A Sound and Complete Calculus for Probability
Inequalities

Matthew Doty

April 6, 2024

Abstract

We give a sound an complete multiple-conclusion calculus $ + for finitely
additive probability inequalities. In particular, we show

~T$ - ~® = VP € probabilities. » ¢« &. Pp < » v+« L. Py

..where ~ T" is the negation of all of the formulae in I' (and similarly for
~ ®). We prove this by using an abstract form of MaxSAT. We also show

MazSAT(~T Q ®)+c < lengthT' = VP € probabilities. <Z ¢+ . qu) +c < Z’y +—T. Py

Finally, we establish a collapse theorem, which asserts that (> ¢ < ®. Po)+
¢ <> v < I'. Py holds for all probabilities P if and only if (> ¢ « ®. d¢)+
¢ <> 7 <« I'. 07 holds for all binary-valued probabilities ¢.

Contents

1 Introduction

2 Measure Deduction and Counting Deduction

2.1 Definition of Measure Deduction 4
2.2 Definition of the Stronger Theory Relation. 5
2.3 The Stronger Theory Relation is a Preorder 6
2.4 The Stronger Theory Relation is a Subrelation of of Measure

Deduction 10
2.5 Measure Deduction is a Preorder 20
2.6 Measure Deduction Cancellation Rules 86
2.7 Measure Deduction Substitution Rules 93
2.8 Measure Deduction Sum Rules 94
2.9 Measure Deduction Exchange Rule 95
2.10 Definition of Counting Deduction 96
2.11 Converting Back and Forth from Counting Deduction to Mea-

sure Deduction oL 96
2.12 Measure Deduction Soundess 99
MaxSAT 106
3.1 Definition of Relative Maximal Clause Collections 106
3.2 Definition of MaxSAT 111
3.3 Reducing Counting Deduction to MaxSAT 113
Inequality Completeness For Probability Logic 156
4.1 Limited Counting Deduction Completeness 156
4.2 Measure Deduction Completeness 159
4.3 Counting Deduction Completeness 161
4.4 Collapse Theorem For Probability Logic 162
4.5 MaxSAT Completeness For Probability Logic 167

Chapter 1

Introduction

theory Probability-Inequality-Completeness
imports
Suppes- Theorem. Probability- Logic
begin

no-notation FuncSet.funcset (infixr — 60)

We introduce a novel logical calculus and prove completeness for probability
inequalities. This is a vast generalization of Suppes’ Theorem which lays the
foundation for this theory.

We provide two new logical judgements: measure deduction ($) and count-
ing deduction (#t). Both judgements capture a notion of measure or quan-
tity. In both cases premises must be partially or completely consumed in
sense to prove multiple conclusions. That is to say, a portion of the premises
must be used to prove each conclusion which cannot be reused. Counting
deduction counts the number of times a particular conclusion can be proved
(as the name implies), while measure deduction includes multiple, different
conclusions which must be proven via the premises.

We also introduce an abstract notion of MaxSAT, which is the maximal
number of clauses in a list of clauses that can be simultaneously satisfied.

We show the following are equivalent:

o ~T -~
o (~T @ @) #+ (length ®) L
o MazSAT (~T @ ®) < length T’

o V § € dirac-measures. (>, p®. 5 @) < O 4«T.d7)

V P € probabilities. (> p+®. P) < (D v«TI. P~)

In the special case of MaxSAT, we show the following are equivalent:
o MazSAT (~T @Q @) + ¢ < length T’

e V § € dirac-measures. (>, p®. 5 @) + ¢ < O v«T.d7)

o YV P € probabilities. (> p+P. P ¢) + ¢ < O y«T.P~)

Chapter 2

Measure Deduction and
Counting Deduction

2.1 Definition of Measure Deduction

To start, we introduce a common combinator for modifying functions that
take two arguments.
definition uncurry : (la = 'b = 'c) = 'a x b= "¢

where uncurry-def [simp]: uncurry f = (A (z, y). fz y)

Our new logical calculus is a recursively defined relation ($+) using list
deduction (:F).
We call our new logical relation measure deduction:

primrec (in classical-logic)
measure-deduction :: 'a list = 'a list = bool (infix $+ 60)

where
T $- [] = True
| T 8- (p # @) =

(3 W. mset (map snd ¥) CH# mset T
A map (uncurry (U)) ¥+ ¢
A map (uncurry (—)) ¥ @QI' © (map snd V) $- @)

~—

Let us briefly analyze what the above definition is saying.

From the above we must find a special list-of-pairs ¥, which we refer to as
a witness, in order to establish ' $+ ¢ # .

We may motivate measure deduction as follows. In the simplest case we
know P ¢ <P ¢ + Nifandonlyif P (x U)+ P (~xUp) <Py
+ X, or equivalently P (x U)+ P (x = ¢) <P + X. So it suffices
toprove P (x U) <Pypand P (x = ¢) < X. Here [(x,p)] is like
the witness in our recursive definition, which reflects the 3 W. ... formula
is our definition. The fact that measure deduction reflects proving theorems

in the theory of inequalities of probability logic is the elementary intuition
behind the soundness theorem we will ultimately prove in §2.12.

A key difference from the simple motivation above is that, as in the case of
Suppes’ Theorem where we prove ~ I' :- ~ ¢ if and only if P ¢ < (D 7«
< I" . P ~) for all P, soundness in this context means ~ I" § ~ & implies

VP O v«T. Py)> O psD. P o).

Another way of thinking about measure deduction is to think of I' and X
as bags of balls of soft clay and I' $+ ¥ meaning that we have shown I is
heavier than 3 (ignoring, for the moment, that ($) is not totally ordered).
We have a scale (:F) that lets us weigh several things on the left and one
thing on the right at a time. We go through each clay ball ¢ in ¥ one at
a time without replacement, putting ¢ on the right of the scale. Then, we
take a bunch of clay balls from I', cut them up as necessary (that is the
LI v trick using the witness W), and show they are heavier using our scale.
We take the parts v» — v that we didn’t use and put them back in our bag
I'. We will be able to reuse them later. If we can do this trick for every
element o in X successively using combinations of split leftovers in I', then
we can show I is heavier than ¥ (i.e., I $F X).

2.2 Definition of the Stronger Theory Relation

We next turn to looking at a subrelation of ($+), which we call the stronger
theory relation (=<). Here we construe a theory as a list of propositions. We
say theory I is stronger than X where, for each element ¢ in X, we can take
an element ~v of I' without replacement such that - v — o.

To motivate this notion, let’s reuse the metaphor that I' and ¥ are bags of
balls of clay, and we need to show I is heavier without simply weighing the
two bags. A sufficient (but incomplete) approach is to take each ball of clay
o in ¥ and find another ball of clay v in I' (without replacement) that is
heavier. This simple approach avoids the complexity of iteratively cutting
up balls of clay.
definition (in implication-logic)
stronger-theory-relation :: 'a list = 'a list = bool (infix < 100)
where
2T =
(3 . map snd & = X%
A mset (map fst ®) CH# mset T’
A (Y (y,0) € set . F v — 0))

abbreviation (in implication-logic)
stronger-theory-relation-op :: 'a list = 'a list = bool (infix = 100)
where
r=-=x=2=<T

2.3 The Stronger Theory Relation is a Preorder

Next, we show that (<) is a preorder by establishing reflexivity and transi-
tivity.

We first prove the following lemma with respect to multisets and stronger
theories.

lemma (in implication-logic) msub-stronger-theory-intro:
assumes mset ¥ C#H mset T’
shows ¥ <X T
proof —
let ?AY = map (A z. (z,2)) &
have map snd ?AY = X
by (induct ¥, simp, simp)
moreover have map fst AY = X
by (induct ¥, simp, simp)
hence mset (map fst 7AY) C# mset T
using assms by simp
moreover have V (y,0) € set ?AX. v = o
by (induct ¥, simp, simp,
metis list-implication.simps(1) list-implication-aziom-k)
ultimately show ?thesis using stronger-theory-relation-def by (simp, blast)
qed

The reflexive property immediately follows:

lemma (in implication-logic) stronger-theory-reflexive [simp]: T' < T
using msub-stronger-theory-intro by auto

lemma (in implication-logic) weakest-theory [simp]: [| X T
using msub-stronger-theory-intro by auto

lemma (in implication-logic) stronger-theory-empty-list-intro [simp]:
assumes I' < ||
shows I' = []
using assms stronger-theory-relation-def by simp

Next, we turn to proving transitivity. We first prove two permutation the-
orems.

lemma (in implication-logic) stronger-theory-right-permutation:
assumes [' = A
and X <X T
shows ¥ < A
proof —
from assms(1) have mset I' = mset A
by simp
thus ?thesis
using assms(2) stronger-theory-relation-def
by fastforce

qed

lemma (in implication-logic) stronger-theory-left-permutation:
assumes ¥ = A
and ¥ < T
shows A <X T
proof —
haveV Y. Y= A —- Y <T — AT
proof (induct A)
case Nil
then show Zcase by simp
next
case (Cons § A)
{
fix X T
assume ¥ = (§ # A) X <T
from this obtain ® where &:
map snd ® = 3%
mset (map fst ®) CH# mset T
YV (7,0) € set .y — 6
using stronger-theory-relation-def by fastforce
with <X = (0 # A)» have 6 €# mset (map snd D)
by fastforce
from this obtain v where 7: (v, §) €# mset ®
by (induct ®, fastforce+)
let @y = removel (v, §) @
let 72Xy = map snd ?2®g
from v ®(2) have mset (map fst ?®g) CH# mset (removel v T')
by (metis ex-mset
list-subtract-monotonic
list-subtract-mset-homomorphism
mset-removel
removel-pairs-list-projections-fst)
moreover have mset ?®q C# mset ® by simp
with ®(3) have V (v,d) € set ?®y. - v — 0 by fastforce
ultimately have 72X, < removel v I'
unfolding stronger-theory-relation-def by blast
moreover have A = (removel §) using <X = (6 # A)
by (metis perm-remove-perm perm-sym remove-hd)
moreover from v ®(1) have mset 75y = mset (removel 6 X)
using remowvel-pairs-list-projections-snd
by fastforce
hence 7YXy = removel § ¥
by blast
ultimately have A < removel vy T' using Cons
by presburger
from this obtain ¥y where ¥:
map snd Yo = A
mset (map fst Wo) CH mset (removel v T)

YV (7,0) € set Ug. v — &
using stronger-theory-relation-def by fastforce
let 20 = (v, &) # ¥y
have map snd ?U = (§ # A)
by (simp add: ¥y(1))
moreover have mset (map fst ?¥) CH# mset (v # (removel v T'))
using Uy (2) by auto
moreover from v ®(3) Uy(3) have V (v,0) € set ?U. - v — o by auto
ultimately have (§ # A) < (y # (removel v T'))
unfolding stronger-theory-relation-def by metis
moreover from v ®(2) have v €# mset T’
using mset-subset-eqD by fastforce
hence (y # (removel v T')) =T
by auto
ultimately have (§ # A) < T
using stronger-theory-right-permutation by blast
}

then show ?case by blast
qed
with assms show ?thesis by blast
qed

lemma (in implication-logic) stronger-theory-transitive:
assumes X < Aand A XT
shows ¥ < T'
proof —
haveV AT. Y <A — AT — X =<T
proof (induct X)
case Nil
then show ?case using stronger-theory-relation-def by simp
next
case (Cons o)
{
fix AT
assume (0 # X) < AAXT
from this obtain ® where ®:
map snd ® =0 # X
mset (map fst D) CH mset A
YV (0,0) € set ®.F§— o
using stronger-theory-relation-def by (simp, metis)
let 90 = fst (hd @)
from ®(1) have ® # [| by (induct ®, simp+)
hence 25 €# mset (map fst @) by (induct ®, simp+)
with ®(2) have %5 €# mset A by (meson mset-subset-eqD)
hence mset (map fst (removel (hd ®) ®)) CH# mset (removel 20 A)
using «® # [» ®(2)
by (simp,
metis
diff-single-eq-union

hd-in-set
image-mset-add-mset
insert-subset-eq-iff
set-mset-mset)
moreover have removel (hd ®) ® = tl ®
using «® # [
by (induct ®, simp+)
moreover from ®(1) have map snd (I &) = X
by (simp add: map-tl)
moreover from ®(3) have V (d,0) € set ({). F6 — o
by (simp add: «<® # []» list.set-sel(2))
ultimately have ¥ < removel 26 A
using stronger-theory-relation-def by auto
from %5 €# mset A have 20 # (removel 25 A) = A
by fastforce
with (A < T have (25 # (removel 26 A)) < T
using stronger-theory-left-permutation perm-sym by blast
from this obtain ¥ where U:
map snd U = (25 # (removel 25 A))
mset (map fst U) CH# mset T
YV (7,0) € set .-~y — 4§
using stronger-theory-relation-def by (simp, metis)
let 9y = fst (hd V)
from ¥ (1) have ¥ # [| by (induct ¥, simp+)
hence 7y €# mset (map fst ¥) by (induct ¥, simp+)
with ¥(2) have ?y €# mset I by (meson mset-subset-eqD)
hence mset (map fst (removel (hd W) W)) C# mset (removel ?y T)
using U # [» ¥(2)
by (simp,
metis
diff-single-eq-union
hd-in-set
image-mset-add-mset
insert-subset-eq-iff
set-mset-mset)
moreover from «¥ = [have removel (hd ¥) ¥ = ¢l ¥
by (induct U, simp+)
moreover from U(1) have map snd (tl ¥) = (removel 25 A)
by (simp add: map-tl)
moreover from ¥(3) have V (v,0) € set (t{{ ¥). v — §
by (simp add: <V # []» list.set-sel(2))
ultimately have removel 26 A < removel 9y T’
using stronger-theory-relation-def by auto
with 3 < removel 25 Ay Cons.hyps have ¥ < removel %y T’
by blast
from this obtain Qy where €):
map snd Qg = 2
mset (map fst Qo) CH# mset (removel 2y T)
YV (y,0) € set Q. v =0

using stronger-theory-relation-def by (simp, metis)
let 2Q = (%y, o) # Qo
from Qy(1) have map snd 22 = 0 # ¥ by simp
moreover from y(2) have mset (map fst ?2Q) CH# mset (?y # (removel
1))
by simp
moreover from ®(1) ¥(1) have o0 = snd (hd ®) 2 = snd (hd V) by
fastforce+
with ®(8) U(8) «® # [p «¥ # [» hd-in-set have - 26 — o & 9y — 9§
by fastforce+
hence F %y — o using modus-ponens hypothetical-syllogism by blast
with Q(3) have V (y,0) € set 0. F v — o
by auto
ultimately have (o # X) <X (?y # (removel ?y T'))
unfolding stronger-theory-relation-def
by metis
moreover from (%y €# mset I'y have (?y # (removel 7y T')) =T
by force
ultimately have (¢ # ¥) < T
using stronger-theory-right-permutation
by blast
}
then show ?case by blast
qed
thus ?thesis using assms by blast
qed

2.4 The Stronger Theory Relation is a Subrelation
of of Measure Deduction

Next, we show that I' > ¥ implies I' $& . Before doing so we establish
several helpful properties regarding the stronger theory relation (>).

lemma (in implication-logic) stronger-theory-witness:
assumes o € set X
shows ¥ <TI'= (3 y€setI. v — o A (removel o £) = (removel v I))
proof (rule iffT)
assume > < I'
from this obtain ® where :
map snd ® =3
mset (map fst ®) CH# mset T
YV (v,0) €set . by >0
unfolding stronger-theory-relation-def by blast
from assms ®(1) obtain v where 7: (v, o) €# mset ®
by (induct ®, fastforce+)
hence v €# mset (map fst ®) by force
hence v €# mset I' using ¢(2)
by (meson mset-subset-eqD)

10

moreover
let 7y = removel (v, o) ®
let 7229 = map snd ?®
from v ®(2) have mset (map fst ?®q) C# mset (removel v T')
by (metis
ex-mset
list-subtract-monotonic
list-subtract-mset-homomorphism
removel-pairs-list-projections-fst
mset-removel)
moreover have mset 7@y C#H mset ® by simp
with ®(3) have V (v,0) € set ?®y. F v — o by fastforce
ultimately have 7%y < removel v T’
unfolding stronger-theory-relation-def by blast
moreover from v ®(1) have mset Xy = mset (removel o %)
using removel-pairs-list-projections-snd
by fastforce
hence 7YXy = removel o X
by linarith
ultimately have removel o ¥ < removel v T’
using stronger-theory-left-permutation
by blast
moreover from v ®(3) have - v — o by (simp, fast)
moreover from v ®(2) have v €# mset T’
using mset-subset-eqD by fastforce
ultimately show 3 v € set I. F v — o A (removel o ¥) <X (removel v T') by
auto
next
assume 3 v € set I'. v — o A (removel o ¥) < (removel v I)
from this obtain ® v where 7: y € set ' v — o
and ®: map snd ® = (removel o %)
mset (map fst ®) CH# mset (removel v T)
V (y,0) € set . by — 0o
unfolding stronger-theory-relation-def by blast
let & = (v, 0) # @
from ®(7) have map snd ?® = o # (removel o X) by simp
moreover from ®(2) (1) have mset (map fst ?®) CH# mset T
by (simp add: insert-subset-eq-iff)
moreover from ®(3) v(2) have V (y,0) € set ?0. - v — o
by auto
ultimately have (o # (removel ¢ 3)) X T
unfolding stronger-theory-relation-def by metis
moreover from assms have o # (removel 0) = %
by force
ultimately show ¥ <X T
using stronger-theory-left-permutation by blast
qed

lemma (in implication-logic) stronger-theory-cons-witness:

11

(c#X)'=3~ve€setl.Fv—0AX = (removel v T))
proof —

have o €# mset (o0 #) by simp

hence (c #X) XT'= (3 y€ setT.b v —= o A (removel o (o # X)) < (removel
7 T))

by (meson list.set-intros(1) stronger-theory-witness)

thus ?thesis by simp

qed

lemma (in implication-logic) stronger-theory-left-cons:
assumes (o # ¥) <X T
shows ¥ <X T’
proof —
from assms obtain ® where ®:
map snd ® = o # X
mset (map fst ®) CH# mset T
YV (0,0) € set .- 3§ — o
using stronger-theory-relation-def by (simp, metis)
let ?®’ = removel (hd ®) ®
from ®(7) have map snd ?®’' = 3 by (induct ®, simp+)
moreover from ®(2) have mset (map fst ?®') C# mset T
by (metis diff-subset-eg-self
list-subtract.simps(1)
list-subtract.simps(2)
list-subtract-mset-homomorphism
map-monotonic
subset-mset.dual-order.trans)
moreover from ®(3) have V (0,0) € set ?®". - § — o by fastforce
ultimately show ?thesis unfolding stronger-theory-relation-def by blast
qed

lemma (in implication-logic) stronger-theory-right-cons:
assumes > <X I’
shows ¥ < (y # 1)
proof —
from assms obtain ® where O:
map snd & =3
mset (map fst ®) CH# mset T
V(v, o)eset .-~y — o
unfolding stronger-theory-relation-def
by auto
hence mset (map fst ®) CH# mset (v # T)
by (metis Diff-eq-empty-iff-mset
list-subtract.simps(2)
list-subtract-mset-homomorphism
mset-zero-iff removel.simps(1))
with ®(1) ®(3) show ?thesis
unfolding stronger-theory-relation-def
by auto

12

qed

lemma (in implication-logic) stronger-theory-left-right-cons:
assumes vy — o
and ¥ < T
shows (0 # X) 2 (y # I
proof —
from assms(2) obtain ® where ®:
map snd ® =3
mset (map fst ®) CH# mset T
V(y, o)€set ®. v — o
unfolding stronger-theory-relation-def
by auto
let & = (v, 0) # @
from assms(1) ® have
map snd O = o # X
mset (map fst ?@) CH# mset (y # T)
YV (v, o)€set 2. F v — o
by fastforce+
thus ?thesis
unfolding stronger-theory-relation-def
by metis
qed

lemma (in implication-logic) stronger-theory-relation-alt-def:
Y <T = (3. mset (map snd D) = mset X A
mset (map fst ®) CH# mset T A
(V(n, o)€set . F v — o))
proof (induct T arbitrary: X)
case Nil
then show ?case
using stronger-theory-empty-list-intro
stronger-theory-reflexive
by (simp, blast)
next
case (Cons v I
have ¥ <X (v # ') = (3. mset (map snd ®) = mset X A
mset (map fst ®) CH# mset (v # T') A
(V(v,0) € set . F v — 0))
proof (rule iffT)
assume ¥ < (y # 1)
thus 3®. mset (map snd ®) = mset X A
mset (map fst ®) CH# mset (v # T') A
(V (v, o)€set . F v — o)
unfolding stronger-theory-relation-def
by metis
next
assume 3 P. mset (map snd D) = mset X A
mset (map fst ®) CH# mset (v # ') A

13

(V(n, o)€set . F v — o)
from this obtain ® where ®:
mset (map snd ®) = mset X
mset (map fst) CH# mset (y # T)
V(y, 0)€set d. kv = 0o
by metis
show ¥ <X (v # I
proof (cases 3 0. (v, o) € set)
assume 3 0. (v, o) € set ®
from this obtain o where o: (v,) € set ® by auto
let & = removel (v, o) ®
from o have mset (map snd ?®) = mset (removel o)
using ®(1) removel-pairs-list-projections-snd by force+
moreover
from o have mset (map fst ?®) = mset (removel v (map fst D))
using ®(1) removel-pairs-list-projections-fst by force+
with ®(2) have mset (map fst ?®) C# mset T
by (simp add: subset-eq-diff-conv)
moreover from ®(3) have V (v, o)€set ?0. v — o
by fastforce
ultimately have removel ¢ ¥ =< T" using Cons by blast
from this obtain ¥ where U:
map snd ¥ = removel o X
mset (map fst U) CH# mset T’
V (v, 0)€set U. kv — o
unfolding stronger-theory-relation-def
by blast
let %0 = (v,0) # ¥
from ¥ have map snd ?¥ = o # (removel o X)
mset (map fst 2U) CH# mset (v # I)
by simp+
moreover from ®(3) o have - v — o by auto
with U(8) have V (v, o)eset ?U. - v — o by auto
ultimately have (o # (removel 0 X)) = (y # T')
unfolding stronger-theory-relation-def
by metis
moreover
have o € set ¥
by (metis ®(1) o set-mset-mset set-zip-rightD zip-map-fst-snd)
hence ¥ = o # (removel o %)
by auto
hence ¥ =< (0 # (removel o X))
using stronger-theory-reflexive
stronger-theory-right-permutation
by blast
ultimately show ?Zthesis
using stronger-theory-transitive
by blast
next

14

assume Jo. (7, o) € set ®
hence v ¢ set (map fst @) by fastforce
with ®(2) have mset (map fst) CH# mset T’
by (metis diff-single-trivial
in-multiset-in-set
insert-Diff M2
mset-removel
remove-hd
subset-eq-diff-conv)
hence ¥ <X T
using Cons ®(1) ®(3)
by blast
thus ?thesis
using stronger-theory-right-cons
by auto
qed
qed
thus ?case by auto
qed

lemma (in implication-logic) stronger-theory-deduction-monotonic:
assumes > <X T’
and ¥ :F ¢
shows I' :- ¢
using assms
proof (induct ¥ arbitrary: @)
case Nil
then show ?case
by (simp add: list-deduction-weaken)
next
case (Cons o X)
assume (0 # %) 2T (0 # %) :F ¢
hence X -0 — p X <XT
using
list-deduction-theorem
stronger-theory-left-cons
by (blast, metis)
with Cons have I' ;- ¢ — ¢ by blast
moreover
have o € set (o # X) by auto
with «((c # ¥) X Iy obtain v where y: y € set T -y = ¢
using stronger-theory-witness by blast
hence I' i ¢
using
list-deduction-modus-ponens
list-deduction-reflection
list-deduction-weaken
by blast
ultimately have I" :+ ¢

15

using list-deduction-modus-ponens by blast
then show ?case by blast
qed

lemma (in classical-logic) measure-msub-left-monotonic:
assumes mset ¥ CH mset T’
and ¥ $- @
shows I" $- @
using assms
proof (induct ® arbitrary: ¥ T')
case Nil
then show Zcase by simp
next
case (Cons ¢ ®)
from this obtain ¥ where V:
mset (map snd W) CH#H mset X
map (uncurry (U)) ¥ :+ ¢
map (uncurry (—)) ¥ Q@ X & (map snd V) §- @
using measure-deduction.simps(2) by blast
let 2U = map snd ¥
let 20" = map (uncurry (—)) ¥
let 7' = 20’ Q@ (X © 20)
let /=20’ @ (T © 20)
from ¥ have mset ?U C# mset I’
using <mset X C# mset I'y subset-mset.trans by blast
moreover have mset (X © 2U) C# mset (I' © ?20)
by (metis <mset X C# mset Ty list-subtract-monotonic)
hence mset %' C# mset 7/
by simp
with Cons.hyps ¥(3) have I $+ ® by blast
ultimately have T $& (p # @)
using U(2) by fastforce
then show ?case
by simp
qed

lemma (in classical-logic) witness-weaker-theory:
assumes mset (map snd X) C# mset T
shows map (uncurry (U)) ¥ < T
proof —
have V T. mset (map snd ¥) C# mset ' — map (uncurry (U)) ¥ < T
proof (induct X)
case Nil
then show Zcase by simp
next
case (Cons o %)
{
fix T’
assume mset (map snd (o # X)) C# mset T

16

hence mset (map snd X) C# mset (removel (snd o) T')
by (simp add: insert-subset-eq-iff)
with Cons have map (uncurry (U)) ¥ < removel (snd o) I' by blast
moreover have uncurry (L) = (X 0. fst o U snd o) by fastforce
hence uncurry (U) o = fst o U snd o by simp
moreover have - snd o — (fst o U snd o)
unfolding disjunction-def
by (simp add: aziom-k)
ultimately have map (uncurry (U)) (o # X) < (snd o # (removel (snd o)

by (simp add: stronger-theory-left-right-cons)
moreover have mset (snd o # (removel (snd o) T')) = mset T
using «mset (map snd (o # X)) C# mset T
by (simp, meson insert-Diff M mset-subset-eq-insertD)
ultimately have map (uncurry (U)) (o # X) X T
unfolding stronger-theory-relation-alt-def
by simp
}
then show ?case by blast
qed
with assms show ?thesis by simp
qed

lemma (in implication-logic) stronger-theory-combine:
assumes ® < A
and ¥V <X T
shows (? Q) < (A @T)
proof —
haveV . <A — (P QVU¥) < (AQT)
proof (induct A)
case Nil
then show ?case
using assms(2) stronger-theory-empty-list-intro by fastforce
next
case (Cons § A)
{
fix ¢
assume ¢ < (6 # A)
from this obtain ¥ where X:
map snd X = ®
mset (map fst X) CH# mset (§ # A)
YV (0,p0) € set .0 =
unfolding stronger-theory-relation-def
by blast
have (? Q@ ¥) X ((6 # A) @QT)
proof (cases 3 ¢ . (J, @) € set X)
assume 3 ¢ . (0, p) € set &
from this obtain ¢ where ¢: (§, p) € set ¥ by auto
let 72 = removel (9, ¢) &

17

from ¢ (1) have mset (map snd %) = mset (removel ¢ D)
using removel-pairs-list-projections-snd by fastforce
moreover from ¢ have mset (map fst ?5) = mset (removel § (map fst X))
using remowvel-pairs-list-projections-fst by fastforce
hence mset (map fst ?2) C# mset A
using X(2) mset.simps(1) subset-eq-diff-conv by force
moreover from ¥(3) have V (d,9) € set 2. F § — ¢ by auto
ultimately have removel ¢ & < A
unfolding stronger-theory-relation-alt-def by blast
hence (removel ¢ ® @ ¥) < (A QT') using Cons by auto
from this obtain (2 where :
map snd Q = (removel p) Q@ U
mset (map fst Q) CH#H mset (A QT)
V (a,8) € set Q. Fa— 3
unfolding stronger-theory-relation-def
by blast
let 2Q = (6, v) # Q
have map snd %Q = ¢ # removel ¢ & Q ¥
using Q(1) by simp
moreover have mset (map fst 2Q2) C# mset ((0 # A) QT)
using (2) by simp
moreover have - § — ¢
using X(3) ¢ by blast
hence V («,5) € set). = o — [using Q(3) by auto
ultimately have (¢ # removel o ® Q@ ¥) < ((§ # A) QT)
by (metis stronger-theory-relation-def)
moreover have ¢ € set ®
using X(1) ¢ by force
hence (¢ # removel p @) = @
by force
hence (¢ # removel p @ Q ¥) = Q ¥
by (metis append-Cons perm-append2)
ultimately show ?thesis
using stronger-theory-left-permutation by blast
next
assume . (6, ¢) € set
hence § ¢ set (map fst %)
mset A + add-mset 6 (mset [|) = mset (0 # A)
by auto
hence mset (map fst ¥) C# mset A
by (metis (no-types) <mset (map fst ¥) CH# mset (§ # A)»
diff-single-trivial
mset.simps(1)
set-mset-mset
subset-eg-diff-conv)
with ¥(1) ¥(3) have & < A
unfolding stronger-theory-relation-def
by blast
hence (¢ @ ¥) < (A @ T') using Cons by auto

18

then show ?thesis
by (simp add: stronger-theory-right-cons)
qed

}

then show ?case by blast
qed
thus ?thesis using assms by blast

qed

We now turn to proving that (>) is a subrelation of (:F).

lemma (in classical-logic) stronger-theory-to-measure-deduction:
assumes [' > X2
shows I' $- X
proof —
haveVI. X <T' — T $+ X
proof (induct)
case Nil
then show ?case by fastforce
next
case (Cons o X))
{
fix T’
assume (0 # X) < T
from this obtain v where 7: v € set T' v — 0 X =< (removel v T')
using stronger-theory-cons-witness by blast
let ?& = [(v,7)]
from v Cons have (removel v ') $+ ¥ by blast
moreover have mset (removel v T') C# mset (map (uncurry (—)) & QT
© (map snd ?®))
by simp
ultimately have map (uncurry (—)) 2@ Q I' & (map snd 7®) $-
using measure-msub-left-monotonic by blast
moreover have map (uncurry (U)) 9@ - o
by (simp, metis v(2)
Peirces-law
disjunction-def
list-deduction-def
list-deduction-modus-ponens
list-deduction-weaken
list-implication.simps(1)
list-implication.simps(2))
moreover from (1) have mset (map snd ?®) C# mset I by simp
ultimately have I" $F (0 # %)
using measure-deduction.simps(2) by blast
}

then show ?case by blast
qed
thus ?thesis using assms by blast
qed

19

2.5 Measure Deduction is a Preorder

We next show that measure deduction is a preorder.

Reflexivity follows immediately because (=) is a subrelation and is itself
reflexive.

theorem (in classical-logic) measure-reflexive: T' $+ T'
by (simp add: stronger-theory-to-measure-deduction)

Transitivity is complicated. It requires constructing many witnesses and
involves a lot of metatheorems. Below we provide various witness construc-
tions that allow us to establish [I" $+ A; A $F A] =T $- A.

primrec (in implication-logic)
first-component :: ('a x 'a) list = ('a x 'a) list = ('a x 'a) list (A)
where
A=
1AW (6 # A) =
(case find (A . (uncurry (—)) ¥ = snd §) U of
None = AV A
| Some ¢ = ¢ # (A (removel ¢ ¥) A))

primrec (in implication-logic)
second-component :: (‘a x 'a) list = (‘a x 'a) list = ('a x 'a) list (B)
where
B - |
| B (0 # A) =
(case find (A Y. (uncurry (—)) ¥ = snd) ¥ of
None = ‘B V¥ A
| Some ¢ = § # (B (removel p U) A))

lemma (in implication-logic) first-component-second-component-mset-connection:
mset (map (uncurry (—)) (A U A)) = mset (map snd (B ¥ A))
proof —
have V U. mset (map (uncurry (—)) (A ¥ A)) = mset (map snd (B U A))
proof (induct A)
case Nil
then show Zcase by simp
next
case (Cons § A)
{
fix ¥
have mset (map (uncurry (—)) (A ¥ (§ # A))) =
mset (map snd (B ¥ (0 # A)))
proof (cases find (A ¥. (uncurry (—)) ¥ = snd 6) ¥ = None)
case True
then show ?thesis using Cons by simp
next
case Fulse

20

from this obtain ¢ where
find (M\p. uncurry (=) ¢ = snd 0) ¥ = Some 1)
uncurry (—) ¥ = snd §
using find-Some-predicate
by fastforce
then show ?thesis using Cons by simp
qed
}
then show ?case by blast
qged
thus ?thesis by blast
qed

lemma (in implication-logic) second-component-right-empty [simp]:
BA=]
by (induct A, simp+)

lemma (in implication-logic) first-component-msub:
mset (A U A) CH# mset ¥
proof —
have V U. mset (A ¥ A) C# mset ¥
proof(induct A)
case Nil
then show ?case by simp
next
case (Cons § A)
{
fix ¥
have mset (A U (§ # A)) CH# mset ¥
proof (cases find (A V. (uncurry (—)) ¥ = snd §) ¥ = None)
case True
then show ?thesis using Cons by simp
next
case Fulse
from this obtain ¢ where
i find (Mp. uncurry (=) ¢ = snd §) ¥ = Some 1
P € set U
using find-Some-set-membership
by fastforce
have mset (2 (removel ¢ V) A) C# mset (removel ¢ W)
using Cons by metis
thus ?thesis using ¢ by (simp add: insert-subset-eq-iff)
qed
}
then show ?case by blast
qed
thus “thesis by blast
qed

21

lemma (in implication-logic) second-component-msub:
mset (B ¥ A) CH# mset A
proof —
have VU. mset (B ¥ A) C# mset A
proof (induct A)
case Nil
then show Zcase by simp
next
case (Cons § A)
{
fix ¥
have mset (B U (§ # A)) C# mset (6 # A)
using Cons
by (cases find (X . (uncurry (—)) ¥ = snd §) ¥ = None,
stmp,
metis add-mset-remove-trivial
diff-subset-eq-self
subset-mset.order-trans,
auto)

thus ?case by blast
qed
thus ?thesis by blast
qed

lemma (in implication-logic) second-component-snd-projection-msub:
mset (map snd (B U A)) C# mset (map (uncurry (—)))
proof —
have VU. mset (map snd (B ¥ A)) C# mset (map (uncurry (—)) ¥)
proof (induct A)
case Nil
then show ?case by simp
next
case (Cons § A)
{
fix ¥
have mset (map snd (B U (§ # A))) CH# mset (map (uncurry (—)) ¥)
proof (cases find (X ¥. (uncurry (—)) ¥ = snd §) ¥ = None)
case True
then show ?thesis
using Cons by simp
next
case Fulse
from this obtain v where .
find (A . (uncurry (—)) ¥ = snd §) ¥ = Some 9
by auto
hence B U (0 # A) = § # (B (removel Y ¥) A)
using ¢ by fastforce
with Cons have mset (map snd (B ¥ (6 # A))) C#

22

mset ((snd &) # map (uncurry (—)) (removel 1 U))
by (simp, metis mset-map mset-removel)
moreover from ¢ have snd 6 = (uncurry (—)) ¥
using find-Some-predicate by fastforce
ultimately have

mset (map snd (B U (0 # A))) CH#
mset (map (uncurry (—)) (¥ # (removel ¢ V)))
by simp
thus ?thesis
by (metis

first-component-msub
first-component-second-component-mset-connection
map-monotonic)

qed

thus ?case by blast
qed
thus ?thesis by blast
qed

lemma (in implication-logic) second-component-diff-msub:
assumes mset (map snd A) C# mset (map (uncurry (—)) ¥ QT © (map snd
w))
shows mset (map snd (A © (B ¥ A))) C# mset (I' © (map snd V))
proof —
have V W T'. mset (map snd A) C# mset (map (uncurry (—)) ¥ QT & (map
snd ¥)) —
mset (map snd (A & (B ¥ A))) C# mset (I' © (map snd V))
proof (induct A)
case Nil
then show ?case by simp
next
case (Cons § A)
{
fix v T
assume <$: mset (map snd (§ # A)) CH# mset (map (uncurry (—)) QT
© map snd V)
have mset (map snd (6 # A) © B U (6 # A))) C# mset (I © map snd V)
proof (cases find (A Y. (uncurry (—=)) ¥ = snd §) ¥ = None)
case True
hence A: snd § ¢ set (map (uncurry (—)) ¥)
proof (induct ¥)
case Nil
then show Zcase by simp
next
case (Cons ¥)
then show ?case
by (cases uncurry (=) ¥ = snd 0, simp+)
qed

23

moreover have
mset (map snd A)
C# mset (map (uncurry (—)) U QT & map snd V) — {#snd 6#}
using < insert-subset-eq-iff by fastforce
ultimately have
mset (map snd A)
C# mset (map (uncurry (—)) ¥ @ (removel (snd 0) T')
© map snd V)
by (metis (no-types)
mset-removel
ungon-code
list-subtract.simps(2)
list-subtract-removel-cons-perm
removel-append)
hence B: mset (map snd (A © (B ¥ A))) C# mset (removel (snd §) T &
(map snd ¥))
using Cons by blast
have C: snd § €# mset (snd § # map snd A Q
(map (uncurry (—)) ¥ QT © map snd V) © (snd § #
map snd A))
by (meson in-multiset-in-set list.set-intros(1))
have mset (map snd (6 # A))
+ (mset (map (uncurry (—)) ¥ Q@ I' © map snd V)
— mset (map snd (§ # A)))
= mset (map (uncurry (—)) ¥ QT & map snd ¥)
using < subset-mset.add-diff-inverse by blast
then have snd § €# mset (map (uncurry (—)) ¥) + (mset T' — mset (map
snd ¥))
using C by simp
with A have snd § € set I’
by (metis (no-types) diff-subset-eq-self
in-multiset-in-set
subset-mset.add-diff-inverse
union-iff)
have D: B VA =BT (§ # A)
using «<find (M. uncurry (=) ¢ = snd §) ¥ = None»
by simp
obtain diff :: ’a list = ’'a list = 'a list where
Va0 z1. (3v2. 21 Q v2 = z0) = (z1 Q diff z0 x1 = z0)
by moura
then have E:
mset (map snd (B U (§ # A))
Q diff (map (uncurry (—)) V) (map snd (B ¥ (§ # A))))
= mset (map (uncurry (—)) V)
by (meson second-component-snd-projection-msub mset-le-perm-append)
have F:Va m ma. (add-mset (a::'a) m C# ma) = (a €# ma A m CH# ma
— {#a#})
using insert-subset-eq-iff by blast
then have snd 6 €# mset (map snd (B U (§ # A))

24

Q diff (map (uncurry (—)) ¥) (map snd (B ¥ (§ #
A)
+ mset (I' © map snd ¥)
using E < by force
then have snd 6 €# mset (I' © map snd V)
using A F by (metis (no-types) in-multiset-in-set union-iff)
then have G: add-mset (snd §) (mset (map snd (A © B U A))) CH# mset
(T' © map snd V)
using B F by force
have H: V ps psa f. = mset (ps::('a x 'a) list) CH# mset psa V
mset ((map [psa::'a list) © map f ps) = mset (map f (psa
& ps))
using map-list-subtract-mset-equivalence by blast
have snd 0 ¢# mset (map snd (B ¥ (0 # A)))
+ mset (diff (map (uncurry (=)) ¥) (map snd (B T (0 # A))))
using A F by auto
then have add-mset (snd 0) (mset (map snd (A © B ¥ A)))
= mset (map snd (0 # A) © map snd (B U (§ # A)))
using D H second-component-msub by auto
then show ?thesis
using G H by (metis (no-types) second-component-msub)
next
case Fulse
from this obtain ¢ where v¢: find (M. uncurry (—) ¥ = snd 6) ¥ = Some

by auto
let 2U’ = removel ¢ ¥
let "' = removel (snd ¢) T
have snd 6 = uncurry (=) ¥
P € set U
mset (0 # A) © BV (0 # A)) =
mset (A & B 2V’ A)
using ¢ find-Some-predicate find-Some-set-membership
by fastforce+
moreover
have mset (I' © map snd ¥) = mset ("' © map snd ?¥’)
by (simp, metis <) € set ¥» image-mset-add-mset in-multiset-in-set
insert-Diff M)
moreover
obtain search :: ('a x ‘a) list = ('a x 'a = bool) = 'a x 'a where
Vas P. (3z. x € set xs A P x) = (search s P € set xs A P (search zs P))
by moura
then have Vp ps. (find p ps # None V (Vpa. pa ¢ set ps V — p pa))
A (find p ps = None V search ps p € set ps A p (search ps p))
by (metis (full-types) find-None-iff)
then have (find (Ap. uncurry (=) p = snd §) ¥ # None
V (Vp. p ¢ set OV uncurry (—) p # snd 0))
A (find (Ap. uncurry (=) p = snd §) ¥ = None
V search U (Ap. uncurry (—) p = snd §) € set U

25

A uncurry (—) (search U (Ap. uncurry (—) p = snd 0)) = snd 0)
by blast
hence snd § € set (map (uncurry (—)))
by (metis (no-types) False image-eql image-set)
moreover
have A: add-mset (uncurry (—) v) (image-mset snd (mset A))
= image-mset snd (add-mset § (mset A))
by (simp add: <snd § = uncurry (—))
have B: {#snd 0#} C# image-mset (uncurry (—)) (mset ¥)
using «snd § € set (map (uncurry (—)) ¥)» by force
have image-mset (uncurry (—)) (mset U) — {#snd o#}
= image-mset (uncurry (—)) (mset (removel ¢ V))
by (simp add: < € set Uy <snd § = uncurry (—) > image-mset-Diff)
then have mset (map snd (A © B (removel ¢ ¥) A))
C# mset (removel (snd ¥) T' © map snd (removel ¢ U))
by (metis (no-types)
A B < Cons.hyps
calculation(1)
calculation(4)
insert-subset-eq-iff
mset.simps(2)
mset-map
subset-mset.diff-add-assoc2
union-code)
ultimately show ?thesis by fastforce
qed
}
then show ?case by blast
qed
thus ?thesis using assms by auto
qed

primrec (in classical-logic)
merge-witness :: (‘a x 'a) list = ('a x 'a) list = ('a x 'a) list (J)
where
Ju=v
[IV (6 #A) =
(case find (A . (uncurry (—)) ¥ = snd §) ¥ of
None=d #J VU A
| Some ¢ = (fst 6 N fst 1, snd) # (J (removel ¢ V) A))

lemma (in classical-logic) merge-witness-right-empty [simp]:
JlAa=A
by (induct A, simp+)

lemma (in classical-logic) second-component-merge-witness-snd-projection:
mset (map snd U Q map snd (A © (B U A))) = mset (map snd (J T A))
proof —

have V U. mset (map snd ¥ @ map snd (A & (B ¥ A))) = mset (map snd (J

26

v A))
proof (induct A)
case Nil
then show ?case by simp
next
case (Cons § A)
{
fix ¥
have mset (map snd ¥ Q map snd (0 # A) © B U (§ # A))) =
mset (map snd (J U (§ # A)))
proof (cases find (X . (uncurry (—)) ¥ = snd §) ¥ = None)
case True
then show ?thesis
using Cons
by (simp,
metis (no-types, lifting)
ab-semigroup-add-class.add-ac(1)
add-mset-add-single
image-mset-single
image-mset-union
second-component-msub
subset-mset.add-diff-assoc2)
next
case Fulse
from this obtain ¢ where ¢: find (M. uncurry (=) ¢ = snd §) ¥ = Some

by auto
moreover have ¢ € set ¥
by (meson ¢ find-Some-set-membership)
moreover
let U’ = removel ¥ ¥
from Cons have
mset (map snd 20’ Q map snd (A © B 20’ A)) =
mset (map snd (J ¥’ A))
by blast
ultimately show ?thesis
by (simp,
metis (no-types, lifting)
add-mset-remove-trivial-eq
image-mset-add-mset
in-multiset-in-set
union-mset-add-mset-left)
qed
}
then show ?case by blast
qed
thus “thesis by blast
qed

27

lemma (in classical-logic) second-component-merge-witness-stronger-theory:
(map (uncurry (—)) A Q map (uncurry (—)) ¥ & map snd (B ¥ A)) <
map (uncurry (—)) (J ¥ A)
proof —
have V U. (map (uncurry (—)) A @
map (uncurry (—)) ¥ & map snd (B ¥ A)) <
map (uncurry (—)) (J ¥ A)
proof (induct A)
case Nil
then show ?case
by simp
next
case (Cons § A)
{
fix ¥
have + (uncurry (—)) 6 — (uncurry (—)) 0
using axiom-k modus-ponens implication-absorption by blast
have
(map (uncurry (—)) (6 # A) @
map (uncurry (—)) ¥ © map snd (B ¥ (§ # A))) =
map (uncurry (—)) (J ¥ (0 # A))
proof (cases find (X . (uncurry (—)) ¥ = snd §) ¥ = None)
case True
thus ?thesis
using Cons
= (uncurry (=) 0 = (uncurry (=)) &
by (simp, metis stronger-theory-left-right-cons)
next
case Fulse
from this obtain ¢ where v¢: find (M. uncurry (—) ¥ = snd 6) ¥ = Some

by auto
from ¢ have snd 6 = uncurry (=) @
using find-Some-predicate by fastforce
from ¢ <snd § = uncurry (—) ¢» have
mset (map (uncurry (—)) (6 # A) @
map (uncurry (—)) ¥ © map snd (B U (§ # A))) =
mset (map (uncurry (—)) (6 # A) @
map (uncurry (—)) (removel ¢ V) &
map snd (B (removel ¢ ¥) A))
by (simp add: find-Some-set-membership image-mset-Diff)
hence
(map (uncurry (—)) (6 # A) @
map (uncurry (—)) ¥ & map snd (B U (§ # A))) =
(map (uncurry (=)) (0 # A) @
map (uncurry (—)) (removel ¥ ¥) © map snd (B (removel 3p) A))
by (simp add: msub-stronger-theory-intro)
with Cons <+ (uncurry (—)) 6 — (uncurry (—)) 6> have
(map (uncurry (—)) (6 # A) @

28

map (uncurry (—)) ¥ & map snd (B U (§ # A)))
= ((uncurry (=)) & # map (uncurry (—)) (J (removel ¥ ¥) A))
using stronger-theory-left-right-cons
stronger-theory-transitive
by fastforce

moreover
let 2o = fst §
let 26 = fst
let 2y = snd Y

have uncurry (—) = (A 4. fst § — snd §) by fastforce
with ¢ have (uncurry (—)) § = %o — 26 — 2y
using find-Some-predicate by fastforce
hence - ((2a M 28) — ?v) — (uncurry (=)) o
using biconditional-def curry-uncurry by auto
with ¢ have
((uncurry (—)) 6 # map (uncurry (—)) (J (removel ¥ ¥) A)) <
map (uncurry (=) (U (6 # A))
using stronger-theory-left-right-cons by auto
ultimately show ?thesis
using stronger-theory-transitive
by blast
qed
}
then show ?case by simp
qed
thus ?thesis by simp
qed

lemma (in classical-logic) merge-witness-msub-intro:
assumes mset (map snd V) C# mset T
and mset (map snd A) C# mset (map (uncurry (—)) ¥ QT © (map snd
w))
shows mset (map snd (J ¥ A)) C# mset T
proof —
have VU I'. mset (map snd V) C# mset I' —
mset (map snd A) CH# mset (map (uncurry (—)) ¥ QT 6 (map snd
7)) —
mset (map snd (J VU A)) C# mset T
proof (induct A)
case Nil
then show ?case by simp
next
case (Cons § A)
{
fix U :: ("a x ‘a) list
fix I :: ‘a list
assume : mset (map snd V) C# mset T
mset (map snd (§ # A)) CH# mset (map (uncurry (—)) QT &
(map snd ¥))

29

have mset (map snd (J ¥ (6 # A))) C# mset T’
proof (cases find (A . (uncurry (—)) ¥ = snd §) ¥ = None)
case True
hence snd § ¢ set (map (uncurry (—)))
proof (induct U)
case Nil
then show Zcase by simp
next
case (Cons ¢ ¥)
hence uncurry (=) ¥ # snd 6 by fastforce
with Cons show ?case by fastforce
qged
with {(2) have snd § €# mset (I' © map snd V)
using mset-subset-eq-insertD by fastforce
with (1) have mset (map snd V) C# mset (removel (snd §) T)
by (metis list-subtract-mset-homomorphism
mset-removel
single-subset-iff
subset-mset.add-diff-assoc
subset-mset.add-diff-inverse
subset-mset.le-iff-add)
moreover
have add-mset (snd 6) (mset (I' © map snd V) — {#snd 6#}) = mset (T
© map snd V)
by (meson «snd & €# mset (I' © map snd ¥)» insert-DiffM)
then have image-mset snd (mset A) — (mset I' — add-mset (snd §)
(image-mset snd (mset ¥)))
CH# {#z — y. (7, y) €E# mset V#}
using {(2) by (simp, metis add-mset-diff-bothsides
list-subtract-mset-homomorphism
mset-map subset-eq-diff-conv)
hence mset (map snd A)
C# mset (map (uncurry (—)) ¥ Q@ (removel (snd §) T') © (map snd ¥))
using subset-eg-diff-conv by (simp, blast)
ultimately have mset (map snd (J U A)) C# mset (removel (snd 0) T')
using Cons by blast
hence mset (map snd (§ # (J ¥ A))) C# mset T
by (simp, metis <snd 6 €# mset (I' © map snd V)»
cancel-ab-semigroup-add-class. diff-right-commute
diff-single-trivial
insert-subset-eq-iff
list-subtract-mset-homomorphism
multi-drop-mem-not-eq)
with <find (A ¥. (uncurry (=)) ¥ = snd §) ¥ = None»
show ?thesis
by simp
next
case Fulse
from this obtain ¢ where 1:

30

find (M. uncurry (=) ¢ = snd 0) ¥ = Some

by fastforce
let 2y = fst
let 2y = snd Y
have uncurry (=) = (A ¢. fst ¢ — snd)

by fastforce
moreover
from this have uncurry (—) ¥ = ?x — ?y by fastforce
with ¢ have A: (?x, ?y) € set ¥

and B: snd § = 9x — 7y

using find-Some-predicate

by (simp add: find-Some-set-membership, fastforce)
let 2U' = removel (?x, ?y) ¥
from B <{(2) have

mset (map snd A) C# mset (map (uncurry (—)) ¥ QT S map snd ¥)

—{# x - v #}

by (simp add: insert-subset-eq-iff)
moreover
have mset (map (uncurry (—)) ¥)

= add-mset (case (fst ¥, snd ¥) of (z, za) = = — za)
(image-mset (uncurry (—)) (mset (removel (fst ¢, snd) ¥)))
by (metis (no-types)
A

image-mset-add-mset
in-multiset-in-set
insert-Diff M
mset-map
mset-removel
uncurry-def)
ultimately have
mset (map snd A) C# mset (map (uncurry (—)) 2¥' QT © map snd ¥)
using
add-diff-cancel-left’
add-diff-cancel-right
diff-diff-add-mset
diff-subset-eq-self
mset-append
subset-eq-diff-conv
subset-mset.diff-add
by auto
moreover from A B {
have mset (I' © map snd V) = mset((removel %y T') © (removel 2y (map
snd ¥)))
using
image-eql
prod.sel(2)
set-map
by force
with A have

31

mset (I' © map snd V) = mset((removel %y ') & (map snd 2T"))
by (metis
removel-pairs-list-projections-snd
in-multiset-in-set
list-subtract-mset-homomorphism
mset-removel)
ultimately have
mset (map snd A) CH# mset (map (uncurry (—)) 20’
Q (removel ?y T)
© map snd ?V")
by simp
hence mset (map snd (J 2’ A)) C# mset (removel %y T')
using Cons {(1) A
by (metis (no-types, lifting)
image-mset-add-mset
in-multiset-in-set
insert-Diff M
insert-subset-eq-iff
mset-map mset-removel
prod.collapse)
with (1) A have mset (map snd (J 20’ A)) + {# 7y #} C# mset T
by (metis add-mset-add-single
image-eql
insert-subset-eq-iff
mset-removel
mset-subset-eqD
set-map
set-mset-mset
snd-conv)
hence mset (map snd ((fst 6 M ?x, ?y) # (J 2V’ A))) C# mset T
by simp
moreover from i have
JU(6#A)=(fst 6N 2x, #y) # (J 2V A)
by simp
ultimately show ?thesis by simp
qed
}
thus ?case by blast
qed
with assms show ?thesis by blast
qed

lemma (in classical-logic) right-merge-witness-stronger-theory:
map (uncurry (U)) A < map (uncurry (1)) (J ¥ A)
proof —
have V U. map (uncurry (L)) A < map (uncurry (U)) (J T A)
proof (induct A)
case Nil
then show ?case by simp

32

next
case (Cons § A)
{
fix ¥
have map (uncurry (1)) (0 # A) < map (uncurry (1)) (J ¥ (6 # A))
proof (cases find (X Y. (uncurry (—)) ¥ = snd §) ¥ = None)
case True
hence JU 0 #A)=0#J VA
by simp
moreover have F (uncurry (U)) 6 — (uncurry (U)) 6
by (metis aziom-k axiom-s modus-ponens)
ultimately show ?thesis using Cons
by (simp add: stronger-theory-left-right-cons)
next
case Fulse
from this obtain ¢ where :
find (M. uncurry (=) ¢ = snd 0) ¥ = Some
by fastforce

let 2y = fst ¢
let 2y = snd Y
let u = fst §

have uncurry (—) = (A 9. fst v — snd)
uncurry (W) = (X J. fst 6 U snd 9)
by fastforce+
hence uncurry (U) § = 2u U (2 — %)
using ¢ find-Some-predicate
by fastforce
moreover

{
fix p x v
havefl— (px)Uy) = (U (x =)
proof —

have V. DM =prop (((1) 100D U (7)) = () U (00 = (1))
by fastforce

hence F ((((n) 1 () U (3) = () U ((0) = (1)) D
using propositional-semantics by blast
thus ?thesis
by simp
qed
}
ultimately show ?thesis
using Cons i stronger-theory-left-right-cons
by simp
qed
}
thus ?case by blast
qed
thus ?thesis by blast
qed

33

lemma (in classical-logic) left-merge-witness-stronger-theory:
map (uncurry (U)) ¥ < map (uncurry (U)) (J T A)
proof —
have V U. map (uncurry (1)) ¥ < map (uncurry (L)) (J T A)
proof (induct A)
case Nil
then show ?case
by simp
next
case (Cons § A)
{
fix ¥
have map (uncurry (1)) ¥ < map (uncurry (1)) (J ¥ (§ # A))
proof (cases find (A ¢. (uncurry (—)) ¥ = snd 6) ¥ = None)
case True
then show ?thesis
using Cons stronger-theory-right-cons
by auto
next
case Fulse
from this obtain ¢ where :
find (M. uncurry (=) ¢ = snd 0) ¥ = Some 1)
by fastforce

let 2y = fst ¢
let %y = snd Y
let 2u = fst ¢

have uncurry (—) = (A 9. fst v — snd)
uncurry (U) = (X J. fst 6 U snd 9)

by fastforce+

hence
uncurry (L) 6 = 2u U (2 — %)
uncurry (L) ¥ = ?2x U %y
using ¢ find-Some-predicate
by fastforce+

moreover

{
fix pux v
have = ((u M x) Uy) = (x U7)
proof —

have V0. DM =pr0p (((1) 1 (0)) U (7)) = (00 U AN)
by fastforce

hence = ((1) 1 () U (1) = (0 U ()))

using propositional-semantics by blast
thus ?thesis
by simp
qed

ultimately have

34

map (uncurry (U)) (¢ # (removel ¢ ¥)) <
map (uncurry (U)) (J U (0 # A))
using Cons v stronger-theory-left-right-cons
by simp
moreover from ¢ have i € set ¥
by (simp add: find-Some-set-membership)
hence mset (map (uncurry (U)) (¥ # (removel ¢ U))) =
mset (map (uncurry (U)))
by (metis insert-Diff M
mset.simps(2)
mset-map
mset-removel
set-mset-mset)
hence map (uncurry (U)) ¥ < map (uncurry (UJ)) (¥ # (removel b ¥))
by (simp add: msub-stronger-theory-intro)
ultimately show ?thesis
using stronger-theory-transitive by blast
qed
}
then show ?case by blast
qed
thus ?thesis by blast
qed

lemma (in classical-logic) measure-empty-deduction:
[® = (V ¢ € set D. - o)
by (induct ®, simp, rule iffI, fastforce+)

lemma (in classical-logic) measure-stronger-theory-left-monotonic:
assumes > < T’
and ¥ $- @
shows I $+ &
using assms
proof (induct ® arbitrary: X T)
case Nil
then show ?case by simp
next
case (Cons ¢)
from this obtain ¥ A where
U: mset (map snd V) CH# mset ¥
map (uncurry (U)) ¥ :+ ¢
map (uncurry (—)) ¥ Q@ X © (map snd ¥) $- @
and
A: map snd A =X
mset (map fst A) C# mset T
V (y,0) €set AFy — o
unfolding stronger-theory-relation-def
by fastforce
from «mset (map snd ¥) C# mset 3»

35

<map snd A = X
obtain 2 where 2:
map ()‘ (/(/)7 g, ')' (% 0)) Q=yv
mset (map (A (-, o, 7). (7, 0)) Q) C# mset A
using triple-list-exists by blast
let 96 = map ()\ (1/}7) ’Y) (1/’7 ’Y)) Q
have map snd 20 = map fst (map (A (-, o, 7). (v, 7)) Q)
by auto
hence mset (map snd 7©) C# mset I’
using Q(2) A(2) map-monotonic subset-mset.order-trans
by metis
moreover have map (uncurry (L)) ¥ < map (uncurry (L)) 70
proof —
let 20 = map (A (¢, o, 7). (Y U, ¢ Uog)) Q
have map snd ?® = map (uncurry (U)) ¥
using (1) by fastforce
moreover have map fst & = map (uncurry (U)) 20
by fastforce
hence mset (map fst ?®) CH# mset (map (uncurry (1)) 70)
by (metis subset-mset.dual-order.refl)
moreover
have mset (map (A(¢, o, -). (¢, o)) Q) CH# mset U
using Q(1) by simp
hence V (¢,x) € set 2@. - ¢ — x using (2)
proof (induct Q)
case Nil
then show ?case by simp
next
case (Cons w Q)
let 26 = map (A (6, 7, 7). (& Uy, & U a)) (w #)
let 20’ = map (A (¢, o, 7). (W Uy, U o)) Q
have mset (map (A(¢, o, -). (¥, o)) Q) CH# mset U
mset (map (A(-, 0, 7). (7, 0)) Q) CH# mset A
using Cons.prems(1) Cons.prems(2) subset-mset.dual-order.trans by fast-
force+
with Cons have V (p,x) € set 20’. F ¢ — x by fastforce
moreover
let % = (/\ (7/17 T _)' 11[}) w
let %0 = (A (-, 0,-). 0) w
let 7y = (A (- 7). 7w
have (A(-, 0, 7). (7, 0)) = A w. (A (- - 7). 7) w,(A (-, 7, -). 0) w)) by auto
hence (A(-, 0, 7). (v, 0)) w = (?y, %0) by metis
hence - 7y — %
using Cons.prems(2) mset-subset-eqD A(3)
by fastforce
hence - (%) U %y) — (% U %0)
unfolding disjunction-def
using modus-ponens hypothetical-syllogism
by blast

36

moreover have

(A, o, 7). (’t/f Uy, ¢ Uo)) =

(A w. (((A (y) 9) W) WA (5 = 7). 7) w),
(A (@ -) 0) @) U (A (- 0,). 0) w)

by auto

hence (A(¢, o, 7). (Y U, Y Uo)) w= (AU &), (% U %)) by metis
ultimately show ?case by simp
qed
ultimately show ?thesis
unfolding stronger-theory-relation-def
by blast
qed
hence map (uncurry (L)) 20 :F ¢
using ¥(2)
stronger-theory-deduction-monotonic
[where YX=map (uncurry (U)) ¥
and I'=map (uncurry (L)) 20
and =]
by metis
moreover have
(map (uncurry (—)) T Q X © (map snd ¥)) <
(map (uncurry (—)) 0 QT & (map snd 70))
proof —
have map (uncurry (—)) ¥ < map (uncurry (—)) 70
proof —
let 20 = map (A (¢, 0, 7). (Y = v, Y = 7)) Q
have map snd ?® = map (uncurry (—)) ¥
using Q(1) by fastforce
moreover have map fst & = map (uncurry (—)) 70
by fastforce
hence mset (map fst ?®) CH# mset (map (uncurry (—)) 70)
by (metis subset-mset.dual-order.refl)
moreover
have mset (map (A(¢, o, -). (¥, 0)) Q) CH# mset U
using Q(1) by simp
hence V (¢,x) € set 2@. F ¢ — x using Q(2)
proof (induct Q)
case Nil
then show Zcase by simp
next
case (Cons w Q)
let 20 = map (\ (1, o, 7). (@ = 7, ¥ >) (@ # Q)
let 20’ = map (A (¥, 0,7). (Y = v, ¥ = o)) Q
have mset (map (A(¢, o, -). (¥, o)) Q) C# mset U
mset (map (A(-, o, 7). (7, 0)) Q) CH# mset A
using Cons.prems(1) Cons.prems(2) subset-mset.dual-order.trans by
fastforce+
with Cons have V (¢,x) € set 20’ F ¢ — x by fastforce
moreover

37

let QZZJ = ()‘ (1/%) _)' ’l/)) w
let %0 = (A (-, 0,-). 0) w
let 7y = (A (- 7). 7w

have ()‘('7 g, ’Y)' (’77 U)) = A w. (O‘ (" o) 7) va‘ ('7 g, ')' U) w)) by
auto
hence (A(-, 0, 7). (v, 0)) w = (?y, %0) by metis
hence - 7y — %o
using Cons.prems(2) mset-subset-eqD A(3)
by fastforce
hence F (%) — ?y) — (%) — %0)
using modus-ponens hypothetical-syllogism
by blast
moreover have
(W, 7, 7). (6 = 7 & = 0)) =
()‘ w. (((A (» T ')' '(!J) w) - (()‘ ('? il ’7)' ’Y) w>7
(A (@, = 2)-) w) = (A (- 0, 7). 0) w)))
by auto
hence (A(¢, 0, 7). (¥ = v, ¥ = 0)) w = (A — %), (%4 — %0)) by metis
ultimately show ?case by simp
qed
ultimately show ?thesis
unfolding stronger-theory-relation-def
by blast
qed
moreover
have (X © (map snd ¥)) < (T' © (map snd 70))
proof —
let A = A& (map (A (- 0, 7). (v, 0)) Q)
have mset (map fst ?A) C# mset (I' © (map snd 70))
using A(2)
by (metis Q(2)
«map snd (map (A(¥, -, 7). (¢, 7)) Q) =
map fSt (map ()‘('7 g, 7)' (77 U)) Q)}
list-subtract-monotonic
map-list-subtract-mset-equivalence)
moreover
from Q(2) have mset ?A C# mset A by simp
hence V (v,0) € set A. kv — o

using A(3)
by (metis mset-subset-eqD set-mset-mset)

moreover

have map snd (map (A(-, o, 7). (7, o)) Q) = map snd ¥
using Q(1)

by (induct Q, simp, fastforce)
hence mset (map snd ?A) = mset (¥ © (map snd ¥))
by (metis A(1) Q(2) map-list-subtract-mset-equivalence)
ultimately show ?thesis
by (metis stronger-theory-relation-alt-def)
qed

38

ultimately show ?Zthesis using stronger-theory-combine by blast
qed
hence map (uncurry (—)) 0 QT' © (map snd 70) $+ @
using U(3) Cons by blast
ultimately show Zcase
by (metis measure-deduction.simps(2))
qed

lemma (in classical-logic) merge-witness-measure-deduction-intro:
assumes mset (map snd A) CH# mset (map (uncurry (=) ¥ QT © (map snd
w))
and map (uncurry (—)) A @Q (map (uncurry (—)) ¥ Q@ I" & map snd ¥) ©
map snd A $+ @
(is 7Ty $F @)
shows map (uncurry (—)) (3P A) QT © map snd (J ¥ A) $- @
(is T $+ D)
proof —
let 2 =B ¥ A
let A = map (uncurry (—)) A
let B = map (uncurry (—)) ¥
let 2C = map snd 72
let YD =T © (map snd V)
let E = map snd (A © %)
have X: mset 75 C# mset A
mset ?C CH#H mset ?B
mset ?E CH# mset D
using assms(1)
second-component-msub
second-component-snd-projection-msub
second-component-diff-msub
by simp+
moreover
from calculation have
image-mset snd (mset A — mset (B ¥ A))
C# mset I' — image-mset snd (mset V)
by simp
hence mset T' — image-mset snd (mset W)
— image-mset snd (mset A — mset (B ¥ A))
+ image-mset snd (mset A — mset (B U A))
= mset I' — image-mset snd (mset U)
using subset-mset.diff-add by blast
then have image-mset snd (mset A — mset (B ¥ A))
+ ({#z = y. (z, y) €# mset U#}
+ (mset I' — (image-mset snd (mset U)
+ image-mset snd (mset A — mset (B U A)))))
={#z — y. (z, y) €# mset U#} + (mset I' — image-mset snd (mset ¥))
by (simp add: union-commute)
with calculation have mset Ty = mset (YA Q (B o ?C) Q (?D & ?E))
by (simp, metis (no-types) add-diff-cancel-left image-mset-union subset-mset. diff-add)

39

moreover have (?A Q (?B & ?C)) =< map (uncurry (—)) (J ¢ A)
using second-component-merge-witness-stronger-theory by simp
moreover have mset (YD © ?E) = mset (I' © map snd (J ¥ A))
using second-component-merge-witness-snd-projection
by simp
with calculation have (A Q (?Bo ?C) Q (?Do ?E)) < T
by (metis
(no-types, lifting)
stronger-theory-combine
append.assoc
list-subtract-mset-homomorphism
msub-stronger-theory-intro
map-list-subtract-mset-containment
map-list-subtract-mset-equivalence
mset-subset-eq-add-right
subset-mset.add-diff-inverse
subset-mset.diff-add-assoc2)
ultimately have I'y < T
unfolding stronger-theory-relation-alt-def
by simp
thus ?thesis
using assms(2) measure-stronger-theory-left-monotonic
by blast
qed

lemma (in classical-logic) measure-formula-right-split:
LS (Ue# Y= p# @) =T858 (p#2)
proof (rule iffT)
assume I' $F (¢ # @)
from this obtain ¥ where ¥:
mset (map snd V) C# mset T
map (uncurry (L)) ¥ :+ ¢
(map (uncurry (—)) ¥ QT & (map snd ¥)) $- &
by auto
let 201 = zip (map (A (x,7)- ¥ U x) ¥) (map snd V)
let T'y = map (uncurry (—)) 20, QT & (map snd ?2U,)
let 2Ty = zip (map (A (x,Y)- ¥ — x) ¥) (map (uncurry (—)) ?¥;)
let Ty = map (uncurry (—)) ¥y @ Ty © (map snd 2V5)
have map (uncurry (—)) ¥ < map (uncurry (—)) ?¥s
proof (induct U)
case Nil
then show ?case by simp
next
case (Cons § ¥)
let ?2x = fst 6
let 7y = snd §
let U, = zip (map (A (x,7)- ¥ U x) ¥) (map snd ¥)
let 20y = zip (map (A (x,7). ¥ = x) ¥) (map (uncurry (—)) 2¥;)
let 277 = X\ V. map (uncurry (=) (zip (map (A (x,y)- ¥ U x) ¥) (map snd

40

v))
let 2Ty = A U. map (uncurry (—)) (zip (map (A (x,7)- ¥ — x) V) (¢T1 ¥))
{
fixd:'ax’a
have (A (x,7). ¥ U x) = (A 4. ¢ U (fst 9))
A 067 = x) = (A 6. ¢ — (fst 9))
by fastforce+
note functional-identities = this
have (A (x,7). ¥ U x) 0 = U (fst 9)
A - ¥ = x) 6 =9 — (fst 9)
by (simp add: functional-identities)+
}
hence 7T (6 # V) = (v — 2x) — (W U 2x) — &y) # (map (uncurry (—))
?2WUs)
by simp
moreover have map (uncurry (—)) (8 # U) = (9x — ?y) # map (uncurry
(=) ¥
by (simp add: case-prod-beta)
moreover
{

fix x ¥ v
have F (¢ = x) = (Y Ux) = 7) < (x =)
proof —
have ¥ 90 9 oy (((8) = () = () U () = (1)) > () = (1)
by fastforce
hence = (| (({(¥) = (x)) = ((¥) U O)) = () < (00 = (M) D
using propositional-semantics by blast
thus ?thesis by simp
qed
}
hence identity: - (¢ — 2x) = (Y U 2x) = ?9) = (9x —)
using biconditional-def by auto
assume map (uncurry (—)) ¥ < map (uncurry (—)) 2%y
with identity have ((?x — ?y) # map (uncurry (—)) ¥) =<
(& = 20 = (U #x) — 7) # (map (uncurry (=) 785))
using stronger-theory-left-right-cons by blast
ultimately show Zcase by simp
qed
hence (map (uncurry (—)) ¥ QT & (map snd ¥)) <
((map (uncurry (—)) ?¥9) Q@ I' © (map snd V))
using stronger-theory-combine stronger-theory-reflexive by blast
moreover have mset Ty = mset ((map (uncurry (—)) ?¥3) QT © (map snd
1))
by simp
ultimately have (map (uncurry (—)) ¥ QT © (map snd ¥)) < Ty
by (simp add: stronger-theory-relation-def)
hence T, $ &
using U (3) measure-stronger-theory-left-monotonic by blast
moreover

41

have (map (uncurry (1)) 9Us) k1 — ¢
proof —
let 71" = map (A (x, 7). (¥ = x) U (¢
let 7YX = map (A (x, 7)- (¥ = (x U")
have map (uncurry (U)) ¥y = ?F
proof (induct V)
case Nil
then show ?case by simp
next
case (Cons x V)
. l)lave (A . (case ¢ of (x;7v) = ¢ — x) U (case ¢ of (x,7) =P UXx) —
snd @) =
(A . (case p of (x,7) =¥ = x U (¥ Ux) =)
by fastforce
hence (case x of (x,v) = ¥ — x) U (case x of (x,y) = ¥ U x) = snd x =
(case x of (x,v) = ¢ = xU (@ UX) =)
by metis
with Cons show ?case by simp
qed
moreover have 2% < T
proof (induct)
case Nil
then show Zcase by simp
next
case (Cons 6 U)
let fa= (A (x,7) W= x)U(@UX)—=7)0
let 26 = (A (x, 7). (¥ = (x U 7)) é
let 2y = fst §
let 7y = snd §
have (A 6. (case 6 of (x,7) = ¢ = x U (W Ux) — 7)) =
(MNd. v = fst 6 U (¢ U fst 6) — snd 0)
(A0 (case § of (x, 7) = ¢ = (xU7Y))) =\ v — (fst §d Usndd))
by fastforce+
hence %a = (¢ — ?x) U (¥ U 9x) — &y
8=y = (Px U #)
by metis+
moreover
{
fix ¥ x v
have - (¢ = x) U (¢ Ux) =) = (¥ = (x U 7))
proof —
have V 9. M |=prop (1) = (X)) U ((¥) U () = (1) = ((¥) =
() U (1))
by fastforce
hence - ((%) — () U ((8) U () = 1) = () = () U () D
using propositional-semantics by blast
thus ?thesis by simp
qed

}

Ux) =) ¥
) ¥

42

ultimately have - a0 — 28 by simp
thus ?case
using Cons
stronger-theory-left-right-cons
by simp
qed
moreover have V ¢. (map (uncurry (L)) U) :- o — 25 ¢ — ¢
proof (induct V)
case Nil
then show ?case
using axiom-k modus-ponens
by fastforce
next
case (Cons § V)
let %"= (A (x, 7). (¥ = (xU"))) o
let #X = map (A (x, 7). (¥ = (x U 7)) ¥
let 25" = map (A (x, 7). (¥ = (x U 7)) (6 # ¥)
{
fix ¢
assume map (uncurry (U)) (6 #) :F ¢
hence map (uncurry (U)) ¥ :F (uncurry (U)) 6 — ¢
using list-deduction-theorem
by simp
hence 7% :+ ¢ — (uncurry (U)) 6 — ¢
using Cons
by blast
moreover
{
fix o g~
have - (a = 8 = 7)) = ((a = 8) > a—)
using axiom-s by auto
}
ultimately have 7% - (¢ — (uncurry (U)) §) = ¢ — ¢
using list-deduction-weaken [where 7I'= %%
list-deduction-modus-ponens [where 7I'=2Y]
by metis
moreover
have (A 0. ¢ — (uncurry (U)) 0) = (A 6. (A (x, 7). (¥ = (x U 7))) 9)
by fastforce
ultimately have 7% :- (A (x, 7). (W — (x U 7¥))) 0 = ¥ = ¢
by metis
hence 2%/ :F ¢ — ¢
using list-deduction-theorem

by simp
}
then show ?case by simp
qed
with ¥(2) have 72 :+ ¢ — ¢
by blast

43

ultimately show ¢thesis
using stronger-theory-deduction-monotonic by auto
qed
moreover have mset (map snd ?Uy) CH# mset 7Ty by simp
ultimately have T'; $+ (¢ — ¢ # ®) using measure-deduction.simps(2) by
blast
moreover have b (map (uncurry (U)) ¥ :—) — (map (uncurry (U)) 9¥;) :—
(¥ U o)
proof (induct ¥)
case Nil
then show ?case
unfolding disjunction-def
using axiom-k modus-ponens
by fastforce
next
case (Cons v U)
let A = map (uncurry (L))
let ?A’ = map (uncurry (1))
let 75 = map (uncurry (U)) (z
let 7% = map (uncurry (U)) (zip (map (A
(v # ©)
have - (?A':— ¢) — (uncurry (U)) v — ?A = ¢
by (simp, metis aziom-k axiom-s modus-ponens)
with Cons have - (?A’:— ¢) — (uncurry (U)) v — 22 :— (Y U ¢)
using hypothetical-syllogism modus-ponens
by blast
hence (A" :—) # ((uncurry (L)) v) # 22 :F ¢ U e
by (simp add: list-deduction-def)
moreover have set ((?A’:— ¢) # ((uncurry (U)) v) # 22) =
set (((uncurry (U)) v) # (?PA' = @) # %)
by fastforce
ultimately have ((uncurry (U)) v) # (?A':— o) # 22 :F ¢ Uy
using list-deduction-monotonic by blast
hence (A’ :— ¢) # 2% :F ((uncurry (U)) v) — (¥ U @)
using list-deduction-theorem
by simp
moreover
let 2y = fst v
let 2y = snd v
have (A v . (uncurry (U)) v) = (A v. fst v U snd v)
by fastforce
hence (uncurry (U)) v = 2y U ?y by simp
ultimately have (?A’:— @) # 72 :F (2x U %y) — (¢ U ¢) by simp
moreover

T

(v #9)

(zip (map (X (x,7)- ¥ U x) ¥) (map snd ¥))
(x7)- v Ux) (v#Y)) (map snd

fixa B 6~y

havefl— (BUa) = (yUd) = (wup)Ua)— (yU)
proof —

have V M. M =50, (((B) U () = ((7) U (8))) = (({(v) U (B)) U ()

44

= ((m L))
by fastforce

hence - ((((8) U (a)) = ({(v) U(3))) = ((() U (B)) U (a)) = ({m) U

@)D
using propositional-semantics by blast
thus ?thesis by simp
qed
}
hence (?A':—= @) # 72 :F ((Ix U ?7y) = (WU @) = (WU 2) U) = (¥
U)
using list-deduction-weaken by blast
ultimately have (A’ :— @) # 22 :F (v U 2) U 99) = (¥ U p)
using list-deduction-modus-ponens by blast
hence ((¢ U 2x) U 29) # (?PA':— o) # 2y U
using list-deduction-theorem
by simp
moreover have set (((¢ U 2x) U 2y) # (A" :— @) # 22) =
set ((PA":= @) # (b U 2x) U #y) # #%)
by fastforce
moreover have
map (uncurry (U)) (v # ¥) :—= ¢
(YU fstv) U snd v
map (uncurry (1)) (zip (map (A(-, a). ¥ U a) ¥) (map snd ¥)) :+ (¢ U
fstv) U snd v
by (meson list.set-intros(1)
list-deduction-monotonic
list-deduction-reflection
set-subset-Cons)
ultimately have (?A’:— ¢) # (U) U 29) # 22 -y U
using list-deduction-modus-ponens list-deduction-monotonic by blast
moreover
have (A v. ¢ U fst v) = (A (x, 7). ¥ U x)
by fastforce
hence ¢ U fst v = (X (x, 7). ¥ U x) v
by metis
hence ((¢p U 2x) U 2v) # 22 = 2%/
by simp
ultimately have (A’ :— @) # 2% ¢ U ¢ by simp
then show ?case by (simp add: list-deduction-def)
qed
with ¥(2) have map (uncurry (L)) 2%y = (¢ U ¢)
unfolding list-deduction-def
using modus-ponens
by blast
moreover have mset (map snd ?U1) C# mset I using V(1) by simp
ultimately show I' $+ (¢ U o # ¢ — o # @)
using measure-deduction.simps(2) by blast
next

assume I' $- (W U o # ¢ — p # D)

45

from this obtain ¥ where U:
mset (map snd V) CH# mset T’
map (uncurry (U)) ¥ -y U
map (uncurry (—)) ¥ QT & (map snd V) $+ (v — ¢ # D)
using measure-deduction.simps(2) by blast
let T'' = map (uncurry (—)) ¥ Q T' & (map snd ¥)
from ¥ obtain A where A:
mset (map snd A) C# mset 7T’
map (uncurry (U)) A :F¢ — ¢
(map (uncurry (—)) A Q TV © (map snd A)) $- &
using measure-deduction.simps(2) by blast
let Q=37 A
have mset (map snd #Q) C# mset I’
using A(1) U(1) merge-witness-msub-intro
by blast
moreover have map (uncurry (1)) 2Q :F ¢
proof —
have map (uncurry (1)) 2Q := ¢ U ¢
map (uncurry (U)) 22 =9 — ¢
using ¥(2) A(2)
stronger-theory-deduction-monotonic
right-merge-witness-stronger-theory
left-merge-witness-stronger-theory
by blast+
moreover
have b (Y U @) = (v = ¢) = ¢
unfolding disjunction-def
using modus-ponens excluded-middle-elimination flip-implication
by blast
ultimately show #thesis
using list-deduction-weaken list-deduction-modus-ponens
by blast
qed
moreover have map (uncurry (—)) %0 QT' & (map snd Q) $- @
using A(1) A(3) Y(1) merge-witness-measure-deduction-intro by blast
ultimately show T" $+ (o # @)
using measure-deduction.simps(2) by blast
qed

primrec (in implication-logic)

X-witness :: ('a x 'a) list = (a x 'a) list = (‘a x 'a) list (X)

where

v -
| X0 (6 # A) =
(case find (A Y. (uncurry (=)) ¥ = snd) ¥ of
None = § # X U A
| Some © = (fst ¥ — fst §, snd) # (X (removel ¢p) A))

primrec (in implication-logic)

46

X-component :: ('a x 'a) list = (‘a x 'a) list = (‘a x 'a) list (X,)
where
X W[=]
X0 U (6 # A) =
(case find (A . (uncurry (—)) ¥ = snd §) ¥ of
None = X, ¥ A
| Some ¢ = (fst o — fst §, snd) # (Xo (removel 1p ¥) A))

primrec (in implication-logic)
Y-witness :: (‘a x 'a) list = (‘a x 'a) list = ('a x 'a) list (D)
where
V[=v
(D WG #A) =
(case find (A . (uncurry (—)) ¥ = snd §) U of
None = 9 ¥ A

| Some ¢ = (fst ¥, (fst ¥ — fst §) — snd) #
() (removel ¢ ¥) A))

primrec (in implication-logic)
Y-component :: (‘a x 'a) list = ('a x 'a) list = ('a x 'a) list (D)
where
Ve ¥ [=]
(case find (A Y. (uncurry (—)) ¥ = snd) ¥ of
None = Qo ¥ A
| Some ¢ = (fst b, (fst v — fst §) — snd) #
(Ve (removel p) A))

lemma (in implication-logic) X-witness-right-empty [simp]:
X[jAa=A
by (induct A, simp+)

lemma (in implication-logic) Y-witness-right-empty [simp]:

D[A=]
by (induct A, simp+)

lemma (in implication-logic) X-witness-map-snd-decomposition:
mset (map snd (X ¥ A)) = mset (map snd (A ¥ A) Q@ (Ao (BT A))))
proof —
have VU. mset (map snd (X U A)) = mset (map snd (AT A)Q (Ao (BT
A))))
proof (induct A)
case Nil
then show Zcase by simp
next
case (Cons § A)

{
fix ¥

have mset (map snd (X ¥ (§ # A)))

47

= mset (map snd (AT (0 # A)Q (0 # A) S B U (§ # A)))
using Cons
by (cases find (A ¢. (uncurry (—)) ¥ = snd) ¥ = None,
stmp,
metis (no-types, lifting)
add-mset-add-single
image-mset-single
image-mset-union
mset-subset-eq-multiset-union-diff-commute
second-component-msub,
fastforce)

then show ?case by blast
qed
thus “thesis by blast
qed

lemma (in implication-logic) Y-witness-map-snd-decomposition:
mset (map snd (Y ¥ A)) = mset (map snd (Vo (AT A)) @ (Yo U A)))
proof —
have V U. mset (map snd (P ¥ A)) = mset (map snd (¥ © (A T A)) Q (Y.
¥ A))
proof (induct A)
case Nil
then show ?Zcase by simp
next
case (Cons § A)
{
fix U
have mset (map snd (Y ¥ (§ # A))) = mset (map snd (¥ © A ¥ (6 # A)
QY. U (3 # A))
using Cons
by (cases find (A . (uncurry (—)) ¢ = snd 0) ¥ = None, fastforce+)
}
then show ?case by blast
qed
thus ?thesis by blast
qed

lemma (in implication-logic) X-witness-msub:
assumes mset (map snd V) C# mset T
and mset (map snd A) C# mset (map (uncurry (—)) ¥ QT © (map snd
w))
shows mset (map snd (X ¥ A)) C# mset T
proof —
have mset (map snd (A © (B U A))) CH# mset (I' © (map snd ¥))
using assms second-component-diff-msub by blast
moreover have mset (map snd (A ¥ A)) C# mset (map snd V)
using first-component-msub

48

by (simp add: image-mset-subseteq-mono)
moreover have mset ((map snd ¥) Q@ (I' © map snd V)) = mset T
using assms(1)
by simp
moreover have image-mset snd (mset (A U A)) + image-mset snd (mset (A &
BT A))
= mset (map snd (X ¥ A))
using X-witness-map-snd-decomposition by force
ultimately
show ?thesis
by (metis (no-types) mset-append mset-map subset-mset.add-mono)
qed

lemma (in implication-logic) Y-component-msub:
mset (map snd (Yo ¥ A)) CH# mset (map (uncurry (—)) (X T A))
proof —
have V U. mset (map snd (Yo ¥ A)) CH# mset (map (uncurry (—)) (X ¥ A))
proof (induct A)
case Nil
then show ?case by simp
next
case (Cons § A)
{
fix ¥
have mset (map snd (Yo ¥ (0 # A))) CH# mset (map (uncurry (—)) (X ¥
(6 # A)
using Cons
by (cases find (A . (uncurry (—)) ¥ = snd 6) ¥ = None,
simp, metis add-mset-add-single
mset-subset-eq-add-left
subset-mset.order-trans,
fastforce)
}
then show ?case by blast
qed
thus ?thesis by blast
qed

lemma (in implication-logic) Y-witness-msub:
assumes mset (map snd V) C# mset T’
and mset (map snd A) C# mset (map (uncurry (—)) ¥ QT & (map snd
w))
shows mset (map snd (P ¥ A)) C#
mset (map (uncurry (—)) (X T A) QT © map snd (X T A))
proof —
have A: image-mset snd (mset W) C# mset I' using assms by simp
have B: image-mset snd (mset (A U A)) + image-mset snd (mset A — mset (B
U A)) C# mset T
using A X-witness-map-snd-decomposition assms(2) X-witness-msub by auto

49

have mset ' — image-mset snd (mset ¥) = mset (' © map snd V)
by simp
then have C: mset (map snd (A © B ¥ A)) + image-mset snd (mset V) CH#
mset T’
using A by (metis (full-types) assms(2) second-component-diff-msub sub-
set-mset.le-diff-conv2)
have image-mset snd (mset (0 & A ¥ A)) + image-mset snd (mset (A ¥ A))
= image-mset snd (mset V)
by (metis (no-types) image-mset-union
list-subtract-mset-homomorphism
first-component-msub
subset-mset. diff-add)
then have image-mset snd (mset ¥ — mset (A ¥ A))
+ (image-mset snd (mset (A ¥ A)) + image-mset snd (mset A — mset
(3w A)
= mset (map snd (A © B ¥ A)) + image-mset snd (mset V)
by (simp add: union-commute)
then have image-mset snd (mset ¥ — mset (A ¥ A))
C# mset I' — (image-mset snd (mset (A U A)) + image-mset snd (mset
A — mset (B T A)))
by (metis (no-types) B C subset-mset.le-diff-conv2)
hence mset (map snd (¥ & A ¥ A)) C# mset (I' © map snd (X T A))
using assms X-witness-map-snd-decomposition
by simp
thus “thesis
using Y-component-msub
Y-witness-map-snd-decomposition
by (simp add: mset-subset-eqg-mono-add union-commaute)
qed

lemma (in classical-logic) X-witness-right-stronger-theory:
map (uncurry (U)) A < map (uncurry (1)) (X ¥ A)
proof —
have V ¥. map (uncurry (1)) A < map (uncurry (1)) (X ¥ A)
proof (induct A)
case Nil
then show ?case by simp
next
case (Cons § A)
{
fix U
have map (uncurry (1)) (0 # A) < map (uncurry (U)) (X ¥ (6 # A))
proof (cases find (A ¢. (uncurry (—)) ¥ = snd §) ¥ = None)
case True
then show ?thesis
using Cons
by (simp add: stronger-theory-left-right-cons
trivial-implication)
next

50

case Fulse
from this obtain ¢ where
¥: find (Mp. uncurry (—) ¢ = snd 0) ¥ = Some
P € set U
(fst v — snd) = snd §
using find-Some-set-membership
find-Some-predicate
by fastforce
let 20U’ = removel ¢ ¥

let 2a = fst o
let 98 = snd ¢
let 9y = fst §

have map (uncurry (U)) A < map (uncurry (U)) (X 20" A)
using Cons by simp
moreover
have (uncurry (U)) = (A 4. fst 6 U snd §) by fastforce
hence (uncurry (1)) § = 2y U (Yo — 25) using ¢(3) by fastforce
moreover
{
fix a p v
have - (a -y U pB) = (v U (e = B))
proof —
let % = ({a) — (1) U (8)) = ((1) U ({a) — (8)))
have VO M |=p,0p % by fastforce
hence F (| %o |) using propositional-semantics by blast
thus ?thesis by simp
qed
}
hence - (%o — %y U 98) — (9y U (%a — 20)) by simp
ultimately
show ?thesis using
by (simp add: stronger-theory-left-right-cons)
qed
}
then show ?case by simp
qed
thus ?thesis by simp
qed

lemma (in classical-logic) Y-witness-left-stronger-theory:
map (uncurry (U)) ¥ < map (uncurry (1)) (P ¥ A)
proof —
have V U. map (uncurry (UU)) ¥ < map (uncurry (L)) (Y ¥ A)
proof (induct A)
case Nil
then show ?case by simp
next

case (Cons § A)
{

o1

fix ¥
have map (uncurry (1)) ¥ < map (uncurry (U)) (P ¥ (§ # A))
proof (cases find (A V. (uncurry (—)) ¥ = snd §) ¥ = None)
case True
then show ?thesis using Cons by simp
next
case Fulse
from this obtain ¢ where
i find (Mp. uncurry (=) ¢ = snd §) ¥ = Some 1
P € set U
(uncurry (U)) ¥ = fst ¢ U snd ¢
using find-Some-set-membership
by fastforce
let %p = fst ¢ U (fst v — fst 6) — snd ¢
let ?U' = removel ¥ ¥
have map (uncurry (1)) 20’ < map (uncurry (1)) () 20’ A)
using Cons by simp
moreover
{
fix a p v
have - (a U (a = v) = 0) = (a U B)
proof —
let 7 = ((a) U ({a) = (1)) = (8)) = ({a) U (8))
have VO M |=p,0p % by fastforce
hence F (| %o |) using propositional-semantics by blast
thus ?thesis by simp

qed
}
hence F % — (uncurry (U)) ¢ using ¥(3) by auto
ultimately
have map (uncurry (U)) (¥ # 29') < (%0 # map (uncurry (U)) (Y 20’
A))
by (simp add: stronger-theory-left-right-cons)
moreover
from ¢ have mset (map (uncurry (U)) (v # 29')) = mset (map (uncurry
(L) v)

by (metis mset-map perm-remove)
ultimately show ?thesis
using stronger-theory-relation-alt-def (1) by auto
qed
}
then show ?Zcase by blast
qed
thus ?thesis by blast
qed

lemma (in implication-logic) X-witness-second-component-diff-decomposition:

mset (X W A)=mset (X6 VAQASBTA)
proof —

52

have V U. mset (X ¥ A) = mset (Xe VAQASB Y A)
proof (induct A)
case Nil
then show ?case by simp
next
case (Cons § A)
{
fix ¥
have mset (X U (6 # A)) =
mset (Xe W (0 # A) Q (6 # A) OB Y (§ # A))
using Cons
by (cases find (A . (uncurry (—)) ¥ = snd 6) ¥ = None,
simp, metis add-mset-add-single second-component-msub subset-mset. diff-add-assoc2,

fastforce)
}

then show ?case by blast
qed
thus ?thesis by blast
qed

lemma (in implication-logic) Y-witness-first-component-diff-decomposition:
mset (P U A)=mset (VOAT AQY, U A)
proof —
have V W. mset (Y ¥ A) =mset (Vo ATV AQY, ¥ A)
proof (induct A)
case Nil
then show Zcase by simp
next
case (Cons § A)
{
fix ¥
have mset (Y ¥ (6 # A)) =
mset (0O AT (0 # A)QY, U (6 # A))
using Cons
by (cases find (A ¥. (uncurry (—)) ¥ = snd §) ¥ = None, simp, fastforce)
}
then show ?case by blast
qed
thus ?thesis by blast
qed

lemma (in implication-logic) Y-witness-right-stronger-theory:
map (uncurry (—)) A < map (uncurry (—)) (Y TV A S (ToAT A) Q@ (A

o BT A))
proof —

let =20 A. (TS AT A)

let g =AT A. (ASBTA)

have V U. map (uncurry (—)) A < map (uncurry (—)) (Y T A S 4TV AQ
90 A)

proof (induct A)
case Nil
then show ?case by simp
next
case (Cons § A)
let 26 = (uncurry (—)) ¢
{
fix ¥
have map (uncurry (=)) (6 # A)
< map (uncurry (—)) (D W (6 # A) © G U (5 # A) @ 76 W (6 # A))
proof (cases find (X . (uncurry (—)) ¥ = snd §) ¥ = None)
case True
moreover
from Cons have
map (uncurry (—)) (0 # A) < map (uncurry (=) O # P VA S HT
AQ 79T A)
by (simp add: stronger-theory-left-right-cons trivial-implication)
moreover
have mset (map (uncurry (—)) 0 H# YDV AO T AQ %9 T A))
= mset (map (uncurry (=) (YT AS HTAQ ((§# A)o BT A))
by (simp,
metis (no-types, lifting)
add-mset-add-single
image-mset-single
image-mset-union
second-component-msub
mset-subset-eq-multiset-union-diff-commute)
moreover have
YU O U <0
= (3% map snd ¥ =V
A mset (map fst) CH# mset @
AN (VE € ¢ set XV E (uncurry (=) £)))
by (simp add: Ball-def-raw stronger-theory-relation-def)
moreover have
((uncurry (=) 0) # map (uncurry (—)) A)
= ((uncurry (=) 0) # map (uncurry (—=)) (P ¥ A & (4 T A))
Q@ map (uncurry (—)) (79 ¢ A))
using calculation by auto
ultimately show ?thesis
by (simp, metis union-mset-add-mset-right)
next
case Fulse
from this obtain ¢ where
¥: find (Mp. uncurry (=) ¢ = snd 0) ¥ = Some
uncurry (—) ¥ = snd §
using find-Some-predicate
by fastforce
let 2o = fst 9
let 98 = fst

54

let 9y = snd ¥
have (A 0. fst 6 — snd 0) = uncurry (—) by fastforce
hence 78 — %a — %y = uncurry (—) ¢ using (2) by metis
moreover
let 24 =9 (removel ¢ ¥) A
let B = 2 (removel ¢ ¥) A
let 2C = B (removel ¢ U) A
let D = 24 © ((removel ¥ V) © ?B)
have mset ((removel ¢ ¥) & ¢B) C# mset A
using Y-witness-first-component-diff-decomposition by simp
{
assume mset U — add-mset 1p (mset (A (removel 1 V) A)) CH# mset (Y
(removel ¢ W) A)
moreover have B: VO V. FA. WV CH# & — TV + A=
by (metis subset-mset.le-iff-add)
moreover obtain f where
A: mset () (removel ¢ U) A)
— (mset ¥ — add-mset ¢ (mset (A (removel 1 V) A)))
= [(mset (Y (removel ¥ V) A))
(mset U — add-mset 1 (mset (A (removel ¢ ¥) A)))
by blast
ultimately obtain g where
B: Y p. add-mset p (mset () (removel ¢ ¥) A))
— (mset ¥ — add-mset ¢ (mset (A (removel ¢ V) A)))
= add-mset p
(g (mset (Y (removel ¢ ¥) A))
(mset W — add-mset ¢ (mset (A (removel p ¥) A))))
by (metis add-diff-cancel-left’ union-mset-add-mset-right)
have g (mset () (removel i ¥) A))
(mset U — add-mset 1) (mset (2 (removel ¢ ¥) A)))
= add-mset (fst ¥, (fst p — fst 6) — snd 1)
(mset () (removel tp ¥) A))
— (mset ¥ — add-mset ¢ (mset (A (removel 1 V) A)))
— {#(fst ¥, (fot ¥ — fot 8) — snd V)#)
by (simp add: B)
then have C:
g (mset (Y (removel ¥ ¥) A))
(mset ¥ — add-mset ¢ (mset (/A (removel 1p ¥) A)))
= mset () (removel ¢ ¥) A)
— (mset ¥ — add-mset ¥ (mset (A (removel ¢ ¥) A)))
by simp
let 951 =
{#z—u
(z, y) €# add-mset (fst ¢, (fst ¥ — fst §) — snd)
(mset () (removel 1p ¥) A))
— (mset ¥ — add-mset ¥ (mset (A (removel 1 ¥) A)))
#}
let ?Sg =
add-mset

95

(fst ¥ — (fst v — fst 6) — snd 1)

{#z—v.
(z, y) €# mset (Y (removel p ¥) A)
— (mset ¥
— add-mset ¢ (mset (A (removel 1 U) A)))
#}

have 25, = 25,
using A C by (simp add: B)
}

hence mset (map (uncurry (—))
(((%ar, (P00 — 28) — 2y) # ?A) © removel ¢ (¥ © ?B)
Q@ (removel 6 ((0 # A) © ?20))))
= mset ((%a = (%o — 28) — 2y) # map (uncurry (=)) (¢D Q@ (A ©
22
using
add-mset-add-single
image-mset-add-mset
prod.simps(2)
subset-mset. diff-add-assoc2
«mset (removel ¥ ¥ & A (removel 1p ¥) A) CH# mset (Y (removel 1)
) A)
by fastforce
moreover
have F (a — (%a — 28) = %) = 28 = %00 — 2y
proof —
let ' = [(%a = (Pa — 28) = 7y), 98, %]
have T+ %a — (a0 — 98) — 7y
Tk %o
by (simp add: list-deduction-reflection)+
hence 71"+ (a — 78) — %y
using list-deduction-modus-ponens by blast
moreover have 7I" :+ 23
by (simp add: list-deduction-reflection)
hence T' :+ %0 — 23
using azxiom-k list-deduction-modus-ponens list-deduction-weaken by blast
ultimately have " ;- %y
using list-deduction-modus-ponens by blast
thus ?thesis
unfolding list-deduction-def by simp
qed
hence (78 — ?a — %y # map (uncurry (—)) A) <
(Pa = (a0 — 28) = 2y # map (uncurry (—)) (?D @ (A & ?20)))
using Cons stronger-theory-left-right-cons by blast
ultimately show ?thesis
using ¢ by (simp add: stronger-theory-relation-alt-def)
qed
}
then show ?case by blast
qed

o6

thus ?thesis by blast
qed

lemma (in implication-logic) xcomponent-ycomponent-connection:
map (uncurry (—)) (Xe ¥ A) = map snd (Yo ¥ A)
proof —
have V ¥. map (uncurry (—)) (Xe ¥ A) = map snd (Pe ¥ A)
proof (induct A)
case Nil
then show ?case by simp
next
case (Cons § A)
{
fix U
have map (uncurry (=) (X¢ U (6§ # A)) = map snd (Ve ¥ (6 # A))
using Cons
by (cases find (A . (uncurry (—)) ¥ = snd §) ¥ = None, simp, fastforce)
}
then show ?case by blast
qed
thus ?thesis by blast
qed

lemma (in classical-logic) zwitness-ywitness-measure-deduction-intro:
assumes mset (map snd V) C# mset T
and mset (map snd A) C# mset (map (uncurry (—)) ¥ QT © (map snd
w))
and map (uncurry (—)) A @Q (map (uncurry (—)) ¥ Q@ I' & map snd ¥) ©
map snd A $+ @
(is Ty $- @)
shows map (uncurry (—)) (P ¥ A) Q
(map (uncurry (=) (X ¥ A) QT & map snd (X ¥ A)) ©
map snd (P ¥ A) $- &

(is 7T $- @)
proof —
let A = map (uncurry (—)) (P T A)
let B = map (uncurry (—)) (X ¥ A)

let 7/C=V AT A

let ?D = map (uncurry (—)) 2C

let PE=Ac BTV A

let ?F = map (uncurry (—)) ?E

let G = map snd (B T A)

let 2H = map (uncurry (—)) (X, U A)

let 1 =A T A

let 2J = map snd (X ¥ A)

let YK = map snd (9 ¥ A)

have mset (map (uncurry (—=)) (Y T A S 2C Q ?E)) = mset (?A © ¢D Q ¢F)
by (simp add: Y-witness-first-component-diff-decomposition)

hence (map (uncurry (—)) A) < (?A © 2D @ ?2F)

o7

using Y-witness-right-stronger-theory
stronger-theory-relation-alt-def
by (simp, metis (no-types, lifting))
hence Ty =< ((?A & ¢?D @Q ?F) Q (map (uncurry (—)) ¥ QT & map snd P)
& map snd A)
using stronger-theory-combine stronger-theory-reflexive by blast
moreover
have &: mset G C# mset (map (uncurry (—)) ¥)
mset (B ¥ A) CH# mset A
mset (map snd ?E) C# mset (I' © map snd V)
mset (map (uncurry (—)) ¥ & ?G) = mset ¢D
mset 7D CH# mset 7A
mset (map snd ?I) C# mset (map snd V)
mset (map snd ?I) C# mset T
mset (map snd (¢ Q ?E)) = mset 2J
using second-component-msub
second-component-diff-msub
second-component-snd-projection-msub
first-component-second-component-mset-connection
X-witness-map-snd-decomposition

by (simp,
simp,
metis assms(2),
simp add: image-mset-Diff first-component-msub,
simp add: Y-witness-first-component-diff-decomposition,
simp add: image-mset-subseteq-mono first-component-msub,
metis assms(1) first-component-msub map-monotonic subset-mset.dual-order.trans,
stmp)
hence mset A — mset (B U A) + mset (B U A) = mset A
by simp
hence O: {#z — y. (x, y) €# mset V#} + (mset T' — image-mset snd (mset
w))
— image-mset snd (mset A)
= {#z — y. (z, y) €# mset V#} + (mset I' — image-mset snd (mset ¥))
— image-mset snd (mset A — mset (B ¥ A))
— image-mset snd (mset (B U A))
image-mset snd (mset ¥ — mset (A U A)) + image-mset snd (mset (A
w A))
= image-mset snd (mset V)
using &
by (metis (no-types) diff-diff-add-mset image-mset-union,
metis (no-types) image-mset-union first-component-msub subset-mset. diff-add)
then have mset I' — image-mset snd (mset ¥)
— image-mset snd (mset A — mset (B U A))
= mset I' — (image-mset snd (mset U — mset (A U A))
+ image-mset snd (mset (X ¥ A)))
using & by (simp, metis (full-types) diff-diff-add-mset)
hence mset ((map (uncurry (—)) ¥ QT © map snd ¥) © map snd A)

o8

= mset (D @Q (I' © 2J) © map snd ?C)
using O & by (simp, metis (no-types) add.commute subset-mset.add-diff-assoc)
ultimately have Ty < ((?PA© D@ ?2F) Q ?D @ (I' © 2J) © map snd ?C)
unfolding stronger-theory-relation-alt-def
by simp
moreover
have mset ?F = mset (YB © ?H)
mset 7D C# mset 7A
mset (map snd (U & 2I)) C# mset (T © 2J)
by (simp add: X-witness-second-component-diff-decomposition,
simp add: Y-witness-first-component-diff-decomposition,
simp, metis (no-types, lifting)
Q(2) &(8) add.assoc assms(1) assms(2) image-mset-union
X-witness-msub merge-witness-msub-intro
second-component-merge-witness-snd-projection
mset-map
subset-mset.le-diff-conv2
union-code)
hence mset (A © ?D @ ?F) @ ¢D Q@ (I' & ?J) © map snd ?C)
= mset (A Q (?Bo ?HQT © 2J) © map snd ?0)
mset YH C# mset 7B
{#z = y. (x, y) €# mset (Xo U A)#} = mset (map snd (Pe ¥ A))
by (simp add: subset-mset.diff-add-assoc,
simp add: X-witness-second-component-diff-decomposition,
melis xcomponent-ycomponent-connection mset-map uncurry-def)
hence mset (A © ?D @ ?F)Q D Q (I' © 2J) © map snd ?C)
=mset (PAQ (?BQT & ?J) & (?H Q map snd ?C))
{#z — y. (z, y) €# mset (Xo U A)#} + image-mset snd (mset ¥ — mset
(@ ¥ A))
= mset (map snd (P ¥ A))
using Y-witness-map-snd-decomposition
by (simp add: subset-mset.diff-add-assoc, force)
hence mset (A © ?D @ ?F) @ ¢D Q (I' © ¢J) © map snd ?C)
=mset (PAQ (?BQT 6 ?2J) © ?K)
by (simp)
ultimately have Ty < (7A@ (?BQT © 2J) © ?K)
unfolding stronger-theory-relation-alt-def
by metis
thus ?thesis
using assms(3) measure-stronger-theory-left-monotonic
by blast
qged

lemma (in classical-logic) measure-cons-cons-right-permaute:
assumes I' $F (¢ # ¢ # D)
shows T' $+ (¢ # ¢ # @)
proof —
from assms obtain U where U:
mset (map snd V) CH# mset T’

99

map (uncurry (U)) ¥ :+ ¢
map (uncurry (—)) ¥ QT' & (map snd V) $& (¢ # @)
by fastforce
let 7Ty = map (uncurry (—=)) ¥ QT © (map snd V)
from ¥(3) obtain A where A:
mset (map snd A) CH# mset Tg
map (uncurry (U)) A = ¢
(map (uncurry (—)) A @ Ty © (map snd A)) $F @
using measure-deduction.simps(2) by blast
let 20/ =X T A
let 'y = map (uncurry (—)) 20’ QT & (map snd 207)
let A= ¥ A
have (map (uncurry (—)) ?A’Q 'y © (map snd ?A")) $+ @
map (uncurry (U)) ¥ < map (uncurry (U)) ?A’
using V(1) A(1) A(3)
zwitness-ywitness-measure-deduction-intro
Y-witness-left-stronger-theory
by auto
hence Ty $& (¢ # @)
using U(1) ¥(2) A(1)
Y-witness-msub measure-deduction.simps(2)
stronger-theory-deduction-monotonic
by blast
thus ?thesis
using U(1) A(1) A(2)
X-witness-msub
X-witness-right-stronger-theory
measure-deduction.simps(2)
stronger-theory-deduction-monotonic
by blast
qed

lemma (in classical-logic) measure-cons-removel:
assumes ¢ € set ®
shows I' 8- ® =T $F (p # (removel ¢ D))
proof —
from «p € set &>
have V I'. T' $- ® =T $F (¢ # (removel ¢ ®))
proof (induct ®)
case Nil
then show ?case by simp
next
case (Cons x ®)
{
fix I’
have I' $F (x # ®) =T $F (¢ # (removel ¢ (x # P)))
proof (cases x = ¢)
case True
then show ?thesis by simp

60

next
case Fulse
hence ¢ € set ®
using Cons.prems by simp
with Cons.hyps have I $+ (x # @) = T $& (x # ¢ # (removel ¢ ®))
by fastforce
hence I' $- (x # @) =T $F (¢ # x # (removel ¢ ®))
using measure-cons-cons-right-permute by blast
then show ?thesis using «(x # ¢» by simp
qed
}
then show ?case by blast
qed
thus ?thesis using assms by blast
qed

lemma (in classical-logic) witness-stronger-theory:
assumes mset (map snd V) C# mset T’
shows (map (uncurry (—)) ¥ QI' © (map snd ¥)) < T
proof —
have V T. mset (map snd ¥) C# mset ' — (map (uncurry (—)) ¥ QT ©
(map snd ¥)) X T
proof (induct ¥)
case Nil
then show ?Zcase by simp
next
case (Cons ¢)
let 9y = snd ¢
{
fix I’
assume mset (map snd (¢ # U)) CH# mset T’
hence mset (map snd ¥) CH# mset (removel (snd i) T)
by (simp add: insert-subset-eq-iff)
with Cons have
(map (uncurry (—)) ¥ @ (removel (snd) I') © (map snd ¥)) < (removel
v T)
by blast
hence (map (uncurry (—)) ¥ QT & (map snd (¢ # ¥))) < (removel ¢y T)
by (simp add: stronger-theory-relation-alt-def)
moreover
have (uncurry (=)) = (A ¥. fst v — snd)
by fastforce
hence - %y — uncurry (=) ¢
using axiom-k by simp
ultimately have
(map (uncurry (—)) (v # V) QT © (map snd (Y # ¥))) < (?y # (removel
)
using stronger-theory-left-right-cons by auto
hence (map (uncurry (—)) (Y # ¥) QT © (map snd (¢ # ¥))) < T

61

using stronger-theory-relation-alt-def
«mset (map snd (Y # V)) CH# mset T
mset-subset-eqD

by fastforce

then show ?case by blast
qed
thus ?thesis using assms by blast
qed

lemma (in classical-logic) measure-msub-weaken:
assumes mset W C# mset @
and T" $+ @
shows I' $- ¥
proof —
have VU T'. mset U C# mset ® — T $+ & — T $+ U
proof (induct ®)
case Nil
then show Zcase by simp
next
case (Cons ¢ ®)
{
fix v T
assume mset U CH# mset (¢ # D)
I8 (v # @)
hence I $~ @
using measure-deduction.simps(2)
measure-stronger-theory-left-monotonic
witness-stronger-theory
by blast
have " $+ ¥
proof (cases ¢ € set W)
case True
hence mset (removel ¢ V) CH# mset
using «mset ¥ C# mset (¢ # D)
subset-eq-diff-conv
by force
hence VI'. T $+ & — T" $F (removel ¢ ¥)
using Cons by blast
hence I' $ (¢ # (removel ¢ ¥))
using <I" $+ (¢ # ®)» by fastforce
then show ?thesis
using «p € set U»
measure-cons-removel
by blast
next
case Fulse
have mset U C# mset ® + add-mset ¢ (mset [])
using <mset U C# mset (¢ # D)» by auto

62

hence mset ¥ C# mset ®
by (metis (no-types) False
diff-single-trivial
in-multiset-in-set mset.simps(1)
subset-eq-diff-conv)
then show ?thesis
using «I" $+ &> Cons
by blast
qed
}
then show ?case by blast
qed
with assms show ?thesis by blast
qed

lemma (in classical-logic) measure-stronger-theory-right-antitonic:
assumes ¥V < @
and T" $+ @
shows T' $- ¥
proof —
have VIT. ¥V <X® —T -0 —T ST
proof (induct ®)
case Nil
then show ?case
using measure-deduction.simps(1)
stronger-theory-empty-list-intro
by blast
next
case (Cons ¢ ®)
{
fix v T
assume I' $F (¢ # @)
U= (p#)
from this obtain ¥ where
Y map snd X =W
mset (map fst X) CH# mset (¢ # P)
YV (pp)eset . F @ —
unfolding stronger-theory-relation-def
by auto
hence T" $+ ¥
proof (cases ¢ € set (map fst T))
case True
from this obtain i) where (p,))) € set &
by (induct X, simp, fastforce)
hence A: mset (map snd (removel (p, ¥) X)) = mset (removel ¢ V)
and B: mset (map fst (removel (¢, ¥) X)) CH# mset ®
using X removel-pairs-list-projections-snd
removel-pairs-list-projections-fst
subset-eq-diff-conv

63

U

by fastforce+
have V (p,ip)€set (removel (p, ¥)). F ¢ — 9
using ¥(3) by fastforce+
hence (removel ¥ V) <X &
unfolding stronger-theory-relation-alt-def using A B by blast
moreover
from (I" $- (¢ # ®)» obtain A where
A: mset (map snd A) C# mset T
map (uncurry (U)) A k¢
(map (uncurry (=)) A QT & (map snd A)) $- &
by auto
ultimately have (map (uncurry (—)) A QT & (map snd A)) $& removel

using Cons by blast
moreover have map (uncurry (U)) A :F 4
using A(2) X(3) «(p,00) € set Xy
list-deduction-weaken
list-deduction-modus-ponens
by blast
ultimately have (I" $+ (¢ # (removel ¢ U))»
using A(1) by auto
moreover from «(¢,))) € set ¥ 3(1) have ¢ € set U
by force
hence mset U C# mset (¢ # (removel ¢ ¥))
by auto
ultimately show ?thesis using measure-msub-weaken by blast

next

case Fulse
hence mset (map fst ¥) C# mset @
using ¥(2)
by (simp,
metis add-mset-add-single
diff-single-trivial
mset-map set-mset-mset
subset-eq-diff-conv)
hence ¥ < &
using 3(1) X(3)
unfolding stronger-theory-relation-def
by auto
moreover from <I' $+ (¢ # @) have I" $+ @
using measure-deduction.simps(2)
measure-stronger-theory-left-monotonic
witness-stronger-theory
by blast
ultimately show ?thesis using Cons by blast

qed

}

then show ?case by blast

qed

64

thus ?thesis using assms by blast
qed

lemma (in classical-logic) measure-witness-right-split:
assumes mset (map snd V) CH# mset
shows T' $F (map (uncurry (U)) ¥ Q@ map (uncurry (—)) ¥ Q & & (map snd
) =T $F &
proof —
have V T' ®. mset (map snd V) CH# mset & —
I'$ ® =T $F (map (uncurry (1)) ¥ @ map (uncurry (—=)) ¥ Q & & (map
snd ¥))
proof (induct U)
case Nil
then show ?case by simp
next
case (Cons ¢)
{
fixI' ®
let 2y = fst v
let 2p = snd ¢
let 20’ = map (uncurry (U)) (¢ # Q@
map (uncurry (—)) (¥ # ¥) @
O © map snd (Y #)
let ?&y = map (uncurry (L)) ¥ @
map (uncurry (—)) ¥ Q
(removel %p ®) & map snd U
assume mset (map snd (Y # V)) C# mset O
hence mset (map snd V) C# mset (removel %p D)
mset (%o # removel %2p ®) = mset ®
by (simp add: insert-subset-eq-iff)+
hence I $+ ® =T $F (%0 # removel 2p ®)
vV T. T $F (removel %p @) =T $F 20,
by (metis list.set-intros(1) measure-cons-removel set-mset-mset,
metis Cons.hyps)
moreover
have (uncurry (1)) = (A 9. fst 1 U snd 1)
(uncurry (—)) = (A . fst ¢ — snd)
by fastforce+
hence mset 70’ C# mset (9x U 2o # 9x — %p # 20¢)
mset (9x U 2p # ?x — %o # 20y) CH# mset 20’
(is mset X C# mset ?Y)
by fastforce+
hence I' $§+ 20’ =T $F (% # ?2d)
using measure-formula-right-split
measure-msub-weaken
by blast
ultimately have I" $- & =T $+ 2®’
by fastforce

}

65

then show ?case by blast
qed
with assms show ?thesis by blast
qed

primrec (in classical-logic)
submerge-witness :: ('a x ‘a) list = ('a x 'a) list = (‘a x 'a) list (&)
where
¢ X [] = map (A o. (L, (uncurry (U)) o)) &
eX (6 #A) =
(case find (A o. (uncurry (—)) o = snd §) X of
None = € X A
| Some o = (fst o, (fst 6 N fst o) U snd o) # (€ (removel o X) A))

lemma (in classical-logic) submerge-witness-stronger-theory-left:
map (uncurry (1)) X < map (uncurry (1)) (€ 3 A)
proof —
have V . map (uncurry (1)) ¥ < map (uncurry (1)) (€ X A)
proof (induct A)
case Nil

{
fix ¥

{
fix ¢
have - (LU p) = ¢
unfolding disjunction-def
using ex-falso-quodlibet modus-ponens excluded-middle-elimination by blast
}
note tautology = this
have map (uncurry (U)) £ < map (uncurry (U)) (€ X [])
by (induct X,
Stmp,
simp add: stronger-theory-left-right-cons tautology)
}
then show ?case by auto
next
case (Cons § A)
{
fix ¥
have map (uncurry (1)) ¥ < map (uncurry (U)) (€ 3 (§ # A))
proof (cases find (A o. (uncurry (—)) o = snd §) ¥ = None)
case True
then show ?thesis using Cons by simp
next
case Fulse
from this obtain o where
o: find (Ao. uncurry (=) o = snd §) ¥ = Some o
uncurry (—) o = snd 6
o€ set X

66

using find-Some-predicate find-Some-set-membership
by fastforce
{
fix a g~
have - (aU (yMNa) U B) = (a U p)
proof —
let % = ({a) U ((v) 11 {a)) U (8)) = ({a) U (B))
have VO M |=p,0p % by fastforce
hence | (| %o |) using propositional-semantics by blast
thus ?thesis by simp
qed
}
note tautology = this
let %o = fst o
let 6 = snd o
let 7y = fst o
have (uncurry (U)) = (A 0. fst o U snd o) by fastforce
hence (uncurry (U)) o = %a U 28 by simp
hence A: - (Pa U (9y 1M %a) U 28) — (uncurry (U)) o using tautology by
stmp
moreover
have map (uncurry (U)) (removel o X)
=< map (uncurry (U)) (&€ (removel o ¥) A)
using Cons by simp
ultimately have A:
map (uncurry (U)) (o # (removel o X))
< (2a U (29N 20) U 28 # map (uncurry (U)) (€ (removel o X) A))
using stronger-theory-left-right-cons by fastforce
from o(3) have mset ¥ = mset (o # (removel o X))
by simp
hence mset (map (uncurry (U)) X) = mset (map (uncurry (U)) (o #
(removel o X))
by (metis mset-map)
hence B: map (uncurry (U)) ¥ =< map (uncurry (1)) (o # (removel o X))
by (simp add: msub-stronger-theory-intro)
have (fst o
U (fst 6 M fst o)
U snd o # map (A(z, y). z U y) (¢ (removel o X) A)) = map (A\(z,
y).z Uy X
by (metis
(no-types, lifting)
A B
stronger-theory-transitive
uncurry-def)
thus ?thesis using A B o by simp
qed
}
then show ?case by auto
qed

67

thus ?thesis by blast
qed

lemma (in classical-logic) submerge-witness-msub:
mset (map snd (€ X A)) C# mset (map (uncurry (L)) (I X A))
proof —
have V X. mset (map snd (€ ¥ A)) C# mset (map (uncurry (L)) (J L A))
proof (induct A)
case Nil
{
fix ¥
have mset (map snd (€ X [])) C#
mset (map (uncurry (U)) (J 2
by (induct ¥, simp+)
}
then show ?case by blast
next
case (Cons § A)
{
fix ¥
have mset (map snd (€ X (§ # A))) C
mset (map (uncurry (L)) (3 X (0 A)))
using Cons
by (cases find (A 0. (uncurry (—)) o = snd §) ¥ = None,
sStmp,
meson diff-subset-eq-self
insert-subset-eq-iff
mset-subset-eq-add-mset-cancel
subset-mset.dual-order.trans,
fastforce)

)

}

then show ?case by blast
qed
thus ?thesis by blast
qed

lemma (in classical-logic) submerge-witness-stronger-theory-right:
map (uncurry (U)) A
=< (map (uncurry (—)) (€ £ A) Q map (uncurry (L)) (J E A) © map snd (€ X
A)
proof —
have V . map (uncurry (U)) A
=< (map (uncurry (—)) (¢ X A) Q map (uncurry (U)) (J X A) & map
snd (€ X A))
proof(induct A)
case Nil
then show ?case by simp
next

case (Cons § A)

68

fix ¥

have map (uncurry (1)) (6 # A) <
(map (uncurry (—)) (€ % (0 # A))
Q map (uncurry (1)) (I X (8 # A))
© map snd (€ X (§ # A)))

proof (cases find (A o. (uncurry (—)) o = snd §) ¥ = None)
case True
from Cons obtain ¢ where ¢:
map snd ® = map (uncurry (L)) A
mset (map fst ®) CH#
mset (map (uncurry (—)) (€ 2 A)
Q map (uncurry (1)) (J £ A) & map snd (€ £ A))
V(v, o)eset .-y — 0o
unfolding stronger-theory-relation-def
by fastforce
let 2@’ = (uncurry (U) 6, (uncurry (U)) 6
have map snd ?®' = map (uncurry (U)) (
moreover
from ®(2) have A:
image-mset fst (mset D)
St {#z = y. (2, y) e mset (€ X A)#}
+ ({#z U y. (z, y) €# mset (J X A)#} — image-mset snd (mset (€ X

) # @
0 # A) using ®(1) by simp

by simp
have image-mset snd (mset (€ X A)) CH# {#z U y. (z, y) €# mset (J T

using submerge-witness-msub by force
then have B: {#case 0 of (z, za) = = U za#}
C# add-mset (case § of (z, za) = z U za)
{#z U y. (z, y) €# mset (J X A)#} — image-mset snd
(mset (¢ X A))
by (metis add-mset-add-single subset-mset.le-add-diff)
have add-mset (case ¢ of (z, xa) = z U za) {#z U y. (z, y) €# mset (J X
A)#)
— image-mset snd (mset (€ ¥ A)) — {#case 0 of (z, za) = = U za#}
= {#z U y. (z, y) €# mset (J X A)#} — image-mset snd (mset (€ X

A))
by force
then have add-mset (case § of (z, za) = z U za) (image-mset fst (mset
?))
— (add-mset (case 6 of (z, za) = z U za) {#z U y. (z, y) €H# mset
(3 2 A)#}

— image-mset snd (mset (€ £ A)))
CH {#2 > v (3, y) €4 mset (€ 3 A}
using A B by (metis (no-types) add-mset-add-single
subset-eq-diff-conv
subset-mset. diff-diff-right)
hence add-mset (case ¢ of (z, za) = = U za) (image-mset fst (mset P))

69

CH# {#z = y. (2, y) €# mset (€T A)#}
+ (add-mset (case 6 of (z, za) = z U za) {#2z U y. (z, y) €# mset (J
I A)#}

— image-mset snd (mset (€ X A)))
using subset-eq-diff-conv by blast
hence
mset (map fst ?@') CH#

mset (map (uncurry (—)) (€ X (6 # A))
Q@ map (uncurry (1)) (I X (6 # A))
© map snd (€ X (§ # A)))

using True ®(2)
by simp
moreover have V (v, o)€set 20’ v — o
using ®(3) trivial-implication by auto
ultimately show ?thesis
unfolding stronger-theory-relation-def
by blast
next
case Fulse
from this obtain o where
o: find (Ao. uncurry (=) o = snd §) ¥ = Some o
uncurry (—) o = snd §
using find-Some-predicate
by fastforce
moreover from Cons have
map (uncurry (L)) A =<
(map (uncurry (—)) (€ (removel o ¥) A) @
removel ((fst 6 M fst o) U snd o)
(((fst 6 M fst o) U snd o # map (uncurry (1)) (J (removel o X) A))
© map snd (€ (removel o) A)))
unfolding stronger-theory-relation-alt-def
by simp
moreover
{
fix a g~
have - (a = (W MNa)UB)) = (v U (= B))
proof —
let % = ((a) = (((v) 11 {@)) U (8)) = ({7) U ({a) — (8)))
have YO M |=p,0p % by fastforce
hence - (%p |) using propositional-semantics by blast
thus ?thesis by simp
qged
}
note tautology = this
let %o = fst o
let 76 = snd o
let 7y = fst §
have (A 0. uncurry (U) §) = (A 6. fst § U snd 9)
(A 0. uncurry (=) o) = (A 0. fst 0 — snd o) by fastforce+

70

hence (uncurry (U) §) = (?y U (a0 — 25)) using o(2) by simp
hence F (a — ((7y N %a) U 28)) — (uncurry (U) 0) using tautology by
auto
ultimately show ?thesis
using stronger-theory-left-right-cons
by fastforce
qed
}
then show ?case by auto
qged
thus ?thesis by simp
qed

lemma (in classical-logic) merge-witness-cons-measure-deduction:
assumes map (uncurry (U)) X :F ¢
and mset (map snd A) C# mset (map (uncurry (—)) X QT & map snd X)
and map (uncurry (L)) A $+ @
shows map (uncurry (U)) (J X A) $F (¢ # @)
proof —
let X' =¢X A
let T' = map (uncurry (—)) 22’ Q map (uncurry (L)) (I X A) © map snd 7%’
have T $+ @
using assms(3)
submerge-witness-stronger-theory-right
measure-stronger-theory-left-monotonic
by blast
moreover have map (uncurry (U)) 22"+ ¢
using assms(1)
stronger-theory-deduction-monotonic
submerge-witness-stronger-theory-left
by blast
ultimately show ?thesis
using submerge-witness-msub
by fastforce
qed

primrec (in classical-logic)

recover-witness-A :: ('a x 'a) list = ('a x 'a) list = (‘a x 'a) list (P)

where

P[] =%
T8 #A) =
(case find (A 0. snd o = (uncurry (U)) §) ¥ of
None =P X A
| Some o = (fst o U fst §, snd 0) # (P (removel o ¥) A))

primrec (in classical-logic)
recover-complement-A :: (‘a x 'a) list = (‘a x 'a) list = (‘a x 'a) list (P°)
where

POSN=1

71

RUSNCERIVES
(case find (A 0. snd 0 = (uncurry (U)) 6) £ of
None = § # B¢ ¥ A
| Some o = (PBC (removel o X) A))

primrec (in classical-logic)
recover-witness-B :: (‘a x 'a) list = ('a x 'a) list = ('a x 'a) list (Q)
where
QX[=1
QS (0 #A) =
(case find (A 0. (snd o) = (uncurry (L)) 0) ¥ of
None = 6 # Q X A
| Some o = (fst 6, (fst o U fst §) — snd) # (Q (removel o ¥) A))

lemma (in classical-logic) recover-witness-A-left-stronger-theory:
map (uncurry (1)) X < map (uncurry (U)) (P X A)
proof —
have V X. map (uncurry (1)) ¥ < map (uncurry (1)) (P 2 A)
proof (induct A)
case Nil
{
fix ¥
have map (uncurry (1)) ¥ < map (uncurry (U)) (B X [])
by (induct X, simp+)
}

then show ?case by auto
next
case (Cons § A)
{
fix ¥
have map (uncurry (1)) ¥ < map (uncurry (1)) (P X (§ # A))
proof (cases find (\ 0. snd o = uncurry (U) §) X = None)
case True
then show ?thesis using Cons by simp
next
case Fulse
from this obtain o where
o: find (Ao. snd 0 = uncurry (U)) ¥ = Some o
snd o = uncurry (U) 0
o€ set X
using find-Some-predicate
find-Some-set-membership
by fastforce
let 2o = fst o
let 26 = fst ¢
let 7y = snd §
have uncurry (L) = (M. fst § U snd &) by fastforce
hence + ((?a U 25) U ?y) — uncurry (U) o
using o(2) biconditional-def disjunction-associativity

72

by auto
moreover
have map (uncurry (U)) (removel o 3)
= map (uncurry (U)) (P (removel o X) A)
using Cons by simp
ultimately have map (uncurry (L)) (o # (removel o X))
= map (uncurry (U)) (B X (6 # A))

using o(1)
by (simp, metis stronger-theory-left-right-cons)
moreover
from o(3) have mset ¥ = mset (o # (removel o X))
by simp

hence mset (map (uncurry (U)) X) = mset (map (uncurry (U)) (o #
(removel o X))
by (metis mset-map)
hence map (uncurry (1)) X < map (uncurry (1)) (o # (removel o X))
by (simp add: msub-stronger-theory-intro)
ultimately show ?thesis
using stronger-theory-transitive by blast
qed
}
then show ?case by blast
qed
thus ?thesis by auto
qed

lemma (in classical-logic) recover-witness-A-mset-equiv:
assumes mset (map snd X) C# mset (map (uncurry (1)) A)
shows mset (map snd (B X A Q PC X A)) = mset (map snd A)
proof —
have V X. mset (map snd ¥) C# mset (map (uncurry (U)) A)
— mset (map snd (P X A QP X A)) = mset (map snd A)
proof (induct A)
case Nil
then show ?case by simp
next
case (Cons § A)
{
fix ¥ :: (Ya x 'a) list
assume *: mset (map snd X) C# mset (map (uncurry (L))
have mset (map snd (B X (§ # A) @PC X (§ # A))) =m
4 7))
proof (cases find (A 0. snd o = uncurry (U) §) X = None)
case True
hence uncurry (U) § ¢ set (map snd X)
proof (induct X)
case Nil
then show ?case by simp
next

(0 # A))
set (map snd (&

73

case (Cons o)
then show ?case
by (cases (uncurry (U)) 6 = snd o, fastforce+)
qed
moreover have mset (map snd ¥) C# mset (map (uncurry (U)) A) +
{#uncurry (U) d#}
using * by fastforce
ultimately have mset (map snd ¥) C# mset (map (uncurry (1)) A)
by (metis diff-single-trivial
in-multiset-in-set
subset-eq-diff-conv)
then show ?thesis using Cons True by simp
next
case Fulse
from this obtain o where
o: find (Ao. snd o = uncurry (U) §) ¥ = Some o
snd o = uncurry (U) d
o€ set X
using find-Some-predicate
find-Some-set-membership
by fastforce
have A: mset (map snd)
C# mset (map (uncurry (U)) A) + add-mset (uncurry (U) 0) (mset [])
using * by auto
have (fst o, uncurry (U) §) €# mset
by (metis (no-types) o(2) o(8) prod.collapse set-mset-mset)
then have B: mset (map snd (removel (fst o, uncurry (L) §) X))
= mset (map snd) — {#uncurry (U) 6#}
by (meson removel-pairs-list-projections-snd)
have (fst o, uncurry (U)) = o
by (metis o(2) prod.collapse)
then have mset (map snd X) — add-mset (uncurry (U) 6) (mset [])
= mset (map snd (removel o X))
using B by simp
hence mset (map snd (removel o X)) C# mset (map (uncurry (U)) A)
using A by (metis (no-types) subset-eq-diff-conv)
with o(1) Cons show ?thesis by simp
qed
}
then show ?case by simp
qed
with assms show ?thesis by blast
qed

lemma (in classical-logic) recover-witness-B-stronger-theory:
assumes mset (map snd X) C# mset (map (uncurry (U)) A)
shows (map (uncurry (—)) ¥ Q map (uncurry (U)) A © map snd %)
= map (uncurry (U)) (Q X A)
proof —

74

have V X. mset (map snd ¥) C# mset (map (uncurry (L)) A)
— (map (uncurry (—)) X Q map (uncurry (U)) A & map snd X)
= map (uncurry (U)) (Q X A)
proof(induct A)
case Nil
then show Zcase by simp

next
case (Cons § A)
{
fix ¥ :: (‘a x 'a) list
assume *: mset (map snd X) C# mset (map (uncurry (1)) (6§ # A))
have (map (uncurry (—)) ¥ Q@ map (uncurry (U)) (0 # A) © map snd X)
=< map (uncurry (1)) (Q X (§ # A))
proof (cases find (A o. snd 0 = uncurry (U) §) ¥ = None)
case True
hence uncurry (U) § ¢ set (map snd %)
proof (induct X)
case Nil
then show ?case by simp
next
case (Cons o)
then show ?case
by (cases uncurry (U) 6 = snd o, fastforce+)
qed
hence mset (map (uncurry (—)) ¥ Q (map (uncurry (U)) (§ # A)) © map
snd X)
= mset (uncurry (U) 6 # map (uncurry (—)) X
Q@ map (uncurry (U)) A © map snd X)
mset (map snd X) CH# mset (map (uncurry (U)) A)
using *
by (simp, simp,
metis add-mset-add-single
diff-single-trivial
image-set
mset-map
set-mset-mset
subset-eq-diff-conv)
moreover from this have
(map (uncurry (—)) ¥ Q map (uncurry (U)) A & map snd X)
=< map (uncurry (1)) (Q X A)
using Cons
by auto
hence (uncurry (L) § # map (uncurry (—)) £ @ map (uncurry (L)) A &
map snd X)
= map (uncurry (U)) (Q X (0 # A))
using True
by (simp add: stronger-theory-left-right-cons trivial-implication)
ultimately show ?thesis
unfolding stronger-theory-relation-alt-def

75

by simp
next
case Fulse
let T' = map (uncurry (—)) ¥ @ (map (uncurry (U)) (6 # A)) © map snd

from Fualse obtain o where
o: find (Ao. snd o = uncurry (U) 6) ¥ = Some o
snd o = uncurry (L) 0
o€ sets
using find-Some-predicate
find-Some-set-membership
by fastforce
let Ty = map (uncurry (—)) (removel o X)
Q (map (uncurry (U)) A) © map snd (removel o X)
let %a = fst o
let 98 = fst
let v = snd §
have uncurry (U) = (A 0. fst o U snd o)
uncurry (—) = (A 0. fst 0 — snd o)
by fastforce+
hence uncurry (—) o = a0 — (98 U #y)
using o(2)
by simp
from o(3) have mset (o # (removel o X)) = mset ¥ by simp
hence #&: mset (map snd (o # (removel o X))) = mset (map snd X)
mset (map (uncurry (—)) (o # (removel o X))) = mset (map
(uncurry (—)) X)
by (metis mset-map)+
hence mset 7I" = mset (map (uncurry (—)) (o # (removel o X))
Q@ (uncurry (U) 6 # map (uncurry (U)) A)
© map snd (o # (removel o X)))
by simp
hence ' < (2a — (28 U 2y) #)
using o(2) «uncurry (—) o = 2o — (98 U)
by (simp add: msub-stronger-theory-intro)
moreover have mset (map snd (removel o X)) C# mset (map (uncurry
L) A)
using #&(1)
by (simp,
metis (no-types, lifting)
* 0(2)
list.simps(9)
mset.simps(2)
mset-map
uncurry-def
mset-subset-eq-add-mset-cancel)
with Cons have Q: Ty < map (uncurry (U)) (Q (removel o ¥) A) by

{

simp

76

fix a B
have - (8 U (a U 8) = 7) = (@ = (8 U 7))
proof —
let % = ((8) U ((a) U () = (1)) = ((a) = () U (1))
have YON. M |=p,0p % by fastforce
hence - (| %p |) using propositional-semantics by blast
thus ?thesis by simp
qed
}
hence F (76 U (2a U 28) = 2y) — (%a — (28 U %))
by simp
hence (%o — (968 U 2y) # T) = map (uncurry (U)) (Q X (§ # A))
using o (1) ©
by (simp, metis stronger-theory-left-right-cons)
ultimately show ?thesis
using stronger-theory-transitive by blast
qed
}
then show ?case by simp
qed
thus ?thesis using assms by blast

qged

lemma (in classical-logic) recover-witness-B-mset-equiv:

assumes mset (map snd X) CH# mset (map (uncurry (U)) A)
shows mset (map snd (Q ¥ A))
= mset (map (uncurry (—)) (P X A) @ map snd A © map snd (P X A))

proof —

have V X. mset (map snd ¥) C# mset (map (uncurry (L)) A)
— mset (map snd (Q £ A)) = mset (map (uncurry (—)) (P £ A) Q map

snd (BC T A))

proof (induct A)
case Nil
then show Zcase by simp

next

case (Cons § A)
{
fix ¥ :: (Ya x 'a) list
assume *: mset (map snd X) C# mset (map (uncurry (U)) (& # A))
have mset (map snd (Q ¥ (6 # A)))
= mset (map (uncurry (—)) (B X (5§ # A)) @ map snd (BPC X (§ # A)))
proof (cases find (A 0. snd 0 = uncurry (U) §) ¥ = None)
case True
hence uncurry (U) § ¢ set (map snd X)
proof (induct ¥)
case Nil
then show ?case by simp
next
case (Cons o)

77

then show ?case
by (cases (uncurry (U)) 6 = snd o, fastforce+)
qed
moreover have mset (map snd ¥) C# mset (map (uncurry (U)) A) +
{#uncurry (U) 0#}
using x by force
ultimately have mset (map snd) C# mset (map (uncurry (1)) A)
by (metis diff-single-trivial in-multiset-in-set subset-eq-diff-conv)
then show ?thesis using True Cons by simp
next
case Fulse
from this obtain o where
o: find (Ao. snd o = uncurry (U) 6) ¥ = Some o
snd o = uncurry (U) §
o€ set X
using find-Some-predicate
find-Some-set-membership
by fastforce
hence (fst o, uncurry (U) §) €# mset ¥
by (metis (full-types) prod.collapse set-mset-mset)
then have mset (map snd (removel (fst o, uncurry (U) §) X))
= mset (map snd ¥) — {#Huncurry () 04}
by (meson removel-pairs-list-projections-snd)
moreover have
mset (map snd X)
C# mset (map (uncurry (U)) A) + add-mset (uncurry (U) 6) (mset [])
using x by force
ultimately have mset (map snd (removel o X))
C# mset (map (uncurry (U)) A)
by (metis (no-types) o(2) mset.simps(1) prod.collapse subset-eq-diff-conv)
with o(1) Cons show ?thesis by simp
qed
}
then show ?case by blast
qed
thus “thesis
using assms recover-witness-A-mset-equiv
by (simp, metis add-diff-cancel-left’)
qed

lemma (in classical-logic) recover-witness-B-right-stronger-theory:
map (uncurry (—)) A 2 map (uncurry (—)) (Q ¥ A)
proof —
have V X. map (uncurry (—)) A < map (uncurry (—)) (Q X A)
proof (induct A)
case Nil
then show ?case by simp
next

case (Cons § A)

78

fix ¥
have map (uncurry (=)) (6 # A) < map (uncurry (—)) (Q X (6 # A))
proof (cases find (A 0. snd 0 = uncurry (U) §) ¥ = None)
case True
then show ?thesis
using Cons
by (simp add: stronger-theory-left-right-cons trivial-implication)
next
case Fulse
from this obtain o where o:
find (Ao. snd o = uncurry (U)) ¥ = Some o
by fastforce

let 2o = fst §
let 6 = snd §
let v = fst o

have uncurry (—) = (Ad. fst 6 — snd 0) by fastforce
hence uncurry (—) 6 = %a — 98 by auto
moreover have - (%o — (9y U %a) = 98) — %a — 20
unfolding disjunction-def
using aziom-k axiom-s modus-ponens flip-implication
by blast
ultimately show ?thesis
using Cons o
by (simp add: stronger-theory-left-right-cons)
qed
}
then show Zcase by simp
qed
thus ?thesis by simp
qed

lemma (in classical-logic) recover Witnesses-mset-equiv:
assumes mset (map snd A) C# mset T
and mset (map snd X) C# mset (map (uncurry (U)) A)
shows mset (I' © map snd A)
= mset ((map (uncurry (=)) (P X A) QT © map snd (P X A)) © map
snd (Q X A))
proof —
have mset (I' © map snd A) = mset (I © map snd (BPC L A) © map snd (P
% A))
using assms(2) recover-witness-A-mset-equiv
by (simp add: union-commute)
moreover have V X. mset (map snd X) C# mset (map (uncurry (L)) A)
— mset (I © map snd (PC T A))
= (mset ((map (uncurry (—)) (P X A)QT) © map snd (Q &
A))
using assms(1)
proof (induct A)

79

case Nil
then show ?case by simp
next
case (Cons § A)
from Cons.prems have snd § € set I’
using mset-subset-eqD by fastforce
from Cons.prems have Q: mset (map snd A) C# mset T
using subset-mset.dual-order.trans
by fastforce
{
fix ¥ :: (Ya x 'a) list
assume *: mset (map snd X) C# mset (map (uncurry (1)) (6 # A))
have mset (I' © map snd (PC X (§ # A)))
= mset ((map (uncurry (—)) (P (8 # A)) QT) © map snd (Q X (§ #
A))

proof (cases find (A 0. snd o = uncurry (U) §) X = None)
case True
hence uncurry (U) § ¢ set (map snd X)
proof (induct X)
case Nil
then show ?case by simp
next
case (Cons o X)
then show ?case
by (cases (uncurry (U)) 6 = snd o, fastforce+)
qged
moreover have mset (map snd X) C# mset (map (uncurry (U)) A) +
{#uncurry (U) d#}
using x by auto
ultimately have mset (map snd X) C# mset (map (uncurry (1)) A)
by (metis (full-types) diff-single-trivial in-multiset-in-set subset-eq-diff-conv)
with Cons.hyps O have mset (I' © map snd (BC X A))
= mset ((map (uncurry (—=)) (P X A) QT) & map snd
(@ a)
by simp
thus “thesis using True <snd 6 € set ' by simp
next
case Fulse
from this obtain o where o:
find (Ao. snd o = uncurry (U) 0) ¥ = Some o
snd o = uncurry (U) §
o€ set X
using find-Some-predicate
find-Some-set-membership
by fastforce
with x have mset (map snd (removel o X)) C# mset (map (uncurry (L))
A)
by (simp, metis (no-types, lifting)
add-mset-remove-trivial-eq

80

image-mset-add-mset
in-multiset-in-set
mset-subset-eq-add-mset-cancel)
with Cons.hyps have mset (I' © map snd (BC (removel o) A))
= mset ((map (uncurry (—)) (P (removel o) A) QT)
© map snd (Q (removel o X) A))
using © by blast
then show ?thesis using o by simp
qed
}
then show ?case by blast
qed
moreover have image-mset snd (mset (PC X A)) = mset (map snd A © map
snd (P X A))
using assms(2) recover-witness-A-mset-equiv
by (simp, metis (no-types) diff-union-cancelL list-subtract-mset-homomorphism
mset-map)
then have mset I' — (image-mset snd (mset (B X A)) + image-mset snd (mset
(B T A))
= {#z = y. (z, y) €# mset (P £ A)#}
+ (mset T' — image-mset snd (mset (P X A))) — image-mset snd (mset
(@A)
using calculation
assms(2)
recover-witness- A-mset-equiv
recover-witness- B-mset-equiv
by fastforce
ultimately
show ?thesis
using assms recover-witness-A-mset-equiv
by simp
qed

theorem (in classical-logic) measure-deduction-generalized-witness:
I'$F (@ @ U) = (3 X. mset (map snd) CH# mset T' A
map (uncurry (L)) ¥ $= & A
(map (uncurry (—)) X QT & (map snd X)) $F ¥)
proof —
have VI U. T $§+ (& @ ¥) = (3 X. mset (map snd ¥) CH# mset I' A
map (uncurry (U)) ¥ $- & A
(map (uncurry (—)) ¥ QT & (map snd X)) $- U)
proof (induct D)

case Nil
{
fix ' U
have I" $F ([] @ ¥) = (3X. mset (map snd) CH# mset I' A
map (uncurry (U)) X $F [A
map (uncurry (—)) ¥ QT © map snd ¥ $- ¥)

proof (rule iffT)

81

assume I' $- ([] @ ©)
moreover

have I" 8+ ([] @ ¥) = (mset (map snd []) C# mset T' A
map (uncurry (U)) [] $F [A
map (uncurry (—)) [@ T & (map snd []) $F)

by simp
ultimately show 3%. mset (map snd X) C# mset T' A
map (uncurry (UJ)) X S [] A
map (uncurry (—)) X QT & map snd ¥ $+ ¥
by metis
next
assume 3X. mset (map snd X) CH# mset T' A
map (uncurry (U)) X - [] A
map (uncurry (—)) ¥ QT © map snd ¥ $+ ¥
from this obtain 3 where
3: mset (map snd) C# mset T
map (uncurry (—)) X QT & map snd X $+ ([] @ ©)
by fastforce
hence (map (uncurry (—)) ¥ QT © map snd X) < T
using witness-stronger-theory by auto
with X(2) show I $- ([] @ ¥)
using measure-stronger-theory-left-monotonic by blast
qed
}
then show ?case by blast
next
case (Cons ¢ @)

fixI' ¥
have I' $F ((p # @) @) = (IX. mset (map snd X) CH# mset I' A
map (uncurry (U)) X $+ (¢ # ®) A
map (uncurry (—)) X QT © map snd X $- U)
proof (rule iffT)
assume I' $F ((¢ # @) @ U)
from this obtain > where
Y: mset (map snd X) C# mset T
map (uncurry (L)) X :F ¢
map (uncurry (—)) X QT & (map snd X) $+ (P @)
(is 7T $F (& @ 1))
by auto
from this(3) obtain A where
A: mset (map snd A) CH# mset 7Ty
map (uncurry (L)) A $+ @
map (uncurry (—)) A @ Ty © (map snd A) $- U
using Cons
by auto
let 2'=3X A
have map (uncurry (U)) 7% $F (p # @)
using A(1) A(2) X(2) merge-witness-cons-measure-deduction by blast

82

moreover have mset (map snd %) C# mset T
using A(1) X(1) merge-witness-msub-intro by blast
moreover have map (uncurry (—)) 252’ QT © map snd 7%’ $+ ¥
using A(1) A(3) merge-witness-measure-deduction-intro by blast
ultimately show
33, mset (map snd X) CH# mset T A
map (uncurry (L)) L $ (@ # @) A
map (uncurry (—)) X QT © map snd ¥ $F T
by fast

next

assume 3X. mset (map snd X) C# mset T' A
map (uncurry (L)) X $F (¢ # @) A
map (uncurry (—)) £ QT © map snd ¥ $+ ¥
from this obtain A where A:
mset (map snd A) C# mset T
map (uncurry (L)) A $+ (o # @)
map (uncurry (—)) A QT & map snd A $+ U
by auto
from this obtain ¥ where X:
mset (map snd ¥) CH# mset (map (uncurry (U)) A)
map (uncurry (U)) ¥ :F ¢
map (uncurry (—)) ¥ Q (map (uncurry (U)) A) © map snd X $- @
by auto
let 20 =P X A
let Z=Q9 %Y A
let 7Ty = map (uncurry (=) 22 QT © map snd %2
let 'y = map (uncurry (—)) 2 Q Ty © map snd 7=
have mset (I' © map snd A) = mset (To © map snd 72)
using A(1) X(1) recover Witnesses-mset-equiv by blast
hence (I' © map snd A) <X (v © map snd 72)
by (simp add: msub-stronger-theory-intro)
hence T'; $+- ¥
using A(8) measure-stronger-theory-left-monotonic
stronger-theory-combine
recover-witness- B-right-stronger-theory
by blast
moreover
have mset (map snd 7Z) C# mset T
using (1) A(1) recover-witness-B-mset-equiv
by (simp,
metis list-subtract-monotonic
list-subtract-mset-homomorphism
mset-map)
moreover
have map (uncurry (1)) 72 $+ &
using X (1) recover-witness-B-stronger-theory
Y(8) measure-stronger-theory-left-monotonic by blast
ultimately have Ty $- (¢ @ U)
using Cons by fast

83

moreover
have mset (map snd 7Q) C# mset (map snd A)
using ¥(1) recover-witness-A-mset-equiv
by (simp, metis mset-subset-eq-add-left)
hence mset (map snd Q) C# mset I’ using A(1) by simp
moreover
have map (uncurry (L)) 2Q = ¢
using X(2)
recover-witness-A-left-stronger-theory
stronger-theory-deduction-monotonic
by blast
ultimately show I' §- ((p # ®) Q ¥)
by (simp, blast)
qed
}
then show ?case by metis
qed
thus ?thesis by blast
qed

lemma (in classical-logic) measure-list-deduction-antitonic:
assumes I' $- ¥
and U - ¢
shows I' :- ¢
using assms
proof (induct U arbitrary: T ¢)
case Nil
then show ?case
using list-deduction-weaken
by simp
next
case (Cons ¢ ¥)
hence ¥ - ¢ — ¢
using list-deduction-theorem by blast
from <" $+ (¢p # U)) obtain ¥ where X:
mset (map snd ¥) C# mset T
map (uncurry (U)) X+
map (uncurry (—)) X QT S map snd X $- ¥
by auto
henceI' .- ¢¥ — ¢
using
measure-stronger-theory-left-monotonic
witness-stronger-theory
U —
Cons
by blast
moreover
have I :- o
using (1) X(2)

84

stronger-theory-deduction-monotonic
witness-weaker-theory
by blast
ultimately show ?case using list-deduction-modus-ponens by auto
qed

Finally, we may establish that ($+) is transitive.

theorem (in classical-logic) measure-transitive:
assumes I' $- A
and A $- A
shows T" $- A
using assms
proof (induct A arbitrary: T A)
case Nil
then show Zcase by simp
next
case (Cons § A)
from this obtain X where X:
mset (map snd X) C# mset A
map (uncurry (U)) X+ 4§
map (uncurry (—)) £ Q@ A & map snd ¥ $- A
by auto
hence T' $+ (map (uncurry (U)) X @ map (uncurry (—)) X Q@ A & (map snd
)
using Cons measure-witness-right-split
by simp
from this obtain ¥ where ¥:
mset (map snd V) C# mset T
map (uncurry (1)) ¥ $& map (uncurry (U)) X
map (uncurry (—=)) ¥ Q@ T' © map snd ¥ $& (map (uncurry (—)) X Q@ A ©
map snd X)
using measure-deduction-generalized-witness
by fastforce
have map (uncurry (—)) ¥ QT © map snd ¥ $- A
using X%(3) ¥(3) Cons
by auto
moreover
have map (uncurry (1)) ¥ :+§
using U(2) X(2) measure-list-deduction-antitonic
by blast
ultimately show ?case
using U(1)
by fastforce
qed

85

2.6 Measure Deduction Cancellation Rules

In this chapter we go over how to cancel formulae occurring in measure
deduction judgements.

The first observation is that tautologies can always be canceled on either
side of the turnstile.

lemma (in classical-logic) measure-tautology-right-cancel:
assumes F ¢
shows I' §- (p # ®) =T $+ @
proof (rule iffT)
assume I' $F (p # @)
from this obtain ¥ where X:
mset (map snd X) C# mset T
map (uncurry (U)) X :F ¢
map (uncurry (—)) £ QT © map snd ¥ §— @
by auto
thus I' $+ @
using measure-stronger-theory-left-monotonic
witness-stronger-theory
by blast
next
assume I' $- @
hence map (uncurry (—)) [] @ T' © map snd [| $+ @
mset (map snd []) C# mset T’
map (uncurry (U)) [] :F ¢
using assms
by simp+
thus T' $F (p # @)
using measure-deduction.simps(2)
by blast
qed

lemma (in classical-logic) measure-tautology-left-cancel [simp):
assumes F v
shows (y #T) $- @ =T $- @
proof (rule iffT)
assume (y # T) $+ @
moreover have I' $+ T’
by (simp add: stronger-theory-to-measure-deduction)
hence I' $+ (y # I)
using assms measure-tautology-right-cancel
by simp
ultimately show I' $+ &
using measure-transitive by blast
next
assume I' $- @
moreover have mset I' C# mset (v # I)
by simp

86

hence (y # 1) $+ T
using msub-stronger-theory-intro
stronger-theory-to-measure-deduction
by blast
ultimately show (y # I') $- @
using measure-transitive by blast
qed

lemma (in classical-logic) measure-deduction-one-collapse:
F$lp] =T+ ¢
proof (rule iffT)
assume I' $F [¢]
from this obtain 3 where
X: mset (map snd X) C# mset T
map (uncurry (U)) X :F ¢
by auto
hence map (uncurry (U)) ¥ < T
using witness-weaker-theory by blast
thus I' :F ¢ using X(2)
using stronger-theory-deduction-monotonic by blast
next
assume I ;- ¢
let 7% = map (A ~v. (L, 7))
have I' < map (uncurry (1)) 7%
proof (induct T')
case Nil
then show Zcase by simp
next
case (Cons v T)
have - (L U~y) — v
unfolding disjunction-def
using ez-falso-quodlibet modus-ponens excluded-middle-elimination
by blast
then show ?case using Cons
by (simp add: stronger-theory-left-right-cons)
qed
hence map (uncurry (U)) 25 :+ ¢
using «I' :F ¢ stronger-theory-deduction-monotonic by blast
moreover have mset (map snd 75) C# mset I' by (induct T, simp+)
ultimately show T" $+ [¢]
using measure-deduction.simps(1)
measure-deduction.simps(2)
by blast
qed

Split cases, which are occurrences of ¥ LI o # 1 — ¢ # ..., also cancel and
simplify to just ¢ # We previously established I" $F ¢ Ll o # ¢ — ¢
& =T $F p # ® as part of the proof of transitivity.

87

lemma (in classical-logic) measure-formula-left-split:
YUpH#HY > H# TP =p#
proof (rule iffT)
assume @ # I $- &
have) U # ¢ — o # T8 (YU # Y = p#1)
using stronger-theory-to-measure-deduction
stronger-theory-reflexive
by blast
hence y U # 1 — o # T $ (o # T)
using measure-formula-right-split by blast
with <o # T $F &y show p U # ¢ — o # T $+ @
using measure-transitive by blast
next
assume Y Lo # — o # T $- @
have p # T $F (@ # 1)
using stronger-theory-to-measure-deduction
stronger-theory-reflexive
by blast
hence p # T $F WU o # ¢ — o # 1)
using measure-formula-right-split by blast
with «p U # ¢ — ¢ # T $F & show ¢ # T $+ &
using measure-transitive by blast
qed

lemma (in classical-logic) measure-witness-left-split [simpl:

assumes mset (map snd X) CH# mset T

shows (map (uncurry (U)) X @ map (uncurry (—)) ¥ QT & (map snd X)) $+
O=T83%-9

using assms
proof (induct ¥ arbitrary: T')

case Nil

then show ?case by simp
next

case (Cons o)

let 72y = fst o

let 7y = snd o

let 7Ty = map (uncurry (U)) X Q map (uncurry (—)) ¥ QT © map snd (o #
)

let ' = map (uncurry (1)) (o # X) @ map (uncurry (—)) (0 # X) QT &
map snd (o # X)

assume mset (map snd (o # X)) C# mset T

hence A: add-mset (snd o) (image-mset snd (mset X)) C# mset T by simp

hence B: image-mset snd (mset ¥) + (mset T — image-mset snd (mset X))

= add-mset (snd o) (image-mset snd (mset X))
+ (mset I' — add-mset (snd o) (image-mset snd (mset X))
by (metis (no-types) mset-subset-eq-insertD subset-mset.add-diff-inverse sub-

set-mset-def)

have {#z — y. (z, y) €# mset #}

+ mset I' — add-mset (snd o) (image-mset snd (mset X))

88

= {#z — y. (z, y) €# mset T#}
+ (mset I' — add-mset (snd o) (image-mset snd (mset X))
using A subset-mset.diff-add-assoc by blast
hence {#z — y. (z, y) €# mset T#} + (mset T' — image-mset snd (mset X))
= add-mset (snd o) {#z — y. (z, y) €# mset T#}
+ mset I' — add-mset (snd o) (image-mset snd (mset X))
using B by auto
hence C:
mset (map snd ¥) C# mset I’
mset (map (uncurry (U)) ¥ Q map (uncurry (—)) ¥ QT © map snd)
= mset (%y # Ty)
using «mset (map snd (o # X)) CH# mset T)
subset-mset.dual-order.trans
by (fastforce+)
hence I' $F @ = (2 U &y # o — ?y #) $- @

proof —
have VI' A. = mset (map snd) C# mset T’
VoI 8o
V = mset (map (uncurry (L)) 3
Q@ map (uncurry (—)) X
QT & map snd X)
CH# mset A
VA
using Cons.hyps measure-msub-left-monotonic by blast
moreover
{

assume - I $- @
then have 3A. mset (snd o # map (uncurry (1)) X
@ map (uncurry (—)) &
QT & map snd (o0 # X))
CH# mset A
AN=T $- @
A ASHED
by (metis (no-types) Cons.hyps C subset-mset.dual-order.refl)
then have ?thesis
using measure-formula-left-split measure-msub-left-monotonic by blast
}

ultimately show %thesis

by (metis (full-types) C measure-formula-left-split subset-mset.dual-order.refl)
qed
moreover
have (uncurry (1)) = (XA 9. fst ¢ U snd 1)

(uncurry (—)) = (A . fst Y — snd ¥)

by fastforce+
hence mset T = mset (?x U %y # 9x — %y # o)

by fastforce
hence (?x U 2y # 2x — ¢y # To) S & = T/ $-

by (metis

(mono-tags, lifting)

89

measure-msub-left-monotonic
subset-mset.dual-order.refl)
ultimately have I $+ & = 7T §- @
by fastforce
then show ?case by blast
qed

We now have enough to establish the cancellation rule for ($+).

lemma (in classical-logic) measure-cancel: (A QT) $+ (A Q@ @) =T $- &
proof —
{
fix AT ®
assume I" $- @
hence (A QT) $+- (A @ @)
proof (induct A)
case Nil
then show ?case by simp
next
case (Cons § A)
let 7% = [(6, 9)]
have map (uncurry (U)) 2% 6
unfolding disjunction-def list-deduction-def
by (simp add: Peirces-law)
moreover have mset (map snd ?X) CH# mset (§ # A) by simp
moreover have map (uncurry (—)) 22 Q ((§ # A) QT') © map snd 7% $+
(A QD)
using Cons
by (simp add: trivial-implication)
moreover have map snd [(d, §)] = [§] by force
ultimately show Zcase
by (metis (no-types) measure-deduction.simps(2)
append-Cons
list.set-intros(1)
mset.simps(1)
mset.simps(2)
mset-subset-eq-single
set-mset-mset)
qed
} note forward-direction = this
{
assume (A QT) $- (A Q@)
hence I' §+ @
proof (induct A)
case Nil
then show ?case by simp
next
case (Cons § A)
have mset ((6 # A) @ @) = mset (A Q@ &) Q [§]) by simp
with Cons.prems have ((0 # A) QT) $+ (A @ @) @ [d])

90

by (metis measure-msub-weaken
subset-mset.dual-order.refl)
from this obtain > where >:
mset (map snd) CH# mset ((6 # A) QT
map (uncurry (U)) X $- (A @ @)
map (uncurry (—)) X Q ((6 # A) QT) & map snd ¥ $F []
by (metis append-assoc measure-deduction-generalized-witness)
show ?case
proof (cases find (A 0. snd 0 = §) ¥ = None)
case True
hence § ¢ set (map snd X)
proof (induct X)
case Nil
then show ?case by simp
next
case (Cons o X)
then show ?case by (cases snd o = §, simp+)
qged
with ¥(7) have mset (map snd ¥) C# mset (A Q T')
by (simp, metis add-mset-add-single
diff-single-trivial
mset-map
set-mset-mset
subset-eq-diff-conv)
thus ?thesis
using measure-stronger-theory-left-monotonic
witness-weaker-theory
Cons.hyps £(2)
by blast
next
case Fulse
from this obtain o x where
o0 = (x,9)
o€ set X
using find-Some-predicate
find-Some-set-membership
by fastforce
let 92’ = removel o X
let 94 = map (uncurry (U)) #2'
let X5 = map (uncurry (—)) 92
have mset ¥ = mset (7%’ Q [(x, 9)])
mset ¥ = mset ((x, 0) # 7%7)
using o by simp+
hence mset (map (uncurry (1)) X) = mset (map (uncurry (U)) (227 Q [(x,

9)]))

/

mset (map snd ¥) = mset (map snd ((x, 0) # 7X7))
mset (map (uncurry (—))) = mset (map (uncurry (—)) ((x, §) #
7))
by (metis mset-map)+

91

hence mset (map (uncurry (U)) ¥) = mset (724 Q [x U d])

) =
mset (map (uncurry (—)) X Q ((0 # A) @QT') & map snd X)
=mset (x > 6 # 725 Q (A QT) S map snd ?2)
by simp+
hence

%4 @ [y U S S (A @ D)
X — 0 # (72 Q (A QT) & map snd ?2') $F [J]
using X(2) X(3)
by (metis measure-msub-left-monotonic subset-mset.dual-order.refl, simp)
moreover
have F ((x = d) = d) — (x U 0)
unfolding disjunction-def
using modus-ponens
pseudo-scotus
flip-hypothetical-syllogism
by blast
ultimately have (24 Q 925 Q@ (A QT) © map snd ?2') $+ (A @ D)
using measure-deduction-one-collapse
list-deduction-theorem
list-deduction-modus-ponens
list-deduction-weaken
forward-direction
measure-transitive
by meson
moreover
have § = snd o
snd o € set (map snd X)
by (simp add: o(1), simp add: o(2))
with X(1) have mset (map snd (removel o X)) C# mset (removel 6 ((0
4 A) @)
by (metis insert-Diff M
insert-subset-eq-iff
mset-removel
o(1) o(2)
removel-pairs-list-projections-snd
set-mset-mset)
hence mset (map snd (removel o X)) C# mset (A QT') by simp
ultimately show ?thesis
using measure-witness-left-split Cons.hyps
by blast
qed
qged

with forward-direction show ?thesis by auto
qed

lemma (in classical-logic) measure-biconditional-cancel:

assumes F v < @
shows (Y #) $- (o # @) =T$- @

92

proof —
from assms have (v # @) X (¢ # @) (¢ # ©) < (v # D)
unfolding biconditional-def
by (simp add: stronger-theory-left-right-cons)+
hence (y # ®) $+ (p # D)
(o # @) 8t (v # @)
using stronger-theory-to-measure-deduction by blast+
moreover
have I' $- @ = (y # T') $F (v # D)
by (metis append-Cons append-Nil measure-cancel)+
ultimately
have ' $F & — v # T $- (p # D)
YyHIT S (0# D) =T @
using measure-transitive by blast+
thus “thesis by blast
qed

2.7 Measure Deduction Substitution Rules

Just like conventional deduction, if two formulae are equivalent then they
may be substituted for one another.

lemma (in classical-logic) right-measure-sub:
assumes F ¢ < ¢
shows I' $F (¢ # @) =T $F (v #)
proof —
have I' S (p # @) = (¢ #) $- (¢ # @ # @)
using measure-cancel [where A=[y)] and I'=I" and ®=¢ # @] by simp
also have ... = (Y # ') 8F (¢ # v # @)

using measure-cons-cons-right-permute by blast
also have ... =T $F (¢ # @)
using assms biconditional-symmetry-rule measure-biconditional-cancel by blast
finally show ?thesis .
qed

lemma (in classical-logic) left-measure-sub:
assumes F v < x
shows (Y #) S ® = (x #7T)$- @
proof —
have (y # T') 88 © = (x # v # I') 8- (x # @)
using measure-cancel [where A=[x| and I'=(y # I') and ®=®] by simp
also have ... = (Y # x #T) $F (x # @)
using
measure-cons-cons-right-permute
stronger-theory-to-measure-deduction
measure-transitive
stronger-theory-reflexive
by blast
also have ... = (y # T') $- @

93

using assms biconditional-symmetry-rule measure-biconditional-cancel by blast
finally show ?thesis .
qed

2.8 Measure Deduction Sum Rules

We next establish analogues of the rule in probability that P a + P
P (U B) + P (a1). This equivalence holds for both sides of the ($+)
turnstile.

lemma (in classical-logic) right-measure-sum-rule:
P$-(a#B#P)=T8% (cUBH#aNp#7I)
proof —
have A: mset (¢ UB# LB o> a# LH# D) =mset (B >a#LH#alp#D)
by simp
have B: F (8 — «a) « (8 = (a1 4))
proof —
let % = ((8) — (a)) & ((8) = ({a) 1 (8)))
have VO M |=p,0p %0 by fastforce
hence F (| % |) using propositional-semantics by blast
thus ?thesis by simp
qed
have C: F < (U (a1 f))
proof —
let % — (B) © ((8) U ({a) 11 (8)))
have YO M |=p,0p % by fastforce
hence - (| %p |) using propositional-semantics by blast
thus ?thesis by simp
qed
have T'$-(a# S # @) =TS (BUa# 8 —»a# S #2)
using measure-formula-right-split by blast
alsohave ... =T $- (e U B # 8 = a# B # D)
using disjunction-commutativity right-measure-sub by blast
alsohave ... =T $- (B > a# 8 # alU B # D)
by (metis A measure-msub-weaken subset-mset.dual-order.refl)
alsohave ... =T $- (B = (aNpB) # BH# all B # D)
using B right-measure-sub by blast
alsohave ... =TS (B# 8 = (aNP) # al S # D)
using measure-cons-cons-right-permute by blast
alsohave ... =T 8 U (aNB)# B - (aNP)#alf#2P)
using C right-measure-sub by blast
also have ... =T $- (a M B # a U S # D)
using measure-formula-right-split by blast
finally show ?thesis
using measure-cons-cons-right-permute by blast
qed

lemma (in classical-logic) left-measure-sum-rule:

(Q#BH#T)S-Dd=(a@UBH#anNB#T) S

94

proof —
have x: mset (U S # aNH#a# BH#HTD)=mset (a# LH#HaUBHaNP
I') by simp
have (a # S #T)$- & = (aU B #aNB#a# S#T) S (aUB#an B
4 o)
using measure-cancel [where A=[a U 8, a M] and I'=(a # S # I') and
&=o] by simp
alsohave ... = (aUBH#aNpHa#BH#D) S (a# 8 # D)
using right-measure-sum-rule by blast

alsohave ... = (a# f# aUSH#aNP#T)S- (a# [# D)
by (metis x measure-msub-left-monotonic subset-mset.dual-order.refl)
also have ... = (e U B #aNf#T) s+
using measure-cancel [where A=[a, f] and I'=(a U 8 # a N § # I') and
®=9P| by simp
finally show ?thesis .
qed

2.9 Measure Deduction Exchange Rule

As we will see, a key result is that we can move formulae from the right
hand side of the ($) turnstile to the left.

We observe a novel logical principle, which we call exchange. This principle
follows immediately from the split rules and cancellation rules.

lemma (in classical-logic) measure-exchange:
(Y#HD)S-(p# Q) =(p 27 #T) 8- (v = 0 # @)
proof —
have (Y # D) S (o # @) = (pUrv# o 27 #D)SE (YU # v = 0 # P)
using measure-formula-left-split
measure-formula-right-split
by blast+
thus ?thesis
using measure-biconditional-cancel
disjunction-commutativity
by blast
qged

The exchange rule allows us to prove an analogue of the rule in classical
logic that T :- ¢ = (~ ¢ # T') :k L for measure deduction.

theorem (in classical-logic) measure-negation-swap:
DS (o #) = (~ ¢ # 1) S (L # @)
proof —
have ' $F (¢ # @) = (L # 1) $F (L # p # @)
by (metis append-Cons append-Nil measure-cancel)
also have ... = (L # ') $F (p # L # @)
using measure-cons-cons-right-permute by blast
alsohave ... = (~ o # ') $F (L — o # L # @)
unfolding negation-def

95

using measure-exchange
by blast

also have ... = (~ ¢ # ') $+ (L # @)
using ez-falso-quodlibet

measure-tautology-right-cancel

by blast

finally show ?thesis .

qed

2.10 Definition of Counting Deduction

The theorem T' $ ¢ # ® = ~ @ # ' $+ L # ® gives rise to another kind of
judgement: how many times can a list of premises I' prove a formula ¢ ?. We
call this kind of judgment counting deduction. As with measure deduction,
bits of I' get "used up” with each dispatched conclusion.

primrec (in classical-logic)
counting-deduction :: 'a list = nat = 'a = bool (- #+ - - [60,100,59] 60)
where
I' #+ 0 ¢ = True
| T' #F (Suc n) ¢ = (3 V. mset (map snd V) C# mset ' A
map (uncurry (U)) U :F ¢ A
map (uncurry (—)) ¥ QT & (map snd) #+ n)

2.11 Converting Back and Forth from Counting
Deduction to Measure Deduction

We next show how to convert back and forth from counting deduction to
measure deduction.

First, we show that trivially counting deduction is a special case of measure
deduction.

lemma (in classical-logic) counting-deduction-to-measure-deduction:
T #F n o =T $- (replicate n @)
by (induct n arbitrary: T, simp+)

We next prove a few helpful lemmas regarding counting deduction.

lemma (in classical-logic) counting-deduction-tautology-weaken:
assumes F ¢
shows I' #+ n ¢
proof (induct n)
case ()
then show ?case by simp
next
case (Suc n)
hence T" $& (¢ # replicate n ¢)

96

using assms
counting-deduction-to-measure-deduction
measure-tautology-right-cancel
by blast
hence T' $+ replicate (Suc n) ¢
by simp
then show ?case
using counting-deduction-to-measure-deduction
by blast
qed

lemma (in classical-logic) counting-deduction-weaken:
assumes n < m
and I' #F m ¢
shows I' #F n ¢
proof —
have T" $+ replicate m ¢
using assms(2) counting-deduction-to-measure-deduction
by blast
hence T" $+ replicate n ¢
by (metis append-Nil2
assms(1)
le-iff-add
measure-deduction.simps(1)
measure-deduction-generalized-witness
replicate-add)
thus ?thesis
using counting-deduction-to-measure-deduction
by blast
qed

lemma (in classical-logic) counting-deduction-implication:
assumes F ¢ — ¢
and I' #F n ¢
shows I'' #+ n ¢
proof —
have replicate n ¥ < replicate n ¢
using stronger-theory-left-right-cons assms(1)
by (induct n, auto)
thus ?thesis
using assms(2)
measure-stronger-theory-right-antitonic
counting-deduction-to-measure-deduction
by blast
qed

Finally, we use I' $F o # ® = ~ ¢ # ' $+ L # ® to prove that measure
deduction reduces to counting deduction.

theorem (in classical-logic) measure-deduction-to-counting-deduction:

97

I'$E @ = (~ ®QT) #+- (length @) L
proof —
haveV ¥. T § (& Q ¥) = (~ @ QI') $+ (replicate (length) L @ T)
proof (induct ® arbitrary: T')
case Nil
then show Zcase by simp
next
case (Cons ¢ @)
{
fix ¥
have T $+ (0 # ®) QW) = (~p # 1) 8- (L # & Q V)
using measure-negation-swap by auto
moreover have mset (P Q (L # U)) = mset (L # & Q@ V)
by simp
ultimately have I' $F ((¢p # ®) Q U) = (~ ¢ # ') $+ (® @ (L # U))
by (metis measure-msub-weaken subset-mset.order-refl)
hence
IS ((p # @) @)
=(~®Q (~ @ #1I)) 3 (replicate (length @) L @ (L # ¥))
using Cons
by blast
moreover have
mset (~ ® Q (~ p #T')) = mset (~ (p# &) QT)
mset (replicate (length ®) L @ (L # ¥))
= mset (replicate (length (¢ # ®)) L Q V)
by simp+
ultimately have
TS ((p# @) QW) =~ (p# D) QT 3+ (replicate (length (¢ # ®)) L Q
w)
by (metis
append.assoc
append-Cons
append-Nil
length-Cons
replicate-append-same
list-subtract.simps(1)
map-ident replicate-Suc
measure-msub-left-monotonic
map-list-subtract-mset-containment)
}
then show ?case by blast
qed
thus ?thesis
by (metis append-Nil2 counting-deduction-to-measure-deduction)
qed

98

2.12 Measure Deduction Soundess

The last major result for measure deduction we have to show is soundness.
That is, judgments in measure deduction of lists of formulae can be trans-
lated into tautologies for inequalities of finitely additive probability measures
over those same formulae (using the same underlying classical logic).

lemma (in classical-logic) negated-measure-deduction:
~T 8k (o # @) =
(3 V. mset (map fst) CH# mset T A
~ (map (uncurry (\)) ¥) := o A
~ (map (uncurry (M) ¥ QT & (map fst ¥)) $+ D)
proof (rule iffT)
assume ~ I' $- (¢ # @)
from this obtain ¥ where ¥:
mset (map snd ¥) CH# mset (~ T)
map (uncurry (U)) ¥ :+ ¢
map (uncurry (—)) ¥ Q@ ~ T © map snd ¥ $-
using measure-deduction.simps(2)
by metis
from this obtain A where A:
mset A C#H mset T’
map snd ¥ =~ A
unfolding map-negation-def
using mset-sub-map-list-exists [where f=~ and I'=T
by metis
let 20 = zip A (map fst V)
from A(2) have map fst 7V = A
unfolding map-negation-def
by (metis length-map map-fst-zip)
with A(1) have mset (map fst ?¥) C# mset T
by simp
moreover have V A. map snd ¥V = ~ A —
map (uncurry (U)) ¥ < ~ (map (uncurry (\)) (zip A (map fst
)

proof (induct ¥)
case Nil
then show Zcase by simp
next
case (Cons ¢ ¥)
let 2 = fst ¢
{
fix A
assume map snd (Y # ¥) =~ A
from this obtain v where v: ~ v = snd ¥ v = hd A by auto
from «map snd (¢ # ¥) = ~ As have map snd ¥ = ~ (tl A) by auto
with Cons.hyps have
map (uncurry (U)) U < ~ (map (uncurry (\)) (zip (¢ A) (map fst ¥)))
by auto

99

moreover

{
fix ¢ vy
have - ~(y \ ¢) = (¢ U ~7)
unfolding disjunction-def
subtraction-def
conjunction-def
negation-def
by (meson modus-ponens
flip-implication
hypothetical-syllogism)
} note tautology = this
have uncurry (U) = (A ¢. (fst ¥) U (snd v))
by fastforce
with v have uncurry (U) ¢ = % U ~ ~
by simp
with tautology have b ~(y \) — uncurry (U) v
by simp
ultimately have map (uncurry (U)) (v # ¥) =<
) ~ (map (uncurry (\)) ((zip ((hd A) # (L A)) (map fst (¢ #
v

using stronger-theory-left-right-cons ~v(2)
by simp
hence map (uncurry (U)) (¢ # ¥) <
~ (map (uncurry (\)) (sip A (map fot (4 #)
using <map snd (¢ # U) = ~ A) by force
}
thus ?case by blast
qed
with U(2) A(2) have ~ (map (uncurry (\)) ?9) :+ ¢
using stronger-theory-deduction-monotonic by blast
moreover
have (map (uncurry (—)) ¥ Q ~ T' © map snd ¥) <
~ (map (uncurry (M)) 2@ QT & (map fst ?T))
proof —
from A(7) have mset (~T & ~ A) = mset (~ (T' © A))
by (simp add: image-mset-Diff)
hence mset (~ T' © map snd V) = mset (~ (T' © map fst 20))
using U(1) A(2) <map fst U = Ay by simp
hence (~ T' © map snd ¥) < ~ (' © map fst 2V)
by (simp add: msub-stronger-theory-intro)
moreover have V A. map snd ¥V =~ A —
map (uncurry (—)) ¥ < ~ (map (uncurry (M) (zip A (map
st)
proof (induct V)
case Nil
then show ?case by simp
next

case (Cons 1 ¥)

100

let %) = fst o
{

fix A
assume map snd (Y # V) =~ A
from this obtain v where v: ~ v = snd ¥ v = hd A by auto
from <map snd (Y # ¥) = ~ A have map snd ¥ = ~ (tl A) by auto
with Cons.hyps have
map (uncurry (—)) ¥ < ~ (map (uncurry (M)) (zip (¢ A) (map fst)))
by simp
moreover
{
fix ¢ v
have F ~(y 114) = (4 = ~ 7)
unfolding disjunction-def
conjunction-def
negation-def
by (meson modus-ponens
flip-implication
hypothetical-syllogism)
} note tautology = this
have (uncurry (=)) = (A ¥. (fst) — (snd ¥))
by fastforce
with v have uncurry (=) ¥ = % — ~ ~
by simp
with tautology have b ~(v M %)) — (uncurry (—)) ¥
by simp
ultimately have map (uncurry (=)) (¢ # ¥) <
- ~ (map (uncurry (M) ((zip ((hd &) # (8 A)) (map fot (@ #
U

using stronger-theory-left-right-cons v(2)
by simp
hence map (uncurry (—)) (¥ # ¥) <
~ (map (uncurry (M) (zip A (map fot (i # ¥))))
using <map snd (Y # V) = ~ A by force
}
then show ?case by blast
qed
ultimately have (map (uncurry (—)) ¥ Q ~ T' © map snd ¥) <
(~ (map (uncurry (M)) 2¥) Q@ ~ (T' & (map fst ?2V)))
using stronger-theory-combine A(2)
by metis
thus ?thesis by simp
qed
hence ~ (map (uncurry (M) 20 Q T' & (map fst ?20)) $- @
using U(3) measure-stronger-theory-left-monotonic
by blast
ultimately show 3U. mset (map fst) CH# mset T' A
~ (map (uncurry (\)) ¥) ¢ A
~ (map (uncurry (M) ¥ QT © (map fst ¥)) $- &

101

by metis
next
assume 3. mset (map fst ¥) CH# mset T' A
~ (map (uncurry (\)) ¥) :F o A
~ (map (uncurry (M)) ¥ QT © map fst U) $+ @
from this obtain ¥ where U:
mset (map fst V) CH# mset T
~ (map (uncurry (\)) ¥) :F ¢
~ (map (uncurry (M) ¥ QT & map fst V) $- @
by auto
let 20 = zip (map snd) (~ (map fst V))
from U(1) have mset (map snd ?¥) C# mset (~ T)
by (simp, metis image-mset-subseteg-mono multiset.map-comp)
moreover have ~ (map (uncurry (\)) ¥) <X map (uncurry (U)) 2¥
proof (induct ¥)
case Nil
then show Zcase by simp
next
case (Cons ¢)
let 9y = fst ¢
let %) = snd ¥
{
fix ¢ v
have - (¢ U ~) = ~(v\ ¥)
unfolding disjunction-def
subtraction-def
conjunction-def
negation-def
by (meson modus-ponens
flip-implication
hypothetical-syllogism)
} note tautology = this
have ~ o uncurry (\) = (A ¢. ~ ((fst ¥) \ (snd ¥)))
uncurry (U) = (A (7). & U)
by fastforce+
with tautology have b uncurry (U) (%), ~ #y) = (~ o uncurry (\)) ¢
by fastforce
with Cons.hyps have
((~ o wncurry (\)) % # ~ (map (uncurry (\)) ©)) <
(uncurry (U) (Zp, ~ ?v) # map (uncurry (1)) (zip (map snd V) (~ (map
fst ¥))))
using stronger-theory-left-right-cons by blast
thus ?case by simp
qed
with ¥(2) have map (uncurry (U)) #¥ :+ ¢
using stronger-theory-deduction-monotonic by blast
moreover have ~ (map (uncurry (M)) ¥ Q' © map fst U) <
(map (uncurry (—)) U Q@ ~ T & map snd ?V)
proof —

102

have ~ (map (uncurry (M)) ¥) <X map (uncurry (—)) 2¥
proof (induct V)
case Nil
then show ?case by simp
next
case (Cons ¢ V)
let 2y = fst ¢
let 2 = snd
{
fix ¢ v
have - (¢ — ~) = ~(y N ¥)
unfolding disjunction-def
conjunction-def
negation-def
by (meson modus-ponens
flip-implication
hypothetical-syllogism)
} note tautology = this
have ~ o uncurry (M) = (A . ~ ((fst) N (snd ¥)))
uncurry (=) = (A (¥,7). ¢ = 7)
by fastforce+
with tautology have b uncurry (=) (%, ~ %y) = (~ o uncurry (M)) ¥
by fastforce
with Cons.hyps have
((~ o uncurry (M) ¥ # ~ (map (uncurry (M) ©)) =
(uncurry (=) (%, ~ 2y) # map (uncurry (—)) (zip (map snd) (~ (map
fst ¥))))
using stronger-theory-left-right-cons by blast
then show Zcase by simp
qed
moreover have mset (~ (' © map fst ¥)) = mset (~ T © map snd ?T)
using ¥(1)
by (simp add: image-mset-Diff multiset.map-comp)
hence ~ (I' © map fst ¥) <X (~ T © map snd ?V)
using
stronger-theory-reflexive
stronger-theory-right-permutation
by blast
ultimately show ¢thesis
using stronger-theory-combine
by simp
qed
hence map (uncurry (—)) 20 Q@ ~ T © map snd 2V $- O
using U(3) measure-stronger-theory-left-monotonic by blast
ultimately show ~ T' $F (¢ # @)
using measure-deduction.simps(2) by blast
qed

lemma (in probability-logic) measure-deduction-soundness:

103

assumes ~ ' $- ~ @
shows (D p«®. P) < O 4«T.P~)
proof —
have V. ~ T8 ~ & — D@ P) < 3 y«T. Py
proof (induct D)
case Nil
then show ?case
by (simp, metis (full-types) ex-map-conv probability-non-negative sum-list-nonneq)
next
case (Cons ¢ ®)
{
fix I’
assume ~ I' $ ~ (¢ # @)
hence ~ T $F (~ ¢ # ~ ®) by simp
from this obtain ¥ where U:
mset (map fst U) CH# mset T
~ (map (uncurry (\)) ¥) :+ ~ ¢
~ (map (uncurry (M) ¥ QT & (map fst ¥)) - ~ P
using negated-measure-deduction by blast
let ' =T © (map fst)
let 20y = map (uncurry (\)) ¥
let Uy = map (uncurry (M)) ¥
have (3 3. P ¢) < D o (2T5 @). P)
using Cons ¥(3) by blast
moreover
have P ¢ < (Do 2U1. P)
using U(2)
biconditional-weaken
list-deduction-def
map-negation-list-implication
set-deduction-base-theory
implication-list-summation-inequality
by blast
ultimately have (3} (o # @). P ¢') < O v +(2¥; Q 205 @). P ~)
by simp
moreover have (Y p«—(?20; Q 2U,). P ¢') = (D vy+(map fst ¥). P)
proof (induct)
case Nil
then show Zcase by simp
next
case (Cons ¢)
let 20y = map (uncurry (\)) ¥
let 2Ty = map (uncurry (M)) ¥
let %) = uncurry (\) ¢
let %o = uncurry (M) ¥
assume (Y (21 Q@ 2Ty). P ") = (D y+(map fst ¥). P)

moreover

let 7y = fst ¢

104

let %) = snd v
have uncurry (\) = (A . (fst ¥) \ (snd ¢))
uncurry (M) = (A ¢. (fst ¥) N (snd ¥))
by fastforce+
moreover have P %y =P (2y \) + P (#y M @)
by (simp add: subtraction-identity)
ultimately have P %y = P %)y + P Zps
by simp
}

moreover have mset (%1 # 2o # (901 Q 20,)) =
mset (map (uncurry (\)) (¥ # ¥) @Q map (uncurry (M) (Y #
w))
(is mset - = mset ?rhs)
by simp
hence (3" ¢/ < (21 # Zho # (201 @Q 2Uy)). P ') = (O v « ?rhs. P)
by auto
ultimately show Zcase by simp
qed
moreover have mset ((map fst ¥) @Q ") = mset T’
using V(1)
by simp
hence (> o'« ((map fst ¥) @). P o) = O v«T. P~)
by (metis mset-map sum-mset-sum-list
ultimately have (> ¢« (o # @). P ¢') < (O 4«T. P)
by simp
}

then show ?case by blast
qed
thus ?thesis using assms by blast
qed

105

Chapter 3

MaxSAT

We turn now to showing that counting deduction reduces to MaxSAT, the
problem of finding the maximal number of satisfiable clauses in a list of
clauses.

3.1 Definition of Relative Maximal Clause Collec-
tions

Given a list of assumptions ® and formula ¢, we can think of those maximal
sublists of ® that do not prove . While in practice we will care about
@ = 1, we provide a general definition in the more general axiom class
implication-logic.

definition (in implication-logic) relative-maximals :: 'a list = 'a = 'a list set (M)
where
MT o=
{ ®. mset ® C# mset T
A= :-op
AV U. mset O CH# mset ' — = U :+ ¢ — length U < length @) }

lemma (in implication-logic) relative-mazimals-finite: finite (M T ¢)
proof —
{
fix ¢
assume ® € M T ¢
hence set ® C set I
length ® < length T’
unfolding relative-maximals-def
using mset-subset-eqD
length-sub-mset
mset-eq-length
by fastforce+

}

106

hence M T ¢ C {zs. set xs C set T' A length xs < length T'}
by auto
moreover
have finite {xs. set s C set T’ A length zs < length T'}
using finite-lists-length-le by blast
ultimately show ¢thesis using rev-finite-subset by auto
qed

We know that ¢ is not a tautology if and only if the set of relative maximal
sublists has an element.

lemma (in implication-logic) relative-mazimals-erxistence:
(CFe)=3F X 2eMT p)
proof (rule iffT)
assume - F ¢
show 33. X e MT ¢
proof (rule ccontr)
assume 3X. X € M T ¢
hence $: V ®. mset & C# mset I' —
- ®:Fp—
(3. mset U CH# mset ' A = U - o A length U > length ®)
unfolding relative-mazimals-def
by fastforce
{
fix n
have 3 U. mset ¥V CH# mset ' A = U = o A length ¥ > n
using <
by (induct n,
metis
o
list.size(3)
list-deduction-base-theory
mset.simps(1)
subset-mset.zero-le,
metis
Nat.lessE
Suc-less-eq)
}
hence 3 V. mset ¥ C# mset I' A length ¥ > length T’
by auto
thus Fulse
using size-mset-mono by fastforce
qed
next
assume 3X. X e M T ¢
thus = F ¢
unfolding relative-mazimals-def
using list-deduction-weaken
by blast
qged

107

lemma (in implication-logic) relative-mazimals-complement-deduction:
assumes & € M T ¢
and ¢ € set (I' © D)
shows © -y — ¢
proof (rule ccontr)
assume = ¢ - — p
hence - (¢ # @) I+ ¢
by (simp add: list-deduction-theorem,)
moreover
have mset ® C# mset T' i €# mset (T © ®)
using assms
unfolding relative-mazimals-def
by (blast, meson in-multiset-in-set)
hence mset (¢ # @) C# mset T
by (simp, metis add-mset-add-single
mset-subset-eq-mono-add-left-cancel
mset-subset-eq-single
subset-mset.add-diff-inverse)
ultimately have length (¢p # @) < length (P)
using assms
unfolding relative-mazimals-def
by blast
thus Fulse
by simp
qged

lemma (in implication-logic) relative-mazimals-set-complement [simp]:
assumes & € M T ¢
shows set (I' © @) = set I' — set @
proof (rule equalityl)
show set (' © @) C set T' — set ®
proof (rule subsetl)
fix v
assume ¢ € set (I' © D)
moreover from this have ¢ :+ ¢ — ¢
using assms
using relative-maximals-complement-deduction
by blast
hence ¢ ¢ set ®
using assms
list-deduction-modus-ponens
list-deduction-reflection
relative-mazimals-def
by blast
ultimately show ¢ € set I' — set ®
using list-subtract-set-trivial-upper-bound [where I'=I" and ®=7]
by blast
qed

108

next
show set T' — set @ C set (I' © D)
by (simp add: list-subtract-set-difference-lower-bound)
qed

lemma (in implication-logic) relative-mazimals-complement-equiv:
assumes & € M T ¢
and ¢ € set I’
shows @ ;- ¢ — ¢ = (¢ ¢ set D)
proof (rule iffT)
assume ¢ - — @
thus ¢ ¢ set @
using assms(1)
list-deduction-modus-ponens
list-deduction-reflection
relative-mazimals-def
by blast
next
assume ¢ ¢ set ¢
thus & ;- ¢ — ¢
using assms relative-mazimals-complement-deduction
by auto
qed

lemma (in implication-logic) mazimals-length-equiv:
assumes ® € M T ¢
and ¥ ¢ M T ¢
shows length ® = length ¥
using assms
by (simp add: dual-order.antisym relative-mazimals-def)

lemma (in implication-logic) mazimals-list-subtract-length-equiv:
assumes & €¢ M T ¢
and ¥ ¢ MT ¢
shows length (I' © ®) = length (I' ©)
proof —
have length ® = length ¥
using assms mazimals-length-equiv
by blast
moreover
have mset ® C# mset T’
mset W C# mset I’
using assms relative-mazimals-def by blast+
hence length (T' © @) = length T’ — length ®
length (T' © ¥) = length T' — length ¥
by (metis list-subtract-mset-homomorphism size-Diff-submset size-mset)+
ultimately show ¢thesis by metis
qed

We can think of I' :F ¢ as saying "the relative maximal sublists of I" are not

109

the entire list”.

lemma (in implication-logic) relative-mazimals-maz-list-deduction:
F'Fe=% ®e MT ¢. 1 <length (T © ®))
proof cases
assume F ¢
henceI' - p MT ¢ = {}
unfolding relative-mazimals-def
by (simp add: list-deduction-weaken)+
then show ?thesis by blast
next
assume - F ¢
from this obtain () where Q: Q € M T ¢
using relative-maximals-existence by blast
from this have mset Q@ CH# mset T’
unfolding relative-mazimals-def by blast
hence $: length (T © Q) = length T — length Q
by (metis list-subtract-mset-homomorphism
size-Diff-submset
size-mset)
show ?thesis
proof (cases T' : ¢)
assume [' :F ¢
from Q have mset Q C# mset I’
by (metis (no-types, lifting)
Diff-cancel
Diff-eq-empty-iff
I
list-deduction-monotonic
relative-mazimals-def
mem-Collect-eq
mset-eq-setD
subset-mset.dual-order.not-eq-order-implies-strict)
hence length Q) < length T
using mset-subset-size by fastforce
hence 1 < length T' — length Q)
by (simp add: Suc-lel)
with { have 1 < length (T' © Q)
by simp
with I :F ¢ Q show ?thesis
by (metis mazimals-list-subtract-length-equiv)
next
assume - [:F ¢
moreover have mset I' C# mset T’
by simp
moreover have length Q) < length T
using <mset Q C# mset I'y length-sub-mset mset-eq-length
by fastforce
ultimately have length Q) = length T’
using)

110

unfolding relative-maximals-def
by (simp add: dual-order.antisym)

hence 1 > length (I' © Q)
using
by simp

with <= ' :F) Q show ?thesis
by fastforce

qed
qed

3.2 Definition of MaxSAT

We next turn to defining an abstract form of MaxSAT, which is largest the
number of simultaneously satisfiable propositions in a list of propositions.

Unlike conventional MaxSAT, we don’t actually work at the semantic level,
i.e. constructing a model for the Tarski truth relation |=. Instead, we just
count the elements in a maximal, consistent sublist (i.e., a maximal sub list
Y such that = ¥ :F 1) of the list of assumptions I we have at hand.

Because we do not work at the semantic level, computing if MazSAT I' < nis
not in general CoNP-Complete, as it is classically classified [1]. In the special
case that the underlying logic is the classical propositional calculus, then the
complexity is CoNP-Complete. But we could imagine the underlying logic to
be linear temporal logic or even first order logic. In such cases the complexity
class would be higher in the complexity hierarchy.

definition (in implication-logic) relative-MaxSAT :: 'a list = 'a = nat (| - |- [45])

where
(IT|p) = (if MT @ = {} then 0 else Mazx { length ® | &. 2 € M T ¢ })

abbreviation (in classical-logic) MaxSAT :: 'a list = nat
where
MaxSATT = | T |,

definition (in implication-logic) complement-relative-MazSAT :: 'a list = 'a =
nat (|| - ||- [45])
where
(1T llp) = length ' — | T |,

lemma (in implication-logic) relative-MazSAT-intro:
assumes & € M T ¢
shows length ® = | T' |,
proof —
haveV n € { length ¥ | V. ¥ € MT ¢ }. n < length ®
length ® € { length O | 0. UV € MT ¢}
using assms relative-mazimals-def
by auto

111

moreover
have finite { length U | V. U € MT ¢ }
using finite-imagel relative-maximals-finite
by simp
ultimately have Max { length ¥ | . ¥ € M T ¢ } = length @
using Max-eql
by blast
thus ?thesis
using assms relative-MaxSAT-def
by auto
qed

lemma (in implication-logic) complement-relative-MaxSAT-intro:
assumes & € M T ¢
shows length (' © ®) = || T ||,
proof —
have mset ® C# mset I'
using assms
unfolding relative-mazimals-def
by auto
moreover from this have length (I' © ®) = length T' — length ®
by (metis list-subtract-mset-homomorphism size-Diff-submset size-mset)
ultimately show ?thesis
unfolding complement-relative-MaxSAT-def
by (metis assms relative-MazSAT-intro)
qed

lemma (in implication-logic) length-MaxSAT-decomposition:
length T = (| T) + || T [,
proof (cases M T ¢ = {})
case True
then show ?thesis
unfolding relative-MaxzSAT-def
complement-relative-MazSAT-def
by simp
next
case Fulse
from this obtain ® where ® ¢ M T ¢
by fast
moreover from this have mset ® C# mset I’
unfolding relative-mazimals-def
by auto
moreover from this have length (I' © ®) = length T' — length ®
by (metis list-subtract-mset-homomorphism size-Diff-submset size-mset)
ultimately show ?thesis
unfolding complement-relative-MaxSAT-def
using list-subtract-msub-eq relative-MaxSAT-intro
by fastforce
qed

112

3.3 Reducing Counting Deduction to MaxSAT

Here we present a major result: counting deduction may be reduced to
MaxSAT.

primrec MazSAT-optimal-pre-witness :: 'a list = ('a list x 'a) list (V)
where
T =]
|V (W # V)= (L,) #TV

lemma MaxSAT-optimal-pre-witness-element-inclusion:
YV (A)) € set (B T). set (U A) C set (T)
by (induct ¥, fastforce+)

lemma MaxSAT-optimal-pre-witness-nonelement:
assumes length A > length ¥
shows (A,d) ¢ set (U ¥)
using assms
proof (induct ¥)
case Nil
then show Zcase by simp
next
case (Cons ¢ ¥)
hence ¥ # A by auto
then show ?case using Cons by simp
qed

lemma MazSAT-optimal-pre-witness-distinct: distinct (8 V)
by (induct U, simp, simp add: MaxSAT-optimal-pre-witness-nonelement)

lemma MaxSAT-optimal-pre-witness-length-iff-eq:
YV (A0) € set (B V).V (3,0) € set (B V). (length A = length 3) = ((A, J) =
(50))
proof (induct ¥)
case Nil
then show ?Zcase by simp
next
case (Cons ¢ ¥)
{
fix A
fix §
assume (A)9) € set (U (Y # ¥))
and length A = length ¥
hence (A,))) = (¥, ¢)
by (simp add: MazSAT-optimal-pre-witness-nonelement)

hence V (A,)) € set (U (¢ # ¥)). (length A = length U) = ((A,0) = (¥ ,9))
by blast

with Cons show ?case
by auto

113

qed

lemma mset-distinct-msub-down:
assumes mset A C# mset B
and distinct B
shows distinct A
using assms
by (meson distinct-append mset-le-perm-append perm-distinct-iff)

lemma mset-remdups-set-sub-iff:
(mset (remdups A) C# mset (remdups B)) = (set A C set B)
proof —
have V B. (mset (remdups A) C# mset (remdups B)) = (set A C set B)
proof (induct A)
case Nil
then show Zcase by simp
next
case (Cons a A)
then show ?case
proof (cases a € set A)
case True
then show ?thesis using Cons by auto
next
case Fulse
{
fix B
have (mset (remdups (a # A)) C# mset (remdups B)) = (set (a # A) C
set B)
proof (rule iffT)
assume assm: mset (remdups (a # A)) C# mset (remdups B)
hence mset (remdups A) C# mset (remdups B) — {#a#}
using Fulse
by (simp add: insert-subset-eq-iff)
hence mset (remdups A) C# mset (remdups (removeAll a B))
by (metis diff-subset-eg-self
distinct-remdups
distinct-removel-removeAll
mset-distinct-msub-down
mset-removel
set-eq-iff-mset-eq-distinct
set-remdups set-removeAll)
hence set A C set (removeAll a B)
using Cons.hyps by blast
moreover from assm Fualse have a € set B
using mset-subset-eq-insertD by fastforce
ultimately show set (a # A) C set B
by auto
next
assume assm: set (a # A) C set B

114

hence set A C set (removeAll a B) using False
by auto
hence mset (remdups A) C# mset (remdups B) — {#a#}
by (metis Cons.hyps
distinct-remdups
mset-remdups-subset-eq
mset-removel remove-code(1)
set-remdups set-removel-eq
set-removeAll
subset-mset.dual-order.trans)
moreover from assm Fualse have a € set B by auto
ultimately show mset (remdups (a # A)) C# mset (remdups B)
by (simp add: False insert-subset-eq-iff)
qed
}
then show ?thesis by simp
qed
qed
thus ?thesis by blast
qed

lemma range-characterization:
(mset X = mset [0..<length X]) = (distinct X N (V z € set X. z < length X))
proof (rule iffT)
assume mset X = mset [0..<length X]
thus distinct X A (Vzeset X. z < length X)

by (metis atLeastLessThan-iff count-mset-0-iff distinct-count-atmost-1 dis-
tinct-upt set-upt)

next

assume distinct X N (Vzeset X. z < length X)
moreover
{
fix n
have V X. n = length X —
distinct X N (Vzeset X. © < length X) —
mset X = mset [0..<length X]
proof (induct n)
case (
then show Zcase by simp
next
case (Suc n)
{
fix X
assume A: n + 1 = length X
and B: distinct X
and C: Vzeset X. z < length X
have n € set X
proof (rule ccontr)
assume n ¢ set X

115

from A have A" n = length (tl X)
by simp
from B have B’ distinct (¢l X)
by (simp add: distinct-tl)
have C": Vzeset (tl X). x < length (tl X)
by (metis
A
A/
C
«n & set X»
Suc-eq-plusi
Suc-le-eq
Suc-le-mono
le-less
list.set-sel(2)
list.size(3)
nat.simps(3))
from A’ B’ C' Suc have mset (] X) = mset [0..<n]
by blast
from A have X = hd X # tI X
by (metis Suc-eq-plusl list.exhaust-sel list.size(3) nat.simps(3))
with B «mset (tl X) = mset [0..<n]> have hd X ¢ set [0..<n)]
by (metis distinct.simps(2) mset-eq-setD)
hence hd X > n by simp
with C «n ¢ set X» <X = hd X # tl X» show Fulse
by (metis A Suc-eq-plusl Suc-le-eq le-neq-trans list.set-intros(1) not-less)
qged
let X’ = removel n X
have A" n = length ?X’
by (metis A <n € set X» diff-add-inverse2 length-removel)
have B’: distinct ?X’
by (simp add: B)
have C" Vzeset ?X'. x < length X’
by (metis A A’ B C
DiffE
Suc-eq-plusi
Suc-le-eq
Suc-le-mono
le-neg-trans
set-removel-eq
singletonl)
hence mset ?X’ = mset [0..<n]
using A’ B’ C' Suc
by auto
hence mset (n # ?X') = mset [0..<n+1]
by simp
hence mset X = mset [0..<length X]
by (metis A «<n € set X» perm-remove)

}

116

then show ?case by fastforce
qed
}
ultimately show mset X = mset [0..<length X]
by blast
qed

lemma distinct-pigeon-hole:
fixes X :: nat list
assumes distinct X
and X # ||
shows 3 n € set X. n + 1 > length X
proof (rule ccontr)
assume x: - (3 n € set X. length X < n + 1)
hence V n € set X. n < length X by fastforce
hence mset X = mset [0..<length X]
using assms(1) range-characterization
by fastforce
with assms(2) have length X — 1 € set X
by (metis
diff-zero
last-in-set
last-upt
length-greater-0-conv
length-upt mset-eq-setD)
with x show Fulse
by (metis One-nat-def Suc-eq-plusl Suc-pred le-refl length-pos-if-in-set)
qed

lemma MaxSAT-optimal-pre-witness-pigeon-hole:
assumes mset ¥ C# mset (U)
and ¥ # ||
shows 3 (A, J) € set . length A + 1 > length &
proof —
have distinct ¥
using assms
MaxSAT-optimal-pre-witness-distinct
mset-distinct-msub-down
by blast
with assms(1) have distinct (map (length o fst) X))
proof (induct X)
case Nil
then show Zcase by simp
next
case (Cons o %)
hence mset ¥ C# mset (U V)
distinct X
by (metis mset.simps(2) mset-subset-eq-insertD subset-mset-def, simp)
with Cons.hyps have distinct (map (Aa. length (fst a)) ¥) by simp

117

moreover
obtain § A where 0 = (A, 9)
by fastforce
hence (A, §) € set (Y V)
using Cons.prems mset-subset-eq-insertD
by fastforce
hence V (X,0) € set (U ¥). (length A = length) = ((A,) = (2, o))
using MazSAT-optimal-pre-witness-length-iff-eq [where ¥=]
by fastforce
hence V (X,0) € set X. (length A = length) = ((A, §) = (2, 0))
using (mset ¥ C# mset (U ¥)»
by (metis (no-types, lifting) Un-iff mset-le-perm-append perm-set-eq set-append)
hence length (fst o) ¢ set (map (Aa. length (fst a)) X)
using Cons.prems(2) <o = (A, §)»
by fastforce
ultimately show ?case by simp
qed
moreover have length (map (length o fst) X) = length ¥ by simp
moreover have map (length o fst) ¥ # [] using assms by simp
ultimately show “thesis
using distinct-pigeon-hole
by fastforce
qed

abbreviation (in classical-logic)
MazSAT-optimal-witness :: 'a = 'a list = ('a x 'a) list (20)
where 20 ¢ E = map (A(V,9). (¥ :—= ¢, ¥)) (T E)

abbreviation (in classical-logic)
disjunction-MazSAT-optimal-witness :: 'a = 'a list = 'a list (W)
where 20, ¢ U = map (uncurry (U)) (W ¢ ¥)

abbreviation (in classical-logic)
implication-MazSAT-optimal-witness :: 'a = 'a list = 'a list (20_,)
where 2, ¢ U = map (uncurry (—)) (W ¢ ¥)

lemma (in classical-logic) MaxSAT-optimal-witness-conjunction-identity:
ST (@0 e ¥) & (e U] W)
proof (induct U)
case Nil
then show ?case
unfolding biconditional-def
disjunction-def
using axiom-k
modus-ponens
verum-tautology
by (simp, blast)
next

case (Cons ¢ ¥)

118

have F (U :—= ¢) & (] ¥ =)
by (simp add: list-curry-uncurry)
hence - [] (map (uncurry (1)) (W ¢ (¢ # ¥)))
< (MY = euy) N[(map (uncurry (1)) (W ¢ ¥)))
unfolding biconditional-def
using conjunction-monotonic
disjunction-monotonic
by simp
moreover have - (([1 ¥ — ¢ U ¢) M [] (map (uncurry (1)) (20 ¢ ¥)))
S (([MT¥—=puy)(eul] V)
using Cons.hyps biconditional-conjunction-weaken-rule
by blast
moreover

{

fix ¢ ¢ x

have = ((x = ¢ U) M (¢ U x)) < (¢ U (¥ T1X))

proof —
let % = (((x) = (@) U () N ({¢) U (X)) < (p) U (&) 1 {x)))
have VO M |=pr0p % by fastforce
hence F (| %o |) using propositional-semantics by blast
thus ?thesis by simp

qed

ultimately have - [] (map (uncurry (1)) (20 ¢ (¥ # ¥))) « (p U (¥ N []
v))
using biconditional-transitivity-rule
by blast
then show Zcase by simp
qed

lemma (in classical-logic) MaxSAT-optimal-witness-deduction:
FW, oW = e Uisop
proof —
have F 20, o ¥ :— ¢ < ([] (W ¢ V) — ¢)
by (simp add: list-curry-uncurry)
moreover
{
fix a g v
have - (a ¢ 8) = (@ =) < (8 = 7))
proof —
let 75 = ((a) & (8)) = (((a) > (1)) & (B) = (1))
have VON. M |=p,0p % by fastforce
hence F (| %p | using propositional-semantics by blast
thus ?thesis by simp
qed

ultimately have F 20, ¢ U :— o < ((@ U] ¥) —)

using modus-ponens
biconditional-transitivity-rule

119

MazSAT-optimal-witness-conjunction-identity
by blast
moreover
{
fix a 8
have F ((a U B) = a) & (8 — «)
proof —
let % = (((a) U {8)) — (@) & ((8) — (a))
have VON. M |=p,0p % by fastforce
hence F (| %p | using propositional-semantics by blast
thus ?thesis by simp
qed

ultimately have - 20, ¢ ¥ :— ¢ < ([] ¥ — ¢)
using biconditional-transitivity-rule by blast
thus ?thesis
using biconditional-symmetry-rule
biconditional-transitivity-rule
list-curry-uncurry
by blast
qed

lemma (in classical-logic) optimal-witness-split-identity:
F@WLue WHE) 2= (Wo o (W#E) =9 2Ei=0p
proof (induct E)
case Nil
have F ((p Uv¥) = @) = ((p = %) = @) = ¢
proof —
let 7 = () U () = (#)) = (({#) = (1)) = (9)) > ()
have VO M |=p,0p %0 by fastforce
hence F (| % |) using propositional-semantics by blast
thus ?thesis by simp
qed
then show Zcase by simp
next
case (Cons £ =)
let A=, p=:— ¢
let 2B=2W_, p Z:— ¢
let X =2Z:— ¢
from Cons.hyps have F ((?X U ¢) — ?4) — ((?X — ¢) — ?B) — ?X by simp
moreover
have - (((?X U ¢) — ?4) — ((?X — w) — ?B) — ?X)
(

S (=X UY) = (2XUE — 24) = (= 2X) >) = (2X = &)
— B) > £ — ?2X
proof —
let Zp =((({(?X) U (¥)) = (?A4)) = (((?X) = (¢)) — <QB>) — (7X)) —
(((€) = (2X) U (¢)) = ((#X) U (§)) — (?4)) —
2(5(5 (7X)) = () = ((#X) = (&) = (?B)) —
%

(7X)
have YO M |=p,0p %o by fastforce
hence | (| % |) using propositional-semantics by blast
thus ?thesis by simp
qed
ultimately
have F (= 22X UY) = (X UE = 24) = (= X)) = ¢) = (X =€)
— ?B) - £ — ?X
using modus-ponens
by blast
thus ?case by simp
qed

lemma (in classical-logic) disj-conj-impl-duality:
Fle—=xNyY—=x) < (pUyY) = x)

proof —
let 7o = ((¢) = (X) T (¥) = () < (@) U (@) = ()
have YO M |=pr0p %0 by fastforce
hence F (| % |) using propositional-semantics by blast
thus ?thesis by simp

qed

lemma (in classical-logic) weak-disj-of-conj-equiv:
(Voeset B.o:F9)=F|] (map[] Z) = ¢
proof (induct %)
case Nil
then show ?case
by (simp add: ex-falso-quodlibet)
next
case (Cons o X))
have (Vo'eset (0 # X). o’k ¢) = (0 :F o A (Vo'eset X. o’ i ¢)) by simp
also have ... = (F 0 == ¢ A F || (map [] ¥) — ¢) using Cons.hyps
list-deduction-def by simp
alsohave ... = (F[] o= A || (map[] 2) — ¢)
using list-curry-uncurry weak-biconditional-weaken by blast
alsohave ... = (F[] o = ¢ M| (map[] X) = ¢) by simp
also have ... = (F ([o U | (map[] X)) = ¢)
using disj-conj-impl-duality weak-biconditional-weaken by blast
finally show ?case by simp
qed

lemma (in classical-logic) arbitrary-disj-concat-equiv:

FLJ(@QU) < (] PU]| D)
proof (induct @)

case Nil

then show ?case

by (simp,
meson ex-falso-quodlibet
modus-ponens

121

biconditional-introduction
disjunction-elimination
disjunction-right-introduction
trivial-implication)
next
case (Cons ¢ ®)
havebF [| (PQU) < (|| 2U|]TP) = (pU|] (2Q) < ((¢U|] D) U
L)
proof —
let %p =
(L (@ @) & (U @) U (L ®) — (o) UL (@ @) & (o) U
Loy u L vy
have VO M |=p,0p % by fastforce
hence F (| % |) using propositional-semantics by blast
thus ?thesis by simp
qed
then show ?case using Cons modus-ponens by simp
qed

lemma (in classical-logic) arbitrary-conj-concat-equiv:
FIT@Qu)« ([]120[])
proof (induct D)
case Nil
then show ?case
by (simp,
meson modus-ponens
biconditional-introduction
conjunction-introduction
conjunction-right-elimination
verum-tautology)
next
case (Cons ¢)
haveF[]| (PQU) < (] 2N[] V)= (pN[] (2Q V) « ((¢N]] ©) M
M)
proof —
let %p =
(@@ w) & (@)1 (1) = (&)1 ([(@) & (o)1
(M @) N (o))
have YO M |=p,0p % by fastforce
hence - (%p |) using propositional-semantics by blast
thus ?thesis by simp
qed
then show ?case using Cons modus-ponens by simp
qed

lemma (in classical-logic) conj-absorption:
assumes x € set P
shows F[] @ < (x O[] @)

using assms

122

proof (induct @)
case Nil
then show ?case by simp
next
case (Cons ¢ ®)
then show ?case
proof (cases ¢ = x)
case True
then show ?thesis
by (simp,
metis biconditional-def
implication-distribution
trivial-implication
weak-biconditional-weaken
weak-conjunction-deduction-equivalence)
next
case Fulse
then show ?thesis
by (metis Cons.prems
arbitrary-conjunction.simps(2)
modus-ponens
arbitrary-conjunction-antitone
biconditional-introduction
remdups.simps(2)
set-remdups
set-subset-Cons)
qed
qed

lemma (in classical-logic) conj-extract: | | (map (M) ¢)) < (@ M || ¥)
proof (induct ¥)
case Nil
then show ?case
by (simp add: ex-falso-quodlibet biconditional-def conjunction-right-elimination)
next
case (Cons ¢ ¥)
have | | (map (M) ¢) ¥) < (11|] ¥
= (e M) UL (map (M) 9) W) & (91 (¢ UL W)
proof —
let % = (L] (map (M) ¢) ©)) ¢ () 1 (L ¥)
= (({p) 1)) LA (map (M)) ¥))) < ({0) N (&) UL ¥)))
have YO M |=p,0p % by fastforce
hence F (| % |) using propositional-semantics by blast
thus ?thesis by simp
qed
then show ?case using Cons modus-ponens by simp
qed

lemma (in classical-logic) conj-multi-extract:

123

- LI (map 1 (map (@) &) £)) & (M AN (map] %)
proof (induct ¥)
case Nil
then show ?case
by (simp, metis list.simps(8) arbitrary-disjunction.simps(1) conj-extract)
next
case (Cons o X)
moreover have
= U (map [(map (@) A) X)) < (T AT (map[] X))
=[] (AQo)« (] AT]] o)
E)))—>(|_| (AQ@o) UL (map ([0 (@) A)X)) < (TAT(] ouU (map[]
proof —
let %p =
(Ll (map [(map ((Q) A) X))) < ([T A) N (L (map [] X))
= {1 (AQ@oa) < ([1A)N(1o0))
= ({1 (A@o)) U (map ([(@) A) X))) < (1411 a)uL
(map [X))))
have VO M =,r0p % by fastforce
hence F (| % |) using propositional-semantics by blast
thus ?thesis by simp
qed
hence
E)))F(l_l (A@o)ul] (map ([N 0 (@) A) %)« (1TAN(]oul] (mapl]
using Cons.hyps arbitrary-conj-concat-equiv modus-ponens by blast
then show ?Zcase by simp
qed

lemma (in classical-logic) extract-inner-concat:
F L] (map ([] o (map snd o (@) A)) ¥) < ([] (map snd A) N || (map ([] o
map snd) ¥))
proof (induct A)
case Nil
then show ?case
by (simp,
meson modus-ponens
biconditional-introduction
conjunction-introduction
conjunction-right-elimination
verum-tautology)
next
case (Cons x A)
let ?2A’ = map snd A
let 2x' = snd x
let 7I1 = Ap. [| (map snd @)
let 7TTA = Xp. [] (?A’ Q map snd ¢)
from Cons have
F L (map 7IIA ¥) < ([] ?2A’ 10| (map 711 U))

124

by auto
moreover have x: map (A\p. ?x' N 7IIA ¢) = map ((M) ?x’) o map 1A
by fastforce
have | | (map (Ap. 2’ 1 AIA) U) = || (map (M) 2x') (map IA U))
by (simp add: x)
hence
F L (map (Ap. 2x' 1 AIA @)) < (2x" 11 L] (map (Ap. 1A @) ¥))
using conj-extract by presburger
moreover have
F Ll (map IIA ¥) < ([] ?A' 10| (map 711 D))
= || (map (Ap. 2}’ N 7IIA ¢) U) « (2’ N |] (map IA T))
= | (map (M. 2’1 IA @)) + (2%’ 0[] 2A) 1] (map 91 ¥))
proof —
let %o = (] (map A W)) < (([1 ?A°) N (L] (map 71 ¥)))
AU (map (g 21 AIA) B) 6 () 1 (U (map TIA 9)))
AU (map (v, 2/ 11 7TA 9) B)) 6 () 1 (] 2A%) 11 (L
(map 711 V)

have YO M |=pr0p %o by fastforce
hence F (| % |) using propositional-semantics by blast
thus ?thesis by simp

qged

ultimately have b | | (map (Ap. 2’ N [] (?A’ @ map snd ¢)) U)

o (AT 220 1L (map (Ap. [(map snd ¢)) ¥))

using modus-ponens by blast

thus ?case by simp

qged

lemma (in classical-logic) extract-inner-concat-remdups:
F L] (map ([o (map snd o remdups o (@) A)) ¥) «
([T (map snd A) 1 || (map ([] o (map snd o remdups)) ¥))
proof —
have V U. F || (map ([] o (map snd o remdups o (Q) A)) U) «+
([T (map snd A) || (map ([] o (map snd o remdups)) ¥))
proof (induct A)
case Nil
then show ?case
by (simp,
meson modus-ponens
biconditional-introduction
conjunction-introduction
conjunction-right-elimination
verum-tautology)
next

case (Cons § A)

{
fix ¥

have + || (map ([o (map snd o remdups o (@) (6 # A))) ¥)
<~ ([(map snd (6 # A)) || (map ([] o (map snd o remdups)) ¥))
proof (cases § € set A)

125

assume § € set A
have
F o [(map snd A) < (snd § M [] (map snd A))
= L (map ([o (map snd o remdups o (@) A)))
< ([T (map snd A) 1] (map ([o (map snd o remdups)) ¥))
—] (map (] o (map snd o remdups o (Q) A)))
< ((snd 6 N[(map snd A)) M || (map ([o (map snd o remdups))

v))
proof —
let % = (][] (map snd A)) + ({snd §) M {[] (map snd A)))
— (L] (map ([] o (map snd o remdups o (Q) A)) ¥))
) < ({1 (map snd A)) N {] (map ([o (map snd o remdups))

— (] (map ([] o (map snd o remdups o (@) A)) ¥))
< (({snd) M (] (map snd A))) L] (map ([o (map snd o
remdups)) ¥)))

have YO M |=p,0p %0 by fastforce
hence + (| %p |) using propositional-semantics by blast
thus ?thesis by simp
qed
moreover have b [] (map snd A) < (snd 6 M [] (map snd A))
by (simp add: <0 € set Ay conj-absorption)
ultimately have
F o L] (map ([T o (map snd o remdups o (@) A)) ¥)
+ ((snd 6 N[(map snd A)) M || (map ([] o (map snd o remdups))

using Cons.hyps modus-ponens by blast
moreover have map snd o remdups o (Q) (6 # A) = map snd o remdups
o (@) A
using <) € set A by fastforce
ultimately show ?thesis using Cons by simp
next
assume § ¢ set A
hence T:
[l o (map snd o remdups) = (M. [| (map snd (remdups ©)))
(M. [] (map snd (if & € set ¢ then remdups (A Q) else § # remdups
(A @ p)))
=[] o (map snd o remdups o (Q) (6 # A))
by fastforce+
show ?thesis
proof (induct U)
case Nil
then show ?case
by (simp, metis list.simps(8) arbitrary-disjunction.simps(1) conj-extract)
next
case (Cons ¥)
have - | | (map ([] o (map snd o remdups o (@) A)) [¢])
< ([(map snd A) 1] (map ([o (map snd o remdups)) [¢]))
using <VU. F || (map ([] o (map snd o remdups o (@) A)) ¥)

126

< ([(map snd A) 11| | (map ([] o (map snd o remdups)) ¥))»
by blast
hence
F o ([] (map snd (remdups (A Q 3))) U L)
< ([T (map snd A) [(map snd (remdups 1)) U L)
by simp
hence x:
F [(map snd (remdups (A @ 1)) < ([] (map snd A) M [] (map snd
(remdups 1))
by (metis
(no-types, opaque-lifting)
biconditional-conjunction-weaken-rule
biconditional-symmetry-rule
biconditional-transitivity-rule
disjunction-def
double-negation-biconditional
negation-def)
have || (map ([] o (map snd o remdups o (Q) (§ # A))) V)
< ([T (map snd (6§ # A)) N] (map ([o (map snd o remdups))
w))
using Cons by blast
hence ¢: = || (map ([] o (map snd o remdups o (@) (5 # A))) ¥)
< ((snd 6§ M [] (map snd A)) M || (map ([] o (map snd o
remdups)) V))
by simp
show ?case
proof (cases § € set)
assume 6 € set ¥
have snd 0 € set (map snd (remdups 1))
using < € set Y by auto
hence #: F [] (map snd (remdups) « (snd 6 M [] (map snd (remdups

¥)))
using conj-absorption by blast
have
F ([(map snd (remdups ¥)) < (snd § M [] (map snd (remdups
¥))))

= (L] (map ([] o (map snd o remdups o (Q) (§ # A))) ¥)
< ((snd 6 M [] (map snd A)) N || (map (] o (map snd o
remdups)) V)))
= ([(map snd (remdups (A Q v))) < ([] (map snd A) N [] (map
snd (remdups))))
= ([(map snd (remdups (A Q))))
U L] (map ([o (map snd o remdups o (Q) (6 # A))) ¥))
< ((snd § T[] (map snd A))
N ([1 (map snd (remdups 1)) U || (map ([] o (map snd o
remdups)) V)))
proof —
let %2p =
('] (map snd (remdups 1))) < ({snd &) N (]| (map snd (remdups

127

¥)N))
S (U (map (T o (map snd o remdups o (@) (5 # A))) ©))
“ (({snd 8) M ([(map snd A))) M {] (map ([] o (map snd o
remdups)) ¥)}))
= ([(map snd (remdups (A @ 1))))
< (([1 (map snd A)) ([(map snd (remdups)))))
= ([(map snd (remdups (A @))))
U (L (map (T © (map snd o remdups o (@) (5 # A)) ¥)))
< (({snd &) M1 {[] (map snd A)))
N (] (map snd (remdups ¥))) U {| | (map ([] o (map snd o
remdups)) V))))
have VON. M |=p,0p % by fastforce
hence - (% |) using propositional-semantics by blast
thus ?thesis by simp
qed
hence
F o (1 (map snd (remdups (A Q v)))
U] (map ([] o (map snd o remdups o (@) (§ # A))) ¥))
< ((snd 6 M [] (map snd A))
N (1 (map snd (remdups ¥)) U || (map ([] o (map snd o
remdups)) ¥)))
using x > & modus-ponens by blast
thus ?thesis using «J ¢ set Ay <6 € set ¢
by (simp add: t)
next
assume § ¢ set ¢
have
H (L] (map ([] o (map snd o remdups o (@) (§ # A))) ¥)
< ((snd 6 O[] (map snd A)) M || (map ([] o (map snd o
remdups)) V)))
= ([l (map snd (remdups (A Q 4))) < ([] (map snd A) N [] (map
snd (remdups ¥))))
— ((snd § T[] (map snd (remdups (A Q 1))))
U] (map ([] o (map snd o remdups o (@) (6 # A))) ¥))
< ((snd 6 M [] (map snd A))
N ([(map snd (remdups ¥)) U |] (map ([] o (map snd o
remdups)) ¥)))
proof —
let %p =
(Ul (map (T © (map snd o remdups o (@) (5 # A))) ¥))
“ (({snd 8) M ([(map snd A))) 1 (] (map ([] o (map snd o
remdups)) ¥))))
= ([(map snd (remdups (A @))))
& (T (map snd A)) N1 (] (map snd (remdups ¥)))))
(({snd 0) M ([] (map snd (remdups (A Q 1)))))
U (L (map (T © (map snd o remdups o () (5 # A))) ¥)))
< (({snd &) M1 {[] (map snd A)))

N {1 (map snd (remdups 1)) U {|] (map ([o (map snd o

%

remdups)) W))))

128

have VON. M |=p,0p % by fastforce
hence - (% |) using propositional-semantics by blast
thus ?thesis by simp

qed

hence
F o ((snd 6 M [] (map snd (remdups (A Q 1)))))

U] (map ([] o (map snd o remdups o (@) (& # A))) ¥))
< ((snd 6 M [] (map snd A))
N ([(map snd (remdups ¥)) U || (map ([] o (map snd o
remdups)) ¥)))

using * < modus-ponens by blast

then show %thesis using <§ ¢ set ¥ 5 ¢ set Ay by (simp add: 1)

qed
qed
qed
}
then show ?case by fastforce
qed
thus ?thesis by blast
qed

lemma (in classical-logic) optimal-witness-list-intersect-biconditional:
assumes mset = C# mset I’
and mset ® C# mset (I' © E)
and mset U CH# mset (W_, ¢ =)
shows 3 . F (2 Q U) :— ¢) < (| (map[] X) = ¢)
A (Y o € set . mset o CH# mset I' A length o + 1 > length (& Q 1))
proof —
have 3 . F (V1= ¢) & (] (map[] X) — ¢)
A (V o € set X. mset 0 C# mset = A length o + 1 > length U)
proof —
from assms(3) obtain g :: (‘a list x 'a) list where ¥:
mset Uy CH# mset (U =)
map (\(W,0). (¥ i @ = 1)) U = T
using mset-sub-map-list-exists by fastforce
let /e = A (A,0) X. (map ((#) (A, 6)) X) @ (map (@) (T A)) ¥)
let 2Ty, = X U. foldr /Il ¥ [[]]
let 22 = map (map snd o remdups) (?Ts V)
have I: - (U :— ¢) & (|| (map[] 72) — ¢)
proof —
let X, = map (map snd) (?Tx Uy)
let 20’ = map (A(T,0). (T :— ¢ —) Ty
{
fix U :: ('a list x 'a) list
let 72, = map (map snd) (¢Tx ¥)
let 75 = map (map snd o remdups) (?Tx V)
have F (|| (map [] 7Za) = @) < (L] (map [] 72) — »)
proof (induct U)
case Nil

129

then show ?case by (simp add: biconditional-reflection)
next

case (Cons Ad V)

let ?A = fst A6

let 90 = snd Ad

let 7Y, = map (map snd) (?Tx ¥)

let 22 = map (map snd o remdups) (¢Tx U)

let 72, = map (map snd) (?Ts ((?A,95) # ¥))

let 7%/ = map (map snd o remdups) (¢?Txs ((?A,%95) # U))

{
fix A :: 'a list
fixd::a
let X, = map (map snd) (?Tx ((A,0) # V))
let X7 = map (map snd o remdups) (?Tx ((A,0) #))
let & = map (map snd o (Q) [(A, §)]) (?Tx ¥)
let 20 = map (map snd o (Q) (Y A)) (?Tx)
let A = map (map snd o remdups o (@) [(A, 0)]) (¢Tx ¥)
let %Q = map (map snd o remdups o (Q) (B A)) (?Tx V)
have - (|| (map [] 2 Q map [] ?2¥) < (|| (map[] @) U || (map

[179))) —

(LI (map [T ?A @ map [T %) < (L (map [#A) U] (map[]
20))) —

(U (map [T #@) < ([[6] T U (map [] 7Za))) —

(L (map [T 2¥) < ([T AT (map [] #24))) —

(L (map [2A) « ([[6] N U (map [X)) —

(L (map [22) < (I AN (map[] 7X))) —

(L (map [7Za) = @) < (4 (map[] 7Z) = ¢)) —

(L] (map[] 2@ @ map[] 2¥) = ¢) < (L] (map[] A Q map
[122) = ¢))

proof —
let 2p =

[22)) —
(L) (map [#@)) < ({1 16)) ML (map [1 75a)))) —
(L) (map [T 29)) < (1 &) 1 (map [] %)) =
(L) (map [T #A)) < ([T [8) M (L (map [T 7)))) —
(L) (map [T 22) < ({1 A) N) =
(U (map [#%a)

map [7)) = (2)))
have VON. M |=p,0p % by fastforce
hence - (%p |) using propositional-semantics by blast
thus ?thesis by simp
qed
moreover

have map snd (U A) = A by (induct A, auto)
hence F || (map [] 22 Q@ map [| 2¥) <> (L] (map [] ?®) U || (map

130

M 2v))

) (map [] 2A Q@ map [] %) < (| (map [] ?A) U] (map[]

< (L8] ML (map [T 754))

< (1 AN (map[] 72a))

o (M BN L (map[] 7))

- (map [7)) & ([T ANL (map[] 7))

using arbitrary-disj-concat-equiv
extract-inner-concat [where A = [(A, §)] and ¥ = Ty, V]
extract-inner-concat [where A = U A and ¥ = Ty, V]
extract-inner-concat-remdups [where A = [(A, §)] and ¥ = ¢Ty,

extract-inner-concat-remdups [where A =0 A and ¥ = ¢Ty U]
by auto

ultimately have
(U (map [1 %) = ¢) < (U (map [] 75) = ¢)) =
(U (map [T %0 @ map] 20) =) & (U (map [1 A @ map []
) — ¢)
using modus-ponens by blast
moreover have (#) (4, 0) = (Q) [(A, 0)] by fastforce
ultimately have
E(U (map [] #5a) = @) < (U (map[] 5) — ¢)) =
- (L (map [T #2a) = @) < (U (map [72) — ¢))
y auto

}

hence
(U (map [72a7) = @) < (U (map [7Z7) — ¢))
using Cons modus-ponens by blast

moreover have Ad = (?A,%0) by fastforce

ultimately show ?case by metis
qed

}

hence - (|| (map [] 7Za) — @) < (|| (map [] 22) — ¢) by blast
moreover have - (20’ :—) < (|| (map [] 7Za) — @)
proof (induct ¥y)
case Nil
have - ¢ + (T U L) — ¢)
proof —
let % = (o) © (T U 1) > (¢))
have YO M |=pr0p %0 by fastforce

hence F (| % |) using propositional-semantics by blast
thus ?thesis by simp

qged
thus ?case by simp
next
case (Cons ¢y ¥y)
let 7= = fst v
let 26 = snd g
let 20" = map (A(V,¥). (¥ :— ¢ — 1)) Uy

131

let 72, = map (map snd) (?Tx Uy)
{
fix = :: ‘a list
have map snd (U E) = = by (induct =, auto)
hence map snd o (@) (U Z) = (Q) E o map snd by fastforce
}
moreover have (map snd o (#) (72, 9))) = (Q) [%5] o map snd by fastforce
ultimately have §:
map (map snd) (?Tx (Yo # Vo)) = map (#) 9) 72, Q map ((Q) 72)
N
map (M), (¥ o) (o # Wo) = 72 s o > 7 4 70
by (simp add: case-prod-beta’)+
have A: - (20 :—) « (|| (map [] 72a) — ¢) using Cons.hyps by auto
have B: F (2 :—= ¢) & ([] 7= = ¢)
by (simp add: list-curry-uncurry)

have C: F || (map [] (map (#) 90) 72,) Q map [] (map ((Q) ¢

< (U (map [(map ((#) %) 7%a)) WL (map [(map ((@) *

)
)

[1

%))

[1

7))
using arbitrary-disj-concat-equiv by blast
have map [] (map ((#) %) ?Z,) = (map ((M) 20) (map [] 7X4)) by auto
hence D: F || (map [| (map ((#) 20) 7Z,)) < (20 1] (map [] 724))
using conj-extract by presburger
have E: || (map [] (map (@) 7=) 72,)) < ([1 20 (map[] 72a))
using conj-multi-extract by blast

have
- (P07 =) < (L (map [Za) = @)
- (B e (I_I”/‘"%@)
= U (map [(map ((#) 2))@ map [(map ((Q) 72) 7X,))
) < (U (map [(map ((#) %) 7Za)) U (map [(map (@) 75)
— | (map [(map ((#) %) ?Ea)) < (Bl (map[] #24))
— U (map [T (map (@) 72) 7X,)) < ([1 ZZ 111 (map [] #Xa))
= (Ei=p— 20) > 20/ %cp)
< U (ma [1 (map ((#) 70) 7%a) @ map [] (map ((Q) 7=) 7%,))
—)
proof —
let 2p =
(70" =) < (L (map [72a)) — ()
= (==) o {1 Z) = (9)
) = (U (map [(map ((#) 90) 7Xs) @ map [(map (@) 72)

< (U (map [(map ((#) %) 7%a))) WAL (map [(map (@)
= (U (map [T (map ((#) %) 72a))) < ((#0) 0 (U (map []
= (U (map [(map (@) =) 7%a))) < (1 7Z) 1L (map 1]

S (i 9) = () 5 (W)

132

& (U (map [(map (#) %) #50) @ map [(map (@) %)
) = (9))
have VO M |=pr0p %o by fastforce
hence F (| % |) using propositional-semantics by blast
thus ?thesis by simp
qged
hence
Fo(7Z = o — 2) = 20—)
| < (L (map [T (map ((#) 20) ?5a) @ map [(map (@) 72) 75q)) —
¥
using A B C D E modus-ponens by blast
thus ?case using 1 by simp
qed
ultimately show ?thesis using biconditional-transitivity-rule ¥y by blast
qed
have II:V o € set 7%. length o + 1 > length ¥
proof —
let ?F = length o fst
let S = sort-key (— ¢F)
let X = map (map snd o remdups) (¢Ts (S Uy))
have mset Uy = mset (¢S ¥qy) by simp

have V ®. mset Ug = mset ® — mset (map mset (?Tx Vy)) = mset (map
mset (¢Tx D))
proof (induct W)
case Nil
then show Zcase by simp
next
case (Cons ¢ ¥y)
obtain A ¢ where ¥ = (A,d) by fastforce
{
fix ¢
assume mset (Y # Vo) = mset
hence mset ¥y = mset (removel ¥ @)
by (simp add: union-single-eq-diff)
have ¢ € set ® using «mset (¢p # Uy) = mset »
by (metis list.set-intros(1) set-mset-mset)
hence mset (map mset (?Ts ®)) = mset (map mset (?Ts; (¥ # (removel
b)
proof (induct ®)

case Nil
then show ?case by simp
next

case (Cons ¢ D)

then show ?case proof (cases ¢ = 1)
case True
then show ?Zthesis by simp

next
case Fulse

133

let 92" = 2Tyx, (¢ # (removel ¢ ®))

have 1: mset (map mset ?2') = mset (map mset (?Ts P))
using Cons False by simp

obtain A’ ¢’
where ¢ = (A’,07)
by fastforce

let 92 = Ty, (removel ¢ ®)

let ?m = image-mset mset

have
mset (map mset (?Tx (¢ # removel @ (¢ # P@)))) =
mset (map mset (Lo Y (Ale ¢ 7%)))
using Fualse by simp

hence mset (map mset (¢Tx (Y # removel ¥ (p # ®@)))) =
(#m o (image-mset (#) §) o image-mset (#) ©))) (mset 75) +
(2m o (image-mset ((#)) o image-mset ((Q) (B A')))) (mset
7)) +
(%m o (image-mset ((@Q) (L A)) o image-mset ((#)))) (mset
%) +
(2m o (image-mset ((Q) (U A)) o image-mset ((Q) (T A’))))
(mset 7%)
using ¢ = (A,0)) «p = (A6")
by (simp add: multiset.map-comp)
hence mset (map mset (¢Ts (Y # removel ¥ (p # ®@)))) =
(7m o (image-mset ((#) @) o image-mset ((#) v¥))) (mset 72) +
(2m o (image-mset ((Q) (L A’)) o image-mset ((#) ¥))) (mset
) +
(%m o (image-mset ((#)) o image-mset ((Q) (U A)))) (mset
%) +
(2m o (image-mset ((Q) (T A’)) o image-mset ((Q) (T A))))
(mset 7%)

by (simp add: image-mset-cons-homomorphism
image-mset-append-homomorphism
image-mset-add-collapse
add-mset-commute
add.commute)
hence mset (map mset (?Tx (Y # removel @ (¢ # P)))) =
(2m o (image-mset ((#) ¢))) (mset ?5') +
(%m o (image-mset ((@Q) (L A")))) (mset 75)
using ¢ = (A0)
by (simp add: multiset.map-comp)
hence mset (map mset (?Tx (Y # removel @ (¢ # P)))) =
image-mset ((+) {#p#}) (mset (map mset ?57)) +
image-mset ((+) (mset (B A’))) (mset (map mset ?X7))
by (simp add: image-mset-cons-homomorphism
image-mset-append-homomorphism)
hence mset (map mset (?Tx (Y # removel ¥ (¢ # P))))
image-mset ((+) {#¢#}) (mset (map mset (?Tx P))
image-mset ((+) (mset (U A’))) (mset (map mset (?
using 1 by auto

)+
75 ®))

134

hence mset (map mset (¢Ts (Y # removel ¥ (p # ®@)))) =
(2m o (image-mset ((#) ¢))) (mset (?Ts ®)) +
(2m o (image-mset ((Q) (T A')))) (mset (¢Tx D))
by (simp add: image-mset-cons-homomorphism
image-mset-append-homomorphism)
thus ?thesis using «p = (A',0")y by (simp add: multiset.map-comp)
qed
qed
hence image-mset mset (image-mset ((#) ¥) (mset (?Tx (removel 1

image-mset mset (image-mset ((Q) (U A)) (mset (¢?Txs (removel

= image-mset mset (mset (?Tx ®))
by (simp add: < = (A,5)y multiset.map-comp)
hence
image-mset ((+) {# ¥ #}) (image-mset mset (mset (?Tx (removel

image-mset ((+) (mset (B A))) (image-mset mset (mset (?Ts (removel

¥ ®))))

= image-mset mset (mset (?Tx @))

by (simp add: image-mset-cons-homomorphism image-mset-append-homomorphism)

hence
image-mset ((+) {# ¥ #}) (image-mset mset (mset (?Tx Vy))) +
image-mset ((+) (mset (U A))) (image-mset mset (mset (?Tx Vy)))
= image-mset mset (mset (?Ts P))
using Cons <mset Uy = mset (removel ¢) ®)»
by fastforce
hence
image-mset mset (image-mset ((#) 1) (mset (¢?Ts Vy))) +
image-mset mset (image-mset ((Q) (U A)) (mset (¢Tx ¥y)))
= image-mset mset (mset (?Ts D))

by (simp add: image-mset-cons-homomorphism image-mset-append-homomorphism,)

hence mset (map mset (¢Ts (v # Uy))) = mset (map mset (?Ts P))
by (simp add: < = (A,5)y multiset.map-comp)

then show ?case by blast
qed
hence mset (map mset (¢Ts Ug)) = mset (map mset (¢Ts (2S Uy)))
using <mset Uy = mset (S Uy)» by blast
hence mset (map (mset o (map snd) o remdups) (?Tx Vy))
= mset (map (mset o (map snd) o remdups) (?Tx (7S Vy)))
using mset-mset-map-snd-remdups by blast
hence mset (map mset X)) = mset (map mset ?%)
by (simp add: fun.map-comp)
hence set (map mset ?%) = set (map mset ?2)
using mset-eq-setD by blast
hence V o € set ?5. 3 o’ € set 7%’ mset 0 = mset o’
by fastforce
hence V o € set 7%. 3 o’ € set X", length o = length o’

135

using mset-eq-length by blast
have mset (2S5 V) C# mset (U E)
by (simp add: Wy (1))
{
fix n
have V U. mset ¥ C# mset (U E) —
sorted (map (— ?2F) ¥) —
length ¥ = n —
(V o’ € set (map (map snd o remdups) (?Ts U)). length o’ + 1
> n)
proof (induct n)
case ()
then show Zcase by simp
next
case (Suc n)
{
fix U :: (Ya list x 'a) list
assume A: mset U C# mset (U E)
and B: sorted (map (— 2F) ¥)
and C: length V. = n + 1
obtain A ¢ where (A, §) = hd ¥
using prod.collapse by blast
let 20/ = ¢ ¥
have mset 20’ C# mset (U =) using A
by (induct U, simp, simp, meson mset-subset-eq-insertD subset-mset-def)
moreover
have sorted (map (— 2F) (tl 0))
using B
by (simp add: map-tl sorted-tl)
moreover have length ?¥’ = n using C
by simp
ultimately have x: V ¢’ € set (map (map snd o remdups) (?Tx ?¥')).
length o' + 1> n
using Suc
by blast
from C have U = (A, §) # 20’
by (metis <«(A, 0) = hd ¥
One-nat-def
add-is-0
list.ezhaust-sel
list.size(3)
nat.simps(3))
have distinct ((A, §) # 2U’)
using A U = (A, §) # 24U
MaxSAT-optimal-pre-witness-distinct
mset-distinct-msub-down
by fastforce
hence set ((A, §) # ?U’) C set (Y E)
by (metis A <@ = (A, §) # 2T

136

Un-iff
mset-le-perm-append
perm-set-eq set-append
subsetl)
hence V (A’, §') € set 2U’. (A, 0) # (A, §7)
YV (A’ 0") € set (U Z). ((4, §) # (A, 6") — (length A # length

set 20U’ C set (U E)
using MazSAT-optimal-pre-witness-length-iff-eq [where ¥=EF|
«distinet ((A, §) # 207)
by auto
hence V (A’, §') € set 2U'. length A # length A’
sorted (map (— 2F) ((A, §) # 2¥7))
using B (U = (A, §) # 20)
by (fastforce, auto)
hence V (A, §') € set 2U'. length A > length A’
by fastforce
{
fix o' :: 'a list
assume o’ € set (map (map snd o remdups) (?Tx ¥))
hence ¢’ € set (map (map snd o remdups) (?Ts (A, 0) # ?T)))
using U = (A, 0) #)
by simp
from this obtain) where :
P € set (?Tx ?20)
o' = (map snd o remdups o (#) (A, §)) ¢ V
o' = (map snd o remdups o (Q) (L A)) ¢
by fastforce
hence length 0’ > n
proof (cases o’ = (map snd o remdups o (#) (4, 6)) ¥)

case True

{
fix U :: (‘a list x 'a) list
fix n :: nat

assume V (A, J) € set U. n > length A
hence V o € set (?Tx V).V (A, §) € set 0. n > length A
proof (induct V)
case Nil
then show ?case by simp
next
case (Cons 1) U)
obtain A ¢ where ¢ = (A, 9)
by fastforce
hence n > length A using Cons.prems by fastforce
have 0:V o € set (?Tx V).V (A, §') € set 0. n > length A’
using Cons by simp
{
fix o :: (Ya list X 'a) list
fix ' :: 'a list X 'a

137

assume [: 0 € set (?Tx (Y # ¥))
and 2: ¢’ € set o
obtain A’ §’ where ¢’ = (A’ §)
by fastforce
have 3: 0 € (#) (4, §) ‘set (?Tx ¥) Vo € (Q) (U A) ‘set
(?Ts ¥)
using 1 < = (A, 0)» by simp
have n > length A’
proof (cases o € (#) (A, 0) ‘set (?Tx ¥))
case True
from this obtain o’ where
set o = insert (A, 0) (set o)
o' € set (?Tx V)
by auto
then show “thesis
using 0 ' € set oy W' = (A', §')y «<n > length A»
by auto
next
case Fulse
from this and 3 obtain ¢’ where o
set o = set (U A) U (set o)
o' € set (¢Tx)
by auto
have V (A, 0') € set (U A). length A > length A’
by (metis (mono-tags, lifting)
case-prodI2
MazSAT-optimal-pre-witness-nonelement
not-le)
hence V (A’, §') € set (U A). n > length A’
using (n > length A» by auto
then show ?thesis using 0 o’ <)’ € set o «p' = (A', §')) by
fastforce
qed
hence n > length (fst ¥') using ' = (A’, §')) by fastforce
}
then show ?case by fastforce
qed
}
hence V o € set (¢?Tx ?¥').V (A, 0') € set 0. length A > length A’
using vV (A’, §') € set ?2U’. length A > length A"
by blast
then show ?thesis using True x (1) by fastforce
next
case Fulse
have V (A’) §') € set 2U’. length A > length A’
using vV (A', §') € set ?U’. length A > length A’
by auto
hence V (A’, 0') € set W. length A > length A’
using U = (A, §) # 2U)

138

by (metis case-prodI2 eg-iff prod.sel(1) set-ConsD)

hence length A + 1 > length ¥
using A MazSAT-optimal-pre-witness-pigeon-hole
by fastforce

hence length A > n
using C
by simp

have length A = length (0 A)
by (induct A, simp+)

hence length (remdups (U A)) = length (T A)
by (simp add: MazSAT-optimal-pre-witness-distinct)

hence length (remdups (B A)) > n
using <length A = length (U A)> «n < length A»
by linarith

have mset (remdups (B A Q) = mset (remdups (p Q@ Y A))
by (simp add: mset-remdups)

hence length (remdups (8 A Q 1)) > length (remdups (B A))

by (metis le-cases length-sub-mset mset-remdups-append-msub
size-mset)

hence length (remdups (B A Q 1)) > n
using «n < length (remdups (B A))» dual-order.trans by blast

thus ?thesis using Fualse ¥(2)
by simp

qed
}
hence V ¢’ € set (map (map snd o remdups) (?Ts V)). length o' > n
by blast
}

then show ?case by fastforce
qed
}
hence V ¢’ € set %' length o’ + 1 > length (¢S Wq)
using <mset (¢S ¥o) CH# mset (T =)
by fastforce
hence V o’ € set 79X length o’ + 1 > length Uy by simp
hence V o € set ?X. length 0 + 1 > length ¥
using <V o € set ?X. 3 o’ € set X', length o = length o
by fastforce
thus ?thesis using ¥y by fastforce
qed
have III: V o € set ?%. mset 0 C# mset =
proof —
have remdups (U Z) = U =
by (simp add: MazSAT-optimal-pre-witness-distinct distinct-remdups-id)
from V(1) have set ¥y C set (U =)
by (metis (no-types, lifting) <remdups (¥ =) =Y =»
mset-remdups-set-sub-iff
mset-remdups-subset-eq
subset-mset.dual-order.trans)

139

hence V o € set (?Tx Uy). set o C set (U =)
proof (induct ¥y)
case Nil
then show Zcase by simp
next
case (Cons ¢ ¥y)
hence V o € set (?Ts Uy). set o C set (U E) by auto
obtain A ¢ where ¥ = (A,d) by fastforce
hence (A, 0) € set (U E) using Cons by simp
{
fix o :: (Ya list x 'a) list
assume *: 0 € (#) (A, d) ‘set (?Tx Up) U (Q) (T A) ‘set (¢Tx ¥y)
have set o C set (U =)
proof (cases o € (#) (A, 0) ‘set (?Tx Vo))
case True
then show ?thesis
using <V o € set (?Tx Wg). set 0 C set (T E)» (A, J) € set (T =)
by fastforce
next
case False
hence o € (Q) (U A) ‘set (?Tx Uy) using x by simp
moreover have set (U A) C set (U =)
using MazSAT-optimal-pre-witness-element-inclusion (A, 6) € set (U

w

by fastforce
ultimately show ?thesis
using <V o € set (?Tx Uy). set o C set (U E)»
by force
qed
}
hence Voe(#) (4, §) ‘set (?Ts o) U (Q) (T A) “set (?Tx Pg). set o
C set (U)
by auto
thus ?case using) = (A, §)» by simp
qed
hence V o € set (?Tx Uy). mset (remdups o) CH# mset (remdups (U =))
using mset-remdups-set-sub-iff by blast
hence V o € set 7%. mset o C# mset (map snd (B Z))
using map-monotonic <remdups (0 E) = U E»
by auto
moreover have map snd (U Z) = E by (induct Z, simp+)
ultimately show ?thesis by simp
qed
show ?thesis using I II III by fastforce
qed
from this obtain X, where Y:
(= ¢) < (U (map [] Zo) =)
V o € set Xg. mset 0 CH# mset = A length o + 1 > length ¥
by blast

140

moreover
have (» Q ¥) :— ¢ = & :— (V :— ¢) by (induct ®, simp+)
hence b (P Q U) :— ¢) & ([© = (¥ :— ¢))
by (simp add: list-curry-uncurry)
moreover have - (U :— ¢) < (|| (map [] Zo) — @)
S (@PQU): (1P =T :— p)
S (@ @) g ([0N (map] So)) = ¢)
proof —

let %o = (¥ := @) < (L] (map[] o)) = (¢))
S (@ @ W) i) (] D) - (i)
S (@@ W) i) o (T @) 1L (map [T Z0))) = (9))
have YO M |=p,0p %0 by fastforce
hence - (| %p |) using propositional-semantics by blast
thus ?thesis by simp
qed
moreover
let 72 = map ((Q) @) X
have Vo ¢y x.F (¢ = ¢) > x 2 ¢V -Fx =
by (meson modus-ponens flip-hypothetical-syllogism)
hence = ([T © M [(map [1 o)) =) < (L] (map [] 72) =)
using append-dnf-distribute biconditional-def by fastforce
ultimately have - (® Q U) :— ¢ < (|| (map [] 72) — ¢)
using modus-ponens biconditional-transitivity-rule
by blast
moreover
{
fix o
assume o € set 7%
from this obtain oy where og: 0 = ® Q 0 0¢ € set ¥g by (simp, blast)
hence mset 0o C# mset E using ¥y(2) by blast
hence mset o C# mset (P Q Z) using o (1) by simp
hence mset o C# mset I using assms(1) assms(2)
by (simp, meson subset-mset.dual-order.trans subset-mset.le-diff-conv2)
moreover
have length o + 1 > length (» @ ¥) using ¥y(2) oo by simp
ultimately have mset 0 C# mset ' length o + 1 > length (¢ @ U) by auto
}
ultimately
show ?thesis by blast
qed

lemma (in classical-logic) relative-mazimals-optimal-witness:
assumes = F ¢
shows 0 < (|| T ||,)
= (3 3. mset (map snd ¥) CH# mset T' A
map (uncurry (U)) X :F o A
14 (|| map (uncurry (=)) X QT © map snd X ||,) = || T ||,)
proof (rule iffT)
assume 0 < || T ||,

141

from this obtain = where =: = € M T' ¢ length = < length T’
using <= F ¢
complement-relative-MaxSAT-def
relative-MaxSAT-intro
relative-maximals-existence
by fastforce
from this obtain i) where ¥: ¢ € set (I' © E)
by (metis <0 < || T ||,
less-not-refl
list.exhaust
list.set-intros(1)
list.size(3)
complement-relative-MaxSAT-intro)
let 75 = ¢ (v # E)
let 754 = Wy, ¢ (¢ #)
let X5 =W, ¢ (Y # 2)
have : mset (v # E) C# mset T
Y#E
using =(1) ¥
relative-mazimals-def
list-deduction-theorem
relative-mazimals-complement-deduction
msub-list-subtract-elem-cons-msub [where Z=EZ]
by blast+
moreover have map snd X = ¢ # E by (induct E, simp+)
ultimately have 7% 4 :F ¢
mset (map snd %) C# mset T
using MaxzSAT-optimal-witness-deduction
list-deduction-def weak-biconditional-weaken
by (metis+)
moreover
{
let T/ = 22 QT © map snd 22
have A: length ?Xp = 1 + length =
by (induct E, simp+)
have B: X €¢ M T ¢
proof —
have = 2p :F ¢
by (metis (no-types, lifting)
E(1) «%54 k@
modus-ponens list-deduction-def
optimal-witness-split-identity
relative-mazimals-def
mem-Collect-eq)
moreover have mset X g C# mset T’
by simp
hence V V. mset ¥ C# mset &I’ — = U = ¢ — length ¥ < length %X g
proof —
have V U € M ' . length ¥ = length ?Xp

142

proof (rule ccontr)
assume - (V ¥ € M T ¢. length ¥ = length ?Xg)
from this obtain ¥ where
U:TeMT o
length W # length ?Xp
by blast
have length ¥ > length ?Xp
using V(1)
(™ ?EB He ()4
<mset ?Xg CH# mset T
unfolding relative-mazimals-def
by blast
hence length U > length ?Xp
using ¥ (2)
by linarith
have length ¥ = length (¥ & ?Xp) + length (¥ N 9Xp)
(is length U = length ?A + length ?B)
by (metis (no-types, lifting)
length-append
list-diff-intersect-comp
mset-append
mset-eq-length)
{
fix o
assume mset 0 CH mset T’
length o + 1 > length (YA Q ?B)
hence length 0 + 1 > length ¥
using <length ¥ = length ?A + length ?B>
by simp
hence length o + 1 > length 7Xp
using <length U > length X p> by linarith
hence length 0 + 1 > length 2 + 1
using A by simp
hence length o0 > length = by linarith
have o I+ ¢
proof (rule ccontr)
assume — 0 :F @
hence length o < length =
using «mset o C# mset I'» E(1)
unfolding relative-mazimals-def
by blast
thus Fulse using <length o > length =) by linarith
qed
}
moreover
have mset W C# mset T/
Uk
V®. mset ® CH# mset T/ A = @ o — length & < length ¥
using V(1) relative-mazimals-def by blast+

143

hence mset A C# mset (' © map snd 7%)
by (simp add: add.commute subset-eq-diff-conv)
hence mset A C# mset (I' © (¢ # 2))
using (map snd 7% = 1 # =) by metis
moreover
have mset ?B C# mset (W_, ¢ (Y # 2))
using list-intersect-right-project by blast
ultimately obtain ¥ where X: - ((?A4 @ ?B) :— ¢) < (|| (map[] X)

Voecset . o - ¢
using { optimal-witness-list-intersect-biconditional
by metis
hence - || (map[] X) — ¢
using weak-disj-of-conj-equiv by blast
hence 74 Q 7B - ¢
using X(1) modus-ponens list-deduction-def weak-biconditional-weaken
by blast
moreover have set (?A Q ?B) = set ¥
using list-diff-intersect-comp union-code set-mset-mset by metis
hence 74 Q ?B:+ o =V I+ ¢
using list-deduction-monotonic by blast
ultimately have VU - ¢ by metis
thus False using U(1) unfolding relative-maximals-def by blast
qed
moreover have 3 U. ¥ ¢ M T ¢
using assms relative-mazximals-existence by blast
ultimately show ?thesis
using relative-maximals-def
by fastforce
qed
ultimately show ?thesis
unfolding relative-maximals-def
by fastforce
qed
have C:VET p. E€e MT' ¢ — lengthE=|T |,
using relative-MaxSAT-intro by blast
then have D: length 2 = | T |,
using (2 € M I ¢» by blast
have
V(X a list) T n. (= mset & C# mset I' V length (I' © X) # n) V length T
=n + length X
using list-subtract-msub-eq by blast
then have E: length T = length (I © map snd (W ¢ (¥ # 2))) + length (¢
#5)
using <map snd (W ¢ (Y # E)) = # = <mset (Y # E) CH# mset T) by
presburger
have 1 + length 2= | W_, ¢ (Y # =) QT © map snd (W ¢ (Y # =) |,
using C B A by presburger
hence 1 + (|| map (uncurry (—)) 72 QT & map snd 22 ||,) = || T ||,

144

using D E <map snd (W ¢ (¢ # Z)) = # = complement-relative-MaxSAT-def
by force
}
ultimately
show 3 X. mset (map snd X) C# mset T' A
map (uncurry (U)) X :F ¢ A
1+ (|| map (uncurry (=) X QIL e map snd £ ||,) = || T ||,
by metis
next
assume 3 X. mset (map snd X) CH# mset T' A
map (uncurry (U)) L :F ¢ A
1+ (|| map (uncurry (=) X QL e map snd £ ||,) = || T ||,
thus 0 < || T |,
by auto
qed

primrec (in implication-logic)
MazSAT-witness :: (‘a x 'a) list = 'a list = ('a x 'a) list (Y1)
where
d-=1
| U (€ # Z) = (case find (A o. £ =snd o) X of
None = U ¥ =
| Some 0 = o # (U (removel o ¥) E))

lemma (in implication-logic) MaxSAT-witness-right-msub:
mset (map snd (U X Z)) CH mset =
proof —
have V X. mset (map snd (U X Z)) CH# mset =
proof (induct =)
case Nil
then show ?case by simp
next
case (Cons £ 2)
{
fix ¥
have mset (map snd (U X (§ # E))) CH# mset (£ # E)
proof (cases find (A 0. £ = snd o) X)
case None
then show ?thesis
by (simp, metis Cons.hyps
add-mset-add-single
mset-map mset-subset-eq-add-left subset-mset.order-trans)
next
case (Some o)
note o = this
hence ¢ = snd o
by (meson find-Some-predicate)
moreover

145

have g € set ¥
using o
proof (induct X)
case Nil
then show ?case by simp
next
case (Cons o’ %)
then show ?case
by (cases & = snd o', simp+)
qged
ultimately show ?thesis using o Cons.hyps by simp
qed
}
then show ?case by simp
qed
thus ?thesis by simp
qed

lemma (in implication-logic) MazSAT-witness-left-msub:
mset (U X Z) CH# mset ¥
proof —
have V . mset (U X Z) C# mset &
proof (induct 2)
case Nil
then show ?Zcase by simp
next
case (Cons £ =)
{
fix ¥
have mset (U X (§ # =)) C# mset &
proof (cases find (A 0. £ = snd o) X)
case None
then show ?thesis using Cons.hyps by simp
next
case (Some o)
note o = this
hence 0 € set ¥
proof (induct X)
case Nil
then show ?case by simp
next
case (Cons o’ %)
then show ?case
by (cases & = snd o', simp+)
qed
moreover from Cons.hyps have mset (L (removel o) Z) C# mset
(removel o X)
by blast
hence mset (U X (§ # E)) C# mset (o0 # removel o X) using o by simp

146

ultimately show ?thesis by simp
qed
}
then show ?case by simp
qed
thus ?thesis by simp
qed

lemma (in implication-logic) MaxSAT-witness-right-projection:
mset (map snd (U X Z)) = mset ((map snd ¥) N 2)
proof —
have V X. mset (map snd (4 X Z)) = mset ((map snd X) N =)
proof (induct 2)
case Nil
then show ?case by simp
next
case (Cons £ 2)
{
fix ¥
have mset (map snd (U X (§ # E))) = mset (map snd X N & #)
proof (cases find (A . £ = snd o) X)
case None
hence ¢ ¢ set (map snd X)
proof (induct ¥)
case Nil
then show ?case by simp
next
case (Cons o X)
have find (Ao. £ = snd 0) ¥ = None
&E# snd o
using Cons.prems
by (auto, metis Cons.prems find.simps(2) find-None-iff list.set-intros(1))
then show ?case using Cons.hyps by simp
qged
then show ?thesis using None Cons.hyps by simp
next
case (Some o)
hence o € set ¥ £ = snd o
by (meson find-Some-predicate find-Some-set-membership)+
moreover
from (o € set ¥) have mset & = mset (o # (removel o X))
by simp
hence mset (map snd X) = mset ((snd o) # (removel (snd o) (map snd

mset (map snd) = mset (map snd (o # (removel o X)))
by (simp add: <o € set ¥y, metis map-monotonic subset-mset.eg-iff)

hence mset (map snd (removel o X)) = mset (removel (snd o) (map snd

by simp

147

ultimately show ?thesis using Some Cons.hyps by simp
qed
}
then show ?case by simp
qed
thus ?thesis by simp
qed

lemma (in classical-logic) witness-list-implication-rule:
- (map (uncurry (1)) £ i @) =[] (map (A (x; &). (x = &) = 9) T) = ¢
proof (induct X)
case Nil
then show ?case using aziom-k by simp
next
case (Cons o X)
let 2y = fst o
let % = snd o
let 74 = map (uncurry (U)) X
let %5 = map (A (x, &). (x = &) — ¢) &
assume - 224 = o = [| 2 = ¢
moreover have
F(7Z4:=> 9o —=[] 228 — @)
= (XU %) > Za:=9)=>(((x—= 2))N [] 22) = ¢
proof —
let %p = (P24 1=) = ([1 ZB) = (p)
S ({70 U (28) = (754 1 9)) = () — (%) = () 11 ([T
i) = (9)
have VON. M |=p,0p % by fastforce
hence - (% |) using propositional-semantics by blast
thus ?thesis by simp
qed
ultimately have F ((?xy U %) — 2254 :—= ¢) = ((?x = %) = o) O[])
— ¥
using modus-ponens by blast
moreover
have (A 0. (fst 0 = snd o) = ¢) = (A (x, &). (x = &) = @)
uncurry (U) = (A 0. fst o U snd o)
by fastforce+
hence (A (x,). (x > &) = p) o= (?x = %) = ¢
uncurry (U) o = 2y U %
by metis+
ultimately show ?case by simp
qed

lemma (in classical-logic) witness-relative-MarSAT-increase:
assumes - F ¢
and mset (map snd) C# mset T
and map (uncurry (1)) X+ ¢
shows (| I' |,) < (| map (uncurry (—)) ¥ QT © map snd ¥ |,)

148

proof —
from (= F ¢ obtain = where =: = ¢ M T ¢
using relative-maximals-existence by blast
let X' =Y o0 UX E
let 2XZ" = map (uncurry (U)) (U X E) Q map (uncurry (—)) (U X E)
have mset ¥ = mset (U X 2 @ 227) by (simp add: MaxSAT-witness-left-msub)
hence set (map (uncurry (U)) X) = set (map (uncurry (U)) (U X 2) @ 72))
by (metis mset-map mset-eq-setD)
hence map (uncurry (L)) (U X E) @ 2%7) :+
using list-deduction-monotonic assms(3)
by blast
hence map (uncurry (L)) (U £ Z) Q map (uncurry (L)) 22" := ¢ by simp
moreover
{
fix U
have (? Q ¥) :— ¢) = (P :— (¥ :— ¢))
by (induct ®, simp+)
hence (? Q@ ¥) ;- p = D :+ (U :— o)
unfolding list-deduction-def
by (induct ®, simp+)

ultimately have map (uncurry (U)) (U £ E) :F map (uncurry (L)) 22" :— ¢
by simp
moreover have set (map (uncurry (L)) (U X E)) C set 755’
by simp
ultimately have ?XZ':F map (uncurry (U)) 9% :— ¢
using list-deduction-monotonic by blast
hence 722" [(map (A (x, 7). (x = 7) = ¢) &%) —
using list-deduction-modus-ponens
list-deduction-weaken
witness-list-implication-rule
by blast
hence ?X=Z' 8 [[] (map (A (x, 7)- (x = 7) = @) 7Z') = ¢]
using measure-deduction-one-collapse by metis
hence
7YE"'Q (map snd (U X E)) © (map snd (U X))
$E 1 (map (A (x; 7). (x = 7) = ©) 72') = ¢]
by simp
hence map snd (U Z E) $+ [(map (A (x, 7). (x = 7) = @) 722) = ¢]
using measure-witness-left-split [where I'=map snd (4 T =)
and =4 ¥ Z]
by fastforce
hence map snd (4 X E) Sk [(map (A (x, 7). (x = 7) = @) 722) = ¢]
using MaxSAT-witness-right-projection by auto
hence map snd (U X Z) :F[] (map (A (x, 7). (x = 7) = ¢) X)) —
using measure-deduction-one-collapse by blast
hence *:
map snd (U X E) QE 6 (map snd X) :F[] (map (A (x, 7). (x = 7) = ¢)
)=

149

(iS ?Eo i —)
using list-deduction-monotonic
by (metis (no-types, lifting) append-Nil2
measure-cancel
measure-deduction.simps(1)
measure-list-deduction-antitonic)
have mset E = mset (£ & (map snd X)) + mset (E N (map snd X))
using list-diff-intersect-comp by blast
hence mset 2 = mset ((map snd X) N E) + mset (2 © (map snd X))
by (metis subset-mset.inf-commute list-intersect-mset-homomorphism union-commaute)
hence mset = = mset (map snd (4 X =) + mset (2 & (map snd X))
using MaxSAT-witness-right-projection by simp
hence mset Z = mset 7=,
by simp
hence set Z = set 7=,
by (metis mset-eq-setD)
have = 7=y =[] (map (A (x, 7). (x = 7) = ¢) X))
proof (rule notl)
assume 7Zg :F[] (map (A (x, 7). (x = 7) = ¢) %)
hence 7= + ¢
using * list-deduction-modus-ponens by blast
hence = I+ ¢
using list-deduction-monotonic <set = = set ?=y> by blast

thus False
using = relative-maximals-def by blast
qged
moreover
have mset (map snd (U X E)) CH# mset 729
mset (map (uncurry (—)) (U X E) Q 229 © map snd (U X E))
= mset (map (uncurry (—)) U X E) Q@ = © (map snd X))
(is - = mset 7=1)
by auto

hence 7=, <X 72
by (metis add.commute
witness-stronger-theory
add-diff-cancel-right’
list-subtract.simps(1)
list-subtract-mset-homomorphism
list-diff-intersect-comp
list-intersect-right-project
msub-stronger-theory-intro
stronger-theory-combine
stronger-theory-empty-list-intro
self-append-conv)
ultimately have
= 21 H [(map (A (x, 7)- (x = 7) = ¢) 72
using stronger-theory-deduction-monotonic by blast
from this obtain x v where
(x,y) € set 72/

150

(x> # Bk
using list-deduction-theorem
by fastforce
have mset (x — v # 721) C# mset (map (uncurry (—)) ¥ QT © map snd %)
proof —
let 24 = map (uncurry (—)) X
let B = map (uncurry (—)) (U X E)
have (x,7) € (set ¥ — set (U ¥ =))
proof —
from «(x,y) € set 75" have v €# mset (map snd (X © U ¥ E))
by (metis set-mset-mset image-eql set-map snd-conv)
hence v €# mset (map snd ¥ & map snd (4 T =2))
by (metis MazSAT-witness-left-msub map-list-subtract-mset-equivalence)
hence v €# mset (map snd £ © (map snd ¥ N =))
by (metis MaxSAT-witness-right-projection list-subtract-mset-homomorphism)
hence v €# mset (map snd ¥ © E)
by (metis add-diff-cancel-right’
list-subtract-mset-homomorphism
list-diff-intersect-comp)
moreover from assms(2) have mset (map snd ¥ © Z) C# mset (I' © E)
by (simp, metis list-subtract-monotonic list-subtract-mset-homomorphism
mset-map)
ultimately have v €# mset (I' © E)
by (simp add: mset-subset-eqD)
hence v € set (I' ©)
using set-mset-mset by fastforce
hence v € set I' — set =
using = by simp
hence v ¢ set =
by blast
hence V X. (x,y) ¢ set (U X E)
proof (induct 2)
case Nil
then show Zcase by simp
next
case (Cons £ 2)
{
fix ¥
have (v, 7) ¢ set (43 (€ # =)
proof (cases find (Ao. £ = snd o) X)
case None
then show ?thesis using Cons by simp
next
case (Some o)
moreover from this have snd o = £
using find-Some-predicate by fastforce
with Cons.prems have o # (x,y) by fastforce
ultimately show ?thesis using Cons by simp
qed

151

}

then show ?Zcase by blast
qed
moreover from ((x,y) € set 7% have (x,7) € set &
by (meson list-subtract-set-trivial-upper-bound subsetCE)
ultimately show ?thesis by fastforce
qed
with «(x, v) € set X’ have mset ((x,y) # U X E) C# mset &
by (meson MazSAT-witness-left--msub msub-list-subtract-elem-cons-msub)
hence mset (x — v # ?B) C# mset (map (uncurry (—)) X)
by (metis (no-types, lifting)
«(x, 7) € set 7%
MaxSAT-witness-left-msub
map-list-subtract-mset-equivalence
map-monotonic
mset-eq-setD msub-list-subtract-elem-cons-msub
pair-imagel
set-map
uncurry-def)
moreover
have mset = C# mset T’
using = relative-mazximals-def
by blast
hence mset (2 © (map snd X)) C# mset (I' © (map snd X))
using list-subtract-monotonic by blast
ultimately show ¢thesis
using subset-mset.add-mono by fastforce
qed
moreover have length 7= = length 7=
by simp
hence length 7=, = length =
using «(mset = = mset 7=g> mset-eq-length

by metis

hence length ((x — v) # 721) = length = + 1
by simp

hence length ((x = v) # 7=1) = (| T |p) + 1
using =

by (simp add: relative-MazSAT-intro)
moreover from (- I 3 obtain) where Q: Q € M (map (uncurry (—)) ¥ @
' © map snd X) ¢
using relative-maximals-existence by blast
ultimately have length Q > (| T |,) + 1
using relative-maximals-def
by (metis (no-types, lifting) <— x — v # 721 := > mem-Collect-eq)
thus ?thesis
using 2 relative-MazSAT-intro by auto
qed

lemma (in classical-logic) relative-mazimals-counting-deduction-lower-bound:

152

assumes = F ¢
shows (I #+ 1) = (n < || T ||,)
proof —
have VI. (T #Fny)=(n<| T |y)
proof (induct n)
case (
then show Zcase by simp
next
case (Suc n)
{
fix T’
assume I' #- (Suc n) ¢
from this obtain ¥ where X:
mset (map snd ¥) C# mset T
map (uncurry (U)) X :F ¢
map (uncurry (—)) X QT & (map snd X) #+ n ¢
by fastforce
let I' = map (uncurry (—)) ¥ QT & (map snd X)
have length T' = length T’
using (1) list-subtract-msub-eq by fastforce
hence (|| T [l,) > (| 7 |.,)
by (metis £(1) X(2) <-- F ¢
witness-relative-MaxSAT-increase
length-MaxSAT-decomposition
add-less-cancel-right
nat-add-left-cancel-less)
with X(3) Suc.hyps have Suc n < || T' ||,
by auto
}

moreover
{
fix I'
assume Sucn < || T |,
from this obtain ¥ where X:
mset (map snd) C# mset I’
map (uncurry (U)) X :F ¢
14 (|| map (uncurry (=)) X QT © map snd ¥ ||,) = || T ||,
(is 1+ (] T o) = | T [l,)
by (metis Suc-le-D assms relative-mazimals-optimal-witness zero-less-Suc)
have n < || T ||,
using 3(3) «Suc n < || T ||,» by linarith
hence 7' #+ n ¢ using Suc by blast
hence T" #+ (Suc n) ¢ using X(1) X(2) by fastforce
}
ultimately show ?case by metis
qed
thus “thesis by auto
qed

As a brief aside, we may observe that ¢ is a tautology if and only if count-

153

ing deduction can prove it for any given number of times.
immediately from =+ =T #+ne = (n < | T |,).

lemma (in classical-logic) counting-deduction-tautology-equiv:
VnT#-ne)=F¢p
proof (cases F)
case True
then show ?thesis
by (simp add: counting-deduction-tautology-weaken)
next
case Fulse
have = T" #+ (1 4 length T) ¢
proof (rule notl)
assume I' #+ (1 + length T') ¢
hence 1 + length T < || T ||,

This follows

using <= F ¢y relative-maximals-counting-deduction-lower-bound by blast

hence 1 + length I' < length T
using complement-relative-MazSAT-def by fastforce
thus Fulse by linarith
qed
then show ?thesis
using <— F) by blast
qed

theorem (in classical-logic) relative-mazimals-max-counting-deduction:

F#-nep=K% ® e MT ¢. n<length (T © P))
proof (cases F)
case True
from - ¢» have I' #F n ¢
using counting-deduction-tautology-weaken
by blast
moreover from <+ ¢» have M T ¢ = {}
using relative-maximals-existence by auto
henceV ® € M T ¢. n < length (I' © ®) by blast
ultimately show “thesis by meson
next
case Fulse
from <=+ ¢ have (I' #Fn ¢) = (n < || T' ||y)

by (simp add: relative-mazimals-counting-deduction-lower-bound)

moreover have (n < || T'[[,) = (Y ® € M T ¢. n < length (I' © ®))

proof (rule iffI)
assume n < || T' ||,
{
fix
assume ® €¢ M T ¢
hence n < length (I' & @)

using «n < || ' ||,» complement-relative-MaxSAT-intro by auto

thus V® € M T ¢. n < length (I' © ®) by blast
next

154

assume V& € M T ¢. n < length (I' © ®)
with <= F @) obtain ® where
deMT g
n < length (I' © @)
using relative-maximals-existence
by blast
thus n < || T ||,
by (simp add: complement-relative-MaxSAT-intro)
qed
ultimately show %thesis by metis
qged

lemma (in consistent-classical-logic) counting-deduction-to-mazsat:

(T #+-n L) = (MaxSAT T + n < length T)

by (metis
add.commute
consistency
length-MazSAT-decomposition
relative-mazimals-counting-deduction-lower-bound
nat-add-left-cancel-le)

155

Chapter 4

Inequality Completeness For
Probability Logic

4.1 Limited Counting Deduction Completeness

The reduction of counting deduction to MaxSAT allows us to first prove
completeness for counting deduction, as maximal consistent sublists allow
us to recover maximally consistent sets, which give rise to Dirac measures.

The completeness result first presented here, where all of the propositions
on the left hand side are the same, will be extended later.

lemma (in probability-logic) list-probability-upper-bound:
(>« T. P) < real (length T)

proof (induct T')
case Nil
then show ?Zcase by simp

next
case (Cons v I
moreover have P v < 1 using unity-upper-bound by blast
ultimately have P v + (3 v«T. P v) < I + real (length T') by linarith
then show ?Zcase by simp

qed

theorem (in classical-logic) dirac-limited-counting-deduction-completeness:
(V P € dirac-measures. real n * P o < (D v«T. P ~)) =~T #-n (~ ¢)
proof —
{
fix P :: 'a = real
assume P € dirac-measures
from this interpret probability-logic (A ¢. F ¢) (=) L P
unfolding dirac-measures-def
by auto
assume ~ I' #- n (~ ¢)
moreover have replicate n (~ @) = ~ (replicate n p)

156

by (induct n, auto)
ultimately have ~ T" $ ~ (replicate n @)
using counting-deduction-to-measure-deduction by metis
hence (> p<(replicate n). P @) < O ~v«TI. P ~)
using measure-deduction-soundness
by blast
moreover have (> p<«(replicate n). P) = real n x P ¢
by (induct n, simp, simp add: semiring-normalization-rules(3))
ultimately have real n * P o < (3 v«T. P)
by simp
}

moreover
{
assume = ~ I' #- n (~ @)
have 3 P € dirac-measures. real n x P o > (3. v«IL. P)
proof —
have 3¢. & € M (~T) (~ ¢)
using
o~ T #En (~)
relative-mazimals-existence
counting-deduction-tautology-weaken
by blast
from this obtain ® where ®:
(v ®) € M (~T) (~)
mset ® C# mset T’
unfolding map-negation-def
by (metis
(mono-tags, lifting)
relative-mazimals-def
mem-Collect-eq
mset-sub-map-list-exists)
hence - F ¢ — || ®
using
biconditional-weaken
list-deduction-def
map-negation-list-implication
set-deduction-base-theory
relative-mazimals-def
by blast
from this obtain Q2 where Q: MCS Q p € Q|| © ¢ Q
by (meson
insert-subset
formula-consistent-def
formula-maximal-consistency
formula-mazximally-consistent-extension
formula-mazximally-consistent-set-def-def
set-deduction-base-theory
set-deduction-reflection
set-deduction-theorem,)

157

let P = X x. if x€Q then (1 :: real) else 0
from Q have ?P € dirac-measures
using MCS-dirac-measure by blast
moreover
from this interpret probability-logic (A ¢. F ¢) (=) L 2P
unfolding dirac-measures-def
by auto
haveV ¢ € set ¢. 7P ¢ = 0
using ®(1) Q(1) Q(8) arbitrary-disjunction-exclusion-MCS by auto
with ®(2) have (3 y«T. 7P v) = Oy« T ©). 7P ~)
proof (induct ®)
case Nil
then show ?Zcase by simp
next
case (Cons ¢ P)
then show ?case
proof —
obtain w :: ‘a where
w: ° mset ® CH mset T
VwesetdAwe-ld
VAT . 2P v) = Oy T o . 2P v)
using Cons.hyps by fastforce
have A:
YV (f :: 'a = real) (T ::'a list) .
- mset ® CH# mset I’
Vv sum-list (3 . f) # map f (T' © @) = o+ f7)
using listSubstract-multisubset-list-summation by auto
have B: Vrs. sum-list ((0::real) # rs) = sum-list rs
by auto
have C: Vr rs. (0::real) = r V sum-list (r # rs) # sum-list rs
by simp
have D: V f. sum-list (sum-list (map f (p # D)) # map f (T © (¢ # P)))
= (sum-list (map f T)::real)
using A Cons.prems(1) by blast
have F: mset ® C# mset T’
using Cons.prems(1) subset-mset.dual-order.trans by force
then have F: Vf. (0:real) = sum-list (map f P)
V sum-list (map f T') # sum-list (map f (T © D))
using C A by (metis (no-types))
then have G: (3. p«(p # ®). 2P o) =0V w e N
using F w Cons.prems(2) by auto
have H: VT rureal. r = (O v«T. 2P «)
VwéeE setd
V£ (Sye(p #T). 7P)
using Cons.prems(2) by auto
have (I::real) # 0 by linarith
moreover
{ assume w ¢ set O
then have w ¢ QV O 7«T. 2P v) = Oy« T © (p #). 2P)

158

using H F E D B w by (metis (no-types) sum-list.Cons) }
ultimately have ?thesis
using G D B by (metis Cons.prems(2) list.set-intros(2))
then show ?thesis
by linarith
qged
qed
hence (> vy+T. ?P v) < real (length (I' © @))
using list-probability-upper-bound
by auto
moreover
have length (~T © ~ ®) < n
by (metis not-le (1) <— (~ T') #F- n (~ o)
relative-mazrimals-max-counting-deduction
maximals-list-subtract-length-equiv)
hence real (length (~ T © ~ ®)) < real n
by simp
with Q(2) have real (length (~T © ~ ®@)) < real n x 7P ¢
by simp
moreover
have (~ (T ©®)) = (~T 6~)
unfolding map-negation-def
by (metis ®(2) map-list-subtract-mset-equivalence)
with perm-length have length (I' © ®) = length (~ T © ~ ®)
by (metis length-map local.map-negation-def)
hence real (length (I' © ®)) = real (length (~ T © ~ D))
by simp
ultimately show ?thesis
by force
qed
}
ultimately show #%thesis by fastforce
qed

4.2 Measure Deduction Completeness

Since measure deduction may be reduced to counting deduction, we have
measure deduction is complete.

lemma (in classical-logic) dirac-measure-deduction-completeness:
(V P e dirac-measures. (D pP. P o) < D7« T.Pv)=~T8% ~o
proof —
{
fix P :: 'a = real
assume P € dirac-measures
from this interpret probability-logic (A ¢. F ¢) (—) L P
unfolding dirac-measures-def
by auto
assume ~ I' $F ~ @

159

hence (3] p+®. P @) < (D 4+T. P~)
using measure-deduction-soundness
by blast

}

moreover
{
assume -~ [§- ~ P
have 3 P € dirac-measures. (3. o+®. P) > O v«T. P ~)
proof —
from (- ~ T $+ ~ & have = ~ (~ ®) Q@ ~ T #t (length (~ P)) L
using measure-deduction-to-counting-deduction by blast
moreover
have ~ (~ ®) @ ~ T" #+ (length (~ ®)) L = ~ (~ ®) @Q ~ T" #+ (length
d) L
by (induct ®, auto)
moreover have - ~ T — |
by (simp add: negation-def)
ultimately have - ~ (~ ® QT') #+ (length ®) (~ T)
using counting-deduction-implication by fastforce
from this obtain P where P:
P € dirac-measures
real (length @) « P T > O v+ (~ 2 QT). Pr)
using dirac-limited-counting-deduction-completeness
by fastforce
from this interpret probability-logic (A ¢. F ¢) (=) L P
unfolding dirac-measures-def
by auto
from P(2) have real (length ®) > > -7 ~D. P v) + Oy« L. P~)
by (simp add: probability-unity)
moreover have (3 v« ~ ®. P v) = real (length ®) — > v+ . P 7)
using complementation
by (induct ®, auto)
ultimately show ?thesis
using P(1) by auto
qed
}
ultimately show “thesis by fastforce
qed

theorem (in classical-logic) measure-deduction-completeness:
(V P € probabilities. (3 p+P@. P) < O 4«T.Pry)=~T8% ~o
proof —
{
fix P :: 'a = real
assume P € probabilities
from this interpret probability-logic (A ¢. F ¢) (=) L P
unfolding probabilities-def
by auto
assume ~ I' §F ~ &

160

hence (3] p+®. P @) < (D 4+T. P~)
using measure-deduction-soundness
by blast
}
thus ?thesis
using dirac-measures-subset dirac-measure-deduction-completeness
by fastforce
qed

4.3 Counting Deduction Completeness

Leveraging our measure deduction completeness result, we may extend our
limited counting deduction completeness theorem to full completness.

lemma (in classical-logic) measure-left-commute:
(PQU)$-=Z= (T QP) =
proof —
have (P Q U) X (T Q@ ®) (T Q@ P) < (P @ D)
using stronger-theory-reflexive stronger-theory-right-permutation perm-append-swap
by blast+
thus ?thesis
using measure-stronger-theory-left-monotonic
by blast
qed

lemma (in classical-logic) stronger-theory-double-negation-right:
P <~ (N <I>)
by (induct @, simp, simp add: double-negation negation-def stronger-theory-left-right-cons)

lemma (in classical-logic) stronger-theory-double-negation-left:
~(~®) <P
by (induct @,
simp,
simp add: double-negation-converse negation-def stronger-theory-left-right-cons)

lemma (in classical-logic) counting-deduction-completeness:
(V P € dirac-measures. (D p+P. P ¢) < D 4«T. Py)) = (~T QD) #+
(length ®) L
proof —
have (V P € dirac-measures. (> p+®. P) < O 4«T. P 7))
=~ (~ ®) Q@ ~ T #+ (length (~ ®)) L
using dirac-measure-deduction-completeness measure-deduction-to-counting-deduction
by blast
also have ... = ~ (~ ®) @ ~ T # (length ®) L by (induct ®, auto)
also have ... = ~ T @ ~ (~ @) #+ (length ®) L
by (simp add: measure-left-commute counting-deduction-to-measure-deduction)
also have ... = ~ T' @ & #+ (length @) L
by (meson measure-cancel
stronger-theory-to-measure-deduction

161

measure-transitive
counting-deduction-to-measure-deduction
stronger-theory-double-negation-left
stronger-theory-double-negation-right)
finally show ?thesis by blast
qed

4.4 Collapse Theorem For Probability Logic

We now turn to proving the collapse theorem for probability logic. This
states that any inequality holds for all finitely additive probability measures
if and only if it holds for all Dirac measures.

theorem (in classical-logic) weakly-additive-completeness-collapse:
(V P € probabilities. (3. o+®. P o) < O v«T.P~))
= (V P € dirac-measures. (> p+®. P @) < O v+T. P 7))
by (simp add: dirac-measure-deduction-completeness
measure-deduction-completeness)

The collapse theorem may be strengthened to include an arbitrary constant
term c¢. This will be key to characterizing MaxSAT completeness in §4.5.

lemma (in classical-logic) nat-dirac-probability:
YV P € dirac-measures. An :: nat. real n = (D . P @)
proof (induct ®)
case Nil
then show ?case by simp
next
case (Cons ¢ ®)
{
fix P :: 'a = real
assume P € dirac-measures
from Cons this obtain n where real n = (> p«®. P ¢’) by fastforce
hence x: (3 p'«®. P ¢') = real n by simp
have 3 n. real n = (> p’(p #). P ¢’)
proof (cases P ¢ = 1)
case True
then show ?thesis
by (simp add: %, metis of-nat-Suc)
next
case Fulse
hence P ¢ = 0 using «P € dirac-measures) dirac-measures-def by auto
then show ?thesis using
by simp
qed
}
thus ?case by blast
qed

162

lemma (in classical-logic) dirac-ceiling:
YV P € dirac-measures.
(@ Py)+c< (T Pr)
= (w2 P o) + [c] < (CyeT. P9))
proof —
{
fix P
assume P ¢ dirac-measures
have (3 p+®. P) + ¢ < (D 7«T.P~))
= (2. P o) + [c] < (T P9))
proof (rule iffI)
assume assm: (D oP. P) + ¢ < O v«TI. Pr)
show (3 p+®. P p) + [c] < Qov«T.Pr)
proof (rule ccontr)
assume — (3 p<P. P) + [c] < 3 v«T. Pr)

moreover
obtain z :: int
and vy :: int

and z : int
where zyz: 2 = (3 . P o)
y = [c|
2= (T Pr)
using nat-dirac-probability
by (metis <P € dirac-measures) of-int-of-nat-eq)
ultimately have x + y — 1 > z by linarith
hence (3" p+«®. P) + ¢ > (D v+TI. P) using zyz by linarith
thus Fulse using assm by simp
qed
next
assume (Y} p+®. P) + [c] < y«T. P)
thus (Y p«®. P)+ c < O y«T.Pr)
by linarith
qed
}
thus ?thesis by blast
qed

lemma (in probability-logic) probability-replicate-verum:
fixes n :: nat
shows (D" o<®. P) + n = (3 p«(replicate n T) Q &. P o)
using probability-unity
by (induct n, auto)

lemma (in classical-logic) dirac-collapse:
(V P € probabilities. (3 p+P@. P) + ¢ < O vT. P~))
= (V P € dirac-measures. (3 p«®@. P) + [¢] < O_v«TI. P 7))
proof
assume V P € probabilities. (3 o«P. P) + ¢ < (3 v«T.P)
hence V P € dirac-measures. (3 p+P@. P @) + ¢ < 3 v«T. P 7)

163

using dirac-measures-subset by fastforce
thus V P € dirac-measures. (3 oP. P @) + [¢] < Q- y+T.P)
using dirac-ceiling by blast
next
assume assm: ¥V P € dirac-measures. (D o®. P) + [c] < O_y«T. P ~)
show V P € probabilities. (3. o«®. P @) + ¢ < 3 v«T.P7)
proof (cases ¢ > 0)
case True
from this obtain n :: nat where real n = [¢|
by (metis (full-types)
antisym-conv
ceiling-le-zero
ceiling-zero
nat-0-iff
nat-eq-iff2
of-nat-nat)
{
fix P
assume P € dirac-measures
from this interpret probability-logic (A ¢. F ¢) (=) L P
unfolding dirac-measures-def
by auto
have (3 @p«®. P) + [c] < Xov«T.Pr)
using assm <P € dirac-measuresy by blast
hence (> p«(replicate n T) @ ®. P ¢) < (D y+T. P 7)
using «real n = [c]»
probability-replicate-verum [where &= and n=n)]
by metis
}

hence V P € dirac-measures.
(3" pe(replicate n T) @ ®. P) < (D vy+T. P)
by blast
hence {: V P € probabilities.
>~ p(replicate n T) Q . P @) < O y+T. P ~)
using weakly-additive-completeness-collapse by blast
{
fix P
assume P € probabilities
from this interpret probability-logic (A . F ¢) (—) L P
unfolding probabilities-def
by auto
have (3 g+ (replicate n T) @ ®. P) < O_v«T. P ~)
using | <P € probabilities> by blast
hence (3 p<®. P) + c < (D ov«T.Pr)
using <real n = [¢]»
probability-replicate-verum [where &= and n=n)|
by linarith
}

then show ?thesis by blast

164

next
case Fulse
hence [¢] < 0 by auto
from this obtain n :: nat where real n = — [c]
by (metis neg-0-le-iff-le of-nat-nat)
{
fix P
assume P € dirac-measures
from this interpret probability-logic (A ¢. F ¢) (=) L P
unfolding dirac-measures-def
by auto
have (3 @p«®. P) + [c] < Xov«T.Pr)
using assm <P € dirac-measuresy by blast
hence (> <. P @) < (> v+ (replicate n T) Q T'. P =)
using <real n = — [c]»
probability-replicate-verum [where ®=I" and n=n)]
by linarith
}

hence V P € dirac-measures.
- pe®. P) < (O v+ (replicate n T) QT. P)
by blast
hence {: V P € probabilities.
0o, P) < (O y«(replicate n T) Q@ T'. P =)
using weakly-additive-completeness-collapse by blast
{
fix P
assume P € probabilities
from this interpret probability-logic (A ¢. F ¢) (=) L P
unfolding probabilities-def
by auto
have (> p+®. P ¢) < (O v+ (replicate n T) QT. P v)
using I <P € probabilitiesy by blast
hence (3 p<®. P @) + c < (X ov«T.Pr)
using <real n = — [c]»
probability-replicate-verum [where ®=TI" and n=n)|
by linarith
}
then show ?thesis by blast
qed
qed

lemma (in classical-logic) dirac-strict-floor:

YV P € dirac-measures.

(. P)+ c< (1T Py))
(S ped P) + L] + 1< (ST P)

proof

fix P :: 'a = real

let 7P'= Nop. | Py |) = 'a= int

assume P € dirac-measures

165

henceV ¢. P o= 2P ¢
unfolding dirac-measures-def
by (metis (mono-tags, lifting)
mem-Collect-eq
of-int-0
of-int-1
of-int-floor-cancel)
hence 4: (3 p+@. P) = (D oP. 7P’)
by (induct ®, auto)
have B: (3 7«TI.P~v)= (D v«TI. ?P'~)
using <V . P o = 2P’ ¢y by (induct T, auto)
have (3 p+®. P) + c < (D v+TI.Pr))
U e, 7P/) + ¢ < (DA< 7P 7))
unfolding A B by auto
also have ... = (D p«®. P @) + |c] + 1 < (3o y«T. 2P v))
by linarith
finally show (D" p+®. P) + c< O v«T.Py)) =
(D ped. P o)+ Le] + 1< (ST P 1)
using A B by linarith
qed

lemma (in classical-logic) strict-dirac-collapse:
(V P € probabilities. (3. @o+P. P) + ¢ < O vT. P~))
= (V P € dirac-measures. (3 oP. P) + [c] + 1 < (D v«T. P)
proof
assume V P € probabilities. (3 pP. P @) + ¢ < D y«T.P~)
hence V P € dirac-measures. (3 p+®. P) + ¢ < O v«T. P)
using dirac-measures-subset by blast
thus V P € dirac-measures. (> p«@. P @) + |c] + 1 < O v«T. P 7))
using dirac-strict-floor by blast
next
assume V P € dirac-measures. (3. o+P. P o) + [c] + 1 < O v«T. P 7))
moreover have |c| + 1 = [(|c| + 1) :: real]
by simp
ultimately have x:
V P € probabilities. ((3°p®. P) + [c] + 1< QX v«T. P)
using dirac-collapse [of ® |c] + 1T
by auto
show V P € probabilities. (3. o+®. P) + ¢ < O y+T. P 7))
proof
fix P :: 'a = real
assume P € probabilities
hence (3 p«®. P o) + |c] + 1 < O y+T. Py
using x by auto
thus Y . P)+ c< O yT. Pr)
by linarith
qed
qed

166

4.5 MaxSAT Completeness For Probability Logic

It follows from the collapse theorem that any probability inequality tau-
tology, include those with constant terms, may be reduced to a bounded
MaxSAT problem. This is not only a key computational complexity result,
but suggests a straightforward algorithm for computing probability identi-
ties.

lemma (in classical-logic) relative-maximals-verum-eztract:
assumes = F ¢
shows (| replicate n T Q ® [,) =n + (| D |,)
proof (induct n)
case (
then show Zcase by simp
next
case (Suc n)
{
fix ¢
obtain ¥ where ¥ ¢ M (T # @) ¢
using assms relative-mazximals-existence by fastforce
hence T € set ¥
by (metis (no-types, lifting)
list.set-intros(1)
list-deduction-modus-ponens
list-deduction-weaken
relative-mazimals-complement-equiv
relative-mazimals-def
verum-tautology
mem-Collect-eq)
hence — (removel T X i)
by (meson <¥ € M (T # @) ¢
list.set-intros(1)
axiom-k
list-deduction-modus-ponens
list-deduction-monotonic
list-deduction-weaken
relative-mazimals-complement-equiv
set-removel-subset)
moreover
have mset ¥ C# mset (T #)
using X € M (T # @) ¢ relative-mazimals-def by blast
hence mset (removel T ¥) C# mset ®
using subset-eq-diff-conv by fastforce
ultimately have (| ® |,) > length (removel T X)
by (metis (no-types, lifting)
relative-MazxSAT-intro
list-deduction-weaken
relative-mazimals-def
relative-mazimals-existence

167

mem-Collect-eq)
hence (| ® |,) + 1 > length ¥
by (simp add: <T € set ¥ length-removel)
moreover have (| ¢ |,) < length ¥
proof (rule ccontr)
assume — (| ® |,) < length &
hence (| ® |,) > length ¥ by linarith
from this obtain A where A €¢ M ® ¢ length A > length
using assms relative-MaxSAT-intro relative-mazimals-existence by fastforce
hence — (T # A) + ¢
using list-deduction-modus-ponens
list-deduction-theorem
list-deduction-weaken
relative-mazimals-def
verum-tautology
by blast
moreover have mset (T # A) C# mset (T #)
using <A € M ® ¢ relative-mazimals-def by auto
ultimately have length ¥ > length (T # A)
using <X € M (T # ®) ¢ relative-mazimals-def by blast
hence length A > length (T # A)
using <length ¥ < length A> dual-order.trans by blast
thus Fulse by simp
qed
ultimately have (| T # ® |,) = (1 + | ® |,)
by (metis Suc-eq-plusl Suc-le-eq <X € M (T # @) ¢ add.commute le-antisym
relative-MazSAT-intro)
}
thus ?case using Suc by simp
qed

lemma (in classical-logic) complement-MaxSAT-completeness:
(V P € dirac-measures. (3. p+D. P) < O v«T. P 7)) = (length ® < || ~
raeol.)
proof (cases - 1)
case True
hence M (~T @ @) L = {}
using relative-maximals-existence by auto
hence length (~T Q@) =|| ~T Q@ d |,
unfolding complement-relative-MaxSAT-def relative-MaxSAT-def by presburger
then show ?thesis
using True counting-deduction-completeness counting-deduction-tautology-weaken
by auto
next
case Fulse
then show ?thesis
using counting-deduction-completeness relative-maximals-counting-deduction-lower-bound
by blast
qed

168

lemma (in classical-logic) relative-maximals-neg-verum-elim:
(| replicate n (~ T) @ |,) = (| |,)
proof (induct n)
case (
then show Zcase by simp
next
case (Suc n)
{
fix ¢
have (| (~ T) #® |,) = (| ® |,)
proof (cases b ¢)
case True
then show ?thesis
unfolding relative-MaxSAT-def relative-mazimals-def
by (simp add: list-deduction-weaken)
next
case Fulse
from this obtain ¥ where X e M ((~ T) # @) ¢
using relative-maximals-existence by fastforce
have [(~ T)] :F ¢
by (metis modus-ponens
Peirces-law
pseudo-scotus
list-deduction-theorem
list-deduction-weaken
negation-def
verum-def)
hence ~ T ¢ set &
by (meson <X € M (~ T # @) ¢
list.set-intros(1)
list-deduction-base-theory
list-deduction-theorem
list-deduction-weaken
relative-mazimals-complement-equiv)
hence removel (~ T) X =X
by (simp add: removel-idem)
moreover have mset ¥ C# mset ((~ T) # @)
using X € M (~ T # ®) ¢ relative-maximals-def by blast
ultimately have mset ¥ C# mset ®
by (metis add-mset-add-single mset.simps(2) mset-removel subset-eq-diff-conv)
moreover have - (X :+ ¢)
using X € M (~ T # ®) ¢ relative-maximals-def by blast
ultimately have (| ® |,) > length
by (metis (no-types, lifting)
relative-MaxSAT-intro
list-deduction-weaken
relative-mazimals-def
relative-mazimals-existence

169

mem-Collect-eq)
hence (| @ [,) > (| (~ T) # @ |,)
using X € M (~ T # @) ¢ relative-MazSAT-intro by auto
moreover
have (| @ |,) < (| (~ T) # @ |,)
proof —
obtain A where A e M ® ¢
using False relative-mazimals-existence by blast
hence
- A
mset A CH# mset ((~ T) # ®)
unfolding relative-maximals-def
by (simp,
metis (mono-tags, lifting)
Diff-eq-empty-iff-mset
list-subtract.simps(2)
list-subtract-mset-homomorphism
relative-mazimals-def
mem-Collect-eq
mset-zero-iff
removel.simps(1))
hence length A < length ¥
using <X € M (~ T # ®) ¢ relative-mazimals-def by blast
thus ?thesis
using (A e M ® o) <X € M (~ T # ®) v relative-MaxSAT-intro by
auto
qed
ultimately show ?thesis
using le-antisym by blast
qed
}
thus ?case using Suc by simp
qed

lemma (in classical-logic) dirac-MazSAT-partial-completeness:
(V P € dirac-measures. (D o<P. P) < O v+T.P 7)) = (MaxSAT (~T Q
O) < length T)
proof —
{
fix P :: 'a = real
obtain ¢ :: 'a list = 'a list = 'a = real where
(VOT. p@T € dirac-measures N = (D p+P. (0 @T) ¢) < O v+T. (o

®T))
Vlength ® < || ~T @& [|1)
AN(V®T. length ® < (| ~T Q® L)
— (VP € dirac-measures. (3. p<0. P @) < O v+T. P %))
using complement-MaxSAT-completeness by moura
moreover have VI' ¢ n. lengthT' — n < (|| T ||,) V (| T |,) — n # 0
by (metis add-diff-cancel-right’

170

cancel-ab-semigroup-add-class. diff-right-commute
diff-is-0-eq length-MaxSAT-decomposition)
moreover have V I' & n. length (I' @ &) — n < length " V length ® — n # 0
by force
ultimately have
(P € dirac-measures — (> p+®. P) < O v+T. P 7))
AN(|~T@Q@®|,) < length (~T)
Y (| ~T@®) < length (~T)
A (3P. P € dirac-measures A = (D p+P. P @) < O v«T. P 7))
by (metis (no-types) add-diff-cancel-left’
add-diff-cancel-right’
diff-is-0-eq length-append
length-MazSAT-decomposition)
}
then show ?thesis by auto
qed

lemma (in consistent-classical-logic) dirac-inequality-elim:
fixes c :: real
assumes V P € dirac-measures. (D p+P. P ¢) + ¢ < (3 v«T. P 7)
shows (MazSAT (~ T @Q ®) 4+ ¢ < length I)
proof (cases ¢ > 0)
case True
from this obtain n :: nat where real n = [¢|
by (metis ceiling-mono ceiling-zero of-nat-nat)
{
fix P
assume P € dirac-measures
from this interpret probability-logic (A ¢. b ¢) (—) L P
unfolding dirac-measures-def
by auto
have (> p+®. P o) + n < O v«T.P~)
by (metis assms <P € dirac-measuresy <real n = [c|» dirac-ceiling)
hence (> p<(replicate n T) Q &. P) < (O v«TI. P)
using probability-replicate-verum [where ®=® and n=n]
by metis
}
hence (| ~ T @ replicate n T @Q & ||) < length T
using dirac-MazSAT-partial-completeness by blast
moreover have mset (~ I" Q replicate n T @ ®) = mset (replicate n T Q@ ~ T’
@ 9)
by simp
ultimately have (| replicate n T@Q ~T @Q & |,) < length T
unfolding relative-MaxSAT-def relative-maximals-def
by metis
hence (| ~T Q® |,) + [c] < length T
using <real n = [c]» consistency relative-mazimals-verum-extract
by auto
then show ?thesis by linarith

171

next

case Fulse
hence [c¢] < 0 by auto
from this obtain n :: nat where real n = — [c]

by (metis neg-0-le-iff-le of-nat-nat)
{

fix P

assume P € dirac-measures

from this interpret probability-logic (A ¢. F ¢) (=) L P
unfolding dirac-measures-def
by auto

have (3 @p«®. P) + [c] < Qov«T.Pr)
using assms <P € dirac-measures) dirac-ceiling

by blast
hence (3 p«®. P o) < O v«T.P~v) +n
using <real n = — [c]» by linarith

hence (3" p+®. P) < (3. v« (replicate n T) QT. P =)
using probability-replicate-verum [where ®=I" and n=n]
by metis
}
hence (| ~ (replicate n T QT) Q ® |,) < length (replicate n T QT")
using dirac-MaxSAT-partial-completeness [where ®=® and T'=replicate n T
@ I
by metis
hence (| ~T Q® |,) < n+ length T
by (simp add: relative-mazimals-neg-verum-elim)
then show ?thesis using <real n = — [¢]» by linarith
qed

lemma (in classical-logic) dirac-inequality-intro:
fixes ¢ :: real
assumes MazSAT (~ T @Q @) + ¢ < length T
shows V P € dirac-measures. (> p+P. P o)+ ¢ < O v+T. P)
proof (cases - 1)
assume - |
{
fix P
assume P € dirac-measures
from this interpret probability-logic (A ¢. b ¢) (—) L P
unfolding dirac-measures-def
by auto
have Fulse
using < L» consistency by blast
}

then show ?thesis by blast
next

assume - - |

then show ?thesis

proof (cases ¢ > 0)

172

assume c > (
from this obtain n :: nat where real n = [c|
by (metis ceiling-mono ceiling-zero of-nat-nat)
hence n + (| ~T Q@ |,) < length T
using assms by linarith
hence (] replicate n TQ ~T @Q ® |,) < length T
by (simp add: <=+ L relative-maximals-verum-eztract)
moreover have mset (replicate n T Q@ ~ T' @ &) = mset (~ ' Q replicate n
T Q)
by simp
ultimately have (| ~ T" @ replicate n T @Q & |,) < length T
unfolding relative-MaxSAT-def relative-maximals-def
by metis
hence V P € dirac-measures. (> o« (replicate n T) @ &. P o) < D y+T. P

7)
using dirac-MaxSAT-partial-completeness by blast
{
fix P
assume P € dirac-measures
from this interpret probability-logic (A ¢. F ¢) (=) L P
unfolding dirac-measures-def
by auto
have (3 p«(replicate n T) Q@ . P) < D v«T. P)
using <P € dirac-measures»
' P € dirac-measures. (> p+(replicate n T) Q@ &. P ¢) < (D 4+T.
P o)

by blast
hence (3 o @. P) + n < (D y+T.P~)
by (simp add: probability-replicate-verum,)
hence (3 o ®. P) + ¢ < (D y«T.P~)
using <real n = real-of-int [c]» by linarith
}

then show ?thesis by blast
next
assume - (¢ > 0)
hence [¢] < 0 by auto
from this obtain n :: nat where real n = — [c]
by (metis neg-0-le-iff-le of-nat-nat)
hence (| ~TQ® |,) < n + length T
using assms by linarith
hence (| ~ (replicate n T QT) @ ® |,) < length (replicate n T QT)
by (simp add: relative-mazimals-neg-verum-elim)
hence V P € dirac-measures.
O P o) < (O v+(replicate n T) QT. P ~)
using dirac-MazSAT-partial-completeness by blast
{
fix P
assume P € dirac-measures
from this interpret probability-logic (A ¢. F ¢) (=) L P

173

unfolding dirac-measures-def
by auto
have (3 p«®. P ¢) < (3 v« (replicate n T) QT. P ~)
using P € dirac-measures)
~/ P € dirac-measures.
O P) < (O v+(replicate n T) QT. P)

by blast
hence (3" p®. P ¢) + [c] < Qv T.Pr)
using <real n = — [c|» probability-replicate-verum by auto

hence (> p+®. P)+ c < v+ T. P)
by linarith
}

then show ?thesis by blast
qed
qed

lemma (in consistent-classical-logic) dirac-inequality-equiv:
(V 0 € dirac-measures. (3 pP. 6) + ¢ < O y«T.6 7))
= (MazSAT (~ T @Q ®) + (c :: real) < length T)
using dirac-inequality-elim dirac-inequality-intro consistency by auto

theorem (in consistent-classical-logic) probability-inequality-equiv:
(V P € probabilities. (3 p+®. P) + ¢ < O v+T. P~))
= (MazSAT (~ T @Q ®) + (c :: real) < length T)
unfolding dirac-collapse
using dirac-inequality-equiv dirac-ceiling by blast

no-notation first-component ()
no-notation second-component (*B)
no-notation merge-witness (J)
no-notation X-witness (X)
no-notation X-component (X,)
no-notation Y-witness (2))

no-notation
no-notation
no-notation
no-notation
no-notation
no-notation
no-notation
no-notation
no-notation

Y-component ()

submerge-witness (€)

recover-witness-A (P)
recover-complement-A (P°)
recover-witness-B (Q)

relative-mazimals (M)

relative-MazSAT (| - |- [45])
complement-relative-MaxSAT (|| - |- [45])
MazSAT-optimal-pre-witness ()

no-notation MazSAT-optimal-witness (V)
no-notation disjunction-MaxSAT-optimal-witness (20,)
no-notation implication-MaxSAT-optimal-witness (20_,)
no-notation MaxSAT-witness (U)

notation FuncSet.funcset (infixr — 60)

174

end

175

Bibliography

[1] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-
complete graph problems. Theoretical Computer Science, 1(3):237-267,
Feb. 1976.

176

	Introduction
	Measure Deduction and Counting Deduction
	Definition of Measure Deduction
	Definition of the Stronger Theory Relation
	The Stronger Theory Relation is a Preorder
	The Stronger Theory Relation is a Subrelation of of Measure Deduction
	Measure Deduction is a Preorder
	Measure Deduction Cancellation Rules
	Measure Deduction Substitution Rules
	Measure Deduction Sum Rules
	Measure Deduction Exchange Rule
	Definition of Counting Deduction
	Converting Back and Forth from Counting Deduction to Measure Deduction
	Measure Deduction Soundess

	MaxSAT
	Definition of Relative Maximal Clause Collections
	Definition of MaxSAT
	Reducing Counting Deduction to MaxSAT

	Inequality Completeness For Probability Logic
	Limited Counting Deduction Completeness
	Measure Deduction Completeness
	Counting Deduction Completeness
	Collapse Theorem For Probability Logic
	MaxSAT Completeness For Probability Logic

