Metatheory of \mathcal{Q}_{0}

Javier Díaz
javier.diaz.manzi@gmail.com

April 18, 2024

Abstract

This entry is a formalization of the metatheory of \mathcal{Q}_{0} in Isabelle/HOL. $\mathcal{Q}_{0}{ }^{[2]}$ is a classical higher-order logic equivalent to Church's Simple Theory of Types. In this entry we formalize Chapter 5 of [2], up to and including the proofs of soundness and consistency of \mathcal{Q}_{0}. These proof are, to the best of our knowledge, the first to be formalized in a proof assistant.

Contents

1 Utilities 5
1.1 Utilities for lists 5
1.2 Utilities for finite maps 5
2 Syntax 10
2.1 Type symbols 10
2.2 Variables 11
2.3 Constants 12
2.4 Formulas 13
2.5 Generalized operators 13
2.6 Subformulas 13
2.7 Free and bound variables 19
2.8 Free and bound occurrences 21
2.9 Free variables for a formula in another formula 38
2.10 Replacement of subformulas 42
2.11 Logical constants 46
2.12 Definitions and abbreviations 47
2.13 Well-formed formulas 49
2.14 Substitutions 59
2.15 Renaming of bound variables 83
3 Boolean Algebra 88
4 Propositional Well-Formed Formulas 90
4.1 Syntax 91
4.2 Semantics 95
5 Proof System 108
5.1 Axioms 108
5.2 Inference rule R 109
5.3 Proof and derivability 109
5.4 Hypothetical proof and derivability 118
6 Elementary Logic 131
6.1 Proposition 5200 131
6.2 Proposition 5201 (Equality Rules) 132
6.3 Proposition 5202 (Rule RR) 133
6.4 Proposition 5203 134
6.5 Proposition 5204 136
6.6 Proposition 5205 (η-conversion) 136
6.7 Proposition 5206 (α-conversion) 139
6.8 Proposition 5207 (β-conversion) 142
6.9 Proposition 5208 147
6.10 Proposition 5209 149
6.11 Proposition 5210 150
6.12 Proposition 5211 151
6.13 Proposition 5212 152
6.14 Proposition 5213 153
6.15 Proposition 5214 153
6.16 Proposition 5215 (Universal Instantiation) 154
6.17 Proposition 5216 155
6.18 Proposition 5217 156
6.19 Proposition 5218 158
6.20 Proposition 5219 (Rule T) 159
6.21 Proposition 5220 (Universal Generalization) 159
6.22 Proposition 5221 (Substitution) 161
6.23 Proposition 5222 (Rule of Cases) 172
6.24 Proposition 5223 175
6.25 Proposition 5224 (Modus Ponens) 176
6.26 Proposition 5225 177
6.27 Proposition 5226 178
6.28 Proposition 5227 179
6.29 Proposition 5228 180
6.30 Proposition 5229 180
6.31 Proposition 5230 181
6.32 Proposition 5231 183
6.33 Proposition 5232 184
6.34 Proposition 5233 186
6.35 Proposition 5234 (Rule P) 196
6.36 Proposition 5235 197
6.37 Proposition 5237 ($\supset \forall$ Rule) 199
6.38 Proposition 5238 203
6.39 Proposition 5239 206
6.40 Theorem 5240 (Deduction Theorem) 217
6.41 Proposition 5241 221
6.42 Proposition 5242 (Rule of Existential Generalization) 221
6.43 Proposition 5243 (Comprehension Theorem) 222
6.44 Proposition 5244 (Existential Rule) 224
6.45 Proposition 5245 (Rule C) 226
7 Semantics 229
7.1 Frames 230
7.2 Pre-models (interpretations) 231
7.3 General models 234
7.4 Standard models 235
7.5 Validity 235
8 Soundness 236
8.1 Proposition 5400 236
8.2 Proposition 5401 237
8.3 Proposition 5402(a) 267
8.4 Proposition 5402(b) 267
8.5 Theorem 5402 (Soundness Theorem) 267
9 Consistency 268
9.1 Existence of a standard model 268
9.2 Theorem 5403 (Consistency Theorem) 271

1 Utilities

```
theory Utilities
    imports
        Finite-Map-Extras.Finite-Map-Extras
begin
```


1.1 Utilities for lists

```
fun foldr1 :: \(\left({ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow^{\prime} a\) list \(\Rightarrow{ }^{\prime} a\) where
    foldr1 \(f[x]=x\)
\(\mid\) foldr1 \(f(x \# x s)=f x(\) foldr1 \(f x s)\)
\(\mid\) foldr1 \(f[]=\) undefined \(f\)
```

abbreviation lset where lset \equiv List.set
lemma rev-induct2 [consumes 1, case-names Nil snoc]:
assumes length $x s=$ length $y s$
and P [] []
and $\bigwedge x x s y$ ys. length $x s=$ length $y s \Longrightarrow P x s y s \Longrightarrow P(x s @[x])(y s @[y])$
shows P xs ys
using assms proof (induction xs arbitrary: ys rule: rev-induct)
case (snoc $x x s$)
then show? ?ase by (cases ys rule: rev-cases) simp-all
qed simp

1.2 Utilities for finite maps

```
no-syntax
    -fmaplet :: ['a,'a] => fmaplet (- /$$:=/ -)
    -fmaplets :: ['a,'a] => fmaplet (- /[$$:=]/ -)
```

syntax
- fmaplet $::\left[{ }^{\prime} a, ' a\right] \Rightarrow$ fmaplet $(-/ \mapsto /-)$
-fmaplets :: $\left[\right.$ ' $\left.a,{ }^{\prime} a\right] \Rightarrow$ fmaplet $(-/[\hookrightarrow] /-)$
lemma fmdom'-fmap-of-list [simp]:
shows fmdom' (fmap-of-list ps) $=$ lset (map fst ps)
by (induction ps) force+
lemma fmran'-singleton [simp]:
shows fmran $^{\prime}\{k \mapsto v\}=\{v\}$
proof -
have $v^{\prime} \in$ fmran' $^{\prime}\{k \longmapsto v\} \Longrightarrow v^{\prime}=v$ for v^{\prime}
proof -
assume $v^{\prime} \in$ fmran $^{\prime}\{k \longmapsto v\}$
fix k^{\prime}
have $f m d o m^{\prime}\{k \mapsto v\}=\{k\}$
by simp
then show $v^{\prime}=v$

```
    proof (cases k' = k)
        case True
        with }\langle\mp@subsup{v}{}{\prime}\in\mp@subsup{\mathrm{ fmran' }}{}{\prime}{k\mapstov}\rangle\mathrm{ show ?thesis
        using fmdom'I by fastforce
    next
    case False
    with <fmdom' {k\hookrightarrowv}={k}\rangle and \langlev' \infmran'}{k\mapstov}\rangle\mathrm{ show ?thesis
        using fmdom'I by fastforce
    qed
    qed
    moreover have v\in fmran' {k\hookrightarrowv}
    by (simp add: fmran'I)
    ultimately show?thesis
    by blast
qed
lemma fmran'-fmupd [simp]:
    assumes m $$ x= None
    shows fmran'}(m(x\mapstoy))={y}\cup\mp@subsup{fmran'}{}{\prime}
using assms proof (intro subset-antisym subsetI)
    fix }\mp@subsup{x}{}{\prime
    assume m$$x = None and \mp@subsup{x}{}{\prime}\in\mp@subsup{fmran'}{\prime}{\prime}(m(x\mapstoy))
    then show }\mp@subsup{x}{}{\prime}\in{y}\cupfmran'
        by (auto simp add: fmlookup-ran'-iff, metis option.inject)
next
    fix }\mp@subsup{x}{}{\prime
    assume m $$ x = None and x' }\in{y}\cup\mp@subsup{fmran' }{m}{
    then show \mp@subsup{x}{}{\prime}\in\mp@subsup{fmran}{}{\prime}(m(x\mapstoy))
        by (force simp add: fmlookup-ran'-iff)
qed
lemma fmran'-fmadd [simp]:
    assumes fmdom' m\capfmdom' m' = {}
    shows fmran'}(m+\mp@subsup{+}{f}{\prime}\mp@subsup{m}{}{\prime})={fmran' m\cupfmran' m'
using assms proof (intro subset-antisym subsetI)
    fix }
    assume fmdom' m\capfmdom' m
    then show }x\in\mp@subsup{\mathrm{ fmran' }}{}{\prime}m\cup\mp@subsup{\mathrm{ fmran' }}{}{\prime}\mp@subsup{m}{}{\prime
        by (auto simp add: fmlookup-ran'-iff) meson
next
    fix }
```



```
    then show }x\in\mp@subsup{\operatorname{fmran}}{}{\prime}(m+\mp@subsup{+}{f}{\prime}\mp@subsup{m}{}{\prime}
        using fmap-disj-comm and fmlookup-ran'-iff by fastforce
qed
lemma finite-fmran':
    shows finite (fmran' m)
    by (simp add: fmran'-alt-def)
```

```
lemma fmap-of-zipped-list-range:
    assumes length ks = length vs
    and m= fmap-of-list (zip ks vs)
    and}k\infmdom' m
    shows m $$! k\in lset vs
    using assms by (induction arbitrary: m rule: list-induct2) auto
lemma fmap-of-zip-nth [simp]:
    assumes length ks = length vs
    and distinct ks
    and i< length ks
    shows fmap-of-list (zip ks vs) $$! (ks!i)=vs!i
    using assms by (simp add: fmap-of-list.rep-eq map-of-zip-nth)
lemma fmap-of-zipped-list-fmran' [simp]:
    assumes distinct (map fst ps)
    shows fmran' (fmap-of-list ps) = lset (map snd ps)
using assms proof (induction ps)
    case Nil
    then show ?case
        by auto
next
    case (Cons p ps)
    then show ?case
    proof (cases p l lset ps)
    case True
    then show ?thesis
        using Cons.prems by auto
    next
        case False
        obtain k and v where p=(k,v)
        by fastforce
        with Cons.prems have k}\not\in\mp@subsup{fmdom''(fmap-of-list ps)}{}{\prime
        by auto
        then have fmap-of-list (p#ps)={k\longmapstov}++\mp@subsup{}{f}{\prime}\mathrm{ fmap-of-list ps}
            using }\langlep=(k,v)\rangle and fmap-singleton-comm by fastforce
        with Cons.prems have fmran'(fmap-of-list (p# ps))={v}\cupfmran'(fmap-of-list ps)
        by (simp add:<p=(k,v)>)
        then have fmran'(fmap-of-list (p# ps))}={v}\cup\mathrm{ lset (map snd ps)
            using Cons.IH and Cons.prems by force
        then show ?thesis
        by (simp add:<p=(k,v)>)
    qed
qed
lemma fmap-of-list-nth [simp]:
    assumes distinct (map fst ps)
        and j< length ps
```

```
    shows fmap-of-list ps $$ ((map fst ps)! j)= Some (map snd ps ! j)
    using assms by (induction j) (simp-all add: fmap-of-list.rep-eq)
lemma fmap-of-list-nth-split [simp]:
    assumes distinct xs
    and j < length xs
    and length ys = length xs and length zs = length xs
    shows fmap-of-list (zipxs (take k ys @ drop kzs)) $$ (xs ! j)=
        (if j<k then Some (take k ys ! j) else Some (drop kzs! ( j - k)))
using assms proof (induction k arbitrary: xs ys zs j)
    case 0
    then show?case
        by (simp add: fmap-of-list.rep-eq map-of-zip-nth)
next
    case (Suc k)
    then show ?case
    proof (cases xs)
        case Nil
        with Suc.prems(2) show ?thesis
        by auto
    next
    case (Cons x xs')
    let ?ps = zip xs (take (Suc k) ys @ drop (Suc k) zs)
    from Cons and Suc.prems(3,4) obtain y and z and ys' and zs'
        where ys = y#ys' and zs=z#zs'
        by (metis length-0-conv neq-Nil-conv)
    let ?ps' = zip xs'(take k ys' @ drop kzs')
    from Cons have *: fmap-of-list ?ps = fmap-of-list ((x,y) # ?ps')
        using «ys = y # ys'` and «zs=z# zs'\rangle by fastforce
    also have ... ={x\hookrightarrowy}++ff fmap-of-list ?ps'
    proof -
        from 〈ys = y # ys'` and «zs =z # zs'\rangle have fmap-of-list ?ps' $$ x = None
            using Cons and Suc.prems(1,3,4) by (simp add: fmdom'-notD)
            then show ?thesis
            using fmap-singleton-comm by fastforce
    qed
    finally have fmap-of-list ?ps ={x\mapstoy} ++ff fmap-of-list ?ps'.
    then show ?thesis
    proof (cases j=0)
            case True
            with «ys = y # ys`` and Cons show ?thesis
            by simp
    next
        case False
            then have xs ! j=x\mp@subsup{s}{}{\prime}!(j-1)
            by (simp add: Cons)
            moreover from «ys = y # ys'` and «zs =z # zs'\rangle have fmdom' (fmap-of-list ?ps') = lset xs'
            using Cons and Suc.prems(3,4) by force
            moreover from False and Suc.prems(2) and Cons have j-1<length xs'
```

```
            using le-simps(2) by auto
            ultimately have fmap-of-list ?ps $$(xs!j)=fmap-of-list ?ps'$$(x\mp@subsup{s}{}{\prime}!(j-1))
            using Cons and * and Suc.prems(1) by auto
        with Suc.IH and Suc.prems(1,3,4) and Cons have **: fmap-of-list ?ps $$ (xs!j)=
            (if j - 1<k then Some (take k ys'! (j - 1)) else Some (drop kzs'! ((j - 1) - k)))
                using <j - < < length xs`> and <ys = y # ys'〉 and «zs=z # zs'〉 by simp
            then show ?thesis
            proof (cases j - 1<k)
            case True
            with False and ** show ?thesis
                using <ys = y # ys`` by auto
            next
            case False
            from Suc.prems(1) and Cons and <j - 1 < length xs'〉 and <xs!j =x\mp@subsup{s}{}{\prime}! (j - 1)〉 have j>
                using nth-non-equal-first-eq by fastforce
                with False have j\geqSuc k
                by simp
            moreover have fmap-of-list ?ps $$ (xs!j) = Some (drop (Suc k)zs! (j - Suc k))
                using ** and False and «zs =z # zs'> by fastforce
            ultimately show ?thesis
                by simp
            qed
        qed
    qed
qed
lemma fmadd-drop-cancellation [simp]:
    assumes m $$k=Somev
    shows {k\longmapstov}++\mp@subsup{}{f}{}\mathrm{ fmdrop }km=m
using assms proof (induction m)
    case fmempty
    then show ?case
        by simp
next
    case (fmupd k}\mp@subsup{k}{}{\prime}\mp@subsup{v}{}{\prime}\mp@subsup{m}{}{\prime}\mathrm{ )
    then show ?case
    proof (cases k' =k)
        case True
        with fmupd.prems have v= v
        by fastforce
    have fmdrop k' (m'(k'`}\mp@subsup{k}{}{\prime}\multimap\mp@subsup{v}{}{\prime}))=\mp@subsup{m}{}{\prime
        unfolding fmdrop-fmupd-same using fmdrop-idle'[OF fmdom'-notI[OF fmupd.hyps]] by (unfold
True)
        then have {k\mapstov}++\mp@subsup{+}{f}{}\mathrm{ fmdrop }\mp@subsup{k}{}{\prime}(\mp@subsup{m}{}{\prime}(\mp@subsup{k}{}{\prime}\mapsto\mp@subsup{v}{}{\prime}))={k\longmapstov}++\mp@subsup{+}{f}{}\mp@subsup{m}{}{\prime}
        by simp
    then show ?thesis
        using fmap-singleton-comm[OF fmupd.hyps] by (simp add: True <v = v``)
    next
```

```
    case False
    with fmupd.prems have m'$$k=Some v
        by force
    from False have {k\longmapstov}++\mp@subsup{}{f}{}\mathrm{ fmdrop }k(\mp@subsup{m}{}{\prime}(\mp@subsup{k}{}{\prime}\mapsto\mp@subsup{v}{}{\prime}))={k\mapstov}+\mp@subsup{+}{f}{}(\mathrm{ fmdrop k m}\mp@subsup{m}{}{\prime})(\mp@subsup{k}{}{\prime}\mapsto\mp@subsup{v}{}{\prime})
    by (simp add: fmdrop-fmupd)
    also have \ldots. = ({k\mapstov} ++f fmdrop k m
        by fastforce
    also from fmupd.prems and fmupd.IH[OF<m'$$ k=Some v>] have ... = m m
        by force
    finally show ?thesis.
    qed
qed
lemma fmap-of-list-fmmap [simp]:
    shows fmap-of-list (map2 ( }\lambda\mp@subsup{v}{}{\prime}\mp@subsup{A}{}{\prime}.(\mp@subsup{v}{}{\prime},f\mp@subsup{A}{}{\prime}))\mathrm{ xs ys) = fmmap f (fmap-of-list (zip xs ys))
    unfolding fmmap-of-list
    using cond-case-prod-eta
        [where f=\lambda\mp@subsup{v}{}{\prime}\mp@subsup{A}{}{\prime}.(\mp@subsup{v}{}{\prime},f\mp@subsup{A}{}{\prime})\mathrm{ and }g=\mathrm{ apsnd f, unfolded apsnd-conv, simplified]}]
    by (rule arg-cong)
end
```


2 Syntax

```
theory Syntax
imports
HOL-Library.Sublist
Utilities
begin
```


2.1 Type symbols

```
datatype type =
    TInd (i)
| TBool (o)
| TFun type type (infixr }->\mathrm{ 101)
```

primrec type-size :: type \Rightarrow nat where
type-size $i=1$
| type-size $o=1$
\mid type-size $(\alpha \rightarrow \beta)=$ Suc (type-size $\alpha+$ type-size β)
primrec subtypes $::$ type \Rightarrow type set where
subtypes $i=\{ \}$
| subtypes $o=\{ \}$
\mid subtypes $(\alpha \rightarrow \beta)=\{\alpha, \beta\} \cup$ subtypes $\alpha \cup$ subtypes β
lemma subtype-size-decrease:
assumes $\alpha \in$ subtypes β

```
    shows type-size \alpha< type-size \beta
    using assms by (induction rule: type.induct) force+
lemma subtype-is-not-type:
    assumes }\alpha\in\mathrm{ subtypes }
    shows }\alpha\not=
    using assms and subtype-size-decrease by blast
lemma fun-type-atoms-in-subtypes:
    assumes }k<l=\mp@code{length ts
    shows ts!k subtypes (foldr ( }->\mathrm{ ) ts }\gamma\mathrm{ )
    using assms by (induction ts arbitrary: k) (cases k, use less-Suc-eq-0-disj in <fastforce+>)
lemma fun-type-atoms-neq-fun-type:
    assumes }k<\mathrm{ length ts
    shows ts!k\not= foldr ( }->\mathrm{ ) ts }
    by (fact fun-type-atoms-in-subtypes[OF assms, THEN subtype-is-not-type])
```


2.2 Variables

Unfortunately, the Nominal package does not support multi-sort atoms yet; therefore, we need to implement this support from scratch.
type-synonym var $=$ nat \times type
abbreviation var-name :: var \Rightarrow nat where var-name $\equiv f_{s t}$
abbreviation var-type :: var \Rightarrow type where
var-type \equiv snd
lemma fresh-var-existence:
assumes finite (vs :: var set)
obtains x where $(x, \alpha) \notin v s$
using ex-new-if-finite[OF infinite-UNIV-nat]
proof -
from assms obtain x where $x \notin$ var-name 'vs
using ex-new-if-finite[OF infinite-UNIV-nat] by fastforce
with that show ?thesis
by force
qed
lemma fresh-var-name-list-existence:
assumes finite (ns :: nat set)
obtains $n s^{\prime}$ where length $n s^{\prime}=n$ and distinct $n s^{\prime}$ and lset $n s^{\prime} \cap n s=\{ \}$
using assms proof (induction n arbitrary: thesis)
case 0
then show? ?ase
by simp
next

```
case (Suc \(n\) )
    from assms obtain \(n s^{\prime}\) where length \(n s^{\prime}=n\) and distinct \(n s^{\prime}\) and lset \(n s^{\prime} \cap n s=\{ \}\)
        using Suc.IH by blast
    moreover from assms obtain \(n^{\prime}\) where \(n^{\prime} \notin l\) lset \(n s^{\prime} \cup n s\)
    using ex-new-if-finite[OF infinite-UNIV-nat] by blast
    ultimately
        have length \(\left(n^{\prime} \# n s^{\prime}\right)=\) Suc \(n\) and distinct \(\left(n^{\prime} \# n s^{\prime}\right)\) and lset \(\left(n^{\prime} \# n s^{\prime}\right) \cap n s=\{ \}\)
        by simp-all
    with Suc.prems(1) show ?case
        by blast
qed
lemma fresh-var-list-existence:
    fixes \(x s\) :: var list
    and \(n s::\) nat set
    assumes finite ns
    obtains \(v s^{\prime}::\) var list
    where length \(v s^{\prime}=\) length \(x s\)
    and distinct vs'
    and var-name 'lset vs' \(\cap(n s \cup\) var-name'lset \(x s)=\{ \}\)
    and map var-type vs' \(=\) map var-type \(x s\)
proof -
    from assms(1) have finite ( \(n s \cup\) var-name'lset \(x s\) )
        by blast
    then obtain \(n s^{\prime}\)
        where length \(n s^{\prime}=\) length \(x s\)
        and distinct \(n s^{\prime}\)
        and lset \(n s^{\prime} \cap(n s \cup\) var-name 'lset \(x s)=\{ \}\)
        by (rule fresh-var-name-list-existence)
    define \(v s^{\prime \prime}\) where \(v s^{\prime \prime}=z i p n s^{\prime}(\) map var-type xs \()\)
    from \(v s^{\prime \prime}\)-def and \(« l e n g t h ~ n s^{\prime}=\) length \(\left.x s\right\rangle\) have length \(v s^{\prime \prime}=\) length \(x s\)
        by simp
    moreover from \(v s^{\prime \prime}\)-def and 〈distinct \(\left.n s^{\prime}\right\rangle\) have distinct \(v s^{\prime \prime}\)
    by (simp add: distinct-zipI1)
    moreover have var-name'lset vs' \(\cap(n s \cup\) var-name'lset \(x s)=\{ \}\)
        unfolding \(v s^{\prime \prime}\)-def
        using «length \(n s^{\prime}=\) length \(\left.x s\right\rangle\) and 〈lset \(n s^{\prime} \cap(n s \cup\) var-name‘lset \(x s)=\{ \}>\)
        by (metis length-map set-map map-fst-zip)
    moreover from \(v s^{\prime \prime}\)-def have map var-type vs \({ }^{\prime \prime}=\) map var-type xs
    by (simp add: 〈length \(n s^{\prime}=\) length \(x s 〉\) )
    ultimately show ?thesis
    by (fact that)
qed
```


2．3 Constants

```
type－synonym con \(=\) nat \(\times\) type
```


2.4 Formulas

```
datatype form =
    FVar var
| FCon con
| FApp form form (infixl • 200)
| FAbs var form
```

syntax
$-F$ Var $::$ nat \Rightarrow type \Rightarrow form (-- $[899,0] 900)$
-FCon :: nat \Rightarrow type \Rightarrow form $(\{-\}-[899,0] 900)$

- FAbs $::$ nat \Rightarrow type \Rightarrow form \Rightarrow form ($(4 \lambda-. . /-)[0,0,104] 104)$

translations

```
\(x_{\alpha} \rightleftharpoons\) CONST FVar \((x, \alpha)\)
\(\{c\}_{\alpha} \rightleftharpoons\) CONST FCon \((c, \alpha)\)
\(\lambda x_{\alpha} . A \rightleftharpoons\) CONST FAbs \((x, \alpha) A\)
```


2.5 Generalized operators

Generalized application. We define $\cdot{ }^{\mathcal{Q}_{\star}} A\left[B_{1}, B_{2}, \ldots, B_{n}\right]$ as $A \cdot B_{1} \cdot B_{2} \cdot \ldots \cdot B_{n}$:
definition generalized-app $::$ form \Rightarrow form list \Rightarrow form $\left(\mathcal{Q}_{\star}{ }^{--}\right.$[241, 241] 241) where $[\operatorname{simp}]: \cdot{ }_{\star} A B s=$ foldl (\cdot) A Bs

Generalized abstraction. We define $\lambda^{\mathcal{Q}_{\star}}\left[x_{1}, \ldots, x_{n}\right] A$ as $\lambda x_{1} . \cdots \lambda x_{n} . A$:
definition generalized-abs :: var list \Rightarrow form \Rightarrow form $\left(\lambda^{\mathcal{Q}}{ }_{\star}{ }^{-}\right.$- [141, 141] 141) where $[\operatorname{simp}]: \lambda^{\mathcal{Q}}{ }_{\star}$ vs $A=$ foldr $\left(\lambda(x, \alpha) B . \lambda x_{\alpha} . B\right)$ vs A
fun form-size :: form \Rightarrow nat where
form-size $\left(x_{\alpha}\right)=1$
| form-size $(\{c\} \alpha)=1$
|form-size $(A \cdot B)=$ Suc (form-size $A+$ form-size $B)$
\mid form-size $\left(\lambda x_{\alpha} . A\right)=$ Suc (form-size $\left.A\right)$
fun form-depth :: form \Rightarrow nat where
form-depth $\left(x_{\alpha}\right)=0$
| form-depth $(\{c\} \alpha)=0$
\mid form-depth $(A \cdot B)=$ Suc $(\max ($ form-depth $A)($ form-depth $B))$
\mid form-depth $\left(\lambda x_{\alpha} . A\right)=$ Suc (form-depth $\left.A\right)$

2.6 Subformulas

fun subforms :: form \Rightarrow form set where
subforms $\left(x_{\alpha}\right)=\{ \}$
| subforms $\left.(\{c\}\}_{\alpha}\right)=\{ \}$
| subforms $(A \cdot B)=\{A, B\}$
\mid subforms $\left(\lambda x_{\alpha} . A\right)=\{A\}$
datatype direction $=$ Left («) | Right (»)
type-synonym position $=$ direction list

```
fun positions :: form \(\Rightarrow\) position set where
    positions \(\left(x_{\alpha}\right)=\{[]\}\)
| positions \((\{c\} \alpha)=\{[]\}\)
\(\mid\) positions \((A \cdot B)=\{[]\} \cup\{« \# p \mid p . p \in\) positions \(A\} \cup\{» \# p \mid p . p \in\) positions \(B\}\)
\(\mid\) positions \(\left(\lambda x_{\alpha} \cdot A\right)=\{[]\} \cup\{« \# p \mid p . p \in\) positions \(A\}\)
lemma empty-is-position [simp]:
    shows [] \(\in\) positions \(A\)
    by (cases A rule: positions.cases) simp-all
fun subform-at \(::\) form \(\Rightarrow\) position \(\rightharpoonup\) form where
    subform-at \(A[]=\) Some \(A\)
| subform-at \((A \cdot B)(« \# p)=\) subform-at \(A p\)
| subform-at \((A \cdot B)(» \# p)=\) subform-at \(B p\)
| subform-at \(\left(\lambda x_{\alpha} . A\right)(« \# p)=\) subform-at \(A p\)
| subform-at \(-=\) None
fun is-subform-at \(::\) form \(\Rightarrow\) position \(\Rightarrow\) form \(\Rightarrow\) bool ((- \(\preceq-/-)[51,0,51] 50)\) where
    is-subform-at \(A[] A^{\prime}=\left(A=A^{\prime}\right)\)
| is-subform-at \(C(« \# p)(A \cdot B)=i s\)-subform-at \(C p A\)
| is-subform-at \(C(» \# p)(A \cdot B)=i s\)-subform-at \(C\) p \(B\)
| is-subform-at \(C(« \# p)\left(\lambda x_{\alpha} . A\right)=\) is-subform-at \(C p A\)
| is-subform-at -- = False
lemma is-subform-at-alt-def:
    shows \(A^{\prime} \preceq_{p} A=\left(\right.\) case subform-at \(A\) p of Some \(B \Rightarrow B=A^{\prime} \mid\) None \(\Rightarrow\) False \()\)
    by (induction \(A^{\prime} p\) A rule: is-subform-at.induct) auto
lemma superform-existence:
    assumes \(B \preceq_{p}\) @ [d] \(C\)
    obtains \(A\) where \(B \preceq_{[d]} A\) and \(A \preceq_{p} C\)
    using assms by (induction B \(p\) C rule: is-subform-at.induct) auto
lemma subform-at-subforms-con:
    assumes \(\{c\} \alpha \preceq{ }_{p} C\)
    shows \(\nexists A\). \(A \preceq_{p} @[d] C\)
    using assms by (induction \(\{c\} \alpha\) p \(C\) rule: is-subform-at.induct) auto
lemma subform-at-subforms-var:
    assumes \(x_{\alpha} \preceq_{p} C\)
    shows \(\nexists A . A \preceq p @[d] C\)
    using assms by (induction \(x_{\alpha} p\) rule: is-subform-at.induct) auto
lemma subform-at-subforms-app:
    assumes \(A \cdot B \preceq_{p} C\)
    shows \(A \preceq_{p}\) @ [«] \(C\) and \(B \preceq_{p}\) @ [»] \(C\)
    using assms by (induction \(A \cdot B\) p \(C\) rule: is-subform-at.induct) auto
```

```
lemma subform-at-subforms-abs:
    assumes \(\lambda x_{\alpha} . A \preceq p C\)
    shows \(A \preceq_{p}\) @ ["] \(C\)
    using assms by (induction \(\lambda x_{\alpha}\). A p \(C\) rule: is-subform-at.induct) auto
lemma is-subform-implies-in-positions:
    assumes \(B \preceq_{p} A\)
    shows \(p \in\) positions \(A\)
    using assms by (induction rule: is-subform-at.induct) simp-all
lemma subform-size-decrease:
    assumes \(A \preceq_{p} B\) and \(p \neq[]\)
    shows form-size \(A<\) form-size \(B\)
    using assms by (induction A p B rule: is-subform-at.induct) force+
lemma strict-subform-is-not-form:
    assumes \(p \neq[]\) and \(A^{\prime} \preceq p A\)
    shows \(A^{\prime} \neq A\)
    using assms and subform-size-decrease by blast
lemma no-right-subform-of-abs:
    shows \(\nexists B . B \preceq_{»} \#{ }_{p} \lambda x_{\alpha} . A\)
    by \(\operatorname{simp}\)
lemma subforms-from-var:
    assumes \(A \preceq p x_{\alpha}\)
    shows \(A=x_{\alpha}\) and \(p=[]\)
    using assms by (auto elim: is-subform-at.elims)
lemma subforms-from-con:
    assumes \(A \preceq p\{c\} \alpha\)
    shows \(A=\{c \mid\} \alpha\) and \(p=[]\)
    using assms by (auto elim: is-subform-at.elims)
lemma subforms-from-app:
    assumes \(A \preceq_{p} B \cdot C\)
    shows
        \((A=B \cdot C \wedge p=[]) \vee\)
    \((A \neq B \cdot C \wedge\)
        \(\left(\exists p^{\prime} \in\right.\) positions B. \(\left.p=« \# p^{\prime} \wedge A \preceq p^{\prime} B\right) \vee\left(\exists p^{\prime} \in\right.\) positions \(\left.\left.C . p=» \# p^{\prime} \wedge A \preceq p^{\prime} C\right)\right)\)
    using assms and strict-subform-is-not-form
    by (auto simp add: is-subform-implies-in-positions elim: is-subform-at.elims)
lemma subforms-from-abs:
    assumes \(A \preceq p \lambda x_{\alpha}\). \(B\)
    \(\operatorname{shows}\left(A=\lambda x_{\alpha} . B \wedge p=[]\right) \vee\left(A \neq \lambda x_{\alpha} . B \wedge\left(\exists p^{\prime} \in\right.\right.\) positions \(\left.\left.B . p=« \# p^{\prime} \wedge A \preceq p_{p^{\prime}} B\right)\right)\)
    using assms and strict-subform-is-not-form
    by (auto simp add: is-subform-implies-in-positions elim: is-subform-at.elims)
```

```
lemma leftmost-subform-in-generalized-app:
    shows B}\mp@subsup{\preceq}{\mathrm{ replicate (length As) « ' }\mp@subsup{}{\star}{*}BAs}{
    by (induction As arbitrary: B) (simp-all, metis replicate-append-same subform-at-subforms-app(1))
lemma self-subform-is-at-top:
    assumes }A\preceqp
    shows p= []
    using assms and strict-subform-is-not-form by blast
lemma at-top-is-self-subform:
    assumes }A\mp@subsup{\preceq}{\emptyset}{\}
    shows }A=
    using assms by (auto elim: is-subform-at.elims)
lemma is-subform-at-uniqueness:
    assumes B}\mp@subsup{\preceq}{p}{}A\mathrm{ and C }\preceqp
    shows B=C
    using assms by (induction A arbitrary: p B C) (auto elim: is-subform-at.elims)
lemma is-subform-at-existence:
    assumes }p\in\mathrm{ positions }
    obtains B where B}\mp@subsup{\preceq}{p}{}
    using assms by (induction A arbitrary: p) (auto elim: is-subform-at.elims, blast+)
lemma is-subform-at-transitivity:
    assumes A}\preceq\mp@subsup{p}{1}{}B\mathrm{ and }B\preceq\mp@subsup{p}{2}{}
    shows A}\mp@subsup{\preceq}{2}{}@\mp@subsup{p}{1}{}
    using assms by (induction B p c C arbitrary: A p p rule: is-subform-at.induct) simp-all
lemma subform-nesting:
    assumes strict-prefix p' p
    and B}\mp@subsup{\preceq}{\mp@subsup{p}{}{\prime}}{}
    and C}\preceqp
    shows }C\mp@subsup{\preceq}{\mathrm{ drop (length p') p}}{
proof -
    from assms(1) have p\not=[]
        using strict-prefix-simps(1) by blast
    with assms(1,3) show ?thesis
    proof (induction p arbitrary:C rule: rev-induct)
        case Nil
        then show ?case
        by blast
    next
    case (snoc d p')
    then show ?case
    proof (cases p'\prime}=\mp@subsup{p}{}{\prime}\mathrm{ )
        case True
        obtain }\mp@subsup{A}{}{\prime}\mathrm{ where }C\mp@subsup{\preceq}{[d]}{}\mp@subsup{A}{}{\prime}\mathrm{ and }\mp@subsup{A}{}{\prime}\mp@subsup{\preceq}{\mp@subsup{p}{}{\prime}}{}
```

```
            by (fact superform-existence[OF snoc.prems(2)[unfolded True]])
            from }\langle\mp@subsup{A}{}{\prime}\mp@subsup{\preceq}{\mp@subsup{p}{}{\prime}}{}A\rangle\mathrm{ and assms(2) have }\mp@subsup{A}{}{\prime}=
            by (rule is-subform-at-uniqueness)
            with }\langleC\preceq\mp@subsup{\preceq}{[d]}{}\mp@subsup{A}{}{\prime}>\mathrm{ have }C\mp@subsup{\preceq}{[d]}{}
            by (simp only:)
            with True show ?thesis
            by auto
    next
        case False
        with snoc.prems(1) have strict-prefix p}\mp@subsup{p}{}{\prime}\mp@subsup{p}{}{\prime\prime
            using prefix-order.dual-order.strict-implies-order by fastforce
            then have }\mp@subsup{p}{}{\prime\prime}\not=[
            by force
            moreover from snoc.prems(2) obtain A' where C \preceq [d] A' and A' }\mp@subsup{\}{\mp@subsup{p}{}{\prime\prime}}{}
            using superform-existence by blast
            ultimately have }\mp@subsup{A}{}{\prime}\mp@subsup{\preceq}{drop (length p') p'\prime}{\prime\prime
            using snoc.IH and <strict-prefix p}\mp@subsup{p}{}{\prime}\mp@subsup{p}{}{\prime\prime}>\mathrm{ by blast
            with \C \preceq [d] A'> and snoc.prems(1) show ?thesis
                using is-subform-at-transitivity and prefix-length-less by fastforce
    qed
    qed
qed
lemma loop-subform-impossibility:
    assumes B\preceqp}
    and strict-prefix p}\mp@subsup{p}{}{\prime}
    shows \negB}\mp@subsup{\preceq}{\mp@subsup{p}{}{\prime}}{}
    using assms and prefix-length-less and self-subform-is-at-top and subform-nesting by fastforce
lemma nested-subform-size-decreases:
    assumes strict-prefix p' p
    and B}\mp@subsup{\preceq}{\mp@subsup{p}{}{\prime}}{}
    and C}\mp@subsup{\preceq}{p}{}
    shows form-size C< form-size B
proof -
    from assms(1) have p\not=[]
        by force
    have C \preceq drop (length p') p}\mp@subsup{\mp@code{B}}{}{\prime
        by (fact subform-nesting[OF assms])
    moreover have drop (length p') p\not=[]
        using prefix-length-less[OF assms(1)] by force
    ultimately show ?thesis
        using subform-size-decrease by simp
qed
definition is-subform :: form }=>\mathrm{ form }=>\mathrm{ bool (infix }\preceq50) wher
    [simp]:A\preceqB=(\existsp.A\preceqp B)
```

```
instantiation form :: ord
begin
definition
    \(A \leq B \longleftrightarrow A \preceq B\)
definition
    \(A<B \longleftrightarrow A \preceq B \wedge A \neq B\)
instance ..
end
instance form :: preorder
proof (standard, unfold less-eq-form-def less-form-def)
    fix \(A\)
    show \(A \preceq A\)
        unfolding is-subform-def using is-subform-at.simps(1) by blast
next
    fix \(A\) and \(B\) and \(C\)
    assume \(A \preceq B\) and \(B \preceq C\)
    then show \(A \preceq C\)
        unfolding is-subform-def using is-subform-at-transitivity by blast
next
    fix \(A\) and \(B\)
    show \(A \preceq B \wedge A \neq B \longleftrightarrow A \preceq B \wedge \neg B \preceq A\)
        unfolding is-subform-def
        by (metis is-subform-at.simps(1) not-less-iff-gr-or-eq subform-size-decrease)
qed
lemma position-subform-existence-equivalence:
    shows \(p \in\) positions \(A \longleftrightarrow\left(\exists A^{\prime} . A^{\prime} \preceq p A\right)\)
    by (meson is-subform-at-existence is-subform-implies-in-positions)
lemma position-prefix-is-position:
    assumes \(p \in\) positions \(A\) and prefix \(p^{\prime} p\)
    shows \(p^{\prime} \in\) positions \(A\)
using assms proof (induction p rule: rev-induct)
    case Nil
    then show ?case
        by simp
next
    case (snoc d \(p^{\prime \prime}\) )
    from snoc.prems(1) have \(p^{\prime \prime} \in\) positions \(A\)
        by (meson position-subform-existence-equivalence superform-existence)
    with snoc.prems (1,2) show ?case
        using snoc.IH by fastforce
qed
```


2.7 Free and bound variables

```
consts vars :: ' }a>>>var se
overloading
    vars-form }\equiv\mathrm{ vars :: form }=>\mathrm{ var set
    vars-form-set }\equiv\mathrm{ vars :: form set }=>\mathrm{ var set
begin
fun vars-form :: form }=>\mathrm{ var set where
    vars-form (x\alpha) ={(x,\alpha)}
| vars-form ({c}, )}={
vars-form (A B B)= vars-form }A\cup\mathrm{ vars-form B
|vars-form ( }\lambda\mp@subsup{x}{\alpha}{}.A)=\mathrm{ vars-form }A\cup{(x,\alpha)
fun vars-form-set :: form set }=>\mathrm{ var set where
    vars-form-set S = (\bigcupA GS.vars A)
end
```

abbreviation var-names :: ' $a \Rightarrow$ nat set where
var-names $\mathcal{X} \equiv$ var-name' (vars $\mathcal{X})$
lemma vars-form-finiteness:
fixes $A::$ form
shows finite (vars A)
by (induction rule: vars-form.induct) simp-all
lemma vars-form-set-finiteness:
fixes S :: form set
assumes finite S
shows finite (vars S)
using assms unfolding vars-form-set.simps using vars-form-finiteness by blast
lemma form-var-names-finiteness:
fixes A :: form
shows finite (var-names A)
using vars-form-finiteness by blast
lemma form-set-var-names-finiteness:
fixes S :: form set
assumes finite S
shows finite (var-names S)
using assms and vars-form-set-finiteness by blast
consts free-vars :: ' $a \Rightarrow$ var set
overloading
free-vars-form \equiv free-vars :: form \Rightarrow var set
free-vars-form-set \equiv free-vars $::$ form set \Rightarrow var set

```
begin
fun free-vars-form :: form }=>\mathrm{ var set where
    free-vars-form (x ) = {(x,\alpha)}
|free-vars-form ({c}\alpha) = {}
|ree-vars-form (A 暗 = free-vars-form A free-vars-form B
|free-vars-form ( }\lambda\mp@subsup{x}{\alpha}{}.A)=\mathrm{ free-vars-form A - {(x, 人)}
fun free-vars-form-set :: form set }=>\mathrm{ var set where
    free-vars-form-set S = (\bigcupA S Sree-vars A)
end
abbreviation free-var-names :: ' }a=>\mathrm{ nat set where
    free-var-names \mathcal{X}\equivvar-name'(free-vars \mathcal{X})
lemma free-vars-form-finiteness:
    fixes A :: form
    shows finite (free-vars A)
    by (induction rule: free-vars-form.induct) simp-all
lemma free-vars-of-generalized-app:
    shows free-vars (.\mp@subsup{\mathcal{Q}}{\star}{}ABs)= free-vars A U free-vars (lset Bs)
    by (induction Bs arbitrary: A) auto
lemma free-vars-of-generalized-abs:
    shows free-vars ( }\mp@subsup{\lambda}{}{\mathcal{Q}}\mathrm{ * vs A) = free-vars }A-l\mathrm{ lset vs
    by (induction vs arbitrary: A) auto
lemma free-vars-in-all-vars:
    fixes A :: form
    shows free-vars A\subseteqvars A
proof (induction A)
    case (FVar v)
    then show ?case
        using surj-pair[of v] by force
next
    case (FCon k)
    then show ?case
        using surj-pair[of k] by force
next
    case (FApp A B)
    have free-vars (A•B) = free-vars }A\cup\mathrm{ free-vars B
        using free-vars-form.simps(3).
    also from FApp.IH have ...\subseteqvars A\cupvars B
        by blast
    also have ... = vars (A P B)
        using vars-form.simps(3)[symmetric].
    finally show ?case
```

```
    by (simp only:)
next
    case (FAbs \(v\) A)
    then show? case
        using surj-pair [of v] by force
qed
lemma free-vars-in-all-vars-set:
    fixes \(S\) :: form set
    shows free-vars \(S \subseteq\) vars \(S\)
    using free-vars-in-all-vars by fastforce
lemma singleton-form-set-vars:
    shows vars \(\{F\) Var \(y\}=\{y\}\)
    using surj-pair [of y] by force
fun bound-vars where
    bound-vars \(\left(x_{\alpha}\right)=\{ \}\)
| bound-vars \((\{c\}, \alpha)=\{ \}\)
| bound-vars \((B \cdot C)=\) bound-vars \(B \cup\) bound-vars \(C\)
\(\mid\) bound-vars \(\left(\lambda x_{\alpha} . B\right)=\{(x, \alpha)\} \cup\) bound-vars \(B\)
lemma vars-is-free-and-bound-vars:
    shows vars \(A=\) free-vars \(A \cup\) bound-vars \(A\)
    by (induction A) auto
fun binders-at \(::\) form \(\Rightarrow\) position \(\Rightarrow\) var set where
    binders-at \((A \cdot B)(《 \# p)=\) binders-at \(A p\)
| binders-at \((A \cdot B)(» \# p)=\) binders-at \(B p\)
\(\mid\) binders-at \(\left(\lambda x_{\alpha} . A\right)(« \# p)=\{(x, \alpha)\} \cup\) binders-at \(A p\)
| binders-at \(A[]=\{ \}\)
| binders-at \(A p=\{ \}\)
lemma binders-at-concat:
assumes \(A^{\prime} \preceq_{p} A\)
shows binders-at \(A\left(p @ p^{\prime}\right)=\) binders-at \(A p \cup\) binders-at \(A^{\prime} p^{\prime}\)
using assms by (induction \(p\) A rule: is-subform-at.induct) auto
```


2.8 Free and bound occurrences

definition occurs-at $::$ var \Rightarrow position \Rightarrow form \Rightarrow bool where [iff]: occurs-at v p $B \longleftrightarrow\left(F \operatorname{Var} v \preceq_{p} B\right)$
lemma occurs-at-alt-def:
shows occurs-at $v[]\left(F \operatorname{Var} v^{\prime}\right) \longleftrightarrow\left(v=v^{\prime}\right)$
and occurs-at $v p(\{c\} \alpha) \longleftrightarrow$ False
and occurs-at $v(« \# p)(A \cdot B) \longleftrightarrow$ occurs-at vpA
and occurs-at v $(» \# p)(A \cdot B) \longleftrightarrow$ occurs-at v $p B$
and occurs-at $v(« \# p)\left(\lambda x_{\alpha} . A\right) \longleftrightarrow$ occurs-at vp A

```
    and occurs-at v (d# p)(FVar v})\longleftrightarrow \longleftrightarrow Fals
    and occurs-at v (»# p)(\lambda\mp@subsup{x}{\alpha}{}.A)\longleftrightarrow \longleftrightarrowalse
    and occurs-at v[] (A P B)\longleftrightarrow False
    and occurs-at v [] ( }\lambda\mp@subsup{x}{\alpha}{}.A)\longleftrightarrow\mathrm{ False
    by (fastforce elim: is-subform-at.elims)+
definition occurs :: var }=>\mathrm{ form }=>\mathrm{ bool where
    [iff]: occurs v B \longleftrightarrow(\existsp\in positions B. occurs-at v p B)
lemma occurs-in-vars:
    assumes occurs v A
    shows v\in vars A
    using assms by (induction A) force+
abbreviation strict-prefixes where
    strict-prefixes xs \equiv[ys \leftarrow prefixes xs. ys \not= xs]
definition in-scope-of-abs :: var }=>\mathrm{ position }=>\mathrm{ form }=>\mathrm{ bool where
    [iff]: in-scope-of-abs v p B\longleftrightarrow(
        p\not=[]^
        (
            \exists}\mp@subsup{p}{}{\prime}\inl\mathrm{ lset (strict-prefixes p).
            case (subform-at B p') of
                Some (FAbs v' -) =>v= v
            | - = False
        )
    )
lemma in-scope-of-abs-alt-def:
    shows
            in-scope-of-abs v p B
            \longleftrightarrow
            p\not=[]^(\exists\mp@subsup{p}{}{\prime}\in\mathrm{ positions B. ヨC. strict-prefix p' p \ FAbs v C }\mp@subsup{\preceq}{\mp@subsup{p}{}{\prime}}{\primeB})
proof
    assume in-scope-of-abs v p B
    then show }p\not=[]^(\exists\mp@subsup{p}{}{\prime}\in\mathrm{ positions B. }\exists\mathrm{ C. strict-prefix p' p}\wedge FAbs v C\preceq\preceq\mp@subsup{p}{}{\prime}B
            by (induction rule: subform-at.induct) force+
next
    assume p\not=[]^(\exists\mp@subsup{p}{}{\prime}\in\mathrm{ positions B. }\exists\mathrm{ C. strict-prefix p' p ^FAbs v C }\mp@subsup{\preceq}{\mp@subsup{p}{}{\prime}}{}B)
    then show in-scope-of-abs v p B
        by (induction rule: subform-at.induct) fastforce+
qed
lemma in-scope-of-abs-in-left-app:
    shows in-scope-of-abs v («# p)(A\cdotB)\longleftrightarrow in-scope-of-abs v p A
    by force
lemma in-scope-of-abs-in-right-app:
    shows in-scope-of-abs v(»# p) (A P B)\longleftrightarrow < in-scope-of-abs v p B
```

```
by force
```

```
lemma in-scope-of-abs-in-app:
    assumes in-scope-of-abs \(v p(A \cdot B)\)
    obtains \(p^{\prime}\) where \(\left(p=« \# p^{\prime} \wedge\right.\) in-scope-of-abs v \(\left.p^{\prime} A\right) \vee\left(p=» \# p^{\prime} \wedge\right.\) in-scope-of-abs v \(\left.p^{\prime} B\right)\)
proof -
    from assms obtain \(d\) and \(p^{\prime}\) where \(p=d \# p^{\prime}\)
        unfolding in-scope-of-abs-def by (meson list.exhaust)
    then show ?thesis
    proof (cases d)
        case Left
        with assms and \(\left\langle p=d \# p^{\prime}\right\rangle\) show ?thesis
        using that and in-scope-of-abs-in-left-app by simp
    next
        case Right
        with assms and \(\left\langle p=d \# p^{\prime}\right\rangle\) show ?thesis
        using that and in-scope-of-abs-in-right-app by simp
    qed
qed
lemma not-in-scope-of-abs-in-app:
    assumes
        \(\forall p^{\prime}\).
        \(\left(p=« \# p^{\prime} \longrightarrow \neg\right.\) in-scope-of-abs \(\left.v^{\prime} p^{\prime} A\right)\)
        \(\wedge\)
        \(\left(p=» \# p^{\prime} \longrightarrow \neg\right.\) in-scope-of-abs \(\left.v^{\prime} p^{\prime} B\right)\)
    shows \(\neg\) in-scope-of-abs \(v^{\prime} p(A \cdot B)\)
    using assms and in-scope-of-abs-in-app by metis
lemma in-scope-of-abs-in-abs:
    shows in-scope-of-abs \(v(« \# p)\left(F A b s v^{\prime} B\right) \longleftrightarrow v=v^{\prime} \vee\) in-scope-of-abs v p \(B\)
proof
    assume in-scope-of-abs \(v(« \# p)\left(F A b s v^{\prime} B\right)\)
    then obtain \(p^{\prime}\) and \(C\)
        where \(p^{\prime} \in\) positions (FAbs \(v^{\prime} B\) )
        and strict-prefix \(p^{\prime}(« \# p)\)
        and FAbs v \(C \preceq_{p^{\prime}}\) FAbs \(v^{\prime} B\)
        unfolding in-scope-of-abs-alt-def by blast
    then show \(v=v^{\prime} \vee\) in-scope-of-abs vpB
    proof (cases p')
        case Nil
        with \(\left\langle F A b s\right.\) v \(C \preceq_{p^{\prime}}\) FAbs \(\left.v^{\prime} B\right\rangle\) have \(v=v^{\prime}\)
        by auto
        then show ?thesis
            by \(\operatorname{simp}\)
    next
        case (Cons d \(p^{\prime \prime}\) )
        with \(\left\langle\right.\) strict-prefix \(\left.p^{\prime}(« \# p)\right\rangle\) have \(d=《\)
            by \(\operatorname{simp}\)
```

```
    from 〈FAbs vC\(\preceq_{p^{\prime}}\) FAbs \(\left.v^{\prime} B\right\rangle\) and Cons have \(p^{\prime \prime} \in\) positions \(B\)
        by
            (cases (FAbs v C, \(p^{\prime}\), FAbs \(\left.v^{\prime} B\right)\) rule: is-subform-at.cases)
                (simp-all add: is-subform-implies-in-positions)
    moreover from 〈FAbs v \(\left.C \preceq_{p^{\prime}} F A b s v^{\prime} B\right\rangle\) and Cons and \(\langle d=«\rangle\) have \(F A b s v C \preceq p^{\prime \prime} B\)
        by (metis is-subform-at.simps(4) old.prod.exhaust)
    moreover from 〈strict-prefix \(\left.p^{\prime}(« \# p)\right\rangle\) and Cons have strict-prefix \(p^{\prime \prime} p\)
        by auto
    ultimately have in-scope-of-abs vp \(B\)
        using in-scope-of-abs-alt-def by auto
    then show ?thesis
        by \(\operatorname{simp}\)
    qed
next
    assume \(v=v^{\prime} \vee\) in-scope-of-abs \(v p B\)
    then show in-scope-of-abs \(v(« \# p)\left(F A b s v^{\prime} B\right)\)
        unfolding in-scope-of-abs-alt-def
        using position-subform-existence-equivalence and surj-pair[of \(v\) 〕
        by force
qed
lemma not-in-scope-of-abs-in-var:
    shows \(\neg\) in-scope-of-abs \(v p\) (FVar \(\left.v^{\prime}\right)\)
    unfolding in-scope-of-abs-def by (cases p) simp-all
lemma in-scope-of-abs-in-vars:
    assumes in-scope-of-abs vpA
    shows \(v \in\) vars \(A\)
using assms proof (induction A arbitrary: p)
    case ( \(F\) Var \(v^{\prime}\) )
    then show ?case
            using not-in-scope-of-abs-in-var by blast
next
    case (FCon k)
    then show ?case
    using in-scope-of-abs-alt-def by (blast elim: is-subform-at.elims(2))
next
    case (FApp B C)
    from FApp.prems obtain \(d\) and \(p^{\prime}\) where \(p=d \# p^{\prime}\)
        unfolding in-scope-of-abs-def by (meson neq-Nil-conv)
    then show ?case
    proof (cases d)
            case Left
            with FApp.prems and \(\left\langle p=d \# p^{\prime}\right\rangle\) have in-scope-of-abs \(v p^{\prime} B\)
                using in-scope-of-abs-in-left-app by blast
            then have \(v \in\) vars \(B\)
                by (fact FApp.IH(1))
            then show ?thesis
                by \(\operatorname{simp}\)
```

```
    next
    case Right
    with FApp.prems and }\langlep=d#\mp@subsup{p}{}{\prime}>\mathrm{ have in-scope-of-abs v p'C
        using in-scope-of-abs-in-right-app by blast
    then have v\invars C
        by (fact FApp.IH(2))
    then show ?thesis
        by simp
    qed
next
    case (FAbs v'B)
    then show ?case
    proof (cases v=\mp@subsup{v}{}{\prime})
        case True
        then show ?thesis
        using surj-pair[of v] by force
    next
        case False
        with FAbs.prems obtain }\mp@subsup{p}{}{\prime}\mathrm{ and }d\mathrm{ where }p=d#\mp@subsup{p}{}{\prime
        unfolding in-scope-of-abs-def by (meson neq-Nil-conv)
        then show ?thesis
        proof (cases d)
            case Left
            with FAbs.prems and False and }\langlep=d##\mp@subsup{p}{}{\prime}>\mathrm{ have in-scope-of-abs v p'B
            using in-scope-of-abs-in-abs by blast
            then have v\invars B
                by (fact FAbs.IH)
            then show ?thesis
                using surj-pair[of v}\mp@subsup{v}{}{\prime}]\mathrm{ by force
    next
        case Right
        with FAbs.prems and }\langlep=d#\mp@subsup{p}{}{\prime}\rangle\mathrm{ and False show ?thesis
                by (cases rule: is-subform-at.cases) auto
    qed
    qed
qed
lemma binders-at-alt-def:
    assumes }p\in\mathrm{ positions }
    shows binders-at A p={v|v. in-scope-of-abs v p A}
    using assms and in-set-prefixes by (induction rule: binders-at.induct) auto
definition is-bound-at :: var }=>\mathrm{ position }=>\mathrm{ form }=>\mathrm{ bool where
    [iff]: is-bound-at v p B\longleftrightarrow occurs-at v p B^ in-scope-of-abs v p B
lemma not-is-bound-at-in-var:
    shows \neg is-bound-at v p (FVar v')
    by (fastforce elim:is-subform-at.elims(2))
```

```
lemma not-is-bound-at-in-con:
    shows \neg is-bound-at v p(FCon k)
    by (fastforce elim: is-subform-at.elims(2))
lemma is-bound-at-in-left-app:
    shows is-bound-at v («# p)(B\cdotC)\longleftrightarrow \longleftrightarrows-bound-at v p B
    by auto
lemma is-bound-at-in-right-app:
    shows is-bound-at v (»# p)(B\cdotC)\longleftrightarrow \longleftrightarrows-bound-at v p C
    by auto
lemma is-bound-at-from-app:
    assumes is-bound-at vp(B\cdotC)
    obtains p' where (p=«# p
proof -
    from assms obtain d and p' where p=d# p
        using subforms-from-app by blast
    then show ?thesis
    proof (cases d)
        case Left
        with assms and that and <p=d # p}\\mathrm{ show ?thesis
            using is-bound-at-in-left-app by simp
    next
        case Right
        with assms and that and }\langlep=d# p'\rangle show ?thesi
            using is-bound-at-in-right-app by simp
    qed
qed
lemma is-bound-at-from-abs:
    assumes is-bound-at v («# p) (FAbs v' B)
    shows v= v
    using assms by (fastforce elim: is-subform-at.elims)
lemma is-bound-at-from-absE:
    assumes is-bound-at vp (FAbs v' B)
    obtains p' where p=«# p}\mathrm{ ' and v= v}\vee \s-bound-at v p'
proof -
    obtain x and \alpha where }\mp@subsup{v}{}{\prime}=(x,\alpha
        by fastforce
    with assms obtain p' where p=<# # p
        using subforms-from-abs by blast
    with assms and that show ?thesis
        using is-bound-at-from-abs by simp
qed
lemma is-bound-at-to-abs:
    assumes (v= v'^ occurs-at v p B) \vee is-bound-at v p B
```

```
    shows is-bound-at v («# p) (FAbs v'B)
unfolding is-bound-at-def proof
    from assms(1) show occurs-at v(< # p)(FAbs v' B)
    using surj-pair[of v] by force
    from assms show in-scope-of-abs v(«# p) (FAbs v' B)
    using in-scope-of-abs-in-abs by auto
qed
lemma is-bound-at-in-bound-vars:
    assumes p\in positions A
    and is-bound-at v pA\veev\in binders-at A p
    shows v\in bound-vars A
using assms proof (induction A arbitrary: p)
    case (FApp B C)
    from FApp.prems(2) consider (a) is-bound-at vp(B\cdotC)| (b)v\inbinders-at (B P C)p
    by blast
    then show ?case
    proof cases
        case a
        then have p\not=[]
            using occurs-at-alt-def(8) by blast
    then obtain d and p' where p=d# p
        by (meson list.exhaust)
    with }\langlep\in\mathrm{ positions (B}\cdotC)
```



```
        by force
    then show ?thesis
    proof cases
        case al
```



```
            using is-bound-at-in-left-app by blast
            with }\mp@subsup{a}{1}{}(2)\mathrm{ have v}\in\mathrm{ bound-vars B
                using FApp.IH(1) by blast
            then show ?thesis
                by simp
    next
        case }\mp@subsup{a}{2}{
        from }\mp@subsup{a}{2}{}(1)\mathrm{ and <is-bound-at v p (B}\cdotC)> have is-bound-at v p' C
            using is-bound-at-in-right-app by blast
            with }\mp@subsup{a}{2}{}(2)\mathrm{ have }v\in\mathrm{ bound-vars C
                using FApp.IH(2) by blast
            then show ?thesis
                by simp
    qed
next
    case b
    then have p\not=[]
        by force
    then obtain d and p' where p=d# p
```

```
        by (meson list.exhaust)
```



```
    consider ( }\mp@subsup{b}{1}{})p=«#\mp@subsup{p}{}{\prime}\mathrm{ and p}\mp@subsup{p}{}{\prime}\in\mathrm{ positions B| ( }\mp@subsup{b}{2}{})p=»#\mp@subsup{p}{}{\prime}\mathrm{ and p}\mp@subsup{p}{}{\prime}\in\mathrm{ positions }
        by force
    then show ?thesis
    proof cases
        case b
        from }\mp@subsup{b}{1}{}(1)\mathrm{ and }\langlev\in\mathrm{ binders-at (B C C) p> have v binders-at B p'
            by force
            with }\mp@subsup{b}{1}{}(2)\mathrm{ have v}\in\mathrm{ bound-vars B
                using FApp.IH(1) by blast
    then show ?thesis
        by simp
    next
        case b}\mp@subsup{b}{2}{
        from b}\mp@subsup{b}{2}{}(1)\mathrm{ and }\langlev\in\mathrm{ binders-at (B:C) p〉 have v binders-at C p'
        by force
    with }\mp@subsup{b}{2}{}\mathrm{ (2) have v}\in\mathrm{ bound-vars C
        using FApp.IH(2) by blast
    then show ?thesis
        by simp
    qed
    qed
next
    case (FAbs v' B)
    from FAbs.prems(2) consider (a) is-bound-at vp (FAbs v' B)| (b)v\in binders-at (FAbs v' B) p
    by blast
    then show ?case
    proof cases
        case a
        then have p\not=[]
            using occurs-at-alt-def(9) by force
        with }\langlep\in\mathrm{ positions (FAbs v' B)> obtain p' where p=《# p
        by (cases FAbs v' B rule: positions.cases) fastforce+
```



```
        using is-bound-at-from-abs by blast
    then consider (a, (a)v=\mp@subsup{v}{}{\prime}|(\mp@subsup{a}{2}{})\mathrm{ is-bound-at v p'B}
    by blast
    then show ?thesis
    proof cases
        case al
        then show ?thesis
            using surj-pair[of v] by fastforce
    next
        case }\mp@subsup{a}{2}{
        then have v\in bound-vars }
            using < }\mp@subsup{p}{}{\prime}\in\mathrm{ positions B> and FAbs.IH by blast
        then show ?thesis
            using surj-pair[of v] by fastforce
```

```
    qed
    next
    case b
    then have p}\not=[
    by force
    with FAbs.prems(1) obtain p' where p=«# p
        by (cases FAbs v' B rule: positions.cases) fastforce+
    with b consider ( (b) v = v}|(\mp@subsup{b}{2}{})v\in\operatorname{binders-at B p
        by (cases FAbs v' B rule: positions.cases) fastforce+
    then show ?thesis
    proof cases
        case b
        then show ?thesis
            using surj-pair[of v] by fastforce
    next
        case b
        then have v\in bound-vars B
            using \langlep}\mp@subsup{p}{}{\prime}\in\mathrm{ positions B}\mathrm{ \ and FAbs.IH by blast
        then show ?thesis
            using surj-pair[of v` by fastforce
    qed
    qed
qed fastforce+
lemma bound-vars-in-is-bound-at:
    assumes v\in bound-vars A
    obtains p where p\in positions A and is-bound-at v pA\veev\in binders-at A p
using assms proof (induction A arbitrary: thesis rule: bound-vars.induct)
    case (3 B C)
    from }\langlev\in\mathrm{ bound-vars (B:C)> consider (a)v bound-vars B|(b) v b bound-vars C
        by fastforce
    then show ?case
    proof cases
    case a
    with 3.IH(1) obtain p where p\in positions B and is-bound-at vpB\veev binders-at B p
        by blast
    from }\langlep\in\mathrm{ positions B> have «# p f positions (B P C)
        by simp
    from <is-bound-at v p B \veev\in binders-at B p>
    consider (a) is-bound-at v p B | (a) (a) v binders-at B p
        by blast
    then show ?thesis
    proof cases
        case al
        then have is-bound-at v(<# p)(B\cdotC)
            using is-bound-at-in-left-app by blast
        then show ?thesis
            using 3.prems(1) and is-subform-implies-in-positions by blast
    next
```

```
        case }\mp@subsup{a}{2}{
```



```
        by simp
        then show ?thesis
            using 3.prems(1) and «« # p \in positions (B P C)` by blast
    qed
    next
    case b
    with 3.IH(2) obtain p where p\in positions C and is-bound-at v p C\veev\in binders-at C p
        by blast
    from <p \in positions C> have» # p \in positions (B P C)
        by simp
    from〈is-bound-at v p C\veev\in binders-at C p〉
    consider ( (b) is-bound-at vpC|(\mp@subsup{b}{2}{})v\in\mathrm{ binders-at C p}
        by blast
    then show ?thesis
    proof cases
        case b
        then have is-bound-at v(»# p)(B\cdotC)
            using is-bound-at-in-right-app by blast
        then show ?thesis
            using 3.prems(1) and is-subform-implies-in-positions by blast
    next
        case b
```



```
            by simp
        then show ?thesis
```



```
    qed
    qed
next
    case (4 x \alpha B)
    from }\langlev\in\mathrm{ bound-vars ( }\lambda\mp@subsup{x}{\alpha}{}.B)\rangle\mathrm{ consider (a)v= (x, 人)|(b) v b bound-vars B
    by force
    then show?case
    proof cases
    case a
    then have v\in binders-at ( }\lambda\mp@subsup{x}{\alpha}{}.B)[«
        by simp
    then show ?thesis
        using 4.prems(1) and is-subform-implies-in-positions by fastforce
    next
        case b
        with 4.IH(1) obtain p where p\in positions B and is-bound-at v p B\veev\in binders-at B p
        by blast
    from }<p\in\mathrm{ positions }B>\mathrm{ have }«##p\in\mathrm{ positions ( }\lambda\mp@subsup{x}{\alpha}{}.B
        by simp
    from〈is-bound-at v p B Vv\in binders-at B p>
    consider ( }\mp@subsup{b}{1}{}\mathrm{ ) is-bound-at v p B|( ( }\mp@subsup{2}{2}{})v\in\mathrm{ binders-at B p
```

```
        by blast
        then show?thesis
        proof cases
        case b
        then have is-bound-at v(<# p) ( }\lambda\mp@subsup{x}{\alpha}{}.B
            using is-bound-at-to-abs by blast
        then show ?thesis
            using 4.prems(1) and «< # p\in positions ( }\lambda\mp@subsup{x}{\alpha}{}.B)\rangle\mathrm{ by blast
        next
        case b
        then have v & binders-at ( }\lambda\mp@subsup{x}{\alpha}{}.B)(<##
            by simp
        then show ?thesis
            using 4.prems(1) and ««# # p positions ( }\lambda\mp@subsup{x}{\alpha}{}.B)>\mathrm{ by blast
        qed
    qed
qed simp-all
lemma bound-vars-alt-def:
    shows bound-vars }A={v|vp.p\in\mathrm{ positions }A\wedge(is-bound-at v pA\veev\inbinders-at A p)
    using bound-vars-in-is-bound-at and is-bound-at-in-bound-vars
    by (intro subset-antisym subsetI CollectI, metis) blast
definition is-free-at :: var }=>\mathrm{ position }=>\mathrm{ form }=>\mathrm{ bool where
    [iff]: is-free-at v p B\longleftrightarrow occurs-at v p B }\neg\negin-scope-of-abs vp B
lemma is-free-at-in-var:
    shows is-free-at v[](FVar v})\longleftrightarrowv=\mp@subsup{v}{}{\prime
    by simp
lemma not-is-free-at-in-con:
    shows }\neg\mathrm{ is-free-at v [] ({c} < )
    by simp
lemma is-free-at-in-left-app:
    shows is-free-at v(«# p)(B\cdotC)\longleftrightarrow <s-free-at v p B
    by auto
lemma is-free-at-in-right-app:
    shows is-free-at v(» # p)(B\cdotC)\longleftrightarrow \longleftrightarrowis-free-at v p C
    by auto
lemma is-free-at-from-app:
    assumes is-free-at v p (B\cdotC)
    obtains p}\mp@subsup{p}{}{\prime}\mathrm{ where ( }p=«#\mp@subsup{p}{}{\prime}\wedge \s-free-at v p p B)\vee (p=»# p'^ is-free-at v p' C
proof -
    from assms obtain d}\mathrm{ and p}\mp@subsup{p}{}{\prime}\mathrm{ where }p=d#\mp@subsup{p}{}{\prime
        using subforms-from-app by blast
    then show ?thesis
```

```
    proof (cases d)
        case Left
        with assms and that and \(\left\langle p=d \# p^{\prime}\right\rangle\) show ?thesis
        using is-free-at-in-left-app by blast
    next
    case Right
    with assms and that and \(\left\langle p=d \# p^{\prime}\right\rangle\) show ?thesis
        using is-free-at-in-right-app by blast
    qed
qed
lemma is-free-at-from-abs:
    assumes is-free-at \(v(« \# p)\left(F A b s v^{\prime} B\right)\)
    shows is-free-at vp B
    using assms by (fastforce elim: is-subform-at.elims)
lemma is-free-at-from-absE:
    assumes is-free-at \(v p\left(F A b s v^{\prime} B\right)\)
    obtains \(p^{\prime}\) where \(p=« \# p^{\prime}\) and is-free-at \(v p^{\prime} B\)
proof -
    obtain \(x\) and \(\alpha\) where \(v^{\prime}=(x, \alpha)\)
        by fastforce
    with assms obtain \(p^{\prime}\) where \(p=« \# p^{\prime}\)
        using subforms-from-abs by blast
    with assms and that show ?thesis
        using is-free-at-from-abs by blast
qed
lemma is-free-at-to-abs:
    assumes is-free-at \(v p B\) and \(v \neq v^{\prime}\)
    shows is-free-at v («\#p) (FAbs \(\left.v^{\prime} B\right)\)
unfolding is-free-at-def proof
    from assms(1) show occurs-at v(
        using surj-pair[of \(v\) ] by fastforce
    from assms show \(\neg\) in-scope-of-abs \(v(« \# p)\left(F A b s v^{\prime} B\right)\)
        unfolding is-free-at-def using in-scope-of-abs-in-abs by presburger
qed
lemma is-free-at-in-free-vars:
    assumes \(p \in\) positions \(A\) and is-free-at \(v p A\)
    shows \(v \in\) free-vars \(A\)
using assms proof (induction A arbitrary: \(p\) )
    case (FApp B C)
    from 〈is-free-at vp \((B \cdot C)\rangle\) have \(p \neq[]\)
        using occurs-at-alt-def(8) by blast
    then obtain \(d\) and \(p^{\prime}\) where \(p=d \# p^{\prime}\)
        by (meson list.exhaust)
    with \(\langle p \in\) positions \((B \cdot C)\rangle\)
    consider (a) \(p=« \# p^{\prime}\) and \(p^{\prime} \in\) positions \(B \mid(b) p=» \# p^{\prime}\) and \(p^{\prime} \in\) positions \(C\)
```

```
    by force
    then show ?case
    proof cases
    case a
    from a(1) and <is-free-at vp(B\cdotC)\rangle have is-free-at v p' B
        using is-free-at-in-left-app by blast
    with a(2) have v\in free-vars B
        using FApp.IH(1) by blast
    then show ?thesis
        by simp
    next
    case b
    from b(1) and <is-free-at vp(B\cdotC)\rangle have is-free-at v p ' C
        using is-free-at-in-right-app by blast
    with b(2) have v\in free-vars C
        using FApp.IH(2) by blast
    then show ?thesis
        by simp
    qed
next
    case (FAbs v' B)
    from <is-free-at v p (FAbs v'B)> have p\not=[]
        using occurs-at-alt-def(9) by force
    with }\langlep\in\mathrm{ positions (FAbs v' B)〉 obtain p' where p=《# p
        by (cases FAbs v' B rule: positions.cases) fastforce+
```



```
        using is-free-at-from-abs by blast
    ultimately have v\infree-vars B
        using FAbs.IH by simp
    moreover from <p=«# p}>\mathrm{ and <is-free-at v p (FAbs v}\mp@subsup{v}{}{\prime}B)〉 have v\not=\mp@subsup{v}{}{\prime
        using in-scope-of-abs-in-abs by blast
    ultimately show ?case
        using surj-pair[of v` by force
qed fastforce+
lemma free-vars-in-is-free-at:
    assumes v\in free-vars A
    obtains p where p\in positions A and is-free-at v p A
using assms proof (induction A arbitrary: thesis rule: free-vars-form.induct)
    case (3 A B)
    from }\langlev\in\mathrm{ free-vars (A P B)> consider (a) v free-vars A | (b) v free-vars B
        by fastforce
    then show ?case
    proof cases
        case a
        with 3.IH(1) obtain p where p}\in\mathrm{ positions A and is-free-at v pA
        by blast
        from }<p\in\mathrm{ positions }A\rangle\mathrm{ have « # p f positions (A P B)
        by simp
```

```
    moreover from <is-free-at vp \(A\) 〉have is-free-at v («\#p) \((A \cdot B)\)
        using is-free-at-in-left-app by blast
    ultimately show ?thesis
        using 3.prems(1) by presburger
    next
    case \(b\)
    with 3.IH(2) obtain \(p\) where \(p \in\) positions \(B\) and is-free-at \(v p B\)
        by blast
    from \(\langle p \in\) positions \(B\rangle\) have » \# \(p \in\) positions \((A \cdot B)\)
        by simp
    moreover from «is-free-at v p \(B\) 〉 have is-free-at v (» \# p) \((A \cdot B)\)
        using is-free-at-in-right-app by blast
    ultimately show ?thesis
        using 3.prems(1) by presburger
    qed
next
    case (4x \(\alpha\) A)
    from \(\left\langle v \in\right.\) free-vars \(\left.\left(\lambda x_{\alpha} . A\right)\right\rangle\) have \(v \in\) free-vars \(A-\{(x, \alpha)\}\) and \(v \neq(x, \alpha)\)
        by simp-all
    then have \(v \in\) free-vars \(A\)
    by blast
    with 4.IH obtain \(p\) where \(p \in\) positions \(A\) and is-free-at \(v p A\)
    by blast
    from \(\langle p \in\) positions \(A\rangle\) have \(« \# p \in\) positions \(\left(\lambda x_{\alpha} . A\right)\)
        by \(\operatorname{simp}\)
    moreover from 〈is-free-at \(v p A\rangle\) and \(\langle v \neq(x, \alpha)\rangle\) have is-free-at \(v(« \# p)\left(\lambda x_{\alpha} . A\right)\)
    using is-free-at-to-abs by blast
    ultimately show? case
    using 4.prems(1) by presburger
qed simp-all
lemma free-vars-alt-def:
    shows free-vars \(A=\{v \mid v p . p \in\) positions \(A \wedge\) is-free-at \(v p A\}\)
    using free-vars-in-is-free-at and is-free-at-in-free-vars
    by (intro subset-antisym subsetI CollectI, metis) blast
```

In the following definition，note that the variable immeditately preceded by λ counts as a bound variable：

```
definition is-bound \(::\) var \(\Rightarrow\) form \(\Rightarrow\) bool where
    [iff]: is-bound \(v B \longleftrightarrow(\exists p \in\) positions B. is-bound-at \(v p B \vee v \in\) binders-at \(B\) p \()\)
lemma is-bound-in-app-homomorphism:
    shows is-bound \(v(A \cdot B) \longleftrightarrow\) is-bound \(v A \vee\) is-bound \(v B\)
proof
    assume is-bound \(v(A \cdot B)\)
    then obtain \(p\) where \(p \in\) positions \((A \cdot B)\) and is-bound-at \(v p(A \cdot B) \vee v \in\) binders-at \((A \cdot B) p\)
        by auto
    then have \(p \neq[]\)
        by fastforce
```

```
with \(\langle p \in\) positions \((A \cdot B)\rangle\) obtain \(p^{\prime}\) and \(d\) where \(p=d \# p^{\prime}\)
    by auto
from 〈is-bound-at \(v p(A \cdot B) \vee v \in\) binders-at \((A \cdot B) p\rangle\)
consider (a) is-bound-at \(v p(A \cdot B) \mid(b) v \in\) binders-at \((A \cdot B) p\)
    by blast
then show is-bound \(v A \vee\) is-bound \(v B\)
proof cases
    case \(a\)
    then show ?thesis
    proof (cases d)
    case Left
    then have \(p^{\prime} \in\) positions \(A\)
        using \(\left\langle p=d \# p^{\prime}\right\rangle\) and \(\langle p \in\) positions \((A \cdot B)\rangle\) by fastforce
    moreover from <is-bound-at \(v p(A \cdot B)\) 〉 have occurs-at \(v p^{\prime} A\)
            using Left and \(\left\langle p=d \# p^{\prime}\right\rangle\) and is-subform-at.simps(2) by force
    moreover from 〈is-bound-at \(v p(A \cdot B)\) 〉 have in-scope-of-abs v \(p^{\prime} A\)
            using Left and \(\left\langle p=d \# p^{\prime}\right\rangle\) by fastforce
    ultimately show ?thesis
            by auto
    next
        case Right
        then have \(p^{\prime} \in\) positions \(B\)
            using \(\left\langle p=d \# p^{\prime}\right\rangle\) and \(\langle p \in\) positions \((A \cdot B)\rangle\) by fastforce
        moreover from 〈is-bound-at vp \((A \cdot B)\) 〉 have occurs-at v \(p^{\prime} B\)
            using Right and \(\left\langle p=d \# p^{\prime}\right\rangle\) and is-subform-at.simps(3) by force
        moreover from 〈is-bound-at vp \((A \cdot B)\) 〉 have in-scope-of-abs v \(p^{\prime} B\)
            using Right and \(\left\langle p=d \# p^{\prime}\right\rangle\) by fastforce
        ultimately show ?thesis
            by auto
    qed
next
    case \(b\)
    then show ?thesis
    proof (cases d)
        case Left
        then have \(p^{\prime} \in\) positions \(A\)
            using \(\left\langle p=d \# p^{\prime}\right\rangle\) and \(\langle p \in\) positions \((A \cdot B)\rangle\) by fastforce
        moreover from \(\langle v \in\) binders-at \((A \cdot B) p\rangle\) have \(v \in\) binders-at \(A p^{\prime}\)
            using Left and \(\left\langle p=d \# p^{\prime}\right\rangle\) by force
            ultimately show ?thesis
            by auto
    next
        case Right
        then have \(p^{\prime} \in\) positions \(B\)
            using \(\left\langle p=d \# p^{\prime}\right\rangle\) and \(\langle p \in\) positions \((A \cdot B)\rangle\) by fastforce
        moreover from \(\langle v \in\) binders-at \((A \cdot B) p\rangle\) have \(v \in\) binders-at \(B p^{\prime}\)
            using Right and \(\left\langle p=d \# p^{\prime}\right\rangle\) by force
        ultimately show?thesis
            by auto
```

```
    qed
    qed
next
    assume is-bound v A V is-bound v B
    then show is-bound v(A\cdotB)
    proof (rule disjE)
        assume is-bound v A
        then obtain p where p\in positions A and is-bound-at v pA\veev\in binders-at A p
        by auto
    from }<p\in\mathrm{ positions }A\rangle\mathrm{ have «# # p positions (A P B)
        by auto
    from〈is-bound-at v pA\veev\in binders-at A p>
    consider (a) is-bound-at vpA|(b)v\in binders-at A p
        by blast
    then show is-bound v(A\cdotB)
    proof cases
        case a
        then have occurs-at v(«# p)(A\cdotB)
            by auto
        moreover from a have is-bound-at v(<# p) (A P B)
            by force
        ultimately show is-bound v(A\cdotB)
            using << # p f positions (A P B)` by blast
        next
        case b
        then have v}\in\mathrm{ binders-at (A P B)(«# p)
            by auto
        then show is-bound v (A\cdotB)
```



```
        qed
    next
    assume is-bound v B
    then obtain p where p\in positions B and is-bound-at vpB\veev\inbinders-at B p
        by auto
    from }<p\in\mathrm{ positions B> have»# p fositions (A P B)
        by auto
    from〈is-bound-at v p B \veev\in binders-at B p>
    consider (a) is-bound-at v p B|(b) v \in binders-at B p
        by blast
    then show is-bound v(A\cdotB)
    proof cases
        case a
        then have occurs-at v(»# p)(A\cdotB)
            by auto
        moreover from a have is-bound-at v(»# p) (A P B)
            by force
        ultimately show is-bound v (A P B)
            using <» # p f positions ( }A\cdotB)\rangle\mathrm{ by blast
    next
```

```
        case b
        then have v\in binders-at (A P B)(»# p)
            by auto
        then show is-bound v (A•B)
```



```
        qed
    qed
qed
lemma is-bound-in-abs-body:
    assumes is-bound v A
    shows is-bound v ( }\lambda\mp@subsup{x}{\alpha}{}.A
using assms unfolding is-bound-def proof
    fix p
    assume p}\in\mathrm{ positions }A\mathrm{ and is-bound-at v pA}\veev\in\mathrm{ binders-at A p
    moreover from <p\in positions }A\rangle\mathrm{ have }<##p\in\mathrm{ positions ( }\lambda\mp@subsup{x}{\alpha}{}.A
        by simp
    ultimately consider (a) is-bound-at vpA|(b)v\inbinders-at A p
        by blast
    then show \existsp\in positions ( }\lambda\mp@subsup{x}{\alpha}{}.A)\mathrm{ . is-bound-at vp ( }\lambda\mp@subsup{x}{\alpha}{}.A)\veev\in\operatorname{binders-at ( }\lambda\mathrm{ . }\mp@subsup{x}{\alpha}{}.A)
    proof cases
    case a
        then have is-bound-at v(<# p) (\lambda\mp@subsup{x}{\alpha}{}.A)
        by force
        with ««# # p positions ( }\lambda\mp@subsup{x}{\alpha}{}.A)\rangle\mathrm{ show ?thesis
            by blast
    next
    case b
    then have v\in binders-at ( }\lambda\mp@subsup{x}{\alpha}{}.A)(<##
        by simp
        with ««# p 的的itions ( }\lambda\mp@subsup{x}{\alpha}{}.A)\rangle\mathrm{ show ?thesis
            by blast
    qed
qed
lemma absent-var-is-not-bound:
    assumes v\not\in vars A
    shows \neg is-bound v A
    using assms and binders-at-alt-def and in-scope-of-abs-in-vars by blast
lemma bound-vars-alt-def2:
    shows bound-vars }A={v\in\mathrm{ vars A. is-bound v A }
    unfolding bound-vars-alt-def using absent-var-is-not-bound by fastforce
definition is-free :: var }=>\mathrm{ form }=>\mathrm{ bool where
    [iff]: is-free v B \longleftrightarrow(\existsp\in positions B. is-free-at v p B)
```


2.9 Free variables for a formula in another formula

```
definition is-free-for :: form }=>\mathrm{ var }=>\mathrm{ form }=>\mathrm{ bool where
    [iff]: is-free-for A v B\longleftrightarrow
    (
            v
            \forall \in positions B.
                is-free-at v p B\longrightarrow\neg in-scope-of-abs v'p B
    )
lemma is-free-for-absent-var [intro]:
    assumes v\not\in vars B
    shows is-free-for A v B
    using assms and occurs-def and is-free-at-def and occurs-in-vars by blast
lemma is-free-for-in-var [intro]:
    shows is-free-for A v (x\alpha)
    using subforms-from-var(2) by force
lemma is-free-for-in-con [intro]:
    shows is-free-for A v ({c}\alpha)
    using subforms-from-con(2) by force
lemma is-free-for-from-app:
    assumes is-free-for Av(B\cdotC)
    shows is-free-for AvB and is-free-for AvC
proof -
    {
        fix }\mp@subsup{v}{}{\prime
        assume v}\mp@subsup{v}{}{\prime}\in\mathrm{ free-vars }
        then have }\forallp\in\mathrm{ positions B. is-free-at vpB 
        proof (intro ballI impI)
            fix p
            assume v'\in free-vars A and p}\in\mathrm{ positions B and is-free-at v p B
            from }\langlep\in\mathrm{ positions B> have }<##p\in\mathrm{ positions (B P C)
                by simp
```



```
                using is-free-at-in-left-app by blast
            ultimately have ᄀ in-scope-of-abs v'}(«##p)(B\cdotC
                using assms and }\langle\mp@subsup{v}{}{\prime}\in\mathrm{ free-vars A> by blast
            then show }\neg\mathrm{ in-scope-of-abs v' v B
            by simp
        qed
    }
    then show is-free-for A v B
        by force
next
    {
        fix v
        assume v}\mp@subsup{v}{}{\prime}\in\mathrm{ free-vars }
```

```
    then have }\forallp\in\mathrm{ positions C. is-free-at v p C }\longrightarrow\neg\mathrm{ in-scope-of-abs v' p C
    proof (intro ballI impI)
        fix p
        assume v}\mp@subsup{v}{}{\prime}\in\mathrm{ free-vars }A\mathrm{ and }p\in\mathrm{ positions }C\mathrm{ and is-free-at vp C
        from <p \in positions C> have » # p f positions ( }B\cdotC\mathrm{ )
        by simp
        moreover from <is-free-at vp C` have is-free-at v(» # p)(B\cdotC)
        using is-free-at-in-right-app by blast
```



```
            using assms and {v'\in free-vars A\rangle by blast
        then show \negin-scope-of-abs v' }\mp@subsup{v}{}{\prime}
            by simp
    qed
}
then show is-free-for A v C
    by force
qed
lemma is-free-for-to-app [intro]:
    assumes is-free-for AvB and is-free-for AvC
    shows is-free-for A v (B\cdotC)
unfolding is-free-for-def proof (intro ballI impI)
    fix v' and p
    assume v}\mp@subsup{v}{}{\prime}\in\mathrm{ free-vars }A\mathrm{ and }p\in\mathrm{ positions ( }B\cdotC)\mathrm{ and is-free-at vp(B
    from <is-free-at vp(B\cdotC)> have p\not=]
        using occurs-at-alt-def(8) by force
    then obtain d}\mathrm{ and p' where p=d# p
    by (meson list.exhaust)
```



```
    consider (b) p=«# p
        by force
    then show }\negin\mathrm{ -scope-of-abs v' p(B:C)
    proof cases
    case b
    from b(1) and «is-free-at vp(B\cdotC)> have is-free-at v p}\mp@subsup{p}{}{\prime}
        using is-free-at-in-left-app by blast
    with assms(1) and < <v'\in free-vars A> and < p'\in positions B` have }\neg\mathrm{ in-scope-of-abs v' v}\mp@subsup{p}{}{\prime}
        by simp
    with b(1) show ?thesis
        using in-scope-of-abs-in-left-app by simp
    next
    case c
    from c(1) and «is-free-at vp (B\cdotC)> have is-free-at v p}\mp@subsup{p}{}{\prime}
        using is-free-at-in-right-app by blast
    with assms(2) and < < ' }\in\mathrm{ free-vars A> and < p
        by simp
    with c(1) show ?thesis
        using in-scope-of-abs-in-right-app by simp
    qed
```

```
qed
lemma is-free-for-in-app:
    shows is-free-for Av (B\cdotC)\longleftrightarrow \longleftrightarrows-free-for Av B^ is-free-for A v C
    using is-free-for-from-app and is-free-for-to-app by iprover
lemma is-free-for-to-abs [intro]:
    assumes is-free-for AvB and (x,\alpha)\not\in free-vars A
    shows is-free-for Av(\lambda\mp@subsup{x}{\alpha}{}.B)
unfolding is-free-for-def proof (intro ballI impI)
    fix v' and p
    assume v'\in free-vars A and p\in positions ( }\lambda\mp@subsup{x}{\alpha}{}.B)\mathrm{ and is-free-at vp ( }\lambda\mp@subsup{x}{\alpha}{}.B
    from <is-free-at vp ( }\lambda\mp@subsup{x}{\alpha}{}.B)> have p\not=[
        using occurs-at-alt-def(9) by force
    with }\langlep\in\mathrm{ positions ( }\lambda\mp@subsup{x}{\alpha}{}.B)\rangle\mathrm{ obtain }\mp@subsup{p}{}{\prime}\mathrm{ where }p=«#\mp@subsup{p}{}{\prime}\mathrm{ and p}\mp@subsup{p}{}{\prime}\in\mathrm{ positions B
        by force
    then show }\neg\mathrm{ in-scope-of-abs v'}\mp@subsup{v}{}{\prime}p(\lambda\mp@subsup{x}{\alpha}{}.B
    proof -
        from <p = «# # > and <is-free-at v p ( }\lambda\mp@subsup{x}{\alpha}{}.B)\rangle\mathrm{ have is-free-at v p p}
        using is-free-at-from-abs by blast
        with assms(1) and }\langle\mp@subsup{v}{}{\prime}\in\mathrm{ free-vars }A\rangle\mathrm{ and }<\mp@subsup{p}{}{\prime}\in\mathrm{ positions B` have }\neg\mathrm{ in-scope-of-abs v}\mp@subsup{v}{}{\prime}\mp@subsup{p}{}{\prime}
        by force
        moreover from }\langle\mp@subsup{v}{}{\prime}\in\mathrm{ free-vars A> and assms(2) have v}\mp@subsup{v}{}{\prime}\not=(x,\alpha
        by blast
        ultimately show ?thesis
            using < p = «# # p}\\mathrm{ ` and in-scope-of-abs-in-abs by auto
    qed
qed
lemma is-free-for-from-abs:
    assumes is-free-for A v ( }\lambda\mp@subsup{x}{\alpha}{}.B)\mathrm{ and }v\not=(x,\alpha
    shows is-free-for A v B
unfolding is-free-for-def proof (intro ballI impI)
    fix v' and p
    assume v' }\mp@subsup{v}{}{\prime}\mathrm{ free-vars }A\mathrm{ and }p\in\mathrm{ positions B and is-free-at vp }
    then show }\neg\mathrm{ in-scope-of-abs v' p B
    proof -
        from 〈is-free-at v p B` and assms(2) have is-free-at v(«# # ) ( }\lambda\mp@subsup{x}{\alpha}{}.B
        by (rule is-free-at-to-abs)
        moreover from <p\in positions B` have «# p\in positions ( }\lambda\mp@subsup{x}{\alpha}{}.B
        by simp
        ultimately have }\neg\mathrm{ in-scope-of-abs v}\mp@subsup{v}{}{\prime}(<##p)(\lambda\mp@subsup{x}{\alpha}{}.B
            using assms and }\langle\mp@subsup{v}{}{\prime}\in\mathrm{ free-vars A> by blast
        then show ?thesis
            using in-scope-of-abs-in-abs by blast
    qed
qed
lemma closed-is-free-for [intro]:
```

```
    assumes free-vars A={}
    shows is-free-for A v B
    using assms by force
lemma is-free-for-closed-form [intro]:
    assumes free-vars B={}
    shows is-free-for A v B
    using assms and is-free-at-in-free-vars by blast
lemma is-free-for-alt-def:
    shows
        is-free-for A v B
        \longleftrightarrow
        (
        # p
        (
            p\in positions B ^ is-free-at v p B ^ p\not=[]^
            (\exists\mp@subsup{v}{}{\prime}\in\mathrm{ free-vars A. }\exists\mp@subsup{p}{}{\prime}C\mathrm{ . strict-prefix p' p}^\mp@code{FAbs v' C \preceq}\mp@subsup{p}{}{\prime}B)
        )
        )
    unfolding is-free-for-def
    using in-scope-of-abs-alt-def and is-subform-implies-in-positions
    by meson
lemma binding-var-not-free-for-in-abs:
    assumes is-free x B and x\not=w
    shows \neg is-free-for (FVar w) x (FAbs w B)
proof (rule ccontr)
    assume ᄀ ᄀis-free-for (FVar w) x (FAbs w B)
    then have
        v
        \longrightarrow \neg ~ i n - s c o p e - o f - a b s ~ v ' ~ p ~ ( F A b s ~ w ~ B )
        by force
    moreover have free-vars (FVar w)}={w
        using surj-pair[of w] by force
    ultimately have
        \forallp\in positions(FAbs wB). is-free-at x p (FAbs w B)\longrightarrow }\longrightarrow\mathrm{ in-scope-of-abs w p (FAbs w B)
        by blast
    moreover from assms(1) obtain p where is-free-at x p B
        by fastforce
    from this and assms(2) have is-free-at x («# p) (FAbs w B)
        by (rule is-free-at-to-abs)
    moreover from this have «# p { positions (FAbs w B)
        using is-subform-implies-in-positions by force
    ultimately have ᄀ in-scope-of-abs w («# p) (FAbs w B)
        by blast
    moreover have in-scope-of-abs w(« # p) (FAbs w B)
    using in-scope-of-abs-in-abs by blast
    ultimately show False
```

```
    by contradiction
qed
lemma absent-var-is-free-for [intro]:
    assumes x }\not=\mathrm{ vars A
    shows is-free-for (FVar x) y A
    using in-scope-of-abs-in-vars and assms and surj-pair[of x] by fastforce
lemma form-is-free-for-absent-var [intro]:
    assumes x }\not=\mathrm{ vars A
    shows is-free-for B x A
    using assms and occurs-in-vars by fastforce
lemma form-with-free-binder-not-free-for:
    assumes v\not=v'v}\mathrm{ and }\mp@subsup{v}{}{\prime}\in\mathrm{ free-vars }A\mathrm{ and }v\in\mathrm{ free-vars B
    shows \negis-free-for A v (FAbs v' B)
proof -
    from assms(3) obtain p where p\in positions B and is-free-at v p B
        using free-vars-in-is-free-at by blast
    then have «# p { positions (FAbs v'B) and is-free-at v(«# p) (FAbs v' B)
        using surj-pair[of v` and is-free-at-to-abs[OF〈is-free-at v p B`assms(1)] by force+
    moreover have in-scope-of-abs v'(«# p) (FAbs v' B)
        using in-scope-of-abs-in-abs by blast
    ultimately show ?thesis
        using assms(2) by blast
qed
```


2.10 Replacement of subformulas

inductive

```
is-replacement-at \(::\) form \(\Rightarrow\) position \(\Rightarrow\) form \(\Rightarrow\) form \(\Rightarrow\) bool
( \(4-4-\leftarrow-\rangle \triangleright-)[1000,0,0,0] 900)\)
where
pos-found: \(A \backslash p \leftarrow C \downarrow \triangleright C^{\prime}\) if \(p=[]\) and \(C=C^{\prime}\)
| replace-left-app: \((G \cdot H) \ « \# p \leftarrow C\rangle \triangleright\left(G^{\prime} \cdot H\right)\) if \(p \in\) positions \(G\) and \(G \backslash p \leftarrow C \downarrow \triangleright G^{\prime}\)
| replace-right-app: \(\left.(G \cdot H) \_{\text {» }} \# p \leftarrow C\right\rangle \triangleright\left(G \cdot H^{\prime}\right)\) if \(p \in\) positions \(H\) and \(\left.H \backslash p \leftarrow C\right\rangle \triangleright H^{\prime}\)
\(\mid\) replace-abs: \(\left(\lambda x_{\gamma} . E\right) \ « \# p \leftarrow C \downarrow \triangleright\left(\lambda x_{\gamma} . E^{\prime}\right)\) if \(p \in\) positions \(E\) and \(E \backslash p \leftarrow C \downarrow \triangleright E^{\prime}\)
lemma is-replacement-at-implies-in-positions:
assumes \(C \backslash p \leftarrow A\rangle \triangleright D\)
shows \(p \in\) positions \(C\)
using assms by (induction rule: is-replacement-at.induct) auto
declare is-replacement-at.intros [intro!]
lemma is-replacement-at-existence:
assumes \(p \in\) positions \(C\)
obtains \(D\) where \(C \backslash p \leftarrow A \searrow \triangleright D\)
using assms proof (induction \(C\) arbitrary: \(p\) thesis)
```

```
    case (FApp C C C C )
    from FApp.prems(2) consider
        (a) p=[]
        (b) \exists\mp@subsup{p}{}{\prime}.p=《# p
    | (c) \exists\mp@subsup{p}{}{\prime}.p=»# p
    by fastforce
    then show ?case
    proof cases
        case a
        with FApp.prems(1) show ?thesis
        by blast
    next
        case b
        with FApp.prems(1) show ?thesis
        using FApp.IH(1) and replace-left-app by meson
    next
        case c
        with FApp.prems(1) show ?thesis
        using FApp.IH(2) and replace-right-app by meson
    qed
next
    case (FAbs v C')
    from FAbs.prems(2) consider (a) p=[]|(b)\exists\mp@subsup{p}{}{\prime}.p=«# p
        using surj-pair[of v] by fastforce
    then show ?case
    proof cases
        case a
        with FAbs.prems(1) show ?thesis
        by blast
    next
        case b
        with FAbs.prems(1,2) show ?thesis
        using FAbs.IH and surj-pair[of v] by blast
    qed
qed force+
lemma is-replacement-at-minimal-change:
    assumes }C\p\leftarrowA\\triangleright
    shows A\preceqp}
```



```
    using assms by (induction rule: is-replacement-at.induct) auto
lemma is-replacement-at-binders:
    assumes }C\p\leftarrowA\\triangleright
    shows binders-at D p = binders-at C p
    using assms by (induction rule: is-replacement-at.induct) simp-all
    lemma is-replacement-at-occurs:
    assumes }C\p\leftarrowA\\triangleright
```

```
    and }\neg\mathrm{ prefix p' p and }\neg\mathrm{ prefix p p'
    shows occurs-at v p'}C\longleftrightarrow\mathrm{ occurs-at v p' D
using assms proof (induction arbitrary: p' rule: is-replacement-at.induct)
    case pos-found
    then show ?case
    by simp
next
    case replace-left-app
    then show ?case
    proof (cases p')
    case (Cons d p'\prime)
    with replace-left-app.prems(1,2) show ?thesis
            by (cases d) (use replace-left-app.IH in force)+
    qed force
next
    case replace-right-app
    then show ?case
    proof (cases p')
        case (Cons d p '')
        with replace-right-app.prems(1,2) show ?thesis
            by (cases d) (use replace-right-app.IH in force)+
    qed force
next
    case replace-abs
    then show ?case
    proof (cases p')
        case (Cons d p'\prime)
        with replace-abs.prems(1,2) show ?thesis
        by (cases d) (use replace-abs.IH in force)+
    qed force
qed
lemma fresh-var-replacement-position-uniqueness:
    assumes v}\not\in\mathrm{ vars }
    and C\p\leftarrowFVarv\rangle\trianglerightG
    and occurs-at v p'G
    shows p' = p
proof (rule ccontr)
    assume p'}=
    from assms(2) have occurs-at vpG
        by (simp add: is-replacement-at-minimal-change(1))
    moreover have *: occurs-at v p' C \longleftrightarrow occurs-at v p' G if \neg prefix p' p and \neg prefix p p '
        using assms(2) and that and is-replacement-at-occurs by blast
    ultimately show False
    proof (cases }\neg\mathrm{ prefix p' p ^ᄀ prefix p p')
        case True
        with assms(3) and * have occurs-at v p' C
            by simp
            then have v\in vars C
```

```
        using is-subform-implies-in-positions and occurs-in-vars by fastforce
    with assms(1) show ?thesis
        by contradiction
    next
    case False
    have FVar v \preceq_p}
        by (fact is-replacement-at-minimal-change(1)[OF assms(2)])
    moreover from assms(3) have FVarv \preceq}\mp@subsup{p}{}{\prime}
        by simp
    ultimately show ?thesis
        using }\langle\mp@subsup{p}{}{\prime}\not=p\rangle\mathrm{ and False and loop-subform-impossibility
        by (blast dest: prefix-order.antisym-conv2)
    qed
qed
lemma is-replacement-at-new-positions:
    assumes C\p\leftarrowA\\trianglerightD and prefix p p' and p' f positions D
    obtains p" where }\mp@subsup{p}{}{\prime}=p@\mp@subsup{p}{}{\prime\prime}\mathrm{ and }\mp@subsup{p}{}{\prime\prime}\in\mathrm{ positions }
    using assms by (induction arbitrary: thesis p' rule: is-replacement-at.induct, auto) blast+
lemma replacement-override:
    assumes }C\p\leftarrowB\\trianglerightD\mathrm{ and }C\p\leftarrowA\\triangleright
    shows}D\p\leftarrowA\\triangleright
using assms proof (induction arbitrary: F rule: is-replacement-at.induct)
    case pos-found
    from pos-found.hyps(1) and pos-found.prems have A=F
        using is-replacement-at.simps by blast
    with pos-found.hyps(1) show ?case
        by blast
next
    case (replace-left-app p G C G' H)
    have p\in positions G'
        by (
            fact is-subform-implies-in-positions
                    [OF is-replacement-at-minimal-change(1)[OF replace-left-app.hyps(2)]]
        )
    from replace-left-app.prems obtain F' where F=\mp@subsup{F}{}{\prime}\cdotH\mathrm{ and }G\p\leftarrowA\\triangleright\mp@subsup{F}{}{\prime}
        by (fastforce elim: is-replacement-at.cases)
    from }\langleG\p\leftarrowA\\triangleright\mp@subsup{F}{}{\prime}\rangle\mathrm{ have }\mp@subsup{G}{}{\prime}\p\leftarrowA\\triangleright\mp@subsup{F}{}{\prime
        by (fact replace-left-app.IH)
    with }\langlep\in\mathrm{ positions }\mp@subsup{G}{}{\prime}\rangle\mathrm{ show ?case
        unfolding }\langleF=\mp@subsup{F}{}{\prime}\cdotH\rangle\mathrm{ by blast
next
    case (replace-right-app p HC CH'G)
    have p}\in\mathrm{ positions }\mp@subsup{H}{}{\prime
        by
            fact is-subform-implies-in-positions
                    [OF is-replacement-at-minimal-change(1)[OF replace-right-app.hyps(2)]]
```

)
from replace-right-app.prems obtain F^{\prime} where $F=G \cdot F^{\prime}$ and $H \backslash p \leftarrow A \downarrow \triangleright F^{\prime}$ by (fastforce elim: is-replacement-at.cases)
from $\left.\langle H \backslash p \leftarrow A\rangle \triangleright F^{\prime}\right\rangle$ have $\left.H^{\prime} \backslash p \leftarrow A\right\rangle \triangleright F^{\prime}$ by (fact replace-right-app.IH)
with $\left\langle p \in\right.$ positions $\left.H^{\prime}\right\rangle$ show ?case unfolding $\left\langle F=G \cdot F^{\prime}\right\rangle$ by blast
next
case (replace-abs per $C E^{\prime} x \gamma$)
have $p \in$ positions E^{\prime}
by
fact is-subform-implies-in-positions
[OF is-replacement-at-minimal-change(1)[OF replace-abs.hyps(2)]])
from replace-abs.prems obtain F^{\prime} where $F=\lambda x_{\gamma} . F^{\prime}$ and $\left.E \backslash p \leftarrow A\right\rangle \triangleright F^{\prime}$ by (fastforce elim: is-replacement-at.cases)
from $\left.\langle E \backslash p \leftarrow A\rangle \triangleright F^{\prime}\right\rangle$ have $\left.E^{\prime} \backslash p \leftarrow A\right\rangle \triangleright F^{\prime}$ by (fact replace-abs.IH)
with $\left\langle p \in\right.$ positions $\left.E^{\prime}\right\rangle$ show ?case unfolding $\left\langle F=\lambda x_{\gamma} . F^{\prime}\right\rangle$ by blast
qed
lemma leftmost-subform-in-generalized-app-replacement:
shows $\left(\cdot_{\star} C\right.$ As $) \backslash$ replicate (length $\left.\left.A s\right) 《 \leftarrow D\right\rangle \triangleright\left({ }^{\mathcal{Q}_{\star}} D A s\right)$
using is-replacement-at-implies-in-positions and replace-left-app
by (induction As arbitrary: D rule: rev-induct) auto

2.11 Logical constants

abbreviation (input) \mathfrak{x} where $\mathfrak{x} \equiv 0$
abbreviation (input) \mathfrak{y} where $\mathfrak{y} \equiv$ Suc \mathfrak{x}
abbreviation (input) \mathfrak{z} where $\mathfrak{z} \equiv S u c \mathfrak{y}$
abbreviation (input) \mathfrak{f} where $\mathfrak{f} \equiv S u c \mathfrak{z}$
abbreviation (input) \mathfrak{g} where $\mathfrak{g} \equiv S u c \mathfrak{f}$
abbreviation (input) \mathfrak{h} where $\mathfrak{h} \equiv S u c \mathfrak{g}$
abbreviation (input) \mathfrak{c} where $\mathfrak{c} \equiv S u c \mathfrak{h}$
abbreviation (input) \mathfrak{c}_{Q} where $\mathfrak{c}_{Q} \equiv$ Suc \mathfrak{c}
abbreviation (input) \mathfrak{c}_{ι} where $\mathfrak{c}_{\iota} \equiv S u c \mathfrak{c}_{Q}$
definition Q-constant-of-type :: type \Rightarrow con where
[simp]: Q-constant-of-type $\alpha=\left(\mathfrak{c}_{Q}, \alpha \rightarrow \alpha \rightarrow o\right)$
definition iota-constant $::$ con where
$[$ simp $]:$ iota-constant $\equiv\left(\mathfrak{c}_{\iota},(i \rightarrow o) \rightarrow i\right)$
definition Q :: type \Rightarrow form (Q_{-}) where $[$ simp $]: Q_{\alpha}=F C o n(Q$-constant-of-type $\alpha)$

```
definition iota :: form (\iota) where
```

 \([\) simp \(]: \iota=\) FCon iota-constant
 definition $i s$ - Q-constant-of-type $::$ con \Rightarrow type \Rightarrow bool where
[iff]: is- Q-constant-of-type $p \alpha \longleftrightarrow p=Q$-constant-of-type α
definition is-iota-constant $::$ con \Rightarrow bool where
[iff]: is-iota-constant $p \longleftrightarrow p=$ iota-constant
definition is-logical-constant $::$ con \Rightarrow bool where
[iff]: is-logical-constant $p \longleftrightarrow(\exists \beta$. is- Q-constant-of-type $p \beta) \vee$ is-iota-constant p
definition type-of- Q-constant $::$ con \Rightarrow type where
$[$ simp $]:$ type-of- Q-constant $p=(T H E \alpha$. is- Q-constant-of-type $p \alpha)$
lemma constant-cases[case-names non-logical Q-constant ι-constant, cases type: con]:
assumes \neg is-logical-constant $p \Longrightarrow P$
and $\wedge \beta$. is- Q-constant-of-type $p \beta \Longrightarrow P$
and is-iota-constant $p \Longrightarrow P$
shows P
using assms by blast

2.12 Definitions and abbreviations

definition equality-of-type $::$ form \Rightarrow type \Rightarrow form \Rightarrow form $((-=-/-)[103,0,103]$ 102) where [simp]: $A={ }_{\alpha} B=Q_{\alpha} \cdot A \cdot B$
definition equivalence $::$ form \Rightarrow form \Rightarrow form (infixl $\equiv{ }^{\mathcal{Q}}$ 102) where [simp]: $A \equiv{ }^{\mathcal{Q}} B=A={ }_{o} B$ - more modular than the definition in [2]
definition true :: form (T_{o}) where [simp]: $T_{o}=Q_{o}=_{o \rightarrow o \rightarrow o} Q_{o}$
definition false :: form $\left(F_{o}\right)$ where
$[s i m p]: F_{o}=\lambda \mathfrak{x}_{o} . T_{o}=o \rightarrow o \lambda \mathfrak{x}_{o} . \mathfrak{x}_{o}$
definition $P I::$ type \Rightarrow form (\prod_{-}) where $[\operatorname{simp}]: \prod \alpha=Q_{\alpha \rightarrow o} \cdot\left(\lambda \mathfrak{x}_{\alpha} . T_{o}\right)$
definition forall $::$ nat \Rightarrow type \Rightarrow form \Rightarrow form ($4 \forall-. . /-)[0,0,141]$ 141) where $[\operatorname{simp}]: \forall x_{\alpha} . A=\prod \alpha \cdot\left(\lambda x_{\alpha} . A\right)$

Generalized universal quantification. We define $\forall \mathcal{Q}_{\star}\left[x_{1}, \ldots, x_{n}\right] A$ as $\forall x_{1} . \ldots \forall x_{n}$. A :
definition generalized-forall $::$ var list \Rightarrow form \Rightarrow form $\left(\forall_{\star} \mathcal{Q}_{\star}-[141,141]\right.$ 141) where $[$ simp $]: \forall_{\star}^{\mathcal{Q}_{\star}}$ vs $A=$ foldr $\left(\lambda(x, \alpha) B . \forall x_{\alpha} . B\right)$ vs A
lemma innermost-subform-in-generalized-forall: assumes $v s \neq[]$
shows $A \preceq_{\text {foldr }}(\lambda-p .[», «] @ p) v s[] \forall \mathcal{Q}_{\star}$ vs A

```
using assms by (induction vs) fastforce+
```

```
lemma innermost-replacement-in-generalized-forall:
    assumes vs \(\neq[]\)
    shows \(\left(\forall^{\mathcal{Q}}\right.\) 夫 vs \(\left.C\right) \backslash\) foldr \((\lambda-\). (@) \([»,<])\) vs []\(\left.\leftarrow B\right\rangle \triangleright\left(\forall^{\mathcal{Q}}\right.\) 夫 vs \(\left.B\right)\)
using assms proof (induction vs)
    case Nil
    then show? case
        by blast
next
    case (Cons v vs)
    obtain \(x\) and \(\alpha\) where \(v=(x, \alpha)\)
    by fastforce
    then show ?case
    proof (cases vs \(=[]\) )
    case True
        with \(\langle v=(x, \alpha)\rangle\) show ?thesis
        unfolding True by force
    next
        case False
        then have foldr ( \(\lambda\)-. (@) [》, \(<]\) ) vs []\(\in\) positions \(\left(\forall^{\mathcal{Q}}{ }_{\star}\right.\) vs \(\left.C\right)\)
            using innermost-subform-in-generalized-forall and is-subform-implies-in-positions by blast
        moreover from False have \(\left(\forall \mathcal{Q}_{\star}\right.\) vs \(\left.C\right) \backslash\) foldr \(\left(\lambda\right.\)-. (@) [», «]) vs []\(\leftarrow B \downarrow \triangleright\left(\forall \mathcal{Q}_{\star}\right.\) vs \(\left.B\right)\)
            by (fact Cons.IH)
        ultimately have \(\left(\lambda x_{\alpha} . \forall^{\mathcal{Q}}{ }_{\star}\right.\) vs \(\left.C\right) \downarrow\) « \# foldr \((\lambda-.(@)[», \mu])\) vs []\(\left.\leftarrow B\right\rangle \triangleright\left(\lambda x_{\alpha} . \forall^{\mathcal{Q}}{ }_{\star}\right.\) vs \(\left.B\right)\)
        by (rule replace-abs)
        moreover have «\# foldr ( \(\lambda\)-. (@) \([», 《]\) ) vs []\(\in\) positions \(\left(\lambda x_{\alpha} . \forall^{\mathcal{Q}}{ }_{\star}\right.\) vs \(C\) )
            using <foldr ( \(\lambda\)-. (@) [»,《]) vs []\(\in\) positions \(\left(\forall^{\mathcal{Q}}\right.\) 夫 vs \(\left.C\right)\) ) by simp
        ultimately have
        \(\left(\prod \alpha \cdot\left(\lambda x_{\alpha} \cdot \forall{ }^{\mathcal{Q}}{ }_{\star}\right.\right.\) vs \(\left.\left.C\right)\right) \\) » \# « \# foldr \(\left.(\lambda-.(@)[»,<]) v s[] \leftarrow B\right\rangle \triangleright\left(\prod \alpha \cdot\left(\lambda x_{\alpha} \cdot \forall \mathcal{Q}_{\star}\right.\right.\) vs \(\left.\left.B\right)\right)\)
        by blast
        then have \(\left(\forall x_{\alpha} \cdot \forall^{\mathcal{Q}} \star\right.\) vs \(\left.C\right) \backslash[», \mu]\) @ foldr \(\left.(\lambda-.(@)[», \mu]) v s[] \leftarrow B\right\rangle \triangleright\left(\forall x_{\alpha} \cdot \forall^{\mathcal{Q}}{ }_{\star}\right.\) vs \(\left.B\right)\)
            by simp
        then show ?thesis
            unfolding \(\langle v=(x, \alpha)\rangle\) and generalized-forall-def and foldr.simps(2) and o-apply
            and case-prod-conv .
    qed
qed
lemma false-is-forall:
    shows \(F_{o}=\forall \mathfrak{x}_{o} . \mathfrak{x}_{o}\)
    unfolding false-def and forall-def and PI-def and equality-of-type-def ..
definition conj-fun :: form \(\left(\wedge_{o \rightarrow o \rightarrow o}\right)\) where
    \([\) simp \(]: \wedge_{o \rightarrow o \rightarrow o}=\)
        \(\lambda \mathfrak{x}_{o} . \lambda \mathfrak{y}_{o}\).
        (
            \(\left(\lambda \mathfrak{g}_{o \rightarrow o \rightarrow o} \cdot \mathfrak{g}_{o \rightarrow o \rightarrow o} \cdot T_{o} \cdot T_{o}\right)={ }_{(o \rightarrow o \rightarrow o) \rightarrow o}\left(\lambda \mathfrak{g}_{o \rightarrow o \rightarrow o} \cdot \mathfrak{g}_{o \rightarrow o \rightarrow o} \cdot \mathfrak{x}_{o} \cdot \mathfrak{y}_{o}\right)\)
        )
```

```
definition conj-op \(::\) form \(\Rightarrow\) form \(\Rightarrow\) form (infixl \(\wedge^{\mathcal{Q}}\) 131) where
    [simp]: \(A \wedge^{\mathcal{Q}} B=\wedge_{o \rightarrow o \rightarrow o} \cdot A \cdot B\)
```

Generalized conjunction. We define $\wedge^{\mathcal{Q}} \star\left[A_{1}, \ldots, A_{n}\right]$ as $A_{1} \wedge^{\mathcal{Q}}\left(\cdots \wedge^{\mathcal{Q}}\left(A_{n-1} \wedge^{\mathcal{Q}} A_{n}\right) \cdots\right)$: definition generalized-conj-op :: form list \Rightarrow form $\left(\wedge^{\mathcal{Q}}{ }_{\star}-[0] 131\right)$ where $[$ simp $]: \wedge^{\mathcal{Q}}{ }_{\star} A s=$ foldr $1\left(\wedge^{\mathcal{Q}}\right) A s$

```
definition imp-fun \(::\) form \(\left(\supset_{o \rightarrow o \rightarrow o}\right)\) where \(-\equiv\) used instead of \(=\), see [2]
```

 \([s i m p]: \supset_{o \rightarrow o \rightarrow o}=\lambda \mathfrak{x}_{o} . \lambda \mathfrak{y}_{o} .\left(\mathfrak{x}_{o} \equiv{ }^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\)
 definition imp-op :: form \Rightarrow form \Rightarrow form (infixl $\supset^{\mathcal{Q}}$ 111) where
$[$ simp $]: A \supset^{\mathcal{Q}} B=\supset_{o \rightarrow o \rightarrow o} \cdot A \cdot B$

Generalized implication. We define $\left[A_{1}, \ldots, A_{n}\right] \supset^{\mathcal{Q}} \star$ as $A_{1} \supset^{\mathcal{Q}}\left(\cdots \supset^{\mathcal{Q}}\left(A_{n} \supset^{\mathcal{Q}} B\right) \cdots\right)$: definition generalized-imp-op :: form list \Rightarrow form \Rightarrow form (infixl $\supset^{\mathcal{Q}}{ }_{\star}$ 111) where $[$ simp $]: A s \supset^{\mathcal{Q}}{ }_{\star} B=$ foldr $\left(\supset^{\mathcal{Q}}\right)$ As B

Given the definition below, it is interesting to note that $\sim^{\mathcal{Q}} A$ and $F_{o} \equiv{ }^{\mathcal{Q}} A$ are exactly the same formula, namely $Q_{o} \cdot F_{o} \cdot A$:

```
definition neg \(::\) form \(\Rightarrow\) form \((\sim \mathcal{Q}\) - [141] 141) where
    \([\) simp \(]: \sim \mathcal{Q} A=Q_{o} \cdot F_{o} \cdot A\)
definition disj-fun :: form ( \(\vee_{o \rightarrow o \rightarrow o}\) ) where
    \([s i m p]: \vee_{o \rightarrow o \rightarrow o}=\lambda \mathfrak{x}_{o} . \lambda \mathfrak{y}_{o} . \sim^{\mathcal{Q}}\left(\sim^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \sim^{\mathcal{Q}} \mathfrak{y}_{o}\right)\)
```

definition disj-op :: form \Rightarrow form \Rightarrow form (infixl $\vee^{\mathcal{Q}}$ 126) where
[simp]: $A \vee \vee^{\mathcal{Q}} B=\vee_{o \rightarrow o \rightarrow o} \cdot A \cdot B$
definition exists $::$ nat \Rightarrow type \Rightarrow form \Rightarrow form ((4ヨ--./ -) [0, 0, 141] 141) where
$[$ simp $]: \exists x_{\alpha} . A=\mathcal{N}^{\mathcal{Q}}\left(\forall x_{\alpha} \cdot \sim^{\mathcal{Q}} A\right)$
lemma exists-fv:
shows free-vars $\left(\exists x_{\alpha} . A\right)=$ free-vars $A-\{(x, \alpha)\}$
by simp
definition inequality-of-type $::$ form \Rightarrow type \Rightarrow form \Rightarrow form $((-\neq-/-)[103,0,103]$ 102) where $[\operatorname{simp}]: A \neq \alpha B=\sim^{\mathcal{Q}}\left(A={ }_{\alpha} B\right)$

2.13 Well-formed formulas

inductive is-wff-of-type :: type \Rightarrow form \Rightarrow bool where var-is-wff: is-wff-of-type $\alpha\left(x_{\alpha}\right)$
| con-is-wff: is-wff-of-type $\alpha(\{c\} \alpha)$
| app-is-wff: is-wff-of-type $\beta(A \cdot B)$ if is-wff-of-type $(\alpha \rightarrow \beta) A$ and is-wff-of-type αB
| abs-is-wff: is-wff-of-type $(\alpha \rightarrow \beta)\left(\lambda x_{\alpha} . A\right)$ if is-wff-of-type βA
definition wffs-of-type :: type \Rightarrow form set (wffs - [0]) where $w f f s_{\alpha}=\{f::$ form. is-wff-of-type $\alpha f\}$

```
abbreviation wffs :: form set where
    \(w f f s \equiv \bigcup \alpha . w f f s_{\alpha}\)
```

lemma is-wff-of-type-wffs-of-type-eq [pred-set-conv]:
shows is-wff-of-type $\alpha=\left(\lambda f . f \in w f f s_{\alpha}\right)$
unfolding wffs-of-type-def by simp
lemmas wffs-of-type-intros $[$ intro! $]=i s$-wff-of-type.intros[to-set]
lemmas wffs-of-type-induct [consumes 1, induct set: wffs-of-type] $=$ is-wff-of-type.induct[to-set]
lemmas wffs-of-type-cases [consumes 1, cases set: wffs-of-type] $=$ is-wff-of-type.cases[to-set]
lemmas wffs-of-type-simps $=i s$-wff-of-type.simps[to-set $]$
lemma generalized-app-wff [intro]:
assumes length $A s=$ length ts
and $\forall k<$ length As. As $!k \in w_{f f} s_{t s}!k$
and $B \in$ wffs $_{\text {foldr }}(\rightarrow)$ ts β
shows ${ }^{\mathcal{Q}}{ }_{\star} B A s \in w f f s_{\beta}$
using assms proof (induction As ts arbitrary: B rule: list-induct2)
case Nil
then show? case
by simp
next
case (Cons A Ast ts)
from Cons.prems(1) have $A \in$ wffs $_{t}$
by fastforce
moreover from Cons.prems(2) have $B \in$ wffs $_{t \rightarrow \text { foldr }}(\rightarrow)$ ts β
by auto
ultimately have $B \cdot A \in$ wffs $_{\text {foldr }}(\rightarrow)$ ts β
by blast
moreover have $\forall k<$ length As. $(A \# A s)!($ Suc $k)=A s!k \wedge(t \# t s)!(S u c k)=t s!k$
by force
with Cons.prems(1) have $\forall k<$ length As. As $!k \in$ wffs $_{t s}!k$
by fastforce
ultimately have $\cdot_{\star}{ }_{\star}(B \cdot A) A s \in$ wffs $_{\beta}$
using Cons.IH by (simp only:)
moreover have $\cdot{ }^{\mathcal{Q}}{ }_{\star} B(A \# A s)=\cdot{ }^{\mathcal{Q}}{ }_{\star}(B \cdot A) A s$
by simp
ultimately show ?case
by (simp only:)
qed
lemma generalized-abs-wff [intro]:
assumes $B \in$ wffs $_{\beta}$
shows $\lambda^{\mathcal{Q}}{ }_{\star}$ vs $B \in$ wffs $_{\text {foldr }}(\rightarrow)($ map snd vs) β
using assms proof (induction vs)
case Nil
then show?case

```
    by simp
next
    case (Cons vvs)
    let ?\delta = foldr ( }->\mathrm{ ) (map snd vs) }
    obtain x and \alpha where v=(x,\alpha)
    by fastforce
    then have FVar v}\in\mp@code{wffs
    by auto
    from Cons.prems have }\mp@subsup{\lambda}{}{\mp@subsup{\mathcal{Q}}{\star}{}}\mathrm{ vs }B\in\mathrm{ wffs?%
    by (fact Cons.IH)
    with }\langlev=(x,\alpha)\rangle have FAbs v(\mp@subsup{\lambda}{}{\mathcal{Q}}\mp@subsup{}{\star}{}vsB)\inwff\mp@subsup{s}{\alpha->?\delta}{
    by blast
    moreover from <v = (x,\alpha)\rangle have foldr ( }->\mathrm{ ) (map snd (v#vs)) }\beta=\alpha->\mathrm{ ? %
    by simp
    moreover have }\mp@subsup{\lambda}{}{\mathcal{Q}}\mp@subsup{}{\star}{}(v#\mathrm{ #vs) B=FAbs v ( ( }\mp@subsup{\lambda}{}{\mathcal{Q}}\mp@subsup{}{\star}{}vsB
    by simp
    ultimately show ?case by (simp only:)
qed
lemma Q-wff [intro]:
    shows }\mp@subsup{Q}{\alpha}{}\in\mp@subsup{w}{ff}{\prime}\mp@subsup{s}{\alpha->\alpha->o}{
    by auto
lemma iota-wff [intro]:
    shows }\iota\in\mp@subsup{\mathrm{ wffs (i,o) }}{(i,i}{
    by auto
lemma equality-wff [intro]:
    assumes }A\inwff\mp@subsup{s}{\alpha}{}\mathrm{ and }B\inwffs\mp@subsup{s}{\alpha}{
    shows A=\alpha B\inwffso
    using assms by auto
lemma equivalence-wff [intro]:
    assumes }A\inwff\mp@subsup{s}{o}{}\mathrm{ and B
    shows }A\equiv\mp@subsup{}{}{\mathcal{Q}}B\inwffs\mp@subsup{s}{0}{
    using assms unfolding equivalence-def by blast
lemma true-wff [intro]:
    shows T}\mp@subsup{T}{o}{}\inwff\mp@subsup{s}{o}{
    by force
lemma false-wff [intro]:
    shows F}\mp@subsup{F}{o}{}\inwff\mp@subsup{s}{o}{
    by auto
lemma pi-wff [intro]:
    shows \prod\alpha \inwffs (\alpha->o)->o
    using PI-def by fastforce
```

```
lemma forall-wff [intro]:
    assumes A\in wffs o
    shows }\forall\mp@subsup{x}{\alpha}{}.A\inwff\mp@subsup{s}{O}{
    using assms and pi-wff unfolding forall-def by blast
lemma generalized-forall-wff [intro]:
    assumes B\inwffs
    shows }\forall\mp@subsup{\mathcal{Q}}{\star}{}\mathrm{ vs }B\in\mathrm{ wffso
using assms proof (induction vs)
    case (Cons v vs)
    then show ?case
    using surj-pair[of v] by force
qed simp
lemma conj-fun-wff [intro]:
    shows }\mp@subsup{\wedge}{o->o->o}{}\in\mp@subsup{\mathrm{ wffs }}{o->o->o}{
    by auto
lemma conj-op-wff [intro]:
    assumes }A\inwff\mp@subsup{s}{O}{}\mathrm{ and }B\inwffs\mp@subsup{s}{O}{
    shows }A\mp@subsup{\wedge}{}{\mathcal{Q}}B\inwff\mp@subsup{s}{O}{
    using assms unfolding conj-op-def by blast
lemma imp-fun-wff [intro]:
    shows }\mp@subsup{\supset}{o->o->o}{}\in\mathrm{ wffs o ooomo
    by auto
lemma imp-op-wff [intro]:
    assumes }A\inwff\mp@subsup{s}{O}{}\mathrm{ and }B\inwff\mp@subsup{s}{O}{
    shows }A\mp@subsup{\supset}{}{\mathcal{Q}}B\inwff\mp@subsup{s}{O}{
    using assms unfolding imp-op-def by blast
lemma neg-wff [intro]:
    assumes }A\inwff\mp@subsup{s}{O}{
    shows }~\mp@subsup{~}{}{\mathcal{Q}}A\in\mp@subsup{\mathrm{ wffso}}{0}{
    using assms by fastforce
lemma disj-fun-wff [intro]:
    shows \vee 
    by auto
lemma disj-op-wff [intro]:
    assumes }A\inwff\mp@subsup{s}{o}{}\mathrm{ and B}\inwffs\mp@subsup{s}{O}{
    shows }A\vee\mp@subsup{\vee}{}{\mathcal{Q}}B\in\mp@subsup{w}{ff}{}\mp@subsup{s}{o}{
    using assms by auto
lemma exists-wff [intro]:
    assumes }A\inwffs\mp@subsup{s}{O}{
    shows }\exists\mp@subsup{x}{\alpha}{}.A\inwff\mp@subsup{s}{O}{
```

using assms by fastforce

```
lemma inequality-wff [intro]:
    assumes }A\inwffs\mp@subsup{s}{\alpha}{}\mathrm{ and }B\inwffs\mp@subsup{s}{\alpha}{
    shows A\not=\alpha B\inwffso
    using assms by fastforce
lemma wffs-from-app:
    assumes A}\cdotB\inwffs \beta
    obtains \alpha where }A\inwffs\mp@subsup{s}{\alpha->\beta}{}\mathrm{ and B}\inwffs
    using assms by (blast elim: wffs-of-type-cases)
lemma wffs-from-generalized-app:
    assumes \cdot\mp@subsup{\mathcal{Q }}{\star}{}BAs\inwffs}\mp@subsup{\beta}{}{
    obtains ts
    where length ts = length As
    and }\forallk< length As.As!k\inwffs ts !
    and B}\in\mp@subsup{wfffs}{foldr (}{(->)ts}
using assms proof (induction As arbitrary: B thesis)
    case Nil
    then show ?case
    by simp
next
    case (Cons A As)
    from Cons.prems have \cdot\mp@subsup{\mathcal{Q}}{\star}{}(B\cdotA)As\in\mp@subsup{wffs}{\beta}{}
    by auto
    then obtain ts
    where length ts = length As
    and }\forallk<length As.As!k\inwff\mp@subsup{s}{ts}{}!
    and B}\cdotA\in\mp@subsup{wfff}{foldr (}{->) ts \beta
    using Cons.IH by blast
    moreover
```



```
    by (elim wffs-from-app)
    moreover from <length ts = length As` have length (t#ts)= length (A# As)
    by simp
    moreover from }\langleA\inwff\mp@subsup{s}{t}{}\rangle\mathrm{ and }\langle\forallk<length As. As!k\inwffs ts ! k
    have }\forallk<length (A##As). (A##As)!k\inwffs (t#ts)!
    by (simp add: nth-Cons')
    moreover from <B\inwffs
    by simp
    ultimately show ?case
    using Cons.prems(1) by blast
qed
lemma wffs-from-abs:
    assumes }\lambda\mp@subsup{x}{\alpha}{}.A\inwffs
    obtains }\beta\mathrm{ where }\gamma=\alpha->\beta\mathrm{ and }A\inwffs
```

```
using assms by (blast elim: wffs-of-type-cases)
lemma wffs-from-equality:
    assumes A=\alpha B\inwffso
    shows }A\inwffs\mp@subsup{s}{\alpha}{}\mathrm{ and }B\inwffs\mp@subsup{s}{\alpha}{
    using assms by (fastforce elim: wffs-of-type-cases)+
lemma wffs-from-equivalence:
    assumes }A\equiv\mp@subsup{\equiv}{}{\mathcal{Q}}B\in\mp@subsup{w}{ffs}{o
    shows }A\inwff\mp@subsup{s}{o}{}\mathrm{ and }B\inwffs\mp@subsup{s}{o}{
    using assms unfolding equivalence-def by (fact wffs-from-equality)+
lemma wffs-from-forall:
    assumes }\forall\mp@subsup{x}{\alpha}{}.A\inwff\mp@subsup{s}{o}{
    shows }A\inwffs\mp@subsup{s}{0}{
    using assms unfolding forall-def and PI-def
    by (fold equality-of-type-def) (drule wffs-from-equality, blast elim: wffs-from-abs)
lemma wffs-from-conj-fun:
    assumes }\mp@subsup{\wedge}{o->o->o}{}\cdotA\cdotB\inwffs\mp@subsup{s}{O}{
    shows }A\in\mp@subsup{w}{ffs}{o
    using assms by (auto elim: wffs-from-app wffs-from-abs)
lemma wffs-from-conj-op:
    assumes }A\mp@subsup{\wedge}{}{\mathcal{Q}}B\in\mathrm{ wffso
    shows }A\inwff\mp@subsup{s}{o}{}\mathrm{ and B
    using assms unfolding conj-op-def by (elim wffs-from-conj-fun)+
lemma wffs-from-imp-fun:
    assumes }\mp@subsup{\supset}{o->o->o}{o}\cdotA\cdotB\in\mp@subsup{wffs}{o}{
    shows }A\inwff\mp@subsup{s}{o}{}\mathrm{ and }B\in\mp@subsup{w}{ff}{\prime}\mp@subsup{s}{o}{
    using assms by (auto elim: wffs-from-app wffs-from-abs)
lemma wffs-from-imp-op:
    assumes A}\mp@subsup{\supset}{}{\mathcal{Q}}B\in\mp@subsup{\mathrm{ wffso}}{O}{
    shows }A\in\mp@subsup{wfffso}{o}{\mathrm{ and }}B\in\mp@subsup{w}{ffs}{o
    using assms unfolding imp-op-def by (elim wffs-from-imp-fun)+
lemma wffs-from-neg:
    assumes }~\mathcal{Q}A\in\mp@subsup{~}{fff}{o
    shows A\in wffso
    using assms unfolding neg-def by (fold equality-of-type-def) (drule wffs-from-equality, blast)
lemma wffs-from-disj-fun:
    assumes }\mp@subsup{\vee}{o->o->o}{*}\cdotA\cdotB\inwffs\mp@subsup{s}{O}{
    shows }A\inwff\mp@subsup{s}{o}{}\mathrm{ and }B\in\mathrm{ wffs}\mp@subsup{s}{o}{
    using assms by (auto elim: wffs-from-app wffs-from-abs)
lemma wffs-from-disj-op:
```

```
    assumes \(A \vee^{\mathcal{Q}} B \in\) wffso
    shows \(A \in w f f s_{o}\) and \(B \in w f f s_{o}\)
    using assms and wffs-from-disj-fun unfolding disj-op-def by blast+
lemma wffs-from-exists:
    assumes \(\exists x_{\alpha} . A \in w_{f f} s_{o}\)
    shows \(A \in\) wffs \(_{o}\)
    using assms unfolding exists-def using wffs-from-neg and wffs-from-forall by blast
lemma wffs-from-inequality:
    assumes \(A \neq \alpha B \in\) wffs \(_{o}\)
    shows \(A \in w f f s_{\alpha}\) and \(B \in w f f s_{\alpha}\)
    using assms unfolding inequality-of-type-def using wffs-from-equality and wffs-from-neg by me-
son+
lemma wff-has-unique-type:
    assumes \(A \in\) wffs \(s_{\alpha}\) and \(A \in\) wffs \(_{\beta}\)
    shows \(\alpha=\beta\)
using assms proof (induction arbitrary: \(\alpha \beta\) rule: form.induct)
    case (FVar \(v\) )
    obtain \(x\) and \(\gamma\) where \(v=(x, \gamma)\)
        by fastforce
    with FVar.prems have \(\alpha=\gamma\) and \(\beta=\gamma\)
    by (blast elim: wffs-of-type-cases)+
    then show ?case ..
next
    case (FCon \(k\) )
    obtain \(x\) and \(\gamma\) where \(k=(x, \gamma)\)
        by fastforce
    with FCon.prems have \(\alpha=\gamma\) and \(\beta=\gamma\)
            by (blast elim: wffs-of-type-cases)+
    then show ?case ..
next
    case (FApp A B)
    from FApp.prems obtain \(\alpha^{\prime}\) and \(\beta^{\prime}\) where \(A \in w f f s_{\alpha^{\prime} \rightarrow \alpha}\) and \(A \in w f f s_{\beta^{\prime} \rightarrow \beta}\)
        by (blast elim: wffs-from-app)
    with FApp.IH (1) show ?case
        by blast
next
    case (FAbs v A)
    obtain \(x\) and \(\gamma\) where \(v=(x, \gamma)\)
        by fastforce
    with FAbs.prems obtain \(\alpha^{\prime}\) and \(\beta^{\prime}\)
    where \(\alpha=\gamma \rightarrow \alpha^{\prime}\) and \(\beta=\gamma \rightarrow \beta^{\prime}\) and \(A \in w f f s_{\alpha^{\prime}}\) and \(A \in w f f s_{\beta^{\prime}}\)
    by (blast elim: wffs-from-abs)
    with FAbs.IH show ?case
        by \(\operatorname{simp}\)
qed
```

```
lemma wffs-of-type-o-induct [consumes 1, case-names Var Con App]:
    assumes A\inwffso
    and }\x.\mathcal{P}(\mp@subsup{x}{0}{}
    and \bigwedgec. P}({c}o
    and \AAB\alpha.A\inwffs\alpha->o }\LongrightarrowB\inwffs\alpha \Longrightarrow\mathcal{P}(A\cdotB
    shows }\mathcal{P}
    using assms by (cases rule: wffs-of-type-cases) simp-all
lemma diff-types-implies-diff-wffs:
    assumes }A\inwffs\mp@subsup{s}{\alpha}{}\mathrm{ and B}\inwffs 
    and \alpha\not=\beta
    shows }A\not=
    using assms and wff-has-unique-type by blast
lemma is-free-for-in-generalized-app [intro]:
    assumes is-free-for Av B and \forallC\inlset Cs. is-free-for A v C
    shows is-free-for Av( ( }\mp@subsup{}{\star}{}\mp@subsup{}{\star}{}BCs
using assms proof (induction Cs rule: rev-induct)
    case Nil
    then show ?case
        by simp
next
    case (snoc C Cs)
    from snoc.prems(2) have is-free-for AvC and }\forallC\inlset Cs.is-free-for A v C
        by simp-all
    with snoc.prems(1) have is-free-for Av( (. * * B Cs)
        using snoc.IH by simp
    with〈is-free-for A v C` show ?case
        using is-free-for-to-app by simp
qed
lemma is-free-for-in-equality [intro]:
    assumes is-free-for Av B and is-free-for AvC
    shows is-free-for A v (B=\alpha C)
    using assms unfolding equality-of-type-def and Q-def and Q-constant-of-type-def
    by (intro is-free-for-to-app is-free-for-in-con)
lemma is-free-for-in-equivalence [intro]:
    assumes is-free-for AvB and is-free-for A v C
    shows is-free-for A v (B \equiv}\mp@subsup{}{}{\mathcal{Q}}C
    using assms unfolding equivalence-def by (rule is-free-for-in-equality)
lemma is-free-for-in-true [intro]:
    shows is-free-for A v (T
    by force
lemma is-free-for-in-false [intro]:
    shows is-free-for A v (F Fo)
    unfolding false-def by (intro is-free-for-in-equality is-free-for-closed-form) simp-all
```

```
lemma is-free-for-in-forall [intro]:
    assumes is-free-for \(A v B\) and \((x, \alpha) \notin\) free-vars \(A\)
    shows is-free-for \(A v\left(\forall x_{\alpha} . B\right)\)
unfolding forall-def and PI-def proof (fold equality-of-type-def)
    have is-free-for Av \(\left(\lambda \mathfrak{x}_{\alpha} . T_{o}\right)\)
        using is-free-for-to-abs[OF is-free-for-in-true assms(2)] by fastforce
    moreover have is-free-for \(A v\left(\lambda x_{\alpha}\right.\). B)
        by (fact is-free-for-to-abs[OF assms])
    ultimately show is-free-for \(A v\left(\lambda \mathfrak{x}_{\alpha} . T_{o}={ }_{\alpha \rightarrow o} \lambda x_{\alpha} . B\right)\)
        by (iprover intro: assms(1) is-free-for-in-equality is-free-for-in-true is-free-for-to-abs)
qed
lemma is-free-for-in-generalized-forall [intro]:
    assumes is-free-for \(A v B\) and lset vs \(\cap\) free-vars \(A=\{ \}\)
    shows is-free-for \(A v\left(\forall^{\mathcal{Q}}{ }_{\star}\right.\) vs \(\left.B\right)\)
using assms proof (induction vs)
    case Nil
    then show? case
        by simp
next
    case (Cons \(v^{\prime} v s\) )
    obtain \(x\) and \(\alpha\) where \(v^{\prime}=(x, \alpha)\)
        by fastforce
    from Cons.prems(2) have \(v^{\prime} \notin\) free-vars \(A\) and lset vs \(\cap\) free-vars \(A=\{ \}\)
        by simp-all
    from Cons.prems(1) and 〈lset vs \(\cap\) free-vars \(A=\{ \}\rangle\) have is-free-for \(A v\left(\forall \mathcal{Q}_{\star}\right.\) vs \(\left.B\right)\)
        by (fact Cons.IH)
    from this and \(\left\langle v^{\prime} \notin\right.\) free-vars \(\left.A\right\rangle\left[\right.\) unfolded \(\left.\left\langle v^{\prime}=(x, \alpha)\right\rangle\right]\) have is-free-for \(A v\left(\forall x_{\alpha} . \forall \mathcal{Q}_{\star}\right.\) vs \(\left.B\right)\)
        by (intro is-free-for-in-forall)
    with \(\left\langle v^{\prime}=(x, \alpha)\right\rangle\) show ?case
        by \(\operatorname{simp}\)
qed
lemma is-free-for-in-conj [intro]:
    assumes is-free-for \(A v B\) and is-free-for \(A v C\)
    shows is-free-for \(A v\left(B \wedge^{\mathcal{Q}} C\right)\)
proof -
    have free-vars \(\wedge_{o \rightarrow o \rightarrow o}=\{ \}\)
        by force
    then have is-free-for \(A v\left(\wedge_{o \rightarrow o \rightarrow o}\right)\)
        using is-free-for-closed-form by fast
    with assms have is-free-for \(A v\left(\wedge_{o \rightarrow o \rightarrow o} \cdot B \cdot C\right)\)
        by (intro is-free-for-to-app)
    then show ?thesis
        by (fold conj-op-def)
qed
lemma is-free-for-in-imp [intro]:
```

```
    assumes is-free-for \(A v B\) and is-free-for \(A v C\)
    shows is-free-for \(A v\left(B \supset^{\mathcal{Q}} C\right)\)
proof -
    have free-vars \(\supset_{o \rightarrow o \rightarrow o}=\{ \}\)
    by force
    then have is-free-for \(A v\left(\supset_{o \rightarrow o \rightarrow o)}\right.\)
        using is-free-for-closed-form by fast
    with assms have is-free-for \(A v\left(\supset_{o \rightarrow o \rightarrow o} \cdot B \cdot C\right)\)
        by (intro is-free-for-to-app)
    then show? ?thesis
        by (fold imp-op-def)
qed
lemma is-free-for-in-neg [intro]:
    assumes is-free-for \(A v B\)
    shows is-free-for \(A v\left(\sim^{\mathcal{Q}} B\right)\)
    using assms unfolding neg-def and \(Q\)-def and \(Q\)-constant-of-type-def
    by (intro is-free-for-to-app is-free-for-in-false is-free-for-in-con)
lemma is-free-for-in-disj [intro]:
    assumes is-free-for \(A v B\) and is-free-for \(A v C\)
    shows is-free-for \(A v\left(B \vee{ }^{\mathcal{Q}} C\right)\)
proof -
    have free-vars \(\vee_{o \rightarrow o \rightarrow o}=\{ \}\)
        by force
    then have is-free-for \(A v\left(\vee_{o \rightarrow o \rightarrow o}\right)\)
        using is-free-for-closed-form by fast
    with assms have is-free-for \(A v\left(\mathrm{~V}_{o \rightarrow o \rightarrow o} \cdot B \cdot C\right)\)
        by (intro is-free-for-to-app)
    then show ?thesis
        by (fold disj-op-def)
qed
lemma replacement-preserves-typing:
    assumes \(C \backslash p \leftarrow B \backslash \triangleright D\)
    and \(A \preceq \preceq_{p} C\)
    and \(A \in w f f s_{\alpha}\) and \(B \in w f f s_{\alpha}\)
    shows \(C \in\) wffs \(_{\beta} \longleftrightarrow D \in w\) ffs \(s_{\beta}\)
using assms proof (induction arbitrary: \(\beta\) rule: is-replacement-at.induct)
    case (pos-found p \(C C^{\prime} A\) )
    then show? case
    using diff-types-implies-diff-wffs by auto
qed (metis is-subform-at.simps(2,3,4) wffs-from-app wffs-from-abs wffs-of-type-simps)+
corollary replacement-preserves-typing':
    assumes \(C \backslash p \leftarrow B \backslash \triangleright D\)
    and \(A \preceq_{p} C\)
    and \(A \in w f f s_{\alpha}\) and \(B \in w f f s_{\alpha}\)
    and \(C \in w f f s_{\beta}\) and \(D \in w f f s \gamma\)
```

shows $\beta=\gamma$
using assms and replacement-preserves-typing and wff-has-unique-type by simp
Closed formulas and sentences:

```
definition is-closed-wff-of-type :: form \(\Rightarrow\) type \(\Rightarrow\) bool where
    [iff]: is-closed-wff-of-type \(A \alpha \longleftrightarrow A \in\) wffs \(\alpha \wedge\) free-vars \(A=\{ \}\)
definition is-sentence \(::\) form \(\Rightarrow\) bool where
    [iff]: is-sentence \(A \longleftrightarrow\) is-closed-wff-of-type \(A\) o
```


2.14 Substitutions

```
type-synonym substitution =(var, form) fmap
```

definition is-substitution :: substitution \Rightarrow bool where
[iff]: is-substitution $\vartheta \longleftrightarrow\left(\forall(x, \alpha) \in\right.$ fmdom $^{\prime} \vartheta . \vartheta \$ \$!(x, \alpha) \in$ wffs $\left.s_{\alpha}\right)$
fun substitute :: substitution \Rightarrow form \Rightarrow form (\mathbf{S}-- $[51,51])$ where
$\mathbf{S} \vartheta\left(x_{\alpha}\right)=\left(\right.$ case $\vartheta \$ \(x, α) of None $\Rightarrow x_{\alpha} \mid$ Some $\left.A \Rightarrow A\right)$
$\mid \mathbf{S} \vartheta(\{c\} \alpha)=\{c\} \alpha$
$\mid \mathbf{S} \vartheta(A \cdot B)=(\mathbf{S} \vartheta A) \cdot(\mathbf{S} \vartheta B)$
$\mid \mathbf{S} \vartheta\left(\lambda x_{\alpha} . A\right)=\left(\right.$ if $(x, \alpha) \notin$ fmdom $^{\prime} \vartheta$ then $\lambda x_{\alpha} . \mathbf{S} \vartheta A$ else $\left.\lambda x_{\alpha} . \mathbf{S}(f m d r o p(x, \alpha) \vartheta) A\right)$

```
lemma empty-substitution-neutrality:
    shows \(\mathbf{S}\{\$ \$\} A=A\)
    by (induction \(A\) ) auto
lemma substitution-preserves-typing:
    assumes is-substitution \(\vartheta\)
    and \(A \in w f f s \alpha\)
    shows \(\mathbf{S} \vartheta A \in w f f s_{\alpha}\)
using \(\operatorname{assms}(2)\) and \(\operatorname{assms}(1)[\) unfolded is-substitution-def] proof (induction arbitrary: \(\vartheta\) )
    case (var-is-wff \(\alpha x\) )
    then show ?case
        by \(\left(\right.\) cases \((x, \alpha) \in\) frdom \(\left.^{\prime} \vartheta\right)(\) use fmdom'-notI in \(\langle\) force +\(\rangle)\)
next
    case (abs-is-wff \(\beta A \alpha x)\)
    then show ?case
    proof (cases \((x, \alpha) \in\) fmdom \(\left.^{\prime} \vartheta\right)\)
    case True
        then have \(\mathbf{S} \vartheta\left(\lambda x_{\alpha} . A\right)=\lambda x_{\alpha} . \mathbf{S}(\) fmdrop \((x, \alpha) \vartheta) A\)
            by \(\operatorname{simp}\)
        moreover from abs-is-wff.prems have is-substitution (fmdrop \((x, \alpha) \vartheta\) )
            by fastforce
        with abs-is-wff.IH have \(\mathbf{S}\left(\right.\) fmdrop \(^{(x, \alpha) \vartheta)} A \in\) wffs \(_{\beta}\)
            by \(\operatorname{simp}\)
        ultimately show ?thesis
            by auto
    next
```

```
    case False
    then have S \vartheta ( }\lambda\mp@subsup{x}{\alpha}{}.A)=\lambda\mp@subsup{x}{\alpha}{}.\mathbf{S}\vartheta
        by simp
    moreover from abs-is-wff.IH have S S \vartheta A\inwffs s
        using abs-is-wff.prems by blast
    ultimately show ?thesis
        by fastforce
    qed
qed force+
lemma derived-substitution-simps:
    shows S \vartheta To}=\mp@subsup{T}{o}{
    and S}\vartheta\mp@subsup{F}{o}{}=\mp@subsup{F}{o}{
    and S }\vartheta(\prod\alpha)=\prod
    and S \vartheta (~\mathcal{Q}B)=~\mathcal{Q}(\mathbf{S}\varthetaB)
    and S \vartheta (B=\mp@subsup{\alpha}{\alpha}{C})=(\mathbf{S}\varthetaB)=\alpha}(\mathbf{S}\varthetaC
    and S \vartheta (B}\mp@subsup{\wedge}{}{\mathcal{Q}}C)=(\mathbf{S}\varthetaB)\wedge^\mathcal{Q}(\mathbf{S}\varthetaC
    and S \vartheta 
    and S \vartheta (B\supset\mp@subsup{\supset}{}{\mathcal{Q}}C)=(\mathbf{S}\varthetaB)}\mp@subsup{\supset}{}{\mathcal{Q}}(\mathbf{S}\varthetaC
    and S \ \vartheta (B\equiv\mp@subsup{}{}{\mathcal{Q}}C)=(\mathbf{S}\varthetaB) \equiv}\mp@subsup{}{}{\mathcal{Q}}(\mathbf{S}\varthetaC
    and S \vartheta (B\not=\alphaC)=(\mathbf{S}\varthetaB)\not=\alpha(\mathbf{S}\varthetaC)
    and S \vartheta (\forall\mp@subsup{x}{\alpha}{}.B)=(if (x,\alpha)\not\infmdom'` \vartheta then }\forall\mp@subsup{x}{\alpha}{}.\mathbf{S}\vartheta B else \forall\mp@subsup{x}{\alpha}{}.\mathbf{S}(fmdrop (x,\alpha)\vartheta)B
    and S \vartheta (\exists\mp@subsup{x}{\alpha}{}.B)=(if (x,\alpha)\not\infmdom'\vartheta then \exists\mp@subsup{x}{\alpha}{}.\mathbf{S}\vartheta B else \exists\mp@subsup{x}{\alpha}{}.\mathbf{S}(fmdrop (x,\alpha)\vartheta) B)
    by auto
lemma generalized-app-substitution:
    shows S \vartheta (.\mp@subsup{Q}{\star}{}ABs)= 跃 (S \vartheta A) (map (\lambdaB. S \vartheta B)Bs)
    by (induction Bs arbitrary: A) simp-all
lemma generalized-abs-substitution:
```



```
proof (induction vs arbitrary: \vartheta)
    case Nil
    then show ?case
        by simp
next
    case (Cons v vs)
    obtain x and \alpha where v=(x,\alpha)
        by fastforce
    then show ?case
    proof (cases v}\not\infmdom'\vartheta
        case True
        then have *: fmdom' }\vartheta\cap\mathrm{ lset (v# vs) = fmdom' }\vartheta\cap\mathrm{ lset vs
        by simp
        from True have S \vartheta ( }\mp@subsup{\lambda}{\star}{\mp@subsup{\mathcal{Q}}{\star}{}}(v#vs)A)=\lambda\mp@subsup{x}{\alpha}{}.\mathbf{S}\vartheta(\mp@subsup{\lambda}{}{\mp@subsup{\mathcal{Q}}{\star}{}}vsA
        using }\langlev=(x,\alpha)\rangle\mathrm{ by auto
```



```
            using Cons.IH by (simp only:)
            also have ... = 勆 (v#vs) (S (fmdrop-set (fmdom'\vartheta \cap lset (v#vs)) \vartheta) A)
```

```
        using }\langlev=(x,\alpha)\rangle\mathrm{ and * by auto
        finally show ?thesis .
    next
        case False
        let ?\vartheta'= fmdrop v \vartheta
        have *: fmdrop-set (fmdom' \vartheta \cap lset (v # vs)) \vartheta = fmdrop-set (fmdom' ?\vartheta'\cap lset vs) ?\vartheta'
            using False by clarsimp (metis Int-Diff Int-commute fmdrop-set-insert insert-Diff-single)
        from False have S }\vartheta(\mp@subsup{\lambda}{}{\mathcal{Q}}\mp@subsup{\star}{}{\prime}(v#vs)A)=\lambda\mp@subsup{x}{\alpha}{}.\mathbf{S}?\mp@subsup{\vartheta}{}{\prime}(\mp@subsup{\lambda}{}{\mathcal{Q}}\mp@subsup{}{\star}{}\mathrm{ vs A)
        using <v = (x,\alpha)> by auto
```



```
        using Cons.IH by (simp only:)
```



```
        using <v = (x,\alpha) > and * by auto
    finally show ?thesis.
    qed
qed
lemma generalized-forall-substitution:
    shows S \vartheta (\forall\mp@subsup{\mathcal{Q}}{\star}{}\mathrm{ vs }A)=\forall\mp@subsup{\forall}{\star}{\mathcal{Q}}\mathrm{ vs (S (fmdrop-set (fmdom' }\vartheta\cap lset vs) \vartheta) A)
proof (induction vs arbitrary:\vartheta)
    case Nil
    then show ?case
        by simp
next
    case (Cons v vs)
    obtain x and \alpha where v=(x,\alpha)
    by fastforce
    then show ?case
    proof (cases v}\not\infmdom'\vartheta
        case True
        then have *:fmdom' }\vartheta\cap\mathrm{ lset (v# vs) = fmdom' }\vartheta\cap\mathrm{ lset vs
        by simp
    from True have S \vartheta (\forall\mp@subsup{\mathcal{Q}}{\star}{}(v#vs)A)=\forall\mp@subsup{x}{\alpha}{}.\mathbf{S}\vartheta(\forall\mp@subsup{\mathcal{Q}}{\star}{}vsA)
        using <v = (x,\alpha)> by auto
```



```
        using Cons.IH by (simp only:)
    also have ... = \forall\mathcal{Q}
        using <v = (x,\alpha)> and * by auto
    finally show ?thesis.
    next
    case False
    let ?\vartheta' = fmdrop v \vartheta
    have *: fmdrop-set (fmdom' \vartheta \cap lset (v # vs)) \vartheta = fmdrop-set (fmdom' ?\vartheta'\cap lset vs) ?\vartheta'
        using False by clarsimp (metis Int-Diff Int-commute fmdrop-set-insert insert-Diff-single)
```



```
        using <v = (x,\alpha)> by auto
```



```
            using Cons.IH by (simp only:)
```



```
        using }\langlev=(x,\alpha)\rangle\mathrm{ and * by auto
        finally show ?thesis .
    qed
qed
lemma singleton-substitution-simps:
    shows S {(x,\alpha)}->A}(\mp@subsup{y}{\beta}{})=(\mathrm{ if }(x,\alpha)\not=(y,\beta)\mathrm{ then y }\mp@subsup{y}{\beta}{}\mathrm{ else A)
    and S {(x,\alpha)\mapstoA} ({c}\alpha)={c}\alpha
    and \mathbf{S}{(x,\alpha)\mapstoA}(B\cdotC)=(\mathbf{S}{(x,\alpha)\longmapstoA}B)\cdot(\mathbf{S}{(x,\alpha)\mapstoA}C)
    and S {(x,\alpha)\multimapA} (\lambday_.B)=\lambda\mp@subsup{y}{\beta}{}.(if (x,\alpha)=(y,\beta) then B else S {(x,\alpha)\mapstoA} B)
    by (simp-all add: empty-substitution-neutrality fmdrop-fmupd-same)
lemma substitution-preserves-freeness:
    assumes }y\not\in\mathrm{ free-vars A and y}\not=
    shows }y\not\in\mathrm{ free-vars S {x}->F\mathrm{ Var z} A
using assms(1) proof (induction A rule: free-vars-form.induct)
    case (1 1 x' \alpha)
    with assms(2) show ?case
        using surj-pair[of z] by (cases x = (x', \alpha)) force+
next
    case (4 x' \alpha A)
    then show?case
        using surj-pair[of z]
        by(cases x=(x',\alpha))(use singleton-substitution-simps(4) in presburger, auto)
qed auto
lemma renaming-substitution-minimal-change:
    assumes }y\not\in\mathrm{ vars }A\mathrm{ and }y\not=
    shows y\not\invars (S {x\mapstoFVarz} A)
using assms(1) proof (induction A rule: vars-form.induct)
    case (1 1 ( }\alpha\mathrm{ )
    with assms(2) show ?case
        using surj-pair[of z] by (cases x = (x', \alpha)) force+
next
    case (4 x' < A)
    then show ?case
        using surj-pair[of z]
        by (cases x = (x',\alpha))(use singleton-substitution-simps(4) in presburger, auto)
qed auto
lemma free-var-singleton-substitution-neutrality:
    assumes v\not\in free-vars A
    shows S {v }\longleftrightarrowB}A=
    using assms
    by
    (induction A rule: free-vars-form.induct)
    (simp-all, metis empty-substitution-neutrality fmdrop-empty fmdrop-fmupd-same)
lemma identity-singleton-substitution-neutrality:
```

```
shows \(\mathbf{S}\{v \mapsto F \operatorname{Var} v\} A=A\)
by
    (induction A rule: free-vars-form.induct)
    (simp-all add: empty-substitution-neutrality fmdrop-fmupd-same)
```

lemma free-var-in-renaming-substitution:
assumes $x \neq y$
shows $(x, \alpha) \notin$ free-vars $\left(\mathbf{S}\left\{(x, \alpha) \longmapsto y_{\alpha}\right\} B\right)$
using assms by (induction B rule: free-vars-form.induct) simp-all
lemma renaming-substitution-preserves-form-size:
shows form-size $\left(\mathbf{S}\left\{v \mapsto F \operatorname{Var} v^{\prime}\right\} A\right)=$ form-size A
proof (induction A rule: form-size.induct)
case (1 x 人)
then show ?case
using form-size.elims by auto
next
case ($4 x \alpha A$)
then show? case
by (cases $v=(x, \alpha)$) (use singleton-substitution-simps(4) in presburger, auto)
qed simp-all

The following lemma corresponds to X5100 in [2]:

```
lemma substitution-composability:
    assumes \(v^{\prime} \notin\) vars \(B\)
    shows \(\mathbf{S}\left\{v^{\prime} \hookrightarrow A\right\} \mathbf{S}\left\{v \hookrightarrow F \operatorname{Var} v^{\prime}\right\} B=\mathbf{S}\{v \rightharpoondown A\} B\)
using assms proof (induction \(B\) arbitrary: \(v^{\prime}\) )
    case (FAbs w C)
    then show ?case
    proof (cases \(v=w\) )
    case True
    from \(\left\langle v^{\prime} \notin \operatorname{vars}(F A b s w C)\right\rangle\) have \(v^{\prime} \notin\) free-vars (FAbs \(w C\) )
        using free-vars-in-all-vars by blast
    then have \(\mathbf{S}\left\{v^{\prime} \mapsto A\right\}(\) FAbs w \(C)=F A b s w C\)
        by (rule free-var-singleton-substitution-neutrality)
    from \(\langle v=w\rangle\) have \(v \notin\) free-vars (FAbs \(w C\) )
        using surj-pair \([o f w]\) by fastforce
    then have \(\mathbf{S}\{v \multimap A\}(F A b s w C)=F A b s w C\)
        by (fact free-var-singleton-substitution-neutrality)
    also from \(\left\langle\mathbf{S}\left\{v^{\prime} \hookrightarrow A\right\}(\right.\) FAbs \(\left.w C)=F A b s w C\right\rangle\) have \(\ldots=\mathbf{S}\left\{v^{\prime} \hookrightarrow A\right\}(F A b s w C)\)
                by ( \(\operatorname{simp}\) only:)
    also from \(\langle v=w\rangle\) have \(\ldots=\mathbf{S}\left\{v^{\prime} \hookrightarrow A\right\} \mathbf{S}\left\{v \mapsto F \operatorname{Var} v^{\prime}\right\}(F A b s w C)\)
                using free-var-singleton-substitution-neutrality[OF \(\langle v \notin\) free-vars (FAbs w C) \(\rangle\) ] by (simp only:)
    finally show ?thesis ..
    next
    case False
    from FAbs.prems have \(v^{\prime} \notin\) vars \(C\)
                using surj-pair [of \(w]\) by fastforce
    then show ?thesis
```

```
    proof (cases \(v^{\prime}=w\) )
        case True
        with FAbs.prems show ?thesis
        using vars-form.elims by auto
    next
    case False
    from \(\langle v \neq w\rangle\) have \(\mathbf{S}\{v \hookrightarrow A\}(\) FAbs \(w C)=F A b s w(\mathbf{S}\{v \mapsto A\} C)\)
                using surj-pair \([\) of \(w]\) by fastforce
    also from FAbs.IH have \(\ldots=\) FAbs \(w\left(\mathbf{S}\left\{v^{\prime} \hookrightarrow A\right\} \mathbf{S}\left\{v \mapsto F \operatorname{Var} v^{\prime}\right\} C\right)\)
                using \(\left\langle v^{\prime} \notin\right.\) vars \(\left.C\right\rangle\) by simp
            also from \(\left\langle v^{\prime} \neq w\right\rangle\) have \(\ldots=\mathbf{S}\left\{v^{\prime} \hookrightarrow A\right\}\left(\right.\) FAbs \(\left.w\left(\mathbf{S}\left\{v \hookrightarrow F \operatorname{Var} v^{\prime}\right\} C\right)\right)\)
                using surj-pair \([o f w]\) by fastforce
            also from \(\langle v \neq w\rangle\) have \(\ldots=\mathbf{S}\left\{v^{\prime} \hookrightarrow A\right\} \mathbf{S}\{v \mapsto F \operatorname{Var} v\}(\) FAbs \(w C)\)
                using surj-pair \([\) of \(w]\) by fastforce
            finally show ?thesis ..
        qed
    qed
qed auto
The following lemma corresponds to X5101 in [2]:
lemma renaming-substitution-composability:
assumes \(z \notin\) free-vars \(A\) and is-free-for (FVar \(z\) ) xA
shows \(\mathbf{S}\{z \rightarrow F \operatorname{Var} y\} \mathbf{S}\{x \rightarrow F \operatorname{Var} z\} A=\mathbf{S}\{x \mapsto F \operatorname{Var} y\} A\)
using assms proof (induction A arbitrary: \(z\) )
case (FVar \(v\) )
then show? ?case
using surj-pair \([o f ~ v]\) and surj-pair \([o f z]\) by fastforce
next
case ( \(F\) Con \(k\) )
then show? case
using surj-pair [of \(k]\) by fastforce
next
case (FApp B C)
let \(? \vartheta_{z y}=\{z \hookrightarrow\) VVar \(y\}\) and \(? \vartheta_{x z}=\{x \mapsto F\) Var \(z\}\) and \(? \vartheta_{x y}=\{x \mapsto F\) Var \(y\}\)
from «is-free-for \((F \operatorname{Var} z) x(B \cdot C)\rangle\) have is-free-for \((F \operatorname{Var} z) x B\) and is-free-for ( \(F \operatorname{Var} z\) ) \(x C\) using is-free-for-from-app by iprover+
moreover from \(\langle z \notin\) free-vars \((B \cdot C)\rangle\) have \(z \notin\) free-vars \(B\) and \(z \notin\) free-vars \(C\) by simp-all
ultimately have \(*: \mathbf{S} ? \vartheta_{z y} \mathbf{S} ? \vartheta_{x z} B=\mathbf{S} ? \vartheta_{x y} B\) and \(* *: \mathbf{S} ? \vartheta_{z y} \mathbf{S} ? \vartheta_{x z} C=\mathbf{S} ? \vartheta_{x y} C\)
using FApp.IH by simp-all
have \(\mathbf{S} ? \vartheta_{z y} \mathbf{S} ? \vartheta_{x z}(B \cdot C)=\left(\mathbf{S} ? \vartheta_{z y} \mathbf{S} ? \vartheta_{x z} B\right) \cdot\left(\mathbf{S} ? \vartheta_{z y} \mathbf{S} ? \vartheta_{x z} C\right)\) by simp
also from \(*\) and \(* *\) have \(\ldots=\left(\mathbf{S} ? \vartheta_{x y} B\right) \cdot\left(\mathbf{S} ? \vartheta_{x y} C\right)\)
by (simp only:)
also have \(\ldots=\mathbf{S} ? \vartheta_{x y}(B \cdot C)\)
by simp
finally show? ?case.
next
case (FAbs w B)
```

```
let \(? \vartheta_{z y}=\{z \mapsto F\) Var \(y\}\) and \(? \vartheta_{x z}=\{x \mapsto F \operatorname{Var} z\}\) and \(? \vartheta_{x y}=\{x \mapsto F \operatorname{Var} y\}\)
show ?case
proof (cases \(x=w\) )
    case True
    then show ?thesis
    proof (cases \(z=w\) )
        case True
        with \(\langle x=w\rangle\) have \(x \notin\) free-vars (FAbs \(w B\) ) and \(z \notin\) free-vars (FAbs \(w B\) )
        using surj-pair [of \(w]\) by fastforce+
    from \(\langle x \notin\) free-vars \((F A b s w B)\rangle\) have \(\mathbf{S} ? \vartheta_{x y}(F A b s w B)=F A b s w B\)
        by (fact free-var-singleton-substitution-neutrality)
    also from \(\left\langle z \notin\right.\) free-vars \((\) FAbs w B) \(\rangle\) have \(\ldots=\mathbf{S} ? \vartheta_{z y}(F A b s w B)\)
        by (fact free-var-singleton-substitution-neutrality[symmetric])
    also from \(\left\langle x \notin\right.\) free-vars \((\) FAbs w B) \(\rangle\) have \(\ldots=\mathbf{S} ? \vartheta_{z y} \mathbf{S} ? \vartheta_{x z}(F A b s w B)\)
        using free-var-singleton-substitution-neutrality by simp
    finally show ?thesis ..
    next
    case False
    with \(\langle x=w\rangle\) have \(z \notin\) free-vars \(B\) and \(x \notin\) free-vars (FAbs w B)
        using \(\langle z \notin\) free-vars (FAbs w B) 〉 and surj-pair \([\) of \(w]\) by fastforce +
    from \(\langle z \notin\) free-vars \(B\rangle\) have \(\mathbf{S} ? \vartheta_{z y} B=B\)
        by (fact free-var-singleton-substitution-neutrality)
    from \(\langle x \notin\) free-vars \((F A b s w B)\rangle\) have \(\mathbf{S} ? \vartheta_{x y}(F A b s w B)=F A b s w B\)
        by (fact free-var-singleton-substitution-neutrality)
    also from \(\left\langle\mathbf{S} ? \vartheta_{z y} B=B\right\rangle\) have \(\ldots=F A b s w\left(\mathbf{S} ? \vartheta_{z y} B\right)\)
        by ( simp only:)
    also from \(\left\langle z \notin\right.\) free-vars \((\) FAbs w B) \(\rangle\) have \(\ldots=\mathbf{S}\) ? \(\vartheta_{z y}(F A b s w B)\)
        by (simp add: \(\left\langle F A b s w B=F A b s w\left(\mathbf{S} ? v_{z y} B\right)\right\rangle\) free-var-singleton-substitution-neutrality)
    also from \(\left\langle x \notin\right.\) free-vars \((\) FAbs w B) \(\rangle\) have \(\ldots=\mathbf{S} ? \vartheta_{z y} \mathbf{S}\) ? \(\vartheta_{x z}(F A b s w B)\)
        using free-var-singleton-substitution-neutrality by simp
    finally show ?thesis ..
    qed
next
    case False
    then show ?thesis
    proof (cases \(z=w\) )
    case True
    have \(x \notin\) free-vars \(B\)
    proof (rule ccontr)
        assume \(\neg x \notin\) free-vars \(B\)
        with \(\langle x \neq w\rangle\) have \(x \in\) free-vars (FAbs \(w B\) )
                using surj-pair \([o f w]\) by fastforce
            then obtain \(p\) where \(p \in\) positions (FAbs \(w B\) ) and is-free-at x \(p\) (FAbs w B)
                using free-vars-in-is-free-at by blast
            with 〈is-free-for (FVar z) \(x\) (FAbs w B)〉 have \(\neg\) in-scope-of-abs z p (FAbs w B)
                by (meson empty-is-position is-free-at-in-free-vars is-free-at-in-var is-free-for-def)
            moreover obtain \(p^{\prime}\) where \(p=« \# p^{\prime}\)
                using is-free-at-from-absE[OF〈is-free-at x \(p\) (FAbs w B)〉] by blast
            ultimately have \(z \neq w\)
```

```
                using in-scope-of-abs-in-abs by blast
            with }\langlez=w\rangle\mathrm{ show False
            by contradiction
        qed
        then have *: S ?\vartheta\mp@subsup{\vartheta}{xy}{}B=\mathbf{S}?\mp@subsup{\vartheta}{xz}{}B
            using free-var-singleton-substitution-neutrality by auto
```



```
            using surj-pair[of w] by fastforce
        also from * have ... = FAbs w (S ?\vartheta \vartheta \z B)
            by (simp only:)
        also from FAbs.prems(1) have \ldots= = S ?\vartheta \mp@subsup{v}{y}{}}(FAbs w (\mathbf{S}?\mp@subsup{\vartheta}{xz}{} B))
            using <x & free-vars B> and free-var-singleton-substitution-neutrality by auto
            also from }\langlex\not=w\rangle\mathrm{ have ...= S ? ? }\mp@subsup{v}{zy}{}\mathbf{S}?\mp@subsup{\vartheta}{xz}{}(FAbs wB
            using surj-pair[of w] by fastforce
        finally show ?thesis ..
    next
        case False
        obtain }\mp@subsup{v}{w}{}\mathrm{ and }\alpha\mathrm{ where w = ( v
            by fastforce
        with <is-free-for (FVar z) x (FAbs w B)\rangle and «x\not=w> have is-free-for (FVar z) x B
            using is-free-for-from-abs by iprover
        moreover from <z & free-vars (FAbs w B)\rangle and }\langlez\not=w\rangle\mathrm{ and }\langlew=(\mp@subsup{v}{w}{},\alpha)\rangle\mathrm{ have z & free-vars
B
            by simp
            ultimately have *: S ?\vartheta\mp@subsup{\vartheta}{zy}{}\mathbf{S}?\mp@subsup{\vartheta}{xz}{}B=\mathbf{S}?\mp@subsup{\vartheta}{xy}{}B
            using FAbs.IH by simp
```



```
            using }\langlew=(\mp@subsup{v}{w}{},\alpha)\rangle\mathrm{ and free-var-singleton-substitution-neutrality by simp
            also from * have ... = FAbs w (\mathbf{S}?\mp@subsup{\vartheta}{zy}{}\mathbf{S}?\mp@subsup{\vartheta}{xz}{}B)
            by (simp only:)
            also from }\langlez\not=w\rangle\mathrm{ have ... = S ? ?` zy (FAbs w (S ?, 泣 B))
            using }\langlew=(\mp@subsup{v}{w}{},\alpha)\rangle\mathrm{ and free-var-singleton-substitution-neutrality by simp
```



```
            using }\langlew=(\mp@subsup{v}{w}{},\alpha)\rangle\mathrm{ and free-var-singleton-substitution-neutrality by simp
            finally show ?thesis ..
        qed
    qed
qed
lemma absent-vars-substitution-preservation:
    assumes v\not\in vars A
    and }\forall\mp@subsup{v}{}{\prime}\infmdom' \vartheta.v\not\invars(\vartheta $$! v'
    shows v\not\invars (\mathbf{S v A)}
using assms proof (induction A arbitrary: \vartheta)
    case (FVar v')
    then show ?case
        using surj-pair[of v` by (cases v'\infmdom' \vartheta) (use fmlookup-dom'-iff in force)+
next
    case (FCon k)
```

```
    then show ?case
    using surj-pair [of k] by fastforce
next
    case FApp
    then show ?case
        by simp
next
    case (FAbs w B)
    from FAbs.prems(1) have v & vars B
        using vars-form.elims by auto
    then show ?case
    proof (cases w fmdom' \vartheta)
        case True
        from FAbs.prems(2) have \forallv'\in fmdom' (fmdrop w \vartheta). v & vars ((fmdrop w \vartheta) $$! v')
        by auto
    with }\langlev\not\invars B\rangle have v\not\invars(\mathbf{S}(fmdrop w \vartheta) B
        by (fact FAbs.IH)
    with FAbs.prems(1) have v\not\invars (FAbs w (S (fmdrop w \vartheta) B))
        using surj-pair[of w] by fastforce
        moreover from True have S \vartheta (FAbs w B)=FAbs w (S (fmdrop w \vartheta) B)
            using surj-pair[of w] by fastforce
        ultimately show ?thesis
        by simp
    next
        case False
        then show ?thesis
            using FAbs.IH and FAbs.prems and surj-pair[of w] by fastforce
    qed
qed
lemma substitution-free-absorption:
    assumes \vartheta$$v=None and v\not\in free-vars B
    shows S ({v\longmapstoA}++ff \vartheta) B=\mathbf{S \vartheta B}
using assms proof (induction B arbitrary: \vartheta)
    case (FAbs w B)
    show ?case
    proof (cases v\not=w)
    case True
    with FAbs.prems(2) have v & free-vars B
        using surj-pair[of w] by fastforce
    then show ?thesis
    proof (cases w f fmdom' \vartheta)
        case True
        then have S ({v\longmapstoA} ++f \vartheta) (FAbs w B)=FAbs w (S (fmdrop w ({v\mapstoA} ++\mp@subsup{+}{f}{}\vartheta))B)
            using surj-pair[of w] by fastforce
            also from }\langlev\not=w\rangle\mathrm{ and True have ... = FAbs w(S ({v 仵 ( ) +++f fmdrop w v)B)
            by (simp add: fmdrop-fmupd)
            also from FAbs.prems(1) and «v\not\in free-vars B〉 have ... = FAbs w (S (fmdrop w \vartheta) B)
            using FAbs.IH by simp
```

```
        also from True have ...= S \vartheta (FAbs w B)
            using surj-pair[of w] by fastforce
        finally show ?thesis.
    next
        case False
```



```
            using }\langlev\not=w\rangle\mathrm{ and surj-pair[of w] by fastforce
        also from FAbs.prems(1) and }\langlev\not\in\mathrm{ free-vars B` have ... = FAbs w (S v B)
            using FAbs.IH by simp
        also from False have ...= S \vartheta (FAbs w B)
            using surj-pair[of w] by fastforce
        finally show ?thesis.
        qed
    next
    case False
    then have fmdrop w ({v\longmapstoA} ++\mp@subsup{}{f}{}\vartheta)=fmdrop w\vartheta
        by (simp add: fmdrop-fmupd-same)
    then show ?thesis
        using surj-pair[of w] by (metis (no-types, lifting) fmdrop-idle' substitute.simps(4))
    qed
qed fastforce+
lemma substitution-absorption:
    assumes v $$v=None and v\not\invars B
    shows S ({v\longmapstoA}+\mp@subsup{+}{f}{}\vartheta)}B=\mathbf{S}\vartheta
    using assms by (meson free-vars-in-all-vars in-mono substitution-free-absorption)
lemma is-free-for-with-renaming-substitution:
    assumes is-free-for A x B
    and y \not\invars B
    and }x\not\in\mp@subsup{fmdom}{}{\prime}
    and }\forallv\infmdom' v. y\not\invars (\vartheta $$!v
    and }\forallv\infmdom' \vartheta. is-free-for (\vartheta $$!v) v B
    shows is-free-for A y (\mathbf{S}({x\mapstoF\operatorname{Var}y}+\mp@subsup{+}{f}{}\vartheta)B)
using assms proof (induction B arbitrary: \vartheta)
    case (FVar w)
    then show ?case
    proof (cases w=x)
    case True
    with FVar.prems(3) have S ({x }->F\mathrm{ Var y} ++ +f }\vartheta)(F\operatorname{Var}w)=F\operatorname{Var}
        using surj-pair[of w] by fastforce
    then show ?thesis
        using self-subform-is-at-top by fastforce
    next
    case False
    then show ?thesis
    proof (cases w\infmdom' }\vartheta\mathrm{ )
        case True
        from False have S ({x FVar y}++\mp@subsup{+}{f}{}\vartheta)(FVar w)=\mathbf{S}\vartheta(FVar w)
```

```
            using substitution-absorption and surj-pair[of w] by force
            also from True have ... = \vartheta $$!w
            using surj-pair[of w] by (metis fmdom'-notI option.case-eq-if substitute.simps(1))
            finally have S ({x }->F\mathrm{ Var }y}+\mp@subsup{+}{f}{}\vartheta)(F\operatorname{Var}w)=\vartheta$$!w
            moreover from True and FVar.prems(4) have y & vars (\vartheta $$!w)
                by blast
            ultimately show ?thesis
            using form-is-free-for-absent-var by presburger
    next
        case False
        with FVar.prems(3) and \langlew\not= x\rangle have S ({x\mapstoFVar y} ++\mp@subsup{+}{f}{}\vartheta) (FVar w)=FVar w
            using surj-pair[of w] by fastforce
            with FVar.prems(2) show ?thesis
            using form-is-free-for-absent-var by presburger
    qed
    qed
next
    case (FCon k)
    then show ?case
        using surj-pair[of k] by fastforce
next
    case (FApp C D)
    from FApp.prems(2) have y }\not=\mathrm{ vars C and y }\not=\mathrm{ vars }
        by simp-all
    from FApp.prems(1) have is-free-for A x C and is-free-for A x D
        using is-free-for-from-app by iprover+
    have }\forallv\in\mp@subsup{fmdom' \vartheta. is-free-for (\vartheta $$!v)v C ^ is-free-for (\vartheta $$!v)v D}{}{\prime
    proof (rule ballI)
        fix v
        assume v\in fmdom' \vartheta
        with FApp.prems(5) have is-free-for (\vartheta $$!v)v(C}\cdotD
        by blast
    then show is-free-for (\vartheta $$! v) v C ^ is-free-for (\vartheta $$!v) v D
        using is-free-for-from-app by iprover+
    qed
    then have
        *: \forallv\in fmdom' \vartheta. is-free-for (\vartheta $$!v)v C and **: \forallv\in fmdom' \vartheta. is-free-for (\vartheta $$!v) v D
        by auto
    have S ({x\longmapstoFVar y} +\mp@subsup{+}{f}{}\vartheta)(C:D)=(\mathbf{S}({x\mapstoFVar y} +\mp@subsup{+}{f}{}\vartheta)C)\cdot(\mathbf{S}({x\mapstoFVar y}
++f}\vartheta)D
            by simp
    moreover have is-free-for A y (S ({x \longmapstoFVar y} ++\mp@subsup{+}{f}{}\vartheta)C)
        by (rule FApp.IH(1)[OF〈is-free-for A x C <y & vars C`FApp.prems(3,4)*])
    moreover have is-free-for A y (S ({x\longmapstoFVar y}++\mp@subsup{+}{f}{}\vartheta)D)
        by (rule FApp.IH(2)[OF<is-free-for A x D`<y &vars D` FApp.prems(3,4)**])
    ultimately show ?case
        using is-free-for-in-app by simp
next
    case (FAbs w B)
```

```
obtain \(x_{w}\) and \(\alpha_{w}\) where \(w=\left(x_{w}, \alpha_{w}\right)\)
    by fastforce
from FAbs.prems(2) have \(y \notin\) vars \(B\)
    using vars-form.elims by auto
then show ?case
proof (cases \(w=x\) )
    case True
    from True and \(\left\langle x \notin\right.\) fmdom \(\left.^{\prime} \vartheta\right\rangle\) have \(w \notin{f r d o m^{\prime}} \vartheta\) and \(x \notin\) free-vars (FAbs \(w B\) )
        using \(\left\langle w=\left(x_{w}, \alpha_{w}\right)\right\rangle\) by fastforce +
    with True have \(\mathbf{S}\left(\{x \mapsto F \operatorname{Var} y\}+_{+} \vartheta\right)(F A b s w B)=\mathbf{S} \vartheta(F A b s w B)\)
        using substitution-free-absorption by blast
    also have \(\ldots=F A b s w(\mathbf{S} \vartheta B)\)
        using \(\left\langle w=\left(x_{w}, \alpha_{w}\right)\right\rangle\left\langle w \notin f m\right.\) fom \(\left.^{\prime} \vartheta\right\rangle\) substitute.simps(4) by presburger
    finally have \(\mathbf{S}\left(\{x \mapsto F \operatorname{Var} y\}++_{f} \vartheta\right)(F A b s w B)=F A b s w(\mathbf{S} \vartheta B)\).
    moreover from \(\langle\mathbf{S} \vartheta(F A b s w B)=F A b s w(\mathbf{S} \vartheta B)\rangle\) have \(y \notin \operatorname{vars}(F A b s w(\mathbf{S} \vartheta B))\)
        using absent-vars-substitution-preservation[OF FAbs.prems(2,4)] by simp
    ultimately show ?thesis
        using is-free-for-absent-var by (simp only:)
next
    case False
    obtain \(v_{w}\) and \(\alpha_{w}\) where \(w=\left(v_{w}, \alpha_{w}\right)\)
        by fastforce
    from FAbs.prems(1) and \(\langle w \neq x\rangle\) and \(\left\langle w=\left(v_{w}, \alpha_{w}\right)\right\rangle\) have is-free-for \(A \times B\)
        using is-free-for-from-abs by iprover
    then show ?thesis
    proof (cases \(w \in\) fmdom \(^{\prime} \vartheta\) )
        case True
        then have \(\mathbf{S}\left(\{x \mapsto F \operatorname{Var} y\}++_{f} \vartheta\right)(F A b s w B)=F A b s w\left(\mathbf{S}\left(f m d r o p w\left(\{x \mapsto F \operatorname{Var} y\}+{ }_{f}\right.\right.\right.\)
७)) \(B\) )
            using \(\left\langle w=\left(v_{w}, \alpha_{w}\right)\right\rangle\) by (simp add: fmdrop-idle')
        also from \(\langle w \neq x\rangle\) and True have \(\ldots=\) FAbs \(w\left(\mathbf{S}\left(\{x \mapsto F \operatorname{Var} y\}++_{f}\right.\right.\) fmdrop \(\left.\left.w \vartheta\right) B\right)\)
            by (simp add: fmdrop-fmupd)
        finally
        have \(*: \mathbf{S}\left(\{x \hookrightarrow F \operatorname{Var} y\}++_{f} \vartheta\right)(F A b s w B)=F A b s w\left(\mathbf{S}\left(\{x \mapsto F \operatorname{Var} y\}+{ }_{f} f m d r o p w \vartheta\right)\right.\)
B) .
    have \(\forall v \in\) fmdom \(^{\prime}(\) fmdrop \(w \vartheta)\). is-free-for (fmdrop w \(\vartheta \$ \$\) ! v) v \(B\)
    proof
    fix \(v\)
    assume \(v \in\) fmdom' \(^{\prime}\) (fmdrop \(w \vartheta\) )
    with FAbs.prems(5) have is-free-for (fmdrop w \(\vartheta \$ \$!v) v(F A b s w B)\)
        by auto
    moreover from \(\left\langle v \in\right.\) fmdom \(^{\prime}(\) fmdrop \(w \vartheta)\) ) have \(v \neq w\)
                by auto
            ultimately show is-free-for (fmdrop w \(\vartheta \$ \$!v\) ) v \(B\)
            unfolding \(\left\langle w=\left(v_{w}, \alpha_{w}\right)\right\rangle\) using is-free-for-from-abs by iprover
    qed
    moreover from FAbs.prems(3) have \(x \notin\) fmdom' \(^{\prime}(\) fmdrop \(w \vartheta)\)
            by \(\operatorname{simp}\)
        moreover from FAbs.prems(4) have \(\forall v \in\) fmdom \(^{\prime}(\) fmdrop \(w \vartheta)\). y \(\notin \operatorname{vars}(f m d r o p w \vartheta \$ \$!v)\)
```

```
        by simp
    ultimately have is-free-for A y (\mathbf{S}({x\mapstoFVar y} ++\mp@subsup{+}{f}{\prime}fmdrop w \vartheta)B)
    using <is-free-for A x B \ and «y }\not=\mathrm{ vars B〉 and FAbs.IH by iprover
then show ?thesis
proof (cases x & free-vars B)
    case True
    have y\not\in\operatorname{vars}(\mathbf{S}({x\mapstoF\operatorname{Var}y}++\mp@subsup{}{f}{}\vartheta)(FAbsw B))
    proof -
```



```
B)
                using * .
            also from }\langlex\not\in\mathrm{ free-vars B> and FAbs.prems(3) have ... = FAbs w (S (fmdrop w v) B)
            using substitution-free-absorption by (simp add: fmdom'-notD)
            finally have S ({x F Far y} ++ff \vartheta) (FAbsw B)=FAbsw (S (fmdrop w \vartheta)B).
            with FAbs.prems(2) and }\langlew=(\mp@subsup{v}{w}{},\mp@subsup{\alpha}{w}{})\rangle\mathrm{ and FAbs.prems(4) show ?thesis
                using absent-vars-substitution-preservation by auto
    qed
    then show ?thesis
        using is-free-for-absent-var by simp
    next
    case False
    have w\not\in free-vars A
    proof (rule ccontr)
        assume }\negw\not\in\mathrm{ free-vars A
        with False and }\langlew\not=x\rangle\mathrm{ have }\neg\mathrm{ is-free-for A x (FAbs w B)
            using form-with-free-binder-not-free-for by simp
            with FAbs.prems(1) show False
                by contradiction
    qed
    with〈is-free-for A y (\mathbf{S}({x\longmapstoFVar y}++\mp@subsup{}{f}{\prime}\mathrm{ fmdrop w ७) B)>}
    have is-free-for A y (FAbsw (S ({x \longmapstoFVar y} ++f fmdrop w \vartheta) B))
        unfolding < }w=(\mp@subsup{v}{w}{},\mp@subsup{\alpha}{w}{})\rangle\mathrm{ using is-free-for-to-abs by iprover
    with * show ?thesis
        by (simp only:)
    qed
next
    case False
    have }\forallv\in\mp@subsup{fmdom' \vartheta. is-free-for (\vartheta $$!v) v B}{}{\prime
    proof (rule ballI)
        fix }
        assume v}\in\mp@code{fmdom' \vartheta
        with FAbs.prems(5) have is-free-for (\vartheta $$!v)v(FAbs w B)
        by blast
            moreover from }\langlev\infmdom'\vartheta` and \langlew\not\infmdom' \vartheta\rangle have v\not=
        by blast
    ultimately show is-free-for (\vartheta $$!v) v B
        unfolding }\langlew=(\mp@subsup{v}{w}{},\mp@subsup{\alpha}{w}{})\rangle\mathrm{ using is-free-for-from-abs by iprover
    qed
    with «is-free-for A x B` and «y\not\invars B> and FAbs.prems(3,4)
```

```
        have is-free-for A y (S ({x\mapstoFVar y} ++ff \vartheta)B)
            using FAbs.IH by iprover
        then show ?thesis
        proof (cases x & free-vars B)
            case True
            have y & vars (S ({x\mapstoFVar y} ++ +f \vartheta) (FAbs w B))
            proof -
                from False and }\langlew=(\mp@subsup{v}{w}{},\mp@subsup{\alpha}{w}{})\rangle\mathrm{ and }\langlew\not=x
                have \mathbf{S}({x\hookrightarrowFVar y} ++\mp@subsup{+}{f}{}\vartheta)(FAbsw B)=FAbs w(\mathbf{S}({x\mapstoFVar y} ++\mp@subsup{+}{f}{}\vartheta)B)
                    by auto
            also from 〈x & free-vars B\rangle and FAbs.prems(3) have ... = FAbs w (S \vartheta B)
                using substitution-free-absorption by (simp add: fmdom'-notD)
            finally have S ({x\multimapFVar y} ++f \vartheta) (FAbswB)=FAbs w (S \vartheta B).
            with FAbs.prems(2,4) and «w = (vw, 人
                using absent-vars-substitution-preservation by auto
            qed
            then show ?thesis
                using is-free-for-absent-var by simp
        next
            case False
            have w}\not\infree-vars 
            proof (rule ccontr)
            assume }\negw\not\in\mathrm{ free-vars }
            with False and }\langlew\not=x\rangle\mathrm{ have }\neg\mathrm{ is-free-for A x (FAbs w B)
                using form-with-free-binder-not-free-for by simp
            with FAbs.prems(1) show False
                by contradiction
            qed
    with <is-free-for A y (\mathbf{S}({x\mapstoFVar y} ++\mp@subsup{}{f}{\prime}\vartheta)B)>
    have is-free-for A y (FAbs w (S ({x FVar y } ++f \vartheta)B))
            unfolding «w = (vw, 和)> using is-free-for-to-abs by iprover
            moreover from }\langlew\not\in fmdom'\vartheta\rangle and \langlew\not=x\rangle and FAbs.prems(3
            have S ({x\mapstoFVar y} ++\mp@subsup{+}{f}{}\vartheta)(FAbsw B)= FAbsw(\mathbf{S}({x\mapstoFVary} ++\mp@subsup{+}{f}{}\vartheta)B)
                    using surj-pair[of w] by fastforce
            ultimately show ?thesis
                by (simp only:)
            qed
        qed
    qed
qed
```

The following lemma allows us to fuse a singleton substitution and a simultaneous substitution， as long as the variable of the former does not occur anywhere in the latter：

```
lemma substitution-fusion:
    assumes is-substitution \(\vartheta\) and is-substitution \(\{v \hookrightarrow A\}\)
    and \(\vartheta \$ \$ v=\) None and \(\forall v^{\prime} \in\) fmdom \(^{\prime} \vartheta . v \notin\) vars \(\left(\vartheta \$ \$!v^{\prime}\right)\)
    shows \(\mathbf{S}\{v \multimap A\} \mathbf{S} \vartheta B=\mathbf{S}\left(\{v \hookrightarrow A\}++_{f} \vartheta\right) B\)
using \(\operatorname{assms}(1,3,4)\) proof (induction \(B\) arbitrary: \(\vartheta\) )
    case ( \(F\) Var \(v^{\prime}\) )
```

```
    then show? case
    proof (cases \(v^{\prime} \notin\) fmdom \(^{\prime} \vartheta\) )
    case True
    then show ?thesis
        using surj-pair[of \(v\) ] by fastforce
    next
    case False
    then obtain \(A^{\prime}\) where \(\vartheta \$ \$ v^{\prime}=\) Some \(A^{\prime}\)
        by (meson fmlookup-dom'-iff)
    with False and FVar.prems(3) have \(v \notin\) vars \(A^{\prime}\)
        by fastforce
    then have \(\mathbf{S}\{v \longmapsto A\} A^{\prime}=A^{\prime}\)
        using free-var-singleton-substitution-neutrality and free-vars-in-all-vars by blast
    from \(\left\langle\vartheta \$ \$ v^{\prime}=S o m e A^{\prime}\right\rangle\) have \(\mathbf{S}\{v \mapsto A\} \mathbf{S} \vartheta\left(F \operatorname{Var} v^{\prime}\right)=\mathbf{S}\{v \mapsto A\} A^{\prime}\)
        using surj-pair [of \(\left.v^{\prime}\right]\) by fastforce
    also from \(\left\langle\mathbf{S}\{v \longmapsto A\} A^{\prime}=A^{\prime}\right\rangle\) have \(\ldots=A^{\prime}\)
        by (simp only:)
    also from \(\left\langle\vartheta \$ \$ v^{\prime}=S o m e A^{\prime}\right\rangle\) and \(\left\langle\vartheta \$ \$ v=\right.\) None \(\left\langle\right.\) have \(\ldots=\mathbf{S}\left(\{v \mapsto A\}++_{f} \vartheta\right)\left(F \operatorname{Var} v^{\prime}\right)\)
        using surj-pair [of \(\left.v^{\prime}\right]\) by fastforce
    finally show ?thesis .
    qed
next
    case (FCon k)
    then show ?case
        using surj-pair [of \(k]\) by fastforce
next
    case (FApp C D)
    have \(\mathbf{S}\{v \multimap A\} \mathbf{S} \vartheta(C \cdot D)=\mathbf{S}\{v \multimap A\}((\mathbf{S} \vartheta C) \cdot(\mathbf{S} \vartheta D))\)
    by auto
    also have \(\ldots=(\mathbf{S}\{v \longmapsto A\} \mathbf{S} \vartheta C) \cdot(\mathbf{S}\{v \multimap A\} \mathbf{S} \vartheta D)\)
        by \(\operatorname{simp}\)
    also from FApp.IH have \(\ldots=\left(\mathbf{S}\left(\{v \longmapsto A\}++_{f} \vartheta\right) C\right) \cdot\left(\mathbf{S}\left(\{v \hookrightarrow A\}++_{f} \vartheta\right) D\right)\)
        using FApp.prems \((1,2,3)\) by presburger
    also have \(\ldots=\mathbf{S}\left(\{v \multimap A\}++_{f} \vartheta\right)(C \cdot D)\)
        by simp
    finally show ?case .
next
    case (FAbs wC)
    obtain \(v_{w}\) and \(\alpha\) where \(w=\left(v_{w}, \alpha\right)\)
    by fastforce
    then show ?case
    proof (cases \(v \neq w\) )
    case True
    show ?thesis
    proof (cases \(w \notin\) fmdom \(^{\prime} \vartheta\) )
        case True
        then have \(\mathbf{S}\{v \mapsto A\} \mathbf{S} \vartheta(F A b s w C)=\mathbf{S}\{v \mapsto A\}(F A b s w(\mathbf{S} \vartheta C))\)
            by ( simp add: \(\left.\left\langle w=\left(v_{w}, \alpha\right)\right\rangle\right)\)
        also from \(\langle v \neq w\rangle\) have \(\ldots=F A b s w(\mathbf{S}\{v \mapsto A\} \mathbf{S} \vartheta C)\)
```

```
            by (simp add: <w = (vw},\alpha)\rangle
            also from FAbs.IH have ... = FAbs w (S ({v\longmapstoA}++f\vartheta)C)
            using FAbs.prems(1,2,3) by blast
            also from }\langlev\not=w\rangle\mathrm{ and True have .. = S ({v }->A}++\mp@subsup{+}{f}{}\vartheta)(FAbswC
            by (simp add: <w = ( vw, \alpha)〉)
    finally show ?thesis.
    next
    case False
    then have S {v\mapstoA} S \vartheta (FAbsw C)=\mathbf{S {v }~A}(FAbsw(\mathbf{S}(fmdropw\vartheta)C))
        by (simp add: <w = (vw,\alpha)>)
    also from }\langlev\not=w\rangle\mathrm{ have ...= FAbs w(S {v}\mapstoA}\mathbf{S}(\mathrm{ fmdrop w v)C)
        by (simp add: <w = (vw},\alpha)〉
```



```
    proof -
        from〈is-substitution \vartheta> have is-substitution (fmdrop w \vartheta)
            by fastforce
            moreover from «\vartheta $$v=None〉 have (fmdrop w \vartheta) $$v=None
            by force
        moreover from FAbs.prems(3) have \forallv' \in fmdom' (fmdrop w \vartheta).v & vars ((fmdrop w \vartheta) $$!
v')
            by force
            ultimately show ?thesis
            using FAbs.IH by blast
    qed
    also from }\langlev\not=w\rangle\mathrm{ have ... = S ({v }->A}+\mp@subsup{+}{f}{}\vartheta)(FAbswC
        by (simp add: <w = (v}\mp@subsup{v}{w}{},\alpha)\rangle fmdrop-idle'
    finally show ?thesis.
    qed
next
    case False
    then show ?thesis
    proof (cases w\not\infmdom'\vartheta)
    case True
```



```
        by (simp add: <w = ( vw},\alpha)\rangle
    also from }\langle\checkmarkv\not=w\rangle\mathrm{ have ...= FAbs w(S v C)
        using }\langlew=(\mp@subsup{v}{w}{},\alpha)\rangle\mathrm{ and singleton-substitution-simps(4) by presburger
    also from }\langle\negv\not=w\rangle\mathrm{ and True have ... = FAbsw (S (fmdrop w ({v طA} +++f `))C)
        by (simp add: fmdrop-fmupd-same fmdrop-idle')
    also from }\langle\negv\not=w\rangle\mathrm{ have ... = S ({v ЊA}+++f ७) (FAbswC)
        by (simp add: <w = ( vw, \alpha)〉)
    finally show ?thesis.
    next
    case False
    then have S {v\longmapstoA}\mathbf{S}\vartheta(FAbswC)=\mathbf{S}{v\longmapstoA}(FAbsw(\mathbf{S}(fmdrop w\vartheta)C))
        by (simp add: <w = ( }\mp@subsup{v}{w}{},\alpha)\rangle
    also from }\negv\not=w\rangle\mathrm{ have ...= FAbs w (S (fmdrop w ७)C)
        using «\vartheta $$v = None〉 and False by (simp add: fmdom'-notI)
    also from «\negv\not=w〉 have ... = FAbs w(S (fmdrop w ({v\longmapstoA} ++\mp@subsup{+}{f}{}\vartheta))C)
```

```
            by (simp add: fmdrop-fmupd-same)
            also from }\langle\negv\not=w\rangle\mathrm{ and False and }\langle\vartheta$$v=None\rangle have \ldots= S S ({v\multimapA} ++\mp@subsup{+}{f}{}\vartheta)(FAb
wC)
            by (simp add: fmdom'-notI)
            finally show ?thesis.
        qed
    qed
qed
lemma updated-substitution-is-substitution:
    assumes v\not\infmdom' \vartheta and is-substitution (\vartheta(v\longmapsto\mapsto))
    shows is-substitution \vartheta
unfolding is-substitution-def proof (intro ballI)
    fix }\mp@subsup{v}{}{\prime}:: va
    obtain x and \alpha where v
        by fastforce
    assume v'\infmdom' \vartheta
    with assms(2)[unfolded is-substitution-def] have v}\mp@subsup{v}{}{\prime}\in\mp@subsup{\operatorname{fmdom}}{}{\prime}(\vartheta(v\mapstoA)
        by simp
    with assms(2)[unfolded is-substitution-def] have }\vartheta(v\longmapstoA)$$!(x,\alpha)\inwffs
        using < }\mp@subsup{v}{}{\prime}=(x,\alpha)\rangle\mathrm{ by fastforce
    with assms(1) and \langlev'\in fmdom'}\mp@subsup{}{}{\prime}\vartheta\rangle\mathrm{ and }\langle\mp@subsup{v}{}{\prime}=(x,\alpha)\rangle have \vartheta $$! (x,\alpha)\inwffs
        by (metis fmupd-lookup)
    then show case v}\mp@subsup{v}{}{\prime}\mathrm{ of (x, 人) # v $$! (x, 人) =wffs s
        by (simp add: <v' = (x,\alpha)〉)
qed
definition is－renaming－substitution where
［iff］：is－renaming－substitution \(\vartheta \longleftrightarrow\) is－substitution \(\vartheta \wedge\) fmpred \((\lambda-A . \exists v . A=F \operatorname{Var} v) \vartheta\)
```


－$x_{\alpha_{1}}^{1} \ldots x_{\alpha_{n}}^{n}$ are distinct variables
－$y_{\alpha_{1}}^{1} \ldots y_{\alpha_{n}}^{n}$ are distinct variables，distinct from $x_{\alpha_{1}}^{1} \ldots x_{\alpha_{n}}^{n}$ and from all variables in B （i．e．，they are fresh variables）

In other words，simultaneously renaming distinct variables with fresh ones is equivalent to renaming each variable one at a time．
lemma fresh－vars－substitution－unfolding：
fixes $p s::($ var \times form $)$ list
assumes $\vartheta=$ fmap－of－list ps and is－renaming－substitution ϑ
and distinct（map fst ps）and distinct（map snd ps）
and vars $\left(\right.$ fmran $\left.^{\prime} \vartheta\right) \cap($ fmdom＇$\vartheta \cup$ vars $B)=\{ \}$
shows $\mathbf{S} \vartheta B=$ foldr $(\lambda(x, y) C . \mathbf{S}\{x \mapsto y\} C)$ ps B
using assms proof（induction ps arbitrary：ϑ ）
case Nil
then have $\vartheta=\{\$ \$\}$

```
    by simp
    then have S \vartheta B=B
    using empty-substitution-neutrality by (simp only:)
    with Nil show ?case
    by simp
next
    case (Cons p ps)
    from Cons.prems(1,2) obtain x and y where v $$(fst p)=Some (FVar y) and p=(x,FVar y)
        using surj-pair[of p] by fastforce
    let ?.\vartheta' = fmap-of-list ps
    from Cons.prems(1) and }\langlep=(x,F\mathrm{ Var y)> have v=fmupd x (FVar y) ? }\mp@subsup{\vartheta}{}{\prime
        by simp
    moreover from Cons.prems(3) and <p =(x,FVar y)\rangle have x\not\infmdom' ?.. `'
        by simp
    ultimately have }\vartheta={x\mapstoF\mathrm{ Var y} +++f ? ?''
    using fmap-singleton-comm by fastforce
    with Cons.prems(2) and «x\not\infmdom' ? ?`` have is-renaming-substitution ? \vartheta }\mp@subsup{\vartheta}{}{\prime
    unfolding is-renaming-substitution-def and }\langle\vartheta=\mathrm{ fmupd x (FVar y) ? }\mp@subsup{\vartheta}{}{\prime}
    using updated-substitution-is-substitution by (metis fmdiff-fmupd fmdom'-notD fmpred-filter)
    from Cons.prems(2) and \langle\vartheta= fmupd x (FVar y) ? \vartheta`> have is-renaming-substitution {x ->FVar
y}
    by auto
    have
    foldr (\lambda(x,y)C. S {x\rightharpoondowny}C) (p#ps)B
    =
    S {x\mapstoFVar y} (foldr (\lambda(x,y)C. S {x\mapstoy}C) ps B)
    by (simp add: <p = (x,FVar y)`)
also have \ldots= S {x\mapstoFVar y} S ? ?.' B
proof -
    from Cons.prems(3,4) have distinct (map fst ps) and distinct (map snd ps)
        by fastforce+
    moreover have vars (fmran' ?, ') }\cap(\mathrm{ fmdom' ?, '' }\cup\mathrm{ vars B) ={}
    proof -
        have vars (fmran' \vartheta ) = vars ({FVar y}\cup fmran' ?\vartheta')
        using }\langle\vartheta=\mathrm{ fmupd x (FVar y) ? {``> and <x& fmdom' ? v`> by (metis fmdom'-notD fmran'-fmupd)
        then have vars (fmran'}\vartheta)={y}\cupvars(fmran' ? '\vartheta'
            using singleton-form-set-vars by auto
            moreover have fmdom'\vartheta = {x}\cupfmdom' ? \vartheta\vartheta'
                by (simp add: }\langle\vartheta={x->F\mathrm{ Var }y}+\mp@subsup{+}{f}{\prime}?\mp@subsup{\vartheta}{}{\prime}\rangle
            ultimately show?thesis
                using Cons.prems(5) by auto
    qed
    ultimately show ?thesis
        using Cons.IH and <is-renaming-substitution ?.`` by simp
    qed
    also have }\ldots=\mathbf{S}({x\mapstoF\mathrm{ Var y } ++f}\mp@subsup{\}{?}{\prime`})
    proof (rule substitution-fusion)
    show is-substitution ?. .'
        using «is-renaming-substitution ??`> by simp
```

```
    show is-substitution {x F FVar y}
        using <is-renaming-substitution {x}\longmapstoF\mathrm{ Var y }> by simp
    show ?\vartheta' $$ x = None
        using <x \not\infmdom' ?\vartheta'> by blast
    show }\forall\mp@subsup{v}{}{\prime}\infmdom' ?\vartheta'. x & vars (?\vartheta' $$!v'
    proof -
        have }x\in\mp@subsup{\mathrm{ fmdom' }\vartheta}{}{\prime
            using }\langle\vartheta={x\longmapstoF\mathrm{ Var y}+++f}\mp@subsup{}{f}{}?\mp@subsup{\vartheta}{}{\prime}\rangle\mathrm{ by simp
        then have }x\not\in\mathrm{ vars (fmran' }\vartheta
            using Cons.prems(5) by blast
        moreover have {??' $$! v' | v'. v' \in fmdom' ?\vartheta`} \subseteq fmran'\vartheta
            unfolding <\vartheta = ?\vartheta`
            by (auto simp add: fmlookup-of-list fmlookup-dom'-iff fmran'I weak-map-of-SomeI)
            ultimately show ?thesis
                by force
    qed
    qed
```



```
    by (simp only:)
    finally show ?case ..
qed
lemma free-vars-agreement-substitution-equality:
    assumes fmdom' \vartheta = fmdom' ' }\mp@subsup{\vartheta}{}{\prime
    and }\forallv\in\mathrm{ free-vars }A\capfmdom'\vartheta.\vartheta $$!v=\mp@subsup{\vartheta}{}{\prime}$$!
    shows \mathbf{S}\varthetaA=\mathbf{S}\mp@subsup{\vartheta}{}{\prime}A
using assms proof (induction A arbitrary: \vartheta \vartheta')
    case (FVar v)
    have free-vars (FVar v)={v}
        using surj-pair[of v] by fastforce
    with FVar have \vartheta $$!v=\mp@subsup{\vartheta}{}{\prime}$$!v
        by force
    with FVar.prems(1) show ?case
        using surj-pair[of v] by (metis fmdom'-notD fmdom'-notI option.collapse substitute.simps(1))
next
    case FCon
    then show ?case
        by (metis prod.exhaust-sel substitute.simps(2))
next
    case (FApp B C)
    have S \vartheta (B\cdotC)=(\mathbf{S}\varthetaB)\cdot(\mathbf{S}\varthetaC)
        by simp
    also have \ldots=(S \vartheta \vartheta}B)\cdot(\mathbf{S}\mp@subsup{\vartheta}{}{\prime}C
    proof -
        have }\forallv\in\mathrm{ free-vars }B\cap\mathrm{ fmdom' v. v $$!v= v' $$!v
        and}\forallv\in\mathrm{ free-vars }C\cap\mp@subsup{f}{mdom}{\prime}\vartheta.\vartheta $$!v=\mp@subsup{\vartheta}{}{\prime}$$!
        using FApp.prems(2) by auto
    with FApp.IH(1,2) and FApp.prems(1) show ?thesis
        by blast
```

```
    qed
    finally show ?case
    by simp
next
    case (FAbs w B)
    from FAbs.prems(1,2) have *: }\forallv\in\mathrm{ free-vars B - {w} }\cap\mathrm{ fmdom' v.v $$!v = `' $$!v
        using surj-pair[of w] by fastforce
    show ?case
    proof (cases w\infmdom' \vartheta)
        case True
        then have S \vartheta (FAbs w B)=FAbs w (S (fmdrop w \vartheta) B)
        using surj-pair[of w] by fastforce
    also have ... = FAbs w (S (fmdrop w \vartheta')B)
    proof -
        from * have }\forallv\in\mathrm{ free-vars B ค fmdom'(fmdrop w v). (fmdrop w v) $$!v=(fmdrop w v')$$!
v
            by simp
        moreover have fmdom' (fmdrop w \vartheta)=fmdom'(fmdrop w \vartheta')
            by (simp add: FAbs.prems(1))
        ultimately show ?thesis
            using FAbs.IH by blast
    qed
    finally show ?thesis
        using FAbs.prems(1) and True and surj-pair[of w] by fastforce
    next
        case False
        then have S \vartheta (FAbs w B)= FAbsw(\mathbf{S \vartheta B)}
            using surj-pair[of w] by fastforce
    also have ... = FAbs w (S \vartheta' B)
    proof -
        from * have }\forallv\in\mathrm{ free-vars }B\cap\mp@subsup{fmdom'}{\prime}{\mathrm{ f. v $$!v = `' $$!v}
            using False by blast
        with FAbs.prems(1) show ?thesis
            using FAbs.IH by blast
    qed
    finally show ?thesis
        using FAbs.prems(1) and False and surj-pair[of w] by fastforce
    qed
qed
```

 that x_{α} is distinct from $x_{\alpha_{1}}^{1}, \ldots, x_{\alpha_{n}}^{n}$ and $A_{\alpha_{i}}^{i}$ is free for $x_{\alpha_{i}}^{i}$ in B :
lemma substitution-consolidation:
assumes $v \notin f^{\prime}$ dom $^{\prime} \vartheta$
and $\forall v^{\prime} \in$ fmdom $^{\prime} \vartheta$. is-free-for $\left(\vartheta \$ \$!v^{\prime}\right) v^{\prime} B$
shows $\mathbf{S}\{v \mapsto A\} \mathbf{S} \vartheta B=\mathbf{S}\left(\{v \multimap A\}++_{f}\right.$ fmmap $\left.\left(\lambda A^{\prime} . \mathbf{S}\{v \multimap A\} A^{\prime}\right) \vartheta\right) B$
using assms proof (induction B arbitrary: ϑ)
case (FApp B C)

```
    have \(\forall v^{\prime} \in f m d o m^{\prime} \vartheta\). is-free-for \(\left(\vartheta \$ \$!v^{\prime}\right) v^{\prime} B \wedge\) is-free-for \(\left(\vartheta \$ \$!v^{\prime}\right) v^{\prime} C\)
    proof
        fix \(v^{\prime}\)
        assume \(v^{\prime} \in\) fmdom \(^{\prime} \vartheta\)
    with FApp.prems(2) have is-free-for \(\left(\vartheta \$ \$!v^{\prime}\right) v^{\prime}(B \cdot C)\)
        by blast
    then show is-free-for \(\left(\vartheta \$ \$!v^{\prime}\right) v^{\prime} B \wedge i s\)-free-for \(\left(\vartheta \$ \$!v^{\prime}\right) v^{\prime} C\)
        using is-free-for-from-app by iprover
    qed
    with FApp.IH and FApp.prems(1) show ?case
        by \(\operatorname{simp}\)
next
    case (FAbs w B)
    let \(? \vartheta^{\prime}=f m m a p\left(\lambda A^{\prime} . \mathbf{S}\{v \mapsto A\} A^{\prime}\right) \vartheta\)
    show ?case
    proof (cases \(w \in\) fmdom \(^{\prime} \vartheta\) )
    case True
    then have \(w \in\) fmdom \(^{\prime} ? \vartheta^{\prime}\)
        by \(\operatorname{simp}\)
    with True and FAbs.prems have \(v \neq w\)
        by blast
    from True have \(\mathbf{S}\{v \hookrightarrow A\} \mathbf{S} \vartheta(F A b s w B)=\mathbf{S}\{v \hookrightarrow A\}(F A b s w(\mathbf{S}(\) fmdrop \(w \vartheta) B))\)
        using surj-pair \([o f w]\) by fastforce
    also from \(\langle v \neq w\rangle\) have \(\ldots=\) FAbs \(w(\mathbf{S}\{v \hookrightarrow A\} \mathbf{S}(\) fmdrop \(w \vartheta) B)\)
        using surj-pair \([\) of \(w]\) by fastforce
    also have \(\ldots=\) FAbs \(w\left(\mathbf{S}\left(\right.\right.\) fmdrop \(\left.\left.w\left(\{v \mapsto A\}+_{f} ? \vartheta^{\prime}\right)\right) B\right)\)
    proof -
        obtain \(x_{w}\) and \(\alpha_{w}\) where \(w=\left(x_{w}, \alpha_{w}\right)\)
            by fastforce
        have \(\forall v^{\prime} \in\) fmdom \({ }^{\prime}(\) fmdrop \(w \vartheta)\). is-free-for \(\left((f m d r o p w \vartheta) \$ \$!v^{\prime}\right) v^{\prime} B\)
        proof
        fix \(v^{\prime}\)
        assume \(v^{\prime} \in\) fmdom \(^{\prime}\) (fmdrop w \(\vartheta\) )
        with FAbs.prems(2) have is-free-for \(\left(\vartheta \$ \$!v^{\prime}\right) v^{\prime}(\) FAbs w B)
            by auto
            with \(\left\langle w=\left(x_{w}, \alpha_{w}\right)\right\rangle\) and \(\left\langle v^{\prime} \in\right.\) fmdom \({ }^{\prime}(\) fmdrop \(w \vartheta)\) )
            have is-free-for \(\left(\vartheta \$ \$!v^{\prime}\right) v^{\prime}\left(\lambda x_{w} \alpha_{w} . B\right)\) and \(v^{\prime} \neq\left(x_{w}, \alpha_{w}\right)\)
                by auto
            then have is-free-for \(\left(\vartheta \$ \$!v^{\prime}\right) v^{\prime} B\)
                using is-free-for-from-abs by presburger
            with \(\left\langle v^{\prime} \neq\left(x_{w}, \alpha_{w}\right)\right\rangle\) and \(\left\langle w=\left(x_{w}, \alpha_{w}\right)\right\rangle\) show is-free-for (fmdrop \(\left.w \vartheta \$ \$!v^{\prime}\right) v^{\prime} B\)
                by \(\operatorname{simp}\)
        qed
        moreover have \(v \notin\) fmdom' \(^{\prime}(\) fmdrop \(w \vartheta)\)
            by (simp add: FAbs.prems(1))
        ultimately show ?thesis
            using FAbs.IH and \(\langle v \neq w\rangle\) by (simp add: fmdrop-fmupd)
    qed
    finally show ?thesis
```

```
    using <w fmdom' ?\vartheta`> and surj-pair [of w] by fastforce
next
    case False
    then have w\not\infmdom' ? ?'
        by simp
    from FAbs.prems have v\not\infmdom' ? `'
        by simp
    from False have *: S {v\longmapstoA} S \vartheta (FAbs w B)=\mathbf{S {v }\longrightarrowA}(FAbsw(\mathbf{S}\vartheta B))
        using surj-pair[of w] by fastforce
    then show ?thesis
    proof (cases v}\not=w\mathrm{ )
        case True
        then have S {v }->A}(FAbsw(\mathbf{S}\varthetaB))=FAbsw(\mathbf{S}{v\multimapA}(\mathbf{S}\varthetaB)
        using surj-pair[of w] by fastforce
        also have ... = FAbs w (S ({v \longmapstoA} +\mp@subsup{+}{f}{\prime}?\mp@subsup{\vartheta}{}{\prime})B)
        proof -
            obtain }\mp@subsup{x}{w}{}\mathrm{ and }\mp@subsup{\alpha}{w}{}\mathrm{ where w=( (xw, 和)
            by fastforce
            have }\forall\mp@subsup{v}{}{\prime}\in\mp@subsup{\mathrm{ fmdom}}{}{\prime}\vartheta\mathrm{ . is-free-for ( }\vartheta$$! v') v'
            proof
            fix }\mp@subsup{v}{}{\prime
            assume v' }\infmdom' \vartheta 
            with FAbs.prems(2) have is-free-for (\vartheta $$! v') v'(FAbs w B)
                by auto
            with }\langlew=(\mp@subsup{x}{w}{},\mp@subsup{\alpha}{w}{})\rangle\mathrm{ and }\langle\mp@subsup{v}{}{\prime}\infmdom' \vartheta\rangle and Fals
            have is-free-for (\vartheta $$! v}) \mp@subsup{v}{}{\prime}(\lambda\mp@subsup{x}{w}{}\mp@subsup{\alpha}{w}{}.B)\mathrm{ and }\mp@subsup{v}{}{\prime}\not=(\mp@subsup{x}{w}{},\mp@subsup{\alpha}{w}{}
                by fastforce+
            then have is-free-for (\vartheta $$! v') v' B
                using is-free-for-from-abs by presburger
            with }\langle\mp@subsup{v}{}{\prime}\not=(\mp@subsup{x}{w}{},\mp@subsup{\alpha}{w}{})\rangle\mathrm{ and }\langlew=(\mp@subsup{x}{w}{},\mp@subsup{\alpha}{w}{})\rangle\mathrm{ show is-free-for ( }\vartheta$$!\mp@subsup{v}{}{\prime})\mp@subsup{v}{}{\prime}
                by simp
            qed
            with FAbs.IH show ?thesis
            using FAbs.prems(1) by blast
        qed
        finally show ?thesis
        proof -
            assume
                S {v\multimapA}(FAbsw(\mathbf{S}\varthetaB))=FAbsw(\mathbf{S}({v\multimapA}+\mp@subsup{+}{f}{}\mp@subsup{f}{mmap}{(substitute {v}\mapstoA})\vartheta)
B)
        moreover have w\not\infmdom' ({v\longmapstoA} ++\mp@subsup{}{f}{\prime}\mathrm{ fmmap (substitute {v }->A})\vartheta)
            using False and True by auto
        ultimately show ?thesis
            using * and surj-pair [of w] by fastforce
        qed
    next
        case False
        then have v\not\in free-vars (FAbs w (S v B))
            using surj-pair[of w] by fastforce
```

```
    then have \(* *: \mathbf{S}\{v \mapsto A\}(F A b s w(\mathbf{S} \vartheta B))=F A b s w(\mathbf{S} \vartheta B)\)
    using free-var-singleton-substitution-neutrality by blast
    also have \(\ldots=F A b s w\left(\mathbf{S}\right.\) ? \(\left.\vartheta^{\prime} B\right)\)
    proof -
    \{
        fix \(v^{\prime}\)
        assume \(v^{\prime} \in f m d o m^{\prime} \vartheta\)
        with FAbs.prems(1) have \(v^{\prime} \neq v\)
            by blast
        assume \(v \in\) free-vars \(\left(\vartheta \$ \$!v^{\prime}\right)\) and \(v^{\prime} \in\) free-vars \(B\)
        with \(\left\langle v^{\prime} \neq v\right\rangle\) have \(\neg i s\)-free-for \(\left(\vartheta \$ \$!v^{\prime}\right) v^{\prime}(F A b s v B)\)
            using form-with-free-binder-not-free-for by blast
        with FAbs.prems(2) and \(\left\langle v^{\prime} \in f m d o m^{\prime} \vartheta\right\rangle\) and False have False
            by blast
    \}
    then have \(\forall v^{\prime} \in f m d o m^{\prime} \vartheta . v \notin\) free-vars \(\left(\vartheta \$ \$!v^{\prime}\right) \vee v^{\prime} \notin\) free-vars \(B\)
        by blast
    then have \(\forall v^{\prime} \in f m d o m^{\prime} \vartheta . v^{\prime} \in\) free-vars \(B \longrightarrow \mathbf{S}\{v \longrightarrow A\}\left(\vartheta \$ \$!v^{\prime}\right)=\vartheta \$ \$!v^{\prime}\)
        using free-var-singleton-substitution-neutrality by blast
    then have \(\forall v^{\prime} \in\) free-vars \(B . \vartheta \$ \$!v^{\prime}=? \vartheta^{\prime} \$ \$!v^{\prime}\)
        by (metis fmdom'-map fmdom'-notD fmdom'-notI fmlookup-map option.map-sel)
    then have \(\mathbf{S} \vartheta B=\mathbf{S} ? \vartheta^{\prime} B\)
        using free-vars-agreement-substitution-equality by (metis IntD1 fmdom'-map)
    then show?thesis
        by \(\operatorname{simp}\)
    qed
    also from False and FAbs.prems(1) have \(\ldots=\) FAbs \(w\left(\mathbf{S}\left(\right.\right.\) fmdrop \(\left.\left.w\left(\{v \longmapsto A\}++_{f} ? \vartheta^{\prime}\right)\right) B\right)\)
    by (simp add: fmdrop-fmupd-same fmdrop-idle')
    also from False have \(\ldots=\mathbf{S}\left(\{v \mapsto A\}++_{f} ? \vartheta^{\prime}\right)(\) FAbs w \(B)\)
    using surj-pair \([o f w]\) by fastforce
    finally show ?thesis
        using \(*\) and \(* *\) by (simp only:)
    qed
    qed
qed force+
lemma vars-range-substitution:
    assumes is-substitution \(\vartheta\)
    and \(v \notin \operatorname{vars}\left(\right.\) fmran' \(\left.^{\prime} \vartheta\right)\)
    shows \(v \notin \operatorname{vars}\left(\right.\) fmran \(^{\prime}(\) fmdrop \(w \vartheta)\) )
using assms proof (induction \(\vartheta\) )
    case fmempty
    then show ?case
        by \(\operatorname{simp}\)
next
    case (fmupd \(v^{\prime} A \vartheta\) )
    from fmdom'-notI[OF fmupd.hyps] and fmupd.prems(1) have is-substitution \(\vartheta\)
        by (rule updated-substitution-is-substitution)
    moreover from fmupd.prems(2) and fmupd.hyps have \(v \notin \operatorname{vars}\left(\right.\) fmran \(^{\prime} \vartheta\) )
```

```
    by simp
    ultimately have v\not\in\operatorname{vars (fmran'(fmdrop w \vartheta))}
    by (rule fmupd.IH)
    with fmupd.hyps and fmupd.prems(2) show ?case
    by (simp add: fmdrop-fmupd)
qed
lemma excluded-var-from-substitution:
    assumes is-substitution \vartheta
    and v\not\infmdom' }
    and v\not\invars (fmran'\vartheta)
    and v\not\invars A
    shows v\not\invars (\mathbf{S}\vartheta A)
using assms proof (induction A arbitrary:\vartheta)
    case (FVar v')
    then show ?case
    proof (cases v' f fmdom' \vartheta)
        case True
        then have \vartheta $$! v
        by (simp add: fmlookup-dom'-iff fmran'I)
    with FVar(3) have v\not\invars (\vartheta $$! v')
        by simp
    with True show ?thesis
        using surj-pair[of v] and fmdom'-notI by force
    next
        case False
        with FVar.prems(4) show ?thesis
        using surj-pair[of v` by force
    qed
next
    case (FCon k)
    then show ?case
        using surj-pair[of k] by force
next
    case (FApp B C)
    then show ?case
        by auto
next
    case (FAbs w B)
    have v\not\invars B and v\not=w
        using surj-pair[of w] and FAbs.prems(4) by fastforce+
    then show ?case
    proof (cases w\not\in fmdom' \vartheta)
    case True
    then have S \vartheta (FAbs w B)=FAbsw(\mathbf{S \vartheta B)}
        using surj-pair[of w] by fastforce
    moreover from FAbs.IH have v\not\invars (S \vartheta B)
        using FAbs.prems(1-3) and «v\not\invars B\rangle by blast
    ultimately show ?thesis
```

```
        using }\langlev\not=w\rangle\mathrm{ and surj-pair[of w] by fastforce
    next
    case False
    then have S \vartheta (FAbsw B)=FAbs w( S (fmdrop w \vartheta) B)
        using surj-pair[of w] by fastforce
    moreover have v\not\invars(S (fmdrop w \vartheta) B)
    proof -
        from FAbs.prems(1) have is-substitution (fmdrop w \vartheta)
            by fastforce
        moreover from FAbs.prems(2) have v\not\infmdom'(fmdrop w \vartheta)
            by simp
        moreover from FAbs.prems(1,3) have v\not\invars (fmran'(fmdrop w \vartheta))
            by (fact vars-range-substitution)
        ultimately show ?thesis
            using FAbs.IH and }\langlev\not\invars B\rangle by sim
    qed
    ultimately show ?thesis
        using }\langlev\not=w\rangle\mathrm{ and surj-pair[of w] by fastforce
    qed
qed
```


2.15 Renaming of bound variables

```
fun rename-bound-var :: var \(\Rightarrow\) nat \(\Rightarrow\) form \(\Rightarrow\) form where
    rename-bound-var v \(y\left(x_{\alpha}\right)=x_{\alpha}\)
| rename-bound-var v y \((\{c\} \alpha)=\{c\} \alpha\)
| rename-bound-var v \(y(B \cdot C)=\) rename-bound-var v y \(B \cdot\) rename-bound-var v y \(C\)
| rename-bound-var v \(y\left(\lambda x_{\alpha} . B\right)=\)
    (
        if \((x, \alpha)=v\) then
            \(\lambda y_{\alpha} . \mathbf{S}\left\{(x, \alpha) \longmapsto y_{\alpha}\right\}\) (rename-bound-var v y B)
        else
            \(\lambda x_{\alpha} .(\) rename-bound-var \(v\) y \(B)\)
        )
lemma rename-bound-var-preserves-typing:
    assumes \(A \in w f f s_{\alpha}\)
    shows rename-bound-var \((y, \gamma)\) z \(A \in w f f s_{\alpha}\)
using assms proof (induction A)
    case (abs-is-wff \(\beta A \delta x)\)
    then show ?case
    proof \((\) cases \((x, \delta)=(y, \gamma))\)
    case True
    from abs-is-wff.IH have \(\mathbf{S}\left\{(y, \gamma) \longmapsto z_{\gamma}\right\}\) (rename-bound-var \(\left.(y, \gamma) z A\right) \in\) wffs \(_{\beta}\)
        using substitution-preserves-typing by (simp add: wffs-of-type-intros(1))
    then have \(\lambda z_{\gamma}\). \(\mathbf{S}\left\{(y, \gamma) \longmapsto z_{\gamma}\right\}\) (rename-bound-var \(\left.(y, \gamma) z A\right) \in\) wff \(_{\gamma \rightarrow \beta}\)
        by blast
        with True show ?thesis
            by \(\operatorname{simp}\)
```

```
    next
    case False
    from abs-is-wff.IH have }\lambda\mp@subsup{x}{\delta}{}\mathrm{ . rename-bound-var (y, })=zA\inwffs s->
        by blast
    with False show ?thesis
        by auto
    qed
qed auto
lemma old-bound-var-not-free-in-abs-after-renaming:
    assumes A\inwffs\alpha
    and }\mp@subsup{z}{\gamma}{}\not=\mp@subsup{y}{\gamma}{
    and (z,\gamma)\not\invars A
    shows (y,\gamma)\not\in free-vars(rename-bound-var (y,\gamma)z (\lambday\gamma. A))
    using assms and free-var-in-renaming-substitution by (induction A) auto
lemma rename-bound-var-free-vars:
    assumes }A\inwff\mp@subsup{s}{\alpha}{
    and }\mp@subsup{z}{\gamma}{}\not=\mp@subsup{y}{\gamma}{
    and (z,\gamma) & vars A
    shows (z,\gamma)\not\in free-vars (rename-bound-var (y,\gamma) z A)
    using assms by (induction A) auto
lemma old-bound-var-not-free-after-renaming:
    assumes }A\inwffs
    and }\mp@subsup{z}{\gamma}{}\not=\mp@subsup{y}{\gamma}{
    and (z,\gamma)\not\invars A
    and (y,\gamma) & free-vars A
    shows (y,\gamma) & free-vars(rename-bound-var (y,\gamma) z A)
using assms proof induction
    case (abs-is-wff \beta A \alpha x)
    then show ?case
    proof (cases (x,\alpha)=(y,\gamma))
    case True
    with abs-is-wff.hyps and abs-is-wff.prems(2) show ?thesis
        using old-bound-var-not-free-in-abs-after-renaming by auto
    next
        case False
        with abs-is-wff.prems(2,3) and assms(2) show ?thesis
        using abs-is-wff.IH by force
    qed
qed fastforce+
lemma old-bound-var-not-ocurring-after-renaming:
    assumes }A\inwffs\mp@subsup{s}{\alpha}{
    and }\mp@subsup{z}{\gamma}{}\not=\mp@subsup{y}{\gamma}{
    shows \neg occurs-at (y,\gamma)p(S {(y,\gamma) \mapsto z\gamma} (rename-bound-var (y,\gamma) z A))
using assms(1) proof (induction A arbitrary: p)
    case (var-is-wff \alpha x)
```

```
    from assms(2) show ?case
    using subform-size-decrease by (cases (x,\alpha)=(y,\gamma)) fastforce+
next
    case (con-is-wff \alpha c)
    then show ?case
        using occurs-at-alt-def(2) by auto
next
    case (app-is-wff \alpha \beta A B)
    then show?case
    proof (cases p)
    case (Cons d p
        then show?thesis
        by (cases d) (use app-is-wff.IH in auto)
    qed simp
next
    case (abs-is-wff \beta A \alpha x)
    then show?case
    proof (cases p)
        case (Cons d p)
        then show ?thesis
        proof (cases d)
            case Left
            have *: \neg occurs-at (y,\gamma) p(\lambdax\alpha. S {(y,\gamma) \rightharpoondownz\gamma} (rename-bound-var (y,\gamma)z A))
                    for }x\mathrm{ and }
            using Left and Cons and abs-is-wff.IH by simp
            then show ?thesis
            proof (cases (x,\alpha)=(y,\gamma))
                case True
                with assms(2) have
                S {(y,\gamma)\longmapsto \rightharpoondown~\gamma} (rename-bound-var (y,\gamma)z (\lambdax\alpha.A))
                =
                zz.S S {(y,\gamma) \mapsto z\gamma} (rename-bound-var (y,\gamma) z A)
                using free-var-in-renaming-substitution and free-var-singleton-substitution-neutrality
                by simp
            moreover have \negoccurs-at (y,\gamma) p(\lambdaz\gamma.\mathbf{S {(y,\gamma)}\mapsto\mp@subsup{z}{\gamma}{}}(rename-bound-var (y,\gamma) z A))
                using Left and Cons and * by simp
            ultimately show ?thesis
                    by simp
        next
            case False
            with assms(2) have
```



```
                =
                \lambdax\alpha. S {(y,\gamma) }->\mp@subsup{z}{\gamma}{}}(\mathrm{ rename-bound-var (y, 人) z A)
                by simp
            moreover have \negoccurs-at (y,\gamma) p(\lambda\mp@subsup{x}{\alpha}{}.\mathbf{S}{(y,\gamma)\mapsto\mp@subsup{z}{\gamma}{}}(rename-bound-var (y,\gamma)zA))
                using Left and Cons and * by simp
            ultimately show?thesis
                by simp
```

```
        qed
        qed (simp add: Cons)
    qed simp
qed
```

The following lemma states that the result of rename-bound-var does not contain bound occurrences of the renamed variable:
lemma rename-bound-var-not-bound-occurrences:
assumes $A \in w f f s_{\alpha}$
and $z_{\gamma} \neq y_{\gamma}$
and $(z, \gamma) \notin$ vars A
and occurs-at $(y, \gamma) p$ (rename-bound-var $(y, \gamma) z A)$
shows \neg in-scope-of-abs $(z, \gamma) p$ (rename-bound-var $(y, \gamma) z A)$
using $\operatorname{assms}(1,3,4)$ proof (induction arbitrary: p)
case (var-is-wff αx)
then show ?case
by (simp add: subforms-from-var(2))
next
case (con-is-wff αc)
then show ?case
using occurs-at-alt-def(2) by auto
next
case (app-is-wff $\alpha \beta B C$)
from app-is-wff.prems(1) have $(z, \gamma) \notin$ vars B and $(z, \gamma) \notin$ vars C
by simp-all
from app-is-wff.prems(2)
have occurs-at $(y, \gamma) p$ (rename-bound-var $(y, \gamma) z B \cdot$ rename-bound-var $(y, \gamma) z C)$
by simp
then consider
(a) $\exists p^{\prime} \cdot p=« \# p^{\prime} \wedge$ occurs-at $(y, \gamma) p^{\prime}($ rename-bound-var $(y, \gamma) z B)$
(b) $\exists p^{\prime} . p=» \# p^{\prime} \wedge$ occurs-at $(y, \gamma) p^{\prime}($ rename-bound-var $(y, \gamma) z C)$
using subforms-from-app by force
then show? case
proof cases
case a
then obtain p^{\prime} where $p=« \# p^{\prime}$ and occurs-at $(y, \gamma) p^{\prime}$ (rename-bound-var $\left.(y, \gamma) z B\right)$ by blast
then have \neg in-scope-of-abs $(z, \gamma) p^{\prime}($ rename-bound-var (y, γ) z $B)$
using app-is-wff.IH $(1)[$ OF $\langle(z, \gamma) \notin$ vars $B\rangle]$ by blast
then have \neg in-scope-of-abs $(z, \gamma) p$ (rename-bound-var $(y, \gamma) z(B \cdot C))$ for C
using $\left\langle p=« \# p^{\prime}\right\rangle$ and in-scope-of-abs-in-left-app by simp
then show ?thesis
by blast
next
case b
then obtain p^{\prime} where $p=» \# p^{\prime}$ and occurs-at $(y, \gamma) p^{\prime}$ (rename-bound-var $\left.(y, \gamma) z C\right)$ by blast
then have \neg in-scope-of-abs $(z, \gamma) p^{\prime}($ rename-bound-var $(y, \gamma) z C)$
using app-is-wff.IH(2)[OF $\langle(z, \gamma) \notin$ vars $C\rangle]$ by blast

```
    then have \(\neg\) in-scope-of-abs \((z, \gamma) p\) (rename-bound-var \((y, \gamma) z(B \cdot C))\) for \(B\)
        using \(\left\langle p=» \# p^{\prime}\right\rangle\) and in-scope-of-abs-in-right-app by simp
    then show ?thesis
        by blast
    qed
next
    case (abs-is-wff \(\beta A \alpha x)\)
    from abs-is-wff.prems(1) have \((z, \gamma) \notin\) vars \(A\) and \((z, \gamma) \neq(x, \alpha)\)
    by fastforce+
    then show ?case
    proof (cases \((y, \gamma)=(x, \alpha))\)
    case True
    then have occurs-at \((y, \gamma) p\left(\lambda z_{\gamma}\right.\). \(\mathbf{S}\left\{(y, \gamma) \longleftrightarrow z_{\gamma}\right\}(\) rename-bound-var \(\left.(y, \gamma) z A)\right)\)
        using abs-is-wff.prems(2) by simp
    moreover have \(\neg\) occurs-at \((y, \gamma) p\left(\lambda z_{\gamma} . \mathbf{S}\left\{(y, \gamma) \rightharpoondown z_{\gamma}\right\}(\right.\) rename-bound-var \(\left.(y, \gamma) z A)\right)\)
    using old-bound-var-not-ocurring-after-renaming[OF abs-is-wff.hyps assms(2)] and subforms-from-abs
        by fastforce
    ultimately show ?thesis
        by contradiction
    next
    case False
    then have \(*\) : rename-bound-var \((y, \gamma) z\left(\lambda x_{\alpha} . A\right)=\lambda x_{\alpha}\). rename-bound-var \((y, \gamma) z A\)
        by auto
    with abs-is-wff.prems(2) have occurs-at ( \(y, \gamma) p\left(\lambda x_{\alpha}\right.\). rename-bound-var \(\left.(y, \gamma) z A\right)\)
        by auto
    then obtain \(p^{\prime}\) where \(p=« \# p^{\prime}\) and occurs-at \((y, \gamma) p^{\prime}\) (rename-bound-var \(\left.(y, \gamma) z A\right)\)
        using subforms-from-abs by fastforce
    then have \(\neg\) in-scope-of-abs \((z, \gamma) p^{\prime}(\) rename-bound-var \((y, \gamma)\) z \(A)\)
        using abs-is-wff.IH[OF «(z, \(\gamma) \notin\) vars A〉] by blast
    then have \(\neg\) in-scope-of-abs \((z, \gamma)\left(« \# p^{\prime}\right)\left(\lambda x_{\alpha}\right.\). rename-bound-var \(\left.(y, \gamma) z A\right)\)
        using \(\left\langle p=« \# p^{\prime}\right\rangle\) and in-scope-of-abs-in-abs and \(\langle(z, \gamma) \neq(x, \alpha)\rangle\) by auto
    then show ?thesis
        using \(*\) and \(\left\langle p=« \# p^{\prime}\right\rangle\) by \(\operatorname{simp}\)
    qed
qed
lemma is-free-for-in-rename-bound-var:
    assumes \(A \in w f f s_{\alpha}\)
    and \(z_{\gamma} \neq y_{\gamma}\)
    and \((z, \gamma) \notin \operatorname{vars} A\)
    shows is-free-for \(\left(z_{\gamma}\right)(y, \gamma)\) (rename-bound-var \(\left.(y, \gamma) z A\right)\)
proof (rule ccontr)
    assume \(\neg\) is-free-for \(\left(z_{\gamma}\right)(y, \gamma)(\) rename-bound-var \((y, \gamma) z A)\)
    then obtain \(p\)
        where is-free-at \((y, \gamma) p\) (rename-bound-var \((y, \gamma) z A)\)
        and in-scope-of-abs \((z, \gamma) p\) (rename-bound-var \((y, \gamma) z A)\)
        by force
    then show False
        using rename-bound-var-not-bound-occurrences[OF assms] by fastforce
```

```
qed
lemma renaming-substitution-preserves-bound-vars:
```



```
proof (induction A)
    case (FAbs v A)
    then show ?case
        using singleton-substitution-simps(4) and surj-pair[of v]
        by (cases v = (y,\gamma))(presburger, force)
qed force+
lemma rename-bound-var-bound-vars:
    assumes A\inwffs⿱
    and }\mp@subsup{z}{\gamma}{}\not=\mp@subsup{y}{\gamma}{
    shows (y,\gamma)\not\in bound-vars (rename-bound-var (y,\gamma) z A)
    using assms and renaming-substitution-preserves-bound-vars by (induction A) auto
lemma old-var-not-free-not-occurring-after-rename:
    assumes }A\in\mp@subsup{wfffs}{\alpha}{
    and }\mp@subsup{z}{\gamma}{}\not=\mp@subsup{y}{\gamma}{
    and (y,\gamma) & free-vars A
    and (z,\gamma) & vars A
    shows (y,\gamma)\not\invars(rename-bound-var (y,\gamma) z A)
    using assms and rename-bound-var-bound-vars[OF assms(1,2)]
    and old-bound-var-not-free-after-renaming and vars-is-free-and-bound-vars by blast
end
```


3 Boolean Algebra

```
theory Boolean-Algebra
    imports
        ZFC-in-HOL.ZFC-Typeclasses
begin
```

This theory contains an embedding of two-valued boolean algebra into V.
hide-const (open) List.set
definition bool-to- V :: bool $\Rightarrow V$ where
bool-to- $V=(S O M E$ f.inj f)
lemma bool-to- V-injectivity $[$ simp $]$:
shows inj bool-to- V
unfolding bool-to-V-def by (fact someI-ex[OF embeddable-class.ex-inj])
definition bool-from- $V:: V \Rightarrow$ bool where
[simp]: bool-from- $V=$ inv bool-to- V
definition top :: $V(\mathbf{T})$ where

```
[simp]: \(\mathbf{T}=\) bool-to- \(V\) True
```

definition bottom :: V(F) where [simp]: $\mathbf{F}=$ bool-to- V False
definition two-valued-boolean-algebra-universe :: V (B) where $[\operatorname{simp}]: \mathbb{B}=\operatorname{set}\{\mathbf{T}, \mathbf{F}\}$
definition negation $:: V \Rightarrow V(\sim-[141]$ 141) where [simp]: $\sim p=$ bool-to- $V(\neg$ bool-from- $V p)$
definition conjunction $:: V \Rightarrow V \Rightarrow V(\operatorname{infixr} \wedge 136)$ where [simp]: $p \wedge q=$ bool-to- V (bool-from- $V p \wedge$ bool-from- $V q$)
definition disjunction $:: V \Rightarrow V \Rightarrow V$ (infixr \vee 131) where [simp]: $p \vee q=\sim(\sim p \wedge \sim q)$
definition implication $:: V \Rightarrow V \Rightarrow V$ (infixr \supset 121) where [simp]: $p \supset q=\sim p \vee q$
definition iff $:: V \Rightarrow V \Rightarrow V($ infixl $\equiv 150)$ where $[\operatorname{simp}]: p \equiv q=(p \supset q) \wedge(q \supset p)$
lemma boolean-algebra-simps $[$ simp $]$:
assumes $p \in$ elts \mathbb{B} and $q \in$ elts \mathbb{B} and $r \in$ elts \mathbb{B}
shows $\sim \sim p=p$
and $((\sim p) \equiv(\sim q))=(p \equiv q)$
and $\sim(p \equiv q)=(p \equiv(\sim q))$
and $(p \vee \sim p)=\mathbf{T}$
and $(\sim p \vee p)=\mathbf{T}$
and $(p \equiv p)=\mathbf{T}$
and $(\sim p) \neq p$
and $p \neq(\sim p)$
and $(\mathbf{T} \equiv p)=p$
and $(p \equiv \mathbf{T})=p$
and $(\mathbf{F} \equiv p)=(\sim p)$
and $(p \equiv \mathbf{F})=(\sim p)$
and $(\mathbf{T} \supset p)=p$
and $(\mathbf{F} \supset p)=\mathbf{T}$
and $(p \supset \mathbf{T})=\mathbf{T}$
and $(p \supset p)=\mathbf{T}$
and $(p \supset \mathbf{F})=(\sim p)$
and $(p \supset \sim p)=(\sim p)$
and $(p \wedge \mathbf{T})=p$
and $(\mathbf{T} \wedge p)=p$
and $(p \wedge \mathbf{F})=\mathbf{F}$
and $(\mathbf{F} \wedge p)=\mathbf{F}$
and $(p \wedge p)=p$
and $(p \wedge(p \wedge q))=(p \wedge q)$

```
and \((p \wedge \sim p)=\mathbf{F}\)
and \((\sim p \wedge p)=\mathbf{F}\)
and \((p \vee \mathbf{T})=\mathbf{T}\)
and \((\mathbf{T} \vee p)=\mathbf{T}\)
and \((p \vee \mathbf{F})=p\)
and \((\mathbf{F} \vee p)=p\)
and \((p \vee p)=p\)
and \((p \vee(p \vee q))=(p \vee q)\)
and \(p \wedge q=q \wedge p\)
and \(p \wedge(q \wedge r)=q \wedge(p \wedge r)\)
and \(p \vee q=q \vee p\)
and \(p \vee(q \vee r)=q \vee(p \vee r)\)
and \((p \vee q) \vee r=p \vee(q \vee r)\)
and \(p \wedge(q \vee r)=p \wedge q \vee p \wedge r\)
and \((p \vee q) \wedge r=p \wedge r \vee q \wedge r\)
and \(p \vee(q \wedge r)=(p \vee q) \wedge(p \vee r)\)
and \((p \wedge q) \vee r=(p \vee r) \wedge(q \vee r)\)
and \((p \supset(q \wedge r))=((p \supset q) \wedge(p \supset r))\)
and \(((p \wedge q) \supset r)=(p \supset(q \supset r))\)
and \(((p \vee q) \supset r)=((p \supset r) \wedge(q \supset r))\)
and \(((p \supset q) \vee r)=(p \supset q \vee r)\)
and \((q \vee(p \supset r))=(p \supset q \vee r)\)
and \(\sim(p \vee q)=\sim p \wedge \sim q\)
and \(\sim(p \wedge q)=\sim p \vee \sim q\)
and \(\sim(p \supset q)=p \wedge \sim q\)
and \(\sim p \vee q=(p \supset q)\)
and \(p \vee \sim q=(q \supset p)\)
and \((p \supset q)=(\sim p) \vee q\)
and \(p \vee q=\sim p \supset q\)
and \((p \equiv q)=(p \supset q) \wedge(q \supset p)\)
and \((p \supset q) \wedge(\sim p \supset q)=q\)
and \(p=\mathbf{T} \Longrightarrow \neg(p=\mathbf{F})\)
and \(p=\mathbf{F} \Longrightarrow \neg(p=\mathbf{T})\)
and \(p=\mathbf{T} \vee p=\mathbf{F}\)
using assms by (auto simp add: inj-eq)
```

lemma tv-cases [consumes 1, case-names top bottom, cases type: V]:
assumes $p \in$ elts \mathbb{B}
and $p=\mathbf{T} \Longrightarrow P$
and $p=\mathbf{F} \Longrightarrow P$
shows P
using assms by auto
end

4 Propositional Well-Formed Formulas

```
theory Propositional-Wff
```

 imports

Syntax

Boolean-Algebra
begin

4.1 Syntax

inductive-set pwffs :: form set where
T-pwff: $T_{o} \in p w f f s$
| F-pwff: $F_{o} \in p w f f s$
| var-pwff: $p_{o} \in$ pwffs
| neg-pwff: $\sim^{\mathcal{Q}} A \in$ pwffs if $A \in$ pwffs
conj-pwff: $A \wedge^{\mathcal{Q}} B \in$ pwffs if $A \in$ pwffs and $B \in$ pwffs
\mid disj-pwff: $A \vee^{\mathcal{Q}} B \in$ pwffs if $A \in$ pwffs and $B \in$ pwffs
\mid imp-pwff: $A \supset^{\mathcal{Q}} B \in$ pwffs if $A \in p w f f s$ and $B \in p w f f s$
\mid eqv-pwff: $A \equiv{ }^{\mathcal{Q}} B \in p w f f s$ if $A \in p w f f s$ and $B \in p w f f s$
lemmas $[$ intro! $]=p w f f s . i n t r o s$
lemma pwffs-distinctnesses [induct-simp]:
shows $T_{o} \neq F_{o}$
and $T_{o} \neq p_{o}$
and $T_{o} \neq \mathcal{N}^{\mathcal{Q}} A$
and $T_{o} \neq A \wedge^{\mathcal{Q}} B$
and $T_{o} \neq A \vee^{\mathcal{Q}} B$
and $T_{o} \neq A \supset^{\mathcal{Q}} B$
and $T_{o} \neq A \equiv{ }^{\mathcal{Q}} B$
and $F_{o} \neq p_{o}$
and $F_{o} \neq \sim^{\mathcal{Q}} A$
and $F_{o} \neq A \wedge^{\mathcal{Q}} B$
and $F_{o} \neq A \vee \vee^{\mathcal{Q}} B$
and $F_{o} \neq A \supset^{\mathcal{Q}} B$
and $F_{o} \neq A \equiv{ }^{\mathcal{Q}} B$
and $p_{0} \neq \sim^{\mathcal{Q}} A$
and $p_{o} \neq A \wedge^{\mathcal{Q}} B$
and $p_{o} \neq A \vee \vee^{\mathcal{Q}} B$
and $p_{o} \neq A \supset^{\mathcal{Q}} B$
and $p_{o} \neq A \equiv{ }^{\mathcal{Q}} B$
and $\sim^{\mathcal{Q}} A \neq B \wedge{ }^{\mathcal{Q}} C$
and $\sim^{\mathcal{Q}} A \neq B \vee^{\mathcal{Q}} C$
and $\sim^{\mathcal{Q}} A \neq B \supset^{\mathcal{Q}} C$
and $\neg\left(B=F_{o} \wedge A=C\right) \Longrightarrow \sim^{\mathcal{Q}} A \neq B \equiv{ }^{\mathcal{Q}} C-\sim^{\mathcal{Q}} A$ is the same as $F_{o} \equiv{ }^{\mathcal{Q}} A$
and $A \wedge^{\mathcal{Q}} B \neq C \vee^{\mathcal{Q}} D$
and $A \wedge^{\mathcal{Q}} B \neq C \supset^{\mathcal{Q}} D$
and $A \wedge^{\mathcal{Q}} B \neq C \equiv{ }^{\mathcal{Q}} D$
and $A \vee \vee^{\mathcal{Q}} B \neq C \supset^{\mathcal{Q}} D$
and $A \vee{ }^{\mathcal{Q}} B \neq C \equiv{ }^{\mathcal{Q}} D$
and $A \supset^{\mathcal{Q}} B \neq C \equiv{ }^{\mathcal{Q}} D$
by simp-all

```
lemma pwffs-injectivities [induct-simp]:
    shows }~\mp@subsup{~}{}{\mathcal{Q}}A=~\mp@subsup{~}{}{\mathcal{Q}}\mp@subsup{A}{}{\prime}\Longrightarrow\LongrightarrowA=\mp@subsup{A}{}{\prime
    and }A\mp@subsup{\wedge}{}{\mathcal{Q}}B=\mp@subsup{A}{}{\prime}\mp@subsup{\wedge}{}{\mathcal{Q}}\mp@subsup{B}{}{\prime}\LongrightarrowA=\mp@subsup{A}{}{\prime}\wedgeB=\mp@subsup{B}{}{\prime
    and}A\vee\mathcal{Q}B=\mp@subsup{A}{}{\prime}\vee\mp@subsup{\vee}{}{\mathcal{Q}}\mp@subsup{B}{}{\prime}\LongrightarrowA=\mp@subsup{A}{}{\prime}\wedgeB=\mp@subsup{B}{}{\prime
    and }A\mp@subsup{\supset}{}{\mathcal{Q}}B=\mp@subsup{A}{}{\prime}\mp@subsup{\supset}{}{\mathcal{Q}}\mp@subsup{B}{}{\prime}\LongrightarrowA=\mp@subsup{A}{}{\prime}\wedgeB=\mp@subsup{B}{}{\prime
    and}A\equiv\mp@subsup{}{}{\mathcal{Q}}B=\mp@subsup{A}{}{\prime}\equiv\mp@subsup{}{}{\mathcal{Q}}\mp@subsup{B}{}{\prime}\LongrightarrowA=\mp@subsup{A}{}{\prime}\wedgeB=\mp@subsup{B}{}{\prime
    by simp-all
lemma pwff-from-neg-pwff [elim!]:
    assumes }~\mathcal{Q}A\inpwff
    shows A\inpwffs
    using assms by cases simp-all
lemma pwffs-from-conj-pwff [elim!]:
    assumes }A\mp@subsup{\wedge}{}{\mathcal{Q}}B\in\mathrm{ pwffs
    shows {A,B}\subseteqpwffs
    using assms by cases simp-all
lemma pwffs-from-disj-pwff [elim!]:
    assumes }A\vee\mp@subsup{\vee}{}{\mathcal{Q}}B\in\mathrm{ pwffs
    shows {A,B}\subseteqpwffs
    using assms by cases simp-all
lemma pwffs-from-imp-pwff [elim!]:
    assumes }A\mp@subsup{\supset}{}{\mathcal{Q}}B\in\mathrm{ pwffs
    shows {A,B}\subseteqpwffs
    using assms by cases simp-all
lemma pwffs-from-eqv-pwff [elim!]:
    assumes }A\equiv\mp@subsup{\equiv}{}{\mathcal{Q}}B\in\mathrm{ pwffs
    shows {A,B}\subseteqpwffs
    using assms by cases (simp-all, use F-pwff in fastforce)
lemma pwffs-subset-of-wffso:
    shows puffs \subseteqwffso
proof
    fix }
    assume A pwffs
    then show }A\inwffs\mp@subsup{s}{0}{
        by induction auto
qed
lemma pwff-free-vars-simps [simp]:
    shows T-fv: free-vars To = {}
    and F-fv: free-vars F}\mp@subsup{F}{o}{}={
    and var-fv: free-vars ( }\mp@subsup{p}{o}{})={(p,o)
    and neg-fv: free-vars ( }~\mathcal{Q}A)=\mathrm{ free-vars A
    and conj-fv: free-vars ( }A\mp@subsup{\wedge}{}{\mathcal{Q}}B)=\mathrm{ free-vars }A\cup\mathrm{ free-vars }
    and disj-fv: free-vars (A\vee\mathcal{Q}B)=free-vars }A\cup\mathrm{ free-vars B
```

```
and imp-fv: free-vars (A \supset定 B)= free-vars }A\cup\mathrm{ free-vars }
and eqv-fv: free-vars ( }A\equiv\mp@subsup{}{}{\mathcal{Q}}B)=\mathrm{ free-vars }A\cup\mathrm{ free-vars B
by force+
lemma pwffs-free-vars-are-propositional:
    assumes }A\inpwff
    and}v\in\mathrm{ free-vars }
    obtains p where v=( p,o)
using assms by (induction A arbitrary: thesis) auto
lemma is-free-for-in-pwff [intro]:
    assumes A\inpwffs
    and}v\in\mathrm{ free-vars }
    shows is-free-for B v A
using assms proof (induction A)
    case (neg-pwff C)
    then show ?case
            using is-free-for-in-neg by simp
next
    case (conj-pwff C D)
    from conj-pwff.prems consider
        (a) v\in free-vars C and v\in free-vars D
    |(b) v\in free-vars C and v}\not=\mathrm{ free-vars D
    | (c) v\not\infree-vars C and v\infree-vars D
        by auto
    then show ?case
    proof cases
        case a
        then show ?thesis
        using conj-pwff.IH by (intro is-free-for-in-conj)
    next
        case b
        have is-free-for B v C
            by (fact conj-pwff.IH(1)[OF b(1)])
        moreover from b(2) have is-free-for B v D
            using is-free-at-in-free-vars by blast
        ultimately show ?thesis
            by (rule is-free-for-in-conj)
    next
        case c
        from c(1) have is-free-for B v C
            using is-free-at-in-free-vars by blast
        moreover have is-free-for B v D
            by (fact conj-pwff.IH(2)[OF c(2)])
        ultimately show ?thesis
            by (rule is-free-for-in-conj)
    qed
next
    case (disj-pwff C D)
```

```
    from disj-pwff.prems consider
    (a) v\in free-vars C and v\in free-vars D
    (b) v\in free-vars C and v\not\in free-vars D
    | (c) v}\not\in\mathrm{ free-vars C and v}\in\mathrm{ free-vars D
    by auto
    then show ?case
    proof cases
        case a
        then show ?thesis
        using disj-pwff.IH by (intro is-free-for-in-disj)
    next
    case b
    have is-free-for B v C
        by (fact disj-pwff.IH(1)[OF b(1)])
    moreover from b(2) have is-free-for B v D
        using is-free-at-in-free-vars by blast
    ultimately show ?thesis
        by (rule is-free-for-in-disj)
    next
    case c
    from c(1) have is-free-for B v C
        using is-free-at-in-free-vars by blast
    moreover have is-free-for B v D
        by (fact disj-pwff.IH(2)[OF c(2)])
    ultimately show ?thesis
        by (rule is-free-for-in-disj)
    qed
next
    case (imp-pwff C D)
    from imp-pwff.prems consider
        (a) v\in free-vars C and v\in free-vars D
        (b) v\in free-vars C and v\not\in free-vars D
        (c) v}\not\infree-vars C and v\in free-vars D
        by auto
    then show?case
    proof cases
        case a
        then show ?thesis
            using imp-pwff.IH by (intro is-free-for-in-imp)
    next
        case b
        have is-free-for B v C
        by (fact imp-pwff.IH(1)[OF b(1)])
    moreover from b(2) have is-free-for B vD
        using is-free-at-in-free-vars by blast
    ultimately show ?thesis
        by (rule is-free-for-in-imp)
    next
    case c
```

```
    from }c(1)\mathrm{ have is-free-for B v C
        using is-free-at-in-free-vars by blast
    moreover have is-free-for B vD
        by (fact imp-pwff.IH(2)[OF c(2)])
    ultimately show ?thesis
        by (rule is-free-for-in-imp)
    qed
next
    case (eqv-pwff C D)
    from eqv-pwff.prems consider
        (a) v\in free-vars C and v\in free-vars D
    |(b) v\in free-vars C and v\not\infree-vars D
    | (c) v\not\infree-vars C and v\infree-vars D
        by auto
    then show ?case
    proof cases
        case a
        then show ?thesis
        using eqv-pwff.IH by (intro is-free-for-in-equivalence)
    next
        case b
        have is-free-for B v C
            by (fact eqv-pwff.IH(1)[OF b(1)])
        moreover from b(2) have is-free-for B v D
            using is-free-at-in-free-vars by blast
        ultimately show ?thesis
            by (rule is-free-for-in-equivalence)
    next
        case c
        from c(1) have is-free-for B v C
            using is-free-at-in-free-vars by blast
        moreover have is-free-for B v D
            by (fact eqv-pwff.IH(2)[OF c(2)])
        ultimately show ?thesis
        by (rule is-free-for-in-equivalence)
    qed
qed auto
```


4.2 Semantics

Assignment of truth values to propositional variables:
definition is-tv-assignment :: $($ nat $\Rightarrow V) \Rightarrow$ bool where
[iff]: is-tv-assignment $\varphi \longleftrightarrow(\forall p . \varphi p \in$ elts $\mathbb{B})$
Denotation of a pwff:
definition is-pwff-denotation-function where

[^0]```
 (V)
 \mathcal{V}\varphi\mp@subsup{F}{o}{}=\mathbf{F}\wedge
 (\forallp.\mathcal{V}\varphi(\mp@subsup{p}{o}{})=\varphip)^
 (\forallA.A\in pwffs \longrightarrow\mathcal{V}\varphi(~\mathcal{Q}A)=~\mathcal{V}\varphiA)^
 (\forallAB.A\inpwffs ^B\in pwffs \longrightarrow\mathcal{V}\varphi(A\mp@subsup{^}{}{\mathcal{Q}}B)=\mathcal{V}\varphiA\wedge\mathcal{V}\varphiB)^
 (\forallAB.A\inpwffs}\wedge ^B\in\mathrm{ pwffs }\longrightarrow\mathcal{V}\varphi(A\vee\mp@subsup{\vee}{}{\mathcal{Q}}B)=\mathcal{V}\varphiA\vee\mathcal{V}\varphiB)
 (\forallAB.A\in pwffs ^B\in pwffs \longrightarrow\mathcal{V}\varphi(A\supset\mp@subsup{}{}{\mathcal{Q}}B)=\mathcal{V}\varphiA\supset\mathcal{V}\varphiB)^
 (\forallAB.A\in pwffs ^B\inpwffs \longrightarrow\mathcal{V}\varphi(A\equiv\mp@subsup{}{}{\mathcal{Q}}B)=\mathcal{V}\varphiA\equiv\mathcal{V}\varphiB)
)
)
```

lemma pwff-denotation-is-truth-value:
assumes $A \in$ pwffs
and is-tv-assignment $\varphi$
and is-pwff-denotation-function $\mathcal{V}$
shows $\mathcal{V} \varphi A \in$ elts $\mathbb{B}$
using $\operatorname{assms}(1)$ proof induction
case (neg-pwff $A$ )
then have $\mathcal{V} \varphi\left(\sim^{\mathcal{Q}} A\right)=\sim \mathcal{V} \varphi A$
using assms (2,3) by auto
then show ?case
using neg-pwff.IH by auto
next
case (conj-pwff A B)
then have $\mathcal{V} \varphi\left(A \wedge^{\mathcal{Q}} B\right)=\mathcal{V} \varphi A \wedge \mathcal{V} \varphi B$ using assms $(2,3)$ by auto
then show ?case using conj-pwff.IH by auto
next
case (disj-pwff A B)
then have $\mathcal{V} \varphi\left(A \vee^{\mathcal{Q}} B\right)=\mathcal{V} \varphi A \vee \mathcal{V} \varphi B$
using $\operatorname{assms}(2,3)$ by auto
then show ?case
using disj-pwff.IH by auto
next
case (imp-pwff A B)
then have $\mathcal{V} \varphi\left(A \supset^{\mathcal{Q}} B\right)=\mathcal{V} \varphi A \supset \mathcal{V} \varphi B$
using assms $(2,3)$ by blast
then show ?case
using imp-pwff.IH by auto
next
case (eqv-pwff $A B$ )
then have $\mathcal{V} \varphi\left(A \equiv{ }^{\mathcal{Q}} B\right)=\mathcal{V} \varphi A \equiv \mathcal{V} \varphi B$
using $\operatorname{assms}(2,3)$ by blast
then show ?case
using eqv-pwff.IH by auto
qed (use assms(2,3) in auto)

```
lemma closed-pwff-is-meaningful-regardless-of-assignment:
 assumes \(A \in p w f f s\)
 and free-vars \(A=\{ \}\)
 and is-tv-assignment \(\varphi\)
 and is-tv-assignment \(\psi\)
 and is-pwff-denotation-function \(\mathcal{V}\)
 shows \(\mathcal{V} \varphi A=\mathcal{V} \psi A\)
using \(\operatorname{assms}(1,2)\) proof induction
 case \(T\)-pwff
 have \(\mathcal{V} \varphi T_{o}=\mathbf{T}\)
 using \(\operatorname{assms}(3,5)\) by blast
 also have \(\ldots=\mathcal{V} \psi T_{o}\)
 using \(\operatorname{assms}(4,5)\) by force
 finally show ?case .
next
 case \(F\)-pwff
 have \(\mathcal{V} \varphi F_{o}=\mathbf{F}\)
 using assms \((3,5)\) by blast
 also have \(\ldots=\mathcal{V} \psi F_{o}\)
 using assms \((4,5)\) by force
 finally show ?case.
next
 case (var-pwff \(p\)) — impossible case
 then show ?case
 by \(\operatorname{simp}\)
next
 case (neg-pwff A)
 from \(\langle\) free-vars \((\sim \mathcal{Q} A)=\{ \}\rangle\) have free-vars \(A=\{ \}\)
 by \(\operatorname{simp}\)
 have \(\mathcal{V} \varphi\left(\sim^{\mathcal{Q}} A\right)=\sim \mathcal{V} \varphi A\)
 using assms \((3,5)\) and neg-pwff.hyps by auto
 also from 〈free-vars \(A=\{ \}\rangle\) have \(\ldots=\sim \mathcal{V} \psi A\)
 using \(\operatorname{assms}(3-5)\) and neg-pwff.IH by presburger
 also have \(\ldots=\mathcal{V} \psi\left(\sim^{\mathcal{Q}} A\right)\)
 using \(\operatorname{assms}(4,5)\) and neg-pwff.hyps by \(\operatorname{simp}\)
 finally show ?case .
next
 case (conj-pwff A B)
 from 〈free-vars \(\left(A \wedge^{\mathcal{Q}} B\right)=\{ \}\) have free-vars \(A=\{ \}\) and free-vars \(B=\{ \}\)
 by simp-all
 have \(\mathcal{V} \varphi\left(A \wedge^{\mathcal{Q}} B\right)=\mathcal{V} \varphi A \wedge \mathcal{V} \varphi B\)
 using \(\operatorname{assms}(3,5)\) and conj-pwff.hyps \((1,2)\) by auto
 also from〈free-vars \(A=\{ \}\rangle\) and 〈free-vars \(B=\{ \}\rangle\) have \(\ldots=\mathcal{V} \psi A \wedge \mathcal{V} \psi B\)
 using conj-pwff.IH (1,2) by presburger
 also have \(\ldots=\mathcal{V} \psi\left(A \wedge^{\mathcal{Q}} B\right)\)
 using assms \((4,5)\) and conj-pwff.hyps \((1,2)\) by fastforce
 finally show ?case .
next
 case (disj-pwff \(A B\))
```

```
 from \(\langle\) free-vars \((A \vee \mathcal{Q} B)=\{ \}\rangle\) have free-vars \(A=\{ \}\) and free-vars \(B=\{ \}\)
 by simp-all
 have \(\mathcal{V} \varphi\left(A \vee^{\mathcal{Q}} B\right)=\mathcal{V} \varphi A \vee \mathcal{V} \varphi B\)
 using assms \((3,5)\) and disj-pwff.hyps \((1,2)\) by auto
 also from 〈free-vars \(A=\{ \}\) ’ and 〈free-vars \(B=\{ \}\rangle\) have \(\ldots=\mathcal{V} \psi A \vee \mathcal{V} \psi B\)
 using disj-pwff.IH (1,2) by presburger
 also have \(\ldots=\mathcal{V} \psi\left(A \vee^{\mathcal{Q}} B\right)\)
 using assms \((4,5)\) and disj-puff.hyps \((1,2)\) by fastforce
 finally show? ?ase.
next
 case (imp-pwff A B)
 from \(\left\langle\right.\) free-vars \(\left(A \supset^{\mathcal{Q}} B\right)=\{ \}\) have free-vars \(A=\{ \}\) and free-vars \(B=\{ \}\)
 by simp-all
 have \(\mathcal{V} \varphi\left(A \supset^{\mathcal{Q}} B\right)=\mathcal{V} \varphi A \supset \mathcal{V} \varphi B\)
 using assms \((3,5)\) and imp-pwff.hyps \((1,2)\) by auto
 also from 〈free-vars \(A=\{ \}\rangle\) and 〈free-vars \(B=\{ \}\rangle\) have \(\ldots=\mathcal{V} \psi A \supset \mathcal{V} \psi B\)
 using imp-pwff.IH \((1,2)\) by presburger
 also have \(\ldots=\mathcal{V} \psi\left(A \supset^{\mathcal{Q}} B\right)\)
 using assms \((4,5)\) and imp-pwff.hyps \((1,2)\) by fastforce
 finally show? case.
next
 case (eqv-pwff A B)
 from \(\left\langle\right.\) free-vars \(\left(A \equiv{ }^{\mathcal{Q}} B\right)=\{ \}\) have free-vars \(A=\{ \}\) and free-vars \(B=\{ \}\)
 by simp-all
 have \(\mathcal{V} \varphi\left(A \equiv^{\mathcal{Q}} B\right)=\mathcal{V} \varphi A \equiv \mathcal{V} \varphi B\)
 using \(\operatorname{assms}(3,5)\) and eqv-pwff. hyps \((1,2)\) by auto
 also from 〈free-vars \(A=\{ \}\), and 〈free-vars \(B=\{ \}\rangle\) have \(\ldots=\mathcal{V} \psi A \equiv \mathcal{V} \psi B\)
 using eqv-pwff.IH \((1,2)\) by presburger
 also have \(\cdots=\mathcal{V} \psi\left(A \equiv^{\mathcal{Q}} B\right)\)
 using assms \((4,5)\) and eqv-pwff.hyps \((1,2)\) by fastforce
 finally show? ?case.
qed
inductive \(\mathcal{V}_{B}\)-graph for \(\varphi\) where
 \(\mathcal{V}_{B \text {-graph-T: }} \mathcal{V}_{B}\)-graph \(\varphi T_{o} \mathbf{T}\)
\(\mid \mathcal{V}_{B}\)-graph-F: \(\mathcal{V}_{B}\)-graph \(\varphi F_{o} \mathbf{F}\)
\(\mid \mathcal{V}_{B}\)-graph-var: \(\mathcal{V}_{B}\)-graph \(\varphi\left(p_{o}\right)(\varphi p)\)
\(\mid \mathcal{V}_{B}\)-graph-neg: \(\mathcal{V}_{B}\)-graph \(\varphi\left(\sim^{\mathcal{Q}} A\right)\left(\sim b_{A}\right)\) if \(\mathcal{V}_{B}\)-graph \(\varphi A b_{A}\)
\(\mathcal{V}_{B}\)-graph-conj: \(\mathcal{V}_{B}\)-graph \(\varphi\left(A \wedge^{\mathcal{Q}} B\right)\left(b_{A} \wedge b_{B}\right)\) if \(\mathcal{V}_{B}\)-graph \(\varphi A b_{A}\) and \(\mathcal{V}_{B}\)-graph \(\varphi B b_{B}\)
| \(\mathcal{V}_{B}\)-graph-disj: \(\mathcal{V}_{B}\)-graph \(\varphi\left(A \vee^{\mathcal{Q}} B\right)\left(b_{A} \vee b_{B}\right)\) if \(\mathcal{V}_{B}\)-graph \(\varphi A b_{A}\) and \(\mathcal{V}_{B}\)-graph \(\varphi B b_{B}\)
\(\mid \mathcal{V}_{B}\)-graph-imp: \(\mathcal{V}_{B}\)-graph \(\varphi\left(A \supset^{\mathcal{Q}} B\right)\left(b_{A} \supset b_{B}\right)\) if \(\mathcal{V}_{B}\)-graph \(\varphi A b_{A}\) and \(\mathcal{V}_{B}\)-graph \(\varphi B b_{B}\)
\(\mid \mathcal{V}_{B}\)-graph-eqv: \(\mathcal{V}_{B}\)-graph \(\varphi\left(A \equiv^{\mathcal{Q}} B\right)\left(b_{A} \equiv b_{B}\right)\) if \(\mathcal{V}_{B}\)-graph \(\varphi A b_{A}\) and \(\mathcal{V}_{B}\)-graph \(\varphi B b_{B}\) and \(A\)
\(\neq F_{\text {o }}\)
lemmas \([\) intro! \(]=\mathcal{V}_{B}\)-graph.intros
lemma \(\mathcal{V}_{B}\)-graph-denotation-is-truth-value [elim!]:
 assumes \(\mathcal{V}_{B}\)-graph \(\varphi A b\)
 and is-tv-assignment \(\varphi\)
```

```
 shows b \in elts \mathbb{B}
using assms proof induction
 case (V)
 show ?case
```



```
next
 case (\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-conj A b b }B\mp@subsup{b}{B}{})
 then show ?case
 using \mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-conj.IH and assms(2) by force}
next
 case (\mp@subsup{\mathcal{V}}{B}{\prime-graph-disj A b}
 then show ?case
 using }\mp@subsup{\mathcal{V}}{\mp@subsup{B}{}{\prime}}{}\mathrm{ -graph-disj.IH and assms(2) by force
next
 case (\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-imp A b}\mp@subsup{b}{A}{}B\mp@subsup{b}{B}{})
 then show ?case
 using \mp@subsup{\mathcal{V}}{B}{\prime-graph-imp.IH and assms(2) by force}
next
 case (\mathcal{V}
 then show ?case
 using \mp@subsup{\mathcal{V}}{B}{\prime-graph-eqv.IH and assms(2) by force}
qed simp-all
lemma 渞-graph-denotation-uniqueness:
 assumes A\inpwffs
 and is-tv-assignment }
 and }\mp@subsup{\mathcal{V}}{B}{\prime-graph \varphi A b and }\mp@subsup{\mathcal{V}}{B}{\prime-graph }\varphiA\mp@subsup{b}{}{\prime
 shows b= b
using assms(3,1,4) proof (induction arbitrary: b
 case }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-T
 from \langle\mathcal{V}
 by (cases rule: 访-graph.cases) simp-all
next
 case }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-F
 from \langle\mathcal{V}}\mp@subsup{B}{\mathrm{ -graph }\varphi}{}\mp@subsup{F}{o}{}\mp@subsup{b}{}{\prime}\rangle\mathrm{ show ?case
 by (cases rule: }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph.cases) simp-all
next
 case (}\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-var p)
 from \\mathcal{V}
 by (cases rule: }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph.cases) simp-all
 next
 case (\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-neg A b b}
 with }\langle\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphi(~\mathcal{Q}A)\mp@subsup{b}{}{\prime}\rangle\mathrm{ have }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphiA(~\mp@subsup{b}{}{\prime}
 proof (cases rule: \mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph.cases)}
 case (}\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-neg A' }\mp@subsup{b}{A}{}
 from }\langle~\mp@subsup{}{}{\mathcal{Q}}A=~\mathcal{Q}A\prime\rangle have A= A
 by simp
 with }\langle\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphi\mp@subsup{A}{}{\prime}\mp@subsup{b}{A}{}\rangle\mathrm{ have }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphiA\mp@subsup{b}{A}{
 by simp
```

```
 moreover have b}\mp@subsup{b}{A}{}=~\mp@subsup{b}{}{\prime
 proof -
 have }\mp@subsup{b}{A}{}\in\mathrm{ elts }\mathbb{B
 by (fact \mp@subsup{\mathcal{V}}{B}{\prime}\mathrm{ -graph-denotation-is-truth-value[OF V V B-graph-neg(3) assms(2)])}
 moreover from }\langle\mp@subsup{b}{A}{}\in\mathrm{ elts }\mathbb{B}\rangle\mathrm{ and }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-neg(2) have }~\mp@subsup{b}{}{\prime}\in\mathrm{ elts }\mathbb{B
 by fastforce
 ultimately show ?thesis
 using }\mp@subsup{\mathcal{V}}{\mp@subsup{B}{}{\prime}}{}\mathrm{ -graph-neg(2) by fastforce
 qed
 ultimately show ?thesis
 by blast
qed simp-all
moreover from \mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-neg.prems(1) have }A\in\mathrm{ pwffs}
 by (force elim: pwffs.cases)
 moreover have }\mp@subsup{b}{A}{}\in\mathrm{ elts }\mathbb{B}\mathrm{ and }\mp@subsup{b}{}{\prime}\in\mathrm{ elts }\mathbb{B}\mathrm{ and }\mp@subsup{b}{A}{}=~\mp@subsup{b}{}{\prime
 proof -
 show }\mp@subsup{b}{A}{}\in\mathrm{ elts }\mathbb{B
 by (fact \mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-denotation-is-truth-value [OF <渞-graph }\varphiA\mp@subsup{A}{A}{}\rangle
 show }\mp@subsup{b}{}{\prime}\in\mathrm{ elts }\mathbb{B
 by (fact \mp@subsup{\mathcal{V}}{B}{\prime}\mathrm{ -graph-denotation-is-truth-value[OF < V}
 show }\mp@subsup{b}{A}{}=~\mp@subsup{b}{}{\prime
 by (fact \mp@subsup{\mathcal{V}}{B}{\prime-graph-neg(2)[OF}\langleA\inpwffs\rangle\langle\mathcal{V}
 qed
 ultimately show ?case
 by force
next
```



```
 with \langle\mathcal{V}
 where }\mp@subsup{b}{}{\prime}=\mp@subsup{b}{A}{}\mp@subsup{}{}{\prime}\wedge\mp@subsup{|}{B}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphiA\mp@subsup{b}{A}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphiB\mp@subsup{b}{B}{\prime}\mp@subsup{}{}{\prime
 by (cases rule: }\mp@subsup{\mathcal{V}}{B}{\prime-graph.cases) simp-all
 moreover have }A\in\mathrm{ pwffs and B
 using pwffs-from-conj-pwff[OF \mathcal{V}
 ultimately show ?case
 using \mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-conj.IH and }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-conj.prems(2) by blast}
next
 case (\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-disj A b }\mp@subsup{A}{A}{}B\mp@subsup{b}{B}{})
 from }\langle\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphi(A\mp@subsup{\vee}{}{\mathcal{Q}}B)\mp@subsup{b}{}{\prime}\rangle\mathrm{ obtain }\mp@subsup{b}{A}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and }\mp@subsup{b}{B}{\prime}\mp@subsup{}{}{\prime
 where }\mp@subsup{b}{}{\prime}=\mp@subsup{b}{A}{}\mp@subsup{}{}{\prime}\vee\mp@subsup{b}{B}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphiA\mp@subsup{b}{A}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphiB\mp@subsup{b}{B}{}\mp@subsup{}{}{\prime
 by (cases rule: }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph.cases) simp-all
 moreover have }A\inpwffs and B\inpwff
 using pwffs-from-disj-pwff[OF \mathcal{V}}\mp@subsup{\mathcal{B}}{\mathrm{ -graph-disj.prems(1)] by blast+}}{
 ultimately show ?case
 using \mp@subsup{\mathcal{V}}{B}{\prime-graph-disj.IH and }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-disj.prems(2) by blast}
next
 case (\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-imp A b b }B\mp@subsup{A}{B}{})
 from <\mathcal{V}}\mp@subsup{B}{\mathrm{ -graph }\varphi}{}(A\mp@subsup{\supset}{}{\mathcal{Q}}B)\mp@subsup{b}{}{\prime}\rangle\mathrm{ obtain }\mp@subsup{b}{A}{\prime}'\mathrm{ and }\mp@subsup{b}{B}{\prime
 where }\mp@subsup{b}{}{\prime}=\mp@subsup{b}{A}{\prime}\mp@subsup{}{}{\prime}\supset\mp@subsup{b}{B}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphiA\mp@subsup{b}{A}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphiB\mp@subsup{b}{B}{\prime}\mp@subsup{}{}{\prime
 by (cases rule: }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph.cases) simp-all
 moreover have }A\inpwffs and B\inpwff
```

```
 using pwffs-from-imp-pwff[OF \mathcal{V}
 ultimately show ?case
 using }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-imp.IH and }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-imp.prems(2) by blast
next
 case (\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-eqv A b }\mp@subsup{A}{A}{}B\mp@subsup{b}{B}{})
 with \langle\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphi(A\equiv\mp@subsup{\equiv}{}{\mathcal{Q}}B) b}\mp@subsup{b}{}{\prime}\rangle\mathrm{ obtain }\mp@subsup{b}{A}{}\mp@subsup{}{}{\prime}\mathrm{ and }\mp@subsup{b}{B}{\prime}\mp@subsup{}{}{\prime
 where b}\mp@subsup{b}{}{\prime}=\mp@subsup{b}{A}{\prime}\mp@subsup{}{}{\prime}\equiv\mp@subsup{b}{B}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphiA\mp@subsup{b}{A}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphiB\mp@subsup{b}{B}{}\mp@subsup{}{}{\prime
 by (cases rule: }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph.cases) simp-all
 moreover have }A\inpwffs and B\inpwff
 using pwffs-from-eqv-pwff[OF \mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-eqv.prems(1)] by blast+}
 ultimately show ?case
 using \mp@subsup{\mathcal{V}}{B}{\prime-graph-eqv.IH and }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-eqv.prems(2) by blast}
qed
lemma }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-denotation-existence:
 assumes }A\inpwff
 and is-tv-assignment \varphi
 shows }\exists\textrm{b}.\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphiA
using assms proof induction
 case (eqv-pwff A B)
 then obtain }\mp@subsup{b}{A}{}\mathrm{ and }\mp@subsup{b}{B}{}\mathrm{ where }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphiA\mp@subsup{b}{A}{}\mathrm{ and }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphiB\mp@subsup{b}{B}{
 by blast
 then show ?case
 proof (cases A}\not=\mp@subsup{F}{o}{}\mathrm{)
 case True
 then show ?thesis
 using eqv-pwff.IH and eqv-pwff.prems by blast
 next
 case False
 then have }A=\mp@subsup{F}{o}{
 by blast
 then show ?thesis
 using \mp@subsup{\mathcal{V}}{B}{\prime-graph-neg[OF <\mathcal{V}}\mp@subsup{B}{B}{-graph }\varphiB\mp@subsup{b}{B}{}\rangle] by auto
 qed
qed blast+
lemma \mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-is-functional:}
 assumes A\inpwffs
 and is-tv-assignment }
 shows }\exists!b.\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphiA
 using assms and \mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-denotation-existence and }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-denotation-uniqueness by blast}
definition }\mp@subsup{\mathcal{V}}{B}{}::(\mathrm{ nat }=>V)=>\mathrm{ form }=>V\mathrm{ where
 [simp]: \mathcal{V}
lemma }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -equality:
 assumes A\inpwffs
 and is-tv-assignment }
 and }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphiA
```

```
 shows }\mp@subsup{\mathcal{V}}{B}{}\varphiA=
 unfolding \mp@subsup{\mathcal{V}}{B}{}\mathrm{ -def using assms using }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-denotation-uniqueness by blast}
lemma \mp@subsup{\mathcal{V}}{B}{\prime}\mathrm{ -graph-V }\mp@subsup{\mathcal{V}}{B}{}:
 assumes A\inpwffs
 and is-tv-assignment }
 shows }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphiA(\mp@subsup{\mathcal{V}}{B}{}\varphiA
 using }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -equality[OF assms] and }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-is-functional[OF assms] by blast
named-theorems }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -simps
lemma \mp@subsup{\mathcal{V}}{B}{}-T[\mp@subsup{\mathcal{V}}{B}{-simps]:}
 assumes is-tv-assignment \varphi
 shows }\mp@subsup{\mathcal{V}}{B}{}\varphi\mp@subsup{T}{o}{}=\mathbf{T
 by (rule \mathcal{V}}\mp@subsup{\mathcal{B}}{\mathrm{ -equality[OF T-pwff assms], intro }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-T)}}{\mathrm{ - }
lemma \mp@subsup{\mathcal{V}}{B}{}-F[\mp@subsup{\mathcal{V}}{B}{}-simps]:
 assumes is-tv-assignment \varphi
 shows }\mp@subsup{\mathcal{V}}{B}{}\varphi\mp@subsup{F}{o}{}=\mathbf{F
 by (rule }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -equality[OF F-pwff assms], intro }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-F)
lemma \mp@subsup{\mathcal{V}}{B}{}-var [\mp@subsup{\mathcal{V}}{B}{}-simps]:
 assumes is-tv-assignment \varphi
 shows }\mp@subsup{\mathcal{V}}{B}{}\varphi(\mp@subsup{p}{o}{})=\varphi
 by (rule \mathcal{V}}\mp@subsup{\mathcal{B}}{\mathrm{ -equality[OF var-pwff assms], intro }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-var)}}{\mathrm{ -gale}
lemma \mp@subsup{\mathcal{V}}{B}{\prime-neg [\mathcal{V}}\mp@subsup{\mathcal{B}}{-simps]:}{}\mathrm{ ;}
 assumes A\inpwffs
 and is-tv-assignment }
 shows }\mp@subsup{\mathcal{V}}{B}{}\varphi(~\mathcal{Q}A)=~\mp@subsup{\mathcal{V}}{B}{}\varphi
 by (rule \mp@subsup{\mathcal{V}}{B}{}\mathrm{ -equality[OF neg-pwff[OF assms(1)] assms(2)], intro }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-neg }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-V }\mp@subsup{\mathcal{V}}{B}{}[OF
assms])
lemma \mp@subsup{\mathcal{V}}{B}{-disj [\mathcal{V}}\mp@subsup{\mathcal{B}}{}{-simps}]:
 assumes }A\in\mathrm{ pwffs and B}\in\mathrm{ pwffs
 and is-tv-assignment }
 shows }\mp@subsup{\mathcal{V}}{B}{}\varphi(A\vee\mp@subsup{\vee}{}{\mathcal{Q}}B)=\mp@subsup{\mathcal{V}}{B}{}\varphiA\vee\mp@subsup{\mathcal{V}}{B}{}\varphi
proof -
 from assms(1,3) have }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphiA(\mp@subsup{\mathcal{V}}{B}{}\varphiA
 by (intro }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-}\mp@subsup{\mathcal{V}}{B}{}
 moreover from assms(2,3) have }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphiB(\mp@subsup{\mathcal{V}}{B}{}\varphiB
 by (intro }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-}\mp@subsup{\mathcal{V}}{B}{}
 ultimately have }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph }\varphi(A\mp@subsup{\vee}{}{\mathcal{Q}}B)(\mp@subsup{\mathcal{V}}{B}{}\varphiA\vee\mp@subsup{\mathcal{V}}{B}{}\varphiB
 by (intro \mp@subsup{\mathcal{V}}{B}{}\mathrm{ -graph-disj)}
 with assms show ?thesis
 using disj-pwff by (intro }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -equality)
qed
lemma \mp@subsup{\mathcal{V}}{B}{-conj [\mathcal{V}}\mp@subsup{\mathcal{B}}{\mathrm{ -simps]:}}{}=\mathrm{ ;}
```

```
 assumes \(A \in p w f f s\) and \(B \in p w f f s\)
 and is-tv-assignment \(\varphi\)
 shows \(\mathcal{V}_{B} \varphi\left(A \wedge^{\mathcal{Q}} B\right)=\mathcal{V}_{B} \varphi A \wedge \mathcal{V}_{B} \varphi B\)
proof -
 from \(\operatorname{assms}(1,3)\) have \(\mathcal{V}_{B}\)-graph \(\varphi A\left(\mathcal{V}_{B} \varphi A\right)\)
 by (intro \(\mathcal{V}_{B}\)-graph \(-\mathcal{V}_{B}\))
 moreover from \(\operatorname{assms}(2,3)\) have \(\mathcal{V}_{B}\)-graph \(\varphi B\left(\mathcal{V}_{B} \varphi B\right)\)
 by (intro \(\mathcal{V}_{B}\)-graph \(-\mathcal{V}_{B}\))
 ultimately have \(\mathcal{V}_{B}\)-graph \(\varphi\left(A \wedge^{\mathcal{Q}} B\right)\left(\mathcal{V}_{B} \varphi A \wedge \mathcal{V}_{B} \varphi B\right)\)
 by (intro \(\mathcal{V}_{B}\)-graph-conj)
 with assms show ?thesis
 using conj-pwff by (intro \(\mathcal{V}_{B}\)-equality)
qed
lemma \(\mathcal{V}_{B-i m p}\left[\mathcal{V}_{B}\right.\)-simps \(]\) :
 assumes \(A \in p w f f s\) and \(B \in p w f f s\)
 and is-tv-assignment \(\varphi\)
 shows \(\mathcal{V}_{B} \varphi\left(A \supset^{\mathcal{Q}} B\right)=\mathcal{V}_{B} \varphi A \supset \mathcal{V}_{B} \varphi B\)
proof -
 from \(\operatorname{assms}(1,3)\) have \(\mathcal{V}_{B}\)-graph \(\varphi A\left(\mathcal{V}_{B} \varphi A\right)\)
 by (intro \(\mathcal{V}_{B}\)-graph- \(\mathcal{V}_{B}\))
 moreover from \(\operatorname{assms}(2,3)\) have \(\mathcal{V}_{B}\)-graph \(\varphi B\left(\mathcal{V}_{B} \varphi B\right)\)
 by (intro \(\mathcal{V}_{B}\)-graph- \(\mathcal{V}_{B}\))
 ultimately have \(\mathcal{V}_{B}\)-graph \(\varphi\left(A \supset^{\mathcal{Q}} B\right)\left(\mathcal{V}_{B} \varphi A \supset \mathcal{V}_{B} \varphi B\right)\)
 by (intro \(\mathcal{V}_{B}\)-graph-imp)
 with assms show ?thesis
 using imp-pwff by (intro \(\mathcal{V}_{B}\)-equality)
qed
lemma \(\mathcal{V}_{B}\)-eqv \(\left[\mathcal{V}_{B}\right.\)-simps \(]\) :
 assumes \(A \in p w f f s\) and \(B \in p w f f s\)
 and is-tv-assignment \(\varphi\)
 shows \(\mathcal{V}_{B} \varphi\left(A \equiv{ }^{\mathcal{Q}} B\right)=\mathcal{V}_{B} \varphi A \equiv \mathcal{V}_{B} \varphi B\)
proof (cases \(A=F_{o}\))
 case True
 then show ?thesis
 using \(\mathcal{V}_{B}-F[O F \operatorname{assms}(3)]\) and \(\mathcal{V}_{B}-n e g[\) OF \(\operatorname{assms}(2,3)]\) by force
next
 case False
 from \(\operatorname{assms}(1,3)\) have \(\mathcal{V}_{B}\)-graph \(\varphi A\left(\mathcal{V}_{B} \varphi A\right)\)
 by (intro \(\mathcal{V}_{B}\)-graph \(-\mathcal{V}_{B}\))
 moreover from \(\operatorname{assms}(2,3)\) have \(\mathcal{V}_{B}\)-graph \(\varphi B\left(\mathcal{V}_{B} \varphi B\right)\)
 by (intro \(\mathcal{V}_{B}\)-graph \(-\mathcal{V}_{B}\))
 ultimately have \(\mathcal{V}_{B}\)-graph \(\varphi\left(A \equiv{ }^{\mathcal{Q}} B\right)\left(\mathcal{V}_{B} \varphi A \equiv \mathcal{V}_{B} \varphi B\right)\)
 using False by (intro \(\mathcal{V}_{B}\)-graph-eqv)
 with assms show ?thesis
 using eqv-pwff by (intro \(\mathcal{V}_{B}\)-equality)
 qed
```

declare pwffs.intros $\left[\mathcal{V}_{B}\right.$-simps $]$
lemma pwff-denotation-function-existence:
shows is-pwff-denotation-function $\mathcal{V}_{B}$
using $\mathcal{V}_{B}$-simps by $\operatorname{simp}$
Tautologies:
definition is-tautology $::$ form $\Rightarrow$ bool where
[iff]: is-tautology $A \longleftrightarrow A \in$ pwffs $\wedge\left(\forall \varphi\right.$. is-tv-assignment $\left.\varphi \longrightarrow \mathcal{V}_{B} \varphi A=\mathbf{T}\right)$
lemma tautology-is-wffo:
assumes is-tautology $A$
shows $A \in w_{f f} s_{o}$
using assms and pwffs-subset-of-wffso by blast
lemma propositional-implication-reflexivity-is-tautology:
shows is-tautology ( $p_{o} \supset^{\mathcal{Q}} p_{o}$ )
using $\mathcal{V}_{B}$-simps by $\operatorname{simp}$
lemma propositional-principle-of-simplification-is-tautology:
shows is-tautology $\left(p_{O} \supset^{\mathcal{Q}}\left(r_{o} \supset^{\mathcal{Q}} p_{o}\right)\right)$
using $\mathcal{V}_{B}$-simps by simp
lemma closed-pwff-denotation-uniqueness:
assumes $A \in p w f f s$ and free-vars $A=\{ \}$
obtains $b$ where $\forall \varphi$. is-tv-assignment $\varphi \longrightarrow \mathcal{V}_{B} \varphi A=b$
using assms
by (meson closed-pwff-is-meaningful-regardless-of-assignment pwff-denotation-function-existence)
lemma pwff-substitution-simps:
shows $\mathbf{S}\{(p, o) \longmapsto A\} T_{o}=T_{o}$
and $\mathbf{S}\{(p, o) \longrightarrow A\} F_{o}=F_{o}$
and $\mathbf{S}\{(p, o) \longmapsto A\}\left(p^{\prime}{ }_{o}\right)=\left(\right.$ if $p=p^{\prime}$ then A else $\left.\left(p^{\prime}{ }_{o}\right)\right)$
and $\mathbf{S}\{(p, o) \longmapsto A\}\left(\sim^{\mathcal{Q}} B\right)=\sim^{\mathcal{Q}}(\mathbf{S}\{(p, o) \longmapsto A\} B)$
and $\mathbf{S}\{(p, o) \mapsto A\}\left(B \wedge^{\mathcal{Q}} C\right)=(\mathbf{S}\{(p, o) \longmapsto A\} B) \wedge^{\mathcal{Q}}(\mathbf{S}\{(p, o) \longmapsto A\} C)$
and $\mathbf{S}\{(p, o) \mapsto A\}\left(B \vee^{\mathcal{Q}} C\right)=(\mathbf{S}\{(p, o) \longmapsto A\} B) \vee^{\mathcal{Q}}(\mathbf{S}\{(p, o) \longmapsto A\} C)$
and $\mathbf{S}\{(p, o) \mapsto A\}\left(B \supset^{\mathcal{Q}} C\right)=(\mathbf{S}\{(p, o) \mapsto A\} B) \supset^{\mathcal{Q}}(\mathbf{S}\{(p, o) \mapsto A\} C)$
and $\mathbf{S}\{(p, o) \mapsto A\}\left(B \equiv^{\mathcal{Q}} C\right)=(\mathbf{S}\{(p, o) \mapsto A\} B) \equiv^{\mathcal{Q}}(\mathbf{S}\{(p, o) \longmapsto A\} C)$
by simp-all
lemma pwff-substitution-in-pwffs:
assumes $A \in$ pwffs and $B \in$ pwffs
shows $\mathbf{S}\{(p, o) \multimap A\} B \in$ pwffs
using assms(2) proof induction
case T-pwff
then show?case
using pwffs.T-pwff by simp
next
case $F$-pwff

```
 then show ?case
 using pwffs.F-pwff by simp
next
 case (var-pwff p)
 from assms(1) show ?case
 using pwffs.var-pwff by simp
next
 case (neg-pwff A)
 then show ?case
 using pwff-substitution-simps(4) and pwffs.neg-pwff by simp
next
 case (conj-pwff A B)
 then show ?case
 using pwff-substitution-simps(5) and pwffs.conj-pwff by simp
next
 case (disj-pwff A B)
 then show ?case
 using pwff-substitution-simps(6) and pwffs.disj-pwff by simp
next
 case (imp-pwff A B)
 then show ?case
 using pwff-substitution-simps(7) and pwffs.imp-pwff by simp
 next
 case (eqv-pwff A B)
 then show ?case
 using pwff-substitution-simps(8) and pwffs.eqv-pwff by simp
 qed
 lemma pwff-substitution-denotation:
 assumes }A\inpwffs and B\inpwff
 and is-tv-assignment }
 shows }\mp@subsup{\mathcal{V}}{B}{}\varphi(\mathbf{S}{(p,o)\rightharpoondownA}B)=\mp@subsup{\mathcal{V}}{B}{}(\varphi(p:=\mp@subsup{\mathcal{V}}{B}{}\varphiA))
proof -
 from assms(1,3) have is-tv-assignment (}\varphi(p:=\mp@subsup{\mathcal{V}}{B}{}\varphiA)
 using \mp@subsup{\mathcal{V}}{B}{\prime-graph-denotation-is-truth-value [OF 㨁-graph-\mathcal{V}}\mp@subsup{\mathcal{B}}{B}{}]\mathrm{ by simp}
 with assms(2,1,3) show ?thesis
 using \mp@subsup{\mathcal{V}}{B}{}\mathrm{ -simps and pwff-substitution-in-pwffs by induction auto}
 qed
 lemma pwff-substitution-tautology-preservation:
 assumes is-tautology B and A\inpwffs
 and (p,o) \in free-vars B
 shows is-tautology (S {(p,o) \mapstoA} B)
proof (safe, fold is-tv-assignment-def)
 from assms(1,2) show S {(p,o) }->A}B\inpwff
 using pwff-substitution-in-pwffs by blast
 next
 fix }
 assume is-tv-assignment \varphi
```

```
 with \(\operatorname{assms}(1,2)\) have \(\mathcal{V}_{B} \varphi(\mathbf{S}\{(p, o) \rightarrow A\} B)=\mathcal{V}_{B}\left(\varphi\left(p:=\mathcal{V}_{B} \varphi A\right)\right) B\)
 using pwff-substitution-denotation by blast
 moreover from 〈is-tv-assignment \(\varphi\rangle\) and \(\operatorname{assms}(2)\) have is-tv-assignment \(\left(\varphi\left(p:=\mathcal{V}_{B} \varphi A\right)\right)\)
 using \(\mathcal{V}_{B}\)-graph-denotation-is-truth-value \(\left[O F \mathcal{V}_{B}\right.\)-graph- \(\left.\mathcal{V}_{B}\right]\) by simp
 with \(\operatorname{assms}(1)\) have \(\mathcal{V}_{B}\left(\varphi\left(p:=\mathcal{V}_{B} \varphi A\right)\right) B=\mathbf{T}\)
 by fastforce
 ultimately show \(\mathcal{V}_{B} \varphi \mathbf{S}\{(p, o) \longmapsto A\} B=\mathbf{T}\)
 by (simp only:)
qed
lemma closed-pwff-substitution-free-vars:
 assumes \(A \in\) pwffs and \(B \in p w f f s\)
 and free-vars \(A=\{ \}\)
 and \((p, o) \in\) free-vars \(B\)
 shows free-vars \((\mathbf{S}\{(p, o) \mapsto A\} B)=\) free-vars \(B-\{(p, o)\}(\) is \(\langle\) free-vars \((\mathbf{S}\) ?v \(B)=-\rangle)\)
using \(\operatorname{assms}(2,4)\) proof induction
 case (conj-pwff C D)
 have free-vars \(\left(\mathbf{S} ? \vartheta\left(C \wedge^{\mathcal{Q}} D\right)\right)=\) free-vars \(\left((\mathbf{S}\right.\) ? \(C) \wedge^{\mathcal{Q}}(\mathbf{S}\) ?७ \(\left.D)\right)\)
 by simp
 also have \(\ldots=\) free-vars \((\mathbf{S}\) ?. \(C) \cup\) free-vars \((\mathbf{S}\) ?७ \(D)\)
 by (fact conj-fv)
 finally have \(*\) : free-vars \(\left(\mathbf{S}\right.\) ?ๆ \(\left.\left(C \wedge^{\mathcal{Q}} D\right)\right)=\) free-vars \((\mathbf{S}\) ?V \(C) \cup\) free-vars \((\mathbf{S}\) ?७ \(D)\).
 from conj-pwff.prems consider
 (a) \((p, o) \in\) free-vars \(C\) and \((p, o) \in\) free-vars \(D\)
 (b) \((p, o) \in\) free-vars \(C\) and \((p, o) \notin\) free-vars \(D\)
 | \((c)(p, o) \notin\) free-vars \(C\) and \((p, o) \in\) free-vars \(D\)
 by auto
 from this and \(*\) and conj-pwff.IH show ?case
 using free-var-singleton-substitution-neutrality by cases auto
next
 case (disj-pwff C D)
 have free-vars \(\left(\mathbf{S} ? \vartheta\left(C \vee^{\mathcal{Q}} D\right)\right)=\) free-vars \(\left((\mathbf{S}\right.\) ?७ \(C) \vee^{\mathcal{Q}}(\mathbf{S}\) ?७ \(\left.D)\right)\)
 by simp
 also have \(\ldots=\) free-vars \((\mathbf{S}\) ? \(\mathrm{V} C) \cup\) free-vars \((\mathbf{S}\) ?७ \(D)\)
 by (fact disj-fv)
 finally have \(*\) : free-vars \(\left(\mathbf{S}\right.\) ?७ \(\left.\left(C \vee^{\mathcal{Q}} D\right)\right)=\) free-vars \((\mathbf{S}\) ?७ \(C) \cup\) free-vars \((\mathbf{S}\) ?७ \(D)\).
 from disj-pwff.prems consider
 (a) \((p, o) \in\) free-vars \(C\) and \((p, o) \in\) free-vars \(D\)
 \(\mid(b)(p, o) \in\) free-vars \(C\) and \((p, o) \notin\) free-vars \(D\)
 | \((c)(p, o) \notin\) free-vars \(C\) and \((p, o) \in\) free-vars \(D\)
 by auto
 from this and \(*\) and disj-pwff.IH show ?case
 using free-var-singleton-substitution-neutrality by cases auto
next
 case (imp-pwff C D)
 have free-vars \(\left(\mathbf{S}\right.\) ?७ \(\left.\left(C \supset^{\mathcal{Q}} D\right)\right)=\) free-vars \(\left((\mathbf{S}\right.\) ?७ \(C) \supset^{\mathcal{Q}}(\mathbf{S}\) ?७ \(\left.D)\right)\)
 by simp
 also have \(\ldots=\) free-vars \((\mathbf{S}\) ?. \(C) \cup\) free-vars \((\mathbf{S}\) ?V \(D)\)
 by (fact imp-fv)
```

```
 finally have \(*\) : free-vars \(\left(\mathbf{S}\right.\) ?७ \(\left.\left(C \supset^{\mathcal{Q}} D\right)\right)=\) free-vars \((\mathbf{S}\) ?७ \(C) \cup\) free-vars \((\mathbf{S}\) ?७ \(D)\).
 from imp-pwff.prems consider
 (a) \((p, o) \in\) free-vars \(C\) and \((p, o) \in\) free-vars \(D\)
 \(\mid(b)(p, o) \in\) free-vars \(C\) and \((p, o) \notin\) free-vars \(D\)
 | \((c)(p, o) \notin\) free-vars \(C\) and \((p, o) \in\) free-vars \(D\)
 by auto
 from this and \(*\) and imp-pwff.IH show ?case
 using free-var-singleton-substitution-neutrality by cases auto
next
 case (eqv-pwff C D)
 have free-vars \(\left(\mathbf{S} ? \vartheta\left(C \equiv{ }^{\mathcal{Q}} D\right)\right)=\) free-vars \(\left((\mathbf{S}\right.\) ?७ \(C) \equiv{ }^{\mathcal{Q}}(\mathbf{S}\) ?७ D) \()\)
 by \(\operatorname{simp}\)
 also have \(\ldots=\) free-vars \((\mathbf{S}\) ?७ \(C) \cup\) free-vars \((\mathbf{S}\) ?७ \(D)\)
 by (fact eqv-fv)
 finally have \(*\) : free-vars \(\left(\mathbf{S}\right.\) ?७ \(\left.\left(C \equiv{ }^{\mathcal{Q}} D\right)\right)=\) free-vars \((\mathbf{S}\) ?७ \(C) \cup\) free-vars \((\mathbf{S}\) ?७ \(D)\).
 from eqv-pwff.prems consider
 (a) \((p, o) \in\) free-vars \(C\) and \((p, o) \in\) free-vars \(D\)
 | \((b)(p, o) \in\) free-vars \(C\) and \((p, o) \notin\) free-vars \(D\)
 | \((c)(p, o) \notin\) free-vars \(C\) and \((p, o) \in\) free-vars \(D\)
 by auto
 from this and \(*\) and eqv-pwff.IH show ?case
 using free-var-singleton-substitution-neutrality by cases auto
qed (use assms(3) in 〈force+〉)
Substitution in a pwff:
definition is-pwff-substitution where
 [iff]: is-pwff-substitution \(\vartheta \longleftrightarrow\) is-substitution \(\vartheta \wedge\left(\forall(x, \alpha) \in\right.\) fmdom \(\left.^{\prime} \vartheta . \alpha=o\right)\)
Tautologous pwff:
```

```
definition is-tautologous :: form \(\Rightarrow\) bool where
```

definition is-tautologous :: form $\Rightarrow$ bool where
[iff]: is-tautologous $B \longleftrightarrow(\exists \vartheta A$. is-tautology $A \wedge i s$-pwff-substitution $\vartheta \wedge B=\mathbf{S} \vartheta A)$
[iff]: is-tautologous $B \longleftrightarrow(\exists \vartheta A$. is-tautology $A \wedge i s$-pwff-substitution $\vartheta \wedge B=\mathbf{S} \vartheta A)$
lemma tautologous-is-wffo:
lemma tautologous-is-wffo:
assumes is-tautologous $A$
assumes is-tautologous $A$
shows $A \in w_{f f} s_{o}$
shows $A \in w_{f f} s_{o}$
using assms and substitution-preserves-typing and tautology-is-wffo by blast
using assms and substitution-preserves-typing and tautology-is-wffo by blast
lemma implication-reflexivity-is-tautologous:
lemma implication-reflexivity-is-tautologous:
assumes $A \in w_{f f} s_{o}$
assumes $A \in w_{f f} s_{o}$
shows is-tautologous $\left(A \supset^{\mathcal{Q}} A\right.$ )
shows is-tautologous $\left(A \supset^{\mathcal{Q}} A\right.$ )
proof -
proof -
let $? \vartheta=\{(\mathfrak{x}, o) \longmapsto A\}$
let $? \vartheta=\{(\mathfrak{x}, o) \longmapsto A\}$
have is-tautology ( $\mathfrak{x}_{o} \supset^{\mathcal{Q}} \mathfrak{x}_{o}$ )
have is-tautology ( $\mathfrak{x}_{o} \supset^{\mathcal{Q}} \mathfrak{x}_{o}$ )
by (fact propositional-implication-reflexivity-is-tautology)
by (fact propositional-implication-reflexivity-is-tautology)
moreover have is-pwff-substitution ?V
moreover have is-pwff-substitution ?V
using assms by auto
using assms by auto
moreover have $A \supset^{\mathcal{Q}} A=\mathbf{S}$ ? $\left(\mathfrak{x}_{o} \supset^{\mathcal{Q}} \mathfrak{x}_{o}\right)$
moreover have $A \supset^{\mathcal{Q}} A=\mathbf{S}$ ? $\left(\mathfrak{x}_{o} \supset^{\mathcal{Q}} \mathfrak{x}_{o}\right)$
by simp
by simp
ultimately show ?thesis

```
 ultimately show ?thesis
```

by blast
qed
lemma principle-of-simplification-is-tautologous:
assumes $A \in w f f s_{o}$ and $B \in w f f s_{o}$
shows is-tautologous $\left(A \supset^{\mathcal{Q}}\left(B \supset^{\mathcal{Q}} A\right)\right)$
proof -
let $? \vartheta=\{(\mathfrak{x}, o) \longmapsto A,(\mathfrak{y}, o) \mapsto B\}$
have is-tautology $\left(\mathfrak{x}_{o} \supset^{\mathcal{Q}}\left(\mathfrak{y}_{o} \supset^{\mathcal{Q}} \mathfrak{x}_{o}\right)\right)$
by (fact propositional-principle-of-simplification-is-tautology)
moreover have is-pwff-substitution ?V
using assms by auto
moreover have $A \supset^{\mathcal{Q}}\left(B \supset^{\mathcal{Q}} A\right)=\mathbf{S}$ ? $\left(\mathfrak{x}_{o} \supset^{\mathcal{Q}}\left(\mathfrak{y}_{o} \supset^{\mathcal{Q}} \mathfrak{x}_{o}\right)\right)$
by $\operatorname{simp}$
ultimately show ?thesis
by blast
qed
lemma pseudo-modus-tollens-is-tautologous:
assumes $A \in w_{f f} s_{o}$ and $B \in w_{f f} s_{o}$
shows is-tautologous $\left(\left(A \supset^{\mathcal{Q}} \sim^{\mathcal{Q}} B\right) \supset^{\mathcal{Q}}\left(B \supset^{\mathcal{Q}} \sim^{\mathcal{Q}} A\right)\right)$
proof -
let $? \vartheta=\{(\mathfrak{x}, o) \longmapsto A,(\mathfrak{y}, o) \longmapsto B\}$
have is-tautology $\left(\left(\mathfrak{x}_{o} \supset^{\mathcal{Q}} \sim^{\mathcal{Q}} \mathfrak{y}_{o}\right) \supset^{\mathcal{Q}}\left(\mathfrak{y}_{o} \supset^{\mathcal{Q}} \sim^{\mathcal{Q}} \mathfrak{x}_{o}\right)\right)$
using $\mathcal{V}_{B}$-simps by (safe, fold is-tv-assignment-def, simp only:) simp
moreover have is-pwff-substitution ? $v$
using assms by auto
moreover have $\left(A \supset^{\mathcal{Q}} \sim^{\mathcal{Q}} B\right) \supset^{\mathcal{Q}}\left(B \supset^{\mathcal{Q}} \sim^{\mathcal{Q}} A\right)=\mathbf{S}$ ? $\vartheta\left(\left(\mathfrak{x}_{o} \supset^{\mathcal{Q}} \sim^{\mathcal{Q}} \mathfrak{y}_{o}\right) \supset^{\mathcal{Q}}\left(\mathfrak{y}_{o} \supset^{\mathcal{Q}} \sim^{\mathcal{Q}} \mathfrak{x}_{o}\right)\right)$
by $\operatorname{simp}$
ultimately show ?thesis
by blast
qed
end

## 5 Proof System

theory Proof-System
imports
Syntax
begin

### 5.1 Axioms

## inductive-set

axioms :: form set
where
axiom-1:
$\mathfrak{g}_{o \rightarrow o} \cdot T_{o} \wedge^{\mathcal{Q}} \mathfrak{g}_{o \rightarrow o} \cdot F_{o} \equiv \mathcal{Q} \forall \mathfrak{x}_{o} \cdot \mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o} \in$ axioms

```
| axiom-2:
 \(\left(\mathfrak{x}_{\alpha}={ }_{\alpha} \mathfrak{y}_{\alpha}\right) \supset^{\mathcal{Q}}\left(\mathfrak{h}_{\alpha \rightarrow o} \cdot \mathfrak{x}_{\alpha} \equiv \equiv^{\mathcal{Q}} \mathfrak{h}_{\alpha \rightarrow o} \cdot \mathfrak{y}_{\alpha}\right) \in\) axioms
| axiom-3:
 \(\left(\mathfrak{f}_{\alpha \rightarrow \beta}={ }_{\alpha \rightarrow \beta} \mathfrak{g}_{\alpha \rightarrow \beta}\right) \equiv{ }^{\mathcal{Q}} \forall \mathfrak{x}_{\alpha} .\left(\mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}={ }_{\beta} \mathfrak{g}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right) \in\) axioms
| axiom-4-1-con:
 \(\left(\lambda x_{\alpha} \cdot\{c\}_{\beta}\right) \cdot A={ }_{\beta}\{c\}_{\beta} \in\) axioms if \(A \in\) wffs \(_{\alpha}\)
| axiom-4-1-var:
 \(\left(\lambda x_{\alpha} \cdot y_{\beta}\right) \cdot A={ }_{\beta} y_{\beta} \in\) axioms if \(A \in\) wffs \(s_{\alpha}\) and \(y_{\beta} \neq x_{\alpha}\)
| axiom-4-2:
 \(\left(\lambda x_{\alpha} \cdot x_{\alpha}\right) \cdot A={ }_{\alpha} A \in\) axioms if \(A \in\) wffs \(s_{\alpha}\)
| axiom-4-3:
 \(\left(\lambda x_{\alpha} \cdot B \cdot C\right) \cdot A={ }_{\beta}\left(\left(\lambda x_{\alpha} \cdot B\right) \cdot A\right) \cdot\left(\left(\lambda x_{\alpha} \cdot C\right) \cdot A\right) \in\) axioms
 if \(A \in\) wffs \(_{\alpha}\) and \(B \in w f f s_{\gamma \rightarrow \beta}\) and \(C \in\) wffs \(_{\gamma}\)
| axiom-4-4:
 \(\left(\lambda x_{\alpha} \cdot \lambda y_{\gamma} \cdot B\right) \cdot A=_{\gamma \rightarrow \delta}\left(\lambda y_{\gamma} \cdot\left(\lambda x_{\alpha} \cdot B\right) \cdot A\right) \in\) axioms
 if \(A \in\) wffs \(s_{\alpha}\) and \(B \in\) wffs \(s_{\delta}\) and \((y, \gamma) \notin\{(x, \alpha)\} \cup\) vars \(A\)
| axiom-4-5:
 \(\left(\lambda x_{\alpha} \cdot \lambda x_{\alpha} \cdot B\right) \cdot A={ }_{\alpha \rightarrow \delta}\left(\lambda x_{\alpha} \cdot B\right) \in\) axioms if \(A \in\) wffs \(_{\alpha}\) and \(B \in\) wffs \(_{\delta}\)
| axiom-5:
 \(\iota \cdot\left(Q_{i} \cdot \mathfrak{y}_{i}\right)={ }_{i} \mathfrak{y}_{i} \in\) axioms
lemma axioms-are-wffs-of-type-o:
 shows axioms \(\subseteq\) wffso
 by (intro subsetI, cases rule: axioms.cases) auto
```


### 5.2 Inference rule R

```
definition is-rule- \(R\)-app \(::\) position \(\Rightarrow\) form \(\Rightarrow\) form \(\Rightarrow\) form \(\Rightarrow\) bool where
 [iff]: is-rule-R-app p DCE \(\longleftrightarrow\)
 \(\exists \alpha A B\).
 \(E=A=\alpha_{\alpha} B \wedge A \in w f s_{\alpha} \wedge B \in\) wffs \(s_{\alpha} \wedge-E\) is a well-formed equality
 \(A \preceq_{p} C \wedge\)
 \(D \in\) wff \(_{o} \wedge\)
 \(C \backslash p \leftarrow B \backslash \triangleright D\)
)
```

lemma rule- $R$-original-form-is-wffo:
assumes is-rule-R-app p $D C E$
shows $C \in$ wffs $_{o}$
using assms and replacement-preserves-typing by fastforce

### 5.3 Proof and derivability

inductive is-derivable :: form $\Rightarrow$ bool where
$d v$-axiom: is-derivable $A$ if $A \in$ axioms
| dv-rule-R: is-derivable $D$ if is-derivable $C$ and is-derivable $E$ and is-rule-R-app p $D C$
lemma derivable-form-is-wffso:

```
assumes is-derivable A
shows A\in wffso
using assms and axioms-are-wffs-of-type-o by (fastforce elim:is-derivable.cases)
definition is-proof-step :: form list }=>\mathrm{ nat }=>\mathrm{ bool where
 [iff]: is-proof-step S i'\longleftrightarrow
 S ! i' \in axioms }
 (\existspjk.{j,k}\subseteq{0..<i'} ^is-rule-R-app p(\mathcal{S}!\mp@subsup{i}{}{\prime})(\mathcal{S}!j)(\mathcal{S}!k))
definition is-proof :: form list }=>\mathrm{ bool where
 [iff]: is-proof S }\longleftrightarrow(\forall\mp@subsup{i}{}{\prime}<length S. is-proof-step S i'
lemma common-prefix-is-subproof:
 assumes is-proof (S @ S S
 and }\mp@subsup{i}{}{\prime}<length S
 shows is-proof-step (\mathcal{S @ S S S) i'}
proof -
 from assms(2) have *:(\mathcal{S @ S S })!\mp@subsup{i}{}{\prime}=(\mathcal{S}@\mp@subsup{\mathcal{S}}{2}{})!\mp@subsup{i}{}{\prime}
 by (simp add: nth-append)
 moreover from assms(2) have i' < length (\mathcal{S @ S S}
 by simp
 ultimately obtain p and j and k where **:
 (\mathcal{S @ S S })!\mp@subsup{i}{}{\prime}\in\mathrm{ axioms }\vee
```



```
 using assms(1) by fastforce
 then consider
 (axiom) (\mathcal{S @ S S S)! i' }\in\mathrm{ axioms}
```



```
 by blast
 then have
 (\mathcal{S}@ \mathcal{S}
```



```
 proof cases
 case axiom
 with * have (\mathcal{S @ S S}
 by (simp only:)
 then show ?thesis ..
 next
 case rule-R
 with assms(2) have (\mathcal{S @ S S })!j=(\mathcal{S}@ \mathcal{S}
 by (simp-all add: nth-append)
 then have {j,k}\subseteq{0..<i'} ^ is-rule-R-app p((\mathcal{S @ S S 2)!i') ((\mathcal{S @ S}}\mp@subsup{\mathcal{S}}{2}{\prime})!j) ((\mathcal{S @ S S}\mp@code{2})!k)
 using * and rule-R by simp
 then show ?thesis ..
 qed
 with ** show ?thesis
 by fastforce
qed
```

```
lemma added-suffix-proof-preservation:
 assumes is-proof S
 and }\mp@subsup{i}{}{\prime}<length (\mathcal{S}@\mp@subsup{\mathcal{S}}{}{\prime}) - length S S'
 shows is-proof-step (\mathcal{S @ S S}
 using assms and common-prefix-is-subproof[where }\mp@subsup{\mathcal{S}}{1}{}=[]] by sim
lemma append-proof-step-is-proof:
 assumes is-proof S
 and is-proof-step (S @ [A]) (length (\mathcal{S @ [A]) - 1)}
 shows is-proof (S @ [A])
 using assms and added-suffix-proof-preservation by (simp add: All-less-Suc)
lemma added-prefix-proof-preservation:
 assumes is-proof S'S
 and }\mp@subsup{i}{}{\prime}\in{length \mathcal{S}..<length (\mathcal{S}@ \mathcal{S}')
 shows is-proof-step (\mathcal{S @ S S}) i'
proof -
 let ?S =S @ S S
 let ? i= i' - length S
 from assms(2) have ?S ! i' = \mathcal{S}}\mp@subsup{}{\prime}{\prime}!?i\mathrm{ and ?i < length S}\mp@subsup{\mathcal{S}}{}{\prime
 by (simp-all add: nth-append less-diff-conv2)
 then have is-proof-step ?S i' =is-proof-step S' '?i
 proof -
 from assms(1) and <?i < length }\mp@subsup{\mathcal{S}}{}{\prime}>\mathrm{ obtain j and k and p where *:
 \mathcal{S}
 by fastforce
 then consider
 (axiom) S S'!?? }\in\mathrm{ axioms
 | (rule-R) {j,k}\subseteq{0..<?i} ^ is-rule-R-app p (\mathcal{S}
 by blast
 then have
 ?S ! i' }\in\mathrm{ axioms }
 (
 {j+ length S , k+ length S } \subseteq{0..<i'} ^
 is-rule-R-app p(?S ! i')(?S ! (j + length S)) (?S ! (k+ length S))
)
 proof cases
 case axiom
```



```
 by (simp only:)
 then show ?thesis ..
 next
 case rule-R
 with assms(2) have ?S ! (j+ length S) = \mathcal{S}
 by (simp-all add: nth-append)
 with <?S ! i' = \mathcal{S}
 {j+ length S , k+ length S }}\subseteq{0..<i'}
 is-rule-R-app p(?S ! i})(?\mathcal{S}!(j+ length \mathcal{S}))(?\mathcal{S}!(k+\mathrm{ length S S)
 by auto
```

```
 then show ?thesis ..
 qed
 with * show ?thesis
 by fastforce
 qed
 with assms(1) and <?i< length S'` show ?thesis
 by simp
qed
lemma proof-but-last-is-proof:
 assumes is-proof (S @ [A])
 shows is-proof S
 using assms and common-prefix-is-subproof[where }\mp@subsup{\mathcal{S}}{1}{}=[A]\mathrm{ and }\mp@subsup{\mathcal{S}}{2}{}=[]]\mathrm{ by simp
lemma proof-prefix-is-proof:
 assumes is-proof (\mathcal{S}
 shows is-proof }\mp@subsup{\mathcal{S}}{1}{
 using assms and proof-but-last-is-proof
 by (induction }\mp@subsup{\mathcal{S}}{2}{}\mathrm{ arbitrary: }\mp@subsup{\mathcal{S}}{1}{}\mathrm{ rule: rev-induct) (simp, metis append.assoc)
lemma single-axiom-is-proof:
 assumes A\in axioms
 shows is-proof [A]
 using assms by fastforce
lemma proofs-concatenation-is-proof:
 assumes is-proof }\mp@subsup{\mathcal{S}}{1}{}\mathrm{ and is-proof }\mp@subsup{\mathcal{S}}{2}{
 shows is-proof (S S
proof -
 from assms(1) have }\forall\mp@subsup{i}{}{\prime}<length S S S . is-proof-step (\mathcal{S
 using added-suffix-proof-preservation by auto
```



```
 using added-prefix-proof-preservation by auto
 ultimately show ?thesis
 unfolding is-proof-def by (meson atLeastLessThan-iff linorder-not-le)
qed
lemma elem-of-proof-is-wffo:
 assumes is-proof S and A\inlset S
 shows A\inwffso
 using assms and axioms-are-wffs-of-type-o
 unfolding is-rule-R-app-def and is-proof-step-def and is-proof-def
 by (induction S) (simp, metis (full-types) in-mono in-set-conv-nth)
lemma axiom-prepended-to-proof-is-proof:
 assumes is-proof S
 and }A\in\mathrm{ axioms
 shows is-proof ([A]@ S)
 using proofs-concatenation-is-proof[OF single-axiom-is-proof[OF assms(2)] assms(1)].
```

```
lemma axiom-appended-to-proof-is-proof:
 assumes is-proof S
 and }A\in\mathrm{ axioms
 shows is-proof (S @ [A])
 using proofs-concatenation-is-proof[OF assms(1) single-axiom-is-proof[OF assms(2)]] .
lemma rule-R-app-appended-to-proof-is-proof:
 assumes is-proof S
 and i}\mp@subsup{i}{C}{}<\mathrm{ length }\mathcal{S}\mathrm{ and }\mathcal{S}!\mp@subsup{i}{C}{}=
 and i}\mp@subsup{i}{E}{}<\mathrm{ length S and S ! i}\mp@subsup{i}{E}{}=
 and is-rule-R-app p D C E
 shows is-proof (\mathcal{S @ [D])}
proof -
 let ?S = S @ [D]
 let ? }\mp@subsup{i}{D}{}=\mathrm{ length }\mathcal{S
 from assms(2,4) have i}\mp@subsup{i}{C}{}<?\mp@subsup{?}{D}{}\mathrm{ and }\mp@subsup{i}{E}{}<??\mp@subsup{i}{D}{
 by fastforce+
 with assms(3,5,6) have is-rule-R-app p(?S !?i})(?S!i\mp@subsup{i}{C}{})(?S!\mp@subsup{i}{E}{}
 by (simp add: nth-append)
 with assms(2,4) have \existspjk.{j,k}\subseteq{0..<?\mp@subsup{i}{D}{}}\wedge is-rule-R-app p(?S!?\mp@subsup{i}{D}{})(?S!j)(?S!k)
 by fastforce
 then have is-proof-step?S (length ?S - 1)
 by simp
 moreover from assms(1) have \foralli'<length ?S - 1. is-proof-step ?S }\mp@subsup{i}{}{\prime
 using added-suffix-proof-preservation by auto
 ultimately show ?thesis
 using less-Suc-eq by auto
qed
definition is-proof-of :: form list }=>\mathrm{ form }=>\mathrm{ bool where
 [iff]: is-proof-of S A \longleftrightarrowS S # []^ is-proof S 人 last \mathcal{S =A}
lemma proof-prefix-is-proof-of-last:
 assumes is-proof (\mathcal{S @ S S}
 shows is-proof-of S (last S)
proof -
 from assms(1) have is-proof S
 by (fact proof-prefix-is-proof)
 with assms(2) show ?thesis
 by fastforce
qed
definition is-theorem :: form }=>\mathrm{ bool where
 [iff]: is-theorem }A\longleftrightarrow(\exists\mathcal{S}.\mathrm{ is-proof-of S S A)
lemma proof-form-is-wffo:
 assumes is-proof-of S A
 and B}\inl\mathrm{ let S
```

```
 shows B \inwffso
 using assms and elem-of-proof-is-wffo by blast
lemma proof-form-is-theorem:
 assumes is-proof S and S
 and i'<length S
 shows is-theorem (\mathcal{S ! i}
proof -
 let ?S S = take (Suc i')\mathcal{S}
 from assms(1) obtain }\mp@subsup{\mathcal{S}}{2}{}\mathrm{ where is-proof (?S S @ @ S
 by (metis append-take-drop-id)
 then have is-proof ?S S
 by (fact proof-prefix-is-proof)
 moreover from assms(3) have last ?S S
 by (simp add: take-Suc-conv-app-nth)
 ultimately show ?thesis
 using assms(2) unfolding is-proof-of-def and is-theorem-def by (metis Zero-neq-Suc take-eq-Nil2)
qed
theorem derivable-form-is-theorem:
 assumes is-derivable A
 shows is-theorem A
using assms proof (induction rule: is-derivable.induct)
 case (dv-axiom A)
 then have is-proof [A]
 by (fact single-axiom-is-proof)
 moreover have last [A]=A
 by simp
 ultimately show ?case
 by blast
next
 case (dv-rule-R C E p D)
 obtain }\mp@subsup{\mathcal{S}}{C}{}\mathrm{ and }\mp@subsup{\mathcal{S}}{E}{}\mathrm{ where
 is-proof }\mp@subsup{\mathcal{S}}{C}{}\mathrm{ and }\mp@subsup{\mathcal{S}}{C}{}\not=[] \mathrm{ and last }\mp@subsup{\mathcal{S}}{C}{}=C\mathrm{ and
 is-proof }\mp@subsup{\mathcal{S}}{E}{}\mathrm{ and }\mp@subsup{\mathcal{S}}{E}{}\not=[] and last S S S E E
 using dv-rule-R.IH by fastforce
 let ? i}\mp@subsup{i}{C}{}=\mathrm{ length }\mp@subsup{\mathcal{S}}{C}{}-1\mathrm{ and ? }\mp@subsup{i}{E}{}=\mathrm{ length }\mp@subsup{\mathcal{S}}{C}{}+\mathrm{ length }\mp@subsup{\mathcal{S}}{E}{}-1\mathrm{ and ? }\mp@subsup{i}{D}{}=\mathrm{ length }\mp@subsup{\mathcal{S}}{C}{}+\mathrm{ length
S
 let ?S = S S
```



```
 using linorder-not-le by fastforce+
 moreover have (\mp@subsup{\mathcal{S}}{C}{}@\mp@subsup{\mathcal{S}}{E}{})!?\mp@subsup{i}{C}{}=C\mathrm{ and (S S}\mp@subsup{C}{C}{@}\mp@subsup{\mathcal{S}}{E}{})!?\mp@subsup{i}{E}{}=E
 using \langle\mathcal{S}
 by
 simp add: last-conv-nth nth-append,
 metis <last }\mp@subsup{\mathcal{S}}{E}{}=E\rangle\langle\mp@subsup{\mathcal{S}}{E}{}\not=[]\rangle\mathrm{ append-is-Nil-conv last-appendR last-conv-nth length-append
)
 with <is-rule-R-app p D C E> have is-rule-R-app p D ((S S
```

using $\left\langle\left(\mathcal{S}_{C} @ \mathcal{S}_{E}\right)!? i_{C}=C\right\rangle$ by fastforce
moreover from 〈is－proof $\left.\mathcal{S}_{C}\right\rangle$ and 〈is－proof $\left.\mathcal{S}_{E}\right\rangle$ have is－proof $\left(\mathcal{S}_{C} @ \mathcal{S}_{E}\right)$
by（fact proofs－concatenation－is－proof）
ultimately have is－proof $\left(\left(\mathcal{S}_{C} @ \mathcal{S}_{E}\right) @[D]\right)$
using rule－R－app－appended－to－proof－is－proof by presburger
with $\left\langle\mathcal{S}_{C} \neq[]\right\rangle$ show ？case
unfolding is－proof－of－def and is－theorem－def by（metis snoc－eq－iff－butlast）
qed
theorem theorem－is－derivable－form：
assumes is－theorem $A$
shows is－derivable $A$
proof－
from assms obtain $\mathcal{S}$ where is－proof $\mathcal{S}$ and $\mathcal{S} \neq[]$ and last $\mathcal{S}=A$
by fastforce
then show？thesis
proof（induction length $\mathcal{S}$ arbitrary： $\mathcal{S}$ A rule：less－induct）
case less
let $? i^{\prime}=$ length $\mathcal{S}-1$
from $\langle\mathcal{S} \neq[]\rangle$ and $\langle l a s t ~ \mathcal{S}=A\rangle$ have $\mathcal{S}!? i^{\prime}=A$
by（simp add：last－conv－nth）
from 〈is－proof $\mathcal{S}\rangle$ and $\langle\mathcal{S} \neq[]$ and 〈last $\mathcal{S}=A\rangle$ have is－proof－step $\mathcal{S} ? i^{\prime}$ using added－suffix－proof－preservation $\left[\right.$ where $\left.\mathcal{S}^{\prime}=[]\right]$ by simp
then consider
（axiom） $\mathcal{S}!? i^{\prime} \in$ axioms
$\mid(r u l e-R) \exists p j k .\{j, k\} \subseteq\left\{0 . .<? i^{\prime}\right\} \wedge i s-r u l e-R-\operatorname{app} p\left(\mathcal{S}!? i^{\prime}\right)(\mathcal{S}!j)(\mathcal{S}!k)$
by fastforce
then show ？case
proof cases
case axiom
with $\left\langle\mathcal{S}!? i^{\prime}=A\right\rangle$ show ？thesis
by（fastforce intro：dv－axiom）
next
case rule－$R$
then obtain $p$ and $j$ and $k$
where $\{j, k\} \subseteq\left\{0 . .<? i^{\prime}\right\}$ and is－rule－R－app $p\left(\mathcal{S}!? i^{\prime}\right)(\mathcal{S}!j)(\mathcal{S}!k)$
by force
let ？ $\mathcal{S}_{j}=$ take $(S u c j) \mathcal{S}$
let ？ $\mathcal{S}_{k}=$ take $(S u c k) \mathcal{S}$
obtain $\mathcal{S}_{j}{ }^{\prime}$ and $\mathcal{S}_{k}{ }^{\prime}$ where $\mathcal{S}=? \mathcal{S}_{j} @ \mathcal{S}_{j}{ }^{\prime}$ and $\mathcal{S}=? \mathcal{S}_{k} @ \mathcal{S}_{k}{ }^{\prime}$
by（metis append－take－drop－id）
with 〈is－proof $\mathcal{S}\rangle$ have $i s$－proof $\left(? \mathcal{S}_{j} @ \mathcal{S}_{j}{ }^{\prime}\right)$ and is－proof $\left(? \mathcal{S}_{k} @ \mathcal{S}_{k}{ }^{\prime}\right)$
by（simp－all only：）
moreover
from $\left\langle\mathcal{S}=? \mathcal{S}_{j} @ \mathcal{S}_{j}{ }^{\prime}\right\rangle$ and $\left\langle\mathcal{S}=? \mathcal{S}_{k} @ \mathcal{S}_{k}{ }^{\prime}\right\rangle$ and $\langle$ last $\mathcal{S}=A\rangle$ and $\langle\{j, k\} \subseteq\{0 . .<$ length $\mathcal{S}-$
1\}〉
have last $\mathcal{S}_{j}{ }^{\prime}=A$ and last $\mathcal{S}_{k}{ }^{\prime}=A$
using length－Cons and less－le－not－le and take－Suc and take－tl and append．right－neutral
by（metis atLeastLessThan－iff diff－Suc－1 insert－subset last－appendR take－all－iff）＋

```
 moreover from {\mathcal{S}\not=[]> have ?S S
 by simp-all
 ultimately have is-proof-of ?S S (last ?S S S) and is-proof-of ?S S (last ?S S
 using proof-prefix-is-proof-of-last [where S =? S
 and proof-prefix-is-proof-of-last [where S =? S}\mp@subsup{\mathcal{S}}{k}{}\mathrm{ and }\mp@subsup{\mathcal{S}}{}{\prime}=\mp@subsup{\mathcal{S}}{k}{\prime}
 by fastforce+
 moreover from <last }\mp@subsup{\mathcal{S}}{j}{\prime}\mp@subsup{}{}{\prime}=A\rangle\mathrm{ and <last }\mp@subsup{\mathcal{S}}{k}{\prime}=A
 have length ?S }\mp@subsup{\mathcal{j}}{}{<}\mathrm{ length }\mathcal{S}\mathrm{ and length ?S⿱乛龰}k< < length S
 using <{j,k}\subseteq{0..<length S - 1}> by force+
 moreover from calculation(3,4) have last ?S S }=\mathcal{S}!j\mathrm{ and last ?S S
 by (metis Suc-lessD last-snoc linorder-not-le nat-neq-iff take-Suc-conv-app-nth take-all-iff)+
 ultimately have is-derivable (\mathcal{S}!j) and is-derivable (\mathcal{S}!k)
 using <?S S
 with <is-rule-R-app p (\mathcal{S}!?\mp@subsup{i}{}{\prime})}(\mathcal{S}!j)(\mathcal{S}!k)\rangle and <\mathcal{S}!?\mp@subsup{i}{}{\prime}=A\rangle\mathrm{ show ?thesis
 by (blast intro: dv-rule-R)
 qed
 qed
qed
theorem theoremhood-derivability-equivalence:
 shows is-theorem }A\longleftrightarrow\mathrm{ is-derivable }
 using derivable-form-is-theorem and theorem-is-derivable-form by blast
lemma theorem-is-wffo:
 assumes is-theorem A
 shows }A\inwff\mp@subsup{s}{O}{
proof -
 from assms obtain S where is-proof-of S A
 by blast
 then have }A\in\mathrm{ lset }\mathcal{S
 by auto
 with〈is-proof-of S A〉 show ?thesis
 using proof-form-is-wffo by blast
qed
lemma equality-reflexivity:
 assumes A\inwffs\alpha
 shows is-theorem (A=\alpha A) (is is-theorem?. }\mp@subsup{A}{2}{}
proof -
 let ? }\mp@subsup{A}{1}{}=(\lambda\mp@subsup{\mathfrak{x}}{\alpha}{}\cdot\mp@subsup{\mathfrak{x}}{\alpha}{})\cdotA=\alpha
 let ?S = [?A , ? A A]
 - (.1) Axiom 4.2
 have is-proof-step ?S 0
 proof -
 from assms have ? }\mp@subsup{A}{1}{}\in\mathrm{ axioms
 by (intro axiom-4-2)
 then show ?thesis
 by simp
 qed
```

```
 - (.2) Rule R: .1,.1
 moreover have is-proof-step?S 1
 proof -
 let ? \(p=[«, »]\)
 have \(\exists p j k\). \(\{j:: n a t, k\} \subseteq\{0 . .<1\} \wedge i s-r u l e-R-a p p ? p ? A_{2}(? \mathcal{S}!j)(? \mathcal{S}!k)\)
 proof -
 let \(? D=? A_{2}\) and \(? j=0::\) nat and \(? k=0\)
 have \(\{? j, ? k\} \subseteq\{0 . .<1\}\)
 by \(\operatorname{simp}\)
 moreover have is-rule- \(R\)-app ?p ? \(A_{2}(? S!? j)(? S!? k)\)
 proof -
 have \(\left(\lambda \mathfrak{x}_{\alpha} \cdot \mathfrak{x}_{\alpha}\right) \cdot A \preceq ? p(? S\) !?j)
 by force
 moreover have \((? \mathcal{S}!? j) \backslash ? p \leftarrow A\rangle \triangleright ? D\)
 by force
 moreover from \(\left\langle A \in w f f s_{\alpha}\right\rangle\) have ? \(D \in w f f s_{o}\)
 by (intro equality-wff)
 moreover from \(\left\langle A \in w f f s_{\alpha}\right\rangle\) have \(\left(\lambda \mathfrak{x}_{\alpha} \cdot \mathfrak{x}_{\alpha}\right) \cdot A \in w f f s_{\alpha}\)
 by (meson wffs-of-type-simps)
 ultimately show ?thesis
 using \(\left\langle A \in w f f s_{\alpha}\right\rangle\) by \(\operatorname{simp}\)
 qed
 ultimately show ?thesis
 by meson
 qed
 then show ?thesis
 by auto
 qed
 moreover have last \(? \mathcal{S}=? A_{2}\)
 by simp
 moreover have \(\{0 . .<\) length ? \(\mathcal{S}\}=\{0,1\}\)
 by (simp add: atLeast0-lessThan-Suc insert-commute)
 ultimately show ?thesis
 unfolding is-theorem-def and is-proof-def and is-proof-of-def
 by (metis One-nat-def Suc-1 length-Cons less-2-cases list.distinct(1) list.size(3))
qed
lemma equality-reflexivity':
 assumes \(A \in w f f s_{\alpha}\)
 shows is-theorem \((A=\alpha A)\) (is is-theorem? \(A_{2}\))
proof (intro derivable-form-is-theorem)
 let ? \(A_{1}=\left(\lambda \mathfrak{x}_{\alpha} \cdot \mathfrak{x}_{\alpha}\right) \cdot A=\alpha A\)
 - (.1) Axiom 4.2
 from assms have ? \(A_{1} \in\) axioms
 by (intro axiom-4-2)
 then have step-1: is-derivable? \(A_{1}\)
 by (intro dv-axiom)
 - (.2) Rule R: .1,.1
 then show is-derivable? \(A_{2}\)
```

```
proof -
 let ?p = [«,»] and ?C = ? A A and ?E = ? }\mp@subsup{A}{1}{}\mathrm{ and ? D = ? }\mp@subsup{A}{2}{
 have is-rule-R-app ?p ?D ?C ?E
 proof -
 have (\lambda\mp@subsup{\mathfrak{x}}{\alpha}{}\cdot\mp@subsup{\mathfrak{x}}{\alpha}{})\cdotA\preceq\preceq?p?C
 by force
 moreover have ? }C\\mathrm{ ? p}\leftarrowA\\triangleright??
 by force
 moreover from }\langleA\inwff\mp@subsup{s}{\alpha}{}\rangle\mathrm{ have ?D }\in\mathrm{ wffs o
 by (intro equality-wff)
 moreover from <A\inwffs⿱\alpha>
 by (meson wffs-of-type-simps)
 ultimately show ?thesis
 using }\langleA\inwff\mp@subsup{s}{\alpha}{}\rangle\mathrm{ by simp
 qed
 with step-1 show ?thesis
 by (blast intro: dv-rule-R)
 qed
qed
```


### 5.4 Hypothetical proof and derivability

The set of free variables in $\mathcal{X}$ that are exposed to capture at position $p$ in $A$ :
definition capture-exposed-vars-at :: position $\Rightarrow$ form $\Rightarrow{ }^{\prime} a \Rightarrow$ var set where
[simp]: capture-exposed-vars-at p A $\mathcal{X}=$

$$
\left\{(x, \beta) \mid x \beta p^{\prime} E . \text { strict-prefix } p^{\prime} p \wedge \lambda x_{\beta} . E \preceq_{p^{\prime}} A \wedge(x, \beta) \in \text { free-vars } \mathcal{X}\right\}
$$

lemma capture-exposed-vars-at-alt-def:
assumes $p \in$ positions $A$
shows capture-exposed-vars-at $p A \mathcal{X}=$ binders-at $A p \cap$ free-vars $\mathcal{X}$
unfolding binders-at-alt-def[OF assms] and in-scope-of-abs-alt-def
using is-subform-implies-in-positions by auto
Inference rule $\mathrm{R}^{\prime}$ :
definition rule- $R^{\prime}$-side-condition $::$ form set $\Rightarrow$ position $\Rightarrow$ form $\Rightarrow$ form $\Rightarrow$ form $\Rightarrow$ bool where [iff]: rule-R'-side-condition $\mathcal{H}$ p $D C E \longleftrightarrow$
capture-exposed-vars-at p $C E \cap$ capture-exposed-vars-at p $C \mathcal{H}=\{ \}$
lemma rule- $R^{\prime}$-side-condition-alt-def:
fixes $\mathcal{H}$ :: form set
assumes $C \in w f f s_{\alpha}$
shows
rule- $R^{\prime}$-side-condition $\mathcal{H}$ p $D C(A=\alpha B)$

```
 \longleftrightarrow
 (
 # 的E p
 strict-prefix p' p^
 \lambdax}\mp@subsup{\beta}{}{\prime}.E\mp@subsup{\preceq}{\mp@subsup{p}{}{\prime}}{}C
```

```
 \((x, \beta) \in\) free-vars \((A=\alpha B) \wedge\)
 \((\exists H \in \mathcal{H} .(x, \beta) \in\) free-vars \(H)\)
)
proof -
 have
 capture-exposed-vars-at p \(C\left(A={ }_{\alpha} B\right)\)
 \(=\)
 \(\left\{(x, \beta) \mid x \beta p^{\prime} E\right.\). strict-prefix \(p^{\prime} p \wedge \lambda x_{\beta} . E \preceq p^{\prime} C \wedge(x, \beta) \in\) free-vars \(\left.(A=\alpha B)\right\}\)
 using assms and capture-exposed-vars-at-alt-def unfolding capture-exposed-vars-at-def by fast
 moreover have
 capture-exposed-vars-at p \(C \mathcal{H}\)
 \(\left\{(x, \beta) \mid x \beta p^{\prime} E\right.\). strict-prefix \(p^{\prime} p \wedge \lambda x_{\beta} . E \preceq_{p^{\prime}} C \wedge(x, \beta) \in\) free-vars \(\left.\mathcal{H}\right\}\)
 using assms and capture-exposed-vars-at-alt-def unfolding capture-exposed-vars-at-def by fast
 ultimately have
 capture-exposed-vars-at \(p C\left(A={ }_{\alpha} B\right) \cap\) capture-exposed-vars-at \(p C \mathcal{H}\)
 \(\left\{(x, \beta) \mid x \beta p^{\prime} E\right.\). strict-prefix \(p^{\prime} p \wedge \lambda x_{\beta} . E \preceq_{p^{\prime}} C \wedge(x, \beta) \in\) free-vars \((A=\alpha B) \wedge\)
 \((x, \beta) \in\) free-vars \(\mathcal{H}\}\)
 by auto
 also have
 \(=\)
 \(\left\{(x, \beta) \mid x \beta p^{\prime} E\right.\). strict-prefix \(p^{\prime} p \wedge \lambda x_{\beta} . E \preceq_{p^{\prime}} C \wedge(x, \beta) \in\) free-vars \((A=\alpha B) \wedge\)
 \((\exists H \in \mathcal{H} .(x, \beta) \in\) free-vars \(H)\}\)
 by auto
 finally show ?thesis
 by fast
qed
definition is-rule- \(R^{\prime}\)-app \(::\) form set \(\Rightarrow\) position \(\Rightarrow\) form \(\Rightarrow\) form \(\Rightarrow\) form \(\Rightarrow\) bool where
 [iff]: is-rule- \(R^{\prime}\)-app \(\mathcal{H} p D C E \longleftrightarrow\) is-rule- \(R\)-app p \(D C E \wedge\) rule- \(R^{\prime}\)-side-condition \(\mathcal{H} p D C E\)
lemma is-rule- \(R^{\prime}\)-app-alt-def:
 shows
 is-rule-R'-app \(\mathcal{H}\) p \(D C E\)
 \(\longleftrightarrow\)
 (
 \(\exists \alpha A B\).
 \(E=A={ }_{\alpha} B \wedge A \in w f f s_{\alpha} \wedge B \in w f f s_{\alpha} \wedge-E\) is a well-formed equality
 \(A \preceq \preceq_{p} C \wedge D \in w_{f f} s_{o} \wedge\)
 \(C \backslash p \leftarrow B \downarrow \triangleright D \wedge\)
 (
 \(\nexists x \beta E p^{\prime}\).
 strict-prefix \(p^{\prime} p \wedge\)
 \(\lambda x_{\beta} . E \preceq_{p^{\prime}} C \wedge\)
 \((x, \beta) \in\) free-vars \(\left(A={ }_{\alpha} B\right) \wedge\)
 \((\exists H \in \mathcal{H} .(x, \beta) \in\) free-vars \(H)\)
)
```

```
)
 using rule-R'-side-condition-alt-def by fastforce
lemma rule-R'-preserves-typing:
 assumes is-rule-R'-app H p D C E
 shows C\inwffso }\longleftrightarrowDD\inwff\mp@subsup{s}{o}{
 using assms and replacement-preserves-typing unfolding is-rule-R-app-def and is-rule-R'-app-def
 by meson
abbreviation is-hyps :: form set }=>\mathrm{ bool where
 is-hyps }\mathcal{H}\equiv\mathcal{H}\subseteq\mathrm{ wffso ^ finite H
inductive is-derivable-from-hyps :: form set }=>\mathrm{ form }=>\mathrm{ bool (- }- - [50, 50] 50) for \mathcal{H where
 dv-hyp: \mathcal{H}\vdashA if A\in\mathcal{H}\mathrm{ and is-hyps }\mathcal{H}
| dv-thm: \mathcal{H}\vdashA if is-theorem A and is-hyps \mathcal{H}
```



```
lemma hyp-derivable-form-is-wffso:
 assumes is-derivable-from-hyps \mathcal{H A}
 shows A < wffso
 using assms and theorem-is-wffo by (cases rule: is-derivable-from-hyps.cases) auto
definition is-hyp-proof-step :: form set }=>\mathrm{ form list }=>\mathrm{ form list }=>\mathrm{ nat }=>\mathrm{ bool where
 [iff]: is-hyp-proof-step H}\mp@subsup{\mathcal{S}}{1}{}\mp@subsup{\mathcal{S}}{2}{}\mp@subsup{i}{}{\prime}
 S S ! i' }\in\mathcal{H}
 \mathcal{S}
 (\existspjk.{j,k}\subseteq{0..<i'}\wedgeis-rule-R'-app\mathcal{H}p(\mp@subsup{\mathcal{S}}{2}{\prime}!\mp@subsup{i}{}{\prime})(\mp@subsup{\mathcal{S}}{2}{\prime}!j)(\mathcal{S}
 type-synonym hyp-proof = form list }\times\mathrm{ form list
 definition is-hyp-proof :: form set }=>\mathrm{ form list }=>\mathrm{ form list }=>\mathrm{ bool where
 [iff]: is-hyp-proof \mathcal{H S}\mp@subsup{\mathcal{S}}{1}{}\mp@subsup{\mathcal{S}}{2}{}\longleftrightarrow(\forall\mp@subsup{i}{}{\prime}<length S S S. is-hyp-proof-step H}\mp@subsup{\mathcal{H}}{1}{}\mp@subsup{\mathcal{S}}{2}{}\mp@subsup{i}{}{\prime}
 lemma common-prefix-is-hyp-subproof-from:
 assumes is-hyp-proof \mathcal{H}}\mp@subsup{\mathcal{S}}{1}{}(\mp@subsup{\mathcal{S}}{2}{}@\mp@subsup{\mathcal{S}}{2}{\prime}
 and }\mp@subsup{i}{}{\prime}<length S S S
 shows is-hyp-proof-step H S S
proof -
 let ?S = S S @ S S ' }\mp@subsup{}{}{\prime
 from assms(2) have ?S ! i'}=(\mp@subsup{\mathcal{S}}{2}{}@\mp@subsup{\mathcal{S}}{2}{\prime\prime})!\mp@subsup{i}{}{\prime
 by (simp add: nth-append)
 moreover from assms(2) have i'<length ?S
 by simp
 ultimately obtain p and j and k where
 ?S ! i' }\in\mathcal{H}
 ?S ! i' }\in\mathrm{ lset }\mp@subsup{\mathcal{S}}{1}{}
 {j,k}\subseteq{0..<i'} ^ is-rule-R'-app \mathcal{H p (?S ! i')(?S !j)(?S!k)})
 using assms(1) unfolding is-hyp-proof-def and is-hyp-proof-step-def by meson
 then consider
```

```
 (hyp) ?S ! i' }\in\mathcal{H
 | (seq) ?S ! i' }\inl\mathrm{ lset }\mp@subsup{\mathcal{S}}{1}{
```



```
 by blast
then have
 (\mathcal{S}
 (\mathcal{S}
 ({j,k}\subseteq{0..<i'} ^is-rule-R'-app \mathcal{H p}((\mp@subsup{\mathcal{S}}{2}{}@\mp@subsup{\mathcal{S}}{2}{\prime\prime}\mp@subsup{}{}{\prime\prime})!\mp@subsup{i}{}{\prime})((\mp@subsup{\mathcal{S}}{2}{}@\mp@subsup{\mathcal{S}}{2}{\prime\prime})!j)((\mp@subsup{\mathcal{S}}{2}{}@\mp@subsup{\mathcal{S}}{2}{\prime\prime}}\mp@subsup{}{}{\prime\prime})!k)
 proof cases
 case hyp
 with assms(2) have (\mathcal{S}}\mp@subsup{\mathcal{L}}{@}{@}\mp@subsup{\mathcal{S}}{2}{}\mp@subsup{}{}{\prime\prime})!\mp@subsup{i}{}{\prime}\in\mathcal{H
 by (simp add: nth-append)
 then show ?thesis ..
 next
 case seq
 with assms(2) have (}\mp@subsup{\mathcal{S}}{2}{@}@\mp@subsup{\mathcal{S}}{2}{\prime\prime})!\mp@subsup{i}{}{\prime}\inl\mathrm{ lset }\mp@subsup{\mathcal{S}}{1}{
 by (simp add: nth-append)
 then show ?thesis
 by (intro disjI1 disjI2)
 next
 case rule-R'
```



```
 by (simp-all add: nth-append)
 with assms(2) and rule-R' have
 {j,k}\subseteq{0..<i'} ^ is-rule-R'-app \mathcal{H p ((S\mathcal{S}@ S S }\mp@subsup{}{2}{\prime\prime})!\mp@subsup{i}{}{\prime})((\mp@subsup{\mathcal{S}}{2}{}@\mp@subsup{\mathcal{S}}{2}{\prime\prime})!j)((\mp@subsup{\mathcal{S}}{2}{}@\mp@subsup{\mathcal{S}}{2}{\prime\prime})!k)
 by (metis nth-append)
 then show ?thesis
 by (intro disjI2)
 qed
 then show ?thesis
 unfolding is-hyp-proof-step-def by meson
qed
lemma added-suffix-thms-hyp-proof-preservation:
 assumes is-hyp-proof }\mathcal{H}\mp@subsup{\mathcal{S}}{1}{}\mp@subsup{\mathcal{S}}{2}{
 shows is-hyp-proof H}(\mp@subsup{\mathcal{S}}{1}{}@\mp@subsup{\mathcal{S}}{1}{}\mp@subsup{}{}{\prime})\mp@subsup{\mathcal{S}}{2}{
 using assms by auto
lemma added-suffix-hyp-proof-preservation:
 assumes is-hyp-proof \mathcal{H S}
 and i'< length (S S @ S S S ') - length }\mp@subsup{\mathcal{S}}{2}{\prime}\mp@subsup{}{}{\prime
 shows is-hyp-proof-step H}\mp@subsup{\mathcal{S}}{1}{}(\mp@subsup{\mathcal{S}}{2}{}@\mp@subsup{\mathcal{S}}{2}{}\mp@subsup{}{}{\prime})\mp@subsup{i}{}{\prime
 using assms and common-prefix-is-hyp-subproof-from[where }\mp@subsup{\mathcal{S}}{2}{}\mp@subsup{}{}{\prime}=[]]\mathrm{ by auto
lemma appended-hyp-proof-step-is-hyp-proof:
 assumes is-hyp-proof }\mathcal{H}\mp@subsup{\mathcal{S}}{1}{}\mp@subsup{\mathcal{S}}{2}{
 and is-hyp-proof-step }\mathcal{H}\mp@subsup{\mathcal{S}}{1}{}(\mp@subsup{\mathcal{S}}{2}{}@[A])(length (\mathcal{S}\mp@code{@ [A]) - 1)
 shows is-hyp-proof H}\mp@subsup{\mathcal{S}}{1}{}(\mp@subsup{\mathcal{S}}{2}{}@[A]
proof (standard, intro allI impI)
```

```
 fix \(i^{\prime}\)
 assume \(i^{\prime}<\) length \(\left(\mathcal{S}_{2} @[A]\right)\)
 then consider (a) \(i^{\prime}<\) length \(\mathcal{S}_{2} \mid(b) i^{\prime}=\) length \(\mathcal{S}_{2}\)
 by fastforce
 then show is-hyp-proof-step \(\mathcal{H} \mathcal{S}_{1}\left(\mathcal{S}_{2} @[A]\right) i^{\prime}\)
 proof cases
 case \(a\)
 with assms(1) show ?thesis
 using added-suffix-hyp-proof-preservation by simp
 next
 case \(b\)
 with assms(2) show ?thesis
 by \(\operatorname{simp}\)
 qed
qed
lemma added-prefix-hyp-proof-preservation:
 assumes is-hyp-proof \(\mathcal{H} \mathcal{S}_{1} \mathcal{S}_{2}{ }^{\prime}\)
 and \(i^{\prime} \in\left\{\right.\) length \(\mathcal{S}_{2} . .<\) length \(\left.\left(\mathcal{S}_{2} @ \mathcal{S}_{2}\right)\right\}\)
 shows is-hyp-proof-step \(\mathcal{H} \mathcal{S}_{1}\left(\mathcal{S}_{2} @ \mathcal{S}_{2}{ }^{\prime}\right) i^{\prime}\)
proof -
 let ? \(\mathcal{S}=\mathcal{S}_{2} @ \mathcal{S}_{2}{ }^{\prime}\)
 let ? \(i=i^{\prime}-\) length \(\mathcal{S}_{2}\)
 from assms(2) have ? \(\mathcal{S}!i^{\prime}=\mathcal{S}_{2}{ }^{\prime}!\) ? \(i\) and \(? i<\) length \(\mathcal{S}_{2}{ }^{\prime}\)
 by (simp-all add: nth-append less-diff-conv2)
 then have is-hyp-proof-step \(\mathcal{H} \mathcal{S}_{1}\) ? \(\mathcal{S} i^{\prime}=i s\)-hyp-proof-step \(\mathcal{H} \mathcal{S}_{1} \mathcal{S}_{2}{ }^{\prime}\) ?i
 proof -
 from assms(1) and \(\left\langle ? i<\right.\) length \(\left.\mathcal{S}_{2}{ }^{\prime}\right\rangle\) obtain \(j\) and \(k\) and \(p\) where
 \(\mathcal{S}_{2}{ }^{\prime}!? i \in \mathcal{H} \vee\)
 \(\mathcal{S}_{2}{ }^{\prime}\) ! ? \(i \in\) lset \(\mathcal{S}_{1} \vee\)
 \(\left(\{j, k\} \subseteq\{0 . .<? i\} \wedge i s\right.\)-rule-R'-app \(\left.\mathcal{H} p\left(\mathcal{S}_{2}{ }^{\prime}!? i\right)\left(\mathcal{S}_{2}{ }^{\prime}!j\right)\left(\mathcal{S}_{2}{ }^{\prime}!k\right)\right)\)
 unfolding is-hyp-proof-def and is-hyp-proof-step-def by meson
 then consider
 (hyp) \(\mathcal{S}_{2}{ }^{\prime}!? ? i \in \mathcal{H}\)
 \(\mid(\) seq \() \mathcal{S}_{2}{ }^{\prime}!? i \in \operatorname{lset} \mathcal{S}_{1}\)
 \(\mid\left(\right.\) rule- \(\left.R^{\prime}\right)\{j, k\} \subseteq\{0 . .<? i\} \wedge\) is-rule- \(R^{\prime}\)-app \(\mathcal{H} p\left(\mathcal{S}_{2}{ }^{\prime}!? i\right)\left(\mathcal{S}_{2}{ }^{\prime}!j\right)\left(\mathcal{S}_{2}{ }^{\prime}!k\right)\)
 by blast
 then have
 ?S \(!i^{\prime} \in \mathcal{H} \vee\)
 ? \(\mathcal{S}!i^{\prime} \in\) lset \(\mathcal{S}_{1} \vee\)
 \(\left(\left\{j+\right.\right.\) length \(\mathcal{S}_{2}, k+\) length \(\left.\mathcal{S}_{2}\right\} \subseteq\left\{0 . .<i^{\prime}\right\} \wedge\)
 is-rule-R'-app \(\mathcal{H} p\left(? \mathcal{S}!i^{\prime}\right)\left(? \mathcal{S}!\left(j+\right.\right.\) length \(\left.\left.\mathcal{S}_{2}\right)\right)\left(? \mathcal{S}!\left(k+\right.\right.\) length \(\left.\left.\left.\mathcal{S}_{2}\right)\right)\right)\)
 proof cases
 case hyp
 with \(\left\langle ? \mathcal{S}!i^{\prime}=\mathcal{S}_{2}{ }^{\prime}!\right.\) ? \(\left.i\right\rangle\) have ? \(\mathcal{S}!i^{\prime} \in \mathcal{H}\)
 by (simp only:)
 then show ?thesis ..
 next
 case \(s e q\)
```



```
 by (simp only:)
 then show ?thesis
 by (intro disjI1 disjI2)
 next
 case rule-R'
 with assms(2) have ?S ! (j+ length }\mp@subsup{\mathcal{S}}{2}{})=\mp@subsup{\mathcal{S}}{2}{\prime}!!j\mathrm{ and ?S ! (k+ length }\mp@subsup{\mathcal{S}}{2}{})=\mp@subsup{\mathcal{S}}{2}{\prime}\mp@subsup{}{}{\prime}!
 by (simp-all add: nth-append)
```



```
 {j+ length }\mp@subsup{\mathcal{S}}{2}{},k+\mathrm{ length }\mp@subsup{\mathcal{S}}{2}{}}\subseteq{0..<i'}
 is-rule-R'-app H p (?S ! i')(?S ! (j+ length S S
 by auto
 then show ?thesis
 by (intro disjIL)
 qed
 with assms(1) and 〈?i< length }\mp@subsup{\mathcal{S}}{2}{}\mp@subsup{}{}{\prime}\rangle\mathrm{ show ?thesis
 unfolding is-hyp-proof-def and is-hyp-proof-step-def by meson
 qed
 with assms(1) and <?i < length }\mp@subsup{\mathcal{S}}{2}{}\mp@subsup{}{}{\prime}\rangle\mathrm{ show ?thesis
 by simp
qed
lemma hyp-proof-but-last-is-hyp-proof:
assumes is-hyp-proof \(\mathcal{H} \mathcal{S}_{1}\left(\mathcal{S}_{2} @[A]\right)\)
shows is-hyp-proof \(\mathcal{H} \mathcal{S}_{1} \mathcal{S}_{2}\)
using assms and common-prefix-is-hyp-subproof-from[where \(\mathcal{S}_{2}{ }^{\prime}=[A]\) and \(\left.\mathcal{S}_{2}{ }^{\prime \prime}=[]\right]\)
by simp
lemma hyp-proof-prefix-is-hyp-proof:
assumes is-hyp-proof \(\mathcal{H} \mathcal{S}_{1}\left(\mathcal{S}_{2} @ \mathcal{S}_{2}\right)\)
shows is-hyp-proof \(\mathcal{H} \mathcal{S}_{1} \mathcal{S}_{2}\)
using assms and hyp-proof-but-last-is-hyp-proof
by (induction \(\mathcal{S}_{2}{ }^{\prime}\) arbitrary: \(\mathcal{S}_{2}\) rule: rev-induct) (simp, metis append.assoc)
lemma single-hyp-is-hyp-proof:
assumes \(A \in \mathcal{H}\)
shows is-hyp-proof \(\mathcal{H} \mathcal{S}_{1}[A]\)
using assms by fastforce
lemma single-thm-is-hyp-proof:
assumes \(A \in\) lset \(\mathcal{S}_{1}\)
shows is-hyp-proof \(\mathcal{H} \mathcal{S}_{1}[A]\)
using assms by fastforce
lemma hyp-proofs-from-concatenation-is-hyp-proof:
assumes is-hyp-proof \(\mathcal{H} \mathcal{S}_{1} \mathcal{S}_{1}{ }^{\prime}\) and is-hyp-proof \(\mathcal{H} \mathcal{S}_{2} \mathcal{S}_{2}{ }^{\prime}\)
shows is-hyp-proof \(\mathcal{H}\left(\mathcal{S}_{1} @ \mathcal{S}_{2}\right)\left(\mathcal{S}_{1}{ }^{\prime} @ \mathcal{S}_{2}{ }^{\prime}\right)\)
proof (standard, intro allI impI)
let ? \(\mathcal{S}=\mathcal{S}_{1} @ \mathcal{S}_{2}\) and ? \(\mathcal{S}^{\prime}=\mathcal{S}_{1}{ }^{\prime} @ \mathcal{S}_{2}{ }^{\prime}\)
```

```
 fix }\mp@subsup{i}{}{\prime
 assume i'< length ?S'
 then consider (a) i'<length }\mp@subsup{\mathcal{S}}{1}{\prime}|(b)\mp@subsup{i}{}{\prime}\in{length \mp@subsup{\mathcal{S}}{1}{\prime}\mp@subsup{}{}{\prime}..<length ?S'
 by fastforce
 then show is-hyp-proof-step }\mathcal{H}\mathrm{ ?S ?S'' }\mp@subsup{i}{}{\prime
 proof cases
 case a
 from 〈is-hyp-proof \mathcal{H S}}\mp@subsup{\mathcal{1}}{}{\prime}\mp@subsup{\mathcal{S}}{1}{}\mp@subsup{}{}{\prime}\rangle\mathrm{ have is-hyp-proof H}(\mp@subsup{\mathcal{S}}{1}{}@\mp@subsup{\mathcal{S}}{2}{})\mp@subsup{\mathcal{S}}{1}{\prime}\mp@subsup{}{}{\prime
 by auto
 with assms(1) and a show ?thesis
 using added-suffix-hyp-proof-preservation[where }\mp@subsup{\mathcal{S}}{1}{}=\mp@subsup{\mathcal{S}}{1}{}@\mp@subsup{\mathcal{S}}{2}{}]\mathrm{ by auto
 next
 case b
 from assms(2) have is-hyp-proof \mathcal{H}}(\mp@subsup{\mathcal{S}}{1}{}@\mp@subsup{\mathcal{S}}{2}{})\mp@subsup{\mathcal{S}}{2}{\prime
 by auto
 with b show ?thesis
 using added-prefix-hyp-proof-preservation[where }\mp@subsup{\mathcal{S}}{1}{}=\mp@subsup{\mathcal{S}}{1}{}@\mp@subsup{\mathcal{S}}{2}{}]\mathrm{ by auto
 qed
qed
lemma elem-of-hyp-proof-is-wffo:
 assumes is-hyps \mathcal{H}
 and lset }\mp@subsup{\mathcal{S}}{1}{}\subseteqwff\mp@subsup{s}{O}{
 and is-hyp-proof \mathcal{H S}
 and }A\in\mathrm{ lset }\mp@subsup{\mathcal{S}}{2}{
 shows }A\inwff\mp@subsup{s}{o}{
using assms proof (induction }\mp@subsup{\mathcal{S}}{2}{}\mathrm{ rule: rev-induct)
 case Nil
 then show ?case
 by simp
next
 case (snoc A' }\mp@subsup{\mathcal{S}}{2}{\prime
 from〈is-hyp-proof \mathcal{H S}
 using hyp-proof-prefix-is-hyp-proof[where }\mp@subsup{\mathcal{S}}{2}{\prime}\mp@subsup{}{}{\prime}=[A]] by presburger
 then show ?case
 proof (cases A \inlset S S S)
 case True
 with snoc.prems(1,2) and «is-hyp-proof \mathcal{H S}}\mp@subsup{\mathcal{S}}{1}{}\mp@subsup{\mathcal{S}}{2}{}\rangle\mathrm{ show ?thesis
 by (fact snoc.IH)
 next
 case False
 with snoc.prems(4) have }\mp@subsup{A}{}{\prime}=
 by simp
 with snoc.prems(3) have
 (\mathcal{S}}\mp@subsup{2}{}{@}[A])!\mp@subsup{i}{}{\prime}\in\mathcal{H}
 (\mathcal{S}
```



```
 using that by auto
 then have }A\inwff\mp@subsup{s}{o}{}\veeA\in\mathcal{H}\veeA\inlset \mathcal{S
```

```
 by (metis (no-types) length-append-singleton nth-append-length)
 with assms(1) and <lset S}\mp@subsup{\mathcal{S}}{1}{}\subseteqwffs\mp@subsup{s}{O}{\prime}\mathrm{ show ?thesis
 using atLeast0-lessThan-Suc by blast
 qed
qed
lemma hyp-prepended-to-hyp-proof-is-hyp-proof:
 assumes is-hyp-proof \mathcal{H S}
 and }A\in\mathcal{H
 shows is-hyp-proof \mathcal{H S}
 using
 hyp-proofs-from-concatenation-is-hyp-proof
 [
 OF single-hyp-is-hyp-proof[OF assms(2)] assms(1),
 where }\mp@subsup{\mathcal{S}}{1}{}=[
]
 by simp
lemma hyp-appended-to-hyp-proof-is-hyp-proof:
 assumes is-hyp-proof }\mathcal{H}\mp@subsup{\mathcal{S}}{1}{}\mp@subsup{\mathcal{S}}{2}{
 and }A\in\mathcal{H
 shows is-hyp-proof H}\mp@subsup{\mathcal{S}}{1}{}(\mp@subsup{\mathcal{S}}{2}{}@[A]
 using
 hyp-proofs-from-concatenation-is-hyp-proof
 [
 OF assms(1) single-hyp-is-hyp-proof[OF assms(2)],
 where }\mp@subsup{\mathcal{S}}{2}{}=[
]
 by simp
lemma dropped-duplicated-thm-in-hyp-proof-is-hyp-proof:
 assumes is-hyp-proof }\mathcal{H}(A#\mp@subsup{\mathcal{S}}{1}{})\mp@subsup{\mathcal{S}}{2}{
 and }A\in\mathrm{ lset }\mp@subsup{\mathcal{S}}{1}{
 shows is-hyp-proof \mathcal{H S}
 using assms by auto
lemma thm-prepended-to-hyp-proof-is-hyp-proof:
 assumes is-hyp-proof \mathcal{H}\mp@subsup{\mathcal{S}}{1}{}\mp@subsup{\mathcal{S}}{2}{}
 and }A\inl\mathrm{ lset }\mp@subsup{\mathcal{S}}{1}{
 shows is-hyp-proof \mathcal{H S}
 using hyp-proofs-from-concatenation-is-hyp-proof[OF single-thm-is-hyp-proof[OF assms(2)] assms(1)]
 and dropped-duplicated-thm-in-hyp-proof-is-hyp-proof by simp
lemma thm-appended-to-hyp-proof-is-hyp-proof:
 assumes is-hyp-proof H}\mp@subsup{\mathcal{S}}{1}{}\mp@subsup{\mathcal{S}}{2}{
 and }A\inl\mathrm{ let }\mp@subsup{\mathcal{S}}{1}{
 shows is-hyp-proof H S S (\mathcal{S}
 using hyp-proofs-from-concatenation-is-hyp-proof[OF assms(1) single-thm-is-hyp-proof[OF assms(2)]]
 and dropped-duplicated-thm-in-hyp-proof-is-hyp-proof by simp
```

```
lemma rule-R'-app-appended-to-hyp-proof-is-hyp-proof:
 assumes is-hyp-proof H}\mp@subsup{\mathcal{S}}{}{\prime}\mathcal{S
 and i}\mp@subsup{i}{C}{}<\mathrm{ length }\mathcal{S}\mathrm{ and }\mathcal{S}!\mp@subsup{i}{C}{}=
 and i}\mp@subsup{i}{E}{}<\mathrm{ length }\mathcal{S}\mathrm{ and S ! i}\mp@subsup{i}{E}{}=
 and is-rule-R'-app H p DCE
 shows is-hyp-proof \mathcal{H S}
proof (standard, intro allI impI)
 let ?S = S @ [D]
 fix }\mp@subsup{i}{}{\prime
 assume i'< length ?S
 then consider (a) i'<length S | (b) i'=length S
 by fastforce
 then show is-hyp-proof-step \mathcal{H S}}\mp@subsup{}{\prime}{(S}@[D])\mp@subsup{i}{}{\prime
 proof cases
 case a
 with assms(1) show ?thesis
 using added-suffix-hyp-proof-preservation by auto
 next
 case b
 let ? }\mp@subsup{i}{D}{}=\mathrm{ length }\mathcal{S
 from assms(2,4) have i}\mp@subsup{i}{C}{}<?\mp@subsup{i}{D}{}\mathrm{ and }\mp@subsup{i}{E}{}<??\mp@subsup{i}{D}{
 by fastforce+
 with assms(3,5,6) have is-rule-R'-app H p (?S !?i
 by (simp add: nth-append)
 with assms(2,4) have
 \existspjk.{j,k}\subseteq{0..<?\mp@subsup{i}{D}{}}\wedge is-rule-R'-app H p (?S !?i
 by (intro exI)+ auto
 then have is-hyp-proof-step }\mathcal{H}\mp@subsup{\mathcal{S}}{}{\prime}\mathrm{ ?S (length ?S - 1)
 by simp
 moreover from b have \mp@subsup{i}{}{\prime}=length ?S - 1
 by simp
 ultimately show ?thesis
 by fast
 qed
qed
definition is-hyp-proof-of :: form set }=>\mathrm{ form list }=>\mathrm{ form list }=>\mathrm{ form }=>\mathrm{ bool where
 [iff]: is-hyp-proof-of H}\mp@subsup{\mathcal{S}}{1}{}\mp@subsup{\mathcal{S}}{2}{}A
 is-hyps \mathcal{H }^
 is-proof }\mp@subsup{\mathcal{S}}{1}{}
 S S
 is-hyp-proof \mathcal{H S}}\mp@subsup{\mathcal{S}}{1}{}\mp@subsup{\mathcal{S}}{2}{}
 last }\mp@subsup{\mathcal{S}}{2}{}=
 lemma hyp-proof-prefix-is-hyp-proof-of-last:
 assumes is-hyps }\mathcal{H
 and is-proof S '"
 and is-hyp-proof }\mathcal{H}\mp@subsup{\mathcal{S}}{}{\prime\prime}(\mathcal{S}@\mp@subsup{\mathcal{S}}{}{\prime})\mathrm{ and S }\mathcal{S
```

```
 shows is-hyp-proof-of }\mathcal{H}\mp@subsup{\mathcal{S}}{}{\prime\prime}\mathcal{S}\mathrm{ (last S)
 using assms and hyp-proof-prefix-is-hyp-proof by simp
 theorem hyp-derivability-implies-hyp-proof-existence:
 assumes }\mathcal{H}\vdash
 shows \exists\mathcal{S}}\mp@subsup{\mathcal{S}}{2}{}\mathrm{ . is-hyp-proof-of H}\mp@subsup{\mathcal{S}}{1}{}\mp@subsup{\mathcal{S}}{2}{}
using assms proof (induction rule: is-derivable-from-hyps.induct)
 case (dv-hyp A)
 from }\langleA\in\mathcal{H}\rangle\mathrm{ have is-hyp-proof H [][A]
 by (fact single-hyp-is-hyp-proof)
 moreover have last [A]=A
 by simp
 moreover have is-proof []
 by simp
 ultimately show ?case
 using <is-hyps \mathcal{H` unfolding is-hyp-proof-of-def by (meson list.discI)}
next
 case (dv-thm A)
 then obtain \mathcal{S}\mathrm{ where is-proof }\mathcal{S}\mathrm{ and }\mathcal{S}\not=[] and last \mathcal{S}=A
 by fastforce
 then have is-hyp-proof \mathcal{H S [A]}
 using single-thm-is-hyp-proof by auto
 with <is-hyps }\mathcal{H}\rangle\mathrm{ and 〈is-proof }\mathcal{S}\rangle\mathrm{ have is-hyp-proof-of }\mathcal{H}\mathcal{S}[A]
 by fastforce
 then show ?case
 by (intro exI)
next
 case (dv-rule-R' C E p D)
 from dv-rule-R'.IH obtain }\mp@subsup{\mathcal{S}}{C}{}\mathrm{ and }\mp@subsup{\mathcal{S}}{C}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and }\mp@subsup{\mathcal{S}}{E}{}\mathrm{ and }\mp@subsup{\mathcal{S}}{E}{\prime}\mp@subsup{}{}{\prime}\mathrm{ where
 is-hyp-proof }\mathcal{H}\mp@subsup{\mathcal{S}}{C}{\prime}\mp@subsup{}{}{\prime}\mp@subsup{\mathcal{S}}{C}{}\mathrm{ and is-proof }\mp@subsup{\mathcal{S}}{C}{\prime}'\mathrm{ and }\mp@subsup{\mathcal{S}}{C}{}\not=[] and last S S S C =C and
 is-hyp-proof }\mathcal{H}\mp@subsup{\mathcal{S}}{E}{\prime}\mp@subsup{\mathcal{S}}{E}{}\mathrm{ and is-proof }\mp@subsup{\mathcal{S}}{E}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and }\mp@subsup{\mathcal{S}}{E}{}\not=[] and last S S S =E
 by auto
 let ? i}\mp@subsup{i}{C}{}=\mathrm{ length }\mp@subsup{\mathcal{S}}{C}{}-1\mathrm{ and ? }\mp@subsup{i}{E}{}=\mathrm{ length }\mp@subsup{\mathcal{S}}{C}{}+\mathrm{ length }\mp@subsup{\mathcal{S}}{E}{}-1\mathrm{ and ? }\mp@subsup{i}{D}{}=\mathrm{ length }\mp@subsup{\mathcal{S}}{C}{}+\mathrm{ length
S}\mp@subsup{\mathcal{S}}{E}{
 let ?S = S S
 from }\langle\mp@subsup{\mathcal{S}}{C}{}\not=[]\rangle\mathrm{ have ?i}\mp@subsup{i}{C}{}<\mathrm{ length (S S
 using linorder-not-le by fastforce+
 moreover have (\mp@subsup{\mathcal{S}}{C}{}@\mp@subsup{\mathcal{S}}{E}{})!??\mp@subsup{i}{C}{}=C and (\mp@subsup{\mathcal{S}}{C}{}@\mp@subsup{\mathcal{S}}{E}{})!?\mp@subsup{i}{E}{}=E
 using <\mp@subsup{\mathcal{S}}{C}{}\not=[]\rangle and <last }\mp@subsup{\mathcal{S}}{C}{}=C\rangle\mathrm{ and «S S
 by
 (
 simp add: last-conv-nth nth-append,
 metis append-is-Nil-conv last-appendR last-conv-nth length-append
)
```



```
 by fastforce
 moreover from <is-hyp-proof \mathcal{H S}\mp@subsup{\mathcal{C}}{}{\prime}\mp@subsup{\mathcal{S}}{C}{}\rangle}\mathrm{ and 〈is-hyp-proof H}\mp@subsup{\mathcal{S}}{E}{}\mp@subsup{}{}{\prime}\mp@subsup{\mathcal{S}}{E}{}
 have is-hyp-proof H}(\mp@subsup{\mathcal{S}}{C}{\prime}@@\mp@subsup{\mathcal{S}}{E}{\prime})(\mp@subsup{\mathcal{S}}{C}{}@\mp@subsup{\mathcal{S}}{E}{}
 by (fact hyp-proofs-from-concatenation-is-hyp-proof)
```

```
 ultimately have is-hyp-proof \(\mathcal{H}\left(\mathcal{S}_{C}{ }^{\prime} @ \mathcal{S}_{E}{ }^{\prime}\right)\left(\left(\mathcal{S}_{C} @ \mathcal{S}_{E}\right) @[D]\right)\)
 using rule-R'-app-appended-to-hyp-proof-is-hyp-proof
 by presburger
 moreover from 〈is-proof \(\mathcal{S}_{C}{ }^{\prime}\) 〉 and «is-proof \(\left.\mathcal{S}_{E}{ }^{\prime}\right\rangle\) have is-proof \(\left(\mathcal{S}_{C}{ }^{\prime} @ \mathcal{S}_{E}{ }^{\prime}\right)\)
 by (fact proofs-concatenation-is-proof)
 ultimately have is-hyp-proof-of \(\mathcal{H}\left(\mathcal{S}_{C}{ }^{\prime} @ \mathcal{S}_{E}{ }^{\prime}\right)\left(\left(\mathcal{S}_{C} @ \mathcal{S}_{E}\right) @[D]\right) D\)
 using 〈is-hyps \(\mathcal{H}\rangle\) by fastforce
 then show? case
 by (intro exI)
qed
theorem hyp-proof-existence-implies-hyp-derivability:
 assumes \(\exists \mathcal{S}_{1} \mathcal{S}_{2}\). is-hyp-proof-of \(\mathcal{H} \mathcal{S}_{1} \mathcal{S}_{2} A\)
 shows \(\mathcal{H} \vdash A\)
proof -
 from assms obtain \(\mathcal{S}_{1}\) and \(\mathcal{S}_{2}\)
 where is-hyps \(\mathcal{H}\) and is-proof \(\mathcal{S}_{1}\) and \(\mathcal{S}_{2} \neq[]\) and is-hyp-proof \(\mathcal{H} \mathcal{S}_{1} \mathcal{S}_{2}\) and last \(\mathcal{S}_{2}=A\)
 by fastforce
 then show ?thesis
 proof (induction length \(\mathcal{S}_{2}\) arbitrary: \(\mathcal{S}_{2}\) A rule: less-induct)
 case less
 let \(? i^{\prime}=\) length \(\mathcal{S}_{2}-1\)
 from \(\left\langle\mathcal{S}_{2} \neq[]\right.\) and \(\left\langle\right.\) last \(\left.\mathcal{S}_{2}=A\right\rangle\) have \(\mathcal{S}_{2}!? i^{\prime}=A\)
 by (simp add: last-conv-nth)
 from 〈is-hyp-proof \(\left.\mathcal{H} \mathcal{S}_{1} \mathcal{S}_{2}\right\rangle\) and \(\left\langle\mathcal{S}_{2} \neq[]\right\rangle\) have is-hyp-proof-step \(\mathcal{H} \mathcal{S}_{1} \mathcal{S}_{2}\) ? i'
 by \(\operatorname{simp}\)
 then consider
 (hyp) \(\mathcal{S}_{2}!? i^{\prime} \in \mathcal{H}\)
 \(\mid\left(\right.\) seq) \(\mathcal{S}_{2}!? i^{\prime} \in l\) set \(\mathcal{S}_{1}\)
 \(\mid\left(\right.\) rule-R \(\left.R^{\prime}\right) \exists p j k .\{j, k\} \subseteq\left\{0 . .<? i^{\prime}\right\} \wedge\) is-rule-R \({ }^{\prime}\)-app \(\mathcal{H} p\left(\mathcal{S}_{2}!? i^{\prime}\right)\left(\mathcal{S}_{2}!j\right)\left(\mathcal{S}_{2}!k\right)\)
 by force
 then show ?case
 proof cases
 case hyp
 with \(\left\langle\mathcal{S}_{2}!? i^{\prime}=A\right\rangle\) and \(\langle i s\)-hyps \(\mathcal{H}\rangle\) show ?thesis
 by (fastforce intro: dv-hyp)
 next
 case \(s e q\)
 from \(\left\langle\mathcal{S}_{2}!? i^{\prime} \in l\right.\) set \(\left.\mathcal{S}_{1}\right\rangle\) and \(\left\langle\mathcal{S}_{2}!? i^{\prime}=A\right\rangle\)
 obtain \(j\) where \(\mathcal{S}_{1}!j=A\) and \(\mathcal{S}_{1} \neq[]\) and \(j<\) length \(\mathcal{S}_{1}\)
 by (metis empty-iff in-set-conv-nth list.set(1))
 with \(\left\langle i s\right.\)-proof \(\left.\mathcal{S}_{1}\right\rangle\) have is-proof (take \((S u c j) \mathcal{S}_{1}\)) and take (Suc j) \(\mathcal{S}_{1} \neq[]\)
 using proof-prefix-is-proof \(\left[\right.\) where \(\mathcal{S}_{1}=\) take \((S u c j) \mathcal{S}_{1}\) and \(\left.\mathcal{S}_{2}=\operatorname{drop}(S u c j) \mathcal{S}_{1}\right]\)
 by simp-all
 moreover from \(\left\langle\mathcal{S}_{1}!j=A\right\rangle\) and \(\left\langle j<\right.\) length \(\left.\mathcal{S}_{1}\right\rangle\) have last (take \((S u c j) \mathcal{S}_{1}\)) \(=A\)
 by (simp add: take-Suc-conv-app-nth)
 ultimately have is-proof-of (take (Suc j) \(\mathcal{S}_{1}\)) A
 by fastforce
 then have is-theorem \(A\)
```

```
 using is-theorem-def by blast
 with 〈is-hyps }\mathcal{H}\rangle\mathrm{ show ?thesis
 by (intro dv-thm)
 next
 case rule-R'
 then obtain p and j and k
```



```
 by force
 let ?S S
 obtain }\mp@subsup{\mathcal{S}}{j}{\prime
 by (metis append-take-drop-id)
 then have is-hyp-proof }\mathcal{H}\mp@subsup{\mathcal{S}}{1}{}(?\mp@subsup{\mathcal{S}}{j}{}@\mp@subsup{\mathcal{S}}{j}{}\mp@subsup{}{}{\prime})\mathrm{ and is-hyp-proof H}\mp@subsup{\mathcal{S}}{1}{}(?\mp@subsup{\mathcal{S}}{k}{}@\mp@subsup{\mathcal{S}}{k}{}\mp@subsup{}{}{\prime}
 by (simp-all only:<is-hyp-proof H}\mp@subsup{\mathcal{S}}{1}{}\mp@subsup{\mathcal{S}}{2}{}>
 moreover from <\mathcal{S}
 have last }\mp@subsup{\mathcal{S}}{j}{\prime}=A\mathrm{ and last }\mp@subsup{\mathcal{S}}{k}{\prime}\mp@subsup{}{}{\prime}=
 using {{j,k}\subseteq{0..<length S S - 1 }> and take-tl and less-le-not-le and append.right-neutral
 by (metis atLeastLessThan-iff insert-subset last-appendR length-tl take-all-iff)+
 moreover from <\mathcal{S}
 by simp-all
 ultimately have is-hyp-proof-of \mathcal{H S}\mp@subsup{\mathcal{S}}{1}{}\mathrm{ ? S S (last ?S S) and is-hyp-proof-of H}\mp@subsup{\mathcal{S}}{1}{}\mathrm{ ? S S}
 using hyp-proof-prefix-is-hyp-proof-of-last
```



```
 and hyp-proof-prefix-is-hyp-proof-of-last
 [OF<is-hyps \mathcal{H}\langle<is-proof }\mp@subsup{\mathcal{S}}{1}{}\rangle<is-hyp-proof \mathcal{H S
 by fastforce+
 moreover from <last }\mp@subsup{\mathcal{S}}{j}{\prime}\mp@subsup{}{}{\prime}=A\rangle\mathrm{ and <last }\mp@subsup{\mathcal{S}}{k}{\prime}=A\mathrm{ \
 have length ?S S < length }\mp@subsup{\mathcal{S}}{2}{}\mathrm{ and length ? S S }k<l\mp@code{length }\mp@subsup{\mathcal{S}}{2}{
 using <{j,k}\subseteq{0..<length S S
```



```
 by (metis Suc-lessD last-snoc linorder-not-le nat-neq-iff take-Suc-conv-app-nth take-all-iff)+
 ultimately have }\mathcal{H}\vdash\mp@subsup{\mathcal{S}}{2}{\prime!}\mathrm{ ! and }\mathcal{H}\vdash\mp@subsup{\mathcal{S}}{2}{\prime}!
 using <is-hyps \mathcal{H}
 and less(1)[OF<length ? \mathcal{S}
 by fast+
 with \langleis-hyps }\mathcal{H}\rangle\mathrm{ and }\langle\mp@subsup{\mathcal{S}}{2}{}!??\mp@subsup{i}{}{\prime}=A\rangle\mathrm{ show ?thesis
 using <is-rule-R'-app \mathcal{H p (\mathcal{S}}\mp@code{2}!?\mp@subsup{i}{}{\prime})(\mp@subsup{\mathcal{S}}{2}{\prime!}|)(\mp@subsup{\mathcal{S}}{2}{\prime!k)> by (blast intro:dv-rule-R')}
 qed
 qed
qed
theorem hypothetical-derivability-proof-existence-equivalence:
 shows }\mathcal{H}\vdashA\longleftrightarrow(\exists\mp@subsup{\mathcal{S}}{1}{}\mp@subsup{\mathcal{S}}{2}{}..is-hyp-proof-of \mathcal{H}\mp@subsup{\mathcal{S}}{1}{}\mp@subsup{\mathcal{S}}{2}{}A
 using hyp-derivability-implies-hyp-proof-existence and hyp-proof-existence-implies-hyp-derivability ..
proposition derivability-from-no-hyps-theoremhood-equivalence:
 shows {}\vdashA\longleftrightarrow is-theorem A
proof
 assume {}\vdash
 then show is-theorem A
```

```
 proof (induction rule: is-derivable-from-hyps.induct)
 case (dv-rule- \(R^{\prime} C\) E \(p D\))
 from 〈is-rule- \(R^{\prime}\)-app \(\} p D C E\) ไ have is-rule-R-app p \(D C E\)
 by simp
 moreover from 〈is-theorem \(C\) 〉 and 〈is-theorem \(E\) 〉 have is-derivable \(C\) and is-derivable \(E\)
 using theoremhood-derivability-equivalence by (simp-all only:)
 ultimately have is-derivable \(D\)
 by (fastforce intro: dv-rule- \(R\))
 then show ?case
 using theoremhood-derivability-equivalence by (simp only:)
 qed \(\operatorname{simp}\)
next
 assume is-theorem \(A\)
 then show \(\} \vdash A\)
 by (blast intro: \(d v\)-thm)
qed
abbreviation is-derivable-from-no-hyps \((\vdash-[50]\) 50) where
 \(\vdash A \equiv\} \vdash A\)
corollary derivability-implies-hyp-derivability:
 assumes \(\vdash A\) and is-hyps \(\mathcal{H}\)
 shows \(\mathcal{H} \vdash A\)
 using assms and derivability-from-no-hyps-theoremhood-equivalence and dv-thm by simp
lemma axiom-is-derivable-from-no-hyps:
 assumes \(A \in\) axioms
 shows \(\vdash A\)
 using derivability-from-no-hyps-theoremhood-equivalence
 and derivable-form-is-theorem[OF dv-axiom[OF assms]] by (simp only:)
lemma axiom-is-derivable-from-hyps:
 assumes \(A \in\) axioms and is-hyps \(\mathcal{H}\)
 shows \(\mathcal{H} \vdash A\)
 using assms and axiom-is-derivable-from-no-hyps and derivability-implies-hyp-derivability by blast
lemma rule- \(R\) [consumes 2, case-names occ-subform replacement]:
 assumes \(\vdash C\) and \(\vdash A={ }_{\alpha} B\)
 and \(A \preceq_{p} C\) and \(C \backslash p \leftarrow B \downarrow \triangleright D\)
 shows \(\vdash D\)
proof -
 from \(\operatorname{assms}(1,2)\) have is-derivable \(C\) and is-derivable \(\left(A={ }_{\alpha} B\right)\)
 using derivability-from-no-hyps-theoremhood-equivalence
 and theoremhood-derivability-equivalence by blast+
 moreover have is-rule-R-app p \(D C(A=\alpha B)\)
 proof -
 from \(\operatorname{assms}(1-4)\) have \(D \in w f f s_{o}\) and \(A \in w f f s_{\alpha}\) and \(B \in w f f s_{\alpha}\)
 by (meson hyp-derivable-form-is-wffso replacement-preserves-typing wffs-from-equality) +
 with \(\operatorname{assms}(3,4)\) show ?thesis
```

```
 by fastforce
 qed
 ultimately have is-derivable D
 by (rule dv-rule-R)
 then show ?thesis
 using derivability-from-no-hyps-theoremhood-equivalence and derivable-form-is-theorem by simp
qed
lemma rule-R' [consumes 2, case-names occ-subform replacement no-capture]:
 assumes \mathcal{H}\vdashC and \mathcal{H}\vdashA=\mp@subsup{\alpha}{}{\prime}B
 and }A\preceqp C and C\p\leftarrowB\\triangleright
 and rule-R'-side-condition H p D C (A=\alpha B)
 shows }\mathcal{H}\vdash
using assms(1,2) proof (rule dv-rule-R')
 from assms(1) show is-hyps \mathcal{H}
 by (blast elim: is-derivable-from-hyps.cases)
 moreover from assms(1-4) have D\in wffs
 by (meson hyp-derivable-form-is-wffso replacement-preserves-typing wffs-from-equality)
 ultimately show is-rule-R'-app \mathcal{H p D C (A= = }B)
 using assms(2-5) and hyp-derivable-form-is-wffso and wffs-from-equality
 unfolding is-rule-R-app-def and is-rule-R'-app-def by metis
qed
end
```


## 6 Elementary Logic

theory Elementary-Logic imports
Proof-System
Propositional-Wff
begin
no-notation funcset (infixr $\rightarrow$ 60)
notation funcset (infixr $\rightarrow 60$ )

### 6.1 Proposition 5200

proposition prop-5200:
assumes $A \in w f f s_{\alpha}$
shows $\vdash A=\alpha A$
using assms and equality-reflexivity and dv-thm by simp
corollary hyp-prop-5200:
assumes is-hyps $\mathcal{H}$ and $A \in$ wff $_{\alpha}$
shows $\mathcal{H} \vdash A=\alpha A$
using derivability-implies-hyp-derivability[OF prop-5200[OF assms(2)] assms(1)].

```
6.2 Proposition 5201 (Equality Rules)
proposition prop-5201-1:
 assumes }\mathcal{H}\vdashA\mathrm{ and }\mathcal{H}\vdashA\equiv\mp@subsup{}{}{\mathcal{Q}}
 shows \mathcal{H}\vdashB
proof -
 from assms(2) have \mathcal{H}\vdashA=\mp@subsup{}{o}{}B
 unfolding equivalence-def .
 with assms(1) show ?thesis
 by (rule rule-R'[where p=[]]) auto
qed
proposition prop-5201-2:
 assumes }\mathcal{H}\vdashA=\mp@subsup{\alpha}{}{\prime}
 shows }\mathcal{H}\vdashB=\mp@subsup{\alpha}{}{\prime}
proof -
 have }\mathcal{H}\vdashA=\alpha
 proof (rule hyp-prop-5200)
 from assms show is-hyps }\mathcal{H
 by (blast elim:is-derivable-from-hyps.cases)
 show A\inwffs }
 by (fact hyp-derivable-form-is-wffso[OF assms, THEN wffs-from-equality(1)])
 qed
 from this and assms show ?thesis
 by (rule rule-R'[where p=[",>]])(force+, fastforce dest: subforms-from-app)
qed
proposition prop-5201-3:
 assumes }\mathcal{H}\vdashA=\mp@subsup{\alpha}{\alpha}{}B\mathrm{ and }\mathcal{H}\vdashB=\mp@subsup{\alpha}{}{\prime}
 shows }\mathcal{H}\vdashA=\mp@subsup{\alpha}{}{C}
 using assms by (rule rule-R'[where p = [>]])(force+, fastforce dest: subforms-from-app)
proposition prop-5201-4:
 assumes }\mathcal{H}\vdashA=\mp@subsup{\alpha}{->\beta}{}B\mathrm{ and }\mathcal{H}\vdashC=\mp@subsup{=}{\alpha}{}
 shows }\mathcal{H}\vdashA\cdotC=\mp@subsup{}{\beta}{}B\cdot
proof -
 have }\mathcal{H}\vdashA\cdotC=\mp@subsup{\beta}{\beta}{}A\cdot
 proof (rule hyp-prop-5200)
 from assms show is-hyps \mathcal{H}
 by (blast elim: is-derivable-from-hyps.cases)
 from assms have }A\inwff\mp@subsup{s}{\alpha->\beta}{}\mathrm{ and C }\in\mathrm{ wffs }
 using hyp-derivable-form-is-wffso and wffs-from-equality by blast+
 then show A}\cdotC\inwff\mp@subsup{s}{\beta}{
 by auto
 qed
 from this and assms(1) have }\mathcal{H}\vdashA\cdotC=\mp@subsup{}{\beta}{}B\cdot
 by (rule rule-R'[where p=[»,《]])(force+, fastforce dest: subforms-from-app)
 from this and assms(2) show ?thesis
 by (rule rule-R'[where p=[»,>]])(force+, fastforce dest: subforms-from-app)
qed
```

```
proposition prop-5201-5:
 assumes \(\mathcal{H} \vdash A={ }_{\alpha \rightarrow \beta} B\) and \(C \in\) wffs \(s_{\alpha}\)
 shows \(\mathcal{H} \vdash A \cdot C={ }_{\beta} B \cdot C\)
proof -
 have \(\mathcal{H} \vdash A \cdot C={ }_{\beta} A \cdot C\)
 proof (rule hyp-prop-5200)
 from \(\operatorname{assms}(1)\) show is-hyps \(\mathcal{H}\)
 by (blast elim: is-derivable-from-hyps.cases)
 have \(A \in\) wffs \(_{\alpha \rightarrow \beta}\)
 by (fact hyp-derivable-form-is-wffso[OF assms(1), THEN wffs-from-equality(1)])
 with \(\operatorname{assms}(2)\) show \(A \cdot C \in w f f s \beta\)
 by auto
 qed
 from this and assms(1) show ?thesis
 by (rule rule- \(R^{\prime}[\) where \(\left.p=[», 《]]\right)\) (force+, fastforce dest: subforms-from-app)
qed
proposition prop-5201-6:
 assumes \(\mathcal{H} \vdash C=\alpha D\) and \(A \in w f f s_{\alpha \rightarrow \beta}\)
 shows \(\mathcal{H} \vdash A \cdot C={ }_{\beta} A \cdot D\)
proof -
 have \(\mathcal{H} \vdash A \cdot C={ }_{\beta} A \cdot C\)
 proof (rule hyp-prop-5200)
 from assms(1) show is-hyps \(\mathcal{H}\)
 by (blast elim: is-derivable-from-hyps.cases)
 have \(C \in w f f s_{\alpha}\)
 by (fact hyp-derivable-form-is-wffso[OF assms(1), THEN wffs-from-equality(1)])
 with assms(2) show \(A \cdot C \in\) wffs \(_{\beta}\)
 by auto
 qed
 from this and assms(1) show?thesis
 by (rule rule- \(R^{\prime}[\) where \(\left.p=[», »]]\right)\) (force+, fastforce dest: subforms-from-app)
qed
```

lemmas Equality-Rules $=$ prop-5201-1 prop-5201-2 prop-5201-3 prop-5201-4 prop-5201-5 prop-5201-6

### 6.3 Proposition 5202 (Rule RR)

proposition prop-5202:
assumes $\vdash A={ }_{\alpha} B \vee \vdash B={ }_{\alpha} A$
and $p \in$ positions $C$ and $A \preceq_{p} C$ and $\left.C \backslash p \leftarrow B\right\rangle \triangleright D$
and $\mathcal{H} \vdash C$
shows $\mathcal{H} \vdash D$
proof -
from $\operatorname{assms}(5)$ have $\vdash C={ }_{o} C$
using prop-5200 and hyp-derivable-form-is-wffso by blast
moreover from $\operatorname{assms}(1)$ consider $(a) \vdash A={ }_{\alpha} B \mid(b) \vdash B={ }_{\alpha} A$
by blast

```
 then have \(\vdash A={ }_{\alpha} B\)
 by cases (assumption, fact Equality-Rules(2))
 ultimately have \(\vdash C={ }_{o} D\)
 by (rule rule- \(R[\) where \(p=» \# p]\)) (use assms(2-4) in auto)
 then have \(\mathcal{H} \vdash C={ }_{o} D\)
 proof -
 from \(\operatorname{assms}(5)\) have is-hyps \(\mathcal{H}\)
 by (blast elim: is-derivable-from-hyps.cases)
 with \(\left\langle\vdash C={ }_{o} D\right\rangle\) show ?thesis
 by (fact derivability-implies-hyp-derivability)
 qed
 with assms(5) show ?thesis
 by (rule Equality-Rules(1)[unfolded equivalence-def])
qed
```

lemmas rule- $R R=$ prop-5202

### 6.4 Proposition 5203

proposition prop-5203:
assumes $A \in w f f s_{\alpha}$ and $B \in w f f s_{\beta}$
and $\forall v \in$ vars $A$. $\neg$ is-bound $v B$
shows $\vdash\left(\lambda x_{\alpha} . B\right) \cdot A={ }_{\beta} \mathbf{S}\{(x, \alpha) \mapsto A\} B$
using assms(2,1,3) proof induction
case (var-is-wff $\beta$ y)
then show ?case
proof (cases $y_{\beta}=x_{\alpha}$ )
case True
then have $\alpha=\beta$ by simp
moreover from assms(1) have $\vdash\left(\lambda x_{\alpha} . x_{\alpha}\right) \cdot A={ }_{\alpha} A$ using axiom-4-2 by (intro axiom-is-derivable-from-no-hyps)
moreover have $\mathbf{S}\{(x, \alpha) \longmapsto A\}\left(x_{\alpha}\right)=A$ by force
ultimately show ?thesis using True by (simp only:)
next
case False
with $\operatorname{assms}(1)$ have $\vdash\left(\lambda x_{\alpha} \cdot y_{\beta}\right) \cdot A=\beta y_{\beta}$ using axiom-4-1-var by (intro axiom-is-derivable-from-no-hyps)
moreover from False have $\mathbf{S}\{(x, \alpha) \longmapsto A\}\left(y_{\beta}\right)=y_{\beta}$ by auto
ultimately show ?thesis by (simp only:)
qed
next
case (con-is-wff $\beta c$ )
from $\operatorname{assms}(1)$ have $\vdash\left(\lambda x_{\alpha} \cdot\{c\}_{\beta}\right) \cdot A=\beta\{c\}_{\beta}$
using axiom-4-1-con by (intro axiom-is-derivable-from-no-hyps)

```
 moreover have \(\mathbf{S}\{(x, \alpha) \mapsto A\}\left(\{c\}_{\beta}\right)=\{c\}_{\beta}\)
 by auto
 ultimately show? ?case
 by (simp only:)
next
 case (app-is-wff \(\gamma \beta D C\))
 from app-is-wff.prems(2) have not-bound-subforms: \(\forall v \in\) vars \(A . \neg i s\)-bound \(v D \wedge \neg i\) s-bound \(v C\)
 using is-bound-in-app-homomorphism by fast
 from \(\left\langle D \in\right.\) wffs \(_{\gamma \rightarrow \beta^{\prime}}\) have \(\vdash\left(\lambda x_{\alpha} . D\right) \cdot A={ }_{\gamma \rightarrow \beta} \mathbf{S}\{(x, \alpha) \hookrightarrow A\} D\)
 using app-is-wff.IH(1)[OF assms(1)] and not-bound-subforms by simp
 moreover from \(\left\langle C \in w f f s_{\gamma}\right\rangle\) have \(\vdash\left(\lambda x_{\alpha} \cdot C\right) \cdot A=\gamma \mathbf{S}\{(x, \alpha) \multimap A\} C\)
 using app-is-wff.IH(2)[OF assms(1)] and not-bound-subforms by simp
 moreover have \(\vdash\left(\lambda x_{\alpha} \cdot D \cdot C\right) \cdot A=\beta_{\beta}\left(\left(\lambda x_{\alpha} \cdot D\right) \cdot A\right) \cdot\left(\left(\lambda x_{\alpha} \cdot C\right) \cdot A\right)\)
 using axiom-is-derivable-from-no-hyps[OF axiom-4-3[OF assms(1) \(\left\langle D \in w_{\text {wfs }}^{\gamma \rightarrow \beta^{\prime}}{ }^{\prime}\langle C \in\right.\) wffs \(\rangle\)]].
 ultimately show? ?case
 using Equality-Rules \((3,4)\) and substitute.simps(3) by presburger
next
 case (abs-is-wff \(\beta D \gamma y\))
 then show? ?case
 proof (cases \(y_{\gamma}=x_{\alpha}\))
 case True
 then have \(\vdash\left(\lambda x_{\alpha} . \lambda y_{\gamma} . D\right) \cdot A={ }_{\gamma \rightarrow \beta} \lambda y_{\gamma} . D\)
 using axiom-is-derivable-from-no-hyps[OF axiom-4-5[OF assms(1) abs-is-wff.hyps(1)]] by fast
 moreover from True have \(\mathbf{S}\{(x, \alpha) \mapsto A\}\left(\lambda y_{\gamma} . D\right)=\lambda y_{\gamma} . D\)
 using empty-substitution-neutrality
 by (simp add: singleton-substitution-simps(4) fmdrop-fmupd-same)
 ultimately show ?thesis
 by (simp only:)
 next
 case False
 have binders-at \(\left(\lambda y_{\gamma} . D\right)[巛]=\{(y, \gamma)\}\)
 by \(\operatorname{simp}\)
 then have is-bound \((y, \gamma)\left(\lambda y_{\gamma} . D\right)\)
 by fastforce
 with abs-is-wff.prems(2) have \((y, \gamma) \notin\) vars \(A\)
 by blast
 with \(\left\langle y_{\gamma} \neq x_{\alpha}\right\rangle\) have \(\vdash\left(\lambda x_{\alpha} . \lambda y_{\gamma} . D\right) \cdot A={ }_{\gamma \rightarrow \beta} \lambda y_{\gamma} .\left(\lambda x_{\alpha} . D\right) \cdot A\)
 using axiom-4-4[OF assms(1) abs-is-wff.hyps(1)] and axiom-is-derivable-from-no-hyps by blast
 moreover have \(\vdash\left(\lambda x_{\alpha} . D\right) \cdot A={ }_{\beta} \mathbf{S}\{(x, \alpha) \longmapsto A\} D\)
 proof -
 have \(\forall p . y_{\gamma} \preceq_{《} \#_{p} \lambda y_{\gamma} . D \longrightarrow y_{\gamma} \preceq_{p} D\)
 using subforms-from-abs by fastforce
 from abs-is-wff.prems(2) have \(\forall v \in\) vars \(A\). \(\neg i s\)-bound \(v D\)
 using is-bound-in-abs-body by fast
 then show ?thesis
 by (fact abs-is-wff.IH[OF assms(1)])
 qed
 ultimately have \(\vdash\left(\lambda x_{\alpha} \cdot \lambda y_{\gamma} . D\right) \cdot A=_{\gamma \rightarrow \beta} \lambda y_{\gamma} . \mathbf{S}\{(x, \alpha) \mapsto A\} D\)
 by (rule rule-R[where \(p=[»,<]]\)) force+
```

```
 with False show ?thesis
 by simp
 qed
qed
```


### 6.5 Proposition 5204

proposition prop-5204:
assumes $A \in w f f s_{\alpha}$ and $B \in w f f s_{\beta}$ and $C \in w f f s_{\beta}$
and $\vdash B={ }_{\beta} C$
and $\forall v \in$ vars $A$. $\neg$ is-bound $v B \wedge \neg$ is-bound $v C$
shows $\vdash \mathbf{S}\{(x, \alpha) \longmapsto A\}\left(B={ }_{\beta} C\right)$
proof -
have $\vdash\left(\lambda x_{\alpha} . B\right) \cdot A={ }_{\beta}\left(\lambda x_{\alpha} . B\right) \cdot A$
proof -
have $\left(\lambda x_{\alpha} . B\right) \cdot A \in w f f s_{\beta}$
using assms (1,2) by auto
then show ?thesis
by (fact prop-5200)
qed
from this and $\operatorname{assms}(4)$ have $\vdash\left(\lambda x_{\alpha} . B\right) \cdot A={ }_{\beta}\left(\lambda x_{\alpha} . C\right) \cdot A$ by (rule rule- $R[$ where $p=[»,<, \ll]]$ ) force +
moreover from $\operatorname{assms}(1,2,5)$ have $\vdash\left(\lambda x_{\alpha} . B\right) \cdot A={ }_{\beta} \mathbf{S}\{(x, \alpha) \hookrightarrow A\} B$ using prop-5203 by auto
moreover from $\operatorname{assms}(1,3,5)$ have $\vdash\left(\lambda x_{\alpha} . C\right) \cdot A={ }_{\beta} \mathbf{S}\{(x, \alpha) \mapsto A\} C$ using prop-5203 by auto
ultimately have $\vdash(\mathbf{S}\{(x, \alpha) \longmapsto A\} B)={ }_{\beta}(\mathbf{S}\{(x, \alpha) \longmapsto A\} C)$
using Equality-Rules(2,3) by blast
then show ?thesis
by $\operatorname{simp}$
qed

### 6.6 Proposition 5205 ( $\eta$-conversion)

proposition prop-5205:
shows $\vdash \mathfrak{f}_{\alpha \rightarrow \beta}={ }_{\alpha \rightarrow \beta}\left(\lambda y_{\alpha} \cdot \mathfrak{f}_{\alpha \rightarrow \beta} \cdot y_{\alpha}\right)$
proof -
\{
fix $y$
assume $y_{\alpha} \neq \mathfrak{x}_{\alpha}$
let ? $A=\lambda y_{\alpha} \cdot \mathfrak{f}_{\alpha \rightarrow \beta} \cdot y_{\alpha}$
have $\vdash\left(\mathfrak{f}_{\alpha \rightarrow \beta}={ }_{\alpha \rightarrow \beta} ? A\right)={ }_{o} \forall \mathfrak{x}_{\alpha} \cdot\left(\mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}={ }_{\beta} ? A \cdot \mathfrak{x}_{\alpha}\right)$
proof -
have $\vdash\left(\mathfrak{f}_{\alpha \rightarrow \beta}={ }_{\alpha \rightarrow \beta} \mathfrak{g}_{\alpha \rightarrow \beta}\right)={ }_{o} \forall \mathfrak{x}_{\alpha} \cdot\left(\mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}={ }_{\beta} \mathfrak{g}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right)\left(\right.$ is $\vdash ? B={ }_{o}$ ? $\left.C\right)$
using axiom-3[unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
have $\vdash \mathbf{S}\{(\mathfrak{g}, \alpha \rightarrow \beta) \longmapsto$ ? $A\}\left(? B={ }_{o}\right.$ ? $\left.C\right)$
proof -
have $? A \in w f f s_{\alpha \rightarrow \beta}$ and $? B \in w f f s_{o}$ and $? C \in w f f s_{O}$ by auto

```
 moreover have }\forallv\in\mathrm{ vars ?A. }\neg\mathrm{ is-bound v ? B }\wedge\neg\mathrm{ is-bound v ?C
 proof
 fix }
 assume v\in vars ?A
 have vars ?B ={(f,\alpha->\beta),(\mathfrak{g},\alpha->\beta)} and vars ?C }={(\mathfrak{f},\alpha->\beta),(\mathfrak{x},\alpha),(\mathfrak{g},\alpha->\beta)
 by force+
```



```
 by force+
 then have }\neg\mathrm{ is-bound (y, 人) ?B and }\neg\mathrm{ is-bound (}y,\alpha)\mathrm{ ?C
 using absent-var-is-not-bound by blast+
 moreover have }\neg\mathrm{ is-bound (f, 人 }{\beta\mathrm{) ?B and }\neg\mathrm{ is-bound (}\mathfrak{f},\alpha->\beta) ?
 by code-simp+
 moreover from }\langlev\in\mathrm{ vars ?A> have v}\in{(y,\alpha),(\mathfrak{f},\alpha->\beta)
 by auto
 ultimately show }\neg\mathrm{ is-bound v?B }\wedge\neg\mathrm{ is-bound v?C
 by fast
 qed
 ultimately show ?thesis
 using \\vdash ?B = o ?C` and prop-5204 by presburger
 qed
 then show ?thesis
 by simp
qed
moreover have }\vdash??A\cdot\mp@subsup{\mathfrak{x}}{\alpha}{}=\mp@subsup{\beta}{\beta}{}\mp@subsup{\mathfrak{f}}{\alpha->\beta}{}\cdot\mp@subsup{\mathfrak{x}}{\alpha}{
proof -
 have }\mp@subsup{\mathfrak{x}}{\alpha}{}\in\mathrm{ wffs}\mp@subsup{s}{\alpha}{}\mathrm{ and }\mp@subsup{\mathfrak{f}}{\alpha->\beta}{}\cdot\mp@subsup{y}{\alpha}{}\inwffs
 by auto
 moreover have }\forallv\in\operatorname{vars}(\mp@subsup{\mathfrak{x}}{\alpha}{}).\negis-bound v(\mp@subsup{f}{\alpha->\beta}{}\cdot\mp@subsup{y}{\alpha}{}
 using < }\mp@subsup{y}{\alpha}{}\not=\mp@subsup{\mathfrak{x}}{\alpha}{}\rangle\mathrm{ by auto
 moreover have S {(y,\alpha)\mapsto\mp@subsup{\mathfrak{x}}{\alpha}{}}(\mp@subsup{\mathfrak{f}}{\alpha->\beta}{}\cdot\mp@subsup{y}{\alpha}{})=\mp@subsup{\mathfrak{f}}{\alpha->\beta}{}\cdot\mp@subsup{\mathfrak{x}}{\alpha}{}
 by simp
 ultimately show ?thesis
 using prop-5203 by metis
qed
ultimately have }\vdash(\mp@subsup{\mathfrak{f}}{\alpha->\beta}{}=\mp@subsup{}{\alpha->\beta}{}?A)=\mp@subsup{o}{o}{}\forall\mathfrak{x}\alpha.(\mp@subsup{\mathfrak{f}}{\alpha->\beta}{}\cdot\mp@subsup{\mathfrak{x}}{\alpha}{}=\mp@subsup{}{\beta}{}\mp@subsup{\mathfrak{f}}{\alpha->\beta}{}\cdot\mp@subsup{\mathfrak{x}}{\alpha}{}
 by (rule rule-R[where p=[»,>,«,>]]) force+
moreover have }\vdash(\mp@subsup{\mathfrak{f}}{\alpha->\beta}{}=\mp@subsup{\alpha}{\alpha->\beta}{}\mp@subsup{\mathfrak{f}}{\alpha->\beta}{})=\mp@subsup{o}{o}{}\forall\mathfrak{x}\alpha\cdot(\mp@subsup{\mathfrak{f}}{\alpha->\beta}{}\cdot\mp@subsup{\mathfrak{x}}{\alpha}{}=\mp@subsup{}{\beta}{}\mp@subsup{\mathfrak{f}}{\alpha->\beta}{}\cdot\mp@subsup{\mathfrak{x}}{\alpha}{}
proof -
 let ?A = f
```



```
 using axiom-3[unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
 have}\vdash\mathbf{S}{(\mathfrak{g},\alpha->\beta)\longmapsto??A}(?B=o?C
 proof -
 have ?A \inwffs }\mp@subsup{\alpha}{->\beta}{}\mathrm{ and ?B }\in\mathrm{ wffso and ?C }\in\mathrm{ wffs s
 by auto
 moreover have }\forallv\in\mathrm{ vars ?A. }\neg\mathrm{ is-bound v ?B }\wedge\neg\mathrm{ is-bound v ?C
 proof
 fix }
 assume v\in vars ?A
```

```
 have vars ?B = {(f,\alpha->\beta),(\mathfrak{g},\alpha->\beta)} and vars ?C = {(f,\alpha->\beta),(\mathfrak{x},\alpha),(\mathfrak{g},\alpha->\beta)}
 by force+
 with }\langle\mp@subsup{y}{\alpha}{}\not=\mp@subsup{\mathfrak{x}}{\alpha}{}\rangle\mathrm{ have (}y,\alpha)\not\invars ?B and (y,\alpha)\not\invars ?C
 by force+
 then have }\neg\mathrm{ is-bound (y, 人) ?B and }\neg\mathrm{ is-bound (}y,\alpha)\mathrm{ ? C
 using absent-var-is-not-bound by blast+
```



```
 by code-simp+
 moreover from }<v\in\mathrm{ vars ?A >have v}\in{(y,\alpha),(\mathfrak{f},\alpha->\beta)
 by auto
 ultimately show }\neg\mathrm{ is-bound v ?B }\wedge\neg\mathrm{ is-bound v?C
 by fast
 qed
 ultimately show ?thesis
 using «\vdash ?B =o ?C` and prop-5204 by presburger
 qed
 then show ?thesis
 by simp
qed
ultimately have }\vdash\mp@subsup{\mathfrak{f}}{\alpha->\beta}{}=\mp@subsup{}{\alpha->\beta}{}(\lambda\mp@subsup{y}{\alpha}{}\cdot\mp@subsup{\mathfrak{f}}{\alpha->\beta}{}\cdot\mp@subsup{y}{\alpha}{}
 using Equality-Rules(1)[unfolded equivalence-def] and Equality-Rules(2) and prop-5200
 by (metis wffs-of-type-intros(1))
}
note x-neq-y = this
then have §6:\vdash}\mp@subsup{\mathfrak{f}}{\alpha->\beta}{}=\mp@subsup{}{\alpha->\beta}{}\lambda\mp@subsup{\mathfrak{y}}{\alpha}{}\cdot\mp@subsup{\mathfrak{f}}{\alpha->\beta}{}\cdot\mp@subsup{\mathfrak{y}}{\alpha}{}(\mathrm{ is }\vdash? ?B=_ ?C
 by simp
then have §7:\vdash(\lambda\mathfrak{x}}\alpha\cdot\mp@subsup{\mathfrak{f}}{\alpha->\beta}{}\cdot\mp@subsup{\mathfrak{x}}{\alpha}{})=\mp@subsup{}{\alpha->\beta}{}(\lambda\mp@subsup{\mathfrak{y}}{\alpha}{}\cdot(\lambda\mp@subsup{\mathfrak{x}}{\alpha}{}\cdot\mp@subsup{\mathfrak{f}}{\alpha->\beta}{}\cdot\mp@subsup{\mathfrak{x}}{\alpha}{})\cdot\mp@subsup{\mathfrak{y}}{\alpha}{}
proof -
 let ?A=\lambda\mathfrak{x}}\mp@subsup{\mp@code{\alpha}}{}{\prime}\mp@subsup{\mathfrak{f}}{\alpha->\beta}{}\cdot\mp@subsup{\mathfrak{x}}{\alpha}{
 have ?A \inwffs}\mp@subsup{\alpha}{->\beta}{}\mathrm{ and ?B }\in\mathrm{ wffs }\alpha->\beta\mathrm{ and ? }C\inwffs \alpha->
 by auto
 moreover have }\forallv\in\mathrm{ vars ?A. }\neg\mathrm{ is-bound v ? B }\wedge\neg\mathrm{ is-bound v ?C
 proof
 fix }
 assume v\in vars ?A
 have }\neg\mathrm{ is-bound (x, 人) ?B and }\neg\mathrm{ is-bound (x, 人) ?C
 by code-simp+
 moreover have }\neg\mathrm{ is-bound (f, 人}->\beta)\mathrm{ ?B and }\neg\mathrm{ is-bound (f, 人
 by code-simp+
 moreover from <v \in vars ?A >have v}\in{(\mathfrak{x},\alpha),(\mathfrak{f},\alpha->\beta)
 by auto
 ultimately show }\negis-bound v?B \wedge\negis-bound v?
 by fast
 qed
 ultimately have }\vdash\mathbf{S}{(f,\alpha->\beta)\longmapsto?A}(?B=\mp@subsup{=}{\alpha->\beta}{
 using §6 and prop-5204 by presburger
 then show ?thesis
 by simp
qed
```

```
have \(\vdash\left(\lambda \mathfrak{x}_{\alpha} \cdot \mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right)={ }_{\alpha \rightarrow \beta}\left(\lambda \mathfrak{y}_{\alpha} \cdot \mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{y}_{\alpha}\right)\)
proof -
 have \(\vdash\left(\lambda \mathfrak{x}_{\alpha} \cdot \mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right) \cdot \mathfrak{y}_{\alpha}={ }_{\beta} \mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{y}_{\alpha}\)
 proof -
 have \(\mathfrak{y}_{\alpha} \in w f f s_{\alpha}\) and \(\mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha} \in\) wffs \(_{\beta}\)
 by auto
 moreover have \(\forall v \in \operatorname{vars}\left(\mathfrak{y}_{\alpha}\right)\). \(\neg\) is-bound \(v\left(\mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right)\)
 by \(\operatorname{simp}\)
 moreover have \(\mathbf{S}\left\{(\mathfrak{x}, \alpha) \nrightarrow \mathfrak{y}_{\alpha}\right\}\left(\mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right)=\mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{y}_{\alpha}\)
 by \(\operatorname{simp}\)
 ultimately show ?thesis
 using prop-5203 by metis
 qed
 from \(\S 7\) and this show ?thesis
 by (rule rule- \(R\) [where \(p=[», 《]]\)) force+
 qed
 with \(\S 6\) and \(x\)-neq- \(y[\) of \(y]\) show ?thesis
 using Equality-Rules \((2,3)\) by blast
qed
```


### 6.7 Proposition 5206 ( $\alpha$-conversion)

```
proposition prop-5206:
assumes \(A \in w f f s_{\alpha}\)
and \((z, \beta) \notin\) free-vars \(A\)
and is-free-for \(\left(z_{\beta}\right)(x, \beta) A\)
shows \(\vdash\left(\lambda x_{\beta} . A\right)={ }_{\beta \rightarrow \alpha}\left(\lambda z_{\beta} . \mathbf{S}\left\{(x, \beta) \longmapsto z_{\beta}\right\} A\right)\)
proof -
have is-substitution \(\left\{(x, \beta) \multimap z_{\beta}\right\}\)
by auto
from this and \(\operatorname{assms}(1)\) have \(\mathbf{S}\left\{(x, \beta) \longmapsto z_{\beta}\right\} A \in w f f s_{\alpha}\)
by (fact substitution-preserves-typing)
obtain \(y\) where \((y, \beta) \notin\{(x, \beta),(z, \beta)\} \cup\) vars \(A\)
proof -
have finite \((\{(x, \beta),(z, \beta)\} \cup\) vars \(A)\) using vars-form-finiteness by blast
with that show ?thesis using fresh-var-existence by metis
qed
then have \((y, \beta) \neq(x, \beta)\) and \((y, \beta) \neq(z, \beta)\) and \((y, \beta) \notin\) vars \(A\) and \((y, \beta) \notin\) free-vars \(A\) using free-vars-in-all-vars by auto
have \(\S 1: \vdash\left(\lambda x_{\beta} . A\right)={ }_{\beta \rightarrow \alpha}\left(\lambda y_{\beta} .\left(\lambda x_{\beta} \cdot A\right) \cdot y_{\beta}\right)\)
proof -
let ? \(A=\lambda x_{\beta}\). \(A\)
have \(*: \vdash \mathfrak{f}_{\beta \rightarrow \alpha}={ }_{\beta \rightarrow \alpha}\left(\lambda y_{\beta} \cdot \mathfrak{f}_{\beta \rightarrow \alpha} \cdot y_{\beta}\right)(\) is \(\vdash\) ? \(B=\) - ? \(C)\) by (fact prop-5205)
moreover have \(\vdash \mathbf{S}\{(\mathfrak{f}, \beta \rightarrow \alpha) \longmapsto\) ? \(A\}(? B=\beta \rightarrow \alpha\) ? \(C)\)
proof -
from \(\operatorname{assms}(1)\) have ?A \(\in w f f s_{\beta \rightarrow \alpha}\) and ?B \(\in w f f s_{\beta \rightarrow \alpha}\) and ?C \(\in w f f s_{\beta \rightarrow \alpha}\)
```

```
 by auto
 moreover have }\forallv\in\mathrm{ vars ?A. ᄀ is-bound v?B ^ ᄀis-bound v ?C
 proof
 fix v
 assume v\in vars ?A
 then consider (a)v=(x,\beta)|(b)v\invars A
 by fastforce
 then show }\neg\mathrm{ is-bound v?B }\wedge\negis-bound v?C
 proof cases
 case a
 then show ?thesis
 using < (y, \beta) \not=(x,\beta)> by force
 next
 case b
 then have }\neg\mathrm{ is-bound v ?B
 by simp
 moreover have }\neg\mathrm{ is-bound v ?C
 using b and < (y, \beta)\not\invars A〉 by code-simp force
 ultimately show ?thesis
 by blast
 qed
 qed
 ultimately show ?thesis
 using prop-5204 and * by presburger
 qed
 ultimately show ?thesis
 by simp
qed
then have §2:\vdash (\lambda\mp@subsup{x}{\beta}{}.A)=\mp@subsup{\beta}{->\alpha}{}(\lambda\mp@subsup{y}{\beta}{}.\mathbf{S}{(x,\beta)\mapsto\mp@subsup{y}{\beta}{}}A)
proof -
 have\vdash(}\\mp@subsup{x}{\beta}{}.A)\cdot\mp@subsup{y}{\beta}{}=\mp@subsup{\alpha}{\alpha}{}\mathbf{S}{(x,\beta)\mapsto\mp@subsup{y}{\beta}{}}A(\mathrm{ is }\vdash(\lambda\mp@subsup{x}{\beta}{}.?B)\cdot?A=_ -)
 proof -
 have ?A \inwffs }\beta\mathrm{ and ?B }\in\mathrm{ wffs }\mp@subsup{\alpha}{}{\prime
 by blast fact
 moreover have }\forallv\in\mathrm{ vars ?A. ᄀ is-bound v ?B
 using< < }y,\beta)\not\in\mathrm{ vars A> and absent-var-is-not-bound by auto
 ultimately show ?thesis
 by (fact prop-5203)
 qed
 with §1 show ?thesis
 by (rule rule-R [where p=[»,«]]) force+
qed
moreover
have §3:\vdash(\lambda\mp@subsup{z}{\beta}{}.\mathbf{S}{(x,\beta)\longmapsto\mp@subsup{z}{\beta}{}}A)=\mp@subsup{\beta}{\beta->\alpha}{}(\lambda\mp@subsup{y}{\beta}{}.(\lambda\mp@subsup{z}{\beta}{}.\mathbf{S}{(x,\beta)\mapsto\mp@subsup{z}{\beta}{}}A)\cdot\mp@subsup{y}{\beta}{})
proof -
 let ?A=\lambdaz
 have *: \vdash { f
 by (fact prop-5205)
 moreover have}\vdash\mathbf{S}{(\mathfrak{f},\beta->\alpha)\longmapsto尸?A}(?B=\beta->\alpha ?C
```

```
proof -
 have ? \(A \in w f f s_{\beta \rightarrow \alpha}\) and ? \(B \in w f f s_{\beta \rightarrow \alpha}\) and ? \(C \in w f f s_{\beta \rightarrow \alpha}\)
 using \(\left\langle\mathbf{S}\left\{(x, \beta) \longmapsto z_{\beta}\right\} A \in\right.\) wffs \(\left.s_{\alpha}\right\rangle\) by auto
 moreover have \(\forall v \in\) vars ? A. \(\neg\) is-bound \(v\) ? \(B \wedge \neg\) is-bound \(v\) ? \(C\)
 proof
 fix \(v\)
 assume \(v \in\) vars ?A
 then consider \((a) v=(z, \beta) \mid(b) v \in \operatorname{vars}\left(\mathbf{S}\left\{(x, \beta) \mapsto z_{\beta}\right\} A\right)\)
 by fastforce
 then show \(\neg\) is-bound \(v\) ? \(B \wedge \neg\) is-bound \(v\) ? \(C\)
 proof cases
 case \(a\)
 then show ?thesis
 using \(\langle(y, \beta) \neq(z, \beta)\rangle\) by auto
 next
 case \(b\)
 then have \(\neg\) is-bound \(v\) ? \(B\)
 by \(\operatorname{simp}\)
 moreover from \(b\) and \(\langle(y, \beta) \notin \operatorname{vars} A\rangle\) and \(\langle(y, \beta) \neq(z, \beta)\rangle\) have \(v \neq(y, \beta)\)
 using renaming-substitution-minimal-change by blast
 then have \(\neg\) is-bound \(v\) ? \(C\)
 by code-simp simp
 ultimately show ?thesis
 by blast
 qed
 qed
 ultimately show ?thesis
 using prop-5204 and * by presburger
 qed
 ultimately show?thesis
 by \(\operatorname{simp}\)
qed
then have \(\S 4: \vdash\left(\lambda z_{\beta} . \mathbf{S}\left\{(x, \beta) \longmapsto z_{\beta}\right\} A\right)=\beta_{\beta \rightarrow \alpha}\left(\lambda y_{\beta} . \mathbf{S}\left\{(x, \beta) \longmapsto y_{\beta}\right\} A\right)\)
proof -
 have \(\vdash\left(\lambda z_{\beta} . \mathbf{S}\left\{(x, \beta) \longmapsto z_{\beta}\right\} A\right) \cdot y_{\beta}=\alpha_{\alpha} \mathbf{S}\left\{(x, \beta) \longmapsto y_{\beta}\right\} A\left(\right.\) is \(\left.\vdash\left(\lambda z_{\beta} \cdot ? B\right) \cdot ? A=--\right)\)
 proof -
 have \(? A \in\) wffs \(_{\beta}\) and \(? B \in w_{f f} s_{\alpha}\)
 by blast fact
 moreover from \(\langle(y, \beta) \notin\) vars \(A\rangle\) and \(\langle(y, \beta) \neq(z, \beta)\rangle\) have \(\forall v \in\) vars ? A. \(\neg\) is-bound \(v\) ? \(B\)
 using absent-var-is-not-bound and renaming-substitution-minimal-change by auto
 ultimately have \(\vdash\left(\lambda z_{\beta} . \mathbf{S}\left\{(x, \beta) \longmapsto z_{\beta}\right\} A\right) \cdot y_{\beta}=\alpha \mathbf{S}\left\{(z, \beta) \longmapsto y_{\beta}\right\} \mathbf{S}\left\{(x, \beta) \longmapsto z_{\beta}\right\} A\)
 using prop-5203 by fast
 moreover have \(\mathbf{S}\left\{(z, \beta) \longmapsto y_{\beta}\right\} \mathbf{S}\left\{(x, \beta) \longmapsto z_{\beta}\right\} A=\mathbf{S}\left\{(x, \beta) \multimap y_{\beta}\right\} A\)
 by (fact renaming-substitution-composability[OF assms(2,3)])
 ultimately show ?thesis
 by (simp only:)
 qed
 with §3 show ?thesis
 by (rule rule- \(R\) [where \(p=[», 《]]\)) auto
```

```
 qed
 ultimately show ?thesis
 using Equality-Rules(2,3) by blast
qed
lemmas }\alpha=\mathrm{ prop-5206
```


### 6.8 Proposition 5207 ( $\beta$-conversion)

context
begin
private lemma bound-var-renaming-equality:
assumes $A \in w f f s_{\alpha}$
and $z_{\gamma} \neq y_{\gamma}$
and $(z, \gamma) \notin$ vars $A$
shows $\vdash A={ }_{\alpha}$ rename-bound-var $(y, \gamma)$ z $A$
using assms proof induction
case (var-is-wff $\alpha x$ )
then show ?case
using prop-5200 by force
next
case (con-is-wff $\alpha c$ )
then show ?case
using prop-5200 by force
next
case (app-is-wff $\alpha \beta A B$ )
then show? case
using Equality-Rules(4) by auto
next
case (abs-is-wff $\beta A \alpha x)$
then show ?case
proof (cases $(y, \gamma)=(x, \alpha))$
case True
have $\vdash \lambda y_{\gamma} . A={ }_{\gamma \rightarrow \beta} \lambda y_{\gamma} . A$
by (fact abs-is-wff.hyps[THEN prop-5200[OF wffs-of-type-intros(4)]])
moreover have $\vdash A={ }_{\beta}$ rename-bound-var $(y, \gamma)$ z $A$
using abs-is-wff.IH[OF assms(2)] and abs-is-wff.prems(2) by fastforce
ultimately have $\vdash \lambda y_{\gamma} . A={ }_{\gamma \rightarrow \beta} \lambda y_{\gamma}$. rename-bound-var $(y, \gamma)$ z $A$
by (rule rule- $R[$ where $p=[», «]]$ ) force +
moreover
have
$\vdash \lambda y \gamma$. rename-bound-var $(y, \gamma)$ z $A$
$=\gamma \rightarrow \beta$
$\lambda z_{\gamma} . \mathbf{S}\left\{(y, \gamma) \longmapsto z_{\gamma}\right\}($ rename-bound-var $(y, \gamma) z A)$
proof -
have rename-bound-var $(y, \gamma)$ z $A \in$ wffs $_{\beta}$
using hyp-derivable-form-is-wffso[OF $\vdash \mid-A=\beta$ rename-bound-var $(y, \gamma) z A\rangle]$
by (blast dest: wffs-from-equality)

```
 moreover from abs-is-wff.prems(2) have \((z, \gamma) \notin\) free-vars (rename-bound-var (y, \(\gamma\)) z A)
 using rename-bound-var-free-vars \([O F\) abs-is-wff.hyps assms(2)] by simp
 moreover from abs-is-wff.prems(2) have is-free-for \((z \gamma)(y, \gamma)\) (rename-bound-var \((y, \gamma) z A)\)
 using is-free-for-in-rename-bound-var[OF abs-is-wff.hyps assms(2)] by simp
 ultimately show ?thesis
 using \(\alpha\) by fast
 qed
 ultimately have \(\vdash \lambda y_{\gamma} . A={ }_{\gamma \rightarrow \beta} \lambda z_{\gamma} . \mathbf{S}\left\{(y, \gamma) \longmapsto z_{\gamma}\right\}(\) rename-bound-var \((y, \gamma) z A)\)
 by (rule Equality-Rules(3))
 then show ?thesis
 using True by auto
 next
 case False
 have \(\vdash \lambda x_{\alpha} . A={ }_{\alpha \rightarrow \beta} \lambda x_{\alpha} . A\)
 by (fact abs-is-wff.hyps[THEN prop-5200[OF wffs-of-type-intros(4)]])
 moreover have \(\vdash A=\beta\) rename-bound-var \((y, \gamma)\) z \(A\)
 using abs-is-wff.IH[OF assms(2)] and abs-is-wff.prems(2) by fastforce
 ultimately have \(\vdash \lambda x_{\alpha} . A={ }_{\alpha \rightarrow \beta} \lambda x_{\alpha}\). rename-bound-var \((y, \gamma)\) z \(A\)
 by (rule rule- \(R[\) where \(p=[», «]]\)) force +
 then show? ?thesis
 using False by auto
 qed
qed
proposition prop-5207:
 assumes \(A \in w f f s_{\alpha}\) and \(B \in w f f s_{\beta}\)
 and is-free-for \(A(x, \alpha) B\)
 shows \(\vdash\left(\lambda x_{\alpha} . B\right) \cdot A={ }_{\beta} \mathbf{S}\{(x, \alpha) \longmapsto A\} B\)
using assms proof (induction form-size \(B\) arbitrary: \(B \beta\) rule: less-induct)
 case less
 from less(3,1,2,4) show ?case
 proof (cases B rule: wffs-of-type-cases)
 case (var-is-wff y)
 then show ?thesis
 proof \(\left(\right.\) cases \(\left.y_{\beta}=x_{\alpha}\right)\)
 case True
 then have \(\alpha=\beta\)
 by \(\operatorname{simp}\)
 moreover from \(\operatorname{assms}(1)\) have \(\vdash\left(\lambda x_{\alpha} \cdot x_{\alpha}\right) \cdot A=\alpha_{\alpha} A\)
 using axiom-4-2 by (intro axiom-is-derivable-from-no-hyps)
 moreover have \(\mathbf{S}\{(x, \alpha) \longmapsto A\}\left(x_{\alpha}\right)=A\)
 by force
 ultimately show ?thesis
 unfolding True and var-is-wff by simp
 next
 case False
 with \(\operatorname{assms}(1)\) have \(\vdash\left(\lambda x_{\alpha} \cdot y_{\beta}\right) \cdot A={ }_{\beta} y_{\beta}\)
 using axiom-4-1-var by (intro axiom-is-derivable-from-no-hyps)
 moreover from False have \(\mathbf{S}\{(x, \alpha) \longmapsto A\}\left(y_{\beta}\right)=y_{\beta}\)
```

```
 by auto
 ultimately show ?thesis
 unfolding False and var-is-wff by simp
 qed
next
 case (con-is-wff c)
 from assms(1) have }\vdash(\lambda\mp@subsup{x}{\alpha}{}.{c\mp@subsup{}}{\beta}{})\cdotA=\mp@subsup{\beta}{\beta}{}{c\mp@subsup{}}{\beta}{
 using axiom-4-1-con by (intro axiom-is-derivable-from-no-hyps)
 moreover have S {(x,\alpha)\multimapA} ({cc}\beta})={c\mp@subsup{}}{\beta}{
 by auto
 ultimately show ?thesis
 by (simp only: con-is-wff)
next
 case (app-is-wff \gamma DC)
 have form-size D<form-size B and form-size C<form-size B
 unfolding app-is-wff(1) by simp-all
 from less(4)[unfolded app-is-wff(1)] have is-free-for A (x,\alpha)D and is-free-for A (x,\alpha)C
 using is-free-for-from-app by iprover+
 from〈is-free-for A (x,\alpha) D> have \vdash((\lambda\mp@subsup{x}{\alpha}{}.D) •A = }\mp@subsup{\gamma}{->\beta}{}\mathbf{S}{(x,\alpha)\mapstoA}
 by (fact less(1)[OF<form-size D< form-size B〉assms(1) app-is-wff(2)])
 moreover from <is-free-for A (x,\alpha)C` have }\vdash(\lambda\mp@subsup{x}{\alpha}{}.C)\cdotA=\gamma\mathbf{S}{(x,\alpha)\mapstoA}
 by (fact less(1)[OF <form-size C< form-size B〉assms(1) app-is-wff(3)])
 moreover have }\vdash(\lambda\mp@subsup{x}{\alpha}{}.D\cdotC)\cdotA=\mp@subsup{}{\beta}{}((\lambda\mp@subsup{x}{\alpha}{}\cdotD)\cdotA)\cdot((\lambda\mp@subsup{x}{\alpha}{}.C)\cdotA
 by (fact axiom-4-3[OF assms(1) app-is-wff(2,3), THEN axiom-is-derivable-from-no-hyps])
 ultimately show ?thesis
 unfolding app-is-wff(1) using Equality-Rules(3,4) and substitute.simps(3) by presburger
next
 case (abs-is-wff \delta D \gamma y)
 then show ?thesis
 proof (cases }\mp@subsup{y}{\gamma}{}=\mp@subsup{x}{\alpha}{}\mathrm{)
 case True
 with abs-is-wff(1) have }\vdash(\lambda\mp@subsup{x}{\alpha}{}.\lambda\mp@subsup{y}{\gamma}{}.D)\cdotA=\mp@subsup{\beta}{\beta}{}\lambda\mp@subsup{y}{\gamma}{}.
 using axiom-4-5[OF assms(1) abs-is-wff(3)] by (simp add: axiom-is-derivable-from-no-hyps)
 moreover have S {(x,\alpha)\mapstoA} (\lambday\gamma. D)=\lambday\gamma. D
 using True by (simp add: empty-substitution-neutrality fmdrop-fmupd-same)
 ultimately show ?thesis
 unfolding abs-is-wff(2) by (simp only:)
 next
 case False
 have form-size D < form-size B
 unfolding abs-is-wff(2) by simp
 have is-free-for A (x,\alpha)D
 using is-free-for-from-abs[OF less(4)[unfolded abs-is-wff(2)]] and }\langle\mp@subsup{y}{\gamma}{}\not=\mp@subsup{x}{\alpha}{}\rangle\mathrm{ by blast
 have }\vdash(\lambda\mp@subsup{x}{\alpha}{}.(\lambda\mp@subsup{y}{\gamma}{}.D))\cdotA=\mp@subsup{\beta}{\beta}{}\lambda\mp@subsup{y}{\gamma}{}.\mathbf{S}{(x,\alpha)\longmapstoA}
 proof (cases (y,\gamma)\not\in vars A)
 case True
 with }\langle\mp@subsup{y}{\gamma}{}\not=\mp@subsup{x}{\alpha}{}\rangle\mathrm{ have }\vdash(\lambda\mp@subsup{x}{\alpha}{}.\lambda\mp@subsup{y}{\gamma}{}.D)\cdotA=\mp@subsup{}{\gamma->\delta}{}\lambda\mp@subsup{y}{\gamma}{}.(\lambda\mp@subsup{x}{\alpha}{}.D)\cdot
 using axiom-4-4[OF assms(1) abs-is-wff(3)] and axiom-is-derivable-from-no-hyps by auto
 moreover have }\vdash(\lambda\mp@subsup{x}{\alpha}{}.D)\cdotA=\mp@subsup{}{\delta}{}\mathbf{S}{(x,\alpha)\longmapstoA}
```

```
 by
 fact less(1)
 [OF<form-size D < form-size B〉assms(1)\langleD\inwffs\delta><is-free-for A (x,\alpha) D`]
)
 ultimately show ?thesis
 unfolding abs-is-wff(1) by (rule rule-R[where p=[»,<]]) force+
next
 case False
 have finite (vars {A,D})
 using vars-form-finiteness and vars-form-set-finiteness by simp
 then obtain z}\mathrm{ where }(z,\gamma)\not\in({(x,\alpha),(y,\gamma)}\cup\mathrm{ vars {A,D})
 using fresh-var-existence by (metis Un-insert-left finite.simps insert-is-Un)
 then have }\mp@subsup{z}{\gamma}{}\not=\mp@subsup{x}{\alpha}{}\mathrm{ and }\mp@subsup{z}{\gamma}{}\not=\mp@subsup{y}{\gamma}{}\mathrm{ and }(z,\gamma)\not\invars {A,D
 by simp-all
 then show ?thesis
 proof (cases (x, \alpha)\not\in free-vars D)
 case True
 define }\mp@subsup{D}{}{\prime}\mathrm{ where }\mp@subsup{D}{}{\prime}=\mathbf{S}{(y,\gamma)\mapsto\mp@subsup{z}{\gamma}{}}
 have is-substitution {(y,\gamma)}\mapsto\mp@subsup{z}{\gamma}{}
 by auto
 with }\langleD\inwff\mp@subsup{s}{\delta}{}\rangle\mathrm{ and }\mp@subsup{D}{}{\prime}\mathrm{ -def have }\mp@subsup{D}{}{\prime}\inwffs\mp@subsup{s}{\delta}{
 using substitution-preserves-typing by blast
 then have }\vdash(\lambda\mp@subsup{x}{\alpha}{}.\lambda\mp@subsup{z}{\gamma}{}.\mp@subsup{D}{}{\prime})\cdotA=\mp@subsup{\gamma}{\gamma->\delta}{}\lambda\mp@subsup{z}{\gamma}{}.(\lambda\mp@subsup{x}{\alpha}{}.\mp@subsup{D}{}{\prime})\cdot
```



```
 and axiom-is-derivable-from-no-hyps
 by auto
 moreover have §2: }\vdash(\lambda\mp@subsup{x}{\alpha}{}.\mp@subsup{D}{}{\prime})\cdotA=\mp@subsup{}{\delta}{}\mp@subsup{D}{}{\prime
 proof -
 have form-size D' = form-size D
 unfolding }\mp@subsup{D}{}{\prime}\mathrm{ -def by (fact renaming-substitution-preserves-form-size)
 then have form-size D'< form-size B
 using <form-size D< form-size B> by simp
 moreover from }\langle\mp@subsup{z}{\gamma}{}\not=\mp@subsup{x}{\alpha}{}\rangle\mathrm{ have is-free-for A (x, 人) D'
 unfolding }\mp@subsup{D}{}{\prime}\mathrm{ -def and is-free-for-def
 using substitution-preserves-freeness[OF True] and is-free-at-in-free-vars
 by fast
 ultimately have }\vdash(\lambda\mp@subsup{x}{\alpha}{}.\mp@subsup{D}{}{\prime})\cdotA=\mp@subsup{}{\delta}{}\mathbf{S}{(x,\alpha)\mapstoA} D
 using less(1) and assms(1) and }\langle\mp@subsup{D}{}{\prime}\inwff\mp@subsup{s}{\delta}{\prime}\rangle by simp
 moreover from }\langle\mp@subsup{z}{\gamma}{}\not=\mp@subsup{x}{\alpha}{}\rangle\mathrm{ have (}x,\alpha)\not\in\mathrm{ free-vars D'
 unfolding D'-def using substitution-preserves-freeness[OF True] by fast
 then have S {(x,\alpha)\mapstoA} D'= D'
 by (fact free-var-singleton-substitution-neutrality)
 ultimately show ?thesis
 by (simp only:)
qed
ultimately have }\S3:\vdash(\lambda\mp@subsup{x}{\alpha}{}\cdot\lambdaz\gamma. D') •A=\mp@subsup{}{\gamma->\delta}{}\lambdaz\gamma. D' (is <\vdash ?A3>)
 by (rule rule-R[where p=[»,<]]) force+
moreover have §4:\vdash(\lambday\gamma. D)=
```

```
proof -
 have (z,\gamma) & free-vars D
 using «(z,\gamma)\not\invars {A,D}` and free-vars-in-all-vars-set by auto
 moreover have is-free-for (z\gamma) (y,\gamma) D
 using <(z,\gamma)\not\in vars {A,D}> and absent-var-is-free-for by force
 ultimately have }\vdash\lambda\mp@subsup{y}{\gamma}{}.D=\mp@subsup{}{\gamma->\delta}{}\lambda\mp@subsup{z}{\gamma}{}.\mathbf{S}{(y,\gamma)\longmapsto\mp@subsup{z}{\gamma}{}}
 using \alpha[OF\langleD\inwffs\delta>] by fast
 then show ?thesis
 using D'-def by blast
 qed
 ultimately have §5:\vdash(\lambda\mp@subsup{x}{\alpha}{}.\lambda\mp@subsup{y}{\gamma}{}.D)\cdotA=\mp@subsup{}{\gamma->\delta}{}\lambda\mp@subsup{y}{\gamma}{}.D
 proof -
 note rule-RR' = rule-RR[OF disjI2]
 have §5 % :\vdash (\lambda\mp@subsup{x}{\alpha}{}.\lambda\mp@subsup{y}{\gamma}{}.D)\cdotA=\mp@subsup{}{\gamma->\delta}{}\lambdaz\gamma. D'(is <\vdash ?A5 (> >)
 by (rule rule-RR'[OF §4, where p = [«,»,«,<] and C=?A3])(use §3 in <force+>)
 show ?thesis
 by (rule rule-RR'[OF §4, where p=[»] and C=?A51]) (use §5 % in <force+>)
 qed
then show ?thesis
 using free-var-singleton-substitution-neutrality[OF <(x,\alpha)\not\in free-vars D`]
 by (simp only: }<\beta=\gamma->\delta>
next
case False
have (y,\gamma) & free-vars A
proof (rule ccontr)
 assume }\neg(y,\gamma)\not\infree-vars
 moreover from «\neg (x,\alpha)\not\in free-vars D> obtain p
 where p}\in\mathrm{ positions D and is-free-at (x, 人) pD
 using free-vars-in-is-free-at by blast
 then have }<#p, positions (\lambday\gamma.D) and is-free-at (x,\alpha) («# #) (\lambday\gamma.D
 using is-free-at-to-abs[OF〈is-free-at (x,\alpha) p D`] and « }\mp@subsup{y}{\gamma}{}\not=\mp@subsup{|}{\alpha}{\prime}\rangle\mathrm{ by (simp, fast)
 moreover have in-scope-of-abs (y,\gamma)(«# p) (\lambday\gamma.D)
 by force
 ultimately have }\neg\mathrm{ is-free-for A (x, 人) (}\lambday\gamma.D
 by blast
 with〈is-free-for A (x,\alpha) B`[unfolded abs-is-wff(2)] show False
 by contradiction
 qed
 define }\mp@subsup{A}{}{\prime}\mathrm{ where }\mp@subsup{A}{}{\prime}=\mathrm{ rename-bound-var (y, र) z A
 have }\mp@subsup{A}{}{\prime}\inwffs\mp@subsup{s}{\alpha}{
 unfolding A'-def by (fact rename-bound-var-preserves-typing[OF assms(1)])
from}\langle(z,\gamma)\not\invars {A,D}` have (y,\gamma)\not\invars \mp@subsup{A}{}{\prime
 using
 old-var-not-free-not-occurring-after-rename
 [
 OF assms(1)\langle\mp@subsup{z}{\gamma}{}\not=\mp@subsup{y}{\gamma}{}\rangle\langle(y,\gamma)\not\in free-vars A>
]
 unfolding A'-def by simp
from }\mp@subsup{A}{}{\prime}\mathrm{ -def have §6: }\vdashA=\alpha A
```

```
 using bound-var-renaming-equality[OF assms(1) <z\gamma }\not=\mp@subsup{y}{\gamma}{}\rangle]\mathrm{ and }«(z,\gamma)\not\in\mathrm{ vars {A,D}
 by simp
 moreover have §7:\vdash (\lambda\mp@subsup{x}{\alpha}{}\cdot\lambda\mp@subsup{y}{\gamma}{}.D)\cdot\mp@subsup{A}{}{\prime}=\mp@subsup{}{\gamma->\delta}{}\lambda\mp@subsup{y}{\gamma}{}.(\lambda\mp@subsup{x}{\alpha}{}.D)\cdot\mp@subsup{A}{}{\prime}(\mathrm{ is }\langle\vdash?A%>)
 using axiom-4-4[OF \langleA' \in wffs (父\rangle\langleD\in wffs
 and «(y,\gamma)\not\invars A`` and «}\mp@subsup{y}{\gamma}{}\not=\mp@subsup{x}{\alpha}{\prime}\mathrm{ \ and axiom-is-derivable-from-no-hyps
 by auto
 ultimately have §8:\vdash (\lambda\mp@subsup{x}{\alpha}{}\cdot\lambday\gamma.D)\cdotA = }\mp@subsup{\gamma}{->\delta}{}\lambday\mp@subsup{y}{\gamma}{}.(\lambda\mp@subsup{x}{\alpha}{}\cdotD)\cdot
 proof -
 note rule-RR' = rule-RR[OF disjI2]
 have §8 % : \vdash (\lambdax⿱⿰㇒一大口
 by (rule rule-RR'[OF §6, where p=[«,»,>] and C= ?A7]) (use §7 in <force+»)
 show ?thesis
 by (rule rule-RR'[OF §6, where p=[»,<<,>] and C=?A& 1]) (use §8 & in \force+>)
 qed
 moreover have form-size D<form-size B
 unfolding abs-is-wff(2) by (simp only: form-size.simps(4) lessI)
 with assms(1) have §9:\vdash (\lambdax\alpha.D) • A = }\mp@subsup{}{\delta}{}\mathbf{S}{(x,\alpha)\mapstoA}
 using less(1) and \D\inwffs}\mp@subsup{\delta}{\delta}{\prime}\mathrm{ and <is-free-for A (x, 人) D` by (simp only:)
 ultimately show ?thesis
```



```
 qed
 qed
 then show ?thesis
 unfolding abs-is-wff(2) using False and singleton-substitution-simps(4) by simp
 qed
 qed
qed
end
```


## 6．9 Proposition 5208

```
proposition prop－5208：
assumes vs \(\neq \square\) and \(B \in\) wffs \(_{\beta}\)
shows \(\vdash \cdot \mathcal{Q}_{\star}\left(\lambda^{\mathcal{Q}_{\star}}\right.\) vs \(\left.B\right)(\) map FVar vs \()={ }_{\beta} B\)
using assms（1）proof（induction vs rule：list－nonempty－induct）
case（single \(v\) ）
obtain \(x\) and \(\alpha\) where \(v=(x, \alpha)\)
by fastforce
then have \(\cdot^{\mathcal{Q}_{\star}}\left(\lambda^{\mathcal{Q}_{\star}}[v] B\right)(\) map FVar \([v])=\left(\lambda x_{\alpha} \cdot B\right) \cdot x_{\alpha}\)
by simp
moreover have \(\vdash\left(\lambda x_{\alpha} . B\right) \cdot x_{\alpha}={ }_{\beta} B\)
proof－
have is－free－for \(\left(x_{\alpha}\right)(x, \alpha) B\)
by fastforce
then have \(\vdash\left(\lambda x_{\alpha} . B\right) \cdot x_{\alpha}={ }_{\beta} \mathbf{S}\left\{(x, \alpha) \mapsto x_{\alpha}\right\} B\) by（rule prop－5207［OF wffs－of－type－intros（1）assms（2）］）
then show ？thesis using identity－singleton－substitution－neutrality by（simp only：）
```

```
 qed
 ultimately show ?case
 by (simp only:)
next
 case (cons v vs)
 obtain x and \alpha where v=(x,\alpha)
 by fastforce
```



```
 proof -
 have .\mp@subsup{\mathcal{Q}}{\star}{}(\mp@subsup{\lambda}{}{\mathcal{Q}}\mp@subsup{}{\star}{}(v#vs)B)(map FVar (v# vs)) \inwffs}
 proof -
 have }\mp@subsup{\lambda}{}{\mathcal{Q}}\mp@subsup{}{\star}{}(v#vs)B\in\mp@subsup{wfff}{foldr (}{}->\mathrm{) (map snd (v#vs)) }
 using generalized-abs-wff [OF assms(2)] by blast
 moreover
 have }\forallk<length (map FVar (v# vs)). map FVar (v# |s)!k\inwffs map snd (v#vs)!
 proof safe
 fix }
 assume *: k< length (map FVar (v # vs))
 moreover obtain x and \alpha where (v#vs)!k=(x,\alpha)
 by fastforce
 with * have map FVar (v#vs)!k= x < and map snd (v#vs)!k=\alpha
 by (metis length-map nth-map snd-conv)+
 ultimately show map FVar (v#vs)!k\inwffs map snd (v#vs)!k
 by fastforce
 qed
 ultimately show ?thesis
 using generalized-app-wff[where As=map FVar (v#vs) and ts = map snd (v#vs)] by
simp
 qed
 then have
```



```
 by (fact prop-5200)
 then have
```



```
vs)
 by simp
 moreover have}\vdash(\mp@subsup{\lambda}{}{\mp@subsup{\mathcal{Q}}{\star}{}}(v#\mathrm{ #s) B)}\cdot\mp@code{FVar v = foldr (}->\mathrm{) (map snd vs) }\beta(\mp@subsup{\lambda}{}{\mathcal{Q}}\mp@subsup{\star}{\star}{}\mathrm{ vs B)
 proof -
 have}\vdash(\mp@subsup{\lambda}{}{\mathcal{Q}}\mp@subsup{\star}{\star}{(v# #s) B) \cdot FVar v = foldr (}->\mathrm{)(map snd vs) }\beta\mathbf{S}{v\mapstoF\operatorname{Var}v}(\mp@subsup{\lambda}{}{\mathcal{Q}}\mp@subsup{}{\star}{}\mathrm{ vs B)
 proof -
 from}\langlev=(x,\alpha)\rangle\mathrm{ have }\mp@subsup{\lambda}{}{\mathcal{Q}}\mp@subsup{}{\star}{}(v#vs)B=\lambda\mp@subsup{x}{\alpha}{}\cdot\mp@subsup{\lambda}{}{\prime}\mp@subsup{\lambda}{\star}{}\mp@subsup{}{\star}{}\mathrm{ vs }
 by simp
 have }\mp@subsup{\lambda}{}{\mathcal{Q}}\mp@subsup{}{\star}{}\mathrm{ vs B}\inwffs foldr (->) (map snd vs)
 using generalized-abs-wff[OF assms(2)] by blast
 moreover have is-free-for (x\alpha)(x,\alpha)((\lambda\mp@subsup{\mathcal{Q}}{\star}{}}\mathrm{ vs B)
 by fastforce
 ultimately
```



```
 by (rule prop-5207 [OF wffs-of-type-intros(1)])
 with \(\langle v=(x, \alpha)\rangle\) show ?thesis
 by \(\operatorname{simp}\)
 qed
 then show ?thesis
 using identity-singleton-substitution-neutrality by (simp only:)
 qed
 ultimately show ?thesis
 proof (induction rule: rule- \(R\) [where \(p=[»]\) @ replicate (length vs)《])
 case occ-subform
 then show ?case
 unfolding equality-of-type-def using leftmost-subform-in-generalized-app
 by (metis append-Cons append-Nil is-subform-at.simps(3) length-map)
 next
 case replacement
 then show ?case
 unfolding equality-of-type-def using leftmost-subform-in-generalized-app-replacement
 and is-subform-implies-in-positions and leftmost-subform-in-generalized-app
 by (metis append-Cons append-Nil length-map replace-right-app)
 qed
qed
moreover have \(\vdash \cdot \mathcal{Q}_{\star}\left(\lambda^{\mathcal{Q}_{\star}}\right.\) vs \(\left.B\right)(\) map FVar vs \()={ }_{\beta} B\)
 by (fact cons.IH)
 ultimately show ?case
 by (rule rule- \(R\) [where \(p=[»]]\)) auto
qed
```


### 6.10 Proposition 5209

```
proposition prop-5209:
assumes \(A \in w f f s_{\alpha}\) and \(B \in w f f s_{\beta}\) and \(C \in w f f s_{\beta}\)
and \(\vdash B={ }_{\beta} C\)
and is-free-for \(A(x, \alpha)\left(B={ }_{\beta} C\right)\)
shows \(\vdash \mathbf{S}\{(x, \alpha) \longmapsto A\}\left(B={ }_{\beta} C\right)\)
proof -
have \(\vdash\left(\lambda x_{\alpha} . B\right) \cdot A={ }_{\beta}\left(\lambda x_{\alpha} \cdot B\right) \cdot A\)
proof -
have \(\left(\lambda x_{\alpha} . B\right) \cdot A \in w_{f f} s_{\beta}\)
using \(\operatorname{assms}(1,2)\) by blast
then show ?thesis
by (fact prop-5200)
qed
from this and \(\operatorname{assms}(4)\) have \(\vdash\left(\lambda x_{\alpha} . B\right) \cdot A={ }_{\beta}\left(\lambda x_{\alpha} . C\right) \cdot A\)
by (rule rule- \(R[\) where \(p=[», «, \mu]]\)) force +
moreover have \(\vdash\left(\lambda x_{\alpha} . B\right) \cdot A={ }_{\beta} \mathbf{S}\{(x, \alpha) \mapsto A\} B\)
proof -
from \(\operatorname{assms}(5)\left[\right.\) unfolded equality-of-type-def] have is-free-for \(A(x, \alpha)\left(Q_{\beta} \cdot B\right)\) by (rule is-free-for-from-app)
then have is-free-for \(A(x, \alpha) B\)
```

```
 by (rule is-free-for-from-app)
 with assms(1,2) show ?thesis
 by (rule prop-5207)
 qed
 moreover have }\vdash(\lambda\mp@subsup{x}{\alpha}{}.C)\cdotA=\mp@subsup{}{\beta}{}\mathbf{S}{(x,\alpha)\longmapstoA}
 proof -
 from assms(5)[unfolded equality-of-type-def] have is-free-for A (x,\alpha)C
 by (rule is-free-for-from-app)
 with assms(1,3) show ?thesis
 by (rule prop-5207)
 qed
 ultimately have }\vdash(\mathbf{S}{(x,\alpha)\longmapstoA}B)=\mp@subsup{}{\beta}{}(\mathbf{S}{(x,\alpha)\longmapstoA}C
 using Equality-Rules(2,3) by blast
 then show ?thesis
 by simp
qed
```


### 6.11 Proposition 5210

```
proposition prop-5210:
```

proposition prop-5210:
assumes B}\inwffs s
shows }\vdash\mp@subsup{T}{o}{}=\mp@subsup{o}{o}{}(B=\mp@subsup{}{\beta}{}B
proof -
have §1:
\vdash
((\lambda\mp@subsup{\mathfrak{y}}{\beta}{}\cdot\mp@subsup{\mathfrak{y}}{\beta}{})=\mp@subsup{=}{\beta->\beta}{=}(\lambda\mp@subsup{\mathfrak{y}}{\beta}{}\cdot\mp@subsup{\mathfrak{y}}{\beta}{}))
=o
\forall\mp@subsup{\mathfrak{x}}{\beta}{}.((\lambda\mp@subsup{\mathfrak{y}}{\beta}{}\cdot\mp@subsup{\mathfrak{y}}{\beta}{})\cdot\mp@subsup{\mathfrak{x}}{\beta}{}=\mp@subsup{}{\beta}{}(\lambda\mp@subsup{\mathfrak{y}}{\beta}{}\cdot\mp@subsup{\mathfrak{y}}{\beta}{})\cdot\mp@subsup{\mathfrak{x}}{\beta}{})
proof -
have }\vdash(\mp@subsup{\mathfrak{f}}{\beta->\beta}{}=\mp@subsup{\beta}{\beta->\beta}{}\mp@subsup{\mathfrak{g}}{\beta->\beta}{})=\mp@subsup{o}{o}{}\forall\mp@subsup{\mathfrak{x}}{\beta}{}.(\mp@subsup{\mathfrak{f}}{\beta->\beta}{}\cdot\mp@subsup{\mathfrak{x}}{\beta}{}=\mp@subsup{\beta}{\beta}{}\mp@subsup{\mathfrak{g}}{\beta->\beta}{}\cdot\mp@subsup{\mathfrak{x}}{\beta}{})(\mathrm{ is }\vdash?,B=o o?C
using axiom-3[unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
moreover have }(\lambda\mp@subsup{\mathfrak{y}}{\beta}{}\cdot\mp@subsup{\mathfrak{y}}{\beta}{})\in\mp@subsup{w}{ff}{\prime}\mp@subsup{s}{\beta->\beta}{}\mathrm{ and ? B }\in\mathrm{ wffso and ?C }C\inwffs\mp@subsup{s}{O}{
by auto
moreover have is-free-for }(\lambda\mp@subsup{\mathfrak{y}}{\beta}{}\cdot\mp@subsup{\mathfrak{y}}{\beta}{})(\mathfrak{f},\beta->\beta)(?B=\mp@subsup{o}{o}{}?C
by simp
ultimately have }\vdash\mathbf{S}{(\mathfrak{f},\beta->\beta)\longmapsto(\lambda\mp@subsup{\mathfrak{y}}{\beta}{}\cdot\mp@subsup{\mathfrak{y}}{\beta}{})}(?B=\mp@subsup{}{o}{}\mp@subsup{}{O}{P}C)(\mathrm{ is }\vdash?S
using prop-5209 by presburger
moreover have ?S=
(
(\lambda\mp@subsup{\mathfrak{y}}{\beta}{}\cdot\mp@subsup{\mathfrak{y}}{\beta}{})=\mp@subsup{}{\beta->\beta}{}\mp@subsup{\mathfrak{g}}{\beta->\beta}{})=\mp@subsup{o}{o}{}\forall\mp@subsup{\mathfrak{x}}{\beta}{}.((\lambda\mp@subsup{\mathfrak{y}}{\beta}{}\cdot\mp@subsup{\mathfrak{y}}{\beta}{})\cdot\mp@subsup{\mathfrak{x}}{\beta}{}=\mp@subsup{}{\beta}{}\mp@subsup{\mathfrak{g}}{\beta->\beta}{}\cdot\mp@subsup{\mathfrak{x}}{\beta}{}
)(is - = ? 故 =o? ? (')
by simp
ultimately have }\vdash??\mp@subsup{B}{}{\prime}=\mp@subsup{o}{0}{}?\mp@subsup{C}{}{\prime
by (simp only:)
moreover from }\langle(\lambda\mp@subsup{\mathfrak{y}}{\beta}{}\cdot\mp@subsup{\mathfrak{y}}{\beta}{})\inwffs\beta\beta->\mp@subsup{\beta}{}{\prime}>\mathrm{ have ? }\mp@subsup{B}{}{\prime}\inwffs\mp@subsup{s}{o}{}\mathrm{ and ? }\mp@subsup{C}{}{\prime}\inwffs\mp@subsup{s}{O}{
by auto
moreover have is-free-for }(\lambda\mp@subsup{\mathfrak{y}}{\beta}{}\cdot\mp@subsup{\mathfrak{y}}{\beta}{})(\mathfrak{g},\beta->\beta)(?\mp@subsup{B}{}{\prime}=\mp@subsup{o}{o}{}?\mp@subsup{C}{}{\prime}
by simp
ultimately have}\vdash\mathbf{S}{(\mathfrak{g},\beta->\beta)\mapsto(\lambda\mp@subsup{\mathfrak{y}}{\beta}{}\cdot\mp@subsup{\mathfrak{y}}{\beta}{})}(?\mp@subsup{B}{}{\prime}=\mp@subsup{=}{o}{\prime?}\mp@subsup{C}{}{\prime})(\mathrm{ is }\vdash?\mp@subsup{S}{}{\prime}

```
```

        using prop-5209[OF \(\left\langle\left(\lambda \mathfrak{y}_{\beta} \cdot \mathfrak{y}_{\beta}\right) \in\right.\) wffs \(\left.\left._{\beta \rightarrow \beta}\right\rangle\right]\) by blast
    then show ?thesis
        by \(\operatorname{simp}\)
    qed
then have $\vdash\left(\lambda \mathfrak{x}_{\beta} . T_{o}\right)={ }_{\beta \rightarrow o}\left(\lambda \mathfrak{x}_{\beta} .\left(\mathfrak{x}_{\beta}={ }_{\beta} \mathfrak{x}_{\beta}\right)\right)$
proof -
have $\lambda \mathfrak{y}_{\beta} \cdot \mathfrak{y}_{\beta} \in$ wffs $_{\beta \rightarrow \beta}$
by blast
then have $\vdash \lambda \mathfrak{y}_{\beta} \cdot \mathfrak{y}_{\beta}={ }_{\beta \rightarrow \beta} \lambda \mathfrak{y}_{\beta} \cdot \mathfrak{y}_{\beta}$
by (fact prop-5200)
with $\S 1$ have $\vdash \forall \mathfrak{x}_{\beta} \cdot\left(\left(\lambda \mathfrak{y}_{\beta} \cdot \mathfrak{y}_{\beta}\right) \cdot \mathfrak{x}_{\beta}=\beta\left(\lambda \mathfrak{y}_{\beta} \cdot \mathfrak{y}_{\beta}\right) \cdot \mathfrak{x}_{\beta}\right)$
using rule- $R$ and is-subform-at.simps(1) by blast
moreover have $\vdash\left(\lambda \mathfrak{y}_{\beta} \cdot \mathfrak{y}_{\beta}\right) \cdot \mathfrak{x}_{\beta}={ }_{\beta} \mathfrak{x}_{\beta}$
using axiom-4-2[OF wffs-of-type-intros(1)] by (rule axiom-is-derivable-from-no-hyps)
ultimately have $\vdash \forall \mathfrak{x}_{\beta} .\left(\mathfrak{x}_{\beta}={ }_{\beta}\left(\lambda \mathfrak{y}_{\beta} \cdot \mathfrak{y}_{\beta}\right) \cdot \mathfrak{x}_{\beta}\right)$
by (rule rule- $R[$ where $p=[», 巛,<, \gg]]$ ) auto
from this and $\left\langle\vdash\left(\lambda \mathfrak{y}_{\beta} \cdot \mathfrak{y}_{\beta}\right) \cdot \mathfrak{x}_{\beta}={ }_{\beta} \mathfrak{x}_{\beta}\right\rangle$ have $\vdash \forall \mathfrak{x}_{\beta} \cdot\left(\mathfrak{x}_{\beta}={ }_{\beta} \mathfrak{x}_{\beta}\right)$
by (rule rule- $R[$ where $p=[», «, »]]$ ) auto
then show ?thesis
unfolding forall-def and PI-def by (fold equality-of-type-def)
qed
from this and assms have 3: $\vdash\left(\lambda \mathfrak{x}_{\beta} \cdot T_{o}\right) \cdot B={ }_{o}\left(\lambda \mathfrak{x}_{\beta} \cdot\left(\mathfrak{x}_{\beta}={ }_{\beta} \mathfrak{x}_{\beta}\right)\right) \cdot B$
by (rule Equality-Rules(5))
then show ?thesis
proof -
have $\vdash\left(\lambda \mathfrak{x}_{\beta} . T_{o}\right) \cdot B={ }_{o} T_{o}$
using prop-5207[OF assms true-wff] by fastforce
from 3 and this have $\vdash T_{o}=o\left(\lambda \mathfrak{x}_{\beta} .\left(\mathfrak{x}_{\beta}={ }_{\beta} \mathfrak{x}_{\beta}\right)\right) \cdot B$
by (rule rule- $R[$ where $p=[«, »]]$ ) auto
moreover have $\vdash\left(\lambda \mathfrak{x}_{\beta} \cdot\left(\mathfrak{x}_{\beta}={ }_{\beta} \mathfrak{x}_{\beta}\right)\right) \cdot B={ }_{o}\left(B={ }_{\beta} B\right)$
proof -
have $\mathfrak{x}_{\beta}={ }_{\beta} \mathfrak{x}_{\beta} \in w f f s_{o}$ and is-free-for $B(\mathfrak{x}, \beta)\left(\mathfrak{x}_{\beta}={ }_{\beta} \mathfrak{x}_{\beta}\right)$
by (blast, intro is-free-for-in-equality is-free-for-in-var)
moreover have $\mathbf{S}\{(\mathfrak{x}, \beta) \rightharpoondown B\}\left(\mathfrak{x}_{\beta}={ }_{\beta} \mathfrak{x}_{\beta}\right)=\left(B={ }_{\beta} B\right)$
by $\operatorname{simp}$
ultimately show ?thesis
using prop-5207[OF assms] by metis
qed
ultimately show ?thesis
by (rule rule- $R$ [where $p=[»]]$ ) auto
qed
qed

```

\subsection*{6.12 Proposition 5211}
```

proposition prop-5211:
shows $\vdash\left(T_{o} \wedge^{\mathcal{Q}} T_{o}\right)={ }_{o} T_{o}$
proof -
have const-T-wff: $\left(\lambda x_{o} . T_{o}\right) \in w f f s_{o \rightarrow o}$ for $x$

```
```

    by blast
    have \(\S 1: \vdash\left(\lambda \mathfrak{y}_{o} . T_{o}\right) \cdot T_{o} \wedge^{\mathcal{Q}}\left(\lambda \mathfrak{y}_{o} . T_{o}\right) \cdot F_{o}={ }_{o} \forall \mathfrak{x}_{o} .\left(\lambda \mathfrak{y}_{o} . T_{o}\right) \cdot \mathfrak{x}_{o}\)
    proof -
    have \(\vdash \mathfrak{g}_{o \rightarrow o} \cdot T_{o} \wedge^{\mathcal{Q}} \mathfrak{g}_{o \rightarrow o} \cdot F_{o}={ }_{o} \forall \mathfrak{x}_{o} \cdot \mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}\left(\right.\) is \(\vdash ? B={ }_{o}\) ? \(\left.C\right)\)
        using axiom-1[unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
    moreover have \(? B \in w f f s_{O}\) and \(? C \in\) wff \(_{O}\)
        by auto
    moreover have is-free-for \(\left(\lambda \mathfrak{y}_{o} . T_{o}\right)(\mathfrak{g}, o \rightarrow o)\left(? B={ }_{o} ? C\right)\)
        by simp
    ultimately have \(\vdash \mathbf{S}\left\{(\mathfrak{g}, o \rightarrow o) \longmapsto\left(\lambda \mathfrak{y}_{o} . T_{o}\right)\right\}\left(? B={ }_{o}{ }^{?} C\right)\)
        using const-T-wff and prop-5209 by presburger
    then show ?thesis
        by \(\operatorname{simp}\)
    qed
    then have \(\vdash T_{o} \wedge^{\mathcal{Q}} T_{o}={ }_{o} \forall \mathfrak{x}_{o} . T_{o}\)
    proof -
    have \(T\) - \(\beta\)-redex: \(\vdash\left(\lambda \mathfrak{y}_{o} . T_{o}\right) \cdot A={ }_{o} T_{o}\) if \(A \in w f f s_{o}\) for \(A\)
        using that and prop-5207[OF that true-wff] by fastforce
    from \(\S 1\) and \(T\) - \(\beta\)-redex \([O F\) true-wff \(]\)
    have \(\vdash T_{o} \wedge^{\mathcal{Q}}\left(\lambda \mathfrak{y}_{o} . T_{o}\right) \cdot F_{o}={ }_{o} \forall \mathfrak{x}_{o} .\left(\lambda \mathfrak{y}_{o} . T_{o}\right) \cdot \mathfrak{x}_{o}\)
        by (rule rule- \(R[\) where \(p=[«, », 巛, »]]\) ) force +
    from this and T- \(\beta\)-redex \([O F\) false-wff \(]\) have \(\vdash T_{o} \wedge^{\mathcal{Q}} T_{o}=o \forall \mathfrak{x}_{o} .\left(\lambda \mathfrak{y}_{o} . T_{o}\right) \cdot \mathfrak{x}_{o}\)
        by (rule rule- \(R[\) where \(p=[«, », »]]\) ) force +
    from this and \(T\) - \(\beta\)-redex \([O F\) wffs-of-type-intros(1)] show ?thesis
        by (rule rule- \(R[\) where \(p=[», »,<]]\) ) force +
    qed
    moreover have \(\vdash T_{o}=o \forall \mathfrak{x}_{o} . T_{o}\)
    using prop-5210[OF const-T-wff] by simp
    ultimately show ?thesis
    using Equality-Rules(2,3) by blast
    qed
lemma true-is-derivable:
shows $\vdash T_{o}$
unfolding true-def using $Q$-wff by (rule prop-5200)

```

\subsection*{6.13 Proposition 5212}
proposition prop-5212:
 shows \(\vdash T_{o} \wedge^{\mathcal{Q}} T_{o}\)
proof -
 have \(\vdash T_{o}\)
 by (fact true-is-derivable)
 moreover have \(\vdash\left(T_{o} \wedge^{\mathcal{Q}} T_{o}\right)={ }_{o} T_{o}\)
 by (fact prop-5211)
 then have \(\vdash T_{o} \equiv \mathcal{Q}\left(T_{o} \wedge^{\mathcal{Q}} T_{o}\right)\)
 unfolding equivalence-def by (fact Equality-Rules(2))
 ultimately show ?thesis
 by (rule Equality-Rules(1))
qed

\subsection*{6.14 Proposition 5213}
proposition prop-5213:
assumes \(\vdash A={ }_{\alpha} B\) and \(\vdash C={ }_{\beta} D\)
shows \(\vdash\left(A={ }_{\alpha} B\right) \wedge^{\mathcal{Q}}\left(C={ }_{\beta} D\right)\)
proof -
from assms have \(A \in w f f s_{\alpha}\) and \(C \in w f f s_{\beta}\)
using hyp-derivable-form-is-wffso and wffs-from-equality by blast+
have \(\vdash T_{o}={ }_{o}\left(A=\alpha_{\alpha} A\right)\)
by (fact prop-5210[OF \(\langle A \in\) wffs \(\alpha\rangle]\))
moreover have \(\vdash A={ }_{\alpha} B\)
by fact
ultimately have \(\vdash T_{o}={ }_{o}\left(A=\alpha_{\alpha} B\right)\)
by (rule rule- \(R[\) where \(p=[», »]]\)) force+
have \(\vdash T_{o}={ }_{o}\left(C={ }_{\beta} C\right)\)
by (fact prop-5210[OF \(\left\langle C \in\right.\) wffs \(\left.\left.\left.s_{\beta}\right\rangle\right]\right)\)
moreover have \(\vdash C={ }_{\beta} D\)
by fact
ultimately have \(\vdash T_{o}={ }_{o}\left(C={ }_{\beta} D\right)\)
by (rule rule- \(R[\) where \(p=[», »]]\)) force+
then show ?thesis
proof -
have \(\vdash T_{o} \wedge^{\mathcal{Q}} T_{o}\)
by (fact prop-5212)
from this and \(\left\langle\vdash T_{o}={ }_{o}\left(A=\alpha_{\alpha} B\right)\right\rangle\) have \(\vdash\left(A={ }_{\alpha} B\right) \wedge^{\mathcal{Q}} T_{o}\)
by (rule rule- \(R[\) where \(p=[«, »]]\)) force +
from this and \(\left.\varangle \vdash T_{o}=o_{o}\left(C={ }_{\beta} D\right)\right\rangle\) show ?thesis
by (rule rule- \(R[\) where \(p=[»]]\)) force +
qed
qed

\subsection*{6.15 Proposition 5214}
proposition prop-5214:
shows \(\vdash T_{o} \wedge^{\mathcal{Q}} F_{o}={ }_{o} F_{o}\)
proof -
have \(i d\)-on-o-is-wff: \(\left(\lambda \mathfrak{x}_{o} . \mathfrak{x}_{o}\right) \in w f f s_{o \rightarrow o}\)
by blast
have \(\S 1: \vdash\left(\lambda \mathfrak{x}_{o} \cdot \mathfrak{x}_{o}\right) \cdot T_{o} \wedge^{\mathcal{Q}}\left(\lambda \mathfrak{x}_{o} \cdot \mathfrak{x}_{o}\right) \cdot F_{o}={ }_{o} \forall \mathfrak{x}_{o} \cdot\left(\lambda \mathfrak{x}_{o} \cdot \mathfrak{x}_{o}\right) \cdot \mathfrak{x}_{o}\)
proof -
have \(\vdash \mathfrak{g}_{o \rightarrow o} \cdot T_{o} \wedge^{\mathcal{Q}} \mathfrak{g}_{o \rightarrow o} \cdot F_{o}={ }_{o} \forall \mathfrak{x}_{o} \cdot \mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}\left(\right.\) is \(\vdash ? B={ }_{o}\) ? \(\left.C\right)\)
using axiom-1[unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
moreover have \(? B \in w_{f f} s_{o}\) and \(? C \in w f f s_{o}\) and is-free-for \(\left(\lambda \mathfrak{x}_{o} . \mathfrak{x}_{o}\right)(\mathfrak{g}, o \rightarrow o)\left(? B={ }_{o} ? C\right)\)
by auto
ultimately have \(\vdash \mathbf{S}\left\{(\mathfrak{g}, o \rightarrow o) \longmapsto\left(\lambda \mathfrak{x}_{o} \cdot \mathfrak{x}_{o}\right)\right\}\left(? B={ }_{o}{ }^{?} C\right)\)
using id-on-o-is-wff and prop-5209 by presburger
then show ?thesis
```

        by simp
    qed
    then have }\vdash\mp@subsup{T}{o}{}\mp@subsup{\wedge}{}{\mathcal{Q}}\mp@subsup{F}{o}{\prime}=\mp@subsup{o}{o}{}\forall\mp@subsup{\mathfrak{x}}{o}{}.\mp@subsup{\mathfrak{x}}{o}{
    proof -
    have id-\beta-redex:\vdash(\lambda\mp@subsup{\mathfrak{x}}{o}{}.\mp@subsup{\mathfrak{x}}{o}{})\cdotA=\mp@subsup{=}{o}{}A\mathrm{ if }A\inwffs}\mp@subsup{s}{o}{}\mathrm{ for }
        by (fact axiom-is-derivable-from-no-hyps[OF axiom-4-2[OF that]])
    from §1 and id-\beta-redex[OF true-wff]
    have}\vdash\mp@subsup{T}{o}{}\mp@subsup{\wedge}{}{\mathcal{Q}}(\lambda\mp@subsup{\mathfrak{x}}{o}{}\cdot\mp@subsup{\mathfrak{x}}{o}{})\cdot\mp@subsup{F}{o}{}=\mp@subsup{=}{o}{}\forall\mp@subsup{\mathfrak{x}}{o}{}.(\lambda\mp@subsup{\mathfrak{x}}{o}{}\cdot\mp@subsup{\mathfrak{x}}{o}{})\cdot\mp@subsup{\mathfrak{x}}{o}{
        by (rule rule-R[where p=[«,»,«,>]]) force+
    from this and id-\beta-redex[OF false-wff] have }\vdash\mp@subsup{T}{o}{}\mp@subsup{\wedge}{}{\mathcal{Q}}\mp@subsup{F}{o}{}=\mp@subsup{=}{o}{}\forall\mp@subsup{\mathfrak{x}}{o}{}.(\lambda\mp@subsup{\mathfrak{x}}{o}{}.\mp@subsup{\mathfrak{x}}{o}{})\cdot\mp@subsup{\mathfrak{x}}{o}{
        by (rule rule-R[where p=[«,»,»]]) force+
    from this and id-\beta-redex[OF wffs-of-type-intros(1)] show ?thesis
        by (rule rule-R[where p=[»,»,<]]) force+
    qed
    then show ?thesis
    by simp
    qed

```

\subsection*{6.16 Proposition 5215 (Universal Instantiation)}
proposition prop-5215:
assumes \(\mathcal{H} \vdash \forall x_{\alpha} . B\) and \(A \in\) wffs \(_{\alpha}\)
and is-free-for \(A(x, \alpha) B\)
shows \(\mathcal{H} \vdash \mathbf{S}\{(x, \alpha) \rightharpoondown A\} B\)
proof -
from assms(1) have is-hyps \(\mathcal{H}\) by (blast elim: is-derivable-from-hyps.cases)
from \(\operatorname{assms}(1)\) have \(\mathcal{H} \vdash\left(\lambda \mathfrak{x}_{\alpha} . T_{o}\right)={ }_{\alpha \rightarrow o}\left(\lambda x_{\alpha} . B\right)\)
by simp
with \(\operatorname{assms}(2)\) have \(\mathcal{H} \vdash\left(\lambda \mathfrak{x}_{\alpha} . T_{o}\right) \cdot A={ }_{o}\left(\lambda x_{\alpha} \cdot B\right) \cdot A\)
by (intro Equality-Rules(5))
then have \(\mathcal{H} \vdash T_{o}={ }_{o} \mathbf{S}\{(x, \alpha) \longmapsto A\} B\)
proof -
have \(\mathcal{H} \vdash\left(\lambda \mathfrak{x}_{\alpha} . T_{o}\right) \cdot A={ }_{o} T_{o}\)
proof -
have \(\vdash\left(\lambda \mathfrak{x}_{\alpha} . T_{o}\right) \cdot A={ }_{o} T_{o}\)
using prop-5207[OF assms(2) true-wff is-free-for-in-true \(]\) and derived-substitution-simps(1)
by (simp only:)
from this and 〈is-hyps \(\mathcal{H}\rangle\) show ?thesis
by (rule derivability-implies-hyp-derivability)
qed
moreover have \(\mathcal{H} \vdash\left(\lambda x_{\alpha} . B\right) \cdot A={ }_{o} \mathbf{S}\{(x, \alpha) \mapsto A\} B\)
proof -
have \(B \in w_{f f} s_{o}\)
using hyp-derivable-form-is-wffso[OF assms(1)] by (fastforce elim: wffs-from-forall)
with \(\operatorname{assms}(2,3)\) have \(\vdash\left(\lambda x_{\alpha} . B\right) \cdot A={ }_{o} \mathbf{S}\{(x, \alpha) \mapsto A\} B\)
using prop-5207 by (simp only:)
from this and 〈is-hyps \(\mathcal{H}\rangle\) show ?thesis
by (rule derivability-implies-hyp-derivability)
```

    qed
    ultimately show ?thesis
        using}\langle\mathcal{H}\vdash(\lambda\mp@subsup{\mathfrak{x}}{\alpha}{}.\mp@subsup{T}{o}{\prime})\cdotA=\mp@subsup{=}{o}{(}(\lambda\mp@subsup{x}{\alpha}{}.B)\cdotA\rangle and Equality-Rules(2,3) by meso
    qed
    then show ?thesis
    proof -
    have }\mathcal{H}\vdash\mp@subsup{T}{o}{
        by (fact derivability-implies-hyp-derivability[OF true-is-derivable <is-hyps }\mathcal{H}\rangle]
    from this and «\mathcal{H}\vdash\mp@subsup{T}{o}{}=\mp@subsup{}{o}{}\mathbf{S}{(x,\alpha)\multimapA} B\rangle show ?thesis
        by (rule Equality-Rules(1)[unfolded equivalence-def])
    qed
    qed
lemmas }\forallI=\mathrm{ prop-5215

```

\subsection*{6.17 Proposition 5216}
proposition prop-5216:
assumes \(A \in\) wffs \(_{o}\)
shows \(\vdash\left(T_{o} \wedge^{\mathcal{Q}} A\right)=o A\)
proof -
let \(? B=\lambda \mathfrak{x}_{o} .\left(T_{o} \wedge^{\mathcal{Q}} \mathfrak{x}_{o}=o \mathfrak{x}_{o}\right)\)
have \(B\)-is-wff: \(: B \in\) wffs \(_{o \rightarrow 0}\)
by auto
have \(\S 1: \vdash ? B \cdot T_{o} \wedge^{\mathcal{Q}} ? B \cdot F_{o}={ }_{o} \forall \mathfrak{x}_{o} . ? B \cdot \mathfrak{x}_{o}\)
proof -
have \(\vdash \mathfrak{g}_{o \rightarrow o} \cdot T_{o} \wedge^{\mathcal{Q}} \mathfrak{g}_{o \rightarrow o} \cdot F_{o}={ }_{o} \forall \mathfrak{x}_{o} \cdot \mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}\left(\right.\) is \(\vdash ? C={ }_{o}\) ? \(D\))
using axiom-1 [unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
moreover have \(? C \in\) wffs \(_{o}\) and \(? D \in\) wffs \(_{o}\) and is-free-for \(? B(\mathfrak{g}, o \rightarrow o)\left(? C==_{o} ? D\right)\) by auto
ultimately have \(\vdash \mathbf{S}\{(\mathfrak{g}, o \rightarrow o) \mapsto ? B\}\left(? C={ }_{o}\right.\) ? \(\left.D\right)\)
using \(B\)-is-wff and prop-5209 by presburger
then show ?thesis
by \(\operatorname{simp}\)
qed
have *: is-free-for \(A(\mathfrak{x}, o)\left(T_{o} \wedge^{\mathcal{Q}} \mathfrak{x}_{o}={ }_{o} \mathfrak{x}_{o}\right)\) for \(A\) by (intro is-free-for-in-conj is-free-for-in-equality is-free-for-in-true is-free-for-in-var)
have \(\vdash\left(T_{o} \wedge^{\mathcal{Q}} T_{o}={ }_{o} T_{o}\right) \wedge^{\mathcal{Q}}\left(T_{o} \wedge^{\mathcal{Q}} F_{o}=o F_{o}\right)\) by (fact prop-5213[OF prop-5211 prop-5214])
moreover
have \(\vdash\left(T_{o} \wedge^{\mathcal{Q}} T_{o}=_{o} T_{o}\right) \wedge^{\mathcal{Q}}\left(T_{o} \wedge^{\mathcal{Q}} F_{o}={ }_{o} F_{o}\right)={ }_{o} \forall \mathfrak{x}_{o} .\left(T_{o} \wedge^{\mathcal{Q}} \mathfrak{x}_{o}={ }_{o} \mathfrak{x}_{o}\right)\)
proof -
have \(B-\beta\)-redex \(: \vdash ? B \cdot A={ }_{o}\left(T_{o} \wedge^{\mathcal{Q}} A={ }_{o} A\right)\) if \(A \in\) wffs \(_{o}\) for \(A\)
proof -
have \(T_{o} \wedge^{\mathcal{Q}} \mathfrak{x}_{o}={ }_{o} \mathfrak{x}_{o} \in\) wff \(s_{o}\)
by blast
moreover have \(\mathbf{S}\{(\mathfrak{x}, o) \nrightarrow A\}\left(T_{o} \wedge^{\mathcal{Q}} \mathfrak{x}_{o}={ }_{o} \mathfrak{x}_{o}\right)=\left(T_{o} \wedge^{\mathcal{Q}} A={ }_{o} A\right)\)
by simp
ultimately show? thesis
```

        using * and prop-5207[OF that] by metis
    qed
    from \(\S 1\) and \(B\) - \(\beta\)-redex \([O F\) true-wff]
    have \(\vdash\left(T_{o} \wedge^{\mathcal{Q}} T_{o}=o_{o} T_{o}\right) \wedge^{\mathcal{Q}}\) ? \(B \cdot F_{o}={ }_{o} \forall \mathfrak{x}_{o}\). ? \(B \cdot \mathfrak{x}_{o}\)
        by (rule rule- \(R[\) where \(p=[«, », «, »]]\) ) force +
    from this and \(B\) - \(\beta\)-redex[OF false-wff]
    have \(\vdash\left(T_{o} \wedge^{\mathcal{Q}} T_{o}={ }_{o} T_{o}\right) \wedge^{\mathcal{Q}}\left(T_{o} \wedge^{\mathcal{Q}} F_{o}={ }_{o} F_{o}\right)={ }_{o} \forall \mathfrak{x}_{o} . ? B \cdot \mathfrak{x}_{o}\)
        by (rule rule- \(R[\) where \(p=[«, », »]]\) ) force +
    from this and \(B\) - \(\beta\)-redex [OF wffs-of-type-intros(1)] show ?thesis
        by (rule rule- \(R[\) where \(p=[», »,<]]\) ) force +
    qed
    ultimately have \(\vdash \forall \mathfrak{x}_{o} .\left(T_{o} \wedge^{\mathcal{Q}} \mathfrak{x}_{o}={ }_{o} \mathfrak{x}_{o}\right)\)
    by (rule rule- \(R[\) where \(p=[]]\) ) fastforce +
    show ?thesis
    using \(\forall I\left[O F\left\langle\vdash \forall \mathfrak{x}_{o} .\left(T_{o} \wedge^{\mathcal{Q}} \mathfrak{x}_{o}={ }_{o} \mathfrak{x}_{o}\right)\right\rangle\right.\) assms \(\left.*\right]\) by simp
    qed

```

\subsection*{6.18 Proposition 5217}
```

proposition prop-5217:
shows $\vdash\left(T_{o}={ }_{o} F_{o}\right)={ }_{o} F_{o}$
proof -
let ? $B=\lambda \mathfrak{x}_{o} .\left(T_{o}={ }_{o} \mathfrak{x}_{o}\right)$
have $B$-is-wff: ? $B \in w f f s_{o \rightarrow o}$
by auto
have $*$ : is-free-for $A(\mathfrak{x}, o)\left(T_{o}={ }_{o} \mathfrak{x}_{o}\right)$ for $A$
by (intro is-free-for-in-equality is-free-for-in-true is-free-for-in-var)
have $\S 1: \vdash ? B \cdot T_{o} \wedge^{\mathcal{Q}} ? B \cdot F_{o}={ }_{o} \forall \mathfrak{x}_{o} . ? B \cdot \mathfrak{x}_{o}$
proof -
have $\vdash \mathfrak{g}_{o \rightarrow o} \cdot T_{o} \wedge^{\mathcal{Q}} \mathfrak{g}_{o \rightarrow o} \cdot F_{o}={ }_{o} \forall \mathfrak{x}_{o} \cdot \mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}\left(\right.$ is $\vdash ? C={ }_{o}$ ? $\left.D\right)$
using axiom-1[unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
moreover have $? C \in w_{f f} s_{o}$ and $? D \in$ wffs $_{o}$ and is-free-for ? $B(\mathfrak{g}, o \rightarrow o)\left(? C=o_{o} ? D\right)$
by auto
ultimately have $\vdash \mathbf{S}\{(\mathfrak{g}, o \rightarrow o) \longmapsto$ ? $B\}\left(? C={ }_{o}\right.$ ? $\left.D\right)$
using $B$-is-wff and prop-5209 by presburger
then show ?thesis
by $\operatorname{simp}$
qed
then have $\vdash\left(T_{o}={ }_{o} T_{o}\right) \wedge^{\mathcal{Q}}\left(T_{o}={ }_{o} F_{o}\right)={ }_{o} \forall \mathfrak{x}_{o} .\left(T_{o}={ }_{o} \mathfrak{x}_{o}\right)($ is $\vdash ? A)$
proof -
have $B$ - $\beta$-redex: $\vdash$ ? $B \cdot A={ }_{o}\left(T_{o}=_{o} A\right)$ if $A \in w f f s_{o}$ for $A$
proof -
have $T_{o}={ }_{o} \mathfrak{x}_{o} \in w f f s_{O}$
by auto
moreover have $\mathbf{S}\{(\mathfrak{x}, o) \longmapsto A\}\left(T_{o}={ }_{o} \mathfrak{x}_{o}\right)=\left(T_{o}={ }_{o} A\right)$
by $\operatorname{simp}$
ultimately show ?thesis
using * and prop-5207[OF that] by metis
qed

```
```

    from \(\S 1\) and \(B\) - \(\beta\)-redex \([O F\) true-wff \(]\) have \(\vdash\left(T_{o}={ }_{o} T_{o}\right) \wedge^{\mathcal{Q}} ? B \cdot F_{o}={ }_{o} \forall \mathfrak{x}_{o} . ? B \cdot \mathfrak{x}_{o}\)
    by (rule rule- \(R[\) where \(p=[«, », «, »]]\) ) force +
    from this and \(B\) - \(\beta\)-redex \([\) OF false-wff]
    have \(\vdash\left(T_{o}={ }_{o} T_{o}\right) \wedge^{\mathcal{Q}}\left(T_{o}={ }_{o} F_{o}\right)={ }_{o} \forall \mathfrak{x}_{o} . ? B \cdot \mathfrak{x}_{o}\)
    by (rule rule- \(R[\) where \(p=[《, », »]]\) ) force +
    from this and \(B\) - \(\beta\)-redex[OF wffs-of-type-intros(1)] show ?thesis
        by (rule rule- \(R[\) where \(p=[», », \ll]]\) ) force +
    qed
from prop-5210[OF true-wff] have $\vdash T_{o} \wedge^{\mathcal{Q}}\left(T_{o}={ }_{o} F_{o}\right)={ }_{o} \forall \mathfrak{x}_{o} .\left(T_{o}={ }_{o} \mathfrak{x}_{o}\right)$
by (rule rule-RR[OF disjI2, where $p=[«, », «, »]$ and $C=$ ? $A]$ ) (force+, fact)
from this and prop-5216[where $A=T_{o}={ }_{o} F_{o}$ ]
have $\vdash\left(T_{o}={ }_{o} F_{o}\right)={ }_{o} \forall \mathfrak{x}_{o} .\left(T_{o}={ }_{o} \mathfrak{x}_{o}\right)$
by (rule rule- $R$ [where $p=[«, »]]$ ) force +
moreover have $\S 5$ :
$\vdash\left(\left(\lambda \mathfrak{x}_{o} . T_{o}\right)={ }_{o \rightarrow o}\left(\lambda \mathfrak{x}_{o} \cdot \mathfrak{x}_{o}\right)\right)={ }_{o} \forall \mathfrak{x}_{o} .\left(\left(\lambda \mathfrak{x}_{o} . T_{o}\right) \cdot \mathfrak{x}_{o}={ }_{o}\left(\lambda \mathfrak{x}_{o} \cdot \mathfrak{x}_{o}\right) \cdot \mathfrak{x}_{o}\right)$
proof -
have $\vdash\left(\mathfrak{f}_{o \rightarrow o}={ }_{o \rightarrow o} \mathfrak{g}_{o \rightarrow o}\right)={ }_{o} \forall \mathfrak{x}_{o} .\left(\mathfrak{f}_{o \rightarrow o} \cdot \mathfrak{x}_{o}={ }_{o} \mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}\right)\left(\right.$ is $\vdash ? C={ }_{o}$ ? $\left.D\right)$
using axiom-3[unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
moreover have is-free-for $\left(\left(\lambda \mathfrak{x}_{o} . T_{o}\right)\right)(\mathfrak{f}, o \rightarrow o)\left(? C={ }_{o} ? D\right)$
by fastforce
moreover have $\left(\lambda \mathfrak{x}_{o} . T_{o}\right) \in w f f s_{o \rightarrow o}$ and $? C \in w f f s_{o}$ and $? D \in w f f s_{o}$
by auto
ultimately have $\vdash \mathbf{S}\left\{(\mathfrak{f}, o \rightarrow o) \longmapsto\left(\lambda \mathfrak{x}_{o} . T_{o}\right)\right\}\left(? C={ }_{o} ? D\right)$
using prop-5209 by presburger
then have $\vdash\left(\left(\lambda \mathfrak{x}_{o} . T_{o}\right)={ }_{o \rightarrow o} \mathfrak{g}_{o \rightarrow o}\right)={ }_{o} \forall \mathfrak{x}_{o} .\left(\left(\lambda \mathfrak{x}_{o} . T_{o}\right) \cdot \mathfrak{x}_{o}=o \mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}\right)$
(is $\left.\vdash ? C^{\prime}={ }_{o} ? D^{\prime}\right)$
by $\operatorname{simp}$
moreover have is-free-for $\left(\left(\lambda \mathfrak{x}_{o} \cdot \mathfrak{x}_{o}\right)\right)(\mathfrak{g}, o \rightarrow o)\left(? C^{\prime}={ }_{o} ? D^{\prime}\right)$
by fastforce
moreover have $\left(\lambda \mathfrak{x}_{o}, \mathfrak{x}_{o}\right) \in$ wffs $_{o \rightarrow o}$ and $? C^{\prime} \in$ wffs $s_{o}$ and $? D^{\prime} \in w_{f f} s_{o}$
using $\left\langle\left(\lambda \mathfrak{x}_{o} . T_{o}\right) \in w f f s_{o \rightarrow o}\right\rangle$ by auto
ultimately have $\vdash \mathbf{S}\left\{(\mathfrak{g}, o \rightarrow o) \longrightarrow\left(\lambda \mathfrak{x}_{o} . \mathfrak{x}_{o}\right)\right\}\left(? C^{\prime}={ }_{o} ? D^{\prime}\right)$
using prop-5209 by presburger
then show ?thesis
by $\operatorname{simp}$
qed
then have $\vdash F_{o}={ }_{o} \forall \mathfrak{x}_{o} .\left(T_{o}={ }_{o} \mathfrak{x}_{o}\right)$
proof -
have $\vdash\left(\lambda \mathfrak{x}_{o} . T_{o}\right) \cdot \mathfrak{x}_{o}={ }_{o} T_{o}$
using prop-5208[where vs $=[(\mathfrak{x}, o)]]$ and true-wff by simp
with §5 have $*$ :
$\vdash\left(\left(\lambda \mathfrak{x}_{o} . T_{o}\right)={ }_{o \rightarrow o}\left(\lambda \mathfrak{x}_{o} \cdot \mathfrak{x}_{o}\right)\right)={ }_{o} \forall \mathfrak{x}_{o} .\left(T_{o}={ }_{o}\left(\lambda \mathfrak{x}_{o} \cdot \mathfrak{x}_{o}\right) \cdot \mathfrak{x}_{o}\right)$
by (rule rule- $R[$ where $p=[», », «, «, »]]$ ) force+
have $\vdash\left(\lambda \mathfrak{x}_{o} \cdot \mathfrak{x}_{o}\right) \cdot \mathfrak{x}_{o}=o \mathfrak{x}_{o}$
using prop-5208[where vs $=[(\mathfrak{x}, o)]]$ by fastforce
with $*$ have $\vdash\left(\left(\lambda \mathfrak{x}_{o} . T_{o}\right)={ }_{o \rightarrow o}\left(\lambda \mathfrak{x}_{o} . \mathfrak{x}_{o}\right)\right)=o_{o} \forall \mathfrak{x}_{o} .\left(T_{o}={ }_{o} \mathfrak{x}_{o}\right)$
by (rule rule- $R[$ where $p=[», »,<,>]]$ ) force+
then show? ?thesis
by $\operatorname{simp}$

```
```

    qed
    ultimately show ?thesis
    using Equality-Rules(2,3) by blast
    qed

```

\subsection*{6.19 Proposition 5218}
```

proposition prop-5218:

```
 assumes \(A \in\) wffs \(o_{o}\)
 shows \(\vdash\left(T_{o}={ }_{o} A\right)={ }_{o} A\)
proof -
 let ? \(B=\lambda \mathfrak{x}_{o} .\left(\left(T_{o}={ }_{o} \mathfrak{x}_{o}\right)={ }_{o} \mathfrak{x}_{o}\right)\)
 have \(B\)-is-wff: ? \(B \in w f f s_{o \rightarrow o}\)
 by auto
 have \(\S 1: \vdash ? B \cdot T_{o} \wedge^{\mathcal{Q}} ? B \cdot F_{o}={ }_{o} \forall \mathfrak{x}_{o} \cdot ? B \cdot \mathfrak{x}_{o}\)
 proof -
 have \(\vdash \mathfrak{g}_{o \rightarrow o} \cdot T_{o} \wedge^{\mathcal{Q}} \mathfrak{g}_{o \rightarrow o} \cdot F_{o}=_{o} \forall \mathfrak{x}_{o} \cdot \mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}\left(\right.\) is \(\vdash ? C={ }_{o}\) ? \(\left.D\right)\)
 using axiom-1[unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
 moreover have \(? C \in\) wffs \(_{o}\) and \(? D \in\) wffs \(_{o}\) and is-free-for \(? B(\mathfrak{g}, o \rightarrow o)\left(? C=o_{o} ? D\right)\)
 by auto
 ultimately have \(\vdash \mathbf{S}\{(\mathfrak{g}, o \rightarrow o) \longmapsto ? B\}(? C=o ? D)\)
 using prop-5209[OF B-is-wff] by presburger
 then show ?thesis
 by simp
 qed
 have \(*:\) is-free-for \(A(\mathfrak{x}, o)\left(\left(T_{o}=o \mathfrak{x}_{o}\right)=o \mathfrak{x}_{o}\right)\) for \(A\)
 by (intro is-free-for-in-equality is-free-for-in-true is-free-for-in-var)
 have §2:
 \(\vdash\)
 \(\left(\left(T_{o}={ }_{o} T_{o}\right)={ }_{o} T_{o}\right) \wedge^{\mathcal{Q}}\left(\left(T_{o}={ }_{o} F_{o}\right)={ }_{o} F_{o}\right)\)
 \(=0\)
 \(\forall \mathfrak{x}_{o} .\left(\left(T_{o}=o \mathfrak{x}_{o}\right)={ }_{o} \mathfrak{x}_{o}\right)\)
 proof -
 have \(B\) - \(\beta\)-redex \(: \vdash\) ? \(B \cdot A={ }_{o}\left(\left(T_{o}={ }_{o} A\right)={ }_{o} A\right)\) if \(A \in\) wffs \(s_{o}\) for \(A\)
 proof -
 have \(\left(T_{o}={ }_{o} \mathfrak{x}_{o}\right)={ }_{o} \mathfrak{x}_{o} \in w f f s_{o}\)
 by auto
 moreover have \(\mathbf{S}\{(\mathfrak{x}, o) \longmapsto A\}\left(\left(T_{o}={ }_{o} \mathfrak{x}_{o}\right)={ }_{o} \mathfrak{x}_{o}\right)=\left(\left(T_{o}={ }_{o} A\right)={ }_{o} A\right)\)
 by \(\operatorname{simp}\)
 ultimately show ?thesis
 using * and prop-5207[OF that] by metis
 qed
 from \(\S 1\) and \(B\) - \(\beta\)-redex \([O F\) true-wff]
 have \(\vdash\left(\left(T_{o}={ }_{o} T_{o}\right)={ }_{o} T_{o}\right) \wedge \mathcal{Q}\) ? \(B \cdot F_{o}={ }_{o} \forall \mathfrak{x}_{o} . ? B \cdot \mathfrak{x}_{o}\)
 by (rule rule- \(R[\) where \(p=[«, », 巛, »]]\)) force +
 from this and \(B\) - \(\beta\)-redex \([O F\) false-wff]
 have \(\vdash\left(\left(T_{o}={ }_{o} T_{o}\right)=o_{o} T_{o}\right) \wedge^{\mathcal{Q}}\left(\left(T_{o}={ }_{o} F_{o}\right)={ }_{o} F_{o}\right)={ }_{o} \forall \mathfrak{x}_{o} . ? B \cdot \mathfrak{x}_{o}\)
 by (rule rule- \(R\) [where \(p=[«, », »]]\)) force +
 from this and \(B\) - \(\beta\)-redex \([O F\) wffs-of-type-intros(1)] show ?thesis
```

        by (rule rule- \(R[\) where \(p=[», »,<]]\) ) force +
    qed
    have \(\S 3: \vdash\left(T_{o}={ }_{o} T_{o}\right)={ }_{o} T_{o}\)
        by (fact Equality-Rules(2)[OF prop-5210 [OF true-wff]])
    have \(\vdash\left(\left(T_{o}=o_{o} T_{o}\right)=o_{o} T_{o}\right) \wedge^{\mathcal{Q}}\left(\left(T_{o}=o_{o} F_{o}\right)={ }_{o} F_{o}\right)\)
    by (fact prop-5213[OF §3 prop-5217])
    from this and \(\S 2\) have \(\S 4: \vdash \forall \mathfrak{x}_{o} .\left(\left(T_{o}={ }_{o} \mathfrak{x}_{o}\right)={ }_{o} \mathfrak{x}_{o}\right)\)
        by (rule rule- \(R[\) where \(p=[]]\) ) fastforce +
    then show ?thesis
    using \(\forall I[O F \S 4\) assms *] by simp
    qed

```

\subsection*{6.20 Proposition 5219 (Rule T)}
```

proposition prop-5219-1:
assumes $A \in w f f s_{o}$
shows $\mathcal{H} \vdash A \longleftrightarrow \mathcal{H} \vdash T_{o}={ }_{o} A$
proof safe
assume $\mathcal{H} \vdash A$
then have is-hyps $\mathcal{H}$
by (blast dest: is-derivable-from-hyps.cases)
then have $\mathcal{H} \vdash\left(T_{o}={ }_{o} A\right)={ }_{o} A$
by (fact derivability-implies-hyp-derivability[OF prop-5218[OF assms]])
with $\langle\mathcal{H} \vdash A\rangle$ show $\mathcal{H} \vdash T_{o}={ }_{o} A$
using Equality-Rules(1)[unfolded equivalence-def] and Equality-Rules(2) by blast
next
assume $\mathcal{H} \vdash T_{o}={ }_{o} A$
then have is-hyps $\mathcal{H}$
by (blast dest: is-derivable-from-hyps.cases)
then have $\mathcal{H} \vdash\left(T_{o}=o A\right)=o_{o} A$
by (fact derivability-implies-hyp-derivability[OF prop-5218[OF assms]])
with $\left\langle\mathcal{H} \vdash T_{o}=o A\right\rangle$ show $\mathcal{H} \vdash A$
by (rule Equality-Rules(1)[unfolded equivalence-def])
qed
proposition prop-5219-2:
assumes $A \in w f f s_{o}$
shows $\mathcal{H} \vdash A \longleftrightarrow \mathcal{H} \vdash A={ }_{o} T_{o}$
using prop-5219-1 [OF assms] and Equality-Rules(2) by blast
lemmas rule- $T=$ prop-5219-1 prop-5219-2

```

\subsection*{6.21 Proposition 5220 (Universal Generalization)}

\section*{context}
```

begin
private lemma const-true- $\alpha$-conversion: shows $\vdash\left(\lambda x_{\alpha} . T_{o}\right)=\alpha_{\alpha}\left(\lambda z_{\alpha} . T_{o}\right)$
proof -

```
```

    have (z,\alpha)\not\in free-vars To and is-free-for (z\alpha) (x,\alpha) To
    by auto
    then have }\vdash(\lambda\mp@subsup{x}{\alpha}{}.\mp@subsup{T}{o}{\prime})=\alpha->o \lambda\mp@subsup{z}{\alpha}{}.\mathbf{S}{(x,\alpha)\longmapsto\mp@subsup{z}{\alpha}{}} To
    by (rule prop-5206[OF true-wff])
    then show ?thesis
    by simp
    qed
proposition prop-5220:
assumes }\mathcal{H}\vdash
and (x,\alpha)\not\in free-vars }\mathcal{H
shows }\mathcal{H}\vdash\forall\mp@subsup{x}{\alpha}{}.
proof -
from \langle\mathcal{H}\vdashA\rangle have is-hyps }\mathcal{H
by (blast dest: is-derivable-from-hyps.cases)
have \mathcal{H}\vdashA
by fact
then have §2: \mathcal{H}\vdash T To = oo A
using rule-T(1)[OF hyp-derivable-form-is-wffso[OF <\mathcal{H}\vdashA\rangle]] by simp
have §3: \mathcal{H}\vdash(\lambda\mp@subsup{\mathfrak{x}}{\alpha}{}.\mp@subsup{T}{o}{})=\mp@subsup{\alpha}{->o}{\prime}(\lambda\mp@subsup{x}{\alpha}{}.\mp@subsup{T}{o}{})
by (fact derivability-implies-hyp-derivability[OF const-true-\alpha-conversion<is-hyps \mathcal{H}])
from §3 and §2 have \mathcal{H}\vdash\lambda\mathfrak{x}}\alpha.\mp@subsup{T}{o}{}=\alpha->o \lambda\mp@subsup{x}{\alpha}{}.
proof (induction rule: rule-R'[where p=[»,«]])
case no-capture

```

```

            by simp
        show ?case
            unfolding rule-R'-side-condition-def and capture-exposed-vars-at-alt-def[OF *] using assms(2)
            by simp
    qed force+
    then show ?thesis
        unfolding forall-def[unfolded PI-def, folded equality-of-type-def].
    qed
end
lemmas Gen = prop-5220
proposition generalized-Gen:
assumes }\mathcal{H}\vdash
and lset vs \cap free-vars }\mathcal{H}={
shows }\mathcal{H}\vdash\forall\mp@subsup{\forall}{}{\mathcal{Q}}\mathrm{ ^ vs }
using assms(2) proof (induction vs)
case Nil
then show ?case
using assms(1) by simp
next
case (Cons v vs)
obtain x and \alpha where v=(x,\alpha)

```
```

    by fastforce
    with Cons.prems have lset vs \cap free-vars }\mathcal{H}={}\mathrm{ and (x, 人) & free-vars }\mathcal{H
    by simp-all
    from〈lset vs \cap free-vars \mathcal{H}={}` have }\mathcal{H}\vdash\forall\mp@subsup{\mathcal{Q}}{\star}{}\mathrm{ vs }
    by (fact Cons.IH)
    with }\langle(x,\alpha)\not\in\mathrm{ free-vars }\mathcal{H}\rangle\mathrm{ and }\langlev=(x,\alpha)\rangle\mathrm{ show ?case
    using Gen by simp
    qed

```

\subsection*{6.22 Proposition 5221 (Substitution)}
context
begin
private lemma prop-5221-aux:
assumes \(\mathcal{H} \vdash B\)
and \((x, \alpha) \notin\) free-vars \(\mathcal{H}\)
and is-free-for \(A(x, \alpha) B\)
and \(A \in w_{f f} s_{\alpha}\)
shows \(\mathcal{H} \vdash \mathbf{S}\{(x, \alpha) \longmapsto A\} B\)
proof -
have \(\mathcal{H} \vdash B\)
by fact
from this and \(\operatorname{assms}(2)\) have \(\mathcal{H} \vdash \forall x_{\alpha} . B\) by (rule Gen)
from this and \(\operatorname{assms}(4,3)\) show ?thesis
by (rule \(\forall I\))
qed
proposition prop-5221:
assumes \(\mathcal{H} \vdash B\)
and is-substitution \(\vartheta\)
and \(\forall v \in\) fmdom \(^{\prime} \vartheta\). var-name \(v \notin\) free-var-names \(\mathcal{H} \wedge\) is-free-for \((\vartheta \$ \$!v) v B\)
and \(\vartheta \neq\{\$ \$\}\)
shows \(\mathcal{H} \vdash \mathbf{S} \vartheta B\)
proof -
obtain \(x s\) and \(A s\)
where lset \(x s=\) fmdom \(^{\prime} \vartheta\) - i.e., \(x_{\alpha_{1}}^{1}, \ldots, x_{\alpha_{n}}^{n}\)
and \(A s=\operatorname{map}((\$ \$!) \vartheta) x s\) - i.e., \(A_{\alpha_{1}}^{1}, \ldots, A_{\alpha_{n}}^{n}\)
and length \(x s=\) card \(\left(\right.\) fmdom \(\left.^{\prime} \vartheta\right)\)
by (metis distinct-card finite-distinct-list finite-fmdom')
then have distinct xs
by (simp add: card-distinct)
from \(\left\langle l\right.\) set \(\left.x s=\operatorname{fmdom}^{\prime} \vartheta\right\rangle\) and \(\langle A s=\operatorname{map}((\$ \$!) \vartheta) x s\rangle\) have lset \(A s=\operatorname{fmran}^{\prime} \vartheta\)
by (intro subset-antisym subsetI) (force simp add: fmlookup-dom'-iff fmlookup-ran'-iff)+
from assms (1) have finite (var-name' (vars \(B \cup\) vars \((l s e t ~ A s) \cup\) vars \(\mathcal{H}))\)
by (cases rule: is-derivable-from-hyps.cases) (simp-all add: finite-Domain vars-form-finiteness)
then obtain \(y s\) - i.e., \(y_{\alpha_{1}}^{1}, \ldots, y_{\alpha_{n}}^{n}\)
where length \(y s=\) length \(x s\)
and distinct ys
and \(y s\)－fresh：
\((\) var－name＇lset ys \() \cap(\) var－name＇（vars \(B \cup\) vars \((\) lset \(A s) \cup\) vars \(\mathcal{H} \cup\) lset xs \())=\{ \}\)
and map var－type ys \(=\) map var－type xs
using fresh－var－list－existence by（metis image－Un）
have length \(x s=\) length \(A s\)
by（simp add：\(\langle A s=\operatorname{map}((\$ \$!) \vartheta) x s\rangle)\)

have \(\mathcal{H} \vdash \mathbf{S}\)（fmap－of－list（zip xs（take \(k\) As＠drop \(k(\) map FVar ys））））\(B\) if \(k \leq\) length \(x s\) for \(k\)
using that proof（induction \(k\) ）
case 0
have \(\mathcal{H} \vdash \mathbf{S}\)（fmap－of－list（zip xs（map FVar ys）））B
using 〈length ys \(=\) length \(x s\) 〉
and \(\langle l e n g t h ~ x s=\) length \(A s\rangle\)
and «（var－name‘ lset ys \() \cap(\) var－name ‘（vars \(B \cup\) vars \((\) lset \(A s) \cup\) vars \(\mathcal{H} \cup\) lset \(x s))=\{ \}\rangle\)
and \(\left\langle l\right.\) lset \(x s=\) fmdom \(\left.^{\prime} \vartheta\right\rangle\)
and 〈distinct ys〉
and \(\operatorname{assms}\)（3）
and \(\langle m a p\) var－type \(y s=m a p\) var－type \(x s\rangle\)
and 〈distinct \(x s\) 〉
and 〈length \(x s=\) card \(\left(\right.\) fmdom \(\left.^{\prime} \vartheta\right)\) 〉
proof（induction ys xs As arbitrary：\(\vartheta\) rule：list－induct3）
case Nil
with assms（1）show ？case using empty－substitution－neutrality by auto
next
－In the following：
－\(\vartheta=\left\{x_{\alpha_{1}}^{1} \rightharpoondown y_{\alpha_{1}}^{1}, \ldots, x_{\alpha_{n}}^{n} \mapsto y_{\alpha_{n}}^{n}\right\}\)
－？\(\vartheta=\left\{x_{\alpha_{2}}^{2} \longmapsto y_{\alpha_{2}}^{2}, \ldots, x_{\alpha_{n}}^{n} \longmapsto y_{\alpha_{n}}^{n}\right\}\)
－\(v_{x}=x_{\alpha_{1}}^{1}\) ，and \(v_{y}=y_{\alpha_{1}}^{1}\)
case（Cons \(v_{y}\) ys \(v_{x}\) xs \(A^{\prime} A s^{\prime}\) ）
let ？\(\vartheta=\) fmap－of－list（zip xs（map FVar ys））
from Cons．hyps（1）have lset \(x s=\) fmdom \(^{\prime}\) ？\(\vartheta\) by \(\operatorname{simp}\)
from Cons．hyps（1）and Cons．prems（6）have fmran＇\(? \vartheta=\) FVar＇lset ys by force
have is－substitution ？\(\vartheta\)
unfolding is－substitution－def proof
fix \(v\)
assume \(v \in\) fmdom \(^{\prime}\) ？\(\vartheta\)
with «lset \(x s=\) fmdom \(\left.^{\prime} ? \vartheta\right\rangle\) obtain \(k\) where \(v=x s!k\) and \(k<\) length \(x s\)
by（metis in－set－conv－nth）
moreover obtain \(\alpha\) where var－type \(v=\alpha\)
by blast
moreover from \(\langle k<\) length \(x s\rangle\) and \(\langle v=x s!k\rangle\) have ？\(\vartheta \$ \$!v=(\) map FVar \(y s)!k\) using Cons．hyps（1）and Cons．prems（6）by auto
```

    moreover from this and \(\langle k<\) length \(x s\rangle\) obtain \(y\) and \(\beta\) where ? \(\vartheta \$ \$!v=y_{\beta}\)
    using Cons.hyps(1) by force
    ultimately have \(\alpha=\beta\)
        using Cons.hyps(1) and Cons.prems(5)
        by (metis form.inject(1) list.inject list.simps(9) nth-map snd-conv)
    then show case \(v\) of \((x, \alpha) \Rightarrow\) ? \(\$ \$!(x, \alpha) \in w f f s_{\alpha}\)
        using \(\left\langle ? \vartheta \$ \$!v=y_{\beta}\right\rangle\) and \(\langle v a r-t y p e ~ v=\alpha\rangle\) by fastforce
    qed
have $v_{x} \notin$ fmdom $^{\prime}$ ? $\vartheta$
using Cons.prems(6) and «lset $x s=$ fmdom $^{\prime}$ ? $\vartheta$ 〉 by auto
obtain $x$ and $\alpha$ where $v_{x}=(x, \alpha)$
by fastforce
have $F$ Var $v_{y} \in w f f s_{\alpha}$
using Cons.prems(5) and surj-pair [of $\left.v_{y}\right]$ unfolding $\left\langle v_{x}=(x, \alpha)\right\rangle$ by fastforce
have distinct xs
using Cons.prems(6) by fastforce
moreover have ys-fresh':
$($ var-name 'lset ys $) \cap($ var-name ' $($ vars $B \cup$ vars $(l$ lset $A s ') \cup$ vars $\mathcal{H} \cup$ lset $x s))=\{ \}$
proof -
have vars $\left(\right.$ lset $\left.\left(A^{\prime} \# A s^{\prime}\right)\right)=$ vars $\left\{A^{\prime}\right\} \cup$ vars $\left(\right.$ lset $\left.A s^{\prime}\right)$
by $\operatorname{simp}$
moreover have var-name' $\left(\right.$ lset $\left.\left(v_{x} \# x s\right)\right)=\left\{\right.$ var-name $\left.v_{x}\right\} \cup$ var-name' (lset xs $)$
by $\operatorname{simp}$
moreover from Cons.prems(1) have
var-name' lset ys
$\cap$
(
var-name ' $($ vars $B) \cup$ var-name ' (vars $\left.\left(l s e t ~\left(A^{\prime} \# A s '\right)\right)\right) \cup$ var-name ' (vars $\left.\mathcal{H}\right)$
$\cup$ var-name' $\left(\operatorname{lset}\left(v_{x} \# x s\right)\right)$
)
$=\{ \}$
by ( $\operatorname{simp}$ add: image-Un)
ultimately have
var-name' lset ys
$\cap$
(
var-name ' $($ vars $B) \cup$ var-name ' $($ vars $(l s e t ~ A s ')) \cup$ var-name ' (vars $\mathcal{H})$
$\cup$ var-name' $\left(\operatorname{lset}\left(v_{x} \# x s\right)\right)$
)
$=\{ \}$
by fast
then show ?thesis
by ( simp add: image-Un)
qed
moreover have distinct ys
using Cons.prems(3) by auto

```

```

proof
fix $v$

```
```

    assume \(v \in\) fmdom' \(^{\prime}\) ?V
    with Cons.hyps(1) obtain \(y\) where ? \(\vartheta \$ \$!v=F \operatorname{Var} y\) and \(y \in l\) set \(y s\)
        by (metis (mono-tags, lifting) fmap-of-zipped-list-range image-iff length-map list.set-map)
    moreover from Cons.prems \((2,4)\) have var-name \(v \notin\) free-var-names \(\mathcal{H}\)
        using 〈lset \(x s=\) ffdom \(^{\prime}\) ? \(\left.\vartheta\right\rangle\) and \(\left\langle v \in\right.\) fmdom \(^{\prime}\) ? \(\left.\vartheta\right\rangle\) by auto
    moreover from \(\langle y \in l\) lset \(y s\rangle\) have \(y \notin\) vars \(B\)
        using ys-fresh' by blast
    then have is-free-for (FVar y) vB
        by (intro absent-var-is-free-for)
    ultimately show var-name \(v \notin\) free-var-names \(\mathcal{H} \wedge\) is-free-for (? \(\vartheta \$ \$!v\) ) v \(B\)
        by \(\operatorname{simp}\)
    qed
moreover have map var-type ys $=$ map var-type xs
using Cons.prems(5) by simp
moreover have length $x s=\operatorname{card}\left(\right.$ fmdom' $^{\prime}$ ? $\vartheta$ )
by (fact distinct-card $\left[\right.$ OF 〈distinct xs〉, unfolded 〈lset $x s=$ fmdom $^{\prime}$ ? $\left.\vartheta\right\rangle$, symmetric] $)$
$-\mathcal{H} \vdash \mathrm{S}_{\substack{x_{\alpha_{2}} \\ y_{\alpha_{2}}^{2}} \cdots y_{\alpha_{n}}^{n}}^{\substack{n}}$
ultimately have $\mathcal{H} \vdash \mathbf{S}$ ? ${ }^{2} B$
using Cons.IH and $\left\langle l s e t ~ x s=f r m o m^{\prime} ? \vartheta\right\rangle$ by blast
moreover from Cons.prems $(2,4)$ have $(x, \alpha) \notin$ free-vars $\mathcal{H}$
using $\left\langle v_{x}=(x, \alpha)\right\rangle$ by auto
moreover have is-free-for (FVar $\left.v_{y}\right)(x, \alpha)(\mathbf{S}$ ? $\vartheta B)$
proof -
have $v_{y} \notin$ fmdom $^{\prime} ? \vartheta$
using Cons.prems(1) and 〈lset $x s=$ fmdom $^{\prime}$ ? $\left.\vartheta\right\rangle$ by force
moreover have fmran' $? \vartheta=$ lset $($ map FVar ys $)$
using Cons.hyps(1) and 〈distinct xs〉 by simp
then have $v_{y} \notin \operatorname{vars}\left(\right.$ fmran' $^{\prime}$ ? $\left.\vartheta\right)$
using Cons.prems(3) by force
moreover have $v_{y} \notin$ vars $B$
using Cons.prems(1) by fastforce
ultimately have $v_{y} \notin \operatorname{vars}(\mathbf{S}$ ? $\vartheta B)$
by (rule excluded-var-from-substitution[OF〈is-substitution ?७〉])
then show ?thesis
by (fact absent-var-is-free-for)
qed

```

```

ultimately have $\mathcal{H} \vdash \mathbf{S}\left\{(x, \alpha) \longmapsto F \operatorname{Var} v_{y}\right\}\left(\mathbf{S}\right.$ ? $\left.{ }^{\prime} B\right)$
using $\left\langle F \operatorname{Var} v_{y} \in w f f s_{\alpha}\right\rangle$ by (rule prop-5221-aux)

```


```

proof -
have $v_{x} \notin$ lset ys
using Cons.prems(1) by fastforce
then have $\mathbf{S}\left\{v_{x} \rightharpoondown F \operatorname{Var} v_{y}\right\}(F \operatorname{Var} y)=F \operatorname{Var} y$ if $y \in l$ lset $y s$ for $y$
using that and free-var-singleton-substitution-neutrality and surj-pair [of $y]$ by fastforce
with $\left\langle f m r a n ' ? \vartheta=F \operatorname{Var}{ }^{\prime}\right.$ lset $\left.y s\right\rangle$ have fmmap $\left(\lambda A^{\prime} . \mathbf{S}\left\{v_{x} \mapsto F \operatorname{Var} v_{y}\right\} A^{\prime}\right) ? \vartheta=? \vartheta$

```
by（fastforce intro：fmap．map－ident－strong）
with \(\left\langle v_{x} \notin\right.\) fmdom \(^{\prime}\) ？\(\left.\vartheta\right\rangle\) show ？thesis
using \(\left\langle\forall v \in\right.\) fmdom \(^{\prime}\) ？\(\vartheta\) ．var－name \(v \notin\) free－var－names \(\mathcal{H} \wedge\) is－free－for（？\(\left.\left.\vartheta \$ \$!v\right) v B\right\rangle\) and substitution－consolidation by auto
qed
\(-\mathcal{H} \vdash \mathrm{S}_{\substack{x_{\alpha_{1}} \\ y_{\alpha_{1}}^{1} \ldots y_{\alpha_{\alpha_{n}}}^{n} \\ y_{\alpha_{n}}^{n}}}^{1}\)
ultimately show ？case
using \(\left\langle v_{x}=(x, \alpha)\right\rangle\) and \(\left\langle v_{x} \notin f m d o m^{\prime} ? \vartheta\right\rangle\) and fmap－singleton－comm by fastforce
qed
with 0 and that show ？case
by auto
next
case（Suc k）
let ？ps \(=\lambda k\) ．zip xs（take \(k\) As＠drop \(k\)（map FVar ys））
let \(? y=y s!k\) and \(? A=A s!k\)
let \(? \vartheta=\lambda k\) ．fmap－of－list \((? p s k)\)
let \(? \vartheta^{\prime}=\lambda k\) ．fmap－of－list \(\left(\operatorname{map}\left(\lambda\left(v^{\prime}, A^{\prime}\right) .\left(v^{\prime}, \mathbf{S}\{? y \longmapsto ? A\} A^{\prime}\right)\right)(? p s k)\right)\)
have \(f m d o m^{\prime}\left(? \vartheta k^{\prime}\right)=\) lset \(x s\) for \(k^{\prime}\)
by（simp add：＜length xs＝length As〉〈length ys＝length \(x s\rangle)\)
have fmdom \({ }^{\prime}\left(? \vartheta^{\prime} k^{\prime}\right)=\) lset \(x s\) for \(k^{\prime}\)

have ？\(y \in\) lset ys
using Suc．prems 〈length ys \(=\) length \(x s\rangle\) by simp
have \(\forall j<\) length ys．ys \(!j \notin \operatorname{vars}(\mathcal{H}::\) form set）\(\wedge y s!j \notin\) vars \(B\)
using «（var－name＇lset ys \() \cap(\) var－name＇\((\) vars \(B \cup\) vars \((\) lset \(A s) \cup\) vars \(\mathcal{H} \cup\) lset \(x s))=\{ \}\) 〉
by force
obtain \(n_{y}\) and \(\alpha_{y}\) where \(\left(n_{y}, \alpha_{y}\right)=? y\)
using surj－pair［of ？y］by fastforce
moreover have ？A \(\in\) wffs \(_{\alpha_{y}}\)
proof－
from Suc．prems and \(\left\langle\left(n_{y}, \alpha_{y}\right)=\right.\) ？\(y>\) have var－type \((x s!k)=\alpha_{y}\)
using 〈length ys \(=\) length \(x s\rangle\) and \(\langle\) map var－type \(y s=\) map var－type \(x s\rangle\) and Suc－le－lessD
by（metis nth－map snd－conv）
with Suc．prems and assms（2）and \(\left\langle l s e t x s=f m d o m^{\prime} \vartheta\right\rangle\) and \(\langle A s=m a p((\$ \$!) \vartheta) x s\rangle\) show
？thesis
using less－eq－Suc－le and nth－mem by fastforce
qed
ultimately have is－substitution \(\{? y \mapsto\) ？\(A\}\)
by auto
have wfs：is－substitution（？\(v_{\text {）for } k} k\)
unfolding is－substitution－def proof
fix \(v\)
assume \(v \in f m d o m^{\prime}(? \vartheta k)\)
with \(\left\langle f m d o m^{\prime}(? \vartheta k)=l\right.\) set \(\left.x s\right\rangle\) obtain \(j\) where \(v=x s!j\) and \(j<\) length \(x s\)
by（fastforce simp add：in－set－conv－nth）
obtain \(\alpha\) where var－type \(v=\alpha\)
by blast
show case \(v\) of \((x, \alpha) \Rightarrow(? \vartheta k) \$ \$!(x, \alpha) \in w f f s \alpha\)
proof（cases \(j<k\) ）
```

    case True
    with <j< length xs\rangle and <v = xs ! j> have (?\vartheta k) $$!v = As!j
        using <distinct xs> and <length xs = length As〉 and «length ys = length xs> by force
    ```

```

    have (?\vartheta k) $$!v \in wffs\alpha
        using<As = map (($$!) \vartheta) xs` and <fmdom' (?\vartheta k) = lset xs〉 and <lset xs = fmdom' }\vartheta
        by auto
    then show ?thesis
        using <var-type v=\alpha> by force
    next
    case False
    with <j< length xs\rangle and <v = xs ! j> have (?v k) $$!v = FVar (ys! j)
        using <distinct xs> and <length xs = length As〉 and «length ys = length xs> by force
    with }\langlej<length xs` and <v = xs ! j\rangle and <var-type v=\alpha> and «length ys = length xs
    have (?\vartheta k) $$!v\inwffs}
        using <map var-type ys = map var-type xs` and surj-pair[of ys !j]
        by (metis nth-map snd-conv wffs-of-type-intros(1))
    then show ?thesis
        using <var-type v}=\alpha\rangle\mathrm{ by force
    qed
    qed
have }\mp@subsup{\vartheta}{}{\prime}\mathrm{ -alt-def: ? }\mp@subsup{\vartheta}{}{\prime}k=\mathrm{ fmap-of-list
(zip xs
(take k (map (\lambdaA'. S {?y }->\mathrm{ ?A} A') As)
@
(drop k (map (\lambdaA'. S {?y `?A} A') (map FVar ys)))))
proof -
have
fmap-of-list (zip xs (map (\lambdaA'. S {?y ? ?A} A') (take k As @ drop k (map FVar ys))))
=
fmap-of-list
(zip xs
(map (\lambdaA'. S {?y }->?A} A')(take k As
@
(drop k (map (\lambdaA'. S {?y }->\mathrm{ ?A} A')(map FVar ys)))))
by (simp add: drop-map)
then show ?thesis
by (metis take-map zip-map2)
qed

```

```

have }\mathcal{H}\vdash\mathbf{S}(?\vartheta k)
by (fact Suc.IH[OF Suc-leD[OF Suc.prems]])

```

```

then have }\mathcal{H}\vdash\mathbf{S}{?y\mapsto?A}\mathbf{S}(?\varthetak)
proof -
from}\langle(\mp@subsup{n}{y}{},\mp@subsup{\alpha}{y}{})=??y> and «length ys = length xs` have ( ny, \mp@subsup{\alpha}{y}{})\not\in free-vars \mathcal{H
using <\forallj< length ys. ys ! j \not\in vars (\mathcal{H::form set) }\wedge ys ! j\not\in vars B>

```
and free－vars－in－all－vars－set and Suc－le－lessD［OF Suc．prems］by fastforce
moreover have is－free－for ？A \(\left(n_{y}, \alpha_{y}\right)(\mathbf{S}(? \vartheta k) B)\)
proof－
have is－substitution（fmdrop（xs！k）（？७ k））
using \(w f s\) and 〈fmdom’（？v k）\(=\) lset xs〉 by force
moreover from Suc－le－lessD［OF Suc．prems］have var－type（xs！k）＝var－type（ys！k）
using 〈length ys \(=\) length \(x s\rangle\) and \(\langle\) map var－type \(y s=\) map var－type \(x s\rangle\) by（metis nth－map）
then have is－substitution \(\{x s!k \mapsto F\) Var ？\(y\}\)
unfolding is－substitution－def using \(\left\langle\left(n_{y}, \alpha_{y}\right)=\right.\) ？\(y>\)
by（intro ballI）（clarsimp，metis snd－eqD wffs－of－type－intros（1））
moreover have \((x s!k) \notin\) fmdom＇\(^{\prime}(f m d r o p(x s!k)(? \vartheta k))\)
by \(\operatorname{simp}\)
moreover have
\(\forall v \in \operatorname{fmdom}^{\prime}(\) fmdrop \((x s!k)(? \vartheta k)) . ? y \notin \operatorname{vars}(f m d r o p(x s!k)(? \vartheta k) \$ \$!v)\)
proof
fix \(v\)
assume \(v \in\) fmdom \(^{\prime}(\) fmdrop \((x s!k)(? \vartheta k))\)
then have \(v \in \operatorname{fmdom}^{\prime}(? \vartheta k)\)
by \(\operatorname{simp}\)
with \(\left\langle f m \mathrm{fmom}^{\prime}(? \vartheta k)=\right.\) lset \(\left.x s\right\rangle\) obtain \(j\) where \(v=x s!j\) and \(j<\) length \(x s\) and \(j \neq k\) using \(\left\langle v \in\right.\) fmdom \(^{\prime}(\) fmdrop（ \(x s!k\) ）（？\(\vartheta k)\) ）＞ and \(\left\langle(x s!k) \notin\right.\) fmdom＇\(^{\prime}(\) fmdrop \(\left.(x s!k)(? \vartheta k))\right\rangle\) by（metis in－set－conv－nth）
then show ？\(y \notin \operatorname{vars}((f m d r o p(x s!k)(? \vartheta k)) \$ \$!v)\)
proof（cases \(j<k\) ）
case True
with \(\langle j<\) length \(x s\rangle\) and \(\langle v=x s!j\rangle\) have \((? \vartheta k) \$ \$!v=A s!j\)
using 〈distinct \(x s\rangle\) and 〈length \(x s=\) length As〉 and 〈length ys \(=\) length \(x s\rangle\) by force moreover from \(\langle j<\) length \(x s\rangle\) and 〈length \(x s=\) length \(A s\rangle\) have \(? y \notin \operatorname{vars}(A s!j)\)
using 〈？\(y \in l\) lset \(y s\rangle\) and \(y s\)－fresh by fastforce
ultimately show ？thesis
using \(\left\langle v \in\right.\) fmdom \(^{\prime}(\) fmdrop \(\left.(x s!k)(? \vartheta k))\right\rangle\) by auto
next case False with \(\langle j<\) length \(x s\rangle\) and \(\langle v=x s!j\rangle\) have \((? \vartheta k) \$ \$!v=F \operatorname{Var}(y s!j)\) using 〈distinct \(x s\) 〉 and 〈length \(x s=\) length As〉 and 〈length \(y s=l e n g t h ~ x s\rangle\) by force moreover from Suc－le－lessD［OF Suc．prems］and \(\langle j \neq k\rangle\) have \(? y \neq y s!j\)
by（simp add：〈distinct ys〉〈j＜length xs〉〈length ys＝length xs〉 nth－eq－iff－index－eq）
ultimately show ？thesis
using \(\left\langle v \in\right.\) fmdom \(^{\prime}(\) fmdrop \(\left.(x s!k)(? \vartheta k))\right\rangle\)
and \(\left\langle x s!k \notin\right.\) fmdom \(^{\prime}(\) fmdrop \(\left.(x s!k)(? \vartheta k))\right\rangle\) and surj－pair \([o f y s!j]\) by fastforce
qed
qed
moreover from \(\langle k<\) length \(x s\rangle\) and 〈length \(y s=\) length \(x s\rangle\) have \(? y \notin\) vars \(B\)
by（simp add：\(\langle\forall j<\) length ys．ys \(!j \notin\) vars \(\mathcal{H} \wedge y s!j \notin\) vars \(B\rangle)\)
moreover have is－free－for？\(A(x s!k) B\)
proof－
from Suc－le－lessD［OF Suc．prems］and 〈lset \(x s=\) fmdom \(\left.^{\prime} \vartheta\right\rangle\) have \(x s!k \in f r d o m^{\prime} \vartheta\) using nth－mem by blast
moreover from Suc．prems and \(\langle A s=\operatorname{map}((\$ \$!) \vartheta) x s\rangle\) have \(\vartheta \$ \$!(x s!k)=? A\)
```

    by fastforce
    ultimately show ?thesis
    using assms(3) by simp
    qed
moreover

```

```

proof
fix v
assume v\infmdom'(fmdrop (xs ! k) (?\vartheta k))
then have v}\in\mp@code{fmdom'(?\vartheta k)
by simp
with <fmdom'(?\vartheta k) = lset xs> obtain j where v = xs ! j and j<length xs and j\not=k
using}\langlev\in\mp@subsup{fm\mp@code{mom}}{}{\prime}(\mathrm{ fmdrop (xs!k) (?V k))>
and <(xs!k)\not\in fmdom'(fmdrop (xs!k) (?\vartheta k))〉 by (metis in-set-conv-nth)

    then show is-free-for (fmdrop (xs!k)(?\vartheta k)$$!v)vB
    proof (cases j<k)
        case True
        with }\langlej<length xs\rangle and <v = xs ! j\rangle have (?\vartheta k) $$!v=As!
            using <distinct xs> and <length xs = length As〉 and <length ys = length xs> by force
    moreover have is-free-for (As!j) v B
    proof -
    ```

```

            using nth-mem by blast
            moreover have v $$!v=As!j
            by (simp add: <As = map (($$!) \vartheta) xs\rangle\langlej< length xs\rangle\langlev = xs! j>)
            ultimately show ?thesis
                using assms(3) by simp
            qed
    ultimately show ?thesis
        using }\langlev\in\mp@subsup{fm\om}{}{\prime}(fmdrop (xs!k)(?\vartheta k))\rangle by aut
    next
    case False
    with <j< length xs> and <v = xs!j> have (?\vartheta k) $$!v = FVar (ys!j)
            using <distinct xs〉 and <length xs = length As〉 and <length ys = length xs> by force
    moreover from < < < length xs` and <length ys = length xs〉 have ys ! j\not\in vars B
            using <\forallj<length ys.ys ! j\not\invars \mathcal{H}\wedge ys ! j\not\in vars B> by simp
    then have is-free-for (FVar (ys!j)) v B
            by (fact absent-var-is-free-for)
    ultimately show ?thesis
        using }\langlev\in\mp@subsup{fmdom}{}{\prime}(\mathrm{ fmdrop (xs!k) (?` k))> by auto
    qed
    qed
ultimately have is-free-for ?A (ys!k) S ({xs!k\mapstoFVar ?y} ++\mp@subsup{+}{f}{\prime}fmdrop (xs!k) (?\vartheta k)) B
using is-free-for-with-renaming-substitution by presburger
moreover have S ({xs!k\mapstoFVar ?y} ++\mp@subsup{f}{f}{\prime}fmdrop (xs!k) (?\vartheta k)) B=\mathbf{S}(?\vartheta k) B
using <length xs = length As` and <length ys = length xs> and Suc-le-eq and Suc.prems
and «distinct xs〉 by simp
ultimately show ?thesis
unfolding < ( }ny,\mp@subsup{\alpha}{y}{})=\mathrm{ ? y> by simp

```
```

    qed
    ultimately show ?thesis
    using prop-5221-aux[OF〈\mathcal{H}\vdash\mathbf{S}(?\vartheta k)B\rangle] and 〈?A A wffs }\mp@subsup{\alpha}{y}{}\rangle\mathrm{ and }\langle(\mp@subsup{n}{y}{},\mp@subsup{\alpha}{y}{})=?y\rangle\mathrm{ by metis
    qed

```

```

moreover have S {?y ใ?A} S (?\vartheta k)B=\mathbf{S}(?\vartheta(\mathrm{ Suc k)) B}
proof -
have S {?y }->\mathrm{ ?A} S (?७ k) B=S S {?y }->\mathrm{ ?A} ++ ( (?`' k) B     proof -         have ?y & fmdom'( ?\vartheta k)             using <?y flset ys\rangle and <fmdom' (?\vartheta k) = lset xs\rangle and ys-fresh by blast             moreover have (?\vartheta' k) = fmmap ( }\lambda\mp@subsup{A}{}{\prime}.\mathbf{S}{?y\mapsto?A} A')(?\vartheta k             using<length xs = length As〉 and <length ys = length xs` by simp

            moreover have \forall\mp@subsup{v}{}{\prime}\infmdom'(?\vartheta k). is-free-for (?\vartheta k$$! v') v' B
            proof
                fix v
            assume v}\mp@subsup{v}{}{\prime}\infmdom'(?\vartheta k
            with <fmdom' (?\vartheta k) = lset xs> obtain j where v}\mp@subsup{v}{}{\prime}=xs!j\mathrm{ and j< length xs
                by (metis in-set-conv-nth)
            obtain \alpha where var-type v'}=
                by blast
            show is-free-for (?\vartheta k $$! v') v
            proof (cases j<k)
                    case True
                        with }\langlej<length xs\rangle and <\mp@subsup{v}{}{\prime}=xs!j\rangle have (?\vartheta k) $$! v' = As ! j
                    using <distinct xs> and <length xs = length As〉 and «length ys = length xs> by force
                    moreover from <lset xs = fmdom' \vartheta\rangle and assms(3) have is-free-for (As!j) (xs!j) B
                    by (metis <As = map (($$!) \vartheta) xs\rangle<j < length xs〉 nth-map nth-mem)
                    ultimately show ?thesis
                    using <v' = xs ! j\rangle by (simp only:)
            next
                    case False
                    with }\langlej<length xs\rangle and < v ' = xs ! j> have (?\vartheta k) $$! v' = FVar (ys!j
                    using <distinct xs> and <length xs = length As〉 and «length ys = length xs> by force
                    moreover from <j<length xs> have is-free-for (FVar (ys!j)) (xs!j)B
                        using <\forallj< length ys. ys ! j\not\in vars \mathcal{H }\wedge ys!j\not\invars B〉 and <length ys = length xs〉
                    and absent-var-is-free-for by presburger
                ultimately show ?thesis
                    using }\langle\mp@subsup{v}{}{\prime}=xs!j\rangle\mathrm{ by (simp only:)
            qed
        qed
        ultimately show ?thesis
            using substitution-consolidation by simp
    qed
    also have ... = S {?y }->\mathrm{ ?A} +++f (?v (Suc k)) B
    proof -
        have ? }\mp@subsup{\vartheta}{}{\prime}k=?\vartheta(Suc k
        proof (intro fsubset-antisym[unfolded fmsubset-alt-def] fmpredI)
    ```
\{
fix \(v^{\prime}\) and \(A^{\prime}\)
assume ? \(\vartheta^{\prime} k \$ \$ v^{\prime}=\) Some \(A^{\prime}\)
then have \(v^{\prime} \in\) fmdom \(^{\prime}\left(? \vartheta^{\prime} k\right)\) by (intro fmdom'I)
then obtain \(j\) where \(j<\) length xs and \(x s!j=v^{\prime}\)
using \(\left\langle\mathrm{fmdom}^{\prime}\left(? \vartheta^{\prime} k\right)=\right.\) lset xs \(\rangle\) by (metis in-set-conv-nth)
then consider (a) \(j<k|(b) j=k|(c) j \in\{k<. .<\) length \(x s\}\) by fastforce
then show ? \({ }^{\text {(Suc } k) ~} \$ \$ v^{\prime}=\) Some \(A^{\prime}\)
proof cases
case \(a\)
with \(\vartheta^{\prime}\)-alt-def and \(\langle\) distinct \(x s\rangle\) and \(\langle j<\) length \(x s\rangle\)
have ? \(\vartheta^{\prime} k \$(x s!j)=\) Some (take \(\left.k\left(\operatorname{map}\left(\lambda A^{\prime} . \mathbf{S}\{? y \multimap ? A\} A^{\prime}\right) A s\right)!j\right)\)
using «length \(x s=\) length As» and «length \(y s=\) length \(x s\rangle\) by auto
also from \(a\) and Suc.prems have \(\ldots=\) Some \((\mathbf{S}\{? y \mapsto ? A\}(A s!j))\)
using «length \(x s=\) length As» by auto
also have \(\ldots=\) Some \((A s!j)\)
proof -
from Suc.prems and \(\langle l e n g t h ~ y s=\) length \(x s\rangle\) have Suc \(k \leq\) length ys by (simp only:)
moreover have \(j<\) length As
using \(\langle j<\) length \(x s\rangle\) and «length \(x s=\) length \(A s\rangle\) by (simp only:)
ultimately have ? \(y \notin\) vars \((A s!j)\)
using ys-fresh by force
then show ?thesis
using free-var-singleton-substitution-neutrality and free-vars-in-all-vars by blast
qed
also from \(a\) and \(\left\langle x s!j=v^{\prime}\right\rangle\) and \(\langle\) distinct \(x s\rangle\) have \(\ldots=? \vartheta(\) Suc \(k) \$ \$ v^{\prime}\) using \(\langle j<\) length \(x s\rangle\) and \(\langle\) length \(x s=\) length \(A s\rangle\) and \(\langle l e n g t h ~ y s=l e n g t h ~ x s\rangle\) by fastforce
finally show ?thesis
using \(\left\langle ? \vartheta^{\prime} k \$ \$ v^{\prime}=\right.\) Some \(\left.A^{\prime}\right\rangle\) and \(\left\langle x s!j=v^{\prime}\right\rangle\) by simp
next
case \(b\)
then have
\(? \vartheta^{\prime} k \$ \$(x s!k)=\) Some \(\left(\right.\) drop \(k\left(\operatorname{map}\left(\lambda A^{\prime} . \mathbf{S}\{? y \mapsto ? A\} A^{\prime}\right)(\right.\) map FVar ys) \(\left.)!0\right)\)
using 〈distinct \(x s\rangle\) and \(\langle j<\) length \(x s\rangle\) and «length \(x s=\) length \(A s\rangle\)
and «length \(y s=\) length \(x s\rangle\) and fmap-of-list-nth-split by simp
also from Suc.prems have \(\ldots=\) Some \((\mathbf{S}\{? y \multimap ? A\}(F \operatorname{Var} ? \mathrm{y})\))
using 〈length \(y s=\) length \(x s\) by simp
also from \(\left.«\left(n_{y}, \alpha_{y}\right)=y s!k\right\rangle\) have \(\ldots=\) Some ? \(A\)
by (metis singleton-substitution-simps(1))
also from \(b\) and \(\left\langle x s!j=v^{\prime}\right\rangle\) and \(\langle\) distinct \(x s\rangle\) have \(\ldots=\) ? \(v\) (Suck) \(\$ \$ v^{\prime}\)
using \(\langle j<\) length \(x s\rangle\) and \(«\) length \(x s=\) length \(A s\rangle\) and \(«\) length \(y s=\) length \(x s\rangle\) by fastforce
finally show? ?thesis
using \(b\) and \(\left\langle ? \vartheta^{\prime} k \$ \$ v^{\prime}=\right.\) Some \(\left.A^{\prime}\right\rangle\) and \(\left\langle x s!j=v^{\prime}\right\rangle\) by force
next
```

            case c
            then have j>k
                by simp
            with \vartheta'-alt-def and <distinct xs〉 and <j < length xs> have
                ?\vartheta' k$$ (xs!j) = Some (drop k (map ( }\lambda\mp@subsup{A}{}{\prime}.\mathbf{S}{?y\rightharpoondown?A} A')(map FVar ys))! (j - k)
                using fmap-of-list-nth-split and <length xs = length As` and <length ys = length xs`
                by simp
            also from Suc.prems and c have ... = Some (S {?y \longmapsto?A} (FVar (ys!j)))
                using <length ys = length xs> by simp
            also from Suc-le-lessD[OF Suc.prems] and <distinct ys` have ... = Some (FVar (ys!j))
                using <j < length xs` and <k< j\rangle and <length ys = length xs>
                by (metis nless-le nth-eq-iff-index-eq prod.exhaust-sel singleton-substitution-simps(1))
            also from c and «distinct xs〉 have ... = ?\vartheta (Suc k)$$ v'
                using <xs ! j = v
            finally show ?thesis
                using 〈?\vartheta' k $$ v'=Some A`> and \langlexs ! j = v'〉 by force
            qed
    }
    note }\vartheta\mathrm{ -k-in-Sub-k= this
    {
        fix }\mp@subsup{v}{}{\prime}\mathrm{ and }\mp@subsup{A}{}{\prime
        assume ?\vartheta (Suc k)$$ v}=\mp@code{Some A'
        then have v'\in fmdom'}(?\vartheta(\mathrm{ Suc k))
            by (intro fmdom'I)
            then obtain j where j< length xs and xs ! j = v'
            using <fmdom' (?\vartheta (Suc k)) = lset xs〉 by (metis in-set-conv-nth)
            then consider (a) j<k|(b) j=k|(c) j\in{k<..< length xs }
            by fastforce
    ```

```

            using <^k k'.fmdom' (?\vartheta' k') = lset xs> and <?\vartheta (Suc k)$$ v'= Some A`>
            by (metis (mono-tags, lifting) fmlookup-dom'-iff nth-mem)+
        }
    qed
    then show ?thesis
        by presburger
    qed
    also have \ldots= S (?\vartheta (Suc k)) B
    proof -
    have ?\vartheta (Suc k) $$ ?y = None
        using 〈?y \inlset ys><\bigwedgek'. fmdom'(?\vartheta k') = lset xs> and ys-fresh by blast
    moreover from Suc-le-lessD[OF Suc.prems] have ?y }\not\in\mathrm{ vars B
        using 〈\forallj< length ys.ys ! j\not\in vars \mathcal{H}\wedge ys ! j\not\in vars B> and <length ys = length xs`
        by auto
    ultimately show ?thesis
        by (rule substitution-absorption)
    qed
    finally show ?thesis.
    qed

```

```

    ultimately show ?case
        by (simp only:)
    qed
    -\mathcal{H}}\vdash\underset{~}{S
    then have }\mathcal{H}\vdash\mathbf{S}(\mathrm{ fmap-of-list (zip xs As)) B
    using <length xs = length As〉 and <length ys = length xs> by force
    moreover have fmap-of-list (zip xs As)=\vartheta
    proof (intro fsubset-antisym[unfolded fmsubset-alt-def] fmpredI)
        fix }v\mathrm{ and }
    assume fmap-of-list (zip xs As) $$v=Some A
    with <lset xs = fmdom' }\vartheta>\mathrm{ have v f fmdom' }
        by (fast dest: fmap-of-list-SomeD set-zip-leftD)
    with<fmap-of-list (zip xs As)$$v=Some A〉 and <As=map (($$!)\vartheta) xs` show \vartheta $$v=Some
    A
by
(simp add: map-of-zip-map fmap-of-list.rep-eq split: if-splits)
(meson fmdom'-notI option.exhaust-sel)
next
fix }v\mathrm{ and }

    assume \vartheta $$v= Some A
    with }\langleAs=map(($$!)\vartheta) xs\rangle show fmap-of-list (zip xs As) $$ v = Some A
        using <lset xs = fmdom'\vartheta` by (simp add: fmap-of-list.rep-eq fmdom'I map-of-zip-map)
    qed
    ultimately show ?thesis
    by (simp only:)
    qed
end

```
lemmas \(S u b=\) prop-5221

\subsection*{6.23 Proposition 5222 (Rule of Cases)}
lemma forall- \(\alpha\)-conversion:
assumes \(A \in w_{f f} s_{o}\)
and \((z, \beta) \notin\) free-vars \(A\)
and is-free-for \(\left(z_{\beta}\right)(x, \beta) A\)
shows \(\vdash \forall x_{\beta} . A={ }_{o} \forall z_{\beta} . \mathbf{S}\left\{(x, \beta) \longmapsto z_{\beta}\right\} A\)
proof -
from \(\operatorname{assms}(1)\) have \(\forall x_{\beta} . A \in w f f s_{o}\)
by (intro forall-wff)
then have \(\vdash \forall x_{\beta} . A={ }_{o} \forall x_{\beta} . A\)
by (fact prop-5200)
moreover from assms have \(\vdash\left(\lambda x_{\beta} . A\right)={ }_{\beta \rightarrow o}\left(\lambda z_{\beta} . \mathbf{S}\left\{(x, \beta) \longmapsto z_{\beta}\right\} A\right)\)
by (rule prop-5206)
ultimately show ?thesis
unfolding forall-def and PI-def by (rule rule- \(R\) [where \(p=[», »]]\)) force+
qed
proposition prop-5222:
assumes \(\mathcal{H} \vdash \mathbf{S}\left\{(x, o) \longmapsto T_{o}\right\} A\) and \(\mathcal{H} \vdash \mathbf{S}\left\{(x, o) \mapsto F_{o}\right\} A\)
and \(A \in w_{f f} s_{o}\)
shows \(\mathcal{H} \vdash A\)
proof -
from \(\operatorname{assms}(1)\) have is-hyps \(\mathcal{H}\)
by (blast elim: is-derivable-from-hyps.cases)
have \(\S 1: \mathcal{H} \vdash T_{o}=o_{o}\left(\lambda x_{o} . A\right) \cdot T_{o}\)
proof -
have \(\vdash\left(\lambda x_{o} . A\right) \cdot T_{o}={ }_{o} \mathbf{S}\left\{(x, o) \longmapsto T_{o}\right\} A\)
using prop-5207[OF true-wff assms(3) closed-is-free-for] by simp
from this and assms(1) have \(\mathcal{H} \vdash\left(\lambda x_{0} . A\right) \cdot T_{o}\) using rule- \(R R[\) OF disjI2, where \(p=[]]\) by fastforce
moreover have \(\left(\lambda x_{o} . A\right) \cdot T_{o} \in w f f s_{o}\) by (fact hyp-derivable-form-is-wffso[OF \(\left.\left.\left\langle\mathcal{H} \vdash\left(\lambda x_{0} . A\right) \cdot T_{o}\right\rangle\right]\right)\)
ultimately show ?thesis
using rule- \(T\) (1) by blast
qed
moreover have §2: \(\mathcal{H} \vdash T_{o}={ }_{o}\left(\lambda x_{o} . A\right) \cdot F_{o}\)
proof -
have \(\vdash\left(\lambda x_{o} . A\right) \cdot F_{o}={ }_{o} \mathbf{S}\left\{(x, o) \mapsto F_{o}\right\} A\) using prop-5207[OF false-wff assms(3) closed-is-free-for] by simp
from this and assms(2) have \(\mathcal{H} \vdash\left(\lambda x_{0} . A\right) \cdot F_{o}\) using rule- \(R R[\) OF disjI2, where \(p=[]]\) by fastforce
moreover have \(\left(\lambda x_{o} . A\right) \cdot F_{o} \in w f f s_{o}\) by (fact hyp-derivable-form-is-wffso[OF \(\left.\left.\left\langle\mathcal{H} \vdash\left(\lambda x_{0} . A\right) \cdot F_{o}\right\rangle\right]\right)\)
ultimately show ?thesis using rule-T(1) by blast
qed
moreover from prop-5212 and 〈is-hyps \(\mathcal{H}\rangle\) have \(\S 3: \mathcal{H} \vdash T_{o} \wedge^{\mathcal{Q}} T_{o}\) by (rule derivability-implies-hyp-derivability)
ultimately have \(\mathcal{H} \vdash\left(\lambda x_{o} . A\right) \cdot T_{o} \wedge^{\mathcal{Q}}\left(\lambda x_{o} . A\right) \cdot F_{o}\)
proof -
from \(\S 3\) and \(\S 1\) have \(\mathcal{H} \vdash\left(\lambda x_{o} . A\right) \cdot T_{o} \wedge^{\mathcal{Q}} T_{o}\) by (rule rule- \(R^{\prime}[\) where \(\left.p=[«, »]]\right)\) (force+, fastforce dest: subforms-from-app)
from this and §2 show ?thesis by (rule rule- \(R^{\prime}[\) where \(\left.p=[»]]\right)\) (force + , fastforce dest: subforms-from-app)
qed
moreover have \(\vdash\left(\lambda x_{o} . A\right) \cdot T_{o} \wedge^{\mathcal{Q}}\left(\lambda x_{o} . A\right) \cdot F_{o}={ }_{o} \forall x_{o} . A\)
proof -
have \(\mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o} \in\) wffs \(s_{o}\) by blast
have \(\vdash \mathfrak{g}_{o \rightarrow o} \cdot T_{o} \wedge^{\mathcal{Q}} \mathfrak{g}_{o \rightarrow o} \cdot F_{o}={ }_{o} \forall \mathfrak{x}_{o} \cdot \mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}\) using axiom-1[unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps) - By \(\alpha\)-conversion
then have \(\vdash \mathfrak{g}_{o \rightarrow o} \cdot T_{o} \wedge^{\mathcal{Q}} \mathfrak{g}_{o \rightarrow o} \cdot F_{o}={ }_{o} \forall x_{o} \cdot \mathfrak{g}_{o \rightarrow o} \cdot x_{o}\left(\right.\) is \(\vdash ? B={ }_{o}\) ? \(\left.C\right)\)
proof have \(\vdash \forall \mathfrak{x}_{o} \cdot \mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}={ }_{o} \forall x_{o} \cdot \mathfrak{g}_{o \rightarrow o} \cdot x_{o}\)
```

    proof (cases \(x=\mathfrak{x}\) )
        case True
    from \(\left\langle\mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o} \in\right.\) wff \(_{\left.S_{O}\right\rangle}\) have \(\vdash \forall \mathfrak{x}_{o} \cdot \mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}={ }_{o} \forall \mathfrak{x}_{o} \cdot \mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}\)
        by (fact prop-5200[OF forall-wff])
    with True show ?thesis
        using identity-singleton-substitution-neutrality by simp
    next
    case False
    from \(\left\langle\mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o} \in w f f s_{o}\right\rangle\)
    have \(\vdash \forall \mathfrak{x}_{o} \cdot \mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}={ }_{o} \forall x_{o} . \mathbf{S}\left\{(\mathfrak{x}, o) \longmapsto x_{o}\right\}\left(\mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}\right)\)
        by
            (rule forall- \(\alpha\)-conversion)
            (simp add: False, intro is-free-for-to-app is-free-for-in-var)
    then show ?thesis
        by force
    qed
    with \(\left\langle\vdash \mathfrak{g}_{o \rightarrow o} \cdot T_{o} \wedge^{\mathcal{Q}} \mathfrak{g}_{o \rightarrow o} \cdot F_{o}=o \forall \mathfrak{x}_{o} \cdot \mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}\right\rangle\) show ?thesis
    using Equality-Rules(3) by blast
    qed
- By Sub
then have $*: \vdash\left(\lambda x_{o} . A\right) \cdot T_{o} \wedge^{\mathcal{Q}}\left(\lambda x_{o} . A\right) \cdot F_{o}={ }_{o} \forall x_{o} \cdot\left(\lambda x_{o} . A\right) \cdot x_{o}$
proof -
let $? \vartheta=\left\{(\mathfrak{g}, o \rightarrow o) \mapsto \lambda x_{o} . A\right\}$
from $\operatorname{assms}(3)$ have is-substitution ? $\vartheta$
by auto
moreover have
$\forall v \in$ fmdom' $^{\prime} ? \vartheta$.
var-name $v \notin$ free-var-names $\left(\}::\right.$ form set $) \wedge$ is-free-for $(? \vartheta \$ \$!v) v\left(? B={ }_{o} ? C\right)$
by (code-simp, (unfold atomize-conj[symmetric])?, simp)+ blast
moreover have ? $\vartheta \neq\{\$ \$\}$
by $\operatorname{simp}$
ultimately have $\vdash \mathbf{S} ? \vartheta\left(? B={ }_{o} ? C\right)$
by (rule Sub $\left.\left[O F « \vdash ? B={ }_{o} ? C\right\rangle\right]$ )
then show ?thesis
by $\operatorname{simp}$
qed
- By $\lambda$-conversion
then show ?thesis
proof -
have $\vdash\left(\lambda x_{o} . A\right) \cdot x_{o}={ }_{o} A$
using prop-5208[where $v s=[(x, o)]]$ and $\operatorname{assms}(3)$ by simp
from $*$ and this show? thesis
by (rule rule- $R[$ where $p=[», », 《]]$ ) force +
qed
qed
ultimately have $\mathcal{H} \vdash \forall x_{0}$. $A$
using rule-RR and is-subform-at.simps(1) by (blast intro: empty-is-position)
then show? ?hesis
proof -

```
```

    have is-free-for (xo) (x,o)A
    by fastforce
    from <\mathcal{H}\vdash\forall\mp@subsup{x}{0}{}.A\rangle and wffs-of-type-intros(1) and this show ?thesis
        by (rule }\forallI[\mathrm{ of H x o A x o
    qed
    qed
lemmas Cases = prop-5222

```

\subsection*{6.24 Proposition 5223}
proposition prop-5223:
shows \(\vdash\left(T_{o} \supset^{\mathcal{Q}} \mathfrak{y}_{o}\right)={ }_{o} \mathfrak{y}_{o}\)
proof -
have \(\vdash\left(T_{o} \supset^{\mathcal{Q}} \mathfrak{y}_{o}\right)={ }_{o}\left(T_{o}={ }_{o}\left(T_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right)\)
proof -
let ? \(A=\left(\lambda \mathfrak{x}_{o} . \lambda \mathfrak{y}_{o} .\left(\mathfrak{x}_{o} \equiv{ }^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right) \cdot T_{o} \cdot \mathfrak{y}_{o}\)
have ? \(A \in\) wffs \(s_{o}\)
by force
then have \(\vdash ? A={ }_{o} ? A\)
by (fact prop-5200)
then have \(\vdash\left(T_{o} \supset^{\mathcal{Q}} \mathfrak{y}_{o}\right)={ }_{o}\) ? \(A\)
unfolding imp-fun-def and imp-op-def.
moreover
have \(\vdash\left(\lambda \mathfrak{x}_{o} . \lambda \mathfrak{y}_{o} .\left(\mathfrak{x}_{o} \equiv{ }^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right) \cdot T_{o}={ }_{o \rightarrow o} \lambda \mathfrak{y}_{o} .\left(T_{o} \equiv^{\mathcal{Q}} T_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\)
proof -
have \(\lambda \mathfrak{y}_{o} .\left(\mathfrak{x}_{o} \equiv{ }^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right) \in\) wffs \(_{o \rightarrow o}\)
by auto
moreover
have is-free-for \(T_{o}(\mathfrak{x}, o)\left(\lambda \mathfrak{y}_{o} .\left(\mathfrak{x}_{o} \equiv{ }^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right)\)
by fastforce
moreover
have \(\mathbf{S}\left\{(\mathfrak{x}, o) \mapsto T_{o}\right\}\left(\lambda \mathfrak{y}_{o} .\left(\mathfrak{x}_{o} \equiv^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right)=\left(\lambda \mathfrak{y}_{o} .\left(T_{o} \equiv^{\mathcal{Q}} T_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right)\)
by \(\operatorname{simp}\)
ultimately show ?thesis
using prop-5207[OF true-wff] by metis
qed
ultimately have \(*: \vdash\left(T_{o} \supset^{\mathcal{Q}} \mathfrak{y}_{o}\right)={ }_{o}\left(\lambda \mathfrak{y}_{o} .\left(T_{o} \equiv{ }^{\mathcal{Q}} T_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right) \cdot \mathfrak{y}_{o}\)
by (rule rule- \(R\) [where \(p=[», 《]]\)) force +
have \(T_{o} \equiv{ }^{\mathcal{Q}} T_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o} \in w f f s_{o}\)
by auto
then have \(\vdash\left(\lambda \mathfrak{y}_{o} .\left(T_{o} \equiv{ }^{\mathcal{Q}} T_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right) \cdot \mathfrak{y}_{o}={ }_{o}\left(T_{o} \equiv{ }^{\mathcal{Q}} T_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\)
using prop- \(5208[\) where \(v s=[(\mathfrak{y}, o)]]\) by simp
from \(*\) and this show ?thesis
by (rule rule- \(R[\) where \(p=[»]]\)) force +
qed
with prop-5218 have \(\vdash\left(T_{o} \supset^{\mathcal{Q}} \mathfrak{y}_{o}\right)=o_{o}\left(T_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\)
using rule-R and Equality-Rules(3) by (meson conj-op-wff true-wff wffs-of-type-intros(1))
with prop-5216 show ?thesis
using rule-R and Equality-Rules(3) by (meson conj-op-wff true-wff wffs-of-type-intros(1)) qed
corollary generalized-prop-5223:
assumes \(A \in w_{f f s}{ }_{o}\)
shows \(\vdash\left(T_{o} \supset^{\mathcal{Q}} A\right)={ }_{o} A\)
proof -
have \(T_{o} \supset^{\mathcal{Q}} \mathfrak{y}_{o} \in\) wffs \(s_{o}\) and is-free-for \(A(\mathfrak{y}, o)\left(\left(T_{o} \supset^{\mathcal{Q}} \mathfrak{y}_{o}\right)={ }_{o} \mathfrak{y}_{o}\right)\)
by (blast, intro is-free-for-in-equality is-free-for-in-imp is-free-for-in-true is-free-for-in-var)
from this(2) have \(\vdash \mathbf{S}\{(\mathfrak{y}, o) \longleftrightarrow A\}\left(\left(T_{o} \supset^{\mathcal{Q}} \mathfrak{y}_{o}\right)={ }_{o} \mathfrak{y}_{o}\right)\)
by (rule prop-5209[OF assms \(\left\langle T_{o} \supset^{\mathcal{Q}} \mathfrak{y}_{o} \in\right.\) wffs \(\left._{o}\right\rangle\) wffs-of-type-intros(1) prop-5223])
then show ?thesis
by \(\operatorname{simp}\)
qed

\subsection*{6.25 Proposition 5224 (Modus Ponens)}
proposition prop-5224:
assumes \(\mathcal{H} \vdash A\) and \(\mathcal{H} \vdash A \supset^{\mathcal{Q}} B\)
shows \(\mathcal{H} \vdash B\)
proof -
have \(\mathcal{H} \vdash A \supset^{\mathcal{Q}} B\)
by fact
moreover from \(\operatorname{assms}(1)\) have \(A \in w_{f f} s_{o}\)
by (fact hyp-derivable-form-is-wffso)
from this and assms(1) have \(\mathcal{H} \vdash A={ }_{o} T_{o}\)
using rule-T(2) by blast
ultimately have \(\mathcal{H} \vdash T_{o} \supset^{\mathcal{Q}} B\)
by (rule rule- \(R^{\prime}[\) where \(\left.p=[«, »]]\right)\) (force+, fastforce dest: subforms-from-app)
have \(\vdash\left(T_{o} \supset^{\mathcal{Q}} B\right)={ }_{o} B\)
proof -
let ? \(\vartheta=\{(\mathfrak{y}, o) \longmapsto B\}\)
have \(B \in\) wffs \(s_{o}\)
by (fact hyp-derivable-form-is-wffso[OF assms(2), THEN wffs-from-imp-op(2)])
then have is-substitution? \(\vartheta\)
by \(\operatorname{simp}\)
moreover have
\(\forall v \in\) fmdom \(^{\prime}\) ? \(\vartheta\).
var-name \(v \notin\) free-var-names \((\}::\) form set \() \wedge\)
is-free-for \((? \vartheta \$ \$!v) v\left(\left(T_{o} \supset^{\mathcal{Q}} \mathfrak{y}_{o}\right)={ }_{o} \mathfrak{y}_{o}\right)\)
by (code-simp, (unfold atomize-conj[symmetric])?, simp)+ blast
moreover have ? \(\vartheta \neq\{\$ \$\}\)
by \(\operatorname{simp}\)
ultimately have \(\vdash \mathbf{S}\) ? \(\vartheta\left(\left(T_{o} \supset^{\mathcal{Q}} \mathfrak{y}_{o}\right)={ }_{o} \mathfrak{y}_{o}\right)\)
by (rule Sub[OF prop-5223])
then show ?thesis
by \(\operatorname{simp}\)
qed
then show ?thesis
```

    by (rule rule-RR[OF disjI1, where p=[]])(use \langle\mathcal{H}\vdash To \supset}\mp@subsup{}{}{\mathcal{Q}}B\rangle\mathrm{ in <force+>)
    qed
lemmas MP = prop-5224
corollary generalized-modus-ponens:
assumes }\mathcal{H}\vdashhs\mp@subsup{\supset}{}{\mathcal{Q}}\mp@subsup{\star}{}{\prime}B\mathrm{ and }\forallH\inl\mathrm{ let hs. }\mathcal{H}\vdash
shows }\mathcal{H}\vdash
using assms proof (induction hs arbitrary: B rule: rev-induct)
case Nil
then show ?case
by simp
next
case (snoc H' hs)
from «\forallH\inlset (hs @ [H`). \mathcal{H}\vdashH\rangle have \mathcal{H}\vdashH'         by simp     moreover have }\mathcal{H}\vdash\mp@subsup{H}{}{\prime}\mp@subsup{\supset}{}{\mathcal{Q}}     proof -         from <\mathcal{H}\vdash(hs@[H`]) \supset\mp@subsup{\mathcal{Q}}{\star}{}B\rangle\mathrm{ have }\mathcal{H}\vdashhs\mp@subsup{\supset}{}{\mathcal{Q}}\mp@subsup{}{\star}{}(\mp@subsup{H}{}{\prime}\mp@subsup{\supset}{}{\mathcal{Q}}B)
by simp
moreover from «\forallH\inlset (hs @ [H`). \mathcal{H}
by simp
ultimately show ?thesis
by (elim snoc.IH)
qed
ultimately show ?case
by (rule MP)
qed

```

\subsection*{6.26 Proposition 5225}
proposition prop-5225:
shows \(\vdash \prod \alpha \cdot \mathfrak{f}_{\alpha \rightarrow o} \supset^{\mathcal{Q}} \mathfrak{f}_{\alpha \rightarrow o} \cdot \mathfrak{x}_{\alpha}\)
proof -
have \(\mathfrak{f}_{\alpha \rightarrow o} \cdot \mathfrak{x}_{\alpha} \in w f f s_{o}\) by blast
have §1:
```

$\prod \alpha \cdot \mathfrak{f}_{\alpha \rightarrow o} \supset^{\mathcal{Q}}\left(\left(\left(\lambda \mathfrak{f}_{\alpha \rightarrow o} \cdot \mathfrak{f}_{\alpha \rightarrow o} \cdot \mathfrak{x}_{\alpha}\right) \cdot\left(\lambda \mathfrak{x}_{\alpha} . T_{o}\right)\right)\right.$
$\left.\left(\left(\lambda \mathfrak{f}_{\alpha \rightarrow o} \cdot \mathfrak{f}_{\alpha \rightarrow o} \cdot \mathfrak{x}_{\alpha}\right) \cdot \mathfrak{f}_{\alpha \rightarrow o}\right)\right)$
proof -
let ? $\vartheta=\left\{(\mathfrak{h},(\alpha \rightarrow o) \rightarrow o) \mapsto \lambda \mathfrak{f}_{\alpha \rightarrow o} \cdot \mathfrak{f}_{\alpha \rightarrow o} \cdot \mathfrak{x}_{\alpha},(\mathfrak{x}, \alpha \rightarrow o) \mapsto \lambda \mathfrak{x}_{\alpha} . T_{o},(\mathfrak{y}, \alpha \rightarrow o) \mapsto \mathfrak{f}_{\alpha \rightarrow o}\right\}$
and ? $A=\left(\mathfrak{x}_{\alpha \rightarrow o}=\alpha \rightarrow o \mathfrak{y}_{\alpha \rightarrow o}\right) \supset^{\mathcal{Q}}\left(\mathfrak{h}_{(\alpha \rightarrow o) \rightarrow o} \cdot \mathfrak{x}_{\alpha \rightarrow o} \equiv{ }^{\mathcal{Q}} \mathfrak{h}_{(\alpha \rightarrow o) \rightarrow o} \cdot \mathfrak{y}_{\alpha \rightarrow o}\right)$
have $\vdash$ ? $A$
by (fact axiom-is-derivable-from-no-hyps[OF axiom-2])
moreover have $\lambda \mathfrak{f}_{\alpha \rightarrow o} \cdot \mathfrak{f}_{\alpha \rightarrow o} \cdot \mathfrak{x}_{\alpha} \in$ wffs $(\alpha \rightarrow o) \rightarrow o$ and $\lambda \mathfrak{x}_{\alpha} . T_{o} \in$ wffs $s_{\alpha \rightarrow o}$
and $\mathfrak{f}_{\alpha \rightarrow o} \in$ wffs $s_{\alpha \rightarrow o}$
by blast+

```
```

    then have is-substitution ?\vartheta
        by simp
    moreover have
    ```

```

        by (code-simp, (unfold atomize-conj[symmetric])?, simp)+ blast
    moreover have ?\vartheta }\not={$$
        by simp
    ultimately have }\vdash\mathbf{S}\mathrm{ ?V ?A
        by (rule Sub)
    then show ?thesis
        by simp
    qed
    have}\vdash\prod\alpha\cdot\mp@subsup{\mathfrak{f}}{\alpha->o}{}\mp@subsup{\supset}{}{\mathcal{Q}}(\mp@subsup{T}{o}{\prime}=o\mp@subsup{\mathfrak{f}}{\alpha->o}{}\cdot\mp@subsup{\mathfrak{x}}{\alpha}{}
    proof -
    have
    ```

```

        (is }\vdash(\lambda?\mp@subsup{x}{?,\beta}{*}\cdot?B)\cdot?A=o?C
    proof -
        have}\vdash(\lambda?\mp@subsup{x}{?,\beta}{}.?,B)\cdot?A=\mp@subsup{o}{o}{}\mathbf{S}{(?,x,?\beta)\longmapsto?A} ?
            using prop-5207[OF wffs-of-type-intros(4)[OF true-wff]\?B \in wffs (>)] by fastforce
        then show ?thesis
            by simp
    qed
    moreover have}\vdash(\lambda\mp@subsup{\mathfrak{x}}{\alpha}{}.\mp@subsup{T}{o}{})\cdot\mp@subsup{\mathfrak{x}}{\alpha}{}=\mp@subsup{o}{o}{}\mp@subsup{T}{o}{
        using prop-5208[where vs=[(\mathfrak{x},\alpha)]] and true-wff by simp
    ultimately have}\vdash(\lambda\mp@subsup{\mathfrak{f}}{\alpha->o}{}\cdot\mp@subsup{\mathfrak{f}}{\alpha->o}{}\cdot\mp@subsup{\mathfrak{x}}{\alpha}{})\cdot(\lambda\mp@subsup{\mathfrak{x}}{\alpha}{}.\mp@subsup{T}{o}{})=\mp@subsup{o}{o}{}\mp@subsup{T}{o}{
        by (rule Equality-Rules(3))
    ```

```

        by (rule rule-R[where p=[»,«,»]]) force+
    ```

```

        using prop-5208[where vs =[(f,\alpha->o)]] by force
    ultimately show ?thesis
        by (rule rule-R[where p=[»,>]]) force+
    qed
    from this and prop-5218[OF \langle\mathfrak{f}}\mp@subsup{|}{->o}{}\cdot\mp@subsup{\mathfrak{x}}{\alpha}{}\in\mathrm{ wffs so>] show ?thesis
    by (rule rule-R[where p=[»]]) auto
    qed

```

\subsection*{6.27 Proposition 5226}
```

proposition prop-5226:
assumes $A \in w f f s_{\alpha}$ and $B \in w f f s_{o}$
and is-free-for $A(x, \alpha) B$
shows $\vdash \forall x_{\alpha} . B \supset^{\mathcal{Q}} \mathbf{S}\{(x, \alpha) \rightharpoondown A\} B$
proof -
have $\vdash \prod_{\alpha} \cdot\left(\lambda x_{\alpha} . B\right) \supset^{\mathcal{Q}}\left(\lambda x_{\alpha} . B\right) \cdot A$
proof -
let ? $\vartheta=\left\{(\mathfrak{f}, \alpha \rightarrow o) \mapsto \lambda x_{\alpha} . B,(\mathfrak{x}, \alpha) \longmapsto A\right\}$
have $\vdash \prod_{\alpha} \cdot \mathfrak{f}_{\alpha \rightarrow o} \supset^{\mathcal{Q}} \mathfrak{f}_{\alpha \rightarrow o} \cdot \mathfrak{x}_{\alpha}($ is $\vdash ? C)$

```
```

        by (fact prop-5225)
    moreover from assms have is-substitution ? \(\vartheta\)
        by auto
    moreover have
        \(\forall v \in\) fmdom' \(^{\prime}\) ?. var-name \(v \notin\) free-var-names \((\}::\) form set) \(\wedge\) is-free-for (? \(? \$ \$\) ! v) v ?C
        by (code-simp, (unfold atomize-conj[symmetric])?, fastforce)+ blast
    moreover have \(? \vartheta \neq\{\$ \$\}\)
        by \(\operatorname{simp}\)
    ultimately have \(\vdash \mathbf{S}\) ? \(?\) ? \(C\)
        by (rule Sub)
    moreover have \(\mathbf{S}\) ? \(\vartheta\) ? \(C=\prod \alpha \cdot\left(\lambda x_{\alpha} . B\right) \supset^{\mathcal{Q}}\left(\lambda x_{\alpha} . B\right) \cdot A\)
        by \(\operatorname{simp}\)
    ultimately show ?thesis
        by ( simp only:)
    qed
    moreover from assms have \(\vdash\left(\lambda x_{\alpha} . B\right) \cdot A={ }_{o} \mathbf{S}\{(x, \alpha) \longmapsto A\} B\)
    by (rule prop-5207)
    ultimately show ?thesis
    by (rule rule- \(R\) [where \(p=[»]]\) ) force +
    qed
6.28 Proposition 5227
corollary prop-5227:
shows $\vdash F_{o} \supset^{\mathcal{Q}} \mathfrak{x}_{o}$
proof -
have $\vdash \forall \mathfrak{x}_{o} . \mathfrak{x}_{o} \supset^{\mathcal{Q}} \mathbf{S}\left\{(\mathfrak{x}, o) \mapsto \mathfrak{x}_{o}\right\}\left(\mathfrak{x}_{o}\right)$
by (rule prop-5226) auto
then show? ?thesis
using identity-singleton-substitution-neutrality by simp
qed
corollary generalized-prop-5227:
assumes $A \in w_{f f} s_{o}$
shows $\vdash F_{o} \supset^{\mathcal{Q}} A$
proof -
let $? \vartheta=\{(\mathfrak{x}, o) \mapsto A\}$ and $? B=F_{o} \supset^{\mathcal{Q}} \mathfrak{x}_{o}$
from assms have is-substitution ? $\vartheta$
by $\operatorname{simp}$
moreover have is-free-for $A(\mathfrak{x}, o)$ ? $B$
by (intro is-free-for-in-false is-free-for-in-imp is-free-for-in-var)
then have

```

```

        by force
    ultimately have \(\vdash \mathbf{S}\{(\mathfrak{x}, o) \longrightarrow A\}\left(F_{o} \supset^{\mathcal{Q}} \mathfrak{x}_{o}\right)\)
    using Sub[OF prop-5227, where \(\vartheta=\) ? \(\vartheta]\) by fastforce
    then show ?thesis
    by \(\operatorname{simp}\)
    qed

```

\subsection*{6.29 Proposition 5228}
proposition prop-5228:
shows \(\vdash\left(T_{o} \supset^{\mathcal{Q}} T_{o}\right)={ }_{o} T_{o}\)
and \(\vdash\left(T_{o} \supset^{\mathcal{Q}} F_{o}\right)={ }_{o} F_{o}\)
and \(\vdash\left(F_{o} \supset^{\mathcal{Q}} T_{o}\right)={ }_{o} T_{o}\)
and \(\vdash\left(F_{o} \supset^{\mathcal{Q}} F_{o}\right)={ }_{o} T_{o}\)
proof -
show \(\vdash\left(T_{o} \supset^{\mathcal{Q}} T_{o}\right)={ }_{o} T_{o}\) and \(\vdash\left(T_{o} \supset^{\mathcal{Q}} F_{o}\right)={ }_{o} F_{o}\)
using generalized-prop-5223 by blast+
next
have \(\vdash F_{o} \supset^{\mathcal{Q}} F_{o}\) and \(\vdash F_{o} \supset^{\mathcal{Q}} T_{o}\)
using generalized-prop-5227 by blast+
then show \(\vdash\left(F_{o} \supset{ }^{\mathcal{Q}} T_{o}\right)={ }_{o} T_{o}\) and \(\vdash\left(F_{o} \supset{ }^{\mathcal{Q}} F_{o}\right)={ }_{o} T_{o}\)
using rule-T(2) by blast+
qed

\subsection*{6.30 Proposition 5229}
```

lemma false-in-conj-provability:
assumes $A \in$ wffs $o_{o}$
shows $\vdash F_{o} \wedge^{\mathcal{Q}} A \equiv{ }^{\mathcal{Q}} F_{o}$
proof -
have $\vdash\left(\lambda \mathfrak{x}_{o} \cdot \lambda \mathfrak{y}_{o} .\left(\mathfrak{x}_{o} \equiv{ }^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right) \cdot F_{o} \cdot A$
by (intro generalized-prop-5227[OF assms, unfolded imp-op-def imp-fun-def])
moreover have
$\vdash$
$\left(\lambda \mathfrak{x}_{o} . \lambda \mathfrak{y}_{o} \cdot\left(\mathfrak{x}_{o} \equiv{ }^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right) \cdot F_{o}$
$=o \rightarrow o$
$\lambda \mathfrak{y}_{o} .\left(F_{o} \equiv{ }^{\mathcal{Q}} F_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)$
(is $\vdash(\lambda ? x$ ? $\beta \cdot ? A) \cdot ? B=? \gamma$ ? $C)$
proof -
have ?B $\in$ wffs ? $\beta$ and ?A $\in$ wffs $_{\text {? } \gamma}$ and is-free-for ? $B(? x, ? \beta) ? A$
by auto
then have $\vdash\left(\lambda ? x_{? \beta} \cdot ? A\right) \cdot ? B={ }_{? \gamma} \mathbf{S}\{(? x, ? \beta) \longmapsto ? B\} ? A$
by (rule prop-5207)
moreover have $\mathbf{S}\{(? x, ? \beta) \mapsto ? B\}$ ? $A=? C$
by simp
ultimately show ?thesis
by (simp only:)
qed
ultimately have $\vdash\left(\lambda \mathfrak{y}_{o} .\left(F_{o} \equiv{ }^{\mathcal{Q}} F_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right) \cdot A$
by (rule rule- $R[$ where $p=[《]]$ ) auto
moreover have
$\vdash$
$\left(\lambda \mathfrak{y}_{o} .\left(F_{o} \equiv^{\mathcal{Q}} F_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right) \cdot A$
$={ }_{o}$
$\left(F_{o} \equiv{ }^{\mathcal{Q}} F_{o} \wedge^{\mathcal{Q}} A\right)$
$\left(\right.$ is $\left.\vdash\left(\lambda ? x_{? \beta} \cdot ? A\right) \cdot ? B={ }_{o} ? C\right)$
proof -

```
```

    have ? \(B \in w f f s_{? \beta}\) and ?A \(\in\) wffs \(_{o}\)
        using assms by auto
    moreover have is-free-for ?B (?x, ? \(\beta\) ) ?A
        by (intro is-free-for-in-equivalence is-free-for-in-conj is-free-for-in-false) fastforce
    ultimately have \(\vdash\left(\lambda ? x_{? ~} \beta \cdot ? A\right) \cdot ? B={ }_{o} \mathbf{S}\{(? x, ? \beta) \mapsto ? B\} ? A\)
        by (rule prop-5207)
    moreover
    have \(\mathbf{S}\{(? x, ? \beta) \longmapsto ? B\} ? A=? C\)
        by \(\operatorname{simp}\)
    ultimately show ?thesis
        by ( simp only:)
    qed
    ultimately have \(\vdash F_{o} \equiv{ }^{\mathcal{Q}} F_{o} \wedge^{\mathcal{Q}} A\)
    by (rule rule- \(R[\) where \(p=[]]\) ) auto
    then show ?thesis
    unfolding equivalence-def by (rule Equality-Rules(2))
    qed
proposition prop-5229:
shows $\vdash\left(T_{o} \wedge^{\mathcal{Q}} T_{o}\right)={ }_{o} T_{o}$
and $\vdash\left(T_{o} \wedge^{\mathcal{Q}} F_{o}\right)={ }_{o} F_{o}$
and $\vdash\left(F_{o} \wedge^{\mathcal{Q}} T_{o}\right)={ }_{o} F_{o}$
and $\vdash\left(F_{o} \wedge^{\mathcal{Q}} F_{o}\right)={ }_{o} F_{o}$
proof -
show $\vdash\left(T_{o} \wedge^{\mathcal{Q}} T_{o}\right)={ }_{o} T_{o}$ and $\vdash\left(T_{o} \wedge^{\mathcal{Q}} F_{o}\right)={ }_{o} F_{o}$
using prop-5216 by blast+
next
show $\vdash\left(F_{o} \wedge^{\mathcal{Q}} T_{o}\right)={ }_{o} F_{o}$ and $\vdash\left(F_{o} \wedge^{\mathcal{Q}} F_{o}\right)={ }_{o} F_{o}$
using false-in-conj-provability and true-wff and false-wff by simp-all
qed

```

\subsection*{6.31 Proposition 5230}
proposition prop-5230:
shows \(\vdash\left(T_{o} \equiv{ }^{\mathcal{Q}} T_{o}\right)={ }_{o} T_{o}\)
and \(\vdash\left(T_{o} \equiv{ }^{\mathcal{Q}} F_{o}\right)={ }_{o} F_{o}\)
and \(\vdash\left(F_{o} \equiv{ }^{\mathcal{Q}} T_{o}\right)={ }_{o} F_{o}\)
and \(\vdash\left(F_{o} \equiv{ }^{\mathcal{Q}} F_{o}\right)={ }_{o} T_{o}\)
proof -
show \(\vdash\left(T_{o} \equiv{ }^{\mathcal{Q}} T_{o}\right)={ }_{o} T_{o}\) and \(\vdash\left(T_{o} \equiv{ }^{\mathcal{Q}} F_{o}\right)={ }_{o} F_{o}\)
unfolding equivalence-def using prop-5218 by blast+
next
show \(\vdash\left(F_{o} \equiv{ }^{\mathcal{Q}} F_{o}\right)={ }_{o} T_{o}\)
unfolding equivalence-def by (rule Equality-Rules(2)[OF prop-5210[OF false-wff]])
next
have \(\S 1: \vdash\left(F_{o} \equiv{ }^{\mathcal{Q}} T_{o}\right) \supset^{\mathcal{Q}}\left(\left(\lambda \mathfrak{x}_{o} .\left(\mathfrak{x}_{o} \equiv{ }^{\mathcal{Q}} F_{o}\right)\right) \cdot F_{o} \equiv{ }^{\mathcal{Q}}\left(\lambda \mathfrak{x}_{o} .\left(\mathfrak{x}_{o} \equiv{ }^{\mathcal{Q}} F_{o}\right)\right) \cdot T_{o}\right)\)
proof -
let ? \(\vartheta=\left\{(\mathfrak{h}, o \rightarrow o) \longmapsto \mathfrak{x}_{o} .\left(\mathfrak{x}_{o} \equiv{ }^{\mathcal{Q}} F_{o}\right),(\mathfrak{x}, o) \longmapsto F_{o},(\mathfrak{y}, o) \longmapsto T_{o}\right\}\)
and \(? A=\left(\mathfrak{x}_{o}=o \mathfrak{y}_{o}\right) \supset^{\mathcal{Q}}\left(\mathfrak{h}_{o \rightarrow o} \cdot \mathfrak{x}_{o} \equiv{ }^{\mathcal{Q}} \mathfrak{h}_{O \rightarrow 0} \cdot \mathfrak{y}_{o}\right)\)
```

have \vdash ?A
by (fact axiom-is-derivable-from-no-hyps[OF axiom-2])
moreover have is-substitution ?\vartheta
by auto
moreover have

        \forallv\infmdom' ?\vartheta.var-name v & free-var-names ({}::form set) ^ is-free-for (?\vartheta $$! v) v ?A
        by (code-simp, unfold atomize-conj[symmetric], simp, force)+ blast
    moreover have ?\vartheta }\not={$$
        by simp
    ultimately have }\vdash\mathbf{S}\mathrm{ ? ? ?A
        by (rule Sub)
    then show ?thesis
        by simp
    qed
then have §2:\vdash( (Fo \equiv\mp@subsup{\mathcal{Q}}{}{\mathcal{Q}}\mp@subsup{T}{o}{})\mp@subsup{\supset}{}{\mathcal{Q}}((\mp@subsup{F}{o}{}\equiv\mp@subsup{\equiv}{}{\mathcal{Q}}\mp@subsup{F}{o}{})\equiv\mp@subsup{\equiv}{}{\mathcal{Q}}(\mp@subsup{T}{o}{}\mp@subsup{\equiv}{}{\mathcal{Q}}\mp@subsup{F}{o}{\prime}))(\mathrm{ is }\vdash?A\mathcal{Q})
proof -
have is-free-for A (\mathfrak{x},o) (\mathfrak{x}
by code-simp blast
have }\beta\mathrm{ -reduction: }\vdash(\lambda\mp@subsup{\mathfrak{x}}{o}{}.(\mp@subsup{\mathfrak{x}}{0}{}\equiv\mp@subsup{}{}{\mathcal{Q}}\mp@subsup{F}{o}{}))\cdotA=\mp@subsup{o}{o}{}(A\equiv\mp@subsup{\equiv}{}{\mathcal{Q}}\mp@subsup{F}{o}{})\mathrm{ if }A\in\mathrm{ wffs for for }
using
prop-5207
[
OF that equivalence-wff[OF wffs-of-type-intros(1) false-wff]
<is-free-for A (\mathfrak{x},o) (\mathfrak{x}
]
by simp
from §1 and \beta-reduction[OF false-wff] have
\vdash(F
by (rule rule-R[where p=[»,«,>]]) force+
from this and }\beta\mathrm{ -reduction [OF true-wff] show ?thesis
by (rule rule-R[where p=[»,>]]) force+
qed
then have §3:\vdash( F Fo\equiv\mathcal{Q}}\mp@subsup{T}{o}{})\supset\mp@subsup{\supset}{}{\mathcal{Q}}\mp@subsup{F}{o}{
proof -
note r1 = rule-RR[OF disjI1] and r2 = rule-RR[OF disjI2]
have §3}\mp@subsup{1}{1}{}:\vdash(\mp@subsup{F}{o}{}\equiv\mp@subsup{}{}{\mathcal{Q}}\mp@subsup{T}{o}{})\mp@subsup{\supset}{}{\mathcal{Q}}((\mp@subsup{F}{o}{}\mp@subsup{\equiv}{}{\mathcal{Q}}\mp@subsup{F}{o}{})\equiv\mp@subsup{}{}{\mathcal{Q}}\mp@subsup{F}{o}{})(\mathrm{ is <t ?A3}\mp@subsup{1}{1}{}\rangle
by (rule r1[OF prop-5218[OF false-wff], where p=[»,>] and C=?A2])(use §2 in <force+>)

```

```

    by (rule r2[OF prop-5210[OF false-wff], where p=[»,«,»] and C=?A3 ] ])(use §3 ( in <force+>)
    show ?thesis
        by (rule r1[OF prop-5218[OF false-wff], where p = [»] and C=?A3 2]) (use §3 32 in <force+>)
    qed
then have }\vdash(\mp@subsup{F}{o}{}\equiv\mp@subsup{}{}{\mathcal{Q}}\mp@subsup{T}{o}{})\equiv\mp@subsup{\sum}{}{\mathcal{Q}}((\mp@subsup{F}{o}{}\equiv\mp@subsup{\sum}{}{\mathcal{Q}}\mp@subsup{T}{o}{})\mp@subsup{\wedge}{}{\mathcal{Q}}\mp@subsup{F}{o}{}
proof -
have

$$
\begin{aligned}
& \left(\lambda \mathfrak{x}_{o} \cdot \lambda \mathfrak{y}_{o} \cdot\left(\mathfrak{x}_{o} \equiv^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right) \cdot\left(F_{o} \equiv^{\mathcal{Q}} T_{o}\right) \\
& ==0 \rightarrow o \\
& \mathbf{S}\left\{(\mathfrak{x}, o) \mapsto F_{o} \equiv^{\mathcal{Q}} T_{o}\right\}\left(\lambda \mathfrak{y}_{o} \cdot\left(\mathfrak{x}_{o} \equiv^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right)
\end{aligned}
$$

```
```

    by (rule prop-5207) auto
    from \(\S 3\) [unfolded imp-op-def imp-fun-def] and this
    have \(\vdash\left(\lambda \mathfrak{y}_{o} .\left(\left(F_{o} \equiv^{\mathcal{Q}} T_{o}\right) \equiv^{\mathcal{Q}}\left(F_{o} \equiv^{\mathcal{Q}} T_{o}\right) \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right) \cdot F_{o}\)
    by (rule rule- \(R\) [where \(p=[\kappa]]\) ) force +
    moreover have
    \(\vdash\)
        \(\left(\lambda \mathfrak{y}_{o} .\left(\left(F_{o} \equiv^{\mathcal{Q}} T_{o}\right) \equiv^{\mathcal{Q}}\left(F_{o} \equiv^{\mathcal{Q}} T_{o}\right) \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right) \cdot F_{o}\)
        \(=\) o
        \(\mathbf{S}\left\{(\mathfrak{y}, o) \longleftrightarrow F_{o}\right\}\left(\left(F_{o} \equiv^{\mathcal{Q}} T_{o}\right) \equiv^{\mathcal{Q}}\left(F_{o} \equiv^{\mathcal{Q}} T_{o}\right) \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\)
        by (rule prop-5207) auto
    ultimately show ?thesis
    by (rule rule- \(R[\) where \(p=[]]\) ) force+
    qed
moreover have $\S 5: \vdash \mathfrak{x}_{o} \wedge^{\mathcal{Q}} F_{o} \equiv{ }^{\mathcal{Q}} F_{o}$
proof -
from prop-5229(2,4) have
$\vdash \mathbf{S}\left\{(\mathfrak{x}, o) \longmapsto T_{o}\right\}\left(\mathfrak{x}_{o} \wedge^{\mathcal{Q}} F_{o} \equiv^{\mathcal{Q}} F_{o}\right)$ and $\vdash \mathbf{S}\left\{(\mathfrak{x}, o) \mapsto F_{o}\right\}\left(\mathfrak{x}_{o} \wedge^{\mathcal{Q}} F_{o} \equiv{ }^{\mathcal{Q}} F_{o}\right)$
by simp-all
moreover have $\mathfrak{x}_{o} \wedge^{\mathcal{Q}} F_{o} \equiv{ }^{\mathcal{Q}} F_{o} \in$ wffs $s_{o}$
by auto
ultimately show? ?hesis
by (rule Cases)
qed
then have $\vdash\left(F_{o} \equiv{ }^{\mathcal{Q}} T_{o}\right) \wedge^{\mathcal{Q}} F_{o} \equiv{ }^{\mathcal{Q}} F_{o}$
proof -
let $? \vartheta=\left\{(\mathfrak{x}, o) \nrightarrow F_{o} \equiv^{\mathcal{Q}} T_{o}\right\}$
have is-substitution ?V
by auto
moreover have $\forall v \in$ fmdom $^{\prime}$ ? ?.
var-name $v \notin$ free-var-names $\left(\}::\right.$ form set $) \wedge$ is-free-for $(? \vartheta \$ \$!v) v\left(\mathfrak{x}_{o} \wedge^{\mathcal{Q}} F_{o} \equiv^{\mathcal{Q}} F_{o}\right)$
by $\operatorname{simp}$
moreover have $? \vartheta \neq\{\$ \$\}$
by $\operatorname{simp}$
ultimately have $\vdash \mathbf{S}$ ? $\vartheta\left(\mathfrak{x}_{o} \wedge^{\mathcal{Q}} F_{o} \equiv^{\mathcal{Q}} F_{o}\right)$
by (rule $\left.\operatorname{Sub}\left[O F « \vdash \mathfrak{x}_{o} \wedge^{\mathcal{Q}} F_{o} \equiv \mathcal{Q}^{\mathcal{Q}} F_{o}\right\rangle\right)$
then show ?thesis
by simp
qed
ultimately show $\vdash\left(F_{o} \equiv{ }^{\mathcal{Q}} T_{o}\right)={ }_{o} F_{o}$
unfolding equivalence-def by (rule Equality-Rules(3))
qed

```

\subsection*{6.32 Proposition 5231}
```

proposition prop-5231:
shows $\vdash \sim \mathcal{Q} T_{o}={ }_{o} F_{o}$
and $\vdash \sim^{\mathcal{Q}} F_{o}={ }_{o} T_{o}$
using prop-5230(3,4) unfolding neg-def and equivalence-def and equality-of-type-def.

```

\subsection*{6.33 Proposition 5232}
lemma disj-op-alt-def-provability:
assumes \(A \in w_{f f} s_{o}\) and \(B \in w_{f f} s_{o}\)
shows \(\vdash A \vee \vee^{\mathcal{Q}} B=o_{o} \sim^{\mathcal{Q}}\left(\sim^{\mathcal{Q}} A \wedge^{\mathcal{Q}} \sim^{\mathcal{Q}} B\right)\)
proof -
let ? \(C=\left(\lambda \mathfrak{x}_{o} . \lambda \mathfrak{y}_{o} . \sim^{\mathcal{Q}}\left(\sim^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \sim^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right) \cdot A \cdot B\)
from assms have ? \(C \in\) wffs \(o_{o}\)
by blast
have \(\left(\sim^{\mathcal{Q}}\left(\sim \mathcal{Q} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \sim^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right) \in\) wffs \({ }_{o}\)
by auto
moreover obtain \(z\) where \((z, o) \notin\{(\mathfrak{x}, o),(\mathfrak{y}, o)\}\) and \((z, o) \notin\) free-vars \(A\)
using free-vars-form-finiteness and fresh-var-existence
by (metis Un-iff Un-insert-right free-vars-form.simps(1,3) inf-sup-aci(5) sup-bot-left)
then have \((z, o) \notin\) free-vars \(\left(\sim^{\mathcal{Q}}\left(\sim^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \sim^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right)\)
by simp
moreover have is-free-for \(\left(z_{o}\right)(\mathfrak{y}, o)\left(\sim^{\mathcal{Q}}\left(\sim^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \sim^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right)\)
by (intro is-free-for-in-conj is-free-for-in-neg is-free-for-in-var)
ultimately have
\(\vdash\left(\lambda \mathfrak{y}_{o} . \sim^{\mathcal{Q}}\left(\sim \mathcal{Q} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \sim^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right)==_{o \rightarrow o}\left(\lambda z_{o} . \mathbf{S}\left\{(\mathfrak{y}, o) \mapsto z_{o}\right\} \sim^{\mathcal{Q}}\left(\sim \mathcal{Q} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \sim^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right)\)
by (rule \(\alpha\))
then have \(\vdash\left(\lambda \mathfrak{y}_{o} \cdot \sim^{\mathcal{Q}}\left(\sim^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \sim^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right)={ }_{o \rightarrow 0}\left(\lambda z_{o} . \sim^{\mathcal{Q}}\left(\sim \mathcal{Q} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \sim^{\mathcal{Q}} z_{o}\right)\right)\)
by simp
from prop-5200 \(\left[O F\left\langle ? C \in\right.\right.\) wff \(\left._{o_{o}}\right]\) and this have
\[
\begin{aligned}
& \left(\lambda \mathfrak{x}_{o} \cdot \lambda z_{o} \cdot \sim^{\mathcal{Q}}\left(\sim^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \sim^{\mathcal{Q}} z_{o}\right)\right) \cdot A \cdot B \\
& =o \\
& \left(\lambda \mathfrak{x}_{o} \cdot \lambda \mathfrak{y}_{o} \cdot \sim^{\mathcal{Q}}\left(\sim^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \sim^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right) \cdot A \cdot B
\end{aligned}
\]
by (rule rule- \(R[\) where \(p=[«, », «,<,,<]])\) force +
moreover have \(\lambda z_{o} . \sim \mathcal{Q}\left(\sim \mathcal{Q} \mathfrak{x}_{o} \wedge \mathcal{Q} \sim \mathcal{Q} z_{o}\right) \in\) wff \(^{(1)}\)
by blast
have
\(\left(\lambda \mathfrak{x}_{o} . \lambda z_{o} \sim^{\mathcal{Q}}\left(\sim^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \sim^{\mathcal{Q}} z_{o}\right)\right) \cdot A\)
\[
=o \rightarrow o
\]
\[
\mathbf{S}\{(\mathfrak{x}, o) \nrightarrow A\}\left(\lambda z_{o} . \sim^{\mathcal{Q}}\left(\sim^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \sim^{\mathcal{Q}} z_{o}\right)\right)
\]
by
(rule prop-5207)
(
fact, blast, intro is-free-for-in-neg is-free-for-in-conj is-free-for-to-abs, (fastforce simp add: \(\langle(z, o) \notin\) free-vars \(A\rangle)+\)
)
then have \(\vdash\left(\lambda \mathfrak{x}_{o} . \lambda z_{o} . \sim^{\mathcal{Q}}\left(\sim^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \sim^{\mathcal{Q}} z_{o}\right)\right) \cdot A={ }_{o \rightarrow o}\left(\lambda z_{o} . \sim^{\mathcal{Q}}\left(\sim^{\mathcal{Q}} A \wedge^{\mathcal{Q}} \sim^{\mathcal{Q}} z_{o}\right)\right)\) using \(\left\langle(z, o) \notin\right.\) free-vars \(\left.\left(\sim^{\mathcal{Q}}\left(\sim^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \sim^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right)\right\rangle\) by \(\operatorname{simp}\)
ultimately have
\(\vdash\left(\lambda z_{0} . \sim \mathcal{Q}\left(\sim \mathcal{Q} A \wedge^{\mathcal{Q}} \sim^{\mathcal{Q}} z_{o}\right)\right) \cdot B={ }_{o}\left(\lambda \mathfrak{x}_{o} . \lambda \mathfrak{y}_{o} . \sim \mathcal{Q}\left(\sim \mathcal{Q} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \sim^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right) \cdot A \cdot B\)
by (rule rule- \(R[\) where \(p=[«, », \ll]]\)) force +
moreover have \(\vdash\left(\lambda z_{0} \cdot \sim^{\mathcal{Q}}\left(\sim^{\mathcal{Q}} A \wedge^{\mathcal{Q}} \sim^{\mathcal{Q}} z_{o}\right)\right) \cdot B={ }_{o} \mathbf{S}\{(z, o) \mapsto B\}\left(\sim^{\mathcal{Q}}\left(\sim^{\mathcal{Q}} A \wedge^{\mathcal{Q}} \sim^{\mathcal{Q}} z_{o}\right)\right)\) by
(rule prop-5207)
```

        (
            fact, blast intro: assms(1), intro is-free-for-in-neg is-free-for-in-conj,
            use〈(z,o) & free-vars A〉 is-free-at-in-free-vars in <fastforce+>
        )
    moreover have S {(z,o) }->B}(~\mathcal{Q}(~\mp@subsup{\mathcal{N}}{}{\mathcal{Q}}A\wedge\mp@subsup{\wedge}{}{\mathcal{Q}}\mp@subsup{~}{}{\mathcal{Q}}\mp@subsup{z}{o}{}))=\mp@subsup{~}{}{\mathcal{Q}}(~~\mathcal{Q}A\mp@subsup{\wedge}{}{\mathcal{Q}}\mp@subsup{~}{}{\mathcal{Q}}B
    using free-var-singleton-substitution-neutrality[OF<(z,o)\not\in free-vars A〉] by simp
    ultimately have }\vdash(\lambda\mp@subsup{\mathfrak{x}}{0}{}.\lambda\mp@subsup{\mathfrak{y}}{0}{}.\mp@subsup{~}{}{\mathcal{Q}}(~\mathcal{Q}\mp@subsup{\mathfrak{x}}{0}{}\mp@subsup{\wedge}{}{\mathcal{Q}}~\mathcal{Q}\mp@subsup{\mathfrak{y}}{0}{}))\cdotA\cdotB=o~~\mathcal{Q}(~\mathcal{Q}A\mp@subsup{\wedge}{}{\mathcal{Q}}~\mathcal{Q}B
    using Equality-Rules(2,3) by metis
    then show ?thesis
    by simp
    qed
context begin
private lemma prop-5232-aux:
assumes }\vdash\mp@subsup{~}{~}{\mathcal{Q}}(A\wedge\mathcal{Q}B)=\mp@subsup{o}{0}{}
and}\vdash~\mp@subsup{~}{}{\mathcal{Q}}\mp@subsup{A}{}{\prime}=\mp@subsup{o}{o}{}A\mathrm{ and }\vdash~\mp@subsup{~}{}{\mathcal{Q}}\mp@subsup{B}{}{\prime}=\mp@subsup{o}{o}{}
shows }\vdash\mp@subsup{A}{}{\prime}\vee\mp@subsup{\vee}{}{\mathcal{Q}}\mp@subsup{B}{}{\prime}=\mp@subsup{}{o}{}
proof -
let ? D = ~}\mp@subsup{~}{}{\mathcal{Q}}(A\mp@subsup{\wedge}{}{\mathcal{Q}}B)=\mp@subsup{o}{o}{}
from assms(2) have }\vdash~\mp@subsup{~}{}{\mathcal{Q}}(~\mp@subsup{~}{}{\mathcal{Q}}\mp@subsup{A}{}{\prime}\mp@subsup{\wedge}{}{\mathcal{Q}}B)=\mp@subsup{o}{o}{}C(\mathrm{ is }<br>vdash\mathrm{ ?A1>)
by (rule rule-RR[OF disjI2, where p=[«,»,»,«,>] and C=?D])(use assms(1) in <force+>)
from assms(3) have}\vdash~\mathcal{Q}(~\mathcal{Q}\mp@subsup{A}{}{\prime}\mp@subsup{\wedge}{}{\mathcal{Q}}\mp@subsup{~}{}{\mathcal{Q}}\mp@subsup{B}{}{\prime})=\mp@subsup{}{o}{}
by (rule rule-RR[OF disjIN, where p=[«,»,»,»] and C=?A1]) (use <br>vdash ?A1\rangle in 〈force+>)
moreover from assms(2,3) have }\mp@subsup{A}{}{\prime}\inwffs\mp@subsup{s}{o}{}\mathrm{ and }\mp@subsup{B}{}{\prime}\inwffs\mp@subsup{s}{O}{
using hyp-derivable-form-is-wffso by (blast dest: wffs-from-equality wffs-from-neg)+
then have }\vdash\mp@subsup{A}{}{\prime}\vee\mp@subsup{\vee}{}{\mathcal{Q}}\mp@subsup{B}{}{\prime}=\mp@subsup{o}{o}{~\mathcal{Q}}(~\mathcal{Q}\mp@subsup{A}{}{\prime}\mp@subsup{\wedge}{}{\mathcal{Q}}\mp@subsup{~}{}{\mathcal{Q}}\mp@subsup{B}{}{\prime}
by (rule disj-op-alt-def-provability)
ultimately show ?thesis
using prop-5201-3 by blast
qed
proposition prop-5232:
shows }\vdash(\mp@subsup{T}{o}{}\vee\mp@subsup{\vee}{}{\mathcal{Q}}\mp@subsup{T}{o}{})=\mp@subsup{o}{o}{}\mp@subsup{T}{o}{
and}\vdash(\mp@subsup{T}{o}{}\mp@subsup{\vee}{}{\mathcal{Q}}\mp@subsup{F}{o}{})=\mp@subsup{o}{o}{}\mp@subsup{T}{o}{
and}\vdash(\mp@subsup{F}{o}{}\mp@subsup{\vee}{}{\mathcal{Q}}\mp@subsup{T}{o}{})=\mp@subsup{o}{o}{}\mp@subsup{T}{o}{
and}\vdash(Fo\vee\vee\mathcal{Q}\mp@subsup{F}{o}{})=\mp@subsup{o}{o}{}\mp@subsup{F}{o}{
proof -
from prop-5231(2) have }\vdash~\mathcal{Q}\mp@subsup{F}{o}{}=\mp@subsup{o}{o}{}\mp@subsup{T}{o}{}(\mathrm{ is }\langle\vdash? ?A〉)
from prop-5229(4) have }\vdash~~\mathcal{Q}(\mp@subsup{F}{o}{}\mp@subsup{\wedge}{}{\mathcal{Q}}\mp@subsup{F}{o}{o})=\mp@subsup{o}{o}{}\mp@subsup{T}{o}{
by (rule rule-RR[OF disjIN, where p=[«,»,>] and C=?A]) (use «\vdash ?A\rangle in <force+>)
from prop-5232-aux[OF this prop-5231(1) prop-5231(1)] show }\vdash(To\vee\mathcal{Q}\mp@subsup{T}{o}{})=o\mp@subsup{T}{o}{
from prop-5229(3) have }\vdash~~\mathcal{Q}(\mp@subsup{F}{o}{}\mp@subsup{\wedge}{}{\mathcal{Q}}\mp@subsup{T}{o}{})=\mp@subsup{o}{o}{}\mp@subsup{T}{o}{
by (rule rule-RR[OF disjIL, where p=[«,»,»] and C=?A])(use \langle\vdash?A\rangle in 〈force+>)
from prop-5232-aux[OF this prop-5231(1) prop-5231(2)] show }\vdash(T\mp@subsup{T}{o}{}\vee\mathcal{Q}\mp@subsup{F}{o}{})=\mp@subsup{o}{o}{}\mp@subsup{T}{o}{}
from prop-5229(2) have }\vdash~~\mathcal{Q}(\mp@subsup{T}{o}{}\mp@subsup{\wedge}{}{\mathcal{Q}}\mp@subsup{F}{o}{})=\mp@subsup{o}{o}{}\mp@subsup{T}{o}{
by (rule rule-RR[OF disjIN, where p=[«,»,»] and C=?A]) (use \langle\vdash ?A\rangle in 〈force+>)
from prop-5232-aux[OF this prop-5231(2) prop-5231(1)] show }\vdash(Fo\vee\vee\mathcal{Q}\mp@subsup{T}{o}{\prime})=o\mp@subsup{T}{o}{
next

```
```

from prop-5231(1) have $\vdash \sim^{\mathcal{Q}} T_{o}={ }_{o} F_{o}($ is $\langle\vdash$ ? $A\rangle)$.
from prop-5229 (1) have $\vdash \sim^{\mathcal{Q}}\left(T_{o} \wedge^{\mathcal{Q}} T_{o}\right)={ }_{o} F_{o}$
by (rule rule-RR[OF disjI2, where $p=[«, », »]$ and $C=? A]$ ) (use $\langle\vdash$ ? $A\rangle$ in $\langle$ force +$\rangle)$
from prop-5232-aux[OF this prop-5231(2) prop-5231(2)] show $\vdash\left(F_{o} \vee^{\mathcal{Q}} F_{o}\right)=o_{o} F_{o}$ 。
qed
end

```

\subsection*{6.34 Proposition 5233}

\section*{context begin}
private lemma lem-prop-5233-no-free-vars:
assumes \(A \in p w f f s\) and free-vars \(A=\{ \}\)
shows \(\left(\forall \varphi\right.\). is-tv-assignment \(\left.\varphi \longrightarrow \mathcal{V}_{B} \varphi A=\mathbf{T}\right) \longrightarrow \vdash A={ }_{o} T_{o}\left(\right.\) is ? \(\left.A_{T} \longrightarrow-\right)\)
and \(\left(\forall \varphi\right.\). is-tv-assignment \(\left.\varphi \longrightarrow \mathcal{V}_{B} \varphi A=\mathbf{F}\right) \longrightarrow \vdash A={ }_{o} F_{o}\left(\right.\) is ? \(\left.A_{F} \longrightarrow-\right)\)
proof -
from assms have \(\left(? A_{T} \longrightarrow \vdash A={ }_{o} T_{o}\right) \wedge\left(? A_{F} \longrightarrow \vdash A={ }_{o} F_{o}\right)\)
proof induction
case \(T\)-pwff
have \(\vdash T_{o}={ }_{o} T_{o}\) by (rule prop-5200[OF true-wff])
moreover have \(\forall \varphi\). is-tv-assignment \(\varphi \longrightarrow \mathcal{V}_{B} \varphi T_{o}=\mathbf{T}\) using \(\mathcal{V}_{B}-T\) by blast
then have \(\neg\left(\forall \varphi\right.\). is-tv-assignment \(\left.\varphi \longrightarrow \mathcal{V}_{B} \varphi T_{o}=\mathbf{F}\right)\) by (auto simp: inj-eq)
ultimately show ?case by blast
next
case \(F\)-pwff
have \(\vdash F_{o}={ }_{o} F_{o}\) by (rule prop-5200[OF false-wff])
moreover have \(\forall \varphi\). is-tv-assignment \(\varphi \longrightarrow \mathcal{V}_{B} \varphi F_{o}=\mathbf{F}\) using \(\mathcal{V}_{B}-F\) by blast
then have \(\neg\left(\forall \varphi\right.\). is-tv-assignment \(\left.\varphi \longrightarrow \mathcal{V}_{B} \varphi F_{o}=\mathbf{T}\right)\) by (auto simp: inj-eq)
ultimately show ?case by blast
next
case (var-pwff p) — impossible case
then show ?case
by \(\operatorname{simp}\)
next
case (neg-pwff \(B\))
from neg-pwff.hyps have \(\sim^{\mathcal{Q}} B \in\) pwffs and free-vars \(B=\{ \}\)
using neg-pwff.prems by (force, auto elim: free-vars-form.elims)
consider
(a) \(\forall \varphi\). is-tv-assignment \(\varphi \longrightarrow \mathcal{V}_{B} \varphi B=\mathbf{T}\)
|(b) \(\forall \varphi\). is-tv-assignment \(\varphi \longrightarrow \mathcal{V}_{B} \varphi B=\mathbf{F}\)
using closed－pwff－denotation－uniqueness［OF neg－pwff．hyps 〈free－vars \(B=\{ \}\rangle]\)
and neg－pwff．hyps［THEN \(\mathcal{V}_{B}\)－graph－denotation－is－truth－value \(\left[O F \quad \mathcal{V}_{B}\right.\)－graph－ \(\left.\left.\mathcal{V}_{B}\right]\right]\)
by（auto dest：tv－cases）metis
then show？case
proof cases
case \(a\)
with \(\langle\) free－vars \(B=\{ \}\rangle\) have \(\vdash T_{o}={ }_{o} B\)
using neg－pwff．IH and Equality－Rules（2）by blast
from prop－5231（1）［unfolded neg－def，folded equality－of－type－def］and this
have \(\vdash \sim \mathcal{Q}^{\mathcal{Q}} B={ }_{o} F_{o}\)
unfolding neg－def［folded equality－of－type－def］by（rule rule－\(R[\) where \(p=[«, », »]]\) ）force +
moreover from \(a\) have \(\forall \varphi\) ．is－tv－assignment \(\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(\sim^{\mathcal{Q}} B\right)=\mathbf{F}\)
using \(\mathcal{V}_{B}\)－neg \([\) OF neg－pwff．hyps \(]\) by simp
ultimately show ？thesis
by（auto simp：inj－eq）
next
case \(b\)
with \(\left\langle\right.\) free－vars \(B=\{ \}\) 〉 have \(\vdash F_{o}={ }_{o} B\)
using neg－pwff．IH and Equality－Rules（2）by blast
then have \(\vdash \sim^{\mathcal{Q}} B={ }_{o} T_{o}\)
unfolding neg－def［folded equality－of－type－def］
using rule－T（2）［OF hyp－derivable－form－is－wffso］by blast
moreover from \(b\) have \(\forall \varphi\) ．is－tv－assignment \(\varphi \longrightarrow \mathcal{V}_{B} \varphi(\sim \mathcal{Q} B)=\mathbf{T}\)
using \(\mathcal{V}_{B}\)－neg［OF neg－pwff．hyps］by simp
ultimately show ？thesis
by（auto simp：inj－eq）
qed
next
case（conj－pwff B C）
from conj－pwff．prems have free－vars \(B=\{ \}\) and free－vars \(C=\{ \}\)
by simp－all
with conj－pwff．hyps obtain \(b\) and \(b^{\prime}\)
where \(B\)－den：\(\forall \varphi\) ．is－tv－assignment \(\varphi \longrightarrow \mathcal{V}_{B} \varphi B=b\)
and \(C\)－den：\(\forall \varphi\) ．is－tv－assignment \(\varphi \longrightarrow \mathcal{V}_{B} \varphi C=b^{\prime}\)
using closed－pwff－denotation－uniqueness by metis
then have \(b \in\) elts \(\mathbb{B}\) and \(b^{\prime} \in\) elts \(\mathbb{B}\)
using closed－pwff－denotation－uniqueness［OF conj－pwff．hyps（1）＜free－vars \(B=\{ \}\rangle]\)
and closed－pwff－denotation－uniqueness［OF conj－pwff．hyps（2）〈free－vars \(C=\{ \}\rangle]\)
and conj－pwff．hyps［THEN \(\mathcal{V}_{B}\)－graph－denotation－is－truth－value \(\left[O F \quad \mathcal{V}_{B}\right.\)－graph－ \(\left.\left.\mathcal{V}_{B}\right]\right]\)
by force＋
with conj－pwff．hyps consider
（a）\(b=\mathbf{T}\) and \(b^{\prime}=\mathbf{T}\)
（b）\(b=\mathbf{T}\) and \(b^{\prime}=\mathbf{F}\)
（c）\(b=\mathbf{F}\) and \(b^{\prime}=\mathbf{T}\)
\(\mid(d) b=\mathbf{F}\) and \(b^{\prime}=\mathbf{F}\)
by auto
then show？case
proof cases
case \(a\)
from prop－5229（1）have \(\vdash T_{o} \wedge^{\mathcal{Q}} T_{o}={ }_{o} T_{o}(\) is \(\langle\vdash\) ？\(A 1\rangle)\) ．
from \(B\)－den［unfolded \(a(1)]\) and \(\left\langle\right.\) free－vars \(B=\{ \} 〉\) have \(\vdash B={ }_{o} T_{o}\) using conj－pwff．IH（1）by simp
then have \(\vdash B \wedge^{\mathcal{Q}} T_{o}={ }_{o} T_{o} \quad(\) is \(\langle\vdash ? A 2\rangle)\) by（rule rule－\(R R[\) OF disjI2，where \(p=[«, », «, »]\) and \(C=\) ？A1］）（use \(\langle\vdash\) ？A1〉 in 〈force＋〉）
from \(C\)－den［unfolded \(a(2)]\) and \(\left\langle\right.\) free－vars \(C=\{ \} 〉\) have \(\vdash C={ }_{o} T_{o}\) using conj－pwff．IH（2）by simp
then have \(\vdash B \wedge{ }^{\mathcal{Q}} C={ }_{o} T_{o}\) by（rule rule－RR［OF disjI2，where \(p=[«, », »]\) and \(C=\) ？A2］）（use \(\vdash\) ？A2 \(\rangle\) in 〈force +\(\rangle\) ）
then have \(\left(\forall \varphi\right.\) ．is－tv－assignment \(\left.\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \wedge^{\mathcal{Q}} C\right)=\mathbf{T}\right) \longrightarrow \vdash B \wedge^{\mathcal{Q}} C={ }_{o} T_{o}\) by blast
moreover have \(\forall \varphi\) ．is－tv－assignment \(\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \wedge^{\mathcal{Q}} C\right) \neq \mathbf{F}\) using \(\mathcal{V}_{B}\)－conj \([O F\) conj－pwff．hyps \(]\) and \(B\)－den［unfolded \(\left.a(1)\right]\) and \(C\)－den［unfolded \(\left.a(2)\right]\) by（auto simp：inj－eq）
ultimately show ？thesis
by force
next
case \(b\)
from prop－5229（2）have \(\vdash T_{o} \wedge^{\mathcal{Q}} F_{o}={ }_{o} F_{o}(\) is \(\langle\vdash\) ？\(A 1\rangle)\) ．
from \(B\)－den［unfolded \(b(1)]\) and \(\langle\) free－vars \(B=\{ \}\rangle\) have \(\vdash B={ }_{o} T_{o}\) using conj－pwff．IH（1）by simp
then have \(\vdash B \wedge^{\mathcal{Q}} F_{o}={ }_{o} F_{o} \quad(\) is \(\langle\vdash\) ？A2 \(\rangle)\) by（rule rule－\(R R[\) OF disjI2，where \(p=[«, », «, »]\) and \(C=\) ？A1］）（use \(\langle\vdash\) ？A1〉 in 〈force +\(\rangle\) ）
from \(C\)－den［unfolded \(b(2)]\) and \(\langle\) free－vars \(C=\{ \}\rangle\) have \(\vdash C={ }_{o} F_{o}\) using conj－pwff．IH（2）by simp
then have \(\vdash B \wedge^{\mathcal{Q}} C={ }_{o} F_{o}\) by（rule rule－RR［OF disjI2，where \(p=[«, », »]\) and \(C=\) ？A2］）（use 〈৮？A2〉 in 〈force +\(\rangle\) ）
then have \(\left(\forall \varphi\right.\) ．is－tv－assignment \(\left.\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \wedge^{\mathcal{Q}} C\right)=\mathbf{F}\right) \longrightarrow \vdash B \wedge^{\mathcal{Q}} C={ }_{o} F_{o}\) by blast
moreover have \(\forall \varphi\) ．is－tv－assignment \(\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \wedge^{\mathcal{Q}} C\right) \neq \mathbf{T}\) using \(\mathcal{V}_{B}\)－conj \([O F\) conj－pwff．hyps］and \(B\)－den［unfolded \(b\)（1）］and \(C\)－den［unfolded b（2）］ by（auto simp：inj－eq）
ultimately show ？thesis by force
next
case \(c\)
from prop－5229（3）have \(\vdash F_{o} \wedge^{\mathcal{Q}} T_{o}={ }_{o} F_{o}(\) is \(\langle\vdash\) ？A1 \(\rangle)\) ．
from \(B\)－den［unfolded \(c(1)]\) and \(\langle\) free－vars \(B=\{ \}\rangle\) have \(\vdash B={ }_{o} F_{o}\) using conj－pwff．IH（1）by simp
then have \(\vdash B \wedge^{\mathcal{Q}} T_{o}={ }_{o} F_{o} \quad\)（is \(\langle\vdash\) ？A2 \(\left.\rangle\right)\) by（rule rule－RR［OF disjI2，where \(p=[«, », \mu, »]\) and \(C=\) ？A1］）（use 〈ト？A1〉 in 〈force +\(\rangle\) ）
from \(C\)－den［unfolded \(c(2)]\) and \(\langle\) free－vars \(C=\{ \}\rangle\) have \(\vdash C={ }_{o} T_{o}\) using conj－pwff．IH（2）by simp
then have \(\vdash B \wedge^{\mathcal{Q}} C={ }_{o} F_{o}\) by（rule rule－\(R R[\) OF disjI2，where \(p=[«, », »]\) and \(C=\) ？A2］）（use \(\vdash \vdash\) ？A2〉 in 〈force＋〉）
then have \(\left(\forall \varphi\right.\) ．is－tv－assignment \(\left.\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \wedge^{\mathcal{Q}} C\right)=\mathbf{F}\right) \longrightarrow \vdash B \wedge^{\mathcal{Q}} C={ }_{o} F_{o}\) by blast
moreover have \(\forall \varphi\) ．is－tv－assignment \(\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \wedge^{\mathcal{Q}} C\right) \neq \mathbf{T}\) using \(\mathcal{V}_{B}\)－conj \([O F\) conj－pwff．hyps］and B－den［unfolded \(c(1)]\) and \(C\)－den［unfolded \(\left.c(2)\right]\)
```

        by (auto simp: inj-eq)
    ultimately show ?thesis
        by force
    next
    case \(d\)
    from prop-5229(4) have \(\vdash F_{o} \wedge^{\mathcal{Q}} F_{o}={ }_{o} F_{o}(\) is \(\langle\vdash\) ? \(A 1\rangle)\).
    from \(B\)-den [unfolded \(d(1)]\) and 〈free-vars \(B=\{ \}\rangle\) have \(\vdash B={ }_{o} F_{o}\)
        using conj-pwff.IH(1) by simp
    then have \(\vdash B \wedge^{\mathcal{Q}} F_{o}={ }_{o} F_{o} \quad(\) is \(\langle\vdash\) ? A2 \()\)
        by (rule rule- \(R\) R[OF disjI2, where \(p=[«, », «, »]\) and \(C=\) ?A1]) (use \(\langle\) ? A1〉 in 〈force +\(\rangle\) )
    from \(C\)-den[unfolded \(d(2)]\) and \(\left\langle\right.\) free-vars \(C=\{ \} 〉\) have \(\vdash C={ }_{o} F_{o}\)
        using conj-pwff.IH(2) by simp
    then have \(\vdash B \wedge^{\mathcal{Q}} C={ }_{o} F_{o}\)
        by (rule rule- \(R R[\) OF disjI2, where \(p=[«, », »]\) and \(C=\) ?A2]) (use \(\vdash\) ? A2〉 in 〈force+>)
    then have \(\left(\forall \varphi\right.\). is-tv-assignment \(\left.\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \wedge^{\mathcal{Q}} C\right)=\mathbf{F}\right) \longrightarrow \vdash B \wedge^{\mathcal{Q}} C={ }_{o} F_{o}\)
        by blast
    moreover have \(\forall \varphi\). is-tv-assignment \(\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \wedge^{\mathcal{Q}} C\right) \neq \mathbf{T}\)
        using \(\mathcal{V}_{B}\)-conj \([O F\) conj-pwff.hyps] and B-den[unfolded \(d(1)]\) and \(C\)-den[unfolded \(\left.d(2)\right]\)
        by (auto simp: inj-eq)
    ultimately show ?thesis
        by force
    qed
    next
case (disj-pwff $B C$ )
from disj-pwff.prems have free-vars $B=\{ \}$ and free-vars $C=\{ \}$
by simp-all
with disj-pwff.hyps obtain $b$ and $b^{\prime}$
where $B$-den: $\forall \varphi$. is-tv-assignment $\varphi \longrightarrow \mathcal{V}_{B} \varphi B=b$
and $C$-den: $\forall \varphi$. is-tv-assignment $\varphi \longrightarrow \mathcal{V}_{B} \varphi C=b^{\prime}$
using closed-pwff-denotation-uniqueness by metis
then have $b \in$ elts $\mathbb{B}$ and $b^{\prime} \in$ elts $\mathbb{B}$
using closed-pwff-denotation-uniqueness[OF disj-pwff.hyps(1)〈free-vars $B=\{ \}\rangle]$
and closed-pwff-denotation-uniqueness[OF disj-pwff.hyps(2) 〈free-vars $C=\{ \}\rangle]$
and disj-pwff.hyps[THEN $\mathcal{V}_{B}$-graph-denotation-is-truth-value $\left[O F \mathcal{V}_{B}\right.$-graph- $\left.\left.\mathcal{V}_{B}\right]\right]$
by force+
with disj-pwff.hyps consider
(a) $b=\mathbf{T}$ and $b^{\prime}=\mathbf{T}$
(b) $b=\mathbf{T}$ and $b^{\prime}=\mathbf{F}$
(c) $b=\mathbf{F}$ and $b^{\prime}=\mathbf{T}$
(d) $b=\mathbf{F}$ and $b^{\prime}=\mathbf{F}$
by auto
then show ?case
proof cases
case $a$
from prop-5232(1) have $\vdash T_{o} \vee^{\mathcal{Q}} T_{o}={ }_{o} T_{o}($ is $\langle\vdash ? A 1\rangle)$.
from $B$-den[unfolded $a(1)]$ and $\langle$ free-vars $B=\{ \}\rangle$ have $\vdash B={ }_{o} T_{o}$
using disj-pwff.IH(1) by simp
then have $\vdash B \vee^{\mathcal{Q}} T_{o}={ }_{o} T_{o}($ is $\langle\vdash$ ? A2 $\rangle)$
by (rule rule- $R$ R[OF disjI2, where $p=[«, », \mu, »]$ and $C=$ ?A1]) (use $\langle$ ? A1〉 in 〈force +$\rangle$ )

```
from \(C\)－den \([\) unfolded \(a(2)]\) and \(\langle\) free－vars \(C=\{ \}\rangle\) have \(\vdash C={ }_{o} T_{o}\) using disj－pwff．IH（2）by simp
then have \(\vdash B \vee^{\mathcal{Q}} C={ }_{o} T_{o}\) by（rule rule－RR［OF disjI2，where \(p=[«, »,>]\) and \(C=\) ？A2］）（use 〈卜 ？A2〉 in 〈force＋＞）
then have \(\left(\forall \varphi\right.\) ．is－tv－assignment \(\left.\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \vee^{\mathcal{Q}} C\right)=\mathbf{T}\right) \longrightarrow \vdash B \vee^{\mathcal{Q}} C={ }_{o} T_{o}\) by blast
moreover have \(\forall \varphi\) ．is－tv－assignment \(\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \vee^{\mathcal{Q}} C\right) \neq \mathbf{F}\)
using \(\mathcal{V}_{B}\)－disj \([\) OF disj－puff．hyps］and \(B\)－den［unfolded \(a(1)]\) and \(C\)－den［unfolded \(\left.a(2)\right]\)
by（auto simp：inj－eq）
ultimately show？thesis
by force
next
case \(b\)
from prop－5232（2）have \(\vdash T_{o} \vee^{\mathcal{Q}} F_{o}={ }_{o} T_{o}(\) is \(\langle\vdash\) ？A1〉）．
from \(B\)－den［unfolded \(b(1)]\) and \(\langle\) free－vars \(B=\{ \}\rangle\) have \(\vdash B={ }_{o} T_{o}\) using disj－pwff．IH（1）by simp
then have \(\vdash B \vee^{\mathcal{Q}} F_{o}={ }_{o} T_{o}(\) is \(\langle\vdash\) ？\(A 2\rangle)\) by（rule rule－RR［OF disjI2，where \(p=[«, », «,\rangle\),\(] and C=? A 1]\) ）（use \(\langle\vdash\) ？A1 〉 in \(\langle\) force + ）
from \(C\)－den \([\) unfolded \(b(2)]\) and \(\langle\) free－vars \(C=\{ \}\rangle\) have \(\vdash C={ }_{o} F_{o}\) using disj－pwff．IH（2）by simp
then have \(\vdash B \vee^{\mathcal{Q}} C={ }_{o} T_{o}\) by（rule rule－RR［OF disjI2，where \(p=[«, »,>]\) and \(C=\) ？A2］）（use \(\langle\vdash\) ？A2〉 in 〈force＋＞）
then have \(\left(\forall \varphi\right.\) ．is－tv－assignment \(\left.\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \vee^{\mathcal{Q}} C\right)=\mathbf{T}\right) \longrightarrow \vdash B \vee^{\mathcal{Q}} C={ }_{o} T_{o}\) by blast
moreover have \(\forall \varphi\) ．is－tv－assignment \(\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \vee^{\mathcal{Q}} C\right) \neq \mathbf{F}\) using \(\mathcal{V}_{B}\)－disj［OF disj－pwff．hyps］and \(B\)－den［unfolded b（1）］and \(C\)－den［unfolded \(\left.b(2)\right]\) by（auto simp：inj－eq）
ultimately show？thesis by force
next
case \(c\)
from prop－5232（3）have \(\vdash F_{o} \vee^{\mathcal{Q}} T_{o}={ }_{o} T_{o}(\) is \(\langle\vdash\) ？A1〉）．
from \(B\)－den［unfolded \(c(1)]\) and \(\left\langle\right.\) free－vars \(B=\{ \}\) 〉 have \(\vdash B={ }_{o} F_{o}\) using disj－pwff．IH（1）by simp
then have \(\vdash B \vee^{\mathcal{Q}} T_{o}={ }_{o} T_{o}(\) is \(\langle\vdash\) ？A2 \(\rangle)\) by（rule rule－RR［OF disjI2，where \(p=[«, », «,\rangle\),\(] and C=\) ？A1］）（use \(\downarrow \vdash\) ？A1〉 in 〈force＋＞）
from \(C\)－den \([\) unfolded \(c(2)]\) and \(\langle\) free－vars \(C=\{ \}\rangle\) have \(\vdash C={ }_{o} T_{o}\) using disj－pwff．IH（2）by simp
then have \(\vdash B \vee^{\mathcal{Q}} C={ }_{o} T_{o}\) by（rule rule－RR［OF disjI2，where \(p=[«, », \gg\) and \(C=\) ？A2］）（use \(\langle\vdash\) ？A2〉 in 〈force＋＞）
then have \(\left(\forall \varphi\right.\) ．is－tv－assignment \(\left.\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \vee^{\mathcal{Q}} C\right)=\mathbf{T}\right) \longrightarrow \vdash B \vee^{\mathcal{Q}} C={ }_{o} T_{o}\) by blast
moreover have \(\forall \varphi\) ．is－tv－assignment \(\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \vee^{\mathcal{Q}} C\right) \neq \mathbf{F}\)
using \(\mathcal{V}_{B}\)－disj \([O F\) disj－puff．hyps］and \(B\)－den \([\) unfolded \(c(1)]\) and \(C\)－den \([\) unfolded \(c(2)]\)
by（auto simp：inj－eq）
ultimately show？？thesis by force
next
case \(d\)
from prop－5232（4）have \(\vdash F_{o} \vee^{\mathcal{Q}} F_{o}={ }_{o} F_{o}(\) is \(\langle\vdash ? A 1\rangle)\) ．
from \(B\)－den［unfolded \(d(1)]\) and \(\langle\) free－vars \(B=\{ \}\rangle\) have \(\vdash B={ }_{o} F_{o}\) using disj－pwff．IH（1）by simp
then have \(\vdash B \vee^{\mathcal{Q}} F_{o}={ }_{o} F_{o}(\) is \(\langle\vdash\) ？A2 \(\rangle)\) by（rule rule－\(R R[\) OF disjI2，where \(p=[«, », «, »]\) and \(C=\) ？A1］\()\)（use \(\langle\vdash\) ？A1〉 in 〈force＋〉）
from \(C\)－den［unfolded \(d(2)]\) and \(\left\langle\right.\) free－vars \(C=\{ \} 〉\) have \(\vdash C={ }_{o} F_{o}\) using disj－pwff．IH（2）by simp
then have \(\vdash B \vee \mathcal{Q} C={ }_{o} F_{o}\) by（rule rule－\(R\) R［OF disjI2，where \(p=[«, », »]\) and \(C=\) ？A2］）（use 〈ト？A2〉 in 〈force＋〉）
then have \(\left(\forall \varphi\right.\) ．is－tv－assignment \(\left.\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \vee^{\mathcal{Q}} C\right)=\mathbf{T}\right) \longrightarrow \vdash B \vee^{\mathcal{Q}} C={ }_{o} F_{o}\) by blast
moreover have \(\forall \varphi\) ．is－tv－assignment \(\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \vee^{\mathcal{Q}} C\right) \neq \mathbf{T}\)
using \(\mathcal{V}_{B}\)－disj［OF disj－pwff．hyps］and B－den［unfolded d（1）］and C－den［unfolded d（2）］
by（auto simp：inj－eq）
ultimately show ？thesis
using \(\left\langle\vdash \vee^{\mathcal{Q}} C={ }_{o} F_{o}\right\rangle\) by auto
qed
next
case（imp－pwff BC）
from imp－pwff．prems have free－vars \(B=\{ \}\) and free－vars \(C=\{ \}\)
by simp－all
with imp－pwff．hyps obtain \(b\) and \(b^{\prime}\)
where \(B\)－den：\(\forall \varphi\) ．is－tv－assignment \(\varphi \longrightarrow \mathcal{V}_{B} \varphi B=b\)
and \(C\)－den：\(\forall \varphi\) ．is－tv－assignment \(\varphi \longrightarrow \mathcal{V}_{B} \varphi C=b^{\prime}\)
using closed－pwff－denotation－uniqueness by metis
then have \(b \in\) elts \(\mathbb{B}\) and \(b^{\prime} \in\) elts \(\mathbb{B}\)
using closed－pwff－denotation－uniqueness［OF imp－pwff．hyps（1）〈free－vars \(B=\{ \}\rangle]\)
and closed－pwff－denotation－uniqueness［OF imp－pwff．hyps（2）＜free－vars \(C=\{ \}\rangle]\)
and imp－pwff．hyps［THEN \(\mathcal{V}_{B}\)－graph－denotation－is－truth－value \(\left[O F \mathcal{V}_{B}\right.\)－graph－ \(\left.\left.\mathcal{V}_{B}\right]\right]\)
by force＋
with imp－pwff．hyps consider
（a）\(b=\mathbf{T}\) and \(b^{\prime}=\mathbf{T}\)
（ \(b\) ）\(b=\mathbf{T}\) and \(b^{\prime}=\mathbf{F}\)
（c）\(b=\mathbf{F}\) and \(b^{\prime}=\mathbf{T}\)
\(\mid(d) b=\mathbf{F}\) and \(b^{\prime}=\mathbf{F}\)
by auto
then show？case
proof cases
case \(a\)
from prop－5228（1）have \(\vdash T_{o} \supset^{\mathcal{Q}} T_{o}={ }_{o} T_{o}(\) is \(\langle\vdash ? A 1\rangle)\).
from \(B\)－den［unfolded \(a(1)]\) and \(\langle\) free－vars \(B=\{ \}\rangle\) have \(\vdash B={ }_{o} T_{o}\)
using imp－pwff．IH（1）by simp
then have \(\vdash B \supset^{\mathcal{Q}} T_{o}={ }_{o} T_{o}(\) is \(\langle\vdash\) ？A2 \(\rangle)\)
by（rule rule－\(R R[\) OF disjI2，where \(p=[«, », «, »]\) and \(C=\) ？A1］）（use \(\langle\vdash\) ？A1〉 in 〈force＋〉）
from \(C\)－den［unfolded \(a(2)]\) and 〈free－vars \(C=\{ \}\rangle\) have \(\vdash C={ }_{o} T_{o}\)
using imp－pwff．IH（2）by simp
then have \(\vdash B \supset^{\mathcal{Q}} C={ }_{o} T_{o}\)
by（rule rule－RR［OF disjI2，where \(p=[«, », »]\) and \(C=\) ？A2］）（use 〈 \(\vdash\) ？A2〉 in 〈force＋＞）
then have \(\left(\forall \varphi\right.\) ．is－tv－assignment \(\left.\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \supset^{\mathcal{Q}} C\right)=\mathbf{T}\right) \longrightarrow \vdash B \supset^{\mathcal{Q}} C={ }_{o} T_{o}\)
by blast
moreover have \(\forall \varphi\) ．is－tv－assignment \(\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \supset^{\mathcal{Q}} C\right) \neq \mathbf{F}\)
using \(\mathcal{V}_{B}-i m p[O F\) imp－pwff．hyps］and \(B\)－den［unfolded \(a(1)]\) and \(C\)－den［unfolded \(\left.a(2)\right]\)
by（auto simp：inj－eq）
ultimately show ？thesis
by force
next
case \(b\)
from prop－5228（2）have \(\vdash T_{o} \supset^{\mathcal{Q}} F_{o}={ }_{o} F_{o}(\) is \(\langle\vdash\) ？A1 〉）．
from \(B\)－den［unfolded \(b(1)]\) and 〈free－vars \(B=\{ \}\rangle\) have \(\vdash B={ }_{o} T_{o}\) using imp－pwff．IH（1）by simp
then have \(\vdash B \supset^{\mathcal{Q}} F_{o}={ }_{o} F_{o}(\) is \(\langle\vdash\) ？A2 \(\rangle)\)
by（rule rule－RR［OF disjI2，where \(p=[«, », «, »]\) and \(C=? A 1]\) ）（use 〈ト？A1〉 in \(\langle\) force +\(\rangle\) ）
from \(C\)－den［unfolded \(b(2)]\) and \(\langle\) free－vars \(C=\{ \}\rangle\) have \(\vdash C={ }_{o} F_{o}\)
using imp－pwff．IH（2）by simp
then have \(\vdash B \supset^{\mathcal{Q}} C={ }_{o} F_{o}\)
by（rule rule－RR［OF disjI2，where \(p=[«, », »]\) and \(C=\) ？A2］）（use 〈৮？A2〉 in 〈force +\(\rangle\) ）
then have \(\left(\forall \varphi\right.\) ．is－tv－assignment \(\left.\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \supset^{\mathcal{Q}} C\right)=\mathbf{F}\right) \longrightarrow \vdash B \supset^{\mathcal{Q}} C={ }_{o} F_{o}\) by blast
moreover have \(\forall \varphi\) ．is－tv－assignment \(\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \supset^{\mathcal{Q}} C\right) \neq \mathbf{T}\)
using \(\mathcal{V}_{B}-i m p[O F\) imp－pwff．hyps］and \(B\)－den［unfolded \(b(1)]\) and \(C\)－den［unfolded b（2）］
by（auto simp：inj－eq）
ultimately show ？thesis
by force
next
case \(c\)
from prop－5228（3）have \(\vdash F_{o} \supset^{\mathcal{Q}} T_{o}={ }_{o} T_{o}(\) is \(\langle\vdash\) ？A1〉）．
from \(B\)－den［unfolded \(c(1)]\) and 〈free－vars \(B=\{ \}\rangle\) have \(\vdash B={ }_{o} F_{o}\) using imp－pwff．IH（1）by simp
then have \(\vdash B \supset^{\mathcal{Q}} T_{o}={ }_{o} T_{o}\)（is \(\langle\vdash\) ？A2 \(\left.\rangle\right)\) by（rule rule－\(R R[\) OF disjI2，where \(p=[«, », «, »]\) and \(C=? A 1]\) ）（use \(\langle\vdash\) ？A1〉 in 〈force＋〉）
from \(C\)－den［unfolded \(c(2)]\) and \(\left\langle\right.\) free－vars \(C=\{ \} 〉\) have \(\vdash C={ }_{o} T_{o}\) using imp－pwff．IH（2）by simp
then have \(\vdash B \supset^{\mathcal{Q}} C={ }_{o} T_{o}\)
 by (rule rule-RR[OF disjI2, where \(p=[«, », »]\) and \(C=\) ?A2]) (use \(\forall\) ? A2〉 in 〈force +)
then have \(\left(\forall \varphi\right.\) ．is－tv－assignment \(\left.\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \supset^{\mathcal{Q}} C\right)=\mathbf{T}\right) \longrightarrow \vdash B \supset^{\mathcal{Q}} C={ }_{o} T_{o}\) by blast
moreover have \(\forall \varphi\) ．is－tv－assignment \(\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \supset^{\mathcal{Q}} C\right) \neq \mathbf{F}\)
using \(\mathcal{V}_{B}-i m p[O F\) imp－pwff．hyps］and \(B\)－den［unfolded \(c(1)]\) and \(C\)－den［unfolded \(\left.c(2)\right]\)
by（auto simp：inj－eq）
ultimately show ？thesis by force
next
case \(d\)
from prop－5228（4）have \(\vdash F_{o} \supset^{\mathcal{Q}} F_{o}={ }_{o} T_{o}(\) is \(\langle\vdash\) ？A1〉）．
from \(B\)－den［unfolded \(d(1)]\) and 〈free－vars \(B=\{ \}\rangle\) have \(\vdash B={ }_{o} F_{o}\) using imp－pwff．IH（1）by simp
then have \(\vdash B \supset^{\mathcal{Q}} F_{o}={ }_{o} T_{o}(\) is \(\langle\vdash ? A 2\rangle)\) by（rule rule－RR［OF disjI2，where \(p=[«, », «, »]\) and \(C=? A 1]\) ）（use \(\vdash\) ？\(A 1\rangle\) in \(\langle\) force +\(\rangle)\)
```

    from \(C\)-den[unfolded \(d(2)]\) and \(\left\langle\right.\) free-vars \(C=\{ \} 〉\) have \(\vdash C={ }_{o} F_{o}\)
        using imp-pwff.IH(2) by simp
    then have \(\vdash B \supset^{\mathcal{Q}} C={ }_{o} T_{o}\)
        by (rule rule- \(R\) R [OF disjI2, where \(p=[«\), »,»] and \(C=\) ?A2]) (use \(\langle\vdash\) ? A2〉 in 〈force+〉)
    then have \(\left(\forall \varphi\right.\). is-tv-assignment \(\left.\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \supset^{\mathcal{Q}} C\right)=\mathbf{T}\right) \longrightarrow \vdash B \supset^{\mathcal{Q}} C={ }_{o} T_{o}\)
        by blast
    moreover have \(\forall \varphi\). is-tv-assignment \(\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \supset^{\mathcal{Q}} C\right) \neq \mathbf{F}\)
        using \(\mathcal{V}_{B}\)-imp \([O F\) imp-pwff.hyps] and B-den[unfolded \(d(1)]\) and \(C\)-den[unfolded \(\left.d(2)\right]\)
        by (auto simp: inj-eq)
    ultimately show ?thesis
        by force
    qed
    next
case (eqv-pwff $B C$ )
from eqv-pwff.prems have free-vars $B=\{ \}$ and free-vars $C=\{ \}$
by simp-all
with eqv-pwff.hyps obtain $b$ and $b^{\prime}$
where $B$-den: $\forall \varphi$. is-tv-assignment $\varphi \longrightarrow \mathcal{V}_{B} \varphi B=b$
and $C$-den: $\forall \varphi$. is-tv-assignment $\varphi \longrightarrow \mathcal{V}_{B} \varphi C=b^{\prime}$
using closed-pwff-denotation-uniqueness by metis
then have $b \in$ elts $\mathbb{B}$ and $b^{\prime} \in$ elts $\mathbb{B}$
using closed-pwff-denotation-uniqueness[OF eqv-pwff.hyps(1)〈free-vars $B=\{ \}\rangle]$
and closed-pwff-denotation-uniqueness[OF eqv-pwff.hyps(2) <free-vars $C=\{ \}\rangle]$
and eqv-pwff.hyps[THEN $\mathcal{V}_{B}$-graph-denotation-is-truth-value[OF $\mathcal{V}_{B}$-graph- $\left.\left.\mathcal{V}_{B}\right]\right]$
by force+
with eqv-pwff.hyps consider
(a) $b=\mathbf{T}$ and $b^{\prime}=\mathbf{T}$
(b) $b=\mathbf{T}$ and $b^{\prime}=\mathbf{F}$
(c) $b=\mathbf{F}$ and $b^{\prime}=\mathbf{T}$
(d) $b=\mathbf{F}$ and $b^{\prime}=\mathbf{F}$
by auto
then show ?case
proof cases
case $a$
from prop-5230(1) have $\vdash\left(T_{o} \equiv \mathcal{Q} T_{o}\right)={ }_{o} T_{o}($ is $\langle\vdash$ ? $A 1\rangle)$.
from $B$-den[unfolded $a(1)]$ and 〈free-vars $B=\{ \}\rangle$ have $\vdash B={ }_{o} T_{o}$
using eqv-pwff.IH(1) by simp
then have $\vdash\left(B \equiv{ }^{\mathcal{Q}} T_{o}\right)={ }_{o} T_{o}($ is $\langle\vdash$ ? A2 〉 $)$
by (rule rule- $R$ R [OF disjI2, where $p=[«, », \mu, »]$ and $C=$ ?A1]) (use 〈ト?A1〉 in 〈force+〉)
from $C$-den[unfolded $a(2)]$ and $\langle$ free-vars $C=\{ \}\rangle$ have $\vdash C={ }_{o} T_{o}$
using eqv-pwff.IH(2) by simp
then have $\vdash\left(B \equiv{ }^{\mathcal{Q}} C\right)={ }_{o} T_{o}$
by (rule rule- $R$ R $[O F$ disjI2, where $p=[«, », »]$ and $C=$ ?A2]) (use 〈ト ?A2〉 in 〈force+>)
then have $\left(\forall \varphi\right.$. is-tv-assignment $\left.\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \equiv{ }^{\mathcal{Q}} C\right)=\mathbf{T}\right) \longrightarrow \vdash\left(B \equiv{ }^{\mathcal{Q}} C\right)={ }_{o} T_{o}$
by blast
moreover have $\forall \varphi$. is-tv-assignment $\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \equiv{ }^{\mathcal{Q}} C\right) \neq \mathbf{F}$
using $\mathcal{V}_{B^{-}}$eqv $[O F$ eqv-pwff.hyps] and $B$-den[unfolded $a(1)]$ and $C$-den[unfolded $\left.a(2)\right]$
by (auto simp: inj-eq)
ultimately show ?thesis

```
```

    by force
    next
case $b$
from prop-5230(2) have $\vdash\left(T_{o} \equiv{ }^{\mathcal{Q}} F_{o}\right)={ }_{o} F_{o}($ is $\langle\vdash$ ? A1 〉).
from $B$-den [unfolded $b(1)]$ and 〈free-vars $B=\{ \}\rangle$ have $\vdash B={ }_{o} T_{o}$
using eqv-pwff.IH (1) by simp
then have $\vdash\left(B \equiv{ }^{\mathcal{Q}} F_{o}\right)={ }_{o} F_{o}($ is $\langle\vdash$ ? A2 $\rangle)$
by (rule rule-RR[OF disjI2, where $p=[«, », \mu, »]$ and $C=$ ?A1]) (use 〈৮?A1〉 in 〈force +$\rangle$ )
from $C$-den[unfolded b(2)] and 〈free-vars $C=\{ \}\rangle$ have $\vdash C={ }_{o} F_{o}$
using eqv-pwff.IH(2) by simp
then have $\vdash\left(B \equiv{ }^{\mathcal{Q}} C\right)={ }_{o} F_{o}$
by (rule rule-RR[OF disjI2, where $p=[«, », »]$ and $C=$ ?A2 $]$ ) (use 〈ト?A2〉 in 〈force+>)
then have $\left(\forall \varphi\right.$. is-tv-assignment $\left.\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \equiv^{\mathcal{Q}} C\right)=\mathbf{F}\right) \longrightarrow \vdash\left(B \equiv{ }^{\mathcal{Q}} C\right)={ }_{o} F_{o}$
by blast
moreover have $\forall \varphi$. is-tv-assignment $\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \equiv{ }^{\mathcal{Q}} C\right) \neq \mathbf{T}$
using $\mathcal{V}_{B}$-eqv[OF eqv-pwff.hyps] and B-den[unfolded b(1)] and $C$-den[unfolded b(2)]
by (auto simp: inj-eq)
ultimately show ?thesis
by force
next
case $c$
from prop-5230(3) have $\vdash\left(F_{o} \equiv{ }^{\mathcal{Q}} T_{o}\right)={ }_{o} F_{o}($ is $\langle\vdash$ ? $A 1\rangle)$.
from $B$-den[unfolded $c(1)]$ and 〈free-vars $B=\{ \}\rangle$ have $\vdash B={ }_{o} F_{o}$
using eqv-pwff.IH(1) by simp
then have $\vdash\left(B \equiv{ }^{\mathcal{Q}} T_{o}\right)={ }_{o} F_{o}($ is $\langle\vdash$ ? A2 $\rangle)$
by (rule rule-RR[OF disjI2, where $p=[«, », «, »]$ and $C=$ ?A1]) (use $\vdash$ ? A1〉 in 〈force $+>$ )
from $C$-den[unfolded $c(2)]$ and $\langle$ free-vars $C=\{ \}\rangle$ have $\vdash C={ }_{o} T_{o}$
using eqv-pwff.IH(2) by simp
then have $\vdash\left(B \equiv{ }^{\mathcal{Q}} C\right)={ }_{o} F_{o}$
by (rule rule- $R R[$ OF disjI2, where $p=[«, », »]$ and $C=$ ?A2 $]$ ) (use $\langle\vdash$ ?A2〉 in 〈force+〉)
then have $\left(\forall \varphi\right.$. is-tv-assignment $\left.\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \equiv^{\mathcal{Q}} C\right)=\mathbf{F}\right) \longrightarrow \vdash\left(B \equiv{ }^{\mathcal{Q}} C\right)={ }_{o} F_{o}$
by blast
moreover have $\forall \varphi$. is-tv-assignment $\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \equiv{ }^{\mathcal{Q}} C\right) \neq \mathbf{T}$
using $\mathcal{V}_{B}$-eqv[OF eqv-pwff.hyps] and B-den[unfolded $\left.c(1)\right]$ and $C$-den[unfolded $\left.c(2)\right]$
by (auto simp: inj-eq)
ultimately show ?thesis
by force
next
case $d$
from prop-5230(4) have $\vdash\left(F_{o} \equiv{ }^{\mathcal{Q}} F_{o}\right)={ }_{o} T_{o}($ is $\langle\vdash$ ? $A 1\rangle)$.
from $B$-den [unfolded $d(1)]$ and 〈free-vars $B=\{ \}\rangle$ have $\vdash B={ }_{o} F_{o}$
using eqv-pwff.IH(1) by simp
then have $\vdash\left(B \equiv{ }^{\mathcal{Q}} F_{o}\right)={ }_{o} T_{o}($ is $\langle\vdash$ ? A2 $\rangle)$
by (rule rule- $R$ R [OF disjI2, where $p=[«, », \mu, »]$ and $C=$ ?A1]) (use 〈卜 ?A1〉 in 〈force +$\rangle$ )
from $C$-den[unfolded $d(2)]$ and $\left\langle\right.$ free-vars $C=\{ \} 〉$ have $\vdash C={ }_{o} F_{o}$
using eqv-pwff.IH(2) by simp
then have $\vdash\left(B \equiv{ }^{\mathcal{Q}} C\right)={ }_{o} T_{o}$
by (rule rule- $R$ R[OF disjI2, where $p=[«, », »]$ and $C=$ ?A2 $]$ ) (use $\langle\vdash$ ?A2〉 in 〈force+〉)
then have $\left(\forall \varphi\right.$. is-tv-assignment $\left.\varphi \longrightarrow \mathcal{V}_{B} \varphi\left(B \equiv{ }^{\mathcal{Q}} C\right)=\mathbf{T}\right) \longrightarrow \vdash\left(B \equiv{ }^{\mathcal{Q}} C\right)={ }_{o} T_{o}$

```
```

            by blast
            moreover have }\forall\varphi\mathrm{ . is-tv-assignment }\varphi\longrightarrow\mp@subsup{\mathcal{V}}{B}{}\varphi(B\equiv\mp@subsup{\equiv}{}{\mathcal{Q}}C)\not=\mathbf{F
            using \mp@subsup{\mathcal{V}}{B}{}\mathrm{ -eqv[OF eqv-pwff.hyps] and B-den[unfolded d(1)] and C-den[unfolded d(2)]}]
            by (auto simp: inj-eq)
        ultimately show ?thesis
            by force
        qed
    qed
    ```

```

        by blast+
    qed
proposition prop-5233:
assumes is-tautology A
shows }\vdash
proof -
have finite (free-vars A)
using free-vars-form-finiteness by presburger
from this and assms show ?thesis
proof (induction free-vars A arbitrary: A)
case empty
from empty(2) have }A\inpwffs and \forall\varphi.is-tv-assignment \varphi\longrightarrow\mathcal{V}\mp@subsup{\mathcal{V}}{B}{}\varphiA=\mathbf{T
unfolding is-tautology-def by blast+
with empty(1) have }\vdashA=\mp@subsup{o}{o}{}\mp@subsup{T}{o}{
using lem-prop-5233-no-free-vars(1) by (simp only:)
then show ?case
using rule-T(2)[OF tautology-is-wffo[OF empty(2)]] by (simp only:)
next
case (insert v F)
from insert.prems have A\inpwffs
by blast
with insert.hyps(4) obtain p where v=(p,o)
using pwffs-free-vars-are-propositional by blast
from }\langlev=(p,o)\rangle\mathrm{ and insert.hyps(4) have
is-tautology (\mathbf{S}{(p,o)\mapsto\mp@subsup{T}{o}{}}A) and is-tautology (S {(p,o) \mapstoF Fo}A)
using pwff-substitution-tautology-preservation [OF insert.prems] by blast+
moreover from insert.hyps(2,4) and }\langlev=(p,o)\rangle and \langleA\inpwffs
have free-vars (S {(p,o) \mapsto To} A)=F and free-vars (\mathbf{S}{(p,o)\longmapsto\mp@subsup{F}{o}{}}A)=F
using closed-pwff-substitution-free-vars and T-pwff and F-pwff and T-fv and F-fv
by (metis Diff-insert-absorb insertI1)+
ultimately have}\vdash\mathbf{S}{(p,o)\longmapsto\mp@subsup{T}{o}{}}A\mathrm{ and }\vdash\mathbf{S}{(p,o)\longmapsto\mp@subsup{F}{o}{}}
using insert.hyps(3) by (simp-all only:)
from this and tautology-is-wffo[OF insert.prems] show ?case
by (rule Cases)
qed
qed
end

```

\section*{6．35 Proposition 5234 （Rule P）}

According to the proof in \([2]\) ，if \(\left[A^{1} \wedge \cdots \wedge A^{n}\right] \supset B\) is tautologous，then clearly \(A^{1} \supset\left(\ldots\left(A^{n} \supset\right.\right.\) \(B) \ldots\) ）is also tautologous．Since this is not clear to us，we prove instead the version of Rule P found in［1］：
proposition tautologous－horn－clause－is－hyp－derivable：
assumes is－hyps \(\mathcal{H}\) and is－hyps \(\mathcal{G}\)
and \(\forall A \in \mathcal{G} . \mathcal{H} \vdash A\)
and lset \(h s=\mathcal{G}\)
and is－tautologous \(\left(h s \supset^{\mathcal{Q}}{ }_{\star} B\right)\)
shows \(\mathcal{H} \vdash B\)
proof－
from \(\operatorname{assms}(5)\) obtain \(\vartheta\) and \(C\) where is－tautology \(C\)
and is－substitution \(\vartheta\)
and \(\forall(x, \alpha) \in\) fmdom \(^{\prime} \vartheta . \alpha=o\)
and \(h s \supset^{\mathcal{Q}}{ }_{\star} B=\mathbf{S} \vartheta C\)
by blast
then have \(\vdash h s \supset^{\mathcal{Q}}{ }_{\star} B\)
proof（cases \(\vartheta=\{\$ \$\}\) ）
case True
with \(\left\langle h s \supset^{\mathcal{Q}}{ }_{\star} B=\mathbf{S} \vartheta C\right\rangle\) have \(C=h s \supset^{\mathcal{Q}_{\star}} B\) using empty－substitution－neutrality by simp
with \(\left\langle h s \supset^{\mathcal{Q}}{ }_{\star} B=\mathbf{S} \vartheta C\right\rangle\) and \(\langle i s-t a u t o l o g y ~ C\rangle\) show ？thesis using prop－5233 by（simp only：）
next
case False
from 〈is－tautology \(C\) 〉 have \(\vdash C\) and \(C \in\) pwffs using prop－5233 by simp－all
moreover have
\(\forall v \in\) fmdom＇\(^{\prime} \vartheta\) ．var－name \(v \notin\) free－var－names \((\}::\) form set \() \wedge\) is－free－for \((\vartheta \$ \$!v) v C\)
proof
fix \(v\)
assume \(v \in\) fmdom＇\(^{\prime} \vartheta\)
then show var－name \(v \notin\) free－var－names \((\}::\) form set \() \wedge i s\)－free－for（ \(\vartheta \$ \$!v) v C\) proof（cases \(v \in\) free－vars \(C\) ）
case True
with \(\langle C \in\) pwffs \(\rangle\) show ？thesis
using is－free－for－in－pwff by simp
next
case False
then have is－free－for（ \(\vartheta \$ \$!v\) ）v \(C\)
unfolding is－free－for－def using is－free－at－in－free－vars by blast
then show ？thesis
by \(\operatorname{simp}\)

\section*{qed}
qed
ultimately show ？thesis
using False and 〈is－substitution \(\vartheta\rangle\) and \(S u b\)
```

        by (simp add: <hs 犊 }\mp@subsup{\star}{}{\prime}B=\mathbf{S}\varthetaC`[unfolded generalized-imp-op-def]
    qed
    from this and assms(1) have \mathcal{H}\vdashhs \supset\mp@subsup{}{}{\mathcal{Q}}\mp@subsup{}{\star}{}B
        by (rule derivability-implies-hyp-derivability)
    with assms(3,4) show ?thesis
        using generalized-modus-ponens by blast
    qed
corollary tautologous-is-hyp-derivable:
assumes is-hyps }\mathcal{H
and is-tautologous B
shows }\mathcal{H}\vdash
using assms and tautologous-horn-clause-is-hyp-derivable[where \mathcal{G}={}] by simp
lemmas prop-5234 = tautologous-horn-clause-is-hyp-derivable tautologous-is-hyp-derivable
lemmas rule-P = prop-5234

```

\section*{6．36 Proposition 5235}
proposition prop－5235：
assumes \(A \in p w f f s\) and \(B \in p w f f s\)
and \((x, \alpha) \notin\) free－vars \(A\)
shows \(\vdash \forall x_{\alpha} .\left(A \vee^{\mathcal{Q}} B\right) \supset^{\mathcal{Q}}\left(A \vee \mathcal{Q} \forall x_{\alpha} . B\right)\)
proof－
have \(\S 1: \vdash \forall x_{\alpha} .\left(T_{o} \vee^{\mathcal{Q}} B\right) \supset^{\mathcal{Q}}\left(T_{o} \vee^{\mathcal{Q}} \forall x_{\alpha} . B\right)\)
proof（intro rule－\(P(2)\) ）
show is－tautologous \(\left(\forall x_{\alpha} .\left(T_{o} \vee^{\mathcal{Q}} B\right) \supset^{\mathcal{Q}} T_{o} \vee^{\mathcal{Q}} \forall x_{\alpha}\right.\) ．B）
proof－
let ？\(\vartheta=\left\{(\mathfrak{x}, o) \longmapsto \forall x_{\alpha} .\left(T_{o} \vee^{\mathcal{Q}} B\right),(\mathfrak{y}, o) \longmapsto \forall x_{\alpha} . B\right\}\) and \(? C=\mathfrak{x}_{o} \supset^{\mathcal{Q}}\left(T_{o} \vee^{\mathcal{Q}}\left(\mathfrak{y}_{o}\right)\right)\)
have is－tautology？\(C\)
using \(\mathcal{V}_{B}\)－simps by simp
moreover from assms（2）have is－pwff－substitution ？\(\vartheta\)
using pwffs－subset－of－wffso by fastforce
moreover have \(\forall x_{\alpha} .\left(T_{o} \vee^{\mathcal{Q}} B\right) \supset^{\mathcal{Q}} T_{o} \vee^{\mathcal{Q}} \forall x_{\alpha} . B=\mathbf{S}\) ？ ？\(C\) by \(\operatorname{simp}\)
ultimately show ？thesis
by blast
qed
qed \(\operatorname{simp}\)
have §2：\(\vdash \forall x_{\alpha} . B \supset^{\mathcal{Q}}\left(F_{o} \vee^{\mathcal{Q}} \forall x_{\alpha} . B\right)\)
proof（intro rule－P（2））
show is－tautologous \(\left(\forall x_{\alpha} . B \supset^{\mathcal{Q}}\left(F_{o} \vee^{\mathcal{Q}} \forall x_{\alpha} . B\right)\right)\)
proof－
let ？\(\vartheta=\left\{(\mathfrak{x}, o) \longmapsto \forall x_{\alpha} . B\right\}\) and \(? C=\mathfrak{x}_{o} \supset^{\mathcal{Q}}\left(F_{o} \vee^{\mathcal{Q}}\left(\mathfrak{x}_{o}\right)\right)\)
have is－tautology \(\left(\mathfrak{x}_{o} \supset^{\mathcal{Q}}\left(F_{o} \vee^{\mathcal{Q}}\left(\mathfrak{x}_{o}\right)\right)\right)\)（is 〈is－tautology ？C〉）
using \(\mathcal{V}_{B}\)－simps by simp
moreover from assms（2）have is－pwff－substitution ？\(\vartheta\)
using pwffs－subset－of－wffso by auto
```

    moreover have \(\forall x_{\alpha} . B \supset^{\mathcal{Q}}\left(F_{o} \vee^{\mathcal{Q}} \forall x_{\alpha} . B\right)=\mathbf{S}\) ? \(\vartheta\) ? \(C\)
        by simp
    ultimately show ?thesis
        by blast
    qed
    qed $\operatorname{simp}$
have $\S 3: \vdash B \equiv{ }^{\mathcal{Q}}\left(F_{o} \vee^{\mathcal{Q}} B\right)$
proof (intro rule-P(2))
show is-tautologous $\left(B \equiv^{\mathcal{Q}}\left(F_{o} \vee^{\mathcal{Q}} B\right)\right)$
proof -
let $? \vartheta=\{(\mathfrak{x}, o) \longmapsto B\}$ and $? C=\mathfrak{x}_{o} \equiv{ }^{\mathcal{Q}}\left(F_{o} \vee^{\mathcal{Q}}\left(\mathfrak{x}_{o}\right)\right)$
have is-tautology ? $C$
using $\mathcal{V}_{B}$-simps by simp
moreover from assms(2) have is-pwff-substitution ? $\vartheta$
using pwffs-subset-of-wffso by auto
moreover have $B \equiv{ }^{\mathcal{Q}}\left(F_{o} \vee{ }^{\mathcal{Q}} B\right)=\mathbf{S}$ ? $\vartheta$ ?C
by $\operatorname{simp}$
ultimately show ?thesis
by blast
qed
qed $\operatorname{simp}$
from §2 and §3[unfolded equivalence-def] have §4:
$\vdash \forall x_{\alpha} \cdot\left(F_{o} \vee^{\mathcal{Q}} B\right) \supset^{\mathcal{Q}}\left(F_{o} \vee^{\mathcal{Q}} \forall x_{\alpha} . B\right)$
by (rule rule- $R[$ where $p=[«, », », 《]]$ ) force +
obtain $p$ where $(p, o) \notin \operatorname{vars}\left(\forall x_{\alpha} .\left(A \vee^{\mathcal{Q}} B\right) \supset^{\mathcal{Q}}\left(A \vee \mathcal{Q} \forall x_{\alpha} . B\right)\right)$
by (meson fresh-var-existence vars-form-finiteness)
then have $(p, o) \neq(x, \alpha)$ and $(p, o) \notin \operatorname{vars} A$ and $(p, o) \notin \operatorname{vars} B$
by simp-all
from $\langle(p, o) \notin$ vars $B\rangle$ have sub: $\mathbf{S}\{(p, o) \longmapsto C\} B=B$ for $C$
using free-var-singleton-substitution-neutrality and free-vars-in-all-vars by blast
have $\S 5: \vdash \forall x_{\alpha} .\left(p_{o} \vee^{\mathcal{Q}} B\right) \supset^{\mathcal{Q}}\left(p_{o} \vee^{\mathcal{Q}} \forall x_{\alpha} . B\right)($ is $\langle\vdash ? C\rangle)$
proof -
from sub and §1 have $\vdash \mathbf{S}\left\{(p, o) \mapsto T_{o}\right\} ? C$
using $\langle(p, o) \neq(x, \alpha)\rangle$ by auto
moreover from sub and §4 have $\vdash \mathbf{S}\left\{(p, o) \longmapsto F_{o}\right\}$ ? $C$
using $\langle(p, o) \neq(x, \alpha)\rangle$ by auto
moreover from assms(2) have ? $C \in w f f s_{o}$
using pwffs-subset-of-wffso by auto
ultimately show ?thesis
by (rule Cases)
qed
then show ?thesis
proof -
let $? \vartheta=\{(p, o) \longmapsto A\}$
from $\operatorname{assms}(1)$ have is-substitution ? $\vartheta$
using pwffs-subset-of-wffso by auto
moreover have

```

```

    proof
    ```
```

    fix \(v\)
    assume \(v \in f m d o m^{\prime}\) ? \(\vartheta\)
    then have \(v=(p, o)\)
        by \(\operatorname{simp}\)
    with \(\operatorname{assms}(3)\) and \(\langle(p, o) \notin\) vars \(B\rangle\) have \(i s-f r e e-f o r(? \vartheta \$ \$!v) v ? C\)
        using occurs-in-vars
        by (intro is-free-for-in-imp is-free-for-in-forall is-free-for-in-disj) auto
    moreover have var-name \(v \notin\) free-var-names ( \(\}::\) form set)
        by \(\operatorname{simp}\)
    ultimately show var-name \(v \notin\) free-var-names \((\}:: f o r m ~ s e t) \wedge i s-f r e e-f o r ~(? \vartheta \$ \$!v) v ? C\)
        unfolding \(\langle v=(p, o)\rangle\) by blast
    qed
    moreover have \(? \vartheta \neq\{\$ \$\}\)
        by \(\operatorname{simp}\)
    ultimately have \(\vdash \mathbf{S}\) ? \(\vartheta\) ? \(C\)
    by (rule Sub[OF §5])
    moreover have \(\mathbf{S}\) ? \(\vartheta\) ? \(C=\forall x_{\alpha} .\left(A \vee^{\mathcal{Q}} B\right) \supset^{\mathcal{Q}}\left(A \vee^{\mathcal{Q}} \forall x_{\alpha} . B\right)\)
        using \(\prec(p, o) \neq(x, \alpha)\rangle\) and \(\operatorname{sub}[o f A]\) by simp fast
    ultimately show? thesis
        by (simp only:)
    qed
    qed

```

\subsection*{6.37 Proposition 5237 (\(\supset \forall\) Rule)}

The proof in [2] uses the pseudo-rule Q and the axiom 5 of \(\mathcal{F}\). Therefore, we prove such axiom, following the proof of Theorem 143 in [1]:
```

context begin
private lemma prop-5237-aux:
assumes A\inwffsoo and B\in\mp@subsup{wffs}{o}{o}
and (x,\alpha)\not\infree-vars A
shows }\vdash\forall\mp@subsup{x}{\alpha}{}.(A\mp@subsup{\supset}{}{\mathcal{Q}}B)\mp@subsup{\equiv}{}{\mathcal{Q}}(A\mp@subsup{\supset}{}{\mathcal{Q}}(\forall\mp@subsup{x}{\alpha}{}.B)
proof -
have is-tautology (\mathfrak{x}}\mp@subsup{\equiv}{}{\prime\mathcal{Q}}(\mp@subsup{T}{o}{}\mp@subsup{\supset}{}{\mathcal{Q}}\mp@subsup{\mathfrak{x}}{o}{}))\mathrm{ )(is <is-tautology ? (C C >)
using }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -simps by simp
have is-tautology ( }\mp@subsup{\mathfrak{x}}{o}{}\mp@subsup{\supset}{}{\mathcal{Q}}(\mp@subsup{\mathfrak{x}}{o}{}\mp@subsup{\equiv}{}{\mathcal{Q}}(\mp@subsup{F}{o}{}\mp@subsup{\supset}{}{\mathcal{Q}}\mp@subsup{\mathfrak{y}}{o}{\prime})))\mathrm{ )(is <is-tautology ?C}\mp@subsup{C}{2}{}>
using }\mp@subsup{\mathcal{V}}{B}{}\mathrm{ -simps by simp
have §1:\vdash\forall\mp@subsup{x}{\alpha}{}.B\equiv\mp@subsup{\equiv}{}{\mathcal{Q}}(\mp@subsup{T}{o}{}\mp@subsup{\supset}{}{\mathcal{Q}}\forall\mp@subsup{x}{\alpha}{}.B)
proof (intro rule-P(2))
show is-tautologous ( }\forall\mp@subsup{x}{\alpha}{}.B\mp@subsup{\equiv}{}{\mathcal{Q}}(\mp@subsup{T}{o}{}\mp@subsup{\supset}{}{\mathcal{Q}}\forall\mp@subsup{x}{\alpha}{}.B)
proof -
let ?\vartheta ={(\mathfrak{x},o)\longleftrightarrow\forallx\alpha.B}
from assms(2) have is-puff-substitution ?\vartheta
using pwffs-subset-of-wffso by auto
moreover have }\forall\mp@subsup{x}{\alpha}{}.B\equiv\mp@subsup{\equiv}{}{\mathcal{Q}}(\mp@subsup{T}{o}{}\mp@subsup{\supset}{}{\mathcal{Q}}\forall\mp@subsup{x}{\alpha}{}.B)=\mathbf{S}?\vartheta??C
by simp
ultimately show?thesis
using <is-tautology ? }\mp@subsup{C}{1}{}\mathrm{ ` by blast

```
```

    qed
    qed $\operatorname{simp}$
have $\S 2: \vdash B \equiv{ }^{\mathcal{Q}}\left(T_{o} \supset^{\mathcal{Q}} B\right)$
proof (intro rule-P(2))
show is-tautologous $\left(B \equiv{ }^{\mathcal{Q}} T_{o} \supset^{\mathcal{Q}} B\right)$
proof -
let ? $\vartheta=\{(\mathfrak{x}, o) \longmapsto B\}$
from assms(2) have is-pwff-substitution ? $\vartheta$
using pwffs-subset-of-wffso by auto
moreover have $B \equiv{ }^{\mathcal{Q}} T_{o} \supset^{\mathcal{Q}} B=\mathbf{S}$ ?V ? $C_{1}$
by $\operatorname{simp}$
ultimately show ?thesis
using 〈is-tautology? $C_{1}$ 〉 by blast
qed
qed $\operatorname{simp}$
have $\vdash T_{o}$
by (fact true-is-derivable)
then have $\S 3: \vdash \forall x_{\alpha} . T_{o}$
using Gen by simp
have $\S 4: \vdash \forall x_{\alpha} . T_{o} \equiv{ }^{\mathcal{Q}}\left(F_{o} \supset^{\mathcal{Q}} \forall x_{\alpha} . B\right)$
proof (intro rule- $P(1)\left[\right.$ where $\left.\mathcal{G}=\left\{\forall x_{\alpha} . T_{o}\right\}\right]$ )
show is-tautologous $\left(\left[\forall x_{\alpha} . T_{o}\right] \supset^{\mathcal{Q}}{ }_{\star}\left(\forall x_{\alpha} \cdot T_{o} \equiv^{\mathcal{Q}}\left(F_{o} \supset^{\mathcal{Q}} \forall x_{\alpha} . B\right)\right)\right)$
proof -
let ? $\vartheta=\left\{(\mathfrak{x}, o) \mapsto \forall x_{\alpha} . T_{o},(\mathfrak{y}, o) \mapsto \forall x_{\alpha} . B\right\}$
from $\operatorname{assms}(2)$ have is-pwff-substitution ? $\vartheta$
using pwffs-subset-of-wffso by auto
moreover have $\left[\forall x_{\alpha} . T_{o}\right] \supset^{\mathcal{Q}}{ }_{\star}\left(\forall x_{\alpha} . T_{o} \equiv{ }^{\mathcal{Q}}\left(F_{o} \supset^{\mathcal{Q}} \forall x_{\alpha} . B\right)\right)=\mathbf{S}$ ? $\vartheta$ ? $C_{2}$
by $\operatorname{simp}$
ultimately show ?thesis
using 〈is-tautology? $C_{2}$ 〉 by blast
qed
qed (use §3 in fastforce)+
have $\S 5: \vdash T_{o} \equiv{ }^{\mathcal{Q}}\left(F_{o} \supset^{\mathcal{Q}} B\right)$
proof (intro rule-P(2))
show is-tautologous $\left(T_{o} \equiv \mathcal{Q}\left(F_{o} \supset^{\mathcal{Q}} B\right)\right)$
proof -
let ? $\vartheta=\{(\mathfrak{x}, o) \longmapsto B\}$ and $? C=T_{o} \equiv \mathcal{Q}\left(F_{o} \supset^{\mathcal{Q}} \mathfrak{x}_{o}\right)$
have is-tautology ? $C$
using $\mathcal{V}_{B}$-simps by simp
moreover from assms(2) have is-pwff-substitution ? $\vartheta$
using pwffs-subset-of-wffso by auto
moreover have $T_{o} \equiv{ }^{\mathcal{Q}}\left(F_{o} \supset^{\mathcal{Q}} B\right)=\mathbf{S}$ ? $\vartheta$ ?C
by simp
ultimately show ?thesis
by blast
qed
qed $\operatorname{simp}$
from $\S 4$ and $\S 5$ have $\S 6: \vdash \forall x_{\alpha} .\left(F_{o} \supset^{\mathcal{Q}} B\right) \equiv{ }^{\mathcal{Q}}\left(F_{o} \supset^{\mathcal{Q}} \forall x_{\alpha} . B\right)$
unfolding equivalence-def by (rule rule- $R[$ where $p=[«, », », \mu]]$ ) force +

```
```

from $\S 1$ and $\S 2$ have $\S 7: \vdash \forall x_{\alpha} .\left(T_{o} \supset^{\mathcal{Q}} B\right) \equiv{ }^{\mathcal{Q}}\left(T_{o} \supset^{\mathcal{Q}} \forall x_{\alpha} . B\right)$
unfolding equivalence-def by (rule rule- $R[$ where $p=[«, », », \ll]$ ) force +
obtain $p$ where $(p, o) \notin$ vars $B$ and $p \neq x$
using fresh-var-existence and vars-form-finiteness by (metis finite-insert insert-iff)
from $\langle(p, o) \notin$ vars $B\rangle$ have sub: $\mathbf{S}\{(p, o) \mapsto C\} B=B$ for $C$
using free-var-singleton-substitution-neutrality and free-vars-in-all-vars by blast
have $\S 8: \vdash \forall x_{\alpha} .\left(p_{o} \supset^{\mathcal{Q}} B\right) \equiv^{\mathcal{Q}}\left(p_{o} \supset^{\mathcal{Q}} \forall x_{\alpha} . B\right)\left(\right.$ is $\left.\left.\stackrel{\vdash}{ } ?^{?} C_{3}\right\rangle\right)$
proof -
from sub and §7 have $\vdash \mathbf{S}\left\{(p, o) \mapsto T_{o}\right\} ? C_{3}$
using $\langle p \neq x\rangle$ by auto
moreover from sub and $\S 6$ have $\vdash \mathbf{S}\left\{(p, o) \hookrightarrow F_{o}\right\} ?{ }^{?} C_{3}$
using $\langle p \neq x\rangle$ by auto
moreover from assms(2) have ? $C_{3} \in$ wffs $s_{o}$
using pwffs-subset-of-wffso by auto
ultimately show? ?hesis
by (rule Cases)
qed
then show ?thesis
proof -
let $? \vartheta=\{(p, o) \mapsto A\}$
from assms(1) have is-substitution ??
using puffs-subset-of-wffso by auto
moreover have
$\forall v \in$ fmdom $^{\prime}$ ?.v. var-name $v \notin$ free-var-names (\{\}::form set) $\wedge$ is-free-for (?ง \$\$! v) v? $C_{3}$
proof
fix $v$
assume $v \in$ fmdom' $^{\prime}$ ? $\vartheta$
then have $v=(p, o)$
by $\operatorname{simp}$
with assms(3) and $«(p, o) \notin$ vars $B\rangle$ have is-free-for (? $9 \$ \$!v) v ? C_{3}$
using occurs-in-vars
by (intro is-free-for-in-imp is-free-for-in-forall is-free-for-in-equivalence) auto
moreover have var-name $v \notin$ free-var-names ( $\}::$ form set)
by simp
ultimately show var-name $v \notin$ free-var-names $(\}::$ form set $) \wedge i s$-free-for (? $\uparrow \$ \$!v) v ? C_{3}$
unfolding $\langle v=(p, o)\rangle$ by blast
qed
moreover have $? \vartheta \neq\{\$ \$\}$
by simp
ultimately have $\vdash \mathbf{S}$ ? $?$ ? $C_{3}$
by (rule Sub[OF §8])
moreover have $\mathbf{S} ? \vartheta ?{ }^{?} C_{3}=\forall x_{\alpha} .\left(A \supset^{\mathcal{Q}} B\right) \equiv \equiv^{\mathcal{Q}}\left(A \supset^{\mathcal{Q}} \forall x_{\alpha} . B\right)$
using $\langle p \neq x\rangle$ and $\operatorname{sub}[$ of $A]$ by simp
ultimately show? ?hesis
by (simp only:)
qed
qed
proposition prop-5237:

```
```

    assumes is-hyps \mathcal{H}
    and \mathcal{H}}\vdashA\mp@subsup{\supset}{}{\mathcal{Q}}
    and (x,\alpha)\not\infree-vars ({A}\cup\mathcal{H})
    shows }\mathcal{H}\vdashA\mp@subsup{\supset}{}{\mathcal{Q}}(\forall\mp@subsup{x}{\alpha}{}.B
    proof -
have }\mathcal{H}\vdashA\supset\mp@subsup{}{}{\mathcal{Q}}
by fact
with assms(3) have \mathcal{H}\vdash\forall\mp@subsup{x}{\alpha}{}.(A\supset\mp@subsup{}{}{\mathcal{Q}}B)
using Gen by simp
moreover have }\mathcal{H}\vdash\forall\mp@subsup{x}{\alpha}{}.(A\supset\mp@subsup{}{}{\mathcal{Q}}B)\equiv\mp@subsup{\equiv}{}{\mathcal{Q}}(A\supset\mp@subsup{\supset}{}{\mathcal{Q}}(\forall\mp@subsup{x}{\alpha}{}.B)
proof -
from assms(2) have A\inwffs
using hyp-derivable-form-is-wffso by (blast dest:wffs-from-imp-op)+
with assms(1,3) show ?thesis
using prop-5237-aux and derivability-implies-hyp-derivability by simp
qed
ultimately show ?thesis
by (rule Equality-Rules(1))
qed
lemmas }\supset\forall=\mathrm{ prop-5237
corollary generalized-prop-5237:
assumes is-hyps }\mathcal{H
and }\mathcal{H}\vdashA\supset\mp@subsup{\supset}{}{\mathcal{Q}}
and}\forallv\inS.v\not\in\mathrm{ free-vars }({A}\cup\mathcal{H}
and lset vs=S
shows }\mathcal{H}\vdashA\supset\mp@subsup{\supset}{}{\mathcal{Q}}(\mp@subsup{\forall}{}{\mathcal{Q}}\mp@subsup{}{\star}{}\mathrm{ vs }B
using assms proof (induction vs arbitrary: S)
case Nil
then show ?case
by simp
next
case (Cons v vs)
obtain x and \alpha where v=(x,\alpha)
by fastforce
from Cons.prems(3) have *: }\forall\mp@subsup{v}{}{\prime}\inS.\mp@subsup{v}{}{\prime}\not\in free-vars ({A}\cup\mathcal{H}
by blast
then show ?case
proof (cases v\inlset vs)
case True
with Cons.prems(4) have lset vs =S
by auto
with assms(1,2) and * have \mathcal{H}}\vdashA\mp@subsup{\supset}{}{\mathcal{Q}}\mp@subsup{\forall}{}{\mathcal{Q}}\mp@subsup{}{\star}{}\mathrm{ vs }
by (fact Cons.IH)

```

```

                using prop-5237[OF assms(1)] by simp
            with }\langlev=(x,\alpha)\rangle\mathrm{ show ?thesis
                by simp
    ```
```

    next
    case False
    with <lset (v# vs) =S` have lset vs=S-{v}
        by auto
    moreover from * have }\forall\mp@subsup{v}{}{\prime}\inS-{v}.\mp@subsup{v}{}{\prime}\not\in\mathrm{ free-vars }({A}\cup\mathcal{H}
        by blast
    ultimately have }\mathcal{H}\vdashA\mp@subsup{\supset}{}{\mathcal{Q}}\forall\mp@subsup{\forall}{\star}{\mathcal{Q}}\mathrm{ vs }
        using assms(1,2) by (intro Cons.IH)
    moreover from Cons.prems(4) and }\langlev=(x,\alpha)\rangle\mathrm{ and * have (x, 人) & free-vars ({A} }\cup\mathcal{H}
        by auto
    ultimately have }\mathcal{H}\vdashA\mp@subsup{\supset}{}{\mathcal{Q}}(\forall\mp@subsup{x}{\alpha}{}.\forall\mp@subsup{\forall}{}{\mathcal{Q}}\mathrm{ * vs }B
        using assms(1) by (intro prop-5237)
    with }\langlev=(x,\alpha)\rangle\mathrm{ show ?thesis
        by simp
    qed
    qed
end

```

\subsection*{6.38 Proposition 5238}

\section*{context begin}
private lemma prop-5238-aux:
assumes \(A \in w f f s_{\alpha}\) and \(B \in w f f s_{\alpha}\)
shows \(\vdash\left(\left(\lambda x_{\beta} . A\right)={ }_{\beta \rightarrow \alpha}\left(\lambda x_{\beta} . B\right)\right) \equiv{ }^{\mathcal{Q}} \forall x_{\beta} .\left(A=\alpha_{\alpha} B\right)\)
proof -
have §1:
\(\vdash\left(\mathfrak{f}_{\beta \rightarrow \alpha}={ }_{\beta \rightarrow \alpha} \mathfrak{g}_{\beta \rightarrow \alpha}\right) \equiv{ }^{\mathcal{Q}} \forall \mathfrak{x}_{\beta} .\left(\mathfrak{f}_{\beta \rightarrow \alpha} \cdot \mathfrak{x}_{\beta}=\alpha \mathfrak{g}_{\beta \rightarrow \alpha} \cdot \mathfrak{x}_{\beta}\right)\left(\right.\) is \(\left\langle\vdash-\equiv \mathcal{Q} \forall \mathfrak{x}_{\beta} .{ }^{?} C_{1}>\right)\)
by (fact axiom-is-derivable-from-no-hyps[OF axiom-3])
then have §2:
\[
\left.\vdash\left(\mathfrak{f}_{\beta \rightarrow \alpha}={ }_{\beta \rightarrow \alpha} \mathfrak{g}_{\beta \rightarrow \alpha}\right) \equiv{ }^{\mathcal{Q}} \forall x_{\beta} .\left(\mathfrak{f}_{\beta \rightarrow \alpha} \cdot x_{\beta}=\alpha \mathfrak{g}_{\beta \rightarrow \alpha} \cdot x_{\beta}\right)\left(\text { is } \&{ }^{2} C_{2}\right\rangle\right)
\]
proof (cases \(x=\mathfrak{x}\))
case True
with §1 show ?thesis by (simp only:)
next
case False
have ? \(C_{1} \in\) wffs \(s_{o}\) by blast
moreover from False have \((x, \beta) \notin\) free-vars ? \(C_{1}\) by simp
moreover have is-free-for \(\left(x_{\beta}\right)(\mathfrak{x}, \beta)\) ? \(C_{1}\) by (intro is-free-for-in-equality is-free-for-to-app) simp-all
ultimately have \(\vdash \lambda \mathfrak{x}_{\beta} . ?{ }^{?} C_{1}={ }_{\beta \rightarrow 0} \lambda x_{\beta} .\left(\mathbf{S}\left\{(\mathfrak{x}, \beta) \mapsto x_{\beta}\right\} ? C_{1}\right)\) by (rule \(\alpha\))
from §1 and this show ?thesis by (rule rule- \(R[\) where \(p=[», »]]\)) force +
qed
then have §3:
```

    \(\vdash\left(\left(\lambda x_{\beta} . A\right)={ }_{\beta \rightarrow \alpha}\left(\lambda x_{\beta} . B\right)\right) \equiv{ }^{\mathcal{Q}} \forall x_{\beta} .\left(\left(\lambda x_{\beta} . A\right) \cdot x_{\beta}=\alpha_{\alpha}\left(\lambda x_{\beta} . B\right) \cdot x_{\beta}\right)\)
    proof -
let ? $\vartheta=\left\{(\mathfrak{f}, \beta \rightarrow \alpha) \mapsto \lambda x_{\beta} . A,(\mathfrak{g}, \beta \rightarrow \alpha) \mapsto \lambda x_{\beta} . B\right\}$
have $\lambda x_{\beta} . A \in w f f s_{\beta \rightarrow \alpha}$ and $\lambda x_{\beta} . B \in$ wffs $_{\beta \rightarrow \alpha}$
by (blast intro: assms(1,2))+
then have is-substitution? ?
by simp
moreover have
$\forall v \in$ fmdom' $^{\prime}$ ? $V$. var-name $v \notin$ free-var-names $\left(\}::\right.$ form set $) \wedge$ is-free-for (?v \$\$!v) v? $C_{2}$
proof
fix $v$
assume $v \in$ fmdom' $^{\prime}$ ? $\vartheta$
then consider $(a) v=(\mathfrak{f}, \beta \rightarrow \alpha) \mid(b) v=(\mathfrak{g}, \beta \rightarrow \alpha)$
by fastforce
then show var-name $v \notin$ free-var-names $\left(\}:: f o r m ~ s e t) ~ \wedge i s-f r e e-f o r ~(? \vartheta ~ \$ \$!v) v ? C_{2}\right.$
proof cases
case $a$
have $(x, \beta) \notin$ free-vars $\left(\lambda x_{\beta} . A\right)$
by $\operatorname{simp}$
then have is-free-for $\left(\lambda x_{\beta} . A\right)(\mathfrak{f}, \beta \rightarrow \alpha)$ ? $C_{2}$
unfolding equivalence-def
by (intro is-free-for-in-equality is-free-for-in-forall is-free-for-to-app, simp-all)
with $a$ show ?thesis
by force
next
case $b$
have $(x, \beta) \notin$ free-vars $\left(\lambda x_{\beta} . B\right)$
by $\operatorname{simp}$
then have is-free-for $\left(\lambda x_{\beta} . B\right)(\mathfrak{g}, \beta \rightarrow \alpha)$ ? $C_{2}$
unfolding equivalence-def
by (intro is-free-for-in-equality is-free-for-in-forall is-free-for-to-app, simp-all)
with $b$ show ?thesis
by force
qed
qed
moreover have ? $\vartheta \neq\{\$ \$\}$
by $\operatorname{simp}$
ultimately have $\vdash \mathbf{S}$ ? ? ? $C_{2}$
by (rule Sub[OF §2])
then show ?thesis
by $\operatorname{simp}$
qed
then have $\S_{4}: \vdash\left(\left(\lambda x_{\beta} . A\right)={ }_{\beta \rightarrow \alpha}\left(\lambda x_{\beta} . B\right)\right) \equiv{ }^{\mathcal{Q}} \forall x_{\beta} .\left(A=\alpha\left(\lambda x_{\beta} . B\right) \cdot x_{\beta}\right)$
proof -
have $\vdash\left(\lambda x_{\beta} \cdot A\right) \cdot x_{\beta}={ }_{\alpha} A$
using prop-5208[where vs $=[(x, \beta)]]$ and $\operatorname{assms}(1)$ by simp
from §3 and this show ?thesis
by (rule rule- $R[$ where $p=[», », «, \mu\rangle]$,$] ) force +$

```
```

    qed
    then show ?thesis
    proof -
        have \(\vdash\left(\lambda x_{\beta} . B\right) \cdot x_{\beta}={ }_{\alpha} B\)
            using prop-5208[where vs \(=[(x, \beta)]]\) and \(\operatorname{assms}(2)\) by simp
    from §4 and this show? ?thesis
        by (rule rule- \(R[\) where \(p=[», », «, »]]\) ) force +
    qed
    qed
proposition prop-5238:
assumes $v s \neq[]$ and $A \in w f f s_{\alpha}$ and $B \in$ wff $s_{\alpha}$
shows $\vdash \lambda^{\mathcal{Q}}{ }_{\star}$ vs $A=$ foldr $(\rightarrow)($ map var-type vs $) \alpha^{\lambda^{\mathcal{Q}}}{ }_{\star}$ vs $B \equiv{ }^{\mathcal{Q}} \forall^{\mathcal{Q}}{ }_{\star}$ vs $\left(A=\alpha_{\alpha} B\right)$
using assms proof (induction vs arbitrary: $A B \alpha$ rule: rev-nonempty-induct)
case (single $v$ )
obtain $x$ and $\beta$ where $v=(x, \beta)$
by fastforce
from single.prems have
$\lambda^{\mathcal{Q}}{ }_{\star}$ vs $A={ }_{\text {foldr }}(\rightarrow)\left(\right.$ map var-type vs) $\alpha^{\lambda^{\mathcal{Q}}}{ }_{\star}$ vs $B \equiv{ }^{\mathcal{Q}} \forall^{\mathcal{Q}}{ }_{\star}$ vs $(A=\alpha B) \in$ wffs $s_{o}$
by blast
with single.prems and $\langle v=(x, \beta)\rangle$ show ?case
using prop-5238-aux by simp
next
case (snoc v vs)
obtain $x$ and $\beta$ where $v=(x, \beta)$
by fastforce
from snoc.prems have $\lambda x_{\beta} . A \in w f f s_{\beta \rightarrow \alpha}$ and $\lambda x_{\beta} . B \in w f f s_{\beta \rightarrow \alpha}$
by auto
then have
$\lambda^{\mathcal{Q}} \star$ vs $\left(\lambda x_{\beta} . A\right)=f_{\text {foldr }}(\rightarrow)($ map var-type $v s)(\beta \rightarrow \alpha) \lambda^{\mathcal{Q}_{\star}}$ vs $\left(\lambda x_{\beta} . B\right)$
$\equiv{ }^{\mathcal{Q}}$
$\forall^{\mathcal{Q}}{ }_{\star}$ vs $\left(\left(\lambda x_{\beta} . A\right)={ }_{\beta \rightarrow \alpha}\left(\lambda x_{\beta} . B\right)\right)$
by (fact snoc.IH)
moreover from snoc.prems have $\vdash \lambda x_{\beta} . A={ }_{\beta \rightarrow \alpha} \lambda x_{\beta} . B \equiv{ }^{\mathcal{Q}} \forall x_{\beta} .(A=\alpha B)$
by (fact prop-5238-aux)
ultimately have
$\vdash$
$\lambda^{\mathcal{Q}} \star$ vs $\left(\lambda x_{\beta} . A\right)=$ foldr $(\rightarrow)($ map var-type vs $)(\beta \rightarrow \alpha) \lambda^{\mathcal{Q}}{ }_{\star}$ vs $\left(\lambda x_{\beta} . B\right)$
$\equiv{ }^{\mathcal{Q}}$
$\forall \mathcal{Q}_{\star} v s \forall x_{\beta} .(A=\alpha B)$
unfolding equivalence-def proof (induction rule: rule- $R[$ where $p=» \#$ foldr ( $\lambda$-. (@) [», «]) vs []])
case occ-subform
then show ?case
using innermost-subform-in-generalized-forall[OF snoc.hyps] and is-subform-at.simps(3)
by fastforce
next
case replacement

```
```

    then show ?case
    using innermost-replacement-in-generalized-forall[OF snoc.hyps]
    and is-replacement-at-implies-in-positions and replace-right-app by force
    qed
    with }\langlev=(x,\beta)\rangle\mathrm{ show ?case
    by simp
    qed
end

```

\subsection*{6.39 Proposition 5239}
lemma replacement-derivability:
 assumes \(C \in w^{\prime} f s_{\beta}\)
 and \(A \preceq{ }_{p} C\)
 and \(\vdash A={ }_{\alpha} B\)
 and \(C \backslash p \leftarrow B \backslash \triangleright D\)
 shows \(\vdash C={ }_{\beta} D\)
using assms proof (induction arbitrary: \(D p\))
 case (var-is-wff \(\gamma x\))
 from var-is-wff.prems(1) have \(p=[]\) and \(A=x_{\gamma}\)
 by (auto elim: is-subform-at.elims(2))
 with var-is-wff.prems(2) have \(\alpha=\gamma\)
 using hyp-derivable-form-is-wffso and wff-has-unique-type and wffs-from-equality by blast
 moreover from \(\langle p=[]>\) and var-is-wff.prems(3) have \(D=B\)
 using is-replacement-at-minimal-change(1) and is-subform-at.simps(1) by iprover
 ultimately show ?case
 using \(\left\langle A=x_{\gamma}\right\rangle\) and var-is-wff.prems(2) by (simp only:)
next
 case (con-is-wff \(\gamma c\))
 from con-is-wff.prems(1) have \(p=[]\) and \(A=\{c\} \gamma\)
 by (auto elim: is-subform-at.elims(2))
 with con-is-wff.prems(2) have \(\alpha=\gamma\)
 using hyp-derivable-form-is-wffso and wff-has-unique-type
 by (meson wffs-from-equality wffs-of-type-intros(2))
 moreover from \(\langle p=[]\rangle\) and con-is-wff.prems(3) have \(D=B\)
 using is-replacement-at-minimal-change(1) and is-subform-at.simps(1) by iprover
 ultimately show ?case
 using \(\langle A=\{c\} \gamma \gamma\) and con-is-wff.prems(2) by (simp only:)
next
 case (app-is-wff \(\gamma \delta C_{1} C_{2}\))
 from app-is-wff.prems(1) consider
 (a) \(p=[]\)
 |(b) \(\exists p^{\prime} \cdot p=« \# p^{\prime} \wedge A \preceq p^{\prime} C_{1}\)
 | (c) \(\exists p^{\prime} \cdot p=» \# p^{\prime} \wedge A \preceq p^{\prime} C_{2}\)
 using subforms-from-app by blast
 then show? case
 proof cases
 case \(a\)
```

    with app-is-wff.prems(1) have A=C C | C C 
        by simp
    moreover from a and app-is-wff.prems(3) have D=B
        using is-replacement-at-minimal-change(1) and at-top-is-self-subform by blast
    moreover from }\langleA=\mp@subsup{C}{1}{}\cdot\mp@subsup{C}{2}{}\rangle\mathrm{ and }\langleD=B\rangle\mathrm{ and app-is-wff.hyps(1,2) and assms(3) have }\alpha
    \delta
using hyp-derivable-form-is-wffso and wff-has-unique-type
by (blast dest: wffs-from-equality)
ultimately show ?thesis
using assms(3) by (simp only:)
next
case b
then obtain }\mp@subsup{p}{}{\prime}\mathrm{ where }p=«\#\mp@subsup{p}{}{\prime}\mathrm{ and }A\preceq\mp@subsup{\preceq}{\mp@subsup{p}{}{\prime}}{}\mp@subsup{C}{1}{
by blast
moreover obtain }\mp@subsup{D}{1}{}\mathrm{ where }D=\mp@subsup{D}{1}{}\cdot\mp@subsup{C}{2}{}\mathrm{ and }\mp@subsup{C}{1}{}|\mp@subsup{p}{}{\prime}\leftarrowB<br>triangleright\mp@subsup{D}{1}{
using app-is-wff.prems(3) and }\langlep=«\# \# p'> by (force dest: is-replacement-at.cases
ultimately have}\vdash\mp@subsup{C}{1}{}=\mp@subsup{\gamma}{\gamma->\delta}{}\mp@subsup{D}{1}{
using app-is-wff.IH(1) and assms(3) by blast
moreover have }\vdash\mp@subsup{C}{2}{}=\gamma\mp@subsup{C}{2}{
by (fact prop-5200[OF app-is-wff.hyps(2)])
ultimately have }\vdash\mp@subsup{C}{1}{}\cdot\mp@subsup{C}{2}{}=\mp@subsup{}{\delta}{}\mp@subsup{D}{1}{}\cdot\mp@subsup{C}{2}{
using Equality-Rules(4) by (simp only:)
with }\langleD=\mp@subsup{D}{1}{}\cdot\mp@subsup{C}{2}{}\rangle\mathrm{ show ?thesis
by (simp only:)
next
case c
then obtain }\mp@subsup{p}{}{\prime}\mathrm{ where }p=»\#\mp@subsup{p}{}{\prime}\mathrm{ and }A\preceq\mp@subsup{\preceq}{\mp@subsup{p}{}{\prime}}{}\mp@subsup{C}{2}{
by blast
moreover obtain D}\mp@subsup{D}{2}{}\mathrm{ where D=C C • D D and C}\mp@subsup{C}{2}{}<br>mp@subsup{p}{}{\prime}\leftarrowB<br>triangleright\mp@subsup{D}{2}{
using app-is-wff.prems(3) and <p = \#\# p'> by (force dest: is-replacement-at.cases)
ultimately have }\vdash\mp@subsup{C}{2}{}=\gamma \mp@subsup{D}{2}{
using app-is-wff.IH(2) and assms(3) by blast
moreover have }\vdash\mp@subsup{C}{1}{}=\mp@subsup{}{\gamma->\delta}{}\mp@subsup{C}{1}{
by (fact prop-5200[OF app-is-wff.hyps(1)])
ultimately have }\vdash\mp@subsup{C}{1}{}\cdot\mp@subsup{C}{2}{}=\mp@subsup{}{\delta}{}\mp@subsup{C}{1}{}\cdot\mp@subsup{D}{2}{
using Equality-Rules(4) by (simp only:)
with }\langleD=\mp@subsup{C}{1}{}\cdot\mp@subsup{D}{2}{}\rangle\mathrm{ show ?thesis
by (simp only:)
qed
next
case (abs-is-wff \delta C'}\gammax
from abs-is-wff.prems(1) consider (a) p=[]|(b) \exists\mp@subsup{p}{}{\prime}.p=«\# p
using subforms-from-abs by blast
then show ?case
proof cases
case a
with abs-is-wff.prems(1) have A= 秋. . C'
by simp
moreover from a and abs-is-wff.prems(3) have D=B

```
using is-replacement-at-minimal-change(1) and at-top-is-self-subform by blast
moreover from \(\left\langle A=\lambda x_{\gamma} . C^{\prime}\right\rangle\) and \(\langle D=B\rangle\) and \(a b s\) - \(i s\)-wff.hyps(1) and \(\operatorname{assms}(3)\) have \(\alpha=\) \(\gamma \rightarrow \delta\)
using hyp-derivable-form-is-wffso and wff-has-unique-type
by (blast dest: wffs-from-abs wffs-from-equality)
ultimately show ?thesis
using assms(3) by (simp only:)
next
case \(b\)
then obtain \(p^{\prime}\) where \(p=« \# p^{\prime}\) and \(A \preceq \prec_{p^{\prime}} C^{\prime}\)
by blast
moreover obtain \(D^{\prime}\) where \(D=\lambda x_{\gamma} . D^{\prime}\) and \(C^{\prime}\left\langle p^{\prime} \leftarrow B\right\rangle \triangleright D^{\prime}\)
using abs-is-wff.prems(3) and \(\left\langle p=« \# p^{\prime}\right\rangle\) by (force dest: is-replacement-at.cases)
ultimately have \(\vdash C^{\prime}={ }_{\delta} D^{\prime}\)
using abs-is-wff.IH and assms(3) by blast
then have \(\vdash \lambda x_{\gamma} . C^{\prime}=\gamma \rightarrow \delta \lambda x_{\gamma} . D^{\prime}\)
proof -
from \(\left\langle\vdash C^{\prime}={ }_{\delta} D^{\prime}\right\rangle\) have \(\vdash \forall x_{\gamma} .\left(C^{\prime}={ }_{\delta} D^{\prime}\right)\)
using Gen by simp
moreover from \(\left\langle\vdash C^{\prime}={ }_{\delta} D^{\prime}\right\rangle\) and abs-is-wff.hyps have \(D^{\prime} \in w f f s_{\delta}\)
using hyp-derivable-form-is-wffso by (blast dest: wffs-from-equality)
with abs-is-wff.hyps have \(\vdash\left(\lambda x_{\gamma} . C^{\prime}={ }_{\gamma \rightarrow \delta} \lambda x_{\gamma} . D^{\prime}\right) \equiv{ }^{\mathcal{Q}} \forall x_{\gamma} .\left(C^{\prime}={ }_{\delta} D^{\prime}\right)\) using prop-5238[where vs \(=[(x, \gamma)]]\) by simp
ultimately show ?thesis
using Equality-Rules(1,2) unfolding equivalence-def by blast
qed
with \(\left\langle D=\lambda x_{\gamma} . D^{\prime}\right\rangle\) show ?thesis
by (simp only:)
qed
qed
context
begin
private lemma prop-5239-aux-1:
assumes \(p \in\) positions \(\left(\cdot{ }_{\star}{ }_{\star}(F \operatorname{Var} v)(\right.\) map \(F\) Var vs \(\left.)\right)\)
and \(p \neq\) replicate (length vs)《
shows
\(\left(\exists A B . A \cdot B \preceq p\left({ }^{\mathcal{Q}}{ }_{\star}(F \operatorname{Var} v)(m a p F \operatorname{Var} v s)\right)\right)\)
V
\(\left(\exists v \in\right.\) lset vs. occurs-at \(v p\left({ }^{\mathcal{Q}_{\star}}(F \operatorname{Var} v)(\right.\) map \(\left.\left.F \operatorname{Var} v s)\right)\right)\)
using assms proof (induction vs arbitrary: p rule: rev-induct)
case Nil
then show ?case
using surj-pair [of v] by fastforce
next
case (snoc \(v^{\prime} v s\))
from snoc.prems(1) consider
(a) \(p=[]\)
```

    |(b) \(p=[»]\)
    | (c) \(\exists p^{\prime} \in\) positions \(\left(\cdot{ }^{2}{ }_{\star}(F\right.\) Var \(v)(\) map \(F\) Var vs \(\left.)\right) \cdot p=« \# p^{\prime}\)
        using surj-pair [of \(v\rangle\) by fastforce
    then show? ?case
    proof cases
    case \(c\)
    then obtain \(p^{\prime}\) where \(p^{\prime} \in\) positions \(\left(\cdot{ }_{\star}{ }_{\star}(F \operatorname{Var} v)(\right.\) map \(F\) Var \(\left.v s)\right)\) and \(p=« \# p^{\prime}\)
        by blast
    from \(\left\langle p=« \# p^{\prime}\right\rangle\) and snoc.prems(2) have \(p^{\prime} \neq\) replicate (length vs) \(«\)
        by force
    then have
        \(\left(\exists A B . A \cdot B \preceq_{p^{\prime}}{ }^{\mathcal{Q}} \star(F\right.\) Var \(v)(\) map FVar vs \(\left.)\right)\)
        \(\vee\)
        \(\left(\exists v \in\right.\) lset vs. occurs-at \(v p^{\prime}\left({ }^{\left(\mathcal{Q}_{\star}\right.}(F \operatorname{Var} v)(\right.\) map \(\left.\left.F \operatorname{Var} v s)\right)\right)\)
        using \(\left\langle p^{\prime} \in\right.\) positions \(\left(\cdot{ }^{\bullet} \star(F\right.\) Var \(v)\) (map FVar vs)) \(\rangle\) and snoc.IH by simp
    with \(\left\langle p=« \# p^{\prime}\right\rangle\) show ?thesis
        by auto
    qed simp-all
    qed
private lemma prop-5239-aux-2:
assumes $t \notin$ lset vs $\cup$ vars $C$
and $C \backslash p \leftarrow\left(\cdot^{\mathcal{Q}_{\star}}(F\right.$ Var $t)($ map $F$ Var vs $\left.)\right) \downarrow \triangleright G$
and $C \backslash p \leftarrow\left(\cdot_{\star}\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.\right.$ vs $\left.A\right)($ map FVar vs $\left.)\right) \downarrow \triangleright G^{\prime}$
shows $\mathbf{S}\left\{t \nrightarrow \lambda^{\mathcal{Q}}{ }_{\star}\right.$ vs $\left.A\right\} G=G^{\prime}\left(\right.$ is $\left\langle\mathbf{S}\right.$ ? $\left.\left.\vartheta G=G^{\prime}\right\rangle\right)$
proof -
have $\mathbf{S}$ ? $\vartheta\left(\boldsymbol{Q}_{\star}(F \operatorname{Var} t)(\right.$ map $\left.F \operatorname{Var} v s)\right)=\mathscr{Q}_{\star}(\mathbf{S} ? \vartheta(F \operatorname{Var} t))\left(\right.$ map $\left(\lambda v^{\prime} . \mathbf{S}\right.$ ?V v') (map FVar
vs))
using generalized-app-substitution by blast
moreover have $\mathbf{S} ? \vartheta(F \operatorname{Var} t)=\lambda^{\mathcal{Q}} \star$ vs $A$
using surj-pair [of $t$ ] by fastforce
moreover from $\operatorname{assms}(1)$ have $\operatorname{map}\left(\lambda v^{\prime} . \mathbf{S}\right.$ ?V $\left.v^{\prime}\right)($ map FVar vs $)=$ map FVar vs
by (induction vs) auto
ultimately show ?thesis
using assms proof (induction $C$ arbitrary: $G G^{\prime} p$ )
case (FVar $v$ )
from FVar.prems(5) have $p=[]$ and $G=\boldsymbol{Q}_{\star}$ (FVar t) (map FVar vs)
by (blast dest: is-replacement-at.cases)+
moreover from FVar.prems $(6)$ and $\langle p=[]\rangle$ have $G^{\prime}=\cdot^{\mathcal{Q}_{\star}}\left(\lambda^{\mathcal{Q}_{\star}}\right.$ vs A) (map FVar vs)
by (blast dest: is-replacement-at.cases)
ultimately show ?case
using FVar.prems(1-3) by (simp only:)
next
case (FCon $k$ )
from FCon.prems(5) have $p=[]$ and $G=\cdot \mathcal{Q}_{\star}$ (FVart) (map FVar vs)
by (blast dest: is-replacement-at.cases) +
moreover from FCon.prems (6) and $\langle p=[]\rangle$ have $G^{\prime}={ }^{\mathcal{Q}_{\star}}\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.$ vs A) (map FVar vs)
by (blast dest: is-replacement-at.cases)
ultimately show ?case

```
```

    using FCon.prems(1-3) by (simp only:)
    next
    case (FApp C C C C )
    from FApp.prems(4) have t\not\inlset vs \cup vars C C L and t }\ddagger\mathrm{ lset vs }\cup\mathrm{ vars }\mp@subsup{C}{2}{
        by auto
    consider (a) p=[]|(b) \exists\mp@subsup{p}{}{\prime}.p=«# p}|\mp@code{|
    by (metis direction.exhaust list.exhaust)
    then show ?case
    proof cases
        case a
        with FApp.prems(5) have G=, 腷 (FVar t) (map FVar vs)
        by (blast dest: is-replacement-at.cases)
    moreover from FApp.prems(6) and <p = []> have G'= 疋\star ( }\mp@subsup{\lambda}{}{\mathcal{Q}}\mp@subsup{\star}{\star}{}\mathrm{ vs A) (map FVar vs)
            by (blast dest: is-replacement-at.cases)
    ultimately show ?thesis
            using FApp.prems(1-3) by (simp only:)
    next
    case b
    then obtain p}\mp@subsup{p}{}{\prime}\mathrm{ where }p=«#\mp@subsup{p}{}{\prime
            by blast
    with FApp.prems(5) obtain G}\mp@subsup{G}{1}{}\mathrm{ where G= G1. C C and C C \ | ' }\leftarrow(\cdot\mp@subsup{\cdot}{\star}{
    vs))<br>triangleright G G
by (blast elim: is-replacement-at.cases)
moreover from <p=《\# 故〉 and FApp.prems(6)

```

```

        by (blast elim: is-replacement-at.cases)
    ```

```

            using surj-pair [of t] and free-var-singleton-substitution-neutrality
            by (simp add: vars-is-free-and-bound-vars)
    ultimately show ?thesis
            using FApp.IH(1)[OF FApp.prems(1-3)<t \not\inlset vs \cup vars C C > >] by simp
    next
    case c
    then obtain p' where p=»# p'
            by blast
    ```

```

vs))<br>triangleright G
by (blast elim: is-replacement-at.cases)
moreover from <p=»\# p`` and FApp.prems(6)

```

```

        by (blast elim: is-replacement-at.cases)
    ```

```

            using surj-pair[of t] and free-var-singleton-substitution-neutrality
            by (simp add: vars-is-free-and-bound-vars)
    ultimately show ?thesis
            using FApp.IH(2)[OF FApp.prems(1-3)<t\not\inlset vs \cup vars C C < >] by simp
    qed
    next
case (FAbs v C')

```
```

    from FAbs.prems(4) have t\not\inlset vs \cup vars C' and t}
        using vars-form.elims by blast+
    from FAbs.prems(5) consider (a)p=[]| (b) \exists\mp@subsup{p}{}{\prime}.p=«# "
        using is-replacement-at.simps by blast
    then show ?case
    proof cases
        case a
        with FAbs.prems(5) have G= 的 (FVar t) (map FVar vs)
        by (blast dest: is-replacement-at.cases)
        moreover from FAbs.prems(6) and <p = []> have G' = 跃 ( }\mp@subsup{\lambda}{}{\mathcal{Q}}\mp@subsup{}{\star}{}\mathrm{ vs A) (map FVar vs)
        by (blast dest: is-replacement-at.cases)
        ultimately show ?thesis
        using FAbs.prems(1-3) by (simp only:)
    next
        case b
        then obtain p' where p=《# p
        by blast
    ```

```

        using FAbs.prems(5) by (blast elim: is-replacement-at.cases)
    moreover from <p= «# p}>\mathrm{ and FAbs.prems(6)
    ```

```

        by (blast elim: is-replacement-at.cases)
    ```

```

        using FAbs.IH[OF FAbs.prems(1-3)<t #lset vs U vars C'`]
    ```

```

        using surj-pair[of v] by fastforce
    qed
    qed
    qed
private lemma prop-5239-aux-3:
assumes t \& lset vs \cup vars {A,C}
and}C\p\leftarrow(\mp@subsup{\cdot}{\star}{}(F\mathrm{ Var t) (map FVar vs))\}\triangleright
and occurs-at t p'G
shows }\mp@subsup{p}{}{\prime}=p@ replicate (length vs)《(is < < ' =? p pt>)
proof (cases vs=[])
case True
then have t}\not\in\mathrm{ vars C
using assms(1) by auto
moreover from True and assms(2) have C\p\leftarrowFVar t \triangleright \G
by force
ultimately show ?thesis
using assms(3) and True and fresh-var-replacement-position-uniqueness by simp
next
case False
show ?thesis
proof (rule ccontr)
assume p'
have \neg prefix ? pt p

```
```

    by (simp add: False)
    from assms(3) have p}\mp@subsup{p}{}{\prime}\in\mathrm{ positions }
using is-subform-implies-in-positions by fastforce
from assms(2) have ? }\mp@subsup{p}{t}{}\in\mathrm{ positions }
using is-replacement-at-minimal-change(1) and is-subform-at-transitivity
and is-subform-implies-in-positions and leftmost-subform-in-generalized-app
by (metis length-map)
from assms(2) have occurs-at t ? p
unfolding occurs-at-def using is-replacement-at-minimal-change(1) and is-subform-at-transitivity
and leftmost-subform-in-generalized-app
by (metis length-map)
moreover from assms(2) and < < ' }\in\mathrm{ positions G> have *:
subform-at C p ' = subform-at G p' if }\neg\mathrm{ prefix }\mp@subsup{p}{}{\prime}p\mathrm{ and }\neg\mathrm{ prefix p p'
using is-replacement-at-minimal-change(2) by (simp add: that(1,2))
ultimately show False
proof (cases \neg prefix p' p ^\neg prefix p p')
case True
with assms(3) and * have occurs-at t p' C
using is-replacement-at-occurs[OF assms(2)] by blast
then have }t\in\mathrm{ vars C
using is-subform-implies-in-positions and occurs-in-vars by fastforce
with assms(1) show ?thesis
by simp
next
case False
then consider (a) prefix p' p|(b) prefix p p
by blast
then show ?thesis
proof cases
case a
with <occurs-at t ? p
unfolding occurs-at-def using loop-subform-impossibility
by (metis prefix-order.dual-order.order-iff-strict prefix-prefix)
next
case b
have strict-prefix p' ? p
proof (rule ccontr)
assume ᄀ strict-prefix p' ?pt
then consider
(\mp@subsup{b}{1}{}) p
| (b}\mp@subsup{b}{2}{\prime})\mathrm{ strict-prefix ? p}\mp@subsup{p}{t}{}\mp@subsup{p}{}{\prime
| (b3) \neg prefix p' ? p}\mp@subsup{p}{t}{}\mathrm{ and }\neg\mathrm{ prefix ? }\mp@subsup{p}{t}{}\mp@subsup{p}{}{\prime
by fastforce
then show False
proof cases
case b
with }\langle\mp@subsup{p}{}{\prime}\not=\mathrm{ ? }\mp@subsup{p}{t}{}\rangle\mathrm{ show ?thesis
by contradiction
next

```
```

                    case b
                with <occurs-at t? p
                    using loop-subform-impossibility by blast
                next
                    case b3
                        from b obtain p'\prime where p' = p@ @ '\prime and p't positions (. . * (FVar t) (map FVar vs))
                using is-replacement-at-new-positions and <p' \in positions G> and assms(2) by blast
                    moreover have p"}\mp@subsup{p}{}{\prime\prime}=\mathrm{ replicate (length vs)《
                    using \langlep' = p@ p}\mp@subsup{p}{}{\prime\prime}\rangle\mathrm{ and }\langle\mp@subsup{p}{}{\prime}\not=??\mp@subsup{p}{t}{}\rangle\mathrm{ by blast
                        ultimately consider
    ```

```

                            | (b3-2 ) \existsv\inlset vs.occurs-at v p'\prime (.\mp@subsup{\mathcal{Q}}{\star}{}(FVar t) (map FVar vs))
                        using prop-5239-aux-1 and b}\mp@subsup{b}{3}{}(1,2)\mathrm{ and is-replacement-at-occurs
                        and leftmost-subform-in-generalized-app-replacement
                        by (metis (no-types, opaque-lifting) length-map prefix-append)
                then show ?thesis
                proof cases
                    case b}\mp@subsup{b}{3-1}{
                        with assms(2) and < < ' = p@ @ '>}>\mathrm{ have }\exists\mp@subsup{F}{1}{}\mp@subsup{F}{2}{}.\mp@subsup{F}{1}{}\cdot\mp@subsup{F}{2}{}\preceq\mp@subsup{}}{\mp@subsup{p}{}{\prime}}{}
                        using is-replacement-at-minimal-change(1) and is-subform-at-transitivity by meson
                        with <occurs-at t p' G〉 show ?thesis
                        using is-subform-at-uniqueness by fastforce
                next
                    case b3-2
                        with assms(2) and < p' = p@ @ '>}>\mathrm{ have }\existsv\inlset vs.occurs-at v p' G
                    unfolding occurs-at-def
                    using is-replacement-at-minimal-change(1) and is-subform-at-transitivity by meson
                    with assms(1,3) show ?thesis
                using is-subform-at-uniqueness by fastforce
                    qed
                    qed
            qed
            with <occurs-at t ? }\mp@subsup{p}{t}{}G\rangle\mathrm{ and assms(3) show ?thesis
                using loop-subform-impossibility by blast
            qed
        qed
    qed
    qed
private lemma prop-5239-aux-4:
assumes t\not\in lset vs \cup vars {A,C}
and A\preceqp}
and lset vs \supseteq capture-exposed-vars-at p C A
and}C\p\leftarrow(\cdot\mp@subsup{\mathcal{Q}}{\star}{}(F\operatorname{Var}t)(\mathrm{ map FVar vs))\}\triangleright
shows is-free-for ( }\mp@subsup{\lambda}{}{\mathcal{Q}}\mp@subsup{}{\star}{}\mathrm{ vs A) tG
unfolding is-free-for-def proof (intro ballI impI)
let ? }\mp@subsup{p}{t}{}=p\mathrm{ @ replicate (length vs) «
from assms(4) have FVar t\preceq? }\mp@subsup{p}{t}{}
using is-replacement-at-minimal-change(1) and is-subform-at-transitivity

```
and leftmost-subform-in-generalized-app by (metis length-map)
fix \(v^{\prime}\) and \(p^{\prime}\)
assume \(v^{\prime} \in\) free-vars \(\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.\) vs \(\left.A\right)\) and \(p^{\prime} \in\) positions \(G\) and is-free-at t \(p^{\prime} G\)
have \(v^{\prime} \notin\) binders-at \(G ? p_{t}\)
proof -
have free-vars \(\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.\) vs \(\left.A\right)=\) free-vars \(A-l\) lset vs
by (fact free-vars-of-generalized-abs)
also from assms \((2,3)\) have \(\ldots \subseteq\) free-vars \(A-(\) binders-at \(C p \cap\) free-vars \(A)\)
using capture-exposed-vars-at-alt-def and is-subform-implies-in-positions by fastforce
also have \(\ldots=\) free-vars \(A-(\) binders-at \(G p \cap\) free-vars \(A)\)
using assms(2,4) is-replacement-at-binders is-subform-implies-in-positions by blast
finally have free-vars \(\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.\) vs \(\left.A\right) \subseteq\) free-vars \(A-(\) binders-at \(G p \cap\) free-vars \(A)\).
moreover have binders-at \(\left(\cdot_{\star}(F\right.\) Var \(t)(\) map FVar vs)) (replicate (length vs) «) \(=\{ \}\)
by (induction vs rule: rev-induct) simp-all
with \(\operatorname{assms}(4)\) have binders-at \(G ? p_{t}=\) binders-at \(G p\)
using binders-at-concat and is-replacement-at-minimal-change(1) by blast
ultimately show ?thesis
using \(\left\langle v^{\prime} \in\right.\) free-vars \(\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.\) vs \(\left.\left.A\right)\right\rangle\) by blast
qed
moreover have \(p^{\prime}=? p_{t}\)
by
fact prop-5239-aux-3
\(\left[O F \operatorname{assms}(1,4)\left\langle i s-f r e e-a t t p^{\prime} G\right\rangle[u n f o l d e d\right.\) is-free-at-def, THEN conjunct1]])
ultimately show \(\neg\) in-scope-of-abs \(v^{\prime} p^{\prime} G\)
using binders-at-alt-def[OF \(\left\langle p^{\prime} \in\right.\) positions \(\left.\left.G\right\rangle\right]\) and in-scope-of-abs-alt-def by auto
qed
proposition prop-5239:
assumes is-rule- \(R\)-app p \(D C(A=\alpha B)\)
and lset vs \(=\)
\(\left\{(x, \beta) \mid x \beta p^{\prime} E\right.\). strict-prefix \(p^{\prime} p \wedge \lambda x_{\beta}\). \(E \preceq_{p^{\prime}} C \wedge(x, \beta) \in\) free-vars \(\left.(A=\alpha B)\right\}\)
shows \(\vdash \forall^{\mathcal{Q}}{ }_{\star}\) vs \((A=\alpha B) \supset^{\mathcal{Q}}\left(C \equiv{ }^{\mathcal{Q}} D\right)\)
proof -
let \(? \gamma=\) foldr \((\rightarrow)\) (map var-type vs) \(\alpha\)
obtain \(t\) where \((t, ? \gamma) \notin\) lset vs \(\cup\) vars \(\{A, B, C, D\}\)
using fresh-var-existence and vars-form-set-finiteness
by (metis List.finite-set finite.simps finite-UnI)
from \(\operatorname{assms}(1)\) have \(A \in w f f s_{\alpha}\) and \(B \in w f f s_{\alpha}\) and \(A \preceq p C\)
using wffs-from-equality[OF equality-wff] by simp-all
from \(\operatorname{assms}(1)\) have \(C \in w f f s_{o}\) and \(D \in w f f s_{o}\)
using replacement-preserves-typing by fastforce +
have \(\cdot{ }_{\star}{ }_{\star} t ?_{\gamma}(\) map FVar vs \() \in w f f s s_{\alpha}\)
using generalized-app-wff[where \(A s=\) map \(F\) Var vs and \(t s=\) map var-type vs]
by (metis eq-snd-iff length-map nth-map wffs-of-type-intros(1))
from assms(1) have \(p \in\) positions \(C\)
using is-subform-implies-in-positions by fastforce
then obtain \(G\) where \(C \backslash p \leftarrow\left(\cdot{ }_{\star}{ }_{\star} t_{{ }_{\gamma} \gamma}(\right.\) map FVar vs \(\left.)\right) \downarrow \triangleright G\)
using is-replacement-at-existence by blast
with \(\left\langle A \preceq{ }_{p} C\right\rangle\) and \(\left\langle\cdot{ }^{\mathcal{Q}}{ }_{\star} t_{? \gamma}(\right.\) map FVar vs \(\left.) \in w f f s_{\alpha}\right\rangle\) have \(G \in w f f s_{o}\)
using \(\left\langle A \in w_{f f} s_{\alpha}\right\rangle\) and \(\left\langle C \in\right.\) wffs \(\left._{o_{o}}\right\rangle\) and replacement-preserves-typing by blast
let ? \(v=\left\{(\mathfrak{h}, ? \gamma \rightarrow o) \mapsto \lambda t_{\text {? }} \gamma . G,(\mathfrak{x}, ? \gamma) \mapsto \lambda^{\mathcal{Q}} \star\right.\) vs \(A,(\mathfrak{y}, ? \gamma) \mapsto \lambda^{\mathcal{Q}} \star\) vs \(\left.B\right\}\)
and \(?^{\prime} A=\left(\mathfrak{x}_{? \gamma}={ }_{? \gamma} \mathfrak{y}_{? \gamma}\right) \supset^{\mathcal{Q}}\left(\mathfrak{h}_{? \gamma \rightarrow 0} \cdot \mathfrak{x}_{? \gamma} \equiv{ }^{\mathcal{Q}} \mathfrak{h}_{? \gamma \rightarrow 0} \cdot \mathfrak{y}_{? \gamma}\right)\)
have \(\vdash\) ? A
by (fact axiom-is-derivable-from-no-hyps[OF axiom-2])
moreover have \(\lambda t_{?}{ }_{\gamma} . G \in w f f s ?_{\gamma} \rightarrow o\) and \(\lambda^{\mathcal{Q}_{\star}}\) vs \(A \in w f f s ?_{\gamma}\) and \(\lambda^{\mathcal{Q}_{\star}}\) vs \(B \in w f f s ?_{?}\)
by (blast intro: \(\left\langle G \in\right.\) wffs \(\left.s_{O}\right\rangle\left\langle A \in\right.\) wffs \(\left.\left.s_{\alpha}\right\rangle\left\langle B \in w f f s_{\alpha}\right\rangle\right)+\)
then have is-substitution ?V
by simp
moreover have
\(\forall v \in\) fmdom \(^{\prime}\) ?७. var-name \(v \notin\) free-var-names \((\}:: f o r m ~ s e t) \wedge\) is-free-for (? \(? \$ \$!v) v ? A\)
by
(
code-simp, unfold atomize-conj[symmetric], simp,
use is-free-for-in-equality is-free-for-in-equivalence is-free-for-in-imp is-free-for-in-var
is-free-for-to-app in presburger
\[
)+
\]
blast
)
moreover have \(? \vartheta \neq\{\$ \$\}\)
by \(\operatorname{simp}\)
ultimately have \(\vdash \mathbf{S}\) ? \(\vartheta\) ? A
by (rule Sub)
moreover have \(\mathbf{S} ? \vartheta ? A=\left(\lambda^{\mathcal{Q}} \star\right.\) vs \(A=?{ }_{? \gamma} \lambda^{\mathcal{Q}}{ }_{\star}\) vs \(\left.B\right) \supset^{\mathcal{Q}}\left(\left(\lambda t_{?}{ }_{\gamma} . G\right) \cdot\left(\lambda^{\mathcal{Q}} \star\right.\right.\) vs \(\left.A\right) \equiv{ }^{\mathcal{Q}}\left(\lambda t_{?}{ }_{\gamma} \cdot G\right) \cdot\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.\) vs \(\left.\left.B\right)\right)\) by \(\operatorname{simp}\)
ultimately have \(\S 1\) :
\(\vdash\left(\lambda^{\mathcal{Q}} \star\right.\) vs \(A={ }_{? \gamma} \lambda^{\mathcal{Q}_{\star}}\) vs \(\left.B\right) \supset^{\mathcal{Q}}\left(\left(\lambda t_{? \gamma} . G\right) \cdot\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.\right.\) vs \(\left.A\right) \equiv{ }^{\mathcal{Q}}\left(\lambda t_{? \gamma} . G\right) \cdot\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.\) vs \(\left.\left.B\right)\right)\)
by (simp only:)
then have §2: \(\vdash\left(\forall^{\mathcal{Q}} \star v s(A=\alpha B)\right) \supset^{\mathcal{Q}}\left(\left(\lambda t_{{ }_{e} \gamma} . G\right) \cdot\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.\right.\) vs \(\left.A\right) \equiv{ }^{\mathcal{Q}}\left(\lambda t_{{ }_{?} \gamma} \cdot G\right) \cdot\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.\) vs \(\left.\left.B\right)\right)\)
proof (cases vs \(=[]\))
case True
with §1 show ?thesis by \(\operatorname{simp}\)
next
case False
from \(\S 1\) and prop-5238[OF False \(\left\langle A \in\right.\) wffs \(\left.s_{\alpha}\right\rangle\left\langle B \in\right.\) wffs \(\left.s_{\alpha}\right\rangle\)] show ?thesis unfolding equivalence-def by (rule rule- \(R[\) where \(p=[《, »]]\)) force +
qed
moreover have \(\vdash\left(\lambda t_{?} \gamma . G\right) \cdot\left(\lambda^{\mathcal{Q}} \star\right.\) vs \(\left.A\right)={ }_{o} C\) and \(\vdash\left(\lambda t_{?}{ }_{\gamma} . G\right) \cdot\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.\) vs \(\left.B\right)={ }_{o} D\)
proof -
from \(\operatorname{assms}(1)\) have \(B \preceq_{p} D\)
using is-replacement-at-minimal-change(1) by force
from \(\operatorname{assms}(1)\) have \(D \backslash p \leftarrow\left(\cdot_{\star} t_{?_{\gamma}}(\right.\) map FVar vs \(\left.)\right) \downarrow \triangleright G\) using \(\left\langle C \downarrow p \leftarrow\left(\cdot_{\star} t_{? \gamma}(\right.\right.\) map FVar vs \(\left.\left.)\right) \downarrow \triangleright G\right\rangle\) and replacement-override by (meson is-rule-R-app-def)
from \(\left\langle B \preceq_{p} D\right\rangle\) have \(p \in\) positions \(D\)
using is-subform-implies-in-positions by auto
from \(\operatorname{assms}(1)\) have binders-at \(D p=\) binders-at \(C p\)
using is-replacement-at-binders by fastforce
then have binders-at \(D p \cap\) free-vars \(B=\) binders-at \(C p \cap\) free-vars \(B\)
by \(\operatorname{simp}\)
with assms(2)
[
folded capture-exposed-vars-at-def, unfolded capture-exposed-vars-at-alt-def[OF \(\langle p \in\) positions \(C\rangle]\)
] have lset vs \(\supseteq\) capture-exposed-vars-at p D B
unfolding capture-exposed-vars-at-alt-def \([O F\langle p \in\) positions \(D\rangle]\) by auto
have is-free-for \(\left(\lambda^{\mathcal{Q}_{\star}}\right.\) vs \(\left.A\right)(t, ? \gamma) G\) and is-free-for \(\left(\lambda^{\mathcal{Q}_{\star}}\right.\) vs \(\left.B\right)(t, ? \gamma) G\) proof -
have \((t, ? \gamma) \notin\) lset vs \(\cup\) vars \(\{A, C\}\) and \((t, ? \gamma) \notin\) lset vs \(\cup\) vars \(\{B, D\}\) using 〈 \((t, ? \gamma) \notin\) lset vs \(\cup\) vars \(\{A, B, C, D\}>\) by simp-all
moreover from \(\operatorname{assms}\) (2) have lset vs \(\supseteq\) capture-exposed-vars-at \(p C A\) and lset vs \(\supseteq\) capture-exposed-vars-at \(p D B\) by fastforce fact
ultimately show is-free-for \(\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.\) vs \(\left.A\right)(t, ? \gamma) G\) and is-free-for \(\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.\) vs \(\left.B\right)(t, ? \gamma) G\) using prop-5239-aux-4 and \(\langle B \preceq p D\rangle\) and \(\langle A \preceq p C\rangle\) and \(\left\langle C \downarrow p \leftarrow\left({ }^{\mathcal{Q}}{ }_{\star} t_{? \gamma}(\right.\right.\) map FVar vs \(\left.\left.)\right)\right\rangle\)
\(\triangleright G\rangle\)
and \(\left\langle D \backslash p \leftarrow\left(\boldsymbol{Q}_{\star} t_{? \gamma}(\right.\right.\) map FVar vs \(\left.\left.)\right) \downarrow \triangleright G\right\rangle\) by meson +
qed
then have \(\vdash\left(\lambda_{t_{?} \gamma} . G\right) \cdot\left(\lambda^{\mathcal{Q}_{\star}}\right.\) vs \(\left.A\right)={ }_{o} \mathbf{S}\left\{\left(t, ?^{?} \gamma\right) \longmapsto \lambda^{\mathcal{Q}_{\star}}\right.\) vs \(\left.A\right\} G\)
and \(\vdash\left(\lambda t_{?}{ }_{\gamma} . G\right) \cdot\left(\lambda^{\mathcal{Q}_{\star}}\right.\) vs \(\left.B\right)={ }_{o} \mathbf{S}\left\{(t, ? \gamma) \longmapsto \lambda^{\mathcal{Q}}{ }_{\star}\right.\) vs \(\left.B\right\} G\)
using prop-5207[OF \(\left\langle\lambda^{\mathcal{Q}_{\star}}\right.\) vs \(A \in\) wffs \(\left.{ }_{? ~} \gamma^{\gamma}\right\rangle\left\langle G \in\right.\) wffs \(\left.\left.s_{o}\right\rangle\right]\)
and prop-5207[OF \(\left\langle\lambda^{\mathcal{Q}_{\star}}\right.\) vs \(\left.B \in w f f s ? \gamma^{\rangle}\left\langle G \in w f f s_{O}\right\rangle\right]\) by auto
moreover obtain \(G^{\prime}{ }_{1}\) and \(G^{\prime}{ }_{2}\)
where \(C \backslash p \leftarrow\left(\cdot_{\star}\left(\lambda^{\mathcal{Q}_{\star}}\right.\right.\) vs \(\left.A\right)(\) map FVar vs \(\left.)\right) \downarrow \triangleright G_{1}^{\prime}\)
and \(D \backslash p \leftarrow\left(\cdot_{\star}\left(\lambda^{\mathcal{Q}} \star\right.\right.\) vs \(\left.B\right)(\) map \(\left.\left.F \operatorname{Var} v s)\right)\right\rangle \triangleright G^{\prime}{ }_{2}\)
using is-replacement-at-existence \([O F\langle p \in\) positions \(C\rangle\)]
and is-replacement-at-existence \([O F\langle p \in\) positions \(D\rangle]\) by metis
then have \(\mathbf{S}\left\{(t, ? \gamma) \longmapsto \lambda^{\mathcal{Q}_{\star}}\right.\) vs \(\left.A\right\} G=G^{\prime}{ }_{1}\) and \(\mathbf{S}\{(t, ? \gamma) \not\rangle^{\mathcal{Q}}{ }_{\star}\) vs \(\left.B\right\} G=G^{\prime}{ }_{2}\)
proof -
have \((t, ? \gamma) \notin l\) set vs \(\cup\) vars \(C\) and \((t, ? \gamma) \notin l\) set vs \(\cup\) vars \(D\)
using \(\langle(t, ? \gamma) \notin\) lset vs \(\cup\) vars \(\{A, B, C, D\}\) by simp-all
then show \(\mathbf{S}\left\{(t, ? \gamma) \longmapsto \lambda^{\mathcal{Q}_{\star}}\right.\) vs \(\left.A\right\} G=G^{\prime}{ }_{1}\) and \(\mathbf{S}\left\{(t, ? \gamma) \longmapsto \lambda^{\mathcal{Q}}{ }_{\star}\right.\) vs \(\left.B\right\} G=G^{\prime}{ }_{2}\) using \(\left\langle C \backslash p \leftarrow\left(\cdot_{\star} t_{e_{\gamma}}(\right.\right.\) map FVar vs \(\left.\left.\left.)\right)\right\rangle \triangleright G\right\rangle\) and \(\left\langle D \backslash p \leftarrow\left(\cdot{ }_{\star}{ }_{\star} t_{? \gamma}\right.\right.\) map FVar vs \(\left.\left.)\right\rangle \triangleright G\right\rangle\) and \(\left\langle C \backslash p \leftarrow\left(\cdot^{\mathcal{Q}_{\star}}\left(\lambda^{\mathcal{Q}_{\star}}\right.\right.\right.\) vs \(\left.A\right)(\) map FVar vs \(\left.\left.)\right)\right\rangle \triangleright G^{\prime}{ }_{1}{ }^{\prime}\) and \(\left\langle D\left\langle p \leftarrow\left(\mathscr{Q}_{\star}\left(\lambda^{\mathcal{Q}_{\star}}\right.\right.\right.\right.\) vs \(\left.B\right)\) (map FVar vs) \(\left.\left.)\right\rangle \triangleright G^{\prime}{ }_{2}\right\rangle\) and prop-5239-aux-2 by blast +
qed
ultimately have \(\vdash\left(\lambda t_{?}{ }_{\gamma} . G\right) \cdot\left(\lambda^{\mathcal{Q}} \star\right.\) vs \(\left.A\right)={ }_{o} G^{\prime}{ }_{1}\) and \(\vdash\left(\lambda t_{?}{ }_{\gamma} \cdot G\right) \cdot\left(\lambda^{\mathcal{Q}} \star\right.\) vs \(\left.B\right)={ }_{o} G^{\prime}{ }_{2}\) by (simp-all only:)
moreover
have \(\vdash A=\alpha\left(\cdot^{\mathcal{Q}}{ }_{\star}\left(\lambda^{\mathcal{Q}_{\star}}\right.\right.\) vs \(\left.A\right)(\) map FVar vs \(\left.)\right)\) and \(\vdash B=\alpha_{\alpha}\left(\cdot^{\mathcal{Q}_{\star}}\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.\right.\) vs \(\left.B\right)(\) map FVar vs \(\left.)\right)\)
unfolding atomize-conj proof (cases vs \(=[]\))
assume \(v s=[]\)
```

    show \(\vdash A={ }_{\alpha} \cdot{ }^{\mathcal{Q}}{ }_{\star}\left(\lambda^{\mathcal{Q}} \star\right.\) vs \(\left.A\right)(\) map FVar vs \() \wedge \vdash B={ }_{\alpha} \cdot{ }^{\mathcal{Q}}{ }_{\star}\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.\) vs B) (map FVar vs)
    unfolding \(\langle v s=[]\rangle\) using prop-5200 and \(\left\langle A \in w f f s_{\alpha}\right\rangle\) and \(\left\langle B \in w f f s_{\alpha}\right\rangle\) by simp
    next
    assume vs \(\neq[]\)
    show \(\vdash A=\alpha^{\cdot{ }^{\mathcal{Q}}{ }_{\star}\left(\lambda^{\mathcal{Q}} \star \text { vs } A\right)(\text { map FVar vs }) \wedge \vdash B={ }_{\alpha}{ }^{\mathcal{Q}_{\star}}\left(\lambda^{\mathcal{Q}} \star \text { vs } B\right)(\text { map FVar vs }) ~}\)
        using Equality-Rules(2)[OF prop-5208[OF \(\langle v s \neq[]\rangle]]\) and \(\left\langle A \in\right.\) wffs \(\left.s_{\alpha}\right\rangle\) and \(\left\langle B \in\right.\) wffs \(\left.s_{\alpha}\right\rangle\)
        by blast+
    qed
    with
        \(\left\langle C \backslash p \leftarrow\left(\cdot^{\mathcal{Q}}{ }_{\star}\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.\right.\right.\) vs \(\left.A\right)(\) map FVar vs \(\left.\left.)\right) \downarrow \triangleright G^{\prime}{ }_{1}\right\rangle\)
    and
        \(\left\langle D \backslash p \leftarrow\left(\cdot \mathcal{Q}_{\star}\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.\right.\right.\) vs \(\left.B\right)(\) map \(\left.\left.F \operatorname{Var} v s)\right) \downarrow \triangleright G^{\prime}{ }_{2}\right\rangle\)
    have \(\vdash G^{\prime}{ }_{1}={ }_{o} C\) and \(\vdash G^{\prime}{ }_{2}={ }_{o} D\)
        using Equality-Rules(2)[OF replacement-derivability] and \(\left\langle C \in w f f s_{o}\right\rangle\) and \(\left\langle D \in\right.\) wffs \(\left._{o}\right\rangle\)
        and \(\left\langle A \preceq_{p} C\right\rangle\) and \(\left\langle B \preceq_{p} D\right\rangle\) by blast +
    ultimately show \(\vdash\left(\lambda t_{? \gamma} . G\right) \cdot\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.\) vs \(\left.A\right)={ }_{o} C\) and \(\vdash\left(\lambda t_{? \gamma} . G\right) \cdot\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.\) vs \(\left.B\right)={ }_{o} D\)
        using Equality-Rules(3) by blast+
    qed
    ultimately show ?thesis
    proof -
        from \(\S 2\) and \(\left\langle\vdash\left(\lambda t_{?} \gamma . G\right) \cdot\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.\right.\) vs \(\left.\left.A\right)={ }_{o} C\right\rangle\) have
        \(\vdash\left(\forall^{\mathcal{Q}}{ }_{\star}\right.\) vs \(\left.(A=\alpha B)\right) \supset^{\mathcal{Q}}\left(C \equiv{ }^{\mathcal{Q}}\left(\lambda t_{\text {? }}{ }^{2} . G\right) \cdot\left(\lambda^{\mathcal{Q}} \star\right.\right.\) vs \(\left.\left.B\right)\right)\)
        by (rule rule- \(R[\) where \(p=[», «, »]]\) ) force +
    from this and \(\leqslant\left(\lambda_{\text {? }} \gamma . G\right) \cdot\left(\lambda^{\mathcal{Q}_{\star}}\right.\) vs \(\left.B\right)={ }_{o} D\) 〉show ?thesis
        by (rule rule- \(R[\) where \(p=[», »]]\) ) force +
    qed
    qed
end

```

\subsection*{6.40 Theorem 5240 (Deduction Theorem)}
lemma pseudo-rule-R-is-tautologous:
assumes \(C \in w f f s_{o}\) and \(D \in w f f s_{o}\) and \(E \in w_{f f} s_{o}\) and \(H \in w_{f f} s_{o}\)
shows is-tautologous \(\left(\left(\left(H \supset^{\mathcal{Q}} C\right) \supset^{\mathcal{Q}}\left(\left(H \supset^{\mathcal{Q}} E\right) \supset^{\mathcal{Q}}\left(\left(E \supset^{\mathcal{Q}}\left(C \equiv{ }^{\mathcal{Q}} D\right)\right) \supset^{\mathcal{Q}}\left(H \supset^{\mathcal{Q}} D\right)\right)\right)\right)\right.\)
proof -
let ? \(\vartheta=\{(\mathfrak{x}, o) \multimap C,(\mathfrak{y}, o) \longmapsto D,(\mathfrak{z}, o) \longmapsto E,(\mathfrak{h}, o) \multimap H\}\)
have

> is-tautology
\[
\left(\left(\left(\mathfrak{h}_{o} \supset^{\mathcal{Q}} \mathfrak{x}_{o}\right) \supset^{\mathcal{Q}}\left(\left(\mathfrak{h}_{o} \supset^{\mathcal{Q}} \mathfrak{z}_{o}\right) \supset^{\mathcal{Q}}\left(\left(\mathfrak{z}_{o} \supset^{\mathcal{Q}}\left(\mathfrak{x}_{o} \equiv \equiv^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right) \supset^{\mathcal{Q}}\left(\mathfrak{h}_{o} \supset^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right)\right)\right)\right)
\]
using \(\mathcal{V}_{B}\)-simps by simp
moreover have is-substitution ?V
using assms by auto
moreover have \(\forall(x, \alpha) \in\) fmdom \(^{\prime}\) ? \(\vartheta . ~ \alpha=o\)
by \(\operatorname{simp}\)
moreover have
\[
\begin{aligned}
& \left(\left(H \supset^{\mathcal{Q}} C\right) \supset^{\mathcal{Q}}\left(\left(H \supset^{\mathcal{Q}} E\right) \supset^{\mathcal{Q}}\left(\left(E \supset^{\mathcal{Q}}\left(C \equiv{ }^{\mathcal{Q}} D\right)\right) \supset^{\mathcal{Q}}\left(H \supset^{\mathcal{Q}} D\right)\right)\right)\right) \\
& = \\
& \mathbf{S} ? \vartheta\left(\left(\left(\mathfrak{h}_{o} \supset^{\mathcal{Q}} \mathfrak{x}_{o}\right) \supset^{\mathcal{Q}}\left(\left(\mathfrak{h}_{o} \supset^{\mathcal{Q}} \mathfrak{z}_{o}\right) \supset^{\mathcal{Q}}\left(\left(\mathfrak{z}_{o} \supset^{\mathcal{Q}}\left(\mathfrak{x}_{o} \equiv^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right) \supset^{\mathcal{Q}}\left(\mathfrak{h}_{o} \supset^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right)\right)\right)\right)
\end{aligned}
\]
```

    by simp
    ultimately show?thesis
    by blast
    qed
syntax
-HypDer :: form }=>\mathrm{ form set }=>\mathrm{ form }=>\mathrm{ bool (-,-卜 -[50, 50, 50] 50)
translations
\mathcal{H},H\vdashP\rightharpoonup\mathcal{H}\cup{H}\vdashP
theorem thm-5240:
assumes finite \mathcal{H}
and }\mathcal{H},H\vdash
shows }\mathcal{H}\vdashH\supset\mp@subsup{\supset}{}{\mathcal{Q}}
proof -
from }\langle\mathcal{H},H\vdashP\rangle\mathrm{ obtain }\mp@subsup{\mathcal{S}}{1}{}\mathrm{ and }\mp@subsup{\mathcal{S}}{2}{}\mathrm{ where *: is-hyp-proof-of (H)}\cup{H})\mp@subsup{\mathcal{S}}{1}{}\mp@subsup{\mathcal{S}}{2}{}
using hyp-derivability-implies-hyp-proof-existence by blast
have }\mathcal{H}\vdashH\mp@subsup{\supset}{}{\mathcal{Q}}(\mp@subsup{\mathcal{S}}{2}{\prime}!\mp@subsup{i}{}{\prime})\mathrm{ if }\mp@subsup{i}{}{\prime}<length S\mathcal{S
using that proof (induction i' rule: less-induct)
case (less i')
let ?R=\mp@subsup{\mathcal{S}}{2}{\prime}!\mp@subsup{i}{}{\prime}
from less.prems(1) and * have is-hyps }\mathcal{H
by fastforce
from less.prems and * have ?R }\in\mp@subsup{w}{ff\mp@subsup{s}{o}{}}{
using elem-of-proof-is-wffo[simplified] by auto
from less.prems and * have is-hyp-proof-step (\mathcal{H}\cup{H})}\mp@subsup{\mathcal{S}}{1}{}\mp@subsup{\mathcal{S}}{2}{}\mp@subsup{i}{}{\prime
by simp
then consider
(hyp) ?R R\in\mathcal{H}\cup{H}
| (seq) ?R | lset S S
| (rule-R') \existsjkp.{j,k}\subseteq{0..<i}}^\is-rule-R'-app (\mathcal{H}\cup{H})p?R(\mathcal{S}2!j)(\mathcal{S}2!k
by force
then show ?case
proof cases
case hyp
then show ?thesis
proof (cases ?R = H)
case True
with}«?R\in\mp@subsup{w}{ff}{}\mp@subsup{s}{O}{\prime}\mathrm{ ' have is-tautologous (H}\mp@subsup{\supset}{}{\mathcal{Q}}?R\mathrm{ )
using implication-reflexivity-is-tautologous by (simp only:)
with «is-hyps }\mathcal{H}\mathrm{ \ show ?thesis
by (rule rule-P(2))
next
case False
with hyp have ?R }\in\mathcal{H
by blast
with «is-hyps \mathcal{H}> have \mathcal{H}\vdash?R
by (intro dv-hyp)
moreover from less.prems(1) and * have is-tautologous (?R }\mp@subsup{\supset}{}{\mathcal{Q}}(H\mp@subsup{\supset}{}{\mathcal{Q}}?R)

```
using principle-of-simplification-is-tautologous \(\left[O F<? R \in\right.\) wffs \(\left.o_{o}\right\rangle\) by force
moreover from \(\left\langle ? R \in\right.\) wfff \(\left._{o}\right\rangle\) have is-hyps \(\{? R\}\)
by simp
ultimately show ?thesis
using rule- \(P(1)[\) where \(\mathcal{G}=\{? R\}\) and \(h s=[? R]\), OF 〈is-hyps \(\mathcal{H}\rangle]\) by simp
qed
next
case seq
then have \(\mathcal{S}_{1} \neq[]\)
by force
moreover from less.prems(1) and \(*\) have is-proof \(\mathcal{S}_{1}\)
by fastforce
moreover from seq obtain \(i^{\prime \prime}\) where \(i^{\prime \prime}<\) length \(\mathcal{S}_{1}\) and ? \(R=\mathcal{S}_{1}!i^{\prime \prime}\)
by (metis in-set-conv-nth)
ultimately have is-theorem? \(R\)
using proof-form-is-theorem by fastforce
with 〈is-hyps \(\mathcal{H}\rangle\) have \(\mathcal{H} \vdash\) ? \(R\)
by (intro dv-thm)
moreover from \(\left\langle ? R \in\right.\) wffs \(_{o}\) ’ and less.prems \((1)\) and \(*\) have is-tautologous \(\left(? R \supset^{\mathcal{Q}}\left(H \supset^{\mathcal{Q}}\right.\right.\)
?R))
using principle-of-simplification-is-tautologous by force
moreover from \(\left\langle ? R \in\right.\) wffs \(\left.s_{o}\right\rangle\) have is-hyps \(\{? R\}\)
by \(\operatorname{simp}\)
ultimately show ?thesis
using rule- \(P(1)[\) where \(\mathcal{G}=\{? R\}\) and \(h s=[? R], O F\langle\) is-hyps \(\mathcal{H}\rangle]\) by simp
next
case rule- \(R^{\prime}\)
then obtain \(j\) and \(k\) and \(p\)
where \(\{j, k\} \subseteq\left\{0 . .<i^{\prime}\right\}\) and rule- \(R^{\prime}\)-app: is-rule- \(R^{\prime}\)-app \((\mathcal{H} \cup\{H\}) p ? R\left(\mathcal{S}_{2}!j\right)\left(\mathcal{S}_{2}!k\right)\)
by auto
then obtain \(A\) and \(B\) and \(C\) and \(\alpha\) where \(C=\mathcal{S}_{2}!j\) and \(\mathcal{S}_{2}!k=A={ }_{\alpha} B\)
by fastforce
with \(\left\langle\{j, k\} \subseteq\left\{0 . .\left\langle i^{\prime}\right\}\right\rangle\right.\) have \(\mathcal{H} \vdash H \supset^{\mathcal{Q}} C\) and \(\mathcal{H} \vdash H \supset^{\mathcal{Q}}\left(A={ }_{\alpha} B\right)\)
using less.IH and less.prems(1) by (simp, force)
define \(S\) where \(S \equiv\)
\(\left\{(x, \beta) \mid x \beta p^{\prime} E\right.\). strict-prefix \(p^{\prime} p \wedge \lambda x_{\beta} . E \preceq p^{\prime} C \wedge(x, \beta) \in\) free-vars \(\left.(A=\alpha B)\right\}\)
with \(\left\langle C=\mathcal{S}_{2}!j\right\rangle\) and \(\left\langle\mathcal{S}_{2}!k=A=\alpha B\right\rangle\) have \(\forall v \in S . v \notin\) free-vars \((\mathcal{H} \cup\{H\})\)
using rule- \(R^{\prime}\)-app by fastforce
moreover have \(S \subseteq\) free-vars \((A=\alpha B)\)
unfolding \(S\)-def by blast
then have finite \(S\)
by (fact rev-finite-subset[OF free-vars-form-finiteness])
then obtain \(v s\) where lset \(v s=S\)
using finite-list by blast
ultimately have \(\mathcal{H} \vdash H \supset^{\mathcal{Q}} \forall \mathcal{Q}_{\star}\) vs \((A=\alpha B)\)
using generalized-prop-5237[OF \(\langle\) is-hyps \(\mathcal{H}\rangle\left\langle\mathcal{H} \vdash H \supset^{\mathcal{Q}}(A=\alpha B)\right\rangle\) by simp
moreover have rule-R-app: is-rule-R-app \(p ? R\left(\mathcal{S}_{2}!j\right)\left(\mathcal{S}_{2}!k\right)\)
using rule- \(R^{\prime}\)-app by fastforce
with \(S\)-def and «lset vs \(=S\rangle\) have \(\vdash \forall \mathcal{Q}_{\star}\) vs \((A=\alpha B) \supset^{\mathcal{Q}}\left(C \equiv{ }^{\mathcal{Q}}\right.\) ?R)
```

            unfolding \(\left\langle C=\mathcal{S}_{2}!j\right\rangle\) and \(\left\langle\mathcal{S}_{2}!k=A={ }_{\alpha} B\right\rangle\) using prop-5239 by (simp only:)
        with \(\left\langle\right.\) is-hyps \(\mathcal{H}\) 〉 have \(\mathcal{H} \vdash \forall \mathcal{Q}_{\star}\) vs \(\left(A={ }_{\alpha} B\right) \supset^{\mathcal{Q}}(C \equiv \mathcal{Q}\) ? \(R)\)
            by (elim derivability-implies-hyp-derivability)
        ultimately show ?thesis
        proof -
            let \(? A_{1}=H \supset^{\mathcal{Q}} C\) and \(? A_{2}=H \supset^{\mathcal{Q}} \forall^{\mathcal{Q}} \star\) vs \(\left(A={ }_{\alpha} B\right)\)
            and \(? A_{3}=\forall^{\mathcal{Q}}\) * vs \(\left(A={ }_{\alpha} B\right) \supset^{\mathcal{Q}}\left(C \equiv \equiv^{\mathcal{Q}} ? R\right)\)
            let \(? h s=\left[? A_{1}, ? A_{2}, ? A_{3}\right]\)
            let \(? \mathcal{G}=\) lset \(? \mathrm{hs}\)
            from \(\left\langle\mathcal{H} \vdash\right.\) ? \(\left.A_{1}\right\rangle\) have \(H \in\) wffs \(_{o}\)
                using hyp-derivable-form-is-wffso by (blast dest: wffs-from-imp-op(1))
            moreover from \(\left\langle\mathcal{H} \vdash ? A_{2}\right\rangle\) have \(\forall \mathcal{Q}_{\star}\) vs \(\left(A={ }_{\alpha} B\right) \in\) wffs \({ }_{o}\)
            using hyp-derivable-form-is-wffso by (blast dest: wffs-from-imp-op(2))
            moreover from \(\left\langle C=\mathcal{S}_{2}!j\right\rangle\) and rule- \(R\)-app have \(C \in w f f s_{o}\)
            using replacement-preserves-typing by fastforce
            ultimately have \(*\) : is-tautologous \(\left(? A_{1} \supset^{\mathcal{Q}}\left(? A_{2} \supset^{\mathcal{Q}}\left(? A_{3} \supset^{\mathcal{Q}}\left(H \supset^{\mathcal{Q}} ? R\right)\right)\right)\right.\)
            using \(\left\langle ? R \in\right.\) wffs \(\left._{o}\right\rangle\) by (intro pseudo-rule-R-is-tautologous)
            moreover from \(\left\langle\mathcal{H} \vdash ? A_{1}\right\rangle\) and \(\left\langle\mathcal{H} \vdash ? A_{2}\right\rangle\) and \(\left\langle\mathcal{H} \vdash ? A_{3}\right\rangle\) have is-hyps ?G
            using hyp-derivable-form-is-wffso by simp
            moreover from \(\left\langle\mathcal{H} \vdash ? A_{1}\right\rangle\) and \(\left\langle\mathcal{H} \vdash ? A_{2}\right\rangle\) and \(\left\langle\mathcal{H} \vdash ? A_{3}\right\rangle\) have \(\forall A \in ? \mathcal{G}\). \(\mathcal{H} \vdash A\)
                by force
            ultimately show ?thesis
            using rule- \(P(1)\left[\right.\) where \(\mathcal{G}=? \mathcal{G}\) and \(h s=? h s\) and \(B=H \supset^{\mathcal{Q}} ? R\), OF \(\langle\) is-hyps \(\left.\mathcal{H}\rangle\right]\) by simp
        qed
        qed
    qed
    moreover from 〈is-hyp-proof-of \(\left.(\mathcal{H} \cup\{H\}) \mathcal{S}_{1} \mathcal{S}_{2} P\right\rangle\) have \(\mathcal{S}_{2}\) ! (length \(\left.\mathcal{S}_{2}-1\right)=P\)
        using last-conv-nth by fastforce
    ultimately show? thesis
        using 〈is-hyp-proof-of \((\mathcal{H} \cup\{H\}) \mathcal{S}_{1} \mathcal{S}_{2} P\) by force
    qed
lemmas Deduction-Theorem $=$ thm-5240
We prove a generalization of the Deduction Theorem，namely that if $\mathcal{H} \cup\left\{H_{1}, \ldots, H_{n}\right\} \vdash P$
then $\mathcal{H} \vdash H_{1} \supset^{\mathcal{Q}}\left(\cdots \supset^{\mathcal{Q}}\left(H_{n} \supset^{\mathcal{Q}} P\right) \cdots\right)$ :
corollary generalized-deduction-theorem:
assumes finite $\mathcal{H}$ and finite $\mathcal{H}^{\prime}$
and $\mathcal{H} \cup \mathcal{H}^{\prime} \vdash P$
and lset $h s=\mathcal{H}^{\prime}$
shows $\mathcal{H} \vdash h s \supset^{\mathcal{Q}}{ }_{\star} P$
using assms proof (induction hs arbitrary: $\mathcal{H}^{\prime}$ P rule: rev-induct)
case Nil
then show? case
by $\operatorname{simp}$
next
case (snoc Hhs)
from «lset (hs @ $\left.[H])=\mathcal{H}^{\prime}\right\rangle$ have $H \in \mathcal{H}^{\prime}$
by fastforce

```
```

    from \(\left\langle l\right.\) lset \(\left.(h s @[H])=\mathcal{H}^{\prime}\right\rangle\) obtain \(\mathcal{H}^{\prime \prime}\) where \(\mathcal{H}^{\prime \prime} \cup\{H\}=\mathcal{H}^{\prime}\) and \(\mathcal{H}^{\prime \prime}=\) lset \(h s\)
    by \(\operatorname{simp}\)
    from \(\left\langle\mathcal{H}^{\prime \prime} \cup\{H\}=\mathcal{H}^{\prime}\right\rangle\) and \(\left\langle\mathcal{H} \cup \mathcal{H}^{\prime} \vdash P\right\rangle\) have \(\mathcal{H} \cup \mathcal{H}^{\prime \prime} \cup\{H\} \vdash P\)
    by fastforce
    with \(\langle\) finite \(\mathcal{H}\rangle\) and \(\left\langle\right.\) finite \(\left.\mathcal{H}^{\prime}\right\rangle\) and \(\left\langle\mathcal{H}^{\prime \prime}=l\right.\) set hs \(\rangle\) have \(\mathcal{H} \cup \mathcal{H}^{\prime \prime} \vdash H \supset^{\mathcal{Q}} P\)
        using Deduction-Theorem by simp
    with \(\left\langle\mathcal{H}^{\prime \prime}=\right.\) lset \(\left.h s\right\rangle\) and \(\langle\) finite \(\mathcal{H}\rangle\) have \(\mathcal{H} \vdash\) foldr \(\left(\supset^{\mathcal{Q}}\right) h s\left(H \supset^{\mathcal{Q}} P\right)\)
        using snoc.IH by fastforce
    moreover have \((h s @[H]) \supset^{\mathcal{Q}}{ }_{\star} P=h s \supset^{\mathcal{Q}}{ }_{\star}\left(H \supset^{\mathcal{Q}} P\right)\)
        by simp
    ultimately show ?case
        by auto
    qed

```

\section*{6．41 Proposition 5241}
```

proposition prop－5241：
assumes is－hyps $\mathcal{G}$
and $\mathcal{H} \vdash A$ and $\mathcal{H} \subseteq \mathcal{G}$
shows $\mathcal{G} \vdash A$
proof（cases $\mathcal{H}=\{ \}$ ）
case True
show ？thesis
by（fact derivability－implies－hyp－derivability［OF assms（2）［unfolded True］assms（1）］）
next
case False
then obtain $h s$ where lset $h s=\mathcal{H}$ and $h s \neq[]$
using hyp－derivability－implies－hyp－proof－existence［OF assms（2）］unfolding is－hyp－proof－of－def
by（metis empty－set finite－list）
with $\operatorname{assms}(2)$ have $\vdash h s \supset^{\mathcal{Q}}{ }_{\star} A$
using generalized－deduction－theorem by force
moreover from 〈lset $h s=\mathcal{H}$ 〉 and $\operatorname{assms}(1,3)$ have $\mathcal{G} \vdash H$ if $H \in$ lset $h s$ for $H$
using that by（blast intro：dv－hyp）
ultimately show ？thesis
using assms（1）and generalized－modus－ponens and derivability－implies－hyp－derivability by meson
qed

```

\section*{6．42 Proposition 5242 （Rule of Existential Generalization）}
proposition prop－5242：
assumes \(A \in w f f s_{\alpha}\) and \(B \in\) wffs \(_{o}\)
and \(\mathcal{H} \vdash \mathbf{S}\{(x, \alpha) \longmapsto A\} B\)
and is－free－for \(A(x, \alpha) B\)
shows \(\mathcal{H} \vdash \exists x_{\alpha} . B\)
proof－
from assms（3）have is－hyps \(\mathcal{H}\)
by（blast dest：is－derivable－from－hyps．cases）
then have \(\mathcal{H} \vdash \forall x_{\alpha} \sim^{\mathcal{Q}} B \supset^{\mathcal{Q}} \sim^{\mathcal{Q}} \mathbf{S}\{(x, \alpha) \mapsto A\} B\)（is \(\left\langle\mathcal{H} \vdash\right.\) ？\(C \supset^{\mathcal{Q}} \sim^{\mathcal{Q}}\) ？\(D\) 〉）
using prop－5226［OF assms（1）neg－wff［OF assms（2）］is－free－for－in－neg［OF assms（4）］］
unfolding derived－substitution－simps（4）using derivability－implies－hyp－derivability by（simp only：）
```

moreover have $*$ : is-tautologous $\left(\left(? C \supset^{\mathcal{Q}} \sim^{\mathcal{Q}} ? D\right) \supset^{\mathcal{Q}}\left(? D \supset^{\mathcal{Q}} \sim^{\mathcal{Q}} ? C\right)\right)$
proof -
have $? C \in$ wff $_{o}$ and $? D \in$ wff $_{o}$
using assms(2) and hyp-derivable-form-is-wffso[OF assms(3)] by auto
then show ?thesis
by (fact pseudo-modus-tollens-is-tautologous)
qed
moreover from assms(3) and $\left\langle\mathcal{H} \vdash ? C \supset^{\mathcal{Q}} \sim \mathcal{Q}\right.$ ? $\left.D\right\rangle$ have is-hyps $\left\{? C \supset^{\mathcal{Q}} \sim^{\mathcal{Q}}\right.$ ? $\left.D, ? D\right\}$
using hyp-derivable-form-is-wffso by force
ultimately show ?thesis
unfolding exists-def using assms(3)
and rule- $P(1)$
where $\mathcal{G}=\left\{? C \supset^{\mathcal{Q}} \sim \mathcal{Q} ? D, ? D\right\}$ and $h s=\left[? C \supset^{\mathcal{Q}} \sim^{\mathcal{Q}} ? D, ? D\right]$ and $B=\sim^{\mathcal{Q}} ? C$,
OF 〈is-hyps $\mathcal{H}\rangle$
]
by $\operatorname{simp}$
qed
lemmas $\exists$ Gen $=$ prop-5242

```

\section*{6．43 Proposition 5243 （Comprehension Theorem）}

\section*{context}
```

begin
private lemma prop－5243－aux：
assumes $\cdot_{\star}{ }_{\star} B($ map FVar vs $) \in w f f s \gamma$
and $B \in w_{f f} s_{\beta}$
and $k<$ length vs
shows $\beta \neq$ var－type（vs！k）
proof－
from assms（1）obtain ts where length ts $=$ length（map FVar vs）
and $*: \forall k<$ length（map FVar vs）．（map FVar vs）$!k \in w f f s_{t s}!k$
and $B \in$ wffs $s_{\text {fold }}(\rightarrow)$ ts $\gamma$
using wffs－from－generalized－app by force
have $\beta=$ foldr $(\rightarrow)$ ts $\gamma$
by（fact wff－has－unique－type［OF assms（2）$\left\langle B \in\right.$ wffs $_{\text {foldr }}(\rightarrow)$ ts $\left.\left.\gamma^{\diamond}\right]\right)$
have $t s=$ map var－type vs
proof－
have length $t s=$ length（map var－type vs）
by（simp add：＜length ts＝length（map FVar vs）〉）
moreover have $\forall k<$ length ts．$t s!k=($ map var－type vs $)!k$
proof（intro allI impI）
fix $k$
assume $k<$ length $t s$
with＊have（map FVar vs）！$k \in$ wffs $_{t s}!k$
by（simp add：＜length $t s=$ length（map FVar vs）〉）

```
with \(\langle k<\) length \(t s\rangle\) and \(\langle l e n g t h ~ t s=l e n g t h ~(m a p ~ v a r-t y p e ~ v s)\rangle\)
show \(t s!k=(\) map var-type vs \()!k\)
using surj-pair [of vs!k] and wff-has-unique-type and wffs-of-type-intros(1) by force
qed
ultimately show ?thesis
using list-eq-iff-nth-eq by blast
qed
with \(\langle\beta=\) foldr \((\rightarrow)\) ts \(\gamma\rangle\) and assms(3) show ?thesis
using fun-type-atoms-neq-fun-type by (metis length-map nth-map)
qed
proposition prop-5243:
assumes \(B \in w f f s_{\beta}\)
and \(\gamma=\) foldr \((\rightarrow)\) (map var-type vs) \(\beta\)
and \((u, \gamma) \notin\) free-vars \(B\)
shows \(\vdash \exists u_{\gamma} . \forall \mathcal{Q}_{\star}\) vs \(\left(\left(\cdot^{\mathcal{Q}}{ }_{\star} u_{\gamma}(\right.\right.\) map \(F\) Var vs \(\left.\left.)\right)={ }_{\beta} B\right)\)
proof (cases vs \(=[]\))
case True
with \(\operatorname{assms}\) (2) have \(\gamma=\beta\)
by \(\operatorname{simp}\)
from \(\operatorname{assms}(1)\) have \(u_{\beta}={ }_{\beta} B \in w f f s_{o}\) by blast
moreover have \(\vdash B={ }_{\beta} B\)
by (fact prop-5200[OF \(\operatorname{assms}(1)])\)
then have \(\vdash \mathbf{S}\{(u, \beta) \longmapsto B\} \quad\left(u_{\beta}={ }_{\beta} B\right)\)
using free-var-singleton-substitution-neutrality[OF assms(3)] unfolding \(\langle\gamma=\beta\rangle\) by simp
moreover from assms(3)[unfolded \(\langle\gamma=\beta\rangle\)] have is-free-for \(B(u, \beta)\left(u_{\beta}={ }_{\beta} B\right)\)
by (intro is-free-for-in-equality) (use is-free-at-in-free-vars in auto)
ultimately have \(\vdash \exists u_{\beta} .\left(u_{\beta}={ }_{\beta} B\right)\)
by (rule \(\exists \operatorname{Gen}[\) OF \(\operatorname{assms}(1)])\)
with \(\langle\gamma=\beta\rangle\) and True show ?thesis
by \(\operatorname{simp}\)
next
case False
let \(? \vartheta=\left\{(u, \gamma) \mapsto \lambda^{\mathcal{Q}} \star\right.\) vs \(\left.B\right\}\)
from \(\operatorname{assms}(2)\) have \(*:(u, \gamma) \neq v\) if \(v \in\) lset \(v s\) for \(v\)
using that and fun-type-atoms-neq-fun-type by (metis in-set-conv-nth length-map nth-map snd-conv)
from False and assms(1) have \(\vdash \cdot{ }^{\mathcal{Q}}{ }_{\star}\left(\lambda^{\mathcal{Q}} \star\right.\) vs B) \((\) map FVar vs \()={ }_{\beta} B\) by (fact prop-5208)
then have \(\vdash \forall \mathcal{Q}_{\star}\) vs \(\left(\cdot_{\star}{ }_{\star}\left(\lambda^{\mathcal{Q}_{\star}}\right.\right.\) vs B) \((\) map FVar vs \(\left.)={ }_{\beta} B\right)\)
using generalized-Gen by simp
moreover
have \(\mathbf{S} ? \vartheta\left(\forall^{\mathcal{Q}}{ }_{\star}\right.\) vs \(\left(\left(\cdot_{\star}{ }_{\star} u_{\gamma}(\right.\right.\) map FVar vs \(\left.\left.\left.)\right)={ }_{\beta} B\right)\right)=\forall^{\mathcal{Q}_{\star}}\) vs \(\left(\cdot^{\mathcal{Q}_{\star}}\left(\lambda^{\mathcal{Q}_{\star}}\right.\right.\) vs \(\left.B\right)(\) map FVar vs \()=\beta\)
B)
proof -
from * have \(* *: \operatorname{map}(\lambda A . \mathbf{S}\{(u, \gamma) \longmapsto B\} A)(\) map \(F\) Var \(v s)=\) map FVar vs for \(B\)
by (induction vs) fastforce+
from \(*\) have
\(\mathbf{S} ? \vartheta\left(\forall^{\mathcal{Q}}\right.\) 夫vs \(\left(\left(\cdot_{\star}{ }_{\star} u_{\gamma}(\right.\right.\) map FVar vs \(\left.\left.\left.)\right)=\beta_{\beta} B\right)\right)=\forall^{\mathcal{Q}}{ }_{\star}\) vs \(\left(\mathbf{S} ? \vartheta\left(\left(\cdot^{\mathcal{Q}}{ }_{\star} u_{\gamma}(\right.\right.\right.\) map FVar vs \(\left.)\right)=\beta\)
B))
using generalized-forall-substitution by force
also have \(\ldots=\forall^{\mathcal{Q}}{ }_{\star}\) vs \(\left(\left(\mathbf{S} ? \vartheta\left(\cdot{ }^{\mathcal{Q}}{ }_{\star} u_{\gamma}(\operatorname{map} F \operatorname{Var} v s)\right)\right)={ }_{\beta} \mathbf{S}\left\{(u, \gamma) \mapsto \lambda^{\mathcal{Q}}{ }_{\star}\right.\right.\) vs \(\left.\left.B\right\} B\right)\)
by \(\operatorname{simp}\)
also from \(\operatorname{assms}(3)\) have \(\ldots=\forall^{Q_{\star}}\) vs \(\left(\left(\mathbf{S} ? \vartheta\left(\cdot^{Q_{\star}} u_{\gamma}(\right.\right.\right.\) map FVar vs \(\left.\left.\left.)\right)\right)={ }_{\beta} B\right)\) using free-var-singleton-substitution-neutrality by simp
also have \(\ldots=\forall \mathcal{Q}_{\star}\) vs \(\left(\cdot^{\mathcal{Q}}{ }_{\star} \mathbf{S} ? \vartheta\left(u_{\gamma}\right)(\operatorname{map}(\lambda A . \mathbf{S} ? \vartheta \operatorname{A})(\right.\) map FVar vs \(\left.))={ }_{\beta} B\right)\)
using generalized-app-substitution by simp
 by \(\operatorname{simp}\)
also from \(* *\) have \(\ldots=\forall^{\mathcal{Q}}{ }_{\star}\) vs \(\left(\cdot_{\star}{ }_{\star}\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.\right.\) vs \(\left.B\right)(\) map \(F\) Var vs \(\left.)={ }_{\beta} B\right)\) by presburger
finally show ?thesis .

\section*{qed}
ultimately have \(\vdash \mathbf{S}\) ? \(\vartheta\left(\forall^{\mathcal{Q}} \star\right.\) vs \(\left({ }^{\mathcal{Q}}{ }_{\star} u_{\gamma}(\right.\) map \(F\) Var vs \(\left.\left.)={ }_{\beta} B\right)\right)\)
by simp
moreover from assms(3) have is-free-for \(\left(\lambda^{\mathcal{Q}}{ }_{\star}\right.\) vs \(\left.B\right)(u, \gamma)\left(\forall^{\mathcal{Q}} \star\right.\) vs \(\left(\cdot{ }^{Q_{\star}} u_{\gamma}(\right.\) map FVar vs \()={ }_{\beta}\) B))
by
(intro is-free-for-in-generalized-forall is-free-for-in-equality is-free-for-in-generalized-app)
(use free-vars-of-generalized-abs is-free-at-in-free-vars in 〈fastforce+>)
moreover have \(\lambda^{Q_{\star}}\) vs \(B \in w f f s_{\gamma}\) and \(\forall^{Q_{\star}}\) vs \(\left(\cdot{ }^{Q_{\star}} u_{\gamma}(\right.\) map FVar vs \(\left.)={ }_{\beta} B\right) \in\) wffs \(s_{o}\)
proof -
have FVar \((v s!k) \in\) wffs \(_{\text {var-type }}(v s!k)\) if \(k<\) length \(^{\text {vs }}\) for \(k\)
using that and surj-pair[of vs! \(k\)] by fastforce
with assms(2) have \({ }^{\mathcal{Q}_{\star}} u_{\gamma}(\) map FVar vs \() \in w f f s_{\beta}\)
using generalized-app-wff [where \(t s=\) map var-type vs] by force
with assms(1) show \(\forall \mathcal{Q}_{\star}\) vs \(\left(\cdot{ }^{\mathcal{Q}_{\star}} u_{\gamma}(\right.\) map FVar vs \(\left.)={ }_{\beta} B\right) \in\) wffs \(s_{o}\) by (auto simp only:)
qed (use assms (1,2) in blast)
ultimately show ?thesis
using \(\exists\) Gen by (simp only:)
qed
end

\subsection*{6.44 Proposition 5244 (Existential Rule)}

The proof in [2] uses the pseudo-rule Q and 2123 of \(\mathcal{F}\). Therefore, we instead base our proof on the proof of Theorem 170 in [1]:
lemma prop-5244-aux:
assumes \(A \in\) wffs \(_{o}\) and \(B \in\) wffs \(_{o}\)
and \((x, \alpha) \notin\) free-vars \(A\)
shows \(\vdash \forall x_{\alpha} \cdot\left(B \supset^{\mathcal{Q}} A\right) \supset^{\mathcal{Q}}\left(\exists x_{\alpha} . B \supset^{\mathcal{Q}} A\right)\)
proof -
have \(B \supset^{\mathcal{Q}} A \in\) wffs \(_{o}\)
using assms by blast
moreover have is-free-for \(\left(x_{\alpha}\right)(x, \alpha)\left(B \supset^{\mathcal{Q}} A\right)\)
```

    by \(\operatorname{simp}\)
    ultimately have \(\vdash \forall x_{\alpha} .\left(B \supset^{\mathcal{Q}} A\right) \supset^{\mathcal{Q}}\left(B \supset^{\mathcal{Q}} A\right)\)
    using prop-5226[where \(A=x_{\alpha}\) and \(B=B \supset^{\mathcal{Q}} A\), OF wffs-of-type-intros(1)]
    and identity-singleton-substitution-neutrality by metis
    moreover have is-hyps $\left\{\forall x_{\alpha} .\left(B \supset^{\mathcal{Q}} A\right)\right\}$
using $\left\langle B \supset^{\mathcal{Q}} A \in\right.$ wffs $\left.s_{O}\right\rangle$ by blast
ultimately have $\S 1:\left\{\forall x_{\alpha} .\left(B \supset^{\mathcal{Q}} A\right)\right\} \vdash \forall x_{\alpha} .\left(B \supset^{\mathcal{Q}} A\right) \supset^{\mathcal{Q}}\left(B \supset^{\mathcal{Q}} A\right)$
by (fact derivability-implies-hyp-derivability)
have $\S 2:\left\{\forall x_{\alpha} .\left(B \supset^{\mathcal{Q}} A\right)\right\} \vdash \forall x_{\alpha} .\left(B \supset^{\mathcal{Q}} A\right)$
using $\left\langle B \supset^{\mathcal{Q}} A \in\right.$ wffs $\left.s_{o}\right\rangle$ by (blast intro: dv-hyp)
have $\S 3:\left\{\forall x_{\alpha} .\left(B \supset^{\mathcal{Q}} A\right)\right\} \vdash \sim^{\mathcal{Q}} A \supset^{\mathcal{Q}} \sim^{\mathcal{Q}} B$
proof (intro rule- $P(1)$
$\left[\right.$ where $\mathcal{H}=\left\{\forall x_{\alpha} .\left(B \supset^{\mathcal{Q}} A\right)\right\}$ and $\left.\left.\mathcal{G}=\left\{\forall x_{\alpha} \cdot\left(B \supset^{\mathcal{Q}} A\right) \supset^{\mathcal{Q}}\left(B \supset^{\mathcal{Q}} A\right), \forall x_{\alpha} .\left(B \supset^{\mathcal{Q}} A\right)\right\}\right]\right)$
have is-tautologous $\left(\left[C \supset^{\mathcal{Q}}\left(B \supset^{\mathcal{Q}} A\right), C\right] \supset^{\mathcal{Q}}{ }_{\star}\left(\sim^{\mathcal{Q}} A \supset^{\mathcal{Q}} \sim^{\mathcal{Q}} B\right)\right)$ if $C \in$ wffs $s_{o}$ for $C$
proof -
let $? \vartheta=\{(\mathfrak{x}, o) \mapsto A,(\mathfrak{y}, o) \mapsto B,(\mathfrak{z}, o) \mapsto C\}$
have is-tautology $\left(\left(\mathfrak{z} o \supset^{\mathcal{Q}}\left(\mathfrak{y}_{o} \supset^{\mathcal{Q}} \mathfrak{x}_{o}\right)\right) \supset^{\mathcal{Q}}\left(\mathfrak{z} o \supset^{\mathcal{Q}}\left(\sim^{\mathcal{Q}} \mathfrak{x}_{o} \supset^{\mathcal{Q}} \sim^{\mathcal{Q}} \mathfrak{y}_{o}\right)\right)\right)$
(is is-tautology ? A)
using $\mathcal{V}_{B}$-simps by (auto simp add: inj-eq)
moreover have is-pwff-substitution? $\vartheta$
using $\operatorname{assms}(1,2)$ and that by auto
moreover have $\left[C \supset^{\mathcal{Q}}\left(B \supset^{\mathcal{Q}} A\right), C\right] \supset^{\mathcal{Q}} \star\left(\sim^{\mathcal{Q}} A \supset^{\mathcal{Q}} \sim^{\mathcal{Q}} B\right)=\mathbf{S}$ ?V ? $A$
by $\operatorname{simp}$
ultimately show ?thesis
by blast
qed
then show is-tautologous $\left(\left[\forall x_{\alpha} \cdot\left(B \supset^{\mathcal{Q}} A\right) \supset^{\mathcal{Q}}\left(B \supset^{\mathcal{Q}} A\right), \forall x_{\alpha} \cdot\left(B \supset^{\mathcal{Q}} A\right)\right] \supset^{\mathcal{Q}} \star\left(\sim^{\mathcal{Q}} A \supset^{\mathcal{Q}} \sim^{\mathcal{Q}}\right.\right.$
B))
using $\left\langle B \supset^{\mathcal{Q}} A \in\right.$ wffs $s_{o}$ and forall-wff by simp
qed (use §1 §2〈is-hyps $\left\{\forall x_{\alpha} .\left(B \supset^{\mathcal{Q}} A\right)\right\}>$ hyp-derivable-form-is-wffso[OF §1] in force)+
have §4: $\left\{\forall x_{\alpha} .\left(B \supset^{\mathcal{Q}} A\right)\right\} \vdash \sim^{\mathcal{Q}} A \supset^{\mathcal{Q}} \forall x_{\alpha} \cdot \sim^{\mathcal{Q}} B$
using prop-5237[OF <is-hyps $\left.\left.\left\{\forall x_{\alpha} .\left(B \supset^{\mathcal{Q}} A\right)\right\}\right\rangle \S 3\right]$ and assms(3) by auto
have $\S 5:\left\{\forall x_{\alpha} .\left(B \supset^{\mathcal{Q}} A\right)\right\} \vdash \exists x_{\alpha} . B \supset^{\mathcal{Q}} A$
unfolding exists-def
proof (intro rule- $P(1)\left[\right.$ where $\mathcal{H}=\left\{\forall x_{\alpha} .\left(B \supset^{\mathcal{Q}} A\right)\right\}$ and $\left.\mathcal{G}=\left\{\sim^{\mathcal{Q}} A \supset^{\mathcal{Q}} \forall x_{\alpha} . \sim^{\mathcal{Q}} B\right\}\right]$ )
have is-tautologous $\left(\left[\sim^{\mathcal{Q}} A \supset^{\mathcal{Q}} C\right] \supset^{\mathcal{Q}}{ }_{\star}\left(\sim^{\mathcal{Q}} C \supset^{\mathcal{Q}} A\right)\right)$ if $C \in$ wffs $s_{o}$ for $C$
proof -
let $? \vartheta=\{(\mathfrak{x}, o) \longmapsto A,(\mathfrak{y}, o) \longmapsto C\}$
have is-tautology $\left(\left(\sim \mathcal{Q} \mathfrak{x}_{o} \supset^{\mathcal{Q}} \mathfrak{y}_{o}\right) \supset^{\mathcal{Q}}\left(\sim^{\mathcal{Q}} \mathfrak{y}_{o} \supset^{\mathcal{Q}} \mathfrak{x}_{o}\right)\right)$ (is is-tautology ?A)
using $\mathcal{V}_{B}$-simps by (auto simp add: inj-eq)
moreover have is-pwff-substitution ? $\vartheta$
using assms(1) and that by auto
moreover have $\left[\sim{ }^{\mathcal{Q}} A \supset^{\mathcal{Q}} C\right] \supset^{\mathcal{Q}}{ }_{\star}\left(\sim^{\mathcal{Q}} C \supset^{\mathcal{Q}} A\right)=\mathbf{S}$ ? ? ? $A$
by $\operatorname{simp}$
ultimately show ?thesis
by blast
qed
then show is-tautologous $\left(\left[\sim^{\mathcal{Q}} A \supset^{\mathcal{Q}} \forall x_{\alpha} . \sim^{\mathcal{Q}} B\right] \supset^{\mathcal{Q}}{ }_{\star}\left(\sim^{\mathcal{Q}} \forall x_{\alpha} . \sim^{\mathcal{Q}} B \supset^{\mathcal{Q}} A\right)\right.$ )
using forall-wff[OF neg-wff[OF assms(2)]] by (simp only:)

```
qed (use §4 〈is-hyps \(\left.\left\{\forall x_{\alpha} .\left(B \supset^{\mathcal{Q}} A\right)\right\}\right\rangle\) hyp-derivable-form-is-wffso[OF §4] in force)+ then show ?thesis
using Deduction-Theorem by simp
qed
proposition prop-5244:
assumes \(\mathcal{H}, B \vdash A\)
and \((x, \alpha) \notin\) free-vars \((\mathcal{H} \cup\{A\})\)
shows \(\mathcal{H}, \exists x_{\alpha} . B \vdash A\)
proof -
from assms(1) have is-hyps \(\mathcal{H}\)
using hyp-derivability-implies-hyp-proof-existence by force
then have \(\mathcal{H} \vdash B \supset^{\mathcal{Q}} A\)
using assms(1) and Deduction-Theorem by simp
then have \(\mathcal{H} \vdash \forall x_{\alpha} .\left(B \supset^{\mathcal{Q}} A\right)\)
using Gen and assms(2) by simp
moreover have \(A \in w f f s_{o}\) and \(B \in w f f s_{o}\)
by
(
fact hyp-derivable-form-is-wffso[OF assms(1)],
fact hyp-derivable-form-is-wffso[OF \(\left\langle\mathcal{H} \vdash B \supset^{\mathcal{Q}} A\right\rangle\), THEN wffs-from-imp-op(1)]
)
with \(\operatorname{assms}(\mathcal{2})\) and \(\langle\) is-hyps \(\mathcal{H}\rangle\) have \(\mathcal{H} \vdash \forall x_{\alpha} .\left(B \supset^{\mathcal{Q}} A\right) \supset^{\mathcal{Q}}\left(\exists x_{\alpha} . B \supset^{\mathcal{Q}} A\right)\)
using prop-5244-aux[THEN derivability-implies-hyp-derivability] by simp
ultimately have \(\mathcal{H} \vdash \exists x_{\alpha} . B \supset^{\mathcal{Q}} A\) by (rule MP)
then have \(\mathcal{H}, \exists x_{\alpha} . B \vdash \exists x_{\alpha} . B \supset^{\mathcal{Q}} A\)
using prop-5241 and exists-wff \(\left[O F\left\langle B \in\right.\right.\) wffs \(\left.\left._{o}\right\rangle\right]\) and 〈is-hyps \(\left.\mathcal{H}\right\rangle\)
by (meson Un-subset-iff empty-subsetI finite.simps finite-Un inf-sup-ord(3) insert-subsetI)
moreover from \(\langle i s\)-hyps \(\mathcal{H}\rangle\) and \(\left\langle B \in\right.\) wffs \(\left._{o^{\prime}}\right\rangle\) have is-hyps \(\left(\mathcal{H} \cup\left\{\exists x_{\alpha} . B\right\}\right)\) by auto
then have \(\mathcal{H}, \exists x_{\alpha} . B \vdash \exists x_{\alpha} . B\)
using \(d v\)-hyp by simp
ultimately show ?thesis using MP by blast
qed
lemmas \(\exists\)-Rule \(=\) prop-5244

\subsection*{6.45 Proposition 5245 (Rule C)}
lemma prop-5245-aux:
assumes \(x \neq y\)
and \((y, \alpha) \notin\) free-vars \(\left(\exists x_{\alpha} . B\right)\)
and is-free-for \(\left(y_{\alpha}\right)(x, \alpha) B\)
shows is-free-for \(\left(x_{\alpha}\right)(y, \alpha) \mathbf{S}\left\{(x, \alpha) \longmapsto y_{\alpha}\right\} B\)
using \(\operatorname{assms}(2,3)\) proof (induction B)
case (\(F\) Var \(v\))
then show ?case
```

    using surj-pair \([\) of \(v]\) by fastforce
    next
case (FCon k)
then show ?case
using surj-pair [of $k$ ] by fastforce
next
case (FApp $B_{1} B_{2}$ )
from FApp.prems $(1)$ have $(y, \alpha) \notin$ free-vars $\left(\exists x_{\alpha} . B_{1}\right)$ and $(y, \alpha) \notin$ free-vars $\left(\exists x_{\alpha} . B_{2}\right)$
by force+
moreover from FApp.prems(2) have is-free-for $\left(y_{\alpha}\right)(x, \alpha) B_{1}$ and is-free-for $\left(y_{\alpha}\right)(x, \alpha) B_{2}$
using is-free-for-from-app by iprover +
ultimately have is-free-for $\left(x_{\alpha}\right)(y, \alpha) \mathbf{S}\left\{(x, \alpha) \longmapsto y_{\alpha}\right\} B_{1}$
and is-free-for $\left(x_{\alpha}\right)(y, \alpha) \mathbf{S}\left\{(x, \alpha) \rightharpoondown y_{\alpha}\right\} B_{2}$
using FApp.IH by simp-all
then have is-free-for $\left(x_{\alpha}\right)(y, \alpha)\left(\left(\mathbf{S}\left\{(x, \alpha) \longmapsto y_{\alpha}\right\} B_{1}\right) \cdot\left(\mathbf{S}\left\{(x, \alpha) \longmapsto y_{\alpha}\right\} B_{2}\right)\right)$
by (intro is-free-for-to-app)
then show ?case
unfolding singleton-substitution-simps(3).
next
case (FAbs v $B^{\prime}$ )
obtain $z$ and $\beta$ where $v=(z, \beta)$
by fastforce
then show ?case
proof (cases $v=(x, \alpha))$
case True
with FAbs.prems(1) have $(y, \alpha) \notin$ free-vars $\left(\exists x_{\alpha} . B^{\prime}\right)$
by $\operatorname{simp}$
moreover from $\operatorname{assms}(1)$ have $(y, \alpha) \neq(x, \alpha)$
by blast
ultimately have $(y, \alpha) \notin$ free-vars $B^{\prime}$
using FAbs.prems(1) by simp
with $\langle(y, \alpha) \neq(x, \alpha)\rangle$ have $(y, \alpha) \notin$ free-vars $\left(\lambda x_{\alpha} . B^{\prime}\right)$
by $\operatorname{simp}$
then have is-free-for $\left(x_{\alpha}\right)(y, \alpha)\left(\lambda x_{\alpha} . B^{\prime}\right)$
unfolding is-free-for-def using is-free-at-in-free-vars by blast
then have is-free-for $\left(x_{\alpha}\right)(y, \alpha) \mathbf{S}\left\{(x, \alpha) \mapsto y_{\alpha}\right\}\left(\lambda x_{\alpha} . B^{\prime}\right)$
using singleton-substitution-simps(4) by presburger
then show ?thesis
unfolding True.
next
case False
from $\operatorname{assms}(1)$ have $(y, \alpha) \neq(x, \alpha)$
by blast
with FAbs.prems(1) have $*:(y, \alpha) \notin$ free-vars $\left(\exists x_{\alpha} \cdot\left(\lambda z_{\beta} . B^{\prime}\right)\right)$
using $\langle v=(z, \beta)\rangle$ by fastforce
then show ?thesis
proof (cases $(y, \alpha) \neq v)$
case True
from True $[$ unfolded $\langle v=(z, \beta)\rangle]$ and $*$ have $(y, \alpha) \notin$ free-vars $\left(\exists x_{\alpha} . B^{\prime}\right)$

```
```

            by simp
            moreover from False[unfolded }\langlev=(z,\beta)\rangle]\mathrm{ have is-free-for (y人) (x, 人) B'
            using is-free-for-from-abs[OF FAbs.prems(2)[unfolded <v = (z,\beta)\rangle]] by blast
            ultimately have is-free-for (x\alpha) (y,\alpha) (S {(x,\alpha)\longmapsto \longmapstoy\alpha} B')
            by (fact FAbs.IH)
    ```

```

                using False[unfolded }\langlev=(z,\beta)\rangle]\mathrm{ by (intro is-free-for-to-abs, fastforce+)
            then show ?thesis
            unfolding singleton-substitution-simps(4) and }\langlev=(z,\beta)\rangle\mathbf{using}\langle(z,\beta)\not=(x,\alpha)\rangle\mathrm{ by auto
    next
    case False
    then have v=(y,\alpha)
            by simp
    have is-free-for (x\alpha)(y,\alpha)(\lambday\alpha. S {(x,\alpha)\mapsto}\mapsto\mp@subsup{y}{\alpha}{}}\mp@subsup{B}{}{\prime}
    proof
        have (y,\alpha)\not\in free-vars (\lambday\alpha. S {(x,\alpha) \mapstoyoy } B')
            by simp
            then show ?thesis
            using is-free-at-in-free-vars by blast
        qed
        with}\langlev=(y,\alpha)\rangle\mathrm{ and }\langle(y,\alpha)\not=(x,\alpha)\rangle\mathrm{ show ?thesis
            using singleton-substitution-simps(4) by presburger
        qed
    qed
    qed
proposition prop-5245:
assumes }\mathcal{H}\vdash\exists\mp@subsup{x}{\alpha}{}.
and}\mathcal{H},\mathbf{S}{(x,\alpha)\longmapsto\mp@subsup{y}{\alpha}{}} B\vdash
and is-free-for (y\alpha) (x,\alpha)B
and (y,\alpha)\not\infree-vars (\mathcal{H}\cup{\exists\mp@subsup{x}{\alpha}{}.B,A})
shows }\mathcal{H}\vdash
proof -
from assms(1) have is-hyps \mathcal{H}
by (blast elim: is-derivable-from-hyps.cases)
from assms(2,4) have }\mathcal{H},\exists\mp@subsup{y}{\alpha}{}.\mathbf{S}{(x,\alpha)\mapstoy\mp@subsup{y}{\alpha}{}} B\vdash
using \exists
then have *: \mathcal{H}\vdash(\exists}\mp@subsup{y}{\alpha}{}.\mathbf{S}{(x,\alpha)\longmapsto\mp@subsup{y}{\alpha}{}} B) \supset\mathcal{Q}A(\mathrm{ is }<-\vdash?F>
using Deduction-Theorem and «is-hyps \mathcal{H}> by blast
then have }\mathcal{H}\vdash\exists\mp@subsup{x}{\alpha}{}.B\mp@subsup{\supset}{}{\mathcal{Q}}
proof (cases x=y)
case True
with * show ?thesis
using identity-singleton-substitution-neutrality by force
next
case False
from assms(4) have (y,\alpha)\not\in free-vars ( }\exists\mp@subsup{x}{\alpha}{}.B
using free-vars-in-all-vars by auto
have }~\mp@subsup{~}{}{\mathcal{Q}}\mathbf{S}{(x,\alpha)\mapsto\mp@subsup{y}{\alpha}{}}B\in\mp@subsup{w}{ff}{}\mp@subsup{s}{O}{

```
```

        by
            fact hyp-derivable-form-is-wffso
            [OF *, THEN wffs-from-imp-op(1), THEN wffs-from-exists, THEN neg-wff]
        )
    moreover from False have \((x, \alpha) \notin\) free-vars \(\left(\sim \sim^{\mathcal{Q}} \mathbf{S}\left\{(x, \alpha) \nrightarrow y_{\alpha}\right\} B\right)\)
        using free-var-in-renaming-substitution by simp
    moreover have is-free-for \(\left(x_{\alpha}\right)(y, \alpha)\left(\sim^{\mathcal{Q}} \mathbf{S}\left\{(x, \alpha) \longmapsto y_{\alpha}\right\} B\right)\)
        by (intro is-free-for-in-neg prop-5245-aux[OF False «(y, \(\alpha) \notin\) free-vars \(\left.\left(\exists x_{\alpha} . B\right)\right\rangle\) assms(3)])
    moreover from \(\operatorname{assms}(3,4)\) have \(\mathbf{S}\left\{(y, \alpha) \longmapsto x_{\alpha}\right\} \mathbf{S}\left\{(x, \alpha) \mapsto y_{\alpha}\right\} B=B\)
        using identity-singleton-substitution-neutrality and renaming-substitution-composability
        by force
    ultimately have \(\vdash\left(\lambda y_{\alpha} . \sim^{\mathcal{Q}} \mathbf{S}\left\{(x, \alpha) \longmapsto y_{\alpha}\right\} B\right)=\alpha_{o}\left(\lambda x_{\alpha} . \sim^{\mathcal{Q}} B\right)\)
        using \(\alpha\left[\right.\) where \(\left.A=\sim^{\mathcal{Q}} \mathbf{S}\left\{(x, \alpha) \longmapsto y_{\alpha}\right\} B\right]\) by (metis derived-substitution-simps(4))
    then show ?thesis
        by (rule rule-RR[OF disjI1, where \(p=[«, », », »]\) and \(C=? F])(\) use \(*\) in force \()+\)
    qed
    with \(\operatorname{assms}(1)\) show ?thesis
    by (rule MP)
    qed
lemmas Rule-C $=$ prop-5245
end

```

\section*{\(7 \quad\) Semantics}
theory Semantics
imports
ZFC-in-HOL.ZFC-Typeclasses
Syntax
Boolean-Algebra
begin
no-notation funcset (infixr \(\rightarrow\) 60)
notation funcset (infixr \(\rightarrow 60\))
abbreviation vfuncset :: \(V \Rightarrow V \Rightarrow V(\) infixr \(\longmapsto 60)\) where
\(A \longmapsto B \equiv V P i A(\lambda-. B)\)
notation app (infixl • 300)
syntax
-vlambda :: pttrn \(\Rightarrow V \Rightarrow(V \Rightarrow V) \Rightarrow V((3 \boldsymbol{\lambda}-:-. /-)[0,0,3] 3)\)
translations
\(\boldsymbol{\lambda} x: A . f \rightleftharpoons C O N S T\) VLambda \(A(\lambda x . f)\)
lemma vlambda-extensionality:
assumes \(\bigwedge x . x \in\) elts \(A \Longrightarrow f x=g x\)
```

shows (\lambdax:A.fx)=(\boldsymbol{\lambda}x:A.gx)
unfolding VLambda-def using assms by auto

```

\subsection*{7.1 Frames}
```

locale frame $=$
fixes $\mathcal{D}$ :: type $\Rightarrow V$
assumes truth-values-domain-def: $\mathcal{D} o=\mathbb{B}$
and function-domain-def: $\forall \alpha \beta . \mathcal{D}(\alpha \rightarrow \beta) \leq \mathcal{D} \alpha \longmapsto \mathcal{D} \beta$
and domain-nonemptiness: $\forall \alpha . \mathcal{D} \alpha \neq 0$
begin
lemma function-domain $D$ :
assumes $f \in$ elts $(\mathcal{D}(\alpha \rightarrow \beta))$
shows $f \in$ elts $(\mathcal{D} \alpha \longmapsto \mathcal{D} \beta)$
using assms and function-domain-def by blast
lemma vlambda-from-function-domain:
assumes $f \in$ elts $(\mathcal{D}(\alpha \rightarrow \beta))$
obtains $b$ where $f=(\boldsymbol{\lambda} x: \mathcal{D} \alpha . b x)$ and $\forall x \in$ elts $(\mathcal{D} \alpha)$. $b x \in$ elts $(\mathcal{D} \beta)$
using function-domainD[OF assms] by (metis VPi-D eta)
lemma app-is-domain-respecting:
assumes $f \in$ elts $(\mathcal{D}(\alpha \rightarrow \beta))$ and $x \in$ elts $(\mathcal{D} \alpha)$
shows $f \cdot x \in$ elts $(\mathcal{D} \beta)$
by (fact VPi-D[OF function-domainD[OF assms(1)] assms(2)])
One-element function on $\mathcal{D} \alpha$ :
definition one-element-function $:: V \Rightarrow$ type $\Rightarrow V(\{-\}-[901,0] 900)$ where
$[$ simp $]:\{x\}_{\alpha}=(\boldsymbol{\lambda} y: \mathcal{D} \alpha$. bool-to- $V(y=x))$
lemma one-element-function-is-domain-respecting:
shows $\{x\}_{\alpha} \in$ elts $(\mathcal{D} \alpha \longmapsto \mathcal{D} o)$
unfolding one-element-function-def and truth-values-domain-def by (intro VPi-I) (simp, metis)
lemma one-element-function-simps:
shows $x \in$ elts $(\mathcal{D} \alpha) \Longrightarrow\{x\}_{\alpha} \cdot x=\mathbf{T}$
and $\llbracket\{x, y\} \subseteq$ elts $(\mathcal{D} \alpha) ; y \neq x \rrbracket \Longrightarrow\{x\}_{\alpha} \cdot y=\mathbf{F}$
by simp-all
lemma one-element-function-injectivity:
assumes $\left\{x, x^{\prime}\right\} \subseteq$ elts $(\mathcal{D} i)$ and $\{x\}_{i}=\left\{x^{\prime}\right\}_{i}$
shows $x=x^{\prime}$
using assms(1) and VLambda-eq-D2[OF assms(2)[unfolded one-element-function-def]]
and $\operatorname{injD}[$ OF bool-to-V-injectivity $]$ by blast
lemma one-element-function-uniqueness:
assumes $x \in$ elts $(\mathcal{D} i)$
shows $\left(S O M E x^{\prime} . x^{\prime} \in\right.$ elts $\left.(\mathcal{D} i) \wedge\{x\}_{i}=\left\{x^{\prime}\right\}_{i}\right)=x$

```
```

by (auto simp add: assms one-element-function-injectivity)
Identity relation on \mathcal{D }\alpha\mathrm{ :}
definition identity-relation :: type }=>V(q-[0] 100) where
[simp]: q\alpha = (\lambdax:\mathcal{D}\alpha.{x}
lemma identity-relation-is-domain-respecting:
shows }\mp@subsup{q}{\alpha}{}\in\mathrm{ elts ( }\mathcal{D}\alpha\longmapsto\mathcal{D}\alpha\longmapsto\mathcal{D}o
using VPi-I and one-element-function-is-domain-respecting by simp
lemma q-is-equality:
assumes {x,y}\subseteq elts (\mathcal{D }\alpha)
shows}(\mp@subsup{q}{\alpha}{})\cdotx\cdoty=\mathbf{T}\longleftrightarrowx=
unfolding identity-relation-def
using assms and injD[OF bool-to-V-injectivity] by fastforce

```

Unique member selector:
definition is-unique-member-selector :: \(V \Rightarrow\) bool where
 [iff]: is-unique-member-selector \(f \longleftrightarrow\left(\forall x \in\right.\) elts \(\left.(\mathcal{D} i) . f \cdot\{x\}_{i}=x\right)\)

Assignment:
definition is-assignment :: (var \(\Rightarrow V) \Rightarrow\) bool where
[iff]: is-assignment \(\varphi \longleftrightarrow(\forall x \alpha . \varphi(x, \alpha) \in\) elts \((\mathcal{D} \alpha))\)
end
abbreviation one-element-function-in (\(\{-\}_{-}^{-}[901,0,0]\) 900) where
\(\{x\}{ }^{\mathcal{D}} \equiv\) frame.one-element-function \(\mathcal{D} x \alpha\)
abbreviation identity-relation-in \(\left(q_{-}^{-}[0,0] 100\right)\) where
\(q_{\alpha}{ }^{\mathcal{D}} \equiv\) frame.identity-relation \(\mathcal{D} \alpha\)
\(\psi\) is a " \(v\)-variant" of \(\varphi\) if \(\psi\) is an assignment that agrees with \(\varphi\) except possibly on \(v\) :
definition is-variant-of \(::(v a r \Rightarrow V) \Rightarrow \operatorname{var} \Rightarrow(v a r \Rightarrow V) \Rightarrow\) bool \(\left(-\sim_{\sim}-[51,0,51] 50\right)\) where [iff]: \(\psi \sim_{v} \varphi \longleftrightarrow\left(\forall v^{\prime} . v^{\prime} \neq v \longrightarrow \psi v^{\prime}=\varphi v^{\prime}\right)\)

\subsection*{7.2 Pre-models (interpretations)}

We use the term "pre-model" instead of "interpretation" since the latter is already a keyword:
locale premodel \(=\) frame +
fixes \(\mathcal{J}::\) con \(\Rightarrow V\)
assumes \(Q\)-denotation: \(\forall \alpha . \mathcal{J}(Q\)-constant-of-type \(\alpha)=q_{\alpha}\)
and \(\iota\)-denotation: is-unique-member-selector (\(\mathcal{J}\) iota-constant)
and non-logical-constant-denotation: \(\forall c \alpha . \neg\) is-logical-constant \((c, \alpha) \longrightarrow \mathcal{J}(c, \alpha) \in\) elts \((\mathcal{D} \alpha)\)
begin
Wff denotation function:
```

definition is-wff-denotation-function :: ((var }=>V)=>\mathrm{ form }=>V)=>\mathrm{ bool where
[iff]: is-wff-denotation-function }\mathcal{V}
(
\forall. is-assignment }\varphi
(\forallA\alpha.A\in wffs }\alpha\longrightarrow\mathcal{V}\varphiA\in\mathrm{ elts (D }\alpha))\wedge - closure condition, see note in page 18
(\forallx\alpha.\mathcal{V}\varphi(\mp@subsup{x}{\alpha}{})=\varphi(x,\alpha))^
(\forallc\alpha.\mathcal{V}\varphi({c}\alpha)=\mathcal{J}(c,\alpha))^
(\forallAB\alpha\beta.A\in\mp@subsup{wffs}{\beta->\alpha}{}\wedgeB\in\mp@subsup{wffs}{\beta}{\longrightarrow}\longrightarrow\mathcal{V}\varphi(A\cdotB)=(\mathcal{V}\varphiA)\cdot(\mathcal{V}\varphiB))\wedge
(\forallxB\alpha\beta.B\inwffs}\beta\longrightarrow\mathcal{V}\varphi(\lambda\mp@subsup{x}{\alpha}{}.B)=(\boldsymbol{\lambda}z:\mathcal{D}\alpha.\mathcal{V}(\varphi((x,\alpha):=z))B)
)
lemma wff-denotation-function-is-domain-respecting:
assumes is-wff-denotation-function \mathcal{V}
and }A\inwffs
and is-assignment }
shows}\mathcal{V}\varphiA\in\mathrm{ elts ( }\mathcal{D}\alpha
using assms by force
lemma wff-var-denotation:
assumes is-wff-denotation-function \mathcal{V}
and is-assignment \varphi
shows }\mathcal{V}\varphi(\mp@subsup{x}{\alpha}{})=\varphi(x,\alpha
using assms by force
lemma wff-Q-denotation:
assumes is-wff-denotation-function \mathcal{V}
and is-assignment }
shows }\mathcal{V}\varphi(\mp@subsup{Q}{\alpha}{})=\mp@subsup{q}{\alpha}{
using assms and Q-denotation by force
lemma wff-iota-denotation:
assumes is-wff-denotation-function \mathcal{V}
and is-assignment }
shows is-unique-member-selector ( V \varphi \iota)
using assms and \iota-denotation by fastforce
lemma wff-non-logical-constant-denotation:
assumes is-wff-denotation-function \mathcal{V}
and is-assignment \varphi
and }\neg\mathrm{ is-logical-constant (c, 人)
shows \mathcal{V}\varphi({c}\alpha)=\mathcal{J}(c,\alpha)
using assms by auto
lemma wff-app-denotation:
assumes is-wff-denotation-function \mathcal{V}
and is-assignment \varphi
and A\inwffs }\beta->
and B}\in\mp@subsup{w}{ffs}{\beta
shows \mathcal{V}\varphi(A\cdotB)=\mathcal{V}\varphiA\cdot\mathcal{V}\varphiB

```
using assms by blast
```

lemma wff-abs-denotation:
assumes is-wff-denotation-function $\mathcal{V}$
and is-assignment $\varphi$
and $B \in$ wffs $_{\beta}$
shows $\mathcal{V} \varphi\left(\lambda x_{\alpha} . B\right)=(\boldsymbol{\lambda} z: \mathcal{D} \alpha . \mathcal{V}(\varphi((x, \alpha):=z)) B)$
using assms unfolding is-wff-denotation-function-def by metis
lemma wff-denotation-function-is-uniquely-determined:
assumes is-wff-denotation-function $\mathcal{V}$
and is-wff-denotation-function $\mathcal{V}^{\prime}$
and is-assignment $\varphi$
and $A \in$ wffs
shows $\mathcal{V} \varphi A=\mathcal{V}^{\prime} \varphi A$
proof -
obtain $\alpha$ where $A \in w f f s_{\alpha}$
using assms(4) by blast
then show? ?thesis
using assms(3) proof (induction A arbitrary: $\varphi$ )
case var-is-wff
with $\operatorname{assms}(1,2)$ show ?case
by auto
next
case con-is-wff
with $\operatorname{assms}(1,2)$ show ?case
by auto
next
case app-is-wff
with $\operatorname{assms}(1,2)$ show ?case
using wff-app-denotation by metis
next
case (abs-is-wff $\beta$ A $\alpha x$ )
have is-assignment $(\varphi((x, \alpha):=z))$ if $z \in$ elts $(\mathcal{D} \alpha)$ for $z$
using that and abs-is-wff.prems by simp
then have $*: \mathcal{V}(\varphi((x, \alpha):=z)) A=\mathcal{V}^{\prime}(\varphi((x, \alpha):=z)) A$ if $z \in$ elts $(\mathcal{D} \alpha)$ for $z$
using abs-is-wff.IH and that by blast
have $\mathcal{V} \varphi\left(\lambda x_{\alpha} . A\right)=(\boldsymbol{\lambda} z: \mathcal{D} \alpha . \mathcal{V}(\varphi((x, \alpha):=z)) A)$
by (fact wff-abs-denotation[OF assms(1) abs-is-wff.prems abs-is-wff.hyps])
also have $\ldots=\left(\boldsymbol{\lambda} z: \mathcal{D} \alpha \cdot \mathcal{V}^{\prime}(\varphi((x, \alpha):=z)) A\right)$
using $*$ and vlambda-extensionality by fastforce
also have $\ldots=\mathcal{V}^{\prime} \varphi\left(\lambda x_{\alpha} . A\right)$
by (fact wff-abs-denotation[OF assms(2) abs-is-wff.prems abs-is-wff.hyps, symmetric])
finally show ?case .
qed
qed
end

```

\subsection*{7.3 General models}
type-synonym model-structure \(=(\) type \(\Rightarrow V) \times(\) con \(\Rightarrow V) \times((v a r \Rightarrow V) \Rightarrow\) form \(\Rightarrow V)\)
The assumption in the following locale implies that there must exist a function that is a wff denotation function for the pre-model, which is a requirement in the definition of general model in [2]:
locale general-model \(=\) premodel +
fixes \(\mathcal{V}::(\) var \(\Rightarrow V) \Rightarrow\) form \(\Rightarrow V\)
assumes \(\mathcal{V}\)-is-wff-denotation-function: is-wff-denotation-function \(\mathcal{V}\)
begin
```

lemma mixed-beta-conversion:
assumes is-assignment $\varphi$
and $y \in$ elts ( $\mathcal{D} \alpha$ )
and $B \in$ wffs $_{\beta}$
shows $\mathcal{V} \varphi\left(\lambda x_{\alpha} . B\right) \cdot y=\mathcal{V}(\varphi((x, \alpha):=y)) B$
using wff-abs-denotation[OF $\mathcal{V}$-is-wff-denotation-function $\operatorname{assms}(1,3)]$ and beta[OF assms(2)] by
simp
lemma conj-fun-is-domain-respecting:
assumes is-assignment $\varphi$
shows $\mathcal{V} \varphi\left(\wedge_{o \rightarrow o \rightarrow o}\right) \in$ elts $(\mathcal{D}(o \rightarrow o \rightarrow o))$
using assms and conj-fun-wff and $\mathcal{V}$-is-wff-denotation-function by auto
lemma fully-applied-conj-fun-is-domain-respecting:
assumes is-assignment $\varphi$
and $\{x, y\} \subseteq$ elts $(\mathcal{D} o)$
shows $\mathcal{V} \varphi\left(\wedge_{o \rightarrow o \rightarrow o}\right) \cdot x \cdot y \in$ elts $(\mathcal{D} o)$
using assms and conj-fun-is-domain-respecting and app-is-domain-respecting by (meson insert-subset)
lemma imp-fun-denotation-is-domain-respecting:
assumes is-assignment $\varphi$
shows $\mathcal{V} \varphi\left(\supset_{o \rightarrow o \rightarrow o}\right) \in$ elts $(\mathcal{D}(o \rightarrow o \rightarrow o))$
using assms and imp-fun-wff and $\mathcal{V}$-is-wff-denotation-function by simp
lemma fully-applied-imp-fun-denotation-is-domain-respecting:
assumes is-assignment $\varphi$
and $\{x, y\} \subseteq$ elts ( $\mathcal{D}$ o)
shows $\mathcal{V} \varphi\left(\supset_{o \rightarrow o \rightarrow o}\right) \cdot x \cdot y \in$ elts $(\mathcal{D} o)$
using assms and imp-fun-denotation-is-domain-respecting and app-is-domain-respecting
by (meson insert-subset)
end
abbreviation is-general-model :: model-structure $\Rightarrow$ bool where
is-general-model $\mathcal{M} \equiv$ case $\mathcal{M}$ of $(\mathcal{D}, \mathcal{J}, \mathcal{V}) \Rightarrow$ general-model $\mathcal{D} \mathcal{J} \mathcal{V}$

```

\subsection*{7.4 Standard models}
locale standard-model \(=\) general-model +
assumes full-function-domain-def: \(\forall \alpha \beta . \mathcal{D}(\alpha \rightarrow \beta)=\mathcal{D} \alpha \longmapsto \mathcal{D} \beta\)
abbreviation is-standard-model :: model-structure \(\Rightarrow\) bool where
is-standard-model \(\mathcal{M} \equiv\) case \(\mathcal{M}\) of \((\mathcal{D}, \mathcal{J}, \mathcal{V}) \Rightarrow\) standard-model \(\mathcal{D} \mathcal{J} \mathcal{V}\)
lemma standard-model-is-general-model:
assumes is-standard-model \(\mathcal{M}\)
shows is-general-model \(\mathcal{M}\)
using assms and standard-model.axioms(1) by force

\subsection*{7.5 Validity}
abbreviation is-assignment-into-frame (- \(\leadsto-[51,51] 50)\) where
\[
\varphi \leadsto \mathcal{D} \equiv \text { frame.is-assignment } \mathcal{D} \varphi
\]
abbreviation is-assignment-into-model \(\left(-\sim_{M}-[51,51] 50\right)\) where \(\varphi \leadsto_{M} \mathcal{M} \equiv(\) case \(\mathcal{M}\) of \((\mathcal{D}, \mathcal{J}, \mathcal{V}) \Rightarrow \varphi \leadsto \mathcal{D})\)
abbreviation satisfies \(\left(-\models_{-}[50,50,50] 50\right)\) where \(\mathcal{M} \models \varphi A \equiv\) case \(\mathcal{M}\) of \((\mathcal{D}, \mathcal{J}, \mathcal{V}) \Rightarrow \mathcal{V} \varphi A=\mathbf{T}\)
abbreviation is-satisfiable-in where
is-satisfiable-in \(A \mathcal{M} \equiv \exists \varphi . \varphi \leadsto_{M} \mathcal{M} \wedge \mathcal{M} \models \varphi A\)
abbreviation is-valid-in \((-\models-[50,50] 50)\) where \(\mathcal{M} \models A \equiv \forall \varphi . \varphi \sim_{M} \mathcal{M} \longrightarrow \mathcal{M} \models_{\varphi} A\)
abbreviation is-valid-in-the-general-sense \((\models-\) [50] 50) where
\(\vDash A \equiv \forall \mathcal{M}\). is-general-model \(\mathcal{M} \longrightarrow \mathcal{M} \vDash A\)
abbreviation is-valid-in-the-standard-sense \(\left(\left.\right|_{S}-[50] 50\right)\) where
\(\models_{S} A \equiv \forall \mathcal{M}\). is-standard-model \(\mathcal{M} \longrightarrow \mathcal{M} \models A\)
abbreviation \(i s\)-true-sentence-in where
is-true-sentence-in \(A \mathcal{M} \equiv\) is-sentence \(A \wedge \mathcal{M} \vDash{ }_{\text {undefined }} A\) - assignments are not meaningful
abbreviation is-false-sentence-in where
is-false-sentence-in \(A \mathcal{M} \equiv\) is-sentence \(A \wedge \neg \mathcal{M} \models_{\text {undefined }} A-\) assignments are not meaningful
abbreviation is-model-for where
is-model-for \(\mathcal{M} \mathcal{G} \equiv \forall A \in \mathcal{G} . \mathcal{M} \models A\)
lemma general-validity-in-standard-validity:
assumes \(\models A\)
shows \(\models_{S} A\)
using assms and standard-model-is-general-model by blast
end

\section*{8 Soundness}
```

theory Soundness
imports
Elementary-Logic
Semantics
begin
no-notation funcset (infixr }->\mathrm{ 60)
notation funcset (infixr }->\mathrm{ 60)

```

\subsection*{8.1 Proposition 5400}
proposition (in general-model) prop-5400:
assumes \(A \in\) wffs \(_{\alpha}\)
and \(\varphi \leadsto \mathcal{D}\) and \(\psi \leadsto \mathcal{D}\)
and \(\forall v \in\) free-vars \(A . \varphi v=\psi v\)
shows \(\mathcal{V} \varphi A=\mathcal{V} \psi A\)
proof -
from assms(1) show ?thesis
using \(\operatorname{assms}(2,3,4)\) proof (induction \(A\) arbitrary: \(\varphi \psi\))
case (var-is-wff \(\alpha x\))
have \((x, \alpha) \in\) free-vars \(\left(x_{\alpha}\right)\) by \(\operatorname{simp}\)
from \(\operatorname{assms}(1)\) and var-is-wff.prems(1) have \(\mathcal{V} \varphi\left(x_{\alpha}\right)=\varphi(x, \alpha)\)
using \(\mathcal{V}\)-is-wff-denotation-function by fastforce
also from \(\left\langle(x, \alpha) \in\right.\) free-vars \(\left.\left(x_{\alpha}\right)\right\rangle\) and var-is-wff.prems(3) have \(\ldots=\psi(x, \alpha)\) by (simp only:)
also from \(\operatorname{assms}(1)\) and var-is-wff.prems(2) have \(\ldots=\mathcal{V} \psi\left(x_{\alpha}\right)\) using \(\mathcal{V}\)-is-wff-denotation-function by fastforce
finally show ?case .
next
case (con-is-wff \(\alpha c\))
from \(\operatorname{assms}(1)\) and con-is-wff.prems(1) have \(\mathcal{V} \varphi(\{c\} \alpha)=\mathcal{J}(c, \alpha)\) using \(\mathcal{V}\)-is-wff-denotation-function by fastforce
also from \(\operatorname{assms}(1)\) and con-is-wff.prems(2) have \(\ldots=\mathcal{V} \psi\left(\{c\}_{\alpha}\right)\) using \(\mathcal{V}\)-is-wff-denotation-function by fastforce
finally show ?case .
next
case (app-is-wff \(\alpha \beta A B\))
have free-vars \((A \cdot B)=\) free-vars \(A \cup\) free-vars \(B\) by \(\operatorname{simp}\)
with app-is-wff.prems(3)
have \(\forall v \in\) free-vars \(A . \varphi v=\psi v\) and \(\forall v \in\) free-vars \(B . \varphi v=\psi v\) by blast+
with app-is-wff.IH and app-is-wff.prems(1,2) have \(\mathcal{V} \varphi A=\mathcal{V} \psi A\) and \(\mathcal{V} \varphi B=\mathcal{V} \psi B\) by blast+
from \(\operatorname{assms}(1)\) and app-is-wff.prems(1) and app-is-wff.hyps have \(\mathcal{V} \varphi(A \cdot B)=\mathcal{V} \varphi A \cdot \mathcal{V} \varphi B\) using \(\mathcal{V}\)-is-wff-denotation-function by fastforce
also from \(\langle\mathcal{V} \varphi A=\mathcal{V} \psi A\rangle\) and \(\langle\mathcal{V} \varphi B=\mathcal{V} \psi B\rangle\) have \(\ldots=\mathcal{V} \psi A \cdot \mathcal{V} \psi B\) by (simp only:)
also from \(\operatorname{assms}(1)\) and \(a p p-i s-w f f . p r e m s(2)\) and \(a p p-i s-w f f . h y p s\) have \(\ldots=\mathcal{V} \psi(A \cdot B)\) using \(\mathcal{V}\)-is-wff-denotation-function by fastforce
finally show ?case .
next
case (abs-is-wff \(\beta\) A \(\alpha x\))
have free-vars \(\left(\lambda x_{\alpha} . A\right)=\) free-vars \(A-\{(x, \alpha)\}\) by \(\operatorname{simp}\)
with abs-is-wff.prems(3) have \(\forall v \in\) free-vars \(A . v \neq(x, \alpha) \longrightarrow \varphi v=\psi v\) by blast
then have \(\forall v \in\) free-vars \(A .(\varphi((x, \alpha):=z)) v=(\psi((x, \alpha):=z)) v\) if \(z \in\) elts \((\mathcal{D} \alpha)\) for \(z\) by simp
moreover from abs-is-wff.prems(1,2)
have \(\forall x^{\prime} \alpha^{\prime} .(\varphi((x, \alpha):=z))\left(x^{\prime}, \alpha^{\prime}\right) \in\) elts \(\left(\mathcal{D} \alpha^{\prime}\right)\) and \(\forall x^{\prime} \alpha^{\prime} .(\psi((x, \alpha):=z))\left(x^{\prime}, \alpha^{\prime}\right) \in\) elts \(\left(\mathcal{D} \alpha^{\prime}\right)\) if \(z \in\) elts \((\mathcal{D} \alpha)\) for \(z\) using that by force+
ultimately have \(\mathcal{V}-\varphi-\psi\)-eq: \(\mathcal{V}(\varphi((x, \alpha):=z)) A=\mathcal{V}(\psi((x, \alpha):=z)) A\) if \(z \in\) elts \((\mathcal{D} \alpha)\) for \(z\) using \(a b s\) - is-wff.IH and that by simp
from \(\operatorname{assms}(1)\) and abs-is-wff.prems(1) and abs-is-wff.hyps
have \(\mathcal{V} \varphi\left(\lambda x_{\alpha} . A\right)=(\boldsymbol{\lambda} z: \mathcal{D} \alpha . \mathcal{V}(\varphi((x, \alpha):=z)) A)\)
using wff-abs-denotation[OF \(\mathcal{V}\)-is-wff-denotation-function] by simp
also from \(\mathcal{V}-\varphi-\psi-e q\) have \(\ldots=(\boldsymbol{\lambda} z: \mathcal{D} \alpha . \mathcal{V}(\psi((x, \alpha):=z)) A)\) by (fact vlambda-extensionality)
also from \(\operatorname{assms}(1)\) and \(a b s\)-is-wff.hyps have \(\ldots=\mathcal{V} \psi\left(\lambda x_{\alpha} . A\right)\) using wff-abs-denotation[OF \(\mathcal{V}\)-is-wff-denotation-function abs-is-wff.prems(2)] by simp
finally show ?case .
qed
qed
corollary (in general-model) closed-wff-is-meaningful-regardless-of-assignment:
assumes is-closed-wff-of-type \(A \alpha\)
and \(\varphi \leadsto \mathcal{D}\) and \(\psi \leadsto \mathcal{D}\)
shows \(\mathcal{V} \varphi A=\mathcal{V} \psi A\)
using assms and prop-5400 by blast

\subsection*{8.2 Proposition 5401}
lemma (in general-model) prop-5401-a:
assumes \(\varphi \leadsto \mathcal{D}\)
and \(A \in w_{f f} s_{\alpha}\)
and \(B \in\) wffs \(_{\beta}\)
shows \(\mathcal{V} \varphi\left(\left(\lambda x_{\alpha} . B\right) \cdot A\right)=\mathcal{V}(\varphi((x, \alpha):=\mathcal{V} \varphi A)) B\)
proof -
from \(\operatorname{assms}(2,3)\) have \(\lambda x_{\alpha} . B \in w f f s_{\alpha \rightarrow \beta}\)
by blast
```

    with \(\operatorname{assms}(1,2)\) have \(\mathcal{V} \varphi\left(\left(\lambda x_{\alpha} . B\right) \cdot A\right)=\mathcal{V} \varphi\left(\lambda x_{\alpha} \cdot B\right) \cdot \mathcal{V} \varphi A\)
    using \(\mathcal{V}\)-is-wff-denotation-function by blast
    also from \(\operatorname{assms}(1,3)\) have \(\ldots=\operatorname{app}(\boldsymbol{\lambda} z: \mathcal{D} \alpha \cdot \mathcal{V}(\varphi((x, \alpha):=z)) B)(\mathcal{V} \varphi A)\)
    using wff-abs-denotation[OF \(\mathcal{V}\)-is-wff-denotation-function] by simp
    also from \(\operatorname{assms}(1,2)\) have \(\ldots=\mathcal{V}(\varphi((x, \alpha):=\mathcal{V} \varphi A)) B\)
    using \(\mathcal{V}\)-is-wff-denotation-function by auto
    finally show ?thesis.
    qed
lemma (in general-model) prop-5401-b:
assumes $\varphi \sim \mathcal{D}$
and $A \in w_{\mathrm{Jf}} s_{\alpha}$
and $B \in$ wffs $\alpha$
shows $\mathcal{V} \varphi\left(A={ }_{\alpha} B\right)=\mathbf{T} \longleftrightarrow \mathcal{V} \varphi A=\mathcal{V} \varphi B$
proof -
from assms have $\{\mathcal{V} \varphi A, \mathcal{V} \varphi B\} \subseteq$ elts $(\mathcal{D} \alpha)$
using $\mathcal{V}$-is-wff-denotation-function by auto
have $\mathcal{V} \varphi\left(A={ }_{\alpha} B\right)=\mathcal{V} \varphi\left(Q_{\alpha} \cdot A \cdot B\right)$
by $\operatorname{simp}$
also from assms have $\ldots=\mathcal{V} \varphi\left(Q_{\alpha} \cdot A\right) \cdot \mathcal{V} \varphi B$
using $\mathcal{V}$-is-wff-denotation-function by blast
also from assms have $\ldots=\mathcal{V} \varphi\left(Q_{\alpha}\right) \cdot \mathcal{V} \varphi A \cdot \mathcal{V} \varphi B$
using $Q$-wff and wff-app-denotation[OF $\mathcal{V}$-is-wff-denotation-function] by fastforce
also from $\operatorname{assms}(1)$ have $\ldots=\left(q_{\alpha}\right) \cdot \mathcal{V} \varphi A \cdot \mathcal{V} \varphi B$
using $Q$-denotation and $\mathcal{V}$-is-wff-denotation-function by fastforce
also from $\langle\{\mathcal{V} \varphi A, \mathcal{V} \varphi B\} \subseteq$ elts $(\mathcal{D} \alpha)\rangle$ have $\ldots=\mathbf{T} \longleftrightarrow \mathcal{V} \varphi A=\mathcal{V} \varphi B$
using $q$-is-equality by simp
finally show ?thesis .
qed
corollary (in general-model) prop-5401-b':
assumes $\varphi \sim \mathcal{D}$
and $A \in w_{f f s}{ }_{o}$
and $B \in w_{f f} s_{o}$
shows $\mathcal{V} \varphi\left(A \equiv^{\mathcal{Q}} B\right)=\mathbf{T} \longleftrightarrow \mathcal{V} \varphi A=\mathcal{V} \varphi B$
using assms and prop-5401-b by auto
lemma (in general-model) prop-5401-c:
assumes $\varphi \leadsto \mathcal{D}$
shows $\mathcal{V} \varphi T_{o}=\mathbf{T}$
proof -
have $Q_{o} \in w f f s_{o \rightarrow o \rightarrow o}$
by blast
moreover have $\mathcal{V} \varphi T_{o}=\mathcal{V} \varphi\left(Q_{o}=_{o \rightarrow o \rightarrow o} Q_{o}\right)$
unfolding true-def ..
ultimately have $\ldots=\mathbf{T} \longleftrightarrow \mathcal{V} \varphi\left(Q_{o}\right)=\mathcal{V} \varphi\left(Q_{o}\right)$
using prop-5401-b and assms by blast
then show? ?thesis
by $\operatorname{simp}$

```
```

qed
lemma (in general-model) prop-5401-d:
assumes $\varphi \sim \mathcal{D}$
shows $\mathcal{V} \varphi F_{o}=\mathbf{F}$
proof -
have $\lambda \mathfrak{x}_{o} . T_{o} \in w f f s_{o \rightarrow o}$ and $\lambda \mathfrak{x}_{o} . \mathfrak{x}_{o} \in w f f s_{o \rightarrow o}$
by blast+
moreover have $\mathcal{V} \varphi F_{o}=\mathcal{V} \varphi\left(\lambda \mathfrak{x}_{o} . T_{o}=_{o \rightarrow o} \lambda \mathfrak{x}_{o} . \mathfrak{x}_{o}\right)$
unfolding false-def ..
ultimately have $\mathcal{V} \varphi F_{o}=\mathbf{T} \longleftrightarrow \mathcal{V} \varphi\left(\lambda \mathfrak{x}_{o} . T_{o}\right)=\mathcal{V} \varphi\left(\lambda \mathfrak{x}_{o} \mathfrak{x}_{o}\right)$
using prop-5401-b and assms by simp
moreover have $\mathcal{V} \varphi\left(\lambda \mathfrak{x}_{o} . T_{o}\right) \neq \mathcal{V} \varphi\left(\lambda \mathfrak{x}_{o} . \mathfrak{x}_{o}\right)$
proof -
have $\mathcal{V} \varphi\left(\lambda \mathfrak{x}_{o} . T_{o}\right)=(\boldsymbol{\lambda} z: \mathcal{D} o . \mathbf{T})$
proof -
from assms have T-denotation: $\mathcal{V}(\varphi((\mathfrak{x}, o):=z)) T_{o}=\mathbf{T}$ if $z \in$ elts $(\mathcal{D} o)$ for $z$
using prop-5401-c and that by simp
from assms have $\mathcal{V} \varphi\left(\lambda \mathfrak{x}_{o} . T_{o}\right)=\left(\boldsymbol{\lambda} z: \mathcal{D} o . \mathcal{V}(\varphi((\mathfrak{x}, o):=z)) T_{o}\right)$
using wff-abs-denotation[OF $\mathcal{V}$-is-wff-denotation-function] by blast
also from assms and T-denotation have $\ldots=(\boldsymbol{\lambda} z: \mathcal{D} o . \mathbf{T})$
using vlambda-extensionality by fastforce
finally show ?thesis.
qed
moreover have $\mathcal{V} \varphi\left(\lambda \mathfrak{x}_{o} . \mathfrak{x}_{o}\right)=(\boldsymbol{\lambda} z: \mathcal{D} o . z)$
proof -
from assms have $\mathfrak{x}$-denotation: $\mathcal{V}(\varphi((\mathfrak{x}, o):=z))\left(\mathfrak{x}_{o}\right)=z$ if $z \in$ elts $(\mathcal{D} o)$ for $z$
using that and $\mathcal{V}$-is-wff-denotation-function by auto
from assms have $\mathcal{V} \varphi\left(\lambda \mathfrak{x}_{o} \cdot \mathfrak{x}_{o}\right)=\left(\boldsymbol{\lambda} z: \mathcal{D} o . \mathcal{V}(\varphi((\mathfrak{x}, o):=z))\left(\mathfrak{x}_{o}\right)\right)$
using wff-abs-denotation[OF $\mathcal{V}$-is-wff-denotation-function] by blast
also from $\mathfrak{x}$-denotation have $\ldots=(\boldsymbol{\lambda} z:(\mathcal{D} o) \cdot z)$
using vlambda-extensionality by fastforce
finally show ?thesis .
qed
moreover have $(\boldsymbol{\lambda} z: \mathcal{D} o . \mathbf{T}) \neq(\boldsymbol{\lambda} z: \mathcal{D} o . z)$
proof -
from $\operatorname{assms}(1)$ have $(\boldsymbol{\lambda} z: \mathcal{D} \quad$. $\mathbf{T}) \cdot \mathbf{F}=\mathbf{T}$
by (simp add: truth-values-domain-def)
moreover from $\operatorname{assms}(1)$ have $(\boldsymbol{\lambda} z: \mathcal{D} o . z) \cdot \mathbf{F}=\mathbf{F}$
by (simp add: truth-values-domain-def)
ultimately show ?thesis
by (auto simp add: inj-eq)
qed
ultimately show ?thesis
by $\operatorname{simp}$
qed
moreover from assms have $\mathcal{V} \varphi F_{o} \in$ elts ( $\mathcal{D} o$ )
using false-wff and $\mathcal{V}$-is-wff-denotation-function by fast
ultimately show ?thesis

```
using assms(1) by (simp add: truth-values-domain-def)
qed
lemma (in general-model) prop-5401-e:
assumes \(\varphi \sim \mathcal{D}\)
and \(\{x, y\} \subseteq\) elts \((\mathcal{D} o)\)
shows \(\mathcal{V} \varphi\left(\wedge_{o \rightarrow o \rightarrow o}\right) \cdot x \cdot y=(\) if \(x=\mathbf{T} \wedge y=\mathbf{T}\) then \(\mathbf{T}\) else \(\mathbf{F})\)
proof -
let ? \(B_{l e q}=\lambda \mathfrak{g}_{o \rightarrow o \rightarrow o} \cdot \mathfrak{g}_{o \rightarrow o \rightarrow o} \cdot T_{o} \cdot T_{o}\)
let ? \(B_{r e q}=\lambda \mathfrak{g}_{o \rightarrow o \rightarrow o} \cdot \mathfrak{g}_{o \rightarrow o \rightarrow o} \cdot \mathfrak{x}_{o} \cdot \mathfrak{y}_{o}\)
let ? \(B_{e q}=\) ? \(B_{l e q}=(o \rightarrow o \rightarrow o) \rightarrow o\) ? \(B_{r e q}\)
let ? \(B_{\mathfrak{y}}=\lambda \mathfrak{y}_{o}\). ? \(B_{e q}\)
let ? \(B_{\mathfrak{x}}=\lambda \mathfrak{x}_{o}\). ? \(B_{\mathfrak{y}}\)
let \(? \varphi^{\prime}=\varphi((\mathfrak{x}, o):=x,(\mathfrak{y}, o):=y)\)
let \({ }^{\prime} \varphi^{\prime \prime}=\lambda g\). ? \(\varphi^{\prime}((\mathfrak{g}, o \rightarrow o \rightarrow o):=g)\)
have \(\mathfrak{g}_{o \rightarrow 0 \rightarrow 0} \cdot T_{o} \in\) wffs \(s_{o \rightarrow 0}\) by blast
have \(\mathfrak{g}_{o \rightarrow o \rightarrow o} \cdot T_{o} \cdot T_{o} \in\) wffs \(s_{o}\) and \(\mathfrak{g}_{o \rightarrow o \rightarrow o} \cdot \mathfrak{x}_{o} \cdot \mathfrak{y}_{o} \in\) wffs \(s_{o}\) by blast+
have ? \(B_{l e q} \in\) wffs \(\left(_{o \rightarrow o \rightarrow o) \rightarrow o}\right.\) and \({ }^{?} B_{r e q} \in\) wffs \(_{(o \rightarrow o \rightarrow o) \rightarrow o}\)
by blast+
then have \(? B_{e q} \in\) wffs \(s_{o}\) and \(? B_{\mathfrak{y}} \in w f f s_{o \rightarrow o}\) and \(? B_{\mathfrak{x}} \in w f f s_{o \rightarrow o \rightarrow o}\) by blast+
have \(\mathcal{V} \varphi\left(\wedge_{o \rightarrow o \rightarrow o}\right) \cdot x \cdot y=\mathcal{V} \varphi ? B_{\mathfrak{x}} \cdot x \cdot y\)
by \(\operatorname{simp}\)
also from assms and \(\left\langle ? B_{\mathfrak{y}} \in\right.\) wff \(\left._{o \rightarrow o}\right\rangle\) have \(\ldots=\mathcal{V}(\varphi((\mathfrak{x}, o):=x))\) ? \(B_{\mathfrak{y}} \cdot y\)
using mixed-beta-conversion by simp
also from assms and \(\left\langle ? B_{e q} \in w f f s_{o}\right\rangle\) have \(\ldots=\mathcal{V}\) ? \(\varphi^{\prime} ? B_{e q}\)
using mixed-beta-conversion by simp
finally have \(\mathcal{V} \varphi\left(\wedge_{o \rightarrow o \rightarrow o}\right) \cdot x \cdot y=\mathbf{T} \longleftrightarrow \mathcal{V}\) ? \(\varphi^{\prime} ? B_{l e q}=\mathcal{V}\) ? \(\varphi^{\prime}\) ? \(B_{\text {req }}\)

by \(\operatorname{simp}\)
also have \(\ldots \longleftrightarrow(\boldsymbol{\lambda} g: \mathcal{D}(o \rightarrow o \rightarrow o) \cdot g \cdot \mathbf{T} \cdot \mathbf{T})=(\boldsymbol{\lambda} g: \mathcal{D}(o \rightarrow o \rightarrow o) \cdot g \cdot x \cdot y)\)
proof -
have leq: \(\mathcal{V} ? \varphi^{\prime} ? B_{l e q}=(\boldsymbol{\lambda} g: \mathcal{D}(o \rightarrow o \rightarrow o) \cdot g \cdot \mathbf{T} \cdot \mathbf{T})\)
and req: \(\mathcal{V}\) ? \(\varphi^{\prime} ? B_{r e q}=(\boldsymbol{\lambda} g: \mathcal{D}(o \rightarrow o \rightarrow o) \cdot g \cdot x \cdot y)\)
proof -
from \(\operatorname{assms}(1,2)\) have is-assg- \(\varphi^{\prime \prime}: ? \varphi^{\prime \prime} g \leadsto \mathcal{D}\) if \(g \in\) elts \((\mathcal{D}(o \rightarrow o \rightarrow o))\) for \(g\) using that by auto
have side-eq-denotation:
\(\mathcal{V} ?^{\prime} \varphi^{\prime}\left(\lambda \mathfrak{g}_{o \rightarrow o \rightarrow o} \cdot \mathfrak{g}_{o \rightarrow o \rightarrow o} \cdot A \cdot B\right)=\left(\boldsymbol{\lambda} g: \mathcal{D}(o \rightarrow o \rightarrow o) \cdot g \cdot \mathcal{V}\left(? \varphi^{\prime \prime} g\right) A \cdot \mathcal{V}\left(? \varphi^{\prime \prime} g\right) B\right)\)
if \(A \in w f f s_{o}\) and \(B \in w f f s_{o}\) for \(A\) and \(B\)
proof -
from that have \(\mathfrak{g}_{o \rightarrow o \rightarrow o} \cdot A \cdot B \in\) wffs \(s_{o}\)
by blast
have \(\mathcal{V}\left(? \varphi^{\prime \prime} g\right)\left(\mathfrak{g}_{o \rightarrow o \rightarrow o} \cdot A \cdot B\right)=g \cdot \mathcal{V}\left(? \varphi^{\prime \prime} g\right) A \cdot \mathcal{V}\left(? \varphi^{\prime \prime} g\right) B\)
if \(g \in\) elts \((\mathcal{D}(o \rightarrow o \rightarrow o))\) for \(g\)
proof -
from \(\left\langle A \in w f f s_{o}\right\rangle\) have \(\mathfrak{g}_{o \rightarrow o \rightarrow 0} \cdot A \in w f f s_{o \rightarrow o}\)
by blast
with that and is-assg- \(\varphi^{\prime \prime}\) and \(\left\langle B \in\right.\) wffs \(\left._{o}\right\rangle\) have \(\mathcal{V}\left(? \varphi^{\prime \prime} g\right)\left(\mathfrak{g}_{o \rightarrow o \rightarrow o} \cdot A \cdot B\right)=\mathcal{V}\left(? \varphi^{\prime \prime} g\right)\left(\mathfrak{g}_{o \rightarrow o \rightarrow o} \cdot A\right) \cdot \mathcal{V}\left(? \varphi^{\prime \prime} g\right) B\) using wff-app-denotation[OF \(\mathcal{V}\)-is-wff-denotation-function] by simp also from that and \(\left\langle A \in w f f s_{o}\right\rangle\) and \(i s\) - assg- \(\varphi^{\prime \prime}\) have
\[
\ldots=\mathcal{V}\left(? \varphi^{\prime \prime} g\right)\left(\mathfrak{g}_{o \rightarrow o \rightarrow o}\right) \cdot \mathcal{V}\left(? \varphi^{\prime \prime} g\right) A \cdot \mathcal{V}\left(? \varphi^{\prime \prime} g\right) B
\]
by (metis \(\mathcal{V}\)-is-wff-denotation-function wff-app-denotation wffs-of-type-intros(1))
finally show?thesis
using that and is-assg- \(\varphi^{\prime \prime}\) and \(\mathcal{V}\)-is-wff-denotation-function by auto
qed
moreover from assms have is-assignment ? \(\varphi^{\prime}\)
by auto
with \(\left\langle\mathfrak{g}_{o \rightarrow o \rightarrow o} \cdot A \cdot B \in\right.\) wffs \(\left._{o}\right\rangle\) have \(\mathcal{V} ? \varphi^{\prime}\left(\lambda \mathfrak{g}_{o \rightarrow o \rightarrow o} \cdot \mathfrak{g}_{o \rightarrow o \rightarrow o} \cdot A \cdot B\right)=\left(\boldsymbol{\lambda} g: \mathcal{D}(o \rightarrow o \rightarrow o) . \mathcal{V}\left(? \varphi^{\prime \prime} g\right)\left(\mathfrak{g}_{o \rightarrow o \rightarrow o} \cdot A \cdot B\right)\right)\) using wff-abs-denotation[OF \(\mathcal{V}\)-is-wff-denotation-function \(]\) by simp
ultimately show ?thesis
using vlambda-extensionality by fastforce
qed
- Proof of leq:
show \(\mathcal{V} ? \varphi^{\prime} ? B_{l e q}=(\boldsymbol{\lambda} g: \mathcal{D}(o \rightarrow o \rightarrow o) \cdot g \cdot \mathbf{T} \cdot \mathbf{T})\)
proof -
have \(\mathcal{V}\left(? \varphi^{\prime \prime} g\right) T_{o}=\mathbf{T}\) if \(g \in\) elts \((\mathcal{D}(o \rightarrow o \rightarrow o))\) for \(g\)
using that and is-assg- \(\varphi^{\prime \prime}\) and prop-5401-c by simp
then show ?thesis
using side-eq-denotation and true-wff and vlambda-extensionality by fastforce
qed
- Proof of req:
show \(\mathcal{V} ? \varphi^{\prime} ? B_{r e q}=(\boldsymbol{\lambda} g: \mathcal{D}(o \rightarrow o \rightarrow o) \cdot g \cdot x \cdot y)\)
proof -
from is-assg- \(\varphi^{\prime \prime}\) have \(\mathcal{V}\left(? \varphi^{\prime \prime} g\right)\left(\mathfrak{x}_{o}\right)=x\) and \(\mathcal{V}\left(? \varphi^{\prime \prime} g\right)\left(\mathfrak{y}_{o}\right)=y\)
if \(g \in\) elts \((\mathcal{D}(o \rightarrow o \rightarrow o))\) for \(g\)
using that and \(\mathcal{V}\)-is-wff-denotation-function by auto
with side-eq-denotation show ?thesis
using wffs-of-type-intros(1) and vlambda-extensionality by fastforce
qed
qed
then show ?thesis
by auto
qed
also have \(\ldots \longleftrightarrow(\forall g \in \operatorname{elts}(\mathcal{D}(o \rightarrow o \rightarrow o)) \cdot g \cdot \mathbf{T} \cdot \mathbf{T}=g \cdot x \cdot y)\)
using vlambda-extensionality and VLambda-eq-D2 by fastforce
finally have and-eqv:
\(\mathcal{V} \varphi\left(\wedge_{o \rightarrow o \rightarrow o}\right) \cdot x \cdot y=\mathbf{T} \longleftrightarrow(\forall g \in\) elts \((\mathcal{D}(o \rightarrow o \rightarrow o)) \cdot g \cdot \mathbf{T} \cdot \mathbf{T}=g \cdot x \cdot y)\)
by blast
then show ?thesis
proof -
from \(\operatorname{assms}(1, \mathcal{Q})\) have is-assg-1: \(\varphi((\mathfrak{x}, o):=\mathbf{T}) \sim \mathcal{D}\)
by (simp add: truth-values-domain-def)
then have is-assg-2: \(\varphi((\mathfrak{x}, o):=\mathbf{T},(\mathfrak{y}, o):=\mathbf{T}) \sim \mathcal{D}\)
unfolding is-assignment-def by (metis fun-upd-apply prod.sel(2))
from assms consider \((a) x=\mathbf{T} \wedge y=\mathbf{T}|(b) x \neq \mathbf{T}|(c) y \neq \mathbf{T}\)
by blast
then show ?thesis
proof cases
case \(a\)
then have \(g \cdot \mathbf{T} \cdot \mathbf{T}=g \cdot x \cdot y\) if \(g \in \operatorname{elts}(\mathcal{D}(o \rightarrow o \rightarrow o))\) for \(g\) by \(\operatorname{simp}\)
with \(a\) and and-eqv show ?thesis
by \(\operatorname{simp}\)
next
case \(b\)
let ? \(g\)-witness \(=\lambda \mathfrak{x}_{o} . \lambda \mathfrak{y}_{o} . \mathfrak{x}_{o}\)
have \(\lambda \mathfrak{y}_{o} \cdot \mathfrak{x}_{o} \in\) wff \(_{o \rightarrow o}\)
by blast
then have is-closed-wff-of-type ? g-witness \((o \rightarrow o \rightarrow o)\)
by force
moreover from assms have is-assg- \(\varphi^{\prime}:\) ? \(\varphi^{\prime} \leadsto \mathcal{D}\)
by \(\operatorname{simp}\)
ultimately have \(\mathcal{V} \varphi\) ? g-witness \(\cdot \mathbf{T} \cdot \mathbf{T}=\mathcal{V}\) ? \(\varphi^{\prime}\) ? g-witness \(\cdot \mathbf{T} \cdot \mathbf{T}\)
using assms(1) and closed-wff-is-meaningful-regardless-of-assignment by metis
also from assms and \(\left\langle\lambda \mathfrak{y}_{o} . \mathfrak{x}_{o} \in w f f s_{o \rightarrow 0}\right\rangle\) have
\(\mathcal{V} ? \varphi^{\prime} ? g\)-witness \(\cdot \mathbf{T} \cdot \mathbf{T}=\mathcal{V}\left(? \varphi^{\prime}((\mathfrak{x}, o):=\mathbf{T})\right)\left(\lambda \mathfrak{y}_{o} \cdot \mathfrak{x}_{o}\right) \cdot \mathbf{T}\)
using mixed-beta-conversion and truth-values-domain-def by auto
also from \(\operatorname{assms}(1)\) and \(\left\langle\lambda \mathfrak{y}_{o} . \mathfrak{x}_{o} \in w f f s_{o \rightarrow o}\right\rangle\) and is-assg-1 and calculation have
\[
\ldots=\mathcal{V}\left(? \varphi^{\prime}((\mathfrak{x}, o):=\mathbf{T},(\mathfrak{y}, o):=\mathbf{T})\right)\left(\mathfrak{x}_{o}\right)
\]
using mixed-beta-conversion and is-assignment-def
by (metis fun-upd-same fun-upd-twist fun-upd-upd wffs-of-type-intros(1))
also have \(\ldots=\mathbf{T}\)
using is-assg-2 and \(\mathcal{V}\)-is-wff-denotation-function by fastforce
finally have \(\mathcal{V} \varphi\) ? g-witness \(\cdot \mathbf{T} \cdot \mathbf{T}=\mathbf{T}\).
with \(b\) have \(\mathcal{V} \varphi\) ? g-witness \(\cdot \mathbf{T} \cdot \mathbf{T} \neq x\)
by blast
moreover have \(x=\mathcal{V} \varphi\) ? g-witness \(\cdot x \cdot y\)
proof -
from is-assg- \(\varphi^{\prime}\) have \(x=\mathcal{V}\) ? \(\varphi^{\prime}\left(\mathfrak{x}_{o}\right)\)
using \(\mathcal{V}\)-is-wff-denotation-function by auto
also from \(\operatorname{assms}(2)\) and \(i s-a s s g-\varphi^{\prime}\) have \(\ldots=\mathcal{V}\) ? \(\varphi^{\prime}\left(\lambda \mathfrak{y}_{o} \cdot \mathfrak{x}_{o}\right) \cdot y\)
using wffs-of-type-intros(1)[where \(x=\mathfrak{x}\) and \(\alpha=o]\)
by (simp add: mixed-beta-conversion \(\mathcal{V}\)-is-wff-denotation-function)
also from \(\operatorname{assms}(2)\) have \(\ldots=\mathcal{V}\) ? \(\varphi^{\prime}\) ? \(g\)-witness \(\cdot x \cdot y\)
using is-assg- \(\varphi^{\prime}\) and \(\left\langle\lambda \mathfrak{y}_{o} . \mathfrak{x}_{o} \in\right.\) wff \(\left.^{\prime} s_{o \rightarrow 0}\right\rangle\)
by (simp add: mixed-beta-conversion fun-upd-twist)
also from \(\operatorname{assms}(1,2)\) have \(\ldots=\mathcal{V} \varphi\) ? g-witness \(\cdot x \cdot y\)
using is-assg- \(\varphi^{\prime}\) and 〈is-closed-wff-of-type ? \(g\)-witness \(\left.(~ o \rightarrow o \rightarrow o)\right\rangle\)
and closed-wff-is-meaningful-regardless-of-assignment by metis
finally show ?thesis .
qed
moreover from \(\operatorname{assms}(1,2)\) have \(\mathcal{V} \varphi\) ? g-witness \(\in\) elts \((\mathcal{D}(o \rightarrow o \rightarrow o))\)
using＜is－closed－wff－of－type ？\(g\)－witness \((o \rightarrow o \rightarrow o)\) 〉 and \(\mathcal{V}\)－is－wff－denotation－function by simp
ultimately have \(\exists g \in\) elts \((\mathcal{D}(o \rightarrow o \rightarrow o)) . g \cdot \mathbf{T} \cdot \mathbf{T} \neq g \cdot x \cdot y\)
by auto
moreover from assms have \(\mathcal{V} \varphi\left(\wedge_{o \rightarrow o \rightarrow o}\right) \cdot x \cdot y \in\) elts \((\mathcal{D} o)\)
by（rule fully－applied－conj－fun－is－domain－respecting）
ultimately have \(\mathcal{V} \varphi\left(\wedge_{o \rightarrow o \rightarrow o}\right) \cdot x \cdot y=\mathbf{F}\)
using and－eqv and truth－values－domain－def by fastforce
with \(b\) show ？thesis
by \(\operatorname{simp}\)
next
case \(c\)
let ？\(g\)－witness \(=\lambda \mathfrak{x}_{o} . \lambda \mathfrak{y}_{o} \cdot \mathfrak{y}_{o}\)
have \(\lambda \mathfrak{y}_{o} . \mathfrak{y}_{o} \in\) wffs \(_{o \rightarrow 0}\)
by blast
then have is－closed－wff－of－type ？\(g\)－witness \((o \rightarrow o \rightarrow o)\)
by force
moreover from \(\operatorname{assms}(1,2)\) have \(i s\)－assg－\(\varphi^{\prime}: ? \varphi^{\prime} \leadsto \mathcal{D}\)
by simp
ultimately have \(\mathcal{V} \varphi\) ？g－witness \(\cdot \mathbf{T} \cdot \mathbf{T}=\mathcal{V}\) ？\(\varphi^{\prime}\) ？g－witness \(\cdot \mathbf{T} \cdot \mathbf{T}\)
using assms（1）and closed－wff－is－meaningful－regardless－of－assignment by metis
also from \(i s-a s s g-1\) and \(i s-a s s g-\varphi^{\prime}\) have \(\ldots=\mathcal{V}\left(? \varphi^{\prime}((\mathfrak{x}, o):=\mathbf{T})\right)\left(\lambda \mathfrak{y}_{o} \cdot \mathfrak{y}_{o}\right) \cdot \mathbf{T}\)
using \(\left\langle\lambda \mathfrak{y}_{o} . \mathfrak{y}_{o} \in w f f s_{o \rightarrow o}\right\rangle\) and mixed－beta－conversion and truth－values－domain－def by auto
also from \(\operatorname{assms}(1)\) and \(\left\langle\lambda \mathfrak{y}_{o}, \mathfrak{y}_{o} \in w f f s_{o \rightarrow o}\right\rangle\) and is－assg－1 and calculation have
\[
\ldots=\mathcal{V}\left(? \varphi^{\prime}((\mathfrak{x}, o):=\mathbf{T},(\mathfrak{y}, o):=\mathbf{T})\right)\left(\mathfrak{y}_{o}\right)
\]
using mixed－beta－conversion and is－assignment－def
by（metis fun－upd－same fun－upd－twist fun－upd－upd wffs－of－type－intros（1））
also have \(\ldots=\mathbf{T}\)
using is－assg－2 and \(\mathcal{V}\)－is－wff－denotation－function by force
finally have \(\mathcal{V} \varphi\) ？g－witness \(\cdot \mathbf{T} \cdot \mathbf{T}=\mathbf{T}\) ．
with \(c\) have \(\mathcal{V} \varphi\) ？g－witness \(\cdot \mathbf{T} \cdot \mathbf{T} \neq y\)
by blast
moreover have \(y=\mathcal{V} \varphi\) ？g－witness \(\cdot x \cdot y\)
proof－
from \(\operatorname{assms}(2)\) and \(i s-a s s g-\varphi^{\prime}\) have \(y=\mathcal{V} ? \varphi^{\prime}\left(\lambda \mathfrak{y}_{o} \cdot \mathfrak{y}_{o}\right) \cdot y\) using wffs－of－type－intros（1）［where \(x=\mathfrak{y}\) and \(\alpha=o\) ］
and \(\mathcal{V}\)－is－wff－denotation－function and mixed－beta－conversion by auto
also from \(\operatorname{assms}(2)\) and \(\left\langle\lambda \mathfrak{y}_{o} . \mathfrak{y}_{o} \in\right.\) wffs \(\left._{o \rightarrow 0}\right\rangle\) have \(\ldots=\mathcal{V} ? \varphi^{\prime} ? g\)－witness \(\cdot x \cdot y\) using is－assg－\(\varphi^{\prime}\) by（simp add：mixed－beta－conversion fun－upd－twist）
also from \(\operatorname{assms}(1,2)\) have \(\ldots=\mathcal{V} \varphi\) ？\(g\)－witness \(\cdot x \cdot y\)
using is－assg－\(\varphi^{\prime}\) and 〈is－closed－wff－of－type ？\(g\)－witness \((o \rightarrow o \rightarrow o)\) 〉
and closed－wff－is－meaningful－regardless－of－assignment by metis
finally show ？thesis．
qed
moreover from \(\operatorname{assms}(1)\) have \(\mathcal{V} \varphi\) ？g－witness \(\in\) elts \((\mathcal{D}(o \rightarrow o \rightarrow o))\)
using＜is－closed－wff－of－type ？g－witness \((o \rightarrow o \rightarrow o)\) 〉 and \(\mathcal{V}\)－is－wff－denotation－function by auto
ultimately have \(\exists g \in\) elts \((\mathcal{D}(o \rightarrow o \rightarrow o)) . g \cdot \mathbf{T} \cdot \mathbf{T} \neq g \cdot x \cdot y\)
by auto
moreover from assms have \(\mathcal{V} \varphi\left(\wedge_{o \rightarrow o \rightarrow o}\right) \cdot x \cdot y \in\) elts \((\mathcal{D} o)\)
by（rule fully－applied－conj－fun－is－domain－respecting）
```

            ultimately have }\mathcal{V}\varphi(\mp@subsup{\wedge}{o->o->o}{*})\cdotx\cdoty=\mathbf{F
            using and-eqv and truth-values-domain-def by fastforce
            with c show ?thesis
            by simp
        qed
    qed
    qed
corollary (in general-model) prop-5401-e':
assumes }\varphi~\mathcal{D
and }A\inwff\mp@subsup{s}{O}{}\mathrm{ and }B\inwff\mp@subsup{s}{O}{
shows \mathcal{V}\varphi(A}\mp@subsup{\wedge}{}{\mathcal{Q}}B)=\mathcal{V}\varphiA\wedge\mathcal{V}\varphi
proof -
from assms have {\mathcal{V}\varphiA,\mathcal{V}\varphiB}\subseteq elts (\mathcal{D o)}
using}\mathcal{V}\mathrm{ -is-wff-denotation-function by simp
from assms(2) have }\mp@subsup{\wedge}{O->o->o}{}\cdotA\in\mp@subsup{\mathrm{ wffs }}{O->O}{
by blast
have \mathcal{V}\varphi(A}\mp@subsup{\wedge}{}{\mathcal{Q}}B)=\mathcal{V}\varphi(\mp@subsup{\wedge}{o->o->o}{\prime}\cdotA\cdotB
by simp
also from assms have ···=\mathcal{V}\varphi(\mp@subsup{\wedge}{o->o->o}{*}\cdotA)\cdot\mathcal{V}\varphiB
using \mathcal{V}
also from assms have ···=\mathcal{V}\varphi(\mp@subsup{\wedge}{o->o->o}{*})\cdot\mathcal{V}\varphiA\cdot\mathcal{V}\varphiB
using \mathcal{V}
also from assms(1,2) have .. = (if \mathcal{V}\varphiA=\mathbf{T}\wedge\mathcal{V}\varphiB=\mathbf{T}\mathrm{ then T else F})
using <{\mathcal{V}\varphiA,\mathcal{V}\varphiB}\subseteq elts (\mathcal{D o)\rangle}\mathrm{ and prop-5401-e by simp}
also have ···=\mathcal{V}\varphiA\wedge\mathcal{V}\varphiB
using truth-values-domain-def and }\langle{\mathcal{V}\varphiA,\mathcal{V}\varphiB}\subseteq\mathrm{ elts (D o)> by fastforce
finally show ?thesis.
qed
lemma (in general-model) prop-5401-f:
assumes \varphi}~\mathcal{D
and {x,y}\subseteq elts (\mathcal{D o)}
shows \mathcal{V}\varphi(\supseto->o->o) • x • y = (if x = T ^ y = F then F else T
proof -
let ? }\mp@subsup{\varphi}{}{\prime}=\varphi((\mathfrak{x},o):=x,(\mathfrak{y},o):=y
from assms(2) have {x,y}\subseteq elts \mathbb{B}
unfolding truth-values-domain-def .
have (\mp@subsup{\mathfrak{x}}{0}{}\equiv\mp@subsup{}{}{\mathcal{Q}}\mp@subsup{\mathfrak{x}}{0}{}\mp@subsup{\wedge}{}{\mathcal{Q}}\mp@subsup{\mathfrak{y}}{o}{})\inwffs\mp@subsup{s}{O}{}
by blast
then have }\lambda\mp@subsup{\mathfrak{y}}{0}{}.(\mp@subsup{\mathfrak{x}}{0}{}\equiv\mp@subsup{\equiv}{}{\mathcal{Q}}\mp@subsup{\mathfrak{x}}{o}{}\mp@subsup{\wedge}{}{\mathcal{Q}}\mp@subsup{\mathfrak{y}}{o}{})\inwff\mp@subsup{s}{o->o}{o
by blast
from assms have is-assg-\mp@subsup{\varphi}{}{\prime}:??}\mp@subsup{\varphi}{}{\prime}~\mathcal{D
by simp
from assms(1) have }\mathcal{V}?\mp@subsup{\varphi}{}{\prime}(\mp@subsup{\mathfrak{x}}{o}{})=x\mathrm{ and }\mathcal{V}?\mp@subsup{\varphi}{}{\prime}(\mp@subsup{\mathfrak{y}}{o}{})=
using is-assg-\varphi' and }\mathcal{V}\mathrm{ -is-wff-denotation-function by force+
have \mathcal{V}\varphi(\mp@subsup{\supset}{o->o->o)}{\prime})x\cdoty=\mathcal{V}\varphi(\lambda\mp@subsup{\mathfrak{x}}{o}{}.\lambda\mp@subsup{\mathfrak{y}}{o}{}.(\mp@subsup{\mathfrak{x}}{o}{}\equiv\mp@subsup{\mathcal{Q}}{}{\mathcal{Q}}\mp@subsup{\mathfrak{x}}{o}{}\mp@subsup{\wedge}{}{\mathcal{Q}}\mp@subsup{\mathfrak{y}}{o}{}))\cdotx\cdoty
by simp
also from assms have ···. =\mathcal{V}(\varphi((\mathfrak{x},o):=x))(\lambda\mp@subsup{\mathfrak{y}}{o}{}.(\mp@subsup{\mathfrak{x}}{o}{}\mp@subsup{\equiv}{}{\mathcal{Q}}\mp@subsup{\mathfrak{x}}{o}{}\mp@subsup{\wedge}{}{\mathcal{Q}}\mp@subsup{\mathfrak{y}}{o}{\prime}))\cdoty

```
using \(\left\langle\lambda \mathfrak{y}_{o} .\left(\mathfrak{x}_{o} \equiv{ }^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right) \in\right.\) wffs \(s_{o \rightarrow 0\rangle}\) and mixed-beta-conversion by simp
also from assms have \(\ldots=\mathcal{V}\) ? \(\varphi^{\prime}\left(\mathfrak{x}_{o} \equiv \mathcal{Q}^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\)
using mixed-beta-conversion and \(\left\langle\left(\mathfrak{x}_{o} \equiv{ }^{\mathcal{Q}} \mathfrak{x}_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right) \in\right.\) wffs \(\left.s_{o}\right\rangle\) by simp
finally have \(\mathcal{V} \varphi\left(\supset_{o \rightarrow o \rightarrow o}\right) \cdot x \cdot y=\mathbf{T} \longleftrightarrow \mathcal{V}\) ? \(\varphi^{\prime}\left(\mathfrak{x}_{o}\right)=\mathcal{V}\) ? \(\varphi^{\prime}\left(\mathfrak{x}_{o} \wedge^{\mathcal{Q}} \mathfrak{y}_{o}\right)\)
using prop-5401-b \({ }^{\prime}\) [OF is-assg- \(\left.\varphi^{\prime}\right]\) and conj-op-wff and wffs-of-type-intros(1) by simp
also have \(\ldots \longleftrightarrow x=x \wedge y\)
unfolding prop-5401-e \({ }^{\prime}\left[\right.\) OF is-assg- \(\varphi^{\prime}\) wffs-of-type-intros(1) wffs-of-type-intros(1)]
and \(\left\langle\mathcal{V} ? \varphi^{\prime}\left(\mathfrak{x}_{o}\right)=x\right\rangle\) and \(\left\langle\mathcal{V} ? \varphi^{\prime}\left(\mathfrak{y}_{o}\right)=y\right\rangle .\).
also have \(\ldots \longleftrightarrow x=(\) if \(x=\mathbf{T} \wedge y=\mathbf{T}\) then \(\mathbf{T}\) else \(\mathbf{F})\)
using \(\langle\{x, y\} \subseteq\) elts \(\mathbb{B}\rangle\) by auto
also have \(\ldots \longleftrightarrow \mathbf{T}=(\) if \(x=\mathbf{T} \wedge y=\mathbf{F}\) then \(\mathbf{F}\) else \(\mathbf{T})\)
using \(\langle\{x, y\} \subseteq\) elts \(\mathbb{B}\rangle\) by auto
finally show ?thesis
using assms and fully-applied-imp-fun-denotation-is-domain-respecting and tv-cases
and truth-values-domain-def by metis
qed
corollary (in general-model) prop-5401-f':
assumes \(\varphi \sim \mathcal{D}\)
and \(A \in w_{f f} s_{o}\) and \(B \in w_{f f} s_{o}\)
shows \(\mathcal{V} \varphi\left(A \supset^{\mathcal{Q}} B\right)=\mathcal{V} \varphi A \supset \mathcal{V} \varphi B\)
proof -
from assms have \(\{\mathcal{V} \varphi A, \mathcal{V} \varphi B\} \subseteq\) elts \((\mathcal{D} o)\)
using \(\mathcal{V}\)-is-wff-denotation-function by simp
from \(\operatorname{assms}(2)\) have \(\supset_{o \rightarrow o \rightarrow o} \cdot A \in\) wffs \(_{o \rightarrow o}\)
by blast
have \(\mathcal{V} \varphi\left(A \supset^{\mathcal{Q}} B\right)=\mathcal{V} \varphi\left(\supset_{o \rightarrow o \rightarrow o} \cdot A \cdot B\right)\)
by \(\operatorname{simp}\)
also from \(\operatorname{assms}(1,3)\) have \(\ldots=\mathcal{V} \varphi\left(\supset_{o \rightarrow o \rightarrow o} \cdot A\right) \cdot \mathcal{V} \varphi B\)
using \(\mathcal{V}\)-is-wff-denotation-function and \(\left\langle\supset_{o \rightarrow o \rightarrow o} \cdot A \in\right.\) wffs \(\left.s_{o \rightarrow o}\right\rangle\) by blast
also from assms have \(\ldots=\mathcal{V} \varphi\left(\supset_{o \rightarrow o \rightarrow o}\right) \cdot \mathcal{V} \varphi A \cdot \mathcal{V} \varphi B\)
using \(\mathcal{V}\)-is-wff-denotation-function and imp-fun-wff by fastforce
also from assms have \(\ldots=(\) if \(\mathcal{V} \varphi A=\mathbf{T} \wedge \mathcal{V} \varphi B=\mathbf{F}\) then \(\mathbf{F}\) else \(\mathbf{T})\)
using \(\langle\{\mathcal{V} \varphi A, \mathcal{V} \varphi B\} \subseteq\) elts \((\mathcal{D}\) o) \(\rangle\) and prop-5401-f by simp
also have \(\ldots=\mathcal{V} \varphi A \supset \mathcal{V} \varphi B\)
using truth-values-domain-def and \(\langle\{\mathcal{V} \varphi A, \mathcal{V} \varphi B\} \subseteq\) elts \((\mathcal{D} o)\rangle\) by auto
finally show ?thesis.
qed
lemma (in general-model) forall-denotation:
assumes \(\varphi \sim \mathcal{D}\)
and \(A \in w_{j f f}{ }_{o}\)
shows \(\mathcal{V} \varphi\left(\forall x_{\alpha} \cdot A\right)=\mathbf{T} \longleftrightarrow(\forall z \in\) elts \((\mathcal{D} \alpha) . \mathcal{V}(\varphi((x, \alpha):=z)) A=\mathbf{T})\)
proof -
from \(\operatorname{assms}(1)\) have lhs: \(\mathcal{V} \varphi\left(\lambda \mathfrak{x}_{\alpha} . T_{o}\right) \cdot z=\mathbf{T}\) if \(z \in\) elts \((\mathcal{D} \alpha)\) for \(z\) using prop-5401-c and mixed-beta-conversion and that and true-wff by simp
from assms have rhs: \(\mathcal{V} \varphi\left(\lambda x_{\alpha} . A\right) \cdot z=\mathcal{V}(\varphi((x, \alpha):=z)) A\) if \(z \in\) elts \((\mathcal{D} \alpha)\) for \(z\) using that by (simp add: mixed-beta-conversion)
from assms(2) have \(\lambda \mathfrak{x}_{\alpha} . T_{o} \in w f f s_{\alpha \rightarrow 0}\) and \(\lambda x_{\alpha} . A \in w f f s_{\alpha \rightarrow 0}\)
by auto
have \(\mathcal{V} \varphi\left(\forall x_{\alpha} . A\right)=\mathcal{V} \varphi\left(\prod_{\alpha} \cdot\left(\lambda x_{\alpha} . A\right)\right)\)
unfolding forall-def ..
also have \(\ldots=\mathcal{V} \varphi\left(Q_{\alpha \rightarrow 0} \cdot\left(\lambda \mathfrak{x}_{\alpha} \cdot T_{o}\right) \cdot\left(\lambda x_{\alpha} \cdot A\right)\right)\)
unfolding PI-def ..
also have \(\ldots=\mathcal{V} \varphi\left(\left(\lambda \mathfrak{x}_{\alpha} . T_{o}\right)={ }_{\alpha \rightarrow o}\left(\lambda x_{\alpha} . A\right)\right)\)
unfolding equality-of-type-def ..
finally have \(\mathcal{V} \varphi\left(\forall x_{\alpha} . A\right)=\mathcal{V} \varphi\left(\left(\lambda \mathfrak{x}_{\alpha} . T_{o}\right)={ }_{\alpha \rightarrow o}\left(\lambda x_{\alpha} . A\right)\right)\).
moreover from \(\operatorname{assms}(1,2)\) have
\(\mathcal{V} \varphi\left(\left(\lambda \mathfrak{x}_{\alpha} . T_{o}\right)={ }_{\alpha \rightarrow o}\left(\lambda x_{\alpha} . A\right)\right)=\mathbf{T} \longleftrightarrow \mathcal{V} \varphi\left(\lambda \mathfrak{x}_{\alpha} . T_{o}\right)=\mathcal{V} \varphi\left(\lambda x_{\alpha} . A\right)\)
using \(\left\langle\lambda \mathfrak{x}_{\alpha} . T_{o} \in w f f s_{\alpha \rightarrow o\rangle}\right.\) and \(\left\langle\lambda x_{\alpha} . A \in w f f s_{\alpha \rightarrow o\rangle}\right.\) and prop-5401-b by blast
moreover
have \(\left(\mathcal{V} \varphi\left(\lambda \mathfrak{x}_{\alpha} . T_{o}\right)=\mathcal{V} \varphi\left(\lambda x_{\alpha} . A\right)\right) \longleftrightarrow(\forall z \in\) elts \((\mathcal{D} \alpha) . \mathcal{V}(\varphi((x, \alpha):=z)) A=\mathbf{T})\)
proof
assume \(\mathcal{V} \varphi\left(\lambda \mathfrak{x}_{\alpha} . T_{o}\right)=\mathcal{V} \varphi\left(\lambda x_{\alpha} . A\right)\)
with lhs and rhs show \(\forall z \in\) elts \((\mathcal{D} \alpha) . \mathcal{V}(\varphi((x, \alpha):=z)) A=\mathbf{T}\)
by auto
next
assume \(\forall z \in\) elts \((\mathcal{D} \alpha) . \mathcal{V}(\varphi((x, \alpha):=z)) A=\mathbf{T}\)
moreover from assms have \(\mathcal{V} \varphi\left(\lambda \mathfrak{x}_{\alpha} . T_{o}\right)=\left(\boldsymbol{\lambda} z: \mathcal{D} \alpha \cdot \mathcal{V}(\varphi((\mathfrak{x}, \alpha):=z)) T_{o}\right)\) using wff-abs-denotation[OF \(\mathcal{V}\)-is-wff-denotation-function] by blast
moreover from assms have \(\mathcal{V} \varphi\left(\lambda x_{\alpha} . A\right)=(\boldsymbol{\lambda} z: \mathcal{D} \alpha . \mathcal{V}(\varphi((x, \alpha):=z)) A)\)
using wff-abs-denotation[OF \(\mathcal{V}\)-is-wff-denotation-function \(]\) by blast
ultimately show \(\mathcal{V} \varphi\left(\lambda \mathfrak{x}_{\alpha} . T_{o}\right)=\mathcal{V} \varphi\left(\lambda x_{\alpha} . A\right)\)
using lhs and vlambda-extensionality by fastforce
qed
ultimately show ?thesis
by (simp only:)
qed
lemma prop-5401-g:
assumes is-general-model \(\mathcal{M}\)
and \(\varphi \sim_{M} \mathcal{M}\)
and \(A \in w_{f f} s_{o}\)
shows \(\mathcal{M} \models_{\varphi} \forall x_{\alpha} . A \longleftrightarrow\left(\forall \psi \cdot \psi \leadsto_{M} \mathcal{M} \wedge \psi \sim_{(x, \alpha)} \varphi \longrightarrow \mathcal{M} \vDash_{\psi} A\right)\)
proof -
obtain \(\mathcal{D}\) and \(\mathcal{J}\) and \(\mathcal{V}\) where \(\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})\)
using prod-cases3 by blast
with assms have
\(\mathcal{M} \models_{\varphi} \forall x_{\alpha} . A\)
\(\forall x_{\alpha} . A \in\) wffs \(_{o} \wedge\) is-general-model \((\mathcal{D}, \mathcal{J}, \mathcal{V}) \wedge \varphi \leadsto \mathcal{D} \wedge \mathcal{V} \varphi\left(\forall x_{\alpha} . A\right)=\mathbf{T}\)
by fastforce
also from assms and \(\langle\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})\rangle\) have \(\ldots \longleftrightarrow(\forall z \in\) elts \((\mathcal{D} \alpha) . \mathcal{V}(\varphi((x, \alpha):=z)) A=\)
T)
using general-model.forall-denotation by fastforce
also have \(\ldots \longleftrightarrow\left(\forall \psi \cdot \psi \leadsto \mathcal{D} \wedge \psi \sim_{(x, \alpha)} \varphi \longrightarrow \mathcal{M}=_{\psi} A\right)\)
proof
assume \(*: \forall z \in \operatorname{elts}(\mathcal{D} \alpha) . \mathcal{V}(\varphi((x, \alpha):=z)) A=\mathbf{T}\)
```

    {
        fix }
        assume \psi}~\mathcal{D}\mathrm{ and }\psi~\mp@subsup{~}{(x,\alpha)}{}
        have \mathcal{V}\psiA=\mathbf{T}
        proof -
        have }\existsz\in\mathrm{ elts (D }\alpha).\psi=\varphi((x,\alpha):=z
        proof (rule ccontr)
            assume}\neg(\existsz\in\mathrm{ elts (D }\alpha).\psi=\varphi((x,\alpha):=z)
            with }\langle\psi~\mp@subsup{~}{(x,\alpha)}{}\varphi\rangle\mathrm{ have }\forallz\in\mathrm{ elts (D 人). % (x, 人) # z
                by fastforce
            then have \psi(x,\alpha)\not\in elts (\mathcal{D }\alpha)
                by blast
            moreover from assms(1) and }\langle\mathcal{M}=(\mathcal{D},\mathcal{J},\mathcal{V})\rangle\mathrm{ and }\langle\psi\leadsto\mathcal{D}\rangle\mathrm{ have }\psi(x,\alpha)\in\mathrm{ elts (D }\alpha
                using general-model-def and premodel-def and frame.is-assignment-def by auto
            ultimately show False
                by simp
        qed
        with * show ?thesis
            by fastforce
        qed
        with assms(1) and }\langle\mathcal{M}=(\mathcal{D},\mathcal{J},\mathcal{V})\rangle have \mathcal{M}\mp@subsup{\models}{\psi}{}
        by simp
    }
    then show }\forall\psi.\psi~\mathcal{D}\wedge\psi~\mp@subsup{~}{(x,\alpha)}{}\varphi\longrightarrow\mathcal{M}\mp@subsup{\vDash}{\psi}{}
        by blast
    next
    assume *: \forall\psi.\psi\leadsto\mathcal{D}\wedge\psi ~}\mp@subsup{}{(x,\alpha)}{}\varphi\longrightarrow\mathcal{M}\mp@subsup{\vDash}{\psi}{}
    show }\forallz\in\mathrm{ elts (D }\alpha).\mathcal{V}(\varphi((x,\alpha):=z))A=\mathbf{T
    proof
        fix }
        assume z\in elts (\mathcal{D \alpha)}
    ```

```

        using general-model-def and premodel-def and frame.is-assignment-def by auto
        moreover have }\varphi((x,\alpha):=z)~(x,\alpha)
        by simp
        ultimately have }\mathcal{M}\mp@subsup{\vDash}{\varphi((x,\alpha):=z)}{A
        using * by blast
        with assms(1) and }\langle\mathcal{M}=(\mathcal{D},\mathcal{J},\mathcal{V})\rangle\mathrm{ and }\langle\varphi((x,\alpha):=z)~\mathcal{D}\rangle\mathrm{ show }\mathcal{V}(\varphi((x,\alpha):=z))A
    T
by simp
qed
qed
finally show ?thesis
using <\mathcal{M}=(\mathcal{D},\mathcal{J},\mathcal{V})\rangle
by simp
qed
lemma (in general-model) axiom-1-validity-aux:

```
```

    assumes \(\varphi \sim \mathcal{D}\)
    shows \(\mathcal{V} \varphi\left(\mathfrak{g}_{o \rightarrow o} \cdot T_{o} \wedge^{\mathcal{Q}} \mathfrak{g}_{o \rightarrow o} \cdot F_{o} \equiv \mathcal{Q} \forall \mathfrak{x}_{o} \cdot \mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}\right)=\mathbf{T}(\) is \(\mathcal{V} \varphi(? A \equiv \mathcal{Q} ? B)=\mathbf{T})\)
    proof -
let ? $\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})$
from assms have $*$ : is-general-model ? $\mathcal{M} \varphi \sim M$ ? $\mathcal{M}$
using general-model-axioms by blast+
have ? $A \equiv{ }^{\mathcal{Q}}$ ? $B \in$ wffs $o_{o}$
using axioms.axiom-1 and axioms-are-wffs-of-type-o by blast
have lhs: $\mathcal{V} \varphi$ ? $A=\varphi(\mathfrak{g}, o \rightarrow o) \cdot \mathbf{T} \wedge \varphi(\mathfrak{g}, o \rightarrow o) \cdot \mathbf{F}$
proof -
have $\mathfrak{g}_{o \rightarrow o} \cdot T_{o} \in w f f s_{o}$ and $\mathfrak{g}_{o \rightarrow o} \cdot F_{o} \in$ wffs $s_{o}$
by blast+
with assms have $\mathcal{V} \varphi ? A=\mathcal{V} \varphi\left(\mathfrak{g}_{o \rightarrow o} \cdot T_{o}\right) \wedge \mathcal{V} \varphi\left(\mathfrak{g}_{o \rightarrow o} \cdot F_{o}\right)$
using prop-5401-e by simp
also from assms have $\ldots=\varphi(\mathfrak{g}, o \rightarrow o) \cdot \mathcal{V} \varphi\left(T_{o}\right) \wedge \varphi(\mathfrak{g}, o \rightarrow o) \cdot \mathcal{V} \varphi\left(F_{o}\right)$
using wff-app-denotation[OF $\mathcal{V}$-is-wff-denotation-function]
and wff-var-denotation[OF $\mathcal{V}$-is-wff-denotation-function]
by (metis false-wff true-wff wffs-of-type-intros(1))
finally show ?thesis
using assms and prop-5401-c and prop-5401-d by simp
qed
have $\mathcal{V} \varphi\left(? A \equiv{ }^{\mathcal{Q}} ? B\right)=\mathbf{T}$
proof (cases $\forall z \in$ elts $(\mathcal{D} o) . \varphi(\mathfrak{g}, o \rightarrow o) \cdot z=\mathbf{T})$
case True
with assms have $\varphi(\mathfrak{g}, o \rightarrow o) \cdot \mathbf{T}=\mathbf{T}$ and $\varphi(\mathfrak{g}, o \rightarrow o) \cdot \mathbf{F}=\mathbf{T}$
using truth-values-domain-def by auto
with $l h s$ have $\mathcal{V} \varphi$ ? $A=\mathbf{T} \wedge \mathbf{T}$
by (simp only:)
also have ... = T
by $\operatorname{simp}$
finally have $\mathcal{V} \varphi ? A=\mathbf{T}$.
moreover have $\mathcal{V} \varphi$ ? $B=\mathbf{T}$
proof -
have $\mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o} \in$ wff $s_{o}$
by blast
moreover
\{
fix $\psi$
assume $\psi \leadsto \mathcal{D}$ and $\psi \sim_{(x, o)} \varphi$
with assms have $\mathcal{V} \psi\left(\mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}\right)=\mathcal{V} \psi\left(\mathfrak{g}_{o \rightarrow o}\right) \cdot \mathcal{V} \psi\left(\mathfrak{x}_{o}\right)$
using $\mathcal{V}$-is-wff-denotation-function by blast
also from $\langle\psi \leadsto \mathcal{D}\rangle$ have $\ldots=\psi(\mathfrak{g}, o \rightarrow o) \cdot \psi(\mathfrak{x}, o)$
using $\mathcal{V}$-is-wff-denotation-function by auto
also from $\left\langle\psi \sim_{(\mathfrak{x}, o)} \varphi\right\rangle$ have $\ldots=\varphi(\mathfrak{g}, o \rightarrow o) \cdot \psi(\mathfrak{x}, o)$
by $\operatorname{simp}$
also from True and $\langle\psi \leadsto \mathcal{D}\rangle$ have $\ldots=\mathbf{T}$
by blast
finally have $\mathcal{V} \psi\left(\mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}\right)=\mathbf{T}$.
with assms and $\left\langle\mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o} \in\right.$ wffs $\left.s_{o}\right\rangle$ have ? $\mathcal{M} \mid={ }_{\psi} \mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}$

```
```

        by simp
    }
    ```
 ultimately have ? \(\mathcal{M} \models_{\varphi}\) ? \(B\)
 using assms and \(*\) and prop-5401-g by auto
 with \(*\) (2) show ?thesis
 by simp
 qed
 ultimately show?thesis
 using assms and prop-5401-b' and wffs-from-equivalence \(\left[O F\left\langle ? A \equiv \equiv^{\mathcal{Q}} ? B \in\right.\right.\) wffs \(\left.\left.s_{o}\right\rangle\right]\) by simp
next
 case False
 then have \(\exists z \in\) elts \((\mathcal{D} o) . \varphi(\mathfrak{g}, o \rightarrow o) \cdot z \neq \mathbf{T}\)
 by blast
 moreover from \(*\) have \(\forall z \in\) elts \((\mathcal{D} o) . \varphi(\mathfrak{g}, o \rightarrow o) \cdot z \in\) elts \((\mathcal{D} o)\)
 using app-is-domain-respecting by blast
 ultimately obtain \(z\) where \(z \in\) elts \((\mathcal{D} o)\) and \(\varphi(\mathfrak{g}, o \rightarrow o) \cdot z=\mathbf{F}\)
 using truth-values-domain-def by auto
 define \(\psi\) where \(\psi\)-def: \(\psi=\varphi((\mathfrak{x}, o):=z)\)
 with \(*\) and \(\langle z \in\) elts \((\mathcal{D} o)\rangle\) have \(\psi \leadsto \mathcal{D}\)
 by \(\operatorname{simp}\)
 then have \(\mathcal{V} \psi\left(\mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}\right)=\mathcal{V} \psi\left(\mathfrak{g}_{o \rightarrow o}\right) \cdot \mathcal{V} \psi\left(\mathfrak{x}_{o}\right)\)
 using \(\mathcal{V}\)-is-wff-denotation-function by blast
 also from \(\langle\psi \leadsto \mathcal{D}\rangle\) have \(\ldots=\psi(\mathfrak{g}, o \rightarrow o) \cdot \psi(\mathfrak{x}, o)\)
 using \(\mathcal{V}\)-is-wff-denotation-function by auto
 also from \(\psi\)-def have \(\ldots=\varphi(\mathfrak{g}, o \rightarrow o) \cdot z\)
 by \(\operatorname{simp}\)
 also have \(\ldots=\mathbf{F}\)
 unfolding \(\langle\varphi(\mathfrak{g}, o \rightarrow o) \cdot z=\mathbf{F}\rangle .\).
 finally have \(\mathcal{V} \psi\left(\mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}\right)=\mathbf{F}\).
 with \(\langle\psi \sim \mathcal{D}\rangle\) have \(\neg ? \mathcal{M} \models_{\psi} \mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}\)
 by (auto simp add: inj-eq)
 with \(\langle\psi \leadsto \mathcal{D}\rangle\) and \(\psi\)-def have \(\neg\left(\forall \psi \cdot \psi \leadsto \mathcal{D} \wedge \psi \sim_{(\mathfrak{r}, o)} \varphi \longrightarrow\right.\) ? \(\left.\mathcal{M} \vDash_{\psi} \mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}\right)\)
 using fun-upd-other by fastforce
 with \(\left\langle\neg\right.\) ? \(\left.\mathcal{M} \models_{\psi} \mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}\right\rangle\) have \(\neg\) ? \(\mathcal{M} \models_{\varphi}\) ? \(B\)
 using prop-5401-g[OF * wffs-from-forall[OF wffs-from-equivalence(2)[OF 〈?A \(\equiv^{\mathcal{Q}} ?\) ?B \(\in\) wffso \(\rangle\)) \(\left.\left.]\right]\right]\)
 by blast
 then have \(\mathcal{V} \varphi\left(\forall \mathfrak{x}_{o} \cdot \mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}\right) \neq \mathbf{T}\)
 by simp
 moreover from assms have \(\mathcal{V} \varphi ? B \in\) elts \((\mathcal{D} o)\)
 using wffs-from-equivalence \(\left[O F 〈 ? A \equiv \equiv^{\mathcal{Q}}\right.\) ?B \(\in\) wffs \(s_{o}\) 〕] and \(\mathcal{V}\)-is-wff-denotation-function by auto
 ultimately have \(\mathcal{V} \varphi ? B=\mathbf{F}\)
 by (simp add: truth-values-domain-def)
 moreover have \(\mathcal{V} \varphi\left(\mathfrak{g}_{o \rightarrow o} \cdot T_{o} \wedge^{\mathcal{Q}} \mathfrak{g}_{o \rightarrow o} \cdot F_{o}\right)=\mathbf{F}\)
 proof -
 from \(\langle z \in\) elts \((\mathcal{D} o)\rangle\) and \(\langle\varphi(\mathfrak{g}, o \rightarrow o) \cdot z=\mathbf{F}\rangle\)
 have \(((\varphi(\mathfrak{g}, o \rightarrow o)) \cdot \mathbf{T})=\mathbf{F} \vee((\varphi(\mathfrak{g}, o \rightarrow o)) \cdot \mathbf{F})=\mathbf{F}\)
 using truth-values-domain-def by fastforce
 moreover from \(\langle z \in\) elts \((\mathcal{D} o)\rangle\) and \(\langle\varphi(\mathfrak{g}, o \rightarrow o) \cdot z=\mathbf{F}\rangle\)
 and \(\langle\forall z \in\) elts \((\mathcal{D} o) . \varphi(\mathfrak{g}, o \rightarrow o) \cdot z \in\) elts \((\mathcal{D} o)\rangle\)
```

        have \(\{(\varphi(\mathfrak{g}, o \rightarrow o)) \cdot \mathbf{T},(\varphi(\mathfrak{g}, o \rightarrow o)) \cdot \mathbf{F}\} \subseteq\) elts \((\mathcal{D} o)\)
        by (simp add: truth-values-domain-def)
        ultimately have \(((\varphi(\mathfrak{g}, o \rightarrow o)) \cdot \mathbf{T}) \wedge((\varphi(\mathfrak{g}, o \rightarrow o)) \cdot \mathbf{F})=\mathbf{F}\)
        by auto
        with lhs show?thesis
        by (simp only:)
    qed
    ultimately show?thesis
        using assms and prop-5401-b' and wffs-from-equivalence \(\left[O F\left\langle ? A \equiv \equiv^{\mathcal{Q}} ? B \in\right.\right.\) wffs \(\left.\left.s_{o}\right\rangle\right]\) by simp
    qed
    then show ?thesis .
    qed
lemma axiom-1-validity:
shows $\models \mathfrak{g}_{o \rightarrow o} \cdot T_{o} \wedge^{\mathcal{Q}} \mathfrak{g}_{o \rightarrow o} \cdot F_{o} \equiv \equiv^{\mathcal{Q}} \forall \mathfrak{x}_{o} . \mathfrak{g}_{o \rightarrow o} \cdot \mathfrak{x}_{o}\left(\right.$ is $\models ? A \equiv \equiv^{\mathcal{Q}}$ ?B)
proof (intro allI impI)
fix $\mathcal{M}$ and $\varphi$
assume $*$ : is-general-model $\mathcal{M} \varphi \sim_{M} \mathcal{M}$
show $\mathcal{M} \vDash_{\varphi}$ ? $A \equiv$ ㄹ ? $B$
proof -
obtain $\mathcal{D}$ and $\mathcal{J}$ and $\mathcal{V}$ where $\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})$
using prod-cases 3 by blast
moreover from $*$ and $\langle\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})\rangle$ have $\mathcal{V} \varphi(? A \equiv \mathcal{Q} ? B)=\mathbf{T}$
using general-model.axiom-1-validity-aux by simp
ultimately show? thesis
by simp
qed
qed
lemma (in general-model) axiom-2-validity-aux:
assumes $\varphi \leadsto \mathcal{D}$
shows $\mathcal{V} \varphi\left(\left(\mathfrak{x}_{\alpha}={ }_{\alpha} \mathfrak{y}_{\alpha}\right) \supset^{\mathcal{Q}}\left(\mathfrak{h}_{\alpha \rightarrow 0} \cdot \mathfrak{x}_{\alpha} \equiv^{\mathcal{Q}} \mathfrak{h}_{\alpha \rightarrow 0} \cdot \mathfrak{y}_{\alpha}\right)\right)=\mathbf{T}\left(\right.$ is $\left.\mathcal{V} \varphi\left(? A \supset^{\mathcal{Q}} ? B\right)=\mathbf{T}\right)$
proof -
have $? A \supset^{\mathcal{Q}} ? B \in$ wffs $_{o}$
using axioms.axiom-2 and axioms-are-wffs-of-type-o by blast
from $\left\langle ? A \supset^{\mathcal{Q}} ? B \in\right.$ wffs $_{o_{O}}$ have $? A \in$ wffs $_{o}$ and $? B \in$ wffs $_{o}$
using wffs-from-imp-op by blast+
with assms have $\mathcal{V} \varphi\left(? A \supset^{\mathcal{Q}} ? B\right)=\mathcal{V} \varphi ? A \supset \mathcal{V} \varphi ? B$
using prop-5401-f' by simp
moreover from assms and «?A $\in$ wffs $_{o_{o}}$ and $« ? B \in$ wffs $_{o_{O}}$ have $\{\mathcal{V} \varphi ? A, \mathcal{V} \varphi ? B\} \subseteq$ elts $(\mathcal{D}$ o)
using $\mathcal{V}$-is-wff-denotation-function by simp
then have $\{\mathcal{V} \varphi ? A, \mathcal{V} \varphi ? B\} \subseteq$ elts $\mathbb{B}$
by (simp add: truth-values-domain-def)
ultimately have $\mathcal{V}$-imp- $T: \mathcal{V} \varphi\left(? A \supset^{\mathcal{Q}} ? B\right)=\mathbf{T} \longleftrightarrow \mathcal{V} \varphi ? A=\mathbf{F} \vee \mathcal{V} \varphi ? B=\mathbf{T}$
by fastforce
then show? thesis
$\operatorname{proof}($ cases $\varphi(\mathfrak{x}, \alpha)=\varphi(\mathfrak{y}, \alpha))$
case True
from assms and $\left\langle ? B \in\right.$ wffs $\left._{o}\right\rangle$ have $\mathcal{V} \varphi ? B=\mathbf{T} \longleftrightarrow \mathcal{V} \varphi\left(\mathfrak{h}_{\alpha \rightarrow o} \cdot \mathfrak{x}_{\alpha}\right)=\mathcal{V} \varphi\left(\mathfrak{h}_{\alpha \rightarrow o} \cdot \mathfrak{y}_{\alpha}\right)$

```
```

        using wffs-from-equivalence and prop-5401-b' by metis
    moreover have \mathcal{V}\varphi(\mp@subsup{\mathfrak{h}}{\alpha->0}{\prime}\cdot\mp@subsup{\mathfrak{x}}{\alpha}{})=\mathcal{V}\varphi(\mp@subsup{\mathfrak{h}}{\alpha->0}{\prime}\cdot\mp@subsup{\mathfrak{y}}{\alpha}{})
    proof -
        from assms and «?B \in wffs 多 have \mathcal{V}\varphi(\mp@subsup{\mathfrak{h}}{\alpha->o}{}\cdot\mp@subsup{\mathfrak{x}}{\alpha}{})=\mathcal{V}\varphi(\mp@subsup{\mathfrak{h}}{\alpha->o}{})\cdot\mathcal{V}\varphi(\mp@subsup{\mathfrak{x}}{\alpha}{})
            using \mathcal{V}
    also from assms have \ldots=\varphi(\mathfrak{h},\alpha->o)\cdot\varphi(\mathfrak{x},\alpha)
        using \mathcal{V}
    also from True have \ldots= \varphi (\mathfrak{h},\alpha->o) . \varphi (\mathfrak{y},\alpha)
        by (simp only:)
    also from assms have \ldots=\mathcal{V}\varphi(\mp@subsup{\mathfrak{h}}{\alpha->0}{*})\cdot\mathcal{V}\varphi(\mp@subsup{\mathfrak{y}}{\alpha}{})
        using \mathcal{V}
    ```

```

        using wff-app-denotation[OF \mathcal{V}-is-wff-denotation-function] by (metis wffs-of-type-intros(1))
    finally show ?thesis .
    qed
    ultimately show ?thesis
    using \mathcal{V}-imp-T by simp
    next
case False
from assms have \mathcal{V}\varphi?A= T \longleftrightarrow\mathcal{V}\varphi(\mp@subsup{\mathfrak{x}}{\alpha}{})=\mathcal{V}\varphi(\mp@subsup{\mathfrak{y}}{\alpha}{})
using prop-5401-b by blast
moreover from False and assms have \mathcal{V}\varphi(\mp@subsup{\mathfrak{x}}{\alpha}{})\not=\mathcal{V}\varphi(\mp@subsup{\mathfrak{y}}{\alpha}{})
using \mathcal{V}\mathrm{ -is-wff-denotation-function by auto}
ultimately have }\mathcal{V}\varphi\mathrm{ ? ? A = F
using assms and <{\mathcal{V}\varphi?A,\mathcal{V}\varphi?B}\subseteq elts \mathbb{B}>}\mathrm{ by simp
then show ?thesis
using \mathcal{V}-imp-T by simp
qed
qed
lemma axiom-2-validity:
shows }\vDash(\mp@subsup{\mathfrak{x}}{\alpha}{}=\alpha\mp@subsup{\mathfrak{y}}{\alpha}{})\mp@subsup{\supset}{}{\mathcal{Q}}(\mp@subsup{\mathfrak{h}}{\alpha->o}{\prime}\cdot\mp@subsup{\mathfrak{x}}{\alpha}{}\equiv\mp@subsup{}{}{\mathcal{Q}}\mp@subsup{\mathfrak{h}}{\alpha->o}{\prime}\cdot\mp@subsup{\mathfrak{y}}{\alpha}{\prime})(\mathrm{ is }|\mathrm{ ? A }\mp@subsup{\supset}{}{\mathcal{Q}}\mathrm{ ?, B)
proof (intro allI impI)
fix }\mathcal{M}\mathrm{ and }
assume *: is-general-model }\mathcal{M}\varphi\mp@subsup{~}{M}{}\mathcal{M
show }\mathcal{M}=\varphi\mathrm{ ? A }\mp@subsup{\supset}{}{\mathcal{Q}}\mathrm{ ? B
proof -
obtain \mathcal{D and }\mathcal{J}\mathrm{ and }\mathcal{V}\mathrm{ where }\mathcal{M}=(\mathcal{D},\mathcal{J},\mathcal{V})
using prod-cases3 by blast
moreover from * and }\langle\mathcal{M}=(\mathcal{D},\mathcal{J},\mathcal{V})\rangle\mathrm{ have }\mathcal{V}\varphi(?A\mp@subsup{\supset}{}{\mathcal{Q}}?B)=\mathbf{T
using general-model.axiom-2-validity-aux by simp
ultimately show ?thesis
by force
qed
qed
lemma (in general-model) axiom-3-validity-aux:
assumes \varphi}~\mathcal{D
shows}\mathcal{V}\varphi((\mp@subsup{\mathfrak{f}}{\alpha->\beta}{}=\mp@subsup{=}{\alpha->\beta}{}\mp@subsup{\mathfrak{g}}{\alpha->\beta}{})\equiv\mathcal{Q}\forall\mp@subsup{\mathfrak{x}}{\alpha}{}\cdot(\mp@subsup{\mathfrak{f}}{\alpha->\beta}{}\cdot\mp@subsup{\mathfrak{x}}{\alpha}{}=\mp@subsup{=}{\beta}{}\mp@subsup{\mathfrak{g}}{\alpha->\beta}{}\cdot\mp@subsup{\mathfrak{x}}{\alpha}{}))=\mathbf{T

```
```

    \(\left(\right.\) is \(\left.\mathcal{V} \varphi\left(? A \equiv{ }^{\mathcal{Q}} ? B\right)=\mathbf{T}\right)\)
    proof -
let ? $\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})$
from assms have $*$ : is-general-model ?. $\mathcal{M} \varphi \sim_{M}$ ?. $\mathcal{M}$
using general-model-axioms by blast+
have $B^{\prime}$-wffo: $\mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}={ }_{\beta} \mathfrak{g}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha} \in$ wffs $s_{o}$
by blast
have $? A \equiv{ }^{\mathcal{Q}} ? B \in$ wffs $_{o}$ and $? A \in w^{\prime} f f s_{O}$ and $? B \in w_{d f} s_{o}$
proof -
show ? $A \equiv \mathcal{Q}$ ? $B \in$ wffs $s_{o}$
using axioms.axiom-3 and axioms-are-wffs-of-type-o
by blast
then show $? A \in w_{f f} s_{o}$ and $? B \in$ wffs $_{o}$
by (blast dest: wffs-from-equivalence)+
qed
have $\mathcal{V} \varphi ? A=\mathcal{V} \varphi$ ? $B$
proof $($ cases $\varphi(\mathfrak{f}, \alpha \rightarrow \beta)=\varphi(\mathfrak{g}, \alpha \rightarrow \beta))$
case True
have $\mathcal{V} \varphi ? A=\mathbf{T}$
proof -
from assms have $\mathcal{V} \varphi\left(\mathfrak{f}_{\alpha \rightarrow \beta}\right)=\varphi(\mathfrak{f}, \alpha \rightarrow \beta)$
using $\mathcal{V}$-is-wff-denotation-function by auto
also from True have $\ldots=\varphi(\mathfrak{g}, \alpha \rightarrow \beta)$
by (simp only:)
also from assms have $\ldots=\mathcal{V} \varphi\left(\mathfrak{g}_{\alpha \rightarrow \beta}\right)$
using $\mathcal{V}$-is-wff-denotation-function by auto
finally have $\mathcal{V} \varphi\left(\mathfrak{f}_{\alpha \rightarrow \beta}\right)=\mathcal{V} \varphi\left(\mathfrak{g}_{\alpha \rightarrow \beta}\right)$.
with assms show ?thesis
using prop-5401-b by blast
qed
moreover have $\mathcal{V} \varphi ? B=\mathbf{T}$
proof -
\{
fix $\psi$
assume $\psi \leadsto \mathcal{D}$ and $\psi \sim_{(x, \alpha)} \varphi$
from assms and $\langle\psi \leadsto \mathcal{D}\rangle$ have $\mathcal{V} \psi\left(\mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right)=\mathcal{V} \psi\left(\mathfrak{f}_{\alpha \rightarrow \beta}\right) \cdot \mathcal{V} \psi\left(\mathfrak{x}_{\alpha}\right)$
using $\mathcal{V}$-is-wff-denotation-function by blast
also from assms and $\langle\psi \leadsto \mathcal{D}\rangle$ have $\ldots=\psi(\mathfrak{f}, \alpha \rightarrow \beta) \cdot \psi(\mathfrak{x}, \alpha)$
using $\mathcal{V}$-is-wff-denotation-function by auto
also from $\left\langle\psi \sim_{(\mathfrak{x}, \alpha)} \varphi\right\rangle$ have $\ldots=\varphi(\mathfrak{f}, \alpha \rightarrow \beta) \cdot \psi(\mathfrak{x}, \alpha)$
by $\operatorname{simp}$
also from True have $\ldots=\varphi(\mathfrak{g}, \alpha \rightarrow \beta) \cdot \psi(\mathfrak{x}, \alpha)$
by (simp only:)
also from $\left\langle\psi \sim_{(\mathfrak{x}, \alpha)} \varphi\right\rangle$ have $\ldots=\psi(\mathfrak{g}, \alpha \rightarrow \beta) \cdot \psi(\mathfrak{x}, \alpha)$
by $\operatorname{simp}$
also from assms and $\langle\psi \leadsto \mathcal{D}\rangle$ have $\ldots=\mathcal{V} \psi\left(\mathfrak{g}_{\alpha \rightarrow \beta}\right) \cdot \mathcal{V} \psi\left(\mathfrak{x}_{\alpha}\right)$
using $\mathcal{V}$-is-wff-denotation-function by auto
also from assms and $\langle\psi \leadsto \mathcal{D}\rangle$ have $\ldots=\mathcal{V} \psi\left(\mathfrak{g}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right)$
using wff-app-denotation[OF $\mathcal{V}$-is-wff-denotation-function] by (metis wffs-of-type-intros(1))

```
```

    finally have \(\mathcal{V} \psi\left(\mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right)=\mathcal{V} \psi\left(\mathfrak{g}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right)\).
    with \(B^{\prime}-w f f o\) and assms and \(\langle\psi \leadsto \mathcal{D}\rangle\) have \(\mathcal{V} \psi\left(\mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}=\beta \mathfrak{g}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right)=\mathbf{T}\)
        using prop-5401-b and wffs-from-equality by blast
    with \(*(2)\) have ? \(\mathcal{M}=_{\psi} \mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}={ }_{\beta} \mathfrak{g}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\)
        by \(\operatorname{simp}\)
    \}
    with \(*\) and \(B^{\prime}\)-wffo have ? \(\mathcal{M} \models \varphi\) ? \(B\)
    using prop-5401-g by force
    with \(*(2)\) show ?thesis
        by auto
    qed
    ultimately show ?thesis ..
    next
case False
from $*$ have $\varphi(\mathfrak{f}, \alpha \rightarrow \beta) \in$ elts $(\mathcal{D} \alpha \longmapsto \mathcal{D} \beta)$ and $\varphi(\mathfrak{g}, \alpha \rightarrow \beta) \in$ elts $(\mathcal{D} \alpha \longmapsto \mathcal{D} \beta)$
by (simp-all add: function-domainD)
with False obtain $z$ where $z \in$ elts $(\mathcal{D} \alpha)$ and $\varphi(\mathfrak{f}, \alpha \rightarrow \beta) \cdot z \neq \varphi(\mathfrak{g}, \alpha \rightarrow \beta) \cdot z$
by (blast dest: fun-ext)
define $\psi$ where $\psi=\varphi((\mathfrak{x}, \alpha):=z)$
from $*$ and $\langle z \in$ elts $(\mathcal{D} \alpha)\rangle$ have $\psi \leadsto \mathcal{D}$ and $\psi \sim_{(\mathfrak{x}, \alpha)} \varphi$
unfolding $\psi$-def by fastforce +
have $\mathcal{V} \psi\left(f_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right)=\varphi(f, \alpha \rightarrow \beta) \cdot z$ for $f$
proof -
from $\langle\psi \leadsto \mathcal{D}\rangle$ have $\mathcal{V} \psi\left(f_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right)=\mathcal{V} \psi\left(f_{\alpha \rightarrow \beta}\right) \cdot \mathcal{V} \psi\left(\mathfrak{x}_{\alpha}\right)$
using $\mathcal{V}$-is-wff-denotation-function by blast
also from $\langle\psi \sim \mathcal{D}\rangle$ have $\ldots=\psi(f, \alpha \rightarrow \beta) \cdot \psi(\mathfrak{x}, \alpha)$
using $\mathcal{V}$-is-wff-denotation-function by auto
finally show ?thesis
unfolding $\psi$-def by simp
qed
then have $\mathcal{V} \psi\left(\mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right)=\varphi(\mathfrak{f}, \alpha \rightarrow \beta) \cdot z$ and $\mathcal{V} \psi\left(\mathfrak{g}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right)=\varphi(\mathfrak{g}, \alpha \rightarrow \beta) \cdot z$
by (simp-all only:)
with $\langle\varphi(\mathfrak{f}, \alpha \rightarrow \beta) \cdot z \neq \varphi(\mathfrak{g}, \alpha \rightarrow \beta) \cdot z\rangle$ have $\mathcal{V} \psi\left(\mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right) \neq \mathcal{V} \psi\left(\mathfrak{g}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right)$
by $\operatorname{simp}$
then have $\mathcal{V} \psi\left(\mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}={ }_{\beta} \mathfrak{g}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right)=\mathbf{F}$
proof -
from $B^{\prime}-w f f o$ and $\langle\psi \leadsto \mathcal{D}\rangle$ and $*$ have $\mathcal{V} \psi\left(\mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}={ }_{\beta} \mathfrak{g}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right) \in$ elts $(\mathcal{D}$ o)
using $\mathcal{V}$-is-wff-denotation-function by auto
moreover from $B^{\prime}$-wffo have $\left\{\mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}, \mathfrak{g}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right\} \subseteq$ wffs $s_{\beta}$
by blast
with $\langle\psi \sim \mathcal{D}\rangle$ and $\left\langle\mathcal{V} \psi\left(\mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right) \neq \mathcal{V} \psi\left(\mathfrak{g}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right)\right\rangle$ and $B^{\prime}$-wffo
have $\mathcal{V} \psi\left(\mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}={ }_{\beta} \mathfrak{g}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right) \neq \mathbf{T}$
using prop-5401-b by simp
ultimately show ?thesis
by (simp add: truth-values-domain-def)
qed
with $\langle\psi \leadsto \mathcal{D}\rangle$ have $\neg ? \mathcal{M} \vDash{ }_{\psi} \mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}=\beta \mathfrak{g}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}$
by (auto simp add: inj-eq)
with $\langle\psi \leadsto \mathcal{D}\rangle$ and $\left\langle\psi \sim_{(\mathfrak{x}, \alpha)} \varphi\right\rangle$

```
```

    have \(\exists \psi \cdot \psi \leadsto \mathcal{D} \wedge \psi \sim_{(\mathfrak{x}, \alpha)} \varphi \wedge \neg ? \mathcal{M}=_{\psi} \mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}={ }_{\beta} \mathfrak{g}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\)
    by blast
    with \(*\) and \(B^{\prime}\)-wffo have \(\neg\) ? \(\mathcal{M} \vDash \varphi\) ? \(B\)
    using prop-5401-g by blast
    then have \(\mathcal{V} \varphi ? B=\mathbf{F}\)
    proof -
        from \(\left\langle ? B \in\right.\) wffs \(\left._{o}\right\rangle\) and \(*\) have \(\mathcal{V} \varphi ? B \in\) elts \((\mathcal{D} o)\)
        using \(\mathcal{V}\)-is-wff-denotation-function by auto
    with \(\langle\neg\) ? \(\mathcal{M} \models \varphi\) ? \(B\rangle\) and \(\left\langle ? B \in\right.\) wffs \(\left.s_{o}\right\rangle\) show ?thesis
        using truth-values-domain-def by fastforce
    qed
    moreover have \(\mathcal{V} \varphi\left(\mathfrak{f}_{\alpha \rightarrow \beta}={ }_{\alpha \rightarrow \beta} \mathfrak{g}_{\alpha \rightarrow \beta}\right)=\mathbf{F}\)
    proof -
        from \(*\) have \(\mathcal{V} \varphi\left(\mathfrak{f}_{\alpha \rightarrow \beta}\right)=\varphi(\mathfrak{f}, \alpha \rightarrow \beta)\) and \(\mathcal{V} \varphi\left(\mathfrak{g}_{\alpha \rightarrow \beta}\right)=\varphi(\mathfrak{g}, \alpha \rightarrow \beta)\)
        using \(\mathcal{V}\)-is-wff-denotation-function by auto
    with False have \(\mathcal{V} \varphi\left(\mathfrak{f}_{\alpha \rightarrow \beta}\right) \neq \mathcal{V} \varphi\left(\mathfrak{g}_{\alpha \rightarrow \beta}\right)\)
        by \(\operatorname{simp}\)
    with \(*\) have \(\mathcal{V} \varphi\left(\mathfrak{f}_{\alpha \rightarrow \beta}={ }_{\alpha \rightarrow \beta} \mathfrak{g}_{\alpha \rightarrow \beta}\right) \neq \mathbf{T}\)
        using prop-5401-b by blast
    moreover from \(*\) and \(\left\langle ? A \in\right.\) wffs \(\left.s_{o}\right\rangle\) have \(\mathcal{V} \varphi\left(\mathfrak{f}_{\alpha \rightarrow \beta}={ }_{\alpha \rightarrow \beta} \mathfrak{g}_{\alpha \rightarrow \beta}\right) \in\) elts ( \(\mathcal{D}\) o)
        using \(\mathcal{V}\)-is-wff-denotation-function by auto
    ultimately show ?thesis
        by (simp add: truth-values-domain-def)
    qed
    ultimately show ?thesis
        by (simp only:)
    qed
    with \(*\) and \(\left\langle ? A \in w^{\prime} f s_{o}\right\rangle\) and \(\left\langle ? B \in\right.\) wffs \(\left._{o}\right\rangle\) show ?thesis
    using prop-5401-b' by simp
    qed
lemma axiom-3-validity:
shows $\models\left(\mathfrak{f}_{\alpha \rightarrow \beta}={ }_{\alpha \rightarrow \beta} \mathfrak{g}_{\alpha \rightarrow \beta}\right) \equiv{ }^{\mathcal{Q}} \forall \mathfrak{x}_{\alpha} .\left(\mathfrak{f}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}={ }_{\beta} \mathfrak{g}_{\alpha \rightarrow \beta} \cdot \mathfrak{x}_{\alpha}\right)\left(\right.$ is $\models$ ? $A \equiv{ }^{\mathcal{Q}}$ ? $\left.B\right)$
proof (intro allI impI)
fix $\mathcal{M}$ and $\varphi$
assume $*$ : is-general-model $\mathcal{M} \varphi \sim_{M} \mathcal{M}$
show $\mathcal{M} \vDash \varphi$ ? $A \equiv{ }^{\mathcal{Q}}$ ? $B$
proof -
obtain $\mathcal{D}$ and $\mathcal{J}$ and $\mathcal{V}$ where $\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})$
using prod-cases3 by blast
moreover from $*$ and $\langle\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})\rangle$ have $\mathcal{V} \varphi(? A \equiv \mathcal{Q} ? B)=\mathbf{T}$
using general-model.axiom-3-validity-aux by simp
ultimately show?thesis
by $\operatorname{simp}$
qed
qed

```
lemma (in general-model) axiom-4-1-con-validity-aux:
 assumes \(\varphi \sim \mathcal{D}\)
```

    and \(A \in w f f s_{\alpha}\)
    shows \(\mathcal{V} \varphi\left(\left(\lambda x_{\alpha} \cdot\{c\}_{\beta}\right) \cdot A={ }_{\beta}\{c\}_{\beta}\right)=\mathbf{T}\)
    proof -
from $\operatorname{assms}(2)$ have $\left(\lambda x_{\alpha} \cdot\{c\}_{\beta}\right) \cdot A={ }_{\beta}\{c\}_{\beta} \in$ wffs ${ }_{o}$
using axioms.axiom-4-1-con and axioms-are-wffs-of-type-o by blast
define $\psi$ where $\psi=\varphi((x, \alpha):=\mathcal{V} \varphi A)$
from assms have $\mathcal{V} \varphi\left(\left(\lambda x_{\alpha} \cdot\{c\}_{\beta}\right) \cdot A\right)=\mathcal{V}(\varphi((x, \alpha):=\mathcal{V} \varphi A))\left(\{c\}_{\beta}\right)$
using prop-5401-a by blast
also have $\ldots=\mathcal{V} \psi\left(\{c\}_{\beta}\right)$
unfolding $\psi$-def ..
also from assms and $\psi$-def have $\ldots=\mathcal{V} \varphi\left(\{c\}_{\beta}\right)$
using $\mathcal{V}$-is-wff-denotation-function by auto
finally have $\mathcal{V} \varphi\left(\left(\lambda x_{\alpha} .\{c\}_{\beta}\right) \cdot A\right)=\mathcal{V} \varphi\left(\{c\}_{\beta}\right)$.
with $\operatorname{assms}(1)$ and $\left\langle\left(\lambda x_{\alpha} .\{c\}_{\beta}\right) \cdot A={ }_{\beta}\{c\}_{\beta} \in\right.$ wffs $\left._{o}\right\rangle$ show ?thesis
using wffs-from-equality(1) and prop-5401-b by blast
qed
lemma axiom-4-1-con-validity:
assumes $A \in w f f s_{\alpha}$
shows $\models\left(\lambda x_{\alpha} .\{c\}_{\beta}\right) \cdot A={ }_{\beta}\{c\}_{\beta}$
proof (intro allI impI)
fix $\mathcal{M}$ and $\varphi$
assume $*$ : is-general-model $\mathcal{M} \varphi \sim_{M} \mathcal{M}$
show $\mathcal{M} \vDash \varphi\left(\lambda x_{\alpha} .\{c\}_{\beta}\right) \cdot A={ }_{\beta}\{c\}_{\beta}$
proof -
obtain $\mathcal{D}$ and $\mathcal{J}$ and $\mathcal{V}$ where $\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})$
using prod-cases3 by blast
moreover from assms and $*$ and $\langle\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})\rangle$ have $\mathcal{V} \varphi\left(\left(\lambda x_{\alpha} \cdot\{c\}_{\beta}\right) \cdot A={ }_{\beta}\{c\}_{\beta}\right)=\mathbf{T}$
using general-model.axiom-4-1-con-validity-aux by simp
ultimately show ?thesis
by $\operatorname{simp}$
qed
qed
lemma (in general-model) axiom-4-1-var-validity-aux:
assumes $\varphi \leadsto \mathcal{D}$
and $A \in w_{f f} s_{\alpha}$
and $(y, \beta) \neq(x, \alpha)$
shows $\mathcal{V} \varphi\left(\left(\lambda x_{\alpha} \cdot y_{\beta}\right) \cdot A={ }_{\beta} y_{\beta}\right)=\mathbf{T}$
proof -
from $\operatorname{assms}(2)$ have $\left(\lambda x_{\alpha} \cdot y_{\beta}\right) \cdot A=\beta y_{\beta} \in w f f s_{o}$
using axioms.axiom-4-1-var and axioms-are-wffs-of-type-o by blast
define $\psi$ where $\psi=\varphi((x, \alpha):=\mathcal{V} \varphi A)$
with $\operatorname{assms}(1,2)$ have $\mathcal{V} \varphi\left(\left(\lambda x_{\alpha} \cdot y_{\beta}\right) \cdot A\right)=\mathcal{V}(\varphi((x, \alpha):=\mathcal{V} \varphi A))\left(y_{\beta}\right)$
using prop-5401-a by blast
also have $\ldots=\mathcal{V} \psi\left(y_{\beta}\right)$
unfolding $\psi$-def ..
also have $\ldots=\mathcal{V} \varphi\left(y_{\beta}\right)$
proof -

```
```

    from assms(1,2) have }\mathcal{V}\varphiA\in\operatorname{elts}(\mathcal{D}\alpha
        using \mathcal{V}\mathrm{ -is-wff-denotation-function by auto}
    with \psi-def and assms(1) have \psi}\leadsto\mathcal{D
        by simp
    moreover have free-vars ( }\mp@subsup{y}{\beta}{})={(y,\beta)
        by simp
    with \psi-def and assms(3) have }\forallv\in\mathrm{ free-vars ( }\mp@subsup{y}{\beta}{}).\varphiv=\psi
        by auto
    ultimately show ?thesis
        using prop-5400[OF wffs-of-type-intros(1) assms(1)] by simp
    qed
    finally have }\mathcal{V}\varphi((\lambda\mp@subsup{x}{\alpha}{}\cdot\mp@subsup{y}{\beta}{})\cdotA)=\mathcal{V}\varphi(\mp@subsup{y}{\beta}{})
    with < (\lambda\mp@subsup{x}{\alpha}{}\cdot\mp@subsup{y}{\beta}{})\cdotA=\beta \mp@subsup{y}{\beta}{}\inwff\mp@subsup{s}{O}{\prime}> show ?thesis
    using wffs-from-equality(1) and prop-5401-b[OF assms(1)] by blast
    qed
lemma axiom-4-1-var-validity:
assumes A\inwffs\alpha
and }(y,\beta)\not=(x,\alpha
shows }\models(\lambda\mp@subsup{x}{\alpha}{}\cdot\mp@subsup{y}{\beta}{})\cdotA=\beta=\mp@subsup{y}{\beta}{
proof (intro allI impI)
fix }\mathcal{M}\mathrm{ and }
assume *: is-general-model \mathcal{M }\varphi\mp@subsup{~}{M}{}\mathcal{M}
show \mathcal{M}}=\varphi=\varphi(\lambda\mp@subsup{x}{\alpha}{}\cdot\mp@subsup{y}{\beta}{})\cdotA=\beta \mp@subsup{y}{\beta}{
proof -
obtain \mathcal{D}\mathrm{ and }\mathcal{J}\mathrm{ and }\mathcal{V}\mathrm{ where }\mathcal{M}=(\mathcal{D},\mathcal{J},\mathcal{V})
using prod-cases3 by blast
moreover from assms and * and }\langle\mathcal{M}=(\mathcal{D},\mathcal{J},\mathcal{V})\rangle\mathrm{ have }\mathcal{V}\varphi((\lambda\mp@subsup{x}{\alpha}{}.\mp@subsup{y}{\beta}{})\cdotA=\mp@subsup{\beta}{\beta}{}\mp@subsup{y}{\beta}{})=\mathbf{T
using general-model.axiom-4-1-var-validity-aux by auto
ultimately show ?thesis
by simp
qed
qed
lemma (in general-model) axiom-4-2-validity-aux:
assumes \varphi~\mathcal{D}
and }A\in\mp@subsup{wffs}{\alpha}{
shows }\mathcal{V}\varphi((\lambda\mp@subsup{x}{\alpha}{}.\mp@subsup{x}{\alpha}{})\cdotA=\mp@subsup{\alpha}{\alpha}{}A)=\mathbf{T
proof -
from assms(2) have ( }\lambda\mp@subsup{x}{\alpha}{}\cdot\mp@subsup{x}{\alpha}{})\cdotA=\alpha A\inwffs\mp@subsup{s}{O}{
using axioms.axiom-4-2 and axioms-are-wffs-of-type-o by blast
define \psi where }\psi=\varphi((x,\alpha):=\mathcal{V}\varphiA
with assms have \mathcal{V}\varphi (( }\lambda\mp@subsup{x}{\alpha}{}\cdot\mp@subsup{x}{\alpha}{})\cdotA)=\mathcal{V}\psi(\mp@subsup{x}{\alpha}{}
using prop-5401-a by blast
also from assms and \psi-def have ... = \psi (x,\alpha)
using \mathcal{V}
also from \psi-def have ···=\mathcal{V}\varphiA
by simp
finally have }\mathcal{V}\varphi((\lambda\mp@subsup{x}{\alpha}{}\cdot\mp@subsup{x}{\alpha}{})\cdotA)=\mathcal{V}\varphiA

```
```

    with \(\operatorname{assms}(1)\) and \(\left\langle\left(\lambda x_{\alpha} . x_{\alpha}\right) \cdot A=\alpha A \in w_{f f} s_{o}\right\rangle\) show ?thesis
    using wffs-from-equality and prop-5401-b by meson
    qed
lemma axiom-4-2-validity:
assumes $A \in w f f s_{\alpha}$
shows $\models\left(\lambda x_{\alpha} \cdot x_{\alpha}\right) \cdot A=\alpha A$
proof (intro allI impI)
fix $\mathcal{M}$ and $\varphi$
assume $*$ : is-general-model $\mathcal{M} \varphi \sim_{M} \mathcal{M}$
show $\mathcal{M}=\varphi\left(\lambda x_{\alpha} . x_{\alpha}\right) \cdot A=\alpha A$
proof -
obtain $\mathcal{D}$ and $\mathcal{J}$ and $\mathcal{V}$ where $\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})$
using prod-cases3 by blast
moreover from assms and $*$ and $\langle\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})\rangle$ have $\mathcal{V} \varphi\left(\left(\lambda x_{\alpha} . x_{\alpha}\right) \cdot A={ }_{\alpha} A\right)=\mathbf{T}$
using general-model.axiom-4-2-validity-aux by simp
ultimately show ?thesis
by $\operatorname{simp}$
qed
qed
lemma (in general-model) axiom-4-3-validity-aux:
assumes $\varphi \sim \mathcal{D}$
and $A \in w f f s_{\alpha}$ and $B \in w f f s_{\gamma \rightarrow \beta}$ and $C \in w f f s \gamma$
shows $\mathcal{V} \varphi\left(\left(\lambda x_{\alpha} . B \cdot C\right) \cdot A=\beta\left(\left(\lambda x_{\alpha} \cdot B\right) \cdot A\right) \cdot\left(\left(\lambda x_{\alpha} \cdot C\right) \cdot A\right)\right)=\mathbf{T}$
$($ is $\mathcal{V} \varphi(? A=\beta ? B)=\mathbf{T})$
proof -
from assms(2-4) have $? A=\beta ? B \in w f f s_{o}$
using axioms.axiom-4-3 and axioms-are-wffs-of-type-o by blast
define $\psi$ where $\psi=\varphi((x, \alpha):=\mathcal{V} \varphi A)$
with $\operatorname{assms}(1,2)$ have $\psi \leadsto \mathcal{D}$
using $\mathcal{V}$-is-wff-denotation-function by auto
from assms and $\psi$-def have $\mathcal{V} \varphi ? A=\mathcal{V} \psi(B \cdot C)$
using prop-5401-a by blast
also from $\operatorname{assms}(3,4)$ and $\psi$-def and $\langle\psi \leadsto \mathcal{D}\rangle$ have $\ldots=\mathcal{V} \psi B \cdot \mathcal{V} \psi C$
using $\mathcal{V}$-is-wff-denotation-function by blast
also from $\operatorname{assms}(1-3)$ and $\psi$-def have $\ldots=\mathcal{V} \varphi\left(\left(\lambda x_{\alpha} . B\right) \cdot A\right) \cdot \mathcal{V} \psi C$
using prop-5401-a by simp
also from $\operatorname{assms}(1,2,4)$ and $\psi$-def have $\ldots=\mathcal{V} \varphi\left(\left(\lambda x_{\alpha} \cdot B\right) \cdot A\right) \cdot \mathcal{V} \varphi\left(\left(\lambda x_{\alpha} \cdot C\right) \cdot A\right)$
using prop-5401-a by simp
also have $\ldots=\mathcal{V} \varphi$ ? $B$
proof -
have $\left(\lambda x_{\alpha} . B\right) \cdot A \in w f f s_{\gamma \rightarrow \beta}$ and $\left(\lambda x_{\alpha} . C\right) \cdot A \in w f f s \gamma$
using assms(2-4) by blast+
with assms(1) show ?thesis
using wff-app-denotation[OF $\mathcal{V}$-is-wff-denotation-function $]$ by simp
qed
finally have $\mathcal{V} \varphi ? A=\mathcal{V} \varphi$ ? $B$.
with $\operatorname{assms}(1)$ and $\left\langle ? A=\beta\right.$ ? $B \in$ wffs $\left.s_{O}\right\rangle$ show ?thesis

```
using prop-5401-b and wffs-from-equality by meson
qed
```

lemma axiom-4-3-validity:
assumes $A \in w f f s_{\alpha}$ and $B \in w_{f f} s_{\gamma \rightarrow \beta}$ and $C \in w f f s \gamma$
shows $\models\left(\lambda x_{\alpha} . B \cdot C\right) \cdot A={ }_{\beta}\left(\left(\lambda x_{\alpha} . B\right) \cdot A\right) \cdot\left(\left(\lambda x_{\alpha} . C\right) \cdot A\right)\left(\right.$ is $\models ? A={ }_{\beta}$ ? $\left.B\right)$
proof (intro allI impI)
fix $\mathcal{M}$ and $\varphi$
assume $*$ : is-general-model $\mathcal{M} \varphi \sim_{M} \mathcal{M}$
show $\mathcal{M} \vDash \varphi$ ? $A=\beta$ ? $B$
proof -
obtain $\mathcal{D}$ and $\mathcal{J}$ and $\mathcal{V}$ where $\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})$
using prod-cases3 by blast
moreover from assms and $*$ and $\langle\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})\rangle$ have $\mathcal{V} \varphi\left(? A={ }_{\beta} ? B\right)=\mathbf{T}$
using general-model.axiom-4-3-validity-aux by simp
ultimately show ?thesis
by $\operatorname{simp}$
qed
qed
lemma (in general-model) axiom-4-4-validity-aux:
assumes $\varphi \sim \mathcal{D}$
and $A \in w f f s_{\alpha}$ and $B \in w f f s_{\delta}$
and $(y, \gamma) \notin\{(x, \alpha)\} \cup$ vars $A$
shows $\mathcal{V} \varphi\left(\left(\lambda x_{\alpha} \cdot \lambda y_{\gamma} \cdot B\right) \cdot A={ }_{\gamma \rightarrow \delta}\left(\lambda y_{\gamma} \cdot\left(\lambda x_{\alpha} \cdot B\right) \cdot A\right)\right)=\mathbf{T}$
(is $\left.\mathcal{V} \varphi\left(? A={ }_{\gamma \rightarrow \delta} ? B\right)=\mathbf{T}\right)$
proof -
from $\operatorname{assms}(2,3)$ have $? A=\gamma \rightarrow \delta ? B \in w_{f f s}$
using axioms.axiom-4-4 and axioms-are-wffs-of-type-o by blast
let ? $D=\lambda y_{\gamma}$. $B$
define $\psi$ where $\psi=\varphi((x, \alpha):=\mathcal{V} \varphi A)$
from $\operatorname{assms}(1,2)$ and $\psi$-def have $\psi \leadsto \mathcal{D}$
using $\mathcal{V}$-is-wff-denotation-function by simp
\{
fix $z$
assume $z \in$ elts ( $\mathcal{D} \gamma$ )
define $\varphi^{\prime}$ where $\varphi^{\prime}=\varphi((y, \gamma):=z)$
from $\operatorname{assms}(1)$ and $\langle z \in$ elts $(\mathcal{D} \gamma)\rangle$ and $\varphi^{\prime}$-def have $\varphi^{\prime} \leadsto \mathcal{D}$
by simp
moreover from $\varphi^{\prime}$-def and $\operatorname{assms}(4)$ have $\forall v \in$ free-vars $A . \varphi v=\varphi^{\prime} v$
using free-vars-in-all-vars by auto
ultimately have $\mathcal{V} \varphi A=\mathcal{V} \varphi^{\prime} A$
using $\operatorname{assms}(1,2)$ and prop- 5400 by blast
with $\psi$-def and $\varphi^{\prime}$-def and $\operatorname{assms}(4)$ have $\varphi^{\prime}\left((x, \alpha):=\mathcal{V} \varphi^{\prime} A\right)=\psi((y, \gamma):=z)$
by auto
with $\langle\psi \sim \mathcal{D}\rangle$ and $\langle z \in$ elts $(\mathcal{D} \gamma)\rangle$ and $\operatorname{assms}(3)$ have $\mathcal{V} \psi$ ? $D \cdot z=\mathcal{V}(\psi((y, \gamma):=z)) B$
by (simp add: mixed-beta-conversion)
also from $\left\langle\varphi^{\prime} \leadsto \mathcal{D}\right\rangle$ and $\operatorname{assms}(2,3)$ have $\ldots=\mathcal{V} \varphi^{\prime}\left(\left(\lambda x_{\alpha} . B\right) \cdot A\right)$
using prop-5401-a and $\left\langle\varphi^{\prime}\left((x, \alpha):=\mathcal{V} \varphi^{\prime} A\right)=\psi((y, \gamma):=z)\right\rangle$ by simp

```
```

    also from \(\varphi^{\prime}\)-def and \(\operatorname{assms}(1)\) and \(\langle z \in\) elts \((\mathcal{D} \gamma)\rangle\) and \(\left\langle ? A=\gamma \rightarrow \delta ? B \in\right.\) wffs \(\left.s_{o}\right\rangle\)
    have \(\ldots=\mathcal{V} \varphi\) ? \(B \cdot z\)
        by (metis mixed-beta-conversion wffs-from-abs wffs-from-equality(2))
    finally have \(\mathcal{V} \psi ? D \cdot z=\mathcal{V} \varphi ? B \cdot z\).
    \}
    note \(*=\) this
    then have \(\mathcal{V} \psi ? D=\mathcal{V} \varphi\) ? \(B\)
    proof -
        from \(\langle\psi \sim \mathcal{D}\rangle\) and \(\operatorname{assms}(3)\) have \(\mathcal{V} \psi ? D=(\boldsymbol{\lambda} z: \mathcal{D} \gamma \cdot \mathcal{V}(\psi((y, \gamma):=z)) B)\)
        using wff-abs-denotation[OF \(\mathcal{V}\)-is-wff-denotation-function] by simp
    moreover from \(\operatorname{assms}(1)\) have \(\mathcal{V} \varphi\) ? \(B=\left(\boldsymbol{\lambda} z: \mathcal{D} \gamma \cdot \mathcal{V}(\varphi((y, \gamma):=z))\left(\left(\lambda x_{\alpha} \cdot B\right) \cdot A\right)\right)\)
        using wffs-from-abs[OF wffs-from-equality(2)[OF〈? \(\left.\left.\left.A=\gamma \rightarrow \delta ? B \in w f f s_{o}\right\rangle\right]\right]\)
        and wff-abs-denotation[OF \(\mathcal{V}\)-is-wff-denotation-function] by meson
    ultimately show ?thesis
        using vlambda-extensionality and \(*\) by fastforce
    qed
    with \(\operatorname{assms}(1-3)\) and \(\psi\)-def have \(\mathcal{V} \varphi\) ? \(A=\mathcal{V} \varphi\) ? \(B\)
    using prop-5401-a and wffs-of-type-intros(4) by metis
    with \(\operatorname{assms}(1)\) show ?thesis
    using prop-5401-b and wffs-from-equality \(\left[O F\left\langle ? A={ }_{\gamma \rightarrow \delta} ? B \in\right.\right.\) wffs \(\left.\left._{o}\right\rangle\right]\) by blast
    qed
lemma axiom-4-4-validity:
assumes $A \in w f f s_{\alpha}$ and $B \in w f f s_{\delta}$
and $(y, \gamma) \notin\{(x, \alpha)\} \cup$ vars $A$
shows $\vDash\left(\lambda x_{\alpha} \cdot \lambda y_{\gamma} \cdot B\right) \cdot A=\gamma_{\gamma \rightarrow \delta}\left(\lambda y_{\gamma} \cdot\left(\lambda x_{\alpha} \cdot B\right) \cdot A\right)\left(\right.$ is $\models ? A={ }_{\gamma \rightarrow \delta}$ ? $\left.B\right)$
proof (intro allI impI)
fix $\mathcal{M}$ and $\varphi$
assume $*$ : is-general-model $\mathcal{M} \varphi \sim_{M} \mathcal{M}$
show $\mathcal{M}=\varphi ? A=\gamma \rightarrow \delta ? B$
proof -
obtain $\mathcal{D}$ and $\mathcal{J}$ and $\mathcal{V}$ where $\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})$
using prod-cases3 by blast
moreover from assms and $*$ and $\langle\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})\rangle$ have $\mathcal{V} \varphi\left(? A={ }_{\gamma \rightarrow \delta} ? B\right)=\mathbf{T}$
using general-model.axiom-4-4-validity-aux by blast
ultimately show ?thesis
by $\operatorname{simp}$
qed
qed
lemma (in general-model) axiom-4-5-validity-aux:
assumes $\varphi \sim \mathcal{D}$
and $A \in w f f s_{\alpha}$ and $B \in w f f s_{\delta}$
shows $\mathcal{V} \varphi\left(\left(\lambda x_{\alpha} \cdot \lambda x_{\alpha} . B\right) \cdot A={ }_{\alpha \rightarrow \delta}\left(\lambda x_{\alpha} . B\right)\right)=\mathbf{T}$
proof -
define $\psi$ where $\psi=\varphi((x, \alpha):=\mathcal{V} \varphi A)$
from assms have wff: $\left(\lambda x_{\alpha} \cdot \lambda x_{\alpha} . B\right) \cdot A={ }_{\alpha \rightarrow \delta}\left(\lambda x_{\alpha} . B\right) \in w f f s_{o}$
using axioms.axiom-4-5 and axioms-are-wffs-of-type-o by blast
with $\operatorname{assms}(1,2)$ and $\psi$-def have $\mathcal{V} \varphi\left(\left(\lambda x_{\alpha} \cdot \lambda x_{\alpha} \cdot B\right) \cdot A\right)=\mathcal{V} \psi\left(\lambda x_{\alpha} . B\right)$

```
using prop-5401-a and wffs-from-equality(2) by blast
also have \(\ldots=\mathcal{V} \varphi\left(\lambda x_{\alpha} . B\right)\)
proof -
have \((x, \alpha) \notin\) free-vars \(\left(\lambda x_{\alpha} . B\right)\) by \(\operatorname{simp}\)
with \(\psi\)-def have \(\forall v \in\) free-vars \(\left(\lambda x_{\alpha} . B\right) . \varphi v=\psi v\) by \(\operatorname{simp}\)
moreover from \(\psi\)-def and \(\operatorname{assms}(1,2)\) have \(\psi \leadsto \mathcal{D}\) using \(\mathcal{V}\)-is-wff-denotation-function by simp
moreover from \(\operatorname{assms}(2,3)\) have \(\left(\lambda x_{\alpha} . B\right) \in w f f s_{\alpha \rightarrow \delta}\) by fastforce
ultimately show ?thesis using assms(1) and prop-5400 by metis
qed
finally have \(\mathcal{V} \varphi\left(\left(\lambda x_{\alpha} \cdot \lambda x_{\alpha} . B\right) \cdot A\right)=\mathcal{V} \varphi\left(\lambda x_{\alpha} . B\right)\).
with wff and \(\operatorname{assms}(1)\) show ?thesis
using prop-5401-b and wffs-from-equality by meson
qed
lemma axiom-4-5-validity:
assumes \(A \in w f f s_{\alpha}\) and \(B \in w f f s_{\delta}\)
shows \(\models\left(\lambda x_{\alpha} . \lambda x_{\alpha} . B\right) \cdot A={ }_{\alpha \rightarrow \delta}\left(\lambda x_{\alpha} . B\right)\)
proof (intro allI impI)
fix \(\mathcal{M}\) and \(\varphi\)
assume \(*\) : is-general-model \(\mathcal{M} \varphi \sim_{M} \mathcal{M}\)
show \(\mathcal{M}=_{\varphi}\left(\lambda x_{\alpha} . \lambda x_{\alpha} . B\right) \cdot A={ }_{\alpha \rightarrow \delta}\left(\lambda x_{\alpha} . B\right)\)
proof -
obtain \(\mathcal{D}\) and \(\mathcal{J}\) and \(\mathcal{V}\) where \(\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})\)
using prod-cases3 by blast
moreover
from assms and \(*\) and \(\langle\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})\rangle\) have \(\mathcal{V} \varphi\left(\left(\lambda x_{\alpha} . \lambda x_{\alpha} . B\right) \cdot A={ }_{\alpha \rightarrow \delta}\left(\lambda x_{\alpha} . B\right)\right)=\mathbf{T}\)
using general-model.axiom-4-5-validity-aux by blast
ultimately show ?thesis
by \(\operatorname{simp}\)
qed
qed
lemma (in general-model) axiom-5-validity-aux:
assumes \(\varphi \sim \mathcal{D}\)
shows \(\mathcal{V} \varphi\left(\iota \cdot\left(Q_{i} \cdot \mathfrak{y}_{i}\right)={ }_{i} \mathfrak{y}_{i}\right)=\mathbf{T}\)
proof -
have \(\iota \cdot\left(Q_{i} \cdot \mathfrak{y}_{i}\right)={ }_{i} \mathfrak{y}_{i} \in\) wffs \(_{o}\)
using axioms.axiom-5 and axioms-are-wffs-of-type-o by blast
have \(Q_{i} \cdot \mathfrak{y}_{i} \in w f f s_{i \rightarrow o}\)
by blast
with assms have \(\mathcal{V} \varphi\left(\iota \cdot\left(Q_{i} \cdot \mathfrak{y}_{i}\right)\right)=\mathcal{V} \varphi \iota \cdot \mathcal{V} \varphi\left(Q_{i} \cdot \mathfrak{y}_{i}\right)\)
using \(\mathcal{V}\)-is-wff-denotation-function by blast
also from assms have \(\ldots=\mathcal{V} \varphi \iota \cdot\left(\mathcal{V} \varphi\left(Q_{i}\right) \cdot \mathcal{V} \varphi\left(\mathfrak{y}_{i}\right)\right)\)
using wff-app-denotation[OF \(\mathcal{V}\)-is-wff-denotation-function \(]\) by (metis \(Q\)-wff wffs-of-type-intros(1))
```

    also from assms have \(\ldots=\mathcal{J}\left(\mathfrak{c}_{\iota},(i \rightarrow o) \rightarrow i\right) \cdot\left(\mathcal{J}\left(\mathfrak{c}_{Q}, i \rightarrow i \rightarrow o\right) \cdot \mathcal{V} \varphi\left(\mathfrak{y}_{i}\right)\right)\)
    using \(\mathcal{V}\)-is-wff-denotation-function by auto
    also from assms have \(\ldots=\mathcal{J}\left(\mathfrak{c}_{\iota},(i \rightarrow o) \rightarrow i\right) \cdot\left(\left(q_{i}^{\mathcal{D}}\right) \cdot \mathcal{V} \varphi\left(\mathfrak{y}_{i}\right)\right)\)
    using \(Q\)-constant-of-type-def and \(Q\)-denotation by simp
    also from assms have \(\ldots=\mathcal{J}\left(\mathfrak{c}_{\iota},(i \rightarrow o) \rightarrow i\right) \cdot\left\{\mathcal{V} \varphi\left(\mathfrak{y}_{i}\right)\right\}_{i}{ }^{\mathcal{D}}\)
    using \(\mathcal{V}\)-is-wff-denotation-function by auto
    finally have \(\mathcal{V} \varphi\left(\iota \cdot\left(Q_{i} \cdot \mathfrak{y}_{i}\right)\right)=\mathcal{J}\left(\mathfrak{c}_{\iota},(i \rightarrow o) \rightarrow i\right) \cdot\left\{\mathcal{V} \varphi\left(\mathfrak{y}_{i}\right)\right\}_{i}^{\mathcal{D}}\).
    moreover from assms have \(\mathcal{J}\left(\mathfrak{c}_{i},(i \rightarrow o) \rightarrow i\right) \cdot\left\{\mathcal{V} \varphi\left(\mathfrak{y}_{i}\right)\right\}_{i}^{\mathcal{D}}=\mathcal{V} \varphi\left(\mathfrak{y}_{i}\right)\)
    using \(\mathcal{V}\)-is-wff-denotation-function and \(\iota\)-denotation by force
    ultimately have \(\mathcal{V} \varphi\left(\iota \cdot\left(Q_{i} \cdot \mathfrak{y}_{i}\right)\right)=\mathcal{V} \varphi\left(\mathfrak{y}_{i}\right)\)
    by (simp only:)
    with assms and \(\left\langle Q_{i} \cdot \mathfrak{y}_{i} \in\right.\) wff \(s_{i \rightarrow o^{\prime}}\) show ?thesis
    using prop-5401-b by blast
    qed
lemma axiom-5-validity:
shows $\vDash \iota \cdot\left(Q_{i} \cdot \mathfrak{y}_{i}\right)=i \mathfrak{y}_{i}$
proof (intro allI impI)
fix $\mathcal{M}$ and $\varphi$
assume $*$ : is-general-model $\mathcal{M} \varphi \sim_{M} \mathcal{M}$
show $\mathcal{M}=\varphi \iota \cdot\left(Q_{i} \cdot \mathfrak{y}_{i}\right)={ }_{i} \mathfrak{y}_{i}$
proof -
obtain $\mathcal{D}$ and $\mathcal{J}$ and $\mathcal{V}$ where $\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})$
using prod-cases3 by blast
moreover from $*$ and $\langle\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})\rangle$ have $\mathcal{V} \varphi\left(\iota \cdot\left(Q_{i} \cdot \mathfrak{y}_{i}\right)={ }_{i} \mathfrak{y}_{i}\right)=\mathbf{T}$
using general-model.axiom-5-validity-aux by simp
ultimately show ?thesis
by $\operatorname{simp}$
qed
qed
lemma axioms-validity:
assumes $A \in$ axioms
shows $\models A$
using assms
and axiom-1-validity
and axiom-2-validity
and axiom-3-validity
and axiom-4-1-con-validity
and axiom-4-1-var-validity
and axiom-4-2-validity
and axiom-4-3-validity
and axiom-4-4-validity
and axiom-4-5-validity
and axiom-5-validity
by cases auto
lemma (in general-model) rule-R-validity-aux:
assumes $A \in w f f s_{\alpha}$ and $B \in w f f s_{\alpha}$

```
```

    and \(\forall \varphi \cdot \varphi \sim \mathcal{D} \longrightarrow \mathcal{V} \varphi A=\mathcal{V} \varphi B\)
    and \(C \in w f f s_{\beta}\) and \(C^{\prime} \in w f f s_{\beta}\)
    and \(p \in\) positions \(C\) and \(A \preceq p C\) and \(C \backslash p \leftarrow B \backslash \triangleright C^{\prime}\)
    shows \(\forall \varphi . \varphi \sim \mathcal{D} \longrightarrow \mathcal{V} \varphi C=\mathcal{V} \varphi C^{\prime}\)
    proof -
from assms ( $8,3-5,7$ ) show ?thesis
proof (induction arbitrary: $\beta$ )
case pos-found
then show? case
by $\operatorname{simp}$
next
case (replace-left-app p $G B^{\prime} G^{\prime} H$ )
show ?case
proof (intro allI impI)
fix $\varphi$
assume $\varphi \sim \mathcal{D}$
from $\left\langle G \cdot H \in w f f s_{\beta}\right\rangle$ obtain $\gamma$ where $G \in w f f s_{\gamma \rightarrow \beta}$ and $H \in w f f s \gamma$
by (rule wffs-from-app)
with $\left\langle G^{\prime} \cdot H \in\right.$ wffs $\left._{\beta}\right\rangle$ have $G^{\prime} \in w f f s_{\gamma \rightarrow \beta}$
by (metis wff-has-unique-type wffs-from-app)
from $\operatorname{assms}(1)$ and $\langle\varphi \leadsto \mathcal{D}\rangle$ and $\left\langle G \in w f f s s_{\gamma \rightarrow \beta}\right\rangle$ and $\langle H \in w f f s \gamma\rangle$
have $\mathcal{V} \varphi(G \cdot H)=\mathcal{V} \varphi G \cdot \mathcal{V} \varphi H$
using $\mathcal{V}$-is-wff-denotation-function by blast
also from $\langle\varphi \leadsto \mathcal{D}\rangle$ and $\left\langle G \in w f f s_{\gamma \rightarrow \beta^{\prime}}\right.$ and $\left\langle G^{\prime} \in w f f s_{\gamma \rightarrow \beta^{\prime}}\right\rangle$ have $\ldots=\mathcal{V} \varphi G^{\prime} \cdot \mathcal{V} \varphi H$
using replace-left-app.IH and replace-left-app.prems $(1,4)$ by $\operatorname{simp}$
also from $\operatorname{assms}(1)$ and $\langle\varphi \leadsto \mathcal{D}\rangle$ and $\left\langle G^{\prime} \in w f f s_{\gamma \rightarrow \beta}\right\rangle$ and $\langle H \in w f f s \gamma\rangle$
have $\ldots=\mathcal{V} \varphi\left(G^{\prime} \cdot H\right)$
using $\mathcal{V}$-is-wff-denotation-function by fastforce
finally show $\mathcal{V} \varphi(G \cdot H)=\mathcal{V} \varphi\left(G^{\prime} \cdot H\right)$.
qed
next
case (replace-right-app $p H B^{\prime} H^{\prime} G$ )
show ?case
proof (intro allI impI)
fix $\varphi$
assume $\varphi \sim \mathcal{D}$
from $\left\langle G \cdot H \in w f f s_{\beta}\right\rangle$ obtain $\gamma$ where $G \in w f f s_{\gamma \rightarrow \beta}$ and $H \in w f f s \gamma$
by (rule wffs-from-app)
with $\left\langle G \cdot H^{\prime} \in w_{f f} s^{\beta}\right\rangle$ have $H^{\prime} \in$ wffs $\gamma$
using wff-has-unique-type and wffs-from-app by (metis type.inject)
from $\operatorname{assms}(1)$ and $\langle\varphi \leadsto \mathcal{D}\rangle$ and $\left\langle G \in w f f s s_{\gamma \rightarrow \beta}\right\rangle$ and $\langle H \in w f f s \gamma\rangle$
have $\mathcal{V} \varphi(G \cdot H)=\mathcal{V} \varphi G \cdot \mathcal{V} \varphi H$
using $\mathcal{V}$-is-wff-denotation-function by blast
also from $\langle\varphi \sim \mathcal{D}\rangle$ and $\langle H \in w f f s \gamma\rangle$ and $\left\langle H^{\prime} \in w f f s \gamma\right.$ have $\ldots=\mathcal{V} \varphi G \cdot \mathcal{V} \varphi H^{\prime}$
using replace-right-app.IH and replace-right-app.prems(1,4) by force
also from $\operatorname{assms}(1)$ and $\langle\varphi \leadsto \mathcal{D}\rangle$ and $\left\langle G \in w f f s_{\gamma \rightarrow \beta^{\prime}}\right.$ and $\left\langle H^{\prime} \in\right.$ wffs $\gamma^{\rangle}$
have $\ldots=\mathcal{V} \varphi\left(G \cdot H^{\prime}\right)$
using $\mathcal{V}$-is-wff-denotation-function by fastforce

```
```

            finally show \(\mathcal{V} \varphi(G \cdot H)=\mathcal{V} \varphi\left(G \cdot H^{\prime}\right)\).
    qed
    next
    case (replace-abs p E B \(B^{\prime} E^{\prime} x \gamma\) )
    show ? case
    proof (intro allI impI)
        fix \(\varphi\)
        assume \(\varphi \sim \mathcal{D}\)
        define \(\psi\) where \(\psi z=\varphi((x, \gamma):=z)\) for \(z\)
        with \(\langle\varphi \sim \mathcal{D}\rangle\) have \(\psi\)-assg: \(\psi z \leadsto \mathcal{D}\) if \(z \in\) elts \((\mathcal{D} \gamma)\) for \(z\)
            by (simp add: that)
        from \(\left\langle\lambda x_{\gamma} . E \in w_{f f} s_{\beta}\right\rangle\) obtain \(\delta\) where \(\beta=\gamma \rightarrow \delta\) and \(E \in w f f s_{\delta}\)
            by (rule wffs-from-abs)
        with \(\left\langle\lambda x_{\gamma} . E^{\prime} \in w f f s_{\beta}\right\rangle\) have \(E^{\prime} \in w_{f f} s_{\delta}\)
            using wffs-from-abs by blast
        from \(\operatorname{assms}(1)\) and \(\langle\varphi \leadsto \mathcal{D}\rangle\) and \(\left\langle E \in w f f s_{\delta}\right\rangle\) and \(\psi\)-def
        have \(\mathcal{V} \varphi\left(\lambda x_{\gamma} . E\right)=(\boldsymbol{\lambda} z: \mathcal{D} \gamma \cdot \mathcal{V}(\psi z) E)\)
            using wff-abs-denotation[OF \(\mathcal{V}\)-is-wff-denotation-function] by simp
        also have \(\ldots=\left(\boldsymbol{\lambda} z: \mathcal{D} \gamma \cdot \mathcal{V}(\psi z) E^{\prime}\right)\)
        proof (intro vlambda-extensionality)
            fix \(z\)
            assume \(z \in\) elts ( \(\mathcal{D} \gamma\) )
            from \(\left\langle E \in w f f s_{\delta}\right\rangle\) and \(\left\langle E^{\prime} \in w f f s_{\delta}\right\rangle\) have \(\forall \varphi . \varphi \leadsto \mathcal{D} \longrightarrow \mathcal{V} \varphi E=\mathcal{V} \varphi E^{\prime}\)
                using replace-abs.prems \((1,4)\) and replace-abs.IH by simp
            with \(\psi\)-assg and \(\langle z \in\) elts \((\mathcal{D} \gamma)\rangle\) show \(\mathcal{V}(\psi z) E=\mathcal{V}(\psi z) E^{\prime}\)
                by \(\operatorname{simp}\)
            qed
            also from \(\operatorname{assms}(1)\) and \(\langle\varphi \leadsto \mathcal{D}\rangle\) and \(\left\langle E^{\prime} \in w f f s_{\delta}\right\rangle\) and \(\psi\)-def
            have \(\ldots=\mathcal{V} \varphi\left(\lambda x_{\gamma} . E^{\prime}\right)\)
            using wff-abs-denotation[OF \(\mathcal{V}\)-is-wff-denotation-function] by simp
            finally show \(\mathcal{V} \varphi\left(\lambda x_{\gamma} . E\right)=\mathcal{V} \varphi\left(\lambda x_{\gamma} . E^{\prime}\right)\).
        qed
    qed
    qed
lemma rule-R-validity:
assumes $C \in w f f s_{o}$ and $C^{\prime} \in w f f s_{o}$ and $E \in w f f s_{o}$
and $\models C$ and $\models E$
and is-rule-R-app p $C^{\prime} C E$
shows $\models C^{\prime}$
proof (intro allI impI)
fix $\mathcal{M}$ and $\varphi$
assume is-general-model $\mathcal{M}$ and $\varphi \sim_{M} \mathcal{M}$
show $\mathcal{M} \vDash{ }_{\varphi} C^{\prime}$
proof -
have $\mathcal{M} \vDash C^{\prime}$
proof -
obtain $\mathcal{D}$ and $\mathcal{J}$ and $\mathcal{V}$ where $\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})$
using prod-cases3 by blast

```
```

        from assms(6) obtain A and B and \alpha where A\inwffs\alpha and B \inwffs\alpha and E = A =\alpha B
        using wffs-from-equality by (meson is-rule-R-app-def)
    note * = \langleis-general-model \mathcal{M}\rangle\langle\mathcal{M}=(\mathcal{D},\mathcal{J},\mathcal{V})\rangle\langle\varphi~M}\mp@subsup{~}{M}{}\mathcal{M}
    have }\mathcal{V}\mp@subsup{\varphi}{}{\prime}C=\mathcal{V}\mp@subsup{\varphi}{}{\prime}\mp@subsup{C}{}{\prime}\mathrm{ if }\mp@subsup{\varphi}{}{\prime}\leadsto\mathcal{D}\mathrm{ for }\mp@subsup{\varphi}{}{\prime
    proof -
        from assms(5) and *(1,2) and }\langleA\inwffs\mp@subsup{s}{\alpha}{}\rangle\mathrm{ and }\langleB\inwffs\mp@subsup{s}{\alpha}{}\rangle\mathrm{ and }\langleE=A=\mp@subsup{\alpha}{\alpha}{}B\rangle\mathrm{ and that
        have }\forall\mp@subsup{\varphi}{}{\prime}.\mp@subsup{\varphi}{}{\prime}\leadsto\mathcal{D}\longrightarrow\mathcal{V}\mp@subsup{\varphi}{}{\prime}A=\mathcal{V}\mp@subsup{\varphi}{}{\prime}
        using general-model.prop-5401-b by blast
    moreover
    from }\langleE=A=\mp@subsup{}{\alpha}{}B\rangle\mathrm{ and assms(6) have p { positions C and }A\preceq\mp@subsup{\preceq}{p}{}C\mathrm{ and }C\p\leftarrowB\\triangleright\mp@subsup{C}{}{\prime
        using is-subform-implies-in-positions by auto
    ultimately show ?thesis
        using }\langleA\inwff\mp@subsup{s}{\alpha}{}\rangle\mathrm{ and }\langleB\inwffs\mp@subsup{s}{\alpha}{}\rangle\mathrm{ and }\langleC\inwffs\mp@subsup{s}{O}{}\rangle\mathrm{ and assms(2) and that and *(1,2)
        and general-model.rule-R-validity-aux by blast
    qed
    with assms(4) and *(1,2) show ?thesis
        by simp
    qed
    with }\langle\varphi~\mp@subsup{\overbrace}{M}{}\mathcal{M}\rangle\mathrm{ show ?thesis
        by blast
    qed
    qed
lemma individual-proof-step-validity:
assumes is-proof S and A\inlset S
shows }\models
using assms proof (induction length S arbitrary: }\mathcal{S}\mathrm{ A rule: less-induct)
case less
from }\langleA\inlset \mathcal{S}\rangle\mathrm{ obtain }\mp@subsup{i}{}{\prime}\mathrm{ where }\mathcal{S}!\mp@subsup{i}{}{\prime}=A\mathrm{ and }\mathcal{S}\not=[]\mathrm{ and }\mp@subsup{i}{}{\prime}<length \mathcal{S
by (metis empty-iff empty-set in-set-conv-nth)
with «is-proof \mathcal{S}}\mathrm{ \ have is-proof (take (Suc i') S) and take (Suc i') S F []
using proof-prefix-is-proof[where }\mp@subsup{\mathcal{S}}{1}{}=\mathrm{ take (Suc i}\mp@subsup{}{}{\prime})\mathcal{S}\mathrm{ and }\mp@subsup{\mathcal{S}}{2}{}=\mathrm{ drop (Suc i') S
and append-take-drop-id by simp-all
from <i'< length S S consider (a) i'< length S - 1| (b) i' = length S - 1
by fastforce
then show ?case
proof cases
case a
then have length (take (Suc i')}\mathcal{S})<\mathrm{ length S
by simp
with }\langle\mathcal{S}!\mp@subsup{i}{}{\prime}=A\rangle\mathrm{ and <take (Suc i') S S =[]> have A Glset (take (Suc i}\mp@subsup{i}{}{\prime})\mathcal{S}
by (simp add: take-Suc-conv-app-nth)
with <length (take (Suc i')\mathcal{S})< length S S and «is-proof (take (Suc i') S)\rangle show ?thesis
using less(1) by blast
next
case b
with }\langle\mathcal{S}!\mp@subsup{i}{}{\prime}=A\rangle\mathrm{ and }\langle\mathcal{S}\not=[]\rangle\mathrm{ have last }\mathcal{S}=
using last-conv-nth by blast
with «is-proof S S and \langle\mathcal{S}\not=[]\rangle and b have is-proof-step S }\mp@subsup{i}{}{\prime

```
```

        using added-suffix-proof-preservation[where }\mp@subsup{\mathcal{S}}{}{\prime}=[]]\mathrm{ by simp
    then consider
        (axiom) S S i' }\mp@subsup{i}{}{\prime}\in\mathrm{ axioms
    |(rule-R)\existspjk.{j,k}\subseteq{0..<i'}^is-rule-R-app p(\mathcal{S}!i')(\mathcal{S}!j)(\mathcal{S}!k)
    by fastforce
    then show ?thesis
    proof cases
        case axiom
        with }\langle\mathcal{S}!\mp@subsup{i}{}{\prime}=A\rangle\mathrm{ show ?thesis
            by (blast dest: axioms-validity)
    next
        case rule-R
        then obtain p and j and k
        where {j,k}\subseteq{0..<i'} and is-rule-R-app p(\mathcal{S}!\mp@subsup{i}{}{\prime})(\mathcal{S}!j)(\mathcal{S}!k)
        by blast
    let ?S S = take (Suc j) S and ? }\mp@subsup{\mathcal{S}}{k}{}=\mathrm{ take (Suc k) S
    obtain }\mp@subsup{\mathcal{S}}{j}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and }\mp@subsup{\mathcal{S}}{k}{\prime}\mp@subsup{}{}{\prime}\mathrm{ where }\mathcal{S}=
        by (metis append-take-drop-id)
    with <is-proof S`have is-proof (?S S @ @ S S ' ) and is-proof (?S S S @ S S 
        by (simp-all only:)
    ```

```

            by simp-all
        ultimately have is-proof-of ?S S (last ?S S j) and is-proof-of ?S S (last ? }\mp@subsup{\mathcal{S}}{k}{}
            using proof-prefix-is-proof-of-last[where S =? S
            and proof-prefix-is-proof-of-last[where S =? S\mathcal{S}}k\mathrm{ and }\mp@subsup{\mathcal{S}}{}{\prime}=\mp@subsup{\mathcal{S}}{k}{}\mp@subsup{}{}{\prime}
            by fastforce+
            moreover
            from <{j,k}\subseteq{0..<\mp@subsup{i}{}{\prime}}> and b have length ?S S
            by force+
            moreover from calculation(3,4) have \mathcal{S}!j\inlset ?\mathcal{S}}\mp@subsup{\mathcal{j}}{}{\prime}\mathrm{ and }\mathcal{S}!k\inlset ?\mp@subsup{\mathcal{S}}{k}{
            by (simp-all add: take-Suc-conv-app-nth)
            ultimately have }\models\mathcal{S}!j\mathrm{ and }\models\mathcal{S}!
            using <? S S }\not=[]> and «? S\mathcal{S}k\not=[]> and less(1) unfolding is-proof-of-def by presburger+
            moreover have S ! i'\inwffs
            using <is-rule-R-app p (\mathcal{S}!\mp@subsup{i}{}{\prime})(\mathcal{S}!j)(\mathcal{S}!k)\rangle}\mathrm{ and replacement-preserves-typing
            by force+
            ultimately show ?thesis
            using <is-rule-R-app p (\mathcal{S}!\mp@subsup{i}{}{\prime})(\mathcal{S}!j) (\mathcal{S}!k)\rangle and <\mathcal{S}!\mp@subsup{i}{}{\prime}=A>
            and rule-R-validity[where }\mp@subsup{C}{}{\prime}=A]\mathrm{ by blast
    qed
    qed
    qed
lemma semantic-modus-ponens:
assumes is-general-model }\mathcal{M
and }A\inwff\mp@subsup{s}{o}{}\mathrm{ and B
and }\mathcal{M}\modelsA\mp@subsup{\supset}{}{\mathcal{Q}}
and }\mathcal{M}\models
shows }\mathcal{M}\models

```
```

proof (intro allI impI)
fix $\varphi$
assume $\varphi \neg_{M} \mathcal{M}$
moreover obtain $\mathcal{D}$ and $\mathcal{J}$ and $\mathcal{V}$ where $\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})$
using prod-cases3 by blast
ultimately have $\varphi \leadsto \mathcal{D}$
by simp
show $\mathcal{M} \neq{ }_{\varphi} B$
proof -
from $\operatorname{assms}(4)$ have $\mathcal{V} \varphi\left(A \supset^{\mathcal{Q}} B\right)=\mathbf{T}$
using $\langle\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})\rangle$ and $\left\langle\varphi \sim_{M} \mathcal{M}\right\rangle$ by auto
with $\operatorname{assms}(1-3)$ have $\mathcal{V} \varphi A \supset \mathcal{V} \varphi B=\mathbf{T}$
using $\langle\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})\rangle$ and $\left\langle\varphi \leadsto_{M} \mathcal{M}\right\rangle$ and general-model.prop-5401-f ${ }^{\prime}$ by simp
moreover from assms(5) have $\mathcal{V} \varphi A=\mathbf{T}$
using $\langle\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})\rangle$ and $\langle\varphi \sim \mathcal{D}\rangle$ by auto
moreover from $\langle\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})\rangle$ and assms(1) have elts $(\mathcal{D} o)=$ elts $\mathbb{B}$
using frame.truth-values-domain-def and general-model-def and premodel-def by fastforce
with assms and $\langle\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})\rangle$ and $\langle\varphi \sim \mathcal{D}\rangle$ and $\langle\mathcal{V} \varphi A=\mathbf{T}\rangle$ have $\{\mathcal{V} \varphi A, \mathcal{V} \varphi B\} \subseteq$ elts
B
using general-model. $\mathcal{V}$-is-wff-denotation-function
and premodel.wff-denotation-function-is-domain-respecting and general-model.axioms(1) by blast
ultimately have $\mathcal{V} \varphi B=\mathbf{T}$
by fastforce
with $\langle\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})\rangle$ and $\operatorname{assms}(1)$ and $\langle\varphi \leadsto \mathcal{D}\rangle$ show ?thesis
by $\operatorname{simp}$
qed
qed
lemma generalized-semantic-modus-ponens:
assumes is-general-model $\mathcal{M}$
and lset $h s \subseteq w f f s_{o}$
and $\forall H \in$ lset hs. $\mathcal{M} \models H$
and $P \in w_{f f} s_{o}$
and $\mathcal{M} \models h s \supset^{\mathcal{Q}}{ }_{\star} P$
shows $\mathcal{M} \models P$
using assms(2-5) proof (induction hs arbitrary: P rule: rev-induct)
case Nil
then show? case by simp
next
case (snoc $H^{\prime} h s$ )
from $\left\langle\mathcal{M} \vDash\left(h s @\left[H^{\prime}\right]\right) \supset^{\mathcal{Q}}{ }_{\star} P\right\rangle$ have $\mathcal{M} \vDash h s \supset^{\mathcal{Q}}{ }_{\star}\left(H^{\prime} \supset^{\mathcal{Q}} P\right)$
by $\operatorname{simp}$
moreover from $\left\langle\forall H \in\right.$ lset (hs @ [ $\left.H^{\dagger}\right]$ ). $\left.\mathcal{M} \vDash H\right\rangle$ and 〈lset (hs @ [H]) $\subseteq$ wffs $\left.{ }_{o}\right\rangle$
have $\forall H \in$ lset $h s . \mathcal{M} \models H$ and lset $h s \subseteq$ wffs $s_{o}$
by simp-all
moreover from 〈lset $\left.\left(h s @\left[H^{\eta}\right]\right) \subseteq w_{f f} s_{o}\right\rangle$ and $\left\langle P \in\right.$ wffs $\left.s_{o}\right\rangle$ have $H^{\prime} \supset^{\mathcal{Q}} P \in$ wffs $_{o}$
by auto
ultimately have $\mathcal{M} \models H^{\prime} \supset^{\mathcal{Q}} P$
by (elim snoc.IH)

```
```

    moreover from \(\langle\forall H \in \operatorname{lset}(h s @[H\rceil) . \mathcal{M} \models H\rangle\) have \(\mathcal{M} \models H^{\prime}\)
    by \(\operatorname{simp}\)
    moreover from \(\left\langle H^{\prime} \supset^{\mathcal{Q}} P \in w f f s_{o}\right\rangle\) have \(H^{\prime} \in\) wffs \(s_{o}\)
    using wffs-from-imp-op(1) by blast
    ultimately show ?case
using assms(1) and $\left\langle P \in w f f s_{o}\right\rangle$ and semantic-modus-ponens by simp
qed

```

\subsection*{8.3 Proposition 5402(a)}
proposition theoremhood-implies-validity:
assumes is-theorem \(A\)
shows \(\models A\)
using assms and individual-proof-step-validity by force

\subsection*{8.4 Proposition 5402(b)}
proposition hyp-derivability-implies-validity:
assumes is-hyps \(\mathcal{G}\)
and is-model-for \(\mathcal{M} \mathcal{G}\)
and \(\mathcal{G} \vdash A\)
and is-general-model \(\mathcal{M}\)
shows \(\mathcal{M} \models A\)
proof -
from \(\operatorname{assms}(3)\) have \(A \in w f f s_{o}\) by (fact hyp-derivable-form-is-wffso)
from \(\langle\mathcal{G} \vdash A\rangle\) and \(\langle i s\)-hyps \(\mathcal{G}\rangle\) obtain \(\mathcal{H}\) where finite \(\mathcal{H}\) and \(\mathcal{H} \subseteq \mathcal{G}\) and \(\mathcal{H} \vdash A\) by blast
moreover from 〈finite \(\mathcal{H}\rangle\) obtain \(h s\) where lset \(h s=\mathcal{H}\)
using finite-list by blast
ultimately have \(\vdash h s \supset^{\mathcal{Q}}{ }_{\star} A\)
using generalized-deduction-theorem by simp
with \(\operatorname{assms}(4)\) have \(\mathcal{M} \models h s \supset^{\mathcal{Q}}{ }_{\star} A\)
using derivability-from-no-hyps-theoremhood-equivalence and theoremhood-implies-validity by blast
moreover from \(\langle\mathcal{H} \subseteq \mathcal{G}\rangle\) and \(\operatorname{assms}(2)\) have \(\mathcal{M} \vDash H\) if \(H \in \mathcal{H}\) for \(H\)
using that by blast
moreover from \(\langle\mathcal{H} \subseteq \mathcal{G}\rangle\) and \(\langle l s e t ~ h s=\mathcal{H}\rangle\) and \(\operatorname{assms}(1)\) have lset \(h s \subseteq w f f s_{o}\) by blast
ultimately show ?thesis
using \(\operatorname{assms}(1,4)\) and \(\left\langle A \in w f f s_{o}\right\rangle\) and \(\langle l s e t h s=\mathcal{H}\rangle\) and generalized-semantic-modus-ponens by auto
qed

\subsection*{8.5 Theorem 5402 (Soundness Theorem)}
lemmas thm-5402 \(=\) theoremhood-implies-validity hyp-derivability-implies-validity
end

\section*{9 Consistency}
```

theory Consistency
imports
Soundness
begin
definition is-inconsistent-set :: form set }=>\mathrm{ bool where
[iff]: is-inconsistent-set \mathcal{G}\longleftrightarrow\mathcal{G}\vdashF\mp@subsup{F}{o}{}

```
definition \(\mathcal{Q}_{0}\)-is-inconsistent :: bool where
 [iff]: \(\mathcal{Q}_{0}\)-is-inconsistent \(\longleftrightarrow \vdash F_{o}\)
definition is-wffo-consistent-with \(::\) form \(\Rightarrow\) form set \(\Rightarrow\) bool where
 [iff]: is-wffo-consistent-with \(B \mathcal{G} \longleftrightarrow \neg\) is-inconsistent-set \((\mathcal{G} \cup\{B\})\)

\subsection*{9.1 Existence of a standard model}

We construct a standard model in which \(\mathcal{D} i\) is the set \(\{0\}\) :
```

primrec singleton-standard-domain-family ( }\mp@subsup{\mathcal{D}}{}{S}\mathrm{ ) where
\mathcal{D}}\mp@subsup{}{}{S}i=1-i.e., \mathcal{D}'\mp@code{Z ZFC-in-HOL.set {0}
| D}\mp@subsup{}{}{S
| D
interpretation singleton-standard-frame: frame }\mp@subsup{\mathcal{D}}{}{S
proof unfold-locales
{
fix }
have }\mp@subsup{\mathcal{D}}{}{S}\alpha\not=
proof (induction \alpha)
case (TFun \beta\gamma)
from <\mathcal{D}}\mp@subsup{}{}{S}\gamma\not=0\rangle\mathrm{ obtain }y\mathrm{ where }y\in\mathrm{ elts (D}\mp@subsup{\mathcal{D}}{}{S}\gamma
by fastforce
then have (\lambdaz:\mp@subsup{\mathcal{D}}{}{S}\beta.y)\in\mathrm{ elts ( }\mp@subsup{\mathcal{D}}{}{S}\beta\longmapsto\mp@subsup{\mathcal{D}}{}{S}\gamma)
by (intro VPi-I)
then show ?case
by force
qed simp-all
}
then show }\forall\alpha.\mp@subsup{\mathcal{D}}{}{S}\alpha\not=
by (intro allI)
qed simp-all
definition singleton-standard-constant-denotation-function ( }\mp@subsup{\mathcal{J}}{}{S})\mathrm{ where
[simp]: 㰪 k=
(
if
\exists . is-Q-constant-of-type k \beta
then

```
```

            let \(\beta=\) type-of- \(Q\)-constant \(k\) in \(q_{\beta} \mathcal{D}^{S}\)
            else
            if
            is-iota-constant \(k\)
            then
            \(\boldsymbol{\lambda} z: \mathcal{D}^{S}(i \rightarrow 0) .0\)
        else
            case \(k\) of \((c, \alpha) \Rightarrow\) SOME \(z . z \in\) elts \(\left(\mathcal{D}^{S} \alpha\right)\)
    )
interpretation singleton-standard-premodel: premodel $\mathcal{D}^{S} \mathcal{J}^{S}$
proof (unfold-locales)
show $\forall \alpha . \mathcal{J}^{S}(Q$-constant-of-type $\alpha)=q_{\alpha} \mathcal{D}^{S}$
by $\operatorname{simp}$
next
show singleton-standard-frame.is-unique-member-selector ( $\mathcal{J}^{S}$ iota-constant)
unfolding singleton-standard-frame.is-unique-member-selector-def proof
fix $x$
assume $x \in$ elts $\left(\mathcal{D}^{S} i\right)$
then have $x=0$
by $\operatorname{simp}$
moreover have $\left(\boldsymbol{\lambda} z: \mathcal{D}^{S}(i \rightarrow 0) .0\right) \cdot\{0\}_{i} \mathcal{D}^{S}=0$
using beta[OF singleton-standard-frame.one-element-function-is-domain-respecting] unfolding singleton-standard-domain-family.simps(3) by blast
ultimately show $\left(\mathcal{J}^{S}\right.$ iota-constant $) \cdot\{x\}_{i}{ }^{\mathcal{D}^{S}}=x$
by fastforce
qed
next
show $\forall c \alpha$. $\neg$ is-logical-constant $(c, \alpha) \longrightarrow \mathcal{J}^{S}(c, \alpha) \in$ elts $\left(\mathcal{D}^{S} \alpha\right)$
proof (intro allI impI)
fix $c$ and $\alpha$
assume $\neg i s$-logical-constant $(c, \alpha)$
then have $\mathcal{J}^{S}(c, \alpha)=\left(S O M E\right.$ z. $z \in$ elts $\left.\left(\mathcal{D}^{S} \alpha\right)\right)$ by auto
moreover have $\exists z . z \in$ elts $\left(\mathcal{D}^{S} \alpha\right)$
using eq0-iff and singleton-standard-frame.domain-nonemptiness by presburger
then have $\left(S O M E\right.$ z. $z \in$ elts $\left.\left(\mathcal{D}^{S} \alpha\right)\right) \in$ elts $\left(\mathcal{D}^{S} \alpha\right)$ using some-in-eq by auto
ultimately show $\mathcal{J}^{S}(c, \alpha) \in$ elts $\left(\mathcal{D}^{S} \alpha\right)$ by auto
qed
qed
fun singleton-standard-wff-denotation-function $\left(\mathcal{V}^{S}\right)$ where
$\mathcal{V}^{S} \varphi\left(x_{\alpha}\right)=\varphi(x, \alpha)$
$\mid \mathcal{V}^{S} \varphi\left(\{c\}_{\alpha}\right)=\mathcal{J}^{S}(c, \alpha)$
$\mid \mathcal{V}^{S} \varphi(A \cdot B)=\left(\mathcal{V}^{S} \varphi A\right) \cdot\left(\mathcal{V}^{S} \varphi B\right)$
$\mid \mathcal{V}^{S} \varphi\left(\lambda x_{\alpha} \cdot A\right)=\left(\boldsymbol{\lambda} z: \mathcal{D}^{S} \alpha . \mathcal{V}^{S}(\varphi((x, \alpha):=z)) A\right)$

```
```

lemma singleton-standard-wff-denotation-function-closure:
assumes frame.is-assignment $\mathcal{D}^{S} \varphi$
and $A \in w f f s_{\alpha}$
shows $\mathcal{V}^{S} \varphi A \in$ elts ( $\mathcal{D}^{S} \alpha$ )
using $\operatorname{assms}(2,1)$ proof (induction A arbitrary: $\varphi$ )
case (var-is-wff $\alpha x$ )
then show? case
by simp
next
case (con-is-wff $\alpha c$ )
then show ?case
proof (cases ( $c, \alpha$ ) rule: constant-cases)
case non-logical
then show ?thesis
using singleton-standard-premodel.non-logical-constant-denotation
and singleton-standard-wff-denotation-function.simps(2) by presburger
next
case $(Q$-constant $\beta$ )
then have $\mathcal{V}^{S} \varphi(\{c\} \alpha)=q_{\beta} \mathcal{D}^{S}$
by simp
moreover have $q_{\beta} \mathcal{D}^{S} \in$ elts $\left(\mathcal{D}^{S}(\beta \rightarrow \beta \rightarrow o)\right)$
using singleton-standard-domain-family.simps(3)
and singleton-standard-frame.identity-relation-is-domain-respecting by presburger
ultimately show ?thesis
using $Q$-constant by simp
next
case $\iota$-constant
then have $\mathcal{V}^{S} \varphi(\{c\} \alpha)=\left(\boldsymbol{\lambda} z: \mathcal{D}^{S}(i \rightarrow o) .0\right)$
by $\operatorname{simp}$
moreover have $\left(\boldsymbol{\lambda} z: \mathcal{D}^{S}(i \rightarrow o) .0\right) \in$ elts $\left(\mathcal{D}^{S}((i \rightarrow o) \rightarrow i)\right)$
by (simp add: VPi-I)
ultimately show ?thesis
using $\iota$-constant by simp
qed
next
case (app-is-wff $\alpha \beta$ A B)
have $\mathcal{V}^{S} \varphi(A \cdot B)=\left(\mathcal{V}^{S} \varphi A\right) \cdot\left(\mathcal{V}^{S} \varphi B\right)$
using singleton-standard-wff-denotation-function.simps(3).
moreover have $\mathcal{V}^{S} \varphi A \in$ elts $\left(\mathcal{D}^{S}(\alpha \rightarrow \beta)\right)$ and $\mathcal{V}^{S} \varphi B \in$ elts $\left(\mathcal{D}^{S} \alpha\right)$
using app-is-wff.IH and app-is-wff.prems by simp-all
ultimately show ?case
by (simp only: singleton-standard-frame.app-is-domain-respecting)
next
case (abs-is-wff $\beta A \alpha x)$
have $\mathcal{V}^{S} \varphi\left(\lambda x_{\alpha} . A\right)=\left(\boldsymbol{\lambda} z: \mathcal{D}^{S} \alpha . \mathcal{V}^{S}(\varphi((x, \alpha):=z)) A\right)$
using singleton-standard-wff-denotation-function.simps(4).
moreover have $\mathcal{V}^{S}(\varphi((x, \alpha):=z)) A \in$ elts $\left(\mathcal{D}^{S} \beta\right)$ if $z \in$ elts $\left(\mathcal{D}^{S} \alpha\right)$ for $z$
using that and $a b s$ - $i s$-wff.IH and $a b s$-is-wff.prems by simp

```
```

    ultimately show ?case
    by (simp add: VPi-I)
    qed
interpretation singleton-standard-model: standard-model (\mathcal{D}}\mp@subsup{\mathcal{J}}{}{S}\mp@subsup{\mathcal{V}}{}{S
proof (unfold-locales)
show singleton-standard-premodel.is-wff-denotation-function }\mp@subsup{\mathcal{V}}{}{S
by (simp add: singleton-standard-wff-denotation-function-closure)
next
show }\forall\alpha\beta.\mp@subsup{\mathcal{D}}{}{S}(\alpha->\beta)=\mp@subsup{\mathcal{D}}{}{S}\alpha\longmapsto\mp@subsup{\mathcal{D}}{}{S}
using singleton-standard-domain-family.simps(3) by (intro allI)
qed
proposition standard-model-existence:
shows }\exists\mathcal{M}\mathrm{ . is-standard-model M
using singleton-standard-model.standard-model-axioms by auto

```

\section*{9．2 Theorem 5403 （Consistency Theorem）}
proposition model－existence－implies－set－consistency： assumes is－hyps \(\mathcal{G}\)
 and \(\exists \mathcal{M}\). is-general-model \(\mathcal{M} \wedge\) is-model-for \(\mathcal{M} \mathcal{G}\)
 shows \(\neg\) is-inconsistent-set \(\mathcal{G}\)
proof (rule ccontr)
 from assms(2) obtain \(\mathcal{D}\) and \(\mathcal{J}\) and \(\mathcal{V}\) and \(\mathcal{M}\)
 where \(\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})\) and is-model-for \(\mathcal{M} \mathcal{G}\) and is-general-model \(\mathcal{M}\) by fastforce
 assume \(\neg \neg\) is-inconsistent-set \(\mathcal{G}\)
 then have \(\mathcal{G} \vdash F_{o}\)
 by simp
 with 〈is-general-model \(\mathcal{M}\) 〉 have \(\mathcal{M} \models F_{o}\)
 using thm-5402(2)[OF assms(1)〈is-model-for \(\mathcal{M} \mathcal{G}\rangle]\) by \(\operatorname{simp}\)
 then have \(\mathcal{V} \varphi F_{o}=\mathbf{T}\) if \(\varphi \leadsto \mathcal{D}\) for \(\varphi\)
 using that and \(\langle\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})\rangle\) by force
 moreover have \(\mathcal{V} \varphi F_{o}=\mathbf{F}\) if \(\varphi \leadsto \mathcal{D}\) for \(\varphi\)
 using \(\langle\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})\rangle\) and \(\langle i s\)-general-model \(\mathcal{M}\rangle\) and that and general-model.prop-5401-d
 by \(\operatorname{simp}\)
 ultimately have \(\nexists \varphi \cdot \varphi \sim \mathcal{D}\)
 by (auto simp add: inj-eq)
 moreover have \(\exists \varphi \cdot \varphi \leadsto \mathcal{D}\)
 proof -
 - Since by definition domains are not empty then, by using the Axiom of Choice, we can specify an
assignment \(\psi\) that simply chooses some element in the respective domain for each variable. Nonetheless,
as pointed out in Footnote 11, page 19 in [1], it is not necessary to use the Axiom of Choice to show
that assignments exist since some assignments can be described explicitly.
let \(? \psi=\lambda v\). case \(v\) of \((-, \alpha) \Rightarrow\) SOME \(z . z \in\) elts \((\mathcal{D} \alpha)\)
from \(\langle\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})\rangle\) and \(\langle i s\)-general-model \(\mathcal{M}\rangle\) have \(\forall \alpha\). elts \((\mathcal{D} \alpha) \neq\{ \}\)
 using frame.domain-nonemptiness and premodel-def and general-model.axioms(1) by auto
with \(\langle\mathcal{M}=(\mathcal{D}, \mathcal{J}, \mathcal{V})\rangle\) and \(\langle\) is-general-model \(\mathcal{M}\rangle\) have ? \(\psi \sim \mathcal{D}\)
 using frame.is-assignment-def and premodel-def and general-model.axioms(1)
```

            by (metis (mono-tags) case-prod-conv some-in-eq)
    then show ?thesis
        by (intro exI)
    qed
    ultimately show False ..
    qed
proposition }\mp@subsup{\mathcal{Q}}{0}{}\mathrm{ -is-consistent:
shows }\neg\mp@subsup{\mathcal{Q}}{0}{}\mathrm{ -is-inconsistent
proof -
have }\exists\mathcal{M}.\mathrm{ is-general-model }\mathcal{M}\wedge\mathrm{ is-model-for }\mathcal{M}{
using standard-model-existence and standard-model.axioms(1) by blast
then show ?thesis
using model-existence-implies-set-consistency by simp
qed
lemmas thm-5403 = \mathcal{Q}
proposition principle-of-explosion:
assumes is-hyps \mathcal{G}
shows is-inconsistent-set \mathcal{G}\longleftrightarrow(\forallA\in(wff\mp@subsup{s}{o}{}).\mathcal{G}\vdashA)
proof
assume is-inconsistent-set \mathcal{G}
show }\forallA\in(wff\mp@subsup{s}{O}{}).\mathcal{G}\vdash
proof
fix }
assume A\inwffso
from〈is-inconsistent-set \mathcal{G}> have \mathcal{G}}\vdash\mp@subsup{F}{o}{
unfolding is-inconsistent-set-def .
then have \mathcal{G}}\vdash\forall\mp@subsup{\mathfrak{x}}{0}{}.\mp@subsup{\mathfrak{x}}{0}{
unfolding false-is-forall.
with}\langleA\inwff\mp@subsup{s}{o}{\prime}>\mathrm{ have }\mathcal{G}\vdash\mathbf{S}{(\mathfrak{x},o)\longmapstoA}(\mp@subsup{\mathfrak{x}}{o}{}
using }\forallI\mathrm{ by fastforce
then show \mathcal{G}}\vdash
by simp
qed
next
assume }\forallA\in(wffso).\mathcal{G}\vdash
then have \mathcal{G}\vdashF\mp@subsup{F}{o}{}
using false-wff by (elim bspec)
then show is-inconsistent-set \mathcal{G}
unfolding is-inconsistent-set-def .
qed
end

```

\section*{References}
[1] P. B. Andrews. A Transfinite Type Theory with Type Variables, volume 36 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, 1965.
[2] P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, volume 27 of Applied Logic Series. Springer Dordrecht, 2002.```

[^0]: [iff]: is-pwff-denotation-function $\mathcal{V} \longleftrightarrow$ (
 $\forall \varphi$. is-tv-assignment $\varphi \longrightarrow$

