File ‹hoare_tac.ML›
signature HOARE_TAC =
sig
  val hoare_rule_tac: Proof.context -> term list * thm -> (int -> tactic) -> bool ->
    int -> tactic
  val hoare_tac: Proof.context -> (int -> tactic) -> int -> tactic
  val hoare_tc_tac: Proof.context -> (int -> tactic) -> int -> tactic
end;
structure Hoare_Tac: HOARE_TAC =
struct
local
fun abs2list \<^Const_>‹case_prod _ _ _ for ‹Abs (x, T, t)›› = Free (x, T) :: abs2list t
  | abs2list (Abs (x, T, _)) = [Free (x, T)]
  | abs2list _ = [];
fun mk_vars \<^Const_>‹Collect _ for T› = abs2list T
  | mk_vars _ = [];
fun mk_abstupleC [] body = absfree ("x", \<^Type>‹unit›) body
  | mk_abstupleC [v] body = absfree (dest_Free v) body
  | mk_abstupleC (v :: w) body =
      let
        val (x, T) = dest_Free v;
        val z = mk_abstupleC w body;
        val T2 =
          (case z of
            Abs (_, T, _) => T
          | Const (_, Type (_, [_, Type (_, [T, _])])) $ _ => T);
      in
        \<^Const>‹case_prod T T2 \<^Type>‹bool› for ‹absfree (x, T) z››
      end;
fun mk_bodyC [] = \<^Const>‹Unity›
  | mk_bodyC [x] = x
  | mk_bodyC (x :: xs) =
      let
        val (_, T) = dest_Free x;
        val z = mk_bodyC xs;
        val T2 =
          (case z of
            Free (_, T) => T
          | \<^Const_>‹Pair A B for _ _› => \<^Type>‹prod A B›);
     in \<^Const>‹Pair T T2 for x z› end;
fun get_vars c =
  let
    val d = Logic.strip_assums_concl c;
    val pre =
      case HOLogic.dest_Trueprop d of
        Const _ $ pre $ _ $ _ $ _ => pre
      | Const _ $ pre $ _ $ _ => pre   
  in mk_vars pre end;
fun mk_CollectC tm =
  let val \<^Type>‹fun t _› = fastype_of tm;
  in \<^Const>‹Collect t for tm› end;
fun inclt ty = \<^Const>‹less_eq ty›;
in
fun Mset ctxt prop =
  let
    val [Mset, P] = Name.variants (Variable.names_of ctxt) ["Mset", "P"];
    val vars = get_vars prop;
    val varsT = fastype_of (mk_bodyC vars);
    val big_Collect =
      mk_CollectC (mk_abstupleC vars (Free (P, varsT --> \<^Type>‹bool›) $ mk_bodyC vars));
    val small_Collect =
      mk_CollectC (Abs ("x", varsT, Free (P, varsT --> \<^Type>‹bool›) $ Bound 0));
    val MsetT = fastype_of big_Collect;
    fun Mset_incl t = HOLogic.mk_Trueprop (inclt MsetT $ Free (Mset, MsetT) $ t);
    val impl = Logic.mk_implies (Mset_incl big_Collect, Mset_incl small_Collect);
    val th = Goal.prove ctxt [Mset, P] [] impl (fn _ => blast_tac ctxt 1);
 in (vars, th) end;
end;
fun before_set2pred_simp_tac ctxt =
  simp_tac (put_simpset HOL_basic_ss ctxt |> Simplifier.add_simps [@{thm Collect_conj_eq} RS sym, @{thm Compl_Collect}]);
fun split_simp_tac ctxt =
  simp_tac (put_simpset HOL_basic_ss ctxt |> Simplifier.add_simps [@{thm split_conv}]);
fun set_to_pred_tac ctxt var_names = SUBGOAL (fn (_, i) =>
  before_set2pred_simp_tac ctxt i THEN_MAYBE
  EVERY [
    resolve_tac ctxt @{thms subsetI} i,
    resolve_tac ctxt @{thms CollectI} i,
    dresolve_tac ctxt @{thms CollectD} i,
    TRY (split_all_tac ctxt i) THEN_MAYBE
     (rename_tac var_names i THEN
      full_simp_tac (put_simpset HOL_basic_ss ctxt |> Simplifier.add_simp @{thm split_conv}) i)]);
fun max_simp_tac ctxt var_names tac =
  FIRST' [resolve_tac ctxt @{thms subset_refl},
    set_to_pred_tac ctxt var_names THEN_MAYBE' tac];
fun basic_simp_tac ctxt var_names tac =
  simp_tac
    (put_simpset HOL_basic_ss ctxt
      |> Simplifier.add_simps @{thms mem_Collect_eq split_conv} |> Simplifier.add_proc Record.simproc)
  THEN_MAYBE' max_simp_tac ctxt var_names tac;
fun hoare_rule_tac ctxt (vars, Mlem) tac =
  let
    val get_thms = Proof_Context.get_thms ctxt;
    val var_names = map (fst o dest_Free) vars;
    fun wlp_tac i =
      resolve_tac ctxt (get_thms \<^named_theorems>‹SeqRule›) i THEN rule_tac false (i + 1)
    and rule_tac pre_cond i st = st |> 
      ((wlp_tac i THEN rule_tac pre_cond i)
        ORELSE
        (FIRST [
          resolve_tac ctxt (get_thms \<^named_theorems>‹SkipRule›) i,
          resolve_tac ctxt (get_thms \<^named_theorems>‹AbortRule›) i,
          EVERY [
            resolve_tac ctxt (get_thms \<^named_theorems>‹BasicRule›) i,
            resolve_tac ctxt [Mlem] i,
            split_simp_tac ctxt i],
          EVERY [
            resolve_tac ctxt (get_thms \<^named_theorems>‹CondRule›) i,
            rule_tac false (i + 2),
            rule_tac false (i + 1)],
          EVERY [
            resolve_tac ctxt (get_thms \<^named_theorems>‹WhileRule›) i,
            basic_simp_tac ctxt var_names tac (i + 2),
            rule_tac true (i + 1)]]
         THEN (
           if pre_cond then basic_simp_tac ctxt var_names tac i
           else resolve_tac ctxt @{thms subset_refl} i)));
  in rule_tac end;
fun hoare_tac ctxt tac = SUBGOAL (fn (goal, i) =>
  SELECT_GOAL (hoare_rule_tac ctxt (Mset ctxt goal) tac true 1) i);
fun hoare_tc_rule_tac ctxt (vars, Mlem) tac =
  let
    val get_thms = Proof_Context.get_thms ctxt;
    val var_names = map (fst o dest_Free) vars;
    fun wlp_tac i =
      resolve_tac ctxt (get_thms \<^named_theorems>‹SeqRuleTC›) i THEN rule_tac false (i + 1)
    and rule_tac pre_cond i st = st |> 
      ((wlp_tac i THEN rule_tac pre_cond i)
        ORELSE
        (FIRST [
          resolve_tac ctxt (get_thms \<^named_theorems>‹SkipRuleTC›) i,
          EVERY [
            resolve_tac ctxt (get_thms \<^named_theorems>‹BasicRuleTC›) i,
            resolve_tac ctxt [Mlem] i,
            split_simp_tac ctxt i],
          EVERY [
            resolve_tac ctxt (get_thms \<^named_theorems>‹CondRuleTC›) i,
            rule_tac false (i + 2),
            rule_tac false (i + 1)],
          EVERY [
            resolve_tac ctxt (get_thms \<^named_theorems>‹WhileRuleTC›) i,
            basic_simp_tac ctxt var_names tac (i + 2),
            rule_tac true (i + 1)]]
         THEN (
           if pre_cond then basic_simp_tac ctxt var_names tac i
           else resolve_tac ctxt @{thms subset_refl} i)));
  in rule_tac end;
fun hoare_tc_tac ctxt tac = SUBGOAL (fn (goal, i) =>
  SELECT_GOAL (hoare_tc_rule_tac ctxt (Mset ctxt goal) tac true 1) i);
end;