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Abstract

This entry is a formalization of the metatheory of Q0 in Isabelle/HOL. Q0 [2] is a
classical higher-order logic equivalent to Church’s Simple Theory of Types. In this entry
we formalize Chapter 5 of [2], up to and including the proofs of soundness and consistency
of Q0. These proof are, to the best of our knowledge, the first to be formalized in a proof
assistant.
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1 Utilities
theory Utilities

imports
Finite−Map−Extras.Finite-Map-Extras

begin

1.1 Utilities for lists
fun foldr1 :: ( ′a ⇒ ′a ⇒ ′a) ⇒ ′a list ⇒ ′a where

foldr1 f [x] = x
| foldr1 f (x # xs) = f x (foldr1 f xs)
| foldr1 f [] = undefined f

abbreviation lset where lset ≡ List.set

lemma rev-induct2 [consumes 1 , case-names Nil snoc]:
assumes length xs = length ys
and P [] []
and

∧
x xs y ys. length xs = length ys =⇒ P xs ys =⇒ P (xs @ [x]) (ys @ [y])

shows P xs ys
using assms proof (induction xs arbitrary: ys rule: rev-induct)

case (snoc x xs)
then show ?case by (cases ys rule: rev-cases) simp-all

qed simp

1.2 Utilities for finite maps
no-syntax

-fmaplet :: [ ′a, ′a] ⇒ fmaplet (- /$$:=/ -)
-fmaplets :: [ ′a, ′a] ⇒ fmaplet (- /[$$:=]/ -)

syntax
-fmaplet :: [ ′a, ′a] ⇒ fmaplet (- /�/ -)
-fmaplets :: [ ′a, ′a] ⇒ fmaplet (- /[�]/ -)

lemma fmdom ′-fmap-of-list [simp]:
shows fmdom ′ (fmap-of-list ps) = lset (map fst ps)
by (induction ps) force+

lemma fmran ′-singleton [simp]:
shows fmran ′ {k � v} = {v}

proof −
have v ′ ∈ fmran ′ {k � v} =⇒ v ′ = v for v ′

proof −
assume v ′ ∈ fmran ′ {k � v}
fix k ′

have fmdom ′ {k � v} = {k}
by simp

then show v ′ = v
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proof (cases k ′ = k)
case True
with ‹v ′ ∈ fmran ′ {k � v}› show ?thesis

using fmdom ′I by fastforce
next

case False
with ‹fmdom ′ {k � v} = {k}› and ‹v ′ ∈ fmran ′ {k � v}› show ?thesis

using fmdom ′I by fastforce
qed

qed
moreover have v ∈ fmran ′ {k � v}

by (simp add: fmran ′I )
ultimately show ?thesis

by blast
qed

lemma fmran ′-fmupd [simp]:
assumes m $$ x = None
shows fmran ′ (m(x � y)) = {y} ∪ fmran ′ m

using assms proof (intro subset-antisym subsetI )
fix x ′

assume m $$ x = None and x ′ ∈ fmran ′ (m(x � y))
then show x ′ ∈ {y} ∪ fmran ′ m

by (auto simp add: fmlookup-ran ′-iff , metis option.inject)
next

fix x ′

assume m $$ x = None and x ′ ∈ {y} ∪ fmran ′ m
then show x ′ ∈ fmran ′ (m(x � y))

by (force simp add: fmlookup-ran ′-iff )
qed

lemma fmran ′-fmadd [simp]:
assumes fmdom ′ m ∩ fmdom ′ m ′ = {}
shows fmran ′ (m ++f m ′) = fmran ′ m ∪ fmran ′ m ′

using assms proof (intro subset-antisym subsetI )
fix x
assume fmdom ′ m ∩ fmdom ′ m ′ = {} and x ∈ fmran ′ (m ++f m ′)
then show x ∈ fmran ′ m ∪ fmran ′ m ′

by (auto simp add: fmlookup-ran ′-iff ) meson
next

fix x
assume fmdom ′ m ∩ fmdom ′ m ′ = {} and x ∈ fmran ′ m ∪ fmran ′ m ′

then show x ∈ fmran ′ (m ++f m ′)
using fmap-disj-comm and fmlookup-ran ′-iff by fastforce

qed

lemma finite-fmran ′:
shows finite (fmran ′ m)
by (simp add: fmran ′-alt-def )
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lemma fmap-of-zipped-list-range:
assumes length ks = length vs
and m = fmap-of-list (zip ks vs)
and k ∈ fmdom ′ m
shows m $$! k ∈ lset vs
using assms by (induction arbitrary: m rule: list-induct2 ) auto

lemma fmap-of-zip-nth [simp]:
assumes length ks = length vs
and distinct ks
and i < length ks
shows fmap-of-list (zip ks vs) $$! (ks ! i) = vs ! i
using assms by (simp add: fmap-of-list.rep-eq map-of-zip-nth)

lemma fmap-of-zipped-list-fmran ′ [simp]:
assumes distinct (map fst ps)
shows fmran ′ (fmap-of-list ps) = lset (map snd ps)

using assms proof (induction ps)
case Nil
then show ?case

by auto
next

case (Cons p ps)
then show ?case
proof (cases p ∈ lset ps)

case True
then show ?thesis

using Cons.prems by auto
next

case False
obtain k and v where p = (k, v)

by fastforce
with Cons.prems have k /∈ fmdom ′ (fmap-of-list ps)

by auto
then have fmap-of-list (p # ps) = {k � v} ++f fmap-of-list ps

using ‹p = (k, v)› and fmap-singleton-comm by fastforce
with Cons.prems have fmran ′ (fmap-of-list (p # ps)) = {v} ∪ fmran ′ (fmap-of-list ps)

by (simp add: ‹p = (k, v)›)
then have fmran ′ (fmap-of-list (p # ps)) = {v} ∪ lset (map snd ps)

using Cons.IH and Cons.prems by force
then show ?thesis

by (simp add: ‹p = (k, v)›)
qed

qed

lemma fmap-of-list-nth [simp]:
assumes distinct (map fst ps)

and j < length ps
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shows fmap-of-list ps $$ ((map fst ps) ! j) = Some (map snd ps ! j)
using assms by (induction j) (simp-all add: fmap-of-list.rep-eq)

lemma fmap-of-list-nth-split [simp]:
assumes distinct xs

and j < length xs
and length ys = length xs and length zs = length xs

shows fmap-of-list (zip xs (take k ys @ drop k zs)) $$ (xs ! j) =
(if j < k then Some (take k ys ! j) else Some (drop k zs ! (j − k)))

using assms proof (induction k arbitrary: xs ys zs j)
case 0
then show ?case

by (simp add: fmap-of-list.rep-eq map-of-zip-nth)
next

case (Suc k)
then show ?case
proof (cases xs)

case Nil
with Suc.prems(2 ) show ?thesis

by auto
next

case (Cons x xs ′)
let ?ps = zip xs (take (Suc k) ys @ drop (Suc k) zs)
from Cons and Suc.prems(3 ,4 ) obtain y and z and ys ′ and zs ′

where ys = y # ys ′ and zs = z # zs ′

by (metis length-0-conv neq-Nil-conv)
let ?ps ′ = zip xs ′ (take k ys ′ @ drop k zs ′)
from Cons have ∗: fmap-of-list ?ps = fmap-of-list ((x, y) # ?ps ′)

using ‹ys = y # ys ′› and ‹zs = z # zs ′› by fastforce
also have . . . = {x � y} ++f fmap-of-list ?ps ′

proof −
from ‹ys = y # ys ′› and ‹zs = z # zs ′› have fmap-of-list ?ps ′ $$ x = None

using Cons and Suc.prems(1 ,3 ,4 ) by (simp add: fmdom ′-notD)
then show ?thesis

using fmap-singleton-comm by fastforce
qed
finally have fmap-of-list ?ps = {x � y} ++f fmap-of-list ?ps ′ .
then show ?thesis
proof (cases j = 0 )

case True
with ‹ys = y # ys ′› and Cons show ?thesis

by simp
next

case False
then have xs ! j = xs ′ ! (j − 1 )

by (simp add: Cons)
moreover from ‹ys = y # ys ′› and ‹zs = z # zs ′› have fmdom ′ (fmap-of-list ?ps ′) = lset xs ′

using Cons and Suc.prems(3 ,4 ) by force
moreover from False and Suc.prems(2 ) and Cons have j − 1 < length xs ′
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using le-simps(2 ) by auto
ultimately have fmap-of-list ?ps $$ (xs ! j) = fmap-of-list ?ps ′ $$ (xs ′ ! (j − 1 ))

using Cons and ∗ and Suc.prems(1 ) by auto
with Suc.IH and Suc.prems(1 ,3 ,4 ) and Cons have ∗∗: fmap-of-list ?ps $$ (xs ! j) =
(if j − 1 < k then Some (take k ys ′ ! (j − 1 )) else Some (drop k zs ′ ! ((j − 1 ) − k)))
using ‹j − 1 < length xs ′› and ‹ys = y # ys ′› and ‹zs = z # zs ′› by simp

then show ?thesis
proof (cases j − 1 < k)

case True
with False and ∗∗ show ?thesis

using ‹ys = y # ys ′› by auto
next

case False
from Suc.prems(1 ) and Cons and ‹j − 1 < length xs ′› and ‹xs ! j = xs ′ ! (j − 1 )› have j >

0
using nth-non-equal-first-eq by fastforce

with False have j ≥ Suc k
by simp

moreover have fmap-of-list ?ps $$ (xs ! j) = Some (drop (Suc k) zs ! (j − Suc k))
using ∗∗ and False and ‹zs = z # zs ′› by fastforce

ultimately show ?thesis
by simp

qed
qed

qed
qed

lemma fmadd-drop-cancellation [simp]:
assumes m $$ k = Some v
shows {k � v} ++f fmdrop k m = m

using assms proof (induction m)
case fmempty
then show ?case

by simp
next

case (fmupd k ′ v ′ m ′)
then show ?case
proof (cases k ′ = k)

case True
with fmupd.prems have v = v ′

by fastforce
have fmdrop k ′ (m ′(k ′ � v ′)) = m ′

unfolding fmdrop-fmupd-same using fmdrop-idle ′[OF fmdom ′-notI [OF fmupd.hyps]] by (unfold
True)

then have {k � v} ++f fmdrop k ′ (m ′(k ′ � v ′)) = {k � v} ++f m ′

by simp
then show ?thesis

using fmap-singleton-comm[OF fmupd.hyps] by (simp add: True ‹v = v ′›)
next
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case False
with fmupd.prems have m ′ $$ k = Some v

by force
from False have {k � v} ++f fmdrop k (m ′(k ′ � v ′)) = {k � v} ++f (fmdrop k m ′)(k ′ � v ′)

by (simp add: fmdrop-fmupd)
also have . . . = ({k � v} ++f fmdrop k m ′)(k ′ � v ′)

by fastforce
also from fmupd.prems and fmupd.IH [OF ‹m ′ $$ k = Some v›] have . . . = m ′(k ′ � v ′)

by force
finally show ?thesis .

qed
qed

lemma fmap-of-list-fmmap [simp]:
shows fmap-of-list (map2 (λv ′ A ′. (v ′, f A ′)) xs ys) = fmmap f (fmap-of-list (zip xs ys))
unfolding fmmap-of-list
using cond-case-prod-eta
[where f = λv ′ A ′.(v ′, f A ′) and g = apsnd f , unfolded apsnd-conv, simplified]

by (rule arg-cong)

end

2 Syntax
theory Syntax

imports
HOL−Library.Sublist
Utilities

begin

2.1 Type symbols
datatype type =

TInd (i)
| TBool (o)
| TFun type type (infixr → 101 )

primrec type-size :: type ⇒ nat where
type-size i = 1
| type-size o = 1
| type-size (α → β) = Suc (type-size α + type-size β)

primrec subtypes :: type ⇒ type set where
subtypes i = {}
| subtypes o = {}
| subtypes (α → β) = {α, β} ∪ subtypes α ∪ subtypes β

lemma subtype-size-decrease:
assumes α ∈ subtypes β
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shows type-size α < type-size β
using assms by (induction rule: type.induct) force+

lemma subtype-is-not-type:
assumes α ∈ subtypes β
shows α 6= β
using assms and subtype-size-decrease by blast

lemma fun-type-atoms-in-subtypes:
assumes k < length ts
shows ts ! k ∈ subtypes (foldr (→) ts γ)
using assms by (induction ts arbitrary: k) (cases k, use less-Suc-eq-0-disj in ‹fastforce+›)

lemma fun-type-atoms-neq-fun-type:
assumes k < length ts
shows ts ! k 6= foldr (→) ts γ
by (fact fun-type-atoms-in-subtypes[OF assms, THEN subtype-is-not-type])

2.2 Variables

Unfortunately, the Nominal package does not support multi-sort atoms yet; therefore, we need
to implement this support from scratch.
type-synonym var = nat × type

abbreviation var-name :: var ⇒ nat where
var-name ≡ fst

abbreviation var-type :: var ⇒ type where
var-type ≡ snd

lemma fresh-var-existence:
assumes finite (vs :: var set)
obtains x where (x, α) /∈ vs
using ex-new-if-finite[OF infinite-UNIV-nat]

proof −
from assms obtain x where x /∈ var-name ‘ vs

using ex-new-if-finite[OF infinite-UNIV-nat] by fastforce
with that show ?thesis

by force
qed

lemma fresh-var-name-list-existence:
assumes finite (ns :: nat set)
obtains ns ′ where length ns ′ = n and distinct ns ′ and lset ns ′ ∩ ns = {}

using assms proof (induction n arbitrary: thesis)
case 0
then show ?case

by simp
next
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case (Suc n)
from assms obtain ns ′ where length ns ′ = n and distinct ns ′ and lset ns ′ ∩ ns = {}

using Suc.IH by blast
moreover from assms obtain n ′ where n ′ /∈ lset ns ′ ∪ ns

using ex-new-if-finite[OF infinite-UNIV-nat] by blast
ultimately

have length (n ′ # ns ′) = Suc n and distinct (n ′ # ns ′) and lset (n ′ # ns ′) ∩ ns = {}
by simp-all

with Suc.prems(1 ) show ?case
by blast

qed

lemma fresh-var-list-existence:
fixes xs :: var list
and ns :: nat set
assumes finite ns
obtains vs ′ :: var list
where length vs ′ = length xs
and distinct vs ′

and var-name ‘ lset vs ′ ∩ (ns ∪ var-name ‘ lset xs) = {}
and map var-type vs ′ = map var-type xs

proof −
from assms(1 ) have finite (ns ∪ var-name ‘ lset xs)

by blast
then obtain ns ′

where length ns ′ = length xs
and distinct ns ′

and lset ns ′ ∩ (ns ∪ var-name ‘ lset xs) = {}
by (rule fresh-var-name-list-existence)

define vs ′′ where vs ′′ = zip ns ′ (map var-type xs)
from vs ′′-def and ‹length ns ′ = length xs› have length vs ′′ = length xs

by simp
moreover from vs ′′-def and ‹distinct ns ′› have distinct vs ′′

by (simp add: distinct-zipI1 )
moreover have var-name ‘ lset vs ′′ ∩ (ns ∪ var-name ‘ lset xs) = {}

unfolding vs ′′-def
using ‹length ns ′ = length xs› and ‹lset ns ′ ∩ (ns ∪ var-name ‘ lset xs) = {}›
by (metis length-map set-map map-fst-zip)

moreover from vs ′′-def have map var-type vs ′′ = map var-type xs
by (simp add: ‹length ns ′ = length xs›)

ultimately show ?thesis
by (fact that)

qed

2.3 Constants
type-synonym con = nat × type
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2.4 Formulas
datatype form =

FVar var
| FCon con
| FApp form form (infixl � 200 )
| FAbs var form

syntax
-FVar :: nat ⇒ type ⇒ form (-- [899 , 0 ] 900 )
-FCon :: nat ⇒ type ⇒ form ({|-|}- [899 , 0 ] 900 )
-FAbs :: nat ⇒ type ⇒ form ⇒ form ((4λ--./ -) [0 , 0 , 104 ] 104 )

translations
xα 
 CONST FVar (x, α)
{|c|}α 
 CONST FCon (c, α)
λxα. A 
 CONST FAbs (x, α) A

2.5 Generalized operators

Generalized application. We define �Q? A [B1, B2, . . . , Bn] as A � B1 � B2 � · · · � Bn:
definition generalized-app :: form ⇒ form list ⇒ form (�Q? - - [241 , 241 ] 241 ) where
[simp]: �Q? A Bs = foldl (�) A Bs

Generalized abstraction. We define λQ? [x1, . . . , xn] A as λx1. · · · λxn. A:
definition generalized-abs :: var list ⇒ form ⇒ form (λQ? - - [141 , 141 ] 141 ) where
[simp]: λQ? vs A = foldr (λ(x, α) B. λxα. B) vs A

fun form-size :: form ⇒ nat where
form-size (xα) = 1
| form-size ({|c|}α) = 1
| form-size (A � B) = Suc (form-size A + form-size B)
| form-size (λxα. A) = Suc (form-size A)

fun form-depth :: form ⇒ nat where
form-depth (xα) = 0
| form-depth ({|c|}α) = 0
| form-depth (A � B) = Suc (max (form-depth A) (form-depth B))
| form-depth (λxα. A) = Suc (form-depth A)

2.6 Subformulas
fun subforms :: form ⇒ form set where

subforms (xα) = {}
| subforms ({|c|}α) = {}
| subforms (A � B) = {A, B}
| subforms (λxα. A) = {A}

datatype direction = Left («) | Right (»)
type-synonym position = direction list
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fun positions :: form ⇒ position set where
positions (xα) = {[]}
| positions ({|c|}α) = {[]}
| positions (A � B) = {[]} ∪ {« # p | p. p ∈ positions A} ∪ {» # p | p. p ∈ positions B}
| positions (λxα. A) = {[]} ∪ {« # p | p. p ∈ positions A}

lemma empty-is-position [simp]:
shows [] ∈ positions A
by (cases A rule: positions.cases) simp-all

fun subform-at :: form ⇒ position ⇀ form where
subform-at A [] = Some A
| subform-at (A � B) (« # p) = subform-at A p
| subform-at (A � B) (» # p) = subform-at B p
| subform-at (λxα. A) (« # p) = subform-at A p
| subform-at - - = None

fun is-subform-at :: form ⇒ position ⇒ form ⇒ bool ((- �-/ -) [51 ,0 ,51 ] 50 ) where
is-subform-at A [] A ′ = (A = A ′)
| is-subform-at C (« # p) (A � B) = is-subform-at C p A
| is-subform-at C (» # p) (A � B) = is-subform-at C p B
| is-subform-at C (« # p) (λxα. A) = is-subform-at C p A
| is-subform-at - - - = False

lemma is-subform-at-alt-def :
shows A ′ �p A = (case subform-at A p of Some B ⇒ B = A ′ | None ⇒ False)
by (induction A ′ p A rule: is-subform-at.induct) auto

lemma superform-existence:
assumes B �p @ [d] C
obtains A where B �[d] A and A �p C
using assms by (induction B p C rule: is-subform-at.induct) auto

lemma subform-at-subforms-con:
assumes {|c|}α �p C
shows @A. A �p @ [d] C
using assms by (induction {|c|}α p C rule: is-subform-at.induct) auto

lemma subform-at-subforms-var :
assumes xα �p C
shows @A. A �p @ [d] C
using assms by (induction xα p C rule: is-subform-at.induct) auto

lemma subform-at-subforms-app:
assumes A � B �p C
shows A �p @ [«] C and B �p @ [»] C
using assms by (induction A � B p C rule: is-subform-at.induct) auto
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lemma subform-at-subforms-abs:
assumes λxα. A �p C
shows A �p @ [«] C
using assms by (induction λxα. A p C rule: is-subform-at.induct) auto

lemma is-subform-implies-in-positions:
assumes B �p A
shows p ∈ positions A
using assms by (induction rule: is-subform-at.induct) simp-all

lemma subform-size-decrease:
assumes A �p B and p 6= []
shows form-size A < form-size B
using assms by (induction A p B rule: is-subform-at.induct) force+

lemma strict-subform-is-not-form:
assumes p 6= [] and A ′ �p A
shows A ′ 6= A
using assms and subform-size-decrease by blast

lemma no-right-subform-of-abs:
shows @B. B �» # p λxα. A
by simp

lemma subforms-from-var :
assumes A �p xα
shows A = xα and p = []
using assms by (auto elim: is-subform-at.elims)

lemma subforms-from-con:
assumes A �p {|c|}α
shows A = {|c|}α and p = []
using assms by (auto elim: is-subform-at.elims)

lemma subforms-from-app:
assumes A �p B � C
shows
(A = B � C ∧ p = []) ∨
(A 6= B � C ∧
(∃ p ′ ∈ positions B. p = « # p ′ ∧ A �p ′ B) ∨ (∃ p ′ ∈ positions C . p = » # p ′ ∧ A �p ′ C ))

using assms and strict-subform-is-not-form
by (auto simp add: is-subform-implies-in-positions elim: is-subform-at.elims)

lemma subforms-from-abs:
assumes A �p λxα. B
shows (A = λxα. B ∧ p = []) ∨ (A 6= λxα. B ∧ (∃ p ′ ∈ positions B. p = « # p ′ ∧ A �p ′ B))

using assms and strict-subform-is-not-form
by (auto simp add: is-subform-implies-in-positions elim: is-subform-at.elims)
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lemma leftmost-subform-in-generalized-app:
shows B �replicate (length As) « �Q? B As
by (induction As arbitrary: B) (simp-all, metis replicate-append-same subform-at-subforms-app(1 ))

lemma self-subform-is-at-top:
assumes A �p A
shows p = []
using assms and strict-subform-is-not-form by blast

lemma at-top-is-self-subform:
assumes A �[] B
shows A = B
using assms by (auto elim: is-subform-at.elims)

lemma is-subform-at-uniqueness:
assumes B �p A and C �p A
shows B = C
using assms by (induction A arbitrary: p B C ) (auto elim: is-subform-at.elims)

lemma is-subform-at-existence:
assumes p ∈ positions A
obtains B where B �p A
using assms by (induction A arbitrary: p) (auto elim: is-subform-at.elims, blast+)

lemma is-subform-at-transitivity:
assumes A �p1 B and B �p2 C
shows A �p2 @ p1

C
using assms by (induction B p2 C arbitrary: A p1 rule: is-subform-at.induct) simp-all

lemma subform-nesting:
assumes strict-prefix p ′ p
and B �p ′ A
and C �p A
shows C �drop (length p ′) p B

proof −
from assms(1 ) have p 6= []

using strict-prefix-simps(1 ) by blast
with assms(1 ,3 ) show ?thesis
proof (induction p arbitrary: C rule: rev-induct)

case Nil
then show ?case

by blast
next

case (snoc d p ′′)
then show ?case
proof (cases p ′′ = p ′)

case True
obtain A ′ where C �[d] A ′ and A ′ �p ′ A
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by (fact superform-existence[OF snoc.prems(2 )[unfolded True]])
from ‹A ′ �p ′ A› and assms(2 ) have A ′ = B

by (rule is-subform-at-uniqueness)
with ‹C �[d] A ′› have C �[d] B

by (simp only:)
with True show ?thesis

by auto
next

case False
with snoc.prems(1 ) have strict-prefix p ′ p ′′

using prefix-order .dual-order .strict-implies-order by fastforce
then have p ′′ 6= []

by force
moreover from snoc.prems(2 ) obtain A ′ where C �[d] A ′ and A ′ �p ′′ A

using superform-existence by blast
ultimately have A ′ �drop (length p ′) p ′′ B

using snoc.IH and ‹strict-prefix p ′ p ′′› by blast
with ‹C �[d] A ′› and snoc.prems(1 ) show ?thesis

using is-subform-at-transitivity and prefix-length-less by fastforce
qed

qed
qed

lemma loop-subform-impossibility:
assumes B �p A
and strict-prefix p ′ p
shows ¬ B �p ′ A
using assms and prefix-length-less and self-subform-is-at-top and subform-nesting by fastforce

lemma nested-subform-size-decreases:
assumes strict-prefix p ′ p
and B �p ′ A
and C �p A
shows form-size C < form-size B

proof −
from assms(1 ) have p 6= []

by force
have C �drop (length p ′) p B

by (fact subform-nesting[OF assms])
moreover have drop (length p ′) p 6= []

using prefix-length-less[OF assms(1 )] by force
ultimately show ?thesis

using subform-size-decrease by simp
qed

definition is-subform :: form ⇒ form ⇒ bool (infix � 50 ) where
[simp]: A � B = (∃ p. A �p B)
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instantiation form :: ord
begin

definition
A ≤ B ←→ A � B

definition
A < B ←→ A � B ∧ A 6= B

instance ..

end

instance form :: preorder
proof (standard, unfold less-eq-form-def less-form-def )

fix A
show A � A

unfolding is-subform-def using is-subform-at.simps(1 ) by blast
next

fix A and B and C
assume A � B and B � C
then show A � C

unfolding is-subform-def using is-subform-at-transitivity by blast
next

fix A and B
show A � B ∧ A 6= B ←→ A � B ∧ ¬ B � A

unfolding is-subform-def
by (metis is-subform-at.simps(1 ) not-less-iff-gr-or-eq subform-size-decrease)

qed

lemma position-subform-existence-equivalence:
shows p ∈ positions A ←→ (∃A ′. A ′ �p A)
by (meson is-subform-at-existence is-subform-implies-in-positions)

lemma position-prefix-is-position:
assumes p ∈ positions A and prefix p ′ p
shows p ′ ∈ positions A

using assms proof (induction p rule: rev-induct)
case Nil
then show ?case

by simp
next

case (snoc d p ′′)
from snoc.prems(1 ) have p ′′ ∈ positions A

by (meson position-subform-existence-equivalence superform-existence)
with snoc.prems(1 ,2 ) show ?case

using snoc.IH by fastforce
qed

18



2.7 Free and bound variables
consts vars :: ′a ⇒ var set

overloading
vars-form ≡ vars :: form ⇒ var set
vars-form-set ≡ vars :: form set ⇒ var set

begin

fun vars-form :: form ⇒ var set where
vars-form (xα) = {(x, α)}
| vars-form ({|c|}α) = {}
| vars-form (A � B) = vars-form A ∪ vars-form B
| vars-form (λxα. A) = vars-form A ∪ {(x, α)}

fun vars-form-set :: form set ⇒ var set where
vars-form-set S = (

⋃
A ∈ S . vars A)

end

abbreviation var-names :: ′a ⇒ nat set where
var-names X ≡ var-name ‘ (vars X )

lemma vars-form-finiteness:
fixes A :: form
shows finite (vars A)
by (induction rule: vars-form.induct) simp-all

lemma vars-form-set-finiteness:
fixes S :: form set
assumes finite S
shows finite (vars S)
using assms unfolding vars-form-set.simps using vars-form-finiteness by blast

lemma form-var-names-finiteness:
fixes A :: form
shows finite (var-names A)
using vars-form-finiteness by blast

lemma form-set-var-names-finiteness:
fixes S :: form set
assumes finite S
shows finite (var-names S)
using assms and vars-form-set-finiteness by blast

consts free-vars :: ′a ⇒ var set

overloading
free-vars-form ≡ free-vars :: form ⇒ var set
free-vars-form-set ≡ free-vars :: form set ⇒ var set
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begin

fun free-vars-form :: form ⇒ var set where
free-vars-form (xα) = {(x, α)}
| free-vars-form ({|c|}α) = {}
| free-vars-form (A � B) = free-vars-form A ∪ free-vars-form B
| free-vars-form (λxα. A) = free-vars-form A − {(x, α)}

fun free-vars-form-set :: form set ⇒ var set where
free-vars-form-set S = (

⋃
A ∈ S . free-vars A)

end

abbreviation free-var-names :: ′a ⇒ nat set where
free-var-names X ≡ var-name ‘ (free-vars X )

lemma free-vars-form-finiteness:
fixes A :: form
shows finite (free-vars A)
by (induction rule: free-vars-form.induct) simp-all

lemma free-vars-of-generalized-app:
shows free-vars (�Q? A Bs) = free-vars A ∪ free-vars (lset Bs)
by (induction Bs arbitrary: A) auto

lemma free-vars-of-generalized-abs:
shows free-vars (λQ? vs A) = free-vars A − lset vs
by (induction vs arbitrary: A) auto

lemma free-vars-in-all-vars:
fixes A :: form
shows free-vars A ⊆ vars A

proof (induction A)
case (FVar v)
then show ?case

using surj-pair [of v] by force
next

case (FCon k)
then show ?case

using surj-pair [of k] by force
next

case (FApp A B)
have free-vars (A � B) = free-vars A ∪ free-vars B

using free-vars-form.simps(3 ) .
also from FApp.IH have . . . ⊆ vars A ∪ vars B

by blast
also have . . . = vars (A � B)

using vars-form.simps(3 )[symmetric] .
finally show ?case
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by (simp only:)
next

case (FAbs v A)
then show ?case

using surj-pair [of v] by force
qed

lemma free-vars-in-all-vars-set:
fixes S :: form set
shows free-vars S ⊆ vars S
using free-vars-in-all-vars by fastforce

lemma singleton-form-set-vars:
shows vars {FVar y} = {y}
using surj-pair [of y] by force

fun bound-vars where
bound-vars (xα) = {}
| bound-vars ({|c|}α) = {}
| bound-vars (B � C ) = bound-vars B ∪ bound-vars C
| bound-vars (λxα. B) = {(x, α)} ∪ bound-vars B

lemma vars-is-free-and-bound-vars:
shows vars A = free-vars A ∪ bound-vars A
by (induction A) auto

fun binders-at :: form ⇒ position ⇒ var set where
binders-at (A � B) (« # p) = binders-at A p
| binders-at (A � B) (» # p) = binders-at B p
| binders-at (λxα. A) (« # p) = {(x, α)} ∪ binders-at A p
| binders-at A [] = {}
| binders-at A p = {}

lemma binders-at-concat:
assumes A ′ �p A
shows binders-at A (p @ p ′) = binders-at A p ∪ binders-at A ′ p ′

using assms by (induction p A rule: is-subform-at.induct) auto

2.8 Free and bound occurrences
definition occurs-at :: var ⇒ position ⇒ form ⇒ bool where
[iff ]: occurs-at v p B ←→ (FVar v �p B)

lemma occurs-at-alt-def :
shows occurs-at v [] (FVar v ′) ←→ (v = v ′)
and occurs-at v p ({|c|}α) ←→ False
and occurs-at v (« # p) (A � B) ←→ occurs-at v p A
and occurs-at v (» # p) (A � B) ←→ occurs-at v p B
and occurs-at v (« # p) (λxα. A) ←→ occurs-at v p A
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and occurs-at v (d # p) (FVar v ′) ←→ False
and occurs-at v (» # p) (λxα. A) ←→ False
and occurs-at v [] (A � B) ←→ False
and occurs-at v [] (λxα. A) ←→ False
by (fastforce elim: is-subform-at.elims)+

definition occurs :: var ⇒ form ⇒ bool where
[iff ]: occurs v B ←→ (∃ p ∈ positions B. occurs-at v p B)

lemma occurs-in-vars:
assumes occurs v A
shows v ∈ vars A
using assms by (induction A) force+

abbreviation strict-prefixes where
strict-prefixes xs ≡ [ys ← prefixes xs. ys 6= xs]

definition in-scope-of-abs :: var ⇒ position ⇒ form ⇒ bool where
[iff ]: in-scope-of-abs v p B ←→ (

p 6= [] ∧
(
∃ p ′ ∈ lset (strict-prefixes p).

case (subform-at B p ′) of
Some (FAbs v ′ -) ⇒ v = v ′

| - ⇒ False
)

)

lemma in-scope-of-abs-alt-def :
shows

in-scope-of-abs v p B
←→
p 6= [] ∧ (∃ p ′ ∈ positions B. ∃C . strict-prefix p ′ p ∧ FAbs v C �p ′ B)

proof
assume in-scope-of-abs v p B
then show p 6= [] ∧ (∃ p ′ ∈ positions B. ∃C . strict-prefix p ′ p ∧ FAbs v C �p ′ B)

by (induction rule: subform-at.induct) force+
next

assume p 6= [] ∧ (∃ p ′ ∈ positions B. ∃C . strict-prefix p ′ p ∧ FAbs v C �p ′ B)

then show in-scope-of-abs v p B
by (induction rule: subform-at.induct) fastforce+

qed

lemma in-scope-of-abs-in-left-app:
shows in-scope-of-abs v (« # p) (A � B) ←→ in-scope-of-abs v p A
by force

lemma in-scope-of-abs-in-right-app:
shows in-scope-of-abs v (» # p) (A � B) ←→ in-scope-of-abs v p B
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by force

lemma in-scope-of-abs-in-app:
assumes in-scope-of-abs v p (A � B)
obtains p ′ where (p = « # p ′ ∧ in-scope-of-abs v p ′ A) ∨ (p = » # p ′ ∧ in-scope-of-abs v p ′ B)

proof −
from assms obtain d and p ′ where p = d # p ′

unfolding in-scope-of-abs-def by (meson list.exhaust)
then show ?thesis
proof (cases d)

case Left
with assms and ‹p = d # p ′› show ?thesis

using that and in-scope-of-abs-in-left-app by simp
next

case Right
with assms and ‹p = d # p ′› show ?thesis

using that and in-scope-of-abs-in-right-app by simp
qed

qed

lemma not-in-scope-of-abs-in-app:
assumes
∀ p ′.
(p = « # p ′ −→ ¬ in-scope-of-abs v ′ p ′ A)
∧
(p = » # p ′ −→ ¬ in-scope-of-abs v ′ p ′ B)

shows ¬ in-scope-of-abs v ′ p (A � B)
using assms and in-scope-of-abs-in-app by metis

lemma in-scope-of-abs-in-abs:
shows in-scope-of-abs v (« # p) (FAbs v ′ B) ←→ v = v ′ ∨ in-scope-of-abs v p B

proof
assume in-scope-of-abs v (« # p) (FAbs v ′ B)
then obtain p ′ and C

where p ′ ∈ positions (FAbs v ′ B)
and strict-prefix p ′ (« # p)
and FAbs v C �p ′ FAbs v ′ B
unfolding in-scope-of-abs-alt-def by blast

then show v = v ′ ∨ in-scope-of-abs v p B
proof (cases p ′)

case Nil
with ‹FAbs v C �p ′ FAbs v ′ B› have v = v ′

by auto
then show ?thesis

by simp
next

case (Cons d p ′′)
with ‹strict-prefix p ′ (« # p)› have d = «

by simp
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from ‹FAbs v C �p ′ FAbs v ′ B› and Cons have p ′′ ∈ positions B
by
(cases (FAbs v C , p ′, FAbs v ′ B) rule: is-subform-at.cases)
(simp-all add: is-subform-implies-in-positions)

moreover from ‹FAbs v C �p ′ FAbs v ′ B› and Cons and ‹d = «› have FAbs v C �p ′′ B
by (metis is-subform-at.simps(4 ) old.prod.exhaust)

moreover from ‹strict-prefix p ′ (« # p)› and Cons have strict-prefix p ′′ p
by auto

ultimately have in-scope-of-abs v p B
using in-scope-of-abs-alt-def by auto

then show ?thesis
by simp

qed
next

assume v = v ′ ∨ in-scope-of-abs v p B
then show in-scope-of-abs v (« # p) (FAbs v ′ B)

unfolding in-scope-of-abs-alt-def
using position-subform-existence-equivalence and surj-pair [of v ′]
by force

qed

lemma not-in-scope-of-abs-in-var :
shows ¬ in-scope-of-abs v p (FVar v ′)
unfolding in-scope-of-abs-def by (cases p) simp-all

lemma in-scope-of-abs-in-vars:
assumes in-scope-of-abs v p A
shows v ∈ vars A

using assms proof (induction A arbitrary: p)
case (FVar v ′)
then show ?case

using not-in-scope-of-abs-in-var by blast
next

case (FCon k)
then show ?case

using in-scope-of-abs-alt-def by (blast elim: is-subform-at.elims(2 ))
next

case (FApp B C )
from FApp.prems obtain d and p ′ where p = d # p ′

unfolding in-scope-of-abs-def by (meson neq-Nil-conv)
then show ?case
proof (cases d)

case Left
with FApp.prems and ‹p = d # p ′› have in-scope-of-abs v p ′ B

using in-scope-of-abs-in-left-app by blast
then have v ∈ vars B

by (fact FApp.IH (1 ))
then show ?thesis

by simp
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next
case Right
with FApp.prems and ‹p = d # p ′› have in-scope-of-abs v p ′ C

using in-scope-of-abs-in-right-app by blast
then have v ∈ vars C

by (fact FApp.IH (2 ))
then show ?thesis

by simp
qed

next
case (FAbs v ′ B)
then show ?case
proof (cases v = v ′)

case True
then show ?thesis

using surj-pair [of v] by force
next

case False
with FAbs.prems obtain p ′ and d where p = d # p ′

unfolding in-scope-of-abs-def by (meson neq-Nil-conv)
then show ?thesis
proof (cases d)

case Left
with FAbs.prems and False and ‹p = d # p ′› have in-scope-of-abs v p ′ B

using in-scope-of-abs-in-abs by blast
then have v ∈ vars B

by (fact FAbs.IH )
then show ?thesis

using surj-pair [of v ′] by force
next

case Right
with FAbs.prems and ‹p = d # p ′› and False show ?thesis

by (cases rule: is-subform-at.cases) auto
qed

qed
qed

lemma binders-at-alt-def :
assumes p ∈ positions A
shows binders-at A p = {v | v. in-scope-of-abs v p A}
using assms and in-set-prefixes by (induction rule: binders-at.induct) auto

definition is-bound-at :: var ⇒ position ⇒ form ⇒ bool where
[iff ]: is-bound-at v p B ←→ occurs-at v p B ∧ in-scope-of-abs v p B

lemma not-is-bound-at-in-var :
shows ¬ is-bound-at v p (FVar v ′)
by (fastforce elim: is-subform-at.elims(2 ))
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lemma not-is-bound-at-in-con:
shows ¬ is-bound-at v p (FCon k)
by (fastforce elim: is-subform-at.elims(2 ))

lemma is-bound-at-in-left-app:
shows is-bound-at v (« # p) (B � C ) ←→ is-bound-at v p B
by auto

lemma is-bound-at-in-right-app:
shows is-bound-at v (» # p) (B � C ) ←→ is-bound-at v p C
by auto

lemma is-bound-at-from-app:
assumes is-bound-at v p (B � C )
obtains p ′ where (p = « # p ′ ∧ is-bound-at v p ′ B) ∨ (p = » # p ′ ∧ is-bound-at v p ′ C )

proof −
from assms obtain d and p ′ where p = d # p ′

using subforms-from-app by blast
then show ?thesis
proof (cases d)

case Left
with assms and that and ‹p = d # p ′› show ?thesis

using is-bound-at-in-left-app by simp
next

case Right
with assms and that and ‹p = d # p ′› show ?thesis

using is-bound-at-in-right-app by simp
qed

qed

lemma is-bound-at-from-abs:
assumes is-bound-at v (« # p) (FAbs v ′ B)
shows v = v ′ ∨ is-bound-at v p B
using assms by (fastforce elim: is-subform-at.elims)

lemma is-bound-at-from-absE :
assumes is-bound-at v p (FAbs v ′ B)
obtains p ′ where p = « # p ′ and v = v ′ ∨ is-bound-at v p ′ B

proof −
obtain x and α where v ′ = (x, α)

by fastforce
with assms obtain p ′ where p = « # p ′

using subforms-from-abs by blast
with assms and that show ?thesis

using is-bound-at-from-abs by simp
qed

lemma is-bound-at-to-abs:
assumes (v = v ′ ∧ occurs-at v p B) ∨ is-bound-at v p B
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shows is-bound-at v (« # p) (FAbs v ′ B)
unfolding is-bound-at-def proof

from assms(1 ) show occurs-at v (« # p) (FAbs v ′ B)
using surj-pair [of v ′] by force

from assms show in-scope-of-abs v (« # p) (FAbs v ′ B)
using in-scope-of-abs-in-abs by auto

qed

lemma is-bound-at-in-bound-vars:
assumes p ∈ positions A
and is-bound-at v p A ∨ v ∈ binders-at A p
shows v ∈ bound-vars A

using assms proof (induction A arbitrary: p)
case (FApp B C )
from FApp.prems(2 ) consider (a) is-bound-at v p (B � C ) | (b) v ∈ binders-at (B � C ) p

by blast
then show ?case
proof cases

case a
then have p 6= []

using occurs-at-alt-def (8 ) by blast
then obtain d and p ′ where p = d # p ′

by (meson list.exhaust)
with ‹p ∈ positions (B � C )›
consider (a1) p = « # p ′ and p ′ ∈ positions B | (a2) p = » # p ′ and p ′ ∈ positions C

by force
then show ?thesis
proof cases

case a1

from a1(1 ) and ‹is-bound-at v p (B � C )› have is-bound-at v p ′ B
using is-bound-at-in-left-app by blast

with a1(2 ) have v ∈ bound-vars B
using FApp.IH (1 ) by blast

then show ?thesis
by simp

next
case a2

from a2(1 ) and ‹is-bound-at v p (B � C )› have is-bound-at v p ′ C
using is-bound-at-in-right-app by blast

with a2(2 ) have v ∈ bound-vars C
using FApp.IH (2 ) by blast

then show ?thesis
by simp

qed
next

case b
then have p 6= []

by force
then obtain d and p ′ where p = d # p ′
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by (meson list.exhaust)
with ‹p ∈ positions (B � C )›
consider (b1) p = « # p ′ and p ′ ∈ positions B | (b2) p = » # p ′ and p ′ ∈ positions C

by force
then show ?thesis
proof cases

case b1
from b1(1 ) and ‹v ∈ binders-at (B � C ) p› have v ∈ binders-at B p ′

by force
with b1(2 ) have v ∈ bound-vars B

using FApp.IH (1 ) by blast
then show ?thesis

by simp
next

case b2
from b2(1 ) and ‹v ∈ binders-at (B � C ) p› have v ∈ binders-at C p ′

by force
with b2(2 ) have v ∈ bound-vars C

using FApp.IH (2 ) by blast
then show ?thesis

by simp
qed

qed
next

case (FAbs v ′ B)
from FAbs.prems(2 ) consider (a) is-bound-at v p (FAbs v ′ B) | (b) v ∈ binders-at (FAbs v ′ B) p

by blast
then show ?case
proof cases

case a
then have p 6= []

using occurs-at-alt-def (9 ) by force
with ‹p ∈ positions (FAbs v ′ B)› obtain p ′ where p = « # p ′ and p ′ ∈ positions B

by (cases FAbs v ′ B rule: positions.cases) fastforce+
from ‹p = « # p ′› and ‹is-bound-at v p (FAbs v ′ B)› have v = v ′ ∨ is-bound-at v p ′ B

using is-bound-at-from-abs by blast
then consider (a1) v = v ′ | (a2) is-bound-at v p ′ B

by blast
then show ?thesis
proof cases

case a1

then show ?thesis
using surj-pair [of v ′] by fastforce

next
case a2

then have v ∈ bound-vars B
using ‹p ′ ∈ positions B› and FAbs.IH by blast

then show ?thesis
using surj-pair [of v ′] by fastforce
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qed
next

case b
then have p 6= []

by force
with FAbs.prems(1 ) obtain p ′ where p = « # p ′ and p ′ ∈ positions B

by (cases FAbs v ′ B rule: positions.cases) fastforce+
with b consider (b1) v = v ′ | (b2) v ∈ binders-at B p ′

by (cases FAbs v ′ B rule: positions.cases) fastforce+
then show ?thesis
proof cases

case b1
then show ?thesis

using surj-pair [of v ′] by fastforce
next

case b2
then have v ∈ bound-vars B

using ‹p ′ ∈ positions B› and FAbs.IH by blast
then show ?thesis

using surj-pair [of v ′] by fastforce
qed

qed
qed fastforce+

lemma bound-vars-in-is-bound-at:
assumes v ∈ bound-vars A
obtains p where p ∈ positions A and is-bound-at v p A ∨ v ∈ binders-at A p

using assms proof (induction A arbitrary: thesis rule: bound-vars.induct)
case (3 B C )
from ‹v ∈ bound-vars (B � C )› consider (a) v ∈ bound-vars B | (b) v ∈ bound-vars C

by fastforce
then show ?case
proof cases

case a
with 3 .IH (1 ) obtain p where p ∈ positions B and is-bound-at v p B ∨ v ∈ binders-at B p

by blast
from ‹p ∈ positions B› have « # p ∈ positions (B � C )

by simp
from ‹is-bound-at v p B ∨ v ∈ binders-at B p›
consider (a1) is-bound-at v p B | (a2) v ∈ binders-at B p

by blast
then show ?thesis
proof cases

case a1

then have is-bound-at v (« # p) (B � C )
using is-bound-at-in-left-app by blast

then show ?thesis
using 3 .prems(1 ) and is-subform-implies-in-positions by blast

next
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case a2

then have v ∈ binders-at (B � C ) (« # p)
by simp

then show ?thesis
using 3 .prems(1 ) and ‹« # p ∈ positions (B � C )› by blast

qed
next

case b
with 3 .IH (2 ) obtain p where p ∈ positions C and is-bound-at v p C ∨ v ∈ binders-at C p

by blast
from ‹p ∈ positions C › have » # p ∈ positions (B � C )

by simp
from ‹is-bound-at v p C ∨ v ∈ binders-at C p›
consider (b1) is-bound-at v p C | (b2) v ∈ binders-at C p

by blast
then show ?thesis
proof cases

case b1
then have is-bound-at v (» # p) (B � C )

using is-bound-at-in-right-app by blast
then show ?thesis

using 3 .prems(1 ) and is-subform-implies-in-positions by blast
next

case b2
then have v ∈ binders-at (B � C ) (» # p)

by simp
then show ?thesis

using 3 .prems(1 ) and ‹» # p ∈ positions (B � C )› by blast
qed

qed
next

case (4 x α B)
from ‹v ∈ bound-vars (λxα. B)› consider (a) v = (x, α) | (b) v ∈ bound-vars B

by force
then show ?case
proof cases

case a
then have v ∈ binders-at (λxα. B) [«]

by simp
then show ?thesis

using 4 .prems(1 ) and is-subform-implies-in-positions by fastforce
next

case b
with 4 .IH (1 ) obtain p where p ∈ positions B and is-bound-at v p B ∨ v ∈ binders-at B p

by blast
from ‹p ∈ positions B› have « # p ∈ positions (λxα. B)

by simp
from ‹is-bound-at v p B ∨ v ∈ binders-at B p›
consider (b1) is-bound-at v p B | (b2) v ∈ binders-at B p
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by blast
then show ?thesis
proof cases

case b1
then have is-bound-at v (« # p) (λxα. B)

using is-bound-at-to-abs by blast
then show ?thesis

using 4 .prems(1 ) and ‹« # p ∈ positions (λxα. B)› by blast
next

case b2
then have v ∈ binders-at (λxα. B) (« # p)

by simp
then show ?thesis

using 4 .prems(1 ) and ‹« # p ∈ positions (λxα. B)› by blast
qed

qed
qed simp-all

lemma bound-vars-alt-def :
shows bound-vars A = {v | v p. p ∈ positions A ∧ (is-bound-at v p A ∨ v ∈ binders-at A p)}
using bound-vars-in-is-bound-at and is-bound-at-in-bound-vars
by (intro subset-antisym subsetI CollectI , metis) blast

definition is-free-at :: var ⇒ position ⇒ form ⇒ bool where
[iff ]: is-free-at v p B ←→ occurs-at v p B ∧ ¬ in-scope-of-abs v p B

lemma is-free-at-in-var :
shows is-free-at v [] (FVar v ′) ←→ v = v ′

by simp

lemma not-is-free-at-in-con:
shows ¬ is-free-at v [] ({|c|}α)
by simp

lemma is-free-at-in-left-app:
shows is-free-at v (« # p) (B � C ) ←→ is-free-at v p B
by auto

lemma is-free-at-in-right-app:
shows is-free-at v (» # p) (B � C ) ←→ is-free-at v p C
by auto

lemma is-free-at-from-app:
assumes is-free-at v p (B � C )
obtains p ′ where (p = « # p ′ ∧ is-free-at v p ′ B) ∨ (p = » # p ′ ∧ is-free-at v p ′ C )

proof −
from assms obtain d and p ′ where p = d # p ′

using subforms-from-app by blast
then show ?thesis
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proof (cases d)
case Left
with assms and that and ‹p = d # p ′› show ?thesis

using is-free-at-in-left-app by blast
next

case Right
with assms and that and ‹p = d # p ′› show ?thesis

using is-free-at-in-right-app by blast
qed

qed

lemma is-free-at-from-abs:
assumes is-free-at v (« # p) (FAbs v ′ B)
shows is-free-at v p B
using assms by (fastforce elim: is-subform-at.elims)

lemma is-free-at-from-absE :
assumes is-free-at v p (FAbs v ′ B)
obtains p ′ where p = « # p ′ and is-free-at v p ′ B

proof −
obtain x and α where v ′ = (x, α)

by fastforce
with assms obtain p ′ where p = « # p ′

using subforms-from-abs by blast
with assms and that show ?thesis

using is-free-at-from-abs by blast
qed

lemma is-free-at-to-abs:
assumes is-free-at v p B and v 6= v ′

shows is-free-at v (« # p) (FAbs v ′ B)
unfolding is-free-at-def proof

from assms(1 ) show occurs-at v (« # p) (FAbs v ′ B)
using surj-pair [of v ′] by fastforce

from assms show ¬ in-scope-of-abs v (« # p) (FAbs v ′ B)
unfolding is-free-at-def using in-scope-of-abs-in-abs by presburger

qed

lemma is-free-at-in-free-vars:
assumes p ∈ positions A and is-free-at v p A
shows v ∈ free-vars A

using assms proof (induction A arbitrary: p)
case (FApp B C )
from ‹is-free-at v p (B � C )› have p 6= []

using occurs-at-alt-def (8 ) by blast
then obtain d and p ′ where p = d # p ′

by (meson list.exhaust)
with ‹p ∈ positions (B � C )›
consider (a) p = « # p ′ and p ′ ∈ positions B | (b) p = » # p ′ and p ′ ∈ positions C
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by force
then show ?case
proof cases

case a
from a(1 ) and ‹is-free-at v p (B � C )› have is-free-at v p ′ B

using is-free-at-in-left-app by blast
with a(2 ) have v ∈ free-vars B

using FApp.IH (1 ) by blast
then show ?thesis

by simp
next

case b
from b(1 ) and ‹is-free-at v p (B � C )› have is-free-at v p ′ C

using is-free-at-in-right-app by blast
with b(2 ) have v ∈ free-vars C

using FApp.IH (2 ) by blast
then show ?thesis

by simp
qed

next
case (FAbs v ′ B)
from ‹is-free-at v p (FAbs v ′ B)› have p 6= []

using occurs-at-alt-def (9 ) by force
with ‹p ∈ positions (FAbs v ′ B)› obtain p ′ where p = « # p ′ and p ′ ∈ positions B

by (cases FAbs v ′ B rule: positions.cases) fastforce+
moreover from ‹p = « # p ′› and ‹is-free-at v p (FAbs v ′ B)› have is-free-at v p ′ B

using is-free-at-from-abs by blast
ultimately have v ∈ free-vars B

using FAbs.IH by simp
moreover from ‹p = « # p ′› and ‹is-free-at v p (FAbs v ′ B)› have v 6= v ′

using in-scope-of-abs-in-abs by blast
ultimately show ?case

using surj-pair [of v ′] by force
qed fastforce+

lemma free-vars-in-is-free-at:
assumes v ∈ free-vars A
obtains p where p ∈ positions A and is-free-at v p A

using assms proof (induction A arbitrary: thesis rule: free-vars-form.induct)
case (3 A B)
from ‹v ∈ free-vars (A � B)› consider (a) v ∈ free-vars A | (b) v ∈ free-vars B

by fastforce
then show ?case
proof cases

case a
with 3 .IH (1 ) obtain p where p ∈ positions A and is-free-at v p A

by blast
from ‹p ∈ positions A› have « # p ∈ positions (A � B)

by simp
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moreover from ‹is-free-at v p A› have is-free-at v (« # p) (A � B)
using is-free-at-in-left-app by blast

ultimately show ?thesis
using 3 .prems(1 ) by presburger

next
case b
with 3 .IH (2 ) obtain p where p ∈ positions B and is-free-at v p B

by blast
from ‹p ∈ positions B› have » # p ∈ positions (A � B)

by simp
moreover from ‹is-free-at v p B› have is-free-at v (» # p) (A � B)

using is-free-at-in-right-app by blast
ultimately show ?thesis

using 3 .prems(1 ) by presburger
qed

next
case (4 x α A)
from ‹v ∈ free-vars (λxα. A)› have v ∈ free-vars A − {(x, α)} and v 6= (x, α)

by simp-all
then have v ∈ free-vars A

by blast
with 4 .IH obtain p where p ∈ positions A and is-free-at v p A

by blast
from ‹p ∈ positions A› have « # p ∈ positions (λxα. A)

by simp
moreover from ‹is-free-at v p A› and ‹v 6= (x, α)› have is-free-at v (« # p) (λxα. A)

using is-free-at-to-abs by blast
ultimately show ?case

using 4 .prems(1 ) by presburger
qed simp-all

lemma free-vars-alt-def :
shows free-vars A = {v | v p. p ∈ positions A ∧ is-free-at v p A}
using free-vars-in-is-free-at and is-free-at-in-free-vars
by (intro subset-antisym subsetI CollectI , metis) blast

In the following definition, note that the variable immeditately preceded by λ counts as a
bound variable:
definition is-bound :: var ⇒ form ⇒ bool where
[iff ]: is-bound v B ←→ (∃ p ∈ positions B. is-bound-at v p B ∨ v ∈ binders-at B p)

lemma is-bound-in-app-homomorphism:
shows is-bound v (A � B) ←→ is-bound v A ∨ is-bound v B

proof
assume is-bound v (A � B)
then obtain p where p ∈ positions (A � B) and is-bound-at v p (A � B) ∨ v ∈ binders-at (A � B) p

by auto
then have p 6= []

by fastforce
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with ‹p ∈ positions (A � B)› obtain p ′ and d where p = d # p ′

by auto
from ‹is-bound-at v p (A � B) ∨ v ∈ binders-at (A � B) p›
consider (a) is-bound-at v p (A � B) | (b) v ∈ binders-at (A � B) p

by blast
then show is-bound v A ∨ is-bound v B
proof cases

case a
then show ?thesis
proof (cases d)

case Left
then have p ′ ∈ positions A

using ‹p = d # p ′› and ‹p ∈ positions (A � B)› by fastforce
moreover from ‹is-bound-at v p (A � B)› have occurs-at v p ′ A

using Left and ‹p = d # p ′› and is-subform-at.simps(2 ) by force
moreover from ‹is-bound-at v p (A � B)› have in-scope-of-abs v p ′ A

using Left and ‹p = d # p ′› by fastforce
ultimately show ?thesis

by auto
next

case Right
then have p ′ ∈ positions B

using ‹p = d # p ′› and ‹p ∈ positions (A � B)› by fastforce
moreover from ‹is-bound-at v p (A � B)› have occurs-at v p ′ B

using Right and ‹p = d # p ′› and is-subform-at.simps(3 ) by force
moreover from ‹is-bound-at v p (A � B)› have in-scope-of-abs v p ′ B

using Right and ‹p = d # p ′› by fastforce
ultimately show ?thesis

by auto
qed

next
case b
then show ?thesis
proof (cases d)

case Left
then have p ′ ∈ positions A

using ‹p = d # p ′› and ‹p ∈ positions (A � B)› by fastforce
moreover from ‹v ∈ binders-at (A � B) p› have v ∈ binders-at A p ′

using Left and ‹p = d # p ′› by force
ultimately show ?thesis

by auto
next

case Right
then have p ′ ∈ positions B

using ‹p = d # p ′› and ‹p ∈ positions (A � B)› by fastforce
moreover from ‹v ∈ binders-at (A � B) p› have v ∈ binders-at B p ′

using Right and ‹p = d # p ′› by force
ultimately show ?thesis

by auto
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qed
qed

next
assume is-bound v A ∨ is-bound v B
then show is-bound v (A � B)
proof (rule disjE)

assume is-bound v A
then obtain p where p ∈ positions A and is-bound-at v p A ∨ v ∈ binders-at A p

by auto
from ‹p ∈ positions A› have « # p ∈ positions (A � B)

by auto
from ‹is-bound-at v p A ∨ v ∈ binders-at A p›
consider (a) is-bound-at v p A | (b) v ∈ binders-at A p

by blast
then show is-bound v (A � B)
proof cases

case a
then have occurs-at v (« # p) (A � B)

by auto
moreover from a have is-bound-at v (« # p) (A � B)

by force
ultimately show is-bound v (A � B)

using ‹« # p ∈ positions (A � B)› by blast
next

case b
then have v ∈ binders-at (A � B) (« # p)

by auto
then show is-bound v (A � B)

using ‹« # p ∈ positions (A � B)› by blast
qed

next
assume is-bound v B
then obtain p where p ∈ positions B and is-bound-at v p B ∨ v ∈ binders-at B p

by auto
from ‹p ∈ positions B› have » # p ∈ positions (A � B)

by auto
from ‹is-bound-at v p B ∨ v ∈ binders-at B p›
consider (a) is-bound-at v p B | (b) v ∈ binders-at B p

by blast
then show is-bound v (A � B)
proof cases

case a
then have occurs-at v (» # p) (A � B)

by auto
moreover from a have is-bound-at v (» # p) (A � B)

by force
ultimately show is-bound v (A � B)

using ‹» # p ∈ positions (A � B)› by blast
next
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case b
then have v ∈ binders-at (A � B) (» # p)

by auto
then show is-bound v (A � B)

using ‹» # p ∈ positions (A � B)› by blast
qed

qed
qed

lemma is-bound-in-abs-body:
assumes is-bound v A
shows is-bound v (λxα. A)

using assms unfolding is-bound-def proof
fix p
assume p ∈ positions A and is-bound-at v p A ∨ v ∈ binders-at A p
moreover from ‹p ∈ positions A› have « # p ∈ positions (λxα. A)

by simp
ultimately consider (a) is-bound-at v p A | (b) v ∈ binders-at A p

by blast
then show ∃ p ∈ positions (λxα. A). is-bound-at v p (λxα. A) ∨ v ∈ binders-at (λxα. A) p
proof cases

case a
then have is-bound-at v (« # p) (λxα. A)

by force
with ‹« # p ∈ positions (λxα. A)› show ?thesis

by blast
next

case b
then have v ∈ binders-at (λxα. A) (« # p)

by simp
with ‹« # p ∈ positions (λxα. A)› show ?thesis

by blast
qed

qed

lemma absent-var-is-not-bound:
assumes v /∈ vars A
shows ¬ is-bound v A
using assms and binders-at-alt-def and in-scope-of-abs-in-vars by blast

lemma bound-vars-alt-def2 :
shows bound-vars A = {v ∈ vars A. is-bound v A}
unfolding bound-vars-alt-def using absent-var-is-not-bound by fastforce

definition is-free :: var ⇒ form ⇒ bool where
[iff ]: is-free v B ←→ (∃ p ∈ positions B. is-free-at v p B)
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2.9 Free variables for a formula in another formula
definition is-free-for :: form ⇒ var ⇒ form ⇒ bool where
[iff ]: is-free-for A v B ←→
(
∀ v ′ ∈ free-vars A.
∀ p ∈ positions B.

is-free-at v p B −→ ¬ in-scope-of-abs v ′ p B
)

lemma is-free-for-absent-var [intro]:
assumes v /∈ vars B
shows is-free-for A v B
using assms and occurs-def and is-free-at-def and occurs-in-vars by blast

lemma is-free-for-in-var [intro]:
shows is-free-for A v (xα)
using subforms-from-var(2 ) by force

lemma is-free-for-in-con [intro]:
shows is-free-for A v ({|c|}α)
using subforms-from-con(2 ) by force

lemma is-free-for-from-app:
assumes is-free-for A v (B � C )
shows is-free-for A v B and is-free-for A v C

proof −
{

fix v ′

assume v ′ ∈ free-vars A
then have ∀ p ∈ positions B. is-free-at v p B −→ ¬ in-scope-of-abs v ′ p B
proof (intro ballI impI )

fix p
assume v ′ ∈ free-vars A and p ∈ positions B and is-free-at v p B
from ‹p ∈ positions B› have « # p ∈ positions (B � C )

by simp
moreover from ‹is-free-at v p B› have is-free-at v (« # p) (B � C )

using is-free-at-in-left-app by blast
ultimately have ¬ in-scope-of-abs v ′ (« # p) (B � C )

using assms and ‹v ′ ∈ free-vars A› by blast
then show ¬ in-scope-of-abs v ′ p B

by simp
qed

}
then show is-free-for A v B

by force
next

{
fix v ′

assume v ′ ∈ free-vars A
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then have ∀ p ∈ positions C . is-free-at v p C −→ ¬ in-scope-of-abs v ′ p C
proof (intro ballI impI )

fix p
assume v ′ ∈ free-vars A and p ∈ positions C and is-free-at v p C
from ‹p ∈ positions C › have » # p ∈ positions (B � C )

by simp
moreover from ‹is-free-at v p C › have is-free-at v (» # p) (B � C )

using is-free-at-in-right-app by blast
ultimately have ¬ in-scope-of-abs v ′ (» # p) (B � C )

using assms and ‹v ′ ∈ free-vars A› by blast
then show ¬ in-scope-of-abs v ′ p C

by simp
qed

}
then show is-free-for A v C

by force
qed

lemma is-free-for-to-app [intro]:
assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B � C )

unfolding is-free-for-def proof (intro ballI impI )
fix v ′ and p
assume v ′ ∈ free-vars A and p ∈ positions (B � C ) and is-free-at v p (B � C )
from ‹is-free-at v p (B � C )› have p 6= []

using occurs-at-alt-def (8 ) by force
then obtain d and p ′ where p = d # p ′

by (meson list.exhaust)
with ‹p ∈ positions (B � C )›
consider (b) p = « # p ′ and p ′ ∈ positions B | (c) p = » # p ′ and p ′ ∈ positions C

by force
then show ¬ in-scope-of-abs v ′ p (B � C )
proof cases

case b
from b(1 ) and ‹is-free-at v p (B � C )› have is-free-at v p ′ B

using is-free-at-in-left-app by blast
with assms(1 ) and ‹v ′ ∈ free-vars A› and ‹p ′ ∈ positions B› have ¬ in-scope-of-abs v ′ p ′ B

by simp
with b(1 ) show ?thesis

using in-scope-of-abs-in-left-app by simp
next

case c
from c(1 ) and ‹is-free-at v p (B � C )› have is-free-at v p ′ C

using is-free-at-in-right-app by blast
with assms(2 ) and ‹v ′ ∈ free-vars A› and ‹p ′ ∈ positions C › have ¬ in-scope-of-abs v ′ p ′ C

by simp
with c(1 ) show ?thesis

using in-scope-of-abs-in-right-app by simp
qed
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qed

lemma is-free-for-in-app:
shows is-free-for A v (B � C ) ←→ is-free-for A v B ∧ is-free-for A v C
using is-free-for-from-app and is-free-for-to-app by iprover

lemma is-free-for-to-abs [intro]:
assumes is-free-for A v B and (x, α) /∈ free-vars A
shows is-free-for A v (λxα. B)

unfolding is-free-for-def proof (intro ballI impI )
fix v ′ and p
assume v ′ ∈ free-vars A and p ∈ positions (λxα. B) and is-free-at v p (λxα. B)
from ‹is-free-at v p (λxα. B)› have p 6= []

using occurs-at-alt-def (9 ) by force
with ‹p ∈ positions (λxα. B)› obtain p ′ where p = « # p ′ and p ′ ∈ positions B

by force
then show ¬ in-scope-of-abs v ′ p (λxα. B)
proof −

from ‹p = « # p ′› and ‹is-free-at v p (λxα. B)› have is-free-at v p ′ B
using is-free-at-from-abs by blast

with assms(1 ) and ‹v ′ ∈ free-vars A› and ‹p ′ ∈ positions B› have ¬ in-scope-of-abs v ′ p ′ B
by force

moreover from ‹v ′ ∈ free-vars A› and assms(2 ) have v ′ 6= (x, α)
by blast

ultimately show ?thesis
using ‹p = « # p ′› and in-scope-of-abs-in-abs by auto

qed
qed

lemma is-free-for-from-abs:
assumes is-free-for A v (λxα. B) and v 6= (x, α)
shows is-free-for A v B

unfolding is-free-for-def proof (intro ballI impI )
fix v ′ and p
assume v ′ ∈ free-vars A and p ∈ positions B and is-free-at v p B
then show ¬ in-scope-of-abs v ′ p B
proof −

from ‹is-free-at v p B› and assms(2 ) have is-free-at v (« # p) (λxα. B)
by (rule is-free-at-to-abs)

moreover from ‹p ∈ positions B› have « # p ∈ positions (λxα. B)
by simp

ultimately have ¬ in-scope-of-abs v ′ (« # p) (λxα. B)
using assms and ‹v ′ ∈ free-vars A› by blast

then show ?thesis
using in-scope-of-abs-in-abs by blast

qed
qed

lemma closed-is-free-for [intro]:
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assumes free-vars A = {}
shows is-free-for A v B
using assms by force

lemma is-free-for-closed-form [intro]:
assumes free-vars B = {}
shows is-free-for A v B
using assms and is-free-at-in-free-vars by blast

lemma is-free-for-alt-def :
shows

is-free-for A v B
←→
(
@ p.
(

p ∈ positions B ∧ is-free-at v p B ∧ p 6= [] ∧
(∃ v ′ ∈ free-vars A. ∃ p ′ C . strict-prefix p ′ p ∧ FAbs v ′ C �p ′ B)

)
)

unfolding is-free-for-def
using in-scope-of-abs-alt-def and is-subform-implies-in-positions
by meson

lemma binding-var-not-free-for-in-abs:
assumes is-free x B and x 6= w
shows ¬ is-free-for (FVar w) x (FAbs w B)

proof (rule ccontr)
assume ¬ ¬ is-free-for (FVar w) x (FAbs w B)
then have
∀ v ′ ∈ free-vars (FVar w). ∀ p ∈ positions (FAbs w B). is-free-at x p (FAbs w B)
−→ ¬ in-scope-of-abs v ′ p (FAbs w B)

by force
moreover have free-vars (FVar w) = {w}

using surj-pair [of w] by force
ultimately have
∀ p ∈ positions (FAbs w B). is-free-at x p (FAbs w B) −→ ¬ in-scope-of-abs w p (FAbs w B)
by blast

moreover from assms(1 ) obtain p where is-free-at x p B
by fastforce

from this and assms(2 ) have is-free-at x (« # p) (FAbs w B)
by (rule is-free-at-to-abs)

moreover from this have « # p ∈ positions (FAbs w B)
using is-subform-implies-in-positions by force

ultimately have ¬ in-scope-of-abs w (« # p) (FAbs w B)
by blast

moreover have in-scope-of-abs w (« # p) (FAbs w B)
using in-scope-of-abs-in-abs by blast

ultimately show False
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by contradiction
qed

lemma absent-var-is-free-for [intro]:
assumes x /∈ vars A
shows is-free-for (FVar x) y A
using in-scope-of-abs-in-vars and assms and surj-pair [of x] by fastforce

lemma form-is-free-for-absent-var [intro]:
assumes x /∈ vars A
shows is-free-for B x A
using assms and occurs-in-vars by fastforce

lemma form-with-free-binder-not-free-for :
assumes v 6= v ′ and v ′ ∈ free-vars A and v ∈ free-vars B
shows ¬ is-free-for A v (FAbs v ′ B)

proof −
from assms(3 ) obtain p where p ∈ positions B and is-free-at v p B

using free-vars-in-is-free-at by blast
then have « # p ∈ positions (FAbs v ′ B) and is-free-at v (« # p) (FAbs v ′ B)

using surj-pair [of v ′] and is-free-at-to-abs[OF ‹is-free-at v p B› assms(1 )] by force+
moreover have in-scope-of-abs v ′ (« # p) (FAbs v ′ B)

using in-scope-of-abs-in-abs by blast
ultimately show ?thesis

using assms(2 ) by blast
qed

2.10 Replacement of subformulas
inductive

is-replacement-at :: form ⇒ position ⇒ form ⇒ form ⇒ bool
((4-〈|- ← -|〉 � -) [1000 , 0 , 0 , 0 ] 900 )

where
pos-found: A〈|p ← C |〉 � C ′ if p = [] and C = C ′

| replace-left-app: (G � H )〈|« # p ← C |〉 � (G ′ � H ) if p ∈ positions G and G〈|p ← C |〉 � G ′

| replace-right-app: (G � H )〈|» # p ← C |〉 � (G � H ′) if p ∈ positions H and H 〈|p ← C |〉 � H ′

| replace-abs: (λxγ . E)〈|« # p ← C |〉 � (λxγ . E ′) if p ∈ positions E and E〈|p ← C |〉 � E ′

lemma is-replacement-at-implies-in-positions:
assumes C 〈|p ← A|〉 � D
shows p ∈ positions C
using assms by (induction rule: is-replacement-at.induct) auto

declare is-replacement-at.intros [intro!]

lemma is-replacement-at-existence:
assumes p ∈ positions C
obtains D where C 〈|p ← A|〉 � D

using assms proof (induction C arbitrary: p thesis)
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case (FApp C 1 C 2)
from FApp.prems(2 ) consider
(a) p = []
| (b) ∃ p ′. p = « # p ′ ∧ p ′ ∈ positions C 1

| (c) ∃ p ′. p = » # p ′ ∧ p ′ ∈ positions C 2

by fastforce
then show ?case
proof cases

case a
with FApp.prems(1 ) show ?thesis

by blast
next

case b
with FApp.prems(1 ) show ?thesis

using FApp.IH (1 ) and replace-left-app by meson
next

case c
with FApp.prems(1 ) show ?thesis

using FApp.IH (2 ) and replace-right-app by meson
qed

next
case (FAbs v C ′)
from FAbs.prems(2 ) consider (a) p = [] | (b) ∃ p ′. p = « # p ′ ∧ p ′ ∈ positions C ′

using surj-pair [of v] by fastforce
then show ?case
proof cases

case a
with FAbs.prems(1 ) show ?thesis

by blast
next

case b
with FAbs.prems(1 ,2 ) show ?thesis

using FAbs.IH and surj-pair [of v] by blast
qed

qed force+

lemma is-replacement-at-minimal-change:
assumes C 〈|p ← A|〉 � D
shows A �p D
and ∀ p ′ ∈ positions D. ¬ prefix p ′ p ∧ ¬ prefix p p ′ −→ subform-at D p ′ = subform-at C p ′

using assms by (induction rule: is-replacement-at.induct) auto

lemma is-replacement-at-binders:
assumes C 〈|p ← A|〉 � D
shows binders-at D p = binders-at C p
using assms by (induction rule: is-replacement-at.induct) simp-all

lemma is-replacement-at-occurs:
assumes C 〈|p ← A|〉 � D
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and ¬ prefix p ′ p and ¬ prefix p p ′

shows occurs-at v p ′ C ←→ occurs-at v p ′ D
using assms proof (induction arbitrary: p ′ rule: is-replacement-at.induct)

case pos-found
then show ?case

by simp
next

case replace-left-app
then show ?case
proof (cases p ′)

case (Cons d p ′′)
with replace-left-app.prems(1 ,2 ) show ?thesis

by (cases d) (use replace-left-app.IH in force)+
qed force

next
case replace-right-app
then show ?case
proof (cases p ′)

case (Cons d p ′′)
with replace-right-app.prems(1 ,2 ) show ?thesis

by (cases d) (use replace-right-app.IH in force)+
qed force

next
case replace-abs
then show ?case
proof (cases p ′)

case (Cons d p ′′)
with replace-abs.prems(1 ,2 ) show ?thesis

by (cases d) (use replace-abs.IH in force)+
qed force

qed

lemma fresh-var-replacement-position-uniqueness:
assumes v /∈ vars C
and C 〈|p ← FVar v|〉 � G
and occurs-at v p ′ G
shows p ′ = p

proof (rule ccontr)
assume p ′ 6= p
from assms(2 ) have occurs-at v p G

by (simp add: is-replacement-at-minimal-change(1 ))
moreover have ∗: occurs-at v p ′ C ←→ occurs-at v p ′ G if ¬ prefix p ′ p and ¬ prefix p p ′

using assms(2 ) and that and is-replacement-at-occurs by blast
ultimately show False
proof (cases ¬ prefix p ′ p ∧ ¬ prefix p p ′)

case True
with assms(3 ) and ∗ have occurs-at v p ′ C

by simp
then have v ∈ vars C
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using is-subform-implies-in-positions and occurs-in-vars by fastforce
with assms(1 ) show ?thesis

by contradiction
next

case False
have FVar v �p G

by (fact is-replacement-at-minimal-change(1 )[OF assms(2 )])
moreover from assms(3 ) have FVar v �p ′ G

by simp
ultimately show ?thesis

using ‹p ′ 6= p› and False and loop-subform-impossibility
by (blast dest: prefix-order .antisym-conv2 )

qed
qed

lemma is-replacement-at-new-positions:
assumes C 〈|p ← A|〉 � D and prefix p p ′ and p ′ ∈ positions D
obtains p ′′ where p ′ = p @ p ′′ and p ′′ ∈ positions A
using assms by (induction arbitrary: thesis p ′ rule: is-replacement-at.induct, auto) blast+

lemma replacement-override:
assumes C 〈|p ← B|〉 � D and C 〈|p ← A|〉 � F
shows D〈|p ← A|〉 � F

using assms proof (induction arbitrary: F rule: is-replacement-at.induct)
case pos-found
from pos-found.hyps(1 ) and pos-found.prems have A = F

using is-replacement-at.simps by blast
with pos-found.hyps(1 ) show ?case

by blast
next

case (replace-left-app p G C G ′ H )
have p ∈ positions G ′

by (
fact is-subform-implies-in-positions
[OF is-replacement-at-minimal-change(1 )[OF replace-left-app.hyps(2 )]]

)
from replace-left-app.prems obtain F ′ where F = F ′ � H and G〈|p ← A|〉 � F ′

by (fastforce elim: is-replacement-at.cases)
from ‹G〈|p ← A|〉 � F ′› have G ′〈|p ← A|〉 � F ′

by (fact replace-left-app.IH )
with ‹p ∈ positions G ′› show ?case

unfolding ‹F = F ′ � H › by blast
next

case (replace-right-app p H C H ′ G)
have p ∈ positions H ′

by
(

fact is-subform-implies-in-positions
[OF is-replacement-at-minimal-change(1 )[OF replace-right-app.hyps(2 )]]
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)
from replace-right-app.prems obtain F ′ where F = G � F ′ and H 〈|p ← A|〉 � F ′

by (fastforce elim: is-replacement-at.cases)
from ‹H 〈|p ← A|〉 � F ′› have H ′〈|p ← A|〉 � F ′

by (fact replace-right-app.IH )
with ‹p ∈ positions H ′› show ?case

unfolding ‹F = G � F ′› by blast
next

case (replace-abs p E C E ′ x γ)
have p ∈ positions E ′

by
(

fact is-subform-implies-in-positions
[OF is-replacement-at-minimal-change(1 )[OF replace-abs.hyps(2 )]]

)
from replace-abs.prems obtain F ′ where F = λxγ . F ′ and E〈|p ← A|〉 � F ′

by (fastforce elim: is-replacement-at.cases)
from ‹E〈|p ← A|〉 � F ′› have E ′〈|p ← A|〉 � F ′

by (fact replace-abs.IH )
with ‹p ∈ positions E ′› show ?case

unfolding ‹F = λxγ . F ′› by blast
qed

lemma leftmost-subform-in-generalized-app-replacement:
shows (�Q? C As)〈|replicate (length As) « ← D|〉 � (�Q? D As)
using is-replacement-at-implies-in-positions and replace-left-app
by (induction As arbitrary: D rule: rev-induct) auto

2.11 Logical constants
abbreviation (input) x where x ≡ 0
abbreviation (input) y where y ≡ Suc x
abbreviation (input) z where z ≡ Suc y
abbreviation (input) f where f ≡ Suc z
abbreviation (input) g where g ≡ Suc f
abbreviation (input) h where h ≡ Suc g
abbreviation (input) c where c ≡ Suc h
abbreviation (input) cQ where cQ ≡ Suc c
abbreviation (input) cι where cι ≡ Suc cQ

definition Q-constant-of-type :: type ⇒ con where
[simp]: Q-constant-of-type α = (cQ, α→α→o)

definition iota-constant :: con where
[simp]: iota-constant ≡ (cι, (i→o)→i)

definition Q :: type ⇒ form (Q-) where
[simp]: Qα = FCon (Q-constant-of-type α)
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definition iota :: form (ι) where
[simp]: ι = FCon iota-constant

definition is-Q-constant-of-type :: con ⇒ type ⇒ bool where
[iff ]: is-Q-constant-of-type p α ←→ p = Q-constant-of-type α

definition is-iota-constant :: con ⇒ bool where
[iff ]: is-iota-constant p ←→ p = iota-constant

definition is-logical-constant :: con ⇒ bool where
[iff ]: is-logical-constant p ←→ (∃β. is-Q-constant-of-type p β) ∨ is-iota-constant p

definition type-of-Q-constant :: con ⇒ type where
[simp]: type-of-Q-constant p = (THE α. is-Q-constant-of-type p α)

lemma constant-cases[case-names non-logical Q-constant ι-constant, cases type: con]:
assumes ¬ is-logical-constant p =⇒ P
and

∧
β. is-Q-constant-of-type p β =⇒ P

and is-iota-constant p =⇒ P
shows P
using assms by blast

2.12 Definitions and abbreviations
definition equality-of-type :: form ⇒ type ⇒ form ⇒ form ((- =-/ -) [103 , 0 , 103 ] 102 ) where
[simp]: A =α B = Qα � A � B

definition equivalence :: form ⇒ form ⇒ form (infixl ≡Q 102 ) where
[simp]: A ≡Q B = A =o B — more modular than the definition in [2]

definition true :: form (To) where
[simp]: To = Qo =o→o→o Qo

definition false :: form (Fo) where
[simp]: Fo = λxo. To =o→o λxo. xo

definition PI :: type ⇒ form (
∏

-) where
[simp]:

∏
α = Qα→o � (λxα. To)

definition forall :: nat ⇒ type ⇒ form ⇒ form ((4∀ --./ -) [0 , 0 , 141 ] 141 ) where
[simp]: ∀ xα. A =

∏
α � (λxα. A)

Generalized universal quantification. We define ∀Q
? [x1, . . . , xn] A as ∀ x1. · · · ∀ xn. A:

definition generalized-forall :: var list ⇒ form ⇒ form (∀Q
? - - [141 , 141 ] 141 ) where

[simp]: ∀Q
? vs A = foldr (λ(x, α) B. ∀ xα. B) vs A

lemma innermost-subform-in-generalized-forall:
assumes vs 6= []
shows A �foldr (λ- p. [»,«] @ p) vs [] ∀

Q
? vs A

47



using assms by (induction vs) fastforce+

lemma innermost-replacement-in-generalized-forall:
assumes vs 6= []
shows (∀Q

? vs C )〈|foldr (λ-. (@) [»,«]) vs [] ← B|〉 � (∀Q
? vs B)

using assms proof (induction vs)
case Nil
then show ?case

by blast
next

case (Cons v vs)
obtain x and α where v = (x, α)

by fastforce
then show ?case
proof (cases vs = [])

case True
with ‹v = (x, α)› show ?thesis

unfolding True by force
next

case False
then have foldr (λ-. (@) [»,«]) vs [] ∈ positions (∀Q

? vs C )
using innermost-subform-in-generalized-forall and is-subform-implies-in-positions by blast

moreover from False have (∀Q
? vs C )〈|foldr (λ-. (@) [»,«]) vs [] ← B|〉 � (∀Q

? vs B)
by (fact Cons.IH )

ultimately have (λxα. ∀Q
? vs C )〈|« # foldr (λ-. (@) [»,«]) vs [] ← B|〉 � (λxα. ∀Q

? vs B)
by (rule replace-abs)

moreover have « # foldr (λ-. (@) [»,«]) vs [] ∈ positions (λxα. ∀Q
? vs C )

using ‹foldr (λ-. (@) [»,«]) vs [] ∈ positions (∀Q
? vs C )› by simp

ultimately have
(
∏
α � (λxα. ∀Q

? vs C ))〈|» # « # foldr (λ-. (@) [»,«]) vs [] ← B|〉 � (
∏
α � (λxα. ∀Q

? vs B))
by blast

then have (∀ xα. ∀Q
? vs C )〈|[»,«] @ foldr (λ-. (@) [»,«]) vs [] ← B|〉 � (∀ xα. ∀Q

? vs B)
by simp

then show ?thesis
unfolding ‹v = (x, α)› and generalized-forall-def and foldr .simps(2 ) and o-apply
and case-prod-conv .

qed
qed

lemma false-is-forall:
shows Fo = ∀ xo. xo
unfolding false-def and forall-def and PI-def and equality-of-type-def ..

definition conj-fun :: form (∧o→o→o) where
[simp]: ∧o→o→o =
λxo. λyo.
(
(λgo→o→o. go→o→o � To � To) =(o→o→o)→o (λgo→o→o. go→o→o � xo � yo)

)
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definition conj-op :: form ⇒ form ⇒ form (infixl ∧Q 131 ) where
[simp]: A ∧Q B = ∧o→o→o � A � B

Generalized conjunction. We define ∧Q? [A1, . . . , An] as A1 ∧Q (· · · ∧Q (An−1 ∧Q An) · · · ):
definition generalized-conj-op :: form list ⇒ form (∧Q? - [0 ] 131 ) where
[simp]: ∧Q? As = foldr1 (∧Q) As

definition imp-fun :: form (⊃o→o→o) where — ≡ used instead of =, see [2]
[simp]: ⊃o→o→o = λxo. λyo. (xo ≡Q xo ∧Q yo)

definition imp-op :: form ⇒ form ⇒ form (infixl ⊃Q 111 ) where
[simp]: A ⊃Q B = ⊃o→o→o � A � B

Generalized implication. We define [A1, . . . , An] ⊃Q
? B as A1 ⊃Q (· · · ⊃Q (An ⊃Q B) · · · ):

definition generalized-imp-op :: form list ⇒ form ⇒ form (infixl ⊃Q
? 111 ) where

[simp]: As ⊃Q
? B = foldr (⊃Q) As B

Given the definition below, it is interesting to note that ∼Q A and Fo ≡Q A are exactly the
same formula, namely Qo � Fo � A:
definition neg :: form ⇒ form (∼Q - [141 ] 141 ) where
[simp]: ∼Q A = Qo � Fo � A

definition disj-fun :: form (∨o→o→o) where
[simp]: ∨o→o→o = λxo. λyo. ∼Q (∼Q xo ∧Q ∼Q yo)

definition disj-op :: form ⇒ form ⇒ form (infixl ∨Q 126 ) where
[simp]: A ∨Q B = ∨o→o→o � A � B

definition exists :: nat ⇒ type ⇒ form ⇒ form ((4∃ --./ -) [0 , 0 , 141 ] 141 ) where
[simp]: ∃ xα. A = ∼Q (∀ xα. ∼Q A)

lemma exists-fv:
shows free-vars (∃ xα. A) = free-vars A − {(x, α)}
by simp

definition inequality-of-type :: form ⇒ type ⇒ form ⇒ form ((- 6=-/ -) [103 , 0 , 103 ] 102 ) where
[simp]: A 6=α B = ∼Q (A =α B)

2.13 Well-formed formulas
inductive is-wff-of-type :: type ⇒ form ⇒ bool where

var-is-wff : is-wff-of-type α (xα)
| con-is-wff : is-wff-of-type α ({|c|}α)
| app-is-wff : is-wff-of-type β (A � B) if is-wff-of-type (α→β) A and is-wff-of-type α B
| abs-is-wff : is-wff-of-type (α→β) (λxα. A) if is-wff-of-type β A

definition wffs-of-type :: type ⇒ form set (wffs- [0 ]) where
wffsα = {f :: form. is-wff-of-type α f }
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abbreviation wffs :: form set where
wffs ≡

⋃
α. wffsα

lemma is-wff-of-type-wffs-of-type-eq [pred-set-conv]:
shows is-wff-of-type α = (λf . f ∈ wffsα)
unfolding wffs-of-type-def by simp

lemmas wffs-of-type-intros [intro!] = is-wff-of-type.intros[to-set]
lemmas wffs-of-type-induct [consumes 1 , induct set: wffs-of-type] = is-wff-of-type.induct[to-set]
lemmas wffs-of-type-cases [consumes 1 , cases set: wffs-of-type] = is-wff-of-type.cases[to-set]
lemmas wffs-of-type-simps = is-wff-of-type.simps[to-set]

lemma generalized-app-wff [intro]:
assumes length As = length ts
and ∀ k < length As. As ! k ∈ wffsts ! k
and B ∈ wffsfoldr (→) ts β
shows �Q? B As ∈ wffsβ

using assms proof (induction As ts arbitrary: B rule: list-induct2 )
case Nil
then show ?case

by simp
next

case (Cons A As t ts)
from Cons.prems(1 ) have A ∈ wffst

by fastforce
moreover from Cons.prems(2 ) have B ∈ wffst→foldr (→) ts β

by auto
ultimately have B � A ∈ wffsfoldr (→) ts β

by blast
moreover have ∀ k < length As. (A # As) ! (Suc k) = As ! k ∧ (t # ts) ! (Suc k) = ts ! k

by force
with Cons.prems(1 ) have ∀ k < length As. As ! k ∈ wffsts ! k

by fastforce
ultimately have �Q? (B � A) As ∈ wffsβ

using Cons.IH by (simp only:)
moreover have �Q? B (A # As) = �Q? (B � A) As

by simp
ultimately show ?case

by (simp only:)
qed

lemma generalized-abs-wff [intro]:
assumes B ∈ wffsβ
shows λQ? vs B ∈ wffsfoldr (→) (map snd vs) β

using assms proof (induction vs)
case Nil
then show ?case
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by simp
next

case (Cons v vs)
let ?δ = foldr (→) (map snd vs) β
obtain x and α where v = (x, α)

by fastforce
then have FVar v ∈ wffsα

by auto
from Cons.prems have λQ? vs B ∈ wffs?δ

by (fact Cons.IH )
with ‹v = (x, α)› have FAbs v (λQ? vs B) ∈ wffsα→?δ

by blast
moreover from ‹v = (x, α)› have foldr (→) (map snd (v # vs)) β = α→?δ

by simp
moreover have λQ? (v # vs) B = FAbs v (λQ? vs B)

by simp
ultimately show ?case by (simp only:)

qed

lemma Q-wff [intro]:
shows Qα ∈ wffsα→α→o
by auto

lemma iota-wff [intro]:
shows ι ∈ wffs(i→o)→i
by auto

lemma equality-wff [intro]:
assumes A ∈ wffsα and B ∈ wffsα
shows A =α B ∈ wffso
using assms by auto

lemma equivalence-wff [intro]:
assumes A ∈ wffso and B ∈ wffso
shows A ≡Q B ∈ wffso
using assms unfolding equivalence-def by blast

lemma true-wff [intro]:
shows To ∈ wffso
by force

lemma false-wff [intro]:
shows Fo ∈ wffso
by auto

lemma pi-wff [intro]:
shows

∏
α ∈ wffs(α→o)→o

using PI-def by fastforce
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lemma forall-wff [intro]:
assumes A ∈ wffso
shows ∀ xα. A ∈ wffso
using assms and pi-wff unfolding forall-def by blast

lemma generalized-forall-wff [intro]:
assumes B ∈ wffso
shows ∀Q

? vs B ∈ wffso
using assms proof (induction vs)

case (Cons v vs)
then show ?case

using surj-pair [of v] by force
qed simp

lemma conj-fun-wff [intro]:
shows ∧o→o→o ∈ wffso→o→o
by auto

lemma conj-op-wff [intro]:
assumes A ∈ wffso and B ∈ wffso
shows A ∧Q B ∈ wffso
using assms unfolding conj-op-def by blast

lemma imp-fun-wff [intro]:
shows ⊃o→o→o ∈ wffso→o→o
by auto

lemma imp-op-wff [intro]:
assumes A ∈ wffso and B ∈ wffso
shows A ⊃Q B ∈ wffso
using assms unfolding imp-op-def by blast

lemma neg-wff [intro]:
assumes A ∈ wffso
shows ∼Q A ∈ wffso
using assms by fastforce

lemma disj-fun-wff [intro]:
shows ∨o→o→o ∈ wffso→o→o
by auto

lemma disj-op-wff [intro]:
assumes A ∈ wffso and B ∈ wffso
shows A ∨Q B ∈ wffso
using assms by auto

lemma exists-wff [intro]:
assumes A ∈ wffso
shows ∃ xα. A ∈ wffso
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using assms by fastforce

lemma inequality-wff [intro]:
assumes A ∈ wffsα and B ∈ wffsα
shows A 6=α B ∈ wffso
using assms by fastforce

lemma wffs-from-app:
assumes A � B ∈ wffsβ
obtains α where A ∈ wffsα→β and B ∈ wffsα
using assms by (blast elim: wffs-of-type-cases)

lemma wffs-from-generalized-app:
assumes �Q? B As ∈ wffsβ
obtains ts
where length ts = length As
and ∀ k < length As. As ! k ∈ wffsts ! k
and B ∈ wffsfoldr (→) ts β

using assms proof (induction As arbitrary: B thesis)
case Nil
then show ?case

by simp
next

case (Cons A As)
from Cons.prems have �Q? (B � A) As ∈ wffsβ

by auto
then obtain ts

where length ts = length As
and ∀ k < length As. As ! k ∈ wffsts ! k
and B � A ∈ wffsfoldr (→) ts β
using Cons.IH by blast

moreover
from ‹B � A ∈ wffsfoldr (→) ts β› obtain t where B ∈ wffst→foldr (→) ts β and A ∈ wffst

by (elim wffs-from-app)
moreover from ‹length ts = length As› have length (t # ts) = length (A # As)

by simp
moreover from ‹A ∈ wffst› and ‹∀ k < length As. As ! k ∈ wffsts ! k›
have ∀ k < length (A # As). (A # As) ! k ∈ wffs(t # ts) ! k

by (simp add: nth-Cons ′)
moreover from ‹B ∈ wffst→foldr (→) ts β› have B ∈ wffsfoldr (→) (t # ts) β

by simp
ultimately show ?case

using Cons.prems(1 ) by blast
qed

lemma wffs-from-abs:
assumes λxα. A ∈ wffsγ
obtains β where γ = α→β and A ∈ wffsβ
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using assms by (blast elim: wffs-of-type-cases)

lemma wffs-from-equality:
assumes A =α B ∈ wffso
shows A ∈ wffsα and B ∈ wffsα
using assms by (fastforce elim: wffs-of-type-cases)+

lemma wffs-from-equivalence:
assumes A ≡Q B ∈ wffso
shows A ∈ wffso and B ∈ wffso
using assms unfolding equivalence-def by (fact wffs-from-equality)+

lemma wffs-from-forall:
assumes ∀ xα. A ∈ wffso
shows A ∈ wffso
using assms unfolding forall-def and PI-def
by (fold equality-of-type-def ) (drule wffs-from-equality, blast elim: wffs-from-abs)

lemma wffs-from-conj-fun:
assumes ∧o→o→o � A � B ∈ wffso
shows A ∈ wffso and B ∈ wffso
using assms by (auto elim: wffs-from-app wffs-from-abs)

lemma wffs-from-conj-op:
assumes A ∧Q B ∈ wffso
shows A ∈ wffso and B ∈ wffso
using assms unfolding conj-op-def by (elim wffs-from-conj-fun)+

lemma wffs-from-imp-fun:
assumes ⊃o→o→o � A � B ∈ wffso
shows A ∈ wffso and B ∈ wffso
using assms by (auto elim: wffs-from-app wffs-from-abs)

lemma wffs-from-imp-op:
assumes A ⊃Q B ∈ wffso
shows A ∈ wffso and B ∈ wffso
using assms unfolding imp-op-def by (elim wffs-from-imp-fun)+

lemma wffs-from-neg:
assumes ∼Q A ∈ wffso
shows A ∈ wffso
using assms unfolding neg-def by (fold equality-of-type-def ) (drule wffs-from-equality, blast)

lemma wffs-from-disj-fun:
assumes ∨o→o→o � A � B ∈ wffso
shows A ∈ wffso and B ∈ wffso
using assms by (auto elim: wffs-from-app wffs-from-abs)

lemma wffs-from-disj-op:
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assumes A ∨Q B ∈ wffso
shows A ∈ wffso and B ∈ wffso
using assms and wffs-from-disj-fun unfolding disj-op-def by blast+

lemma wffs-from-exists:
assumes ∃ xα. A ∈ wffso
shows A ∈ wffso
using assms unfolding exists-def using wffs-from-neg and wffs-from-forall by blast

lemma wffs-from-inequality:
assumes A 6=α B ∈ wffso
shows A ∈ wffsα and B ∈ wffsα
using assms unfolding inequality-of-type-def using wffs-from-equality and wffs-from-neg by me-

son+

lemma wff-has-unique-type:
assumes A ∈ wffsα and A ∈ wffsβ
shows α = β

using assms proof (induction arbitrary: α β rule: form.induct)
case (FVar v)
obtain x and γ where v = (x, γ)

by fastforce
with FVar .prems have α = γ and β = γ

by (blast elim: wffs-of-type-cases)+
then show ?case ..

next
case (FCon k)
obtain x and γ where k = (x, γ)

by fastforce
with FCon.prems have α = γ and β = γ

by (blast elim: wffs-of-type-cases)+
then show ?case ..

next
case (FApp A B)
from FApp.prems obtain α ′ and β ′ where A ∈ wffsα ′→α and A ∈ wffsβ ′→β

by (blast elim: wffs-from-app)
with FApp.IH (1 ) show ?case

by blast
next

case (FAbs v A)
obtain x and γ where v = (x, γ)

by fastforce
with FAbs.prems obtain α ′ and β ′

where α = γ→α ′ and β = γ→β ′ and A ∈ wffsα ′ and A ∈ wffsβ ′

by (blast elim: wffs-from-abs)
with FAbs.IH show ?case

by simp
qed
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lemma wffs-of-type-o-induct [consumes 1 , case-names Var Con App]:
assumes A ∈ wffso
and

∧
x. P (xo)

and
∧

c. P ({|c|}o)
and

∧
A B α. A ∈ wffsα→o =⇒ B ∈ wffsα =⇒ P (A � B)

shows P A
using assms by (cases rule: wffs-of-type-cases) simp-all

lemma diff-types-implies-diff-wffs:
assumes A ∈ wffsα and B ∈ wffsβ
and α 6= β
shows A 6= B
using assms and wff-has-unique-type by blast

lemma is-free-for-in-generalized-app [intro]:
assumes is-free-for A v B and ∀C ∈ lset Cs. is-free-for A v C
shows is-free-for A v (�Q? B Cs)

using assms proof (induction Cs rule: rev-induct)
case Nil
then show ?case

by simp
next

case (snoc C Cs)
from snoc.prems(2 ) have is-free-for A v C and ∀C ∈ lset Cs. is-free-for A v C

by simp-all
with snoc.prems(1 ) have is-free-for A v (�Q? B Cs)

using snoc.IH by simp
with ‹is-free-for A v C › show ?case

using is-free-for-to-app by simp
qed

lemma is-free-for-in-equality [intro]:
assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B =α C )
using assms unfolding equality-of-type-def and Q-def and Q-constant-of-type-def
by (intro is-free-for-to-app is-free-for-in-con)

lemma is-free-for-in-equivalence [intro]:
assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B ≡Q C )
using assms unfolding equivalence-def by (rule is-free-for-in-equality)

lemma is-free-for-in-true [intro]:
shows is-free-for A v (To)
by force

lemma is-free-for-in-false [intro]:
shows is-free-for A v (Fo)
unfolding false-def by (intro is-free-for-in-equality is-free-for-closed-form) simp-all
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lemma is-free-for-in-forall [intro]:
assumes is-free-for A v B and (x, α) /∈ free-vars A
shows is-free-for A v (∀ xα. B)

unfolding forall-def and PI-def proof (fold equality-of-type-def )
have is-free-for A v (λxα. To)

using is-free-for-to-abs[OF is-free-for-in-true assms(2 )] by fastforce
moreover have is-free-for A v (λxα. B)

by (fact is-free-for-to-abs[OF assms])
ultimately show is-free-for A v (λxα. To =α→o λxα. B)

by (iprover intro: assms(1 ) is-free-for-in-equality is-free-for-in-true is-free-for-to-abs)
qed

lemma is-free-for-in-generalized-forall [intro]:
assumes is-free-for A v B and lset vs ∩ free-vars A = {}
shows is-free-for A v (∀Q

? vs B)
using assms proof (induction vs)

case Nil
then show ?case

by simp
next

case (Cons v ′ vs)
obtain x and α where v ′ = (x, α)

by fastforce
from Cons.prems(2 ) have v ′ /∈ free-vars A and lset vs ∩ free-vars A = {}

by simp-all
from Cons.prems(1 ) and ‹lset vs ∩ free-vars A = {}› have is-free-for A v (∀Q

? vs B)
by (fact Cons.IH )

from this and ‹v ′ /∈ free-vars A›[unfolded ‹v ′ = (x, α)›] have is-free-for A v (∀ xα. ∀Q
? vs B)

by (intro is-free-for-in-forall)
with ‹v ′ = (x, α)› show ?case

by simp
qed

lemma is-free-for-in-conj [intro]:
assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B ∧Q C )

proof −
have free-vars ∧o→o→o = {}

by force
then have is-free-for A v (∧o→o→o)

using is-free-for-closed-form by fast
with assms have is-free-for A v (∧o→o→o � B � C )

by (intro is-free-for-to-app)
then show ?thesis

by (fold conj-op-def )
qed

lemma is-free-for-in-imp [intro]:
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assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B ⊃Q C )

proof −
have free-vars ⊃o→o→o = {}

by force
then have is-free-for A v (⊃o→o→o)

using is-free-for-closed-form by fast
with assms have is-free-for A v (⊃o→o→o � B � C )

by (intro is-free-for-to-app)
then show ?thesis

by (fold imp-op-def )
qed

lemma is-free-for-in-neg [intro]:
assumes is-free-for A v B
shows is-free-for A v (∼Q B)
using assms unfolding neg-def and Q-def and Q-constant-of-type-def
by (intro is-free-for-to-app is-free-for-in-false is-free-for-in-con)

lemma is-free-for-in-disj [intro]:
assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B ∨Q C )

proof −
have free-vars ∨o→o→o = {}

by force
then have is-free-for A v (∨o→o→o)

using is-free-for-closed-form by fast
with assms have is-free-for A v (∨o→o→o � B � C )

by (intro is-free-for-to-app)
then show ?thesis

by (fold disj-op-def )
qed

lemma replacement-preserves-typing:
assumes C 〈|p ← B|〉 � D
and A �p C
and A ∈ wffsα and B ∈ wffsα
shows C ∈ wffsβ ←→ D ∈ wffsβ

using assms proof (induction arbitrary: β rule: is-replacement-at.induct)
case (pos-found p C C ′ A)
then show ?case

using diff-types-implies-diff-wffs by auto
qed (metis is-subform-at.simps(2 ,3 ,4 ) wffs-from-app wffs-from-abs wffs-of-type-simps)+

corollary replacement-preserves-typing ′:
assumes C 〈|p ← B|〉 � D
and A �p C
and A ∈ wffsα and B ∈ wffsα
and C ∈ wffsβ and D ∈ wffsγ
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shows β = γ
using assms and replacement-preserves-typing and wff-has-unique-type by simp

Closed formulas and sentences:
definition is-closed-wff-of-type :: form ⇒ type ⇒ bool where
[iff ]: is-closed-wff-of-type A α ←→ A ∈ wffsα ∧ free-vars A = {}

definition is-sentence :: form ⇒ bool where
[iff ]: is-sentence A ←→ is-closed-wff-of-type A o

2.14 Substitutions
type-synonym substitution = (var , form) fmap

definition is-substitution :: substitution ⇒ bool where
[iff ]: is-substitution ϑ ←→ (∀ (x, α) ∈ fmdom ′ ϑ. ϑ $$! (x, α) ∈ wffsα)

fun substitute :: substitution ⇒ form ⇒ form (S - - [51 , 51 ]) where
S ϑ (xα) = (case ϑ $$ (x, α) of None ⇒ xα | Some A ⇒ A)
| S ϑ ({|c|}α) = {|c|}α
| S ϑ (A � B) = (S ϑ A) � (S ϑ B)
| S ϑ (λxα. A) = (if (x, α) /∈ fmdom ′ ϑ then λxα. S ϑ A else λxα. S (fmdrop (x, α) ϑ) A)

lemma empty-substitution-neutrality:
shows S {$$} A = A
by (induction A) auto

lemma substitution-preserves-typing:
assumes is-substitution ϑ
and A ∈ wffsα
shows S ϑ A ∈ wffsα

using assms(2 ) and assms(1 )[unfolded is-substitution-def ] proof (induction arbitrary: ϑ)
case (var-is-wff α x)
then show ?case

by (cases (x, α) ∈ fmdom ′ ϑ) (use fmdom ′-notI in ‹force+›)
next

case (abs-is-wff β A α x)
then show ?case
proof (cases (x, α) ∈ fmdom ′ ϑ)

case True
then have S ϑ (λxα. A) = λxα. S (fmdrop (x, α) ϑ) A

by simp
moreover from abs-is-wff .prems have is-substitution (fmdrop (x, α) ϑ)

by fastforce
with abs-is-wff .IH have S (fmdrop (x, α) ϑ) A ∈ wffsβ

by simp
ultimately show ?thesis

by auto
next
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case False
then have S ϑ (λxα. A) = λxα. S ϑ A

by simp
moreover from abs-is-wff .IH have S ϑ A ∈ wffsβ

using abs-is-wff .prems by blast
ultimately show ?thesis

by fastforce
qed

qed force+

lemma derived-substitution-simps:
shows S ϑ To = To
and S ϑ Fo = Fo
and S ϑ (

∏
α) =

∏
α

and S ϑ (∼Q B) = ∼Q (S ϑ B)
and S ϑ (B =α C ) = (S ϑ B) =α (S ϑ C )
and S ϑ (B ∧Q C ) = (S ϑ B) ∧Q (S ϑ C )
and S ϑ (B ∨Q C ) = (S ϑ B) ∨Q (S ϑ C )
and S ϑ (B ⊃Q C ) = (S ϑ B) ⊃Q (S ϑ C )
and S ϑ (B ≡Q C ) = (S ϑ B) ≡Q (S ϑ C )
and S ϑ (B 6=α C ) = (S ϑ B) 6=α (S ϑ C )
and S ϑ (∀ xα. B) = (if (x, α) /∈ fmdom ′ ϑ then ∀ xα. S ϑ B else ∀ xα. S (fmdrop (x, α) ϑ) B)
and S ϑ (∃ xα. B) = (if (x, α) /∈ fmdom ′ ϑ then ∃ xα. S ϑ B else ∃ xα. S (fmdrop (x, α) ϑ) B)
by auto

lemma generalized-app-substitution:
shows S ϑ (�Q? A Bs) = �Q? (S ϑ A) (map (λB. S ϑ B) Bs)
by (induction Bs arbitrary: A) simp-all

lemma generalized-abs-substitution:
shows S ϑ (λQ? vs A) = λQ? vs (S (fmdrop-set (fmdom ′ ϑ ∩ lset vs) ϑ) A)

proof (induction vs arbitrary: ϑ)
case Nil
then show ?case

by simp
next

case (Cons v vs)
obtain x and α where v = (x, α)

by fastforce
then show ?case
proof (cases v /∈ fmdom ′ ϑ)

case True
then have ∗: fmdom ′ ϑ ∩ lset (v # vs) = fmdom ′ ϑ ∩ lset vs

by simp
from True have S ϑ (λQ? (v # vs) A) = λxα. S ϑ (λQ? vs A)

using ‹v = (x, α)› by auto
also have . . . = λxα. λQ? vs (S (fmdrop-set (fmdom ′ ϑ ∩ lset vs) ϑ) A)

using Cons.IH by (simp only:)
also have . . . = λQ? (v # vs) (S (fmdrop-set (fmdom ′ ϑ ∩ lset (v # vs)) ϑ) A)
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using ‹v = (x, α)› and ∗ by auto
finally show ?thesis .

next
case False
let ?ϑ ′ = fmdrop v ϑ
have ∗: fmdrop-set (fmdom ′ ϑ ∩ lset (v # vs)) ϑ = fmdrop-set (fmdom ′ ?ϑ ′ ∩ lset vs) ?ϑ ′

using False by clarsimp (metis Int-Diff Int-commute fmdrop-set-insert insert-Diff-single)
from False have S ϑ (λQ? (v # vs) A) = λxα. S ?ϑ ′ (λQ? vs A)

using ‹v = (x, α)› by auto
also have . . . = λxα. λQ? vs (S (fmdrop-set (fmdom ′ ?ϑ ′ ∩ lset vs) ?ϑ ′) A)

using Cons.IH by (simp only:)
also have . . . = λQ? (v # vs) (S (fmdrop-set (fmdom ′ ϑ ∩ lset (v # vs)) ϑ) A)

using ‹v = (x, α)› and ∗ by auto
finally show ?thesis .

qed
qed

lemma generalized-forall-substitution:
shows S ϑ (∀Q

? vs A) = ∀Q
? vs (S (fmdrop-set (fmdom ′ ϑ ∩ lset vs) ϑ) A)

proof (induction vs arbitrary: ϑ)
case Nil
then show ?case

by simp
next

case (Cons v vs)
obtain x and α where v = (x, α)

by fastforce
then show ?case
proof (cases v /∈ fmdom ′ ϑ)

case True
then have ∗: fmdom ′ ϑ ∩ lset (v # vs) = fmdom ′ ϑ ∩ lset vs

by simp
from True have S ϑ (∀Q

? (v # vs) A) = ∀ xα. S ϑ (∀Q
? vs A)

using ‹v = (x, α)› by auto
also have . . . = ∀ xα. ∀Q

? vs (S (fmdrop-set (fmdom ′ ϑ ∩ lset vs) ϑ) A)
using Cons.IH by (simp only:)

also have . . . = ∀Q
? (v # vs) (S (fmdrop-set (fmdom ′ ϑ ∩ lset (v # vs)) ϑ) A)

using ‹v = (x, α)› and ∗ by auto
finally show ?thesis .

next
case False
let ?ϑ ′ = fmdrop v ϑ
have ∗: fmdrop-set (fmdom ′ ϑ ∩ lset (v # vs)) ϑ = fmdrop-set (fmdom ′ ?ϑ ′ ∩ lset vs) ?ϑ ′

using False by clarsimp (metis Int-Diff Int-commute fmdrop-set-insert insert-Diff-single)
from False have S ϑ (∀Q

? (v # vs) A) = ∀ xα. S ?ϑ ′ (∀Q
? vs A)

using ‹v = (x, α)› by auto
also have . . . = ∀ xα. ∀Q

? vs (S (fmdrop-set (fmdom ′ ?ϑ ′ ∩ lset vs) ?ϑ ′) A)
using Cons.IH by (simp only:)

also have . . . = ∀Q
? (v # vs) (S (fmdrop-set (fmdom ′ ϑ ∩ lset (v # vs)) ϑ) A)
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using ‹v = (x, α)› and ∗ by auto
finally show ?thesis .

qed
qed

lemma singleton-substitution-simps:
shows S {(x, α) � A} (yβ) = (if (x, α) 6= (y, β) then yβ else A)

and S {(x, α) � A} ({|c|}α) = {|c|}α
and S {(x, α) � A} (B � C ) = (S {(x, α) � A} B) � (S {(x, α) � A} C )
and S {(x, α) � A} (λyβ . B) = λyβ . (if (x, α) = (y, β) then B else S {(x, α) � A} B)

by (simp-all add: empty-substitution-neutrality fmdrop-fmupd-same)

lemma substitution-preserves-freeness:
assumes y /∈ free-vars A and y 6= z
shows y /∈ free-vars S {x � FVar z} A

using assms(1 ) proof (induction A rule: free-vars-form.induct)
case (1 x ′ α)
with assms(2 ) show ?case

using surj-pair [of z] by (cases x = (x ′, α)) force+
next

case (4 x ′ α A)
then show ?case

using surj-pair [of z]
by (cases x = (x ′, α)) (use singleton-substitution-simps(4 ) in presburger , auto)

qed auto

lemma renaming-substitution-minimal-change:
assumes y /∈ vars A and y 6= z
shows y /∈ vars (S {x � FVar z} A)

using assms(1 ) proof (induction A rule: vars-form.induct)
case (1 x ′ α)
with assms(2 ) show ?case

using surj-pair [of z] by (cases x = (x ′, α)) force+
next

case (4 x ′ α A)
then show ?case

using surj-pair [of z]
by (cases x = (x ′, α)) (use singleton-substitution-simps(4 ) in presburger , auto)

qed auto

lemma free-var-singleton-substitution-neutrality:
assumes v /∈ free-vars A
shows S {v � B} A = A
using assms
by
(induction A rule: free-vars-form.induct)
(simp-all, metis empty-substitution-neutrality fmdrop-empty fmdrop-fmupd-same)

lemma identity-singleton-substitution-neutrality:
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shows S {v � FVar v} A = A
by
(induction A rule: free-vars-form.induct)
(simp-all add: empty-substitution-neutrality fmdrop-fmupd-same)

lemma free-var-in-renaming-substitution:
assumes x 6= y
shows (x, α) /∈ free-vars (S {(x, α) � yα} B)
using assms by (induction B rule: free-vars-form.induct) simp-all

lemma renaming-substitution-preserves-form-size:
shows form-size (S {v � FVar v ′} A) = form-size A

proof (induction A rule: form-size.induct)
case (1 x α)
then show ?case

using form-size.elims by auto
next

case (4 x α A)
then show ?case

by (cases v = (x, α)) (use singleton-substitution-simps(4 ) in presburger , auto)
qed simp-all

The following lemma corresponds to X5100 in [2]:
lemma substitution-composability:

assumes v ′ /∈ vars B
shows S {v ′ � A} S {v � FVar v ′} B = S {v � A} B

using assms proof (induction B arbitrary: v ′)
case (FAbs w C )
then show ?case
proof (cases v = w)

case True
from ‹v ′ /∈ vars (FAbs w C )› have v ′ /∈ free-vars (FAbs w C )

using free-vars-in-all-vars by blast
then have S {v ′ � A} (FAbs w C ) = FAbs w C

by (rule free-var-singleton-substitution-neutrality)
from ‹v = w› have v /∈ free-vars (FAbs w C )

using surj-pair [of w] by fastforce
then have S {v � A} (FAbs w C ) = FAbs w C

by (fact free-var-singleton-substitution-neutrality)
also from ‹S {v ′ � A} (FAbs w C ) = FAbs w C › have . . . = S {v ′ � A} (FAbs w C )

by (simp only:)
also from ‹v = w› have . . . = S {v ′ � A} S {v � FVar v ′} (FAbs w C )

using free-var-singleton-substitution-neutrality[OF ‹v /∈ free-vars (FAbs w C )›] by (simp only:)
finally show ?thesis ..

next
case False
from FAbs.prems have v ′ /∈ vars C

using surj-pair [of w] by fastforce
then show ?thesis
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proof (cases v ′ = w)
case True
with FAbs.prems show ?thesis

using vars-form.elims by auto
next

case False
from ‹v 6= w› have S {v � A} (FAbs w C ) = FAbs w (S {v � A} C )

using surj-pair [of w] by fastforce
also from FAbs.IH have . . . = FAbs w (S {v ′ � A} S {v � FVar v ′} C )

using ‹v ′ /∈ vars C › by simp
also from ‹v ′ 6= w› have . . . = S {v ′ � A} (FAbs w (S {v � FVar v ′} C ))

using surj-pair [of w] by fastforce
also from ‹v 6= w› have . . . = S {v ′ � A} S {v � FVar v ′} (FAbs w C )

using surj-pair [of w] by fastforce
finally show ?thesis ..

qed
qed

qed auto

The following lemma corresponds to X5101 in [2]:
lemma renaming-substitution-composability:

assumes z /∈ free-vars A and is-free-for (FVar z) x A
shows S {z � FVar y} S {x � FVar z} A = S {x � FVar y} A

using assms proof (induction A arbitrary: z)
case (FVar v)
then show ?case

using surj-pair [of v] and surj-pair [of z] by fastforce
next

case (FCon k)
then show ?case

using surj-pair [of k] by fastforce
next

case (FApp B C )
let ?ϑzy = {z � FVar y} and ?ϑxz = {x � FVar z} and ?ϑxy = {x � FVar y}
from ‹is-free-for (FVar z) x (B � C )› have is-free-for (FVar z) x B and is-free-for (FVar z) x C

using is-free-for-from-app by iprover+
moreover from ‹z /∈ free-vars (B � C )› have z /∈ free-vars B and z /∈ free-vars C

by simp-all
ultimately have ∗: S ?ϑzy S ?ϑxz B = S ?ϑxy B and ∗∗: S ?ϑzy S ?ϑxz C = S ?ϑxy C

using FApp.IH by simp-all
have S ?ϑzy S ?ϑxz (B � C ) = (S ?ϑzy S ?ϑxz B) � (S ?ϑzy S ?ϑxz C )

by simp
also from ∗ and ∗∗ have . . . = (S ?ϑxy B) � (S ?ϑxy C )

by (simp only:)
also have . . . = S ?ϑxy (B � C )

by simp
finally show ?case .

next
case (FAbs w B)
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let ?ϑzy = {z � FVar y} and ?ϑxz = {x � FVar z} and ?ϑxy = {x � FVar y}
show ?case
proof (cases x = w)

case True
then show ?thesis
proof (cases z = w)

case True
with ‹x = w› have x /∈ free-vars (FAbs w B) and z /∈ free-vars (FAbs w B)

using surj-pair [of w] by fastforce+
from ‹x /∈ free-vars (FAbs w B)› have S ?ϑxy (FAbs w B) = FAbs w B

by (fact free-var-singleton-substitution-neutrality)
also from ‹z /∈ free-vars (FAbs w B)› have . . . = S ?ϑzy (FAbs w B)

by (fact free-var-singleton-substitution-neutrality[symmetric])
also from ‹x /∈ free-vars (FAbs w B)› have . . . = S ?ϑzy S ?ϑxz (FAbs w B)

using free-var-singleton-substitution-neutrality by simp
finally show ?thesis ..

next
case False
with ‹x = w› have z /∈ free-vars B and x /∈ free-vars (FAbs w B)

using ‹z /∈ free-vars (FAbs w B)› and surj-pair [of w] by fastforce+
from ‹z /∈ free-vars B› have S ?ϑzy B = B

by (fact free-var-singleton-substitution-neutrality)
from ‹x /∈ free-vars (FAbs w B)› have S ?ϑxy (FAbs w B) = FAbs w B

by (fact free-var-singleton-substitution-neutrality)
also from ‹S ?ϑzy B = B› have . . . = FAbs w (S ?ϑzy B)

by (simp only:)
also from ‹z /∈ free-vars (FAbs w B)› have . . . = S ?ϑzy (FAbs w B)

by (simp add: ‹FAbs w B = FAbs w (S ?ϑzy B)› free-var-singleton-substitution-neutrality)
also from ‹x /∈ free-vars (FAbs w B)› have . . . = S ?ϑzy S ?ϑxz (FAbs w B)

using free-var-singleton-substitution-neutrality by simp
finally show ?thesis ..

qed
next

case False
then show ?thesis
proof (cases z = w)

case True
have x /∈ free-vars B
proof (rule ccontr)

assume ¬ x /∈ free-vars B
with ‹x 6= w› have x ∈ free-vars (FAbs w B)

using surj-pair [of w] by fastforce
then obtain p where p ∈ positions (FAbs w B) and is-free-at x p (FAbs w B)

using free-vars-in-is-free-at by blast
with ‹is-free-for (FVar z) x (FAbs w B)› have ¬ in-scope-of-abs z p (FAbs w B)

by (meson empty-is-position is-free-at-in-free-vars is-free-at-in-var is-free-for-def )
moreover obtain p ′ where p = « # p ′

using is-free-at-from-absE [OF ‹is-free-at x p (FAbs w B)›] by blast
ultimately have z 6= w
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using in-scope-of-abs-in-abs by blast
with ‹z = w› show False

by contradiction
qed
then have ∗: S ?ϑxy B = S ?ϑxz B

using free-var-singleton-substitution-neutrality by auto
from ‹x 6= w› have S ?ϑxy (FAbs w B) = FAbs w (S ?ϑxy B)

using surj-pair [of w] by fastforce
also from ∗ have . . . = FAbs w (S ?ϑxz B)

by (simp only:)
also from FAbs.prems(1 ) have . . . = S ?ϑzy (FAbs w (S ?ϑxz B))

using ‹x /∈ free-vars B› and free-var-singleton-substitution-neutrality by auto
also from ‹x 6= w› have . . . = S ?ϑzy S ?ϑxz (FAbs w B)

using surj-pair [of w] by fastforce
finally show ?thesis ..

next
case False
obtain vw and α where w = (vw, α)

by fastforce
with ‹is-free-for (FVar z) x (FAbs w B)› and ‹x 6= w› have is-free-for (FVar z) x B

using is-free-for-from-abs by iprover
moreover from ‹z /∈ free-vars (FAbs w B)› and ‹z 6= w› and ‹w = (vw, α)› have z /∈ free-vars

B
by simp

ultimately have ∗: S ?ϑzy S ?ϑxz B = S ?ϑxy B
using FAbs.IH by simp

from ‹x 6= w› have S ?ϑxy (FAbs w B) = FAbs w (S ?ϑxy B)
using ‹w = (vw, α)› and free-var-singleton-substitution-neutrality by simp

also from ∗ have . . . = FAbs w (S ?ϑzy S ?ϑxz B)
by (simp only:)

also from ‹z 6= w› have . . . = S ?ϑzy (FAbs w (S ?ϑxz B))
using ‹w = (vw, α)› and free-var-singleton-substitution-neutrality by simp

also from ‹x 6= w› have . . . = S ?ϑzy S ?ϑxz (FAbs w B)
using ‹w = (vw, α)› and free-var-singleton-substitution-neutrality by simp

finally show ?thesis ..
qed

qed
qed

lemma absent-vars-substitution-preservation:
assumes v /∈ vars A
and ∀ v ′ ∈ fmdom ′ ϑ. v /∈ vars (ϑ $$! v ′)
shows v /∈ vars (S ϑ A)

using assms proof (induction A arbitrary: ϑ)
case (FVar v ′)
then show ?case

using surj-pair [of v ′] by (cases v ′ ∈ fmdom ′ ϑ) (use fmlookup-dom ′-iff in force)+
next

case (FCon k)
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then show ?case
using surj-pair [of k] by fastforce

next
case FApp
then show ?case

by simp
next

case (FAbs w B)
from FAbs.prems(1 ) have v /∈ vars B

using vars-form.elims by auto
then show ?case
proof (cases w ∈ fmdom ′ ϑ)

case True
from FAbs.prems(2 ) have ∀ v ′ ∈ fmdom ′ (fmdrop w ϑ). v /∈ vars ((fmdrop w ϑ) $$! v ′)

by auto
with ‹v /∈ vars B› have v /∈ vars (S (fmdrop w ϑ) B)

by (fact FAbs.IH )
with FAbs.prems(1 ) have v /∈ vars (FAbs w (S (fmdrop w ϑ) B))

using surj-pair [of w] by fastforce
moreover from True have S ϑ (FAbs w B) = FAbs w (S (fmdrop w ϑ) B)

using surj-pair [of w] by fastforce
ultimately show ?thesis

by simp
next

case False
then show ?thesis

using FAbs.IH and FAbs.prems and surj-pair [of w] by fastforce
qed

qed

lemma substitution-free-absorption:
assumes ϑ $$ v = None and v /∈ free-vars B
shows S ({v � A} ++f ϑ) B = S ϑ B

using assms proof (induction B arbitrary: ϑ)
case (FAbs w B)
show ?case
proof (cases v 6= w)

case True
with FAbs.prems(2 ) have v /∈ free-vars B

using surj-pair [of w] by fastforce
then show ?thesis
proof (cases w ∈ fmdom ′ ϑ)

case True
then have S ({v � A} ++f ϑ) (FAbs w B) = FAbs w (S (fmdrop w ({v � A} ++f ϑ)) B)

using surj-pair [of w] by fastforce
also from ‹v 6= w› and True have . . . = FAbs w (S ({v � A} ++f fmdrop w ϑ) B)

by (simp add: fmdrop-fmupd)
also from FAbs.prems(1 ) and ‹v /∈ free-vars B› have . . . = FAbs w (S (fmdrop w ϑ) B)

using FAbs.IH by simp
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also from True have . . . = S ϑ (FAbs w B)
using surj-pair [of w] by fastforce

finally show ?thesis .
next

case False
with FAbs.prems(1 ) have S ({v � A} ++f ϑ) (FAbs w B) = FAbs w (S ({v � A} ++f ϑ) B)

using ‹v 6= w› and surj-pair [of w] by fastforce
also from FAbs.prems(1 ) and ‹v /∈ free-vars B› have . . . = FAbs w (S ϑ B)

using FAbs.IH by simp
also from False have . . . = S ϑ (FAbs w B)

using surj-pair [of w] by fastforce
finally show ?thesis .

qed
next

case False
then have fmdrop w ({v � A} ++f ϑ) = fmdrop w ϑ

by (simp add: fmdrop-fmupd-same)
then show ?thesis

using surj-pair [of w] by (metis (no-types, lifting) fmdrop-idle ′ substitute.simps(4 ))
qed

qed fastforce+

lemma substitution-absorption:
assumes ϑ $$ v = None and v /∈ vars B
shows S ({v � A} ++f ϑ) B = S ϑ B
using assms by (meson free-vars-in-all-vars in-mono substitution-free-absorption)

lemma is-free-for-with-renaming-substitution:
assumes is-free-for A x B
and y /∈ vars B
and x /∈ fmdom ′ ϑ
and ∀ v ∈ fmdom ′ ϑ. y /∈ vars (ϑ $$! v)
and ∀ v ∈ fmdom ′ ϑ. is-free-for (ϑ $$! v) v B
shows is-free-for A y (S ({x � FVar y} ++f ϑ) B)

using assms proof (induction B arbitrary: ϑ)
case (FVar w)
then show ?case
proof (cases w = x)

case True
with FVar .prems(3 ) have S ({x � FVar y} ++f ϑ) (FVar w) = FVar y

using surj-pair [of w] by fastforce
then show ?thesis

using self-subform-is-at-top by fastforce
next

case False
then show ?thesis
proof (cases w ∈ fmdom ′ ϑ)

case True
from False have S ({x � FVar y} ++f ϑ) (FVar w) = S ϑ (FVar w)

68



using substitution-absorption and surj-pair [of w] by force
also from True have . . . = ϑ $$! w

using surj-pair [of w] by (metis fmdom ′-notI option.case-eq-if substitute.simps(1 ))
finally have S ({x � FVar y} ++f ϑ) (FVar w) = ϑ $$! w .
moreover from True and FVar .prems(4 ) have y /∈ vars (ϑ $$! w)

by blast
ultimately show ?thesis

using form-is-free-for-absent-var by presburger
next

case False
with FVar .prems(3 ) and ‹w 6= x› have S ({x � FVar y} ++f ϑ) (FVar w) = FVar w

using surj-pair [of w] by fastforce
with FVar .prems(2 ) show ?thesis

using form-is-free-for-absent-var by presburger
qed

qed
next

case (FCon k)
then show ?case

using surj-pair [of k] by fastforce
next

case (FApp C D)
from FApp.prems(2 ) have y /∈ vars C and y /∈ vars D

by simp-all
from FApp.prems(1 ) have is-free-for A x C and is-free-for A x D

using is-free-for-from-app by iprover+
have ∀ v ∈ fmdom ′ ϑ. is-free-for (ϑ $$! v) v C ∧ is-free-for (ϑ $$! v) v D
proof (rule ballI )

fix v
assume v ∈ fmdom ′ ϑ
with FApp.prems(5 ) have is-free-for (ϑ $$! v) v (C � D)

by blast
then show is-free-for (ϑ $$! v) v C ∧ is-free-for (ϑ $$! v) v D

using is-free-for-from-app by iprover+
qed
then have
∗: ∀ v ∈ fmdom ′ ϑ. is-free-for (ϑ $$! v) v C and ∗∗: ∀ v ∈ fmdom ′ ϑ. is-free-for (ϑ $$! v) v D
by auto

have S ({x � FVar y} ++f ϑ) (C � D) = (S ({x � FVar y} ++f ϑ) C ) � (S ({x � FVar y}
++f ϑ) D)

by simp
moreover have is-free-for A y (S ({x � FVar y} ++f ϑ) C )

by (rule FApp.IH (1 )[OF ‹is-free-for A x C › ‹y /∈ vars C › FApp.prems(3 ,4 ) ∗])
moreover have is-free-for A y (S ({x � FVar y} ++f ϑ) D)

by (rule FApp.IH (2 )[OF ‹is-free-for A x D› ‹y /∈ vars D› FApp.prems(3 ,4 ) ∗∗])
ultimately show ?case

using is-free-for-in-app by simp
next

case (FAbs w B)
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obtain xw and αw where w = (xw, αw)
by fastforce

from FAbs.prems(2 ) have y /∈ vars B
using vars-form.elims by auto

then show ?case
proof (cases w = x)

case True
from True and ‹x /∈ fmdom ′ ϑ› have w /∈ fmdom ′ ϑ and x /∈ free-vars (FAbs w B)

using ‹w = (xw, αw)› by fastforce+
with True have S ({x � FVar y} ++f ϑ) (FAbs w B) = S ϑ (FAbs w B)

using substitution-free-absorption by blast
also have . . . = FAbs w (S ϑ B)

using ‹w = (xw, αw)› ‹w /∈ fmdom ′ ϑ› substitute.simps(4 ) by presburger
finally have S ({x � FVar y} ++f ϑ) (FAbs w B) = FAbs w (S ϑ B) .
moreover from ‹S ϑ (FAbs w B) = FAbs w (S ϑ B)› have y /∈ vars (FAbs w (S ϑ B))

using absent-vars-substitution-preservation[OF FAbs.prems(2 ,4 )] by simp
ultimately show ?thesis

using is-free-for-absent-var by (simp only:)
next

case False
obtain vw and αw where w = (vw, αw)

by fastforce
from FAbs.prems(1 ) and ‹w 6= x› and ‹w = (vw, αw)› have is-free-for A x B

using is-free-for-from-abs by iprover
then show ?thesis
proof (cases w ∈ fmdom ′ ϑ)

case True
then have S ({x � FVar y} ++f ϑ) (FAbs w B) = FAbs w (S (fmdrop w ({x � FVar y} ++f

ϑ)) B)
using ‹w = (vw, αw)› by (simp add: fmdrop-idle ′)

also from ‹w 6= x› and True have . . . = FAbs w (S ({x � FVar y} ++f fmdrop w ϑ) B)
by (simp add: fmdrop-fmupd)

finally
have ∗: S ({x � FVar y} ++f ϑ) (FAbs w B) = FAbs w (S ({x � FVar y} ++f fmdrop w ϑ)

B) .
have ∀ v ∈ fmdom ′ (fmdrop w ϑ). is-free-for (fmdrop w ϑ $$! v) v B
proof

fix v
assume v ∈ fmdom ′ (fmdrop w ϑ)
with FAbs.prems(5 ) have is-free-for (fmdrop w ϑ $$! v) v (FAbs w B)

by auto
moreover from ‹v ∈ fmdom ′ (fmdrop w ϑ)› have v 6= w

by auto
ultimately show is-free-for (fmdrop w ϑ $$! v) v B

unfolding ‹w = (vw, αw)› using is-free-for-from-abs by iprover
qed
moreover from FAbs.prems(3 ) have x /∈ fmdom ′ (fmdrop w ϑ)

by simp
moreover from FAbs.prems(4 ) have ∀ v ∈ fmdom ′ (fmdrop w ϑ). y /∈ vars (fmdrop w ϑ $$! v)
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by simp
ultimately have is-free-for A y (S ({x � FVar y} ++f fmdrop w ϑ) B)

using ‹is-free-for A x B› and ‹y /∈ vars B› and FAbs.IH by iprover
then show ?thesis
proof (cases x /∈ free-vars B)

case True
have y /∈ vars (S ({x � FVar y} ++f ϑ) (FAbs w B))
proof −

have S ({x � FVar y} ++f ϑ) (FAbs w B) = FAbs w (S ({x � FVar y} ++f fmdrop w ϑ)
B)

using ∗ .
also from ‹x /∈ free-vars B› and FAbs.prems(3 ) have . . . = FAbs w (S (fmdrop w ϑ) B)

using substitution-free-absorption by (simp add: fmdom ′-notD)
finally have S ({x � FVar y} ++f ϑ) (FAbs w B) = FAbs w (S (fmdrop w ϑ) B) .
with FAbs.prems(2 ) and ‹w = (vw, αw)› and FAbs.prems(4 ) show ?thesis

using absent-vars-substitution-preservation by auto
qed
then show ?thesis

using is-free-for-absent-var by simp
next

case False
have w /∈ free-vars A
proof (rule ccontr)

assume ¬ w /∈ free-vars A
with False and ‹w 6= x› have ¬ is-free-for A x (FAbs w B)

using form-with-free-binder-not-free-for by simp
with FAbs.prems(1 ) show False

by contradiction
qed
with ‹is-free-for A y (S ({x � FVar y} ++f fmdrop w ϑ) B)›
have is-free-for A y (FAbs w (S ({x � FVar y} ++f fmdrop w ϑ) B))

unfolding ‹w = (vw, αw)› using is-free-for-to-abs by iprover
with ∗ show ?thesis

by (simp only:)
qed

next
case False
have ∀ v ∈ fmdom ′ ϑ. is-free-for (ϑ $$! v) v B
proof (rule ballI )

fix v
assume v ∈ fmdom ′ ϑ
with FAbs.prems(5 ) have is-free-for (ϑ $$! v) v (FAbs w B)

by blast
moreover from ‹v ∈ fmdom ′ ϑ› and ‹w /∈ fmdom ′ ϑ› have v 6= w

by blast
ultimately show is-free-for (ϑ $$! v) v B

unfolding ‹w = (vw, αw)› using is-free-for-from-abs by iprover
qed
with ‹is-free-for A x B› and ‹y /∈ vars B› and FAbs.prems(3 ,4 )
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have is-free-for A y (S ({x � FVar y} ++f ϑ) B)
using FAbs.IH by iprover

then show ?thesis
proof (cases x /∈ free-vars B)

case True
have y /∈ vars (S ({x � FVar y} ++f ϑ) (FAbs w B))
proof −

from False and ‹w = (vw, αw)› and ‹w 6= x›
have S ({x � FVar y} ++f ϑ) (FAbs w B) = FAbs w (S ({x � FVar y} ++f ϑ) B)

by auto
also from ‹x /∈ free-vars B› and FAbs.prems(3 ) have . . . = FAbs w (S ϑ B)

using substitution-free-absorption by (simp add: fmdom ′-notD)
finally have S ({x � FVar y} ++f ϑ) (FAbs w B) = FAbs w (S ϑ B) .
with FAbs.prems(2 ,4 ) and ‹w = (vw, αw)› show ?thesis

using absent-vars-substitution-preservation by auto
qed
then show ?thesis

using is-free-for-absent-var by simp
next

case False
have w /∈ free-vars A
proof (rule ccontr)

assume ¬ w /∈ free-vars A
with False and ‹w 6= x› have ¬ is-free-for A x (FAbs w B)

using form-with-free-binder-not-free-for by simp
with FAbs.prems(1 ) show False

by contradiction
qed
with ‹is-free-for A y (S ({x � FVar y} ++f ϑ) B)›
have is-free-for A y (FAbs w (S ({x � FVar y} ++f ϑ) B))

unfolding ‹w = (vw, αw)› using is-free-for-to-abs by iprover
moreover from ‹w /∈ fmdom ′ ϑ› and ‹w 6= x› and FAbs.prems(3 )
have S ({x � FVar y} ++f ϑ) (FAbs w B) = FAbs w (S ({x � FVar y} ++f ϑ) B)

using surj-pair [of w] by fastforce
ultimately show ?thesis

by (simp only:)
qed

qed
qed

qed

The following lemma allows us to fuse a singleton substitution and a simultaneous substitution,
as long as the variable of the former does not occur anywhere in the latter:
lemma substitution-fusion:

assumes is-substitution ϑ and is-substitution {v � A}
and ϑ $$ v = None and ∀ v ′ ∈ fmdom ′ ϑ. v /∈ vars (ϑ $$! v ′)
shows S {v � A} S ϑ B = S ({v � A} ++f ϑ) B

using assms(1 ,3 ,4 ) proof (induction B arbitrary: ϑ)
case (FVar v ′)

72



then show ?case
proof (cases v ′ /∈ fmdom ′ ϑ)

case True
then show ?thesis

using surj-pair [of v ′] by fastforce
next

case False
then obtain A ′ where ϑ $$ v ′ = Some A ′

by (meson fmlookup-dom ′-iff )
with False and FVar .prems(3 ) have v /∈ vars A ′

by fastforce
then have S {v � A} A ′ = A ′

using free-var-singleton-substitution-neutrality and free-vars-in-all-vars by blast
from ‹ϑ $$ v ′ = Some A ′› have S {v � A} S ϑ (FVar v ′) = S {v � A} A ′

using surj-pair [of v ′] by fastforce
also from ‹S {v � A} A ′ = A ′› have . . . = A ′

by (simp only:)
also from ‹ϑ $$ v ′ = Some A ′› and ‹ϑ $$ v = None› have . . . = S ({v � A} ++f ϑ) (FVar v ′)

using surj-pair [of v ′] by fastforce
finally show ?thesis .

qed
next

case (FCon k)
then show ?case

using surj-pair [of k] by fastforce
next

case (FApp C D)
have S {v � A} S ϑ (C � D) = S {v � A} ((S ϑ C ) � (S ϑ D))

by auto
also have . . . = (S {v � A} S ϑ C ) � (S {v � A} S ϑ D)

by simp
also from FApp.IH have . . . = (S ({v � A} ++f ϑ) C ) � (S ({v � A} ++f ϑ) D)

using FApp.prems(1 ,2 ,3 ) by presburger
also have . . . = S ({v � A} ++f ϑ) (C � D)

by simp
finally show ?case .

next
case (FAbs w C )
obtain vw and α where w = (vw, α)

by fastforce
then show ?case
proof (cases v 6= w)

case True
show ?thesis
proof (cases w /∈ fmdom ′ ϑ)

case True
then have S {v � A} S ϑ (FAbs w C ) = S {v � A} (FAbs w (S ϑ C ))

by (simp add: ‹w = (vw, α)›)
also from ‹v 6= w› have . . . = FAbs w (S {v � A} S ϑ C )
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by (simp add: ‹w = (vw, α)›)
also from FAbs.IH have . . . = FAbs w (S ({v � A} ++f ϑ) C )

using FAbs.prems(1 ,2 ,3 ) by blast
also from ‹v 6= w› and True have . . . = S ({v � A} ++f ϑ) (FAbs w C )

by (simp add: ‹w = (vw, α)›)
finally show ?thesis .

next
case False
then have S {v � A} S ϑ (FAbs w C ) = S {v � A} (FAbs w (S (fmdrop w ϑ) C ))

by (simp add: ‹w = (vw, α)›)
also from ‹v 6= w› have . . . = FAbs w (S {v � A} S (fmdrop w ϑ) C )

by (simp add: ‹w = (vw, α)›)
also have . . . = FAbs w (S ({v � A} ++f fmdrop w ϑ) C )
proof −

from ‹is-substitution ϑ› have is-substitution (fmdrop w ϑ)
by fastforce

moreover from ‹ϑ $$ v = None› have (fmdrop w ϑ) $$ v = None
by force

moreover from FAbs.prems(3 ) have ∀ v ′ ∈ fmdom ′ (fmdrop w ϑ). v /∈ vars ((fmdrop w ϑ) $$!
v ′)

by force
ultimately show ?thesis

using FAbs.IH by blast
qed
also from ‹v 6= w› have . . . = S ({v � A} ++f ϑ) (FAbs w C )

by (simp add: ‹w = (vw, α)› fmdrop-idle ′)
finally show ?thesis .

qed
next

case False
then show ?thesis
proof (cases w /∈ fmdom ′ ϑ)

case True
then have S {v � A} S ϑ (FAbs w C ) = S {v � A} (FAbs w (S ϑ C ))

by (simp add: ‹w = (vw, α)›)
also from ‹¬ v 6= w› have . . . = FAbs w (S ϑ C )

using ‹w = (vw, α)› and singleton-substitution-simps(4 ) by presburger
also from ‹¬ v 6= w› and True have . . . = FAbs w (S (fmdrop w ({v � A} ++f ϑ)) C )

by (simp add: fmdrop-fmupd-same fmdrop-idle ′)
also from ‹¬ v 6= w› have . . . = S ({v � A} ++f ϑ) (FAbs w C )

by (simp add: ‹w = (vw, α)›)
finally show ?thesis .

next
case False
then have S {v � A} S ϑ (FAbs w C ) = S {v � A} (FAbs w (S (fmdrop w ϑ) C ))

by (simp add: ‹w = (vw, α)›)
also from ‹¬ v 6= w› have . . . = FAbs w (S (fmdrop w ϑ) C )

using ‹ϑ $$ v = None› and False by (simp add: fmdom ′-notI )
also from ‹¬ v 6= w› have . . . = FAbs w (S (fmdrop w ({v � A} ++f ϑ)) C )
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by (simp add: fmdrop-fmupd-same)
also from ‹¬ v 6= w› and False and ‹ϑ $$ v = None› have . . . = S ({v � A} ++f ϑ) (FAbs

w C )
by (simp add: fmdom ′-notI )

finally show ?thesis .
qed

qed
qed

lemma updated-substitution-is-substitution:
assumes v /∈ fmdom ′ ϑ and is-substitution (ϑ(v � A))
shows is-substitution ϑ

unfolding is-substitution-def proof (intro ballI )
fix v ′ :: var
obtain x and α where v ′ = (x, α)

by fastforce
assume v ′ ∈ fmdom ′ ϑ
with assms(2 )[unfolded is-substitution-def ] have v ′ ∈ fmdom ′ (ϑ(v � A))

by simp
with assms(2 )[unfolded is-substitution-def ] have ϑ(v � A) $$! (x, α) ∈ wffsα

using ‹v ′ = (x, α)› by fastforce
with assms(1 ) and ‹v ′ ∈ fmdom ′ ϑ› and ‹v ′ = (x, α)› have ϑ $$! (x, α) ∈ wffsα

by (metis fmupd-lookup)
then show case v ′ of (x, α) ⇒ ϑ $$! (x, α) ∈ wffsα

by (simp add: ‹v ′ = (x, α)›)
qed

definition is-renaming-substitution where
[iff ]: is-renaming-substitution ϑ ←→ is-substitution ϑ ∧ fmpred (λ- A. ∃ v. A = FVar v) ϑ

The following lemma proves that S.
x1
α1

... xn
αn

y1α1
... ynαn

B = S.
x1
α1

y1α1

· · · S.
xn
αn

ynαn
B provided that

• x1α1
. . . xnαn

are distinct variables

• y1α1
. . . ynαn

are distinct variables, distinct from x1α1
. . . xnαn

and from all variables in B
(i.e., they are fresh variables)

In other words, simultaneously renaming distinct variables with fresh ones is equivalent to
renaming each variable one at a time.
lemma fresh-vars-substitution-unfolding:

fixes ps :: (var × form) list
assumes ϑ = fmap-of-list ps and is-renaming-substitution ϑ
and distinct (map fst ps) and distinct (map snd ps)
and vars (fmran ′ ϑ) ∩ (fmdom ′ ϑ ∪ vars B) = {}
shows S ϑ B = foldr (λ(x, y) C . S {x � y} C ) ps B

using assms proof (induction ps arbitrary: ϑ)
case Nil
then have ϑ = {$$}
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by simp
then have S ϑ B = B

using empty-substitution-neutrality by (simp only:)
with Nil show ?case

by simp
next

case (Cons p ps)
from Cons.prems(1 ,2 ) obtain x and y where ϑ $$ (fst p) = Some (FVar y) and p = (x, FVar y)

using surj-pair [of p] by fastforce
let ?ϑ ′ = fmap-of-list ps
from Cons.prems(1 ) and ‹p = (x, FVar y)› have ϑ = fmupd x (FVar y) ?ϑ ′

by simp
moreover from Cons.prems(3 ) and ‹p = (x, FVar y)› have x /∈ fmdom ′ ?ϑ ′

by simp
ultimately have ϑ = {x � FVar y} ++f ?ϑ ′

using fmap-singleton-comm by fastforce
with Cons.prems(2 ) and ‹x /∈ fmdom ′ ?ϑ ′› have is-renaming-substitution ?ϑ ′

unfolding is-renaming-substitution-def and ‹ϑ = fmupd x (FVar y) ?ϑ ′›
using updated-substitution-is-substitution by (metis fmdiff-fmupd fmdom ′-notD fmpred-filter)

from Cons.prems(2 ) and ‹ϑ = fmupd x (FVar y) ?ϑ ′› have is-renaming-substitution {x � FVar
y}

by auto
have

foldr (λ(x, y) C . S {x � y} C ) (p # ps) B
=
S {x � FVar y} (foldr (λ(x, y) C . S {x � y} C ) ps B)
by (simp add: ‹p = (x, FVar y)›)

also have . . . = S {x � FVar y} S ?ϑ ′ B
proof −

from Cons.prems(3 ,4 ) have distinct (map fst ps) and distinct (map snd ps)
by fastforce+

moreover have vars (fmran ′ ?ϑ ′) ∩ (fmdom ′ ?ϑ ′ ∪ vars B) = {}
proof −

have vars (fmran ′ ϑ) = vars ({FVar y} ∪ fmran ′ ?ϑ ′)
using ‹ϑ = fmupd x (FVar y) ?ϑ ′› and ‹x /∈ fmdom ′ ?ϑ ′› by (metis fmdom ′-notD fmran ′-fmupd)
then have vars (fmran ′ ϑ) = {y} ∪ vars (fmran ′ ?ϑ ′)

using singleton-form-set-vars by auto
moreover have fmdom ′ ϑ = {x} ∪ fmdom ′ ?ϑ ′

by (simp add: ‹ϑ = {x � FVar y} ++f ?ϑ ′›)
ultimately show ?thesis

using Cons.prems(5 ) by auto
qed
ultimately show ?thesis

using Cons.IH and ‹is-renaming-substitution ?ϑ ′› by simp
qed
also have . . . = S ({x � FVar y} ++f ?ϑ ′) B
proof (rule substitution-fusion)

show is-substitution ?ϑ ′

using ‹is-renaming-substitution ?ϑ ′› by simp
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show is-substitution {x � FVar y}
using ‹is-renaming-substitution {x � FVar y}› by simp

show ?ϑ ′ $$ x = None
using ‹x /∈ fmdom ′ ?ϑ ′› by blast

show ∀ v ′ ∈ fmdom ′ ?ϑ ′. x /∈ vars (?ϑ ′ $$! v ′)
proof −

have x ∈ fmdom ′ ϑ
using ‹ϑ = {x � FVar y} ++f ?ϑ ′› by simp

then have x /∈ vars (fmran ′ ϑ)
using Cons.prems(5 ) by blast

moreover have {?ϑ ′ $$! v ′ | v ′. v ′ ∈ fmdom ′ ?ϑ ′} ⊆ fmran ′ ϑ
unfolding ‹ϑ = ?ϑ ′(x � FVar y)› using ‹?ϑ ′ $$ x = None›
by (auto simp add: fmlookup-of-list fmlookup-dom ′-iff fmran ′I weak-map-of-SomeI )

ultimately show ?thesis
by force

qed
qed
also from ‹ϑ = {x � FVar y} ++f ?ϑ ′› have . . . = S ϑ B

by (simp only:)
finally show ?case ..

qed

lemma free-vars-agreement-substitution-equality:
assumes fmdom ′ ϑ = fmdom ′ ϑ ′

and ∀ v ∈ free-vars A ∩ fmdom ′ ϑ. ϑ $$! v = ϑ ′ $$! v
shows S ϑ A = S ϑ ′ A

using assms proof (induction A arbitrary: ϑ ϑ ′)
case (FVar v)
have free-vars (FVar v) = {v}

using surj-pair [of v] by fastforce
with FVar have ϑ $$! v = ϑ ′ $$! v

by force
with FVar .prems(1 ) show ?case

using surj-pair [of v] by (metis fmdom ′-notD fmdom ′-notI option.collapse substitute.simps(1 ))
next

case FCon
then show ?case

by (metis prod.exhaust-sel substitute.simps(2 ))
next

case (FApp B C )
have S ϑ (B � C ) = (S ϑ B) � (S ϑ C )

by simp
also have . . . = (S ϑ ′ B) � (S ϑ ′ C )
proof −

have ∀ v ∈ free-vars B ∩ fmdom ′ ϑ. ϑ $$! v = ϑ ′ $$! v
and ∀ v ∈ free-vars C ∩ fmdom ′ ϑ. ϑ $$! v = ϑ ′ $$! v

using FApp.prems(2 ) by auto
with FApp.IH (1 ,2 ) and FApp.prems(1 ) show ?thesis

by blast
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qed
finally show ?case

by simp
next

case (FAbs w B)
from FAbs.prems(1 ,2 ) have ∗: ∀ v ∈ free-vars B − {w} ∩ fmdom ′ ϑ. ϑ $$! v = ϑ ′ $$! v

using surj-pair [of w] by fastforce
show ?case
proof (cases w ∈ fmdom ′ ϑ)

case True
then have S ϑ (FAbs w B) = FAbs w (S (fmdrop w ϑ) B)

using surj-pair [of w] by fastforce
also have . . . = FAbs w (S (fmdrop w ϑ ′) B)
proof −

from ∗ have ∀ v ∈ free-vars B ∩ fmdom ′ (fmdrop w ϑ). (fmdrop w ϑ) $$! v = (fmdrop w ϑ ′) $$!
v

by simp
moreover have fmdom ′ (fmdrop w ϑ) = fmdom ′ (fmdrop w ϑ ′)

by (simp add: FAbs.prems(1 ))
ultimately show ?thesis

using FAbs.IH by blast
qed
finally show ?thesis

using FAbs.prems(1 ) and True and surj-pair [of w] by fastforce
next

case False
then have S ϑ (FAbs w B) = FAbs w (S ϑ B)

using surj-pair [of w] by fastforce
also have . . . = FAbs w (S ϑ ′ B)
proof −

from ∗ have ∀ v ∈ free-vars B ∩ fmdom ′ ϑ. ϑ $$! v = ϑ ′ $$! v
using False by blast

with FAbs.prems(1 ) show ?thesis
using FAbs.IH by blast

qed
finally show ?thesis

using FAbs.prems(1 ) and False and surj-pair [of w] by fastforce
qed

qed

The following lemma proves that S. xα
Aα

S.
x1
α1

... xn
αn

A1
α1

... An
αn
B = S.

xα x1
α1

... xn
αn

Aα S. xα
Aα

A1
α1

... S. xα
Aα

An
αn

B provided

that xα is distinct from x1α1
, . . . , xnαn

and Ai
αi

is free for xiαi
in B:

lemma substitution-consolidation:
assumes v /∈ fmdom ′ ϑ
and ∀ v ′ ∈ fmdom ′ ϑ. is-free-for (ϑ $$! v ′) v ′ B
shows S {v � A} S ϑ B = S ({v � A} ++f fmmap (λA ′. S {v � A} A ′) ϑ) B

using assms proof (induction B arbitrary: ϑ)
case (FApp B C )
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have ∀ v ′ ∈ fmdom ′ ϑ. is-free-for (ϑ $$! v ′) v ′ B ∧ is-free-for (ϑ $$! v ′) v ′ C
proof

fix v ′

assume v ′ ∈ fmdom ′ ϑ
with FApp.prems(2 ) have is-free-for (ϑ $$! v ′) v ′ (B � C )

by blast
then show is-free-for (ϑ $$! v ′) v ′ B ∧ is-free-for (ϑ $$! v ′) v ′ C

using is-free-for-from-app by iprover
qed
with FApp.IH and FApp.prems(1 ) show ?case

by simp
next

case (FAbs w B)
let ?ϑ ′ = fmmap (λA ′. S {v � A} A ′) ϑ
show ?case
proof (cases w ∈ fmdom ′ ϑ)

case True
then have w ∈ fmdom ′ ?ϑ ′

by simp
with True and FAbs.prems have v 6= w

by blast
from True have S {v � A} S ϑ (FAbs w B) = S {v � A} (FAbs w (S (fmdrop w ϑ) B))

using surj-pair [of w] by fastforce
also from ‹v 6= w› have . . . = FAbs w (S {v � A} S (fmdrop w ϑ) B)

using surj-pair [of w] by fastforce
also have . . . = FAbs w (S (fmdrop w ({v � A} ++f ?ϑ ′)) B)
proof −

obtain xw and αw where w = (xw, αw)
by fastforce

have ∀ v ′ ∈ fmdom ′ (fmdrop w ϑ). is-free-for ((fmdrop w ϑ) $$! v ′) v ′ B
proof

fix v ′

assume v ′ ∈ fmdom ′ (fmdrop w ϑ)
with FAbs.prems(2 ) have is-free-for (ϑ $$! v ′) v ′ (FAbs w B)

by auto
with ‹w = (xw, αw)› and ‹v ′ ∈ fmdom ′ (fmdrop w ϑ)›
have is-free-for (ϑ $$! v ′) v ′ (λxwαw . B) and v ′ 6= (xw, αw)

by auto
then have is-free-for (ϑ $$! v ′) v ′ B

using is-free-for-from-abs by presburger
with ‹v ′ 6= (xw, αw)› and ‹w = (xw, αw)› show is-free-for (fmdrop w ϑ $$! v ′) v ′ B

by simp
qed
moreover have v /∈ fmdom ′ (fmdrop w ϑ)

by (simp add: FAbs.prems(1 ))
ultimately show ?thesis

using FAbs.IH and ‹v 6= w› by (simp add: fmdrop-fmupd)
qed
finally show ?thesis
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using ‹w ∈ fmdom ′ ?ϑ ′› and surj-pair [of w] by fastforce
next

case False
then have w /∈ fmdom ′ ?ϑ ′

by simp
from FAbs.prems have v /∈ fmdom ′ ?ϑ ′

by simp
from False have ∗: S {v � A} S ϑ (FAbs w B) = S {v � A} (FAbs w (S ϑ B))

using surj-pair [of w] by fastforce
then show ?thesis
proof (cases v 6= w)

case True
then have S {v � A} (FAbs w (S ϑ B)) = FAbs w (S {v � A} (S ϑ B))

using surj-pair [of w] by fastforce
also have . . . = FAbs w (S ({v � A} ++f ?ϑ ′) B)
proof −

obtain xw and αw where w = (xw, αw)
by fastforce

have ∀ v ′ ∈ fmdom ′ ϑ. is-free-for (ϑ $$! v ′) v ′ B
proof

fix v ′

assume v ′ ∈ fmdom ′ ϑ
with FAbs.prems(2 ) have is-free-for (ϑ $$! v ′) v ′ (FAbs w B)

by auto
with ‹w = (xw, αw)› and ‹v ′ ∈ fmdom ′ ϑ› and False
have is-free-for (ϑ $$! v ′) v ′ (λxwαw . B) and v ′ 6= (xw, αw)

by fastforce+
then have is-free-for (ϑ $$! v ′) v ′ B

using is-free-for-from-abs by presburger
with ‹v ′ 6= (xw, αw)› and ‹w = (xw, αw)› show is-free-for (ϑ $$! v ′) v ′ B

by simp
qed
with FAbs.IH show ?thesis

using FAbs.prems(1 ) by blast
qed
finally show ?thesis
proof −

assume
S {v � A} (FAbs w (S ϑ B)) = FAbs w (S ({v � A} ++f fmmap (substitute {v � A}) ϑ)

B)
moreover have w /∈ fmdom ′ ({v � A} ++f fmmap (substitute {v � A}) ϑ)

using False and True by auto
ultimately show ?thesis

using ∗ and surj-pair [of w] by fastforce
qed

next
case False
then have v /∈ free-vars (FAbs w (S ϑ B))

using surj-pair [of w] by fastforce
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then have ∗∗: S {v � A} (FAbs w (S ϑ B)) = FAbs w (S ϑ B)
using free-var-singleton-substitution-neutrality by blast

also have . . . = FAbs w (S ?ϑ ′ B)
proof −

{
fix v ′

assume v ′ ∈ fmdom ′ ϑ
with FAbs.prems(1 ) have v ′ 6= v

by blast
assume v ∈ free-vars (ϑ $$! v ′) and v ′ ∈ free-vars B
with ‹v ′ 6= v› have ¬ is-free-for (ϑ $$! v ′) v ′ (FAbs v B)

using form-with-free-binder-not-free-for by blast
with FAbs.prems(2 ) and ‹v ′ ∈ fmdom ′ ϑ› and False have False

by blast
}
then have ∀ v ′ ∈ fmdom ′ ϑ. v /∈ free-vars (ϑ $$! v ′) ∨ v ′ /∈ free-vars B

by blast
then have ∀ v ′ ∈ fmdom ′ ϑ. v ′ ∈ free-vars B −→ S {v � A} (ϑ $$! v ′) = ϑ $$! v ′

using free-var-singleton-substitution-neutrality by blast
then have ∀ v ′ ∈ free-vars B. ϑ $$! v ′ = ?ϑ ′ $$! v ′

by (metis fmdom ′-map fmdom ′-notD fmdom ′-notI fmlookup-map option.map-sel)
then have S ϑ B = S ?ϑ ′ B

using free-vars-agreement-substitution-equality by (metis IntD1 fmdom ′-map)
then show ?thesis

by simp
qed
also from False and FAbs.prems(1 ) have . . . = FAbs w (S (fmdrop w ({v � A} ++f ?ϑ ′)) B)

by (simp add: fmdrop-fmupd-same fmdrop-idle ′)
also from False have . . . = S ({v � A} ++f ?ϑ ′) (FAbs w B)

using surj-pair [of w] by fastforce
finally show ?thesis

using ∗ and ∗∗ by (simp only:)
qed

qed
qed force+

lemma vars-range-substitution:
assumes is-substitution ϑ
and v /∈ vars (fmran ′ ϑ)
shows v /∈ vars (fmran ′ (fmdrop w ϑ))

using assms proof (induction ϑ)
case fmempty
then show ?case

by simp
next

case (fmupd v ′ A ϑ)
from fmdom ′-notI [OF fmupd.hyps] and fmupd.prems(1 ) have is-substitution ϑ

by (rule updated-substitution-is-substitution)
moreover from fmupd.prems(2 ) and fmupd.hyps have v /∈ vars (fmran ′ ϑ)
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by simp
ultimately have v /∈ vars (fmran ′ (fmdrop w ϑ))

by (rule fmupd.IH )
with fmupd.hyps and fmupd.prems(2 ) show ?case

by (simp add: fmdrop-fmupd)
qed

lemma excluded-var-from-substitution:
assumes is-substitution ϑ
and v /∈ fmdom ′ ϑ
and v /∈ vars (fmran ′ ϑ)
and v /∈ vars A
shows v /∈ vars (S ϑ A)

using assms proof (induction A arbitrary: ϑ)
case (FVar v ′)
then show ?case
proof (cases v ′ ∈ fmdom ′ ϑ)

case True
then have ϑ $$! v ′ ∈ fmran ′ ϑ

by (simp add: fmlookup-dom ′-iff fmran ′I )
with FVar(3 ) have v /∈ vars (ϑ $$! v ′)

by simp
with True show ?thesis

using surj-pair [of v ′] and fmdom ′-notI by force
next

case False
with FVar .prems(4 ) show ?thesis

using surj-pair [of v ′] by force
qed

next
case (FCon k)
then show ?case

using surj-pair [of k] by force
next

case (FApp B C )
then show ?case

by auto
next

case (FAbs w B)
have v /∈ vars B and v 6= w

using surj-pair [of w] and FAbs.prems(4 ) by fastforce+
then show ?case
proof (cases w /∈ fmdom ′ ϑ)

case True
then have S ϑ (FAbs w B) = FAbs w (S ϑ B)

using surj-pair [of w] by fastforce
moreover from FAbs.IH have v /∈ vars (S ϑ B)

using FAbs.prems(1−3 ) and ‹v /∈ vars B› by blast
ultimately show ?thesis
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using ‹v 6= w› and surj-pair [of w] by fastforce
next

case False
then have S ϑ (FAbs w B) = FAbs w (S (fmdrop w ϑ) B)

using surj-pair [of w] by fastforce
moreover have v /∈ vars (S (fmdrop w ϑ) B)
proof −

from FAbs.prems(1 ) have is-substitution (fmdrop w ϑ)
by fastforce

moreover from FAbs.prems(2 ) have v /∈ fmdom ′ (fmdrop w ϑ)
by simp

moreover from FAbs.prems(1 ,3 ) have v /∈ vars (fmran ′ (fmdrop w ϑ))
by (fact vars-range-substitution)

ultimately show ?thesis
using FAbs.IH and ‹v /∈ vars B› by simp

qed
ultimately show ?thesis

using ‹v 6= w› and surj-pair [of w] by fastforce
qed

qed

2.15 Renaming of bound variables
fun rename-bound-var :: var ⇒ nat ⇒ form ⇒ form where

rename-bound-var v y (xα) = xα
| rename-bound-var v y ({|c|}α) = {|c|}α
| rename-bound-var v y (B � C ) = rename-bound-var v y B � rename-bound-var v y C
| rename-bound-var v y (λxα. B) =

(
if (x, α) = v then
λyα. S {(x, α) � yα} (rename-bound-var v y B)

else
λxα. (rename-bound-var v y B)

)

lemma rename-bound-var-preserves-typing:
assumes A ∈ wffsα
shows rename-bound-var (y, γ) z A ∈ wffsα

using assms proof (induction A)
case (abs-is-wff β A δ x)
then show ?case
proof (cases (x, δ) = (y, γ))

case True
from abs-is-wff .IH have S {(y, γ) � zγ} (rename-bound-var (y, γ) z A) ∈ wffsβ

using substitution-preserves-typing by (simp add: wffs-of-type-intros(1 ))
then have λzγ . S {(y, γ) � zγ} (rename-bound-var (y, γ) z A) ∈ wffsγ→β

by blast
with True show ?thesis

by simp
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next
case False
from abs-is-wff .IH have λxδ . rename-bound-var (y, γ) z A ∈ wffsδ→β

by blast
with False show ?thesis

by auto
qed

qed auto

lemma old-bound-var-not-free-in-abs-after-renaming:
assumes A ∈ wffsα
and zγ 6= yγ
and (z, γ) /∈ vars A
shows (y, γ) /∈ free-vars (rename-bound-var (y, γ) z (λyγ . A))
using assms and free-var-in-renaming-substitution by (induction A) auto

lemma rename-bound-var-free-vars:
assumes A ∈ wffsα
and zγ 6= yγ
and (z, γ) /∈ vars A
shows (z, γ) /∈ free-vars (rename-bound-var (y, γ) z A)
using assms by (induction A) auto

lemma old-bound-var-not-free-after-renaming:
assumes A ∈ wffsα
and zγ 6= yγ
and (z, γ) /∈ vars A
and (y, γ) /∈ free-vars A
shows (y, γ) /∈ free-vars (rename-bound-var (y, γ) z A)

using assms proof induction
case (abs-is-wff β A α x)
then show ?case
proof (cases (x, α) = (y, γ))

case True
with abs-is-wff .hyps and abs-is-wff .prems(2 ) show ?thesis

using old-bound-var-not-free-in-abs-after-renaming by auto
next

case False
with abs-is-wff .prems(2 ,3 ) and assms(2 ) show ?thesis

using abs-is-wff .IH by force
qed

qed fastforce+

lemma old-bound-var-not-ocurring-after-renaming:
assumes A ∈ wffsα
and zγ 6= yγ
shows ¬ occurs-at (y, γ) p (S {(y, γ) � zγ} (rename-bound-var (y, γ) z A))

using assms(1 ) proof (induction A arbitrary: p)
case (var-is-wff α x)
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from assms(2 ) show ?case
using subform-size-decrease by (cases (x, α) = (y, γ)) fastforce+

next
case (con-is-wff α c)
then show ?case

using occurs-at-alt-def (2 ) by auto
next

case (app-is-wff α β A B)
then show ?case
proof (cases p)

case (Cons d p ′)
then show ?thesis

by (cases d) (use app-is-wff .IH in auto)
qed simp

next
case (abs-is-wff β A α x)
then show ?case
proof (cases p)

case (Cons d p ′)
then show ?thesis
proof (cases d)

case Left
have ∗: ¬ occurs-at (y, γ) p (λxα. S {(y, γ) � zγ} (rename-bound-var (y, γ) z A))

for x and α
using Left and Cons and abs-is-wff .IH by simp

then show ?thesis
proof (cases (x, α) = (y, γ))

case True
with assms(2 ) have

S {(y, γ) � zγ} (rename-bound-var (y, γ) z (λxα. A))
=
λzγ . S {(y, γ) � zγ} (rename-bound-var (y, γ) z A)
using free-var-in-renaming-substitution and free-var-singleton-substitution-neutrality
by simp

moreover have ¬ occurs-at (y, γ) p (λzγ . S {(y, γ) � zγ} (rename-bound-var (y, γ) z A))
using Left and Cons and ∗ by simp

ultimately show ?thesis
by simp

next
case False
with assms(2 ) have

S {(y, γ) � zγ} (rename-bound-var (y, γ) z (λxα. A))
=
λxα. S {(y, γ) � zγ} (rename-bound-var (y, γ) z A)
by simp

moreover have ¬ occurs-at (y, γ) p (λxα. S {(y, γ) � zγ} (rename-bound-var (y, γ) z A))
using Left and Cons and ∗ by simp

ultimately show ?thesis
by simp
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qed
qed (simp add: Cons)

qed simp
qed

The following lemma states that the result of rename-bound-var does not contain bound
occurrences of the renamed variable:
lemma rename-bound-var-not-bound-occurrences:

assumes A ∈ wffsα
and zγ 6= yγ
and (z, γ) /∈ vars A
and occurs-at (y, γ) p (rename-bound-var (y, γ) z A)
shows ¬ in-scope-of-abs (z, γ) p (rename-bound-var (y, γ) z A)

using assms(1 ,3 ,4 ) proof (induction arbitrary: p)
case (var-is-wff α x)
then show ?case

by (simp add: subforms-from-var(2 ))
next

case (con-is-wff α c)
then show ?case

using occurs-at-alt-def (2 ) by auto
next

case (app-is-wff α β B C )
from app-is-wff .prems(1 ) have (z, γ) /∈ vars B and (z, γ) /∈ vars C

by simp-all
from app-is-wff .prems(2 )
have occurs-at (y, γ) p (rename-bound-var (y, γ) z B � rename-bound-var (y, γ) z C )

by simp
then consider
(a) ∃ p ′. p = « # p ′ ∧ occurs-at (y, γ) p ′ (rename-bound-var (y, γ) z B)
| (b) ∃ p ′. p = » # p ′ ∧ occurs-at (y, γ) p ′ (rename-bound-var (y, γ) z C )

using subforms-from-app by force
then show ?case
proof cases

case a
then obtain p ′ where p = « # p ′ and occurs-at (y, γ) p ′ (rename-bound-var (y, γ) z B)

by blast
then have ¬ in-scope-of-abs (z, γ) p ′ (rename-bound-var (y, γ) z B)

using app-is-wff .IH (1 )[OF ‹(z, γ) /∈ vars B›] by blast
then have ¬ in-scope-of-abs (z, γ) p (rename-bound-var (y, γ) z (B � C )) for C

using ‹p = « # p ′› and in-scope-of-abs-in-left-app by simp
then show ?thesis

by blast
next

case b
then obtain p ′ where p = » # p ′ and occurs-at (y, γ) p ′ (rename-bound-var (y, γ) z C )

by blast
then have ¬ in-scope-of-abs (z, γ) p ′ (rename-bound-var (y, γ) z C )

using app-is-wff .IH (2 )[OF ‹(z, γ) /∈ vars C ›] by blast
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then have ¬ in-scope-of-abs (z, γ) p (rename-bound-var (y, γ) z (B � C )) for B
using ‹p = » # p ′› and in-scope-of-abs-in-right-app by simp

then show ?thesis
by blast

qed
next

case (abs-is-wff β A α x)
from abs-is-wff .prems(1 ) have (z, γ) /∈ vars A and (z, γ) 6= (x, α)

by fastforce+
then show ?case
proof (cases (y, γ) = (x, α))

case True
then have occurs-at (y, γ) p (λzγ . S {(y, γ) � zγ} (rename-bound-var (y, γ) z A))

using abs-is-wff .prems(2 ) by simp
moreover have ¬ occurs-at (y, γ) p (λzγ . S {(y, γ) � zγ} (rename-bound-var (y, γ) z A))
using old-bound-var-not-ocurring-after-renaming[OF abs-is-wff .hyps assms(2 )] and subforms-from-abs

by fastforce
ultimately show ?thesis

by contradiction
next

case False
then have ∗: rename-bound-var (y, γ) z (λxα. A) = λxα. rename-bound-var (y, γ) z A

by auto
with abs-is-wff .prems(2 ) have occurs-at (y, γ) p (λxα. rename-bound-var (y, γ) z A)

by auto
then obtain p ′ where p = « # p ′ and occurs-at (y, γ) p ′ (rename-bound-var (y, γ) z A)

using subforms-from-abs by fastforce
then have ¬ in-scope-of-abs (z, γ) p ′ (rename-bound-var (y, γ) z A)

using abs-is-wff .IH [OF ‹(z, γ) /∈ vars A›] by blast
then have ¬ in-scope-of-abs (z, γ) (« # p ′) (λxα. rename-bound-var (y, γ) z A)

using ‹p = « # p ′› and in-scope-of-abs-in-abs and ‹(z, γ) 6= (x, α)› by auto
then show ?thesis

using ∗ and ‹p = « # p ′› by simp
qed

qed

lemma is-free-for-in-rename-bound-var :
assumes A ∈ wffsα
and zγ 6= yγ
and (z, γ) /∈ vars A
shows is-free-for (zγ) (y, γ) (rename-bound-var (y, γ) z A)

proof (rule ccontr)
assume ¬ is-free-for (zγ) (y, γ) (rename-bound-var (y, γ) z A)
then obtain p

where is-free-at (y, γ) p (rename-bound-var (y, γ) z A)
and in-scope-of-abs (z, γ) p (rename-bound-var (y, γ) z A)
by force

then show False
using rename-bound-var-not-bound-occurrences[OF assms] by fastforce
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qed

lemma renaming-substitution-preserves-bound-vars:
shows bound-vars (S {(y, γ) � zγ} A) = bound-vars A

proof (induction A)
case (FAbs v A)
then show ?case

using singleton-substitution-simps(4 ) and surj-pair [of v]
by (cases v = (y, γ)) (presburger , force)

qed force+

lemma rename-bound-var-bound-vars:
assumes A ∈ wffsα
and zγ 6= yγ
shows (y, γ) /∈ bound-vars (rename-bound-var (y, γ) z A)
using assms and renaming-substitution-preserves-bound-vars by (induction A) auto

lemma old-var-not-free-not-occurring-after-rename:
assumes A ∈ wffsα
and zγ 6= yγ
and (y, γ) /∈ free-vars A
and (z, γ) /∈ vars A
shows (y, γ) /∈ vars (rename-bound-var (y, γ) z A)
using assms and rename-bound-var-bound-vars[OF assms(1 ,2 )]
and old-bound-var-not-free-after-renaming and vars-is-free-and-bound-vars by blast

end

3 Boolean Algebra
theory Boolean-Algebra

imports
ZFC-in-HOL.ZFC-Typeclasses

begin

This theory contains an embedding of two-valued boolean algebra into V.
hide-const (open) List.set

definition bool-to-V :: bool ⇒ V where
bool-to-V = (SOME f . inj f )

lemma bool-to-V-injectivity [simp]:
shows inj bool-to-V
unfolding bool-to-V-def by (fact someI-ex[OF embeddable-class.ex-inj])

definition bool-from-V :: V ⇒ bool where
[simp]: bool-from-V = inv bool-to-V

definition top :: V (T) where
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[simp]: T = bool-to-V True

definition bottom :: V (F) where
[simp]: F = bool-to-V False

definition two-valued-boolean-algebra-universe :: V (�) where
[simp]: � = set {T, F}

definition negation :: V ⇒ V (∼ - [141 ] 141 ) where
[simp]: ∼ p = bool-to-V (¬ bool-from-V p)

definition conjunction :: V ⇒ V ⇒ V (infixr ∧ 136 ) where
[simp]: p ∧ q = bool-to-V (bool-from-V p ∧ bool-from-V q)

definition disjunction :: V ⇒ V ⇒ V (infixr ∨ 131 ) where
[simp]: p ∨ q = ∼ (∼ p ∧ ∼ q)

definition implication :: V ⇒ V ⇒ V (infixr ⊃ 121 ) where
[simp]: p ⊃ q = ∼ p ∨ q

definition iff :: V ⇒ V ⇒ V (infixl ≡ 150 ) where
[simp]: p ≡ q = (p ⊃ q) ∧ (q ⊃ p)

lemma boolean-algebra-simps [simp]:
assumes p ∈ elts � and q ∈ elts � and r ∈ elts �
shows ∼ ∼ p = p
and ((∼ p) ≡ (∼ q)) = (p ≡ q)
and ∼ (p ≡ q) = (p ≡ (∼ q))
and (p ∨ ∼ p) = T
and (∼ p ∨ p) = T
and (p ≡ p) = T
and (∼ p) 6= p
and p 6= (∼ p)
and (T ≡ p) = p
and (p ≡ T) = p
and (F ≡ p) = (∼ p)
and (p ≡ F) = (∼ p)
and (T ⊃ p) = p
and (F ⊃ p) = T
and (p ⊃ T) = T
and (p ⊃ p) = T
and (p ⊃ F) = (∼ p)
and (p ⊃ ∼ p) = (∼ p)
and (p ∧ T) = p
and (T ∧ p) = p
and (p ∧ F) = F
and (F ∧ p) = F
and (p ∧ p) = p
and (p ∧ (p ∧ q)) = (p ∧ q)
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and (p ∧ ∼ p) = F
and (∼ p ∧ p) = F
and (p ∨ T) = T
and (T ∨ p) = T
and (p ∨ F) = p
and (F ∨ p) = p
and (p ∨ p) = p
and (p ∨ (p ∨ q)) = (p ∨ q)
and p ∧ q = q ∧ p
and p ∧ (q ∧ r) = q ∧ (p ∧ r)
and p ∨ q = q ∨ p
and p ∨ (q ∨ r) = q ∨ (p ∨ r)
and (p ∨ q) ∨ r = p ∨ (q ∨ r)
and p ∧ (q ∨ r) = p ∧ q ∨ p ∧ r
and (p ∨ q) ∧ r = p ∧ r ∨ q ∧ r
and p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r)
and (p ∧ q) ∨ r = (p ∨ r) ∧ (q ∨ r)
and (p ⊃ (q ∧ r)) = ((p ⊃ q) ∧ (p ⊃ r))
and ((p ∧ q) ⊃ r) = (p ⊃ (q ⊃ r))
and ((p ∨ q) ⊃ r) = ((p ⊃ r) ∧ (q ⊃ r))
and ((p ⊃ q) ∨ r) = (p ⊃ q ∨ r)
and (q ∨ (p ⊃ r)) = (p ⊃ q ∨ r)
and ∼ (p ∨ q) = ∼ p ∧ ∼ q
and ∼ (p ∧ q) = ∼ p ∨ ∼ q
and ∼ (p ⊃ q) = p ∧ ∼ q
and ∼ p ∨ q = (p ⊃ q)
and p ∨ ∼ q = (q ⊃ p)
and (p ⊃ q) = (∼ p) ∨ q
and p ∨ q = ∼ p ⊃ q
and (p ≡ q) = (p ⊃ q) ∧ (q ⊃ p)
and (p ⊃ q) ∧ (∼ p ⊃ q) = q
and p = T =⇒ ¬ (p = F)
and p = F =⇒ ¬ (p = T)
and p = T ∨ p = F
using assms by (auto simp add: inj-eq)

lemma tv-cases [consumes 1 , case-names top bottom, cases type: V ]:
assumes p ∈ elts �
and p = T =⇒ P
and p = F =⇒ P
shows P
using assms by auto

end

4 Propositional Well-Formed Formulas
theory Propositional-Wff

imports
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Syntax
Boolean-Algebra

begin

4.1 Syntax
inductive-set pwffs :: form set where

T-pwff : To ∈ pwffs
| F-pwff : Fo ∈ pwffs
| var-pwff : po ∈ pwffs
| neg-pwff : ∼Q A ∈ pwffs if A ∈ pwffs
| conj-pwff : A ∧Q B ∈ pwffs if A ∈ pwffs and B ∈ pwffs
| disj-pwff : A ∨Q B ∈ pwffs if A ∈ pwffs and B ∈ pwffs
| imp-pwff : A ⊃Q B ∈ pwffs if A ∈ pwffs and B ∈ pwffs
| eqv-pwff : A ≡Q B ∈ pwffs if A ∈ pwffs and B ∈ pwffs

lemmas [intro!] = pwffs.intros

lemma pwffs-distinctnesses [induct-simp]:
shows To 6= Fo
and To 6= po
and To 6= ∼Q A
and To 6= A ∧Q B
and To 6= A ∨Q B
and To 6= A ⊃Q B
and To 6= A ≡Q B
and Fo 6= po
and Fo 6= ∼Q A
and Fo 6= A ∧Q B
and Fo 6= A ∨Q B
and Fo 6= A ⊃Q B
and Fo 6= A ≡Q B
and po 6= ∼Q A
and po 6= A ∧Q B
and po 6= A ∨Q B
and po 6= A ⊃Q B
and po 6= A ≡Q B
and ∼Q A 6= B ∧Q C
and ∼Q A 6= B ∨Q C
and ∼Q A 6= B ⊃Q C
and ¬ (B = Fo ∧ A = C ) =⇒ ∼Q A 6= B ≡Q C — ∼Q A is the same as Fo ≡Q A
and A ∧Q B 6= C ∨Q D
and A ∧Q B 6= C ⊃Q D
and A ∧Q B 6= C ≡Q D
and A ∨Q B 6= C ⊃Q D
and A ∨Q B 6= C ≡Q D
and A ⊃Q B 6= C ≡Q D
by simp-all
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lemma pwffs-injectivities [induct-simp]:
shows ∼Q A = ∼Q A ′ =⇒ A = A ′

and A ∧Q B = A ′ ∧Q B ′ =⇒ A = A ′ ∧ B = B ′

and A ∨Q B = A ′ ∨Q B ′ =⇒ A = A ′ ∧ B = B ′

and A ⊃Q B = A ′ ⊃Q B ′ =⇒ A = A ′ ∧ B = B ′

and A ≡Q B = A ′ ≡Q B ′ =⇒ A = A ′ ∧ B = B ′

by simp-all

lemma pwff-from-neg-pwff [elim!]:
assumes ∼Q A ∈ pwffs
shows A ∈ pwffs
using assms by cases simp-all

lemma pwffs-from-conj-pwff [elim!]:
assumes A ∧Q B ∈ pwffs
shows {A, B} ⊆ pwffs
using assms by cases simp-all

lemma pwffs-from-disj-pwff [elim!]:
assumes A ∨Q B ∈ pwffs
shows {A, B} ⊆ pwffs
using assms by cases simp-all

lemma pwffs-from-imp-pwff [elim!]:
assumes A ⊃Q B ∈ pwffs
shows {A, B} ⊆ pwffs
using assms by cases simp-all

lemma pwffs-from-eqv-pwff [elim!]:
assumes A ≡Q B ∈ pwffs
shows {A, B} ⊆ pwffs
using assms by cases (simp-all, use F-pwff in fastforce)

lemma pwffs-subset-of-wffso:
shows pwffs ⊆ wffso

proof
fix A
assume A ∈ pwffs
then show A ∈ wffso

by induction auto
qed

lemma pwff-free-vars-simps [simp]:
shows T-fv: free-vars To = {}
and F-fv: free-vars Fo = {}
and var-fv: free-vars (po) = {(p, o)}
and neg-fv: free-vars (∼Q A) = free-vars A
and conj-fv: free-vars (A ∧Q B) = free-vars A ∪ free-vars B
and disj-fv: free-vars (A ∨Q B) = free-vars A ∪ free-vars B
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and imp-fv: free-vars (A ⊃Q B) = free-vars A ∪ free-vars B
and eqv-fv: free-vars (A ≡Q B) = free-vars A ∪ free-vars B
by force+

lemma pwffs-free-vars-are-propositional:
assumes A ∈ pwffs
and v ∈ free-vars A
obtains p where v = (p, o)

using assms by (induction A arbitrary: thesis) auto

lemma is-free-for-in-pwff [intro]:
assumes A ∈ pwffs
and v ∈ free-vars A
shows is-free-for B v A

using assms proof (induction A)
case (neg-pwff C )
then show ?case

using is-free-for-in-neg by simp
next

case (conj-pwff C D)
from conj-pwff .prems consider
(a) v ∈ free-vars C and v ∈ free-vars D
| (b) v ∈ free-vars C and v /∈ free-vars D
| (c) v /∈ free-vars C and v ∈ free-vars D

by auto
then show ?case
proof cases

case a
then show ?thesis

using conj-pwff .IH by (intro is-free-for-in-conj)
next

case b
have is-free-for B v C

by (fact conj-pwff .IH (1 )[OF b(1 )])
moreover from b(2 ) have is-free-for B v D

using is-free-at-in-free-vars by blast
ultimately show ?thesis

by (rule is-free-for-in-conj)
next

case c
from c(1 ) have is-free-for B v C

using is-free-at-in-free-vars by blast
moreover have is-free-for B v D

by (fact conj-pwff .IH (2 )[OF c(2 )])
ultimately show ?thesis

by (rule is-free-for-in-conj)
qed

next
case (disj-pwff C D)
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from disj-pwff .prems consider
(a) v ∈ free-vars C and v ∈ free-vars D
| (b) v ∈ free-vars C and v /∈ free-vars D
| (c) v /∈ free-vars C and v ∈ free-vars D

by auto
then show ?case
proof cases

case a
then show ?thesis

using disj-pwff .IH by (intro is-free-for-in-disj)
next

case b
have is-free-for B v C

by (fact disj-pwff .IH (1 )[OF b(1 )])
moreover from b(2 ) have is-free-for B v D

using is-free-at-in-free-vars by blast
ultimately show ?thesis

by (rule is-free-for-in-disj)
next

case c
from c(1 ) have is-free-for B v C

using is-free-at-in-free-vars by blast
moreover have is-free-for B v D

by (fact disj-pwff .IH (2 )[OF c(2 )])
ultimately show ?thesis

by (rule is-free-for-in-disj)
qed

next
case (imp-pwff C D)
from imp-pwff .prems consider
(a) v ∈ free-vars C and v ∈ free-vars D
| (b) v ∈ free-vars C and v /∈ free-vars D
| (c) v /∈ free-vars C and v ∈ free-vars D

by auto
then show ?case
proof cases

case a
then show ?thesis

using imp-pwff .IH by (intro is-free-for-in-imp)
next

case b
have is-free-for B v C

by (fact imp-pwff .IH (1 )[OF b(1 )])
moreover from b(2 ) have is-free-for B v D

using is-free-at-in-free-vars by blast
ultimately show ?thesis

by (rule is-free-for-in-imp)
next

case c
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from c(1 ) have is-free-for B v C
using is-free-at-in-free-vars by blast

moreover have is-free-for B v D
by (fact imp-pwff .IH (2 )[OF c(2 )])

ultimately show ?thesis
by (rule is-free-for-in-imp)

qed
next

case (eqv-pwff C D)
from eqv-pwff .prems consider
(a) v ∈ free-vars C and v ∈ free-vars D
| (b) v ∈ free-vars C and v /∈ free-vars D
| (c) v /∈ free-vars C and v ∈ free-vars D

by auto
then show ?case
proof cases

case a
then show ?thesis

using eqv-pwff .IH by (intro is-free-for-in-equivalence)
next

case b
have is-free-for B v C

by (fact eqv-pwff .IH (1 )[OF b(1 )])
moreover from b(2 ) have is-free-for B v D

using is-free-at-in-free-vars by blast
ultimately show ?thesis

by (rule is-free-for-in-equivalence)
next

case c
from c(1 ) have is-free-for B v C

using is-free-at-in-free-vars by blast
moreover have is-free-for B v D

by (fact eqv-pwff .IH (2 )[OF c(2 )])
ultimately show ?thesis

by (rule is-free-for-in-equivalence)
qed

qed auto

4.2 Semantics

Assignment of truth values to propositional variables:
definition is-tv-assignment :: (nat ⇒ V ) ⇒ bool where
[iff ]: is-tv-assignment ϕ ←→ (∀ p. ϕ p ∈ elts �)

Denotation of a pwff:
definition is-pwff-denotation-function where
[iff ]: is-pwff-denotation-function V ←→
(
∀ϕ. is-tv-assignment ϕ −→

95



(
V ϕ To = T ∧
V ϕ Fo = F ∧
(∀ p. V ϕ (po) = ϕ p) ∧
(∀A. A ∈ pwffs −→ V ϕ (∼Q A) = ∼ V ϕ A) ∧
(∀A B. A ∈ pwffs ∧ B ∈ pwffs −→ V ϕ (A ∧Q B) = V ϕ A ∧ V ϕ B) ∧
(∀A B. A ∈ pwffs ∧ B ∈ pwffs −→ V ϕ (A ∨Q B) = V ϕ A ∨ V ϕ B) ∧
(∀A B. A ∈ pwffs ∧ B ∈ pwffs −→ V ϕ (A ⊃Q B) = V ϕ A ⊃ V ϕ B) ∧
(∀A B. A ∈ pwffs ∧ B ∈ pwffs −→ V ϕ (A ≡Q B) = V ϕ A ≡ V ϕ B)

)
)

lemma pwff-denotation-is-truth-value:
assumes A ∈ pwffs
and is-tv-assignment ϕ
and is-pwff-denotation-function V
shows V ϕ A ∈ elts �

using assms(1 ) proof induction
case (neg-pwff A)
then have V ϕ (∼Q A) = ∼ V ϕ A

using assms(2 ,3 ) by auto
then show ?case

using neg-pwff .IH by auto
next

case (conj-pwff A B)
then have V ϕ (A ∧Q B) = V ϕ A ∧ V ϕ B

using assms(2 ,3 ) by auto
then show ?case

using conj-pwff .IH by auto
next

case (disj-pwff A B)
then have V ϕ (A ∨Q B) = V ϕ A ∨ V ϕ B

using assms(2 ,3 ) by auto
then show ?case

using disj-pwff .IH by auto
next

case (imp-pwff A B)
then have V ϕ (A ⊃Q B) = V ϕ A ⊃ V ϕ B

using assms(2 ,3 ) by blast
then show ?case

using imp-pwff .IH by auto
next

case (eqv-pwff A B)
then have V ϕ (A ≡Q B) = V ϕ A ≡ V ϕ B

using assms(2 ,3 ) by blast
then show ?case

using eqv-pwff .IH by auto
qed (use assms(2 ,3 ) in auto)
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lemma closed-pwff-is-meaningful-regardless-of-assignment:
assumes A ∈ pwffs
and free-vars A = {}
and is-tv-assignment ϕ
and is-tv-assignment ψ
and is-pwff-denotation-function V
shows V ϕ A = V ψ A

using assms(1 ,2 ) proof induction
case T-pwff
have V ϕ To = T

using assms(3 ,5 ) by blast
also have . . . = V ψ To

using assms(4 ,5 ) by force
finally show ?case .

next
case F-pwff
have V ϕ Fo = F

using assms(3 ,5 ) by blast
also have . . . = V ψ Fo

using assms(4 ,5 ) by force
finally show ?case .

next
case (var-pwff p) — impossible case
then show ?case

by simp
next

case (neg-pwff A)
from ‹free-vars (∼Q A) = {}› have free-vars A = {}

by simp
have V ϕ (∼Q A) = ∼ V ϕ A

using assms(3 ,5 ) and neg-pwff .hyps by auto
also from ‹free-vars A = {}› have . . . = ∼ V ψ A

using assms(3−5 ) and neg-pwff .IH by presburger
also have . . . = V ψ (∼Q A)

using assms(4 ,5 ) and neg-pwff .hyps by simp
finally show ?case .

next
case (conj-pwff A B)
from ‹free-vars (A ∧Q B) = {}› have free-vars A = {} and free-vars B = {}

by simp-all
have V ϕ (A ∧Q B) = V ϕ A ∧ V ϕ B

using assms(3 ,5 ) and conj-pwff .hyps(1 ,2 ) by auto
also from ‹free-vars A = {}› and ‹free-vars B = {}› have . . . = V ψ A ∧ V ψ B

using conj-pwff .IH (1 ,2 ) by presburger
also have . . . = V ψ (A ∧Q B)

using assms(4 ,5 ) and conj-pwff .hyps(1 ,2 ) by fastforce
finally show ?case .

next
case (disj-pwff A B)
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from ‹free-vars (A ∨Q B) = {}› have free-vars A = {} and free-vars B = {}
by simp-all

have V ϕ (A ∨Q B) = V ϕ A ∨ V ϕ B
using assms(3 ,5 ) and disj-pwff .hyps(1 ,2 ) by auto

also from ‹free-vars A = {}› and ‹free-vars B = {}› have . . . = V ψ A ∨ V ψ B
using disj-pwff .IH (1 ,2 ) by presburger

also have . . . = V ψ (A ∨Q B)
using assms(4 ,5 ) and disj-pwff .hyps(1 ,2 ) by fastforce

finally show ?case .
next

case (imp-pwff A B)
from ‹free-vars (A ⊃Q B) = {}› have free-vars A = {} and free-vars B = {}

by simp-all
have V ϕ (A ⊃Q B) = V ϕ A ⊃ V ϕ B

using assms(3 ,5 ) and imp-pwff .hyps(1 ,2 ) by auto
also from ‹free-vars A = {}› and ‹free-vars B = {}› have . . . = V ψ A ⊃ V ψ B

using imp-pwff .IH (1 ,2 ) by presburger
also have . . . = V ψ (A ⊃Q B)

using assms(4 ,5 ) and imp-pwff .hyps(1 ,2 ) by fastforce
finally show ?case .

next
case (eqv-pwff A B)
from ‹free-vars (A ≡Q B) = {}› have free-vars A = {} and free-vars B = {}

by simp-all
have V ϕ (A ≡Q B) = V ϕ A ≡ V ϕ B

using assms(3 ,5 ) and eqv-pwff .hyps(1 ,2 ) by auto
also from ‹free-vars A = {}› and ‹free-vars B = {}› have . . . = V ψ A ≡ V ψ B

using eqv-pwff .IH (1 ,2 ) by presburger
also have . . . = V ψ (A ≡Q B)

using assms(4 ,5 ) and eqv-pwff .hyps(1 ,2 ) by fastforce
finally show ?case .

qed

inductive VB-graph for ϕ where
VB-graph-T : VB-graph ϕ To T
| VB-graph-F : VB-graph ϕ Fo F
| VB-graph-var : VB-graph ϕ (po) (ϕ p)
| VB-graph-neg: VB-graph ϕ (∼Q A) (∼ bA) if VB-graph ϕ A bA
| VB-graph-conj: VB-graph ϕ (A ∧Q B) (bA ∧ bB) if VB-graph ϕ A bA and VB-graph ϕ B bB
| VB-graph-disj: VB-graph ϕ (A ∨Q B) (bA ∨ bB) if VB-graph ϕ A bA and VB-graph ϕ B bB
| VB-graph-imp: VB-graph ϕ (A ⊃Q B) (bA ⊃ bB) if VB-graph ϕ A bA and VB-graph ϕ B bB
| VB-graph-eqv: VB-graph ϕ (A ≡Q B) (bA ≡ bB) if VB-graph ϕ A bA and VB-graph ϕ B bB and A
6= Fo

lemmas [intro!] = VB-graph.intros

lemma VB-graph-denotation-is-truth-value [elim!]:
assumes VB-graph ϕ A b
and is-tv-assignment ϕ
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shows b ∈ elts �
using assms proof induction

case (VB-graph-neg A bA)
show ?case

using VB-graph-neg.IH [OF assms(2 )] by force
next

case (VB-graph-conj A bA B bB)
then show ?case

using VB-graph-conj.IH and assms(2 ) by force
next

case (VB-graph-disj A bA B bB)
then show ?case

using VB-graph-disj.IH and assms(2 ) by force
next

case (VB-graph-imp A bA B bB)
then show ?case

using VB-graph-imp.IH and assms(2 ) by force
next

case (VB-graph-eqv A bA B bB)
then show ?case

using VB-graph-eqv.IH and assms(2 ) by force
qed simp-all

lemma VB-graph-denotation-uniqueness:
assumes A ∈ pwffs
and is-tv-assignment ϕ
and VB-graph ϕ A b and VB-graph ϕ A b ′

shows b = b ′

using assms(3 ,1 ,4 ) proof (induction arbitrary: b ′)
case VB-graph-T
from ‹VB-graph ϕ To b ′› show ?case

by (cases rule: VB-graph.cases) simp-all
next

case VB-graph-F
from ‹VB-graph ϕ Fo b ′› show ?case

by (cases rule: VB-graph.cases) simp-all
next

case (VB-graph-var p)
from ‹VB-graph ϕ (po) b ′› show ?case

by (cases rule: VB-graph.cases) simp-all
next

case (VB-graph-neg A bA)
with ‹VB-graph ϕ (∼Q A) b ′› have VB-graph ϕ A (∼ b ′)
proof (cases rule: VB-graph.cases)

case (VB-graph-neg A ′ bA)
from ‹∼Q A = ∼Q A ′› have A = A ′

by simp
with ‹VB-graph ϕ A ′ bA› have VB-graph ϕ A bA

by simp
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moreover have bA = ∼ b ′

proof −
have bA ∈ elts �

by (fact VB-graph-denotation-is-truth-value[OF VB-graph-neg(3 ) assms(2 )])
moreover from ‹bA ∈ elts �› and VB-graph-neg(2 ) have ∼ b ′ ∈ elts �

by fastforce
ultimately show ?thesis

using VB-graph-neg(2 ) by fastforce
qed
ultimately show ?thesis

by blast
qed simp-all
moreover from VB-graph-neg.prems(1 ) have A ∈ pwffs

by (force elim: pwffs.cases)
moreover have bA ∈ elts � and b ′ ∈ elts � and bA = ∼ b ′

proof −
show bA ∈ elts �

by (fact VB-graph-denotation-is-truth-value[OF ‹VB-graph ϕ A bA› assms(2 )])
show b ′ ∈ elts �

by (fact VB-graph-denotation-is-truth-value[OF ‹VB-graph ϕ (∼Q A) b ′› assms(2 )])
show bA = ∼ b ′

by (fact VB-graph-neg(2 )[OF ‹A ∈ pwffs› ‹VB-graph ϕ A (∼ b ′)›])
qed
ultimately show ?case

by force
next

case (VB-graph-conj A bA B bB)
with ‹VB-graph ϕ (A ∧Q B) b ′› obtain bA ′ and bB ′

where b ′ = bA ′ ∧ bB ′ and VB-graph ϕ A bA ′ and VB-graph ϕ B bB ′

by (cases rule: VB-graph.cases) simp-all
moreover have A ∈ pwffs and B ∈ pwffs

using pwffs-from-conj-pwff [OF VB-graph-conj.prems(1 )] by blast+
ultimately show ?case

using VB-graph-conj.IH and VB-graph-conj.prems(2 ) by blast
next

case (VB-graph-disj A bA B bB)
from ‹VB-graph ϕ (A ∨Q B) b ′› obtain bA ′ and bB ′

where b ′ = bA ′ ∨ bB ′ and VB-graph ϕ A bA ′ and VB-graph ϕ B bB ′

by (cases rule: VB-graph.cases) simp-all
moreover have A ∈ pwffs and B ∈ pwffs

using pwffs-from-disj-pwff [OF VB-graph-disj.prems(1 )] by blast+
ultimately show ?case

using VB-graph-disj.IH and VB-graph-disj.prems(2 ) by blast
next

case (VB-graph-imp A bA B bB)
from ‹VB-graph ϕ (A ⊃Q B) b ′› obtain bA ′ and bB ′

where b ′ = bA ′ ⊃ bB ′ and VB-graph ϕ A bA ′ and VB-graph ϕ B bB ′

by (cases rule: VB-graph.cases) simp-all
moreover have A ∈ pwffs and B ∈ pwffs

100



using pwffs-from-imp-pwff [OF VB-graph-imp.prems(1 )] by blast+
ultimately show ?case

using VB-graph-imp.IH and VB-graph-imp.prems(2 ) by blast
next

case (VB-graph-eqv A bA B bB)
with ‹VB-graph ϕ (A ≡Q B) b ′› obtain bA ′ and bB ′

where b ′ = bA ′ ≡ bB ′ and VB-graph ϕ A bA ′ and VB-graph ϕ B bB ′

by (cases rule: VB-graph.cases) simp-all
moreover have A ∈ pwffs and B ∈ pwffs

using pwffs-from-eqv-pwff [OF VB-graph-eqv.prems(1 )] by blast+
ultimately show ?case

using VB-graph-eqv.IH and VB-graph-eqv.prems(2 ) by blast
qed

lemma VB-graph-denotation-existence:
assumes A ∈ pwffs
and is-tv-assignment ϕ
shows ∃ b. VB-graph ϕ A b

using assms proof induction
case (eqv-pwff A B)
then obtain bA and bB where VB-graph ϕ A bA and VB-graph ϕ B bB

by blast
then show ?case
proof (cases A 6= Fo)

case True
then show ?thesis

using eqv-pwff .IH and eqv-pwff .prems by blast
next

case False
then have A = Fo

by blast
then show ?thesis

using VB-graph-neg[OF ‹VB-graph ϕ B bB›] by auto
qed

qed blast+

lemma VB-graph-is-functional:
assumes A ∈ pwffs
and is-tv-assignment ϕ
shows ∃ !b. VB-graph ϕ A b
using assms and VB-graph-denotation-existence and VB-graph-denotation-uniqueness by blast

definition VB :: (nat ⇒ V ) ⇒ form ⇒ V where
[simp]: VB ϕ A = (THE b. VB-graph ϕ A b)

lemma VB-equality:
assumes A ∈ pwffs
and is-tv-assignment ϕ
and VB-graph ϕ A b
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shows VB ϕ A = b
unfolding VB-def using assms using VB-graph-denotation-uniqueness by blast

lemma VB-graph-VB :
assumes A ∈ pwffs
and is-tv-assignment ϕ
shows VB-graph ϕ A (VB ϕ A)
using VB-equality[OF assms] and VB-graph-is-functional[OF assms] by blast

named-theorems VB-simps

lemma VB-T [VB-simps]:
assumes is-tv-assignment ϕ
shows VB ϕ To = T
by (rule VB-equality[OF T-pwff assms], intro VB-graph-T )

lemma VB-F [VB-simps]:
assumes is-tv-assignment ϕ
shows VB ϕ Fo = F
by (rule VB-equality[OF F-pwff assms], intro VB-graph-F)

lemma VB-var [VB-simps]:
assumes is-tv-assignment ϕ
shows VB ϕ (po) = ϕ p
by (rule VB-equality[OF var-pwff assms], intro VB-graph-var)

lemma VB-neg [VB-simps]:
assumes A ∈ pwffs
and is-tv-assignment ϕ
shows VB ϕ (∼Q A) = ∼ VB ϕ A
by (rule VB-equality[OF neg-pwff [OF assms(1 )] assms(2 )], intro VB-graph-neg VB-graph-VB [OF

assms])

lemma VB-disj [VB-simps]:
assumes A ∈ pwffs and B ∈ pwffs
and is-tv-assignment ϕ
shows VB ϕ (A ∨Q B) = VB ϕ A ∨ VB ϕ B

proof −
from assms(1 ,3 ) have VB-graph ϕ A (VB ϕ A)

by (intro VB-graph-VB)
moreover from assms(2 ,3 ) have VB-graph ϕ B (VB ϕ B)

by (intro VB-graph-VB)
ultimately have VB-graph ϕ (A ∨Q B) (VB ϕ A ∨ VB ϕ B)

by (intro VB-graph-disj)
with assms show ?thesis

using disj-pwff by (intro VB-equality)
qed

lemma VB-conj [VB-simps]:
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assumes A ∈ pwffs and B ∈ pwffs
and is-tv-assignment ϕ
shows VB ϕ (A ∧Q B) = VB ϕ A ∧ VB ϕ B

proof −
from assms(1 ,3 ) have VB-graph ϕ A (VB ϕ A)

by (intro VB-graph-VB)
moreover from assms(2 ,3 ) have VB-graph ϕ B (VB ϕ B)

by (intro VB-graph-VB)
ultimately have VB-graph ϕ (A ∧Q B) (VB ϕ A ∧ VB ϕ B)

by (intro VB-graph-conj)
with assms show ?thesis

using conj-pwff by (intro VB-equality)
qed

lemma VB-imp [VB-simps]:
assumes A ∈ pwffs and B ∈ pwffs
and is-tv-assignment ϕ
shows VB ϕ (A ⊃Q B) = VB ϕ A ⊃ VB ϕ B

proof −
from assms(1 ,3 ) have VB-graph ϕ A (VB ϕ A)

by (intro VB-graph-VB)
moreover from assms(2 ,3 ) have VB-graph ϕ B (VB ϕ B)

by (intro VB-graph-VB)
ultimately have VB-graph ϕ (A ⊃Q B) (VB ϕ A ⊃ VB ϕ B)

by (intro VB-graph-imp)
with assms show ?thesis

using imp-pwff by (intro VB-equality)
qed

lemma VB-eqv [VB-simps]:
assumes A ∈ pwffs and B ∈ pwffs
and is-tv-assignment ϕ
shows VB ϕ (A ≡Q B) = VB ϕ A ≡ VB ϕ B

proof (cases A = Fo)
case True
then show ?thesis

using VB-F [OF assms(3 )] and VB-neg[OF assms(2 ,3 )] by force
next

case False
from assms(1 ,3 ) have VB-graph ϕ A (VB ϕ A)

by (intro VB-graph-VB)
moreover from assms(2 ,3 ) have VB-graph ϕ B (VB ϕ B)

by (intro VB-graph-VB)
ultimately have VB-graph ϕ (A ≡Q B) (VB ϕ A ≡ VB ϕ B)

using False by (intro VB-graph-eqv)
with assms show ?thesis

using eqv-pwff by (intro VB-equality)
qed
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declare pwffs.intros [VB-simps]

lemma pwff-denotation-function-existence:
shows is-pwff-denotation-function VB

using VB-simps by simp

Tautologies:
definition is-tautology :: form ⇒ bool where
[iff ]: is-tautology A ←→ A ∈ pwffs ∧ (∀ϕ. is-tv-assignment ϕ −→ VB ϕ A = T)

lemma tautology-is-wffo:
assumes is-tautology A
shows A ∈ wffso
using assms and pwffs-subset-of-wffso by blast

lemma propositional-implication-reflexivity-is-tautology:
shows is-tautology (po ⊃Q po)
using VB-simps by simp

lemma propositional-principle-of-simplification-is-tautology:
shows is-tautology (po ⊃Q (ro ⊃Q po))
using VB-simps by simp

lemma closed-pwff-denotation-uniqueness:
assumes A ∈ pwffs and free-vars A = {}
obtains b where ∀ϕ. is-tv-assignment ϕ −→ VB ϕ A = b
using assms
by (meson closed-pwff-is-meaningful-regardless-of-assignment pwff-denotation-function-existence)

lemma pwff-substitution-simps:
shows S {(p, o) � A} To = To
and S {(p, o) � A} Fo = Fo
and S {(p, o) � A} (p ′o) = (if p = p ′ then A else (p ′o))
and S {(p, o) � A} (∼Q B) = ∼Q (S {(p, o) � A} B)
and S {(p, o) � A} (B ∧Q C ) = (S {(p, o) � A} B) ∧Q (S {(p, o) � A} C )
and S {(p, o) � A} (B ∨Q C ) = (S {(p, o) � A} B) ∨Q (S {(p, o) � A} C )
and S {(p, o) � A} (B ⊃Q C ) = (S {(p, o) � A} B) ⊃Q (S {(p, o) � A} C )
and S {(p, o) � A} (B ≡Q C ) = (S {(p, o) � A} B) ≡Q (S {(p, o) � A} C )
by simp-all

lemma pwff-substitution-in-pwffs:
assumes A ∈ pwffs and B ∈ pwffs
shows S {(p, o) � A} B ∈ pwffs

using assms(2 ) proof induction
case T-pwff
then show ?case

using pwffs.T-pwff by simp
next

case F-pwff
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then show ?case
using pwffs.F-pwff by simp

next
case (var-pwff p)
from assms(1 ) show ?case

using pwffs.var-pwff by simp
next

case (neg-pwff A)
then show ?case

using pwff-substitution-simps(4 ) and pwffs.neg-pwff by simp
next

case (conj-pwff A B)
then show ?case

using pwff-substitution-simps(5 ) and pwffs.conj-pwff by simp
next

case (disj-pwff A B)
then show ?case

using pwff-substitution-simps(6 ) and pwffs.disj-pwff by simp
next

case (imp-pwff A B)
then show ?case

using pwff-substitution-simps(7 ) and pwffs.imp-pwff by simp
next

case (eqv-pwff A B)
then show ?case

using pwff-substitution-simps(8 ) and pwffs.eqv-pwff by simp
qed

lemma pwff-substitution-denotation:
assumes A ∈ pwffs and B ∈ pwffs
and is-tv-assignment ϕ
shows VB ϕ (S {(p, o) � A} B) = VB (ϕ(p := VB ϕ A)) B

proof −
from assms(1 ,3 ) have is-tv-assignment (ϕ(p := VB ϕ A))

using VB-graph-denotation-is-truth-value[OF VB-graph-VB ] by simp
with assms(2 ,1 ,3 ) show ?thesis

using VB-simps and pwff-substitution-in-pwffs by induction auto
qed

lemma pwff-substitution-tautology-preservation:
assumes is-tautology B and A ∈ pwffs
and (p, o) ∈ free-vars B
shows is-tautology (S {(p, o) � A} B)

proof (safe, fold is-tv-assignment-def )
from assms(1 ,2 ) show S {(p, o) � A} B ∈ pwffs

using pwff-substitution-in-pwffs by blast
next

fix ϕ
assume is-tv-assignment ϕ
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with assms(1 ,2 ) have VB ϕ (S {(p, o) � A} B) = VB (ϕ(p := VB ϕ A)) B
using pwff-substitution-denotation by blast

moreover from ‹is-tv-assignment ϕ› and assms(2 ) have is-tv-assignment (ϕ(p := VB ϕ A))
using VB-graph-denotation-is-truth-value[OF VB-graph-VB ] by simp

with assms(1 ) have VB (ϕ(p := VB ϕ A)) B = T
by fastforce

ultimately show VB ϕ S {(p, o) � A} B = T
by (simp only:)

qed

lemma closed-pwff-substitution-free-vars:
assumes A ∈ pwffs and B ∈ pwffs
and free-vars A = {}
and (p, o) ∈ free-vars B
shows free-vars (S {(p, o) � A} B) = free-vars B − {(p, o)} (is ‹free-vars (S ?ϑ B) = -›)

using assms(2 ,4 ) proof induction
case (conj-pwff C D)
have free-vars (S ?ϑ (C ∧Q D)) = free-vars ((S ?ϑ C ) ∧Q (S ?ϑ D))

by simp
also have . . . = free-vars (S ?ϑ C ) ∪ free-vars (S ?ϑ D)

by (fact conj-fv)
finally have ∗: free-vars (S ?ϑ (C ∧Q D)) = free-vars (S ?ϑ C ) ∪ free-vars (S ?ϑ D) .
from conj-pwff .prems consider
(a) (p, o) ∈ free-vars C and (p, o) ∈ free-vars D
| (b) (p, o) ∈ free-vars C and (p, o) /∈ free-vars D
| (c) (p, o) /∈ free-vars C and (p, o) ∈ free-vars D

by auto
from this and ∗ and conj-pwff .IH show ?case

using free-var-singleton-substitution-neutrality by cases auto
next

case (disj-pwff C D)
have free-vars (S ?ϑ (C ∨Q D)) = free-vars ((S ?ϑ C ) ∨Q (S ?ϑ D))

by simp
also have . . . = free-vars (S ?ϑ C ) ∪ free-vars (S ?ϑ D)

by (fact disj-fv)
finally have ∗: free-vars (S ?ϑ (C ∨Q D)) = free-vars (S ?ϑ C ) ∪ free-vars (S ?ϑ D) .
from disj-pwff .prems consider
(a) (p, o) ∈ free-vars C and (p, o) ∈ free-vars D
| (b) (p, o) ∈ free-vars C and (p, o) /∈ free-vars D
| (c) (p, o) /∈ free-vars C and (p, o) ∈ free-vars D

by auto
from this and ∗ and disj-pwff .IH show ?case

using free-var-singleton-substitution-neutrality by cases auto
next

case (imp-pwff C D)
have free-vars (S ?ϑ (C ⊃Q D)) = free-vars ((S ?ϑ C ) ⊃Q (S ?ϑ D))

by simp
also have . . . = free-vars (S ?ϑ C ) ∪ free-vars (S ?ϑ D)

by (fact imp-fv)
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finally have ∗: free-vars (S ?ϑ (C ⊃Q D)) = free-vars (S ?ϑ C ) ∪ free-vars (S ?ϑ D) .
from imp-pwff .prems consider
(a) (p, o) ∈ free-vars C and (p, o) ∈ free-vars D
| (b) (p, o) ∈ free-vars C and (p, o) /∈ free-vars D
| (c) (p, o) /∈ free-vars C and (p, o) ∈ free-vars D

by auto
from this and ∗ and imp-pwff .IH show ?case

using free-var-singleton-substitution-neutrality by cases auto
next

case (eqv-pwff C D)
have free-vars (S ?ϑ (C ≡Q D)) = free-vars ((S ?ϑ C ) ≡Q (S ?ϑ D))

by simp
also have . . . = free-vars (S ?ϑ C ) ∪ free-vars (S ?ϑ D)

by (fact eqv-fv)
finally have ∗: free-vars (S ?ϑ (C ≡Q D)) = free-vars (S ?ϑ C ) ∪ free-vars (S ?ϑ D) .
from eqv-pwff .prems consider
(a) (p, o) ∈ free-vars C and (p, o) ∈ free-vars D
| (b) (p, o) ∈ free-vars C and (p, o) /∈ free-vars D
| (c) (p, o) /∈ free-vars C and (p, o) ∈ free-vars D

by auto
from this and ∗ and eqv-pwff .IH show ?case

using free-var-singleton-substitution-neutrality by cases auto
qed (use assms(3 ) in ‹force+›)

Substitution in a pwff:
definition is-pwff-substitution where
[iff ]: is-pwff-substitution ϑ ←→ is-substitution ϑ ∧ (∀ (x, α) ∈ fmdom ′ ϑ. α = o)

Tautologous pwff:
definition is-tautologous :: form ⇒ bool where
[iff ]: is-tautologous B ←→ (∃ϑ A. is-tautology A ∧ is-pwff-substitution ϑ ∧ B = S ϑ A)

lemma tautologous-is-wffo:
assumes is-tautologous A
shows A ∈ wffso
using assms and substitution-preserves-typing and tautology-is-wffo by blast

lemma implication-reflexivity-is-tautologous:
assumes A ∈ wffso
shows is-tautologous (A ⊃Q A)

proof −
let ?ϑ = {(x, o) � A}
have is-tautology (xo ⊃Q xo)

by (fact propositional-implication-reflexivity-is-tautology)
moreover have is-pwff-substitution ?ϑ

using assms by auto
moreover have A ⊃Q A = S ?ϑ (xo ⊃Q xo)

by simp
ultimately show ?thesis
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by blast
qed

lemma principle-of-simplification-is-tautologous:
assumes A ∈ wffso and B ∈ wffso
shows is-tautologous (A ⊃Q (B ⊃Q A))

proof −
let ?ϑ = {(x, o) � A, (y, o) � B}
have is-tautology (xo ⊃Q (yo ⊃Q xo))

by (fact propositional-principle-of-simplification-is-tautology)
moreover have is-pwff-substitution ?ϑ

using assms by auto
moreover have A ⊃Q (B ⊃Q A) = S ?ϑ (xo ⊃Q (yo ⊃Q xo))

by simp
ultimately show ?thesis

by blast
qed

lemma pseudo-modus-tollens-is-tautologous:
assumes A ∈ wffso and B ∈ wffso
shows is-tautologous ((A ⊃Q ∼Q B) ⊃Q (B ⊃Q ∼Q A))

proof −
let ?ϑ = {(x, o) � A, (y, o) � B}
have is-tautology ((xo ⊃Q ∼Q yo) ⊃Q (yo ⊃Q ∼Q xo))

using VB-simps by (safe, fold is-tv-assignment-def , simp only:) simp
moreover have is-pwff-substitution ?ϑ

using assms by auto
moreover have (A ⊃Q ∼Q B) ⊃Q (B ⊃Q ∼Q A) = S ?ϑ ((xo ⊃Q ∼Q yo) ⊃Q (yo ⊃Q ∼Q xo))

by simp
ultimately show ?thesis

by blast
qed

end

5 Proof System
theory Proof-System

imports
Syntax

begin

5.1 Axioms
inductive-set

axioms :: form set
where

axiom-1 :
go→o � To ∧Q go→o � Fo ≡Q ∀ xo. go→o � xo ∈ axioms
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| axiom-2 :
(xα =α yα) ⊃Q (hα→o � xα ≡Q hα→o � yα) ∈ axioms

| axiom-3 :
(fα→β =α→β gα→β) ≡Q ∀ xα. (fα→β � xα =β gα→β � xα) ∈ axioms

| axiom-4-1-con:
(λxα. {|c|}β) � A =β {|c|}β ∈ axioms if A ∈ wffsα

| axiom-4-1-var :
(λxα. yβ) � A =β yβ ∈ axioms if A ∈ wffsα and yβ 6= xα

| axiom-4-2 :
(λxα. xα) � A =α A ∈ axioms if A ∈ wffsα

| axiom-4-3 :
(λxα. B � C ) � A =β ((λxα. B) � A) � ((λxα. C ) � A) ∈ axioms

if A ∈ wffsα and B ∈ wffsγ→β and C ∈ wffsγ
| axiom-4-4 :

(λxα. λyγ . B) � A =γ→δ (λyγ . (λxα. B) � A) ∈ axioms
if A ∈ wffsα and B ∈ wffsδ and (y, γ) /∈ {(x, α)} ∪ vars A

| axiom-4-5 :
(λxα. λxα. B) � A =α→δ (λxα. B) ∈ axioms if A ∈ wffsα and B ∈ wffsδ

| axiom-5 :
ι � (Qi � yi) =i yi ∈ axioms

lemma axioms-are-wffs-of-type-o:
shows axioms ⊆ wffso
by (intro subsetI , cases rule: axioms.cases) auto

5.2 Inference rule R
definition is-rule-R-app :: position ⇒ form ⇒ form ⇒ form ⇒ bool where
[iff ]: is-rule-R-app p D C E ←→
(
∃α A B.

E = A =α B ∧ A ∈ wffsα ∧ B ∈ wffsα ∧ — E is a well-formed equality
A �p C ∧
D ∈ wffso ∧
C 〈|p ← B|〉 � D

)

lemma rule-R-original-form-is-wffo:
assumes is-rule-R-app p D C E
shows C ∈ wffso
using assms and replacement-preserves-typing by fastforce

5.3 Proof and derivability
inductive is-derivable :: form ⇒ bool where

dv-axiom: is-derivable A if A ∈ axioms
| dv-rule-R: is-derivable D if is-derivable C and is-derivable E and is-rule-R-app p D C E

lemma derivable-form-is-wffso:

109



assumes is-derivable A
shows A ∈ wffso
using assms and axioms-are-wffs-of-type-o by (fastforce elim: is-derivable.cases)

definition is-proof-step :: form list ⇒ nat ⇒ bool where
[iff ]: is-proof-step S i ′←→
S ! i ′ ∈ axioms ∨
(∃ p j k. {j, k} ⊆ {0 ..<i ′} ∧ is-rule-R-app p (S ! i ′) (S ! j) (S ! k))

definition is-proof :: form list ⇒ bool where
[iff ]: is-proof S ←→ (∀ i ′ < length S. is-proof-step S i ′)

lemma common-prefix-is-subproof :
assumes is-proof (S @ S1)
and i ′ < length S
shows is-proof-step (S @ S2) i ′

proof −
from assms(2 ) have ∗: (S @ S1) ! i ′ = (S @ S2) ! i ′

by (simp add: nth-append)
moreover from assms(2 ) have i ′ < length (S @ S1)

by simp
ultimately obtain p and j and k where ∗∗:
(S @ S1) ! i ′ ∈ axioms ∨
{j, k} ⊆ {0 ..<i ′} ∧ is-rule-R-app p ((S @ S1) ! i ′) ((S @ S1) ! j) ((S @ S1) ! k)
using assms(1 ) by fastforce

then consider
(axiom) (S @ S1) ! i ′ ∈ axioms
| (rule-R) {j, k} ⊆ {0 ..<i ′} ∧ is-rule-R-app p ((S @ S1) ! i ′) ((S @ S1) ! j) ((S @ S1) ! k)

by blast
then have
(S @ S2) ! i ′ ∈ axioms ∨
({j, k} ⊆ {0 ..<i ′} ∧ is-rule-R-app p ((S @ S2) ! i ′) ((S @ S2) ! j) ((S @ S2) ! k))

proof cases
case axiom
with ∗ have (S @ S2) ! i ′ ∈ axioms

by (simp only:)
then show ?thesis ..

next
case rule-R
with assms(2 ) have (S @ S1) ! j = (S @ S2) ! j and (S @ S1) ! k = (S @ S2) ! k

by (simp-all add: nth-append)
then have {j, k} ⊆ {0 ..<i ′} ∧ is-rule-R-app p ((S @ S2) ! i ′) ((S @ S2) ! j) ((S @ S2) ! k)

using ∗ and rule-R by simp
then show ?thesis ..

qed
with ∗∗ show ?thesis

by fastforce
qed
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lemma added-suffix-proof-preservation:
assumes is-proof S
and i ′ < length (S @ S ′) − length S ′

shows is-proof-step (S @ S ′) i ′
using assms and common-prefix-is-subproof [where S1 = []] by simp

lemma append-proof-step-is-proof :
assumes is-proof S
and is-proof-step (S @ [A]) (length (S @ [A]) − 1 )
shows is-proof (S @ [A])
using assms and added-suffix-proof-preservation by (simp add: All-less-Suc)

lemma added-prefix-proof-preservation:
assumes is-proof S ′

and i ′ ∈ {length S..<length (S @ S ′)}
shows is-proof-step (S @ S ′) i ′

proof −
let ?S = S @ S ′

let ?i = i ′ − length S
from assms(2 ) have ?S ! i ′ = S ′ ! ?i and ?i < length S ′

by (simp-all add: nth-append less-diff-conv2 )
then have is-proof-step ?S i ′ = is-proof-step S ′ ?i
proof −

from assms(1 ) and ‹?i < length S ′› obtain j and k and p where ∗:
S ′ ! ?i ∈ axioms ∨ ({j, k} ⊆ {0 ..<?i} ∧ is-rule-R-app p (S ′ ! ?i) (S ′ ! j) (S ′ ! k))
by fastforce

then consider
(axiom) S ′ ! ?i ∈ axioms
| (rule-R) {j, k} ⊆ {0 ..<?i} ∧ is-rule-R-app p (S ′ ! ?i) (S ′ ! j) (S ′ ! k)

by blast
then have

?S ! i ′ ∈ axioms ∨
(
{j + length S, k + length S} ⊆ {0 ..<i ′} ∧
is-rule-R-app p (?S ! i ′) (?S ! (j + length S)) (?S ! (k + length S))

)
proof cases

case axiom
with ‹?S ! i ′ = S ′ ! ?i› have ?S ! i ′ ∈ axioms

by (simp only:)
then show ?thesis ..

next
case rule-R
with assms(2 ) have ?S ! (j + length S) = S ′ ! j and ?S ! (k + length S) = S ′ ! k

by (simp-all add: nth-append)
with ‹?S ! i ′ = S ′ ! ?i› and rule-R have
{j + length S, k + length S} ⊆ {0 ..<i ′} ∧
is-rule-R-app p (?S ! i ′) (?S ! (j + length S)) (?S ! (k + length S))
by auto
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then show ?thesis ..
qed
with ∗ show ?thesis

by fastforce
qed
with assms(1 ) and ‹?i < length S ′› show ?thesis

by simp
qed

lemma proof-but-last-is-proof :
assumes is-proof (S @ [A])
shows is-proof S
using assms and common-prefix-is-subproof [where S1 = [A] and S2 = []] by simp

lemma proof-prefix-is-proof :
assumes is-proof (S1 @ S2)
shows is-proof S1
using assms and proof-but-last-is-proof
by (induction S2 arbitrary: S1 rule: rev-induct) (simp, metis append.assoc)

lemma single-axiom-is-proof :
assumes A ∈ axioms
shows is-proof [A]
using assms by fastforce

lemma proofs-concatenation-is-proof :
assumes is-proof S1 and is-proof S2
shows is-proof (S1 @ S2)

proof −
from assms(1 ) have ∀ i ′ < length S1. is-proof-step (S1 @ S2) i ′

using added-suffix-proof-preservation by auto
moreover from assms(2 ) have ∀ i ′ ∈ {length S1..<length (S1 @ S2)}. is-proof-step (S1 @ S2) i ′

using added-prefix-proof-preservation by auto
ultimately show ?thesis

unfolding is-proof-def by (meson atLeastLessThan-iff linorder-not-le)
qed

lemma elem-of-proof-is-wffo:
assumes is-proof S and A ∈ lset S
shows A ∈ wffso
using assms and axioms-are-wffs-of-type-o
unfolding is-rule-R-app-def and is-proof-step-def and is-proof-def
by (induction S) (simp, metis (full-types) in-mono in-set-conv-nth)

lemma axiom-prepended-to-proof-is-proof :
assumes is-proof S
and A ∈ axioms
shows is-proof ([A] @ S)
using proofs-concatenation-is-proof [OF single-axiom-is-proof [OF assms(2 )] assms(1 )] .
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lemma axiom-appended-to-proof-is-proof :
assumes is-proof S
and A ∈ axioms
shows is-proof (S @ [A])
using proofs-concatenation-is-proof [OF assms(1 ) single-axiom-is-proof [OF assms(2 )]] .

lemma rule-R-app-appended-to-proof-is-proof :
assumes is-proof S
and iC < length S and S ! iC = C
and iE < length S and S ! iE = E
and is-rule-R-app p D C E
shows is-proof (S @ [D])

proof −
let ?S = S @ [D]
let ?iD = length S
from assms(2 ,4 ) have iC < ?iD and iE < ?iD

by fastforce+
with assms(3 ,5 ,6 ) have is-rule-R-app p (?S ! ?iD) (?S ! iC) (?S ! iE)

by (simp add: nth-append)
with assms(2 ,4 ) have ∃ p j k. {j, k} ⊆ {0 ..<?iD} ∧ is-rule-R-app p (?S ! ?iD) (?S ! j) (?S ! k)

by fastforce
then have is-proof-step ?S (length ?S − 1 )

by simp
moreover from assms(1 ) have ∀ i ′ < length ?S − 1 . is-proof-step ?S i ′

using added-suffix-proof-preservation by auto
ultimately show ?thesis

using less-Suc-eq by auto
qed

definition is-proof-of :: form list ⇒ form ⇒ bool where
[iff ]: is-proof-of S A ←→ S 6= [] ∧ is-proof S ∧ last S = A

lemma proof-prefix-is-proof-of-last:
assumes is-proof (S @ S ′) and S 6= []
shows is-proof-of S (last S)

proof −
from assms(1 ) have is-proof S

by (fact proof-prefix-is-proof )
with assms(2 ) show ?thesis

by fastforce
qed

definition is-theorem :: form ⇒ bool where
[iff ]: is-theorem A ←→ (∃S. is-proof-of S A)

lemma proof-form-is-wffo:
assumes is-proof-of S A
and B ∈ lset S
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shows B ∈ wffso
using assms and elem-of-proof-is-wffo by blast

lemma proof-form-is-theorem:
assumes is-proof S and S 6= []
and i ′ < length S
shows is-theorem (S ! i ′)

proof −
let ?S1 = take (Suc i ′) S
from assms(1 ) obtain S2 where is-proof (?S1 @ S2)

by (metis append-take-drop-id)
then have is-proof ?S1

by (fact proof-prefix-is-proof )
moreover from assms(3 ) have last ?S1 = S ! i ′

by (simp add: take-Suc-conv-app-nth)
ultimately show ?thesis
using assms(2 ) unfolding is-proof-of-def and is-theorem-def by (metis Zero-neq-Suc take-eq-Nil2 )

qed

theorem derivable-form-is-theorem:
assumes is-derivable A
shows is-theorem A

using assms proof (induction rule: is-derivable.induct)
case (dv-axiom A)
then have is-proof [A]

by (fact single-axiom-is-proof )
moreover have last [A] = A

by simp
ultimately show ?case

by blast
next

case (dv-rule-R C E p D)
obtain SC and SE where

is-proof SC and SC 6= [] and last SC = C and
is-proof SE and SE 6= [] and last SE = E
using dv-rule-R.IH by fastforce

let ?iC = length SC − 1 and ?iE = length SC + length SE − 1 and ?iD = length SC + length
SE

let ?S = SC @ SE @ [D]
from ‹SC 6= []› have ?iC < length (SC @ SE) and ?iE < length (SC @ SE)

using linorder-not-le by fastforce+
moreover have (SC @ SE) ! ?iC = C and (SC @ SE) ! ?iE = E

using ‹SC 6= []› and ‹last SC = C ›
by
(

simp add: last-conv-nth nth-append,
metis ‹last SE = E› ‹SE 6= []› append-is-Nil-conv last-appendR last-conv-nth length-append

)
with ‹is-rule-R-app p D C E› have is-rule-R-app p D ((SC @ SE) ! ?iC) ((SC @ SE) ! ?iE)
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using ‹(SC @ SE) ! ?iC = C › by fastforce
moreover from ‹is-proof SC› and ‹is-proof SE› have is-proof (SC @ SE)

by (fact proofs-concatenation-is-proof )
ultimately have is-proof ((SC @ SE) @ [D])

using rule-R-app-appended-to-proof-is-proof by presburger
with ‹SC 6= []› show ?case

unfolding is-proof-of-def and is-theorem-def by (metis snoc-eq-iff-butlast)
qed

theorem theorem-is-derivable-form:
assumes is-theorem A
shows is-derivable A

proof −
from assms obtain S where is-proof S and S 6= [] and last S = A

by fastforce
then show ?thesis
proof (induction length S arbitrary: S A rule: less-induct)

case less
let ?i ′ = length S − 1
from ‹S 6= []› and ‹last S = A› have S ! ?i ′ = A

by (simp add: last-conv-nth)
from ‹is-proof S› and ‹S 6= []› and ‹last S = A› have is-proof-step S ?i ′

using added-suffix-proof-preservation[where S ′ = []] by simp
then consider
(axiom) S ! ?i ′ ∈ axioms
| (rule-R) ∃ p j k. {j, k} ⊆ {0 ..<?i ′} ∧ is-rule-R-app p (S ! ?i ′) (S ! j) (S ! k)

by fastforce
then show ?case
proof cases

case axiom
with ‹S ! ?i ′ = A› show ?thesis

by (fastforce intro: dv-axiom)
next

case rule-R
then obtain p and j and k

where {j, k} ⊆ {0 ..<?i ′} and is-rule-R-app p (S ! ?i ′) (S ! j) (S ! k)
by force

let ?Sj = take (Suc j) S
let ?Sk = take (Suc k) S
obtain Sj ′ and Sk ′ where S = ?Sj @ Sj ′ and S = ?Sk @ Sk ′

by (metis append-take-drop-id)
with ‹is-proof S› have is-proof (?Sj @ Sj ′) and is-proof (?Sk @ Sk ′)

by (simp-all only:)
moreover
from ‹S = ?Sj @ Sj ′› and ‹S = ?Sk @ Sk ′› and ‹last S = A› and ‹{j, k} ⊆ {0 ..<length S −

1}›
have last Sj ′ = A and last Sk ′ = A

using length-Cons and less-le-not-le and take-Suc and take-tl and append.right-neutral
by (metis atLeastLessThan-iff diff-Suc-1 insert-subset last-appendR take-all-iff )+
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moreover from ‹S 6= []› have ?Sj 6= [] and ?Sk 6= []
by simp-all

ultimately have is-proof-of ?Sj (last ?Sj) and is-proof-of ?Sk (last ?Sk)
using proof-prefix-is-proof-of-last [where S = ?Sj and S ′ = Sj ′]
and proof-prefix-is-proof-of-last [where S = ?Sk and S ′ = Sk ′]
by fastforce+

moreover from ‹last Sj ′ = A› and ‹last Sk ′ = A›
have length ?Sj < length S and length ?Sk < length S

using ‹{j, k} ⊆ {0 ..<length S − 1}› by force+
moreover from calculation(3 ,4 ) have last ?Sj = S ! j and last ?Sk = S ! k

by (metis Suc-lessD last-snoc linorder-not-le nat-neq-iff take-Suc-conv-app-nth take-all-iff )+
ultimately have is-derivable (S ! j) and is-derivable (S ! k)

using ‹?Sj 6= []› and ‹?Sk 6= []› and less(1 ) by blast+
with ‹is-rule-R-app p (S ! ?i ′) (S ! j) (S ! k)› and ‹S ! ?i ′ = A› show ?thesis

by (blast intro: dv-rule-R)
qed

qed
qed

theorem theoremhood-derivability-equivalence:
shows is-theorem A ←→ is-derivable A
using derivable-form-is-theorem and theorem-is-derivable-form by blast

lemma theorem-is-wffo:
assumes is-theorem A
shows A ∈ wffso

proof −
from assms obtain S where is-proof-of S A

by blast
then have A ∈ lset S

by auto
with ‹is-proof-of S A› show ?thesis

using proof-form-is-wffo by blast
qed

lemma equality-reflexivity:
assumes A ∈ wffsα
shows is-theorem (A =α A) (is is-theorem ?A2)

proof −
let ?A1 = (λxα. xα) � A =α A
let ?S = [?A1, ?A2]
— (.1) Axiom 4.2
have is-proof-step ?S 0
proof −

from assms have ?A1 ∈ axioms
by (intro axiom-4-2 )

then show ?thesis
by simp

qed
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— (.2) Rule R: .1,.1
moreover have is-proof-step ?S 1
proof −

let ?p = [«, »]
have ∃ p j k. {j::nat, k} ⊆ {0 ..<1} ∧ is-rule-R-app ?p ?A2 (?S ! j) (?S ! k)
proof −

let ?D = ?A2 and ?j = 0 ::nat and ?k = 0
have {?j, ?k} ⊆ {0 ..<1}

by simp
moreover have is-rule-R-app ?p ?A2 (?S ! ?j) (?S ! ?k)
proof −

have (λxα. xα) � A �?p (?S ! ?j)
by force

moreover have (?S ! ?j)〈|?p ← A|〉 � ?D
by force

moreover from ‹A ∈ wffsα› have ?D ∈ wffso
by (intro equality-wff )

moreover from ‹A ∈ wffsα› have (λxα. xα) � A ∈ wffsα
by (meson wffs-of-type-simps)

ultimately show ?thesis
using ‹A ∈ wffsα› by simp

qed
ultimately show ?thesis

by meson
qed
then show ?thesis

by auto
qed
moreover have last ?S = ?A2

by simp
moreover have {0 ..<length ?S} = {0 , 1}

by (simp add: atLeast0-lessThan-Suc insert-commute)
ultimately show ?thesis

unfolding is-theorem-def and is-proof-def and is-proof-of-def
by (metis One-nat-def Suc-1 length-Cons less-2-cases list.distinct(1 ) list.size(3 ))

qed

lemma equality-reflexivity ′:
assumes A ∈ wffsα
shows is-theorem (A =α A) (is is-theorem ?A2)

proof (intro derivable-form-is-theorem)
let ?A1 = (λxα. xα) � A =α A
— (.1) Axiom 4.2
from assms have ?A1 ∈ axioms

by (intro axiom-4-2 )
then have step-1 : is-derivable ?A1

by (intro dv-axiom)
— (.2) Rule R: .1,.1
then show is-derivable ?A2
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proof −
let ?p = [«, »] and ?C = ?A1 and ?E = ?A1 and ?D = ?A2

have is-rule-R-app ?p ?D ?C ?E
proof −

have (λxα. xα) � A �?p ?C
by force

moreover have ?C 〈|?p ← A|〉 � ?D
by force

moreover from ‹A ∈ wffsα› have ?D ∈ wffso
by (intro equality-wff )

moreover from ‹A ∈ wffsα› have (λxα. xα) � A ∈ wffsα
by (meson wffs-of-type-simps)

ultimately show ?thesis
using ‹A ∈ wffsα› by simp

qed
with step-1 show ?thesis

by (blast intro: dv-rule-R)
qed

qed

5.4 Hypothetical proof and derivability

The set of free variables in X that are exposed to capture at position p in A:
definition capture-exposed-vars-at :: position ⇒ form ⇒ ′a ⇒ var set where
[simp]: capture-exposed-vars-at p A X =
{(x, β) | x β p ′ E . strict-prefix p ′ p ∧ λxβ . E �p ′ A ∧ (x, β) ∈ free-vars X}

lemma capture-exposed-vars-at-alt-def :
assumes p ∈ positions A
shows capture-exposed-vars-at p A X = binders-at A p ∩ free-vars X
unfolding binders-at-alt-def [OF assms] and in-scope-of-abs-alt-def
using is-subform-implies-in-positions by auto

Inference rule R′:
definition rule-R ′-side-condition :: form set ⇒ position ⇒ form ⇒ form ⇒ form ⇒ bool where
[iff ]: rule-R ′-side-condition H p D C E ←→

capture-exposed-vars-at p C E ∩ capture-exposed-vars-at p C H = {}

lemma rule-R ′-side-condition-alt-def :
fixes H :: form set
assumes C ∈ wffsα
shows

rule-R ′-side-condition H p D C (A =α B)
←→
(
@ x β E p ′.

strict-prefix p ′ p ∧
λxβ . E �p ′ C ∧
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(x, β) ∈ free-vars (A =α B) ∧
(∃H ∈ H. (x, β) ∈ free-vars H )

)
proof −

have
capture-exposed-vars-at p C (A =α B)
=
{(x, β) | x β p ′ E . strict-prefix p ′ p ∧ λxβ . E �p ′ C ∧ (x, β) ∈ free-vars (A =α B)}
using assms and capture-exposed-vars-at-alt-def unfolding capture-exposed-vars-at-def by fast

moreover have
capture-exposed-vars-at p C H
=
{(x, β) | x β p ′ E . strict-prefix p ′ p ∧ λxβ . E �p ′ C ∧ (x, β) ∈ free-vars H}
using assms and capture-exposed-vars-at-alt-def unfolding capture-exposed-vars-at-def by fast

ultimately have
capture-exposed-vars-at p C (A =α B) ∩ capture-exposed-vars-at p C H
=
{(x, β) | x β p ′ E . strict-prefix p ′ p ∧ λxβ . E �p ′ C ∧ (x, β) ∈ free-vars (A =α B) ∧
(x, β) ∈ free-vars H}

by auto
also have
. . .
=
{(x, β) | x β p ′ E . strict-prefix p ′ p ∧ λxβ . E �p ′ C ∧ (x, β) ∈ free-vars (A =α B) ∧
(∃H ∈ H. (x, β) ∈ free-vars H )}

by auto
finally show ?thesis

by fast
qed

definition is-rule-R ′-app :: form set ⇒ position ⇒ form ⇒ form ⇒ form ⇒ bool where
[iff ]: is-rule-R ′-app H p D C E ←→ is-rule-R-app p D C E ∧ rule-R ′-side-condition H p D C E

lemma is-rule-R ′-app-alt-def :
shows

is-rule-R ′-app H p D C E
←→
(
∃α A B.

E = A =α B ∧ A ∈ wffsα ∧ B ∈ wffsα ∧ — E is a well-formed equality
A �p C ∧ D ∈ wffso ∧
C 〈|p ← B|〉 � D ∧
(
@ x β E p ′.

strict-prefix p ′ p ∧
λxβ . E �p ′ C ∧
(x, β) ∈ free-vars (A =α B) ∧
(∃H ∈ H. (x, β) ∈ free-vars H )

)
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)
using rule-R ′-side-condition-alt-def by fastforce

lemma rule-R ′-preserves-typing:
assumes is-rule-R ′-app H p D C E
shows C ∈ wffso ←→ D ∈ wffso
using assms and replacement-preserves-typing unfolding is-rule-R-app-def and is-rule-R ′-app-def
by meson

abbreviation is-hyps :: form set ⇒ bool where
is-hyps H ≡ H ⊆ wffso ∧ finite H

inductive is-derivable-from-hyps :: form set ⇒ form ⇒ bool (- ` - [50 , 50 ] 50 ) for H where
dv-hyp: H ` A if A ∈ H and is-hyps H
| dv-thm: H ` A if is-theorem A and is-hyps H
| dv-rule-R ′: H ` D if H ` C and H ` E and is-rule-R ′-app H p D C E and is-hyps H

lemma hyp-derivable-form-is-wffso:
assumes is-derivable-from-hyps H A
shows A ∈ wffso
using assms and theorem-is-wffo by (cases rule: is-derivable-from-hyps.cases) auto

definition is-hyp-proof-step :: form set ⇒ form list ⇒ form list ⇒ nat ⇒ bool where
[iff ]: is-hyp-proof-step H S1 S2 i ′←→
S2 ! i ′ ∈ H ∨
S2 ! i ′ ∈ lset S1 ∨
(∃ p j k. {j, k} ⊆ {0 ..<i ′} ∧ is-rule-R ′-app H p (S2 ! i ′) (S2 ! j) (S2 ! k))

type-synonym hyp-proof = form list × form list

definition is-hyp-proof :: form set ⇒ form list ⇒ form list ⇒ bool where
[iff ]: is-hyp-proof H S1 S2 ←→ (∀ i ′ < length S2. is-hyp-proof-step H S1 S2 i ′)

lemma common-prefix-is-hyp-subproof-from:
assumes is-hyp-proof H S1 (S2 @ S2 ′)
and i ′ < length S2
shows is-hyp-proof-step H S1 (S2 @ S2 ′′) i ′

proof −
let ?S = S2 @ S2 ′

from assms(2 ) have ?S ! i ′ = (S2 @ S2 ′′) ! i ′
by (simp add: nth-append)

moreover from assms(2 ) have i ′ < length ?S
by simp

ultimately obtain p and j and k where
?S ! i ′ ∈ H ∨
?S ! i ′ ∈ lset S1 ∨
{j, k} ⊆ {0 ..<i ′} ∧ is-rule-R ′-app H p (?S ! i ′) (?S ! j) (?S ! k)
using assms(1 ) unfolding is-hyp-proof-def and is-hyp-proof-step-def by meson

then consider
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(hyp) ?S ! i ′ ∈ H
| (seq) ?S ! i ′ ∈ lset S1
| (rule-R ′) {j, k} ⊆ {0 ..<i ′} ∧ is-rule-R ′-app H p (?S ! i ′) (?S ! j) (?S ! k)

by blast
then have
(S2 @ S2 ′′) ! i ′ ∈ H ∨
(S2 @ S2 ′′) ! i ′ ∈ lset S1 ∨
({j, k} ⊆ {0 ..<i ′} ∧ is-rule-R ′-app H p ((S2 @ S2 ′′) ! i ′) ((S2 @ S2 ′′) ! j) ((S2 @ S2 ′′) ! k))

proof cases
case hyp
with assms(2 ) have (S2 @ S2 ′′) ! i ′ ∈ H

by (simp add: nth-append)
then show ?thesis ..

next
case seq
with assms(2 ) have (S2 @ S2 ′′) ! i ′ ∈ lset S1

by (simp add: nth-append)
then show ?thesis

by (intro disjI1 disjI2 )
next

case rule-R ′

with assms(2 ) have ?S ! j = (S2 @ S2 ′′) ! j and ?S ! k = (S2 @ S2 ′′) ! k
by (simp-all add: nth-append)

with assms(2 ) and rule-R ′ have
{j, k} ⊆ {0 ..<i ′} ∧ is-rule-R ′-app H p ((S2 @ S2 ′′) ! i ′) ((S2 @ S2 ′′) ! j) ((S2 @ S2 ′′) ! k)
by (metis nth-append)

then show ?thesis
by (intro disjI2 )

qed
then show ?thesis

unfolding is-hyp-proof-step-def by meson
qed

lemma added-suffix-thms-hyp-proof-preservation:
assumes is-hyp-proof H S1 S2
shows is-hyp-proof H (S1 @ S1 ′) S2
using assms by auto

lemma added-suffix-hyp-proof-preservation:
assumes is-hyp-proof H S1 S2
and i ′ < length (S2 @ S2 ′) − length S2 ′

shows is-hyp-proof-step H S1 (S2 @ S2 ′) i ′
using assms and common-prefix-is-hyp-subproof-from[where S2 ′ = []] by auto

lemma appended-hyp-proof-step-is-hyp-proof :
assumes is-hyp-proof H S1 S2
and is-hyp-proof-step H S1 (S2 @ [A]) (length (S2 @ [A]) − 1 )
shows is-hyp-proof H S1 (S2 @ [A])

proof (standard, intro allI impI )
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fix i ′
assume i ′ < length (S2 @ [A])
then consider (a) i ′ < length S2 | (b) i ′ = length S2

by fastforce
then show is-hyp-proof-step H S1 (S2 @ [A]) i ′
proof cases

case a
with assms(1 ) show ?thesis

using added-suffix-hyp-proof-preservation by simp
next

case b
with assms(2 ) show ?thesis

by simp
qed

qed

lemma added-prefix-hyp-proof-preservation:
assumes is-hyp-proof H S1 S2 ′

and i ′ ∈ {length S2..<length (S2 @ S2 ′)}
shows is-hyp-proof-step H S1 (S2 @ S2 ′) i ′

proof −
let ?S = S2 @ S2 ′

let ?i = i ′ − length S2
from assms(2 ) have ?S ! i ′ = S2 ′ ! ?i and ?i < length S2 ′

by (simp-all add: nth-append less-diff-conv2 )
then have is-hyp-proof-step H S1 ?S i ′ = is-hyp-proof-step H S1 S2 ′ ?i
proof −

from assms(1 ) and ‹?i < length S2 ′› obtain j and k and p where
S2 ′ ! ?i ∈ H ∨
S2 ′ ! ?i ∈ lset S1 ∨
({j, k} ⊆ {0 ..<?i} ∧ is-rule-R ′-app H p (S2 ′ ! ?i) (S2 ′ ! j) (S2 ′ ! k))
unfolding is-hyp-proof-def and is-hyp-proof-step-def by meson

then consider
(hyp) S2 ′ ! ?i ∈ H
| (seq) S2 ′ ! ?i ∈ lset S1
| (rule-R ′) {j, k} ⊆ {0 ..<?i} ∧ is-rule-R ′-app H p (S2 ′ ! ?i) (S2 ′ ! j) (S2 ′ ! k)

by blast
then have

?S ! i ′ ∈ H ∨
?S ! i ′ ∈ lset S1 ∨
({j + length S2, k + length S2} ⊆ {0 ..<i ′} ∧

is-rule-R ′-app H p (?S ! i ′) (?S ! (j + length S2)) (?S ! (k + length S2)))
proof cases

case hyp
with ‹?S ! i ′ = S2 ′ ! ?i› have ?S ! i ′ ∈ H

by (simp only:)
then show ?thesis ..

next
case seq
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with ‹?S ! i ′ = S2 ′ ! ?i› have ?S ! i ′ ∈ lset S1
by (simp only:)

then show ?thesis
by (intro disjI1 disjI2 )

next
case rule-R ′

with assms(2 ) have ?S ! (j + length S2) = S2 ′ ! j and ?S ! (k + length S2) = S2 ′ ! k
by (simp-all add: nth-append)

with ‹?S ! i ′ = S2 ′ ! ?i› and rule-R ′ have
{j + length S2, k + length S2} ⊆ {0 ..<i ′} ∧
is-rule-R ′-app H p (?S ! i ′) (?S ! (j + length S2)) (?S ! (k + length S2))
by auto

then show ?thesis
by (intro disjI2 )

qed
with assms(1 ) and ‹?i < length S2 ′› show ?thesis

unfolding is-hyp-proof-def and is-hyp-proof-step-def by meson
qed
with assms(1 ) and ‹?i < length S2 ′› show ?thesis

by simp
qed

lemma hyp-proof-but-last-is-hyp-proof :
assumes is-hyp-proof H S1 (S2 @ [A])
shows is-hyp-proof H S1 S2
using assms and common-prefix-is-hyp-subproof-from[where S2 ′ = [A] and S2 ′′ = []]
by simp

lemma hyp-proof-prefix-is-hyp-proof :
assumes is-hyp-proof H S1 (S2 @ S2 ′)
shows is-hyp-proof H S1 S2
using assms and hyp-proof-but-last-is-hyp-proof
by (induction S2 ′ arbitrary: S2 rule: rev-induct) (simp, metis append.assoc)

lemma single-hyp-is-hyp-proof :
assumes A ∈ H
shows is-hyp-proof H S1 [A]
using assms by fastforce

lemma single-thm-is-hyp-proof :
assumes A ∈ lset S1
shows is-hyp-proof H S1 [A]
using assms by fastforce

lemma hyp-proofs-from-concatenation-is-hyp-proof :
assumes is-hyp-proof H S1 S1 ′ and is-hyp-proof H S2 S2 ′

shows is-hyp-proof H (S1 @ S2) (S1 ′ @ S2 ′)
proof (standard, intro allI impI )

let ?S = S1 @ S2 and ?S ′ = S1 ′ @ S2 ′
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fix i ′
assume i ′ < length ?S ′

then consider (a) i ′ < length S1 ′ | (b) i ′ ∈ {length S1 ′..<length ?S ′}
by fastforce

then show is-hyp-proof-step H ?S ?S ′ i ′
proof cases

case a
from ‹is-hyp-proof H S1 S1 ′› have is-hyp-proof H (S1 @ S2) S1 ′

by auto
with assms(1 ) and a show ?thesis

using added-suffix-hyp-proof-preservation[where S1 = S1 @ S2] by auto
next

case b
from assms(2 ) have is-hyp-proof H (S1 @ S2) S2 ′

by auto
with b show ?thesis

using added-prefix-hyp-proof-preservation[where S1 = S1 @ S2] by auto
qed

qed

lemma elem-of-hyp-proof-is-wffo:
assumes is-hyps H
and lset S1 ⊆ wffso
and is-hyp-proof H S1 S2
and A ∈ lset S2
shows A ∈ wffso

using assms proof (induction S2 rule: rev-induct)
case Nil
then show ?case

by simp
next

case (snoc A ′ S2)
from ‹is-hyp-proof H S1 (S2 @ [A ′])› have is-hyp-proof H S1 S2

using hyp-proof-prefix-is-hyp-proof [where S2 ′ = [A ′]] by presburger
then show ?case
proof (cases A ∈ lset S2)

case True
with snoc.prems(1 ,2 ) and ‹is-hyp-proof H S1 S2› show ?thesis

by (fact snoc.IH )
next

case False
with snoc.prems(4 ) have A ′ = A

by simp
with snoc.prems(3 ) have
(S2 @ [A]) ! i ′ ∈ H ∨
(S2 @ [A]) ! i ′ ∈ lset S1 ∨
(S2 @ [A]) ! i ′ ∈ wffso if i ′ ∈ {0 ..<length (S2 @ [A])} for i ′
using that by auto

then have A ∈ wffso ∨ A ∈ H ∨ A ∈ lset S1 ∨ length S2 /∈ {0 ..<Suc (length S2)}
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by (metis (no-types) length-append-singleton nth-append-length)
with assms(1 ) and ‹lset S1 ⊆ wffso› show ?thesis

using atLeast0-lessThan-Suc by blast
qed

qed

lemma hyp-prepended-to-hyp-proof-is-hyp-proof :
assumes is-hyp-proof H S1 S2
and A ∈ H
shows is-hyp-proof H S1 ([A] @ S2)
using

hyp-proofs-from-concatenation-is-hyp-proof
[

OF single-hyp-is-hyp-proof [OF assms(2 )] assms(1 ),
where S1 = []

]
by simp

lemma hyp-appended-to-hyp-proof-is-hyp-proof :
assumes is-hyp-proof H S1 S2
and A ∈ H
shows is-hyp-proof H S1 (S2 @ [A])
using

hyp-proofs-from-concatenation-is-hyp-proof
[

OF assms(1 ) single-hyp-is-hyp-proof [OF assms(2 )],
where S2 = []

]
by simp

lemma dropped-duplicated-thm-in-hyp-proof-is-hyp-proof :
assumes is-hyp-proof H (A # S1) S2
and A ∈ lset S1
shows is-hyp-proof H S1 S2
using assms by auto

lemma thm-prepended-to-hyp-proof-is-hyp-proof :
assumes is-hyp-proof H S1 S2
and A ∈ lset S1
shows is-hyp-proof H S1 ([A] @ S2)
using hyp-proofs-from-concatenation-is-hyp-proof [OF single-thm-is-hyp-proof [OF assms(2 )] assms(1 )]
and dropped-duplicated-thm-in-hyp-proof-is-hyp-proof by simp

lemma thm-appended-to-hyp-proof-is-hyp-proof :
assumes is-hyp-proof H S1 S2
and A ∈ lset S1
shows is-hyp-proof H S1 (S2 @ [A])
using hyp-proofs-from-concatenation-is-hyp-proof [OF assms(1 ) single-thm-is-hyp-proof [OF assms(2 )]]
and dropped-duplicated-thm-in-hyp-proof-is-hyp-proof by simp
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lemma rule-R ′-app-appended-to-hyp-proof-is-hyp-proof :
assumes is-hyp-proof H S ′ S
and iC < length S and S ! iC = C
and iE < length S and S ! iE = E
and is-rule-R ′-app H p D C E
shows is-hyp-proof H S ′ (S @ [D])

proof (standard, intro allI impI )
let ?S = S @ [D]
fix i ′
assume i ′ < length ?S
then consider (a) i ′ < length S | (b) i ′ = length S

by fastforce
then show is-hyp-proof-step H S ′ (S @ [D]) i ′
proof cases

case a
with assms(1 ) show ?thesis

using added-suffix-hyp-proof-preservation by auto
next

case b
let ?iD = length S
from assms(2 ,4 ) have iC < ?iD and iE < ?iD

by fastforce+
with assms(3 ,5 ,6 ) have is-rule-R ′-app H p (?S ! ?iD) (?S ! iC) (?S ! iE)

by (simp add: nth-append)
with assms(2 ,4 ) have
∃ p j k. {j, k} ⊆ {0 ..<?iD} ∧ is-rule-R ′-app H p (?S ! ?iD) (?S ! j) (?S ! k)
by (intro exI )+ auto

then have is-hyp-proof-step H S ′ ?S (length ?S − 1 )
by simp

moreover from b have i ′ = length ?S − 1
by simp

ultimately show ?thesis
by fast

qed
qed

definition is-hyp-proof-of :: form set ⇒ form list ⇒ form list ⇒ form ⇒ bool where
[iff ]: is-hyp-proof-of H S1 S2 A ←→

is-hyps H ∧
is-proof S1 ∧
S2 6= [] ∧
is-hyp-proof H S1 S2 ∧
last S2 = A

lemma hyp-proof-prefix-is-hyp-proof-of-last:
assumes is-hyps H
and is-proof S ′′

and is-hyp-proof H S ′′ (S @ S ′) and S 6= []
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shows is-hyp-proof-of H S ′′ S (last S)
using assms and hyp-proof-prefix-is-hyp-proof by simp

theorem hyp-derivability-implies-hyp-proof-existence:
assumes H ` A
shows ∃S1 S2. is-hyp-proof-of H S1 S2 A

using assms proof (induction rule: is-derivable-from-hyps.induct)
case (dv-hyp A)
from ‹A ∈ H› have is-hyp-proof H [] [A]

by (fact single-hyp-is-hyp-proof )
moreover have last [A] = A

by simp
moreover have is-proof []

by simp
ultimately show ?case

using ‹is-hyps H› unfolding is-hyp-proof-of-def by (meson list.discI )
next

case (dv-thm A)
then obtain S where is-proof S and S 6= [] and last S = A

by fastforce
then have is-hyp-proof H S [A]

using single-thm-is-hyp-proof by auto
with ‹is-hyps H› and ‹is-proof S› have is-hyp-proof-of H S [A] A

by fastforce
then show ?case

by (intro exI )
next

case (dv-rule-R ′ C E p D)
from dv-rule-R ′.IH obtain SC and SC ′ and SE and SE ′ where

is-hyp-proof H SC ′ SC and is-proof SC ′ and SC 6= [] and last SC = C and
is-hyp-proof H SE ′ SE and is-proof SE ′ and SE 6= [] and last SE = E
by auto

let ?iC = length SC − 1 and ?iE = length SC + length SE − 1 and ?iD = length SC + length
SE

let ?S = SC @ SE @ [D]
from ‹SC 6= []› have ?iC < length (SC @ SE) and ?iE < length (SC @ SE)

using linorder-not-le by fastforce+
moreover have (SC @ SE) ! ?iC = C and (SC @ SE) ! ?iE = E

using ‹SC 6= []› and ‹last SC = C › and ‹SE 6= []› and ‹last SE = E›
by
(

simp add: last-conv-nth nth-append,
metis append-is-Nil-conv last-appendR last-conv-nth length-append

)
with ‹is-rule-R ′-app H p D C E› have is-rule-R ′-app H p D ((SC @ SE) ! ?iC) ((SC @ SE) ! ?iE)

by fastforce
moreover from ‹is-hyp-proof H SC ′ SC› and ‹is-hyp-proof H SE ′ SE›
have is-hyp-proof H (SC ′ @ SE ′) (SC @ SE)

by (fact hyp-proofs-from-concatenation-is-hyp-proof )
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ultimately have is-hyp-proof H (SC ′ @ SE ′) ((SC @ SE) @ [D])
using rule-R ′-app-appended-to-hyp-proof-is-hyp-proof
by presburger

moreover from ‹is-proof SC ′› and ‹is-proof SE ′› have is-proof (SC ′ @ SE ′)
by (fact proofs-concatenation-is-proof )

ultimately have is-hyp-proof-of H (SC ′ @ SE ′) ((SC @ SE) @ [D]) D
using ‹is-hyps H› by fastforce

then show ?case
by (intro exI )

qed

theorem hyp-proof-existence-implies-hyp-derivability:
assumes ∃S1 S2. is-hyp-proof-of H S1 S2 A
shows H ` A

proof −
from assms obtain S1 and S2

where is-hyps H and is-proof S1 and S2 6= [] and is-hyp-proof H S1 S2 and last S2 = A
by fastforce

then show ?thesis
proof (induction length S2 arbitrary: S2 A rule: less-induct)

case less
let ?i ′ = length S2 − 1
from ‹S2 6= []› and ‹last S2 = A› have S2 ! ?i ′ = A

by (simp add: last-conv-nth)
from ‹is-hyp-proof H S1 S2› and ‹S2 6= []› have is-hyp-proof-step H S1 S2 ?i ′

by simp
then consider
(hyp) S2 ! ?i ′ ∈ H
| (seq) S2 ! ?i ′ ∈ lset S1
| (rule-R ′) ∃ p j k. {j, k} ⊆ {0 ..<?i ′} ∧ is-rule-R ′-app H p (S2 ! ?i ′) (S2 ! j) (S2 ! k)

by force
then show ?case
proof cases

case hyp
with ‹S2 ! ?i ′ = A› and ‹is-hyps H› show ?thesis

by (fastforce intro: dv-hyp)
next

case seq
from ‹S2 ! ?i ′ ∈ lset S1› and ‹S2 ! ?i ′ = A›
obtain j where S1 ! j = A and S1 6= [] and j < length S1

by (metis empty-iff in-set-conv-nth list.set(1 ))
with ‹is-proof S1› have is-proof (take (Suc j) S1) and take (Suc j) S1 6= []

using proof-prefix-is-proof [where S1 = take (Suc j) S1 and S2 = drop (Suc j) S1]
by simp-all

moreover from ‹S1 ! j = A› and ‹j < length S1› have last (take (Suc j) S1) = A
by (simp add: take-Suc-conv-app-nth)

ultimately have is-proof-of (take (Suc j) S1) A
by fastforce

then have is-theorem A
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using is-theorem-def by blast
with ‹is-hyps H› show ?thesis

by (intro dv-thm)
next

case rule-R ′

then obtain p and j and k
where {j, k} ⊆ {0 ..<?i ′} and is-rule-R ′-app H p (S2 ! ?i ′) (S2 ! j) (S2 ! k)
by force

let ?Sj = take (Suc j) S2 and ?Sk = take (Suc k) S2
obtain Sj ′ and Sk ′ where S2 = ?Sj @ Sj ′ and S2 = ?Sk @ Sk ′

by (metis append-take-drop-id)
then have is-hyp-proof H S1 (?Sj @ Sj ′) and is-hyp-proof H S1 (?Sk @ Sk ′)

by (simp-all only: ‹is-hyp-proof H S1 S2›)
moreover from ‹S2 6= []› and ‹S2 = ?Sj @ Sj ′› and ‹S2 = ?Sk @ Sk ′› and ‹last S2 = A›
have last Sj ′ = A and last Sk ′ = A

using ‹{j, k} ⊆ {0 ..<length S2 − 1}› and take-tl and less-le-not-le and append.right-neutral
by (metis atLeastLessThan-iff insert-subset last-appendR length-tl take-all-iff )+

moreover from ‹S2 6= []› have ?Sj 6= [] and ?Sk 6= []
by simp-all

ultimately have is-hyp-proof-of H S1 ?Sj (last ?Sj) and is-hyp-proof-of H S1 ?Sk (last ?Sk)
using hyp-proof-prefix-is-hyp-proof-of-last
[OF ‹is-hyps H› ‹is-proof S1› ‹is-hyp-proof H S1 (?Sj @ Sj ′)› ‹?Sj 6= []›]

and hyp-proof-prefix-is-hyp-proof-of-last
[OF ‹is-hyps H› ‹is-proof S1› ‹is-hyp-proof H S1 (?Sk @ Sk ′)› ‹?Sk 6= []›]

by fastforce+
moreover from ‹last Sj ′ = A› and ‹last Sk ′ = A›
have length ?Sj < length S2 and length ?Sk < length S2

using ‹{j, k} ⊆ {0 ..<length S2 − 1}› by force+
moreover from calculation(3 ,4 ) have last ?Sj = S2 ! j and last ?Sk = S2 ! k

by (metis Suc-lessD last-snoc linorder-not-le nat-neq-iff take-Suc-conv-app-nth take-all-iff )+
ultimately have H ` S2 ! j and H ` S2 ! k

using ‹is-hyps H›
and less(1 )[OF ‹length ?Sj < length S2›] and less(1 )[OF ‹length ?Sk < length S2›]
by fast+

with ‹is-hyps H› and ‹S2 ! ?i ′ = A› show ?thesis
using ‹is-rule-R ′-app H p (S2 ! ?i ′) (S2 ! j) (S2 ! k)› by (blast intro: dv-rule-R ′)

qed
qed

qed

theorem hypothetical-derivability-proof-existence-equivalence:
shows H ` A ←→ (∃S1 S2. is-hyp-proof-of H S1 S2 A)
using hyp-derivability-implies-hyp-proof-existence and hyp-proof-existence-implies-hyp-derivability ..

proposition derivability-from-no-hyps-theoremhood-equivalence:
shows {} ` A ←→ is-theorem A

proof
assume {} ` A
then show is-theorem A
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proof (induction rule: is-derivable-from-hyps.induct)
case (dv-rule-R ′ C E p D)
from ‹is-rule-R ′-app {} p D C E› have is-rule-R-app p D C E

by simp
moreover from ‹is-theorem C › and ‹is-theorem E› have is-derivable C and is-derivable E

using theoremhood-derivability-equivalence by (simp-all only:)
ultimately have is-derivable D

by (fastforce intro: dv-rule-R)
then show ?case

using theoremhood-derivability-equivalence by (simp only:)
qed simp

next
assume is-theorem A
then show {} ` A

by (blast intro: dv-thm)
qed

abbreviation is-derivable-from-no-hyps (` - [50 ] 50 ) where
` A ≡ {} ` A

corollary derivability-implies-hyp-derivability:
assumes ` A and is-hyps H
shows H ` A
using assms and derivability-from-no-hyps-theoremhood-equivalence and dv-thm by simp

lemma axiom-is-derivable-from-no-hyps:
assumes A ∈ axioms
shows ` A
using derivability-from-no-hyps-theoremhood-equivalence
and derivable-form-is-theorem[OF dv-axiom[OF assms]] by (simp only:)

lemma axiom-is-derivable-from-hyps:
assumes A ∈ axioms and is-hyps H
shows H ` A
using assms and axiom-is-derivable-from-no-hyps and derivability-implies-hyp-derivability by blast

lemma rule-R [consumes 2 , case-names occ-subform replacement]:
assumes ` C and ` A =α B
and A �p C and C 〈|p ← B|〉 � D
shows ` D

proof −
from assms(1 ,2 ) have is-derivable C and is-derivable (A =α B)

using derivability-from-no-hyps-theoremhood-equivalence
and theoremhood-derivability-equivalence by blast+

moreover have is-rule-R-app p D C (A =α B)
proof −

from assms(1−4 ) have D ∈ wffso and A ∈ wffsα and B ∈ wffsα
by (meson hyp-derivable-form-is-wffso replacement-preserves-typing wffs-from-equality)+

with assms(3 ,4 ) show ?thesis
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by fastforce
qed
ultimately have is-derivable D

by (rule dv-rule-R)
then show ?thesis

using derivability-from-no-hyps-theoremhood-equivalence and derivable-form-is-theorem by simp
qed

lemma rule-R ′ [consumes 2 , case-names occ-subform replacement no-capture]:
assumes H ` C and H ` A =α B
and A �p C and C 〈|p ← B|〉 � D
and rule-R ′-side-condition H p D C (A =α B)
shows H ` D

using assms(1 ,2 ) proof (rule dv-rule-R ′)
from assms(1 ) show is-hyps H

by (blast elim: is-derivable-from-hyps.cases)
moreover from assms(1−4 ) have D ∈ wffso

by (meson hyp-derivable-form-is-wffso replacement-preserves-typing wffs-from-equality)
ultimately show is-rule-R ′-app H p D C (A =α B)

using assms(2−5 ) and hyp-derivable-form-is-wffso and wffs-from-equality
unfolding is-rule-R-app-def and is-rule-R ′-app-def by metis

qed

end

6 Elementary Logic
theory Elementary-Logic

imports
Proof-System
Propositional-Wff

begin

no-notation funcset (infixr → 60 )
notation funcset (infixr 7→ 60 )

6.1 Proposition 5200
proposition prop-5200 :

assumes A ∈ wffsα
shows ` A =α A
using assms and equality-reflexivity and dv-thm by simp

corollary hyp-prop-5200 :
assumes is-hyps H and A ∈ wffsα
shows H ` A =α A
using derivability-implies-hyp-derivability[OF prop-5200 [OF assms(2 )] assms(1 )] .
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6.2 Proposition 5201 (Equality Rules)
proposition prop-5201-1 :

assumes H ` A and H ` A ≡Q B
shows H ` B

proof −
from assms(2 ) have H ` A =o B

unfolding equivalence-def .
with assms(1 ) show ?thesis

by (rule rule-R ′[where p = []]) auto
qed

proposition prop-5201-2 :
assumes H ` A =α B
shows H ` B =α A

proof −
have H ` A =α A
proof (rule hyp-prop-5200 )

from assms show is-hyps H
by (blast elim: is-derivable-from-hyps.cases)

show A ∈ wffsα
by (fact hyp-derivable-form-is-wffso[OF assms, THEN wffs-from-equality(1 )])

qed
from this and assms show ?thesis

by (rule rule-R ′[where p = [«,»]]) (force+, fastforce dest: subforms-from-app)
qed

proposition prop-5201-3 :
assumes H ` A =α B and H ` B =α C
shows H ` A =α C
using assms by (rule rule-R ′[where p = [»]]) (force+, fastforce dest: subforms-from-app)

proposition prop-5201-4 :
assumes H ` A =α→β B and H ` C =α D
shows H ` A � C =β B � D

proof −
have H ` A � C =β A � C
proof (rule hyp-prop-5200 )

from assms show is-hyps H
by (blast elim: is-derivable-from-hyps.cases)

from assms have A ∈ wffsα→β and C ∈ wffsα
using hyp-derivable-form-is-wffso and wffs-from-equality by blast+

then show A � C ∈ wffsβ
by auto

qed
from this and assms(1 ) have H ` A � C =β B � C

by (rule rule-R ′[where p = [»,«]]) (force+, fastforce dest: subforms-from-app)
from this and assms(2 ) show ?thesis

by (rule rule-R ′[where p = [»,»]]) (force+, fastforce dest: subforms-from-app)
qed
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proposition prop-5201-5 :
assumes H ` A =α→β B and C ∈ wffsα
shows H ` A � C =β B � C

proof −
have H ` A � C =β A � C
proof (rule hyp-prop-5200 )

from assms(1 ) show is-hyps H
by (blast elim: is-derivable-from-hyps.cases)

have A ∈ wffsα→β
by (fact hyp-derivable-form-is-wffso[OF assms(1 ), THEN wffs-from-equality(1 )])

with assms(2 ) show A � C ∈ wffsβ
by auto

qed
from this and assms(1 ) show ?thesis

by (rule rule-R ′[where p = [»,«]]) (force+, fastforce dest: subforms-from-app)
qed

proposition prop-5201-6 :
assumes H ` C =α D and A ∈ wffsα→β
shows H ` A � C =β A � D

proof −
have H ` A � C =β A � C
proof (rule hyp-prop-5200 )

from assms(1 ) show is-hyps H
by (blast elim: is-derivable-from-hyps.cases)

have C ∈ wffsα
by (fact hyp-derivable-form-is-wffso[OF assms(1 ), THEN wffs-from-equality(1 )])

with assms(2 ) show A � C ∈ wffsβ
by auto

qed
from this and assms(1 ) show ?thesis

by (rule rule-R ′[where p = [»,»]]) (force+, fastforce dest: subforms-from-app)
qed

lemmas Equality-Rules = prop-5201-1 prop-5201-2 prop-5201-3 prop-5201-4 prop-5201-5 prop-5201-6

6.3 Proposition 5202 (Rule RR)
proposition prop-5202 :

assumes ` A =α B ∨ ` B =α A
and p ∈ positions C and A �p C and C 〈|p ← B|〉 � D
and H ` C
shows H ` D

proof −
from assms(5 ) have ` C =o C

using prop-5200 and hyp-derivable-form-is-wffso by blast
moreover from assms(1 ) consider (a) ` A =α B | (b) ` B =α A

by blast
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then have ` A =α B
by cases (assumption, fact Equality-Rules(2 ))

ultimately have ` C =o D
by (rule rule-R[where p = » # p]) (use assms(2−4 ) in auto)

then have H ` C =o D
proof −

from assms(5 ) have is-hyps H
by (blast elim: is-derivable-from-hyps.cases)

with ‹` C =o D› show ?thesis
by (fact derivability-implies-hyp-derivability)

qed
with assms(5 ) show ?thesis

by (rule Equality-Rules(1 )[unfolded equivalence-def ])
qed

lemmas rule-RR = prop-5202

6.4 Proposition 5203
proposition prop-5203 :

assumes A ∈ wffsα and B ∈ wffsβ
and ∀ v ∈ vars A. ¬ is-bound v B
shows ` (λxα. B) � A =β S {(x, α) � A} B

using assms(2 ,1 ,3 ) proof induction
case (var-is-wff β y)
then show ?case
proof (cases yβ = xα)

case True
then have α = β

by simp
moreover from assms(1 ) have ` (λxα. xα) � A =α A

using axiom-4-2 by (intro axiom-is-derivable-from-no-hyps)
moreover have S {(x, α) � A} (xα) = A

by force
ultimately show ?thesis

using True by (simp only:)
next

case False
with assms(1 ) have ` (λxα. yβ) � A =β yβ

using axiom-4-1-var by (intro axiom-is-derivable-from-no-hyps)
moreover from False have S {(x, α) � A} (yβ) = yβ

by auto
ultimately show ?thesis

by (simp only:)
qed

next
case (con-is-wff β c)
from assms(1 ) have ` (λxα. {|c|}β) � A =β {|c|}β

using axiom-4-1-con by (intro axiom-is-derivable-from-no-hyps)
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moreover have S {(x, α) � A} ({|c|}β) = {|c|}β
by auto

ultimately show ?case
by (simp only:)

next
case (app-is-wff γ β D C )
from app-is-wff .prems(2 ) have not-bound-subforms: ∀ v ∈ vars A. ¬ is-bound v D ∧ ¬ is-bound v C

using is-bound-in-app-homomorphism by fast
from ‹D ∈ wffsγ→β› have ` (λxα. D) � A =γ→β S {(x, α) � A} D

using app-is-wff .IH (1 )[OF assms(1 )] and not-bound-subforms by simp
moreover from ‹C ∈ wffsγ› have ` (λxα. C ) � A =γ S {(x, α) � A} C

using app-is-wff .IH (2 )[OF assms(1 )] and not-bound-subforms by simp
moreover have ` (λxα. D � C ) � A =β ((λxα. D) � A) � ((λxα. C ) � A)

using axiom-is-derivable-from-no-hyps[OF axiom-4-3 [OF assms(1 ) ‹D ∈ wffsγ→β› ‹C ∈ wffsγ›]] .
ultimately show ?case

using Equality-Rules(3 ,4 ) and substitute.simps(3 ) by presburger
next

case (abs-is-wff β D γ y)
then show ?case
proof (cases yγ = xα)

case True
then have ` (λxα. λyγ . D) � A =γ→β λyγ . D

using axiom-is-derivable-from-no-hyps[OF axiom-4-5 [OF assms(1 ) abs-is-wff .hyps(1 )]] by fast
moreover from True have S {(x, α) � A} (λyγ . D) = λyγ . D

using empty-substitution-neutrality
by (simp add: singleton-substitution-simps(4 ) fmdrop-fmupd-same)

ultimately show ?thesis
by (simp only:)

next
case False
have binders-at (λyγ . D) [«] = {(y, γ)}

by simp
then have is-bound (y, γ) (λyγ . D)

by fastforce
with abs-is-wff .prems(2 ) have (y, γ) /∈ vars A

by blast
with ‹yγ 6= xα› have ` (λxα. λyγ . D) � A =γ→β λyγ . (λxα. D) � A

using axiom-4-4 [OF assms(1 ) abs-is-wff .hyps(1 )] and axiom-is-derivable-from-no-hyps by blast
moreover have ` (λxα. D) � A =β S {(x, α) � A} D
proof −

have ∀ p. yγ �« # p λyγ . D −→ yγ �p D
using subforms-from-abs by fastforce

from abs-is-wff .prems(2 ) have ∀ v ∈ vars A. ¬ is-bound v D
using is-bound-in-abs-body by fast

then show ?thesis
by (fact abs-is-wff .IH [OF assms(1 )])

qed
ultimately have ` (λxα. λyγ . D) � A =γ→β λyγ . S {(x, α) � A} D

by (rule rule-R[where p = [»,«]]) force+
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with False show ?thesis
by simp

qed
qed

6.5 Proposition 5204
proposition prop-5204 :

assumes A ∈ wffsα and B ∈ wffsβ and C ∈ wffsβ
and ` B =β C
and ∀ v ∈ vars A. ¬ is-bound v B ∧ ¬ is-bound v C
shows ` S {(x, α) � A} (B =β C )

proof −
have ` (λxα. B) � A =β (λxα. B) � A
proof −

have (λxα. B) � A ∈ wffsβ
using assms(1 ,2 ) by auto

then show ?thesis
by (fact prop-5200 )

qed
from this and assms(4 ) have ` (λxα. B) � A =β (λxα. C ) � A

by (rule rule-R[where p = [»,«,«]]) force+
moreover from assms(1 ,2 ,5 ) have ` (λxα. B) � A =β S {(x, α) � A} B

using prop-5203 by auto
moreover from assms(1 ,3 ,5 ) have ` (λxα. C ) � A =β S {(x, α) � A} C

using prop-5203 by auto
ultimately have ` (S {(x, α) � A} B) =β (S {(x, α) � A} C )

using Equality-Rules(2 ,3 ) by blast
then show ?thesis

by simp
qed

6.6 Proposition 5205 (η-conversion)
proposition prop-5205 :

shows ` fα→β =α→β (λyα. fα→β � yα)
proof −

{
fix y
assume yα 6= xα
let ?A = λyα. fα→β � yα
have ` (fα→β =α→β ?A) =o ∀ xα. (fα→β � xα =β ?A � xα)
proof −

have ` (fα→β =α→β gα→β) =o ∀ xα. (fα→β � xα =β gα→β � xα) (is ` ?B =o ?C )

using axiom-3 [unfolded equivalence-def ] by (rule axiom-is-derivable-from-no-hyps)
have ` S {(g, α→β) � ?A} (?B =o ?C )
proof −

have ?A ∈ wffsα→β and ?B ∈ wffso and ?C ∈ wffso
by auto
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moreover have ∀ v ∈ vars ?A. ¬ is-bound v ?B ∧ ¬ is-bound v ?C
proof

fix v
assume v ∈ vars ?A
have vars ?B = {(f, α→β), (g, α→β)} and vars ?C = {(f, α→β), (x, α), (g, α→β)}

by force+
with ‹yα 6= xα› have (y, α) /∈ vars ?B and (y, α) /∈ vars ?C

by force+
then have ¬ is-bound (y, α) ?B and ¬ is-bound (y, α) ?C

using absent-var-is-not-bound by blast+
moreover have ¬ is-bound (f, α→β) ?B and ¬ is-bound (f, α→β) ?C

by code-simp+
moreover from ‹v ∈ vars ?A› have v ∈ {(y, α), (f, α→β)}

by auto
ultimately show ¬ is-bound v ?B ∧ ¬ is-bound v ?C

by fast
qed
ultimately show ?thesis

using ‹` ?B =o ?C › and prop-5204 by presburger
qed
then show ?thesis

by simp
qed
moreover have ` ?A � xα =β fα→β � xα
proof −

have xα ∈ wffsα and fα→β � yα ∈ wffsβ
by auto

moreover have ∀ v ∈ vars (xα). ¬ is-bound v (fα→β � yα)
using ‹yα 6= xα› by auto

moreover have S {(y, α) � xα} (fα→β � yα) = fα→β � xα
by simp

ultimately show ?thesis
using prop-5203 by metis

qed
ultimately have ` (fα→β =α→β ?A) =o ∀ xα. (fα→β � xα =β fα→β � xα)

by (rule rule-R[where p = [»,»,«,»]]) force+
moreover have ` (fα→β =α→β fα→β) =o ∀ xα. (fα→β � xα =β fα→β � xα)
proof −

let ?A = fα→β
have ` (fα→β =α→β gα→β) =o ∀ xα. (fα→β � xα =β gα→β � xα) (is ` ?B =o ?C )

using axiom-3 [unfolded equivalence-def ] by (rule axiom-is-derivable-from-no-hyps)
have ` S {(g, α→β) � ?A} (?B =o ?C )
proof −

have ?A ∈ wffsα→β and ?B ∈ wffso and ?C ∈ wffso
by auto

moreover have ∀ v ∈ vars ?A. ¬ is-bound v ?B ∧ ¬ is-bound v ?C
proof

fix v
assume v ∈ vars ?A
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have vars ?B = {(f, α→β), (g, α→β)} and vars ?C = {(f, α→β), (x, α), (g, α→β)}
by force+

with ‹yα 6= xα› have (y, α) /∈ vars ?B and (y, α) /∈ vars ?C
by force+

then have ¬ is-bound (y, α) ?B and ¬ is-bound (y, α) ?C
using absent-var-is-not-bound by blast+

moreover have ¬ is-bound (f, α→β) ?B and ¬ is-bound (f, α→β) ?C
by code-simp+

moreover from ‹v ∈ vars ?A ›have v ∈ {(y, α), (f, α→β)}
by auto

ultimately show ¬ is-bound v ?B ∧ ¬ is-bound v ?C
by fast

qed
ultimately show ?thesis

using ‹` ?B =o ?C › and prop-5204 by presburger
qed
then show ?thesis

by simp
qed
ultimately have ` fα→β =α→β (λyα. fα→β � yα)

using Equality-Rules(1 )[unfolded equivalence-def ] and Equality-Rules(2 ) and prop-5200
by (metis wffs-of-type-intros(1 ))

}
note x-neq-y = this
then have §6 : ` fα→β =α→β λyα. fα→β � yα (is ` ?B =- ?C )

by simp
then have §7 : ` (λxα. fα→β � xα) =α→β (λyα. (λxα. fα→β � xα) � yα)
proof −

let ?A = λxα. fα→β � xα
have ?A ∈ wffsα→β and ?B ∈ wffsα→β and ?C ∈ wffsα→β

by auto
moreover have ∀ v ∈ vars ?A. ¬ is-bound v ?B ∧ ¬ is-bound v ?C
proof

fix v
assume v ∈ vars ?A
have ¬ is-bound (x, α) ?B and ¬ is-bound (x, α) ?C

by code-simp+
moreover have ¬ is-bound (f, α→β) ?B and ¬ is-bound (f, α→β) ?C

by code-simp+
moreover from ‹v ∈ vars ?A ›have v ∈ {(x, α), (f, α→β)}

by auto
ultimately show ¬ is-bound v ?B ∧ ¬ is-bound v ?C

by fast
qed
ultimately have ` S {(f, α→β) � ?A} (?B =α→β ?C )

using §6 and prop-5204 by presburger
then show ?thesis

by simp
qed
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have ` (λxα. fα→β � xα) =α→β (λyα. fα→β � yα)
proof −

have ` (λxα. fα→β � xα) � yα =β fα→β � yα
proof −

have yα ∈ wffsα and fα→β � xα ∈ wffsβ
by auto

moreover have ∀ v ∈ vars (yα). ¬ is-bound v (fα→β � xα)
by simp

moreover have S {(x, α) � yα} (fα→β � xα) = fα→β � yα
by simp

ultimately show ?thesis
using prop-5203 by metis

qed
from §7 and this show ?thesis

by (rule rule-R [where p = [»,«]]) force+
qed
with §6 and x-neq-y[of y] show ?thesis

using Equality-Rules(2 ,3 ) by blast
qed

6.7 Proposition 5206 (α-conversion)
proposition prop-5206 :

assumes A ∈ wffsα
and (z, β) /∈ free-vars A
and is-free-for (zβ) (x, β) A
shows ` (λxβ . A) =β→α (λzβ . S {(x, β) � zβ} A)

proof −
have is-substitution {(x, β) � zβ}

by auto
from this and assms(1 ) have S {(x, β) � zβ} A ∈ wffsα

by (fact substitution-preserves-typing)
obtain y where (y, β) /∈ {(x, β), (z, β)} ∪ vars A
proof −

have finite ({(x, β), (z, β)} ∪ vars A)
using vars-form-finiteness by blast

with that show ?thesis
using fresh-var-existence by metis

qed
then have (y, β) 6= (x, β) and (y, β) 6= (z, β) and (y, β) /∈ vars A and (y, β) /∈ free-vars A

using free-vars-in-all-vars by auto
have §1 : ` (λxβ . A) =β→α (λyβ . (λxβ . A) � yβ)
proof −

let ?A = λxβ . A
have ∗: ` fβ→α =β→α (λyβ . fβ→α � yβ) (is ` ?B =- ?C )

by (fact prop-5205 )
moreover have ` S {(f, β→α) � ?A} (?B =β→α ?C )
proof −

from assms(1 ) have ?A ∈ wffsβ→α and ?B ∈ wffsβ→α and ?C ∈ wffsβ→α
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by auto
moreover have ∀ v ∈ vars ?A. ¬ is-bound v ?B ∧ ¬ is-bound v ?C
proof

fix v
assume v ∈ vars ?A
then consider (a) v = (x, β) | (b) v ∈ vars A

by fastforce
then show ¬ is-bound v ?B ∧ ¬ is-bound v ?C
proof cases

case a
then show ?thesis

using ‹(y, β) 6= (x, β)› by force
next

case b
then have ¬ is-bound v ?B

by simp
moreover have ¬ is-bound v ?C

using b and ‹(y, β) /∈ vars A› by code-simp force
ultimately show ?thesis

by blast
qed

qed
ultimately show ?thesis

using prop-5204 and ∗ by presburger
qed
ultimately show ?thesis

by simp
qed
then have §2 : ` (λxβ . A) =β→α (λyβ . S {(x, β) � yβ} A)
proof −

have ` (λxβ . A) � yβ =α S {(x, β) � yβ} A (is ` (λxβ . ?B) � ?A =- -)
proof −

have ?A ∈ wffsβ and ?B ∈ wffsα
by blast fact

moreover have ∀ v ∈ vars ?A. ¬ is-bound v ?B
using ‹(y, β) /∈ vars A› and absent-var-is-not-bound by auto

ultimately show ?thesis
by (fact prop-5203 )

qed
with §1 show ?thesis

by (rule rule-R [where p = [»,«]]) force+
qed
moreover
have §3 : ` (λzβ . S {(x, β) � zβ} A) =β→α (λyβ . (λzβ . S {(x, β) � zβ} A) � yβ)
proof −

let ?A = λzβ . S {(x, β) � zβ} A
have ∗: ` fβ→α =β→α (λyβ . fβ→α � yβ) (is ` ?B =- ?C )

by (fact prop-5205 )
moreover have ` S {(f, β→α) � ?A} (?B =β→α ?C )
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proof −
have ?A ∈ wffsβ→α and ?B ∈ wffsβ→α and ?C ∈ wffsβ→α

using ‹S {(x, β) � zβ} A ∈ wffsα› by auto
moreover have ∀ v ∈ vars ?A. ¬ is-bound v ?B ∧ ¬ is-bound v ?C
proof

fix v
assume v ∈ vars ?A
then consider (a) v = (z, β) | (b) v ∈ vars (S {(x, β) � zβ} A)

by fastforce
then show ¬ is-bound v ?B ∧ ¬ is-bound v ?C
proof cases

case a
then show ?thesis

using ‹(y, β) 6= (z, β)› by auto
next

case b
then have ¬ is-bound v ?B

by simp
moreover from b and ‹(y, β) /∈ vars A› and ‹(y, β) 6= (z, β)› have v 6= (y, β)

using renaming-substitution-minimal-change by blast
then have ¬ is-bound v ?C

by code-simp simp
ultimately show ?thesis

by blast
qed

qed
ultimately show ?thesis

using prop-5204 and ∗ by presburger
qed
ultimately show ?thesis

by simp
qed
then have §4 : ` (λzβ . S {(x, β) � zβ} A) =β→α (λyβ . S {(x, β) � yβ} A)
proof −

have ` (λzβ . S {(x, β) � zβ} A) � yβ =α S {(x, β) � yβ} A (is ` (λzβ . ?B) � ?A =- -)
proof −

have ?A ∈ wffsβ and ?B ∈ wffsα
by blast fact

moreover from ‹(y, β) /∈ vars A› and ‹(y, β) 6= (z, β)› have ∀ v ∈ vars ?A. ¬ is-bound v ?B
using absent-var-is-not-bound and renaming-substitution-minimal-change by auto

ultimately have ` (λzβ . S {(x, β) � zβ} A) � yβ =α S {(z, β) � yβ} S {(x, β) � zβ} A
using prop-5203 by fast

moreover have S {(z, β) � yβ} S {(x, β) � zβ} A = S {(x, β) � yβ} A
by (fact renaming-substitution-composability[OF assms(2 ,3 )])

ultimately show ?thesis
by (simp only:)

qed
with §3 show ?thesis

by (rule rule-R [where p = [»,«]]) auto
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qed
ultimately show ?thesis

using Equality-Rules(2 ,3 ) by blast
qed

lemmas α = prop-5206

6.8 Proposition 5207 (β-conversion)
context
begin

private lemma bound-var-renaming-equality:
assumes A ∈ wffsα
and zγ 6= yγ
and (z, γ) /∈ vars A
shows ` A =α rename-bound-var (y, γ) z A

using assms proof induction
case (var-is-wff α x)
then show ?case

using prop-5200 by force
next

case (con-is-wff α c)
then show ?case

using prop-5200 by force
next

case (app-is-wff α β A B)
then show ?case

using Equality-Rules(4 ) by auto
next

case (abs-is-wff β A α x)
then show ?case
proof (cases (y, γ) = (x, α))

case True
have ` λyγ . A =γ→β λyγ . A

by (fact abs-is-wff .hyps[THEN prop-5200 [OF wffs-of-type-intros(4 )]])
moreover have ` A =β rename-bound-var (y, γ) z A

using abs-is-wff .IH [OF assms(2 )] and abs-is-wff .prems(2 ) by fastforce
ultimately have ` λyγ . A =γ→β λyγ . rename-bound-var (y, γ) z A

by (rule rule-R[where p = [»,«]]) force+
moreover
have
` λyγ . rename-bound-var (y, γ) z A
=γ→β
λzγ . S {(y, γ) � zγ} (rename-bound-var (y, γ) z A)

proof −
have rename-bound-var (y, γ) z A ∈ wffsβ

using hyp-derivable-form-is-wffso[OF ‹` A =β rename-bound-var (y, γ) z A›]
by (blast dest: wffs-from-equality)
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moreover from abs-is-wff .prems(2 ) have (z, γ) /∈ free-vars (rename-bound-var (y, γ) z A)
using rename-bound-var-free-vars[OF abs-is-wff .hyps assms(2 )] by simp

moreover from abs-is-wff .prems(2 ) have is-free-for (zγ) (y, γ) (rename-bound-var (y, γ) z A)
using is-free-for-in-rename-bound-var [OF abs-is-wff .hyps assms(2 )] by simp

ultimately show ?thesis
using α by fast

qed
ultimately have ` λyγ . A =γ→β λzγ . S {(y, γ) � zγ} (rename-bound-var (y, γ) z A)

by (rule Equality-Rules(3 ))
then show ?thesis

using True by auto
next

case False
have ` λxα. A =α→β λxα. A

by (fact abs-is-wff .hyps[THEN prop-5200 [OF wffs-of-type-intros(4 )]])
moreover have ` A =β rename-bound-var (y, γ) z A

using abs-is-wff .IH [OF assms(2 )] and abs-is-wff .prems(2 ) by fastforce
ultimately have ` λxα. A =α→β λxα. rename-bound-var (y, γ) z A

by (rule rule-R[where p = [»,«]]) force+
then show ?thesis

using False by auto
qed

qed

proposition prop-5207 :
assumes A ∈ wffsα and B ∈ wffsβ
and is-free-for A (x, α) B
shows ` (λxα. B) � A =β S {(x, α) � A} B

using assms proof (induction form-size B arbitrary: B β rule: less-induct)
case less
from less(3 ,1 ,2 ,4 ) show ?case
proof (cases B rule: wffs-of-type-cases)

case (var-is-wff y)
then show ?thesis
proof (cases yβ = xα)

case True
then have α = β

by simp
moreover from assms(1 ) have ` (λxα. xα) � A =α A

using axiom-4-2 by (intro axiom-is-derivable-from-no-hyps)
moreover have S {(x, α) � A} (xα) = A

by force
ultimately show ?thesis

unfolding True and var-is-wff by simp
next

case False
with assms(1 ) have ` (λxα. yβ) � A =β yβ

using axiom-4-1-var by (intro axiom-is-derivable-from-no-hyps)
moreover from False have S {(x, α) � A} (yβ) = yβ
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by auto
ultimately show ?thesis

unfolding False and var-is-wff by simp
qed

next
case (con-is-wff c)
from assms(1 ) have ` (λxα. {|c|}β) � A =β {|c|}β
using axiom-4-1-con by (intro axiom-is-derivable-from-no-hyps)

moreover have S {(x, α) � A} ({|c|}β) = {|c|}β
by auto

ultimately show ?thesis
by (simp only: con-is-wff )

next
case (app-is-wff γ D C )
have form-size D < form-size B and form-size C < form-size B

unfolding app-is-wff (1 ) by simp-all
from less(4 )[unfolded app-is-wff (1 )] have is-free-for A (x, α) D and is-free-for A (x, α) C

using is-free-for-from-app by iprover+
from ‹is-free-for A (x, α) D› have ` (λxα. D) � A =γ→β S {(x, α) � A} D

by (fact less(1 )[OF ‹form-size D < form-size B› assms(1 ) app-is-wff (2 )])
moreover from ‹is-free-for A (x, α) C › have ` (λxα. C ) � A =γ S {(x, α) � A} C

by (fact less(1 )[OF ‹form-size C < form-size B› assms(1 ) app-is-wff (3 )])
moreover have ` (λxα. D � C ) � A =β ((λxα. D) � A) � ((λxα. C ) � A)

by (fact axiom-4-3 [OF assms(1 ) app-is-wff (2 ,3 ), THEN axiom-is-derivable-from-no-hyps])
ultimately show ?thesis

unfolding app-is-wff (1 ) using Equality-Rules(3 ,4 ) and substitute.simps(3 ) by presburger
next

case (abs-is-wff δ D γ y)
then show ?thesis
proof (cases yγ = xα)

case True
with abs-is-wff (1 ) have ` (λxα. λyγ . D) � A =β λyγ . D

using axiom-4-5 [OF assms(1 ) abs-is-wff (3 )] by (simp add: axiom-is-derivable-from-no-hyps)
moreover have S {(x, α) � A} (λyγ . D) = λyγ . D

using True by (simp add: empty-substitution-neutrality fmdrop-fmupd-same)
ultimately show ?thesis

unfolding abs-is-wff (2 ) by (simp only:)
next

case False
have form-size D < form-size B

unfolding abs-is-wff (2 ) by simp
have is-free-for A (x, α) D

using is-free-for-from-abs[OF less(4 )[unfolded abs-is-wff (2 )]] and ‹yγ 6= xα› by blast
have ` (λxα. (λyγ . D)) � A =β λyγ . S {(x, α) � A} D
proof (cases (y, γ) /∈ vars A)

case True
with ‹yγ 6= xα› have ` (λxα. λyγ . D) � A =γ→δ λyγ . (λxα. D) � A

using axiom-4-4 [OF assms(1 ) abs-is-wff (3 )] and axiom-is-derivable-from-no-hyps by auto
moreover have ` (λxα. D) � A =δ S {(x, α) � A} D
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by
(

fact less(1 )
[OF ‹form-size D < form-size B› assms(1 ) ‹D ∈ wffsδ› ‹is-free-for A (x, α) D›]

)
ultimately show ?thesis

unfolding abs-is-wff (1 ) by (rule rule-R[where p = [»,«]]) force+
next

case False
have finite (vars {A, D})

using vars-form-finiteness and vars-form-set-finiteness by simp
then obtain z where (z, γ) /∈ ({(x, α), (y, γ)} ∪ vars {A, D})

using fresh-var-existence by (metis Un-insert-left finite.simps insert-is-Un)
then have zγ 6= xα and zγ 6= yγ and (z, γ) /∈ vars {A, D}

by simp-all
then show ?thesis
proof (cases (x, α) /∈ free-vars D)

case True
define D ′ where D ′ = S {(y, γ) � zγ} D
have is-substitution {(y, γ) � zγ}

by auto
with ‹D ∈ wffsδ› and D ′-def have D ′ ∈ wffsδ

using substitution-preserves-typing by blast
then have ` (λxα. λzγ . D ′) � A =γ→δ λzγ . (λxα. D ′) � A

using ‹zγ 6= xα› and ‹(z, γ) /∈ vars {A, D}› and axiom-4-4 [OF assms(1 )]
and axiom-is-derivable-from-no-hyps
by auto

moreover have §2 : ` (λxα. D ′) � A =δ D ′

proof −
have form-size D ′ = form-size D

unfolding D ′-def by (fact renaming-substitution-preserves-form-size)
then have form-size D ′ < form-size B

using ‹form-size D < form-size B› by simp
moreover from ‹zγ 6= xα› have is-free-for A (x, α) D ′

unfolding D ′-def and is-free-for-def
using substitution-preserves-freeness[OF True] and is-free-at-in-free-vars
by fast

ultimately have ` (λxα. D ′) � A =δ S {(x, α) � A} D ′

using less(1 ) and assms(1 ) and ‹D ′ ∈ wffsδ› by simp
moreover from ‹zγ 6= xα› have (x, α) /∈ free-vars D ′

unfolding D ′-def using substitution-preserves-freeness[OF True] by fast
then have S {(x, α) � A} D ′ = D ′

by (fact free-var-singleton-substitution-neutrality)
ultimately show ?thesis

by (simp only:)
qed
ultimately have §3 : ` (λxα. λzγ . D ′) � A =γ→δ λzγ . D ′ (is ‹` ?A3 ›)

by (rule rule-R[where p = [»,«]]) force+
moreover have §4 : ` (λyγ . D) =γ→δ λzγ . D ′
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proof −
have (z, γ) /∈ free-vars D

using ‹(z, γ) /∈ vars {A, D}› and free-vars-in-all-vars-set by auto
moreover have is-free-for (zγ) (y, γ) D

using ‹(z, γ) /∈ vars {A, D}› and absent-var-is-free-for by force
ultimately have ` λyγ . D =γ→δ λzγ . S {(y, γ) � zγ} D

using α[OF ‹D ∈ wffsδ›] by fast
then show ?thesis

using D ′-def by blast
qed
ultimately have §5 : ` (λxα. λyγ . D) � A =γ→δ λyγ . D
proof −

note rule-RR ′ = rule-RR[OF disjI2 ]
have §5 1: ` (λxα. λyγ . D) � A =γ→δ λzγ . D ′ (is ‹` ?A5 1›)

by (rule rule-RR ′[OF §4 , where p = [«,»,«,«] and C = ?A3 ]) (use §3 in ‹force+›)
show ?thesis

by (rule rule-RR ′[OF §4 , where p = [»] and C = ?A5 1]) (use §5 1 in ‹force+›)
qed
then show ?thesis

using free-var-singleton-substitution-neutrality[OF ‹(x, α) /∈ free-vars D›]
by (simp only: ‹β = γ→δ›)

next
case False
have (y, γ) /∈ free-vars A
proof (rule ccontr)

assume ¬ (y, γ) /∈ free-vars A
moreover from ‹¬ (x, α) /∈ free-vars D› obtain p

where p ∈ positions D and is-free-at (x, α) p D
using free-vars-in-is-free-at by blast

then have « # p ∈ positions (λyγ . D) and is-free-at (x, α) (« # p) (λyγ . D)
using is-free-at-to-abs[OF ‹is-free-at (x, α) p D›] and ‹yγ 6= xα› by (simp, fast)

moreover have in-scope-of-abs (y, γ) (« # p) (λyγ . D)
by force

ultimately have ¬ is-free-for A (x, α) (λyγ . D)
by blast

with ‹is-free-for A (x, α) B›[unfolded abs-is-wff (2 )] show False
by contradiction

qed
define A ′ where A ′ = rename-bound-var (y, γ) z A
have A ′ ∈ wffsα

unfolding A ′-def by (fact rename-bound-var-preserves-typing[OF assms(1 )])
from ‹(z, γ) /∈ vars {A, D}› have (y, γ) /∈ vars A ′

using
old-var-not-free-not-occurring-after-rename
[

OF assms(1 ) ‹zγ 6= yγ› ‹(y, γ) /∈ free-vars A›
]

unfolding A ′-def by simp
from A ′-def have §6 : ` A =α A ′
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using bound-var-renaming-equality[OF assms(1 ) ‹zγ 6= yγ›] and ‹(z, γ) /∈ vars {A, D}›
by simp

moreover have §7 : ` (λxα. λyγ . D) � A ′ =γ→δ λyγ . (λxα. D) � A ′ (is ‹` ?A7 ›)
using axiom-4-4 [OF ‹A ′ ∈ wffsα› ‹D ∈ wffsδ›]
and ‹(y, γ) /∈ vars A ′› and ‹yγ 6= xα› and axiom-is-derivable-from-no-hyps
by auto

ultimately have §8 : ` (λxα. λyγ . D) � A =γ→δ λyγ . (λxα. D) � A
proof −

note rule-RR ′ = rule-RR[OF disjI2 ]
have §8 1: ` (λxα. λyγ . D) � A =γ→δ λyγ . (λxα. D) � A ′ (is ‹` ?A8 1›)

by (rule rule-RR ′[OF §6 , where p = [«,»,»] and C = ?A7 ]) (use §7 in ‹force+›)
show ?thesis

by (rule rule-RR ′[OF §6 , where p = [»,«,»] and C = ?A8 1]) (use §8 1 in ‹force+›)
qed
moreover have form-size D < form-size B

unfolding abs-is-wff (2 ) by (simp only: form-size.simps(4 ) lessI )
with assms(1 ) have §9 : ` (λxα. D) � A =δ S {(x, α) � A} D

using less(1 ) and ‹D ∈ wffsδ› and ‹is-free-for A (x, α) D› by (simp only:)
ultimately show ?thesis

unfolding ‹β = γ→δ› by (rule rule-R[where p = [»,«]]) force+
qed

qed
then show ?thesis

unfolding abs-is-wff (2 ) using False and singleton-substitution-simps(4 ) by simp
qed

qed
qed

end

6.9 Proposition 5208
proposition prop-5208 :

assumes vs 6= [] and B ∈ wffsβ
shows ` �Q? (λQ? vs B) (map FVar vs) =β B

using assms(1 ) proof (induction vs rule: list-nonempty-induct)
case (single v)
obtain x and α where v = (x, α)

by fastforce
then have �Q? (λQ? [v] B) (map FVar [v]) = (λxα. B) � xα

by simp
moreover have ` (λxα. B) � xα =β B
proof −

have is-free-for (xα) (x, α) B
by fastforce

then have ` (λxα. B) � xα =β S {(x, α) � xα} B
by (rule prop-5207 [OF wffs-of-type-intros(1 ) assms(2 )])

then show ?thesis
using identity-singleton-substitution-neutrality by (simp only:)

147



qed
ultimately show ?case

by (simp only:)
next

case (cons v vs)
obtain x and α where v = (x, α)

by fastforce
have ` �Q? (λQ? (v # vs) B) (map FVar (v # vs)) =β �Q? (λQ? vs B) (map FVar vs)
proof −

have �Q? (λQ? (v # vs) B) (map FVar (v # vs)) ∈ wffsβ
proof −

have λQ? (v # vs) B ∈ wffsfoldr (→) (map snd (v # vs)) β
using generalized-abs-wff [OF assms(2 )] by blast

moreover
have ∀ k < length (map FVar (v # vs)). map FVar (v # vs) ! k ∈ wffsmap snd (v # vs) ! k
proof safe

fix k
assume ∗: k < length (map FVar (v # vs))
moreover obtain x and α where (v # vs) ! k = (x, α)

by fastforce
with ∗ have map FVar (v # vs) ! k = xα and map snd (v # vs) ! k = α

by (metis length-map nth-map snd-conv)+
ultimately show map FVar (v # vs) ! k ∈ wffsmap snd (v # vs) ! k

by fastforce
qed
ultimately show ?thesis

using generalized-app-wff [where As = map FVar (v # vs) and ts = map snd (v # vs)] by
simp

qed
then have
` �Q? (λQ? (v # vs) B) (map FVar (v # vs)) =β �Q? (λQ? (v # vs) B) (map FVar (v # vs))
by (fact prop-5200 )

then have
` �Q? (λQ? (v # vs) B) (map FVar (v # vs)) =β �Q? ((λQ? (v # vs) B) � FVar v) (map FVar

vs)
by simp

moreover have ` (λQ? (v # vs) B) � FVar v =foldr (→) (map snd vs) β (λQ? vs B)

proof −
have ` (λQ? (v # vs) B) � FVar v =foldr (→) (map snd vs) β S {v � FVar v} (λQ? vs B)

proof −
from ‹v = (x, α)› have λQ? (v # vs) B = λxα. λQ? vs B

by simp
have λQ? vs B ∈ wffsfoldr (→) (map snd vs) β

using generalized-abs-wff [OF assms(2 )] by blast
moreover have is-free-for (xα) (x, α) (λQ? vs B)

by fastforce
ultimately
have ` (λxα. λQ? vs B) � xα =foldr (→) (map snd vs) β S {(x, α) � xα} λQ? vs B
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by (rule prop-5207 [OF wffs-of-type-intros(1 )])
with ‹v = (x, α)› show ?thesis

by simp
qed

then show ?thesis
using identity-singleton-substitution-neutrality by (simp only:)

qed
ultimately show ?thesis
proof (induction rule: rule-R [where p = [»] @ replicate (length vs) «])

case occ-subform
then show ?case

unfolding equality-of-type-def using leftmost-subform-in-generalized-app
by (metis append-Cons append-Nil is-subform-at.simps(3 ) length-map)

next
case replacement
then show ?case

unfolding equality-of-type-def using leftmost-subform-in-generalized-app-replacement
and is-subform-implies-in-positions and leftmost-subform-in-generalized-app
by (metis append-Cons append-Nil length-map replace-right-app)

qed
qed
moreover have ` �Q? (λQ? vs B) (map FVar vs) =β B

by (fact cons.IH )
ultimately show ?case

by (rule rule-R [where p = [»]]) auto
qed

6.10 Proposition 5209
proposition prop-5209 :

assumes A ∈ wffsα and B ∈ wffsβ and C ∈ wffsβ
and ` B =β C
and is-free-for A (x, α) (B =β C )

shows ` S {(x, α) � A} (B =β C )
proof −

have ` (λxα. B) � A =β (λxα. B) � A
proof −

have (λxα. B) � A ∈ wffsβ
using assms(1 ,2 ) by blast

then show ?thesis
by (fact prop-5200 )

qed
from this and assms(4 ) have ` (λxα. B) � A =β (λxα. C ) � A

by (rule rule-R [where p = [»,«,«]]) force+
moreover have ` (λxα. B) � A =β S {(x, α) � A} B
proof −

from assms(5 )[unfolded equality-of-type-def ] have is-free-for A (x, α) (Qβ � B)

by (rule is-free-for-from-app)
then have is-free-for A (x, α) B
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by (rule is-free-for-from-app)
with assms(1 ,2 ) show ?thesis

by (rule prop-5207 )
qed
moreover have ` (λxα. C ) � A =β S {(x, α) � A} C
proof −

from assms(5 )[unfolded equality-of-type-def ] have is-free-for A (x, α) C
by (rule is-free-for-from-app)

with assms(1 ,3 ) show ?thesis
by (rule prop-5207 )

qed
ultimately have ` (S {(x, α) � A} B) =β (S {(x, α) � A} C )

using Equality-Rules(2 ,3 ) by blast
then show ?thesis

by simp
qed

6.11 Proposition 5210
proposition prop-5210 :

assumes B ∈ wffsβ
shows ` To =o (B =β B)

proof −
have §1 :
`
((λyβ . yβ) =β→β (λyβ . yβ))
=o
∀ xβ . ((λyβ . yβ) � xβ =β (λyβ . yβ) � xβ)

proof −
have ` (fβ→β =β→β gβ→β) =o ∀ xβ . (fβ→β � xβ =β gβ→β � xβ) (is ` ?B =o ?C )

using axiom-3 [unfolded equivalence-def ] by (rule axiom-is-derivable-from-no-hyps)
moreover have (λyβ . yβ) ∈ wffsβ→β and ?B ∈ wffso and ?C ∈ wffso

by auto
moreover have is-free-for (λyβ . yβ) (f, β→β) (?B =o ?C )

by simp
ultimately have ` S {(f, β→β) � (λyβ . yβ)} (?B =o ?C ) (is ` ?S)

using prop-5209 by presburger
moreover have ?S =
(
(λyβ . yβ) =β→β gβ→β) =o ∀ xβ . ((λyβ . yβ) � xβ =β gβ→β � xβ

) (is - = ?B ′ =o ?C ′)
by simp

ultimately have ` ?B ′ =o ?C ′

by (simp only:)
moreover from ‹(λyβ . yβ) ∈ wffsβ→β› have ?B ′ ∈ wffso and ?C ′ ∈ wffso

by auto
moreover have is-free-for (λyβ . yβ) (g, β→β) (?B ′ =o ?C ′)

by simp
ultimately have ` S {(g, β→β) � (λyβ . yβ)} (?B ′ =o ?C ′) (is ` ?S ′)
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using prop-5209 [OF ‹(λyβ . yβ) ∈ wffsβ→β›] by blast
then show ?thesis

by simp
qed
then have ` (λxβ . To) =β→o (λxβ . (xβ =β xβ))
proof −

have λyβ . yβ ∈ wffsβ→β
by blast

then have ` λyβ . yβ =β→β λyβ . yβ
by (fact prop-5200 )

with §1 have ` ∀ xβ . ((λyβ . yβ) � xβ =β (λyβ . yβ) � xβ)
using rule-R and is-subform-at.simps(1 ) by blast

moreover have ` (λyβ . yβ) � xβ =β xβ
using axiom-4-2 [OF wffs-of-type-intros(1 )] by (rule axiom-is-derivable-from-no-hyps)

ultimately have ` ∀ xβ . (xβ =β (λyβ . yβ) � xβ)
by (rule rule-R[where p = [»,«,«,»]]) auto

from this and ‹` (λyβ . yβ) � xβ =β xβ› have ` ∀ xβ . (xβ =β xβ)

by (rule rule-R[where p = [»,«,»]]) auto
then show ?thesis

unfolding forall-def and PI-def by (fold equality-of-type-def )
qed
from this and assms have 3 : ` (λxβ . To) � B =o (λxβ . (xβ =β xβ)) � B

by (rule Equality-Rules(5 ))
then show ?thesis
proof −

have ` (λxβ . To) � B =o To
using prop-5207 [OF assms true-wff ] by fastforce

from 3 and this have ` To =o (λxβ . (xβ =β xβ)) � B
by (rule rule-R[where p = [«,»]]) auto

moreover have ` (λxβ . (xβ =β xβ)) � B =o (B =β B)
proof −

have xβ =β xβ ∈ wffso and is-free-for B (x, β) (xβ =β xβ)

by (blast, intro is-free-for-in-equality is-free-for-in-var)
moreover have S {(x, β) � B} (xβ =β xβ) = (B =β B)

by simp
ultimately show ?thesis

using prop-5207 [OF assms] by metis
qed
ultimately show ?thesis

by (rule rule-R [where p = [»]]) auto
qed

qed

6.12 Proposition 5211
proposition prop-5211 :

shows ` (To ∧Q To) =o To
proof −

have const-T-wff : (λxo. To) ∈ wffso→o for x
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by blast
have §1 : ` (λyo. To) � To ∧Q (λyo. To) � Fo =o ∀ xo. (λyo. To) � xo
proof −

have ` go→o � To ∧Q go→o � Fo =o ∀ xo. go→o � xo (is ` ?B =o ?C )
using axiom-1 [unfolded equivalence-def ] by (rule axiom-is-derivable-from-no-hyps)

moreover have ?B ∈ wffso and ?C ∈ wffso
by auto

moreover have is-free-for (λyo. To) (g, o→o) (?B =o ?C )
by simp

ultimately have ` S {(g, o→o) � (λyo. To)} (?B =o ?C )
using const-T-wff and prop-5209 by presburger

then show ?thesis
by simp

qed
then have ` To ∧Q To =o ∀ xo. To
proof −

have T-β-redex: ` (λyo. To) � A =o To if A ∈ wffso for A
using that and prop-5207 [OF that true-wff ] by fastforce

from §1 and T-β-redex[OF true-wff ]
have ` To ∧Q (λyo. To) � Fo =o ∀ xo. (λyo. To) � xo

by (rule rule-R[where p = [«,»,«,»]]) force+
from this and T-β-redex[OF false-wff ] have ` To ∧Q To =o ∀ xo. (λyo. To) � xo

by (rule rule-R[where p = [«,»,»]]) force+
from this and T-β-redex[OF wffs-of-type-intros(1 )] show ?thesis

by (rule rule-R[where p = [»,»,«]]) force+
qed
moreover have ` To =o ∀ xo. To

using prop-5210 [OF const-T-wff ] by simp
ultimately show ?thesis

using Equality-Rules(2 ,3 ) by blast
qed

lemma true-is-derivable:
shows ` To
unfolding true-def using Q-wff by (rule prop-5200 )

6.13 Proposition 5212
proposition prop-5212 :

shows ` To ∧Q To
proof −

have ` To
by (fact true-is-derivable)

moreover have ` (To ∧Q To) =o To
by (fact prop-5211 )

then have ` To ≡Q (To ∧Q To)
unfolding equivalence-def by (fact Equality-Rules(2 ))

ultimately show ?thesis
by (rule Equality-Rules(1 ))
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qed

6.14 Proposition 5213
proposition prop-5213 :

assumes ` A =α B and ` C =β D
shows ` (A =α B) ∧Q (C =β D)

proof −
from assms have A ∈ wffsα and C ∈ wffsβ

using hyp-derivable-form-is-wffso and wffs-from-equality by blast+
have ` To =o (A =α A)

by (fact prop-5210 [OF ‹A ∈ wffsα›])
moreover have ` A =α B

by fact
ultimately have ` To =o (A =α B)

by (rule rule-R[where p = [»,»]]) force+
have ` To =o (C =β C )

by (fact prop-5210 [OF ‹C ∈ wffsβ›])
moreover have ` C =β D

by fact
ultimately have ` To =o (C =β D)

by (rule rule-R[where p = [»,»]]) force+
then show ?thesis
proof −

have ` To ∧Q To
by (fact prop-5212 )

from this and ‹` To =o (A =α B)› have ` (A =α B) ∧Q To
by (rule rule-R[where p = [«,»]]) force+

from this and ‹` To =o (C =β D)› show ?thesis
by (rule rule-R[where p = [»]]) force+

qed
qed

6.15 Proposition 5214
proposition prop-5214 :

shows ` To ∧Q Fo =o Fo
proof −

have id-on-o-is-wff : (λxo. xo) ∈ wffso→o
by blast

have §1 : ` (λxo. xo) � To ∧Q (λxo. xo) � Fo =o ∀ xo. (λxo. xo) � xo
proof −

have ` go→o � To ∧Q go→o � Fo =o ∀ xo. go→o � xo (is ` ?B =o ?C )
using axiom-1 [unfolded equivalence-def ] by (rule axiom-is-derivable-from-no-hyps)

moreover have ?B ∈ wffso and ?C ∈ wffso and is-free-for (λxo. xo) (g, o→o) (?B =o ?C )
by auto

ultimately have ` S {(g, o→o) � (λxo. xo)} (?B =o ?C )
using id-on-o-is-wff and prop-5209 by presburger

then show ?thesis
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by simp
qed
then have ` To ∧Q Fo =o ∀ xo. xo
proof −

have id-β-redex: ` (λxo. xo) � A =o A if A ∈ wffso for A
by (fact axiom-is-derivable-from-no-hyps[OF axiom-4-2 [OF that]])

from §1 and id-β-redex[OF true-wff ]
have ` To ∧Q (λxo. xo) � Fo =o ∀ xo. (λxo. xo) � xo

by (rule rule-R[where p = [«,»,«,»]]) force+
from this and id-β-redex[OF false-wff ] have ` To ∧Q Fo =o ∀ xo. (λxo. xo) � xo

by (rule rule-R[where p = [«,»,»]]) force+
from this and id-β-redex[OF wffs-of-type-intros(1 )] show ?thesis

by (rule rule-R[where p = [»,»,«]]) force+
qed
then show ?thesis

by simp
qed

6.16 Proposition 5215 (Universal Instantiation)
proposition prop-5215 :

assumes H ` ∀ xα. B and A ∈ wffsα
and is-free-for A (x, α) B
shows H ` S {(x, α) � A} B

proof −
from assms(1 ) have is-hyps H

by (blast elim: is-derivable-from-hyps.cases)
from assms(1 ) have H ` (λxα. To) =α→o (λxα. B)

by simp
with assms(2 ) have H ` (λxα. To) � A =o (λxα. B) � A

by (intro Equality-Rules(5 ))
then have H ` To =o S {(x, α) � A} B
proof −

have H ` (λxα. To) � A =o To
proof −

have ` (λxα. To) � A =o To
using prop-5207 [OF assms(2 ) true-wff is-free-for-in-true] and derived-substitution-simps(1 )
by (simp only:)

from this and ‹is-hyps H› show ?thesis
by (rule derivability-implies-hyp-derivability)

qed
moreover have H ` (λxα. B) � A =o S {(x, α) � A} B
proof −

have B ∈ wffso
using hyp-derivable-form-is-wffso[OF assms(1 )] by (fastforce elim: wffs-from-forall)

with assms(2 ,3 ) have ` (λxα. B) � A =o S {(x, α) � A} B
using prop-5207 by (simp only:)

from this and ‹is-hyps H› show ?thesis
by (rule derivability-implies-hyp-derivability)
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qed
ultimately show ?thesis

using ‹H ` (λxα. To) � A =o (λxα. B) � A› and Equality-Rules(2 ,3 ) by meson
qed
then show ?thesis
proof −

have H ` To
by (fact derivability-implies-hyp-derivability[OF true-is-derivable ‹is-hyps H›])

from this and ‹H ` To =o S {(x, α) � A} B› show ?thesis
by (rule Equality-Rules(1 )[unfolded equivalence-def ])

qed
qed

lemmas ∀ I = prop-5215

6.17 Proposition 5216
proposition prop-5216 :

assumes A ∈ wffso
shows ` (To ∧Q A) =o A

proof −
let ?B = λxo. (To ∧Q xo =o xo)
have B-is-wff : ?B ∈ wffso→o

by auto
have §1 : ` ?B � To ∧Q ?B � Fo =o ∀ xo. ?B � xo
proof −

have ` go→o � To ∧Q go→o � Fo =o ∀ xo. go→o � xo (is ` ?C =o ?D)
using axiom-1 [unfolded equivalence-def ] by (rule axiom-is-derivable-from-no-hyps)

moreover have ?C ∈ wffso and ?D ∈ wffso and is-free-for ?B (g, o→o) (?C =o ?D)
by auto

ultimately have ` S {(g, o→o) � ?B} (?C =o ?D)
using B-is-wff and prop-5209 by presburger

then show ?thesis
by simp

qed
have ∗: is-free-for A (x, o) (To ∧Q xo =o xo) for A

by (intro is-free-for-in-conj is-free-for-in-equality is-free-for-in-true is-free-for-in-var)
have ` (To ∧Q To =o To) ∧Q (To ∧Q Fo =o Fo)

by (fact prop-5213 [OF prop-5211 prop-5214 ])
moreover
have ` (To ∧Q To =o To) ∧Q (To ∧Q Fo =o Fo) =o ∀ xo. (To ∧Q xo =o xo)
proof −

have B-β-redex: ` ?B � A =o (To ∧Q A =o A) if A ∈ wffso for A
proof −

have To ∧Q xo =o xo ∈ wffso
by blast

moreover have S {(x, o) � A} (To ∧Q xo =o xo) = (To ∧Q A =o A)
by simp

ultimately show ?thesis
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using ∗ and prop-5207 [OF that] by metis
qed
from §1 and B-β-redex[OF true-wff ]
have ` (To ∧Q To =o To) ∧Q ?B � Fo =o ∀ xo. ?B � xo

by (rule rule-R[where p = [«,»,«,»]]) force+
from this and B-β-redex[OF false-wff ]
have ` (To ∧Q To =o To) ∧Q (To ∧Q Fo =o Fo) =o ∀ xo. ?B � xo

by (rule rule-R[where p = [«,»,»]]) force+
from this and B-β-redex[OF wffs-of-type-intros(1 )] show ?thesis

by (rule rule-R[where p = [»,»,«]]) force+
qed
ultimately have ` ∀ xo. (To ∧Q xo =o xo)

by (rule rule-R[where p = []]) fastforce+
show ?thesis

using ∀ I [OF ‹` ∀ xo. (To ∧Q xo =o xo)› assms ∗] by simp
qed

6.18 Proposition 5217
proposition prop-5217 :

shows ` (To =o Fo) =o Fo
proof −

let ?B = λxo. (To =o xo)
have B-is-wff : ?B ∈ wffso→o

by auto
have ∗: is-free-for A (x, o) (To =o xo) for A

by (intro is-free-for-in-equality is-free-for-in-true is-free-for-in-var)
have §1 : ` ?B � To ∧Q ?B � Fo =o ∀ xo. ?B � xo
proof −

have ` go→o � To ∧Q go→o � Fo =o ∀ xo. go→o � xo (is ` ?C =o ?D)
using axiom-1 [unfolded equivalence-def ] by (rule axiom-is-derivable-from-no-hyps)

moreover have ?C ∈ wffso and ?D ∈ wffso and is-free-for ?B (g, o→o) (?C =o ?D)
by auto

ultimately have ` S {(g, o→o) � ?B} (?C =o ?D)
using B-is-wff and prop-5209 by presburger

then show ?thesis
by simp

qed
then have ` (To =o To) ∧Q (To =o Fo) =o ∀ xo. (To =o xo) (is ` ?A)
proof −

have B-β-redex: ` ?B � A =o (To =o A) if A ∈ wffso for A
proof −

have To =o xo ∈ wffso
by auto

moreover have S {(x, o) � A} (To =o xo) = (To =o A)
by simp

ultimately show ?thesis
using ∗ and prop-5207 [OF that] by metis

qed
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from §1 and B-β-redex[OF true-wff ] have ` (To =o To) ∧Q ?B � Fo =o ∀ xo. ?B � xo
by (rule rule-R[where p = [«,»,«,»]]) force+

from this and B-β-redex[OF false-wff ]
have ` (To =o To) ∧Q (To =o Fo) =o ∀ xo. ?B � xo

by (rule rule-R[where p = [«,»,»]]) force+
from this and B-β-redex[OF wffs-of-type-intros(1 )] show ?thesis

by (rule rule-R[where p = [»,»,«]]) force+
qed
from prop-5210 [OF true-wff ] have ` To ∧Q (To =o Fo) =o ∀ xo. (To =o xo)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A]) (force+, fact)
from this and prop-5216 [where A = To =o Fo]
have ` (To =o Fo) =o ∀ xo. (To =o xo)

by (rule rule-R [where p = [«,»]]) force+
moreover have §5 :
` ((λxo. To) =o→o (λxo. xo)) =o ∀ xo. ((λxo. To) � xo =o (λxo. xo) � xo)

proof −
have ` (fo→o =o→o go→o) =o ∀ xo. (fo→o � xo =o go→o � xo) (is ` ?C =o ?D)

using axiom-3 [unfolded equivalence-def ] by (rule axiom-is-derivable-from-no-hyps)
moreover have is-free-for ((λxo. To)) (f, o→o) (?C =o ?D)

by fastforce
moreover have (λxo. To) ∈ wffso→o and ?C ∈ wffso and ?D ∈ wffso

by auto
ultimately have ` S {(f, o→o) � (λxo. To)} (?C =o ?D)

using prop-5209 by presburger
then have ` ((λxo. To) =o→o go→o) =o ∀ xo. ((λxo. To) � xo =o go→o � xo)
(is ` ?C ′ =o ?D ′)
by simp

moreover have is-free-for ((λxo. xo)) (g, o→o) (?C ′ =o ?D ′)
by fastforce

moreover have (λxo. xo) ∈ wffso→o and ?C ′ ∈ wffso and ?D ′ ∈ wffso
using ‹(λxo. To) ∈ wffso→o› by auto

ultimately have ` S {(g, o→o) � (λxo. xo)} (?C ′ =o ?D ′)
using prop-5209 by presburger

then show ?thesis
by simp

qed
then have ` Fo =o ∀ xo. (To =o xo)
proof −

have ` (λxo. To) � xo =o To
using prop-5208 [where vs = [(x, o)]] and true-wff by simp

with §5 have ∗:
` ((λxo. To) =o→o (λxo. xo)) =o ∀ xo. (To =o (λxo. xo) � xo)
by (rule rule-R[where p = [»,»,«,«,»]]) force+

have ` (λxo. xo) � xo =o xo
using prop-5208 [where vs = [(x, o)]] by fastforce

with ∗ have ` ((λxo. To) =o→o (λxo. xo)) =o ∀ xo. (To =o xo)
by (rule rule-R[where p = [»,»,«,»]]) force+

then show ?thesis
by simp
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qed
ultimately show ?thesis

using Equality-Rules(2 ,3 ) by blast
qed

6.19 Proposition 5218
proposition prop-5218 :

assumes A ∈ wffso
shows ` (To =o A) =o A

proof −
let ?B = λxo. ((To =o xo) =o xo)
have B-is-wff : ?B ∈ wffso→o

by auto
have §1 : ` ?B � To ∧Q ?B � Fo =o ∀ xo. ?B � xo
proof −

have ` go→o � To ∧Q go→o � Fo =o ∀ xo. go→o � xo (is ` ?C =o ?D)
using axiom-1 [unfolded equivalence-def ] by (rule axiom-is-derivable-from-no-hyps)

moreover have ?C ∈ wffso and ?D ∈ wffso and is-free-for ?B (g, o→o) (?C =o ?D)
by auto

ultimately have ` S {(g, o→o) � ?B} (?C =o ?D)
using prop-5209 [OF B-is-wff ] by presburger

then show ?thesis
by simp

qed
have ∗: is-free-for A (x, o) ((To =o xo) =o xo) for A

by (intro is-free-for-in-equality is-free-for-in-true is-free-for-in-var)
have §2 :
`
((To =o To) =o To) ∧Q ((To =o Fo) =o Fo)
=o
∀ xo. ((To =o xo) =o xo)

proof −
have B-β-redex: ` ?B � A =o ((To =o A) =o A) if A ∈ wffso for A
proof −

have (To =o xo) =o xo ∈ wffso
by auto

moreover have S {(x, o) � A} ((To =o xo) =o xo) = ((To =o A) =o A)
by simp

ultimately show ?thesis
using ∗ and prop-5207 [OF that] by metis

qed
from §1 and B-β-redex[OF true-wff ]
have ` ((To =o To) =o To) ∧Q ?B � Fo =o ∀ xo. ?B � xo

by (rule rule-R[where p = [«,»,«,»]]) force+
from this and B-β-redex[OF false-wff ]
have ` ((To =o To) =o To) ∧Q ((To =o Fo) =o Fo) =o ∀ xo. ?B � xo

by (rule rule-R[where p = [«,»,»]]) force+
from this and B-β-redex[OF wffs-of-type-intros(1 )] show ?thesis
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by (rule rule-R[where p = [»,»,«]]) force+
qed
have §3 : ` (To =o To) =o To

by (fact Equality-Rules(2 )[OF prop-5210 [OF true-wff ]])
have ` ((To =o To) =o To) ∧Q ((To =o Fo) =o Fo)

by (fact prop-5213 [OF §3 prop-5217 ])
from this and §2 have §4 : ` ∀ xo. ((To =o xo) =o xo)

by (rule rule-R[where p = []]) fastforce+
then show ?thesis

using ∀ I [OF §4 assms ∗] by simp
qed

6.20 Proposition 5219 (Rule T)
proposition prop-5219-1 :

assumes A ∈ wffso
shows H ` A ←→ H ` To =o A

proof safe
assume H ` A
then have is-hyps H

by (blast dest: is-derivable-from-hyps.cases)
then have H ` (To =o A) =o A

by (fact derivability-implies-hyp-derivability[OF prop-5218 [OF assms]])
with ‹H ` A› show H ` To =o A

using Equality-Rules(1 )[unfolded equivalence-def ] and Equality-Rules(2 ) by blast
next

assume H ` To =o A
then have is-hyps H

by (blast dest: is-derivable-from-hyps.cases)
then have H ` (To =o A) =o A

by (fact derivability-implies-hyp-derivability[OF prop-5218 [OF assms]])
with ‹H ` To =o A› show H ` A

by (rule Equality-Rules(1 )[unfolded equivalence-def ])
qed

proposition prop-5219-2 :
assumes A ∈ wffso
shows H ` A ←→ H ` A =o To
using prop-5219-1 [OF assms] and Equality-Rules(2 ) by blast

lemmas rule-T = prop-5219-1 prop-5219-2

6.21 Proposition 5220 (Universal Generalization)
context
begin

private lemma const-true-α-conversion:
shows ` (λxα. To) =α→o (λzα. To)

proof −
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have (z, α) /∈ free-vars To and is-free-for (zα) (x, α) To
by auto

then have ` (λxα. To) =α→o λzα. S {(x, α) � zα} To
by (rule prop-5206 [OF true-wff ])

then show ?thesis
by simp

qed

proposition prop-5220 :
assumes H ` A
and (x, α) /∈ free-vars H
shows H ` ∀ xα. A

proof −
from ‹H ` A› have is-hyps H

by (blast dest: is-derivable-from-hyps.cases)
have H ` A

by fact
then have §2 : H ` To =o A

using rule-T (1 )[OF hyp-derivable-form-is-wffso[OF ‹H ` A›]] by simp
have §3 : H ` (λxα. To) =α→o (λxα. To)

by (fact derivability-implies-hyp-derivability[OF const-true-α-conversion ‹is-hyps H›])
from §3 and §2 have H ` λxα. To =α→o λxα. A
proof (induction rule: rule-R ′[where p = [», «]])

case no-capture
have ∗: [»,«] ∈ positions (λxα. To =α→o λxα. To)

by simp
show ?case

unfolding rule-R ′-side-condition-def and capture-exposed-vars-at-alt-def [OF ∗] using assms(2 )
by simp

qed force+
then show ?thesis

unfolding forall-def [unfolded PI-def , folded equality-of-type-def ] .
qed

end

lemmas Gen = prop-5220

proposition generalized-Gen:
assumes H ` A
and lset vs ∩ free-vars H = {}
shows H ` ∀Q

? vs A
using assms(2 ) proof (induction vs)

case Nil
then show ?case

using assms(1 ) by simp
next

case (Cons v vs)
obtain x and α where v = (x, α)
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by fastforce
with Cons.prems have lset vs ∩ free-vars H = {} and (x, α) /∈ free-vars H

by simp-all
from ‹lset vs ∩ free-vars H = {}› have H ` ∀Q

? vs A
by (fact Cons.IH )

with ‹(x, α) /∈ free-vars H› and ‹v = (x, α)› show ?case
using Gen by simp

qed

6.22 Proposition 5221 (Substitution)
context
begin

private lemma prop-5221-aux:
assumes H ` B
and (x, α) /∈ free-vars H
and is-free-for A (x, α) B
and A ∈ wffsα
shows H ` S {(x, α) � A} B

proof −
have H ` B

by fact
from this and assms(2 ) have H ` ∀ xα. B

by (rule Gen)
from this and assms(4 ,3 ) show ?thesis

by (rule ∀ I )
qed

proposition prop-5221 :
assumes H ` B
and is-substitution ϑ
and ∀ v ∈ fmdom ′ ϑ. var-name v /∈ free-var-names H ∧ is-free-for (ϑ $$! v) v B
and ϑ 6= {$$}
shows H ` S ϑ B

proof −
obtain xs and As

where lset xs = fmdom ′ ϑ — i.e., x1α1
, . . . , xnαn

and As = map (($$!) ϑ) xs — i.e., A1
α1
, . . . , An

αn

and length xs = card (fmdom ′ ϑ)
by (metis distinct-card finite-distinct-list finite-fmdom ′)

then have distinct xs
by (simp add: card-distinct)

from ‹lset xs = fmdom ′ ϑ› and ‹As = map (($$!) ϑ) xs› have lset As = fmran ′ ϑ
by (intro subset-antisym subsetI ) (force simp add: fmlookup-dom ′-iff fmlookup-ran ′-iff )+

from assms(1 ) have finite (var-name ‘ (vars B ∪ vars (lset As) ∪ vars H))
by (cases rule: is-derivable-from-hyps.cases) (simp-all add: finite-Domain vars-form-finiteness)

then obtain ys — i.e., y1α1
, . . . , ynαn

where length ys = length xs
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and distinct ys
and ys-fresh:
(var-name ‘ lset ys) ∩ (var-name ‘ (vars B ∪ vars (lset As) ∪ vars H ∪ lset xs)) = {}

and map var-type ys = map var-type xs
using fresh-var-list-existence by (metis image-Un)

have length xs = length As
by (simp add: ‹As = map (($$!) ϑ) xs›)

— H ` S.
x1
α1

... xk
αk

xk+1
αk+1

... xn
αn

A1
α1

... Ak
αk

yk+1
αk+1

... yn
αn

B

have H ` S (fmap-of-list (zip xs (take k As @ drop k (map FVar ys)))) B if k ≤ length xs for k
using that proof (induction k)

case 0
have H ` S (fmap-of-list (zip xs (map FVar ys))) B

using ‹length ys = length xs›
and ‹length xs = length As›
and ‹(var-name ‘ lset ys) ∩ (var-name ‘ (vars B ∪ vars (lset As) ∪ vars H ∪ lset xs)) = {}›
and ‹lset xs = fmdom ′ ϑ›
and ‹distinct ys›
and assms(3 )
and ‹map var-type ys = map var-type xs›
and ‹distinct xs›
and ‹length xs = card (fmdom ′ ϑ)›

proof (induction ys xs As arbitrary: ϑ rule: list-induct3 )
case Nil
with assms(1 ) show ?case

using empty-substitution-neutrality by auto
next

— In the following:
• ϑ = {x1α1

� y1α1
, . . . , xnαn

� ynαn
}

• ?ϑ = {x2α2
� y2α2

, . . . , xnαn
� ynαn

}

• vx = x1α1
, and vy = y1α1

case (Cons vy ys vx xs A ′ As ′)
let ?ϑ = fmap-of-list (zip xs (map FVar ys))
from Cons.hyps(1 ) have lset xs = fmdom ′ ?ϑ

by simp
from Cons.hyps(1 ) and Cons.prems(6 ) have fmran ′ ?ϑ = FVar ‘ lset ys

by force
have is-substitution ?ϑ
unfolding is-substitution-def proof

fix v
assume v ∈ fmdom ′ ?ϑ
with ‹lset xs = fmdom ′ ?ϑ› obtain k where v = xs ! k and k < length xs

by (metis in-set-conv-nth)
moreover obtain α where var-type v = α

by blast
moreover from ‹k < length xs› and ‹v = xs ! k› have ?ϑ $$! v = (map FVar ys) ! k

using Cons.hyps(1 ) and Cons.prems(6 ) by auto
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moreover from this and ‹k < length xs› obtain y and β where ?ϑ $$! v = yβ
using Cons.hyps(1 ) by force

ultimately have α = β
using Cons.hyps(1 ) and Cons.prems(5 )
by (metis form.inject(1 ) list.inject list.simps(9 ) nth-map snd-conv)

then show case v of (x, α) ⇒ ?ϑ $$! (x, α) ∈ wffsα
using ‹?ϑ $$! v = yβ› and ‹var-type v = α› by fastforce

qed
have vx /∈ fmdom ′ ?ϑ

using Cons.prems(6 ) and ‹lset xs = fmdom ′ ?ϑ› by auto
obtain x and α where vx = (x, α)

by fastforce
have FVar vy ∈ wffsα

using Cons.prems(5 ) and surj-pair [of vy] unfolding ‹vx = (x, α)› by fastforce
have distinct xs

using Cons.prems(6 ) by fastforce
moreover have ys-fresh ′:
(var-name ‘ lset ys) ∩ (var-name ‘ (vars B ∪ vars (lset As ′) ∪ vars H ∪ lset xs)) = {}

proof −
have vars (lset (A ′ # As ′)) = vars {A ′} ∪ vars (lset As ′)

by simp
moreover have var-name ‘ (lset (vx # xs)) = {var-name vx} ∪ var-name ‘ (lset xs)

by simp
moreover from Cons.prems(1 ) have

var-name ‘ lset ys
∩
(

var-name ‘ (vars B) ∪ var-name ‘ (vars (lset (A ′ # As ′))) ∪ var-name ‘ (vars H)
∪ var-name ‘ (lset (vx # xs))

)
= {}
by (simp add: image-Un)

ultimately have
var-name ‘ lset ys
∩
(

var-name ‘ (vars B) ∪ var-name ‘ (vars (lset As ′)) ∪ var-name ‘ (vars H)
∪ var-name ‘ (lset (vx # xs))

)
= {}
by fast

then show ?thesis
by (simp add: image-Un)

qed
moreover have distinct ys

using Cons.prems(3 ) by auto
moreover have ∀ v ∈ fmdom ′ ?ϑ. var-name v /∈ free-var-names H ∧ is-free-for (?ϑ $$! v) v B
proof

fix v
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assume v ∈ fmdom ′ ?ϑ
with Cons.hyps(1 ) obtain y where ?ϑ $$! v = FVar y and y ∈ lset ys

by (metis (mono-tags, lifting) fmap-of-zipped-list-range image-iff length-map list.set-map)
moreover from Cons.prems(2 ,4 ) have var-name v /∈ free-var-names H

using ‹lset xs = fmdom ′ ?ϑ› and ‹v ∈ fmdom ′ ?ϑ› by auto
moreover from ‹y ∈ lset ys› have y /∈ vars B

using ys-fresh ′ by blast
then have is-free-for (FVar y) v B

by (intro absent-var-is-free-for)
ultimately show var-name v /∈ free-var-names H ∧ is-free-for (?ϑ $$! v) v B

by simp
qed
moreover have map var-type ys = map var-type xs

using Cons.prems(5 ) by simp
moreover have length xs = card (fmdom ′ ?ϑ)

by (fact distinct-card[OF ‹distinct xs›, unfolded ‹lset xs = fmdom ′ ?ϑ›, symmetric])
— H ` S.

x2
α2

... xn
αn

y2
α2

... yn
αn

B

ultimately have H ` S ?ϑ B
using Cons.IH and ‹lset xs = fmdom ′ ?ϑ› by blast

moreover from Cons.prems(2 ,4 ) have (x, α) /∈ free-vars H
using ‹vx = (x, α)› by auto

moreover have is-free-for (FVar vy) (x, α) (S ?ϑ B)
proof −

have vy /∈ fmdom ′ ?ϑ
using Cons.prems(1 ) and ‹lset xs = fmdom ′ ?ϑ› by force

moreover have fmran ′ ?ϑ = lset (map FVar ys)
using Cons.hyps(1 ) and ‹distinct xs› by simp

then have vy /∈ vars (fmran ′ ?ϑ)
using Cons.prems(3 ) by force

moreover have vy /∈ vars B
using Cons.prems(1 ) by fastforce

ultimately have vy /∈ vars (S ?ϑ B)
by (rule excluded-var-from-substitution[OF ‹is-substitution ?ϑ›])

then show ?thesis
by (fact absent-var-is-free-for)

qed
— H ` S.

x1
α1

y1
α1

S.
x2
α2

... xn
αn

y2
α2

... yn
αn

B

ultimately have H ` S {(x, α) � FVar vy} (S ?ϑ B)
using ‹FVar vy ∈ wffsα› by (rule prop-5221-aux)

— S.
x1
α1

y1
α1

S.
x2
α2

... xn
αn

y2
α2

... yn
αn

B = S.
x1
α1

... xn
αn

y1
α1

... yn
αn

B

moreover have S {vx � FVar vy} S ?ϑ B = S ({vx � FVar vy} ++f ?ϑ) B
proof −

have vx /∈ lset ys
using Cons.prems(1 ) by fastforce

then have S {vx � FVar vy} (FVar y) = FVar y if y ∈ lset ys for y
using that and free-var-singleton-substitution-neutrality and surj-pair [of y] by fastforce

with ‹fmran ′ ?ϑ = FVar ‘ lset ys› have fmmap (λA ′. S {vx � FVar vy} A ′) ?ϑ = ?ϑ
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by (fastforce intro: fmap.map-ident-strong)
with ‹vx /∈ fmdom ′ ?ϑ› show ?thesis

using ‹∀ v ∈ fmdom ′ ?ϑ. var-name v /∈ free-var-names H ∧ is-free-for (?ϑ $$! v) v B›
and substitution-consolidation by auto

qed
— H ` S.

x1
α1

... xn
αn

y1
α1

... yn
αn

B

ultimately show ?case
using ‹vx = (x, α)› and ‹vx /∈ fmdom ′ ?ϑ› and fmap-singleton-comm by fastforce

qed
with 0 and that show ?case

by auto
next

case (Suc k)
let ?ps = λk. zip xs (take k As @ drop k (map FVar ys))
let ?y = ys ! k and ?A = As ! k
let ?ϑ = λk. fmap-of-list (?ps k)
let ?ϑ ′ = λk. fmap-of-list (map (λ(v ′, A ′). (v ′, S {?y � ?A} A ′)) (?ps k))
have fmdom ′ (?ϑ k ′) = lset xs for k ′

by (simp add: ‹length xs = length As› ‹length ys = length xs›)
have fmdom ′ (?ϑ ′ k ′) = lset xs for k ′

using ‹length xs = length As› and ‹length ys = length xs› and fmdom ′-fmap-of-list by simp
have ?y ∈ lset ys

using Suc.prems ‹length ys = length xs› by simp
have ∀ j < length ys. ys ! j /∈ vars (H::form set) ∧ ys ! j /∈ vars B

using ‹(var-name ‘ lset ys) ∩ (var-name ‘ (vars B ∪ vars (lset As) ∪ vars H ∪ lset xs)) = {}›
by force

obtain ny and αy where (ny, αy) = ?y
using surj-pair [of ?y] by fastforce

moreover have ?A ∈ wffsαy

proof −
from Suc.prems and ‹(ny, αy) = ?y› have var-type (xs ! k) = αy

using ‹length ys = length xs› and ‹map var-type ys = map var-type xs› and Suc-le-lessD
by (metis nth-map snd-conv)

with Suc.prems and assms(2 ) and ‹lset xs = fmdom ′ ϑ› and ‹As = map (($$!) ϑ) xs› show
?thesis

using less-eq-Suc-le and nth-mem by fastforce
qed
ultimately have is-substitution {?y � ?A}

by auto
have wfs: is-substitution (?ϑ k) for k
unfolding is-substitution-def proof

fix v
assume v ∈ fmdom ′ (?ϑ k)
with ‹fmdom ′ (?ϑ k) = lset xs› obtain j where v = xs ! j and j < length xs

by (fastforce simp add: in-set-conv-nth)
obtain α where var-type v = α

by blast
show case v of (x, α) ⇒ (?ϑ k) $$! (x, α) ∈ wffsα
proof (cases j < k)
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case True
with ‹j < length xs› and ‹v = xs ! j› have (?ϑ k) $$! v = As ! j

using ‹distinct xs› and ‹length xs = length As› and ‹length ys = length xs› by force
with assms(2 ) ‹v = xs ! j› and ‹v ∈ fmdom ′ (?ϑ k)› and ‹var-type v = α› and ‹j < length xs›
have (?ϑ k) $$! v ∈ wffsα

using ‹As = map (($$!) ϑ) xs› and ‹fmdom ′ (?ϑ k) = lset xs› and ‹lset xs = fmdom ′ ϑ›
by auto

then show ?thesis
using ‹var-type v = α› by force

next
case False
with ‹j < length xs› and ‹v = xs ! j› have (?ϑ k) $$! v = FVar (ys ! j)

using ‹distinct xs› and ‹length xs = length As› and ‹length ys = length xs› by force
with ‹j < length xs› and ‹v = xs ! j› and ‹var-type v = α› and ‹length ys = length xs›
have (?ϑ k) $$! v ∈ wffsα

using ‹map var-type ys = map var-type xs› and surj-pair [of ys ! j]
by (metis nth-map snd-conv wffs-of-type-intros(1 ))

then show ?thesis
using ‹var-type v = α› by force

qed
qed
have ϑ ′-alt-def : ?ϑ ′ k = fmap-of-list
(zip xs
(take k (map (λA ′. S {?y � ?A} A ′) As)
@
(drop k (map (λA ′. S {?y � ?A} A ′) (map FVar ys)))))

proof −
have

fmap-of-list (zip xs (map (λA ′. S {?y � ?A} A ′) (take k As @ drop k (map FVar ys))))
=
fmap-of-list
(zip xs
(map (λA ′. S {?y � ?A} A ′) (take k As)
@
(drop k (map (λA ′. S {?y � ?A} A ′) (map FVar ys)))))

by (simp add: drop-map)
then show ?thesis

by (metis take-map zip-map2 )
qed
— H ` S.

x1
α1

... xk
αk

xk+1
αk+1

... xn
αn

A1
α1

... Ak
αk

yk+1
αk+1

... yn
αn

B

have H ` S (?ϑ k) B
by (fact Suc.IH [OF Suc-leD[OF Suc.prems]])

— H ` S.
yk+1
αk+1

Ak+1
αk+1

S.
x1
α1

... xk
αk

xk+1
αk+1

... xn
αn

A1
α1

... Ak
αk

yk+1
αk+1

... yn
αn

B

then have H ` S {?y � ?A} S (?ϑ k) B
proof −

from ‹(ny, αy) = ?y› and ‹length ys = length xs› have (ny, αy) /∈ free-vars H
using ‹∀ j < length ys. ys ! j /∈ vars (H::form set) ∧ ys ! j /∈ vars B›
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and free-vars-in-all-vars-set and Suc-le-lessD[OF Suc.prems] by fastforce
moreover have is-free-for ?A (ny, αy) (S (?ϑ k) B)
proof −

have is-substitution (fmdrop (xs ! k) (?ϑ k))
using wfs and ‹fmdom ′ (?ϑ k) = lset xs› by force

moreover from Suc-le-lessD[OF Suc.prems] have var-type (xs ! k) = var-type (ys ! k)
using ‹length ys = length xs› and ‹map var-type ys = map var-type xs› by (metis nth-map)

then have is-substitution {xs ! k � FVar ?y}
unfolding is-substitution-def using ‹(ny, αy) = ?y›
by (intro ballI ) (clarsimp, metis snd-eqD wffs-of-type-intros(1 ))

moreover have (xs ! k) /∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))
by simp

moreover have
∀ v ∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k)). ?y /∈ vars (fmdrop (xs ! k) (?ϑ k) $$! v)

proof
fix v
assume v ∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))
then have v ∈ fmdom ′ (?ϑ k)

by simp
with ‹fmdom ′ (?ϑ k) = lset xs› obtain j where v = xs ! j and j < length xs and j 6= k

using ‹v ∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))›
and ‹(xs ! k) /∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))› by (metis in-set-conv-nth)

then show ?y /∈ vars ((fmdrop (xs ! k) (?ϑ k)) $$! v)
proof (cases j < k)

case True
with ‹j < length xs› and ‹v = xs ! j› have (?ϑ k) $$! v = As ! j

using ‹distinct xs› and ‹length xs = length As› and ‹length ys = length xs› by force
moreover from ‹j < length xs› and ‹length xs = length As› have ?y /∈ vars (As ! j)

using ‹?y ∈ lset ys› and ys-fresh by fastforce
ultimately show ?thesis

using ‹v ∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))› by auto
next

case False
with ‹j < length xs› and ‹v = xs ! j› have (?ϑ k) $$! v = FVar (ys ! j)

using ‹distinct xs› and ‹length xs = length As› and ‹length ys = length xs› by force
moreover from Suc-le-lessD[OF Suc.prems] and ‹j 6= k› have ?y 6= ys ! j

by (simp add: ‹distinct ys› ‹j < length xs› ‹length ys = length xs› nth-eq-iff-index-eq)
ultimately show ?thesis

using ‹v ∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))›
and ‹xs ! k /∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))› and surj-pair [of ys ! j] by fastforce

qed
qed
moreover from ‹k < length xs› and ‹length ys = length xs› have ?y /∈ vars B

by (simp add: ‹∀ j < length ys. ys ! j /∈ vars H ∧ ys ! j /∈ vars B›)
moreover have is-free-for ?A (xs ! k) B
proof −

from Suc-le-lessD[OF Suc.prems] and ‹lset xs = fmdom ′ ϑ› have xs ! k ∈ fmdom ′ ϑ
using nth-mem by blast

moreover from Suc.prems and ‹As = map (($$!) ϑ) xs› have ϑ $$! (xs ! k) = ?A
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by fastforce
ultimately show ?thesis

using assms(3 ) by simp
qed
moreover
have ∀ v ∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k)). is-free-for (fmdrop (xs ! k) (?ϑ k) $$! v) v B
proof

fix v
assume v ∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))
then have v ∈ fmdom ′ (?ϑ k)

by simp
with ‹fmdom ′ (?ϑ k) = lset xs› obtain j where v = xs ! j and j < length xs and j 6= k

using ‹v ∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))›
and ‹(xs ! k) /∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))› by (metis in-set-conv-nth)

then show is-free-for (fmdrop (xs ! k) (?ϑ k) $$! v) v B
proof (cases j < k)

case True
with ‹j < length xs› and ‹v = xs ! j› have (?ϑ k) $$! v = As ! j

using ‹distinct xs› and ‹length xs = length As› and ‹length ys = length xs› by force
moreover have is-free-for (As ! j) v B
proof −

from ‹j < length xs› and ‹lset xs = fmdom ′ ϑ› and ‹v = xs ! j› have v ∈ fmdom ′ ϑ
using nth-mem by blast

moreover have ϑ $$! v = As ! j
by (simp add: ‹As = map (($$!) ϑ) xs› ‹j < length xs› ‹v = xs ! j›)

ultimately show ?thesis
using assms(3 ) by simp

qed
ultimately show ?thesis

using ‹v ∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))› by auto
next

case False
with ‹j < length xs› and ‹v = xs ! j› have (?ϑ k) $$! v = FVar (ys ! j)

using ‹distinct xs› and ‹length xs = length As› and ‹length ys = length xs› by force
moreover from ‹j < length xs› and ‹length ys = length xs› have ys ! j /∈ vars B

using ‹∀ j < length ys. ys ! j /∈ vars H ∧ ys ! j /∈ vars B› by simp
then have is-free-for (FVar (ys ! j)) v B

by (fact absent-var-is-free-for)
ultimately show ?thesis

using ‹v ∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))› by auto
qed

qed
ultimately have is-free-for ?A (ys ! k) S ({xs ! k � FVar ?y} ++f fmdrop (xs ! k) (?ϑ k)) B

using is-free-for-with-renaming-substitution by presburger
moreover have S ({xs ! k � FVar ?y} ++f fmdrop (xs ! k) (?ϑ k)) B = S (?ϑ k) B

using ‹length xs = length As› and ‹length ys = length xs› and Suc-le-eq and Suc.prems
and ‹distinct xs› by simp

ultimately show ?thesis
unfolding ‹(ny, αy) = ?y› by simp

168



qed
ultimately show ?thesis

using prop-5221-aux[OF ‹H ` S (?ϑ k) B›] and ‹?A ∈ wffsαy › and ‹(ny, αy) = ?y› by metis
qed
— S.
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... xk
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... xn
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αn

B = S.
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αk
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... Ak
αk
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αk+1

yk+2
αk+2

... yn
αn

B

moreover have S {?y � ?A} S (?ϑ k) B = S (?ϑ (Suc k)) B
proof −

have S {?y � ?A} S (?ϑ k) B = S {?y � ?A} ++f (?ϑ ′ k) B
proof −

have ?y /∈ fmdom ′ (?ϑ k)
using ‹?y ∈ lset ys› and ‹fmdom ′ (?ϑ k) = lset xs› and ys-fresh by blast

moreover have (?ϑ ′ k) = fmmap (λA ′. S {?y � ?A} A ′) (?ϑ k)
using ‹length xs = length As› and ‹length ys = length xs› by simp

moreover have ∀ v ′ ∈ fmdom ′ (?ϑ k). is-free-for (?ϑ k $$! v ′) v ′ B
proof

fix v ′

assume v ′ ∈ fmdom ′ (?ϑ k)
with ‹fmdom ′ (?ϑ k) = lset xs› obtain j where v ′ = xs ! j and j < length xs

by (metis in-set-conv-nth)
obtain α where var-type v ′ = α

by blast
show is-free-for (?ϑ k $$! v ′) v ′ B
proof (cases j < k)

case True
with ‹j < length xs› and ‹v ′ = xs ! j› have (?ϑ k) $$! v ′ = As ! j

using ‹distinct xs› and ‹length xs = length As› and ‹length ys = length xs› by force
moreover from ‹lset xs = fmdom ′ ϑ› and assms(3 ) have is-free-for (As ! j) (xs ! j) B

by (metis ‹As = map (($$!) ϑ) xs› ‹j < length xs› nth-map nth-mem)
ultimately show ?thesis

using ‹v ′ = xs ! j› by (simp only:)
next

case False
with ‹j < length xs› and ‹v ′ = xs ! j› have (?ϑ k) $$! v ′ = FVar (ys ! j)

using ‹distinct xs› and ‹length xs = length As› and ‹length ys = length xs› by force
moreover from ‹j < length xs› have is-free-for (FVar (ys ! j)) (xs ! j) B

using ‹∀ j < length ys. ys ! j /∈ vars H ∧ ys ! j /∈ vars B› and ‹length ys = length xs›
and absent-var-is-free-for by presburger

ultimately show ?thesis
using ‹v ′ = xs ! j› by (simp only:)

qed
qed
ultimately show ?thesis

using substitution-consolidation by simp
qed
also have . . . = S {?y � ?A} ++f (?ϑ (Suc k)) B
proof −

have ?ϑ ′ k = ?ϑ (Suc k)
proof (intro fsubset-antisym[unfolded fmsubset-alt-def ] fmpredI )
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{
fix v ′ and A ′

assume ?ϑ ′ k $$ v ′ = Some A ′

then have v ′ ∈ fmdom ′ (?ϑ ′ k)
by (intro fmdom ′I )

then obtain j where j < length xs and xs ! j = v ′

using ‹fmdom ′ (?ϑ ′ k) = lset xs› by (metis in-set-conv-nth)
then consider (a) j < k | (b) j = k | (c) j ∈ {k<..< length xs}

by fastforce
then show ?ϑ (Suc k) $$ v ′ = Some A ′

proof cases
case a
with ϑ ′-alt-def and ‹distinct xs› and ‹j < length xs›
have ?ϑ ′ k $$ (xs ! j) = Some (take k (map (λA ′. S {?y � ?A} A ′) As) ! j)

using ‹length xs = length As› and ‹length ys = length xs› by auto
also from a and Suc.prems have . . . = Some (S {?y � ?A} (As ! j))

using ‹length xs = length As› by auto
also have . . . = Some (As ! j)
proof −

from Suc.prems and ‹length ys = length xs› have Suc k ≤ length ys
by (simp only:)

moreover have j < length As
using ‹j < length xs› and ‹length xs = length As› by (simp only:)

ultimately have ?y /∈ vars (As ! j)
using ys-fresh by force

then show ?thesis
using free-var-singleton-substitution-neutrality and free-vars-in-all-vars by blast

qed
also from a and ‹xs ! j = v ′› and ‹distinct xs› have . . . = ?ϑ (Suc k) $$ v ′

using ‹j < length xs› and ‹length xs = length As› and ‹length ys = length xs›
by fastforce

finally show ?thesis
using ‹?ϑ ′ k $$ v ′ = Some A ′› and ‹xs ! j = v ′› by simp

next
case b
then have

?ϑ ′ k $$ (xs ! k) = Some (drop k (map (λA ′. S {?y � ?A} A ′) (map FVar ys)) ! 0 )
using ‹distinct xs› and ‹j < length xs› and ‹length xs = length As›
and ‹length ys = length xs› and fmap-of-list-nth-split by simp

also from Suc.prems have . . . = Some (S {?y � ?A} (FVar ?y))
using ‹length ys = length xs› by simp

also from ‹(ny, αy) = ys ! k› have . . . = Some ?A
by (metis singleton-substitution-simps(1 ))

also from b and ‹xs ! j = v ′› and ‹distinct xs› have . . . = ?ϑ (Suc k) $$ v ′

using ‹j < length xs› and ‹length xs = length As› and ‹length ys = length xs›
by fastforce

finally show ?thesis
using b and ‹?ϑ ′ k $$ v ′ = Some A ′› and ‹xs ! j = v ′› by force

next
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case c
then have j > k

by simp
with ϑ ′-alt-def and ‹distinct xs› and ‹j < length xs› have
?ϑ ′ k $$ (xs ! j) = Some (drop k (map (λA ′. S {?y � ?A} A ′) (map FVar ys)) ! (j − k))
using fmap-of-list-nth-split and ‹length xs = length As› and ‹length ys = length xs›
by simp

also from Suc.prems and c have . . . = Some (S {?y � ?A} (FVar (ys ! j)))
using ‹length ys = length xs› by simp

also from Suc-le-lessD[OF Suc.prems] and ‹distinct ys› have . . . = Some (FVar (ys ! j))
using ‹j < length xs› and ‹k < j› and ‹length ys = length xs›
by (metis nless-le nth-eq-iff-index-eq prod.exhaust-sel singleton-substitution-simps(1 ))

also from c and ‹distinct xs› have . . . = ?ϑ (Suc k) $$ v ′

using ‹xs ! j = v ′› and ‹length xs = length As› and ‹length ys = length xs› by force
finally show ?thesis

using ‹?ϑ ′ k $$ v ′ = Some A ′› and ‹xs ! j = v ′› by force
qed

}
note ϑ-k-in-Sub-k = this
{

fix v ′ and A ′

assume ?ϑ (Suc k) $$ v ′ = Some A ′

then have v ′ ∈ fmdom ′ (?ϑ (Suc k))
by (intro fmdom ′I )

then obtain j where j < length xs and xs ! j = v ′

using ‹fmdom ′ (?ϑ (Suc k)) = lset xs› by (metis in-set-conv-nth)
then consider (a) j < k | (b) j = k | (c) j ∈ {k<..< length xs}

by fastforce
with ‹j < length xs› and ‹xs ! j = v ′› and ϑ-k-in-Sub-k show ?ϑ ′ k $$ v ′ = Some A ′

using ‹
∧

k ′. fmdom ′ (?ϑ ′ k ′) = lset xs› and ‹?ϑ (Suc k) $$ v ′ = Some A ′›
by (metis (mono-tags, lifting) fmlookup-dom ′-iff nth-mem)+

}
qed
then show ?thesis

by presburger
qed
also have . . . = S (?ϑ (Suc k)) B
proof −

have ?ϑ (Suc k) $$ ?y = None
using ‹?y ∈ lset ys› ‹

∧
k ′. fmdom ′ (?ϑ k ′) = lset xs› and ys-fresh by blast

moreover from Suc-le-lessD[OF Suc.prems] have ?y /∈ vars B
using ‹∀ j < length ys. ys ! j /∈ vars H ∧ ys ! j /∈ vars B› and ‹length ys = length xs›
by auto

ultimately show ?thesis
by (rule substitution-absorption)

qed
finally show ?thesis .

qed
— H ` S.
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... xk
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xk+1
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αk+2

... yn
αn

B
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ultimately show ?case
by (simp only:)

qed
— H ` S.

x1
α1

... xn
αn

A1
α1

... An
αn

B

then have H ` S (fmap-of-list (zip xs As)) B
using ‹length xs = length As› and ‹length ys = length xs› by force

moreover have fmap-of-list (zip xs As) = ϑ
proof (intro fsubset-antisym[unfolded fmsubset-alt-def ] fmpredI )

fix v and A
assume fmap-of-list (zip xs As) $$ v = Some A
with ‹lset xs = fmdom ′ ϑ› have v ∈ fmdom ′ ϑ

by (fast dest: fmap-of-list-SomeD set-zip-leftD)
with ‹fmap-of-list (zip xs As) $$ v = Some A› and ‹As = map (($$!) ϑ) xs› show ϑ $$ v = Some

A
by
(simp add: map-of-zip-map fmap-of-list.rep-eq split: if-splits)
(meson fmdom ′-notI option.exhaust-sel)

next
fix v and A
assume ϑ $$ v = Some A
with ‹As = map (($$!) ϑ) xs› show fmap-of-list (zip xs As) $$ v = Some A

using ‹lset xs = fmdom ′ ϑ› by (simp add: fmap-of-list.rep-eq fmdom ′I map-of-zip-map)
qed
ultimately show ?thesis

by (simp only:)
qed

end

lemmas Sub = prop-5221

6.23 Proposition 5222 (Rule of Cases)
lemma forall-α-conversion:

assumes A ∈ wffso
and (z, β) /∈ free-vars A
and is-free-for (zβ) (x, β) A
shows ` ∀ xβ . A =o ∀ zβ . S {(x, β) � zβ} A

proof −
from assms(1 ) have ∀ xβ . A ∈ wffso

by (intro forall-wff )
then have ` ∀ xβ . A =o ∀ xβ . A

by (fact prop-5200 )
moreover from assms have ` (λxβ . A) =β→o (λzβ . S {(x, β) � zβ} A)

by (rule prop-5206 )
ultimately show ?thesis

unfolding forall-def and PI-def by (rule rule-R [where p = [»,»]]) force+
qed
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proposition prop-5222 :
assumes H ` S {(x, o) � To} A and H ` S {(x, o) � Fo} A
and A ∈ wffso
shows H ` A

proof −
from assms(1 ) have is-hyps H

by (blast elim: is-derivable-from-hyps.cases)
have §1 : H ` To =o (λxo. A) � To
proof −

have ` (λxo. A) � To =o S {(x, o) � To} A
using prop-5207 [OF true-wff assms(3 ) closed-is-free-for ] by simp

from this and assms(1 ) have H ` (λxo. A) � To
using rule-RR[OF disjI2 , where p = []] by fastforce

moreover have (λxo. A) � To ∈ wffso
by (fact hyp-derivable-form-is-wffso[OF ‹H ` (λxo. A) � To›])

ultimately show ?thesis
using rule-T (1 ) by blast

qed
moreover have §2 : H ` To =o (λxo. A) � Fo
proof −

have ` (λxo. A) � Fo =o S {(x, o) � Fo} A
using prop-5207 [OF false-wff assms(3 ) closed-is-free-for ] by simp

from this and assms(2 ) have H ` (λxo. A) � Fo
using rule-RR[OF disjI2 , where p = []] by fastforce

moreover have (λxo. A) � Fo ∈ wffso
by (fact hyp-derivable-form-is-wffso[OF ‹H ` (λxo. A) � Fo›])

ultimately show ?thesis
using rule-T (1 ) by blast

qed
moreover from prop-5212 and ‹is-hyps H› have §3 : H ` To ∧Q To

by (rule derivability-implies-hyp-derivability)
ultimately have H ` (λxo. A) � To ∧Q (λxo. A) � Fo
proof −

from §3 and §1 have H ` (λxo. A) � To ∧Q To
by (rule rule-R ′[where p = [«,»]]) (force+, fastforce dest: subforms-from-app)

from this and §2 show ?thesis
by (rule rule-R ′[where p = [»]]) (force+, fastforce dest: subforms-from-app)

qed
moreover have ` (λxo. A) � To ∧Q (λxo. A) � Fo =o ∀ xo. A
proof −

have go→o � xo ∈ wffso
by blast

have ` go→o � To ∧Q go→o � Fo =o ∀ xo. go→o � xo
using axiom-1 [unfolded equivalence-def ] by (rule axiom-is-derivable-from-no-hyps)

— By α-conversion
then have ` go→o � To ∧Q go→o � Fo =o ∀ xo. go→o � xo (is ` ?B =o ?C )
proof −

have ` ∀ xo. go→o � xo =o ∀ xo. go→o � xo
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proof (cases x = x)
case True
from ‹go→o � xo ∈ wffso› have ` ∀ xo. go→o � xo =o ∀ xo. go→o � xo

by (fact prop-5200 [OF forall-wff ])
with True show ?thesis

using identity-singleton-substitution-neutrality by simp
next

case False
from ‹go→o � xo ∈ wffso›
have ` ∀ xo. go→o � xo =o ∀ xo. S {(x, o) � xo} (go→o � xo)

by
(rule forall-α-conversion)
(simp add: False, intro is-free-for-to-app is-free-for-in-var)

then show ?thesis
by force

qed
with ‹` go→o � To ∧Q go→o � Fo =o ∀ xo. go→o � xo› show ?thesis

using Equality-Rules(3 ) by blast
qed
— By Sub
then have ∗: ` (λxo. A) � To ∧Q (λxo. A) � Fo =o ∀ xo. (λxo. A) � xo
proof −

let ?ϑ = {(g, o→o) � λxo. A}
from assms(3 ) have is-substitution ?ϑ

by auto
moreover have
∀ v ∈ fmdom ′ ?ϑ.

var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v (?B =o ?C )
by (code-simp, (unfold atomize-conj[symmetric])?, simp)+ blast

moreover have ?ϑ 6= {$$}
by simp

ultimately have ` S ?ϑ (?B =o ?C )
by (rule Sub [OF ‹` ?B =o ?C ›])

then show ?thesis
by simp

qed
— By λ-conversion
then show ?thesis
proof −

have ` (λxo. A) � xo =o A
using prop-5208 [where vs = [(x, o)]] and assms(3 ) by simp

from ∗ and this show ?thesis
by (rule rule-R[where p = [»,»,«]]) force+

qed
qed
ultimately have H ` ∀ xo. A

using rule-RR and is-subform-at.simps(1 ) by (blast intro: empty-is-position)
then show ?thesis
proof −
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have is-free-for (xo) (x, o) A
by fastforce

from ‹H ` ∀ xo. A› and wffs-of-type-intros(1 ) and this show ?thesis
by (rule ∀ I [of H x o A xo, unfolded identity-singleton-substitution-neutrality])

qed
qed

lemmas Cases = prop-5222

6.24 Proposition 5223
proposition prop-5223 :

shows ` (To ⊃Q yo) =o yo
proof −

have ` (To ⊃Q yo) =o (To =o (To ∧Q yo))
proof −

let ?A = (λxo. λyo. (xo ≡Q xo ∧Q yo)) � To � yo
have ?A ∈ wffso

by force
then have ` ?A =o ?A

by (fact prop-5200 )
then have ` (To ⊃Q yo) =o ?A

unfolding imp-fun-def and imp-op-def .
moreover
have ` (λxo. λyo. (xo ≡Q xo ∧Q yo)) � To =o→o λyo. (To ≡Q To ∧Q yo)
proof −

have λyo. (xo ≡Q xo ∧Q yo) ∈ wffso→o
by auto

moreover
have is-free-for To (x, o) (λyo. (xo ≡Q xo ∧Q yo))

by fastforce
moreover
have S {(x, o) � To} (λyo. (xo ≡Q xo ∧Q yo)) = (λyo. (To ≡Q To ∧Q yo))

by simp
ultimately show ?thesis

using prop-5207 [OF true-wff ] by metis
qed
ultimately have ∗: ` (To ⊃Q yo) =o (λyo. (To ≡Q To ∧Q yo)) � yo

by (rule rule-R [where p = [»,«]]) force+
have To ≡Q To ∧Q yo ∈ wffso

by auto
then have ` (λyo. (To ≡Q To ∧Q yo)) � yo =o (To ≡Q To ∧Q yo)

using prop-5208 [where vs = [(y, o)]] by simp
from ∗ and this show ?thesis

by (rule rule-R[where p = [»]]) force+
qed
with prop-5218 have ` (To ⊃Q yo) =o (To ∧Q yo)

using rule-R and Equality-Rules(3 ) by (meson conj-op-wff true-wff wffs-of-type-intros(1 ))
with prop-5216 show ?thesis
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using rule-R and Equality-Rules(3 ) by (meson conj-op-wff true-wff wffs-of-type-intros(1 ))
qed

corollary generalized-prop-5223 :
assumes A ∈ wffso
shows ` (To ⊃Q A) =o A

proof −
have To ⊃Q yo ∈ wffso and is-free-for A (y, o) ((To ⊃Q yo) =o yo)
by (blast, intro is-free-for-in-equality is-free-for-in-imp is-free-for-in-true is-free-for-in-var)

from this(2 ) have ` S {(y, o) � A} ((To ⊃Q yo) =o yo)
by (rule prop-5209 [OF assms ‹To ⊃Q yo ∈ wffso› wffs-of-type-intros(1 ) prop-5223 ])

then show ?thesis
by simp

qed

6.25 Proposition 5224 (Modus Ponens)
proposition prop-5224 :

assumes H ` A and H ` A ⊃Q B
shows H ` B

proof −
have H ` A ⊃Q B

by fact
moreover from assms(1 ) have A ∈ wffso

by (fact hyp-derivable-form-is-wffso)
from this and assms(1 ) have H ` A =o To

using rule-T (2 ) by blast
ultimately have H ` To ⊃Q B

by (rule rule-R ′[where p = [«,»]]) (force+, fastforce dest: subforms-from-app)
have ` (To ⊃Q B) =o B
proof −

let ?ϑ = {(y, o) � B}
have B ∈ wffso

by (fact hyp-derivable-form-is-wffso[OF assms(2 ), THEN wffs-from-imp-op(2 )])
then have is-substitution ?ϑ

by simp
moreover have
∀ v ∈ fmdom ′ ?ϑ.

var-name v /∈ free-var-names ({}::form set) ∧
is-free-for (?ϑ $$! v) v ((To ⊃Q yo) =o yo)

by (code-simp, (unfold atomize-conj[symmetric])?, simp)+ blast
moreover have ?ϑ 6= {$$}

by simp
ultimately have ` S ?ϑ ((To ⊃Q yo) =o yo)

by (rule Sub[OF prop-5223 ])
then show ?thesis

by simp
qed
then show ?thesis
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by (rule rule-RR[OF disjI1 , where p = []]) (use ‹H ` To ⊃Q B› in ‹force+›)
qed

lemmas MP = prop-5224

corollary generalized-modus-ponens:
assumes H ` hs ⊃Q

? B and ∀H ∈ lset hs. H ` H
shows H ` B

using assms proof (induction hs arbitrary: B rule: rev-induct)
case Nil
then show ?case

by simp
next

case (snoc H ′ hs)
from ‹∀H ∈ lset (hs @ [H ′]). H ` H › have H ` H ′

by simp
moreover have H ` H ′ ⊃Q B
proof −

from ‹H ` (hs @ [H ′]) ⊃Q
? B› have H ` hs ⊃Q

? (H ′ ⊃Q B)
by simp

moreover from ‹∀H ∈ lset (hs @ [H ′]). H ` H › have ∀H ∈ lset hs. H ` H
by simp

ultimately show ?thesis
by (elim snoc.IH )

qed
ultimately show ?case

by (rule MP)
qed

6.26 Proposition 5225
proposition prop-5225 :

shows `
∏
α � fα→o ⊃Q fα→o � xα

proof −
have fα→o � xα ∈ wffso

by blast
have §1 :
`∏

α � fα→o ⊃Q (((λfα→o. fα→o � xα) � (λxα. To))
=o
((λfα→o. fα→o � xα) � fα→o))

proof −
let ?ϑ = {(h, (α→o)→o) � λfα→o. fα→o � xα, (x, α→o) � λxα. To, (y, α→o) � fα→o}

and ?A = (xα→o =α→o yα→o) ⊃Q (h(α→o)→o � xα→o ≡Q h(α→o)→o � yα→o)
have ` ?A

by (fact axiom-is-derivable-from-no-hyps[OF axiom-2 ])
moreover have λfα→o. fα→o � xα ∈ wffs(α→o)→o and λxα. To ∈ wffsα→o

and fα→o ∈ wffsα→o
by blast+

177



then have is-substitution ?ϑ
by simp

moreover have
∀ v ∈ fmdom ′ ?ϑ. var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v ?A
by (code-simp, (unfold atomize-conj[symmetric])?, simp)+ blast

moreover have ?ϑ 6= {$$}
by simp

ultimately have ` S ?ϑ ?A
by (rule Sub)

then show ?thesis
by simp

qed
have `

∏
α � fα→o ⊃Q (To =o fα→o � xα)

proof −
have
` (λfα→o. fα→o � xα) � (λxα. To) =o (λxα. To) � xα
(is ` (λ?x?β . ?B) � ?A =o ?C )

proof −
have ` (λ?x?β . ?B) � ?A =o S {(?x, ?β) � ?A} ?B

using prop-5207 [OF wffs-of-type-intros(4 )[OF true-wff ] ‹?B ∈ wffso›] by fastforce
then show ?thesis

by simp
qed
moreover have ` (λxα. To) � xα =o To

using prop-5208 [where vs = [(x, α)]] and true-wff by simp
ultimately have ` (λfα→o. fα→o � xα) � (λxα. To) =o To

by (rule Equality-Rules(3 ))
from §1 and this have `

∏
α � fα→o ⊃Q (To =o ((λfα→o. fα→o � xα) � fα→o))

by (rule rule-R[where p = [»,«,»]]) force+
moreover have ` (λfα→o. fα→o � xα) � fα→o =o fα→o � xα

using prop-5208 [where vs = [(f, α→o)]] by force
ultimately show ?thesis

by (rule rule-R[where p = [»,»]]) force+
qed
from this and prop-5218 [OF ‹fα→o � xα ∈ wffso›] show ?thesis

by (rule rule-R[where p = [»]]) auto
qed

6.27 Proposition 5226
proposition prop-5226 :

assumes A ∈ wffsα and B ∈ wffso
and is-free-for A (x, α) B
shows ` ∀ xα. B ⊃Q S {(x, α) � A} B

proof −
have `

∏
α � (λxα. B) ⊃Q (λxα. B) � A

proof −
let ?ϑ = {(f, α→o) � λxα. B, (x, α) � A}
have `

∏
α � fα→o ⊃Q fα→o � xα (is ` ?C )
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by (fact prop-5225 )
moreover from assms have is-substitution ?ϑ

by auto
moreover have
∀ v ∈ fmdom ′ ?ϑ. var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v ?C
by (code-simp, (unfold atomize-conj[symmetric])?, fastforce)+ blast

moreover have ?ϑ 6= {$$}
by simp

ultimately have ` S ?ϑ ?C
by (rule Sub)

moreover have S ?ϑ ?C =
∏
α � (λxα. B) ⊃Q (λxα. B) � A

by simp
ultimately show ?thesis

by (simp only:)
qed
moreover from assms have ` (λxα. B) � A =o S {(x, α) � A} B

by (rule prop-5207 )
ultimately show ?thesis

by (rule rule-R [where p = [»]]) force+
qed

6.28 Proposition 5227
corollary prop-5227 :

shows ` Fo ⊃Q xo
proof −

have ` ∀ xo. xo ⊃Q S {(x, o) � xo} (xo)
by (rule prop-5226 ) auto

then show ?thesis
using identity-singleton-substitution-neutrality by simp

qed

corollary generalized-prop-5227 :
assumes A ∈ wffso
shows ` Fo ⊃Q A

proof −
let ?ϑ = {(x, o) � A} and ?B = Fo ⊃Q xo
from assms have is-substitution ?ϑ

by simp
moreover have is-free-for A (x, o) ?B

by (intro is-free-for-in-false is-free-for-in-imp is-free-for-in-var)
then have
∀ v ∈ fmdom ′ ?ϑ. var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v ?B
by force

ultimately have ` S {(x, o) � A} (Fo ⊃Q xo)
using Sub[OF prop-5227 , where ϑ = ?ϑ] by fastforce

then show ?thesis
by simp

qed
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6.29 Proposition 5228
proposition prop-5228 :

shows ` (To ⊃Q To) =o To
and ` (To ⊃Q Fo) =o Fo
and ` (Fo ⊃Q To) =o To
and ` (Fo ⊃Q Fo) =o To

proof −
show ` (To ⊃Q To) =o To and ` (To ⊃Q Fo) =o Fo

using generalized-prop-5223 by blast+
next

have ` Fo ⊃Q Fo and ` Fo ⊃Q To
using generalized-prop-5227 by blast+

then show ` (Fo ⊃Q To) =o To and ` (Fo ⊃Q Fo) =o To
using rule-T (2 ) by blast+

qed

6.30 Proposition 5229
lemma false-in-conj-provability:

assumes A ∈ wffso
shows ` Fo ∧Q A ≡Q Fo

proof −
have ` (λxo. λyo. (xo ≡Q xo ∧Q yo)) � Fo � A

by (intro generalized-prop-5227 [OF assms, unfolded imp-op-def imp-fun-def ])
moreover have
`
(λxo. λyo. (xo ≡Q xo ∧Q yo)) � Fo
=o→o
λyo. (Fo ≡Q Fo ∧Q yo)

(is ` (λ?x?β . ?A) � ?B =?γ ?C )
proof −

have ?B ∈ wffs?β and ?A ∈ wffs?γ and is-free-for ?B (?x, ?β) ?A
by auto

then have ` (λ?x?β . ?A) � ?B =?γ S {(?x, ?β) � ?B} ?A
by (rule prop-5207 )

moreover have S {(?x, ?β) � ?B} ?A = ?C
by simp

ultimately show ?thesis
by (simp only:)

qed
ultimately have ` (λyo. (Fo ≡Q Fo ∧Q yo)) � A

by (rule rule-R[where p = [«]]) auto
moreover have
`
(λyo. (Fo ≡Q Fo ∧Q yo)) � A
=o
(Fo ≡Q Fo ∧Q A)

(is ` (λ?x?β . ?A) � ?B =o ?C )
proof −
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have ?B ∈ wffs?β and ?A ∈ wffso
using assms by auto

moreover have is-free-for ?B (?x, ?β) ?A
by (intro is-free-for-in-equivalence is-free-for-in-conj is-free-for-in-false) fastforce

ultimately have ` (λ?x?β . ?A) � ?B =o S {(?x, ?β) � ?B} ?A
by (rule prop-5207 )

moreover
have S {(?x, ?β) � ?B} ?A = ?C

by simp
ultimately show ?thesis

by (simp only:)
qed
ultimately have ` Fo ≡Q Fo ∧Q A

by (rule rule-R[where p = []]) auto
then show ?thesis

unfolding equivalence-def by (rule Equality-Rules(2 ))
qed

proposition prop-5229 :
shows ` (To ∧Q To) =o To
and ` (To ∧Q Fo) =o Fo
and ` (Fo ∧Q To) =o Fo
and ` (Fo ∧Q Fo) =o Fo

proof −
show ` (To ∧Q To) =o To and ` (To ∧Q Fo) =o Fo

using prop-5216 by blast+
next

show ` (Fo ∧Q To) =o Fo and ` (Fo ∧Q Fo) =o Fo
using false-in-conj-provability and true-wff and false-wff by simp-all

qed

6.31 Proposition 5230
proposition prop-5230 :

shows ` (To ≡Q To) =o To
and ` (To ≡Q Fo) =o Fo
and ` (Fo ≡Q To) =o Fo
and ` (Fo ≡Q Fo) =o To

proof −
show ` (To ≡Q To) =o To and ` (To ≡Q Fo) =o Fo

unfolding equivalence-def using prop-5218 by blast+
next

show ` (Fo ≡Q Fo) =o To
unfolding equivalence-def by (rule Equality-Rules(2 )[OF prop-5210 [OF false-wff ]])

next
have §1 : ` (Fo ≡Q To) ⊃Q ((λxo. (xo ≡Q Fo)) � Fo ≡Q (λxo. (xo ≡Q Fo)) � To)
proof −

let ?ϑ = {(h, o→o) � λxo. (xo ≡Q Fo), (x, o) � Fo, (y, o) � To}
and ?A = (xo =o yo) ⊃Q (ho→o � xo ≡Q ho→o � yo)
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have ` ?A
by (fact axiom-is-derivable-from-no-hyps[OF axiom-2 ])

moreover have is-substitution ?ϑ
by auto

moreover have
∀ v ∈ fmdom ′ ?ϑ. var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v ?A
by (code-simp, unfold atomize-conj[symmetric], simp, force)+ blast

moreover have ?ϑ 6= {$$}
by simp

ultimately have ` S ?ϑ ?A
by (rule Sub)

then show ?thesis
by simp

qed
then have §2 : ` (Fo ≡Q To) ⊃Q ((Fo ≡Q Fo) ≡Q (To ≡Q Fo)) (is ` ?A2 )
proof −

have is-free-for A (x, o) (xo ≡Q Fo) for A
by code-simp blast

have β-reduction: ` (λxo. (xo ≡Q Fo)) � A =o (A ≡Q Fo) if A ∈ wffso for A
using

prop-5207
[

OF that equivalence-wff [OF wffs-of-type-intros(1 ) false-wff ]
‹is-free-for A (x, o) (xo ≡Q Fo)›

]
by simp

from §1 and β-reduction[OF false-wff ] have
` (Fo =o To) ⊃Q ((Fo ≡Q Fo) ≡Q (λxo. (xo ≡Q Fo)) � To)
by (rule rule-R[where p = [»,«,»]]) force+

from this and β-reduction[OF true-wff ] show ?thesis
by (rule rule-R[where p = [»,»]]) force+

qed
then have §3 : ` (Fo ≡Q To) ⊃Q Fo
proof −

note r1 = rule-RR[OF disjI1 ] and r2 = rule-RR[OF disjI2 ]
have §3 1: ` (Fo ≡Q To) ⊃Q ((Fo ≡Q Fo) ≡Q Fo) (is ‹` ?A3 1›)

by (rule r1 [OF prop-5218 [OF false-wff ], where p = [»,»] and C = ?A2 ]) (use §2 in ‹force+›)
have §3 2: ` (Fo ≡Q To) ⊃Q (To ≡Q Fo) (is ‹` ?A3 2›)
by (rule r2 [OF prop-5210 [OF false-wff ], where p = [»,«,»] and C = ?A3 1]) (use §3 1 in ‹force+›)
show ?thesis

by (rule r1 [OF prop-5218 [OF false-wff ], where p = [»] and C = ?A3 2]) (use §3 2 in ‹force+›)
qed
then have ` (Fo ≡Q To) ≡Q ((Fo ≡Q To) ∧Q Fo)
proof −

have
`
(λxo. λyo. (xo ≡Q xo ∧Q yo)) � (Fo ≡Q To)
=o→o
S {(x, o) � Fo ≡Q To} (λyo. (xo ≡Q xo ∧Q yo))

182



by (rule prop-5207 ) auto
from §3 [unfolded imp-op-def imp-fun-def ] and this
have ` (λyo. ((Fo ≡Q To) ≡Q (Fo ≡Q To) ∧Q yo)) � Fo

by (rule rule-R[where p = [«]]) force+
moreover have
`
(λyo. ((Fo ≡Q To) ≡Q (Fo ≡Q To) ∧Q yo)) � Fo
=o
S {(y, o) � Fo} ((Fo ≡Q To) ≡Q (Fo ≡Q To) ∧Q yo)

by (rule prop-5207 ) auto
ultimately show ?thesis

by (rule rule-R[where p = []]) force+
qed
moreover have §5 : ` xo ∧Q Fo ≡Q Fo
proof −

from prop-5229 (2 ,4 ) have
` S {(x, o) � To} (xo ∧Q Fo ≡Q Fo) and ` S {(x, o) � Fo} (xo ∧Q Fo ≡Q Fo)
by simp-all

moreover have xo ∧Q Fo ≡Q Fo ∈ wffso
by auto

ultimately show ?thesis
by (rule Cases)

qed
then have ` (Fo ≡Q To) ∧Q Fo ≡Q Fo
proof −

let ?ϑ = {(x, o) � Fo ≡Q To}
have is-substitution ?ϑ

by auto
moreover have ∀ v ∈ fmdom ′ ?ϑ.

var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v (xo ∧Q Fo ≡Q Fo)
by simp

moreover have ?ϑ 6= {$$}
by simp

ultimately have ` S ?ϑ (xo ∧Q Fo ≡Q Fo)
by (rule Sub[OF ‹` xo ∧Q Fo ≡Q Fo›])

then show ?thesis
by simp

qed
ultimately show ` (Fo ≡Q To) =o Fo

unfolding equivalence-def by (rule Equality-Rules(3 ))
qed

6.32 Proposition 5231
proposition prop-5231 :

shows ` ∼Q To =o Fo
and ` ∼Q Fo =o To
using prop-5230 (3 ,4 ) unfolding neg-def and equivalence-def and equality-of-type-def .
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6.33 Proposition 5232
lemma disj-op-alt-def-provability:

assumes A ∈ wffso and B ∈ wffso
shows ` A ∨Q B =o ∼Q (∼Q A ∧Q ∼Q B)

proof −
let ?C = (λxo. λyo. ∼Q (∼Q xo ∧Q ∼Q yo)) � A � B
from assms have ?C ∈ wffso

by blast
have (∼Q (∼Q xo ∧Q ∼Q yo)) ∈ wffso

by auto
moreover obtain z where (z, o) /∈ {(x, o), (y, o)} and (z, o) /∈ free-vars A

using free-vars-form-finiteness and fresh-var-existence
by (metis Un-iff Un-insert-right free-vars-form.simps(1 ,3 ) inf-sup-aci(5 ) sup-bot-left)

then have (z, o) /∈ free-vars (∼Q (∼Q xo ∧Q ∼Q yo))
by simp

moreover have is-free-for (zo) (y, o) (∼Q (∼Q xo ∧Q ∼Q yo))
by (intro is-free-for-in-conj is-free-for-in-neg is-free-for-in-var)

ultimately have
` (λyo. ∼Q (∼Q xo ∧Q ∼Q yo)) =o→o (λzo. S {(y, o) � zo} ∼Q (∼Q xo ∧Q ∼Q yo))
by (rule α)

then have ` (λyo. ∼Q (∼Q xo ∧Q ∼Q yo)) =o→o (λzo. ∼Q (∼Q xo ∧Q ∼Q zo))
by simp

from prop-5200 [OF ‹?C ∈ wffso›] and this have
`
(λxo. λzo. ∼Q (∼Q xo ∧Q ∼Q zo)) � A � B
=o
(λxo. λyo. ∼Q (∼Q xo ∧Q ∼Q yo)) � A � B

by (rule rule-R[where p = [«,»,«,«,«]]) force+
moreover have λzo. ∼Q (∼Q xo ∧Q ∼Q zo) ∈ wffso→o

by blast
have
`
(λxo. λzo. ∼Q (∼Q xo ∧Q ∼Q zo)) � A
=o→o
S {(x, o) � A} (λzo. ∼Q (∼Q xo ∧Q ∼Q zo))

by
(rule prop-5207 )
(

fact, blast, intro is-free-for-in-neg is-free-for-in-conj is-free-for-to-abs,
(fastforce simp add: ‹(z, o) /∈ free-vars A›)+

)
then have ` (λxo. λzo. ∼Q (∼Q xo ∧Q ∼Q zo)) � A =o→o (λzo. ∼Q (∼Q A ∧Q ∼Q zo))

using ‹(z, o) /∈ free-vars (∼Q (∼Q xo ∧Q ∼Q yo))› by simp
ultimately have
` (λzo. ∼Q (∼Q A ∧Q ∼Q zo)) � B =o (λxo. λyo. ∼Q (∼Q xo ∧Q ∼Q yo)) � A � B
by (rule rule-R[where p = [«,»,«]]) force+

moreover have ` (λzo. ∼Q (∼Q A ∧Q ∼Q zo)) � B =o S {(z, o) � B} (∼Q (∼Q A ∧Q ∼Q zo))
by
(rule prop-5207 )
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(
fact, blast intro: assms(1 ), intro is-free-for-in-neg is-free-for-in-conj,
use ‹(z, o) /∈ free-vars A› is-free-at-in-free-vars in ‹fastforce+›

)
moreover have S {(z, o) � B} (∼Q (∼Q A ∧Q ∼Q zo)) = ∼Q (∼Q A ∧Q ∼Q B)

using free-var-singleton-substitution-neutrality[OF ‹(z, o) /∈ free-vars A›] by simp
ultimately have ` (λxo. λyo. ∼Q (∼Q xo ∧Q ∼Q yo)) � A � B =o ∼Q (∼Q A ∧Q ∼Q B)

using Equality-Rules(2 ,3 ) by metis
then show ?thesis

by simp
qed

context begin

private lemma prop-5232-aux:
assumes ` ∼Q (A ∧Q B) =o C
and ` ∼Q A ′ =o A and ` ∼Q B ′ =o B
shows ` A ′ ∨Q B ′ =o C

proof −
let ?D = ∼Q (A ∧Q B) =o C
from assms(2 ) have ` ∼Q (∼Q A ′ ∧Q B) =o C (is ‹` ?A1 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,»,«,»] and C = ?D]) (use assms(1 ) in ‹force+›)
from assms(3 ) have ` ∼Q (∼Q A ′ ∧Q ∼Q B ′) =o C

by (rule rule-RR[OF disjI2 , where p = [«,»,»,»] and C = ?A1 ]) (use ‹` ?A1 › in ‹force+›)
moreover from assms(2 ,3 ) have A ′ ∈ wffso and B ′ ∈ wffso

using hyp-derivable-form-is-wffso by (blast dest: wffs-from-equality wffs-from-neg)+
then have ` A ′ ∨Q B ′ =o ∼Q (∼Q A ′ ∧Q ∼Q B ′)

by (rule disj-op-alt-def-provability)
ultimately show ?thesis

using prop-5201-3 by blast
qed

proposition prop-5232 :
shows ` (To ∨Q To) =o To
and ` (To ∨Q Fo) =o To
and ` (Fo ∨Q To) =o To
and ` (Fo ∨Q Fo) =o Fo

proof −
from prop-5231 (2 ) have ` ∼Q Fo =o To (is ‹` ?A›) .
from prop-5229 (4 ) have ` ∼Q (Fo ∧Q Fo) =o To

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A]) (use ‹` ?A› in ‹force+›)
from prop-5232-aux[OF this prop-5231 (1 ) prop-5231 (1 )] show ` (To ∨Q To) =o To .
from prop-5229 (3 ) have ` ∼Q (Fo ∧Q To) =o To

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A]) (use ‹` ?A› in ‹force+›)
from prop-5232-aux[OF this prop-5231 (1 ) prop-5231 (2 )] show ` (To ∨Q Fo) =o To .
from prop-5229 (2 ) have ` ∼Q (To ∧Q Fo) =o To

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A]) (use ‹` ?A› in ‹force+›)
from prop-5232-aux[OF this prop-5231 (2 ) prop-5231 (1 )] show ` (Fo ∨Q To) =o To .

next

185



from prop-5231 (1 ) have ` ∼Q To =o Fo (is ‹` ?A›) .
from prop-5229 (1 ) have ` ∼Q (To ∧Q To) =o Fo

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A]) (use ‹` ?A› in ‹force+›)
from prop-5232-aux[OF this prop-5231 (2 ) prop-5231 (2 )] show ` (Fo ∨Q Fo) =o Fo .

qed

end

6.34 Proposition 5233
context begin

private lemma lem-prop-5233-no-free-vars:
assumes A ∈ pwffs and free-vars A = {}
shows (∀ϕ. is-tv-assignment ϕ −→ VB ϕ A = T) −→ ` A =o To (is ?AT −→ -)
and (∀ϕ. is-tv-assignment ϕ −→ VB ϕ A = F) −→ ` A =o Fo (is ?AF −→ -)

proof −
from assms have (?AT −→ ` A =o To) ∧ (?AF −→ ` A =o Fo)
proof induction

case T-pwff
have ` To =o To

by (rule prop-5200 [OF true-wff ])
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ To = T

using VB-T by blast
then have ¬ (∀ϕ. is-tv-assignment ϕ −→ VB ϕ To = F)

by (auto simp: inj-eq)
ultimately show ?case

by blast
next

case F-pwff
have ` Fo =o Fo

by (rule prop-5200 [OF false-wff ])
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ Fo = F

using VB-F by blast
then have ¬ (∀ϕ. is-tv-assignment ϕ −→ VB ϕ Fo = T)

by (auto simp: inj-eq)
ultimately show ?case

by blast
next

case (var-pwff p) — impossible case
then show ?case

by simp
next

case (neg-pwff B)
from neg-pwff .hyps have ∼Q B ∈ pwffs and free-vars B = {}

using neg-pwff .prems by (force, auto elim: free-vars-form.elims)
consider
(a) ∀ϕ. is-tv-assignment ϕ −→ VB ϕ B = T
| (b) ∀ϕ. is-tv-assignment ϕ −→ VB ϕ B = F
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using closed-pwff-denotation-uniqueness[OF neg-pwff .hyps ‹free-vars B = {}›]
and neg-pwff .hyps[THEN VB-graph-denotation-is-truth-value[OF VB-graph-VB ]]
by (auto dest: tv-cases) metis

then show ?case
proof cases

case a
with ‹free-vars B = {}› have ` To =o B

using neg-pwff .IH and Equality-Rules(2 ) by blast
from prop-5231 (1 )[unfolded neg-def , folded equality-of-type-def ] and this
have ` ∼Q B =o Fo

unfolding neg-def [folded equality-of-type-def ] by (rule rule-R[where p = [«,»,»]]) force+
moreover from a have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (∼Q B) = F

using VB-neg[OF neg-pwff .hyps] by simp
ultimately show ?thesis

by (auto simp: inj-eq)
next

case b
with ‹free-vars B = {}› have ` Fo =o B

using neg-pwff .IH and Equality-Rules(2 ) by blast
then have ` ∼Q B =o To

unfolding neg-def [folded equality-of-type-def ]
using rule-T (2 )[OF hyp-derivable-form-is-wffso] by blast

moreover from b have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (∼Q B) = T
using VB-neg[OF neg-pwff .hyps] by simp

ultimately show ?thesis
by (auto simp: inj-eq)

qed
next

case (conj-pwff B C )
from conj-pwff .prems have free-vars B = {} and free-vars C = {}

by simp-all
with conj-pwff .hyps obtain b and b ′

where B-den: ∀ϕ. is-tv-assignment ϕ −→ VB ϕ B = b
and C-den: ∀ϕ. is-tv-assignment ϕ −→ VB ϕ C = b ′

using closed-pwff-denotation-uniqueness by metis
then have b ∈ elts � and b ′ ∈ elts �

using closed-pwff-denotation-uniqueness[OF conj-pwff .hyps(1 ) ‹free-vars B = {}›]
and closed-pwff-denotation-uniqueness[OF conj-pwff .hyps(2 ) ‹free-vars C = {}›]
and conj-pwff .hyps[THEN VB-graph-denotation-is-truth-value[OF VB-graph-VB ]]
by force+

with conj-pwff .hyps consider
(a) b = T and b ′ = T
| (b) b = T and b ′ = F
| (c) b = F and b ′ = T
| (d) b = F and b ′ = F

by auto
then show ?case
proof cases

case a
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from prop-5229 (1 ) have ` To ∧Q To =o To (is ‹` ?A1 ›) .
from B-den[unfolded a(1 )] and ‹free-vars B = {}› have ` B =o To

using conj-pwff .IH (1 ) by simp
then have ` B ∧Q To =o To (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1 ]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded a(2 )] and ‹free-vars C = {}› have ` C =o To

using conj-pwff .IH (2 ) by simp
then have ` B ∧Q C =o To

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2 ]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∧Q C ) = T) −→ ` B ∧Q C =o To

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∧Q C ) 6= F

using VB-conj[OF conj-pwff .hyps] and B-den[unfolded a(1 )] and C-den[unfolded a(2 )]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

next
case b
from prop-5229 (2 ) have ` To ∧Q Fo =o Fo (is ‹` ?A1 ›) .
from B-den[unfolded b(1 )] and ‹free-vars B = {}› have ` B =o To

using conj-pwff .IH (1 ) by simp
then have ` B ∧Q Fo =o Fo (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1 ]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded b(2 )] and ‹free-vars C = {}› have ` C =o Fo

using conj-pwff .IH (2 ) by simp
then have ` B ∧Q C =o Fo

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2 ]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∧Q C ) = F) −→ ` B ∧Q C =o Fo

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∧Q C ) 6= T

using VB-conj[OF conj-pwff .hyps] and B-den[unfolded b(1 )] and C-den[unfolded b(2 )]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

next
case c
from prop-5229 (3 ) have ` Fo ∧Q To =o Fo (is ‹` ?A1 ›) .
from B-den[unfolded c(1 )] and ‹free-vars B = {}› have ` B =o Fo

using conj-pwff .IH (1 ) by simp
then have ` B ∧Q To =o Fo (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1 ]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded c(2 )] and ‹free-vars C = {}› have ` C =o To

using conj-pwff .IH (2 ) by simp
then have ` B ∧Q C =o Fo

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2 ]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∧Q C ) = F) −→ ` B ∧Q C =o Fo

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∧Q C ) 6= T

using VB-conj[OF conj-pwff .hyps] and B-den[unfolded c(1 )] and C-den[unfolded c(2 )]
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by (auto simp: inj-eq)
ultimately show ?thesis

by force
next

case d
from prop-5229 (4 ) have ` Fo ∧Q Fo =o Fo (is ‹` ?A1 ›) .
from B-den[unfolded d(1 )] and ‹free-vars B = {}› have ` B =o Fo

using conj-pwff .IH (1 ) by simp
then have ` B ∧Q Fo =o Fo (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1 ]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded d(2 )] and ‹free-vars C = {}› have ` C =o Fo

using conj-pwff .IH (2 ) by simp
then have ` B ∧Q C =o Fo

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2 ]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∧Q C ) = F) −→ ` B ∧Q C =o Fo

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∧Q C ) 6= T

using VB-conj[OF conj-pwff .hyps] and B-den[unfolded d(1 )] and C-den[unfolded d(2 )]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

qed
next

case (disj-pwff B C )
from disj-pwff .prems have free-vars B = {} and free-vars C = {}

by simp-all
with disj-pwff .hyps obtain b and b ′

where B-den: ∀ϕ. is-tv-assignment ϕ −→ VB ϕ B = b
and C-den: ∀ϕ. is-tv-assignment ϕ −→ VB ϕ C = b ′

using closed-pwff-denotation-uniqueness by metis
then have b ∈ elts � and b ′ ∈ elts �

using closed-pwff-denotation-uniqueness[OF disj-pwff .hyps(1 ) ‹free-vars B = {}›]
and closed-pwff-denotation-uniqueness[OF disj-pwff .hyps(2 ) ‹free-vars C = {}›]
and disj-pwff .hyps[THEN VB-graph-denotation-is-truth-value[OF VB-graph-VB ]]
by force+

with disj-pwff .hyps consider
(a) b = T and b ′ = T
| (b) b = T and b ′ = F
| (c) b = F and b ′ = T
| (d) b = F and b ′ = F

by auto
then show ?case
proof cases

case a
from prop-5232 (1 ) have ` To ∨Q To =o To (is ‹` ?A1 ›) .
from B-den[unfolded a(1 )] and ‹free-vars B = {}› have ` B =o To

using disj-pwff .IH (1 ) by simp
then have ` B ∨Q To =o To (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1 ]) (use ‹` ?A1 › in ‹force+›)
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from C-den[unfolded a(2 )] and ‹free-vars C = {}› have ` C =o To
using disj-pwff .IH (2 ) by simp

then have ` B ∨Q C =o To
by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2 ]) (use ‹` ?A2 › in ‹force+›)

then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∨Q C ) = T) −→ ` B ∨Q C =o To
by blast

moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∨Q C ) 6= F
using VB-disj[OF disj-pwff .hyps] and B-den[unfolded a(1 )] and C-den[unfolded a(2 )]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

next
case b
from prop-5232 (2 ) have ` To ∨Q Fo =o To (is ‹` ?A1 ›) .
from B-den[unfolded b(1 )] and ‹free-vars B = {}› have ` B =o To

using disj-pwff .IH (1 ) by simp
then have ` B ∨Q Fo =o To (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1 ]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded b(2 )] and ‹free-vars C = {}› have ` C =o Fo

using disj-pwff .IH (2 ) by simp
then have ` B ∨Q C =o To

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2 ]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∨Q C ) = T) −→ ` B ∨Q C =o To

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∨Q C ) 6= F

using VB-disj[OF disj-pwff .hyps] and B-den[unfolded b(1 )] and C-den[unfolded b(2 )]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

next
case c
from prop-5232 (3 ) have ` Fo ∨Q To =o To (is ‹` ?A1 ›) .
from B-den[unfolded c(1 )] and ‹free-vars B = {}› have ` B =o Fo

using disj-pwff .IH (1 ) by simp
then have ` B ∨Q To =o To (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1 ]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded c(2 )] and ‹free-vars C = {}› have ` C =o To

using disj-pwff .IH (2 ) by simp
then have ` B ∨Q C =o To

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2 ]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∨Q C ) = T) −→ ` B ∨Q C =o To

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∨Q C ) 6= F

using VB-disj[OF disj-pwff .hyps] and B-den[unfolded c(1 )] and C-den[unfolded c(2 )]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

next
case d

190



from prop-5232 (4 ) have ` Fo ∨Q Fo =o Fo (is ‹` ?A1 ›) .
from B-den[unfolded d(1 )] and ‹free-vars B = {}› have ` B =o Fo

using disj-pwff .IH (1 ) by simp
then have ` B ∨Q Fo =o Fo (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1 ]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded d(2 )] and ‹free-vars C = {}› have ` C =o Fo

using disj-pwff .IH (2 ) by simp
then have ` B ∨Q C =o Fo

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2 ]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∨Q C ) = T) −→ ` B ∨Q C =o Fo

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∨Q C ) 6= T

using VB-disj[OF disj-pwff .hyps] and B-den[unfolded d(1 )] and C-den[unfolded d(2 )]
by (auto simp: inj-eq)

ultimately show ?thesis
using ‹` B ∨Q C =o Fo› by auto

qed
next

case (imp-pwff B C )
from imp-pwff .prems have free-vars B = {} and free-vars C = {}

by simp-all
with imp-pwff .hyps obtain b and b ′

where B-den: ∀ϕ. is-tv-assignment ϕ −→ VB ϕ B = b
and C-den: ∀ϕ. is-tv-assignment ϕ −→ VB ϕ C = b ′

using closed-pwff-denotation-uniqueness by metis
then have b ∈ elts � and b ′ ∈ elts �

using closed-pwff-denotation-uniqueness[OF imp-pwff .hyps(1 ) ‹free-vars B = {}›]
and closed-pwff-denotation-uniqueness[OF imp-pwff .hyps(2 ) ‹free-vars C = {}›]
and imp-pwff .hyps[THEN VB-graph-denotation-is-truth-value[OF VB-graph-VB ]]
by force+

with imp-pwff .hyps consider
(a) b = T and b ′ = T
| (b) b = T and b ′ = F
| (c) b = F and b ′ = T
| (d) b = F and b ′ = F

by auto
then show ?case
proof cases

case a
from prop-5228 (1 ) have ` To ⊃Q To =o To (is ‹` ?A1 ›) .
from B-den[unfolded a(1 )] and ‹free-vars B = {}› have ` B =o To

using imp-pwff .IH (1 ) by simp
then have ` B ⊃Q To =o To (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1 ]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded a(2 )] and ‹free-vars C = {}› have ` C =o To

using imp-pwff .IH (2 ) by simp
then have ` B ⊃Q C =o To

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2 ]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ⊃Q C ) = T) −→ ` B ⊃Q C =o To
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by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ⊃Q C ) 6= F

using VB-imp[OF imp-pwff .hyps] and B-den[unfolded a(1 )] and C-den[unfolded a(2 )]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

next
case b
from prop-5228 (2 ) have ` To ⊃Q Fo =o Fo (is ‹` ?A1 ›) .
from B-den[unfolded b(1 )] and ‹free-vars B = {}› have ` B =o To

using imp-pwff .IH (1 ) by simp
then have ` B ⊃Q Fo =o Fo (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1 ]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded b(2 )] and ‹free-vars C = {}› have ` C =o Fo

using imp-pwff .IH (2 ) by simp
then have ` B ⊃Q C =o Fo

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2 ]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ⊃Q C ) = F) −→ ` B ⊃Q C =o Fo

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ⊃Q C ) 6= T

using VB-imp[OF imp-pwff .hyps] and B-den[unfolded b(1 )] and C-den[unfolded b(2 )]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

next
case c
from prop-5228 (3 ) have ` Fo ⊃Q To =o To (is ‹` ?A1 ›) .
from B-den[unfolded c(1 )] and ‹free-vars B = {}› have ` B =o Fo

using imp-pwff .IH (1 ) by simp
then have ` B ⊃Q To =o To (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1 ]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded c(2 )] and ‹free-vars C = {}› have ` C =o To

using imp-pwff .IH (2 ) by simp
then have ` B ⊃Q C =o To

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2 ]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ⊃Q C ) = T) −→ ` B ⊃Q C =o To

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ⊃Q C ) 6= F

using VB-imp[OF imp-pwff .hyps] and B-den[unfolded c(1 )] and C-den[unfolded c(2 )]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

next
case d
from prop-5228 (4 ) have ` Fo ⊃Q Fo =o To (is ‹` ?A1 ›) .
from B-den[unfolded d(1 )] and ‹free-vars B = {}› have ` B =o Fo

using imp-pwff .IH (1 ) by simp
then have ` B ⊃Q Fo =o To (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1 ]) (use ‹` ?A1 › in ‹force+›)
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from C-den[unfolded d(2 )] and ‹free-vars C = {}› have ` C =o Fo
using imp-pwff .IH (2 ) by simp

then have ` B ⊃Q C =o To
by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2 ]) (use ‹` ?A2 › in ‹force+›)

then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ⊃Q C ) = T) −→ ` B ⊃Q C =o To
by blast

moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ⊃Q C ) 6= F
using VB-imp[OF imp-pwff .hyps] and B-den[unfolded d(1 )] and C-den[unfolded d(2 )]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

qed
next

case (eqv-pwff B C )
from eqv-pwff .prems have free-vars B = {} and free-vars C = {}

by simp-all
with eqv-pwff .hyps obtain b and b ′

where B-den: ∀ϕ. is-tv-assignment ϕ −→ VB ϕ B = b
and C-den: ∀ϕ. is-tv-assignment ϕ −→ VB ϕ C = b ′

using closed-pwff-denotation-uniqueness by metis
then have b ∈ elts � and b ′ ∈ elts �

using closed-pwff-denotation-uniqueness[OF eqv-pwff .hyps(1 ) ‹free-vars B = {}›]
and closed-pwff-denotation-uniqueness[OF eqv-pwff .hyps(2 ) ‹free-vars C = {}›]
and eqv-pwff .hyps[THEN VB-graph-denotation-is-truth-value[OF VB-graph-VB ]]
by force+

with eqv-pwff .hyps consider
(a) b = T and b ′ = T
| (b) b = T and b ′ = F
| (c) b = F and b ′ = T
| (d) b = F and b ′ = F

by auto
then show ?case
proof cases

case a
from prop-5230 (1 ) have ` (To ≡Q To) =o To (is ‹` ?A1 ›) .
from B-den[unfolded a(1 )] and ‹free-vars B = {}› have ` B =o To

using eqv-pwff .IH (1 ) by simp
then have ` (B ≡Q To) =o To (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1 ]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded a(2 )] and ‹free-vars C = {}› have ` C =o To

using eqv-pwff .IH (2 ) by simp
then have ` (B ≡Q C ) =o To

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2 ]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ≡Q C ) = T) −→ ` (B ≡Q C ) =o To

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ≡Q C ) 6= F

using VB-eqv[OF eqv-pwff .hyps] and B-den[unfolded a(1 )] and C-den[unfolded a(2 )]
by (auto simp: inj-eq)

ultimately show ?thesis
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by force
next

case b
from prop-5230 (2 ) have ` (To ≡Q Fo) =o Fo (is ‹` ?A1 ›) .
from B-den[unfolded b(1 )] and ‹free-vars B = {}› have ` B =o To

using eqv-pwff .IH (1 ) by simp
then have ` (B ≡Q Fo) =o Fo (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1 ]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded b(2 )] and ‹free-vars C = {}› have ` C =o Fo

using eqv-pwff .IH (2 ) by simp
then have ` (B ≡Q C ) =o Fo

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2 ]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ≡Q C ) = F) −→ ` (B ≡Q C ) =o Fo

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ≡Q C ) 6= T

using VB-eqv[OF eqv-pwff .hyps] and B-den[unfolded b(1 )] and C-den[unfolded b(2 )]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

next
case c
from prop-5230 (3 ) have ` (Fo ≡Q To) =o Fo (is ‹` ?A1 ›) .
from B-den[unfolded c(1 )] and ‹free-vars B = {}› have ` B =o Fo

using eqv-pwff .IH (1 ) by simp
then have ` (B ≡Q To) =o Fo (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1 ]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded c(2 )] and ‹free-vars C = {}› have ` C =o To

using eqv-pwff .IH (2 ) by simp
then have ` (B ≡Q C ) =o Fo

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2 ]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ≡Q C ) = F) −→ ` (B ≡Q C ) =o Fo

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ≡Q C ) 6= T

using VB-eqv[OF eqv-pwff .hyps] and B-den[unfolded c(1 )] and C-den[unfolded c(2 )]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

next
case d
from prop-5230 (4 ) have ` (Fo ≡Q Fo) =o To (is ‹` ?A1 ›) .
from B-den[unfolded d(1 )] and ‹free-vars B = {}› have ` B =o Fo

using eqv-pwff .IH (1 ) by simp
then have ` (B ≡Q Fo) =o To (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1 ]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded d(2 )] and ‹free-vars C = {}› have ` C =o Fo

using eqv-pwff .IH (2 ) by simp
then have ` (B ≡Q C ) =o To

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2 ]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ≡Q C ) = T) −→ ` (B ≡Q C ) =o To
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by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ≡Q C ) 6= F

using VB-eqv[OF eqv-pwff .hyps] and B-den[unfolded d(1 )] and C-den[unfolded d(2 )]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

qed
qed
then show ?AT −→ ` A =o To and ?AF −→ ` A =o Fo

by blast+
qed

proposition prop-5233 :
assumes is-tautology A
shows ` A

proof −
have finite (free-vars A)

using free-vars-form-finiteness by presburger
from this and assms show ?thesis
proof (induction free-vars A arbitrary: A)

case empty
from empty(2 ) have A ∈ pwffs and ∀ϕ. is-tv-assignment ϕ −→ VB ϕ A = T

unfolding is-tautology-def by blast+
with empty(1 ) have ` A =o To

using lem-prop-5233-no-free-vars(1 ) by (simp only:)
then show ?case

using rule-T (2 )[OF tautology-is-wffo[OF empty(2 )]] by (simp only:)
next

case (insert v F)
from insert.prems have A ∈ pwffs

by blast
with insert.hyps(4 ) obtain p where v = (p, o)

using pwffs-free-vars-are-propositional by blast
from ‹v = (p, o)› and insert.hyps(4 ) have

is-tautology (S {(p, o) � To} A) and is-tautology (S {(p, o) � Fo} A)
using pwff-substitution-tautology-preservation [OF insert.prems] by blast+

moreover from insert.hyps(2 ,4 ) and ‹v = (p, o)› and ‹A ∈ pwffs›
have free-vars (S {(p, o) � To} A) = F and free-vars (S {(p, o) � Fo} A) = F

using closed-pwff-substitution-free-vars and T-pwff and F-pwff and T-fv and F-fv
by (metis Diff-insert-absorb insertI1 )+

ultimately have ` S {(p, o) � To} A and ` S {(p, o) � Fo} A
using insert.hyps(3 ) by (simp-all only:)

from this and tautology-is-wffo[OF insert.prems] show ?case
by (rule Cases)

qed
qed

end
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6.35 Proposition 5234 (Rule P)

According to the proof in [2], if [A1∧· · ·∧An] ⊃ B is tautologous, then clearly A1 ⊃ (. . . (An ⊃
B) . . . ) is also tautologous. Since this is not clear to us, we prove instead the version of Rule
P found in [1]:
proposition tautologous-horn-clause-is-hyp-derivable:

assumes is-hyps H and is-hyps G
and ∀A ∈ G. H ` A
and lset hs = G
and is-tautologous (hs ⊃Q

? B)
shows H ` B

proof −
from assms(5 ) obtain ϑ and C

where is-tautology C
and is-substitution ϑ
and ∀ (x, α) ∈ fmdom ′ ϑ. α = o
and hs ⊃Q

? B = S ϑ C
by blast

then have ` hs ⊃Q
? B

proof (cases ϑ = {$$})
case True
with ‹hs ⊃Q

? B = S ϑ C › have C = hs ⊃Q
? B

using empty-substitution-neutrality by simp
with ‹hs ⊃Q

? B = S ϑ C › and ‹is-tautology C › show ?thesis
using prop-5233 by (simp only:)

next
case False
from ‹is-tautology C › have ` C and C ∈ pwffs

using prop-5233 by simp-all
moreover have
∀ v ∈ fmdom ′ ϑ. var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (ϑ $$! v) v C

proof
fix v
assume v ∈ fmdom ′ ϑ
then show var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (ϑ $$! v) v C
proof (cases v ∈ free-vars C )

case True
with ‹C ∈ pwffs› show ?thesis

using is-free-for-in-pwff by simp
next

case False
then have is-free-for (ϑ $$! v) v C

unfolding is-free-for-def using is-free-at-in-free-vars by blast
then show ?thesis

by simp
qed

qed
ultimately show ?thesis

using False and ‹is-substitution ϑ› and Sub
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by (simp add: ‹hs ⊃Q
? B = S ϑ C ›[unfolded generalized-imp-op-def ])

qed
from this and assms(1 ) have H ` hs ⊃Q

? B
by (rule derivability-implies-hyp-derivability)

with assms(3 ,4 ) show ?thesis
using generalized-modus-ponens by blast

qed

corollary tautologous-is-hyp-derivable:
assumes is-hyps H
and is-tautologous B
shows H ` B
using assms and tautologous-horn-clause-is-hyp-derivable[where G = {}] by simp

lemmas prop-5234 = tautologous-horn-clause-is-hyp-derivable tautologous-is-hyp-derivable

lemmas rule-P = prop-5234

6.36 Proposition 5235
proposition prop-5235 :

assumes A ∈ pwffs and B ∈ pwffs
and (x, α) /∈ free-vars A
shows ` ∀ xα. (A ∨Q B) ⊃Q (A ∨Q ∀ xα. B)

proof −
have §1 : ` ∀ xα. (To ∨Q B) ⊃Q (To ∨Q ∀ xα. B)
proof (intro rule-P(2 ))

show is-tautologous (∀ xα. (To ∨Q B) ⊃Q To ∨Q ∀ xα. B)
proof −

let ?ϑ = {(x, o) � ∀ xα. (To ∨Q B), (y, o) � ∀ xα. B} and ?C = xo ⊃Q (To ∨Q (yo))
have is-tautology ?C

using VB-simps by simp
moreover from assms(2 ) have is-pwff-substitution ?ϑ

using pwffs-subset-of-wffso by fastforce
moreover have ∀ xα. (To ∨Q B) ⊃Q To ∨Q ∀ xα. B = S ?ϑ ?C

by simp
ultimately show ?thesis

by blast
qed

qed simp
have §2 : ` ∀ xα. B ⊃Q (Fo ∨Q ∀ xα. B)
proof (intro rule-P(2 ))

show is-tautologous (∀ xα. B ⊃Q (Fo ∨Q ∀ xα. B))
proof −

let ?ϑ = {(x, o) � ∀ xα. B} and ?C = xo ⊃Q (Fo ∨Q (xo))
have is-tautology (xo ⊃Q (Fo ∨Q (xo))) (is ‹is-tautology ?C ›)

using VB-simps by simp
moreover from assms(2 ) have is-pwff-substitution ?ϑ

using pwffs-subset-of-wffso by auto
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moreover have ∀ xα. B ⊃Q (Fo ∨Q ∀ xα. B) = S ?ϑ ?C
by simp

ultimately show ?thesis
by blast

qed
qed simp
have §3 : ` B ≡Q (Fo ∨Q B)
proof (intro rule-P(2 ))

show is-tautologous (B ≡Q (Fo ∨Q B))
proof −

let ?ϑ = {(x, o) � B} and ?C = xo ≡Q (Fo ∨Q (xo))
have is-tautology ?C

using VB-simps by simp
moreover from assms(2 ) have is-pwff-substitution ?ϑ

using pwffs-subset-of-wffso by auto
moreover have B ≡Q (Fo ∨Q B) = S ?ϑ ?C

by simp
ultimately show ?thesis

by blast
qed

qed simp
from §2 and §3 [unfolded equivalence-def ] have §4 :
` ∀ xα. (Fo ∨Q B) ⊃Q (Fo ∨Q ∀ xα. B)
by (rule rule-R[where p = [«,»,»,«]]) force+

obtain p where (p, o) /∈ vars (∀ xα. (A ∨Q B) ⊃Q (A ∨Q ∀ xα. B))
by (meson fresh-var-existence vars-form-finiteness)

then have (p, o) 6= (x, α) and (p, o) /∈ vars A and (p, o) /∈ vars B
by simp-all

from ‹(p, o) /∈ vars B› have sub: S {(p, o) � C} B = B for C
using free-var-singleton-substitution-neutrality and free-vars-in-all-vars by blast

have §5 : ` ∀ xα. (po ∨Q B) ⊃Q (po ∨Q ∀ xα. B) (is ‹` ?C ›)
proof −

from sub and §1 have ` S {(p, o) � To} ?C
using ‹(p, o) 6= (x, α)› by auto

moreover from sub and §4 have ` S {(p, o) � Fo} ?C
using ‹(p, o) 6= (x, α)› by auto

moreover from assms(2 ) have ?C ∈ wffso
using pwffs-subset-of-wffso by auto

ultimately show ?thesis
by (rule Cases)

qed
then show ?thesis
proof −

let ?ϑ = {(p, o) � A}
from assms(1 ) have is-substitution ?ϑ

using pwffs-subset-of-wffso by auto
moreover have
∀ v ∈ fmdom ′ ?ϑ. var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v ?C

proof
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fix v
assume v ∈ fmdom ′ ?ϑ
then have v = (p, o)

by simp
with assms(3 ) and ‹(p, o) /∈ vars B› have is-free-for (?ϑ $$! v) v ?C

using occurs-in-vars
by (intro is-free-for-in-imp is-free-for-in-forall is-free-for-in-disj) auto

moreover have var-name v /∈ free-var-names ({}::form set)
by simp

ultimately show var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v ?C
unfolding ‹v = (p, o)› by blast

qed
moreover have ?ϑ 6= {$$}

by simp
ultimately have ` S ?ϑ ?C

by (rule Sub[OF §5 ])
moreover have S ?ϑ ?C = ∀ xα. (A ∨Q B) ⊃Q (A ∨Q ∀ xα. B)

using ‹(p, o) 6= (x, α)› and sub[of A] by simp fast
ultimately show ?thesis

by (simp only:)
qed

qed

6.37 Proposition 5237 (⊃ ∀ Rule)

The proof in [2] uses the pseudo-rule Q and the axiom 5 of F . Therefore, we prove such axiom,
following the proof of Theorem 143 in [1]:
context begin

private lemma prop-5237-aux:
assumes A ∈ wffso and B ∈ wffso
and (x, α) /∈ free-vars A
shows ` ∀ xα. (A ⊃Q B) ≡Q (A ⊃Q (∀ xα. B))

proof −
have is-tautology (xo ≡Q (To ⊃Q xo)) (is ‹is-tautology ?C 1›)

using VB-simps by simp
have is-tautology (xo ⊃Q (xo ≡Q (Fo ⊃Q yo))) (is ‹is-tautology ?C 2›)

using VB-simps by simp
have §1 : ` ∀ xα. B ≡Q (To ⊃Q ∀ xα. B)
proof (intro rule-P(2 ))

show is-tautologous (∀ xα. B ≡Q (To ⊃Q ∀ xα. B))
proof −

let ?ϑ = {(x, o) � ∀ xα. B}
from assms(2 ) have is-pwff-substitution ?ϑ

using pwffs-subset-of-wffso by auto
moreover have ∀ xα. B ≡Q (To ⊃Q ∀ xα. B) = S ?ϑ ?C 1

by simp
ultimately show ?thesis

using ‹is-tautology ?C 1› by blast
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qed
qed simp
have §2 : ` B ≡Q (To ⊃Q B)
proof (intro rule-P(2 ))

show is-tautologous (B ≡Q To ⊃Q B)
proof −

let ?ϑ = {(x, o) � B}
from assms(2 ) have is-pwff-substitution ?ϑ

using pwffs-subset-of-wffso by auto
moreover have B ≡Q To ⊃Q B = S ?ϑ ?C 1

by simp
ultimately show ?thesis

using ‹is-tautology ?C 1› by blast
qed

qed simp
have ` To

by (fact true-is-derivable)
then have §3 : ` ∀ xα. To

using Gen by simp
have §4 : ` ∀ xα. To ≡Q (Fo ⊃Q ∀ xα. B)
proof (intro rule-P(1 )[where G = {∀ xα. To}])

show is-tautologous ([∀ xα. To] ⊃Q
? (∀ xα. To ≡Q (Fo ⊃Q ∀ xα. B)))

proof −
let ?ϑ = {(x, o) � ∀ xα. To, (y, o) � ∀ xα. B}
from assms(2 ) have is-pwff-substitution ?ϑ

using pwffs-subset-of-wffso by auto
moreover have [∀ xα. To] ⊃Q

? (∀ xα. To ≡Q (Fo ⊃Q ∀ xα. B)) = S ?ϑ ?C 2

by simp
ultimately show ?thesis

using ‹is-tautology ?C 2› by blast
qed

qed (use §3 in fastforce)+
have §5 : ` To ≡Q (Fo ⊃Q B)
proof (intro rule-P(2 ))

show is-tautologous (To ≡Q (Fo ⊃Q B))
proof −

let ?ϑ = {(x, o) � B} and ?C = To ≡Q (Fo ⊃Q xo)
have is-tautology ?C

using VB-simps by simp
moreover from assms(2 ) have is-pwff-substitution ?ϑ

using pwffs-subset-of-wffso by auto
moreover have To ≡Q (Fo ⊃Q B) = S ?ϑ ?C

by simp
ultimately show ?thesis

by blast
qed

qed simp
from §4 and §5 have §6 : ` ∀ xα. (Fo ⊃Q B) ≡Q (Fo ⊃Q ∀ xα. B)

unfolding equivalence-def by (rule rule-R[where p = [«,»,»,«]]) force+
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from §1 and §2 have §7 : ` ∀ xα. (To ⊃Q B) ≡Q (To ⊃Q ∀ xα. B)
unfolding equivalence-def by (rule rule-R[where p = [«,»,»,«]]) force+

obtain p where (p, o) /∈ vars B and p 6= x
using fresh-var-existence and vars-form-finiteness by (metis finite-insert insert-iff )

from ‹(p, o) /∈ vars B› have sub: S {(p, o) � C} B = B for C
using free-var-singleton-substitution-neutrality and free-vars-in-all-vars by blast

have §8 : ` ∀ xα. (po ⊃Q B) ≡Q (po ⊃Q ∀ xα. B) (is ‹` ?C 3›)
proof −

from sub and §7 have ` S {(p, o) � To} ?C 3

using ‹p 6= x› by auto
moreover from sub and §6 have ` S {(p, o) � Fo} ?C 3

using ‹p 6= x› by auto
moreover from assms(2 ) have ?C 3 ∈ wffso

using pwffs-subset-of-wffso by auto
ultimately show ?thesis

by (rule Cases)
qed
then show ?thesis
proof −

let ?ϑ = {(p, o) � A}
from assms(1 ) have is-substitution ?ϑ

using pwffs-subset-of-wffso by auto
moreover have
∀ v ∈ fmdom ′ ?ϑ. var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v ?C 3

proof
fix v
assume v ∈ fmdom ′ ?ϑ
then have v = (p, o)

by simp
with assms(3 ) and ‹(p, o) /∈ vars B› have is-free-for (?ϑ $$! v) v ?C 3

using occurs-in-vars
by (intro is-free-for-in-imp is-free-for-in-forall is-free-for-in-equivalence) auto

moreover have var-name v /∈ free-var-names ({}::form set)
by simp

ultimately show var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v ?C 3

unfolding ‹v = (p, o)› by blast
qed
moreover have ?ϑ 6= {$$}

by simp
ultimately have ` S ?ϑ ?C 3

by (rule Sub[OF §8 ])
moreover have S ?ϑ ?C 3 = ∀ xα. (A ⊃Q B) ≡Q (A ⊃Q ∀ xα. B)

using ‹p 6= x› and sub[of A] by simp
ultimately show ?thesis

by (simp only:)
qed

qed

proposition prop-5237 :
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assumes is-hyps H
and H ` A ⊃Q B
and (x, α) /∈ free-vars ({A} ∪ H)
shows H ` A ⊃Q (∀ xα. B)

proof −
have H ` A ⊃Q B

by fact
with assms(3 ) have H ` ∀ xα. (A ⊃Q B)

using Gen by simp
moreover have H ` ∀ xα. (A ⊃Q B) ≡Q (A ⊃Q (∀ xα. B))
proof −

from assms(2 ) have A ∈ wffso and B ∈ wffso
using hyp-derivable-form-is-wffso by (blast dest: wffs-from-imp-op)+

with assms(1 ,3 ) show ?thesis
using prop-5237-aux and derivability-implies-hyp-derivability by simp

qed
ultimately show ?thesis

by (rule Equality-Rules(1 ))
qed

lemmas ⊃∀ = prop-5237

corollary generalized-prop-5237 :
assumes is-hyps H
and H ` A ⊃Q B
and ∀ v ∈ S . v /∈ free-vars ({A} ∪ H)
and lset vs = S
shows H ` A ⊃Q (∀Q

? vs B)
using assms proof (induction vs arbitrary: S)

case Nil
then show ?case

by simp
next

case (Cons v vs)
obtain x and α where v = (x, α)

by fastforce
from Cons.prems(3 ) have ∗: ∀ v ′ ∈ S . v ′ /∈ free-vars ({A} ∪ H)

by blast
then show ?case
proof (cases v ∈ lset vs)

case True
with Cons.prems(4 ) have lset vs = S

by auto
with assms(1 ,2 ) and ∗ have H ` A ⊃Q ∀Q

? vs B
by (fact Cons.IH )

with True and ‹lset vs = S› and ‹v = (x, α)› and ∗ have H ` A ⊃Q (∀ xα. ∀Q
? vs B)

using prop-5237 [OF assms(1 )] by simp
with ‹v = (x, α)› show ?thesis

by simp
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next
case False
with ‹lset (v # vs) = S› have lset vs = S − {v}

by auto
moreover from ∗ have ∀ v ′ ∈ S − {v}. v ′ /∈ free-vars ({A} ∪ H)

by blast
ultimately have H ` A ⊃Q ∀Q

? vs B
using assms(1 ,2 ) by (intro Cons.IH )

moreover from Cons.prems(4 ) and ‹v = (x, α)› and ∗ have (x, α) /∈ free-vars ({A} ∪ H)
by auto

ultimately have H ` A ⊃Q (∀ xα. ∀Q
? vs B)

using assms(1 ) by (intro prop-5237 )
with ‹v = (x, α)› show ?thesis

by simp
qed

qed

end

6.38 Proposition 5238
context begin

private lemma prop-5238-aux:
assumes A ∈ wffsα and B ∈ wffsα
shows ` ((λxβ . A) =β→α (λxβ . B)) ≡Q ∀ xβ . (A =α B)

proof −
have §1 :
` (fβ→α =β→α gβ→α) ≡Q ∀ xβ . (fβ→α � xβ =α gβ→α � xβ) (is ‹` - ≡Q ∀ xβ . ?C 1›)
by (fact axiom-is-derivable-from-no-hyps[OF axiom-3 ])

then have §2 :
` (fβ→α =β→α gβ→α) ≡Q ∀ xβ . (fβ→α � xβ =α gβ→α � xβ) (is ‹` ?C 2›)

proof (cases x = x)
case True
with §1 show ?thesis

by (simp only:)
next

case False
have ?C 1 ∈ wffso

by blast
moreover from False have (x, β) /∈ free-vars ?C 1

by simp
moreover have is-free-for (xβ) (x, β) ?C 1

by (intro is-free-for-in-equality is-free-for-to-app) simp-all
ultimately have ` λxβ . ?C 1 =β→o λxβ . (S {(x, β) � xβ} ?C 1)

by (rule α)
from §1 and this show ?thesis

by (rule rule-R[where p = [»,»]]) force+
qed
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then have §3 :
` ((λxβ . A) =β→α (λxβ . B)) ≡Q ∀ xβ . ((λxβ . A) � xβ =α (λxβ . B) � xβ)

proof −
let ?ϑ = {(f, β→α) � λxβ . A, (g, β→α) � λxβ . B}
have λxβ . A ∈ wffsβ→α and λxβ . B ∈ wffsβ→α

by (blast intro: assms(1 ,2 ))+
then have is-substitution ?ϑ

by simp
moreover have
∀ v ∈ fmdom ′ ?ϑ. var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v ?C 2

proof
fix v
assume v ∈ fmdom ′ ?ϑ
then consider (a) v = (f, β→α) | (b) v = (g, β→α)

by fastforce
then show var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v ?C 2

proof cases
case a
have (x, β) /∈ free-vars (λxβ . A)

by simp
then have is-free-for (λxβ . A) (f, β→α) ?C 2

unfolding equivalence-def
by (intro is-free-for-in-equality is-free-for-in-forall is-free-for-to-app, simp-all)

with a show ?thesis
by force

next
case b
have (x, β) /∈ free-vars (λxβ . B)

by simp
then have is-free-for (λxβ . B) (g, β→α) ?C 2

unfolding equivalence-def
by (intro is-free-for-in-equality is-free-for-in-forall is-free-for-to-app, simp-all)

with b show ?thesis
by force

qed
qed
moreover have ?ϑ 6= {$$}

by simp
ultimately have ` S ?ϑ ?C 2

by (rule Sub[OF §2 ])
then show ?thesis

by simp
qed
then have §4 : ` ((λxβ . A) =β→α (λxβ . B)) ≡Q ∀ xβ . (A =α (λxβ . B) � xβ)
proof −

have ` (λxβ . A) � xβ =α A
using prop-5208 [where vs = [(x, β)]] and assms(1 ) by simp

from §3 and this show ?thesis
by (rule rule-R[where p = [»,»,«,«,»]]) force+
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qed
then show ?thesis
proof −

have ` (λxβ . B) � xβ =α B
using prop-5208 [where vs = [(x, β)]] and assms(2 ) by simp

from §4 and this show ?thesis
by (rule rule-R[where p = [»,»,«,»]]) force+

qed
qed

proposition prop-5238 :
assumes vs 6= [] and A ∈ wffsα and B ∈ wffsα
shows ` λQ? vs A =foldr (→) (map var-type vs) α λQ? vs B ≡Q ∀Q

? vs (A =α B)

using assms proof (induction vs arbitrary: A B α rule: rev-nonempty-induct)
case (single v)
obtain x and β where v = (x, β)

by fastforce
from single.prems have
λQ? vs A =foldr (→) (map var-type vs) α λQ? vs B ≡Q ∀Q

? vs (A =α B) ∈ wffso
by blast

with single.prems and ‹v = (x, β)› show ?case
using prop-5238-aux by simp

next
case (snoc v vs)
obtain x and β where v = (x, β)

by fastforce
from snoc.prems have λxβ . A ∈ wffsβ→α and λxβ . B ∈ wffsβ→α

by auto
then have
`
λQ? vs (λxβ . A) =foldr (→) (map var-type vs) (β→α) λ

Q
? vs (λxβ . B)

≡Q

∀Q
? vs ((λxβ . A) =β→α (λxβ . B))

by (fact snoc.IH )
moreover from snoc.prems have ` λxβ . A =β→α λxβ . B ≡Q ∀ xβ . (A =α B)

by (fact prop-5238-aux)
ultimately have
`
λQ? vs (λxβ . A) =foldr (→) (map var-type vs) (β→α) λ

Q
? vs (λxβ . B)

≡Q

∀Q
? vs ∀ xβ . (A =α B)

unfolding equivalence-def proof (induction rule: rule-R[where p = » # foldr (λ-. (@) [»,«]) vs []])
case occ-subform
then show ?case

using innermost-subform-in-generalized-forall[OF snoc.hyps] and is-subform-at.simps(3 )
by fastforce

next
case replacement
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then show ?case
using innermost-replacement-in-generalized-forall[OF snoc.hyps]
and is-replacement-at-implies-in-positions and replace-right-app by force

qed
with ‹v = (x, β)› show ?case

by simp
qed

end

6.39 Proposition 5239
lemma replacement-derivability:

assumes C ∈ wffsβ
and A �p C
and ` A =α B
and C 〈|p ← B|〉 � D
shows ` C =β D

using assms proof (induction arbitrary: D p)
case (var-is-wff γ x)
from var-is-wff .prems(1 ) have p = [] and A = xγ

by (auto elim: is-subform-at.elims(2 ))
with var-is-wff .prems(2 ) have α = γ

using hyp-derivable-form-is-wffso and wff-has-unique-type and wffs-from-equality by blast
moreover from ‹p = []› and var-is-wff .prems(3 ) have D = B

using is-replacement-at-minimal-change(1 ) and is-subform-at.simps(1 ) by iprover
ultimately show ?case

using ‹A = xγ› and var-is-wff .prems(2 ) by (simp only:)
next

case (con-is-wff γ c)
from con-is-wff .prems(1 ) have p = [] and A = {|c|}γ

by (auto elim: is-subform-at.elims(2 ))
with con-is-wff .prems(2 ) have α = γ

using hyp-derivable-form-is-wffso and wff-has-unique-type
by (meson wffs-from-equality wffs-of-type-intros(2 ))

moreover from ‹p = []› and con-is-wff .prems(3 ) have D = B
using is-replacement-at-minimal-change(1 ) and is-subform-at.simps(1 ) by iprover

ultimately show ?case
using ‹A = {|c|}γ› and con-is-wff .prems(2 ) by (simp only:)

next
case (app-is-wff γ δ C 1 C 2)
from app-is-wff .prems(1 ) consider
(a) p = []
| (b) ∃ p ′. p = « # p ′ ∧ A �p ′ C 1

| (c) ∃ p ′. p = » # p ′ ∧ A �p ′ C 2

using subforms-from-app by blast
then show ?case
proof cases

case a
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with app-is-wff .prems(1 ) have A = C 1 � C 2

by simp
moreover from a and app-is-wff .prems(3 ) have D = B

using is-replacement-at-minimal-change(1 ) and at-top-is-self-subform by blast
moreover from ‹A = C 1 � C 2› and ‹D = B› and app-is-wff .hyps(1 ,2 ) and assms(3 ) have α =

δ
using hyp-derivable-form-is-wffso and wff-has-unique-type
by (blast dest: wffs-from-equality)

ultimately show ?thesis
using assms(3 ) by (simp only:)

next
case b
then obtain p ′ where p = « # p ′ and A �p ′ C 1

by blast
moreover obtain D1 where D = D1 � C 2 and C 1〈|p ′← B|〉 � D1

using app-is-wff .prems(3 ) and ‹p = « # p ′› by (force dest: is-replacement-at.cases)
ultimately have ` C 1 =γ→δ D1

using app-is-wff .IH (1 ) and assms(3 ) by blast
moreover have ` C 2 =γ C 2

by (fact prop-5200 [OF app-is-wff .hyps(2 )])
ultimately have ` C 1 � C 2 =δ D1 � C 2

using Equality-Rules(4 ) by (simp only:)
with ‹D = D1 � C 2› show ?thesis

by (simp only:)
next

case c
then obtain p ′ where p = » # p ′ and A �p ′ C 2

by blast
moreover obtain D2 where D = C 1 � D2 and C 2〈|p ′← B|〉 � D2

using app-is-wff .prems(3 ) and ‹p = » # p ′› by (force dest: is-replacement-at.cases)
ultimately have ` C 2 =γ D2

using app-is-wff .IH (2 ) and assms(3 ) by blast
moreover have ` C 1 =γ→δ C 1

by (fact prop-5200 [OF app-is-wff .hyps(1 )])
ultimately have ` C 1 � C 2 =δ C 1 � D2

using Equality-Rules(4 ) by (simp only:)
with ‹D = C 1 � D2› show ?thesis

by (simp only:)
qed

next
case (abs-is-wff δ C ′ γ x)
from abs-is-wff .prems(1 ) consider (a) p = [] | (b) ∃ p ′. p = « # p ′ ∧ A �p ′ C ′

using subforms-from-abs by blast
then show ?case
proof cases

case a
with abs-is-wff .prems(1 ) have A = λxγ . C ′

by simp
moreover from a and abs-is-wff .prems(3 ) have D = B
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using is-replacement-at-minimal-change(1 ) and at-top-is-self-subform by blast
moreover from ‹A = λxγ . C ′› and ‹D = B› and abs-is-wff .hyps(1 ) and assms(3 ) have α =

γ→δ
using hyp-derivable-form-is-wffso and wff-has-unique-type
by (blast dest: wffs-from-abs wffs-from-equality)

ultimately show ?thesis
using assms(3 ) by (simp only:)

next
case b
then obtain p ′ where p = « # p ′ and A �p ′ C ′

by blast
moreover obtain D ′ where D = λxγ . D ′ and C ′〈|p ′← B|〉 � D ′

using abs-is-wff .prems(3 ) and ‹p = « # p ′› by (force dest: is-replacement-at.cases)
ultimately have ` C ′ =δ D ′

using abs-is-wff .IH and assms(3 ) by blast
then have ` λxγ . C ′ =γ→δ λxγ . D ′

proof −
from ‹` C ′ =δ D ′› have ` ∀ xγ . (C ′ =δ D ′)

using Gen by simp
moreover from ‹` C ′ =δ D ′› and abs-is-wff .hyps have D ′ ∈ wffsδ

using hyp-derivable-form-is-wffso by (blast dest: wffs-from-equality)
with abs-is-wff .hyps have ` (λxγ . C ′ =γ→δ λxγ . D ′) ≡Q ∀ xγ . (C ′ =δ D ′)

using prop-5238 [where vs = [(x, γ)]] by simp
ultimately show ?thesis

using Equality-Rules(1 ,2 ) unfolding equivalence-def by blast
qed
with ‹D = λxγ . D ′› show ?thesis

by (simp only:)
qed

qed

context
begin

private lemma prop-5239-aux-1 :
assumes p ∈ positions (�Q? (FVar v) (map FVar vs))
and p 6= replicate (length vs) «
shows
(∃A B. A � B �p (�Q? (FVar v) (map FVar vs)))
∨
(∃ v ∈ lset vs. occurs-at v p (�Q? (FVar v) (map FVar vs)))

using assms proof (induction vs arbitrary: p rule: rev-induct)
case Nil
then show ?case

using surj-pair [of v] by fastforce
next

case (snoc v ′ vs)
from snoc.prems(1 ) consider
(a) p = []
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| (b) p = [»]
| (c) ∃ p ′ ∈ positions (�Q? (FVar v) (map FVar vs)). p = « # p ′

using surj-pair [of v ′] by fastforce
then show ?case
proof cases

case c
then obtain p ′ where p ′ ∈ positions (�Q? (FVar v) (map FVar vs)) and p = « # p ′

by blast
from ‹p = « # p ′› and snoc.prems(2 ) have p ′ 6= replicate (length vs) «

by force
then have
(∃A B. A � B �p ′ �Q? (FVar v) (map FVar vs))
∨
(∃ v ∈ lset vs. occurs-at v p ′ (�Q? (FVar v) (map FVar vs)))
using ‹p ′ ∈ positions (�Q? (FVar v) (map FVar vs))› and snoc.IH by simp

with ‹p = « # p ′› show ?thesis
by auto

qed simp-all
qed

private lemma prop-5239-aux-2 :
assumes t /∈ lset vs ∪ vars C
and C 〈|p ← (�Q? (FVar t) (map FVar vs))|〉 � G
and C 〈|p ← (�Q? (λQ? vs A) (map FVar vs))|〉 � G ′

shows S {t � λQ? vs A} G = G ′ (is ‹S ?ϑ G = G ′›)
proof −

have S ?ϑ (�Q? (FVar t) (map FVar vs)) = �Q? (S ?ϑ (FVar t)) (map (λv ′. S ?ϑ v ′) (map FVar
vs))

using generalized-app-substitution by blast
moreover have S ?ϑ (FVar t) = λQ? vs A

using surj-pair [of t] by fastforce
moreover from assms(1 ) have map (λv ′. S ?ϑ v ′) (map FVar vs) = map FVar vs

by (induction vs) auto
ultimately show ?thesis
using assms proof (induction C arbitrary: G G ′ p)

case (FVar v)
from FVar .prems(5 ) have p = [] and G = �Q? (FVar t) (map FVar vs)

by (blast dest: is-replacement-at.cases)+
moreover from FVar .prems(6 ) and ‹p = []› have G ′ = �Q? (λQ? vs A) (map FVar vs)

by (blast dest: is-replacement-at.cases)
ultimately show ?case

using FVar .prems(1−3 ) by (simp only:)
next

case (FCon k)
from FCon.prems(5 ) have p = [] and G = �Q? (FVar t) (map FVar vs)

by (blast dest: is-replacement-at.cases)+
moreover from FCon.prems(6 ) and ‹p = []› have G ′ = �Q? (λQ? vs A) (map FVar vs)

by (blast dest: is-replacement-at.cases)
ultimately show ?case
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using FCon.prems(1−3 ) by (simp only:)
next

case (FApp C 1 C 2)
from FApp.prems(4 ) have t /∈ lset vs ∪ vars C 1 and t /∈ lset vs ∪ vars C 2

by auto
consider (a) p = [] | (b) ∃ p ′. p = « # p ′ | (c) ∃ p ′. p = » # p ′

by (metis direction.exhaust list.exhaust)
then show ?case
proof cases

case a
with FApp.prems(5 ) have G = �Q? (FVar t) (map FVar vs)

by (blast dest: is-replacement-at.cases)
moreover from FApp.prems(6 ) and ‹p = []› have G ′ = �Q? (λQ? vs A) (map FVar vs)

by (blast dest: is-replacement-at.cases)
ultimately show ?thesis

using FApp.prems(1−3 ) by (simp only:)
next

case b
then obtain p ′ where p = « # p ′

by blast
with FApp.prems(5 ) obtain G1 where G = G1 � C 2 and C 1〈|p ′ ← (�Q? (FVar t) (map FVar

vs))|〉 � G1

by (blast elim: is-replacement-at.cases)
moreover from ‹p = « # p ′› and FApp.prems(6 )
obtain G ′

1 where G ′ = G ′
1 � C 2 and C 1〈|p ′← (�Q? (λQ? vs A) (map FVar vs))|〉 � G ′

1

by (blast elim: is-replacement-at.cases)
moreover from ‹t /∈ lset vs ∪ vars C 2› have S {t � λQ? vs A} C 2 = C 2

using surj-pair [of t] and free-var-singleton-substitution-neutrality
by (simp add: vars-is-free-and-bound-vars)

ultimately show ?thesis
using FApp.IH (1 )[OF FApp.prems(1−3 ) ‹t /∈ lset vs ∪ vars C 1›] by simp

next
case c
then obtain p ′ where p = » # p ′

by blast
with FApp.prems(5 ) obtain G2 where G = C 1 � G2 and C 2〈|p ′ ← (�Q? (FVar t) (map FVar

vs))|〉 � G2

by (blast elim: is-replacement-at.cases)
moreover from ‹p = » # p ′› and FApp.prems(6 )
obtain G ′

2 where G ′ = C 1 � G ′
2 and C 2〈|p ′← (�Q? (λQ? vs A) (map FVar vs))|〉 � G ′

2

by (blast elim: is-replacement-at.cases)
moreover from ‹t /∈ lset vs ∪ vars C 1› have S {t � λQ? vs A} C 1 = C 1

using surj-pair [of t] and free-var-singleton-substitution-neutrality
by (simp add: vars-is-free-and-bound-vars)

ultimately show ?thesis
using FApp.IH (2 )[OF FApp.prems(1−3 ) ‹t /∈ lset vs ∪ vars C 2›] by simp

qed
next

case (FAbs v C ′)
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from FAbs.prems(4 ) have t /∈ lset vs ∪ vars C ′ and t 6= v
using vars-form.elims by blast+

from FAbs.prems(5 ) consider (a) p = [] | (b) ∃ p ′. p = « # p ′

using is-replacement-at.simps by blast
then show ?case
proof cases

case a
with FAbs.prems(5 ) have G = �Q? (FVar t) (map FVar vs)

by (blast dest: is-replacement-at.cases)
moreover from FAbs.prems(6 ) and ‹p = []› have G ′ = �Q? (λQ? vs A) (map FVar vs)

by (blast dest: is-replacement-at.cases)
ultimately show ?thesis

using FAbs.prems(1−3 ) by (simp only:)
next

case b
then obtain p ′ where p = « # p ′

by blast
then obtain G1 where G = FAbs v G1 and C ′〈|p ′← (�Q? (FVar t) (map FVar vs))|〉 � G1

using FAbs.prems(5 ) by (blast elim: is-replacement-at.cases)
moreover from ‹p = « # p ′› and FAbs.prems(6 )
obtain G ′

1 where G ′ = FAbs v G ′
1 and C ′〈|p ′← (�Q? (λQ? vs A) (map FVar vs))|〉 � G ′

1

by (blast elim: is-replacement-at.cases)
ultimately have S {t � λQ? vs A} G1 = G ′

1

using FAbs.IH [OF FAbs.prems(1−3 ) ‹t /∈ lset vs ∪ vars C ′›] by simp
with ‹G = FAbs v G1› and ‹G ′ = FAbs v G ′

1› and ‹t 6= v› show ?thesis
using surj-pair [of v] by fastforce

qed
qed

qed

private lemma prop-5239-aux-3 :
assumes t /∈ lset vs ∪ vars {A, C}
and C 〈|p ← (�Q? (FVar t) (map FVar vs))|〉 � G
and occurs-at t p ′ G
shows p ′ = p @ replicate (length vs) « (is ‹p ′ = ?pt›)

proof (cases vs = [])
case True
then have t /∈ vars C

using assms(1 ) by auto
moreover from True and assms(2 ) have C 〈|p ← FVar t|〉 � G

by force
ultimately show ?thesis

using assms(3 ) and True and fresh-var-replacement-position-uniqueness by simp
next

case False
show ?thesis
proof (rule ccontr)

assume p ′ 6= ?pt

have ¬ prefix ?pt p
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by (simp add: False)
from assms(3 ) have p ′ ∈ positions G

using is-subform-implies-in-positions by fastforce
from assms(2 ) have ?pt ∈ positions G

using is-replacement-at-minimal-change(1 ) and is-subform-at-transitivity
and is-subform-implies-in-positions and leftmost-subform-in-generalized-app
by (metis length-map)

from assms(2 ) have occurs-at t ?pt G
unfolding occurs-at-def using is-replacement-at-minimal-change(1 ) and is-subform-at-transitivity

and leftmost-subform-in-generalized-app
by (metis length-map)

moreover from assms(2 ) and ‹p ′ ∈ positions G› have ∗:
subform-at C p ′ = subform-at G p ′ if ¬ prefix p ′ p and ¬ prefix p p ′

using is-replacement-at-minimal-change(2 ) by (simp add: that(1 ,2 ))
ultimately show False
proof (cases ¬ prefix p ′ p ∧ ¬ prefix p p ′)

case True
with assms(3 ) and ∗ have occurs-at t p ′ C

using is-replacement-at-occurs[OF assms(2 )] by blast
then have t ∈ vars C

using is-subform-implies-in-positions and occurs-in-vars by fastforce
with assms(1 ) show ?thesis

by simp
next

case False
then consider (a) prefix p ′ p | (b) prefix p p ′

by blast
then show ?thesis
proof cases

case a
with ‹occurs-at t ?pt G› and ‹p ′ 6= ?pt› and assms(3 ) show ?thesis

unfolding occurs-at-def using loop-subform-impossibility
by (metis prefix-order .dual-order .order-iff-strict prefix-prefix)

next
case b
have strict-prefix p ′ ?pt

proof (rule ccontr)
assume ¬ strict-prefix p ′ ?pt

then consider
(b1) p ′ = ?pt

| (b2) strict-prefix ?pt p ′

| (b3) ¬ prefix p ′ ?pt and ¬ prefix ?pt p ′

by fastforce
then show False
proof cases

case b1
with ‹p ′ 6= ?pt› show ?thesis

by contradiction
next
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case b2
with ‹occurs-at t ?pt G› and assms(3 ) show ?thesis

using loop-subform-impossibility by blast
next

case b3
from b obtain p ′′ where p ′ = p @ p ′′ and p ′′ ∈ positions (�Q? (FVar t) (map FVar vs))

using is-replacement-at-new-positions and ‹p ′ ∈ positions G› and assms(2 ) by blast
moreover have p ′′ 6= replicate (length vs) «

using ‹p ′ = p @ p ′′› and ‹p ′ 6= ?pt› by blast
ultimately consider
(b3-1) ∃F1 F2. F1 � F2 �p ′′ (�Q? (FVar t) (map FVar vs))
| (b3-2) ∃ v ∈ lset vs. occurs-at v p ′′ (�Q? (FVar t) (map FVar vs))

using prop-5239-aux-1 and b3(1 ,2 ) and is-replacement-at-occurs
and leftmost-subform-in-generalized-app-replacement
by (metis (no-types, opaque-lifting) length-map prefix-append)

then show ?thesis
proof cases

case b3-1
with assms(2 ) and ‹p ′ = p @ p ′′› have ∃F1 F2. F1 � F2 �p ′ G

using is-replacement-at-minimal-change(1 ) and is-subform-at-transitivity by meson
with ‹occurs-at t p ′ G› show ?thesis

using is-subform-at-uniqueness by fastforce
next

case b3-2
with assms(2 ) and ‹p ′ = p @ p ′′› have ∃ v ∈ lset vs. occurs-at v p ′ G

unfolding occurs-at-def
using is-replacement-at-minimal-change(1 ) and is-subform-at-transitivity by meson

with assms(1 ,3 ) show ?thesis
using is-subform-at-uniqueness by fastforce

qed
qed

qed
with ‹occurs-at t ?pt G› and assms(3 ) show ?thesis

using loop-subform-impossibility by blast
qed

qed
qed

qed

private lemma prop-5239-aux-4 :
assumes t /∈ lset vs ∪ vars {A, C}
and A �p C
and lset vs ⊇ capture-exposed-vars-at p C A
and C 〈|p ← (�Q? (FVar t) (map FVar vs))|〉 � G
shows is-free-for (λQ? vs A) t G

unfolding is-free-for-def proof (intro ballI impI )
let ?pt = p @ replicate (length vs) «
from assms(4 ) have FVar t �?pt

G
using is-replacement-at-minimal-change(1 ) and is-subform-at-transitivity
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and leftmost-subform-in-generalized-app by (metis length-map)
fix v ′ and p ′

assume v ′ ∈ free-vars (λQ? vs A) and p ′ ∈ positions G and is-free-at t p ′ G
have v ′ /∈ binders-at G ?pt

proof −
have free-vars (λQ? vs A) = free-vars A − lset vs

by (fact free-vars-of-generalized-abs)
also from assms(2 ,3 ) have . . . ⊆ free-vars A − (binders-at C p ∩ free-vars A)

using capture-exposed-vars-at-alt-def and is-subform-implies-in-positions by fastforce
also have . . . = free-vars A − (binders-at G p ∩ free-vars A)

using assms(2 ,4 ) is-replacement-at-binders is-subform-implies-in-positions by blast
finally have free-vars (λQ? vs A) ⊆ free-vars A − (binders-at G p ∩ free-vars A) .
moreover have binders-at (�Q? (FVar t) (map FVar vs)) (replicate (length vs) «) = {}

by (induction vs rule: rev-induct) simp-all
with assms(4 ) have binders-at G ?pt = binders-at G p

using binders-at-concat and is-replacement-at-minimal-change(1 ) by blast
ultimately show ?thesis

using ‹v ′ ∈ free-vars (λQ? vs A)› by blast
qed
moreover have p ′ = ?pt

by
(

fact prop-5239-aux-3
[OF assms(1 ,4 ) ‹is-free-at t p ′ G›[unfolded is-free-at-def , THEN conjunct1 ]]

)
ultimately show ¬ in-scope-of-abs v ′ p ′ G

using binders-at-alt-def [OF ‹p ′ ∈ positions G›] and in-scope-of-abs-alt-def by auto
qed

proposition prop-5239 :
assumes is-rule-R-app p D C (A =α B)
and lset vs =
{(x, β) | x β p ′ E . strict-prefix p ′ p ∧ λxβ . E �p ′ C ∧ (x, β) ∈ free-vars (A =α B)}

shows ` ∀Q
? vs (A =α B) ⊃Q (C ≡Q D)

proof −
let ?γ = foldr (→) (map var-type vs) α
obtain t where (t, ?γ) /∈ lset vs ∪ vars {A,B,C ,D}

using fresh-var-existence and vars-form-set-finiteness
by (metis List.finite-set finite.simps finite-UnI )

from assms(1 ) have A ∈ wffsα and B ∈ wffsα and A �p C
using wffs-from-equality[OF equality-wff ] by simp-all

from assms(1 ) have C ∈ wffso and D ∈ wffso
using replacement-preserves-typing by fastforce+

have �Q? t?γ (map FVar vs) ∈ wffsα
using generalized-app-wff [where As = map FVar vs and ts = map var-type vs]
by (metis eq-snd-iff length-map nth-map wffs-of-type-intros(1 ))

from assms(1 ) have p ∈ positions C
using is-subform-implies-in-positions by fastforce

then obtain G where C 〈|p ← (�Q? t?γ (map FVar vs))|〉 � G
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using is-replacement-at-existence by blast
with ‹A �p C › and ‹�Q? t?γ (map FVar vs) ∈ wffsα› have G ∈ wffso

using ‹A ∈ wffsα› and ‹C ∈ wffso› and replacement-preserves-typing by blast
let ?ϑ = {(h, ?γ→o) � λt?γ . G, (x, ?γ) � λQ? vs A, (y, ?γ) � λQ? vs B}

and ?A = (x?γ =?γ y?γ) ⊃Q (h?γ→o � x?γ ≡Q h?γ→o � y?γ)
have ` ?A

by (fact axiom-is-derivable-from-no-hyps[OF axiom-2 ])
moreover have λt?γ . G ∈ wffs?γ→o and λQ? vs A ∈ wffs?γ and λQ? vs B ∈ wffs?γ

by (blast intro: ‹G ∈ wffso› ‹A ∈ wffsα› ‹B ∈ wffsα›)+
then have is-substitution ?ϑ

by simp
moreover have
∀ v ∈ fmdom ′ ?ϑ. var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v ?A
by
(
(

code-simp, unfold atomize-conj[symmetric], simp,
use is-free-for-in-equality is-free-for-in-equivalence is-free-for-in-imp is-free-for-in-var
is-free-for-to-app in presburger

)+,
blast

)
moreover have ?ϑ 6= {$$}

by simp
ultimately have ` S ?ϑ ?A

by (rule Sub)
moreover have

S ?ϑ ?A = (λQ? vs A =?γ λ
Q

? vs B) ⊃Q ((λt?γ . G) � (λQ? vs A) ≡Q (λt?γ . G) � (λQ? vs B))
by simp

ultimately have §1 :
` (λQ? vs A =?γ λ

Q
? vs B) ⊃Q ((λt?γ . G) � (λQ? vs A) ≡Q (λt?γ . G) � (λQ? vs B))

by (simp only:)
then have §2 : ` (∀Q

? vs (A =α B)) ⊃Q ((λt?γ . G) � (λQ? vs A) ≡Q (λt?γ . G) � (λQ? vs B))

proof (cases vs = [])
case True
with §1 show ?thesis

by simp
next

case False
from §1 and prop-5238 [OF False ‹A ∈ wffsα› ‹B ∈ wffsα›] show ?thesis

unfolding equivalence-def by (rule rule-R[where p = [«,»]]) force+
qed
moreover have ` (λt?γ . G) � (λQ? vs A) =o C and ` (λt?γ . G) � (λQ? vs B) =o D
proof −

from assms(1 ) have B �p D
using is-replacement-at-minimal-change(1 ) by force

from assms(1 ) have D〈|p ← (�Q? t?γ (map FVar vs))|〉 � G
using ‹C 〈|p ← (�Q? t?γ (map FVar vs))|〉 � G› and replacement-override
by (meson is-rule-R-app-def )
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from ‹B �p D› have p ∈ positions D
using is-subform-implies-in-positions by auto

from assms(1 ) have binders-at D p = binders-at C p
using is-replacement-at-binders by fastforce

then have binders-at D p ∩ free-vars B = binders-at C p ∩ free-vars B
by simp

with assms(2 )
[

folded capture-exposed-vars-at-def ,
unfolded capture-exposed-vars-at-alt-def [OF ‹p ∈ positions C ›]

] have lset vs ⊇ capture-exposed-vars-at p D B
unfolding capture-exposed-vars-at-alt-def [OF ‹p ∈ positions D›] by auto

have is-free-for (λQ? vs A) (t, ?γ) G and is-free-for (λQ? vs B) (t, ?γ) G
proof −

have (t, ?γ) /∈ lset vs ∪ vars {A, C} and (t, ?γ) /∈ lset vs ∪ vars {B, D}
using ‹(t, ?γ) /∈ lset vs ∪ vars {A, B, C , D}› by simp-all

moreover from assms(2 ) have
lset vs ⊇ capture-exposed-vars-at p C A and lset vs ⊇ capture-exposed-vars-at p D B
by fastforce fact

ultimately show is-free-for (λQ? vs A) (t, ?γ) G and is-free-for (λQ? vs B) (t, ?γ) G
using prop-5239-aux-4 and ‹B �p D› and ‹A �p C › and ‹C 〈|p ← (�Q? t?γ (map FVar vs))|〉

� G›
and ‹D〈|p ← (�Q? t?γ (map FVar vs))|〉 � G› by meson+

qed
then have ` (λt?γ . G) � (λQ? vs A) =o S {(t, ?γ) � λQ? vs A} G

and ` (λt?γ . G) � (λQ? vs B) =o S {(t, ?γ) � λQ? vs B} G
using prop-5207 [OF ‹λQ? vs A ∈ wffs?γ› ‹G ∈ wffso›]
and prop-5207 [OF ‹λQ? vs B ∈ wffs?γ› ‹G ∈ wffso›] by auto

moreover obtain G ′
1 and G ′

2

where C 〈|p ← (�Q? (λQ? vs A) (map FVar vs))|〉 � G ′
1

and D〈|p ← (�Q? (λQ? vs B) (map FVar vs))|〉 � G ′
2

using is-replacement-at-existence[OF ‹p ∈ positions C ›]
and is-replacement-at-existence[OF ‹p ∈ positions D›] by metis

then have S {(t, ?γ) � λQ? vs A} G = G ′
1 and S {(t, ?γ) � λQ? vs B} G = G ′

2

proof −
have (t, ?γ) /∈ lset vs ∪ vars C and (t, ?γ) /∈ lset vs ∪ vars D

using ‹(t, ?γ) /∈ lset vs ∪ vars {A, B, C , D}› by simp-all
then show S {(t, ?γ) � λQ? vs A} G = G ′

1 and S {(t, ?γ) � λQ? vs B} G = G ′
2

using ‹C 〈|p ← (�Q? t?γ (map FVar vs))|〉 � G› and ‹D〈|p ← (�Q? t?γ map FVar vs)|〉 � G›
and ‹C 〈|p ← (�Q? (λQ? vs A) (map FVar vs))|〉 � G ′

1›
and ‹D〈|p ← (�Q? (λQ? vs B) (map FVar vs))|〉 � G ′

2› and prop-5239-aux-2 by blast+
qed
ultimately have ` (λt?γ . G) � (λQ? vs A) =o G ′

1 and ` (λt?γ . G) � (λQ? vs B) =o G ′
2

by (simp-all only:)
moreover
have ` A =α (�Q? (λQ? vs A) (map FVar vs)) and ` B =α (�Q? (λQ? vs B) (map FVar vs))
unfolding atomize-conj proof (cases vs = [])

assume vs = []
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show ` A =α �Q? (λQ? vs A) (map FVar vs) ∧ ` B =α �Q? (λQ? vs B) (map FVar vs)
unfolding ‹vs = []› using prop-5200 and ‹A ∈ wffsα› and ‹B ∈ wffsα› by simp

next
assume vs 6= []
show ` A =α �Q? (λQ? vs A) (map FVar vs) ∧ ` B =α �Q? (λQ? vs B) (map FVar vs)

using Equality-Rules(2 )[OF prop-5208 [OF ‹vs 6= []›]] and ‹A ∈ wffsα› and ‹B ∈ wffsα›
by blast+

qed
with

‹C 〈|p ← (�Q? (λQ? vs A) (map FVar vs))|〉 � G ′
1›

and
‹D〈|p ← (�Q? (λQ? vs B) (map FVar vs))|〉 � G ′

2›
have ` G ′

1 =o C and ` G ′
2 =o D

using Equality-Rules(2 )[OF replacement-derivability] and ‹C ∈ wffso› and ‹D ∈ wffso›
and ‹A �p C › and ‹B �p D› by blast+

ultimately show ` (λt?γ . G) � (λQ? vs A) =o C and ` (λt?γ . G) � (λQ? vs B) =o D
using Equality-Rules(3 ) by blast+

qed
ultimately show ?thesis
proof −

from §2 and ‹` (λt?γ . G) � (λQ? vs A) =o C › have
` (∀Q

? vs (A =α B)) ⊃Q (C ≡Q (λt?γ . G) � (λQ? vs B))

by (rule rule-R[where p = [»,«,»]]) force+
from this and ‹` (λt?γ . G) � (λQ? vs B) =o D› show ?thesis

by (rule rule-R[where p = [»,»]]) force+
qed

qed

end

6.40 Theorem 5240 (Deduction Theorem)
lemma pseudo-rule-R-is-tautologous:

assumes C ∈ wffso and D ∈ wffso and E ∈ wffso and H ∈ wffso
shows is-tautologous (((H ⊃Q C ) ⊃Q ((H ⊃Q E) ⊃Q ((E ⊃Q (C ≡Q D)) ⊃Q (H ⊃Q D)))))

proof −
let ?ϑ = {(x, o) � C , (y, o) � D, (z, o) � E , (h, o) � H}
have

is-tautology
(((ho ⊃Q xo) ⊃Q ((ho ⊃Q zo) ⊃Q ((zo ⊃Q (xo ≡Q yo)) ⊃Q (ho ⊃Q yo)))))

using VB-simps by simp
moreover have is-substitution ?ϑ

using assms by auto
moreover have ∀ (x, α) ∈ fmdom ′ ?ϑ. α = o

by simp
moreover have
((H ⊃Q C ) ⊃Q ((H ⊃Q E) ⊃Q ((E ⊃Q (C ≡Q D)) ⊃Q (H ⊃Q D))))
=
S ?ϑ (((ho ⊃Q xo) ⊃Q ((ho ⊃Q zo) ⊃Q ((zo ⊃Q (xo ≡Q yo)) ⊃Q (ho ⊃Q yo)))))
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by simp
ultimately show ?thesis

by blast
qed

syntax
-HypDer :: form ⇒ form set ⇒ form ⇒ bool (-,- ` - [50 , 50 , 50 ] 50 )

translations
H, H ` P ⇀ H ∪ {H} ` P

theorem thm-5240 :
assumes finite H
and H, H ` P
shows H ` H ⊃Q P

proof −
from ‹H, H ` P› obtain S1 and S2 where ∗: is-hyp-proof-of (H ∪ {H}) S1 S2 P

using hyp-derivability-implies-hyp-proof-existence by blast
have H ` H ⊃Q (S2 ! i ′) if i ′ <length S2 for i ′
using that proof (induction i ′ rule: less-induct)

case (less i ′)
let ?R = S2 ! i ′
from less.prems(1 ) and ∗ have is-hyps H

by fastforce
from less.prems and ∗ have ?R ∈ wffso

using elem-of-proof-is-wffo[simplified] by auto
from less.prems and ∗ have is-hyp-proof-step (H ∪ {H}) S1 S2 i ′

by simp
then consider
(hyp) ?R ∈ H ∪ {H}
| (seq) ?R ∈ lset S1
| (rule-R ′) ∃ j k p. {j, k} ⊆ {0 ..<i ′} ∧ is-rule-R ′-app (H ∪ {H}) p ?R (S2 ! j) (S2 ! k)

by force
then show ?case
proof cases

case hyp
then show ?thesis
proof (cases ?R = H )

case True
with ‹?R ∈ wffso› have is-tautologous (H ⊃Q ?R)

using implication-reflexivity-is-tautologous by (simp only:)
with ‹is-hyps H› show ?thesis

by (rule rule-P(2 ))
next

case False
with hyp have ?R ∈ H

by blast
with ‹is-hyps H› have H ` ?R

by (intro dv-hyp)
moreover from less.prems(1 ) and ∗ have is-tautologous (?R ⊃Q (H ⊃Q ?R))
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using principle-of-simplification-is-tautologous[OF ‹?R ∈ wffso›] by force
moreover from ‹?R ∈ wffso› have is-hyps {?R}

by simp
ultimately show ?thesis

using rule-P(1 )[where G = {?R} and hs = [?R], OF ‹is-hyps H›] by simp
qed

next
case seq
then have S1 6= []

by force
moreover from less.prems(1 ) and ∗ have is-proof S1

by fastforce
moreover from seq obtain i ′′ where i ′′ < length S1 and ?R = S1 ! i ′′

by (metis in-set-conv-nth)
ultimately have is-theorem ?R

using proof-form-is-theorem by fastforce
with ‹is-hyps H› have H ` ?R

by (intro dv-thm)
moreover from ‹?R ∈ wffso› and less.prems(1 ) and ∗ have is-tautologous (?R ⊃Q (H ⊃Q

?R))
using principle-of-simplification-is-tautologous by force

moreover from ‹?R ∈ wffso› have is-hyps {?R}
by simp

ultimately show ?thesis
using rule-P(1 )[where G = {?R} and hs = [?R], OF ‹is-hyps H›] by simp

next
case rule-R ′

then obtain j and k and p
where {j, k} ⊆ {0 ..<i ′} and rule-R ′-app: is-rule-R ′-app (H ∪ {H}) p ?R (S2 ! j) (S2 ! k)
by auto

then obtain A and B and C and α where C = S2 ! j and S2 ! k = A =α B
by fastforce

with ‹{j, k} ⊆ {0 ..<i ′}› have H ` H ⊃Q C and H ` H ⊃Q (A =α B)
using less.IH and less.prems(1 ) by (simp, force)

define S where S ≡
{(x, β) | x β p ′ E . strict-prefix p ′ p ∧ λxβ . E �p ′ C ∧ (x, β) ∈ free-vars (A =α B)}

with ‹C = S2 ! j› and ‹S2 ! k = A =α B› have ∀ v ∈ S . v /∈ free-vars (H ∪ {H})
using rule-R ′-app by fastforce

moreover have S ⊆ free-vars (A =α B)
unfolding S-def by blast

then have finite S
by (fact rev-finite-subset[OF free-vars-form-finiteness])

then obtain vs where lset vs = S
using finite-list by blast

ultimately have H ` H ⊃Q ∀Q
? vs (A =α B)

using generalized-prop-5237 [OF ‹is-hyps H› ‹H ` H ⊃Q (A =α B)›] by simp
moreover have rule-R-app: is-rule-R-app p ?R (S2 ! j) (S2 ! k)

using rule-R ′-app by fastforce
with S-def and ‹lset vs = S› have ` ∀Q

? vs (A =α B) ⊃Q (C ≡Q ?R)
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unfolding ‹C = S2 ! j› and ‹S2 ! k = A =α B› using prop-5239 by (simp only:)
with ‹is-hyps H› have H ` ∀Q

? vs (A =α B) ⊃Q (C ≡Q ?R)
by (elim derivability-implies-hyp-derivability)

ultimately show ?thesis
proof −

let ?A1 = H ⊃Q C and ?A2 = H ⊃Q ∀Q
? vs (A =α B)

and ?A3 = ∀Q
? vs (A =α B) ⊃Q (C ≡Q ?R)

let ?hs = [?A1, ?A2, ?A3]
let ?G = lset ?hs
from ‹H ` ?A1› have H ∈ wffso

using hyp-derivable-form-is-wffso by (blast dest: wffs-from-imp-op(1 ))
moreover from ‹H ` ?A2› have ∀Q

? vs (A =α B) ∈ wffso
using hyp-derivable-form-is-wffso by (blast dest: wffs-from-imp-op(2 ))

moreover from ‹C = S2 ! j› and rule-R-app have C ∈ wffso
using replacement-preserves-typing by fastforce

ultimately have ∗: is-tautologous (?A1 ⊃Q (?A2 ⊃Q (?A3 ⊃Q (H ⊃Q ?R))))
using ‹?R ∈ wffso› by (intro pseudo-rule-R-is-tautologous)

moreover from ‹H ` ?A1› and ‹H ` ?A2› and ‹H ` ?A3› have is-hyps ?G
using hyp-derivable-form-is-wffso by simp

moreover from ‹H ` ?A1› and ‹H ` ?A2› and ‹H ` ?A3› have ∀A ∈ ?G. H ` A
by force

ultimately show ?thesis
using rule-P(1 )[where G = ?G and hs = ?hs and B = H ⊃Q ?R, OF ‹is-hyps H›] by simp

qed
qed

qed
moreover from ‹is-hyp-proof-of (H ∪ {H}) S1 S2 P› have S2 ! (length S2 − 1 ) = P

using last-conv-nth by fastforce
ultimately show ?thesis

using ‹is-hyp-proof-of (H ∪ {H}) S1 S2 P› by force
qed

lemmas Deduction-Theorem = thm-5240

We prove a generalization of the Deduction Theorem, namely that if H ∪ {H 1, . . . ,Hn} ` P
then H ` H 1 ⊃Q (· · · ⊃Q (Hn ⊃Q P) · · · ):
corollary generalized-deduction-theorem:

assumes finite H and finite H ′

and H ∪ H ′ ` P
and lset hs = H ′

shows H ` hs ⊃Q
? P

using assms proof (induction hs arbitrary: H ′ P rule: rev-induct)
case Nil
then show ?case

by simp
next

case (snoc H hs)
from ‹lset (hs @ [H ]) = H ′› have H ∈ H ′

by fastforce
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from ‹lset (hs @ [H ]) = H ′› obtain H ′′ where H ′′ ∪ {H} = H ′ and H ′′ = lset hs
by simp

from ‹H ′′ ∪ {H} = H ′› and ‹H ∪ H ′ ` P› have H ∪ H ′′ ∪ {H} ` P
by fastforce

with ‹finite H› and ‹finite H ′› and ‹H ′′ = lset hs› have H ∪ H ′′ ` H ⊃Q P
using Deduction-Theorem by simp

with ‹H ′′ = lset hs› and ‹finite H› have H ` foldr (⊃Q) hs (H ⊃Q P)
using snoc.IH by fastforce

moreover have (hs @ [H ]) ⊃Q
? P = hs ⊃Q

? (H ⊃Q P)
by simp

ultimately show ?case
by auto

qed

6.41 Proposition 5241
proposition prop-5241 :

assumes is-hyps G
and H ` A and H ⊆ G
shows G ` A

proof (cases H = {})
case True
show ?thesis

by (fact derivability-implies-hyp-derivability[OF assms(2 )[unfolded True] assms(1 )])
next

case False
then obtain hs where lset hs = H and hs 6= []

using hyp-derivability-implies-hyp-proof-existence[OF assms(2 )] unfolding is-hyp-proof-of-def
by (metis empty-set finite-list)

with assms(2 ) have ` hs ⊃Q
? A

using generalized-deduction-theorem by force
moreover from ‹lset hs = H› and assms(1 ,3 ) have G ` H if H ∈ lset hs for H

using that by (blast intro: dv-hyp)
ultimately show ?thesis

using assms(1 ) and generalized-modus-ponens and derivability-implies-hyp-derivability by meson
qed

6.42 Proposition 5242 (Rule of Existential Generalization)
proposition prop-5242 :

assumes A ∈ wffsα and B ∈ wffso
and H ` S {(x, α) � A} B
and is-free-for A (x, α) B
shows H ` ∃ xα. B

proof −
from assms(3 ) have is-hyps H

by (blast dest: is-derivable-from-hyps.cases)
then have H ` ∀ xα. ∼Q B ⊃Q ∼Q S {(x, α) � A} B (is ‹H ` ?C ⊃Q ∼Q ?D›)

using prop-5226 [OF assms(1 ) neg-wff [OF assms(2 )] is-free-for-in-neg[OF assms(4 )]]
unfolding derived-substitution-simps(4 ) using derivability-implies-hyp-derivability by (simp only:)
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moreover have ∗: is-tautologous ((?C ⊃Q ∼Q ?D) ⊃Q (?D ⊃Q ∼Q ?C ))
proof −

have ?C ∈ wffso and ?D ∈ wffso
using assms(2 ) and hyp-derivable-form-is-wffso[OF assms(3 )] by auto

then show ?thesis
by (fact pseudo-modus-tollens-is-tautologous)

qed
moreover from assms(3 ) and ‹H ` ?C ⊃Q ∼Q ?D› have is-hyps {?C ⊃Q ∼Q ?D, ?D}

using hyp-derivable-form-is-wffso by force
ultimately show ?thesis

unfolding exists-def using assms(3 )
and rule-P(1 )
[

where G = {?C ⊃Q ∼Q ?D, ?D} and hs = [?C ⊃Q ∼Q ?D, ?D] and B = ∼Q ?C ,
OF ‹is-hyps H›

]
by simp

qed

lemmas ∃Gen = prop-5242

6.43 Proposition 5243 (Comprehension Theorem)
context
begin

private lemma prop-5243-aux:
assumes �Q? B (map FVar vs) ∈ wffsγ
and B ∈ wffsβ
and k < length vs
shows β 6= var-type (vs ! k)

proof −
from assms(1 ) obtain ts

where length ts = length (map FVar vs)
and ∗: ∀ k < length (map FVar vs). (map FVar vs) ! k ∈ wffsts ! k
and B ∈ wffsfoldr (→) ts γ
using wffs-from-generalized-app by force

have β = foldr (→) ts γ
by (fact wff-has-unique-type[OF assms(2 ) ‹B ∈ wffsfoldr (→) ts γ›])

have ts = map var-type vs
proof −

have length ts = length (map var-type vs)
by (simp add: ‹length ts = length (map FVar vs)›)

moreover have ∀ k < length ts. ts ! k = (map var-type vs) ! k
proof (intro allI impI )

fix k
assume k < length ts
with ∗ have (map FVar vs) ! k ∈ wffsts ! k

by (simp add: ‹length ts = length (map FVar vs)›)
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with ‹k < length ts› and ‹length ts = length (map var-type vs)›
show ts ! k = (map var-type vs) ! k

using surj-pair [of vs ! k] and wff-has-unique-type and wffs-of-type-intros(1 ) by force
qed
ultimately show ?thesis

using list-eq-iff-nth-eq by blast
qed
with ‹β = foldr (→) ts γ› and assms(3 ) show ?thesis

using fun-type-atoms-neq-fun-type by (metis length-map nth-map)
qed

proposition prop-5243 :
assumes B ∈ wffsβ
and γ = foldr (→) (map var-type vs) β
and (u, γ) /∈ free-vars B
shows ` ∃ uγ . ∀Q

? vs ((�Q? uγ (map FVar vs)) =β B)

proof (cases vs = [])
case True
with assms(2 ) have γ = β

by simp
from assms(1 ) have uβ =β B ∈ wffso

by blast
moreover have ` B =β B

by (fact prop-5200 [OF assms(1 )])
then have ` S {(u, β) � B} (uβ =β B)

using free-var-singleton-substitution-neutrality[OF assms(3 )] unfolding ‹γ = β› by simp
moreover from assms(3 )[unfolded ‹γ = β›] have is-free-for B (u, β) (uβ =β B)

by (intro is-free-for-in-equality) (use is-free-at-in-free-vars in auto)
ultimately have ` ∃ uβ . (uβ =β B)

by (rule ∃Gen[OF assms(1 )])
with ‹γ = β› and True show ?thesis

by simp
next

case False
let ?ϑ = {(u, γ) � λQ? vs B}
from assms(2 ) have ∗: (u, γ) 6= v if v ∈ lset vs for v
using that and fun-type-atoms-neq-fun-type by (metis in-set-conv-nth length-map nth-map snd-conv)

from False and assms(1 ) have ` �Q? (λQ? vs B) (map FVar vs) =β B
by (fact prop-5208 )

then have ` ∀Q
? vs (�Q? (λQ? vs B) (map FVar vs) =β B)

using generalized-Gen by simp
moreover
have S ?ϑ (∀Q

? vs ((�Q? uγ (map FVar vs)) =β B)) = ∀Q
? vs (�Q? (λQ? vs B) (map FVar vs) =β

B)
proof −

from ∗ have ∗∗: map (λA. S {(u, γ) � B} A) (map FVar vs) = map FVar vs for B
by (induction vs) fastforce+

from ∗ have
S ?ϑ (∀Q

? vs ((�Q? uγ (map FVar vs)) =β B)) = ∀Q
? vs (S ?ϑ ((�Q? uγ (map FVar vs)) =β

223



B))
using generalized-forall-substitution by force

also have . . . = ∀Q
? vs ((S ?ϑ (�Q? uγ (map FVar vs))) =β S {(u, γ) � λQ? vs B} B)

by simp
also from assms(3 ) have . . . = ∀Q

? vs ((S ?ϑ (�Q? uγ (map FVar vs))) =β B)
using free-var-singleton-substitution-neutrality by simp

also have . . . = ∀Q
? vs (�Q? S ?ϑ (uγ) (map (λA. S ?ϑ A) (map FVar vs)) =β B)

using generalized-app-substitution by simp
also have . . . = ∀Q

? vs (�Q? (λQ? vs B) (map (λA. S ?ϑ A) (map FVar vs)) =β B)
by simp

also from ∗∗ have . . . = ∀Q
? vs (�Q? (λQ? vs B) (map FVar vs) =β B)

by presburger
finally show ?thesis .

qed
ultimately have ` S ?ϑ (∀Q

? vs (�Q? uγ (map FVar vs) =β B))
by simp

moreover from assms(3 ) have is-free-for (λQ? vs B) (u, γ) (∀Q
? vs (�Q? uγ (map FVar vs) =β

B))
by
(intro is-free-for-in-generalized-forall is-free-for-in-equality is-free-for-in-generalized-app)
(use free-vars-of-generalized-abs is-free-at-in-free-vars in ‹fastforce+›)

moreover have λQ? vs B ∈ wffsγ and ∀Q
? vs (�Q? uγ (map FVar vs) =β B) ∈ wffso

proof −
have FVar (vs ! k) ∈ wffsvar-type (vs ! k) if k < length vs for k

using that and surj-pair [of vs ! k] by fastforce
with assms(2 ) have �Q? uγ (map FVar vs) ∈ wffsβ

using generalized-app-wff [where ts = map var-type vs] by force
with assms(1 ) show ∀Q

? vs (�Q? uγ (map FVar vs) =β B) ∈ wffso
by (auto simp only:)

qed (use assms(1 ,2 ) in blast)
ultimately show ?thesis

using ∃Gen by (simp only:)
qed

end

6.44 Proposition 5244 (Existential Rule)

The proof in [2] uses the pseudo-rule Q and 2123 of F . Therefore, we instead base our proof
on the proof of Theorem 170 in [1]:
lemma prop-5244-aux:

assumes A ∈ wffso and B ∈ wffso
and (x, α) /∈ free-vars A
shows ` ∀ xα. (B ⊃Q A) ⊃Q (∃ xα. B ⊃Q A)

proof −
have B ⊃Q A ∈ wffso

using assms by blast
moreover have is-free-for (xα) (x, α) (B ⊃Q A)
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by simp
ultimately have ` ∀ xα. (B ⊃Q A) ⊃Q (B ⊃Q A)

using prop-5226 [where A = xα and B = B ⊃Q A, OF wffs-of-type-intros(1 )]
and identity-singleton-substitution-neutrality by metis

moreover have is-hyps {∀ xα. (B ⊃Q A)}
using ‹B ⊃Q A ∈ wffso› by blast

ultimately have §1 : {∀ xα. (B ⊃Q A)} ` ∀ xα. (B ⊃Q A) ⊃Q (B ⊃Q A)
by (fact derivability-implies-hyp-derivability)

have §2 : {∀ xα. (B ⊃Q A)} ` ∀ xα. (B ⊃Q A)
using ‹B ⊃Q A ∈ wffso› by (blast intro: dv-hyp)

have §3 : {∀ xα. (B ⊃Q A)} ` ∼Q A ⊃Q ∼Q B
proof (intro rule-P(1 )
[where H = {∀ xα. (B ⊃Q A)} and G = {∀ xα. (B ⊃Q A) ⊃Q (B ⊃Q A), ∀ xα. (B ⊃Q A)}])
have is-tautologous ([C ⊃Q (B ⊃Q A), C ] ⊃Q

? (∼Q A ⊃Q ∼Q B)) if C ∈ wffso for C
proof −

let ?ϑ = {(x, o) � A, (y, o) � B, (z, o) � C}
have is-tautology ((zo ⊃Q (yo ⊃Q xo)) ⊃Q (zo ⊃Q (∼Q xo ⊃Q ∼Q yo)))
(is is-tautology ?A)
using VB-simps by (auto simp add: inj-eq)

moreover have is-pwff-substitution ?ϑ
using assms(1 ,2 ) and that by auto

moreover have [C ⊃Q (B ⊃Q A), C ] ⊃Q
? (∼Q A ⊃Q ∼Q B) = S ?ϑ ?A

by simp
ultimately show ?thesis

by blast
qed
then show is-tautologous ([∀ xα. (B ⊃Q A) ⊃Q (B ⊃Q A), ∀ xα. (B ⊃Q A)] ⊃Q

? (∼Q A ⊃Q ∼Q

B))
using ‹B ⊃Q A ∈ wffso› and forall-wff by simp

qed (use §1 §2 ‹is-hyps {∀ xα. (B ⊃Q A)}› hyp-derivable-form-is-wffso[OF §1 ] in force)+
have §4 : {∀ xα. (B ⊃Q A)} ` ∼Q A ⊃Q ∀ xα. ∼Q B

using prop-5237 [OF ‹is-hyps {∀ xα. (B ⊃Q A)}› §3 ] and assms(3 ) by auto
have §5 : {∀ xα. (B ⊃Q A)} ` ∃ xα. B ⊃Q A
unfolding exists-def
proof (intro rule-P(1 )[where H = {∀ xα. (B ⊃Q A)} and G = {∼Q A ⊃Q ∀ xα. ∼Q B}])

have is-tautologous ([∼Q A ⊃Q C ] ⊃Q
? (∼Q C ⊃Q A)) if C ∈ wffso for C

proof −
let ?ϑ = {(x, o) � A, (y, o) � C}
have is-tautology ((∼Q xo ⊃Q yo) ⊃Q (∼Q yo ⊃Q xo)) (is is-tautology ?A)

using VB-simps by (auto simp add: inj-eq)
moreover have is-pwff-substitution ?ϑ

using assms(1 ) and that by auto
moreover have [∼Q A ⊃Q C ] ⊃Q

? (∼Q C ⊃Q A) = S ?ϑ ?A
by simp

ultimately show ?thesis
by blast

qed
then show is-tautologous ([∼Q A ⊃Q ∀ xα. ∼Q B] ⊃Q

? (∼Q ∀ xα. ∼Q B ⊃Q A))
using forall-wff [OF neg-wff [OF assms(2 )]] by (simp only:)
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qed (use §4 ‹is-hyps {∀ xα. (B ⊃Q A)}› hyp-derivable-form-is-wffso[OF §4 ] in force)+
then show ?thesis

using Deduction-Theorem by simp
qed

proposition prop-5244 :
assumes H, B ` A
and (x, α) /∈ free-vars (H ∪ {A})
shows H, ∃ xα. B ` A

proof −
from assms(1 ) have is-hyps H

using hyp-derivability-implies-hyp-proof-existence by force
then have H ` B ⊃Q A

using assms(1 ) and Deduction-Theorem by simp
then have H ` ∀ xα. (B ⊃Q A)

using Gen and assms(2 ) by simp
moreover have A ∈ wffso and B ∈ wffso

by
(

fact hyp-derivable-form-is-wffso[OF assms(1 )],
fact hyp-derivable-form-is-wffso[OF ‹H ` B ⊃Q A›, THEN wffs-from-imp-op(1 )]

)
with assms(2 ) and ‹is-hyps H› have H ` ∀ xα. (B ⊃Q A) ⊃Q (∃ xα. B ⊃Q A)

using prop-5244-aux[THEN derivability-implies-hyp-derivability] by simp
ultimately have H ` ∃ xα. B ⊃Q A

by (rule MP)
then have H, ∃ xα. B ` ∃ xα. B ⊃Q A

using prop-5241 and exists-wff [OF ‹B ∈ wffso›] and ‹is-hyps H›
by (meson Un-subset-iff empty-subsetI finite.simps finite-Un inf-sup-ord(3 ) insert-subsetI )

moreover from ‹is-hyps H› and ‹B ∈ wffso› have is-hyps (H ∪ {∃ xα. B})
by auto

then have H, ∃ xα. B ` ∃ xα. B
using dv-hyp by simp

ultimately show ?thesis
using MP by blast

qed

lemmas ∃ -Rule = prop-5244

6.45 Proposition 5245 (Rule C)
lemma prop-5245-aux:

assumes x 6= y
and (y, α) /∈ free-vars (∃ xα. B)
and is-free-for (yα) (x, α) B
shows is-free-for (xα) (y, α) S {(x, α) � yα} B

using assms(2 ,3 ) proof (induction B)
case (FVar v)
then show ?case
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using surj-pair [of v] by fastforce
next

case (FCon k)
then show ?case

using surj-pair [of k] by fastforce
next

case (FApp B1 B2)
from FApp.prems(1 ) have (y, α) /∈ free-vars (∃ xα. B1) and (y, α) /∈ free-vars (∃ xα. B2)

by force+
moreover from FApp.prems(2 ) have is-free-for (yα) (x, α) B1 and is-free-for (yα) (x, α) B2

using is-free-for-from-app by iprover+
ultimately have is-free-for (xα) (y, α) S {(x, α) � yα} B1

and is-free-for (xα) (y, α) S {(x, α) � yα} B2

using FApp.IH by simp-all
then have is-free-for (xα) (y, α) ((S {(x, α) � yα} B1) � (S {(x, α) � yα} B2))

by (intro is-free-for-to-app)
then show ?case

unfolding singleton-substitution-simps(3 ) .
next

case (FAbs v B ′)
obtain z and β where v = (z, β)

by fastforce
then show ?case
proof (cases v = (x, α))

case True
with FAbs.prems(1 ) have (y, α) /∈ free-vars (∃ xα. B ′)

by simp
moreover from assms(1 ) have (y, α) 6= (x, α)

by blast
ultimately have (y, α) /∈ free-vars B ′

using FAbs.prems(1 ) by simp
with ‹(y, α) 6= (x, α)› have (y, α) /∈ free-vars (λxα. B ′)

by simp
then have is-free-for (xα) (y, α) (λxα. B ′)

unfolding is-free-for-def using is-free-at-in-free-vars by blast
then have is-free-for (xα) (y, α) S {(x, α) � yα} (λxα. B ′)

using singleton-substitution-simps(4 ) by presburger
then show ?thesis

unfolding True .
next

case False
from assms(1 ) have (y, α) 6= (x, α)

by blast
with FAbs.prems(1 ) have ∗: (y, α) /∈ free-vars (∃ xα. (λzβ . B ′))

using ‹v = (z, β)› by fastforce
then show ?thesis
proof (cases (y, α) 6= v)

case True
from True[unfolded ‹v = (z, β)›] and ∗ have (y, α) /∈ free-vars (∃ xα. B ′)
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by simp
moreover from False[unfolded ‹v = (z, β)›] have is-free-for (yα) (x, α) B ′

using is-free-for-from-abs[OF FAbs.prems(2 )[unfolded ‹v = (z, β)›]] by blast
ultimately have is-free-for (xα) (y, α) (S {(x, α) � yα} B ′)

by (fact FAbs.IH )
then have is-free-for (xα) (y, α) (λzβ . (S {(x, α) � yα} B ′))

using False[unfolded ‹v = (z, β)›] by (intro is-free-for-to-abs, fastforce+)
then show ?thesis

unfolding singleton-substitution-simps(4 ) and ‹v = (z, β)› using ‹(z, β) 6= (x, α)› by auto
next

case False
then have v = (y, α)

by simp
have is-free-for (xα) (y, α) (λyα. S {(x, α) � yα} B ′)
proof−

have (y, α) /∈ free-vars (λyα. S {(x, α) � yα} B ′)
by simp

then show ?thesis
using is-free-at-in-free-vars by blast

qed
with‹v = (y, α)› and ‹(y, α) 6= (x, α)› show ?thesis
using singleton-substitution-simps(4 ) by presburger

qed
qed

qed

proposition prop-5245 :
assumes H ` ∃ xα. B
and H, S {(x, α) � yα} B ` A
and is-free-for (yα) (x, α) B
and (y, α) /∈ free-vars (H ∪ {∃ xα. B, A})
shows H ` A

proof −
from assms(1 ) have is-hyps H

by (blast elim: is-derivable-from-hyps.cases)
from assms(2 ,4 ) have H, ∃ yα. S {(x, α) � yα} B ` A

using ∃ -Rule by simp
then have ∗: H ` (∃ yα. S {(x, α) � yα} B) ⊃Q A (is ‹- ` ?F›)

using Deduction-Theorem and ‹is-hyps H› by blast
then have H ` ∃ xα. B ⊃Q A
proof (cases x = y)

case True
with ∗ show ?thesis

using identity-singleton-substitution-neutrality by force
next

case False
from assms(4 ) have (y, α) /∈ free-vars (∃ xα. B)

using free-vars-in-all-vars by auto
have ∼Q S {(x, α) � yα} B ∈ wffso
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by
(

fact hyp-derivable-form-is-wffso
[OF ∗, THEN wffs-from-imp-op(1 ), THEN wffs-from-exists, THEN neg-wff ]

)
moreover from False have (x, α) /∈ free-vars (∼Q S {(x, α) � yα} B)

using free-var-in-renaming-substitution by simp
moreover have is-free-for (xα) (y, α) (∼Q S {(x, α) � yα} B)

by (intro is-free-for-in-neg prop-5245-aux[OF False ‹(y, α) /∈ free-vars (∃ xα. B)› assms(3 )])
moreover from assms(3 ,4 ) have S {(y, α) � xα} S {(x, α) � yα} B = B

using identity-singleton-substitution-neutrality and renaming-substitution-composability
by force

ultimately have ` (λyα. ∼Q S {(x, α) � yα} B) =α→o (λxα. ∼Q B)
using α[where A = ∼Q S {(x, α) � yα} B] by (metis derived-substitution-simps(4 ))

then show ?thesis
by (rule rule-RR[OF disjI1 , where p = [«,»,»,»] and C = ?F ]) (use ∗ in force)+

qed
with assms(1 ) show ?thesis

by (rule MP)
qed

lemmas Rule-C = prop-5245

end

7 Semantics
theory Semantics

imports
ZFC-in-HOL.ZFC-Typeclasses
Syntax
Boolean-Algebra

begin

no-notation funcset (infixr → 60 )
notation funcset (infixr 7→ 60 )

abbreviation vfuncset :: V ⇒ V ⇒ V (infixr 7−→ 60 ) where
A 7−→ B ≡ VPi A (λ-. B)

notation app (infixl · 300 )

syntax
-vlambda :: pttrn ⇒ V ⇒ (V ⇒ V ) ⇒ V ((3λ-:- ./ -) [0 , 0 , 3 ] 3 )

translations
λx : A. f 
 CONST VLambda A (λx. f )

lemma vlambda-extensionality:
assumes

∧
x. x ∈ elts A =⇒ f x = g x

229



shows (λx : A. f x) = (λx : A. g x)
unfolding VLambda-def using assms by auto

7.1 Frames
locale frame =

fixes D :: type ⇒ V
assumes truth-values-domain-def : D o = �
and function-domain-def : ∀α β. D (α→β) ≤ D α 7−→ D β
and domain-nonemptiness: ∀α. D α 6= 0

begin

lemma function-domainD:
assumes f ∈ elts (D (α→β))
shows f ∈ elts (D α 7−→ D β)
using assms and function-domain-def by blast

lemma vlambda-from-function-domain:
assumes f ∈ elts (D (α→β))
obtains b where f = (λx : D α. b x) and ∀ x ∈ elts (D α). b x ∈ elts (D β)
using function-domainD[OF assms] by (metis VPi-D eta)

lemma app-is-domain-respecting:
assumes f ∈ elts (D (α→β)) and x ∈ elts (D α)
shows f · x ∈ elts (D β)
by (fact VPi-D[OF function-domainD[OF assms(1 )] assms(2 )])

One-element function on D α:
definition one-element-function :: V ⇒ type ⇒ V ({-}- [901 , 0 ] 900 ) where
[simp]: {x}α = (λy : D α. bool-to-V (y = x))

lemma one-element-function-is-domain-respecting:
shows {x}α ∈ elts (D α 7−→ D o)
unfolding one-element-function-def and truth-values-domain-def by (intro VPi-I ) (simp, metis)

lemma one-element-function-simps:
shows x ∈ elts (D α) =⇒ {x}α · x = T
and [[{x, y} ⊆ elts (D α); y 6= x]] =⇒ {x}α · y = F
by simp-all

lemma one-element-function-injectivity:
assumes {x, x ′} ⊆ elts (D i) and {x}i = {x ′}i
shows x = x ′

using assms(1 ) and VLambda-eq-D2 [OF assms(2 )[unfolded one-element-function-def ]]
and injD[OF bool-to-V-injectivity] by blast

lemma one-element-function-uniqueness:
assumes x ∈ elts (D i)
shows (SOME x ′. x ′ ∈ elts (D i) ∧ {x}i = {x ′}i) = x
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by (auto simp add: assms one-element-function-injectivity)

Identity relation on D α:
definition identity-relation :: type ⇒ V (q- [0 ] 100 ) where
[simp]: qα = (λx : D α. {x}α)

lemma identity-relation-is-domain-respecting:
shows qα ∈ elts (D α 7−→ D α 7−→ D o)
using VPi-I and one-element-function-is-domain-respecting by simp

lemma q-is-equality:
assumes {x, y} ⊆ elts (D α)
shows (qα) · x · y = T ←→ x = y
unfolding identity-relation-def
using assms and injD[OF bool-to-V-injectivity] by fastforce

Unique member selector:
definition is-unique-member-selector :: V ⇒ bool where
[iff ]: is-unique-member-selector f ←→ (∀ x ∈ elts (D i). f · {x}i = x)

Assignment:
definition is-assignment :: (var ⇒ V ) ⇒ bool where
[iff ]: is-assignment ϕ ←→ (∀ x α. ϕ (x, α) ∈ elts (D α))

end

abbreviation one-element-function-in ({-}-- [901 , 0 , 0 ] 900 ) where
{x}αD ≡ frame.one-element-function D x α

abbreviation identity-relation-in (q-- [0 , 0 ] 100 ) where
qαD ≡ frame.identity-relation D α

ψ is a “v-variant” of ϕ if ψ is an assignment that agrees with ϕ except possibly on v:
definition is-variant-of :: (var ⇒ V ) ⇒ var ⇒ (var ⇒ V ) ⇒ bool (- ∼- - [51 , 0 , 51 ] 50 ) where
[iff ]: ψ ∼v ϕ ←→ (∀ v ′. v ′ 6= v −→ ψ v ′ = ϕ v ′)

7.2 Pre-models (interpretations)

We use the term “pre-model” instead of “interpretation” since the latter is already a keyword:
locale premodel = frame +

fixes J :: con ⇒ V
assumes Q-denotation: ∀α. J (Q-constant-of-type α) = qα
and ι-denotation: is-unique-member-selector (J iota-constant)
and non-logical-constant-denotation: ∀ c α. ¬ is-logical-constant (c, α) −→ J (c, α) ∈ elts (D α)

begin

Wff denotation function:
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definition is-wff-denotation-function :: ((var ⇒ V ) ⇒ form ⇒ V ) ⇒ bool where
[iff ]: is-wff-denotation-function V ←→
(
∀ϕ. is-assignment ϕ −→
(∀A α. A ∈ wffsα −→ V ϕ A ∈ elts (D α)) ∧ — closure condition, see note in page 186
(∀ x α. V ϕ (xα) = ϕ (x, α)) ∧
(∀ c α. V ϕ ({|c|}α) = J (c, α)) ∧
(∀A B α β. A ∈ wffsβ→α ∧ B ∈ wffsβ −→ V ϕ (A � B) = (V ϕ A) · (V ϕ B)) ∧
(∀ x B α β. B ∈ wffsβ −→ V ϕ (λxα. B) = (λz : D α. V (ϕ((x, α) := z)) B))

)

lemma wff-denotation-function-is-domain-respecting:
assumes is-wff-denotation-function V
and A ∈ wffsα
and is-assignment ϕ
shows V ϕ A ∈ elts (D α)
using assms by force

lemma wff-var-denotation:
assumes is-wff-denotation-function V
and is-assignment ϕ
shows V ϕ (xα) = ϕ (x, α)
using assms by force

lemma wff-Q-denotation:
assumes is-wff-denotation-function V
and is-assignment ϕ
shows V ϕ (Qα) = qα
using assms and Q-denotation by force

lemma wff-iota-denotation:
assumes is-wff-denotation-function V
and is-assignment ϕ
shows is-unique-member-selector (V ϕ ι)
using assms and ι-denotation by fastforce

lemma wff-non-logical-constant-denotation:
assumes is-wff-denotation-function V
and is-assignment ϕ
and ¬ is-logical-constant (c, α)
shows V ϕ ({|c|}α) = J (c, α)
using assms by auto

lemma wff-app-denotation:
assumes is-wff-denotation-function V
and is-assignment ϕ
and A ∈ wffsβ→α
and B ∈ wffsβ
shows V ϕ (A � B) = V ϕ A · V ϕ B
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using assms by blast

lemma wff-abs-denotation:
assumes is-wff-denotation-function V
and is-assignment ϕ
and B ∈ wffsβ
shows V ϕ (λxα. B) = (λz : D α. V (ϕ((x, α) := z)) B)
using assms unfolding is-wff-denotation-function-def by metis

lemma wff-denotation-function-is-uniquely-determined:
assumes is-wff-denotation-function V
and is-wff-denotation-function V ′

and is-assignment ϕ
and A ∈ wffs
shows V ϕ A = V ′ ϕ A

proof −
obtain α where A ∈ wffsα

using assms(4 ) by blast
then show ?thesis
using assms(3 ) proof (induction A arbitrary: ϕ)

case var-is-wff
with assms(1 ,2 ) show ?case

by auto
next

case con-is-wff
with assms(1 ,2 ) show ?case

by auto
next

case app-is-wff
with assms(1 ,2 ) show ?case

using wff-app-denotation by metis
next

case (abs-is-wff β A α x)
have is-assignment (ϕ((x, α) := z)) if z ∈ elts (D α) for z

using that and abs-is-wff .prems by simp
then have ∗: V (ϕ((x, α) := z)) A = V ′ (ϕ((x, α) := z)) A if z ∈ elts (D α) for z

using abs-is-wff .IH and that by blast
have V ϕ (λxα. A) = (λz : D α. V (ϕ((x, α) := z)) A)

by (fact wff-abs-denotation[OF assms(1 ) abs-is-wff .prems abs-is-wff .hyps])
also have . . . = (λz : D α. V ′ (ϕ((x, α) := z)) A)

using ∗ and vlambda-extensionality by fastforce
also have . . . = V ′ ϕ (λxα. A)

by (fact wff-abs-denotation[OF assms(2 ) abs-is-wff .prems abs-is-wff .hyps, symmetric])
finally show ?case .

qed
qed

end

233



7.3 General models
type-synonym model-structure = (type ⇒ V ) × (con ⇒ V ) × ((var ⇒ V ) ⇒ form ⇒ V )

The assumption in the following locale implies that there must exist a function that is a wff
denotation function for the pre-model, which is a requirement in the definition of general
model in [2]:
locale general-model = premodel +

fixes V :: (var ⇒ V ) ⇒ form ⇒ V
assumes V-is-wff-denotation-function: is-wff-denotation-function V

begin

lemma mixed-beta-conversion:
assumes is-assignment ϕ
and y ∈ elts (D α)
and B ∈ wffsβ
shows V ϕ (λxα. B) · y = V (ϕ((x, α) := y)) B
using wff-abs-denotation[OF V-is-wff-denotation-function assms(1 ,3 )] and beta[OF assms(2 )] by

simp

lemma conj-fun-is-domain-respecting:
assumes is-assignment ϕ
shows V ϕ (∧o→o→o) ∈ elts (D (o→o→o))
using assms and conj-fun-wff and V-is-wff-denotation-function by auto

lemma fully-applied-conj-fun-is-domain-respecting:
assumes is-assignment ϕ
and {x, y} ⊆ elts (D o)
shows V ϕ (∧o→o→o) · x · y ∈ elts (D o)
using assms and conj-fun-is-domain-respecting and app-is-domain-respecting by (meson insert-subset)

lemma imp-fun-denotation-is-domain-respecting:
assumes is-assignment ϕ
shows V ϕ (⊃o→o→o) ∈ elts (D (o→o→o))
using assms and imp-fun-wff and V-is-wff-denotation-function by simp

lemma fully-applied-imp-fun-denotation-is-domain-respecting:
assumes is-assignment ϕ
and {x, y} ⊆ elts (D o)
shows V ϕ (⊃o→o→o) · x · y ∈ elts (D o)
using assms and imp-fun-denotation-is-domain-respecting and app-is-domain-respecting
by (meson insert-subset)

end

abbreviation is-general-model :: model-structure ⇒ bool where
is-general-model M ≡ case M of (D, J , V) ⇒ general-model D J V
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7.4 Standard models
locale standard-model = general-model +

assumes full-function-domain-def : ∀α β. D (α→β) = D α 7−→ D β

abbreviation is-standard-model :: model-structure ⇒ bool where
is-standard-model M ≡ case M of (D, J , V) ⇒ standard-model D J V

lemma standard-model-is-general-model:
assumes is-standard-model M
shows is-general-model M
using assms and standard-model.axioms(1 ) by force

7.5 Validity
abbreviation is-assignment-into-frame (- ; - [51 , 51 ] 50 ) where
ϕ ; D ≡ frame.is-assignment D ϕ

abbreviation is-assignment-into-model (- ;M - [51 , 51 ] 50 ) where
ϕ ;M M ≡ (case M of (D, J , V) ⇒ ϕ ; D)

abbreviation satisfies (- |=- - [50 , 50 , 50 ] 50 ) where
M |=ϕ A ≡ case M of (D, J , V) ⇒ V ϕ A = T

abbreviation is-satisfiable-in where
is-satisfiable-in A M ≡ ∃ϕ. ϕ ;M M ∧ M |=ϕ A

abbreviation is-valid-in (- |= - [50 , 50 ] 50 ) where
M |= A ≡ ∀ϕ. ϕ ;M M −→ M |=ϕ A

abbreviation is-valid-in-the-general-sense (|= - [50 ] 50 ) where
|= A ≡ ∀M. is-general-model M −→ M |= A

abbreviation is-valid-in-the-standard-sense (|=S - [50 ] 50 ) where
|=S A ≡ ∀M. is-standard-model M −→ M |= A

abbreviation is-true-sentence-in where
is-true-sentence-in A M ≡ is-sentence A ∧ M |=undefined A — assignments are not meaningful

abbreviation is-false-sentence-in where
is-false-sentence-in A M ≡ is-sentence A ∧ ¬ M |=undefined A — assignments are not meaningful

abbreviation is-model-for where
is-model-for M G ≡ ∀A ∈ G.M |= A

lemma general-validity-in-standard-validity:
assumes |= A
shows |=S A
using assms and standard-model-is-general-model by blast
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end

8 Soundness
theory Soundness

imports
Elementary-Logic
Semantics

begin

no-notation funcset (infixr → 60 )
notation funcset (infixr 7→ 60 )

8.1 Proposition 5400
proposition (in general-model) prop-5400 :

assumes A ∈ wffsα
and ϕ ; D and ψ ; D
and ∀ v ∈ free-vars A. ϕ v = ψ v
shows V ϕ A = V ψ A

proof −
from assms(1 ) show ?thesis
using assms(2 ,3 ,4 ) proof (induction A arbitrary: ϕ ψ)

case (var-is-wff α x)
have (x, α) ∈ free-vars (xα)

by simp
from assms(1 ) and var-is-wff .prems(1 ) have V ϕ (xα) = ϕ (x, α)

using V-is-wff-denotation-function by fastforce
also from ‹(x, α) ∈ free-vars (xα)› and var-is-wff .prems(3 ) have . . . = ψ (x, α)

by (simp only:)
also from assms(1 ) and var-is-wff .prems(2 ) have . . . = V ψ (xα)

using V-is-wff-denotation-function by fastforce
finally show ?case .

next
case (con-is-wff α c)
from assms(1 ) and con-is-wff .prems(1 ) have V ϕ ({|c|}α) = J (c, α)

using V-is-wff-denotation-function by fastforce
also from assms(1 ) and con-is-wff .prems(2 ) have . . . = V ψ ({|c|}α)

using V-is-wff-denotation-function by fastforce
finally show ?case .

next
case (app-is-wff α β A B)
have free-vars (A � B) = free-vars A ∪ free-vars B

by simp
with app-is-wff .prems(3 )
have ∀ v ∈ free-vars A. ϕ v = ψ v and ∀ v ∈ free-vars B. ϕ v = ψ v

by blast+
with app-is-wff .IH and app-is-wff .prems(1 ,2 ) have V ϕ A = V ψ A and V ϕ B = V ψ B

by blast+
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from assms(1 ) and app-is-wff .prems(1 ) and app-is-wff .hyps have V ϕ (A � B) = V ϕ A · V ϕ B
using V-is-wff-denotation-function by fastforce

also from ‹V ϕ A = V ψ A› and ‹V ϕ B = V ψ B› have . . . = V ψ A · V ψ B
by (simp only:)

also from assms(1 ) and app-is-wff .prems(2 ) and app-is-wff .hyps have . . . = V ψ (A � B)
using V-is-wff-denotation-function by fastforce

finally show ?case .
next

case (abs-is-wff β A α x)
have free-vars (λxα. A) = free-vars A − {(x, α)}

by simp
with abs-is-wff .prems(3 ) have ∀ v ∈ free-vars A. v 6= (x, α)−→ ϕ v = ψ v

by blast
then have ∀ v ∈ free-vars A. (ϕ((x, α) := z)) v = (ψ((x, α) := z)) v if z ∈ elts (D α) for z

by simp
moreover from abs-is-wff .prems(1 ,2 )
have ∀ x ′ α ′. (ϕ((x, α) := z)) (x ′, α ′) ∈ elts (D α ′)

and ∀ x ′ α ′. (ψ((x, α) := z)) (x ′, α ′) ∈ elts (D α ′)
if z ∈ elts (D α) for z
using that by force+

ultimately have V-ϕ-ψ-eq: V (ϕ((x, α) := z)) A = V (ψ((x, α) := z)) A if z ∈ elts (D α) for z
using abs-is-wff .IH and that by simp

from assms(1 ) and abs-is-wff .prems(1 ) and abs-is-wff .hyps
have V ϕ (λxα. A) = (λz : D α. V (ϕ((x, α) := z)) A)

using wff-abs-denotation[OF V-is-wff-denotation-function] by simp
also from V-ϕ-ψ-eq have . . . = (λz : D α. V (ψ((x, α) := z)) A)

by (fact vlambda-extensionality)
also from assms(1 ) and abs-is-wff .hyps have . . . = V ψ (λxα. A)

using wff-abs-denotation[OF V-is-wff-denotation-function abs-is-wff .prems(2 )] by simp
finally show ?case .

qed
qed

corollary (in general-model) closed-wff-is-meaningful-regardless-of-assignment:
assumes is-closed-wff-of-type A α
and ϕ ; D and ψ ; D
shows V ϕ A = V ψ A
using assms and prop-5400 by blast

8.2 Proposition 5401
lemma (in general-model) prop-5401-a:

assumes ϕ ; D
and A ∈ wffsα
and B ∈ wffsβ
shows V ϕ ((λxα. B) � A) = V (ϕ((x, α) := V ϕ A)) B

proof −
from assms(2 ,3 ) have λxα. B ∈ wffsα→β

by blast
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with assms(1 ,2 ) have V ϕ ((λxα. B) � A) = V ϕ (λxα. B) · V ϕ A
using V-is-wff-denotation-function by blast

also from assms(1 ,3 ) have . . . = app (λz : D α. V (ϕ((x, α) := z)) B) (V ϕ A)
using wff-abs-denotation[OF V-is-wff-denotation-function] by simp

also from assms(1 ,2 ) have . . . = V (ϕ((x, α) := V ϕ A)) B
using V-is-wff-denotation-function by auto

finally show ?thesis .
qed

lemma (in general-model) prop-5401-b:
assumes ϕ ; D
and A ∈ wffsα
and B ∈ wffsα
shows V ϕ (A =α B) = T ←→ V ϕ A = V ϕ B

proof −
from assms have {V ϕ A, V ϕ B} ⊆ elts (D α)

using V-is-wff-denotation-function by auto
have V ϕ (A =α B) = V ϕ (Qα � A � B)

by simp
also from assms have . . . = V ϕ (Qα � A) · V ϕ B

using V-is-wff-denotation-function by blast
also from assms have . . . = V ϕ (Qα) · V ϕ A · V ϕ B

using Q-wff and wff-app-denotation[OF V-is-wff-denotation-function] by fastforce
also from assms(1 ) have . . . = (qα) · V ϕ A · V ϕ B

using Q-denotation and V-is-wff-denotation-function by fastforce
also from ‹{V ϕ A, V ϕ B} ⊆ elts (D α)› have . . . = T ←→ V ϕ A = V ϕ B

using q-is-equality by simp
finally show ?thesis .

qed

corollary (in general-model) prop-5401-b ′:
assumes ϕ ; D
and A ∈ wffso
and B ∈ wffso
shows V ϕ (A ≡Q B) = T ←→ V ϕ A = V ϕ B
using assms and prop-5401-b by auto

lemma (in general-model) prop-5401-c:
assumes ϕ ; D
shows V ϕ To = T

proof −
have Qo ∈ wffso→o→o

by blast
moreover have V ϕ To = V ϕ (Qo =o→o→o Qo)

unfolding true-def ..
ultimately have . . . = T ←→ V ϕ (Qo) = V ϕ (Qo)

using prop-5401-b and assms by blast
then show ?thesis

by simp
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qed

lemma (in general-model) prop-5401-d:
assumes ϕ ; D
shows V ϕ Fo = F

proof −
have λxo. To ∈ wffso→o and λxo. xo ∈ wffso→o

by blast+
moreover have V ϕ Fo = V ϕ (λxo. To =o→o λxo. xo)

unfolding false-def ..
ultimately have V ϕ Fo = T ←→ V ϕ (λxo. To) = V ϕ (λxo. xo)

using prop-5401-b and assms by simp
moreover have V ϕ (λxo. To) 6= V ϕ (λxo. xo)
proof −

have V ϕ (λxo. To) = (λz : D o. T)
proof −

from assms have T-denotation: V (ϕ((x, o) := z)) To = T if z ∈ elts (D o) for z
using prop-5401-c and that by simp

from assms have V ϕ (λxo. To) = (λz : D o. V (ϕ((x, o) := z)) To)
using wff-abs-denotation[OF V-is-wff-denotation-function] by blast

also from assms and T-denotation have . . . = (λz : D o. T)
using vlambda-extensionality by fastforce

finally show ?thesis .
qed
moreover have V ϕ (λxo. xo) = (λz : D o. z)
proof −

from assms have x-denotation: V (ϕ((x, o) := z)) (xo) = z if z ∈ elts (D o) for z
using that and V-is-wff-denotation-function by auto

from assms have V ϕ (λxo. xo) = (λz : D o. V (ϕ((x, o) := z)) (xo))
using wff-abs-denotation[OF V-is-wff-denotation-function] by blast

also from x-denotation have . . . = (λz : (D o). z)
using vlambda-extensionality by fastforce

finally show ?thesis .
qed
moreover have (λz : D o. T) 6= (λz : D o. z)
proof −

from assms(1 ) have (λz : D o. T) · F = T
by (simp add: truth-values-domain-def )

moreover from assms(1 ) have (λz : D o. z) · F = F
by (simp add: truth-values-domain-def )

ultimately show ?thesis
by (auto simp add: inj-eq)

qed
ultimately show ?thesis

by simp
qed
moreover from assms have V ϕ Fo ∈ elts (D o)

using false-wff and V-is-wff-denotation-function by fast
ultimately show ?thesis
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using assms(1 ) by (simp add: truth-values-domain-def )
qed

lemma (in general-model) prop-5401-e:
assumes ϕ ; D
and {x, y} ⊆ elts (D o)
shows V ϕ (∧o→o→o) · x · y = (if x = T ∧ y = T then T else F)

proof −
let ?Bleq = λgo→o→o. go→o→o � To � To
let ?Breq = λgo→o→o. go→o→o � xo � yo
let ?Beq = ?Bleq =(o→o→o)→o ?Breq

let ?By = λyo. ?Beq

let ?Bx = λxo. ?By

let ?ϕ ′ = ϕ((x, o) := x, (y, o) := y)
let ?ϕ ′′ = λg. ?ϕ ′((g, o→o→o) := g)
have go→o→o � To ∈ wffso→o

by blast
have go→o→o � To � To ∈ wffso and go→o→o � xo � yo ∈ wffso

by blast+
have ?Bleq ∈ wffs(o→o→o)→o and ?Breq ∈ wffs(o→o→o)→o

by blast+
then have ?Beq ∈ wffso and ?By ∈ wffso→o and ?Bx ∈ wffso→o→o

by blast+
have V ϕ (∧o→o→o) · x · y = V ϕ ?Bx · x · y

by simp
also from assms and ‹?By ∈ wffso→o› have . . . = V (ϕ((x, o) := x)) ?By · y

using mixed-beta-conversion by simp
also from assms and ‹?Beq ∈ wffso› have . . . = V ?ϕ ′ ?Beq

using mixed-beta-conversion by simp
finally have V ϕ (∧o→o→o) · x · y = T ←→ V ?ϕ ′ ?Bleq = V ?ϕ ′ ?Breq

using assms and ‹?Bleq ∈ wffs(o→o→o)→o› and ‹?Breq ∈ wffs(o→o→o)→o› and prop-5401-b
by simp

also have . . . ←→ (λg : D (o→o→o). g · T · T) = (λg : D (o→o→o). g · x · y)
proof −

have leq: V ?ϕ ′ ?Bleq = (λg : D (o→o→o). g · T · T)
and req: V ?ϕ ′ ?Breq = (λg : D (o→o→o). g · x · y)
proof −

from assms(1 ,2 ) have is-assg-ϕ ′′: ?ϕ ′′ g ; D if g ∈ elts (D (o→o→o)) for g
using that by auto

have side-eq-denotation:
V ?ϕ ′ (λgo→o→o. go→o→o � A � B) = (λg : D (o→o→o). g · V (?ϕ ′′ g) A · V (?ϕ ′′ g) B)
if A ∈ wffso and B ∈ wffso for A and B

proof −
from that have go→o→o � A � B ∈ wffso

by blast
have V (?ϕ ′′ g) (go→o→o � A � B) = g · V (?ϕ ′′ g) A · V (?ϕ ′′ g) B

if g ∈ elts (D (o→o→o)) for g
proof −

from ‹A ∈ wffso› have go→o→o � A ∈ wffso→o
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by blast
with that and is-assg-ϕ ′′ and ‹B ∈ wffso› have
V (?ϕ ′′ g) (go→o→o � A � B) = V (?ϕ ′′ g) (go→o→o � A) · V (?ϕ ′′ g) B
using wff-app-denotation[OF V-is-wff-denotation-function] by simp

also from that and ‹A ∈ wffso› and is-assg-ϕ ′′ have
. . . = V (?ϕ ′′ g) (go→o→o) · V (?ϕ ′′ g) A · V (?ϕ ′′ g) B
by (metis V-is-wff-denotation-function wff-app-denotation wffs-of-type-intros(1 ))

finally show ?thesis
using that and is-assg-ϕ ′′ and V-is-wff-denotation-function by auto

qed
moreover from assms have is-assignment ?ϕ ′

by auto
with ‹go→o→o � A � B ∈ wffso› have
V ?ϕ ′ (λgo→o→o. go→o→o � A � B) = (λg : D (o→o→o). V (?ϕ ′′ g) (go→o→o � A � B))
using wff-abs-denotation[OF V-is-wff-denotation-function] by simp

ultimately show ?thesis
using vlambda-extensionality by fastforce

qed
— Proof of leq:
show V ?ϕ ′ ?Bleq = (λg : D (o→o→o). g · T · T)
proof −

have V (?ϕ ′′ g) To = T if g ∈ elts (D (o→o→o)) for g
using that and is-assg-ϕ ′′ and prop-5401-c by simp

then show ?thesis
using side-eq-denotation and true-wff and vlambda-extensionality by fastforce

qed
— Proof of req:
show V ?ϕ ′ ?Breq = (λg : D (o→o→o). g · x · y)
proof −

from is-assg-ϕ ′′ have V (?ϕ ′′ g) (xo) = x and V (?ϕ ′′ g) (yo) = y
if g ∈ elts (D (o→o→o)) for g
using that and V-is-wff-denotation-function by auto

with side-eq-denotation show ?thesis
using wffs-of-type-intros(1 ) and vlambda-extensionality by fastforce

qed
qed
then show ?thesis

by auto
qed
also have . . . ←→ (∀ g ∈ elts (D (o→o→o)). g · T · T = g · x · y)

using vlambda-extensionality and VLambda-eq-D2 by fastforce
finally have and-eqv:
V ϕ (∧o→o→o) · x · y = T ←→ (∀ g ∈ elts (D (o→o→o)). g · T · T = g · x · y)
by blast

then show ?thesis
proof −

from assms(1 ,2 ) have is-assg-1 : ϕ((x, o) := T) ; D
by (simp add: truth-values-domain-def )

then have is-assg-2 : ϕ((x, o) := T, (y, o) := T) ; D
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unfolding is-assignment-def by (metis fun-upd-apply prod.sel(2 ))
from assms consider (a) x = T ∧ y = T | (b) x 6= T | (c) y 6= T

by blast
then show ?thesis
proof cases

case a
then have g · T · T = g · x · y if g ∈ elts (D (o→o→o)) for g

by simp
with a and and-eqv show ?thesis

by simp
next

case b
let ?g-witness = λxo. λyo. xo
have λyo. xo ∈ wffso→o

by blast
then have is-closed-wff-of-type ?g-witness (o→o→o)

by force
moreover from assms have is-assg-ϕ ′: ?ϕ ′ ; D

by simp
ultimately have V ϕ ?g-witness · T · T = V ?ϕ ′ ?g-witness · T · T

using assms(1 ) and closed-wff-is-meaningful-regardless-of-assignment by metis
also from assms and ‹λyo. xo ∈ wffso→o› have
V ?ϕ ′ ?g-witness · T · T = V (?ϕ ′((x, o) := T)) (λyo. xo) · T
using mixed-beta-conversion and truth-values-domain-def by auto

also from assms(1 ) and ‹λyo. xo ∈ wffso→o› and is-assg-1 and calculation have
. . . = V (?ϕ ′((x, o) := T, (y, o) := T)) (xo)
using mixed-beta-conversion and is-assignment-def
by (metis fun-upd-same fun-upd-twist fun-upd-upd wffs-of-type-intros(1 ))

also have . . . = T
using is-assg-2 and V-is-wff-denotation-function by fastforce

finally have V ϕ ?g-witness · T · T = T .
with b have V ϕ ?g-witness · T · T 6= x

by blast
moreover have x = V ϕ ?g-witness · x · y
proof −

from is-assg-ϕ ′ have x = V ?ϕ ′ (xo)
using V-is-wff-denotation-function by auto

also from assms(2 ) and is-assg-ϕ ′ have . . . = V ?ϕ ′ (λyo. xo) · y
using wffs-of-type-intros(1 )[where x = x and α = o]
by (simp add: mixed-beta-conversion V-is-wff-denotation-function)

also from assms(2 ) have . . . = V ?ϕ ′ ?g-witness · x · y
using is-assg-ϕ ′ and ‹λyo. xo ∈ wffso→o›
by (simp add: mixed-beta-conversion fun-upd-twist)

also from assms(1 ,2 ) have . . . = V ϕ ?g-witness · x · y
using is-assg-ϕ ′ and ‹is-closed-wff-of-type ?g-witness (o→o→o)›
and closed-wff-is-meaningful-regardless-of-assignment by metis

finally show ?thesis .
qed
moreover from assms(1 ,2 ) have V ϕ ?g-witness ∈ elts (D (o→o→o))
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using ‹is-closed-wff-of-type ?g-witness (o→o→o)› and V-is-wff-denotation-function by simp
ultimately have ∃ g ∈ elts (D (o→o→o)). g · T · T 6= g · x · y

by auto
moreover from assms have V ϕ (∧o→o→o) · x · y ∈ elts (D o)

by (rule fully-applied-conj-fun-is-domain-respecting)
ultimately have V ϕ (∧o→o→o) · x · y = F

using and-eqv and truth-values-domain-def by fastforce
with b show ?thesis

by simp
next

case c
let ?g-witness = λxo. λyo. yo
have λyo. yo ∈ wffso→o

by blast
then have is-closed-wff-of-type ?g-witness (o→o→o)

by force
moreover from assms(1 ,2 ) have is-assg-ϕ ′: ?ϕ ′ ; D

by simp
ultimately have V ϕ ?g-witness · T · T = V ?ϕ ′ ?g-witness · T · T

using assms(1 ) and closed-wff-is-meaningful-regardless-of-assignment by metis
also from is-assg-1 and is-assg-ϕ ′ have . . . = V (?ϕ ′((x, o) := T)) (λyo. yo) · T

using ‹λyo. yo ∈ wffso→o› and mixed-beta-conversion and truth-values-domain-def by auto
also from assms(1 ) and ‹λyo. yo ∈ wffso→o› and is-assg-1 and calculation have
. . . = V (?ϕ ′((x, o) := T, (y, o) := T)) (yo)
using mixed-beta-conversion and is-assignment-def
by (metis fun-upd-same fun-upd-twist fun-upd-upd wffs-of-type-intros(1 ))

also have . . . = T
using is-assg-2 and V-is-wff-denotation-function by force

finally have V ϕ ?g-witness · T · T = T .
with c have V ϕ ?g-witness · T · T 6= y

by blast
moreover have y = V ϕ ?g-witness · x · y
proof −

from assms(2 ) and is-assg-ϕ ′ have y = V ?ϕ ′ (λyo. yo) · y
using wffs-of-type-intros(1 )[where x = y and α = o]
and V-is-wff-denotation-function and mixed-beta-conversion by auto

also from assms(2 ) and ‹λyo. yo ∈ wffso→o› have . . . = V ?ϕ ′ ?g-witness · x · y
using is-assg-ϕ ′ by (simp add: mixed-beta-conversion fun-upd-twist)

also from assms(1 ,2 ) have . . . = V ϕ ?g-witness · x · y
using is-assg-ϕ ′ and ‹is-closed-wff-of-type ?g-witness (o→o→o)›
and closed-wff-is-meaningful-regardless-of-assignment by metis

finally show ?thesis .
qed
moreover from assms(1 ) have V ϕ ?g-witness ∈ elts (D (o→o→o))

using ‹is-closed-wff-of-type ?g-witness (o→o→o)› and V-is-wff-denotation-function by auto
ultimately have ∃ g ∈ elts (D (o→o→o)). g · T · T 6= g · x · y

by auto
moreover from assms have V ϕ (∧o→o→o) · x · y ∈ elts (D o)

by (rule fully-applied-conj-fun-is-domain-respecting)
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ultimately have V ϕ (∧o→o→o) · x · y = F
using and-eqv and truth-values-domain-def by fastforce

with c show ?thesis
by simp

qed
qed

qed

corollary (in general-model) prop-5401-e ′:
assumes ϕ ; D
and A ∈ wffso and B ∈ wffso
shows V ϕ (A ∧Q B) = V ϕ A ∧ V ϕ B

proof −
from assms have {V ϕ A, V ϕ B} ⊆ elts (D o)

using V-is-wff-denotation-function by simp
from assms(2 ) have ∧o→o→o � A ∈ wffso→o

by blast
have V ϕ (A ∧Q B) = V ϕ (∧o→o→o � A � B)

by simp
also from assms have . . . = V ϕ (∧o→o→o � A) · V ϕ B

using V-is-wff-denotation-function and ‹∧o→o→o � A ∈ wffso→o› by blast
also from assms have . . . = V ϕ (∧o→o→o) · V ϕ A · V ϕ B

using V-is-wff-denotation-function and conj-fun-wff by fastforce
also from assms(1 ,2 ) have . . . = (if V ϕ A = T ∧ V ϕ B = T then T else F)

using ‹{V ϕ A, V ϕ B} ⊆ elts (D o)› and prop-5401-e by simp
also have . . . = V ϕ A ∧ V ϕ B

using truth-values-domain-def and ‹{V ϕ A, V ϕ B} ⊆ elts (D o)› by fastforce
finally show ?thesis .

qed

lemma (in general-model) prop-5401-f :
assumes ϕ ; D
and {x, y} ⊆ elts (D o)
shows V ϕ (⊃o→o→o) · x · y = (if x = T ∧ y = F then F else T)

proof −
let ?ϕ ′ = ϕ((x, o) := x, (y, o) := y)
from assms(2 ) have {x, y} ⊆ elts �

unfolding truth-values-domain-def .
have (xo ≡Q xo ∧Q yo) ∈ wffso

by blast
then have λyo. (xo ≡Q xo ∧Q yo) ∈ wffso→o

by blast
from assms have is-assg-ϕ ′: ?ϕ ′ ; D

by simp
from assms(1 ) have V ?ϕ ′ (xo) = x and V ?ϕ ′ (yo) = y

using is-assg-ϕ ′ and V-is-wff-denotation-function by force+
have V ϕ (⊃o→o→o) · x · y = V ϕ (λxo. λyo. (xo ≡Q xo ∧Q yo)) · x · y

by simp
also from assms have . . . = V (ϕ((x, o) := x)) (λyo. (xo ≡Q xo ∧Q yo)) · y
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using ‹λyo. (xo ≡Q xo ∧Q yo) ∈ wffso→o› and mixed-beta-conversion by simp
also from assms have . . . = V ?ϕ ′ (xo ≡Q xo ∧Q yo)

using mixed-beta-conversion and ‹(xo ≡Q xo ∧Q yo) ∈ wffso› by simp
finally have V ϕ (⊃o→o→o) · x · y = T ←→ V ?ϕ ′ (xo) = V ?ϕ ′ (xo ∧Q yo)

using prop-5401-b ′[OF is-assg-ϕ ′] and conj-op-wff and wffs-of-type-intros(1 ) by simp
also have . . . ←→ x = x ∧ y

unfolding prop-5401-e ′[OF is-assg-ϕ ′ wffs-of-type-intros(1 ) wffs-of-type-intros(1 )]
and ‹V ?ϕ ′ (xo) = x› and ‹V ?ϕ ′ (yo) = y› ..

also have . . . ←→ x = (if x = T ∧ y = T then T else F)
using ‹{x, y} ⊆ elts �› by auto

also have . . . ←→ T = (if x = T ∧ y = F then F else T)
using ‹{x, y} ⊆ elts �› by auto

finally show ?thesis
using assms and fully-applied-imp-fun-denotation-is-domain-respecting and tv-cases
and truth-values-domain-def by metis

qed

corollary (in general-model) prop-5401-f ′:
assumes ϕ ; D
and A ∈ wffso and B ∈ wffso
shows V ϕ (A ⊃Q B) = V ϕ A ⊃ V ϕ B

proof −
from assms have {V ϕ A, V ϕ B} ⊆ elts (D o)

using V-is-wff-denotation-function by simp
from assms(2 ) have ⊃o→o→o � A ∈ wffso→o

by blast
have V ϕ (A ⊃Q B) = V ϕ (⊃o→o→o � A � B)

by simp
also from assms(1 ,3 ) have . . . = V ϕ (⊃o→o→o � A) · V ϕ B

using V-is-wff-denotation-function and ‹⊃o→o→o � A ∈ wffso→o› by blast
also from assms have . . . = V ϕ (⊃o→o→o) · V ϕ A · V ϕ B

using V-is-wff-denotation-function and imp-fun-wff by fastforce
also from assms have . . . = (if V ϕ A = T ∧ V ϕ B = F then F else T)

using ‹{V ϕ A, V ϕ B} ⊆ elts (D o)› and prop-5401-f by simp
also have . . . = V ϕ A ⊃ V ϕ B

using truth-values-domain-def and ‹{V ϕ A, V ϕ B} ⊆ elts (D o)› by auto
finally show ?thesis .

qed

lemma (in general-model) forall-denotation:
assumes ϕ ; D
and A ∈ wffso
shows V ϕ (∀ xα. A) = T ←→ (∀ z ∈ elts (D α). V (ϕ((x, α) := z)) A = T)

proof −
from assms(1 ) have lhs: V ϕ (λxα. To) · z = T if z ∈ elts (D α) for z

using prop-5401-c and mixed-beta-conversion and that and true-wff by simp
from assms have rhs: V ϕ (λxα. A) · z = V (ϕ((x, α) := z)) A if z ∈ elts (D α) for z

using that by (simp add: mixed-beta-conversion)
from assms(2 ) have λxα. To ∈ wffsα→o and λxα. A ∈ wffsα→o
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by auto
have V ϕ (∀ xα. A) = V ϕ (

∏
α � (λxα. A))

unfolding forall-def ..
also have . . . = V ϕ (Qα→o � (λxα. To) � (λxα. A))

unfolding PI-def ..
also have . . . = V ϕ ((λxα. To) =α→o (λxα. A))

unfolding equality-of-type-def ..
finally have V ϕ (∀ xα. A) = V ϕ ((λxα. To) =α→o (λxα. A)) .
moreover from assms(1 ,2 ) have
V ϕ ((λxα. To) =α→o (λxα. A)) = T ←→ V ϕ (λxα. To) = V ϕ (λxα. A)
using ‹λxα. To ∈ wffsα→o› and ‹λxα. A ∈ wffsα→o› and prop-5401-b by blast

moreover
have (V ϕ (λxα. To) = V ϕ (λxα. A)) ←→ (∀ z ∈ elts (D α). V (ϕ((x, α) := z)) A = T)
proof

assume V ϕ (λxα. To) = V ϕ (λxα. A)
with lhs and rhs show ∀ z ∈ elts (D α). V (ϕ((x, α) := z)) A = T

by auto
next

assume ∀ z ∈ elts (D α). V (ϕ((x, α) := z)) A = T
moreover from assms have V ϕ (λxα. To) = (λz : D α. V (ϕ((x, α) := z)) To)

using wff-abs-denotation[OF V-is-wff-denotation-function] by blast
moreover from assms have V ϕ (λxα. A) = (λz : D α. V (ϕ((x, α) := z)) A)

using wff-abs-denotation[OF V-is-wff-denotation-function] by blast
ultimately show V ϕ (λxα. To) = V ϕ (λxα. A)

using lhs and vlambda-extensionality by fastforce
qed
ultimately show ?thesis

by (simp only:)
qed

lemma prop-5401-g:
assumes is-general-model M
and ϕ ;M M
and A ∈ wffso
shows M |=ϕ ∀ xα. A ←→ (∀ψ. ψ ;M M ∧ ψ ∼(x, α) ϕ −→ M |=ψ A)

proof −
obtain D and J and V where M = (D, J , V)

using prod-cases3 by blast
with assms have
M |=ϕ ∀ xα. A
←→
∀ xα. A ∈ wffso ∧ is-general-model (D, J , V) ∧ ϕ ; D ∧ V ϕ (∀ xα. A) = T
by fastforce

also from assms and ‹M = (D, J , V)› have . . . ←→ (∀ z ∈ elts (D α). V (ϕ((x, α) := z)) A =
T)

using general-model.forall-denotation by fastforce
also have . . . ←→ (∀ψ. ψ ; D ∧ ψ ∼(x, α) ϕ −→ M |=ψ A)

proof
assume ∗: ∀ z ∈ elts (D α). V (ϕ((x, α) := z)) A = T
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{
fix ψ
assume ψ ; D and ψ ∼(x, α) ϕ
have V ψ A = T
proof −

have ∃ z ∈ elts (D α). ψ = ϕ((x, α) := z)
proof (rule ccontr)

assume ¬ (∃ z ∈ elts (D α). ψ = ϕ((x, α) := z))
with ‹ψ ∼(x, α) ϕ› have ∀ z ∈ elts (D α). ψ (x, α) 6= z

by fastforce
then have ψ (x, α) /∈ elts (D α)

by blast
moreover from assms(1 ) and ‹M = (D, J , V)› and ‹ψ ; D› have ψ (x, α) ∈ elts (D α)

using general-model-def and premodel-def and frame.is-assignment-def by auto
ultimately show False

by simp
qed
with ∗ show ?thesis

by fastforce
qed
with assms(1 ) and ‹M = (D, J , V)› have M |=ψ A

by simp
}
then show ∀ψ. ψ ; D ∧ ψ ∼(x, α) ϕ −→ M |=ψ A

by blast
next

assume ∗: ∀ψ. ψ ; D ∧ ψ ∼(x, α) ϕ −→ M |=ψ A
show ∀ z ∈ elts (D α). V (ϕ((x, α) := z)) A = T
proof

fix z
assume z ∈ elts (D α)
with assms(1 ,2 ) and ‹M = (D, J , V)› have ϕ((x, α) := z) ; D

using general-model-def and premodel-def and frame.is-assignment-def by auto
moreover have ϕ((x, α) := z) ∼(x, α) ϕ

by simp
ultimately have M |=ϕ((x, α) := z) A

using ∗ by blast
with assms(1 ) and ‹M = (D, J , V)› and ‹ϕ((x, α) := z) ; D› show V (ϕ((x, α) := z)) A =

T
by simp

qed
qed
finally show ?thesis

using ‹M = (D, J , V)›
by simp

qed

lemma (in general-model) axiom-1-validity-aux:
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assumes ϕ ; D
shows V ϕ (go→o � To ∧Q go→o � Fo ≡Q ∀ xo. go→o � xo) = T (is V ϕ (?A ≡Q ?B) = T)

proof −
let ?M = (D, J , V)
from assms have ∗: is-general-model ?M ϕ ;M ?M

using general-model-axioms by blast+
have ?A ≡Q ?B ∈ wffso

using axioms.axiom-1 and axioms-are-wffs-of-type-o by blast
have lhs: V ϕ ?A = ϕ (g, o→o) · T ∧ ϕ (g, o→o) · F
proof −

have go→o � To ∈ wffso and go→o � Fo ∈ wffso
by blast+

with assms have V ϕ ?A = V ϕ (go→o � To) ∧ V ϕ (go→o � Fo)
using prop-5401-e ′ by simp

also from assms have . . . = ϕ (g, o→o) · V ϕ (To) ∧ ϕ (g, o→o) · V ϕ (Fo)
using wff-app-denotation[OF V-is-wff-denotation-function]
and wff-var-denotation[OF V-is-wff-denotation-function]
by (metis false-wff true-wff wffs-of-type-intros(1 ))

finally show ?thesis
using assms and prop-5401-c and prop-5401-d by simp

qed
have V ϕ (?A ≡Q ?B) = T
proof (cases ∀ z ∈ elts (D o). ϕ (g, o→o) · z = T)

case True
with assms have ϕ (g, o→o) · T = T and ϕ (g, o→o) · F = T

using truth-values-domain-def by auto
with lhs have V ϕ ?A = T ∧ T

by (simp only:)
also have . . . = T

by simp
finally have V ϕ ?A = T .
moreover have V ϕ ?B = T
proof −

have go→o � xo ∈ wffso
by blast

moreover
{

fix ψ
assume ψ ; D and ψ ∼(x, o) ϕ
with assms have V ψ (go→o � xo) = V ψ (go→o) · V ψ (xo)

using V-is-wff-denotation-function by blast
also from ‹ψ ; D› have . . . = ψ (g, o→o) · ψ (x, o)

using V-is-wff-denotation-function by auto
also from ‹ψ ∼(x, o) ϕ› have . . . = ϕ (g, o→o) · ψ (x, o)

by simp
also from True and ‹ψ ; D› have . . . = T

by blast
finally have V ψ (go→o � xo) = T .
with assms and ‹go→o � xo ∈ wffso› have ?M |=ψ go→o � xo
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by simp
}
ultimately have ?M |=ϕ ?B

using assms and ∗ and prop-5401-g by auto
with ∗(2 ) show ?thesis

by simp
qed
ultimately show ?thesis

using assms and prop-5401-b ′ and wffs-from-equivalence[OF ‹?A ≡Q ?B ∈ wffso›] by simp
next

case False
then have ∃ z ∈ elts (D o). ϕ (g, o→o) · z 6= T

by blast
moreover from ∗ have ∀ z ∈ elts (D o). ϕ (g, o→o) · z ∈ elts (D o)

using app-is-domain-respecting by blast
ultimately obtain z where z ∈ elts (D o) and ϕ (g, o→o) · z = F

using truth-values-domain-def by auto
define ψ where ψ-def : ψ = ϕ((x, o) := z)
with ∗ and ‹z ∈ elts (D o)› have ψ ; D

by simp
then have V ψ (go→o � xo) = V ψ (go→o) · V ψ (xo)

using V-is-wff-denotation-function by blast
also from ‹ψ ; D› have . . . = ψ (g, o→o) · ψ (x, o)

using V-is-wff-denotation-function by auto
also from ψ-def have . . . = ϕ (g, o→o) · z

by simp
also have . . . = F

unfolding ‹ϕ (g, o→o) · z = F› ..
finally have V ψ (go→o � xo) = F .
with ‹ψ ; D› have ¬ ?M |=ψ go→o � xo

by (auto simp add: inj-eq)
with ‹ψ ; D› and ψ-def have ¬ (∀ψ. ψ ; D ∧ ψ ∼(x, o) ϕ −→ ?M |=ψ go→o � xo)

using fun-upd-other by fastforce
with ‹¬ ?M |=ψ go→o � xo› have ¬ ?M |=ϕ ?B
using prop-5401-g[OF ∗ wffs-from-forall[OF wffs-from-equivalence(2 )[OF ‹?A ≡Q ?B ∈ wffso›]]]
by blast

then have V ϕ (∀ xo. go→o � xo) 6= T
by simp

moreover from assms have V ϕ ?B ∈ elts (D o)
using wffs-from-equivalence[OF ‹?A ≡Q ?B ∈ wffso›] and V-is-wff-denotation-function by auto

ultimately have V ϕ ?B = F
by (simp add: truth-values-domain-def )

moreover have V ϕ (go→o � To ∧Q go→o � Fo) = F
proof −

from ‹z ∈ elts (D o)› and ‹ϕ (g, o→o) · z = F›
have ((ϕ (g, o→o)) · T) = F ∨ ((ϕ (g, o→o)) · F) = F

using truth-values-domain-def by fastforce
moreover from ‹z ∈ elts (D o)› and ‹ϕ (g, o→o) · z = F›

and ‹∀ z ∈ elts (D o). ϕ (g, o→o) · z ∈ elts (D o)›
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have {(ϕ (g, o→o)) · T, (ϕ (g, o→o)) · F} ⊆ elts (D o)
by (simp add: truth-values-domain-def )

ultimately have ((ϕ (g, o→o)) · T) ∧ ((ϕ (g, o→o)) · F) = F
by auto

with lhs show ?thesis
by (simp only:)

qed
ultimately show ?thesis

using assms and prop-5401-b ′ and wffs-from-equivalence[OF ‹?A ≡Q ?B ∈ wffso›] by simp
qed
then show ?thesis .

qed

lemma axiom-1-validity:
shows |= go→o � To ∧Q go→o � Fo ≡Q ∀ xo. go→o � xo (is |= ?A ≡Q ?B)

proof (intro allI impI )
fix M and ϕ
assume ∗: is-general-model M ϕ ;M M
show M |=ϕ ?A ≡Q ?B
proof −

obtain D and J and V where M = (D, J , V)
using prod-cases3 by blast

moreover from ∗ and ‹M = (D, J , V)› have V ϕ (?A ≡Q ?B) = T
using general-model.axiom-1-validity-aux by simp

ultimately show ?thesis
by simp

qed
qed

lemma (in general-model) axiom-2-validity-aux:
assumes ϕ ; D
shows V ϕ ((xα =α yα) ⊃Q (hα→o � xα ≡Q hα→o � yα)) = T (is V ϕ (?A ⊃Q ?B) = T)

proof −
have ?A ⊃Q ?B ∈ wffso

using axioms.axiom-2 and axioms-are-wffs-of-type-o by blast
from ‹?A ⊃Q ?B ∈ wffso› have ?A ∈ wffso and ?B ∈ wffso

using wffs-from-imp-op by blast+
with assms have V ϕ (?A ⊃Q ?B) = V ϕ ?A ⊃ V ϕ ?B

using prop-5401-f ′ by simp
moreover from assms and ‹?A ∈ wffso› and ‹?B ∈ wffso› have {V ϕ ?A, V ϕ ?B} ⊆ elts (D o)

using V-is-wff-denotation-function by simp
then have {V ϕ ?A, V ϕ ?B} ⊆ elts �

by (simp add: truth-values-domain-def )
ultimately have V-imp-T : V ϕ (?A ⊃Q ?B) = T ←→ V ϕ ?A = F ∨ V ϕ ?B = T

by fastforce
then show ?thesis
proof (cases ϕ (x, α) = ϕ (y, α))

case True
from assms and ‹?B ∈ wffso› have V ϕ ?B = T ←→ V ϕ (hα→o � xα) = V ϕ (hα→o � yα)
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using wffs-from-equivalence and prop-5401-b ′ by metis
moreover have V ϕ (hα→o � xα) = V ϕ (hα→o � yα)
proof −

from assms and ‹?B ∈ wffso› have V ϕ (hα→o � xα) = V ϕ (hα→o) · V ϕ (xα)
using V-is-wff-denotation-function by blast

also from assms have . . . = ϕ (h, α→o) · ϕ (x, α)
using V-is-wff-denotation-function by auto

also from True have . . . = ϕ (h, α→o) · ϕ (y, α)
by (simp only:)

also from assms have . . . = V ϕ (hα→o) · V ϕ (yα)
using V-is-wff-denotation-function by auto

also from assms and ‹?B ∈ wffso› have . . . = V ϕ (hα→o � yα)
using wff-app-denotation[OF V-is-wff-denotation-function] by (metis wffs-of-type-intros(1 ))

finally show ?thesis .
qed
ultimately show ?thesis

using V-imp-T by simp
next

case False
from assms have V ϕ ?A = T ←→ V ϕ (xα) = V ϕ (yα)

using prop-5401-b by blast
moreover from False and assms have V ϕ (xα) 6= V ϕ (yα)

using V-is-wff-denotation-function by auto
ultimately have V ϕ ?A = F

using assms and ‹{V ϕ ?A, V ϕ ?B} ⊆ elts �› by simp
then show ?thesis

using V-imp-T by simp
qed

qed

lemma axiom-2-validity:
shows |= (xα =α yα) ⊃Q (hα→o � xα ≡Q hα→o � yα) (is |= ?A ⊃Q ?B)

proof (intro allI impI )
fix M and ϕ
assume ∗: is-general-model M ϕ ;M M
show M |=ϕ ?A ⊃Q ?B
proof −

obtain D and J and V where M = (D, J , V)
using prod-cases3 by blast

moreover from ∗ and ‹M = (D, J , V)› have V ϕ (?A ⊃Q ?B) = T
using general-model.axiom-2-validity-aux by simp

ultimately show ?thesis
by force

qed
qed

lemma (in general-model) axiom-3-validity-aux:
assumes ϕ ; D
shows V ϕ ((fα→β =α→β gα→β) ≡Q ∀ xα. (fα→β � xα =β gα→β � xα)) = T
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(is V ϕ (?A ≡Q ?B) = T)
proof −

let ?M = (D, J , V)
from assms have ∗: is-general-model ?M ϕ ;M ?M

using general-model-axioms by blast+
have B ′-wffo: fα→β � xα =β gα→β � xα ∈ wffso

by blast
have ?A ≡Q ?B ∈ wffso and ?A ∈ wffso and ?B ∈ wffso
proof −

show ?A ≡Q ?B ∈ wffso
using axioms.axiom-3 and axioms-are-wffs-of-type-o
by blast

then show ?A ∈ wffso and ?B ∈ wffso
by (blast dest: wffs-from-equivalence)+

qed
have V ϕ ?A = V ϕ ?B
proof (cases ϕ (f, α→β) = ϕ (g, α→β))

case True
have V ϕ ?A = T
proof −

from assms have V ϕ (fα→β) = ϕ (f, α→β)
using V-is-wff-denotation-function by auto

also from True have . . . = ϕ (g, α→β)
by (simp only:)

also from assms have . . . = V ϕ (gα→β)
using V-is-wff-denotation-function by auto

finally have V ϕ (fα→β) = V ϕ (gα→β) .
with assms show ?thesis

using prop-5401-b by blast
qed
moreover have V ϕ ?B = T
proof −

{
fix ψ
assume ψ ; D and ψ ∼(x, α) ϕ
from assms and ‹ψ ; D› have V ψ (fα→β � xα) = V ψ (fα→β) · V ψ (xα)

using V-is-wff-denotation-function by blast
also from assms and ‹ψ ; D› have . . . = ψ (f, α→β) · ψ (x, α)

using V-is-wff-denotation-function by auto
also from ‹ψ ∼(x, α) ϕ› have . . . = ϕ (f, α→β) · ψ (x, α)

by simp
also from True have . . . = ϕ (g, α→β) · ψ (x, α)

by (simp only:)
also from ‹ψ ∼(x, α) ϕ› have . . . = ψ (g, α→β) · ψ (x, α)

by simp
also from assms and ‹ψ ; D› have . . . = V ψ (gα→β) · V ψ (xα)

using V-is-wff-denotation-function by auto
also from assms and ‹ψ ; D› have . . . = V ψ (gα→β � xα)

using wff-app-denotation[OF V-is-wff-denotation-function] by (metis wffs-of-type-intros(1 ))
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finally have V ψ (fα→β � xα) = V ψ (gα→β � xα) .
with B ′-wffo and assms and ‹ψ ; D› have V ψ (fα→β � xα =β gα→β � xα) = T

using prop-5401-b and wffs-from-equality by blast
with ∗(2 ) have ?M |=ψ fα→β � xα =β gα→β � xα

by simp
}
with ∗ and B ′-wffo have ?M |=ϕ ?B

using prop-5401-g by force
with ∗(2 ) show ?thesis

by auto
qed
ultimately show ?thesis ..

next
case False
from ∗ have ϕ (f, α→β) ∈ elts (D α 7−→ D β) and ϕ (g, α→β) ∈ elts (D α 7−→ D β)

by (simp-all add: function-domainD)
with False obtain z where z ∈ elts (D α) and ϕ (f, α→β) · z 6= ϕ (g, α→β) · z

by (blast dest: fun-ext)
define ψ where ψ = ϕ((x, α) := z)
from ∗ and ‹z ∈ elts (D α)› have ψ ; D and ψ ∼(x, α) ϕ

unfolding ψ-def by fastforce+
have V ψ (fα→β � xα) = ϕ (f , α→β) · z for f
proof −

from ‹ψ ; D› have V ψ (fα→β � xα) = V ψ (fα→β) · V ψ (xα)
using V-is-wff-denotation-function by blast

also from ‹ψ ; D› have . . . = ψ (f , α→β) · ψ (x, α)
using V-is-wff-denotation-function by auto

finally show ?thesis
unfolding ψ-def by simp

qed
then have V ψ (fα→β � xα) = ϕ (f, α→β) · z and V ψ (gα→β � xα) = ϕ (g, α→β) · z

by (simp-all only:)
with ‹ϕ (f, α→β) · z 6= ϕ (g, α→β) · z› have V ψ (fα→β � xα) 6= V ψ (gα→β � xα)

by simp
then have V ψ (fα→β � xα =β gα→β � xα) = F
proof −

from B ′-wffo and ‹ψ ; D› and ∗ have V ψ (fα→β � xα =β gα→β � xα) ∈ elts (D o)
using V-is-wff-denotation-function by auto

moreover from B ′-wffo have {fα→β � xα, gα→β � xα} ⊆ wffsβ
by blast

with ‹ψ ; D› and ‹V ψ (fα→β � xα) 6= V ψ (gα→β � xα)› and B ′-wffo
have V ψ (fα→β � xα =β gα→β � xα) 6= T

using prop-5401-b by simp
ultimately show ?thesis

by (simp add: truth-values-domain-def )
qed
with ‹ψ ; D› have ¬ ?M |=ψ fα→β � xα =β gα→β � xα

by (auto simp add: inj-eq)
with ‹ψ ; D› and ‹ψ ∼(x, α) ϕ›
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have ∃ψ. ψ ; D ∧ ψ ∼(x, α) ϕ ∧ ¬ ?M |=ψ fα→β � xα =β gα→β � xα
by blast

with ∗ and B ′-wffo have ¬ ?M |=ϕ ?B
using prop-5401-g by blast

then have V ϕ ?B = F
proof −

from ‹?B ∈ wffso› and ∗ have V ϕ ?B ∈ elts (D o)
using V-is-wff-denotation-function by auto

with ‹¬ ?M |=ϕ ?B› and ‹?B ∈ wffso› show ?thesis
using truth-values-domain-def by fastforce

qed
moreover have V ϕ (fα→β =α→β gα→β) = F
proof −

from ∗ have V ϕ (fα→β) = ϕ (f, α→β) and V ϕ (gα→β) = ϕ (g, α→β)
using V-is-wff-denotation-function by auto

with False have V ϕ (fα→β) 6= V ϕ (gα→β)
by simp

with ∗ have V ϕ (fα→β =α→β gα→β) 6= T
using prop-5401-b by blast

moreover from ∗ and ‹?A ∈ wffso› have V ϕ (fα→β =α→β gα→β) ∈ elts (D o)
using V-is-wff-denotation-function by auto

ultimately show ?thesis
by (simp add: truth-values-domain-def )

qed
ultimately show ?thesis

by (simp only:)
qed
with ∗ and ‹?A ∈ wffso› and ‹?B ∈ wffso› show ?thesis

using prop-5401-b ′ by simp
qed

lemma axiom-3-validity:
shows |= (fα→β =α→β gα→β) ≡Q ∀ xα. (fα→β � xα =β gα→β � xα) (is |= ?A ≡Q ?B)

proof (intro allI impI )
fix M and ϕ
assume ∗: is-general-model M ϕ ;M M
show M |=ϕ ?A ≡Q ?B
proof −

obtain D and J and V where M = (D, J , V)
using prod-cases3 by blast

moreover from ∗ and ‹M = (D, J , V)› have V ϕ (?A ≡Q ?B) = T
using general-model.axiom-3-validity-aux by simp

ultimately show ?thesis
by simp

qed
qed

lemma (in general-model) axiom-4-1-con-validity-aux:
assumes ϕ ; D
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and A ∈ wffsα
shows V ϕ ((λxα. {|c|}β) � A =β {|c|}β) = T

proof −
from assms(2 ) have (λxα. {|c|}β) � A =β {|c|}β ∈ wffso

using axioms.axiom-4-1-con and axioms-are-wffs-of-type-o by blast
define ψ where ψ = ϕ((x, α) := V ϕ A)
from assms have V ϕ ((λxα. {|c|}β) � A) = V (ϕ((x, α) := V ϕ A)) ({|c|}β)

using prop-5401-a by blast
also have . . . = V ψ ({|c|}β)

unfolding ψ-def ..
also from assms and ψ-def have . . . = V ϕ ({|c|}β)

using V-is-wff-denotation-function by auto
finally have V ϕ ((λxα. {|c|}β) � A) = V ϕ ({|c|}β) .
with assms(1 ) and ‹(λxα. {|c|}β) � A =β {|c|}β ∈ wffso› show ?thesis

using wffs-from-equality(1 ) and prop-5401-b by blast
qed

lemma axiom-4-1-con-validity:
assumes A ∈ wffsα
shows |= (λxα. {|c|}β) � A =β {|c|}β

proof (intro allI impI )
fix M and ϕ
assume ∗: is-general-model M ϕ ;M M
show M |=ϕ (λxα. {|c|}β) � A =β {|c|}β
proof −

obtain D and J and V where M = (D, J , V)
using prod-cases3 by blast

moreover from assms and ∗ and ‹M = (D, J , V)› have V ϕ ((λxα. {|c|}β) � A =β {|c|}β) = T
using general-model.axiom-4-1-con-validity-aux by simp

ultimately show ?thesis
by simp

qed
qed

lemma (in general-model) axiom-4-1-var-validity-aux:
assumes ϕ ; D
and A ∈ wffsα
and (y, β) 6= (x, α)
shows V ϕ ((λxα. yβ) � A =β yβ) = T

proof −
from assms(2 ) have (λxα. yβ) � A =β yβ ∈ wffso

using axioms.axiom-4-1-var and axioms-are-wffs-of-type-o by blast
define ψ where ψ = ϕ((x, α) := V ϕ A)
with assms(1 ,2 ) have V ϕ ((λxα. yβ) � A) = V (ϕ((x, α) := V ϕ A)) (yβ)

using prop-5401-a by blast
also have . . . = V ψ (yβ)

unfolding ψ-def ..
also have . . . = V ϕ (yβ)
proof −
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from assms(1 ,2 ) have V ϕ A ∈ elts (D α)
using V-is-wff-denotation-function by auto

with ψ-def and assms(1 ) have ψ ; D
by simp

moreover have free-vars (yβ) = {(y, β)}
by simp

with ψ-def and assms(3 ) have ∀ v ∈ free-vars (yβ). ϕ v = ψ v
by auto

ultimately show ?thesis
using prop-5400 [OF wffs-of-type-intros(1 ) assms(1 )] by simp

qed
finally have V ϕ ((λxα. yβ) � A) = V ϕ (yβ) .
with ‹(λxα. yβ) � A =β yβ ∈ wffso› show ?thesis

using wffs-from-equality(1 ) and prop-5401-b[OF assms(1 )] by blast
qed

lemma axiom-4-1-var-validity:
assumes A ∈ wffsα
and (y, β) 6= (x, α)
shows |= (λxα. yβ) � A =β yβ

proof (intro allI impI )
fix M and ϕ
assume ∗: is-general-model M ϕ ;M M
show M |=ϕ (λxα. yβ) � A =β yβ
proof −

obtain D and J and V where M = (D, J , V)
using prod-cases3 by blast

moreover from assms and ∗ and ‹M = (D, J , V)› have V ϕ ((λxα. yβ) � A =β yβ) = T
using general-model.axiom-4-1-var-validity-aux by auto

ultimately show ?thesis
by simp

qed
qed

lemma (in general-model) axiom-4-2-validity-aux:
assumes ϕ ; D
and A ∈ wffsα
shows V ϕ ((λxα. xα) � A =α A) = T

proof −
from assms(2 ) have (λxα. xα) � A =α A ∈ wffso

using axioms.axiom-4-2 and axioms-are-wffs-of-type-o by blast
define ψ where ψ = ϕ((x, α) := V ϕ A)
with assms have V ϕ ((λxα. xα) � A) = V ψ (xα)

using prop-5401-a by blast
also from assms and ψ-def have . . . = ψ (x, α)

using V-is-wff-denotation-function by force
also from ψ-def have . . . = V ϕ A

by simp
finally have V ϕ ((λxα. xα) � A) = V ϕ A .
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with assms(1 ) and ‹(λxα. xα) � A =α A ∈ wffso› show ?thesis
using wffs-from-equality and prop-5401-b by meson

qed

lemma axiom-4-2-validity:
assumes A ∈ wffsα
shows |= (λxα. xα) � A =α A

proof (intro allI impI )
fix M and ϕ
assume ∗: is-general-model M ϕ ;M M
show M |=ϕ (λxα. xα) � A =α A
proof −

obtain D and J and V where M = (D, J , V)
using prod-cases3 by blast

moreover from assms and ∗ and ‹M = (D, J , V)› have V ϕ ((λxα. xα) � A =α A) = T
using general-model.axiom-4-2-validity-aux by simp

ultimately show ?thesis
by simp

qed
qed

lemma (in general-model) axiom-4-3-validity-aux:
assumes ϕ ; D
and A ∈ wffsα and B ∈ wffsγ→β and C ∈ wffsγ
shows V ϕ ((λxα. B � C ) � A =β ((λxα. B) � A) � ((λxα. C ) � A)) = T
(is V ϕ (?A =β ?B) = T)

proof −
from assms(2−4 ) have ?A =β ?B ∈ wffso

using axioms.axiom-4-3 and axioms-are-wffs-of-type-o by blast
define ψ where ψ = ϕ((x, α) := V ϕ A)
with assms(1 ,2 ) have ψ ; D

using V-is-wff-denotation-function by auto
from assms and ψ-def have V ϕ ?A = V ψ (B � C )

using prop-5401-a by blast
also from assms(3 ,4 ) and ψ-def and ‹ψ ; D› have . . . = V ψ B · V ψ C

using V-is-wff-denotation-function by blast
also from assms(1−3 ) and ψ-def have . . . = V ϕ ((λxα. B) � A) · V ψ C

using prop-5401-a by simp
also from assms(1 ,2 ,4 ) and ψ-def have . . . = V ϕ ((λxα. B) � A) · V ϕ ((λxα. C ) � A)

using prop-5401-a by simp
also have . . . = V ϕ ?B
proof −

have (λxα. B) � A ∈ wffsγ→β and (λxα. C ) � A ∈ wffsγ
using assms(2−4 ) by blast+

with assms(1 ) show ?thesis
using wff-app-denotation[OF V-is-wff-denotation-function] by simp

qed
finally have V ϕ ?A = V ϕ ?B .
with assms(1 ) and ‹?A =β ?B ∈ wffso› show ?thesis
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using prop-5401-b and wffs-from-equality by meson
qed

lemma axiom-4-3-validity:
assumes A ∈ wffsα and B ∈ wffsγ→β and C ∈ wffsγ
shows |= (λxα. B � C ) � A =β ((λxα. B) � A) � ((λxα. C ) � A) (is |= ?A =β ?B)

proof (intro allI impI )
fix M and ϕ
assume ∗: is-general-model M ϕ ;M M
show M |=ϕ ?A =β ?B
proof −

obtain D and J and V where M = (D, J , V)
using prod-cases3 by blast

moreover from assms and ∗ and ‹M = (D, J , V)› have V ϕ (?A =β ?B) = T
using general-model.axiom-4-3-validity-aux by simp

ultimately show ?thesis
by simp

qed
qed

lemma (in general-model) axiom-4-4-validity-aux:
assumes ϕ ; D
and A ∈ wffsα and B ∈ wffsδ
and (y, γ) /∈ {(x, α)} ∪ vars A
shows V ϕ ((λxα. λyγ . B) � A =γ→δ (λyγ . (λxα. B) � A)) = T
(is V ϕ (?A =γ→δ ?B) = T)

proof −
from assms(2 ,3 ) have ?A =γ→δ ?B ∈ wffso

using axioms.axiom-4-4 and axioms-are-wffs-of-type-o by blast
let ?D = λyγ . B
define ψ where ψ = ϕ((x, α) := V ϕ A)
from assms(1 ,2 ) and ψ-def have ψ ; D

using V-is-wff-denotation-function by simp
{

fix z
assume z ∈ elts (D γ)
define ϕ ′ where ϕ ′ = ϕ((y, γ) := z)
from assms(1 ) and ‹z ∈ elts (D γ)› and ϕ ′-def have ϕ ′ ; D

by simp
moreover from ϕ ′-def and assms(4 ) have ∀ v ∈ free-vars A. ϕ v = ϕ ′ v

using free-vars-in-all-vars by auto
ultimately have V ϕ A = V ϕ ′ A

using assms(1 ,2 ) and prop-5400 by blast
with ψ-def and ϕ ′-def and assms(4 ) have ϕ ′((x, α) := V ϕ ′ A) = ψ((y, γ) := z)

by auto
with ‹ψ ; D› and ‹z ∈ elts (D γ)› and assms(3 ) have V ψ ?D · z = V (ψ((y, γ) := z)) B

by (simp add: mixed-beta-conversion)
also from ‹ϕ ′ ; D› and assms(2 ,3 ) have . . . = V ϕ ′ ((λxα. B) � A)

using prop-5401-a and ‹ϕ ′((x, α) := V ϕ ′ A) = ψ((y, γ) := z)› by simp
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also from ϕ ′-def and assms(1 ) and ‹z ∈ elts (D γ)› and ‹?A =γ→δ ?B ∈ wffso›
have . . . = V ϕ ?B · z

by (metis mixed-beta-conversion wffs-from-abs wffs-from-equality(2 ))
finally have V ψ ?D · z = V ϕ ?B · z .

}
note ∗ = this
then have V ψ ?D = V ϕ ?B
proof −

from ‹ψ ; D› and assms(3 ) have V ψ ?D = (λz : D γ. V (ψ((y, γ) := z)) B)
using wff-abs-denotation[OF V-is-wff-denotation-function] by simp

moreover from assms(1 ) have V ϕ ?B = (λz : D γ. V (ϕ((y, γ) := z)) ((λxα. B) � A))
using wffs-from-abs[OF wffs-from-equality(2 )[OF ‹?A =γ→δ ?B ∈ wffso›]]
and wff-abs-denotation[OF V-is-wff-denotation-function] by meson

ultimately show ?thesis
using vlambda-extensionality and ∗ by fastforce

qed
with assms(1−3 ) and ψ-def have V ϕ ?A = V ϕ ?B

using prop-5401-a and wffs-of-type-intros(4 ) by metis
with assms(1 ) show ?thesis

using prop-5401-b and wffs-from-equality[OF ‹?A =γ→δ ?B ∈ wffso›] by blast
qed

lemma axiom-4-4-validity:
assumes A ∈ wffsα and B ∈ wffsδ
and (y, γ) /∈ {(x, α)} ∪ vars A
shows |= (λxα. λyγ . B) � A =γ→δ (λyγ . (λxα. B) � A) (is |= ?A =γ→δ ?B)

proof (intro allI impI )
fix M and ϕ
assume ∗: is-general-model M ϕ ;M M
show M |=ϕ ?A =γ→δ ?B
proof −

obtain D and J and V where M = (D, J , V)
using prod-cases3 by blast

moreover from assms and ∗ and ‹M = (D, J , V)› have V ϕ (?A =γ→δ ?B) = T
using general-model.axiom-4-4-validity-aux by blast

ultimately show ?thesis
by simp

qed
qed

lemma (in general-model) axiom-4-5-validity-aux:
assumes ϕ ; D
and A ∈ wffsα and B ∈ wffsδ
shows V ϕ ((λxα. λxα. B) � A =α→δ (λxα. B)) = T

proof −
define ψ where ψ = ϕ((x, α) := V ϕ A)
from assms have wff : (λxα. λxα. B) � A =α→δ (λxα. B) ∈ wffso

using axioms.axiom-4-5 and axioms-are-wffs-of-type-o by blast
with assms(1 ,2 ) and ψ-def have V ϕ ((λxα. λxα. B) � A) = V ψ (λxα. B)
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using prop-5401-a and wffs-from-equality(2 ) by blast
also have . . . = V ϕ (λxα. B)
proof −

have (x, α) /∈ free-vars (λxα. B)
by simp

with ψ-def have ∀ v ∈ free-vars (λxα. B). ϕ v = ψ v
by simp

moreover from ψ-def and assms(1 ,2 ) have ψ ; D
using V-is-wff-denotation-function by simp

moreover from assms(2 ,3 ) have (λxα. B) ∈ wffsα→δ
by fastforce

ultimately show ?thesis
using assms(1 ) and prop-5400 by metis

qed
finally have V ϕ ((λxα. λxα. B) � A) = V ϕ (λxα. B) .
with wff and assms(1 ) show ?thesis

using prop-5401-b and wffs-from-equality by meson
qed

lemma axiom-4-5-validity:
assumes A ∈ wffsα and B ∈ wffsδ
shows |= (λxα. λxα. B) � A =α→δ (λxα. B)

proof (intro allI impI )
fix M and ϕ
assume ∗: is-general-model M ϕ ;M M
show M |=ϕ (λxα. λxα. B) � A =α→δ (λxα. B)
proof −

obtain D and J and V where M = (D, J , V)
using prod-cases3 by blast

moreover
from assms and ∗ and ‹M = (D, J , V)› have V ϕ ((λxα. λxα. B) � A =α→δ (λxα. B)) = T

using general-model.axiom-4-5-validity-aux by blast
ultimately show ?thesis

by simp
qed

qed

lemma (in general-model) axiom-5-validity-aux:
assumes ϕ ; D
shows V ϕ (ι � (Qi � yi) =i yi) = T

proof −
have ι � (Qi � yi) =i yi ∈ wffso

using axioms.axiom-5 and axioms-are-wffs-of-type-o by blast
have Qi � yi ∈ wffsi→o

by blast
with assms have V ϕ (ι � (Qi � yi)) = V ϕ ι · V ϕ (Qi � yi)

using V-is-wff-denotation-function by blast
also from assms have . . . = V ϕ ι · (V ϕ (Qi) · V ϕ (yi))

using wff-app-denotation[OF V-is-wff-denotation-function] by (metis Q-wff wffs-of-type-intros(1 ))

260



also from assms have . . . = J (cι, (i→o)→i) · (J (cQ, i→i→o) · V ϕ (yi))
using V-is-wff-denotation-function by auto

also from assms have . . . = J (cι, (i→o)→i) · ((qiD) · V ϕ (yi))
using Q-constant-of-type-def and Q-denotation by simp

also from assms have . . . = J (cι, (i→o)→i) · {V ϕ (yi)}iD
using V-is-wff-denotation-function by auto

finally have V ϕ (ι � (Qi � yi)) = J (cι, (i→o)→i) · {V ϕ (yi)}iD .
moreover from assms have J (cι, (i→o)→i) · {V ϕ (yi)}iD = V ϕ (yi)

using V-is-wff-denotation-function and ι-denotation by force
ultimately have V ϕ (ι � (Qi � yi)) = V ϕ (yi)

by (simp only:)
with assms and ‹Qi � yi ∈ wffsi→o› show ?thesis

using prop-5401-b by blast
qed

lemma axiom-5-validity:
shows |= ι � (Qi � yi) =i yi

proof (intro allI impI )
fix M and ϕ
assume ∗: is-general-model M ϕ ;M M
show M |=ϕ ι � (Qi � yi) =i yi
proof −

obtain D and J and V where M = (D, J , V)
using prod-cases3 by blast

moreover from ∗ and ‹M = (D, J , V)› have V ϕ (ι � (Qi � yi) =i yi) = T
using general-model.axiom-5-validity-aux by simp

ultimately show ?thesis
by simp

qed
qed

lemma axioms-validity:
assumes A ∈ axioms
shows |= A
using assms
and axiom-1-validity
and axiom-2-validity
and axiom-3-validity
and axiom-4-1-con-validity
and axiom-4-1-var-validity
and axiom-4-2-validity
and axiom-4-3-validity
and axiom-4-4-validity
and axiom-4-5-validity
and axiom-5-validity
by cases auto

lemma (in general-model) rule-R-validity-aux:
assumes A ∈ wffsα and B ∈ wffsα
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and ∀ϕ. ϕ ; D −→ V ϕ A = V ϕ B
and C ∈ wffsβ and C ′ ∈ wffsβ
and p ∈ positions C and A �p C and C 〈|p ← B|〉 � C ′

shows ∀ϕ. ϕ ; D −→ V ϕ C = V ϕ C ′

proof −
from assms(8 ,3−5 ,7 ) show ?thesis
proof (induction arbitrary: β)

case pos-found
then show ?case

by simp
next

case (replace-left-app p G B ′ G ′ H )
show ?case
proof (intro allI impI )

fix ϕ
assume ϕ ; D
from ‹G � H ∈ wffsβ› obtain γ where G ∈ wffsγ→β and H ∈ wffsγ

by (rule wffs-from-app)
with ‹G ′ � H ∈ wffsβ› have G ′ ∈ wffsγ→β

by (metis wff-has-unique-type wffs-from-app)
from assms(1 ) and ‹ϕ ; D› and ‹G ∈ wffsγ→β› and ‹H ∈ wffsγ›
have V ϕ (G � H ) = V ϕ G · V ϕ H

using V-is-wff-denotation-function by blast
also from ‹ϕ ; D› and ‹G ∈ wffsγ→β› and ‹G ′ ∈ wffsγ→β› have . . . = V ϕ G ′ · V ϕ H

using replace-left-app.IH and replace-left-app.prems(1 ,4 ) by simp
also from assms(1 ) and ‹ϕ ; D› and ‹G ′ ∈ wffsγ→β› and ‹H ∈ wffsγ›
have . . . = V ϕ (G ′ � H )

using V-is-wff-denotation-function by fastforce
finally show V ϕ (G � H ) = V ϕ (G ′ � H ) .

qed
next

case (replace-right-app p H B ′ H ′ G)
show ?case
proof (intro allI impI )

fix ϕ
assume ϕ ; D
from ‹G � H ∈ wffsβ› obtain γ where G ∈ wffsγ→β and H ∈ wffsγ

by (rule wffs-from-app)
with ‹G � H ′ ∈ wffsβ› have H ′ ∈ wffsγ

using wff-has-unique-type and wffs-from-app by (metis type.inject)
from assms(1 ) and ‹ϕ ; D› and ‹G ∈ wffsγ→β› and ‹H ∈ wffsγ›
have V ϕ (G � H ) = V ϕ G · V ϕ H

using V-is-wff-denotation-function by blast
also from ‹ϕ ; D› and ‹H ∈ wffsγ› and ‹H ′ ∈ wffsγ› have . . . = V ϕ G · V ϕ H ′

using replace-right-app.IH and replace-right-app.prems(1 ,4 ) by force
also from assms(1 ) and ‹ϕ ; D› and ‹G ∈ wffsγ→β› and ‹H ′ ∈ wffsγ›
have . . . = V ϕ (G � H ′)

using V-is-wff-denotation-function by fastforce
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finally show V ϕ (G � H ) = V ϕ (G � H ′) .
qed

next
case (replace-abs p E B ′ E ′ x γ)
show ?case
proof (intro allI impI )

fix ϕ
assume ϕ ; D
define ψ where ψ z = ϕ((x, γ) := z) for z
with ‹ϕ ; D› have ψ-assg: ψ z ; D if z ∈ elts (D γ) for z

by (simp add: that)
from ‹λxγ . E ∈ wffsβ› obtain δ where β = γ→δ and E ∈ wffsδ

by (rule wffs-from-abs)
with ‹λxγ . E ′ ∈ wffsβ› have E ′ ∈ wffsδ

using wffs-from-abs by blast
from assms(1 ) and ‹ϕ ; D› and ‹E ∈ wffsδ› and ψ-def
have V ϕ (λxγ . E) = (λz : D γ. V (ψ z) E)

using wff-abs-denotation[OF V-is-wff-denotation-function] by simp
also have . . . = (λz : D γ. V (ψ z) E ′)
proof (intro vlambda-extensionality)

fix z
assume z ∈ elts (D γ)
from ‹E ∈ wffsδ› and ‹E ′ ∈ wffsδ› have ∀ϕ. ϕ ; D −→ V ϕ E = V ϕ E ′

using replace-abs.prems(1 ,4 ) and replace-abs.IH by simp
with ψ-assg and ‹z ∈ elts (D γ)› show V (ψ z) E = V (ψ z) E ′

by simp
qed
also from assms(1 ) and ‹ϕ ; D› and ‹E ′ ∈ wffsδ› and ψ-def
have . . . = V ϕ (λxγ . E ′)

using wff-abs-denotation[OF V-is-wff-denotation-function] by simp
finally show V ϕ (λxγ . E) = V ϕ (λxγ . E ′) .

qed
qed

qed

lemma rule-R-validity:
assumes C ∈ wffso and C ′ ∈ wffso and E ∈ wffso
and |= C and |= E
and is-rule-R-app p C ′ C E
shows |= C ′

proof (intro allI impI )
fix M and ϕ
assume is-general-model M and ϕ ;M M
show M |=ϕ C ′

proof −
have M |= C ′

proof −
obtain D and J and V where M = (D, J , V)

using prod-cases3 by blast
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from assms(6 ) obtain A and B and α where A ∈ wffsα and B ∈ wffsα and E = A =α B
using wffs-from-equality by (meson is-rule-R-app-def )

note ∗ = ‹is-general-model M› ‹M = (D, J , V)› ‹ϕ ;M M›
have V ϕ ′ C = V ϕ ′ C ′ if ϕ ′ ; D for ϕ ′

proof −
from assms(5 ) and ∗(1 ,2 ) and ‹A ∈ wffsα› and ‹B ∈ wffsα› and ‹E = A =α B› and that
have ∀ϕ ′. ϕ ′ ; D −→V ϕ ′ A = V ϕ ′ B

using general-model.prop-5401-b by blast
moreover
from ‹E = A =α B› and assms(6 ) have p ∈ positions C and A �p C and C 〈|p ← B|〉 � C ′

using is-subform-implies-in-positions by auto
ultimately show ?thesis

using ‹A ∈ wffsα› and ‹B ∈ wffsα› and ‹C ∈ wffso› and assms(2 ) and that and ∗(1 ,2 )
and general-model.rule-R-validity-aux by blast

qed
with assms(4 ) and ∗(1 ,2 ) show ?thesis

by simp
qed
with ‹ϕ ;M M› show ?thesis

by blast
qed

qed

lemma individual-proof-step-validity:
assumes is-proof S and A ∈ lset S
shows |= A

using assms proof (induction length S arbitrary: S A rule: less-induct)
case less
from ‹A ∈ lset S› obtain i ′ where S ! i ′ = A and S 6= [] and i ′ < length S

by (metis empty-iff empty-set in-set-conv-nth)
with ‹is-proof S› have is-proof (take (Suc i ′) S) and take (Suc i ′) S 6= []

using proof-prefix-is-proof [where S1 = take (Suc i ′) S and S2 = drop (Suc i ′) S]
and append-take-drop-id by simp-all

from ‹i ′ < length S› consider (a) i ′ < length S − 1 | (b) i ′ = length S − 1
by fastforce

then show ?case
proof cases

case a
then have length (take (Suc i ′) S) < length S

by simp
with ‹S ! i ′ = A› and ‹take (Suc i ′) S 6= []› have A ∈ lset (take (Suc i ′) S)

by (simp add: take-Suc-conv-app-nth)
with ‹length (take (Suc i ′) S) < length S› and ‹is-proof (take (Suc i ′) S)› show ?thesis

using less(1 ) by blast
next

case b
with ‹S ! i ′ = A› and ‹S 6= []› have last S = A

using last-conv-nth by blast
with ‹is-proof S› and ‹S 6= []› and b have is-proof-step S i ′
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using added-suffix-proof-preservation[where S ′ = []] by simp
then consider
(axiom) S ! i ′ ∈ axioms
| (rule-R) ∃ p j k. {j, k} ⊆ {0 ..<i ′} ∧ is-rule-R-app p (S ! i ′) (S ! j) (S ! k)

by fastforce
then show ?thesis
proof cases

case axiom
with ‹S ! i ′ = A› show ?thesis

by (blast dest: axioms-validity)
next

case rule-R
then obtain p and j and k

where {j, k} ⊆ {0 ..<i ′} and is-rule-R-app p (S ! i ′) (S ! j) (S ! k)
by blast

let ?Sj = take (Suc j) S and ?Sk = take (Suc k) S
obtain Sj ′ and Sk ′ where S = ?Sj @ Sj ′ and S = ?Sk @ Sk ′

by (metis append-take-drop-id)
with ‹is-proof S› have is-proof (?Sj @ Sj ′) and is-proof (?Sk @ Sk ′)

by (simp-all only:)
moreover from ‹S 6= []› have ?Sj 6= [] and ?Sk 6= []

by simp-all
ultimately have is-proof-of ?Sj (last ?Sj) and is-proof-of ?Sk (last ?Sk)

using proof-prefix-is-proof-of-last[where S = ?Sj and S ′ = Sj ′]
and proof-prefix-is-proof-of-last[where S = ?Sk and S ′ = Sk ′]
by fastforce+

moreover
from ‹{j, k} ⊆ {0 ..<i ′}› and b have length ?Sj < length S and length ?Sk < length S

by force+
moreover from calculation(3 ,4 ) have S ! j ∈ lset ?Sj and S ! k ∈ lset ?Sk

by (simp-all add: take-Suc-conv-app-nth)
ultimately have |= S ! j and |= S ! k

using ‹?Sj 6= []› and ‹?Sk 6= []› and less(1 ) unfolding is-proof-of-def by presburger+
moreover have S ! i ′ ∈ wffso and S ! j ∈ wffso and S ! k ∈ wffso

using ‹is-rule-R-app p (S ! i ′) (S ! j) (S ! k)› and replacement-preserves-typing
by force+

ultimately show ?thesis
using ‹is-rule-R-app p (S ! i ′) (S ! j) (S ! k)› and ‹S ! i ′ = A›
and rule-R-validity[where C ′ = A] by blast

qed
qed

qed

lemma semantic-modus-ponens:
assumes is-general-model M
and A ∈ wffso and B ∈ wffso
and M |= A ⊃Q B
and M |= A
shows M |= B
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proof (intro allI impI )
fix ϕ
assume ϕ ;M M
moreover obtain D and J and V where M = (D, J , V)

using prod-cases3 by blast
ultimately have ϕ ; D

by simp
show M |=ϕ B
proof −

from assms(4 ) have V ϕ (A ⊃Q B) = T
using ‹M = (D, J , V)› and ‹ϕ ;M M› by auto

with assms(1−3 ) have V ϕ A ⊃ V ϕ B = T
using ‹M = (D, J , V)› and ‹ϕ ;M M› and general-model.prop-5401-f ′ by simp

moreover from assms(5 ) have V ϕ A = T
using ‹M = (D, J , V)› and ‹ϕ ; D› by auto

moreover from ‹M = (D, J , V)› and assms(1 ) have elts (D o) = elts �
using frame.truth-values-domain-def and general-model-def and premodel-def by fastforce

with assms and ‹M = (D, J , V)› and ‹ϕ ; D› and ‹V ϕ A = T› have {V ϕ A, V ϕ B} ⊆ elts
�

using general-model.V-is-wff-denotation-function
and premodel.wff-denotation-function-is-domain-respecting and general-model.axioms(1 ) by blast

ultimately have V ϕ B = T
by fastforce

with ‹M = (D, J , V)› and assms(1 ) and ‹ϕ ; D› show ?thesis
by simp

qed
qed

lemma generalized-semantic-modus-ponens:
assumes is-general-model M
and lset hs ⊆ wffso
and ∀H ∈ lset hs.M |= H
and P ∈ wffso
and M |= hs ⊃Q

? P
shows M |= P

using assms(2−5 ) proof (induction hs arbitrary: P rule: rev-induct)
case Nil
then show ?case by simp

next
case (snoc H ′ hs)
from ‹M |= (hs @ [H ′]) ⊃Q

? P› have M |= hs ⊃Q
? (H ′ ⊃Q P)

by simp
moreover from ‹∀H ∈ lset (hs @ [H ′]).M |= H › and ‹lset (hs @ [H ′]) ⊆ wffso›
have ∀H ∈ lset hs.M |= H and lset hs ⊆ wffso

by simp-all
moreover from ‹lset (hs @ [H ′]) ⊆ wffso› and ‹P ∈ wffso› have H ′ ⊃Q P ∈ wffso

by auto
ultimately have M |= H ′ ⊃Q P

by (elim snoc.IH )
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moreover from ‹∀H ∈ lset (hs @ [H ′]).M |= H › have M |= H ′

by simp
moreover from ‹H ′ ⊃Q P ∈ wffso› have H ′ ∈ wffso

using wffs-from-imp-op(1 ) by blast
ultimately show ?case

using assms(1 ) and ‹P ∈ wffso› and semantic-modus-ponens by simp
qed

8.3 Proposition 5402(a)
proposition theoremhood-implies-validity:

assumes is-theorem A
shows |= A
using assms and individual-proof-step-validity by force

8.4 Proposition 5402(b)
proposition hyp-derivability-implies-validity:

assumes is-hyps G
and is-model-for M G
and G ` A
and is-general-model M
shows M |= A

proof −
from assms(3 ) have A ∈ wffso

by (fact hyp-derivable-form-is-wffso)
from ‹G ` A› and ‹is-hyps G› obtain H where finite H and H ⊆ G and H ` A

by blast
moreover from ‹finite H› obtain hs where lset hs = H

using finite-list by blast
ultimately have ` hs ⊃Q

? A
using generalized-deduction-theorem by simp

with assms(4 ) have M |= hs ⊃Q
? A

using derivability-from-no-hyps-theoremhood-equivalence and theoremhood-implies-validity
by blast

moreover from ‹H ⊆ G› and assms(2 ) have M |= H if H ∈ H for H
using that by blast

moreover from ‹H ⊆ G› and ‹lset hs = H› and assms(1 ) have lset hs ⊆ wffso
by blast

ultimately show ?thesis
using assms(1 ,4 ) and ‹A ∈ wffso› and ‹lset hs = H› and generalized-semantic-modus-ponens
by auto

qed

8.5 Theorem 5402 (Soundness Theorem)
lemmas thm-5402 = theoremhood-implies-validity hyp-derivability-implies-validity

end
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9 Consistency
theory Consistency

imports
Soundness

begin

definition is-inconsistent-set :: form set ⇒ bool where
[iff ]: is-inconsistent-set G ←→ G ` Fo

definition Q0-is-inconsistent :: bool where
[iff ]: Q0-is-inconsistent ←→ ` Fo

definition is-wffo-consistent-with :: form ⇒ form set ⇒ bool where
[iff ]: is-wffo-consistent-with B G ←→ ¬ is-inconsistent-set (G ∪ {B})

9.1 Existence of a standard model

We construct a standard model in which D i is the set {0}:
primrec singleton-standard-domain-family (DS) where
DS i = 1 — i.e., DS i = ZFC-in-HOL.set {0}
| DS o = �
| DS (α→β) = DS α 7−→ DS β

interpretation singleton-standard-frame: frame DS

proof unfold-locales
{

fix α
have DS α 6= 0
proof (induction α)

case (TFun β γ)
from ‹DS γ 6= 0 › obtain y where y ∈ elts (DS γ)

by fastforce
then have (λz : DS β. y) ∈ elts (DS β 7−→ DS γ)

by (intro VPi-I )
then show ?case

by force
qed simp-all

}
then show ∀α. DS α 6= 0

by (intro allI )
qed simp-all

definition singleton-standard-constant-denotation-function (J S) where
[simp]: J S k =
(

if
∃β. is-Q-constant-of-type k β

then
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let β = type-of-Q-constant k in qβD
S

else
if

is-iota-constant k
then
λz : DS (i→o). 0

else
case k of (c, α) ⇒ SOME z. z ∈ elts (DS α)

)

interpretation singleton-standard-premodel: premodel DS J S

proof (unfold-locales)
show ∀α. J S (Q-constant-of-type α) = qαD

S

by simp
next

show singleton-standard-frame.is-unique-member-selector (J S iota-constant)
unfolding singleton-standard-frame.is-unique-member-selector-def proof

fix x
assume x ∈ elts (DS i)
then have x = 0

by simp
moreover have (λz : DS (i→o). 0 ) · {0}iD

S
= 0

using beta[OF singleton-standard-frame.one-element-function-is-domain-respecting]
unfolding singleton-standard-domain-family.simps(3 ) by blast

ultimately show (J S iota-constant) · {x}iD
S
= x

by fastforce
qed

next
show ∀ c α. ¬ is-logical-constant (c, α) −→ J S (c, α) ∈ elts (DS α)
proof (intro allI impI )

fix c and α
assume ¬ is-logical-constant (c, α)
then have J S (c, α) = (SOME z. z ∈ elts (DS α))

by auto
moreover have ∃ z. z ∈ elts (DS α)

using eq0-iff and singleton-standard-frame.domain-nonemptiness by presburger
then have (SOME z. z ∈ elts (DS α)) ∈ elts (DS α)

using some-in-eq by auto
ultimately show J S (c, α) ∈ elts (DS α)

by auto
qed

qed

fun singleton-standard-wff-denotation-function (VS) where
VS ϕ (xα) = ϕ (x, α)
| VS ϕ ({|c|}α) = J S (c, α)
| VS ϕ (A � B) = (VS ϕ A) · (VS ϕ B)
| VS ϕ (λxα. A) = (λz : DS α. VS (ϕ((x, α) := z)) A)
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lemma singleton-standard-wff-denotation-function-closure:
assumes frame.is-assignment DS ϕ
and A ∈ wffsα
shows VS ϕ A ∈ elts (DS α)

using assms(2 ,1 ) proof (induction A arbitrary: ϕ)
case (var-is-wff α x)
then show ?case

by simp
next

case (con-is-wff α c)
then show ?case
proof (cases (c, α) rule: constant-cases)

case non-logical
then show ?thesis

using singleton-standard-premodel.non-logical-constant-denotation
and singleton-standard-wff-denotation-function.simps(2 ) by presburger

next
case (Q-constant β)
then have VS ϕ ({|c|}α) = qβD

S

by simp
moreover have qβD

S
∈ elts (DS (β→β→o))

using singleton-standard-domain-family.simps(3 )
and singleton-standard-frame.identity-relation-is-domain-respecting by presburger

ultimately show ?thesis
using Q-constant by simp

next
case ι-constant
then have VS ϕ ({|c|}α) = (λz : DS (i→o). 0 )

by simp
moreover have (λz : DS (i→o). 0 ) ∈ elts (DS ((i→o)→i))

by (simp add: VPi-I )
ultimately show ?thesis

using ι-constant by simp
qed

next
case (app-is-wff α β A B)
have VS ϕ (A � B) = (VS ϕ A) · (VS ϕ B)

using singleton-standard-wff-denotation-function.simps(3 ) .
moreover have VS ϕ A ∈ elts (DS (α→β)) and VS ϕ B ∈ elts (DS α)

using app-is-wff .IH and app-is-wff .prems by simp-all
ultimately show ?case

by (simp only: singleton-standard-frame.app-is-domain-respecting)
next

case (abs-is-wff β A α x)
have VS ϕ (λxα. A) = (λz : DS α. VS (ϕ((x, α) := z)) A)

using singleton-standard-wff-denotation-function.simps(4 ) .
moreover have VS (ϕ((x, α) := z)) A ∈ elts (DS β) if z ∈ elts (DS α) for z

using that and abs-is-wff .IH and abs-is-wff .prems by simp
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ultimately show ?case
by (simp add: VPi-I )

qed

interpretation singleton-standard-model: standard-model DS J S VS

proof (unfold-locales)
show singleton-standard-premodel.is-wff-denotation-function VS

by (simp add: singleton-standard-wff-denotation-function-closure)
next

show ∀α β. DS (α→β) = DS α 7−→ DS β
using singleton-standard-domain-family.simps(3 ) by (intro allI )

qed

proposition standard-model-existence:
shows ∃M. is-standard-model M
using singleton-standard-model.standard-model-axioms by auto

9.2 Theorem 5403 (Consistency Theorem)
proposition model-existence-implies-set-consistency:

assumes is-hyps G
and ∃M. is-general-model M ∧ is-model-for M G
shows ¬ is-inconsistent-set G

proof (rule ccontr)
from assms(2 ) obtain D and J and V and M

where M = (D, J , V) and is-model-for M G and is-general-model M by fastforce
assume ¬ ¬ is-inconsistent-set G
then have G ` Fo

by simp
with ‹is-general-model M› have M |= Fo

using thm-5402 (2 )[OF assms(1 ) ‹is-model-for M G›] by simp
then have V ϕ Fo = T if ϕ ; D for ϕ

using that and ‹M = (D, J , V)› by force
moreover have V ϕ Fo = F if ϕ ; D for ϕ

using ‹M = (D, J , V)› and ‹is-general-model M› and that and general-model.prop-5401-d
by simp

ultimately have @ϕ. ϕ ; D
by (auto simp add: inj-eq)

moreover have ∃ϕ. ϕ ; D
proof −
— Since by definition domains are not empty then, by using the Axiom of Choice, we can specify an

assignment ψ that simply chooses some element in the respective domain for each variable. Nonetheless,
as pointed out in Footnote 11, page 19 in [1], it is not necessary to use the Axiom of Choice to show
that assignments exist since some assignments can be described explicitly.

let ?ψ = λv. case v of (-, α) ⇒ SOME z. z ∈ elts (D α)
from ‹M = (D, J , V)› and ‹is-general-model M› have ∀α. elts (D α) 6= {}

using frame.domain-nonemptiness and premodel-def and general-model.axioms(1 ) by auto
with ‹M = (D, J , V)› and ‹is-general-model M› have ?ψ ; D

using frame.is-assignment-def and premodel-def and general-model.axioms(1 )
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by (metis (mono-tags) case-prod-conv some-in-eq)
then show ?thesis

by (intro exI )
qed
ultimately show False ..

qed

proposition Q0-is-consistent:
shows ¬ Q0-is-inconsistent

proof −
have ∃M. is-general-model M ∧ is-model-for M {}

using standard-model-existence and standard-model.axioms(1 ) by blast
then show ?thesis

using model-existence-implies-set-consistency by simp
qed

lemmas thm-5403 = Q0-is-consistent model-existence-implies-set-consistency

proposition principle-of-explosion:
assumes is-hyps G
shows is-inconsistent-set G ←→ (∀A ∈ (wffso). G ` A)

proof
assume is-inconsistent-set G
show ∀A ∈ (wffso). G ` A
proof

fix A
assume A ∈ wffso
from ‹is-inconsistent-set G› have G ` Fo

unfolding is-inconsistent-set-def .
then have G ` ∀ xo. xo

unfolding false-is-forall .
with ‹A ∈ wffso› have G ` S {(x, o) � A} (xo)

using ∀ I by fastforce
then show G ` A

by simp
qed

next
assume ∀A ∈ (wffso). G ` A
then have G ` Fo

using false-wff by (elim bspec)
then show is-inconsistent-set G

unfolding is-inconsistent-set-def .
qed

end
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