Cardinality and Representation of Stone Relation
 Algebras

Walter Guttmann

April 18, 2024

Abstract

In relation algebras, which model unweighted graphs, the cardinality operation counts the number of edges of a graph. We generalise the cardinality axioms to Stone relation algebras, which model weighted graphs, and study the relationships between various axioms for cardinality. We also give a representation theorem for Stone relation algebras.

Contents

1 Representation of Stone Relation Algebras 2
1.1 Ideals and Ideal-Points 4
1.2 Point Axiom 12
1.3 Ideals, Ideal-Points and Matrices as Types 15
1.4 Isomorphism 20
2 Atoms Below an Element in Partial Orders 29
3 Atoms Below an Element in Stone Relation Algebras 37
3.1 Atomic 43
3.2 Atom-rectangular 46
3.3 Atomic and Atom-Rectangular 49
3.4 Atom-simple 50
3.5 Atomic and Atom-simple 50
3.6 Atom-rectangular and Atom-simple 52
3.7 Atomic, Atom-rectangular and Atom-simple 53
3.8 Finitely Many Atoms 54
3.9 Atomic and Finitely Many Atoms 54
3.10 Atom-rectangular and Finitely Many Atoms 55
3.11 Atomic, Atom-rectangular and Finitely Many Atoms 55
3.12 Atom-simple and Finitely Many Atoms 56
3.13 Atomic, Atom-simple and Finitely Many Atoms 56
3.14 Atom-rectangular, Atom-simple and Finitely Many Atoms 57
3.15 Atomic, Atom-rectangular, Atom-simple and Finitely Many Atoms 57
3.16 Relation Algebra and Atomic 59
3.17 Relation Algebra, Atomic and Finitely Many Atoms 60
4 Cardinality in Stone Relation Algebras 61
4.1 Cardinality in Relation Algebras 69
4.2 Counterexamples 74
The theories formally verify results in [1]. See this papers for further details and related work. Stone relation algebras have been introduced in [2] and formalised in [3].

theory Representation

imports Stone-Relation-Algebras.Matrix-Relation-Algebras

begin

1 Representation of Stone Relation Algebras

We show that Stone relation algebras can be represented by matrices if we assume a point axiom. The matrix indices and entries and the point axiom are based on the concepts of ideals and ideal-points. We start with general results about sets and finite suprema.
lemma finite-ne-subset-induct' [consumes 3, case-names singleton insert]:
assumes finite F
and $F \neq\{ \}$
and $F \subseteq S$
and singleton: $\bigwedge x . x \in S \Longrightarrow P\{x\}$
and insert: $\bigwedge x F$. finite $F \Longrightarrow F \neq\{ \} \Longrightarrow F \subseteq S \Longrightarrow x \in S \Longrightarrow x \notin F$
$\Longrightarrow P F \Longrightarrow P($ insert $x F)$
shows P F
using $\operatorname{assms}(1-3)$
apply (induct rule: finite-ne-induct)
apply (simp add: singleton)
by (simp add: insert)
context order-bot
begin
abbreviation atom :: ' $a \Rightarrow$ bool
where atom $x \equiv x \neq$ bot $\wedge(\forall y . y \neq$ bot $\wedge y \leq x \longrightarrow y=x)$
end

```
context semilattice-sup
begin
lemma nested-sup-fin:
    assumes finite X
    and X\not={}
    and finite Y
    and }Y\not={
    shows Sup-fin {Sup-fin {fxy|x.x\inX}|y.y\inY}=Sup-fin {fxy|
xy.x\inX\wedge y\inY}
proof (rule order.antisym)
    have 1: finite {fxy|xy.x\inX\wedgey\inY}
    proof -
    have finite ( }X\timesY\mathrm{ )
        by (simp add: assms(1,3))
    hence finite {f(fstz)(snd z)|z.z\inX\timesY}
        by (metis (mono-tags) Collect-mem-eq finite-image-set)
    thus ?thesis
        by auto
    qed
    show Sup-fin {Sup-fin {fxy|x.x\inX}|y.y\inY}\leqSup-fin {fxy|x
y.x\inX\wedge y\inY}
    apply (rule Sup-fin.boundedI)
    subgoal by (simp add: assms(3))
    subgoal using assms(4) by blast
    subgoal for a
    proof -
        assume a \in{Sup-fin {fxy|x.x\inX }|y.y\inY}
        from this obtain y where 2: y \inY\wedgea=Sup-fin {fxy|x.x\inX}
            by auto
```



```
            apply (rule Sup-fin.boundedI)
            subgoal by (simp add: assms(1))
            subgoal using assms(2) by blast
            subgoal using Sup-fin.coboundedI 12 by blast
            done
        thus ?thesis
            using 2 by simp
    qed
    done
    show Sup-fin {fxy|xy.x\inX\wedge y f Y}\leqSup-fin { Sup-fin {fxy|x.x
\inX}|y.y\inY}
    apply (rule Sup-fin.boundedI)
    subgoal using 1 by simp
    subgoal using assms(2,4) by blast
    subgoal for a
    proof -
        assume a\in{ fxy|xy.x\inX\wedge y\inY}
        from this obtain xy where 3:x\inX\wedge y\inY\wedgea=fxy
```

```
            by auto
    have a\leqSup-fin {fxy|x.x\inX }
            apply (rule Sup-fin.coboundedI)
            apply (simp add: assms(1))
            using 3 by blast
                            also have ... S Sup-fin {Sup-fin { fxy|x.x\inX}|y.y\inY}
                            apply (rule Sup-fin.coboundedI)
            apply (simp add: assms(3))
            using 3 by blast
            finally show }a\leq\operatorname{Sup-fin {Sup-fin { fxy|x.x\inX}|y.y\inY}
                            qed
                            done
qed
end
context bounded-semilattice-sup-bot
begin
lemma one-point-sup-fin:
    assumes finite X
        and }y\in
    shows Sup-fin {(if x=y then f x else bot)|x.x\inX }=fy
proof (rule order.antisym)
    show Sup-fin {(if x=y then f x else bot)|x.x\inX }}\leqf
        apply (rule Sup-fin.boundedI)
        apply (simp add: assms(1))
        using assms(2) apply blast
        by auto
    show fy\leqSup-fin {(if x=y then f x else bot)|x.x\inX }
        apply (rule Sup-fin.coboundedI)
        using assms by auto
qed
end
```


1.1 Ideals and Ideal-Points

We study ideals in Stone relation algebras, which are elements that are both a vector and a covector. We include general results about Stone relation algebras.

```
context times-top
begin
```

abbreviation ideal $::$ ' $a \Rightarrow$ bool where ideal $x \equiv$ vector $x \wedge$ covector x
end

```
context bounded-non-associative-left-semiring
begin
lemma ideal-fixpoint:
    ideal }x\longleftrightarrow\mathrm{ top * x * top = x
    by (metis order.antisym top-left-mult-increasing top-right-mult-increasing)
lemma ideal-top-closed:
    ideal top
    by simp
end
context bounded-idempotent-left-semiring
begin
lemma ideal-mult-closed:
    ideal }x\Longrightarrow\mathrm{ ideal }y\Longrightarrow\mathrm{ ideal ( }x*y\mathrm{ )
    by (metis mult-assoc)
end
context bounded-idempotent-left-zero-semiring
begin
lemma ideal-sup-closed:
    ideal }x\Longrightarrow\mathrm{ ideal }y\Longrightarrow\mathrm{ ideal ( }x\sqcupy\mathrm{ )
    by (simp add: covector-sup-closed vector-sup-closed)
end
context idempotent-semiring
begin
lemma sup-fin-sum:
    fixes f :: 'b::finite }=>\mp@subsup{}{}{\prime}
    shows Sup-fin { fx|x.x\inUNIV }=(\bigsqcup
proof (rule order.antisym)
    show Sup-fin {fx|x.x\inUNIV }}\leq(\mp@subsup{\bigsqcup}{x}{}fx
        apply (rule Sup-fin.boundedI)
        apply (metis (mono-tags) finite finite-image-set)
        apply blast
        using ub-sum by auto
next
    show }(\mp@subsup{\bigsqcup}{x}{}fx)\leqSup-fin {fx|x.x\inUNIV 
    apply (rule lub-sum, rule allI)
    apply (rule Sup-fin.coboundedI)
    apply (metis (mono-tags) finite finite-image-set)
    by auto
```


qed

end
context stone-relation-algebra
begin
lemma dedekind-univalent:
assumes univalent y shows $x * y \sqcap z=\left(x \sqcap z * y^{T}\right) * y$
proof (rule order.antisym)
show $x * y \sqcap z \leq\left(x \sqcap z * y^{T}\right) * y$
by (simp add: dedekind-2)
next
have $\left(x \sqcap z * y^{T}\right) * y \leq x * y \sqcap z * y^{T} * y$
using comp-left-subdist-inf by auto
also have $\ldots \leq x * y \sqcap z$
by (metis assms comp-associative comp-inf.mult-right-isotone comp-right-one mult-right-isotone)
finally show $\left(x \sqcap z * y^{T}\right) * y \leq x * y \sqcap z$
qed
lemma dedekind-injective:
assumes injective x
shows $x * y \sqcap z=x *\left(y \sqcap x^{T} * z\right)$
proof (rule order.antisym)
show $x * y \sqcap z \leq x *\left(y \sqcap x^{T} * z\right)$
by (simp add: dedekind-1)
next
have $x *\left(y \sqcap x^{T} * z\right) \leq x * y \sqcap x * x^{T} * z$
using comp-associative comp-right-subdist-inf by auto
also have $\ldots \leq x * y \sqcap z$
by (metis assms coreflexive-comp-top-inf inf.boundedE inf.boundedI
inf.cobounded2 inf-le1)
finally show $x *\left(y \sqcap x^{T} * z\right) \leq x * y \sqcap z$
qed
lemma domain-vector-conv:
$1 \sqcap x *$ top $=1 \sqcap x * x^{T}$
by (metis comp-right-one dedekind-eq ex231a inf.sup-monoid.add-commute
inf-top.right-neutral total-conv-surjective vector-conv-covector vector-top-closed)
lemma domain-vector-covector:
$1 \sqcap x * t o p=1 \sqcap t o p * x^{T}$
by (metis conv-dist-comp one-inf-conv symmetric-top-closed)
lemma domain-covector-conv:
$1 \sqcap$ top $* x^{T}=1 \sqcap x * x^{T}$
using domain-vector-conv domain-vector-covector by auto
lemma ideal-bot-closed:
ideal bot
by simp
lemma ideal-inf-closed:
ideal $x \Longrightarrow$ ideal $y \Longrightarrow$ ideal $(x \sqcap y)$
by (simp add: covector-comp-inf vector-inf-comp)
lemma ideal-conv-closed:
ideal $x \Longrightarrow$ ideal $\left(x^{T}\right)$
using covector-conv-vector vector-conv-covector by blast
lemma ideal-complement-closed:
ideal $x \Longrightarrow$ ideal $(-x)$
by (simp add: covector-complement-closed vector-complement-closed)
lemma ideal-conv-id:
ideal $x \Longrightarrow x=x^{T}$
by (metis covector-comp-inf-1 inf.sup-monoid.add-commute inf-top.right-neutral
mult-left-one vector-inf-comp)
lemma ideal-mult-inf:
ideal $x \Longrightarrow$ ideal $y \Longrightarrow x * y=x \sqcap y$
by (metis inf-top-right vector-inf-comp)
lemma ideal-mult-import:
ideal $x \Longrightarrow y * z \sqcap x=(y \sqcap x) *(z \sqcap x)$
using covector-comp-inf inf.sup-monoid.add-commute vector-inf-comp by auto
lemma point-meet-one:
point $x \Longrightarrow x * x^{T}=x \sqcap 1$
by (metis domain-vector-conv inf.absorb2 inf.sup-monoid.add-commute)
lemma below-point-eq-domain:
point $x \Longrightarrow y \leq x \Longrightarrow y=x * x^{T} * y$
by (metis inf.absorb2 vector-export-comp-unit point-meet-one)
lemma covector-mult-vector-ideal:
vector $x \Longrightarrow$ vector $z \Longrightarrow$ ideal $\left(x^{T} * y * z\right)$
by (metis comp-associative vector-conv-covector)
abbreviation ideal-point $::$ ' $a \Rightarrow$ bool where ideal-point $x \equiv$ point $x \wedge(\forall y z$.
point $y \wedge$ ideal $z \wedge z \neq$ bot $\wedge y * z \leq x \longrightarrow y \leq x)$
lemma different-ideal-points-disjoint:
assumes ideal-point p
and ideal-point q
and $p \neq q$
shows $p \sqcap q=$ bot
proof (rule ccontr)
let $? r=p^{T} *(p \sqcap q)$
assume 1: $p \sqcap q \neq$ bot
have 2: $p \sqcap q=p *$? r
by (metis assms(1) comp-associative inf.left-idem vector-export-comp-unit
point-meet-one)
have ideal? r
by (meson assms $(1,2)$ covector-mult-closed vector-conv-covector
vector-inf-closed vector-mult-closed)
hence $p \leq q$
using 12 by (metis assms(1,2) inf-le2 semiring.mult-not-zero)
thus False
by (metis assms dual-order.eq-iff epm-3)
qed
lemma points-disjoint-iff:
assumes vector x
shows $x \sqcap y=$ bot $\longleftrightarrow x^{T} * y=$ bot
by (metis assms inf-top-right schroeder-1)
lemma different-ideal-points-disjoint-2:
assumes ideal-point p
and ideal-point q
and $p \neq q$
shows $p^{T} * q=b o t$
using assms different-ideal-points-disjoint points-disjoint-iff by blast
lemma mult-right-dist-sup-fin:
assumes finite X
and $X \neq\{ \}$
shows Sup-fin $\left\{f x \mid x::^{\prime} b . x \in X\right\} * y=\operatorname{Sup}$-fin $\{f x * y \mid x . x \in X\}$
proof (rule finite-ne-induct $[$ where $F=X]$)
show finite X
using assms (1) by simp
show $X \neq\{ \}$
using assms(2) by simp
show $\bigwedge z$. Sup-fin $\{f x \mid x \cdot x \in\{z\}\} * y=\operatorname{Sup-fin}\{f x * y \mid x . x \in\{z\}\}$
by auto
fix $z F$
assume 1: finite $F F \neq\{ \} z \notin F \operatorname{Sup}-\mathrm{fin}\{f x \mid x . x \in F\} * y=\operatorname{Sup-fin}\{f x$

* $y \mid x . x \in F\}$
have $\{f x \mid x . x \in \operatorname{insert} z F\}=\operatorname{insert}(f z)\{f x \mid x . x \in F\}$
by auto
hence Sup-fin $\{f x \mid x . x \in$ insert $z F\} * y=(f z \sqcup \operatorname{Sup-fin}\{f x \mid x . x \in F$ \}) $* y$
using Sup-fin.insert 1 by auto

```
    also have \(\ldots=f z * y \sqcup \operatorname{Sup-fin}\{f x \mid x . x \in F\} * y\)
```

 using mult-right-dist-sup by blast
 also have \(\ldots=f z * y \sqcup \operatorname{Sup}-\mathrm{fin}\{f x * y \mid x . x \in F\}\)
 using 1 by \(\operatorname{simp}\)
 also have \(\ldots=\operatorname{Sup}-\mathrm{fin}(\operatorname{insert}(f z * y)\{f x * y \mid x . x \in F\})\)
 using 1 by auto
 also have \(\ldots=\operatorname{Sup}\)-fin \(\{f x * y \mid x . x \in \operatorname{insert} z F\}\)
 by (rule arg-cong[where \(f=\) Sup-fin], auto)
 finally show Sup-fin \(\{f x \mid x . x \in\) insert \(z F\} * y=\operatorname{Sup}-f i n\{f x * y \mid x . x\)
 \in insert $z F\}$
qed
lemma mult-left-dist-sup-fin:
assumes finite X
and $X \neq\{ \}$
shows $y * \operatorname{Sup-fin}\left\{f x \mid x::^{\prime} b . x \in X\right\}=\operatorname{Sup-fin}\{y * f x \mid x . x \in X\}$
proof (rule finite-ne-induct $[$ where $F=X]$)
show finite X
using $\operatorname{assms}(1)$ by simp
show $X \neq\{ \}$
using $\operatorname{assms}(2)$ by simp
show $\bigwedge z \cdot y * \operatorname{Sup}$-fin $\{f x \mid x \cdot x \in\{z\}\}=\operatorname{Sup}$-fin $\{y * f x \mid x \cdot x \in\{z\}\}$
by auto
fix $z F$
assume 1: finite $F F \neq\{ \} z \notin F y * \operatorname{Sup-fin}\{f x \mid x . x \in F\}=\operatorname{Sup}$-fin $\{y$

* $f x \mid x . x \in F\}$
have $\{f x \mid x . x \in \operatorname{insert} z F\}=\operatorname{insert}(f z)\{f x \mid x . x \in F\}$
by auto
hence $y * \operatorname{Sup-fin}\{f x \mid x . x \in$ insert $z F\}=y *(f z \sqcup \operatorname{Sup-fin}\{f x \mid x . x$
$\in F\}$)
using Sup-fin.insert 1 by auto
also have $\ldots=y * f z \sqcup y * \operatorname{Sup-fin}\{f x \mid x . x \in F\}$
using mult-left-dist-sup by blast
also have $\ldots=y * f z \sqcup \operatorname{Sup}$-fin $\{y * f x \mid x . x \in F\}$
using 1 by simp
also have $\ldots=\operatorname{Sup}-\mathrm{fin}($ insert $(y * f z)\{y * f x \mid x . x \in F\})$
using 1 by auto
also have $\ldots=\operatorname{Sup}-\mathrm{fin}\{y * f x \mid x . x \in \operatorname{insert} z F\}$
by (rule arg-cong[where $f=S u p-f i n]$, auto)
finally show $y * \operatorname{Sup}-f i n\{f x \mid x . x \in$ insert $z F\}=\operatorname{Sup}$-fin $\{y * f x \mid x \cdot x$
\in insert $z F\}$
qed
lemma inf-left-dist-sup-fin:
assumes finite X
and $X \neq\{ \}$
shows $y \sqcap \operatorname{Sup-fin}\left\{f x \mid x::^{\prime} b . x \in X\right\}=\operatorname{Sup-fin}\{y \sqcap f x \mid x . x \in X\}$

```
proof (rule finite-ne-induct[where \(F=X]\) )
    show finite \(X\)
        using assms(1) by simp
    show \(X \neq\{ \}\)
        using assms(2) by simp
    show \(\bigwedge z \cdot y \sqcap \operatorname{Sup-fin}\{f x \mid x \cdot x \in\{z\}\}=\operatorname{Sup-fin}\{y \sqcap f x \mid x \cdot x \in\{z\}\}\)
        by auto
    fix \(z F\)
    assume 1: finite \(F F \neq\{ \} z \notin F y \sqcap \operatorname{Sup-fin}\{f x \mid x . x \in F\}=\operatorname{Sup}-f i n\{y\)
    \(\sqcap f x \mid x . x \in F\}\)
    have \(\{f x \mid x . x \in \operatorname{insert} z F\}=\operatorname{insert}(f z)\{f x \mid x . x \in F\}\)
        by auto
    hence \(y \sqcap \operatorname{Sup-fin}\{f x \mid x . x \in\) insert \(z F\}=y \sqcap(f z \sqcup \operatorname{Sup-fin}\{f x \mid x . x\)
\(\in F\}\) )
    using Sup-fin.insert 1 by auto
    also have \(\ldots=(y \sqcap f z) \sqcup(y \sqcap \operatorname{Sup-fin}\{f x \mid x . x \in F\})\)
        using inf-sup-distrib1 by auto
    also have \(\ldots=(y \sqcap f z) \sqcup \operatorname{Sup-fin}\{y \sqcap f x \mid x . x \in F\}\)
        using 1 by simp
    also have \(\ldots=\operatorname{Sup}\)-fin (insert \((y \sqcap f z)\{y \sqcap f x \mid x . x \in F\})\)
        using 1 by auto
    also have \(\ldots=\operatorname{Sup-fin}\{y \sqcap f x \mid x . x \in \operatorname{insert} z F\}\)
        by (rule arg-cong[where \(f=\) Sup-fin], auto)
    finally show \(y \sqcap \operatorname{Sup-fin}\{f x \mid x . x \in\) insert \(z F\}=\operatorname{Sup-fin}\{y \sqcap f x \mid x . x\)
\(\in\) insert \(z F\}\)
qed
lemma top-one-sup-fin-iff:
    assumes finite \(P\)
        and \(P \neq\{ \}\)
        and \(\forall p \in P\). point \(p\)
    shows top \(=\operatorname{Sup-fin} P \longleftrightarrow 1=\operatorname{Sup-fin}\left\{p * p^{T} \mid p \cdot p \in P\right\}\)
proof
    assume top \(=\) Sup-fin \(P\)
    hence \(1=1 \sqcap \operatorname{Sup}\)-fin \(P\)
        using inf-top-right by auto
    also have \(\ldots=\operatorname{Sup}\)-fin \(\{1 \sqcap p \mid p . p \in P\}\)
        using inf-Sup1-distrib assms(1,2) by simp
    also have \(\ldots=\operatorname{Sup}\)-fin \(\left\{p * p^{T} \mid p . p \in P\right\}\)
    by (metis (no-types, opaque-lifting) point-meet-one assms(3)
inf.sup-monoid.add-commute)
    finally show \(1=\operatorname{Sup}-f i n\left\{p * p^{T} \mid p . p \in P\right\}\)
next
    assume \(1=\operatorname{Sup-fin}\left\{p * p^{T} \mid p . p \in P\right\}\)
    hence top \(=\) Sup-fin \(\left\{p * p^{T} \mid p . p \in P\right\} *\) top
    using total-one-closed by auto
    also have \(\ldots=\operatorname{Sup}-\mathrm{fin}\{1 \sqcap p \mid p . p \in P\} *\) top
```

```
    by (metis (no-types, opaque-lifting) point-meet-one assms(3)
inf.sup-monoid.add-commute)
    also have ... = Sup-fin {(1 \sqcapp)* top|p.p\inP }
    using mult-right-dist-sup-fin assms(1,2) by auto
    also have ... = Sup-fin {p|p.p\inP}
    by (metis (no-types, opaque-lifting) assms(3) inf.sup-monoid.add-commute
inf-top.right-neutral vector-inf-one-comp)
    finally show top = Sup-fin P
        by simp
qed
abbreviation ideals :: 'a set where ideals }\equiv{x.\mathrm{ . ideal }x
abbreviation ideal-points :: 'a set where ideal-points \equiv{x. ideal-point x }
lemma surjective-vector-top:
    surjective }x\Longrightarrow\mathrm{ vector }x\Longrightarrow\mp@subsup{x}{}{T}*x=to
    by (metis domain-vector-conv covector-inf-comp-3 ex231a
inf.sup-monoid.add-commute inf-top.left-neutral vector-export-comp-unit)
lemma point-mult-top:
    point }x\Longrightarrow\mp@subsup{x}{}{T}*x= to
    using surjective-vector-top by blast
lemma point-below-equal:
    point p\Longrightarrow point q\Longrightarrowp\leqq\Longrightarrowp=q
    by (metis below-point-eq-domain comp-associative)
lemma ideal-point-without-ideal:
    ideal-point p}\longleftrightarrow(\mathrm{ point }p\wedge(\forallq\cdot\mathrm{ point }q\longrightarrowq\leqp\veeq\leq-p)
proof
    assume 1: ideal-point p
    have }\forallq. point q\longrightarrowq\leqp\veeq\leq-
    proof (rule allI, rule impI)
    fix q
    assume 2: point q
    hence 3: ideal ( }\mp@subsup{q}{}{T}*p
        using 1 by (metis comp-associative vector-conv-covector)
    have q*(q}\mp@subsup{q}{}{T}*p)\leq
        using 2 shunt-mapping surjective-conv-total by force
    hence }\mp@subsup{q}{}{T}*p=bot\veeq\leq
        using 1 2 3 by blast
    thus q}\leqp\veeq\leq-
        using 2 by (metis bot-least schroeder-3-p)
    qed
    thus point p\wedge(\forallq. point q\longrightarrowq\leqp\veeq\leq-p)
        using 1 by blast
next
    assume 4: point p\wedge(\forallq. point q\longrightarrowq}\<p\veeq\leq-p
    have }\forallyz.point y^ ideal z\wedgez\not= bot ^ y*z\leqp\longrightarrowy\leq
```

```
    proof (intro allI, rule impI)
    fix }y
    assume 5: point y^ ideal z\wedgez\not= bot }\wedgey*z\leq
    show }y\leq
    proof (rule ccontr)
        assume }\negy\leq
        hence }y\leq-
            using 4 5 by blast
        hence }\mp@subsup{y}{}{T}*p=bo
                using 5 points-disjoint-iff pseudo-complement by blast
            thus False
            using 5 bot-unique shunt-mapping surjective-conv-total by force
        qed
    qed
    thus ideal-point p
    using 4 by blast
qed
lemma ideal-point-without-ideal-2:
    ideal-point }p\longleftrightarrow(\mathrm{ point }p\wedge(\forallq.point q\longrightarrowq=p\veeq\leq-p)
    by (smt (verit) ideal-point-without-ideal point-below-equal comp-associative
mult-semi-associative)
lemma ideal-point-without-ideal-3:
    ideal-point }p\longleftrightarrow(\mathrm{ point }p\wedge(\forallq\cdot\mathrm{ point }q\wedgeq\not=p\longrightarrow\mp@code{< - p))
    using ideal-point-without-ideal-2 by force
end
```


1.2 Point Axiom

The following class captures the point axiom for Stone relation algebras.

```
class stone-relation-algebra-pa = stone-relation-algebra +
    assumes finite-ideal-points: finite ideal-points
    assumes ne-ideal-points: ideal-points }\not={
    assumes top-sup-ideal-points: top = Sup-fin ideal-points
begin
lemma one-sup-ideal-points:
    1=Sup-fin {p* pT}|p.ideal-point p
proof -
    have 1 = Sup-fin {p* p
        using top-one-sup-fin-iff finite-ideal-points ne-ideal-points top-sup-ideal-points
by blast
    also have ... = Sup-fin {p* p
            by simp
    finally show ?thesis
qed
```


lemma ideal-point-rep-1:

```
    x=Sup-fin {p* p
proof -
    let ? p ={ p* p
    have x=Sup-fin ?p *(x*Sup-fin ?p)
            using one-sup-ideal-points by auto
    also have ... = Sup-fin {p* p
        apply (rule mult-right-dist-sup-fin)
        using finite-ideal-points ne-ideal-points by simp-all
    also have ... = Sup-fin {p* p
            using mult-assoc by simp
    also have ... = Sup-fin {Sup-fin {p* p
p.p\inideal-points }
    proof -
    have }\p.p*\mp@subsup{p}{}{T}*x*\mathrm{ Sup-fin ?p =Sup-fin {p* p
ideal-points }
            apply (rule mult-left-dist-sup-fin)
            using finite-ideal-points ne-ideal-points by simp-all
            thus ?thesis
            using mult-assoc by simp
    qed
    also have ... = Sup-fin {p* p
ideal-points }
    apply (rule nested-sup-fin)
    using finite-ideal-points ne-ideal-points by simp-all
    also have ... = Sup-fin {p* p
ideal-points }
    by meson
    also have ... = Sup-fin {p* p
q}
    by auto
    finally show ?thesis
```

qed
lemma atom-below-ideal-point:
assumes atom a
shows $\exists p$. ideal-point $p \wedge a \leq p$
proof -
have $a=a \sqcap \operatorname{Sup-fin}\{p \mid p . p \in$ ideal-points $\}$
using top-sup-ideal-points by auto
also have $\ldots=$ Sup-fin $\{a \sqcap p \mid p . p \in$ ideal-points $\}$
apply (rule inf-left-dist-sup-fin)
using finite-ideal-points apply blast
using ne-ideal-points by blast
finally have 1 : Sup-fin $\{a \sqcap p \mid p . p \in$ ideal-points $\} \neq$ bot
using assms by auto
have $\exists p \in$ ideal-points . $a \sqcap p \neq b o t$

```
    proof (rule ccontr)
    assume }\neg(\existsp\in\mathrm{ ideal-points . }a\sqcapp\not=bot
    hence }\forallp\in\mathrm{ ideal-points . }a\sqcapp=bo
        by auto
    hence {a\sqcapp|p.p\in ideal-points } ={ bot | p.p\in ideal-points }
        by auto
    hence Sup-fin {a\sqcapp|p.p\in ideal-points }=Sup-fin { bot|p.p\in
ideal-points }
        by simp
    also have ... \leq bot
        apply (rule Sup-fin.boundedI)
        apply (simp add: finite-ideal-points)
        using ne-ideal-points apply simp
        by blast
    finally show False
        using 1 le-bot by blast
qed
from this obtain p where p\in ideal-points }\wedgea\sqcapp\not= bo
    by auto
hence ideal-point p}\wedge a\leq
    using assms inf.absorb-iff1 inf-le1 by blast
thus ?thesis
    by auto
qed
lemma point-ideal-point-1:
    assumes point a
    shows ideal-point a
proof (cases a=bot)
    case True
    thus ?thesis
        using assms by fastforce
next
    case False
    have a=a\sqcapSup-fin {p|p.p\inideal-points }
    using top-sup-ideal-points by auto
also have ... = Sup-fin {a\sqcapp|p.p\in ideal-points }
    apply (rule inf-left-dist-sup-fin)
    using finite-ideal-points apply blast
    using ne-ideal-points by blast
finally have 1: Sup-fin {a\sqcapp|p.p\in ideal-points }\not=bot
    using False by auto
have \existsp\inideal-points . }a\sqcapp\not=bo
proof (rule ccontr)
    assume }\neg(\existsp\in\mathrm{ ideal-points . }a\sqcapp\not=bot
    hence }\forallp\in\mathrm{ ideal-points . }a\sqcapp=bo
        by auto
    hence {a\sqcapp|p.p\in ideal-points }={ bot | p.p\in ideal-points }
            by auto
```

```
    hence Sup-fin \(\{a \sqcap p \mid p . p \in\) ideal-points \(\}=\operatorname{Sup-fin}\{\) bot \(\mid p . p \in\)
ideal-points \}
    by simp
    also have \(\ldots \leq\) bot
        apply (rule Sup-fin.boundedI)
        apply (simp add: finite-ideal-points)
        using ne-ideal-points apply simp
        by blast
    finally show False
        using 1 le-bot by blast
    qed
    from this obtain \(p\) where 2: \(p \in\) ideal-points \(\wedge a \sqcap p \neq b o t\)
        by auto
    hence \(a \leq p \vee a \leq-p\)
    using assms ideal-point-without-ideal by auto
    hence \(a \leq p\)
    using 2 pseudo-complement by blast
    thus ?thesis
    using 2 assms point-below-equal by blast
qed
lemma point-ideal-point:
    point \(x \longleftrightarrow\) ideal-point \(x\)
    using point-ideal-point-1 by blast
end
```


1.3 Ideals, Ideal-Points and Matrices as Types

```
Stone relation algebras will be represented by matrices with ideal-points as entries and ideals as indices. To define the type of such matrices, we first derive types for the set of ideals and ideal-points.
typedef (overloaded) 'a ideal \(=\) ideals::'a::stone-relation-algebra-pa set using surjective-top-closed by blast
setup-lifting type-definition-ideal
instantiation ideal :: (stone-relation-algebra-pa) stone-algebra
begin
lift-definition uminus-ideal :: ' \(a\) ideal \(\Rightarrow\) ' \(a\) ideal is uminus using ideal-complement-closed by blast
lift-definition inf-ideal \(::\) 'a ideal \(\Rightarrow{ }^{\prime} a\) ideal \(\Rightarrow{ }^{\prime} a\) ideal is inf by (simp add: ideal-inf-closed)
lift-definition sup-ideal \(::\) 'a ideal \(\Rightarrow{ }^{\prime} a\) ideal \(\Rightarrow{ }^{\prime} a\) ideal is sup by (simp add: ideal-sup-closed)
```

```
lift-definition bot-ideal :: 'a ideal is bot
    by (simp add: ideal-bot-closed)
lift-definition top-ideal :: 'a ideal is top
    by simp
lift-definition less-eq-ideal :: 'a ideal }=>\mp@subsup{}{}{\prime}\mp@subsup{}{}{\prime}a\mathrm{ ideal }=>\mathrm{ bool is less-eq.
lift-definition less-ideal :: 'a ideal }=>\mp@subsup{}{}{\prime}\mp@subsup{}{}{\prime}a\mathrm{ ideal }=>\mathrm{ bool is less.
```

```
instance
    apply intro-classes
    subgoal apply transfer by (simp add: less-le-not-le)
    subgoal apply transfer by simp
    subgoal apply transfer by (simp add: sup-inf-distrib1)
    subgoal apply transfer by (simp add: pseudo-complement)
    subgoal apply transfer by simp
    done
end
instantiation ideal :: (stone-relation-algebra-pa) stone-relation-algebra
begin
lift-definition conv-ideal :: 'a ideal }=>\mp@subsup{}{}{\prime}'a ideal is id
    by simp
lift-definition times-ideal :: 'a ideal => 'a ideal = 'a ideal is inf
    by (simp add: ideal-inf-closed)
lift-definition one-ideal :: 'a ideal is top
    by simp
instance
    apply intro-classes
    apply (metis comp-inf.comp-associative inf-ideal-def times-ideal-def)
    apply (metis inf-commute inf-ideal-def inf-sup-distrib1 times-ideal-def)
    apply (metis (mono-tags, lifting) comp-inf.mult-left-zero inf-ideal-def
times-ideal-def)
```

```
    apply (metis (mono-tags, opaque-lifting) comp-inf.mult-1-left inf-ideal-def
one-ideal.abs-eq times-ideal-def top-ideal.abs-eq)
    using Rep-ideal-inject conv-ideal.rep-eq apply fastforce
    apply (metis (mono-tags) Rep-ideal-inverse conv-ideal.rep-eq)
    apply (metis (mono-tags) Rep-ideal-inverse conv-ideal.rep-eq inf-commute
inf-ideal-def times-ideal-def)
    apply (metis (mono-tags, opaque-lifting) Rep-ideal-inverse conv-ideal.rep-eq
inf-ideal-def le-inf-iff order-refl times-ideal-def)
    apply (metis inf-ideal-def p-dist-inf p-dist-sup times-ideal-def)
    by (metis (mono-tags) one-ideal.abs-eq regular-closed-top top-ideal-def)
end
typedef (overloaded) 'a ideal-point = ideal-points::'a::stone-relation-algebra-pa
set
    using ne-ideal-points by blast
instantiation ideal-point :: (stone-relation-algebra-pa) finite
begin
instance
proof
    have Abs-ideal-point'ideal-points = UNIV
        using type-definition.Abs-image type-definition-ideal-point by blast
    thus finite (UNIV::'a ideal-point set)
    by (metis (mono-tags, lifting) finite-ideal-points finite-imageI)
qed
end
type-synonym 'a ideal-matrix = ('a ideal-point,'a ideal) square
interpretation ideal-matrix-stone-relation-algebra: stone-relation-algebra where
sup = sup-matrix and inf = inf-matrix and less-eq = less-eq-matrix and less =
less-matrix and bot = bot-matrix::'a::stone-relation-algebra-pa ideal-matrix and
top = top-matrix and uminus = uminus-matrix and one =one-matrix and
times = times-matrix and conv = conv-matrix
    by (rule matrix-stone-relation-algebra.stone-relation-algebra-axioms)
lemma ideal-point-rep-2:
    assumes x = Sup-fin { Rep-ideal-point p * Rep-ideal (f p q)* (Rep-ideal-point
q)}\mp@subsup{}{}{T}|pq.\mathrm{ True }
    shows fr s = Abs-ideal ((Rep-ideal-point r)T}*x*(\mathrm{ Rep-ideal-point s))
proof -
    let ?r = Rep-ideal-point r
    let ?s=Rep-ideal-point s
    have ? ? }\mp@subsup{r}{}{T}*x*?s=?\mp@subsup{r}{}{T}*\mathrm{ Sup-fin { Rep-ideal-point p * Rep-ideal (f p q)*
(Rep-ideal-point q)T}|pq.True } * ?s
    using assms by simp
```

```
    also have ... =?r r}\mp@subsup{r}{}{T}*\mathrm{ Sup-fin { Rep-ideal-point p * Rep-ideal (f p q)*
(Rep-ideal-point q)T}|pq.p\inUNIV \wedgeq\inUNIV }*?
    by simp
    also have ... =? ?r}\mp@subsup{r}{}{T}*\mathrm{ Sup-fin { Sup-fin { Rep-ideal-point p * Rep-ideal (f p q)*
(Rep-ideal-point q)}\mp@subsup{}{}{T}|p.p\inUNIV }|q.q\inUNIV } * ?
    proof -
    have Sup-fin { Rep-ideal-point p * Rep-ideal (f p q)* (Rep-ideal-point q)T}|
q.p\inUNIV \wedgeq\inUNIV }=Sup-fin {Sup-fin { Rep-ideal-point p * Rep-ideal
(f p q)*(Rep-ideal-point q)}\mp@subsup{)}{}{T}|p.p\inUNIV }|q.q\inUNIV
        by (rule nested-sup-fin[symmetric], simp-all)
    thus ?thesis
        by simp
    qed
    also have ... = Sup-fin { Sup-fin {? ?r}\mp@subsup{r}{}{T}*\mathrm{ Rep-ideal-point p * Rep-ideal (f p q)*
(Rep-ideal-point q)T}|p.p\inUNIV }|q.q\inUNIV } * ?
    proof -
    have 1:?r T}* Sup-fin {Sup-fin {Rep-ideal-point p * Rep-ideal (f p q)*
(Rep-ideal-point q)T}|p.p\inUNIV }|q.q\inUNIV }=Sup-fin {?r T * *
Sup-fin { Rep-ideal-point p * Rep-ideal (f p q)* (Rep-ideal-point q)}\mp@subsup{)}{}{T}|p.p
UNIV } | q.q\inUNIV }
            by (rule mult-left-dist-sup-fin, simp-all)
                            have 2: }\q. ?\mp@subsup{r}{}{T}*\mathrm{ Sup-fin { Rep-ideal-point p * Rep-ideal (f p q)*
(Rep-ideal-point q)}\mp@subsup{)}{}{T}|p.p\inUNIV }=Sup-fin {?r'T * (Rep-ideal-point p**
Rep-ideal (f p q)*(Rep-ideal-point q)T)|p.p\inUNIV }
            by (rule mult-left-dist-sup-fin, simp-all)
    have }\pq.?\mp@subsup{r}{}{T}*(\mathrm{ Rep-ideal-point p * Rep-ideal (f p q)* (Rep-ideal-point
q)}\mp@subsup{)}{}{T})=?\mp@subsup{r}{}{T}*\mathrm{ Rep-ideal-point p * Rep-ideal (f p q)* (Rep-ideal-point q)
            by (simp add: mult.assoc)
    thus ?thesis
            using 12 by simp
    qed
    also have ... = Sup-fin {Sup-fin { ?r}\mp@subsup{r}{}{T}*\mathrm{ Rep-ideal-point p *Rep-ideal (f p q)*
(Rep-ideal-point q)T * ?s |p.p\inUNIV }|q.q\inUNIV }
    proof -
    have 3:Sup-fin { Sup-fin {?r}\mp@subsup{r}{}{T}*\mathrm{ Rep-ideal-point p *Rep-ideal (f pq)*
(Rep-ideal-point q)}\mp@subsup{)}{}{T}|p.p\inUNIV}|q.q\inUNIV }* ?s=Sup-fin {Sup-fin
{?r}\mp@subsup{r}{}{T}*\mathrm{ Rep-ideal-point p * Rep-ideal (f p q)*(Rep-ideal-point q)}\mp@subsup{)}{}{T}|p.p
UNIV }*?s | q.q\inUNIV }
            by (rule mult-right-dist-sup-fin, simp-all)
    have }\q.Sup-fin { ? r' * Rep-ideal-point p * Rep-ideal (f p q)*
(Rep-ideal-point q)}\mp@subsup{)}{}{T}|p.p\inUNIV }*?s=Sup-fin { ?r r T * Rep-ideal-point p
Rep-ideal (f p q)*(Rep-ideal-point q)}\mp@subsup{)}{}{T}*?s|p.p\inUNIV
            by (rule mult-right-dist-sup-fin, simp-all)
    thus ?thesis
        using 3 by simp
    qed
    also have ... = Sup-fin { Sup-fin { if p=r then ?r r * Rep-ideal-point p*
Rep-ideal (f p q)*(Rep-ideal-point q)
UNIV }
```

```
    proof -
    have }\p.?\mp@subsup{r}{}{T}*\mathrm{ Rep-ideal-point }p=(\mathrm{ if }p=r\mathrm{ then ? }\mp@subsup{r}{}{T}*\mathrm{ Rep-ideal-point }
else bot)
    proof -
            fix p
            show ?r r}*\mathrm{ Rep-ideal-point p=(if p=r then ?r r * Rep-ideal-point p else
bot)
            proof (cases p=r)
            case True
            thus ?thesis
                by auto
            next
                case False
                have ?r r}* * Rep-ideal-point p = bo
                    apply (rule different-ideal-points-disjoint-2)
                    using Rep-ideal-point apply blast
                        using Rep-ideal-point apply blast
                    using False by (simp add: Rep-ideal-point-inject)
                thus ?thesis
                    using False by simp
            qed
        qed
    hence }\pq. ?r r * Rep-ideal-point p * Rep-ideal (f p q) * (Rep-ideal-point
q)}\mp@subsup{)}{}{T}*\mathrm{ ?s = (if p=r then ? r}\mp@subsup{r}{}{T}*\mathrm{ Rep-ideal-point p *Rep-ideal }(fpq)
(Rep-ideal-point q)}\mp@subsup{}{}{T}*\mathrm{ ?s else bot)
            by (metis semiring.mult-zero-left)
    thus ?thesis
            by simp
qed
also have ... = Sup-fin {?r T * ?r * Rep-ideal (frq)*(Rep-ideal-point q)}\mp@subsup{)}{}{T}
?s |q.q\inUNIV }
    by (subst one-point-sup-fin, simp-all)
    also have ... = Sup-fin { if q=s then ?r r * ?r * Rep-ideal (frq)*
(Rep-ideal-point q)T}*\mathrm{ ? ? else bot | q.q | UNIV }
    proof -
    have }\wedgeq.(\mathrm{ Rep-ideal-point q)}\mp@subsup{)}{}{T}*?s=(\mathrm{ if }q=s\mathrm{ then (Rep-ideal-point q)}\mp@subsup{)}{}{T}*\mathrm{ ?s
else bot)
    proof -
            fix q
            show (Rep-ideal-point q)T}*?s=(\mathrm{ if }q=s\mathrm{ then (Rep-ideal-point q)}\mp@subsup{)}{}{T}*\mathrm{ ?s
else bot)
            proof (cases q = s)
                case True
                thus ?thesis
            by auto
            next
                case False
                have (Rep-ideal-point q)
                    apply (rule different-ideal-points-disjoint-2)
```

```
            using Rep-ideal-point apply blast
            using Rep-ideal-point apply blast
            using False by (simp add: Rep-ideal-point-inject)
            thus ?thesis
                using False by simp
            qed
    qed
    hence }\q.?\mp@subsup{r}{}{T}*?r*\mathrm{ Rep-ideal }(frq)*(\mathrm{ Rep-ideal-point q)}\mp@subsup{)}{}{T}*\mathrm{ ?s }=(\mathrm{ if }q
s then? ?r * ?r * Rep-ideal (frq)*(Rep-ideal-point q)}\mp@subsup{)}{}{T}*\mathrm{ ?s else bot)
        by (metis comp-associative mult-right-zero)
    thus ?thesis
        by simp
    qed
    also have ... =? ? }\mp@subsup{r}{}{T}*?r * Rep-ideal (frs)*?s\mp@subsup{s}{}{T}*?
    by (subst one-point-sup-fin, simp-all)
    also have ... = top * Rep-ideal (frs) * top
    proof -
    have ?r r * ?r = top ^? 's * ?s = top
        using point-mult-top Rep-ideal-point by blast
    thus ?thesis
        by (simp add: mult.assoc)
    qed
    also have ... = Rep-ideal (f r s)
    by (metis (mono-tags, lifting) Rep-ideal mem-Collect-eq)
    finally show ?thesis
    by (simp add: Rep-ideal-inverse)
qed
```


1.4 Isomorphism

The following two functions comprise the isomorphism between Stone relation algebras and matrices. We prove that they are inverses of each other and that the first one is a homomorphism.

```
definition sra-to-mat :: 'a::stone-relation-algebra-pa \(\Rightarrow\) ' \(a\) ideal-matrix
    where sra-to-mat \(x \equiv \lambda(p, q)\). Abs-ideal \(\left((\text { Rep-ideal-point } p)^{T} * x *\right.\)
Rep-ideal-point q)
definition mat-to-sra :: 'a::stone-relation-algebra-pa ideal-matrix \(\Rightarrow{ }^{\prime} a\)
    where mat-to-sra \(f \equiv\) Sup-fin \(\{\) Rep-ideal-point \(p * \operatorname{Rep-ideal}(f(p, q)) *\)
(Rep-ideal-point \(q)^{T} \mid p q\). True \(\}\)
lemma sra-mat-sra:
    mat-to-sra (sra-to-mat \(x)=x\)
proof -
    have mat-to-sra (sra-to-mat \(x)=\) Sup-fin \{ Rep-ideal-point \(p *\) Rep-ideal
\(\left(\right.\) Abs-ideal \(\left((\text { Rep-ideal-point } p)^{T} * x *\right.\) Rep-ideal-point \(\left.\left.q\right)\right) *(\text { Rep-ideal-point } q)^{T} \mid\)
p q. True \}
    by (unfold sra-to-mat-def mat-to-sra-def, simp)
    also have \(\ldots=\) Sup-fin \(\left\{\right.\) Rep-ideal-point \(p *(\text { Rep-ideal-point } p)^{T} * x *\)
```

```
Rep-ideal-point q*(Rep-ideal-point q)}\mp@subsup{)}{}{T}|pq.True
    proof -
        have }\pq.ideal ((Rep-ideal-point p)T*x* Rep-ideal-point q)
            using Rep-ideal-point covector-mult-vector-ideal by force
    hence }\pq.\mathrm{ Rep-ideal (Abs-ideal ((Rep-ideal-point p)T}*x* Rep-ideal-poin
q))}=(\mathrm{ Rep-ideal-point p)T}*x*\mathrm{ Rep-ideal-point q
            using Abs-ideal-inverse by blast
    thus ?thesis
        by (simp add: mult.assoc)
    qed
    also have ... = Sup-fin {p* p
q}
    proof -
    have { Rep-ideal-point p*(Rep-ideal-point p)}\mp@subsup{)}{}{T}*x*Rep-ideal-point q*
(Rep-ideal-point q) }\mp@subsup{)}{}{T}|pq.True}={p*\mp@subsup{p}{}{T}*x*q*\mp@subsup{q}{}{T}|pq.ideal-point p ^
ideal-point q }
    proof (rule set-eqI)
            fix z
            show z\in{ Rep-ideal-point p*(Rep-ideal-point p)}\mp@subsup{)}{}{T}*x*\mathrm{ Rep-ideal-point q
* (Rep-ideal-point q)}\mp@subsup{)}{}{T}|pq.\mathrm{ True }}\longleftrightarrowz\in{p*\mp@subsup{p}{}{T}*x*q*\mp@subsup{q}{}{T}|pq
ideal-point p ^ ideal-point q}
            proof
            assume z \in{ Rep-ideal-point p*(Rep-ideal-point p)T}*x
Rep-ideal-point q*(Rep-ideal-point q)T}|pq. True
            from this obtain pq where z=Rep-ideal-point p*(Rep-ideal-point p)}\mp@subsup{)}{}{T
* x * Rep-ideal-point q * (Rep-ideal-point q)}\mp@subsup{}{}{T
            by auto
            thus z\in{p* p
                using Rep-ideal-point by blast
            next
            assume z \in{p* p
            from this obtain pq where 1: ideal-point p}\wedge\mathrm{ ideal-point q^z=p* p
* x*q* q
            by auto
            hence Rep-ideal-point (Abs-ideal-point p) = p\wedge Rep-ideal-point
(Abs-ideal-point q) =q
            using Abs-ideal-point-inverse by auto
            thus z\in{ Rep-ideal-point p*(Rep-ideal-point p)T}*x*Rep-ideal-point q
* (Rep-ideal-point q)T}|pq.True 
            using 1 by (metis (mono-tags, lifting) mem-Collect-eq)
            qed
    qed
    thus ?thesis
        by simp
    qed
    also have ... = x
    by (rule ideal-point-rep-1[symmetric])
    finally show ?thesis
```


qed

lemma mat-sra-mat:

$$
\text { sra-to-mat }(\text { mat-to-sra } f)=f
$$

by (unfold sra-to-mat-def mat-to-sra-def, simp add:
ideal-point-rep-2[symmetric])
lemma sra-to-mat-sup-homomorphism:
sra-to-mat $(x \sqcup y)=$ sra-to-mat $x \sqcup$ sra-to-mat y
proof (rule ext,unfold split-paired-all)
fix $p q$
have sra-to-mat $(x \sqcup y)(p, q)=$ Abs-ideal $\left((\text { Rep-ideal-point } p)^{T} *(x \sqcup y) *\right.$ Rep-ideal-point q)
by (unfold sra-to-mat-def, simp)
also have $\ldots=$ Abs-ideal $\left((\text { Rep-ideal-point } p)^{T} * x *\right.$ Rep-ideal-point $q \sqcup$
$(\text { Rep-ideal-point } p)^{T} * y *$ Rep-ideal-point $\left.q\right)$
by (simp add: comp-right-dist-sup
idempotent-left-zero-semiring-class.semiring.distrib-left)
also have $\ldots=$ Abs-ideal $\left((\text { Rep-ideal-point } p)^{T} * x *\right.$ Rep-ideal-point $\left.q\right) \sqcup$ Abs-ideal $\left((\text { Rep-ideal-point } p)^{T} * y *\right.$ Rep-ideal-point $\left.q\right)$
proof (rule sup-ideal.abs-eq[symmetric])
have 1: $\bigwedge x$. ideal-point (Rep-ideal-point $x::^{\prime} a$)
using Rep-ideal-point by blast
hence 2: covector ((Rep-ideal-point p $\left.)^{T}\right)$
using vector-conv-covector by blast
thus eq-onp ideal $\left((\text { Rep-ideal-point } p)^{T} * x *\right.$ Rep-ideal-point $\left.q\right)$ $\left((\text { Rep-ideal-point } p)^{T} * x *\right.$ Rep-ideal-point $\left.q\right)$
using 1 by (simp add: comp-associative covector-mult-closed eq-onp-same-args)
show eq-onp ideal $\left((\text { Rep-ideal-point } p)^{T} * y *\right.$ Rep-ideal-point $\left.q\right)$ $\left((\text { Rep-ideal-point } p)^{T} * y *\right.$ Rep-ideal-point $\left.q\right)$
using 12 by (simp add: comp-associative covector-mult-closed eq-onp-same-args)
qed
also have $\ldots=$ sra-to-mat $x(p, q) \sqcup$ sra-to-mat $y(p, q)$
by (unfold sra-to-mat-def, simp)
finally show sra-to-mat $(x \sqcup y)(p, q)=($ sra-to-mat $x \sqcup$ sra-to-mat $y)(p, q)$ by simp
qed
lemma sra-to-mat-inf-homomorphism:
sra-to-mat $(x \sqcap y)=$ sra-to-mat $x \sqcap$ sra-to-mat y
proof (rule ext,unfold split-paired-all)
fix $p q$
have sra-to-mat $(x \sqcap y)(p, q)=$ Abs-ideal $\left((\text { Rep-ideal-point } p)^{T} *(x \sqcap y) *\right.$ Rep-ideal-point q)
by (unfold sra-to-mat-def, simp)
also have $\ldots=$ Abs-ideal $\left((\text { Rep-ideal-point } p)^{T} * x *\right.$ Rep-ideal-point $q \sqcap$ $(\text { Rep-ideal-point } p)^{T} * y *$ Rep-ideal-point $\left.q\right)$
by (metis (no-types, lifting) Rep-ideal-point conv-involutive injective-comp-right-dist-inf mem-Collect-eq univalent-comp-left-dist-inf)
also have $\ldots=$ Abs-ideal $\left((\text { Rep-ideal-point } p)^{T} * x *\right.$ Rep-ideal-point $\left.q\right) \sqcap$ Abs-ideal $\left((\text { Rep-ideal-point } p)^{T} * y *\right.$ Rep-ideal-point $\left.q\right)$
proof (rule inf-ideal.abs-eq[symmetric])
have $1: \bigwedge x$. ideal-point (Rep-ideal-point $x::^{\prime} a$)
using Rep-ideal-point by blast
hence 2: covector ((Rep-ideal-point p) $\left.)^{T}\right)$
using vector-conv-covector by blast
thus eq-onp ideal $\left((\text { Rep-ideal-point } p)^{T} * x *\right.$ Rep-ideal-point $\left.q\right)$ $\left((\text { Rep-ideal-point } p)^{T} * x *\right.$ Rep-ideal-point $\left.q\right)$
using 1 by (simp add: comp-associative covector-mult-closed eq-onp-same-args)
show eq-onp ideal $\left((\text { Rep-ideal-point } p)^{T} * y *\right.$ Rep-ideal-point $\left.q\right)$ $\left((\text { Rep-ideal-point } p)^{T} * y *\right.$ Rep-ideal-point $\left.q\right)$
using 12 by (simp add: comp-associative covector-mult-closed eq-onp-same-args)

qed

also have $\ldots=$ sra-to-mat $x(p, q) \sqcap$ sra-to-mat $y(p, q)$
by (unfold sra-to-mat-def, simp)
finally show sra-to-mat $(x \sqcap y)(p, q)=($ sra-to-mat $x \sqcap$ sra-to-mat $y)(p, q)$ by simp
qed
lemma sra-to-mat-conv-homomorphism:
sra-to-mat $\left(x^{T}\right)=(\text { sra-to-mat } x)^{t}$
proof (rule ext,unfold split-paired-all)
fix $p q$
have sra-to-mat $\left(x^{T}\right)(p, q)=$ Abs-ideal $\left((\text { Rep-ideal-point } p)^{T} *\left(x^{T}\right) *\right.$ Rep-ideal-point q)
by (unfold sra-to-mat-def, simp)
also have $\ldots=$ Abs-ideal $\left(\left((\text { Rep-ideal-point } q)^{T} * x * \text { Rep-ideal-point } p\right)^{T}\right)$
by (simp add: conv-dist-comp mult.assoc)
also have $\ldots=$ Abs-ideal $\left((\text { Rep-ideal-point } q)^{T} * x *\right.$ Rep-ideal-point $\left.p\right)$
proof -
have ideal-point (Rep-ideal-point p) \wedge ideal-point (Rep-ideal-point q) using Rep-ideal-point by blast
thus ?thesis by (metis (full-types) covector-mult-vector-ideal ideal-conv-id)
qed
also have $\ldots=\left(\text { Abs-ideal }\left((\text { Rep-ideal-point } q)^{T} * x * \text { Rep-ideal-point } p\right)\right)^{T}$
by (metis Rep-ideal-inject conv-ideal.rep-eq)
also have $\ldots=(\text { sra-to-mat } x(q, p))^{T}$
by (unfold sra-to-mat-def, simp)
finally show sra-to-mat $\left(x^{T}\right)(p, q)=\left((\text { sra-to-mat } x)^{t}\right)(p, q)$
by (simp add: conv-matrix-def)
qed
lemma sra-to-mat-complement-homomorphism:

```
    sra-to-mat (-x) = -(sra-to-mat x)
proof (rule ext,unfold split-paired-all)
    fix pq
    have sra-to-mat (-x) (p,q) = Abs-ideal ((Rep-ideal-point p)T * -x*
Rep-ideal-point q)
    by (unfold sra-to-mat-def, simp)
    also have ... = Abs-ideal ( }-((\mathrm{ Rep-ideal-point p )}\mp@subsup{)}{}{T}*x*\mathrm{ Rep-ideal-point q))
    proof -
    have 1: (Rep-ideal-point p)}\mp@subsup{)}{}{T}*-x=-((\mathrm{ Rep-ideal-point p)}\mp@subsup{)}{}{T}*x
        using Rep-ideal-point comp-mapping-complement surjective-conv-total by
force
    have - ((Rep-ideal-point p) T}*x)*\mathrm{ Rep-ideal-point q = - ((Rep-ideal-point
p)}\mp@subsup{}{}{T}*x*\mathrm{ Rep-ideal-point q)
            using Rep-ideal-point comp-bijective-complement by blast
    thus ?thesis
        using 1 by simp
    qed
    also have ... = -Abs-ideal ((Rep-ideal-point p) }\mp@subsup{)}{}{T}*x*\mathrm{ Rep-ideal-point q)
    proof (rule uminus-ideal.abs-eq[symmetric])
    have 1: \x. ideal-point (Rep-ideal-point x::'a)
        using Rep-ideal-point by blast
    hence covector ((Rep-ideal-point p)}\mp@subsup{)}{}{T}
            using vector-conv-covector by blast
    thus eq-onp ideal ((Rep-ideal-point p)T}*x*Rep-ideal-point q)
((Rep-ideal-point p)}\mp@subsup{)}{}{T}*x*\mathrm{ Rep-ideal-point q)
            using 1 by (simp add: comp-associative covector-mult-closed
eq-onp-same-args)
    qed
    also have ... = -sra-to-mat x ( }p,q
        by (unfold sra-to-mat-def, simp)
    finally show sra-to-mat (-x) (p,q)=(-sra-to-mat x) (p,q)
        by simp
qed
lemma sra-to-mat-bot-homomorphism:
    sra-to-mat bot = bot
proof (rule ext,unfold split-paired-all)
    fix p q :: 'a ideal-point
    have sra-to-mat bot (p,q)=Abs-ideal ((Rep-ideal-point p)}\mp@subsup{)}{}{T}*\mathrm{ bot *
Rep-ideal-point q)
    by (unfold sra-to-mat-def, simp)
    also have ... = bot
    by (simp add: bot-ideal.abs-eq)
    finally show sra-to-mat bot ( }p,q)=\operatorname{bot}(p,q
    by simp
qed
lemma sra-to-mat-top-homomorphism:
    sra-to-mat top = top
```

```
proof (rule ext,unfold split-paired-all)
    fix \(p q\) :: ' \(a\) ideal-point
    have sra-to-mat top \((p, q)=\) Abs-ideal \(\left((\text { Rep-ideal-point } p)^{T} *\right.\) top \(*\)
Rep-ideal-point q)
    by (unfold sra-to-mat-def, simp)
    also have \(\ldots=\) top
    proof -
        have \(\bigwedge x\). ideal-point (Rep-ideal-point \(x::^{\prime} a\) )
        using Rep-ideal-point by blast
        thus ?thesis
            by (metis (full-types) conv-dist-comp symmetric-top-closed top-ideal.abs-eq)
    qed
    finally show sra-to-mat top \((p, q)=\) top \((p, q)\)
        by \(\operatorname{simp}\)
qed
lemma sra-to-mat-one-homomorphism:
    sra-to-mat \(1=\) one-matrix
proof (rule ext,unfold split-paired-all)
    fix \(p q::\) 'a ideal-point
    have sra-to-mat \(1(p, q)=\) Abs-ideal \(\left((\text { Rep-ideal-point } p)^{T} *\right.\) Rep-ideal-point \(\left.q\right)\)
        by (unfold sra-to-mat-def, simp)
    also have \(\ldots=\) one-matrix ( \(p, q\) )
    proof (cases \(p=q\) )
        case True
        hence \((\text { Rep-ideal-point } p)^{T} *\) Rep-ideal-point \(q=\) top
            using Rep-ideal-point point-mult-top by auto
    hence Abs-ideal \(\left((\text { Rep-ideal-point } p)^{T} *\right.\) Rep-ideal-point \(\left.q\right)=\) Abs-ideal top
            by simp
    also have \(\ldots=\) one-matrix \((p, q)\)
            by (unfold one-matrix-def, simp add: True one-ideal-def)
        finally show ?thesis
    next
        case False
    have (Rep-ideal-point p) \()^{T}\) Rep-ideal-point \(q=\) bot
            apply (rule different-ideal-points-disjoint-2)
            using Rep-ideal-point apply blast
            using Rep-ideal-point apply blast
            by (simp add: False Rep-ideal-point-inject)
    also have \(\ldots=\) one-matrix \((p, q)\)
            by (unfold one-matrix-def, simp add: False)
    finally show ?thesis
                by (simp add: False bot-ideal-def one-matrix-def)
    qed
    finally show sra-to-mat \(1(p, q)=\) one-matrix \((p, q)\)
        by \(\operatorname{simp}\)
qed
```

```
lemma Abs-ideal-dist-sup-fin:
    assumes finite }
            and }X\not={
            and }\forallx\inX . ideal ( f x)
                            shows Abs-ideal (Sup-fin {fx|x.x\inX })=Sup-fin {Abs-ideal (fx)|x.
x\inX}
proof (rule finite-ne-subset-induct''[where F=X])
    show finite X
            using assms(1) by simp
    show }X\not={
            using assms(2) by simp
    show }X\subseteq
            by simp
    fix y
    assume 1:y\inX
    thus Abs-ideal (Sup-fin {fx|x.x\in{y} })=Sup-fin {Abs-ideal (fx)|x.x
\in{y} }
    by auto
    fix }
    assume 2: finite FF\not={}F\subseteqX y \not\existsFAbs-ideal(Sup-fin { fx|x.x\inF})
=Sup-fin { Abs-ideal (fx)|x.x\inF}
    have Abs-ideal (Sup-fin { fx|x.x\in insert y F }) = Abs-ideal (fy \sqcup Sup-fin
{fx|x.x\inF})
    proof -
        have Sup-fin {fx|x.x\in insert y F } =fy \sqcupSup-fin {fx|x.x\inF}
            apply (subst Sup-fin.insert[symmetric])
            using 2 apply simp
            using 2 apply simp
            by (auto intro: arg-cong[where f=Sup-fin])
            thus ?thesis
                by simp
    qed
    also have ... = Abs-ideal (fy) \sqcup Abs-ideal (Sup-fin { fx|x.x\inF })
    proof (rule sup-ideal.abs-eq[symmetric])
        show eq-onp ideal (fy) (fy)
            using 1 by (simp add: assms(3) eq-onp-same-args)
        have top * Sup-fin {fx|x.x\inF}=Sup-fin {top*fx|x.x\inF}
            using 2 mult-left-dist-sup-fin by fastforce
    hence top * Sup-fin {fx|x.x\inF}* top=Sup-fin {top*fx| x. x 隹 F
}* top
            by simp
    also have ... = Sup-fin {top*fx*top|x.x\inF}
        using 2 mult-right-dist-sup-fin by force
    also have ... = Sup-fin {fx|x.x\inF}
        using 2 by (metis assms(3) subset-iff)
    finally have top*Sup-fin {fx|x.x\inF}*top=Sup-fin {fx|x.x\inF
}
    hence ideal (Sup-fin { fx|x.x\inF})
```

using ideal-fixpoint by blast
thus eq-onp ideal (Sup-fin $\{f x \mid x . x \in F\})(\operatorname{Sup-fin}\{f x \mid x . x \in F\})$ by (simp add: eq-onp-def)
qed
also have $\ldots=\operatorname{Abs}$-ideal $(f y) \sqcup \operatorname{Sup}$-fin $\{$ Abs-ideal $(f x) \mid x . x \in F\}$
using 2 by simp
also have $\ldots=\operatorname{Sup}$-fin $\{$ Abs-ideal $(f x) \mid x . x \in$ insert $y F\}$
apply (subst Sup-fin.insert[symmetric])
using 2 apply simp
using 2 apply simp
by (auto intro: arg-cong[where $f=$ Sup-fin])
finally show Abs-ideal (Sup-fin $\{f x \mid x . x \in$ insert $y F\})=\operatorname{Sup}-f i n\{$ Abs-ideal $(f x) \mid x . x \in$ insert $y F\}$

qed

lemma sra-to-mat-mult-homomorphism:
sra-to-mat $(x * y)=$ sra-to-mat $x \odot$ sra-to-mat y
proof (rule ext,unfold split-paired-all)
fix $p q$
have sra-to-mat $(x * y)(p, q)=$ Abs-ideal $\left((\text { Rep-ideal-point } p)^{T} *(x * y) *\right.$
Rep-ideal-point q)
by (unfold sra-to-mat-def, simp)
also have $\ldots=$ Abs-ideal $\left((\text { Rep-ideal-point } p)^{T} * x * 1 * y *\right.$ Rep-ideal-point $\left.q\right)$
by (simp add: mult.assoc)
also have $\ldots=$ Abs-ideal $\left((\text { Rep-ideal-point } p)^{T} * x * \operatorname{Sup}\right.$-fin $\left\{r * r^{T} \mid r\right.$.
ideal-point $r\} * y *$ Rep-ideal-point q)
by (unfold one-sup-ideal-points[symmetric], simp)
also have $\ldots=$ Abs-ideal $\left((\text { Rep-ideal-point } p)^{T} * x *\right.$ Sup-fin \{ Rep-ideal-point r
$\left.*(\text { Rep-ideal-point } r)^{T} \mid r . r \in U N I V\right\} * y *$ Rep-ideal-point $\left.q\right)$
proof -
have $\left\{r * r^{T} \mid r::^{\prime} a\right.$. ideal-point $\left.r\right\}=\{$ Rep-ideal-point $r *$ (Rep-ideal-point
$\left.r)^{T} \mid r . r \in U N I V\right\}$
proof (rule set-eqI)
fix x
show $x \in\left\{r * r^{T} \mid r::^{\prime} a\right.$. ideal-point $\left.r\right\} \longleftrightarrow x \in\{$ Rep-ideal-point $r *$
(Rep-ideal-point $\left.r)^{T} \mid r . r \in U N I V\right\}$
proof
assume $x \in\left\{r * r^{T} \mid r::^{\prime} a\right.$. ideal-point $\left.r\right\}$
from this obtain r where 1: ideal-point $r \wedge x=r * r^{T}$
by auto
hence Rep-ideal-point (Abs-ideal-point r) $=r$
using Abs-ideal-point-inverse by auto
thus $x \in\left\{\right.$ Rep-ideal-point $\left.r *(\text { Rep-ideal-point } r)^{T} \mid r . r \in U N I V\right\}$
using 1 by (metis (mono-tags, lifting) UNIV-I mem-Collect-eq)
next
assume $x \in\left\{\right.$ Rep-ideal-point $\left.r *(\text { Rep-ideal-point } r)^{T} \mid r . r \in U N I V\right\}$
from this obtain r where $x=$ Rep-ideal-point $r *(\text { Rep-ideal-point } r)^{T}$
by auto

```
            thus }x\in{r*\mp@subsup{r}{}{T}|r::'a.ideal-point r }
            using Rep-ideal-point by blast
        qed
    qed
    thus ?thesis
        by simp
qed
also have ... = Abs-ideal (Sup-fin {(Rep-ideal-point p)}\mp@subsup{)}{}{T}*x*Rep-ideal-point r
*(Rep-ideal-point r)}\mp@subsup{)}{}{T}|r.r\inUNIV }*(y*Rep-ideal-point q)
    by (subst mult-left-dist-sup-fin, simp-all add: mult.assoc)
also have ... = Abs-ideal (Sup-fin {(Rep-ideal-point p)T}*x*Rep-ideal-point r
* (Rep-ideal-point r)}\mp@subsup{)}{}{T}*y*\mathrm{ Rep-ideal-point q|r.r UNIV })
    by (subst mult-right-dist-sup-fin, simp-all add: mult.assoc)
also have ... = Sup-fin { Abs-ideal ((Rep-ideal-point p) T}*x*Rep-ideal-point r
* (Rep-ideal-point r)}\mp@subsup{)}{}{T}*y*\mathrm{ Rep-ideal-point q)|r.r | UNIV }
proof -
    have 1: \bigwedger. ideal ((Rep-ideal-point p)T}*x*\mathrm{ Rep-ideal-point r *
(Rep-ideal-point r)}\mp@subsup{)}{}{T}*y*\mathrm{ Rep-ideal-point q)
    proof -
        fix r :: 'a ideal-point
        have \x . ideal-point (Rep-ideal-point x::'a)
            using Rep-ideal-point by blast
            thus ideal ((Rep-ideal-point p)}\mp@subsup{)}{}{T}*x*\mathrm{ Rep-ideal-point r* (Rep-ideal-point
r)}\mp@subsup{}{T}{*}y*\mathrm{ Rep-ideal-point q)
            by (simp add: covector-mult-closed vector-conv-covector vector-mult-closed)
    qed
    show ?thesis
            apply (rule Abs-ideal-dist-sup-fin)
            using 1 by simp-all
qed
also have ... = (\bigsqcup
(Rep-ideal-point r)}\mp@subsup{)}{}{T}*y*\mathrm{ Rep-ideal-point q))
    by (rule sup-fin-sum)
also have ... = (\bigsqcup}rr Abs-ideal ((Rep-ideal-point p) T *x* Rep-ideal-point r \sqcap
(Rep-ideal-point r)}\mp@subsup{)}{}{T}*y*\mathrm{ Rep-ideal-point q))
    proof -
    have }\r.(\mathrm{ Rep-ideal-point p)T}*x*Rep-ideal-point r * ((Rep-ideal-point r)
* y* Rep-ideal-point q) = (Rep-ideal-point p )
(Rep-ideal-point r)T}*y*\mathrm{ Rep-ideal-point q
    proof (rule ideal-mult-inf)
            fix r :: 'a ideal-point
            have 2: \x. ideal-point (Rep-ideal-point x::'a)
            using Rep-ideal-point by blast
            thus ideal ((Rep-ideal-point p)T}*x*Rep-ideal-point r)
            by (simp add: covector-mult-closed vector-conv-covector vector-mult-closed)
            show ideal ((Rep-ideal-point r)}\mp@subsup{)}{}{T}*y*\mathrm{ Rep-ideal-point q)
                    using 2 by (simp add: covector-mult-closed vector-conv-covector
vector-mult-closed)
    qed
```

```
    thus ?thesis
    by (simp add: mult.assoc)
    qed
    also have ... = ( \
Abs-ideal ((Rep-ideal-point r)}\mp@subsup{)}{}{T}*y*\mathrm{ Rep-ideal-point q))
    proof -
```



```
(Rep-ideal-pointr)}\mp@subsup{)}{}{T}*y*\mathrm{ Rep-ideal-point q) =Abs-ideal ((Rep-ideal-point p) T}
x* Rep-ideal-point r) * Abs-ideal ((Rep-ideal-point r)T}*y*Rep-ideal-point q
    proof (rule times-ideal.abs-eq[symmetric])
            fix r :: 'a ideal-point
            have 3: }\\mathrm{ x. ideal-point (Rep-ideal-point x::'a)
            using Rep-ideal-point by blast
            hence 4: covector ((Rep-ideal-point p)T})\wedge covector ((Rep-ideal-point r)T
                using vector-conv-covector by blast
            thus eq-onp ideal ((Rep-ideal-point p)T}*x*Rep-ideal-point r
((Rep-ideal-point p)T*x* Rep-ideal-point r)
            using 3 by (simp add: comp-associative covector-mult-closed
eq-onp-same-args)
            show eq-onp ideal ((Rep-ideal-point r)}\mp@subsup{)}{}{T}*y*\mathrm{ Rep-ideal-point q)
((Rep-ideal-point r)}\mp@subsup{)}{}{T}*y*\mathrm{ Rep-ideal-point q)
            using 3 4 by (simp add: comp-associative covector-mult-closed
eq-onp-same-args)
    qed
    thus ?thesis
        by simp
    qed
    also have ... =( }\mp@subsup{\bigsqcup}{r}{}\mathrm{ sra-to-mat x (p,r)* sra-to-mat y (r,q))
    by (unfold sra-to-mat-def, simp)
    finally show sra-to-mat }(x*y)(p,q)=(\mathrm{ sra-to-mat }x\odot\mathrm{ sra-to-mat y) (p,q)
    by (simp add: times-matrix-def)
qed
end
theory Cardinality
imports List-Infinite.InfiniteSet2 Representation
begin
context uminus
begin
no-notation uminus (- - [81] 80)
end
```


2 Atoms Below an Element in Partial Orders

We define the set and the number of atoms below an element in a partial order. To handle infinitely many atoms we use enat, which are natural numbers with infinity, and icard, which modifies card by giving a separate option of being infinite. We include general results about enat, icard, sets functions and atoms.

```
lemma enat-mult-strict-mono:
    assumes \(a<b c<d\) ( \(0::\) enat \()<b 0 \leq c\)
    shows \(a * c<b * d\)
proof -
    have \(a \neq \infty \wedge c \neq \infty\)
        using \(\operatorname{assms}(1,2)\) linorder-not-le by fastforce
    thus ?thesis
        using assms by (smt (verit, del-insts) enat-0-less-mult-iff idiff-eq-conv-enat
ileI1 imult-ile-mono imult-is-infinity-enat less-eq-idiff-eq-sum less-le-not-le
mult-eSuc-right order.strict-trans1 order-le-neq-trans zero-enat-def)
qed
lemma enat-mult-strict-mono':
    assumes \(a<b\) and \(c<d\) and ( \(0::\) enat) \(\leq a\) and \(0 \leq c\)
    shows \(a * c<b * d\)
    using assms by (auto simp add: enat-mult-strict-mono)
lemma finite-icard-card:
    finite \(A \Longrightarrow\) icard \(A=\) icard \(B \Longrightarrow\) card \(A=\operatorname{card} B\)
    by (metis icard-def icard-eq-enat-imp-card)
lemma icard-eq-sum:
    finite \(A \Longrightarrow\) icard \(A=\operatorname{sum}(\lambda x\). 1) \(A\)
    by (simp add: icard-def of-nat-eq-enat)
lemma icard-sum-constant-function:
    assumes \(\forall x \in A . f x=c\)
        and finite \(A\)
        shows sum \(f A=(\) icard \(A) * c\)
    by (metis assms icard-finite-conv of-nat-eq-enat sum.cong sum-constant)
lemma icard-le-finite:
    assumes icard \(A \leq i c a r d B\)
        and finite \(B\)
    shows finite \(A\)
    by (metis assms enat-ord-simps(5) icard-infinite-conv)
lemma bij-betw-same-icard:
    bij-betw \(f A B \Longrightarrow\) icard \(A=\) icard \(B\)
    by (simp add: bij-betw-finite bij-betw-same-card icard-def)
lemma surj-icard-le: \(B \subseteq f^{\prime} A \Longrightarrow\) icard \(B \leq i c a r d A\)
    by (meson icard-image-le icard-mono preorder-class.order-trans)
```

```
lemma icard-image-part-le:
    assumes }\forallx\inA.fx\subseteq
        and }\forallx\inA.fx\not={
        and }\forallx\inA.\forally\inA.x\not=y\longrightarrowfx\capfy={
    shows icard A\leqicard B
proof -
    have }\forallx\inA.\existsy.y\infx\cap
        using assms(1,2) by fastforce
    hence \existsg.}\forallx\inA.gx\infx\cap
        using bchoice by simp
    from this obtain g}\mathrm{ where 1: }\forallx\inA.gx\infx\cap
        by auto
    hence inj-on g A
        by (metis Int-iff assms(3) empty-iff inj-onI)
    thus icard }A\leqicard 
        using }1\mathrm{ icard-inj-on-le by fastforce
qed
lemma finite-image-part-le:
    assumes }\forallx\inA.fx\subseteq
        and }\forallx\inA.fx\not={
        and }\forallx\inA.\forally\inA.x\not=y\longrightarrowfx\capfy={
        and finite }
    shows finite A
    by (metis assms icard-image-part-le icard-le-finite)
context semiring-1
begin
lemma sum-constant-function:
    assumes }\forallx\inA.fx=
        shows sumfA=of-nat (card A)*c
proof (cases finite A)
    case True
    show ?thesis
    proof (rule finite-subset-induct)
        show finite A
            using True by simp
        show }A\subseteq
            by simp
        show sumf {} = of-nat (card {})*c
            by simp
        fix a F
        assume finite Fa\inA a\not\inF sumfF=of-nat (card F)*c
        thus sumf(insert a F)=of-nat (card (insert a F)) *c
            using assms by (metis sum.insert sum-constant)
    qed
next
```

```
    case False
    thus ?thesis
    by simp
qed
end
context order
begin
lemma ne-finite-has-minimal:
    assumes finite S
        and S\not={}
    shows }\existsm\inS.\forallx\inS.x\leqm\longrightarrowx=
proof (rule finite-ne-induct)
    show finite S
    using assms(1) by simp
    show }S\not={
        using assms(2) by simp
    show }\x.\existsm\in{x}.\forally\in{x}.y\leqm\longrightarrowy=
    by auto
    show }\bigwedgexF.finite F\LongrightarrowF\not={}\Longrightarrowx\not=F\Longrightarrow(\existsm\inF.\forally\inF.y\leqm
y=m)\Longrightarrow(\existsm\in\mathrm{ insert x F. }\forally\in\mathrm{ insert }xF.y\leqm\longrightarrowy=m)
    by (metis finite-insert insert-not-empty finite-has-minimal)
qed
end
context order-bot
begin
abbreviation atoms-below :: ' }a>>'a set (AB
    where atoms-below }x\equiv{a.atom a\wedge a\leqx 
definition num-atoms-below :: ' }a=>\mathrm{ enat ( }nAB\mathrm{ )
    where num-atoms-below }x\equiv\mathrm{ icard (atoms-below x)
lemma AB-iso:
    x\leqy\LongrightarrowAB x\subseteqAB y
    by (simp add: Collect-mono dual-order.trans)
lemma AB-bot:
    AB bot = {}
    by (simp add: bot-unique)
lemma nAB-bot:
    nAB bot = 0
proof -
    have nAB bot = icard (AB bot)
```

```
    by (simp add: num-atoms-below-def)
also have ... = 0
    by (metis (mono-tags, lifting) AB-bot icard-empty)
finally show ?thesis
qed
lemma AB-atom:
    atom }a\longleftrightarrowABa={a
    by blast
lemma nAB-atom:
    atom a \LongrightarrownABa=1
proof -
    assume atom a
    hence AB a={a}
        using AB-atom by meson
    thus }nABa=
        by (simp add: num-atoms-below-def one-eSuc)
qed
lemma nAB-iso:
    x \leq y\LongrightarrownAB x m nAB y
    using icard-mono AB-iso num-atoms-below-def by auto
end
context bounded-semilattice-sup-bot
begin
lemma nAB-iso-sup:
    nABx\leqnAB (x\sqcupy)
    by (simp add: nAB-iso)
end
context bounded-lattice
begin
lemma different-atoms-disjoint:
    atom }x\Longrightarrow\mathrm{ atom }y\Longrightarrowx\not=y\Longrightarrowx\sqcapy=bo
    using inf-le1 le-iff-inf by auto
lemma AB-dist-inf:
    AB(x\sqcapy)=ABx\capABy
    by auto
lemma AB-iso-inf:
    AB(x\sqcapy)\subseteqABx
```

```
    by (simp add: Collect-mono)
lemma AB-iso-sup:
    ABx\subseteqAB(x\sqcupy)
    by (simp add: Collect-mono le-supI1)
lemma AB-disjoint:
    assumes }x\sqcapy=bo
        shows AB x\capAB y={}
proof (rule Int-emptyI)
    fix a
    assume a\inAB x a \inABy
    hence atom a ^a\leqx^a\leqy
        by simp
    thus False
        using assms bot-unique by fastforce
qed
lemma nAB-iso-inf:
    nAB(x\sqcapy)\leqnABx
    by (simp add: nAB-iso)
end
context distrib-lattice-bot
begin
lemma atom-in-sup:
    assumes atom a
            and a\leqx\sqcupy
        shows }a\leqx\veea\leq
proof -
    have 1: }a=(a\sqcapx)\sqcup(a\sqcapy
        using assms(2) inf-sup-distrib1 le-iff-inf by force
    have }a\sqcapx=bot\veea\sqcapx=
        using assms(1) by fastforce
    thus ?thesis
        using 1 le-iff-inf sup-bot-left by fastforce
qed
lemma atom-in-sup-iff:
    assumes atom a
        shows }a\leqx\sqcupy\longleftrightarrowa\leqx\veea\leq
    using assms atom-in-sup le-supI1 le-supI2 by blast
lemma atom-in-sup-xor:
    atom a \Longrightarrowa\leqx\sqcupy\Longrightarrowx\sqcapy=bot \Longrightarrow (a\leqx^\nega\leqy)\vee(\nega\leqx^a
sy)
    using atom-in-sup bot-unique le-inf-iff by blast
```

```
lemma atom-in-sup-xor-iff:
    assumes atom a
        and }x\sqcapy=bo
        shows }a\leqx\sqcupy\longleftrightarrow(a\leqx\wedge\nega\leqy)\vee(\nega\leqx\wedgea\leqy
    using assms atom-in-sup-xor le-supI1 le-supI2 by auto
lemma AB-dist-sup:
    AB(x\sqcupy)=ABx\cupABy
proof
    show AB (x\sqcupy)\subseteqABx\cupABy
        using atom-in-sup by fastforce
next
    show AB x\cupABy\subseteqAB(x\sqcupy)
        using le-supI1 le-supI2 by fastforce
qed
end
context bounded-distrib-lattice
begin
lemma nAB-add:
    nABx+nABy=nAB(x\sqcupy)+nAB(x\sqcapy)
proof -
    have nABx+nABy=icard (ABx\cupABy)+icard (ABx\capABy)
        using num-atoms-below-def icard-Un-Int by auto
    also have ... = nAB (x\sqcupy)+nAB(x\sqcapy)
        using num-atoms-below-def AB-dist-inf AB-dist-sup by auto
    finally show ?thesis
qed
lemma nAB-split-disjoint:
    assumes }x\sqcapy=bo
        shows nAB (x\sqcupy)=nABx+nABy
    by (simp add: assms nAB-add nAB-bot)
end
context p-algebra
begin
lemma atom-in-p:
    atom a\Longrightarrowa\leqx\veea\leq-x
    using inf.orderI pseudo-complement by force
lemma atom-in-p-xor:
    atom }a\Longrightarrow(a\leqx\wedge\nega\leq-x)\vee(\nega\leqx\wedgea\leq-x
```

```
by (metis atom-in-p le-iff-inf pseudo-complement)
```

The following two lemmas also hold in distributive lattices with a least element (see above). However, p-algebras are not necessarily distributive, so the following results are indepenent.

```
lemma atom-in-sup':
    atom \(a \Longrightarrow a \leq x \sqcup y \Longrightarrow a \leq x \vee a \leq y\)
    by (metis inf.absorb-iff2 inf.sup-ge2 pseudo-complement sup-least)
lemma \(A B\)-dist-sup':
    \(A B(x \sqcup y)=A B x \cup A B y\)
proof
    show \(A B(x \sqcup y) \subseteq A B x \cup A B y\)
        using atom-in-sup' by fastforce
next
    show \(A B x \cup A B y \subseteq A B(x \sqcup y)\)
        using le-supI1 le-supI2 by fastforce
qed
lemma AB-split-1:
    \(A B x=A B((x \sqcap y) \sqcup(x \sqcap-y))\)
proof
    show \(A B x \subseteq A B((x \sqcap y) \sqcup(x \sqcap-y))\)
    proof
        fix \(a\)
        assume \(a \in A B x\)
        hence atom \(a \wedge a \leq x\)
            by \(\operatorname{simp}\)
    hence atom a \(\wedge a \leq(x \sqcap y) \sqcup(x \sqcap-y)\)
        by (metis atom-in-p-xor inf.boundedI le-supI1 le-supI2)
        thus \(a \in A B((x \sqcap y) \sqcup(x \sqcap-y))\)
            by \(\operatorname{simp}\)
    qed
next
    show \(A B((x \sqcap y) \sqcup(x \sqcap-y)) \subseteq A B x\)
        using atom-in-sup' inf.boundedE by blast
qed
lemma \(A B\)-split-2:
    \(A B x=A B(x \sqcap y) \cup A B(x \sqcap-y)\)
    using \(A B\)-dist-sup' \(A B\)-split-1 by auto
lemma \(A B\)-split-2-disjoint:
    \(A B(x \sqcap y) \cap A B(x \sqcap-y)=\{ \}\)
    using atom-in-p-xor by fastforce
lemma \(A B-p p\) :
\(A B(--x)=A B x\)
by (metis (opaque-lifting) atom-in-p-xor)
```

```
lemma nAB-pp:
    nAB(--x) = nABx
    using AB-pp num-atoms-below-def by auto
lemma nAB-split-1:
    nABx=nAB ((x\sqcapy)\sqcup(x\sqcap-y))
    using AB-split-1 num-atoms-below-def by simp
lemma nAB-split-2:
    nABx=nAB(x\sqcapy)+nAB(x\sqcap-y)
proof -
    have icard (AB(x\sqcapy))+icard (AB (x\sqcap-y)) = icard (AB (x\sqcapy)\cupAB(x
\square-y))+icard (AB(x\sqcapy)\capAB(x\sqcap-y))
    using icard-Un-Int by auto
    also have ... = icard (ABx)
        using AB-split-2 AB-split-2-disjoint by auto
    finally show ?thesis
        using num-atoms-below-def by auto
qed
end
```


3 Atoms Below an Element in Stone Relation Algebras

We extend our study of atoms below an element to Stone relation algebras. We consider combinations of the following five assumptions: the Stone relation algebra is atomic, atom-rectangular, atom-simple, a relation algebra, or has finitely many atoms. We include general properties of atoms, rectangles and simple elements.

```
context stone-relation-algebra
```

begin

```
abbreviation rectangle :: ' }a=>\mathrm{ bool where rectangle }x\equivx*\mathrm{ top * x}\leq
```



```
lemma rectangle-eq:
    rectangle }x\longleftrightarrowx*\mathrm{ top *x=x
    by (simp add: order.eq-iff ex231d)
lemma arc-univalent-injective-rectangle-simple:
    arc a \longleftrightarrowunivalent a ^ injective a ^ rectangle a ^ simple a
    by (smt (z3) arc-top-arc comp-associative conv-dist-comp conv-involutive
ideal-top-closed surjective-vector-top rectangle-eq)
lemma conv-atom:
```

```
atom x \Longrightarrowatom ( }\mp@subsup{x}{}{T}\mathrm{ )
by (metis conv-involutive conv-isotone symmetric-bot-closed)
lemma conv-atom-iff:
    atom }x\longleftrightarrow\mathrm{ atom (x }\mp@subsup{x}{}{T
    by (metis conv-atom conv-involutive)
lemma counterexample-different-atoms-top-disjoint:
    atom }x\Longrightarrow\mathrm{ atom }y\Longrightarrowx\not=y\Longrightarrowx*\mathrm{ top }\squarey=\mathrm{ bot
    nitpick[expect=genuine,card=4]
    oops
lemma counterexample-different-univalent-atoms-top-disjoint:
    atom }x\Longrightarrow\mathrm{ univalent }x\Longrightarrow\mathrm{ atom }y\Longrightarrow\mathrm{ univalent }y\Longrightarrowx\not=y\Longrightarrowx*top\sqcap
= bot
    nitpick[expect=genuine,card=4]
    oops
lemma AB-card-4-1:
    a\leqx\wedgea\leqy\longleftrightarrowa\leqx\sqcupy^a\leqx\sqcapy
    using le-supI1 by auto
lemma AB-card-4-2:
    assumes atom a
        shows }(a\leqx\wedge\nega\leqy)\vee(\nega\leqx\wedgea\leqy)\longleftrightarrowa\leqx \sqcupy^\nega\leqx\sqcap
    using assms atom-in-sup le-supI1 le-supI2 by auto
lemma AB-card-4-3:
    assumes atom a
        shows }\nega\leqx\wedge\nega\leqy\longleftrightarrow\nega\leqx\sqcupy\wedge\nega\leqx\sqcap
    using assms AB-card-4-2 by auto
lemma AB-card-5-1:
    assumes atom a
        and a\leq xT}*y\sqcap
    shows }x*a\sqcapy\leqx*z\sqcap
        and x*a\sqcapy\not=bot
proof -
    show }x*a\sqcapy\leqx*z\sqcap
    using assms(2) comp-inf.mult-left-isotone mult-right-isotone by auto
    show }x*a\sqcapy\not=bo
    by (smt assms inf.left-commute inf.left-idem inf-absorb1 schroeder-1)
qed
lemma \(A B\)-card-5-2:
    assumes univalent x
        and atom a
        and atom b
        and b\leq x T * y 
```

```
        and a\not=b
    shows }(x*a\sqcapy)\sqcap(x*b\sqcapy)=bo
        and x*a\sqcapy\not=x*b\sqcapy
proof -
    show (x*a\sqcapy)\sqcap(x*b\sqcapy)= bot
    by (metis assms(1-3,5) comp-inf.semiring.mult-zero-left inf.cobounded1
inf.left-commute inf.sup-monoid.add-commute semiring.mult-not-zero
univalent-comp-left-dist-inf)
    thus x*a\sqcapy\not=x*b\sqcapy
        using AB-card-5-1(2) assms(3,4) by fastforce
qed
lemma AB-card-6-0:
    assumes univalent x
        and atom a
        and a\leqx
        and atomb
        and b}\leq
        and a\not=b
    shows a* top \sqcapb* top = bot
proof -
    have }\mp@subsup{a}{}{T}*b\leq
        by (meson assms(1,3,5) comp-isotone conv-isotone dual-order.trans)
    hence a*top \sqcapb=bot
    by (metis assms(2,4,6) comp-inf.semiring.mult-zero-left comp-right-one
inf.cobounded1 inf.cobounded2 inf.orderE schroeder-1)
    thus ?thesis
        using vector-bot-closed vector-export-comp by force
qed
lemma AB-card-6-1:
    assumes atom a
        and }a\leqx\sqcapy*\mp@subsup{z}{}{T
    shows }a*z\sqcapy\leqx*z\sqcap
        and a*z\sqcapy\not=bot
proof -
    show }a*z\sqcapy\leqx*z\sqcap
    using assms(2) inf.sup-left-isotone mult-left-isotone by auto
    show }a*z\sqcapy\not=bo
    by (metis assms inf.absorb2 inf.boundedE schroeder-2)
qed
lemma AB-card-6-2:
    assumes univalent }
    and atom a
    and }a\leqx\sqcapy*\mp@subsup{z}{}{T
    and atom b
    and b\leqx\sqcapy*zT
    and }a\not=
```

```
    shows (a*z\sqcapy)\sqcap(b*z\sqcapy)=bot
        and }a*z\sqcapy\not=b*z\sqcap
proof -
    have (a*z\sqcapy)\sqcap(b*z\sqcapy)\leqa*top \sqcapb*top
        by (meson comp-inf.comp-isotone comp-inf.ex231d inf.boundedE
mult-right-isotone)
    also have ... = bot
        using AB-card-6-0 assms by force
    finally show (a*z\sqcapy)\sqcap(b*z\sqcapy)=bot
        using le-bot by blast
    thus a*z\sqcapy\not=b*z\sqcapy
        using AB-card-6-1(2) assms(4,5) by fastforce
qed
lemma nAB-conv:
    nABx=nAB( }\mp@subsup{x}{}{T}\mathrm{ )
proof (unfold num-atoms-below-def, rule bij-betw-same-icard)
    show bij-betw conv (ABx) (AB ( }\mp@subsup{x}{}{T})
    proof (unfold bij-betw-def, rule conjI)
        show inj-on conv (AB x)
            by (metis (mono-tags, lifting) inj-onI conv-involutive)
        show conv ' AB x = AB ( }\mp@subsup{x}{}{T}\mathrm{ )
        proof
            show conv ' }ABx\subseteqAB(\mp@subsup{x}{}{T}
            using conv-atom-iff conv-isotone by force
            show AB( }\mp@subsup{x}{}{T})\subseteq\mathrm{ conv ' }AB
            proof
                fix }
                    assume }y\inAB(\mp@subsup{x}{}{T}
                    hence atom y ^ y\leq x
                        by auto
            hence atom ( }\mp@subsup{y}{}{T}\mathrm{ ) ^ y T}\leq
                using conv-atom-iff conv-order by force
                    hence }\mp@subsup{y}{}{T}\inAB
                    by auto
                    thus y conv ' }AB
                        by (metis (no-types, lifting) image-iff conv-involutive)
            qed
        qed
    qed
qed
lemma domain-atom:
    assumes atom a
        shows atom (a* top \sqcap1)
proof
    show a* top \sqcap 1 = bot
    by (metis assms domain-vector-conv ex231a inf-vector-comp mult-left-zero
vector-export-comp-unit)
```

```
next
    show \(\forall y . y \neq\) bot \(\wedge y \leq a *\) top \(\sqcap 1 \longrightarrow y=a *\) top \(\sqcap 1\)
    proof (rule allI, rule impI)
        fix \(y\)
        assume 1: \(y \neq\) bot \(\wedge y \leq a *\) top \(\sqcap 1\)
    hence 2: \(y=1 \sqcap y * a *\) top
            using dedekind-injective comp-associative coreflexive-idempotent
coreflexive-symmetric inf.absorb2 inf.sup-monoid.add-commute by auto
    hence \(y * a \neq b\) ot
            using 1 comp-inf.semiring.mult-zero-right vector-bot-closed by force
    hence \(a=y * a\)
            using 1 by (metis assms comp-right-one coreflexive-comp-top-inf
inf.boundedE mult-sub-right-one)
            thus \(y=a *\) top \(\sqcap 1\)
            using 2 inf.sup-monoid.add-commute by auto
    qed
qed
lemma codomain-atom:
    assumes atom a
        shows atom (top * \(a \sqcap 1\) )
proof -
    have top \(* a \sqcap 1=a^{T} *\) top \(\sqcap 1\)
    by (simp add: domain-vector-covector inf.sup-monoid.add-commute)
    thus ?thesis
    using domain-atom conv-atom assms by auto
qed
lemma atom-rectangle-atom-one-rep:
    \((\forall a\). atom \(a \longrightarrow a *\) top \(* a \leq a) \longleftrightarrow(\forall a\). atom \(a \wedge a \leq 1 \longrightarrow a *\) top \(* a\)
\(\leq 1)\)
proof
    assume \(\forall a\). atom \(a \longrightarrow a *\) top \(* a \leq a\)
    thus \(\forall a\). atom \(a \wedge a \leq 1 \longrightarrow a *\) top \(* a \leq 1\)
        by auto
next
    assume 1: \(\forall a\). atom \(a \wedge a \leq 1 \longrightarrow a *\) top \(* a \leq 1\)
    show \(\forall a\). atom \(a \longrightarrow a *\) top \(* a \leq a\)
    proof (rule allI, rule impI)
    fix \(a\)
    assume atom a
    hence atom ( \(a *\) top \(\sqcap 1\) )
        by (simp add: domain-atom)
    hence \((a *\) top \(\sqcap 1) *\) top \(*(a * \operatorname{top} \sqcap 1) \leq 1\)
            using 1 by \(\operatorname{simp}\)
    hence \(a *\) top \(* a^{T} \leq 1\)
            by (smt comp-associative conv-dist-comp coreflexive-symmetric ex231e
inf-top.right-neutral symmetric-top-closed vector-export-comp-unit)
    thus \(a *\) top \(* a \leq a\)
```

by (smt comp-associative conv-dist-comp domain-vector-conv order.eq-iff ex231e inf.absorb2 inf.sup-monoid.add-commute mapping-one-closed symmetric-top-closed top-right-mult-increasing vector-export-comp-unit)
qed
qed
lemma $A B$-card-2-1:
assumes $a *$ top $* a \leq a$
shows $(a *$ top $\sqcap 1) *$ top $*($ top $* a \sqcap 1)=a$
by (metis assms comp-inf.vector-top-closed covector-comp-inf ex231d order.antisym inf-commute surjective-one-closed vector-export-comp-unit vector-top-closed mult-assoc)
lemma atomsimple-atom1simple:

$$
(\forall a . \text { atom } a \longrightarrow \text { top } * a * \text { top }=\text { top }) \longleftrightarrow(\forall a . \text { atom } a \wedge a \leq 1 \longrightarrow \text { top } * a
$$

$$
* t o p=t o p)
$$

proof
assume $\forall a$. atom $a \longrightarrow$ top $* a *$ top $=$ top
thus $\forall a$.atom $a \wedge a \leq 1 \longrightarrow$ top $* a *$ top $=$ top
by simp
next
assume 1: $\forall a$. atom $a \wedge a \leq 1 \longrightarrow t o p * a *$ top $=t o p$
show $\forall a$. atom $a \longrightarrow$ top $* a *$ top $=$ top
proof (rule allI, rule impI)
fix a
assume atom a
hence 2: atom ($a *$ top $\sqcap 1$)
by (simp add: domain-atom)
have top $*(a *$ top $\sqcap 1) *$ top $=$ top $* a *$ top
using comp-associative vector-export-comp-unit by auto
thus top $* a *$ top $=$ top
using 12 by auto
qed
qed
lemma $A B$-card-2-2:
assumes atom a
and $a \leq 1$
and atom b
and $b \leq 1$
and $\forall a$. atom $a \longrightarrow$ top $* a *$ top $=$ top
shows $a *$ top $* b *$ top $\sqcap 1=a$ and top $* a * t o p * b \sqcap 1=b$
proof -
show $a *$ top $* b *$ top $\sqcap 1=a$
using assms $(2,3,5)$ comp-associative coreflexive-comp-top-inf-one by auto
show top $* a *$ top $* b \sqcap 1=b$
using assms $(1,4,5)$ epm-3 inf.sup-monoid.add-commute by auto
qed

```
abbreviation dom-cod :: ' }a>>'\mp@code{' }a\times\mp@subsup{}{}{\prime}
    where dom-cod a \equiv(a* top \sqcap1, top *a\sqcap1)
lemma dom-cod-atoms-1:
    dom-cod' AB top \subseteqAB1\timesAB1
proof
    fix }
    assume x dom-cod ' AB top
    from this obtain a where 1: atom a ^ x = dom-cod a
        by auto
    hence a*top \sqcap1 & AB 1 ^top *a\sqcap1\inAB1
        using domain-atom codomain-atom by auto
    thus }x\inAB1\timesAB
        using 1 by auto
qed
end
class stone-relation-algebra-simple = stone-relation-algebra }
    assumes simple: x}\not=\mathrm{ bot }\longrightarrow\mathrm{ simple }
begin
lemma point-ideal-point:
    point }x\longleftrightarrow\mathrm{ ideal-point }
    using simple by fastforce
end
```


3.1 Atomic

```
class stone-relation-algebra-atomic \(=\) stone-relation-algebra +
    assumes atomic: x\not= bot \longrightarrow( \existsa. atom a ^a\leqx)
begin
lemma AB-nonempty:
    x\not=bot\LongrightarrowABx\not={}
    using atomic by fastforce
lemma AB-nonempty-iff:
    x\not= bot \longleftrightarrowAB }\longleftrightarrow\not={
    using AB-nonempty AB-bot by blast
lemma atomsimple-simple:
    (\foralla.a\not= bot\longrightarrowtop *a*top = top) \longleftrightarrow(\foralla.atom a \longrightarrow top * a * top =
top)
proof
    assume }\foralla.a\not= bot\longrightarrowtop *a* top = to
    thus }\foralla.atom a\longrightarrowtop *a*top = to
    by simp
```

```
next
    assume 1: \(\forall a\). atom \(a \longrightarrow\) top \(* a *\) top \(=\) top
    show \(\forall a . a \neq\) bot \(\longrightarrow\) top \(* a *\) top \(=\) top
    proof (rule allI, rule impI)
    fix \(a\)
    assume \(a \neq b\) ot
    from this atomic obtain \(b\) where 2: atom \(b \wedge b \leq a\)
        by auto
    hence top \(* b *\) top \(=\) top
        using 1 by auto
    thus top \(* a *\) top \(=\) top
        using 2 by (metis order.antisym mult-left-isotone mult-right-isotone
top.extremum)
    qed
qed
lemma \(A B\)-card-2-3:
    assumes \(a \neq b\) ot
        and \(a \leq 1\)
        and \(b \neq b o t\)
        and \(b \leq 1\)
        and \(\forall a . a \neq b o t \longrightarrow t o p * a * t o p=t o p\)
    shows \(a *\) top \(* b *\) top \(\sqcap 1=a\) and top \(* a *\) top \(* b \sqcap 1=b\)
proof -
    show \(a *\) top \(* b *\) top \(\sqcap 1=a\)
    using assms(2,3,5) comp-associative coreflexive-comp-top-inf-one by auto
    show top \(* a *\) top \(* b \sqcap 1=b\)
    using \(\operatorname{assms}(1,4,5)\) epm-3 inf.sup-monoid.add-commute by auto
qed
lemma injective-down-closed:
    \(x \leq y \Longrightarrow\) injective \(y \Longrightarrow\) injective \(x\)
    using conv-isotone mult-isotone by fastforce
lemma univalent-down-closed:
    \(x \leq y \Longrightarrow\) univalent \(y \Longrightarrow\) univalent \(x\)
    using conv-isotone mult-isotone by fastforce
lemma \(n A B\)-bot-iff:
        \(x=\) bot \(\longleftrightarrow n A B x=0\)
        by (smt (verit, best) icard-0-eq AB-nonempty-iff num-atoms-below-def)
```

It is unclear if atomic is necessary for the following two results, but it seems likely.
lemma $n A B$-univ-comp-meet:
assumes univalent x
shows $n A B\left(x^{T} * y \sqcap z\right) \leq n A B(x * z \sqcap y)$
proof (unfold num-atoms-below-def, rule icard-image-part-le)
show $\forall a \in A B\left(x^{T} * y \sqcap z\right) . A B(x * a \sqcap y) \subseteq A B(x * z \sqcap y)$

```
    proof
    fix a
    assume a }\inAB(\mp@subsup{x}{}{T}*y\sqcapz
    hence }x*a\sqcapy\leqx*z\sqcap
        using AB-card-5-1(1) by auto
    thus AB(x*a\sqcapy)\subseteqAB(x*z\sqcapy)
        using AB-iso by blast
    qed
next
    show }\foralla\inAB(\mp@subsup{x}{}{T}*y\sqcapz).AB(x*a\sqcapy)\not={
    proof
        fix }
        assume }a\inAB(\mp@subsup{x}{}{T}*y\sqcapz
    hence }x*a\sqcapy\not=bo
        using AB-card-5-1(2) by auto
    thus AB (x*a\sqcapy)\not={}
        using atomic by fastforce
    qed
next
    show }\foralla\inAB(\mp@subsup{x}{}{T}*y\sqcapz).\forallb\inAB(\mp@subsup{x}{}{T}*y\sqcapz).a\not=b\longrightarrowAB(x*a
y) \capAB(x*b\sqcapy)={}
    proof (intro ballI, rule impI)
        fix ab
        assume a \inAB(秙*y\sqcapz)b\inAB(\mp@subsup{x}{}{T}*y\sqcapz)a\not=b
    hence (x*a\sqcapy)\sqcap(x*b\sqcapy)=bot
            using assms AB-card-5-2(1) by auto
    thus AB (x*a\sqcapy)\capAB(x*b\sqcapy)={}
        using AB-bot AB-dist-inf by blast
    qed
qed
lemma nAB-univ-meet-comp:
    assumes univalent x
    shows nAB(x\sqcapy*\mp@subsup{z}{}{T})\leqnAB(x*z\sqcapy)
proof (unfold num-atoms-below-def, rule icard-image-part-le)
    show }\foralla\inAB(x\sqcapy*\mp@subsup{z}{}{T}).AB(a*z\sqcapy)\subseteqAB(x*z\sqcapy
    proof
    fix }
    assume a }\inAB(x\sqcapy*\mp@subsup{z}{}{T}
    hence }a*z\sqcapy\leqx*z\sqcap
            using AB-card-6-1(1) by auto
    thus AB(a*z\sqcapy)\subseteqAB(x*z\sqcapy)
        using AB-iso by blast
    qed
next
    show }\foralla\inAB(x\sqcapy*\mp@subsup{z}{}{T}).AB(a*z\sqcapy)\not={
    proof
        fix a
        assume }a\inAB(x\sqcapy*\mp@subsup{z}{}{T}
```

```
    hence }a*z\sqcapy\not=bo
            using AB-card-6-1(2) by auto
    thus }AB(a*z\sqcapy)\not={
        using atomic by fastforce
    qed
next
    show }\foralla\inAB(x\sqcapy*\mp@subsup{z}{}{T}).\forallb\inAB(x\sqcapy*\mp@subsup{z}{}{T}).a\not=b\longrightarrowAB(a*z
y)\capAB(b*z\sqcapy)={}
    proof (intro ballI, rule impI)
        fix ab
        assume }a\inAB(x\sqcapy*\mp@subsup{z}{}{T})b\inAB(x\sqcapy*\mp@subsup{z}{}{T})a\not=
        hence (a*z\sqcapy)\sqcap(b*z\sqcapy)=bot
            using assms AB-card-6-2(1) by auto
        thus AB(a*z\sqcapy)\capAB(b*z\sqcapy)={}
            using AB-bot AB-dist-inf by blast
    qed
qed
end
```


3.2 Atom-rectangular

```
class stone-relation-algebra-atomrect \(=\) stone-relation-algebra + assumes atomrect: atom \(a \longrightarrow\) rectangle \(a\)
begin
lemma atomrect-eq:
atom \(a \Longrightarrow a *\) top \(* a=a\)
by (simp add: order.antisym ex231d atomrect)
lemma \(A B\)-card-2-4:
assumes atom a
shows \((a *\) top \(\sqcap 1) *\) top \(*(\) top \(* a \sqcap 1)=a\)
by (simp add: assms AB-card-2-1 atomrect)
lemma simple-atom-2:
assumes atom a
and \(a \leq 1\)
and atom \(b\)
and \(b \leq 1\)
and \(x \neq b o t\)
and \(x \leq a * t o p * b\)
shows \(x=a *\) top \(* b\)
proof -
have \(1: x *\) top \(\sqcap 1 \neq\) bot
by (metis assms(5) inf-top-right le-bot top-right-mult-increasing
vector-bot-closed vector-export-comp-unit)
have \(x *\) top \(\sqcap 1 \leq a *\) top \(* b *\) top \(\sqcap 1\)
using assms(6) comp-inf.comp-isotone comp-isotone by blast
```

```
    also have ... \leqa* top П 1
    by (metis comp-associative comp-inf.mult-right-isotone
inf.sup-monoid.add-commute mult-right-isotone top.extremum)
    also have ... = a
    by (simp add: assms(2) coreflexive-comp-top-inf-one)
    finally have 2: }x*\mathrm{ top П 1=a
    using 1 by (simp add: assms(1) domain-atom)
    have 3: top * x }\1\not=\mathrm{ bot
    using 1 by (metis schroeder-1 schroeder-2 surjective-one-closed
symmetric-top-closed total-one-closed)
    have top * x }\1\leqtop *a*top * b\sqcap
    by (metis assms(6) comp-associative comp-inf.comp-isotone mult-right-isotone
reflexive-one-closed)
    also have ... \leqtop * b\sqcap 
    using inf.sup-mono mult-left-isotone top-greatest by blast
    also have ... = b
    using assms(4) epm-3 inf.sup-monoid.add-commute by auto
    finally have top *x }1=
        using 3 by (simp add: assms(3) codomain-atom)
    hence }a*\mathrm{ top *b=x* top *x
    using 2 by (smt abel-semigroup.commute covector-comp-inf
inf.abel-semigroup-axioms inf-top-right surjective-one-closed
vector-export-comp-unit vector-top-closed mult-assoc)
    also have ... =a*top*b*top*(x\sqcapa*top*b)
        using assms(6) calculation inf-absorb1 by auto
    also have ...\leqa*top * (x\sqcapa* top * b)
        by (metis comp-associative comp-inf-covector inf.idem inf.order-iff
mult-right-isotone)
    also have ...\leqa* top * (x\sqcapa* top)
        using comp-associative comp-inf.mult-right-isotone mult-right-isotone by auto
    also have ... =a*top* aT}*
    by (metis comp-associative comp-inf-vector inf-top.left-neutral)
    also have ... =a*top *a*x
    by (simp add: assms(2) coreflexive-symmetric)
    also have ... = a*x
    by (simp add: assms(1) atomrect-eq)
    also have ... }\leq
    using assms(2) mult-left-isotone by fastforce
    finally show ?thesis
        using assms(6) order.antisym by blast
qed
lemma dom-cod-inj-atoms:
    inj-on dom-cod (AB top)
proof
    fix ab
    assume 1:a }\inAB\mathrm{ top b A AB top dom-cod a = dom-cod b
    have a=a*top*a
        using 1 atomrect-eq by auto
```

```
    also have ... =(a* top \sqcap1)*top *(top *a\sqcap1)
        using calculation AB-card-2-1 by auto
    also have ... =(b*top \sqcap1)* top * (top * b\sqcap1)
    using 1 by simp
    also have ... =b*top * b
    using abel-semigroup.commute comp-inf-covector inf.abel-semigroup-axioms
vector-export-comp-unit mult-assoc by fastforce
    also have ... = b
        using 1 atomrect-eq by auto
    finally show }a=
qed
lemma finite-AB-iff:
    finite (AB top) \longleftrightarrow finite (AB 1)
proof
    have AB 1\subseteqAB top
        by auto
    thus finite (AB top) \Longrightarrow finite (AB1)
        by (meson finite-subset)
next
    assume 1: finite (AB 1)
    show finite (AB top)
    proof (rule inj-on-finite)
        show inj-on dom-cod (AB top)
            using dom-cod-inj-atoms by blast
        show dom-cod ' AB top \subseteqAB1 
            using dom-cod-atoms-1 by blast
        show finite ( }AB1\timesAB1
            using 1 by blast
    qed
qed
lemma nAB-top-1:
    nAB top \leqnAB1*nAB1
proof (unfold num-atoms-below-def icard-cartesian-product[THEN sym], rule
icard-inj-on-le)
    show inj-on dom-cod (AB top)
        using dom-cod-inj-atoms by blast
    show dom-cod' AB top \subseteqAB1\timesAB1
        using dom-cod-atoms-1 by blast
qed
lemma atom-vector-injective:
    assumes atom x
        shows injective ( }x*\mathrm{ top)
proof -
    have atom (x* top \sqcap 1)
    by (simp add: assms domain-atom)
```

```
    hence (x* top ח1)*top *(x* top \sqcap1)\leq1
    using atom-rectangle-atom-one-rep atomrect by auto
    hence x* top * 秙\leq1
    by (smt comp-associative conv-dist-comp coreflexive-symmetric ex231e
inf-top.right-neutral symmetric-top-closed vector-export-comp-unit)
    thus injective ( }x*\mathrm{ top)
    by (metis comp-associative conv-dist-comp symmetric-top-closed
vector-top-closed)
qed
lemma atom-injective:
    atom x \Longrightarrow injective }
    by (metis atom-vector-injective comp-associative conv-dist-comp
dual-order.trans mult-right-isotone symmetric-top-closed top-left-mult-increasing)
lemma atom-covector-univalent:
    atom x \Longrightarrow univalent (top * x)
    by (metis comp-associative conv-involutive atom-vector-injective conv-atom-iff
conv-dist-comp symmetric-top-closed)
lemma atom-univalent:
    atom x \Longrightarrow univalent }
    using atom-injective conv-atom-iff univalent-conv-injective by blast
lemma counterexample-atom-simple:
    atom x \Longrightarrow simple x
    nitpick[expect=genuine,card=3]
    oops
lemma symmetric-atom-below-1:
    assumes atom x
        and }x=\mp@subsup{x}{}{T
    shows }x\leq
proof -
    have x=x*top* 吕
        using assms atomrect-eq by auto
    also have ... \leq1
        by (metis assms(1) atom-vector-injective conv-dist-comp
equivalence-top-closed ideal-top-closed mult-assoc)
    finally show ?thesis
qed
end
```


3.3 Atomic and Atom-Rectangular

class stone-relation-algebra-atomic-atomrect $=$ stone-relation-algebra-atomic + stone-relation-algebra-atomrect
begin
lemma point-dense:
assumes $x \neq b$ ot and $x \leq 1$
shows $\exists a . a \neq b o t \wedge a *$ top $* a \leq 1 \wedge a \leq x$
proof -
from atomic obtain a where 1: atom $a \wedge a \leq x$ using assms(1) by auto
hence $a *$ top $* a \leq a$
by (simp add: atomrect)
also have $\ldots \leq 1$
using $1 \operatorname{assms}(2)$ order-trans by blast
finally show ?thesis
using 1 by blast
qed
end

3.4 Atom-simple

class stone-relation-algebra-atomsimple $=$ stone-relation-algebra +
assumes atomsimple: atom $a \longrightarrow$ simple a
begin
lemma $A B$-card-2-5:
assumes atom a
and $a \leq 1$
and atom b
and $b \leq 1$
shows $a *$ top $* b *$ top $\sqcap 1=a$ and top $* a * t o p * b \sqcap 1=b$
using assms AB-card-2-2 atomsimple by auto
lemma simple-atom-1:
atom $a \Longrightarrow$ atom $b \Longrightarrow a *$ top $* b \neq b$ bot
by (metis order.antisym atomsimple bot-least comp-associative mult-left-zero top-right-mult-increasing)
end

3.5 Atomic and Atom-simple

class stone-relation-algebra-atomic-atomsimple $=$ stone-relation-algebra-atomic + stone-relation-algebra-atomsimple
begin
subclass stone-relation-algebra-simple
apply unfold-locales
using atomsimple atomsimple-simple by blast
assumes $a \neq b$ ot
and $a \leq 1$
and $b \neq b o t$
and $b \leq 1$
shows $a *$ top $* b *$ top $\sqcap 1=a$ and top $* a *$ top $* b \sqcap 1=b$
using assms AB-card-2-3 simple atomsimple-simple by auto
lemma dom-cod-atoms-2:
$A B 1 \times A B 1 \subseteq d o m-c o d$ ' $A B$ top
proof
fix x
assume $x \in A B 1 \times A B 1$
from this obtain $a b$ where 1: atom $a \wedge a \leq 1 \wedge$ atom $b \wedge b \leq 1 \wedge x=(a, b)$
by auto
hence $a * t o p * b \neq b o t$
by (simp add: simple-atom-1)
from this obtain c where 2: atom $c \wedge c \leq a * t o p * b$
using atomic by blast
hence $c *$ top $\sqcap 1 \leq a *$ top $\sqcap 1$
by (smt comp-inf.comp-isotone inf.boundedE inf.orderE inf-vector-comp
reflexive-one-closed top-right-mult-increasing)
also have $\ldots=a$
using 1 by (simp add: coreflexive-comp-top-inf-one)
finally have 3: $c *$ top $\sqcap 1=a$
using 12 domain-atom by simp
have top $* c \leq t o p * b$
using 23 by (smt comp-associative comp-inf.reflexive-top-closed
comp-inf-vector-top-closed comp-inf-covector comp-isotone simple
vector-export-comp-unit)
hence top $* c \sqcap 1 \leq b$
using 1 by (smt epm-3 inf.cobounded1 inf.left-commute inf.orderE
injective-one-closed reflexive-one-closed)
hence top $* c \sqcap 1=b$
using 12 codomain-atom by simp
hence dom-cod $c=x$
using 13 by simp
thus $x \in d o m$-cod' $A B$ top
using 2 by auto
qed
lemma dom-cod-atoms:
$A B 1 \times A B 1=$ dom-cod' $A B$ top
using dom-cod-atoms-2 dom-cod-atoms-1 by blast
end

3.6 Atom-rectangular and Atom-simple

class stone-relation-algebra-atomrect-atomsimple $=$ stone-relation-algebra-atomrect + stone-relation-algebra-atomsimple
begin
lemma simple-atom:
assumes atom a and $a \leq 1$ and atom b and $b \leq 1$
shows atom $(a *$ top $* b)$
using assms simple-atom-1 simple-atom-2 by auto
lemma $n A B$-top-2:
$n A B 1 * n A B 1 \leq n A B$ top
proof (unfold num-atoms-below-def icard-cartesian-product[THEN sym], rule
icard-inj-on-le)
let ?f $=\lambda(a, b) . a *$ top $* b$
show inj-on ?f $(A B 1 \times A B 1)$
proof
fix $x y$
assume $x \in A B 1 \times A B 1 y \in A B 1 \times A B 1$
from this obtain $a b c d$ where 1: atom $a \wedge a \leq 1 \wedge$ atom $b \wedge b \leq 1 \wedge x=$
$(a, b) \wedge$ atom $c \wedge c \leq 1 \wedge$ atom $d \wedge d \leq 1 \wedge y=(c, d)$
by auto
assume ?f $x=$?f y
hence 2: $a * t o p * b=c * t o p * d$
using 1 by auto
hence 3: $a=c$
using 1 by (smt atomsimple comp-associative coreflexive-comp-top-inf-one)
have $b=d$
using 12 by (smt atomsimple comp-associative epm-3 injective-one-closed)
thus $x=y$
using 13 by simp
qed
show ?f ' $(A B 1 \times A B 1) \subseteq A B$ top
proof
fix x
assume $x \in$?f ' $(A B 1 \times A B 1)$
from this obtain $a b$ where 4: atom $a \wedge a \leq 1 \wedge$ atom $b \wedge b \leq 1 \wedge x=a *$
top $* b$
by auto
hence $a *$ top $* b \in A B$ top using simple-atom by simp
thus $x \in A B$ top
using 4 by simp
qed
qed

```
lemma nAB-top:
    nAB1*nAB1=nAB top
    using nAB-top-1 nAB-top-2 by auto
lemma atom-covector-mapping:
    atom a \Longrightarrow mapping (top *a)
    using atom-covector-univalent atomsimple by blast
lemma atom-covector-regular:
    atom a \Longrightarrow regular (top * a)
    by (simp add: atom-covector-mapping mapping-regular)
lemma atom-vector-bijective:
    atom a \Longrightarrow bijective ( a* top)
    using atom-vector-injective comp-associative atomsimple by auto
lemma atom-vector-regular:
    atom a \Longrightarrow regular (a*top)
    by (simp add: atom-vector-bijective bijective-regular)
lemma atom-rectangle-regular:
    atom a \Longrightarrow regular ( a * top * a)
    by (smt atom-covector-regular atom-vector-regular comp-associative
pp-dist-comp regular-closed-top)
lemma atom-regular:
    atom a \Longrightarrow regular a
    using atom-rectangle-regular atomrect-eq by auto
end
```


3.7 Atomic, Atom-rectangular and Atom-simple

```
class stone-relation-algebra-atomic-atomrect-atomsimple \(=\) stone-relation-algebra-atomic + stone-relation-algebra-atomrect + stone-relation-algebra-atomsimple
begin
subclass stone-relation-algebra-atomic-atomrect ..
subclass stone-relation-algebra-atomic-atomsimple ..
subclass stone-relation-algebra-atomrect-atomsimple ..
lemma \(n A B\)-atom-iff:
atom \(a \longleftrightarrow n A B \quad a=1\)
proof
assume atom a
thus \(n A B a=1\)
by (simp add: nAB-atom)
next
```

```
assume \(n A B a=1\)
from this obtain \(b\) where \(1: A B a=\{b\}\)
    using icard-1-imp-singleton num-atoms-below-def one-eSuc by fastforce
    hence 2: atom \(b \wedge b \leq a\)
    by auto
    hence 3: \(A B(a \sqcap b)=\{b\}\)
    by fastforce
    have \(A B(a \sqcap b) \cup A B(a \sqcap-b)=A B a \wedge A B(a \sqcap b) \cap A B(a \sqcap-b)=\{ \}\)
    using \(A B\)-split-2 \(A B\)-split-2-disjoint by simp
    hence \(\{b\} \cup A B(a \sqcap-b)=\{b\} \wedge\{b\} \cap A B(a \sqcap-b)=\{ \}\)
    using 13 by simp
    hence \(A B(a \sqcap-b)=\{ \}\)
    by auto
    hence \(a \sqcap-b=\) bot
    using \(A B\)-nonempty-iff by blast
    hence \(a \leq b\)
    using 2 atom-regular pseudo-complement by auto
    thus atom a
    using 2 by auto
qed
end
```


3.8 Finitely Many Atoms

class stone-relation-algebra-finiteatoms $=$ stone-relation-algebra +
assumes finiteatoms: finite $\{a$. atom $a\}$
begin
lemma finite- $A B$:
finite $(A B x)$
using finite-Collect-conjI finiteatoms by force
lemma $n A B$-top-finite:
$n A B$ top $\neq \infty$
by (smt (verit, best) finite-AB icard-infinite-conv num-atoms-below-def)
end

3.9 Atomic and Finitely Many Atoms

class stone-relation-algebra-atomic-finiteatoms $=$ stone-relation-algebra-atomic + stone-relation-algebra-finiteatoms
begin
lemma finite-ideal-points:
finite $\{p$. ideal-point $p\}$
proof (cases bot $=$ top)
case True
hence $\wedge p$. ideal-point $p \Longrightarrow p=$ bot

```
    using le-bot top.extremum by blast
    hence { p.ideal-point p}\subseteq{bot}
    by auto
    thus ?thesis
    using finite-subset by auto
next
    case False
    let ?p={ p. ideal-point p}
    show 0: finite?p
    proof (rule finite-image-part-le)
    show }\forallx\in?p.ABx\subseteqAB to
        using top.extremum by auto
    have }\forallx\in?p.x\not=bo
        using False by auto
    thus }\forallx\in?,p.ABx\not={
        using AB-nonempty by auto
    show }\forallx\in?p.\forally\in?p.x\not=y\longrightarrowABx\capABy={
    proof (intro ballI, rule impI, rule ccontr)
        fix }x
        assume }x\in??py\in?px\not=
        hence 1: }x\sqcapy=bo
            by (simp add: different-ideal-points-disjoint)
        assume }ABx\capABy\not={
        from this obtain a where atom a ^a\leqx^a\leqy
            by auto
        thus False
            using 1 by (metis comp-inf.semiring.mult-zero-left inf.absorb2
inf.sup-monoid.add-assoc)
    qed
    show finite (AB top)
        using finite-AB by blast
    qed
qed
end
```


3.10 Atom-rectangular and Finitely Many Atoms

class stone-relation-algebra-atomrect-finiteatoms $=$ stone-relation-algebra-atomrect + stone-relation-algebra-finiteatoms

3.11 Atomic, Atom-rectangular and Finitely Many Atoms

class stone-relation-algebra-atomic-atomrect-finiteatoms $=$ stone-relation-algebra-atomic + stone-relation-algebra-atomrect + stone-relation-algebra-finiteatoms
begin
subclass stone-relation-algebra-atomic-atomrect ..
subclass stone-relation-algebra-atomic-finiteatoms ..
subclass stone-relation-algebra-atomrect-finiteatoms ..
lemma counterexample-nAB-atom-iff:
atom $x \longleftrightarrow n A B x=1$
nitpick $[$ expect $=$ genuine, card $=3]$
oops
lemma counterexample-nAB-top-iff-eq:
$n A B x=n A B$ top $\longleftrightarrow x=$ top
nitpick $[$ expect $=$ genuine, card=3]
oops
lemma counterexample-nAB-top-iff-leq:
$n A B$ top $\leq n A B x \longleftrightarrow x=$ top
nitpick $[$ expect $=$ genuine, card $=3]$
oops
end

3.12 Atom-simple and Finitely Many Atoms

class stone-relation-algebra-atomsimple-finiteatoms $=$ stone-relation-algebra-atomsimple + stone-relation-algebra-finiteatoms

3.13 Atomic, Atom-simple and Finitely Many Atoms

class stone-relation-algebra-atomic-atomsimple-finiteatoms $=$ stone-relation-algebra-atomic + stone-relation-algebra-atomsimple + stone-relation-algebra-finiteatoms
begin
subclass stone-relation-algebra-atomic-atomsimple ..
subclass stone-relation-algebra-atomic-finiteatoms ..
subclass stone-relation-algebra-atomsimple-finiteatoms ..
lemma nAB-top-2:
$n A B 1 * n A B 1 \leq n A B$ top
proof (unfold num-atoms-below-def icard-cartesian-product[THEN sym], rule surj-icard-le)
show $A B 1 \times A B 1 \subseteq$ dom-cod' $A B$ top using dom-cod-atoms-2 by blast
qed
lemma counterexample-nAB-atom-iff-2:
atom $x \longleftrightarrow n A B x=1$
nitpick $[$ expect $=$ genuine, card $=6]$
oops
lemma counterexample-nAB-top-iff-eq-2:
$n A B x=n A B$ top $\longleftrightarrow x=$ top

```
    nitpick[expect=genuine,card=6]
    oops
lemma counterexample-nAB-top-iff-leq-2:
    nAB top \leq nAB x \longleftrightarrowx= top
    nitpick[expect=genuine,card=6]
    oops
lemma counterexample-nAB-atom-top-iff-leq-2:
    (atom }x\longleftrightarrownABx=1)\vee(nABy=nAB top\longleftrightarrowy=top)\vee(nAB top
nABy\longleftrightarrowy=top)
    nitpick[expect=genuine,card=6]
    oops
end
```


3.14 Atom-rectangular, Atom-simple and Finitely Many Atoms

class stone-relation-algebra-atomrect-atomsimple-finiteatoms $=$ stone-relation-algebra-atomrect + stone-relation-algebra-atomsimple + stone-relation-algebra-finiteatoms
begin
subclass stone-relation-algebra-atomrect-atomsimple ..
subclass stone-relation-algebra-atomrect-finiteatoms ..
subclass stone-relation-algebra-atomsimple-finiteatoms ..
end

3.15 Atomic, Atom-rectangular, Atom-simple and Finitely Many Atoms

class stone-relation-algebra-atomic-atomrect-atomsimple-finiteatoms $=$ stone-relation-algebra-atomic + stone-relation-algebra-atomrect + stone-relation-algebra-atomsimple + stone-relation-algebra-finiteatoms begin
subclass stone-relation-algebra-atomic-atomrect-atomsimple ..
subclass stone-relation-algebra-atomic-atomrect-finiteatoms ..
subclass stone-relation-algebra-atomic-atomsimple-finiteatoms ..
subclass stone-relation-algebra-atomrect-atomsimple-finiteatoms ..
lemma all-regular:
regular x
proof (cases $x=b o t$)
case True
thus ?thesis
by simp

```
next
    case False
    hence 1:AB x\not={}
    using AB-nonempty by blast
    have 2: finite (AB x)
    using finite-AB by blast
    have 3: regular (Sup-fin (AB x))
    proof (rule finite-ne-subset-induct')
    show finite (AB x)
        using 2 by simp
    show AB x\not={}
        using 1 by simp
    show }ABx\subseteqAB\mathrm{ top
        by auto
    show }\bigwedgea.a\inAB top\LongrightarrowSup-fin {a}=--Sup-fin {a
        using atom-regular by auto
    show \aF. finite F\LongrightarrowF\not={}\LongrightarrowF\subseteqAB top \Longrightarrowa\inAB top\Longrightarrowa\not=F
\Longrightarrow \text { Sup-fin F =--Sup-fin F"Sup-fin(insert a F)=--Sup-fin (insert a F)}
        using atom-regular by auto
    qed
    have }x\sqcap\mathrm{ -Sup-fin (AB x)=bot
    proof (rule ccontr)
        assume x \sqcap-Sup-fin (AB x) \not= bot
        from this obtain b where 4: atom b}\b\leqx\sqcap-Sup-fin (ABx
        using atomic by blast
    hence b}\leq\mathrm{ Sup-fin (AB x)
        using Sup-fin.coboundedI 2 by force
    thus False
        using 4 atom-in-p-xor by auto
    qed
    hence 5:x\leqSup-fin (ABx)
        using 3 by (simp add: pseudo-complement)
    have Sup-fin (AB x) \leqx
        using 12 Sup-fin.boundedI by fastforce
    thus ?thesis
        using 3 5 order.antisym by force
qed
sublocale ra: relation-algebra where minus = \lambdax y.x 
proof
    show }\x.x\sqcap-x=bo
    by simp
    show }\x.x\sqcup-x=to
        using all-regular pp-sup-p by fast
    show \x y . x п- y=x 
    by simp
qed
end
```

```
class stone-relation-algebra-finite =stone-relation-algebra + finite
begin
subclass stone-relation-algebra-atomic-finiteatoms
proof
    show finite { a . atom a }
    by simp
    show }\wedgex.x\not=bot\longrightarrow(\existsa. atom a ^a\leqx
    proof
    fix }
    assume 1:x\not= bot
    let ?s = { y. y\leqx^y\not=bot }
    have 2: finite?s
        by auto
    have 3:?s \not={}
        using 1 by blast
    from ne-finite-has-minimal obtain m}\mathrm{ where me?s ^ ( }\forallx\in?s.x\leqm\longrightarrow
=m)
            using 2 3 by meson
    hence atom m ^ m\leqx
        using order-trans by blast
    thus \existsa. atom a ^a\leqx
        by auto
    qed
qed
end
```


3.16 Relation Algebra and Atomic

class relation-algebra-atomic $=$ relation-algebra + stone-relation-algebra-atomic begin
lemma $n A B$-atom-iff:
atom $a \longleftrightarrow n A B a=1$
proof
assume atom a
thus $n A B \quad a=1$
by (simp add: nAB-atom)
next
assume $n A B a=1$
from this obtain b where 1: AB $a=\{b\}$
using icard-1-imp-singleton num-atoms-below-def one-eSuc by fastforce
hence 2: atom $b \wedge b \leq a$
by auto
hence 3: $A B(a \sqcap b)=\{b\}$
by fastforce
have $A B(a \sqcap b) \cup A B(a \sqcap-b)=A B a \wedge A B(a \sqcap b) \cap A B(a \sqcap-b)=\{ \}$
using $A B$-split-2 $A B$-split-2-disjoint by simp
hence $\{b\} \cup A B(a \sqcap-b)=\{b\} \wedge\{b\} \cap A B(a \sqcap-b)=\{ \}$
using 13 by simp
hence $A B(a \sqcap-b)=\{ \}$
by auto
hence $a \sqcap-b=$ bot
using $A B$-nonempty-iff by blast
hence $a \leq b$
by (simp add: shunting-1)
thus atom a
using 2 by auto
qed
end

3.17 Relation Algebra, Atomic and Finitely Many Atoms

class relation-algebra-atomic-finiteatoms $=$ relation-algebra-atomic + stone-relation-algebra-atomic-finiteatoms
begin
Sup-fin only works for non-empty finite sets.
lemma atomistic:
assumes $x \neq b$ ot
shows $x=\operatorname{Sup}-\mathrm{fin}(A B x)$
proof (rule order.antisym)
show $x \leq \operatorname{Sup}$-fin $(A B x)$
proof (rule ccontr)
assume $\neg x \leq \operatorname{Sup-fin}(A B x)$
hence $x \sqcap-$ Sup-fin $(A B x) \neq$ bot
using shunting-1 by blast
from this obtain a where 1: atom $a \wedge a \leq x \sqcap-\operatorname{Sup-fin}(A B x)$
using atomic by blast
hence $a \in A B x$
by simp
hence $a \leq$ Sup-fin $(A B x)$
using Sup-fin.coboundedI finite- $A B$ by auto
thus False
using 1 atom-in-p-xor by auto
qed
show Sup-fin $(A B x) \leq x$
proof (rule Sup-fin.boundedI)
show finite $(A B x)$
using finite $-A B$ by auto
show $A B x \neq\{ \}$
using assms atomic by blast
show $\bigwedge a . a \in A B x \Longrightarrow a \leq x$
by auto
qed
qed

```
lemma counterexample-nAB-top:
    1\not= top \LongrightarrownAB top = nAB1*nAB1
    nitpick[expect=genuine,card=4]
    oops
end
class relation-algebra-atomic-atomsimple-finiteatoms =
relation-algebra-atomic-finiteatoms +
stone-relation-algebra-atomic-atomsimple-finiteatoms
begin
lemma counterexample-atom-rectangle:
    atom x}\longrightarrow\mathrm{ rectangle }
    nitpick[expect=genuine,card=4]
    oops
lemma counterexample-atom-univalent:
    atom }x\longrightarrow\mathrm{ univalent }
    nitpick[expect=genuine,card=4]
    oops
lemma counterexample-point-dense:
    assumes }x\not=bo
        and x\leq1
        shows \existsa.a\not= bot ^a*top *a\leq1^a\leqx
    nitpick[expect=genuine,card=4]
    oops
end
class relation-algebra-atomic-atomrect-atomsimple-finiteatoms =
relation-algebra-atomic-atomsimple-finiteatoms +
stone-relation-algebra-atomic-atomrect-atomsimple-finiteatoms
```


4 Cardinality in Stone Relation Algebras

We study various axioms for a cardinality operation in Stone relation algebras.

```
class card \(=\)
    fixes cardinality :: ' \(a \Rightarrow\) enat (\#- [100] 100)
```

class sra-card $=$ stone-relation-algebra + card
begin
abbreviation card-bot
$=0$

$$
:: \text { ' } a \Rightarrow \text { bool where card-bot } \quad-\equiv \# b o t
$$

abbreviation card-bot-iff

$$
::^{\prime} a \Rightarrow \text { bool where card-bot-iff } \quad-\equiv
$$ $\forall x::^{\prime} a . \# x=0 \longleftrightarrow x=b o t$ abbreviation card-top

 \(:: ' a \Rightarrow\) bool where card-top \(-\equiv\)
 $\# t o p=\# 1 * \# 1$
abbreviation card-conv :: 'a a bool where card-conv -
$\forall x::^{\prime} a . \#\left(x^{T}\right)=\# x$
abbreviation card-add $\quad:{ }^{\prime}$ ' $a \Rightarrow$ bool where card-add $\quad-\equiv \forall x$
$y::^{\prime} a . \# x+\# y=\#(x \sqcup y)+\#(x \sqcap y)$
abbreviation card-iso $\quad:{ }^{\prime}$ ' $a \Rightarrow$ bool where card-iso $\quad-\equiv \forall x$
$y::^{\prime} a . x \leq y \longrightarrow \# x \leq \# y$
abbreviation card-univ-comp-meet $::{ }^{\prime} a \Rightarrow$ bool where card-univ-comp-meet -
$\equiv \forall x y z::^{\prime} a$. univalent $x \longrightarrow \#\left(x^{T} * y \sqcap z\right) \leq \#(x * z \sqcap y)$
abbreviation card-univ-meet-comp $\quad:: ' a \Rightarrow$ bool where card-univ-meet-comp -
$\equiv \forall x y z::^{\prime} a$. univalent $x \longrightarrow \#\left(x \sqcap y * z^{T}\right) \leq \#(x * z \sqcap y)$
abbreviation card-comp-univ $\quad:{ }^{\prime}{ }^{\prime} a \Rightarrow$ bool where card-comp-univ $\quad-\equiv$
$\forall x y::^{\prime} a$. univalent $x \longrightarrow \#(y * x) \leq \# y$
abbreviation card-univ-meet-vector :: ' $a \Rightarrow$ bool where card-univ-meet-vector -
$\equiv \forall x y::^{\prime} a$. univalent $x \longrightarrow \#(x \sqcap y *$ top $) \leq \# y$
abbreviation card-univ-meet-conv $:: ' a \Rightarrow$ bool where card-univ-meet-conv -
$\equiv \forall x y::^{\prime} a$. univalent $x \longrightarrow \#\left(x \sqcap y * y^{T}\right) \leq \# y$
abbreviation card-domain-sym $\quad:$ ' ' $^{\prime} a \Rightarrow$ bool where card-domain-sym
$\equiv \forall x::^{\prime} a$. \# $\left(1 \sqcap x * x^{T}\right) \leq \# x$
abbreviation card-domain-sym-conv :: ' $a \Rightarrow$ bool where card-domain-sym-conv
$-\equiv \forall x::^{\prime} a . \#\left(1 \sqcap x^{T} * x\right) \leq \# x$
abbreviation card-domain $\quad:{ }^{\prime}{ }^{\prime} a \Rightarrow$ bool where card-domain $\quad-\equiv$
$\forall x::^{\prime} a$. \#(1 $\sqcap x *$ top $) \leq \# x$
abbreviation card-domain-conv $::$ ' $a \Rightarrow$ bool where card-domain-conv -
$\equiv \forall x::^{\prime} a \cdot \#\left(1 \sqcap x^{T} * t o p\right) \leq \# x$
abbreviation card-codomain $\quad:: ~ ' a \Rightarrow$ bool where card-codomain \quad -
$\forall x:: ' a . \#(1 \sqcap t o p * x) \leq \# x$
abbreviation card-codomain-conv :: ' $a \Rightarrow$ bool where card-codomain-conv -
$\equiv \forall x::^{\prime} a . \#\left(1 \sqcap\right.$ top $\left.* x^{T}\right) \leq \# x$
abbreviation card-univ :: 'a \Rightarrow bool where card-univ - 三
$\forall x::^{\prime} a$. univalent $x \longrightarrow \# x \leq \#(x *$ top $)$
abbreviation card-atom $\quad:{ }^{\prime} a \Rightarrow$ bool where card-atom $-\equiv$
$\forall x::^{\prime} a$. atom $x \longrightarrow \# x=1$
abbreviation card-atom-iff $\quad:: ~ ' a \Rightarrow$ bool where card-atom-iff $\quad-\equiv$
$\forall x::^{\prime} a$. atom $x \longleftrightarrow \# x=1$
abbreviation card-top-iff-eq $\quad:: ~ ' a \Rightarrow$ bool where card-top-iff-eq $\quad-\equiv$
$\forall x::^{\prime} a . \# x=\# t o p \longleftrightarrow x=t o p$
abbreviation card-top-iff-leq $\quad:: ~ ' a \Rightarrow$ bool where card-top-iff-leq $\quad-\equiv$
$\forall x::^{\prime} a$. \#top $\leq \# x \longleftrightarrow x=$ top
abbreviation card-top-finite $\quad:: ~ ' a \Rightarrow$ bool where card-top-finite $\quad-\equiv$
$\# t o p \neq \infty$
lemma card-domain-iff:
card-domain - \longleftrightarrow card-domain-sym -
by (simp add: domain-vector-conv)
lemma card-codomain-conv-iff:
card-codomain-conv - \longleftrightarrow card-domain
by (simp add: domain-vector-covector)
lemma card-codomain-iff:
assumes card-conv: card-conv -
shows card-codomain $-\longleftrightarrow$ card-codomain-conv -
by (metis card-conv conv-involutive)
lemma card-domain-conv-iff:
card-codomain - \longleftrightarrow card-domain-conv -
using domain-vector-covector by auto
lemma card-domain-sym-conv-iff:
card-domain-conv - \longleftrightarrow card-domain-sym-conv -
by (simp add: domain-vector-conv)
lemma card-bot:
assumes card-bot-iff: card-bot-iff shows card-bot -
using card-bot-iff by auto
lemma card-comp-univ-implies-card-univ-comp-meet:
assumes card-conv: card-conv -
and card-comp-univ: card-comp-univ -
shows card-univ-comp-meet -
proof (intro allI, rule impI)
fix $x y z$
assume 1: univalent x
have $\#\left(x^{T} * y \sqcap z\right)=\#\left(y^{T} * x \sqcap z^{T}\right)$
by (metis card-conv conv-dist-comp conv-dist-inf conv-involutive)
also have $\ldots=\#\left(\left(y^{T} \sqcap z^{T} * x^{T}\right) * x\right)$
using 1 by (simp add: dedekind-univalent)
also have $\ldots \leq \#\left(y^{T} \sqcap z^{T} * x^{T}\right)$
using 1 card-comp-univ by blast
also have $\ldots=\#(x * z \sqcap y)$
by (metis card-conv conv-dist-comp conv-dist-inf inf.sup-monoid.add-commute)
finally show $\#\left(x^{T} * y \sqcap z\right) \leq \#(x * z \sqcap y)$
qed
lemma card-univ-meet-conv-implies-card-domain-sym:
assumes card-univ-meet-conv: card-univ-meet-convshows card-domain-sym -
by (simp add: card-univ-meet-conv)
lemma card-add-disjoint:
assumes card-bot: card-bot -
and card-add: card-add -

```
        and }x\sqcapy=bo
        shows #(x\sqcupy)=#x+#y
    by (simp add: assms(3) card-add card-bot)
lemma card-dist-sup-disjoint:
    assumes card-bot: card-bot -
        and card-add: card-add -
        and }A\not={
        and finite }
        and }\forallx\inA.\forally\inA.x\not=y\longrightarrowx\sqcapy=bo
    shows #Sup-fin A = sum cardinality A
proof (rule finite-ne-subset-induct')
    show finite A
    using assms(4) by simp
    show }A\not={
    using assms(3) by simp
    show }A\subseteq
    by simp
    show }\x.x\inA\Longrightarrow#Sup-fin {x}= sum cardinality {x
    by auto
    fix }x
    assume 1: finite F F}\not={}F\subseteqAx\inAx\not\inF#Sup-fin F=sum cardinality F
    have #Sup-fin (insert x F)=#(x\sqcupSup-fin F)
    using 1 by simp
    also have ... = #x+#Sup-fin F
    proof -
    have }x\sqcap\mathrm{ Sup-fin F=Sup-fin {x }\y|y.y\inF
        using }1\mathrm{ inf-Sup1-distrib by simp
    also have ... =Sup-fin {bot | y.y\inF}
        using 1 assms(5) by (metis (mono-tags, opaque-lifting) subset-iff)
    also have ... \leqbot
        by (rule Sup-fin.boundedI, simp-all add:1)
    finally have }x\sqcap\mathrm{ Sup-fin F=bot
        by (simp add: order.antisym)
    thus ?thesis
        using card-add-disjoint assms by auto
    qed
    also have ... = sum cardinality (insert x F)
    using 1 by simp
    finally show #Sup-fin (insert x F) = sum cardinality (insert x F)
qed
lemma card-dist-sup-atoms:
    assumes card-bot: card-bot -
        and card-add: card-add -
        and }A\not={
        and finite A
        and }A\subseteqAB\mathrm{ top
```

```
    shows #Sup-fin A = sum cardinality A
proof -
    have }\forallx\inA.\forally\inA.x\not=y\longrightarrowx\sqcapy=bo
    using different-atoms-disjoint assms(5) by auto
    thus ?thesis
    using card-dist-sup-disjoint assms(1-4) by auto
qed
lemma card-univ-meet-comp-implies-card-domain-sym:
    assumes card-univ-meet-comp: card-univ-meet-comp -
        shows card-domain-sym -
    by (metis card-univ-meet-comp inf.idem mult-1-left univalent-one-closed)
lemma card-top-greatest:
    assumes card-iso: card-iso -
        shows #x \leq #top
    by (simp add: card-iso)
lemma card-pp-increasing:
    assumes card-iso: card-iso -
        shows #x\leq#(--x)
    by (simp add: card-iso pp-increasing)
lemma card-top-iff-eq-leq:
    assumes card-iso: card-iso -
        shows card-top-iff-eq-\longleftrightarrow card-top-iff-leq -
    using card-iso card-top-greatest nle-le by blast
lemma card-univ-comp-meet-implies-card-comp-univ:
    assumes card-iso: card-iso -
        and card-conv: card-conv -
        and card-univ-comp-meet: card-univ-comp-meet-
    shows card-comp-univ -
proof (intro allI, rule impI)
    fix }x
    assume 1: univalent x
    have #(y*x)=#(\mp@subsup{x}{}{T}*\mp@subsup{y}{}{T})
        by (metis card-conv conv-dist-comp)
    also have ... = #(top }\sqcap\mp@subsup{x}{}{T}*\mp@subsup{y}{}{T}
        by simp
    also have ... 
        using 1 by (metis card-univ-comp-meet inf.sup-monoid.add-commute)
    also have ... \leq#(yT)
        using card-iso by simp
    also have ... = #y
        by (simp add: card-conv)
    finally show #(y*x)\leq#y
qed
```

lemma card-comp-univ-iff-card-univ-comp-meet:
assumes card-iso: card-iso -
and card-conv: card-conv -
shows card-comp-univ - \longleftrightarrow card-univ-comp-meet -
using card-iso card-univ-comp-meet-implies-card-comp-univ card-conv card-comp-univ-implies-card-univ-comp-meet by blast
lemma card-univ-meet-vector-implies-card-univ-meet-comp:
assumes card-iso: card-iso -
and card-univ-meet-vector: card-univ-meet-vector -
shows card-univ-meet-comp -
proof (intro allI, rule impI)
fix $x y z$
assume 1: univalent x
have $\#\left(x \sqcap y * z^{T}\right)=\#\left(x \sqcap(y \sqcap x * z) *\left(z^{T} \sqcap y^{T} * x\right)\right)$
by (metis conv-involutive dedekind-eq inf.sup-monoid.add-commute)
also have $\ldots \leq \#(x \sqcap(y \sqcap x * z) *$ top $)$
using card-iso inf.sup-right-isotone mult-isotone by auto
also have $\ldots \leq \#(x * z \sqcap y)$
using 1 by (simp add: card-univ-meet-vector inf.sup-monoid.add-commute)
finally show $\#\left(x \sqcap y * z^{T}\right) \leq \#(x * z \sqcap y)$
qed
lemma card-univ-meet-comp-implies-card-univ-meet-vector:
assumes card-iso: card-iso -
and card-univ-meet-comp: card-univ-meet-comp -
shows card-univ-meet-vector -
proof (intro allI, rule impI)
fix $x y z$
assume 1: univalent x
have $\#(x \sqcap y * t o p) \leq \#(x * t o p \sqcap y)$
using 1 by (metis card-univ-meet-comp symmetric-top-closed)
also have...$\leq \# y$
using card-iso by auto
finally show $\#(x \sqcap y * t o p) \leq \# y$
qed
lemma card-univ-meet-vector-iff-card-univ-meet-comp:
assumes card-iso: card-iso -
shows card-univ-meet-vector - \longleftrightarrow card-univ-meet-comp -
using card-iso card-univ-meet-comp-implies-card-univ-meet-vector
card-univ-meet-vector-implies-card-univ-meet-comp by blast
lemma card-univ-meet-vector-implies-card-univ-meet-conv:
assumes card-iso: card-iso -
and card-univ-meet-vector: card-univ-meet-vector -

```
    shows card-univ-meet-conv -
proof (intro allI, rule impI)
    fix }xy
    assume 1: univalent x
    have #(x\sqcapy*\mp@subsup{y}{}{T})\leq#(x\sqcapy*top)
        using card-iso comp-inf.mult-right-isotone mult-right-isotone by auto
    also have ... }\leq#
    using 1 by (simp add:card-univ-meet-vector)
    finally show #(x\sqcapy* y
qed
lemma card-domain-sym-implies-card-univ-meet-vector:
    assumes card-comp-univ: card-comp-univ-
        and card-domain-sym: card-domain-sym -
    shows card-univ-meet-vector -
proof (intro allI, rule impI)
    fix }xy
    assume 1: univalent x
    have #(x\sqcapy*top)=#((y*top \sqcap1)*(x\sqcapy*top))
    by (simp add: inf.absorb2 vector-export-comp-unit)
    also have .. \leq = (y*top \sqcap1)
    using 1 by (simp add: card-comp-univ univalent-inf-closed)
    also have ... }\leq#
    using card-domain-sym card-domain-iff inf.sup-monoid.add-commute by auto
    finally show #(x\sqcapy*top)\leq#y
qed
lemma card-domain-sym-iff-card-univ-meet-vector:
    assumes card-iso: card-iso -
        and card-comp-univ: card-comp-univ -
    shows card-domain-sym - \longleftrightarrow card-univ-meet-vector -
    using card-iso card-comp-univ card-domain-sym-implies-card-univ-meet-vector
card-univ-meet-vector-implies-card-univ-meet-conv
card-univ-meet-conv-implies-card-domain-sym by blast
lemma card-univ-meet-conv-iff-card-univ-meet-comp:
    assumes card-iso: card-iso -
    and card-comp-univ: card-comp-univ -
    shows card-univ-meet-conv - \longleftrightarrow card-univ-meet-comp -
    using card-iso card-comp-univ card-domain-sym-implies-card-univ-meet-vector
card-univ-meet-vector-iff-card-univ-meet-comp
card-univ-meet-vector-implies-card-univ-meet-conv univalent-one-closed by blast
lemma card-domain-sym-iff-card-univ-meet-comp:
    assumes card-iso: card-iso -
    and card-comp-univ: card-comp-univ -
    shows card-domain-sym-\longleftrightarrow card-univ-meet-comp -
```

using card-iso card-comp-univ card-domain-sym-implies-card-univ-meet-vector card-univ-meet-conv-iff-card-univ-meet-comp
card-univ-meet-vector-iff-card-univ-meet-comp
card-univ-meet-conv-implies-card-domain-sym by blast
lemma card-univ-comp-mapping:
assumes card-comp-univ: card-comp-univ-
and card-univ-meet-comp: card-univ-meet-comp-
and univalent x
and mapping y
shows $\#(x * y)=\# x$
proof -
have $\# x=\#\left(x \sqcap\right.$ top $\left.* y^{T}\right)$
using $\operatorname{assms}(4)$ total-conv-surjective by auto
also have $\ldots \leq \#(x * y \sqcap$ top $)$
using assms(3) card-univ-meet-comp by blast
finally have $\# x \leq \#(x * y)$
by simp
thus ?thesis
using assms(4) card-comp-univ nle-le by blast
qed
lemma card-point-one:
assumes card-comp-univ: card-comp-univ -
and card-univ-meet-comp: card-univ-meet-comp and card-conv: card-conv and point x
shows $\# x=\# 1$
proof -
have mapping $\left(x^{T}\right)$
using assms(4) surjective-conv-total by auto
thus ?thesis
by (smt card-univ-comp-mapping card-comp-univ card-conv
card-univ-meet-comp coreflexive-comp-top-inf inf.absorb2 reflexive-one-closed
top-right-mult-increasing total-one-closed univalent-one-closed)
qed
lemma counterexample-card-univ-comp-meet-card-comp-univ:
assumes card-add: card-add -
and card-conv: card-conv -
and card-bot-iff: card-bot-iff -
and card-atom-iff: card-atom-iff -
and card-univ-meet-comp: card-univ-meet-comp-
shows card-univ-comp-meet - \longleftrightarrow card-comp-univ -
nitpick[expect=genuine]
oops
lemma counterexample-card-univ-meet-comp-card-univ-meet-vector: assumes card-add: card-add -
and card-conv: card-conv -
and card-bot-iff: card-bot-iff -
and card-atom-iff: card-atom-iff -
and card-univ-comp-meet: card-univ-comp-meet-
shows card-univ-meet-comp - \longleftrightarrow card-univ-meet-vector -
nitpick[expect=genuine]
oops
lemma counterexample-card-univ-meet-comp-card-univ-meet-conv:
assumes card-add: card-add -
and card-conv: card-conv -
and card-bot-iff: card-bot-iff -
and card-atom-iff: card-atom-iff -
and card-univ-comp-meet: card-univ-comp-meet -
shows card-univ-meet-comp- \longleftrightarrow card-univ-meet-conv nitpick [expect=genuine]
oops
lemma counterexample-card-univ-meet-vector-card-domain-sym:
assumes card-add: card-add -
and card-conv: card-conv-
and card-bot-iff: card-bot-iff -
and card-atom-iff: card-atom-iff -
and card-univ-comp-meet: card-univ-comp-meet-
shows card-univ-meet-vector $-\longleftrightarrow$ card-domain-sym -
nitpick[expect=genuine]
oops
lemma counterexample-card-univ-meet-conv-card-domain-sym:
assumes card-add: card-add -
and card-conv: card-conv -
and card-bot-iff: card-bot-iff -
and card-atom-iff: card-atom-iff -
and card-univ-comp-meet: card-univ-comp-meet -
shows card-univ-meet-conv - \longleftrightarrow card-domain-sym -
nitpick [expect=genuine]
oops
end

4.1 Cardinality in Relation Algebras

class ra-card $=$ sra-card + relation-algebra
begin
lemma card-iso:
assumes card-bot: card-bot and card-add: card-add -
shows card-iso -

```
proof (intro allI, rule impI)
    fix \(x y\)
    assume \(x \leq y\)
    hence \(\# y=\#(x \sqcup(-x \sqcap y))\)
        by (simp add: sup-absorb2)
    also have \(\ldots=\#(x \sqcup(-x \sqcap y))+\#(x \sqcap(-x \sqcap y))\)
        by (simp add: card-bot)
    also have \(\ldots=\# x+\#(-x \sqcap y)\)
        by (metis card-add)
    finally show \(\# x \leq \# y\)
        using le-iff-add by blast
qed
lemma card-top-iff-eq:
    assumes card-bot-iff: card-bot-iff -
        and card-add: card-add -
        and card-top-finite: card-top-finite -
    shows card-top-iff-eq -
proof (rule allI, rule iffI)
    fix \(x\)
    assume 1: \(\# x=\# t o p\)
    have \#top \(=\#(x \sqcup-x)\)
        by \(\operatorname{simp}\)
    also have \(\ldots=\# x+\#(-x)\)
        using card-add card-bot-iff card-add-disjoint inf-p by blast
    also have \(\ldots=\# t o p+\#(-x)\)
        using 1 by \(\operatorname{simp}\)
    finally have \(\#(-x)=0\)
        by (simp add: card-top-finite)
    hence \(-x=\) bot
        using card-bot-iff by blast
    thus \(x=\) top
        using comp-inf.pp-total by auto
next
    fix \(x\)
    assume \(x=\) top
    thus \(\# x=\# t o p\)
        by \(\operatorname{simp}\)
qed
end
class sra-card-atomic-finiteatoms \(=\) sra-card +
stone-relation-algebra-atomic-finiteatoms
begin
lemma counterexample-card-nAB:
    assumes card-bot-iff: card-bot-iff -
    and card-atom-iff: card-atom-iff -
```

```
        and card-conv: card-conv -
        and card-add: card-add -
        and card-iso: card-iso -
        and card-top-iff-eq: card-top-iff-eq -
        and card-top-finite: card-top-finite -
    shows #x = nAB x
    nitpick[expect=genuine]
    oops
end
class ra-card-atomic-finiteatoms =ra-card + relation-algebra-atomic-finiteatoms
begin
lemma card-nAB:
    assumes card-bot:card-bot -
        and card-add: card-add -
        and card-atom: card-atom -
    shows #x = nABx
proof (cases x = bot)
    case True
    thus ?thesis
        by (simp add: card-bot nAB-bot)
next
    case False
    have 1: finite ( }ABx\mathrm{ )
        using finite-AB by blast
    have 2: }ABx\not={
        using False AB-nonempty-iff by blast
    have #x = #Sup-fin (AB x)
        using atomistic False by auto
    also have ... = sum cardinality (AB x)
        using 1 2 card-bot card-add card-dist-sup-disjoint different-atoms-disjoint by
force
    also have ... = \operatorname{sum}(\lambdax.1)(ABx)
        using card-atom by simp
    also have ... = icard (AB x)
        by (metis (mono-tags, lifting) icard-eq-sum finite-AB)
    also have ... = nAB x
        by (simp add: num-atoms-below-def)
    finally show ?thesis
qed
end
class card-ab = sra-card +
    assumes card-nAB': #x = nAB x
```

```
class sra-card-ab-atomsimple-finiteatoms = sra-card + card-ab +
stone-relation-algebra-atomsimple-finiteatoms +
    assumes card-bot-iff: card-bot-iff -
    assumes card-top: card-top -
begin
subclass stone-relation-algebra-atomic-atomsimple-finiteatoms
proof
    show }\bigwedgex.x\not=bot\longrightarrow(\existsa.atom a ^a\leqx
    proof
    fix }
    assume x}\not=bo
    hence #x =0
        using card-bot-iff by auto
    hence nAB x\not=0
        by (simp add: card-nAB')
    hence }ABx\not={
        by (metis (mono-tags, lifting) icard-empty num-atoms-below-def)
    thus }\existsa.\mathrm{ atom a ^a<x
        by auto
    qed
qed
lemma dom-cod-inj-atoms:
    inj-on dom-cod (AB top)
proof (rule eq-card-imp-inj-on)
    show 1: finite ( }AB\mathrm{ top)
    using finite-AB by blast
    have icard (dom-cod'AB top) = icard (AB1\timesAB1)
        using dom-cod-atoms by auto
    also have ... = icard (AB 1)* icard (AB 1)
        using icard-cartesian-product by blast
    also have ... = #1 * #1
        by (simp add: card-nAB' num-atoms-below-def)
    also have ... = #top
    by (simp add: card-top)
    also have ... = icard (AB top)
    by (simp add: card-nAB' num-atoms-below-def)
    finally have icard (dom-cod' AB top) = icard (AB top)
    thus card (dom-cod' AB top) = card (AB top)
    using 1 by (smt (z3) finite-icard-card)
qed
subclass stone-relation-algebra-atomic-atomrect-atomsimple-finiteatoms
proof
    have \a.atom a ^a\leq1\longrightarrowa* top *a\leq1
    proof
    fix }
```

```
    assume 1: atom a ^a\leq1
    show a* top * a\leq1
    proof (rule ccontr)
    assume \nega* top *a\leq1
    hence a* top * a \sqcap-1\not= bot
        by (simp add: pseudo-complement)
    from this obtain b where 2: atom b}\wedgeb\leqa*top*a\sqcap-
        using atomic by blast
    hence b* top \leqa* top
        by (metis comp-associative dual-order.trans inf.boundedE mult-left-isotone
mult-right-isotone top.extremum)
    hence b* top \sqcap1\leqa* top \sqcap1
        using 1 comp-inf.comp-isotone by auto
    hence 3: b* top \sqcap1=a*top }\square
        using 12 domain-atom by simp
    have top *b\leqtop *a
        using 2 by (metis comp-associative comp-inf.vector-top-closed
comp-inf-covector inf.boundedE mult-right-isotone vector-export-comp-unit
vector-top-closed)
    hence top * b\sqcap1\leqtop *a\sqcap1
            using inf-mono by blast
    hence top * b \sqcap1 = top *a\sqcap1
            using 12 codomain-atom by simp
        hence 4:dom-cod b=dom-cod a
            using 3 by simp
        have b\inAB top }\wedgea\inAB to
            using 1 2 by simp
            hence b=a
            using inj-onD dom-cod-inj-atoms & by smt
            thus False
            using 12 comp-inf.coreflexive-pseudo-complement le-bot by fastforce
        qed
    qed
    thus \a . atom a \longrightarrowa* top *a\leqa
    by (metis atom-rectangle-atom-one-rep)
qed
lemma atom-rectangle-card:
    assumes atom a
    shows #(a*top * a) = 1
    by (simp add: assms atomrect-eq card-nAB' nAB-atom)
lemma atom-regular-rectangle:
    assumes atom a
    shows --a=a* top *a
proof (rule order.antisym)
    show --a\leqa*top*a
    using assms atom-rectangle-regular ex231d pp-dist-comp by auto
    show a*top *a\leq --a
```

```
proof (rule ccontr)
    assume }\nega*\mathrm{ top * a s --a
    hence a*top * a\sqcap-a\not=bot
        by (simp add: pseudo-complement)
    from this obtain b where 1: atom b}\)b\leqa*top*a\sqcap-
        using atomic by blast
    hence 2: b}\not=
        using inf.absorb2 by fastforce
    have 3: a \inAB(a*top*a)^b\inAB(a*top*a)
        using 1 assms ex231d by auto
    from atom-rectangle-card obtain c where AB (a*top*a)={c}
        using card-nAB' num-atoms-below-def assms icard-1-imp-singleton one-eSuc
by fastforce
    thus False
        using 2 3 by auto
    qed
qed
sublocale ra-atom: relation-algebra-atomic where minus = \lambdax y. x \sqcap- y ..
end
class ra-card-atomic-atomsimple-finiteatoms = ra-card +
relation-algebra-atomic-atomsimple-finiteatoms +
    assumes card-bot: card-bot-
    assumes card-add: card-add -
    assumes card-atom: card-atom -
    assumes card-top: card-top -
begin
subclass ra-card-atomic-finiteatoms
    ..
subclass sra-card-ab-atomsimple-finiteatoms
apply unfold-locales
using card-add card-atom card-bot card-nAB apply blast
using card-add card-atom card-bot card-nAB nAB-bot-iff apply presburger
using card-top by auto
subclass relation-algebra-atomic-atomrect-atomsimple-finiteatoms
end
```


4.2 Counterexamples

```
class ra-card-notop \(=\) ra-card +
assumes card-bot-iff: card-bot-iff-
assumes card-conv: card-conv -
```

assumes card-add: card-add -
assumes card-atom-iff: card-atom-iff -
assumes card-univ-comp-meet: card-univ-comp-meet -
assumes card-univ-meet-comp: card-univ-meet-comp -
class ra-card-all $=$ ra-card-notop +
assumes card-top: card-top -
assumes card-top-finite: card-top-finite -
class ra-card-notop-atomic-finiteatoms $=$ ra-card-atomic-finiteatoms + ra-card-notop
class ra-card-all-atomic-finiteatoms $=$ ra-card-notop-atomic-finiteatoms + ra-card-all

```
abbreviation \(r 0000::\) bool \(\Rightarrow\) bool \(\Rightarrow\) bool where r0000 x y \(\equiv\) False
abbreviation \(r 1000::\) bool \(\Rightarrow\) bool \(\Rightarrow\) bool where r1000 x \(y \equiv \neg x \wedge \neg y\)
abbreviation \(r 0001\) :: bool \(\Rightarrow\) bool \(\Rightarrow\) bool where \(r 0001 x y \equiv x \wedge y\)
abbreviation \(r 1001::\) bool \(\Rightarrow\) bool \(\Rightarrow\) bool where \(r 1001\) x \(y \equiv x=y\)
abbreviation \(r 0110::\) bool \(\Rightarrow\) bool \(\Rightarrow\) bool where \(r 0110\) x \(y \equiv x \neq y\)
abbreviation \(r 1111\) :: bool \(\Rightarrow\) bool \(\Rightarrow\) bool where r1111 x \(y \equiv\) True
lemma r-all-different:
    r0000 \(\neq\) r1000 r0000 \(\neq r 0001 r 0000 \neq r 1001 r 0000 \neq r 0110\)
\(r 0000 \neq r 1111\)
    \(r 1000 \neq r 0000 \quad r 1000 \neq r 0001 r 1000 \neq r 1001 r 1000 \neq r 0110\)
\(r 1000 \neq r 1111\)
    \(r 0001 \neq r 0000 r 0001 \neq r 1000 \quad r 0001 \neq r 1001 r 0001 \neq r 0110\)
\(r 0001 \neq r 1111\)
    \(r 1001 \neq r 0000 r 1001 \neq r 1000 r 1001 \neq r 0001 \quad r 1001 \neq r 0110\)
\(r 1001 \neq r 1111\)
    r0110 \(\neq\) r0000 r0110 \(\neq r 1000\) r0110 \(\neq r 0001\) r0110 \(\neq\) r1001
\(r 0110 \neq r 1111\)
    r1111 \(\neq\) r0000 r1111 \(\neq\) r1000 r1111 \(\neq r 0001 r 1111 \neq r 1001 r 1111 \neq r 0110\)
    by metis+
typedef (overloaded) ra1 \(=\{r 0000, r 1001, r 0110, r 1111\}\)
    by auto
typedef (overloaded) ra2 \(=\{r 0000, r 1000, r 0001, r 1001\}\)
    by auto
setup-lifting type-definition-ra1
setup-lifting type-definition-ra2
setup-lifting type-definition-prod
instantiation Enum.finite-4 :: ra-card-atomic-finiteatoms
begin
```

definition one-finite-4 :: Enum.finite-4 where one-finite-4 $=$ finite-4. a_{2} definition conv-finite-4 :: Enum.finite-4 \Rightarrow Enum.finite-4 where conv-finite-4 x $=x$
definition times-finite-4 :: Enum.finite-4 \Rightarrow Enum.finite-4 \Rightarrow Enum.finite-4 where times-finite-4 $x y=$ (case (x, y) of (finite-4. $a_{1},-$) \Rightarrow finite- $4 . a_{1}$
$\left(-\right.$, finite-4 $\left.\cdot a_{1}\right) \Rightarrow$ finite-4. $a_{1} \mid\left(\right.$ finite-4. $\left.a_{2}, y\right) \Rightarrow y \mid\left(x\right.$, finite-4 $\left.\cdot a_{2}\right) \Rightarrow x \mid-\Rightarrow$
finite-4. a_{4})
definition cardinality-finite-4 :: Enum.finite-4 \Rightarrow enat where cardinality-finite-4
$x=\left(\right.$ case x of finite- $4 \cdot a_{1} \Rightarrow 0 \mid$ finite-4. $\left.a_{4} \Rightarrow 2 \mid-\Rightarrow 1\right)$
instance
apply intro-classes
subgoal by (simp add: times-finite-4-def split: finite-4.splits)
subgoal by (simp add: times-finite-4-def sup-finite-4-def split: finite-4.splits)
subgoal by (simp add: times-finite-4-def)
subgoal by (simp add: times-finite-4-def one-finite-4-def split: finite-4.splits)
subgoal by (simp add: conv-finite-4-def)
subgoal by (simp add: sup-finite-4-def conv-finite-4-def)
subgoal by (simp add: times-finite-4-def conv-finite-4-def split: finite-4.splits)
subgoal by (simp add: times-finite-4-def inf-finite-4-def conv-finite-4-def
less-eq-finite-4-def split: finite-4.splits)
subgoal by (simp add: times-finite-4-def)
subgoal by simp
subgoal by (auto simp add: less-eq-finite-4-def split: finite-4.splits)
subgoal by simp
done
end
instantiation Enum.finite-4 :: ra-card-notop-atomic-finiteatoms
begin

instance

apply intro-classes
subgoal 1
apply (clarsimp simp: cardinality-finite-4-def split: finite-4.splits)
by (metis enat-0 one-neq-zero zero-neq-numeral)
subgoal 2 by (simp add: conv-finite-4-def)
subgoal 3 by (simp add: cardinality-finite-4-def sup-finite-4-def inf-finite-4-def split: finite-4.splits)
subgoal 4 using zero-one-enat-neq(2) by (auto simp add:
cardinality-finite-4-def less-eq-finite-4-def split: finite-4.splits)
subgoal 5 using 134 by (metis (no-types, lifting) card-nAB
nAB-univ-comp-meet)
subgoal 6 using 134 by (metis (no-types, lifting) card-nAB
$n A B$-univ-meet-comp)
done
end
instantiation ra1 :: ra-card-atomic-finiteatoms begin
lift-definition bot-ra1 :: ra1 is r0000 by simp
lift-definition one-ra1 :: ra1 is r1001 by simp
lift-definition top-ra1 :: ra1 is r1111 by simp
lift-definition conv-ra1 :: ra1 $\Rightarrow r a 1$ is $i d$ by simp
lift-definition uminus-ra1 :: ra1 $\Rightarrow r a 1$ is $\lambda r x y . \neg r x y$ by auto
lift-definition sup-ra1 :: ra1 $\Rightarrow r a 1 \Rightarrow r a 1$ is $\lambda q r x y \cdot q x y \vee r x y$ by auto
lift-definition inf-ra1 :: ra1 $\Rightarrow r a 1 \Rightarrow r a 1$ is $\lambda q r x y . q x y \wedge r x y$ by auto lift-definition times-ra1 :: ra1 $\Rightarrow r a 1 \Rightarrow r a 1$ is $\lambda q r x y . \exists z . q x z \wedge r z y$ by fastforce
lift-definition minus-ra1 :: ra1 $\Rightarrow r a 1 \Rightarrow r a 1$ is $\lambda q r x y . q x y \wedge \neg r x y$ by auto
lift-definition less-eq-ra1 $:: r a 1 \Rightarrow r a 1 \Rightarrow b o o l$ is $\lambda q r . \forall x y . q x y \longrightarrow r x y$. lift-definition less-ra1 $:: r a 1 \Rightarrow r a 1 \Rightarrow$ bool is $\lambda q r .(\forall x y . q x y \longrightarrow r x y) \wedge$ $q \neq r$.
lift-definition cardinality-ra1 :: ra1 \Rightarrow enat is λq. if $q=$ r0000 then 0 else if q $=$ r1111 then 2 else 1 .
instance
apply intro-classes
subgoal apply transfer by blast subgoal apply transfer by simp subgoal apply transfer by simp subgoal apply transfer by auto subgoal apply transfer by simp subgoal apply transfer by auto subgoal apply transfer by meson subgoal apply transfer by simp subgoal apply transfer by auto subgoal apply transfer by auto subgoal apply transfer by simp subgoal apply transfer by fastforce subgoal apply transfer by auto subgoal apply transfer by simp subgoal apply transfer by simp subgoal apply transfer by simp
subgoal apply transfer by simp subgoal apply transfer by simp subgoal apply transfer by blast subgoal apply transfer by simp done

end

lemma four-cases:
assumes $P x 1 P x 2 P x 3 P x 4$ shows $\forall y \in\left\{x . x \in\left\{x 1, x 2, x 3, x_{4}\right\}\right\} . P y$
using assms by auto
lemma r-aux:
$(\lambda x y \cdot r 1001 x y \vee r 0110 x y)=r 1111(\lambda x y \cdot r 1001 x y \wedge r 0110 x y)=r 0000$
$(\lambda x y \cdot r 0110 x y \vee r 1001 x y)=r 1111(\lambda x y \cdot r 0110 x y \wedge r 1001 x y)=r 0000$
$(\lambda x y \cdot r 1000 x y \vee r 0001 x y)=r 1001(\lambda x y \cdot r 1000 x y \wedge r 0001 x y)=r 0000$
$(\lambda x y . r 1000 x y \vee r 1001 x y)=r 1001(\lambda x y . r 1000 x y \wedge r 1001 x y)=r 1000$
$(\lambda x y . r 0001 x y \vee r 1000 x y)=r 1001(\lambda x y . r 0001 x y \wedge r 1000 x y)=r 0000$
$(\lambda x y . r 0001 x y \vee r 1001 x y)=r 1001(\lambda x y \cdot r 0001 x y \wedge r 1001 x y)=r 0001$
$(\lambda x y . r 1001 x y \vee r 1000 x y)=r 1001(\lambda x y \cdot r 1001 x y \wedge r 1000 x y)=r 1000$
$(\lambda x y \cdot r 1001 x y \vee r 0001 x y)=r 1001(\lambda x y \cdot r 1001 x y \wedge r 0001 x y)=r 0001$
by meson+
instantiation ra1 :: ra-card-notop-atomic-finiteatoms
begin
instance
apply intro-classes
subgoal 1 apply transfer by (metis zero-neq-numeral zero-one-enat-neq(1))
subgoal 2 apply transfer by simp
subgoal 3 apply transfer using r-aux r-all-different by auto
subgoal 4 apply transfer using r-all-different zero-one-enat-neq(1) by auto
subgoal 5 using 134 card-nAB nAB-univ-comp-meet by (metis (no-types,
lifting) card-n $A B n A B$-univ-comp-meet)
subgoal 6 using 134 by (metis (no-types, lifting) card-nAB
$n A B$-univ-meet-comp)
done
end
instantiation ra2 :: ra-card-atomic-finiteatoms
begin
lift-definition bot-ra2 :: ra2 is r0000 by simp
lift-definition one-ra2 :: ra2 is r1001 by simp
lift-definition top-ra2 :: ra2 is r1001 by simp lift-definition conv-ra2 :: ra2 $\Rightarrow r a 2$ is $i d$ by simp
lift-definition uminus-ra2 :: ra2 $\Rightarrow r a 2$ is $\lambda r x y . x=y \wedge \neg r x y$ by auto
lift-definition sup-ra2 :: ra2 $\Rightarrow r a 2 \Rightarrow r a 2$ is $\lambda q r x y \cdot q x y \vee r x y$ by auto lift-definition inf-ra2 :: ra2 $\Rightarrow r a 2 \Rightarrow r a 2$ is $\lambda q r x y . q x y \wedge r x y$ by auto lift-definition times-ra2 :: ra2 $\Rightarrow r a \mathcal{2} \Rightarrow r a \mathcal{2}$ is $\lambda q r x y \cdot \exists z \cdot q x z \wedge r z y$ by auto
lift-definition minus-ra2 :: ra2 $\Rightarrow r a 2 \Rightarrow r a 2$ is $\lambda q r x y . q x y \wedge \neg r x y$ by auto
lift-definition less-eq-ra2 :: ra2 $\Rightarrow r a 2 \Rightarrow$ bool is $\lambda q r . \forall x y . q x y \longrightarrow r x y$. lift-definition less-ra2 :: ra2 $\Rightarrow r a 2 \Rightarrow$ bool is $\lambda q r .(\forall x y . q x y \longrightarrow r x y) \wedge$ $q \neq r$.
lift-definition cardinality-ra2 :: ra2 \Rightarrow enat is λq. if $q=$ r0000 then 0 else if q $=$ r1001 then 2 else 1 .
instance
apply intro-classes
subgoal apply transfer by blast subgoal apply transfer by simp subgoal apply transfer by simp subgoal apply transfer by auto subgoal apply transfer by simp subgoal apply transfer by auto subgoal apply transfer by auto subgoal apply transfer by (clarsimp, metis (full-types)) subgoal apply transfer by auto subgoal apply transfer by auto subgoal apply transfer by auto subgoal apply transfer by simp subgoal apply transfer by auto subgoal apply transfer by simp done
end
instantiation ra2 :: ra-card-notop-atomic-finiteatoms
begin

```
instance
    apply intro-classes
    subgoal 1 apply transfer by (metis one-neq-zero zero-neq-numeral)
    subgoal 2 apply transfer by simp
    subgoal 3 apply transfer
        apply (rule four-cases)
        subgoal using r-all-different by auto
        subgoal apply (rule four-cases) using r-aux r-all-different by auto
        subgoal apply (rule four-cases) using r-aux r-all-different by auto
        subgoal using r-aux r-all-different by auto
        done
    subgoal 4 apply transfer using r-all-different zero-one-enat-neq(1) by auto
    subgoal 5 using 134 by (metis (no-types, lifting) card-nAB
nAB-univ-comp-meet)
    subgoal 6 using 1 3 4 by (metis (no-types, lifting) card-nAB
nAB-univ-meet-comp)
    done
end
instantiation prod :: (stone-relation-algebra,stone-relation-algebra)
stone-relation-algebra
begin
lift-definition bot-prod :: 'a > 'b is (bot::'a,bot::'b).
lift-definition one-prod ::' }a\times'b\mathrm{ is (1::'a,1::'b) .
lift-definition top-prod :: 'a < 'b is (top::'a,top::'b) .
```



```
lift-definition uminus-prod :: ' }a\times\mp@subsup{}{}{\prime}b>\mp@subsup{|}{}{\prime}a\times'b\mathrm{ is }\lambda(u,v).(uminus u,uminus v
lift-definition sup-prod :: 'a > ' b = ' }a\times'\mp@code{\prime}b>\mp@subsup{'}{}{\prime}a\times'b\mathrm{ is }\lambda(u,v)(w,x).(u
w,v \sqcupx).
lift-definition inf-prod :: 'a > 'b => 'a }\times\mp@subsup{}{}{\prime}b=>\mp@subsup{|}{}{\prime}a\times'b\mathrm{ is }\lambda(u,v) (w,x).(u\sqcapw,
\squarex).
lift-definition times-prod :: ' }a\times\mp@subsup{}{}{\prime}b=\mp@subsup{|}{}{\prime}a\times'b=>\mp@subsup{'}{}{\prime}a\times'b\mathrm{ is }\lambda(u,v)(w,x).(u*
w,v*x).
lift-definition less-eq-prod :: ' }a\times\mp@subsup{}{}{\prime}b>\mp@subsup{|}{}{\prime}a\times'b=>bool is \lambda(u,v) (w,x).u\leqw
v}\leqx
lift-definition less-prod :: ' }a\times\mp@subsup{}{}{\prime}b=>\mp@subsup{|}{}{\prime}a\times'b=>bool is \lambda(u,v) (w,x).u\leqw^
\leqx\wedge \neg(u=w\wedgev=x).
instance
    apply intro-classes
    subgoal apply transfer by auto
    subgoal apply transfer by auto
    subgoal apply transfer by auto
    subgoal by (unfold less-eq-prod-def, clarsimp)
```

```
    subgoal apply transfer by auto
    subgoal apply transfer by (clarsimp, simp add: sup-inf-distrib1)
    subgoal apply transfer by (clarsimp, simp add: pseudo-complement)
    subgoal apply transfer by auto
    subgoal apply transfer by (clarsimp, simp add: mult.assoc)
    subgoal apply transfer by (clarsimp, simp add: mult-right-dist-sup)
    subgoal apply transfer by simp
    subgoal apply transfer by simp
    subgoal apply transfer by auto
    subgoal apply transfer by (clarsimp, simp add: conv-dist-sup)
    subgoal apply transfer by (clarsimp, simp add: conv-dist-comp)
    subgoal apply transfer by (clarsimp, simp add: dedekind-1)
    subgoal apply transfer by (clarsimp, simp add: pp-dist-comp)
    subgoal apply transfer by simp
    done
end
instantiation prod :: (relation-algebra,relation-algebra) relation-algebra
begin
```



```
w,v-x).
instance
    apply intro-classes
    subgoal apply transfer by auto
    subgoal apply transfer by auto
    subgoal apply transfer by (clarsimp, simp add: diff-eq)
    done
end
instantiation prod ::
(relation-algebra-atomic-finiteatoms,relation-algebra-atomic-finiteatoms)
relation-algebra-atomic-finiteatoms
begin
instance
    apply intro-classes
    subgoal apply transfer by (clarsimp, metis atomic bot.extremum
inf.antisym-conv)
```

```
    subgoal
    proof -
    have 1: \foralla::'a. \forallb::'b . atom (a,b)\longrightarrow(a=bot ^ atom b) \vee (atom a ^ b=
bot)
    proof (intro allI, rule impI)
        fix }a::'a\mathrm{ and }b:: '
        assume 2: atom (a,b)
        show (a=bot ^atom b) \vee (atom a ^b=bot)
        proof (cases a = bot)
            case 3: True
            show ?thesis
            proof (cases b = bot)
                    case True
                    thus ?thesis
                    using 2 3 by (simp add: bot-prod.abs-eq)
            next
                case False
                    from this obtain c where 4: atom c^c\leqb
                    using atomic by auto
                hence (bot,c)\leq(a,b)\wedge(bot,c)\not=bot
                by (simp add:less-eq-prod-def bot-prod.abs-eq)
                hence (bot,c)=(a,b)
                    using 2 by auto
                    thus ?thesis
                    using 4 by auto
        qed
    next
                case False
                from this obtain c where 5: atom c}\wedgec\leq
                using atomic by auto
                hence }(c,bot)\leq(a,b)\wedge(c,bot)\not=bo
                by (simp add:less-eq-prod-def bot-prod.abs-eq)
            hence (c,bot) = (a,b)
                using 2 by auto
            thus ?thesis
                using 5 by auto
        qed
    qed
    have 6:{(a,b)|ab.atom (a,b)}\subseteq{(bot,b)|b::'b.atom b } \cup{(a,bot)|
a::'a.atom a }
    proof
        fix }x:: 'a\times'
        assume }x\in{(a,b)|ab.atom (a,b)
        from this obtain ab where 7: x= (a,b)\wedge atom (a,b)
        by auto
    hence (a=bot ^ atom b) \vee (atom a ^ b=bot)
        using 1 by simp
    thus }x\in{(bot,b)|b.atom b }\cup{(a,bot)|a.atom a 
        using 7 by auto
```

```
    qed
    have finite {(bot,b)| b::'b . atom b } ^ finite {(a,bot)| a::'a . atom a }
        by (simp add: finiteatoms)
    hence 8: finite ({(bot,b)| b::'b . atom b } \cup { (a,bot)| a::'a . atom a })
        by blast
    have 9: finite {(a,b)|ab. atom (a::'a,b::'b)}
        by (rule rev-finite-subset, rule 8, rule 6)
    have {(a,b)|ab.atom (a,b)}={x::'a\times'b.atom x }
        by auto
    thus finite { x :: 'a > 'b . atom x }
        using 9 by simp
    qed
    done
end
instantiation prod ::
(ra-card-notop-atomic-finiteatoms,ra-card-notop-atomic-finiteatoms)
ra-card-notop-atomic-finiteatoms
begin
lift-definition cardinality-prod :: 'a > 'b b enat is }\lambda(u,v).#u+#v
```

```
instance
```

instance
apply intro-classes
apply intro-classes
subgoal apply transfer by (smt (verit) card-bot-iff case-prod-conv surj-pair
subgoal apply transfer by (smt (verit) card-bot-iff case-prod-conv surj-pair
zero-eq-add-iff-both-eq-0)
zero-eq-add-iff-both-eq-0)
subgoal apply transfer by (simp add: card-conv)
subgoal apply transfer by (simp add: card-conv)
subgoal apply transfer by (clarsimp, metis card-add
subgoal apply transfer by (clarsimp, metis card-add
semiring-normalization-rules(20))
semiring-normalization-rules(20))
subgoal apply transfer apply (clarsimp, rule iffI)
subgoal apply transfer apply (clarsimp, rule iffI)
subgoal by (metis add.commute add.right-neutral bot.extremum card-atom-iff
subgoal by (metis add.commute add.right-neutral bot.extremum card-atom-iff
card-bot-iff dual-order.refl)
card-bot-iff dual-order.refl)
subgoal for a b proof -
subgoal for a b proof -
assume 1:\#a+\#b=1
assume 1:\#a+\#b=1
show ?thesis
show ?thesis
proof (cases \#a=0)
proof (cases \#a=0)
case True
case True
hence \#b = 1
hence \#b = 1
using 1 by auto
using 1 by auto
thus ?thesis
thus ?thesis
by (metis True bot.extremum-unique card-atom-iff card-bot-iff)
by (metis True bot.extremum-unique card-atom-iff card-bot-iff)
next
next
case False
case False
hence \#a\geq1
hence \#a\geq1
by (simp add: ileI1 one-eSuc)
by (simp add: ileI1 one-eSuc)
hence 2: \#a=1
hence 2: \#a=1
using 1 by (metis ile-add1 order-antisym)
using 1 by (metis ile-add1 order-antisym)
hence \#b = 0

```
            hence #b = 0
```

```
            using 1 by auto
            thus ?thesis
            using 2 by (metis bot.extremum-unique card-atom-iff card-bot-iff)
        qed
    qed
    done
subgoal apply transfer by (simp add: add-mono card-univ-comp-meet)
subgoal apply transfer by (simp add: add-mono card-univ-meet-comp)
done
end
type-synonym finite-4-square = Enum.finite-4 }\times\mathrm{ Enum.finite-4
interpretation finite-4-square: ra-card-atomic-finiteatoms where cardinality =
cardinality and inf = (П) and less-eq = (\leq) and less = (<) and sup = (\sqcup) and
bot = bot::finite-4-square and top = top and uminus = uminus and one = 1
and times =(*) and conv = conv and minus = (-)..
interpretation finite-4-square: ra-card-all-atomic-finiteatoms where cardinality
= cardinality and inf = (\sqcap) and less-eq = (\leq) and less = (<) and sup = (\sqcup)
and bot = bot:::finite-4-square and top = top and uminus = uminus and one =
1 \text { and times =(*) and conv = conv and minus =(-)}
    apply unfold-locales
    subgoal apply transfer by (simp add: cardinality-finite-4-def one-finite-4-def)
    subgoal apply transfer by (smt (verit) card-add card-atom-iff card-bot-iff
card-nAB cardinality-prod.abs-eq nAB-top-finite top-prod.abs-eq)
    done
lemma counterexample-atom-rectangle-2:
    atom }a\longrightarrowa*\mathrm{ top *a}\leq(a::finite-4-square)
    nitpick[expect=genuine]
    oops
lemma counterexample-atom-univalent-2:
    atom a \longrightarrowunivalent (a::finite-4-square)
    nitpick[expect=genuine]
    oops
lemma counterexample-point-dense-2:
    assumes }x\not=bo
        and x}\leq
        shows \existsa::finite-4-square . }a\not=\mathrm{ bot }\wedgea*\mathrm{ top * a s 1 ^a}\leq
    nitpick[expect=genuine]
    oops
type-synonym ra11 = ra1 }\timesra
interpretation ra11: ra-card-atomic-finiteatoms where cardinality = cardinality
```

and inf $=(\sqcap)$ and less-eq $=(\leq)$ and less $=(<)$ and sup $=(\sqcup)$ and bot $=$ bot::ra11 and top $=$ top and uminus $=u m i n u s$ and one $=1$ and times $=(*)$ and conv $=$ conv and minus $=(-) .$.
interpretation ra11: ra-card-all-atomic-finiteatoms where cardinality $=$ cardinality and inf $=(\sqcap)$ and less-eq $=(\leq)$ and less $=(<)$ and sup $=(\sqcup)$ and bot $=$ bot::ra11 and top $=$ top and uminus $=$ uminus and one $=1$ and times $=(*)$ and conv $=$ conv and minus $=(-)$
apply unfold-locales
subgoal apply transfer apply transfer using r-all-different by auto subgoal apply transfer apply transfer using numeral-ne-infinity by fastforce done
interpretation ra11: stone-relation-algebra-atomrect where inf $=(\sqcap)$ and less-eq $=(\leq)$ and less $=(<)$ and sup $=(\sqcup)$ and bot $=$ bot::ra11 and top $=$ top and uminus $=$ uminus and one $=1$ and times $=(*)$ and conv $=$ conv apply unfold-locales apply transfer apply transfer nitpick [expect=genuine] oops

```
lemma }\neg(\foralla::ra1\timesra1 . atom a\longrightarrowa*top *a\leqa
```

proof -
let ?a $=(1::$ ra1, bot: : ra1 $)$
have 1: atom? a
proof
show ? $a \neq b o t$
by (metis (full-types) bot-prod.transfer bot-ra1.rep-eq one-ra1.rep-eq
prod.inject)
have $\bigwedge(a:: r a 1)(b:: r a 1) .(a, b) \leq ? a \Longrightarrow(a, b) \neq b o t \Longrightarrow a=1 \wedge b=b o t$
proof -
fix $a b:: r a 1$
assume $(a, b) \leq ? a$
hence 2: $a \leq 1 \wedge b \leq b o t$
by (simp add: less-eq-prod-def)
assume $(a, b) \neq b o t$
hence 3: $a \neq b o t \wedge b=$ bot
using 2 by (simp add: bot.extremum-unique bot-prod.abs-eq)
have atom (1::ra1)
apply transfer apply (rule conjI)
subgoal by (simp add: r-all-different)
subgoal by auto
done
thus $a=1 \wedge b=b o t$
using 23 by blast
qed
thus $\forall y . y \neq$ bot $\wedge y \leq ? a \longrightarrow y=? a$
by clarsimp
qed

```
have }\neg?a*top * ?a\leq?a
    apply (unfold top-prod-def times-prod-def less-eq-prod-def)
    apply transfer
    by auto
    thus ?thesis
    using 1 by auto
qed
end
```


References

[1] H. Furusawa and W. Guttmann. Cardinality and representation of Stone relation algebras. arXiv, 2309.11676, 2023. https://arxiv.org/abs/2309. 11676.
[2] W. Guttmann. Stone relation algebras. In P. Höfner, D. Pous, and G. Struth, editors, Relational and Algebraic Methods in Computer Science, volume 10226 of Lecture Notes in Computer Science, pages 127-143. Springer, 2017.
[3] W. Guttmann. Stone relation algebras. Archive of Formal Proofs, 2017.

