A Sound and Complete Calculus for Probability
Inequalities

Matthew Doty

April 18, 2024

Abstract

We give a sound an complete multiple-conclusion calculus $ + for finitely
additive probability inequalities. In particular, we show

~T$ - ~® = VP € probabilities. » ¢« &. Pp < » v+« L. Py

..where ~ T" is the negation of all of the formulae in I' (and similarly for
~ ®). We prove this by using an abstract form of MaxSAT. We also show

MazSAT(~T Q ®)+c < lengthT' = VP € probabilities. <Z ¢+ . qu) +c < Z’y +—T. Py

Finally, we establish a collapse theorem, which asserts that (> ¢ < ®. Po)+
¢ <> v < I'. Py holds for all probabilities P if and only if (> ¢ « ®. d¢)+
¢ <> 7 <« I'. 07 holds for all binary-valued probabilities ¢.

Contents

1 Introduction

2 Measure Deduction and Counting Deduction

2.1 Definition of Measure Deduction
2.2 Definition of the Stronger Theory Relation.
2.3 The Stronger Theory Relation is a Preorder
2.4 The Stronger Theory Relation is a Subrelation of of Measure
Deduction
2.5 Measure Deduction is a Preorder
2.6 Measure Deduction Cancellation Rules
2.7 Measure Deduction Substitution Rules
2.8 Measure Deduction Sum Rules
2.9 Measure Deduction Exchange Rule
2.10 Definition of Counting Deduction
2.11 Converting Back and Forth from Counting Deduction to Mea-
sure Deduction
2.12 Measure Deduction Soundess

MaxSAT

3.1 Definition of Relative Maximal Clause Collections.
3.2 Definition of MaxSAT
3.3 Reducing Counting Deduction to MaxSAT

Inequality Completeness For Probability Logic

4.1 Limited Counting Deduction Completeness
4.2 Measure Deduction Completeness
4.3 Counting Deduction Completeness
4.4 Collapse Theorem For Probability Logic
4.5 MaxSAT Completeness For Probability Logic

Chapter 1

Introduction

theory Probability-Inequality-Completeness
imports
Suppes- Theorem. Probability- Logic
begin

no-notation FuncSet.funcset (infixr — 60)

We introduce a novel logical calculus and prove completeness for probability
inequalities. This is a vast generalization of Suppes’ Theorem which lays the
foundation for this theory.

We provide two new logical judgements: measure deduction ($) and count-
ing deduction (#t). Both judgements capture a notion of measure or quan-
tity. In both cases premises must be partially or completely consumed in
sense to prove multiple conclusions. That is to say, a portion of the premises
must be used to prove each conclusion which cannot be reused. Counting
deduction counts the number of times a particular conclusion can be proved
(as the name implies), while measure deduction includes multiple, different
conclusions which must be proven via the premises.

We also introduce an abstract notion of MaxSAT, which is the maximal
number of clauses in a list of clauses that can be simultaneously satisfied.

We show the following are equivalent:

o ~T -~
o (~T @ @) #+ (length ®) L
o MazSAT (~T @ ®) < length T’

o V § € dirac-measures. (>, p®. 5 @) < O 4«T.d7)

V P € probabilities. (> p+®. P) < (D v«TI. P~)

In the special case of MaxSAT, we show the following are equivalent:
o MazSAT (~T @Q @) + ¢ < length T’

e V § € dirac-measures. (>, p®. 5 @) + ¢ < O v«T.d7)

o YV P € probabilities. (> p+P. P ¢) + ¢ < O y«T.P~)

Chapter 2

Measure Deduction and
Counting Deduction

2.1 Definition of Measure Deduction

To start, we introduce a common combinator for modifying functions that
take two arguments.
definition uncurry : (la = 'b = 'c) = 'a x b= "¢

where uncurry-def [simp]: uncurry f = (A (z, y). fz y)

Our new logical calculus is a recursively defined relation ($+) using list
deduction (:F).
We call our new logical relation measure deduction:

primrec (in classical-logic)
measure-deduction :: 'a list = 'a list = bool (infix $+ 60)

where
T $- [] = True
| T 8- (p # @) =

(3 W. mset (map snd ¥) CH# mset T
A map (uncurry (U)) ¥+ ¢
A map (uncurry (—)) ¥ @QI' © (map snd V) $- @)

~—

Let us briefly analyze what the above definition is saying.

From the above we must find a special list-of-pairs ¥, which we refer to as
a witness, in order to establish ' $+ ¢ # .

We may motivate measure deduction as follows. In the simplest case we
know P ¢ <P ¢ + Nifandonlyif P (x U)+ P (~xUp) <Py
+ X, or equivalently P (x U)+ P (x = ¢) <P + X. So it suffices
toprove P (x U) <Pypand P (x = ¢) < X. Here [(x,p)] is like
the witness in our recursive definition, which reflects the 3 W. ... formula
is our definition. The fact that measure deduction reflects proving theorems

in the theory of inequalities of probability logic is the elementary intuition
behind the soundness theorem we will ultimately prove in §2.12.

A key difference from the simple motivation above is that, as in the case of
Suppes’ Theorem where we prove ~ I' :- ~ ¢ if and only if P ¢ < (D 7«
< I" . P ~) for all P, soundness in this context means ~ I" § ~ & implies

VP O v«T. Py)> O psD. P o).

Another way of thinking about measure deduction is to think of I' and X
as bags of balls of soft clay and I' $+ ¥ meaning that we have shown I is
heavier than 3 (ignoring, for the moment, that ($) is not totally ordered).
We have a scale (:F) that lets us weigh several things on the left and one
thing on the right at a time. We go through each clay ball ¢ in ¥ one at
a time without replacement, putting ¢ on the right of the scale. Then, we
take a bunch of clay balls from I', cut them up as necessary (that is the
LI v trick using the witness W), and show they are heavier using our scale.
We take the parts v» — v that we didn’t use and put them back in our bag
I'. We will be able to reuse them later. If we can do this trick for every
element o in X successively using combinations of split leftovers in I', then
we can show I is heavier than ¥ (i.e., I $F X).

2.2 Definition of the Stronger Theory Relation

We next turn to looking at a subrelation of ($+), which we call the stronger
theory relation (=<). Here we construe a theory as a list of propositions. We
say theory I is stronger than X where, for each element ¢ in X, we can take
an element ~v of I' without replacement such that - v — o.

To motivate this notion, let’s reuse the metaphor that I' and ¥ are bags of
balls of clay, and we need to show I is heavier without simply weighing the
two bags. A sufficient (but incomplete) approach is to take each ball of clay
o in ¥ and find another ball of clay v in I' (without replacement) that is
heavier. This simple approach avoids the complexity of iteratively cutting
up balls of clay.
definition (in implication-logic)
stronger-theory-relation :: 'a list = 'a list = bool (infix < 100)
where
2T =
(3 . map snd & = X%
A mset (map fst ®) CH# mset T’
A (Y (y,0) € set . F v — 0))

abbreviation (in implication-logic)
stronger-theory-relation-op :: 'a list = 'a list = bool (infix = 100)
where
r=-=x=2=<T

2.3 The Stronger Theory Relation is a Preorder

Next, we show that (<) is a preorder by establishing reflexivity and transi-
tivity.

We first prove the following lemma with respect to multisets and stronger
theories.
lemma (in implication-logic) msub-stronger-theory-intro:

assumes mset ¥ C#H mset T’
shows ¥ <X T

(proof)

The reflexive property immediately follows:

lemma (in implication-logic) stronger-theory-reflexive [simp]: T X T
(proof)

lemma (in implication-logic) weakest-theory [simp]: [| X T
{proof)

lemma (in implication-logic) stronger-theory-empty-list-intro [simp]:
assumes I' < [|
shows I' = []

{proof)

Next, we turn to proving transitivity. We first prove two permutation the-
orems.

lemma (in implication-logic) stronger-theory-right-permutation:
assumes [' = A
and ¥ <X T
shows ¥ < A

{(proof)

lemma (in implication-logic) stronger-theory-left-permutation:
assumes ¥ = A
and X <T
shows A <X T

(proof)

lemma (in implication-logic) stronger-theory-transitive:
assumes Y < Aand A XT
shows ¥ < T'

(proof)

2.4 The Stronger Theory Relation is a Subrelation
of of Measure Deduction

Next, we show that I' = ¥ implies I' $& X. Before doing so we establish
several helpful properties regarding the stronger theory relation ().

lemma (in implication-logic) stronger-theory-witness:
assumes o € set X
shows ¥ <T'= (3 y€set . - v — o A (removel o £) = (removel v T))

(proof)

lemma (in implication-logic) stronger-theory-cons-witness:
(c#X) T =F~vesetl.F-v—0AX =X (removel vT))
(proof)

lemma (in implication-logic) stronger-theory-left-cons:
assumes (o # ¥) X T
shows X < T

(proof)

lemma (in implication-logic) stronger-theory-right-cons:
assumes > < T’
shows ¥ < (y # 1)

(proof)

lemma (in implication-logic) stronger-theory-left-right-cons:
assumes vy — o
and X < T
shows (0 # X) 2 (y # I
(proof)

lemma (in implication-logic) stronger-theory-relation-alt-def:
Y 2T = (3. mset (map snd &) = mset & A
mset (map fst ®) CH# mset T' A
(V (v, o)€set . F v — o))
(proof)

lemma (in implication-logic) stronger-theory-deduction-monotonic:
assumes X < I
and X :F ¢
shows I' :- ¢

(proof)

lemma (in classical-logic) measure-msub-left-monotonic:
assumes mset ¥ CH# mset T’
and ¥ $- @
shows I $- @

{proof)

lemma (in classical-logic) witness-weaker-theory:
assumes mset (map snd X) C# mset T’
shows map (uncurry (U)) ¥ < T

(proof)

lemma (in implication-logic) stronger-theory-combine:
assumes & < A
and ¥V <X T
shows (? @ ¥) < (A QT)

{(proof)

We now turn to proving that () is a subrelation of (:-).

lemma (in classical-logic) stronger-theory-to-measure-deduction:
assumes ' = X
shows I' $- X

(proof)

2.5 Measure Deduction is a Preorder

We next show that measure deduction is a preorder.

Reflexivity follows immediately because (<) is a subrelation and is itself
reflexive.

theorem (in classical-logic) measure-reflexive: T' $+ T
{proof)

Transitivity is complicated. It requires constructing many witnesses and
involves a lot of metatheorems. Below we provide various witness construc-
tions that allow us to establish [I" $+ A; A $F A] =T $- A.

primrec (in implication-logic)
first-component :: ('a x 'a) list = ('a x 'a) list = ('a x 'a) list (A)
where
A=
1AW (5 # A) =
(case find (A . (uncurry (—)) ¥ = snd §) U of
None = A ¥ A
| Some ¢ = ¢ # (A (removel ¢ ¥) A))

primrec (in implication-logic)
second-component :: (‘a x 'a) list = (‘a x 'a) list = ('a x 'a) list (B)
where
B U=
| B (0 # A) =
(case find (A Y. (uncurry (—)) ¥ = snd) ¥ of
None =B V¥ A
| Some ¢ = § # (B (removel p U) A))

lemma (in implication-logic) first-component-second-component-mset-connection:
mset (map (uncurry (—)) (A U A)) = mset (map snd (B ¥ A))
(proof)

lemma (in implication-logic) second-component-right-empty [simp]:
B[A=]
(proof)

lemma (in implication-logic) first-component-msub:
mset (A U A) CH# mset ¥
(proof)

lemma (in implication-logic) second-component-msub:
mset (B ¥ A) C# mset A
{proof)

lemma (in implication-logic) second-component-snd-projection-msub:
mset (map snd (B ¥ A)) C# mset (map (uncurry (—)) ¥)
(proof)

lemma (in implication-logic) second-component-diff-msub:

assumes mset (map snd A) C# mset (map (uncurry (—)) ¥ QT © (map snd
v))

shows mset (map snd (A © (B ¥ A))) C# mset (I' © (map snd V))
(proof)

primrec (in classical-logic)
merge-witness :: ('a x 'a) list = ("a x 'a) list = (‘a x 'a) lst (J)
where
Jv[=w
|3 #A) =
(case find (A . (uncurry (=)) ¥ = snd) U of
None = 6 # J VU A
| Some ¢ = (fst 6 M fst 1, snd) # (J (removel ¢ V) A))

lemma (in classical-logic) merge-witness-right-empty [simp]:
JA=A
(proof)

lemma (in classical-logic) second-component-merge-witness-snd-projection:
mset (map snd ¥ Q@ map snd (A © (B ¥ A))) = mset (map snd (J T A))
(proof)

lemma (in classical-logic) second-component-merge-witness-stronger-theory:
(map (uncurry (—)) A Q map (uncurry (—)) ¥ & map snd (B ¥ A)) <
map (uncurry (—)) (J ¥ A)
(proof)

lemma (in classical-logic) merge-witness-msub-intro:

assumes mset (map snd V) C# mset T’
and mset (map snd A) C# mset (map (uncurry (—)) ¥ Q I' © (map snd
v))
shows mset (map snd (J U A)) C# mset T
(proof)

lemma (in classical-logic) right-merge-witness-stronger-theory:
map (uncurry (U)) A < map (uncurry (1)) (J ¥ A)
(proof)

lemma (in classical-logic) left-merge-witness-stronger-theory:
map (uncurry (U)) ¥ < map (uncurry (1)) (J T A)
(proof)

lemma (in classical-logic) measure-empty-deduction:
[@ = (V ¢ € set D. - o)
{proof)

lemma (in classical-logic) measure-stronger-theory-left-monotonic:
assumes > < I
and ¥ $- @
shows I $- @

{proof)

lemma (in classical-logic) merge-witness-measure-deduction-intro:
assumes mset (map snd A) CH# mset (map (uncurry (=) ¥ QT © (map snd
w))
and map (uncurry (—)) A @Q (map (uncurry (—)) ¥ Q@ I' & map snd ¥) ©
map snd A $+ @
(is Ty $- @)
shows map (uncurry (—)) (3P A) QT © map snd (J ¥ A) $- @
(is 7' $+ D)
(proof)

lemma (in classical-logic) measure-formula-right-split:
DSE(pUe# Y= p# @) =TS8 (p# Q)
(proof)

primrec (in implication-logic)

X-witness :: ('a x 'a) list = (‘a x 'a) list = (‘a x 'a) list (%)

where

X0 =
X0 (0 #A) =
(case find (A . (uncurry (—)) ¥ = snd §) ¥ of
None = § # X U A
| Some ¢ = (fst — fst §, snd) # (X (removel ¢ U) A))

primrec (in implication-logic)
X-component :: ('a x 'a) list = ('a x 'a) list = (‘a x 'a) list (X,)

10

where
XU =
EXTENE
(case find (A . (uncurry (—)) ¥ = snd §) U of
None = X, ¥ A
| Some ¢ = (fst v — fst 6, snd) # (Xo (removel ¢ ¥) A))

primrec (in implication-logic)
Y-witness :: (‘a x 'a) list = ('a x 'a) list = ('a x 'a) list (D)
where
Y[=v
D WG #A) =
(case find (A Y. (uncurry (—)) ¥ = snd) ¥ of
None =9 ¥ A
| Some ¢ = (fst o, (fst v — fst §) — snd) #
(D (removel ¢ W) A))

primrec (in implication-logic)
Y-component :: ("a x 'a) list = ('a x 'a) list = (‘a x 'a) list (V)
where
. U [=]
(case find (A Y. (uncurry (=)) ¥ = snd) U of
None = 9, ¥ A
| Some ¢ = (fst ¥, (fst v — fst §) — snd) #
(Ve (removel p) A))

lemma (in implication-logic) X-witness-right-empty [simp]:

X[]A=A
{proof)
lemma (in implication-logic) Y-witness-right-empty [simp]:
Y[A=]
{proof)

lemma (in implication-logic) X-witness-map-snd-decomposition:
mset (map snd (X ¥ A)) = mset (map snd (A ¥ A) Q@ (A S (BT A))))
(proof)

lemma (in implication-logic) Y-witness-map-snd-decomposition:
mset (map snd (P ¥ A)) = mset (map snd (¥ & (AT A)) Q@ (Y ¥ A)))
(proof)

lemma (in implication-logic) X-witness-msub:
assumes mset (map snd V) C# mset T’
and mset (map snd A) C# mset (map (uncurry (—)) ¥ Q@ T' & (map snd
)
shows mset (map snd (X U A)) C# mset T
(proof)

11

lemma (in implication-logic) Y-component-msub:
mset (map snd (Yo ¥ A)) CH# mset (map (uncurry (—)) (X ¥ A))
(proof)

lemma (in implication-logic) Y-witness-msub:
assumes mset (map snd V) C# mset T’
and mset (map snd A) C# mset (map (uncurry (—)) ¥ Q I' © (map snd
v))
shows mset (map snd (Y ¥ A)) C#
mset (map (uncurry (—)) (X ¥ A) QT S map snd (X T A))

(proof)

lemma (in classical-logic) X-witness-right-stronger-theory:
map (uncurry (U)) A = map (uncurry (L)) (X T A)
(proof)

lemma (in classical-logic) Y-witness-left-stronger-theory:
map (uncurry (U)) ¥ < map (uncurry (U)) (Y ¥ A)
(proof)

lemma (in implication-logic) X-witness-second-component-diff-decomposition:
mset (X U A) =mset (Xe VAQAOS BT A)
(proof)

lemma (in implication-logic) Y-witness-first-component-diff-decomposition:
mset (P U A)=mset (VOAT AQY, U A)
(proof)

lemma (in implication-logic) Y-witness-right-stronger-theory:
map (uncurry (—)) A < map (uncurry (=) P T A (T AT A) Q@ (A
OB U A))

(proof)

lemma (in implication-logic) xcomponent-ycomponent-connection:
map (uncurry (—)) (Xe ¥ A) = map snd (Yo ¥ A)
(proof)

lemma (in classical-logic) zwitness-ywitness-measure-deduction-intro:
assumes mset (map snd V) C# mset T’
and mset (map snd A) C# mset (map (uncurry (—)) ¥ QT & (map snd
)
and map (uncurry (—)) A @Q (map (uncurry (—)) ¥ QT & map snd ¥) ©
map snd A $+ @
(is 7Ty $F @)
shows map (uncurry (—)) (P ¥ A) @
(map (uncurry (—=)) (X ¥ A) QT & map snd (X T A)) ©
map snd (Y ¥ A) $- &
(is T $+ @)

12

(proof)

lemma (in classical-logic) measure-cons-cons-right-permaute:
assumes I' $+ (o # o # D)
shows I' $- (¢ # ¢ # ®)

(proof)

lemma (in classical-logic) measure-cons-removel:
assumes ¢ € set ®
shows I' $- ® =T $F (p # (removel p ®))

(proof)

lemma (in classical-logic) witness-stronger-theory:
assumes mset (map snd W) C# mset T
shows (map (uncurry (—)) ¥ QT & (map snd ¥)) < T

(proof)

lemma (in classical-logic) measure-msub-weaken:
assumes mset W C# mset ¢
and I $+ @
shows I" $- ¥

(proof)

lemma (in classical-logic) measure-stronger-theory-right-antitonic:
assumes ¥V < &
and I' $- @
shows I' $+ ¥

(proof)

lemma (in classical-logic) measure-witness-right-split:

assumes mset (map snd V) CH# mset

shows T' $+ (map (uncurry (U)) ¥ @ map (uncurry (—)) ¥ Q & & (map snd
) =T8% &
(proof)

primrec (in classical-logic)
submerge-witness :: ('a x 'a) list = ('a x 'a) list = (‘a x 'a) list (&)
where
¢ X [] =map (Ao. (L, (uncurry (1)) o)) &
|EX (0 # A) =
(case find (X o. (uncurry (—)) o = snd §) ¥ of
None = € ¥ A
| Some o = (fst o, (fst § M fst o) U snd o) # (€ (removel o X) A))

lemma (in classical-logic) submerge-witness-stronger-theory-left:

map (uncurry (U)) ¥ < map (uncurry (U)) (€ £ A)
(proof)

lemma (in classical-logic) submerge-witness-msub:

13

mset (map snd (€ X A)) C# mset (map (uncurry (L)) (I E A))
(proof)

lemma (in classical-logic) submerge-witness-stronger-theory-right:
map (uncurry (UJ)) A
= (map (uncurry (—)) (¢ X A) Q@ map (uncurry (L)) (J X A) © map snd (€ X
A))
(proof)

lemma (in classical-logic) merge-witness-cons-measure-deduction:
assumes map (uncurry (U)) X :F ¢
and mset (map snd A) C# mset (map (uncurry (—)) X QT & map snd X)
and map (uncurry (U)) A $+ @
shows map (uncurry (U)) (3 X A) $F (¢ # @)

(proof)

primrec (in classical-logic)

recover-witness-A :: (‘a x 'a) list = ('a x 'a) list = ('a x 'a) list (P)

where

Pr=2%
[BEO#A) =
(case find (A 0. snd o = (uncurry (1)) §) & of
None = L XA
| Some o = (fst o U fst §, snd 0) # (B (removel o £) A))

primrec (in classical-logic)
recover-complement-A :: (‘a x 'a) list = (‘a x 'a) list = ('a x 'a) list (PY)
where
PO =
[POT (0 #A) =
(case find (A 0. snd o = (uncurry (U)) §) ¥ of
None = 6 # P ¥ A
| Some o0 = (PC (removel o) A))

primrec (in classical-logic)
recover-witness-B i (‘a x 'a) list = (a x 'a) list = ('a x 'a) list (Q)
where
Q-]
| QX (0 #A) =
(case find (A 0. (snd o) = (uncurry (L)) 0) ¥ of
None= 4§ # Q¥ A
| Some o = (fst §, (fst o U fst §) — snd) # (Q (removel o X) A))

lemma (in classical-logic) recover-witness-A-left-stronger-theory:
map (uncurry (1)) ¥ =< map (uncurry (U)) (P X A)
(proof)

lemma (in classical-logic) recover-witness-A-mset-equiv:
assumes mset (map snd X) CH# mset (map (uncurry (U)) A)

14

shows mset (map snd (B X A Q@ PE T A)) = mset (map snd A)
(proof)

lemma (in classical-logic) recover-witness-B-stronger-theory:
assumes mset (map snd X) CH# mset (map (uncurry (U)) A)
shows (map (uncurry (—)) ¥ @ map (uncurry (L)) A & map snd X)
= map (uncurry (U)) (Q X A)

(proof)

lemma (in classical-logic) recover-witness-B-mset-equiv:
assumes mset (map snd X) C# mset (map (uncurry (1)) A)
shows mset (map snd (Q ¥ A))
= mset (map (uncurry (—)) (P X A) Q@ map snd A © map snd (P X A))

(proof)

lemma (in classical-logic) recover-witness-B-right-stronger-theory:
map (uncurry (—)) A 2 map (uncurry (—)) (Q X A)

(proof)

lemma (in classical-logic) recover Witnesses-mset-equiv:
assumes mset (map snd A) CH# mset T
and mset (map snd) C# mset (map (uncurry (L)) A)
shows mset (I' © map snd A)
= mset ((map (uncurry (=)) (P X A) QT © map snd (P X A)) © map
snd (Q X A))
(proof)

theorem (in classical-logic) measure-deduction-generalized-witness:
I'$F (@ @ ¥) = (3 X. mset (map snd) CH# mset T' A
map (uncurry (U)) X $- & A
(map (uncurry (—)) X QT & (map snd X)) $)

(proof)

lemma (in classical-logic) measure-list-deduction-antitonic:
assumes [' $- ¥
and U - ¢
shows I' - ¢

{proof)

Finally, we may establish that ($F) is transitive.

theorem (in classical-logic) measure-transitive:
assumes I' $- A
and A $F A
shows T" - A

(proof)

15

2.6 Measure Deduction Cancellation Rules

In this chapter we go over how to cancel formulae occurring in measure
deduction judgements.

The first observation is that tautologies can always be canceled on either
side of the turnstile.
lemma (in classical-logic) measure-tautology-right-cancel:

assumes F ¢
shows ' $- (o # ®) =T $- @

(proof)

lemma (in classical-logic) measure-tautology-left-cancel [simp]:
assumes F
shows (Y #I)$- @ =T $-

(proof)

lemma (in classical-logic) measure-deduction-one-collapse:
L$-[p] =T+ ¢
(proof)

Split cases, which are occurrences of ¥ LI o # ¥ — ¢ # ..., also cancel and
simplify to just ¢ # We previously established T" $F ¢ Ll o # ¢ — ¢
® =T $F p # ® as part of the proof of transitivity.

lemma (in classical-logic) measure-formula-left-split:

YUeH#H Y 5> o# TS P=p#T O
(proof)

lemma (in classical-logic) measure-witness-left-split [simpl:

assumes mset (map snd X) CH# mset T

shows (map (uncurry (U)) ¥ Q map (uncurry (—)) ¥ QT & (map snd X)) $+
o=T8% @

(proof)

We now have enough to establish the cancellation rule for ($+).

lemma (in classical-logic) measure-cancel: (A QT) $+ (A @ @) =T $- &
(proof)
lemma (in classical-logic) measure-biconditional-cancel:
assumes F v < @
shows (Y # I)$- (o # @) =T $- @
(proof)

2.7 Measure Deduction Substitution Rules

Just like conventional deduction, if two formulae are equivalent then they
may be substituted for one another.

16

lemma (in classical-logic) right-measure-sub:
assumes F ¢ < ¢
shows I' $F (o # @) =T $F (¢ # @)
(proof)

lemma (in classical-logic) left-measure-sub:
assumes F v < x
shows (Y #I) S @ = (x #I)$- @
(proof)

2.8 Measure Deduction Sum Rules

We next establish analogues of the rule in probability that P a + P § =
P (o U B) + P (a1). This equivalence holds for both sides of the ($+)
turnstile.

lemma (in classical-logic) right-measure-sum-rule:
PSE(a# B#P)=T8% (aUB#HaNB#2P)
(proof)

lemma (in classical-logic) left-measure-sum-rule:
(a#BH#D)SEP=(aUBHaNS#T)-
(proof)

2.9 Measure Deduction Exchange Rule

As we will see, a key result is that we can move formulae from the right
hand side of the ($) turnstile to the left.

We observe a novel logical principle, which we call exchange. This principle
follows immediately from the split rules and cancellation rules.

lemma (in classical-logic) measure-exchange:
(Y#D)SE (0 # Q) =(p=>v#D) 8- (v 2 0 # @)
(proof)

The exchange rule allows us to prove an analogue of the rule in classical
logic that T :F ¢ = (~ ¢ # T') :+ L for measure deduction.

theorem (in classical-logic) measure-negation-swap:
IS (p# @) =(~ e #TD) 3 (L#2)
(proof)

2.10 Definition of Counting Deduction

The theorem T' $ ¢ # ® = ~ @ # ' $+ L # ® gives rise to another kind of
judgement: how many times can a list of premises I' prove a formula ¢ ?. We

17

call this kind of judgment counting deduction. As with measure deduction,
bits of I get "used up” with each dispatched conclusion.
primrec (in classical-logic)
counting-deduction :: 'a list = nat = 'a = bool (- #+ - - [60,100,59] 60)
where
I' #+ 0 ¢ = True
| T #F (Suc n) ¢ = (3 V. mset (map snd V) C# mset T' A
map (uncurry (U)) U :k @ A
map (uncurry (—)) ¥ QT & (map snd U) #+ n ¢)

2.11 Converting Back and Forth from Counting
Deduction to Measure Deduction

We next show how to convert back and forth from counting deduction to
measure deduction.

First, we show that trivially counting deduction is a special case of measure
deduction.

lemma (in classical-logic) counting-deduction-to-measure-deduction:
' #F n @ =T $- (replicate n @)
{proof)

We next prove a few helpful lemmas regarding counting deduction.

lemma (in classical-logic) counting-deduction-tautology-weaken:
assumes F ¢
shows I' #F n ¢

(proof)

lemma (in classical-logic) counting-deduction-weaken:

assumes n < m
and I' #F m ¢
shows I #+ n ¢

(proof)

lemma (in classical-logic) counting-deduction-implication:
assumes - ¢ — ¢
and I' #F n ¢
shows I'' #+F n ¢

(proof)

Finally, we use I' $F o # ® = ~ ¢ # I' $+ L # ® to prove that measure
deduction reduces to counting deduction.

theorem (in classical-logic) measure-deduction-to-counting-deduction:
I'$E @ = (~ ®QT) #+ (length @) L
(proof)

18

2.12 Measure Deduction Soundess

The last major result for measure deduction we have to show is soundness.
That is, judgments in measure deduction of lists of formulae can be trans-
lated into tautologies for inequalities of finitely additive probability measures
over those same formulae (using the same underlying classical logic).

lemma (in classical-logic) negated-measure-deduction:
~T 8k (o # @) =
(3 V. mset (map fst) CH# mset T A
~ (map (uncurry (\)) ¥) := o A
~ (map (uncurry (M) ¥ QT & (map fst ¥)) $+ D)
(proof)

lemma (in probability-logic) measure-deduction-soundness:
assumes ~ ' $- ~ @
shows (D p«®. P) < O 4«T.P~)

(proof)

19

Chapter 3

MaxSAT

We turn now to showing that counting deduction reduces to MaxSAT, the
problem of finding the maximal number of satisfiable clauses in a list of
clauses.

3.1 Definition of Relative Maximal Clause Collec-
tions

Given a list of assumptions ¢ and formula ¢, we can think of those maximal
sublists of ® that do not prove . While in practice we will care about
@ = 1, we provide a general definition in the more general axiom class
implication-logic.
definition (in implication-logic) relative-maximals :: 'a list = 'a = 'a list set (M)
where
MT o=
{ ®. mset ® C# mset T
A= :-op
AV U. mset O CH# mset ' — = U :+ ¢ — length U < length @) }

lemma (in implication-logic) relative-mazimals-finite: finite (M T @)

(proof)

We know that ¢ is not a tautology if and only if the set of relative maximal
sublists has an element.

lemma (in implication-logic) relative-mazximals-existence:
(CFe)=3X.2eMT p)
(proof)

lemma (in implication-logic) relative-mazimals-complement-deduction:
assumes ® € M T ¢
and ¢ € set (I' © D)
shows ¢ - v — ¢

20

(proof)

lemma (in implication-logic) relative-mazimals-set-complement [simp]:
assumes ® € M T ¢
shows set (' © @) = set T' — set @

(proof)

lemma (in implication-logic) relative-mazimals-complement-equiv:
assumes & € M T ¢

and ¢ € set T’
shows @ :- ¢ — ¢ = (¢ ¢ set D)
(proof)

lemma (in implication-logic) mazimals-length-equiv:
assumes ® € M T ¢
and ¥ ¢ M T ¢
shows length ® = length ¥

{proof)

lemma (in implication-logic) mazimals-list-subtract-length-equiv:
assumes ® € M T ¢
and ¥ ¢ M T ¢
shows length (T' © ®) = length (I' ©)

(proof)

We can think of I' :F ¢ as saying "the relative maximal sublists of I" are not

the entire list”.

lemma (in implication-logic) relative-mazimals-maz-list-deduction:
=% ®c MT ¢. 1 <length (I' © ®))

(proof)

3.2 Definition of MaxSAT

We next turn to defining an abstract form of MaxSAT, which is largest the
number of simultaneously satisfiable propositions in a list of propositions.

Unlike conventional MaxSAT, we don’t actually work at the semantic level,
i.e. constructing a model for the Tarski truth relation |=. Instead, we just
count the elements in a maximal, consistent sublist (i.e., a maximal sub list
Y. such that = X :F L) of the list of assumptions I" we have at hand.

Because we do not work at the semantic level, computing if MaxzSAT I' < nis
not in general CoNP-Complete, as it is classically classified [1]. In the special
case that the underlying logic is the classical propositional calculus, then the
complexity is CoNP-Complete. But we could imagine the underlying logic to
be linear temporal logic or even first order logic. In such cases the complexity
class would be higher in the complexity hierarchy.

21

definition (in implication-logic) relative-MaxSAT :: 'a list = 'a = nat (| - |- [45])
where
(1T |,) = (if MT o ={} then 0 else Max { length ® | . 2 € M T ¢ })

abbreviation (in classical-logic) MazSAT :: 'a list = nat
where
MaxSAT T = | T |,

definition (in implication-logic) complement-relative-MazSAT :: 'a list = 'a =

nat (|| - [l- [45])
where
(I T lly) = length T — [T |,

lemma (in implication-logic) relative-MaxSAT-intro:
assumes ® € M T ¢
shows length ® = | T |,

(proof)

lemma (in implication-logic) complement-relative-MaxSAT-intro:
assumes ® € M T ¢
shows length (' © ®) = || T ||,

(proof)

lemma (in implication-logic) length-MaxSAT-decomposition:
length ' = (| T |o) + | T [|y
(proof)

3.3 Reducing Counting Deduction to MaxSAT

Here we present a major result: counting deduction may be reduced to
MaxSAT.

primrec MazSAT-optimal-pre-witness :: 'a list = ('a list x 'a) list (V)
where
T =1
| V(W # V)=V,) #T ¥

lemma MazSAT-optimal-pre-witness-element-inclusion:
YV (A)d) € set (B). set (B A) C set (T D)
(proof)

lemma MaxSAT-optimal-pre-witness-nonelement:
assumes length A > length ¥
shows (A))) ¢ set (U V)
(proof)

lemma MazSAT-optimal-pre-witness-distinct: distinct (8 V)
{proof)

22

lemma MaxSAT-optimal-pre-witness-length-iff-eq:

YV (A0) € set (B V).V (2,0) € set (B V). (length A = length 3) = ((A, J) =
(3,0))
(proof)

lemma mset-distinct-msub-down:
assumes mset A C# mset B
and distinct B
shows distinct A

(proof)

lemma mset-remdups-set-sub-iff:
(mset (remdups A) C# mset (remdups B)) = (set A C set B)

(proof)

lemma range-characterization:
(mset X = mset [0..<length X]) = (distinct X N (V z € set X. z < length X))

(proof)

lemma distinct-pigeon-hole:
fixes X :: nat list
assumes distinct X
and X # ||
shows 3 n € set X. n + 1 > length X

(proof)

lemma MaxSAT-optimal-pre-witness-pigeon-hole:
assumes mset X C# mset (T)
and ¥ # []
shows 3 (A, §) € set X. length A + 1 > length ¥

{(proof)

abbreviation (in classical-logic)
MazSAT-optimal-witness :: 'a = 'a list = ('a x 'a) list ()
where 20 ¢ E = map (M¥,0). (¥ :— @,) (T =)

abbreviation (in classical-logic)
disjunction-MaxSAT-optimal-witness :: 'a = 'a list = 'a list ()
where 20, ¢ ¥ = map (uncurry (1)) (W ¢ ¥)

abbreviation (in classical-logic)
implication-MaxSAT-optimal-witness :: 'a = 'a list = 'a list (20_,)
where W_, ¢ ¥ = map (uncurry (—)) (W ¢ V)

lemma (in classical-logic) MaxSAT-optimal-witness-conjunction-identity:
FTT (Wu e V) < (pUl] W)

(proof)

lemma (in classical-logic) MaxSAT-optimal-witness-deduction:

23

FW, oW =& Uisop
(proof)

lemma (in classical-logic) optimal-witness-split-identity:
FQLue W#E) o= (W o @ #E) i mp=>EZ:=0p
(proof)

lemma (in classical-logic) disj-conj-impl-duality:
Flp—=xNv = x) < ((pUd) = x)
{(proof)

lemma (in classical-logic) weak-disj-of-conj-equiv:
(Voeset . o) =F|] (map[] £) = ¢
(proof)

lemma (in classical-logic) arbitrary-disj-concat-equiv:
FL] (@@ W)« (|| 2U|] D)
(proof)

lemma (in classical-logic) arbitrary-conj-concat-equiv:
FIT@Qu)« ([]120[])
(proof)

lemma (in classical-logic) conj-absorption:
assumes x € set P
shows F[] @« (x N [] @)
(proof)

lemma (in classical-logic) conj-extract: = || (map ((M) @) ¥) < (¢ N || ¥)
(proof)

lemma (in classical-logic) conj-multi-extract:
< - |T|f>(map [1 (map (@) A) X)) & ([T A ML (map] %))
PTOO,

lemma (in classical-logic) extract-inner-concat:

L (map (M © (map snd o (@) A))) < (7 (map snd A) 1 1] (map (] o
map snd) ¥))
(proof)

lemma (in classical-logic) extract-inner-concat-remdups:
F I (map ([] o (map snd o remdups o (Q) A)) ¥) «
([T (map snd A) M1 || (map ([] o (map snd o remdups)) ¥))
(proof)

lemma (in classical-logic) optimal-witness-list-intersect-biconditional:
assumes mset = C#H mset T’
and mset ® C# mset (' © E)
and mset U C# mset (W_, ¢ E)

24

shows 3 . F (P Q V) :— ¢) & (|| (map[] X) — ¢)
A (Y o € set . mset o CH# mset I' A length o + 1 > length (& @Q 1))

(proof)

lemma (in classical-logic) relative-mazimals-optimal-witness:
assumes = F ¢
shows 0 < (|| T ||,)
= (3 3. mset (map snd ¥) CH# mset T' A
map (uncurry (U)) X :F ¢ A
14 (|| map (uncurry (=)) X QT © map snd X ||,) = || T ||,)
(proof)

primrec (in implication-logic)
MazSAT-witness :: (‘a x 'a) list = 'a list = ('a x 'a) list (Y1)
where
- =1
| U2 (& # Z) = (case find (N 0. & = snd o) X of
None = U ¥ E
| Some o = o # (U (removel o X) E))

lemma (in implication-logic) MaxSAT-witness-right-msub:
mset (map snd (U X Z)) CH# mset =
(proof)

lemma (in implication-logic) MaxSAT-witness-left-msub:
mset (U X Z) CH# mset &
(proof)

lemma (in implication-logic) MaxSAT-witness-right-projection:
mset (map snd (I X Z)) = mset ((map snd ¥) N 2)
(proof)

lemma (in classical-logic) witness-list-implication-rule:
= (map (uncurry (U)) X := @) = [(map (A (x, §)- (x = &) = ¢) ¥) = ¢
(proof)

lemma (in classical-logic) witness-relative-MaxSAT-increase:
assumes - F ¢
and mset (map snd ¥) C# mset T’
and map (uncurry (L)) X+ ¢
shows (| I' |,) < (| map (uncurry (—)) ¥ QT © map snd 3 |,)

(proof)

lemma (in classical-logic) relative-mazimals-counting-deduction-lower-bound:
assumes - F ¢
shows (I' #-n) = (n < || T |y)
(proof)

As a brief aside, we may observe that ¢ is a tautology if and only if count-

25

ing deduction can prove it for any given number of times. This follows
immediately from =+ =T #+ne = (n < | T |,).

lemma (in classical-logic) counting-deduction-tautology-equiv:
VnT#H#H-np)=Fgp
(proof)

theorem (in classical-logic) relative-maximals-maz-counting-deduction:
F#-ne=K ® € MT ¢. n<length (T © P))
(proof)

lemma (in consistent-classical-logic) counting-deduction-to-mazsat:
(T #+-n 1) = (MaxSAT T + n < length T)
{proof)

26

Chapter 4

Inequality Completeness For
Probability Logic

4.1 Limited Counting Deduction Completeness

The reduction of counting deduction to MaxSAT allows us to first prove
completeness for counting deduction, as maximal consistent sublists allow
us to recover maximally consistent sets, which give rise to Dirac measures.

The completeness result first presented here, where all of the propositions
on the left hand side are the same, will be extended later.
lemma (in probability-logic) list-probability-upper-bound:
(>« T. P) < real (length T)
(proof)

theorem (in classical-logic) dirac-limited-counting-deduction-completeness:
(V P € dirac-measures. real n * P o < (3 v«T. P) =~T #+n (~ ¢)
(proof)

4.2 Measure Deduction Completeness

Since measure deduction may be reduced to counting deduction, we have
measure deduction is complete.

lemma (in classical-logic) dirac-measure-deduction-completeness:
(V P € dirac-measures. (3> p+P. P o) < D 7+T.Pv)=~T8% ~

(proof)

theorem (in classical-logic) measure-deduction-completeness:
(V P € probabilities. (3 p+P. P) < (D 7«T.Pv)=~T8%~e
(proof)

27

4.3 Counting Deduction Completeness

Leveraging our measure deduction completeness result, we may extend our
limited counting deduction completeness theorem to full completness.

lemma (in classical-logic) measure-left-commute:
(PQU)$-=Z= (T QOP) $-=

(proof)

lemma (in classical-logic) stronger-theory-double-negation-right:
P <~ (N <I>)
(proof)

lemma (in classical-logic) stronger-theory-double-negation-left:
~(~ @) <0
(proof)

lemma (in classical-logic) counting-deduction-completeness:

(V P € dirac-measures. (3 @p«®. P @) < O v«T.P7y)) =(~T Q) #+
(length ®) L
(proof)

4.4 Collapse Theorem For Probability Logic

We now turn to proving the collapse theorem for probability logic. This
states that any inequality holds for all finitely additive probability measures
if and only if it holds for all Dirac measures.

theorem (in classical-logic) weakly-additive-completeness-collapse:
(V P € probabilities. (3" o+®. P p) < O_v«T.P~))
= (V P € dirac-measures. (3. o+®. P) < O v«T. P 7))

{proof)

The collapse theorem may be strengthened to include an arbitrary constant
term c¢. This will be key to characterizing MaxSAT completeness in §4.5.
lemma (in classical-logic) nat-dirac-probability:

YV P € dirac-measures. An :: nat. real n = (D . P @)
(proof)

lemma (in classical-logic) dirac-ceiling:
Y P € dirac-measures.

(T P o)+ c< (DrT. P 7))
: f>: (@ P o) + [c] < (LT P 1))
PToo.

lemma (in probability-logic) probability-replicate-verum:
fixes n :: nat
shows (3" p«®. P) + n = (D p«(replicate n T) @ ®. P)
(proof)

28

lemma (in classical-logic) dirac-collapse:
(V P € probabilities. (3 p+P@. P ¢) + ¢ < O v+T.P~))
= (V P € dirac-measures. (3 p«@. P) + [c] < O_v«TI. P 7))

(proof)

lemma (in classical-logic) dirac-strict-floor:
vV P € dirac-measures.

(Npe®. P o) +c< (yT.Pr)
< f>: (D@ P o)+ |c] + 1< (X y«T. Pr))
PToo.

lemma (in classical-logic) strict-dirac-collapse:
(V P € probabilities. (3 p+®. P) + ¢ < O v+T. P~))
= (V P € dirac-measures. (> oP. P @) + |c] + 1 < (3 v+T. P 7))

(proof)

4.5 MaxSAT Completeness For Probability Logic

It follows from the collapse theorem that any probability inequality tau-
tology, include those with constant terms, may be reduced to a bounded
MaxSAT problem. This is not only a key computational complexity result,
but suggests a straightforward algorithm for computing probability identi-
ties.
lemma (in classical-logic) relative-maximals-verum-eztract:

assumes - F ¢

shows (| replicate n T Q @ [,) =n + (| © |,)
(proof)

lemma (in classical-logic) complement-MaxSAT-completeness:
(V P € dirac-measures. (3 p®. P) < D vT. P 7)) = (length & < || ~
reo|y.)

(proof)

lemma (in classical-logic) relative-maximals-neg-verum-elim:
(| replicate n (~ T) Q@ @ |,) = (] D |,)
(proof)

lemma (in classical-logic) dirac-MazSAT-partial-completeness:

(V P € dirac-measures. (3 p«@. P @) < O v+T. P 7)) = (MazSAT (~T Q
D) < length T')
(proof)

lemma (in consistent-classical-logic) dirac-inequality-elim:
fixes c :: real
assumes V P € dirac-measures. (> p«P. P ¢) + ¢ < O v«T. P~)
shows (MazSAT (~ T Q @) 4 ¢ < length I)

(proof)

29

lemma (in classical-logic) dirac-inequality-intro:
fixes c :: real
assumes MazSAT (~T Q @) + ¢ < length T
shows V P € dirac-measures. (D o+®. P) + ¢ < O v«TI. Pr)

(proof)

lemma (in consistent-classical-logic) dirac-inequality-equiv:
(V 6 € dirac-measures. (3 oP. 6) + ¢ < O y+T.6 7))
= (MazSAT (~ T @ ®) + (c :: real) < length T')
(proof)

theorem (in consistent-classical-logic) probability-inequality-equiv:
(V P € probabilities. (3 p+P. P) + ¢ < O v«T. P~))
= (MazSAT (~ T @Q ®) + (¢ :: real) < length T)
(proof)

no-notation first-component ()
no-notation second-component (*B)
no-notation merge-witness (J)
no-notation X-witness (X)
no-notation X-component (X,)
no-notation Y-witness ()
no-notation Y-component ()
no-notation submerge-witness (&)
no-notation recover-witness-A ()

no-notation
no-notation
no-notation
no-notation
no-notation
no-notation

recover-complement-A (P°)
recover-witness-B (Q)

relative-mazimals (M)

relative-MazSAT (| - |- [45])
complement-relative-MaxSAT (|| - ||- [45])
MazSAT-optimal-pre-witness ()

no-notation MaxzSAT-optimal-witness (20)
no-notation disjunction-MaxSAT-optimal-witness (20,)
no-notation implication-MazSAT-optimal-witness (2W_,)
no-notation MazSAT-witness ()

notation FuncSet.funcset (infixr — 60)

end

30

Bibliography

[1] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-
complete graph problems. Theoretical Computer Science, 1(3):237-267,
Feb. 1976.

31

	Introduction
	Measure Deduction and Counting Deduction
	Definition of Measure Deduction
	Definition of the Stronger Theory Relation
	The Stronger Theory Relation is a Preorder
	The Stronger Theory Relation is a Subrelation of of Measure Deduction
	Measure Deduction is a Preorder
	Measure Deduction Cancellation Rules
	Measure Deduction Substitution Rules
	Measure Deduction Sum Rules
	Measure Deduction Exchange Rule
	Definition of Counting Deduction
	Converting Back and Forth from Counting Deduction to Measure Deduction
	Measure Deduction Soundess

	MaxSAT
	Definition of Relative Maximal Clause Collections
	Definition of MaxSAT
	Reducing Counting Deduction to MaxSAT

	Inequality Completeness For Probability Logic
	Limited Counting Deduction Completeness
	Measure Deduction Completeness
	Counting Deduction Completeness
	Collapse Theorem For Probability Logic
	MaxSAT Completeness For Probability Logic

