! (i+1) - xs \ N! i| < \delta
         using adj-terms-lt
         by (metis Suc-eq-plus1 Suc-eq-plus1-left Suc-le-mono add-diff-cancel-left'
atLeastAtMost-iff i-leg-N le-add2)
      ged
      then show ?thesis
```

```
by (smt (verit, best) first-inequality mult-right-mono second-inequality)
                    qed
                    also have ... = (|\sigma(w*(x - xs N!i))| + |\sigma(w*(x - xs N!(i+1)))| +
 1) * \eta
                           by (simp add: mult.commute ring-class.ring-distribs(1))
                    also have ... \leq (2*(Sup((\lambda x. |\sigma x|) 'UNIV)) + 1) * \eta
                    proof -
                               from bounded-sigmoidal have first-inequality: |\sigma(w*(x-xs\ N!\ i))| \leq
(Sup\ ((\lambda x.\ |\sigma\ x|)\ '\ UNIV))
                                   by (metis UNIV-I bounded-function-def cSUP-upper2 dual-order.refl)
                       from bounded-sigmoidal have second-inequality: |\sigma(w*(x-xs\ N!(i+1)))|
\leq (Sup ((\lambda x. |\sigma x|) \cdot UNIV))
                                   unfolding bounded-function-def
                                   by (subst\ cSUP\text{-}upper,\ simp\text{-}all)
                            then show ?thesis
                                    using \eta-pos first-inequality by auto
                    aed
                    finally show ?thesis.
                next
                        assume \neg \beta \leq i
                        then have i-is-1-or-2: i = 1 \lor i = 2
                                using i-ge-1 by linarith
                        have x-near-a: |a - x| < \delta
                        proof(cases i = 1)
                                show i = 1 \Longrightarrow |a - x| < \delta
                                             using first-element h-pos x-i-pred-minus-x-lt-delta x-lower-bound-aux ze-
roth-element by auto
                                show i \neq 1 \Longrightarrow |a - x| < \delta
                                        using first-element i-is-1-or-2 x-i-pred-minus-x-lt-delta by auto
                        qed
                      have Lix: L i x = f(a) + (f(xs N!3) - f(xs N!2)) * \sigma(w * (x - xs N!3)) + \sigma(w * (x - 
(3)) + (f(xs N! 2) - f(xs N! 1)) * \sigma(w * (x - xs N! 2))
                                        using L-def i-is-1-or-2 by presburger
                        have I - 2 i x = |L i x - f x|
                                using I-2-def i-ge-1 i-leq-N by presburger
also have ... = |(f \ a - f \ x) + (f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 2)) * \sigma \ (w * (x - xs \ N \ ! \ 3)) + (f \ (xs \ N \ ! \ 2) - f \ (xs \ N \ ! \ 1)) * \sigma \ (w * (x - xs \ N \ ! \ 2))|
                                using Lix by linarith
                        also have ... \leq |(f \ a - f \ x)| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 2)) * \sigma \ (w * (x - f \ x))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 2))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 2))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 2))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 2))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 2))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 2))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 2))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 2))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 2))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 2))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 2))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 2))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 2))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 2))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 2))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \
|xs \ N \ ! \ 3))| + |(f \ (xs \ N \ ! \ 2) - f \ (xs \ N \ ! \ 1)) * \sigma \ (w * (x - xs \ N \ ! \ 2))||
                               by linarith
                        also have ... \leq |(f \ a - f \ x)| + |f \ (xs \ N \ ! \ 3) - f \ (xs \ N \ ! \ 2)| * |\sigma \ (w * (x - f \ x))| + |\sigma \ (w * f \ x)| + |\sigma \ (w * f \ 
|xs \ N \ ! \ 3))| + |f \ (xs \ N \ ! \ 2) - f \ (xs \ N \ ! \ 1)| * |\sigma \ (w * (x - xs \ N \ ! \ 2))|
                              by (simp add: abs-mult)
                        also have ... < \eta + \eta * | \sigma (w * (x - xs N ! 3))| + |f (xs N ! 2) - f (xs N ! 3)|
N!1)|*|\sigma (w*(x-xs N!2))|
                       proof -
```

```
from x-in-ab x-near-a have first-inequality: |f \ a - f \ x| < \eta
         by(subst \delta-prop, auto)
       have second-inequality: |f(xs N ! 3) - f(xs N ! 2)| < \eta
       proof(subst\ \delta-prop, safe)
         show xs \ N \ ! \ \beta \in \{a..b\}
           using N-gt-3 els-in-ab by force
         show xs \ N \ ! \ 2 \in \{a..b\}
           using N-gt-3 els-in-ab by force
         from N-gt-3 have xs \ N \ ! \ 3 - xs \ N \ ! \ 2 = h
          by(subst xs-els, auto, smt (verit, best) h-pos i-is-1-or-2 mult-cancel-right1
nat-1-add-1 of-nat-1 of-nat-add xs-Suc-i xs-i)
         then show |xs N ! 3 - xs N ! 2| < \delta
           using adj-terms-lt first-element zeroth-element by fastforce
       qed
       then show ?thesis
         by (smt (verit, best) first-inequality mult-right-mono)
     also have ... \leq \eta + \eta * | \sigma (w * (x - xs N!3))| + \eta * | \sigma (w * (x - xs N!3))|
! 2))|
     proof -
       have third-inequality: |f(xs N! 2) - f(xs N! 1)| < \eta
       \mathbf{proof}(subst\ \delta\text{-}prop,\ safe)
         show xs \ N \ ! \ \mathcal{2} \in \{a..b\}
           using N-gt-3 els-in-ab by force
         show xs \ N \ ! \ 1 \in \{a..b\}
           using N-gt-3 els-in-ab by force
         from N-pos first-element have xs N ! 2 - xs N ! 1 = h
           by(subst xs-els, auto)
         then show |xs N ! 2 - xs N ! 1| < \delta
           using adj-terms-lt first-element zeroth-element by fastforce
       qed
       show ?thesis
         by (smt (verit, best) mult-right-mono third-inequality)
     also have ... = (|\sigma(w*(x - xs N!3))| + |\sigma(w*(x - xs N!2))| + 1)*\eta
       by (simp add: mult.commute ring-class.ring-distribs(1))
     also have ... \leq (2*(Sup\ ((\lambda x.\ |\sigma\ x|)\ 'UNIV)) + 1) * \eta
     proof -
       from bounded-sigmoidal have first-inequality: |\sigma(w*(x-xs\ N!\ 3))| \le
Sup ((\lambda x. |\sigma x|) 'UNIV)
         \mathbf{unfolding}\ bounded\textit{-}function\textit{-}def
         by (subst\ cSUP\text{-}upper,\ simp\text{-}all)
       from bounded-sigmoidal have second-inequality: |\sigma(w*(x-xs\ N\ !\ 2))|
\leq Sup ((\lambda x. |\sigma x|) 'UNIV)
         \mathbf{unfolding}\ bounded\textit{-}function\textit{-}def
         by (subst\ cSUP\text{-}upper,\ simp\text{-}all)
       then show ?thesis
         using \eta-pos first-inequality by force
     qed
```

```
finally show ?thesis.
          qed
          have |(\sum k = 2..N + 1. (f(xs N!k) - f(xs N!(k-1))) * \sigma(w * (x - xs))||
(N!k)) + f a * \sigma (w * (x - xs N!0)) - f x \le I-1 i x + I-2 i x
                using G-Nf-def i-ge-1 i-leq-N triange-inequality-main first-element by blast
          also have ... < (1 + (Sup ((\lambda x. |f x|) ` \{a..b\}))) * \eta + (2 * (Sup ((\lambda x. |\sigma x|) `
 UNIV)) + 1) * \eta
                using I1-final-bound I2-final-bound by linarith
          also have ... = ((Sup\ ((\lambda x.\ |f\ x|)\ `\{a..b\})) + 2*(Sup\ ((\lambda x.\ |\sigma\ x|)\ `UNIV)) +
2)* \eta
                by (simp add: distrib-right)
          also have \dots = \varepsilon
                using \eta-def \eta-pos by force
          finally show |(\sum k = 2..N + 1. (f(xs N!k) - f(xs N!(k-1))) * \sigma(w * f(xs N!k) - f(xs N!(k-1))) * \sigma(w * f(xs N!k) - f(xs N!k) - f(xs N!k) + f(xs N!k) - f(xs N!k) + f(xs N!k) - f(xs N!k) - f(xs N!k) + f(xs N!k) 
(x - xs \ N \ ! \ k))) + f \ a * \sigma \ (w * (x - xs \ N \ ! \ \theta)) - f \ x| < \varepsilon.
     qed
qed
end
theory Sigmoid-Universal-Approximation
     imports Limits-Higher-Order-Derivatives
                           Sigmoid-Definition
                           Derivative \hbox{-} Identities \hbox{-} Smoothness
                           A symptotic - Qualitative - Properties
                            Universal-Approximation
begin
```

References

end

- T. Chen, H. Chen, and R.-w. Liu. A constructive proof and an extension of Cybenko's approximation theorem. In C. Page and R. LePage, editors, Computing Science and Statistics, pages 163–168, New York, NY, 1992. Springer New York.
- [2] D. Costarelli and R. Spigler. Constructive approximation by superposition of sigmoidal functions. *Analysis in Theory and Applications*, 29:169–196, 06 2013.
- [3] G. Cybenko. Approximation by superpositions of a sigmoidal function. *Math. Control Signal Systems* 2, 303314, https://doi.org/10.1007/BF02551274, 1989.
- [4] A. A. Minai and R. D. Williams. On the derivatives of the sigmoid. Neural Networks, 6(6):845–853, 1993.

[5] T. Nipkow, M. Wenzel, and L. C. Paulson. *Isabelle/HOL: A Proof Assistant for Higher-Order Logic*, volume 2283 of *Lecture Notes in Computer Science*. Springer, Berlin, Heidelberg, 2002.