
‘Sets’ Revisited: Working with a Large Category in
Isabelle/HOL

Eugene W. Stark

February 10, 2026

Abstract

We revisit the problem of formalization of the category of sets and functions
in Isabelle/HOL, regarding it as a paradigm for the formalization of other large
categories. We follow a general plan in which we extend the “category” locale from
our previous article [3] with a few axioms that allow us to pass back and forth between
objects and arrows internal to the category and “real” sets and functions external
to it. Using this setup, we prove the standard properties of the category of sets as
consequences of the properties of the external notions. A key feature is the inclusion
of an axiom that allows us to obtain objects internal to the category corresponding to
externally given sets. To avoid inconsistency, our framework axiomatizes a notion of
“smallness” and only asserts the existence of objects corresponding to small sets. We
give two “top-level” interpretations of our “sets category” locale. One uses “finite”
as the notion of smallness and uses only standard HOL for its construction, which
results in a small category. The other uses the axiomatic extension of HOL given in
[2] to construct an interpretation that incorporates infinite sets as well, resulting in
a large (but locally small) category.

1

Contents

1 Introduction 4

2 Smallness 9
2.1 Basic Notions . 10
2.2 Smallness of Finite Sets . 11
2.3 Smallness of Binary Products . 11
2.4 Smallness of Sums . 12
2.5 Smallness of Powersets . 15
2.6 Smallness of the Set of Natural Numbers 16
2.7 Smallness of Function Spaces . 16

2.7.1 Small Functions . 16
2.7.2 Small Funcsets . 22

2.8 Smallness of Sets of Lists . 23

3 Universe 26
3.1 Embeddings . 26
3.2 Lifting . 27
3.3 Pairing . 28
3.4 Powering . 29
3.5 Tupling . 30
3.6 Universe . 35

4 The Category of Small Sets 41
4.1 Basic Definitions and Properties . 41
4.2 Categoricity . 53
4.3 Well-Pointedness . 62
4.4 Epis Split . 62
4.5 Equalizers . 65

4.5.1 Exported Notions . 70
4.6 Binary Products . 72

4.6.1 Exported Notions . 80
4.7 Binary Coproducts . 83

4.7.1 Exported Notions . 91

2

4.8 Small Products . 94
4.8.1 Exported Notions . 108

4.9 Small Coproducts . 110
4.9.1 Exported Notions . 119

4.10 Coequalizers . 120
4.10.1 Exported Notions . 130

4.11 Exponentials . 131
4.11.1 Exported Notions . 143

4.12 Subobject Classifier . 146
4.13 Natural Numbers Object . 153
4.14 Sets Category with Tupling and Infinity 158

5 Interpretations of universe 159
5.1 Interpretation using Natural Numbers . 159
5.2 Interpretation using ZFC-in-HOL . 161

6 Interpretations of sets-cat 165
6.1 Category of Finite Sets . 165
6.2 Category of ZFC Sets . 176

Bibliography 180

3

Chapter 1

Introduction

In a previous article [3] we formalized many basic notions and facts from category theory.
The formalization was carried out in HOL, in spite of the fact that HOL is significantly
weaker than set theories usually cited as foundations for category theory. The rationale
for doing so was that most of the central concepts in category theory have significant
content, even in contexts, such as small categories, that pose no foundational issues. At
some point, however, one wants to be able to work with categories that are not small;
the category of sets being the prototypical example. That is, we would like to have a
category S that first of all can be considered as a “set category”, in the sense that there
is fully faithful functorial way of mapping its objects to sets and its arrows to functions,
and which in addition has “enough objects” in the sense that if we given any “real” set
then there will exist a representative object of S whose elements correspond bijectively
to the elements of the given set. Such a category would enjoy the small completeness
and cocompleteness properties we would expect of the “real” category of sets.

Now, in standard HOL it is not possible to define a category of sets as described
above, because the normal axioms of HOL do not prove the existence of a type “large
enough” to provide (even up to equipollence) sets to represent the result of iterated
exponentiations starting from an infinite set. However, it is possible to get around this
restriction by adding additional axioms that assert the existence of such a type. This is
the approach taken in the article [2], which augments HOL with additional axioms whose
essence is to assert the existence of a new type V whose elements correspond to sets that
can be proved to exist in ZFC. To avoid obvious inconsistency, clearly not every set of
elements at type V can correspond to an element of V ; the sets that do correspond to
elements of V are declared to be “small”. The notion of smallness is then extended via
equipollence to obtain a notion of small sets at arbitrary types.

In the article [3] the present author used the ZFC-in-HOL axiomatization to define a
“set category” whose objects are in bijective correspondence with the small sets at type
V. This does produce a usable category of small sets, but there are some identifiable
deficiencies. First of all, the construction is very closely tied to the ZFC-in-HOL devel-
opment and the particular type V introduced there. It would be more flexible if somehow
the necessary assumptions could be distilled and expressed (using Isabelle’s locale fea-

4

ture, for example) as assumptions about an unspecified type named by a type variable,
or, more generally, as assumptions about a set of elements of such a type. Secondly, the
construction given in [3] was somewhat ad hoc, which although it served its purpose as
a proof-of-concept, did not pay much attention to the ultimate usability of the theory
nor provide much guidance as to how the construction might be generalized to produce
categories of sets with additional structure (a category of groups, for example).

The purpose of present article is to revisit the problem of formalizing the category
of sets in Isabelle/HOL while trying to address the above deficiencies. The approach we
have taken is as follows. We first attempt to decouple the underlying extensions needed to
HOL from the particular development in ZFC-in-HOL and to re-express these extensions,
independently of the particular type V, using Isabelle’s locale feature. This leads us to
identify two main aspects that need to be addressed: (1) the notion of “smallness” of a
set; and (2) and notion of a “universe”, comprising a collection of sets that is in some
sense closed under the usual set-theoretic constructions.

The notion of smallness is addressed by the theory Smallness, which introduces sev-
eral locales whose assumptions concern a function sml :: ’V set => bool which is un-
derstood as specifying a collection of sets, at some unspecified but fixed type ’V, which
are to be considered “small”. A base locale, smallness, assumes as a regularity condition
that the function sml respects equipollence and then uses polymorphism to extend this
function by equipollence to a function small :: ’a set => bool at every type. (It is done
this way because types mentioned in locale parameters are essentially fixed, whereas
functions defined in the body of a locale can be polymorphic.) Several extensions to the
smallness locale are then defined, corresponding to various assumptions about what sets
are to be considered as small. The small_finite locale is satisfied by notions of smallness
for which arbitrary finite sets are considered to be small. The small_nat locale is satisfied
by notions of smallness for which the set of natural numbers is small. The small_prod-
uct locale is satisfied by notions of smallness that are preserved under cartesian product.
The small_sum locale is satisfied by notions of smallness that are preserved under the
formation of small-indexed unions. The small_powerset locale is satisfied by notions of
smallness for which the set of all subsets of a small set is again small. The small_funcset
locale is satisfied by notions of smallness that are preserved by a suitable construction
of function spaces (this involves some technical issues that result from the the fact that
HOL requires all functions to be total).

The notion of a “universe” is addressed by the theory Universe. This theory intro-
duces several locales whose assumptions concern a set univ :: ’U set, at some unspecified
but fixed type ’U, which admits embeddings of various other sets; typically resulting
from constructions on univ itself. A base locale, embedding, defines the notion of an
injective embedding of another set into univ. The lifting locale is satisfied when the set
univ embeds the disjoint union of itself and an additional element. The pairing locale is
satisfied when the set univ embeds univ×univ. The powering locale is satisfied when the
set univ embeds the set of all its “small” subsets. The tupling locale is satisfied when the
set univ embeds the set of all “small extensional functions” on its elements (here, again,
there are some technical issues to be addressed). Finally, the universe locale combines
the tupling locale with the assumption that the set of natural numbers is small.

5

Having defined the above locales, we proceed to defining the sets_cat locale, which
axiomatizes the notion “category of sets and functions”. This definition follows a general
plan that can be applied to construct locales that axiomatize categories of other kinds
of algebraic structures. We first define the locale sets_cat_base, which is satisfied by
an arbitrary category C with terminal object together with a notion of smallness. The
sets_cat_base locale provides a convenient place to define correspondences, between
objects of C and sets and between arrows of C and functions. Specifically, after making
an arbitrary choice of terminal object, we define a function Set that takes each object to
the set of its global elements, and a function Fun that takes each arrow to the function on
global elements it induces by composition. Here we are exploiting the well-pointedness
of a category of sets and functions to simplify things a bit. To apply the same plan to
categories that are not well-pointed, we will have to use generalized elements instead,
which is possible, but more cumbersome.

The sets_cat_base locale is then extended to the sets_cat locale by adding four
axioms. The first axiom asserts that the set of global elements of every object is small.
The second axiom asserts that the mapping Fun that takes arrows to functions on global
elements is injective. The third axiom asserts that for every “real” function F from the
set of global elements of object a to the set of global elements of object b there is an
arrow f : a -> b of C such that Fun f = f. Finally, the fourth axiom, which we call
“repleteness”, asserts that for every small subset A of the set of arrows of C there exists
an object a of C such that the set of global elements of a is equipollent with A. Although
the restrictions imposed by Isabelle/HOL on locale definitions require that this axiom
be expressed with respect to a fixed type, namely the type of arrows of C, in the body
of the locale we can immediately extend the repleteness property to show the existence
of objects corresponding to small sets at arbitrary types, as long as a set for which we
want to obtain an object “embeds” via an injective mapping into the set of arrows of C.

The gist of the sets_cat axioms is to assert the existence of a “meta-functor” from
C to “real sets” (of global elements of C) and “real functions” (between sets of global
elements), which is full, faithful, and surjective from objects to small sets (of arrows of
C). Moreover, we can obtain an object corresponding to a given small set at an arbitrary
type, assuming that there is an embedding of that set into the set of arrows of C. So,
the image of C under this meta-functor is a “meta-category” whose objects are sets of
arrows of C and whose arrows are functions between such sets. This meta-category is in
general only equivalent to C, not isomorphic to it, because when we pass from a small set
A to the corresponding object mkide A and then back to the set Set(mkide A) of global
elements of mkide a, we recover a set that is only equipollent to A, rather than equal to
it. We therefore obtain a pair of inverse “comparison maps” between an externally given
small set A and the set of global elements of the object mkide a corresponding to it. The
map IN encodes each element of A as a corresponding global element of mkide A; the
inverse map OUT decodes each global element of mkide A to the corresponding element
of A. We use the just-outlined structure to prove a “categoricity” result which states
that, a category C that satisfies the sets_cat locale is, up to equivalence of categories,
the unique such category whose set of arrows has the same cardinality as that of C. The
same overall pattern can be applied to algebraic structures more general than sets, but

6

note that in this case the comparison maps will end up being isomorphisms for these
structures, rather than just invertible functions.

We then proceed to develop the consequences of the sets_cat axioms; proving a
set of properties roughly patterned after those in Lawvere’s “Elementary Theory of the
Category of Sets” [1]. In brief, we show that, if the collection of arrows of C forms a “uni-
verse”, then C is well-pointed, small-complete and small co-complete, cartesian closed,
has a subobject classifier and a natural numbers object, and splits all epimorphisms.
The fact that the correspondences, between objects and sets and between arrows and
functions, have been defined in terms of structure intrinsic to the category C means that
we can carry out the proofs without having to reference concrete details of the construc-
tion of a particular underlying type, such as that of the type V from ZFC_in_HOL. Of
particular interest is the pattern we use to show the existence of limits and colimits in
C. Consider the case of binary products as an example. We know that the set of global
elements of the product a ⊗ b of objects a and b of C should be equipollent with the
cartesian product Set a×Set b of the set of global elements of a and that of b. Moreover,
the sets of global elements of a and b are small (by the locale assumptions), so if we have
available as an additional assumption about smallness that it is preserved by cartesian
product, then we may conclude that the set Set a× Set b is also small. If we have also
assumed the existence of a pairing function, which injectively maps pairs of arrows of C
to arrows of C, then we may use repleteness to prove the existence of an object a ⊗ b
whose set of global elements is equipollent with Set a×Set b. Once the existence of this
object has been shown, then we can prove that it is in fact a categorical product of a and
b. To do this, we need to obtain the projections, but these are just the arrows of C that
correspond to the “real” projection functions on Set a×Set b. So to summarize, to show
that C admits a particular categorical construction, we first carry out a corresponding
construction on sets of global elements. This will typically result in a set at a higher
type than that of the arrows of C. To obtain an object of C we must show that this set
is small and in addition that it “embeds” back down into the set of arrows of C.

Finally, as everything described up to this point has been carried out axiomatically
(the locale assumptions are the axioms), to keep ourselves honest we have to show that
the axioms are actually consistent. We do this by constructing two “top-level” interpre-
tations of the sets_cat locale. One interpretation is carried out in “vanilla HOL” without
the use of ZFC_in_HOL and takes “finite” as the notion of smallness. It shows that
the category whose objects are the natural numbers and whose arrows correspond to
functions between finite sets, interprets the sets_cat_with_tupling locale, which satisfies
all the smallness and embedding assumptions we use, except for the assumption that the
set of natural numbers is small. The second interpretation, which uses ZFC_in_HOL,
shows that the category of sets we constructed in the previous article [3] interprets the
sets_cat_with_tupling locale as well as the small_nat locale, which asserts also that the
set of natural numbers is small.

In the end, what we achieve is a locale, sets_cat, which axiomatizes the notion of a
category of sets and functions, and which can be used to perform reasoning internal to
such a category without having to refer to details of a particular concrete construction.
When required, we can pass from inside the category to the “external world” via a fully

7

faithful functorial mapping. Functions that exist externally can be internalized as arrows
using the fullness of this mapping. In addition, sets that exist externally, at any type,
can be internalized as objects of the category, provided that we establish two facts: (1)
their smallness; and (2) that they can be embedded into the set of arrows of the category.
We have demonstrated this procedure by using it to prove the familiar properties of a
“set category”.

8

Chapter 2

Smallness

theory Smallness
imports HOL−Library.Equipollence
begin

The purpose of this theory is to axiomatize, using locales, a notion of “small set” that
is polymorphic over types and that is preserved by certain set-theoretic constructions in
the way we would usually expect. We first observe that we cannot simply define such
a notion within normal HOL, because HOL does not permit us to quantify over types,
nor does it permit us to show the existence of a single type “large enough” to admit sets
of all cardinalities that would result, say, by iterating the application of the powerset
operator starting with some infinite set. So any way of defining “smallness” is going to
require extending HOL in some way. Note that this is exactly what is already done in
the article [2], which axiomatizes a particular type V and then defines a polymorphic
function small using the properties of that type. However, we would prefer to have a
notion of smallness that is not tied to one particular type or construction.

Ideally, what we would like to do is to define a locale smallness, whose assumptions
express closure properties that we would like to hold for a function small :: ′a set ⇒
bool. This does not quite work, though, because the types involved in locale assumptions
are essentially fixed, so that the function small could not be applied polymorphically. A
workaround is to have the locale assumption express closure properties of a function sml
:: ′b ⇒ bool, where type ′b is essentially fixed, and then to define within the locale context
the actually polymorphic function small :: ′a ⇒ bool, which extends sml by equipollence
to an arbitrary type ′a. This is essentially what is done in [2], except rather than basing
the definition on a notion of smallness derived from a particular type V we are defining
a locale that takes the type and associated basic notion of smallness as a parameter.

In the development here we have defined a basic smallness locale, along with several
extensions that express various collections of closure properties. It is not yet clear how
useful this level of generality might turn out to be in practice, however at the very least,
this allows us to segregate the property “the set of natural number is small” from the
others. This allows us to consider two interpretations for “category of small sets and
functions”; one of which only has objects corresponding to finite sets and the other of

9

which also has objects corresponding to infinite sets.

2.1 Basic Notions
Here we define the base locale smallness, which takes as a parameter a function sml ::
′a set ⇒ bool that defines a basic notion of smallness at some fixed type, and extends
this basic notion by equipollence to arbitrary types. We assume that the basic notion of
smallness sml given as a parameter already respects equipollence, so that small and sml
coincide at type ′a.

locale smallness =
fixes sml :: ′V set ⇒ bool
assumes lepoll-small-ax: [[sml X ; lepoll Y X]] =⇒ sml Y
begin

definition small :: ′a set ⇒ bool
where small X ≡ ∃X0. sml X0 ∧ X ≈ X0

lemma smallI :
assumes sml X0 and X ≈ X0

shows small X
using assms small-def by auto

lemma smallE :
assumes small X
and

∧
X0. [[sml X0; X ≈ X0]] =⇒ T

shows T
using assms small-def by blast

lemma small-iff-sml:
shows small X ←→ sml X

using eqpoll-imp-lepoll small-def lepoll-small-ax by blast

lemma lepoll-small:
assumes small X and lepoll Y X
shows small Y

by (metis assms(1 ,2) eqpoll-sym image-lepoll inj-on-image-eqpoll-self
lepoll-def ′ lepoll-small-ax lepoll-trans lepoll-trans2 small-def)

lemma smaller-than-small:
assumes small X and Y ⊆ X
shows small Y

using assms lepoll-small subset-imp-lepoll by blast

lemma small-image [intro, simp]:
assumes small X
shows small (f ‘ X)

using assms small-def image-lepoll lepoll-small by blast

10

lemma small-image-iff [simp]: inj-on f A =⇒ small (f ‘ A) ←→ small A
by (metis small-image the-inv-into-onto)

lemma small-Collect [simp]: small X =⇒ small {x ∈ X . P x}
by (simp add: smaller-than-small subset-imp-lepoll)

end

2.2 Smallness of Finite Sets
The locale small-finite is satisfied by notions of smallness that admit small sets of arbi-
trary finite cardinality.

locale small-finite =
smallness +

assumes small-finite-ax: ∃Y . sml Y ∧ eqpoll {1 ..n :: nat} Y
begin

lemma small-finite:
shows finite X =⇒ small X

using small-finite-ax
by (meson eqpoll-def eqpoll-sym eqpoll-trans ex-bij-betw-nat-finite-1 small-def)

lemma small-insert:
assumes small X
shows small (insert a X)

by (meson assms eqpoll-imp-lepoll finite.insertI infinite-insert-eqpoll
small-finite lepoll-small)

lemma small-insert-iff [iff]: small (insert a X) ←→ small X
by (meson small-insert smaller-than-small subset-imp-lepoll subset-insertI)

end

2.3 Smallness of Binary Products
The locale small-product is satisfied by notions of smallness that are preserved under
cartesian product.

locale small-product =
smallness +

assumes small-product-ax: [[sml X ; sml Y]] =⇒ ∃Z . sml Z ∧ eqpoll (X × Y) Z
begin

lemma small-product [simp]:
assumes small X small Y shows small (X × Y)

by (metis assms(1 ,2) eqpoll-trans small-def small-product-ax times-eqpoll-cong)

11

end

2.4 Smallness of Sums
The locale small-sum is satisfied by notions of smallness that are preserved under the
formation of small-indexed unions.

locale small-sum =
small-finite +

assumes small-sum-ax: [[sml X ;
∧

x. x ∈ X =⇒ sml (F x)]]
=⇒ ∃U . sml U ∧ eqpoll (Sigma X F) U

begin

lemma small-binary-sum:
assumes small X and small Y
shows small (({False} × X) ∪ ({True} × Y))
proof −

obtain X0 % where X0: sml X0 ∧ bij-betw % X X0

using assms(1) small-def eqpoll-def by blast
obtain Y 0 σ where Y 0: sml Y 0 ∧ bij-betw σ Y Y 0

using assms(2) small-def eqpoll-def by blast
obtain B0 β where B0: sml B0 ∧

bij-betw β {None, Some ({} :: ′b set)} B0

by (metis eqpoll-def finite.emptyI smallE small-finite.small-finite
small-finite.small-insert-iff small-finite-axioms)

let ?False = β None and ?True = β (Some {})
have ne: ?False 6= ?True

by (metis B0 bij-betw-inv-into-left insertCI option.discI)
let ?ι = λz. if fst z = False then (?False, % (snd z)) else (?True, σ (snd z))
have small (({?False} × X0) ∪ ({?True} × Y 0))
proof −

have Sigma B0 (λx. if x = ?False then X0 else Y 0) =
({?False} × X0) ∪ ({?True} × Y 0)

proof
show Sigma B0 (λx. if x = ?False then X0 else Y 0) ⊆

({?False} × X0) ∪ ({?True} × Y 0)
proof

fix bx
assume bx: bx ∈ Sigma B0 (λx. if x = ?False then X0 else Y 0)
have fst bx = ?False ∨ fst bx = ?True

using B0 bij-betw-imp-surj-on bx by fastforce
moreover have fst bx = ?False =⇒ snd bx ∈ X0

using bx by force
moreover have fst bx 6= ?False =⇒ snd bx ∈ Y 0

using bx by force
ultimately show bx ∈ ({?False} × X0) ∪ ({?True} × Y 0)

by (metis Un-iff insertCI mem-Times-iff)
qed
show ({?False} × X0) ∪ ({?True} × Y 0) ⊆

12

Sigma B0 (λx. if x = ?False then X0 else Y 0)
using B0 bij-betw-apply ne by fastforce

qed
moreover have small (Sigma B0 (λx. if x = ?False then X0 else Y 0))

using X0 Y 0 B0 small-sum-ax small-def by force
ultimately show ?thesis by auto

qed
moreover have bij-betw ?ι

(({False} × X) ∪ ({True} × Y))
(({?False} × X0) ∪ ({?True} × Y 0))

proof (intro bij-betwI)
let ?ι ′ = λz. if fst z = ?False then (False, inv-into X % (snd z))

else (True, inv-into Y σ (snd z))
show ?ι ∈ ({False} × X) ∪ ({True} × Y) → ({?False} × X0) ∪ ({?True} × Y 0)

using X0 Y 0 bij-betw-def
by (auto simp add: bij-betw-apply)

show ?ι ′ ∈ ({?False} × X0) ∪ ({?True} × Y 0) → ({False} × X) ∪ ({True} × Y)
proof

fix z
assume z: z ∈ ({?False} × X0) ∪ ({?True} × Y 0)
show ?ι ′ z ∈ ({False} × X) ∪ ({True} × Y)

using z
by (metis Un-iff X0 Y 0 bij-betw-def inv-into-into mem-Sigma-iff ne prod.collapse

singleton-iff)
qed
show

∧
x. x ∈ {False} × X ∪ {True} × Y =⇒ ?ι ′ (?ι x) = x

proof −
fix x
assume x: x ∈ {False} × X ∪ {True} × Y
have ?ι x ∈ ({?False} × X0) ∪ ({?True} × Y 0)

using X0 Y 0 bij-betwE fst-conv mem-Times-iff x by fastforce
thus ?ι ′ (?ι x) = x

using x X0 Y 0 bij-betw-inv-into-left ne
by auto[1] fastforce+

qed
show

∧
y. y ∈ ({?False} × X0) ∪ ({?True} × Y 0) =⇒ ?ι (?ι ′ y) = y

using X0 Y 0 bij-betw-inv-into-right ne by fastforce
qed
ultimately show ?thesis

by (meson eqpoll-def eqpoll-trans small-def)
qed

lemma small-union:
assumes X : small X and Y : small Y
shows small (X ∪ Y)
proof −

have lepoll (X ∪ Y) (({False} × X) ∪ ({True} × Y))
proof −

let ?ι = λz. if z ∈ X then (False, z) else (True, z)

13

have ?ι ∈ X ∪ Y → ({False} × X) ∪ ({True} × Y) ∧ inj-on ?ι (X ∪ Y)
by (simp add: inj-on-def)

thus ?thesis
using lepoll-def ′ by blast

qed
moreover have small (({False} × X) ∪ ({True} × Y))

using assms small-binary-sum by blast
ultimately show ?thesis

using lepoll-small by blast
qed

lemma small-Union-spc:
assumes A0: sml A0 and B:

∧
x. x ∈ A0 =⇒ small (B x)

shows small (
⋃

x∈A0. B x)
proof −

have 1 : ∃B0. ∀ x. x ∈ A0 −→ sml (B0 x) ∧ eqpoll (B x) (B0 x)
using A0 B small-def by meson

obtain B0 where B0:
∧

x. x ∈ A0 =⇒ sml (B0 x) ∧ eqpoll (B0 x) (B x)
using assms 1 eqpoll-sym by blast

have 2 : ∃σ. ∀ x. x ∈ A0 −→ bij-betw (σ x) (B0 x) (B x)
using B0 eqpoll-def
by (meson ‹

∧
x. x ∈ A0 =⇒ sml (B0 x) ∧ B0 x ≈ B x› eqpoll-def)

obtain σ where σ:
∧

x. x ∈ A0 =⇒ bij-betw (σ x) (B0 x) (B x)
using 2 by blast

have small (Sigma A0 B0)
using assms small-sum-ax [of A0 B0] B0 small-def by blast

moreover have lepoll (
⋃

x∈A0. B x) (Sigma A0 B0)
proof −

have (λz. σ (fst z) (snd z)) ‘ Sigma A0 B0 = (
⋃

x∈A0. B x)
proof

show (λz. σ (fst z) (snd z)) ‘ Sigma A0 B0 ⊆
⋃

(B ‘ A0)
unfolding Sigma-def
using σ bij-betwE by fastforce

show
⋃

(B ‘ A0) ⊆ (λz. σ (fst z) (snd z)) ‘ Sigma A0 B0

proof
fix z
assume z: z ∈ (

⋃
(B ‘ A0))

obtain x where x: x ∈ A0 ∧ z ∈ B x
using z by blast

have (x, inv-into (B0 x) (σ x) z) ∈ Sigma A0 B0

by (metis SigmaI σ bij-betw-def inv-into-into x)
moreover have (λz. σ (fst z) (snd z)) (x, inv-into (B0 x) (σ x) z) = z

using σ bij-betw-inv-into-right x by fastforce
ultimately show z ∈ (λz. σ (fst z) (snd z)) ‘ Sigma A0 B0

by force
qed

qed
thus ?thesis

by (metis image-lepoll)

14

qed
ultimately show ?thesis

using lepoll-small by blast
qed

lemma small-Union [simp, intro]:
assumes A: small A and B:

∧
x. x ∈ A =⇒ small (B x)

shows small (
⋃

x∈A. B x)
proof −

obtain A0 % where A0: sml A0 ∧ bij-betw % A0 A
using assms(1) small-def eqpoll-def eqpoll-sym by blast

have eqpoll (
⋃

x∈A. B x) (
⋃

x∈A0. (B ◦ %) x)
by (metis A0 bij-betw-def eqpoll-refl image-comp)

moreover have small (
⋃

x∈A0. (B ◦ %) x)
by (metis A0 B bij-betwE comp-apply small-Union-spc)

ultimately show ?thesis
using eqpoll-imp-lepoll lepoll-small by blast

qed

The small-sum locale subsumes the small-product locale, in the sense that any notion
of smallness that satisfies small-sum also satisfies small-product.

sublocale small-product
proof

show
∧

X Y . [[sml X ; sml Y]] =⇒ ∃Z . sml Z ∧ X × Y ≈ Z
by (simp add: small-sum-ax)

qed

end

2.5 Smallness of Powersets
The locale small-powerset is satisfied by notions of smallness for which the set of all
subsets of a small set is again small.

locale small-powerset =
smallness +

assumes small-powerset-ax: sml X =⇒ ∃PX . sml PX ∧ eqpoll (Pow X) PX
begin

lemma small-powerset:
assumes small X
shows small (Pow X)

using assms small-powerset-ax
by (meson bij-betw-Pow eqpoll-def eqpoll-trans small-def)

lemma large-UNIV :
shows ¬ small (UNIV :: ′a set)

using small-powerset-ax Cantors-theorem
by (metis Pow-UNIV UNIV-I eqpoll-iff-bijections small-iff-sml surjI)

15

end

2.6 Smallness of the Set of Natural Numbers
The locale small-nat is satisfied by notions of smallness for which the set of natural
numbers is small.

locale small-nat =
smallness +

assumes small-nat-ax: ∃X . sml X ∧ eqpoll X (UNIV :: nat set)
begin

lemma small-nat:
shows small (UNIV :: nat set)

using small-nat-ax small-def eqpoll-sym by auto

end

2.7 Smallness of Function Spaces
The objective of this section is to define a locale that is satisfied by notions of smallness
for which “the set of functions between two small sets is small.” This is complicated
in HOL by the requirement that all functions be total, which forces us to define the
value of a function at points outside of what we would consider to be its domain. If
we don’t impose some restriction on the values taken on by a function outside of its
domain, then the set of functions between a domain and codomain set could be large,
even if the domain and codomain sets themselves are small. We could limit the possible
variation by restricting our consideration to “extensional” functions; i.e. those that take
on a particular default value outside of their domain, but it becomes awkward if we have
to make an a priori choice of what this value should be.

The approach we take here is to define the notion of a “popular value” of a function.
This will be a value, in the function’s range, whose preimage is a large set. The idea
here is that the default values of extensional functions will typically have their default
values as popular values (though this is not necessarily the case, as a function whose
domain type is small will not have any popular values according to this definition). We
then define a “small function” to be a function whose range is a small set and which
has at most one popular value. The “essential domain” of small function is the set of
arguments on which the value of the function is not a popular value. Then we can
consistently require of a smallness notion that, if A and B are small sets, that the set of
functions whose essential domains are contained in A and whose ranges are contained in
B, is again small.

2.7.1 Small Functions
context smallness

16

begin

abbreviation popular-value :: (′b ⇒ ′c) ⇒ ′c ⇒ bool
where popular-value F y ≡ ¬ small {x. F x = y}

definition some-popular-value :: (′b ⇒ ′c) ⇒ ′c
where some-popular-value F ≡ SOME y. popular-value F y

lemma popular-value-some-popular-value:
assumes ∃ y. popular-value F y
shows popular-value F (some-popular-value F)

using assms someI-ex [of λy. popular-value F y] some-popular-value-def by metis

abbreviation at-most-one-popular-value
where at-most-one-popular-value F ≡ ∃≤1 y. popular-value F y

definition small-function
where small-function F ≡ small (range F) ∧ at-most-one-popular-value F

lemma small-functionI [intro]:
assumes small (range f) and at-most-one-popular-value f
shows small-function f

using assms small-function-def by blast

lemma small-functionD [dest]:
assumes small-function f
shows small (range f) and at-most-one-popular-value f

using assms small-function-def by auto

end

If there are small sets of arbitrarily large finite cardinality, then the preimage of a
popular value of a function must be an infinite set (in particular, it must be nonempty,
since the empty set must be small). We can derive various useful consequences of this
fairly lax assumption.

context small-finite
begin

lemma popular-value-in-range:
assumes popular-value F v
shows v ∈ range F

using assms not-finite-existsD small-finite by auto

lemma small-function-const:
shows small-function (λx. y)

by (auto simp add: Uniq-def small-finite)

definition inv-intoE

where inv-intoE X f ≡ λy. if y ∈ f ‘ X then inv-into X f y

17

else SOME x. popular-value f (f x)

lemma small-function-inv-intoE :
assumes small-function f and inj-on f X
shows small-function (inv-intoE X f)
proof

show small (range (inv-intoE X f))
proof −

have small X
by (meson assms(1 ,2) small-functionD(1) small-image-iff smaller-than-small

subset-UNIV subset-image-iff)
moreover have range (inv-intoE X f) ⊆ X ∪ {SOME x. popular-value f (f x)}

unfolding inv-intoE-def
using assms(2) inf-sup-aci(5) by auto

ultimately show ?thesis
using smaller-than-small by auto

qed
show at-most-one-popular-value (inv-intoE X f)
proof −

have
∧

x. popular-value (inv-intoE X f) x =⇒ x = (SOME x. popular-value f (f x))
proof −

fix x
assume x: popular-value (inv-intoE X f) x
have f x ∈ {y. y ∈ f ‘ X ∧ x = inv-into X f y} ∨ x = (SOME x. popular-value f (f x))

using assms x
unfolding inv-intoE-def
using not-finite-existsD small-finite by fastforce

moreover have x 6= (SOME x. popular-value f (f x)) =⇒
f x /∈ {y. y ∈ f ‘ X ∧ x = inv-into X f y}

proof −
assume 1 : x 6= (SOME x. popular-value f (f x))
have small {y. y ∈ f ‘ X ∧ x = inv-into X f y}

using assms
by (metis (no-types, lifting) image-subset-iff mem-Collect-eq rangeI

small-functionD(1) smaller-than-small subsetI)
thus ?thesis

using x 1
unfolding inv-intoE-def
by (simp add: Collect-mono smallness.smaller-than-small smallness-axioms)

qed
ultimately show x = (SOME x. popular-value f (f x)) by blast

qed
thus ?thesis

using Uniq-def by blast
qed

qed

end

18

context small-sum
begin

lemma small-function-comp:
assumes small-function f and small-function g
shows small-function (g ◦ f)
proof

show small (range (g ◦ f))
by (metis assms(1) fun.set-map small-image small-functionD(1))

show at-most-one-popular-value (g ◦ f)
proof −

have ∗:
∧

z. popular-value (g ◦ f) z =⇒ ∃ y. popular-value f y ∧ g y = z
proof −

fix z
assume z: popular-value (g ◦ f) z
have ¬ small {x. g (f x) = z}

using z by auto
moreover have {x. g (f x) = z} = (

⋃
y∈range f ∩ {y. g y = z}. {x. f x = y})

by auto
moreover have small (range f ∩ {y. g y = z})

using assms(1) small-functionD(1) smaller-than-small by force
ultimately have ∃ y. y ∈ range f ∩ {y. g y = z} ∧ popular-value f y

by auto
thus ∃ y. popular-value f y ∧ g y = z by blast

qed
show ?thesis
proof

fix y y ′

assume y: popular-value (g ◦ f) y and y ′: popular-value (g ◦ f) y ′

have ∃ x. popular-value f x ∧ g x = y
using y ∗ by blast

moreover have ∃ x. popular-value f x ∧ g x = y ′

using y ′ ∗ by blast
ultimately show y = y ′

using assms(2)
by (metis (mono-tags, lifting) assms(1) small-functionD(2) the1-equality ′)

qed
qed

qed

In the present context, a small function has a popular value if and only if its domain
type is large. This simplifies special cases that concern whether or not a function happens
to have any popular value at all.

lemma ex-popular-value-iff :
assumes small-function (F :: ′b ⇒ ′c)
shows (∃ v. popular-value F v) ←→ ¬ small (UNIV :: ′b set)
proof

show ∃ v. popular-value F v =⇒ ¬ small (UNIV :: ′b set)
using smaller-than-small by blast

19

have ¬ (∃ v. popular-value F v) =⇒ small (UNIV :: ′b set)
proof −

assume ¬ (∃ y. popular-value F y)
hence

∧
y. small {x. F x = y}

by blast
moreover have UNIV = (

⋃
y∈range F . {x. F x = y})

by auto
ultimately show small (UNIV :: ′b set)

using assms(1) small-function-def by (metis small-Union)
qed
thus ¬ small (UNIV :: ′b set) =⇒ ∃ v. popular-value F v

by blast
qed

A consequence is that the preimage of the set of all unpopular values of a function is
small.

lemma small-preimage-unpopular :
fixes F :: ′b ⇒ ′c
assumes small-function F
shows small {x. F x 6= some-popular-value F}
proof (cases ∃ y. popular-value F y)

assume 1 : ¬ (∃ y. popular-value F y)
thus ?thesis

using assms ex-popular-value-iff smaller-than-small by blast
next
assume 1 : ∃ y. popular-value F y
have popular-value F (some-popular-value F)

using 1 popular-value-some-popular-value by metis
hence 2 :

∧
y. y 6= some-popular-value F =⇒ small {x. F x = y}

using assms
unfolding small-function-def
by (meson Uniq-D)

moreover have {x. F x 6= some-popular-value F} =
(
⋃

y∈{y. y ∈ range F ∧ y 6= some-popular-value F}. {x. F x = y})
by auto

ultimately show ?thesis
using assms
unfolding small-function-def
by auto

qed

Here we are working toward showing that a small function has a “small encoding”,
which consists of its graph for arguments that map to non-popular values, paired with
the single popular value it has on all other arguments.

abbreviation SF-Dom
where SF-Dom f ≡ {x. ¬ popular-value f (f x)}

abbreviation SF-Rng
where SF-Rng f ≡ f ‘ SF-Dom f

20

abbreviation SF-Grph
where SF-Grph f ≡ (λx. (x, f x)) ‘ SF-Dom f

abbreviation the-PV
where the-PV f ≡ THE y. popular-value f y

lemma small-SF-Dom:
assumes small-function f
shows small (SF-Dom f)
proof −

let ?F = λy. {x. f x = y}
have SF-Dom f = (

⋃
y ∈ SF-Rng f . ?F y)

proof
show SF-Dom f ⊆ (

⋃
y ∈ SF-Rng f . ?F y)

by blast
show (

⋃
y ∈ SF-Rng f . ?F y) ⊆ SF-Dom f

proof
fix x
assume x: x ∈ (

⋃
y ∈ SF-Rng f . ?F y)

obtain S y where S : x ∈ S ∧ y ∈ SF-Rng f ∧ S = {x. f x = y}
using x by force

show x ∈ SF-Dom f
using S by fastforce

qed
qed
moreover have

∧
y. y ∈ SF-Rng f =⇒ small (?F y)

using assms by blast
ultimately show ?thesis

using small-Union [of SF-Rng f ?F]
by (metis assms image-mono small-functionD(1) smaller-than-small subset-UNIV)

qed

lemma small-SF-Rng:
assumes small-function f
shows small (SF-Rng f)

using assms small-SF-Dom by blast

lemma small-SF-Grph:
assumes small-function f
shows small (SF-Grph f)

using assms small-SF-Dom by blast

lemma small-function-expansion:
assumes small-function f
shows f = (λx. if x ∈ fst ‘ SF-Grph f then (THE y. (x, y) ∈ SF-Grph f) else the-PV f)
proof

fix x
show f x = (if x ∈ fst ‘ SF-Grph f then (THE y. (x, y) ∈ SF-Grph f) else the-PV f)

21

proof (cases x ∈ SF-Dom f)
show x /∈ SF-Dom f =⇒ ?thesis
proof −

assume x /∈ SF-Dom f
hence f x = the-PV f

using assms the1-equality ′ by fastforce
thus ?thesis

by (simp add: image-iff)
qed
show x ∈ SF-Dom f =⇒ ?thesis

by (simp add: image-iff)
qed

qed

end

2.7.2 Small Funcsets
locale small-funcset =

small-sum +
small-powerset

begin

For a suitable definition of “between”, the set of small functions between small sets
is small.

lemma small-funcset:
assumes small X and small Y
shows small {f . small-function f ∧ SF-Dom f ⊆ X ∧ range f ⊆ Y }
proof −

let ?Rep = λf . (SF-Grph f , Collect (popular-value f))
let ?SF = {f . small-function f ∧ SF-Dom f ⊆ X ∧ range f ⊆ Y }
have ∗:

∧
f x. [[f ∈ ?SF ; x /∈ SF-Dom f]] =⇒ {f x} = Collect (popular-value f)

proof −
fix f x
assume f : f ∈ ?SF and x: x /∈ SF-Dom f
show {f x} = Collect (popular-value f)
proof −

have 1 : popular-value f (f x)
using x by blast

have ∃ !y. popular-value f y
proof −

have ∃ y. popular-value f y
using 1 by blast

moreover have
∧

y y ′. [[popular-value f y; popular-value f y ′]] =⇒ y = y ′

using f Uniq-def small-functionD(2)
by (metis (mono-tags, lifting) mem-Collect-eq)

ultimately show ?thesis by blast
qed
thus ?thesis

22

using f 1 by blast
qed

qed
have small (?Rep ‘ ?SF)
proof −

have ?Rep ∈ ?SF → Pow (X × Y) × Pow Y
using popular-value-in-range by fastforce

moreover have small (Pow (X × Y) × Pow Y)
using assms by (simp add: small-powerset)

ultimately show ?thesis
by (simp add: image-subset-iff-funcset smaller-than-small)

qed
moreover have inj-on ?Rep ?SF
proof

fix f g :: ′b ⇒ ′c
assume f : f ∈ ?SF and g: g ∈ ?SF
assume eq: ?Rep f = ?Rep g
show f = g
proof

fix x
show f x = g x
proof (cases x ∈ SF-Dom f)

show x /∈ SF-Dom f =⇒ ?thesis
proof −

assume x: x /∈ SF-Dom f
have {f x} = Collect (popular-value f)

using f x ∗ by blast
also have ... = Collect (popular-value g)

using eq by force
also have ... = {g x}

using g x eq ∗ [of g x] by blast
finally show f x = g x by blast

qed
show x ∈ SF-Dom f =⇒ ?thesis

using f g eq small-function-expansion by blast
qed

qed
qed
ultimately show ?thesis

using small-image-iff by blast
qed

end

2.8 Smallness of Sets of Lists
A notion of smallness that is preserved under sum and powerset, and in addition declares
the set of natural numbers to be small, is sufficiently inclusive as to include any set whose

23

existence is provable in ZFC. So it is not a surprise that we can show, for example, that
the set of lists with elements in a given small set is again small. We do not use this
particular fact in the present development, but we will have a use for it in a subsequent
article.

locale small-funcset-and-nat =
small-funcset +
small-nat

begin

definition list-as-fn :: ′b list ⇒ nat ⇒ ′b option
where list-as-fn l n = (if n ≥ length l then None else Some (l ! n))

lemma inj-list-as-fn:
shows inj list-as-fn
proof

fix x y :: ′b list
have 1 :

∧
l :: ′b list. list-as-fn l (length l) = None

unfolding list-as-fn-def by simp
assume eq: list-as-fn x = list-as-fn y
have length x = length y

using eq 1
by (metis (no-types, lifting) list-as-fn-def nle-le not-Some-eq)

moreover have
∧

n. n < length x =⇒ x ! n = y ! n
using eq list-as-fn-def
by (metis calculation leD option.inject)

ultimately show x = y
using nth-equalityI by blast

qed

lemma small-function-list-as-fn:
shows small-function (list-as-fn l)

using Uniq-def small-function-def small-nat smaller-than-small by fastforce

lemma small-listset:
assumes small Y
shows small {l. List.set l ⊆ Y }
proof −

let ?SF = λf . small-function f ∧ SF-Dom f ⊆ (UNIV :: nat set) ∧
range f ⊆ Some ‘ Y ∪ {None}

have list-as-fn ‘ {l. List.set l ⊆ Y } ⊆ Collect ?SF
proof

fix f
assume f : f ∈ list-as-fn ‘ {l. List.set l ⊆ Y }
show f ∈ Collect ?SF

using f small-function-list-as-fn
unfolding list-as-fn-def
apply auto
by fastforce

qed

24

moreover have small (Collect ?SF)
using assms small-nat small-funcset [of UNIV :: nat set Some ‘ Y ∪ {None}]
by auto

ultimately show ?thesis
using small-image-iff [of list-as-fn {l. list.set l ⊆ Y }] inj-list-as-fn

smaller-than-small
by (metis (mono-tags, lifting) injD inj-onI)

qed

end

end

25

Chapter 3

Universe

theory Universe
imports Smallness
begin

This section defines a “universe” to be a set univ that admits embeddings of various
other sets, typically the result of constructions on univ itself. These embeddings allow
us to perform constructions on univ that result in sets at higher types, and then to
encode the results of these constructions back down into univ. An example application
is showing that a category admits products: given objects a and b in a category whose
arrows form a universe univ, for each object x we may form the cartesian product hom
x a × hom x b ⊆ univ × univ and then use an embedding of univ × univ in univ (i.e. a
pairing function) to map the result back into univ. Assuming we can show that the
resulting set has the proper structure to be the set of arrows of an object of the category,
we obtain an object a × b with hom x (a × b) ∼= hom x a × hom x b, as required for a
product object in a category.

3.1 Embeddings
Here we define some basic notions pertaining to injections into a set univ.

locale embedding =
fixes univ :: ′U set
begin

abbreviation is-embedding-of
where is-embedding-of ι X ≡ inj-on ι X ∧ ι ‘ X ⊆ univ

definition some-embedding-of
where some-embedding-of X ≡ SOME ι. is-embedding-of ι X

abbreviation embeds
where embeds X ≡ ∃ ι. is-embedding-of ι X

26

lemma is-embedding-of-some-embedding-of :
assumes embeds X
shows is-embedding-of (some-embedding-of X) X

unfolding some-embedding-of-def
using assms someI-ex [of λι. is-embedding-of ι X] by force

lemma embeds-subset:
assumes embeds X and Y ⊆ X
shows embeds Y

using assms
by (meson dual-order .trans image-mono inj-on-subset)

end

3.2 Lifting
The locale lifting axiomatizes a set univ that embeds itself, together with an additional
element. This is equivalent to univ being infinite.

locale lifting =
embedding univ

for univ :: ′U set +
assumes embeds-lift: embeds ({None} ∪ Some ‘ univ)
begin

definition some-lifting :: ′U option ⇒ ′U
where some-lifting ≡ some-embedding-of ({None} ∪ Some ‘ univ)

lemma some-lifting-is-embedding:
shows is-embedding-of some-lifting ({None} ∪ Some ‘ univ)

unfolding some-lifting-def
using is-embedding-of-some-embedding-of embeds-lift by blast

lemma some-lifting-in-univ [intro, simp]:
shows some-lifting None ∈ univ
and x ∈ univ =⇒ some-lifting (Some x) ∈ univ

using some-lifting-is-embedding by auto

lemma some-lifting-cancel:
shows [[x ∈ univ; some-lifting (Some x) = some-lifting None]] =⇒ False
and [[x ∈ univ; x ′ ∈ univ; some-lifting (Some x) = some-lifting (Some x ′)]] =⇒ x = x ′

using some-lifting-is-embedding
apply (meson Un-iff imageI inj-on-contraD insertI1 option.simps(3))

using some-lifting-is-embedding
by (meson UnI2 imageI inj-on-contraD option.inject)

lemma infinite-univ:
shows infinite univ

by (metis None-notin-image-Some card-image card-inj-on-le card-insert-disjoint

27

embeds-lift finite-imageI inj-Some insert-is-Un le-imp-less-Suc linorder-neq-iff)

lemma embeds-bool:
shows embeds (UNIV :: bool set)

by (metis comp-inj-on ex-inj image-comp image-mono infinite-univ
infinite-iff-countable-subset inj-on-subset subset-trans top-greatest)

lemma embeds-nat:
shows embeds (UNIV :: nat set)

by (metis infinite-univ infinite-iff-countable-subset)

end

3.3 Pairing
The locale pairing axiomatizes a set univ that embeds univ × univ.

locale pairing =
embedding univ

for univ :: ′U set +
assumes embeds-pairs: embeds (univ × univ)
begin

definition some-pairing :: ′U ∗ ′U ⇒ ′U
where some-pairing ≡ some-embedding-of (univ × univ)

lemma some-pairing-is-embedding:
shows is-embedding-of some-pairing (univ × univ)

unfolding some-pairing-def
using embeds-pairs is-embedding-of-some-embedding-of by blast

abbreviation pair
where pair x y ≡ some-pairing (x, y)

abbreviation is-pair :: ′U ⇒ bool
where is-pair x ≡ x ∈ some-pairing ‘ (univ × univ)

definition first :: ′U ⇒ ′U
where first x ≡ fst (inv-into (univ × univ) some-pairing x)

definition second :: ′U ⇒ ′U
where second x = snd (inv-into (univ × univ) some-pairing x)

lemma first-conv:
assumes x ∈ univ and y ∈ univ
shows first (pair x y) = x

using assms first-def some-pairing-is-embedding
by (metis (mono-tags, lifting) fst-eqD inv-into-f-f mem-Times-iff snd-eqD)

28

lemma second-conv:
assumes x ∈ univ and y ∈ univ
shows second (pair x y) = y

using assms second-def some-pairing-is-embedding
by (metis (mono-tags, lifting) fst-eqD inv-into-f-f mem-Times-iff snd-eqD)

lemma pair-conv:
assumes is-pair x
shows pair (first x) (second x) = x

using assms first-def second-def embeds-pairs is-embedding-of-some-embedding-of
by (simp add: f-inv-into-f)

lemma some-pairing-in-univ [intro, simp]:
shows [[x ∈ univ; y ∈ univ]] =⇒ pair x y ∈ univ

using some-pairing-is-embedding by blast

lemma some-pairing-cancel:
shows [[x ∈ univ; x ′ ∈ univ; y ∈ univ; y ′ ∈ univ; pair x y = pair x ′ y ′]]

=⇒ x = x ′ ∧ y = y ′

using embeds-pairs
by (metis first-conv second-conv)

end

3.4 Powering
The powering locale axiomatizes a universe that embeds the set of all its “small” subsets.
Obviously, some condition on the subsets is required because (by Cantor’s Theorem) it
is not possible for a set to embed the set of all its subsets. The concept of “smallness”
used here is not fixed, but rather is taken as a parameter.

locale powering =
embedding univ +
smallness sml

for sml :: ′V set ⇒ bool
and univ :: ′U set +
assumes embeds-small-sets: embeds {X . X ⊆ univ ∧ small X}
begin

abbreviation some-embedding-of-small-sets :: (′U set) ⇒ ′U
where some-embedding-of-small-sets ≡ some-embedding-of {X . X ⊆ univ ∧ small X}

definition emb-set :: (′U set) ⇒ ′U
where emb-set ≡ some-embedding-of-small-sets

lemma emb-set-is-embedding:
shows is-embedding-of emb-set {X . X ⊆ univ ∧ small X}

unfolding emb-set-def
using embeds-small-sets is-embedding-of-some-embedding-of by blast

29

lemma emb-set-in-univ [intro, simp]:
shows [[X ⊆ univ; small X]] =⇒ emb-set X ∈ univ

using emb-set-is-embedding by blast

lemma emb-set-cancel:
shows [[X ⊆ univ; small X ; X ′ ⊆ univ; small X ′; emb-set X = emb-set X ′]] =⇒ X = X ′

using emb-set-is-embedding
by (metis (mono-tags, lifting) inj-onD mem-Collect-eq)

If univ embeds the collection of all its small subsets, then univ itself must be large.
lemma large-univ:
shows ¬ small univ
proof −

have small univ =⇒ False
proof −

assume small: small univ
have embeds (Pow univ)

using small smaller-than-small embeds-small-sets
by (metis (no-types, lifting) CollectI PowD embeds-subset subsetI)

thus False
using Cantors-theorem
by (metis Pow-not-empty inj-on-iff-surj)

qed
thus ?thesis by blast

qed

end

3.5 Tupling
The tupling locale axiomatizes a set univ that embeds the set of all “small extensional
functions” on its elements. Here, the notion of “extensional function” is parametrized
by the default value null produced by such a function when it is applied to an argument
outside of univ. The default value null is neither assumed to be in univ nor outside of
it.

locale tupling =
lifting univ +
pairing univ +
powering sml univ +
small-funcset sml

for sml :: ′V set ⇒ bool
and univ :: ′U set
and null :: ′U
begin

EF is the set of extensional functions on univ. These map univ to univ ∪ {null} and
map values outside of univ to null. The default value null might or might not be an

30

element of univ. The set SEF is the subset of EF consisting of those functions that are
“small functions”.

definition EF
where EF ≡ {f . f ‘ univ ⊆ univ ∪ {null} ∧ (∀ x. x /∈ univ −→ f x = null)}

abbreviation SEF
where SEF ≡ Collect small-function ∩ EF

lemma EF-apply:
assumes F ∈ EF
shows x ∈ univ =⇒ F x ∈ univ ∪ {null}
and x /∈ univ =⇒ F x = null

using assms
unfolding EF-def by auto

Since univ is large, the set of all values at type ′U must also be large. This implies
that every small extensional function having type ′U as its domain type must have a
popular value.

lemma SEFs-have-popular-value:
assumes F ∈ SEF
shows ∃ v. popular-value F v

using assms ex-popular-value-iff large-UNIV
by (metis Int-iff large-univ mem-Collect-eq smaller-than-small top-greatest)

The following technical lemma uses powering to obtain an encoding of small exten-
sional functions as elements of univ. The idea is that a small extensional function F
mapping univ to univ ∪ {null} can be canonically described by a small subset of univ
× (univ ∪ {null}) consisting of all pairs (x, F x) ⊆ univ × (univ ∪ {null}) for which
F x is not a popular value, together with the single popular value of F taken at other
arguments x not represented by such pairs.

lemma embeds-SEF :
shows embeds SEF
proof (intro exI conjI)

have range-F :
∧

F . F ∈ SEF =⇒ range F ⊆ univ ∪ {null}
unfolding EF-def by blast

let ?lift = some-embedding-of (univ ∪ {null})
have lift: is-embedding-of ?lift (univ ∪ {null})

using embeds-lift is-embedding-of-some-embedding-of
by (metis bij-betw-imp-surj-on infinite-univ infinite-imp-bij-betw2

inj-on-iff-surj insert-not-empty sup-bot.neutr-eq-iff)
have lift-cancel [simp]:

∧
x y. [[x ∈ univ ∪ {null}; y ∈ univ ∪ {null}; ?lift x = ?lift y]]

=⇒ x = y
using lift by (meson UnI1 inj-on-eq-iff)

have 0 :
∧

F . F ∈ SEF =⇒ ?lift (some-popular-value F) ∈ univ
using range-F popular-value-in-range popular-value-some-popular-value

SEFs-have-popular-value
by (metis image-subset-iff lift subset-eq)

have 1 :
∧

F . F ∈ SEF =⇒ small {x ∈ univ. ¬ popular-value F (F x)}

31

by (metis (no-types) CollectD Collect-conj-eq IntE inf-le2 small-SF-Dom
smaller-than-small)

have 2 :
∧

F . F ∈ SEF =⇒
(λa. pair a (?lift (F a))) ‘ {x ∈ univ. ¬ popular-value F (F x)} ⊆ univ

apply auto[1]
by (metis (no-types, lifting) CollectD EF-def Un-commute image-subset-iff insert-is-Un

lift some-pairing-in-univ)
have 3 :

∧
F . F ∈ SEF =⇒

emb-set ((λa. pair a (?lift (F a))) ‘ {x ∈ univ. ¬ popular-value F (F x)})
∈ univ

using 1 2 by blast

let ?e = λF . pair (?lift (some-popular-value F))
(emb-set ((λa. pair a (?lift (F a))) ‘

{x ∈ univ. ¬ popular-value F (F x)}))
show ?e ‘ SEF ⊆ univ

using 0 3 some-pairing-in-univ by blast
show inj-on ?e SEF
proof (intro inj-onI)

fix F F ′ :: ′U ⇒ ′U
assume F : F ∈ SEF
assume F ′: F ′ ∈ SEF
assume eq: ?e F = ?e F ′

have ∗:
∧

x. x ∈ univ =⇒
first (pair x (?lift (F x))) = x ∧
second (pair x (?lift (F x))) = ?lift (F x) ∧
first (pair x (?lift (F ′ x))) = x ∧
second (pair x (?lift (F ′ x))) = ?lift (F ′ x)

by (meson F F ′ first-conv image-subset-iff lift range-F range-subsetD second-conv)
have 4 : ?lift (some-popular-value F) = ?lift (some-popular-value F ′) ∧

emb-set ((λa. pair a (?lift (F a))) ‘ {x ∈ univ. ¬ popular-value F (F x)}) =
emb-set ((λa. pair a (?lift (F ′ a))) ‘ {x ∈ univ. ¬ popular-value F ′ (F ′ x)})

using F F ′ 0 3 eq some-pairing-cancel by meson
have 5 : (λa. pair a (?lift (F a))) ‘ {x ∈ univ. ¬ popular-value F (F x)} =

(λa. pair a (?lift (F ′ a))) ‘ {x ∈ univ. ¬ popular-value F ′ (F ′ x)}
using F F ′ 1 2 4 small-preimage-unpopular smaller-than-small

emb-set-cancel
[of (λa. pair a (?lift (F a))) ‘ {x ∈ univ. ¬ popular-value F (F x)}

(λa. pair a (?lift (F ′ a))) ‘ {x ∈ univ. ¬ popular-value F ′ (F ′ x)}]
by blast

have 6 : {x ∈ univ. ¬ popular-value F (F x)} = {x ∈ univ. ¬ popular-value F ′ (F ′ x)}
proof −

have (λa. first (pair a (?lift (F a)))) ‘ {x ∈ univ. ¬ popular-value F (F x)} =
(λa. first (pair a (?lift (F ′ a)))) ‘ {x ∈ univ. ¬ popular-value F ′ (F ′ x)} ∧
(λa. second (pair a (?lift (F a)))) ‘ {x ∈ univ. ¬ popular-value F (F x)} =
(λa. second (pair a (?lift (F ′ a)))) ‘ {x ∈ univ. ¬ popular-value F ′ (F ′ x)}

using 5 by (metis image-image)
thus ?thesis

using ∗ embeds-pairs is-embedding-of-some-embedding-of by auto

32

qed
have 7 :

∧
x. x ∈ univ ∧ ¬ popular-value F (F x) =⇒ F x = F ′ x

proof −
fix x
assume x: x ∈ univ ∧ ¬ popular-value F (F x)
have ?lift (F x) = ?lift (F ′ x)
proof −

have
∧

y. ((x, y) ∈ (λx. (x, ?lift (F x))) ‘ {x ∈ univ. ¬ popular-value F (F x)}
←→ y = ?lift (F x)) ∧

((x, y) ∈ (λx. (x, ?lift (F ′ x))) ‘ {x ∈ univ. ¬ popular-value F (F x)}
←→ y = ?lift (F ′ x))

using x by blast
moreover have (λx. (x, ?lift (F x))) ‘ {x ∈ univ. ¬ popular-value F (F x)} =

(λx. (x, ?lift (F ′ x))) ‘ {x ∈ univ. ¬ popular-value F (F x)}
proof −

have (λx. (x, ?lift (F x))) ‘ {x ∈ univ. ¬ popular-value F (F x)} =
(λx. (x, ?lift (F ′ x))) ‘ {x ∈ univ. ¬ popular-value F ′ (F ′ x)}

proof −
have (λx. (first (pair x (?lift (F x))), second (pair x (?lift (F x)))))

‘ {x ∈ univ. ¬ popular-value F (F x)} =
(λx. (first (pair x (?lift (F ′ x))), second (pair x (?lift (F ′ x)))))

‘ {x ∈ univ. ¬ popular-value F ′ (F ′ x)}
proof −

have (λx. (first x, second x)) ‘ (λa. pair a (?lift (F a)))
‘ {x ∈ univ. ¬ popular-value F (F x)} =

(λx. (first x, second x)) ‘ (λa. pair a (?lift (F ′ a)))
‘ {x ∈ univ. ¬ popular-value F ′ (F ′ x)}

using 5 by argo
thus ?thesis by blast

qed
thus ?thesis

using ∗ some-pairing-cancel by auto
qed
thus ?thesis

using 6 by blast
qed
ultimately show ?thesis by fastforce

qed
thus F x = F ′ x

by (metis EF-apply(1) F F ′ Int-iff lift-cancel x)
qed
show F = F ′

proof
fix x
show F x = F ′ x
proof (cases x ∈ univ)

case False
show ?thesis

using F F ′ False EF-def

33

by (metis EF-apply(2) IntE)
next
assume x: x ∈ univ
show ?thesis
proof (cases popular-value F (F x))

case False
show ?thesis

using 7 False x by blast
next
case True
show ?thesis
proof −

have F x = some-popular-value F
by (metis (mono-tags, lifting) CollectD Collect-mono F IntE True

small-preimage-unpopular smallness.smaller-than-small smallness-axioms)
moreover have F ′ x = some-popular-value F ′

proof −
have popular-value F ′ (F ′ x)

using True x 6 by blast
thus ?thesis

by (metis (mono-tags, lifting) CollectD Collect-mono F ′ IntE
small-preimage-unpopular smallness.smaller-than-small smallness-axioms)

qed
moreover have some-popular-value F = some-popular-value F ′

using F F ′ 4 calculation lift-cancel range-F range-subsetD
by (metis (no-types, opaque-lifting))

ultimately show ?thesis by auto
qed

qed
qed

qed
qed

qed

definition some-embedding-of-small-functions :: (′U ⇒ ′U) ⇒ ′U
where some-embedding-of-small-functions ≡ some-embedding-of SEF

lemma some-embedding-of-small-functions-is-embedding:
shows is-embedding-of some-embedding-of-small-functions SEF

unfolding some-embedding-of-small-functions-def
using embeds-SEF is-embedding-of-some-embedding-of by blast

lemma some-embedding-of-small-functions-in-univ [intro, simp]:
assumes F ∈ SEF
shows some-embedding-of-small-functions F ∈ univ

using assms some-embedding-of-small-functions-is-embedding by blast

lemma some-embedding-of-small-functions-cancel:
assumes F ∈ SEF and F ′ ∈ SEF

34

and some-embedding-of-small-functions F = some-embedding-of-small-functions F ′

shows F = F ′

using assms some-embedding-of-small-functions-is-embedding
by (meson inj-onD)

end

3.6 Universe
The universe locale axiomatizes a set that is equipped with an embedding of its own
small extensional function space, and in addition the set of natural numbers is required
to be small (i.e. there is a small infinite set).

locale universe =
tupling sml univ null +
small-nat sml

for sml :: ′V set ⇒ bool
and univ :: ′U set
and null :: ′U
begin

For a fixed notion of smallness, the property of being a universe is respected by
equipollence; thus it is a property of the set itself, rather than something that depends
on the ambient type.

lemma is-respected-by-equipollence:
assumes eqpoll univ univ ′

shows universe sml univ ′

proof
obtain γ where γ: bij-betw γ univ univ ′

using assms eqpoll-def by blast
show ∃ ι. inj-on ι ({None} ∪ Some ‘ univ ′) ∧ ι ‘ ({None} ∪ Some ‘ univ ′) ⊆ univ ′

proof −
let ?ι = λ None ⇒ γ (some-lifting None)

| Some x ⇒ γ (some-lifting (Some (inv-into univ γ x)))
have ?ι ‘ ({None} ∪ Some ‘ univ ′) ⊆ univ ′

using γ is-embedding-of-some-embedding-of bij-betw-apply
apply auto[1]
apply fastforce

by (simp add: bij-betw-imp-surj-on inv-into-into)
moreover have inj-on ?ι ({None} ∪ Some ‘ univ ′)
proof

fix x y
assume x: x ∈ {None} ∪ Some ‘ univ ′

assume y: y ∈ {None} ∪ Some ‘ univ ′

assume eq: ?ι x = ?ι y
show x = y

using x y eq γ some-lifting-cancel
apply auto[1]
by (metis bij-betw-def inv-into-f-eq inv-into-into inv-into-injective

35

inv-into-into some-lifting-in-univ(1 ,2))+
qed
ultimately show ?thesis by blast

qed
show ∃ ι. inj-on ι (univ ′ × univ ′) ∧ ι ‘ (univ ′ × univ ′) ⊆ univ ′

proof −
let ?ι = λx. γ (some-pairing (inv-into univ γ (fst x), inv-into univ γ (snd x)))
have ?ι ‘ (univ ′ × univ ′) ⊆ univ ′

proof −
have

∧
x. x ∈ univ ′ × univ ′ =⇒ ?ι x ∈ univ ′

by (metis γ bij-betw-def imageI inv-into-into mem-Times-iff some-pairing-in-univ)
thus ?thesis by blast

qed
moreover have inj-on ?ι (univ ′ × univ ′)
proof

fix x y
assume x: x ∈ univ ′ × univ ′ and y: y ∈ univ ′ × univ ′

assume eq: ?ι x = ?ι y
show x = y
proof −

have pair (inv-into univ γ (fst x)) (inv-into univ γ (snd x)) =
pair (inv-into univ γ (fst y)) (inv-into univ γ (snd y))

proof −
have inv-into univ γ (fst x) ∈ univ ∧ inv-into univ γ (snd x) ∈ univ ∧

inv-into univ γ (fst y) ∈ univ ∧ inv-into univ γ (snd y) ∈ univ
by (metis γ bij-betw-imp-surj-on inv-into-into mem-Times-iff x y)

thus ?thesis
by (metis γ bij-betw-inv-into-left eq some-pairing-in-univ)

qed
hence inv-into univ γ (fst x) = inv-into univ γ (fst y) ∧

inv-into univ γ (snd x) = inv-into univ γ (snd y)
using x y eq γ
by (metis bij-betw-imp-surj-on first-conv inv-into-into mem-Times-iff second-conv)

hence fst x = fst y ∧ snd x = snd y
by (metis (full-types) γ bij-betw-inv-into-right mem-Times-iff x y)

thus x = y
by (simp add: prod-eq-iff)

qed
qed
ultimately show ?thesis by blast

qed
show ∃ ι. inj-on ι {X . X ⊆ univ ′ ∧ small X} ∧ ι ‘ {X . X ⊆ univ ′ ∧ small X} ⊆ univ ′

proof −
let ?ι = λX . γ (emb-set (inv-into univ γ ‘ X))
have ?ι ‘ {X . X ⊆ univ ′ ∧ small X} ⊆ univ ′

proof
fix X ′

assume X ′: X ′ ∈ ?ι ‘ {X . X ⊆ univ ′ ∧ small X}
obtain X where X : X ⊆ univ ′ ∧ small X ∧ ?ι X = X ′

36

using X ′ by blast
have ?ι X ∈ univ ′

by (metis X γ bij-betw-def bij-betw-inv-into imageI image-mono emb-set-in-univ
small-image)

thus X ′ ∈ univ ′

using X by blast
qed
moreover have inj-on ?ι {X . X ⊆ univ ′ ∧ small X}
proof

fix X X ′

assume X : X ∈ {X . X ⊆ univ ′ ∧ small X}
assume X ′: X ′ ∈ {X . X ⊆ univ ′ ∧ small X}
assume eq: ?ι X = ?ι X ′

show X = X ′

proof −
have emb-set (inv-into univ γ ‘ X) = emb-set (inv-into univ γ ‘ X ′)
proof −

have emb-set (inv-into univ γ ‘ X) ∈ univ ∧ emb-set (inv-into univ γ ‘ X ′) ∈ univ
by (metis (no-types, lifting) Int-Collect Int-iff X X ′ γ bij-betw-def

bij-betw-inv-into powering.emb-set-in-univ powering-axioms small-image
subset-image-iff)

thus ?thesis
by (metis γ bij-betw-inv-into-left eq)

qed
hence inv-into univ γ ‘ X = inv-into univ γ ‘ X ′

by (metis (no-types, lifting) Int-Collect Int-iff X X ′ γ bij-betw-def
bij-betw-inv-into powering.emb-set-cancel powering-axioms small-image
subset-image-iff)

thus ?thesis
by (metis X X ′ γ bij-betw-imp-surj-on image-inv-into-cancel mem-Collect-eq)

qed
qed
ultimately show ?thesis by blast

qed
qed

A universe admits an embedding of all lists formed from its elements.
sublocale small-funcset-and-nat ..

fun some-embedding-of-lists :: ′U list ⇒ ′U
where some-embedding-of-lists [] = some-lifting None
| some-embedding-of-lists (x # l) =

some-lifting (Some (some-pairing (x, some-embedding-of-lists l)))

lemma embeds-lists:
shows embeds {l. List.set l ⊆ univ}
and is-embedding-of some-embedding-of-lists {l. List.set l ⊆ univ}
proof −

show is-embedding-of some-embedding-of-lists {l. List.set l ⊆ univ}

37

proof
show ∗: some-embedding-of-lists ‘ {l. list.set l ⊆ univ} ⊆ univ
proof −

have
∧

l. List.set l ⊆ univ =⇒ some-embedding-of-lists l ∈ univ
proof −

fix l
show List.set l ⊆ univ =⇒ some-embedding-of-lists l ∈ univ

by (induct l) auto
qed
thus ?thesis by blast

qed
show inj-on some-embedding-of-lists {l. list.set l ⊆ univ}
proof −

have
∧

n l m. [[l ∈ {l. list.set l ⊆ univ ∧ length l ≤ n};
m ∈ {l. list.set l ⊆ univ ∧ length l ≤ n};
some-embedding-of-lists l = some-embedding-of-lists m]]
=⇒ l = m

proof −
fix n l m
show [[l ∈ {l. list.set l ⊆ univ ∧ length l ≤ n};

m ∈ {l. list.set l ⊆ univ ∧ length l ≤ n};
some-embedding-of-lists l = some-embedding-of-lists m]]
=⇒ l = m

proof (induct n arbitrary: l m)
show

∧
l m. [[l ∈ {l. list.set l ⊆ univ ∧ length l ≤ 0};

m ∈ {l. list.set l ⊆ univ ∧ length l ≤ 0};
some-embedding-of-lists l = some-embedding-of-lists m]]
=⇒ l = m

by auto
fix n l m
assume ind:

∧
l m. [[l ∈ {l. list.set l ⊆ univ ∧ length l ≤ n};
m ∈ {l. list.set l ⊆ univ ∧ length l ≤ n};
some-embedding-of-lists l = some-embedding-of-lists m]]
=⇒ l = m

assume l: l ∈ {l. list.set l ⊆ univ ∧ length l ≤ Suc n}
assume m: m ∈ {l. list.set l ⊆ univ ∧ length l ≤ Suc n}
assume eq: some-embedding-of-lists l = some-embedding-of-lists m
show l = m
proof (cases l; cases m)

show [[l = []; m = []]] =⇒ l = m by simp
show

∧
a m ′. [[l = []; m = a # m ′]] =⇒ l = m

by (metis (no-types, lifting) ∗ eq image-subset-iff insert-subset
list.simps(15) m mem-Collect-eq some-pairing-in-univ
some-embedding-of-lists.simps(1 ,2) some-lifting-cancel(1))

show
∧

a l ′. [[l = a # l ′; m = []]] =⇒ l = m
by (metis (lifting) ∗ eq image-subset-iff l some-lifting-cancel(1)

list.set-intros(1) mem-Collect-eq some-pairing-in-univ set-subset-Cons
some-embedding-of-lists.simps(1 ,2) subset-code(1))

show
∧

a b l ′ m ′. [[l = a # l ′; m = b # m ′]] =⇒ l = m

38

proof −
fix a b l ′ m ′

assume al ′: l = a # l ′ and bm ′: m = b # m ′

have some-pairing (a, some-embedding-of-lists l ′) =
some-pairing (b, some-embedding-of-lists m ′)

using l m al ′ bm ′ eq some-lifting-is-embedding embeds-pairs
apply simp
by (metis (no-types, lifting) ∗ image-subset-iff mem-Collect-eq

some-lifting-cancel(2) some-pairing-in-univ)
hence a = b ∧ some-embedding-of-lists l ′ = some-embedding-of-lists m ′

using l m al ′ bm ′ embeds-pairs
by (metis (lifting) ∗ image-subset-iff insert-subset list.simps(15)

mem-Collect-eq first-conv second-conv)
hence a = b ∧ l ′ = m ′

using l m al ′ bm ′ ind by auto
thus l = m

using al ′ bm ′ by auto
qed

qed
qed

qed
thus ?thesis

using inj-on-def [of some-embedding-of-lists {l. list.set l ⊆ univ}]
by (metis (lifting) linorder-le-cases mem-Collect-eq)

qed
qed
thus embeds {l. List.set l ⊆ univ} by blast

qed

A universe also admits an embedding of all small sets of lists formed from its elements.
lemma embeds-small-sets-of-lists:
shows is-embedding-of (λX . some-embedding-of-small-sets (some-embedding-of-lists ‘ X))

{X . X ⊆ {l. list.set l ⊆ univ} ∧ small X}
and embeds {X . X ⊆ {l. list.set l ⊆ univ} ∧ small X}
proof −

show is-embedding-of (λX . some-embedding-of-small-sets (some-embedding-of-lists ‘ X))
{X . X ⊆ {l. list.set l ⊆ univ} ∧ small X}

proof
show inj-on (λX . some-embedding-of-small-sets (some-embedding-of-lists ‘ X))

{X . X ⊆ {l. list.set l ⊆ univ} ∧ small X}
proof

fix X Y :: ′U list set
assume X : X ∈ {X . X ⊆ {l. list.set l ⊆ univ} ∧ small X}
and Y : Y ∈ {X . X ⊆ {l. list.set l ⊆ univ} ∧ small X}
assume eq: some-embedding-of-small-sets (some-embedding-of-lists ‘ X) =

some-embedding-of-small-sets (some-embedding-of-lists ‘ Y)
have some-embedding-of-lists ‘ X = some-embedding-of-lists ‘ Y

by (metis (mono-tags, lifting) CollectD X Y emb-set-cancel emb-set-def
embeds-lists(2) eq image-mono small-image subset-trans)

39

thus X = Y
using X Y embeds-lists inj-on-image-eq-iff by fastforce

qed
show (λX . some-embedding-of-small-sets (some-embedding-of-lists ‘ X)) ‘

{X . X ⊆ {l. list.set l ⊆ univ} ∧ small X} ⊆ univ
proof

fix X ′

assume X ′: X ′ ∈ (λX . some-embedding-of {X . X ⊆ univ ∧ small X}
(some-embedding-of-lists ‘ X))

‘ {X . X ⊆ {l. set l ⊆ univ} ∧ small X}
obtain X where X : X ⊆ {l. set l ⊆ univ} ∧ small X ∧

(λX . some-embedding-of {X . X ⊆ univ ∧ small X}
(some-embedding-of-lists ‘ X)) X = X ′

using X ′ by blast
have some-embedding-of-lists ‘ X ⊆ univ ∧ small (some-embedding-of-lists ‘ X)

using X embeds-lists small-image by blast
hence (λX . some-embedding-of {X . X ⊆ univ ∧ small X}

(some-embedding-of-lists ‘ X)) X ∈ univ
by (metis emb-set-def emb-set-in-univ)

thus X ′ ∈ univ
using X by blast

qed
qed
thus embeds {X . X ⊆ {l. list.set l ⊆ univ} ∧ small X} by blast

qed

end

end

40

Chapter 4

The Category of Small Sets

theory SetsCat
imports Category3 .SetCat Category3 .CategoryWithPullbacks Category3 .CartesianClosedCategory

Category3 .EquivalenceOfCategories Category3 .Colimit Universe
begin

In this section we consider the category of small sets and functions between them
as an exemplifying instance of the pattern we propose for working with large categories
in HOL. We define a locale sets-cat, which axiomatizes a category with terminal object,
such that each object determines a “small” set (the set of its global elements), there is
an object corresponding to any externally given small set, and such that the hom-sets
between objects are in bijection with the small extensional functions between sets of
global elements. We show that this locale characterizes the category of small sets and
functions, in the sense that, for a fixed notion of smallness, any two interpretations of the
sets-cat locale are equivalent as categories. We then proceed to derive various familiar
properties of a category of sets; assuming in each case that the notion of “smallness”
satisfies suitable conditions as defined in the theory Smallness, and that the collection
of all arrows of the category satisfies suitable closure conditions as defined in the theory
Universe. In particular, we show if the collection of arrows forms a “universe”, then the
category is well-pointed, small-complete and small co-complete, cartesian closed, has a
subobject classifier and a natural numbers object, and splits all epimorphisms.

4.1 Basic Definitions and Properties
We will describe the category of small sets and functions as a certain kind of category
with terminal object, which has been equipped with a notion of “smallness” that specifies
what sets will correspond to objects in the category.

locale sets-cat-base =
smallness sml +
category-with-terminal-object C

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)

41

begin

sublocale embedding ‹Collect arr› .

Every object in the category determines a set: its set of global elements (we make an
arbitrary choice of terminal object).

abbreviation Set
where Set ≡ hom 1?

Every arrow in the category determines an extensional function between sets of global
elements.

definition Fun
where Fun f x ≡ if x ∈ Set (dom f) then f · x else null

abbreviation Hom
where Hom a b ≡ (Set a → Set b) ∩ {F . ∀ x. x /∈ Set a −→ F x = null}

lemma Fun-in-Hom:
assumes «f : a → b»
shows Fun f ∈ Hom a b

using assms Fun-def by auto

lemma Set-some-terminal:
shows Set some-terminal = {some-terminal}

using ide-in-hom terminal-def terminal-some-terminal by auto

lemma Fun-some-terminator :
assumes ide a
shows Fun t?[a] = (λx. if x ∈ Set a then 1? else null)

unfolding Fun-def
using assms elementary-category-with-terminal-object.trm-naturality

elementary-category-with-terminal-object.trm-one
extends-to-elementary-category-with-terminal-object

by fastforce

The following function will allow us to obtain an object corresponding to an externally
given set. The set of global elements of the object is to be equipollent with the given set.
We give the definition here, but of course it will be necessary to prove that this function
actually does produce such an object under suitable conditions.

definition mkide :: ′a set ⇒ ′U
where mkide A ≡ SOME a. ide a ∧ Set a ≈ A

end

The following locale states our axioms for the category of small sets and functions.
The axioms assert: (1) that the set of global elements of every object is small; (2) that the
mapping from hom-sets to extensional functions between small sets of global elements
is injective and surjective; and (3) that the category is “replete” in the sense that for

42

every small set of arrows of the category there exists an object whose set of elements is
equipollent with it.

locale sets-cat =
sets-cat-base sml C

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55) +
assumes small-Set: ide a =⇒ small (Set a)
and inj-Fun: [[ide a; ide b]] =⇒ inj-on Fun (hom a b)
and surj-Fun: [[ide a; ide b]] =⇒ Hom a b ⊆ Fun ‘ (hom a b)
and repleteness-ax: [[small A; A ⊆ Collect arr]] =⇒ ∃ a. ide a ∧ Set a ≈ A
begin

It is convenient to extend the repleteness property to apply to any small set, at any
type, which happens to have an embedding into the collection of arrows of the category.

lemma repleteness:
assumes small A and embeds A
shows ∃ a. ide a ∧ Set a ≈ A

by (metis assms(1 ,2) eqpoll-trans inj-on-image-eqpoll-self repleteness-ax small-image-iff)

We obtain a pair of inverse comparison maps between an externally given small set
A and the set of global elements of the object mkide a corresponding to it. The map
IN encodes each element of A as a global element of mkide A. The inverse map OUT
decodes global elements of mkide A to the corresponding elements of A. We will need to
pay attention to these comparison maps when relating notions internal to the category
to notions external to it. However, when working completely internally to the category
these maps do not appear at all.

definition OUT :: ′a set ⇒ ′U ⇒ ′a
where OUT A ≡ SOME F . bij-betw F (Set (mkide A)) A

abbreviation IN :: ′a set ⇒ ′a ⇒ ′U
where IN A ≡ inv-into (Set (mkide A)) (OUT A)

The following is the main fact that allows us to produce objects of the category. It
states that, given any small set A for which there is some embedding into the collection
of arrows of the category, there exists a corresponding object mkide A whose set of global
elements is equipollent to A.

lemma ide-mkide:
assumes small A and embeds A
shows [intro]: ide (mkide A)
and Set (mkide A) ≈ A
proof −

have ide (mkide A) ∧ Set (mkide A) ≈ A
using assms repleteness mkide-def someI-ex
by (metis (lifting) HOL.ext)

thus ide (mkide A) and Set (mkide A) ≈ A
using assms by auto

qed

43

lemma bij-OUT :
assumes small A and embeds A
shows bij-betw (OUT A) (Set (mkide A)) A

unfolding OUT-def
using assms ide-mkide(2) someI-ex [of λF . bij-betw F (Set (mkide A)) A] eqpoll-def
by blast

lemma bij-IN :
assumes small A and embeds A
shows bij-betw (IN A) A (Set (mkide A))

using assms bij-OUT bij-betw-inv-into by blast

lemma OUT-elem-of :
assumes small A and embeds A and «x : 1? → mkide A»
shows OUT A x ∈ A

by (metis CollectI assms(1 ,2 ,3) bij-betw-apply bij-OUT)

lemma IN-in-hom:
assumes small A and embeds A and x ∈ A and a = mkide A
shows «IN A x : 1? → a»

by (metis (mono-tags, lifting) Ball-Collect assms(1 ,2 ,3 ,4) bij-betw-def bij-OUT
inv-into-into set-eq-subset)

lemma IN-OUT :
assumes small A and embeds A
shows x ∈ Set (mkide A) =⇒ IN A (OUT A x) = x

using assms bij-OUT (1)
by (metis bij-betw-inv-into-left)

lemma OUT-IN :
assumes small A and embeds A
shows x ∈ A =⇒ OUT A (IN A x) = x

using assms bij-OUT (1)
by (metis bij-betw-inv-into-right)

lemma Fun-IN :
assumes small A and embeds A and y ∈ A
shows Fun (IN A y) = (λx. if x = 1? then IN A y else null)
proof

fix x
show Fun (IN A y) x = (if x = 1? then IN A y else null)
proof (cases x ∈ Set 1?)

case False
show ?thesis

using False Fun-def
by (metis IN-in-hom Set-some-terminal assms(1 ,2 ,3) in-homE singleton-iff)

next
case True

44

have x: x = 1?

using True Set-some-terminal by blast
have Fun (IN A y) x = IN A y · 1?

using Fun-def dom-eqI ide-some-terminal ext x by auto
also have ... = (if x = 1? then IN A y else null)

by (metis (lifting) HOL.ext IN-in-hom assms(1 ,2 ,3) comp-arr-dom in-homE x)
finally show ?thesis by blast

qed
qed

The following function enables us to obtain an arrow of the category by specifying
an extensional function between sets of global objects.

definition mkarr :: ′U ⇒ ′U ⇒ (′U ⇒ ′U) ⇒ ′U
where mkarr a b F ≡ if ide a ∧ ide b ∧ F ∈ Hom a b

then SOME f . «f : a → b» ∧ Fun f = F
else null

lemma mkarr-in-hom [intro]:
assumes ide a and ide b and F ∈ Hom a b
shows «mkarr a b F : a → b»
proof −

have ∃ f . «f : a → b» ∧ Fun f = F
using assms surj-Fun [of a b] by blast

thus ?thesis
unfolding mkarr-def
using assms someI-ex [of λf . «f : a → b» ∧ Fun f = F] by auto

qed

lemma arr-mkarr [intro, simp]:
assumes ide a and ide b and F ∈ Hom a b
shows arr (mkarr a b F)

using assms mkarr-in-hom by blast

lemma arr-mkarrD [dest]:
assumes arr (mkarr a b F)
shows ide a and ide b and F ∈ Hom a b

by (metis (lifting) assms mkarr-def not-arr-null)+

lemma arr-mkarrE [elim]:
assumes arr (mkarr a b F)
and [[ide a; ide b; F ∈ Hom a b]] =⇒ T
shows T

using assms by auto

lemma dom-mkarr [simp]:
assumes arr (mkarr a b F)
shows dom (mkarr a b F) = a

by (meson arr-mkarrE assms in-homE mkarr-in-hom)

45

lemma cod-mkarr [simp]:
assumes arr (mkarr a b F)
shows cod (mkarr a b F) = b

by (meson arr-mkarrE assms in-homE mkarr-in-hom)

lemma Fun-mkarr [simp]:
assumes arr (mkarr a b F)
shows Fun (mkarr a b F) = F
proof −

have ∃ f . «f : a → b» ∧ Fun f = F
using assms surj-Fun [of a b] by blast

thus ?thesis
unfolding mkarr-def
using assms someI-ex [of λf . «f : a → b» ∧ Fun f = F] by auto

qed

lemma mkarr-Fun:
assumes «f : a → b»
shows mkarr a b (Fun f) = f
proof −

have «mkarr a b (Fun f) : a → b» ∧ Fun (mkarr a b (Fun f)) = Fun f
by (metis (lifting) Fun-in-Hom Fun-mkarr assms ide-cod ide-dom in-homE mkarr-in-hom)

thus ?thesis
using assms inj-Fun inj-onD [of Fun hom a b mkarr a b (Fun f) f]
by blast

qed

The locale assumptions ensure that, for any two objects a and b, there is a bijection
between the hom-set hom a b and the set Hom a b of extensional functions from Set a
to Set b.

lemma bij-Fun:
assumes ide a and ide b
shows bij-betw Fun (hom a b) (Hom a b)
and bij-betw (mkarr a b) (Hom a b) (hom a b)
proof −

have 1 : Fun ∈ hom a b → Hom a b
using Fun-in-Hom by blast

have 2 : mkarr a b ∈ Hom a b → hom a b
using assms mkarr-in-hom by auto

have 3 :
∧

F . F ∈ Hom a b =⇒ Fun (mkarr a b F) = F
using Fun-mkarr assms(1 ,2) mkarr-in-hom by auto

have 4 :
∧

f . f ∈ hom a b =⇒ mkarr a b (Fun f) = f
using assms mkarr-Fun by auto

show bij-betw Fun (hom a b) (Hom a b)
using 1 2 3 4
by (intro bij-betwI) auto

show bij-betw (mkarr a b) (Hom a b) (hom a b)
using 1 2 3 4
by (intro bij-betwI) auto

46

qed

lemma arr-eqI :
assumes par t u and Fun t = Fun u
shows t = u

using assms by (metis (lifting) arr-iff-in-hom mkarr-Fun)

lemma arr-eqI ′:
assumes in-hom f a b and in-hom g a b
and

∧
x. in-hom x 1? a =⇒ f · x = g · x

shows f = g
using assms arr-eqI [of f g] in-homE Fun-def by fastforce

lemma Fun-arr :
assumes «f : a → b»
shows Fun f = (λx. if x ∈ Set a then f · x else null)

using assms Fun-def by auto

lemma Fun-ide:
assumes ide a
shows Fun a = (λx. if x ∈ Set a then x else null)

by (metis (lifting) CollectD CollectI assms comp-cod-arr in-homE ide-char Fun-def)

lemma Fun-comp:
assumes seq t u
shows Fun (t · u) = Fun t ◦ Fun u

unfolding Fun-def
using assms comp-assoc by force

lemma mkarr-comp:
assumes seq g f
shows mkarr (dom f) (cod g) (Fun g ◦ Fun f) = g · f

by (metis (lifting) Fun-comp assms cod-comp dom-comp in-homI mkarr-Fun)

lemma comp-mkarr :
assumes arr (mkarr a b F) and arr (mkarr b c G)
shows mkarr b c G · mkarr a b F = mkarr a c (G ◦ F)

using assms Fun-mkarr mkarr-comp [of mkarr b c G mkarr a b F] by simp

lemma app-mkarr :
assumes in-hom (mkarr a b F) a b and in-hom x 1? a
shows mkarr a b F · x = F x

using assms Fun-mkarr
by (metis Fun-def in-homE mem-Collect-eq)

lemma ide-as-mkarr :
assumes ide a
shows mkarr a a (λx. if x ∈ Set a then x else null) = a

using assms Fun-ide Fun-mkarr

47

by (intro arr-eqI) auto

An object a is terminal if and only if its set of global elements Set a is a singleton
set.

lemma terminal-char :
shows terminal a ←→ ide a ∧ (∃ !x. x ∈ Set a)
proof

show terminal a =⇒ ide a ∧ (∃ !x. x ∈ Set a)
using terminal-def terminal-some-terminal by auto

assume a: ide a ∧ (∃ !x. x ∈ Set a)
show terminal a
proof

show ide a
using a by blast

show
∧

b. ide b =⇒ ∃ !f . «f : b → a»
proof −

fix b
assume b: ide b
have «mkarr b a (λx. if x ∈ Set b then THE y. y ∈ Set a else null) : b → a»

using a b theI [of λy. y ∈ Set a]
by (intro mkarr-in-hom) fastforce+

moreover have
∧

t u. [[«t : b → a»; «u : b → a»]] =⇒ t = u
using a Fun-def by (intro arr-eqI) fastforce+

ultimately show ∃ !f . «f : b → a» by blast
qed

qed
qed

An object a is initial if and only if its set of global elements Set a is the empty set,
except in the degenerate situation in which every object is both an initial and a terminal
object.

lemma initial-char :
shows initial a ←→ ide a ∧ (Set a = {} ∨ (∀ b. ide b −→ terminal b))
proof −

have ∀ b. ide b −→ terminal b =⇒ ∀ b. ide b −→ initial b
by (simp add: initialI terminal-def)

moreover have ∃ b. ide b ∧ ¬ terminal b =⇒ ∀ a. initial a ←→ ide a ∧ Set a = {}
proof −

assume 1 : ∃ b. ide b ∧ ¬ terminal b
obtain b where b: ide b ∧ ¬ terminal b

using 1 by blast
show ∀ a. initial a ←→ ide a ∧ Set a = {}
proof (intro allI iffI conjI)

fix a
assume a: initial a
show ide a

using a initial-def by blast
show Set a = {}
proof (cases Set b = {})

48

case True
show ?thesis

using a b True by blast
next
case False
have Set a 6= {} =⇒ ¬ (∃ !f . «f : a → b»)
proof −

assume 2 : Set a 6= {}
obtain x y where 3 : x ∈ Set b ∧ y ∈ Set b ∧ x 6= y

using b False terminal-char by auto
show ?thesis
proof −

have «mkarr a b (λz. if z ∈ Set a then x else null) : a → b»
using ‹ide a› b 3 by auto

moreover have «mkarr a b (λz. if z ∈ Set a then y else null) : a → b»
using ‹ide a› b 3 by auto

moreover have mkarr a b (λz. if z ∈ Set a then x else null) 6=
mkarr a b (λz. if z ∈ Set a then y else null)

by (metis (full-types, lifting) 2 3 Fun-mkarr arrI calculation(2) ex-in-conv)
ultimately show ?thesis by auto

qed
qed
thus ?thesis

using a b initial-def by auto
qed
next
fix a
assume a: ide a ∧ Set a = {}
show initial a
proof −

have
∧

b. ide b =⇒ ∃ !f . «f : a → b»
proof −

fix b
assume b: ide b
have «mkarr a b (λ-. null) : a → b»

by (simp add: a b mkarr-in-hom)
moreover have

∧
f g. [[«f : a → b»; «g : a → b»]] =⇒ f = g

using a arr-eqI ′ by fastforce
ultimately show ∃ !f . «f : a → b» by blast

qed
thus ?thesis

using a initial-def by blast
qed

qed
qed
ultimately show ?thesis

by (metis initial-def)
qed

An arrow is a monomorphism if and only if the corresponding function is injective.

49

lemma mono-char :
shows mono f ←→ arr f ∧ inj-on (Fun f) (Set (dom f))
proof

assume f : mono f
have arr f

using f mono-implies-arr by simp
moreover have inj-on (Fun f) (Set (dom f))

by (intro inj-onI)
(metis Fun-def calculation f in-homE mem-Collect-eq mono-cancel seqI)

ultimately show arr f ∧ inj-on (Fun f) (Set (dom f)) by blast
next
assume f : arr f ∧ inj-on (Fun f) (Set (dom f))
show mono f
proof

show arr f
using f by blast

fix g h
assume seq: seq f g and eq: f · g = f · h
show g = h
proof (intro arr-eqI)

show par : par g h
by (metis dom-comp eq seq seqE)

show Fun g = Fun h
proof −

have
∧

x. x ∈ Set (dom g) =⇒ Fun g x = Fun h x
proof −

fix x
assume x: x ∈ Set (dom g)
have f · (g · x) = f · (h · x)

using eq by (metis comp-assoc)
moreover have g · x ∈ Set (dom f) ∧ h · x ∈ Set (dom f)

by (metis seq par comp-in-homI in-homI mem-Collect-eq seq seqE x)
ultimately have g · x = h · x

using f inj-on-def [of Fun f Set (dom f)] Fun-def by auto
thus Fun g x = Fun h x

using par Fun-def by presburger
qed
thus ?thesis

using par Fun-def by force
qed

qed
qed

qed

An arrow is a retraction if and only if the corresponding function is surjective.
lemma retraction-char :
shows retraction f ←→ arr f ∧ Fun f ‘ Set (dom f) = Set (cod f)
proof (intro iffI conjI)

assume f : retraction f

50

show 1 : arr f
using f by blast

obtain g where g: f · g = cod f
using f by blast

show Fun f ‘ Set (dom f) = Set (cod f)
proof

show Fun f ‘ Set (dom f) ⊆ Set (cod f)
using ‹arr f › Fun-def by auto

show Set (cod f) ⊆ Fun f ‘ Set (dom f)
proof −

have Set (cod f) ⊆ Fun f ‘ Fun g ‘ Set (cod f)
proof −

have Set (cod f) ⊆ Fun (cod f) ‘ Set (cod f)
using 1 Fun-ide by auto

also have ... = (Fun f ◦ Fun g) ‘ Set (cod f)
using 1 g Fun-comp
by (metis (no-types, lifting) arr-cod)

also have ... = Fun f ‘ Fun g ‘ Set (cod f)
by (metis image-comp)

finally show ?thesis by blast
qed
also have ... ⊆ Fun f ‘ Set (dom f)
proof −

have «g : cod f → dom f »
using g
by (metis 1 arr-iff-in-hom ide-cod ide-compE seqE)

thus ?thesis
using Fun-def by auto

qed
finally show ?thesis by blast

qed
qed
next
assume f : arr f ∧ Fun f ‘ Set (dom f) = Set (cod f)
let ?G = λy. if y ∈ Set (cod f) then inv-into (Set (dom f)) (Fun f) y else null
let ?g = mkarr (cod f) (dom f) ?G
have f · ?g = cod f
proof (intro arr-eqI)

have seq: seq f ?g
proof

show «f : dom f → cod f »
using f by blast

show «?g : cod f → dom f »
proof (intro mkarr-in-hom)

show ide (cod f) and ide (dom f)
using f by auto

show ?G ∈ (Set (cod f) → Set (dom f)) ∩ {F . ∀ x. x /∈ Set (cod f) −→ F x = null}
proof

show ?G ∈ Set (cod f) → Set (dom f)

51

proof
fix x
assume x: x ∈ Set (cod f)
show ?G x ∈ Set (dom f)

by (metis f inv-into-into x)
qed
show ?G ∈ {F . ∀ x. x /∈ Set (cod f) −→ F x = null}

using f by auto
qed

qed
qed
thus par : par (f · ?g) (cod f) by auto
show Fun (f · ?g) = Fun (cod f)
proof −

have Fun (f · ?g) = Fun f ◦ ?G
using par Fun-comp Fun-mkarr by fastforce

also have ... = Fun (cod f)
proof

fix y
show (Fun f ◦ ?G) y = Fun (cod f) y
proof (cases y ∈ Set (cod f))

case False
show ?thesis

using False Fun-def dom-cod by auto
next
case True
show ?thesis
proof −

have Fun f (inv-into (Set (dom f)) (Fun f) y) = y
by (metis (no-types) True f f-inv-into-f)

thus ?thesis
using Fun-ide True f by force

qed
qed

qed
finally show ?thesis by blast

qed
qed
thus retraction f

by (metis (lifting) f ide-cod retraction-def)
qed

An arrow is a isomorphism if and only if the corresponding function is a bijection.
lemma iso-char :
shows iso f ←→ arr f ∧ bij-betw (Fun f) (Set (dom f)) (Set (cod f))

using retraction-char mono-char bij-betw-def
by (metis (no-types, lifting) iso-iff-mono-and-retraction)

lemma isomorphic-char :

52

shows isomorphic a b ←→ ide a ∧ ide b ∧ Set a ≈ Set b
proof

assume 1 : isomorphic a b
show ide a ∧ ide b ∧ Set a ≈ Set b

using 1 isomorphic-def iso-char eqpoll-def [of Set a Set b] by auto
next
assume 1 : ide a ∧ ide b ∧ Set a ≈ Set b
obtain F where F : bij-betw F (Set a) (Set b)

using 1 eqpoll-def by blast
let ?F ′ = λx. if x ∈ Set a then F x else null
let ?f = mkarr a b (λx. if x ∈ Set a then F x else null)
have f : «?f : a → b»
proof

show ide a and ide b
using 1 by auto

show (λx. if x ∈ Set a then F x else null) ∈ Hom a b
using F Pi-mem bij-betw-imp-funcset by fastforce

qed
moreover have bij-betw (Fun ?f) (Set a) (Set b)

using F Fun-mkarr arrI bij-betw-cong f
apply (unfold bij-betw-def)
by (auto simp add: inj-on-def)

ultimately have iso ?f ∧ dom ?f = a ∧ cod ?f = b
using iso-char Fun-mkarr by auto

thus isomorphic a b
using isomorphicI by force

qed

end

4.2 Categoricity
The following is a kind of “categoricity in power” result which states that, for a fixed
notion of smallness, if C and D are “sets categories” whose collections of arrows are
equipollent, then in fact C and D are equivalent categories.

lemma categoricity:
assumes sets-cat sml C and sets-cat sml D
and Collect (partial-composition.arr C) ≈ Collect (partial-composition.arr D)
shows equivalent-categories C D
proof

interpret smallness sml
using assms(1) sets-cat-def sets-cat-base-def by blast

interpret C : sets-cat sml C
using assms(1) by blast

interpret D: sets-cat sml D
using assms(2) by blast

have D-embeds-C-Set:
∧

a. C .ide a =⇒ D.embeds (C .Set a)
using assms(3) D.embeds-subset [of Collect C .arr]

53

by (metis (no-types, lifting) Collect-mono bij-betw-def C .in-homE eqpoll-def)
let ?Fo = λa. D.mkide (C .Set a)
have Fo:

∧
a. C .ide a =⇒ D.ide (?Fo a)

by (simp add: C .small-Set D.ide-mkide(1) D-embeds-C-Set)
have bij-OUT :

∧
a. C .ide a =⇒ bij-betw (D.OUT (C .Set a)) (D.Set (?Fo a)) (C .Set a)

by (simp add: C .small-Set D.bij-OUT (1) D-embeds-C-Set)
let ?FF un = λf . λx. if x ∈ D.Set (?Fo (C .dom f))

then (D.IN (C .Set (C .cod f)) ◦ C .Fun f ◦ D.OUT (C .Set (C .dom f))) x
else D.null

have FF un:
∧

f . C .arr f =⇒ ?FF un f ∈ D.Hom (?Fo (C .dom f)) (?Fo (C .cod f))
proof

fix f
assume f : C .arr f
show ?FF un f ∈ {F . ∀ x. x /∈ D.Set (?Fo (C .dom f)) −→ F x = D.null}

by simp
show ?FF un f ∈ D.Set (?Fo (C .dom f)) → D.Set (?Fo (C .cod f))
proof

fix x
assume x: x ∈ D.Set (?Fo (C .dom f))
show ?FF un f x ∈ D.Set (D.mkide (C .Set (C .cod f)))
proof −

have D.in-hom (D.IN (C .Set (C .cod f)) (C f (D.OUT (C .Set (C .dom f)) x)))
D.some-terminal (D.mkide (C .Set (C .cod f)))

proof −
have «C f (D.OUT (C .Set (C .dom f)) x) : 1? → C .cod f »

using x f C .ide-dom bij-betwE bij-OUT by blast
moreover have small (C .Set (C .cod f))

using C .small-Set f by force
moreover have D.embeds (C .Set (C .cod f))

by (simp add: D-embeds-C-Set f)
ultimately show ?thesis

using x f D.bij-IN [of C .Set (C .cod f)] bij-betwE by auto
qed
moreover have «D.OUT (C .Set (C .dom f)) x : 1? → C .dom f »

using x f C .ide-dom bij-betwE bij-OUT by blast
ultimately show ?thesis

using x f C .Fun-def by force
qed

qed
qed
let ?F = λf . if C .arr f then D.mkarr (?Fo (C .dom f)) (?Fo (C .cod f)) (?FF un f) else D.null
interpret functor C D ?F
proof

show
∧

f . ¬ C .arr f =⇒ ?F f = D.null
by simp

show arrF :
∧

f . C .arr f =⇒ D.arr (?F f)
using Fo FF un by auto

show domF :
∧

f . C .arr f =⇒ D.dom (?F f) = ?F (C .dom f)
proof −

54

fix f
assume f : C .arr f
have D.dom (?F f) = D.mkide (C .Set (C .dom f))

using f arrF by auto
also have ... = ?F (C .dom f)
proof −

have ?FF un (C .dom f) =
(λx. if x ∈ D.Set (D.mkide (C .Set (C .dom f))) then x else D.null)

proof
fix x
have x ∈ D.Set (D.mkide (C .Set (C .dom f))) =⇒

«D.OUT (C .Set (C .dom f)) x : 1? → C .dom f »
using f C .ide-dom bij-betwE bij-OUT by blast

thus ?FF un (C .dom f) x =
(if x ∈ D.Set (D.mkide (C .Set (C .dom f))) then x else D.null)

using f C .ide-dom bij-betwE bij-OUT arrF Fo C .Fun-ide
D.IN-OUT [of C .Set (C .dom f) x]

by (auto simp add: C .small-Set D-embeds-C-Set)
qed
moreover have D.mkide (C .Set (C .dom f)) =

D.mkarr (D.mkide (C .Set (C .dom f))) (D.mkide (C .Set (C .dom f)))
(λx. if D.in-hom x D.some-terminal (D.mkide (C .Set (C .dom f)))

then x else D.null)
using f arrF Fo D.ide-as-mkarr by auto

ultimately show ?thesis
using f by auto

qed
finally show D.dom (?F f) = ?F (C .dom f) by blast

qed
show codF :

∧
f . C .arr f =⇒ D.cod (?F f) = ?F (C .cod f)

proof −
fix f
assume f : C .arr f
have D.cod (?F f) = D.mkide (C .Set (C .cod f))

using f arrF by auto
also have ... = ?F (C .cod f)
proof −

have ?FF un (C .cod f) =
(λx. if x ∈ D.Set (D.mkide (C .Set (C .cod f))) then x else D.null)

proof
fix x
have x ∈ D.Set (D.mkide (C .Set (C .cod f))) =⇒

«D.OUT (C .Set (C .cod f)) x : 1? → C .cod f »
using f C .ide-cod bij-betwE bij-OUT by blast

thus ?FF un (C .cod f) x =
(if x ∈ D.Set (D.mkide (C .Set (C .cod f))) then x else D.null)

using f C .ide-cod bij-betwE bij-OUT arrF Fo C .Fun-ide
D.IN-OUT [of C .Set (C .cod f) x]

by (auto simp add: C .small-Set D-embeds-C-Set)

55

qed
moreover have D.mkide (C .Set (C .cod f)) =

D.mkarr (D.mkide (C .Set (C .cod f))) (D.mkide (C .Set (C .cod f)))
(λx. if D.in-hom x D.some-terminal (D.mkide (C .Set (C .cod f)))

then x else D.null)
using f arrF Fo D.ide-as-mkarr [of D.mkide (C .Set (C .cod f))] by auto

ultimately show ?thesis
using f by auto

qed
finally show D.cod (?F f) = ?F (C .cod f) by blast

qed
fix f g
assume seq: C .seq g f
have f : C .arr f and g: C .arr g

using seq by auto
show ?F (C g f) = D (?F g) (?F f)
proof (intro D.arr-eqI [of ?F (C g f)])

show par : D.par (?F (C g f)) (D (?F g) (?F f))
proof (intro conjI)

show 1 : D.arr (?F (C g f))
using seq arrF [of C g f] by fastforce

show 2 : D.arr (D (?F g) (?F f))
using seq arrF domF codF by (intro D.seqI) auto

show D.dom (?F (C g f)) = D.dom (D (?F g) (?F f))
using 1 2 by fastforce

show D.cod (?F (C g f)) = D.cod (D (?F g) (?F f))
using 1 2 by fastforce

qed
show D.Fun (?F (C g f)) = D.Fun (D (?F g) (?F f))
proof −

have D.Fun (D (?F g) (?F f)) = D.Fun (?F g) ◦ D.Fun (?F f)
using seq par D.Fun-comp [of ?F g ?F f] by fastforce

also have ... = ?FF un g ◦ ?FF un f
using f g arrF D.Fun-mkarr by auto

also have ... = D.Fun (?F (C g f))
proof

fix x
show (?FF un g ◦ ?FF un f) x = D.Fun (?F (C g f)) x
proof (cases x ∈ D.Set (D.mkide (C .Set (C .dom f))))

case False
show ?thesis

using False f par by auto
next
case True
have 1 : «D.OUT (C .Set (C .dom f)) x : 1? → C .dom f »

using True D.OUT-elem-of [of C .Set (C .dom f) x]
C .ide-dom C .small-Set D-embeds-C-Set f

by blast
have (?FF un g ◦ ?FF un f) x =

56

D.IN (C .Set (C .cod g))
(C .Fun g

(D.OUT (C .Set (C .dom g))
(D.IN (C .Set (C .cod f))

(C .Fun f
(D.OUT (C .Set (C .dom f)) x)))))

proof −
have D.in-hom (D.IN (C .Set (C .cod f)) (C f (D.OUT (C .Set (C .dom f)) x)))

D.some-terminal (D.mkide (C .Set (C .dom g)))
using True f seq 1 C .ide-cod C .small-Set D-embeds-C-Set
by (intro D.IN-in-hom) auto

thus ?thesis
using True 1 C .Fun-def by auto

qed
also have ... =

D.IN (C .Set (C .cod g))
(C .Fun g

(C .Fun f
(D.OUT (C .Set (C .dom f)) x)))

using True 1 seq f g C .small-Set D-embeds-C-Set C .Fun-def D.Fun-def
D.OUT-IN [of C .Set (C .dom g) C f (D.OUT (C .Set (C .dom f)) x)]

by auto[1] (metis C .comp-in-homI ′ C .in-homE C .seqE)
also have ... = ?FF un (C g f) x

using True seq 1 C .comp-assoc C .Fun-def D.Fun-def
by auto[1] fastforce

also have ... = D.Fun (?F (C g f)) x
using True par seq D.Fun-mkarr D.app-mkarr D.in-homI by force

finally show ?thesis by blast
qed

qed
finally show ?thesis by simp

qed
qed

qed
interpret F : fully-faithful-and-essentially-surjective-functor C D ?F
proof

show
∧

f f ′. [[C .par f f ′; ?F f = ?F f ′]] =⇒ f = f ′

proof −
fix f f ′

assume par : C .par f f ′

assume eq: ?F f = ?F f ′

show f = f ′

proof (intro C .arr-eqI ′ [of f])
show f : «f : C .dom f → C .cod f »

using par by blast
show f ′: «f ′ : C .dom f → C .cod f »

using par by auto
show

∧
x. «x : 1? → C .dom f » =⇒ C f x = C f ′ x

proof −

57

fix x
assume x: «x : 1? → C .dom f »
have fx: «C f x : 1? → C .cod f » ∧ C .ide (C .dom f) ∧ C .ide (C .cod f)

by (metis (no-types) C .arrI C .comp-in-homI C .ide-cod C .seqE f x)
have f ′x: «C f ′ x : 1? → C .cod f ′» ∧ C .ide (C .dom f ′) ∧ C .ide (C .cod f ′)

by (metis (no-types) C .arrI C .comp-in-homI C .ide-cod C .seqE f ′ x par)
have 1 : D.in-hom (D.IN (C .Set (C .dom f)) x)

D.some-terminal (D.mkide (C .Set (C .dom f)))
by (metis C .ide-dom C .small-Set D.IN-in-hom D-embeds-C-Set mem-Collect-eq

par x)
have C f x = C .Fun f x

using C .Fun-def x by auto
also have ... = D.OUT (C .Set (C .cod f))

(D.IN (C .Set (C .cod f))
(C .Fun f

(D.OUT (C .Set (C .dom f))
(D.IN (C .Set (C .dom f)) x))))

by (simp add: fx C .small-Set D.OUT-IN D-embeds-C-Set x C .Fun-def)
also have ... = D.OUT (C .Set (C .cod f)) (?FF un f (D.IN (C .Set (C .dom f)) x))

using par 1 by auto
also have ... =

D.OUT (C .Set (C .cod f)) (D.Fun (?F f) (D.IN (C .Set (C .dom f)) x))
proof −

have D.arr (?F f)
using f by blast

thus ?thesis
using x f par by auto

qed
also have ... =

D.OUT (C .Set (C .cod f)) (D.Fun (?F f ′) (D.IN (C .Set (C .dom f)) x))
using eq by simp

also have ... = D.OUT (C .Set (C .cod f)) (?FF un f ′ (D.IN (C .Set (C .dom f)) x))
proof −

have D.arr (?F f ′)
using f ′ by blast

thus ?thesis
using x f par by auto

qed
also have ... = D.OUT (C .Set (C .cod f ′))

(D.IN (C .Set (C .cod f ′))
(C .Fun f ′

(D.OUT (C .Set (C .dom f ′))
(D.IN (C .Set (C .dom f ′)) x))))

using par 1 by auto
also have ... = C .Fun f ′ x

by (metis f ′x C .small-Set D.OUT-IN D-embeds-C-Set mem-Collect-eq par x C .Fun-def)
also have ... = C f ′ x

using C .Fun-def x par by auto
finally show C f x = C f ′ x by blast

58

qed
qed

qed
have ∗:

∧
a. C .ide a =⇒ ?F a = ?Fo a

proof −
fix a
assume a: C .ide a
show ?F a = ?Fo a
proof −

have (λx. if D.in-hom x D.some-terminal (D.mkide (C .Set a))
then (D.IN (C .Set (C .cod a)) ◦ C .Fun a ◦ D.OUT (C .Set (C .dom a))) x
else D.null) =

(λx. if D.in-hom x D.some-terminal (D.mkide (C .Set a)) then x else D.null)
proof

fix x
show (if D.in-hom x D.some-terminal (D.mkide (C .Set a))

then (D.IN (C .Set (C .cod a)) ◦ C .Fun a ◦ D.OUT (C .Set (C .dom a))) x
else D.null) =
(if D.in-hom x D.some-terminal (D.mkide (C .Set a)) then x else D.null)

using a C .Fun-ide D.IN-OUT [of C .Set a] C .small-Set D-embeds-C-Set
apply auto[1]
by (metis (lifting) D.OUT-elem-of mem-Collect-eq)

qed
thus ?thesis

using a D.ide-as-mkarr Fo by auto
qed

qed
show

∧
a b g. [[C .ide a; C .ide b; D.in-hom g (?F a) (?F b)]]

=⇒ ∃ h. «h : a → b» ∧ ?F h = g
proof −

fix a b g
assume a: C .ide a and b: C .ide b and g: D.in-hom g (?F a) (?F b)
have ?F a = ?Fo a

using a ∗ by blast
have dom-g: D.dom g = ?Fo a

using a g ∗ by auto
have cod-g: D.cod g = ?Fo b

using b g ∗ by auto
have Fun-g: D.Fun g ∈ D.Hom (?Fo a) (?Fo b)

using g D.Fun-in-Hom dom-g cod-g by blast
let ?H = λx. if x ∈ C .Set a

then (D.OUT (C .Set b) ◦ D.Fun g ◦ D.IN (C .Set a)) x
else C .null

have H : ?H ∈ C .Hom a b
proof

show ?H ∈ C .Set a → C .Set b
proof

fix x
assume x: x ∈ C .Set a

59

show ?H x ∈ C .Set b
proof −

have ?H x = D.OUT (C .Set b) (D.Fun g (D.IN (C .Set a) x))
using x by simp

moreover have ... ∈ C .Set b
proof −

have D.IN (C .Set a) x ∈ D.Set (?Fo a)
by (metis (lifting) a bij-betw-iff-bijections bij-betw-inv-into bij-OUT x)

hence D.Fun g (D.IN (C .Set a) x) ∈ D.Set (?Fo b)
using Fun-g by blast

thus ?thesis
using b C .small-Set D-embeds-C-Set bij-OUT bij-betw-apply D.Fun-def
by fastforce

qed
ultimately show ?thesis by auto

qed
qed
show ?H ∈ {F . ∀ x. x /∈ C .Set a −→ F x = C .null} by simp

qed
let ?h = C .mkarr a b ?H
have h: «?h : a → b»

using a b H by blast
moreover have ?F ?h = g
proof (intro D.arr-eqI)

have Fh: D.in-hom (?F ?h) (?Fo a) (?Fo b)
proof −

have D.in-hom (?F ?h) (?F a) (?F b)
using h preserves-hom by blast

moreover have ?F a = ?Fo a ∧ ?F b = ?Fo b
using a b ∗ by auto

ultimately show ?thesis by simp
qed
show par : D.par (?F ?h) g

using Fh h g cod-g dom-g D.in-homE by auto
show D.Fun (?F ?h) = D.Fun g
proof

fix x
show D.Fun (?F ?h) x = D.Fun g x
proof (cases x ∈ D.Set (?Fo a))

case False
show ?thesis

using False par D.Fun-def by auto
next
case True
have D.Fun (?F ?h) x = ?FF un ?h x

using True h Fh D.Fun-def D.app-mkarr by auto
also have ... = (if x ∈ D.Set (?Fo a)

then (D.IN (C .Set b) ◦ C .Fun ?h ◦ D.OUT (C .Set a)) x
else D.null)

60

using h by auto
also have ... = D.IN (C .Set b) (?H (D.OUT (C .Set a) x))

using True h C .app-mkarr by auto
also have ... = D.IN (C .Set b)

(D.OUT (C .Set b)
(D.Fun g

(D.IN (C .Set a)
(D.OUT (C .Set a) x))))

proof −
have D.OUT (C .Set a) x ∈ C .Set a

using True a bij-betw-apply bij-OUT by force
thus ?thesis by simp

qed
also have ... = D.Fun g x

using True a b g D.IN-OUT [of C .Set a x] D.IN-OUT [of C .Set b D.Fun g x]
C .small-Set D-embeds-C-Set dom-g cod-g D.Fun-def

by auto
finally show ?thesis by blast

qed
qed

qed
ultimately show ∃ h. «h : a → b» ∧ ?F h = g by blast

qed
show

∧
b. D.ide b =⇒ ∃ a. C .ide a ∧ D.isomorphic (?F a) b

proof −
fix b
assume b: D.ide b
let ?a = C .mkide (D.Set b)
have 1 : C .ide ?a ∧ C .Set ?a ≈ D.Set b
proof −

have ∃ ι. C .is-embedding-of ι (D.Set b)
by (metis (no-types, lifting) D.in-homE Set.basic-monos(6) assms(3)

bij-betw-def bij-betw-inv-into eqpoll-def image-mono inj-on-subset)
thus ?thesis

using b C .ide-mkide [of D.Set b] D.small-Set by force
qed
have D.Set (?F ?a) ≈ D.Set b
proof −

have
∧

a. C .ide a =⇒ D.Set (?F a) ≈ C .Set a
using ∗ C .small-Set D-embeds-C-Set D.ide-mkide(2) by fastforce

thus ?thesis
using 1 eqpoll-trans by blast

qed
moreover have

∧
a. C .ide a =⇒ D.isomorphic (?F a) b ←→ D.Set (?F a) ≈ D.Set b

using D.isomorphic-char b preserves-ide by force
ultimately show ∃ a. C .ide a ∧ D.isomorphic (?F a) b

using 1 by blast
qed

qed

61

show equivalence-functor C D ?F
using F .is-equivalence-functor by blast

qed

4.3 Well-Pointedness
context sets-cat
begin

lemma is-well-pointed:
assumes par f g and

∧
x. x ∈ Set (dom f) =⇒ f · x = g · x

shows f = g
by (metis CollectI arr-eqI ′ assms(1 ,2) in-homI)

end

4.4 Epis Split
In this section we assume that smallness encompasses sets of arbitrary finite cardinality,
and that the category has at least two arrows, so that we can show the existence of
an object with two global elements. If this fails to be the case, then the situation is
somewhat pathological and not very interesting.

locale sets-cat-with-bool =
sets-cat sml C +
small-finite sml

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55) +
assumes embeds-bool-ax: embeds (UNIV :: bool set)
begin

definition two (2)
where two ≡ mkide {True, False}

lemma ide-two [intro, simp]:
shows ide two
and bij-betw (IN {True, False}) UNIV (Set two)
and bij-betw (OUT {True, False}) (Set two) UNIV

using two-def ide-mkide embeds-bool-ax small-finite UNIV-bool
finite.simps insert-commute infinite-imp-nonempty finite.emptyI
bij-IN [of {True, False}] bij-OUT [of {True, False}]

by metis+

definition tt
where tt ≡ IN {True, False} True

definition ff
where ff ≡ IN {True, False} False

62

lemma tt-in-hom [intro]:
shows «tt : 1? → 2»

using bij-betwE tt-def by force

lemma ff-in-hom [intro]:
shows «ff : 1? → 2»

using bij-betwE ff-def by force

lemma tt-simps [simp]:
shows arr tt and dom tt = 1? and cod tt = 2

using tt-in-hom by blast+

lemma ff-simps [simp]:
shows arr ff and dom ff = 1? and cod ff = 2

using ff-in-hom by blast+

lemma Fun-tt:
shows Fun tt = (λx. if x ∈ Set 1? then tt else null)

unfolding Fun-def
using tt-def
by (metis Set-some-terminal comp-arr-dom emptyE insertE tt-simps(1 ,2))

lemma Fun-ff :
shows Fun ff = (λx. if x ∈ Set 1? then ff else null)

unfolding Fun-def
using ff-def
by (metis Set-some-terminal comp-arr-dom emptyE insertE ff-simps(1 ,2))

lemma mono-tt:
shows mono tt

using Fun-tt mono-char
by (metis point-is-mono terminal-some-terminal tt-simps(1 ,2))

lemma mono-ff :
shows mono ff

using Fun-ff mono-char
by (metis point-is-mono terminal-some-terminal ff-simps(1 ,2))

lemma tt-ne-ff :
shows tt 6= ff

using tt-def ff-def two-def
by (metis bij-betw-inv-into-right ide-two(3) iso-tuple-UNIV-I)

lemma Set-two:
shows Set 2 = {tt, ff }
proof −

have Set 2 = IN {True, False} ‘ UNIV
using bij-betw-imp-surj-on by blast

63

thus ?thesis
using tt-def ff-def
by (simp add: UNIV-bool insert-commute)

qed

In the present context, an arrow is epi if and only if the corresponding function is
surjective. It follows that every epimorphism splits.

lemma epi-charSCB :
shows epi f ←→ arr f ∧ Fun f ‘ Set (dom f) = Set (cod f)
proof

show arr f ∧ Fun f ‘ Set (dom f) = Set (cod f) =⇒ epi f
using retraction-char retraction-is-epi by presburger

assume f : epi f
show arr f ∧ Fun f ‘ Set (dom f) = Set (cod f)
proof (intro conjI)

show arr f
using epi-implies-arr f by blast

show Fun f ‘ Set (dom f) = Set (cod f)
proof

show Fun f ‘ Set (dom f) ⊆ Set (cod f)
using ‹arr f › Fun-def by auto

show Set (cod f) ⊆ Fun f ‘ Set (dom f)
proof

fix y
assume y: y ∈ Set (cod f)
have y /∈ Fun f ‘ Set (dom f) =⇒ False
proof −

assume 1 : y /∈ Fun f ‘ Set (dom f)
let ?G = λz. if z ∈ Set (cod f) then if z = y then tt else ff else null
let ?G ′ = λz. if z ∈ Set (cod f) then ff else null
let ?g = mkarr (cod f) 2 ?G
let ?g ′ = mkarr (cod f) 2 ?G ′

have g: «?g : cod f → 2»
using f epi-implies-arr ide-two
by (intro mkarr-in-hom) auto

have g ′: «?g ′ : cod f → 2»
using f epi-implies-arr ide-two
by (intro mkarr-in-hom) auto

have ?g 6= ?g ′

proof −
have ?g · y 6= ?g ′ · y

using app-mkarr g g ′ tt-ne-ff y by auto
thus ?thesis by auto

qed
moreover have ?g · f = ?g ′ · f
proof −

have ?G ◦ Fun f = ?G ′ ◦ Fun f
proof

fix x

64

show (?G ◦ Fun f) x = (?G ′ ◦ Fun f) x
using 1 tt-ne-ff Fun-def by auto

qed
thus ?thesis

using f g g ′ Fun-mkarr ‹arr f › in-homI Fun-comp
by (intro arr-eqI) auto

qed
ultimately show False

using f g g ′ ‹arr f › epi-cancel by blast
qed
thus y ∈ Fun f ‘ Set (dom f) by blast

qed
qed

qed
qed

corollary epis-split:
assumes epi e
shows ∃m. e · m = cod e

using assms epi-charSCB retraction-char
by (meson ide-compE retraction-def)

end

4.5 Equalizers
In this section we show that the category of small sets and functions has equalizers of
parallel pairs of arrows. This is our first example of a general pattern that we will apply
repeatedly in the sequel to other categorical constructions. Given a parallel pair f, g
of arrows in a category of sets, we know that the global elements of the domain of the
equalizer will be in bijection with the set E of global elements x of dom f such that f
· x = g · x. So, we obtain this set, which in this case happens already to be a small
subset of the set of arrows of the category, and we obtain the corresponding object mkide
E, which will be the domain of the equalizer. This part of the proof uses the smallness
of E and the fact that it embeds in (actually, is a subset of) the set of arrows of the
category. Once we have shown the existence of the object mkide E, we can apply mkarr
to the inclusion of Set (mkide e) in Set (dom f) to obtain the equalizing arrow itself.
Showing that this arrow has the necessary universal property requires reasoning about
the comparison maps between E and Set (mkide e), but once that has been accomplished
we are left simply with a universal property that does not mention these maps.

The construction and proofs here are simpler than for the other constructions we
will consider, because the set E to which we apply mkide is already a subset of the
collection of arrows of the category – in particular it is at the same type. This means
that the smallness and embedding property required for the application of mkide holds
automatically, without any further assumptions. In general, though, a set to which we
wish to apply mkide will not be a subset of the set of arrows, nor will it even be at the

65

same type, so it will be necessary to reason about an encoding that embeds the elements
of this set into the set of arrows of the category.

locale equalizers-in-sets-cat =
sets-cat

begin

abbreviation Dom-equ
where Dom-equ f g ≡ {x. x ∈ Set (dom f) ∧ f · x = g · x}

definition dom-equ
where dom-equ f g ≡ mkide (Dom-equ f g)

abbreviation Equ
where Equ f g ≡ λx. if x ∈ Set (dom-equ f g) then OUT (Dom-equ f g) x else null

definition equ
where equ f g ≡ mkarr (dom-equ f g) (dom f) (Equ f g)

It is useful to include convenience facts about OUT and IN in the following, so that
we can avoid having to deal with the smallness and embedding conditions elsewhere.

lemma ide-dom-equ:
assumes par f g
shows ide (dom-equ f g)
and bij-betw (OUT (Dom-equ f g)) (Set (dom-equ f g)) (Dom-equ f g)
and bij-betw (IN (Dom-equ f g)) (Dom-equ f g) (Set (dom-equ f g))
and

∧
x. x ∈ Set (dom-equ f g) =⇒ OUT (Dom-equ f g) x ∈ Set (dom f)

and
∧

y. y ∈ Dom-equ f g =⇒ IN (Dom-equ f g) y ∈ Set (dom-equ f g)
and

∧
x. x ∈ Set (dom-equ f g) =⇒ IN (Dom-equ f g) (OUT (Dom-equ f g) x) = x

and
∧

y. y ∈ Dom-equ f g =⇒ OUT (Dom-equ f g) (IN (Dom-equ f g) y) = y
proof −

have 1 : small (Dom-equ f g)
by (metis (full-types) assms ide-dom small-Collect small-Set)

have 2 : embeds (Dom-equ f g)
by (metis (no-types, lifting) Collect-mono arrI image-ident mem-Collect-eq

subset-image-inj)
show ide (dom-equ f g)

by (unfold dom-equ-def , intro ide-mkide) fact+
show 3 : bij-betw (OUT (Dom-equ f g)) (Set (dom-equ f g)) (Dom-equ f g)

unfolding dom-equ-def
using assms ide-mkide bij-OUT 1 2 by auto

show 4 : bij-betw (IN (Dom-equ f g)) (Dom-equ f g) (Set (dom-equ f g))
unfolding dom-equ-def
using assms ide-mkide bij-OUT bij-IN 1 2 by fastforce

show
∧

x. x ∈ Set (dom-equ f g) =⇒ OUT (Dom-equ f g) x ∈ Set (dom f)
by (metis (no-types, lifting) 3 CollectD bij-betw-apply)

show
∧

y. y ∈ Dom-equ f g =⇒ IN (Dom-equ f g) y ∈ Set (dom-equ f g)
by (metis (no-types, lifting) 4 bij-betw-apply)

show
∧

x. x ∈ Set (dom-equ f g) =⇒ IN (Dom-equ f g) (OUT (Dom-equ f g) x) = x
using 1 2 IN-OUT dom-equ-def by auto

66

show
∧

y. y ∈ Dom-equ f g =⇒ OUT (Dom-equ f g) (IN (Dom-equ f g) y) = y
using 1 2 OUT-IN by force

qed

lemma Equ-in-Hom [intro]:
assumes par f g
shows Equ f g ∈ Hom (dom-equ f g) (dom f)
proof

show Equ f g ∈ Set (dom-equ f g) → Set (dom f)
using assms ide-dom-equ(4) by auto

show Equ f g ∈ {F . ∀ x. x /∈ Set (dom-equ f g) −→ F x = null}
by simp

qed

lemma equ-in-hom [intro, simp]:
assumes par f g
shows «equ f g : dom-equ f g → dom f »

using assms ide-dom-equ Equ-in-Hom
unfolding equ-def
by (intro mkarr-in-hom) auto

lemma equ-simps [simp]:
assumes par f g
shows arr (equ f g) and dom (equ f g) = dom-equ f g and cod (equ f g) = dom f

using assms equ-in-hom by blast+

lemma Fun-equ:
assumes par f g
shows Fun (equ f g) = Equ f g
proof −

have arr (equ f g)
using assms by auto

thus ?thesis
unfolding equ-def
using assms Fun-mkarr by auto

qed

lemma equ-equalizes:
assumes par f g
shows f · equ f g = g · equ f g
proof (intro arr-eqI [of f · equ f g])

show par : par (f · equ f g) (g · equ f g)
using assms by auto

show Fun (f · equ f g) = Fun (g · equ f g)
proof

fix x
show Fun (f · equ f g) x = Fun (g · equ f g) x
proof (cases x ∈ Set (dom-equ f g))

case False

67

show ?thesis
using assms False Fun-equ Fun-def by simp

next
case True
show ?thesis
proof −

have Fun (f · equ f g) x = Fun f (Fun (equ f g) x)
using assms Fun-comp comp-in-homI equ-in-hom comp-assoc by auto

also have ... = Fun f (OUT (Dom-equ f g) x)
using assms True Fun-equ by simp

also have ... = f · (OUT (Dom-equ f g) x)
using Fun-def True assms ide-dom-equ(4) by simp

also have ... = g · (OUT (Dom-equ f g) x)
using assms True ide-dom-equ(2) [of f g] bij-betw-apply by force

also have ... = Fun g (Fun (equ f g) x)
using assms True Fun-def Fun-equ ide-dom-equ by simp

also have ... = Fun (g · equ f g) x
using assms Fun-comp comp-in-homI equ-in-hom comp-assoc by auto

finally show ?thesis by blast
qed

qed
qed

qed

lemma equ-is-equalizer :
assumes par f g
shows has-as-equalizer f g (equ f g)
proof

show par f g by fact
show 0 : seq f (equ f g)

using assms by auto
show f · equ f g = g · equ f g

using assms equ-equalizes by blast
show

∧
e ′. [[seq f e ′; f · e ′ = g · e ′]] =⇒ ∃ !h. equ f g · h = e ′

proof −
fix e ′

assume seq: seq f e ′ and eq: f · e ′ = g · e ′

let ?H = λx. if x ∈ Set (dom e ′) then IN (Dom-equ f g) (e ′ · x) else null
have H : ?H ∈ Hom (dom e ′) (dom-equ f g)
proof

show ?H ∈ {F . ∀ x. x /∈ Set (dom e ′) −→ F x = null} by simp
show ?H ∈ Set (dom e ′) → Set (dom-equ f g)
proof

fix x
assume x: x ∈ Set (dom e ′)
have ?H x = IN (Dom-equ f g) (e ′ · x)

using x by simp
moreover have ... ∈ Set (dom-equ f g)

using assms seq x ide-dom-equ(5)

68

by (metis (mono-tags, lifting) CollectD CollectI arr-iff-in-hom
comp-in-homI eq local.comp-assoc seqE)

ultimately show ?H x ∈ Set (dom-equ f g) by auto
qed

qed
let ?h = mkarr (dom e ′) (dom-equ f g) ?H
have h: «?h : dom e ′→ dom-equ f g»

using assms H seq ide-dom-equ
by (intro mkarr-in-hom) auto

have ∗: equ f g · ?h = e ′

proof (intro arr-eqI ′ [of equ f g · ?h])
show 1 : «equ f g · ?h : dom e ′→ dom f »

using assms h by blast
show e ′: «e ′ : dom e ′→ dom f »

by (metis arr-iff-in-hom seq seqE)
show

∧
x. «x : 1? → dom e ′» =⇒ (equ f g · ?h) · x = e ′ · x

proof −
fix x
assume x: «x : 1? → dom e ′»
have (equ f g · ?h) · x = equ f g · ?h · x

using comp-assoc by blast
also have ... = equ f g · ?H x

using app-mkarr h x by presburger
also have ... = OUT (Dom-equ f g) (IN (Dom-equ f g) (e ′ · x))
proof −

have ?H x ∈ Set (dom-equ f g)
using 1 x by blast

thus ?thesis
using assms x equ-in-hom app-mkarr
by (simp add: assms equ-def)

qed
also have ... = e ′ · x
proof −

have e ′ · x ∈ Dom-equ f g
by (metis (mono-tags, lifting) e ′ comp-in-homI eq comp-assoc

mem-Collect-eq x)
thus ?thesis

using assms ide-dom-equ(7) [of f g e ′ · x] by blast
qed
finally show (equ f g · ?h) · x = e ′ · x by blast

qed
qed
moreover have

∧
h ′. equ f g · h ′ = e ′ =⇒ h ′ = ?h

proof −
fix h ′

assume h ′: equ f g · h ′ = e ′

show h ′ = ?h
proof (intro arr-eqI ′ [of h ′ - - ?h])

show 1 : «h ′ : dom e ′→ dom-equ f g»

69

by (metis arr-iff-in-hom assms comp-in-homE equ-simps(2) h ′ in-homE seq)
show «?h : dom e ′→ dom-equ f g»

using h by blast
show

∧
x. «x : 1? → dom e ′» =⇒ h ′ · x = ?h · x

proof −
fix x
assume x: «x : 1? → dom e ′»
have 3 : h ′ · x = IN (Dom-equ f g) (Equ f g (h ′ · x))

using assms h ′ x 1 seq eq ide-dom-equ(6) comp-in-homI in-homI
by auto

also have 4 : ... = IN (Dom-equ f g) (Fun (equ f g) (h ′ · x))
using assms Fun-equ [of f g]
by (metis (lifting))

also have 5 : ... = IN (Dom-equ f g) (equ f g · (h ′ · x))
using Fun-def
by (metis (no-types, lifting) x CollectI comp-in-homI

dom-comp h ′ in-homI seq seqE)
also have ... = IN (Dom-equ f g) ((equ f g · h ′) · x)

using comp-assoc by simp
also have ... = IN (Dom-equ f g) ((equ f g · ?h) · x)

using h h ′ eq ∗ by argo
also have ... = IN (Dom-equ f g) (equ f g · (?h · x))

using comp-assoc by simp
also have ... = IN (Dom-equ f g) (Fun (equ f g) (?h · x))

using x Fun-def app-mkarr h h ′ comp-assoc 3 4 5 by auto
also have ... = IN (Dom-equ f g) (Equ f g (?h · x))

using assms Fun-equ by (metis (lifting))
also have ... = ?h · x

using assms x ide-dom-equ(6) h by auto
finally show h ′ · x = ?h · x by blast

qed
qed

qed
ultimately show ∃ !h. equ f g · h = e ′ by auto

qed
qed

lemma has-equalizers:
assumes par f g
shows ∃ e. has-as-equalizer f g e
using assms equ-is-equalizer by blast

end

4.5.1 Exported Notions
As we don’t want to clutter the sets-cat locale with auxiliary definitions and facts that
no longer need to be used once we have completed the equalizer construction, we have
carried out the construction in a separate locale and we now transfer to the sets-cat locale

70

only those definitions and facts that we would like to export. In general, we will need
to export the objects and arrows mentioned by the universal property together with the
associated infrastructure for establishing the types of expressions that use them. We will
also need to export facts that allow us to externalize these arrows as functions between
sets of global elements, and we will need facts that give the types and inverse relationship
between the comparison maps.

context sets-cat
begin

interpretation Equ: equalizers-in-sets-cat sml C ..

abbreviation equ
where equ ≡ Equ.equ

abbreviation Equ
where Equ f g ≡ {x. x ∈ Set (dom f) ∧ f · x = g · x}

lemma equalizer-comparison-map-props:
assumes par f g
shows bij-betw (OUT (Equ f g)) (Set (dom (equ f g))) (Equ f g)
and bij-betw (IN (Equ f g)) (Equ f g) (Set (dom (equ f g)))
and

∧
x. x ∈ Set (dom (equ f g)) =⇒ OUT (Equ f g) x ∈ Set (dom f)

and
∧

y. y ∈ Equ f g =⇒ IN (Equ f g) y ∈ Set (dom (equ f g))
and

∧
x. x ∈ Set (dom (equ f g)) =⇒ IN (Equ f g) (OUT (Equ f g) x) = x

and
∧

y. y ∈ Equ f g =⇒ OUT (Equ f g) (IN (Equ f g) y) = y
using assms Equ.ide-dom-equ [of f g] Equ.equ-simps(2) [of f g] by auto

lemma equ-is-equalizer :
assumes par f g
shows has-as-equalizer f g (equ f g)

using assms Equ.equ-is-equalizer by blast

lemma Fun-equ:
assumes par f g
shows Fun (equ f g) = (λx. if x ∈ Set (dom (equ f g))

then OUT {x. x ∈ Set (dom f) ∧ f · x = g · x} x
else null)

using assms Equ.Fun-equ by auto

lemma has-equalizers:
assumes par f g
shows ∃ e. has-as-equalizer f g e

using assms Equ.has-equalizers by blast

end

71

4.6 Binary Products
In this section we show that the category of small sets and functions has binary products.
We follow the same pattern as for equalizers, except that now the set to which we would
like to apply mkide to obtain a product object will consist of pairs of arrows, rather than
individual arrows. This means that we will need to assume the existence of a pairing
function that embeds the set of pairs of arrows of the category back into the original set of
arrows. Once again, in showing that the construction makes sense we will need to reason
about comparison maps, but once this is done we will be left simply with a universal
property which does not mention these maps. After that, we only have to work with the
comparison maps when relating notions internal to the category to notions external to
it.

The following locale specializes sets-cat by adding the assumption that there exists
a suitable pairing function. In addition, we need to assume that the smallness notion
being used is respected by pairing.

locale sets-cat-with-pairing =
sets-cat sml C +
small-product sml +
pairing ‹Collect arr›

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)

As previously, we carry out the details of the construction in an auxiliary locale and
later transfer to the sets-cat locale only those things that we want to export.

locale products-in-sets-cat =
sets-cat-with-pairing sml C

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)
begin

lemma small-product-set:
assumes ide a and ide b
shows small (Set a × Set b)

using assms small-Set by fastforce

lemma embeds-product-sets:
assumes ide a and ide b
shows embeds (Set a × Set b)
proof −

have Set a × Set b ⊆ Collect arr × Collect arr
using assms small-Set by auto

thus ?thesis
using assms embeds-pairs
by (meson image-mono inj-on-subset subset-trans)

qed

We define the product of two objects as the object determined by the cartesian

72

product of their sets of elements.
definition prodo

where prodo a b ≡ mkide (Set a × Set b)

lemma ide-prodo:
assumes ide a and ide b
shows ide (prodo a b)
and bij-betw (OUT (Set a × Set b)) (Set (prodo a b)) (Set a × Set b)
and bij-betw (IN (Set a × Set b)) (Set a × Set b) (Set (prodo a b))
and

∧
x. x ∈ Set (prodo a b) =⇒ OUT (Set a × Set b) x ∈ Set a × Set b

and
∧

y. y ∈ Set a × Set b =⇒ IN (Set a × Set b) y ∈ Set (prodo a b)
and

∧
x. x ∈ Set (prodo a b) =⇒ IN (Set a × Set b) (OUT (Set a × Set b) x) = x

and
∧

y. y ∈ Set a × Set b =⇒ OUT (Set a × Set b) (IN (Set a × Set b) y) = y
proof −

have 1 : small (Set a × Set b)
using assms ide-char small-Set small-product by metis

moreover have 2 : is-embedding-of some-pairing (Set a × Set b)
proof −

have Set a × Set b ⊆ Collect arr × Collect arr
using assms ide-char small-Set by blast

thus ?thesis
using assms some-pairing-is-embedding
by (meson image-mono inj-on-subset subset-trans)

qed
ultimately show ide (prodo a b)
and 3 : bij-betw (OUT (Set a × Set b)) (Set (prodo a b)) (Set a × Set b)

unfolding prodo-def
using assms ide-mkide bij-OUT by blast+

show 4 : bij-betw (IN (Set a × Set b)) (Set a × Set b) (Set (prodo a b))
using ‹bij-betw (OUT (Set a × Set b)) (Set (prodo a b)) (Set a × Set b)›

bij-betw-inv-into prodo-def
by auto

show
∧

x. x ∈ Set (prodo a b) =⇒ OUT (Set a × Set b) x ∈ Set a × Set b
using 3 bij-betwE by blast

show
∧

y. y ∈ Set a × Set b =⇒ IN (Set a × Set b) y ∈ Set (prodo a b)
using 4 bij-betwE by blast

show
∧

x. x ∈ Set (prodo a b) =⇒ IN (Set a × Set b) (OUT (Set a × Set b) x) = x
using 1 2 IN-OUT prodo-def by auto

show
∧

y. y ∈ Set a × Set b =⇒ OUT (Set a × Set b) (IN (Set a × Set b) y) = y
by (metis 1 2 OUT-IN)

qed

We next define the projection arrows from a product object in terms of the projection
functions on the underlying cartesian product of sets.

abbreviation P0 :: ′U ⇒ ′U ⇒ ′U ⇒ ′U
where P0 a b ≡ λx. if x ∈ Set (prodo a b) then snd (OUT (Set a × Set b) x) else null

abbreviation P1 :: ′U ⇒ ′U ⇒ ′U ⇒ ′U
where P1 a b ≡ λx. if x ∈ Set (prodo a b) then fst (OUT (Set a × Set b) x) else null

73

lemma P0-in-Hom:
assumes ide a and ide b
shows P0 a b ∈ Hom (prodo a b) b
proof

show P0 a b ∈ Set (prodo a b) → Set b
proof

fix x
assume x: x ∈ Set (prodo a b)
have OUT (Set a × Set b) x ∈ Set a × Set b

using assms x bij-betwE ide-prodo(2) by blast
thus P0 a b x ∈ Set b

using assms x by force
qed
show P0 a b ∈ {F . ∀ x. x /∈ Set (prodo a b) −→ F x = null}

by simp
qed

lemma P1-in-Hom:
assumes ide a and ide b
shows P1 a b ∈ Hom (prodo a b) a
proof

show P1 a b ∈ Set (prodo a b) → Set a
proof

fix x
assume x: x ∈ Set (prodo a b)
have OUT (Set a × Set b) x ∈ Set a × Set b

using assms x bij-betwE ide-prodo(2) by blast
thus P1 a b x ∈ Set a

using assms x by force
qed
show P1 a b ∈ {F . ∀ x. x /∈ Set (prodo a b) −→ F x = null}

by simp
qed

definition pr0 :: ′U ⇒ ′U ⇒ ′U
where pr0 a b ≡ mkarr (prodo a b) b (P0 a b)

definition pr1 :: ′U ⇒ ′U ⇒ ′U
where pr1 a b ≡ mkarr (prodo a b) a (P1 a b)

lemma pr-in-hom [intro]:
assumes ide a and ide b
shows in-hom (pr1 a b) (prodo a b) a
and in-hom (pr0 a b) (prodo a b) b

using assms pr0-def pr1-def mkarr-in-hom ide-prodo P0-in-Hom P1-in-Hom by auto

lemma pr-simps [simp]:
assumes ide a and ide b

74

shows arr (pr0 a b) and dom (pr0 a b) = prodo a b and cod (pr0 a b) = b
and arr (pr1 a b) and dom (pr1 a b) = prodo a b and cod (pr1 a b) = a

using assms pr-in-hom by blast+

lemma Fun-pr :
assumes ide a and ide b
shows Fun (pr1 a b) = P1 a b
and Fun (pr0 a b) = P0 a b

using assms Fun-mkarr pr0-def pr1-def pr-simps(1 ,4) by presburger+

Tupling of arrows is also defined in terms of the underlying cartesian product.
definition Tuple :: ′U ⇒ ′U ⇒ ′U ⇒ ′U
where Tuple f g ≡ (λx. if x ∈ Set (dom f)

then IN (Set (cod f) × Set (cod g)) (Fun f x, Fun g x)
else null)

definition tuple :: ′U ⇒ ′U ⇒ ′U
where tuple f g ≡ mkarr (dom f) (prodo (cod f) (cod g)) (Tuple f g)

lemma tuple-in-hom [intro]:
assumes «f : c → a» and «g : c → b»
shows «tuple f g : c → prodo a b»
proof −

have Tuple f g ∈ Set c → Set (prodo a b)
proof

fix x
assume x: x ∈ Set c
have bij-betw (IN (Set a × Set b)) (Set a × Set b) (Set (mkide (Set a × Set b)))

using assms embeds-pairs ide-prodo(2) prodo-def
by (metis ide-cod ide-prodo(3) in-homE)

thus Tuple f g x ∈ Set (prodo a b)
unfolding Tuple-def prodo-def Fun-def
using assms x bij-betw-apply in-homE small-Set
by auto fastforce

qed
moreover have

∧
x. x /∈ Set c =⇒ Tuple f g x = null

unfolding Tuple-def
using assms by auto

ultimately show ?thesis
unfolding tuple-def
using assms mkarr-in-hom ide-prodo(1) by fastforce

qed

lemma tuple-simps [simp]:
assumes span f g
shows arr (tuple f g)
and dom (tuple f g) = dom f
and cod (tuple f g) = prodo (cod f) (cod g)

using assms

75

by (metis assms in-homE in-homI tuple-in-hom)+

In verifying the equations required for a categorical product, we unfortunately do
have to fuss with the comparison maps.

lemma comp-pr-tuple:
assumes span f g
shows pr1 (cod f) (cod g) · tuple f g = f
and pr0 (cod f) (cod g) · tuple f g = g
proof −

let ?c = dom f and ?a = cod f and ?b = cod g
show pr1 ?a ?b · tuple f g = f
proof −

have pr1 ?a ?b · tuple f g =
mkarr (prodo ?a ?b) ?a (P1 ?a ?b) · mkarr ?c (prodo ?a ?b) (Tuple f g)

unfolding pr1-def tuple-def Tuple-def
using assms by auto

also have ... = mkarr ?c ?a (P1 ?a ?b ◦ Tuple f g)
using assms comp-mkarr
by (metis (lifting) calculation ide-cod pr-simps(4 ,5) seqE seqI tuple-simps(1 ,3))

also have ... = mkarr ?c ?a
(λx. if x ∈ Set ?c

then fst (OUT (Set ?a × Set ?b)
(IN (Set ?a × Set ?b) (Fun f x, Fun g x)))

else null)
proof −

have (P1 ?a ?b ◦ Tuple f g) =
(λx. if «x : 1? → ?c»

then fst (OUT (Set ?a × Set ?b)
(IN (Set ?a × Set ?b) (Fun f x, Fun g x)))

else null)
using assms ide-prodo(3) [of ?a ?b] bij-betw-apply Tuple-def Fun-def by fastforce

thus ?thesis by simp
qed
also have ... = mkarr ?c ?a (λx. if x ∈ Set ?c then fst (Fun f x, Fun g x) else null)
proof −

have
∧

x. x ∈ Set ?c =⇒
OUT (Set ?a × Set ?b) (IN (Set ?a × Set ?b) (Fun f x, Fun g x)) =
(Fun f x, Fun g x)

using assms OUT-IN [of Set ?a × Set ?b] small-product-set embeds-product-sets
Fun-def

by auto
thus ?thesis

by (metis (lifting))
qed
also have ... = mkarr ?c ?a (λx. if x ∈ Set ?c then Fun f x else null)

using assms by (metis (lifting) fst-eqD)
also have ... = f
proof −

have Fun f = (λx. if x ∈ Set ?c then Fun f x else null)

76

unfolding Fun-def by meson
thus ?thesis

by (metis (no-types, lifting) arr-iff-in-hom assms mkarr-Fun)
qed
finally show ?thesis by simp

qed
show pr0 ?a ?b · tuple f g = g
proof −

have pr0 ?a ?b · tuple f g =
mkarr (prodo ?a ?b) ?b (P0 ?a ?b) · mkarr ?c (prodo ?a ?b) (Tuple f g)

unfolding pr0-def tuple-def Tuple-def
using assms comp-mkarr by auto

also have ... = mkarr ?c ?b (P0 ?a ?b ◦ Tuple f g)
using assms comp-mkarr
by (metis (lifting) calculation ide-cod seqE seqI pr-simps(1 ,2) tuple-simps(1 ,3))

also have ... = mkarr ?c ?b
(λx. if x ∈ Set ?c

then snd (OUT (Set ?a × Set ?b)
(IN (Set ?a × Set ?b) (Fun f x, Fun g x)))

else null)
proof −

have (P0 ?a ?b ◦ Tuple f g) =
(λx. if x ∈ Set ?c

then snd (OUT (Set ?a × Set ?b)
(IN (Set ?a × Set ?b) (Fun f x, Fun g x)))

else null)
using assms ide-prodo(3) [of ?a ?b] bij-betw-apply Tuple-def Fun-def by fastforce

thus ?thesis by simp
qed
also have ... = mkarr ?c ?b (λx. if x ∈ Set ?c then snd (Fun f x, Fun g x) else null)
proof −

have
∧

x. x ∈ Set ?c =⇒
OUT (Set ?a × Set ?b) (IN (Set ?a × Set ?b) (Fun f x, Fun g x)) =
(Fun f x, Fun g x)

using assms OUT-IN [of Set ?a × Set ?b] small-product-set embeds-product-sets
Fun-def

by auto
thus ?thesis

by (metis (lifting))
qed
also have ... = mkarr ?c ?b (λx. if x ∈ Set ?c then Fun g x else null)

using assms by (metis (lifting) snd-eqD)
also have ... = g
proof −

have Fun g = (λx. if x ∈ Set ?c then Fun g x else null)
unfolding Fun-def by (metis assms)

thus ?thesis
by (metis (no-types, lifting) arr-iff-in-hom assms mkarr-Fun)

qed

77

finally show ?thesis by simp
qed

qed

lemma Fun-tuple:
assumes span f g
shows Fun (tuple f g) =

(λx. if x ∈ Set (dom f)
then IN (Set (cod f) × Set (cod g)) (Fun f x, Fun g x)
else null)

using tuple-def Tuple-def Fun-mkarr assms tuple-simps(1) by presburger

lemma binary-product-pr :
assumes ide a and ide b
shows binary-product C a b (pr1 a b) (pr0 a b)
proof

show has-as-binary-product a b (pr1 a b) (pr0 a b)
proof

show 1 : span (pr1 a b) (pr0 a b)
using assms by auto

show cod (pr1 a b) = a
using assms by auto

show cod (pr0 a b) = b
using assms by auto

fix x f g
assume f : «f : x → a» and g: «g : x → b»
let ?H = λz. if z ∈ Set x then IN (Set a × Set b) (Fun f z, Fun g z) else null
let ?h = mkarr x (prodo a b) ?H
have h: «?h : x → dom (pr1 a b)» ∧ C (pr1 a b) ?h = f ∧ C (pr0 a b) ?h = g

using assms f g tuple-in-hom [of f x a g b] comp-pr-tuple [of f g]
unfolding tuple-def Tuple-def by auto

moreover have
∧

h ′. «h ′ : x → dom (pr1 a b)» ∧ C (pr1 a b) h ′ = f ∧
C (pr0 a b) h ′ = g

=⇒ h ′ = ?h
proof −

fix h ′

assume h ′: «h ′ : x → dom (pr1 a b)» ∧ C (pr1 a b) h ′ = f ∧ C (pr0 a b) h ′ = g
show h ′ = ?h
proof (intro arr-eqI ′ [of h ′])

show «h ′ : x → dom (prodo a b)»
using assms h ′ ide-prodo(1) by auto

show «?h : x → dom (prodo a b)»
using assms h ide-prodo(1) by auto

show
∧

z. «z : 1? → x» =⇒ h ′ · z = ?h · z
proof −

fix z
assume z: «z : 1? → x»
have h ′ · z = Fun h ′ z

using h ′ z Fun-def by auto

78

also have ... = IN (Set a × Set b) (Fun f z, Fun g z)
proof −

have fst (OUT (Set a × Set b) (Fun h ′ z)) = Fun f z
proof −

have Fun f z = Fun (pr1 a b · h ′) z
using h ′ by force

also have ... = (P1 a b ◦ Fun h ′) z
using assms(1−2) f h ′ Fun-pr(1) Fun-comp arrI by auto

also have ... = fst (OUT (Set a × Set b) (Fun h ′ z))
using assms(1 ,2) h ′ z Fun-def by auto

finally show ?thesis by simp
qed
moreover have snd (OUT (Set a × Set b) (Fun h ′ z)) = Fun g z
proof −

have Fun g z = Fun (pr0 a b · h ′) z
using h ′ by force

also have ... = (P0 a b ◦ Fun h ′) z
using assms(1−2) g h ′ Fun-pr(2) Fun-comp arrI by auto

also have ... = snd (OUT (Set a × Set b) (Fun h ′ z))
using assms(1 ,2) h ′ z Fun-def by auto

finally show ?thesis by simp
qed
ultimately have IN (Set a × Set b) (Fun f z, Fun g z) =

IN (Set a × Set b) (OUT (Set a × Set b) (Fun h ′ z))
by (metis split-pairs2)

also have ... = Fun h ′ z
using assms h ′ z IN-OUT ‹C h ′ z = Fun h ′ z› prodo-def Fun-def

small-product-set [of a b] embeds-product-sets [of a b]
by auto

finally show ?thesis by simp
qed
also have ... = C ?h z

using app-mkarr assms(1 ,2) h z by auto
finally show C h ′ z = C ?h z by blast

qed
qed

qed
ultimately show ∃ !h. «h : x → dom (pr1 a b)» ∧ C (pr1 a b) h = f ∧

C (pr0 a b) h = g
by auto

qed
qed

lemma has-binary-products:
shows has-binary-products

using binary-product-pr
by (meson binary-product.has-as-binary-product has-binary-products-def)

end

79

4.6.1 Exported Notions
We now transfer to the sets-cat-with-pairing locale just the things we want to export.
The projections are the main thing; most of the rest is inherited from the elemen-
tary-category-with-binary-products locale. We also need to include some infrastucture
for moving in and out of the category and working with the comparison maps.

context sets-cat-with-pairing
begin

interpretation Products: products-in-sets-cat ..

abbreviation pr0 :: ′U ⇒ ′U ⇒ ′U
where pr0 ≡ Products.pr0

abbreviation pr1 :: ′U ⇒ ′U ⇒ ′U
where pr1 ≡ Products.pr1

sublocale elementary-category-with-binary-products C pr0 pr1

proof
show

∧
f g. span f g =⇒ ∃ !l. C (pr1 (cod f) (cod g)) l = f ∧ C (pr0 (cod f) (cod g)) l = g

proof −
fix f g
assume fg: span f g
interpret binary-product C ‹cod f › ‹cod g› ‹pr1 (cod f) (cod g)› ‹pr0 (cod f) (cod g)›

using fg Products.binary-product-pr ide-cod by blast
show ∃ !l. C (pr1 (cod f) (cod g)) l = f ∧ C (pr0 (cod f) (cod g)) l = g

by (metis (full-types) fg tuple-props(4 ,5 ,6))
qed

qed auto

lemma bin-prod-comparison-map-props:
assumes ide a and ide b
shows OUT (Set a × Set b) ∈ Set (prod a b) → Set a × Set b
and IN (Set a × Set b) ∈ Set a × Set b → Set (prod a b)
and

∧
x. x ∈ Set (prod a b) =⇒ IN (Set a × Set b) (OUT (Set a × Set b) x) = x

and
∧

y. y ∈ Set a × Set b =⇒ OUT (Set a × Set b) (IN (Set a × Set b) y) = y
and bij-betw (OUT (Set a × Set b)) (Set (prod a b)) (Set a × Set b)
and bij-betw (IN (Set a × Set b)) (Set a × Set b) (Set (prod a b))

using assms Products.ide-prodo [of a b] pr-simps(5) by auto

lemma Fun-pr0:
assumes ide a and ide b
shows Fun (pr0 a b) = Products.P0 a b

using assms Products.Fun-pr(2) by auto[1]

lemma Fun-pr1:
assumes ide a and ide b
shows Fun (pr1 a b) = Products.P1 a b

using assms Products.Fun-pr(1) by auto[1]

80

lemma Fun-prod:
assumes «f : a → b» and «g : c → d»
shows Fun (prod f g) = (λx. if x ∈ Set (prod a c)

then tuple (Fun f (C (pr1 a c) x)) (Fun g (C (pr0 a c) x))
else null)

proof
fix x
show Fun (prod f g) x = (if x ∈ Set (prod a c)

then tuple (Fun f (C (pr1 a c) x)) (Fun g (C (pr0 a c) x))
else null)

proof (cases x ∈ Set (prod a c))
case False
show ?thesis

using False
by (metis assms(1 ,2) in-homE prod-simps(2) Fun-def)

next
case True
show ?thesis
proof −

have «x : 1? → dom (prod f g)»
using True assms(1 ,2) by fastforce

moreover have «pr1 a c · x : 1? → dom f » ∧ «pr0 a c · x : 1? → dom g»
using assms True
by (intro conjI comp-in-homI) fastforce+

moreover have prod f g · x = tuple (f · pr1 a c · x) (g · pr0 a c · x)
using assms True prod-tuple tuple-pr-arr
by (metis calculation(2) ide-dom in-homE seqI)

ultimately show ?thesis
using assms True Fun-def by auto

qed
qed

qed

lemma prod-ide-eq:
assumes ide a and ide b
shows prod a b = mkide (Set a × Set b)

using assms(1 ,2) pr-simps(2) Products.prodo-def by force

lemma tuple-eq:
assumes «f : x → a» and «g : x → b»
shows tuple f g = mkarr x (prod a b)

(λz. if z ∈ Set x
then IN (Set a × Set b) (Fun f z, Fun g z)
else null)

proof −
have tuple f g = Products.tuple f g

by (metis Products.comp-pr-tuple(1 ,2) assms(1 ,2) in-homE pr-tuple(1 ,2) universal)
thus ?thesis

81

unfolding Products.tuple-def Products.Tuple-def
using assms Products.prodo-def prod-ide-eq by fastforce

qed

lemma tuple-point-eq:
assumes «x : 1? → a» and «y : 1? → b»
shows tuple x y = IN (Set a × Set b) (x, y)
proof −

have 1 : tuple x y = mkarr 1? (prod a b)
(λz. if z ∈ Set 1? then IN (Set a × Set b) (x, y) else null)

proof −
have

∧
z. z ∈ Set 1? =⇒ Fun x z = x ∧ Fun y z = y

unfolding Fun-def
by (metis assms CollectD comp-arr-dom ide-dom ide-in-hom in-homE some-trm-eqI)

hence (λz. if z ∈ Set 1? then IN (Set a × Set b) (Fun x z , Fun y z) else null) =
(λz. if z ∈ Set 1? then IN (Set a × Set b) (x, y) else null)

by fastforce
thus ?thesis

using assms tuple-eq by simp
qed
also have ... = IN (Set a × Set b) (x, y)
proof −

have mkarr 1? (prod a b)
(λz. if z ∈ Set 1? then IN (Set a × Set b) (x, y) else null) =

mkarr 1? (prod a b)
(λz. if z ∈ Set 1? then IN (Set a × Set b) (x, y) else null) · 1?

by (metis (lifting) assms(1 ,2) calculation comp-arr-dom dom-mkarr in-homE
tuple-simps(1))

also have ... = IN (Set a × Set b) (x, y)
using app-mkarr [of 1? prod a b - 1?]
by (metis (full-types, lifting) CollectI

assms(1 ,2) 1 ide-in-hom ide-some-terminal tuple-in-hom)
finally show ?thesis by blast

qed
finally show ?thesis by blast

qed

lemma Fun-tuple:
assumes span f g
shows Fun (tuple f g) =

(λx. if x ∈ Set (dom f)
then IN (Set (cod f) × Set (cod g)) (Fun f x, Fun g x)
else null)

using assms Fun-mkarr tuple-eq [of f dom f cod f g cod g]
by (metis (lifting) in-homI tuple-simps(1))

end

82

4.7 Binary Coproducts
In this section we prove the existence of binary coproducts, following the same approach
as for binary products. The required assumptions are slightly different, because here we
need smallness to be preserved by union.

locale sets-cat-with-cotupling =
sets-cat-with-bool sml C +
small-sum sml +
pairing ‹Collect arr›

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)

locale coproducts-in-sets-cat =
sets-cat-with-cotupling sml C

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)
begin

abbreviation Coprod
where Coprod a b ≡ ({tt} × Set a) ∪ ({ff } × Set b)

lemma small-Coprod:
assumes ide a and ide b
shows small (Coprod a b)

using assms small-product
by (metis Set-two ide-two(1) small-Set small-insert-iff small-union)

lemma embeds-Coprod:
assumes ide a and ide b
shows embeds (Coprod a b)
proof −

have Coprod a b ⊆ Collect arr × Collect arr
using ff-simps(1) tt-simps(1) by blast

thus ?thesis
using embeds-pairs
by (simp add: embeds-subset)

qed

definition coprodo

where coprodo a b ≡ mkide (Coprod a b)

lemma ide-coprodo:
assumes ide a and ide b
shows ide (coprodo a b)
and bij-betw (OUT (Coprod a b)) (Set (coprodo a b)) (Coprod a b)
and bij-betw (IN (Coprod a b)) (Coprod a b) (Set (coprodo a b))
and

∧
x. x ∈ Set (coprodo a b) =⇒ OUT (Coprod a b) x ∈ Coprod a b

and
∧

y. y ∈ Coprod a b =⇒ IN (Coprod a b) y ∈ Set (coprodo a b)
and

∧
x. x ∈ Set (coprodo a b) =⇒ IN (Coprod a b) (OUT (Coprod a b) x) = x

83

and
∧

y. y ∈ Coprod a b =⇒ OUT (Coprod a b) (IN (Coprod a b) y) = y
proof −

show ide (coprodo a b)
and 1 : bij-betw (OUT (Coprod a b)) (Set (coprodo a b)) (Coprod a b)

unfolding coprodo-def
using assms ide-mkide(1) bij-OUT small-Coprod embeds-Coprod by metis+

show 2 : bij-betw (IN (Coprod a b)) (Coprod a b) (Set (coprodo a b))
using 1 bij-betw-inv-into coprodo-def by auto

show
∧

x. x ∈ Set (coprodo a b) =⇒ OUT (Coprod a b) x ∈ Coprod a b
using 1 bij-betwE by blast

show
∧

y. y ∈ Coprod a b =⇒ IN (Coprod a b) y ∈ Set (coprodo a b)
using 2 bij-betwE by blast

show
∧

x. x ∈ Set (coprodo a b) =⇒ IN (Coprod a b) (OUT (Coprod a b) x) = x
using assms small-Coprod embeds-Coprod IN-OUT coprodo-def by metis

show
∧

y. y ∈ Coprod a b =⇒ OUT (Coprod a b) (IN (Coprod a b) y) = y
using assms small-Coprod embeds-Coprod coprodo-def 1

bij-betw-inv-into-right
[of OUT (Coprod a b) Set (coprodo a b) Coprod a b]

by presburger
qed

abbreviation In0 :: ′U ⇒ ′U ⇒ ′U ⇒ ′U
where In0 a b ≡ λx. if x ∈ Set b then IN (Coprod a b) (ff , x) else null

abbreviation In1 :: ′U ⇒ ′U ⇒ ′U ⇒ ′U
where In1 a b ≡ λx. if x ∈ Set a then IN (Coprod a b) (tt, x) else null

lemma In0-in-Hom:
assumes ide a and ide b
shows In0 a b ∈ Hom b (coprodo a b)
proof

show In0 a b ∈ {F . ∀ x. x /∈ Set b −→ F x = null} by simp
show In0 a b ∈ Set b → Set (coprodo a b)
proof

fix x
assume x: x ∈ Set b
have (ff , x) ∈ Coprod a b

using assms x by blast
thus In0 a b x ∈ Set (coprodo a b)

using assms x ide-coprodo(3) bij-betwE ide-coprodo(5) by presburger
qed

qed

lemma In1-in-Hom:
assumes ide a and ide b
shows In1 a b ∈ Hom a (coprodo a b)
proof

show In1 a b ∈ {F . ∀ x. x /∈ Set a −→ F x = null} by simp
show In1 a b ∈ Set a → Set (coprodo a b)

84

proof
fix x
assume x: x ∈ Set a
have (tt, x) ∈ Coprod a b

using assms x by blast
thus In1 a b x ∈ Set (coprodo a b)

using assms x ide-coprodo(3) bij-betwE ide-coprodo(5) by presburger
qed

qed

definition in0 :: ′U ⇒ ′U ⇒ ′U
where in0 a b ≡ mkarr b (coprodo a b) (In0 a b)

definition in1 :: ′U ⇒ ′U ⇒ ′U
where in1 a b ≡ mkarr a (coprodo a b) (In1 a b)

lemma in-in-hom [intro, simp]:
assumes ide a and ide b
shows in-hom (in1 a b) a (coprodo a b)
and in-hom (in0 a b) b (coprodo a b)

using assms in0-def in1-def mkarr-in-hom ide-coprodo In0-in-Hom In1-in-Hom by auto

lemma in-simps [simp]:
assumes ide a and ide b
shows arr (in0 a b) and dom (in0 a b) = b and cod (in0 a b) = coprodo a b
and arr (in1 a b) and dom (in1 a b) = a and cod (in1 a b) = coprodo a b

using assms in-in-hom by blast+

lemma Fun-in:
assumes ide a and ide b
shows Fun (in1 a b) = In1 a b
and Fun (in0 a b) = In0 a b

using assms Fun-mkarr in0-def in1-def in-simps(1 ,4) by presburger+

definition Cotuple :: ′U ⇒ ′U ⇒ ′U ⇒ ′U
where Cotuple f g ≡ (λx. if x ∈ Set (coprodo (dom f) (dom g))

then if fst (OUT (Coprod (dom f) (dom g)) x) = tt
then Fun f (snd (OUT (Coprod (dom f) (dom g)) x))
else if fst (OUT (Coprod (dom f) (dom g)) x) = ff

then Fun g (snd (OUT (Coprod (dom f) (dom g)) x))
else null

else null)

definition cotuple :: ′U ⇒ ′U ⇒ ′U
where cotuple f g ≡ mkarr (coprodo (dom f) (dom g)) (cod f) (Cotuple f g)

lemma cotuple-in-hom [intro, simp]:
assumes «f : a → c» and «g : b → c»
shows «cotuple f g : coprodo a b → c»

85

proof −
have bij: bij-betw (OUT (Coprod a b)) (Set (coprodo a b)) (Coprod a b)

using assms ide-coprodo(2) ide-dom by blast
have Cotuple f g ∈ Set (coprodo a b) → Set c
proof

fix x
assume x: x ∈ Set (coprodo a b)
have 1 : OUT (Coprod a b) x ∈ Coprod a b

using x bij bij-betwE by blast
have fst (OUT (Coprod a b) x) = tt ∨ fst (OUT (Coprod a b) x) = ff

using 1 by fastforce
moreover have fst (OUT (Coprod a b) x) = tt =⇒ Cotuple f g x ∈ Set c
proof −

assume 2 : fst (OUT (Coprod a b) x) = tt
have snd (OUT (Coprod a b) x) ∈ Set a

using 1 2 tt-ne-ff by auto
thus ?thesis

unfolding Cotuple-def
using assms x 2 Fun-in-Hom [of f a c] tt-ne-ff
by auto fastforce

qed
moreover have fst (OUT (Coprod a b) x) = ff =⇒ Cotuple f g x ∈ Set c
proof −

assume 2 : fst (OUT (Coprod a b) x) = ff
have snd (OUT (Coprod a b) x) ∈ Set b

using 1 2 tt-ne-ff by auto
thus ?thesis

unfolding Cotuple-def
using assms x 2 Fun-in-Hom [of g b c] tt-ne-ff by auto

qed
ultimately show Cotuple f g x ∈ Set c by blast

qed
moreover have

∧
x. x /∈ Set (coprodo a b) =⇒ Cotuple f g x = null

unfolding Cotuple-def
using assms by auto

ultimately show ?thesis
unfolding cotuple-def
using assms mkarr-in-hom ide-coprodo(1) by fastforce

qed

lemma cotuple-simps [simp]:
assumes cospan f g
shows arr (cotuple f g)
and dom (cotuple f g) = coprodo (dom f) (dom g)
and cod (cotuple f g) = cod f

using assms
by (metis assms in-homE in-homI cotuple-in-hom)+

lemma comp-cotuple-in:

86

assumes cospan f g
shows cotuple f g · in1 (dom f) (dom g) = f
and cotuple f g · in0 (dom f) (dom g) = g
proof −

let ?a = dom f and ?b = dom g and ?c = cod f
show cotuple f g · in1 (dom f) (dom g) = f
proof −

have cotuple f g · in1 (dom f) (dom g) =
mkarr (coprodo ?a ?b) ?c (Cotuple f g) · mkarr ?a (coprodo ?a ?b) (In1 ?a ?b)

unfolding in1-def cotuple-def
using assms by auto

also have ... = mkarr ?a ?c (Cotuple f g ◦ In1 ?a ?b)
using assms comp-mkarr cotuple-def cotuple-simps(1) ide-dom in1-def in-simps(4)
by presburger

also have ... = mkarr ?a ?c
(λx. if x ∈ Set ?a

then Fun f (snd (OUT (Coprod ?a ?b) (IN (Coprod ?a ?b) (tt, x))))
else null)

proof −
have

∧
x. x ∈ Set ?a =⇒
(Cotuple f g ◦ In1 ?a ?b) x =
Fun f (snd (OUT (Coprod ?a ?b) (IN (Coprod ?a ?b) (tt, x))))

unfolding Cotuple-def tt-ne-ff
using assms tt-ne-ff ide-coprodo by auto

hence Cotuple f g ◦ In1 ?a ?b =
(λx. if x ∈ Set ?a

then Fun f (snd (OUT (Coprod ?a ?b) (IN (Coprod ?a ?b) (tt, x))))
else null)

unfolding Cotuple-def
by fastforce

thus ?thesis by simp
qed
also have ... = mkarr ?a ?c (λx. if x ∈ Set ?a then Fun f x else null)
proof −

have
∧

x. x ∈ Set ?a =⇒
Fun f (snd (OUT (Coprod ?a ?b) (IN (Coprod ?a ?b) (tt, x)))) = Fun f x

using assms ide-coprodo(7) by auto
thus ?thesis

by meson
qed
also have ... = f
proof −

have Fun f = (λx. if x ∈ Set ?a then Fun f x else null)
unfolding Fun-def by meson

thus ?thesis
by (metis (no-types, lifting) arr-iff-in-hom assms mkarr-Fun)

qed
finally show ?thesis by blast

qed

87

show cotuple f g · in0 (dom f) (dom g) = g
proof −

have cotuple f g · in0 (dom f) (dom g) =
mkarr (coprodo ?a ?b) ?c (Cotuple f g) · mkarr ?b (coprodo ?a ?b) (In0 ?a ?b)

unfolding in0-def cotuple-def
using assms by auto

also have ... = mkarr ?b ?c (Cotuple f g ◦ In0 ?a ?b)
using assms comp-mkarr cotuple-def cotuple-simps(1) ide-dom in0-def in-simps(1)
by presburger

also have ... = mkarr ?b ?c
(λx. if x ∈ Set ?b

then Fun g (snd (OUT (Coprod ?a ?b) (IN (Coprod ?a ?b) (ff , x))))
else null)

proof −
have

∧
x. x ∈ Set ?b =⇒
(Cotuple f g ◦ In0 ?a ?b) x =
Fun g (snd (OUT (Coprod ?a ?b) (IN (Coprod ?a ?b) (ff , x))))

unfolding Cotuple-def tt-ne-ff
using assms tt-ne-ff ide-coprodo by auto

hence Cotuple f g ◦ In0 ?a ?b =
(λx. if x ∈ Set ?b

then Fun g (snd (OUT (Coprod ?a ?b) (IN (Coprod ?a ?b) (ff , x))))
else null)

unfolding Cotuple-def
by fastforce

thus ?thesis by simp
qed
also have ... = mkarr ?b ?c (λx. if x ∈ Set ?b then Fun g x else null)
proof −

have
∧

x. x ∈ Set ?b =⇒
Fun g (snd (OUT (Coprod ?a ?b) (IN (Coprod ?a ?b) (ff , x)))) = Fun g x

using assms ide-coprodo(7) by auto
thus ?thesis

by meson
qed
also have ... = g
proof −

have Fun g = (λx. if x ∈ Set ?b then Fun g x else null)
unfolding Fun-def by meson

thus ?thesis
by (metis (no-types, lifting) arr-iff-in-hom assms mkarr-Fun)

qed
finally show ?thesis by blast

qed
qed

lemma Fun-cotuple:
assumes cospan f g
shows Fun (cotuple f g) =

88

(λx. if x ∈ Set (coprodo (dom f) (dom g))
then if fst (OUT (Coprod (dom f) (dom g)) x) = tt

then Fun f (snd (OUT (Coprod (dom f) (dom g)) x))
else if fst (OUT (Coprod (dom f) (dom g)) x) = ff

then Fun g (snd (OUT (Coprod (dom f) (dom g)) x))
else null

else null)
using cotuple-def Cotuple-def Fun-mkarr assms cotuple-simps(1) by presburger

lemma binary-coproduct-in:
assumes ide a and ide b
shows binary-product (dual-category.comp C) a b (in1 a b) (in0 a b)
proof −

have bij: bij-betw (OUT (Coprod a b)) (Set (coprodo a b)) (Coprod a b)
using assms ide-coprodo(2) ide-dom by blast

interpret Cop: dual-category C ..
show ?thesis
proof

show Cop.has-as-binary-product a b (in1 a b) (in0 a b)
proof

show Cop.span (in1 a b) (in0 a b)
using assms(1 ,2) by force

show Cop.cod (in1 a b) = a
using assms(1 ,2) by fastforce

show Cop.cod (in0 a b) = b
using assms(1 ,2) by fastforce

fix c f g
assume f : Cop.in-hom f c a and g: Cop.in-hom g c b
show ∃ !h. Cop.in-hom h c (Cop.dom (in1 a b)) ∧ in1 a b ·op h = f ∧ in0 a b ·op h = g
proof

show Cop.in-hom (cotuple f g) c (Cop.dom (in1 a b)) ∧
in1 a b ·op (cotuple f g) = f ∧ in0 a b ·op (cotuple f g) = g

proof (intro conjI)
show Cop.in-hom (cotuple f g) c (Cop.dom (in1 a b))

using assms(1 ,2) f g by force
show in1 a b ·op cotuple f g = f

using assms(1 ,2) f g comp-cotuple-in by auto
show in0 a b ·op cotuple f g = g

using assms(1 ,2) f g comp-cotuple-in
by (metis Cop.comp-def Cop.hom-char in-homE)

qed
show

∧
h. Cop.in-hom h c (Cop.dom (in1 a b)) ∧ in1 a b ·op h = f ∧ in0 a b ·op h = g

=⇒ h = cotuple f g
proof −

fix h
assume h: Cop.in-hom h c (Cop.dom (in1 a b)) ∧

in1 a b ·op h = f ∧ in0 a b ·op h = g
show h = cotuple f g
proof (intro arr-eqI [of h])

89

show par : par h (cotuple f g)
using assms(1 ,2) h by force

show Fun h = Fun (cotuple f g)
proof

fix x
show Fun h x = Fun (cotuple f g) x
proof (cases x ∈ Set (coprodo a b))

case False
show ?thesis

using False assms(1 ,2) h par Fun-cotuple [of f g] Fun-def
by (metis (lifting) Cop.cod-char Cop.dom-char Cop.in-homE

in-simps(6) mem-Collect-eq)
next
case True
show ?thesis
proof −

have 2 : OUT (Coprod a b) x ∈ Coprod a b
using True bij bij-betwE by blast

hence fst (OUT (Coprod a b) x) = tt ∨ fst (OUT (Coprod a b) x) = ff
using True bij bij-betwE
unfolding coprodo-def
by auto

moreover have fst (OUT (Coprod a b) x) = tt =⇒ ?thesis
proof −

assume 3 : fst (OUT (Coprod a b) x) = tt
have 4 : snd (OUT (Coprod a b) x) ∈ Set a

using True 2 3 tt-ne-ff by fastforce
have Fun (cotuple f g) x = Fun f (snd (OUT (Coprod a b) x))

using assms 2 3 4 coprodo-def
apply simp

by (metis (lifting) HOL.ext Cop.cod-char Cop.dom-char Cop.in-homE True
Fun-cotuple [of f g] arr-dom-iff-arr f g ide-char)

also have ... = Fun (h · in1 a b) (snd (OUT (Coprod a b) x))
using h by auto

also have ... = Fun h (Fun (in1 a b) (snd (OUT (Coprod a b) x)))
using Cop.arrI Fun-comp f h by force

also have ... = Fun h (IN (Coprod a b) (tt, snd (OUT (Coprod a b) x)))
using assms 4 Fun-in(1) [of a b] by auto

also have ... = Fun h (IN (Coprod a b) (OUT (Coprod a b) x))
by (metis 3 surjective-pairing)

also have ... = Fun h x
using assms True ide-coprodo(6) by presburger

finally show ?thesis by simp
qed
moreover have fst (OUT (Coprod a b) x) = ff =⇒ ?thesis
proof −

assume 3 : fst (OUT (Coprod a b) x) = ff
have 4 : snd (OUT (Coprod a b) x) ∈ Set b

using True 2 3 tt-ne-ff by fastforce

90

have Fun (cotuple f g) x = Fun g (snd (OUT (Coprod a b) x))
using True assms f g 2 3 4 tt-ne-ff coprodo-def Fun-cotuple [of f g]
apply auto[1]
by (metis (lifting) HOL.ext fst-conv in-homE snd-conv)

also have ... = Fun (h · in0 a b) (snd (OUT (Coprod a b) x))
using h by auto

also have ... = Fun h (Fun (in0 a b) (snd (OUT (Coprod a b) x)))
using Cop.arrI Fun-comp g h by force

also have ... = Fun h (IN (Coprod a b) (ff , snd (OUT (Coprod a b) x)))
using assms 4 Fun-in(2) [of a b] by auto

also have ... = Fun h (IN (Coprod a b) (OUT (Coprod a b) x))
by (metis 3 surjective-pairing)

also have ... = Fun h x
using assms True ide-coprodo(6) by presburger

finally show ?thesis by simp
qed
ultimately show ?thesis by blast

qed
qed

qed
qed

qed
qed

qed
qed

qed

lemma has-binary-coproducts:
shows category.has-binary-products (dual-category.comp C)
proof −

interpret Cop: dual-category C ..
show Cop.has-binary-products
proof (unfold Cop.has-binary-products-def , intro allI impI , elim conjE)

fix a b
assume a: Cop.ide a and b: Cop.ide b
interpret binary-product Cop.comp a b ‹in1 a b› ‹in0 a b›

using a b binary-coproduct-in [of a b] Cop.ide-char by blast
show ∃ p. Ex (Cop.has-as-binary-product a b p)

using has-as-binary-product by blast
qed

qed

end

4.7.1 Exported Notions
context sets-cat-with-cotupling
begin

91

interpretation Coproducts: coproducts-in-sets-cat ..

abbreviation in0 :: ′U ⇒ ′U ⇒ ′U
where in0 ≡ Coproducts.in0

abbreviation in1 :: ′U ⇒ ′U ⇒ ′U
where in1 ≡ Coproducts.in1

abbreviation Coprod :: ′U ⇒ ′U ⇒ (′U × ′U) set
where Coprod ≡ Coproducts.Coprod

abbreviation coprodo :: ′U ⇒ ′U ⇒ ′U
where coprodo ≡ Coproducts.coprodo

lemma ide-coprodo:
assumes ide a and ide b
shows ide (coprodo a b)

using assms Coproducts.ide-coprodo by blast

lemma in1-in-hom [intro, simp]:
assumes ide a and ide b
shows in-hom (in1 a b) a (coprodo a b)

using assms Coproducts.in-in-hom by blast

lemma in0-in-hom [intro, simp]:
assumes ide a and ide b
shows in-hom (in0 a b) b (coprodo a b)

using assms Coproducts.in-in-hom by blast

lemma in1-simps [simp]:
assumes ide a and ide b
shows arr (in1 a b) and dom (in1 a b) = a and cod (in1 a b) = coprodo a b

using assms Coproducts.in-simps by auto

lemma in0-simps [simp]:
assumes ide a and ide b
shows arr (in0 a b) and dom (in0 a b) = b and cod (in0 a b) = coprodo a b

using assms Coproducts.in-simps by auto

lemma bin-coprod-comparison-map-props:
assumes ide a and ide b
shows bij-betw (OUT (Coprod a b)) (Set (coprodo a b)) (Coprod a b)
and bij-betw (IN (Coprod a b)) (Coprod a b) (Set (coprodo a b))
and

∧
x. x ∈ Set (coprodo a b) =⇒ OUT (Coprod a b) x ∈ Coprod a b

and
∧

y. y ∈ Coprod a b =⇒ IN (Coprod a b) y ∈ Set (coprodo a b)
and

∧
x. x ∈ Set (coprodo a b) =⇒ IN (Coprod a b) (OUT (Coprod a b) x) = x

and
∧

y. y ∈ Coprod a b =⇒ OUT (Coprod a b) (IN (Coprod a b) y) = y
using assms Coproducts.ide-coprodo by auto

92

lemma Fun-in1:
assumes ide a and ide b
shows Fun (in1 a b) = Coproducts.In1 a b

using assms Coproducts.Fun-in(1) by auto[1]

lemma Fun-in0:
assumes ide a and ide b
shows Fun (in0 a b) = Coproducts.In0 a b

using assms Coproducts.Fun-in(2) by auto[1]

abbreviation cotuple
where cotuple ≡ Coproducts.cotuple

lemma cotuple-in-hom [intro, simp]:
assumes «f : a → c» and «g : b → c»
shows «cotuple f g : coprodo a b → c»

using assms Coproducts.cotuple-in-hom by blast

lemma cotuple-simps [simp]:
assumes cospan f g
shows arr (cotuple f g)
and dom (cotuple f g) = coprodo (dom f) (dom g)
and cod (cotuple f g) = cod f

using assms Coproducts.cotuple-simps by auto

abbreviation Cotuple
where Cotuple f g ≡ (λx. if x ∈ Set (coprodo (dom f) (dom g))

then if fst (OUT (Coprod (dom f) (dom g)) x) = tt
then Fun f (snd (OUT (Coprod (dom f) (dom g)) x))
else if fst (OUT (Coprod (dom f) (dom g)) x) = ff

then Fun g (snd (OUT (Coprod (dom f) (dom g)) x))
else null

else null)

lemma cotuple-eq:
assumes «f : a → c» and «g : b → c»
shows cotuple f g = mkarr (coprodo a b) c (Cotuple f g)

unfolding Coproducts.cotuple-def Coproducts.Cotuple-def
using assms by auto

lemma Fun-cotuple:
assumes cospan f g
shows Fun (cotuple f g) = Cotuple f g

using assms Coproducts.Fun-cotuple by blast

lemma binary-coproduct-in:
assumes ide a and ide b
shows binary-product (dual-category.comp C) a b (in1 a b) (in0 a b)

using assms Coproducts.binary-coproduct-in by blast

93

lemma has-binary-coproducts:
shows category.has-binary-products (dual-category.comp C)

using Coproducts.has-binary-coproducts by blast

end

4.8 Small Products
In this section we show that the category of small sets and functions has small products.
For this we need to assume that smallness is preserved by the formation of function
spaces.

locale sets-cat-with-tupling =
sets-cat sml C +
tupling sml ‹Collect arr› null

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)
begin

sublocale sets-cat-with-bool
using embeds-bool
by unfold-locales auto

sublocale sets-cat-with-pairing sml C ..
sublocale sets-cat-with-cotupling ..

end

locale small-products-in-sets-cat =
sets-cat-with-tupling sml C

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)
begin

A product diagram is specified by an extensional function A from small index set I
to Collect ide, using null as the default value. An element of the product is given by an
extensional function F from I to Collect arr, such that F i ∈ Set (A i) for each i ∈ I.

abbreviation ProdX :: ′a set ⇒ (′a ⇒ ′U) ⇒ (′a ⇒ ′U) set
where ProdX I A ≡ {F . ∀ i. i ∈ I −→ F i ∈ Set (A i)} ∩ {F . ∀ i. i /∈ I −→ F i = null}

lemma ProdX-empty:
shows ProdX {} A = {λx. null}

by auto

definition prodX :: ′a set ⇒ (′a ⇒ ′U) ⇒ ′U
where prodX I A ≡ mkide (ProdX I A)

lemma small-function-tuple:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr

94

and F ∈ ProdX I A
shows small-function F and range F ⊆ (

⋃
i∈I . Set (A i)) ∪ {null}

proof −
have 1 : small ((

⋃
i∈I . Set (A i)) ∪ {null})

using assms small-Set by auto
have 2 :

∧
F v. [[F ∈ ProdX I A; popular-value F v]] =⇒ v = null

proof −
fix F v
assume F : F ∈ ProdX I A
assume v: popular-value F v
have (∃ i. i ∈ I ∧ v ∈ Set (A i)) ∨ v = null

using v F popular-value-in-range [of F v] by blast
hence v 6= null =⇒ {i. F i = v} ⊆ I

using F by blast
hence v 6= null =⇒ ¬ popular-value F v

using assms(1) smaller-than-small by blast
thus v = null

using v by blast
qed
show 3 : range F ⊆ (

⋃
i∈I . Set (A i)) ∪ {null}

using assms(4) by auto
show small-function F
proof

show small (range F)
using 1 3 smaller-than-small by blast

show at-most-one-popular-value F
using assms(4) 2 Uniq-def
by (metis (mono-tags, lifting))

qed
qed

lemma small-ProdX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
shows small (ProdX I A)
proof (cases small (UNIV :: ′U set))

case True
show ?thesis

using True small-function-tuple smaller-than-small
by (metis large-univ subset-UNIV)

next
case False
have

∧
F . F ∈ ProdX I A =⇒ SF-Dom F ⊆ I

proof −
fix F
assume F : F ∈ ProdX I A
have popular-value F null
proof −

have ¬ small (UNIV − I)
using assms False small-union by fastforce

95

moreover have UNIV − I ⊆ {i. F i = null}
using F by blast

ultimately show ?thesis
using smaller-than-small by blast

qed
thus SF-Dom F ⊆ I

using F by auto
qed
hence ProdX I A ⊆ {f . small-function f ∧ SF-Dom f ⊆ I ∧

range f ⊆ (
⋃

i∈I . Set (A i)) ∪ {null}}
using assms small-function-tuple by blast

moreover have 1 : small ((
⋃

i∈I . Set (A i)) ∪ {null})
using assms small-Set by auto

ultimately show ?thesis
using assms(1) small-Set small-funcset [of I (

⋃
i∈I . Set (A i)) ∪ {null}]

smaller-than-small
by blast

qed

lemma embeds-ProdX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
shows embeds (ProdX I A)
proof −

obtain ι where ι: is-embedding-of ι SEF
using embeds-SEF by blast

have ProdX I A ⊆ SEF
using assms EF-def small-function-tuple by auto

hence is-embedding-of ι (ProdX I A)
using ι by (meson dual-order .trans image-mono inj-on-subset)

thus ?thesis by blast
qed

lemma ide-prodX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
shows ide (prodX I A)
and bij-betw (OUT (ProdX I A)) (Set (prodX I A)) (ProdX I A)
and bij-betw (IN (ProdX I A)) (ProdX I A) (Set (prodX I A))
and

∧
x. x ∈ Set (prodX I A) =⇒ OUT (ProdX I A) x ∈ ProdX I A

and
∧

y. y ∈ ProdX I A =⇒ IN (ProdX I A) y ∈ Set (prodX I A)
and

∧
x. x ∈ Set (prodX I A) =⇒ IN (ProdX I A) (OUT (ProdX I A) x) = x

and
∧

y. y ∈ ProdX I A =⇒ OUT (ProdX I A) (IN (ProdX I A) y) = y
proof −

have 2 : small ((
⋃

i∈I . Set (A i)) ∪ {null})
using assms(1−2) small-Set by auto

have ∗:
∧

F . F ∈ ProdX I A =⇒ small-function F ∧ range F ⊆ (
⋃

i∈I . Set (A i)) ∪ {null}
using assms small-function-tuple by blast

show ide (prodX I A)
unfolding prodX-def
using assms small-ProdX embeds-ProdX by auto

96

show 1 : bij-betw (OUT (ProdX I A)) (Set (prodX I A)) (ProdX I A)
unfolding prodX-def
using assms small-ProdX embeds-ProdX bij-OUT [of ProdX I A] by fastforce

show 2 : bij-betw (IN (ProdX I A)) (ProdX I A) (Set (prodX I A))
unfolding prodX-def
using assms small-ProdX embeds-ProdX bij-IN [of ProdX I A] by fastforce

show
∧

x. x ∈ Set (prodX I A) =⇒ OUT (ProdX I A) x ∈ ProdX I A
using 1 bij-betwE by blast

show
∧

y. y ∈ ProdX I A =⇒ IN (ProdX I A) y ∈ Set (prodX I A)
using 2 bij-betwE by blast

show
∧

x. x ∈ Set (prodX I A) =⇒ IN (ProdX I A) (OUT (ProdX I A) x) = x
proof −

fix x
assume x: x ∈ Set (prodX I A)
show IN (ProdX I A) (OUT (ProdX I A) x) = x
proof −

have x = inv-into (Set (prodX I A)) (OUT (ProdX I A)) (OUT (ProdX I A) x)
using x 1

bij-betw-inv-into-left
[of OUT (ProdX I A) Set (prodX I A) ProdX I A]

by auto
thus ?thesis

by (simp add: prodX-def)
qed

qed
show

∧
y. y ∈ ProdX I A =⇒ OUT (ProdX I A) (IN (ProdX I A) y) = y

proof −
fix y
assume y: y ∈ ProdX I A
show OUT (ProdX I A) (IN (ProdX I A) y) = y

using assms(1 ,2 ,3) y OUT-IN [of ProdX I A y] small-ProdX embeds-ProdX [of I A]
by blast

qed
qed

lemma terminal-prodX-empty:
shows terminal (prodX {} (A :: ′U ⇒ ′U))
proof −

let ?I = {} :: ′U set
have 1 : {F . ∀ i. i /∈ ?I −→ F i = null} = {λi. null}

by auto
have ∃ !x. x ∈ Set (prodX ?I A)
proof −

have eqpoll (Set (prodX ?I A)) {F . ∀ i. i /∈ ?I −→ F i = null}
proof −

have small {F . ∀ i. i /∈ ?I −→ F i = null}
using 1 small-finite by force

moreover have ∃ ι. is-embedding-of ι {F . ∀ i :: ′U . F i = null}
proof −

97

have is-embedding-of (λ-. 1?) {λi. null}
using ide-char ide-some-terminal by blast

thus ?thesis
using 1 by auto

qed
ultimately show ?thesis

unfolding prodX-def
using 1 bij-OUT [of {F . ∀ i. i /∈ ?I −→ F i = null}] eqpoll-def
by auto blast

qed
moreover have ∃ !x. x ∈ {F . ∀ i. i /∈ ?I −→ F i = null}

using 1 by auto
ultimately show ?thesis

by (metis (no-types, lifting) eqpoll-iff-bijections)
qed
thus ?thesis

using terminal-char ide-prodX(1)
by (metis Pi-I empty-subsetI ex-in-conv small-Set smaller-than-small

terminal-some-terminal)
qed

abbreviation PrX :: ′a set ⇒ (′a ⇒ ′U) ⇒ ′a ⇒ ′U ⇒ ′U
where PrX I A i ≡ λx. if x ∈ Set (prodX I A) then OUT (ProdX I A) x i else null

definition prX :: ′a set ⇒ (′a ⇒ ′U) ⇒ ′a ⇒ ′U
where prX I A i ≡ mkarr (prodX I A) (A i) (PrX I A i)

lemma prX-in-hom [intro, simp]:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and i ∈ I
shows in-hom (prX I A i) (prodX I A) (A i)
proof (unfold prX-def , intro mkarr-in-hom)

show ide (prodX I A)
using assms ide-prodX by blast

show ide (A i)
using assms by blast

show PrX I A i ∈ Hom (prodX I A) (A i)
proof

show PrX I A i ∈ Set (prodX I A) → Set (A i)
proof

fix x
assume x: x ∈ Set (prodX I A)
have OUT (ProdX I A) x ∈ ProdX I A

using assms(1 ,2 ,3) x ide-prodX(2)
bij-betwE [of OUT (ProdX I A) Set (prodX I A) ProdX I A]

by blast
thus PrX I A i x ∈ Set (A i)

using assms x by force
qed

98

show PrX I A i ∈ {F . ∀ x. x /∈ Set (prodX I A) −→ F x = null}
by simp

qed
qed

lemma prX-simps [simp]:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and i ∈ I
shows arr (prX I A i) and dom (prX I A i) = prodX I A and cod (prX I A i) = A i

using assms prX-in-hom by blast+

lemma Fun-prX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and i ∈ I
shows Fun (prX I A i) = PrX I A i
proof −

have arr (prX I A i)
using assms by auto

thus ?thesis
using assms Fun-mkarr [of prodX I A A i PrX I A i] prX-def by metis

qed

definition TupleX :: ′a set ⇒ ′U ⇒ (′a ⇒ ′U) ⇒ (′a ⇒ ′U) ⇒ ′U ⇒ ′U
where TupleX I c A F ≡ (λx. if x ∈ Set c then IN (ProdX I A) (λi. Fun (F i) x) else null)

lemma TupleX-in-Hom:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : c → A i» and

∧
i. i /∈ I =⇒ F i = null

shows TupleX I c A F ∈ Hom c (prodX I A)
proof

show TupleX I c A F ∈ {F . ∀ x. x /∈ Set c −→ F x = null}
unfolding TupleX-def
using assms by auto

show TupleX I c A F ∈ Set c → Set (prodX I A)
proof (cases I = {})

case False
show ?thesis
proof

fix x
assume x: x ∈ Set c
have ∀ i. i ∈ I −→ x ∈ Set (dom (F i))

using False assms x by blast
moreover have (λi. Fun (F i) x) ∈ ProdX I A

using False assms x Fun-def by auto
ultimately show TupleX I c A F x ∈ Set (prodX I A)

unfolding TupleX-def
using False assms x ide-prodX(3) [of I A] bij-betw-apply
by (metis (mono-tags, lifting))

qed

99

next
case True
show ?thesis

unfolding TupleX-def
using True assms ide-prodX(3) bij-betw-apply Fun-def
by auto[1] fastforce

qed
qed

definition tupleX :: ′a set ⇒ ′U ⇒ (′a ⇒ ′U) ⇒ (′a ⇒ ′U) ⇒ ′U
where tupleX I c A F ≡ mkarr c (prodX I A) (TupleX I c A F)

lemma tupleX-in-hom [intro, simp]:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : c → A i» and

∧
i. i /∈ I =⇒ F i = null and ide c

shows «tupleX I c A F : c → prodX I A»
unfolding tupleX-def
using assms ide-prodX TupleX-in-Hom
by (intro mkarr-in-hom) auto

lemma tupleX-simps [simp]:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : c → A i» and

∧
i. i /∈ I =⇒ F i = null and ide c

shows arr (tupleX I c A F)
and dom (tupleX I c A F) = c
and cod (tupleX I c A F) = prodX I A

using assms in-homE tupleX-in-hom by metis+

lemma comp-prX-tupleX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : c → A i» and

∧
i. i /∈ I =⇒ F i = null

shows i ∈ I =⇒ C (prX I A i) (tupleX I c A F) = F i
proof −

assume i: i ∈ I
have I : I 6= {}

using i by blast
hence c: ide c

using assms(4) ide-dom by blast
show C (prX I A i) (tupleX I c A F) = F i
proof −

have C (prX I A i) (tupleX I c A F) =
mkarr (prodX I A) (A i) (PrX I A i) · mkarr c (prodX I A) (TupleX I c A F)

unfolding prX-def tupleX-def TupleX-def
using assms i I comp-mkarr by simp

also have ... = mkarr c (A i) (PrX I A i ◦ TupleX I c A F)
proof −

have «mkarr c (prodX I A) (TupleX I c A F) : c → prodX I A»
by (metis assms c tupleX-def tupleX-in-hom)

moreover have «mkarr (prodX I A) (A i) (PrX I A i) : prodX I A → A i»

100

proof −
have «prX I A i : prodX I A → A i»

using assms(1−3) i by blast
thus ?thesis

by (simp add: prX-def)
qed
ultimately show ?thesis

using assms i comp-mkarr [of c prodX I A TupleX I c A F A i PrX I A i]
by auto

qed
also have ... = mkarr c (A i)

(λx. if TupleX I c A F x ∈ Set (prodX I A)
then OUT (ProdX I A) (TupleX I c A F x) i
else null)

using I by (simp add: comp-def)
also have ... = mkarr c (A i)

(λx. if x ∈ Set c then OUT (ProdX I A) (TupleX I c A F x) i else null)
proof −

have (λx. if TupleX I c A F x ∈ Set (prodX I A)
then OUT (ProdX I A) (TupleX I c A F x) i
else null) =

(λx. if x ∈ Set c then OUT (ProdX I A) (TupleX I c A F x) i else null)
proof

fix x
show (if TupleX I c A F x ∈ Set (prodX I A)

then OUT (ProdX I A) (TupleX I c A F x) i
else null) =
(if x ∈ Set c then OUT (ProdX I A) (TupleX I c A F x) i else null)

using assms TupleX-in-Hom
by auto blast

qed
thus ?thesis by simp

qed
also have ... = mkarr c (A i)

(λx. if x ∈ Set c
then OUT (ProdX I A) (IN (ProdX I A) (λi. Fun (F i) x)) i
else null)

proof −
have (λx. if x ∈ Set c then OUT (ProdX I A) (TupleX I c A F x) i else null) =

(λx. if x ∈ Set c
then OUT (ProdX I A) (IN (ProdX I A) (λi. Fun (F i) x)) i
else null)

proof
fix x
show (if x ∈ Set c then OUT (ProdX I A) (TupleX I c A F x) i else null) =

(if x ∈ Set c
then OUT (ProdX I A) (IN (ProdX I A) (λi. Fun (F i) x)) i
else null)

unfolding TupleX-def by argo

101

qed
thus ?thesis by simp

qed
also have ... = mkarr c (A i) (λx. if x ∈ Set c then Fun (F i) x else null)
proof −

have (λx. if x ∈ Set c
then OUT (ProdX I A) (IN (ProdX I A) (λi. Fun (F i) x)) i
else null) =

(λx. if x ∈ Set c then Fun (F i) x else null)
proof

fix x
show (if x ∈ Set c

then OUT (ProdX I A) (IN (ProdX I A) (λi. Fun (F i) x)) i
else null) =
(if x ∈ Set c then Fun (F i) x else null)

proof (cases x ∈ Set c)
case False
show ?thesis

using False by simp
next
case True
show ?thesis
proof −

have (λi. Fun (F i) x) ∈ ProdX I A
using assms(4−5) True Fun-def by auto

hence OUT (ProdX I A) (IN (ProdX I A) (λi. Fun (F i) x)) i = Fun (F i) x
using assms OUT-IN [of ProdX I A λi. Fun (F i) x]

small-ProdX embeds-ProdX
by presburger

thus ?thesis by simp
qed

qed
qed
thus ?thesis by simp

qed
also have ... = F i
proof −

have Fun (F i) = (λx. if x ∈ Set c then Fun (F i) x else null)
using assms(4) i Fun-def by fastforce

thus ?thesis
using assms(4) i mkarr-Fun by force

qed
finally show ?thesis by blast

qed
qed

lemma Fun-tupleX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : c → A i» and

∧
i. i /∈ I =⇒ F i = null and ide c

102

shows Fun (tupleX I c A F) =
(λx. if x ∈ Set c then IN (ProdX I A) (λi. Fun (F i) x) else null)

proof −
have Fun (tupleX I c A F) =

(λx. if x ∈ Set c then mkarr c (prodX I A) (TupleX I c A F) · x else null)
unfolding tupleX-def Fun-def
apply simp
by (metis ext mem-Collect-eq dom-mkarr seqE)

also have ... = (λx. if x ∈ Set c then TupleX I c A F x else null)
using assms app-mkarr
by (metis (no-types, lifting) CollectD tupleX-def tupleX-in-hom)

also have ... = (λx. if x ∈ Set c then IN (ProdX I A) (λi. Fun (F i) x) else null)
unfolding TupleX-def by auto

finally show ?thesis by blast
qed

lemma product-cone-prodX :
assumes discrete-diagram J C D and Collect (partial-composition.arr J) = I
and small I and I ⊆ Collect arr
shows has-as-product J D (prodX I D)
and product-cone J C D (prodX I D) (prX I D)
proof −

interpret J : category J
using assms(1) discrete-diagram-def by blast

interpret D: discrete-diagram J C D
using assms(1) by blast

let ?π = prX I D
let ?a = prodX I D
interpret A: constant-functor J C ?a

using assms ide-prodX
apply unfold-locales
using D.is-discrete by auto

interpret π: natural-transformation J C A.map D ?π
proof

fix j
show ¬ J .arr j =⇒ prX I D j = null

by (metis (no-types, lifting) D.as-nat-trans.extensionality ideD(1) mkarr-def
not-arr-null prX-def)

assume j: J .arr j
show 1 : arr (prX I D j)

using D.is-discrete assms j by force
show D j · prX I D (J .dom j) = prX I D j

by (metis (lifting) 1 D.is-discrete J .ideD(2) comp-cod-arr cod-mkarr j prX-def)
show prX I D (J .cod j) · A.map j = prX I D j

by (metis (lifting) 1 A.map-simp D.is-discrete J .ide-char comp-arr-dom j
dom-mkarr prX-def)

qed
show product-cone J C D ?a ?π
proof

103

fix a ′ χ ′

assume χ ′: D.cone a ′ χ ′

interpret χ ′: cone J C D a ′ χ ′

using χ ′ by blast
show ∃ !f . «f : a ′→ prodX I D» ∧ D.cones-map f (prX I D) = χ ′

proof −
let ?f = tupleX I a ′ D χ ′

have f : «?f : a ′→ prodX I D»
using assms tupleX-in-hom
by (metis D.is-discrete D.preserves-ide J .ide-char Pi-I ′

χ ′.component-in-hom χ ′.extensionality χ ′.ide-apex mem-Collect-eq)
moreover have D.cones-map ?f (prX I D) = χ ′

proof
fix i
show D.cones-map ?f (prX I D) i = χ ′ i
proof −

have J .arr i =⇒ prX I D i · ?f = χ ′ i
using assms comp-prX-tupleX [of I D χ ′ a ′ i]
by (metis D.is-discrete D.preserves-ide J .ide-char Pi-I ′

χ ′.component-in-hom χ ′.extensionality mem-Collect-eq)
moreover have ¬ J .arr i =⇒ null = χ ′ i

using χ ′.extensionality by auto
moreover have D.cone (cod ?f) (prX I D)
proof −

have D.cone (prodX I D) (prX I D) ..
moreover have cod ?f = prodX I D

using f by blast
ultimately show ?thesis by auto

qed
ultimately show ?thesis

using assms χ ′.cone-axioms by auto
qed

qed
moreover have

∧
f ′. [[«f ′ : a ′→ prodX I D»; D.cones-map f ′ (prX I D) = χ ′]]
=⇒ f ′ = ?f

proof −
fix f ′

assume f ′: «f ′ : a ′→ prodX I D»
assume 1 : D.cones-map f ′ (prX I D) = χ ′

show f ′ = ?f
proof (intro arr-eqI [of f ′])

show par : par f ′ ?f
using f f ′ by fastforce

show Fun f ′ = Fun (tupleX I a ′ D χ ′)
proof

fix x
show Fun f ′ x = Fun (tupleX I a ′ D χ ′) x
proof (cases x ∈ Set a ′)

case False

104

show ?thesis
using False par f ′ Fun-def by auto

next
case True
have 2 : D.cone (cod f ′) (prX I D)
by (metis A.constant-functor-axioms Limit.cone-def
π.natural-transformation-axioms χ ′ f ′ in-homE)

have Fun (tupleX I a ′ D χ ′) x = IN (ProdX I D) (λi. Fun (χ ′ i) x)
proof −

have dom (tupleX I a ′ D χ ′) = a ′

using f by auto
have ∗: (λx. if «x : 1? → a ′» then tupleX I a ′ D χ ′ · x else null) =

(λx. if «x : 1? → a ′» then IN (ProdX I D) (λi. Fun (χ ′ i) x) else null)
proof −

have D ∈ I → Collect ide
using assms(2) D.is-discrete by force

moreover have
∧

i. i ∈ I =⇒ «χ ′ i : a ′→ D i»
using assms(2) D.is-discrete χ ′.component-in-hom by fastforce

moreover have
∧

i. i /∈ I =⇒ χ ′ i = null
using assms(2) χ ′.extensionality by blast

moreover have ide a ′

using χ ′.ide-apex by auto
ultimately show ?thesis

using assms f Fun-tupleX [of I D χ ′ a ′] Fun-arr by force
qed
have Fun (tupleX I a ′ D χ ′) x = tupleX I a ′ D χ ′ · x

using True ‹dom (tupleX I a ′ D χ ′) = a ′› Fun-def by presburger
also have ... = (λx. if «x : 1? → a ′» then tupleX I a ′ D χ ′ · x else null) x

using True by simp
also have ... = (λx. if «x : 1? → a ′»

then IN (ProdX I D) (λi. Fun (χ ′ i) x)
else null) x

using ∗ by meson
also have ... = IN (ProdX I D) (λi. Fun (χ ′ i) x)

using True by simp
finally show ?thesis by blast

qed
also have ... = IN (ProdX I D) (λi. χ ′ i · x)

unfolding Fun-def
by (metis J .dom-cod True χ ′.A.map-simp χ ′.cod-determines-component
χ ′.preserves-dom χ ′.preserves-reflects-arr local.ext seqE)

also have ... = IN (ProdX I D) (λi. D.cones-map f ′ (prX I D) i · x)
using 1 by simp

also have ... = IN (ProdX I D) (λi. (if J .arr i then prX I D i · f ′ else null) · x)
using 2 by simp

also have ... = IN (ProdX I D) (λi. if J .arr i then prX I D i · (f ′ · x) else null)
proof −

have (λi. (if J .arr i then prX I D i · f ′ else null) · x) =
(λi. if J .arr i then prX I D i · (f ′ · x) else null)

105

proof
fix i
show (if J .arr i then prX I D i · f ′ else null) · x =

(if J .arr i then prX I D i · (f ′ · x) else null)
using comp-assoc by auto

qed
thus ?thesis by simp

qed
also have ... = IN (ProdX I D)

(λi. if J .arr i then prX I D i · (Fun f ′ x) else null)
unfolding Fun-def
using True f ′ by auto

also have ... = IN (ProdX I D)
(λi. if J .arr i then Fun (prX I D i) (Fun f ′ x) else null)

proof −
have (λi. if J .arr i then prX I D i · (Fun f ′ x) else null) =

(λi. if J .arr i then Fun (prX I D i) (Fun f ′ x) else null)
proof

fix i
show (if J .arr i then prX I D i · (Fun f ′ x) else null) =

(if J .arr i then Fun (prX I D i) (Fun f ′ x) else null)
using f ′ Fun-def by fastforce

qed
thus ?thesis by simp

qed
also have ... = IN (ProdX I D)

(λi. if J .arr i
then (if Fun f ′ x ∈ Set (prodX I D)

then OUT (ProdX I D) (Fun f ′ x) i else null)
else null)

proof −
have

∧
i. J .arr i =⇒ Fun (prX I D i) =

(λx. if x ∈ Set (prodX I D)
then OUT (ProdX I D) x i else null)

using assms Fun-prX D.is-discrete by force
hence (λi. if J .arr i then Fun (prX I D i) (Fun f ′ x) else null) =

(λi. if J .arr i
then (λx. if x ∈ Set (prodX I D)

then OUT (ProdX I D) x i else null)
(Fun f ′ x)

else null)
by auto

thus ?thesis by simp
qed
also have ... = IN (ProdX I D)

(λi. if J .arr i then OUT (ProdX I D) (Fun f ′ x) i else null)
proof −

have (λi. if J .arr i
then (λx. if x ∈ Set (prodX I D)

106

then OUT (ProdX I D) x i else null)
(Fun f ′ x)

else null) =
(λi. if J .arr i then OUT (ProdX I D) (Fun f ′ x) i else null)

using True f ′ Fun-def Fun-arr comp-in-homI by auto
thus ?thesis by simp

qed
also have ... = IN (ProdX I D) (OUT (ProdX I D) (Fun f ′ x))
proof −

have (λi. if J .arr i then OUT (ProdX I D) (Fun f ′ x) i else null) =
OUT (ProdX I D) (Fun f ′ x)

proof
fix i
show (if J .arr i then OUT (ProdX I D) (Fun f ′ x) i else null) =

OUT (ProdX I D) (Fun f ′ x) i
proof (cases J .arr i)

case True
show ?thesis

using True by simp
next
case False
have 1 : Fun f ′ x ∈ Set (prodX I D)

using True f ′ Fun-def by auto
moreover have small (ProdX I D) and embeds (ProdX I D)

using assms small-ProdX [of I D] embeds-ProdX [of I D]
D.is-discrete D.preserves-ide

by auto
moreover have «Fun f ′ x : 1? → mkide (ProdX I D)»

using True f ′

by (metis 1 prodX-def mem-Collect-eq)
ultimately have OUT (ProdX I D) (Fun f ′ x) ∈ ProdX I D

using OUT-elem-of [of ProdX I D Fun f ′ x] Fun-in-Hom
by fastforce

thus ?thesis
using False assms(2) by fastforce

qed
qed
thus ?thesis by simp

qed
also have ... = Fun f ′ x
proof −

have small (ProdX I D)
using assms small-ProdX D.is-discrete by fastforce

moreover have ∃ ι. is-embedding-of ι (ProdX I D)
using assms embeds-ProdX [of I D] D.is-discrete by auto

moreover have Fun f ′ x ∈ Set (mkide (ProdX I D))
proof −

have Fun f ′ x ∈ Set (prodX I D)
using Fun-in-Hom True f ′ by blast

107

thus ?thesis
by (simp add: prodX-def)

qed
ultimately show ?thesis

using assms IN-OUT [of ProdX I D Fun f ′ x] by blast
qed
finally show ?thesis by simp

qed
qed

qed
qed
ultimately show ?thesis by blast

qed
qed
thus has-as-product J D (prodX I D)

using has-as-product-def by blast
qed

lemma has-small-products:
assumes small I and I ⊆ Collect arr
shows has-products I
proof (unfold has-products-def , intro conjI)

show I 6= UNIV
using assms not-arr-null by blast

show ∀ J D. discrete-diagram J (·) D ∧ Collect (partial-composition.arr J) = I
−→ (∃ a. has-as-product J D a)

using assms product-cone-prodX by blast
qed

end

4.8.1 Exported Notions
context sets-cat-with-tupling
begin

interpretation Products: small-products-in-sets-cat ..

abbreviation ProdX :: ′a set ⇒ (′a ⇒ ′U) ⇒ (′a ⇒ ′U) set
where ProdX ≡ Products.ProdX

abbreviation prodX :: ′a set ⇒ (′a ⇒ ′U) ⇒ ′U
where prodX ≡ Products.prodX

abbreviation prX :: ′a set ⇒ (′a ⇒ ′U) ⇒ ′a ⇒ ′U
where prX ≡ Products.prX

abbreviation tupleX :: ′a set ⇒ ′U ⇒ (′a ⇒ ′U) ⇒ (′a ⇒ ′U) ⇒ ′U
where tupleX ≡ Products.tupleX

108

lemma small-prod-comparison-map-props:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
shows OUT (ProdX I A) ∈ Set (prodX I A) → ProdX I A
and IN (ProdX I A) ∈ ProdX I A → Set (prodX I A)
and

∧
x. x ∈ Set (prodX I A) =⇒ IN (ProdX I A) (OUT (ProdX I A) x) = x

and
∧

y. y ∈ ProdX I A =⇒ OUT (ProdX I A) (IN (ProdX I A) y) = y
and bij-betw (OUT (ProdX I A)) (Set (prodX I A)) (ProdX I A)
and bij-betw (IN (ProdX I A)) (ProdX I A) (Set (prodX I A))
proof −

show OUT (ProdX I A) ∈ Set (prodX I A) → ProdX I A
proof −

have bij-betw
(OUT ({f . ∀ a. a ∈ I −→ f a ∈ Set (A a)} ∩ {f . ∀ a. a /∈ I −→ f a = null}))
(Set (prodX I A))
({f . ∀ a. a ∈ I −→ f a ∈ Set (A a)} ∩ {f . ∀ a. a /∈ I −→ f a = null})

using Products.ide-prodX(2) assms(1−3) by blast
then show ?thesis

by (simp add: bij-betw-imp-funcset)
qed
show IN (ProdX I A) ∈ ProdX I A → Set (prodX I A)
proof −

have bij-betw
(OUT ({f . ∀ a. a ∈ I −→ f a ∈ Set (A a)} ∩ {f . ∀ a. a /∈ I −→ f a = null}))
(Set (prodX I A))
({f . ∀ a. a ∈ I −→ f a ∈ Set (A a)} ∩ {f . ∀ a. a /∈ I −→ f a = null})

using Products.ide-prodX(2) assms(1−3) by blast
then show ?thesis

by (simp add: Products.prodX-def bij-betw-imp-funcset bij-betw-inv-into)
qed
show

∧
x. x ∈ Set (prodX I A) =⇒ IN (ProdX I A) (OUT (ProdX I A) x) = x

using assms IN-OUT [of ProdX I A] Products.small-ProdX Products.embeds-ProdX
by (simp add: Products.prodX-def)

show
∧

y. y ∈ ProdX I A =⇒ OUT (ProdX I A) (IN (ProdX I A) y) = y
using assms OUT-IN [of ProdX I A] Products.small-ProdX Products.embeds-ProdX
by (simp add: Products.prodX-def)

show bij-betw (OUT (ProdX I A)) (Set (prodX I A)) (ProdX I A)
using assms Products.ide-prodX by fastforce

show bij-betw (IN (ProdX I A)) (ProdX I A) (Set (prodX I A))
using assms Products.ide-prodX by fastforce

qed

lemma Fun-prX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and i ∈ I
shows Fun (prX I A i) = Products.PrX I A i

using assms Products.Fun-prX by auto

lemma Fun-tupleX :

109

assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : c → A i» and

∧
i. i /∈ I =⇒ F i = null and ide c

shows Fun (tupleX I c A F) =
(λx. if x ∈ Set c then IN (Products.ProdX I A) (λi. Fun (F i) x) else null)

using assms Products.Fun-tupleX by auto

lemma product-cone:
assumes discrete-diagram J C D and Collect (partial-composition.arr J) = I
and small I and I ⊆ Collect arr
shows has-as-product J D (prodX I D)
and product-cone J C D (prodX I D) (prX I D)

using assms Products.product-cone-prodX by auto

lemma has-small-products:
assumes small I and I ⊆ Collect arr
shows has-products I

using assms Products.has-small-products by blast

Clearly it is not required that the index set I be actually a subset of Collect arr but
rather only that it be embedded in it. So we are free to form products indexed by small
sets at arbitrary types, as long as Collect arr is large enough to embed them. We do
have to satisfy the technical requirement that the index set I not exhaust the elements
at its type, which we introduced in the definition of has-products as a convenience to
avoid the use of coercion maps.

lemma has-small-products ′:
assumes small I and embeds I and I 6= UNIV
shows has-products I
proof −

obtain I ′ where I ′: I ′ ⊆ Collect arr ∧ I ≈ I ′

using assms inj-on-image-eqpoll-1 by auto
have has-products I ′

using assms I ′

by (meson eqpoll-sym eqpoll-trans has-small-products small-def)
thus ?thesis

using assms(3) I ′ has-products-preserved-by-bijection
by (metis eqpoll-def eqpoll-sym)

qed

end

4.9 Small Coproducts
In this section we show that the category of small sets and functions has small coproducts.
For this we need to assume the existence of a pairing function and also that the notion
of smallness is respected by small sums.

locale small-coproducts-in-sets-cat =
sets-cat-with-cotupling sml C

110

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)
begin

The global elements of a coproduct CoprodX I A are in bijection with
⋃

i∈I . {i} ×
Set (A i).

abbreviation CoprodX :: ′a set ⇒ (′a ⇒ ′U) ⇒ (′a × ′U) set
where CoprodX I A ≡

⋃
i∈I . {i} × Set (A i)

definition coprodX :: ′a set ⇒ (′a ⇒ ′U) ⇒ ′U
where coprodX I A ≡ mkide (CoprodX I A)

lemma small-CoprodX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
shows small (CoprodX I A)

using assms small-Set small-Union
by (simp add: Pi-iff smaller-than-small)

lemma embeds-CoprodX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
shows embeds (CoprodX I A)
proof

let ?ι = (λx. pair (fst x) (snd x))
show is-embedding-of ?ι (CoprodX I A)
proof

show ?ι ‘ CoprodX I A ⊆ Collect arr
using arrI assms(3) some-pairing-in-univ by auto

show inj-on ?ι (CoprodX I A)
proof −

have inj-on ?ι (Collect arr × Collect arr)
using some-pairing-is-embedding by auto

moreover have CoprodX I A ⊆ Collect arr × Collect arr
using arrI assms(3) by auto

ultimately show ?thesis
by (meson inj-on-subset)

qed
qed

qed

lemma ide-coprodX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
shows ide (coprodX I A)
and bij-betw (OUT (CoprodX I A)) (Set (coprodX I A)) (CoprodX I A)
and bij-betw (IN (CoprodX I A)) (CoprodX I A) (Set (coprodX I A))
and

∧
x. x ∈ Set (coprodX I A) =⇒ OUT (CoprodX I A) x ∈ CoprodX I A

and
∧

y. y ∈ CoprodX I A =⇒ IN (CoprodX I A) y ∈ Set (coprodX I A)
and

∧
x. x ∈ Set (coprodX I A) =⇒ IN (CoprodX I A) (OUT (CoprodX I A) x) = x

and
∧

y. y ∈ CoprodX I A =⇒ OUT (CoprodX I A) (IN (CoprodX I A) y) = y
proof −

111

show ide (coprodX I A)
unfolding coprodX-def
by (simp add: assms(1 ,2 ,3) small-CoprodX embeds-CoprodX ide-mkide(1))

show 1 : bij-betw (OUT (CoprodX I A)) (Set (coprodX I A)) (CoprodX I A)
unfolding coprodX-def
using assms small-CoprodX embeds-CoprodX bij-OUT [of CoprodX I A] by fastforce

show 2 : bij-betw (IN (CoprodX I A)) (CoprodX I A) (Set (coprodX I A))
unfolding coprodX-def
using assms small-CoprodX embeds-CoprodX bij-IN [of CoprodX I A] by fastforce

show
∧

x. x ∈ Set (coprodX I A) =⇒ OUT (CoprodX I A) x ∈ CoprodX I A
using 1 bij-betwE by blast

show
∧

y. y ∈ CoprodX I A =⇒ IN (CoprodX I A) y ∈ Set (coprodX I A)
using 2 bij-betwE by blast

show
∧

x. x ∈ Set (coprodX I A) =⇒ IN (CoprodX I A) (OUT (CoprodX I A) x) = x
using 1 bij-betw-inv-into-left

[of OUT (CoprodX I A) Set (coprodX I A) CoprodX I A]
by (auto simp add: coprodX-def)

show
∧

y. y ∈ CoprodX I A =⇒ OUT (CoprodX I A) (IN (CoprodX I A) y) = y
by (simp add: OUT-IN assms(1 ,2 ,3) small-CoprodX embeds-CoprodX)

qed

abbreviation InX :: ′a set ⇒ (′a ⇒ ′U) ⇒ ′a ⇒ ′U ⇒ ′U
where InX I A i ≡ λx. if x ∈ Set (A i) then IN (CoprodX I A) (i, x) else null

definition inX
where inX I A i ≡ mkarr (A i) (coprodX I A) (InX I A i)

lemma InX-in-Hom:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and i ∈ I
shows InX I A i ∈ Hom (A i) (coprodX I A)

using assms ide-coprodX(2−3 ,5) by auto

lemma inX-in-hom [intro, simp]:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and i ∈ I
shows in-hom (inX I A i) (A i) (coprodX I A)

using assms ide-coprodX InX-in-Hom
by (unfold inX-def , intro mkarr-in-hom) auto

lemma inX-simps [simp]:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and i ∈ I
shows arr (inX I A i) and dom (inX I A i) = A i and cod (inX I A i) = coprodX I A

using assms inX-in-hom by blast+

lemma Fun-inX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and i ∈ I

112

shows Fun (inX I A i) = InX I A i
proof −

have arr (inX I A i)
by (simp add: assms)

thus ?thesis
by (simp add: inX-def)

qed

definition CotupleX :: ′a set ⇒ (′a ⇒ ′U) ⇒ (′a ⇒ ′U) ⇒ ′U ⇒ ′U
where CotupleX I A F ≡

(λx. if x ∈ Set (coprodX I A)
then Fun (F (fst (OUT (CoprodX I A) x))) (snd (OUT (CoprodX I A) x))
else null)

lemma CotupleX-in-Hom:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : A i → c» and

∧
i. i /∈ I =⇒ F i = null

shows CotupleX I A F ∈ Hom (coprodX I A) c
proof

show CotupleX I A F ∈ {F . ∀ x. x /∈ Set (coprodX I A) −→ F x = null}
by (cases I = {}) (auto simp add: CotupleX-def)

show CotupleX I A F ∈ Set (coprodX I A) → Set c
proof (cases I = {})

case False
show ?thesis
proof

fix x
assume x: x ∈ Set (coprodX I A)
have OUT (CoprodX I A) x ∈ CoprodX I A

using assms x ide-coprodX
by (meson bij-betwE)

hence
∧

i. i = fst (OUT (CoprodX I A) x) =⇒
«F i : A i → c» ∧ snd (OUT (CoprodX I A) x) ∈ Set (A i)

using assms(4) by force
thus CotupleX I A F x ∈ Set c

using x CotupleX-def [of I A F] Fun-def by auto
qed
next
case True
show ?thesis

by (metis (no-types, lifting) Pi-I ′ True True True True UN-E all-not-in-conv
assms(1 ,3) bij-betwE ide-coprodX(2))

qed
qed

definition cotupleX
where cotupleX I c A F ≡ mkarr (coprodX I A) c (CotupleX I A F)

lemma cotupleX-in-hom [intro, simp]:

113

assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : A i → c» and

∧
i. i /∈ I =⇒ F i = null and ide c

shows «cotupleX I c A F : coprodX I A → c»
using assms ide-coprodX CotupleX-in-Hom
unfolding cotupleX-def CotupleX-def
by (intro mkarr-in-hom) auto

lemma cotupleX-simps [simp]:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : A i → c» and

∧
i. i /∈ I =⇒ F i = null and ide c

shows arr (cotupleX I c A F)
and dom (cotupleX I c A F) = coprodX I A
and cod (cotupleX I c A F) = c

using assms cotupleX-in-hom in-homE by blast+

lemma comp-cotupleX-inX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : A i → c» and

∧
i. i /∈ I =⇒ F i = null and ide c

shows i ∈ I =⇒ cotupleX I c A F · inX I A i = F i
proof −

assume i: i ∈ I
have I : I 6= {}

using i by blast
show cotupleX I c A F · inX I A i = F i
proof −

have 1 : cotupleX I c A F · inX I A i =
mkarr (coprodX I A) c (CotupleX I A F) · mkarr (A i) (coprodX I A) (InX I A i)

unfolding inX-def cotupleX-def CotupleX-def
using assms i I comp-mkarr by simp

also have ... = mkarr (A i) c (CotupleX I A F ◦ InX I A i)
using assms i comp-mkarr
by (metis (no-types, lifting) 1 seqI cotupleX-def cotupleX-simps(1)

dom-mkarr inX-simps(1 ,3) seqE)
also have ... = mkarr (A i) c

(λx. if x ∈ Set (A i)
then CotupleX I A F (IN (CoprodX I A) (i, x))
else null)

proof −
have CotupleX I A F ◦ InX I A i =

(λx. if x ∈ Set (A i) then CotupleX I A F (IN (CoprodX I A) (i, x)) else null)
proof

fix x
show (CotupleX I A F ◦ InX I A i) x =

(if x ∈ Set (A i) then CotupleX I A F (IN (CoprodX I A) (i, x)) else null)
unfolding CotupleX-def by auto

qed
thus ?thesis by simp

qed
also have ... = mkarr (A i) c

114

(λx. if x ∈ Set (A i)
then Fun (F (fst (OUT (CoprodX I A) (IN (CoprodX I A) (i, x)))))

(snd (OUT (CoprodX I A) (IN (CoprodX I A) (i, x))))
else null)

proof −
have

∧
x. x ∈ Set (A i) =⇒ IN (CoprodX I A) (i, x) ∈ Set (coprodX I A)

using assms(1 ,2 ,3) i bij-betwE ide-coprodX(3) by blast
hence (λx. if x ∈ Set (A i)

then CotupleX I A F (IN (CoprodX I A) (i, x))
else null) =

(λx. if x ∈ Set (A i)
then Fun (F (fst (OUT (CoprodX I A) (IN (CoprodX I A) (i, x)))))

(snd (OUT (CoprodX I A) (IN (CoprodX I A) (i, x))))
else null)

unfolding CotupleX-def by force
thus ?thesis by simp

qed
also have ... = mkarr (A i) c (λx. if x ∈ Set (A i) then Fun (F i) x else null)
proof −

have
∧

x. x ∈ Set (A i) =⇒ OUT (CoprodX I A) (IN (CoprodX I A) (i, x)) = (i, x)
using assms i ide-coprodX by auto

hence (λx. if «x : 1? → A i»
then Fun (F (fst (OUT (CoprodX I A) (IN (CoprodX I A) (i, x)))))

(snd (OUT (CoprodX I A) (IN (CoprodX I A) (i, x))))
else null) =

(λx. if «x : 1? → A i» then Fun (F i) x else null)
by force

thus ?thesis by simp
qed
also have ... = mkarr (A i) c (Fun (F i))

by (metis (lifting) Fun-def assms(4) category.in-homE category-axioms
i mem-Collect-eq)

also have ... = F i
using assms(4) i mkarr-Fun by blast

finally show ?thesis by blast
qed

qed

lemma Fun-cotupleX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : A i → c» and

∧
i. i /∈ I =⇒ F i = null and ide c

shows Fun (cotupleX I c A F) =
(λx. if x ∈ Set (coprodX I A)

then Fun (F (fst (OUT (CoprodX I A) x))) (snd (OUT (CoprodX I A) x))
else null)

using assms Fun-mkarr CotupleX-in-Hom CotupleX-def [of I A F] cotupleX-def cotu-
pleX-simps(1)

by (metis (lifting))

115

lemma coproduct-cocone-coprodX :
assumes discrete-diagram J C D and Collect (partial-composition.arr J) = I
and small I and I ⊆ Collect arr
shows has-as-coproduct J D (coprodX I D)
and coproduct-cocone J C D (coprodX I D) (inX I D)
proof −

interpret J : category J
using assms(1) discrete-diagram-def by blast

interpret D: discrete-diagram J C D
using assms(1) by blast

let ?π = inX I D
let ?a = coprodX I D
interpret A: constant-functor J C ?a

using assms ide-coprodX
using D.is-discrete by unfold-locales auto

interpret π: natural-transformation J C D A.map ?π
proof

fix j
show ¬ J .arr j =⇒ inX I D j = null

by (metis (no-types, lifting) D.as-nat-trans.extensionality ideD(1)
mkarr-def not-arr-null inX-def)

assume j: J .arr j
show 1 : arr (inX I D j)

using D.is-discrete assms j by force
show inX I D (J .cod j) · D j = inX I D j

by (metis (lifting) 1 D.is-discrete D.preserves-ide D.preserves-reflects-arr
J .ideD(3) comp-arr-ide dom-mkarr ideD(3) j inX-def seqI)

show A.map j · inX I D (J .dom j) = inX I D j
by (metis (lifting) 1 A.map-simp D.is-discrete J .ide-char comp-cod-arr j

cod-mkarr inX-def)
qed
show coproduct-cocone J C D ?a ?π
proof

fix a ′ χ ′

assume χ ′: D.cocone a ′ χ ′

interpret χ ′: cocone J C D a ′ χ ′

using χ ′ by blast
show ∃ !f . «f : coprodX I D → a ′» ∧ D.cocones-map f (inX I D) = χ ′

proof −
let ?f = cotupleX I a ′ D χ ′

have f : «?f : coprodX I D → a ′»
using assms cotupleX-in-hom
by (metis D.is-discrete D.preserves-ide J .ide-char Pi-I ′

χ ′.component-in-hom χ ′.extensionality χ ′.ide-apex mem-Collect-eq)
moreover have D.cocones-map ?f (inX I D) = χ ′

proof
fix i
show D.cocones-map ?f (inX I D) i = χ ′ i
proof −

116

have J .arr i =⇒ ?f · inX I D i = χ ′ i
using assms comp-cotupleX-inX
by (metis D.is-discrete D.preserves-ide J .ide-char Pi-I ′

χ ′.component-in-hom χ ′.extensionality χ ′.ide-apex mem-Collect-eq)
moreover have ¬ J .arr i =⇒ null = χ ′ i

using χ ′.extensionality by auto
moreover have D.cocone (dom ?f) (inX I D)

by (metis A.constant-functor-axioms D.diagram-axioms
π.natural-transformation-axioms cocone-def diagram-def f in-homE)

ultimately show ?thesis
using assms χ ′.cocone-axioms by auto

qed
qed
moreover have

∧
f ′. [[«f ′ : coprodX I D → a ′»; D.cocones-map f ′ (inX I D) = χ ′]]
=⇒ f ′ = ?f

proof −
fix f ′

assume f ′: «f ′ : coprodX I D → a ′»
assume 1 : D.cocones-map f ′ (inX I D) = χ ′

show f ′ = ?f
proof (intro arr-eqI [of f ′])

show par : par f ′ ?f
using f f ′ by fastforce

show Fun f ′ = Fun (cotupleX I a ′ D χ ′)
proof

fix x
show Fun f ′ x = Fun (cotupleX I a ′ D χ ′) x
proof (cases x ∈ Set (coprodX I D))

case False
show ?thesis

using False par f ′ Fun-def by auto
next
case True
have 2 : D.cocone (dom f ′) (inX I D)

by (metis A.constant-functor-axioms cocone-def
π.natural-transformation-axioms χ ′ f ′ in-homE)

have Fun (cotupleX I a ′ D χ ′) x =
Fun (χ ′ (fst (OUT (CoprodX I D) x))) (snd (OUT (CoprodX I D) x))

proof −
have Fun (cotupleX I a ′ D χ ′) x = cotupleX I a ′ D χ ′ · x

using True f Fun-def by auto
also have ... = (λx. if «x : 1? → coprodX I D»

then cotupleX I a ′ D χ ′ · x else null) x
using True by simp

also have ... =
Fun (χ ′ (fst (OUT (CoprodX I D) x))) (snd (OUT (CoprodX I D) x))

using assms f True cotupleX-def [of I a ′ D χ ′] CotupleX-def [of I D χ ′]
app-mkarr cotupleX-in-hom

by auto

117

finally show ?thesis by blast
qed
also have ... = Fun f ′ x
proof (cases OUT (CoprodX I D) x)

case (Pair i x ′)
have ix ′: (i, x ′) ∈ CoprodX I D

using assms True Pair ide-coprodX(2) [of I D]
by (metis (no-types, lifting) D.is-discrete D.preserves-ide Pi-I ′

bij-betwE mem-Collect-eq)
have Fun (χ ′ (fst (OUT (CoprodX I D) x))) (snd (OUT (CoprodX I D) x)) =

Fun (χ ′ i) x ′

by (simp add: Pair)
also have ... = Fun (D.cocones-map f ′ (inX I D) i) x ′

using 1 by simp
also have ... = (f ′ · inX I D i) · x ′

using assms 2 f ′ ix ′ inX-in-hom Fun-def D.extensionality D.is-discrete
π.extensionality

by auto
also have ... = f ′ · (inX I D i · x ′)

using comp-assoc by simp
also have ... = f ′ · IN (CoprodX I D) (i, x ′)
proof −

have «inX I D i : D i → coprodX I D»
using assms inX-in-hom D.is-discrete ix ′ by fastforce

hence «mkarr (D i) (coprodX I D) (InX I D i) : D i → coprodX I D»
unfolding inX-def by simp

thus ?thesis
unfolding inX-def
using assms ix ′ app-mkarr by auto

qed
also have ... = f ′ · x
proof −
have IN (CoprodX I D) (i, x ′) = IN (CoprodX I D) (OUT (CoprodX I D) x)

using Pair by simp
also have ... = x
proof −

have small (CoprodX I D)
using assms small-CoprodX D.is-discrete by fastforce

thus ?thesis
using assms True ide-coprodX(6) D.is-discrete D.preserves-ide

Pi-I ′ coprodX-def
by force

qed
finally show ?thesis by simp

qed
finally show ?thesis

using True f ′ Fun-def by force
qed
finally show ?thesis by simp

118

qed
qed

qed
qed
ultimately show ?thesis by blast

qed
qed
thus has-as-coproduct J D (coprodX I D)

using has-as-coproduct-def by blast
qed

lemma has-small-coproducts:
assumes small I and I ⊆ Collect arr
shows has-coproducts I
proof (unfold has-coproducts-def , intro conjI)

show I 6= UNIV
using assms not-arr-null by blast

show ∀ J D. discrete-diagram J (·) D ∧ Collect (partial-composition.arr J) = I
−→ (∃ a. has-as-coproduct J D a)

using assms coproduct-cocone-coprodX by blast
qed

end

4.9.1 Exported Notions
context sets-cat-with-cotupling
begin

interpretation Coproducts: small-coproducts-in-sets-cat ..

abbreviation CoprodX :: ′a set ⇒ (′a ⇒ ′U) ⇒ (′a × ′U) set
where CoprodX ≡ Coproducts.CoprodX

abbreviation coprodX :: ′a set ⇒ (′a ⇒ ′U) ⇒ ′U
where coprodX ≡ Coproducts.coprodX

abbreviation inX :: ′a set ⇒ (′a ⇒ ′U) ⇒ ′a ⇒ ′U
where inX ≡ Coproducts.inX

abbreviation cotupleX :: ′a set ⇒ ′U ⇒ (′a ⇒ ′U) ⇒ (′a ⇒ ′U) ⇒ ′U
where cotupleX ≡ Coproducts.cotupleX

lemma coprod-comparison-map-props:
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
shows OUT (CoprodX I A) ∈ Set (coprodX I A) → CoprodX I A
and IN (CoprodX I A) ∈ CoprodX I A → Set (coprodX I A)
and

∧
x. x ∈ Set (coprodX I A) =⇒ IN (CoprodX I A) (OUT (CoprodX I A) x) = x

and
∧

y. y ∈ CoprodX I A =⇒ OUT (CoprodX I A) (IN (CoprodX I A) y) = y

119

and bij-betw (OUT (CoprodX I A)) (Set (coprodX I A)) (CoprodX I A)
and bij-betw (IN (CoprodX I A)) (CoprodX I A) (Set (coprodX I A))

using assms Coproducts.ide-coprodX by auto

lemma Fun-inX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and i ∈ I
shows Fun (inX I A i) = Coproducts.InX I A i

using assms Coproducts.Fun-inX by auto

lemma Fun-cotupleX :
assumes small I and A ∈ I → Collect ide and I ⊆ Collect arr
and

∧
i. i ∈ I =⇒ «F i : A i → c» and

∧
i. i /∈ I =⇒ F i = null and ide c

shows Fun (cotupleX I c A F) =
(λx. if x ∈ Set (coprodX I A)

then Fun (F (fst (OUT (
⋃

i∈I . {i} × Set (A i)) x)))
(snd (OUT (

⋃
i∈I . {i} × Set (A i)) x))

else null)
using assms Coproducts.Fun-cotupleX app-mkarr Coproducts.cotupleX-def by auto

lemma coproduct-cocone-coprodX :
assumes discrete-diagram J C D and Collect (partial-composition.arr J) = I
and small I and I ⊆ Collect arr
shows has-as-coproduct J D (coprodX I D)
and coproduct-cocone J C D (coprodX I D) (inX I D)

using assms Coproducts.coproduct-cocone-coprodX by auto

lemma has-small-coproducts:
assumes small I and I ⊆ Collect arr
shows has-coproducts I

using assms Coproducts.has-small-coproducts by blast

end

4.10 Coequalizers
In this section we show that a sets category has coequalizers of parallel pairs of arrows.
For this, we need to assume that the set of arrows of the category embeds the set of all
its small subsets. The reason we need this assumption is to make it possible to obtain
an object corresponding to the set of equivalence classes that results from the quotient
construction.

locale sets-cat-with-powering =
sets-cat sml C +
powering sml ‹Collect arr›

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)

sublocale sets-cat-with-tupling ⊆ sets-cat-with-powering ..

120

locale coequalizers-in-sets-cat =
sets-cat-with-powering sml C

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)
begin

The following defines the “equivalence closure” of a binary relation r on a set A, and
proves the characterization of it as the least equivalence relation on A that contains r.
For some reason I could not find such a thing in the Isabelle distribution, though I did
find a predicate version equivclp.

definition equivcl
where equivcl A r ≡ SOME r ′. r ⊆ r ′ ∧ equiv A r ′ ∧ (∀ s ′. r ⊆ s ′ ∧ equiv A s ′ −→ r ′ ⊆ s ′)

lemma equivcl-props:
assumes r ⊆ A × A
shows ∃ r ′. r ⊆ r ′ ∧ equiv A r ′ ∧ (∀ s ′. r ⊆ s ′ ∧ equiv A s ′ −→ r ′ ⊆ s ′)
and r ⊆ equivcl A r and equiv A (equivcl A r)
and

∧
s ′. r ⊆ s ′ ∧ equiv A s ′ =⇒ equivcl A r ⊆ s ′

proof −
have 1 : equiv A (A × A)

using refl-on-def trans-on-def
by (intro equivI symI) auto

show 2 : ∃ r ′. r ⊆ r ′ ∧ equiv A r ′ ∧ (∀ s ′. r ⊆ s ′ ∧ equiv A s ′ −→ r ′ ⊆ s ′)
proof −

let ?r ′ =
⋂
{s. equiv A s ∧ r ⊆ s}

have r ⊆ ?r ′

by blast
moreover have ∀ s ′. r ⊆ s ′ ∧ equiv A s ′ −→ ?r ′ ⊆ s ′

by blast
moreover have equiv A ?r ′

using assms 1
apply (intro equivI symI transI refl-onI)

apply auto[4]
apply (simp add: equiv-def refl-on-def)

apply (meson equiv-def symD)
by (meson equivE transE)

ultimately show ?thesis by blast
qed
have r ⊆ equivcl A r ∧ equiv A (equivcl A r) ∧

(∀ s ′. r ⊆ s ′ ∧ equiv A s ′ −→ equivcl A r ⊆ s ′)
unfolding equivcl-def
using 2 someI-ex [of λr ′. r ⊆ r ′ ∧ equiv A r ′ ∧ (∀ s ′. r ⊆ s ′ ∧ equiv A s ′ −→ r ′ ⊆ s ′)]
by fastforce

thus r ⊆ equivcl A r and equiv A (equivcl A r)
and

∧
s ′. r ⊆ s ′ ∧ equiv A s ′ =⇒ equivcl A r ⊆ s ′

by auto
qed

The elements of the codomain of the coequalizer of f and g are the equivalence classes

121

of the least equivalence relation on Set (cod f) that relates f · x and g · x whenever x ∈
Set (dom f).

abbreviation Cod-coeq :: ′U ⇒ ′U ⇒ ′U set set
where Cod-coeq f g ≡ (λy. (equivcl (Set (cod f))

((λx. (f · x, g · x)) ‘ Set (dom f)) ‘‘ {y})) ‘ Set (cod f)

lemma small-Cod-coeq:
assumes par f g
shows small (Cod-coeq f g)

using assms ide-cod small-Set by blast

lemma embeds-Cod-coeq:
assumes par f g
shows embeds (Cod-coeq f g)
and Cod-coeq f g ⊆ Pow (Set (cod f))
proof −

show 1 : Cod-coeq f g ⊆ Pow (Set (cod f))
proof −

let ?r = (λx. (f · x, g · x)) ‘ Set (dom f)
have ?r ⊆ Set (cod f) × Set (cod f)

using assms by auto
hence equivcl (Set (cod f)) ?r ⊆ Set (cod f) × Set (cod f)

using equivcl-props(3)
by (metis (no-types, lifting) Sigma-cong equiv-type)

thus ?thesis by blast
qed
show embeds (Cod-coeq f g)
proof −

have Cod-coeq f g ⊆ {X . X ⊆ Collect arr ∧ small X}
proof −

have Cod-coeq f g ⊆ {X . X ⊆ Collect arr}
using 1 by blast

moreover have Cod-coeq f g ⊆ {X . small X}
using assms 1 small-Set smaller-than-small
by (metis (no-types, lifting) HOL.ext Collect-mono Pow-def

ide-cod subset-trans)
ultimately show ?thesis by blast

qed
thus ?thesis

using embeds-small-sets
by (meson image-mono inj-on-subset subset-trans)

qed
qed

definition cod-coeq
where cod-coeq f g ≡ mkide (Cod-coeq f g)

lemma ide-cod-coeq:
assumes par f g

122

shows ide (cod-coeq f g)
and bij-betw (OUT (Cod-coeq f g)) (Set (cod-coeq f g)) (Cod-coeq f g)
and bij-betw (IN (Cod-coeq f g)) (Cod-coeq f g) (Set (cod-coeq f g))
and

∧
x. x ∈ Set (cod-coeq f g) =⇒ OUT (Cod-coeq f g) x ∈ Cod-coeq f g

and
∧

y. y ∈ Cod-coeq f g =⇒ IN (Cod-coeq f g) y ∈ Set (cod-coeq f g)
and

∧
x. x ∈ Set (cod-coeq f g) =⇒ IN (Cod-coeq f g) (OUT (Cod-coeq f g) x) = x

and
∧

y. y ∈ Cod-coeq f g =⇒ OUT (Cod-coeq f g) (IN (Cod-coeq f g) y) = y
proof −

have (λx. {f · x, g · x}) ‘ Set (dom f) ⊆ Pow (Set (cod f))
using assms by auto

show ide (cod-coeq f g)
using small-Cod-coeq embeds-Cod-coeq assms cod-coeq-def by auto

show 1 : bij-betw (OUT (Cod-coeq f g)) (Set (cod-coeq f g)) (Cod-coeq f g)
unfolding cod-coeq-def
using assms ide-mkide bij-OUT small-Cod-coeq [of f g] embeds-Cod-coeq [of f g]
by auto

show 2 : bij-betw (IN (Cod-coeq f g)) (Cod-coeq f g) (Set (cod-coeq f g))
unfolding cod-coeq-def
using assms ide-mkide bij-OUT bij-IN small-Cod-coeq [of f g] embeds-Cod-coeq
by fastforce

show
∧

x. x ∈ Set (cod-coeq f g) =⇒ OUT (Cod-coeq f g) x ∈ Cod-coeq f g
using 1 bij-betwE by blast

show
∧

y. y ∈ Cod-coeq f g =⇒ IN (Cod-coeq f g) y ∈ Set (cod-coeq f g)
using 2 bij-betwE by blast

show
∧

x. x ∈ Set (cod-coeq f g) =⇒ IN (Cod-coeq f g) (OUT (Cod-coeq f g) x) = x
by (metis (no-types, lifting) HOL.ext 1 bij-betw-inv-into-left cod-coeq-def)

show
∧

y. y ∈ Cod-coeq f g =⇒ OUT (Cod-coeq f g) (IN (Cod-coeq f g) y) = y
by (metis (no-types, lifting) HOL.ext 1 bij-betw-inv-into-right cod-coeq-def)

qed

definition Coeq
where Coeq f g ≡ λy. if y ∈ Set (cod f)

then IN (Cod-coeq f g)
(equivcl (Set (cod f))

((λx. (f · x, g · x)) ‘ Set (dom f)) ‘‘ {y})
else null

lemma Coeq-in-Hom [intro]:
assumes par f g
shows Coeq f g ∈ Hom (cod f) (cod-coeq f g)
proof

show Coeq f g ∈ Set (cod f) → Set (cod-coeq f g)
proof

fix y
assume y: y ∈ Set (cod f)
have Coeq f g y = IN (Cod-coeq f g)

(equivcl (Set (cod f))
((λx. (f · x, g · x)) ‘ Set (dom f)) ‘‘ {y})

unfolding Coeq-def

123

using y by simp
moreover have ... ∈ Set (cod-coeq f g)

using assms ide-cod-coeq(5) y by blast
ultimately show Coeq f g y ∈ Set (cod-coeq f g) by simp

qed
show Coeq f g ∈ {F . ∀ x. x /∈ Set (cod f) −→ F x = null}

unfolding Coeq-def by simp
qed

definition coeq
where coeq f g ≡ mkarr (cod f) (cod-coeq f g) (Coeq f g)

lemma coeq-in-hom [intro, simp]:
assumes par f g
shows «coeq f g : cod f → cod-coeq f g»

using assms ide-cod-coeq(1) Coeq-in-Hom
by (unfold coeq-def , intro mkarr-in-hom) auto

lemma coeq-simps [simp]:
assumes par f g
shows arr (coeq f g) and dom (coeq f g) = cod f and cod (coeq f g) = cod-coeq f g

using assms coeq-in-hom by blast+

lemma Fun-coeq:
assumes par f g
shows Fun (coeq f g) = Coeq f g

using assms Fun-mkarr coeq-def coeq-simps(1) by presburger

lemma coeq-coequalizes:
assumes par f g
shows coeq f g · f = coeq f g · g
proof (intro arr-eqI)

show par : par (coeq f g · f) (coeq f g · g)
using assms by auto

show Fun (coeq f g · f) = Fun (coeq f g · g)
proof

fix x
show Fun (coeq f g · f) x = Fun (coeq f g · g) x
proof (cases x ∈ Set (dom f))

case False
show ?thesis

using assms False Fun-coeq Fun-def by simp
next
case True
show ?thesis
proof −

have Fun (coeq f g · f) x = Fun (coeq f g) (Fun f x)
using assms Fun-comp comp-in-homI coeq-in-hom comp-assoc by auto

also have ... = Coeq f g (Fun f x)

124

using assms True Fun-coeq
by (metis (full-types, lifting))

also have ... = IN (Cod-coeq f g)
(equivcl (Set (cod f))

((λx. (f · x, g · x)) ‘ Set (dom f)) ‘‘ {f · x})
unfolding Coeq-def
using True assms Fun-def by auto

also have ... = IN (Cod-coeq f g)
(equivcl (Set (cod f))

((λx. (f · x, g · x)) ‘ Set (dom f)) ‘‘ {g · x})
proof −

have equivcl (Set (cod f)) ((λx. (f · x, g · x)) ‘ Set (dom f)) ‘‘ {f · x} =
equivcl (Set (cod f)) ((λx. (f · x, g · x)) ‘ Set (dom f)) ‘‘ {g · x}

using assms True
equivcl-props(2−3) [of (λx. (f · x, g · x)) ‘ Set (dom f) Set (cod f)]
equiv-class-eq-iff
[of Set (cod f)

equivcl (Set (cod f)) ((λx. (f · x, g · x)) ‘ Set (dom f))
f · x g · x]

by auto
thus ?thesis by simp

qed
also have ... = Coeq f g (Fun g x)

unfolding Coeq-def
using True assms Fun-def by auto

also have ... = Fun (coeq f g) (Fun g x)
using assms True Fun-coeq
by (metis (full-types, lifting))

also have ... = Fun (coeq f g · g) x
using assms Fun-comp comp-in-homI coeq-in-hom comp-assoc by auto

finally show ?thesis by blast
qed

qed
qed

qed

lemma Coeq-surj:
assumes par f g and Set (cod f) 6= {} and y ∈ Set (cod-coeq f g)
shows ∃ x. x ∈ Set (cod f) ∧ Coeq f g x = y
proof −

have 1 : (
⋃

x∈Set (dom f). {f · x, g · x}) ⊆ Set (cod f)
using assms by auto

have y: OUT (Cod-coeq f g) y ∈ Cod-coeq f g
using assms ide-cod-coeq(2) [of f g] bij-betwE by blast

obtain x where x: x ∈ Set (cod f) ∧
OUT (Cod-coeq f g) y =
equivcl (Set (cod f)) ((λx. (f · x, g · x)) ‘ Set (dom f)) ‘‘{x}

using assms y by blast
hence 2 : x ∈ OUT (Cod-coeq f g) y

125

proof −
have (λx. (f · x, g · x)) ‘ Set (dom f) ⊆ Set (cod f) × Set (cod f)

using assms by auto
hence x ∈ equivcl (Set (cod f)) ((λx. (f · x, g · x)) ‘ Set (dom f)) ‘‘{x}

using assms x equivcl-props(3) [of (λx. (f · x, g · x)) ‘ Set (dom f) Set (cod f)]
equiv-class-self

by (metis (lifting))
thus ?thesis

using x by argo
qed
have Coeq f g x = y
proof −

have OUT (Cod-coeq f g) (Coeq f g x) =
OUT (Cod-coeq f g)
(IN (Cod-coeq f g)

(equivcl (Set (cod f)) ((λx. (f · x, g · x)) ‘ Set (dom f)) ‘‘{x}))
unfolding Coeq-def
using x by presburger

also have ... = equivcl (Set (cod f)) ((λx. (f · x, g · x)) ‘ Set (dom f)) ‘‘{x}
using assms x y ide-cod-coeq(7) by (metis (lifting))

also have ... = OUT (Cod-coeq f g) y
proof −

have OUT (Cod-coeq f g) y ∈ Cod-coeq f g
using assms x by force

thus ?thesis
using assms x 1 2 by blast

qed
finally have IN (Cod-coeq f g) (OUT (Cod-coeq f g) (Coeq f g x)) =

IN (Cod-coeq f g) (OUT (Cod-coeq f g) y)
by simp

thus ?thesis
using assms x y ide-cod-coeq(6) cod-coeq-def Coeq-def
by (metis (lifting))

qed
thus ∃ x. x ∈ Set (cod f) ∧ Coeq f g x = y

using x by blast
qed

lemma coeq-is-coequalizer :
assumes par f g and Set (cod f) 6= {}
shows has-as-coequalizer f g (coeq f g)
proof

show par f g by fact
show seq (coeq f g) f

using assms by auto
show coeq f g · f = coeq f g · g

using assms coeq-coequalizes by blast
show

∧
q ′. [[seq q ′ f ; q ′ · f = q ′ · g]] =⇒ ∃ !h. h · coeq f g = q ′

126

proof −
fix q ′

assume seq: seq q ′ f and eq: q ′ · f = q ′ · g
let ?H = λy. if y ∈ Set (cod-coeq f g)

then q ′ · (SOME x. x ∈ Set (cod f) ∧ Coeq f g x = y)
else null

have H : ?H ∈ Hom (cod-coeq f g) (cod q ′)
proof

show ?H ∈ Set (cod-coeq f g) → Set (cod q ′)
proof

fix y
assume y: y ∈ Set (cod-coeq f g)
have ?H y = q ′ · (SOME x. x ∈ Set (cod f) ∧ Coeq f g x = y)

using y by simp
moreover have ... ∈ Set (cod q ′)

using assms y someI-ex [of λx. x ∈ Set (cod f) ∧ Coeq f g x = y]
Coeq-surj seq in-homI

by blast
ultimately show ?H y ∈ Set (cod q ′) by simp

qed
show ?H ∈ {F . ∀ x. x /∈ Set (cod-coeq f g) −→ F x = null}

by simp
qed
let ?h = mkarr (cod-coeq f g) (cod q ′) ?H
have h: «?h : cod-coeq f g → cod q ′»

using assms H ide-cod-coeq seq
by (intro mkarr-in-hom) auto

have ∗: ?h · coeq f g = q ′

proof (intro arr-eqI)
show par : par (?h · coeq f g) q ′

using assms h seq by fastforce
show Fun (?h · coeq f g) = Fun q ′

proof −
have Fun (?h · coeq f g) = Fun ?h ◦ Fun (coeq f g)

using Fun-comp par by blast
also have ... = ?H ◦ Coeq f g

using assms h Fun-coeq Fun-mkarr arrI by auto
also have ... = Fun q ′

proof
fix y
show (?H ◦ Coeq f g) y = Fun q ′ y
proof (cases y ∈ Set (cod f))

case False
show ?thesis

unfolding Coeq-def
using False seq Fun-def by auto

next
case True
have (?H ◦ Coeq f g) y =

127

q ′ · (SOME x ′. x ′ ∈ Set (cod f) ∧ Coeq f g x ′ = Coeq f g y)
using Coeq-in-Hom True assms(1) by auto

also have ... = q ′ · y
proof −

let ?e = (λx. (f · x, g · x)) ‘ Set (dom f)
have e: ?e ⊆ Set (cod f) × Set (cod f)

using assms by auto
let ?E = equivcl (Set (cod f)) ?e
let ?E ′ = {p ∈ Set (cod f) × Set (cod f). q ′ · fst p = q ′ · snd p}
have ?E ⊆ ?E ′

proof −
have equiv (Set (cod f)) ?E ′

by (intro equivI symI) (auto simp add: refl-on-def trans-on-def)
moreover have (λx. (f · x, g · x)) ‘ Set (dom f) ⊆ ?E ′

proof −
have

∧
x. x ∈ Set (dom f) =⇒ (f · x, g · x) ∈ ?E ′

proof −
fix x
assume x: x ∈ Set (dom f)
have (f · x, g · x) ∈ Set (cod f) × Set (cod f)

using assms x by auto
moreover have q ′ · f · x = q ′ · g · x

using eq comp-assoc by metis
ultimately show (f · x, g · x) ∈ ?E ′ by fastforce

qed
thus ?thesis

by (meson image-subsetI)
qed
ultimately show ?thesis

by (meson equiv-type equivcl-props(4) subset-trans)
qed
moreover have

∧
y ′. y ′ ∈ Set (cod f) ∧ Coeq f g y ′ = Coeq f g y
=⇒ (y ′, y) ∈ ?E

proof −
fix y ′

assume y ′: y ′ ∈ Set (cod f) ∧ Coeq f g y ′ = Coeq f g y
have eq: equivcl (Set (cod f)) ?e ‘‘ {y ′} =

equivcl (Set (cod f)) ?e ‘‘ {y}
using assms(1) True y ′ ide-cod-coeq(7) [of f g]
unfolding Coeq-def
by (metis (mono-tags, lifting) image-eqI)

moreover have y ′ ∈ equivcl (Set (cod f)) ?e ‘‘ {y ′} ∧
y ∈ equivcl (Set (cod f)) ?e ‘‘ {y}

proof
have 1 : equiv (Set (cod f)) (equivcl (Set (cod f)) ?e)

by (simp add: e equivcl-props(3))
show y ′ ∈ equivcl (Set (cod f)) ?e ‘‘ {y ′}

by (metis (lifting) 1 equiv-class-self y ′)
show y ∈ equivcl (Set (cod f)) ((λx. (f · x, g · x)) ‘ Set (dom f)) ‘‘ {y}

128

by (metis (no-types, lifting) 1 True equiv-class-self)
qed
ultimately show (y ′, y) ∈ ?E by blast

qed
ultimately have

∧
y ′. y ′ ∈ Set (cod f) ∧ Coeq f g y ′ = Coeq f g y
=⇒ (y ′, y) ∈ ?E ′

by (meson subsetD)
thus ?thesis

using True someI-ex [of λy ′. y ′ ∈ Set (cod f) ∧ Coeq f g y ′ = Coeq f g y]
by (metis (mono-tags, lifting) fst-conv mem-Collect-eq snd-conv)

qed
also have ... = Fun q ′ y

using True seq Fun-def by auto
finally show ?thesis by blast

qed
qed
finally show ?thesis by blast

qed
qed
moreover have

∧
h ′. h ′ · coeq f g = q ′ =⇒ h ′ = ?h

proof −
fix h ′

assume h ′: h ′ · coeq f g = q ′

show h ′ = ?h
proof (intro arr-eqI [of h ′])

show par : par h ′ ?h
using h h ′ seq
by (metis (lifting) calculation cod-comp seqE)

show Fun h ′ = Fun ?h
proof −

have 1 : Fun h ′ ◦ Coeq f g = Fun ?h ◦ Coeq f g
using assms h ′ ∗ Fun-coeq Fun-comp seq seqE
by (metis (lifting))

show ?thesis
proof

fix z
show Fun h ′ z = Fun ?h z
proof (cases z ∈ Set (cod-coeq f g))

case False
show ?thesis

using assms False h ′ par Fun-def by auto
next
case True
obtain x where x: x ∈ Set (cod f) ∧ Coeq f g x = z

using assms True Coeq-surj by blast
show ?thesis

using True x h ′ 1 ∗ Fun-comp comp-apply
by (metis (lifting))

qed

129

qed
qed

qed
qed
ultimately show ∃ !h. h · coeq f g = q ′ by auto

qed
qed

lemma has-coequalizers:
assumes par f g
shows ∃ e. has-as-coequalizer f g e
proof (cases Set (cod f) = {})

case False
show ?thesis

using assms False coeq-is-coequalizer by blast
next
case True
have f = g

using assms True
by (metis arr-eqI ′ comp-in-homI empty-Collect-eq in-homI)

hence has-as-coequalizer f g (cod f)
using assms comp-arr-dom comp-cod-arr seqE
by (intro has-as-coequalizerI) metis+

thus ?thesis by blast
qed

end

4.10.1 Exported Notions
context sets-cat-with-powering
begin

interpretation Coeq: coequalizers-in-sets-cat sml C ..

abbreviation Cod-coeq
where Cod-coeq ≡ Coeq.Cod-coeq

abbreviation coeq
where coeq ≡ Coeq.coeq

lemma coequalizer-comparison-map-props:
assumes par f g
shows bij-betw (OUT (Cod-coeq f g)) (Set (cod (coeq f g))) (Cod-coeq f g)
and bij-betw (IN (Cod-coeq f g)) (Cod-coeq f g) (Set (cod (coeq f g)))
and

∧
x. x ∈ Set (cod (coeq f g)) =⇒ OUT (Cod-coeq f g) x ∈ Cod-coeq f g

and
∧

y. y ∈ Cod-coeq f g =⇒ IN (Cod-coeq f g) y ∈ Set (cod (coeq f g))
and

∧
x. x ∈ Set (cod (coeq f g)) =⇒ IN (Cod-coeq f g) (OUT (Cod-coeq f g) x) = x

and
∧

y. y ∈ Cod-coeq f g =⇒ OUT (Cod-coeq f g) (IN (Cod-coeq f g) y) = y

130

using assms Coeq.ide-cod-coeq by auto

lemma coeq-is-coequalizer :
assumes par f g and Set (cod f) 6= {}
shows has-as-coequalizer f g (coeq f g)

using assms Coeq.coeq-is-coequalizer by blast

Since the fact Fun-coeq below is not very useful without the notions used in stating
it, the function equivcl and characteristic fact equivcl-props are also exported here. It
would be better if Fun-coeq could be expressed completely in terms of existing notions
from the library.

definition equivcl
where equivcl ≡ Coeq.equivcl

lemma equivcl-props:
assumes r ⊆ A × A
shows ∃ r ′. r ⊆ r ′ ∧ equiv A r ′ ∧ (∀ s ′. r ⊆ s ′ ∧ equiv A s ′ −→ r ′ ⊆ s ′)
and r ⊆ equivcl A r and equiv A (equivcl A r)
and

∧
s ′. r ⊆ s ′ ∧ equiv A s ′ =⇒ equivcl A r ⊆ s ′

using assms Coeq.equivcl-props [of r A]
unfolding equivcl-def by auto

lemma Fun-coeq:
assumes par f g
shows Fun (coeq f g) = (λy. if y ∈ Set (cod f)

then IN (Cod-coeq f g)
(equivcl (Set (cod f))

((λx. (f · x, g · x)) ‘ Set (dom f)) ‘‘ {y})
else null)

using assms Coeq.Fun-coeq Coeq.Coeq-def
unfolding equivcl-def by auto

lemma has-coequalizers:
assumes par f g
shows ∃ e. has-as-coequalizer f g e
using assms Coeq.has-coequalizers by blast

end

4.11 Exponentials
In this section we show that the category is cartesian closed.

locale exponentials-in-sets-cat =
sets-cat-with-tupling sml C

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)
begin

131

abbreviation app :: ′U ⇒ ′U ⇒ ′U
where app f ≡ inv-into SEF some-embedding-of-small-functions f

abbreviation Exp :: ′U ⇒ ′U ⇒ (′U ⇒ ′U) set
where Exp a b ≡ {F . F ∈ Set a → Set b ∧ (∀ x. x /∈ Set a −→ F x = null)}

definition exp :: ′U ⇒ ′U ⇒ ′U
where exp a b ≡ mkide (Exp a b)

lemma memb-Exp-popular-value:
assumes ide a and ide b and F ∈ Exp a b
and popular-value F y
shows y = null
proof −

have y ∈ Set b ∨ y = null
using assms popular-value-in-range [of F y] by blast

hence y 6= null =⇒ {x. F x = y} ⊆ Set a
using assms by blast

thus y = null
using assms smaller-than-small small-Set by auto

qed

lemma memb-Exp-imp-small-function:
assumes ide a and ide b and F ∈ Exp a b
shows small-function F
proof

show small (range F)
proof −

have range F ⊆ Set b ∪ {null}
using assms by blast

moreover have small ...
using assms small-Set by auto

ultimately show ?thesis
using smaller-than-small by blast

qed
show at-most-one-popular-value F

using assms memb-Exp-popular-value Uniq-def
by (metis (no-types, lifting))

qed

lemma small-Exp:
assumes ide a and ide b
shows small (Exp a b)
proof −

show ?thesis
proof (cases small (UNIV :: ′U set))

case False
have Exp a b ⊆ {F . small-function F ∧ SF-Dom F ⊆ Set a ∧ range F ⊆ Set b ∪ {null}}

132

proof
fix F
assume F : F ∈ Exp a b
have small-function F

using assms F memb-Exp-imp-small-function [of a b F] by blast
moreover have SF-Dom F ⊆ Set a
proof −

have popular-value F null
proof −

have
∧

F y. F ∈ Exp a b =⇒ popular-value F y =⇒ y = null
using assms memb-Exp-popular-value by meson

moreover have ∃ y. popular-value F y
by (metis (no-types, lifting) HOL.ext False assms(1 ,2) ex-popular-value-iff

F memb-Exp-imp-small-function)
ultimately show ?thesis

using F by blast
qed
thus ?thesis

using F by auto
qed
moreover have range F ⊆ Set b ∪ {null}

using F by blast
ultimately
show F ∈ {F . small-function F ∧ SF-Dom F ⊆ Set a ∧ range F ⊆ Set b ∪ {null}}

by blast
qed
thus ?thesis

using False small-funcset [of Set a Set b ∪ {null}]
small-Set assms(1 ,2) smaller-than-small

by fastforce
next
case True

have Exp a b ⊆ {F . small-function F ∧ SF-Dom F ⊆ UNIV ∧ range F ⊆ Set b ∪ {null}}
using assms memb-Exp-imp-small-function by auto

thus ?thesis
using True small-funcset [of UNIV Set b ∪ {null}]

small-Set assms(1 ,2) smaller-than-small
by (metis (mono-tags, lifting) subset-UNIV)

qed
qed

lemma embeds-Exp:
assumes ide a and ide b
shows embeds (Exp a b)
proof −

have is-embedding-of some-embedding-of-small-functions (Exp a b)
proof −

have Exp a b ⊆ SEF

133

unfolding EF-def
using assms memb-Exp-imp-small-function by blast

thus ?thesis
using assms some-embedding-of-small-functions-is-embedding memb-Exp-popular-value
by (meson image-mono inj-on-subset subset-trans)

qed
thus ?thesis by blast

qed

lemma ide-exp:
assumes ide a and ide b
shows ide (exp a b)
and bij-betw (OUT (Exp a b)) (Set (exp a b)) (Exp a b)
and bij-betw (IN (Exp a b)) (Exp a b) (Set (exp a b))
proof −

have small (Exp a b)
using assms small-Exp by blast

moreover have embeds (Exp a b)
using assms embeds-Exp by blast

ultimately show ide (exp a b) and bij-betw (OUT (Exp a b)) (Set (exp a b)) (Exp a b)
unfolding exp-def
using assms ide-mkide bij-OUT by blast+

thus bij-betw (IN (Exp a b)) (Exp a b) (Set (exp a b))
using bij-betw-inv-into exp-def by fastforce

qed

abbreviation Eval
where Eval b c ≡ (λfx. if fx ∈ Set (prod (exp b c) b)

then OUT (Exp b c)
(Fun (pr1 (exp b c) b) fx)
(Fun (pr0 (exp b c) b) fx)

else null)

definition eval
where eval b c ≡ mkarr (prod (exp b c) b) c (Eval b c)

lemma eval-in-hom [intro, simp]:
assumes ide b and ide c
shows «eval b c : prod (exp b c) b → c»
proof (unfold eval-def , intro mkarr-in-hom)

show ide c by fact
show ide (prod (exp b c) b)

using assms ide-exp ide-prod by auto
show Eval b c ∈ Hom (prod (exp b c) b) c
proof

show Eval b c ∈ Set (prod (exp b c) b) → Set c
proof

fix fx
assume fx: fx ∈ Set (prod (exp b c) b)

134

have Eval b c fx = OUT (Exp b c) (Fun (pr1 (exp b c) b) fx)
(Fun (pr0 (exp b c) b) fx)

using fx by simp
moreover have ... ∈ Set c
proof −

have OUT (Exp b c) (Fun (pr1 (exp b c) b) fx) ∈ Exp b c
proof −

have Fun (pr1 (exp b c) b) fx ∈ Set (exp b c)
using assms fx Fun-def
by (simp add: comp-in-homI ide-exp(1))

thus ?thesis
using assms(1 ,2) bij-betwE ide-exp(2) by blast

qed
moreover have Fun (pr0 (exp b c) b) fx ∈ Set b

using assms(1 ,2) fx ide-exp(1) Fun-def by auto
ultimately show ?thesis by blast

qed
ultimately show Eval b c fx ∈ Set c by auto

qed
show Eval b c ∈ {F . ∀ x. x /∈ Set (prod (exp b c) b) −→ F x = null}

by simp
qed

qed

lemma eval-simps [simp]:
assumes ide b and ide c
shows arr (eval b c) and dom (eval b c) = prod (exp b c) b and cod (eval b c) = c

using assms eval-in-hom by blast+

lemma Fun-eval:
assumes ide b and ide c
shows Fun (eval b c) = Eval b c

using assms eval-def Fun-mkarr [of prod (exp b c) b c Eval b c]
by (metis arrI eval-in-hom)

definition Curry
where Curry a b c ≡ λf . if «f : prod a b → c»

then mkarr a (exp b c)
(λx. if x ∈ Set a

then IN (Exp b c)
(λy. if y ∈ Set b

then C f (tuple x y)
else null)

else null)
else null

lemma Curry-in-hom [intro]:
assumes ide a and ide b and ide c
and «f : prod a b → c»

135

shows «Curry a b c f : a → exp b c»
and Fun (Curry a b c f) =

(λx. if x ∈ Set a
then IN (Exp b c) (λy. if y ∈ Set b then C f (tuple x y) else null)
else null)

proof −
have

∧
x. x ∈ Set a =⇒

IN (Exp b c) (λy. if y ∈ Set b then C f (tuple x y) else null)
∈ Set (exp b c)

proof −
fix x
assume x: x ∈ Set a
have (λy. if y ∈ Set b then C f (tuple x y) else null) ∈ Exp b c
proof −

have
∧

y. y ∈ Set b =⇒ C f (tuple x y) ∈ Set c
using assms x by auto

thus ?thesis by simp
qed
thus IN (Exp b c) (λy. if y ∈ Set b then C f (tuple x y) else null)

∈ Set (exp b c)
using assms bij-betwE ide-exp
by (metis (no-types, lifting))

qed
thus «Curry a b c f : a → exp b c»

unfolding Curry-def
using assms ide-exp
by (simp, intro mkarr-in-hom, auto)

show Fun (Curry a b c f) =
(λx. if x ∈ Set a

then IN (Exp b c) (λy. if y ∈ Set b then C f (tuple x y) else null)
else null)

using ‹«Curry a b c f : a → exp b c»› arrI assms(4) Curry-def app-mkarr
by auto

qed

lemma Curry-simps [simp]:
assumes ide a and ide b and ide c
and «f : prod a b → c»
shows arr (Curry a b c f) and dom (Curry a b c f) = a and cod (Curry a b c f) = exp b c

using assms Curry-in-hom by blast+

lemma Fun-Curry:
assumes ide a and ide b and ide c
and «f : prod a b → c»
shows Fun (Curry a b c f) =

(λx. if x ∈ Set a
then IN (Exp b c) (λy. if y ∈ Set b then C f (tuple x y) else null)
else null)

using assms Curry-in-hom(2) by blast

136

interpretation elementary-category-with-terminal-object C ‹1?› some-terminator
using extends-to-elementary-category-with-terminal-object by blast

lemma is-category-with-terminal-object:
shows elementary-category-with-terminal-object C 1? some-terminator
and category-with-terminal-object C

..

interpretation elementary-cartesian-closed-category
C pr0 pr1 ‹1?› some-terminator exp eval Curry

proof
show

∧
b c. [[ide b; ide c]] =⇒ «eval b c : prod (exp b c) b → c»

using eval-in-hom by blast
show

∧
b c. [[ide b; ide c]] =⇒ ide (exp b c)

using ide-exp by blast
show

∧
a b c g. [[ide a; ide b; ide c; «g : prod a b → c»]]
=⇒ «Curry a b c g : a → exp b c»

using Curry-in-hom by simp
show

∧
a b c g. [[ide a; ide b; ide c; «g : prod a b → c»]]

=⇒ C (eval b c) (prod (Curry a b c g) b) = g
proof −

fix a b c g
assume a: ide a and b: ide b and c: ide c and g: «g : prod a b → c»
show eval b c · prod (Curry a b c g) b = g
proof (intro arr-eqI [of - g])

show par : par (C (eval b c) (prod (Curry a b c g) b)) g
using a b c g by auto

show Fun (eval b c · prod (Curry a b c g) b) = Fun g
proof

fix x
show Fun (eval b c · prod (Curry a b c g) b) x = Fun g x
proof (cases x ∈ Set (prod a b))

case False
show ?thesis

using False Fun-def
by (metis g in-homE par)

next
case True
have Fun (C (eval b c) (prod (Curry a b c g) b)) x =

Fun (eval b c) (Fun (prod (Curry a b c g) b) x)
using True a b c g Fun-comp par comp-assoc by auto

also have ... = (λfx. if fx ∈ Set (prod (exp b c) b)
then OUT (Exp b c) (Fun (pr1 (exp b c) b) fx)

(Fun (pr0 (exp b c) b) fx)
else null)

((if x ∈ Set (prod a b)
then tuple

(Fun (Curry a b c g) (pr1 a b · x))

137

(Fun b (pr0 a b · x))
else null))

proof −
have Fun (eval b c) = (λfx. if fx ∈ Set (prod (exp b c) b)

then OUT (Exp b c) (Fun (pr1 (exp b c) b) fx)
(Fun (pr0 (exp b c) b) fx)

else null)
using b c Fun-eval by simp

moreover have Fun (prod (Curry a b c g) b) =
(λx. if x ∈ Set (prod a b)

then tuple
(Fun (Curry a b c g) (pr1 a b · x))
(Fun b (pr0 a b · x))

else null)
using a b c g Fun-prod [of Curry a b c g a exp b c b b b] Curry-in-hom
by (meson ide-in-hom)

ultimately show ?thesis by simp
qed
also have ... = OUT (Exp b c)

(Fun (pr1 (exp b c) b)
(tuple

(Fun (Curry a b c g) (C (pr1 a b) x))
(Fun b (C (pr0 a b) x))))

(Fun (pr0 (exp b c) b)
(tuple

(Fun (Curry a b c g) (C (pr1 a b) x))
(Fun b (C (pr0 a b) x))))

proof −
have tuple

(Fun (Curry a b c g) (C (pr1 a b) x))
(Fun b (C (pr0 a b) x))
∈ Set (prod (exp b c) b)

using a b c g True Fun-def by auto
thus ?thesis

using True by presburger
qed

also have ... = OUT (Exp b c)
(pr1 (exp b c) b ·

tuple
(Fun (Curry a b c g) (C (pr1 a b) x))
(Fun b (C (pr0 a b) x)))

(pr0 (exp b c) b ·
tuple
(Fun (Curry a b c g) (C (pr1 a b) x))
(Fun b (C (pr0 a b) x)))

proof −
have tuple

(Fun (Curry a b c g) (C (pr1 a b) x))
(Fun b (C (pr0 a b) x))

138

∈ Set (prod (exp b c) b)
using a b c g True Fun-def by auto

moreover have Set (prod (exp b c) b) = Set (dom (pr1 (exp b c) b))
using b c
by (simp add: ide-exp(1))

moreover have Set (prod (exp b c) b) = Set (dom (pr0 (exp b c) b))
using b c
by (simp add: ide-exp(1))

ultimately show ?thesis
unfolding Fun-def
using a b c g True by auto

qed
also have ... = OUT (Exp b c)

(Fun (Curry a b c g) (C (pr1 a b) x))
(Fun b (C (pr0 a b) x))

unfolding Fun-def
using True a b c g by auto

also have ... = OUT (Exp b c)
(Fun (Curry a b c g) (C (pr1 a b) x))
(C (pr0 a b) x)

proof −
have C (pr0 a b) x ∈ Set b

using True a b by blast
thus ?thesis

using b Fun-ide [of b]
by presburger

qed
also have ... = OUT (Exp b c)

((λx. if x ∈ Set a
then IN (Exp b c)

(λy. if y ∈ Set b then g · tuple x y else null)
else null)

(C (pr1 a b) x))
(C (pr0 a b) x)

using a b c g Fun-Curry [of a b c g] by simp
also have ... = OUT (Exp b c)

(IN (Exp b c)
(λy. if y ∈ Set b then g · tuple (pr1 a b · x) y else null))
(pr0 a b · x)

using True a b c g by auto
also have ... = (λy. if y ∈ Set b then g · tuple (pr1 a b · x) y else null)

(pr0 a b · x)
proof −

have (λy. if y ∈ Set b then g · tuple (pr1 a b · x) y else null) ∈ Hom b c
proof

show (λy. if y ∈ Set b then g · tuple (pr1 a b · x) y else null) ∈ Set b → Set c
proof

fix y
assume y: y ∈ Set b

139

show (if y ∈ Set b then g · tuple (pr1 a b · x) y else null) ∈ Set c
using True a b c g y by auto

qed
show (λy. if y ∈ Set b then g · tuple (pr1 a b · x) y else null)

∈ {F . ∀ x. x /∈ Set b −→ F x = null}
by auto

qed
thus ?thesis

using a b c g small-Exp [of b c] embeds-Exp [of b c] ide-exp(1) [of b c]
OUT-IN
[of Exp b c

λy. if y ∈ Set b then g · tuple (pr1 a b · x) y else null]
by auto

qed
also have ... = g · tuple (pr1 a b · x) (pr0 a b · x)

using True a b c g by auto
also have ... = g · tuple (pr1 a b) (pr0 a b) · x

using True a b c g comp-tuple-arr
by (metis CollectD in-homE pr-simps(2) span-pr)

also have ... = g · x
using True a b tuple-pr comp-cod-arr by fastforce

also have ... = Fun g x
using True g Fun-def by auto

finally show ?thesis by blast
qed

qed
qed

qed
show

∧
a b c h. [[ide a; ide b; ide c; «h : a → exp b c»]]
=⇒ Curry a b c (C (eval b c) (prod h b)) = h

proof −
fix a b c h
assume a: ide a and b: ide b and c: ide c and h: «h : a → exp b c»
show Curry a b c (C (eval b c) (prod h b)) = h
proof (intro arr-eqI [of - h])

show par : par (Curry a b c (C (eval b c) (prod h b))) h
using a b c h Curry-def Curry-simps(1) by auto

show Fun (Curry a b c (C (eval b c) (prod h b))) = Fun h
proof

fix x
show Fun (Curry a b c (C (eval b c) (prod h b))) x = Fun h x
proof (cases x ∈ Set a)

case False
show ?thesis

using False a b c h
by (metis Fun-def in-homE par)

next
case True
have OUT (Exp b c) (Fun (Curry a b c (C (eval b c) (prod h b))) x) =

140

OUT (Exp b c)
(IN (Exp b c)

(λy. if y ∈ Set b then (eval b c · prod h b) · tuple x y else null))
using True a b c h Fun-Curry [of a b c C (eval b c) (prod h b)]

eval-in-hom [of b c]
by auto

also have ... = (λy. if y ∈ Set b then (eval b c · prod h b) · tuple x y else null)
proof −

have (λy. if y ∈ Set b then (eval b c · prod h b) · tuple x y else null) ∈ Hom b c
proof

show (λy. if y ∈ Set b then (eval b c · prod h b) · tuple x y else null)
∈ Set b → Set c

proof
fix y
assume y: y ∈ Set b
show (if y ∈ Set b then (eval b c · prod h b) · tuple x y else null) ∈ Set c

using True a b c h y ide-in-hom by auto
qed
show (λy. if y ∈ Set b then (eval b c · prod h b) · tuple x y else null)

∈ {F . ∀ x. x /∈ Set b −→ F x = null}
by simp

qed
thus ?thesis

using True a b c h small-Exp [of b c] embeds-Exp ide-exp [of b c]
OUT-IN
[of Exp b c

λy. if y ∈ Set b then (eval b c · prod h b) · tuple x y else null]
by auto

qed
also have ... = OUT (Exp b c) (Fun h x)
proof

fix y
show ... y = OUT (Exp b c) (Fun h x) y
proof (cases y ∈ Set b)

assume y: y /∈ Set b
have «Fun h x : 1? → mkide (Exp b c)»

using True b c h
by (metis Fun-arr [of h a cod h] arr-iff-in-hom[of h · x]

dom-comp[of h x] cod-comp[of h x] exp-def [of b c]
in-homE [of h a exp b c] in-homE [of x 1? a]
mem-Collect-eq[of x λuub. «uub : 1? → a»] seqI [of x h])

thus ?thesis
using True b c h y OUT-elem-of [of Exp b c Fun h x] small-Exp [of b c]

embeds-Exp [of b c] ide-exp [of b c]
by auto

next
assume y: y ∈ Set b
have (λy. if y ∈ Set b then (eval b c · prod h b) · tuple x y else null) y =

(eval b c · prod h b) · tuple x y

141

using y by simp
also have ... = eval b c · (prod h b · tuple x y)

using comp-assoc by simp
also have ... = eval b c · tuple (h · x) (b · y)

using True b c h y prod-tuple
by (metis comp-cod-arr in-homE mem-Collect-eq seqI)

also have ... = eval b c · tuple (h · x) y
using b y
by (metis comp-cod-arr in-homE mem-Collect-eq)

also have ... = Fun (eval b c) (tuple (h · x) y)
using True b c h y Fun-def [of eval b c tuple (h · x) y] by auto

also have ... = (λfx. if fx ∈ Set (prod (exp b c) b)
then OUT (Exp b c) (Fun (pr1 (exp b c) b) fx)

(Fun (pr0 (exp b c) b) fx)
else null)

(tuple (h · x) y)
using b c Fun-eval [of b c] by presburger

also have ... = OUT (Exp b c) (Fun (pr1 (exp b c) b) (tuple (h · x) y))
(Fun (pr0 (exp b c) b) (tuple (h · x) y))

using True b c h y
by (simp add: comp-in-homI tuple-in-hom)

also have ... = OUT (Exp b c) (pr1 (exp b c) b · tuple (h · x) y)
(pr0 (exp b c) b · tuple (h · x) y)

using True b c h y Fun-def ide-exp(1) span-pr by auto
also have ... = OUT (Exp b c) (h · x) y

using True b c h y
apply auto
by fastforce

also have ... = OUT (Exp b c) (Fun h x) y
using True h Fun-def by auto

finally show (if y ∈ Set b then (eval b c · prod h b) · tuple x y else null) =
OUT (Exp b c) (Fun h x) y

by blast
qed

qed
finally have ∗: OUT (Exp b c) (Fun (Curry a b c (C (eval b c) (prod h b))) x) =

OUT (Exp b c) (Fun h x)
by simp

show Fun (Curry a b c (C (eval b c) (prod h b))) x = Fun h x
proof −

have Fun (Curry a b c (C (eval b c) (prod h b))) x =
IN (Exp b c) (OUT (Exp b c) (Fun (Curry a b c (C (eval b c) (prod h b))) x))

proof −
have Fun (Curry a b c (eval b c · prod h b)) x ∈ Set (mkide (Exp b c))
proof −

have «Curry a b c (eval b c · prod h b) : a → exp b c»
using a b c h par

Curry-in-hom [of a b c C (eval b c) (prod h b)]
by (metis arr-iff-in-hom in-homE)

142

hence Fun (Curry a b c (eval b c · prod h b)) ∈ Set a → Set (exp b c)
using Fun-in-Hom [of Curry a b c (eval b c · prod h b) a exp b c]
by blast

thus ?thesis
using True exp-def by auto

qed
thus ?thesis

using True a b c h small-Exp embeds-Exp
IN-OUT [of Exp b c Fun (Curry a b c (C (eval b c) (prod h b))) x]

by presburger
qed
also have ... = IN (Exp b c) (OUT (Exp b c) (Fun h x))

using ∗ by simp
also have ... = Fun h x
proof −

have Fun h x ∈ Set (mkide (Exp b c))
using True b c h Fun-def exp-def by auto

thus ?thesis
using True b c h small-Exp embeds-Exp

IN-OUT [of Exp b c Fun h x]
by presburger

qed
finally show ?thesis by blast

qed
qed

qed
qed

qed
qed

lemma is-elementary-cartesian-closed-category:
shows elementary-cartesian-closed-category C pr0 pr1 1? some-terminator exp eval Curry

..

lemma is-cartesian-closed-category:
shows cartesian-closed-category C

..

end

4.11.1 Exported Notions
context sets-cat-with-tupling
begin

sublocale sets-cat-with-pairing ..

interpretation Expos: exponentials-in-sets-cat sml C ..

143

abbreviation Exp
where Exp ≡ Expos.Exp

abbreviation exp
where exp ≡ Expos.exp

lemma ide-exp:
assumes ide a and ide b
shows ide (exp a b)

using assms Expos.ide-exp by blast

lemma exp-comparison-map-props:
assumes ide a and ide b
shows OUT (Exp a b) ∈ Set (exp a b) → Exp a b
and IN (Exp a b) ∈ Exp a b → Set (exp a b)
and

∧
x. x ∈ Set (exp a b) =⇒ IN (Exp a b) (OUT (Exp a b) x) = x

and
∧

y. y ∈ Exp a b =⇒ OUT (Exp a b) (IN (Exp a b) y) = y
and bij-betw (OUT (Exp a b)) (Set (exp a b)) (Exp a b)
and bij-betw (IN (Exp a b)) (Exp a b) (Set (exp a b))
proof −

show OUT (Exp a b) ∈ Set (exp a b) → Exp a b
using assms Expos.ide-exp(2) [of a b] bij-betw-def bij-betw-imp-funcset
by simp

thus IN (Exp a b) ∈ Exp a b → Set (exp a b)
using assms Expos.exp-def

by (metis (no-types, lifting) HOL.ext Expos.ide-exp(2) bij-betw-imp-funcset bij-betw-inv-into)
show

∧
x. x ∈ Set (exp a b) =⇒ IN (Exp a b) (OUT (Exp a b) x) = x

using assms
by (metis (no-types, lifting) HOL.ext Expos.exp-def Expos.ide-exp(2) bij-betw-inv-into-left)

show
∧

y. y ∈ Exp a b =⇒ OUT (Exp a b) (IN (Exp a b) y) = y
using assms

by (metis (no-types, lifting) HOL.ext Expos.exp-def Expos.ide-exp(2) bij-betw-inv-into-right)
show bij-betw (OUT (Exp a b)) (Set (exp a b)) (Exp a b)

using assms Expos.exponentials-in-sets-cat-axioms exponentials-in-sets-cat.ide-exp(2)
by fastforce

show bij-betw (IN (Exp a b)) (Exp a b) (Set (exp a b))
using assms Expos.exponentials-in-sets-cat-axioms exponentials-in-sets-cat.ide-exp(3)
by fastforce

qed

abbreviation Eval
where Eval ≡ Expos.Eval

abbreviation eval
where eval ≡ Expos.eval

lemma eval-in-hom [intro, simp]:
assumes ide b and ide c
shows «eval b c : prod (exp b c) b → c»

144

using assms Expos.eval-in-hom by blast

lemma eval-simps [simp]:
assumes ide b and ide c
shows arr (eval b c) and dom (eval b c) = prod (exp b c) b and cod (eval b c) = c

using assms Expos.eval-simps by auto

lemma Fun-eval:
assumes ide b and ide c
shows Fun (eval b c) = Eval b c

unfolding eval-def
using assms Expos.Fun-eval [of b c] by simp

abbreviation Curry
where Curry ≡ Expos.Curry

lemma Curry-in-hom [intro, simp]:
assumes ide a and ide b and ide c
and «f : prod a b → c»
shows «Curry a b c f : a → exp b c»

using assms Expos.Curry-in-hom by auto

lemma Curry-simps [simp]:
assumes ide a and ide b and ide c
and «f : prod a b → c»
shows arr (Curry a b c f)
and dom (Curry a b c f) = a and cod (Curry a b c f) = exp b c

using assms Expos.Curry-simps by auto

lemma Fun-Curry:
assumes ide a and ide b and ide c
and «f : prod a b → c»
shows Fun (Curry a b c f) =

(λx. if x ∈ Set a
then IN (Exp b c) (λy. if y ∈ Set b then C f (tuple x y) else null)
else null)

using assms Expos.Fun-Curry by blast

theorem is-cartesian-closed:
shows elementary-cartesian-closed-category C pr0 pr1 1? some-terminator exp eval Curry
and cartesian-closed-category C

using Expos.is-elementary-cartesian-closed-category Expos.is-cartesian-closed-category
by auto

end

145

4.12 Subobject Classifier
In this section we show that a sets category has a subobject classifier, which is a cate-
gorical formulation of set comprehension. We give here a formal definition of subobject
classifier, because we have not done that elsewhere to date, but ultimately this definition
would perhaps be better placed with a development of the theory of elementary topoi,
which are cartesian closed categories with subobject classifier.

context category
begin

A subobject classifier is a monomorphism tt from a terminal object into an object Ω,
which we may regard as an “object of truth values”, such that for every monomorphism
m there exists a unique arrow χ : cod m → Ω, such that m is given by the pullback of
tt along χ.

definition subobject-classifier
where subobject-classifier tt ≡

mono tt ∧ terminal (dom tt) ∧
(∀m. mono m −→

(∃ !χ. «χ : cod m → cod tt» ∧
has-as-pullback tt χ (THE f . «f : dom m → dom tt») m))

lemma subobject-classifierI [intro]:
assumes «tt : one → Ω» and terminal one and mono tt
and

∧
m. mono m =⇒ ∃ !χ. «χ : cod m → Ω» ∧

has-as-pullback tt χ (THE f . «f : dom m → one») m
shows subobject-classifier tt

using assms subobject-classifier-def by blast

lemma subobject-classifierE [elim]:
assumes subobject-classifier tt
and [[mono tt; terminal (dom tt);∧

m. mono m =⇒ ∃ !χ. «χ : cod m → cod tt» ∧
has-as-pullback tt χ (THE f . «f : dom m → dom tt») m]]

=⇒ T
shows T

using assms subobject-classifier-def by force

end

locale category-with-subobject-classifier =
category +

assumes has-subobject-classifier-ax: ∃ tt. subobject-classifier tt
begin

sublocale category-with-terminal-object
using category-axioms category-with-terminal-object.intro

category-with-terminal-object-axioms-def has-subobject-classifier-ax
by force

146

end

context sets-cat-with-bool
begin

For a sets category, the two-point object 2 (which exists in the current context
sets-cat-with-bool) serves as the object of truth values. The subobject classifier will
be the arrow tt : 1? → 2.

Here we define a mapping χ that takes a monomorphism m to a corresponding “pred-
icate” χ m : cod m → 2.

abbreviation Chi
where Chi m ≡ λy. if y ∈ Set (cod m)

then
if y ∈ Fun m ‘ Set (dom m) then tt else ff

else null

definition χ :: ′U ⇒ ′U
where χ m ≡ mkarr (cod m) 2 (Chi m)

lemma χ-in-hom [intro, simp]:
assumes «m : b → a» and mono m
shows «χ m : a → 2»

using assms ide-two ff-in-hom tt-in-hom χ-def mkarr-in-hom by auto

lemma χ-simps [simp]:
assumes «m : b → a» and mono m
shows arr (χ m) and dom (χ m) = a and cod (χ m) = 2

using assms χ-in-hom by blast+

lemma Fun-χ:
assumes «m : b → a» and mono m
shows Fun (χ m) = Chi m

unfolding χ-def
using assms Fun-mkarr
by (metis (no-types, lifting) χ-def χ-in-hom arrI)

lemma bij-Fun-mono:
assumes «m : b → a» and mono m
shows bij-betw (Fun m) (Set b) {y. y ∈ Set a ∧ χ m · y = tt}
proof −

have {y. y ∈ Set a ∧ χ m · y = tt} = {y. y ∈ Set a ∧ Chi m y = tt}
proof −

have
∧

y. y ∈ Set a =⇒ χ m · y = tt ←→ Chi m y = tt
by (metis Fun-χ Fun-arr χ-in-hom assms(1 ,2))

thus ?thesis by blast
qed
moreover have bij-betw (Fun m) (Set b) {y. y ∈ Set a ∧ Chi m y = tt}

unfolding bij-betw-def

147

using assms mono-char tt-def ff-def tt-ne-ff Fun-def by auto
ultimately show ?thesis by simp

qed

lemma has-subobject-classifier :
shows subobject-classifier tt
proof

show «tt : 1? → 2»
using tt-in-hom by blast

show terminal 1?

using terminal-some-terminal by blast
show mono tt

using mono-tt by blast
fix m
assume m: mono m
define b where b-def : b = dom m
define a where a-def : a = cod m
have m: «m : b → a» ∧ mono m

using m a-def b-def mono-implies-arr by blast
have bij-Fun-m: bij-betw (Fun m) (Set b) {y ∈ Set a. χ m · y = tt}

using m bij-Fun-mono by presburger
have ∃ !χ. «χ : a → 2» ∧ has-as-pullback tt χ t?[b] m
proof −

have 1 : «χ m : a → 2»
using m χ-in-hom by blast

moreover have 2 : has-as-pullback tt (χ m) t?[b] m
proof

show cs: commutative-square tt (χ m) t?[b] m
proof

show cospan tt (χ m)
by (metis (lifting) χ-in-hom arr-iff-in-hom m in-homE mono-char tt-simps(1 ,3))

show span: span t?[b] m
using m by auto

show dom tt = cod t?[b]
using m by auto

show tt · t?[b] = χ m · m
proof (intro arr-eqI)

show par : par (tt · t?[b]) (χ m · m)
using m ‹span t?[b] m› a-def b-def by auto

show Fun (tt · t?[b]) = Fun (χ m · m)
proof

fix x
show Fun (tt · t?[b]) x = Fun (χ m · m) x
proof (cases x ∈ Set b)

case False
show ?thesis

using False par m Fun-def by auto
next
case True

148

have Fun (tt · t?[b]) x = Fun tt (Fun t?[b] x)
using Fun-comp par by auto

also have ... = (λx. if x ∈ Set 1? then tt else null)
(if x ∈ Set b then 1? else null)

using Fun-some-terminator Fun-tt span b-def ide-dom by auto
also have ... = tt

using True ide-in-hom ide-some-terminal by auto
also have ... = (λx. if x ∈ Set a then tt else null) (Fun m x)

using m True Fun-def
by (metis CollectD CollectI in-homE comp-in-homI)

also have ... = Chi m (Fun m x)
using app-mkarr m Fun-def by auto

also have ... = Fun (χ m) (Fun m x)
using m Fun-χ [of m b a] by simp

also have ... = Fun (χ m · m) x
by (metis comp-eq-dest-lhs par Fun-comp)

finally show ?thesis by blast
qed

qed
qed

qed
show

∧
h k. commutative-square tt (χ m) h k =⇒ ∃ !l. t?[b] · l = h ∧ m · l = k

proof −
fix h k
assume hk: commutative-square tt (χ m) h k
have inj-m: inj-on (Fun m) (Set b)

using m mono-char by blast
have kx:

∧
x. x ∈ Set (dom h) =⇒ k · x ∈ {y ∈ Set a. χ m · y = tt}

proof −
fix x
assume x: x ∈ Set (dom h)
have χ m · k · x = tt · h · x

using hk comp-assoc
by (metis (no-types, lifting) commutative-squareE)

hence χ m · k · x = tt
by (metis (lifting) IntI Int-Collect comp-arr-dom comp-in-homI ′ in-homE

commutative-squareE hk ide-some-terminal ide-in-hom some-trm-eqI
tt-simps(2) x)

thus k · x ∈ {y ∈ Set a. χ m · y = tt}
using hk comp-assoc
by (metis (mono-tags, lifting) 1 dom-comp in-homE in-homI mem-Collect-eq

seqE tt-simps(1 ,2))
qed
let ?l = mkarr (dom h) b

(λx. if x ∈ Set (dom h) then inv-into (Set b) (Fun m) (k · x) else null)
have l: «?l : dom h → b»
proof (intro mkarr-in-hom)

show ide (dom h)
using hk ide-dom by blast

149

show ide b
using m by auto

show (λx. if x ∈ Set (dom h) then inv-into (Set b) (Fun m) (k · x) else null)
∈ Hom (dom h) b

proof
show (λx. if x ∈ Set (dom h) then inv-into (Set b) (Fun m) (k · x) else null)

∈ Set (dom h) → Set b
proof

fix x
assume x: x ∈ Set (dom h)
have inv-into (Set b) (Fun m) (k · x) ∈ Set b ∧

Fun m (inv-into (Set b) (Fun m) (k · x)) = k · x
using x bij-Fun-m kx
by (meson bij-betw-apply bij-betw-inv-into bij-betw-inv-into-right)

thus (if x ∈ Set (dom h) then inv-into (Set b) (Fun m) (k · x) else null)
∈ Set b

using x by presburger
qed
show (λx. if x ∈ Set (dom h) then inv-into (Set b) (Fun m) (k · x) else null)

∈ {F . ∀ x. x /∈ Set (dom h) −→ F x = null}
by auto

qed
qed
have t?[b] · ?l = h

by (metis (lifting) commutative-square-def comp-cod-arr
elementary-category-with-terminal-object.trm-naturality
elementary-category-with-terminal-object.trm-one
extends-to-elementary-category-with-terminal-object hk in-homE l
tt-simps(2))

moreover have m · ?l = k
proof (intro arr-eqI)

show par : par (m · ?l) k
by (metis (no-types, lifting) HOL.ext χ-simps(2) m cod-comp dom-comp seqI ′

commutative-squareE hk in-homE l)
show Fun (m · ?l) = Fun k
proof

fix x
show Fun (m · ?l) x = Fun k x
proof (cases x ∈ Set (dom h))

case False
show ?thesis

using False par commutative-square-def Fun-def by auto
next
case True
have Fun (m · ?l) x = Fun m (Fun ?l x)

using True Fun-comp CollectI m comp-in-homI in-homE l comp-assoc par
by fastforce

also have ... = Fun m (inv-into (Set b) (Fun m) (k · x))
using True m app-mkarr l by auto

150

also have ... = k · x
using True bij-Fun-m bij-betw-inv-into-right kx by force

also have ... = Fun k x
using True hk Fun-def by fastforce

finally show ?thesis by blast
qed

qed
qed
ultimately have 1 : t?[b] · ?l = h ∧ m · ?l = k by blast
moreover have

∧
l ′. t?[b] · l ′ = h ∧ m · l ′ = k =⇒ l ′ = ?l

using m l
by (metis (lifting) ‹m · ?l = k› seqI ′ mono-cancel)

ultimately show ∃ !l. t?[b] · l = h ∧ m · l = k by auto
qed

qed
moreover have

∧
χ ′. «χ ′ : a → 2» ∧ has-as-pullback tt χ ′ t?[b] m =⇒ χ ′ = χ m

proof −
fix χ ′

assume χ ′: «χ ′ : a → 2» ∧ has-as-pullback tt χ ′ t?[b] m
show χ ′ = χ m
proof (intro arr-eqI ′ [of χ ′])

show «χ ′ : a → 2»
using χ ′ by simp

show «χ m : a → 2»
using 1 by force

show
∧

y. «y : 1? → a» =⇒ χ ′ · y = χ m · y
proof −

fix y
assume y: «y : 1? → a»
show χ ′ · y = χ m · y
proof (cases y ∈ Set a)

case False
show ?thesis
using False y by blast

next
case True
show ?thesis
proof (cases y ∈ Fun m ‘ Set b)

case True
obtain x where x: x ∈ Set b ∧ y = Fun m x

using True by blast
have χ ′ · y = χ ′ · m · x

using x y Fun-def by auto
also have ... = tt · 1?

using χ ′ x Fun-def
by (metis (no-types, lifting) HOL.ext Fun-some-terminator m

commutative-square-def has-as-pullbackE ide-dom in-homE comp-assoc)
also have ... = χ m · m · x

using 1 2 x χ-def app-mkarr m comp-arr-dom y Fun-def by auto

151

also have ... = χ m · y
using x y Fun-def by auto

finally show ?thesis by blast
next
case False
have χ ′ · y = ff
proof −

have χ ′ · y = tt =⇒ False
proof −

assume 3 : χ ′ · y = tt
hence commutative-square tt χ ′ 1? y

by (metis ‹«χ ′ : a → 2»› commutative-squareI comp-arr-dom ideD(1 ,2 ,3)
ide-some-terminal in-homE tt-simps(1 ,2 ,3) y)

hence ∃ x. x ∈ Set b ∧ m · x = y ∧ t?[b] · x = 1?

using χ ′ has-as-pullbackE [of tt χ ′ t?[b] m]
by (metis arr-iff-in-hom m dom-comp in-homE mem-Collect-eq seqE y)

thus False
using False χ ′ m Fun-def by auto

qed
thus ?thesis

using Set-two χ ′ y by blast
qed
also have ... = χ m · y

using 1 False app-mkarr m y χ-def by auto
finally show ?thesis by blast

qed
qed

qed
qed

qed
ultimately show ∃ !χ. «χ : a → 2» ∧ has-as-pullback tt χ t?[b] m

by blast
qed
moreover have t?[b] = (THE t. «t : dom m → 1?»)

using terminal-some-terminal the1-equality [of λt. «t : dom m → 1?»]
by (simp add: b-def m mono-implies-arr some-terminator-def)

ultimately show ∃ !χ. «χ : cod m → 2» ∧
has-as-pullback tt χ (THE t. «t : dom m → 1?») m

using m by auto
qed

sublocale category-with-subobject-classifier
using has-subobject-classifier
by unfold-locales auto

lemma is-category-with-subobject-classifier :
shows category-with-subobject-classifier C

..

152

end

4.13 Natural Numbers Object
In this section we show that a sets category has a natural numbers object, assuming
that the smallness notion is such that the set of natural numbers is small, and assuming
that that the collection of arrows admits lifting, so that the category has infinitely many
arrows.

locale sets-cat-with-infinity =
sets-cat sml C +
small-nat sml +
lifting ‹Collect arr›

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)
begin

abbreviation nat (N)
where nat ≡ mkide (UNIV :: nat set)

lemma ide-nat:
shows ide N
and bij-betw (OUT (UNIV :: nat set)) (Set N) (UNIV :: nat set)
and bij-betw (IN (UNIV :: nat set)) (UNIV :: nat set) (Set N)

using small-nat embeds-nat bij-OUT bij-IN by auto

abbreviation Zero
where Zero ≡ λx. if x ∈ Set 1? then IN (UNIV :: nat set) 0 else null

lemma Zero-in-Hom:
shows Zero ∈ Hom 1? N

using Pi-I ′ bij-betwE ide-nat(3) by fastforce

definition zero
where zero ≡ mkarr 1? N Zero

lemma zero-in-hom [intro, simp]:
shows «zero : 1? → N»

using mkarr-in-hom [of 1? N] Zero-in-Hom ide-nat(1) ide-some-terminal zero-def
by presburger

lemma zero-simps [simp]:
shows arr zero and dom zero = 1? and cod zero = N

using zero-in-hom by blast+

lemma Fun-zero:
shows Fun zero = Zero

using zero-def app-mkarr zero-in-hom zero-simps(2) by auto

153

abbreviation Succ
where Succ ≡ λx. if x ∈ Set N then IN (UNIV :: nat set) (Suc (OUT UNIV x)) else null

lemma Succ-in-Hom:
shows Succ ∈ Hom N N

using Pi-I ′ bij-betwE ide-nat(3) by fastforce

definition succ
where succ ≡ mkarr N N Succ

lemma succ-in-hom [intro]:
shows «succ : N → N»

using Succ-in-Hom ide-nat(1) succ-def by auto

lemma succ-simps [simp]:
shows arr succ and dom succ = N and cod succ = N

using succ-in-hom by blast+

lemma Fun-succ:
shows Fun succ = Succ

using succ-def app-mkarr succ-in-hom succ-simps(2) by auto

lemma nat-universality:
assumes «Z : 1? → a» and «S : a → a»
shows ∃ !f . «f : N → a» ∧ f · zero = Z ∧ f · succ = S · f
proof −

let ?F = λn. if n ∈ Set N then ((·) S ^^ OUT (UNIV :: nat set) n) Z else null
have F : ?F ∈ Hom N a
proof

show ?F ∈ {F . ∀ x. x /∈ Set (mkide (UNIV :: nat set)) −→ F x = null} by simp
show ?F ∈ Set N → Set a
proof

have 1 :
∧

k. ((·) S ^^ k) Z ∈ Set a
proof −

fix k
show ((·) S ^^ k) Z ∈ Set a

using assms by (induct k) auto
qed
fix n
assume n: n ∈ Set N
show ?F n ∈ Set a

using n 1 by auto
qed

qed
let ?f = mkarr N a ?F
have f : «?f : N → a»

using mkarr-in-hom F assms(2) ide-nat(1) by auto
have «?f : N → a» ∧ ?f · zero = Z ∧ ?f · succ = S · ?f
proof (intro conjI)

154

show «?f : N → a» by fact
show ?f · zero = Z
proof (intro arr-eqI)

show par : par (?f · zero) Z
using assms(1) f by fastforce

show Fun (?f · zero) = Fun Z
proof −

have Fun (?f · zero) = Fun ?f ◦ Fun zero
using Fun-comp par by blast

also have ... = ?F ◦ Zero
using Fun-mkarr Fun-zero par by fastforce

also have ... = Fun Z
proof

fix x
show (?F ◦ Zero) x = Fun Z x
proof (cases x ∈ Set 1?)

case False
show ?thesis

using False par Fun-def by auto
next
case True
have (?F ◦ Zero) x =

((·) S ^^ OUT (UNIV :: nat set) (IN (UNIV :: nat set) 0)) Z
using True bij-betw-imp-surj-on ide-nat(3) by fastforce

also have ... = ((·) S ^^ 0) Z
using OUT-IN [of UNIV :: nat set 0 :: nat] small-nat embeds-nat
by simp

also have ... = Fun Z x
using True Fun-def
by (metis assms(1) comp-arr-dom funpow-0 ide-in-hom ide-some-terminal

in-homE mem-Collect-eq some-trm-eqI)
finally show ?thesis by blast

qed
qed
finally show ?thesis by blast

qed
qed
show ?f · succ = S · ?f
proof (intro arr-eqI)

show par : par (?f · succ) (S · ?f)
using assms(2) f by fastforce

show Fun (?f · succ) = Fun (S · ?f)
proof −

have Fun (?f · succ) = Fun ?f ◦ Fun succ
using Fun-comp par by blast

also have ... = Fun S ◦ Fun ?f
proof

fix x
show (Fun ?f ◦ Fun succ) x = (Fun S ◦ Fun ?f) x

155

proof (cases x ∈ Set N)
case False
show ?thesis

using False f Fun-def by auto
next
case True
have (Fun ?f ◦ Fun succ) x = ?F (succ · x)

using True f app-mkarr [of N a - succ · x] Fun-def by auto
also have ... = ((·) S ^^ OUT UNIV (succ · x)) Z

using True f by auto
also have ... = ((·) S ^^ Suc (OUT UNIV x)) Z

by (metis (no-types, lifting) Fun-def Fun-succ True UNIV-I bij-betw-def
bij-betw-inv-into-left ide-nat(2 ,3) mem-Collect-eq rangeI succ-simps(2))

also have ... = S · ((·) S ^^ OUT UNIV x) Z
by auto

also have ... = S · ?F x
using True by auto

also have ... = S · Fun ?f x
using f by auto

also have ... = Fun S (Fun ?f x)
by (metis (no-types, lifting) CollectD CollectI Fun-def dom-comp in-homE

in-homI ext null-is-zero(2) seqE)
also have ... = (Fun S ◦ Fun ?f) x

by simp
finally show ?thesis by blast

qed
qed
also have ... = Fun (S · ?f)

using Fun-comp par by presburger
finally show ?thesis by blast

qed
qed

qed
moreover have

∧
f ′. «f ′ : N → a» ∧ f ′ · zero = Z ∧ f ′ · succ = S · f ′ −→ f ′ = ?f

proof (intro impI arr-eqI)
fix f ′

assume f ′: «f ′ : N → a» ∧ f ′ · zero = Z ∧ f ′ · succ = S · f ′

show par : par f ′ ?f
using f f ′ by fastforce

have ∗:
∧

k. ((·) S ^^ k) Z = Fun f ′ (IN UNIV k)
proof −

fix k
show ((·) S ^^ k) Z = Fun f ′ (IN UNIV k)
proof (induct k)

show ((·) S ^^ 0) Z = Fun f ′ (IN (UNIV :: nat set) 0)
using f ′ app-mkarr
unfolding zero-def
by (metis (no-types, lifting) CollectI Fun-zero comp-arr-dom f ′ funpow-0

ide-in-hom ide-some-terminal in-homE zero-in-hom Fun-def)

156

fix k
assume ind: ((·) S ^^ k) Z = Fun f ′ (IN UNIV k)
have Fun f ′ (IN UNIV (Suc k)) = Fun f ′ (succ · IN UNIV k)
proof −

have
∧

n. OUT UNIV (IN UNIV (n::nat)) = n
by (metis (no-types) bij-betw-inv-into-right ide-nat(2) iso-tuple-UNIV-I)

thus ?thesis
by (metis (no-types) Fun-def Fun-succ bij-betwE ide-nat(3) iso-tuple-UNIV-I

succ-simps(2))
qed
also have ... = f ′ · succ · IN UNIV k

using bij-betwE f ′ ide-nat(3) Fun-def by fastforce
also have ... = (f ′ · succ) · IN UNIV k

using comp-assoc by simp
also have ... = S · Fun f ′ (IN UNIV k)

using f ′ bij-betw-apply ide-nat(3) comp-assoc Fun-def by fastforce
also have ... = S · ((·) S ^^ k) Z

using ind by simp
also have ... = ((·) S ^^ Suc k) Z

by auto
finally show ((·) S ^^ Suc k) Z = Fun f ′ (IN UNIV (Suc k))

by simp
qed

qed
show Fun f ′ = Fun ?f
proof

fix x
show Fun f ′ x = Fun ?f x
proof (cases x ∈ Set N)

case False
show ?thesis

using False par Fun-def by auto
next
case True
have Fun ?f x = ((·) S ^^ OUT UNIV x) Z

using True app-mkarr f par by force
also have ... = Fun f ′ (IN (UNIV :: nat set) (OUT UNIV x))

using ∗ by simp
also have ... = Fun f ′ x

using True IN-OUT small-nat embeds-nat by metis
finally show ?thesis by simp

qed
qed

qed
ultimately show ?thesis by auto

qed

lemma has-natural-numbers-object:
shows ∃ a z s. «z : 1? → a» ∧ «s : a → a» ∧

157

(∀ a ′ z ′ s ′. «z ′ : 1? → a ′» ∧ «s ′ : a ′→ a ′» −→
(∃ !f . «f : a → a ′» ∧ f · z = z ′ ∧ f · s = s ′ · f))

proof −
have «zero : 1? → nat» ∧ «succ : nat → nat» ∧

(∀ a ′ z ′ s ′. «z ′ : 1? → a ′» ∧ «s ′ : a ′→ a ′» −→
(∃ !f . «f : nat → a ′» ∧ f · zero = z ′ ∧ f · succ = s ′ · f))

using nat-universality by auto
thus ?thesis by auto

qed

end

4.14 Sets Category with Tupling and Infinity
Finally, if the collection of arrows of a sets category admits embeddings of all the usual
set-theoretic constructions, then the category supports all of the constructions consid-
ered; in particular it is small-complete and small-cocomplete, is cartesian closed, has a
subobject classifier (so that it is an elementary topos), and validates an axiom of infinity
in the form of the existence of a natural numbers object.

context sets-cat-with-tupling
begin

lemmas is-well-pointed epis-split has-binary-products has-binary-coproducts
has-small-products has-small-coproducts has-equalizers has-coequalizers
is-cartesian-closed has-subobject-classifier

end

locale sets-cat-with-tupling-and-infinity =
sets-cat-with-tupling sml C +
sets-cat-with-infinity sml C

for sml :: ′V set ⇒ bool
and C :: ′U comp (infixr ‹·› 55)
begin

sublocale universe sml ‹Collect arr› null ..

lemmas has-natural-numbers-object

end

end

158

Chapter 5

Interpretations of universe

theory Universe-Interps
imports Universe ZFC-in-HOL.ZFC-Cardinals
begin

In this section we give two interpretations of locales defined in theory Universe. In
one interpretation, “finite” is taken as the notion of smallness and the set of natural
numbers is used to interpret the tupling locale. In the second interpretation, the notion
“small” is as defined in ZFC-in-HOL and the set of elements of the type V defined in
that theory is used as the universe. This interpretation interprets the universe locale,
which augments universe with the assumption small-nat that the set of natural numbers
is small. The purpose of constructing these interpretations is to show the consistency
of the universe locale assumptions (relative, of course to the consistency of HOL itself,
and of HOL as extended in ZFC-in-HOL), as well as to provide a starting point for the
construction of large categories, such as the category of small sets which is treated in
this article.

5.1 Interpretation using Natural Numbers
We first give an interpretation for the tupling locale, taking the set of natural numbers
as the universe and taking “finite” as the meaning of “small”.

context
begin

We first establish properties of finite :: nat set ⇒ bool as our notion of smallness.
interpretation smallness ‹finite :: nat set ⇒ bool›

by unfold-locales (meson finite-surj lepoll-iff)

The notion small defined by the smallness locale agrees with the notion finite given
as a locale parameter.

lemma finset-small-iff-finite:
shows local.small X ←→ finite X

by (metis eqpoll-finite-iff eqpoll-iff-finite-card local.small-def)

159

interpretation small-finite ‹finite :: nat set ⇒ bool›
by unfold-locales blast

lemma small-finite-finset:
shows small-finite (finite :: nat set ⇒ bool)

..

interpretation small-product ‹finite :: nat set ⇒ bool›
using eqpoll-iff-finite-card by unfold-locales auto

lemma small-product-finset:
shows small-product (finite :: nat set ⇒ bool)

..

interpretation small-sum ‹finite :: nat set ⇒ bool›
by unfold-locales (meson eqpoll-iff-finite-card finite-SigmaI finite-lessThan)

lemma small-sum-finset:
shows small-sum (finite :: nat set ⇒ bool)

..

interpretation small-powerset ‹finite :: nat set ⇒ bool›
using eqpoll-iff-finite-card by unfold-locales blast

lemma small-powerset-finset:
shows small-powerset (finite :: nat set ⇒ bool)

..

interpretation small-funcset ‹finite :: nat set ⇒ bool› ..

As expected, the assumptions of locale small-nat are inconsistent with the present
context.

lemma large-nat-finset:
shows ¬ local.small (UNIV :: nat set)

using finset-small-iff-finite large-UNIV by blast

Next, we develop embedding properties of UNIV :: nat set.
interpretation embedding ‹UNIV :: nat set› .

interpretation lifting ‹UNIV :: nat set›
by unfold-locales blast

lemma nat-admits-lifting:
shows lifting (UNIV :: nat set)

..

interpretation pairing ‹UNIV :: nat set›
by unfold-locales blast

160

lemma nat-admits-pairing:
shows pairing (UNIV :: nat set)

..

interpretation powering ‹finite :: nat set ⇒ bool› ‹UNIV :: nat set›
using inj-on-set-encode small-iff-sml
by unfold-locales auto

lemma nat-admits-finite-powering:
shows powering (finite :: nat set ⇒ bool) (UNIV :: nat set)

..

interpretation tupling ‹finite :: nat set ⇒ bool› ‹UNIV :: nat set› ..

lemma nat-admits-finite-tupling:
shows tupling (finite :: nat set ⇒ bool) (UNIV :: nat set)

..

end

Finally, we give the interpretation of the tupling locale, stated in the top-level context
in order to make it clear that it can be established directly in HOL, without depending
somehow on any underlying locale assumptions.

interpretation nat-tupling: tupling ‹finite :: nat set ⇒ bool› ‹UNIV :: nat set› undefined
using nat-admits-finite-tupling by blast

5.2 Interpretation using ZFC-in-HOL
We now give an interpretation for the universe locale, taking as the universe the set of
elements of type V defined in ZFC-in-HOL as the universe and using the notion small
also defined in that theory.

context
begin

We first develop properties of small, which we take as our notion of smallness.
interpretation smallness ‹ZFC-in-HOL.small :: V set ⇒ bool›

using lepoll-small by unfold-locales blast

The notion small defined by the smallness locale agrees with the notion ZFC-in-HOL.small
given as a locale parameter.

lemma small-iff-ZFC-small:
shows local.small X ←→ ZFC-in-HOL.small X

by (metis eqpoll-sym local.small-def small-eqpoll small-iff)

interpretation small-finite ‹ZFC-in-HOL.small :: V set ⇒ bool›
by unfold-locales

161

(meson eqpoll-sym finite-atLeastAtMost finite-imp-small small-elts small-eqpoll)

lemma small-finite-ZFC :
shows small-finite (ZFC-in-HOL.small :: V set ⇒ bool)

..

interpretation small-product ‹ZFC-in-HOL.small :: V set ⇒ bool›
by unfold-locales (metis eqpoll-sym small-Times small-elts small-eqpoll)

lemma small-product-ZFC :
shows small-product (ZFC-in-HOL.small :: V set ⇒ bool)

..

interpretation small-sum ‹ZFC-in-HOL.small :: V set ⇒ bool›
by unfold-locales (meson eqpoll-sym small-Sigma small-elts small-eqpoll)

lemma small-sum-ZFC :
shows small-sum (ZFC-in-HOL.small :: V set ⇒ bool)

..

We need the following, which does not seem to be directly available in ZFC-in-HOL.
lemma ZFC-small-implies-small-powerset:
fixes X
assumes ZFC-in-HOL.small X
shows ZFC-in-HOL.small (Pow X)
proof −

obtain f v where f : inj-on f X ∧ f ‘ X = elts v
using assms imageE ZFC-in-HOL.small-def by meson

obtain f ′ where f ′: inj-on f ′ (Pow X) ∧ f ′ ‘ (Pow X) = Pow (elts v)
using f image-Pow-surj inj-on-image-Pow by metis

have ZFC-in-HOL.small (f ′ ‘ (Pow X))
using assms f ′ ZFC-in-HOL.small-image-iff [of f ′ Pow X]
by (metis Pow-iff down elts-VPow inj-onCI inj-on-image-eqpoll-self set-injective

small-eqpoll)
moreover have eqpoll (f ′ ‘ (Pow X)) (Pow X)

using f ′ eqpoll-sym inj-on-image-eqpoll-self by meson
ultimately show ZFC-in-HOL.small (Pow X)

by (metis image-iff inj-on-image-eqpoll-1 ZFC-in-HOL.small-def small-eqpoll)
qed

interpretation small-powerset ‹ZFC-in-HOL.small :: V set ⇒ bool›
by unfold-locales

(meson eqpoll-sym gcard-eqpoll small-iff ZFC-small-implies-small-powerset)

lemma small-powerset-ZFC :
shows small-powerset (ZFC-in-HOL.small :: V set ⇒ bool)

..

interpretation small-funcset ‹ZFC-in-HOL.small :: V set ⇒ bool› ..

162

lemma small-funcset-ZFC :
shows small-funcset (ZFC-in-HOL.small :: V set ⇒ bool)

..

interpretation small-nat ‹ZFC-in-HOL.small :: V set ⇒ bool›
proof −

have ZFC-in-HOL.small (UNIV :: nat set)
using small-image-nat by (metis surj-id)

thus small-nat (ZFC-in-HOL.small :: V set ⇒ bool)
using gcard-eqpoll by unfold-locales auto

qed

lemma small-nat-ZFC :
shows small-nat (ZFC-in-HOL.small :: V set ⇒ bool)

..

interpretation small-funcset-and-nat ‹ZFC-in-HOL.small :: V set ⇒ bool› ..

lemma small-funcset-and-nat-ZFC :
shows small-funcset-and-nat (ZFC-in-HOL.small :: V set ⇒ bool)

..

Next, we develop embedding properties of UNIV :: V set.
interpretation embedding ‹UNIV :: V set› .

interpretation lifting ‹UNIV :: V set›
proof

let ?ι = λ None ⇒ ZFC-in-HOL.set {}
| Some x ⇒ ZFC-in-HOL.set {x}

have is-embedding-of ?ι ({None} ∪ Some ‘ UNIV)
proof

show ?ι ‘ ({None} ∪ Some ‘ UNIV) ⊆ UNIV by blast
show inj-on ?ι ({None} ∪ Some ‘ UNIV)
proof

fix x y
assume x: x ∈ {None :: V option} ∪ Some ‘ UNIV
assume y: y ∈ {None :: V option} ∪ Some ‘ UNIV
assume eq: ?ι x = ?ι y
show x = y

by (metis (no-types, lifting) elts-of-set eq insert-not-empty option.case-eq-if
option.collapse range-constant singleton-eq-iff small-image-nat)

qed
qed
thus ∃ ι :: V option ⇒ V . is-embedding-of ι ({None} ∪ Some ‘ UNIV)

by blast
qed

lemma V-admits-lifting:

163

shows lifting (UNIV :: V set)
..

interpretation pairing ‹UNIV :: V set›
proof

show ∃ ι :: V × V ⇒ V . is-embedding-of ι (UNIV × UNIV)
using inj-on-vpair by blast

qed

lemma V-admits-pairing:
shows pairing (UNIV :: V set)

..

interpretation powering ‹ZFC-in-HOL.small :: V set => bool› ‹UNIV :: V set›
proof

show ∃ ι :: V set ⇒ V . is-embedding-of ι {X . X ⊆ UNIV ∧ local.small X}
using inj-on-set small-iff-sml by auto

qed

lemma V-admits-small-powering:
shows powering (ZFC-in-HOL.small :: V set => bool) (UNIV :: V set)

..

interpretation tupling ‹ZFC-in-HOL.small :: V set => bool› ‹UNIV :: V set› undefined ..

lemma V-admits-small-tupling:
shows tupling (ZFC-in-HOL.small :: V set => bool) (UNIV :: V set)

..

interpretation universe ‹ZFC-in-HOL.small :: V set => bool› ‹UNIV :: V set› undefined
..

theorem V-is-universe:
shows universe (ZFC-in-HOL.small :: V set => bool) (UNIV :: V set)

..

end

Finally, we give the interpretation of the universe locale, stated in the top-level con-
text. Note however, that this is proved not in “vanilla HOL”, but rather in HOL as
extended by the axiomatization in ZFC-in-HOL.

interpretation ZFC-universe: universe ‹ZFC-in-HOL.small :: V set => bool› ‹UNIV :: V
set› undefined

using V-is-universe by blast

end

164

Chapter 6

Interpretations of sets-cat

theory SetsCat-Interps
imports Category3 .ConcreteCategory Category3 .ZFC-SetCat Category3 .Colimit

SetsCat Universe-Interps
begin

In this section we construct two interpretations of the sets-cat locale: one using “finite”
as the notion of smallness and one that uses small from the theory ZFC-in-HOL. These
interpretations demonstrate the consistency of the variants of the sets-cat locale: the in-
terpretation using finiteness validates the sets-cat-with-tupling locale in unextended HOL,
and the interpretation in terms of ZFC-in-HOL validates the sets-cat-with-tupling-and-infinity
locale, assuming that the axiomatization of ZFC-in-HOL is consistent with HOL.

6.1 Category of Finite Sets
The finite-sets-cat locale defines a category having as objects the natural numbers and
as arrows from m to n the functions from m-element sets to n-element sets. In view of
SetsCat.categoricity, this is the unique interpretation (up to equivalence of categories) of
sets-cat having a countably infinite collection of arrows.

locale finite-sets-cat
begin

abbreviation OBJ
where OBJ ≡ UNIV :: nat set

abbreviation HOM
where HOM ≡ λm n. {1 ..m :: nat} →E {1 ..n :: nat}

abbreviation Id
where Id n ≡ λx :: nat. if x ∈ {1 ..n} then x else undefined

abbreviation Comp
where Comp - - m ≡ compose {1 ..m}

165

interpretation Fin: concrete-category OBJ HOM Id Comp
by unfold-locales fastforce+

abbreviation comp
where comp ≡ Fin.COMP

lemma terminal-MkIde-1 :
shows Fin.terminal (Fin.MkIde 1)
proof

show 1 : Fin.ide (Fin.MkIde 1)
using Fin.ide-MkIde by blast

show
∧

a. Fin.ide a =⇒ ∃ !f . Fin.in-hom f a (Fin.MkIde 1)
proof −

fix a
assume a: Fin.ide a
let ?Ta = λx. if x ∈ {1 ..Fin.Dom a} then 1 else undefined
have 2 : HOM (Fin.Dom a) 1 = {?Ta}

by (cases Fin.Dom a = 0) auto
have Fin.hom a (Fin.MkIde 1) = {Fin.MkArr (Fin.Dom a) 1 ?Ta}
proof

show {Fin.MkArr (Fin.Dom a) 1 ?Ta} ⊆ Fin.hom a (Fin.MkIde 1)
using a 1 2 Fin.bij-betw-hom-Hom [of a Fin.MkIde 1] by fastforce

show Fin.hom a (Fin.MkIde 1) ⊆ {Fin.MkArr (Fin.Dom a) 1 ?Ta}
using a 1 2 Fin.bij-betw-hom-Hom(1−4) [of a Fin.MkIde 1]
by auto[1] (simp add: Pi-iff)

qed
thus ∃ !f . Fin.in-hom f a (Fin.MkIde 1)

by (metis (no-types, lifting) mem-Collect-eq singleton-iff)
qed

qed

sublocale category-with-terminal-object comp
using terminal-MkIde-1
by unfold-locales auto

notation some-terminal (1?)

sublocale sets-cat-base ‹finite :: nat set ⇒ bool› comp
by (unfold-locales) (meson finite-surj lepoll-iff)

sublocale small-finite ‹finite :: nat set ⇒ bool›
using Universe-Interps.small-finite-finset by blast

sublocale small-powerset ‹finite :: nat set ⇒ bool›
using small-powerset-finset by auto

lemma finite-HOM :
shows finite (HOM m n)

166

by (simp add: finite-PiE)

lemma card-HOM :
shows card (HOM m n) = n ^ m

by (simp add: card-funcsetE)

lemma terminal-charF SC :
shows Fin.terminal a ←→ a = Fin.MkIde 1
proof

show a = Fin.MkIde 1 =⇒ Fin.terminal a
using terminal-MkIde-1 by blast

assume a: Fin.terminal a
have a = Fin.MkIde (Fin.Dom a)

using a Fin.terminal-def Fin.MkIde-Dom ′ by auto
moreover have Fin.Dom a = 1
proof −

have Fin.Dom a 6= 1 =⇒ ¬ (∃ !f . Fin.in-hom f a (Fin.MkIde 1))
proof −

assume 1 : Fin.Dom a 6= 1
have card (HOM 1 (Fin.Dom a)) 6= 1

using 1 card-HOM
by (metis power-one-right)

moreover have card (HOM 1 (Fin.Dom a)) = card (Fin.hom (Fin.MkIde 1) a)
by (metis (no-types, lifting) HOL.ext Fin.Dom.simps(1) a Fin.bij-betw-hom-Hom(5)

bij-betw-same-card terminal-MkIde-1 Fin.terminal-def)
moreover have

∧
A. (∃ !x. x ∈ A) ←→ card A = 1

by (metis card-1-singletonE ex-in-conv insert-iff is-singletonI ′ is-singleton-altdef)
ultimately show ¬ (∃ !f . Fin.in-hom f a (Fin.MkIde 1))

by (metis (no-types, lifting) a mem-Collect-eq terminal-MkIde-1 Fin.terminal-def)
qed
thus ?thesis

using a Fin.terminal-def terminal-MkIde-1 by force
qed
ultimately show a = Fin.MkIde 1 by auto

qed

lemma MkIde-1-eq:
shows Fin.MkIde 1 = 1?

using terminal-charF SC terminal-some-terminal by presburger

lemma finite-Set:
assumes Fin.ide a
shows finite (Set a)

by (metis assms bij-betw-finite Fin.bij-betw-hom-Hom(5) finite-HOM ide-some-terminal)

lemma card-Set:
assumes Fin.ide a
shows card (Set a) = Fin.Dom a
proof −

167

have Set a = Fin.hom (Fin.MkIde 1) a
using assms MkIde-1-eq by presburger

moreover have eqpoll (Fin.hom (Fin.MkIde 1) a) (HOM 1 (Fin.Dom a))
using assms Fin.bij-betw-hom-Hom(5)[of Fin.MkIde 1 a] eqpoll-def

MkIde-1-eq ide-some-terminal
by auto

moreover have card (HOM 1 (Fin.Dom a)) = Fin.Dom a
using card-HOM
by (metis power-one-right)

ultimately show ?thesis
by (metis (lifting) bij-betw-same-card eqpoll-def)

qed

abbreviation mkpoint
where mkpoint n k ≡ Fin.MkArr 1 n (λx. if x = 1 then k :: nat else undefined)

abbreviation valof
where valof x ≡ Fin.Map x (1 :: nat)

lemma mkpoint-in-hom [intro, simp]:
assumes k ∈ {1 ..n}
shows Fin.in-hom (mkpoint n k) (Fin.MkIde 1) (Fin.MkIde n)

using assms Fin.MkArr-in-hom [of 1 n - Fin.MkIde 1 Fin.MkIde n] by fastforce

lemma valof-in-range:
assumes Fin.in-hom x 1? a
shows valof x ∈ {1 ..Fin.Dom a}

using assms Fin.arr-char [of x] Fin.dom-char Fin.cod-char
by (metis (no-types, lifting) Fin.Dom.simps(1) MkIde-1-eq PiE-E atLeastAtMost-singleton ′

Fin.in-hom-char singletonI)

lemma valof-mkpoint:
shows valof (mkpoint n k) = k

by force

lemma mkpoint-valof :
assumes Fin.in-hom x 1? a
shows mkpoint (Fin.Dom a) (valof x) = x
proof (intro Fin.arr-eqI)

show Fin.arr (mkpoint (Fin.Dom a) (valof x))
using assms mkpoint-in-hom valof-in-range by blast

show 1 : Fin.arr x
using assms by blast

show 2 : Fin.Dom (mkpoint (Fin.Dom a) (valof x)) = Fin.Dom x
by (metis (lifting) Fin.Dom.simps(1) MkIde-1-eq assms Fin.in-hom-char)

show Fin.Cod (mkpoint (Fin.Dom a) (valof x)) = Fin.Cod x
by (metis (lifting) Fin.Cod.simps(1) MkIde-1-eq assms Fin.in-hom-char)

show Fin.Map (mkpoint (Fin.Dom a) (valof x)) = Fin.Map x
proof −

168

have Fin.Map (mkpoint (Fin.Dom a) (valof x)) =
(λk. if k = 1 then valof x else undefined)

by simp
also have ... = Fin.Map x
proof

fix k
show (if k = 1 then valof x else undefined) = Fin.Map x k

using 1 2 Fin.arr-char by auto
qed
finally show ?thesis by blast

qed
qed

lemma Map-arr-eq:
assumes Fin.in-hom f a b
shows Fin.Map f = (λk. if k ∈ {1 ..Fin.Dom a}

then Fin.Map (Fun f (mkpoint (Fin.Dom a) k)) 1
else undefined)

(is Fin.Map f = ?F)
proof

fix k
show Fin.Map f k = ?F k
proof (cases k ∈ {1 ..Fin.Dom a})

case False
show ?thesis using False

by (metis (no-types, lifting) Fin.Map-in-Hom PiE-arb assms Fin.in-hom-char)
next
case True
have ?F k = Fin.Map (Fun f (mkpoint (Fin.Dom a) k)) 1

using True by simp
also have ... = Fin.Map (comp f (mkpoint (Fin.Dom a) k)) 1

using assms True mkpoint-in-hom [of k Fin.Dom a] MkIde-1-eq Fin.in-homE
Fin.in-hom-char Fun-def

by auto
also have ... = Fin.Map f (Fin.Map (mkpoint (Fin.Dom a) k) (1 :: nat))

using assms True mkpoint-in-hom Fin.in-hom-char Fin.Map-comp by auto
also have ... = Fin.Map f k

by force
finally show ?thesis by simp

qed
qed

sublocale sets-cat ‹finite :: nat set ⇒ bool› comp
proof

show
∧

a. Fin.ide a =⇒ nat-tupling.small (Set a)
using finite-Set finset-small-iff-finite by blast

show
∧

A. [[nat-tupling.small A; A ⊆ Collect Fin.arr]] =⇒ ∃ a. Fin.ide a ∧ Set a ≈ A
by (metis (no-types, lifting) Fin.Dom.simps(1) card-Set eqpoll-iff-card finite-Set

finset-small-iff-finite Fin.ide-MkIde iso-tuple-UNIV-I)

169

show
∧

a b. [[Fin.ide a; Fin.ide b]] =⇒ inj-on Fun (Fin.hom a b)
using Map-arr-eq Fin.in-hom-char
by (intro inj-onI Fin.arr-eqI) auto

show
∧

a b. [[Fin.ide a; Fin.ide b]] =⇒ Hom a b ⊆ Fun ‘ Fin.hom a b
proof

fix a b
assume a: Fin.ide a and b: Fin.ide b
fix F
assume F : F ∈ Hom a b
show F ∈ Fun ‘ Fin.hom a b
proof

let ?F ′ = λk. if k ∈ {1 ..Fin.Dom a}
then valof (F (mkpoint (Fin.Dom a) k))
else undefined

let ?f = Fin.MkArr (Fin.Dom a) (Fin.Dom b) ?F ′

show f : ?f ∈ Fin.hom a b
proof

show Fin.in-hom ?f a b
proof

show Fin.Dom a ∈ UNIV by auto
show Fin.Dom b ∈ UNIV by auto
show a = Fin.MkIde (Fin.Dom a)

using a Fin.MkIde-Dom ′ by presburger
show b = Fin.MkIde (Fin.Dom b)

using b Fin.MkIde-Dom ′ by presburger
show ?F ′ ∈ HOM (Fin.Dom a) (Fin.Dom b)
proof

fix k
show k /∈ {1 ..Fin.Dom a} =⇒ ?F ′ k = undefined by auto
show k ∈ {1 ..Fin.Dom a} =⇒ ?F ′ k ∈ {1 ..Fin.Dom b}
proof −

assume k: k ∈ {1 ..Fin.Dom a}
have ?F ′ k = valof (F (mkpoint (Fin.Dom a) k))

using k by simp
moreover have ... ∈ {1 ..Fin.Dom b}
proof −

have F (mkpoint (Fin.Dom a) k) ∈ Fin.hom 1? b
using a k F mkpoint-in-hom MkIde-1-eq ‹a = Fin.MkIde (Fin.Dom a)›
by force

thus ?thesis
using valof-in-range by blast

qed
ultimately show ?thesis by auto

qed
qed

qed
qed
show F = Fun ?f
proof

170

fix x
show F x = Fun ?f x
proof (cases x ∈ Fin.hom 1? a)

case False
show ?thesis

using False F f a Fin.dom-eqI Fin.ide-in-hom Fin.seqI ′ Fun-def by auto
next
case True
show ?thesis
proof (intro Fin.arr-eqI)

show 1 : Fin.arr (F x)
using F True by blast

show 2 : Fin.arr (Fun ?f x)
using f True a Fin.dom-eqI Fin.ide-in-hom Fin.seqI ′ Fun-def by auto

show Fin.Dom (F x) = Fin.Dom (Fun ?f x)
proof −

have Fin.Dom (F x) = Fin.Dom 1?

using F True
by (metis (no-types, lifting) Int-def Pi-iff Fin.in-hom-char mem-Collect-eq)

also have ... = Fin.Dom (Fun ?f x)
using True f
by (metis (no-types, lifting) 2 Fin.Dom-comp Fun-def Fin.arrE

Fin.in-hom-char mem-Collect-eq Fin.null-char)
finally show ?thesis by blast

qed
show Fin.Cod (F x) = Fin.Cod (Fun ?f x)
proof −

have Fin.Cod (F x) = Fin.Dom b
using F True
by (metis (no-types, lifting) Int-def Pi-mem Fin.in-hom-char mem-Collect-eq)

also have ... = Fin.Cod (Fun ?f x)
using True f 2
by (metis (no-types, lifting) Fin.Cod.simps(1) Fin.Cod-comp Fin.arrE

Fin.null-char Fin.seq-char Fun-def)
finally show ?thesis by blast

qed
show Fin.Map (F x) = Fin.Map (Fun ?f x)
proof

fix k
show Fin.Map (F x) k = Fin.Map (Fun ?f x) k
proof −

have k 6= 1 =⇒ ?thesis
proof −

assume k: k 6= 1
have 1 : Fin.Map (F x) k = undefined
proof −

have Fin.in-hom (F x) 1? b
using F True by blast

thus ?thesis

171

using F True k Map-arr-eq [of F x 1? b]
by (metis Fin.Dom.simps(1) MkIde-1-eq atLeastAtMost-iff le-antisym)

qed
also have ... = Fin.Map (Fun ?f x) k
proof −

have Fin.Map (Fun ?f x) k = Fin.Map (comp ?f x) k
using f True Fun-def by fastforce

also have ... = compose {1 ..Fin.Dom x} (Fin.Map ?f) (Fin.Map x) k
using f True Fin.Map-comp
by (metis (no-types, lifting) Fin.in-hom-char mem-Collect-eq)

also have ... = undefined
proof −

have k /∈ {1 ..Fin.Dom x}
using True k
by (metis (no-types, lifting) Fin.Dom.simps(1) MkIde-1-eq

atLeastAtMost-singleton Fin.in-hom-char mem-Collect-eq
singleton-iff)

thus ?thesis by auto
qed
finally show ?thesis by simp

qed
finally show ?thesis by simp

qed
moreover have k = 1 =⇒ ?thesis
proof −

assume k: k = 1
have Fin.Map (Fun ?f x) k = Fin.Map (comp ?f x) k

using 2 Fun-def Fin.arrE Fin.null-char by fastforce
also have ... = compose {1 ..1} (Fin.Map ?f) (Fin.Map x) k

using f True Fin.Map-comp
by (metis (lifting) Fin.Dom.simps(1) IntI Int-Collect MkIde-1-eq

Fin.in-hom-char)
also have ... = ?F ′ (Fin.Map x k)

apply auto[1]
by (auto simp add: k)

also have ... = valof (F (mkpoint (Fin.Dom a) (Fin.Map x k)))
using F True k a valof-in-range by auto

also have ... = valof (F x)
using F True k mkpoint-valof by force

also have ... = Fin.Map (F x) k
using F True k by argo

finally show ?thesis by simp
qed
ultimately show ?thesis by blast

qed
qed

qed
qed

qed

172

qed
qed

qed

lemma is-sets-cat:
shows sets-cat (finite :: nat set ⇒ bool) comp

..

sublocale small-product ‹finite :: nat set ⇒ bool›
using small-product-finset by blast

sublocale sets-cat-with-pairing ‹finite :: nat set ⇒ bool› comp
proof

show ∃ ι. is-embedding-of ι (Collect Fin.arr × Collect Fin.arr)
proof −

have
∧

A. [[countable A; infinite A]] =⇒ ∃ ι. ι ‘ (A × A) ⊆ A ∧ inj-on ι (A × A)
proof −

fix A :: ′a set
assume countable: countable A and infinite: infinite A
obtain % where %: bij-betw % (A × A) (UNIV :: nat set)

using countable infinite countableE-infinite
by (metis countable-SIGMA infinite-cartesian-product)

obtain σ where σ: bij-betw σ (UNIV :: nat set) A
using countable infinite bij-betw-from-nat-into by blast

have (σ ◦ %) ‘ (A × A) ⊆ A ∧ inj-on (σ ◦ %) (A × A)
using % σ
by (metis bij-betw-def comp-inj-on-iff equalityD2 image-comp)

thus ∃ ι. ι ‘ (A × A) ⊆ A ∧ inj-on ι (A × A) by blast
qed
moreover have countable (Collect Fin.arr) ∧ infinite (Collect Fin.arr)
proof

show countable (Collect Fin.arr)
proof −

have Collect Fin.arr =
(
⋃

ab∈Collect Fin.ide × Collect Fin.ide. Fin.hom (fst ab) (snd ab))
proof

show (
⋃

ab∈Collect Fin.ide × Collect Fin.ide. Fin.hom (fst ab) (snd ab)) ⊆
Collect Fin.arr

by blast
show Collect Fin.arr ⊆

(
⋃

ab∈Collect Fin.ide × Collect Fin.ide. Fin.hom (fst ab) (snd ab))
proof

fix f
assume f : f ∈ Collect Fin.arr
have Fin.ide (Fin.dom f) ∧ Fin.ide (Fin.cod f) ∧

f ∈ Fin.hom (Fin.dom f) (Fin.cod f)
using f Fin.ide-dom Fin.ide-cod by blast

hence (Fin.dom f , Fin.cod f) ∈ Collect Fin.ide × Collect Fin.ide ∧
f ∈ Fin.hom (fst (Fin.dom f , Fin.cod f)) (snd (Fin.dom f , Fin.cod f))

173

by auto
thus f ∈ (

⋃
ab∈Collect Fin.ide × Collect Fin.ide. Fin.hom (fst ab) (snd ab))

by blast
qed

qed
moreover have countable (Collect Fin.ide × Collect Fin.ide)

using Fin.bij-betw-ide-Obj(5) by force
moreover have

∧
ab. ab ∈ Collect Fin.ide × Collect Fin.ide
=⇒ finite (Fin.hom (fst ab) (snd ab)) ∧

card (Fin.hom (fst ab) (snd ab)) =
Fin.Dom (snd ab) ^ Fin.Dom (fst ab)

by (metis bij-betw-finite Fin.bij-betw-hom-Hom(5) bij-betw-same-card card-HOM
finite-HOM mem-Collect-eq mem-Times-iff)

ultimately show ?thesis
using countable-UN countable-finite by (metis (lifting))

qed
show infinite (Collect Fin.arr)
proof −

have
∧

X . ∀n. (∃Y . Y ⊆ X ∧ card Y ≥ n) =⇒ infinite X
by (metis card-mono not-less-eq-eq)

moreover have ∀n. (∃ ab. ab ∈ Collect Fin.ide × Collect Fin.ide ∧
card (Fin.hom (fst ab) (snd ab)) ≥ n)

by (metis (no-types, lifting) HOL.ext Fin.Dom.simps(1) SigmaI card-Set
fst-conv Fin.ide-MkIde ide-some-terminal iso-tuple-UNIV-I mem-Collect-eq

order-refl snd-conv)
ultimately show ?thesis

by (metis (no-types, lifting) Fin.in-homE mem-Collect-eq subsetI)
qed

qed
ultimately show ?thesis by blast

qed
qed

lemma is-sets-cat-with-pairing:
shows sets-cat-with-pairing (finite :: nat set ⇒ bool) comp

..

sublocale lifting ‹Collect Fin.arr›
proof

show embeds ({None} ∪ Some ‘ Collect Fin.arr)
proof −

have
∧

n :: nat. Set (Fin.MkIde n) ⊆ Collect Fin.arr ∧ card (Set (Fin.MkIde n)) = n
using card-Set Fin.ide-MkIde by fastforce

hence 1 : infinite (Collect Fin.arr)
by (metis (lifting) Suc-n-not-le-n card-mono)

obtain a where a: a ∈ Collect Fin.arr
using 1 not-finite-existsD by auto

have 2 : eqpoll (Collect Fin.arr) (Collect Fin.arr − {a})
using 1 a

174

by (metis (lifting) infinite-insert-eqpoll infinite-remove insert-Diff)
obtain f where f : f ‘ Collect Fin.arr ⊆ Collect Fin.arr − {a} ∧

inj-on f (Collect Fin.arr)
using 2
by (metis (lifting) bij-betw-def eqpoll-def subset-refl)

let ?ι = λNone ⇒ a | Some x ⇒ f x
have is-embedding-of ?ι ({None} ∪ Some ‘ Collect Fin.arr)

using a f by (auto simp add: inj-on-def)
thus ?thesis by blast

qed
qed

sublocale sets-cat-with-powering ‹finite :: nat set ⇒ bool› comp
proof

show embeds {X . X ⊆ Collect Fin.arr ∧ nat-tupling.small X}
proof −

have
∧

X . infinite X =⇒ eqpoll (Fpow X) X
using Fpow-infinite-bij-betw eqpoll-def by blast

hence eqpoll {X . X ⊆ Collect Fin.arr ∧ nat-tupling.small X} (Collect Fin.arr)
using infinite-univ finset-small-iff-finite Fpow-def
by (metis (mono-tags, lifting) Collect-cong)

thus ?thesis
by (metis (lifting) bij-betw-def eqpoll-def subset-refl)

qed
qed

lemma is-sets-cat-with-powering:
shows sets-cat-with-powering (finite :: nat set ⇒ bool) comp

..

sublocale small-sum ‹finite :: nat set ⇒ bool›
using small-sum-finset by blast

sublocale sets-cat-with-tupling ‹finite :: nat set ⇒ bool› comp
by unfold-locales

theorem is-sets-cat-with-tupling:
shows sets-cat-with-tupling (finite :: nat set ⇒ bool) comp

..

end

Here is the final top-level interpretation. Note that this is proved in “vanilla HOL”
without any additional axioms.

interpretation SetsCatf in: finite-sets-cat .

175

6.2 Category of ZFC Sets
In this section we construct an interpretation of sets-cat-with-tupling-and-infinity, which
includes infinite sets. As this cannot be done in “vanilla HOL”, for this construction
we use ZFC-in-HOL, which extends HOL with axioms for a type V that models the
set-theoretic universe provided by ZFC. Actually, we have previously given, in theory
Category3 .ZFC-SetCat, a construction of a category of small sets and functions based
on ZFC-in-HOL. Since that work was already done, all we need to do here is to show
that the previously constructed category interprets the sets-cat-with-tupling-and-infinity
locale.

locale ZFC-sets-cat
begin

Here we import the previous construction from Category3 .ZFC-SetCat.
interpretation ZFC : ZFC-set-cat .

We use the notion of “smallness” provided by ZFC-in-HOL.
sublocale smallness ‹ZFC-in-HOL.small :: ZFC-in-HOL.V set ⇒ bool›

using lepoll-small by unfold-locales blast

sublocale sets-cat-base ‹ZFC-in-HOL.small :: ZFC-in-HOL.V set ⇒ bool› ZFC .comp
using ZFC .terminal-unitySC by unfold-locales blast

sublocale sets-cat ‹ZFC-in-HOL.small :: ZFC-in-HOL.V set ⇒ bool› ZFC .comp
proof

show
∧

a. ZFC .ide a =⇒ ZFC-universe.small (Set a)
unfolding ZFC-universe.small-def
using ZFC .ide-charSSC ZFC .setp-def ZFC .small-hom
by (meson eqpoll-sym small-elts small-eqpoll)

show
∧

A. [[ZFC-universe.small A; A ⊆ Collect ZFC .arr]] =⇒ ∃ a. ZFC .ide a ∧ Set a ≈ A
proof −

fix A
assume small: ZFC-universe.small A and A: A ⊆ Collect ZFC .arr
let ?V = λf . vpair

(vpair (ZFC .V-of-ide (ZFC .dom f)) (ZFC .V-of-ide (ZFC .cod f)))
(ZFC .V-of-arr f)

let ?A ′ = ZFC .UP ‘ ?V ‘ A
have ZFC .ide (ZFC .mkIde ?A ′) ∧ ZFC .set (ZFC .mkIde ?A ′) = ?A ′

using ZFC .ide-mkIde ZFC .setp-def
by (metis (lifting) ZFC .set-mkIde bij-betw-imp-surj-on image-mono replacement

replete-setcat.bij-arr-of small small-iff-ZFC-small
subset-UNIV)

moreover have ?A ′ ≈ A
proof −

have inj ZFC .UP
by (simp add: ZFC .inj-UP)

moreover have inj-on ?V (Collect ZFC .arr)
proof (intro inj-onI)

176

fix f g
assume f : f ∈ Collect ZFC .arr and g: g ∈ Collect ZFC .arr
assume eq: ?V f = ?V g
have ZFC .V-of-ide (ZFC .dom f) = ZFC .V-of-ide (ZFC .dom g) ∧

ZFC .V-of-ide (ZFC .cod f) = ZFC .V-of-ide (ZFC .cod g) ∧
ZFC .V-of-arr f = ZFC .V-of-arr g

using f g eq by fastforce
thus f = g

by (metis (lifting) ZFC-set-cat.bij-betw-hom-vfun(3) ZFC-set-cat.bij-betw-ide-V (3)
ZFC .arr-iff-in-hom f g ZFC .ide-cod ZFC .ide-dom mem-Collect-eq)

qed
ultimately show ?thesis

by (metis (no-types, lifting) A eqpoll-refl inj-on-image-eqpoll-2
subset-UNIV inj-on-subset)

qed
ultimately have ZFC .ide (ZFC .mkIde ?A ′) ∧ Set (ZFC .mkIde ?A ′) ≈ A

by (metis (no-types, lifting) HOL.ext some-terminal-def ZFC .bij-betw-points-and-set
eqpoll-def ZFC .unity-def eqpoll-trans)

thus ∃ a. ZFC .ide a ∧ Set a ≈ A by blast
qed
show

∧
a b. [[ZFC .ide a; ZFC .ide b]] =⇒ inj-on Fun (ZFC .hom a b)

proof −
fix a b
assume a: ZFC .ide a and b: ZFC .ide b
show inj-on Fun (ZFC .hom a b)
proof

fix f g
assume f : f ∈ ZFC .hom a b and g: g ∈ ZFC .hom a b
assume eq: Fun f = Fun g
show f = g
proof (intro ZFC .arr-eqI ′

SC [of f g])
show par : ZFC .par f g

using f g by blast
show

∧
x. ZFC .in-hom x ZFC .unity (ZFC .dom f) =⇒ ZFC .comp f x = ZFC .comp g x

by (metis (lifting) some-terminal-def Fun-def par eq mem-Collect-eq ZFC .unity-def)
qed

qed
qed
show

∧
a b. [[ZFC .ide a; ZFC .ide b]] =⇒ Hom a b ⊆ Fun ‘ ZFC .hom a b

proof
fix a b
assume a: ZFC .ide a and b: ZFC .ide b
fix F
assume F : F ∈ Hom a b
let ?f = ZFC .mkArr ′ a b F
have f : ?f ∈ ZFC .hom a b

using a b F ZFC .mkArr ′-in-hom ZFC .unity-def some-terminal-def by force
moreover have Fun ?f = F
proof

177

fix x
show Fun ?f x = F x
proof (cases x ∈ Set a)

case False
show ?thesis
proof −

have Fun ?f x = ZFC .null
unfolding Fun-def
using f False ZFC .in-homE by fastforce

also have ... = F x
using False a F by auto

finally show ?thesis by blast
qed
next
case True
show ?thesis
proof −

have ZFC .dom ?f = a
using f by blast

thus ?thesis
unfolding Fun-def
using a b f F True ZFC .comp-point-mkArr ′ ZFC .unity-def some-terminal-def
by force

qed
qed

qed
ultimately have ∃ f . f ∈ ZFC .hom a b ∧ Fun f = F by blast
thus F ∈ Fun ‘ ZFC .hom a b by blast

qed
qed

lemma is-sets-cat:
shows sets-cat (ZFC-in-HOL.small :: ZFC-in-HOL.V set ⇒ bool) ZFC .comp

..

Arrows of the category can be encoded as elements of V.
abbreviation arr-to-V
where arr-to-V f ≡ vpair

(vpair (ZFC .V-of-ide (ZFC .dom f)) (ZFC .V-of-ide (ZFC .cod f)))
(ZFC .V-of-arr f)

lemma inj-arr-to-V :
shows inj-on arr-to-V (Collect ZFC .arr)
proof (intro inj-onI)

fix f g
assume f : f ∈ Collect ZFC .arr and g: g ∈ Collect ZFC .arr
assume eq: arr-to-V f = arr-to-V g
have ZFC .V-of-ide (ZFC .dom f) = ZFC .V-of-ide (ZFC .dom g) ∧

ZFC .V-of-ide (ZFC .cod f) = ZFC .V-of-ide (ZFC .cod g) ∧

178

ZFC .V-of-arr f = ZFC .V-of-arr g
using f g eq by fastforce

thus f = g
by (metis (lifting) ZFC-set-cat.bij-betw-hom-vfun(3) ZFC-set-cat.bij-betw-ide-V (3)

ZFC .arr-iff-in-hom f g ZFC .ide-cod ZFC .ide-dom mem-Collect-eq)
qed

As it happens, V also embeds into the collection of arrows, so the two are equipollent.
Thus, the fact that V is a universe can be transferred to the collection of arrows. So we
can save ourselves some work here.

lemma eqpoll-Collect-arr-V :
shows Collect ZFC .arr ∪ {ZFC .null} ≈ (UNIV :: V set)
and Collect ZFC .arr ≈ (UNIV :: V set)
proof −

have inj-on arr-to-V (Collect ZFC .arr)
using inj-arr-to-V by blast

moreover have ZFC .ide-of-V ∈ UNIV → Collect ZFC .arr ∧ inj ZFC .ide-of-V
by (metis (no-types, lifting) Pi-iff ZFC-set-cat.bij-betw-ide-V (6) bij-betw-def

ZFC .ide-char imageI mem-Collect-eq)
ultimately show 1 : Collect ZFC .arr ≈ (UNIV :: V set)

using Schroeder-Bernstein [of arr-to-V Collect ZFC .arr UNIV ZFC .ide-of-V]
by (simp add: Pi-iff eqpoll-def image-subset-iff)

moreover have Collect ZFC .arr ∪ {ZFC .null} ≈ Collect ZFC .arr
proof −

have
∧

X a. infinite X =⇒ insert a X ≈ X
by (simp add: infinite-insert-eqpoll)

moreover have infinite (Collect ZFC .arr)
proof −

have
∧

X Y . X ≈ Y =⇒ infinite X ←→ infinite Y
using eqpoll-finite-iff by blast

moreover have infinite (UNIV :: V set)
using infinite-ω rev-finite-subset by blast

ultimately show ?thesis
using 1 by blast

qed
ultimately show ?thesis by fastforce

qed
ultimately show Collect ZFC .arr ∪ {ZFC .null} ≈ (UNIV :: V set)

using eqpoll-trans by blast
qed

sublocale universe ‹ZFC-in-HOL.small :: ZFC-in-HOL.V set ⇒ bool› ‹Collect ZFC .arr›
ZFC .null

proof −
interpret V : universe ‹ZFC-in-HOL.small :: ZFC-in-HOL.V set ⇒ bool› ‹UNIV :: V set›

using V-is-universe by blast
show universe (ZFC-in-HOL.small :: ZFC-in-HOL.V set ⇒ bool) (Collect ZFC .arr)

using V-is-universe eqpoll-sym V .is-respected-by-equipollence
eqpoll-Collect-arr-V (2)

179

by blast
qed

sublocale sets-cat-with-tupling-and-infinity
‹ZFC-in-HOL.small :: ZFC-in-HOL.V set ⇒ bool› ZFC .comp

..

theorem is-sets-cat-with-tupling-and-infinity:
shows sets-cat-with-tupling-and-infinity

(ZFC-in-HOL.small :: ZFC-in-HOL.V set ⇒ bool) ZFC .comp
..

end

Here is the final top-level interpretation.
interpretation SetsCatZFC : ZFC-sets-cat .

end

180

Bibliography

[1] F. W. Lavere. An elementary theory of the category of sets. Proceedings of the
National Academy of Sciences of the U.S.A., 52:1506–1511, 1964.

[2] L. C. Paulson. Zermelo fraenkel set theory in higher-order logic. Archive of Formal
Proofs, October 2019. https://isa-afp.org/entries/ZFC_in_HOL.html, Formal proof
development.

[3] E. W. Stark. Category theory with adjunctions and limits. Archive of Formal Proofs,
June 2016. http://isa-afp.org/entries/Category3.shtml, Formal proof development.

181

https://isa-afp.org/entries/ZFC_in_HOL.html
http://isa-afp.org/entries/Category3.shtml

	Introduction
	Smallness
	Basic Notions
	Smallness of Finite Sets
	Smallness of Binary Products
	Smallness of Sums
	Smallness of Powersets
	Smallness of the Set of Natural Numbers
	Smallness of Function Spaces
	Small Functions
	Small Funcsets

	Smallness of Sets of Lists

	Universe
	Embeddings
	Lifting
	Pairing
	Powering
	Tupling
	Universe

	The Category of Small Sets
	Basic Definitions and Properties
	Categoricity
	Well-Pointedness
	Epis Split
	Equalizers
	Exported Notions

	Binary Products
	Exported Notions

	Binary Coproducts
	Exported Notions

	Small Products
	Exported Notions

	Small Coproducts
	Exported Notions

	Coequalizers
	Exported Notions

	Exponentials
	Exported Notions

	Subobject Classifier
	Natural Numbers Object
	Sets Category with Tupling and Infinity

	Interpretations of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 universe
	Interpretation using Natural Numbers
	Interpretation using 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ZFC-in-HOL

	Interpretations of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sets-cat
	Category of Finite Sets
	Category of ZFC Sets

	Bibliography

