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Abstract

We enhance rely-guarantee verification in Isabelle/HOL by extending the 2003 built-in
library with flexible syntax, data-invariant support, and new tactics. We demonstrate our
enhanced library by applying it to the examples attached to the original library. We also
apply our library to three queue locks: the Abstract Queue Lock, the Ticket Lock, and the
Circular Buffer Lock.
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Introduction

The content of this entry has been presented as [1]. The original built-in library is [2].

2

Rely-Guarantee (RG) Syntax Extensions

The core extensions to the built-in RG library: improved syntax of RG sentences in the quintuple-
and keyword-styles, with data-invariants.

Also: subgoal-generating methods for RG inference-rules that work with the structured proof-
language, Isar.

theory RG_Syntax_Extensions

imports

"HOL-Hoare_Parallel.RG_Syntax"
"HOL-Eisbach.Eisbach"

begin

We begin with some basic notions that are used later on.

Notation for forward function-composition: defined in the built-in Fun.thy but disabled at the
end of that theory. This operator is useful for modelling atomic primitives such as Swap and
Fetch-And-Increment, and also useful when coupling concrete- and auxiliary-variable instruc-

tions.

notation fcomp (infixl "o>" 60)

lemmas definitions [simp] =

stable_def Pre_def Rely_def Guar_def Post_def Com_def

In applications, guarantee-relations often stipulates that Thread i should “preserve the rely-
relations of all other threads”. This pattern is supported by the following higher-order function,
where j ranges through all the threads that are not i.



abbreviation for_others :: "(’index = ’state rel) = ’index = ’state rel" where
"for_others R i =) j € -{i}. R j"

Relies and guarantees often state that certain variables remain unchanged. We support this
pattern with the following syntactic sugars.

abbreviation record_id :: "(’record = ’field) = ’record rel"
("id’ (_’)" [75] 74) where
"id(c) = { %c = % |}"

abbreviation record_ids :: "(’record = ’field) set = ’record rel"
("ids’ (_’)" [75] 74) where
"ids(cs) = [) ¢ € cs. id(c)"

abbreviation record_id_indexed ::
"(’record = ’index = ’field) = ’index = ’record rel"
("id’( _ @ _ ’)") where
"id(c @ self) = { % self = %c self [}"

abbreviation record_ids_indexed ::
"(’record = ’index = ’field) set = ’index = ’record rel"
("ids’( _ @ _ ’)") where
"ids(cs @ self) = (] ¢ € cs. id(c @ self)"

The following simple method performs an optional simplification-step, and then tries to apply
one of the RG rules, before attempting to discharge each subgoal using force. This method
works well on simple RG sentences.

method method_rg_try_each =
(clarsimp | simp)?,
( rule Basic | rule Seq | rule Cond | rule While
| rule Await | rule Conseq | rule Parallel);
force+

2.1 Lifting of Invariants

There are different ways to combine the invariant with the rely or guarantee, as long as the
invariant is preserved. Here, a rely- or guarantee-relation R is combined with the invariant I
into {(s, s8’). (s € I — s’ € I) A R}.

definition pred_to_rel :: "’a set = ’a rel" where

"pred_to_rel P = {(s,s’) . s € P — s’ € P}"

definition invar_and_guar :: "’a set = ’a rel = ’a rel" where
"invar_and_guar I G = G N pred_to_rel I"

lemmas simp_defs [simp] = pred_to_rel_def invar_and_guar_def

2.2 RG Sentences

The quintuple-style of RG sentences.

abbreviation rg_quint ::
"’a set = ’arel = ’a com = ’a rel = ’a set = bool"
M{_,_Y _ {_,_3") where
"{P, R} C {G, Qy =+ C sat [P, R, G, Q]"

Quintuples with invariants.

abbreviation rg_quint_invar ::



"’a set = ’a rel = ’a com = ’a set = ’a rel = ’a set = bool"
M{_,. Y _ J _A_,_¥") where
"{P, R} C / I 4{G, Q} =F Csat [

PNI,

R N pred_to_rel I,

invar_and_guar I G,

QN I]"

The keyword-style of RG sentences.

abbreviation rg_keyword ::
"’a rel = ’arel = ’a set = ’a com = ’a set = bool"
("rely:_ guar:_ code: {_} _ {_}") where
"rg_keyword RGP C Q=+ C sat [P, R, G, Q"

Keyword-style RG sentences with invariants.

abbreviation rg_keyword_invar ::
"’a rel = ’a rel = ’a set = ’a set = ’a com = ’a set = bool"
("rely:_ guar:_ inv:_ code: {_} _ {_}") where
"rg_keyword_invar RG I P CQ =F C sat [
PN I,
R N pred_to_rel I,
invar_and_guar I G,
QN I]"

2.3 RG Subgoal-Generating Methods

As in Floyd-Hoare logic, in RG we can strengthen (make smaller) the precondition and weaken
(make larger) the postcondition without affecting the validity of an RG sentence.

theorem strengthen_pre:
assumes "P’ C P"
and " ¢ sat [P, R, G, Q]"
shows "~ ¢ sat [P’, R, G, QI"
using assms Conseq by blast

theorem weaken_post:
assumes "Q C Q’"
and "F c sat [P, R, G, Q 1"
shows "F ¢ sat [P, R, G, Q’1"
using assms Conseq by blast

We then develop subgoal-generating methods for various instruction types and patterns, to be
used in conjunction with the Isar proof-language.

2.3.1 Basic

A Basic instruction wraps a state-transformation function.

theorem rg_basic_named[intro]:
assumes "stable P R"
and "stable Q R"
and "Vs. s € P — (s, s) € G"
and "Vs. s €¢ P — (s, £ 8) € G"
and "P C {| "f € Q "
shows "{P, R} Basic f {G, Q}"
using assms apply -
by (rule Basic; fastforce)



method method_basic =
rule rg_basic_named,
goal_cases stable_pre stable_post guar_id establish_guar establish_post

The skip command is a Basic instruction whose function is the identity.

theorem rg_skip_named:
assumes "stable P R"
and "stable Q R"
and "Id C G"
and "P C Q"
shows "{P, R} SKIP {G, Q}"
using assms by force

method method_skip =
rule rg_skip_named,
goal_cases stab_pre stab_post guar_id est_post

An alternative version with an invariant subgoal.

theorem rg_basic_inv[intro]:
assumes "stable (P N I) (R N pred_to_rel I)"
and "stable (Q N I) (R N pred_to_rel I)"

and "Vs. s €e PNI — (s, 8) € G"

and "Vs. s e PNI — f s € I"

and "Vs. s e PNI — fs e Q"

and "Vs. s e PNI — (s, fs) € G"
shows "F (Basic f) sat [

PNI,
R N pred_to_rel I,
invar_and_guar I G,
QNI

using assms apply -

by (method_basic; fastforce)

method method_basic_inv = rule rg_basic_inv,
goal_cases stab_pre stab_post id_guar est_inv est_post est_guar

2.3.2 Looping constructs

theorem rg_general_loop_named[intro]:

assumes "stable P R"

and "stable Q R"

and "Id C G"

and "P N -b C Q"

and "{P N b, R} ¢ {G, P}"

shows "{P, R} While b ¢ {G, Q}"

using assms apply -
by (rule While; fastforce)

method method_loop =
rule rg_general_loop_named,
goal_cases stable_pre stable_post id_guar loop_exit loop_body

A similar version but with the loop_body subgoal having a weakend precondition.

theorem rg_general_loop_no_guard[intro]:
assumes "stable P R"
and "stable Q R"
and "Id C G"
and "P N -b C Q"



and "{P, R} c {G, P}"
shows "{P, R} While b ¢ {G, Q}"
apply (rule rg_general_loop_named)
by (fastforce intro!: assms Int_lowerl intro: strengthen_pre)+

method method_loop_no_guard =
rule rg_general_loop_no_guard,
goal_cases stab_pre stab_post guar_id loop_exit loop_body

A spinloop is a loop with an empty body. Such a loop repeatedly checks a property, and is a
key construct in mutual exclusion algorithms.

theorem rg_spinloop_named[intro]:
assumes '"stable P R"
and "stable Q R"
and "Id C G"
and "P N -b C Q"
shows "{P, R} While b SKIP {G, Q}"
using assms
by (fastforce simp: rg_general_loop_no_guard rg_skip_named)

method method_spinloop =
rule rg_spinloop_named,
goal_cases stable_pre stable_post guar_id est_post

theorem rg_infinite_loop:
assumes "stable P R"
and "Id C G"
and "{P, R} C {G, P}"
shows "{P, R} While UNIV C {G, Q"
proof -
have "{P, R} While UNIV C {G, {}}"
using assms by (fastforce simp: rg_general_loop_no_guard)
thus 7thesis
using weaken_post by fastforce
qed

method method_infinite_loop =
rule rg_infinite_loop,
goal_cases stable_pre guar_id loop_body,
clarsimp+

theorem rg_infinite_loop_syntax:
assumes '"stable P R"
and "Id C G"
and "{P, R} C {G, P}"
shows "{P, R} WHILE True DO C OD {G, Q}"
using assms by (fastforce simp: rg_infinite_loop)

method method_infinite_loop_syntax =
rule rg_infinite_loop_syntax,
goal_cases stable_pre guar_id loop_body

A repeat-loop encodes the pattern where the loop body is executed before the first evaluation
of the guard.
theorem rg_repeat_loop[intro]:

assumes "stable P R"
and "stable Q R"



and "Id C G"
and "P N b C Q"
and loop_body: "{P, R} C {G, P}"
shows "{P, R} C ;; While (-b) C {G, Q}"
using assms apply -
apply (rule Seq)
apply (force intro: loop_body)
by (method_loop_no_guard; fastforce)

method method_repeat_loop =
rule rg_repeat_loop,
goal_cases stab_pre stab_post guar_id loop_exit loop_body

When reasoning about repeat-loops, we may need information from P to determine whether
we reach the postcondition. In this case we can use the following form, which introduces a

mid-state.

theorem rg_repeat_loop_mid[intro]:

assumes stab_pre: ‘"stable (P N M) R"
and stab_post: "stable Q R"
and guar_id: "Id C G"

and loop_exit: "P N M N b C Q"
and loop_body: "{P, R} C {G, P N M}"
shows "{P, R} C ;; While (-b) C {G, Q}"
using assms apply -
apply (rule Seq)
apply (fast intro: loop_body)
by (method_loop_no_guard; fast intro: loop_body strengthen_pre)

method method_repeat_loop_mid =
rule rg_repeat_loop_mid,
goal_cases stab_pre stab_post guar_id loop_exit loop_body

We define dedicated syntax for the repeat-loop pattern.
definition Repeat :: "’a com = ’a bexp = ’a com" where

"Repeat ¢ b = ¢ ;; While (-b) c"

syntax "_Repeat" :: "’a com = ’a bexp = ’a com" ("(OREPEAT _ /UNTIL
61)
translations "REPEAT c UNTIL b END" — "CONST Repeat c {bf"

theorem rg_repeat_loop_def [intro]:

assumes stab_pre: '"stable P R"
and stab_post: "stable Q R"
and guar_id: "Id C G"

and loop_exit: "P N b C Q"
and loop_body: "{P, R} C {G, P}"
shows "{P, R} Repeat C b {G, Q}"
using assms
by (fastforce simp: Repeat_def rg_repeat_loop)

method method_repeat_loop_def =

rule rg_repeat_loop_def,
goal_cases stab_pre stab_post guar_id loop_exit loop_body

2.3.3 Conditionals

We first cover conditional-statements with or without the else-branch.

_ /END)"

o, ol



theorem rg_cond_named[intro]:

assumes stab_pre: '"stable P R"
and stab_post: "stable Q R"
and guar_id: "Id C G"
and then_br: "{P N b, R} c1 {G, Q}"
and else_br: "{P N -b, R} c2 {G, Q}"

shows "{P, R} Cond b c1 c2 {G, Q}"
using assms apply -
by (rule Cond; fastforce)

theorem rg_cond2_named[intro]:

assumes stab_pre: '"stable P R"
and stab_post: "stable Q R"
and guar_id: "Id C G"
and then_br: "{P N b, R} c1 {G, Q}"
and else_br: "P N -b C Q"

shows "{P, R} Cond b c1 SKIP {G, Q}"
using assms apply -
by (rule rg_cond_named; fastforce simp: rg_skip_named strengthen_pre)

method method_cond =
(rule rg_cond2_named | rule rg_cond_named),
goal_cases stab_pre stab_post guar_id then_br else_br

Variants without the stable-post subgoal.

theorem rg_cond_no_post[intro]:
assumes stable_pre: "stable P R"
and guar_id: "Id C G"
and then_br: "{P N b, R} c1 {G, Q}"
and else_br: "{P N -b, R} c2 {G, Q}"
shows "{P, R} Cond b c1 c2 {G, Q}"
using assms by (fastforce simp: Cond subset_iff)

theorem rg_cond_no_guard_no_post[intro]:
assumes stable_pre: "stable P R"
and guar_id: "Id C G"
and then_br: "{P, R} c1 {G, Q}"
and else_br: "{P, R} c2 {G, Q}"
shows "{P, R} Cond b c1 c2 {G, Q}"
using assms apply -
by (rule Cond; fastforce intro: strengthen_pre)

method method_cond_no_post =
(rule rg_cond_no_post | rule rg_cond_no_guard_no_post),
goal_cases stab_pre guar_id then_br else_br

2.4 Parallel Compositions

We now turn to the parallel composition, and cover several variants, from the binary parallel
composition of two commands, to the multi-parallel composition of an indexed list of commands.
For each variant, we define the syntax and devise the subgoal-generating methods.

2.4.1 Binary Parallel

The syntax of binary parallel composition, without and with invariant.

abbreviation binary_parallel ::



"’a set = ’arel = ’a com = ’a com = ’a rel = ’a set = bool"
ML, Y _ | _ 4., _¥") where
"{P, R} C1 || C2 {G, Q} =
4 P1 P2 R1 R2 G1 G2 Q1 Q2.
F COBEGIN
(C1, P1, R1, G1, Q1)
|
(c2, P2, R2, G2, Q2)
COEND SAT [P, R, G, QI"

abbreviation binary_parallel_invar ::
"’a set = ’arel = ’a com = ’a com = ’a set = ’a rel = ’a set = bool"
ML, Y _ Il _ /) AL, ¥ where
"{P, R} C1 || C2 / I {G, Q} =
4 P1 P2 R1 R2 G1 G2 Q1 Q2.
F COBEGIN
(C1, P1, R1, G1, Q1)
|
(c2, P2, R2, G2, Q2)
COEND SAT [P N I, R N pred_to_rel I, invar_and_guar I G, Q N I]"

Some helper lemmas for later.

lemma simp_all_2:
"(V i < Suc (Suc 0). P i) <— P O A P 1"
by (fastforce simp: less_Suc_eq)

lemma simp_gen_Un_2:
"(U x € {(<) (Suc (Suc 0)) }}. Sx) =S 0U S 1"
by (fastforce simp: less_Suc_eq)

lemma simp_gen_Un_2_notO:
"(U x € {7(<) (Suc (Suc 0)) A "(#) (Suc 0) . S x) =8 0"
by (fastforce simp: less_Suc_eq)

lemma simp_gen_Int_2:
"(N x€ { (<) (Suc (Suc 0)) }. Sx) =85 0N S 1"
by (fastforce simp: less_Suc_eq)

theorem rg_binary_parallel:

assumes "{P1, R1} (Cl::’a com) {G1, Q1}"
and "{P2, R2} (C2::’a com) {G2, Q21"
and "G1 C R2"
and "G2 C R1"
and "P C P1 N P2"
and "R C R1 N R2"
and "G1 U G2 C G"
and "Q1 N Q2 C Q"

shows "k COBEGIN

(C1, P1, R1, G1, Q1)
|
(c2, P2, R2, G2, Q2)
COEND SAT [P, R, G, QI"

using assms apply -

apply (rule Parallel)

by (simp_all add: simp_all_2 simp_gen_Un_2 simp_gen_Int_2 simp_gen_Un_2_not0)

theorem rg_binary_parallel_exists:
assumes "{P1, R1} (C1l::’a com) {G1, Qi}"



and "{P2, R2} (C2::’a com) {G2, Q21"
and "G1 C R2"

and "G2 C R1"

and "P C P1 N P2"

and "R C R1 N R2"

and "Gl U G2 C G"

and "Q1 N Q2 C Q"

shows "{P, R} C1 | €2 {G, Q}"
by (metis assms rg_binary_parallel)

theorem rg_binary_parallel_invar_conseq:

assumes Cl: "{P1, R1} (Cl::’a com) J/ I {G1, Q1}"
and C2: "{P2, R2} (C2::’a com) // I {G2, Q2}"
and "Gi1 C R2"
and "G2 C R1"
and "P C P1 N P2"
and "R C R1 N R2"
and "Q1 N Q2 C Q"
and "Gl U G2 C G"

shows "{P, R} C1 || c2 / I {G, Q}"

using assms apply -

apply (rule rg_binary_parallel_exists)

by force+

2.4.2 Multi-Parallel

The syntax of multi-parallel, without and with invariants.

syntax multi_parallel ::

"’a set = ’a rel = idt = nat =

(nat = ’a set) = (nat = ’a rel) =

(nat = ’a com) =

(nat = ’a rel) = (nat = ’a set) =

’a rel = ’a set = bool"

("global’_init: _ global’_rely: _ || _ < _ @ {_,_} _ {_,_} global’_guar: _ global’_post:
_"

translations
"global_init: Init global_rely: RR || i < N @
{P,R} ¢ {G,Q} global_guar: GG global_post: QQ"
—~ " COBEGIN SCHEME [0 < i < N] (c, P, R, G, Q) COEND
SAT [Init, RR , GG, QQI"

syntax multi_parallel_inv ::

"’a set = ’a rel = idt = nat =

(nat = ’a set) = (nat = ’a rel) =

(nat = ’a com) = (nat = ’a set) =

(nat = ’a rel) = (nat = ’a set) =

’a rel = ’a set = bool"

("global’_init: _ global’ _rely: _ || _ < _@{_,_} _ / _ {_,_} global’_guar: _ global’_post:
"

translations
"global_init: Init global_rely: RR || i < N @
{P, R} ¢ / I {G, Q} global_guar: GG global_post: QQ"
— " COBEGIN SCHEME [0 < i < N] (c,
PNI,
R N CONST pred_to_rel I,
CONST invar_and_guar I G,

10



QNI
) COEND
SAT [Init, RR , GG, QQ]"

The subgoal-generating method for multi-parallel.

theorem rg_multi_parallel_subgoals:

assumes assm_guar_rely: "V i j. i # j — i <N — j<N-—Gj CRi"
and assm_pre: "V i < N. P> C P i"
and assm_rely: "V i < N. R? C R i"

and assm_guar: "V i < N. Gi C G’"
and assm_post: "(( i€ {i. i <N} Qi) C Q"
and assm_local: "V i<N. - C i sat [P i, R i, G i, Q i]"
shows "F COBEGIN SCHEME [0 < i < (N::mat)]
(Ci, Pi, Ri, G i, Q i)
COEND SAT [P’, R’, G, Q’]1"
proof (rule Parallel, goal_cases)
case 1 show 7case using assm_rely assm_guar_rely by (simp add: SUP_le_iff)
case 2 show 7case using assm_guar by force
case 3 show ?7case using assm_pre by force
case 4 show ?7case using assm_post by force
case 5 show 7case using assm_local by force
qed

method method_multi_parallel = rule rg_multi_parallel_subgoals,
goal_cases guar_rely pre rely guar post body

theorem rg_multi_parallel_nobound_subgoals:
assumes assm_guar_rely: "V i j. i # j — G j C R i"
and assm_pre: "V i. P’ C P i"
and assm_rely: "V i. R> C R i"
and assm_guar: "V i. G i C G*"
and assm_post: "(() i€ {i. i <N} Qi) C Q"
and assm_local: "V i. - C i sat [P i, R i, G i, Q i]"
shows "F COBEGIN SCHEME [0 < i < (N::nat)]
(Ci, Pi, Ri, G i, Q i)
COEND SAT [P’, R’, G, Q’]1"
using assms apply -
apply (rule Parallel)
by (simp_all add: SUP_le_iff INT_greatest)

method method_multi_parallel_nobound =
rule rg_multi_parallel_nobound_subgoals,
goal_cases guar_rely pre rely guar post body

2.5 Syntax of Record-Updates

This section contains syntactic sugars for updating a field of a record. As we use records to model
the states of a program, these record-update operations correspond to the variable-assignments.
The type idt denotes a field of a record. The first syntactic sugar expresses a Basic command
(of type <’a com>) that updates a record-field x that is a function; often x models an array.
After the update, the new value of <x i> becomes a.
syntax "_record_array_assign"

"idt = ’index = ’expr = ’state com" ("(°_[_]1 :=/ _)" [70, 65, 64] 61)

translations " “x[i] := a"
— "CONST Basic « ~(_update_name x (A_. “x(i:= a)))»"

The next two syntactic sugars express a state-transformation function (rather than a command)

11



that updates record-fields. The first one simply updates an entire variable x, while the second

updates an array <x i>.

syntax "_record_update_field"

"idt = ’expr = (Pa = ’a)" (""_ «/ _" [70] 61)
translations " “x + a"

= "« “(_update_name x (A_. a))>»"

syntax "_record_update_array"

"idt = ’expr = ’expr = (’a = ’a)" (""_[_] «/ _" [70, 71] 61)
translations " “x[i] < a"
— "« " (_update_name x (A_. “x(i:= a)))»"

Syntactic sugars for incrementing variables.

syntax "_inc_fn" :: "idt = ’c = ’c" ("( _.++)" 61)
translations " “x.++ " —

" « “(_update_name x (A_. “x + 1))>»"
syntax "_inc" :: "idt = ’c com" ("(7_++)" 61)

translations " “x++ " —
"CONST Basic ( "x.++)"

end

3 Annotated Commands

theory RG_Annotated_Commands
imports RG_Syntax_Extensions "HOL-Hoare.Hoare_Tac"
begin

datatype ’a anncom =

NoAnno "’a com"
| BasicAnno "’a = ’a"
| WeakPre "a set" ">a anncom" {_} _" [65,61] 61)
| StrongPost "’a anncom" "’a set" _ {3} [61,65] 61)
| SegAnno "’a anncom" "’a set" "’a anncom"
| CondAnno "’a bexp" "’a anncom" "’a anncom"
| WhileAnno "’a bexp" "’a set" "’a anncom"
| AwaitAnno "’a bexp" "’a anncom"
fun anncom_to_com :: "’a anncom = ’a com" where
"anncom_to_com (NoAnno c) = c"
"anncom_to_com (BasicAnno f) = Basic f"
"anncom_to_com (WeakPre b c) = anncom_to_com c"

"anncom_to_com (StrongPost ¢ b) = anncom_to_com c"

"anncom_to_com (CondAnno b cl c2)
"anncom_to_com (WhileAnno b b’ c)
"anncom_to_com (AwaitAnno b c)

While b (anncom_to_com c)"
Await b (anncom_to_com c)"

fun add_invar :: "’a set = ’a anncom = ’a anncom" where
"add_invar I (NoAnno c) = NoAnno c"
| "add_invar I (BasicAnno f) = BasicAnno f"
| "add_invar I (WeakPre b c) = WeakPre (b N I) (add_invar I c)"
| "add_invar I (StrongPost c b) = StrongPost (add_invar I c)
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"anncom_to_com (SegAnno cl mid c2) = Seq (anncom_to_com c1) (anncom_to_com c2)"
Cond b (anncom_to_com cl1) (anncom_to_com c2)"



| "add_invar I (SegAnno cl mid c2) = SegAnno (add_invar I c1) (mid N I) (add_invar
I c2)"
| "add_invar I (CondAnno b ¢l c2) = CondAnno b (add_invar I c1) (add_invar I c2)"
| "add_invar I (WhileAnno b b’ c¢) = WhileAnno b b’ (add_invar I c)"
| "add_invar I (AwaitAnno b c) = AwaitAnno b (add_invar I c)"
syntax
"_CondAnno" :: "’a bexp = ’a anncom = ’a anncom = ’a anncom"
("(0IFa _/ THEN _/ ELSE _/FI)" [0, 0, 0] 61)
"_Cond2Anno" :: "’a bexp = ’a anncom = ’a anncom"
("(0IFa _ THEN _ FI)" [0,0] 56)
"_WhileAnno" :: "’a bexp = ’a set = ’a anncom = ’a anncom"
("(OWHILEa _ /DO {stable’_guard: _ } _ /0D)" [0, 0] 61)
"_WhileAnno_simple_b" :: "’a bexp = ’a anncom => ’a anncom"
("(OWHILEa _ /DO _ /0D)" [0, 0] 61)
" _AwaitAnno" :: "’a bexp = ’a anncom = ’a anncom"
(" (OAWAITa _ /THEN /_ /END)" [0,0] 61)
"_AtomAnno" :: "’a com = ’a anncom"
(u(<_>a)n 61)
" _WaitAnno" :: "’a bexp = ’a anncom"
("(OWAITa _ END)" 61)
"_CondAnno_NoAnnoions" :: "’a bexp = ’a com = ’a com = ’a anncom"

("(OIF. _/ THEN _/ ELSE _/FI)" [0, 0, 0] 61)

translations
"IFa b THEN c1 ELSE c2 FI" — "CONST CondAnno {b[} c1 c2"
"IFa b THEN ¢ FI" &= "IFa b THEN c ELSE SKIP FI"
"IF. b THEN c1 ELSE c2 FI" — "CONST CondAnno ﬂbﬂ (CONST NoAnno c1) (CONST NoAnno c2)"

"WHILEa b DO {stable_guard: b’} c OD" — "CONST WhileAnno {b} b’ c"
"WHILEa b DO ¢ OD" — "CONST WhileAnno {b} {b[} c"

"AWAITa b THEN c END" < "CONST AwaitAnno {bf} c"
"(c)a" = "AWAITa CONST True THEN c END"
"WAITa b END" = "AWAITa b THEN SKIP END"

abbreviation no_assertions_semicolon ::
"’a anncom = ’a set = ’a anncom = ’a anncom"
m_ .; {.}y _" [60,60,61] 60) where
"¢l .; {m} c2 = SeqgAnno cl m c2"

Below is a special syntax for Basic commands (type “com”) encoded inside NoAnno annotated
commands (type “anncom”).

This allows us to keep our syntactic sugars for Basic commands, which are mostly assignments
(":="), without having to redo them all for BasicAnno annotated commands.

Hence, we wrap Basic commands with this helper function, which is only defined for Basic
commands.

fun basic_to_basic_anno_syntax:: "’a com = ’a anncom" ("’(_’)-") where
"basic_to_basic_anno_syntax (Basic f) = BasicAnno f"
| "basic_to_basic_anno_syntax ¢ = NoAnno c"

The following function defines what it means for an annotated command to satisfy the given
specification components. The soundness of this definition will be proved later.

fun anncom_spec_valid :: "’a set = ’a rel = ’a rel = ’a set = ’a anncom = bool" where

"anncom_spec_valid pre rely guar post (NoAnno c)
= (F c sat [pre, rely, guar, post])"
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| "anncom_spec_valid pre rely guar post (BasicAnno f)
= (stable pre rely A
stable post rely A
(Vs. s € pre — (s, s) € guar) A
(Vs. s € pre — (s, f 8) € guar) A
pre C { "f € post P)"

| "anncom_spec_valid pre rely guar post (WeakPre p’ ac)
= ((pre C p’) A
(anncom_spec_valid p’ rely guar post ac))"

| "anncom_spec_valid pre rely guar post (StrongPost ac q’)
= ((@” C post) A
(anncom_spec_valid pre rely guar q’ ac))"

| "anncom_spec_valid pre rely guar post (SegAnno acl mid ac2)
= ((anncom_spec_valid pre rely guar mid acl) A
(anncom_spec_valid mid rely guar post ac2))"

| "anncom_spec_valid pre rely guar post (CondAnno b acl ac2)
= ((stable pre rely) A
(Id C guar) A
(anncom_spec_valid (pre N b) rely guar post acl) A
(anncom_spec_valid (pre N -b) rely guar post ac2))"

| "anncom_spec_valid pre rely guar post (WhileAnno b b’ ac)
= ((stable pre rely) A
(stable post rely) A
(Id C guar) A
(pre N -b C post) A
(pre N b C b’) A
(anncom_spec_valid (pre N b’) rely guar pre ac))"

| "anncom_spec_valid pre rely guar post (AwaitAnno b ac)
= ((stable pre rely) A
(stable post rely) A
(V s. anncom_spec_valid (pre N b N {s}) Id UNIV ({s’. (s, s’) € guar} N post) ac))"

The following theorem establishes the soundness of the definition above.

theorem anncom_spec_valid_sound:
"anncom_spec_valid pre rely guar post ac = F anncom_to_com ac sat [pre, rely, guar,
post]"
proof (induction ac arbitrary: pre rely guar post)
case (NoAnno x)
thus 7case
by (cases x; fastforce)
next
case (BasicAnno x)
thus 7case
by (fastforce simp: rg_basic_named)
next
case (WeakPre pre’ ac)
thus 7case
by (fastforce dest: Conseq)
next
case (StrongPost ac x2)
thus 7case
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by (fastforce simp: weaken_post)
next
case (SeqAnno acl x2 ac2)
thus 7case
by (fastforce simp: Seq)
next
case (CondAnno xla acl ac2)
thus 7case
by (fastforce simp: Cond subset_iff)
next
case (WhileAnno xla x2 ac)
thus 7case
apply clarsimp
apply (rule While,simp_all)
apply (metis le_inf_iff Int_lowerl strengthen_pre)
by fastforce
next
case (AwaitAnno xla ac)
thus 7case
apply clarsimp
apply (rule Await, simp_all)
by (smt (verit, best) Conseq IdI case_prodE mem_Collect_eq subset_iff)
qed

3.1 Annotated Quintuples

For convenience, we define the following datatype, which collects an annotated command with

its specification components.

datatype ’a annquin = AnnQuin "’a set" "’a rel" "’a anncom" "’a rel" "’a set"

oy AL )

abbreviation annquin_invar ::
"’a set = ’a rel = ’a anncom = ’a set = ’a rel = ’a set = ’a annquin"
{2y _ ) 2 AL 23" where
"annquin_invar pre rely ac I guar post = AnnQuin
(pre N I) (rely N pred_to_rel I)
(add_invar I ac)
(invar_and_guar I guar) (post N I)"

Helper functions for extracting the individual components of an <’a annquin>.

fun pre0f :: "’a annquin = ’a set"
where "preOf (AnnQuin pre rely ac guar post) = pre"

fun rely0f :: "’a annquin = ’a rel"
where "rely0f (AnnQuin pre rely ac guar post) = rely"

fun cmd0f :: "’a annquin = ’a anncom"
where "cmd0f (AnnQuin pre rely ac guar post) = ac"
fun guar0f :: "’a annquin = ’a rel"
where "guar0f (AnnQuin pre rely ac guar post)

guar"

fun postOf :: "’a annquin = ’a set"
where "postOf (AnnQuin pre rely ac guar post) = post"

Validity of <’a annquin> is the same as the validity of the “quintuples” when written
separately.
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abbreviation annquin_valid :: "’a annquin = bool" where
"annquin_valid rgac = case rgac of (AnnQuin pre rely ac guar post) =
anncom_spec_valid pre rely guar post ac"

lemma annquin_simp[simp] :
"annquin_valid (AnnQuin p r ¢ g q) = anncom_spec_valid p r g q c"
by fastforce

Syntax for expressing a valid <’a annquin> in terms of its components.

syntax
"_valid_annquin"
"’a rel = ’a rel = ’a set = ’a anncom = ’a set = bool"
("rely:_ guar:_ anno’_code: {_} _ {_}")
"_valid_annquin_invar"
"’a rel = ’a rel = ’a set = ’a set = ’a anncom = ’a set = bool"
("rely:_ guar:_ inv:_ anno’_code: {_} _ {_}")

translations
"rely: R guar: G anno_code: {P} ac {Q}"
— "CONST annquin_valid (CONST AnnQuin P R ac G Q"
"rely: R guar: G inv: I anno_code: {P} ac {Q}"
— "CONST annquin_valid (CONST AnnQuin
(P N I) (R N CONST pred_to_rel I)
(CONST add_invar I ac)
(CONST invar_and_guar I G) (@ N I))"

3.2 Structured Tactics for Annotated Commands

lemma anncom_subgoals_no:
" ¢ sat [pre, rely, guar, post] =—> anncom_spec_valid pre rely guar post (NoAnno c)"
by fastforce

lemma anncom_subgoals_invar_no:
assumes " ¢ sat [pre N I, rely N pred_to_rel I, invar_and_guar I guar, post N I]"
shows "anncom_spec_valid (pre N I) (rely N pred_to_rel I) (invar_and_guar I guar)
(post N I) (add_invar I (NoAnno c))"
using assms by fastforce

lemma anncom_subgoals_basicanno_invar:

assumes stable_pre: "stable (pre N I) (rely N pred_to_rel I)"
and stable_post: "stable (post N I) (rely N pred_to_rel I)"
and guar_id: "Ws. s € (pre N I) — (s, s) € (invar_and_guar I guar)"

and establish_guar: "Vs. s € (pre N I) — (s, £ s) € (invar_and_guar I guar)"
and establish_post: "(pre N I) C { "f € (post N I) |}"

shows "rely: rely guar: guar inv: I anno_code: {pre} (BasicAnno f) {post}"

using assms by fastforce

method method_annquin_basicanno =
rule anncom_subgoals_basicanno_invar,
goal_cases stable_pre stable_post guar_id est_guar est_post

lemma anncom_subgoals_seq:
assumes "anncom_spec_valid pre rely guar mid cl"
and "anncom_spec_valid mid rely guar post c2"
shows "anncom_spec_valid pre rely guar post (SegAnno cl mid c2)"
using assms by fastforce

lemma anncom_subgoals_invar_seq:
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assumes "anncom_spec_valid (pre N I) (rely N pred_to_rel I) (invar_and_guar I guar)
(mid N I) (add_invar I c1)"
and "anncom_spec_valid (mid N I) (rely N pred_to_rel I) (invar_and_guar I guar)
(post N I) (add_invar I c2)"
shows "anncom_spec_valid (pre N I) (rely N pred_to_rel I) (invar_and_guar I guar)
(post N I) (add_invar I (SegAnno cl mid c2))"
using Seq assms by fastforce

lemma anncom_subgoals_invar_seq_abbrev:
assumes "anncom_spec_valid (pre N I) (rely N pred_to_rel I) (invar_and_guar I guar)
(mid N I) (add_invar I c1)"
and "anncom_spec_valid (mid N I) (rely N pred_to_rel I) (invar_and_guar I guar)
(post N I) (add_invar I c2)"
shows "rely: (rely) guar: guar inv: I anno_code: {pre} (cl .; {mid} c2) {postl}"
using Seq assms by fastforce

method method_annquin_seq =
(rule anncom_subgoals_invar_seq | rule anncom_subgoals_invar_seq_abbrev),
goal_cases cl c2

lemma anncom_subgoals_while:
assumes '"stable pre rely"
and "stable post rely"
and "Id C guar"
and "pre N -b C post"
and "pre N b C b’"
and "anncom_spec_valid (pre N b’) rely guar pre ac"
shows "anncom_spec_valid pre rely guar post (WhileAnno b b’ ac)"
using assms by fastforce

lemma add_invar_while:
assumes "anncom_spec_valid (p N I) (R N pred_to_rel I) (invar_and_guar I G)
(g N I) (WhileAnno b b’ (add_invar I ac))"
shows "anncom_spec_valid (p N I) (R N pred_to_rel I) (invar_and_guar I G)
(g N I) (add_invar I (WhileAnno b b’ ac))"
using assms by fastforce

lemma anncom_subgoals_invar_while_abbrev:
assumes "anncom_spec_valid (p N I) (R N pred_to_rel I) (invar_and_guar I G)
(g N I) (add_invar I (WhileAnno b b’ ac))"
shows "rely: R guar: G inv: I anno_code: {p} (WhileAnno b b’ ac) {q}"
using assms by fastforce

method method_annquin_while =
rule anncom_subgoals_invar_while_abbrev,
rule add_invar_while,
rule anncom_subgoals_while,
goal_cases stable_pre stable_post guar_id neg_guard guard body

3.3 Binary Parallel

This section contains inference rules for two annotated commands running in parallel. For
convenience, we first define a datatype that encapsulates the components.
datatype ’a binary_par_quin = ParCode

n }a Set" n 7a relll n )a a.rlnquln" "o a annqulnll no a relll n }a Set"

(R SEPSEN S |- W G L)

The next function sets out the proof obligations of binary parallel, using the datatype <’a
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binary_par_quin> above. It is then followed by the theorem that establishes the soundness of
the inference rule encoded by the function binary_parallel_valid.

fun binary_parallel_valid:: "’a binary_par_quin = bool" where

"binary_parallel_valid (ParCode init gr (AnnQuin pl rl cl gl g1) (AnnQuin p2 r2 c2 g2 g2)
gg final)

= ( annquin_valid (AnnQuin pl rl c1 gl ql)
A annquin_valid (AnnQuin p2 r2 c2 g2 q2)
A init C pl1 N p2

A gr CrlNr2
A gl C r2
A g2 Cri1
NglUg2Cgg
A ql N g2 C final)"

theorem valid_binary_parallel:

"binary_parallel_valid (ParCode init gr (AnnQuin pl rl cl gl ql1) (AnnQuin p2 r2 c2 g2 q2)
gg final)

=—> I COBEGIN (anncom_to_com cl1, pl, rl, gil, ql1) || (anncom_to_com c2, p2, r2, g2, q2)
COEND SAT [init, gr, gg, finall"

by (rule Parallel; force intro:anncom_spec_valid_sound simp: less_Suc_eq)
Variants of the theorem above.

theorem valid_binary_parallel_exists:

"binary_parallel_valid (ParCode init gr (AnnQuin pl rl cl gl gl1) (AnnQuin p2 r2 c2 g2 g2)
gg final)

—> {init, gr} anncom_to_com cl || anncom_to_com c2 {gg, finall}"
by (fast dest: valid_binary_parallel)

theorem valid_binary_parallel_exists_annotated:
assumes "binary_parallel_valid (ParCode

init gr
(AnnQuin pl rl1 c1’ gl q1) (AnnQuin p2 r2 c2’ g2 q2)
gg final)"

and "anncom_to_com c1’ = c1"

and "anncom_to_com c2’ = c2"

shows "{init, gr} ci || c2 {gg, finall}"
using assms

by (fast dest: valid_binary_parallel)

3.4 Helpers: Index Offsets

Before moving on to multi-parallel programs, we first prepare some lemmas that help reason
about offsets and indices.

abbreviation nat_range_set_neq_i :: "nat = nat = nat = nat set"

("{_..<_#_}") where
"nat_range_set_neq_ i lo hi x = {lo..<hi} - {x}"

lemma all_set_range_to_offset:
"(Vie{lo..<hi::nat}. P (f i)) «— (Vi<(hi-lo). P (f (lo + i)))"
by (metis add.commute atlLeastLessThan_iff less_diff_conv nat_le_iff_add)

lemma Int_set_range_to_offset:
"(ief{lo..<hi::nat}. £ i) = (()i<(hi-lo). £ (lo + i))"
by (fastforce simp: le_iff_add)

lemma Un_set_range_to_offset:

"(|IJi€{lo..<hi::nat}. g (f 1)) = (Ui<thi-lo). g (£ (Lo + L))"
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apply standard

apply clarsimp

apply (metis add_diff_cancel_left’ diff_less_mono lessThan_iff nat_le_iff_add)
by fastforce

lemma Int_set_range_neq _to_offset: "i = lo + ii
= (N je{lo..<hi#i}. £ j) = (je{0..<(hi-lo)# ii}. £ (o + )"
unfolding Ball_def Bex_def image_def
apply clarsimp
by (metis (lifting) diff_add_inverse diff_less_mono less_diff_conv nat_le_iff_add)

lemma Int_set_range_neq_to_offset2: "ii< (hi - lo)
= ([N j€{lo..<hi#(lo + i1)}. £ j) = (j€{0..<hi-1lo)# ii}. £ (Lo + )"
unfolding Ball_def Bex_def image_def
apply clarsimp
by (metis (lifting) add.commute add_left_imp_eq less_diff_conv nat_le_iff_add)

lemma forall_range_to_offset:
"(Vie{lo..<(hi::nat)}. P i) +— (Vie{0..<(hi - 10)}. P (lo + i))"
unfolding Ball_def
apply clarsimp
by (metis add.commute le_addl le_add_diff_inverse less_diff_conv)
lemma SCHEME_map_domain:
"map (Ai. rgac i) [lo ..< (N::nat)] = map (Ai. rgac (lo + i)) [0..<(N-lo)]"
by (induct N arbitrary: lo; simp add: Suc_diff_le)
lemma offset_P: "(Vi. lo < i A i < (N::nat) — P i) = 1lo < N = (Vi. i <(N-lo) —
P (1o + i))"
by fastforce
lemma INTER_offset:
shows "(((x<((N::nat) - lo). p (lo + x)) = ([)x€{lo..<N}. p )"
by (simp add: Ball_def Int_set_range_to_offset)

lemma LT_offset: "(Vi. lo < i A i < (N::nat) — P i) +— (Vi<N - lo. P (1o + i))"
by (metis add.commute le_addl le_add_diff_inverse2 less_diff_conv)

3.5 Multi-Parallel

This section contains inference rules for multiple annotated commands running in parallel.
Again, for convenience we first define a datatype that encapsulates the components:

1. Global precondition

2. Global rely

3. The lower index

4. The upper index

5. Sequential programs (each an annotated quintuple), indexed by the natural numbers
6. Global guarantee

7. Global postcondition

datatype ’a multi_par_quin = MultiParCode
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no a set n

no a relll

nat nat

nat = ’a annquin"
no a I.elll

no a Set n

Using the datatype above, the inference rules are set out as the following two functions.

fun multipar_valid :: "’a multi_par_quin = bool" where

"multipar_valid (MultiParCode init RR lo N iac gg final) =

( (Vie{lo..<N}. annquin_valid (iac i)) A
init C (()i€{lo..<N}. pre0f (iac i)) A
RR C ((i€{lo..<N}. rely0f (iac i)) A
(Vie{lo..<N}. guar0f (iac i) C ([)j€{lo..<N#i}. rely0f (iac j))) A
(Uie{lo..<N}. guarOf (iac i)) C gg A
(N i€{lo..<N}. postOf (iac i)) C final )"

fun multipar_valid_offset:: "’a multi_par_quin = bool" where
"multipar_valid_offset (MultiParCode init RR lo N iac gg final) =
( (Vi<(N-1lo). annquin_valid (iac (lo + i))) A
init C (()i<(N-lo). pre0f (iac (lo + i))) A
RR C (N i<(N-lo). rely0f (iac (lo + i))) A
(Vi<(N-lo). guarOf (iac (lo + 1)) C (()j€{0..<(N-lo)#i}. rely0f (iac (Lo + j))))

(Ji<(N-lo). guar0f (iac (lo + 1))) C gg A
(i<(N-1o). postOf (iac (lo + i))) C final )"

Alternative syntax that encodes the validity of multi-parallel statements.

syntax
"_multi_parallel_anno"
"’a set = ’a rel = idt = nat = ’a annquin = ’a rel = ’a set = bool"
("annotated global’_init: _ global’_rely: _ || _ < _ @ _ global’_guar: _ global’_post:
_II)
" _multi_parallel_anno_lo_hi"
"’a set = ’a rel = nat = idt = nat = ’a annquin = ’a rel = ’a set = bool"
("annotated global’_init: _ global’_rely: _ || _ < _ < _ @ _ global’_guar: _ global’_post:
_ll)
translations
"annotated global_init: Init global_rely: RR || i < N @ rgac global_guar: GG global_post:
QQ"
— "CONST multipar_valid (CONST MultiParCode Init RR O N (Ai. rgac) GG QQ)"
"annotated global_init: Init global_rely: RR || lo < i < hi @ rgac global_guar: GG global_post:
QQII
— "CONST multipar_valid_offset (CONST MultiParCode Init RR lo hi (Ai. rgac) GG QQ)"

The soundness of the inference rules, in multiple variants.

lemma multipar_valid_offset_equiv:
"multipar_valid (MultiParCode init RR lo hi iac gg final) <—
multipar_valid_offset (MultiParCode init RR lo hi iac gg final)"
apply clarsimp
apply (intro conjI iffI)
apply fastforce
apply fastforce
apply fastforce
apply fastforce
apply fastforce
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apply (fastforce simp: Int_set_range_to_offset)
apply (metis (lifting) atLeastLessThan_iff diff_less_mono le_add_diff_inverse)
apply (metis (no_types, lifting) ext INTER_offset)
apply (metis (no_types, lifting) ext INTER_offset)
apply (simp add: Ball_def)
apply (smt (verit, ccfv_threshold) Int_set_range_neq_to_offset Sup.SUP_cong le_add_diff_inverse

le_add_diff_inverse2 less_diff_conv)
apply (metis Un_set_range_to_offset)
by (fastforce simp: Int_set_range_to_offset)

theorem valid_multipar:
"multipar_valid (MultiParCode Init RR lo N rgac GG QQ) —
F COBEGIN SCHEME [lo < i < N] (
CONST anncom_to_com (cmd0f (rgac i)),
pre0f (rgac i),
rely0f (rgac i),
guar0f (rgac i) ,
post0f (rgac i)
) COEND
SAT [Init, RR , GG, QQ1"
apply (rule Parallel)
apply (simp add: subset_iff)
apply (metis Diff_iff add.commute add_left_cancel atLeastLessThan_iff empty_iff insert_iff

le_addl less_diff_conv nth_upt)
apply (fastforce intro: Ball_def simp: subset_iff)
apply (fastforce simp: subset_iff)
apply (simp add: subset_iff )
apply (metis atLeastLessThan_iff diff_less_mono le_add_diff_inverse)
apply (simp add: subset_iff)
by (metis (lifting) ext add.commute anncom_spec_valid_sound annquin_simp atLeastLessThan_iff

cmdOf . simps guar(Of.simps le_addl less_diff_conv post0f.elims preQOf.simps

relyOf.simps)

theorem valid_multipar_with_internal_rg:
"multipar_valid (MultiParCode Init RR lo N (Ai. AnnQuin (p i) (r i) (ac i) (g i) (q 1))
GG Q) =
(Vi. anncom_to_com (ac i) = ¢ i) =
F COBEGIN SCHEME [lo < i < N] ((¢c i), p i, r i, g i, q i) COEND
SAT [Init, RR , GG, QQ1"
unfolding Ball_def
apply (rule Parallel, simp_all add: subset_iff)
apply (metis Diff_iff add.commute atLeastLessThan_iff diff_add_inverse less_diff_conv

nat_le_iff_add nth_upt singletonD)
apply (metis add.commute atLeastLessThan_iff le_addl less_diff_conv)
apply (metis add.commute atLeastLessThan_iff less_diff_conv nat_le_iff_add)
by (metis add.commute anncom_spec_valid_sound atLeastLessThan_iff le_addl less_diff_conv)

theorem valid_multipar_explicit:
assumes
local_sat: "Ai. lo < i A i < N = annquin_valid (iac i)" and
pre: "Ai. lo < i A i < N = init C pre0f (iac i)" and
rely: "Ai. 1o < i A i < N = RR C rely0f (iac i)" and
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guar_imp_rely: "Ai j. lo < i A i<N = 1o < j A j<N = i # j
—> guar0f (iac i) C rely0f (iac j)" and
guar: "Ai. lo < i A i < N = guar0f (iac i) C gg" and
post: "(()i€{lo..<N}. postOf (iac i)) C final"
shows "multipar_valid (MultiParCode init RR lo N iac gg final)"
using assms by fastforce

theorem valid_multipar_offset_explicit:
assumes
local_sat: "Ai. lo < i A i < N = annquin_valid (iac i)" and
pre: "Ai. lo < i A i <N = init C pre0f (iac i)" and
rely: "Ai. 1o < i A i < N = RR C rely0f (iac i)" and
guar_imp_rely: "Ai j. lo < i A i<kN = 1o < j A j <N =1 #j
— guar0f (iac i) C rely0f (iac j)" and
guar: "Ai. lo < i A i < N = guar0f (iac i) C gg" and
post: "([)i€{lo..<N}. postOf (iac i)) C final"
shows "multipar_valid_offset (MultiParCode init RR lo N iac gg final)"
apply clarsimp
apply (intro conjI, simp_all add: le_INF_iff assms)
apply (simp add: guar_imp_rely less_diff_conv)
apply (simp add: SUP_le_iff guar)
using post by (fastforce simp: nat_le_iff_add SUP_le_iff guar)

theorem valid_multipar_explicit2:
assumes
local_sat: "Ai. lo < i A i < N = annquin_valid {p i,r i} ¢ i {g i ,q i}" and
pre: "Ai. lo < i A i <N = init C p i" and
rely: "Ai. lo < i Ai<N= RR C r i" and

guar_imp_rely: "Ai j. lo < i AikN = 1o < jA j<N=1i#j = giCr j"and

guar: "Ai. lo < i Ai <N = gi C gg" and
post: "([i€{lo..<N}. q i) C final"
shows "multipar_valid (MultiParCode init RR lo N (Ai. {p i,r i} c i {g i ,q i}) gg
final)"
using assms
by (force simp: subset_iff)

theorem valid_multipar_explicit_with_invariant:
assumes
local_sat: "Ai. i < N = annquin_valid {p i,r i} ¢ i J/ Inv {g i ,q i}" and
pre: "Ai. i < N = init € p i N Inv" and
rely: "Ai. i < N = RR C r i N pred_to_rel Inv" and
guar_imp_rely: "Ai j. i<N = j < N = i # j
— invar_and_guar Inv (g i) C r j N pred_to_rel Inv" and
guar: "Ai. i < N = invar_and_guar Inv (g i) C gg" and
post: "([i<N. g i N Inv) C final"
shows "multipar_valid (MultiParCode init RR O N (A\i. {p i,r i} ¢ i / Inv {g i ,q i}
gg final)"
apply (rule valid_multipar_explicit2)
using lessThan_atLeastO assms by presburger+

method method_annquin_multi_parallel =

rule valid_multipar_explicit2,
goal_cases local_sat pre rely guar_imp_rely guar post

3.6 The Main Tactics

lemmas rg_syntax_simps_collection =
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multipar_valid.simps

multipar_valid_offset.simps

add_invar.simps

basic_to_basic_anno_syntax.simps

postOf.simps preOf.simps relyOf.simps guarOf.simps
annquin_simp

anncom_spec_valid.simps

method rg_proof_expand = (auto simp only: rg_syntax_simps_collection ; simp?)

method method_anno_ultimate =
method_annquin_basicanno
| method_annquin_seq+
| method_annquin_while
| method_annquin_multi_parallel
| rg_proof_expand

end

4 Examples Reworked

The examples in the original library [2], expressed using our new syntax, and proved using our
new tactics.

theory RG_Examples_Reworked
imports RG_Annotated_Commands

begin
declare [[syntax_ambiguity_warning = false]]

4.1 Setting Elements of an Array to Zero

record Examplel =
A :: "nat list"

theorem Examplel:
"global_init: { n < length “A |}
global_rely: id(A)
| i <n e
{{ i< length "A |,
{ length °A = length 2A A ©°A ! i =2A ! i |} }
A = TA[L =0
{ { length length 2A A (Vj <n. i #3j — ° ! j=2A"1 3 |,
{ Aarvi=o0}73
global_guar: { True [}
global post: { Vi <n. "A ! i =0 ["
by method_rg_try_each

—

o N
=

theorem Examplel’’:

"annotated global_init: { length "A = N | global_rely: { A = °A |}

| i <Ne

{ { True [,
{ 1length 2A = length °A A 2A ! i = °A ! i} }
("A := "A[i :=f i])- / {length "A =N}

{ { length 2A = length °A A (Vj. i # j — 2A ' j=°2"13) |,
§ Arvi=fil|3

global_guar: { length 2A = length °A}
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global_post: { take N "A = map f [0 ..< N] "
apply rg_proof_expand
by (fastforce split: if_splits simp: map_upt_eql)

4.2 Incrementing a Variable in Parallel

Two Components

record Example2 =

X :: nat
c_0 :: nat
c_1 :: nat

lemma ex2_leftside:
"{{ c_.0o=01], id(c_0) }
Basic (("x + “x + 1) o> (“c_0 «+ 1))
J 4 x= "cO0+ "c1}]
{idc_1), { "c_.0=1 [}"
by method_rg_try_each

lemma ex2_rightside:
"{{ “c.t=0], id(c_1) }
Basic (("x < "x + 1) o> (“c_1 « 1))
J A x= "¢cO0+ "c1]
{ id(c_0), { "c_1 =1 3"
by method_rg_try_each

theorem Example2b:
"{{ c.0=0A "c_1=01F, ids({c_0, c_1}) }
(Basic (("x « “x + 1) o> (“c_0 < 1))) || (Basic (("x < "x + 1) o> (“c_1 + 1)))
J {1 x= "cO0+ “c1]
{ UNIV, { True |} }"
using ex2_leftside ex2_rightside
by (rule rg_binary_parallel_invar_conseq; blast)

Parameterised

lemma sum_split:

"(j::nat) < (u::nat)

= sum a {0..<n} = sum a {0..<j} + a j + sum a {j+1..<n}"

by (metis Suc_eq_plusl bot_nat_0.extremum group_cancel.addl le_eq_less_or_eq sum.atLeastLessThan_c
sum.atLeast_Suc_lessThan)

Intuition of the lemma above: Consider the sum of a function b k with k ranging from 0 ton -
1. Let j be an index in this range, and assume b j = 0. Then, replacing b j with 1 in the sum,
the result is the same as adding 1 to the original sum.

lemma Example2_lemma2_replace:
assumes "(j::nat) < n"
and "b’ = b(j:=xx::nat)"
shows "(3>0 i =0 ..<n. b> i) =(. i=0..<n.bi)-bj+ xx"
apply (subst sum_split, rule assms(1))
apply (subst sum_split, rule assms(1))
using assms(2) by clarsimp

lemma Example2_lemma2_SucO[simp]:
assumes "(j::nat) < n"
and "b j = O"
and "b’ = b(j:=1)"
shows "Suc (> i::nat =0 ..<n. bi) = 1i=0..<n. b i)"
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using assms Example2_lemma2_replace
by fastforce

record Example2_param =
y :: nat

C :: "nat = nat"

lemma Example2_local:

lli<n:>
{{ ci=o0F],
id(C @ i) }

Basic (("y « "y + 1) o> ("C «+ ~C(i:=1)))
J {1 vy=CC kitnat =0 ..<n. Ck) |}

{{Vj<n. i#j—°«Cj=23j],
{ ci=1]2
by method_rg_try_each

theorem Example2_param:
assumes "0 < n" shows
"global_init: { "y = 0 A sum "C {0 ..<n} =0 |}
global_rely: id(C) N id(y)

| i<ne
{{ ci=01],
id(C @ i) }

Basic (("y < "y + 1) o> (°C « “C(i:=1)))
/{1 y=sum C{0 ..<n} |
{{Vj<n. i#j—°Cj=2j],
{ ci=1}13
global_guar: { True [}
global _post: { "y =n }"
proof method_multi_parallel
case post
then show 7case
using assms by (clarsimp, fastforce)
next
case body
then show 7?case
by method_rg_try_each
qged (fastforce+)

As above, but using an explicit annotation and a different method.

theorem Example2_param_with_expansion:
assumes "0 < n" shows "annotated
global_init: { "y =0 A sum "C {0 ..<n} =0 |
global _rely: id(C) N id(y)
| i<ne
{{ ci=0},
id(C @ i) }
(Basic ((“y < "y + 1) o> ("°C « “C(i:=1))))-
J{ y=sum "CA{0 ..<n} |
{{V j<n. i#j—°Cj=22j]l,
{ ci=1}1%
global_guar: { True [
global _post: { "y =n }"
apply rg_proof_expand
using assms by (fastforce split: if_splits)
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4.3 FindP

Titled “Find Least Element” in the original [2], the "findP" problem assumes that n divides m,
and runs n threads in parallel to search through a length-m array B for an element that satisfies
a predicate P. The indices of the array B are partitioned into the congruence-classes modulo n,
where Thread i searches through the indices that are congruent to i mod n.

In the program, X i is the next index to be checked by Thread i. Meanwhile, Y i is either
the out-of-bound default m + i if Thread i has not found a P-element, or the index of the first
P-element found by Thread i.

The first helper lemma: an equivalent version of mod_aux found in the original.

lemma mod_aux :
"a mod (n::nat) =i = a<jAj<a+n=— jmodn # i"
using mod_eq_dvd_iff_nat nat_dvd_not_less by force

record Example3 =
X :: "nat = nat"
Y :: "nat = nat"

lemma Example3:
assumes "m mod n=0" shows "annotated
global_init: {Vi <n. "Xi=1iA "Yi
global_rely: { °X = ?X A °Y = 2Y}
| i <n o

m+ il

{ {(°X i) mod n=i A (Vj<"X i. j mod n=i — —P(B!j)) A (Y i<m — P(B!("Y 1)) A 7Y
i< m+i) |,
{(Vj<n. i#j — 2Y j < 97 j) A X i

X i A °Y i =2y i} }

WHILEa (Y j < n. "X i < “Y j) DO
{stable_guard: { "X i < Y i}}}
IFa P(B!("X i)) THEN

("Y[i] := "X i)-
ELSE

("X[i] := "X i + n)-
FI

0D

{{Vj<n. i#j — °X =X J A°Y j =2Y j) A?Y i <OV i},
§ ("Xi) modn =i A (Vj<"X i. j mod n=i — —P(B!'j))
A (7Y i<m — P(B!'("Y 1)) A 7Y i< m+i)
A Fj<a. Y3 < X1}

global_guar: {Truel
global_post: { V i < n. ("X i) mod n=i
A (Vj<"X i. j mod n=i — —P(B!j))
A (7Y i<m — PB! (7Y 1)) A7TY i< mt+i)
A (3j<n. Y j < "X i) ]
apply rg_proof_expand
apply fastforce+
apply (metis linorder_neqE_nat mod_aux)
apply (metis antisym_conv3 mod_aux)
by (metis leD mod_less_eq_dividend)

Below is the original version of the theorem, and is immediately derivable from the above. We
include some formatting changes (such as line breaks) for better readability.

lemma Example3_original: "m mod n=0 —
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F COBEGIN SCHEME [0<i<n]

(WHILE (¥ j <n. "X i< "Y j) DO
IF P(B!("X i)) THEN "Y:="Y (i:="X i) ELSE "X:= "X (i:=("X i)+ n) FI
oD,

{C°X i) mod n=i A (Vj<"X i. j mod n=i — —P(B!j)) A (Y i<m —s P(BI("Y i)) A Y i<
m+i) |},

{(Vi<n. i#j — Y 3 < °Y ) A K i ="K i A°Yi=7Yif,
{(Vi<n. i#j — X j ="K J A Y j =Y j) A Y i <O if,

{C°X i) mod n=i A (Vj<"X i. j mod n=i —» —P(B!j)) A (°Y i<m —» P(BI("Y i)) A “Y i<
m+i) A (Jj<n. Y j < X i) P

COEND
SAT [
{Vi<n, "Xi=iA "Yi-=mntl],

{oX="x A °v=2v),
{Truel,

{%v i <n. ("X i) mod n=i A
(Vj<"X i. j mod n=i — —P(B!j)) A
(7Y i<m — P(B! (7Y 1)) A7Y i< m+i) A
Fj<n. Y j < "X DI
by (rule valid_multipar_with_internal_rg[0F Example3]; simp)

end

5 Abstract Queue Lock

theory Lock_Abstract_Queue

imports
RG_Annotated_Commands

begin
We identify each thread by a natural number.
type__synonym thread_id = nat

The state of the Abstract Queue Lock consists of one single field, which is the list of threads.
record queue_lock = queue :: "thread_id list"
The following abbreviation describes when an object is at the head of a list. Note that both

clauses are needed to characterise the predicate faithfully, because the term x = hd xs (i.e. x is
the head of xs) does not imply that x € set xs.

abbreviation at_head :: "’a = ’a list = bool" where
"at_head x xs = xs # [] A x = hd xs"

The contract of the Abstract Queue Lock consists of two clauses. The first states that a thread
cannot be added to or removed from the queue by its environment. The second states that the
head of the queue remains at the head after any environment-step.
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abbreviation queue_contract :: "thread_id = queue_lock rel" where
"queue_contract i = {
(i € set °queue <— i € set "queue) A
(at_head i °queue — at_head i “queue) }"

The RG sentence of the Release procedure is made into a separate lemma below.

lemma qlock_rel:
"rely: queue_contract t guar: for_others queue_contract t
inv: { distinct “queue |} code:
{ { at_head t “queue |} }
“queue := tl “queue
{{t ¢ set "queue |} }"
proof method_basic_inv
case est_guar
then show 7case
apply clarsimp
by (metis hd_Cons_tl list.set_sel(2) set_ConsD)
next
case est_post
then show 7case
apply clarsimp
by (metis distinct.simps(2) list.collapse)
qged (simp_all add: distinct_tl)

The correctness of the Abstract Queue Lock is expressed by the following RG sentence, which
describes a closed system of n threads, each repeatedly calls Acquire and then Release in an
infinite loop. We omit the critical section between Acquire and Release, as it does not access
the lock.

The Acquire procedure consists of two steps: enqueuing and spinning. The Release procedure
consists of only the dequeuing step.

Each thread can only be in the queue at most once, so the invariant requires the queue to be
distinct.

The queue is initially empty; hence the global precondition. Being a closed system, there is no
external actor, so the rely is the identity relation, and the guarantee is the universal relation.
The system executes continuously, as the outer infinite loop never terminates; hence, the global
postcondition is the empty set.

theorem glock_global:
assumes "0 < n"
shows "annotated
global_init: { “queue = [] | global_rely: Id
| i<ne
{{ i ¢ set "queue |}, queue_contract i }

WHILEa True DO
{stable_guard: { i ¢ set "queue |} }
NoAnno ( “queue := “queue @ [i]) .;
{{ i€ set "queue |} }
NoAnno (WHILE hd “queue # i DO SKIP OD) .;
{ { at_head i “queue [}}}
NoAnno ( “queue := tl “queue)

0D

/ { distinct “queue |} { for_others queue_contract i, {} }
global_guar: UNIV global_post: {}"
apply rg_proof_expand

apply (method_basic; fastforce)
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apply (method_spinloop; fastforce)
using qlock_rel apply fastforce
using assms by fastforce

end

6 Ticket Lock

theory Function_Supplementary
imports Main
begin

This theory contains some function-related definitions and associated lemmas that are not
included in the built-in library. They are grouped into two sections:

1. Predicates that describe functions that are injective or surjective when restricted to subsets
of their domains or images.

2. A higher-order function that performs a list of updates on a function.

The content of this theory was conceived during a project on formal program verification of
locks (i.e. mutexes). The new definitions and lemmas arose from the proof of data refinement
from an abstract queue-lock to a ticket-lock.

Inspired by the theories List Index (Nipkow 2010) and Fized-Length Vectors (Hupel 2023) on
the Archive of Formal Proofs, we hope that these new definitions and lemmas may also be of
help to others.

6.1 Helpers: Inj, Surj and Bij

It is sometimes useful to describe a function that is not injective in itself, but is injective when
its image is restricted to a subset.

For example, consider the function {a — 1,b +— 2, ¢+ 2}. This function is not injective, but if
its image is restricted to {1}, the new function {a — 1} becomes injective.

This motivates the following definition.
definition inj_img :: "(’a = ’b) = ’b set = bool" where
"inj_img £f B =V x1 x2. £ x1 =f x2 A f x1 € B — x1 = x2"

Similarly, the next definition describes a function that becomes surjective when its codomain is
restricted to a subset.

In other words, “surj__codom f B” means that every element in B is mapped to by f.

For example, consider the function that maps from the domain {a,b} to the codomain {1,2}
with the graph {a — 1,b+ 1}. This function is not surjective, but if its codomain is restricted
to {1}, then the new function becomes surjective.

definition surj_codom :: "(’a = ’b) = ’b set = bool" where
"surj_codom f B=V y € B. (3 x. £fx=y)"
We can also describe a function that remains surjective on a subset of its domain.

In other words, “surj_on f A” means that mappings that originate from A already span the
entire codomain.

Note that this is a notion stronger than plain surjectivity, which will be shown in the later
subsection “Surj-Related”.
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definition surj_on :: "(’a = ’b) = ’a set = bool" where
"surj on f A=V y. (3 x€ A fx=y)"

Note that all three definitions above are most likely not included in the built-in library, as
suggested by the outputs of the following search-commands.

find_ consts name:"inj"
find__consts name:"surj"

6.1.1 Inj-Related

lemma inj_implies_inj_on: "inj f = inj_on f A"
using inj_on_subset by blast

lemma inj_implies_inj_img: "inj f = inj_img f B"
by (simp add: injD inj_img_def)

lemma inj_img_empty: "inj_img £ {}"
by (fastforce simp: inj_img_def)

lemma inj_img_singleton: "V x. f x # b = inj_img f {b}"
by (fastforce simp: inj_img_def)

lemma inj_img_subset:
"[ inj_img £ B ; B> C B | = inj_img £ B’"
by (fastforce simp: inj_img_def)

lemma inj_img_superset:
"[ inj_img £ B ; V x. £ x ¢ B> - B | = inj_img £ B’"
by (fastforce simp: inj_img_def)

lemma inj_img_not_mapped_to: "Vx. f x ¢ B = inj_img f B"
by (fastforce simp: inj_img_def)

lemma inj_img_add_one_extra:
"[ inj_img £ B ; V x. £ x # b ] = inj_img £ (B U {p})"
by (fastforce simp: inj_img_def)

lemma inj_img_union_1:
"[ inj_img f B1 ; inj_img f B2 | = inj_img £ (B1 U B2)"
by (fastforce simp: inj_img_def)

lemma inj_img_union_2:
"[ inj_img £ B1 ; V x. £ x ¢ B2 | = inj_img £ (B1 U B2)"
by (simp add: inj_img_not_mapped_to inj_img_union_1)

lemma inj_img_fun_upd_notin:
"[ inj_img £ B ; ¥V x. f x # b ] = inj_img (fun_upd f a b) B"
by (fastforce simp: inj_img_def)

lemma inj_img_fun_upd_singleton:

"W x. f x # b = inj_img (fun_upd f a b) {b}"
by (simp add: inj_img_fun_upd_notin inj_img_singleton)

6.1.2 Surj-Related

Lemmas related to “surj codom”.

lemma surj_implies_surj_codom: "surj f — surj_codom f B"
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by (metis surjD surj_codom_def)

lemma surj_codom_triv: "surj_codom f (f ¢ A)"
by (fastforce simp: surj_codom_def)

lemma surj_codom_univ: "surj_codom f UNIV = surj f"
by (metis surj_codom_def surj_def UNIV_I)

lemma surj_codom_empty: "surj_codom f {}"
by (fastforce simp: surj_codom_def)

lemma surj_codom_singleton: "b € range f — surj_codom f {b}"
by (fastforce simp: surj_codom_def)

lemma surj_codom_subset:
"[ surj_codom f B ; B> C B | = surj_codom f B’"
by (fastforce simp: surj_codom_def)

lemma surj_codom_union:
"[ surj_codom f Bl ; surj_codom f B2 | = surj_codom f (B1 U B2)"
by (fastforce simp: surj_codom_def)

Lemmas related to “surj on”.
lemma surj_on_implies_surj: "surj_on f A = surj f"

by (metis surj_def surj_on_def)

lemma surj_on_univ: "surj_on f UNIV = surj f"
by (metis UNIV_I surjD surj_on_def surj_on_implies_surj)

lemma surj_on_never_emptyset: "— surj_on f {}"
by (fastforce simp: surj_on_def)

lemma surj_on_superset:
"[ surj_on £f A ; A C A’ | = surj_on f A"
by (fastforce simp: surj_on_def)

lemma surj_on_union:
"[ surj_on f Al ; surj_on f A2 | = surj_on f (A1 U A2)"
by (fastforce simp: surj_on_superset)

6.1.3 Bij and Inv
This section relates the new definitions to the existing “bijective between” and “inverse” defi-
nitions.
lemma bij_betw_implies_inj_img: "bij_betw f UNIV B = inj_img f B"
by (fastforce simp: bij_betw_def inj_implies_inj_img)

lemma bij_betw_implies_surj_codom: "bij_betw f A B = surj_codom f B"
by (fastforce intro: f_the_inv_into_f_bij_betw simp: surj_codom_def)

lemma bij_betw_implies_surj_on: "bij_betw f A UNIV — surj_on f A"
by (meson UNIV_I bij_betw_iff_bijections surj_on_def)

Other lemmas

lemma bij_extension:
assumes "a ¢ A"
and "b ¢ B"
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and "bij_betw f A B"
shows "bij_betw (fun_upd f a b) (A U {a}) (B U {b})"
by (metis assms bij_betw_combine bij_betw_cong bij_betw_singleton_iff disjoint_insert(1)
fun_upd_other fun_upd_same inf_bot_right)

lemma bij_remove_one:
assumes "a € A"
and "bij_betw f A B"
shows "bij_betw f (A - {a}) (B - {f a})"
using assms by (fastforce simp: bij_betwE bij_betw_DiffI)

lemma set_remove_one_element:
assumes "x ¢ B"
and "B C A"

and "A - {x} C B"

shows "A - {x} = B"

using assms by blast

lemma inv_image_restrict_inj:
assumes "bij_betw f A B"
and "inj_img f B"
and "f a € B"
shows "a € inv £ ¢ B"
using assms by (fastforce simp: f_inv_into_f inj_img_def rev_image_eql)

lemma inv_image_restrict:
assumes "inj_on f A"
and "f a € B"
and "Vx. (f x € B — x € A)"
shows "a € inv f ¢ B"
using assms by (fastforce simp: f_inv_into_f inj_onD rev_image_eql)

lemma inv_image_restrict_neg:
assumes "bij_betw f A B"
and "f a ¢ B"
and "Vx. (f x € B — x € D"
shows "a ¢ inv £ ¢ B"
using assms apply clarsimp
by (metis (mono_tags, lifting) f_inv_into_f f_the_inv_into_f_bij_betw range_eql)

lemma inv_image_restrict_neg’:
assumes "surj_codom f B"
and "f a ¢ B"
and "Vx. (f x € B — x € A"
shows "a ¢ inv f ¢ B"
using assms
by (fastforce simp: surj_codom_def f_inv_into_f rangel)

lemma bij_betw_invi:
assumes "bij_betw f A B"
and "inj_img f B"
and "f a € B"
shows "inv f (f a) = a"
using assms by (fastforce simp: f_inv_into_f inj_img_def)

lemma bij_betw_inv2:

assumes "bij_betw f A B"
and "b € B"
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shows "f (inv f b) = b"
by (metis assms bij_betw_imp_surj_on f_inv_into_f rangel)

lemma surj_codom_inj_on_vimage_bij_betw:
"[ surj_codom f B ; inj_on f (vimage f B) | = bij_betw f (vimage f B) B"
apply (rule bij_betwI’)
by (fastforce simp: inj_onD surj_codom_def)+

6.2 Helpers: Multi-Updates on Functions

fun fun_upd_list :: "(’a = ’b) = (’a X ’b) list = (’a = ’b)" where
"fun_upd_list f [] = £"
| "fun_upd_list f (xy # xys) = fun_upd (fun_upd_list f xys) (fst xy) (snd xy)"

This notion can also be defined following the foldl pattern, although this alternative form is
not used.

fun fun_upd_list_1 :: "(’a = ’b) = (’a X ’b) list = (’a = ’b)" where
"fun_upd_list_1 £ [] = £"
| "fun_upd_list_1 f (xy # xys) = fun_upd_list_1 (fun_upd f (fst xy) (snd xy)) xys"

Examples of the two definitions above.

value "fun_upd_list (Ax.0::nat) [(1::nat,1),(4,3),(6,6),(4,4)] 4"
value "fun_upd_list_1 (Ax.0::nat) [(1::nat,1),(4,3),(6,6),(4,4)] 4"

Both definitions above resemble "folds" with some un-currying, as shown by the following two
lemmas.

lemma fun_upd_list_is_foldr:
"fun_upd_list fO pairs = foldr (A pair f. fun_upd f (fst pair) (snd pair)) pairs fO"
by (induct pairs; fastforce)

lemma fun_upd_list_1_is_foldl:
"fun_upd_list_1 fO pairs = foldl (A f pair. f(fst pair := snd pair)) fO pairs"
by (induct pairs arbitrary: f0; force)

These two definitions are equivalent when every domain-value is updated at most once.

lemma fun_upd_list_l_distinct_rewrite:
"distinct (map fst (xy # xys))
—> fun_upd_list_1 (fun_upd f (fst xy) (snd xy)) =xys
= fun_upd (fun_upd_list_1 f xys) (fst xy) (snd xy)"
proof (induct xys arbitrary: xy f)
case (Cons xy2 xys2)
thus 7case
by (metis (no_types, lifting) distinct_length_2_or_more fun_upd_list_1l.simps(2) fun_upd_twist
list.simps(9))
qed (fastforce)

lemma fun_upd_list_defs_distinct_equiv:
"distinct (map fst pairs) — fun_upd_list f pairs = fun_upd_list_1 f pairs"
proof (induct pairs)
case (Cons xy xys)
thus 7case
by (fastforce simp: fun_upd_list_1_distinct_rewrite)
qged (fastforce)

Smaller propositions

lemma fun_upd_list_distinct_rewrite:
"distinct (map fst (xy # xys))
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—> fun_upd_list (fun_upd f (fst xy) (snd xy)) xys
= fun_upd (fun_upd_list f xys) (fst xy) (snd xy)"
by (simp add: fun_upd_list_defs_distinct_equiv fun_upd_list_l_distinct_rewrite)

lemma fun_upd_list_hd_1:
"fun_upd_list f (zip (x # xs) (y # ys)) x = y"
by simp

lemma fun_upd_list_hd_2:
"[ xs # [0 ; ys # [1 | = fun_upd_list f (zip xs ys) (hd xs) = hd ys"
by (metis fun_upd_list_hd_1 list.collapse)

lemma fun_upd_list_not_hd:
assumes "a #* x"
shows "fun_upd_list f (zip (x # xs) (y # ys)) a = fun_upd_list f (zip xs ys) a"
using assms by simp

lemma fun_upd_list_not_updated_map:
assumes "a ¢ set (map fst xys)"
shows "fun_upd_list f xys a = f a"
using assms by (induction xys, simp_all)

lemma fun_upd_list_not_updated_zip:
assumes "a ¢ set xs"
shows "fun_upd_list f (zip xs ys) a = f a"
by (metis assms fun_upd_list_not_updated_map in_set_takeD map_fst_zip_take)

6.2.1 Ordering of Updates

The next two lemmas shows that the ordering of the updates does not matter, as long as the
updates are distinct.

lemma fun_upd_list_distinct_reorder:
assumes "distinct (map fst pairs)"
and "ab € set pairs"
shows "fun_upd_list f pairs
= (fun_upd_list f (removel ab pairs)) (fst ab := snd ab)"
using assms
proof (induct pairs)
case (Cons xy xys)
thus 7case
proof (cases "ab = xy")
case True
thus 7thesis by simp
next
case False

hence "(fun_upd_list f (removel ab (xy # xys))) (fst ab := snd ab)
= fun_upd_list f (xy # xys)"
using Cons.hyps Cons.prems by fastforce
thus 7thesis by fastforce
qed
qed (fastforce)

lemma fun_upd_list_distinct_reorder_general:
assumes "distinct (map fst pairsi)"
and "distinct (map fst pairs2)"
and "set pairsl = set pairs2"
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shows "fun_upd_list f pairsl = fun_upd_list f pairs2"
using assms
proof (induct pairsl arbitrary: pairs2)
case (Cons xy xys)
hence "fun_upd_list f pairs2
= (fun_upd_list f (removel xy pairs2))(fst xy := snd xy)"
by (metis list.set_intros(1l) fun_upd_list_distinct_reorder Cons.prems(2,3))
also have "... = (fun_upd_list f xys)(fst xy := snd xy)"
by (metis (mono_tags, lifting) Cons.hyps Cons.prems distinct_map distinct_removel list.simps(9)

removel.simps(2) set_removel_eq)
also have "... = fun_upd_list f (xy # xys)"
by simp
ultimately show ?case
by presburger
qed (fastforce)

6.2.2 Surjective

lemma helper_surj_zip_1:
assumes "a € set xs"
and "length xs = length ys"
shows "fun_upd_list f (zip xs ys) a € set ys"
using assms
proof (induction xs arbitrary: ys)
case (Cons x xs)
thus 7case
apply (cases "x = a")
apply (metis Cons.prems(2) fun_upd_list_hd_1 length_O_conv list.distinct(1l) list.exhaust_sel

list.set_intros(1))
by (metis Cons.IH Cons.prems(1,2) fun_upd_list_not_hd length_Suc_conv list.set_intros(2)
set_ConsD)
qed (fastforce)

lemma fun_upd_list_surj_zip_1:
assumes "length xs = length ys"
shows "fun_upd_list f (zip xs ys)
using assms helper_surj_zip_1 by force

¢ set xs C set ys"

lemma fun_upd_list_surj_map_1:
"(fun_upd_list f xys) ¢ set (map fst xys) C set (map snd xys)"
by (metis fun_upd_list_surj_zip_1 length_map zip_map_fst_snd)

lemma fun_upd_list_surj_map_2:
assumes "distinct (map fst xys)"
shows "set (map snd xys) C (fun_upd_list f xys) ¢ set (map fst xys)"
using assms proof (induct xys)
case (Cons xy tail)
{ fix b assume assms_b: "b € set (map snd (xy # tail))"
hence "3 a € set (map fst (xy # tail)). (fun_upd_list f (xy # tail)) a = b"
proof (cases "b = snd xy")
case True
show 7thesis using True by simp
next
case False
hence 2: "3 a € set (map fst tail). (fun_upd_list f tail) a = b"
using Cons assms_b by fastforce
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{ fix aa assume 3: "aa € set (map fst tail) A (fun_upd_list f tail) aa = b"
from 3 have 5: "(fun_upd_list f (xy # tail)) aa = b"
using fun_upd_list_not_hd Cons.prems
by (metis (no_types, lifting) distinct.simps(2) list.simps(9) zip_map_fst_snd)
from 5 have 7thesis
by (metis 3 list.set_intros(2) list.simps(9))
}

thus 7thesis using 2 by blast
qed }
thus 7case by blast
qed (fastforce)

6.2.3 Injective

lemma helper_inj_head:
assumes f_def: "f = fun_upd_list fO (zip xs ys)"
and distinct_ys: "distinct ys"
and length_equal: "length xs = length ys"
and non_empty: "xs # []"
and 0: "a € set xs A b € set xs A a # b"
and 1: "a = hd xs A b € set (tl xs)"
shows "f a # f b"
using assms
by (metis distinct.simps(2) fun_upd_list_hd_1 fun_upd_list_not_hd helper_surj_zip_1 length_O_conv

length_tl list.collapse)

lemma helper_inj_tail:
assumes "distinct xs"
and "distinct ys"
and "length xs = length ys"
and "a € set (tl xs)"
and "b € set (tl xs)"
and "a # b"
shows "fun_upd_list f (zip xs ys) a # fun_upd_list f (zip xs ys) b"
using assms proof (induct xs arbitrary: ys)
case (Cons x xs)

have a_elem: "a € set (tl (x # xs))" using Cons.prems(4) by simp
have b_elem: "b € set (tl (x # xs))" using Cons.prems(5) by simp

have a_not_hd: "a # x" using Cons.prems(1) Cons.prems(4) by force
have b_not_hd: "b # x" using Cons.prems(1) Cons.prems(5) by force

have a: "fun_upd_list f (zip (x # xs) ys) a = fun_upd_list f (zip xs (t1 ys)) a"
using a_not_hd fun_upd_list_not_hd
by (metis Cons.prems(3) length_O_conv list.collapse list.distinct(1))

have uneq: "fun_upd_list f (zip xs (tl ys)) a # fun_upd_list f (zip xs (t1 ys)) b"
by (metis (no_types, lifting) a_elem b_elem helper_inj_head
Cons.hyps Cons.prems(1l) Cons.prems(2) Cons.prems(3) Cons.prems(6)
distinct_tl length_tl list.collapse list.sel(2) list.sel(3) set_ConsD)

have b: "fun_upd_list f (zip xs (tl ys)) b = fun_upd_list f (zip (x # xs) ys) b"

using b_not_hd fun_upd_list_not_hd
by (metis Cons.prems(3) length_O_conv list.collapse list.distinct(1))
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from a uneq b show ?7case by simp
qed (simp)

theorem fun_upd_list_inj_zip:
assumes '"distinct xs"
and "distinct ys"
and "length xs = length ys"
and "xs # [1"
shows "inj_on (fun_upd_list f (zip xs ys)) (set xs)"
proof-
{ fix a b assume 0: "a € set xs A b € set xs A a # b"
hence "(a = hd xs A b € set (tl xs)) V
(b = hd xs A a € set (tl xs)) V
(a € set (tl xs) A b € set (t1 xs))"
using assms(4) by (metis list.collapse set_ConsD)
moreover
{ assume "a = hd xs A b € set (tl xs)"
hence "(fun_upd_list f (zip xs ys)) a # (fun_upd_list f (zip xs ys)) b"
using O assms helper_inj_head by metis }
moreover
{ assume "b = hd xs A a € set (tl xs)"
hence "(fun_upd_list f (zip xs ys)) a # (fun_upd_list f (zip xs ys)) b"
using O assms helper_inj_head by metis }
moreover
{ assume "a € set (tl xs) A b € set (tl xs)"
hence "fun_upd_list f (zip xs ys) a # fun_upd_list f (zip xs ys) b"
using helper_inj_tail by (metis O assms(1) assms(2) assms(3)) }
ultimately have "(fun_upd_list f (zip xs ys)) a # (fun_upd_list f (zip xs ys)) b"
by force }
thus ?thesis by (meson inj_onI)
qed

theorem fun_upd_list_surj_zip:
assumes "f = fun_upd_list fO (zip xs ys)"
and "distinct xs"
and "length xs = length ys"
shows "f ¢ set xs = set ys"
by (metis assms fun_upd_list_surj_map_2 fun_upd_list_surj_zip_1
inf.absorb_iff2 inf.order_iff zip_eq_conv)

theorem fun_upd_list_bij_betw_zip:
assumes '"distinct xs"
and "distinct ys"
and "length xs = length ys"
and "xs # []"
shows "bij_betw (fun_upd_list f (zip xs ys)) (set xs) (set ys)"
using assms
by (fastforce simp add: bij_betw_def fun_upd_list_inj_zip fun_upd_list_surj_zip)

lemma fun_upd_list_distinct:
assumes "distinct (map snd (xy # xys))"
and "f x ¢ set (map snd (xy # xys))"
shows "fun_upd_list f xys x # snd xy"
by (metis assms fun_upd_list_not_updated_map fun_upd_list_surj_map_1
distinct.simps(2) image_eql list.set_intros(1l) list.simps(9) subsetD)

theorem inj_img_fun_upd_list_map:
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assumes "distinct (map snd xys)"
and "V x. f x ¢ set (map snd xys)"
shows "inj_img (fun_upd_list f xys) (set (map snd xys))"
using assms proof (induct xys)
case (Cons xy xys)
hence"inj_img (fun_upd_list f xys) ({snd xy} U set (map snd xys))"
by (fastforce simp: fun_upd_list_distinct inj_img_def)
thus 7case
unfolding inj_img_def apply clarsimp
by (metis Cons.prems(1,2) fun_upd_list_distinct)
qged (fastforce simp: inj_img_not_mapped_to)

theorem inj_img_fun_upd_list_zip:
assumes "distinct ys"
and "length xs = length ys"
and "V x. f x ¢ set ys"
shows "inj_img (fun_upd_list f (zip xs ys)) (set ys)"
by (metis assms inj_img_fun_upd_list_map map_snd_zip)

6.2.4 Set- and List-Intervals

lemma fun_upd_list_new_interval:
assumes "length xs = length ys"
shows "fun_upd_list f (zip xs ys) i € {f i} U set ys"
apply (cases "i € set xs")
apply (fastforce simp: assms intro: helper_surj_zip_1)
by (fastforce intro: fun_upd_list_not_updated_zip)

lemma helper_interval_length:
"length [1 ..< length xs + 1] = length xs"
apply (subst length_upt)
by fastforce

lemma helper_interval_union:
"{O::nat} U {1 ..<n+ 1} =4{0 ..<n + 1}"
by force

lemma fun_upd_list_interval:
"fun_upd_list (Ax.0) (zip xs [1 ..< length xs + 1]) z € {0 ..< length xs + 1}"
apply (cases "z € set xs")
apply (metis Un_iff set_upt helper_interval_union helper_interval_length helper_surj_zip_1)
by (metis fun_upd_list_not_updated_zip add.commute atLeastLessThan_iff less_numeral_extra(1l)

trans_less_addl zero_le)

theorem fun_upd_list_interval_bij:
assumes "f = fun_upd_list (Ax.0) (zip xs [1 ..< length xs + 1])"
and "distinct xs"
shows "bij_betw f {i. 1 < f i} {1 ..< length xs + 1}"
proof-
have set_xs : "set [1 ..< length xs + 1] = {1 ..< length xs + 13}"
by force
have "set xs = {i. 1 < f i}"
proof (rule antisym)
show "set xs C {i. 1 < f i}"
by (metis One_nat_def assms(1) atLeastLessThan_iff helper_interval_length helper_surj_zip_1
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set_xs mem_Collect_eq subset_code(1))
show "{i. 1 < f i} C set xs"
by (metis assms(1) fun_upd_list_not_updated_zip CollectD not_one_le_zero subsetI)

qed
thus 7thesis
by (metis (mono_tags, lifting) assms(1,2) fun_upd_list_bij_betw_zip helper_interval_length
One_nat_def add.right_neutral add_Suc_right bij_betwI’ distinct_upt
empty_iff empty_set le_numeral_extra(4) list.size(3)
set_xs upt_eq_Nil_conv)
qed

end

6.3 Basic Definitions

theory Lock_Ticket

imports
RG_Annotated_Commands
Function_Supplementary

begin

type_synonym thread_id = nat

definition positive_nats :: "nat set" where
"positive_nats = { n. 0 < n }"

The state of the Ticket Lock consists of three fields.

record tktlock_state =

now_serving :: "nat"
next_ticket :: "nat"
myticket :: "thread_id = nat"

Every thread locally stores a ticket number, and this collection of local variables is modelled
globally by the myticket function.

When Thread i joins the queue, it sets myticket i to be the value next_ticket, and atomically
increments next_ticket; this corresponds to the atomic Fetch-And-Add instruction, which is
supported on most computer systems. Thread i then waits until the now_serving value becomes
equal to its own ticket number myticket i. When Thread i leaves the queue, it increments
now_serving.

These steps correspond to the following code for Acquire and Release. Note that we use forward
function composition to model the Fetch-And-Add instruction.

acquire = ((myticket i := next_ticket) o>
(next_ticket := next_ticket + 1));
WHILE now_serving # myticket i DO SKIP (D)

release = now_serving := now_serving + 1

Conceptually, Thread i is in the queue if and only if now_serving < myticket i and is at the
head if and only if now_serving = myticket i.
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Now, in the initial state, every thread holds the number 0 as its ticket, and both now_serving
and next_ticket are set to 1.

abbreviation tktlock_init :: "tktlock_state set" where
"tktlock_init = { “myticket = (A\j. 0) A
“now_serving = 1 A “next_ticket = 1 "

We further define a shorthand for describing the set of ticket in use; i.e. those numbers from
now_serving up to, but not including next_ticket. This shorthand will later be used in the
invariant.

abbreviation tktlock_contending_set :: "tktlock_state = thread_id set" where
"tktlock_contending_set s = { j. now_serving s < myticket s j }"

We now formalise the invariant of the Ticket Lock.

abbreviation tktlock_inv :: "tktlock_state set" where
"tktlock_inv = { “now_serving < “next_ticket A
1 < "now_serving A
(Y j. “myticket j < “next_ticket) A
bij_betw “myticket ~tktlock_contending_set { now_serving ..< “next_ticket} A
inj_img “myticket positive_nats [}"

The first three clauses are basic inequalities.

The penultimate clause stipulates that the function myticket of every valid state is bijective
between the set of queuing/contending threads (those threads whose tickets are not smaller
than now_serving) and .

The final clause ensures that the function myticket is injective when 0 is excluded from its
codomain. In other words, all threads, whose tickets are non-zero, hold unique tickets.

As for the contract, the first clause ensures that the local variable myticket i does not change.
Meanwhile, the global variables next_ticket and now_serving must not decrease, as stipulated
by the second and third clauses of the contract.

The last two clauses of the contract correspond to the two clauses of the contract of the Ab-
stract Queue Lock, where i € set queue and at_head i queue under the Abstract Queue Lock
respectively translate to now_serving < myticket i and now_serving = myticket i under the
Ticket Lock.

abbreviation tktlock_contract :: "thread_id = tktlock_state rel" where
"tktlock_contract i = { °myticket i = ®myticket i A
°next_ticket < ®next_ticket A
“now_serving < #now_serving A
(°now_serving < °myticket i <— ®now_serving < ®myticket i) A
(°now_serving = °myticket i — ®now_serving = “myticket i) ["

We further state and prove some helper lemmas that will be used later.

lemma tktlock_contending_set_rewrite:
"tktlock_contending_set s U {i} = { (#) i — now_serving s < ~(myticket s)[}"
by fastforce

lemma tktlock_used_tickets_rewrite:
assumes '"now_serving s < next_ticket s"
shows "{now_serving s ..< next_ticket s} U {next_ticket s}
= {now_serving s ..< Suc (next_ticket s)}"
by (fastforce simp: assms atLeastLessThanSuc)

lemma tktlock_enqueue_bij:
assumes "myticket s i < now_serving s"
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and "bij_betw (myticket s) (tktlock_contending_set s) {now_serving s
s}"
shows "bij_betw ( (myticket s)(i := next_ticket s) )
( tktlock_contending_set s U {i} )
( {now_serving s ..< next_ticket s} U {next_ticket s} )"
apply (rule bij_extension)
using assms by fastforce+

lemma tktlock_enqueue_inj:
assumes "s € tktlock_inv"
shows "inj_img ((myticket s)(i := next_ticket s)) positive_nats"
apply(subst inj_img_fun_upd_notin)
using assms by (fastforce simp: nat_less_le)+

method clarsimp_seq = clarsimp, standard, clarsimp

6.4 RG Theorems

The RG sentence of the first instruction of Acquire.

lemma tktlock_acql:
"rely: tktlock_contract i guar: for_others tktlock_contract i
inv: tktlock_inv anno_code:
{ { “myticket i < “now_serving |} }
BasicAnno (( “myticket[i] < “next_ticket) o>
( "next_ticket < “next_ticket + 1))
{ { “now_serving < “myticket i |} }"
proof method_anno_ultimate
case est_guar
thus 7case
apply clarsimp_seq
apply (fastforce simp: less_Suc_eq)
using tktlock_contending_set_rewrite tktlock_enqueue_bij
by (fastforce simp: atLeastLessThanSuc tktlock_enqueue_inj)
next
case est_post
thus 7case
apply clarsimp_seq
apply (fastforce simp: less_Suc_eq)
using tktlock_contending_set_rewrite tktlock_enqueue_bij
by (fastforce simp: atLeastLessThanSuc tktlock_enqueue_inj)
qged (fastforce)+

A helper lemma for the Release procedure.

lemma tktlock_rel_helper:
assumes invl: "now_serving s = myticket s i"
and inv2: "myticket s i < next_ticket s"
and inv3: "Suc 0 < myticket s i"
and inv4: "Vj. myticket s j < next_ticket s"
and bij_old: "bij_betw (myticket s)
{myticket s i < ~(myticket s)[
{myticket s i ..< next_ticket s}"
shows "bij_betw (myticket s)
{Suc (myticket s i) < ~(myticket s)|
{Suc (myticket s i) ..< next_ticket s}"
proof -
have thread_rewrite:
"] Suc (myticket s i) < ~“(myticket s)} = {j. myticket s i < myticket s
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apply (subst set_remove_one_element [where B="{j. Suc (myticket s i) < myticket s j}"I;
clarsimp)
by (metis CollectI Suc_lel assms(5) bij_betw_def inj_onD order_le_imp_less_or_eq)
have ticket_rewrite:
"{Suc (myticket s i) ..< next_ticket s} = {myticket s i ..< next_ticket s} - {myticket
s i}"
by fastforce
have "bij_betw (myticket s)
( {j. myticket s i < myticket s j} - {i} )
( {myticket s i ..< next_ticket s} - {myticket s i} )"
by (rule bij_remove_one; clarsimp simp: bij_old)
thus ?7thesis
by (clarsimp simp: thread_rewrite ticket_rewrite)
qed

The RG sentence for the Release procedure.

lemma tktlock_rel:
"rely: tktlock_contract i
guar: for_others tktlock_contract i
inv: tktlock_inv

code: { { “now_serving = “myticket i [ }
“now_serving := “now_serving + 1
{ { “myticket i < “now_serving | }"
proof method_basic_inv
case est_inv
thus 7case
by (clarsimp, fastforce simp: Suc_le_eq intro!: tktlock_rel_helper)
next
case est_guar
thus 7case
by (clarsimp, fastforce simp: less_eq_Suc_le nat_less_le positive_nats_def inj_img_def)
qged (fastforce)+

The RG sentence for a thread that performs Acquire and then Release.

lemma tktlock_local:
"rely: tktlock_contract i guar: for_others tktlock_contract i
inv: tktlock_inv anno_code:

{ { “myticket i < “now_serving |} }
BasicAnno (( “myticket[i] < “next_ticket) o>
(“next_ticket < “next_ticket + 1)) .;
{ { "now_serving < “myticket i |} }
NoAnno (WHILE “now_serving # “myticket i DO SKIP OD) .;
{ { "now_serving = “myticket i |} }
NoAnno ( “now_serving := “now_serving + 1)
{ { "myticket i < “now_serving [} }"
apply (method_anno_ultimate, goal_cases)
using tktlock_acql apply fastforce
apply (clarsimp, method_spinloop; fastforce)
using tktlock_rel by fastforce

The RG sentence for a thread that repeatedly performs Acquire and then Release in an infinite
loop.

lemma tktlock_local_loop:
"rely: tktlock_contract i guar: for_others tktlock_contract i
inv: tktlock_inv anno_code:
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{ { “myticket i < “now_serving |} }
WHILEa True DO
{stable_guard: { “myticket i < “now_serving |} }
BasicAnno (( ‘myticket[i] < “next_ticket) o>
( "next_ticket <+ “next_ticket + 1)) .;
{ { “now_serving < “myticket i | }
NoAnno (WHILE “now_serving # “myticket i DO SKIP 0D) .;
{ { "now_serving = “myticket i [} }
NoAnno ( “now_serving := “now_serving + 1)
0D
{ { “myticket i < “now_serving | }"
proof method_anno_ultimate
case body
thus 7case
using tktlock_local by (fastforce simp: Int_commute)
qged (fastforce)+

The global RG sentence for a set of threads, each of which repeatedly performs Acquire and
then Release in an infinite loop.

theorem tktlock_global:
assumes "0 < n"
shows "annotated
global_init: { “now_serving = 1 A “next_ticket = 1 A “myticket = (A\j. 0) |}
global _rely: Id
| i <neo

{ { "myticket i < “now_serving [}, tktlock_contract i }
WHILEa True DO
{stable_guard: { "myticket i < “now_serving |} }
BasicAnno (( ‘myticket[i] ¢ “next_ticket) o>
( “next_ticket < “mext_ticket + 1)) .;
{ { "now_serving < “myticket i [} }
NoAnno (WHILE ~“now_serving # “myticket i DO SKIP 0D) .;
{ { "now_serving = “myticket i |} }
NoAnno ( “now_serving := “now_serving + 1)
0D

// tktlock_inv { for_others tktlock_contract i, {} }
global_guar: UNIV
global_post: {}"
proof method_anno_ultimate
case (local_sat i)
thus 7case using tktlock_local_loop by fastforce
next
case (pre i)
thus 7case
using bij_betwI’ inj_img_def positive_nats_def by fastforce
next
case (guar_imp_rely i j)
thus 7case
by auto[1]
ged (fastforce simp: assms)+

end
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7 Circular-Buffer Queue-Lock

This theory imports Annotated Commands to access the rely-guarantee library extensions, and
also imports the Abstract Queue Lock to access the definitions of the type-synonym thread_id
and the abbreviation at_head.

theory Lock_Circular_Buffer
imports
RG_Annotated_Commands

Lock_Abstract_Queue

begin

type__synonym index = nat

datatype flag_status = Pending | Granted

We assume a fixed number of threads, and the size of the circular array is 1 larger the number
of threads.

consts NumThreads :: nat

abbreviation ArraySize :: "nat" where
"ArraySize = NumThreads + 1"

The state of the Circular Buffer Lock consists of the following fields:

o myindex: a function that maps each thread to an array-index (where the array is modelled
by flag_mapping below).

e flag mapping: an array of size ArraySize that stores values of type flag_status.
e tail: an index representing the tail of the queue, used when a thread enqueues.

e aux_head: an auxiliary variable that stores the index used by the thread at the head of
the queue; the head of the queue spins on the flag flag_mapping aux_head.

e aux_queue: the auxiliary queue of threads.

e aux_mid_release: an auxiliary variable that signals if a thread has executed the first in-
struction of release, but not the second.

record cblock_state =
myindex :: "thread_id = index"
flag_mapping :: "index = flag_status"
tail :: index
aux_head :: index
aux_queue :: "thread_id list"
aux_mid_release :: "thread_id option"

We initialise the array of flags (flag_mapping) with Granted in the zeroth entry and Pending
in all other entries. The indices tail and aux_head are initialised to 0. The queue is initially
empty, and no thread is in the middle of release. (See the conference article for an example.)

definition cblock_init :: "cblock_state set" where
"cblock_init = {
“flag_mapping = (A _. Pending) (0 := Granted) A
“tail = 0 A
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“aux_queue = [] A
“aux_head = 0 A
“aux_mid_release = None ﬂ"

Similar to the Abstract Queue Lock, the acquire procedure of the Circular Buffer Lock consists
of two conceptual steps, and corresponds to the pseudocode below. (1) To join the queue,
Thread i stores the global index tail locally as myindex i, and atomically increments tail
modulo the array size. (2) Thread i then spins on its flag, which is the entry in the array at
index myindex i. When this flag changes from Pending to Granted, the thread has reached the
head of the queue.

acquire = ((myindex i := tail) o>
(tail := (tail + 1) mod ArraySize));
WHILE flag _mapping (myindex i) = Pending DO SKIP 0D

When Thread i releases the lock, it sets its flag to Pending. Then it sets the flag of the next
thread to Granted, which corresponds to the ‘next’ entry in the array, modulo the array size.
This is encoded as the pseudocode below.

release = flag_mapping[myindex i] := Pending ;
flag mapping[(myindex i + 1) mod ArraySize] := Granted

Auxiliary Variables. The release procedure consists of the single conceptual step of exiting
the queue, but is implemented here as two separate instructions. Hence, the auxiliary variable
aux_mid_release indicates when a thread is between the two lines of release, and allows us to
express the assertion there.

The other two auxiliary variables, aux_head (the head-index) and aux_queue, store information
that can in principle be inferred from the concrete variables (i.e. the non-auxiliary variables).
However, explicitly recording this information as auxiliary variables greatly simplifies the veri-
fication process.

In the code, these auxiliary variables need to be updated atomically with the relevant instruc-
tions. Below is the code of release with the auxiliary variables included. (Auxiliary variables
are added to acquire in a similar way.)

release = ( flag_mapping[myindex i] := Pending o>
aux_mid_release := Some i ) ;
( flag_mapping[(myindex i + 1) mod ArraySize] := Granted o>
aux_queue := tl aux_queue o>
aux_head := (aux_head + 1) mod ArraySize o>
aux_mid_release := None )

Recall that we assume a fixed number of threads. This constant is furthermore assumed positive,
which we enforce with the use of the following locale.

locale numthreads_positive =
assumes assm_locale: "O < NumThreads"
begin
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7.1 Invariant

A notion that helps us state the queue-clause of the invariant. The list of indices use by
the queuing threads is a contiguous list of integers modulo ArraySize. Note the possibility of
“wrapping around”, which is covered by the “else” clause in the definition.

definition used_indices :: "cblock_state = index list" where
"used_indices s = (if aux_head s < tail s
then [aux_head s ..< tail s]
else [aux_head s ..< ArraySize] @ [0 ..< tail s])"

lemma distinct_used_indices: "distinct (used_indices s)"
using used_indices_def by fastforce

lemma length_used_indices:
"length (used_indices s) = (if aux_head s < tail s
then tail s - aux_head s
else ArraySize - aux_head s + tail s)"
using used_indices_def by force

The invariant of the Circular Buffer Lock is stated as separate parts below. The first definition
invar_flag relates flag_mapping with the head-index aux_head, and consists of two clauses. (1)
At every index that is not the head-index, the flag must be Pending. (2) As for the head-index
itself, there are two possibilities. When the thread at the head of the queue invoked release
but has only executed its first instruction, aux_mid_release becomes set to Some i; in this case,
the flag at the head-index is set to Pending, but the thread remains in the queue. In all other
cases, aux_mid_release = None, and the flag at the head-index is always Granted.

definition invar_flag :: "cblock_state set" where
"invar_flag = {
(V i # “aux_head. “flag_mapping i = Pending) A
(“flag_mapping “aux_head = Pending <— “aux_mid_release # None) [}"

The next clause invar_queue describes the relationship between the auxiliary queue and the
other variables, including the set used_indices. The clause involving map further implies a
number of properties, such as the distinctness of aux_queue (which mirrors the invariant of the
Abstract Queue Lock), and the injectivity of myindex (i.e. each queuing thread has a unique
index).
definition invar_queue :: "cblock_state set" where
"invar_queue = {
(V i. i € set “aux_queue — i < NumThreads) A
(map “myindex “aux_queue = “used_indices) [}"

The overall invariant, cblock_invar, is the conjunction of invar_flag and invar_queue above,
with additional inequalities concerning tail, aux_head, and NumThreads.

definition invar_bounds :: "cblock_state set" where
"invar_bounds = {
“tail < ArraySize A
“aux_head < ArraySize ["

abbreviation cblock_invar :: "thread_id = cblock_state set" where
"cblock_invar i =
invar_flag N invar_bounds N invar_queue N { i < NumThreads [}"

lemmas cblock_invariants =

invar_flag_def
invar_bounds_def
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invar_queue_def
used_indices_def

7.1.1 Invariant Methods

We set up methods that generate structured proofs with named subgoals, to help us prove the
clauses of the invariant.

theorem thm_method_invar_flag:
assumes "V i # aux_head s. flag_mapping s i = Pending"
and "flag mapping s (aux_head s) = Pending
+— aux_mid_release s #* None"
shows "s € invar_flag"
using assms invar_flag_def by force

method method_invar_flag =
cases rule:thm_method_invar_flag,
goal_cases non_head_pending head_maybe_granted

theorem thm_method_invar_queue:
assumes "V i. i € set (aux_queue s) — i < NumThreads"
and "map (myindex s) (aux_queue s) = (used_indices s)"
shows "s € invar_queue"
using assms invar_queue_def by force

method method_invar_queue =
cases rule:thm_method_invar_queue,
goal_cases bound_thread_id map_used_indices

theorem thm_method_invar:
assumes flag: "s € invar_flag"
and bound: "s € invar_bounds A i < NumThreads"
and queue: "s € invar_queue"
shows "s € cblock_invar i"
using assms by fastforce

method method_cblock_invar =
cases rule:thm_method_invar,
goal_cases flag bound queue

7.1.2 Invariant Lemmas

The initial state satisfies the invariant.

lemma cblock_init_invar:
assumes assm_init: "s € cblock_init"
and assm_bound: "i < NumThreads"
shows "s € cblock_invar i"
proof method_cblock_invar
case flag
thus 7case
using assms
by (method_invar_flag; force simp: cblock_init_def)
next
case bound
thus 7case
using assms
by (force simp: assm_locale cblock_init_def invar_bounds_def)
next
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case queue
thus 7case
using assms
by (method_invar_queue; force simp: cblock_init_def used_indices_def)
qed

In a state that satisfies the flag-invariant, a thread is the head of the queue if its flag is Granted.
(If the flag of a thread is Pending, the thread may still be at the head of the queue. In this
case, the thread must be between the two instructions in release.)

lemma only_head_is_granted:
assumes "s € invar_flag"
and "flag mapping s i = Granted"
shows "i = aux_head s"
using assms by (force simp: invar_flag_def)

Let s be a state that satisfies the bounds-invariant, with n queuing threads. If we start from the
aux_head index, and “advance” n steps (with potential wrap-around), then we reach the global
tail index.

lemma head_tail_mod:
"s € invar_bounds —
tail s = (aux_head s + length (used_indices s)) mod (ArraySize)"
by (fastforce simp: mod_if used_indices_def invar_bounds_def)

If a state satisfies the queue-invariant (namely the clause with the map function, then the myindex
function is injective on the set of queuing threads. In other words, every queuing thread has a
unique index in a state that satisfies the queue-invariant.

lemma invar_map_inj_on:
"s € invar_queue = inj_on (myindex s) (set (aux_queue s))"
using distinct_map
by (fastforce simp: invar_queue_def distinct_used_indices)

In a state that satisfies the queue-invariant, the length of the queue is equal to the length of
the list of used indices.

lemma used_indices_map_queue:
"s € invar_queue — used_indices s = map (myindex s) (aux_queue s)"
unfolding used_indices_def invar_queue_def used_indices_def
by clarsimp

lemma length_used_indices_queue:
"s € invar_queue —> length (used_indices s) = length (aux_queue s)"
by (fastforce simp: used_indices_map_queue)

In a state that fully satisfies the invariant, if there is a thread that is not in the queue, then the
length of the queue must be smaller than the total number of threads.

lemma queue_bounded:
assumes "s € cblock_invar i"
and "i ¢ set (aux_queue s)"
shows "length (aux_queue s) < NumThreads"
proof-
have "length (used_indices s) < NumThreads"
using assms(1)
by (fastforce simp: invar_bounds_def length_used_indices )
hence "card (set (aux_queue s)) < NumThreads"
using assms(1)
by (fastforce intro: le_trans intro!: card_length simp: length_used_indices_queue)
moreover have "card (set (aux_queue s)) = 0 ¢— aux_queue s = []"
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by fastforce
moreover have "finite (set (aux_queue s))"
using calculation by fastforce
moreover have "card (set (aux_queue s)) = NumThreads
+— (V¥ j < NumThreads. j € set (aux_queue s))"
proof-
{ assume "card (set (aux_queue s)) = NumThreads"
hence "set (aux_queue s) = {j. j < NumThreadsl}"
using assms by (force simp add: invar_queue_def card_subset_eq subsetI)
hence "V j < NumThreads. j € set (aux_queue s)"
by blast }
moreover
{ assume "V j < NumThreads. j € set (aux_queue s)"
hence "card (set (aux_queue s)) = NumThreads"
using assms by fastforce }
ultimately
show 7thesis by blast
qed

ultimately have "card (set (aux_queue s)) < NumThreads"
using assms nat_less_le by blast

thus 7thesis
using assms
by (metis used_indices_map_queue Int_iff distinct_card distinct_map distinct_used_indices)
qed

If a state that satisfies the bound- and queue-invariants, and if the queue is non-empty, then
the index held by the head of the queue must be the same as aux_head.

lemma head_and_head_index:
assumes "s € invar_bounds M invar_queue"
and "aux_queue s # []"
shows "myindex s (hd (aux_queue s)) = aux_head s"
proof-
have "myindex s (hd (aux_queue s)) = hd (used_indices s)"
using assms
by (simp add: used_indices_map_queue hd_map)
also have "... = aux_head s"
using assms
by (fastforce simp: invar_queue_def invar_bounds_def upt_rec used_indices_def)
ultimately show 7thesis
by fastforce
qed

In a state that satisfies the full invariant, if no thread is half-way through release and Thread
i is at the head of the queue, then the flag of Thread i must be Granted.

lemma head_is_granted:
assumes "s € cblock_invar i"
and "aux_mid_release s = None"
and "i = hd (aux_queue s)"
and "aux_queue s #* []"
shows "flag_mapping s (myindex s i) = Granted"
proof-
have "myindex s i = aux_head s"
using assms by (fastforce intro: head_and_head_index)
thus 7thesis
using assms
by (fastforce intro: flag_status.exhaust simp: invar_flag_def)
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qed

In a state that satisfies the queue-invariant, the global index tail is never held by a thread.
Indeed, tail is meant to be “free” for the next thread that joins the queue. Note that when a
thread is not in the queue, its index i becomes outdated, and tail may cycle back and coincide
with i.
lemma tail_never_used:
assumes "s € invar_queue"
shows "V j € set (aux_queue s). myindex s j # tail s"
proof-
have "tail s ¢ set (used_indices s)"
unfolding used_indices_def by clarsimp
thus 7thesis
unfolding invar_queue_def
by (fastforce simp: assms used_indices_map_queue rev_image_eql)
qed

In a state that satisfies the full invariant, if the tail index is right before the aux_head index,
then it must be the case that every thread is in the queue.

lemma used_indices_full:
assumes "s € cblock_invar i"
and "(tail s + 1) mod ArraySize = aux_head s"
shows "length (used_indices s) = NumThreads"
using assms
apply (clarsimp simp: used_indices_def)
apply (intro conjI impI)
apply (metis Suc_eq_plusl add_diff_cancel_left’ diff_zero head_tail_mod le_add_diff_inverse

length_used_indices lessI linorder_not_le mod_Suc plus_1_eq_Suc)
apply (fastforce simp: Suc_diff_le)
by (metis mod_Suc_le_divisor)+

Conversely, if not every thread is in the queue, then the tail index is not right before the
aux_head index.

lemma space_available:
assumes assm_invar: "s € cblock_invar i"
and assm_q: "i ¢ set (aux_queue s)"
shows "(tail s + 1) mod ArraySize # aux_head s"
using assms queue_bounded length_used_indices_queue
by (fastforce simp: used_indices_full)

The next lemma relates the append operation on the aux_head and tail indices to the append
operation on the list of used_indices. (The second and the last assumptions are the most crucial
ones. The rest are side-condition checks.)

lemma used_indices_append:
assumes "s € cblock_invar i"
and "aux_head s’ = aux_head s"
and "length (used_indices s) < NumThreads"
and "(tail s + 1) mod ArraySize # aux_head s"
and "tail s’ = (tail s + 1) mod ArraySize"
shows "used_indices s’ = used_indices s @ [tail s]"
proof (cases "aux_head s’ < tail s’")
case True
hence 1nl: "tail s’ = (tail s + 1)"
using assms apply clarsimp
by (metis Suc_eq_plusl bot_nat_0.extremum_unique head_tail_mod mod_Suc mod_mod_trivial)
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thus 7thesis
using assms used_indices_def 1lnl by fastforce
next
case False
hence a: "— aux_head s’ < tail s’" .
thus 7thesis
proof (cases "tail s’ = 0")
case True
thus 7thesis
using assms apply clarsimp
by (metis (no_types, lifting) Suc_eq_plusl Suc_lessI Zero_not_Suc append.right_neutral

assms(5) invar_bounds_def linorder_not_le mem_Collect_eq mod_less upt_Suc

upt_eq_Nil_conv used_indices_def)
next
case False
thus 7thesis
proof -
have "tail s < tail s’"
using assms(1) assms(5) apply clarsimp
by (metis False Suc_eq_plusl head_tail_mod lessI mod_Suc mod_mod_trivial)
thus ?7thesis
by (metis a used_indices_def assms(2,5) Suc_eq_plusl append.assoc less_Suc_eq_le

mod_less_eq_dividend not_less_eq order_less_le upt_Suc_append zero_less_Suc)
qed
qed
qed

7.2 Contract

The contract of the Circular Buffer Lock is devised along three observations: (1) local variables
do not change; (2) global variables may change; and (3) auxiliary variables change similarly as
in the Abstract Queue Lock.

The first two areas are covered by contract_raw. The only local variable myindex i does not
change. The global variable tail may change, but is not included in the contract, as changes to
tail are not restricted. However, the other global variable flag_mapping is allowed to change
only in specific ways. As flag_mapping stores information about the head of the conceptual
queue, its allowed changes naturally relate to the head stays the head property. Under the
Circular Buffer Lock, Thread i is at the head of the queue when flag_mapping (myindex i) =
Granted. Meanwhile, note that myindex i can become outdated if Thread i is not in the queue.
Hence, we need the premise i € set °aux_queue before the head stays the head statement in
the final clause of contract_raw.

definition contract_raw :: "thread_id = cblock_state rel" where
"contract_raw i = f{
(i € set “aux_queue
— °flag_mapping (°myindex i) = Granted
— 2®flag_mapping (?myindex i) = Granted) A
(°myindex i = ®myindex i) [}"

For the auxiliary variable aux_queue we require the same two clauses as in the contract of the
Abstract Queue Lock. As for aux_mid_release, only the head of the queue can invoke release
and hence modify aux_mid_release. Therefore, the second clause of contract_aux has the extra
equality in the consequent.
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definition contract_aux :: "thread_id = cblock_state rel" where
"contract_aux i = {
(i € set “aux_queue +— i € set %aux_queue) A
(at_head i “aux_queue — at_head i ?aux_queue A “aux_mid_release = %aux_mid_release)

I}u
The two definitions above combine into the overall contract.

abbreviation cblock_contract :: "thread_id = cblock_state rel" where
"cblock_contract t = contract_raw t N contract_aux t"

lemmas cblock_contracts[simp] = contract_raw_def contract_aux_def

7.3 RG Lemmas

abbreviation acq_linel :: "thread_id = cblock_state = cblock_state" where
"acq_linel i =
( “myindex[i] <« ~“tail) o>
(“tail « ("tail + 1) mod ArraySize) o>
(“aux_queue < “aux_queue @ [i])"

lemma acq_1_invar:
assumes assm_old: "s € cblock_invar i"
and assm_new: "s’ = acq_linel i s"
and assm_pre: "i ¢ set (aux_queue s)"
shows "s’ € cblock_invar i"
proof method_cblock_invar
case flag
have "(V j # aux_head s. flag_mapping s j = Pending) A
(flag_mapping s (aux_head s) = Pending +— aux_mid_release s # None)"
using assm_old by (fastforce simp: invar_flag def)
hence "(V j # aux_head s’. flag mapping s’ j = Pending) A
(flag_mapping s’ (aux_head s’) = Pending <— aux_mid_release s’ # None)"
using assm_new by fastforce
thus 7case
by (fastforce simp: invar_flag_def)
next
case bound
have "aux_head s’ < ArraySize"
using assm_old assm_new by (fastforce simp: invar_bounds_def)
moreover have "tail s’ < ArraySize"
using assm_new by fastforce
ultimately show ?7case
using assm_old assm_new by (fastforce simp: invar_bounds_def)
next
case queue show 7case
proof method_invar_queue
case bound_thread_id
have "V j. j € set (aux_queue s) — j < NumThreads"
using assm_old assm_new by (fastforce simp: invar_queue_def)
moreover have "set (aux_queue s’) = set (aux_queue s) U {i}"
using assm_new by fastforce
moreover have "i < NumThreads"
using assm_old assm_new by fastforce
ultimately show 7case
by fastforce
next
case map_used_indices
have "map (myindex s’) (aux_queue s’) = map (myindex s) (aux_queue s) @ [myindex s’
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1] n
using assm_new assm_pre by fastforce

also have 1ni: "... = used_indices s @ [myindex s’ i]"
using assm_old by (fastforce simp: used_indices_def invar_queue_def)
also have "... = used_indices s @ [tail s]"
using assm_new by fastforce
also have "... = used_indices s’"
proof-

have ahead: "aux_head s = aux_head s’"
using assms by fastforce
have "length (used_indices s) < NumThreads"
using assm_pre assm_old
by (fastforce simp: length_used_indices_queue queue_bounded)
moreover have "(tail s + 1) mod ArraySize # aux_head s"
using assm_old assm_pre space_available by fastforce
moreover have "tail s’ = (tail s + 1) mod (ArraySize)"
using assm_new by simp
ultimately show ?thesis
by (metis ahead assm_old used_indices_append)
qed
ultimately show 7case by fastforce
qed
qed

theorem cblock_acql:
"rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i anno_code:
{{i¢ set "aux_queue | }
BasicAnno (acq_linel i)
{ { i € set "aux_queue |} }"
apply method_anno_ultimate
using acq_1_invar by fastforce+

theorem cblock_acq2:
"rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i code:
{{1i € set "aux_queue |} }
WHILE “flag_mapping ( ‘myindex i) = Pending DO SKIP 0D
{ { at_head i ~“aux_queue A ~“aux_mid_release = None [} }"
proof method_spinloop
case est_post
thus 7case
proof-
{ fix s assume assm_s: "s € cblock_invar i N { i € set “aux_queue [} N
{ “flag_mapping ( myindex i) # Pending [}"
hence 1nl:"aux_queue s # []"
by force
have 1n2:"flag mapping s (aux_head s) # Pending"
using assm_s invar_flag def by force
hence 1n3:"myindex s i = aux_head s"
using assm_s invar_flag_def
by (metis (mono_tags, lifting) IntE mem_Collect_eq)
have "i = hd (aux_queue s) A s € { “aux_mid_release = None [}"
apply (intro conjI)
using 1lnl 1n3 assm_s
apply (metis (1lifting) Int_Collect head_and_head_index inf_commute inj_onD invar_bounds_def

invar_flag_def invar_map_inj_on invar_queue_def list.set_sel(1))
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using 1n2 1n3 assm_s
by (fastforce simp: invar_flag_def flag_status.exhaust)
}
thus 7thesis by fastforce
qed
qed (fastforce+)

abbreviation rel_linel :: "thread_id = cblock_state = cblock_state" where
"rel_linel i = ( flag_mapping[ ‘myindex i] < Pending) o>
("aux_mid_release < Some i)"

lemma rel_1_same:

"s’ = rel_linel i s =
(myindex s = myindex s’) A
(V j # myindex s i. flag mapping s j = flag_mapping s’ j) A
(tail s = tail s’) A
(aux_head s = aux_head s’) A
(aux_queue s = aux_queue s’)"

by simp

lemma rel_1_invar:
assumes assm_old: "s € cblock_invar i"
and assm_new: "s’ = rel_linel i s"
and assm_pre: "at_head i (aux_queue s) A aux_mid_release s = None"
shows "s’ € cblock_invar i"
proof method_cblock_invar
case flag show 7case
apply method_invar_flag
using assm_new assm_old assm_pre
by (fastforce simp: invar_flag_def head_and_head_index)+
next
case bound
thus 7case
using assm_old invar_bounds_def assm_new
by (metis (no_types, lifting) rel_1_same Int_iff mem_Collect_eq)
next
case queue show 7case
apply (method_invar_queue)
using assm_old assm_new apply (fastforce simp: invar_queue_def)
by (metis (lifting) assm_old assm_new used_indices_map_queue used_indices_def rel_1_same
IntE)
qed

lemma rel_1_est_guar:
assumes "s € { “aux_queue # [] A
hd “aux_queue = i A
“aux_mid_release = None |
N cblock_invar i"
and "s’ = rel_linel i s"
shows "(s, s’) € for_others cblock_contract i
N pred_to_rel (cblock_invar i)"
proof-
{ fix j assume assm_u_t: "j # i"
have "j € set (aux_queue s)
— flag_mapping s (myindex s j) = Granted
— flag_mapping s’ (myindex s’ j) = Granted"
using assms assm_u_t
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by (fastforce intro: simp: head_and_head_index inj_onD dest: invar_map_inj_on)
moreover have "myindex s j = myindex s’ j"
using assms by (fastforce intro: rel_1_same)
ultimately have "(s, s’) € contract_raw j"
by fastforce }
moreover
{ fix j assume "j # i"
hence "hd (aux_queue s) # j"
using assms(1) by simp
moreover have "j € set (aux_queue s) <— j € set (aux_queue s’)"
using rel_1_same assms(2) by simp
ultimately have "(s, s’) € contract_aux j"
by fastforce }
moreover have "(s, s’) € pred_to_rel (cblock_invar i)"
using assms rel_1_invar by fastforce
ultimately show 7?thesis
by fastforce
qed

theorem cblock_rell:
"rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i anno_code:
{ { at_head i ~“aux_queue A “aux_mid_release = None [} }
BasicAnno (rel_linel i)
{ { at_head i ~“aux_queue A ~“aux_mid_release = Some i [} }"
proof method_anno_ultimate
case est_guar
thus 7case
using rel_1_invar
by (fastforce dest: invar_map_inj_on simp: inj_on_contraD)
next
case est_post
thus 7case
using rel_1_est_guar by fastforce
qged (fastforce+)

abbreviation rel_line2 :: "thread_id = cblock_state = cblock_state" where
"rel line2 i =
(“flag_mapping[(( ‘myindex i + 1) mod ArraySize)] ¢ Granted) o>
(“aux_queue « tl “aux_queue) o>
(“aux_head < ( aux_head + 1) mod ArraySize) o>
(“aux_mid_release < None)"

lemma rel_2_same:
"s’ = rel_line2 i s =
myindex s = myindex s’ A
tail s = tail s’ A
(VY j # (myindex s i + 1) mod ArraySize.
flag_mapping s j = flag_mapping s’ j)"
by fastforce

lemma rel_2_invar:
assumes assm_old: "s € cblock_invar i"
and assm_pre: "at_head i (aux_queue s) A aux_mid_release s = Some i"
and assm_new: "s’ = rel_line2 i s"
shows "s’ € cblock_invar i"
proof method_cblock_invar
case flag show 7case
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apply (method_invar_flag)
using assm_new assm_old assm_pre
by (force simp: head_and_head_index invar_flag_def)+
next
case bound
have "tail s’ < ArraySize"
using assm_new assm_old
by (fastforce simp: invar_bounds_def)
moreover have "aux_head s’ < ArraySize"
using assms
by fastforce
moreover have "i < NumThreads"
using assm_old assm_new by fastforce
ultimately show ?case
using invar_bounds_def by blast
next
case queue show 7case
proof method_invar_queue
case bound_thread_id
show 7case
using assm_new assm_old assm_pre
by (fastforce simp: invar_queue_def list.set_sel(2))
next
case map_used_indices
have same: "tail s = tail s’ A
myindex s = myindex s’"
using assm_new by (fastforce intro: rel_2_same)
have "aux_queue s # []"
using assm_pre by fastforce
hence d: "aux_head s # tail s"
using assm_old head_and_head_index tail_never_used by force
have t: "aux_queue s’ = tl (aux_queue s)"
using assm_new by fastforce
have m: "map (myindex s) (aux_queue s) = used_indices s"
using assm_old invar_queue_def by fastforce
have "used_indices s’ = tl1 (used_indices s)"
proof-
{ assume a: "aux_head s < tail s"
hence 1: "aux_head s + 1 < ArraySize"
using d assm_old invar_bounds_def by force
hence 2: "aux_head s’ = aux_head s + 1"
using assm_new mod_less by force
hence 3: "aux_head s’ < tail s’"
using a d 2 same by fastforce

have "used_indices s = [aux_head s ..< tail s]"
using a used_indices_def by simp

also have "... = aux_head s # [aux_head s + 1 ..< tail s]"
using a d upt_eq_Cons_conv by fastforce

also have "... = aux_head s # [aux_head s’ ..< tail s]"
using 2 by fastforce

also have "... = aux_head s # [aux_head s’ ..< tail s’]"
using assm_new rel_2_same by fastforce

also have "... = aux_head s # used_indices s’"

using 3 used_indices_def by fastforce

ultimately have 7thesis
by simp }
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moreover
{ assume a: "aux_head s > tail s A aux_head s = ArraySize - 1"

have "aux_head s’ = (aux_head s + 1) mod ArraySize"
using assm_new by simp

also have "... = 0"
using a Suc_eq_plusl diff_Suc_1 by presburger

also have "... < tail s’"
by simp

ultimately have b: "used_indices s’ = [0 ..< tail s’]"

using used_indices_def by presburger

from a have "used_indices s = aux_head s # [0 ..< tail s]"
using used_indices_def by fastforce
also have "... = aux_head s # used_indices s’"
using same b by simp
ultimately have ?thesis by simp }
moreover
{ assume a: "tail s < aux_head s A aux_head s # ArraySize - 1"
hence b: "aux_head s < ArraySize - 1"
using assm_old invar_bounds_def by force
hence "aux_head s + 1 = (aux_head s + 1) mod ArraySize"
by simp
also have "... = aux_head s’"
using assm_new by simp

ultimately have c: "tail s’ < aux_head s’ A aux_head s + 1 = aux_head s’"

using a same by simp

hence d: "used_indices s’ = [aux_head s’ ..< ArraySize] @ [0 ..< tail s’]"

using used_indices_def by simp

from a have "used_indices s = [aux_head s ..< ArraySize] @ [0 ..< tail s]"

using used_indices_def by simp

also have "... = aux_head s # [aux_head s’ ..< ArraySize] @ [0 ..< tail s]"

using a b ¢ upt_rec by force
also have "... = aux_head s # used_indices s’"
using same d by simp

ultimately have ?thesis by simp }
ultimately show ?thesis by force
qed

hence "map (myindex s) (aux_queue s’) = used_indices s’"
by (simp add: t m map_tl)
thus 7case using same by (simp add: invar_queue_def)
qed
qed

lemma rel_2_est_guar:

assumes assm_old : "s € cblock_invar i"
and assm_pre : "at_head i (aux_queue s) A aux_mid_release s = Some i"
and assm_new : "s’ = rel_line2 i s"

shows "(s, s’) € for_others cblock_contract i
N pred_to_rel (cblock_invar i)"
proof-
{ fix j assume u: "j # i"
hence "(s, s’) € contract_raw j"
proof-
have "myindex s j = myindex s’ j"
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using assms rel_2_same by presburger

moreover
{ assume "j € set (aux_queue s) A flag_mapping s (myindex s j) = Granted"
hence "flag mapping s’ (myindex s j) = Granted"
using assms by simp
hence "flag mapping s’ (myindex s’ j) = Granted"
using assms rel_2_same by (metis (no_types, lifting)) }
ultimately show ?7thesis by simp

qed
moreover have "(s, s’) € contract_aux j"

proof-
have s: "tl (aux_queue s)
hd (aux_queue s)
i# 3"
using assm_new assm_pre u by simp

hence "j € set (aux_queue s) <— j € set (aux_queue s’)"
by (metis RG_Tran.nth_tl hd_conv_nth list.sel(2) list.set_sel(2) set_ConsD)

= aux_queue s’ A
iA

thus 7thesis using s by simp

qed
ultimately have "(s, s’) € cblock_contract j"

by simp }
moreover have "(s, s’) € pred_to_rel (cblock_invar i)"

using assms rel_2_invar by force
ultimately show ?thesis by simp

qed
theorem cblock_rel2:
"rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i anno_code:
= Some i | }

{ ﬂ at_head i “aux_queue A “aux_mid_release

BasicAnno (rel_line2 i)
{{1i ¢ set "aux_queue [} }"
proof method_anno_ultimate
case est_guar
thus 7case
using rel_2_est_guar by fastforce
next
case est_post

thus 7case

using rel_2_invar apply clarsimp
by (metis (mono_tags, lifting) distinct.simps(2) distinct_map distinct_used_indices

invar_queue_def list.collapse mem_Collect_eq)

qed (fastforce+)

7.4 RG Theorems

theorem cblock_acq:
"rely: cblock_contract i guar: for_others cblock_contract i

inv: cblock_invar i anno_code:
{{1i ¢ set "aux_queue |} }

BasicAnno (acq_linel i) .;
{ { i € set "aux_queue |} }

NoAnno (WHILE ~“flag_mapping ( ‘myindex i) = Pending DO SKIP 0D)
{ { at_head i ~“aux_queue A ~“aux_mid_release = None [} }"

apply method_anno_ultimate
using cblock_acql cblock_acq2 by fastforce+
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theorem cblock_rel:

"rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i anno_code:

{ { at_head i “aux_queue A “aux_mid_release = None [} }
BasicAnno (rel_linel i) .;

{ { at_head i ~“aux_queue A ~“aux_mid_release = Some i [ }
BasicAnno (rel_line2 i)

{{ i ¢ set "aux_queue | }"
apply method_anno_ultimate
using cblock_rell cblock_rel2 annquin_simp by blast+

theorem cblock_local:
"rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i anno_code:
{{ i ¢ set "aux_queue | }
BasicAnno (acq_linel i) .;
{ { i € set "aux_queue |} }
NoAnno (WHILE “flag_mapping ( “myindex i) = Pending DO SKIP 0D) .;
{ { at_head i ~“aux_queue A “aux_mid_release = None [} }
BasicAnno (rel_linel i) .;
{ { at_head i “aux_queue A “aux_mid_release = Some i [} }
BasicAnno (rel_line2 i)
{{ i ¢ set "aux_queue | }"
apply (method_anno_ultimate)
using cblock_acql annquin_simp apply blast
using cblock_acq2 annquin_simp apply force
using cblock_rell annquin_simp apply blast
using cblock_rel2 annquin_simp by blast

When Sledgehammer is applied directly to one of the subgoals of the next theorem cblock_local_loop,
several solvers do find proofs but do not report back. However, when that subgoal is explicitly
copied into a separate lemma below, sledgehammer does find an SMT proof.

lemma 1lma_tmp:
assumes
"rely: cblock_contract t N pred_to_rel (cblock_invar t)
guar: invar_and_guar (cblock_invar t) (for_others cblock_contract t)
anno_code:
{{t ¢ set “aux_queuel} N cblock_invar t}
add_invar (cblock_invar t) (BasicAnno (acq_linel t) .;
{{t € set ~aux_queuel}
NoAnno (WHILE “flag_mapping ( “myindex t) = Pending DO SKIP 0D) .;
{{at_head t “aux_queue A “aux_mid_release = None|}
BasicAnno (rel_linel t) .;
{{at_head t “aux_queue A “aux_mid_release = Some t]}}
BasicAnno (rel_line2 t))
{{t ¢ set “aux_queue[} N cblock_invar t}"
shows
"anncom_spec_valid
({t ¢ set “aux_queue}} N cblock_invar t N {t ¢ set ~“aux_queuel)
(cblock_contract t N pred_to_rel (cblock_invar t))
(invar_and_guar (cblock_invar t) (for_others cblock_contract t))
({t ¢ set “aux_queue}} N cblock_invar t)
(add_invar (cblock_invar t)
(BasicAnno (acq_linel t) .;
{{t € set ~aux_queuel}
NoAnno (WHILE ~“flag_mapping ( “myindex t) = Pending DO SKIP O0D) .;
{{at_head t “aux_queue A “aux_mid_release = Nonel}
BasicAnno (rel_linel t) .;
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{{at_head t “aux_queue A “aux_mid_release = Some t[}}
BasicAnno (rel_line2 t)))"

using assms annquin_simp

by (smt (verit) Int_absorb inf_assoc inf_commute)

theorem cblock_local_loop:
"rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i anno_code:
{{ i ¢ set "aux_queue | }
WhileAnno UNIV
({ i ¢ set “aux_queue [ )
( BasicAnno (acq_linel i) .;
{{ i€ set "aux_queue |} }
NoAnno (WHILE “flag_mapping ( “myindex i) = Pending DO SKIP 0D) .;
{ { at_head i “aux_queue A “aux_mid_release = None |} }
BasicAnno (rel_linel i) .;
{ { at_head i “aux_queue A “aux_mid_release = Some i [ }
BasicAnno (rel_line2 i) )
{{r
proof method_anno_ultimate
case body
thus 7case
by (rule lma_tmp, rule cblock_local)
qged (fastforce+)

The overall theorem expressing the correctness of the Circular Buffer Lock.

theorem cblock_global:
"annotated global_init: cblock_init global_rely: Id
|| i < NumThreads @

{{ i ¢ set "aux_queue [}, cblock_contract i }
WhileAnno UNIV
({ i ¢ set "aux_queue [ )
( BasicAnno (acq_linel i) .;
{ { i € set "aux_queue |} }
NoAnno (WHILE ~“flag mapping ( “myindex i) = Pending DO SKIP 0OD) .;
{ { at_head i “aux_queue A “aux_mid_release = None [} }
BasicAnno (rel_linel i) .;
{ { at_head i “aux_queue A “aux_mid_release = Some i [ }
BasicAnno (rel_line2 i) )

/| cblock_invar i { for_others cblock_contract i, {} }
global_guar: UNIV global_post: {}"
apply (method_anno_ultimate)
apply (fastforce intro!: cblock_local_loop)
using cblock_init_def cblock_init_invar apply force
using cblock_contracts cblock_invariants apply fastforce
by (fastforce simp: assm_locale)+
end

End of locale

end

End of theory
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