A Sound and Complete Calculus for Probability Inequalities

Matthew Doty

April 6, 2024

Abstract

We give a sound an complete multiple-conclusion calculus $\$ \vdash$ for finitely additive probability inequalities. In particular, we show $$
\sim \Gamma \$ \vdash \sim \Phi \equiv \forall \mathcal{P} \in \text { probabilities. } \sum \phi \leftarrow \Phi . \mathcal{P} \phi \leq \sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma
$$...where $\sim \Gamma$ is the negation of all of the formulae in Γ (and similarly for $\sim \Phi$). We prove this by using an abstract form of MaxSAT. We also show $\operatorname{MaxSAT}(\sim \Gamma @ \Phi)+c \leq$ length $\Gamma \equiv \forall \mathcal{P} \in$ probabilities. $\left(\sum \phi \leftarrow \Phi . \mathcal{P} \phi\right)+c \leq \sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma$ Finally, we establish a collapse theorem, which asserts that $\left(\sum \phi \leftarrow \Phi . \mathcal{P} \phi\right)+$ $c \leq \sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma$ holds for all probabilities \mathcal{P} if and only if $\left(\sum \phi \leftarrow \Phi . \delta \phi\right)+$ $c \leq \sum \gamma \leftarrow \Gamma . \delta \gamma$ holds for all binary-valued probabilities δ.

Contents

1 Introduction 2
2 Measure Deduction and Counting Deduction 4
2.1 Definition of Measure Deduction 4
2.2 Definition of the Stronger Theory Relation 5
2.3 The Stronger Theory Relation is a Preorder 6
2.4 The Stronger Theory Relation is a Subrelation of of Measure Deduction 7
2.5 Measure Deduction is a Preorder 8
2.6 Measure Deduction Cancellation Rules 16
2.7 Measure Deduction Substitution Rules 16
2.8 Measure Deduction Sum Rules 17
2.9 Measure Deduction Exchange Rule 17
2.10 Definition of Counting Deduction 17
2.11 Converting Back and Forth from Counting Deduction to Mea- sure Deduction 18
2.12 Measure Deduction Soundess 19
3 MaxSAT 20
3.1 Definition of Relative Maximal Clause Collections 20
3.2 Definition of MaxSAT 21
3.3 Reducing Counting Deduction to MaxSAT 22
4 Inequality Completeness For Probability Logic 27
4.1 Limited Counting Deduction Completeness 27
4.2 Measure Deduction Completeness 27
4.3 Counting Deduction Completeness 28
4.4 Collapse Theorem For Probability Logic 28
4.5 MaxSAT Completeness For Probability Logic 29

Chapter 1

Introduction

```
theory Probability-Inequality-Completeness
    imports
        Suppes-Theorem.Probability-Logic
begin
no-notation FuncSet.funcset (infixr }->\mathrm{ 60)
```

We introduce a novel logical calculus and prove completeness for probability inequalities. This is a vast generalization of Suppes' Theorem which lays the foundation for this theory.

We provide two new logical judgements: measure deduction ($\$ \vdash$) and counting deduction (\#ナ). Both judgements capture a notion of measure or quantity. In both cases premises must be partially or completely consumed in sense to prove multiple conclusions. That is to say, a portion of the premises must be used to prove each conclusion which cannot be reused. Counting deduction counts the number of times a particular conclusion can be proved (as the name implies), while measure deduction includes multiple, different conclusions which must be proven via the premises.

We also introduce an abstract notion of MaxSAT, which is the maximal number of clauses in a list of clauses that can be simultaneously satisfied.

We show the following are equivalent:

- $\sim \Gamma \$ \vdash \sim \Phi$
- $(\sim \Gamma @ \Phi) \# \vdash($ length $\Phi) \perp$
- MaxSAT $(\sim \Gamma @ \Phi) \leq$ length Γ
- $\forall \delta \in$ dirac-measures. $\left(\sum \varphi \leftarrow \Phi . \delta \varphi\right) \leq\left(\sum \gamma \leftarrow \Gamma . \delta \gamma\right)$
- $\forall \mathcal{P} \in$ probabilities. $\left(\sum \varphi \leftarrow \Phi . \mathcal{P} \varphi\right) \leq\left(\sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma\right)$

In the special case of MaxSAT, we show the following are equivalent:

- MaxSAT $(\sim \Gamma @ \Phi)+c \leq$ length Γ
- $\forall \delta \in$ dirac-measures. $\left(\sum \varphi \leftarrow \Phi . \delta \varphi\right)+c \leq\left(\sum \gamma \leftarrow \Gamma . \delta \gamma\right)$
- $\forall \mathcal{P} \in$ probabilities. $\left(\sum \varphi \leftarrow \Phi . \mathcal{P} \varphi\right)+c \leq\left(\sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma\right)$

Chapter 2

Measure Deduction and Counting Deduction

2.1 Definition of Measure Deduction

To start, we introduce a common combinator for modifying functions that take two arguments.

```
definition uncurry \(::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow^{\prime} c\right) \Rightarrow{ }^{\prime} a \times{ }^{\prime} b \Rightarrow{ }^{\prime} c\)
    where uncurry-def \([\) simp \(]\) : uncurry \(f=(\lambda(x, y) . f x y)\)
```

Our new logical calculus is a recursively defined relation ($\$ \vdash$) using list deduction $(: \vdash)$.

We call our new logical relation measure deduction:
primrec (in classical-logic)
measure-deduction :: 'a list \Rightarrow 'a list \Rightarrow bool (infix $\$ \vdash 60$)
where
$\Gamma \$ \vdash[]=$ True
$\mid \Gamma \$ \vdash(\varphi \# \Phi)=$
$(\exists \Psi$. mset (map snd $\Psi) \subseteq \#$ mset Γ
\wedge map (uncurry (ப)) $\Psi: \vdash \varphi$
\wedge map $($ uncurry $(\rightarrow)) \Psi @ \Gamma \ominus($ map snd $\Psi) \$ \vdash \Phi)$
Let us briefly analyze what the above definition is saying.
From the above we must find a special list-of-pairs Ψ, which we refer to as a witness, in order to establish $\Gamma \$ \vdash \varphi \# \Phi$.

We may motivate measure deduction as follows. In the simplest case we know $\mathcal{P} \varphi \leq \mathcal{P} \psi+\Sigma$ if and only if $\mathcal{P}(\chi \sqcup \varphi)+\mathcal{P}(\sim \chi \sqcup \varphi) \leq \mathcal{P} \psi$ $+\Sigma$, or equivalently $\mathcal{P}(\chi \sqcup \varphi)+\mathcal{P}(\chi \rightarrow \varphi) \leq \mathcal{P} \psi+\Sigma$. So it suffices to prove $\mathcal{P}(\chi \sqcup \varphi) \leq \mathcal{P} \psi$ and $\mathcal{P}(\chi \rightarrow \varphi) \leq \Sigma$. Here $[(\chi, \varphi)]$ is like the witness in our recursive definition, which reflects the $\exists \Psi$.... formula is our definition. The fact that measure deduction reflects proving theorems
in the theory of inequalities of probability logic is the elementary intuition behind the soundness theorem we will ultimately prove in $\S 2.12$.

A key difference from the simple motivation above is that, as in the case of Suppes' Theorem where we prove $\sim \Gamma: \vdash \sim \varphi$ if and only if $\mathcal{P} \varphi \leq\left(\sum \gamma\right.$ $\leftarrow \Gamma . \mathcal{P} \gamma$) for all \mathcal{P}, soundness in this context means $\sim \Gamma \$ \vdash \sim \Phi$ implies $\forall \mathcal{P} .\left(\sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma\right) \geq\left(\sum \varphi \leftarrow \Phi . \mathcal{P} \varphi\right)$.

Another way of thinking about measure deduction is to think of Γ and Σ as bags of balls of soft clay and $\Gamma \$ \vdash \Sigma$ meaning that we have shown Γ is heavier than Σ (ignoring, for the moment, that $(\$ \vdash)$ is not totally ordered). We have a scale $(: \vdash)$ that lets us weigh several things on the left and one thing on the right at a time. We go through each clay ball σ in Σ one at a time without replacement, putting σ on the right of the scale. Then, we take a bunch of clay balls from Γ, cut them up as necessary (that is the ψ $\sqcup \gamma$ trick using the witness Ψ), and show they are heavier using our scale. We take the parts $\psi \rightarrow \gamma$ that we didn't use and put them back in our bag Γ. We will be able to reuse them later. If we can do this trick for every element σ in Σ successively using combinations of split leftovers in Γ, then we can show Γ is heavier than Σ (i.e., $\Gamma \$ \vdash \Sigma$).

2.2 Definition of the Stronger Theory Relation

We next turn to looking at a subrelation of $(\$ \vdash)$, which we call the stronger theory relation (\preceq). Here we construe a theory as a list of propositions. We say theory Γ is stronger than Σ where, for each element σ in Σ, we can take an element γ of Γ without replacement such that $\vdash \gamma \rightarrow \sigma$.

To motivate this notion, let's reuse the metaphor that Γ and Σ are bags of balls of clay, and we need to show Γ is heavier without simply weighing the two bags. A sufficient (but incomplete) approach is to take each ball of clay σ in Σ and find another ball of clay γ in Γ (without replacement) that is heavier. This simple approach avoids the complexity of iteratively cutting up balls of clay.

```
definition (in implication-logic)
    stronger-theory-relation :: 'a list \(\Rightarrow{ }^{\prime}\) a list \(\Rightarrow\) bool (infix \(\preceq 100\) )
    where
        \(\Sigma \preceq \Gamma=\)
        ( \(\exists\). map snd \(\Phi=\Sigma\)
            \(\wedge\) mset (map fst \(\Phi) \subseteq \#\) mset \(\Gamma\)
            \(\wedge(\forall(\gamma, \sigma) \in \operatorname{set} \Phi . \vdash \gamma \rightarrow \sigma))\)
abbreviation (in implication-logic)
    stronger-theory-relation-op :: 'a list \(\Rightarrow\) 'a list \(\Rightarrow\) bool (infix \(\succeq 100\) )
    where
    \(\Gamma \succeq \Sigma \equiv \Sigma \preceq \Gamma\)
```


2．3 The Stronger Theory Relation is a Preorder

Next，we show that (\preceq) is a preorder by establishing reflexivity and transi－ tivity．

We first prove the following lemma with respect to multisets and stronger theories．
lemma（in implication－logic）msub－stronger－theory－intro：
assumes mset $\Sigma \subseteq \#$ mset Γ
shows $\Sigma \preceq \Gamma$
$\langle p r o o f\rangle$
The reflexive property immediately follows：

```
lemma (in implication-logic) stronger-theory-reflexive \([\) simp \(]: \Gamma \preceq \Gamma\)
    \(\langle p r o o f\rangle\)
lemma (in implication-logic) weakest-theory [simp]: [] \(\preceq ~ \Gamma\)
    〈proof〉
lemma (in implication-logic) stronger-theory-empty-list-intro [simp]:
    assumes \(\Gamma\) 〔[]
    shows \(\Gamma=[]\)
    〈proof〉
```

Next，we turn to proving transitivity．We first prove two permutation the－ orems．

```
lemma (in implication-logic) stronger-theory-right-permutation:
    assumes \(\Gamma \rightleftharpoons \Delta\)
            and \(\Sigma \preceq \Gamma\)
        shows \(\Sigma \preceq \Delta\)
\(\langle p r o o f\rangle\)
lemma (in implication-logic) stronger-theory-left-permutation:
    assumes \(\Sigma \rightleftharpoons \Delta\)
            and \(\Sigma \preceq \Gamma\)
        shows \(\Delta \preceq \Gamma\)
\(\langle p r o o f\rangle\)
```

```
lemma (in implication-logic) stronger-theory-transitive:
    assumes }\Sigma\preceq\Delta\mathrm{ and }\Delta\preceq
        shows }\Sigma\preceq
<proof\rangle
```


2.4 The Stronger Theory Relation is a Subrelation of of Measure Deduction

Next, we show that $\Gamma \succeq \Sigma$ implies $\Gamma \$ \vdash \Sigma$. Before doing so we establish several helpful properties regarding the stronger theory relation (\succeq).
lemma (in implication-logic) stronger-theory-witness:
assumes $\sigma \in$ set Σ
shows $\Sigma \preceq \Gamma=(\exists \gamma \in$ set $\Gamma . \vdash \gamma \rightarrow \sigma \wedge($ remove1 $\sigma \Sigma) \preceq($ remove1 $\gamma \Gamma))$
\langle proof〉
lemma (in implication-logic) stronger-theory-cons-witness: $(\sigma \# \Sigma) \preceq \Gamma=(\exists \gamma \in$ set $\Gamma . \vdash \gamma \rightarrow \sigma \wedge \Sigma \preceq($ remove $1 \gamma \Gamma))$
$\langle p r o o f\rangle$
lemma (in implication-logic) stronger-theory-left-cons:
assumes $(\sigma \# \Sigma) \preceq \Gamma$
shows $\Sigma \preceq \Gamma$
$\langle p r o o f\rangle$
lemma (in implication-logic) stronger-theory-right-cons:
assumes $\Sigma \preceq \Gamma$
shows $\Sigma \preceq(\gamma \# \Gamma)$
$\langle p r o o f\rangle$
lemma (in implication-logic) stronger-theory-left-right-cons:
assumes $\vdash \gamma \rightarrow \sigma$
and $\Sigma \preceq \Gamma$
shows $(\sigma \# \Sigma) \preceq(\gamma \# \Gamma)$
$\langle p r o o f\rangle$
lemma (in implication-logic) stronger-theory-relation-alt-def:
$\Sigma \preceq \Gamma=(\exists \Phi$. mset (map snd $\Phi)=$ mset $\Sigma \wedge$
mset (map fst $\Phi) \subseteq \#$ mset $\Gamma \wedge$
$(\forall(\gamma, \sigma) \in$ set $\Phi . \vdash \gamma \rightarrow \sigma))$
$\langle p r o o f\rangle$
lemma (in implication-logic) stronger-theory-deduction-monotonic:
assumes $\Sigma \preceq \Gamma$
and $\Sigma: \vdash \varphi$
shows $\Gamma: \vdash \varphi$
$\langle p r o o f\rangle$
lemma (in classical-logic) measure-msub-left-monotonic:
assumes mset $\Sigma \subseteq \#$ mset Γ
and $\Sigma \$ \vdash \Phi$
shows $\Gamma \$ \vdash \Phi$
\langle proof〉

```
lemma (in classical-logic) witness-weaker-theory:
    assumes mset (map snd \(\Sigma\) ) \(\subseteq \#\) mset \(\Gamma\)
    shows map (uncurry (ப)) \(\Sigma \preceq \Gamma\)
\(\langle p r o o f\rangle\)
lemma (in implication-logic) stronger-theory-combine:
    assumes \(\Phi \preceq \Delta\)
        and \(\Psi \preceq \Gamma\)
    shows \((\Phi @ \Psi) \preceq(\Delta @ \Gamma)\)
〈proof〉
```

We now turn to proving that (\succeq) is a subrelation of $(: \vdash)$ ．
lemma（in classical－logic）stronger－theory－to－measure－deduction：
assumes $\Gamma \succeq \Sigma$
shows $\Gamma \$ \vdash \Sigma$
$\langle p r o o f\rangle$

2．5 Measure Deduction is a Preorder

We next show that measure deduction is a preorder．
Reflexivity follows immediately because（ \preceq ）is a subrelation and is itself reflexive．

```
theorem (in classical-logic) measure-reflexive: \(\Gamma \$ \vdash \Gamma\)
    〈proof〉
```

Transitivity is complicated．It requires constructing many witnesses and involves a lot of metatheorems．Below we provide various witness construc－ tions that allow us to establish $\llbracket \Gamma \$ \vdash \Lambda ; \Lambda \$ \vdash \Delta \rrbracket \Longrightarrow \Gamma \$ \vdash \Delta$ ．

```
primrec (in implication-logic)
    first-component :: (' \(a \times\) 'a) list \(\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)\) list \(\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)\) list \((\mathfrak{A})\)
    where
        \(\mathfrak{A} \Psi[]=[]\)
    \(\mid \mathfrak{A} \Psi(\delta \# \Delta)=\)
        (case find \((\lambda \psi\). (uncurry \((\rightarrow)) \psi=\) snd \(\delta) \Psi\) of
            None \(\Rightarrow \mathfrak{A} \Psi \Delta\)
            | Some \(\psi \Rightarrow \psi \#(\mathfrak{A}(\) remove \(1 \psi \Psi) \Delta))\)
primrec (in implication-logic)
    second-component \(::\left({ }^{\prime} a \times{ }^{\prime} a\right)\) list \(\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)\) list \(\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)\) list ( \(\left.\mathfrak{B}\right)\)
    where
        \(\mathfrak{B} \Psi[]=[]\)
    \(\mid \mathfrak{B} \Psi(\delta \# \Delta)=\)
        (case find \((\lambda \psi\). (uncurry \((\rightarrow)) \psi=\) snd \(\delta) \Psi\) of
            None \(\Rightarrow \mathfrak{B} \Psi \Delta\)
            \(\mid\) Some \(\psi \Rightarrow \delta \#(\mathfrak{B}(\) remove \(1 \psi \Psi) \Delta))\)
```

lemma (in implication-logic) first-component-second-component-mset-connection: $\operatorname{mset}(\operatorname{map}(\operatorname{uncurry}(\rightarrow))(\mathfrak{A} \Psi \Delta))=\operatorname{mset}(\operatorname{map}$ snd $(\mathfrak{B} \Psi \Delta))$
\langle proof \rangle
lemma (in implication-logic) second-component-right-empty [simp]:
$\mathfrak{B}[] \Delta=[]$
$\langle p r o o f\rangle$
lemma (in implication-logic) first-component-msub: mset $(\mathfrak{A} \Psi \Delta) \subseteq \#$ mset Ψ
$\langle p r o o f\rangle$
lemma (in implication-logic) second-component-msub: mset $(\mathfrak{B} \Psi \Delta) \subseteq \#$ mset Δ
〈proof〉
lemma (in implication-logic) second-component-snd-projection-msub:
mset $($ map snd $(\mathfrak{B} \Psi \Delta)) \subseteq \#$ mset $($ map $($ uncurry $(\rightarrow)) \Psi)$
$\langle p r o o f\rangle$
lemma (in implication-logic) second-component-diff-msub:
assumes mset (map snd Δ) \subseteq mset (map (uncurry $(\rightarrow)) \Psi @ \Gamma \ominus$ (map snd $\Psi)$)
shows mset $($ map snd $(\Delta \ominus(\mathfrak{B} \Psi \Delta))) \subseteq \# \operatorname{mset}(\Gamma \ominus($ map snd $\Psi))$
$\langle p r o o f\rangle$
primrec (in classical-logic)
merge-witness $::\left({ }^{\prime} a \times{ }^{\prime} a\right)$ list $\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)$ list $\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)$ list ($\left.\mathfrak{J}\right)$
where
$\mathfrak{J} \Psi[]=\Psi$
$\mid \mathfrak{J} \Psi(\delta \# \Delta)=$
(case find $(\lambda \psi$. (uncurry $(\rightarrow)) \psi=$ snd $\delta) \Psi$ of
None $\Rightarrow \delta \# \mathfrak{J} \Psi \Delta$
\mid Some $\psi \Rightarrow(f s t \delta \sqcap f$ st ψ, snd $\psi) \#(\mathfrak{J}($ remove $1 \psi \Psi) \Delta))$
lemma (in classical-logic) merge-witness-right-empty [simp]:
$\mathfrak{J}[] \Delta=\Delta$
$\langle p r o o f\rangle$
lemma (in classical-logic) second-component-merge-witness-snd-projection: $\operatorname{mset}($ map snd $\Psi @ \operatorname{map}$ snd $(\Delta \ominus(\mathfrak{B} \Psi \Delta)))=\operatorname{mset}(\operatorname{map} \operatorname{snd}(\mathfrak{J} \Psi \Delta))$ $\langle p r o o f\rangle$
lemma (in classical-logic) second-component-merge-witness-stronger-theory: $($ map $($ uncurry $(\rightarrow)) \Delta @$ map $($ uncurry $(\rightarrow)) \Psi \ominus$ map snd $(\mathfrak{B} \Psi \Delta)) \preceq$ map $($ uncurry $(\rightarrow))(\mathfrak{J} \Psi \Delta)$
$\langle p r o o f\rangle$
lemma (in classical-logic) merge-witness-msub-intro:

```
assumes mset (map snd \Psi)\subseteq# mset \Gamma
    and mset (map snd \Delta)\subseteq# mset (map (uncurry ( }->\mathrm{ )) 世 @ Г Ө (map snd
\Psi))
    shows mset (map snd (\mathfrak{J}\Psi\Delta))\subseteq# mset \Gamma
\langleproof\rangle
```

lemma (in classical-logic) right-merge-witness-stronger-theory:
map (uncurry (ப)) $\Delta \preceq \operatorname{map}($ uncurry ($\sqcup))(\mathfrak{J} \Psi \Delta)$
$\langle p r o o f\rangle$
lemma (in classical-logic) left-merge-witness-stronger-theory:
map (uncurry (ப)) $\Psi \preceq \operatorname{map}($ uncurry (ப)) ($\mathfrak{J} \Psi \Delta$)
$\langle p r o o f\rangle$
lemma (in classical-logic) measure-empty-deduction:
[] $\$ \vdash \Phi=(\forall \varphi \in \operatorname{set} \Phi . \vdash \varphi)$
$\langle p r o o f\rangle$
lemma (in classical-logic) measure-stronger-theory-left-monotonic:
assumes $\Sigma \preceq \Gamma$
and $\Sigma \$ \vdash \Phi$
shows $\Gamma \$ \vdash \Phi$
$\langle p r o o f\rangle$
lemma (in classical-logic) merge-witness-measure-deduction-intro:
assumes mset (map snd Δ) $\subseteq \#$ mset (map (uncurry $(\rightarrow)) \Psi @ \Gamma \ominus$ (map snd $\Psi)$)
and map $($ uncurry $(\rightarrow)) \Delta$ @ $($ map $($ uncurry $(\rightarrow)) \Psi @ \Gamma \ominus$ map snd $\Psi) \ominus$ map snd $\Delta \$ \vdash \Phi$
(is ? $\Gamma_{0} \$ \vdash \Phi$)
shows map (uncurry $(\rightarrow))(\mathfrak{J} \Psi \Delta) @ \Gamma \ominus$ map snd $(\mathfrak{J} \Psi \Delta) \$ \vdash \Phi$
(is ? $\Gamma \$ \vdash \Phi$)
$\langle p r o o f\rangle$
lemma (in classical-logic) measure-formula-right-split:
$\Gamma \$ \vdash(\psi \sqcup \varphi \# \psi \rightarrow \varphi \# \Phi)=\Gamma \$ \vdash(\varphi \# \Phi)$
$\langle p r o o f\rangle$
primrec (in implication-logic)
X-witness : : (' $\left.a \times{ }^{\prime} a\right)$ list $\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)$ list $\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)$ list ($\left.\mathfrak{X}\right)$
where
$\mathfrak{X} \Psi[]=[]$
$\mid \mathfrak{X} \Psi(\delta \# \Delta)=$
(case find $(\lambda \psi$. (uncurry $(\rightarrow)) \psi=$ snd $\delta) \Psi$ of
None $\Rightarrow \delta \# \mathfrak{X} \Psi \Delta$
\mid Some $\psi \Rightarrow($ fst $\psi \rightarrow f$ st δ, snd $\psi) \#(\mathfrak{X}($ remove $1 \psi \Psi) \Delta))$
primrec (in implication-logic)
X-component $::\left({ }^{\prime} a \times\right.$ ' $\left.a\right)$ list $\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)$ list $\Rightarrow\left({ }^{\prime} a \times\right.$ ' $\left.a\right)$ list $\left(\mathcal{X}_{\mathbf{0}}\right)$

where

```
※. \(\Psi[]=[]\)
\(\mid \mathfrak{X} \bullet \Psi(\delta \# \Delta)=\)
    (case find \((\lambda \psi\). (uncurry \((\rightarrow)) \psi=\) snd \(\delta) \Psi\) of
        None \(\Rightarrow \mathfrak{X} \bullet \Psi \Delta\)
        \(\mid\) Some \(\psi \Rightarrow(f\) st \(\psi \rightarrow f\) st \(\delta\), snd \(\psi) \#\left(\mathfrak{X}_{\bullet}(\right.\) remove \(\left.\left.1 \psi \Psi) \Delta\right)\right)\)
```

primrec (in implication-logic)
Y-witness $::\left({ }^{\prime} a \times{ }^{\prime} a\right)$ list $\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)$ list $\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)$ list (\mathfrak{Y})
where
$\mathfrak{Y} \Psi[]=\Psi$
$\mid \mathfrak{Y} \Psi(\delta \# \Delta)=$
(case find $(\lambda \psi \cdot($ uncurry $(\rightarrow)) \psi=$ snd $\delta) \Psi$ of
None $\Rightarrow \mathfrak{Y} \Psi \Delta$
\mid Some $\psi \Rightarrow($ fst $\psi,($ fst $\psi \rightarrow$ fst $\delta) \rightarrow$ snd $\psi) \#$
$(\mathfrak{Y}($ remove1 $\psi \Psi) \Delta))$
primrec (in implication-logic)
Y-component $::\left({ }^{\prime} a \times\right.$ ' $\left.a\right)$ list $\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)$ list $\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)$ list ($\left.\mathfrak{Y} \bullet\right)$
where
Y. $\Psi[]=[]$
$\mid \mathfrak{Y} \cdot \Psi(\delta \# \Delta)=$
(case find $(\lambda \psi \cdot($ uncurry $(\rightarrow)) \psi=$ snd $\delta) \Psi$ of
None $\Rightarrow \mathfrak{Y} . \Psi \Delta$
\mid Some $\psi \Rightarrow($ fst $\psi,($ fst $\psi \rightarrow$ fst $\delta) \rightarrow$ snd $\psi) \#$
$(\mathfrak{Y} \bullet($ remove $1 \psi \Psi) \Delta))$
lemma (in implication-logic) X-witness-right-empty [simp]:
$\mathfrak{X}[] \Delta=\Delta$
$\langle p r o o f\rangle$
lemma (in implication-logic) Y-witness-right-empty [simp]:
$\mathfrak{Y}[] \Delta=[]$
〈proof〉
lemma (in implication-logic) X-witness-map-snd-decomposition:
$\operatorname{mset}(\operatorname{map} \operatorname{snd}(\mathfrak{X} \Psi \Delta))=\operatorname{mset}(\operatorname{map} \operatorname{snd}((\mathfrak{A} \Psi \Delta) @(\Delta \ominus(\mathfrak{B} \Psi \Delta))))$
$\langle p r o o f\rangle$
lemma (in implication-logic) Y-witness-map-snd-decomposition:
mset $(\operatorname{map}$ snd $(\mathfrak{Y} \Psi \Delta))=\operatorname{mset}(\operatorname{map} \operatorname{snd}((\Psi \ominus(\mathfrak{A} \Psi \Delta)) @(\mathfrak{Y} . \Psi \Delta)))$ $\langle p r o o f\rangle$
lemma (in implication-logic) X-witness-msub:
assumes mset (map snd Ψ) $\subseteq \#$ mset Γ
and mset (map snd Δ) \subseteq mset (map (uncurry $(\rightarrow)) \Psi @ \Gamma \ominus$ (map snd $\Psi)$)
shows mset (map snd $(\mathfrak{X} \Psi \Delta)) \subseteq \#$ mset Γ $\langle p r o o f\rangle$

```
lemma (in implication-logic) Y-component-msub:
    mset (map snd (\mathfrak{Y}.\Psi\Delta))\subseteq# mset (map (uncurry (->)) (\mathfrak{X \Psi\Delta))})=\mp@code{m}
<proof\rangle
lemma (in implication-logic) Y-witness-msub:
    assumes mset (map snd \Psi)\subseteq# mset \Gamma
            and mset (map snd \Delta)\subseteq# mset (map (uncurry (->))\Psi@ \Gamma \ominus (map snd
\Psi))
    shows mset (map snd (\mathfrak{Y \Psi \Delta)) \subseteq#}
            mset (map (uncurry (->)) (\mathfrak{X \Psi \Delta) @ \Gamma }\ominus map snd (\mathfrak{X \Psi \Delta))}
<proof\rangle
lemma (in classical-logic) X-witness-right-stronger-theory:
    map (uncurry (\sqcup)) \Delta \preceq map (uncurry (\sqcup)) (\mathfrak{X \Psi \Delta)}
<proof\rangle
lemma (in classical-logic) Y-witness-left-stronger-theory:
    map (uncurry (\sqcup)) \Psi\preceq map (uncurry (\sqcup)) (\mathfrak{Y \Psi \Delta)}
\langleproof\rangle
lemma (in implication-logic) X-witness-second-component-diff-decomposition:
```



```
<proof\rangle
lemma (in implication-logic) Y-witness-first-component-diff-decomposition:
    mset (\mathfrak{Y \Psi\Delta)}=mset (\Psi\ominus\mathfrak{A}\Psi\Delta@ \mathfrak{Y}.\Psi\Delta)
<proof\rangle
lemma (in implication-logic) Y-witness-right-stronger-theory:
```



```
\ominus\mathfrak{B}\Psi\Delta))
<proof\rangle
lemma (in implication-logic) xcomponent-ycomponent-connection:
```



```
\langleproof\rangle
lemma (in classical-logic) xwitness-ywitness-measure-deduction-intro:
    assumes mset (map snd \Psi)\subseteq# mset \Gamma
    and mset (map snd \Delta)\subseteq# mset (map (uncurry ( }->\mathrm{ )) 世@ @ 
\Psi))
    and map (uncurry ( }->\mathrm{ )) | @ (map (uncurry ( }->\mathrm{ )) }\Psi@ @ \ominus map snd \Psi) \ominus
map snd \Delta $\vdash \Phi
            (is? ? }\mp@subsup{\Gamma}{0}{}$\vdash\Phi
            shows map (uncurry (->)) (Y)\Psi\Delta)@
```



```
                map snd (\mathfrak{Y \Psi }
            (is ?\Gamma $\vdash $)
```

```
<proof\rangle
```

lemma (in classical-logic) measure-cons-cons-right-permute:
assumes $\Gamma \$ \vdash(\varphi \# \psi \# \Phi)$
shows $\Gamma \$ \vdash(\psi \# \varphi \# \Phi)$
$\langle p r o o f\rangle$
lemma (in classical-logic) measure-cons-remove1:
assumes $\varphi \in$ set Φ
shows $\Gamma \$ \vdash \Phi=\Gamma \$ \vdash(\varphi \#($ remove $1 \varphi \Phi))$
$\langle p r o o f\rangle$
lemma (in classical-logic) witness-stronger-theory:
assumes mset (map snd Ψ) $\subseteq \#$ mset Γ
shows (map (uncurry $(\rightarrow)) \Psi @ \Gamma \ominus($ map snd $\Psi)) \preceq \Gamma$
$\langle p r o o f\rangle$
lemma (in classical-logic) measure-msub-weaken:
assumes mset $\Psi \subseteq \#$ mset Φ
and $\Gamma \$ \vdash \Phi$
shows $\Gamma \$ \vdash \Psi$
$\langle p r o o f\rangle$
lemma (in classical-logic) measure-stronger-theory-right-antitonic:
assumes $\Psi \preceq \Phi$
and $\Gamma \$ \vdash \Phi$
shows $\Gamma \$ \vdash \Psi$
$\langle p r o o f\rangle$
lemma (in classical-logic) measure-witness-right-split:
assumes mset (map snd Ψ) $\subseteq \#$ mset Φ
shows $\Gamma \$ \vdash($ map $($ uncurry $(\sqcup)) \Psi$ @ map (uncurry $(\rightarrow)) \Psi @ \Phi \ominus$ (map snd
$\Psi))=\Gamma \$ \vdash \Phi$
$\langle p r o o f\rangle$
primrec (in classical-logic)
submerge-witness :: (' $a \times$ ' $a)$ list $\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)$ list $\Rightarrow\left({ }^{\prime} a \times{ }^{\prime} a\right)$ list (\mathfrak{E})
where
$\mathfrak{E} \Sigma[]=\operatorname{map}(\lambda \sigma .(\perp,($ uncurry $(\sqcup)) \sigma)) \Sigma$
$\mid \mathfrak{E} \Sigma(\delta \# \Delta)=$ (case find $(\lambda \sigma$. (uncurry $(\rightarrow)) \sigma=$ snd $\delta) \Sigma$ of None $\Rightarrow \mathfrak{E} \Sigma \Delta$
\mid Some $\sigma \Rightarrow($ fst $\sigma,(f s t \delta \sqcap f s t \sigma) \sqcup$ snd $\sigma) \#(\mathfrak{E}($ remove1 $\sigma \Sigma) \Delta))$
lemma (in classical-logic) submerge-witness-stronger-theory-left:
map (uncurry (ப)) $\Sigma \preceq$ map (uncurry (ப)) $(\mathfrak{E} \Sigma \Delta$)
$\langle p r o o f\rangle$
lemma (in classical-logic) submerge-witness-msub:


```
<proof>
lemma (in classical-logic) submerge-witness-stronger-theory-right:
    map (uncurry (\sqcup)) \Delta
```



```
\Delta))
<proof>
lemma (in classical-logic) merge-witness-cons-measure-deduction:
    assumes map (uncurry (\sqcup)) \Sigma:\vdash\varphi
        and mset (map snd \Delta)\subseteq# mset (map (uncurry ( }->\mathrm{ )) }\Sigma@\Gamma\ominus map snd \Sigma
        and map (uncurry (\sqcup)) \Delta$\vdash \Phi
    shows map (uncurry (\sqcup)) (\mathfrak{J}\Sigma\Delta)$\vdash(\varphi# (\varphi)
\langleproof\rangle
primrec (in classical-logic)
    recover-witness-A :: ('a\times'}a)\mathrm{ list }=>('a\times'a) list => (' a ' 'a) list (\mathfrak{P}
    where
    \mathfrak{P}\Sigma[]=\Sigma
| \mathfrak{P}\Sigma(\delta#\Delta)=
        (case find (\lambda \sigma. snd \sigma=(uncurry (\sqcup)) \delta) \Sigma of
            None => \mathfrak{P}\Sigma\Delta
            Some \sigma=>(fst \sigma\sqcupfst \delta, snd \delta)#(\mathfrak{P}(remove1 \sigma \Sigma)\Delta))
primrec (in classical-logic)
```



```
    where
        \mp@subsup{\mathfrak{P}}{}{C}\Sigma[]=[]
    | \mathfrak{P}
        (case find ( }\lambda\sigma\mathrm{ . snd }\sigma=(\mathrm{ uncurry (ப)) }\delta)\Sigma\mathrm{ of
                        None }=>\delta#\mp@subsup{\mathfrak{P}}{}{C}\Sigma
                            | Some \sigma=>(彗C}(\mathrm{ remove1 }\sigma\Sigma)\Delta)
primrec (in classical-logic)
    recover-witness-B :: (' }a\times\mp@subsup{}{}{\prime}a)\mathrm{ list }=>(\mp@subsup{}{}{\prime}a\times'a) list => (' a > 'a) list (\mathfrak{Q}
    where
        Q \Sigma []=[]
    |Q\Sigma(\delta#\Delta)=
        (case find ( }\lambda\sigma.(\mathrm{ snd }\sigma)=(\mathrm{ uncurry (ப)) }\delta)\Sigma o
                        None }=>\delta#\mathbb{Q}\Sigma
                            | Some \sigma=>(fst \delta,(fst \sigma\sqcupfst \delta) }->\mathrm{ snd }\delta)#(\mathfrak{Q}(\mathrm{ remove1 }\sigma\Sigma)\Delta)
lemma (in classical-logic) recover-witness-A-left-stronger-theory:
    map (uncurry (\sqcup)) \Sigma\preceqmap (uncurry (\sqcup)) (\mathfrak{P}\Sigma\Delta)
<proof>
lemma (in classical-logic) recover-witness-A-mset-equiv:
    assumes mset (map snd \Sigma)\subseteq# mset (map (uncurry (\sqcup))\Delta)
```

```
shows mset (map snd (\mathfrak{P}\Sigma\Delta@ 业\Sigma\Delta))= mset (map snd \Delta)
<proof\rangle
lemma (in classical-logic) recover-witness-B-stronger-theory:
    assumes mset (map snd \Sigma)\subseteq# mset (map (uncurry (\sqcup)) \Delta)
    shows (map (uncurry (->)) \Sigma @ map (uncurry (\sqcup)) \Delta \ominus map snd \Sigma)
        \map (uncurry (\sqcup))(\mathfrak{Q \Sigma\Delta)}
<proof\rangle
lemma (in classical-logic) recover-witness-B-mset-equiv:
    assumes mset (map snd \Sigma)\subseteq# mset (map (uncurry (\sqcup)) \Delta)
    shows mset (map snd (\mathfrak{Q \Sigma\Delta})\mathrm{ )}
        =mset (map (uncurry (->)) (\mathfrak{P}\Sigma\Delta)@ map snd \Delta \ominus map snd (\mathfrak{P}\Sigma\Delta))
\langleproof\rangle
lemma (in classical-logic) recover-witness-B-right-stronger-theory:
    map (uncurry ( }->\mathrm{ ) ) , 〔 map (uncurry ( }->\mathrm{ )) ({Q }\Sigma\Delta
<proof\rangle
lemma (in classical-logic) recoverWitnesses-mset-equiv:
    assumes mset (map snd \Delta)\subseteq# mset \Gamma
        and mset (map snd \Sigma)\subseteq# mset (map (uncurry (\sqcup)) \Delta)
    shows mset ( }\Gamma\ominus\mathrm{ map snd }\Delta\mathrm{ )
        =mset ((map (uncurry (->)) (\mathfrak{P}\Sigma\Delta)@ \Gamma\ominus map snd (\mathfrak{P}\Sigma\Delta))\ominus map
snd (\mathfrak{Q \Sigma \Delta))}
\langleproof\rangle
theorem (in classical-logic) measure-deduction-generalized-witness:
    \Gamma $ (\Phi@\Psi)=(\exists\Sigma.mset (map snd \Sigma)\subseteq# mset \Gamma^
        map (uncurry (\sqcup)) \Sigma$\vdash\Phi^
        (map (uncurry (->)) \Sigma@ \Gamma\ominus (map snd \Sigma)) $\vdash\Psi)
<proof\rangle
lemma (in classical-logic) measure-list-deduction-antitonic:
    assumes }\Gamma$\downarrow
        and \Psi :\vdash\varphi
        shows \Gamma :\vdash\varphi
    <proof\rangle
```

Finally，we may establish that $(\$ \vdash)$ is transitive．
theorem（in classical－logic）measure－transitive：
assumes $\Gamma \$ \vdash \Lambda$
and $\Lambda \$ \vdash \Delta$
shows $\Gamma \$ \vdash \Delta$
\langle proof〉

2.6 Measure Deduction Cancellation Rules

In this chapter we go over how to cancel formulae occurring in measure deduction judgements.

The first observation is that tautologies can always be canceled on either side of the turnstile.
lemma (in classical-logic) measure-tautology-right-cancel:
assumes $\vdash \varphi$
shows $\Gamma \$ \vdash(\varphi \# \Phi)=\Gamma \$ \vdash \Phi$
\langle proof \rangle
lemma (in classical-logic) measure-tautology-left-cancel [simp]:
assumes $\vdash \gamma$
shows $(\gamma \# \Gamma) \$ \vdash \Phi=\Gamma \$ \vdash \Phi$
\langle proof \rangle

```
lemma (in classical-logic) measure-deduction-one-collapse:
    \(\Gamma \$ \vdash[\varphi]=\Gamma: \vdash \varphi\)
\(\langle p r o o f\rangle\)
```

Split cases, which are occurrences of $\psi \sqcup \varphi \# \psi \rightarrow \varphi \# \ldots$, also cancel and simplify to just $\varphi \# \ldots$. We previously established $\Gamma \$ \vdash \psi \sqcup \varphi \# \psi \rightarrow \varphi$ $\# \Phi=\Gamma \$ \vdash \varphi \# \Phi$ as part of the proof of transitivity.
lemma (in classical-logic) measure-formula-left-split:
$\psi \sqcup \varphi \# \psi \rightarrow \varphi \# \Gamma \$ \vdash \Phi=\varphi \# \Gamma \$ \vdash \Phi$
$\langle p r o o f\rangle$
lemma (in classical-logic) measure-witness-left-split [simp]:
assumes mset (map snd $\Sigma) \subseteq \#$ mset Γ
shows (map (uncurry (ப)) Σ @ map (uncurry $(\rightarrow)) \Sigma @ \Gamma \ominus($ map snd $\Sigma)) \$ \vdash$ $\Phi=\Gamma \$ \downarrow \Phi$
$\langle p r o o f\rangle$
We now have enough to establish the cancellation rule for $(\$ \vdash)$.
lemma (in classical-logic) measure-cancel: $(\Delta$ @ $\Gamma) \$ \vdash(\Delta @ \Phi)=\Gamma \$ \vdash \Phi$ $\langle p r o o f\rangle$
lemma (in classical-logic) measure-biconditional-cancel:
assumes $\vdash \gamma \leftrightarrow \varphi$
shows $(\gamma \# \Gamma) \$ \vdash(\varphi \# \Phi)=\Gamma \$ \vdash \Phi$
$\langle p r o o f\rangle$

2.7 Measure Deduction Substitution Rules

Just like conventional deduction, if two formulae are equivalent then they may be substituted for one another.

```
lemma (in classical-logic) right-measure-sub:
    assumes \(\vdash \varphi \leftrightarrow \psi\)
    shows \(\Gamma \$ \vdash(\varphi \# \Phi)=\Gamma \$ \vdash(\psi \# \Phi)\)
\(\langle p r o o f\rangle\)
lemma (in classical-logic) left-measure-sub:
    assumes \(\vdash \gamma \leftrightarrow \chi\)
    shows \((\gamma \# \Gamma) \$ \vdash \Phi=(\chi \# \Gamma) \$ \vdash \Phi\)
\(\langle p r o o f\rangle\)
```


2.8 Measure Deduction Sum Rules

We next establish analogues of the rule in probability that $\mathcal{P} \alpha+\mathcal{P} \beta=$ $\mathcal{P}(\alpha \sqcup \beta)+\mathcal{P}(\alpha \sqcap \beta)$. This equivalence holds for both sides of the $(\$ \vdash)$ turnstile.
lemma (in classical-logic) right-measure-sum-rule:
$\Gamma \$ \vdash(\alpha \# \beta \# \Phi)=\Gamma \$ \vdash(\alpha \sqcup \beta \# \alpha \sqcap \beta \# \Phi)$
$\langle p r o o f\rangle$
lemma (in classical-logic) left-measure-sum-rule:
$(\alpha \# \beta \# \Gamma) \$ \vdash \Phi=(\alpha \sqcup \beta \# \alpha \sqcap \beta \# \Gamma) \$ \vdash \Phi$ $\langle p r o o f\rangle$

2.9 Measure Deduction Exchange Rule

As we will see, a key result is that we can move formulae from the right hand side of the ($\$ \vdash$) turnstile to the left.

We observe a novel logical principle, which we call exchange. This principle follows immediately from the split rules and cancellation rules.

```
lemma (in classical-logic) measure-exchange:
    \((\gamma \# \Gamma) \$ \vdash(\varphi \# \Phi)=(\varphi \rightarrow \gamma \# \Gamma) \$ \vdash(\gamma \rightarrow \varphi \# \Phi)\)
\(\langle p r o o f\rangle\)
```

The exchange rule allows us to prove an analogue of the rule in classical logic that $\Gamma: \vdash \varphi=(\sim \varphi \# \Gamma): \vdash \perp$ for measure deduction.
theorem (in classical-logic) measure-negation-swap:
$\Gamma \$ \vdash(\varphi \# \Phi)=(\sim \varphi \# \Gamma) \$ \vdash(\perp \# \Phi)$
$\langle p r o o f\rangle$

2.10 Definition of Counting Deduction

The theorem $\Gamma \$ \vdash \varphi \# \Phi=\sim \varphi \# \Gamma \$ \vdash \perp \# \Phi$ gives rise to another kind of judgement: how many times can a list of premises Γ prove a formula φ ?. We
call this kind of judgment counting deduction. As with measure deduction, bits of Γ get "used up" with each dispatched conclusion.

```
primrec (in classical-logic)
    counting-deduction \(::\) 'a list \(\Rightarrow\) nat \(\Rightarrow\) ' \(a \Rightarrow\) bool \((-\# \vdash-[60,100,59] 60)\)
    where
    \(\Gamma \# \vdash 0 \varphi=\) True
    \(\mid \Gamma \# \vdash(S u c n) \varphi=(\exists \Psi\). mset \((\) map snd \(\Psi) \subseteq \#\) mset \(\Gamma \wedge\)
                                    map (uncurry (ப)) \(\Psi: \vdash \varphi \wedge\)
                        map \((\) uncurry \((\rightarrow)) \Psi @ \Gamma \ominus(\) map snd \(\Psi) \# \vdash n \varphi)\)
```


2.11 Converting Back and Forth from Counting Deduction to Measure Deduction

We next show how to convert back and forth from counting deduction to measure deduction.

First, we show that trivially counting deduction is a special case of measure deduction.
lemma (in classical-logic) counting-deduction-to-measure-deduction:

$$
\Gamma \# \vdash n \varphi=\Gamma \$ \vdash(\text { replicate } n \varphi)
$$

\langle proof \rangle
We next prove a few helpful lemmas regarding counting deduction.
lemma (in classical-logic) counting-deduction-tautology-weaken:
assumes $\vdash \varphi$
shows $\Gamma \# \vdash n \varphi$
〈proof〉
lemma (in classical-logic) counting-deduction-weaken:
assumes $n \leq m$
and $\Gamma \# \vdash m \varphi$
shows $\Gamma \# \vdash n \varphi$
$\langle p r o o f\rangle$
lemma (in classical-logic) counting-deduction-implication:
assumes $\vdash \varphi \rightarrow \psi$
and $\Gamma \# \vdash n \varphi$
shows $\Gamma \# \vdash n \psi$
$\langle p r o o f\rangle$
Finally, we use $\Gamma \$ \vdash \varphi \# \Phi=\sim \varphi \# \Gamma \$ \vdash \perp \# \Phi$ to prove that measure deduction reduces to counting deduction.
theorem (in classical-logic) measure-deduction-to-counting-deduction:
$\Gamma \$ \vdash \Phi=(\sim \Phi @ \Gamma) \# \vdash($ length $\Phi) \perp$
$\langle p r o o f\rangle$

2.12 Measure Deduction Soundess

The last major result for measure deduction we have to show is soundness. That is, judgments in measure deduction of lists of formulae can be translated into tautologies for inequalities of finitely additive probability measures over those same formulae (using the same underlying classical logic).

```
lemma (in classical-logic) negated-measure-deduction:
    \(\sim \Gamma \$ \vdash(\varphi \# \Phi)=\)
    \((\exists \Psi\). mset (map fst \(\Psi) \subseteq \#\) mset \(\Gamma \wedge\)
            \(\sim(\operatorname{map}(\) uncurry \((\backslash)) \Psi): \vdash \varphi \wedge\)
            \(\sim(\operatorname{map}(\) uncurry \((\sqcap)) \Psi @ \Gamma \ominus(\operatorname{map} f s t \Psi)) \$ \vdash \Phi)\)
\(\langle p r o o f\rangle\)
lemma (in probability-logic) measure-deduction-soundness:
    assumes \(\sim \Gamma \$ \vdash \sim \Phi\)
    shows \(\left(\sum \varphi \leftarrow \Phi . \mathcal{P} \varphi\right) \leq\left(\sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma\right)\)
\(\langle p r o o f\rangle\)
```


Chapter 3

MaxSAT

We turn now to showing that counting deduction reduces to MaxSAT，the problem of finding the maximal number of satisfiable clauses in a list of clauses．

3．1 Definition of Relative Maximal Clause Collec－ tions

Given a list of assumptions Φ and formula φ ，we can think of those maximal sublists of Φ that do not prove φ ．While in practice we will care about $\varphi=\perp$ ，we provide a general definition in the more general axiom class implication－logic．

```
definition (in implication-logic) relative-maximals :: ' \(a\) list \(\Rightarrow{ }^{\prime} a \Rightarrow^{\prime} a\) list set (M)
    where
        \(\mathcal{M} \Gamma \varphi=\)
            \(\{\Phi\). mset \(\Phi \subseteq \#\) mset \(\Gamma\)
                \(\wedge \neg \Phi: \vdash \varphi\)
            \(\wedge(\forall \Psi . \operatorname{mset} \Psi \subseteq \# \operatorname{mset} \Gamma \longrightarrow \neg \Psi: \vdash \varphi \longrightarrow\) length \(\Psi \leq\) length \(\Phi)\}\)
```

lemma（in implication－logic）relative－maximals－finite：finite（ $\mathcal{M} \Gamma \varphi$ ）〈proof〉

We know that φ is not a tautology if and only if the set of relative maximal sublists has an element．
lemma（in implication－logic）relative－maximals－existence：

$$
(\neg \vdash \varphi)=(\exists \Sigma \Sigma \Sigma \in \mathcal{M} \Gamma \varphi)
$$

〈proof〉

```
lemma (in implication-logic) relative-maximals-complement-deduction:
    assumes \(\Phi \in \mathcal{M} \Gamma \varphi\)
            and \(\psi \in \operatorname{set}(\Gamma \ominus \Phi)\)
        shows \(\Phi: \downarrow \psi \rightarrow \varphi\)
```

```
\langleproof\rangle
lemma (in implication-logic) relative-maximals-set-complement [simp]:
    assumes }\Phi\in\mathcal{M}\Gamma
    shows set (\Gamma\ominus\Phi) = set \Gamma - set }
<proof\rangle
lemma (in implication-logic) relative-maximals-complement-equiv:
    assumes }\Phi\in\mathcal{M}\Gamma
        and}\psi\in\mathrm{ set }
    shows }\Phi:\vdash\psi->\varphi=(\psi\not\in\mathrm{ set }\Phi
<proof\rangle
lemma (in implication-logic) maximals-length-equiv:
    assumes }\Phi\in\mathcal{M}\Gamma
        and }\Psi\in\mathcal{M \Gamma \varphi
        shows length }\Phi=\mathrm{ length }
    <proof>
lemma (in implication-logic) maximals-list-subtract-length-equiv:
    assumes }\Phi\in\mathcal{M}\Gamma
        and }\Psi\in\mathcal{M}\Gamma
    shows length ( }\Gamma\ominus\Phi)=\mathrm{ length ( }\Gamma\ominus\Psi
<proof\rangle
```

We can think of $\Gamma: \vdash \varphi$ as saying "the relative maximal sublists of Γ are not the entire list".

```
lemma (in implication-logic) relative-maximals-max-list-deduction:
    \Gamma : \vdash \varphi = ( \forall \Phi \in \mathcal { M } \Gamma \varphi . 1 \leq l e n g t h ~ ( \Gamma \ominus \Phi ) )
\langleproof\rangle
```


3.2 Definition of MaxSAT

We next turn to defining an abstract form of MaxSAT, which is largest the number of simultaneously satisfiable propositions in a list of propositions.

Unlike conventional MaxSAT, we don't actually work at the semantic level, i.e. constructing a model for the Tarski truth relation \vDash. Instead, we just count the elements in a maximal, consistent sublist (i.e., a maximal sub list Σ such that $\neg \Sigma: \vdash \perp$) of the list of assumptions Γ we have at hand.

Because we do not work at the semantic level, computing if $\operatorname{MaxSAT} \Gamma \leq n$ is not in general CoNP-Complete, as it is classically classified [1]. In the special case that the underlying logic is the classical propositional calculus, then the complexity is CoNP-Complete. But we could imagine the underlying logic to be linear temporal logic or even first order logic. In such cases the complexity class would be higher in the complexity hierarchy.
definition (in implication-logic) relative-MaxSAT :: 'a list $\Rightarrow{ }^{\prime} a \Rightarrow$ nat $(|-|-[45])$ where
$\left(|\Gamma|_{\varphi}\right)=($ if $\mathcal{M} \Gamma \varphi=\{ \}$ then 0 else Max $\{$ length $\Phi \mid \Phi . \Phi \in \mathcal{M} \Gamma \varphi\})$
abbreviation (in classical-logic) MaxSAT :: 'a list \Rightarrow nat where

$$
\operatorname{MaxSAT} \Gamma \equiv|\Gamma|_{\perp}
$$

definition (in implication-logic) complement-relative-MaxSAT :: 'a list $\Rightarrow{ }^{\prime} a \Rightarrow$ nat (|| - ||- [45])
where
$\left(\|\Gamma\|_{\varphi}\right)=$ length $\Gamma-|\Gamma|_{\varphi}$
lemma (in implication-logic) relative-MaxSAT-intro:
assumes $\Phi \in \mathcal{M} \Gamma \varphi$
shows length $\Phi=|\Gamma|_{\varphi}$
$\langle p r o o f\rangle$
lemma (in implication-logic) complement-relative-MaxSAT-intro:
assumes $\Phi \in \mathcal{M} \Gamma \varphi$
shows length $(\Gamma \ominus \Phi)=\|\Gamma\|_{\varphi}$
$\langle p r o o f\rangle$

```
lemma (in implication-logic) length-MaxSAT-decomposition:
    length }\Gamma=(|\Gamma\mp@subsup{|}{\varphi}{})+|\Gamma\mp@subsup{|}{\varphi}{
<proof\rangle
```


3.3 Reducing Counting Deduction to MaxSAT

Here we present a major result: counting deduction may be reduced to MaxSAT.
primrec MaxSAT-optimal-pre-witness :: 'a list $\Rightarrow\left({ }^{\prime} a\right.$ list \times 'a) list ($\left.\mathfrak{V}\right)$
where
$\mathfrak{V}[]=[]$
$\mid \mathfrak{V}(\psi \# \Psi)=(\Psi, \psi) \# \mathfrak{V} \Psi$
lemma MaxSAT-optimal-pre-witness-element-inclusion:
$\forall(\Delta, \delta) \in \operatorname{set}(\mathfrak{V} \Psi) . \operatorname{set}(\mathfrak{V} \Delta) \subseteq \operatorname{set}(\mathfrak{V} \Psi)$
\langle proof \rangle
lemma MaxSAT-optimal-pre-witness-nonelement:
assumes length $\Delta \geq$ length Ψ
shows $(\Delta, \delta) \notin \operatorname{set}(\mathfrak{V} \Psi)$
〈proof〉
lemma MaxSAT-optimal-pre-witness-distinct: distinct ($\mathfrak{V} \Psi$)
$\langle p r o o f\rangle$

```
lemma MaxSAT-optimal-pre-witness-length-iff-eq:
    \forall(\Delta,\delta) \in set (\mathfrak{V}\Psi).\forall (\Sigma,\sigma)\in\operatorname{set (\mathfrak{V}\Psi). (length }\Delta=l\mathrm{ length }\Sigma)=((\Delta,\delta)=
(\Sigma,\sigma))
<proof>
lemma mset-distinct-msub-down:
    assumes mset A\subseteq# mset B
            and distinct B
    shows distinct A
    <proof>
lemma mset-remdups-set-sub-iff:
    (mset (remdups A)\subseteq# mset (remdups B))}=(\mathrm{ set A}\subseteq\mathrm{ set B)
<proof>
lemma range-characterization:
    (mset X = mset [0..<length X]) = (distinct X ^(\forallx\in set X. x<length X))
<proof\rangle
lemma distinct-pigeon-hole:
    fixes }X\mathrm{ :: nat list
    assumes distinct X
    and X\not=[]
    shows }\existsn\in\mathrm{ set X. n + 1 \ length X
<proof\rangle
lemma MaxSAT-optimal-pre-witness-pigeon-hole:
    assumes mset \Sigma\subseteq# mset (VV \Psi)
        and }\Sigma\not=[
    shows \exists}(\Delta,\delta)\in\mathrm{ set }\Sigma\mathrm{ . length }\Delta+1\geq\mathrm{ length }
\langleproof\rangle
abbreviation (in classical-logic)
    MaxSAT-optimal-witness :: ' }a=>\mathrm{ 'a list }=>('a\times'a) list (\mathfrak{W)
    where \mathfrak{W }\varphi\Xi\equiv\operatorname{map}(\lambda(\Psi,\psi).(\Psi:->\varphi,\psi))(\mathfrak{V}\Xi)
abbreviation (in classical-logic)
    disjunction-MaxSAT-optimal-witness :: ' }a>>'a list = 'a list (\mathfrak{W
    where \mathfrak{W}}\varphi\varphi\Psi= map (uncurry (\sqcup)) (\mathfrak{W}\varphi\Psi
abbreviation (in classical-logic)
    implication-MaxSAT-optimal-witness :: 'a m 'a list # 'a list (\mathfrak{W}->)
    where }\mp@subsup{\mathfrak{W}}{->}{}\varphi\Psi\equivmap(uncurry ( (->)) (\mathfrak{W }\varphi\Psi
lemma (in classical-logic) MaxSAT-optimal-witness-conjunction-identity:
    \vdashП(\mp@subsup{\mathfrak{W}}{\sqcup}{}\varphi\Psi)\leftrightarrow(\varphi\sqcupП\Psi)
<proof\rangle
lemma (in classical-logic) MaxSAT-optimal-witness-deduction:
```

```
    \(\vdash \mathfrak{W}_{\sqcup} \varphi \Psi: \rightarrow \varphi \leftrightarrow \Psi: \rightarrow \varphi\)
\(\langle p r o o f\rangle\)
lemma (in classical-logic) optimal-witness-split-identity:
    \(\vdash\left(\mathfrak{W}_{\sqcup} \varphi(\psi \# \Xi)\right): \rightarrow \varphi \rightarrow\left(\mathfrak{W}_{\rightarrow} \varphi(\psi \# \Xi)\right): \rightarrow \varphi \rightarrow \Xi: \rightarrow \varphi\)
\(\langle p r o o f\rangle\)
```

lemma (in classical-logic) disj-conj-impl-duality:
$\vdash(\varphi \rightarrow \chi \sqcap \psi \rightarrow \chi) \leftrightarrow((\varphi \sqcup \psi) \rightarrow \chi)$
\langle proof \rangle
lemma (in classical-logic) weak-disj-of-conj-equiv:
$(\forall \sigma \in$ set $\Sigma . \sigma: \vdash \varphi)=\vdash \bigsqcup(\operatorname{map} \sqcap \Sigma) \rightarrow \varphi$
〈proof〉
lemma (in classical-logic) arbitrary-disj-concat-equiv:
$\vdash \sqcup(\Phi @ \Psi) \leftrightarrow(\bigsqcup \Phi \sqcup \bigsqcup \Psi)$
\langle proof \rangle
lemma (in classical-logic) arbitrary-conj-concat-equiv:

```
\vdashП(\Phi@\Psi)\leftrightarrow(П\Phi\sqcapП\Psi)
<proof\rangle
```

lemma (in classical-logic) conj-absorption:
assumes $\chi \in$ set Φ
shows $\vdash \sqcap \Phi \leftrightarrow(\chi \sqcap \Pi \Phi)$
$\langle p r o o f\rangle$
lemma (in classical-logic) conj-extract: $\vdash \sqcup(\operatorname{map}((\sqcap) \varphi) \Psi) \leftrightarrow(\varphi \sqcap \bigsqcup \Psi)$ $\langle p r o o f\rangle$
lemma (in classical-logic) conj-multi-extract:

```
    \vdash (map П(map ((@)\Delta)\Sigma))\leftrightarrow(П\Delta\square\square\(\operatorname{map}\Pi\Sigma))
<proof\rangle
```

lemma (in classical-logic) extract-inner-concat:
$\vdash \bigsqcup($ map $(\sqcap \circ($ map snd $\circ(@) \Delta)) \Psi) \leftrightarrow(\sqcap($ map snd $\Delta) \sqcap \bigsqcup(\operatorname{map}(\sqcap \circ$ map snd) $\Psi)$)
$\langle p r o o f\rangle$
lemma (in classical-logic) extract-inner-concat-remdups:

```
\(\vdash \bigsqcup(\operatorname{map}(\sqcap \circ(\) map snd \(\circ\) remdups \(\circ(@) \Delta)) \Psi) \leftrightarrow\)
    \((\sqcap(\operatorname{map}\) snd \(\Delta) \sqcap \bigsqcup(\operatorname{map}(\sqcap \circ(\) map snd \(\circ\) remdups \()) \Psi))\)
\(\langle p r o o f\rangle\)
```

lemma (in classical-logic) optimal-witness-list-intersect-biconditional:
assumes mset $\Xi \subseteq \#$ mset Γ
and mset $\Phi \subseteq \# \operatorname{mset}(\Gamma \ominus \Xi)$
and mset $\Psi \subseteq \# \operatorname{mset}\left(\mathfrak{W}_{\rightarrow} \varphi \Xi\right)$

```
    shows \exists\Sigma.\vdash((\Phi@\Psi):->\varphi)\leftrightarrow(\bigsqcup(map П\Sigma)->\varphi)
        \wedge(\forall\sigma\in set \Sigma. mset \sigma\subseteq# mset }\Gamma\wedge\mathrm{ length }\sigma+1\geq\mathrm{ length ( }\Phi@\Psi)
<proof\rangle
lemma (in classical-logic) relative-maximals-optimal-witness:
    assumes \neg\vdash\varphi
    shows 0< || \Gamma|\varphi)
        = (\exists \Sigma. mset (map snd \Sigma)\subseteq# mset \Gamma ^
                        map (uncurry (\sqcup)) \Sigma:\vdash\varphi^
                        1+(|map (uncurry (->)) \Sigma@ @ ` map snd \Sigma | |})=|\Gamma||\varphi
\langleproof\rangle
primrec (in implication-logic)
    MaxSAT-witness :: ('a < 'a) list }=>\mp@subsup{}{}{\prime}a\mathrm{ a list }=>(\mp@subsup{}{}{\prime}a\times'a) list (U)
    where
        U -[]=[]
    | U \Sigma (\xi##\Xi)=(case find (\lambda\sigma.\xi= snd \sigma) \Sigmaof
                        None = {U\Sigma\Xi
                            | Some \sigma=>\sigma#(\mathfrak{U}(\mathrm{ remove1 }\sigma\Sigma)\Xi))
lemma (in implication-logic) MaxSAT-witness-right-msub:
    mset (map snd (UU \Sigma\Xi))\subseteq# mset \Xi
<proof\rangle
lemma (in implication-logic) MaxSAT-witness-left-msub:
```



```
<proof>
lemma (in implication-logic) MaxSAT-witness-right-projection: mset \((\) map snd \((\mathfrak{U} \Sigma \Xi))=\operatorname{mset}((\) map snd \(\Sigma) \cap \Xi)\)
\(\langle p r o o f\rangle\)
lemma (in classical-logic) witness-list-implication-rule:
```

```
    \vdash ( \operatorname { m a p } ( \text { uncurry (ப)) } \Sigma : \rightarrow \varphi ) \rightarrow \Pi ( \operatorname { m a p } ( \lambda ( \chi , \xi ) . ( \chi \rightarrow \xi ) \rightarrow \varphi ) \Sigma ) \rightarrow \varphi
```

 \vdash (\operatorname { m a p } (\text { uncurry (ப)) } \Sigma : \rightarrow \varphi) \rightarrow \Pi (\operatorname { m a p } (\lambda (\chi , \xi) . (\chi \rightarrow \xi) \rightarrow \varphi) \Sigma) \rightarrow \varphi
 <proof\rangle
<proof\rangle
lemma (in classical-logic) witness-relative-MaxSAT-increase:
lemma (in classical-logic) witness-relative-MaxSAT-increase:
assumes }\neg\vdash
assumes }\neg\vdash
and mset (map snd \Sigma)\subseteq\# mset \Gamma
and mset (map snd \Sigma)\subseteq\# mset \Gamma
and map (uncurry (\sqcup)) \Sigma:\vdash\varphi
and map (uncurry (\sqcup)) \Sigma:\vdash\varphi
shows (| \Gamma |\varphi)<(| map (uncurry (}->))\Sigma@
ominus map snd \Sigma | |)
shows (| \Gamma |\varphi)<(| map (uncurry (}->))\Sigma@
ominus map snd \Sigma | |)
\langleproof\rangle
\langleproof\rangle
lemma (in classical-logic) relative-maximals-counting-deduction-lower-bound:
lemma (in classical-logic) relative-maximals-counting-deduction-lower-bound:
assumes \neg\vdash\varphi
assumes \neg\vdash\varphi
shows (\Gamma\#\vdash n\varphi) =(n\leq|\Gamma | |)
shows (\Gamma\#\vdash n\varphi) =(n\leq|\Gamma | |)
<proof\rangle

```
<proof\rangle
```

As a brief aside, we may observe that φ is a tautology if and only if count-
ing deduction can prove it for any given number of times．This follows immediately from $\neg \vdash \varphi \Longrightarrow \Gamma \# \vdash n \varphi=\left(n \leq\|\Gamma\|_{\varphi}\right)$ ．
lemma（in classical－logic）counting－deduction－tautology－equiv：
$(\forall n . \Gamma \# \vdash n \varphi)=\vdash \varphi$
〈proof〉
theorem（in classical－logic）relative－maximals－max－counting－deduction：
$\Gamma \# \vdash n \varphi=(\forall \Phi \in \mathcal{M} \Gamma \varphi . n \leq l e n g t h(\Gamma \ominus \Phi))$
〈proof〉
lemma（in consistent－classical－logic）counting－deduction－to－maxsat：
$(\Gamma \# \vdash n \perp)=($ MaxSAT $\Gamma+n \leq$ length $\Gamma)$
〈proof〉

Chapter 4

Inequality Completeness For Probability Logic

4.1 Limited Counting Deduction Completeness

The reduction of counting deduction to MaxSAT allows us to first prove completeness for counting deduction, as maximal consistent sublists allow us to recover maximally consistent sets, which give rise to Dirac measures.

The completeness result first presented here, where all of the propositions on the left hand side are the same, will be extended later.
lemma (in probability-logic) list-probability-upper-bound:

```
    \(\left(\sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma\right) \leq \operatorname{real}(\) length \(\Gamma)\)
\(\langle\) proof \(\rangle\)
```

theorem (in classical-logic) dirac-limited-counting-deduction-completeness: $\left(\forall \mathcal{P} \in\right.$ dirac-measures. real $\left.n * \mathcal{P} \varphi \leq\left(\sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma\right)\right)=\sim \Gamma \# \vdash n(\sim \varphi)$ $\langle p r o o f\rangle$

4.2 Measure Deduction Completeness

Since measure deduction may be reduced to counting deduction, we have measure deduction is complete.

lemma (in classical-logic) dirac-measure-deduction-completeness:

$\left(\forall \mathcal{P} \in\right.$ dirac-measures. $\left.\left(\sum \varphi \leftarrow \Phi . \mathcal{P} \varphi\right) \leq\left(\sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma\right)\right)=\sim \Gamma \$ \vdash \sim \Phi$ $\langle p r o o f\rangle$
theorem (in classical-logic) measure-deduction-completeness:
$\left(\forall \mathcal{P} \in\right.$ probabilities. $\left.\left(\sum \varphi \leftarrow \Phi . \mathcal{P} \varphi\right) \leq\left(\sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma\right)\right)=\sim \Gamma \$ \vdash \sim \Phi$ $\langle p r o o f\rangle$

4.3 Counting Deduction Completeness

Leveraging our measure deduction completeness result, we may extend our limited counting deduction completeness theorem to full completness.

```
lemma (in classical-logic) measure-left-commute:
    (\Phi@\Psi)$\vdash\Xi=(\Psi@ @)$\vdash\Xi
\langleproof\rangle
lemma (in classical-logic) stronger-theory-double-negation-right:
    \Phi\preceq~(~\Phi)
    <proof\rangle
lemma (in classical-logic) stronger-theory-double-negation-left:
    ~(~\Phi)\preceq\Phi
    <proof>
lemma (in classical-logic) counting-deduction-completeness:
    (\forall\mathcal{P}\in\mathrm{ dirac-measures. }(\sum\varphi\leftarrow\Phi.\mathcal{P}\varphi)\leq(\sum\gamma\leftarrow\Gamma.\mathcal{P}\gamma))=(~ \Gamma@\Phi)#\vdash
(length \Phi) \perp
<proof\rangle
```


4.4 Collapse Theorem For Probability Logic

We now turn to proving the collapse theorem for probability logic. This states that any inequality holds for all finitely additive probability measures if and only if it holds for all Dirac measures.
theorem (in classical-logic) weakly-additive-completeness-collapse:
$\left(\forall \mathcal{P} \in\right.$ probabilities. $\left.\left(\sum \varphi \leftarrow \Phi . \mathcal{P} \varphi\right) \leq\left(\sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma\right)\right)$
$=\left(\forall \mathcal{P} \in\right.$ dirac-measures. $\left.\left(\sum \varphi \leftarrow \Phi . \mathcal{P} \varphi\right) \leq\left(\sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma\right)\right)$
〈proof〉
The collapse theorem may be strengthened to include an arbitrary constant term c. This will be key to characterizing MaxSAT completeness in §4.5.

```
lemma (in classical-logic) nat-dirac-probability:
    \mathcal{P}\indirac-measures. \existsn :: nat. real n=(\sum\varphi\leftarrow\Phi.\mathcal{P}\varphi)
<proof\rangle
lemma (in classical-logic) dirac-ceiling:
    \mathcal{P}\in dirac-measures.
        ((\sum\varphi\leftarrow\Phi.\mathcal{P}\varphi)+c\leq(\sum\gamma\leftarrow\Gamma.\mathcal{P}\gamma))
        = ((\sum\varphi\leftarrow\Phi.\mathcal{P}\varphi)+\lceilc\rceil\leq(\sum\gamma\leftarrow\Gamma.\mathcal{P}\gamma))
<proof\rangle
lemma (in probability-logic) probability-replicate-verum:
    fixes n :: nat
    shows }(\sum\varphi\leftarrow\Phi.\mathcal{P}\varphi)+n=(\sum\varphi\leftarrow(\mathrm{ replicate n T)@ @. P}\varphi
    <proof>
```

```
lemma (in classical-logic) dirac-collapse:
    \(\left(\forall \mathcal{P} \in\right.\) probabilities. \(\left.\left(\sum \varphi \leftarrow \Phi . \mathcal{P} \varphi\right)+c \leq\left(\sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma\right)\right)\)
        \(=\left(\forall \mathcal{P} \in\right.\) dirac-measures. \(\left.\left(\sum \varphi \leftarrow \Phi . \mathcal{P} \varphi\right)+\lceil c\rceil \leq\left(\sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma\right)\right)\)
\(\langle p r o o f\rangle\)
```

lemma (in classical-logic) dirac-strict-floor:
$\forall \mathcal{P} \in$ dirac-measures.
$\left(\left(\sum \varphi \leftarrow \Phi . \mathcal{P} \varphi\right)+c<\left(\sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma\right)\right)$
$=\left(\left(\sum \varphi \leftarrow \Phi . \mathcal{P} \varphi\right)+\lfloor c\rfloor+1 \leq\left(\sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma\right)\right)$
$\langle p r o o f\rangle$
lemma (in classical-logic) strict-dirac-collapse:
$\left(\forall \mathcal{P} \in\right.$ probabilities. $\left.\left(\sum \varphi \leftarrow \Phi . \mathcal{P} \varphi\right)+c<\left(\sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma\right)\right)$
$=\left(\forall \mathcal{P} \in\right.$ dirac-measures. $\left.\left(\sum \varphi \leftarrow \Phi . \mathcal{P} \varphi\right)+\lfloor c\rfloor+1 \leq\left(\sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma\right)\right)$
$\langle p r o o f\rangle$

4.5 MaxSAT Completeness For Probability Logic

It follows from the collapse theorem that any probability inequality tautology, include those with constant terms, may be reduced to a bounded MaxSAT problem. This is not only a key computational complexity result, but suggests a straightforward algorithm for computing probability identities.
lemma (in classical-logic) relative-maximals-verum-extract: assumes $\neg \vdash \varphi$
shows $\left(\mid\right.$ replicate $\left.\left.n \top @ \Phi\right|_{\varphi}\right)=n+\left(|\Phi|_{\varphi}\right)$
$\langle p r o o f\rangle$
lemma (in classical-logic) complement-MaxSAT-completeness:
$\left(\forall \mathcal{P} \in\right.$ dirac-measures. $\left.\left(\sum \varphi \leftarrow \Phi . \mathcal{P} \varphi\right) \leq\left(\sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma\right)\right)=($ length $\Phi \leq \| \sim$ $\left.\Gamma @ \Phi \|_{\perp}\right)$
$\langle p r o o f\rangle$
lemma (in classical-logic) relative-maximals-neg-verum-elim:
$\left(\mid\right.$ replicate $\left.\left.n(\sim \top) @ \Phi\right|_{\varphi}\right)=\left(|\Phi|_{\varphi}\right)$
$\langle p r o o f\rangle$
lemma (in classical-logic) dirac-MaxSAT-partial-completeness:
$\left(\forall \mathcal{P} \in\right.$ dirac-measures. $\left.\left(\sum \varphi \leftarrow \Phi . \mathcal{P} \varphi\right) \leq\left(\sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma\right)\right)=(\operatorname{MaxSAT}(\sim \Gamma @$ $\Phi) \leq$ length Γ)
\langle proof \rangle
lemma (in consistent-classical-logic) dirac-inequality-elim:
fixes $c::$ real
assumes $\forall \mathcal{P} \in$ dirac-measures. $\left(\sum \varphi \leftarrow \Phi . \mathcal{P} \varphi\right)+c \leq\left(\sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma\right)$ shows $(\operatorname{MaxSAT}(\sim \Gamma @ \Phi)+c \leq$ length $\Gamma)$
$\langle p r o o f\rangle$

```
lemma (in classical-logic) dirac-inequality-intro:
    fixes c :: real
    assumes MaxSAT (~ \Gamma@ @) +c\leqlength \Gamma
    shows }\forall\mathcal{P}\in\mathrm{ dirac-measures. ( }\sum\varphi\leftarrow\Phi.\mathcal{P}\varphi)+c\leq(\sum\gamma\leftarrow\Gamma.\mathcal{P}\gamma
<proof\rangle
```

lemma (in consistent-classical-logic) dirac-inequality-equiv:
$\left(\forall \delta \in\right.$ dirac-measures. $\left.\left(\sum \varphi \leftarrow \Phi . \delta \varphi\right)+c \leq\left(\sum \gamma \leftarrow \Gamma . \delta \gamma\right)\right)$
$=($ MaxSAT $(\sim \Gamma @ \Phi)+(c::$ real $) \leq$ length $\Gamma)$
$\langle p r o o f\rangle$
theorem (in consistent-classical-logic) probability-inequality-equiv:
$\left(\forall \mathcal{P} \in\right.$ probabilities. $\left.\left(\sum \varphi \leftarrow \Phi . \mathcal{P} \varphi\right)+c \leq\left(\sum \gamma \leftarrow \Gamma . \mathcal{P} \gamma\right)\right)$ $=($ MaxSAT $(\sim \Gamma @ \Phi)+(c::$ real $) \leq$ length $\Gamma)$
$\langle p r o o f\rangle$
no-notation first-component (\mathfrak{A})
no-notation second-component (\mathfrak{B})
no-notation merge-witness (\mathfrak{J})
no-notation X-witness (\mathfrak{X})
no-notation X-component (\mathfrak{X}_{\bullet})
no-notation Y-witness (\mathfrak{Y})
no-notation Y-component (\mathfrak{Y} •)
no-notation submerge-witness (E)
no-notation recover-witness- A (\mathfrak{P})
no-notation recover-complement- $A\left(\mathfrak{P}^{C}\right)$
no-notation recover-witness- B (\mathfrak{Q})
no-notation relative-maximals (\mathcal{M})
no-notation relative-MaxSAT (| - |- [45])
no-notation complement-relative-MaxSAT (|| - ||- [45])
no-notation MaxSAT-optimal-pre-witness (\mathfrak{V})
no-notation MaxSAT-optimal-witness (W)
no-notation disjunction-MaxSAT-optimal-witness (\mathfrak{W}_{\sqcup})
no-notation implication-MaxSAT-optimal-witness $\left(\mathfrak{W}_{\rightarrow}\right)$
no-notation MaxSAT-witness (\mathfrak{U})
notation FuncSet.funcset (infixr \rightarrow 60)
end

Bibliography

[1] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NPcomplete graph problems. Theoretical Computer Science, 1(3):237-267, Feb. 1976.

