
The Impossibility of Strategyproof Rank
Aggregation

Manuel Eberl and Patrick Lederer

February 10, 2026

In Social Choice Theory, a social welfare function (SWF) is a function that
takes a collection of individual preferences on some set of alternatives and
returns an aggregated preference relation.

More formally: Consider finite sets of agents N = {1, . . . , n} and alteran-
tives A = {x1, . . . , xm}. The input of an SWF is an n-tuple of rankings (i.e.
linear orders) of A, and its output is a ranking of A as well.

Various desirable properties on SWFs can be defined:
• Anonymity: The SWF is invariant under permutation of the agents.
• Unanimity: If all voters prefer x over y, then x is preferred over y in

the output ranking as well.
• Majority consistency: If there exists a ranking x1, . . . , xm such that for

every i < j, the alternative xi is preferred over xj by more than half of
the agents, that ranking must be returned.

• Kemeny strategyproofness: Strategic voting is not possible for a single
agent, i.e. no agent can achieve a result more aligned with their own
preferences by lying about them.

This entry contains two impossibility results for SWFs with m alternatives
and n agents:

• There exists no anonymous, unanimous, and Kemeny-strategyproof SWF
for m ≥ 5 and n even or for m = 4 and n a multiple of 4.

• There exists no majority-consistent and Kemeny-strategyproof SWF for
m = 4 and n ≥ 3 or m ≥ 4 and n ∈ {9, 11, 13, 15} ∪ {17, . . .}

For some of the base cases, SAT solving is used by letting specialised
automation prove a large number of clauses, translating to the DIMACS
format, and importing a proof pre-generated by an external SAT solver using
Lammich’s GRAT format.

1

Contents
1 Auxiliary Material 3

1.1 Miscellaneous . 3
1.2 The Majority Relation . 7
1.3 The lexicographic order on lists . 10
1.4 Maximal and minimal elements . 11

2 Social welfare functions 14
2.1 Preference profiles . 15
2.2 Definition and desirable properties of SWFs 17
2.3 Majority consistency . 18
2.4 Concrete classes of SWFs . 19

2.4.1 Dictatorships . 19
2.4.2 Fixed-result SWFs . 19

2.5 Anonymised preference profiles . 20
2.6 Social Welfare Functions with explicit lists of agents and alternatives . . . 24
2.7 Lowering constructions for SWFs . 28

2.7.1 Decreasing the number of alternatives 28
2.7.2 Decreasing the number of agents by a factor 33
2.7.3 Decreasing the number of agents by an even number 35

3 Impossibility results 37
3.1 Infrastructure for SAT import and export 37
3.2 Automation for computing topological sortings 37
3.3 Automation for strategyproofness . 39
3.4 Automation for majority consistency . 39
3.5 For 5 alternatives and 2 agents . 41
3.6 For 4 alternatives and 4 agents . 42

2

1 Auxiliary Material
1.1 Miscellaneous
theory SWF-Impossibility-Library
imports

Randomised-Social-Choice.Preference-Profiles
HOL−Combinatorics.Multiset-Permutations

begin

lemma wfp-on-iff-wfp: wfp-on A R ←→ wfp (λx y. R x y ∧ x ∈ A ∧ y ∈ A)
〈proof 〉

lemma permutations-of-set-conv-mset:
finite A =⇒ permutations-of-set A = {xs. mset xs = mset-set A}
〈proof 〉

lemma Set-filter-insert-if :
Set.filter P (insert x A) = (if P x then insert x (Set.filter P A) else Set.filter P A)
〈proof 〉

lemma Set-filter-insert:
P x =⇒ Set.filter P (insert x A) = insert x (Set.filter P A)
¬P x =⇒ Set.filter P (insert x A) = Set.filter P A
〈proof 〉

lemma Set-filter-empty [simp]: Set.filter P {} = {}
〈proof 〉

lemma filter-mset-empty-conv: filter-mset P A = {#} ←→ (∀ x∈#A. ¬P x)
〈proof 〉

lemma image-mset-repeat-mset: image-mset f (repeat-mset n A) = repeat-mset n (image-mset
f A)
〈proof 〉

lemma filter-mset-repeat-mset: filter-mset P (repeat-mset n A) = repeat-mset n (filter-mset P
A)
〈proof 〉

lemma mset-eq-mset-set-iff :
assumes finite A
shows mset xs = mset-set A ←→ xs ∈ permutations-of-set A
〈proof 〉

lemma size-Diff-mset-same-size:
fixes A B :: ′a multiset
assumes size (A − B) = n size A = size B
shows size (B − A) = n

3

〈proof 〉

lemma image-mset-diff-if-inj-on:
fixes f :: ′a ⇒ ′b
assumes inj-on f (set-mset (A+B))
shows image-mset f (A − B) = image-mset f A − image-mset f B
〈proof 〉

context preorder-on
begin

sublocale dual: preorder-on carrier λx y. le y x
〈proof 〉

end

context order-on
begin

sublocale dual: order-on carrier λx y. le y x
〈proof 〉

end

context total-preorder-on
begin

sublocale dual: total-preorder-on carrier λx y. le y x
〈proof 〉

end

context linorder-on
begin

sublocale dual: linorder-on carrier λx y. le y x
〈proof 〉

end

context finite-linorder-on
begin

4

sublocale dual: finite-linorder-on carrier λx y. le y x
〈proof 〉

end

locale linorder-family = preorder-family dom carrier R for dom carrier R +
assumes linorder-in-dom [simp]: i ∈ dom =⇒ linorder-on carrier (R i)

lemma preorder-familyI [intro?]:
fixes dom
assumes dom 6= {}
assumes

∧
i. i ∈ dom =⇒ preorder-on carrier (R i)

assumes
∧

i x y. i /∈ dom =⇒ ¬ R i x y
shows preorder-family dom carrier R
〈proof 〉

lemma linorder-familyI [intro?]:
fixes dom
assumes dom 6= {}
assumes

∧
i. i ∈ dom =⇒ linorder-on carrier (R i)

assumes
∧

i x y. i /∈ dom =⇒ ¬ R i x y
shows linorder-family dom carrier R
〈proof 〉

context order-on
begin

lemma order-on-restrict:
order-on (carrier ∩ A) (restrict-relation A le)
〈proof 〉

lemma order-on-restrict-subset:
A ⊆ carrier =⇒ order-on A (restrict-relation A le)
〈proof 〉

end

context linorder-on
begin

lemma linorder-on-restrict:
linorder-on (carrier ∩ A) (restrict-relation A le)
〈proof 〉

lemma linorder-on-restrict-subset:

5

A ⊆ carrier =⇒ linorder-on A (restrict-relation A le)
〈proof 〉

end

lemma linorder-on-concat:
assumes linorder-on A R linorder-on B S A ∩ B = {}
shows linorder-on (A ∪ B) (λx y. if x ∈ A then R x y ∨ y ∈ B else S x y)
〈proof 〉

lemma linorder-on-prepend:
assumes linorder-on A R z /∈ A
shows linorder-on (insert z A) (λx y. if x = z then y ∈ insert z A else R x y)
〈proof 〉

lemma finite-linorder-on-exists:
assumes finite A
shows ∃R. linorder-on A R
〈proof 〉

context order-on
begin

lemma order-on-map:
assumes bij-betw f A carrier
shows order-on A (restrict-relation A (map-relation f le))
〈proof 〉

end

context linorder-on
begin

lemma linorder-on-map:
assumes bij-betw f A carrier
shows linorder-on A (restrict-relation A (map-relation f le))
〈proof 〉

end

context finite-linorder-on
begin

lemma finite-linorder-on-map:

6

assumes bij-betw f A carrier
shows finite-linorder-on A (restrict-relation A (map-relation f le))
〈proof 〉

end

1.2 The Majority Relation

Given a family of preorders, the majority relation induced by it is the one where x and
y are related iff x � y holds in at least half of the relations in the family.
Note that the majority relation is in general neither antisymmetric (due to the possibility
of ties) nor transitive (due to Condorcet cycles).
definition majority :: (′a ⇒ ′b relation) ⇒ ′b relation where

majority R x y ←→ (∃ i. R i x x) ∧ (∃ i. R i y y) ∧ card {i. R i x y} ≥ card {i. R i y x}

The same notion can easily be defined for multisets of relations as well.
definition majority-mset :: ′a relation multiset ⇒ ′a relation where

majority-mset Rs x y ←→
(∃R∈#Rs. R x x) ∧ (∃R∈#Rs. R y y) ∧
size (filter-mset (λR. R x y) Rs) ≥ size (filter-mset (λR. R y x) Rs)

lemma majority-mset-not-outside:
assumes majority-mset Rs x y

∧
R. R ∈# Rs =⇒ preorder-on A R

shows x ∈ A y ∈ A
〈proof 〉

lemma majority-mset-refl-iff ′: majority-mset Rs x x ←→ (∃R∈#Rs. R x x)
〈proof 〉

lemma majority-mset-refl-iff :
assumes

∧
R. R ∈# Rs =⇒ preorder-on A R Rs 6= {#}

shows majority-mset Rs x x ←→ x ∈ A
〈proof 〉

lemma majority-mset-refl:
assumes

∧
R. R ∈# Rs =⇒ preorder-on A R Rs 6= {#} x ∈ A

shows majority-mset Rs x x
〈proof 〉

lemma majority-mset-iff ′:
assumes

∧
R. R ∈# Rs =⇒ preorder-on A R Rs 6= {#}

shows majority-mset Rs x y ←→
x ∈ A ∧ y ∈ A ∧
size (filter-mset (λR. R x y) Rs) ≥ size (filter-mset (λR. R y x) Rs)

〈proof 〉

lemma majority-mset-iff :
assumes

∧
R. R ∈# Rs =⇒ preorder-on A R Rs 6= {#} x ∈ A y ∈ A

7

shows majority-mset Rs x y ←→
size (filter-mset (λR. R x y) Rs) ≥ size (filter-mset (λR. R y x) Rs)

〈proof 〉

lemma majority-mset-iff-ge:
assumes

∧
R. R ∈# Rs =⇒ linorder-on A R Rs 6= {#} x ∈ A y ∈ A

shows majority-mset Rs x y ←→
2 ∗ size (filter-mset (λR. R x y) Rs) ≥ size Rs

〈proof 〉

lemma majority-mset-iff-le:
assumes

∧
R. R ∈# Rs =⇒ linorder-on A R Rs 6= {#} x ∈ A y ∈ A x 6= y

shows majority-mset Rs x y ←→
2 ∗ size (filter-mset (λR. R y x) Rs) ≤ size Rs

〈proof 〉

lemma strongly-preferred-majority-mset-iff-gt:
assumes

∧
R. R ∈# Rs =⇒ linorder-on A R Rs 6= {#} x ∈ A y ∈ A

shows x ≺[majority-mset Rs] y ←→ x 6= y ∧
2 ∗ size (filter-mset (λR. R x y) Rs) > size Rs

〈proof 〉

lemma strongly-preferred-majority-mset-iff-lt:
assumes

∧
R. R ∈# Rs =⇒ linorder-on A R Rs 6= {#} x ∈ A y ∈ A

shows x ≺[majority-mset Rs] y ←→
2 ∗ size (filter-mset (λR. R y x) Rs) < size Rs

〈proof 〉

context preorder-family
begin

lemma majority-iff ′:
majority R x y ←→ x ∈ carrier ∧ y ∈ carrier ∧ card {i∈dom. R i x y} ≥ card {i∈dom. R i

y x}
〈proof 〉

lemma majority-iff :
assumes x ∈ carrier y ∈ carrier
shows majority R x y ←→ card {i∈dom. R i x y} ≥ card {i∈dom. R i y x}
〈proof 〉

lemma majority-refl [simp]: x ∈ carrier =⇒ majority R x x
〈proof 〉

lemma majority-refl-iff : majority R x x ←→ x ∈ carrier
〈proof 〉

lemma majority-total: x ∈ carrier =⇒ y ∈ carrier =⇒ majority R x y ∨ majority R y x
〈proof 〉

8

lemma strongly-preferred-majority-iff :
assumes x ∈ carrier y ∈ carrier
shows x ≺[majority R] y ←→ card {i∈dom. R i x y} > card {i∈dom. R i y x}
〈proof 〉

lemma majority-not-outside:
assumes majority R x y
shows x ∈ carrier y ∈ carrier
〈proof 〉

The majority relation chains with the unanimity relation.
lemma majority-Pareto1 :

assumes Pareto R x y majority R y z finite dom
shows majority R x z
〈proof 〉

lemma majority-Pareto2 :
assumes majority R x y Pareto R y z finite dom
shows majority R x z
〈proof 〉

lemma majority-conv-majority-mset:
assumes finite dom
shows majority R = majority-mset (image-mset R (mset-set dom)) (is ?lhs = ?rhs)
〈proof 〉

end

context linorder-family
begin

lemma majority-iff-ge-half :
assumes x ∈ carrier y ∈ carrier finite dom
shows majority R x y ←→ 2 ∗ card {i∈dom. R i x y} ≥ card dom
〈proof 〉

lemma majority-iff-le-half :
assumes x ∈ carrier y ∈ carrier x 6= y finite dom
shows majority R x y ←→ 2 ∗ card {i∈dom. R i y x} ≤ card dom
〈proof 〉

For families of odd cardinality, the majority rule is always antisymmetric.
lemma odd-imp-majority-antisymmetric:

assumes odd (card dom) majority R x y majority R y x
shows x = y
〈proof 〉

9

end

1.3 The lexicographic order on lists
fun lexprod-list-aux :: ′a relation ⇒ ′a list relation where

lexprod-list-aux R [] ys ←→ True
| lexprod-list-aux R (x # xs) [] ←→ False
| lexprod-list-aux R (x # xs) (y # ys) ←→ x �[R] y ∧ (x ≺[R] y ∨ lexprod-list-aux R xs ys)

lemma lexprod-list-aux-Nil-right-iff [simp]: lexprod-list-aux R xs [] ←→ xs = []
〈proof 〉

lemma lexprod-list-aux-refl: (∀ x∈set xs. R x x) =⇒ lexprod-list-aux R xs xs
〈proof 〉

definition lexprod-list :: ′a relation ⇒ ′a list relation where
lexprod-list R = restrict-relation {xs. ∀ x∈set xs. R x x} (lexprod-list-aux R)

definition lexprod-length-list :: nat ⇒ ′a relation ⇒ ′a list relation where
lexprod-length-list n R = restrict-relation {xs. length xs = n} (lexprod-list R)

context preorder-on
begin

lemma lexprod-list-aux-trans:
assumes lexprod-list-aux le xs ys lexprod-list-aux le ys zs
shows lexprod-list-aux le xs zs
〈proof 〉

lemma preorder-lexprod-list: preorder-on (lists carrier) (lexprod-list le)
〈proof 〉

lemma preorder-lexprod-length-list:
preorder-on {xs. set xs ⊆ carrier ∧ length xs = n} (lexprod-length-list n le)
〈proof 〉

end

context total-preorder-on
begin

lemma total-preorder-lexprod-list: total-preorder-on (lists carrier) (lexprod-list le)
〈proof 〉

lemma total-preorder-lexprod-length-list:

10

total-preorder-on {xs. set xs ⊆ carrier ∧ length xs = n} (lexprod-length-list n le)
〈proof 〉

end

context order-on
begin

lemma order-lexprod-list: order-on (lists carrier) (lexprod-list le)
〈proof 〉

lemma order-lexprod-length-list:
order-on {xs. set xs ⊆ carrier ∧ length xs = n} (lexprod-length-list n le)
〈proof 〉

end

context linorder-on
begin

lemma order-lexprod-list: linorder-on (lists carrier) (lexprod-list le)
〈proof 〉

lemma linorder-lexprod-length-list:
linorder-on {xs. set xs ⊆ carrier ∧ length xs = n} (lexprod-length-list n le)
〈proof 〉

end

1.4 Maximal and minimal elements
definition Min-wrt-among :: ′a relation ⇒ ′a set ⇒ ′a set where

Min-wrt-among R A = {x∈A. R x x ∧ (∀ y∈A. R y x −→ R x y)}

lemma Min-wrt-among-cong:
assumes restrict-relation A R = restrict-relation A R ′

shows Min-wrt-among R A = Min-wrt-among R ′ A
〈proof 〉

definition Min-wrt :: ′a relation ⇒ ′a set where
Min-wrt R = Min-wrt-among R UNIV

lemma Min-wrt-altdef : Min-wrt R = {x. R x x ∧ (∀ y. R y x −→ R x y)}
〈proof 〉

lemma Min-wrt-among-conv-Max-wrt-among: Min-wrt-among R A = Max-wrt-among (λx y. R

11

y x) A
〈proof 〉

context preorder-on
begin

lemma Min-wrt-among-preorder :
Min-wrt-among le A = {x∈carrier ∩ A. ∀ y∈carrier ∩ A. le y x −→ le x y}
〈proof 〉

lemma Min-wrt-preorder :
Min-wrt le = {x∈carrier . ∀ y∈carrier . le y x −→ le x y}
〈proof 〉

lemma Min-wrt-among-subset:
Min-wrt-among le A ⊆ carrier Min-wrt-among le A ⊆ A
〈proof 〉

lemma Min-wrt-subset:
Min-wrt le ⊆ carrier
〈proof 〉

lemma Min-wrt-among-nonempty:
assumes B ∩ carrier 6= {} finite (B ∩ carrier)
shows Min-wrt-among le B 6= {}
〈proof 〉

lemma Min-wrt-nonempty:
carrier 6= {} =⇒ finite carrier =⇒ Min-wrt le 6= {}
〈proof 〉

lemma Min-wrt-among-map-relation-vimage:
f −‘ Min-wrt-among le A ⊆ Min-wrt-among (map-relation f le) (f −‘ A)
〈proof 〉

lemma Min-wrt-map-relation-vimage:
f −‘ Min-wrt le ⊆ Min-wrt (map-relation f le)
〈proof 〉

lemma Min-wrt-among-map-relation-bij-subset:
assumes bij (f :: ′a ⇒ ′b)
shows f ‘ Min-wrt-among le A ⊆

Min-wrt-among (map-relation (inv f) le) (f ‘ A)
〈proof 〉

lemma Min-wrt-among-map-relation-bij:
assumes bij f
shows f ‘ Min-wrt-among le A = Min-wrt-among (map-relation (inv f) le) (f ‘ A)

12

〈proof 〉

lemma Min-wrt-map-relation-bij:
bij f =⇒ f ‘ Min-wrt le = Min-wrt (map-relation (inv f) le)
〈proof 〉

lemma Min-wrt-among-mono:
le y x =⇒ x ∈ Min-wrt-among le A =⇒ y ∈ A =⇒ y ∈ Min-wrt-among le A
〈proof 〉

lemma Min-wrt-mono:
le y x =⇒ x ∈ Min-wrt le =⇒ y ∈ Min-wrt le
〈proof 〉

end

context total-preorder-on
begin

lemma Min-wrt-among-total-preorder :
Min-wrt-among le A = {x∈carrier ∩ A. ∀ y∈carrier ∩ A. le x y}
〈proof 〉

lemma Min-wrt-total-preorder :
Min-wrt le = {x∈carrier . ∀ y∈carrier . le x y}
〈proof 〉

lemma decompose-Min:
assumes A: A ⊆ carrier
defines M ≡ Min-wrt-among le A
shows restrict-relation A le = (λx y. x ∈ M ∧ y ∈ A ∨ (y /∈ M ∧ restrict-relation (A − M)

le x y))
〈proof 〉

end

definition min-wrt-among :: ′a relation ⇒ ′a set ⇒ ′a where
min-wrt-among R A = the-elem (Min-wrt-among R A)

definition min-wrt :: ′a relation ⇒ ′a where
min-wrt R = min-wrt-among R UNIV

definition max-wrt-among :: ′a relation ⇒ ′a set ⇒ ′a where
max-wrt-among R A = the-elem (Max-wrt-among R A)

definition max-wrt :: ′a relation ⇒ ′a where

13

max-wrt R = max-wrt-among R UNIV

context finite-linorder-on
begin

lemma Max-wrt-among-singleton:
assumes A 6= {} A ⊆ carrier
shows is-singleton (Max-wrt-among le A)
〈proof 〉

lemma max-wrt-among-inside:
assumes A 6= {} A ⊆ carrier
shows max-wrt-among le A ∈ A
〈proof 〉

lemma le-max-wrt-among:
assumes y ∈ A A ⊆ carrier
shows le y (max-wrt-among le A)
〈proof 〉

end

context finite-linorder-on
begin

lemma Min-wrt-among-singleton:
assumes A 6= {} A ⊆ carrier
shows is-singleton (Min-wrt-among le A)
〈proof 〉

lemma min-wrt-among-inside:
assumes A 6= {} A ⊆ carrier
shows min-wrt-among le A ∈ A
〈proof 〉

lemma le-min-wrt-among:
assumes y ∈ A A ⊆ carrier
shows le (min-wrt-among le A) y
〈proof 〉

end

end

2 Social welfare functions
theory Social-Welfare-Functions

14

imports
Swap-Distance.Swap-Distance
Rankings.Topological-Sortings-Rankings
Randomised-Social-Choice.Preference-Profiles
SWF-Impossibility-Library

begin

2.1 Preference profiles

In the context of social welfare functions, a preference profile consists of a linear ordering
(a ranking) of alternatives for each agent.
locale pref-profile-linorder-wf =

fixes agents :: ′agent set and alts :: ′alt set and R :: (′agent, ′alt) pref-profile
assumes nonempty-agents [simp]: agents 6= {} and nonempty-alts [simp]: alts 6= {}
assumes prefs-wf [simp]: i ∈ agents =⇒ finite-linorder-on alts (R i)
assumes prefs-undefined [simp]: i /∈ agents =⇒ ¬R i x y

begin

lemma finite-alts [simp]: finite alts
〈proof 〉

lemma prefs-wf ′ [simp]:
i ∈ agents =⇒ linorder-on alts (R i)
〈proof 〉

lemma not-outside:
assumes x �[R i] y
shows i ∈ agents x ∈ alts y ∈ alts
〈proof 〉

sublocale linorder-family agents alts R
〈proof 〉

lemmas prefs-undefined ′ = not-in-dom ′

lemma wf-update:
assumes i ∈ agents linorder-on alts Ri ′
shows pref-profile-linorder-wf agents alts (R(i := Ri ′))
〈proof 〉

lemma wf-permute-agents:
assumes σ permutes agents
shows pref-profile-linorder-wf agents alts (R ◦ σ)
〈proof 〉

lemma (in −) pref-profile-eqI :
assumes pref-profile-linorder-wf agents alts R1 pref-profile-linorder-wf agents alts R2
assumes

∧
x. x ∈ agents =⇒ R1 x = R2 x

shows R1 = R2

15

〈proof 〉

An obvious fact: if the number of agents is at most 2 and there are no ties then the
majority relation coincides with the unanimity relation.
lemma card-agents-le-2-imp-majority-eq-unanimity:

assumes card agents ≤ 2 and [simp]: finite agents
assumes linorder-on alts (majority R)
shows majority R = Pareto R
〈proof 〉

end

An election, in our terminology, consists of a finite set of agents and a finite non-empty
set of alternatives. It is this context in which we then consider all the set of possible
preference profiles and SWFs.
locale linorder-election =

fixes agents :: ′agent set and alts :: ′alt set
assumes finite-agents [simp, intro]: finite agents
assumes finite-alts [simp, intro]: finite alts
assumes nonempty-agents [simp]: agents 6= {}
assumes nonempty-alts [simp]: alts 6= {}

begin

abbreviation is-pref-profile ≡ pref-profile-linorder-wf agents alts

lemma finite-linorder-on-iff ′ [simp]:
finite-linorder-on alts R ←→ linorder-on alts R
〈proof 〉

lemma finite-pref-profiles [intro]: finite {R. is-pref-profile R}
and card-pref-profiles: card {R. is-pref-profile R} = fact (card alts) ^ card agents
〈proof 〉

lemma pref-profile-exists: ∃R. is-pref-profile R
〈proof 〉

lemma pref-profile-wfI ′ [intro?]:
(
∧

i. i ∈ agents =⇒ linorder-on alts (R i)) =⇒
(
∧

i. i /∈ agents =⇒ R i = (λ- -. False)) =⇒ is-pref-profile R
〈proof 〉

lemma is-pref-profile-update [simp,intro]:
assumes is-pref-profile R linorder-on alts Ri ′ i ∈ agents
shows is-pref-profile (R(i := Ri ′))
〈proof 〉

lemma election [simp,intro]: linorder-election agents alts
〈proof 〉

16

end

2.2 Definition and desirable properties of SWFs
locale social-welfare-function = linorder-election agents alts

for agents :: ′agent set and alts :: ′alt set +
fixes swf :: (′agent, ′alt) pref-profile ⇒ ′alt relation
assumes swf-wf : is-pref-profile R =⇒ linorder-on alts (swf R)

begin

lemma swf-wf ′:
assumes is-pref-profile R
shows finite-linorder-on alts (swf R)
〈proof 〉

end

lemma (in linorder-election) social-welfare-functionI [intro]:
(
∧

R. is-pref-profile R =⇒ linorder-on alts (swf R)) =⇒ social-welfare-function agents alts swf
〈proof 〉

Anonymity: the identities of the agents do not matter, i.e. the SWF is stable under
renaming of the authors.
locale anonymous-swf = social-welfare-function agents alts swf

for agents :: ′agent set and alts :: ′alt set and swf +
assumes anonymous: π permutes agents =⇒ is-pref-profile R =⇒ swf (R ◦ π) = swf R

An obvious fact: if there is only one agent, any SWF is anonymous.
lemma (in social-welfare-function) one-agent-imp-anonymous:

assumes card agents = 1
shows anonymous-swf agents alts swf
〈proof 〉

Neutrality: the identities of the alternatives does not matter, i.e. the SWF commutes
with renaming the alternatives.
This is not a particularly interesting property since it clashes with anonymity whenever
tie-breaking is required.
locale neutral-swf = social-welfare-function agents alts swf

for agents :: ′agent set and alts :: ′alt set and swf +
assumes neutral: σ permutes alts =⇒ is-pref-profile R =⇒

swf (map-relation σ ◦ R) = map-relation σ (swf R)

Unanimity: any ordering of two alternatives that all agents agree on is also present in
the result ranking.
locale unanimous-swf = social-welfare-function agents alts swf

for agents :: ′agent set and alts :: ′alt set and swf +
assumes unanimous: is-pref-profile R =⇒ ∀ i∈agents. x �[R i] y =⇒ x �[swf R] y

begin

17

lemma unanimous ′:
assumes is-pref-profile R ∀ i∈agents. x �[R i] y
shows x �[swf R] y
〈proof 〉

A more convenient form of unanimity for computation: the SWF must return a ranking
that is a topological sorting of the Pareto dominance relation.
In other words: we define the relation P as the intersection of all the preference relations
of the agents. This relation is a partial order that captures everything the agents agree
on. Due to unanimity, the result returned by the SWF must be a linear ordering that
extends P , i.e. a topological sorting of P .
These topological sortings can be computed relatively easily using the standard algo-
rithm, i.e. repeatedly picking a maximal element nondeterministically and putting it as
the next element of the result ranking.
If the number of possible rankings is relatively small, this is more efficient than listing
all n! possible rankings and then weeding out the ones ruled out by unanimity.
lemma unanimous-topo-sort-Pareto:

assumes R: is-pref-profile R
shows swf R ∈ of-ranking ‘ topo-sorts alts (Pareto(R))
〈proof 〉

end

Kemeny strategyproofness: no agent can achieve a better outcome for themselves by
unilaterally submitting a preference ranking different from their true one. Here, “better”
is defined by the swap distance (also known as the Kendall tau distance).
locale kemeny-strategyproof-swf = social-welfare-function agents alts swf

for agents :: ′agent set and alts :: ′alt set and swf +
assumes kemeny-strategyproof :

is-pref-profile R =⇒ i ∈ agents =⇒ linorder-on alts R ′ =⇒
swap-dist-relation (R i) (swf R) ≤ swap-dist-relation (R i) (swf (R(i := R ′)))

2.3 Majority consistency
locale majority-consistent-swf = social-welfare-function agents alts swf

for agents :: ′agent set and alts :: ′alt set and swf +
assumes majority-consistent:

is-pref-profile R =⇒ linorder-on alts (majority R) =⇒ swf R = majority R

locale majcons-kstratproof-swf =
majority-consistent-swf agents alts swf +
kemeny-strategyproof-swf agents alts swf
for agents :: ′agent set and alts :: ′alt set and swf

A unanimous SWF with at most 2 agents is always majority-consistent (since the only
way for a preference relation to have no ties is for it to be unanimous).

18

lemma (in unanimous-swf)
assumes card agents ≤ 2
shows majority-consistent-swf agents alts swf
〈proof 〉

For a non-unanimous SWF, Kemeny strategyproofness does not survive the addition of
dummy alternatives. However, a weaker notion does, namely Kemeny strategyproofness
where only manipulations to profiles with a linear majority relation are forbidden.
locale majority-consistent-weak-kstratproof-swf =

majority-consistent-swf agents alts swf
for agents :: ′agent set and alts :: ′alt set and swf +
assumes majority-consistent-kemeny-strategyproof :

is-pref-profile R =⇒ i ∈ agents =⇒ linorder-on alts S =⇒
linorder-on alts (majority (R(i := S))) =⇒
swap-dist-relation (R i) (swf R) ≤ swap-dist-relation (R i) (majority (R(i := S)))

2.4 Concrete classes of SWFs
2.4.1 Dictatorships

A dictatorship rule simply returns the ranking of one fixed agent (the dictator). It is
clearly neutral, anonymous, and strategyproof, but neither anonymous (unless n = 1)
nor majority-consistent (unless n ≤ 2).
locale dictatorship-swf = linorder-election agents alts

for agents :: ′agent set and alts :: ′alt set +
fixes dictator :: ′agent
assumes dictator-in-agents: dictator ∈ agents

begin

sublocale social-welfare-function agents alts λR. R dictator
〈proof 〉

sublocale neutral-swf agents alts λR. R dictator
〈proof 〉

sublocale unanimous-swf agents alts λR. R dictator
〈proof 〉

sublocale kemeny-strategyproof-swf agents alts λR. R dictator
〈proof 〉

end

2.4.2 Fixed-result SWFs

Another degenerate case is an SWF that always returns the same ranking, completely
ignoring the preferences of the agents. Such an SWF is clearly anonymous and strate-
gyproof, but not unanimous (except for the degenerate case where m = 1).

19

locale fixed-swf = linorder-election agents alts
for agents :: ′agent set and alts :: ′alt set +
fixes ranking :: ′alt relation
assumes ranking: linorder-on alts ranking

begin

sublocale social-welfare-function agents alts λ-. ranking
〈proof 〉

sublocale anonymous-swf agents alts λ-. ranking
〈proof 〉

sublocale kemeny-strategyproof-swf agents alts λ-. ranking
〈proof 〉

end

end

2.5 Anonymised preference profiles
theory SWF-Anonymous

imports Social-Welfare-Functions
begin

context anonymous-swf
begin

lemma anonymous ′:
assumes R: is-pref-profile R and R ′: is-pref-profile R ′

assumes image-mset R (mset-set agents) = image-mset R ′ (mset-set agents)
shows swf R = swf R ′

〈proof 〉

For convenience we define a simpler view on SWFs where the input is not a regular
preference profile but an “anonymised” profile. Formally, this is simply the multiset of
the agents’ rankings without any information on the identities of the agents.
definition is-apref-profile :: ′alt relation multiset ⇒ bool where

is-apref-profile Rs ←→ size Rs = card agents ∧ (∀R∈#Rs. linorder-on alts R)

The following is the corresponding version of the SWF that takes an anonymised profile:
definition aswf :: ′alt relation multiset ⇒ ′alt relation

where aswf Rs = swf (SOME R. is-pref-profile R ∧ Rs = image-mset R (mset-set agents))

Every valid anonymised profile also has at least one corresponding "non-anonymised"
version.
lemma deanonymised-profile-exists:

assumes is-apref-profile Rs

20

obtains R where is-pref-profile R Rs = image-mset R (mset-set agents)
〈proof 〉

The anonymous version of the SWF is well-defined w.r.t. the regular version of the SWF,
i.e. plugging in the anonymised version of a profile gives the same result as plugging the
original profile into the original SWF.
lemma aswf-welldefined:

assumes is-pref-profile R
defines Rs ≡ image-mset R (mset-set agents)
shows aswf Rs = swf R
〈proof 〉

The anonymous version of the SWF always returns a valid ranking if the input is a valid
anonymised profile.
lemma aswf-wf :

assumes is-apref-profile Rs
shows linorder-on alts (aswf Rs)
〈proof 〉

lemma aswf-wf ′:
assumes is-apref-profile Rs
shows finite-linorder-on alts (aswf Rs)
〈proof 〉

For extra notational convenience, we define yet another version of our SWF that directly
takes multisets of lists as inputs rather than multisets of preference relations.
definition aswf ′ :: ′alt list multiset ⇒ ′alt list

where aswf ′ Rs = ranking (aswf (image-mset of-ranking Rs))

definition is-apref-profile ′ :: ′alt list multiset ⇒ bool where
is-apref-profile ′ Rs ←→ size Rs = card agents ∧ (∀R∈#Rs. R ∈ permutations-of-set alts)

lemma is-apref-profile ′-imp-is-apref-profile:
assumes is-apref-profile ′ Rs
shows is-apref-profile (image-mset of-ranking Rs)
〈proof 〉

lemma aswf ′-wf :
assumes is-apref-profile ′ Rs
shows aswf ′ Rs ∈ permutations-of-set alts
〈proof 〉

end

locale anonymous-unanimous-swf =
anonymous-swf agents alts swf +

21

unanimous-swf agents alts swf
for agents :: ′agent set and alts :: ′alt set and swf

begin

lemma unanimous-aswf :
assumes is-apref-profile Rs ∀R∈#Rs. x �[R] y
shows x �[aswf Rs] y
〈proof 〉

lemma unanimous-aswf ′:
assumes is-apref-profile Rs ∀R∈#Rs. x �[R] y
shows x �[aswf Rs] y
〈proof 〉

lemma is-apref-profile-unanimous-not-outside:
assumes is-apref-profile Rs ∀R∈#Rs. R x y
shows x ∈ alts ∧ y ∈ alts
〈proof 〉

lemma unanimous-topo-sorts-Pareto-aswf :
assumes Rs: is-apref-profile Rs
shows aswf Rs ∈ of-ranking ‘ topo-sorts alts (λx y. ∀R∈#Rs. R x y)
〈proof 〉

end

locale anonymous-kemeny-strategyproof-swf =
anonymous-swf agents alts swf +
kemeny-strategyproof-swf agents alts swf
for agents :: ′agent set and alts :: ′alt set and swf

begin

lemma kemeny-strategyproof-aswf :
assumes is-apref-profile R1 is-apref-profile R2
assumes size (R1 − R2) = 1
assumes ∃R∈#(R1−R2). swap-dist-relation R S1 > swap-dist-relation R S2
shows aswf R1 6= S1 ∨ aswf R2 6= S2
〈proof 〉

lemma kemeny-strategyproof-aswf-strong:
assumes is-apref-profile R1 is-apref-profile R2
assumes size (R1 − R2) = 1
assumes (∃R∈#R1−R2 . swap-dist-relation R S1 > swap-dist-relation R S2) ∨

(∃R∈#R2−R1 . swap-dist-relation R S2 > swap-dist-relation R S1)
shows aswf R1 6= S1 ∨ aswf R2 6= S2
〈proof 〉

lemma kemeny-strategyproof-aswf ′:

22

assumes is-apref-profile ′ R1 is-apref-profile ′ R2
assumes size (R1 − R2) = 1
assumes ∃R∈#(R1−R2). swap-dist R S1 > swap-dist R S2
shows aswf ′ R1 6= S1 ∨ aswf ′ R2 6= S2
〈proof 〉

lemma kemeny-strategyproof-aswf ′-strong:
assumes is-apref-profile ′ R1 is-apref-profile ′ R2
assumes size (R1 − R2) = 1
assumes (∃R∈#(R1−R2). swap-dist R S1 > swap-dist R S2) ∨

(∃R∈#(R2−R1). swap-dist R S2 > swap-dist R S1)
shows aswf ′ R1 6= S1 ∨ aswf ′ R2 6= S2
〈proof 〉

A consequence of strategyproofness: if a profile contains clones (i.e. it contains the same
ranking A multiple times) then simultaneous deviations by the clones may not result in
a better outcome w.r.t. A.
This is simply proven using a chain of n successive single-agent deviations, each replacing
one copy of A with another ranking.
lemma kemeny-strategyproof-aswf ′-clones-aux:

assumes is-apref-profile ′ R1 is-apref-profile ′ R2
assumes R1 − R2 = replicate-mset n A
shows swap-dist A (aswf ′ R1) ≤ swap-dist A (aswf ′ R2)
〈proof 〉

lemma kemeny-strategyproof-aswf ′-clones:
assumes is-apref-profile ′ R1 is-apref-profile ′ R2
assumes R1 − R2 = replicate-mset n A
assumes swap-dist A S1 > swap-dist A S2
shows aswf ′ R1 6= S1 ∨ aswf ′ R2 6= S2
〈proof 〉

Another consequence of Kemeny strategyproofness: if an agent gets a non-optimal result
(i.e. the result ranking is not the ranking of the agent), no deviation of the agent can
yield the optimal result either.
lemma kemeny-strategyproof-aswf ′-no-obtain-optimal:

assumes is-apref-profile ′ R is-apref-profile ′ R ′ add-mset S R ′ = add-mset S ′ R
shows aswf ′ R = S ∨ aswf ′ R ′ 6= S
〈proof 〉

end

The following relation says that the given anonymised set of preferences Rs has a majority
relation that is a linear order, and this linear order is exactly the one described by the
ranking S.
definition majority-rel-mset :: ′a list multiset ⇒ ′a list ⇒ bool where

majority-rel-mset Rs S ←→

23

majority-mset (image-mset of-ranking Rs) = of-ranking S ∧ distinct S

locale anonymous-majority-consistent-swf =
anonymous-swf agents alts swf +
majority-consistent-swf agents alts swf
for agents :: ′agent set and alts :: ′alt set and swf

begin

lemma majority-consistent-aswf :
assumes is-apref-profile Rs linorder-on alts (majority-mset Rs)
shows aswf Rs = majority-mset Rs
〈proof 〉

lemma majority-consistent-aswf ′:
assumes is-apref-profile ′ Rs majority-rel-mset Rs S
shows aswf ′ Rs = S
〈proof 〉

end

end

2.6 Social Welfare Functions with explicit lists of agents and alternatives
theory SWF-Explicit

imports SWF-Anonymous
begin

locale linorder-election-explicit =
linorder-election agents alts
for agents :: ′agent set and alts :: ′alt set +
fixes agents-list :: ′agent list and alts-list :: ′alt list
assumes agents-list: mset agents-list = mset-set agents
assumes alts-list: mset alts-list = mset-set alts

begin

lemma distinct-alts-list: distinct alts-list
〈proof 〉

lemma alts-conv-alts-list: alts = set alts-list
〈proof 〉

lemma card-alts [simp]: card alts = length alts-list
〈proof 〉

lemma distinct-agents-list: distinct agents-list
〈proof 〉

24

lemma agents-conv-agents-list: agents = set agents-list
〈proof 〉

lemma card-agents: card agents = length agents-list
〈proof 〉

lemma mset-eq-alts-list-iff : mset xs = mset alts-list ←→ distinct xs ∧ set xs = alts
〈proof 〉

lemma mset-eq-agents-list-iff : mset xs = mset agents-list ←→ distinct xs ∧ set xs = agents
〈proof 〉

definition prefs-from-rankings
:: ′alt list list ⇒ (′agent ⇒ ′alt relation) where

prefs-from-rankings rs =
(λi. if i ∈ agents then of-ranking (rs ! index agents-list i) else (λ- -. False))

definition prefs-from-rankings-wf :: ′alt list list ⇒ bool where
prefs-from-rankings-wf rs ←→

length rs = card agents ∧ list-all (λr . mset r = mset alts-list) rs

lemma prefs-from-rankings-wf-imp-is-pref-profile [intro]:
assumes prefs-from-rankings-wf rs
shows is-pref-profile (prefs-from-rankings rs)
〈proof 〉

lemma prefs-from-rankings-nth:
assumes prefs-from-rankings-wf R1 i < card agents
shows prefs-from-rankings R1 (agents-list ! i) = of-ranking (R1 ! i)
〈proof 〉

lemma prefs-from-rankings-outside:
assumes i /∈ agents
shows prefs-from-rankings R1 i = (λ- -. False)
〈proof 〉

lemma prefs-from-rankings-update:
assumes prefs-from-rankings-wf R1 i < card agents mset xs = mset alts-list
shows prefs-from-rankings (R1 [i := xs]) =

(prefs-from-rankings R1)(agents-list ! i := of-ranking xs)
〈proof 〉

lemma prefs-from-rankings-wf-update:
assumes prefs-from-rankings-wf R1 i < card agents mset xs = mset alts-list
shows prefs-from-rankings-wf (R1 [i := xs])
〈proof 〉

lemma majority-prefs-from-rankings:
assumes prefs-from-rankings-wf R

25

shows majority (prefs-from-rankings R) = majority-mset (mset (map of-ranking R))
〈proof 〉

lemma majority-prefs-from-rankings-eq-of-ranking:
assumes prefs-from-rankings-wf R majority-rel-mset (mset R) ys
shows majority (prefs-from-rankings R) = of-ranking ys
〈proof 〉

lemma majority-rel-mset-imp-mset:
assumes prefs-from-rankings-wf R majority-rel-mset (mset R) xs
shows mset xs = mset alts-list
〈proof 〉

end

locale social-welfare-function-explicit =
social-welfare-function agents alts swf +
linorder-election-explicit agents alts agents-list alts-list
for agents :: ′agent set and alts :: ′alt set and swf agents-list alts-list

begin

definition swf ′ :: ′alt list list ⇒ ′alt list where
swf ′ R = ranking (swf (prefs-from-rankings R))

lemma swf ′-wf : prefs-from-rankings-wf R =⇒ mset (swf ′ R) = mset-set alts
〈proof 〉

end

locale majority-consistent-swf-explicit =
social-welfare-function-explicit agents alts swf agents-list alts-list +
majority-consistent-swf agents alts swf
for agents :: ′agent set and alts :: ′alt set and swf agents-list alts-list

begin

lemma majority-consistent-swf ′:
assumes prefs-from-rankings-wf R majority-rel-mset (mset R) ys
shows swf ′ R = ys
〈proof 〉

end

locale majcons-kstratproof-swf-explicit =
social-welfare-function-explicit agents alts swf agents-list alts-list +
majcons-kstratproof-swf agents alts swf

for agents :: ′agent set and alts :: ′alt set and swf agents-list alts-list
begin

26

sublocale majority-consistent-swf-explicit 〈proof 〉

sublocale majority-consistent-weak-kstratproof-swf
〈proof 〉

lemma distinct-alts-list-aux: distinct alts-list
〈proof 〉

lemma distinct-agents-list-aux: distinct agents-list
〈proof 〉

lemma prefs-from-rankings-wf-iff :
prefs-from-rankings-wf xss ←→

length xss = length agents-list ∧ list-all (λys. mset ys = mset alts-list) xss
〈proof 〉

lemma swf ′-in-all-rankings:
assumes prefs-from-rankings-wf xss permutations-of-set-list alts-list = yss
shows list-ex (λys. swf ′ xss = ys) yss
〈proof 〉

lemma kemeny-strategyproof-swf ′:
assumes prefs-from-rankings-wf R1 i < card agents
assumes mset zs = mset alts-list
assumes xs = R1 ! i R2 = R1 [i := zs]
shows swap-dist xs (swf ′ R1) ≤ swap-dist xs (swf ′ R2)
〈proof 〉

lemma kemeny-strategyproof-swf ′-aux:
assumes prefs-from-rankings-wf xss prefs-from-rankings-wf yss
assumes map (index ys) S1 = S1 ′ map (index ys) S2 = S2 ′

assumes inversion-number S1 ′ = d1 inversion-number S2 ′ = d2
assumes d1 > d2 ∧ i < length agents-list ∧ ys = xss ! i ∧ yss = xss[i := zs]
shows swf ′ xss 6= S1 ∨ swf ′ yss 6= S2
〈proof 〉

end

locale majcons-weak-kstratproof-swf-explicit =
social-welfare-function-explicit agents alts swf agents-list alts-list +
majority-consistent-weak-kstratproof-swf agents alts swf
for agents :: ′agent set and alts :: ′alt set and swf agents-list alts-list

begin

sublocale majority-consistent-swf-explicit agents alts swf agents-list alts-list 〈proof 〉

lemma majority-consistent-kemeny-strategyproof-swf ′:

27

assumes prefs-from-rankings-wf R1 i < card agents mset zs = mset alts-list
assumes xs = R1 ! i majority-rel-mset (mset (R1 [i := zs])) ys
shows swap-dist xs (swf ′ R1) ≤ swap-dist xs ys
〈proof 〉

end

end

2.7 Lowering constructions for SWFs
theory SWF-Lowering

imports SWF-Explicit
begin

In this section, we will give constructions that turn an SWF for some number of alter-
natives into an SWF for fewer alternatives and agents.
Concretely:

• We can create an SWF for fewer alternatives by simply adding the missing alter-
natives at the very and of all the agents’ rankings in some fixed orders. However,
this only works if the SWF is unanimous, so that the dummy alternatives are
guaranteed to be at the very end of the output ranking.

• If the number of agents is n = kn′ for some k > 0, we can create an SWF for n′

agents by simply cloning every agent in the input profile k times.
These constructions preserve anonymity, unanimity, and Kemeny-strategyproofness.

2.7.1 Decreasing the number of alternatives
locale swf-restrict-alts = social-welfare-function agents alts swf

for agents :: ′agent set and alts :: ′alt set and swf +
fixes dummy-alts alts ′

assumes alts ′-nonempty: alts ′ 6= {} and finite-alts ′: finite alts ′

assumes dummy-alts-alts ′: mset-set alts = mset dummy-alts + mset-set alts ′

begin

lemma alts ′: alts ′ ⊆ alts alts ′ 6= {}
〈proof 〉

sublocale new: linorder-election agents alts ′

〈proof 〉

lemma dummy-alts: distinct dummy-alts set dummy-alts = alts − alts ′

〈proof 〉

The following lifts a ranking on the smaller set of alternatives to the full set, by adding
the dummy alternatives at the end in the order we fixed.
definition extend-ranking :: ′alt relation ⇒ ′alt relation where

28

extend-ranking R =
(λx y. R x y ∨ of-ranking dummy-alts x y ∨ x ∈ alts − alts ′ ∧ y ∈ alts ′)

lemma linorder-on-extend-ranking:
assumes linorder-on alts ′ R
shows linorder-on alts (extend-ranking R)
〈proof 〉

lemma restrict-extend-ranking:
assumes linorder-on alts ′ R
shows restrict-relation alts ′ (extend-ranking R) = R
〈proof 〉

lemma swap-dist-extend-ranking:
assumes linorder-on alts ′ R linorder-on alts ′ S
shows swap-dist-relation (extend-ranking R) (extend-ranking S) = swap-dist-relation R S
〈proof 〉

lemma extend-ranking-eq-iff :
assumes

∧
x y. R x y =⇒ x ∈ alts ′ ∧ y ∈ alts ′ ∧x y. S x y =⇒ x ∈ alts ′ ∧ y ∈ alts ′

shows extend-ranking R = extend-ranking S ←→ R = S
〈proof 〉

We extend a profile to the full set of alternatives by extending each ranking.
definition extend-profile :: (′agent ⇒ ′alt relation) ⇒ ′agent ⇒ ′alt relation where

extend-profile R i = (λx y. i ∈ agents ∧ extend-ranking (R i) x y)

lemma is-pref-profile-extend [intro]:
assumes new.is-pref-profile R
shows is-pref-profile (extend-profile R)
〈proof 〉

lemma count-extend-ranking-multiset:
assumes

∧
R. R ∈# Rs =⇒ linorder-on alts ′ R and xy: x ∈ alts y ∈ alts

shows size {#R∈#Rs. extend-ranking R x y#} =
(if x ∈ alts ′ ∧ y ∈ alts ′ then size {#R∈#Rs. R x y#}
else if x /∈ alts ′ ∧ (y ∈ alts ′ ∨ of-ranking dummy-alts x y) then size Rs else 0)

〈proof 〉

lemma count-extend-profile:
assumes new.is-pref-profile R and xy: x ∈ alts y ∈ alts
shows card {i∈agents. extend-profile R i x y} =

(if x ∈ alts ′ ∧ y ∈ alts ′ then card {i∈agents. R i x y}
else if x /∈ alts ′ ∧ (y ∈ alts ′ ∨ of-ranking dummy-alts x y) then card agents else 0)

〈proof 〉

lemma majority-extend-profile:
assumes new.is-pref-profile R
shows majority (extend-profile R) = extend-ranking (majority R)

29

〈proof 〉

lemma majority-mset-extend-profile:
assumes

∧
R. R ∈# Rs =⇒ linorder-on alts ′ R Rs 6= {#}

shows majority-mset (image-mset extend-ranking Rs) = extend-ranking (majority-mset Rs)
〈proof 〉

We define our new SWF on the full set of alternatives by extending the input profile and
removing the extra alternatives from the output ranking.
definition swf-low :: (′agent ⇒ ′alt relation) ⇒ ′alt relation where

swf-low R = restrict-relation alts ′ (swf (extend-profile R))

sublocale new: social-welfare-function agents alts ′ swf-low
〈proof 〉

Our construction preserves anonymity, unanimity, and Kemeny-strategyproofness.
lemma anonymous-restrict:

assumes anonymous-swf agents alts swf
shows anonymous-swf agents alts ′ swf-low
〈proof 〉

lemma unanimous-restrict:
assumes unanimous-swf agents alts swf
shows unanimous-swf agents alts ′ swf-low
〈proof 〉

lemma majority-consistent-restrict:
assumes majority-consistent-swf agents alts swf
shows majority-consistent-swf agents alts ′ swf-low
〈proof 〉

end

locale unanimous-swf-restrict-alts =
swf-restrict-alts agents alts swf dummy-alts alts ′ +
unanimous-swf agents alts swf
for agents :: ′agent set and alts :: ′alt set and swf dummy-alts alts ′

begin

sublocale new: unanimous-swf agents alts ′ swf-low
〈proof 〉

lemma swf-dummy-alts-least-preferred:
assumes new.is-pref-profile R x ∈ alts ′ y ∈ alts − alts ′

shows x �[swf (extend-profile R)] y
〈proof 〉

30

lemma swf-strongly-preferred-dummy-alts:
assumes new.is-pref-profile R x ∈ alts − alts ′ y ∈ alts − alts ′

assumes x �[of-ranking dummy-alts] y
shows x �[swf (extend-profile R)] y
〈proof 〉

lemma swf-preferred-dummy-alts-iff :
assumes new.is-pref-profile R x ∈ alts − alts ′ y ∈ alts − alts ′

shows x �[of-ranking dummy-alts] y ←→ x �[swf (extend-profile R)] y
〈proof 〉

lemma swf-strongly-preferred-dummy-alts-iff :
assumes new.is-pref-profile R x ∈ alts − alts ′ y ∈ alts − alts ′

shows x �[swf (extend-profile R)] y ←→ x �[of-ranking dummy-alts] y
〈proof 〉

lemma extend-ranking-swf-low:
assumes new.is-pref-profile R
shows extend-ranking (swf-low R) = swf (extend-profile R)
〈proof 〉

lemma kemeny-strategyproof-restrict:
assumes kemeny-strategyproof-swf agents alts swf
shows kemeny-strategyproof-swf agents alts ′ swf-low
〈proof 〉

end

locale majority-consistent-weak-kstratproof-swf-restrict-alts =
majority-consistent-weak-kstratproof-swf agents alts swf +
swf-restrict-alts agents alts swf dummy-alts alts ′

for agents :: ′agent set and alts :: ′alt set and swf dummy-alts alts ′

begin

sublocale new: majority-consistent-swf agents alts ′ swf-low
〈proof 〉

sublocale new: majority-consistent-weak-kstratproof-swf agents alts ′ swf-low
〈proof 〉

end

locale swf-restrict-alts-explicit =
swf-restrict-alts agents alts swf dummy-alts alts ′ +
social-welfare-function-explicit agents alts swf agents-list alts-list
for agents :: ′agent set and alts :: ′alt set

31

and swf dummy-alts alts ′ agents-list alts-list alts-list ′ +
assumes alts-list-expand: alts-list = alts-list ′ @ dummy-alts

begin

lemma mset-alts-list: mset alts-list = mset alts-list ′ + mset dummy-alts
〈proof 〉

sublocale new: social-welfare-function-explicit agents alts ′ swf-low agents-list alts-list ′

〈proof 〉

definition extend :: ′alt list ⇒ ′alt list where extend = (λxs. xs @ dummy-alts)

lemma distinct-alts-list ′: distinct alts-list ′

and alts-list ′-not-in-dummy-alts: set alts-list ′ ∩ set dummy-alts = {}
〈proof 〉

lemma wf-extend:
assumes new.prefs-from-rankings-wf R
shows prefs-from-rankings-wf (map extend R)
〈proof 〉

lemma of-ranking-extend:
assumes mset xs = mset alts-list ′

shows of-ranking (extend xs) = extend-ranking (of-ranking xs)
〈proof 〉

lemma swap-dist-extend:
assumes mset xs = mset alts-list ′ mset ys = mset alts-list ′

shows swap-dist (extend xs) (extend ys) = swap-dist xs ys
〈proof 〉

lemma prefs-from-rankings-extend:
assumes R: new.prefs-from-rankings-wf R
shows prefs-from-rankings (map extend R) = extend-profile (new.prefs-from-rankings R)
(is ?lhs = ?rhs)
〈proof 〉

lemma majority-rel-mset-extend:
assumes R: new.prefs-from-rankings-wf R and S : mset S = mset alts-list ′

shows majority-rel-mset (mset (map extend R)) (extend S) ←→ majority-rel-mset (mset R) S
〈proof 〉

lemma new-swf ′-eq:
assumes R: new.prefs-from-rankings-wf R
shows new.swf ′ R = filter (λx. x ∈ alts ′) (swf ′ (map extend R))
〈proof 〉

end

32

2.7.2 Decreasing the number of agents by a factor

The nicest way to formalise the cloning construction would be using the view where a
profile is a multiset of rankings. However, this requires anonymity. For full generality,
we show that the construction also works in the absence of anonymity.
To this end, we first define the notion of a cloning. Let A ⊆ B. The idea is that B \ A
consists of clones of elements of A, and each element of A is cloned equally often. We
model this via a function called “unclone” which maps each element of A to itself and
every element of A \B to the original element in B that it was cloned from.
locale cloning =

fixes A B unclone
assumes subset: A ⊆ B
assumes finite: finite B
assumes unclone:

∧
x. x ∈ B =⇒ unclone x ∈ A

assumes unclone-ident:
∧

x. x ∈ A =⇒ unclone x = x
assumes card-unclone:

x ∈ A =⇒ y ∈ A =⇒ card (unclone −‘ {x} ∩ B) = card (unclone −‘ {y} ∩ B)
begin

definition clones :: ′a ⇒ ′a set
where clones i = unclone −‘ {i} ∩ B

definition factor :: nat
where factor = card B div card A

lemma finite-clones: finite (clones i)
〈proof 〉

lemma clones-outside: i /∈ A =⇒ clones i = {}
〈proof 〉

lemma card-clones ′:
assumes i ∈ A
shows card (clones i) ∗ card A = card B
〈proof 〉

lemma card-clones:
assumes i ∈ A
shows card (clones i) = factor
〈proof 〉

lemma image-mset-unclone:
image-mset unclone (mset-set B) = repeat-mset factor (mset-set A)
(is ?lhs = ?rhs)

〈proof 〉

lemma factor-pos: B 6= {} =⇒ factor > 0
〈proof 〉

33

end

It is easy to see (but somewhat tedious to show) that a cloning exists whenever |B| is a
multiple of |A|
lemma cloning-exists:

assumes A ⊆ B finite B A 6= {} card A dvd card B
shows ∃ unclone. cloning A B unclone
〈proof 〉

We are now ready to give the actual construction.
locale swf-split-agents =

social-welfare-function agents alts swf +
clone: cloning agents ′ agents unclone
for agents :: ′agent set and alts :: ′alt set and swf and agents ′ unclone

begin

lemmas agents ′ = clone.subset

lemma nonempty-agents ′: agents ′ 6= {}
〈proof 〉

sublocale new: linorder-election agents ′ alts
〈proof 〉

The profiles are extended in the obvious way: the ranking declared by a clone is the same
as the ranking of its original.
definition extend-profile :: (′agent ⇒ ′alt relation) ⇒ ′agent ⇒ ′alt relation where

extend-profile R i = (if i ∈ agents then R (unclone i) else (λ- -. False))

lemma is-pref-profile-extend-profile [intro]:
assumes new.is-pref-profile R
shows is-pref-profile (extend-profile R)
〈proof 〉

lemma count-extend-profile:
card {i∈agents. extend-profile R i x y} = clone.factor ∗ card {i∈agents ′. R i x y}
〈proof 〉

lemma majority-extend-profile:
assumes new.is-pref-profile R
shows majority (extend-profile R) = majority R
〈proof 〉

Correspondingly, we define our new SWF by feeding the cloned profiles to the old one.
definition swf-low :: (′agent ⇒ ′alt relation) ⇒ ′alt relation

where swf-low R = swf (extend-profile R)

34

sublocale new: social-welfare-function agents ′ alts swf-low
〈proof 〉

It is easy to see that cloning commutes with a permutation of the agents, so the resulting
SWF is still anonymous if the original one was.
lemma anonymous-clone:

assumes anonymous-swf agents alts swf
shows anonymous-swf agents ′ alts swf-low
〈proof 〉

Unanimity is obviously preserved as well.
lemma unanimous-clone:

assumes unanimous-swf agents alts swf
shows unanimous-swf agents ′ alts swf-low
〈proof 〉

Strategyproofness is slightly more involved. A manipulation by a single agent in an
original profile corresponds to a simultaneous manipulation of them and all their clones.
However, it can be shown that the normal notion of Kemeny strategyproofness (where
only one agent is allowed to manipulate) also implies that no set of clones can obtain a
better result by manipulating simultaneously. This works by simply considering a chain
of single-agent manipulations.
This shows that strategyproofness is also preserved.
lemma kemeny-strategyproof-clone:

assumes kemeny-strategyproof-swf agents alts swf
shows kemeny-strategyproof-swf agents ′ alts swf-low
〈proof 〉

lemma majority-consistent-clone:
assumes majority-consistent-swf agents alts swf
shows majority-consistent-swf agents ′ alts swf-low
〈proof 〉

end

2.7.3 Decreasing the number of agents by an even number

Given an SWF for m alternatives and n agents, we can construct an SWF for m alter-
natives and n− 2k agents by fixing some arbitrary ranking of alternatives and adding k
clones of it to the input profile as well as k reversed clones.
This construction clearly violates anonymity and unanimity. It does however preserve
strategyproofness (by a similar argument as for the cloning, but simpler) and majority
consistency since the majority relation is preserved by our changes to the profile.
locale swf-reduce-agents-even =

social-welfare-function agents alts swf
for agents :: ′agent set and alts :: ′alt set and swf +

35

fixes agents1 agents2 :: ′agent set and dummy-ord :: ′alt relation
assumes agents12 :

agents1 ∪ agents2 ⊂ agents agents1 ∩ agents2 = {} card agents1 = card agents2
assumes dummy-ord: linorder-on alts dummy-ord

begin

sublocale new: linorder-election agents − agents1 − agents2 alts
〈proof 〉

definition extend-profile :: (′agent ⇒ ′alt relation) ⇒ ′agent ⇒ ′alt relation where
extend-profile R =

(λi. if i ∈ agents1 then dummy-ord else if i ∈ agents2 then λx y. dummy-ord y x else R i)

lemma dummy-ord ′: linorder-on alts (λx y. dummy-ord y x)
〈proof 〉

lemma is-pref-profile-extend-profile [intro]:
assumes new.is-pref-profile R
shows is-pref-profile (extend-profile R)
〈proof 〉

lemma count-extend-profile:
assumes new.is-pref-profile R x ∈ alts y ∈ alts
shows card {i ∈ agents. extend-profile R i x y} =

card {i ∈ agents − agents1 − agents2 . R i x y} +
(if x = y then 2 else 1) ∗ card agents1

〈proof 〉

lemma majority-extend-profile:
assumes new.is-pref-profile R
shows majority (extend-profile R) = majority R
〈proof 〉

definition swf-low :: (′agent ⇒ ′alt relation) ⇒ ′alt relation where
swf-low R = swf (extend-profile R)

sublocale new: social-welfare-function agents − agents1 − agents2 alts swf-low
〈proof 〉

lemma kemeny-strategyproof-reduce:
assumes kemeny-strategyproof-swf agents alts swf
shows kemeny-strategyproof-swf (agents − agents1 − agents2) alts swf-low
〈proof 〉

lemma majority-consistent-reduce:
assumes majority-consistent-swf agents alts swf
shows majority-consistent-swf (agents − agents1 − agents2) alts swf-low
〈proof 〉

36

end

end

3 Impossibility results
3.1 Infrastructure for SAT import and export
theory SWF-Impossibility-Automation

imports SWF-Lowering SWF-Anonymous PAPP-Impossibility.SAT-Replay
begin

3.2 Automation for computing topological sortings
definition topo-sorts-aux-step :: (′a × ′a set) list ⇒ (′a × ′b set) list ⇒ ′a list list where

topo-sorts-aux-step rel rel ′ =
List.bind (map fst (filter (λ(-,ys). ys = {}) rel ′))
(λx. map ((#) x) (topo-sorts-aux (map (λ(y,ys). (y, Set.filter (λz. z 6= x) ys))
(filter (λ(y,-). y 6= x) rel))))

lemma topo-sorts-aux-step-simps:
topo-sorts-aux-step rel [] = []
topo-sorts-aux-step rel ((x, insert y ys) # rel ′) = topo-sorts-aux-step rel rel ′
topo-sorts-aux-step rel ((x, {}) # rel ′) =

map ((#) x) (topo-sorts-aux (map (λ(y,ys). (y, Set.filter (λz. z 6= x) ys)) (filter (λ(y,-). y
6= x) rel))) @

topo-sorts-aux-step rel rel ′
〈proof 〉

lemma topo-sorts-aux-Cons ′:
fixes x xs defines rel ≡ x # xs
shows topo-sorts-aux rel = topo-sorts-aux-step rel rel
〈proof 〉

context
begin

qualified fun dom-set :: ′a ⇒ ′a list ⇒ ′a set where
dom-set x [] = {}
| dom-set x (y # ys) = (if x = y then {} else insert y (dom-set x ys))

qualified lemma dom-set-altdef :
assumes distinct r x ∈ set r
shows dom-set x r = {y. y �[of-ranking r] x}
〈proof 〉 definition unanimity :: ′a list ⇒ ′a list multiset ⇒ (′a × ′a set) list where
unanimity xs R = map (λx. (x,

⋂
r∈set-mset R. SWF-Impossibility-Automation.dom-set x r))

xs

37

end

locale anonymous-unanimous-kemenysp-swf =
anonymous-swf agents alts swf +
unanimous-swf agents alts swf +
kemeny-strategyproof-swf agents alts swf
for agents :: ′agent set and alts :: ′alt set and swf

begin

sublocale anonymous-unanimous-swf agents alts swf 〈proof 〉

sublocale anonymous-kemeny-strategyproof-swf agents alts swf 〈proof 〉

end

locale anonymous-unanimous-kemenysp-swf-explicit = anonymous-unanimous-kemenysp-swf agents
alts swf

for agents :: ′agent set and alts :: ′alt set and swf +
fixes agent-card :: nat and alts-list :: ′alt list
assumes card-agents: card agents = agent-card
assumes alts-list: mset alts-list = mset-set alts

begin

lemma distinct-alts-list: distinct alts-list
〈proof 〉

lemma alts-conv-alts-list: alts = set alts-list
〈proof 〉

lemma card-alts [simp]: card alts = length alts-list
〈proof 〉

fun (in −) expand-ranking :: ′a list ⇒ (′a × ′a) list where
expand-ranking [] = []
| expand-ranking (x # xs) = map (λy. (y, x)) xs @ expand-ranking xs

lemma (in −) set-expand-ranking:
distinct xs =⇒ set (expand-ranking xs) = {(x,y). x 6= y ∧ of-ranking xs x y}
〈proof 〉

definition allowed-results :: ′alt list multiset ⇒ ′alt list set where
allowed-results Rs = set (topo-sorts-aux (SWF-Impossibility-Automation.unanimity alts-list

Rs))

lemmas eval-allowed-results =

38

allowed-results-def topo-sorts-aux-Cons ′ Set-filter-insert-if SWF-Impossibility-Automation.dom-set.simps
SWF-Impossibility-Automation.unanimity-def disj-ac topo-sorts-aux-Nil topo-sorts-aux-step-simps

lemma aswf ′-in-all-rankings:
assumes is-apref-profile ′ R
defines A ≡ set (topo-sorts-aux (map (λx. (x, {})) alts-list))
shows aswf ′ R ∈ A
〈proof 〉

lemma aswf ′-in-allowed-results:
assumes is-apref-profile ′ Rs
shows aswf ′ Rs ∈ allowed-results Rs
〈proof 〉

lemma is-apref-profile ′-iff :
is-apref-profile ′ Rs ←→ (size Rs = agent-card ∧ (∀R∈#Rs. mset R = mset alts-list))
〈proof 〉

end

3.3 Automation for strategyproofness
lemma (in anonymous-unanimous-kemenysp-swf-explicit) kemeny-strategyproof-aswf ′-aux:

assumes is-apref-profile ′ R1 is-apref-profile ′ R2
assumes inversion-number S1 ′ = d1 inversion-number S2 ′ = d2
assumes map (index T) S1 = S1 ′ map (index T) S2 = S2 ′

assumes R12 : add-mset T ′ R1 ≡ add-mset T R2
assumes d2 < d1
shows aswf ′ R1 6= S1 ∨ aswf ′ R2 6= S2
〈proof 〉

lemma (in anonymous-unanimous-kemenysp-swf-explicit) kemeny-strategyproof-aswf ′-no-obtain-optimal:
assumes is-apref-profile ′ R is-apref-profile ′ R ′ add-mset S R ′ ≡ add-mset S ′ R
shows aswf ′ R = S ∨ aswf ′ R ′ 6= S
〈proof 〉

3.4 Automation for majority consistency
fun majority-rel-mset-aux :: ′a list multiset ⇒ ′a list ⇒ bool where

majority-rel-mset-aux Rs [] ←→ True
| majority-rel-mset-aux Rs (x # xs) ←→

(∀ y∈set xs. 2 ∗ size (filter-mset (λR. of-ranking R y x) Rs) > size Rs) ∧
majority-rel-mset-aux Rs xs

fun majority-rel-list-aux :: ′a list list ⇒ ′a list ⇒ bool where
majority-rel-list-aux Rs [] ←→ True
| majority-rel-list-aux Rs (x # xs) ←→

list-all (λy. 2 ∗ length (filter (λR. of-ranking R y x) Rs) > length Rs) xs ∧
majority-rel-list-aux Rs xs

39

lemma majority-rel-mset-aux-mset:
majority-rel-mset-aux (mset Rs) ys ←→ majority-rel-list-aux Rs ys
〈proof 〉

lemma majority-rel-mset-aux-correct:
assumes

∧
R. R ∈# Rs =⇒ distinct R ∧ set R = A Rs 6= {#} distinct zs set zs ⊆ A

defines Rs ′ ≡ image-mset of-ranking Rs
defines M ≡ majority-mset Rs ′

shows majority-rel-mset-aux Rs zs ←→
(∀ x∈set zs. ∀ y∈set zs. x ≺[M] y ←→ x ≺[of-ranking zs] y)

(is - ←→ ?rhs zs)
〈proof 〉

lemma majority-rel-mset-aux-correct ′:
assumes

∧
R. R ∈# Rs =⇒ distinct R ∧ set R = A Rs 6= {#}

assumes set S = A distinct S
assumes majority-rel-mset-aux Rs S
shows majority-rel-mset Rs S
〈proof 〉

context social-welfare-function-explicit
begin

lemma majority-rel-list-aux-imp-majority-rel-mset:
assumes prefs-from-rankings-wf R majority-rel-list-aux R ys mset ys = mset alts-list
shows majority-rel-mset (mset R) ys
〈proof 〉

lemma majority-prefs-from-rankings-eq-of-ranking-aux:
assumes prefs-from-rankings-wf R majority-rel-list-aux R ys mset ys = mset alts-list
shows majority (prefs-from-rankings R) = of-ranking ys
〈proof 〉

end

lemma (in majcons-kstratproof-swf-explicit) majority-consistent-swf ′-aux:
assumes prefs-from-rankings-wf xss mset ys = mset alts-list
assumes majority-rel-list-aux xss ys
shows swf ′ xss = ys
〈proof 〉

lemma (in majcons-weak-kstratproof-swf-explicit) majority-consistent-kemeny-strategyproof-swf ′-aux:
assumes prefs-from-rankings-wf R1 i < card agents
assumes mset zs = mset alts-list mset ys = mset alts-list
assumes xs = R1 ! i majority-rel-list-aux (R1 [i := zs]) ys
shows swap-dist xs (swf ′ R1) ≤ swap-dist xs ys
〈proof 〉

40

lemma permutations-of-set-aux-list-Nil: permutations-of-set-aux-list acc [] = [acc]
〈proof 〉

lemma permutations-of-set-aux-list-Cons:
permutations-of-set-aux-list acc (x#xs) =

permutations-of-set-aux-list (x # acc) xs @ List.bind xs
(λxa. permutations-of-set-aux-list (xa # acc) (if xa = x then xs else x # remove1 xa xs))

〈proof 〉

〈ML〉

end
theory Anon-Unan-Stratproof-Impossibility

imports SWF-Impossibility-Automation
begin

3.5 For 5 alternatives and 2 agents

We prove the impossibility for m = 5 and n = 2 via the SAT encoding using a fixed
list of 198 profiles. For symmetry breaking, we assume that the profile (abcde, acbed) is
mapped to the ranking abcde. This assumption will be justified later on by picking the
values of a, b, c, d, e accordingly.
external-file sat-data/kemeny-profiles-5-2 .xz
external-file sat-data/kemeny-5-2 .grat.xz

locale anonymous-unanimous-kemenysp-swf-explicit-5-2 =
anonymous-unanimous-kemenysp-swf-explicit agents alts swf 2 [a,b,c,d,e]
for agents :: ′agent set and alts :: ′alt set and swf and a b c d e +
assumes symmetry-breaking: aswf ′ {# [a,b,c,d,e], [a,c,b,e,d] #} = [a,b,c,d,e]

begin

〈ML〉

end

We now get rid of the symmetry-breaking assumption by choosing an appropriate per-
mutation of the five alternatives.
locale anonymous-unanimous-kemenysp-swf-5-2 = anonymous-unanimous-kemenysp-swf agents
alts swf

for agents :: ′agent set and alts :: ′alt set and swf +
assumes card-agents: card agents = 2
assumes card-alts: card alts = 5

begin

41

sublocale anonymous-unanimous-swf agents alts swf 〈proof 〉
sublocale anonymous-kemeny-strategyproof-swf agents alts swf 〈proof 〉

lemma symmetry-breaking-aux1 :
assumes distinct: distinct [a,b,c,d,e] and alts-eq: alts = {a,b,c,d,e}
defines R ≡ {# [a,b,c,d,e], [a,c,b,e,d] #}
assumes R: aswf ′ R = [a,c,b,d,e]
shows aswf ′ {# [a,b,c,e,d], [a,c,b,d,e] #} ∈ {[a,b,c,e,d], [a,c,b,d,e]}
〈proof 〉

lemma symmetry-breaking-aux2 :
obtains abcde where

distinct abcde alts = set abcde length abcde = 5
case abcde of [a,b,c,d,e] ⇒ aswf ′ {# [a,b,c,d,e], [a,c,b,e,d] #} = [a,b,c,d,e]

〈proof 〉

lemma contradiction: False
〈proof 〉

end

Finally, we employ the usual construction of padding with dummy alternatives and
cloning voters to extend the impossibility to any setting with m ≥ 5 and n even.
theorem (in anonymous-unanimous-kemenysp-swf) impossibility:

assumes even (card agents) and card alts ≥ 5
shows False
〈proof 〉

3.6 For 4 alternatives and 4 agents

We now similarly show the impossibility for m = n = 4. The main difference now is
that the number of profiles involved is much larger, namely 9900, so the approach of
simply generating all strategyproofness clauses that arise between these profiles is no
longer feasible.
Instead we work with an explicit list of the required 254269 strategyproofness clauses
that was extracted from an unsatisfiable core found with MUSer2.
The symmetry-breaking assumption we use this time is that the profile where two agents
report abcd and the other two report badc is mapped to abcd.
external-file sat-data/kemeny-sp-4-4 .xz
external-file sat-data/kemeny-4-4 .grat.xz

locale anonymous-unanimous-kemenysp-swf-explicit-4-4 =
anonymous-unanimous-kemenysp-swf-explicit agents alts swf 4 [a,b,c,d]
for agents :: ′agent set and alts :: ′alt set and swf and a b c d +
assumes symmetry-breaking: aswf ′ {# [a,b,c,d], [a,b,c,d], [b,a,d,c], [b,a,d,c] #} = [a,b,c,d]

begin

42

〈ML〉

end

We again get rid of the symmetry-breaking assumption. The argument is almost exactly
the same one as before, except that we remove the alternative a and all agents get cloned.
Consequently, the arguments involving strategyproofness have to use the stronger notion
of strategyproofness considering simultaneous deviations by clones.
locale anonymous-unanimous-kemenysp-swf-4-4 = anonymous-unanimous-kemenysp-swf agents
alts swf

for agents :: ′agent set and alts :: ′alt set and swf +
assumes card-agents: card agents = 4
assumes card-alts: card alts = 4

begin

sublocale anonymous-unanimous-swf agents alts swf 〈proof 〉

sublocale anonymous-kemeny-strategyproof-swf agents alts swf 〈proof 〉

lemma symmetry-breaking-aux1 :
assumes distinct: distinct [a,b,c,d] and alts-eq: alts = {a,b,c,d}
defines R ≡ repeat-mset 2 {# [a,b,c,d], [b,a,d,c] #}
assumes R: aswf ′ R = [b,a,c,d]
shows aswf ′ (repeat-mset 2 {# [a,b,d,c], [b,a,c,d] #}) ∈ {[a,b,d,c], [b,a,c,d]}
〈proof 〉

lemma symmetry-breaking-aux2 :
obtains abcd where

distinct abcd alts = set abcd length abcd =4
case abcd of [a,b,c,d] ⇒ aswf ′ (repeat-mset 2 {# [a,b,c,d], [b,a,d,c] #}) = [a,b,c,d]

〈proof 〉

lemma contradiction: False
〈proof 〉

end

The final result: extending the impossibility to m ≥ 2 and n a multiple of 4.
theorem (in anonymous-unanimous-kemenysp-swf) impossibility ′:

assumes 4 dvd card agents and card alts ≥ 4
shows False
〈proof 〉

The following collects thw two impossibility results in one theorem.
theorem anonymous-unanimous-kemenysp-impossibility:

43

assumes (card alts = 4 ∧ 4 dvd card agents) ∨ (card alts ≥ 5 ∧ even (card agents))
assumes anonymous-swf agents alts swf
assumes unanimous-swf agents alts swf
assumes kemeny-strategyproof-swf agents alts swf
shows False
〈proof 〉

end
theory Majcons-Stratproof-Impossibility

imports SWF-Impossibility-Automation
begin

A somewhat technical lemma: If the swap distance of two rankings restricted to some
subset A is the same as the swap distance of the full rankings and additionally the
elements of A are all ranked above the elements not in A in one of the rankings, then
the second ranking must also have all elements not in A ranked below those in A and in
the same order.
lemma swap-dist-append-eq-swap-dist-filter-imp-eq:

fixes xs ys zs
defines zs ′ ≡ (filter (λx. x ∈ set xs) zs)
assumes swap-dist (xs @ ys) zs ≤ swap-dist xs zs ′

assumes wf : distinct (xs @ ys) distinct zs set (xs @ ys) = set zs
shows zs = zs ′ @ ys
〈proof 〉

We now turn to a setting where we have exactly 9 agents and 4 alternatives and an SWF
that is majority consistent and satisfies our weak form of Kemeny strategyproofness
where the only manipulated profiles that have a linear majority relation are considered.
We will, in particular, consider two specific profiles and show that there is only one
admissible result ranking for them.
When strengthening the strategyproofness assumption to full strategyproofness, these
two results also turn out to be incompatible, yielding a contradiction.
locale majcons-weak-kstratproof-swf-explicit-4-9 =

majcons-weak-kstratproof-swf-explicit agents alts swf agents-list [a,b,c,d]
for agents :: ′agent set and alts :: ′alt set and swf
and agents-list and a b c d +
assumes card-agents-9 [simp]: card agents = 9

begin

lemma distinct-abcd [simp]:
a 6= b a 6= c a 6= d b 6= a b 6= c b 6= d
c 6= a c 6= b c 6= d d 6= a d 6= b d 6= c
〈proof 〉

We consider the following profile R. This profile does not have a linear majority relation,
but many manipulations of it do.
definition R :: ′alt list list where

44

R = [[c,d,b,a],[b,a,d,c],[d,b,a,c],[c,b,a,d],
[a,d,c,b],[c,a,d,b],[d,c,b,a],[d,a,b,c],[a,b,c,d]]

lemma R-wf [simp]: prefs-from-rankings-wf R
〈proof 〉

We perform five independent manipulations of R, all of which result in profiles with a
transitive majority relation. This gives us five upper bounds about the swap distance
between f(R) and one other ranking each. It turns out that there is only one ranking
that satisfies all of these constraints, and that ranking is adcb.
Note also that the first four inequalities are all sharp.
lemma swf ′-R: swf ′ R = [a,d,c,b]
〈proof 〉

We now consider a second profile, which differs from R only by a manipulation of the
third agent.
definition S :: ′alt list list where

S = [[c,d,b,a],[b,a,d,c],[d,b,c,a],[c,b,a,d],[a,d,c,b],
[c,a,d,b],[d,c,b,a],[d,a,b,c],[a,b,c,d]]

lemma S-wf [simp]: prefs-from-rankings-wf S
〈proof 〉

We similarly show that f(S) = dcba.
lemma swf ′-S : swf ′ S = [d,c,b,a]
〈proof 〉

end

We use the argument outlined in the paper to derive the impossibility for 9 agents and
≥ 4 alternatives. We call the first four alternatives a, b, c, d and treat the remaining ones
as “dummy alternatives” in some fixed order. Agents will always list them as their least
preferred alternatives in exactly that fixed order.
The complication is that, since we do not have unanimity, the ranking returned by the
SWF does not have to respect this order or put them as less preferred than the ‘real’
alternatives. However, we can show that for the profiles we consider, the SWF indeed
has to respect the order.
context majcons-kstratproof-swf-explicit
begin

sublocale majcons-weak-kstratproof-swf-explicit agents alts swf agents-list alts-list 〈proof 〉

lemma contradiction-eq9-ge4-aux:
assumes card agents = 9 card alts ≥ 4
shows False
〈proof 〉

45

Using agent cloning, we can lift the impossibility to any multiple of 9 agents. In partic-
ular, we can derive it for 18 agents.
lemma contradiction-eq18-ge4-aux:

assumes card agents = 18 card alts ≥ 4
shows False
〈proof 〉

By adding k agents together with k ‘anti-clones’ of these agents, we can lift the impossi-
bility to 9+2k or 18+2k agents. This covers every n ≥ 9 except for n ∈ {10, 12, 14, 16}.
lemma contradiction-geq9-ge4-aux:

assumes card agents ∈ {9 , 11 , 13 , 15} ∪ {17 ..} card alts ≥ 4
shows False
〈proof 〉

end

We get rid of the explicit lists of agents and alternatives.
context majcons-kstratproof-swf
begin

lemma contradiction-geq9-ge4 :
assumes card agents ∈ {9 , 11 , 13 , 15} ∪ {17 ..} card alts ≥ 4
shows False
〈proof 〉

end

We use an imported SAT proof to show the case of m = 4, n = 3.
external-file sat-data/maj-profiles-4-3 .xz
external-file sat-data/maj-4-3 .grat.xz
external-file sat-data/maj-sp-4-4 .xz
external-file sat-data/maj-4-4 .grat.xz

locale majcons-kstratproof-swf-explicit-4-3 =
majcons-kstratproof-swf-explicit agents alts swf [A1 ,A2 ,A3] [a,b,c,d]
for agents :: ′agent set and alts :: ′alt set and swf and A1 A2 A3 and a b c d

begin

〈ML〉

end

locale majcons-kstratproof-swf-explicit-4-4 =
majcons-kstratproof-swf-explicit agents alts swf [A1 ,A2 ,A3 ,A4] [a,b,c,d]
for agents :: ′agent set and alts :: ′alt set and swf and A1 A2 A3 A4 and a b c d

begin

46

〈ML〉

end

context majcons-kstratproof-swf-explicit
begin

lemma contradiction-ge3-eq4 :
assumes card agents ≥ 3 card alts = 4
shows False
〈proof 〉

end

We now have everything to put together the final impossibility theorem.
theorem majcons-kstratproof-impossibility:

assumes (card alts = 4 ∧ card agents ≥ 3) ∨
(card alts ≥ 4 ∧ card agents ∈ {9 , 11 , 13 , 15} ∪ {17 ..})

assumes majority-consistent-swf agents alts swf
assumes kemeny-strategyproof-swf agents alts swf
shows False
〈proof 〉

end

References

[1] A. Belov and J. Marques-Silva. Muser2: An efficient MUS extractor. J. Satisf.
Boolean Model. Comput., 8(3/4):123–128, 2012.

[2] A. Biere, M. Fleury, and M. Heisinger. CaDiCaL, Kissat, Paracooba entering the
SAT Competition 2021. In T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo,
and M. Suda, editors, Proc. of SAT Competition 2021 – Solver and Benchmark
Descriptions, volume B-2021-1 of Department of Computer Science Report Series B,
pages 10–13. University of Helsinki, 2021.

[3] P. Lammich. The GRAT tool chain – efficient (UN)SAT certificate checking with
formal correctness guarantees. In S. Gaspers and T. Walsh, editors, Theory and Ap-
plications of Satisfiability Testing – SAT 2017, Proceedings, volume 10491 of Lecture
Notes in Computer Science, pages 457–463. Springer, 2017.

[4] N. Wetzler, M. Heule, and W. A. H. Jr. DRAT-trim: Efficient checking and trimming
using expressive clausal proofs. In C. Sinz and U. Egly, editors, Theory and Applica-
tions of Satisfiability Testing – SAT 2014, Proceedings, volume 8561 of Lecture Notes
in Computer Science, pages 422–429. Springer, 2014.

47

	Auxiliary Material
	Miscellaneous
	The Majority Relation
	The lexicographic order on lists
	Maximal and minimal elements

	Social welfare functions
	Preference profiles
	Definition and desirable properties of SWFs
	Majority consistency
	Concrete classes of SWFs
	Dictatorships
	Fixed-result SWFs

	Anonymised preference profiles
	Social Welfare Functions with explicit lists of agents and alternatives
	Lowering constructions for SWFs
	Decreasing the number of alternatives
	Decreasing the number of agents by a factor
	Decreasing the number of agents by an even number

	Impossibility results
	Infrastructure for SAT import and export
	Automation for computing topological sortings
	Automation for strategyproofness
	Automation for majority consistency
	For 5 alternatives and 2 agents
	For 4 alternatives and 4 agents

