
Linear orders as rankings
Manuel Eberl

February 10, 2026

This entry formalises the obvious isomorphism between finite linear orders
and lists, where the list in question is interpreted as a ranking, i.e. it lists the
elements in descending order without repetition.

It also provides an executable algorithm to compute topological sortings,
i.e. all rankings whose linear orders are extensions of a given relation.

1

Contents
1 Rankings 2

1.1 Preliminaries . 2
1.2 Definition . 2
1.3 Transformations . 5
1.4 Inverse operation and isomorphism . 6
1.5 Topological sorting . 6

1 Rankings
theory Rankings
imports

HOL−Combinatorics.Multiset-Permutations
List−Index.List-Index
Randomised-Social-Choice.Order-Predicates

begin

1.1 Preliminaries
lemma find-index-map: find-index P (map f xs) = find-index (λx. P (f x)) xs
〈proof 〉

lemma map-index-self :
assumes distinct xs
shows map (index xs) xs = [0 ..<length xs]
〈proof 〉

lemma bij-betw-map-prod:
assumes bij-betw f A B bij-betw g C D
shows bij-betw (map-prod f g) (A × C) (B × D)
〈proof 〉

definition comap-relation :: (′a ⇒ ′b) ⇒ ′a relation ⇒ ′b relation where
comap-relation f R = (λx y. ∃ x ′ y ′. x = f x ′ ∧ y = f y ′ ∧ R x ′ y ′)

lemma is-weak-ranking-map-singleton-iff [simp]:
is-weak-ranking (map (λx. {x}) xs) ←→ distinct xs
〈proof 〉

lemma is-finite-weak-ranking-map-singleton-iff [simp]:
is-finite-weak-ranking (map (λx. {x}) xs) ←→ distinct xs
〈proof 〉

lemma of-weak-ranking-altdef ′:
assumes is-weak-ranking xs

2

shows of-weak-ranking xs x y ←→ x ∈
⋃
(set xs) ∧ y ∈

⋃
(set xs) ∧

find-index ((∈) x) xs ≥ find-index ((∈) y) xs
〈proof 〉

1.2 Definition

A ranking is a representation of a linear order on a finite set as a list in descending order,
starting with the biggest element. Clearly, this gives a bijection between the linear orders
on a finite set and the permutations of that set.
inductive of-ranking :: ′alt list ⇒ ′alt relation where

i ≤ j =⇒ i < length xs =⇒ j < length xs =⇒ xs ! i �[of-ranking xs] xs ! j

lemma of-ranking-conv-of-weak-ranking:
x �[of-ranking xs] y ←→ x �[of-weak-ranking (map (λx. {x}) xs)] y
〈proof 〉

lemma of-ranking-imp-in-set:
assumes of-ranking xs a b
shows a ∈ set xs b ∈ set xs
〈proof 〉

lemma of-ranking-Nil [simp]: of-ranking [] = (λ- -. False)
〈proof 〉

lemma of-ranking-Nil ′ [code]: of-ranking [] x y = False
〈proof 〉

lemma of-ranking-Cons [code]:
x �[of-ranking (z#zs)] y ←→ x = z ∧ y ∈ set (z#zs) ∨ x �[of-ranking zs] y
〈proof 〉

lemma of-ranking-Cons ′:
assumes distinct (x#xs) a ∈ set (x#xs) b ∈ set (x#xs)
shows of-ranking (x#xs) a b ←→ b = x ∨ (a 6= x ∧ of-ranking xs a b)
〈proof 〉

lemma of-ranking-append:
x �[of-ranking (xs @ ys)] y ←→ x ∈ set xs ∧ y ∈ set ys ∨ x �[of-ranking xs] y ∨ x �[of-ranking

ys] y
〈proof 〉

lemma of-ranking-strongly-preferred-Cons-iff :
assumes distinct (x # xs)
shows a �[of-ranking (x # xs)] b ←→ x = a ∧ b ∈ set xs ∨ a �[of-ranking xs] b
〈proof 〉

lemma of-ranking-strongly-preferred-append-iff :
assumes distinct (xs @ ys)
shows a �[of-ranking (xs @ ys)] b ←→

3

a ∈ set xs ∧ b ∈ set ys ∨ a �[of-ranking xs] b ∨ a �[of-ranking ys] b
〈proof 〉

lemma not-strongly-preferred-of-ranking-iff :
assumes a ∈ set xs b ∈ set xs
shows ¬a ≺[of-ranking xs] b ←→ a �[of-ranking xs] b
〈proof 〉

lemma of-ranking-refl:
assumes x ∈ set xs
shows x �[of-ranking xs] x
〈proof 〉

lemma of-ranking-altdef :
assumes distinct xs x ∈ set xs y ∈ set xs
shows of-ranking xs x y ←→ index xs x ≥ index xs y
〈proof 〉

lemma of-ranking-altdef ′:
assumes distinct xs
shows of-ranking xs x y ←→ x ∈ set xs ∧ y ∈ set xs ∧ index xs x ≥ index xs y
〈proof 〉

lemma of-ranking-nth-iff :
assumes distinct xs i < length xs j < length xs
shows of-ranking xs (xs ! i) (xs ! j) ←→ i ≥ j
〈proof 〉

lemma strongly-preferred-of-ranking-nth-iff :
assumes distinct xs i < length xs j < length xs
shows xs ! i �[of-ranking xs] xs ! j ←→ i < j
〈proof 〉

lemma of-ranking-total: x ∈ set xs =⇒ y ∈ set xs =⇒ of-ranking xs x y ∨ of-ranking xs y x
〈proof 〉

lemma of-ranking-antisym:
x ∈ set xs =⇒ y ∈ set xs =⇒ of-ranking xs x y =⇒ of-ranking xs y x =⇒ distinct xs =⇒ x =

y
〈proof 〉

lemma finite-linorder-of-ranking:
assumes set xs = A distinct xs
shows finite-linorder-on A (of-ranking xs)
〈proof 〉

lemma linorder-of-ranking:
assumes set xs = A distinct xs

4

shows linorder-on A (of-ranking xs)
〈proof 〉

lemma total-preorder-of-ranking:
assumes set xs = A distinct xs
shows total-preorder-on A (of-ranking xs)
〈proof 〉

1.3 Transformations
lemma map-relation-of-ranking:

map-relation f (of-ranking xs) = of-weak-ranking (map (λx. f −‘ {x}) xs)
〈proof 〉

lemma of-ranking-map: of-ranking (map f xs) = comap-relation f (of-ranking xs)
〈proof 〉

lemma of-ranking-permute ′:
assumes f permutes set xs
shows map-relation f (of-ranking xs) = of-ranking (map (inv f) xs)
〈proof 〉

lemma of-ranking-permute:
assumes f permutes set xs
shows of-ranking (map f xs) = map-relation (inv f) (of-ranking xs)
〈proof 〉

lemma of-ranking-rev [simp]:
of-ranking (rev xs) x y ←→ of-ranking xs y x
〈proof 〉

lemma of-ranking-filter :
of-ranking (filter P xs) = restrict-relation {x. P x} (of-ranking xs)
〈proof 〉

lemma strongly-preferred-of-ranking-conv-index:
assumes distinct xs
shows x ≺[of-ranking xs] y ←→ x ∈ set xs ∧ y ∈ set xs ∧ index xs x > index xs y
〈proof 〉

lemma restrict-relation-of-weak-ranking-Cons:
assumes distinct (x # xs)
shows restrict-relation (set xs) (of-ranking (x # xs)) = of-ranking xs
〈proof 〉

lemma of-ranking-zero-upt-nat:
of-ranking [0 ::nat..<n] = (λx y. x ≥ y ∧ x < n)
〈proof 〉

5

lemma of-ranking-rev-zero-upt-nat:
of-ranking (rev [0 ::nat..<n]) = (λx y. x ≤ y ∧ y < n)
〈proof 〉

lemma sorted-wrt-ranking: distinct xs =⇒ sorted-wrt (of-ranking xs) (rev xs)
〈proof 〉

1.4 Inverse operation and isomorphism
lemma (in finite-linorder-on) of-ranking-ranking: of-ranking (ranking le) = le
〈proof 〉

lemma (in finite-linorder-on) distinct-ranking: distinct (ranking le)
〈proof 〉

lemma ranking-of-ranking:
assumes distinct xs
shows ranking (of-ranking xs) = xs
〈proof 〉

lemma (in finite-linorder-on) set-ranking: set (ranking le) = carrier
〈proof 〉

lemma bij-betw-permutations-of-set-finite-linorders-on:
bij-betw of-ranking (permutations-of-set A) {R. finite-linorder-on A R}
〈proof 〉

lemma bij-betw-permutations-of-set-finite-linorders-on ′:
bij-betw ranking {R. finite-linorder-on A R} (permutations-of-set A)
〈proof 〉

lemma card-linorders-on:
assumes finite A
shows card {R. linorder-on A R} = fact (card A)
〈proof 〉

lemma finite-linorders-on [intro]:
assumes finite A
shows finite {R. linorder-on A R}
〈proof 〉

end

1.5 Topological sorting
theory Topological-Sortings-Rankings

imports Rankings
begin

The following returns the set of all rankings of the given set A that are extensions of the

6

given relation R, i.e. all topological sortings of R.
Note that there are no requirements about R; in particular it does not have to be
reflexive, antisymmetric, or transitive. If it is not antisymmetric or not transitive, the
result set will simply be empty.
function topo-sorts :: ′a set ⇒ ′a relation ⇒ ′a list set where

topo-sorts A R =
(if infinite A then {} else if A = {} then {[]} else⋃

x∈{x∈A. ∀ z∈A. R x z −→ z = x}. (λxs. x # xs) ‘ topo-sorts (A − {x}) (λy z . R y z ∧
y 6= x ∧ z 6= x))
〈proof 〉

termination
〈proof 〉

lemmas [simp del] = topo-sorts.simps

lemma topo-sorts-empty [simp]: topo-sorts {} R = {[]}
〈proof 〉

lemma topo-sorts-infinite: infinite A =⇒ topo-sorts A R = {}
〈proof 〉

lemma topo-sorts-rec:
finite A =⇒ A 6= {} =⇒

topo-sorts A R = (
⋃

x∈{x∈A. ∀ z∈A. R x z −→ z = x}.
(λxs. x # xs) ‘ topo-sorts (A − {x}) (λy z . R y z ∧ y 6= x ∧ z 6= x))

〈proof 〉

lemma topo-sorts-cong [cong]:
assumes A = B

∧
x y. x ∈ A =⇒ y ∈ B =⇒ x 6= y =⇒ R x y = R ′ x y

shows topo-sorts A R = topo-sorts B R ′

〈proof 〉

lemma topo-sorts-correct:
assumes

∧
x y. R x y =⇒ x ∈ A ∧ y ∈ A

shows topo-sorts A R = {xs∈permutations-of-set A. R ≤ of-ranking xs}
〈proof 〉

lemma topo-sorts-nonempty:
assumes finite A

∧
x y. R x y =⇒ x ∈ A ∧ y ∈ A

∧
x y. R x y =⇒ ¬R y x transp R

shows topo-sorts A R 6= {}
〈proof 〉

lemma bij-betw-topo-sorts-linorders-on:
assumes

∧
x y. R x y =⇒ x ∈ A ∧ y ∈ A

shows bij-betw of-ranking (topo-sorts A R) {R ′. finite-linorder-on A R ′ ∧ R ≤ R ′}
〈proof 〉

In the following, we give a more convenient formulation of this for computation.

7

The input is a relation represented as a list of pairs (x, ys) where ys is the set of all
elements such that (x, y) is in the relation.
function topo-sorts-aux :: (′a × ′a set) list ⇒ ′a list list where

topo-sorts-aux xs =
(if xs = [] then [[]] else
List.bind (map fst (filter (λ(-,ys). ys = {}) xs))
(λx. map ((#) x) (topo-sorts-aux
(map (map-prod id (Set.filter (λy. y 6= x))) (filter (λ(y,-). y 6= x) xs)))))

〈proof 〉
termination
〈proof 〉

lemmas [simp del] = topo-sorts-aux.simps

lemma topo-sorts-aux-Nil [simp]: topo-sorts-aux [] = [[]]
〈proof 〉

lemma topo-sorts-aux-rec:
xs 6= [] =⇒ topo-sorts-aux xs =

List.bind (map fst (filter (λ(-,ys). ys = {}) xs))
(λx. map ((#) x) (topo-sorts-aux
(map (map-prod id (Set.filter (λy. y 6= x))) (filter (λ(y,-). y 6= x) xs))))

〈proof 〉

lemma topo-sorts-aux-Cons:
topo-sorts-aux (y#xs) =

List.bind (map fst (filter (λ(-,ys). ys = {}) (y#xs)))
(λx. map ((#) x) (topo-sorts-aux
(map (map-prod id (Set.filter (λy. y 6= x))) (filter (λ(y,-). y 6= x) (y#xs)))))

〈proof 〉

lemma set-topo-sorts-aux:
assumes distinct (map fst xs)
assumes

∧
x ys. (x, ys) ∈ set xs =⇒ ys ⊆ set (map fst xs) − {x}

shows set (topo-sorts-aux xs) =
topo-sorts (set (map fst xs)) (λx y. ∃ ys. (x, ys) ∈ set xs ∧ y ∈ ys)

〈proof 〉

lemma topo-sorts-code [code]:
topo-sorts (set xs) R = (let xs ′ = remdups xs in

set (topo-sorts-aux (map (λx. (x, set (filter (λy. y 6= x ∧ R x y) xs ′))) xs ′)))
〈proof 〉

end

8

	Rankings
	Preliminaries
	Definition
	Transformations
	Inverse operation and isomorphism
	Topological sorting

