A Set Reconciliation Algorithm

Paul Hofmeier and Emin Karayel

January 25, 2026

Abstract

This entry formally verifies the set reconciliation algorithm with
nearly optimal communication complexity, due to Y. Minsky et al. [1].
The algorithm allows two communication partners, who have a similar
pair of sets to reconcile them while using messages of nearly optimal
size, proportional to a bound on the maximum symmetric difference
between the sets.

The formalization also introduces an optimization, which reduces
the communication complexity even further compared to the original
publication.

Contents

1 Preliminary Results 2
1.1 Characteristic Polynomial 2

2 Rational Function Interpolation 3
2.1 Definitions 4
2.2 Preliminary Results 5
2.3 On solution-to-poly 5
2.4 Correctness 6
25 Mainlemma 7

3 Factorisation of Polynomials 8
3.1 Elimination of Repeated Factors 9
3.2 Executable version of proots 10
3.3 Executable version of order 10

4 Set Reconciliation Algorithm 11
4.1 Informal Description of the Algorithm 12
4.2 Lemmas e e e 13
43 MainResult oo 14

1 Preliminary Results

theory Poly-Lemmas
imports
HOL— Computational-Algebra. Polynomial
Polynomial-Interpolation. Missing-Polynomial
begin

lemma card-sub-int-diff-finite:
assumes finite A finite B
shows int (card A) — card B = int (card (A—B)) — card (B—A)
(proof)

lemma card-sub-int-diff-finite-real:
assumes finite A finite B
shows real (card A) — card B = real (card (A—B)) — card (B—A)

(proof)

1.1 Characteristic Polynomial

The characteristic polynomial associated to a set:

definition set-to-poly :: 'a::finite-field set = 'a poly where
set-to-poly A =] a € A. [:—a,1]

lemma set-to-poly-correct: {z. poly (set-to-poly A) x = 0} = A
(proof)

lemma in-set-to-poly: poly (set-to-poly A) x = 0 +— z € A
(proof)

lemma set-to-poly-not0|[simp): set-to-poly A # 0
(proof)

lemma set-to-poly-empty[simpl: set-to-poly {} = 1
{proof)

lemma set-to-poly-ing: inj set-to-poly
(proof)

lemma rsquarefree-set-to-poly: rsquarefree (set-to-poly A)

(proof)

lemma set-to-poly-insert:
assumesz ¢ A
shows set-to-poly (insert x A) = set-to-poly A * [:—x,1:]
(proof)

lemma set-to-poly-mult: set-to-poly X * set-to-poly Y = set-to-poly (X U Y) x
set-to-poly (X N'Y)

{proof)

lemma set-to-poly-mult-distinct:
assumes X N Y = {}
shows set-to-poly X * set-to-poly Y = set-to-poly (X U Y)
(proof)

lemma set-to-poly-degree:
degree (set-to-poly A) = card A
{(proof)

lemma set-to-poly-order:
order © (set-to-poly A) = (if v € A then 1 else 0)

{proof)

lemma set-to-poly-lead-coeff: lead-coeff (set-to-poly A) = 1
(proof)

lemma degree-sub-lead-coeff:
assumes degree p > 0
shows degree (p — monom (lead-coeff p) (degree p)) < degree p

{proof)

lemma remove-lead-from-monic:
fixes p q :: 'a :: field poly
assumes monic p
assumes degree p > 0
shows degree (p — monom 1 (degree p)) < degree p

{proof)

lemma poly-eql-degree-monic:
fixes p q :: 'a :: field poly
assumes degree p = degree q
assumes degree p < card A
assumes monic p monic q
assumes A\z. x € A = poly p x = poly q x
shows p = ¢

(proof)

end

2 Rational Function Interpolation

theory Rational-Function-Interpolation
imports
Poly-Lemmas
Gauss-Jordan.System-Of-Equations
Polynomial-Interpolation. Missing-Polynomial
begin

2.1 Definitions

General condition for rational functions interpolation

definition interpolated-rational-function where
interpolated-rational-function pa pg E fa fp da dp =
(V e€c E. faexpolypg e = fp ex poly pa e) A
degree pa < (da:real) A degree pp < (dp::real) A
pa# 0 Npp #0

Interpolation condition with given exact degrees

definition monic-interpolated-rational-function where
monic-interpolated-rational-function pa pp E fa fp da dp =
(VecE faexpolyppe=fpexpolypae) A
degree pa = |da:real| A degree pp = |dp:real]| A
monic pa /\ monic pp

lemma monic0: = monic (0::'a::zero-neq-one poly)
(proof)

lemma monic-interpolated-rational-function-interpolated-rational-function:
monic-interpolated-rational-function pa pp E fa fp da dp
= interpolated-rational-function pa pg E fa fp da dg V —(pa # 0 N pp #
0)
(proof)

definition rfi-coefficient-matriz :: ‘a::field list = ('a = 'a) = nat = nat
= nat = nat = 'a where
rfi-coefficient-matriz E f da dp ij = (
if j < da then
(B1i) "
else if j < dg + dp then
—F(B Vi) (B) " (G—da)
else 0

)

definition rfi-constant-vector :: 'a::field list = (a = 'a) = nat = nat = (nat =
‘a) where

rfi-constant-vector E fdg dg = (N i. f (El i)« (E1d) “dp — (E!14) " da)

definition rational-function-interpolation :: 'a::field list = ('a = 'a) = nat = nat
= 'm:mod-type itself = ('a,’m) vec where
rational-function-interpolation E f d4 dp m =
(let solved = solve
(x (i::'m) (§::'m). rfi-coefficient-matriz E f da dp (to-nat i) (to-nat j))
(x (i::'m). rfi-constant-vector E f da dp (to-nat 7))
in fst (the solved))

definition solution-to-poly :: ('a::finite-field, 'n::mod-type) vec =
nat = nat = ’a poly X 'a poly where

solution-to-poly S da dp = (let
p = Abs-poly (Ai. if i < da then S $ (from-nat) else 0) + monom 1 da;
q = Abs-poly (A\i. if i < dp then S $ (from-nat (i+da)) else 0) + monom I
dB m

(P,)

definition interpolate-rat-fun where
interpolate-rat-fun E fda dgp m =
solution-to-poly (rational-function-interpolation E f da dp m) da dp

2.2 Preliminary Results

lemma consecutive-sum-combine:
assumes m > n

shows (34 = 0.n. fiy+ OCi=Sucn.m. fi)=0_i=0..m. fi)
(proof)

lemma poly-altdef- Abs-poly-le:

fixes = :: ‘a::{comm-semiring-0, semiring-1}

shows poly (Abs-poly (Ni. if i < n then fielse 0)) x = (> i=0.n. fixxz 1)
(proof)

lemma poly-altdef-Abs-poly-I:

fixes z :: ‘a::{comm-semiring-0,semiring-1}

shows poly (Abs-poly (Ai. if i < n then fielse 0)) z = (D i<n. fi*x 1)
(proof)

lemma degree-Abs-poly-If-I:
assumes n # 0
shows degree (Abs-poly (Ai. if i < n then fielse 0)) < n

(proof)

lemma nth-less-length-in-set-eq:
shows (V i < length E. f (E!i) =g (E!Q)+— (V e€set E.fe=ge)
(proof)

lemma nat-leg-real-floor: real (i::nat) < (d::real) «— real i < |d| (is 7l = 9r)
(proof)

lemma mod-type-less-function-eq:
fixes 7 :: 'a::mod-type
assumes V ¢ < CARD('a) . fi= g1
shows f (to-nat i) = g (to-nat 7)
(proof)

2.3 On solution-to-poly

lemma fst-solution-to-poly-nz:
fst (solution-to-poly S da dg) # 0
(proof)

lemma snd-solution-to-poly-nz:
snd (solution-to-poly S da dp) # 0
(proof)

lemma degree-AbsOp1: degree (Abs-poly (Mi. 0) + 1) = 0
(proof)

lemma degree-solution-to-poly-fst:
degree (fst (solution-to-poly S da dp)) = da
(proof)

lemma degree-solution-to-poly-snd:
degree (snd (solution-to-poly S da dp)) = dp
(proof)

lemma monic-solution-to-poly-snd:
monic (snd (solution-to-poly S da dp))
(proof)

lemma monic-solution-to-poly-fst:
monic (fst (solution-to-poly S da dg))
(proof)

2.4 Correctness

Needs the assumption that the system is consistent, because a solution exists.

lemma rational-function-interpolation-correct-poly:
assumes
VeesetE fo=faax/fpaV azecsetE fpax#
da + dp < length E
CARD('m::mod-type) = length E
consistent (x (i::'m) (j::'m). rfi-coefficient-matriz E f da dp (to-nat i) (to-nat

)
(x (i::'m). rfi-constant-vector E f da dp (to-nat i))
S = rational-function-interpolation E f do dg TYPE('m)
pa = fst (solution-to-poly S da dp)
pp = snd (solution-to-poly S da dp)
shows

VecsetE. faexpolypge=fpexpolypae

(proof)

lemma poly-lead-coeff-extract:
poly p x = (O i<degree p. coeff p i x x ~ i) + lead-coeff p x = ~ degree p
for z :: 'a::{comm-semiring-0,semiring-1}
(proof)

lemma d4-dg-helper:
assumes

finite A finite B
int dg = |(real (length E) + card A — card B)/2|
int dg = |(real (length E) + card B — card A)/2|
card (sym-diff A B) < length E
shows

da + dp < length E
card (A — B) < dy card (B — A) < dp
dp — card (B — A) = dg — card (A — B)

(proof)
Insert the solution we know that must exist to show it’s consistent

lemma rational-function-interpolation-consistent:
fixes A B :: 'a::finite-field set
assumes
Vaoe(setE). fr=faz/fpx
CARD('m::mod-type) = length E
da + dp < length E
card (A — B) < dga
card (B — A) < dp
dp — card (B — A) = dg — card (A — B)
VeecsetE.o g AV xcsetE. ¢ B
fa = (\z € set E. poly (set-to-poly A) x)
fB = (\z € set E. poly (set-to-poly B) x)
shows
consistent (x (i::'m) (j::'m). rfi-coefficient-matriz E f da dp (to-nat i) (to-nat
7))

(proof)

(x (i::'m). rfi-constant-vector E f da dp (to-nat ©))

2.5 Main lemma

lemma rational-function-interpolation-correct:

assumes
int dg = |(real (length F) + card A — card B)/2|
int dg = |(real (length E) + card B — card A)/2]
card (sym-diff A B) < length E

VeoecsetE.o g AV x€setE.x ¢ B
fa = (\z € set E. poly (set-to-poly A) x)
fB = (\z € set E. poly (set-to-poly B) x)
CARD('m::mod-type) = length E

defines
sol = solution-to-poly (rational-function-interpolation E (Xe. fa e / fp €) da

dg TYPE('m)) da dg

shows
monic-interpolated-rational-function (fst sol) (snd sol) (set E) fa fp da dp

(proof)

lemma interpolated-rational-function-floor-eq:

interpolated-rational-function ps pp E fa fp da dp <—
interpolated-rational-function pa pg E fa fp |da] |dB]
(proof)

lemma sym-diff-bound-div2-ge0:

fixes A B :: 'a :: finite set

assumes card (sym-diff A B) < length E

shows (real (length E) + card A — card B)/2 > 0
(proof)

If the degrees are reals we take the floor first

lemma rational-function-interpolation-correct-real:
fixes d’s d'p:: real
assumes
card (sym-diff A B) < length E
VaecsetE.x ¢ AV xe€setE.c¢ B
fa =Nz € set E. poly (set-to-poly A) x)
fB = (\z € set E. poly (set-to-poly B) x)
CARD('m::mod-type) = length E
defines d’4 = (real (length E) + card A — card B)/2
defines d’p = (real (length E) + card B — card A)/2
defines d4 = nat |d’4]
defines dp = nat |d'p]
defines sol-poly = interpolate-rat-fun E (Ae. fa e / fp €) da dg TYPE('m)
shows
monic-interpolated-rational-function (fst sol-poly) (snd sol-poly) (set E) fa fB
d'y d'p
(proof)

end

3 Factorisation of Polynomials

theory Fuctorisation
imports
Berlekamp-Zassenhaus. Finite-Field
Berlekamp-Zassenhaus. Finite- Field- Factorization
Elimination- Of-Repeated-Factors. ERF-Perfect- Field- Factorization
Elimination- Of- Repeated-Factors. ERF-Algorithm
begin

hide-const (open) Coset.order

hide-const (open) module.smult

hide-const (open) UnivPoly.coeff

hide-const (open) Formal-Power-Series.radical

lemma proots-finite-field-factorization:
assumes
square-free f

finite-field-factorization f = (¢, us)
shows proots f = sum-list (map proots us)
(proof)

The following fact is an improved version of %z # 0 = squarefree ?x
= square-free ?z, which does not require the assumtion that p # 0.

lemma squarefree-square-free’:
fixes p :: ‘a:: field poly
shows squarefree p = square-free p

(proof)
This function returns the roots of an irreducible polynomial:

fun extract-root :: 'a::prime-card mod-ring poly = 'a mod-ring multiset where
extract-root p = (if degree p = 1 then {# — coeff p 0 #} else {#})

lemma degreel-monic:
assumes degree p = 1
assumes monic p
obtains ¢ where p = [:¢,I:]

(proof)

lemma extract-root:
assumes monic p irreducible p
shows extract-root p = proots p

(proof)

fun extract-roots :: 'a::prime-card mod-ring poly list = 'a mod-ring multiset where
extract-roots || = {#}
| extract-roots (p#ps) = extract-root p + extract-roots ps

lemma extract-roots:
YV p € set ps. monic p A irreducible p =
sum-list (map proots ps) = extract-roots ps

(proof)

lemma proots-extract-roots-factorized:
assumes squarefree p
shows proots p = extract-roots (snd (finite-field-factorization p))

(proof)

3.1 Elimination of Repeated Factors

Wrapper around the ERF algorithm, which returns each factor with multi-
plicity in the input polynomial
function FRF’ where
ERF' p = (
if degree p = 0 then || else
let factors = ERF p in
ERF' (p div (prod-list factors)) @ factors)

{proof)

lemma degree-zero-iff-no-factors:
fixes p :: ‘a :: {factorial-ring-gcd,semiring-ged-mult-normalize, field} poly
assumes p # 0
shows prime-factors p = {} +— degree p = 0

(proof)

lemma ERF’-termination:

assumes degree p > 0

shows degree (p div prod-list (ERF p)) < degree p
(proof)

termination

(proof)

lemma ERF’-squarefree:
assumes z € set (ERF’ p)
shows squarefree x (proof)

lemma ERF-not0: p # 0 = 0 ¢ set (ERF p)
{proof)

lemma ERF'-not0: 0 ¢ set (ERF' p)
{proof)

lemma ERF'-proots: proots ([| z<— ERF' p. x) = proots p
(proof)

3.2 Executable version of proots

fun proots-cff :: 'a::prime-card mod-ring poly = 'a mod-ring multiset where
proots-eff p = sum-list (map (extract-roots o snd o finite-field-factorization) (ERF’

p))

lemma proots-eff-correct [code-unfold]: proots p = proots-eff p
(proof)

3.3 Executable version of order

fun order-eff :: 'a mod-ring = 'a::prime-card mod-ring poly = nat where
order-eff x p = count (proots-eff p) x

lemma order-eff-code [code-unfold]: p # 0 = order x p = order-eff z p
(proof)

end

10

4 Set Reconciliation Algorithm

theory Set-Reconciliation
imports
HOL— Library. FuncSet
HOL—- Computational-Algebra. Polynomial
Factorisation
Rational-Function-Interpolation
begin

hide-const (open) up-ring.monom

The following locale introduces the context for the reconciliation algo-
rithm. It fixes parameters that are assumed to be known in advance, in
particular:

e a bound m on the symmetric difference: represented using the type
variable 'm

o the finite field used to represent the elements of the sets: represented
using the type variable 'a

o the evaluation points used (which must be choosen outside of the do-
main used to represent the elements of the sets): represented using the
variable E

To preserve generality as much as possible, we only present an interaction
protocol that allows one party Alice to send a message to the second party
Bob, who can reconstruct the set Alice has, assuming Bob holds a set himself,
whose symmetric difference does not exceed m.

Note that using this primitive, it is possible for Bob to compute the
union of the sets, and of course the algorithm can also be used to send a
message from Bob to Alice, such that Alice can do so as well. However, the
primitive we describe can be used in many other scenarios.

locale set-reconciliation-algorithm =
fixes E :: 'a :: prime-card mod-ring list
fixes phantom-m :: 'm::mod-type itself
assumes type-m: phantom-m = TYPE('m)
assumes distinct-E: distinct E
assumes card-m: CARD('m) = length E
begin

The algorithm—or, more precisely the protocol—is represented using a
pair of algorithms. The first is the encoding function which Alice used to
create the message she sends. The second is the decoding algorithm, which
Bob can use to reconstruct the set Alice has.

definition encode where
encode A = (card A, A x € set E. poly (set-to-poly A) x)

11

definition decode where
decode B R =

(let
(n’ fA) = R;
fB = (A z € set E. poly (set-to-poly B) x);
da = nat |(real (length E) + n — card B) / 2];
dp = nat [(real (length E) 4+ card B — n) / 2];
(pa,pp) = interpolate-rat-fun E (Az. fa x / fp x) da dp phantom-m;
r4 = proots-eff pa;
rg = proots-eff pp

m
set-mset (ra — rp) U (B — (set-mset (rp — r4))))

4.1 Informal Description of the Algorithm

The protocol works as follows:

We association with each set A a polynomial x4(z) := [[,ca(xz —) in
the finite field F. As mentioned before we reserve a set of m evaluation
points E, which can be arbitrary prearranged points, as long as they are
field elements not used to represent set elements.

Then Alice sends the size of its set |A| and the evaluation of its charac-
teristic polynomial on F.

Bob computes

i | L1
A =

2
= |1
B = 5

Then Bob finds monic polynomials pa, pp of degree d4 and dp fulfilling
the condition:

pa(z)xp(x) = pp()xa(X) forall z € E (1)

The above results in a system of linear equations, which can be solved using
Gaussian elimination. It is easy to show that the system is solvable since:

r

pa = xa-p(r)x
P = XB-A(®)x

is a solution, where r :=dq —|A — B| =dp — |B — A|.
The equation (Eq. 1) implies also:

r

pa(x)xB-a(z) =pp(x)xa—p(z) for all x € E (2)

since x4(2) = xa-B(2)xanB(2), xB(2) = XB-a(®)XanB(2), and xanp(z) #
0, because of our constraint that E' is outside of the universe of the set ele-
ments. Btw. in general

xvuvy = xuxv for any disjoint U, V.

12

Because the polynomials on both sides of Eq. 2 are monic polynomials
of the same degree m/, where m’ < m, and agree on m points, they must be
equal.

This implies in particular, that for the order of any root x (denoted by
ord,), we have:

ord; (paxp—a) = ord.(pBXA-B)

which implies:
ord,(pa) —ord,(pp) = ordy(xp—4a) — ordx(xa-B).

Note that by definition the right hand side is equal to +1if z € B— A, —1
if x € A— B and 0 otherwise. Thus Bob can compute A using

A :={z|ord,(pa) — ord,(pp) > 0} U (B — {z|ord,(pa) — ord,(pp) < 0}).

4.2 Lemmas

This is no longer used, but it will be needed if you implement decode using
an interpolation algorithm that does not return monic polynomials.

lemma interpolated-rational-function-eq:
assumes
YV z € set E. poly (set-to-poly A) x x poly pp © = poly (set-to-poly B) x * poly
pa T
degree pa < (real (length E) + card A — card B)/2
degree pp < (real (length E) + card B — card A)/2
card (sym-diff A B) < length E
set ENA={}set ENB={}
shows set-to-poly (A—B) * pp = set-to-poly (B—A) * pa

(proof)

This is a specialized version of interpolated-rational-function-eq. Here
the interpolated function are monic with exact degrees.

lemma monic-interpolated-rational-function-eq:
assumes
YV z € set E. poly (set-to-poly A) x % poly pp x = poly (set-to-poly B) x = poly
pa x
degree pa = |(real (length E) + card A — card B)/2]
degree pg = |(real (length E) + card B — card A)/2]
card (sym-diff A B) < length E
set ENA={}set ENB={}
monic po monic pp
shows set-to-poly (A—B) x pg = set-to-poly (B—A) * pa (is ?lhs = ?rhs)
(proof)

13

4.3 Main Result

This is the main result of the entry. We show that the decoding algorithm,
Bob uses, can reconstruct the set Alice has, if she has encoded with the
encoding algorithm. Assuming the symmetric difference between the sets
does not exceed the given bound.

theorem decode-encode-correct:
assumes
card (sym-diff A B) < length E
set ENA={}set ENB={}
shows decode B (encode A) = A

{(proof)

end

end

References

[1] Y. Minsky, A. Trachtenberg, and R. Zippel. Set reconciliation with nearly
optimal communication complexity. IEEFE Transactions on Information
Theory, 49(9):2213-2218, 2003.

14

	Preliminary Results
	Characteristic Polynomial

	Rational Function Interpolation
	Definitions
	Preliminary Results
	On 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 solution-to-poly
	Correctness
	Main lemma

	Factorisation of Polynomials
	Elimination of Repeated Factors
	Executable version of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 proots
	Executable version of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 order

	Set Reconciliation Algorithm
	Informal Description of the Algorithm
	Lemmas
	Main Result

