
Process Composition

Filip Smola

March 10, 2025

Contents
1 Utility Theorems 2

2 Resource Terms 5
2.1 Resource Term Equivalence 6
2.2 Parallel Parts . 10
2.3 Parallelisation . 13
2.4 Refinement . 15
2.5 Removing Empty Terms From a List 18
2.6 Merging Nested Parallel Terms in a List 20

3 Resource Term Normal Form 22

4 Rewriting Resource Term Normalisation 25
4.1 Rewriting Relation . 26
4.2 Rewriting Bound . 30
4.3 Step . 30

4.3.1 Removing One Empty 31
4.3.2 Merging One Parallel 33
4.3.3 Rewriting Step Function 34

4.4 Normalisation Procedure . 45
4.5 As Abstract Rewriting System 49

4.5.1 Rewriting System Properties 49
4.5.2 NonD Joinability . 51
4.5.3 Executable and Repeatable Joinability 53
4.5.4 Parallel Joinability . 53
4.5.5 Other Helpful Lemmas 58
4.5.6 Equivalent Term Joinability 61

4.6 Term Equivalence as Rewriting Closure 65

5 Direct Resource Term Normalisation 67

6 Comparison of Resource Term Normalisation 75

1

7 Resources 76
7.1 Quotient Type . 76
7.2 Lifting Bounded Natural Functor Structure 77
7.3 Lifting Constructors . 81
7.4 Parallel Product . 85
7.5 Lifting Parallel Parts . 87
7.6 Lifting Parallelisation . 88
7.7 Representative of Parallel Resource 88
7.8 Replicated Resources . 89
7.9 Lifting Resource Refinement 89

8 Process Compositions 90
8.1 Datatype, Input, Output and Validity 90
8.2 Gathering Primitive Actions 94
8.3 Resource Refinement in Processes 95

9 List-based Composition Actions 96
9.1 Progressing Both Non-deterministic Branches 98

10 Primitive Action Substitution 98

11 Useful Notation 101

12 Copyable Resource Elimination 102
12.1 Replacing Copyable Resource Actions 102
12.2 Making Copyable Resource Terms Linear 103
12.3 Final Properties . 109

theory Util
imports Main

begin

1 Utility Theorems

This theory contains general facts that we use in our proof but which do not
depend on our development.

list-all and list-ex are dual
lemma not-list-all:
(¬ list-all P xs) = list-ex (λx. ¬ P x) xs
by (metis Ball-set Bex-set)

lemma not-list-ex:
(¬ list-ex P xs) = list-all (λx. ¬ P x) xs
by (metis Ball-set Bex-set)

A list of length more than one starts with two elements

2

lemma list-obtain-2 :
assumes 1 < length xs
obtains v vb vc where xs = v # vb # vc
using assms by (cases xs rule: remdups-adj.cases) simp-all

Generalise the theorem [[?k < ?l; ?m + ?l = ?k + ?n]] =⇒ ?m < ?n
lemma less-add-eq-less-general:

fixes k l m n :: ′a :: {comm-monoid-add, ordered-cancel-ab-semigroup-add,
linorder}

assumes k < l
and m + l = k + n

shows m < n
using assms by (metis add.commute add-strict-left-mono linorder-not-less nless-le)

Consider a list of elements and two functions, one of which is always at
less-than or equal to the other on elements of that list. If for one element of
that list the first function is strictly less than the other, then summing the
list with the first function is also strictly less summing it with the second
function.
lemma sum-list-mono-one-strict:

fixes f g :: ′a ⇒ ′b :: {comm-monoid-add, ordered-cancel-ab-semigroup-add,
linorder}

assumes
∧

x. x ∈ set xs =⇒ f x ≤ g x
and x ∈ set xs
and f x < g x

shows sum-list (map f xs) < sum-list (map g xs)
proof −

have sum-list (map f xs) ≤ sum-list (map g xs)
using assms sum-list-mono by blast

moreover have sum-list (map f xs) 6= sum-list (map g xs)
proof

assume sum-list (map f xs) = sum-list (map g xs)
then have sum-list (map f (remove1 x xs)) > sum-list (map g (remove1 x xs))
by (metis add.commute assms(2 ,3) less-add-eq-less-general sum-list-map-remove1)
then show False

by (metis assms(1) leD notin-set-remove1 sum-list-mono)
qed
ultimately show ?thesis

by simp
qed

Generalise (
∧

x. x ∈ set ?xs =⇒ ?f x ≤ ?g x) =⇒ sum-list (map ?f ?xs) ≤
sum-list (map ?g ?xs) to allow for different lists
lemma sum-list-mono-list-all2 :

fixes f g :: ′a ⇒ ′b::{monoid-add, ordered-ab-semigroup-add}
assumes list-all2 (λx y. f x ≤ g y) xs ys

shows (
∑

x←xs. f x) ≤ (
∑

x←ys. g x)
using assms

3

proof (induct xs arbitrary: ys)
case Nil
then show ?case by simp

next
case (Cons a as)
moreover obtain b bs where ys = b # bs

using Cons by (meson list-all2-Cons1)
ultimately show ?case

by (simp add: add-mono)
qed

Generalise [[
∧

x. x ∈ set ?xs =⇒ ?f x ≤ ?g x; ?x ∈ set ?xs; ?f ?x < ?g ?x]]
=⇒ sum-list (map ?f ?xs) < sum-list (map ?g ?xs) to allow for different
lists
lemma sum-list-mono-one-strict-list-all2 :

fixes f g :: ′a ⇒ ′b :: {comm-monoid-add, ordered-cancel-ab-semigroup-add,
linorder}

assumes list-all2 (λx y. f x ≤ g y) xs ys
and (x, y) ∈ set (zip xs ys)
and f x < g y

shows sum-list (map f xs) < sum-list (map g ys)
proof −

note len = list-all2-lengthD[OF assms(1)]

have sum-list (map f xs) = (
∑

x←zip xs ys. f (fst x))
proof −

have map f xs = map f (map fst (zip xs ys))
using len by simp

then have map f xs = map (λx. f (fst x)) (zip xs ys)
by simp

then show ?thesis
by metis

qed
moreover have sum-list (map g ys) = (

∑
x←zip xs ys. g (snd x))

proof −
have map g ys = map g (map snd (zip xs ys))

using len by simp
then have map g ys = map (λx. g (snd x)) (zip xs ys)

by simp
then show ?thesis

by metis
qed
moreover have x ∈ set (zip xs ys) =⇒ f (fst x) ≤ g (snd x) for x

using assms(1) by (fastforce simp add: in-set-zip list-all2-conv-all-nth)
ultimately show ?thesis

using assms(2 ,3) by (simp add: sum-list-mono-one-strict)
qed

Define a function to count the number of list elements satisfying a predicate

4

primrec count-if :: (′a ⇒ bool) ⇒ ′a list ⇒ nat
where

count-if P [] = 0
| count-if P (x#xs) = (if P x then Suc (count-if P xs) else count-if P xs)

lemma count-if-append [simp]:
count-if P (xs @ ys) = count-if P xs + count-if P ys
by (induct xs) simp-all

lemma count-if-0-conv:
(count-if P xs = 0) = (¬ list-ex P xs)
by (induct xs) simp-all

Intersection of sets that are the same is any of those sets
lemma Inter-all-same:

assumes
∧

x y. [[x ∈ A; y ∈ A]] =⇒ f x = f y
and x ∈ A

shows (
⋂

x ∈ A. f x) = f x
using assms by blast

end
theory ResTerm

imports Main
begin

2 Resource Terms

Resource terms describe resources with atoms drawn from two types, linear
and copyable, combined in a number of ways:

• Parallel resources represent their simultaneous presence,

• Non-deterministic resource represent exactly one of two options,

• Executable resources represent a single potential execution of a process
transforming one resource into another,

• Repeatably executable resources represent an unlimited amount of
such potential executions.
We define two distinguished resources on top of the atoms:

• Empty, to represent the absence of a resource and serve as the unit for
parallel combination,

• Anything, to represent a resource about which we have no information.

datatype (discs-sels) (′a, ′b) res-term =

5

Res ′a
— Linear resource atom
| Copyable ′b

— Copyable resource atom
| is-Empty: Empty

— The absence of a resource
| is-Anything: Anything

— Resource about which we know nothing
| Parallel (′a, ′b) res-term list

— Parallel combination
| NonD (′a, ′b) res-term (′a, ′b) res-term

— Non-deterministic combination
| Executable (′a, ′b) res-term (′a, ′b) res-term

— Executable resource
| Repeatable (′a, ′b) res-term (′a, ′b) res-term

— Repeatably executable resource

Every child of Parallel is smaller than it
lemma parallel-child-smaller :

x ∈ set xs =⇒ size-res-term f g x < size-res-term f g (Parallel xs)
proof (induct xs)

case Nil then show ?case by simp
next

case (Cons a xs)
then show ?case

by simp (metis add-Suc-right less-SucI less-add-Suc1 trans-less-add2)
qed

No singleton Parallel is equal to its own child, because the child has to be
smaller
lemma parallel-neq-single [simp]:

Parallel [a] 6= a
proof −

have
∧

f g. size-res-term f g a < size-res-term f g (Parallel [a])
using parallel-child-smaller by simp

then show ?thesis
by fastforce

qed

2.1 Resource Term Equivalence

Some resource terms are different descriptions of the same situation. We
express this by relating resource terms as follows:

• Parallel [] with Empty

• Parallel [x] with x

6

• Parallel (xs @ [Parallel ys] @ zs) with Parallel (xs @ ys @ zs)
We extend this with the reflexive base cases, recursive cases and symmetric-
transitive closure. As a result, we get an equivalence relation on re-
source terms, which we will later use to quotient the terms and form
a type of resources.

inductive res-term-equiv :: (′a, ′b) res-term ⇒ (′a, ′b) res-term ⇒ bool (infix ∼
100)

where
nil: Parallel [] ∼ Empty
| singleton: Parallel [a] ∼ a
| merge: Parallel (x @ [Parallel y] @ z) ∼ Parallel (x @ y @ z)
| empty: Empty ∼ Empty
| anything: Anything ∼ Anything
| res: Res x ∼ Res x
| copyable: Copyable x ∼ Copyable x
| parallel: list-all2 (∼) xs ys =⇒ Parallel xs ∼ Parallel ys
| nondet: [[x ∼ y; u ∼ v]] =⇒ NonD x u ∼ NonD y v
| executable: [[x ∼ y; u ∼ v]] =⇒ Executable x u ∼ Executable y v
| repeatable: [[x ∼ y; u ∼ v]] =⇒ Repeatable x u ∼ Repeatable y v
| sym [sym]: x ∼ y =⇒ y ∼ x
| trans [trans]: [[x ∼ y; y ∼ z]] =⇒ x ∼ z

Add some of the rules for the simplifier
lemmas [simp] =

nil nil[symmetric]
singleton singleton[symmetric]

Constrain all these rules to the resource term equivalence namespace
hide-fact (open) empty anything res copyable nil singleton merge parallel nondet
executable

repeatable sym trans

Next we derive a handful of rules for the equivalence, placing them in its
namespace
setup ‹Sign.mandatory-path res-term-equiv›

It can be shown to be reflexive
lemma refl [simp]:

a ∼ a
by (induct a ; rule res-term-equiv.intros ; simp add: list-all2-same)

lemma reflI :
a = b =⇒ a ∼ b
by simp

lemma equivp [simp]:

7

equivp res-term-equiv
by (simp add: equivpI reflpI res-term-equiv.sym res-term-equiv.trans sympI tran-

spI)

Parallel resource terms can be related by splitting them into parts
lemma decompose:

assumes Parallel x1 ∼ Parallel y1
and Parallel x2 ∼ Parallel y2

shows Parallel (x1 @ x2) ∼ Parallel (y1 @ y2)
proof −

have Parallel [Parallel x1 , Parallel x2] ∼ Parallel [Parallel y1 , Parallel y2]
by (simp add: assms res-term-equiv.parallel)

then have Parallel (Parallel x1 # x2) ∼ Parallel (Parallel y1 # y2)
using res-term-equiv.merge[of [Parallel x1] x2 Nil, simplified]

res-term-equiv.merge[of [Parallel y1] y2 Nil, simplified]
by (meson res-term-equiv.sym res-term-equiv.trans)

then show Parallel (x1 @ x2) ∼ Parallel (y1 @ y2)
using res-term-equiv.merge[of Nil y1 y2 , simplified]

res-term-equiv.merge[of Nil x1 x2 , simplified]
by (meson res-term-equiv.sym res-term-equiv.trans)

qed

We can drop a unit from any parallel resource term
lemma drop:

Parallel (x @ [Empty] @ y) ∼ Parallel (x @ y)
proof −

have Parallel [Empty] ∼ Parallel [Parallel []]
using res-term-equiv.nil res-term-equiv.sym res-term-equiv.trans res-term-equiv.singleton
by blast

then have Parallel (x @ [Empty] @ y) ∼ Parallel (x @ [Parallel []] @ y)
using res-term-equiv.decompose[OF res-term-equiv.refl, of [Empty] @ y [Parallel

[]] @ y x]
res-term-equiv.decompose[OF - res-term-equiv.refl, of [Empty] [Parallel []]

y]
by blast

then show ?thesis
using res-term-equiv.merge res-term-equiv.trans by fastforce

qed

Equivalent resource terms remain equivalent wrapped in a parallel
lemma singleton-both:

x ∼ y =⇒ Parallel [x] ∼ Parallel [y]
by (simp add: res-term-equiv.parallel)

We can reduce a resource term equivalence given equivalences for both sides
lemma trans-both:
[[a ∼ x; y ∼ b; x ∼ y]] =⇒ a ∼ b
by (rule res-term-equiv.trans[OF res-term-equiv.trans])

8

setup ‹Sign.parent-path›

experiment begin
lemma Parallel [Parallel [], Empty] ∼ Empty
proof −

have Parallel [Parallel [], Empty] ∼ Parallel [Parallel []]
using res-term-equiv.drop[of [Parallel []]] by simp

also have ... ∼ Parallel [] by simp
also have ... ∼ Empty by simp
finally show ?thesis .

qed
end

Inserting equivalent terms anywhere in equivalent parallel terms preserves
the equivalence
lemma res-term-parallel-insert:

assumes Parallel x ∼ Parallel y
and Parallel u ∼ Parallel v
and a ∼ b

shows Parallel (x @ [a] @ u) ∼ Parallel (y @ [b] @ v)
by (meson assms res-term-equiv.decompose res-term-equiv.singleton-both)

With inserting at the start being just a special case
lemma res-term-parallel-cons:

assumes Parallel x ∼ Parallel y
and a ∼ b

shows Parallel (a # x) ∼ Parallel (b # y)
using res-term-parallel-insert[OF res-term-equiv.refl assms, of Nil] by simp

Empty is a unit for binary Parallel
lemma res-term-parallel-emptyR [simp]: Parallel [x, Empty] ∼ x

using res-term-equiv.drop[of [x] Nil] by (simp add: res-term-equiv.trans)
lemma res-term-parallel-emptyL [simp]: Parallel [Empty, x] ∼ x

using res-term-equiv.drop[of Nil [x]] by (simp add: res-term-equiv.trans)

Term equivalence is preserved by parallel on either side
lemma res-term-equiv-parallel [simp]:

x ∼ y =⇒ x ∼ Parallel [y]
using res-term-equiv.singleton res-term-equiv.sym res-term-equiv.trans by blast

lemmas [simp] = res-term-equiv-parallel[symmetric]

Resource term map preserves equivalence:
lemma map-res-term-preserves-equiv [simp]:

x ∼ y =⇒ map-res-term f g x ∼ map-res-term f g y
proof (induct rule: res-term-equiv.induct)

case empty then show ?case by simp
next case anything then show ?case by simp

9

next case (res x) then show ?case by simp
next case (copyable x) then show ?case by simp
next case nil then show ?case by simp
next case (singleton a) then show ?case by simp
next case (merge x y z) then show ?case using res-term-equiv.merge by fastforce
next

case (parallel xs ys)
then show ?case

by (simp add: list-all2-conv-all-nth res-term-equiv.parallel)
next case (nondet x y u v) then show ?case by (simp add: res-term-equiv.nondet)
next case (executable x y u v) then show ?case by (simp add: res-term-equiv.executable)
next case (repeatable x y u v) then show ?case by (simp add: res-term-equiv.repeatable)
next case (sym x y) then show ?case by (simp add: res-term-equiv.sym)
next case (trans x y z) then show ?case using res-term-equiv.trans by blast
qed

The other direction is not true in general, because they may be new equiv-
alences created by mapping different atoms to the same one. However, the
counter-example proof requires a decision procedure for the equivalence to
prove that two distinct atoms are not equivalent terms. As such, we delay
it until normalisation for the terms is established.

2.2 Parallel Parts

Parallel resources often arise in processes, because they describe the frequent
situation of having multiple resources be simultaneously present. With re-
source terms, the way this situation is expressed can get complex. To sim-
plify it, we define a function to extract the list of parallel resource terms,
traversing nested Parallel terms and dropping any Empty resources in them.
We call these the parallel parts.
primrec parallel-parts :: (′a, ′b) res-term ⇒ (′a, ′b) res-term list

where
parallel-parts Empty = []
| parallel-parts Anything = [Anything]
| parallel-parts (Res a) = [Res a]
| parallel-parts (Copyable a) = [Copyable a]
| parallel-parts (Parallel xs) = concat (map parallel-parts xs)
| parallel-parts (NonD a b) = [NonD a b]
| parallel-parts (Executable a b) = [Executable a b]
| parallel-parts (Repeatable a b) = [Repeatable a b]

Every resource is equivalent to combining its parallel parts in parallel
lemma parallel-parts-eq:

x ∼ Parallel (parallel-parts x)
proof (induct x)

case Empty then show ?case by simp
next case Anything then show ?case by simp

10

next case (Res x) then show ?case by simp
next case (Copyable x) then show ?case by simp
next

case (Parallel xs)
then show ?case
proof (induct xs)

case Nil then show ?case by simp
next

case (Cons a x)
then have a1 : a ∼ Parallel (parallel-parts a)

and a2 : Parallel x ∼ Parallel (parallel-parts (Parallel x))
by simp-all

have Parallel [a] ∼ Parallel (parallel-parts a)
using a1 res-term-equiv.trans res-term-equiv.singleton by blast

then have Parallel (a # x) ∼ Parallel (parallel-parts a @ parallel-parts (Parallel
x))

using res-term-equiv.decompose[OF - a2 , of [a]] by simp
then show ?case

by simp
qed

next case (NonD x1 x2) then show ?case by simp
next case (Executable x1 x2) then show ?case by simp
next case (Repeatable x1 x2) then show ?case by simp
qed

Equivalent parallel parts is the same as equivalent resource terms
lemma equiv-parallel-parts:

list-all2 (∼) (parallel-parts a) (parallel-parts b) = a ∼ b
proof

show list-all2 (∼) (parallel-parts a) (parallel-parts b) =⇒ a ∼ b
by (meson res-term-equiv.parallel parallel-parts-eq res-term-equiv.sym res-term-equiv.trans)

show a ∼ b =⇒ list-all2 (∼) (parallel-parts a) (parallel-parts b)
proof (induct rule: res-term-equiv.induct)

case empty then show ?case by simp
next case anything then show ?case by simp
next case (res x) then show ?case by simp
next case (copyable x) then show ?case by simp
next case nil then show ?case by simp
next case (singleton a) then show ?case by (simp add: list-all2-refl)
next case (merge x y z) then show ?case by (simp add: list-all2-refl)
next

case (parallel xs ys)
then show ?case

by (induct rule: list-all2-induct ; simp add: list-all2-appendI)
next case (nondet x y u v) then show ?case by (simp add: res-term-equiv.nondet)
next case (executable x y u v) then show ?case by (simp add: res-term-equiv.executable)
next case (repeatable x y u v) then show ?case by (simp add: res-term-equiv.repeatable)
next case (sym x y) then show ?case by (simp add: list-all2-conv-all-nth

11

res-term-equiv.sym)
next case (trans x y z) then show ?case using res-term-equiv.trans list-all2-trans

by blast
qed

qed

Note that resource term equivalence does not imply parallel parts equality
lemma

obtains x y where x ∼ y and parallel-parts x 6= parallel-parts y
proof

let ?x = NonD (Parallel [Anything, Empty]) (Parallel [])
let ?y = NonD Anything Empty

show ?x ∼ ?y
by (simp add: res-term-equiv.nondet)

show parallel-parts ?x 6= parallel-parts ?y
by simp

qed

But it does imply that both have equal number of parallel parts
lemma parallel-parts-length-eq:

x ∼ y =⇒ length (parallel-parts x) = length (parallel-parts y)
using equiv-parallel-parts list-all2-lengthD by blast

Empty parallel parts, however, is the same as equivalence to the unit
lemma parallel-parts-nil-equiv-empty:
(parallel-parts a = []) = a ∼ Empty
using equiv-parallel-parts list.rel-sel parallel-parts.simps(1) by blast

Singleton parallel parts imply equivalence to the one element
lemma parallel-parts-single-equiv-element:

parallel-parts a = [x] =⇒ a ∼ x
using parallel-parts-eq res-term-equiv.trans by force

No element of parallel parts is Parallel or Empty
lemma parallel-parts-have-no-empty:

x ∈ set (parallel-parts a) =⇒ ¬ is-Empty x
by (induct a) fastforce+

lemma parallel-parts-have-no-par :
x ∈ set (parallel-parts a) =⇒ ¬ is-Parallel x
by (induct a) fastforce+

Every parallel part of a resource is at most as big as it
lemma parallel-parts-not-bigger :

x ∈ set (parallel-parts a) =⇒ size-res-term f g x ≤ (size-res-term f g a)
proof (induct a)

case Empty then show ?case by simp
next case Anything then show ?case by simp

12

next case (Res x) then show ?case by simp
next case (Copyable x) then show ?case by simp
next

case (Parallel x)
then show ?case

by (clarsimp simp add: le-SucI size-list-estimation ′)
next case (NonD a1 a2) then show ?case by simp
next case (Executable a1 a2) then show ?case by simp
next case (Repeatable a1 a2) then show ?case by simp
qed

Any resource that is not Empty or Parallel has itself as parallel part
lemma parallel-parts-self [simp]:
[[¬ is-Empty x; ¬ is-Parallel x]] =⇒ parallel-parts x = [x]
by (cases x) simp-all

List of terms with no Empty or Parallel elements is the same as parallel
parts of the Parallel term build from it
lemma parallel-parts-no-empty-parallel:

assumes ¬ list-ex is-Empty xs
and ¬ list-ex is-Parallel xs

shows parallel-parts (Parallel xs) = xs
using assms

proof (induct xs)
case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case by (cases a ; simp)

qed

2.3 Parallelisation

In the opposite direction of parallel parts, we can take a list of resource terms
and combine them in parallel in a way smarter than just using Parallel. This
rests in checking the list length, using the Empty resource if it is empty and
skipping the wrapping in Parallel if it has only a single element. We call
this parallelisation.
fun parallelise :: (′a, ′b) res-term list ⇒ (′a, ′b) res-term

where
parallelise [] = Empty
| parallelise [x] = x
| parallelise xs = Parallel xs

This produces equivalent results to the Parallel constructor
lemma parallelise-equiv:

parallelise xs ∼ Parallel xs

13

by (cases xs rule: parallelise.cases) simp-all

Lists of equal length that parallelise to the same term must have been equal
lemma parallelise-same-length:
[[parallelise x = parallelise y; length x = length y]] =⇒ x = y
by (elim parallelise.elims) simp-all

Parallelisation and naive parallel combination have the same parallel parts
lemma parallel-parts-parallelise-eq:

parallel-parts (parallelise xs) = parallel-parts (Parallel xs)
by (cases xs rule: parallelise.cases) simp-all

Parallelising to a Parallel term means the input is either:

• A singleton set containing just that resulting Parallel term, or

• Exactly the children of the output and with at least two elements.

lemma parallelise-to-parallel-conv:
(parallelise xs = Parallel ys) = (xs = [Parallel ys] ∨ (1 < length xs ∧ xs = ys))

proof
show parallelise xs = Parallel ys =⇒ xs = [Parallel ys] ∨ 1 < length xs ∧ xs =

ys
by (fastforce elim: parallelise.elims)

have xs = [Parallel ys] =⇒ parallelise xs = Parallel ys
by simp

moreover have 1 < length xs ∧ xs = ys =⇒ parallelise xs = Parallel ys
by simp (metis Suc-lessD length-Cons list.size(3) nat-neq-iff parallelise.elims)

ultimately show xs = [Parallel ys] ∨ 1 < length xs ∧ xs = ys =⇒ parallelise
xs = Parallel ys

by blast
qed

So parallelising to a Parallel term with the same children is the same as the
list having at least two elements
lemma parallelise-to-parallel-same-length:
(parallelise xs = Parallel xs) = (1 < length xs)
by (simp add: parallelise-to-parallel-conv) (metis parallel-neq-single)

If the output of parallelisation contains a nested Parallel term then so must
have the input list
lemma parallelise-to-parallel-has-paralell:

assumes parallelise xs = Parallel ys
and list-ex is-Parallel ys

shows list-ex is-Parallel xs
using assms by (induct xs rule: parallelise.induct) simp-all

If the output of parallelisation contains Empty then so must have the input

14

lemma parallelise-to-parallel-has-empty:
assumes parallelise xs = Parallel ys
obtains xs = [Parallel ys]

| xs = ys
using assms parallelise-to-parallel-conv by blast

Parallelising to Empty means the input list was either empty or contained
just that
lemma parallelise-to-empty-eq:

assumes parallelise xs = Empty
obtains xs = []

| xs = [Empty]
using assms parallelise.elims by blast

If a list parallelises to anything but Parallel or Empty, then it must have
been a singleton of that term
lemma parallelise-to-single-eq:

assumes parallelise xs = a
and ¬ is-Empty a
and ¬ is-Parallel a

shows xs = [a]
using assms by (cases xs rule: parallelise.cases ; fastforce)

Sets of atoms after parallelisation are unions of those atoms sets for the
inputs
lemma set1-res-term-parallelise [simp]:

set1-res-term (ResTerm.parallelise xs) =
⋃
(set1-res-term ‘ set xs)

by (induct xs rule: parallelise.induct) simp-all
lemma set2-res-term-parallelise [simp]:

set2-res-term (ResTerm.parallelise xs) =
⋃
(set2-res-term ‘ set xs)

by (induct xs rule: parallelise.induct) simp-all

2.4 Refinement

Resource term refinement applies two functions to the linear and copyable
atoms in a term. Unlike map-res-term, the first function (applied to linear
atoms) is allowed to produce full resource terms, not just other atoms. (The
second function must still produce other atoms, because we cannot replace
a copyable atom with an arbitrary, possibly not copyable, resource.) This
allows us to refine atoms into potentially complex terms.
primrec refine-res-term ::

(′a ⇒ (′x, ′y) res-term) ⇒ (′b ⇒ ′y) ⇒ (′a, ′b) res-term ⇒ (′x, ′y) res-term
where

refine-res-term f g Empty = Empty
| refine-res-term f g Anything = Anything
| refine-res-term f g (Res a) = f a
| refine-res-term f g (Copyable x) = Copyable (g x)

15

| refine-res-term f g (Parallel xs) = Parallel (map (refine-res-term f g) xs)
| refine-res-term f g (NonD x y) = NonD (refine-res-term f g x) (refine-res-term

f g y)
| refine-res-term f g (Executable x y) =

Executable (refine-res-term f g x) (refine-res-term f g y)
| refine-res-term f g (Repeatable x y) =

Repeatable (refine-res-term f g x) (refine-res-term f g y)

Two refined resources are equivalent if:

• the original resources were equivalent,

• the linear atom refinements produce equivalent terms and

• the copyable atom refinements produce identical atoms.

lemma refine-res-term-eq:
assumes x ∼ y

and
∧

x. f x ∼ f ′ x
and

∧
x. g x = g ′ x

shows refine-res-term f g x ∼ refine-res-term f ′ g ′ y
proof −

have reflexivity: refine-res-term f g a ∼ refine-res-term f ′ g ′ a for a
— First we prove the simpler case where the two resources are equal, so we can

use it later
proof (induct a)

case Empty then show ?case by simp
next case Anything then show ?case by simp
next case (Res x) then show ?case using assms(2) by simp
next case (Copyable x) then show ?case using assms(3) by simp
next

case (Parallel x)
then show ?case

by (clarsimp intro!: res-term-equiv.parallel)
(metis (mono-tags, lifting) length-map list-all2-all-nthI nth-map nth-mem)

next case (NonD a1 a2) then show ?case by (simp add: res-term-equiv.nondet)
next case (Executable a1 a2) then show ?case by (simp add: res-term-equiv.executable)
next case (Repeatable a1 a2) then show ?case by (simp add: res-term-equiv.repeatable)
qed

from assms show ?thesis
— Then we prove the general statement by induction on assumed equivalence
proof (induct rule: res-term-equiv.induct)

case empty then show ?case by simp
next case anything then show ?case by simp
next case (res x) then show ?case by simp
next case (copyable x) then show ?case by simp
next case nil then show ?case by simp
next

16

case (singleton a)
then have refine-res-term f g (Parallel [a]) ∼ refine-res-term f g a

by simp
then show ?case

using reflexivity res-term-equiv.trans by metis
next

case (merge x y z)
have

length (map (refine-res-term f g ′) x @
map (refine-res-term f g ′) y @ map (refine-res-term f g ′) z)

= length (map (refine-res-term f ′ g ′) x @
map (refine-res-term f ′ g ′) y @ map (refine-res-term f ′ g ′) z)

by simp
moreover have

((map (refine-res-term f g) x @
map (refine-res-term f g) y @ map (refine-res-term f g) z) ! i)

∼ ((map (refine-res-term f ′ g ′) x @
map (refine-res-term f ′ g ′) y @ map (refine-res-term f ′ g ′) z) ! i)

if i < length x + length y + length z for i
by (metis append.assoc length-append map-append nth-map reflexivity that)

ultimately have
list-all2 (∼)

(map (refine-res-term f g) x
@ map (refine-res-term f g) y
@ map (refine-res-term f g) z)
(map (refine-res-term f ′ g ′) x
@ map (refine-res-term f ′ g ′) y
@ map (refine-res-term f ′ g ′) z)

by (smt (verit, del-insts) append-assoc length-append length-map list-all2-all-nthI)
then have

Parallel (map (refine-res-term f g) x @
[Parallel (map (refine-res-term f g) y)] @ map (refine-res-term f g) z)

∼ Parallel (map (refine-res-term f ′ g ′) x @
map (refine-res-term f ′ g ′) y @ map (refine-res-term f ′ g ′) z)

using res-term-equiv.merge res-term-equiv.parallel res-term-equiv.trans by
blast

then show ?case
by simp

next
case (parallel xs ys)
then show ?case

by (simp add: res-term-equiv.parallel list-all2-conv-all-nth)
next case (nondet x y u v) then show ?case by (simp add: res-term-equiv.nondet)
next case (executable x y u v) then show ?case by (simp add: res-term-equiv.executable)
next case (repeatable x y u v) then show ?case by (simp add: res-term-equiv.repeatable)
next

case (sym x y)
then show ?case

by (metis res-term-equiv.sym res-term-equiv.trans reflexivity)

17

next
case (trans x y z)
then show ?case

by (metis res-term-equiv.sym res-term-equiv.trans reflexivity)
qed

qed

2.5 Removing Empty Terms From a List

As part of simplifying resource terms, it is sometimes useful to be able to
take a list of terms and drop from it any empty resource.
primrec remove-all-empty :: (′a, ′b) res-term list ⇒ (′a, ′b) res-term list

where
remove-all-empty [] = []
| remove-all-empty (x#xs) = (if is-Empty x then remove-all-empty xs else x#remove-all-empty

xs)

The result of dropping Empty terms from a list of resource terms is a subset
of the original list
lemma remove-all-empty-subset:

x ∈ set (remove-all-empty xs) =⇒ x ∈ set xs
proof (induct xs)

case Nil then show ?case by simp
next

case (Cons a xs)
then show ?case

by simp (metis (full-types) set-ConsD)
qed

If there are no Empty terms then removing them is the same as not doing
anything
lemma remove-all-empty-none:
¬ list-ex is-Empty xs =⇒ remove-all-empty xs = xs
by (induct xs ; force)

There are no Empty terms left after they are removed
lemma remove-all-empty-result:
¬ list-ex is-Empty (remove-all-empty xs)

proof (induct xs)
case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case by (cases a ; simp)

qed

Removing Empty terms distributes over appending lists
lemma remove-all-empty-append:

18

remove-all-empty (xs @ ys) = remove-all-empty xs @ remove-all-empty ys
proof (induct xs arbitrary: ys)

case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case by (cases a ; simp)

qed

Removing Empty terms distributes over constructing lists
lemma remove-all-empty-Cons:

remove-all-empty (x # xs) = remove-all-empty [x] @ remove-all-empty xs
using remove-all-empty-append by (metis append.left-neutral append-Cons)

Removing Empty terms from children of a parallel resource term results in
an equivalent term
lemma remove-all-empty-equiv:

Parallel xs ∼ Parallel (remove-all-empty xs)
proof (induct xs)

case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case
by (metis append.left-neutral append-Cons remove-all-empty.simps(2) res-term-equiv.drop

res-term-equiv.refl res-term-equiv.trans res-term-parallel-cons is-Empty-def)
qed

Removing Empty terms does not affect the atom sets
lemma set1-res-term-remove-all-empty [simp]:⋃

(set1-res-term ‘ set (remove-all-empty xs)) =
⋃
(set1-res-term ‘ set xs)

proof (induct xs)
case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case

by (cases a) simp-all
qed
lemma set2-res-term-remove-all-empty [simp]:⋃

(set2-res-term ‘ set (remove-all-empty xs)) =
⋃
(set2-res-term ‘ set xs)

proof (induct xs)
case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case

by (cases a) simp-all
qed

19

2.6 Merging Nested Parallel Terms in a List

Similarly, it is sometimes useful to be able to take a list of terms and merge
the children of any Parallel term in it up into the list itself
primrec merge-all-parallel :: (′a, ′b) res-term list ⇒ (′a, ′b) res-term list

where
merge-all-parallel [] = []
| merge-all-parallel (x#xs) =

(case x of Parallel y ⇒ y @ merge-all-parallel xs | - ⇒ x # merge-all-parallel
xs)

If there are no Parallel terms then merging them is the same as not doing
anything
lemma merge-all-parallel-none:
¬ list-ex is-Parallel xs =⇒ merge-all-parallel xs = xs

proof (induct xs)
case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case by (cases a ; simp)

qed

If no element of the input list has itself nested Parallel terms then there will
be none left after merging Parallel terms in the list
lemma merge-all-parallel-result:

assumes
∧

ys. Parallel ys ∈ set xs =⇒ ¬ list-ex is-Parallel ys
shows ¬ list-ex is-Parallel (merge-all-parallel xs)

using assms
proof (induct xs)

case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case by (cases a ; fastforce)

qed

Merging nested Parallel terms distributes over appending lists
lemma merge-all-parallel-append:

merge-all-parallel (xs @ ys) = merge-all-parallel xs @ merge-all-parallel ys
proof (induct xs arbitrary: ys)

case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case by (cases a ; simp)

qed

Merging Parallel terms distributes over constructing lists

20

lemma merge-all-parallel-Cons:
merge-all-parallel (x # xs) = merge-all-parallel [x] @ merge-all-parallel xs
using merge-all-parallel-append by (metis append.left-neutral append-Cons)

Merging Parallel terms nested in another Parallel term results in an equiv-
alent term
lemma merge-all-parallel-equiv:

Parallel xs ∼ Parallel (merge-all-parallel xs)
proof (induct xs)

case Nil
then show ?case by simp

next
case (Cons a xs)
have ?case if a = Parallel as for as

using Cons
by (simp add: that)
(metis append.left-neutral append-Cons res-term-equiv.decompose res-term-equiv.singleton)

moreover have ?case if
∧

as. a 6= Parallel as
using Cons by (cases a) (simp-all add: that res-term-parallel-cons)

ultimately show ?case
by metis

qed

If the output of merge-all-parallel contains Empty then:

• It was nested in one of the input elements, or

• It was in the input.

lemma merge-all-parallel-has-empty:
assumes list-ex is-Empty (merge-all-parallel xs)
obtains ys where Parallel ys ∈ set xs and list-ex is-Empty ys

| list-ex is-Empty xs
using assms

proof (induct xs)
case Nil then show ?case by simp

next
case (Cons a xs)
then show ?case by (cases a) fastforce+

qed

Merging Parallel terms does not affect the atom sets
lemma set1-res-term-merge-all-parallel [simp]:⋃

(set1-res-term ‘ set (merge-all-parallel xs)) =
⋃

(set1-res-term ‘ set xs)
proof (induct xs)

case Nil
then show ?case by simp

next

21

case (Cons a xs)
then show ?case

by (cases a) simp-all
qed
lemma set2-res-term-merge-all-parallel [simp]:⋃

(set2-res-term ‘ set (merge-all-parallel xs)) =
⋃

(set2-res-term ‘ set xs)
proof (induct xs)

case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case

by (cases a) simp-all
qed

end
theory ResNormalForm

imports
ResTerm
Util

begin

3 Resource Term Normal Form

A resource term is normalised when:

• It is a leaf node, or

• It is an internal node with all children normalised and additionally:

– If it is a parallel resource then none of its children are Empty or
Parallel and it has more than one child.

primrec normalised :: (′a, ′b) res-term ⇒ bool
where

normalised Empty = True
| normalised Anything = True
| normalised (Res x) = True
| normalised (Copyable x) = True
| normalised (Parallel xs) =
(list-all normalised xs ∧

list-all (λx. ¬ is-Empty x) xs ∧ list-all (λx. ¬ is-Parallel x) xs ∧
1 < length xs)

| normalised (NonD x y) = (normalised x ∧ normalised y)
| normalised (Executable x y) = (normalised x ∧ normalised y)
| normalised (Repeatable x y) = (normalised x ∧ normalised y)

The fact that a term is not normalised can be split into cases

22

lemma not-normalised-cases:
assumes ¬ normalised x
obtains
(Parallel-Child) xs where x = Parallel xs and list-ex (λx. ¬ normalised x) xs
| (Parallel-Empty) xs where x = Parallel xs and list-ex is-Empty xs
| (Parallel-Par) xs where x = Parallel xs and list-ex is-Parallel xs
| (Parallel-Nil) x = Parallel []
| (Parallel-Singleton) a where x = Parallel [a]
| (NonD-L) a b where x = NonD a b and ¬ normalised a
| (NonD-R) a b where x = NonD a b and ¬ normalised b
| (Executable-L) a b where x = Executable a b and ¬ normalised a
| (Executable-R) a b where x = Executable a b and ¬ normalised b
| (Repeatable-L) a b where x = Repeatable a b and ¬ normalised a
| (Repeatable-R) a b where x = Repeatable a b and ¬ normalised b

proof (cases x)
case Empty then show ?thesis using assms by simp

next case Anything then show ?thesis using assms by simp
next case (Res x) then show ?thesis using assms by simp
next case (Copyable x) then show ?thesis using assms by simp
next

case (Parallel xs)
then consider

list-ex (λx. ¬ normalised x) xs
| list-ex is-Empty xs
| list-ex is-Parallel xs
| length xs ≤ Suc 0
using assms not-list-ex by fastforce

then show ?thesis
using that(1−5) Parallel
by (metis (no-types, lifting) le-Suc-eq le-zero-eq length-0-conv length-Suc-conv)

next
case (NonD x y)
then show ?thesis

using assms that(6 ,7) by (cases normalised x) simp-all
next

case (Executable x y)
then show ?thesis

using assms that(8 ,9) by (cases normalised x) simp-all
next

case (Repeatable x y)
then show ?thesis

using assms that(10 ,11) by (cases normalised x) simp-all
qed

When a Parallel term is not normalised then it can be useful to obtain the
first term in it that is Empty, Parallel or not normalised.
lemma obtain-first-parallel:

assumes list-ex is-Parallel xs
obtains a b c where xs = a @ [Parallel b] @ c and list-all (λx. ¬ is-Parallel x)

23

a
using assms

proof (induct xs)
case Nil then show ?case by simp

next
case (Cons a xs)
then show ?case
by simp (metis (mono-tags, lifting) append-eq-Cons-conv is-Parallel-def list.pred-inject)

qed
lemma obtain-first-empty:

assumes list-ex is-Empty xs
obtains a b c where xs = a @ [Empty] @ c and list-all (λx. ¬ is-Empty x) a
using assms

proof (induct xs)
case Nil then show ?case by simp

next
case (Cons a xs)
then show ?case
by simp (metis (mono-tags, lifting) append-eq-Cons-conv is-Empty-def list.pred-inject)

qed
lemma obtain-first-unnormalised:

assumes list-ex (λx. ¬ normalised x) xs
obtains a b c where xs = a @ [b] @ c and list-all normalised a and ¬ normalised

b
using assms

proof (induct xs)
case Nil then show ?case by simp

next
case (Cons a xs)
then show ?case

by simp (metis (mono-tags, lifting) append-eq-Cons-conv list.pred-inject)
qed

Mapping functions over a resource term does not change whether it is nor-
malised
lemma normalised-map:

normalised (map-res-term f g x) = normalised x
by (induct x) (simp-all add: Ball-set[symmetric])

If a Parallel term is normalised then so are all its children
lemma normalised-parallel-children:
[[normalised (Parallel xs); x ∈ set xs]] =⇒ normalised x
by (induct xs rule: remdups-adj.induct ; fastforce)

Normalised Parallel term has as parallel parts exactly its direct children
lemma normalised-parallel-parts-eq:

normalised (Parallel xs) =⇒ parallel-parts (Parallel xs) = xs
by (induct xs rule: induct-list012 ; fastforce)

24

Parallelising a list of normalised terms with no nested Empty or Parallel
terms gives normalised result.
lemma normalised-parallelise:

assumes
∧

x. x ∈ set xs =⇒ normalised x
and ¬ list-ex is-Empty xs
and ¬ list-ex is-Parallel xs

shows normalised (parallelise xs)
proof (cases xs rule: parallelise.cases)

case 1
then show ?thesis

by simp
next

case (2 x)
then show ?thesis

using assms(1) by simp
next

case (3 v vb vc)
then show ?thesis

using assms by (simp add: not-list-ex Ball-set[symmetric])
qed

end
theory ResNormRewrite

imports
ResNormalForm
Abstract−Rewriting.Abstract-Rewriting
Util

begin

4 Rewriting Resource Term Normalisation

This resource term normalisation procedure is based on the following rewrite
rules:

• Parallel [] → Empty

• Parallel [a] → a

• Parallel (x @ [Parallel y] @ z) → Parallel (x @ y @ z)

• Parallel (x @ [Empty] @ y) → Parallel (x @ y)
This represents the one-directional, single-step version of resource term
equivalence. Note that the last rule must be made explicit here, be-
cause its counterpart theorem Parallel (?x @ [Empty] @ ?y) ∼ Parallel
(?x @ ?y) can only be derived thanks to symmetry.

25

4.1 Rewriting Relation

The rewriting relation contains a rewriting rule for each introduction rule of
(∼) except for symmetry and transitivity, and an explicit rule for Parallel
(?x @ [Empty] @ ?y) ∼ Parallel (?x @ ?y).
inductive res-term-rewrite :: (′a, ′b) res-term ⇒ (′a, ′b) res-term ⇒ bool where

empty: res-term-rewrite Empty Empty
| anything: res-term-rewrite Anything Anything
| res: res-term-rewrite (Res x) (Res x)
| copyable: res-term-rewrite (Copyable x) (Copyable x)
| nil: res-term-rewrite (Parallel []) Empty
| singleton: res-term-rewrite (Parallel [a]) a
| merge: res-term-rewrite (Parallel (x @ [Parallel y] @ z)) (Parallel (x @ y @ z))
| drop: res-term-rewrite (Parallel (x @ [Empty] @ z)) (Parallel (x @ z))
| parallel: list-all2 res-term-rewrite xs ys =⇒ res-term-rewrite (Parallel xs) (Parallel
ys)
| nondet: [[res-term-rewrite x y; res-term-rewrite u v]] =⇒ res-term-rewrite (NonD
x u) (NonD y v)
| executable: [[res-term-rewrite x y; res-term-rewrite u v]] =⇒

res-term-rewrite (Executable x u) (Executable y v)
| repeatable: [[res-term-rewrite x y; res-term-rewrite u v]] =⇒

res-term-rewrite (Repeatable x u) (Repeatable y v)

hide-fact (open) empty anything res copyable nil singleton merge drop parallel
nondet executable

repeatable

setup ‹Sign.mandatory-path res-term-rewrite›

The rewrite relation is reflexive
lemma refl [simp]:

res-term-rewrite x x
proof (induct x)

case Empty then show ?case by (rule res-term-rewrite.empty)
next case Anything then show ?case by (rule res-term-rewrite.anything)
next case (Res x) then show ?case by (rule res-term-rewrite.res)
next case (Copyable x) then show ?case by (rule res-term-rewrite.copyable)
next

case (Parallel x)
then show ?case

by (simp add: res-term-rewrite.parallel list.rel-refl-strong)
next case (NonD x1 x2) then show ?case by (rule res-term-rewrite.nondet)
next case (Executable x1 x2) then show ?case by (rule res-term-rewrite.executable)
next case (Repeatable x1 x2) then show ?case by (rule res-term-rewrite.repeatable)
qed

lemma parallel-one:
res-term-rewrite a b =⇒ res-term-rewrite (Parallel (xs @ [a] @ ys)) (Parallel (xs

@ [b] @ ys))

26

using res-term-rewrite.refl res-term-rewrite.parallel
by (metis list.rel-refl list-all2-Cons2 list-all2-appendI)

setup ‹Sign.parent-path›

Every term rewrites to an equivalent term
lemma res-term-rewrite-imp-equiv:

res-term-rewrite x y =⇒ x ∼ y
proof (induct x y rule: res-term-rewrite.induct)

case empty then show ?case by (rule res-term-equiv.empty)
next case anything then show ?case by (rule res-term-equiv.anything)
next case (res x) then show ?case by (rule res-term-equiv.res)
next case (copyable x) then show ?case by (intro res-term-equiv.copyable)
next case nil then show ?case by (rule res-term-equiv.nil)
next case (singleton a) then show ?case by (rule res-term-equiv.singleton)
next case (merge x y z) then show ?case by (rule res-term-equiv.merge)
next case (drop x z) then show ?case by (rule res-term-equiv.drop)
next

case (parallel xs ys)
then show ?case

using res-term-equiv.parallel list-all2-mono by blast
next case (nondet x y u v) then show ?case by (intro res-term-equiv.nondet)
next case (executable x y u v) then show ?case by (intro res-term-equiv.executable)
next case (repeatable x y u v) then show ?case by (intro res-term-equiv.repeatable)
qed

By transitivity of the equivalence this holds for transitive closure of the
rewriting
lemma res-term-rewrite-trancl-imp-equiv:

res-term-rewrite++ x y =⇒ x ∼ y
proof (induct rule: tranclp-induct)

case (base y)
then show ?case using res-term-rewrite-imp-equiv by blast

next
case (step y z)
then show ?case using res-term-rewrite-imp-equiv res-term-equiv.trans by blast

qed

Normalised terms have no distinct term to which they transition
lemma res-term-rewrite-normalised:

assumes normalised x
shows @ y. res-term-rewrite x y ∧ x 6= y

proof safe
fix y
assume res-term-rewrite x y
then have x = y

using assms
proof (induct x y rule: res-term-rewrite.induct)

case empty then show ?case by simp

27

next case anything then show ?case by simp
next case (res x) then show ?case by simp
next case (copyable x) then show ?case by simp
next case nil then show ?case by simp
next case (singleton a) then show ?case by simp
next case (merge x y z) then show ?case by simp
next case (drop x z) then show ?case by simp
next

case (parallel xs ys)
then show ?case

by simp (smt (z3) Ball-set list.rel-eq list.rel-mono-strong)
next case (nondet x y u v) then show ?case by simp
next case (executable x y u v) then show ?case by simp
next case (repeatable x y u v) then show ?case by simp
qed
moreover assume x 6= y
ultimately show False

by metis
qed

lemma res-term-rewrite-normalisedD:
[[res-term-rewrite x y; normalised x]] =⇒ x = y
by (drule res-term-rewrite-normalised) clarsimp

Whereas other terms have a distinct term to which they transition
lemma res-term-rewrite-not-normalised:

assumes ¬ normalised x
shows ∃ y. res-term-rewrite x y ∧ x 6= y

using assms
proof (induct x)

case Empty then show ?case by simp
next case Anything then show ?case by simp
next case (Res x) then show ?case by simp
next case (Copyable x) then show ?case by simp
next

case (Parallel xs)
then show ?case
proof (cases list-ex is-Parallel xs)

case True
then obtain a b c where xs = a @ [Parallel b] @ c and list-all (λx. ¬

is-Parallel x) a
using obtain-first-parallel by metis

then show ?thesis
using Parallel res-term-rewrite.merge
by (metis append-eq-append-conv parallel-neq-single res-term.sel(3))

next
case no-par : False
then show ?thesis
proof (cases list-ex is-Empty xs)

28

case True
then obtain a c where xs = a @ [Empty] @ c and list-all (λx. ¬ is-Empty

x) a
using obtain-first-empty by metis

then show ?thesis
using no-par Parallel res-term-rewrite.drop by blast

next
case no-empty: False
then show ?thesis
proof (cases list-ex (λx. ¬ normalised x) xs)

case True
then obtain a b c

where xs: xs = a @ [b] @ c and list-all normalised a and ¬ normalised b
using obtain-first-unnormalised by metis

then obtain b ′ where res-term-rewrite b b ′ and b 6= b ′

using Parallel by (metis append-eq-Cons-conv in-set-conv-decomp)
then have res-term-rewrite (Parallel (a @ [b] @ c)) (Parallel (a @ [b ′] @

c))
and Parallel (a @ [b] @ c) 6= Parallel (a @ [b ′] @ c)

using res-term-rewrite.parallel-one by blast+
then show ?thesis

using xs by metis
next

case all-normal: False
then consider xs = [] | a where xs = [a]

using no-par no-empty Parallel by (metis Bex-set normalised-parallelise
parallelise.elims)

then show ?thesis
using res-term-rewrite.nil res-term-rewrite.singleton
by (metis parallel-neq-single res-term.distinct(29))

qed
qed

qed
next

case (NonD x1 x2)
then show ?case
by (metis normalised.simps(6) res-term.inject(4) res-term-rewrite.nondet res-term-rewrite.refl)

next
case (Executable x1 x2)
then show ?case

by (metis normalised.simps(7) res-term.inject(5) res-term-rewrite.executable
res-term-rewrite.refl)

next
case (Repeatable x1 x2)
then show ?case

by (metis normalised.simps(8) res-term.inject(6) res-term-rewrite.repeatable
res-term-rewrite.refl)

qed

Therefore a term is normalised iff it rewrites only back to itself

29

lemma normalised-is-rewrite-refl:
normalised x = (∀ y. res-term-rewrite x y −→ x = y)
using res-term-rewrite-normalised res-term-rewrite-not-normalised by metis

Every term rewrites to one of at most equal size
lemma res-term-rewrite-not-increase-size:

res-term-rewrite x y =⇒ size-res-term f g y ≤ size-res-term f g x
by (induct x y rule: res-term-rewrite.induct)
(simp-all add: list-all2-conv-all-nth size-list-conv-sum-list sum-list-mono-list-all2)

4.2 Rewriting Bound

There is an upper bound to how many rewriting steps could be applied to
a term. We find it by considering the worst (most un-normalised) possible
case of each node.
primrec res-term-rewrite-bound :: (′a, ′b) res-term ⇒ nat

where
res-term-rewrite-bound Empty = 0
| res-term-rewrite-bound Anything = 0
| res-term-rewrite-bound (Res a) = 0
| res-term-rewrite-bound (Copyable x) = 0
| res-term-rewrite-bound (Parallel xs) =

sum-list (map res-term-rewrite-bound xs) + length xs + 1
— All the steps of the children, plus one for every child that could need to be

merged/dropped and another if in the end there are less than two children.
| res-term-rewrite-bound (NonD x y) = res-term-rewrite-bound x + res-term-rewrite-bound

y
| res-term-rewrite-bound (Executable x y) = res-term-rewrite-bound x + res-term-rewrite-bound

y
| res-term-rewrite-bound (Repeatable x y) = res-term-rewrite-bound x + res-term-rewrite-bound

y

For un-normalised terms the bound is non-zero
lemma res-term-rewrite-bound-not-normalised:
¬ normalised x =⇒ res-term-rewrite-bound x 6= 0
by (induct x ; fastforce)

Rewriting relation does not increase this bound
lemma res-term-rewrite-non-increase-bound:

res-term-rewrite x y =⇒ res-term-rewrite-bound y ≤ res-term-rewrite-bound x
by (induct x y rule: res-term-rewrite.induct)

(simp-all add: sum-list-mono-list-all2 list-all2-conv-all-nth)

4.3 Step

The rewriting step function implements a specific algorithm for the rewriting
relation by picking one approach where the relation allows multiple rewriting

30

paths. To help define its parallel resource case, we first define a function to
remove one Empty term from a list and another to merge the children of
one Parallel term up into the containing list of terms.

4.3.1 Removing One Empty

Remove the first Empty from a list of term
fun remove-one-empty :: (′a, ′b) res-term list ⇒ (′a, ′b) res-term list

where
remove-one-empty [] = []
| remove-one-empty (Empty # xs) = xs
| remove-one-empty (x # xs) = x # remove-one-empty xs

lemma remove-one-empty-cons [simp]:
is-Empty x =⇒ remove-one-empty (x # xs) = xs
¬ is-Empty x =⇒ remove-one-empty (x # xs) = x # remove-one-empty xs
by (cases x ; simp)+

lemma remove-one-empty-append:
list-all (λx. ¬ is-Empty x) a =⇒ remove-one-empty (a @ d) = a @ remove-one-empty

d
by (induct a ; simp)

lemma remove-one-empty-distinct:
list-ex is-Empty xs =⇒ remove-one-empty xs 6= xs

proof (induct xs)
case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case by (cases a ; simp)

qed

This is identity when there are no Empty terms
lemma remove-one-empty-none [simp]:
¬ list-ex is-Empty xs =⇒ remove-one-empty xs = xs
by (induct xs rule: remove-one-empty.induct ; simp)

This decreases length by one when there are Empty terms
lemma length-remove-one-empty [simp]:

list-ex is-Empty xs =⇒ length (remove-one-empty xs) + 1 = length xs
proof (induct xs)

case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case

by (cases is-Empty a ; simp)

31

qed

Removing an Empty term does not increase the size
lemma remove-one-empty-not-increase-size:

size-res-term f g (Parallel (remove-one-empty xs)) ≤ size-res-term f g (Parallel
xs)

by (induct xs rule: remove-one-empty.induct ; simp)

Any Parallel term is equivalent to itself with an Empty term removed
lemma remove-one-empty-equiv:

Parallel xs ∼ Parallel (remove-one-empty xs)
proof (induct xs)

case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case
proof (cases is-Empty a)

case True
then show ?thesis

using res-term-equiv.drop[of Nil] Cons by (fastforce simp add: is-Empty-def)
next

case False
then show ?thesis

using Cons by (simp add: res-term-parallel-cons)
qed

qed

Removing an Empty term commutes with the resource term map
lemma remove-one-empty-map:
map (map-res-term f g) (remove-one-empty xs) = remove-one-empty (map (map-res-term

f g) xs)
proof (induct xs)

case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case by (cases is-Empty a ; simp)

qed

The result of dropping an Empty from a list of resource terms is a subset of
the original list
lemma remove-one-empty-subset:

x ∈ set (remove-one-empty xs) =⇒ x ∈ set xs
proof (induct xs)

case Nil then show ?case by simp
next

case (Cons a xs)

32

then show ?case
by (cases is-Empty a ; simp) blast

qed

4.3.2 Merging One Parallel

Merge the first Parallel in a list of terms
fun merge-one-parallel :: (′a, ′b) res-term list ⇒ (′a, ′b) res-term list

where
merge-one-parallel [] = []
| merge-one-parallel (Parallel x # xs) = x @ xs
| merge-one-parallel (x # xs) = x # merge-one-parallel xs

lemma merge-one-parallel-cons-not [simp]:
¬ is-Parallel x =⇒ merge-one-parallel (x # xs) = x # merge-one-parallel xs
by (cases x ; simp)

lemma merge-one-parallel-append:
list-all (λx. ¬ is-Parallel x) a =⇒ merge-one-parallel (a @ d) = a @ merge-one-parallel

d
for a d
by (induct a ; simp)

lemma merge-one-parallel-distinct:
list-ex is-Parallel xs =⇒ merge-one-parallel xs 6= xs

proof (induct xs)
case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case by (cases a ; simp) (metis parallel-neq-single)

qed

This is identity when there are no Parallel terms
lemma merge-one-parallel-none [simp]:
¬ list-ex is-Parallel xs =⇒ merge-one-parallel xs = xs
by (induct xs rule: merge-one-parallel.induct ; simp)

Merging a Parallel term does not increase the size
lemma merge-one-parallel-not-increase-size:

size-res-term f g (Parallel (merge-one-parallel xs)) ≤ size-res-term f g (Parallel
xs)
proof (induct xs)

case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case by (cases a ; simp)

33

qed

Any Parallel term is equivalent to itself with a Parallel term merged
lemma merge-one-parallel-equiv:

Parallel xs ∼ Parallel (merge-one-parallel xs)
proof (induct xs)

case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case
proof (cases is-Parallel a)

case True
then show ?thesis
using Cons res-term-equiv.merge[of Nil] by (fastforce simp add: is-Parallel-def)

next
case False
then show ?thesis

using Cons by (simp add: res-term-parallel-cons)
qed

qed

Merging a Parallel term commutes with the resource term map
lemma merge-one-parallel-map:
map (map-res-term f g) (merge-one-parallel xs) = merge-one-parallel (map (map-res-term

f g) xs)
proof (induct xs)

case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case by (cases a ; simp)

qed

4.3.3 Rewriting Step Function

The rewriting step function itself performs one rewrite for any un-normalised
input term. Where there are multiple choices, it proceeds as follows:

• For binary internal nodes (NonD, Executable and Repeatable), first
fully rewrite the first child until normalised and only then start rewrit-
ing the second.

• For Parallel nodes proceed in phases:

– If any child is not normalised, rewrite all children; otherwise
– If there is some nested Parallel node in the children, merge one

up; otherwise

34

– If there is some Empty node in the children, remove one; otherwise
– If there are no children, then return Empty; otherwise
– If there is exactly one child, then return that term; otherwise
– Do nothing and return the same term.

primrec step :: (′a, ′b) res-term ⇒ (′a, ′b) res-term
where

step Empty = Empty
| step Anything = Anything
| step (Res x) = Res x
| step (Copyable x) = Copyable x
| step (NonD x y) =

(if ¬ normalised x then NonD (step x) y
else if ¬ normalised y then NonD x (step y)
else NonD x y)

| step (Executable x y) =
(if ¬ normalised x then Executable (step x) y

else if ¬ normalised y then Executable x (step y)
else Executable x y)

| step (Repeatable x y) =
(if ¬ normalised x then Repeatable (step x) y

else if ¬ normalised y then Repeatable x (step y)
else Repeatable x y)

| step (Parallel xs) =
(if list-ex (λx. ¬ normalised x) xs then Parallel (map step xs)

else if list-ex is-Parallel xs then Parallel (merge-one-parallel xs)
else if list-ex is-Empty xs then Parallel (remove-one-empty xs)
else (case xs of

[] ⇒ Empty
| [a] ⇒ a
| - ⇒ Parallel xs))

Case split and induction for step fully expanded
lemma step-cases
[case-names Empty Anything Res Copyable NonD-L NonD-R NonD Executable-L

Executable-R Executable
Repeatable-L Repeatable-R Repeatable Par-Norm Par-Par Par-Empty

Par-Nil Par-Single
Par]:

assumes x = Empty =⇒ P
and x = Anything =⇒ P
and

∧
a. x = Res a =⇒ P

and
∧

u. x = Copyable u =⇒ P
and

∧
u v. [[¬ normalised u; x = NonD u v]] =⇒ P

and
∧

u v. [[normalised u; ¬ normalised v; x = NonD u v]] =⇒ P
and

∧
u v. [[normalised u; normalised v; x = NonD u v]] =⇒ P

and
∧

u v. [[¬ normalised u; x = Executable u v]] =⇒ P
and

∧
u v. [[normalised u; ¬ normalised v; x = Executable u v]] =⇒ P

35

and
∧

u v. [[normalised u; normalised v; x = Executable u v]] =⇒ P
and

∧
u v. [[¬ normalised u; x = Repeatable u v]] =⇒ P

and
∧

u v. [[normalised u; ¬ normalised v; x = Repeatable u v]] =⇒ P
and

∧
u v. [[normalised u; normalised v; x = Repeatable u v]] =⇒ P

and
∧

xs. [[x = Parallel xs; ∃ a. a ∈ set xs ∧ ¬ normalised a]] =⇒ P
and

∧
xs. [[x = Parallel xs; ∀ a. a ∈ set xs −→ normalised a; list-ex is-Parallel

xs]] =⇒ P
and

∧
xs. [[x = Parallel xs; ∀ a. a ∈ set xs −→ normalised a;

list-all (λx. ¬ is-Parallel x) xs; list-ex is-Empty xs]] =⇒ P
and x = Parallel [] =⇒ P
and

∧
u. [[x = Parallel [u]; normalised u; ¬ is-Parallel u; ¬ is-Empty u]] =⇒

P
and

∧
v vb vc. [[x = Parallel (v # vb # vc); ∀ a. a ∈ set (v # vb # vc) −→

normalised a;
list-all (λx. ¬ is-Parallel x) (v # vb # vc);
list-all (λx. ¬ is-Empty x) (v # vb # vc)]]

=⇒ P
shows P

proof (cases x)
case Empty then show ?thesis using assms by simp

next case Anything then show ?thesis using assms by simp
next case (Res x3) then show ?thesis using assms by simp
next case (Copyable x4) then show ?thesis using assms by simp
next

case (Parallel xs)
then show ?thesis
proof (cases list-ex (λx. ¬ normalised x) xs)

case True
then show ?thesis

using assms(14) by (meson Bex-set Parallel)
next

case not-norm: False
then show ?thesis
proof (cases list-ex is-Parallel xs)

case True
then show ?thesis

using Parallel assms(14 ,15) by blast
next

case not-par : False
then show ?thesis
proof (cases list-ex is-Empty xs)

case True
then show ?thesis

by (metis not-par Parallel assms(14 ,16) not-list-ex)
next

case not-empty: False
then show ?thesis
proof (cases xs rule: remdups-adj.cases)

case 1

36

then show ?thesis
by (simp add: Parallel assms(17))

next
case (2 x)
then show ?thesis

using Parallel assms(14 ,18) not-empty not-par by fastforce
next

case (3 x y xs)
then show ?thesis

by (metis Parallel assms(14 ,19) not-empty not-list-ex not-par)
qed

qed
qed

qed
next case (NonD x61 x62) then show ?thesis using assms(5−7) by blast
next case (Executable x71 x72) then show ?thesis using assms(8−10) by blast
next case (Repeatable x71 x72) then show ?thesis using assms(11−13) by blast
qed

lemma step-induct
[case-names Empty Anything Res Copyable NonD-L NonD-R NonD Executable-L

Executable-R Executable
Repeatable-L Repeatable-R Repeatable Par-Norm Par-Par Par-Empty

Par-Nil Par-Single
Par]:

assumes P Empty
and P Anything
and

∧
a. P (Res a)

and
∧

x. P (Copyable x)
and

∧
x y. [[P x; P y; ¬ normalised x]] =⇒ P (NonD x y)

and
∧

x y. [[P x; P y; normalised x; ¬ normalised y]] =⇒ P (NonD x y)
and

∧
x y. [[P x; P y; normalised x; normalised y]] =⇒ P (NonD x y)

and
∧

x y. [[P x; P y; ¬ normalised x]] =⇒ P (Executable x y)
and

∧
x y. [[P x; P y; normalised x; ¬ normalised y]] =⇒ P (Executable x y)

and
∧

x y. [[P x; P y; normalised x; normalised y]] =⇒ P (Executable x y)
and

∧
x y. [[P x; P y; ¬ normalised x]] =⇒ P (Repeatable x y)

and
∧

x y. [[P x; P y; normalised x; ¬ normalised y]] =⇒ P (Repeatable x y)
and

∧
x y. [[P x; P y; normalised x; normalised y]] =⇒ P (Repeatable x y)

and
∧

xs. [[
∧

x. x ∈ set xs =⇒ P x; ∃ a. a ∈ set xs ∧ ¬ normalised a]] =⇒ P
(Parallel xs)

and
∧

xs. [[
∧

x. x ∈ set xs =⇒ P x; ∀ a. a ∈ set xs −→ normalised a; list-ex
is-Parallel xs]]

=⇒ P (Parallel xs)
and

∧
xs. [[

∧
x. x ∈ set xs =⇒ P x; ∀ a. a ∈ set xs −→ normalised a

; list-all (λx. ¬ is-Parallel x) xs; list-ex is-Empty xs]]
=⇒ P (Parallel xs)

and P (Parallel [])
and

∧
u. [[P u; normalised u; ¬ is-Parallel u; ¬ is-Empty u]] =⇒ P (Parallel

[u])

37

and
∧

v vb vc.
[[
∧

x. x ∈ set (v # vb # vc) =⇒ P x; ∀ a. a ∈ set (v # vb # vc) −→
normalised a

; list-all (λx. ¬ is-Parallel x) (v # vb # vc)
; list-all (λx. ¬ is-Empty x) (v # vb # vc)]]

=⇒ P (Parallel (v # vb # vc))
shows P x

proof (induct x)
case Empty then show ?case using assms by simp

next case Anything then show ?case using assms by simp
next case (Res x) then show ?case using assms by simp
next case (Copyable x) then show ?case using assms by simp
next

case (Parallel xs)
then show ?case
proof (cases list-ex (λx. ¬ normalised x) xs)

case True
then show ?thesis

using assms(14) by (metis Bex-set Parallel)
next

case not-norm: False
then show ?thesis
proof (cases list-ex is-Parallel xs)

case True
then show ?thesis

using Parallel assms(14 ,15) by blast
next

case not-par : False
then show ?thesis
proof (cases list-ex is-Empty xs)

case True
then show ?thesis

by (metis not-par Parallel assms(14 ,16) not-list-ex)
next

case not-empty: False
then show ?thesis
proof (cases xs rule: remdups-adj.cases)

case 1
then show ?thesis

by (simp add: Parallel assms(17))
next

case (2 x)
then show ?thesis

using Parallel assms(14 ,18) not-empty not-par by fastforce
next

case (3 x y xs)
then show ?thesis

by (metis Parallel assms(14 ,19) not-empty not-list-ex not-par)
qed

38

qed
qed

qed
next case (NonD x61 x62) then show ?case using assms(5−7) by blast
next case (Executable x71 x72) then show ?case using assms(8−10) by blast
next case (Repeatable x71 x72) then show ?case using assms(11−13) by blast
qed

Variant of induction with some relevant step results is also useful
lemma step-induct ′

[case-names Empty Anything Res Copyable NonD-L NonD-R NonD Executable-L
Executable-R Executable

Repeatable-L Repeatable-R Repeatable Par-Norm Par-Par Par-Empty
Par-Nil Par-Single

Par]:
assumes P Empty

and P Anything
and

∧
a. P (Res a)

and
∧

x. P (Copyable x)
and

∧
x y. [[P x; P y; ¬ normalised x; step (NonD x y) = NonD (step x) y]]

=⇒ P (NonD x y)
and

∧
x y. [[P x; P y; normalised x; ¬ normalised y; step (NonD x y) = NonD

x (step y)]]
=⇒ P (NonD x y)

and
∧

x y. [[P x ; P y; normalised x; normalised y; step (NonD x y) = NonD
x y]]

=⇒ P (NonD x y)
and

∧
x y. [[P x; P y; ¬ normalised x; step (Executable x y) = Executable (step

x) y]]
=⇒ P (Executable x y)

and
∧

x y. [[P x; P y; normalised x; ¬ normalised y
; step (Executable x y) = Executable x (step y)]]

=⇒ P (Executable x y)
and

∧
x y. [[P x; P y; normalised x; normalised y; step (Executable x y) =

Executable x y]]
=⇒ P (Executable x y)

and
∧

x y. [[P x; P y; ¬ normalised x; step (Repeatable x y) = Repeatable (step
x) y]]

=⇒ P (Repeatable x y)
and

∧
x y. [[P x; P y; normalised x; ¬ normalised y

; step (Repeatable x y) = Repeatable x (step y)]]
=⇒ P (Repeatable x y)

and
∧

x y. [[P x; P y; normalised x; normalised y; step (Repeatable x y) =
Repeatable x y]]

=⇒ P (Repeatable x y)
and

∧
xs. [[

∧
x. x ∈ set xs =⇒ P x; ∃ a. a ∈ set xs ∧ ¬ normalised a

; step (Parallel xs) = Parallel (map step xs)]]
=⇒ P (Parallel xs)

and
∧

xs. [[
∧

x. x ∈ set xs =⇒ P x; ∀ a. a ∈ set xs −→ normalised a; list-ex

39

is-Parallel xs;
step (Parallel xs) = Parallel (merge-one-parallel xs)]]

=⇒ P (Parallel xs)
and

∧
xs. [[

∧
x. x ∈ set xs =⇒ P x; ∀ a. a ∈ set xs −→ normalised a

; list-all (λx. ¬ is-Parallel x) xs; list-ex is-Empty xs
; step (Parallel xs) = Parallel (remove-one-empty xs)]]

=⇒ P (Parallel xs)
and P (Parallel [])
and

∧
u. [[P u; normalised u; ¬ is-Parallel u; ¬ is-Empty u; step (Parallel [u])

= u]]
=⇒ P (Parallel [u])

and
∧

v vb vc.
[[
∧

x. x ∈ set (v # vb # vc) =⇒ P x; ∀ a. a ∈ set (v # vb # vc) −→
normalised a

; list-all (λx. ¬ is-Parallel x) (v # vb # vc)
; list-all (λx. ¬ is-Empty x) (v # vb # vc)
; step (Parallel (v # vb # vc)) = Parallel (v # vb # vc)]]
=⇒ P (Parallel (v # vb # vc))

shows P x
proof (induct x rule: step-induct)

case Empty then show ?case using assms(1) by simp
next case Anything then show ?case using assms(2) by simp
next case (Res a) then show ?case using assms(3) by simp
next case (Copyable x) then show ?case using assms(4) by simp
next case (NonD-L x y) then show ?case using assms(5) by simp
next case (NonD-R x y) then show ?case using assms(6) by simp
next case (NonD x y) then show ?case using assms(7) by simp
next case (Executable-L x y) then show ?case using assms(8) by simp
next case (Executable-R x y) then show ?case using assms(9) by simp
next case (Executable x y) then show ?case using assms(10) by simp
next case (Repeatable-L x y) then show ?case using assms(11) by simp
next case (Repeatable-R x y) then show ?case using assms(12) by simp
next case (Repeatable x y) then show ?case using assms(13) by simp
next case (Par-Norm xs) then show ?case using assms(14) by (simp add:
Bex-set[symmetric] Bex-def)
next case (Par-Par xs) then show ?case using assms(15) by (simp add: Bex-set[symmetric]
Bex-def)
next

case (Par-Empty xs)
then show ?case

using assms(15 ,16) by (metis (mono-tags, lifting) list-ex-iff step.simps(8))
next case Par-Nil then show ?case using assms(17) by simp
next case (Par-Single u) then show ?case using assms(18) by simp
next

case (Par v vb vc)
then show ?case
proof (rule assms(19))

show
∧

x. x ∈ set (v # vb # vc) =⇒ x ∈ set (v # vb # vc)
by simp

40

show step (Parallel (v # vb # vc)) = Parallel (v # vb # vc)
using Par by (simp add: Ball-set[symmetric] Bex-set[symmetric])

qed
qed

Set of atoms remains unchanged by rewriting step
lemma set1-res-term-step [simp]:

set1-res-term (step x) = set1-res-term x
proof (induct x rule: step-induct ′)

case Empty then show ?case by simp
next case Anything then show ?case by simp
next case (Res a) then show ?case by simp
next case (Copyable x) then show ?case by simp
next case (NonD-L x y) then show ?case by simp
next case (NonD-R x y) then show ?case by simp
next case (NonD x y) then show ?case by simp
next case (Executable-L x y) then show ?case by simp
next case (Executable-R x y) then show ?case by simp
next case (Executable x y) then show ?case by simp
next case (Repeatable-L x y) then show ?case by simp
next case (Repeatable-R x y) then show ?case by simp
next case (Repeatable x y) then show ?case by simp
next case (Par-Norm xs) then show ?case by simp
next

case (Par-Par xs)
then show ?case

by (fastforce elim!: obtain-first-parallel simp add: merge-one-parallel-append)
next

case (Par-Empty xs)
then show ?case

by (fastforce elim!: obtain-first-empty simp add: remove-one-empty-append)
next case Par-Nil then show ?case by simp
next case (Par-Single u) then show ?case by simp
next case (Par v vb vc) then show ?case by simp
qed

lemma set2-res-term-step [simp]:
set2-res-term (step x) = set2-res-term x

proof (induct x rule: step-induct ′)
case Empty then show ?case by simp

next case Anything then show ?case by simp
next case (Res a) then show ?case by simp
next case (Copyable x) then show ?case by simp
next case (NonD-L x y) then show ?case by simp
next case (NonD-R x y) then show ?case by simp
next case (NonD x y) then show ?case by simp
next case (Executable-L x y) then show ?case by simp
next case (Executable-R x y) then show ?case by simp
next case (Executable x y) then show ?case by simp

41

next case (Repeatable-L x y) then show ?case by simp
next case (Repeatable-R x y) then show ?case by simp
next case (Repeatable x y) then show ?case by simp
next case (Par-Norm xs) then show ?case by simp
next

case (Par-Par xs)
then show ?case

by (fastforce elim!: obtain-first-parallel simp add: merge-one-parallel-append)
next

case (Par-Empty xs)
then show ?case

by (fastforce elim!: obtain-first-empty simp add: remove-one-empty-append)
next case Par-Nil then show ?case by simp
next case (Par-Single u) then show ?case by simp
next case (Par v vb vc) then show ?case by simp
qed

Resource term rewriting relation contains the step function graph. In other
words, the step function is a particular strategy implementing that rewriting.
lemma res-term-rewrite-contains-step:

res-term-rewrite x (step x)
proof (induct x rule: step-induct ′)

case Empty then show ?case by simp
next case Anything then show ?case by simp
next case (Res a) then show ?case by simp
next case (Copyable x) then show ?case by simp
next case (NonD-L x y) then show ?case by (simp add: res-term-rewrite.nondet)
next case (NonD-R x y) then show ?case by (simp add: res-term-rewrite.nondet)
next case (NonD x y) then show ?case by simp
next case (Executable-L x y) then show ?case by (simp add: res-term-rewrite.executable)
next case (Executable-R x y) then show ?case by (simp add: res-term-rewrite.executable)
next case (Executable x y) then show ?case by simp
next case (Repeatable-L x y) then show ?case by (simp add: res-term-rewrite.repeatable)
next case (Repeatable-R x y) then show ?case by (simp add: res-term-rewrite.repeatable)
next case (Repeatable x y) then show ?case by simp
next

case (Par-Norm xs)
then show ?case

by (simp add: Bex-set[symmetric] res-term-rewrite.intros(9) list.rel-map(2)
list-all2-same)
next

case (Par-Par xs)
moreover obtain a b c where xs = a @ [Parallel b] @ c and list-all (λx. ¬

is-Parallel x) a
using Par-Par(3) obtain-first-parallel by blast

moreover have res-term-rewrite (Parallel (a @ [Parallel b] @ c)) (Parallel (a
@ b @ c))

using res-term-rewrite.intros(7) .
ultimately show ?case

42

by (simp add: Bex-set[symmetric] merge-one-parallel-append)
next

case (Par-Empty xs)
moreover obtain a c where xs = a @ [Empty] @ c and list-all (λx. ¬ is-Empty

x) a
using Par-Empty(4) obtain-first-empty by blast

moreover have res-term-rewrite (Parallel (a @ [Empty] @ c)) (Parallel (a @
c))

using res-term-rewrite.intros(8) .
ultimately show ?case

by (simp add: Bex-set[symmetric] remove-one-empty-append)
next case Par-Nil then show ?case by (simp add: res-term-rewrite.intros(5))
next case (Par-Single u) then show ?case by (simp add: res-term-rewrite.intros(6))
next case (Par v vb vc) then show ?case by simp
qed

Resource term being normalised is the same as the step not changing it
lemma normalised-is-step-id:

normalised x = (step x = x)
proof

show normalised x =⇒ step x = x
by (metis res-term-rewrite-contains-step res-term-rewrite-normalised)
show step x = x =⇒ normalised x
proof (induct x rule: step-induct ′)

case Empty then show ?case by simp
next case Anything then show ?case by simp
next case (Res a) then show ?case by simp
next case (Copyable x) then show ?case by simp
next case (NonD-L x y) then show ?case by simp
next case (NonD-R x y) then show ?case by simp
next case (NonD x y) then show ?case by simp
next case (Executable-L x y) then show ?case by simp
next case (Executable-R x y) then show ?case by simp
next case (Executable x y) then show ?case by simp
next case (Repeatable-L x y) then show ?case by simp
next case (Repeatable-R x y) then show ?case by simp
next case (Repeatable x y) then show ?case by simp
next case (Par-Norm xs) then show ?case by simp (metis map-eq-conv map-ident)
next case (Par-Par xs) then show ?case by (simp add: merge-one-parallel-distinct)
next case (Par-Empty xs) then show ?case by (simp add: remove-one-empty-distinct)
next case Par-Nil then show ?case by simp
next case (Par-Single u) then show ?case by simp
next case (Par v vb vc) then show ?case by (simp add: Ball-set[symmetric])
qed

qed

So, for normalised terms we can drop any step applied to them
lemma step-normalised [simp]:

normalised x =⇒ step x = x

43

using normalised-is-step-id by (rule iffD1)

Rewriting step never increases the term size
lemma step-not-increase-size:

size-res-term f g (step x) ≤ size-res-term f g x
using res-term-rewrite-not-increase-size res-term-rewrite-contains-step by blast

Every resource is equivalent to itself after the step
lemma res-term-equiv-step:

x ∼ step x
using res-term-rewrite-contains-step res-term-rewrite-imp-equiv by blast

Normalisation step commutes with the resource term map
lemma step-map:

map-res-term f g (step x) = step (map-res-term f g x)
proof (induct x rule: step-induct ′)

case Empty then show ?case by simp
next case Anything then show ?case by simp
next case (Res a) then show ?case by simp
next case (Copyable x) then show ?case by simp
next case (NonD-L x y) then show ?case by (simp add: normalised-map)
next case (NonD-R x y) then show ?case by (simp add: normalised-map)
next case (NonD x y) then show ?case by simp
next case (Executable-L x y) then show ?case by (simp add: normalised-map)
next case (Executable-R x y) then show ?case by (simp add: normalised-map)
next case (Executable x y) then show ?case by simp
next case (Repeatable-L x y) then show ?case by (simp add: normalised-map)
next case (Repeatable-R x y) then show ?case by (simp add: normalised-map)
next case (Repeatable x y) then show ?case by simp
next

case (Par-Norm xs)
then show ?case

by (fastforce simp add: Bex-set[symmetric] normalised-map)
next

case (Par-Par xs)
then show ?case
by (fastforce simp add: Bex-set[symmetric] normalised-map merge-one-parallel-map)

next
case (Par-Empty xs)
then show ?case

by (simp add: Bex-set[symmetric] normalised-map remove-one-empty-map)
(metis Ball-set)

next case Par-Nil then show ?case by simp
next case (Par-Single u) then show ?case by (simp add: normalised-map)
next

case (Par v vb vc)
then show ?case

by (fastforce simp add: Bex-set[symmetric] Ball-set normalised-map)
qed

44

Because it implements the rewriting relation, the non-increasing of bound
extends to the step
lemmas res-term-rewrite-bound-step-non-increase =

res-term-rewrite-non-increase-bound[OF res-term-rewrite-contains-step]

On un-normalised terms, the step actually strictly decreases the bound.
While this should also be true of the rewriting relation it implements, the
stricter way the step proceeds makes this proof more tractable.
lemma res-term-rewrite-bound-step-decrease:
¬ normalised x =⇒ res-term-rewrite-bound (step x) < res-term-rewrite-bound x

proof (induct x rule: step-induct ′)
case Empty then show ?case by simp

next case Anything then show ?case by simp
next case (Res a) then show ?case by simp
next case (Copyable x) then show ?case by simp
next case (NonD-L x y) then show ?case by simp
next case (NonD-R x y) then show ?case by simp
next case (NonD x y) then show ?case by simp
next case (Executable-L x y) then show ?case by simp
next case (Executable-R x y) then show ?case by simp
next case (Executable x y) then show ?case by simp
next case (Repeatable-L x y) then show ?case by simp
next case (Repeatable-R x y) then show ?case by simp
next case (Repeatable x y) then show ?case by simp
next

case (Par-Norm xs)
then have (

∑
x←xs. res-term-rewrite-bound (step x)) < sum-list (map res-term-rewrite-bound

xs)
by (meson res-term-rewrite-bound-step-non-increase sum-list-mono-one-strict)

then show ?case
using Par-Norm.hyps by (simp add: comp-def)

next
case (Par-Par xs)
then show ?case

by (fastforce elim: obtain-first-parallel simp add: merge-one-parallel-append)
next

case (Par-Empty xs)
then show ?case

by (fastforce elim: obtain-first-empty simp add: remove-one-empty-append)
next case Par-Nil then show ?case by simp
next case (Par-Single u) then show ?case by simp
next case (Par v vb vc) then show ?case using normalised-is-step-id by blast
qed

4.4 Normalisation Procedure

Rewrite a resource term until normalised
function normal-rewr :: (′a, ′b) res-term ⇒ (′a, ′b) res-term

45

where normal-rewr x = (if normalised x then x else normal-rewr (step x))
by pat-completeness auto

This terminates with the rewriting bound as measure, because the step keeps
decreasing it
termination normal-rewr

using res-term-rewrite-bound-step-decrease
by (relation Wellfounded.measure res-term-rewrite-bound, auto)

We remove the normalisation procedure definition from the simplifier, be-
cause it can loop
lemmas [simp del] = normal-rewr .simps

However, the terminal case can be safely used for simplification
lemma normalised-normal-rewr [simp]:

normalised x =⇒ normal-rewr x = x
by (simp add: normal-rewr .simps)

Normalisation produces actually normalised terms
lemma normal-rewr-normalised:

normalised (normal-rewr x)
by (induct x rule: normal-rewr .induct, simp add: normal-rewr .simps)

Normalisation is idempotent
lemma normal-rewr-idempotent [simp]:

normal-rewr (normal-rewr x) = normal-rewr x
using normal-rewr-normalised normalised-normal-rewr by blast

Normalisation absorbs rewriting step
lemma normal-rewr-step:

normal-rewr x = normal-rewr (step x)
by (cases normalised x) (simp-all add: normal-rewr .simps)

Normalisation leaves leaf terms unchanged
lemma normal-rewr-leaf :

normal-rewr Empty = Empty
normal-rewr Anything = Anything
normal-rewr (Res x) = Res x
normal-rewr (Copyable x) = Copyable x
by simp-all

Normalisation passes through NonD, Executable and Repeatable constructors
lemma normal-rewr-nondet:

normal-rewr (NonD x y) = NonD (normal-rewr x) (normal-rewr y)
proof (induct x rule: normal-rewr .induct)

case x: (1 x)
then show ?case

46

proof (induct y rule: normal-rewr .induct)
case y: (1 y)
then show ?case

by (metis normal-rewr-step normalised.simps(6) normalised-normal-rewr
step.simps(5))

qed
qed
lemma normal-rewr-executable:

normal-rewr (Executable x y) = Executable (normal-rewr x) (normal-rewr y)
proof (induct x rule: normal-rewr .induct)

case x: (1 x)
then show ?case
proof (induct y rule: normal-rewr .induct)

case y: (1 y)
then show ?case

by (metis normal-rewr-step normalised.simps(7) normalised-normal-rewr
step.simps(6))

qed
qed
lemma normal-rewr-repeatable:

normal-rewr (Repeatable x y) = Repeatable (normal-rewr x) (normal-rewr y)
proof (induct x rule: normal-rewr .induct)

case x: (1 x)
then show ?case
proof (induct y rule: normal-rewr .induct)

case y: (1 y)
then show ?case

by (metis normal-rewr-step normalised.simps(8) normalised-normal-rewr
step.simps(7))

qed
qed

Normalisation simplifies empty Parallel terms
lemma normal-rewr-parallel-empty:

normal-rewr (Parallel []) = Empty
by (simp add: normal-rewr .simps)

Every resource is equivalent to its normalisation
lemma res-term-equiv-normal-rewr :

x ∼ normal-rewr x
proof (induct x rule: normal-rewr .induct)

case (1 x)
then show ?case
proof (cases normalised x)

case True
then show ?thesis by (simp add: normal-rewr .simps)

next
case False
then have step x ∼ normal-rewr (step x)

47

using 1 by simp
then have x ∼ normal-rewr (step x)

using res-term-equiv.trans res-term-equiv-step by blast
then show ?thesis

by (simp add: normal-rewr .simps)
qed

qed

And, by transitivity, resource terms with equal normalisations are equivalent
lemma normal-rewr-imp-equiv:

normal-rewr x = normal-rewr y =⇒ x ∼ y
using res-term-equiv-normal-rewr [of x] res-term-equiv-normal-rewr [of y, symmet-

ric]
by (metis res-term-equiv.trans)

Resource normalisation commutes with the resource map
lemma normal-rewr-map:

map-res-term f g (normal-rewr x) = normal-rewr (map-res-term f g x)
proof (induct x rule: normal-rewr .induct)

case (1 x)
then show ?case
proof (cases normalised x)

case True
then show ?thesis

by (simp add: normalised-map normal-rewr .simps)
next

case False
have map-res-term f g (normal-rewr x) = map-res-term f g (normal-rewr (step

x))
using False by (simp add: normal-rewr .simps)

also have ... = normal-rewr (map-res-term f g (step x))
using 1 False by simp

also have ... = normal-rewr (step (map-res-term f g x))
using step-map[of f g x] by simp

also have ... = normal-rewr (map-res-term f g x)
using False by (simp add: normalised-map normal-rewr .simps)

finally show ?thesis .
qed

qed

Normalisation is contained in transitive closure of the rewriting
lemma res-term-rewrite-tranclp-normal-rewr :

res-term-rewrite++ x (normal-rewr x)
proof (induct x rule: normal-rewr .induct)

case (1 x)
then show ?case
proof (cases normalised x)

case True
then show ?thesis

48

by (simp add: tranclp.r-into-trancl)
next

case False
then show ?thesis

using 1 res-term-rewrite-contains-step tranclp-into-tranclp2 normal-rewr-step
by metis

qed
qed

4.5 As Abstract Rewriting System

The normalisation procedure described above implements an abstract rewrit-
ing system. Their theory allows us to prove that equality of normal forms is
the same as term equivalence by reasoning about how equivalent terms are
joinable by the rewriting.

4.5.1 Rewriting System Properties

In the ARS mechanisation normal forms are terminal elements of the rewrit-
ing relation, while in our case they are fixpoints. To interface with that
property, we use the irreflexive graph of step.
definition step-irr :: (′a, ′b) res-term rel

where step-irr = {(x,y). x 6= y ∧ step x = y}

lemma step-irr-inI :
x 6= step x =⇒ (x, step x) ∈ step-irr
by (simp add: step-irr-def)

Graph of normal-rewr is in the transitive-reflexive closure of irreflexive step
lemma normal-rewr-in-step-rtrancl:
(x, normal-rewr x) ∈ step-irr∗

proof (induct x rule: normal-rewr .induct)
case (1 x)
then show ?case
proof (cases normalised x)

case True
then show ?thesis by simp

next
case False
moreover have (x, step x) ∈ step-irr

using False normalised-is-step-id by (fastforce simp add: step-irr-def)
ultimately show ?thesis

by (metis 1 converse-rtrancl-into-rtrancl normal-rewr .elims)
qed

qed

Normal forms of irreflexive step are exactly the normalised terms

49

lemma step-nf-is-normalised:
NF step-irr = {x. normalised x}

proof safe
fix x :: (′a, ′b) res-term
show x ∈ NF step-irr =⇒ normalised x

by (metis NF-not-suc normal-rewr-in-step-rtrancl normal-rewr-normalised)
show normalised x =⇒ x ∈ NF step-irr

by (simp add: NF-I step-irr-def)
qed

As such, every value of normal-rewr is a normal form of irreflexive step
lemma normal-rewr-NF [simp]:

normal-rewr x ∈ NF step-irr
by (simp add: normal-rewr-normalised step-nf-is-normalised)

Terms related by reflexive-transitive step are equivalent
lemma step-rtrancl-equivalent:
(a,b) ∈ step-irr∗ =⇒ a ∼ b

proof (induct rule: rtrancl-induct)
case base
then show ?case by simp

next
case (step y z)
then show ?case
by (metis (mono-tags, lifting) Product-Type.Collect-case-prodD fst-conv res-term-equiv.refl

res-term-equiv.trans-both snd-conv res-term-equiv-step step-irr-def)
qed

Irreflexive step is locally and strongly confluent because it’s part of a function
lemma step-irr-locally-confluent:

WCR step-irr
unfolding step-irr-def by standard fastforce

lemma step-irr-strongly-confluent:
strongly-confluent step-irr
unfolding step-irr-def by standard fastforce

Therefore it is Church-Rosser and has unique normal forms
lemma step-CR: CR step-irr
using step-irr-strongly-confluent strong-confluence-imp-CR CR-imp-UNC CR-imp-UNF

by blast
lemma step-UNC : UNC step-irr

using step-CR CR-imp-UNC by blast
lemma step-UNF : UNF step-irr

using step-CR CR-imp-UNF by blast

Irreflexive step is strongly normalising because it decreases the well-founded
rewriting bound

50

lemma step-SN :
SN step-irr
unfolding SN-def
using SN-onI

proof
fix x :: (′a, ′b) res-term and f
show [[f 0 ∈ {x}; ∀ i. (f i, f (Suc i)) ∈ step-irr]] =⇒ False

— Irreflexivity of step is essential here to get the needed contradiction
— Strong induction is needed because bound may decrease by more than 1

proof (induct res-term-rewrite-bound x arbitrary: f x rule: less-induct)
case less
then show ?case

using less(1)[where x = step x and f = λx. f (Suc x)]
by (metis (mono-tags, lifting) case-prodD mem-Collect-eq normalised-is-step-id

res-term-rewrite-bound-step-decrease singleton-iff step-irr-def)
qed

qed

Normalisability relation of irreflexive step is exactly the graph of normal-rewr
lemma step-normalizability-normal-rewr :

step-irr ! = {(x, y). y = normal-rewr x}
proof safe

fix a b :: (′a, ′b) res-term
assume (a, b) ∈ step-irr !

then show b = normal-rewr a
by (meson UNF-onE UNIV-I normal-rewr-NF normal-rewr-in-step-rtrancl nor-

malizability-I step-UNF)
next

fix a :: (′a, ′b) res-term
show (a, normal-rewr a) ∈ step-irr !

using normal-rewr-NF normal-rewr-in-step-rtrancl by blast
qed

The unique normal form, the-NF in the ARS language, is normal-rewr
lemma step-irr-the-NF [simp]:

the-NF step-irr x = normal-rewr x
by (meson UNF-onE UNIV-I normal-rewr-NF normal-rewr-in-step-rtrancl nor-

malizability-I
step-CR step-SN step-UNF the-NF)

Terms related by reflexive-transitive step have the same normal form
lemma step-rtrancl-eq-normal:
(x,y) ∈ step-irr∗ =⇒ normal-rewr x = normal-rewr y
by (metis normal-rewr-NF normal-rewr-in-step-rtrancl rtrancl-trans some-NF-UNF

step-UNF)

4.5.2 NonD Joinability

Two NonD terms are joinable if their corresponding children are joinable

51

lemma step-rtrancl-nondL:
(x,u) ∈ step-irr∗ =⇒ (NonD x y, NonD u y) ∈ step-irr∗

proof (induct rule: rtrancl-induct)
case base
then show ?case by simp

next
case (step y z)
then show ?case

by (fastforce intro: rtrancl-into-rtrancl simp add: step-irr-def)
qed

lemma step-rtrancl-nondR:
[[(y,v) ∈ step-irr∗; normalised x]] =⇒ (NonD x y, NonD x v) ∈ step-irr∗

proof (induct rule: rtrancl-induct)
case base
then show ?case by simp

next
case (step y z)
then show ?case

by (fastforce intro: rtrancl-into-rtrancl simp add: step-irr-def)
qed

lemma step-rtrancl-nond:
[[(x,u) ∈ step-irr∗; normalised u; (y,v) ∈ step-irr∗]] =⇒ (NonD x y, NonD u v)
∈ step-irr∗

using step-rtrancl-nondL step-rtrancl-nondR by (metis rtrancl-trans)

lemma step-join-apply-nondet:
assumes (x,u) ∈ step-irr↓ and (y,v) ∈ step-irr↓ shows (NonD x y, NonD u v)
∈ step-irr↓

proof (rule joinI)
have (NonD x y, NonD (normal-rewr x) y) ∈ step-irr∗

using step-rtrancl-nondL normal-rewr-in-step-rtrancl by metis
also have (NonD (normal-rewr x) y, NonD (normal-rewr x) (normal-rewr y)) ∈

step-irr∗

using step-rtrancl-nondR normal-rewr-in-step-rtrancl normal-rewr-normalised
by metis

finally show (NonD x y, NonD (normal-rewr x) (normal-rewr y)) ∈ step-irr∗ .

have (NonD u v, NonD (normal-rewr u) v) ∈ step-irr∗

using step-rtrancl-nondL normal-rewr-in-step-rtrancl by metis
also have (NonD (normal-rewr u) v, NonD (normal-rewr u) (normal-rewr v)) ∈

step-irr∗

using step-rtrancl-nondR normal-rewr-in-step-rtrancl normal-rewr-normalised
by metis

also have
(NonD (normal-rewr u) (normal-rewr v), NonD (normal-rewr x) (normal-rewr

y)) ∈ step-irr∗

52

using assms joinD step-rtrancl-eq-normal rtrancl.rtrancl-refl by metis
finally show (NonD u v, NonD (normal-rewr x) (normal-rewr y)) ∈ step-irr∗ .

qed

4.5.3 Executable and Repeatable Joinability

Two (repeatably) executable resource terms are joinable if their correspond-
ing children are joinable
lemma step-join-apply-executable:
[[(x,u) ∈ step-irr↓; (y,v) ∈ step-irr↓]] =⇒ (Executable x y, Executable u v) ∈

step-irr↓

using joinI [where c = Executable (normal-rewr x) (normal-rewr y)] normal-rewr-executable
by (metis (mono-tags, lifting) joinD normal-rewr-in-step-rtrancl step-rtrancl-eq-normal)

lemma step-join-apply-repeatable:
[[(x,u) ∈ step-irr↓; (y,v) ∈ step-irr↓]] =⇒ (Repeatable x y, Repeatable u v) ∈

step-irr↓

using joinI [where c = Repeatable (normal-rewr x) (normal-rewr y)] normal-rewr-repeatable
by (metis (mono-tags, lifting) joinD normal-rewr-in-step-rtrancl step-rtrancl-eq-normal)

4.5.4 Parallel Joinability

From two lists of joinable terms we can obtain a list of common destination
terms
lemma list-all2-join:

assumes list-all2 (λx y. (x, y) ∈ R↓) xs ys
obtains cs

where list-all2 (λx c. (x, c) ∈ R∗) xs cs
and list-all2 (λy c. (y, c) ∈ R∗) ys cs

using assms by (induct rule: list-all2-induct ; blast)

Every parallel resource term with at least two elements is related to a parallel
resource term with the contents normalised
lemma step-rtrancl-map-normal:
(Parallel xs, Parallel (map normal-rewr xs)) ∈ step-irr∗

proof (induct sum-list (map res-term-rewrite-bound xs) arbitrary: xs rule: less-induct)
case less
then show ?case
proof (cases list-all normalised xs)

case True
then show ?thesis

by (metis Ball-set map-idI normalised-normal-rewr rtrancl.rtrancl-refl)
next

case False
then have unnorm: ¬ normalised (Parallel xs)

by simp

have step: step (Parallel xs) = Parallel (map step xs)

53

using False by (simp add: not-list-all)
moreover have Parallel xs 6= Parallel (map step xs)

using unnorm by (metis calculation normalised-is-step-id)
ultimately have (Parallel xs, Parallel (map step xs)) ∈ step-irr

using step-irr-inI by metis
moreover have (Parallel (map step xs), Parallel (map normal-rewr (map step

xs))) ∈ step-irr∗

using less[of map step xs] False step unnorm
by (smt (verit, ccfv-threshold) ab-semigroup-add-class.add-ac(1)

add-mono-thms-linordered-field(3) dual-order .refl length-map not-less-eq
plus-1-eq-Suc

res-term-rewrite-bound.simps(5) res-term-rewrite-bound-step-decrease)
moreover have map normal-rewr (map step xs) = map normal-rewr xs

by (simp ; safe ; rule normal-rewr-step[symmetric])
ultimately show ?thesis

by (metis (no-types, lifting) converse-rtrancl-into-rtrancl)
qed

qed

Two lists of joinable terms have the same normal forms
lemma list-all2-join-normal-eq:

list-all2 (λu v. (u, v) ∈ step-irr↓) xs ys =⇒ map normal-rewr xs = map nor-
mal-rewr ys
proof (induct rule: list-all2-induct)

case Nil
then show ?case by simp

next
case (Cons x xs y ys)
then show ?case by simp (metis (no-types, lifting) joinD step-rtrancl-eq-normal)

qed

Parallel resource terms whose contents are joinable are themselves joinable
lemma step-join-apply-parallel:

assumes list-all2 (λu v. (u,v) ∈ step-irr↓) xs ys
shows (Parallel xs, Parallel ys) ∈ step-irr↓

by (metis assms joinI list-all2-join-normal-eq step-rtrancl-map-normal)

Removing all Empty terms absorbs the removal of one
lemma remove-all-empty-subsumes-remove-one:

remove-all-empty (remove-one-empty xs) = remove-all-empty xs
proof (induct xs)

case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case

by (cases a ; fastforce)
qed

54

For any list with an Empty term, removing one strictly decreases their count
lemma remove-one-empty-count-if-decrease:

list-ex is-Empty xs =⇒ count-if is-Empty (remove-one-empty xs) < count-if
is-Empty xs
proof (induct xs)

case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case

by (cases a ; simp)
qed

Removing all Empty terms from children of a Parallel term, that are already
all normalised and none of which are nested Parallel terms, is related by
transitive and reflexive closure of irreflexive step.
lemma step-rtrancl-remove-all-empty:

assumes
∧

x. x ∈ set xs =⇒ normalised x
and ¬ list-ex is-Parallel xs

shows (Parallel xs, Parallel (remove-all-empty xs)) ∈ step-irr∗

using assms
proof (induct count-if is-Empty xs arbitrary: xs rule: less-induct)

case less
then show ?case
proof (cases list-ex is-Empty xs)

case True
then have a: step (Parallel xs) = Parallel (remove-one-empty xs)

using less by (metis Bex-set step.simps(8))
moreover have b: count-if is-Empty (remove-one-empty xs) < count-if is-Empty

xs
using True by (rule remove-one-empty-count-if-decrease)

moreover have c:
∧

x. x ∈ set (remove-one-empty xs) =⇒ normalised x
using remove-one-empty-subset less(2) by fast

moreover have ¬ list-ex is-Parallel (remove-one-empty xs)
using remove-one-empty-subset less(3) not-list-ex
by (metis (mono-tags, lifting) Ball-set)

ultimately show ?thesis
using less remove-all-empty-subsumes-remove-one
by (metis converse-rtrancl-into-rtrancl step-irr-inI)

next
case False
then show ?thesis

by (simp add: joinI-right remove-all-empty-none)
qed

qed

After merging all Parallel elements of a list of normalised terms, there remain
no more Parallel terms in it
lemma merge-all-parallel-map-normal-result:

55

assumes
∧

x. x ∈ set xs =⇒ normalised x
shows ¬ list-ex is-Parallel (merge-all-parallel xs)

using assms merge-all-parallel-result normalised.simps(5) not-list-ex by blast

For any list with a Parallel term, removing one strictly decreases their count
if no element contains further nested Parallel terms within it
lemma merge-one-parallel-count-if-decrease:

assumes list-ex is-Parallel xs
and

∧
y ys. [[y ∈ set xs; y = Parallel ys]] =⇒ ¬ list-ex is-Parallel ys

shows count-if is-Parallel (merge-one-parallel xs) < count-if is-Parallel xs
using assms

proof (induct xs)
case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case by (cases a) (simp-all add: count-if-0-conv)

qed

Merging all Parallel terms absorbs the merging of one if no element contains
further nested Parallel terms within it
lemma merge-all-parallel-subsumes-merge-one:

assumes
∧

y ys. [[y ∈ set xs; y = Parallel ys]] =⇒ ¬ list-ex is-Parallel ys
shows merge-all-parallel (merge-one-parallel xs) = merge-all-parallel xs

using assms
proof (induct xs)

case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case
proof (cases a)

case Empty then show ?thesis using Cons by simp
next case Anything then show ?thesis using Cons by simp
next case (Res x3) then show ?thesis using Cons by simp
next case (Copyable x4) then show ?thesis using Cons by simp
next

case (Parallel x5)
then show ?thesis

using Cons by (simp add: merge-all-parallel-append merge-all-parallel-none)
next case (NonD x61 x62) then show ?thesis using Cons by simp
next case (Executable x71 x72) then show ?thesis using Cons by simp
next case (Repeatable x81 x82) then show ?thesis using Cons by simp
qed

qed

Merging one Parallel term in a list of normalised terms keeps them nor-
malised
lemma merge-one-parallel-preserve-normalised:

56

[[
∧

x. x ∈ set xs =⇒ normalised x; a ∈ set (merge-one-parallel xs)]] =⇒ normalised
a
proof (induct xs)

case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case by (cases a ; simp ; (presburger | metis normalised-parallel-children))

qed

Merging all Parallel terms in a list of normalised terms keeps them nor-
malised
lemma merge-all-parallel-preserve-normalised:
[[
∧

x. x ∈ set xs =⇒ normalised x; a ∈ set (merge-all-parallel xs)]] =⇒ normalised
a
proof (induct xs)

case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case by (cases a ; simp ; (presburger | metis normalised-parallel-children))

qed

Merging all Parallel terms from children of a Parallel term, that are already
all normalised, is related by transitive and reflexive closure of irreflexive
step.
lemma step-rtrancl-merge-all-parallel:

assumes
∧

x. x ∈ set xs =⇒ normalised x
shows (Parallel xs, Parallel (merge-all-parallel xs)) ∈ step-irr∗

using assms
proof (induct count-if is-Parallel xs arbitrary: xs rule: less-induct)

case less
then show ?case
proof (cases list-ex is-Parallel xs)

case False
then show ?thesis

using merge-all-parallel-none by (metis rtrancl.rtrancl-refl)
next

case True
then have step (Parallel xs) = Parallel (merge-one-parallel xs)

using less by (metis Bex-set step.simps(8))
moreover have

∧
x. x ∈ set (merge-one-parallel xs) =⇒ normalised x

using merge-one-parallel-preserve-normalised less(2) by blast
moreover have count-if is-Parallel (merge-one-parallel xs) < count-if is-Parallel

xs
using less(2) True merge-one-parallel-count-if-decrease normalised.simps(5)

not-list-ex
by blast

ultimately show ?thesis

57

using less merge-all-parallel-subsumes-merge-one
by (metis converse-rtrancl-into-rtrancl normalised.simps(5) not-list-ex step-irr-inI)

qed
qed

Thus, there is a general rewriting path that Parallel terms take
lemma step-rtrancl-parallel:

(Parallel xs, Parallel (remove-all-empty (merge-all-parallel (map normal-rewr
xs)))) ∈ step-irr∗

proof −
have (Parallel xs, Parallel (map normal-rewr xs)) ∈ step-irr∗

by (rule step-rtrancl-map-normal)
also have
(Parallel (map normal-rewr xs), Parallel (merge-all-parallel (map normal-rewr

xs)))
∈ step-irr∗

by (metis ex-map-conv normal-rewr-normalised step-rtrancl-merge-all-parallel)
also have (Parallel (merge-all-parallel (map normal-rewr xs)),

Parallel (remove-all-empty (merge-all-parallel (map normal-rewr xs))))
∈ step-irr∗

using merge-all-parallel-map-normal-result merge-all-parallel-preserve-normalised
normal-rewr-normalised step-rtrancl-remove-all-empty

by (metis (mono-tags, lifting) imageE list.set-map)
finally show ?thesis .

qed

4.5.5 Other Helpful Lemmas

For Church-Rosser strongly normalising rewriting systems, joinability is
transitive
lemma CR-SN-join-trans:

assumes CR R
and SN R
and (x, y) ∈ R↓

and (y, z) ∈ R↓

shows (x, z) ∈ R↓

proof −
obtain a where a: (x, a) ∈ R∗ (y, a) ∈ R∗

using assms(3) joinE by metis
then have the-NF R y = the-NF R a

using assms(1 ,2) the-NF-steps by metis
moreover obtain b where b: (y, b) ∈ R∗ (z, b) ∈ R∗

using assms(4) joinE by metis
then have the-NF R y = the-NF R b

using assms(1 ,2) the-NF-steps by metis
ultimately show ?thesis

using assms(1 ,2) a b by (meson CR-join-right-I joinI join-rtrancl-join)
qed

58

More generally, for such systems, two joinable pairs can be bridged by a
third
lemma CR-SN-join-both:
[[CR R; SN R; (a, b) ∈ R↓; (x, y) ∈ R↓; (b, y) ∈ R↓]] =⇒ (a, x) ∈ R↓

by (meson CR-SN-join-trans join-sym)

With irreflexive step being one such rewriting system
lemmas step-irr-join-trans = CR-SN-join-trans[OF step-CR step-SN]
lemmas step-irr-join-both = CR-SN-join-both[OF step-CR step-SN]

Parallel term with no work left in children normalises in three possible ways
lemma normal-rewr-parallel-cases:

assumes ∀ x. x ∈ set xs −→ normalised x
and ¬ list-ex is-Empty xs
and ¬ list-ex is-Parallel xs

obtains
(Parallel) normalised (Parallel xs) and normal-rewr (Parallel xs) = Parallel

xs
| (Empty) xs = [] and normal-rewr (Parallel xs) = Empty
| (Single) a where xs = [a] and normal-rewr (Parallel xs) = a

proof (cases xs rule: remdups-adj.cases)
case 1
then show ?thesis using that normal-rewr-parallel-empty by fastforce

next
case (2 x)
then have normal-rewr (Parallel [x]) = step (Parallel [x])

using assms by (subst normal-rewr .simps) simp
then show ?thesis

using that assms 2 by simp
next

case (3 x y xs)
then show ?thesis

using assms that
by (metis normal-rewr .simps normalised-parallelise parallelise.simps(3))

qed

For a list of already normalised terms with no Empty or Parallel terms, the
normalisation procedure acts like parallel-parts followed by parallelise. It
only does simplifications related to the number of elements.
lemma normal-rewr-parallelise:

assumes ∀ x. x ∈ set xs −→ normalised x
and ¬ list-ex is-Empty xs
and ¬ list-ex is-Parallel xs

shows normal-rewr (Parallel xs) = parallelise (parallel-parts (Parallel xs))
proof −

show ?thesis
using assms

proof (cases rule: normal-rewr-parallel-cases)

59

case Parallel
then show ?thesis

using parallel-parts-no-empty-parallel assms
by (metis list-obtain-2 normalised.simps(5) parallelise.simps(3))

next case Empty then show ?thesis by simp
next case (Single a) then show ?thesis using assms by (cases a ; simp)
qed

qed

Removing all Empty terms has no effect on number of Parallel terms
lemma parallel-remove-all-empty:

list-ex is-Parallel (remove-all-empty xs) = list-ex is-Parallel xs
proof (induct xs)

case Nil then show ?case by simp
next case (Cons a xs) then show ?case by (cases a) simp-all
qed

Removing all Empty terms is idempotent because there are no Empty terms
to remove on the second pass
lemma remove-all-empty-idempotent:

shows remove-all-empty (remove-all-empty xs) = remove-all-empty xs
by (induct xs) simp-all

Every Parallel term rewrites to the parallelisation of normalised children
with all Empty terms removed and all Parallel terms merged
lemma normal-rewr-to-parallelise:

normal-rewr (Parallel xs)
= parallelise (remove-all-empty (merge-all-parallel (map normal-rewr xs)))

proof −
have

normal-rewr (Parallel xs)
= normal-rewr (Parallel (remove-all-empty (merge-all-parallel (map normal-rewr

xs))))
using step-rtrancl-parallel step-rtrancl-eq-normal by metis

also have ...
= parallelise (parallel-parts (Parallel

(remove-all-empty (merge-all-parallel (map normal-rewr xs)))))
using merge-all-parallel-preserve-normalised normal-rewr-parallelise parallel-remove-all-empty
using merge-all-parallel-map-normal-result remove-all-empty-result normal-rewr-normalised
by (smt (verit, ccfv-threshold) imageE list.set-map remove-all-empty-subset)

also have ... = parallelise (remove-all-empty (merge-all-parallel (map normal-rewr
xs)))

using parallel-parts-no-empty-parallel parallel-remove-all-empty
using merge-all-parallel-map-normal-result remove-all-empty-result normal-rewr-normalised
by (metis (mono-tags, lifting) imageE list.set-map)

finally show ?thesis .
qed

Parallel term that normalises to Empty must have had no children left after

60

normalising them, merging Parallel terms and removing Empty terms
lemma normal-rewr-to-empty:

assumes normal-rewr (Parallel xs) = Empty
shows remove-all-empty (merge-all-parallel (map normal-rewr xs)) = []

using assms normal-rewr-to-parallelise parallelise-to-empty-eq remove-all-empty-result
by (metis list-ex-simps(1) res-term.disc(19))

Parallel term that normalises to another Parallel must have had those chil-
dren left after normalising its own, merging Parallel terms and removing
Empty terms
lemma normal-rewr-to-parallel:

assumes normal-rewr (Parallel xs) = Parallel ys
shows remove-all-empty (merge-all-parallel (map normal-rewr xs)) = remove-all-empty

ys
proof −
have ¬ list-ex is-Parallel (remove-all-empty (merge-all-parallel (map normal-rewr

xs)))
using merge-all-parallel-map-normal-result normal-rewr-normalised parallel-remove-all-empty
by (metis (mono-tags, lifting) imageE list.set-map)

then have remove-all-empty (merge-all-parallel (map normal-rewr xs)) = ys
by (metis assms normal-rewr-to-parallelise normal-rewr-normalised normalised-parallel-parts-eq

parallel-parts-no-empty-parallel parallel-parts-parallelise-eq remove-all-empty-result)
then show ?thesis

using assms remove-all-empty-idempotent by metis
qed

Parallel that normalises to anything else must have had that as the only
term left after normalising its own, merging Parallel terms and removing
Empty terms
lemma normal-rewr-to-other :

assumes normal-rewr (Parallel xs) = a
and ¬ is-Empty a
and ¬ is-Parallel a

shows remove-all-empty (merge-all-parallel (map normal-rewr xs)) = [a]
using assms by (simp add: normal-rewr-to-parallelise parallelise-to-single-eq)

4.5.6 Equivalent Term Joinability

Equivalent resource terms are joinable by irreflexive step
lemma res-term-equiv-joinable:

x ∼ y =⇒ (x, y) ∈ step-irr↓

proof (induct rule: res-term-equiv.induct)
case empty then show ?case by blast

next case anything then show ?case by blast
next case (res x) then show ?case by blast
next case (copyable x) then show ?case by blast
next

61

case nil
then show ?case

by (metis joinI-left normal-rewr-in-step-rtrancl normal-rewr-parallel-empty)
next

case (singleton a)
then show ?case
proof (induct res-term-rewrite-bound a arbitrary: a rule: less-induct)

case less
then show ?case

proof (cases normalised a)
case True
then show ?thesis
proof (cases a)

case Empty
moreover have (Parallel [Empty], Empty) ∈ step-irr∗

proof −
have step (Parallel [Empty]) = Parallel []

by simp
then show ?thesis

using normal-rewr-in-step-rtrancl normal-rewr-parallel-empty
by (metis converse-rtrancl-into-rtrancl step-irr-inI)

qed
ultimately show ?thesis

using joinI-left by simp
next

case Anything
then have step (Parallel [a]) = a

by simp
then show ?thesis

using step-irr-inI parallel-neq-single r-into-rtrancl joinI-left by metis
next

case (Res x3)
then have step (Parallel [a]) = a

by simp
then show ?thesis

using step-irr-inI parallel-neq-single r-into-rtrancl joinI-left by metis
next

case (Copyable x4)
then have step (Parallel [a]) = a

using True by simp
then show ?thesis

using step-irr-inI parallel-neq-single r-into-rtrancl joinI-left by metis
next

case (Parallel x5)
then have step (Parallel [Parallel x5]) = Parallel x5

using True by simp
then show ?thesis

using step-irr-inI parallel-neq-single r-into-rtrancl joinI-left Parallel by
metis

62

next
case (NonD x61 x62)
then have step (Parallel [a]) = a

using True by simp
then show ?thesis

using step-irr-inI parallel-neq-single r-into-rtrancl joinI-left by metis
next

case (Executable x71 x72)
then have step (Parallel [a]) = a

using True by simp
then show ?thesis

using step-irr-inI parallel-neq-single r-into-rtrancl joinI-left by metis
next

case (Repeatable x71 x72)
then have step (Parallel [a]) = a

using True by simp
then show ?thesis

using step-irr-inI parallel-neq-single r-into-rtrancl joinI-left by metis
qed

next
case False
then have step (Parallel [a]) = Parallel [step a]

by simp
moreover have res-term-rewrite-bound (step a) < res-term-rewrite-bound a

using res-term-rewrite-bound-step-decrease False by blast
ultimately show ?thesis

using less normal-rewr-in-step-rtrancl step-irr-join-trans step-normalised
by (metis joinI normal-rewr .elims)

qed
qed

next
case (merge x y z)
have
(Parallel (x @ y @ z)
, Parallel (remove-all-empty (merge-all-parallel (map normal-rewr (x @ y @

z))))
) ∈ step-irr∗

using step-rtrancl-parallel .
also have
(Parallel (remove-all-empty (merge-all-parallel (map normal-rewr (x @ y @

z))))
, Parallel (remove-all-empty (merge-all-parallel (map normal-rewr (x @

[Parallel y] @ z))))
) ∈ step-irr∗

proof (cases normal-rewr (Parallel y))
case Empty
then show ?thesis
by (simp add: merge-all-parallel-append remove-all-empty-append normal-rewr-to-empty)

next

63

case Anything
then show ?thesis
by (simp add: merge-all-parallel-append remove-all-empty-append normal-rewr-to-other)

next
case (Res x3)
then show ?thesis
by (simp add: merge-all-parallel-append remove-all-empty-append normal-rewr-to-other)

next
case (Copyable x4)
then show ?thesis
by (simp add: merge-all-parallel-append remove-all-empty-append normal-rewr-to-other)

next
case (Parallel x5)
then show ?thesis
by (simp add: merge-all-parallel-append remove-all-empty-append normal-rewr-to-parallel)

next
case (NonD x61 x62)
then show ?thesis
by (simp add: merge-all-parallel-append remove-all-empty-append normal-rewr-to-other)

next
case (Executable x71 x72)
then show ?thesis
by (simp add: merge-all-parallel-append remove-all-empty-append normal-rewr-to-other)

next
case (Repeatable x81 x82)
then show ?thesis
by (simp add: merge-all-parallel-append remove-all-empty-append normal-rewr-to-other)

qed
finally show ?case

using step-rtrancl-parallel by blast
next

case (parallel xs ys)
then show ?case

by (simp add: list-all2-mono step-join-apply-parallel)
next

case (nondet x y u v)
then show ?case using step-join-apply-nondet by blast

next
case (executable x y u v)
then show ?case using step-join-apply-executable by blast

next
case (repeatable x y u v)
then show ?case using step-join-apply-repeatable by blast

next
case (sym x y)
then show ?case by (simp add: join-sym)

next
case (trans x y z)
then show ?case by (meson joinE CR-join-right-I joinI join-rtrancl-join step-CR)

64

qed

Therefore this rewriting-based normalisation brings equivalent terms to the
same normal form
lemma res-term-equiv-imp-normal-rewr :

assumes x ∼ y shows normal-rewr x = normal-rewr y
proof (rule join-NF-imp-eq)

have normal-rewr x ∼ x
using res-term-equiv-normal-rewr res-term-equiv.sym by blast

moreover have y ∼ normal-rewr y
by (rule res-term-equiv-normal-rewr)

ultimately have normal-rewr x ∼ normal-rewr y
using assms by (rule res-term-equiv.trans-both)

then show (normal-rewr x, normal-rewr y) ∈ step-irr↓

by (rule res-term-equiv-joinable)

show normal-rewr x ∈ NF step-irr
and normal-rewr y ∈ NF step-irr
by (rule normal-rewr-NF)+

qed

And resource term equivalence is equal to having equal normal forms
theorem res-term-equiv-is-normal-rewr :

x ∼ y = (normal-rewr x = normal-rewr y)
using res-term-equiv-imp-normal-rewr normal-rewr-imp-equiv by standard

4.6 Term Equivalence as Rewriting Closure

We can now show that (∼) is the equivalence closure of res-term-rewrite.
An equivalence closure is a reflexive, transitive and symmetric closure. In
our case, the rewriting is already reflexive, so we only need to verify the
symmetric and transitive closure.
As such, the core difficulty in this section is to prove the following equality:
x ∼ y = (symclp res-term-rewrite)++ x y

One direction is simpler, because rewriting implies equivalence
lemma res-term-rewrite-equivclp-imp-equiv:
(symclp res-term-rewrite)++ x y =⇒ x ∼ y

proof (induct rule: tranclp.induct)
case (r-into-trancl a b)
then show ?case

by (metis symclp-def res-term-rewrite-imp-equiv res-term-equiv.sym)
next

case (trancl-into-trancl a b c)
then have b ∼ c

by (metis symclp-def res-term-rewrite-imp-equiv res-term-equiv.sym)
then show ?case

65

by (metis trancl-into-trancl(2) res-term-equiv.trans)
qed

Trying to prove the other direction purely through facts about the rewriting
itself fails
lemma

x ∼ y =⇒ (symclp res-term-rewrite)++ x y
proof (induct x y rule: res-term-equiv.induct)

case empty then show ?case by (simp add: tranclp.r-into-trancl)
next case anything then show ?case by (simp add: tranclp.r-into-trancl)
next case (res x) then show ?case by (simp add: tranclp.r-into-trancl)
next case (copyable x) then show ?case by (simp add: tranclp.r-into-trancl)
next

case nil
then show ?case

by (simp add: res-term-rewrite.nil tranclp.r-into-trancl)
next

case (singleton a)
then show ?case

by (simp add: res-term-rewrite.singleton tranclp.r-into-trancl)
next

case (merge x y z)
then show ?case

by (meson res-term-rewrite.merge symclp-def tranclp.r-into-trancl)
next

case (sym x y)
then show ?case

by (metis rtranclpD rtranclp-symclp-sym tranclp-into-rtranclp)
next case (trans x y z) then show ?case by simp
next

case (parallel xs ys)
then show ?case

— While we do know that corresponding parallel terms are related, the rewrite
rule list-all2 res-term-rewrite ?xs ?ys =⇒ res-term-rewrite (Parallel ?xs) (Parallel
?ys) needs all rewrites to be in a uniform direction. Such an issue arises with all
remaining cases.
oops

But, we can take advantage of the normalisation procedure to prove it
lemma res-term-rewrite-equiv-imp-equivclp:

assumes x ∼ y
shows (symclp res-term-rewrite)++ x y

proof −
have normal-rewr x = normal-rewr y

using assms res-term-equiv-is-normal-rewr by metis
then have (symclp res-term-rewrite)++ (normal-rewr x) (normal-rewr y)

by (simp add: tranclp.r-into-trancl)
moreover have (symclp res-term-rewrite)++ x (normal-rewr x)

using res-term-rewrite-tranclp-normal-rewr symclp-def res-term-rewrite.refl

66

by (metis equivclp-def rev-predicate2D rtranclp-into-tranclp2 rtranlcp-le-equivclp
tranclp-into-rtranclp)

moreover have (symclp res-term-rewrite)++ (normal-rewr y) y
using res-term-rewrite-tranclp-normal-rewr symclp-def res-term-rewrite.refl
by (metis conversepD equivclp-def rev-predicate2D rtranclpD rtranlcp-le-equivclp

symp-conv-conversep-eq symp-rtranclp-symclp tranclp.r-into-trancl tran-
clp-into-rtranclp)

ultimately show ?thesis
by simp

qed

Thus, we prove that resource term equivalence is the equivalence closure of
the rewriting
lemma res-term-equiv-is-rewrite-closure:
(∼) = equivclp res-term-rewrite

proof −
have equivclp res-term-rewrite x y = (symclp res-term-rewrite)++ x y

for x y :: (′a, ′b) res-term
by (metis equivclp-def res-term-equiv.refl res-term-rewrite-equiv-imp-equivclp

rtranclpD
tranclp-into-rtranclp)

then have x ∼ y = equivclp res-term-rewrite x y
for x y :: (′a, ′b) res-term
using res-term-rewrite-equivclp-imp-equiv res-term-rewrite-equiv-imp-equivclp

by metis
then show ?thesis

by blast
qed

end
theory ResNormDirect

imports ResNormalForm
begin

5 Direct Resource Term Normalisation

In this section we define a normalisation procedure for resource terms that
directly normalises a term in a single bottom-up pass. This could be con-
sidered normalisation by evaluation as opposed to by rewriting.
Note that, while this procedure is more computationally efficient, it is less
useful in proofs. In this way it is complemented by rewriting-based normal-
isation that is less direct but more helpful in inductive proofs.

First, for a list of terms where no Parallel term contains an Empty term,
the order of merge-all-parallel and remove-all-empty does not matter. This
is specifically the case for a list of normalised terms. As such, our choice of

67

order in the normalisation definition does not matter.
lemma merge-all-parallel-remove-all-empty-comm:

assumes
∧

ys. Parallel ys ∈ set xs =⇒ ¬ list-ex is-Empty ys
shows merge-all-parallel (remove-all-empty xs) = remove-all-empty (merge-all-parallel

xs)
using assms

proof (induct xs)
case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case

by (cases a) (simp-all add: remove-all-empty-append remove-all-empty-none)
qed

Direct normalisation of resource terms proceeds in a single bottom-up pass.
The interesting case is for Parallel terms, where any Empty and nested
Parallel children are handled using parallel-parts and the resulting list is
turned into the simplest term representing its parallel combination using
parallelise.
primrec normal-dir :: (′a, ′b) res-term ⇒ (′a, ′b) res-term

where
normal-dir Empty = Empty
| normal-dir Anything = Anything
| normal-dir (Res x) = Res x
| normal-dir (Copyable x) = Copyable x
| normal-dir (Parallel xs) =

parallelise (merge-all-parallel (remove-all-empty (map normal-dir xs)))
| normal-dir (NonD x y) = NonD (normal-dir x) (normal-dir y)
| normal-dir (Executable x y) = Executable (normal-dir x) (normal-dir y)
| normal-dir (Repeatable x y) = Repeatable (normal-dir x) (normal-dir y)

Any resource term is equivalent to its direct normalisation
lemma normal-dir-equiv:

a ∼ normal-dir a
proof (induct a)

case Empty then show ?case by simp
next case Anything then show ?case by simp
next case (Res x) then show ?case by simp
next case (Copyable a) then show ?case by simp
next

case (Parallel xs)
then have Parallel xs ∼ Parallel (map normal-dir xs)

by (intro res-term-equiv.parallel) (simp add: list-all2-conv-all-nth)
also have ... ∼ Parallel (remove-all-empty (map normal-dir xs))

by (rule remove-all-empty-equiv)
also have ... ∼ Parallel (merge-all-parallel (remove-all-empty (map normal-dir

xs)))

68

by (rule merge-all-parallel-equiv)
finally show ?case

using parallelise-equiv res-term-equiv.trans res-term-equiv.sym by fastforce
next case (NonD a1 a2) then show ?case by (simp add: res-term-equiv.nondet)
next case (Executable a1 a2) then show ?case by (simp add: res-term-equiv.executable)
next case (Repeatable a1 a2) then show ?case by (simp add: res-term-equiv.repeatable)
qed

Thus terms with equal normalisation are equivalent
lemma normal-dir-eq-imp-equiv:

normal-dir a = normal-dir b =⇒ a ∼ b
using normal-dir-equiv res-term-equiv.sym res-term-equiv.trans by metis

If the output of merge-all-parallel still contains a Parallel term then it must
have been nested in one of the input elements
lemma merge-all-parallel-has-Parallel:

assumes list-ex is-Parallel (merge-all-parallel xs)
obtains ys

where Parallel ys ∈ set xs
and list-ex is-Parallel ys

using assms
proof (induct xs)

case Nil then show ?case by simp
next

case (Cons a xs)
then show ?case

using merge-all-parallel-result by blast
qed

If the output of remove-all-empty contains a Parallel term then it must have
been in the input
lemma remove-all-empty-has-Parallel:

assumes Parallel ys ∈ set (remove-all-empty xs)
shows Parallel ys ∈ set xs

using assms
proof (induct xs)

case Nil then show ?case by simp
next

case (Cons a xs)
then show ?case

using remove-all-empty-subset by blast
qed

If a resource term normalises to a Parallel term then that does not contain
any nested
lemma normal-dir-no-nested-Parallel:

normal-dir a = Parallel xs =⇒ ¬ list-ex is-Parallel xs
proof (rule notI , induct a arbitrary: xs)

69

case Empty then show ?case by simp
next case Anything then show ?case by simp
next case (Res x) then show ?case by simp
next case (Copyable a) then show ?case by simp
next

case (Parallel x)
then have parallelise (merge-all-parallel (remove-all-empty (map normal-dir x)))

= Parallel xs
by simp

then have list-ex is-Parallel (merge-all-parallel (remove-all-empty (map nor-
mal-dir x)))

using Parallel(3) ResTerm.parallelise-to-parallel-has-paralell by blast
then obtain ys

where Parallel ys ∈ set (remove-all-empty (map normal-dir x))
and ex-ys: list-ex is-Parallel ys

by (erule merge-all-parallel-has-Parallel)
then have Parallel ys ∈ set (map normal-dir x)

using remove-all-empty-has-Parallel by blast
then show ?case

using Parallel(1) ex-ys by fastforce
next case (NonD a1 a2) then show ?case by simp
next case (Executable a1 a2) then show ?case by simp
next case (Repeatable a1 a2) then show ?case by simp
qed

If a resource term normalises to a Parallel term then it does not contain
Empty
lemma normal-dir-no-nested-Empty:

normal-dir a = Parallel xs =⇒ ¬ list-ex is-Empty xs
proof (rule notI , induct a arbitrary: xs)

case Empty then show ?case by simp
next case Anything then show ?case by simp
next case (Res x) then show ?case by simp
next case (Copyable a) then show ?case by simp
next

case (Parallel x)
then have parallelise (merge-all-parallel (remove-all-empty (map normal-dir x)))

= Parallel xs
by simp

then have merge-all-parallel (remove-all-empty (map normal-dir x)) = xs
proof (elim parallelise-to-parallel-has-empty)

assume merge-all-parallel (remove-all-empty (map normal-dir x)) = [Parallel
xs]

then show ?thesis
using Parallel(3) merge-all-parallel-has-Parallel normal-dir-no-nested-Parallel

remove-all-empty-has-Parallel
by (smt (verit, best) image-iff list.set-map list-ex-simps(1) res-term.discI (5))

next
assume merge-all-parallel (remove-all-empty (map normal-dir x)) = xs

70

then show ?thesis .
qed
then have list-ex is-Empty (merge-all-parallel (remove-all-empty (map nor-

mal-dir x)))
using Parallel(3) by blast

then have list-ex is-Empty (remove-all-empty (map normal-dir x))
proof (elim merge-all-parallel-has-empty)

fix ys
assume Parallel ys ∈ set (remove-all-empty (map normal-dir x)) and list-ex

is-Empty ys
then show ?thesis

using Parallel(1) remove-all-empty-has-Parallel
by (metis (mono-tags, lifting) image-iff list.set-map)

next
assume list-ex is-Empty (remove-all-empty (map normal-dir x))
then show ?thesis .

qed
then show ?case

using remove-all-empty-result by blast
next case (NonD a1 a2) then show ?case by simp
next case (Executable a1 a2) then show ?case by simp
next case (Repeatable a1 a2) then show ?case by simp
qed

Merging Parallel terms in a list of normalised terms keeps all terms in the
result normalised
lemma normalised-merge-all-parallel:

assumes x ∈ set (merge-all-parallel xs)
and

∧
x. x ∈ set xs =⇒ normalised x

shows normalised x
using assms

proof (induct xs arbitrary: x)
case Nil then show ?case by simp

next
case (Cons a xs)
then show ?case
proof (cases a)

case Empty then show ?thesis using Cons by simp metis
next case Anything then show ?thesis using Cons by simp metis
next case (Res x3) then show ?thesis using Cons by simp metis
next case (Copyable x4) then show ?thesis using Cons by simp metis
next

case (Parallel x5)
then show ?thesis

using Cons by simp (metis Ball-set normalised.simps(5))
next case (NonD x61 x62) then show ?thesis using Cons by simp metis
next case (Executable x71 x72) then show ?thesis using Cons by simp metis
next case (Repeatable x71 x72) then show ?thesis using Cons by simp metis
qed

71

qed

Normalisation produces resources in normal form
lemma normalised-normal-dir :

normalised (normal-dir a)
proof (induct a)

case Empty then show ?case by simp
next case Anything then show ?case by simp
next case (Res x) then show ?case by simp
next case (Copyable a) then show ?case by simp
next

case (Parallel xs)
have normalised (parallelise (merge-all-parallel (remove-all-empty (map nor-

mal-dir xs))))
proof (intro normalised-parallelise)

fix x
assume x ∈ set (merge-all-parallel (remove-all-empty (map normal-dir xs)))
then show normalised x

using Parallel(1) normalised-merge-all-parallel remove-all-empty-subset
by (metis (mono-tags, lifting) imageE list.set-map)

next
show ¬ list-ex is-Empty (merge-all-parallel (remove-all-empty (map normal-dir

xs)))
using merge-all-parallel-has-empty remove-all-empty-has-Parallel remove-all-empty-result

normal-dir-no-nested-Empty
by (metis imageE list.set-map)

next
show ¬ list-ex is-Parallel (merge-all-parallel (remove-all-empty (map normal-dir

xs)))
using merge-all-parallel-has-Parallel remove-all-empty-has-Parallel

normal-dir-no-nested-Parallel
by (metis imageE list.set-map)

qed
then show ?case

by simp
next case (NonD a1 a2) then show ?case by simp
next case (Executable a1 a2) then show ?case by simp
next case (Repeatable a1 a2) then show ?case by simp
qed

Normalisation does nothing to resource terms in normal form
lemma normal-dir-normalised:

normalised x =⇒ normal-dir x = x
proof (induct x)

case Empty then show ?case by simp
next case Anything then show ?case by simp
next case (Res x) then show ?case by simp
next case (Copyable x) then show ?case by simp
next

72

case (Parallel x)
then show ?case
by (simp add: map-idI merge-all-parallel-none normalised-parallel-children not-list-ex

parallelise-to-parallel-conv remove-all-empty-none)
next case (NonD x1 x2) then show ?case by simp
next case (Executable x1 x2) then show ?case by simp
next case (Repeatable a1 a2) then show ?case by simp
qed

Parallelising to anything but Empty or Parallel means the input list con-
tained just that
lemma parallelise-eq-Anything [simp]: (parallelise xs = Anything) = (xs = [Anything])

and parallelise-eq-Res [simp]: (parallelise xs = Res a) = (xs = [Res a])
and parallelise-eq-Copyable [simp]: (parallelise xs = Copyable b) = (xs = [Copyable

b])
and parallelise-eq-NonD [simp]: (parallelise xs = NonD x y) = (xs = [NonD x

y])
and parallelise-eq-Executable [simp]:(parallelise xs = Executable x y) = (xs =

[Executable x y])
and parallelise-eq-Repeatable [simp]:(parallelise xs = Repeatable x y) = (xs =

[Repeatable x y])
using parallelise.elims parallelise.simps(2) by blast+

Equivalent resource terms normalise to equal results
lemma res-term-equiv-normal-dir :

a ∼ b =⇒ normal-dir a = normal-dir b
proof (induct a b rule: res-term-equiv.induct)

case empty then show ?case by simp
next case anything then show ?case by simp
next case (res x) then show ?case by simp
next case (copyable x) then show ?case by simp
next case nil then show ?case by simp
next

case (singleton a)
have

∧
xs. normal-dir a = Parallel xs =⇒ parallelise xs = Parallel xs

using normalised-normal-dir normalised.simps(5) parallelise-to-parallel-same-length
by metis

then show ?case
by (cases normal-dir a ; simp add: is-Parallel-def)

next
case (merge x y z)
then show ?case
proof (cases normal-dir (Parallel y) = Empty)

case True
then consider

merge-all-parallel (remove-all-empty (map normal-dir y)) = []
| merge-all-parallel (remove-all-empty (map normal-dir y)) = [Empty]
using parallelise-to-empty-eq by fastforce

then show ?thesis

73

proof cases
case 1

then show ?thesis by (simp add: remove-all-empty-append merge-all-parallel-append)
next

case 2
have list-ex is-Empty (remove-all-empty (map normal-dir y))
proof (rule merge-all-parallel-has-empty)
show list-ex is-Empty (merge-all-parallel (remove-all-empty (map normal-dir

y)))
using 2 by simp

show list-ex is-Empty (remove-all-empty (map normal-dir y))
if Parallel ys ∈ set (remove-all-empty (map normal-dir y)) and list-ex

is-Empty ys
for ys
using that remove-all-empty-has-Parallel normal-dir-no-nested-Empty
by (metis ex-map-conv)

qed
then show ?thesis

using remove-all-empty-result by blast
qed

next
case False

have ?thesis if y: normal-dir (Parallel y) = Parallel ys for ys
proof −

consider
merge-all-parallel (remove-all-empty (map normal-dir y)) = [Parallel ys]
| 1 < length (merge-all-parallel (remove-all-empty (map normal-dir y)))

and merge-all-parallel (remove-all-empty (map normal-dir y)) = ys
using y parallelise-to-parallel-conv
by (fastforce simp add: remove-all-empty-append merge-all-parallel-append)

then show ?thesis
proof cases

case 1
then show ?thesis

by (simp add: remove-all-empty-append merge-all-parallel-append)
(smt (z3) image-iff list.set-map list-ex-simps(1) merge-all-parallel-has-Parallel
remove-all-empty-has-Parallel res-term.discI (5) normal-dir-no-nested-Parallel)

next
case 2
then show ?thesis

using False y by (simp add: remove-all-empty-append merge-all-parallel-append)
qed

qed
then show ?thesis

using False
by (cases normal-dir (Parallel y))

(simp-all add: remove-all-empty-append merge-all-parallel-append)
qed

74

next
case (parallel xs ys)
then have map normal-dir xs = map normal-dir ys

by (clarsimp simp add: list-all2-conv-all-nth list-eq-iff-nth-eq)
then show ?case

by simp
next case (nondet x y u v) then show ?case by simp
next case (executable x y u v) then show ?case by simp
next case (repeatable x y u v) then show ?case by simp
next case (sym x y) then show ?case by simp
next case (trans x y z) then show ?case by simp
qed

Equivalence of resource term is equality of their normal forms
lemma res-term-equiv-is-normal-dir :

a ∼ b = (normal-dir a = normal-dir b)
using res-term-equiv-normal-dir normal-dir-eq-imp-equiv by standard

We use this fact to give a code equation for (∼)
lemmas [code] = res-term-equiv-is-normal-dir

The normal form is unique in each resource term equivalence class
lemma normal-dir-unique:
[[normal-dir x = x; normal-dir y = y; x ∼ y]] =⇒ x = y
using res-term-equiv-normal-dir by metis

end
theory ResNormCompare

imports
ResNormDirect
ResNormRewrite

begin

6 Comparison of Resource Term Normalisation

The two normalisation procedures have the same outcome, because they
both normalise the term
lemma normal-rewr-is-normal-dir :

normal-rewr = normal-dir
proof

fix x :: (′a, ′b) res-term
show normal-rewr x = normal-dir x

using normal-dir-normalised res-term-equiv-normal-dir
normal-rewr-normalised res-term-equiv-normal-rewr

by metis
qed

75

With resource term normalisation to decide the equvialence, we can prove
that the resource term mapping may render terms equivalent.
lemma

fixes a b :: ′a and c :: ′b
assumes a 6= b
obtains f :: ′a ⇒ ′b and x y where map-res-term f g x ∼ map-res-term f g y

and ¬ x ∼ y
proof

show map-res-term (λx. c) g (Res a) ∼ map-res-term (λx. c) g (Res b)
by simp

show ¬ Res a ∼ Res b
using assms by (simp add: res-term-equiv-is-normal-rewr)

qed

end
theory Resource

imports
ResTerm
ResNormCompare

begin

7 Resources

We define resources as the quotient of resource terms by their equivalence.
To decide the equivalence we use resource term normalisation procedures,
primarily the one based on rewriting.

7.1 Quotient Type

Resource term mapper satisfies the functor assumptions: it commutes with
function composition and mapping identities is itself identity
functor map-res-term
proof

fix f g and f ′ :: ′u ⇒ ′x and g ′ :: ′v ⇒ ′y and x :: (′a, ′b) res-term
show (map-res-term f ′ g ′ ◦ map-res-term f g) x = map-res-term (f ′ ◦ f) (g ′ ◦ g)

x
by (induct x ; simp add: comp-def)

next
show map-res-term id id = id

by (standard, simp add: id-def res-term.map-ident)
qed

Resources are resource terms modulo their equivalence
quotient-type (′a, ′b) resource = (′a, ′b) res-term / res-term-equiv

using res-term-equiv.equivp .

76

lemma abs-resource-eqI [intro]:
x ∼ y =⇒ abs-resource x = abs-resource y
using resource.abs-eq-iff by blast

lemma abs-resource-eqE [elim]:
[[abs-resource x = abs-resource y; x ∼ y =⇒ P]] =⇒ P
using resource.abs-eq-iff by blast

Resource representation then abstraction is identity
lemmas resource-abs-of-rep [simp] = Quotient3-abs-rep[OF Quotient3-resource]

Lifted normalisation gives a normalised representative term for a resource
lift-definition of-resource :: (′a, ′b) resource ⇒ (′a, ′b) res-term is normal-rewr

by (rule res-term-equiv-imp-normal-rewr)

lemma of-resource-absorb-normal-rewr [simp]:
normal-rewr (of-resource x) = of-resource x
by (simp add: of-resource.rep-eq)

lemma of-resource-absorb-normal-dir [simp]:
normal-dir (of-resource x) = of-resource x
by (simp add: normal-rewr-is-normal-dir [symmetric] of-resource.rep-eq)

Equality of resources can be characterised by equality of representative terms
instantiation resource :: (equal, equal) equal
begin

definition equal-resource :: (′a, ′b) resource ⇒ (′a, ′b) resource ⇒ bool
where equal-resource a b = (of-resource a = of-resource b)

instance
proof

fix x y :: (′a , ′b) resource
have (of-resource x = of-resource y) = (x = y)

by transfer (metis res-term-equiv-is-normal-rewr)
then show equal-class.equal x y = (x = y)

unfolding equal-resource-def .
qed
end

7.2 Lifting Bounded Natural Functor Structure

Equivalent terms have equal atom sets
lemma res-term-equiv-set1 [simp]:

x ∼ y =⇒ set1-res-term x = set1-res-term y
proof (induct rule: res-term-equiv.induct)

case empty then show ?case by simp
next case anything then show ?case by simp
next case (res x) then show ?case by simp

77

next case (copyable x) then show ?case by simp
next case nil then show ?case by simp
next case (singleton a) then show ?case by simp
next case (merge x y z) then show ?case by (simp add: Un-left-commute)
next case (parallel xs ys) then show ?case by (induct rule: list-all2-induct ; simp)
next case (nondet x y u v) then show ?case by simp
next case (executable x y u v) then show ?case by simp
next case (repeatable x y u v) then show ?case by simp
next case (sym x y) then show ?case by simp
next case (trans x y z) then show ?case by simp
qed

lemma res-term-equiv-set2 [simp]:
x ∼ y =⇒ set2-res-term x = set2-res-term y

proof (induct rule: res-term-equiv.induct)
case empty then show ?case by simp

next case anything then show ?case by simp
next case (res x) then show ?case by simp
next case (copyable x) then show ?case by simp
next case nil then show ?case by simp
next case (singleton a) then show ?case by simp
next case (merge x y z) then show ?case by (simp add: Un-left-commute)
next case (parallel xs ys) then show ?case by (induct rule: list-all2-induct ; simp)
next case (nondet x y u v) then show ?case by simp
next case (executable x y u v) then show ?case by simp
next case (repeatable x y u v) then show ?case by simp
next case (sym x y) then show ?case by simp
next case (trans x y z) then show ?case by simp
qed

BNF structure can be lifted. Proof inspired by Fürer et al. [1].
lift-bnf (′a, ′b) resource
proof safe

fix R1 :: ′a ⇒ ′u ⇒ bool
and R2 :: ′b ⇒ ′v ⇒ bool
and S1 :: ′u ⇒ ′x ⇒ bool
and S2 :: ′v ⇒ ′y ⇒ bool
and x :: (′a, ′b) res-term
and y y ′ :: (′u, ′v) res-term
and z :: (′x, ′y) res-term

assume assms:
R1 OO S1 6= bot
R2 OO S2 6= bot
rel-res-term R1 R2 x y
y ∼ y ′

rel-res-term S1 S2 y ′ z

obtain u where ux: x = map-res-term fst fst u and uy: y = map-res-term snd

78

snd u
and u-set: set1-res-term u ⊆ {(x, y). R1 x y} set2-res-term u ⊆ {(x, y). R2 x

y}
using res-term.in-rel[THEN iffD1 , OF assms(3)] by blast

obtain v where vy ′: y ′ = map-res-term fst fst v and vz: z = map-res-term snd
snd v

and v-set: set1-res-term v ⊆ {(x, y). S1 x y} set2-res-term v ⊆ {(x, y). S2 x
y}

using res-term.in-rel[THEN iffD1 , OF assms(5)] by blast

obtain w where wy: w = normal-rewr y and wy ′: w = normal-rewr y ′

using assms(4) res-term-equiv-imp-normal-rewr by blast

obtain u ′ where uu ′: u ∼ u ′ and u ′w: w = map-res-term snd snd u ′

by (metis res-term-equiv-normal-rewr normal-rewr-map uy wy)
obtain v ′ where vv ′: v ∼ v ′ and v ′w: w = map-res-term fst fst v ′

by (metis res-term-equiv-normal-rewr normal-rewr-map vy ′ wy ′)

obtain x ′ where xx ′: x ∼ x ′ and u ′x ′: x ′ = map-res-term fst fst u ′

using map-res-term-preserves-equiv uu ′ ux by blast
obtain z ′ where zz ′: z ∼ z ′ and v ′z ′: z ′ = map-res-term snd snd v ′

using map-res-term-preserves-equiv vv ′ vz by blast

have rel-res-term R1 R2 x ′ w
using res-term.in-rel u ′x ′ u ′w uu ′ u-set by force

moreover have rel-res-term S1 S2 w z ′

using res-term.in-rel v ′z ′ v ′w vv ′ v-set by force
ultimately have rel-res-term (R1 OO S1) (R2 OO S2) x ′ z ′

using res-term.rel-compp relcompp.relcompI by metis
then show ((∼) OO rel-res-term (R1 OO S1) (R2 OO S2) OO (∼)) x z

using xx ′ zz ′[symmetric] by (meson relcompp.relcompI)
next

show
∧

Ss1 x xa xb.
[[x ∈ (

⋂
As1∈Ss1 . {(x, x ′). x ∼ x ′} ‘‘ {x. set1-res-term x ⊆ As1});

x /∈ {(x, x ′). x ∼ x ′} ‘‘ {x. set1-res-term x ⊆
⋂

Ss1}; xa ∈ Ss1 ; xa /∈ {};
xb ∈

⋂
Ss1]]

=⇒ xb ∈ {}
by simp (metis Inf-greatest res-term-equiv-set1)

next
show

∧
Ss2 x xa xb.

[[x ∈ (
⋂

As2∈Ss2 . {(x, x ′). x ∼ x ′} ‘‘ {x. set2-res-term x ⊆ As2});
x /∈ {(x, x ′). x ∼ x ′} ‘‘ {x. set2-res-term x ⊆

⋂
Ss2}; xa ∈ Ss2 ; xa /∈ {};

xb ∈
⋂

Ss2]]
=⇒ xb ∈ {}

by simp (metis Inf-greatest res-term-equiv-set2)
qed

Resource map can be given a code equation through the term map
lemma map-resource-code [code]:

79

map-resource f g (abs-resource x) = abs-resource (map-res-term f g x)
by transfer simp

Atom sets of a resource are those sets of its representative term
lemma set1-resource:

fixes x :: (′a, ′b) resource
shows set1-resource x = set1-res-term (of-resource x)

proof transfer
fix x :: (′a, ′b) res-term

let ?InrL = Inr :: ′a ⇒ unit + ′a
let ?InrC = Inr :: ′b ⇒ unit + ′b

have
(
⋂

mx ∈ Collect ((∼) (map-res-term ?InrL ?InrC x)).
⋃

(Basic-BNFs.setr ‘
set1-res-term mx))

= (
⋃

x :: unit + ′a ∈ set1-res-term (map-res-term ?InrL ?InrC (normal-rewr
x)). {xa. x = Inr xa})

proof (subst Inter-all-same)
show

⋃
(Basic-BNFs.setr ‘ set1-res-term u) =

⋃
(Basic-BNFs.setr ‘ set1-res-term

v)
if u ∈ Collect ((∼) (map-res-term ?InrL ?InrC x))

and v ∈ Collect ((∼) (map-res-term ?InrL ?InrC x))
for u v
using that by (metis mem-Collect-eq res-term-equiv-set1)

show map-res-term ?InrL ?InrC (normal-rewr x) ∈ Collect ((∼) (map-res-term
?InrL ?InrC x))

by (metis CollectI map-res-term-preserves-equiv res-term-equiv-normal-rewr)
show⋃

(Basic-BNFs.setr ‘ set1-res-term (map-res-term ?InrL ?InrC (normal-rewr
x)))

= (
⋃

x∈set1-res-term (map-res-term ?InrL ?InrC (normal-rewr x)). {xa. x =
Inr xa})

by (simp add: setr-def setrp.simps)
qed
then show

(
⋂

mx∈Collect ((∼) (map-res-term ?InrL ?InrC x)).
⋃

(Basic-BNFs.setr ‘
set1-res-term mx))

= set1-res-term (normal-rewr x)
by (simp add: res-term.set-map setr-def setrp.simps)

qed
lemma set2-resource:

fixes x :: (′a, ′b) resource
shows set2-resource x = set2-res-term (of-resource x)

proof transfer
fix x :: (′a, ′b) res-term

let ?InrL = Inr :: ′a ⇒ unit + ′a
let ?InrC = Inr :: ′b ⇒ unit + ′b

80

have
(
⋂

mx ∈ Collect ((∼) (map-res-term ?InrL ?InrC x)).
⋃

(Basic-BNFs.setr ‘
set2-res-term mx))

= (
⋃

x :: unit + ′b ∈ set2-res-term (map-res-term ?InrL ?InrC (normal-rewr
x)). {xa. x = Inr xa})

proof (subst Inter-all-same)
show

⋃
(Basic-BNFs.setr ‘ set2-res-term u) =

⋃
(Basic-BNFs.setr ‘ set2-res-term

v)
if u ∈ Collect ((∼) (map-res-term ?InrL ?InrC x))

and v ∈ Collect ((∼) (map-res-term ?InrL ?InrC x))
for u v
using that by (metis mem-Collect-eq res-term-equiv-set2)

show map-res-term ?InrL ?InrC (normal-rewr x) ∈ Collect ((∼) (map-res-term
?InrL ?InrC x))

by (metis CollectI map-res-term-preserves-equiv res-term-equiv-normal-rewr)
show⋃

(Basic-BNFs.setr ‘ set2-res-term (map-res-term ?InrL ?InrC (normal-rewr
x)))

= (
⋃

x∈set2-res-term (map-res-term ?InrL ?InrC (normal-rewr x)). {xa. x =
Inr xa})

by (simp add: setr-def setrp.simps)
qed
then show

(
⋂

mx∈Collect ((∼) (map-res-term ?InrL ?InrC x)).
⋃

(Basic-BNFs.setr ‘
set2-res-term mx))

= set2-res-term (normal-rewr x)
by (simp add: res-term.set-map setr-def setrp.simps)

qed

7.3 Lifting Constructors

All term constructors are easily lifted thanks to the term equivalence being
a congruence
lift-definition Empty :: (′a, ′b) resource

is res-term.Empty .
lift-definition Anything :: (′a, ′b) resource

is res-term.Anything .
lift-definition Res :: ′a ⇒ (′a, ′b) resource

is res-term.Res .
lift-definition Copyable :: ′b ⇒ (′a, ′b) resource

is res-term.Copyable .
lift-definition Parallel :: (′a, ′b) resource list ⇒ (′a, ′b) resource

is res-term.Parallel using res-term-equiv.parallel .
lift-definition NonD :: (′a, ′b) resource ⇒ (′a, ′b) resource ⇒ (′a, ′b) resource

is res-term.NonD using res-term-equiv.nondet .
lift-definition Executable :: (′a, ′b) resource ⇒ (′a, ′b) resource ⇒ (′a, ′b) resource

is res-term.Executable using res-term-equiv.executable .
lift-definition Repeatable :: (′a, ′b) resource ⇒ (′a, ′b) resource ⇒ (′a, ′b) resource

81

is res-term.Repeatable using res-term-equiv.repeatable .

lemmas resource-constr-abs-eq =
Empty.abs-eq Anything.abs-eq Res.abs-eq Copyable.abs-eq Parallel.abs-eq NonD.abs-eq
Executable.abs-eq Repeatable.abs-eq

Resources can be split into cases like terms
lemma resource-cases:

fixes r :: (′a, ′b) resource
obtains
(Empty) r = Empty
| (Anything) r = Anything
| (Res) a where r = Res a
| (Copyable) x where r = Copyable x
| (Parallel) xs where r = Parallel xs
| (NonD) x y where r = NonD x y
| (Executable) x y where r = Executable x y
| (Repeatable) x y where r = Repeatable x y

proof transfer
fix r :: (′a, ′b) res-term and thesis
assume r ∼ res-term.Empty =⇒ thesis

and r ∼ res-term.Anything =⇒ thesis
and

∧
a. r ∼ res-term.Res a =⇒ thesis

and
∧

x. r ∼ res-term.Copyable x =⇒ thesis
and

∧
xs. r ∼ res-term.Parallel xs =⇒ thesis

and
∧

x y. r ∼ res-term.NonD x y =⇒ thesis
and

∧
x y. r ∼ res-term.Executable x y =⇒ thesis

and
∧

x y. r ∼ res-term.Repeatable x y =⇒ thesis
note a = this

show thesis
using a by (cases r) (blast intro: res-term-equiv.refl)+

qed

Resources can be inducted over like terms
lemma resource-induct [case-names Empty Anything Res Copyable Parallel NonD
Executable Repeatable]:

assumes P Empty
and P Anything
and

∧
a. P (Res a)

and
∧

x. P (Copyable x)
and

∧
xs. (

∧
x. x ∈ set xs =⇒ P x) =⇒ P (Parallel xs)

and
∧

x y. [[P x; P y]] =⇒ P (NonD x y)
and

∧
x y. [[P x; P y]] =⇒ P (Executable x y)

and
∧

x y. [[P x; P y]] =⇒ P (Repeatable x y)
shows P x

using res-term.induct[of λx. P (abs-resource x) rep-resource x, unfolded re-
source-abs-of-rep]

using assms

82

by (smt (verit, del-insts) resource-constr-abs-eq imageE list.set-map)

Representative terms of the lifted constructors apart from Resource.Parallel
are known
lemma of-resource-simps [simp]:

of-resource Empty = res-term.Empty
of-resource Anything = res-term.Anything
of-resource (Res a) = res-term.Res a
of-resource (Copyable b) = res-term.Copyable b
of-resource (NonD x y) = res-term.NonD (of-resource x) (of-resource y)
of-resource (Executable x y) = res-term.Executable (of-resource x) (of-resource y)
of-resource (Repeatable x y) = res-term.Repeatable (of-resource x) (of-resource y)
by (transfer , simp add: normal-rewr-nondet normal-rewr-executable normal-rewr-repeatable)+

Basic resource term equivalences become resource equalities
lemma [simp]:

shows resource-empty: Parallel [] = Empty
and resource-singleton: Parallel [x] = x
and resource-merge: Parallel (xs @ [Parallel ys] @ zs) = Parallel (xs @ ys @

zs)
and resource-drop: Parallel (xs @ [Empty] @ zs) = Parallel (xs @ zs)

by (transfer
, intro res-term-equiv.nil res-term-equiv.singleton res-term-equiv.merge res-term-equiv.drop)+

lemma resource-parallel-nested [simp]:
Parallel (Parallel xs # ys) = Parallel (xs @ ys)
using resource-merge[of Nil] by simp

lemma resource-decompose:
assumes Parallel xs = Parallel ys

and Parallel us = Parallel vs
shows Parallel (xs @ us) = Parallel (ys @ vs)

using assms by (metis append-Nil append-Nil2 resource-merge)

lemma resource-drop-list:
(
∧

y. y ∈ set ys =⇒ y = Empty) =⇒ Parallel (xs @ ys @ zs) = Parallel (xs @
zs)
proof (induct ys)

case Nil
then show ?case by simp

next
case (Cons a ys)
then show ?case

by simp (metis Cons-eq-appendI resource-drop self-append-conv2)
qed

Equality of resources except Resource.Parallel implies equality of their chil-
dren
lemma

83

shows resource-res-eq: Res x = Res y =⇒ x = y
and resource-copyable-eq: Copyable x = Copyable y =⇒ x = y

by (transfer , simp add: res-term-equiv-is-normal-rewr)+

lemma resource-nondet-eq:
NonD a b = NonD x y =⇒ a = x
NonD a b = NonD x y =⇒ b = y
by (transfer , simp add: normal-rewr-nondet res-term-equiv-is-normal-rewr)+

lemma resource-executable-eq:
Executable a b = Executable x y =⇒ a = x
Executable a b = Executable x y =⇒ b = y
by (transfer , simp add: normal-rewr-executable res-term-equiv-is-normal-rewr)+

lemma resource-repeatable-eq:
Repeatable a b = Repeatable x y =⇒ a = x
Repeatable a b = Repeatable x y =⇒ b = y
by (transfer , simp add: normal-rewr-repeatable res-term-equiv-is-normal-rewr)+

Many resource inequalities not involving Resource.Parallel are simple to
prove
lemma resource-neq [simp]:

Empty 6= Anything
Empty 6= Res a
Empty 6= Copyable b
Empty 6= NonD x y
Empty 6= Executable x y
Empty 6= Repeatable x y
Anything 6= Res a
Anything 6= Copyable b
Anything 6= NonD x y
Anything 6= Executable x y
Anything 6= Repeatable x y
Res a 6= Copyable b
Res a 6= NonD x y
Res a 6= Executable x y
Res a 6= Repeatable x y
Copyable b 6= NonD x y
Copyable b 6= Executable x y
Copyable b 6= Repeatable x y
NonD x y 6= Executable u v
NonD x y 6= Repeatable u v
Executable x y 6= Repeatable u v
by (transfer , simp add: res-term-equiv-is-normal-dir)+

Resource map of lifted constructors can be simplified
lemma map-resource-simps [simp]:

map-resource f g Empty = Empty
map-resource f g Anything = Anything

84

map-resource f g (Res a) = Res (f a)
map-resource f g (Copyable b) = Copyable (g b)
map-resource f g (Parallel xs) = Parallel (map (map-resource f g) xs)
map-resource f g (NonD x y) = NonD (map-resource f g x) (map-resource f g y)
map-resource f g (Executable x y) = Executable (map-resource f g x) (map-resource

f g y)
map-resource f g (Repeatable x y) = Repeatable (map-resource f g x) (map-resource

f g y)
by (transfer , simp)+

Note that resource term size doesn’t lift, because res-term.Parallel [res-term.Empty]
is equivalent to Resource.Empty but their sizes are 2 and 1 respectively.

7.4 Parallel Product

We introduce infix syntax for binary Resource.Parallel, forming a resource
product
definition resource-par :: (′a, ′b) resource ⇒ (′a, ′b) resource ⇒ (′a, ′b) resource

(infixr � 120)
where x � y = Parallel [x, y]

For the purposes of code generation we act as if we lifted it
lemma resource-par-code [code]:

abs-resource x � abs-resource y = abs-resource (ResTerm.Parallel [x, y])
unfolding resource-par-def by transfer simp

Parallel product can be merged with Resource.Parallel resources on either
side or around it
lemma resource-par-is-parallel [simp]:

x � Parallel xs = Parallel (x # xs)
Parallel xs � x = Parallel (xs @ [x])
using resource-merge[of [x] xs Nil] by (simp-all add: resource-par-def)

lemma resource-par-nested-start [simp]:
Parallel (x � y # zs) = Parallel (x # y # zs)
by (metis append-Cons append-Nil resource-merge resource-par-is-parallel(1) re-

source-singleton)

lemma resource-par-nested [simp]:
Parallel (xs @ a � b # ys) = Parallel (xs @ a # b # ys)
using resource-decompose resource-par-nested-start by blast

Lifted constructor Resource.Parallel, which does not have automatic code
equations, can be given code equations using this resource product
lemmas [code] = resource-empty resource-par-is-parallel(1)[symmetric]

85

This resource product sometimes leads to overly long expressions when gen-
erating code for formalised models, but these can be limited by code unfold-
ing
lemma resource-par-res [code-unfold]:

Res x � y = Parallel [Res x, y]
by (simp add: resource-par-def)

lemma resource-parallel-res [code-unfold]:
Parallel [Res x, Parallel ys] = Parallel (Res x # ys)
by (metis resource-par-is-parallel(1) resource-par-res)

We show that this resource product is a monoid, meaning it is unital and
associative
lemma resource-par-unitL [simp]:

Empty � x = x
proof −

have Parallel [Empty, x] = x
by (metis append-Nil resource-empty resource-parallel-nested resource-singleton)

then show ?thesis
by (simp add: resource-par-def)

qed

lemma resource-par-unitR [simp]:
x � Empty = x

proof −
have Parallel [x, Empty] = x

by (metis resource-empty resource-par-is-parallel(1) resource-singleton)
then show ?thesis

by (simp add: resource-par-def)
qed

lemma resource-par-assoc [simp]:
(a � b) � c = a � (b � c)
by (metis resource-par-def resource-par-is-parallel(1) resource-par-nested-start)

Resource map passes through resource product
lemma resource-par-map [simp]:
map-resource f g (resource-par a b) = resource-par (map-resource f g a) (map-resource

f g b)
by (simp add: resource-par-def)

Representative of resource product is normalised res-term.Parallel term of
the two children’s representations
lemma of-resource-par :

of-resource (resource-par x y) = normal-rewr (res-term.Parallel [of-resource x,
of-resource y])

unfolding resource-par-def
by transfer
(meson res-term-equiv-normal-rewr res-term-parallel-cons res-term-equiv.singleton-both

86

res-term-equiv-imp-normal-rewr)

7.5 Lifting Parallel Parts
lift-definition parallel-parts :: (′a, ′b) resource ⇒ (′a, ′b) resource list

is ResTerm.parallel-parts by (simp add: equiv-parallel-parts)

Parallel parts of the lifted constructors can be simplified like the term version
lemma parallel-parts-simps:

parallel-parts Empty = []
parallel-parts Anything = [Anything]
parallel-parts (Res a) = [Res a]
parallel-parts (Copyable b) = [Copyable b]
parallel-parts (Parallel xs) = concat (map parallel-parts xs)
parallel-parts (NonD x y) = [NonD x y]
parallel-parts (Executable x y) = [Executable x y]
parallel-parts (Repeatable x y) = [Repeatable x y]

proof −
show parallel-parts Empty = []

by (simp add: parallel-parts.abs-eq resource-constr-abs-eq)
show parallel-parts Anything = [Anything]

by (simp add: parallel-parts.abs-eq resource-constr-abs-eq)
show parallel-parts (Res a) = [Res a]

by (simp add: parallel-parts.abs-eq resource-constr-abs-eq)
show parallel-parts (Copyable b) = [Copyable b]

by (simp add: parallel-parts.abs-eq Copyable-def)
show parallel-parts (Parallel xs) = concat (map parallel-parts xs)
proof (induct xs)

case Nil
then show ?case

by (simp add: parallel-parts.abs-eq Empty-def)
next

case (Cons a xs)
then show ?case

by (simp add: parallel-parts.abs-eq Parallel-def , simp add: parallel-parts-def)
qed
show parallel-parts (NonD x y) = [NonD x y]

by (simp add: parallel-parts.abs-eq NonD-def)
show parallel-parts (Executable x y) = [Executable x y]

by (simp add: parallel-parts.abs-eq Executable-def)
show parallel-parts (Repeatable x y) = [Repeatable x y]

by (simp add: parallel-parts.abs-eq Repeatable-def)
qed

Every resource is the same as Resource.Parallel resource formed from its
parallel parts
lemma resource-eq-parallel-parts:

x = Parallel (parallel-parts x)
by transfer (rule parallel-parts-eq)

87

Resources with equal parallel parts are equal
lemma parallel-parts-cong:

parallel-parts x = parallel-parts y =⇒ x = y
by (metis resource-eq-parallel-parts)

Parallel parts of the resource product are the two resources’ parallel parts
lemma parallel-parts-par :

parallel-parts (a � b) = parallel-parts a @ parallel-parts b
by (simp add: resource-par-def parallel-parts-simps)

7.6 Lifting Parallelisation
lift-definition parallelise :: (′a, ′b) resource list ⇒ (′a, ′b) resource

is ResTerm.parallelise
by (metis equiv-parallel-parts res-term-equiv.parallel parallel-parts-parallelise-eq)

Parallelisation of the lifted constructors can be simplified like the term ver-
sion
lemma parallelise-resource-simps [code]:

parallelise [] = Empty
parallelise [x] = x
parallelise (x#y#zs) = Parallel (x#y#zs)
by (transfer , simp)+

7.7 Representative of Parallel Resource

By relating to direct normalisation, representative term for Resource.Parallel
is parallelisation of representatives of its parallel parts
lemma of-resource-parallel:

of-resource (Parallel xs)
= ResTerm.parallelise (merge-all-parallel (remove-all-empty (map of-resource

xs)))
by transfer (simp add: normal-rewr-is-normal-dir)

Equality of Resource.Parallel resources implies equality of their parallel
parts
lemma resource-parallel-eq:

Parallel xs = Parallel ys =⇒ concat (map parallel-parts xs) = concat (map par-
allel-parts ys)

by (fastforce simp add: parallel-parts-simps(5)[symmetric])

With this, we can prove simplification equations for atom sets
lemma set1-resource-simps [simp]:

set1-resource Empty = {}
set1-resource Anything = {}
set1-resource (Res a) = {a}
set1-resource (Copyable b) = {}

88

set1-resource (Parallel xs) =
⋃

(set1-resource ‘ set xs)
set1-resource (NonD x y) = set1-resource x ∪ set1-resource y
set1-resource (Executable x y) = set1-resource x ∪ set1-resource y
set1-resource (Repeatable x y) = set1-resource x ∪ set1-resource y
by (simp-all add: set1-resource of-resource-parallel)

lemma set2-resource-simps [simp]:
set2-resource Empty = {}
set2-resource Anything = {}
set2-resource (Res a) = {}
set2-resource (Copyable b) = {b}
set2-resource (Parallel xs) =

⋃
(set2-resource ‘ set xs)

set2-resource (NonD x y) = set2-resource x ∪ set2-resource y
set2-resource (Executable x y) = set2-resource x ∪ set2-resource y
set2-resource (Repeatable x y) = set2-resource x ∪ set2-resource y
by (simp-all add: set2-resource of-resource-parallel)

7.8 Replicated Resources

Replicate a resource several times in a Resource.Parallel
fun nres-term :: nat ⇒ (′a, ′b) res-term ⇒ (′a, ′b) res-term

where nres-term n x = ResTerm.Parallel (replicate n x)

lift-definition nresource :: nat ⇒ (′a, ′b) resource ⇒ (′a, ′b) resource
is nres-term by (simp add: res-term-equiv.parallel list-all2I)

At the resource level this can be simplified just like at the term level
lemma nresource-simp:

nresource n x = Parallel (replicate n x)
by (transfer , simp)

Parallel product of replications is a replication for the combined amount
lemma nresource-par :

nresource x a � nresource y a = nresource (x+y) a
by (simp add: nresource-simp replicate-add)

7.9 Lifting Resource Refinement
lift-definition refine-resource
:: (′a ⇒ (′x, ′y) resource) ⇒ (′b ⇒ ′y) ⇒ (′a, ′b) resource ⇒ (′x, ′y) resource
is refine-res-term by (simp add: refine-res-term-eq)

Refinement of lifted constructors can be simplified like the term version
lemma refine-resource-simps [simp]:

refine-resource f g Empty = Empty
refine-resource f g Anything = Anything
refine-resource f g (Res a) = f a
refine-resource f g (Copyable b) = Copyable (g b)
refine-resource f g (Parallel xs) = Parallel (map (refine-resource f g) xs)

89

refine-resource f g (NonD x y) = NonD (refine-resource f g x) (refine-resource f
g y)

refine-resource f g (Executable x y) =
Executable (refine-resource f g x) (refine-resource f g y)

refine-resource f g (Repeatable x y) =
Repeatable (refine-resource f g x) (refine-resource f g y)

by (transfer , simp)+

Code for refinement performs the term-level refinement on the normalised
representative
lemma refine-resource-code [code]:

refine-resource f g (abs-resource x) = abs-resource (refine-res-term (of-resource ◦
f) g x)

by transfer (simp add: res-term-equiv-normal-rewr refine-res-term-eq)

Refinement passes through resource product
lemma refine-resource-par :

refine-resource f g (x � y) = refine-resource f g x � refine-resource f g y
by (simp add: resource-par-def)

end
theory Process

imports Resource
begin

8 Process Compositions

We define process compositions to describe how larger processes are built
from smaller ones from the perspective of how outputs of some actions serve
as inputs for later actions. Our process compositions form a tree, with
actions as leaves and composition operations as internal nodes. We use
resources to represent the inputs and outputs of processes.

8.1 Datatype, Input, Output and Validity

Process composition datatype with primitive actions, composition opera-
tions and resource actions. We use the following type variables:

• ′a for linear resource atoms,

• ′b for copyable resource atoms,

• ′l for primitive action labels, and

• ′m for primitive action metadata.

90

datatype (′a, ′b, ′l, ′m) process =
Primitive (′a, ′b) resource (′a, ′b) resource ′l ′m
— Primitive action with given input, ouptut, label and metadata
| Seq (′a, ′b, ′l, ′m) process (′a, ′b, ′l, ′m) process

— Sequential composition
| Par (′a, ′b, ′l, ′m) process (′a, ′b, ′l, ′m) process

— Parallel composition
| Opt (′a, ′b, ′l, ′m) process (′a, ′b, ′l, ′m) process

— Optional composition
| Represent (′a, ′b, ′l, ′m) process

— Representation of a process composition as a repeatably exectuable resource
| Identity (′a, ′b) resource

— Identity action
| Swap (′a, ′b) resource (′a, ′b) resource

— Swap action
| InjectL (′a, ′b) resource (′a, ′b) resource

— Left injection
| InjectR (′a, ′b) resource (′a, ′b) resource

— Right injection
| OptDistrIn (′a, ′b) resource (′a, ′b) resource (′a, ′b) resource

— Distribution into branches of a non-deterministic resource
| OptDistrOut (′a, ′b) resource (′a, ′b) resource (′a, ′b) resource

— Distribution out of branches of a non-deterministic resource
| Duplicate ′b

— Duplication of a copyable resource
| Erase ′b

— Discarding a copyable resource
| Apply (′a, ′b) resource (′a, ′b) resource

— Applying an executable resource
| Repeat (′a, ′b) resource (′a, ′b) resource

— Duplicating a repeatably executable resource
| Close (′a, ′b) resource (′a, ′b) resource

— Discarding a repeatably executable resource
| Once (′a, ′b) resource (′a, ′b) resource

— Converting a repeatably executable resource into a plain execuable resource
| Forget (′a, ′b) resource

— Forgetting all details about a resource

Each process composition has a well defined input and output resource,
derived recursively from the individual actions that constitute it.
primrec input :: (′a, ′b, ′l, ′m) process ⇒ (′a, ′b) resource

where
input (Primitive ins outs l m) = ins
| input (Seq p q) = input p
| input (Par p q) = input p � input q
| input (Opt p q) = NonD (input p) (input q)
| input (Represent p) = Empty
| input (Identity a) = a
| input (Swap a b) = a � b

91

| input (InjectL a b) = a
| input (InjectR a b) = b
| input (OptDistrIn a b c) = a � (NonD b c)
| input (OptDistrOut a b c) = NonD (a � b) (a � c)
| input (Duplicate a) = Copyable a
| input (Erase a) = Copyable a
| input (Apply a b) = a � (Executable a b)
| input (Repeat a b) = Repeatable a b
| input (Close a b) = Repeatable a b
| input (Once a b) = Repeatable a b
| input (Forget a) = a

Input of mapped process is accordingly mapped input
lemma map-process-input [simp]:

input (map-process f g h i x) = map-resource f g (input x)
by (induct x) simp-all

primrec output :: (′a, ′b, ′l, ′m) process ⇒ (′a, ′b) resource
where

output (Primitive ins outs l m) = outs
| output (Seq p q) = output q
| output (Par p q) = output p � output q
| output (Opt p q) = output p
| output (Represent p) = Repeatable (input p) (output p)
| output (Identity a) = a
| output (Swap a b) = b � a
| output (InjectL a b) = NonD a b
| output (InjectR a b) = NonD a b
| output (OptDistrIn a b c) = NonD (a � b) (a � c)
| output (OptDistrOut a b c) = a � (NonD b c)
| output (Duplicate a) = Copyable a � Copyable a
| output (Erase a) = Empty
| output (Apply a b) = b
| output (Repeat a b) = (Repeatable a b) � (Repeatable a b)
| output (Close a b) = Empty
| output (Once a b) = Executable a b
| output (Forget a) = Anything

Output of mapped process is accordingly mapped output
lemma map-process-output [simp]:

output (map-process f g h i x) = map-resource f g (output x)
by (induct x) simp-all

Not all process compositions are valid. While we consider all individual
actions to be valid, we impose two conditions on composition operations
beyond the validity of their children:

• Sequential composition requires that the output of the first process be
the input of the second.

92

• Optional composition requires that the two processes arrive at the
same output.

primrec valid :: (′a, ′b, ′l, ′m) process ⇒ bool
where

valid (Primitive ins outs l m) = True
| valid (Seq p q) = (output p = input q ∧ valid p ∧ valid q)
| valid (Par p q) = (valid p ∧ valid q)
| valid (Opt p q) = (valid p ∧ valid q ∧ output p = output q)
| valid (Represent p) = valid p
| valid (Identity a) = True
| valid (Swap a b) = True
| valid (InjectL a b) = True
| valid (InjectR a b) = True
| valid (OptDistrIn a b c) = True
| valid (OptDistrOut a b c) = True
| valid (Duplicate a) = True
| valid (Erase a) = True
| valid (Apply a b) = True
| valid (Repeat a b) = True
| valid (Close a b) = True
| valid (Once a b) = True
| valid (Forget a) = True

Process mapping preserves validity
lemma map-process-valid [simp]:

valid x =⇒ valid (map-process f g h i x)
by (induct x) simp-all

However, it does not necessarily preserve invalidity if there exist two distinct
linear or copyable resource atoms
lemma

fixes g h i and a b :: ′a
assumes a 6= b
obtains f and x :: (′a, ′b, ′l, ′m) process

where ¬ valid x and valid (map-process f g h i x)
proof

let ?x = Seq (Identity (Res a)) (Identity (Res b))
let ?f = λx. undefined — Note that the value used can be anything
show ¬ valid ?x

using assms resource-res-eq by fastforce
show valid (map-process ?f g h i ?x)

by simp
qed
lemma

fixes f h i and a b :: ′b
assumes a 6= b
obtains g and x :: (′a, ′b, ′l, ′m) process

93

where ¬ valid x and valid (map-process f g h i x)
proof

let ?x = Seq (Identity (Copyable a)) (Identity (Copyable b))
let ?g = λx. undefined — Note that the value used can be anything
show ¬ valid ?x

using assms resource-copyable-eq by fastforce
show valid (map-process f ?g h i ?x)

by simp
qed

If the resource map is injective then mapping with it does not change validity
lemma map-process-valid-eq:

assumes inj f
and inj g

shows valid x = valid (map-process f g h i x)
using assms by (induct x ; simp ; metis injD resource.inj-map)

8.2 Gathering Primitive Actions

As primitive actions represent assumptions about what we can do in the
modelling domain, it is often useful to gather them.

When we want to talk about only primitive actions, we represent them with
a quadruple of input, output, label and metadata, just as the parameters to
the Primitive constructor.
type-synonym (′a, ′b, ′l, ′m) prim-pars = (′a, ′b) resource × (′a, ′b) resource ×
′l × ′m

Uncurried version of Primitive to use with prim-pars
fun Primitive-unc :: (′a, ′b, ′l, ′m) prim-pars ⇒ (′a, ′b, ′l, ′m) process

where Primitive-unc (a, b, l, m) = Primitive a b l m

Gather the primitives recursively from the composition, preserving their
order
primrec primitives :: (′a, ′b, ′l, ′m) process ⇒ (′a, ′b, ′l, ′m) prim-pars list

where
primitives (Primitive ins outs l m) = [(ins, outs, l, m)]
| primitives (Seq p q) = primitives p @ primitives q
| primitives (Par p q) = primitives p @ primitives q
| primitives (Opt p q) = primitives p @ primitives q
| primitives (Represent p) = primitives p
| primitives (Identity a) = []
| primitives (Swap a b) = []
| primitives (InjectL a b) = []
| primitives (InjectR a b) = []
| primitives (OptDistrIn a b c) = []
| primitives (OptDistrOut a b c) = []
| primitives (Duplicate a) = []

94

| primitives (Erase a) = []
| primitives (Apply a b) = []
| primitives (Repeat a b) = []
| primitives (Close a b) = []
| primitives (Once a b) = []
| primitives (Forget a) = []

Primitives of mapped process are accordingly mapped primitives
lemma map-process-primitives [simp]:

primitives (map-process f g h i x)
= map (λ(a, b, l, m). (map-resource f g a, map-resource f g b, h l, i m)) (primitives

x)
by (induct x) simp-all

8.3 Resource Refinement in Processes

We can apply refine-resource systematically throughout a process composi-
tion
primrec process-refineRes ::

(′a ⇒ (′x, ′y) resource) ⇒ (′b ⇒ ′y) ⇒ (′a, ′b, ′l, ′m) process ⇒ (′x, ′y, ′l, ′m)
process

where
process-refineRes f g (Primitive ins outs l m) =

Primitive (refine-resource f g ins) (refine-resource f g outs) l m
| process-refineRes f g (Identity a) = Identity (refine-resource f g a)
| process-refineRes f g (Swap a b) = Swap (refine-resource f g a) (refine-resource

f g b)
| process-refineRes f g (Seq p q) = Seq (process-refineRes f g p) (process-refineRes

f g q)
| process-refineRes f g (Par p q) = Par (process-refineRes f g p) (process-refineRes

f g q)
| process-refineRes f g (Opt p q) = Opt (process-refineRes f g p) (process-refineRes

f g q)
| process-refineRes f g (InjectL a b) = InjectL (refine-resource f g a) (refine-resource

f g b)
| process-refineRes f g (InjectR a b) = InjectR (refine-resource f g a) (refine-resource

f g b)
| process-refineRes f g (OptDistrIn a b c) =

OptDistrIn (refine-resource f g a) (refine-resource f g b) (refine-resource f g c)
| process-refineRes f g (OptDistrOut a b c) =

OptDistrOut (refine-resource f g a) (refine-resource f g b) (refine-resource f g
c)
| process-refineRes f g (Duplicate a) = Duplicate (g a)
| process-refineRes f g (Erase a) = Erase (g a)
| process-refineRes f g (Represent p) = Represent (process-refineRes f g p)
| process-refineRes f g (Apply a b) = Apply (refine-resource f g a) (refine-resource

f g b)
| process-refineRes f g (Repeat a b) = Repeat (refine-resource f g a) (refine-resource

f g b)

95

| process-refineRes f g (Close a b) = Close (refine-resource f g a) (refine-resource
f g b)
| process-refineRes f g (Once a b) = Once (refine-resource f g a) (refine-resource

f g b)
| process-refineRes f g (Forget a) = Forget (refine-resource f g a)

This behaves well with the input, output and primitives, and preserves va-
lidity
lemma process-refineRes-input [simp]:

input (process-refineRes f g x) = refine-resource f g (input x)
by (induct x ; simp add: resource-par-def)

lemma process-refineRes-output [simp]:
output (process-refineRes f g x) = refine-resource f g (output x)
by (induct x ; simp add: resource-par-def)

lemma process-refineRes-primitives:
primitives (process-refineRes f g x)
= map (λ(ins, outs, l, m). (refine-resource f g ins, refine-resource f g outs, l, m))

(primitives x)
by (induct x ; simp add: image-Un)

lemma process-refineRes-valid [simp]:
valid x =⇒ valid (process-refineRes f g x)
by (induct x ; simp)

9 List-based Composition Actions

We define functions to compose a list of processes in sequence or in parallel.
In both cases these associate the binary operation to the right, and for
the empty list they both use the identity process on the Resource.Empty
resource.

Compose a list of processes in sequence
primrec seq-process-list :: (′a, ′b, ′l, ′m) process list ⇒ (′a, ′b, ′l, ′m) process

where
seq-process-list [] = Identity Empty
| seq-process-list (x # xs) = (if xs = [] then x else Seq x (seq-process-list xs))

lemma seq-process-list-input [simp]:
xs 6= [] =⇒ input (seq-process-list xs) = input (hd xs)
by (induct xs) simp-all

lemma seq-process-list-output [simp]:
xs 6= [] =⇒ output (seq-process-list xs) = output (last xs)
by (induct xs) simp-all

lemma seq-process-list-valid:
valid (seq-process-list xs)
= (list-all valid xs
∧ (∀ i :: nat. i < length xs − 1 −→ output (xs ! i) = input (xs ! Suc i)))

96

proof (induct xs)
case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case

by (simp add: hd-conv-nth nth-Cons ′)
(metis Suc-less-eq Suc-pred diff-Suc-1 ′ length-greater-0-conv zero-less-Suc)

qed

lemma seq-process-list-primitives [simp]:
primitives (seq-process-list xs) = concat (map primitives xs)
by (induct xs) simp-all

We use list-based sequential composition to make generated code more read-
able
lemma seq-process-list-code-unfold [code-unfold]:

Seq x (Seq y z) = seq-process-list [x, y, z]
Seq x (seq-process-list (y # ys)) = seq-process-list (x # y # ys)
by simp-all

Resource refinement can be distributed across the list being composed
lemma seq-process-list-refine:
process-refineRes f g (seq-process-list xs) = seq-process-list (map (process-refineRes

f g) xs)
by (induct xs ; simp)

Compose a list of processes in parallel
primrec par-process-list :: (′a, ′b, ′l, ′m) process list ⇒ (′a, ′b, ′l, ′m) process

where
par-process-list [] = Identity Empty
| par-process-list (x # xs) = (if xs = [] then x else Par x (par-process-list xs))

lemma par-process-list-input [simp]:
input (par-process-list xs) = foldr (�) (map input xs) Empty
by (induct xs) simp-all

lemma par-process-list-output [simp]:
output (par-process-list xs) = foldr (�) (map output xs) Empty
by (induct xs) simp-all

lemma par-process-list-valid [simp]:
valid (par-process-list xs) = list-all valid xs
by (induct xs ; clarsimp)

lemma par-process-list-primitives [simp]:
primitives (par-process-list xs) = concat (map primitives xs)
by (induct xs ; simp)

97

We use list-based parallel composition to make generated code more readable
lemma par-process-list-code-unfold [code-unfold]:

Par x (Par y z) = par-process-list [x, y, z]
Par x (par-process-list (y # ys)) = par-process-list (x # y # ys)
by simp-all

Resource refinement can be distributed across the list being composed
lemma par-process-list-refine:
process-refineRes f g (par-process-list xs) = par-process-list (map (process-refineRes

f g) xs)
by (induct xs ; simp)

9.1 Progressing Both Non-deterministic Branches

Note that validity of Opt requires that its children have equal outputs. How-
ever, we can define a composition template that allows us to optionally
compose processes with different outputs, producing the non-deterministic
combination of those outputs. This represents progressing both branches of
a Resource.NonD resource without merging them.
fun OptProgress :: (′a, ′b, ′l, ′m) process ⇒ (′a, ′b, ′l, ′m) process ⇒ (′a, ′b, ′l,
′m) process

where OptProgress p q =
Opt (Seq p (InjectL (output p) (output q)))

(Seq q (InjectR (output p) (output q)))

The result takes the non-deterministic combination of the children’s inputs
and produces the non-deterministic combination of their outputs, and it is
valid whenever the two children are valid.
lemma [simp]:

shows OptProgress-input: input (OptProgress x y) = NonD (input x) (input y)
and OptProgress-output: output (OptProgress x y) = NonD (output x) (output

y)
and OptProgress-valid: valid (OptProgress x y) = (valid x ∧ valid y)

by simp-all

10 Primitive Action Substitution

We define a function to substitute primitive actions within any process com-
position. The target actions are specified through a predicate on their pa-
rameters. The replacement composition is then a function of those primi-
tives.
primrec process-subst ::

((′a, ′b) resource ⇒ (′a, ′b) resource ⇒ ′l ⇒ ′m ⇒ bool) ⇒
((′a, ′b) resource ⇒ (′a, ′b) resource ⇒ ′l ⇒ ′m ⇒ (′a, ′b, ′l, ′m) process) ⇒
(′a, ′b, ′l, ′m) process ⇒ (′a, ′b, ′l, ′m) process

98

where
process-subst P f (Primitive a b l m) = (if P a b l m then f a b l m else Primitive

a b l m)
| process-subst P f (Identity a) = Identity a
| process-subst P f (Swap a b) = Swap a b
| process-subst P f (Seq p q) = Seq (process-subst P f p) (process-subst P f q)
| process-subst P f (Par p q) = Par (process-subst P f p) (process-subst P f q)
| process-subst P f (Opt p q) = Opt (process-subst P f p) (process-subst P f q)
| process-subst P f (InjectL a b) = InjectL a b
| process-subst P f (InjectR a b) = InjectR a b
| process-subst P f (OptDistrIn a b c) = OptDistrIn a b c
| process-subst P f (OptDistrOut a b c) = OptDistrOut a b c
| process-subst P f (Duplicate a) = Duplicate a
| process-subst P f (Erase a) = Erase a
| process-subst P f (Represent p) = Represent (process-subst P f p)
| process-subst P f (Apply a b) = Apply a b
| process-subst P f (Repeat a b) = Repeat a b
| process-subst P f (Close a b) = Close a b
| process-subst P f (Once a b) = Once a b
| process-subst P f (Forget a) = Forget a

If no matching target primitive is present, then the substitution does nothing
lemma process-subst-no-target:
(
∧

a b l m. (a, b, l, m) ∈ set (primitives x) =⇒ ¬ P a b l m) =⇒ process-subst
P f x = x

by (induct x, auto)

If a process has no primitives, then any substitution does nothing on it
lemma process-subst-no-prims:

primitives x = [] =⇒ process-subst P f x = x
by (fastforce intro: process-subst-no-target)

If the replacement process does not change the inputs, then input is pre-
served through the substitution
lemma process-subst-input [simp]:
(
∧

a b l m. P a b l m =⇒ input (f a b l m) = a) =⇒ input (process-subst P f x)
= input x

by (induct x) simp-all

If the replacement additionally does not change the outputs, then the output
is also preserved through the substitution
lemma process-subst-output [simp]:

assumes
∧

a b l m. P a b l m =⇒ input (f a b l m) = a
and

∧
a b l m. P a b l m =⇒ output (f a b l m) = b

shows output (process-subst P f x) = output x
using assms by (induct x) simp-all

If the replacement is additionally valid for every target, then validity is
preserved through the substitution

99

lemma process-subst-valid [simp]:
assumes

∧
a b l m. P a b l m =⇒ input (f a b l m) = a

and
∧

a b l m. P a b l m =⇒ output (f a b l m) = b
and

∧
a b l m. P a b l m =⇒ valid (f a b l m)

shows valid (process-subst P f x) = valid x
using assms by (induct x) simp-all

Primitives after substitution are those that didn’t satisfy the predicate and
anything that was introduced by the function applied on satisfying primi-
tives’ parameters.
lemma process-subst-primitives:

primitives (process-subst P f x)
= concat (map

(λ(a, b, l, m). if P a b l m then primitives (f a b l m) else [(a, b, l, m)])
(primitives x))

by (induct x) simp-all

After substitution, no target action is left unless some replacement intro-
duces one
lemma process-subst-targets-removed:

assumes
∧

a b l m a ′ b ′ l ′ m ′.
[[(a, b, l, m) ∈ set (primitives x); P a b l m; (a ′, b ′, l ′, m ′) ∈ set (primitives (f

a b l m))]]
=⇒ ¬ P a ′ b ′ l ′ m ′

— For any target primitive of the process, no primitive in its replacement is also
a target

and (a, b, l, m) ∈ set (primitives (process-subst P f x))
shows ¬ P a b l m

using assms
proof (induct x)

case (Primitive x1 x2 x3 x4)
then show ?case
by simp (smt (verit) empty-iff empty-set fst-conv primitives.simps(1) set-ConsD

snd-conv)
next case (Seq x1 x2) then show ?case by simp blast
next case (Par x1 x2) then show ?case by simp blast
next case (Opt x1 x2) then show ?case by simp blast
next case (Represent x) then show ?case by simp
next case (Identity x) then show ?case by simp
next case (Swap x1 x2) then show ?case by simp
next case (InjectL x1 x2) then show ?case by simp
next case (InjectR x1 x2) then show ?case by simp
next case (OptDistrIn x1 x2 x3) then show ?case by simp
next case (OptDistrOut x1 x2 x3) then show ?case by simp
next case (Duplicate x) then show ?case by simp
next case (Erase x) then show ?case by simp
next case (Apply x1 x2) then show ?case by simp
next case (Repeat x1 x2) then show ?case by simp
next case (Close x1 x2) then show ?case by simp

100

next case (Once x1 x2) then show ?case by simp
next case (Forget x) then show ?case by simp
qed

Process substitution distributes over list-based sequential and parallel com-
position
lemma par-process-list-subst:

process-subst P f (par-process-list xs) = par-process-list (map (process-subst P f)
xs)

by (induct xs ; simp)

lemma seq-process-list-subst:
process-subst P f (seq-process-list xs) = seq-process-list (map (process-subst P f)

xs)
by (induct xs ; simp)

11 Useful Notation

We set up notation to easily express the input and output of a process. We
use two bundle: including one introduces the notation, while including the
other removes it.
abbreviation spec :: (′a, ′b, ′l, ′m) process ⇒ (′a, ′b) resource ⇒ (′a, ′b) resource
⇒ bool

where spec P a b ≡ input P = a ∧ output P = b

bundle spec-notation
begin
notation spec ((-): (-) → (-) [1000 , 60] 60)
end

bundle spec-notation-undo
begin
no-notation spec ((-): (-) → (-) [1000 , 60] 60)
end

Set up notation bundles to be imported in a controlled way, along with
inverses to undo them

We also set up infix notation for sequential and parallel process composition.
Once again, we use two bundles to add and remove this notation. In this
case that is even more useful, as out parallel composition notation overrides
that of (‖).
bundle process-notation
begin
no-notation Shuffle (infixr ‖ 80)
notation Seq (infixr ;; 55)
notation Par (infixr ‖ 65)

101

end

bundle process-notation-undo
begin
notation Shuffle (infixr ‖ 80)
no-notation Seq (infixr ;; 55)
no-notation Par (infixr ‖ 65)
end

end
theory CopyableElimination

imports Process
begin

12 Copyable Resource Elimination

We can show that copyable resources are not strictly necessary for the the-
ory, being instead a convenience feature, by taking any valid process and
transforming it into one that does not use any copyable resources. The
cost is that we introduce new primitive actions, which represent the ex-
plicit assumptions that the resources that were copyable have actions that
correspond to Duplicate and Erase in the domain. While an equivalent as-
sumption (that such actions exist in the domain) is made by making an
atom copyable instead of linear, that avenue fixes the form of those actions
and as such lessens the risk of error in manually introducing them for this
frequent pattern.
The concrete transformation takes a process of type (′a, ′b, ′l, ′m) process
to one of type (′a + ′b, ′c, ′l + String.literal, ′m + unit) process. Note the
following:

• The two resource atom types are combined into one to form the new
linear atoms.

• The new copyable atoms can be of any type, because the result makes
no use of them.

• The old labels are combined with string literals to add label simple
labels for the new actions.

• The old metadata is combined with unit, allowing the new actions to
have no metadata.

12.1 Replacing Copyable Resource Actions

To remove the copyable resource actions Duplicate and Erase we replace
them with Primitive actions with the corresponding input and output, string

102

labels and no metadata.
primrec makeDuplEraToPrim
:: (′a, ′b, ′l, ′m) process ⇒ (′a, ′b, ′l + String.literal, ′m + unit) process
where

makeDuplEraToPrim (Primitive a b l m) = Primitive a b (Inl l) (Inl m)
| makeDuplEraToPrim (Identity a) = Identity a
| makeDuplEraToPrim (Swap a b) = Swap a b
| makeDuplEraToPrim (Seq p q) = Seq (makeDuplEraToPrim p) (makeDuplEraToPrim

q)
| makeDuplEraToPrim (Par p q) = Par (makeDuplEraToPrim p) (makeDuplEraToPrim

q)
| makeDuplEraToPrim (Opt p q) = Opt (makeDuplEraToPrim p) (makeDuplEraToPrim

q)
| makeDuplEraToPrim (InjectL a b) = InjectL a b
| makeDuplEraToPrim (InjectR a b) = InjectR a b
| makeDuplEraToPrim (OptDistrIn a b c) = OptDistrIn a b c
| makeDuplEraToPrim (OptDistrOut a b c) = OptDistrOut a b c
| makeDuplEraToPrim (Duplicate a) =

Primitive (Copyable a) (Copyable a � Copyable a) (Inr STR ′′Duplicate ′′)
(Inr ())
| makeDuplEraToPrim (Erase a) =

Primitive (Copyable a) Empty (Inr STR ′′Erase ′′) (Inr ())
| makeDuplEraToPrim (Represent p) = Represent (makeDuplEraToPrim p)
| makeDuplEraToPrim (Apply a b) = Apply a b
| makeDuplEraToPrim (Repeat a b) = Repeat a b
| makeDuplEraToPrim (Close a b) = Close a b
| makeDuplEraToPrim (Once a b) = Once a b
| makeDuplEraToPrim (Forget a) = Forget a

12.2 Making Copyable Resource Terms Linear

To eventually replace copyable resources, we first define how resource terms
are replaced. Linear atoms are injected into the left side of the sum while
copyable ones are injected into the right side, but both are turned into linear
atoms in the result.
primrec copyableToRes-term :: (′a, ′b) res-term ⇒ (′a + ′b, ′c) res-term

where
copyableToRes-term res-term.Empty = res-term.Empty
| copyableToRes-term res-term.Anything = res-term.Anything
| copyableToRes-term (res-term.Res a) = res-term.Res (Inl a)
| copyableToRes-term (res-term.Copyable a) = res-term.Res (Inr a)
| copyableToRes-term (res-term.Parallel xs) =

res-term.Parallel (map copyableToRes-term xs)
| copyableToRes-term (res-term.NonD a b) =

res-term.NonD (copyableToRes-term a) (copyableToRes-term b)
| copyableToRes-term (res-term.Executable a b) =

res-term.Executable (copyableToRes-term a) (copyableToRes-term b)
| copyableToRes-term (res-term.Repeatable a b) =

103

res-term.Repeatable (copyableToRes-term a) (copyableToRes-term b)

Replacing copyable resource terms preserves term equivalence
lemma copyableToRes-term-equiv:

x ∼ y =⇒ copyableToRes-term x ∼ copyableToRes-term y
proof (induct x y rule: res-term-equiv.induct)

case nil then show ?case by simp
next case (singleton a) then show ?case by simp
next

case (merge x y z)
then show ?case

using res-term-equiv.merge by force
next case empty then show ?case by simp
next case anything then show ?case by simp
next case (res x) then show ?case by simp
next case (copyable x) then show ?case by simp
next

case (parallel xs ys)
then show ?case

by (simp add: list.rel-map list-all2-mono res-term-equiv.parallel)
next case (nondet x y u v) then show ?case by (simp add: res-term-equiv.nondet)
next case (executable x y u v) then show ?case by (simp add: res-term-equiv.executable)
next case (repeatable x y u v) then show ?case by (simp add: res-term-equiv.repeatable)
next case (sym x y) then show ?case by (metis res-term-equiv.sym)
next case (trans x y z) then show ?case by (metis res-term-equiv.trans)
qed

Replacing copyable resource terms does not affect the nature of non-atoms
lemma copyableToRes-term-is-Empty [simp]:

is-Empty (copyableToRes-term x) = is-Empty x
by (cases x) simp-all

lemma copyableToRes-term-has-Empty [simp]:
list-ex is-Empty (map copyableToRes-term xs) = list-ex is-Empty xs
by (induct xs) simp-all

lemma copyableToRes-term-has-no-Empty [simp]:
list-all (λx. ¬ is-Empty x) (map copyableToRes-term xs) = list-all (λx. ¬ is-Empty

x) xs
by (induct xs) simp-all

lemma copyableToRes-term-is-Parallel [simp]:
is-Parallel (copyableToRes-term x) = is-Parallel x
by (cases x) simp-all

lemma copyableToRes-term-has-Parallel [simp]:
list-ex is-Parallel (map copyableToRes-term xs) = list-ex is-Parallel xs
by (induct xs) simp-all

lemma copyableToRes-term-has-no-Parallel [simp]:
list-all (λx. ¬ is-Parallel x) (map copyableToRes-term xs) = list-all (λx. ¬

is-Parallel x) xs
by (induct xs) simp-all

104

Replacing copyable resource terms does not affect whether they are nor-
malised
lemma normalised-copyableToRes-term [simp]:

normalised (copyableToRes-term x) = normalised x (is normalised (?f x) = nor-
malised x)
— Note the pattern matching, which is needed to later refer to copyableToRes-term

with the right type variable for copyable resources in its output
proof (induct x)

case (Res x) then show ?case by simp
next case (Copyable x) then show ?case by simp
next case Empty then show ?case by simp
next case Anything then show ?case by simp
next

case (Parallel xs)
then show ?case
proof (induct xs rule: induct-list012)

case 1 then show ?case by simp
next case (2 x) then show ?case by simp
next

case (3 x y zs)
then have [simp]: list-all normalised (map ?f zs) = list-all normalised zs

by (simp add: Ball-set[symmetric])
show ?case

using 3 by simp
qed

next case (NonD x1 x2) then show ?case by simp
next case (Executable x1 x2) then show ?case by simp
next case (Repeatable x1 x2) then show ?case by simp
qed

Term rewriting step commutes with the copyable term replacement
lemma remove-one-empty-copyableToRes-term-commute:
remove-one-empty (map copyableToRes-term xs) = map copyableToRes-term (remove-one-empty

xs)
proof (induct xs)

case Nil then show ?case by simp
next case (Cons a xs) then show ?case by (cases a) simp-all
qed

lemma merge-one-parallel-copyableToRes-term-commute:
merge-one-parallel (map copyableToRes-term xs) = map copyableToRes-term (merge-one-parallel

xs)
proof (induct xs)

case Nil then show ?case by simp
next case (Cons a xs) then show ?case by (cases a) simp-all
qed

lemma step-copyableToRes-term:
step (copyableToRes-term x) = copyableToRes-term (step x) (is step (?f x) = ?f

105

(step x))
proof (induct x rule: step-induct ′)

case Empty then show ?case by simp
next case Anything then show ?case by simp
next case (Res a) then show ?case by simp
next case (Copyable x) then show ?case by simp
next case (NonD-L x y) then show ?case by simp
next case (NonD-R x y) then show ?case by simp
next case (NonD x y) then show ?case by simp
next case (Executable-L x y) then show ?case by simp
next case (Executable-R x y) then show ?case by simp
next case (Executable x y) then show ?case by simp
next case (Repeatable-L x y) then show ?case by simp
next case (Repeatable-R x y) then show ?case by simp
next case (Repeatable x y) then show ?case by simp
next

case (Par-Norm xs)
moreover have list-ex (λx. ¬ normalised x) (map ?f xs)

using Par-Norm(2) by (fastforce simp add: Bex-set[symmetric])
ultimately show ?case

by simp
next

case (Par-Par xs)
moreover have ¬ list-ex (λx. ¬ normalised x) (map ?f xs)

using Par-Par(2) by (simp add: Bex-set[symmetric])
ultimately show ?case

by (simp add: merge-one-parallel-copyableToRes-term-commute)
next

case (Par-Empty xs)
moreover have ¬ list-ex (λx. ¬ normalised x) (map ?f xs)

using Par-Empty(2) by (simp add: Bex-set[symmetric])
moreover have ¬ list-ex is-Parallel xs

using Par-Empty(3) not-list-ex by metis
ultimately show ?case

by (simp add: remove-one-empty-copyableToRes-term-commute)
next case Par-Nil then show ?case by simp
next case (Par-Single u) then show ?case by simp
next

case (Par v vb vc)
moreover have ¬ list-ex (λx. ¬ normalised x) (map ?f (v # vb # vc))

using Par(2) by (simp add: Bex-set[symmetric])
moreover have ¬ list-ex is-Parallel (v # vb # vc)

using Par(3) not-list-ex by metis
moreover have ¬ list-ex is-Empty (v # vb # vc)

using Par(4) not-list-ex by metis
ultimately show ?case

by simp
qed

By induction, the replacement of copyable terms also passes through term

106

normalisation
lemma normal-rewr-copyableToRes-term:

normal-rewr (copyableToRes-term x) = copyableToRes-term (normal-rewr x)
proof (induct x rule: normal-rewr .induct)

case (1 x)
then show ?case
proof (cases normalised x)

case True
then show ?thesis

by simp
next

case False
then show ?thesis

using 1 by simp (metis step-copyableToRes-term normal-rewr-step)
qed

qed

Copyable term replacement is injective
lemma copyableToRes-term-inj:

copyableToRes-term x = copyableToRes-term y =⇒ x = y
proof (induct x arbitrary: y)

case (Res x) then show ?case by (cases y) simp-all
next case (Copyable x) then show ?case by (cases y) simp-all
next case Empty then show ?case by (cases y) simp-all
next case Anything then show ?case by (cases y) simp-all
next

case (Parallel x)
then show ?case

by (cases y) (simp-all, metis list.inj-map-strong)
next case (NonD x1 x2) then show ?case by (cases y) simp-all
next case (Executable x1 x2) then show ?case by (cases y) simp-all
next case (Repeatable x1 x2) then show ?case by (cases y) simp-all
qed

Making Copyable Resources Linear

We then lift the term-level replacement to resources
lift-definition copyableToRes :: (′a, ′b) resource ⇒ (′a + ′b, ′c) resource

is copyableToRes-term by (rule copyableToRes-term-equiv)

lemma copyableToRes-simps [simp]:
copyableToRes Empty = Empty
copyableToRes Anything = Anything
copyableToRes (Res a) = Res (Inl a)
copyableToRes (Copyable a) = Res (Inr a)
copyableToRes (Parallel xs) = Parallel (map copyableToRes xs)
copyableToRes (NonD x y) = NonD (copyableToRes x) (copyableToRes y)
copyableToRes (Executable x y) = Executable (copyableToRes x) (copyableToRes

y)

107

copyableToRes (Repeatable x y) = Repeatable (copyableToRes x) (copyableToRes
y)

by (transfer , simp)+

Resource-level replacement is injective, which is vital for preserving compo-
sition validity
lemma copyableToRes-inj:

fixes x y :: (′a, ′b) resource
shows (copyableToRes x :: (′a + ′b, ′c) resource) = copyableToRes y =⇒ x = y

proof transfer
fix x y :: (′a, ′b) res-term
assume (copyableToRes-term x :: (′a + ′b, ′c) res-term) ∼ copyableToRes-term

y
then show x ∼ y

unfolding res-term-equiv-is-normal-rewr normal-rewr-copyableToRes-term
by (rule copyableToRes-term-inj)

qed

lemma copyableToRes-eq-conv [simp]:
(copyableToRes x = copyableToRes y) = (x = y)
by (metis copyableToRes-inj)

Resource-level replacement can then be applied over a process
primrec process-copyableToRes :: (′a, ′b, ′l, ′m) process ⇒ (′a + ′b, ′c, ′l, ′m)
process

where
process-copyableToRes (Primitive ins outs l m) =

Primitive (copyableToRes ins) (copyableToRes outs) l m
| process-copyableToRes (Identity a) = Identity (copyableToRes a)
| process-copyableToRes (Swap a b) = Swap (copyableToRes a) (copyableToRes

b)
| process-copyableToRes (Seq p q) = Seq (process-copyableToRes p) (process-copyableToRes

q)
| process-copyableToRes (Par p q) = Par (process-copyableToRes p) (process-copyableToRes

q)
| process-copyableToRes (Opt p q) = Opt (process-copyableToRes p) (process-copyableToRes

q)
| process-copyableToRes (InjectL a b) = InjectL (copyableToRes a) (copyableToRes

b)
| process-copyableToRes (InjectR a b) = InjectR (copyableToRes a) (copyableToRes

b)
| process-copyableToRes (OptDistrIn a b c) =

OptDistrIn (copyableToRes a) (copyableToRes b) (copyableToRes c)
| process-copyableToRes (OptDistrOut a b c) =

OptDistrOut (copyableToRes a) (copyableToRes b) (copyableToRes c)
| process-copyableToRes (Duplicate a) = undefined

— There is no sensible definition for Duplicate, but we will not need one
| process-copyableToRes (Erase a) = undefined

— There is no sensible definition for Erase, but we will not need one

108

| process-copyableToRes (Represent p) = Represent (process-copyableToRes p)
| process-copyableToRes (Apply a b) = Apply (copyableToRes a) (copyableToRes

b)
| process-copyableToRes (Repeat a b) = Repeat (copyableToRes a) (copyableToRes

b)
| process-copyableToRes (Close a b) = Close (copyableToRes a) (copyableToRes

b)
| process-copyableToRes (Once a b) = Once (copyableToRes a) (copyableToRes b)
| process-copyableToRes (Forget a) = Forget (copyableToRes a)

12.3 Final Properties

The final transformation proceeds by first makeDuplEraToPrim to remove
the resource actions that depend on their copyable nature and then pro-
cess-copyableToRes to make all copyable resources into linear ones. We
verify that the result:

• Has the expected type,

• Has as input the original input made linear,

• Has as output the original output made linear,

• Is valid iff the original is valid.

• Contains no copyable atoms

notepad begin
fix x :: (′a, ′b, ′l, ′m) process
term process-copyableToRes (makeDuplEraToPrim x)

:: (′a + ′b, ′c, ′l + String.literal, ′m + unit) process
end

lemma eliminateCopyable-input:
input (process-copyableToRes (makeDuplEraToPrim x)) = copyableToRes (input

x)
by (induct x) (simp-all add: resource-par-def)

lemma eliminateCopyable-output:
output (process-copyableToRes (makeDuplEraToPrim x)) = copyableToRes (output

x)
by (induct x) (simp-all add: resource-par-def eliminateCopyable-input)

lemma eliminateCopyable-valid:
valid (process-copyableToRes (makeDuplEraToPrim x)) = valid x
by (induct x)
(simp-all add: resource-par-def eliminateCopyable-input eliminateCopyable-output)

lemma set2-process-eliminateCopyable:

109

fixes x :: (′a, ′b, ′l, ′m) process
shows set2-process (process-copyableToRes (makeDuplEraToPrim x)) = {}

proof −
have [simp]: set2-resource (copyableToRes x) = {}

for x :: (′a, ′b) resource
by (induct x rule: resource-induct) simp-all

show ?thesis
by (induct x) simp-all

qed

end

References

[1] B. Fürer, A. Lochbihler, J. Schneider, and D. Traytel. Quotients of
bounded natural functors. In N. Peltier and V. Sofronie-Stokkermans,
editors, Automated Reasoning, pages 58–78, Cham, 2020. Springer Inter-
national Publishing.

110

	Utility Theorems
	Resource Terms
	Resource Term Equivalence
	Parallel Parts
	Parallelisation
	Refinement
	Removing 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Empty Terms From a List
	Merging Nested 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Parallel Terms in a List

	Resource Term Normal Form
	Rewriting Resource Term Normalisation
	Rewriting Relation
	Rewriting Bound
	Step
	Removing One Empty
	Merging One Parallel
	Rewriting Step Function

	Normalisation Procedure
	As Abstract Rewriting System
	Rewriting System Properties
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 NonD Joinability
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Executable and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Repeatable Joinability
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Parallel Joinability
	Other Helpful Lemmas
	Equivalent Term Joinability

	Term Equivalence as Rewriting Closure

	Direct Resource Term Normalisation
	Comparison of Resource Term Normalisation
	Resources
	Quotient Type
	Lifting Bounded Natural Functor Structure
	Lifting Constructors
	Parallel Product
	Lifting Parallel Parts
	Lifting Parallelisation
	Representative of Parallel Resource
	Replicated Resources
	Lifting Resource Refinement

	Process Compositions
	Datatype, Input, Output and Validity
	Gathering Primitive Actions
	Resource Refinement in Processes

	List-based Composition Actions
	Progressing Both Non-deterministic Branches

	Primitive Action Substitution
	Useful Notation
	Copyable Resource Elimination
	Replacing Copyable Resource Actions
	Making Copyable Resource Terms Linear
	Final Properties

