
A Set Reconciliation Algorithm

Paul Hofmeier and Emin Karayel

January 25, 2026

Abstract

This entry formally verifies the set reconciliation algorithm with
nearly optimal communication complexity, due to Y. Minsky et al. [1].
The algorithm allows two communication partners, who have a similar
pair of sets to reconcile them while using messages of nearly optimal
size, proportional to a bound on the maximum symmetric difference
between the sets.

The formalization also introduces an optimization, which reduces
the communication complexity even further compared to the original
publication.

Contents
1 Preliminary Results 2

1.1 Characteristic Polynomial . 2

2 Rational Function Interpolation 5
2.1 Definitions . 5
2.2 Preliminary Results . 7
2.3 On solution-to-poly . 9
2.4 Correctness . 11
2.5 Main lemma . 19

3 Factorisation of Polynomials 22
3.1 Elimination of Repeated Factors 24
3.2 Executable version of proots 27
3.3 Executable version of order 28

4 Set Reconciliation Algorithm 28
4.1 Informal Description of the Algorithm 29
4.2 Lemmas . 30
4.3 Main Result . 33

1

1 Preliminary Results
theory Poly-Lemmas

imports
HOL−Computational-Algebra.Polynomial
Polynomial-Interpolation.Missing-Polynomial

begin

lemma card-sub-int-diff-finite:
assumes finite A finite B
shows int (card A) − card B = int (card (A−B)) − card (B−A)
using assms card-add-diff-finite by fastforce

lemma card-sub-int-diff-finite-real:
assumes finite A finite B
shows real (card A) − card B = real (card (A−B)) − card (B−A)
using assms card-add-diff-finite by fastforce

1.1 Characteristic Polynomial
The characteristic polynomial associated to a set:
definition set-to-poly :: ′a::finite-field set ⇒ ′a poly where

set-to-poly A ≡
∏

a ∈ A. [:−a,1 :]

lemma set-to-poly-correct: {x. poly (set-to-poly A) x = 0} = A
proof (induct A rule: infinite-finite-induct)

case (infinite A)
then show ?case by simp

next
case empty
then show ?case unfolding set-to-poly-def by simp

next
case (insert x F)
have set-to-poly (insert x F) = set-to-poly F ∗ [:−x,1 :]

unfolding set-to-poly-def by (simp add: insert.hyps(2))
also have {xa. poly (set-to-poly F ∗ [:−x,1 :]) xa = 0} =
{xa. poly (set-to-poly F) xa = 0} ∪ {xa. poly ([:−x,1 :]) xa = 0}

by auto
moreover have 2 : {xa. poly (set-to-poly F) xa = 0} = F

by (simp add: insert.hyps(3))
moreover have 3 : {xa. poly ([:−x,1 :]) xa = 0} = {x}

by auto
ultimately have {xa. poly (set-to-poly (insert x F)) xa = 0} = F ∪ {x}

by simp
then show ?case by simp

qed

lemma in-set-to-poly: poly (set-to-poly A) x = 0 ←→ x ∈ A
using set-to-poly-correct

2

by auto

lemma set-to-poly-not0 [simp]: set-to-poly A 6= 0
unfolding set-to-poly-def by auto

lemma set-to-poly-empty[simp]: set-to-poly {} = 1
unfolding set-to-poly-def by simp

lemma set-to-poly-inj: inj set-to-poly
by (metis injI set-to-poly-correct)

lemma rsquarefree-set-to-poly: rsquarefree (set-to-poly A)
proof (induct A rule: infinite-finite-induct)

case (infinite A)
then show ?case by simp

next
case empty
then show ?case

by (simp add: rsquarefree-def set-to-poly-def)
next

case (insert x F)
then have 1 : set-to-poly (insert x F) = set-to-poly F ∗ [:−x,1 :]

by (simp add: set-to-poly-def)

have rsquarefree [:−x,1 :]
using rsquarefree-single-root by simp

also have poly (set-to-poly F) x 6= 0
using insert by (simp add: in-set-to-poly)

moreover have poly ([:−x,1 :]) x = 0
using insert by simp

ultimately have rsquarefree(set-to-poly F ∗ [:−x,1 :])
using insert(3) rsquarefree-mul by fastforce

then show ?case using 1
by simp

qed

lemma set-to-poly-insert:
assumesx /∈ A
shows set-to-poly (insert x A) = set-to-poly A ∗ [:−x,1 :]
using assms set-to-poly-def by (simp add: set-to-poly-def)

lemma set-to-poly-mult: set-to-poly X ∗ set-to-poly Y = set-to-poly (X ∪ Y) ∗
set-to-poly (X ∩ Y)

by (simp add: prod.union-inter set-to-poly-def)

lemma set-to-poly-mult-distinct:
assumes X ∩ Y = {}
shows set-to-poly X ∗ set-to-poly Y = set-to-poly (X ∪ Y)

3

by (simp add: set-to-poly-mult assms)

lemma set-to-poly-degree:
degree (set-to-poly A) = card A

proof (induct A rule: infinite-finite-induct)
case (infinite A)
then show ?case by auto

next
case empty
then show ?case by auto

next
case (insert x F)
have [:−x, 1 :] 6= 0 and set-to-poly F 6= 0

using set-to-poly-not0 by auto
then have degree (set-to-poly F ∗ [:−x, 1 :]) = degree (set-to-poly F) + degree

[:−x, 1 :]
using degree-mult-eq by blast

also have set-to-poly (insert x F) = set-to-poly F ∗ [:−x, 1 :]
using insert set-to-poly-insert by simp

ultimately show ?case using insert
by simp

qed

lemma set-to-poly-order :
order x (set-to-poly A) = (if x ∈ A then 1 else 0)
by (simp add: in-set-to-poly order-0I rsquarefree-root-order rsquarefree-set-to-poly)

lemma set-to-poly-lead-coeff : lead-coeff (set-to-poly A) = 1
proof (induct A rule: infinite-finite-induct)

case (infinite A)
then show ?case by auto

next
case empty
then show ?case by auto

next
case (insert x A)
then have ins: set-to-poly (insert x A) = set-to-poly A ∗ [:−x,1 :]

unfolding set-to-poly-def by simp
then show ?case

unfolding ins lead-coeff-mult using insert by simp
qed

lemma degree-sub-lead-coeff :
assumes degree p > 0
shows degree (p − monom (lead-coeff p) (degree p)) < degree p
using assms by (simp add: coeff-eq-0 degree-lessI)

lemma remove-lead-from-monic:
fixes p q :: ′a :: field poly

4

assumes monic p
assumes degree p > 0
shows degree (p − monom 1 (degree p)) < degree p
using degree-sub-lead-coeff [OF assms(2)] assms(1) by simp

lemma poly-eqI-degree-monic:
fixes p q :: ′a :: field poly
assumes degree p = degree q
assumes degree p ≤ card A
assumes monic p monic q
assumes

∧
x. x ∈ A =⇒ poly p x = poly q x

shows p = q
proof (cases degree p > 0)

case True
have degree (p − monom 1 (degree p)) < card A

using remove-lead-from-monic[OF assms(3)] True assms(2) by simp
moreover have degree (q − monom 1 (degree q)) < card A

using remove-lead-from-monic[OF assms(4)] True assms(1 ,2) by simp
ultimately have p − monom 1 (degree p) = q − monom 1 (degree q)

using assms(1 ,5) by (intro poly-eqI-degree[of A]) auto
thus ?thesis using assms(1) by simp

next
case False
hence degree p = 0 degree q = 0 using assms(1) by auto
thus p = q using assms(3 ,4) monic-degree-0 by blast

qed

end

2 Rational Function Interpolation
theory Rational-Function-Interpolation

imports
Poly-Lemmas
Gauss-Jordan.System-Of-Equations
Polynomial-Interpolation.Missing-Polynomial

begin

2.1 Definitions
General condition for rational functions interpolation
definition interpolated-rational-function where

interpolated-rational-function pA pB E f A f B dA dB ≡
(∀ e ∈ E . f A e ∗ poly pB e = f B e ∗ poly pA e) ∧
degree pA ≤ (dA::real) ∧ degree pB ≤ (dB ::real) ∧
pA 6= 0 ∧ pB 6= 0

Interpolation condition with given exact degrees
definition monic-interpolated-rational-function where

5

monic-interpolated-rational-function pA pB E f A f B dA dB ≡
(∀ e ∈ E . f A e ∗ poly pB e = f B e ∗ poly pA e) ∧
degree pA = bdA::realc ∧ degree pB = bdB ::realc ∧
monic pA ∧ monic pB

lemma monic0 : ¬ monic (0 :: ′a::zero-neq-one poly)
by simp

lemma monic-interpolated-rational-function-interpolated-rational-function:
monic-interpolated-rational-function pA pB E f A f B dA dB

=⇒ interpolated-rational-function pA pB E f A f B dA dB ∨ ¬(pA 6= 0 ∧ pB 6=
0)
unfolding monic-interpolated-rational-function-def interpolated-rational-function-def
by linarith

definition rfi-coefficient-matrix :: ′a::field list ⇒ (′a ⇒ ′a) ⇒ nat ⇒ nat
⇒ nat ⇒ nat ⇒ ′a where

rfi-coefficient-matrix E f dA dB i j = (
if j < dA then
(E ! i) ^ j

else if j < dA + dB then
− f (E ! i) ∗ (E ! i) ^ (j−dA)

else 0
)

definition rfi-constant-vector :: ′a::field list ⇒ (′a ⇒ ′a) ⇒ nat ⇒ nat ⇒ (nat ⇒
′a) where

rfi-constant-vector E f dA dB = (λ i. f (E ! i) ∗ (E ! i) ^ dB − (E ! i) ^ dA)

definition rational-function-interpolation :: ′a::field list ⇒ (′a ⇒ ′a)⇒ nat ⇒ nat
⇒ ′m::mod-type itself ⇒ (′a, ′m) vec where

rational-function-interpolation E f dA dB m =
(let solved = solve
(χ (i:: ′m) (j:: ′m). rfi-coefficient-matrix E f dA dB (to-nat i) (to-nat j))
(χ (i:: ′m). rfi-constant-vector E f dA dB (to-nat i))

in fst (the solved))

definition solution-to-poly :: (′a::finite-field, ′n::mod-type) vec ⇒
nat ⇒ nat ⇒ ′a poly × ′a poly where

solution-to-poly S dA dB = (let
p = Abs-poly (λi. if i < dA then S $ (from-nat i) else 0) + monom 1 dA;
q = Abs-poly (λi. if i < dB then S $ (from-nat (i+dA)) else 0) + monom 1

dB in
(p, q))

definition interpolate-rat-fun where
interpolate-rat-fun E f dA dB m =
solution-to-poly (rational-function-interpolation E f dA dB m) dA dB

6

2.2 Preliminary Results
lemma consecutive-sum-combine:

assumes m ≥ n
shows (

∑
i = 0 ..n. f i) + (

∑
i = Suc n ..m. f i) = (

∑
i = 0 ..m. f i)

proof −
from assms have {0 ..n} ∪ {Suc n..m} = {0 ..m}

by auto
moreover have sum f ({0 ..n} ∪ {Suc n..m}) =

sum f ({0 ..n} − {Suc n..m}) + sum f ({Suc n..m} − {0 ..n}) + sum f ({0 ..n}
∩ {Suc n..m})

using sum-Un2 finite-atLeastAtMost by fast
ultimately show ?thesis

by (simp add: Diff-triv)
qed

lemma poly-altdef-Abs-poly-le:
fixes x :: ′a::{comm-semiring-0 , semiring-1}
shows poly (Abs-poly (λi. if i ≤ n then f i else 0)) x = (

∑
i = 0 ..n. f i ∗ x ^ i)

proof −
let ?if A0 = (λi. if i ≤ n then f i else 0)
let ?p = Abs-poly ?if A0

have co: coeff ?p = ?if A0
using coeff-Abs-poly-If-le by blast

then have ∀ i>n. coeff ?p i = 0
by auto

then have de: degree ?p ≤ n
using degree-le by blast

have ∀ i>degree ?p. ?if A0 i = 0
using co coeff-eq-0 by fastforce

then have ∀ i>degree ?p. ?if A0 i ∗ x ^ i = 0
by simp

then have ∀ i ∈ {Suc (degree ?p)..n}. (?if A0 i ∗ x ^ i) = 0
using less-eq-Suc-le by fastforce

then have db: (
∑

i = Suc (degree ?p)..n. ?if A0 i ∗ x ^ i) = 0
by simp

have poly ?p x = (
∑

i≤degree ?p. coeff ?p i ∗ x ^ i)
using poly-altdef by auto

also have . . . = (
∑

i≤degree ?p. ?if A0 i ∗ x ^ i)
using co by simp

also have . . . = (
∑

i = 0 ..degree ?p. ?if A0 i ∗ x ^ i)
using atMost-atLeast0 by simp

also have . . . = (
∑

i = 0 ..degree ?p. ?if A0 i ∗ x ^ i) +
(
∑

i = Suc (degree ?p)..n. ?if A0 i ∗ x ^ i)
using db by simp

also have . . . = (
∑

i = 0 ..n. ?if A0 i ∗ x ^ i)

7

using consecutive-sum-combine de by blast
finally show ?thesis

by simp
qed

lemma poly-altdef-Abs-poly-l:
fixes x :: ′a::{comm-semiring-0 ,semiring-1}
shows poly (Abs-poly (λi. if i < n then f i else 0)) x = (

∑
i<n. f i ∗ x ^ i)

proof (cases n)
case 0
have p0 : Abs-poly (λi. 0) = 0

using zero-poly-def by fastforce
show ?thesis

using 0 by (simp add: p0)
next

case (Suc m)
have poly (Abs-poly (λi. if i ≤ m then f i else 0)) x = (

∑
i = 0 ..m. f i ∗ x ^ i)

using poly-altdef-Abs-poly-le by blast
moreover have poly (Abs-poly (λi. if i ≤ m then f i else 0)) x = poly (Abs-poly

(λi. if i < n then f i else 0)) x
using Suc using less-Suc-eq-le by auto

moreover have (
∑

i = 0 ..m. f i ∗ x ^ i) = (
∑

i<n. f i ∗ x ^ i)
using Suc atLeast0AtMost lessThan-Suc-atMost by presburger

ultimately show ?thesis by argo
qed

lemma degree-Abs-poly-If-l:
assumes n 6= 0
shows degree (Abs-poly (λi. if i < n then f i else 0)) < n

proof −
have coeff (Abs-poly (λi. if i < n then f i else 0)) x = 0 if x ≥ n for x

using coeff-Abs-poly [of n (λi. if i < n then f i else 0)] using that by simp
then show ?thesis

using assms degree-lessI by blast
qed

lemma nth-less-length-in-set-eq:
shows (∀ i < length E . f (E ! i) = g (E ! i)) ←→ (∀ e ∈ set E . f e = g e)

proof standard
show ∀ i < length E . f (E ! i) = g (E ! i) =⇒ ∀ e∈set E . f e = g e

using in-set-conv-nth by metis
next

show ∀ e∈set E . f e = g e =⇒ ∀ i<length E . f (E ! i) = g (E ! i)
by simp

qed

lemma nat-leq-real-floor : real (i::nat) ≤ (d::real) ←→ real i ≤ bdc (is ?l = ?r)
proof

assume ?l

8

then show ?r
using floor-mono by fastforce

next
assume ?r
then show ?l

by linarith
qed

lemma mod-type-less-function-eq:
fixes i :: ′a::mod-type
assumes ∀ i < CARD(′a) . f i = g i
shows f (to-nat i) = g (to-nat i)
using assms by (simp add: to-nat-less-card)

2.3 On solution-to-poly
lemma fst-solution-to-poly-nz:

fst (solution-to-poly S dA dB) 6= 0
proof

assume fst (solution-to-poly S dA dB) = 0
hence coeff (Abs-poly (λi. if i < dA then S $ (from-nat i) else 0) + monom 1

dA) dA = 0
unfolding solution-to-poly-def by simp

hence coeff (Abs-poly (λi. if i < dA then S $ (from-nat i) else 0)) dA + 1 = 0
by simp

thus False by (subst (asm) coeff-Abs-poly[where n=dA]) auto
qed

lemma snd-solution-to-poly-nz:
snd (solution-to-poly S dA dB) 6= 0

proof
assume snd (solution-to-poly S dA dB) = 0
hence coeff (Abs-poly (λi. if i < dB then S $ (from-nat (i+dA)) else 0) +

monom 1 dB) dB = 0
unfolding solution-to-poly-def by simp

hence coeff (Abs-poly (λi. if i < dB then S $ (from-nat (i+dA)) else 0)) dB +
1 = 0 by simp

thus False by (subst (asm) coeff-Abs-poly[where n=dB]) auto
qed

lemma degree-Abs0p1 : degree (Abs-poly (λi. 0) + 1) = 0
by (metis add-0 degree-1 zero-poly-def)

lemma degree-solution-to-poly-fst:
degree (fst (solution-to-poly S dA dB)) = dA

proof (cases dA)
case 0
then show ?thesis unfolding solution-to-poly-def

using degree-Abs0p1 by (simp add: one-pCons)

9

next
case (Suc nat)
then have degree (Abs-poly (λi. if i < dA then S $ from-nat i else 0)) < dA

using degree-Abs-poly-If-l by fast
moreover have . . . = degree (monom (1 :: ′a) dA)

by (simp add: degree-monom-eq)
ultimately show ?thesis

unfolding solution-to-poly-def
by (simp add: degree-add-eq-right)

qed

lemma degree-solution-to-poly-snd:
degree (snd (solution-to-poly S dA dB)) = dB

proof (cases dB)
case 0
then show ?thesis unfolding solution-to-poly-def

using degree-Abs0p1 by (simp add: one-pCons)
next

case (Suc nat)
then have degree (Abs-poly (λi. if i < dB then S $ from-nat (i + dA) else 0))

< dB

using degree-Abs-poly-If-l by fast
moreover have . . . = degree (monom (1 :: ′a) dB)

by (simp add: degree-monom-eq)
ultimately show ?thesis

unfolding solution-to-poly-def
by (simp add: degree-add-eq-right)

qed

lemma monic-solution-to-poly-snd:
monic (snd (solution-to-poly S dA dB))

proof (cases dB)
case 0
then show ?thesis unfolding solution-to-poly-def

by (simp add: coeff-Abs-poly degree-Abs0p1)
next

case (Suc x)
have 1 : coeff (Abs-poly (λi. if i < Suc x then S $ from-nat (i + dA) else 0))

(Suc x) = 0
by (simp add: coeff-eq-0 degree-Abs-poly-If-l)

have degree (Abs-poly (λi. if i < dB then S $ from-nat (i + dA) else 0) +
monom 1 dB) = dB

using degree-solution-to-poly-snd unfolding solution-to-poly-def by auto
then show ?thesis

unfolding solution-to-poly-def using 1 Suc by simp
qed

lemma monic-solution-to-poly-fst:
monic (fst (solution-to-poly S dA dB))

10

proof (cases dA)
case 0
then show ?thesis

unfolding solution-to-poly-def by (simp add: coeff-Abs-poly degree-Abs0p1)
next

case (Suc x)
have 1 : coeff (Abs-poly (λi. if i < dA then S $ (from-nat i) else 0)) (Suc x) = 0

by (simp add: Suc coeff-eq-0 degree-Abs-poly-If-l)
have degree (Abs-poly (λi. if i < dA then S $ (from-nat i) else 0) + monom 1

dA) = dA

using degree-solution-to-poly-fst unfolding solution-to-poly-def by auto
then show ?thesis

unfolding solution-to-poly-def using 1 Suc by simp
qed

2.4 Correctness
Needs the assumption that the system is consistent, because a solution exists.
lemma rational-function-interpolation-correct-poly:

assumes
∀ x ∈ set E . f x = f A x / f B x ∀ x ∈ set E . f B x 6= 0
dA + dB ≤ length E
CARD(′m::mod-type) = length E
consistent (χ (i:: ′m) (j:: ′m). rfi-coefficient-matrix E f dA dB (to-nat i) (to-nat

j))
(χ (i:: ′m). rfi-constant-vector E f dA dB (to-nat i))

S = rational-function-interpolation E f dA dB TYPE(′m)
pA = fst (solution-to-poly S dA dB)
pB = snd (solution-to-poly S dA dB)

shows
∀ e ∈ set E . f A e ∗ poly pB e = f B e ∗ poly pA e

proof −

let ?coeff = rfi-coefficient-matrix E f dA dB

let ?const = rfi-constant-vector E f dA dB

let ?coeff ′ = (χ (i:: ′m) (j:: ′m). ?coeff (to-nat i) (to-nat j))
let ?const ′ = (χ (i:: ′m). ?const (to-nat i))

have is-solution S ?coeff ′ ?const ′

by (simp add: assms(5 ,6) consistent-imp-is-solution-solve rational-function-interpolation-def)
then have sol: ?coeff ′ ∗v S = ?const ′

by (simp add: is-solution-def)

have const: ?const i = ?const ′ $ from-nat i if i < length E for i
by (simp add: assms(4) that to-nat-from-nat-id)

have coeff : ?coeff i j = ?coeff ′ $ from-nat i $ from-nat j
if i < length E j < length E for i j

proof −

11

have to-nat (from-nat i :: ′m) = i
using that assms(4)
by (intro to-nat-from-nat-id) simp

moreover have to-nat (from-nat j :: ′m) = j
using that assms(4 ,3)
by (intro to-nat-from-nat-id) simp

ultimately show ?thesis
unfolding rfi-coefficient-matrix-def
by (simp add: Let-def)

qed

have x: (
∑

j < dA + dB . (?coeff i j) ∗ S $ (from-nat j)) = ?const i
(is ?l = ?r) if i < length E for i

proof −
have ?l = (

∑
j < length E . ?coeff i j ∗ S $ (from-nat j))

using assms(3) by (intro sum.mono-neutral-cong-left) (auto simp add:rfi-coefficient-matrix-def)
also have ... = (

∑
j < length E . ?coeff ′ $ (from-nat i) $ (from-nat j) ∗ S $

(from-nat j))
using coeff that by auto

also have . . . = (
∑

j ∈ {0 ..< length E}. ?coeff ′ $ (from-nat i) $ (from-nat j)
∗ S $ (from-nat j))

by (intro sum.reindex-bij-betw [symmetric] bij-betwI [where g = id]) auto
also have . . . = (

∑
j∈(UNIV :: ′m set). ?coeff ′ $ (from-nat i) $ j ∗ S $ j)

using bij-from-nat [where ′a = ′m] assms(3 ,4) by (intro sum.reindex-bij-betw)
simp

also have . . . = (?coeff ′ ∗v S) $ (from-nat i)
unfolding matrix-vector-mult-def by simp

also have . . . = ?const ′ $ (from-nat i)
using sol by simp

finally show ?l = ?r using const that by simp
qed

let ?p-lam = λi. if i < dA then S $ from-nat i else 0
let ?q-lam = λi. if i < dB then S $ from-nat (i + dA) else 0
let ?p ′ = Abs-poly ?p-lam + monom 1 dA

let ?q ′ = Abs-poly ?q-lam + monom 1 dB

have pq: pA = ?p ′ pB = ?q ′

using assms(7 ,8) unfolding solution-to-poly-def by auto

have (
∑

j<dA. S $ from-nat j ∗ E ! i ^ j) − f (E ! i) ∗ (
∑

j<dB . S $ from-nat
(j + dA) ∗ E ! i ^ j)

= f (E ! i) ∗ E ! i ^ dB − E ! i ^ dA if i < length E for i
proof −

let ?pq-lam = (λj. (if j < dA then E ! i ^ j else
if j < dA + dB then − f (E ! i) ∗ E ! i ^ (j − dA) else 0) ∗ S $ from-nat j)

have reindex: (
∑

j ∈ {dA..< dA + dB}. − f (E ! i) ∗ E ! i ^ (j − dA) ∗ S $
from-nat j) =

(
∑

j ∈ {0 ..< dB}. − f (E ! i) ∗ E ! i ^ (j) ∗ S $ from-nat (j+dA))

12

by (rule sum.reindex-bij-witness [of - λi. i + dA λi. i − dA]) auto

from x have f (E ! i) ∗ E ! i ^ dB − E ! i ^ dA = (
∑

j<dA + dB . ?pq-lam j
)

unfolding rfi-coefficient-matrix-def rfi-constant-vector-def using that by simp
also have . . . = (

∑
j ∈ {0 ..< dA + dB}. ?pq-lam j)

using atLeast0LessThan by presburger
also have . . . = (

∑
j ∈ {0 ..< dA}. ?pq-lam j) + (

∑
j ∈ {dA..< dA + dB}.

?pq-lam j)
by (subst sum.atLeastLessThan-concat) auto

also have . . . = (
∑

j ∈ {0 ..< dA}. E ! i ^ j ∗ S $ from-nat j) +
(
∑

j ∈ {dA..< dA + dB}. − f (E ! i) ∗ E ! i ^ (j − dA) ∗ S $ from-nat j)
by auto

also have . . . = (
∑

j ∈ {0 ..< dA}. E ! i ^ j ∗ S $ from-nat j) +
(
∑

j ∈ {0 ..< dB}. − f (E ! i) ∗ E ! i ^ (j) ∗ S $ from-nat (j+dA))
using reindex by simp

also have . . . = (
∑

j ∈ {0 ..< dA}. E ! i ^ j ∗ S $ from-nat j) +
− f (E ! i) ∗ (

∑
j ∈ {0 ..< dB}. E ! i ^ (j) ∗ S $ from-nat (j+dA))

by (simp add: sum-distrib-left mult.commute mult.left-commute)
finally have f (E ! i) ∗ E ! i ^ dB − E ! i ^ dA = . . .

by argo

moreover have (
∑

j ∈ {0 ..< dA}. E ! i ^ j ∗ S $ from-nat j) =
(
∑

j<dA. S $ from-nat j ∗ E ! i ^ j)
by (subst atLeast0LessThan) (meson mult.commute)

moreover have (
∑

j ∈ {0 ..< dB}. E ! i ^ (j) ∗ S $ from-nat (j+dA)) =
(
∑

j<dB . S $ from-nat (j + dA) ∗ E ! i ^ j)
by (subst atLeast0LessThan) (meson mult.commute)

ultimately show ?thesis
by simp

qed

then have ∀ e ∈ set E . (
∑

j<dA. S $ from-nat j ∗ e ^ j) − f e ∗ (
∑

j<dB . S $
from-nat (j + dA) ∗ e ^ j)

= f e ∗ e ^ dB − e ^ dA

by (subst nth-less-length-in-set-eq [symmetric]) auto

then have (
∑

i<dA. S $ from-nat i ∗ e ^ i) − f e ∗ (
∑

i<dB . S $ from-nat (i
+ dA) ∗ e ^ i)

= f e ∗ e ^ dB − e ^ dA if e ∈ set E for e
using that by blast

then have (
∑

i<dA. S $ from-nat i ∗ e ^ i) + e ^ dA

= f e ∗ e ^ dB + f e ∗ (
∑

i<dB . S $ from-nat (i + dA) ∗ e ^ i) if e ∈ set E
for e

using that by (simp add:field-simps)

then have f e ∗ ((
∑

i<dB . S $ from-nat (i + dA) ∗ e ^ i) + e ^ dB) =
(
∑

i<dA. S $ from-nat i ∗ e ^ i) + e ^ dA if e ∈ set E for e

13

using that by (simp add: ring-class.ring-distribs(1))

then have f e ∗ (poly (Abs-poly ?q-lam) e + poly (monom 1 dB) e) =
poly (Abs-poly ?p-lam) e + poly (monom 1 dA) e if e ∈ set E for e

unfolding poly-altdef-Abs-poly-l poly-monom using that by auto

then have f e ∗ (poly (Abs-poly ?q-lam) e + poly (monom 1 dB) e) =
poly (Abs-poly ?p-lam) e + poly (monom 1 dA) e if e ∈ set E for e

using that by simp
then have f e ∗ poly (Abs-poly ?q-lam + monom 1 dB) e =

poly (Abs-poly ?p-lam + monom 1 dA) e if e ∈ set E for e
by (simp add: that)

then have (f A e / f B e) ∗ poly ?q ′ e = poly ?p ′ e if e ∈ set E for e
using that assms(1) by simp

then have f A e ∗ poly ?q ′ e = f B e ∗ poly ?p ′ e if e ∈ set E for e
using that by (simp add: assms(2) nonzero-divide-eq-eq)

then have ∀ e∈set E . f A e ∗ poly (snd (solution-to-poly S dA dB)) e =
f B e ∗ poly (fst (solution-to-poly S dA dB)) e

unfolding solution-to-poly-def by auto
then show ∀ e∈set E . f A e ∗ poly pB e = f B e ∗ poly pA e

using assms(8 ,7) by simp
qed

lemma poly-lead-coeff-extract:
poly p x = (

∑
i<degree p. coeff p i ∗ x ^ i) + lead-coeff p ∗ x ^ degree p

for x :: ′a::{comm-semiring-0 ,semiring-1}
unfolding poly-altdef using lessThan-Suc-atMost sum.lessThan-Suc by auto

lemma dA-dB-helper :
assumes

finite A finite B
int dA = b(real (length E) + card A − card B)/2 c
int dB = b(real (length E) + card B − card A)/2 c
card (sym-diff A B) ≤ length E

shows
dA + dB ≤ length E
card (A − B) ≤ dA card (B − A) ≤ dB

dB − card (B − A) = dA − card (A − B)
proof −

have a: real dA = of-int b(real (length E) + card A − card B)/2 c
using assms(3) by simp

have b: real dB = of-int b(real (length E) + card B − card A)/2 c
using assms(4) by simp

have real dA + real dB ≤ (real (length E)+card A−card B)/2 + (real (length
E)+card B−card A)/2

unfolding a b by (intro add-mono) linarith+
also have . . . = real (length E) by argo
finally have real dA + real dB ≤ length E by simp

14

thus dA + dB ≤ length E by simp

have real (card (A − B)) = (real (card (sym-diff A B)) + real (card A) − real
(card B))/2

unfolding card-sym-diff-finite[OF assms(1 ,2)] using card-sub-int-diff-finite[OF
assms(1 ,2)]

by simp
also have . . . ≤ (real (length E) + real (card A) − real (card B))/2

using assms(5) by simp
finally have real (card (A−B)) ≤ dA

unfolding a using nat-leq-real-floor by blast
thus c:card (A−B) ≤ dA by auto

have real (card (B − A)) = (real (card (sym-diff A B)) + real (card B) − real
(card A))/2

unfolding card-sym-diff-finite[OF assms(1 ,2)] using card-sub-int-diff-finite[OF
assms(1 ,2)]

by simp
also have . . . ≤ (real (length E) + real (card B) − real (card A))/2

using assms(5) by simp
finally have real (card (B−A)) ≤ dB

unfolding b using nat-leq-real-floor by blast
thus d:card (B−A) ≤ dB by auto

have real dB − real dA =
of-int b(real (length E) − card B − card A)/2 + real (card B)c −
of-int b(real (length E) − card A − card B)/2 + real (card A)c
unfolding a b by argo

also have . . . = real (card B) − real (card A)
by (simp add:algebra-simps)

also have . . . = real (card (B − A)) − card (A − B)
using card-sub-int-diff-finite[OF assms(1 ,2)] by simp

finally have real dB − real dA = real (card (B − A)) − card (A − B)
by simp

thus dB − card (B − A) = dA − card (A − B)
using c d by simp

qed

Insert the solution we know that must exist to show it’s consistent
lemma rational-function-interpolation-consistent:

fixes A B :: ′a::finite-field set
assumes
∀ x ∈ (set E). f x = f A x / f B x
CARD(′m::mod-type) = length E
dA + dB ≤ length E
card (A − B) ≤ dA

card (B − A) ≤ dB

dB − card (B − A) = dA − card (A − B)

15

∀ x ∈ set E . x /∈ A ∀ x ∈ set E . x /∈ B
f A = (λ x ∈ set E . poly (set-to-poly A) x)
f B = (λ x ∈ set E . poly (set-to-poly B) x)

shows
consistent (χ (i:: ′m) (j:: ′m). rfi-coefficient-matrix E f dA dB (to-nat i) (to-nat

j))
(χ (i:: ′m). rfi-constant-vector E f dA dB (to-nat i))

proof −
let ?coeff = rfi-coefficient-matrix E f dA dB

let ?const = rfi-constant-vector E f dA dB

let ?coeff ′ = (χ (i:: ′m) (j:: ′m). ?coeff (to-nat i) (to-nat j))
let ?const ′ = (χ (i:: ′m). ?const (to-nat i))

define sp where sp = set-to-poly (A−B) ∗ monom 1 (dA − card (A−B))
define sq where sq = set-to-poly (B−A) ∗ monom 1 (dB − card (B−A))

let ?x = (χ (i:: ′m). if (to-nat i) < dA then coeff sp (to-nat i) else coeff sq (to-nat
i − dA))

have poly-mul-eq: f A x ∗ poly sq x = f B x ∗ poly sp x if x ∈ set E for x
proof −

have set-to-poly A ∗ set-to-poly (B − A) = (set-to-poly B) ∗ set-to-poly (A −
B)

by (simp add: Un-commute set-to-poly-mult-distinct)
then have (set-to-poly A ∗ set-to-poly (B − A) ∗ monom 1 (dB − card (B −

A)) =
(set-to-poly B) ∗ set-to-poly (A − B) ∗ monom 1 (dA − card (A − B)))
using assms(6) by argo

hence poly (set-to-poly A) x ∗ poly (set-to-poly (B − A) ∗ monom 1 (dB −
card (B − A))) x =

poly (set-to-poly B) x ∗ poly (set-to-poly (A − B) ∗ monom 1 (dA − card (A
− B))) x

by (metis (no-types, lifting) mult.commute mult.left-commute poly-mult)
thus ?thesis

using that unfolding assms sp-def sq-def by simp
qed

have x-sol-raw: (
∑

j ∈ {0 ..<dA}. e ^ j ∗ coeff sp j) + (
∑

j ∈ {0 ..<dB}. − f e
∗ e ^ j ∗ (coeff sq j))

= f e ∗ e ^ dB − e ^ dA if e ∈ set E for e
proof −

have f Az: f A e 6= 0
using assms (7 ,9) in-set-to-poly that by auto

moreover have f Bz: f B e 6= 0
using assms (8 ,10) in-set-to-poly that by auto

ultimately have fz: f e 6= 0
using that assms(1) by simp

16

have ff B : f e = f A e / f B e
using that assms(1) by simp

have lead-coeff sp = 1
unfolding sp-def lead-coeff-mult using set-to-poly-lead-coeff lead-coeff-monom
by (auto simp add: degree-monom-eq)

moreover have degree sp = dA

unfolding sp-def using assms(4)
by (simp add: add-diff-inverse-nat degree-monom-eq degree-mult-eq order-less-imp-not-less

set-to-poly-degree)
ultimately have poly-sp: poly sp e = (

∑
i<dA. coeff sp i ∗ e ^ i) + e ^ dA

for e
unfolding poly-lead-coeff-extract by simp

have lead-coeff sq = 1
unfolding sq-def lead-coeff-mult using set-to-poly-lead-coeff lead-coeff-monom
by (auto simp add: degree-monom-eq)

moreover have degree sq = dB

using assms(5) unfolding sq-def
by (simp add: degree-monom-eq degree-mult-eq le-eq-less-or-eq set-to-poly-degree)
ultimately have poly-sq: poly sq e = (

∑
i<dB . coeff sq i ∗ e ^ i) + e ^ dB

for e
unfolding poly-lead-coeff-extract by simp

have f B e ∗ ((
∑

i = 0 ..<dA. coeff sp i ∗ e ^ i) + e ^ dA) =
f A e ∗ ((

∑
i = 0 ..<dB . coeff sq i ∗ e ^ i) + e ^ dB)

using that poly-mul-eq unfolding poly-sq poly-sp lessThan-atLeast0 by simp
then have f B e ∗ ((

∑
j = 0 ..<dA. e ^ j ∗ coeff sp j) + e ^ dA) =

f A e ∗ ((
∑

j = 0 ..<dB . e ^ j ∗ coeff sq j) + e ^ dB)
by (metis (lifting) Finite-Cartesian-Product.sum-cong-aux mult.commute)

then have (
∑

j = 0 ..<dA. e ^ j ∗ coeff sp j) + e ^ dA =
f e ∗ ((

∑
j = 0 ..<dB . e ^ j ∗ coeff sq j) + e ^ dB)

unfolding ff B using f Bz
by (metis (no-types, lifting) f Bz nonzero-mult-div-cancel-left times-divide-eq-left)
also have . . . = f e ∗ (

∑
j = 0 ..<dB . e ^ j ∗ coeff sq j) + f e ∗ e ^ dB

by algebra
also have . . . = (

∑
j = 0 ..<dB . f e ∗ e ^ j ∗ coeff sq j) + f e ∗ e ^ dB

by (metis (no-types, lifting) Finite-Cartesian-Product.sum-cong-aux mult.assoc
sum-distrib-left)

finally have (
∑

j = 0 ..<dA. e ^ j ∗ coeff sp j) + e ^ dA =
(
∑

j = 0 ..<dB . f e ∗ e ^ j ∗ coeff sq j) + f e ∗ e ^ dB

by argo
then have (

∑
j = 0 ..<dA. e ^ j ∗ coeff sp j) =

(
∑

j = 0 ..<dB . f e ∗ e ^ j ∗ coeff sq j) + f e ∗ e ^ dB − e ^ dA

using add-implies-diff by blast
then have (

∑
j = 0 ..<dA. e ^ j ∗ coeff sp j) + (− (

∑
j = 0 ..<dB . f e ∗ e ^

j ∗ coeff sq j)) =
f e ∗ e ^ dB − e ^ dA

by auto

17

moreover have − (
∑

j = 0 ..<dB . f e ∗ e ^ j ∗ (coeff sq j)) =
(
∑

j = 0 ..<dB . − f e ∗ e ^ j ∗ coeff sq j)
using sum-negf [symmetric] by auto

ultimately show ?thesis
by argo

qed

let ?const-lam = λe. f e ∗ e ^ dB − e ^ dA

let ?const-lam ′ = λi. ?const-lam (E ! i)
let ?coeff-lam = λe j.(if j < dA then e ^ j

else if j < dA + dB

then − f e ∗ e ^ (j − dA) else 0) ∗
(if j < dA then coeff sp j else coeff sq (j− dA))

let ?coeff-lam ′ = λi . ?coeff-lam (E ! i)

have (
∑

j ∈ {0 ..<length E}. ?coeff-lam e j) = ?const-lam e if e ∈ set E for e
proof −

have (
∑

j ∈ {0 ..<length E}. ?coeff-lam e j) = (
∑

j ∈ {0 ..<dA + dB}.
?coeff-lam e j)

using assms(3) by (intro sum.mono-neutral-cong-right) auto
also have . . . = (

∑
j∈{0 ..<dA}. e^j ∗ coeff sp j) + (

∑
j ∈ {0 ..<dB}. −f e ∗

e^j∗(coeff sq j))
proof −

have (
∑

j ∈ {0 ..<dA + dB}. ?coeff-lam e j) =
(
∑

j ∈ {0 ..<dA}. ?coeff-lam e j) + (
∑

j ∈ {dA..<dA + dB}. ?coeff-lam
e j)

by (intro sum.atLeastLessThan-concat [symmetric]) auto
also have . . . = (

∑
j ∈ {0 ..<dA}. e ^ j ∗ coeff sp j) +

(
∑

j ∈ {dA..<dA + dB}. − f e ∗ e ^ (j − dA) ∗ (coeff sq (j−dA)))
by simp

moreover have (
∑

j ∈ {dA..<dA + dB}. − f e ∗ e ^ (j − dA) ∗ (coeff sq
(j−dA))) =

(
∑

j ∈ {0 ..<dB}. − f e ∗ e ^ (j) ∗ (coeff sq j))
by (rule sum.reindex-bij-witness [of - λi. i + dA λi. i − dA]) auto

ultimately show ?thesis
by simp

qed
also have . . . = ?const-lam e

using that x-sol-raw by simp
finally show ?thesis by simp

qed
then have (

∑
j ∈ {0 ..<length E}. ?coeff-lam ′ i j) = ?const-lam ′ i if i < length

E for i
using that by simp

moreover have (
∑

j∈(UNIV :: ′m set). ?coeff-lam i (to-nat j)) = (
∑

j ∈ {0 ..<CARD(′m)}.
?coeff-lam i j) for i

18

using bij-to-nat by (intro sum.reindex-bij-betw) blast
ultimately have (

∑
j∈(UNIV :: ′m set). ?coeff-lam ′ i (to-nat j)) = ?const-lam ′

i if i < length E for i
using that assms using of-nat-eq-iff [of card top length E] assms(3) by force

then have (λi.
∑

j∈(UNIV :: ′m set). ?coeff-lam ′ i (to-nat j)) (to-nat (i:: ′m)) =
?const-lam ′ (to-nat i) for i

using mod-type-less-function-eq [of (λi.
∑

j∈(UNIV :: ′m set). ?coeff-lam ′ i
(to-nat j)) ?const-lam ′ i]

using assms(2) assms(3) by auto
then have eval: (λi.

∑
j∈(UNIV :: ′m set). ?coeff-lam ′ (to-nat (i:: ′m)) (to-nat

j)) =
(λ i. ?const-lam ′ (to-nat i))

by simp

have ?coeff ′ ∗v ?x = ?const ′

unfolding matrix-vector-mult-def
rfi-coefficient-matrix-def
rfi-constant-vector-def

using eval by simp
then show ?thesis

unfolding consistent-def is-solution-def by auto
qed

2.5 Main lemma
lemma rational-function-interpolation-correct:

assumes
int dA = b(real (length E) + card A − card B)/2 c
int dB = b(real (length E) + card B − card A)/2 c
card (sym-diff A B) ≤ length E

∀ x ∈ set E . x /∈ A ∀ x ∈ set E . x /∈ B
f A = (λ x ∈ set E . poly (set-to-poly A) x)
f B = (λ x ∈ set E . poly (set-to-poly B) x)
CARD(′m::mod-type) = length E

defines
sol ≡ solution-to-poly (rational-function-interpolation E (λe. f A e / f B e) dA

dB TYPE(′m)) dA dB

shows
monic-interpolated-rational-function (fst sol) (snd sol) (set E) f A f B dA dB

proof −
let ?f = (λe. f A e / f B e)
let ?S = rational-function-interpolation E (λe. f A e / f B e) dA dB TYPE(′m)
let ?p = fst (solution-to-poly ?S dA dB)
let ?q = snd (solution-to-poly ?S dA dB)

have f :finite A finite B
using finite by blast+

note pd-pq-props = dA-dB-helper [OF f assms(1−3)]

19

have consistent (χ (i:: ′m) (j:: ′m). rfi-coefficient-matrix E ?f dA dB (to-nat i)
(to-nat j))

(χ (i:: ′m). rfi-constant-vector E ?f dA dB (to-nat i))
using assms pd-pq-props
by (intro rational-function-interpolation-consistent [where A = A and B = B

and f A = f A and f B = f B])
auto

then have ∀ e∈set E . f A e ∗ poly ?q e = f B e ∗ poly ?p e
using assms pd-pq-props(1) in-set-to-poly
by (intro rational-function-interpolation-correct-poly [where f = ?f and dA =

dA and dB = dB and S = ?S])
auto

moreover have real (degree ?p) = real dA

using degree-solution-to-poly-fst by auto
moreover have real (degree ?q) = real dB

using degree-solution-to-poly-snd by auto
moreover have monic ?q

using monic-solution-to-poly-snd by auto
moreover have monic ?p

using monic-solution-to-poly-fst by auto
ultimately show ?thesis using fst-solution-to-poly-nz snd-solution-to-poly-nz

unfolding monic-interpolated-rational-function-def sol-def by force
qed

lemma interpolated-rational-function-floor-eq:
interpolated-rational-function pA pB E f A f B dA dB ←→
interpolated-rational-function pA pB E f A f B bdAc bdBc

unfolding interpolated-rational-function-def using nat-leq-real-floor by simp

lemma sym-diff-bound-div2-ge0 :
fixes A B :: ′a :: finite set
assumes card (sym-diff A B) ≤ length E
shows (real (length E) + card A − card B)/2 ≥ 0

proof −
have ∗: finite A finite B using finite by auto

have 0 ≤ real (card (sym-diff A B)) + real (card (A−B)) − (card (B−A))
unfolding card-sym-diff-finite[OF ∗] by simp

also have . . . ≤ real (length E) + real (card (A−B)) − (card (B−A))
using assms(1) by simp

also have . . . = (real (length E) + card A − card B)
using card-sub-int-diff-finite [OF ∗] by simp

finally show ?thesis by simp
qed

If the degrees are reals we take the floor first
lemma rational-function-interpolation-correct-real:

20

fixes d ′
A d ′

B :: real
assumes

card (sym-diff A B) ≤ length E
∀ x ∈ set E . x /∈ A ∀ x ∈ set E . x /∈ B
f A = (λ x ∈ set E . poly (set-to-poly A) x)
f B = (λ x ∈ set E . poly (set-to-poly B) x)
CARD(′m::mod-type) = length E

defines d ′
A ≡ (real (length E) + card A − card B)/2

defines d ′
B ≡ (real (length E) + card B − card A)/2

defines dA ≡ nat bd ′
Ac

defines dB ≡ nat bd ′
Bc

defines sol-poly ≡ interpolate-rat-fun E (λe. f A e / f B e) dA dB TYPE(′m)
shows

monic-interpolated-rational-function (fst sol-poly) (snd sol-poly) (set E) f A f B
d ′

A d ′
B

proof −
have e: d ′

A ≥ 0
unfolding d ′

A-def using sym-diff-bound-div2-ge0 assms(1) by auto

hence a: int dA = b(real (length E) + real (card A) − real (card B)) / 2 c
using d ′

A-def unfolding dA-def by simp

have f : d ′
B ≥ 0

unfolding d ′
B-def using sym-diff-bound-div2-ge0 assms(1) by (metis Un-commute)

hence b: int dB = b(real (length E) + real (card B) − real (card A)) / 2 c
using d ′

B-def unfolding dB-def by simp

have c: monic-interpolated-rational-function (fst sol-poly) (snd sol-poly) (set E)
f A f B dA dB

unfolding sol-poly-def interpolate-rat-fun-def
by (intro rational-function-interpolation-correct [OF a b assms(1−6)])

moreover have bd ′
Ac = real (nat bd ′

Ac)
using e by (intro of-nat-nat[symmetric]) simp

moreover have bd ′
Bc = real (nat bd ′

Bc)
using f by (intro of-nat-nat[symmetric]) simp

ultimately have
monic-interpolated-rational-function (fst sol-poly) (snd sol-poly) (set E) f A f B

(nat bd ′
Ac) (nat bd ′

Bc)
unfolding dA-def dB-def
by simp

thus ?thesis unfolding monic-interpolated-rational-function-def
using assms(9 ,10) a b d ′

A-def d ′
B-def floor-of-nat by simp

qed

end

21

3 Factorisation of Polynomials
theory Factorisation

imports
Berlekamp-Zassenhaus.Finite-Field
Berlekamp-Zassenhaus.Finite-Field-Factorization
Elimination-Of-Repeated-Factors.ERF-Perfect-Field-Factorization
Elimination-Of-Repeated-Factors.ERF-Algorithm

begin

hide-const (open) Coset.order
hide-const (open) module.smult
hide-const (open) UnivPoly.coeff
hide-const (open) Formal-Power-Series.radical

lemma proots-finite-field-factorization:
assumes

square-free f
finite-field-factorization f = (c, us)

shows proots f = sum-list (map proots us)
proof −

have fffp: f = smult c (prod-list us) (∀ u ∈ set us. monic u ∧ irreducible u)
using finite-field-factorization-explicit assms by auto

then have 0 /∈ set us
by blast

then have proots (
∏

u←us. u) = (
∑

u←us. proots u)
using proots-prod-list fffp by auto

then show ?thesis using assms
by (simp add: fffp square-free-def)

qed

The following fact is an improved version of ?x 6= 0 =⇒ squarefree ?x
= square-free ?x, which does not require the assumtion that p 6= 0.
lemma squarefree-square-free ′:

fixes p :: ′a:: field poly
shows squarefree p = square-free p
by (metis not-squarefree-0 square-free-def squarefree-square-free)

This function returns the roots of an irreducible polynomial:
fun extract-root :: ′a::prime-card mod-ring poly ⇒ ′a mod-ring multiset where

extract-root p = (if degree p = 1 then {# − coeff p 0 #} else {#})

lemma degree1-monic:
assumes degree p = 1
assumes monic p
obtains c where p = [:c,1 :]

proof −
obtain a b where op: p = [: b, a :]

using degree1-coeffs assms(1) by meson

22

then have a = 1
using assms by simp

then show ?thesis
using op using that by simp

qed

lemma extract-root:
assumes monic p irreducible p
shows extract-root p = proots p

proof −
consider (A) degree p = 0 | (B) degree p = 1 | (C) degree p > 1

by linarith
thus ?thesis
proof (cases)

case A
hence extract-root p = {#} by simp
also have . . . = proots 1 by simp
also have . . . = proots p using A assms(1) monic-degree-0 by blast
finally show ?thesis by simp

next
case B
obtain c where p-def : p = [:c,1 :]

using assms(1) B degree1-monic by blast

hence proots p = {#−c#}
using proots-linear-factor by blast

also have . . . = extract-root p
unfolding p-def by simp

finally show ?thesis by simp
next

case C
have False if x ∈# proots p for x
proof −

have p 6= 0 using C by auto
hence poly p x = 0 using set-count-proots that by simp
thus False using C assms root-imp-reducible-poly by blast

qed
hence proots p = {#} by auto
also have . . . = extract-root p

using C by simp
finally show ?thesis by simp

qed
qed

fun extract-roots :: ′a::prime-card mod-ring poly list ⇒ ′a mod-ring multiset where
extract-roots [] = {#}
| extract-roots (p#ps) = extract-root p + extract-roots ps

lemma extract-roots:

23

∀ p ∈ set ps. monic p ∧ irreducible p =⇒
sum-list (map proots ps) = extract-roots ps

proof (induction ps)
case Nil
then show ?case by simp

next
case (Cons p ps)
have sum-list (map proots (p # ps)) = proots p + sum-list (map proots ps) by

simp
also have . . . = extract-root p + sum-list (map proots ps)

using Cons(2) by (subst extract-root) auto
also have . . . = extract-roots (p # ps) using Cons by simp
finally show ?case by simp

qed

lemma proots-extract-roots-factorized:
assumes squarefree p
shows proots p = extract-roots (snd (finite-field-factorization p))

proof −
have sf :square-free p

using squarefree-square-free ′ assms by blast

have proots p = sum-list (map proots (snd (finite-field-factorization p)))
using proots-finite-field-factorization[OF sf] by (metis prod.collapse)

also have . . . = extract-roots (snd (finite-field-factorization p))
using finite-field-factorization-explicit[OF sf]
by (intro extract-roots) (metis prod.collapse)

finally show ?thesis by simp
qed

3.1 Elimination of Repeated Factors
Wrapper around the ERF algorithm, which returns each factor with multi-
plicity in the input polynomial
function ERF ′ where

ERF ′ p = (
if degree p = 0 then [] else

let factors = ERF p in
ERF ′ (p div (prod-list factors)) @ factors)

by auto

lemma degree-zero-iff-no-factors:
fixes p :: ′a :: {factorial-ring-gcd,semiring-gcd-mult-normalize,field} poly
assumes p 6= 0
shows prime-factors p = {} ←→ degree p = 0

proof
assume prime-factors p = {}
hence is-unit p using assms

by (meson prime-factorization-empty-iff set-mset-eq-empty-iff)

24

thus degree p = 0
using poly-dvd-1 by blast

next
assume degree p = 0
thus prime-factors p = {} using assms prime-factors-degree0 by metis

qed

lemma ERF ′-termination:
assumes degree p > 0
shows degree (p div prod-list (ERF p)) < degree p

proof (intro degree-div-less)
show p-ne-0 : p 6= 0 using assms by auto

have a:radical p = prod-list (ERF p)
using p-ne-0 ERF-correct(1) by metis

show prod-list (ERF p) dvd p unfolding a[symmetric] by (rule radical-dvd)

have prime-factors p 6= {}
using p-ne-0 assms(1) degree-zero-iff-no-factors[OF p-ne-0] by simp

hence prime-factors (radical p) 6= {}
using p-ne-0 prime-factors-radical by metis

moreover have radical p 6= 0
using radical-eq-0-iff p-ne-0 by auto

ultimately have degree (radical p) > 0
using degree-zero-iff-no-factors by blast

thus degree (prod-list (ERF p)) 6= 0
using a by simp

qed

termination
using ERF ′-termination
by (relation measure degree) auto

lemma ERF ′-squarefree:
assumes x ∈ set (ERF ′ p)
shows squarefree x using assms

proof (induct p rule: ERF ′.induct)
case (1 p)
define factors where factors = ERF p
show ?case
proof (cases degree p > 0)

case True
hence a: ERF ′ p = ERF ′ (p div prod-list factors) @ factors

unfolding factors-def
by (subst ERF ′.simps) (simp add:Let-def)

hence x ∈ set (ERF ′ (p div prod-list factors)) ∨ x ∈ set (factors)
using 1 (2) unfolding a by simp

25

moreover have x ∈ set (factors) =⇒ squarefree x
using ERF-correct(2) True factors-def
by (metis degree-0 order-less-irrefl)

ultimately show ?thesis
using 1 (1)[OF - factors-def] True by auto

next
case False
hence ERF ′ p = [] by simp
thus ?thesis using 1 (2) by simp

qed
qed

lemma ERF-not0 : p 6= 0 =⇒ 0 /∈ set (ERF p)
using ERF-correct(2) not-squarefree-0 by blast

lemma ERF ′-not0 : 0 /∈ set (ERF ′ p)
using ERF ′-squarefree not-squarefree-0 by blast

lemma ERF ′-proots: proots (
∏

x← ERF ′ p. x) = proots p
proof (induct p rule: ERF ′.induct)

case (1 p)
show ?case
proof (cases degree p > 0)

case True
let ?prod = prod-list (ERF p)

have a:ERF ′ p = ERF ′ (p div ?prod) @ (ERF p)
unfolding factors-def
by (subst ERF ′.simps) (simp add:Let-def)

have h: proots (
∏

x←ERF ′ (p div ?prod). x) = proots (p div ?prod)
using 1 True by simp

have p0 : p 6= 0
using True by force

then have l0 : ?prod 6= 0
using ERF-not0 by simp

have radical p dvd p
by simp

then have pdvd: ?prod dvd p
using ERF-correct(1) p0 by metis

then have d0 : (p div ?prod) 6= 0
using p0 using dvd-div-eq-0-iff by blast

have proots (p div ?prod) + proots ?prod =
proots (p div ?prod ∗ ?prod)
using proots-mult l0 d0 by metis

26

then have 1 : proots p = proots (p div ?prod) + proots ?prod
using pdvd by simp

have (
∏

x←ERF ′ (p div ?prod). x) 6= 0
using ERF ′-not0 by force

then have proots (
∏

x←ERF ′ (p div ?prod). x) + proots ?prod
= proots ((

∏
x←ERF ′ (p div ?prod). x) ∗ ?prod)

using proots-mult l0 by metis
also have . . . = proots (

∏
x←ERF ′ p. x)

using a by force
finally have proots (

∏
x←ERF ′ p. x) = proots (p div ?prod) + proots ?prod

using h by argo

then show ?thesis using 1 by argo
next

case False
then have deg: degree p = 0

by simp
then have ERF ′ p = []

by (subst ERF ′.simps) simp
then have 1 : proots (

∏
x←ERF ′ p. x) = {#}

by simp
from deg obtain x where p = [:x:]

using degree-eq-zeroE by blast
then have proots p = {#}

by simp
thus ?thesis using 1 by simp

qed
qed

3.2 Executable version of proots
fun proots-eff :: ′a::prime-card mod-ring poly ⇒ ′a mod-ring multiset where
proots-eff p = sum-list (map (extract-roots ◦ snd ◦ finite-field-factorization) (ERF ′

p))

lemma proots-eff-correct [code-unfold]: proots p = proots-eff p
proof −

have proots p = proots (
∏

x← ERF ′ p. x)
using ERF ′-proots by metis

also have . . . = sum-list (map proots (ERF ′ p))
using ERF ′-squarefree not-squarefree-0 by (intro proots-prod-list) blast

also have . . . = sum-list (map (extract-roots ◦ snd ◦ finite-field-factorization)
(ERF ′ p))

using proots-extract-roots-factorized[OF ERF ′-squarefree]
by (intro arg-cong[where f=sum-list] map-cong refl) (auto simp add:comp-def)

finally show ?thesis by simp
qed

27

3.3 Executable version of order
fun order-eff :: ′a mod-ring ⇒ ′a::prime-card mod-ring poly ⇒ nat where

order-eff x p = count (proots-eff p) x

lemma order-eff-code [code-unfold]: p 6= 0 =⇒ order x p = order-eff x p
unfolding order-eff .simps proots-eff-correct [symmetric] count-proots
by auto

end

4 Set Reconciliation Algorithm
theory Set-Reconciliation

imports
HOL−Library.FuncSet
HOL−Computational-Algebra.Polynomial
Factorisation
Rational-Function-Interpolation

begin

hide-const (open) up-ring.monom

The following locale introduces the context for the reconciliation algo-
rithm. It fixes parameters that are assumed to be known in advance, in
particular:

• a bound m on the symmetric difference: represented using the type
variable ′m

• the finite field used to represent the elements of the sets: represented
using the type variable ′a

• the evaluation points used (which must be choosen outside of the do-
main used to represent the elements of the sets): represented using the
variable E

To preserve generality as much as possible, we only present an interaction
protocol that allows one party Alice to send a message to the second party
Bob, who can reconstruct the set Alice has, assuming Bob holds a set himself,
whose symmetric difference does not exceed m.

Note that using this primitive, it is possible for Bob to compute the
union of the sets, and of course the algorithm can also be used to send a
message from Bob to Alice, such that Alice can do so as well. However, the
primitive we describe can be used in many other scenarios.
locale set-reconciliation-algorithm =

fixes E :: ′a :: prime-card mod-ring list
fixes phantom-m :: ′m::mod-type itself

28

assumes type-m: phantom-m = TYPE(′m)
assumes distinct-E : distinct E
assumes card-m: CARD(′m) = length E

begin

The algorithm—or, more precisely the protocol—is represented using a
pair of algorithms. The first is the encoding function which Alice used to
create the message she sends. The second is the decoding algorithm, which
Bob can use to reconstruct the set Alice has.
definition encode where

encode A = (card A, λ x ∈ set E . poly (set-to-poly A) x)

definition decode where
decode B R =
(let
(n, f A) = R;
f B = (λ x ∈ set E . poly (set-to-poly B) x);
dA = nat b(real (length E) + n − card B) / 2 c;
dB = nat b(real (length E) + card B − n) / 2 c;
(pA,pB) = interpolate-rat-fun E (λx. f A x / f B x) dA dB phantom-m;
rA = proots-eff pA;
rB = proots-eff pB

in
set-mset (rA − rB) ∪ (B − (set-mset (rB − rA))))

4.1 Informal Description of the Algorithm
The protocol works as follows:

We association with each set A a polynomial χA(x) :=
∏

s∈A(x − s) in
the finite field F . As mentioned before we reserve a set of m evaluation
points E, which can be arbitrary prearranged points, as long as they are
field elements not used to represent set elements.

Then Alice sends the size of its set |A| and the evaluation of its charac-
teristic polynomial on E.

Bob computes

dA :=

⌊ |E|+ |A| − |B|
2

⌋
dB :=

⌊ |E|+ |B| − |A|
2

⌋
Then Bob finds monic polynomials pA, pB of degree dA and dB fulfilling

the condition:

pA(x)χB(x) = pB(x)χA(X) for all x ∈ E (1)

The above results in a system of linear equations, which can be solved using
Gaussian elimination. It is easy to show that the system is solvable since:

pA := χA−B(x)x
r

29

pB := χB−A(x)x
r

is a solution, where r := dA − |A−B| = dB − |B −A|.
The equation (Eq. 1) implies also:

pA(x)χB−A(x) = pB(x)χA−B(x) for all x ∈ E (2)

since χA(x) = χA−B(x)χA∩B(x), χB(x) = χB−A(x)χA∩B(x), and χA∩B(x) 6=
0, because of our constraint that E is outside of the universe of the set ele-
ments. Btw. in general

χU∪V = χUχV for any disjoint U, V .

Because the polynomials on both sides of Eq. 2 are monic polynomials
of the same degree m′, where m′ ≤ m, and agree on m points, they must be
equal.

This implies in particular, that for the order of any root x (denoted by
ordx), we have:

ordx(pAχB−A) = ordx(pBχA−B)

which implies:

ordx(pA)− ordx(pB) = ordx(χB−A)− ordx(χA−B).

Note that by definition the right hand side is equal to +1 if x ∈ B −A, −1
if x ∈ A−B and 0 otherwise. Thus Bob can compute A using

A := {x|ordx(pA)− ordx(pB) > 0} ∪ (B − {x|ordx(pA)− ordx(pB) < 0}).

4.2 Lemmas
This is no longer used, but it will be needed if you implement decode using
an interpolation algorithm that does not return monic polynomials.
lemma interpolated-rational-function-eq:

assumes
∀ x ∈ set E . poly (set-to-poly A) x ∗ poly pB x = poly (set-to-poly B) x ∗ poly

pA x
degree pA ≤ (real (length E) + card A − card B)/2
degree pB ≤ (real (length E) + card B − card A)/2
card (sym-diff A B) < length E
set E ∩ A = {} set E ∩ B = {}

shows set-to-poly (A−B) ∗ pB = set-to-poly (B−A) ∗ pA

proof −
have fin: finite A finite B

by simp+

have dA: degree pA ≤ (real (length E) + card (A−B) − card (B−A))/2

30

using assms(2) card-sub-int-diff-finite[OF fin] by simp
have dB: degree pB ≤ (real (length E) + card (B−A) − card (A−B))/2

using assms card-sub-int-diff-finite[OF fin] by simp

have set-to-poly A = set-to-poly (A−B) ∗ set-to-poly (A ∩ B)
using set-to-poly-mult-distinct
by (metis Int-Diff-Un Int-Diff-disjoint mult.commute)

moreover have set-to-poly B = set-to-poly (B−A) ∗ set-to-poly (A ∩ B)
using set-to-poly-mult-distinct
by (metis Int-Diff-Un Int-Diff-disjoint Int-commute mult.commute)

ultimately have inE : poly (set-to-poly (A−B) ∗ pB) x = poly (set-to-poly (B−A)
∗ pA) x

if x ∈ set E for x
using that assms by (auto simp: in-set-to-poly)

have real (degree (set-to-poly (A−B) ∗ pB)) ≤ real (card (A−B)) + degree pB

by (metis of-nat-add of-nat-le-iff degree-mult-le set-to-poly-degree)
also have . . . ≤ (real (length E) + (real(card (B−A)) + card (A−B)))/2

using dB by simp
also have . . . < (length E + length E) / 2

using assms(4) card-sym-diff-finite[OF fin] by simp
also have . . . = length E by simp
finally have l: degree (set-to-poly (A−B) ∗ pB) < length E

by simp

have real (degree (set-to-poly (B−A) ∗ pA)) ≤ real (card (B−A)) + degree pA

by (metis of-nat-add of-nat-le-iff degree-mult-le set-to-poly-degree)
also have . . . ≤ (length E + (card (B−A) + card (A−B)))/2

using dA by simp
also have . . . < (length E + length E) / 2

using assms(4) card-sym-diff-finite[OF fin] by simp
also have . . . = length E by simp
finally have r : degree (set-to-poly (B−A) ∗ pA) < length E

by simp

have set-to-poly (A−B) ∗ pB = set-to-poly (B−A) ∗ pA

using l r inE poly-eqI-degree distinct-card[OF distinct-E]
by (intro poly-eqI-degree[where A=set E]) auto

then show ?thesis .
qed

This is a specialized version of interpolated-rational-function-eq. Here
the interpolated function are monic with exact degrees.
lemma monic-interpolated-rational-function-eq:

assumes
∀ x ∈ set E . poly (set-to-poly A) x ∗ poly pB x = poly (set-to-poly B) x ∗ poly

pA x
degree pA = b(real (length E) + card A − card B)/2 c
degree pB = b(real (length E) + card B − card A)/2 c

31

card (sym-diff A B) ≤ length E
set E ∩ A = {} set E ∩ B = {}
monic pA monic pB

shows set-to-poly (A−B) ∗ pB = set-to-poly (B−A) ∗ pA (is ?lhs = ?rhs)
proof −

have fin: finite A finite B
by simp+

have p0 : pA 6= 0 pB 6= 0
using assms(7 , 8) by auto

define m ′ where m ′ = b(real (length E) + card (B−A) + card (A−B))/2 c

note s1 = card-sub-int-diff-finite-real[OF fin]
note s2 = card-sub-int-diff-finite-real[OF fin(2 ,1)]

have int (degree ?lhs) = int (card (A−B)) + degree pB

using set-to-poly-degree p0 set-to-poly-not0 by (subst degree-mult-eq) auto
also have . . . = bcard (A−B) + (real (length E) + card (B−A) − card (A−B))/2 c

using assms(3) s2 by (simp add: group-cancel.sub1)
also have . . . = m ′ unfolding m ′-def by argo
finally have a:int (degree ?lhs) = m ′ by simp

have int (degree ?rhs) = int (card (B−A)) + degree pA

using set-to-poly-degree p0 set-to-poly-not0 by (subst degree-mult-eq) auto
also have . . . = bcard (B−A) + (real (length E) + card (A−B) − card (B−A))/2 c

using assms(2) s1 by (simp add: group-cancel.sub1)
also have . . . = m ′ unfolding m ′-def by argo
finally have b:int (degree ?rhs) = m ′ by simp

have of-int m ′ ≤ (real (length E) + card (B−A) + card (A−B))/2
unfolding m ′-def by linarith

also have . . . ≤ (real (length E) + real (length E))/2
using assms(4) card-sym-diff-finite[OF fin] by simp

also have . . . ≤ real (length E) by simp
also have . . . = real (card (set E)) using distinct-E by (simp add: distinct-card)
finally have c: m ′ ≤ card (set E) by simp

have t1 : set-to-poly A = set-to-poly (A−B) ∗ set-to-poly (A ∩ B)
by (subst set-to-poly-mult-distinct) (auto intro!:arg-cong[where f=set-to-poly])

have t2 : set-to-poly B = set-to-poly (B−A) ∗ set-to-poly (A ∩ B)
by (subst set-to-poly-mult-distinct) (auto intro!:arg-cong[where f=set-to-poly])

have d: poly (set-to-poly (A−B) ∗ pB) x = poly (set-to-poly (B−A) ∗ pA) x if x
∈ set E for x

proof −
have poly (set-to-poly (A ∩ B)) x 6= 0

using in-set-to-poly assms(5 ,6) that by (metis IntE disjoint-iff)
thus ?thesis using that assms(1) unfolding t1 t2 by auto

32

qed

show ?thesis
apply (intro poly-eqI-degree-monic[where A= set E])
subgoal using a b by simp
subgoal using a c by simp
subgoal using set-to-poly-lead-coeff monic-mult assms(8) by auto
subgoal using set-to-poly-lead-coeff monic-mult assms(7) by auto
using d by auto

qed

4.3 Main Result
This is the main result of the entry. We show that the decoding algorithm,
Bob uses, can reconstruct the set Alice has, if she has encoded with the
encoding algorithm. Assuming the symmetric difference between the sets
does not exceed the given bound.
theorem decode-encode-correct:

assumes
card (sym-diff A B) ≤ length E
set E ∩ A = {} set E ∩ B = {}

shows decode B (encode A) = A
proof −

let ?f A = (λ x ∈ set E . poly (set-to-poly A) x)
let ?f B = (λ x ∈ set E . poly (set-to-poly B) x)
let ?dA = (real (length E) + card A − card B) / 2
let ?dB = (real (length E) + card B − card A) / 2

define p where def-pq: p = interpolate-rat-fun E (λx. ?f A x / ?f B x) (nat
b?dAc) (nat b?dBc) TYPE(′m)

define pA pB where def-p-q: pA = fst p pB = snd p

have monic-interpolated-rational-function (fst p) (snd p) (set E) ?f A ?f B ?dA

?dB

unfolding def-pq
using assms card-m by (intro rational-function-interpolation-correct-real) auto

then have monic-interpolated-rational-function pA pB (set E) ?f A ?f B ?dA ?dB

using def-p-q by simp

then have irf : ∀ e ∈ set E . ?f A e ∗ poly pB e = ?f B e ∗ poly pA e
degree pA = floor ?dA degree pB = floor ?dB

monic pA monic pB

unfolding monic-interpolated-rational-function-def by auto

have n0 : pA 6= 0 pB 6= 0
using monic0 irf by auto

have ∀ x∈ set E . poly (set-to-poly A) x ∗ poly pB x = poly (set-to-poly B) x ∗
poly pA x

33

using irf (1) by simp
then have ieq: set-to-poly (A−B) ∗ pB = set-to-poly (B−A) ∗ pA

using assms irf by (intro monic-interpolated-rational-function-eq) auto

have order x (set-to-poly (A−B) ∗ pB) = order x (set-to-poly (A−B)) + order x
pB for x

using irf (5) n0 by (simp add: order-mult)
moreover have order x (set-to-poly (B−A) ∗ pA) = order x (set-to-poly (B−A))

+ order x pA for x
using irf (4) n0 by (simp add: order-mult)

ultimately have order x (set-to-poly (A−B)) + order x pB =
order x (set-to-poly (B−A)) + order x pA for x

using ieq by simp
hence int (order x (set-to-poly (A−B))) + int (order x pB) =

int (order x (set-to-poly (B−A))) + int (order x pA) for x
using of-nat-add by metis

then have oif : int (order x (set-to-poly (A−B))) − int (order x (set-to-poly
(B−A))) =

int (order x pA) − int (order x pB) for x
by (simp add:field-simps)

have int (order x pA) − int (order x pB) ≥ 1 ←→ x ∈ (A−B) for x
unfolding oif [symmetric] set-to-poly-order by simp

hence a-minus-b: {x. order x pA > order x pB} = A−B by force

have int (order x pA) − int (order x pB) ≤ −1 ←→ x ∈ (B−A) for x
unfolding oif [symmetric] set-to-poly-order by simp

hence b-minus-a: {x. order x pB > order x pA} = B−A by force

have {x. order x pA > order x pB} ∪ (B − {x. order x pA < order x pB}) = A
unfolding a-minus-b b-minus-a by auto

moreover have decode B (encode A) =
set-mset (proots-eff pA − proots-eff pB) ∪ (B − (set-mset (proots-eff pB −

proots-eff pA)))
unfolding decode-def encode-def Let-def def-p-q def-pq
using type-m by (simp add:case-prod-beta del:proots-eff .simps)

moreover have . . . = {x. order x pA > order x pB} ∪ (B − {x. order x pB

> order x pA})
unfolding proots-eff-correct [symmetric]
using irf (4 ,5) n0 by (auto simp: set-mset-diff)

ultimately show ?thesis by argo
qed

end

end

34

References
[1] Y. Minsky, A. Trachtenberg, and R. Zippel. Set reconciliation with nearly

optimal communication complexity. IEEE Transactions on Information
Theory, 49(9):2213–2218, 2003.

35

	Preliminary Results
	Characteristic Polynomial

	Rational Function Interpolation
	Definitions
	Preliminary Results
	On 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 solution-to-poly
	Correctness
	Main lemma

	Factorisation of Polynomials
	Elimination of Repeated Factors
	Executable version of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 proots
	Executable version of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 order

	Set Reconciliation Algorithm
	Informal Description of the Algorithm
	Lemmas
	Main Result

