Linear orders as rankings

Manuel Eberl
February 10, 2026

This entry formalises the obvious isomorphism between finite linear orders
and lists, where the list in question is interpreted as a ranking, i.e. it lists the
elements in descending order without repetition.

It also provides an executable algorithm to compute topological sortings,
i.e. all rankings whose linear orders are extensions of a given relation.

Contents

1 Rankings
1.1 Preliminaries Lo
1.2 Definition
1.3 Transformations L L
1.4 Inverse operation and isomorphism
1.5 Topological sorting

1 Rankings

theory Rankings

imports
HOL— Combinatorics. Multiset- Permutations
List— Index. List-Index
Randomised-Social-Choice. Order-Predicates

begin

1.1 Preliminaries

lemma find-index-map: find-index P (map f xs) = find-index (A\z. P (f z)) zs
(proof)

lemma map-indez-self:
assumes distinct s
shows map (index zs) zs = [0..<length zs]

(proof)

lemma bij-betw-map-prod:
assumes bij-betw f A B bij-betw g C D
shows bij-betw (map-prod f g) (A x C) (B x D)

{proof)

definition comap-relation :: (‘a = 'b) = 'a relation = 'b relation where
comap-relation f R = Az y. 3z’ y. e =fz' Ny=fy AN Ruz'y')

lemma is-weak-ranking-map-singleton-iff [simpl:
is-weak-ranking (map (Az. {x}) xs) <— distinct xs

{proof)

lemma is-finite-weak-ranking-map-singleton-iff [simp]:
is-finite-weak-ranking (map (Az. {x}) zs) +— distinct zs

(proof)

lemma of-weak-ranking-altdef":
assumes is-weak-ranking xs

shows of-weak-ranking xs x y «— z € |J(set zs) A y € |J (set zs) A
find-index ((€) z) xzs > find-index ((€) y) zs
(proof)

1.2 Definition

A ranking is a representation of a linear order on a finite set as a list in descending order,
starting with the biggest element. Clearly, this gives a bijection between the linear orders
on a finite set and the permutations of that set.

inductive of-ranking :: 'alt list = 'alt relation where
i < j =i <length s = j < length s = s ! i =[of-ranking xs] zs ! j

lemma of-ranking-conv-of-weak-ranking:
z =[of-ranking xs] y «+— x >[of-weak-ranking (map (Az. {z}) x3)] y

(proof)

lemma of-ranking-imp-in-set:
assumes of-ranking xs a b
shows a € set zs b € set xs

{proof)

lemma of-ranking-Nil [simp]: of-ranking [] = (\- -. False)
(proof)

lemma of-ranking-Nil’ [code]: of-ranking [| y = False

(proof)

lemma of-ranking-Cons [code]:
x =[of-ranking (2#2s)] y <— = = z A y € set (z#2s) V z =[of-ranking zs] y

{proof)

lemma of-ranking-Cons’”:
assumes distinct (z#xs) a € set (z#xs) b € set (z#xs)
shows of-ranking (z#xs) a b +— b=z V (a # x A of-ranking zs a b)

{proof)

lemma of-ranking-append:

x = [of-ranking (xs Q ys)] y +— x € set xs A y € set ys V x x=[of-ranking zs] y V x =[of-ranking
ys| y

(proof)

lemma of-ranking-strongly-preferred- Cons-iff
assumes distinct (x # xs)
shows a >[of-ranking (z # zs)] b <— = = a A b € set s V a >[of-ranking zs] b

{proof)

lemma of-ranking-strongly-preferred-append-iff:
assumes distinct (zs Q ys)
shows a >[of-ranking (zs Q ys)] b +—

a € set xs A b € set ys V a =[of-ranking zs] b V a >[of-ranking ys] b

(proof)

lemma not-strongly-preferred-of-ranking-iff:
assumes a € set xs b € set xs
shows —a <[of-ranking zs| b «— a =[of-ranking zs] b

(proof)

lemma of-ranking-refi:
assumes z € set 1S
shows z <[of-ranking xs| =

(proof)

lemma of-ranking-altdef:
assumes distinct rs x € set xs y € set xs
shows of-ranking zs ¢ y «— index xs x > index xs y

{proof)

lemma of-ranking-altdef":
assumes distinct s
shows of-ranking xs x y <— x € set s N\ y € set xs N\ index zs © > index zs y

{proof)

lemma of-ranking-nth-iff:
assumes distinct zs 1 < length xs j < length zs
shows of-ranking zs (zs ! i) (ws ! j) +— i >j

{proof)

lemma strongly-preferred-of-ranking-nth-iff:
assumes distinct xs i < length xs j < length xs
shows s ! i =[of-ranking zs| zs ! j +— { < j

{proof)

lemma of-ranking-total: © € set xs = y € set xs => of-ranking xs x y V of-ranking zs y

{proof)

lemma of-ranking-antisym:

x € set xs = y € set s = of-ranking xs x y = of-ranking zs y x = distinct s = . =
Y

(proof)

lemma finite-linorder-of-ranking:
assumes set xs = A distinct s
shows finite-linorder-on A (of-ranking xs)

(proof)

lemma linorder-of-ranking:
assumes set s = A distinct xs

shows linorder-on A (of-ranking xs)

(proof)

lemma total-preorder-of-ranking:
assumes set zs = A distinct zs
shows total-preorder-on A (of-ranking xs)

(proof)

1.3 Transformations

lemma map-relation-of-ranking:
map-relation [(of-ranking xzs) = of-weak-ranking (map (Az. f —*{z}) xs)
{proof)

lemma of-ranking-map: of-ranking (map f xs) = comap-relation f (of-ranking xs)
(proof)

lemma of-ranking-permute’:
assumes | permutes set xs
shows map-relation [(of-ranking xs) = of-ranking (map (inv f) xs)

(proof)

lemma of-ranking-permute:
assumes [permutes set xs
shows of-ranking (map f zs) = map-relation (inv f) (of-ranking xs)

(proof)

lemma of-ranking-rev [simp):
of-ranking (rev xs) x y <— of-ranking zs y x

{proof)

lemma of-ranking-filter:
of-ranking (filter P xzs) = restrict-relation {x. P z} (of-ranking xs)

{proof)

lemma strongly-preferred-of-ranking-conv-index:
assumes distinct xs
shows z <[of-ranking xs] y <— x € set xs A y € set zs A index s x > index x5 y

{proof)

lemma restrict-relation-of-weak-ranking-Cons:
assumes distinct (z # xs)
shows restrict-relation (set zs) (of-ranking (x # zs)) = of-ranking s

(proof)

lemma of-ranking-zero-upt-nat:
of-ranking [0:nat..<n] = Az y. > y Az < n)
(proof)

lemma of-ranking-rev-zero-upt-nat:
of-ranking (rev [0::nat..<n)) = Az y. ¢ < y Ay < n)

{proof)

lemma sorted-wrt-ranking: distinct ts = sorted-wrt (of-ranking xs) (rev xs)

{proof)

1.4 Inverse operation and isomorphism

lemma (in finite-linorder-on) of-ranking-ranking: of-ranking (ranking le) = le

(proof)

lemma (in finite-linorder-on) distinct-ranking: distinct (ranking le)

{proof)

lemma ranking-of-ranking:

assumes distinct s

shows ranking (of-ranking xzs) = xs
(proof)

lemma (in finite-linorder-on) set-ranking: set (ranking le) = carrier

{proof)

lemma bij-betw-permutations-of-set-finite-linorders-on:
bij-betw of-ranking (permutations-of-set A) {R. finite-linorder-on A R}

(proof)

lemma bij-betw-permutations-of-set-finite-linorders-on’:
bij-betw ranking {R. finite-linorder-on A R} (permutations-of-set A)

{proof)

lemma card-linorders-on:
assumes finite A
shows card {R. linorder-on A R} = fact (card A)

(proof)

lemma finite-linorders-on [intro]:
assumes finite A
shows finite {R. linorder-on A R}

(proof)

end

1.5 Topological sorting

theory Topological-Sortings-Rankings
imports Rankings
begin

The following returns the set of all rankings of the given set A that are extensions of the

given relation R, i.e. all topological sortings of R.

Note that there are no requirements about R; in particular it does not have to be
reflexive, antisymmetric, or transitive. If it is not antisymmetric or not transitive, the
result set will simply be empty.

function topo-sorts :: 'a set = 'a relation = ’a list set where
topo-sorts A R =
(if infinite A then {} else if A = {} then {[]} else
Uze{z€eA. V2€A. Rz 2z — z = z}. (Aws. x # xs) ‘ topo-sorts (A — {z}) Ay 2. Ry z A
y#rAz# 1)
(proof)

termination

(proof)
lemmas [simp del] = topo-sorts.simps

lemma topo-sorts-empty [simp]: topo-sorts {} R = {[]}
{proof)

lemma topo-sorts-infinite: infinite A = topo-sorts A R = {}

{proof)

lemma topo-sorts-rec:
finite A = A # {} =
topo-sorts A R = (|Jre{z€cA. V2€A. Rz 2 — z = z}.
(Azs. © # xs) ‘topo-sorts (A — {z}) Ayz. RyzANy#z A z# 1))
(proof)

lemma topo-sorts-cong [congl:
assumes A= BA\zyz€A—yeB=—zx#y— Rzy=R'zy
shows topo-sorts A R = topo-sorts B R’

(proof)

lemma topo-sorts-correct:
assumes A\zy. Rzy=—=z€ ANyc A
shows topo-sorts A R = {xzs€permutations-of-set A. R < of-ranking xs}

{proof)

lemma topo-sorts-nonempty:
assumes finite A N\zy. Rey=— € ANy€e AANxy. Rz y—=— —-Ryuztransp R
shows topo-sorts A R # {}
(proof)

lemma bij-betw-topo-sorts-linorders-on:

assumes A\zy. Rzy=—=z€ ANyc A

shows bij-betw of-ranking (topo-sorts A R) {R'. finite-linorder-on A R’ A R < R’}
(proof)

In the following, we give a more convenient formulation of this for computation.

The input is a relation represented as a list of pairs (z, ys) where ys is the set of all
elements such that (z,y) is in the relation.

function topo-sorts-aux :: (‘a x 'a set) list = 'a list list where
topo-sorts-aur rs =
(if ws =[] then [[]] else
List.bind (map fst (filter (A(-,ys). ys = {}) zs))
(Az. map ((#) z) (topo-sorts-auz
(map (map-prod id (Set.filter (Ay. y # x))) (filter (M(y,-). y # z) xs)))))
{proof)

termination

(proof)
lemmas [simp del] = topo-sorts-aux.simps

lemma topo-sorts-aux-Nil [simp]: topo-sorts-auz [| = [[]]

(proof)

lemma topo-sorts-auz-rec:
zs # [| = topo-sorts-auz xs =
List.bind (map fst (filter (A(-,ys). ys = {}) zs))
(Az. map ((#) z) (topo-sorts-auz
< >(map (map-prod id (Set.filter (\y. y # x))) (filter (M(y,-). y # z) xs))))
proof

lemma topo-sorts-auz-Cons:
topo-sorts-auzx (y#xs) =
List.bind (map fst (filter (A(-,ys). ys = {}) (y#=xs)))
(Az. map ((#) z) (topo-sorts-auz
(map (map-prod id (Set.filter (Ay. y # x))) (filter (My,-)- y # x) (y#ws)))))
{proof)

lemma set-topo-sorts-aux:
assumes distinct (map fst zs)
assumes Az ys. (z, ys) € set xs = ys C set (map fst zs) — {z}
shows set (topo-sorts-auzr xs) =
topo-sorts (set (map fst xs)) (Az y. Jys. (z, ys) € set zs A y € ys)
(proof)

lemma topo-sorts-code [code]:
topo-sorts (set xs) R = (let xs’ = remdups zs in
set (topo-sorts-auz (map (Ax. (z, set (filter (A\y. y # x A R x y) xs'))) xs')))
(proof)

end

	Rankings
	Preliminaries
	Definition
	Transformations
	Inverse operation and isomorphism
	Topological sorting

