
Rely-Guarantee Extensions and Locks

Robert J. Colvin, Scott Heiner, Peter Höfner, Roger C. Su

January 9, 2026

Abstract

We enhance rely-guarantee verification in Isabelle/HOL by extending the 2003 built-in
library with flexible syntax, data-invariant support, and new tactics. We demonstrate our
enhanced library by applying it to the examples attached to the original library. We also
apply our library to three queue locks: the Abstract Queue Lock, the Ticket Lock, and the
Circular Buffer Lock.

Contents
1 Introduction 2

2 Rely-Guarantee (RG) Syntax Extensions 2
2.1 Lifting of Invariants . 3
2.2 RG Sentences . 3
2.3 RG Subgoal-Generating Methods . 4

2.3.1 Basic . 4
2.3.2 Looping constructs . 5
2.3.3 Conditionals . 7

2.4 Parallel Compositions . 8
2.4.1 Binary Parallel . 8
2.4.2 Multi-Parallel . 10

2.5 Syntax of Record-Updates . 11

3 Annotated Commands 12
3.1 Annotated Quintuples . 15
3.2 Structured Tactics for Annotated Commands . 16
3.3 Binary Parallel . 17
3.4 Helpers: Index Offsets . 18
3.5 Multi-Parallel . 19
3.6 The Main Tactics . 22

4 Examples Reworked 23
4.1 Setting Elements of an Array to Zero . 23
4.2 Incrementing a Variable in Parallel . 24
4.3 FindP . 26

5 Abstract Queue Lock 27

1

6 Ticket Lock 29
6.1 Helpers: Inj, Surj and Bij . 29

6.1.1 Inj-Related . 30
6.1.2 Surj-Related . 30
6.1.3 Bij and Inv . 31

6.2 Helpers: Multi-Updates on Functions . 33
6.2.1 Ordering of Updates . 34
6.2.2 Surjective . 35
6.2.3 Injective . 36
6.2.4 Set- and List-Intervals . 38

6.3 Basic Definitions . 39
6.4 RG Theorems . 41

7 Circular-Buffer Queue-Lock 44
7.1 Invariant . 46

7.1.1 Invariant Methods . 47
7.1.2 Invariant Lemmas . 47

7.2 Contract . 51
7.3 RG Lemmas . 52
7.4 RG Theorems . 58

1 Introduction
The content of this entry has been presented as [1]. The original built-in library is [2].

2 Rely-Guarantee (RG) Syntax Extensions

The core extensions to the built-in RG library: improved syntax of RG sentences in the quintuple-
and keyword-styles, with data-invariants.
Also: subgoal-generating methods for RG inference-rules that work with the structured proof-
language, Isar.
theory RG_Syntax_Extensions

imports
"HOL-Hoare_Parallel.RG_Syntax"
"HOL-Eisbach.Eisbach"

begin

We begin with some basic notions that are used later on.

Notation for forward function-composition: defined in the built-in Fun.thy but disabled at the
end of that theory. This operator is useful for modelling atomic primitives such as Swap and
Fetch-And-Increment, and also useful when coupling concrete- and auxiliary-variable instruc-
tions.
notation fcomp (infixl "◦>" 60)

lemmas definitions [simp] =
stable_def Pre_def Rely_def Guar_def Post_def Com_def

In applications, guarantee-relations often stipulates that Thread i should “preserve the rely-
relations of all other threads”. This pattern is supported by the following higher-order function,
where j ranges through all the threads that are not i.

2

abbreviation for_others :: "(’index ⇒ ’state rel) ⇒ ’index ⇒ ’state rel" where
"for_others R i ≡

⋂
j ∈ -{i}. R j"

Relies and guarantees often state that certain variables remain unchanged. We support this
pattern with the following syntactic sugars.
abbreviation record_id :: "(’record ⇒ ’field) ⇒ ’record rel"

("id’(_’)" [75] 74) where
"id(c) ≡ {| ªc = ºc |}"

abbreviation record_ids :: "(’record ⇒ ’field) set ⇒ ’record rel"
("ids’(_’)" [75] 74) where
"ids(cs) ≡

⋂
c ∈ cs. id(c)"

abbreviation record_id_indexed ::
"(’record ⇒ ’index ⇒ ’field) ⇒ ’index ⇒ ’record rel"
("id’(_ @ _ ’)") where
"id(c @ self) ≡ {| ºc self = ªc self |}"

abbreviation record_ids_indexed ::
"(’record ⇒ ’index ⇒ ’field) set ⇒ ’index ⇒ ’record rel"
("ids’(_ @ _ ’)") where
"ids(cs @ self) ≡

⋂
c ∈ cs. id(c @ self)"

The following simple method performs an optional simplification-step, and then tries to apply
one of the RG rules, before attempting to discharge each subgoal using force. This method
works well on simple RG sentences.
method method_rg_try_each =

(clarsimp | simp)?,
(rule Basic | rule Seq | rule Cond | rule While
| rule Await | rule Conseq | rule Parallel);
force+

2.1 Lifting of Invariants

There are different ways to combine the invariant with the rely or guarantee, as long as the
invariant is preserved. Here, a rely- or guarantee-relation R is combined with the invariant I
into {(s, s’). (s ∈ I −→ s’ ∈ I) ∧ R}.
definition pred_to_rel :: "’a set ⇒ ’a rel" where

"pred_to_rel P ≡ {(s,s’) . s ∈ P −→ s’ ∈ P}"

definition invar_and_guar :: "’a set ⇒ ’a rel ⇒ ’a rel" where
"invar_and_guar I G ≡ G ∩ pred_to_rel I"

lemmas simp_defs [simp] = pred_to_rel_def invar_and_guar_def

2.2 RG Sentences

The quintuple-style of RG sentences.
abbreviation rg_quint ::

"’a set ⇒ ’a rel ⇒ ’a com ⇒ ’a rel ⇒ ’a set ⇒ bool"
("{_,_} _ {_,_}") where
"{P, R} C {G, Q} ≡ ` C sat [P, R, G, Q]"

Quintuples with invariants.
abbreviation rg_quint_invar ::

3

"’a set ⇒ ’a rel ⇒ ’a com ⇒ ’a set ⇒ ’a rel ⇒ ’a set ⇒ bool"
("{_,_} _ � _ {_,_}") where
"{P, R} C � I {G, Q} ≡ ` C sat [

P ∩ I,
R ∩ pred_to_rel I,
invar_and_guar I G,
Q ∩ I]"

The keyword-style of RG sentences.
abbreviation rg_keyword ::

"’a rel ⇒ ’a rel ⇒ ’a set ⇒ ’a com ⇒ ’a set ⇒ bool"
("rely:_ guar:_ code: {_} _ {_}") where
"rg_keyword R G P C Q ≡ ` C sat [P, R, G, Q]"

Keyword-style RG sentences with invariants.
abbreviation rg_keyword_invar ::

"’a rel ⇒ ’a rel ⇒ ’a set ⇒ ’a set ⇒ ’a com ⇒ ’a set ⇒ bool"
("rely:_ guar:_ inv:_ code: {_} _ {_}") where
"rg_keyword_invar R G I P C Q ≡ ` C sat [

P ∩ I,
R ∩ pred_to_rel I,
invar_and_guar I G,
Q ∩ I]"

2.3 RG Subgoal-Generating Methods

As in Floyd-Hoare logic, in RG we can strengthen (make smaller) the precondition and weaken
(make larger) the postcondition without affecting the validity of an RG sentence.
theorem strengthen_pre:

assumes "P’ ⊆ P"
and "` c sat [P, R, G, Q]"

shows "` c sat [P’, R, G, Q]"
using assms Conseq by blast

theorem weaken_post:
assumes "Q ⊆ Q’"

and "` c sat [P, R, G, Q]"
shows "` c sat [P, R, G, Q’]"

using assms Conseq by blast

We then develop subgoal-generating methods for various instruction types and patterns, to be
used in conjunction with the Isar proof-language.

2.3.1 Basic

A Basic instruction wraps a state-transformation function.
theorem rg_basic_named[intro]:

assumes "stable P R"
and "stable Q R"
and "∀ s. s ∈ P −→ (s, s) ∈ G"
and "∀ s. s ∈ P −→ (s, f s) ∈ G"
and "P ⊆ {| ´ f ∈ Q |}"

shows "{P, R} Basic f {G, Q}"
using assms apply -
by (rule Basic; fastforce)

4

method method_basic =
rule rg_basic_named,
goal_cases stable_pre stable_post guar_id establish_guar establish_post

The skip command is a Basic instruction whose function is the identity.
theorem rg_skip_named:

assumes "stable P R"
and "stable Q R"
and "Id ⊆ G"
and "P ⊆ Q"

shows "{P, R} SKIP {G, Q}"
using assms by force

method method_skip =
rule rg_skip_named,
goal_cases stab_pre stab_post guar_id est_post

An alternative version with an invariant subgoal.
theorem rg_basic_inv[intro]:

assumes "stable (P ∩ I) (R ∩ pred_to_rel I)"
and "stable (Q ∩ I) (R ∩ pred_to_rel I)"
and "∀ s. s ∈ P ∩ I −→ (s, s) ∈ G"
and "∀ s. s ∈ P ∩ I −→ f s ∈ I"
and "∀ s. s ∈ P ∩ I −→ f s ∈ Q"
and "∀ s. s ∈ P ∩ I −→ (s, f s) ∈ G"

shows "` (Basic f) sat [
P ∩ I,
R ∩ pred_to_rel I,
invar_and_guar I G,
Q ∩ I]"

using assms apply -
by (method_basic; fastforce)

method method_basic_inv = rule rg_basic_inv,
goal_cases stab_pre stab_post id_guar est_inv est_post est_guar

2.3.2 Looping constructs
theorem rg_general_loop_named[intro]:

assumes "stable P R"
and "stable Q R"
and "Id ⊆ G"
and "P ∩ -b ⊆ Q"
and "{P ∩ b, R} c {G, P}"

shows "{P, R} While b c {G, Q}"
using assms apply -
by (rule While; fastforce)

method method_loop =
rule rg_general_loop_named,
goal_cases stable_pre stable_post id_guar loop_exit loop_body

A similar version but with the loop_body subgoal having a weakend precondition.
theorem rg_general_loop_no_guard[intro]:

assumes "stable P R"
and "stable Q R"
and "Id ⊆ G"
and "P ∩ -b ⊆ Q"

5

and "{P, R} c {G, P}"
shows "{P, R} While b c {G, Q}"

apply(rule rg_general_loop_named)
by (fastforce intro!: assms Int_lower1 intro: strengthen_pre)+

method method_loop_no_guard =
rule rg_general_loop_no_guard,
goal_cases stab_pre stab_post guar_id loop_exit loop_body

A spinloop is a loop with an empty body. Such a loop repeatedly checks a property, and is a
key construct in mutual exclusion algorithms.
theorem rg_spinloop_named[intro]:

assumes "stable P R"
and "stable Q R"
and "Id ⊆ G"
and "P ∩ -b ⊆ Q"

shows "{P, R} While b SKIP {G, Q}"
using assms
by (fastforce simp: rg_general_loop_no_guard rg_skip_named)

method method_spinloop =
rule rg_spinloop_named,
goal_cases stable_pre stable_post guar_id est_post

theorem rg_infinite_loop:
assumes "stable P R"

and "Id ⊆ G"
and "{P, R} C {G, P}"

shows "{P, R} While UNIV C {G, Q}"
proof -

have "{P, R} While UNIV C {G, {}}"
using assms by (fastforce simp: rg_general_loop_no_guard)

thus ?thesis
using weaken_post by fastforce

qed

method method_infinite_loop =
rule rg_infinite_loop,
goal_cases stable_pre guar_id loop_body,
clarsimp+

theorem rg_infinite_loop_syntax:
assumes "stable P R"

and "Id ⊆ G"
and "{P, R} C {G, P}"

shows "{P, R} WHILE True DO C OD {G, Q}"
using assms by (fastforce simp: rg_infinite_loop)

method method_infinite_loop_syntax =
rule rg_infinite_loop_syntax,
goal_cases stable_pre guar_id loop_body

A repeat-loop encodes the pattern where the loop body is executed before the first evaluation
of the guard.
theorem rg_repeat_loop[intro]:

assumes "stable P R"
and "stable Q R"

6

and "Id ⊆ G"
and "P ∩ b ⊆ Q"
and loop_body: "{P, R} C {G, P}"

shows "{P, R} C ;; While (-b) C {G, Q}"
using assms apply -
apply (rule Seq)
apply (force intro: loop_body)

by (method_loop_no_guard; fastforce)

method method_repeat_loop =
rule rg_repeat_loop,
goal_cases stab_pre stab_post guar_id loop_exit loop_body

When reasoning about repeat-loops, we may need information from P to determine whether
we reach the postcondition. In this case we can use the following form, which introduces a
mid-state.
theorem rg_repeat_loop_mid[intro]:

assumes stab_pre: "stable (P ∩ M) R"
and stab_post: "stable Q R"
and guar_id: "Id ⊆ G"
and loop_exit: "P ∩ M ∩ b ⊆ Q"
and loop_body: "{P, R} C {G, P ∩ M}"

shows "{P, R} C ;; While (-b) C {G, Q}"
using assms apply -
apply (rule Seq)
apply (fast intro: loop_body)

by (method_loop_no_guard; fast intro: loop_body strengthen_pre)

method method_repeat_loop_mid =
rule rg_repeat_loop_mid,
goal_cases stab_pre stab_post guar_id loop_exit loop_body

We define dedicated syntax for the repeat-loop pattern.
definition Repeat :: "’a com ⇒ ’a bexp ⇒ ’a com" where

"Repeat c b ≡ c ;; While (-b) c"

syntax "_Repeat" :: "’a com ⇒ ’a bexp ⇒ ’a com" ("(0REPEAT _ /UNTIL _ /END)" [0, 0]
61)
translations "REPEAT c UNTIL b END" ⇀ "CONST Repeat c {|b|}"

theorem rg_repeat_loop_def[intro]:
assumes stab_pre: "stable P R"

and stab_post: "stable Q R"
and guar_id: "Id ⊆ G"
and loop_exit: "P ∩ b ⊆ Q"
and loop_body: "{P, R} C {G, P}"

shows "{P, R} Repeat C b {G, Q}"
using assms
by (fastforce simp: Repeat_def rg_repeat_loop)

method method_repeat_loop_def =
rule rg_repeat_loop_def,
goal_cases stab_pre stab_post guar_id loop_exit loop_body

2.3.3 Conditionals

We first cover conditional-statements with or without the else-branch.

7

theorem rg_cond_named[intro]:
assumes stab_pre: "stable P R"

and stab_post: "stable Q R"
and guar_id: "Id ⊆ G"
and then_br: "{P ∩ b, R} c1 {G, Q}"
and else_br: "{P ∩ -b, R} c2 {G, Q}"

shows "{P, R} Cond b c1 c2 {G, Q}"
using assms apply -
by (rule Cond; fastforce)

theorem rg_cond2_named[intro]:
assumes stab_pre: "stable P R"

and stab_post: "stable Q R"
and guar_id: "Id ⊆ G"
and then_br: "{P ∩ b, R} c1 {G, Q}"
and else_br: "P ∩ -b ⊆ Q"

shows "{P, R} Cond b c1 SKIP {G, Q}"
using assms apply -
by (rule rg_cond_named; fastforce simp: rg_skip_named strengthen_pre)

method method_cond =
(rule rg_cond2_named | rule rg_cond_named),
goal_cases stab_pre stab_post guar_id then_br else_br

Variants without the stable-post subgoal.
theorem rg_cond_no_post[intro]:

assumes stable_pre: "stable P R"
and guar_id: "Id ⊆ G"
and then_br: "{P ∩ b, R} c1 {G, Q}"
and else_br: "{P ∩ -b, R} c2 {G, Q}"

shows "{P, R} Cond b c1 c2 {G, Q}"
using assms by (fastforce simp: Cond subset_iff)

theorem rg_cond_no_guard_no_post[intro]:
assumes stable_pre: "stable P R"

and guar_id: "Id ⊆ G"
and then_br: "{P, R} c1 {G, Q}"
and else_br: "{P, R} c2 {G, Q}"

shows "{P, R} Cond b c1 c2 {G, Q}"
using assms apply -
by (rule Cond; fastforce intro: strengthen_pre)

method method_cond_no_post =
(rule rg_cond_no_post | rule rg_cond_no_guard_no_post),
goal_cases stab_pre guar_id then_br else_br

2.4 Parallel Compositions

We now turn to the parallel composition, and cover several variants, from the binary parallel
composition of two commands, to the multi-parallel composition of an indexed list of commands.
For each variant, we define the syntax and devise the subgoal-generating methods.

2.4.1 Binary Parallel

The syntax of binary parallel composition, without and with invariant.
abbreviation binary_parallel ::

8

"’a set ⇒ ’a rel ⇒ ’a com ⇒ ’a com ⇒ ’a rel ⇒ ’a set ⇒ bool"
("{_, _} _ ‖ _ {_, _}") where
"{P, R} C1 ‖ C2 {G, Q} ≡
∃ P1 P2 R1 R2 G1 G2 Q1 Q2.
` COBEGIN

(C1, P1, R1, G1, Q1)
‖
(C2, P2, R2, G2, Q2)

COEND SAT [P, R, G, Q]"

abbreviation binary_parallel_invar ::
"’a set ⇒ ’a rel ⇒ ’a com ⇒ ’a com ⇒ ’a set ⇒ ’a rel ⇒ ’a set ⇒ bool"

("{_, _} _ ‖ _ � _ {_, _}") where
"{P, R} C1 ‖ C2 � I {G, Q} ≡
∃ P1 P2 R1 R2 G1 G2 Q1 Q2.
` COBEGIN

(C1, P1, R1, G1, Q1)
‖
(C2, P2, R2, G2, Q2)

COEND SAT [P ∩ I, R ∩ pred_to_rel I, invar_and_guar I G, Q ∩ I]"

Some helper lemmas for later.
lemma simp_all_2:

"(∀ i < Suc (Suc 0). P i) ←→ P 0 ∧ P 1"
by (fastforce simp: less_Suc_eq)

lemma simp_gen_Un_2:
"(

⋃
x ∈ {|´ (<) (Suc (Suc 0)) |}. S x) = S 0 ∪ S 1"

by (fastforce simp: less_Suc_eq)

lemma simp_gen_Un_2_not0:
"(

⋃
x ∈ {|´ (<) (Suc (Suc 0)) ∧ ´ (6=) (Suc 0) |}. S x) = S 0"

by (fastforce simp: less_Suc_eq)

lemma simp_gen_Int_2:
"(

⋂
x ∈ {|´ (<) (Suc (Suc 0)) |}. S x) = S 0 ∩ S 1"

by (fastforce simp: less_Suc_eq)

theorem rg_binary_parallel:
assumes "{P1, R1} (C1::’a com) {G1, Q1}"

and "{P2, R2} (C2::’a com) {G2, Q2}"
and "G1 ⊆ R2"
and "G2 ⊆ R1"
and "P ⊆ P1 ∩ P2"
and "R ⊆ R1 ∩ R2"
and "G1 ∪ G2 ⊆ G"
and "Q1 ∩ Q2 ⊆ Q"

shows "` COBEGIN
(C1, P1, R1, G1, Q1)
‖

(C2, P2, R2, G2, Q2)
COEND SAT [P, R, G, Q]"

using assms apply -
apply (rule Parallel)
by (simp_all add: simp_all_2 simp_gen_Un_2 simp_gen_Int_2 simp_gen_Un_2_not0)

theorem rg_binary_parallel_exists:
assumes "{P1, R1} (C1::’a com) {G1, Q1}"

9

and "{P2, R2} (C2::’a com) {G2, Q2}"
and "G1 ⊆ R2"
and "G2 ⊆ R1"
and "P ⊆ P1 ∩ P2"
and "R ⊆ R1 ∩ R2"
and "G1 ∪ G2 ⊆ G"
and "Q1 ∩ Q2 ⊆ Q"

shows "{P, R} C1 ‖ C2 {G, Q}"
by (metis assms rg_binary_parallel)

theorem rg_binary_parallel_invar_conseq:
assumes C1: "{P1, R1} (C1::’a com) � I {G1, Q1}"

and C2: "{P2, R2} (C2::’a com) � I {G2, Q2}"
and "G1 ⊆ R2"
and "G2 ⊆ R1"
and "P ⊆ P1 ∩ P2"
and "R ⊆ R1 ∩ R2"
and "Q1 ∩ Q2 ⊆ Q"
and "G1 ∪ G2 ⊆ G"

shows "{P, R} C1 ‖ C2 � I {G, Q}"
using assms apply -
apply (rule rg_binary_parallel_exists)
by force+

2.4.2 Multi-Parallel

The syntax of multi-parallel, without and with invariants.
syntax multi_parallel ::

"’a set ⇒ ’a rel ⇒ idt ⇒ nat ⇒
(nat ⇒ ’a set) ⇒ (nat ⇒ ’a rel) ⇒
(nat ⇒ ’a com) ⇒
(nat ⇒ ’a rel) ⇒ (nat ⇒ ’a set) ⇒
’a rel ⇒ ’a set ⇒ bool"

("global’_init: _ global’_rely: _ ‖ _ < _ @ {_,_} _ {_,_} global’_guar: _ global’_post:
_")

translations
"global_init: Init global_rely: RR ‖ i < N @
{P,R} c {G,Q} global_guar: GG global_post: QQ"

⇀ "` COBEGIN SCHEME [0 ≤ i < N] (c, P, R, G, Q) COEND
SAT [Init, RR , GG, QQ]"

syntax multi_parallel_inv ::
"’a set ⇒ ’a rel ⇒ idt ⇒ nat ⇒
(nat ⇒ ’a set) ⇒ (nat ⇒ ’a rel) ⇒
(nat ⇒ ’a com) ⇒ (nat ⇒ ’a set) ⇒
(nat ⇒ ’a rel) ⇒ (nat ⇒ ’a set) ⇒
’a rel ⇒ ’a set ⇒ bool"

("global’_init: _ global’_rely: _ ‖ _ < _ @ {_,_} _ � _ {_,_} global’_guar: _ global’_post:
_")

translations
"global_init: Init global_rely: RR ‖ i < N @
{P, R} c � I {G, Q} global_guar: GG global_post: QQ"

⇀ "` COBEGIN SCHEME [0 ≤ i < N] (c,
P ∩ I,
R ∩ CONST pred_to_rel I,
CONST invar_and_guar I G,

10

Q ∩ I
) COEND

SAT [Init, RR , GG, QQ]"

The subgoal-generating method for multi-parallel.
theorem rg_multi_parallel_subgoals:

assumes assm_guar_rely: "∀ i j. i 6= j −→ i < N −→ j < N −→ G j ⊆ R i"
and assm_pre: "∀ i < N. P’ ⊆ P i"
and assm_rely: "∀ i < N. R’ ⊆ R i"
and assm_guar: "∀ i < N. G i ⊆ G’"
and assm_post: "(

⋂
i ∈ { i. i < N }. Q i) ⊆ Q’"

and assm_local: "∀ i<N. ` C i sat [P i, R i, G i, Q i]"
shows "` COBEGIN SCHEME [0 ≤ i < (N::nat)]

(C i, P i, R i, G i, Q i)
COEND SAT [P’, R’, G’, Q’]"

proof (rule Parallel, goal_cases)
case 1 show ?case using assm_rely assm_guar_rely by (simp add: SUP_le_iff)
case 2 show ?case using assm_guar by force
case 3 show ?case using assm_pre by force
case 4 show ?case using assm_post by force
case 5 show ?case using assm_local by force

qed

method method_multi_parallel = rule rg_multi_parallel_subgoals,
goal_cases guar_rely pre rely guar post body

theorem rg_multi_parallel_nobound_subgoals:
assumes assm_guar_rely: "∀ i j. i 6= j −→ G j ⊆ R i"

and assm_pre: "∀ i. P’ ⊆ P i"
and assm_rely: "∀ i. R’ ⊆ R i"
and assm_guar: "∀ i. G i ⊆ G’"
and assm_post: "(

⋂
i ∈ { i. i < N }. Q i) ⊆ Q’"

and assm_local: "∀ i. ` C i sat [P i, R i, G i, Q i]"
shows "` COBEGIN SCHEME [0 ≤ i < (N::nat)]

(C i, P i, R i, G i, Q i)
COEND SAT [P’, R’, G’, Q’]"

using assms apply -
apply (rule Parallel)
by (simp_all add: SUP_le_iff INT_greatest)

method method_multi_parallel_nobound =
rule rg_multi_parallel_nobound_subgoals,
goal_cases guar_rely pre rely guar post body

2.5 Syntax of Record-Updates

This section contains syntactic sugars for updating a field of a record. As we use records to model
the states of a program, these record-update operations correspond to the variable-assignments.
The type idt denotes a field of a record. The first syntactic sugar expresses a Basic command
(of type ‹ ’a com›) that updates a record-field x that is a function; often x models an array.
After the update, the new value of ‹ x i› becomes a.
syntax "_record_array_assign" ::

"idt ⇒ ’index ⇒ ’expr ⇒ ’state com" ("(´ _[_] :=/ _)" [70, 65, 64] 61)
translations "´ x[i] := a"

⇀ "CONST Basic « ´ (_update_name x (λ_. ´ x(i:= a)))» "

The next two syntactic sugars express a state-transformation function (rather than a command)

11

that updates record-fields. The first one simply updates an entire variable x, while the second
updates an array ‹ x i› .
syntax "_record_update_field" ::

"idt ⇒ ’expr ⇒ (’a ⇒ ’a)" ("´ _ ←/ _" [70] 61)
translations "´ x ← a"

⇀↽ "« ´ (_update_name x (λ_. a))» "

syntax "_record_update_array" ::
"idt ⇒ ’expr ⇒ ’expr ⇒ (’a ⇒ ’a)" ("´ _[_] ←/ _" [70, 71] 61)

translations "´ x[i] ← a"
⇀ "« ´ (_update_name x (λ_. ´ x(i:= a)))» "

Syntactic sugars for incrementing variables.
syntax "_inc_fn" :: "idt ⇒ ’c ⇒ ’c" ("(´ _.++)" 61)
translations "´ x.++ " ⇀

" « ´ (_update_name x (λ_. ´ x + 1))» "

syntax "_inc" :: "idt ⇒ ’c com" ("(´ _++)" 61)
translations "´ x++ " ⇀

"CONST Basic (´ x.++)"

end

3 Annotated Commands
theory RG_Annotated_Commands

imports RG_Syntax_Extensions "HOL-Hoare.Hoare_Tac"

begin

datatype ’a anncom =
NoAnno "’a com"

| BasicAnno "’a ⇒ ’a"
| WeakPre "’a set" "’a anncom" ("{_} _" [65,61] 61)
| StrongPost "’a anncom" "’a set" ("_ {_}" [61,65] 61)
| SeqAnno "’a anncom" "’a set" "’a anncom"
| CondAnno "’a bexp" "’a anncom" "’a anncom"
| WhileAnno "’a bexp" "’a set" "’a anncom"
| AwaitAnno "’a bexp" "’a anncom"

fun anncom_to_com :: "’a anncom ⇒ ’a com" where
"anncom_to_com (NoAnno c) = c"

| "anncom_to_com (BasicAnno f) = Basic f"
| "anncom_to_com (WeakPre b c) = anncom_to_com c"
| "anncom_to_com (StrongPost c b) = anncom_to_com c"
| "anncom_to_com (SeqAnno c1 mid c2) = Seq (anncom_to_com c1) (anncom_to_com c2)"
| "anncom_to_com (CondAnno b c1 c2) = Cond b (anncom_to_com c1) (anncom_to_com c2)"
| "anncom_to_com (WhileAnno b b’ c) = While b (anncom_to_com c)"
| "anncom_to_com (AwaitAnno b c) = Await b (anncom_to_com c)"

fun add_invar :: "’a set ⇒ ’a anncom ⇒ ’a anncom" where
"add_invar I (NoAnno c) = NoAnno c"

| "add_invar I (BasicAnno f) = BasicAnno f"
| "add_invar I (WeakPre b c) = WeakPre (b ∩ I) (add_invar I c)"
| "add_invar I (StrongPost c b) = StrongPost (add_invar I c) (b ∩ I)"

12

| "add_invar I (SeqAnno c1 mid c2) = SeqAnno (add_invar I c1) (mid ∩ I) (add_invar
I c2)"

| "add_invar I (CondAnno b c1 c2) = CondAnno b (add_invar I c1) (add_invar I c2)"
| "add_invar I (WhileAnno b b’ c) = WhileAnno b b’ (add_invar I c)"
| "add_invar I (AwaitAnno b c) = AwaitAnno b (add_invar I c)"

syntax
"_CondAnno" :: "’a bexp ⇒ ’a anncom ⇒ ’a anncom ⇒ ’a anncom"

("(0IFa _/ THEN _/ ELSE _/FI)" [0, 0, 0] 61)
"_Cond2Anno" :: "’a bexp ⇒ ’a anncom ⇒ ’a anncom"

("(0IFa _ THEN _ FI)" [0,0] 56)
"_WhileAnno" :: "’a bexp ⇒ ’a set ⇒ ’a anncom ⇒ ’a anncom"

("(0WHILEa _ /DO {stable’_guard: _ } _ /OD)" [0, 0] 61)
"_WhileAnno_simple_b" :: "’a bexp ⇒ ’a anncom ⇒ ’a anncom"

("(0WHILEa _ /DO _ /OD)" [0, 0] 61)
"_AwaitAnno" :: "’a bexp ⇒ ’a anncom ⇒ ’a anncom"

("(0AWAITa _ /THEN /_ /END)" [0,0] 61)
"_AtomAnno" :: "’a com ⇒ ’a anncom"

("(〈_〉a)" 61)
"_WaitAnno" :: "’a bexp ⇒ ’a anncom"

("(0WAITa _ END)" 61)
"_CondAnno_NoAnnoions" :: "’a bexp ⇒ ’a com ⇒ ’a com ⇒ ’a anncom"

("(0IF. _/ THEN _/ ELSE _/FI)" [0, 0, 0] 61)

translations
"IFa b THEN c1 ELSE c2 FI" ⇀ "CONST CondAnno {|b|} c1 c2"
"IFa b THEN c FI" ⇀↽ "IFa b THEN c ELSE SKIP FI"
"IF. b THEN c1 ELSE c2 FI" ⇀ "CONST CondAnno {|b|} (CONST NoAnno c1) (CONST NoAnno c2)"

"WHILEa b DO {stable_guard: b’} c OD" ⇀ "CONST WhileAnno {|b|} b’ c"
"WHILEa b DO c OD" ⇀ "CONST WhileAnno {|b|} {|b|} c"

"AWAITa b THEN c END" ⇀↽ "CONST AwaitAnno {|b|} c"
"〈c〉a" ⇀↽ "AWAITa CONST True THEN c END"
"WAITa b END" ⇀↽ "AWAITa b THEN SKIP END"

abbreviation no_assertions_semicolon ::
"’a anncom ⇒ ’a set ⇒ ’a anncom ⇒ ’a anncom"

("_ .; {_} _" [60,60,61] 60) where
"c1 .; {m} c2 ≡ SeqAnno c1 m c2"

Below is a special syntax for Basic commands (type “com”) encoded inside NoAnno annotated
commands (type “anncom”).
This allows us to keep our syntactic sugars for Basic commands, which are mostly assignments
(":="), without having to redo them all for BasicAnno annotated commands.
Hence, we wrap Basic commands with this helper function, which is only defined for Basic
commands.
fun basic_to_basic_anno_syntax:: "’a com ⇒ ’a anncom" ("’(_’)-") where

"basic_to_basic_anno_syntax (Basic f) = BasicAnno f"
| "basic_to_basic_anno_syntax c = NoAnno c"

The following function defines what it means for an annotated command to satisfy the given
specification components. The soundness of this definition will be proved later.
fun anncom_spec_valid :: "’a set ⇒ ’a rel ⇒ ’a rel ⇒ ’a set ⇒ ’a anncom ⇒ bool" where

"anncom_spec_valid pre rely guar post (NoAnno c)
= (` c sat [pre, rely, guar, post])"

13

| "anncom_spec_valid pre rely guar post (BasicAnno f)
= (stable pre rely ∧

stable post rely ∧
(∀ s. s ∈ pre −→ (s, s) ∈ guar) ∧
(∀ s. s ∈ pre −→ (s, f s) ∈ guar) ∧
pre ⊆ {| ´ f ∈ post |})"

| "anncom_spec_valid pre rely guar post (WeakPre p’ ac)
= ((pre ⊆ p’) ∧

(anncom_spec_valid p’ rely guar post ac))"

| "anncom_spec_valid pre rely guar post (StrongPost ac q’)
= ((q’ ⊆ post) ∧

(anncom_spec_valid pre rely guar q’ ac))"

| "anncom_spec_valid pre rely guar post (SeqAnno ac1 mid ac2)
= ((anncom_spec_valid pre rely guar mid ac1) ∧

(anncom_spec_valid mid rely guar post ac2))"

| "anncom_spec_valid pre rely guar post (CondAnno b ac1 ac2)
= ((stable pre rely) ∧

(Id ⊆ guar) ∧
(anncom_spec_valid (pre ∩ b) rely guar post ac1) ∧
(anncom_spec_valid (pre ∩ -b) rely guar post ac2))"

| "anncom_spec_valid pre rely guar post (WhileAnno b b’ ac)
= ((stable pre rely) ∧

(stable post rely) ∧
(Id ⊆ guar) ∧
(pre ∩ -b ⊆ post) ∧
(pre ∩ b ⊆ b’) ∧
(anncom_spec_valid (pre ∩ b’) rely guar pre ac))"

| "anncom_spec_valid pre rely guar post (AwaitAnno b ac)
= ((stable pre rely) ∧

(stable post rely) ∧
(∀ s. anncom_spec_valid (pre ∩ b ∩ {s}) Id UNIV ({s’. (s, s’) ∈ guar} ∩ post) ac))"

The following theorem establishes the soundness of the definition above.
theorem anncom_spec_valid_sound:

"anncom_spec_valid pre rely guar post ac =⇒ ` anncom_to_com ac sat [pre, rely, guar,
post]"
proof (induction ac arbitrary: pre rely guar post)

case (NoAnno x)
thus ?case

by (cases x; fastforce)
next

case (BasicAnno x)
thus ?case

by (fastforce simp: rg_basic_named)
next

case (WeakPre pre’ ac)
thus ?case

by (fastforce dest: Conseq)
next

case (StrongPost ac x2)
thus ?case

14

by (fastforce simp: weaken_post)
next

case (SeqAnno ac1 x2 ac2)
thus ?case

by (fastforce simp: Seq)
next

case (CondAnno x1a ac1 ac2)
thus ?case

by (fastforce simp: Cond subset_iff)
next

case (WhileAnno x1a x2 ac)
thus ?case

apply clarsimp
apply (rule While,simp_all)

apply (metis le_inf_iff Int_lower1 strengthen_pre)
by fastforce

next
case (AwaitAnno x1a ac)
thus ?case

apply clarsimp
apply (rule Await, simp_all)

by (smt (verit, best) Conseq IdI case_prodE mem_Collect_eq subset_iff)
qed

3.1 Annotated Quintuples

For convenience, we define the following datatype, which collects an annotated command with
its specification components.
datatype ’a annquin = AnnQuin "’a set" "’a rel" "’a anncom" "’a rel" "’a set"

("{_,_} _ {_,_}")

abbreviation annquin_invar ::
"’a set ⇒ ’a rel ⇒ ’a anncom ⇒ ’a set ⇒ ’a rel ⇒ ’a set ⇒ ’a annquin"
("{_,_} _ � _ {_,_}") where
"annquin_invar pre rely ac I guar post ≡ AnnQuin

(pre ∩ I) (rely ∩ pred_to_rel I)
(add_invar I ac)
(invar_and_guar I guar) (post ∩ I)"

Helper functions for extracting the individual components of an ‹ ’a annquin› .
fun preOf :: "’a annquin ⇒ ’a set"

where "preOf (AnnQuin pre rely ac guar post) = pre"

fun relyOf :: "’a annquin ⇒ ’a rel"
where "relyOf (AnnQuin pre rely ac guar post) = rely"

fun cmdOf :: "’a annquin ⇒ ’a anncom"
where "cmdOf (AnnQuin pre rely ac guar post) = ac"

fun guarOf :: "’a annquin ⇒ ’a rel"
where "guarOf (AnnQuin pre rely ac guar post) = guar"

fun postOf :: "’a annquin ⇒ ’a set"
where "postOf (AnnQuin pre rely ac guar post) = post"

Validity of ‹ ’a annquin› is the same as the validity of the “quintuples” when written out
separately.

15

abbreviation annquin_valid :: "’a annquin ⇒ bool" where
"annquin_valid rgac ≡ case rgac of (AnnQuin pre rely ac guar post) ⇒
anncom_spec_valid pre rely guar post ac"

lemma annquin_simp[simp]:
"annquin_valid (AnnQuin p r c g q) = anncom_spec_valid p r g q c"
by fastforce

Syntax for expressing a valid ‹ ’a annquin› in terms of its components.
syntax

"_valid_annquin"
:: "’a rel ⇒ ’a rel ⇒ ’a set ⇒ ’a anncom ⇒ ’a set ⇒ bool"
("rely:_ guar:_ anno’_code: {_} _ {_}")

"_valid_annquin_invar"
:: "’a rel ⇒ ’a rel ⇒ ’a set ⇒ ’a set ⇒ ’a anncom ⇒ ’a set ⇒ bool"
("rely:_ guar:_ inv:_ anno’_code: {_} _ {_}")

translations
"rely: R guar: G anno_code: {P} ac {Q}"
⇀ "CONST annquin_valid (CONST AnnQuin P R ac G Q)"
"rely: R guar: G inv: I anno_code: {P} ac {Q}"
⇀ "CONST annquin_valid (CONST AnnQuin

(P ∩ I) (R ∩ CONST pred_to_rel I)
(CONST add_invar I ac)
(CONST invar_and_guar I G) (Q ∩ I))"

3.2 Structured Tactics for Annotated Commands
lemma anncom_subgoals_no:

"` c sat [pre, rely, guar, post] =⇒ anncom_spec_valid pre rely guar post (NoAnno c)"
by fastforce

lemma anncom_subgoals_invar_no:
assumes "` c sat [pre ∩ I, rely ∩ pred_to_rel I, invar_and_guar I guar, post ∩ I]"
shows "anncom_spec_valid (pre ∩ I) (rely ∩ pred_to_rel I) (invar_and_guar I guar)

(post ∩ I) (add_invar I (NoAnno c))"
using assms by fastforce

lemma anncom_subgoals_basicanno_invar:
assumes stable_pre: "stable (pre ∩ I) (rely ∩ pred_to_rel I)"

and stable_post: "stable (post ∩ I) (rely ∩ pred_to_rel I)"
and guar_id: "∀ s. s ∈ (pre ∩ I) −→ (s, s) ∈ (invar_and_guar I guar)"
and establish_guar: "∀ s. s ∈ (pre ∩ I) −→ (s, f s) ∈ (invar_and_guar I guar)"
and establish_post: "(pre ∩ I) ⊆ {| ´ f ∈ (post ∩ I) |}"

shows "rely: rely guar: guar inv: I anno_code: {pre} (BasicAnno f) {post}"
using assms by fastforce

method method_annquin_basicanno =
rule anncom_subgoals_basicanno_invar,
goal_cases stable_pre stable_post guar_id est_guar est_post

lemma anncom_subgoals_seq:
assumes "anncom_spec_valid pre rely guar mid c1"

and "anncom_spec_valid mid rely guar post c2"
shows "anncom_spec_valid pre rely guar post (SeqAnno c1 mid c2)"

using assms by fastforce

lemma anncom_subgoals_invar_seq:

16

assumes "anncom_spec_valid (pre ∩ I) (rely ∩ pred_to_rel I) (invar_and_guar I guar)
(mid ∩ I) (add_invar I c1)"

and "anncom_spec_valid (mid ∩ I) (rely ∩ pred_to_rel I) (invar_and_guar I guar)
(post ∩ I) (add_invar I c2)"

shows "anncom_spec_valid (pre ∩ I) (rely ∩ pred_to_rel I) (invar_and_guar I guar)
(post ∩ I) (add_invar I (SeqAnno c1 mid c2))"

using Seq assms by fastforce

lemma anncom_subgoals_invar_seq_abbrev:
assumes "anncom_spec_valid (pre ∩ I) (rely ∩ pred_to_rel I) (invar_and_guar I guar)

(mid ∩ I) (add_invar I c1)"
and "anncom_spec_valid (mid ∩ I) (rely ∩ pred_to_rel I) (invar_and_guar I guar)

(post ∩ I) (add_invar I c2)"
shows "rely: (rely) guar: guar inv: I anno_code: {pre} (c1 .; {mid} c2) {post}"

using Seq assms by fastforce

method method_annquin_seq =
(rule anncom_subgoals_invar_seq | rule anncom_subgoals_invar_seq_abbrev),
goal_cases c1 c2

lemma anncom_subgoals_while:
assumes "stable pre rely"

and "stable post rely"
and "Id ⊆ guar"
and "pre ∩ -b ⊆ post"
and "pre ∩ b ⊆ b’"
and "anncom_spec_valid (pre ∩ b’) rely guar pre ac"

shows "anncom_spec_valid pre rely guar post (WhileAnno b b’ ac)"
using assms by fastforce

lemma add_invar_while:
assumes "anncom_spec_valid (p ∩ I) (R ∩ pred_to_rel I) (invar_and_guar I G)

(q ∩ I) (WhileAnno b b’ (add_invar I ac))"
shows "anncom_spec_valid (p ∩ I) (R ∩ pred_to_rel I) (invar_and_guar I G)

(q ∩ I) (add_invar I (WhileAnno b b’ ac))"
using assms by fastforce

lemma anncom_subgoals_invar_while_abbrev:
assumes "anncom_spec_valid (p ∩ I) (R ∩ pred_to_rel I) (invar_and_guar I G)

(q ∩ I) (add_invar I (WhileAnno b b’ ac))"
shows "rely: R guar: G inv: I anno_code: {p} (WhileAnno b b’ ac) {q}"

using assms by fastforce

method method_annquin_while =
rule anncom_subgoals_invar_while_abbrev,
rule add_invar_while,
rule anncom_subgoals_while,
goal_cases stable_pre stable_post guar_id neg_guard guard body

3.3 Binary Parallel

This section contains inference rules for two annotated commands running in parallel. For
convenience, we first define a datatype that encapsulates the components.
datatype ’a binary_par_quin = ParCode

"’a set" "’a rel" "’a annquin" "’a annquin" "’a rel" "’a set"
("{_,_} _ ‖a _ {_,_}")

The next function sets out the proof obligations of binary parallel, using the datatype ‹ ’a

17

binary_par_quin› above. It is then followed by the theorem that establishes the soundness of
the inference rule encoded by the function binary_parallel_valid.
fun binary_parallel_valid:: "’a binary_par_quin ⇒ bool" where
"binary_parallel_valid (ParCode init gr (AnnQuin p1 r1 c1 g1 q1) (AnnQuin p2 r2 c2 g2 q2)

gg final)
= (annquin_valid (AnnQuin p1 r1 c1 g1 q1)
∧ annquin_valid (AnnQuin p2 r2 c2 g2 q2)
∧ init ⊆ p1 ∩ p2
∧ gr ⊆ r1 ∩ r2
∧ g1 ⊆ r2
∧ g2 ⊆ r1
∧ g1 ∪ g2 ⊆ gg
∧ q1 ∩ q2 ⊆ final)"

theorem valid_binary_parallel:
"binary_parallel_valid (ParCode init gr (AnnQuin p1 r1 c1 g1 q1) (AnnQuin p2 r2 c2 g2 q2)

gg final)
=⇒ ` COBEGIN (anncom_to_com c1, p1, r1, g1, q1) ‖ (anncom_to_com c2, p2, r2, g2, q2)

COEND SAT [init, gr, gg, final]"
by (rule Parallel; force intro:anncom_spec_valid_sound simp: less_Suc_eq)

Variants of the theorem above.
theorem valid_binary_parallel_exists:
"binary_parallel_valid (ParCode init gr (AnnQuin p1 r1 c1 g1 q1) (AnnQuin p2 r2 c2 g2 q2)

gg final)
=⇒ {init, gr} anncom_to_com c1 ‖ anncom_to_com c2 {gg, final}"
by (fast dest: valid_binary_parallel)

theorem valid_binary_parallel_exists_annotated:
assumes "binary_parallel_valid (ParCode

init gr
(AnnQuin p1 r1 c1’ g1 q1) (AnnQuin p2 r2 c2’ g2 q2)
gg final)"

and "anncom_to_com c1’ = c1"
and "anncom_to_com c2’ = c2"

shows "{init, gr} c1 ‖ c2 {gg, final}"
using assms
by (fast dest: valid_binary_parallel)

3.4 Helpers: Index Offsets

Before moving on to multi-parallel programs, we first prepare some lemmas that help reason
about offsets and indices.
abbreviation nat_range_set_neq_i :: "nat ⇒ nat ⇒ nat ⇒ nat set"

("{_..<_6=_}") where
"nat_range_set_neq_i lo hi x ≡ {lo..<hi} - {x}"

lemma all_set_range_to_offset:
"(∀ i∈{lo..<hi::nat}. P (f i)) ←→ (∀ i<(hi-lo). P (f (lo + i)))"
by (metis add.commute atLeastLessThan_iff less_diff_conv nat_le_iff_add)

lemma Int_set_range_to_offset:
"(

⋂
i∈{lo..<hi::nat}. f i) = (

⋂
i<(hi-lo). f (lo + i))"

by (fastforce simp: le_iff_add)

lemma Un_set_range_to_offset:
"(

⋃
i∈{lo..<hi::nat}. g (f i)) = (

⋃
i<(hi-lo). g (f (lo + i)))"

18

apply standard
apply clarsimp
apply (metis add_diff_cancel_left’ diff_less_mono lessThan_iff nat_le_iff_add)

by fastforce

lemma Int_set_range_neq_to_offset: "i = lo + ii
=⇒ (

⋂
j∈{lo..<hi6=i}. f j) = (

⋂
j∈{0..<(hi-lo)6= ii}. f (lo + j))"

unfolding Ball_def Bex_def image_def
apply clarsimp
by (metis (lifting) diff_add_inverse diff_less_mono less_diff_conv nat_le_iff_add)

lemma Int_set_range_neq_to_offset2: "ii< (hi - lo)
=⇒ (

⋂
j∈{lo..<hi6=(lo + ii)}. f j) = (

⋂
j∈{0..<(hi-lo)6= ii}. f (lo + j))"

unfolding Ball_def Bex_def image_def
apply clarsimp
by (metis (lifting) add.commute add_left_imp_eq less_diff_conv nat_le_iff_add)

lemma forall_range_to_offset:
"(∀ i∈{lo..<(hi::nat)}. P i) ←→ (∀ i∈{0..<(hi - lo)}. P (lo + i))"
unfolding Ball_def
apply clarsimp
by (metis add.commute le_add1 le_add_diff_inverse less_diff_conv)

lemma SCHEME_map_domain:
"map (λi. rgac i) [lo ..< (N::nat)] = map (λi. rgac (lo + i)) [0..<(N-lo)]"
by (induct N arbitrary: lo; simp add: Suc_diff_le)

lemma offset_P: "(∀ i. lo ≤ i ∧ i < (N::nat) −→ P i) =⇒ lo ≤ N =⇒ (∀ i. i <(N-lo) −→
P (lo + i))"

by fastforce

lemma INTER_offset:
shows "(

⋂
x<((N::nat) - lo). p (lo + x)) = (

⋂
x∈{lo..<N}. p x)"

by (simp add: Ball_def Int_set_range_to_offset)

lemma LT_offset: "(∀ i. lo ≤ i ∧ i < (N::nat) −→ P i) ←→ (∀ i<N - lo. P (lo + i))"
by (metis add.commute le_add1 le_add_diff_inverse2 less_diff_conv)

3.5 Multi-Parallel

This section contains inference rules for multiple annotated commands running in parallel.
Again, for convenience we first define a datatype that encapsulates the components:

1. Global precondition

2. Global rely

3. The lower index

4. The upper index

5. Sequential programs (each an annotated quintuple), indexed by the natural numbers

6. Global guarantee

7. Global postcondition

datatype ’a multi_par_quin = MultiParCode

19

"’a set"
"’a rel"
nat nat

"nat ⇒ ’a annquin"
"’a rel"
"’a set"

Using the datatype above, the inference rules are set out as the following two functions.
fun multipar_valid :: "’a multi_par_quin ⇒ bool" where

"multipar_valid (MultiParCode init RR lo N iac gg final) =
((∀ i∈{lo..<N}. annquin_valid (iac i)) ∧

init ⊆ (
⋂

i∈{lo..<N}. preOf (iac i)) ∧
RR ⊆ (

⋂
i∈{lo..<N}. relyOf (iac i)) ∧

(∀ i∈{lo..<N}. guarOf (iac i) ⊆ (
⋂

j∈{lo..<N 6=i}. relyOf (iac j))) ∧
(
⋃

i∈{lo..<N}. guarOf (iac i)) ⊆ gg ∧
(
⋂

i∈{lo..<N}. postOf (iac i)) ⊆ final)"

fun multipar_valid_offset:: "’a multi_par_quin ⇒ bool" where
"multipar_valid_offset (MultiParCode init RR lo N iac gg final) =
((∀ i<(N-lo). annquin_valid (iac (lo + i))) ∧

init ⊆ (
⋂

i<(N-lo). preOf (iac (lo + i))) ∧
RR ⊆ (

⋂
i<(N-lo). relyOf (iac (lo + i))) ∧

(∀ i<(N-lo). guarOf (iac (lo + i)) ⊆ (
⋂

j∈{0..<(N-lo)6=i}. relyOf (iac (lo + j))))
∧

(
⋃

i<(N-lo). guarOf (iac (lo + i))) ⊆ gg ∧
(
⋂

i<(N-lo). postOf (iac (lo + i))) ⊆ final)"

Alternative syntax that encodes the validity of multi-parallel statements.
syntax

"_multi_parallel_anno"
:: "’a set ⇒ ’a rel ⇒ idt ⇒ nat ⇒ ’a annquin ⇒ ’a rel ⇒ ’a set ⇒ bool"
("annotated global’_init: _ global’_rely: _ ‖ _ < _ @ _ global’_guar: _ global’_post:

_")
"_multi_parallel_anno_lo_hi"

:: "’a set ⇒ ’a rel ⇒ nat ⇒ idt ⇒ nat ⇒ ’a annquin ⇒ ’a rel ⇒ ’a set ⇒ bool"
("annotated global’_init: _ global’_rely: _ ‖ _ ≤ _ < _ @ _ global’_guar: _ global’_post:

_")

translations
"annotated global_init: Init global_rely: RR ‖ i < N @ rgac global_guar: GG global_post:

QQ"
⇀ "CONST multipar_valid (CONST MultiParCode Init RR 0 N (λi. rgac) GG QQ)"
"annotated global_init: Init global_rely: RR ‖ lo ≤ i < hi @ rgac global_guar: GG global_post:

QQ"
⇀ "CONST multipar_valid_offset (CONST MultiParCode Init RR lo hi (λi. rgac) GG QQ)"

The soundness of the inference rules, in multiple variants.
lemma multipar_valid_offset_equiv:

"multipar_valid (MultiParCode init RR lo hi iac gg final) ←→
multipar_valid_offset (MultiParCode init RR lo hi iac gg final)"

apply clarsimp
apply (intro conjI iffI)

apply fastforce
apply fastforce

apply fastforce
apply fastforce

apply fastforce

20

apply (fastforce simp: Int_set_range_to_offset)
apply (metis (lifting) atLeastLessThan_iff diff_less_mono le_add_diff_inverse)

apply (metis (no_types, lifting) ext INTER_offset)
apply (metis (no_types, lifting) ext INTER_offset)

apply (simp add: Ball_def)
apply (smt (verit, ccfv_threshold) Int_set_range_neq_to_offset Sup.SUP_cong le_add_diff_inverse

le_add_diff_inverse2 less_diff_conv)
apply (metis Un_set_range_to_offset)

by (fastforce simp: Int_set_range_to_offset)

theorem valid_multipar:
"multipar_valid (MultiParCode Init RR lo N rgac GG QQ) =⇒
` COBEGIN SCHEME [lo ≤ i < N] (

CONST anncom_to_com (cmdOf (rgac i)),
preOf (rgac i),
relyOf (rgac i),
guarOf (rgac i) ,
postOf (rgac i)

) COEND
SAT [Init, RR , GG, QQ]"

apply (rule Parallel)
apply (simp add: subset_iff)

apply (metis Diff_iff add.commute add_left_cancel atLeastLessThan_iff empty_iff insert_iff

le_add1 less_diff_conv nth_upt)
apply (fastforce intro: Ball_def simp: subset_iff)

apply (fastforce simp: subset_iff)
apply (simp add: subset_iff)
apply (metis atLeastLessThan_iff diff_less_mono le_add_diff_inverse)

apply (simp add: subset_iff)
by (metis (lifting) ext add.commute anncom_spec_valid_sound annquin_simp atLeastLessThan_iff

cmdOf.simps guarOf.simps le_add1 less_diff_conv postOf.elims preOf.simps

relyOf.simps)

theorem valid_multipar_with_internal_rg:
"multipar_valid (MultiParCode Init RR lo N (λi. AnnQuin (p i) (r i) (ac i) (g i) (q i))

GG QQ) =⇒
(∀ i. anncom_to_com (ac i) = c i) =⇒
` COBEGIN SCHEME [lo ≤ i < N] ((c i), p i, r i, g i, q i) COEND

SAT [Init, RR , GG, QQ]"
unfolding Ball_def
apply (rule Parallel, simp_all add: subset_iff)

apply (metis Diff_iff add.commute atLeastLessThan_iff diff_add_inverse less_diff_conv

nat_le_iff_add nth_upt singletonD)
apply (metis add.commute atLeastLessThan_iff le_add1 less_diff_conv)

apply (metis add.commute atLeastLessThan_iff less_diff_conv nat_le_iff_add)
by (metis add.commute anncom_spec_valid_sound atLeastLessThan_iff le_add1 less_diff_conv)

theorem valid_multipar_explicit:
assumes

local_sat: "
∧

i. lo ≤ i ∧ i < N =⇒ annquin_valid (iac i)" and
pre: "

∧
i. lo ≤ i ∧ i < N =⇒ init ⊆ preOf (iac i)" and

rely: "
∧

i. lo ≤ i ∧ i < N =⇒ RR ⊆ relyOf (iac i)" and

21

guar_imp_rely: "
∧

i j. lo ≤ i ∧ i<N =⇒ lo ≤ j ∧ j < N =⇒ i 6= j
=⇒ guarOf (iac i) ⊆ relyOf (iac j)" and

guar: "
∧

i. lo ≤ i ∧ i < N =⇒ guarOf (iac i) ⊆ gg" and
post: "(

⋂
i∈{lo..<N}. postOf (iac i)) ⊆ final"

shows "multipar_valid (MultiParCode init RR lo N iac gg final)"
using assms by fastforce

theorem valid_multipar_offset_explicit:
assumes

local_sat: "
∧

i. lo ≤ i ∧ i < N =⇒ annquin_valid (iac i)" and
pre: "

∧
i. lo ≤ i ∧ i < N =⇒ init ⊆ preOf (iac i)" and

rely: "
∧

i. lo ≤ i ∧ i < N =⇒ RR ⊆ relyOf (iac i)" and
guar_imp_rely: "

∧
i j. lo ≤ i ∧ i<N =⇒ lo ≤ j ∧ j < N =⇒ i 6= j

=⇒ guarOf (iac i) ⊆ relyOf (iac j)" and
guar: "

∧
i. lo ≤ i ∧ i < N =⇒ guarOf (iac i) ⊆ gg" and

post: "(
⋂

i∈{lo..<N}. postOf (iac i)) ⊆ final"
shows "multipar_valid_offset (MultiParCode init RR lo N iac gg final)"
apply clarsimp
apply (intro conjI, simp_all add: le_INF_iff assms)

apply (simp add: guar_imp_rely less_diff_conv)
apply (simp add: SUP_le_iff guar)

using post by (fastforce simp: nat_le_iff_add SUP_le_iff guar)

theorem valid_multipar_explicit2:
assumes

local_sat: "
∧

i. lo ≤ i ∧ i < N =⇒ annquin_valid {p i,r i} c i {g i ,q i}" and
pre: "

∧
i. lo ≤ i ∧ i < N =⇒ init ⊆ p i" and

rely: "
∧

i. lo ≤ i ∧ i < N =⇒ RR ⊆ r i" and
guar_imp_rely: "

∧
i j. lo ≤ i ∧ i<N =⇒ lo ≤ j ∧ j < N =⇒ i 6= j =⇒ g i ⊆ r j" and

guar: "
∧

i. lo ≤ i ∧ i < N =⇒ g i ⊆ gg" and
post: "(

⋂
i∈{lo..<N}. q i) ⊆ final"

shows "multipar_valid (MultiParCode init RR lo N (λi. {p i,r i} c i {g i ,q i}) gg
final)"

using assms
by (force simp: subset_iff)

theorem valid_multipar_explicit_with_invariant:
assumes

local_sat: "
∧

i. i < N =⇒ annquin_valid {p i,r i} c i � Inv {g i ,q i}" and
pre: "

∧
i. i < N =⇒ init ⊆ p i ∩ Inv" and

rely: "
∧

i. i < N =⇒ RR ⊆ r i ∩ pred_to_rel Inv" and
guar_imp_rely: "

∧
i j. i<N =⇒ j < N =⇒ i 6= j

=⇒ invar_and_guar Inv (g i) ⊆ r j ∩ pred_to_rel Inv" and
guar: "

∧
i. i < N =⇒ invar_and_guar Inv (g i) ⊆ gg" and

post: "(
⋂

i<N. q i ∩ Inv) ⊆ final"
shows "multipar_valid (MultiParCode init RR 0 N (λi. {p i,r i} c i � Inv {g i ,q i})

gg final)"
apply (rule valid_multipar_explicit2)
using lessThan_atLeast0 assms by presburger+

method method_annquin_multi_parallel =
rule valid_multipar_explicit2,
goal_cases local_sat pre rely guar_imp_rely guar post

3.6 The Main Tactics
lemmas rg_syntax_simps_collection =

22

multipar_valid.simps
multipar_valid_offset.simps
add_invar.simps
basic_to_basic_anno_syntax.simps
postOf.simps preOf.simps relyOf.simps guarOf.simps
annquin_simp
anncom_spec_valid.simps

method rg_proof_expand = (auto simp only: rg_syntax_simps_collection ; simp?)

method method_anno_ultimate =
method_annquin_basicanno

| method_annquin_seq+
| method_annquin_while
| method_annquin_multi_parallel
| rg_proof_expand

end

4 Examples Reworked

The examples in the original library [2], expressed using our new syntax, and proved using our
new tactics.
theory RG_Examples_Reworked

imports RG_Annotated_Commands

begin
declare [[syntax_ambiguity_warning = false]]

4.1 Setting Elements of an Array to Zero
record Example1 =

A :: "nat list"

theorem Example1:
"global_init: {| n < length ´ A |}
global_rely: id(A)
‖ i < n @
{ {| i < length ´ A |},
{| length ºA = length ªA ∧ ºA ! i = ªA ! i |} }

´ A := ´ A[i := 0]
{ {| length ºA = length ªA ∧ (∀ j < n. i 6= j −→ ºA ! j = ªA ! j) |},
{| ´ A ! i = 0 |} }

global_guar: {| True |}
global_post: {| ∀ i < n. ´ A ! i = 0 |}"

by method_rg_try_each

theorem Example1’’:
"annotated global_init: {| length ´ A = N |} global_rely: {| ªA = ºA |}
‖ i < N @
{ {| True |},
{| length ªA = length ºA ∧ ªA ! i = ºA ! i|} }
(´ A := ´ A [i := f i])- � {|length ´ A = N |}

{ {| length ªA = length ºA ∧ (∀ j. i 6= j −→ ªA ! j = ºA ! j) |},
{| ´ A ! i = f i |} }

global_guar: {| length ªA = length ºA|}

23

global_post: {| take N ´ A = map f [0 ..< N] |}"
apply rg_proof_expand
by (fastforce split: if_splits simp: map_upt_eqI)

4.2 Incrementing a Variable in Parallel

Two Components
record Example2 =

x :: nat
c_0 :: nat
c_1 :: nat

lemma ex2_leftside:
"{ {| ´ c_0 = 0 |}, id(c_0) }

Basic ((´ x ← ´ x + 1) ◦> (´ c_0 ← 1))
� {| ´ x = ´ c_0 + ´ c_1 |}
{ id(c_1), {| ´ c_0 = 1 |}}"

by method_rg_try_each

lemma ex2_rightside:
"{ {| ´ c_1 = 0 |}, id(c_1) }

Basic ((´ x ← ´ x + 1) ◦> (´ c_1 ← 1))
� {| ´ x = ´ c_0 + ´ c_1 |}
{ id(c_0), {| ´ c_1 = 1 |}}"

by method_rg_try_each

theorem Example2b:
"{ {| ´ c_0 = 0 ∧ ´ c_1 = 0 |}, ids({c_0, c_1}) }
(Basic ((´ x ← ´ x + 1) ◦> (´ c_0 ← 1))) ‖ (Basic ((´ x ← ´ x + 1) ◦> (´ c_1 ← 1)))
� {| ´ x = ´ c_0 + ´ c_1 |}
{ UNIV, {| True |} }"

using ex2_leftside ex2_rightside
by (rule rg_binary_parallel_invar_conseq; blast)

Parameterised
lemma sum_split:

"(j::nat) < (n::nat)
=⇒ sum a {0..<n} = sum a {0..<j} + a j + sum a {j+1..<n}"
by (metis Suc_eq_plus1 bot_nat_0.extremum group_cancel.add1 le_eq_less_or_eq sum.atLeastLessThan_concat

sum.atLeast_Suc_lessThan)

Intuition of the lemma above: Consider the sum of a function b k with k ranging from 0 to n -
1. Let j be an index in this range, and assume b j = 0. Then, replacing b j with 1 in the sum,
the result is the same as adding 1 to the original sum.
lemma Example2_lemma2_replace:

assumes "(j::nat) < n"
and "b’ = b(j:=xx::nat)"

shows "(
∑

i = 0 ..< n. b’ i) = (
∑

i = 0 ..< n. b i) - b j + xx"
apply (subst sum_split, rule assms(1))
apply (subst sum_split, rule assms(1))
using assms(2) by clarsimp

lemma Example2_lemma2_Suc0[simp]:
assumes "(j::nat) < n"

and "b j = 0"
and "b’ = b(j:=1)"

shows "Suc (
∑

i::nat = 0 ..< n. b i) = (
∑

i = 0 ..< n. b’ i)"

24

using assms Example2_lemma2_replace
by fastforce

record Example2_param =
y :: nat
C :: "nat ⇒ nat"

lemma Example2_local:
"i < n =⇒
{ {| ´ C i = 0 |},

id(C @ i) }

Basic ((´ y ← ´ y + 1) ◦> (´ C ← ´ C(i:=1)))
� {| ´ y = (

∑
k::nat = 0 ..< n. ´ C k) |}

{ {| ∀ j < n. i 6= j −→ ºC j = ªC j |},
{| ´ C i = 1 |} }"

by method_rg_try_each

theorem Example2_param:
assumes "0 < n" shows
"global_init: {| ´ y = 0 ∧ sum ´ C {0 ..< n} = 0 |}
global_rely: id(C) ∩ id(y)
‖ i < n @

{ {| ´ C i = 0 |},
id(C @ i) }
Basic ((´ y ← ´ y + 1) ◦> (´ C ← ´ C(i:=1)))
� {| ´ y = sum ´ C {0 ..< n} |}

{ {| ∀ j < n. i 6= j −→ ºC j = ªC j |},
{| ´ C i = 1 |} }

global_guar: {| True |}
global_post: {| ´ y = n |}"

proof method_multi_parallel
case post
then show ?case

using assms by (clarsimp, fastforce)
next

case body
then show ?case

by method_rg_try_each
qed (fastforce+)

As above, but using an explicit annotation and a different method.
theorem Example2_param_with_expansion:

assumes "0 < n" shows "annotated
global_init: {| ´ y = 0 ∧ sum ´ C {0 ..< n} = 0 |}
global_rely: id(C) ∩ id(y)
‖ i < n @

{ {| ´ C i = 0 |},
id(C @ i) }
(Basic ((´ y ← ´ y + 1) ◦> (´ C ← ´ C(i:=1))))-
� {| ´ y = sum ´ C {0 ..< n} |}

{ {| ∀ j < n. i 6= j −→ ºC j = ªC j |},
{| ´ C i = 1 |} }

global_guar: {| True |}
global_post: {| ´ y = n |}"
apply rg_proof_expand
using assms by (fastforce split: if_splits)

25

4.3 FindP

Titled “Find Least Element” in the original [2], the "findP" problem assumes that n divides m,
and runs n threads in parallel to search through a length-m array B for an element that satisfies
a predicate P. The indices of the array B are partitioned into the congruence-classes modulo n,
where Thread i searches through the indices that are congruent to i mod n.
In the program, X i is the next index to be checked by Thread i. Meanwhile, Y i is either
the out-of-bound default m + i if Thread i has not found a P-element, or the index of the first
P-element found by Thread i.

The first helper lemma: an equivalent version of mod_aux found in the original.
lemma mod_aux :

"a mod (n::nat) = i =⇒ a < j ∧ j < a + n =⇒ j mod n 6= i"
using mod_eq_dvd_iff_nat nat_dvd_not_less by force

record Example3 =
X :: "nat ⇒ nat"
Y :: "nat ⇒ nat"

lemma Example3:
assumes "m mod n=0" shows "annotated
global_init: {|∀ i < n. ´ X i = i ∧ ´ Y i = m + i |}
global_rely: {| ºX = ªX ∧ ºY = ªY|}
‖ i < n @

{ {|(´ X i) mod n=i ∧ (∀ j<´ X i. j mod n=i −→ ¬P(B!j)) ∧ (´ Y i<m −→ P(B!(´ Y i)) ∧ ´ Y
i≤ m+i)|},

{|(∀ j<n. i6=j −→ ªY j ≤ ºY j) ∧ ºX i = ªX i ∧ ºY i = ªY i|} }

WHILEa (∀ j < n. ´ X i < ´ Y j) DO
{stable_guard: {|´ X i < ´ Y i|}}
IFa P(B!(´ X i)) THEN

(´ Y[i] := ´ X i)-
ELSE

(´ X[i] := ´ X i + n)-
FI

OD

{ {|(∀ j<n. i6=j −→ ºX j = ªX j ∧ ºY j = ªY j) ∧ ªY i ≤ ºY i|},
{| (´ X i) mod n = i ∧ (∀ j<´ X i. j mod n=i −→ ¬P(B!j))
∧ (´ Y i<m −→ P(B!(´ Y i)) ∧ ´ Y i≤ m+i)
∧ (∃ j<n. ´ Y j ≤ ´ X i) |} }

global_guar: {|True|}
global_post: {| ∀ i < n. (´ X i) mod n=i

∧ (∀ j<´ X i. j mod n=i −→ ¬P(B!j))
∧ (´ Y i<m −→ P(B!(´ Y i)) ∧´ Y i≤ m+i)
∧ (∃ j<n. ´ Y j ≤ ´ X i) |}"

apply rg_proof_expand
apply fastforce+

apply (metis linorder_neqE_nat mod_aux)
apply (metis antisym_conv3 mod_aux)

by (metis leD mod_less_eq_dividend)

Below is the original version of the theorem, and is immediately derivable from the above. We
include some formatting changes (such as line breaks) for better readability.
lemma Example3_original: "m mod n=0 =⇒

26

` COBEGIN SCHEME [0≤i<n]

(WHILE (∀ j < n. ´ X i < ´ Y j) DO
IF P(B!(´ X i)) THEN ´ Y:=´ Y (i:=´ X i) ELSE ´ X:= ´ X (i:=(´ X i)+ n) FI

OD,

{|(´ X i) mod n=i ∧ (∀ j<´ X i. j mod n=i −→ ¬P(B!j)) ∧ (´ Y i<m −→ P(B!(´ Y i)) ∧ ´ Y i≤
m+i)|},

{|(∀ j<n. i6=j −→ ªY j ≤ ºY j) ∧ ºX i = ªX i ∧ ºY i = ªY i|},

{|(∀ j<n. i6=j −→ ºX j = ªX j ∧ ºY j = ªY j) ∧ ªY i ≤ ºY i|},

{|(´ X i) mod n=i ∧ (∀ j<´ X i. j mod n=i −→ ¬P(B!j)) ∧ (´ Y i<m −→ P(B!(´ Y i)) ∧ ´ Y i≤
m+i) ∧ (∃ j<n. ´ Y j ≤ ´ X i) |})

COEND
SAT [
{| ∀ i < n. ´ X i = i ∧ ´ Y i = m+i |},

{|ºX=ªX ∧ ºY=ªY|},

{|True|},

{|∀ i < n. (´ X i) mod n=i ∧
(∀ j<´ X i. j mod n=i −→ ¬P(B!j)) ∧
(´ Y i<m −→ P(B!(´ Y i)) ∧´ Y i≤ m+i) ∧
(∃ j<n. ´ Y j ≤ ´ X i)|}]"

by (rule valid_multipar_with_internal_rg[OF Example3]; simp)

end

5 Abstract Queue Lock
theory Lock_Abstract_Queue

imports
RG_Annotated_Commands

begin

We identify each thread by a natural number.
type_synonym thread_id = nat

The state of the Abstract Queue Lock consists of one single field, which is the list of threads.
record queue_lock = queue :: "thread_id list"

The following abbreviation describes when an object is at the head of a list. Note that both
clauses are needed to characterise the predicate faithfully, because the term x = hd xs (i.e. x is
the head of xs) does not imply that x ∈ set xs.
abbreviation at_head :: "’a ⇒ ’a list ⇒ bool" where

"at_head x xs ≡ xs 6= [] ∧ x = hd xs"

The contract of the Abstract Queue Lock consists of two clauses. The first states that a thread
cannot be added to or removed from the queue by its environment. The second states that the
head of the queue remains at the head after any environment-step.

27

abbreviation queue_contract :: "thread_id ⇒ queue_lock rel" where
"queue_contract i ≡ {|

(i ∈ set ºqueue ←→ i ∈ set ªqueue) ∧
(at_head i ºqueue −→ at_head i ªqueue) |}"

The RG sentence of the Release procedure is made into a separate lemma below.
lemma qlock_rel:
"rely: queue_contract t guar: for_others queue_contract t
inv: {| distinct ´ queue |} code:

{ {| at_head t ´ queue |} }
´ queue := tl ´ queue

{ {| t /∈ set ´ queue |} }"
proof method_basic_inv

case est_guar
then show ?case

apply clarsimp
by (metis hd_Cons_tl list.set_sel(2) set_ConsD)

next
case est_post
then show ?case

apply clarsimp
by (metis distinct.simps(2) list.collapse)

qed (simp_all add: distinct_tl)

The correctness of the Abstract Queue Lock is expressed by the following RG sentence, which
describes a closed system of n threads, each repeatedly calls Acquire and then Release in an
infinite loop. We omit the critical section between Acquire and Release, as it does not access
the lock.
The Acquire procedure consists of two steps: enqueuing and spinning. The Release procedure
consists of only the dequeuing step.
Each thread can only be in the queue at most once, so the invariant requires the queue to be
distinct.
The queue is initially empty; hence the global precondition. Being a closed system, there is no
external actor, so the rely is the identity relation, and the guarantee is the universal relation.
The system executes continuously, as the outer infinite loop never terminates; hence, the global
postcondition is the empty set.
theorem qlock_global:

assumes "0 < n"
shows "annotated
global_init: {| ´ queue = [] |} global_rely: Id
‖ i < n @

{ {| i /∈ set ´ queue |}, queue_contract i }

WHILEa True DO
{stable_guard: {| i /∈ set ´ queue |} }
NoAnno (´ queue := ´ queue @ [i]) .;
{ {| i ∈ set ´ queue |} }
NoAnno (WHILE hd ´ queue 6= i DO SKIP OD) .;
{ {| at_head i ´ queue |}}
NoAnno (´ queue := tl ´ queue)

OD

� {| distinct ´ queue |} { for_others queue_contract i, {} }
global_guar: UNIV global_post: {}"
apply rg_proof_expand

apply (method_basic; fastforce)

28

apply (method_spinloop; fastforce)
using qlock_rel apply fastforce

using assms by fastforce

end

6 Ticket Lock
theory Function_Supplementary

imports Main

begin

This theory contains some function-related definitions and associated lemmas that are not
included in the built-in library. They are grouped into two sections:

1. Predicates that describe functions that are injective or surjective when restricted to subsets
of their domains or images.

2. A higher-order function that performs a list of updates on a function.

The content of this theory was conceived during a project on formal program verification of
locks (i.e. mutexes). The new definitions and lemmas arose from the proof of data refinement
from an abstract queue-lock to a ticket-lock.
Inspired by the theories List Index (Nipkow 2010) and Fixed-Length Vectors (Hupel 2023) on
the Archive of Formal Proofs, we hope that these new definitions and lemmas may also be of
help to others.

6.1 Helpers: Inj, Surj and Bij

It is sometimes useful to describe a function that is not injective in itself, but is injective when
its image is restricted to a subset.
For example, consider the function {a 7→ 1, b 7→ 2, c 7→ 2}. This function is not injective, but if
its image is restricted to {1}, the new function {a 7→ 1} becomes injective.
This motivates the following definition.
definition inj_img :: "(’a ⇒ ’b) ⇒ ’b set ⇒ bool" where

"inj_img f B ≡ ∀ x1 x2. f x1 = f x2 ∧ f x1 ∈ B −→ x1 = x2"

Similarly, the next definition describes a function that becomes surjective when its codomain is
restricted to a subset.
In other words, “surj_codom f B” means that every element in B is mapped to by f .
For example, consider the function that maps from the domain {a, b} to the codomain {1, 2}
with the graph {a 7→ 1, b 7→ 1}. This function is not surjective, but if its codomain is restricted
to {1}, then the new function becomes surjective.
definition surj_codom :: "(’a ⇒ ’b) ⇒ ’b set ⇒ bool" where

"surj_codom f B ≡ ∀ y ∈ B. (∃ x. f x = y)"

We can also describe a function that remains surjective on a subset of its domain.
In other words, “surj_on f A” means that mappings that originate from A already span the
entire codomain.
Note that this is a notion stronger than plain surjectivity, which will be shown in the later
subsection “Surj-Related”.

29

definition surj_on :: "(’a ⇒ ’b) ⇒ ’a set ⇒ bool" where
"surj_on f A ≡ ∀ y. (∃ x ∈ A. f x = y)"

Note that all three definitions above are most likely not included in the built-in library, as
suggested by the outputs of the following search-commands.
find_consts name:"inj"
find_consts name:"surj"

6.1.1 Inj-Related
lemma inj_implies_inj_on: "inj f =⇒ inj_on f A"

using inj_on_subset by blast

lemma inj_implies_inj_img: "inj f =⇒ inj_img f B"
by (simp add: injD inj_img_def)

lemma inj_img_empty: "inj_img f {}"
by (fastforce simp: inj_img_def)

lemma inj_img_singleton: "∀ x. f x 6= b =⇒ inj_img f {b}"
by (fastforce simp: inj_img_def)

lemma inj_img_subset:
"[[inj_img f B ; B’ ⊆ B]] =⇒ inj_img f B’"
by (fastforce simp: inj_img_def)

lemma inj_img_superset:
"[[inj_img f B ; ∀ x. f x /∈ B’ - B]] =⇒ inj_img f B’"
by (fastforce simp: inj_img_def)

lemma inj_img_not_mapped_to: "∀ x. f x /∈ B =⇒ inj_img f B"
by (fastforce simp: inj_img_def)

lemma inj_img_add_one_extra:
"[[inj_img f B ; ∀ x. f x 6= b]] =⇒ inj_img f (B ∪ {b})"
by (fastforce simp: inj_img_def)

lemma inj_img_union_1:
"[[inj_img f B1 ; inj_img f B2]] =⇒ inj_img f (B1 ∪ B2)"
by (fastforce simp: inj_img_def)

lemma inj_img_union_2:
"[[inj_img f B1 ; ∀ x. f x /∈ B2]] =⇒ inj_img f (B1 ∪ B2)"
by (simp add: inj_img_not_mapped_to inj_img_union_1)

lemma inj_img_fun_upd_notin:
"[[inj_img f B ; ∀ x. f x 6= b]] =⇒ inj_img (fun_upd f a b) B"
by (fastforce simp: inj_img_def)

lemma inj_img_fun_upd_singleton:
"∀ x. f x 6= b =⇒ inj_img (fun_upd f a b) {b}"
by (simp add: inj_img_fun_upd_notin inj_img_singleton)

6.1.2 Surj-Related

Lemmas related to “surj codom”.
lemma surj_implies_surj_codom: "surj f =⇒ surj_codom f B"

30

by (metis surjD surj_codom_def)

lemma surj_codom_triv: "surj_codom f (f ‘ A)"
by (fastforce simp: surj_codom_def)

lemma surj_codom_univ: "surj_codom f UNIV = surj f"
by (metis surj_codom_def surj_def UNIV_I)

lemma surj_codom_empty: "surj_codom f {}"
by (fastforce simp: surj_codom_def)

lemma surj_codom_singleton: "b ∈ range f =⇒ surj_codom f {b}"
by (fastforce simp: surj_codom_def)

lemma surj_codom_subset:
"[[surj_codom f B ; B’ ⊆ B]] =⇒ surj_codom f B’"
by (fastforce simp: surj_codom_def)

lemma surj_codom_union:
"[[surj_codom f B1 ; surj_codom f B2]] =⇒ surj_codom f (B1 ∪ B2)"
by (fastforce simp: surj_codom_def)

Lemmas related to “surj on”.
lemma surj_on_implies_surj: "surj_on f A =⇒ surj f"

by (metis surj_def surj_on_def)

lemma surj_on_univ: "surj_on f UNIV = surj f"
by (metis UNIV_I surjD surj_on_def surj_on_implies_surj)

lemma surj_on_never_emptyset: "¬ surj_on f {}"
by (fastforce simp: surj_on_def)

lemma surj_on_superset:
"[[surj_on f A ; A ⊆ A’]] =⇒ surj_on f A’"
by (fastforce simp: surj_on_def)

lemma surj_on_union:
"[[surj_on f A1 ; surj_on f A2]] =⇒ surj_on f (A1 ∪ A2)"
by (fastforce simp: surj_on_superset)

6.1.3 Bij and Inv

This section relates the new definitions to the existing “bijective between” and “inverse” defi-
nitions.
lemma bij_betw_implies_inj_img: "bij_betw f UNIV B =⇒ inj_img f B"

by (fastforce simp: bij_betw_def inj_implies_inj_img)

lemma bij_betw_implies_surj_codom: "bij_betw f A B =⇒ surj_codom f B"
by (fastforce intro: f_the_inv_into_f_bij_betw simp: surj_codom_def)

lemma bij_betw_implies_surj_on: "bij_betw f A UNIV =⇒ surj_on f A"
by (meson UNIV_I bij_betw_iff_bijections surj_on_def)

Other lemmas
lemma bij_extension:

assumes "a /∈ A"
and "b /∈ B"

31

and "bij_betw f A B"
shows "bij_betw (fun_upd f a b) (A ∪ {a}) (B ∪ {b})"

by (metis assms bij_betw_combine bij_betw_cong bij_betw_singleton_iff disjoint_insert(1)
fun_upd_other fun_upd_same inf_bot_right)

lemma bij_remove_one:
assumes "a ∈ A"

and "bij_betw f A B"
shows "bij_betw f (A - {a}) (B - {f a})"

using assms by (fastforce simp: bij_betwE bij_betw_DiffI)

lemma set_remove_one_element:
assumes "x /∈ B"

and "B ⊆ A"
and "A - {x} ⊆ B"

shows "A - {x} = B"
using assms by blast

lemma inv_image_restrict_inj:
assumes "bij_betw f A B"

and "inj_img f B"
and "f a ∈ B"

shows "a ∈ inv f ‘ B"
using assms by (fastforce simp: f_inv_into_f inj_img_def rev_image_eqI)

lemma inv_image_restrict:
assumes "inj_on f A"

and "f a ∈ B"
and "∀ x. (f x ∈ B −→ x ∈ A)"

shows "a ∈ inv f ‘ B"
using assms by (fastforce simp: f_inv_into_f inj_onD rev_image_eqI)

lemma inv_image_restrict_neg:
assumes "bij_betw f A B"

and "f a /∈ B"
and "∀ x. (f x ∈ B −→ x ∈ A)"

shows "a /∈ inv f ‘ B"
using assms apply clarsimp
by (metis (mono_tags, lifting) f_inv_into_f f_the_inv_into_f_bij_betw range_eqI)

lemma inv_image_restrict_neg’:
assumes "surj_codom f B"

and "f a /∈ B"
and "∀ x. (f x ∈ B −→ x ∈ A)"

shows "a /∈ inv f ‘ B"
using assms
by (fastforce simp: surj_codom_def f_inv_into_f rangeI)

lemma bij_betw_inv1:
assumes "bij_betw f A B"

and "inj_img f B"
and "f a ∈ B"

shows "inv f (f a) = a"
using assms by (fastforce simp: f_inv_into_f inj_img_def)

lemma bij_betw_inv2:
assumes "bij_betw f A B"

and "b ∈ B"

32

shows "f (inv f b) = b"
by (metis assms bij_betw_imp_surj_on f_inv_into_f rangeI)

lemma surj_codom_inj_on_vimage_bij_betw:
"[[surj_codom f B ; inj_on f (vimage f B)]] =⇒ bij_betw f (vimage f B) B"
apply (rule bij_betwI’)
by (fastforce simp: inj_onD surj_codom_def)+

6.2 Helpers: Multi-Updates on Functions
fun fun_upd_list :: "(’a ⇒ ’b) ⇒ (’a × ’b) list ⇒ (’a ⇒ ’b)" where

"fun_upd_list f [] = f"
| "fun_upd_list f (xy # xys) = fun_upd (fun_upd_list f xys) (fst xy) (snd xy)"

This notion can also be defined following the foldl pattern, although this alternative form is
not used.
fun fun_upd_list_l :: "(’a ⇒ ’b) ⇒ (’a × ’b) list ⇒ (’a ⇒ ’b)" where

"fun_upd_list_l f [] = f"
| "fun_upd_list_l f (xy # xys) = fun_upd_list_l (fun_upd f (fst xy) (snd xy)) xys"

Examples of the two definitions above.
value "fun_upd_list (λx.0::nat) [(1::nat,1),(4,3),(6,6),(4,4)] 4"
value "fun_upd_list_l (λx.0::nat) [(1::nat,1),(4,3),(6,6),(4,4)] 4"

Both definitions above resemble "folds" with some un-currying, as shown by the following two
lemmas.
lemma fun_upd_list_is_foldr:

"fun_upd_list f0 pairs = foldr (λ pair f. fun_upd f (fst pair) (snd pair)) pairs f0"
by (induct pairs; fastforce)

lemma fun_upd_list_l_is_foldl:
"fun_upd_list_l f0 pairs = foldl (λ f pair. f(fst pair := snd pair)) f0 pairs"
by (induct pairs arbitrary: f0; force)

These two definitions are equivalent when every domain-value is updated at most once.
lemma fun_upd_list_l_distinct_rewrite:

"distinct (map fst (xy # xys))
=⇒ fun_upd_list_l (fun_upd f (fst xy) (snd xy)) xys

= fun_upd (fun_upd_list_l f xys) (fst xy) (snd xy)"
proof (induct xys arbitrary: xy f)

case (Cons xy2 xys2)
thus ?case

by (metis (no_types, lifting) distinct_length_2_or_more fun_upd_list_l.simps(2) fun_upd_twist
list.simps(9))
qed (fastforce)

lemma fun_upd_list_defs_distinct_equiv:
"distinct (map fst pairs) =⇒ fun_upd_list f pairs = fun_upd_list_l f pairs"

proof (induct pairs)
case (Cons xy xys)
thus ?case

by (fastforce simp: fun_upd_list_l_distinct_rewrite)
qed (fastforce)

Smaller propositions
lemma fun_upd_list_distinct_rewrite:

"distinct (map fst (xy # xys))

33

=⇒ fun_upd_list (fun_upd f (fst xy) (snd xy)) xys
= fun_upd (fun_upd_list f xys) (fst xy) (snd xy)"

by (simp add: fun_upd_list_defs_distinct_equiv fun_upd_list_l_distinct_rewrite)

lemma fun_upd_list_hd_1:
"fun_upd_list f (zip (x # xs) (y # ys)) x = y"
by simp

lemma fun_upd_list_hd_2:
"[[xs 6= [] ; ys 6= []]] =⇒ fun_upd_list f (zip xs ys) (hd xs) = hd ys"
by (metis fun_upd_list_hd_1 list.collapse)

lemma fun_upd_list_not_hd:
assumes "a 6= x"
shows "fun_upd_list f (zip (x # xs) (y # ys)) a = fun_upd_list f (zip xs ys) a"
using assms by simp

lemma fun_upd_list_not_updated_map:
assumes "a /∈ set (map fst xys)"

shows "fun_upd_list f xys a = f a"
using assms by (induction xys, simp_all)

lemma fun_upd_list_not_updated_zip:
assumes "a /∈ set xs"

shows "fun_upd_list f (zip xs ys) a = f a"
by (metis assms fun_upd_list_not_updated_map in_set_takeD map_fst_zip_take)

6.2.1 Ordering of Updates

The next two lemmas shows that the ordering of the updates does not matter, as long as the
updates are distinct.
lemma fun_upd_list_distinct_reorder:

assumes "distinct (map fst pairs)"
and "ab ∈ set pairs"

shows "fun_upd_list f pairs
= (fun_upd_list f (remove1 ab pairs)) (fst ab := snd ab)"

using assms
proof (induct pairs)

case (Cons xy xys)
thus ?case
proof (cases "ab = xy")

case True
thus ?thesis by simp

next
case False

hence "(fun_upd_list f (remove1 ab (xy # xys))) (fst ab := snd ab)
= fun_upd_list f (xy # xys)"

using Cons.hyps Cons.prems by fastforce
thus ?thesis by fastforce

qed
qed (fastforce)

lemma fun_upd_list_distinct_reorder_general:
assumes "distinct (map fst pairs1)"

and "distinct (map fst pairs2)"
and "set pairs1 = set pairs2"

34

shows "fun_upd_list f pairs1 = fun_upd_list f pairs2"
using assms
proof (induct pairs1 arbitrary: pairs2)

case (Cons xy xys)
hence "fun_upd_list f pairs2

= (fun_upd_list f (remove1 xy pairs2))(fst xy := snd xy)"
by (metis list.set_intros(1) fun_upd_list_distinct_reorder Cons.prems(2,3))

also have "... = (fun_upd_list f xys)(fst xy := snd xy)"
by (metis (mono_tags, lifting) Cons.hyps Cons.prems distinct_map distinct_remove1 list.simps(9)

remove1.simps(2) set_remove1_eq)
also have "... = fun_upd_list f (xy # xys)"

by simp
ultimately show ?case

by presburger
qed (fastforce)

6.2.2 Surjective
lemma helper_surj_zip_1:

assumes "a ∈ set xs"
and "length xs = length ys"

shows "fun_upd_list f (zip xs ys) a ∈ set ys"
using assms
proof (induction xs arbitrary: ys)

case (Cons x xs)
thus ?case

apply (cases "x = a")
apply (metis Cons.prems(2) fun_upd_list_hd_1 length_0_conv list.distinct(1) list.exhaust_sel

list.set_intros(1))
by (metis Cons.IH Cons.prems(1,2) fun_upd_list_not_hd length_Suc_conv list.set_intros(2)

set_ConsD)
qed (fastforce)

lemma fun_upd_list_surj_zip_1:
assumes "length xs = length ys"

shows "fun_upd_list f (zip xs ys) ‘ set xs ⊆ set ys"
using assms helper_surj_zip_1 by force

lemma fun_upd_list_surj_map_1:
"(fun_upd_list f xys) ‘ set (map fst xys) ⊆ set (map snd xys)"
by (metis fun_upd_list_surj_zip_1 length_map zip_map_fst_snd)

lemma fun_upd_list_surj_map_2:
assumes "distinct (map fst xys)"

shows "set (map snd xys) ⊆ (fun_upd_list f xys) ‘ set (map fst xys)"
using assms proof (induct xys)

case (Cons xy tail)
{ fix b assume assms_b: "b ∈ set (map snd (xy # tail))"

hence "∃ a ∈ set (map fst (xy # tail)). (fun_upd_list f (xy # tail)) a = b"
proof (cases "b = snd xy")

case True
show ?thesis using True by simp

next
case False
hence 2: "∃ a ∈ set (map fst tail). (fun_upd_list f tail) a = b"

using Cons assms_b by fastforce

35

{ fix aa assume 3: "aa ∈ set (map fst tail) ∧ (fun_upd_list f tail) aa = b"
from 3 have 5: "(fun_upd_list f (xy # tail)) aa = b"

using fun_upd_list_not_hd Cons.prems
by (metis (no_types, lifting) distinct.simps(2) list.simps(9) zip_map_fst_snd)

from 5 have ?thesis
by (metis 3 list.set_intros(2) list.simps(9))

}
thus ?thesis using 2 by blast

qed }
thus ?case by blast

qed (fastforce)

6.2.3 Injective
lemma helper_inj_head:

assumes f_def: "f = fun_upd_list f0 (zip xs ys)"
and distinct_ys: "distinct ys"
and length_equal: "length xs = length ys"
and non_empty: "xs 6= []"
and 0: "a ∈ set xs ∧ b ∈ set xs ∧ a 6= b"
and 1: "a = hd xs ∧ b ∈ set (tl xs)"

shows "f a 6= f b"
using assms
by (metis distinct.simps(2) fun_upd_list_hd_1 fun_upd_list_not_hd helper_surj_zip_1 length_0_conv

length_tl list.collapse)

lemma helper_inj_tail:
assumes "distinct xs"

and "distinct ys"
and "length xs = length ys"
and "a ∈ set (tl xs)"
and "b ∈ set (tl xs)"
and "a 6= b"

shows "fun_upd_list f (zip xs ys) a 6= fun_upd_list f (zip xs ys) b"
using assms proof (induct xs arbitrary: ys)

case (Cons x xs)

have a_elem: "a ∈ set (tl (x # xs))" using Cons.prems(4) by simp
have b_elem: "b ∈ set (tl (x # xs))" using Cons.prems(5) by simp

have a_not_hd: "a 6= x" using Cons.prems(1) Cons.prems(4) by force
have b_not_hd: "b 6= x" using Cons.prems(1) Cons.prems(5) by force

have a: "fun_upd_list f (zip (x # xs) ys) a = fun_upd_list f (zip xs (tl ys)) a"
using a_not_hd fun_upd_list_not_hd
by (metis Cons.prems(3) length_0_conv list.collapse list.distinct(1))

have uneq: "fun_upd_list f (zip xs (tl ys)) a 6= fun_upd_list f (zip xs (tl ys)) b"
by (metis (no_types, lifting) a_elem b_elem helper_inj_head

Cons.hyps Cons.prems(1) Cons.prems(2) Cons.prems(3) Cons.prems(6)
distinct_tl length_tl list.collapse list.sel(2) list.sel(3) set_ConsD)

have b: "fun_upd_list f (zip xs (tl ys)) b = fun_upd_list f (zip (x # xs) ys) b"
using b_not_hd fun_upd_list_not_hd
by (metis Cons.prems(3) length_0_conv list.collapse list.distinct(1))

36

from a uneq b show ?case by simp
qed (simp)

theorem fun_upd_list_inj_zip:
assumes "distinct xs"

and "distinct ys"
and "length xs = length ys"
and "xs 6= []"

shows "inj_on (fun_upd_list f (zip xs ys)) (set xs)"
proof-
{ fix a b assume 0: "a ∈ set xs ∧ b ∈ set xs ∧ a 6= b"

hence "(a = hd xs ∧ b ∈ set (tl xs)) ∨
(b = hd xs ∧ a ∈ set (tl xs)) ∨
(a ∈ set (tl xs) ∧ b ∈ set (tl xs))"

using assms(4) by (metis list.collapse set_ConsD)
moreover
{ assume "a = hd xs ∧ b ∈ set (tl xs)"

hence "(fun_upd_list f (zip xs ys)) a 6= (fun_upd_list f (zip xs ys)) b"
using 0 assms helper_inj_head by metis }

moreover
{ assume "b = hd xs ∧ a ∈ set (tl xs)"

hence "(fun_upd_list f (zip xs ys)) a 6= (fun_upd_list f (zip xs ys)) b"
using 0 assms helper_inj_head by metis }

moreover
{ assume "a ∈ set (tl xs) ∧ b ∈ set (tl xs)"

hence "fun_upd_list f (zip xs ys) a 6= fun_upd_list f (zip xs ys) b"
using helper_inj_tail by (metis 0 assms(1) assms(2) assms(3)) }

ultimately have "(fun_upd_list f (zip xs ys)) a 6= (fun_upd_list f (zip xs ys)) b"
by force }

thus ?thesis by (meson inj_onI)
qed

theorem fun_upd_list_surj_zip:
assumes "f = fun_upd_list f0 (zip xs ys)"

and "distinct xs"
and "length xs = length ys"

shows "f ‘ set xs = set ys"
by (metis assms fun_upd_list_surj_map_2 fun_upd_list_surj_zip_1

inf.absorb_iff2 inf.order_iff zip_eq_conv)

theorem fun_upd_list_bij_betw_zip:
assumes "distinct xs"

and "distinct ys"
and "length xs = length ys"
and "xs 6= []"

shows "bij_betw (fun_upd_list f (zip xs ys)) (set xs) (set ys)"
using assms
by (fastforce simp add: bij_betw_def fun_upd_list_inj_zip fun_upd_list_surj_zip)

lemma fun_upd_list_distinct:
assumes "distinct (map snd (xy # xys))"

and "f x /∈ set (map snd (xy # xys))"
shows "fun_upd_list f xys x 6= snd xy"

by (metis assms fun_upd_list_not_updated_map fun_upd_list_surj_map_1
distinct.simps(2) image_eqI list.set_intros(1) list.simps(9) subsetD)

theorem inj_img_fun_upd_list_map:

37

assumes "distinct (map snd xys)"
and "∀ x. f x /∈ set (map snd xys)"

shows "inj_img (fun_upd_list f xys) (set (map snd xys))"
using assms proof (induct xys)

case (Cons xy xys)
hence"inj_img (fun_upd_list f xys) ({snd xy} ∪ set (map snd xys))"

by (fastforce simp: fun_upd_list_distinct inj_img_def)
thus ?case

unfolding inj_img_def apply clarsimp
by (metis Cons.prems(1,2) fun_upd_list_distinct)

qed (fastforce simp: inj_img_not_mapped_to)

theorem inj_img_fun_upd_list_zip:
assumes "distinct ys"

and "length xs = length ys"
and "∀ x. f x /∈ set ys"

shows "inj_img (fun_upd_list f (zip xs ys)) (set ys)"
by (metis assms inj_img_fun_upd_list_map map_snd_zip)

6.2.4 Set- and List-Intervals
lemma fun_upd_list_new_interval:

assumes "length xs = length ys"
shows "fun_upd_list f (zip xs ys) i ∈ {f i} ∪ set ys"
apply (cases "i ∈ set xs")
apply (fastforce simp: assms intro: helper_surj_zip_1)

by (fastforce intro: fun_upd_list_not_updated_zip)

lemma helper_interval_length:
"length [1 ..< length xs + 1] = length xs"
apply (subst length_upt)
by fastforce

lemma helper_interval_union:
"{0::nat} ∪ {1 ..< n + 1} = {0 ..< n + 1}"
by force

lemma fun_upd_list_interval:
"fun_upd_list (λx.0) (zip xs [1 ..< length xs + 1]) z ∈ {0 ..< length xs + 1}"
apply (cases "z ∈ set xs")
apply (metis Un_iff set_upt helper_interval_union helper_interval_length helper_surj_zip_1)

by (metis fun_upd_list_not_updated_zip add.commute atLeastLessThan_iff less_numeral_extra(1)

trans_less_add1 zero_le)

theorem fun_upd_list_interval_bij:
assumes "f = fun_upd_list (λx.0) (zip xs [1 ..< length xs + 1])"

and "distinct xs"
shows "bij_betw f {i. 1 ≤ f i} {1 ..< length xs + 1}"

proof-
have set_xs : "set [1 ..< length xs + 1] = {1 ..< length xs + 1}"

by force
have "set xs = {i. 1 ≤ f i}"
proof (rule antisym)

show "set xs ⊆ {i. 1 ≤ f i}"
by (metis One_nat_def assms(1) atLeastLessThan_iff helper_interval_length helper_surj_zip_1

38

set_xs mem_Collect_eq subset_code(1))
show "{i. 1 ≤ f i} ⊆ set xs"

by (metis assms(1) fun_upd_list_not_updated_zip CollectD not_one_le_zero subsetI)

qed
thus ?thesis

by (metis (mono_tags, lifting) assms(1,2) fun_upd_list_bij_betw_zip helper_interval_length
One_nat_def add.right_neutral add_Suc_right bij_betwI’ distinct_upt
empty_iff empty_set le_numeral_extra(4) list.size(3)
set_xs upt_eq_Nil_conv)

qed

end

6.3 Basic Definitions
theory Lock_Ticket

imports
RG_Annotated_Commands
Function_Supplementary

begin

type_synonym thread_id = nat

definition positive_nats :: "nat set" where
"positive_nats ≡ { n. 0 < n }"

The state of the Ticket Lock consists of three fields.
record tktlock_state =

now_serving :: "nat"
next_ticket :: "nat"
myticket :: "thread_id ⇒ nat"

Every thread locally stores a ticket number, and this collection of local variables is modelled
globally by the myticket function.
When Thread i joins the queue, it sets myticket i to be the value next_ticket, and atomically
increments next_ticket; this corresponds to the atomic Fetch-And-Add instruction, which is
supported on most computer systems. Thread i then waits until the now_serving value becomes
equal to its own ticket number myticket i. When Thread i leaves the queue, it increments
now_serving.
These steps correspond to the following code for Acquire and Release. Note that we use forward
function composition to model the Fetch-And-Add instruction.

acquire ≡ ((myticket i := next_ticket) ◦>
(next_ticket := next_ticket + 1));

WHILE now_serving 6= myticket i DO SKIP OD)

release ≡ now_serving := now_serving + 1

Conceptually, Thread i is in the queue if and only if now_serving ≤ myticket i and is at the
head if and only if now_serving = myticket i.

39

Now, in the initial state, every thread holds the number 0 as its ticket, and both now_serving
and next_ticket are set to 1.
abbreviation tktlock_init :: "tktlock_state set" where

"tktlock_init ≡ {| ´ myticket = (λj. 0) ∧
´ now_serving = 1 ∧ ´ next_ticket = 1 |}"

We further define a shorthand for describing the set of ticket in use; i.e. those numbers from
now_serving up to, but not including next_ticket. This shorthand will later be used in the
invariant.
abbreviation tktlock_contending_set :: "tktlock_state ⇒ thread_id set" where

"tktlock_contending_set s ≡ { j. now_serving s ≤ myticket s j }"

We now formalise the invariant of the Ticket Lock.
abbreviation tktlock_inv :: "tktlock_state set" where

"tktlock_inv ≡ {| ´ now_serving ≤ ´ next_ticket ∧
1 ≤ ´ now_serving ∧
(∀ j. ´ myticket j < ´ next_ticket) ∧
bij_betw ´ myticket ´ tktlock_contending_set {´ now_serving ..< ´ next_ticket} ∧
inj_img ´ myticket positive_nats |}"

The first three clauses are basic inequalities.
The penultimate clause stipulates that the function myticket of every valid state is bijective
between the set of queuing/contending threads (those threads whose tickets are not smaller
than now_serving) and .
The final clause ensures that the function myticket is injective when 0 is excluded from its
codomain. In other words, all threads, whose tickets are non-zero, hold unique tickets.

As for the contract, the first clause ensures that the local variable myticket i does not change.
Meanwhile, the global variables next_ticket and now_serving must not decrease, as stipulated
by the second and third clauses of the contract.
The last two clauses of the contract correspond to the two clauses of the contract of the Ab-
stract Queue Lock, where i ∈ set queue and at_head i queue under the Abstract Queue Lock
respectively translate to now_serving ≤ myticket i and now_serving = myticket i under the
Ticket Lock.
abbreviation tktlock_contract :: "thread_id ⇒ tktlock_state rel" where

"tktlock_contract i ≡ {| ºmyticket i = ªmyticket i ∧
ºnext_ticket ≤ ªnext_ticket ∧
ºnow_serving ≤ ªnow_serving ∧
(ºnow_serving ≤ ºmyticket i ←→ ªnow_serving ≤ ªmyticket i) ∧
(ºnow_serving = ºmyticket i −→ ªnow_serving = ªmyticket i) |}"

We further state and prove some helper lemmas that will be used later.
lemma tktlock_contending_set_rewrite:

"tktlock_contending_set s ∪ {i} = {|´ (6=) i −→ now_serving s ≤ ´ (myticket s)|}"
by fastforce

lemma tktlock_used_tickets_rewrite:
assumes "now_serving s ≤ next_ticket s"

shows "{now_serving s ..< next_ticket s} ∪ {next_ticket s}
= {now_serving s ..< Suc (next_ticket s)}"

by (fastforce simp: assms atLeastLessThanSuc)

lemma tktlock_enqueue_bij:
assumes "myticket s i < now_serving s"

40

and "bij_betw (myticket s) (tktlock_contending_set s) {now_serving s ..< next_ticket
s}"

shows "bij_betw ((myticket s)(i := next_ticket s))
(tktlock_contending_set s ∪ {i})
({now_serving s ..< next_ticket s} ∪ {next_ticket s})"

apply (rule bij_extension)
using assms by fastforce+

lemma tktlock_enqueue_inj:
assumes "s ∈ tktlock_inv"
shows "inj_img ((myticket s)(i := next_ticket s)) positive_nats"
apply(subst inj_img_fun_upd_notin)
using assms by (fastforce simp: nat_less_le)+

method clarsimp_seq = clarsimp, standard, clarsimp

6.4 RG Theorems

The RG sentence of the first instruction of Acquire.
lemma tktlock_acq1:

"rely: tktlock_contract i guar: for_others tktlock_contract i
inv: tktlock_inv anno_code:
{ {| ´ myticket i < ´ now_serving |} }

BasicAnno ((´ myticket[i] ← ´ next_ticket) ◦>
(´ next_ticket ← ´ next_ticket + 1))

{ {| ´ now_serving ≤ ´ myticket i |} }"
proof method_anno_ultimate

case est_guar
thus ?case

apply clarsimp_seq
apply (fastforce simp: less_Suc_eq)

using tktlock_contending_set_rewrite tktlock_enqueue_bij
by (fastforce simp: atLeastLessThanSuc tktlock_enqueue_inj)

next
case est_post
thus ?case

apply clarsimp_seq
apply (fastforce simp: less_Suc_eq)

using tktlock_contending_set_rewrite tktlock_enqueue_bij
by (fastforce simp: atLeastLessThanSuc tktlock_enqueue_inj)

qed (fastforce)+

A helper lemma for the Release procedure.
lemma tktlock_rel_helper:

assumes inv1: "now_serving s = myticket s i"
and inv2: "myticket s i ≤ next_ticket s"
and inv3: "Suc 0 ≤ myticket s i"
and inv4: "∀ j. myticket s j < next_ticket s"
and bij_old: "bij_betw (myticket s)

{|myticket s i ≤ ´ (myticket s)|}
{myticket s i ..< next_ticket s}"

shows "bij_betw (myticket s)
{|Suc (myticket s i) ≤ ´ (myticket s)|}
{Suc (myticket s i) ..< next_ticket s}"

proof -
have thread_rewrite:

"{| Suc (myticket s i) ≤ ´ (myticket s)|} = {j. myticket s i ≤ myticket s j} - {i}"

41

apply (subst set_remove_one_element[where B="{j. Suc (myticket s i) ≤ myticket s j}"];
clarsimp)

by(metis CollectI Suc_leI assms(5) bij_betw_def inj_onD order_le_imp_less_or_eq)
have ticket_rewrite:

"{Suc (myticket s i) ..< next_ticket s} = {myticket s i ..< next_ticket s} - {myticket
s i}"

by fastforce
have "bij_betw (myticket s)

({j. myticket s i ≤ myticket s j} - {i})
({myticket s i ..< next_ticket s} - {myticket s i})"

by (rule bij_remove_one; clarsimp simp: bij_old)
thus ?thesis

by (clarsimp simp: thread_rewrite ticket_rewrite)
qed

The RG sentence for the Release procedure.
lemma tktlock_rel:

"rely: tktlock_contract i
guar: for_others tktlock_contract i
inv: tktlock_inv

code: { {| ´ now_serving = ´ myticket i |} }
´ now_serving := ´ now_serving + 1

{ {| ´ myticket i < ´ now_serving |} }"
proof method_basic_inv

case est_inv
thus ?case

by (clarsimp, fastforce simp: Suc_le_eq intro!: tktlock_rel_helper)
next

case est_guar
thus ?case

by (clarsimp, fastforce simp: less_eq_Suc_le nat_less_le positive_nats_def inj_img_def)
qed (fastforce)+

The RG sentence for a thread that performs Acquire and then Release.
lemma tktlock_local:
"rely: tktlock_contract i guar: for_others tktlock_contract i
inv: tktlock_inv anno_code:

{ {| ´ myticket i < ´ now_serving |} }
BasicAnno ((´ myticket[i] ← ´ next_ticket) ◦>

(´ next_ticket ← ´ next_ticket + 1)) .;
{ {| ´ now_serving ≤ ´ myticket i |} }
NoAnno (WHILE ´ now_serving 6= ´ myticket i DO SKIP OD) .;
{ {| ´ now_serving = ´ myticket i |} }
NoAnno (´ now_serving := ´ now_serving + 1)
{ {| ´ myticket i < ´ now_serving |} }"

apply (method_anno_ultimate, goal_cases)
using tktlock_acq1 apply fastforce

apply (clarsimp, method_spinloop; fastforce)
using tktlock_rel by fastforce

The RG sentence for a thread that repeatedly performs Acquire and then Release in an infinite
loop.
lemma tktlock_local_loop:
"rely: tktlock_contract i guar: for_others tktlock_contract i
inv: tktlock_inv anno_code:

42

{ {| ´ myticket i < ´ now_serving |} }
WHILEa True DO
{stable_guard: {| ´ myticket i < ´ now_serving |} }
BasicAnno ((´ myticket[i] ← ´ next_ticket) ◦>

(´ next_ticket ← ´ next_ticket + 1)) .;
{ {| ´ now_serving ≤ ´ myticket i |} }
NoAnno (WHILE ´ now_serving 6= ´ myticket i DO SKIP OD) .;
{ {| ´ now_serving = ´ myticket i |} }
NoAnno (´ now_serving := ´ now_serving + 1)

OD
{ {| ´ myticket i < ´ now_serving |} }"

proof method_anno_ultimate
case body
thus ?case

using tktlock_local by (fastforce simp: Int_commute)
qed (fastforce)+

The global RG sentence for a set of threads, each of which repeatedly performs Acquire and
then Release in an infinite loop.
theorem tktlock_global:

assumes "0 < n"
shows "annotated

global_init: {| ´ now_serving = 1 ∧ ´ next_ticket = 1 ∧ ´ myticket = (λj. 0) |}
global_rely: Id
‖ i < n @

{ {| ´ myticket i < ´ now_serving |}, tktlock_contract i }
WHILEa True DO

{stable_guard: {| ´ myticket i < ´ now_serving |} }
BasicAnno ((´ myticket[i] ← ´ next_ticket) ◦>

(´ next_ticket ← ´ next_ticket + 1)) .;
{ {| ´ now_serving ≤ ´ myticket i |} }
NoAnno (WHILE ´ now_serving 6= ´ myticket i DO SKIP OD) .;
{ {| ´ now_serving = ´ myticket i |} }
NoAnno (´ now_serving := ´ now_serving + 1)

OD

� tktlock_inv { for_others tktlock_contract i, {} }
global_guar: UNIV
global_post: {}"

proof method_anno_ultimate
case (local_sat i)
thus ?case using tktlock_local_loop by fastforce

next
case (pre i)
thus ?case

using bij_betwI’ inj_img_def positive_nats_def by fastforce
next

case (guar_imp_rely i j)
thus ?case

by auto[1]
qed (fastforce simp: assms)+

end

43

7 Circular-Buffer Queue-Lock

This theory imports Annotated Commands to access the rely-guarantee library extensions, and
also imports the Abstract Queue Lock to access the definitions of the type-synonym thread_id
and the abbreviation at_head.
theory Lock_Circular_Buffer

imports
RG_Annotated_Commands
Lock_Abstract_Queue

begin

type_synonym index = nat

datatype flag_status = Pending | Granted

We assume a fixed number of threads, and the size of the circular array is 1 larger the number
of threads.
consts NumThreads :: nat

abbreviation ArraySize :: "nat" where
"ArraySize ≡ NumThreads + 1"

The state of the Circular Buffer Lock consists of the following fields:

• myindex: a function that maps each thread to an array-index (where the array is modelled
by flag_mapping below).

• flag_mapping: an array of size ArraySize that stores values of type flag_status.

• tail: an index representing the tail of the queue, used when a thread enqueues.

• aux_head: an auxiliary variable that stores the index used by the thread at the head of
the queue; the head of the queue spins on the flag flag_mapping aux_head.

• aux_queue: the auxiliary queue of threads.

• aux_mid_release: an auxiliary variable that signals if a thread has executed the first in-
struction of release, but not the second.

record cblock_state =
myindex :: "thread_id ⇒ index"
flag_mapping :: "index ⇒ flag_status"
tail :: index
aux_head :: index
aux_queue :: "thread_id list"
aux_mid_release :: "thread_id option"

We initialise the array of flags (flag_mapping) with Granted in the zeroth entry and Pending
in all other entries. The indices tail and aux_head are initialised to 0. The queue is initially
empty, and no thread is in the middle of release. (See the conference article for an example.)
definition cblock_init :: "cblock_state set" where

"cblock_init ≡ {|
´ flag_mapping = (λ _. Pending)(0 := Granted) ∧
´ tail = 0 ∧

44

´ aux_queue = [] ∧
´ aux_head = 0 ∧
´ aux_mid_release = None |}"

Similar to the Abstract Queue Lock, the acquire procedure of the Circular Buffer Lock consists
of two conceptual steps, and corresponds to the pseudocode below. (1) To join the queue,
Thread i stores the global index tail locally as myindex i, and atomically increments tail
modulo the array size. (2) Thread i then spins on its flag, which is the entry in the array at
index myindex i. When this flag changes from Pending to Granted, the thread has reached the
head of the queue.

acquire ≡ ((myindex i := tail) ◦>
(tail := (tail + 1) mod ArraySize));

WHILE flag_mapping (myindex i) = Pending DO SKIP OD

When Thread i releases the lock, it sets its flag to Pending. Then it sets the flag of the next
thread to Granted, which corresponds to the ‘next’ entry in the array, modulo the array size.
This is encoded as the pseudocode below.

release ≡ flag_mapping[myindex i] := Pending ;
flag_mapping[(myindex i + 1) mod ArraySize] := Granted

Auxiliary Variables. The release procedure consists of the single conceptual step of exiting
the queue, but is implemented here as two separate instructions. Hence, the auxiliary variable
aux_mid_release indicates when a thread is between the two lines of release, and allows us to
express the assertion there.
The other two auxiliary variables, aux_head (the head-index) and aux_queue, store information
that can in principle be inferred from the concrete variables (i.e. the non-auxiliary variables).
However, explicitly recording this information as auxiliary variables greatly simplifies the veri-
fication process.
In the code, these auxiliary variables need to be updated atomically with the relevant instruc-
tions. Below is the code of release with the auxiliary variables included. (Auxiliary variables
are added to acquire in a similar way.)

release ≡ 〈 flag_mapping[myindex i] := Pending ◦>
aux_mid_release := Some i 〉 ;

〈 flag_mapping[(myindex i + 1) mod ArraySize] := Granted ◦>
aux_queue := tl aux_queue ◦>
aux_head := (aux_head + 1) mod ArraySize ◦>
aux_mid_release := None 〉

Recall that we assume a fixed number of threads. This constant is furthermore assumed positive,
which we enforce with the use of the following locale.
locale numthreads_positive =

assumes assm_locale: "0 < NumThreads"
begin

45

7.1 Invariant

A notion that helps us state the queue-clause of the invariant. The list of indices use by
the queuing threads is a contiguous list of integers modulo ArraySize. Note the possibility of
“wrapping around”, which is covered by the “else” clause in the definition.
definition used_indices :: "cblock_state ⇒ index list" where

"used_indices s ≡ (if aux_head s ≤ tail s
then [aux_head s ..< tail s]
else [aux_head s ..< ArraySize] @ [0 ..< tail s])"

lemma distinct_used_indices: "distinct (used_indices s)"
using used_indices_def by fastforce

lemma length_used_indices:
"length (used_indices s) = (if aux_head s ≤ tail s

then tail s - aux_head s
else ArraySize - aux_head s + tail s)"

using used_indices_def by force

The invariant of the Circular Buffer Lock is stated as separate parts below. The first definition
invar_flag relates flag_mapping with the head-index aux_head, and consists of two clauses. (1)
At every index that is not the head-index, the flag must be Pending. (2) As for the head-index
itself, there are two possibilities. When the thread at the head of the queue invoked release
but has only executed its first instruction, aux_mid_release becomes set to Some i; in this case,
the flag at the head-index is set to Pending, but the thread remains in the queue. In all other
cases, aux_mid_release = None, and the flag at the head-index is always Granted.
definition invar_flag :: "cblock_state set" where

"invar_flag ≡ {|
(∀ i 6= ´ aux_head. ´ flag_mapping i = Pending) ∧
(´ flag_mapping ´ aux_head = Pending ←→ ´ aux_mid_release 6= None) |}"

The next clause invar_queue describes the relationship between the auxiliary queue and the
other variables, including the set used_indices. The clause involving map further implies a
number of properties, such as the distinctness of aux_queue (which mirrors the invariant of the
Abstract Queue Lock), and the injectivity of myindex (i.e. each queuing thread has a unique
index).
definition invar_queue :: "cblock_state set" where

"invar_queue ≡ {|
(∀ i. i ∈ set ´ aux_queue −→ i < NumThreads) ∧
(map ´ myindex ´ aux_queue = ´ used_indices) |}"

The overall invariant, cblock_invar, is the conjunction of invar_flag and invar_queue above,
with additional inequalities concerning tail, aux_head, and NumThreads.
definition invar_bounds :: "cblock_state set" where

"invar_bounds ≡ {|
´ tail < ArraySize ∧

´ aux_head < ArraySize |}"

abbreviation cblock_invar :: "thread_id ⇒ cblock_state set" where
"cblock_invar i ≡

invar_flag ∩ invar_bounds ∩ invar_queue ∩ {| i < NumThreads |}"

lemmas cblock_invariants =
invar_flag_def
invar_bounds_def

46

invar_queue_def
used_indices_def

7.1.1 Invariant Methods

We set up methods that generate structured proofs with named subgoals, to help us prove the
clauses of the invariant.
theorem thm_method_invar_flag:

assumes "∀ i 6= aux_head s. flag_mapping s i = Pending"
and "flag_mapping s (aux_head s) = Pending

←→ aux_mid_release s 6= None"
shows "s ∈ invar_flag"

using assms invar_flag_def by force

method method_invar_flag =
cases rule:thm_method_invar_flag,
goal_cases non_head_pending head_maybe_granted

theorem thm_method_invar_queue:
assumes "∀ i. i ∈ set (aux_queue s) −→ i < NumThreads"

and "map (myindex s) (aux_queue s) = (used_indices s)"
shows "s ∈ invar_queue"

using assms invar_queue_def by force

method method_invar_queue =
cases rule:thm_method_invar_queue,
goal_cases bound_thread_id map_used_indices

theorem thm_method_invar:
assumes flag: "s ∈ invar_flag"

and bound: "s ∈ invar_bounds ∧ i < NumThreads"
and queue: "s ∈ invar_queue"

shows "s ∈ cblock_invar i"
using assms by fastforce

method method_cblock_invar =
cases rule:thm_method_invar,
goal_cases flag bound queue

7.1.2 Invariant Lemmas

The initial state satisfies the invariant.
lemma cblock_init_invar:

assumes assm_init: "s ∈ cblock_init"
and assm_bound: "i < NumThreads"

shows "s ∈ cblock_invar i"
proof method_cblock_invar

case flag
thus ?case

using assms
by (method_invar_flag; force simp: cblock_init_def)

next
case bound
thus ?case

using assms
by (force simp: assm_locale cblock_init_def invar_bounds_def)

next

47

case queue
thus ?case

using assms
by (method_invar_queue; force simp: cblock_init_def used_indices_def)

qed

In a state that satisfies the flag-invariant, a thread is the head of the queue if its flag is Granted.
(If the flag of a thread is Pending, the thread may still be at the head of the queue. In this
case, the thread must be between the two instructions in release.)
lemma only_head_is_granted:

assumes "s ∈ invar_flag"
and "flag_mapping s i = Granted"

shows "i = aux_head s"
using assms by (force simp: invar_flag_def)

Let s be a state that satisfies the bounds-invariant, with n queuing threads. If we start from the
aux_head index, and “advance” n steps (with potential wrap-around), then we reach the global
tail index.
lemma head_tail_mod:

"s ∈ invar_bounds =⇒
tail s = (aux_head s + length (used_indices s)) mod (ArraySize)"

by (fastforce simp: mod_if used_indices_def invar_bounds_def)

If a state satisfies the queue-invariant (namely the clause with the map function, then the myindex
function is injective on the set of queuing threads. In other words, every queuing thread has a
unique index in a state that satisfies the queue-invariant.
lemma invar_map_inj_on:

"s ∈ invar_queue =⇒ inj_on (myindex s) (set (aux_queue s))"
using distinct_map
by (fastforce simp: invar_queue_def distinct_used_indices)

In a state that satisfies the queue-invariant, the length of the queue is equal to the length of
the list of used indices.
lemma used_indices_map_queue:

"s ∈ invar_queue =⇒ used_indices s = map (myindex s) (aux_queue s)"
unfolding used_indices_def invar_queue_def used_indices_def
by clarsimp

lemma length_used_indices_queue:
"s ∈ invar_queue =⇒ length (used_indices s) = length (aux_queue s)"
by (fastforce simp: used_indices_map_queue)

In a state that fully satisfies the invariant, if there is a thread that is not in the queue, then the
length of the queue must be smaller than the total number of threads.
lemma queue_bounded:

assumes "s ∈ cblock_invar i"
and "i /∈ set (aux_queue s)"

shows "length (aux_queue s) < NumThreads"
proof-

have "length (used_indices s) ≤ NumThreads"
using assms(1)
by (fastforce simp: invar_bounds_def length_used_indices)

hence "card (set (aux_queue s)) ≤ NumThreads"
using assms(1)
by (fastforce intro: le_trans intro!: card_length simp: length_used_indices_queue)

moreover have "card (set (aux_queue s)) = 0 ←→ aux_queue s = []"

48

by fastforce
moreover have "finite (set (aux_queue s))"

using calculation by fastforce
moreover have "card (set (aux_queue s)) = NumThreads

←→ (∀ j < NumThreads. j ∈ set (aux_queue s))"
proof-

{ assume "card (set (aux_queue s)) = NumThreads"
hence "set (aux_queue s) = {j. j < NumThreads}"

using assms by (force simp add: invar_queue_def card_subset_eq subsetI)
hence "∀ j < NumThreads. j ∈ set (aux_queue s)"

by blast }
moreover
{ assume "∀ j < NumThreads. j ∈ set (aux_queue s)"

hence "card (set (aux_queue s)) = NumThreads"
using assms by fastforce }

ultimately
show ?thesis by blast

qed

ultimately have "card (set (aux_queue s)) < NumThreads"
using assms nat_less_le by blast

thus ?thesis
using assms
by (metis used_indices_map_queue Int_iff distinct_card distinct_map distinct_used_indices)

qed

If a state that satisfies the bound- and queue-invariants, and if the queue is non-empty, then
the index held by the head of the queue must be the same as aux_head.
lemma head_and_head_index:

assumes "s ∈ invar_bounds ∩ invar_queue"
and "aux_queue s 6= []"

shows "myindex s (hd (aux_queue s)) = aux_head s"
proof-

have "myindex s (hd (aux_queue s)) = hd (used_indices s)"
using assms
by (simp add: used_indices_map_queue hd_map)

also have "... = aux_head s"
using assms
by (fastforce simp: invar_queue_def invar_bounds_def upt_rec used_indices_def)

ultimately show ?thesis
by fastforce

qed

In a state that satisfies the full invariant, if no thread is half-way through release and Thread
i is at the head of the queue, then the flag of Thread i must be Granted.
lemma head_is_granted:

assumes "s ∈ cblock_invar i"
and "aux_mid_release s = None"
and "i = hd (aux_queue s)"
and "aux_queue s 6= []"

shows "flag_mapping s (myindex s i) = Granted"
proof-

have "myindex s i = aux_head s"
using assms by (fastforce intro: head_and_head_index)

thus ?thesis
using assms
by (fastforce intro: flag_status.exhaust simp: invar_flag_def)

49

qed

In a state that satisfies the queue-invariant, the global index tail is never held by a thread.
Indeed, tail is meant to be “free” for the next thread that joins the queue. Note that when a
thread is not in the queue, its index i becomes outdated, and tail may cycle back and coincide
with i.
lemma tail_never_used:

assumes "s ∈ invar_queue"
shows "∀ j ∈ set (aux_queue s). myindex s j 6= tail s"

proof-
have "tail s /∈ set (used_indices s)"

unfolding used_indices_def by clarsimp
thus ?thesis

unfolding invar_queue_def
by (fastforce simp: assms used_indices_map_queue rev_image_eqI)

qed

In a state that satisfies the full invariant, if the tail index is right before the aux_head index,
then it must be the case that every thread is in the queue.
lemma used_indices_full:

assumes "s ∈ cblock_invar i"
and "(tail s + 1) mod ArraySize = aux_head s"

shows "length (used_indices s) = NumThreads"
using assms
apply (clarsimp simp: used_indices_def)
apply (intro conjI impI)

apply (metis Suc_eq_plus1 add_diff_cancel_left’ diff_zero head_tail_mod le_add_diff_inverse

length_used_indices lessI linorder_not_le mod_Suc plus_1_eq_Suc)
apply (fastforce simp: Suc_diff_le)

by (metis mod_Suc_le_divisor)+

Conversely, if not every thread is in the queue, then the tail index is not right before the
aux_head index.
lemma space_available:

assumes assm_invar: "s ∈ cblock_invar i"
and assm_q: "i /∈ set (aux_queue s)"

shows "(tail s + 1) mod ArraySize 6= aux_head s"
using assms queue_bounded length_used_indices_queue
by (fastforce simp: used_indices_full)

The next lemma relates the append operation on the aux_head and tail indices to the append
operation on the list of used_indices. (The second and the last assumptions are the most crucial
ones. The rest are side-condition checks.)
lemma used_indices_append:

assumes "s ∈ cblock_invar i"
and "aux_head s’ = aux_head s"
and "length (used_indices s) < NumThreads"
and "(tail s + 1) mod ArraySize 6= aux_head s"
and "tail s’ = (tail s + 1) mod ArraySize"

shows "used_indices s’ = used_indices s @ [tail s]"
proof (cases "aux_head s’ ≤ tail s’")

case True
hence ln1: "tail s’ = (tail s + 1)"

using assms apply clarsimp
by (metis Suc_eq_plus1 bot_nat_0.extremum_unique head_tail_mod mod_Suc mod_mod_trivial)

50

thus ?thesis
using assms used_indices_def ln1 by fastforce

next
case False
hence a: "¬ aux_head s’ ≤ tail s’" .
thus ?thesis
proof (cases "tail s’ = 0")

case True
thus ?thesis

using assms apply clarsimp
by (metis (no_types, lifting) Suc_eq_plus1 Suc_lessI Zero_not_Suc append.right_neutral

assms(5) invar_bounds_def linorder_not_le mem_Collect_eq mod_less upt_Suc

upt_eq_Nil_conv used_indices_def)
next

case False
thus ?thesis
proof -

have "tail s < tail s’"
using assms(1) assms(5) apply clarsimp
by (metis False Suc_eq_plus1 head_tail_mod lessI mod_Suc mod_mod_trivial)

thus ?thesis
by (metis a used_indices_def assms(2,5) Suc_eq_plus1 append.assoc less_Suc_eq_le

mod_less_eq_dividend not_less_eq order_less_le upt_Suc_append zero_less_Suc)
qed

qed
qed

7.2 Contract

The contract of the Circular Buffer Lock is devised along three observations: (1) local variables
do not change; (2) global variables may change; and (3) auxiliary variables change similarly as
in the Abstract Queue Lock.
The first two areas are covered by contract_raw. The only local variable myindex i does not
change. The global variable tail may change, but is not included in the contract, as changes to
tail are not restricted. However, the other global variable flag_mapping is allowed to change
only in specific ways. As flag_mapping stores information about the head of the conceptual
queue, its allowed changes naturally relate to the head stays the head property. Under the
Circular Buffer Lock, Thread i is at the head of the queue when flag_mapping (myindex i) =
Granted. Meanwhile, note that myindex i can become outdated if Thread i is not in the queue.
Hence, we need the premise i ∈ set ºaux_queue before the head stays the head statement in
the final clause of contract_raw.
definition contract_raw :: "thread_id ⇒ cblock_state rel" where

"contract_raw i ≡ {|
(i ∈ set ºaux_queue
−→ ºflag_mapping (ºmyindex i) = Granted
−→ ªflag_mapping (ªmyindex i) = Granted) ∧

(ºmyindex i = ªmyindex i) |}"

For the auxiliary variable aux_queue we require the same two clauses as in the contract of the
Abstract Queue Lock. As for aux_mid_release, only the head of the queue can invoke release
and hence modify aux_mid_release. Therefore, the second clause of contract_aux has the extra
equality in the consequent.

51

definition contract_aux :: "thread_id ⇒ cblock_state rel" where
"contract_aux i ≡ {|

(i ∈ set ºaux_queue ←→ i ∈ set ªaux_queue) ∧
(at_head i ºaux_queue −→ at_head i ªaux_queue ∧ ºaux_mid_release = ªaux_mid_release)

|}"

The two definitions above combine into the overall contract.
abbreviation cblock_contract :: "thread_id ⇒ cblock_state rel" where

"cblock_contract t ≡ contract_raw t ∩ contract_aux t"

lemmas cblock_contracts[simp] = contract_raw_def contract_aux_def

7.3 RG Lemmas
abbreviation acq_line1 :: "thread_id ⇒ cblock_state ⇒ cblock_state" where

"acq_line1 i ≡
(´ myindex[i] ← ´ tail) ◦>
(´ tail ← (´ tail + 1) mod ArraySize) ◦>
(´ aux_queue ← ´ aux_queue @ [i])"

lemma acq_1_invar:
assumes assm_old: "s ∈ cblock_invar i"

and assm_new: "s’ = acq_line1 i s"
and assm_pre: "i /∈ set (aux_queue s)"

shows "s’ ∈ cblock_invar i"
proof method_cblock_invar

case flag
have "(∀ j 6= aux_head s. flag_mapping s j = Pending) ∧

(flag_mapping s (aux_head s) = Pending ←→ aux_mid_release s 6= None)"
using assm_old by (fastforce simp: invar_flag_def)

hence "(∀ j 6= aux_head s’. flag_mapping s’ j = Pending) ∧
(flag_mapping s’ (aux_head s’) = Pending ←→ aux_mid_release s’ 6= None)"

using assm_new by fastforce
thus ?case

by (fastforce simp: invar_flag_def)
next

case bound
have "aux_head s’ < ArraySize"

using assm_old assm_new by (fastforce simp: invar_bounds_def)
moreover have "tail s’ < ArraySize"

using assm_new by fastforce
ultimately show ?case

using assm_old assm_new by (fastforce simp: invar_bounds_def)
next

case queue show ?case
proof method_invar_queue

case bound_thread_id
have "∀ j. j ∈ set (aux_queue s) −→ j < NumThreads"

using assm_old assm_new by (fastforce simp: invar_queue_def)
moreover have "set (aux_queue s’) = set (aux_queue s) ∪ {i}"

using assm_new by fastforce
moreover have "i < NumThreads"

using assm_old assm_new by fastforce
ultimately show ?case

by fastforce
next

case map_used_indices
have "map (myindex s’) (aux_queue s’) = map (myindex s) (aux_queue s) @ [myindex s’

52

i]"
using assm_new assm_pre by fastforce

also have ln1: "... = used_indices s @ [myindex s’ i]"
using assm_old by (fastforce simp: used_indices_def invar_queue_def)

also have "... = used_indices s @ [tail s]"
using assm_new by fastforce

also have "... = used_indices s’"
proof-

have ahead: "aux_head s = aux_head s’"
using assms by fastforce

have "length (used_indices s) < NumThreads"
using assm_pre assm_old
by (fastforce simp: length_used_indices_queue queue_bounded)

moreover have "(tail s + 1) mod ArraySize 6= aux_head s"
using assm_old assm_pre space_available by fastforce

moreover have "tail s’ = (tail s + 1) mod (ArraySize)"
using assm_new by simp

ultimately show ?thesis
by (metis ahead assm_old used_indices_append)

qed
ultimately show ?case by fastforce

qed
qed

theorem cblock_acq1:
"rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i anno_code:

{ {| i /∈ set ´ aux_queue |} }
BasicAnno (acq_line1 i)

{ {| i ∈ set ´ aux_queue |} }"
apply method_anno_ultimate

using acq_1_invar by fastforce+

theorem cblock_acq2:
"rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i code:

{ {| i ∈ set ´ aux_queue |} }
WHILE ´ flag_mapping (´ myindex i) = Pending DO SKIP OD

{ {| at_head i ´ aux_queue ∧ ´ aux_mid_release = None |} }"
proof method_spinloop

case est_post
thus ?case
proof-

{ fix s assume assm_s: "s ∈ cblock_invar i ∩ {| i ∈ set ´ aux_queue |} ∩
{| ´ flag_mapping (´ myindex i) 6= Pending |}"

hence ln1:"aux_queue s 6= []"
by force

have ln2:"flag_mapping s (aux_head s) 6= Pending"
using assm_s invar_flag_def by force

hence ln3:"myindex s i = aux_head s"
using assm_s invar_flag_def
by (metis (mono_tags, lifting) IntE mem_Collect_eq)

have "i = hd (aux_queue s) ∧ s ∈ {| ´ aux_mid_release = None |}"
apply (intro conjI)
using ln1 ln3 assm_s
apply (metis (lifting) Int_Collect head_and_head_index inf_commute inj_onD invar_bounds_def

invar_flag_def invar_map_inj_on invar_queue_def list.set_sel(1))

53

using ln2 ln3 assm_s
by (fastforce simp: invar_flag_def flag_status.exhaust)

}
thus ?thesis by fastforce

qed
qed (fastforce+)

abbreviation rel_line1 :: "thread_id ⇒ cblock_state ⇒ cblock_state" where
"rel_line1 i ≡ (´ flag_mapping[´ myindex i] ← Pending) ◦>

(´ aux_mid_release ← Some i)"

lemma rel_1_same:
"s’ = rel_line1 i s =⇒

(myindex s = myindex s’) ∧
(∀ j 6= myindex s i. flag_mapping s j = flag_mapping s’ j) ∧
(tail s = tail s’) ∧
(aux_head s = aux_head s’) ∧
(aux_queue s = aux_queue s’)"

by simp

lemma rel_1_invar:
assumes assm_old: "s ∈ cblock_invar i"

and assm_new: "s’ = rel_line1 i s"
and assm_pre: "at_head i (aux_queue s) ∧ aux_mid_release s = None"

shows "s’ ∈ cblock_invar i"
proof method_cblock_invar

case flag show ?case
apply method_invar_flag
using assm_new assm_old assm_pre
by (fastforce simp: invar_flag_def head_and_head_index)+

next
case bound
thus ?case

using assm_old invar_bounds_def assm_new
by (metis (no_types, lifting) rel_1_same Int_iff mem_Collect_eq)

next
case queue show ?case

apply (method_invar_queue)
using assm_old assm_new apply (fastforce simp: invar_queue_def)
by (metis (lifting) assm_old assm_new used_indices_map_queue used_indices_def rel_1_same

IntE)
qed

lemma rel_1_est_guar:
assumes "s ∈ {| ´ aux_queue 6= [] ∧

hd ´ aux_queue = i ∧
´ aux_mid_release = None |}

∩ cblock_invar i"
and "s’ = rel_line1 i s"

shows "(s, s’) ∈ for_others cblock_contract i
∩ pred_to_rel (cblock_invar i)"

proof-
{ fix j assume assm_u_t: "j 6= i"

have "j ∈ set (aux_queue s)
−→ flag_mapping s (myindex s j) = Granted
−→ flag_mapping s’ (myindex s’ j) = Granted"

using assms assm_u_t

54

by (fastforce intro: simp: head_and_head_index inj_onD dest: invar_map_inj_on)
moreover have "myindex s j = myindex s’ j"

using assms by (fastforce intro: rel_1_same)
ultimately have "(s, s’) ∈ contract_raw j"

by fastforce }
moreover
{ fix j assume "j 6= i"

hence "hd (aux_queue s) 6= j"
using assms(1) by simp

moreover have "j ∈ set (aux_queue s) ←→ j ∈ set (aux_queue s’)"
using rel_1_same assms(2) by simp

ultimately have "(s, s’) ∈ contract_aux j"
by fastforce }

moreover have "(s, s’) ∈ pred_to_rel (cblock_invar i)"
using assms rel_1_invar by fastforce

ultimately show ?thesis
by fastforce

qed

theorem cblock_rel1:
"rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i anno_code:

{ {| at_head i ´ aux_queue ∧ ´ aux_mid_release = None |} }
BasicAnno (rel_line1 i)

{ {| at_head i ´ aux_queue ∧ ´ aux_mid_release = Some i |} }"
proof method_anno_ultimate

case est_guar
thus ?case

using rel_1_invar
by (fastforce dest: invar_map_inj_on simp: inj_on_contraD)

next
case est_post
thus ?case

using rel_1_est_guar by fastforce
qed (fastforce+)

abbreviation rel_line2 :: "thread_id ⇒ cblock_state ⇒ cblock_state" where
"rel_line2 i ≡

(´ flag_mapping[((´ myindex i + 1) mod ArraySize)] ← Granted) ◦>
(´ aux_queue ← tl ´ aux_queue) ◦>
(´ aux_head ← (´ aux_head + 1) mod ArraySize) ◦>
(´ aux_mid_release ← None)"

lemma rel_2_same:
"s’ = rel_line2 i s =⇒

myindex s = myindex s’ ∧
tail s = tail s’ ∧

(∀ j 6= (myindex s i + 1) mod ArraySize.
flag_mapping s j = flag_mapping s’ j)"

by fastforce

lemma rel_2_invar:
assumes assm_old: "s ∈ cblock_invar i"

and assm_pre: "at_head i (aux_queue s) ∧ aux_mid_release s = Some i"
and assm_new: "s’ = rel_line2 i s"

shows "s’ ∈ cblock_invar i"
proof method_cblock_invar

case flag show ?case

55

apply (method_invar_flag)
using assm_new assm_old assm_pre
by (force simp: head_and_head_index invar_flag_def)+

next
case bound
have "tail s’ < ArraySize"

using assm_new assm_old
by (fastforce simp: invar_bounds_def)

moreover have "aux_head s’ < ArraySize"
using assms
by fastforce

moreover have "i < NumThreads"
using assm_old assm_new by fastforce

ultimately show ?case
using invar_bounds_def by blast

next
case queue show ?case
proof method_invar_queue

case bound_thread_id
show ?case

using assm_new assm_old assm_pre
by (fastforce simp: invar_queue_def list.set_sel(2))

next
case map_used_indices
have same: "tail s = tail s’ ∧

myindex s = myindex s’"
using assm_new by (fastforce intro: rel_2_same)

have "aux_queue s 6= []"
using assm_pre by fastforce

hence d: "aux_head s 6= tail s"
using assm_old head_and_head_index tail_never_used by force

have t: "aux_queue s’ = tl (aux_queue s)"
using assm_new by fastforce

have m: "map (myindex s) (aux_queue s) = used_indices s"
using assm_old invar_queue_def by fastforce

have "used_indices s’ = tl (used_indices s)"
proof-

{ assume a: "aux_head s ≤ tail s"
hence 1: "aux_head s + 1 < ArraySize"

using d assm_old invar_bounds_def by force
hence 2: "aux_head s’ = aux_head s + 1"

using assm_new mod_less by force
hence 3: "aux_head s’ ≤ tail s’"

using a d 2 same by fastforce

have "used_indices s = [aux_head s ..< tail s]"
using a used_indices_def by simp

also have "... = aux_head s # [aux_head s + 1 ..< tail s]"
using a d upt_eq_Cons_conv by fastforce

also have "... = aux_head s # [aux_head s’ ..< tail s]"
using 2 by fastforce

also have "... = aux_head s # [aux_head s’ ..< tail s’]"
using assm_new rel_2_same by fastforce

also have "... = aux_head s # used_indices s’"
using 3 used_indices_def by fastforce

ultimately have ?thesis
by simp }

56

moreover
{ assume a: "aux_head s > tail s ∧ aux_head s = ArraySize - 1"

have "aux_head s’ = (aux_head s + 1) mod ArraySize"
using assm_new by simp

also have "... = 0"
using a Suc_eq_plus1 diff_Suc_1 by presburger

also have "... ≤ tail s’"
by simp

ultimately have b: "used_indices s’ = [0 ..< tail s’]"
using used_indices_def by presburger

from a have "used_indices s = aux_head s # [0 ..< tail s]"
using used_indices_def by fastforce

also have "... = aux_head s # used_indices s’"
using same b by simp

ultimately have ?thesis by simp }
moreover
{ assume a: "tail s < aux_head s ∧ aux_head s 6= ArraySize - 1"

hence b: "aux_head s < ArraySize - 1"
using assm_old invar_bounds_def by force

hence "aux_head s + 1 = (aux_head s + 1) mod ArraySize"
by simp

also have "... = aux_head s’"
using assm_new by simp

ultimately have c: "tail s’ < aux_head s’ ∧ aux_head s + 1 = aux_head s’"
using a same by simp

hence d: "used_indices s’ = [aux_head s’ ..< ArraySize] @ [0 ..< tail s’]"
using used_indices_def by simp

from a have "used_indices s = [aux_head s ..< ArraySize] @ [0 ..< tail s]"
using used_indices_def by simp

also have "... = aux_head s # [aux_head s’ ..< ArraySize] @ [0 ..< tail s]"
using a b c upt_rec by force

also have "... = aux_head s # used_indices s’"
using same d by simp

ultimately have ?thesis by simp }
ultimately show ?thesis by force

qed

hence "map (myindex s) (aux_queue s’) = used_indices s’"
by (simp add: t m map_tl)

thus ?case using same by (simp add: invar_queue_def)
qed

qed

lemma rel_2_est_guar:
assumes assm_old : "s ∈ cblock_invar i"

and assm_pre : "at_head i (aux_queue s) ∧ aux_mid_release s = Some i"
and assm_new : "s’ = rel_line2 i s"

shows "(s, s’) ∈ for_others cblock_contract i
∩ pred_to_rel (cblock_invar i)"

proof-
{ fix j assume u: "j 6= i"

hence "(s, s’) ∈ contract_raw j"
proof-

have "myindex s j = myindex s’ j"

57

using assms rel_2_same by presburger
moreover
{ assume "j ∈ set (aux_queue s) ∧ flag_mapping s (myindex s j) = Granted"

hence "flag_mapping s’ (myindex s j) = Granted"
using assms by simp

hence "flag_mapping s’ (myindex s’ j) = Granted"
using assms rel_2_same by (metis (no_types, lifting)) }

ultimately show ?thesis by simp
qed
moreover have "(s, s’) ∈ contract_aux j"
proof-

have s: "tl (aux_queue s) = aux_queue s’ ∧
hd (aux_queue s) = i ∧
i 6= j"

using assm_new assm_pre u by simp
hence "j ∈ set (aux_queue s) ←→ j ∈ set (aux_queue s’)"

by (metis RG_Tran.nth_tl hd_conv_nth list.sel(2) list.set_sel(2) set_ConsD)
thus ?thesis using s by simp

qed
ultimately have "(s, s’) ∈ cblock_contract j"

by simp }
moreover have "(s, s’) ∈ pred_to_rel (cblock_invar i)"

using assms rel_2_invar by force
ultimately show ?thesis by simp

qed

theorem cblock_rel2:
"rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i anno_code:

{ {| at_head i ´ aux_queue ∧ ´ aux_mid_release = Some i |} }
BasicAnno (rel_line2 i)

{ {| i /∈ set ´ aux_queue |} }"
proof method_anno_ultimate

case est_guar
thus ?case

using rel_2_est_guar by fastforce
next

case est_post
thus ?case

using rel_2_invar apply clarsimp
by (metis (mono_tags, lifting) distinct.simps(2) distinct_map distinct_used_indices

invar_queue_def list.collapse mem_Collect_eq)
qed (fastforce+)

7.4 RG Theorems
theorem cblock_acq:
"rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i anno_code:

{ {| i /∈ set ´ aux_queue |} }
BasicAnno (acq_line1 i) .;

{ {| i ∈ set ´ aux_queue |} }
NoAnno (WHILE ´ flag_mapping (´ myindex i) = Pending DO SKIP OD)

{ {| at_head i ´ aux_queue ∧ ´ aux_mid_release = None |} }"
apply method_anno_ultimate
using cblock_acq1 cblock_acq2 by fastforce+

58

theorem cblock_rel:
"rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i anno_code:

{ {| at_head i ´ aux_queue ∧ ´ aux_mid_release = None |} }
BasicAnno (rel_line1 i) .;

{ {| at_head i ´ aux_queue ∧ ´ aux_mid_release = Some i |} }
BasicAnno (rel_line2 i)

{ {| i /∈ set ´ aux_queue |} }"
apply method_anno_ultimate
using cblock_rel1 cblock_rel2 annquin_simp by blast+

theorem cblock_local:
"rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i anno_code:

{ {| i /∈ set ´ aux_queue |} }
BasicAnno (acq_line1 i) .;

{ {| i ∈ set ´ aux_queue |} }
NoAnno (WHILE ´ flag_mapping (´ myindex i) = Pending DO SKIP OD) .;

{ {| at_head i ´ aux_queue ∧ ´ aux_mid_release = None |} }
BasicAnno (rel_line1 i) .;

{ {| at_head i ´ aux_queue ∧ ´ aux_mid_release = Some i |} }
BasicAnno (rel_line2 i)

{ {| i /∈ set ´ aux_queue |} }"
apply (method_anno_ultimate)

using cblock_acq1 annquin_simp apply blast
using cblock_acq2 annquin_simp apply force

using cblock_rel1 annquin_simp apply blast
using cblock_rel2 annquin_simp by blast

When Sledgehammer is applied directly to one of the subgoals of the next theorem cblock_local_loop,
several solvers do find proofs but do not report back. However, when that subgoal is explicitly
copied into a separate lemma below, sledgehammer does find an SMT proof.
lemma lma_tmp:

assumes
"rely: cblock_contract t ∩ pred_to_rel (cblock_invar t)
guar: invar_and_guar (cblock_invar t) (for_others cblock_contract t)
anno_code:

{{|t /∈ set ´ aux_queue|} ∩ cblock_invar t}
add_invar (cblock_invar t) (BasicAnno (acq_line1 t) .;

{{|t ∈ set ´ aux_queue|}}
NoAnno (WHILE ´ flag_mapping (´ myindex t) = Pending DO SKIP OD) .;

{{|at_head t ´ aux_queue ∧ ´ aux_mid_release = None|}}
BasicAnno (rel_line1 t) .;

{{|at_head t ´ aux_queue ∧ ´ aux_mid_release = Some t|}}
BasicAnno (rel_line2 t))

{{|t /∈ set ´ aux_queue|} ∩ cblock_invar t}"
shows
"anncom_spec_valid

({|t /∈ set ´ aux_queue|} ∩ cblock_invar t ∩ {|t /∈ set ´ aux_queue|})
(cblock_contract t ∩ pred_to_rel (cblock_invar t))
(invar_and_guar (cblock_invar t) (for_others cblock_contract t))
({|t /∈ set ´ aux_queue|} ∩ cblock_invar t)
(add_invar (cblock_invar t)
(BasicAnno (acq_line1 t) .;
{{|t ∈ set ´ aux_queue|}}
NoAnno (WHILE ´ flag_mapping (´ myindex t) = Pending DO SKIP OD) .;
{{|at_head t ´ aux_queue ∧ ´ aux_mid_release = None|}}
BasicAnno (rel_line1 t) .;

59

{{|at_head t ´ aux_queue ∧ ´ aux_mid_release = Some t|}}
BasicAnno (rel_line2 t)))"

using assms annquin_simp
by (smt (verit) Int_absorb inf_assoc inf_commute)

theorem cblock_local_loop:
"rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i anno_code:

{ {| i /∈ set ´ aux_queue |} }
WhileAnno UNIV

({| i /∈ set ´ aux_queue |})
(BasicAnno (acq_line1 i) .;

{ {| i ∈ set ´ aux_queue |} }
NoAnno (WHILE ´ flag_mapping (´ myindex i) = Pending DO SKIP OD) .;

{ {| at_head i ´ aux_queue ∧ ´ aux_mid_release = None |} }
BasicAnno (rel_line1 i) .;

{ {| at_head i ´ aux_queue ∧ ´ aux_mid_release = Some i |} }
BasicAnno (rel_line2 i))

{ {} }"
proof method_anno_ultimate

case body
thus ?case

by (rule lma_tmp, rule cblock_local)
qed (fastforce+)

The overall theorem expressing the correctness of the Circular Buffer Lock.
theorem cblock_global:

"annotated global_init: cblock_init global_rely: Id
‖ i < NumThreads @

{ {| i /∈ set ´ aux_queue |}, cblock_contract i }
WhileAnno UNIV

({| i /∈ set ´ aux_queue |})
(BasicAnno (acq_line1 i) .;

{ {| i ∈ set ´ aux_queue |} }
NoAnno (WHILE ´ flag_mapping (´ myindex i) = Pending DO SKIP OD) .;

{ {| at_head i ´ aux_queue ∧ ´ aux_mid_release = None |} }
BasicAnno (rel_line1 i) .;

{ {| at_head i ´ aux_queue ∧ ´ aux_mid_release = Some i |} }
BasicAnno (rel_line2 i))

� cblock_invar i { for_others cblock_contract i, {} }
global_guar: UNIV global_post: {}"
apply (method_anno_ultimate)

apply (fastforce intro!: cblock_local_loop)
using cblock_init_def cblock_init_invar apply force

using cblock_contracts cblock_invariants apply fastforce
by (fastforce simp: assm_locale)+

end

End of locale
end

End of theory

60

Acknowledgement

This work was funded by the Department of Defence, and administered through the Advanced
Strategic Capabilities Accelerator.

References

[1] R. J. Colvin, S. Heiner, P. Höfner, and R. C. Su. Rely-guarantee concurrency verification
of queued locks in Isabelle/HOL. In Verified Software: Theories, Tools, and Experiments
(VSTTE), 2025.

[2] L. Prensa Nieto. The rely-guarantee method in Isabelle/HOL. In Programming Languages
and Systems (ESOP), pages 348–362, 2003.

61

	Introduction
	Rely-Guarantee (RG) Syntax Extensions
	Lifting of Invariants
	RG Sentences
	RG Subgoal-Generating Methods
	Basic
	Looping constructs
	Conditionals

	Parallel Compositions
	Binary Parallel
	Multi-Parallel

	Syntax of Record-Updates

	Annotated Commands
	Annotated Quintuples
	Structured Tactics for Annotated Commands
	Binary Parallel
	Helpers: Index Offsets
	Multi-Parallel
	The Main Tactics

	Examples Reworked
	Setting Elements of an Array to Zero
	Incrementing a Variable in Parallel
	FindP

	Abstract Queue Lock
	Ticket Lock
	Helpers: Inj, Surj and Bij
	Inj-Related
	Surj-Related
	Bij and Inv

	Helpers: Multi-Updates on Functions
	Ordering of Updates
	Surjective
	Injective
	Set- and List-Intervals

	Basic Definitions
	RG Theorems

	Circular-Buffer Queue-Lock
	Invariant
	Invariant Methods
	Invariant Lemmas

	Contract
	RG Lemmas
	RG Theorems

