A Set Reconciliation Algorithm

Paul Hofmeier and Emin Karayel

January 25, 2026

Abstract

This entry formally verifies the set reconciliation algorithm with
nearly optimal communication complexity, due to Y. Minsky et al. [1].
The algorithm allows two communication partners, who have a similar
pair of sets to reconcile them while using messages of nearly optimal
size, proportional to a bound on the maximum symmetric difference
between the sets.

The formalization also introduces an optimization, which reduces
the communication complexity even further compared to the original
publication.

Contents

1

Preliminary Results
1.1 Characteristic Polynomial

Rational Function Interpolation

2.1 Definitions
2.2 Preliminary Results
2.3 On solution-to-poly
2.4 Correctness
25 Mainlemma

Factorisation of Polynomials

3.1 Elimination of Repeated Factors
3.2 Executable version of proots
3.3 Executable version of order

Set Reconciliation Algorithm

4.1 Informal Description of the Algorithm
4.2 Lemmas e e e
43 MainResult oo

NN

— O = ot G

22
24
27
28

1 Preliminary Results

theory Poly-Lemmas
imports
HOL— Computational-Algebra. Polynomial
Polynomial-Interpolation. Missing-Polynomial
begin

lemma card-sub-int-diff-finite:
assumes finite A finite B
shows int (card A) — card B = int (card (A—B)) — card (B—A)
using assms card-add-diff-finite by fastforce

lemma card-sub-int-diff-finite-real:
assumes finite A finite B
shows real (card A) — card B = real (card (A—B)) — card (B—A)
using assms card-add-diff-finite by fastforce

1.1 Characteristic Polynomial

The characteristic polynomial associated to a set:

definition set-to-poly :: 'a::finite-field set = 'a poly where
set-to-poly A =] a € A. [:—a,1]

lemma set-to-poly-correct: {z. poly (set-to-poly A) x = 0} = A
proof (induct A rule: infinite-finite-induct)
case (infinite A)
then show ?case by simp
next
case empty
then show ?case unfolding set-to-poly-def by simp
next
case (insert z F)
have set-to-poly (insert x F) = set-to-poly F x [:—x,1:]
unfolding set-to-poly-def by (simp add: insert.hyps(2))
also have {za. poly (set-to-poly F x [:—x,1:]) za = 0} =
{za. poly (set-to-poly F) za = 0} U {za. poly ([:—=,1:]) za = 0}
by auto
moreover have 2: {za. poly (set-to-poly F) za = 0} = F
by (simp add: insert.hyps(3))
moreover have 3: {za. poly ([:—=z,1:]) za = 0} = {z}
by auto
ultimately have {za. poly (set-to-poly (insert z F)) za = 0} = F U {z}
by simp
then show ?Zcase by simp
qed

lemma in-set-to-poly: poly (set-to-poly A) = 0 +— z € A
using set-to-poly-correct

by auto

lemma set-to-poly-not0[simpl: set-to-poly A # 0
unfolding set-to-poly-def by auto

lemma set-to-poly-empty[simp]: set-to-poly {} = 1
unfolding set-to-poly-def by simp

lemma set-to-poly-inj: inj set-to-poly
by (metis injl set-to-poly-correct)

lemma rsquarefree-set-to-poly: rsquarefree (set-to-poly A)
proof (induct A rule: infinite-finite-induct)
case (infinite A)
then show ?case by simp
next
case empty
then show ?case
by (simp add: rsquarefree-def set-to-poly-def)
next
case (insert « F)
then have 1: set-to-poly (insert x F) = set-to-poly F x [:—x,1]
by (simp add: set-to-poly-def)

have rsquarefree [:—z,1:]
using rsquarefree-single-root by simp
also have poly (set-to-poly F) = # 0
using insert by (simp add: in-set-to-poly)
moreover have poly ([:—z,1:]) z = 0
using insert by simp
ultimately have rsquarefree(set-to-poly F [:—z,1:])
using insert(3) rsquarefree-mul by fastforce

then show ?case using 1
by simp
qed

lemma set-to-poly-insert:
assumesz ¢ A
shows set-to-poly (insert A) = set-to-poly A * [:—x,1:]
using assms set-to-poly-def by (simp add: set-to-poly-def)

lemma set-to-poly-mult: set-to-poly X * set-to-poly Y = set-to-poly (X U Y) x
set-to-poly (X N'Y)
by (simp add: prod.union-inter set-to-poly-def)

lemma set-to-poly-mult-distinct:
assumes X N Y = {}
shows set-to-poly X x set-to-poly Y = set-to-poly (X U Y)

by (simp add: set-to-poly-mult assms)

lemma set-to-poly-degree:
degree (set-to-poly A) = card A
proof (induct A rule: infinite-finite-induct)
case (infinite A)
then show ?case by auto
next
case empty
then show ?case by auto
next
case (insert z F)
have [:—z, 1:] # 0 and set-to-poly F # 0
using set-to-poly-not0 by auto
then have degree (set-to-poly F x [:—z, 1:]) = degree (set-to-poly F) + degree
[[—z, 1]
using degree-mult-eq by blast
also have set-to-poly (insert x F) = set-to-poly F x [:—z, 1]
using insert set-to-poly-insert by simp
ultimately show ?case using insert
by simp
qged

lemma set-to-poly-order:
order x (set-to-poly A) = (if x € A then 1 else 0)
by (simp add: in-set-to-poly order-0I rsquarefree-root-order rsquarefree-set-to-poly)

lemma set-to-poly-lead-coeff: lead-coeff (set-to-poly A) = 1
proof (induct A rule: infinite-finite-induct)
case (infinite A)
then show ?Zcase by auto
next
case empty
then show ?case by auto
next
case (insert z A)
then have ins: set-to-poly (insert © A) = set-to-poly A x [:—z,1:]
unfolding set-to-poly-def by simp
then show ?case
unfolding ins lead-coeff-mult using insert by simp
qed

lemma degree-sub-lead-coeff:
assumes degree p > 0
shows degree (p — monom (lead-coeff p) (degree p)) < degree p
using assms by (simp add: coeff-eq-0 degree-lessI)

lemma remove-lead-from-monic:
fixes p q :: 'a :: field poly

assumes monic p

assumes degree p > 0

shows degree (p — monom 1 (degree p)) < degree p

using degree-sub-lead-coeff[OF assms(2)] assms(1) by simp

lemma poly-eql-degree-monic:
fixes p q :: 'a :: field poly
assumes degree p = degree q
assumes degree p < card A
assumes monic p monic q
assumes Az. 2 € A = poly p x = poly q x

shows p = ¢
proof (cases degree p > 0)
case True

have degree (p — monom 1 (degree p)) < card A
using remove-lead-from-monic[OF assms(3)] True assms(2) by simp
moreover have degree (¢ — monom 1 (degree q)) < card A
using remove-lead-from-monic[OF assms(4)] True assms(1,2) by simp
ultimately have p — monom 1 (degree p) = q — monom 1 (degree q)
using assms(1,5) by (intro poly-eql-degree[of A]) auto
thus ?thesis using assms(1) by simp
next
case Fulse
hence degree p = 0 degree ¢ = 0 using assms(1) by auto
thus p = ¢ using assms(3,4) monic-degree-0 by blast
qed

end

2 Rational Function Interpolation

theory Rational-Function-Interpolation
imports
Poly-Lemmas
Gauss-Jordan.System- Of-Equations
Polynomial-Interpolation. Missing- Polynomial
begin

2.1 Definitions

General condition for rational functions interpolation
definition interpolated-rational-function where
interpolated-rational-function pa pp FE fa fp da dp =
(Vee€E. . faexpolypg e=fp expolypa e) A
degree pa < (da::real) A degree pp < (dp::real) A
pa# 0 ANpp#0
Interpolation condition with given exact degrees

definition monic-interpolated-rational-function where

monic-interpolated-rational-function pa pp E fa fp da dp =
(VecE faexpolyppe=fpex*polypae) A
degree pa = |dazreal] N degree pp = |dg::real] A
monic pa /\ monic pp

lemma monic0: = monic (0::'a::zero-neg-one poly)
by simp

lemma monic-interpolated-rational-function-interpolated-rational-function:
monic-interpolated-rational-function pa pp E fa fp da dp
= interpolated-rational-function pa pg E fa fp da dg V —(pa # 0 N pp #
0)
unfolding monic-interpolated-rational-function-def interpolated-rational-function-def
by linarith

definition rfi-coefficient-matriz :: 'a::field list = (‘a = 'a) = nat = nat
= nat = nat = 'a where
rfi-coefficient-matric E f da dg 1§ = (
if j < da then
(B1i) "
else if j < da + dp then
—F B i)« (B i) " (—da)
else 0

)

definition rfi-constant-vector :: 'a::field list = ('a = 'a) = nat = nat = (nat =

'a) where
rfi-constant-vector E fda dg = (N i. f (EV i)« (E!'Q) “dg — (E'i) " da)

definition rational-function-interpolation :: 'a::field list = ('a = 'a) = nat = nat
= 'm:umod-type itself = (‘a,’m) vec where
rational-function-interpolation E f d4 dp m =
(let solved = solve
(x (i::'m) (j§::'m). rfi-coefficient-matriz E f dao dp (to-nat i) (to-nat j))
(x (i::'m). rfi-constant-vector E f da dp (to-nat 7))
in fst (the solved))

definition solution-to-poly :: ('a::finite-field, 'n::mod-type) vec =
nat = nat = 'a poly x 'a poly where
solution-to-poly S da dg = (let
p = Abs-poly (\i. if i < da then S $ (from-nat i) else 0) + monom 1 dy;
q = Abs-poly (M\i. if i < dp then S $ (from-nat (i+da)) else 0) + monom 1
dB n

(p,)

definition interpolate-rat-fun where
interpolate-rat-fun E fda dp m =
solution-to-poly (rational-function-interpolation E f da dg m) da dp

2.2 Preliminary Results

lemma consecutive-sum-combine:
assumes m > n
shows > i=0.n.fi)+ O i= Sucn.m. fi)=O_i=0..m. fi)
proof —
from assms have {0..n} U {Suc n..m} = {0..m}
by auto
moreover have sum f ({0..n} U {Suc n..m}) =
sum f ({0..n} — {Suc n..m}) + sum f ({Suc n..m} — {0..n}) + sum f ({0..n}
N {Suc n..m})
using sum-Un2 finite-atLeastAtMost by fast
ultimately show ?thesis
by (simp add: Diff-triv)
qed

lemma poly-altdef-Abs-poly-le:

fixes z :: 'a::{comm-semiring-0, semiring-1}

shows poly (Abs-poly (\i. if i < nthen fielse 0)) z = (D i= 0.n. fi*z 1)
proof —

let 2if 40 = (Ni. if © < n then fi else 0)

let ?p = Abs-poly ?if 40

have co: coeff ?p = 2if 50
using coeff-Abs-poly-If-le by blast

then have Vi>n. coeff 9p i = 0
by auto

then have de: degree 7p < n
using degree-le by blast

have Vi>degree ?p. 2if 401 = 0
using co coeff-eq-0 by fastforce

then have Vi>degree ?p. 2if a0 i xx ~ i =0
by simp

then have V ¢ € {Suc (degree ?p)..n}. (2if a0 % x " i) =0
using less-eq-Suc-le by fastforce

then have db: (3" i = Suc (degree ?p)..n. 2if 404 % x ~ i) = 0
by simp

have poly ?p z = (> i<degree ?p. coeff ?p i x © ~ i)
using poly-altdef by auto

also have ... = (3 i<degree ?p. ?if a0 i x x i)
using co by simp

also have ... = (> i = 0..degree ?p. 2if 400 % x ~ 1)
using atMost-atLeast0) by simp

also have ... = (> i = 0..degree ?p. ?if 40 i x © ~ i) +

(3" i = Suc (degree ?p)..n. 2if 400 x x 1)

using db by simp

alsohave ... = (D_i=0..n. 2ifa0i %z " 1)

using consecutive-sum-combine de by blast
finally show ?thesis
by simp
qed

lemma poly-altdef-Abs-poly-I:
fixes z :: 'a::{comm-semiring-0,semiring-1}
shows poly (Abs-poly (Xi. if i < n then fielse 0)) z = (3 i<n. fi*xx " 1)
proof (cases n)
case (
have p0: Abs-poly (A\i. 0) = 0
using zero-poly-def by fastforce
show ?thesis
using 0 by (simp add: p0)
next
case (Suc m)
have poly (Abs-poly (Ai. if i < mthen fielse 0)) z = > i=0..m. fi*xzx i)
using poly-altdef-Abs-poly-le by blast
moreover have poly (Abs-poly (M\i. if i < m then f i else 0)) © = poly (Abs-poly
(Mi. if i < n then fielse 0))
using Suc using less-Suc-eg-le by auto
moreover have (> i=0..m. fixz i) = i<n. fixz 1)
using Suc atLeast0AtMost lessThan-Suc-atMost by presburger
ultimately show ¢thesis by argo
qed

lemma degree- Abs-poly-If-I:
assumes n # 0
shows degree (Abs-poly (Ai. if i < n then fielse 0)) < n
proof —
have coeff (Abs-poly (Ai. if i < n then fielse 0)) x = 0 if z > n for x
using coeff-Abs-poly [of n (Ai. if i < n then fi else 0)] using that by simp
then show ?thesis
using assms degree-lessI by blast
qed

lemma nth-less-length-in-set-eq:
shows (V i < length E. f (E!4i) =g (E!Q)+— (V e€set E. fe=ge)
proof standard
show Vi < length E. f (E!i{) =g (E!i) = Vecset E. fe=ge
using in-set-conv-nth by metis
next
show Veeset E. fe=ge = Vi<length E. f (E!i) =g (E 1)
by simp
qed

lemma nat-leg-real-floor: real (i::nat) < (d::real) «— real i < |d| (is 2l = 2r)
proof
assume ?]

then show 7r
using floor-mono by fastforce
next
assume ?r
then show 7]
by linarith
qed

lemma mod-type-less-function-eq:
fixes 7 :: 'a::mod-type
assumes V ¢ < CARD('a) . fi= g1
shows [(to-nat i) = g (to-nat 17)
using assms by (simp add: to-nat-less-card)

2.3 On solution-to-poly

lemma fst-solution-to-poly-nz:

fst (solution-to-poly S da dp) # 0
proof

assume fst (solution-to-poly S da dp) = 0

hence coeff (Abs-poly (Ai. if i < da then S $ (from-nat i) else 0) + monom 1
da) da =0

unfolding solution-to-poly-def by simp

hence coeff (Abs-poly (N\i. if i < da then S $ (from-nat 7) else 0)) da + 1 = 0
by simp

thus Fualse by (subst (asm) coeff-Abs-poly[where n=d 4]) auto
qed

lemma snd-solution-to-poly-nz:

snd (solution-to-poly S da dp) # 0
proof

assume snd (solution-to-poly S da dg) = 0

hence coeff (Abs-poly (Mi. if © < dp then S $ (from-nat (i+da)) else 0) +
monom 1 dg) dp = 0

unfolding solution-to-poly-def by simp

hence coeff (Abs-poly (Mi. if i < dp then S $ (from-nat (i+da)) else 0)) dp +
1 = 0 by simp

thus False by (subst (asm) coeff-Abs-poly[where n=dg]) auto
qed

lemma degree-AbsOp1: degree (Abs-poly (Mi. 0) + 1) = 0
by (metis add-0 degree-1 zero-poly-def)

lemma degree-solution-to-poly-fst:
degree (fst (solution-to-poly S da dp)) = da
proof (cases da)
case (
then show ?thesis unfolding solution-to-poly-def
using degree-AbsOp1 by (simp add: one-pCons)

next
case (Suc nat)
then have degree (Abs-poly (Ni. if i < da then S § from-nat i else 0)) < da
using degree- Abs-poly-1If-1 by fast
moreover have ... = degree (monom (1::'a) da)
by (simp add: degree-monom-eq)
ultimately show ?thesis
unfolding solution-to-poly-def
by (simp add: degree-add-eq-right)
qed

lemma degree-solution-to-poly-snd:
degree (snd (solution-to-poly S da dp)) = dp
proof (cases dp)
case (
then show ?thesis unfolding solution-to-poly-def
using degree-AbsOp1 by (simp add: one-pCons)
next
case (Suc nat)
then have degree (Abs-poly (A\i. if i < dp then S $ from-nat (i + da) else 0))
< dp
using degree- Abs-poly-If-1 by fast
moreover have ... = degree (monom (1::'a) dg)
by (simp add: degree-monom-eq)
ultimately show #thesis
unfolding solution-to-poly-def
by (simp add: degree-add-eq-right)
qed

lemma monic-solution-to-poly-snd:
monic (snd (solution-to-poly S da dp))
proof (cases dg)
case (
then show ?thesis unfolding solution-to-poly-def
by (simp add: coeff-Abs-poly degree-AbsOp1)
next
case (Suc x)
have 1: coeff (Abs-poly (Mi. if i < Suc z then S $ from-nat (i + da) else 0))
(Sucz) =10
by (simp add: coeff-eq-0 degree-Abs-poly-If-I)
have degree (Abs-poly (Ai. if i < dp then S $ from-nat (i + da) else 0) +
monom 1 dg) = dp
using degree-solution-to-poly-snd unfolding solution-to-poly-def by auto
then show ?thesis
unfolding solution-to-poly-def using 1 Suc by simp
qed

lemma monic-solution-to-poly-fst:
monic (fst (solution-to-poly S da dp))

10

proof (cases d4)
case ()
then show ?thesis
unfolding solution-to-poly-def by (simp add: coeff-Abs-poly degree-AbsOp1)
next
case (Suc x)
have 1: coeff (Abs-poly (Ai. if i < da then S $ (from-nat i) else 0)) (Suc z) = 0
by (simp add: Suc coeff-eq-0 degree-Abs-poly-If-I)
have degree (Abs-poly (Xi. if i < da then S $ (from-nat @) else 0) + monom 1
da) =da
using degree-solution-to-poly-fst unfolding solution-to-poly-def by auto
then show ?thesis
unfolding solution-to-poly-def using 1 Suc by simp
qed

2.4 Correctness

Needs the assumption that the system is consistent, because a solution exists.

lemma rational-function-interpolation-correct-poly:
assumes
VeesetE.fe=fazx/fpaV ce€setE fpa#0
da + dp < length E
CARD('m::mod-type) = length E
consistent (x (i::'m) (j::'m). rfi-coefficient-matriz E f d4 dp (to-nat 7) (to-nat

)
(x (i::'m). rfi-constant-vector E f da dp (to-nat ©))
S = rational-function-interpolation E f dg dg TYPE('m)
pa = fst (solution-to-poly S da dp)
pp = snd (solution-to-poly S da dp)
shows
Ve€csetE. faexpolypge=fpexpolypae
proof —

let Zcoeff = rfi-coefficient-matriz E fda dp

let ?const = rfi-constant-vector E f da dp

let Zcoeff’ = (x (i::'m) (j::'m). 2coeff (to-nat i) (to-nat j))
let Zconst’ = (x (i::'m). Zconst (to-nat 7))

have is-solution S ?coeff’ ?const’

by (simp add: assms(5,6) consistent-imp-is-solution-solve rational-function-interpolation-def)
then have sol: ?coeff’ xv S = Zconst’

by (simp add: is-solution-def)

have const: ?const i = ?const’ $ from-nat i if i < length E for i
by (simp add: assms(4) that to-nat-from-nat-id)

have coeff: ?coeff i j = ?coeff’$ from-nat i $ from-nat j

if i < length E j < length E for i j
proof —

11

w'm) =i

have to-nat (from-nat i
using that assms(4)
by (intro to-nat-from-nat-id) simp

moreover have to-nat (from-nat j ::'m) = j
using that assms(4,3)
by (intro to-nat-from-nat-id) simp

ultimately show ¢thesis
unfolding rfi-coefficient-matriz-def
by (simp add: Let-def)

qged

have z: (37 < da + dp. (coeff i j) * S $ (from-nat 7)) = Pconst i
(is ?l = ?r) if i < length E for {
proof —
have 2 = (}_j < length E. ?coeff i j x S $ (from-nat j))
using assms(3) by (intro sum.mono-neutral-cong-left) (auto simp add:rfi-coefficient-matriz-def)
also have ... = (3_j < length E. %coeff’ $ (from-nat) $ (from-nat j) x S $
(from-nat 7))
using coeff that by auto
also have ... = (3_j € {0..< length E}. ?coeff’$ (from-nat i) $ (from-nat j)
x S $ (from-nat j))
by (intro sum.reindex-bij-betw [symmetric] bij-betwl [where g = id]) auto
also have ... = (3°je(UNIV::'m set). Zcoeff’$ (from-nat i) $ j x S § j)
using bij-from-nat [where ‘a = 'm] assms(3,4) by (intro sum.reindex-bij-betw)
simp

also have ... = (?coeff’ xv S) $ (from-nat i)
unfolding matriz-vector-mult-def by simp
also have ... = ?const’ $ (from-nat 7)

using sol by simp
finally show ?[= ?r using const that by simp
qed

let ?p-lam = Xi. if i < da then S $ from-nat i else 0
let %¢g-lam = Xi. if i < dp then S $ from-nat (i + da) else 0
let ?p’ = Abs-poly ?p-lam + monom 1 dy
let ?2q’ = Abs-poly ?q-lam + monom 1 dg
have pg: pa = ?p' pp = ?q’
using assms(7,8) unfolding solution-to-poly-def by auto

have (> j<da. S$ from-natj+« E!i " j) — f(E %) x (. j<dp. S $ from-nat
(J+ da) x EVi™j)
=f(E!')«E!i dg— E!i " dsifi< length E for i
proof —
let ?pg-lam = (\j. (if j < da then E! i " j else
ifj<da+dpthen —f(E'd)« E'i " (j— da) else 0) * S $ from-nat j)

have reinder: (3.j € {da.< da +dp}. — f(E'9))« E'i " (j —da)*xS$

from-nat j) =
Sje{o.<dp}. —f(EVi)xE!'i " (j) % S8 fromnat (j+da))

12

by (rule sum.reindex-bij-witness [of - Ni. i + da Ai. i — da]) auto

fromz have f (E! i)« E!i "dg — E!i " da= (> j<da + dp. ?pg-lam j
)
unfolding rfi-coefficient-matriz-def rfi-constant-vector-def using that by simp
also have ... = (3°j € {0..< da + dg}. ?pg-lam j)
using atLeastOLessThan by presburger
also have ... = (3.7 € {0..< da}. ?pg-lam j) + O°j € {da..< da + dp}.
?pg-lam j)
by (subst sum.atLeastLessThan-concat) auto
also have ... = (3} je {0.< da}. EVi " j% S8 from-nat j) +
SCjelda.<da+dp}t. —f(E')« E'i"(j—da)*S$ fromnat j)
by auto
also have ... = (}_j e {0.< da}. E' i " j % S$ from-nat j) +
>je{o.<dp}. —f(E'i)« Eli~(j) *S$ from-nat (j+da))
using reindex by simp
also have ... = (>"j e {0.< da}. E'i " j % S$ from-nat j) +
—f(ET) (O je{0.<dp}. EVi ™ (j) *SS$ from-nat (j+da))
by (simp add: sum-distrib-left mult.commute mult.left-commute)
finally have f (E ! i)« E i " dp — E!i " dg=...
by argo

moreover have (> j € {0..< da}. Eli " j* S $ from-nat j) =
(32j<da. S $ from-nat j « E i " j)
by (subst atLeastOLessThan) (meson mult.commute)
moreover have (> j € {0.< dg}. E!li " (j§) * S 8§ from-nat (j+da)) =
(> j<dp. S8 from-nat (j + da) x E1 i 7 j)
by (subst atLeastOLessThan) (meson mult.commute)
ultimately show #thesis
by simp
qed

then have Ve € set E. (>_j<da. S $ from-natj*e " j) — fex (O j<dp. S $
from-nat (j + da) *x e " j)
=fexe dgp —e " dy
by (subst nth-less-length-in-set-eq [symmetric]) auto

then have (3 i<da. S $ from-nat i x e " i) — fex (D i<dp. S $ from-nat (i
+ dA) * e AZ')
=fexe dp — e dyifec set E for e
using that by blast

then have ()" i<da. S $ from-nati* e i) +e da
=fexe dp+ fex (D i<dp. S$ from-nat (i + da) x e " i) if e € set B
for e
using that by (simp add:field-simps)

then have fe x (3] i<dp. S $ from-nat ({ + da) x e i) + e " dp) =
(Si<da. S8 from-natix e " i)+ e " daif e € set E for e

13

using that by (simp add: ring-class.ring-distribs(1))

then have f e x (poly (Abs-poly ?q-lam) e + poly (monom 1 dg) e) =
poly (Abs-poly ?p-lam) e + poly (monom 1 dy) e if e € set F for e
unfolding poly-altdef-Abs-poly-l poly-monom using that by auto

then have f e x (poly (Abs-poly ?q-lam) e + poly (monom 1 dg) e) =
poly (Abs-poly ?p-lam) e + poly (monom 1 da) e if e € set E for e
using that by simp
then have f e * poly (Abs-poly ?¢-lam + monom 1 dp) e =
poly (Abs-poly ?p-lam + monom 1 da) e if e € set E for e
by (simp add: that)
then have (fa e / fp €) x poly 2¢' e = poly ?p' e if e € set F for e
using that assms(1) by simp
then have f4 e x poly 2" e = fg e x poly ?p' e if e € set E for ¢
using that by (simp add: assms(2) nonzero-divide-eq-eq)
then have Ve€set E. fa e x poly (snd (solution-to-poly S da dg)) e =
fB e x poly (fst (solution-to-poly S da dg)) e
unfolding solution-to-poly-def by auto
then show Vecset E. f4 e *x poly pp e = fp e * poly pa e
using assms(8,7) by simp
qged

lemma poly-lead-coeff-extract:
poly p x = (> i<degree p. coeff p i x x ~ i) + lead-coeff p x x ~ degree p
for z :: ‘a::{comm-semiring-0,semiring-1}
unfolding poly-altdef using lessThan-Suc-atMost sum.lessThan-Suc by auto

lemma d4-dp-helper:
assumes
finite A finite B
int dg = |(real (length E) + card A — card B)/2|
int dg = |(real (length E) + card B — card A)/2]
card (sym-diff A B) < length E
shows
da + dp < length E
card (A — B) < dy card (B — A) < dp
dp — card (B — A) = da — card (A — B)
proof —
have a: real dg = of-int |(real (length E) + card A — card B)/2]|
using assms(3) by simp
have b: real dg = of-int |(real (length E) + card B — card A)/2]
using assms(4) by simp

have real dg + real dp < (real (length E)+card A—card B)/2 + (real (length
E)+card B—card A)/2
unfolding a b by (intro add-mono) linarith+
also have ... = real (length E) by argo
finally have real do + real dg < length E by simp

14

thus d4 + dp < length E by simp

have real (card (A — B)) = (real (card (sym-diff A B)) + real (card A) — real
(card B))/2
unfolding card-sym-diff-finite] OF assms(1,2)] using card-sub-int-diff-finite| OF
assms(1,2)]
by simp
also have ... < (real (length E) + real (card A) — real (card B))/2
using assms(5) by simp
finally have real (card (A—B)) < da
unfolding a using nat-leg-real-floor by blast
thus c:card (A—B) < d4 by auto

have real (card (B — A)) = (real (card (sym-diff A B)) + real (card B) — real
(card A))/2
unfolding card-sym-diff-finite] OF assms(1,2)] using card-sub-int-diff-finite| OF
assms(1,2)]
by simp
also have ... < (real (length E) + real (card B) — real (card A))/2
using assms(5) by simp
finally have real (card (B—A)) < dp
unfolding b using nat-leg-real-floor by blast
thus d:card (B—A) < dp by auto

have real dg — real dg =
of-int | (real (length E) — card B — card A)/2 + real (card B)| —
of-int | (real (length E) — card A — card B)/2 + real (card A)]
unfolding a b by argo

also have ... = real (card B) — real (card A)
by (simp add:algebra-simps)
also have ... = real (card (B — A)) — card (A — B)

using card-sub-int-diff-finite[OF assms(1,2)] by simp
finally have real dg — real dg = real (card (B — A)) — card (A — B)
by simp

thus dg — card (B — A) = dy — card (A — B)
using ¢ d by simp
qged

Insert the solution we know that must exist to show it’s consistent

lemma rational-function-interpolation-consistent:
fixes A B :: 'a:finite-field set
assumes
Vaoe(setE). fo=fazc/fpx
CARD('m::mod-type) = length E
da + dp < length E
card (A — B) < dga
card (B — A) < dp
dp — card (B — A) = dg — card (A — B)

15

VeecsetE.o g AV x€setE.x ¢ B
fa =Nz € set E. poly (set-to-poly A) x)
fB = (A z € set E. poly (set-to-poly B) x)
shows
consistent (x (i::'m) (§::'m). rfi-coefficient-matriz E f da dp (to-nat ©) (to-nat
7))
(x (i::'m). rfi-constant-vector E f da dp (to-nat 7))
proof —
let Zcoeff = rfi-coefficient-matriz E f da dp
let ?const = rfi-constant-vector E f da dp
let Zcoeff’ = (x (i::'m) (j::'m). 2coeff (to-nat i) (to-nat j))
let Zconst’ = (x (i::'m). Pconst (to-nat 7))

define sp where sp = set-to-poly (A—B) * monom 1 (dg — card (A—B))
define sq where sq = set-to-poly (B—A) * monom 1 (dp — card (B—A))

let 2z = (x (i::'m). if (to-nat i) < da then coeff sp (to-nat) else coeff sq (to-nat
i — da))

have poly-mul-eq: fa = * poly sq x = fp x % poly sp z if v € set E for z
proof —
have set-to-poly A * set-to-poly (B — A) = (set-to-poly B) * set-to-poly (A —
B)
by (simp add: Un-commute set-to-poly-mult-distinct)
then have (set-to-poly A x set-to-poly (B — A) * monom 1 (dp — card (B —
4) =
(set-to-poly B) x set-to-poly (A — B) * monom 1 (da — card (A — B)))
using assms(6) by argo
hence poly (set-to-poly A) x * poly (set-to-poly (B — A) x monom 1 (dp —
card (B — A))) z =
poly (set-to-poly B) x x poly (set-to-poly (A — B) * monom 1 (da — card (A
—B) s
by (metis (no-types, lifting) mult.commute mult.left-commute poly-mult)
thus ?thesis
using that unfolding assms sp-def sq-def by simp
qed

have z-sol-raw: (3. j € {0..<da}. e "j*xcoeff spj)+ (>.j€{0.<dp}. — fe
« e~ jx (coeff sq 7))
=fexe dp —e " dyife€ set FEfor e
proof —
have faz: fa e # 0
using assms (7,9) in-set-to-poly that by auto
moreover have fpz: fgp e # 0
using assms (8,10) in-set-to-poly that by auto
ultimately have fz: fe # 0
using that assms(1) by simp

16

have ffg: fe=fae/ fp e
using that assms(1) by simp

have lead-coeff sp = 1
unfolding sp-def lead-coeff-mult using set-to-poly-lead-coeff lead-coeff-monom
by (auto simp add: degree-monom-eq)
moreover have degree sp = d
unfolding sp-def using assms(4)
by (simp add: add-diff-inverse-nat degree-monom-eq degree-mult-eq order-less-imp-not-less
set-to-poly-degree)
ultimately have poly-sp: poly sp e = (3. i<da. coeff sp i x e " i) + e " da
for e
unfolding poly-lead-coeff-extract by simp

have lead-coeff sq = 1
unfolding sq-def lead-coeff-mult using set-to-poly-lead-coeff lead-coeff-monom
by (auto simp add: degree-monom-eq)
moreover have degree sq = dp
using assms(5) unfolding sq-def
by (simp add: degree-monom-eq degree-mult-eq le-eq-less-or-eq set-to-poly-degree)
ultimately have poly-sq: poly sq e = (D> i<dp. coeff sqi x e " i) + e " dp
for e
unfolding poly-lead-coeff-extract by simp

have fp ex (D i = 0..<da. coeff spi*xe i)+ e " da) =
faex (O i=0.<dp. coeff sgixe i)+ e " dp)
using that poly-mul-eq unfolding poly-sq poly-sp lessThan-atLeast0 by simp
then have fg e x (3 j = 0..<da. e " j* coeff spj) + e " da) =
faex(D.j=0.<dp. e " j*coeff sqj)+ e dg)
by (metis (lifting) Finite-Cartesian-Product.sum-cong-auz mult.commute)
then have (}.j = 0..<da. e “j*coeffspj) + e " da=
fex (Oj=0.<dp. e " j*coeff sqj) + e~ dp)
unfolding ffp using fpz
by (metis (no-types, lifting) f gz nonzero-mult-div-cancel-left times-divide-eg-left)

alsohave ... =fex (D j=0.<dp. e "j*coeffsqj) + fexe " dp
by algebra
alsohave ... = (Y j=0.<dp.fexe " jxcoeff sqj) + fexe " dp

by (metis (no-types, lifting) Finite-Cartesian-Product.sum-cong-auz mult.assoc
sum-distrib-left)
finally have (}_j = 0..<da. e "j* coeff spj) + e " da =
(>lj=0.<dp. fexe "jx*coeffsqj) + fexe dp
by argo
then have (3 j = 0..<da. e " j * coeff sp j) =
Oj=0.<dp. fexe “jxcoeffsqj) + fexe dg —e " da
using add-implies-diff by blast
then have (}_j = 0..<da. e “jxcoeffspj)+ (— O j=0.<dp.fexe ™
J* coeff 5q.4) =
fexe dp —e " dy

by auto

17

moreover have — (> j = 0..<dp. fex e ~j* (coeff sqj)) =
Ooj=0.<dp. — fexe " jx* coeff sqj)
using sum-negf [symmetric] by auto
ultimately show %thesis
by argo
qed

let ?const-lam = Xe. fex e “dg —e " da
let ?const-lam’ = \i. 2const-lam (E !)
let coeff-lam = Xe j.(if j < da thene " j
elseif j < dg + dp
then — fexe " (j— da) else 0) *
(if 5 < da then coeff sp j else coeff sq (j— da))
let ?coeff-lam’ = \i . ?coeff-lam (E !)

have (}j € {0..<length E}. ?coeff-lam e j) = ?const-lam e if e € set E for e
proof —
have (>.j € {0..<length E}. ?coeff-lam e j) = (3.5 € {0..<da + dp}.
Zcoeff-lam e j)
using assms(3) by (intro sum.mono-neutral-cong-right) auto
also have ... = (> je{0..<da}. e7j x coeff sp j) + (O.j € {0..<dp}. —f e *
e jx(coeff sq j))
proof —
have (> j € {0..<da + dp}. ?coeff-lam e j) =
(5>oje{0..<da}. Pcoeff-lam e j) + (O°j € {da..<da + dp}. Zcoeff-lam
¢ j)
by (intro sum.atLeastLess Than-concat [symmetric]) auto
also have ... = (3_j € {0..<da}. e " j x coeff spj) +
>oje{da.<da+dp}. —fexe " (j— da) * (coeff sq (j—da)))
by simp
moreover have (3 j € {da..<da + dp}. — fexe " (j — da) * (coeff sq
(—da)) =
(> €{0..<dp}. — fex e (j) * (coeff sq 7))
by (rule sum.reindexr-bij-witness [of - Xi. i + da Ai. © — d4a]) auto
ultimately show ?Zthesis
by simp
qed
also have ... = %const-lam e
using that z-sol-raw by simp
finally show ?thesis by simp
qed
then have (> j € {0..<length E}. ?coeff-lam’ i j) = ?const-lam’ i if i < length
E for ¢
using that by simp
moreover have (> j€(UNIV::'m set). Zcoeff-lam i (to-natj)) = (3.7 € {0..<CARD('m)}.
Zcoeff-lam i j) for i

18

using bij-to-nat by (intro sum.reindex-bij-betw) blast
ultimately have (Y je(UNIV::'m set). Zcoeff-lam’ i (to-nat j)) = 2const-lam’
1 if ¢ < length FE for i
using that assms using of-nat-eq-iff [of card top length E] assms(3) by force
then have (Ai. > je(UNIV::'m set). ?coeff-lam’ i (to-nat j)) (to-nat (i::'m)) =
Zconst-lam’ (to-nat 7) for i
using mod-type-less-function-eq [of (Ni. >, jE(UNIV::'m set). ?Zcoeff-lam’ i
(to-nat j)) ?const-lam’ i)
using assms(2) assms(8) by auto
then have eval: (A\i. > je(UNIV::'m set). Zcoeff-lam’ (to-nat (i::'m)) (to-nat
7)) =
(X 4. Zconst-lam’ (to-nat 7))
by simp

have ?coeff’ xv 2z = ?const’
unfolding matriz-vector-mult-def
rfi-coefficient-matriz-def
rfi-constant-vector-def
using eval by simp
then show ?thesis
unfolding consistent-def is-solution-def by auto
qged

2.5 Main lemma

lemma rational-function-interpolation-correct:
assumes
int dg = |(real (length F) + card A — card B)/2|
int dg = |(real (length E) + card B — card A)/2]
card (sym-diff A B) < length E

VeoesetE.o g AV x€setE.x ¢ B
fa =Nz € set E. poly (set-to-poly A) x)
fB = (X z € set E. poly (set-to-poly B) x)
CARD('m::mod-type) = length E
defines
sol = solution-to-poly (rational-function-interpolation E (Xe. fa e / fp €) da
dp TYPE('m)) da dp
shows
monic-interpolated-rational-function (fst sol) (snd sol) (set E) fa fp da dp
proof —
let 2f = (Xe. fa e/ fB e)
let 2S5 = rational-function-interpolation E (Xe. fa e / fp e) da dg TYPE('m)
let ?p = fst (solution-to-poly ?S da dp)
let 2q = snd (solution-to-poly 25 da dp)

have f:finite A finite B

using finite by blast+
note pd-pg-props = da-dp-helper|OF f assms(1—3)]

19

have consistent (x (i::'m) (j::'m). rfi-coefficient-matriz E 2f da dp (to-nat 7)
(to-nat 7))
(x (i::'m). rfi-constant-vector E ?f d4 dp (to-nat 7))
using assms pd-pg-props
by (intro rational-function-interpolation-consistent [where A = A and B = B
and f4 = fa and fp = fB])
auto
then have Vecset E. fao e x poly ?ge = fp e *x poly ?p e
using assms pd-pg-props(1) in-set-to-poly
by (intro rational-function-interpolation-correct-poly [where f = ?f and d4 =
ds and dg = dp and S = 29])
auto
moreover have real (degree ?p) = real da
using degree-solution-to-poly-fst by auto
moreover have real (degree ?q) = real dp
using degree-solution-to-poly-snd by auto
moreover have monic 7q
using monic-solution-to-poly-snd by auto
moreover have monic 7p
using monic-solution-to-poly-fst by auto
ultimately show %thesis using fst-solution-to-poly-nz snd-solution-to-poly-nz
unfolding monic-interpolated-rational-function-def sol-def by force
qed

lemma interpolated-rational-function-floor-eq:
interpolated-rational-function py pp F fa fp da dp +—
interpolated-rational-function pa pp E fa fp |da] |dB]
unfolding interpolated-rational-function-def using nat-leq-real-floor by simp

lemma sym-diff-bound-div2-ge0:

fixes A B :: 'a :: finite set

assumes card (sym-diff A B) < length E

shows (real (length E) + card A — card B)/2 > 0
proof —

have x: finite A finite B using finite by auto

have 0 < real (card (sym-diff A B)) + real (card (A—B)) — (card (B—A))
unfolding card-sym-diff-finite[OF %] by simp

also have ... < real (length E) + real (card (A—B)) — (card (B—A))
using assms(1) by simp

also have ... = (real (length E) 4+ card A — card B)
using card-sub-int-diff-finite [OF *] by simp

finally show ?thesis by simp

qed

If the degrees are reals we take the floor first

lemma rational-function-interpolation-correct-real:

20

fixes d’4 d'p:: real
assumes
card (sym-diff A B) < length E
VaecsetE.x¢ AV zcsetE.x ¢ B
fa=(Az € set E. poly (set-to-poly A) x)
fB = (A z € set E. poly (set-to-poly B) x)
CARD('m::mod-type) = length E
defines d’y = (real (length F) + card A — card B)/2
defines d'p = (real (length E) + card B — card A)/2
defines d4 = nat |d’'4]
defines dp = nat |d'p]
defines sol-poly = interpolate-rat-fun E (Xe. fa e / fp €) da dg TYPE('m)
shows
monic-interpolated-rational-function (fst sol-poly) (snd sol-poly) (set E) fa fB
d’y d'p
proof —
have e: d’4 > 0
unfolding d’4-def using sym-diff-bound-div2-ge0 assms(1) by auto

hence a: int do = |(real (length E) + real (card A) — real (card B)) /| 2]
using d’4-def unfolding d4-def by simp

have f: d'g > 0
unfolding d'g-def using sym-diff-bound-div2-ge0 assms(1) by (metis Un-commute)

hence b: int dg = |(real (length E) + real (card B) — real (card A)) / 2]
using d’'p-def unfolding dg-def by simp

have c¢: monic-interpolated-rational-function (fst sol-poly) (snd sol-poly) (set E)
fafp dadp
unfolding sol-poly-def interpolate-rat-fun-def
by (intro rational-function-interpolation-correct [OF a b assms(1—6)))
moreover have |d'4| = real (nat [d’4])
using e by (intro of-nat-nat[symmetric]) simp
moreover have |d'g| = real (nat |d’p])
using f by (intro of-nat-nat[symmetric]) simp
ultimately have
monic-interpolated-rational-function (fst sol-poly) (snd sol-poly) (set E) fa fB
(nat |d's]) (nat |d'5))
unfolding d 4-def dg-def
by simp
thus ?thesis unfolding monic-interpolated-rational-function-def
using assms(9,10) a b d'4-def d'g-def floor-of-nat by simp
qed

end

21

3 Factorisation of Polynomials

theory Fuactorisation
imports
Berlekamp-Zassenhaus. Finite-Field
Berlekamp-Zassenhaus. Finite-Field-Factorization
Elimination- Of- Repeated-Factors. ERF-Perfect- Field-Factorization
Elimination- Of-Repeated-Factors. ERF-Algorithm
begin

hide-const (open) Coset.order

hide-const (open) module.smult

hide-const (open) UnivPoly.coeff

hide-const (open) Formal-Power-Series.radical

lemma proots-finite-field-factorization:
assumes
square-free f
finite-field-factorization f = (¢, us)
shows proots f = sum-list (map proots us)
proof —
have fffp: f = smult ¢ (prod-list us) (V¥ u € set us. monic u A irreducible)
using finite-field-factorization-explicit assms by auto
then have 0 ¢ set us
by blast
then have proots (] u<us. u) = (> u+wus. proots u)
using proots-prod-list [ffp by auto
then show ?thesis using assms
by (simp add: fffp square-free-def)
qed

The following fact is an improved version of %z # 0 = squarefree ?x
= square-free ?x, which does not require the assumtion that p # 0.

lemma squarefree-square-free’:
fixes p :: ‘a:: field poly
shows squarefree p = square-free p
by (metis not-squarefree-0 square-free-def squarefree-square-free)

This function returns the roots of an irreducible polynomial:
fun eztract-root :: 'a:prime-card mod-ring poly = 'a mod-ring multiset where

extract-root p = (if degree p = 1 then {# — coeff p 0 #} else {#})

lemma degreel-monic:
assumes degree p = 1
assumes monic p

obtains ¢ where p = [:¢,1:]
proof —
obtain a b where op: p = [: b, a (]

using degreel-coeffs assms(1) by meson

22

then have a = 1
using assms by simp
then show ?thesis
using op using that by simp
qed

lemma extract-root:
assumes monic p irreducible p
shows extract-root p = proots p
proof —
consider (A) degree p = 0 | (B) degree p = 1 | (C) degree p > 1
by linarith
thus ?thesis
proof (cases)

case A
hence eztract-root p = {#} by simp
also have ... = proots 1 by simp
also have ... = proots p using A assms(1) monic-degree-0 by blast
finally show ?thesis by simp
next
case B

obtain ¢ where p-def: p = [:¢,1:]
using assms(1) B degreel-monic by blast

hence proots p = {#—c#}
using proots-linear-factor by blast
also have ... = extract-root p
unfolding p-def by simp
finally show ?thesis by simp
next
case C
have Fulse if © €4 proots p for z
proof —
have p # 0 using C by auto
hence poly p x = 0 using set-count-proots that by simp
thus Fulse using C' assms root-imp-reducible-poly by blast
qged
hence proots p = {#} by auto
also have ... = extract-root p
using C by simp
finally show ?thesis by simp
qed
qed

fun extract-roots :: 'a::prime-card mod-ring poly list = 'a mod-ring multiset where
extract-roots || = {#}

| extract-roots (p#ps) = extract-root p + extract-roots ps

lemma extract-roots:

23

YV p € set ps. monic p A irreducible p =
sum-list (map proots ps) = extract-roots ps
proof (induction ps)
case Nil
then show ?case by simp
next
case (Cons p ps)
have sum-list (map proots (p # ps)) = proots p + sum-list (map proots ps) by
stmp
also have ... = extract-root p + sum-list (map proots ps)
using Cons(2) by (subst extract-root) auto
also have ... = extract-roots (p # ps) using Cons by simp
finally show ?Zcase by simp
qed

lemma proots-extract-roots-factorized:
assumes squarefree p
shows proots p = extract-roots (snd (finite-field-factorization p))
proof —
have sf:square-free p
using squarefree-square-free’ assms by blast

have proots p = sum-list (map proots (snd (finite-field-factorization p)))
using proots-finite-field-factorization| OF sf] by (metis prod.collapse)
also have ... = extract-roots (snd (finite-field-factorization p))
using finite-field-factorization-explicit| OF sf]
by (intro extract-roots) (metis prod.collapse)
finally show ?thesis by simp
qed

3.1 Elimination of Repeated Factors

Wrapper around the ERF algorithm, which returns each factor with multi-
plicity in the input polynomial

function FRF’ where
ERF'p = (
if degree p = 0 then || else
let factors = ERF p in
ERF’ (p div (prod-list factors)) Q factors)
by auto

lemma degree-zero-iff-no-factors:
fixes p :: 'a :: {factorial-ring-gcd,semiring-ged-mult-normalize,field} poly
assumes p # 0
shows prime-factors p = {} «— degree p = 0
proof
assume prime-factors p = {}
hence is-unit p using assms
by (meson prime-factorization-empty-iff set-mset-eq-empty-iff)

24

thus degree p = 0
using poly-dvd-1 by blast
next
assume degree p = ()
thus prime-factors p = {} using assms prime-factors-degree0 by metis
qed

lemma ERF’-termination:

assumes degree p > 0

shows degree (p div prod-list (ERF p)) < degree p
proof (intro degree-div-less)

show p-ne-0: p # 0 using assms by auto

have a:radical p = prod-list (ERF p)
using p-ne-0 ERF-correct(1) by metis

show prod-list (ERF p) dvd p unfolding a[symmetric] by (rule radical-dvd)

have prime-factors p # {}
using p-ne-0 assms(1) degree-zero-iff-no-factors|OF p-ne-0] by simp
hence prime-factors (radical p) # {}
using p-ne-0 prime-factors-radical by metis
moreover have radical p # 0
using radical-eq-0-iff p-ne-0 by auto
ultimately have degree (radical p) > 0
using degree-zero-iff-no-factors by blast

thus degree (prod-list (ERF p)) # 0
using a by simp
qed

termination
using ERF’-termination
by (relation measure degree) auto

lemma ERF’-squarefree:
assumes z € set (ERF' p)
shows squarefree © using assms
proof (induct p rule: ERF'.induct)
case (I p)
define factors where factors = ERF p
show ?Zcase
proof (cases degree p > 0)
case True
hence a: ERF’ p = ERF’ (p div prod-list factors) Q factors
unfolding factors-def
by (subst ERF'.simps) (simp add:Let-def)
hence z € set (ERF’ (p div prod-list factors)) V = € set (factors)
using 1(2) unfolding a by simp

25

moreover have = € set (factors) = squarefree x
using ERF-correct(2) True factors-def
by (metis degree-0 order-less-irrefl)
ultimately show ?Zthesis
using 1(1)[OF - factors-def] True by auto
next
case Fulse
hence ERF'p =[] by simp
thus ?thesis using 1(2) by simp
qed
qed

lemma ERF-not0: p # 0 = 0 ¢ set (ERF p)
using ERF-correct(2) not-squarefree-0 by blast

lemma ERF'-not0: 0 ¢ set (ERF’ p)
using ERF’-squarefree not-squarefree-0 by blast

lemma ERF'-proots: proots ([] z<— ERF' p. x) = proots p
proof (induct p rule: ERF'.induct)
case (1 p)
show ?Zcase
proof (cases degree p > 0)
case True
let ?prod = prod-list (ERF p)

have a:ERF' p = ERF’ (p div ?prod) Q (ERF p)
unfolding factors-def
by (subst ERF'.simps) (simp add: Let-def)

have h: proots ([[z<ERF' (p div ?prod). z) = proots (p div ?prod)
using 1 True by simp

have p0: p # 0
using True by force
then have 10: ?prod # 0
using FRF-not0 by simp

have radical p dvd p

by simp
then have pdvd: ?prod dvd p

using ERF-correct(1) p0 by metis
then have d0: (p div ?prod) # 0

using p0 using dvd-div-eq-0-iff by blast

have proots (p div ?prod) + proots ?prod =

proots (p div ?prod * ?prod)
using proots-mult 10 d0 by metis

26

then have 1: proots p = proots (p div ?prod) + proots ?prod
using pdvd by simp

have ([[2+ ERF’' (p div ?prod). x) # 0
using ERF’'-not0 by force
then have proots ([[2« ERF' (p div ?prod). x) + proots ?prod
= proots (([[z<—ERF’ (p div ?prod). z) * ?prod)
using proots-mult 10 by metis
also have ... = proots ([[< FERF' p. z)
using a by force
finally have proots ([[x<—ERF' p. x) = proots (p div ?prod) + proots ?prod
using h by argo

then show ?thesis using 1 by argo
next
case Fulse
then have deg: degree p = 0
by simp
then have ERF' p = ||
by (subst ERF'.simps) simp
then have 1: proots ([[z<ERF’' p. z) = {#}
by simp
from deg obtain z where p = [:1]
using degree-eq-zeroE by blast
then have proots p = {#}
by simp
thus ?thesis using 1 by simp
qed
qed

3.2 Executable version of proots

fun proots-eff :: 'a::prime-card mod-ring poly = 'a mod-ring multiset where
proots-eff p = sum-list (map (extract-roots o snd o finite-field-factorization) (ERF’

)

lemma proots-eff-correct [code-unfold]: proots p = proots-eff p
proof —
have proots p = proots ([[z+ ERF'p. x)
using ERF’-proots by metis

also have ... = sum-list (map proots (ERF’ p))
using ERF’-squarefree not-squarefree-0 by (intro proots-prod-list) blast
also have ... = sum-list (map (extract-roots o snd o finite-field-factorization)
(ERF' p))

using proots-extract-roots-factorized|OF ERF’-squarefree]
by (intro arg-conglwhere f=sum-list] map-cong refl) (auto simp add:comp-def)
finally show ?thesis by simp
qed

27

3.3 Executable version of order

fun order-eff :: 'a mod-ring = 'a::prime-card mod-ring poly = nat where
order-eff x p = count (proots-eff p) x

lemma order-eff-code [code-unfold]: p # 0 = order z p = order-eff x p
unfolding order-eff.simps proots-eff-correct [symmetric] count-proots
by auto

end

4 Set Reconciliation Algorithm

theory Set-Reconciliation
imports
HOL— Library.FuncSet
HOL— Computational-Algebra. Polynomial
Factorisation
Rational-Function-Interpolation
begin

hide-const (open) up-ring.monom

The following locale introduces the context for the reconciliation algo-
rithm. It fixes parameters that are assumed to be known in advance, in
particular:

e a bound m on the symmetric difference: represented using the type
variable 'm

o the finite field used to represent the elements of the sets: represented
using the type variable 'a

o the evaluation points used (which must be choosen outside of the do-
main used to represent the elements of the sets): represented using the
variable F

To preserve generality as much as possible, we only present an interaction
protocol that allows one party Alice to send a message to the second party
Bob, who can reconstruct the set Alice has, assuming Bob holds a set himself,
whose symmetric difference does not exceed m.

Note that using this primitive, it is possible for Bob to compute the
union of the sets, and of course the algorithm can also be used to send a
message from Bob to Alice, such that Alice can do so as well. However, the
primitive we describe can be used in many other scenarios.

locale set-reconciliation-algorithm =
fixes E :: 'a :: prime-card mod-ring list
fixes phantom-m :: 'm::mod-type itself

28

assumes type-m: phantom-m = TYPE('m)

assumes distinct-E: distinct E

assumes card-m: CARD('m) = length E
begin

The algorithm—or, more precisely the protocol—is represented using a
pair of algorithms. The first is the encoding function which Alice used to
create the message she sends. The second is the decoding algorithm, which
Bob can use to reconstruct the set Alice has.

definition encode where
encode A = (card A, A z € set E. poly (set-to-poly A) x)

definition decode where
decode B R =
(let
(TL, fA) = R;
fB = (A z € set E. poly (set-to-poly B) x);
da = nat |(real (length E) + n — card B) | 2];
dp = nat |(real (length E) 4+ card B — n) / 2];
(pa,pB) = interpolate-rat-fun E (Ax. fa z / fp z) da dp phantom-m;
ra = proots-eff pa;
rg = proots-eff pp
mn
set-mset (ra — rg) U (B — (set-mset (rg — r4))))

4.1 Informal Description of the Algorithm

The protocol works as follows:

We association with each set A a polynomial xa(z) := [[;ca(x — s) in
the finite field F'. As mentioned before we reserve a set of m evaluation
points F, which can be arbitrary prearranged points, as long as they are
field elements not used to represent set elements.

Then Alice sends the size of its set |A| and the evaluation of its charac-
teristic polynomial on F.

Bob computes

b |18
A =

2
i = |ELEIEL A
B = 5

Then Bob finds monic polynomials p4, pp of degree d4 and dp fulfilling
the condition:

pa(x)xB(z) =pp(x)xa(X) forall z € E (1)

The above results in a system of linear equations, which can be solved using
Gaussian elimination. It is easy to show that the system is solvable since:
T

pa = xa-(r)w

29

pp = Xp-a(x)z"
is a solution, where r :==dy — |A — B| =dp — |B — A|.
The equation (Eq. 1) implies also:

pa(x)xB-a(z) = pp(x)xa—p(z) for all x € E (2)

since x4(z) = xa-B(x)xanB(2), xB(x) = XxB-A(2)XAnB(2), and Xanp(z) #
0, because of our constraint that E' is outside of the universe of the set ele-
ments. Btw. in general

xvuv = xuxv for any disjoint U, V.

Because the polynomials on both sides of Eq. 2 are monic polynomials
of the same degree m’, where m’ < m, and agree on m points, they must be
equal.

This implies in particular, that for the order of any root x (denoted by
ord,), we have:

ord;(paxp-a) = ord.(pBXxA-B)

which implies:
ord,(pa) — ord,(pp) = ordy(xp—4a) — ords(xa—B).

Note that by definition the right hand side is equal to +1if x € B— A, —1
if x € A— B and 0 otherwise. Thus Bob can compute A using

A :={z|ord,(pa) — ord,(pp) > 0} U (B — {z|ord,(pa) — ord,(pp) < 0}).

4.2 Lemmas

This is no longer used, but it will be needed if you implement decode using
an interpolation algorithm that does not return monic polynomials.

lemma interpolated-rational-function-eq:
assumes
YV z € set E. poly (set-to-poly A) x % poly pp x = poly (set-to-poly B) x x poly
pa T
degree pa < (real (length E) + card A — card B)/2
degree pg < (real (length E) + card B — card A)/2
card (sym-diff A B) < length E
set ENA={}set ENB={}
shows set-to-poly (A—B) * pp = set-to-poly (B—A) * pa
proof —
have fin: finite A finite B
by simp+

have dA: degree pa < (real (length E) + card (A—B) — card (B—A))/2

30

using assms(2) card-sub-int-diff-finite| OF fin] by simp
have dB: degree pp < (real (length E) + card (B—A) — card (A—B))/2
using assms card-sub-int-diff-finite[OF fin] by simp

have set-to-poly A = set-to-poly (A—B) * set-to-poly (A N B)

using set-to-poly-mult-distinct

by (metis Int-Diff-Un Int-Diff-disjoint mult.commute)
moreover have set-to-poly B = set-to-poly (B—A) * set-to-poly (A N B)

using set-to-poly-mult-distinct

by (metis Int-Diff-Un Int-Diff-disjoint Int-commute mult.commute)
ultimately have inFE: poly (set-to-poly (A—B) x pg) x = poly (set-to-poly (B—A)

* DA) X
if v € set E for z
using that assms by (auto simp: in-set-to-poly)

have real (degree (set-to-poly (A—B) x pg)) < real (card (A—B)) + degree pp
by (metis of-nat-add of-nat-le-iff degree-mult-le set-to-poly-degree)

also have ... < (real (length E) + (real(card (B—A)) + card (A—DB)))/2
using dB by simp

also have ... < (length E + length E) / 2
using assms(4) card-sym-diff-finite[OF fin] by simp

also have ... = length E by simp
finally have [: degree (set-to-poly (A—B) * pp) < length E
by simp

have real (degree (set-to-poly (B—A) * pa)) < real (card (B—A)) + degree pa
by (metis of-nat-add of-nat-le-iff degree-mult-le set-to-poly-degree)
also have ... < (length E + (card (B—A) + card (A—B)))/2
using dA by simp
also have ... < (length E + length E) / 2
using assms(4) card-sym-diff-finite[OF fin] by simp
also have ... = length E by simp
finally have r: degree (set-to-poly (B—A) * pa) < length E
by simp

have set-to-poly (A—B) x pp = set-to-poly (B—A) * pa
using [r inE poly-eql-degree distinct-card|OF distinct-FE)
by (intro poly-eql-degree[where A=set E]) auto
then show ?thesis .
qed

This is a specialized version of interpolated-rational-function-eq. Here
the interpolated function are monic with exact degrees.

lemma monic-interpolated-rational-function-eq:
assumes
YV z € set E. poly (set-to-poly A) x % poly pp x = poly (set-to-poly B) x x poly
pa T
degree py = |(real (length E) + card A — card B)/2]
degree pp = |(real (length E) 4+ card B — card A)/2]

31

card (sym-diff A B) < length E
set ENA={}set ENB={}
monic py monic pp
shows set-to-poly (A—B) * pp = set-to-poly (B—A) x pa (is ?lhs = ?rhs)
proof —
have fin: finite A finite B
by simp+
have p0: py # 0 pp # 0
using assms(7, 8) by auto

define m’ where m’ = [(real (length E) + card (B—A) + card (A—B))/2]

note s! = card-sub-int-diff-finite-real| OF fin]
note s2 = card-sub-int-diff-finite-real OF fin(2,1)]

have int (degree ?lhs) = int (card (A—DB)) + degree pp
using set-to-poly-degree p0 set-to-poly-not0 by (subst degree-mult-eq) auto

also have ... = | card (A—B) + (real (length E) + card (B—A) — card (A—B))/2]
using assms(3) s2 by (simp add: group-cancel.subl)
also have ... = m’ unfolding m’-def by argo

finally have a:int (degree ?lhs) = m’ by simp

have int (degree ?rhs) = int (card (B—A)) + degree pa
using set-to-poly-degree p0 set-to-poly-not0 by (subst degree-mult-eq) auto

also have ... = | card (B—A) + (real (length E) + card (A—B) — card (B—A4))/2]
using assms(2) s1 by (simp add: group-cancel.subl)
also have ... = m’ unfolding m’-def by argo

finally have b:int (degree ?rhs) = m’ by simp

have of-int m’ < (real (length E) + card (B—A) + card (A—B))/2
unfolding m’-def by linarith
also have ... < (real (length E) + real (length E))/2
using assms(4) card-sym-diff-finite[OF fin] by simp
also have ... < real (length E) by simp
also have ... = real (card (set F)) using distinct-E by (simp add: distinct-card)
finally have c¢: m’ < card (set E) by simp

have t1: set-to-poly A = set-to-poly (A—B) * set-to-poly (A N B)
by (subst set-to-poly-mult-distinct) (auto introl:arg-cong[where f=set-to-poly))

have t2: set-to-poly B = set-to-poly (B—A) * set-to-poly (A N B)
by (subst set-to-poly-mult-distinct) (auto introl:arg-cong[where f=set-to-poly))

have d: poly (set-to-poly (A—B) * pg) x = poly (set-to-poly (B—A) x pa) z if =
€ set E for x
proof —
have poly (set-to-poly (A N B)) z # 0
using in-set-to-poly assms(5,6) that by (metis IntE disjoint-iff)
thus %thesis using that assms(1) unfolding t1 t2 by auto

32

qed

show ?thesis
apply (intro poly-eql-degree-monic[where A= set E])
subgoal using a b by simp
subgoal using a ¢ by simp
subgoal using set-to-poly-lead-coeff monic-mult assms(8) by auto
subgoal using set-to-poly-lead-coeff monic-mult assms(7) by auto
using d by auto
qed

4.3 Main Result

This is the main result of the entry. We show that the decoding algorithm,
Bob uses, can reconstruct the set Alice has, if she has encoded with the
encoding algorithm. Assuming the symmetric difference between the sets
does not exceed the given bound.

theorem decode-encode-correct:
assumes
card (sym-diff A B) < length E
set ENA={}set ENB={}
shows decode B (encode A) = A
proof —
let 74 = (XA z € set E. poly (set-to-poly A) x)
let ?fp = (A z € set E. poly (set-to-poly B) x)
let ?da = (real (length E) + card A — card B) / 2
let ?dp = (real (length E) + card B — card A) | 2

define p where def-pq: p = interpolate-rat-fun E (Az. ?fa x / ?fp x) (nat
[2da]) (nat |2dg]|) TYPE('m)
define p4 pp where def-p-q: pa = fst p pp = snd p

have monic-interpolated-rational-function (fst p) (snd p) (set E) ?fa ?fp ?da
?dp
unfolding def-pq
using assms card-m by (intro rational-function-interpolation-correct-real) auto
then have monic-interpolated-rational-function pa pp (set E) ?fa ?fp ?da ?dp
using def-p-q by simp

then have irf: V e € set E. ?f4 e * poly pp e = ?fp e x poly pa e
degree pa = floor ?d degree pg = floor ?dp
monic ps monic pp
unfolding monic-interpolated-rational-function-def by auto

have n0: pa # 0pg # 0
using monic0 irf by auto

have Vz€ set E. poly (set-to-poly A) z = poly pp x = poly (set-to-poly B) x *
poly pa x

33

using irf(1) by simp
then have ieq: set-to-poly (A—DB) * pp = set-to-poly (B—A) * pa
using assms irf by (intro monic-interpolated-rational-function-eq) auto

have order x (set-to-poly (A—B) % pg) = order x (set-to-poly (A—B)) + order z
pp for z
using irf(5) n0 by (simp add: order-mult)
moreover have order x (set-to-poly (B—A) * pa) = order x (set-to-poly (B—A))
+ order x pa for z
using irf(4) n0 by (simp add: order-mult)
ultimately have order z (set-to-poly (A—B)) + order © pp =
order x (set-to-poly (B—A)) + order x py for x
using ieq by simp
hence int (order x (set-to-poly (A—B))) + int (order z pp) =
int (order x (set-to-poly (B—A))) + int (order x pa) for x
using of-nat-add by metis
then have oif: int (order x (set-to-poly (A—B))) — int (order x (set-to-poly
(B—A))) =
int (order x pa) — int (order z pg) for x
by (simp add:field-simps)

have int (order pa) — int (order z pg) > 1 «— z € (A—B) for ¢
unfolding oif[symmetric] set-to-poly-order by simp
hence a-minus-b: {z. order x pa > order z pg} = A—B by force

have int (order pa) — int (order z pp) < —1 +— z € (B—A) for z
unfolding oif [symmetric] set-to-poly-order by simp
hence b-minus-a: {z. order x pg > order x pa} = B—A by force

have {z. order x py > order z pg} U (B — {z. order x ps < order x pg}) = A
unfolding a-minus-b b-minus-a by auto

moreover have decode B (encode A) =
set-mset (proots-eff pa — proots-eff pg) U (B — (set-mset (proots-eff pp —
proots-cff pa))
unfolding decode-def encode-def Let-def def-p-q def-pq
using type-m by (simp add:case-prod-beta del:proots-eff.simps)
moreover have ... = {z. order x pa > order x pp} U (B — {z. order z pp
> order x pa})
unfolding proots-eff-correct [symmetric]
using irf(4,5) n0 by (auto simp: set-mset-diff)

ultimately show %thesis by argo
qed

end

end

34

References

[1] Y. Minsky, A. Trachtenberg, and R. Zippel. Set reconciliation with nearly
optimal communication complexity. IEEE Transactions on Information
Theory, 49(9):2213-2218, 2003.

35

	Preliminary Results
	Characteristic Polynomial

	Rational Function Interpolation
	Definitions
	Preliminary Results
	On 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 solution-to-poly
	Correctness
	Main lemma

	Factorisation of Polynomials
	Elimination of Repeated Factors
	Executable version of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 proots
	Executable version of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 order

	Set Reconciliation Algorithm
	Informal Description of the Algorithm
	Lemmas
	Main Result

