A Sound and Complete Calculus for Probability Inequalities

Matthew Doty

April 6, 2024

Abstract

We give a sound an complete multiple-conclusion calculus F for finitely additive probability inequalities. In particular, we show

$$\sim \Gamma \$ \vdash \sim \Phi \equiv \forall \mathcal{P} \in probabilities. \sum \phi \leftarrow \Phi. \ \mathcal{P} \phi \leq \sum \gamma \leftarrow \Gamma. \ \mathcal{P} \gamma$$

...where $\sim \Gamma$ is the negation of all of the formulae in Γ (and similarly for $\sim \Phi$). We prove this by using an abstract form of MaxSAT. We also show

$$MaxSAT(\sim\Gamma \ @\ \Phi) + c \leq length\ \Gamma \equiv \forall \mathcal{P} \in probabilities. \left(\sum \phi \leftarrow \Phi.\ \mathcal{P}\phi\right) + c \leq \sum \gamma \leftarrow \Gamma.\ \mathcal{P}\gamma$$

Finally, we establish a *collapse theorem*, which asserts that $(\sum \phi \leftarrow \Phi. \mathcal{P}\phi) + c \leq \sum \gamma \leftarrow \Gamma. \mathcal{P}\gamma$ holds for all probabilities \mathcal{P} if and only if $(\sum \phi \leftarrow \Phi. \delta\phi) + c \leq \sum \gamma \leftarrow \Gamma. \delta\gamma$ holds for all binary-valued probabilities δ .

Contents

1	Intr	oduction	2
2	Mea	asure Deduction and Counting Deduction	4
	2.1	Definition of Measure Deduction	4
	2.2	Definition of the Stronger Theory Relation	5
	2.3	The Stronger Theory Relation is a Preorder	6
	2.4	The Stronger Theory Relation is a Subrelation of of Measure	
		Deduction	10
	2.5	Measure Deduction is a Preorder	20
	2.6	Measure Deduction Cancellation Rules	86
	2.7	Measure Deduction Substitution Rules	93
	2.8	Measure Deduction Sum Rules	94
	2.9	Measure Deduction Exchange Rule	95
	2.10	Definition of Counting Deduction	96
	2.11	Converting Back and Forth from Counting Deduction to Mea-	
		sure Deduction	96
	2.12	Measure Deduction Soundess	99
3	MaxSAT 1		.06
	3.1	Definition of Relative Maximal Clause Collections	106
	3.2	Definition of MaxSAT	111
	3.3	Reducing Counting Deduction to MaxSAT	
4	Inequality Completeness For Probability Logic 15		.56
	4.1	Limited Counting Deduction Completeness	156
	4.2	Measure Deduction Completeness	159
	4.3	Counting Deduction Completeness	
	4.4	Collapse Theorem For Probability Logic	
	4.5	MaxSAT Completeness For Probability Logic	

Chapter 1

Introduction

```
theory Probability-Inequality-Completeness
imports
    Suppes-Theorem.Probability-Logic
begin
```

no-notation FuncSet.funcset (infixr $\rightarrow 60$)

We introduce a novel logical calculus and prove completeness for probability inequalities. This is a vast generalization of *Suppes' Theorem* which lays the foundation for this theory.

We provide two new logical judgements: $measure\ deduction\ (\$\vdash)$ and $counting\ deduction\ (\#\vdash)$. Both judgements capture a notion of measure or quantity. In both cases premises must be partially or completely consumed in sense to prove multiple conclusions. That is to say, a portion of the premises must be used to prove each conclusion which cannot be reused. Counting deduction counts the number of times a particular conclusion can be proved (as the name implies), while measure deduction includes multiple, different conclusions which must be proven via the premises.

We also introduce an abstract notion of MaxSAT, which is the maximal number of clauses in a list of clauses that can be simultaneously satisfied.

We show the following are equivalent:

- ~ Γ \$⊢ ~ Φ
- $(\sim \Gamma @ \Phi) \#\vdash (length \Phi) \bot$
- $MaxSAT \ (\sim \Gamma @ \Phi) \leq length \ \Gamma$
- $\forall \ \delta \in dirac\text{-}measures. \ (\sum \varphi \leftarrow \Phi. \ \delta \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \delta \ \gamma)$
- $\forall \ \mathcal{P} \in probabilities. \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)$

In the special case of MaxSAT, we show the following are equivalent:

- MaxSAT ($\sim \Gamma @ \Phi$) + $c \leq length \Gamma$
- $\forall \ \delta \in \textit{dirac-measures.} \ (\sum \varphi \leftarrow \Phi. \ \delta \ \varphi) + c \leq (\sum \gamma \leftarrow \Gamma. \ \delta \ \gamma)$
- $\forall \ \mathcal{P} \in probabilities. \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + c \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)$

Chapter 2

Measure Deduction and Counting Deduction

2.1 Definition of Measure Deduction

To start, we introduce a common combinator for modifying functions that take two arguments.

```
definition uncurry :: ('a \Rightarrow 'b \Rightarrow 'c) \Rightarrow 'a \times 'b \Rightarrow 'c

where uncurry\text{-}def [simp]: uncurry f = (\lambda (x, y). f x y)
```

Our new logical calculus is a recursively defined relation (\Vdash) using *list deduction* (\vdash).

We call our new logical relation measure deduction:

```
\begin{array}{l} \mathbf{primrec} \ \ (\mathbf{in} \ classical\text{-}logic) \\ measure\text{-}deduction :: 'a \ list \Rightarrow 'a \ list \Rightarrow bool \ (\mathbf{infix} \ \$\vdash \ 60) \\ \mathbf{where} \\ \Gamma \ \$\vdash \ [] = True \\ \mid \Gamma \ \$\vdash \ (\varphi \ \# \ \Phi) = \\ (\exists \ \Psi. \ mset \ (map \ snd \ \Psi) \subseteq \# \ mset \ \Gamma \\ \land \ map \ (uncurry \ (\sqcup)) \ \Psi :\vdash \varphi \\ \land \ map \ (uncurry \ (\to)) \ \Psi \ @ \ \Gamma \ominus (map \ snd \ \Psi) \ \$\vdash \ \Phi) \end{array}
```

Let us briefly analyze what the above definition is saying.

From the above we must find a special list-of-pairs Ψ , which we refer to as a *witness*, in order to establish $\Gamma \$ \vdash \varphi \# \Phi$.

We may motivate measure deduction as follows. In the simplest case we know $\mathcal{P} \varphi \leq \mathcal{P} \psi + \Sigma$ if and only if $\mathcal{P} (\chi \sqcup \varphi) + \mathcal{P} (\sim \chi \sqcup \varphi) \leq \mathcal{P} \psi + \Sigma$, or equivalently $\mathcal{P} (\chi \sqcup \varphi) + \mathcal{P} (\chi \to \varphi) \leq \mathcal{P} \psi + \Sigma$. So it suffices to prove $\mathcal{P} (\chi \sqcup \varphi) \leq \mathcal{P} \psi$ and $\mathcal{P} (\chi \to \varphi) \leq \Sigma$. Here $[(\chi,\varphi)]$ is like the *witness* in our recursive definition, which reflects the $\exists \Psi \ldots$ formula is our definition. The fact that measure deduction reflects proving theorems

in the theory of inequalities of probability logic is the elementary intuition behind the soundness theorem we will ultimately prove in §2.12.

A key difference from the simple motivation above is that, as in the case of Suppes' Theorem where we prove $\sim \Gamma :\vdash \sim \varphi$ if and only if $\mathcal{P} \varphi \leq (\sum \gamma \leftarrow \Gamma \cdot \mathcal{P} \gamma)$ for all \mathcal{P} , soundness in this context means $\sim \Gamma \Vdash \sim \Phi$ implies $\forall \mathcal{P}. (\sum \gamma \leftarrow \Gamma \cdot \mathcal{P} \gamma) \geq (\sum \varphi \leftarrow \Phi \cdot \mathcal{P} \varphi)$.

2.2 Definition of the Stronger Theory Relation

We next turn to looking at a subrelation of (\$\(\dagger)\), which we call the *stronger theory* relation (\leq). Here we construe a *theory* as a list of propositions. We say theory Γ is *stronger than* Σ where, for each element σ in Σ , we can take an element γ of Γ without replacement such that $\vdash \gamma \to \sigma$.

To motivate this notion, let's reuse the metaphor that Γ and Σ are bags of balls of clay, and we need to show Γ is heavier without simply weighing the two bags. A sufficient (but incomplete) approach is to take each ball of clay σ in Σ and find another ball of clay γ in Γ (without replacement) that is heavier. This simple approach avoids the complexity of iteratively cutting up balls of clay.

2.3 The Stronger Theory Relation is a Preorder

Next, we show that (\preceq) is a preorder by establishing reflexivity and transitivity.

We first prove the following lemma with respect to multisets and stronger theories.

```
lemma (in implication-logic) msub-stronger-theory-intro:
  assumes mset \Sigma \subseteq \# mset \Gamma
  shows \Sigma \preceq \Gamma
proof -
  let ?\Delta\Sigma = map(\lambda x.(x,x)) \Sigma
  have map snd ?\Delta\Sigma = \Sigma
   by (induct \Sigma, simp, simp)
  moreover have map fst ?\Delta\Sigma = \Sigma
   by (induct \Sigma, simp, simp)
  hence mset\ (map\ fst\ ?\Delta\Sigma) \subseteq \#\ mset\ \Gamma
   using assms by simp
  moreover have \forall (\gamma, \sigma) \in set ?\Delta\Sigma. \vdash \gamma \rightarrow \sigma
   by (induct \Sigma, simp, simp,
       metis\ list-implication.simps(1)\ list-implication-axiom-k)
  ultimately show ?thesis using stronger-theory-relation-def by (simp, blast)
qed
The reflexive property immediately follows:
lemma (in implication-logic) stronger-theory-reflexive [simp]: \Gamma \leq \Gamma
  using msub-stronger-theory-intro by auto
lemma (in implication-logic) weakest-theory [simp]: [] \leq \Gamma
  using msub-stronger-theory-intro by auto
lemma (in implication-logic) stronger-theory-empty-list-intro [simp]:
  assumes \Gamma \leq [
 shows \Gamma = []
 using assms stronger-theory-relation-def by simp
Next, we turn to proving transitivity. We first prove two permutation the-
orems.
lemma (in implication-logic) stronger-theory-right-permutation:
  assumes \Gamma \rightleftharpoons \Delta
     and \Sigma \prec \Gamma
   shows \Sigma \prec \Delta
proof -
  from assms(1) have mset \Gamma = mset \Delta
   by simp
  thus ?thesis
   using assms(2) stronger-theory-relation-def
   by fastforce
```

```
qed
```

```
\mathbf{lemma} \ (\mathbf{in} \ implication\text{-}logic) \ stronger\text{-}theory\text{-}left\text{-}permutation:
  assumes \Sigma \rightleftharpoons \Delta
       and \Sigma \preceq \Gamma
    shows \Delta \leq \Gamma
proof -
  have \forall \ \Sigma \ \Gamma. \ \Sigma \rightleftharpoons \Delta \longrightarrow \Sigma \preceq \Gamma \longrightarrow \Delta \preceq \Gamma
  proof (induct \ \Delta)
    {\bf case}\ Nil
    then show ?case by simp
  next
    case (Cons \delta \Delta)
     {
       \mathbf{fix}\ \Sigma\ \Gamma
       assume \Sigma \rightleftharpoons (\delta \# \Delta) \Sigma \prec \Gamma
       from this obtain \Phi where \Phi:
         map\ snd\ \Phi=\Sigma
         mset\ (map\ fst\ \Phi)\subseteq \#\ mset\ \Gamma
         \forall (\gamma, \delta) \in set \ \Phi. \vdash \gamma \to \delta
         using stronger-theory-relation-def by fastforce
       with \langle \Sigma \rightleftharpoons (\delta \# \Delta) \rangle have \delta \in \# mset (map \ snd \ \Phi)
         by fastforce
       from this obtain \gamma where \gamma: (\gamma, \delta) \in \# mset \Phi
          by (induct \Phi, fastforce+)
       let ?\Phi_0 = remove1 (\gamma, \delta) \Phi
       let ?\Sigma_0 = map \ snd \ ?\Phi_0
       from \gamma \Phi(2) have mset (map fst ?\Phi_0) \subseteq \# mset (remove1 \gamma \Gamma)
         by (metis ex-mset
                      list-subtract-monotonic
                      list-subtract-mset-homomorphism
                      mset-remove1
                      remove1-pairs-list-projections-fst)
       moreover have mset ?\Phi_0 \subseteq \# mset \Phi by simp
       with \Phi(\beta) have \forall (\gamma, \delta) \in set ?\Phi_0. \vdash \gamma \to \delta by fastforce
       ultimately have ?\Sigma_0 \leq remove1 \gamma \Gamma
          unfolding stronger-theory-relation-def by blast
       moreover have \Delta \rightleftharpoons (remove1 \ \delta \ \Sigma) \ using \langle \Sigma \rightleftharpoons (\delta \ \# \ \Delta) \rangle
          by (metis perm-remove-perm perm-sym remove-hd)
       moreover from \gamma \Phi(1) have mset ?\Sigma_0 = mset (remove1 \delta \Sigma)
          \mathbf{using}\ remove 1-pairs-list-projections-snd
         by fastforce
       hence ?\Sigma_0 \rightleftharpoons remove1 \delta \Sigma
         by blast
       ultimately have \Delta \leq remove1 \gamma \Gamma using Cons
         by presburger
       from this obtain \Psi_0 where \Psi_0:
          map snd \Psi_0 = \Delta
          mset\ (map\ fst\ \Psi_0)\subseteq \#\ mset\ (remove1\ \gamma\ \Gamma)
```

```
\forall (\gamma, \delta) \in set \ \Psi_0. \vdash \gamma \rightarrow \delta
         using stronger-theory-relation-def by fastforce
       let ?\Psi = (\gamma, \delta) \# \Psi_0
       have map snd ?\Psi = (\delta \# \Delta)
         by (simp add: \Psi_0(1))
       moreover have mset \ (map \ fst \ ?\Psi) \subseteq \# \ mset \ (\gamma \ \# \ (remove1 \ \gamma \ \Gamma))
         using \Psi_0(2) by auto
       moreover from \gamma \Phi(\beta) \Psi_0(\beta) have \forall (\gamma, \sigma) \in set \ ?\Psi \vdash \gamma \rightarrow \sigma  by auto
       ultimately have (\delta \# \Delta) \preceq (\gamma \# (remove1 \gamma \Gamma))
         unfolding stronger-theory-relation-def by metis
       moreover from \gamma \Phi(2) have \gamma \in \# mset \Gamma
         using mset-subset-eqD by fastforce
       hence (\gamma \# (remove1 \gamma \Gamma)) \rightleftharpoons \Gamma
        by auto
       ultimately have (\delta \# \Delta) \preceq \Gamma
         using stronger-theory-right-permutation by blast
    then show ?case by blast
  qed
  with assms show ?thesis by blast
qed
lemma (in implication-logic) stronger-theory-transitive:
  assumes \Sigma \leq \Delta and \Delta \leq \Gamma
    shows \Sigma \preceq \Gamma
proof -
  have \forall \ \Delta \ \Gamma. \ \Sigma \preceq \Delta \longrightarrow \Delta \preceq \Gamma \longrightarrow \Sigma \preceq \Gamma
  proof (induct \Sigma)
    case Nil
    then show ?case using stronger-theory-relation-def by simp
  next
    case (Cons \sigma \Sigma)
      fix \Delta \Gamma
      assume (\sigma \# \Sigma) \leq \Delta \Delta \leq \Gamma
       from this obtain \Phi where \Phi:
         map snd \Phi = \sigma \# \Sigma
         mset\ (map\ fst\ \Phi)\subseteq \#\ mset\ \Delta
         \forall (\delta,\sigma) \in set \ \Phi. \vdash \delta \rightarrow \sigma
         using stronger-theory-relation-def by (simp, metis)
       let ?\delta = fst \ (hd \ \Phi)
       from \Phi(1) have \Phi \neq [] by (induct \ \Phi, simp+)
       hence ?\delta \in \# mset (map fst \Phi) by (induct \Phi, simp+)
       with \Phi(2) have ?\delta \in \# mset \Delta by (meson mset\text{-}subset\text{-}eqD)
       hence mset (map\ fst\ (remove1\ (hd\ \Phi)\ \Phi)) \subseteq \#\ mset\ (remove1\ ?\delta\ \Delta)
         using \langle \Phi \neq [] \rangle \Phi(2)
         by (simp,
              metis
                diff-single-eq-union
```

```
hd-in-set
         image\text{-}mset\text{-}add\text{-}mset
         insert-subset-eq-iff
         set-mset-mset)
moreover have remove1 (hd \Phi) \Phi = tl \Phi
  using \langle \Phi \neq [] \rangle
  by (induct \Phi, simp+)
moreover from \Phi(1) have map snd (tl \ \Phi) = \Sigma
  by (simp \ add: \ map-tl)
moreover from \Phi(3) have \forall (\delta, \sigma) \in set (tl \Phi). \vdash \delta \rightarrow \sigma
  by (simp\ add: \langle \Phi \neq [] \rangle\ list.set-sel(2))
ultimately have \Sigma \leq remove1 ? \delta \Delta
  using stronger-theory-relation-def by auto
from \langle ?\delta \in \# mset \Delta \rangle have ?\delta \# (remove1 ?\delta \Delta) \rightleftharpoons \Delta
  by fastforce
with \langle \Delta \prec \Gamma \rangle have (?\delta \# (remove1 ?\delta \Delta)) \prec \Gamma
  using stronger-theory-left-permutation perm-sym by blast
from this obtain \Psi where \Psi:
  map snd \Psi = (?\delta \# (remove1 ?\delta \Delta))
  mset \ (map \ fst \ \Psi) \subseteq \# \ mset \ \Gamma
 \forall (\gamma, \delta) \in set \ \Psi. \vdash \gamma \rightarrow \delta
  using stronger-theory-relation-def by (simp, metis)
let ?\gamma = fst \ (hd \ \Psi)
from \Psi(1) have \Psi \neq [] by (induct \ \Psi, simp+)
hence ?\gamma \in \# mset (map fst \Psi) by (induct \Psi, simp+)
with \Psi(2) have ?\gamma \in \# mset \Gamma by (meson mset\text{-subset-eq}D)
hence mset (map fst (remove1 (hd \Psi) \Psi)) \subseteq \# mset (remove1 ?\gamma \Gamma)
  using \langle \Psi \neq [] \rangle \Psi(2)
  by (simp,
       metis
         diff-single-eq-union
         hd-in-set
         image\text{-}mset\text{-}add\text{-}mset
         insert-subset-eq-iff
         set-mset-mset)
moreover from \langle \Psi \neq [] \rangle have remove1 (hd \Psi) \Psi = tl \Psi
  by (induct \ \Psi, simp+)
moreover from \Psi(1) have map snd (tl \ \Psi) = (remove1 \ ?\delta \ \Delta)
  by (simp add: map-tl)
moreover from \Psi(3) have \forall (\gamma, \delta) \in set(tl \ \Psi). \vdash \gamma \rightarrow \delta
  by (simp\ add: \langle \Psi \neq [] \rangle\ list.set-sel(2))
ultimately have remove1 ?\delta \Delta \leq remove1 ?\gamma \Gamma
  using stronger-theory-relation-def by auto
with \langle \Sigma \leq remove1 ? \delta \Delta \rangle Cons.hyps have \Sigma \leq remove1 ? \gamma \Gamma
 \mathbf{by} blast
from this obtain \Omega_0 where \Omega_0:
  map snd \Omega_0 = \Sigma
  mset\ (map\ fst\ \Omega_0) \subseteq \#\ mset\ (remove1\ ?\gamma\ \Gamma)
  \forall (\gamma, \sigma) \in set \ \Omega_0. \vdash \gamma \to \sigma
```

```
using stronger-theory-relation-def by (simp, metis)
      let ?\Omega = (?\gamma, \sigma) \# \Omega_0
      from \Omega_0(1) have map snd \Omega = \sigma \# \Sigma by simp
       moreover from \Omega_0(2) have mset (map\ fst\ ?\Omega) \subseteq \# \ mset (?\gamma\ \# \ (remove1)
?\gamma \Gamma))
         by simp
        moreover from \Phi(1) \Psi(1) have \sigma = snd (hd \Phi) ?\delta = snd (hd \Psi) by
fastforce+
      with \Phi(3) \Psi(3) \langle \Phi \neq [] \rangle \langle \Psi \neq [] \rangle hd-in-set have \vdash ?\delta \rightarrow \sigma \vdash ?\gamma \rightarrow ?\delta
         by fastforce+
      hence \vdash ?\gamma \rightarrow \sigma using modus-ponens hypothetical-syllogism by blast
      with \Omega_0(3) have \forall (\gamma,\sigma) \in set ?\Omega. \vdash \gamma \to \sigma
         by auto
      ultimately have (\sigma \# \Sigma) \preceq (?\gamma \# (remove1 ?\gamma \Gamma))
         unfolding stronger-theory-relation-def
      moreover from \langle ?\gamma \in \# mset \Gamma \rangle have (?\gamma \# (remove1 ?\gamma \Gamma)) \rightleftharpoons \Gamma
         by force
       ultimately have (\sigma \# \Sigma) \preceq \Gamma
         using stronger-theory-right-permutation
         by blast
    then show ?case by blast
  qed
  thus ?thesis using assms by blast
qed
```

2.4 The Stronger Theory Relation is a Subrelation of of Measure Deduction

Next, we show that $\Gamma \succeq \Sigma$ implies $\Gamma \Vdash \Sigma$. Before doing so we establish several helpful properties regarding the stronger theory relation (\succeq) .

```
lemma (in implication-logic) stronger-theory-witness: assumes \sigma \in set \ \Sigma shows \Sigma \preceq \Gamma = (\exists \ \gamma \in set \ \Gamma. \vdash \gamma \to \sigma \land (remove1 \ \sigma \ \Sigma) \preceq (remove1 \ \gamma \ \Gamma)) proof (rule iffI) assume \Sigma \preceq \Gamma from this obtain \Phi where \Phi:

map \ snd \ \Phi = \Sigma
mset \ (map \ fst \ \Phi) \subseteq \# \ mset \ \Gamma
\forall \ (\gamma,\sigma) \in set \ \Phi. \vdash \gamma \to \sigma
unfolding stronger-theory-relation-def by blast
from assms \ \Phi(1) obtain \gamma where \gamma: (\gamma, \sigma) \in \# \ mset \ \Phi
by (induct \ \Phi, fastforce+)
hence \gamma \in \# \ mset \ (map \ fst \ \Phi) by force
hence \gamma \in \# \ mset \ \Gamma \ using \ \Phi(2)
by (meson \ mset\text{-subset-eq}D)
```

```
moreover
  let ?\Phi_0 = remove1 (\gamma, \sigma) \Phi
  let ?\Sigma_0 = map \ snd \ ?\Phi_0
  from \gamma \Phi(2) have mset (map fst ?\Phi_0) \subseteq \# mset (remove1 <math>\gamma \Gamma)
    by (metis
           ex-mset
           list-subtract-monotonic
           list-subtract-mset-homomorphism
           remove1-pairs-list-projections-fst
           mset-remove1)
  moreover have mset ?\Phi_0 \subseteq \# mset \Phi by simp
  with \Phi(3) have \forall (\gamma, \sigma) \in set ?\Phi_0. \vdash \gamma \to \sigma by fastforce
  ultimately have ?\Sigma_0 \leq remove1 \gamma \Gamma
    unfolding stronger-theory-relation-def by blast
  moreover from \gamma \Phi(1) have mset ?\Sigma_0 = mset (remove1 \sigma \Sigma)
    using remove1-pairs-list-projections-snd
    by fastforce
  hence ?\Sigma_0 \rightleftharpoons remove1 \sigma \Sigma
    by linarith
  ultimately have remove 1 \sigma \Sigma \leq remove 1 \gamma \Gamma
    using stronger-theory-left-permutation
    by blast
  moreover from \gamma \Phi(3) have \vdash \gamma \rightarrow \sigma by (simp, fast)
  moreover from \gamma \Phi(2) have \gamma \in \# mset \Gamma
    using mset-subset-eqD by fastforce
  ultimately show \exists \ \gamma \in set \ \Gamma. \vdash \gamma \rightarrow \sigma \land (remove1 \ \sigma \ \Sigma) \preceq (remove1 \ \gamma \ \Gamma) \ by
auto
next
  assume \exists \ \gamma \in set \ \Gamma. \vdash \gamma \rightarrow \sigma \land (remove1 \ \sigma \ \Sigma) \preceq (remove1 \ \gamma \ \Gamma)
  from this obtain \Phi \gamma where \gamma: \gamma \in set \Gamma \vdash \gamma \rightarrow \sigma
                         and \Phi: map snd \Phi = (remove1 \ \sigma \ \Sigma)
                                  mset \ (map \ fst \ \Phi) \subseteq \# \ mset \ (remove1 \ \gamma \ \Gamma)
                                  \forall (\gamma, \sigma) \in set \ \Phi. \vdash \gamma \to \sigma
    unfolding stronger-theory-relation-def by blast
  let ?\Phi = (\gamma, \sigma) \# \Phi
  from \Phi(1) have map snd ?\Phi = \sigma \# (remove1 \ \sigma \ \Sigma) by simp
  moreover from \Phi(2) \gamma(1) have mset (map\ fst\ ?\Phi) \subseteq \#\ mset \Gamma
    by (simp add: insert-subset-eq-iff)
  moreover from \Phi(3) \gamma(2) have \forall (\gamma,\sigma) \in set ?\Phi. \vdash \gamma \rightarrow \sigma
    by auto
  ultimately have (\sigma \# (remove1 \ \sigma \ \Sigma)) \preceq \Gamma
    unfolding stronger-theory-relation-def by metis
  moreover from assms have \sigma \# (remove1 \ \sigma \ \Sigma) \rightleftharpoons \Sigma
    by force
  ultimately show \Sigma \leq \Gamma
    using stronger-theory-left-permutation by blast
lemma (in implication-logic) stronger-theory-cons-witness:
```

```
(\sigma \# \Sigma) \preceq \Gamma = (\exists \ \gamma \in set \ \Gamma. \vdash \gamma \to \sigma \land \Sigma \preceq (remove1 \ \gamma \ \Gamma))
proof -
  have \sigma \in \# mset (\sigma \# \Sigma) by simp
 hence (\sigma \# \Sigma) \preceq \Gamma = (\exists \ \gamma \in set \ \Gamma. \vdash \gamma \to \sigma \land (remove1 \ \sigma \ (\sigma \# \Sigma)) \preceq (remove1)
\gamma \Gamma
    by (meson list.set-intros(1) stronger-theory-witness)
  thus ?thesis by simp
qed
\mathbf{lemma} (\mathbf{in} implication-logic) stronger-theory-left-cons:
  assumes (\sigma \# \Sigma) \leq \Gamma
  shows \Sigma \leq \Gamma
proof -
  from assms obtain \Phi where \Phi:
    map snd \Phi = \sigma \# \Sigma
    mset\ (map\ fst\ \Phi) \subseteq \#\ mset\ \Gamma
    \forall (\delta, \sigma) \in set \ \Phi. \vdash \delta \rightarrow \sigma
    using stronger-theory-relation-def by (simp, metis)
  let ?\Phi' = remove1 \ (hd \ \Phi) \ \Phi
  from \Phi(1) have map snd \mathcal{P}\Phi' = \Sigma by (induct \Phi, simp+)
  moreover from \Phi(2) have mset (map\ fst\ ?\Phi') \subseteq \#\ mset\ \Gamma
    by (metis diff-subset-eq-self
               list-subtract.simps(1)
               list-subtract.simps(2)
               list-subtract-mset-homomorphism
               map	ext{-}monotonic
               subset-mset.dual-order.trans)
  moreover from \Phi(\beta) have \forall (\delta, \sigma) \in set \ ?\Phi' \cdot \vdash \delta \rightarrow \sigma  by fastforce
  ultimately show ?thesis unfolding stronger-theory-relation-def by blast
qed
lemma (in implication-logic) stronger-theory-right-cons:
  assumes \Sigma \preceq \Gamma
  shows \Sigma \leq (\gamma \# \Gamma)
proof -
  from assms obtain \Phi where \Phi:
    map snd \Phi = \Sigma
    mset\ (map\ fst\ \Phi)\subseteq \#\ mset\ \Gamma
    \forall (\gamma, \sigma) \in set \ \Phi. \vdash \gamma \rightarrow \sigma
    unfolding stronger-theory-relation-def
    by auto
  hence mset (map\ fst\ \Phi) \subseteq \# \ mset\ (\gamma \# \Gamma)
    by (metis Diff-eq-empty-iff-mset
               list-subtract.simps(2)
               list\text{-}subtract\text{-}mset\text{-}homomorphism
               mset-zero-iff remove1.simps(1))
  with \Phi(1) \Phi(3) show ?thesis
    unfolding stronger-theory-relation-def
    by auto
```

```
qed
```

```
\mathbf{lemma} \ (\mathbf{in} \ implication\text{-}logic) \ stronger\text{-}theory\text{-}left\text{-}right\text{-}cons:
  assumes \vdash \gamma \rightarrow \sigma
       and \Sigma \prec \Gamma
     shows (\sigma \# \Sigma) \preceq (\gamma \# \Gamma)
proof -
   from assms(2) obtain \Phi where \Phi:
     map snd \Phi = \Sigma
     mset \ (map \ fst \ \Phi) \subseteq \# \ mset \ \Gamma
     \forall (\gamma, \sigma) \in set \ \Phi. \vdash \gamma \to \sigma
     unfolding stronger-theory-relation-def
     by auto
  let ?\Phi = (\gamma, \sigma) \# \Phi
  from assms(1) \Phi have
     map snd ?\Phi = \sigma \# \Sigma
     mset \ (map \ fst \ ?\Phi) \subseteq \# \ mset \ (\gamma \ \# \ \Gamma)
     \forall (\gamma, \sigma) \in set ?\Phi. \vdash \gamma \rightarrow \sigma
     by fastforce+
   thus ?thesis
     unfolding stronger-theory-relation-def
     by metis
qed
\mathbf{lemma} \ (\mathbf{in} \ implication\text{-}logic) \ stronger\text{-}theory\text{-}relation\text{-}alt\text{-}def:
  \Sigma \preceq \Gamma = (\exists \Phi. \ \mathit{mset} \ (\mathit{map} \ \mathit{snd} \ \Phi) = \mathit{mset} \ \Sigma \ \land
                       mset\ (map\ fst\ \Phi)\subseteq \#\ mset\ \Gamma\ \land
                       (\forall (\gamma, \sigma) \in set \ \Phi. \vdash \gamma \rightarrow \sigma))
proof (induct \Gamma arbitrary: \Sigma)
  case Nil
     then show ?case
        using stronger-theory-empty-list-intro
                stronger\hbox{-}theory\hbox{-}reflexive
        by (simp, blast)
\mathbf{next}
  case (Cons \gamma \Gamma)
  have \Sigma \leq (\gamma \# \Gamma) = (\exists \Phi. mset (map snd \Phi) = mset \Sigma \land
                                      mset\ (map\ fst\ \Phi)\subseteq \#\ mset\ (\gamma\ \#\ \Gamma)\ \land
                                      (\forall (\gamma, \sigma) \in set \ \Phi. \vdash \gamma \to \sigma))
   proof (rule iffI)
     assume \Sigma \leq (\gamma \# \Gamma)
     thus \exists \Phi. mset (map \ snd \ \Phi) = mset \ \Sigma \land
                  mset\ (map\ fst\ \Phi)\subseteq \#\ mset\ (\gamma\ \#\ \Gamma)\ \land
                   (\forall (\gamma, \sigma) \in set \ \Phi. \vdash \gamma \rightarrow \sigma)
        unfolding stronger-theory-relation-def
       by metis
  next
     assume \exists \Phi. mset (map \ snd \ \Phi) = mset \ \Sigma \land
                     mset\ (map\ fst\ \Phi)\subseteq \#\ mset\ (\gamma\ \#\ \Gamma)\ \land
```

```
(\forall (\gamma, \sigma) \in set \ \Phi. \vdash \gamma \to \sigma)
from this obtain \Phi where \Phi:
  mset\ (map\ snd\ \Phi) = mset\ \Sigma
  mset\ (map\ fst\ \Phi)\subseteq \#\ mset\ (\gamma\ \#\ \Gamma)
  \forall (\gamma, \sigma) \in set \ \Phi. \vdash \gamma \rightarrow \sigma
  by metis
show \Sigma \leq (\gamma \# \Gamma)
proof (cases \exists \sigma. (\gamma, \sigma) \in set \Phi)
  assume \exists \sigma. (\gamma, \sigma) \in set \Phi
  from this obtain \sigma where \sigma: (\gamma, \sigma) \in set \Phi by auto
  let ?\Phi = remove1 (\gamma, \sigma) \Phi
  from \sigma have mset\ (map\ snd\ ?\Phi) = mset\ (remove1\ \sigma\ \Sigma)
     using \Phi(1) remove1-pairs-list-projections-snd by force+
  moreover
  from \sigma have mset (map\ fst\ ?\Phi) = mset\ (remove1\ \gamma\ (map\ fst\ \Phi))
     using \Phi(1) remove1-pairs-list-projections-fst by force+
  with \Phi(2) have mset (map fst ?\Phi) \subseteq \# mset \Gamma
    by (simp add: subset-eq-diff-conv)
  moreover from \Phi(3) have \forall (\gamma, \sigma) \in set ?\Phi \vdash \gamma \rightarrow \sigma
    by fastforce
  ultimately have remove1 \sigma \Sigma \leq \Gamma using Cons by blast
  from this obtain \Psi where \Psi:
     map \ snd \ \Psi = remove1 \ \sigma \ \Sigma
    mset \ (map \ fst \ \Psi) \subseteq \# \ mset \ \Gamma
    \forall (\gamma, \sigma) \in set \ \Psi. \vdash \gamma \rightarrow \sigma
    unfolding stronger-theory-relation-def
    by blast
  let ?\Psi = (\gamma, \sigma) \# \Psi
  from \Psi have map snd ?\Psi = \sigma \# (remove1 \sigma \Sigma)
                mset\ (map\ fst\ ?\Psi)\subseteq \#\ mset\ (\gamma\ \#\ \Gamma)
    by simp+
  moreover from \Phi(3) \sigma have \vdash \gamma \rightarrow \sigma by auto
  with \Psi(\beta) have \forall (\gamma, \sigma) \in set ?\Psi \vdash \gamma \rightarrow \sigma by auto
  ultimately have (\sigma \# (remove1 \ \sigma \ \Sigma)) \leq (\gamma \# \Gamma)
    unfolding stronger-theory-relation-def
    by metis
  moreover
  have \sigma \in set \Sigma
    by (metis \Phi(1) \sigma set-mset-mset set-zip-rightD zip-map-fst-snd)
  hence \Sigma \rightleftharpoons \sigma \# (remove1 \ \sigma \ \Sigma)
    by auto
  hence \Sigma \leq (\sigma \# (remove1 \ \sigma \ \Sigma))
     using stronger-theory-reflexive
           stronger-theory-right-permutation
    by blast
  ultimately show ?thesis
    using stronger-theory-transitive
    by blast
\mathbf{next}
```

```
assume \nexists \sigma. (\gamma, \sigma) \in set \Phi
       hence \gamma \notin set \ (map \ fst \ \Phi) by fastforce
       with \Phi(2) have mset\ (map\ fst\ \Phi)\subseteq \#\ mset\ \Gamma
         by (metis diff-single-trivial
                      in	ext{-}multiset	ext{-}in	ext{-}set
                      insert-DiffM2
                      mset\text{-}remove1
                      remove-hd
                      subset-eq-diff-conv)
       hence \Sigma \preceq \Gamma
         using Cons \Phi(1) \Phi(3)
         by blast
       thus ?thesis
         \mathbf{using}\ stronger\text{-}theory\text{-}right\text{-}cons
         by auto
    qed
  qed
  thus ?case by auto
\mathbf{lemma} \ (\mathbf{in} \ implication\text{-}logic) \ stronger\text{-}theory\text{-}deduction\text{-}monotonic:}
  assumes \Sigma \leq \Gamma
       and \Sigma \coloneq \varphi
    \mathbf{shows}\ \Gamma \coloneq \varphi
using assms
proof (induct \Sigma arbitrary: \varphi)
  case Nil
  then show ?case
    by (simp add: list-deduction-weaken)
next
  case (Cons \sigma \Sigma)
  assume (\sigma \# \Sigma) \preceq \Gamma (\sigma \# \Sigma) :\vdash \varphi
  hence \Sigma :\vdash \sigma \to \varphi \ \Sigma \preceq \Gamma
    using
       list\text{-}deduction\text{-}theorem
       stronger-theory-left-cons
    by (blast, metis)
  with Cons have \Gamma :\vdash \sigma \rightarrow \varphi by blast
  moreover
  have \sigma \in set \ (\sigma \# \Sigma) by auto
  with \langle (\sigma \# \Sigma) \leq \Gamma \rangle obtain \gamma where \gamma : \gamma \in set \ \Gamma \vdash \gamma \rightarrow \sigma
    using stronger-theory-witness by blast
  hence \Gamma :\vdash \sigma
    using
       list\text{-}deduction\text{-}modus\text{-}ponens
       list\text{-}deduction\text{-}reflection
       list-deduction-weaken
    bv blast
  ultimately have \Gamma : \vdash \varphi
```

```
using list-deduction-modus-ponens by blast
  then show ?case by blast
qed
lemma (in classical-logic) measure-msub-left-monotonic:
  assumes mset \Sigma \subseteq \# mset \Gamma
      and \Sigma \Vdash \Phi
    shows \Gamma \Vdash \Phi
  using assms
proof (induct \Phi arbitrary: \Sigma \Gamma)
  case Nil
  then show ?case by simp
next
  case (Cons \varphi \Phi)
  from this obtain \Psi where \Psi:
    mset\ (map\ snd\ \Psi) \subseteq \#\ mset\ \Sigma
    map\ (uncurry\ (\sqcup))\ \Psi :\vdash \varphi
    map\ (uncurry\ (\rightarrow))\ \Psi\ @\ \Sigma\ominus\ (map\ snd\ \Psi)\ \$\vdash\ \Phi
    using measure-deduction.simps(2) by blast
  let ?\Psi = map \ snd \ \Psi
  let ?\Psi' = map (uncurry (\rightarrow)) \Psi
  let ?\Sigma' = ?\Psi' @ (\Sigma \ominus ?\Psi)
  let ?\Gamma' = ?\Psi' @ (\Gamma \ominus ?\Psi)
  from \Psi have mset ?\Psi \subseteq \# mset \Gamma
    \mathbf{using} \ \langle mset \ \Sigma \subseteq \# \ mset \ \Gamma \rangle \ subset\text{-}mset.trans \ \mathbf{by} \ blast
  moreover have mset\ (\Sigma\ominus\ ?\Psi)\subseteq\#\ mset\ (\Gamma\ominus\ ?\Psi)
    by (metis \ \langle mset \ \Sigma \subseteq \# \ mset \ \Gamma \rangle \ list-subtract-monotonic)
  hence mset ?\Sigma' \subseteq \# mset ?\Gamma'
    by simp
  with Cons.hyps \ \Psi(\beta) have ?\Gamma' \ \vdash \Phi by blast
  ultimately have \Gamma \$ \vdash (\varphi \# \Phi)
    using \Psi(2) by fastforce
  then show ?case
    by simp
qed
lemma (in classical-logic) witness-weaker-theory:
  assumes mset\ (map\ snd\ \Sigma)\subseteq \#\ mset\ \Gamma
  shows map (uncurry (\sqcup)) \Sigma \preceq \Gamma
proof -
  have \forall \Gamma. mset (map \ snd \ \Sigma) \subseteq \# \ mset \ \Gamma \longrightarrow map \ (uncurry \ (\sqcup)) \ \Sigma \preceq \Gamma
  proof (induct \Sigma)
    case Nil
    then show ?case by simp
  next
    case (Cons \sigma \Sigma)
      fix \Gamma
      assume mset\ (map\ snd\ (\sigma\ \#\ \Sigma))\subseteq \#\ mset\ \Gamma
```

```
hence mset (map \ snd \ \Sigma) \subseteq \# \ mset \ (remove1 \ (snd \ \sigma) \ \Gamma)
        by (simp add: insert-subset-eq-iff)
      with Cons have map (uncurry (\sqcup)) \Sigma \leq remove1 (snd \sigma) \Gamma by blast
      moreover have uncurry(\sqcup) = (\lambda \sigma. fst \sigma \sqcup snd \sigma) by fastforce
      hence uncurry (\sqcup) \sigma = fst \ \sigma \ \sqcup \ snd \ \sigma \ by \ simp
      moreover have \vdash snd \sigma \rightarrow (fst \ \sigma \sqcup snd \ \sigma)
        unfolding disjunction-def
        by (simp \ add: \ axiom-k)
      ultimately have map (uncurry (\sqcup)) (\sigma \# \Sigma) \leq (snd \sigma \# (remove1 (snd \sigma)
\Gamma))
        by (simp add: stronger-theory-left-right-cons)
      moreover have mset (snd \sigma \# (remove1 (snd \sigma) \Gamma)) = mset \Gamma
        using \langle mset \ (map \ snd \ (\sigma \ \# \ \Sigma)) \subseteq \# \ mset \ \Gamma \rangle
        by (simp, meson insert-DiffM mset-subset-eq-insertD)
      ultimately have map (uncurry (\sqcup)) (\sigma \# \Sigma) \leq \Gamma
        unfolding stronger-theory-relation-alt-def
        by simp
    then show ?case by blast
  with assms show ?thesis by simp
\mathbf{qed}
lemma (in implication-logic) stronger-theory-combine:
  assumes \Phi \leq \Delta
      and \Psi \preceq \Gamma
    shows (\Phi @ \Psi) \preceq (\Delta @ \Gamma)
proof -
  have \forall \Phi. \Phi \leq \Delta \longrightarrow (\Phi @ \Psi) \leq (\Delta @ \Gamma)
  proof (induct \Delta)
    case Nil
    then show ?case
      using assms(2) stronger-theory-empty-list-intro by fastforce
    case (Cons \delta \Delta)
      fix \Phi
      assume \Phi \leq (\delta \# \Delta)
      from this obtain \Sigma where \Sigma:
        map snd \Sigma = \Phi
        mset\ (map\ fst\ \Sigma)\subseteq \#\ mset\ (\delta\ \#\ \Delta)
        \forall (\delta,\varphi) \in set \ \Sigma. \vdash \delta \to \varphi
        unfolding stronger-theory-relation-def
        by blast
      have (\Phi @ \Psi) \leq ((\delta \# \Delta) @ \Gamma)
      proof (cases \exists \varphi . (\delta, \varphi) \in set \Sigma)
        assume \exists \varphi . (\delta, \varphi) \in set \Sigma
        from this obtain \varphi where \varphi: (\delta, \varphi) \in set \Sigma by auto
        let ?\Sigma = remove1 (\delta, \varphi) \Sigma
```

```
from \varphi \Sigma(1) have mset (map snd ?\Sigma) = mset (remove1 \varphi \Phi)
   using remove1-pairs-list-projections-snd by fastforce
moreover from \varphi have mset\ (map\ fst\ ?\Sigma) = mset\ (remove1\ \delta\ (map\ fst\ \Sigma))
   using remove1-pairs-list-projections-fst by fastforce
hence mset (map\ fst\ ?\Sigma) \subseteq \#\ mset\ \Delta
   using \Sigma(2) mset.simps(1) subset-eq-diff-conv by force
 moreover from \Sigma(3) have \forall (\delta,\varphi) \in set ?\Sigma \vdash \delta \rightarrow \varphi by auto
 ultimately have remove1 \varphi \Phi \leq \Delta
   unfolding stronger-theory-relation-alt-def by blast
hence (remove1 \varphi \Phi @ \Psi) \preceq (\Delta @ \Gamma) using Cons by auto
from this obtain \Omega where \Omega:
   map snd \Omega = (remove1 \varphi \Phi) @ \Psi
   mset \ (map \ fst \ \Omega) \subseteq \# \ mset \ (\Delta \ @ \ \Gamma)
   \forall (\alpha,\beta) \in set \ \Omega. \vdash \alpha \to \beta
   unfolding stronger-theory-relation-def
   by blast
let \Omega = (\delta, \varphi) \# \Omega
have map snd ?\Omega = \varphi \# remove1 \varphi \Phi @ \Psi
   using \Omega(1) by simp
moreover have mset (map\ fst\ ?\Omega) \subseteq \# \ mset ((\delta \# \Delta) @ \Gamma)
   using \Omega(2) by simp
moreover have \vdash \delta \rightarrow \varphi
   using \Sigma(3) \varphi by blast
hence \forall (\alpha,\beta) \in set ?\Omega. \vdash \alpha \rightarrow \beta \text{ using } \Omega(3) \text{ by } auto
ultimately have (\varphi \# remove1 \varphi \Phi @ \Psi) \preceq ((\delta \# \Delta) @ \Gamma)
   by (metis stronger-theory-relation-def)
moreover have \varphi \in set \Phi
   using \Sigma(1) \varphi by force
hence (\varphi \# remove1 \varphi \Phi) \rightleftharpoons \Phi
   by force
hence (\varphi \# remove1 \varphi \Phi @ \Psi) \rightleftharpoons \Phi @ \Psi
   by (metis append-Cons perm-append2)
 ultimately show ?thesis
   using stronger-theory-left-permutation by blast
assume \nexists \varphi. (\delta, \varphi) \in set \Sigma
hence \delta \notin set \ (map \ fst \ \Sigma)
       mset \ \Delta + add\text{-}mset \ \delta \ (mset \ []) = mset \ (\delta \ \# \ \Delta)
   by auto
hence mset (map\ fst\ \Sigma) \subseteq \#\ mset\ \Delta
   by (metis (no-types) (mset (map fst \Sigma) \subseteq \# mset (\delta \# \Delta))
                           diff-single-trivial
                           mset.simps(1)
                           set	ext{-}mset	ext{-}mset
                           subset-eq-diff-conv)
with \Sigma(1) \Sigma(3) have \Phi \leq \Delta
   unfolding stronger-theory-relation-def
   \mathbf{bv} blast
hence (\Phi @ \Psi) \preceq (\Delta @ \Gamma) using Cons by auto
```

```
then show ?thesis
          by (simp add: stronger-theory-right-cons)
      qed
    then show ?case by blast
  qed
  thus ?thesis using assms by blast
We now turn to proving that (\succeq) is a subrelation of (:\vdash).
lemma (in classical-logic) stronger-theory-to-measure-deduction:
 assumes \Gamma \succeq \Sigma
  shows \Gamma \Vdash \Sigma
proof -
  have \forall \ \Gamma. \ \Sigma \preceq \Gamma \longrightarrow \Gamma \ \$ \vdash \Sigma
 proof (induct \Sigma)
    case Nil
    then show ?case by fastforce
  next
    case (Cons \sigma \Sigma)
    {
      fix \Gamma
      assume (\sigma \# \Sigma) \prec \Gamma
      from this obtain \gamma where \gamma: \gamma \in set \Gamma \vdash \gamma \rightarrow \sigma \Sigma \preceq (remove1 \gamma \Gamma)
        using stronger-theory-cons-witness by blast
      let ?\Phi = [(\gamma, \gamma)]
      from \gamma Cons have (remove1 \ \gamma \ \Gamma) \ \$\vdash \ \Sigma \ by \ blast
      moreover have mset (remove1 \ \gamma \ \Gamma) \subseteq \# mset (map (uncurry (\rightarrow)) ? \Phi @ \Gamma
\ominus (map snd ?\Phi))
        by simp
      ultimately have map (uncurry (\rightarrow)) ?\Phi @ \Gamma \ominus (map \ snd \ ?\Phi) \$\vdash \Sigma
        using measure-msub-left-monotonic by blast
      moreover have map (uncurry (\sqcup)) ?\Phi :\vdash \sigma
        by (simp, metis \gamma(2)
                         Peirces-law
                         disjunction-def
                         list-deduction-def
                         list-deduction-modus-ponens
                        list-deduction-weaken
                        list-implication.simps(1)
                        list-implication.simps(2))
      moreover from \gamma(1) have mset (map \ snd \ ?\Phi) \subseteq \# \ mset \ \Gamma by simp
      ultimately have \Gamma \Vdash (\sigma \# \Sigma)
        using measure-deduction.simps(2) by blast
    then show ?case by blast
  qed
  thus ?thesis using assms by blast
qed
```

2.5 Measure Deduction is a Preorder

We next show that measure deduction is a preorder.

Reflexivity follows immediately because (\preceq) is a subrelation and is itself reflexive.

```
theorem (in classical-logic) measure-reflexive: \Gamma \Vdash \Gamma by (simp add: stronger-theory-to-measure-deduction)
```

Transitivity is complicated. It requires constructing many witnesses and involves a lot of metatheorems. Below we provide various witness constructions that allow us to establish $\llbracket \Gamma \Vdash \Lambda; \Lambda \Vdash \Delta \rrbracket \Longrightarrow \Gamma \Vdash \Delta$.

```
primrec (in implication-logic)
  \mathit{first-component} :: ('a \times 'a) \ \mathit{list} \Rightarrow ('a \times 'a) \ \mathit{list} \Rightarrow ('a \times 'a) \ \mathit{list} \Rightarrow ('a \times 'a) \ \mathit{list}
   where
     \mathfrak{A} \Psi [] = []
   \mid \mathfrak{A} \Psi (\delta \# \Delta) =
         (case find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi of
                 None \Rightarrow \mathfrak{A} \Psi \Delta
              | Some \psi \Rightarrow \psi \# (\mathfrak{A} (remove1 \psi \Psi) \Delta))
primrec (in implication-logic)
   second\text{-}component :: ('a \times 'a) \ list \Rightarrow ('a \times 'a) \ list \Rightarrow ('a \times 'a) \ list (\mathfrak{B})
   where
     \mathfrak{B} \Psi [] = []
    \mathfrak{B} \Psi (\delta \# \Delta) =
         (case find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi of
                 None \Rightarrow \mathfrak{B} \Psi \Delta
              | Some \psi \Rightarrow \delta \# (\mathfrak{B} (remove1 \ \psi \ \Psi) \ \Delta))
lemma (in implication-logic) first-component-second-component-mset-connection:
   mset\ (map\ (uncurry\ (\rightarrow))\ (\mathfrak{A}\ \Psi\ \Delta)) = mset\ (map\ snd\ (\mathfrak{B}\ \Psi\ \Delta))
  have \forall \Psi. mset (map (uncurry (\rightarrow)) (\mathfrak{A} \Psi \Delta)) = mset (map snd (\mathfrak{B} \Psi \Delta))
   proof (induct \ \Delta)
     case Nil
     then show ?case by simp
  next
     case (Cons \delta \Delta)
     {
       fix \Psi
        have mset (map (uncurry (\rightarrow)) (\mathfrak{A} \Psi (\delta \# \Delta))) =
                mset\ (map\ snd\ (\mathfrak{B}\ \Psi\ (\delta\ \#\ \Delta)))
        proof (cases find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi = None)
          \mathbf{case} \ \mathit{True}
          then show ?thesis using Cons by simp
        next
          case False
```

```
from this obtain \psi where
           find (\lambda \psi. \ uncurry \ (\rightarrow) \ \psi = snd \ \delta) \ \Psi = Some \ \psi
           uncurry (\rightarrow) \psi = snd \delta
           using find-Some-predicate
           by fastforce
        then show ?thesis using Cons by simp
      \mathbf{qed}
    then show ?case by blast
  \mathbf{qed}
  thus ?thesis by blast
lemma (in implication-logic) second-component-right-empty [simp]:
  \mathfrak{B} \left[ \right] \Delta = \left[ \right]
  by (induct \Delta, simp+)
lemma (in implication-logic) first-component-msub:
  mset \ (\mathfrak{A} \ \Psi \ \Delta) \subseteq \# \ mset \ \Psi
proof -
  have \forall \ \Psi. \ mset \ (\mathfrak{A} \ \Psi \ \Delta) \subseteq \# \ mset \ \Psi
  \mathbf{proof}(induct \ \Delta)
    case Nil
    then show ?case by simp
  next
    case (Cons \delta \Delta)
    {
      fix \Psi
      have mset \ (\mathfrak{A} \ \Psi \ (\delta \ \# \ \Delta)) \subseteq \# \ mset \ \Psi
      proof (cases find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi = None)
        then show ?thesis using Cons by simp
      next
        {\bf case}\ \mathit{False}
        from this obtain \psi where
           \psi: find (\lambda \psi. uncurry (\rightarrow) \psi = snd \delta) \Psi = Some \psi
              \psi \in set \Psi
           using find-Some-set-membership
           by fastforce
        have mset \ (\mathfrak{A} \ (remove1 \ \psi \ \Psi) \ \Delta) \subseteq \# \ mset \ (remove1 \ \psi \ \Psi)
           using Cons by metis
        thus ?thesis using \psi by (simp add: insert-subset-eq-iff)
      \mathbf{qed}
    }
    then show ?case by blast
  thus ?thesis by blast
qed
```

```
lemma (in implication-logic) second-component-msub:
  mset \ (\mathfrak{B} \ \Psi \ \Delta) \subseteq \# \ mset \ \Delta
proof -
  have \forall \Psi. mset (\mathfrak{B} \Psi \Delta) \subseteq \# mset \Delta
  proof (induct \Delta)
    case Nil
    then show ?case by simp
  next
    case (Cons \delta \Delta)
    {
      fix \Psi
      have mset (\mathfrak{B} \ \Psi \ (\delta \ \# \ \Delta)) \subseteq \# \ mset \ (\delta \ \# \ \Delta)
      using Cons
      by (cases find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi = None,
            simp,
            metis add-mset-remove-trivial
                   diff-subset-eq-self
                   subset-mset.order-trans,
            auto)
    thus ?case by blast
  \mathbf{qed}
  thus ?thesis by blast
qed
lemma (in implication-logic) second-component-snd-projection-msub:
  mset\ (map\ snd\ (\mathfrak{B}\ \Psi\ \Delta))\subseteq \#\ mset\ (map\ (uncurry\ (\rightarrow))\ \Psi)
proof -
  have \forall \Psi. mset (map snd (\mathfrak{B} \Psi \Delta)) \subseteq \# mset (map (uncurry (\rightarrow)) \Psi)
  proof (induct \Delta)
    case Nil
    then show ?case by simp
  next
    case (Cons \delta \Delta)
     {
      fix \Psi
      have mset (map snd (\mathfrak{B} \ \Psi \ (\delta \ \# \ \Delta))) \subseteq \# mset (map (uncurry (\rightarrow)) \ \Psi)
      proof (cases find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi = None)
         {\bf case}\  \, True
         then show ?thesis
           using Cons by simp
      next
         case False
         from this obtain \psi where \psi:
           find (\lambda \ \psi. \ (uncurry \ (\rightarrow)) \ \psi = snd \ \delta) \ \Psi = Some \ \psi
           by auto
         hence \mathfrak{B} \Psi (\delta \# \Delta) = \delta \# (\mathfrak{B} (remove1 \psi \Psi) \Delta)
           using \psi by fastforce
         with Cons have mset (map snd (\mathfrak{B} \Psi (\delta \# \Delta))) \subseteq \#
```

```
mset\ ((snd\ \delta)\ \#\ map\ (uncurry\ (\rightarrow))\ (remove1\ \psi\ \Psi))
           by (simp, metis mset-map mset-remove1)
        moreover from \psi have snd \delta = (uncurry (\rightarrow)) \psi
           using find-Some-predicate by fastforce
        ultimately have
           mset\ (map\ snd\ (\mathfrak{B}\ \Psi\ (\delta\ \#\ \Delta)))\subseteq \#
              mset\ (map\ (uncurry\ (\rightarrow))\ (\psi\ \#\ (remove1\ \psi\ \Psi)))
        thus ?thesis
           by (metis
                 first-component-msub
                 first-component-second-component-mset-connection
                 map-monotonic)
      qed
    thus ?case by blast
  qed
  thus ?thesis by blast
qed
lemma (in implication-logic) second-component-diff-msub:
  assumes mset (map snd \Delta) \subseteq \# mset (map (uncurry (\rightarrow)) \Psi @ \Gamma \ominus (map snd
\Psi))
  shows mset\ (map\ snd\ (\Delta\ominus(\mathfrak{B}\ \Psi\ \Delta)))\subseteq\#\ mset\ (\Gamma\ominus(map\ snd\ \Psi))
proof -
  have \forall \ \Psi \ \Gamma. mset (map snd \Delta) \subseteq \# mset (map (uncurry (\rightarrow)) \Psi @ \Gamma \ominus (map)
snd \Psi)) \longrightarrow
                mset\ (map\ snd\ (\Delta\ominus(\mathfrak{B}\ \Psi\ \Delta)))\subseteq\#\ mset\ (\Gamma\ominus(map\ snd\ \Psi))
  proof (induct \Delta)
    case Nil
    then show ?case by simp
  next
    case (Cons \delta \Delta)
      fix \Psi \Gamma
      assume \diamondsuit: mset\ (map\ snd\ (\delta\ \#\ \Delta))\subseteq \#\ mset\ (map\ (uncurry\ (\to))\ \Psi\ @\ \Gamma
\ominus map snd \Psi)
     have mset\ (map\ snd\ ((\delta \# \Delta) \ominus \mathfrak{B}\ \Psi\ (\delta \# \Delta))) \subseteq \#\ mset\ (\Gamma \ominus map\ snd\ \Psi)
      proof (cases find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi = None)
        hence A: snd \delta \notin set \ (map \ (uncurry \ (\rightarrow)) \ \Psi)
        proof (induct \ \Psi)
           case Nil
           then show ?case by simp
        next
           case (Cons \psi \Psi)
           then show ?case
             by (cases uncurry (\rightarrow) \psi = snd \delta, simp+)
        qed
```

```
moreover have
                     mset \ (map \ snd \ \Delta)
                              \subseteq \# \; mset \; (map \; (uncurry \; (\rightarrow)) \; \Psi \; @ \; \Gamma \; \ominus \; map \; snd \; \Psi) \; - \; \{\#snd \; \delta \#\}
                     using \Diamond insert-subset-eq-iff by fastforce
                  ultimately have
                     mset \ (map \ snd \ \Delta)
                            \subseteq \# \; mset \; (map \; (uncurry \; (\rightarrow)) \; \Psi \; @ \; (remove1 \; (snd \; \delta) \; \Gamma)
                                                        \ominus map snd \Psi)
                     by (metis (no-types)
                                   mset\text{-}remove1
                                   union-code
                                   list-subtract.simps(2)
                                   list-subtract-remove1-cons-perm
                                   remove1-append)
                hence B: mset (map snd (\Delta \ominus (\mathfrak{B} \Psi \Delta))) \subseteq \# mset (remove1 (snd \delta) \Gamma \ominus
(map \ snd \ \Psi))
                     using Cons by blast
                have C: snd \delta \in \# mset (snd \delta \# map snd \Delta @
                                                                      (map\ (uncurry\ (\rightarrow))\ \Psi\ @\ \Gamma\ \ominus\ map\ snd\ \Psi)\ \ominus\ (snd\ \delta\ \#
map snd \Delta))
                     by (meson in-multiset-in-set list.set-intros(1))
                 have mset\ (map\ snd\ (\delta\ \#\ \Delta))
                       + (mset\ (map\ (uncurry\ (\rightarrow))\ \Psi\ @\ \Gamma\ \ominus\ map\ snd\ \Psi)
                               - mset (map snd (\delta \# \Delta)))
                   = mset \ (map \ (uncurry \ (\rightarrow)) \ \Psi \ @ \ \Gamma \ominus map \ snd \ \Psi)
                     using \lozenge subset-mset.add-diff-inverse by blast
               then have snd \ \delta \in \# \ mset \ (map \ (uncurry \ (\rightarrow)) \ \Psi) + (mset \ \Gamma - mset \ (map \ (map
snd \Psi))
                     using C by simp
                 with A have snd \ \delta \in set \ \Gamma
                     by (metis (no-types) diff-subset-eq-self
                                                                   in\text{-}multiset\text{-}in\text{-}set
                                                                   subset	ext{-}mset.add	ext{-}diff	ext{-}inverse
                                                                   union-iff)
                 have D: \mathfrak{B} \Psi \Delta = \mathfrak{B} \Psi (\delta \# \Delta)
                     using \langle find \ (\lambda \psi. \ uncurry \ (\rightarrow) \ \psi = snd \ \delta) \ \Psi = None \rangle
                     by simp
                 obtain diff :: 'a \ list \Rightarrow 'a \ list \Rightarrow 'a \ list where
                     \forall x0 \ x1. \ (\exists v2. \ x1 \ @ \ v2 \rightleftharpoons x0) = (x1 \ @ \ diff \ x0 \ x1 \rightleftharpoons x0)
                     by moura
                 then have E:
                          mset\ (map\ snd\ (\mathfrak{B}\ \Psi\ (\delta\ \#\ \Delta))
                                       @ diff (map\ (uncurry\ (\rightarrow))\ \Psi)\ (map\ snd\ (\mathfrak{B}\ \Psi\ (\delta\ \#\ \Delta))))
                            = mset \ (map \ (uncurry \ (\rightarrow)) \ \Psi)
                     by (meson second-component-snd-projection-msub mset-le-perm-append)
                have F: \forall a \ m \ ma. \ (add\text{-}mset \ (a::'a) \ m \subseteq \# \ ma) = (a \in \# \ ma \land m \subseteq \# \ ma)
-\{\#a\#\}
                     using insert-subset-eq-iff by blast
                 then have snd \ \delta \in \# \ mset \ (map \ snd \ (\mathfrak{B} \ \Psi \ (\delta \ \# \ \Delta))
```

```
@ diff (map (uncurry (\rightarrow)) \Psi) (map snd (\mathfrak{B} \ \Psi \ (\delta \ \#
\Delta))))
                              + mset (\Gamma \ominus map \ snd \ \Psi)
           using E \diamondsuit by force
         then have snd \ \delta \in \# \ mset \ (\Gamma \ominus map \ snd \ \Psi)
           using A E by (metis (no-types) in-multiset-in-set union-iff)
         then have G: add-mset (snd \delta) (mset (map snd (\Delta \ominus \mathfrak{B} \Psi \Delta))) \subseteq \# mset
(\Gamma \ominus map \ snd \ \Psi)
           using B F by force
         have H: \forall ps \ psa \ f. \ \neg \ mset \ (ps::('a \times 'a) \ list) \subseteq \# \ mset \ psa \ \lor
                                 mset ((map f psa:'a list) \ominus map f ps) = mset (map f (psa
\ominus ps))
           using map-list-subtract-mset-equivalence by blast
         have snd \ \delta \notin \# \ mset \ (map \ snd \ (\mathfrak{B} \ \Psi \ (\delta \# \ \Delta)))
                       + mset (diff (map (uncurry (\rightarrow)) \Psi) (map snd (\mathfrak{B} \Psi (\delta \# \Delta))))
           using A E by auto
         then have add-mset (snd \delta) (mset (map snd (\Delta \ominus \mathfrak{B} \Psi \Delta)))
                    = mset\ (map\ snd\ (\delta\ \#\ \Delta)\ \ominus\ map\ snd\ (\mathfrak{B}\ \Psi\ (\delta\ \#\ \Delta)))
           using D H second-component-msub by auto
         then show ?thesis
           using G H by (metis (no-types) second-component-msub)
       \mathbf{next}
         case False
        from this obtain \psi where \psi: find (\lambda \psi. uncurry (\rightarrow) \psi = snd \delta) \Psi = Some
\psi
           by auto
         let ?\Psi' = remove1 \ \psi \ \Psi
         let ?\Gamma' = remove1 \ (snd \ \psi) \ \Gamma
         have snd \delta = uncurry (\rightarrow) \psi
               \psi \in set \Psi
               mset\ ((\delta \# \Delta) \ominus \mathfrak{B}\ \Psi\ (\delta \# \Delta)) =
                mset \ (\Delta \ominus \mathfrak{B} \ ?\Psi' \ \Delta)
           using \psi find-Some-predicate find-Some-set-membership
           by fastforce+
         moreover
         have mset (\Gamma \ominus map \ snd \ \Psi) = mset \ (?\Gamma' \ominus map \ snd \ ?\Psi')
                by (simp, metis \ \langle \psi \in set \ \Psi \rangle \ image-mset-add-mset \ in-multiset-in-set
insert-DiffM)
         moreover
         obtain search :: ('a \times 'a) list \Rightarrow ('a \times 'a \Rightarrow bool) \Rightarrow 'a \times 'a where
           \forall xs \ P. \ (\exists x. \ x \in set \ xs \land P \ x) = (search \ xs \ P \in set \ xs \land P \ (search \ xs \ P))
           by moura
         then have \forall p \ ps. \ (find \ p \ ps \neq None \lor (\forall pa. \ pa \notin set \ ps \lor \neg p \ pa))
                            \land (find \ p \ ps = None \lor search \ ps \ p \in set \ ps \land p \ (search \ ps \ p))
           by (metis (full-types) find-None-iff)
         then have (find (\lambda p.\ uncurry\ (\rightarrow)\ p=snd\ \delta) \Psi\neq None
                       \vee (\forall p. \ p \notin set \ \Psi \lor uncurry (\rightarrow) \ p \neq snd \ \delta))
                   \wedge (find (\lambda p. \ uncurry (\rightarrow) \ p = snd \ \delta) \ \Psi = None
                       \vee search \Psi (\lambda p. uncurry (\rightarrow) p = snd \delta) \in set \Psi
```

```
\land uncurry (\rightarrow) (search \ \Psi (\lambda p. \ uncurry (\rightarrow) \ p = snd \ \delta)) = snd \ \delta)
            by blast
         hence snd \ \delta \in set \ (map \ (uncurry \ (\rightarrow)) \ \Psi)
            by (metis (no-types) False image-eqI image-set)
         moreover
         have A: add-mset (uncurry (\rightarrow) \psi) (image-mset snd (mset \Delta))
                 = image-mset snd (add-mset \delta (mset \Delta))
            by (simp add: \langle snd \ \delta = uncurry \ (\rightarrow) \ \psi \rangle)
         have B: \{\#snd \ \delta\#\} \subseteq \# \ image\text{-}mset \ (uncurry \ (\rightarrow)) \ (mset \ \Psi)
            using \langle snd \ \delta \in set \ (map \ (uncurry \ (\rightarrow)) \ \Psi) \rangle by force
         have image-mset (uncurry (\rightarrow)) (mset \Psi) – \{\#snd\ \delta\#\}
               = image\text{-}mset \ (uncurry \ (\rightarrow)) \ (mset \ (remove1 \ \psi \ \Psi))
            by (simp add: \langle \psi \in set \ \Psi \rangle \ \langle snd \ \delta = uncurry \ (\rightarrow) \ \psi \rangle \ image-mset-Diff)
         then have mset\ (map\ snd\ (\Delta\ominus\mathfrak{B}\ (remove1\ \psi\ \Psi)\ \Delta))
                    \subseteq \# mset (remove1 (snd \psi) \Gamma \ominus map snd (remove1 \psi \Psi))
            by (metis (no-types)
                        A B \diamondsuit Cons.hyps
                        calculation(1)
                         calculation(4)
                        insert-subset-eq-iff
                        mset.simps(2)
                        mset	ext{-}map
                        subset-mset.diff-add-assoc2
                         union-code)
          ultimately show ?thesis by fastforce
       \mathbf{qed}
    }
    then show ?case by blast
  qed
  thus ?thesis using assms by auto
qed
primrec (in classical-logic)
  merge\text{-}witness :: ('a \times 'a) \ list \Rightarrow ('a \times 'a) \ list \Rightarrow ('a \times 'a) \ list (\mathfrak{J})
  where
    \Im \Psi [] = \Psi
  \mid \mathfrak{J} \Psi (\delta \# \Delta) =
        (case find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi of
                None \Rightarrow \delta \# \mathfrak{J} \Psi \Delta
             | Some \psi \Rightarrow (fst \ \delta \ \sqcap \ fst \ \psi, \ snd \ \psi) \ \# \ (\mathfrak{J} \ (remove1 \ \psi \ \Psi) \ \Delta))
lemma (in classical-logic) merge-witness-right-empty [simp]:
  \mathfrak{J} \left[ \right] \Delta = \Delta
  by (induct \ \Delta, simp+)
\mathbf{lemma} \ (\mathbf{in} \ classical\text{-}logic) \ second\text{-}component\text{-}merge\text{-}witness\text{-}snd\text{-}projection} :
  mset\ (map\ snd\ \Psi\ @\ map\ snd\ (\Delta\ominus(\mathfrak{B}\ \Psi\ \Delta)))=mset\ (map\ snd\ (\mathfrak{J}\ \Psi\ \Delta))
proof -
  have \forall \Psi. mset (map \ snd \ \Psi @ \ map \ snd \ (\Delta \ominus (\mathfrak{B} \ \Psi \ \Delta))) = mset \ (map \ snd \ (\mathfrak{J} ))
```

```
\Psi \Delta))
  proof (induct \ \Delta)
    {\bf case}\ Nil
    then show ?case by simp
    case (Cons \delta \Delta)
    {
      fix \Psi
      have mset (map snd \Psi @ map snd ((\delta \# \Delta) \ominus \mathfrak{B} \Psi (\delta \# \Delta))) =
             mset\ (map\ snd\ (\mathfrak{J}\ \Psi\ (\delta\ \#\ \Delta)))
      proof (cases find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi = None)
        case True
        then show ?thesis
           using Cons
           by (simp,
               metis (no-types, lifting)
                     ab-semigroup-add-class.add-ac(1)
                     add\text{-}mset\text{-}add\text{-}single
                     image\text{-}mset\text{-}single
                     image-mset-union
                     second\text{-}component\text{-}msub
                     subset-mset.add-diff-assoc2)
      next
        case False
       from this obtain \psi where \psi: find (\lambda \psi. uncurry (\rightarrow) \psi = snd \delta) \Psi = Some
\psi
        moreover have \psi \in set \ \Psi
           by (meson \ \psi \ find\text{-}Some\text{-}set\text{-}membership})
        moreover
        let ?\Psi' = remove1 \ \psi \ \Psi
        from Cons have
           mset \ (map \ snd \ ?\Psi' @ \ map \ snd \ (\Delta \ominus \mathfrak{B} \ ?\Psi' \ \Delta)) =
             mset\ (map\ snd\ (\mathfrak{J}\ ?\Psi'\ \Delta))
           \mathbf{by} blast
        ultimately show ?thesis
           by (simp,
               metis (no-types, lifting)
                     add-mset-remove-trivial-eq
                     image\text{-}mset\text{-}add\text{-}mset
                     in\text{-}multiset\text{-}in\text{-}set
                     union-mset-add-mset-left)
      qed
    }
    then show ?case by blast
  thus ?thesis by blast
qed
```

```
lemma (in classical-logic) second-component-merge-witness-stronger-theory:
  (map\ (uncurry\ (\rightarrow))\ \Delta\ @\ map\ (uncurry\ (\rightarrow))\ \Psi\ \ominus\ map\ snd\ (\mathfrak{B}\ \Psi\ \Delta))\ \preceq
     map\ (uncurry\ (\rightarrow))\ (\Im\ \Psi\ \Delta)
proof -
  have \forall \Psi. (map (uncurry (\rightarrow)) \Delta @
                 map\ (uncurry\ (\rightarrow))\ \Psi\ominus\ map\ snd\ (\mathfrak{B}\ \Psi\ \Delta))\preceq
                 map\ (uncurry\ (	o))\ (\mathfrak{J}\ \Psi\ \Delta)
  proof (induct \Delta)
     case Nil
     then show ?case
       by simp
  next
     case (Cons \delta \Delta)
     {
       fix \Psi
       have \vdash (uncurry (\rightarrow)) \delta \rightarrow (uncurry (\rightarrow)) \delta
          using axiom-k modus-ponens implication-absorption by blast
       have
          (map\ (uncurry\ (\rightarrow))\ (\delta\ \#\ \Delta)\ @
            map\ (uncurry\ (\rightarrow))\ \Psi\ominus\ map\ snd\ (\mathfrak{B}\ \Psi\ (\delta\ \#\ \Delta)))\preceq
            map\ (uncurry\ (\rightarrow))\ (\Im\ \Psi\ (\delta\ \#\ \Delta))
       proof (cases find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi = None)
          case True
          thus ?thesis
            using Cons
                    \langle \vdash (uncurry (\rightarrow)) \ \delta \rightarrow (uncurry (\rightarrow)) \ \delta \rangle
            by (simp, metis stronger-theory-left-right-cons)
       next
          case False
        from this obtain \psi where \psi: find (\lambda \psi. uncurry (\rightarrow) \psi = snd \delta) \Psi = Some
\psi
            by auto
          from \psi have snd \delta = uncurry (\rightarrow) \psi
            using find-Some-predicate by fastforce
          from \psi \langle snd \ \delta = uncurry \ (\rightarrow) \ \psi \rangle have
            mset\ (map\ (uncurry\ (\rightarrow))\ (\delta\ \#\ \Delta)\ @
                        map\ (uncurry\ (\rightarrow))\ \Psi\ominus\ map\ snd\ (\mathfrak{B}\ \Psi\ (\delta\ \#\ \Delta)))=
              mset\ (map\ (uncurry\ (\rightarrow))\ (\delta\ \#\ \Delta)\ @
                        map (uncurry (\rightarrow)) (remove1 \psi \Psi) \ominus
                        map snd (\mathfrak{B} (remove1 \psi \Psi) \Delta))
            \mathbf{by}\ (simp\ add:\ find\text{-}Some\text{-}set\text{-}membership\ image\text{-}mset\text{-}Diff)
          hence
            (map\ (uncurry\ (\rightarrow))\ (\delta\ \#\ \Delta)\ @
                 map\ (uncurry\ (\rightarrow))\ \Psi\ominus\ map\ snd\ (\mathfrak{B}\ \Psi\ (\delta\ \#\ \Delta)))\ \preceq
              (map\ (uncurry\ (\rightarrow))\ (\delta\ \#\ \Delta)\ @
                 map\ (uncurry\ (\rightarrow))\ (remove1\ \psi\ \Psi)\ \ominus\ map\ snd\ (\mathfrak{B}\ (remove1\ \psi\ \Psi)\ \Delta))
            by (simp add: msub-stronger-theory-intro)
          with Cons \leftarrow (uncurry (\rightarrow)) \delta \rightarrow (uncurry (\rightarrow)) \delta \rightarrow have
            (map\ (uncurry\ (\rightarrow))\ (\delta\ \#\ \Delta)\ @
```

```
map\ (uncurry\ (\rightarrow))\ \Psi\ominus\ map\ snd\ (\mathfrak{B}\ \Psi\ (\delta\ \#\ \Delta)))
               \leq ((uncurry (\rightarrow)) \delta \# map (uncurry (\rightarrow)) (\mathfrak{J} (remove1 \psi \Psi) \Delta))
            \mathbf{using}\ stronger\text{-}theory\text{-}left\text{-}right\text{-}cons
                    stronger-theory-transitive
            by fastforce
          moreover
         let ?\alpha = fst \delta
         let ?\beta = fst \psi
         let ?\gamma = snd \psi
         have uncurry (\rightarrow) = (\lambda \ \delta. \ fst \ \delta \rightarrow snd \ \delta) by fastforce
         with \psi have (uncurry (\rightarrow)) \delta = ?\alpha \rightarrow ?\beta \rightarrow ?\gamma
            using find-Some-predicate by fastforce
         hence \vdash ((?\alpha \sqcap ?\beta) \rightarrow ?\gamma) \rightarrow (uncurry (\rightarrow)) \delta
            using biconditional-def curry-uncurry by auto
          with \psi have
            ((uncurry (\rightarrow)) \delta \# map (uncurry (\rightarrow)) (\Im (remove1 \psi \Psi) \Delta)) \preceq
             map\ (uncurry\ (\rightarrow))\ (\Im\ \Psi\ (\delta\ \#\ \Delta))
            using stronger-theory-left-right-cons by auto
          ultimately show ?thesis
            using stronger-theory-transitive
            by blast
       \mathbf{qed}
    then show ?case by simp
  qed
  thus ?thesis by simp
qed
\mathbf{lemma} (\mathbf{in} \mathit{classical-logic}) \mathit{merge-witness-msub-intro}:
  assumes mset \ (map \ snd \ \Psi) \subseteq \# \ mset \ \Gamma
        and mset (map snd \Delta) \subseteq \# mset (map (uncurry (\rightarrow)) \Psi @ \Gamma \ominus (map snd
\Psi))
    shows mset\ (map\ snd\ (\mathfrak{J}\ \Psi\ \Delta))\subseteq \#\ mset\ \Gamma
proof -
  have \forall \Psi \Gamma. mset (map snd \Psi) \subseteq \# mset \Gamma \longrightarrow
                  mset\ (map\ snd\ \Delta)\subseteq \#\ mset\ (map\ (uncurry\ (\rightarrow))\ \Psi\ @\ \Gamma\ \ominus\ (map\ snd\ )
\Psi)) \longrightarrow
                  mset\ (map\ snd\ (\mathfrak{J}\ \Psi\ \Delta))\subseteq \#\ mset\ \Gamma
  proof (induct \Delta)
    case Nil
    then show ?case by simp
  \mathbf{next}
    case (Cons \delta \Delta)
       \mathbf{fix} \ \Psi :: ('a \times 'a) \ list
       fix \Gamma :: 'a \ list
       assume \diamondsuit: mset\ (map\ snd\ \Psi) \subseteq \#\ mset\ \Gamma
                      mset\ (map\ snd\ (\delta\ \#\ \Delta))\subseteq \#\ mset\ (map\ (uncurry\ (\rightarrow))\ \Psi\ @\ \Gamma\ominus
(map \ snd \ \Psi))
```

```
have mset (map snd (\mathfrak{J} \Psi (\delta \# \Delta))) \subseteq \# mset \Gamma
      proof (cases find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi = None)
        {\bf case}\  \, True
        hence snd \delta \notin set (map (uncurry (\rightarrow)) \Psi)
        proof (induct \Psi)
           case Nil
           then show ?case by simp
         next
           case (Cons \psi \Psi)
           hence uncurry (\rightarrow) \psi \neq snd \delta by fastforce
           with Cons show ?case by fastforce
         with \Diamond(2) have snd\ \delta \in \#\ mset\ (\Gamma \ominus map\ snd\ \Psi)
           using mset-subset-eq-insertD by fastforce
         with \Diamond(1) have mset (map snd \Psi) \subseteq \# mset (remove1 (snd \delta) \Gamma)
           by (metis list-subtract-mset-homomorphism
                      mset-remove1
                      single-subset-iff
                      subset-mset.add-diff-assoc
                      subset-mset.add-diff-inverse
                      subset-mset.le-iff-add)
        moreover
         have add-mset (snd \delta) (mset (\Gamma \ominus map \ snd \ \Psi) - {#snd \delta#}) = mset (\Gamma
\ominus map snd \Psi)
           by (meson \langle snd \ \delta \in \# \ mset \ (\Gamma \ominus map \ snd \ \Psi) \rangle \ insert-DiffM)
            then have image-mset snd (mset \Delta) - (mset \Gamma - add-mset (snd \delta)
(image-mset\ snd\ (mset\ \Psi)))
                \subseteq \# \{ \#x \rightarrow y. (x, y) \in \# mset \Psi \# \} 
           using \Diamond(2) by (simp, metis add-mset-diff-bothsides
                                         list-subtract-mset-homomorphism
                                         mset-map\ subset-eq-diff-conv)
        hence mset\ (map\ snd\ \Delta)
           \subseteq \# \; mset \; (map \; (uncurry \; (\rightarrow)) \; \Psi \; @ \; (remove1 \; (snd \; \delta) \; \Gamma) \; \ominus \; (map \; snd \; \Psi))
           \mathbf{using} \ \mathit{subset-eq-diff-conv} \ \mathbf{by} \ (\mathit{simp}, \ \mathit{blast})
         ultimately have mset (map snd (\mathfrak{J} \Psi \Delta)) \subseteq \# mset (remove1 (snd \delta) \Gamma)
           using Cons by blast
        hence mset (map \ snd \ (\delta \# \ (\mathfrak{J} \ \Psi \ \Delta))) \subseteq \# \ mset \ \Gamma
           by (simp, metis \langle snd \ \delta \in \# \ mset \ (\Gamma \ominus \ map \ snd \ \Psi) \rangle
                             cancel-ab\text{-}semigroup\text{-}add\text{-}class.diff\text{-}right\text{-}commute
                             diff-single-trivial
                             insert-subset-eq-iff
                             list-subtract-mset-homomorphism
                             multi-drop-mem-not-eq)
        with \langle find \ (\lambda \ \psi. \ (uncurry \ (\rightarrow)) \ \psi = snd \ \delta) \ \Psi = None \rangle
        \mathbf{show} \ ?thesis
           by simp
        case False
        from this obtain \psi where \psi:
```

```
find (\lambda \psi. \ uncurry \ (\rightarrow) \ \psi = snd \ \delta) \ \Psi = Some \ \psi
           by fastforce
         let ?\chi = fst \psi
         let ?\gamma = snd \psi
         have uncurry(\rightarrow) = (\lambda \ \psi. \ fst \ \psi \rightarrow snd \ \psi)
           by fastforce
         moreover
         from this have uncurry (\rightarrow) \psi = ?\chi \rightarrow ?\gamma by fastforce
         with \psi have A: (?\chi, ?\gamma) \in set \Psi
                  and B: snd \delta = ?\chi \rightarrow ?\gamma
           \mathbf{using}\ find\text{-}Some\text{-}predicate
           by (simp add: find-Some-set-membership, fastforce)
         let ?\Psi' = remove1 (?\chi, ?\gamma) \Psi
         from B \diamondsuit (2) have
            mset\ (map\ snd\ \Delta)\subseteq \#\ mset\ (map\ (uncurry\ (\rightarrow))\ \Psi\ @\ \Gamma\ \ominus\ map\ snd\ \Psi)
-~\{\#~?\chi\to~?\gamma~\#\}
           by (simp add: insert-subset-eq-iff)
         moreover
         have mset (map (uncurry (\rightarrow)) \Psi)
              = add\text{-}mset \ (case \ (fst \ \psi, \ snd \ \psi) \ of \ (x, \ xa) \Rightarrow x \rightarrow xa)
                         (image\text{-}mset\ (uncurry\ (
ightarrow))\ (mset\ (remove1\ (fst\ \psi,\ snd\ \psi)\ \Psi)))
           by (metis (no-types)
                  A
                  image\text{-}mset\text{-}add\text{-}mset
                  in	ext{-}multiset	ext{-}in	ext{-}set
                  insert-DiffM
                  mset-map
                  mset-remove1
                  uncurry-def)
         ultimately have
           mset\ (map\ snd\ \Delta)\subseteq \#\ mset\ (map\ (uncurry\ (\rightarrow))\ ?\Psi'\ @\ \Gamma\ \ominus\ map\ snd\ \Psi)
           using
              add-diff-cancel-left'
              add-diff-cancel-right
              \it diff-\it diff-\it add-\it mset
              diff-subset-eq-self
              mset-append
              subset-eq-diff-conv
              subset	ext{-}mset.diff	ext{-}add
           by auto
         moreover from A B \diamondsuit
         have mset (\Gamma \ominus map \ snd \ \Psi) = mset((remove1 \ ?\gamma \ \Gamma) \ominus (remove1 \ ?\gamma \ (map \ remove1 \ ?\gamma)))
snd \Psi)))
           using
              image-eqI
              prod.sel(2)
              set-map
           by force
         with A have
```

```
mset \ (\Gamma \ominus map \ snd \ \Psi) = mset((remove1 \ ?\gamma \ \Gamma) \ominus (map \ snd \ ?\Psi'))
           by (metis
                  remove 1-pairs-list-projections-snd
                  in	ext{-}multiset	ext{-}in	ext{-}set
                  list-subtract-mset-homomorphism
                  mset-remove1)
         ultimately have
           mset\ (map\ snd\ \Delta)\subseteq \#\ mset\ (map\ (uncurry\ (\rightarrow))\ ?\Psi'
                                              @ (remove1 ?\gamma \Gamma)
                                              \ominus map snd ?\Psi')
           by simp
         hence mset (map \ snd \ (\mathfrak{J} \ ?\Psi' \ \Delta)) \subseteq \# \ mset \ (remove1 \ ?\gamma \ \Gamma)
           using Cons \diamondsuit (1) A
           by (metis (no-types, lifting)
                      image-mset-add-mset
                      in	ext{-}multiset	ext{-}in	ext{-}set
                      insert-DiffM
                      insert-subset-eq-iff
                      mset-map mset-remove1
                      prod.collapse)
         with \Diamond(1) A have mset (map snd (\mathfrak{J} ? \Psi' \Delta)) + \{\# ? \gamma \#\} \subseteq \# mset \Gamma
           by (metis add-mset-add-single
                      image-eqI
                      insert-subset-eq-iff
                      mset\text{-}remove1
                      mset-subset-eqD
                      set-map
                      set-mset-mset
                      snd-conv)
        hence \mathit{mset}\ (\mathit{map}\ \mathit{snd}\ ((\mathit{fst}\ \delta\ \sqcap\ ?\chi,\ ?\gamma)\ \#\ (\mathfrak{J}\ ?\Psi'\ \Delta)))\subseteq\#\ \mathit{mset}\ \Gamma
           by simp
         moreover from \psi have
           \mathfrak{J} \Psi (\delta \# \Delta) = (\text{fst } \delta \sqcap ?\chi, ?\gamma) \# (\mathfrak{J} ?\Psi' \Delta)
           by simp
        ultimately show ?thesis by simp
      qed
    thus ?case by blast
  with assms show ?thesis by blast
\mathbf{qed}
lemma (in classical-logic) right-merge-witness-stronger-theory:
  map\ (uncurry\ (\sqcup))\ \Delta \preceq map\ (uncurry\ (\sqcup))\ (\mathfrak{J}\ \Psi\ \Delta)
proof -
  have \forall \ \Psi. \ map \ (uncurry \ (\sqcup)) \ \Delta \preceq map \ (uncurry \ (\sqcup)) \ (\mathfrak{J} \ \Psi \ \Delta)
  proof (induct \Delta)
    case Nil
    then show ?case by simp
```

```
next
     case (Cons \delta \Delta)
     {
       fix \Psi
       have map (uncurry (\sqcup)) (\delta \# \Delta) \leq map (uncurry (\sqcup)) (\mathfrak{J} \Psi (\delta \# \Delta))
       proof (cases find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi = None)
          {\bf case}\  \, True
          hence \mathfrak{J}\ \Psi\ (\delta\ \#\ \Delta)=\delta\ \#\ \mathfrak{J}\ \Psi\ \Delta
             by simp
          moreover have \vdash (uncurry (\sqcup)) \delta \rightarrow (uncurry (\sqcup)) \delta
             by (metis axiom-k axiom-s modus-ponens)
          ultimately show ?thesis using Cons
             by (simp add: stronger-theory-left-right-cons)
       next
          case False
          from this obtain \psi where \psi:
             find (\lambda \psi. \ uncurry \ (\rightarrow) \ \psi = snd \ \delta) \ \Psi = Some \ \psi
            by fastforce
          let ?\chi = fst \psi
          let ?\gamma = snd \psi
          let ?\mu = fst \delta
          have uncurry (\rightarrow) = (\lambda \ \psi. \ fst \ \psi \rightarrow snd \ \psi)
                 uncurry (\sqcup) = (\lambda \ \delta. \ fst \ \delta \ \sqcup \ snd \ \delta)
             by fastforce+
          hence uncurry (\sqcup) \delta = ?\mu \sqcup (?\chi \rightarrow ?\gamma)
             using \psi find-Some-predicate
             by fastforce
          moreover
             fix \mu \chi \gamma
             have \vdash ((\mu \sqcap \chi) \sqcup \gamma) \to (\mu \sqcup (\chi \to \gamma))
             proof -
               \mathbf{have}\ \forall\,\mathfrak{M}.\ \mathfrak{M}\models_{prop}((\langle\mu\rangle\ \sqcap\ \langle\chi\rangle)\ \sqcup\ \langle\gamma\rangle)\ \to\ (\langle\mu\rangle\ \sqcup\ (\langle\chi\rangle\ \to\ \langle\gamma\rangle))
                  by fastforce
               hence \vdash ((\langle \mu \rangle \sqcap \langle \chi \rangle) \sqcup \langle \gamma \rangle) \rightarrow (\langle \mu \rangle \sqcup (\langle \chi \rangle \rightarrow \langle \gamma \rangle)))
                  using propositional-semantics by blast
               thus ?thesis
                  by simp
           qed
          ultimately show ?thesis
            using Cons \ \psi \ stronger-theory-left-right-cons
             by simp
       \mathbf{qed}
     }
     thus ?case by blast
  ged
   thus ?thesis by blast
qed
```

```
lemma (in classical-logic) left-merge-witness-stronger-theory:
  map\ (uncurry\ (\sqcup))\ \Psi \preceq map\ (uncurry\ (\sqcup))\ (\mathfrak{J}\ \Psi\ \Delta)
proof -
  have \forall \ \Psi. \ map \ (uncurry \ (\sqcup)) \ \Psi \preceq map \ (uncurry \ (\sqcup)) \ (\mathfrak{J} \ \Psi \ \Delta)
  proof (induct \Delta)
     {\bf case}\ Nil
     then show ?case
       by simp
  \mathbf{next}
     case (Cons \delta \Delta)
     {
       fix \Psi
       have map (uncurry (\sqcup)) \Psi \leq map (uncurry (\sqcup)) (\mathfrak{J} \Psi (\delta \# \Delta))
       proof (cases find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi = None)
          \mathbf{case} \ \mathit{True}
          then show ?thesis
             using Cons stronger-theory-right-cons
             by auto
        next
          {\bf case}\ \mathit{False}
          from this obtain \psi where \psi:
             find (\lambda \psi. \ uncurry \ (\rightarrow) \ \psi = snd \ \delta) \ \Psi = Some \ \psi
             by fastforce
          let ?\chi = fst \psi
          let ?\gamma = snd \psi
          let ?\mu = fst \delta
          have uncurry(\rightarrow) = (\lambda \psi. fst \psi \rightarrow snd \psi)
                 uncurry (\sqcup) = (\lambda \ \delta. \ fst \ \delta \ \sqcup \ snd \ \delta)
             by fastforce+
          hence
             uncurry (\sqcup) \delta = ?\mu \sqcup (?\chi \rightarrow ?\gamma)
             uncurry (\sqcup) \psi = ?\chi \sqcup ?\gamma
             using \psi find-Some-predicate
             by fastforce+
          moreover
           {
             fix \mu \chi \gamma
             \mathbf{have} \vdash ((\mu \sqcap \chi) \sqcup \gamma) \to (\chi \sqcup \gamma)
             proof -
               have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ((\langle \mu \rangle \sqcap \langle \chi \rangle) \sqcup \langle \gamma \rangle) \rightarrow (\langle \chi \rangle \sqcup \langle \gamma \rangle)
                  by fastforce
                hence \vdash ( ((\langle \mu \rangle \sqcap \langle \chi \rangle) \sqcup \langle \gamma \rangle) \rightarrow (\langle \chi \rangle \sqcup \langle \gamma \rangle) )
                  using propositional-semantics by blast
                \mathbf{thus}~? the sis
                  by simp
           qed
         ultimately have
```

```
map\ (uncurry\ (\sqcup))\ (\psi\ \#\ (remove1\ \psi\ \Psi))\ \preceq
          map\ (uncurry\ (\sqcup))\ (\Im\ \Psi\ (\delta\ \#\ \Delta))
         using Cons \ \psi \ stronger-theory-left-right-cons
         by simp
       moreover from \psi have \psi \in set \ \Psi
         by (simp add: find-Some-set-membership)
       hence mset (map (uncurry (\sqcup)) (\psi # (remove1 \psi \Psi))) =
               mset\ (map\ (uncurry\ (\sqcup))\ \Psi)
         by (metis insert-DiffM
                    mset.simps(2)
                    mset-map
                    mset-remove1
                    set-mset-mset)
       hence map (uncurry (\sqcup)) \Psi \leq map (uncurry (\sqcup)) (\psi \# (remove1 \psi \Psi))
         by (simp add: msub-stronger-theory-intro)
       ultimately show ?thesis
         using stronger-theory-transitive by blast
      qed
    then show ?case by blast
  qed
  thus ?thesis by blast
qed
lemma (in classical-logic) measure-empty-deduction:
  [] \$ \vdash \Phi = (\forall \varphi \in set \ \Phi. \vdash \varphi)
  by (induct \Phi, simp, rule iffI, fastforce+)
\mathbf{lemma} \ (\mathbf{in} \ classical\text{-}logic) \ measure\text{-}stronger\text{-}theory\text{-}left\text{-}monotonic} :
  assumes \Sigma \prec \Gamma
      and \Sigma \Vdash \Phi
    shows \Gamma \Vdash \Phi
  using assms
proof (induct \Phi arbitrary: \Sigma \Gamma)
  case Nil
  then show ?case by simp
next
  case (Cons \varphi \Phi)
  from this obtain \Psi \Delta where
    \Psi: mset\ (map\ snd\ \Psi) \subseteq \#\ mset\ \Sigma
       map (uncurry (\sqcup)) \Psi :\vdash \varphi
       map\ (uncurry\ (\rightarrow))\ \Psi\ @\ \Sigma\ominus\ (map\ snd\ \Psi)\ \$\vdash\ \Phi
    and
    \Delta: map snd \Delta = \Sigma
       mset\ (map\ fst\ \Delta)\subseteq \#\ mset\ \Gamma
       \forall (\gamma,\sigma) \in set \ \Delta. \vdash \gamma \to \sigma
    unfolding stronger-theory-relation-def
    by fastforce
  from \langle mset \ (map \ snd \ \Psi) \subseteq \# \ mset \ \Sigma \rangle
```

```
\langle map \ snd \ \Delta = \Sigma \rangle
  obtain \Omega where \Omega:
     map (\lambda (\psi, \sigma, -). (\psi, \sigma)) \Omega = \Psi
     mset\ (map\ (\lambda\ (-,\ \sigma,\ \gamma).\ (\gamma,\ \sigma))\ \Omega)\subseteq \#\ mset\ \Delta
     using triple-list-exists by blast
  let ?\Theta = map(\lambda(\psi, -, \gamma), (\psi, \gamma)) \Omega
  have map snd ?\Theta = map fst (map (\lambda (-, \sigma, \gamma), (\gamma, \sigma)) \Omega)
     by auto
  hence mset (map \ snd \ ?\Theta) \subseteq \# \ mset \ \Gamma
     using \Omega(2) \Delta(2) map-monotonic subset-mset.order-trans
    by metis
  moreover have map (uncurry (\sqcup)) \Psi \leq map (uncurry (\sqcup)) ?\Theta
  proof -
     let ?\Phi = map (\lambda (\psi, \sigma, \gamma). (\psi \sqcup \gamma, \psi \sqcup \sigma)) \Omega
     have map snd ?\Phi = map (uncurry (\sqcup)) \Psi
       using \Omega(1) by fastforce
     moreover have map fst ?\Phi = map (uncurry (\sqcup)) ?\Theta
       by fastforce
     hence mset (map\ fst\ ?\Phi) \subseteq \#\ mset\ (map\ (uncurry\ (\sqcup))\ ?\Theta)
       by (metis subset-mset.dual-order.refl)
     moreover
     have mset\ (map\ (\lambda(\psi,\,\sigma,\,-),\,(\psi,\,\sigma))\ \Omega)\subseteq \#\ mset\ \Psi
       using \Omega(1) by simp
     hence \forall (\varphi,\chi) \in set ?\Phi. \vdash \varphi \to \chi \text{ using } \Omega(2)
     proof (induct \Omega)
       case Nil
       then show ?case by simp
     next
       case (Cons \omega \Omega)
       let P = map(\lambda(\psi, \sigma, \gamma), (\psi \sqcup \gamma, \psi \sqcup \sigma))(\omega \# \Omega)
       let ?\Phi' = map (\lambda (\psi, \sigma, \gamma). (\psi \sqcup \gamma, \psi \sqcup \sigma)) \Omega
       have mset\ (map\ (\lambda(\psi,\ \sigma,\ \text{-}).\ (\psi,\ \sigma))\ \Omega)\subseteq \#\ mset\ \Psi
              mset\ (map\ (\lambda(-,\ \sigma,\ \gamma).\ (\gamma,\ \sigma))\ \Omega)\subseteq \#\ mset\ \Delta
           using Cons.prems(1) Cons.prems(2) subset-mset.dual-order.trans by fast-mset.dual-order.trans
force+
       with Cons have \forall (\varphi, \chi) \in set ?\Phi' \cdot \vdash \varphi \rightarrow \chi \text{ by } fastforce
       moreover
       let ?\psi = (\lambda (\psi, -, -). \psi) \omega
       let ?\sigma = (\lambda (-, \sigma, -). \sigma) \omega
       let ?\!\gamma = (\lambda \ (\mbox{-, -, } \gamma). \ \gamma) \ \omega
      have (\lambda(-, \sigma, \gamma). (\gamma, \sigma)) = (\lambda \omega. ((\lambda (-, -, \gamma). \gamma) \omega, (\lambda (-, \sigma, -). \sigma) \omega)) by auto
       hence (\lambda(\cdot, \sigma, \gamma), (\gamma, \sigma)) \omega = (?\gamma, ?\sigma) by metis
       hence \vdash ?\gamma \rightarrow ?\sigma
          using Cons.prems(2) mset-subset-eqD \Delta(3)
         by fastforce
       hence \vdash (?\psi \sqcup ?\gamma) \rightarrow (?\psi \sqcup ?\sigma)
          unfolding disjunction-def
          using modus-ponens hypothetical-syllogism
          by blast
```

```
moreover have
          (\lambda(\psi, \sigma, \gamma). (\psi \sqcup \gamma, \psi \sqcup \sigma)) =
          (\lambda \omega. (((\lambda (\psi, -, -). \psi) \omega) \sqcup ((\lambda (-, -, \gamma). \gamma) \omega),
                   ((\lambda (\psi, -, -), \psi) \omega) \sqcup ((\lambda (-, \sigma, -), \sigma) \omega)))
       hence (\lambda(\psi, \sigma, \gamma), (\psi \sqcup \gamma, \psi \sqcup \sigma)) \omega = ((?\psi \sqcup ?\gamma), (?\psi \sqcup ?\sigma)) by metis
       ultimately show ?case by simp
     ultimately show ?thesis
       unfolding stronger-theory-relation-def
       by blast
  hence map (uncurry (\sqcup)) ?\Theta :\vdash \varphi
    using \Psi(2)
            stronger-theory-deduction-monotonic
              [where \Sigma = map (uncurry (\sqcup)) \Psi
                  and \Gamma = map (uncurry (\sqcup)) ?\Theta
                  and \varphi = \varphi
    by metis
  moreover have
    (map\ (uncurry\ (\rightarrow))\ \Psi\ @\ \Sigma\ominus (map\ snd\ \Psi))\preceq
      (map\ (uncurry\ (\rightarrow))\ ?\Theta @ \Gamma \ominus (map\ snd\ ?\Theta))
  proof -
    have map (uncurry (\rightarrow)) \Psi \leq map (uncurry (\rightarrow)) ?\Theta
    proof -
       let ?\Phi = map \ (\lambda \ (\psi, \sigma, \gamma). \ (\psi \to \gamma, \psi \to \sigma)) \ \Omega
       have map snd ?\Phi = map (uncurry (\rightarrow)) \Psi
         using \Omega(1) by fastforce
       moreover have map fst ?\Phi = map (uncurry (\rightarrow)) ?\Theta
         by fastforce
       hence mset (map\ fst\ ?\Phi) \subseteq \#\ mset\ (map\ (uncurry\ (\rightarrow))\ ?\Theta)
         by (metis subset-mset.dual-order.refl)
       moreover
       have mset (map\ (\lambda(\psi, \sigma, -), (\psi, \sigma))\ \Omega) \subseteq \# mset\ \Psi
         using \Omega(1) by simp
       hence \forall (\varphi, \chi) \in set ?\Phi. \vdash \varphi \rightarrow \chi \text{ using } \Omega(2)
       proof (induct \Omega)
         case Nil
         then show ?case by simp
       next
         case (Cons \omega \Omega)
         let ?\Phi = map (\lambda (\psi, \sigma, \gamma). (\psi \to \gamma, \psi \to \sigma)) (\omega \# \Omega)
         let ?\Phi' = map (\lambda (\psi, \sigma, \gamma). (\psi \to \gamma, \psi \to \sigma)) \Omega
         have mset\ (map\ (\lambda(\psi,\,\sigma,\,\text{-}).\ (\psi,\,\sigma))\ \Omega)\subseteq \#\ mset\ \Psi
                mset\ (map\ (\lambda(\cdot,\ \sigma,\ \gamma).\ (\gamma,\ \sigma))\ \Omega)\subseteq \#\ mset\ \Delta
                 using Cons.prems(1) Cons.prems(2) subset-mset.dual-order.trans by
fastforce+
          with Cons have \forall (\varphi,\chi) \in set ?\Phi'. \vdash \varphi \to \chi by fastforce
         moreover
```

```
let ?\psi = (\lambda (\psi, -, -). \psi) \omega
          let ?\sigma = (\lambda (-, \sigma, -). \sigma) \omega
          let ?\gamma = (\lambda (-, -, \gamma). \gamma) \omega
          have (\lambda(-, \sigma, \gamma). (\gamma, \sigma)) = (\lambda \omega. ((\lambda (-, -, \gamma). \gamma) \omega, (\lambda (-, \sigma, -). \sigma) \omega)) by
auto
          hence (\lambda(\cdot, \sigma, \gamma), (\gamma, \sigma)) \omega = (?\gamma, ?\sigma) by metis
          hence \vdash ?\gamma \rightarrow ?\sigma
             using Cons.prems(2) mset-subset-eqD \Delta(3)
             by fastforce
          hence \vdash (?\psi \rightarrow ?\gamma) \rightarrow (?\psi \rightarrow ?\sigma)
             using modus-ponens hypothetical-syllogism
             by blast
          moreover have
             (\lambda(\psi, \sigma, \gamma). (\psi \to \gamma, \psi \to \sigma)) =
              (\lambda \ \omega. \ (((\lambda \ (\psi, \ -, \ -). \ \psi) \ \omega) \rightarrow ((\lambda \ (-, \ -, \ \gamma). \ \gamma) \ \omega), \\ ((\lambda \ (\psi, \ -, \ -). \ \psi) \ \omega) \rightarrow ((\lambda \ (-, \ \sigma, \ -). \ \sigma) \ \omega)))
             by auto
         hence (\lambda(\psi, \sigma, \gamma), (\psi \to \gamma, \psi \to \sigma)) \omega = ((?\psi \to ?\gamma), (?\psi \to ?\sigma)) by metis
          ultimately show ?case by simp
        qed
        ultimately show ?thesis
          {\bf unfolding}\ stronger-theory-relation-def
          by blast
     qed
     moreover
     have (\Sigma \ominus (map \ snd \ \Psi)) \preceq (\Gamma \ominus (map \ snd \ ?\Theta))
        let ?\Delta = \Delta \ominus (map (\lambda (-, \sigma, \gamma), (\gamma, \sigma)) \Omega)
        have mset (map\ fst\ ?\Delta) \subseteq \#\ mset\ (\Gamma \ominus (map\ snd\ ?\Theta))
          using \Delta(2)
          by (metis \Omega(2)
                        \langle map \ snd \ (map \ (\lambda(\psi, \neg, \gamma). \ (\psi, \gamma)) \ \Omega) =
                        map fst (map (\lambda(-, \sigma, \gamma), (\gamma, \sigma)) \Omega))
                        list\text{-}subtract\text{-}monotonic
                        map-list-subtract-mset-equivalence)
       moreover
        from \Omega(2) have mset ?\Delta \subseteq \# mset \Delta by simp
        hence \forall (\gamma, \sigma) \in set ?\Delta. \vdash \gamma \rightarrow \sigma
          using \Delta(3)
          by (metis mset-subset-eqD set-mset-mset)
        moreover
        have map snd (map (\lambda(\cdot, \sigma, \gamma), (\gamma, \sigma)) \Omega) = map \text{ snd } \Psi
          using \Omega(1)
          by (induct \Omega, simp, fastforce)
        hence mset (map \ snd \ ?\Delta) = mset \ (\Sigma \ominus (map \ snd \ \Psi))
          by (metis \Delta(1) \Omega(2) map-list-subtract-mset-equivalence)
        ultimately show ?thesis
          by (metis stronger-theory-relation-alt-def)
     qed
```

```
ultimately show ?thesis using stronger-theory-combine by blast
  qed
  hence map\ (uncurry\ (\rightarrow))\ ?\Theta @ \Gamma \ominus (map\ snd\ ?\Theta) \$\vdash \Phi
    using \Psi(3) Cons by blast
  ultimately show ?case
    by (metis\ measure-deduction.simps(2))
qed
lemma (in classical-logic) merge-witness-measure-deduction-intro:
  assumes mset (map snd \Delta) \subseteq \# mset (map (uncurry (\rightarrow)) \Psi \otimes \Gamma \ominus (map snd
\Psi))
      and map (uncurry (\rightarrow)) \Delta @ (map (uncurry (\rightarrow)) \Psi @ \Gamma \ominus map snd \Psi) \ominus
map\ snd\ \Delta\ \$\vdash\ \Phi
           (is ?\Gamma_0 \$\vdash \Phi)
    shows map (uncurry (\rightarrow)) (\mathfrak{J} \Psi \Delta) @ \Gamma \ominus map \ snd \ (\mathfrak{J} \Psi \Delta) \$ \vdash \Phi
           (is ?Γ $⊢ Φ)
proof -
  let ?\Sigma = \mathfrak{B} \Psi \Delta
  let ?A = map (uncurry (\rightarrow)) \Delta
  let ?B = map (uncurry (\rightarrow)) \Psi
  let ?C = map \ snd \ ?\Sigma
  let ?D = \Gamma \ominus (map \ snd \ \Psi)
  let ?E = map \ snd \ (\Delta \ominus \ ?\Sigma)
  have \Sigma: mset\ ?\Sigma \subseteq \#\ mset\ \Delta
           mset\ ?C \subseteq \#\ mset\ ?B
           mset ?E \subseteq \# mset ?D
    using assms(1)
           second-component-msub
           second-component-snd-projection-msub
           second\mbox{-}component\mbox{-}diff\mbox{-}msub
    by simp+
  moreover
  from calculation have
     image-mset snd (mset \Delta – mset (\mathfrak{B} \Psi \Delta))
         \subseteq \# mset \ \Gamma - image-mset \ snd \ (mset \ \Psi)
    by simp
  hence mset \Gamma - image\text{-}mset \ snd \ (mset \ \Psi)
                 -image\text{-}mset\ snd\ (mset\ \Delta-mset\ (\mathfrak{B}\ \Psi\ \Delta))
         + image\text{-}mset \ snd \ (mset \ \Delta - mset \ (\mathfrak{B} \ \Psi \ \Delta))
       = mset \Gamma - image-mset snd (mset \Psi)
    using subset-mset.diff-add by blast
  then have image-mset snd (mset \Delta – mset (\mathfrak{B} \Psi \Delta))
               + (\{\#x \to y. (x, y) \in \# mset \Psi\#\}\
                   + (mset \Gamma - (image-mset snd (mset \Psi)))
                                  + image\text{-}mset \ snd \ (mset \ \Delta - mset \ (\mathfrak{B} \ \Psi \ \Delta)))))
          = \{\#x \to y. (x, y) \in \# \text{ mset } \Psi\#\} + (\text{mset } \Gamma - \text{image-mset snd } (\text{mset } \Psi))
    by (simp add: union-commute)
  with calculation have mset ?\Gamma_0 = mset \ (?A @ (?B \ominus ?C) @ (?D \ominus ?E))
  by (simp, metis (no-types) add-diff-cancel-left image-mset-union subset-mset.diff-add)
```

```
moreover have (?A \otimes (?B \ominus ?C)) \leq map (uncurry (\rightarrow)) (\mathfrak{J} \Psi \Delta)
    using second-component-merge-witness-stronger-theory by simp
  moreover have mset (?D \ominus ?E) = mset (\Gamma \ominus map \ snd \ (\Im \Psi \Delta))
    using second-component-merge-witness-snd-projection
    by simp
  with calculation have (?A @ (?B \ominus ?C) @ (?D \ominus ?E)) \leq ?\Gamma
    by (metis
           (no-types, lifting)
           stronger-theory-combine
           append.assoc
           list-subtract-mset-homomorphism
           msub-stronger-theory-intro
           map-list-subtract-mset-containment
           map\mbox{-}list\mbox{-}subtract\mbox{-}mset\mbox{-}equivalence
           mset-subset-eq-add-right
           subset-mset.add-diff-inverse
           subset-mset.diff-add-assoc2)
  ultimately have ?\Gamma_0 \leq ?\Gamma
    unfolding stronger-theory-relation-alt-def
    by simp
  thus ?thesis
    using assms(2) measure-stronger-theory-left-monotonic
    by blast
qed
lemma (in classical-logic) measure-formula-right-split:
  \Gamma \$ \vdash (\psi \sqcup \varphi \# \psi \to \varphi \# \Phi) = \Gamma \$ \vdash (\varphi \# \Phi)
proof (rule iffI)
  \mathbf{assume}\ \Gamma\ \$\vdash\ (\varphi\ \#\ \Phi)
  from this obtain \Psi where \Psi:
    mset\ (map\ snd\ \Psi)\subseteq \#\ mset\ \Gamma
    map (uncurry (\sqcup)) \Psi :\vdash \varphi
    (map\ (uncurry\ (\rightarrow))\ \Psi\ @\ \Gamma\ \ominus\ (map\ snd\ \Psi))\ \$\vdash\ \Phi
    by auto
  let ?\Psi_1 = zip \ (map \ (\lambda \ (\chi,\gamma). \ \psi \sqcup \chi) \ \Psi) \ (map \ snd \ \Psi)
  let ?\Gamma_1 = map (uncurry (\rightarrow)) ?\Psi_1 @ \Gamma \ominus (map snd ?\Psi_1)
  let ?\Psi_2 = zip \ (map \ (\lambda \ (\chi, \gamma). \ \psi \rightarrow \chi) \ \Psi) \ (map \ (uncurry \ (\rightarrow)) \ ?\Psi_1)
  let ?\Gamma_2 = map (uncurry (\rightarrow)) ?\Psi_2 @ ?\Gamma_1 \ominus (map snd ?\Psi_2)
  have map (uncurry (\rightarrow)) \Psi \leq map (uncurry (\rightarrow)) ? \Psi_2
  proof (induct \ \Psi)
    {\bf case}\ Nil
    then show ?case by simp
    case (Cons \delta \Psi)
    let ?\chi = fst \delta
    let ?\gamma = snd \delta
    let ?\Psi_1 = zip \ (map \ (\lambda \ (\chi, \gamma). \ \psi \sqcup \chi) \ \Psi) \ (map \ snd \ \Psi)
    let ?\Psi_2 = zip \ (map \ (\lambda \ (\chi, \gamma). \ \psi \rightarrow \chi) \ \Psi) \ (map \ (uncurry \ (\rightarrow)) \ ?\Psi_1)
    let ?T_1 = \lambda \Psi. map (uncurry (\rightarrow)) (zip (map (\lambda (\chi, \gamma), \psi \sqcup \chi) \Psi) (map snd
```

```
let ?T_2 = \lambda \Psi. map (uncurry (\rightarrow)) (zip (map (\lambda (\chi, \gamma). \psi \rightarrow \chi) \Psi) (?T_1 \Psi))
              fix \delta :: 'a \times 'a
              have (\lambda \ (\chi, \gamma). \ \psi \sqcup \chi) = (\lambda \ \delta. \ \psi \sqcup (fst \ \delta))
                            (\lambda (\chi, \gamma). \psi \to \chi) = (\lambda \delta. \psi \to (fst \delta))
                   by fastforce+
              note functional-identities = this
              have (\lambda (\chi, \gamma), \psi \sqcup \chi) \delta = \psi \sqcup (fst \delta)
                            (\lambda (\chi, \gamma). \psi \to \chi) \delta = \psi \to (fst \delta)
                    \mathbf{by}\ (\mathit{simp}\ \mathit{add} \colon \mathit{functional\text{-}identities}) +
         hence ?T_2 (\delta \# \Psi) = ((\psi \to ?\chi) \to (\psi \sqcup ?\chi) \to ?\gamma) \# (map (uncurry (\to))
?\Psi_2)
              by simp
          moreover have map (uncurry (\rightarrow)) (\delta \# \Psi) = (?\chi \rightarrow ?\gamma) \# map (uncurry)
              by (simp add: case-prod-beta)
         moreover
          {
              fix \chi \psi \gamma
              \mathbf{have} \vdash ((\psi \to \chi) \to (\psi \sqcup \chi) \to \gamma) \leftrightarrow (\chi \to \gamma)
                  have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ((\langle \psi \rangle \to \langle \chi \rangle) \to (\langle \psi \rangle \sqcup \langle \chi \rangle) \to \langle \gamma \rangle) \leftrightarrow (\langle \chi \rangle \to \langle \gamma \rangle)
                    hence \vdash ((\langle \psi \rangle \to \langle \chi \rangle) \to (\langle \psi \rangle \sqcup \langle \chi \rangle) \to \langle \gamma \rangle) \leftrightarrow (\langle \chi \rangle \to \langle \gamma \rangle))
                         using propositional-semantics by blast
                    thus ?thesis by simp
              qed
         hence identity: \vdash ((\psi \rightarrow ?\chi) \rightarrow (\psi \sqcup ?\chi) \rightarrow ?\gamma) \rightarrow (?\chi \rightarrow ?\gamma)
              using biconditional-def by auto
         assume map (uncurry (\rightarrow)) \Psi \leq map (uncurry (\rightarrow)) ? \Psi_2
         with identity have ((?\chi \rightarrow ?\gamma) \# map (uncurry (\rightarrow)) \Psi) \preceq
                                                               (((\psi \rightarrow ?\chi) \rightarrow (\psi \sqcup ?\chi) \rightarrow ?\gamma) \# (map (uncurry (\rightarrow)) ?\Psi_2))
              using stronger-theory-left-right-cons by blast
         ultimately show ?case by simp
    qed
    hence (map\ (uncurry\ (\rightarrow))\ \Psi\ @\ \Gamma\ \ominus\ (map\ snd\ \Psi))\ \preceq
                       ((map\ (uncurry\ (\rightarrow))\ ?\Psi_2)\ @\ \Gamma\ominus (map\ snd\ \Psi))
         using stronger-theory-combine stronger-theory-reflexive by blast
    moreover have mset \ ?\Gamma_2 = mset \ ((map \ (uncurry \ (\rightarrow)) \ ?\Psi_2) \ @ \ \Gamma \ominus (map \ snd)) \ ?\Psi_2 \ ?\Psi_2
\mathcal{P}\Psi_1))
         by simp
    ultimately have (map\ (uncurry\ (\rightarrow))\ \Psi\ @\ \Gamma\ominus (map\ snd\ \Psi)) \preceq ?\Gamma_2
         by (simp add: stronger-theory-relation-def)
    hence ?\Gamma_2 \$ \vdash \Phi
         using \Psi(3) measure-stronger-theory-left-monotonic by blast
    moreover
```

```
have (map\ (uncurry\ (\sqcup))\ ?\Psi_2) :\vdash \psi \to \varphi
   proof -
      let ?\Gamma = map \ (\lambda \ (\chi, \gamma). \ (\psi \to \chi) \sqcup (\psi \sqcup \chi) \to \gamma) \ \Psi
      let ?\Sigma = map(\lambda(\chi, \gamma). (\psi \to (\chi \sqcup \gamma))) \Psi
      have map (uncurry (\sqcup)) ?\Psi_2 = ?\Gamma
      proof (induct \Psi)
         {\bf case}\ Nil
         then show ?case by simp
      next
         case (Cons \chi \Psi)
          have (\lambda \varphi. (case \varphi \ of \ (\chi, \gamma) \Rightarrow \psi \rightarrow \chi) \sqcup (case \varphi \ of \ (\chi, \gamma) \Rightarrow \psi \sqcup \chi) \rightarrow
                   (\lambda \varphi. (case \varphi \ of (\chi, \gamma) \Rightarrow \psi \rightarrow \chi \sqcup (\psi \sqcup \chi) \rightarrow \gamma))
            by fastforce
        hence (case \chi of (\chi, \gamma) \Rightarrow \psi \rightarrow \chi) \sqcup (case \chi of (\chi, \gamma) \Rightarrow \psi \sqcup \chi) \rightarrow snd \chi =
                     (case \chi of (\chi, \gamma) \Rightarrow \psi \rightarrow \chi \sqcup (\psi \sqcup \chi) \rightarrow \gamma)
            by metis
         with Cons show ?case by simp
      moreover have ?\Sigma \leq ?\Gamma
      proof (induct \ \Psi)
         {\bf case}\ Nil
         then show ?case by simp
      next
         case (Cons \delta \Psi)
         let ?\alpha = (\lambda (\chi, \gamma). (\psi \to \chi) \sqcup (\psi \sqcup \chi) \to \gamma) \delta
         let ?\beta = (\lambda (\chi, \gamma). (\psi \to (\chi \sqcup \gamma))) \delta
         let ?\chi = fst \delta
         let ?\gamma = snd \delta
         have (\lambda \ \delta. \ (case \ \delta \ of \ (\chi, \gamma) \Rightarrow \psi \rightarrow \chi \sqcup (\psi \sqcup \chi) \rightarrow \gamma)) =
                   (\lambda \ \delta. \ \psi \rightarrow fst \ \delta \sqcup (\psi \sqcup fst \ \delta) \rightarrow snd \ \delta)
                  (\lambda \ \delta. \ (case \ \delta \ of \ (\chi, \gamma) \Rightarrow \psi \rightarrow (\chi \sqcup \gamma))) = (\lambda \ \delta. \ \psi \rightarrow (fst \ \delta \sqcup snd \ \delta))
            by fastforce+
         hence ?\alpha = (\psi \rightarrow ?\chi) \sqcup (\psi \sqcup ?\chi) \rightarrow ?\gamma
                   ?\beta = \psi \rightarrow (?\chi \sqcup ?\gamma)
            by metis+
         moreover
            have \vdash ((\psi \to \chi) \sqcup (\psi \sqcup \chi) \to \gamma) \to (\psi \to (\chi \sqcup \gamma))
                  have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ((\langle \psi \rangle \to \langle \chi \rangle) \sqcup (\langle \psi \rangle \sqcup \langle \chi \rangle) \to \langle \gamma \rangle) \to (\langle \psi \rangle \to \langle \chi \rangle)
(\langle \chi \rangle \sqcup \langle \gamma \rangle))
                   by fastforce
              hence \vdash ((\langle \psi \rangle \to \langle \chi \rangle) \sqcup (\langle \psi \rangle \sqcup \langle \chi \rangle) \to \langle \gamma \rangle) \to (\langle \psi \rangle \to (\langle \chi \rangle \sqcup \langle \gamma \rangle)))
                   using propositional-semantics by blast
                thus ?thesis by simp
            qed
         }
```

```
ultimately have \vdash ?\alpha \rightarrow ?\beta by simp
  thus ?case
     using Cons
            stronger-theory-left-right-cons
     by simp
\mathbf{qed}
moreover have \forall \varphi. (map\ (uncurry\ (\sqcup))\ \Psi) : \vdash \varphi \longrightarrow ?\Sigma : \vdash \psi \rightarrow \varphi
proof (induct \Psi)
  case Nil
  then show ?case
     using axiom-k modus-ponens
    by fastforce
\mathbf{next}
  case (Cons \delta \Psi)
  let ?\delta' = (\lambda (\chi, \gamma). (\psi \to (\chi \sqcup \gamma))) \delta
  let ?\Sigma' = map (\lambda (\chi, \gamma). (\psi \to (\chi \sqcup \gamma))) (\delta \# \Psi)
  {
    fix \varphi
     assume map (uncurry (\sqcup)) (\delta \# \Psi) :\vdash \varphi
    hence map (uncurry (\sqcup)) \Psi :\vdash (uncurry (<math>\sqcup)) \delta \to \varphi
       \mathbf{using}\ \mathit{list-deduction-theorem}
       by simp
     hence ?\Sigma : \vdash \psi \rightarrow (uncurry (\sqcup)) \delta \rightarrow \varphi
       using Cons
       by blast
     moreover
     {
       have \vdash (\alpha \to \beta \to \gamma) \to ((\alpha \to \beta) \to \alpha \to \gamma)
          using axiom-s by auto
     ultimately have ?\Sigma :\vdash (\psi \rightarrow (uncurry (\sqcup)) \delta) \rightarrow \psi \rightarrow \varphi
       using list-deduction-weaken [where ?\Gamma = ?\Sigma]
               list-deduction-modus-ponens [where ?\Gamma = ?\Sigma]
       by metis
     moreover
     have (\lambda \ \delta. \ \psi \rightarrow (uncurry \ (\sqcup)) \ \delta) = (\lambda \ \delta. \ (\lambda \ (\chi, \gamma). \ (\psi \rightarrow (\chi \sqcup \gamma))) \ \delta)
     ultimately have \mathcal{E}\Sigma \coloneq (\lambda\ (\chi,\,\gamma).\ (\psi \to (\chi \sqcup \gamma)))\ \delta \to \psi \to \varphi
       by metis
     hence ?\Sigma' : \vdash \psi \rightarrow \varphi
       using list-deduction-theorem
       by simp
  then show ?case by simp
with \Psi(2) have ?\Sigma : \vdash \psi \to \varphi
  by blast
```

```
ultimately show ?thesis
        using stronger-theory-deduction-monotonic by auto
   moreover have mset\ (map\ snd\ ?\Psi_2)\subseteq \#\ mset\ ?\Gamma_1 by simp
   ultimately have \mathcal{T}_1 \Vdash (\psi \to \varphi \# \Phi) using measure-deduction.simps(2) by
  moreover have \vdash (map \ (uncurry \ (\sqcup)) \ \Psi : \to \varphi) \to (map \ (uncurry \ (\sqcup)) \ ?\Psi_1) : \to \varphi
(\psi \sqcup \varphi)
  proof (induct \Psi)
     \mathbf{case}\ \mathit{Nil}
     then show ?case
        unfolding disjunction-def
        using axiom-k modus-ponens
        by fastforce
  next
     case (Cons \nu \Psi)
     let ?\Delta = map (uncurry (\sqcup)) \Psi
     let ?\Delta' = map (uncurry (\sqcup)) (\nu \# \Psi)
     let ?\Sigma = map \ (uncurry \ (\sqcup)) \ (zip \ (map \ (\lambda \ (\chi,\gamma). \ \psi \ \sqcup \ \chi) \ \Psi) \ (map \ snd \ \Psi))
     let ?\Sigma' = map \ (uncurry \ (\sqcup)) \ (zip \ (map \ (\lambda \ (\chi,\gamma). \ \psi \ \sqcup \ \chi) \ (\nu \ \# \ \Psi)) \ (map \ snd)
(\nu \# \Psi)))
     have \vdash (?\Delta' : \rightarrow \varphi) \rightarrow (uncurry (\sqcup)) \nu \rightarrow ?\Delta : \rightarrow \varphi
        by (simp, metis axiom-k axiom-s modus-ponens)
     with Cons have \vdash (?\Delta' : \rightarrow \varphi) \rightarrow (uncurry (\sqcup)) \nu \rightarrow ?\Sigma : \rightarrow (\psi \sqcup \varphi)
        using hypothetical-syllogism modus-ponens
        by blast
     hence (?\Delta' : \rightarrow \varphi) \# ((uncurry (\sqcup)) \nu) \# ?\Sigma : \vdash \psi \sqcup \varphi
        by (simp add: list-deduction-def)
     moreover have set ((?\Delta':\rightarrow \varphi) \# ((uncurry (\sqcup)) \nu) \# ?\Sigma) =
                         set (((uncurry (\sqcup)) \nu) \# (?\Delta' :\to \varphi) \# ?\Sigma)
        by fastforce
     ultimately have ((uncurry (\sqcup)) \nu) \# (?\Delta' :\to \varphi) \# ?\Sigma :\vdash \psi \sqcup \varphi
        \mathbf{using}\ \mathit{list-deduction-monotonic}\ \mathbf{by}\ \mathit{blast}
     hence (?\Delta' : \rightarrow \varphi) \# ?\Sigma : \vdash ((uncurry (\sqcup)) \nu) \rightarrow (\psi \sqcup \varphi)
        \mathbf{using}\ list-deduction-theorem
       by simp
     moreover
     let ?\chi = fst \nu
     let ?\gamma = snd \nu
     have (\lambda \ \nu \ . \ (uncurry \ (\sqcup)) \ \nu) = (\lambda \ \nu . \ fst \ \nu \ \sqcup \ snd \ \nu)
        by fastforce
     hence (uncurry (\sqcup)) \nu = ?\chi \sqcup ?\gamma  by simp
     ultimately have (?\Delta' : \rightarrow \varphi) \# ?\Sigma : \vdash (?\chi \sqcup ?\gamma) \rightarrow (\psi \sqcup \varphi) by simp
     moreover
     {
       fix \alpha \beta \delta \gamma
        have \vdash ((\beta \sqcup \alpha) \to (\gamma \sqcup \delta)) \to ((\gamma \sqcup \beta) \sqcup \alpha) \to (\gamma \sqcup \delta)
        proof -
          \mathbf{have} \ \forall \ \mathfrak{M}. \ \mathfrak{M} \models_{prop} ((\langle \beta \rangle \ \sqcup \ \langle \alpha \rangle) \ \rightarrow (\langle \gamma \rangle \ \sqcup \ \langle \delta \rangle)) \ \rightarrow ((\langle \gamma \rangle \ \sqcup \ \langle \beta \rangle) \ \sqcup \ \langle \alpha \rangle)
```

```
\rightarrow (\langle \gamma \rangle \sqcup \langle \delta \rangle)
             by fastforce
           hence \vdash ( ((\langle \beta \rangle \sqcup \langle \alpha \rangle) \to (\langle \gamma \rangle \sqcup \langle \delta \rangle)) \to ((\langle \gamma \rangle \sqcup \langle \beta \rangle) \sqcup \langle \alpha \rangle) \to (\langle \gamma \rangle \sqcup \langle \beta \rangle)
\langle \delta \rangle)
             using propositional-semantics by blast
          thus ?thesis by simp
        \mathbf{qed}
     hence (?\Delta' : \to \varphi) \# ?\Sigma : \vdash ((?\chi \sqcup ?\gamma) \to (\psi \sqcup \varphi)) \to ((\psi \sqcup ?\chi) \sqcup ?\gamma) \to (\psi)
\sqcup \varphi)
        using list-deduction-weaken by blast
     ultimately have (?\Delta' : \rightarrow \varphi) \# ?\Sigma : \vdash ((\psi \sqcup ?\chi) \sqcup ?\gamma) \rightarrow (\psi \sqcup \varphi)
        using list-deduction-modus-ponens by blast
     hence ((\psi \sqcup ?\chi) \sqcup ?\gamma) \# (?\Delta' : \rightarrow \varphi) \# ?\Sigma : \vdash \psi \sqcup \varphi
        using list-deduction-theorem
        by simp
     moreover have set (((\psi \sqcup ?\chi) \sqcup ?\gamma) \# (?\Delta' : \rightarrow \varphi) \# ?\Sigma) =
                         set ((?\Delta' : \rightarrow \varphi) \# ((\psi \sqcup ?\chi) \sqcup ?\gamma) \# ?\Sigma)
        by fastforce
     moreover have
        map\ (uncurry\ (\sqcup))\ (\nu\ \#\ \Psi):\rightarrow \varphi
         \# (\psi \sqcup fst \ \nu) \sqcup snd \ \nu
          # map (uncurry (\sqcup)) (zip (map (\lambda(-, a). \psi \sqcup a) \Psi) (map snd \Psi)) :\vdash (\psi \sqcup
fst \ \nu) \ \sqcup \ snd \ \nu
        by (meson list.set-intros(1)
                     list\text{-}deduction\text{-}monotonic
                     list-deduction-reflection
                     set-subset-Cons)
     ultimately have (?\Delta' : \rightarrow \varphi) \# ((\psi \sqcup ?\chi) \sqcup ?\gamma) \# ?\Sigma : \vdash \psi \sqcup \varphi
        using list-deduction-modus-ponens list-deduction-monotonic by blast
     moreover
     have (\lambda \ \nu. \ \psi \ \sqcup fst \ \nu) = (\lambda \ (\chi, \gamma). \ \psi \ \sqcup \ \chi)
        by fastforce
     hence \psi \sqcup fst \ \nu = (\lambda \ (\chi, \gamma). \ \psi \sqcup \chi) \ \nu
        by metis
     hence ((\psi \sqcup ?\chi) \sqcup ?\gamma) \# ?\Sigma = ?\Sigma'
        by simp
     ultimately have (?\Delta' : \rightarrow \varphi) \# ?\Sigma' : \vdash \psi \sqcup \varphi by simp
     then show ?case by (simp add: list-deduction-def)
   qed
   with \Psi(2) have map (uncurry (\sqcup)) ?\Psi_1 := (\psi \sqcup \varphi)
     unfolding list-deduction-def
     using modus-ponens
     by blast
   moreover have mset (map snd ?\Psi_1) \subseteq \# mset \Gamma using \Psi(1) by simp
   ultimately show \Gamma \Vdash (\psi \sqcup \varphi \# \psi \to \varphi \# \Phi)
     using measure-deduction.simps(2) by blast
next
  assume \Gamma \$ \vdash (\psi \sqcup \varphi \# \psi \to \varphi \# \Phi)
```

```
from this obtain \Psi where \Psi:
    mset \ (map \ snd \ \Psi) \subseteq \# \ mset \ \Gamma
    map\ (uncurry\ (\sqcup))\ \Psi :\vdash \psi \sqcup \varphi
    map\ (uncurry\ (\rightarrow))\ \Psi\ @\ \Gamma\ \ominus\ (map\ snd\ \Psi)\ \$\vdash\ (\psi\ \rightarrow\ \varphi\ \#\ \Phi)
    using measure-deduction.simps(2) by blast
  let ?\Gamma' = map \ (uncurry \ (\rightarrow)) \ \Psi \ @ \ \Gamma \ominus \ (map \ snd \ \Psi)
  from \Psi obtain \Delta where \Delta:
    mset\ (map\ snd\ \Delta)\subseteq \#\ mset\ ?\Gamma'
    map (uncurry (\sqcup)) \Delta : \vdash \psi \rightarrow \varphi
    (map\ (uncurry\ (\rightarrow))\ \Delta\ @\ ?\Gamma'\ominus\ (map\ snd\ \Delta))\ \$\vdash\ \Phi
    using measure-deduction.simps(2) by blast
  let \Omega = \mathfrak{J} \Psi \Delta
  have mset\ (map\ snd\ ?\Omega)\subseteq \#\ mset\ \Gamma
    using \Delta(1) \Psi(1) merge-witness-msub-intro
    by blast
  moreover have map (uncurry (\sqcup)) ?\Omega :\vdash \varphi
  proof -
    have map (uncurry (\sqcup)) ?\Omega :\vdash \psi \sqcup \varphi
          map (uncurry (\sqcup)) ?\Omega : \vdash \psi \rightarrow \varphi
       using \Psi(2) \Delta(2)
              stronger-theory-deduction-monotonic
              right-merge-witness-stronger-theory
              left-merge-witness-stronger-theory
       by blast+
    moreover
    have \vdash (\psi \sqcup \varphi) \to (\psi \to \varphi) \to \varphi
       unfolding disjunction-def
       using modus-ponens excluded-middle-elimination flip-implication
       by blast
    ultimately show ?thesis
       using list-deduction-weaken list-deduction-modus-ponens
       by blast
  qed
  moreover have map (uncurry (\rightarrow)) ?\Omega @ \Gamma \ominus (map \ snd ?\Omega) \$ \vdash \Phi
    using \Delta(1) \Delta(3) \Psi(1) merge-witness-measure-deduction-intro by blast
  ultimately show \Gamma \ \Vdash (\varphi \# \Phi)
    using measure-deduction.simps(2) by blast
qed
primrec (in implication-logic)
  X-witness :: ('a \times 'a) list \Rightarrow ('a \times 'a) list \Rightarrow ('a \times 'a) list (\mathfrak{X})
  where
    \mathfrak{X} \Psi [] = []
  \mid \mathfrak{X} \Psi (\delta \# \Delta) =
        (case find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi of
               None \Rightarrow \delta \# \mathfrak{X} \Psi \Delta
            | Some \psi \Rightarrow (fst \ \psi \rightarrow fst \ \delta, \ snd \ \psi) \ \# \ (\mathfrak{X} \ (remove1 \ \psi \ \Psi) \ \Delta))
primrec (in implication-logic)
```

```
X-component :: ('a \times 'a) \ list \Rightarrow ('a \times 'a) \ list \Rightarrow ('a \times 'a) \ list (\mathfrak{X}_{\bullet})
   where
     \mathfrak{X}_{\bullet} \Psi [] = []
  \mid \mathfrak{X}_{\bullet} \Psi (\delta \# \Delta) =
          (case find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi of
                  None \Rightarrow \mathfrak{X}_{\bullet} \ \Psi \ \Delta
               | Some \psi \Rightarrow (fst \ \psi \rightarrow fst \ \delta, \ snd \ \psi) \ \# \ (\mathfrak{X}_{\bullet} \ (remove1 \ \psi \ \Psi) \ \Delta))
primrec (in implication-logic)
   Y-witness :: ('a \times 'a) \ list \Rightarrow ('a \times 'a) \ list \Rightarrow ('a \times 'a) \ list (\mathfrak{Y})
   where
     \mathfrak{Y} \Psi [] = \Psi
  \mid \mathfrak{Y} \Psi (\delta \# \Delta) =
          (case find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi of
                  None \Rightarrow \mathfrak{Y} \Psi \Delta
               | Some \psi \Rightarrow (fst \ \psi, (fst \ \psi \rightarrow fst \ \delta) \rightarrow snd \ \psi) \ \#
                                (2) (remove1 \ \psi \ \Psi) \ \Delta))
primrec (in implication-logic)
   Y-component :: ('a \times 'a) \ list \Rightarrow ('a \times 'a) \ list \Rightarrow ('a \times 'a) \ list \Rightarrow (@)_{\bullet}
   where
     \mathfrak{Y}_{\bullet} \Psi [] = []
   \mid \mathfrak{Y}_{\bullet} \Psi (\delta \# \Delta) =
          (case find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi of
                  None \Rightarrow \mathfrak{Y}_{\bullet} \ \Psi \ \Delta
               | Some \psi \Rightarrow (fst \ \psi, (fst \ \psi \rightarrow fst \ \delta) \rightarrow snd \ \psi) \ \#
                                (\mathfrak{Y}_{\bullet} (remove1 \ \psi \ \Psi) \ \Delta))
lemma (in implication-logic) X-witness-right-empty [simp]:
  \mathfrak{X} [] \Delta = \Delta
  by (induct \ \Delta, simp+)
lemma (in implication-logic) Y-witness-right-empty [simp]:
  \mathfrak{Y} [] \Delta = []
  by (induct \ \Delta, simp+)
\mathbf{lemma} (in implication-logic) X-witness-map-snd-decomposition:
    mset\ (map\ snd\ (\mathfrak{X}\ \Psi\ \Delta)) = mset\ (map\ snd\ ((\mathfrak{A}\ \Psi\ \Delta)\ @\ (\Delta\ \ominus\ (\mathfrak{B}\ \Psi\ \Delta))))
proof -
  have \forall \Psi. mset (map snd (\mathfrak{X} \Psi \Delta)) = mset (map snd ((\mathfrak{A} \Psi \Delta) @ (\Delta \ominus (\mathfrak{B} \Psi \Delta))
\Delta))))
  proof (induct \ \Delta)
     case Nil
     then show ?case by simp
  next
     case (Cons \delta \Delta)
        fix \Psi
        have mset (map snd (\mathfrak{X} \Psi (\delta \# \Delta)))
```

```
= mset \ (map \ snd \ (\mathfrak{A} \ \Psi \ (\delta \# \Delta) \ @ \ (\delta \# \Delta) \ominus \mathfrak{B} \ \Psi \ (\delta \# \Delta)))
       using Cons
       by (cases find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi = None,
            simp,
            metis (no-types, lifting)
                   add	ext{-}mset	ext{-}add	ext{-}single
                   image-mset-single
                   image\text{-}mset\text{-}union
                   mset-subset-eq-multiset-union-diff-commute
                   second\hbox{-}component\hbox{-}msub,
          fastforce)
    }
    then show ?case by blast
  qed
  thus ?thesis by blast
qed
\mathbf{lemma} \ (\mathbf{in} \ implication\text{-}logic) \ Y\text{-}witness\text{-}map\text{-}snd\text{-}decomposition} :
   mset\ (map\ snd\ (\mathfrak{Y}\ \Psi\ \Delta)) = mset\ (map\ snd\ ((\Psi\ominus(\mathfrak{A}\ \Psi\ \Delta))\ @\ (\mathfrak{Y}_{\bullet}\ \Psi\ \Delta)))
  have \forall \Psi. mset (map \ snd \ (\mathfrak{Y} \ \Psi \ \Delta)) = mset (map \ snd \ ((\Psi \ominus (\mathfrak{A} \ \Psi \ \Delta)) \ @ \ (\mathfrak{Y}_{\bullet})
\Psi \Delta)))
  proof (induct \ \Delta)
    {\bf case}\ Nil
    then show ?case by simp
  next
     case (Cons \delta \Delta)
     {
       fix \Psi
       have mset (map snd (\mathfrak{Y}) \Psi (\delta # \Delta))) = mset (map snd (\Psi \ominus \mathfrak{A}) \Psi (\delta # \Delta)
(0, \mathfrak{Y}_{\bullet}, \Psi(\delta \# \Delta)))
         using Cons
         by (cases find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi = None, fastforce+)
    then show ?case by blast
  qed
  thus ?thesis by blast
qed
lemma (in implication-logic) X-witness-msub:
  assumes mset\ (map\ snd\ \Psi)\subseteq \#\ mset\ \Gamma
        and mset (map snd \Delta) \subseteq \# mset (map (uncurry (\rightarrow)) \Psi @ \Gamma \ominus (map snd
\Psi))
    shows mset\ (map\ snd\ (\mathfrak{X}\ \Psi\ \Delta))\subseteq \#\ mset\ \Gamma
proof -
  have mset\ (map\ snd\ (\Delta \ominus (\mathfrak{B}\ \Psi\ \Delta))) \subseteq \#\ mset\ (\Gamma \ominus (map\ snd\ \Psi))
    using assms second-component-diff-msub by blast
  moreover have mset (map \ snd \ (\mathfrak{A} \ \Psi \ \Delta)) \subseteq \# \ mset \ (map \ snd \ \Psi)
    using first-component-msub
```

```
by (simp add: image-mset-subseteq-mono)
  moreover have mset ((map \ snd \ \Psi) \ @ \ (\Gamma \ominus map \ snd \ \Psi)) = mset \ \Gamma
    using assms(1)
    by simp
  moreover have image-mset snd (mset (\mathfrak{A} \Psi \Delta)) + image-mset snd (mset (\Delta \ominus
\mathfrak{B} \Psi \Delta)
                = mset (map \ snd \ (\mathfrak{X} \ \Psi \ \Delta))
      using X-witness-map-snd-decomposition by force
  ultimately
  show ?thesis
    by (metis (no-types) mset-append mset-map subset-mset.add-mono)
lemma (in implication-logic) Y-component-msub:
  mset\ (map\ snd\ (\mathfrak{Y}_{\bullet}\ \Psi\ \Delta))\subseteq \#\ mset\ (map\ (uncurry\ (\to))\ (\mathfrak{X}\ \Psi\ \Delta))
  have \forall \Psi. mset (map snd (\mathfrak{Y}_{\bullet} \Psi \Delta)) \subseteq \# mset (map (uncurry (\rightarrow)) (\mathfrak{X} \Psi \Delta))
  proof (induct \Delta)
    case Nil
    then show ?case by simp
  next
    case (Cons \delta \Delta)
      fix \Psi
      have mset (map snd (\mathfrak{Y}_{\bullet} \ \Psi \ (\delta \ \# \ \Delta))) \subseteq \# \ mset \ (map \ (uncurry \ (\rightarrow)) \ (\mathfrak{X} \ \Psi)
(\delta \# \Delta))
        using Cons
        by (cases find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi = None,
             simp,\ met is\ add\text{-}mset\text{-}add\text{-}single
                          mset-subset-eq-add-left
                          subset-mset.order-trans,
             fastforce)
    then show ?case by blast
  thus ?thesis by blast
\mathbf{qed}
lemma (in implication-logic) Y-witness-msub:
  assumes mset\ (map\ snd\ \Psi)\subseteq \#\ mset\ \Gamma
       and mset (map snd \Delta) \subseteq \# mset (map (uncurry (\rightarrow)) \Psi @ \Gamma \ominus (map \ snd)
\Psi))
    shows mset (map \ snd \ (\mathfrak{Y}) \ \Psi \ \Delta)) \subseteq \#
            mset\ (map\ (uncurry\ (\rightarrow))\ (\mathfrak{X}\ \Psi\ \Delta)\ @\ \Gamma\ \ominus\ map\ snd\ (\mathfrak{X}\ \Psi\ \Delta))
proof -
  have A: image-mset snd (mset \Psi) \subseteq \# mset \Gamma using assms by simp
  have B: image-mset snd (mset (\mathfrak{A} \Psi \Delta)) + image-mset snd (mset \Delta - mset (\mathfrak{B}
\Psi \Delta)) \subseteq \# mset \Gamma
    using A X-witness-map-snd-decomposition assms(2) X-witness-msub by auto
```

```
have mset \ \Gamma - image\text{-}mset \ snd \ (mset \ \Psi) = mset \ (\Gamma \ominus map \ snd \ \Psi)
    by simp
  then have C: mset (map snd (\Delta \ominus \mathfrak{B} \Psi \Delta)) + image-mset snd (mset \Psi) \subseteq \#
mset \Gamma
       using A by (metis\ (full-types)\ assms(2)\ second-component-diff-msub\ sub-
set-mset.le-diff-conv2)
  have image-mset snd (mset (\Psi \ominus \mathfrak{A} \Psi \Delta)) + image-mset snd (mset (\mathfrak{A} \Psi \Delta))
= image\text{-}mset \ snd \ (mset \ \Psi)
    by (metis (no-types) image-mset-union
                           list-subtract-mset-homomorphism
                           first-component-msub
                           subset-mset.diff-add)
  then have image-mset snd (mset \Psi – mset (\mathfrak{A} \Psi \Delta))
              + (image\text{-}mset \ snd \ (mset \ (\mathfrak{A} \ \Psi \ \Delta)) + image\text{-}mset \ snd \ (mset \ \Delta - mset)
(\mathfrak{B} \Psi \Delta))
            = mset \ (map \ snd \ (\Delta \ominus \mathfrak{B} \ \Psi \ \Delta)) + image-mset \ snd \ (mset \ \Psi)
    by (simp add: union-commute)
  then have image-mset snd (mset \Psi – mset (\mathfrak{A} \Psi \Delta))
           \subseteq \# mset \ \Gamma - (image-mset \ snd \ (mset \ (\mathfrak{A} \ \Psi \ \Delta)) + image-mset \ snd \ (mset
\Delta - mset (\mathfrak{B} \Psi \Delta))
      by (metis (no-types) B C subset-mset.le-diff-conv2)
  hence mset (map \ snd \ (\Psi \ominus \mathfrak{A} \ \Psi \ \Delta)) \subseteq \# \ mset \ (\Gamma \ominus map \ snd \ (\mathfrak{X} \ \Psi \ \Delta))
    \mathbf{using}\ assms\ X\text{-}witness\text{-}map\text{-}snd\text{-}decomposition
    by simp
  thus ?thesis
    using Y-component-msub
           Y-witness-map-snd-decomposition
    by (simp add: mset-subset-eq-mono-add union-commute)
qed
lemma (in classical-logic) X-witness-right-stronger-theory:
  map\ (uncurry\ (\sqcup))\ \Delta \preceq map\ (uncurry\ (\sqcup))\ (\mathfrak{X}\ \Psi\ \Delta)
proof -
  have \forall \ \Psi. \ map \ (uncurry \ (\sqcup)) \ \Delta \preceq map \ (uncurry \ (\sqcup)) \ (\mathfrak{X} \ \Psi \ \Delta)
  proof (induct \Delta)
    case Nil
    then show ?case by simp
  \mathbf{next}
    case (Cons \delta \Delta)
    {
      fix \Psi
      have map (uncurry (\sqcup)) (\delta \# \Delta) \leq map (uncurry (\sqcup)) (\mathfrak{X} \Psi (\delta \# \Delta))
      proof (cases find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi = None)
        case True
        then show ?thesis
           using Cons
           \mathbf{by}\ (simp\ add:\ stronger-theory-left-right-cons
                          trivial-implication)
      next
```

```
case False
         from this obtain \psi where
            \psi: find (\lambda \psi. uncurry (\rightarrow) \psi = snd \delta) \Psi = Some \psi
                \psi \in set \Psi
                (fst \ \psi \rightarrow snd \ \psi) = snd \ \delta
            using find-Some-set-membership
                   find-Some-predicate
            by fastforce
         let ?\Psi' = remove1 \psi \Psi
         let ?\alpha = fst \psi
         let ?\beta = snd \psi
         let ?\gamma = fst \delta
         have map (uncurry (\sqcup)) \Delta \leq map (uncurry (\sqcup)) (\mathfrak{X} ? \Psi' \Delta)
            using Cons by simp
         moreover
         have (uncurry (\sqcup)) = (\lambda \delta. \text{ fst } \delta \sqcup \text{ snd } \delta) by fastforce
         hence (uncurry (\sqcup)) \delta = ?\gamma \sqcup (?\alpha \to ?\beta) using \psi(3) by fastforce
         moreover
            \mathbf{have} \vdash (\alpha \to \gamma \sqcup \beta) \to (\gamma \sqcup (\alpha \to \beta))
            proof -
              let ?\varphi = (\langle \alpha \rangle \to \langle \gamma \rangle \sqcup \langle \beta \rangle) \to (\langle \gamma \rangle \sqcup (\langle \alpha \rangle \to \langle \beta \rangle))
              have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi \text{ by } fastforce
              hence \vdash ( ?\varphi ) using propositional-semantics by blast
              thus ?thesis by simp
            qed
          }
         hence \vdash (?\alpha \rightarrow ?\gamma \sqcup ?\beta) \rightarrow (?\gamma \sqcup (?\alpha \rightarrow ?\beta)) by simp
         ultimately
         show ?thesis using \psi
            by (simp add: stronger-theory-left-right-cons)
       \mathbf{qed}
    then show ?case by simp
  qed
  thus ?thesis by simp
qed
lemma (in classical-logic) Y-witness-left-stronger-theory:
  map \ (uncurry \ (\sqcup)) \ \Psi \preceq map \ (uncurry \ (\sqcup)) \ (\mathfrak{Y} \ \Psi \ \Delta)
proof -
  have \forall \ \Psi. \ map \ (uncurry \ (\sqcup)) \ \Psi \leq map \ (uncurry \ (\sqcup)) \ (\mathfrak{Y} \ \Psi \ \Delta)
  proof (induct \ \Delta)
    {\bf case}\ Nil
    then show ?case by simp
    case (Cons \delta \Delta)
```

```
have map (uncurry (\sqcup)) \Psi \leq map (uncurry (\sqcup)) (\mathfrak{Y} \Psi (\delta \# \Delta))
              proof (cases find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi = None)
                  case True
                  then show ?thesis using Cons by simp
              next
                   case False
                  from this obtain \psi where
                       \psi: find (\lambda \psi. uncurry (\rightarrow) \psi = snd \delta) \Psi = Some \psi
                              \psi \in set \Psi
                               (uncurry\ (\sqcup))\ \psi = fst\ \psi\ \sqcup\ snd\ \psi
                       using find-Some-set-membership
                       by fastforce
                  let ?\varphi = fst \ \psi \ \sqcup \ (fst \ \psi \rightarrow fst \ \delta) \rightarrow snd \ \psi
                  let ?\Psi' = remove1 \psi \Psi
                  have map (uncurry (\sqcup)) ?\Psi' \preceq map (uncurry (\sqcup)) (\mathfrak{Y} ?\Psi' \Delta)
                       using Cons by simp
                  moreover
                       \mathbf{have} \overset{\cdot}{\vdash} (\alpha \sqcup (\alpha \to \gamma) \to \beta) \to (\alpha \sqcup \beta)
                       proof -
                            let ?\varphi = (\langle \alpha \rangle \sqcup (\langle \alpha \rangle \to \langle \gamma \rangle) \to \langle \beta \rangle) \to (\langle \alpha \rangle \sqcup \langle \beta \rangle)
                           have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi by fastforce
                           hence \vdash ( ?\varphi ) using propositional-semantics by blast
                           thus ?thesis by simp
                       qed
                   }
                  hence \vdash ?\varphi \rightarrow (uncurry (\sqcup)) \psi \text{ using } \psi(3) \text{ by } auto
                  ultimately
                    have map (uncurry (\sqcup)) (\psi \# ?\Psi') \leq (?\varphi \# map (uncurry (<math>\sqcup)) (\mathfrak{Y}) ?\Psi'
\Delta))
                       by (simp add: stronger-theory-left-right-cons)
                  moreover
                  from \psi have mset\ (map\ (uncurry\ (\sqcup))\ (\psi\ \#\ ?\Psi')) = mset\ (map\ (uncurry\ uncurry\ unc
(\sqcup)) \Psi)
                       by (metis mset-map perm-remove)
                  ultimately show ?thesis
                       using stronger-theory-relation-alt-def \psi(1) by auto
             \mathbf{qed}
         }
         then show ?case by blast
    qed
    thus ?thesis by blast
qed
lemma (in implication-logic) X-witness-second-component-diff-decomposition:
    mset \ (\mathfrak{X} \ \Psi \ \Delta) = mset \ (\mathfrak{X}_{\bullet} \ \Psi \ \Delta \ @ \ \Delta \ominus \mathfrak{B} \ \Psi \ \Delta)
proof -
```

fix Ψ

```
have \forall \ \Psi. \ mset \ (\mathfrak{X} \ \Psi \ \Delta) = mset \ (\mathfrak{X}_{\bullet} \ \Psi \ \Delta \ @ \ \Delta \ \ominus \mathfrak{B} \ \Psi \ \Delta)
  proof (induct \Delta)
     {\bf case}\ Nil
     then show ?case by simp
     case (Cons \ \delta \ \Delta)
     {
       fix \Psi
       have mset \ (\mathfrak{X} \ \Psi \ (\delta \ \# \ \Delta)) =
               mset \ (\mathfrak{X}_{\bullet} \ \Psi \ (\delta \ \# \ \Delta) \ @ \ (\delta \ \# \ \Delta) \ \ominus \ \mathfrak{B} \ \Psi \ (\delta \ \# \ \Delta))
          using Cons
          by (cases find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi = None,
          simp, metis \ add-mset-add-single \ second-component-msub \ subset-mset. \ diff-add-assoc2,
               fastforce)
     }
     then show ?case by blast
  qed
  thus ?thesis by blast
qed
lemma (in implication-logic) Y-witness-first-component-diff-decomposition:
  mset \ (\mathfrak{Y} \ \Psi \ \Delta) = mset \ (\Psi \ominus \mathfrak{A} \ \Psi \ \Delta \ @ \mathfrak{Y}_{\bullet} \ \Psi \ \Delta)
  have \forall \ \Psi. \ mset \ (\mathfrak{Y} \ \Psi \ \Delta) = mset \ (\Psi \ominus \mathfrak{A} \ \Psi \ \Delta @ \mathfrak{Y}_{\bullet} \ \Psi \ \Delta)
  proof (induct \Delta)
     {\bf case}\ Nil
     then show ?case by simp
  next
     case (Cons \delta \Delta)
     {
       fix \Psi
       have mset (\mathfrak{Y} \Psi (\delta \# \Delta)) =
               mset \ (\Psi \ominus \mathfrak{A} \ \Psi \ (\delta \ \# \ \Delta) \ @ \ \mathfrak{Y}_{\bullet} \ \Psi \ (\delta \ \# \ \Delta))
       using Cons
          by (cases find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi = None, simp, fastforce)
     then show ?case by blast
  qed
  thus ?thesis by blast
qed
lemma (in implication-logic) Y-witness-right-stronger-theory:
     map\ (uncurry\ (\rightarrow))\ \Delta \leq map\ (uncurry\ (\rightarrow))\ (\mathfrak{Y}\ \Psi\ \Delta\ominus (\Psi\ominus\mathfrak{A}\ \Psi\ \Delta)\ @\ (\Delta
\ominus \mathfrak{B} \Psi \Delta)
proof -
  let ?f = \lambda \Psi \Delta. (\Psi \ominus \mathfrak{A} \Psi \Delta)
  let \mathfrak{g} = \lambda \Psi \Delta. (\Delta \ominus \mathfrak{B} \Psi \Delta)
  \mathfrak{g} \Psi \Delta
```

```
proof (induct \Delta)
    {\bf case}\ Nil
    then show ?case by simp
  next
    case (Cons \delta \Delta)
    let ?\delta = (uncurry(\rightarrow)) \delta
     {
       fix \Psi
       have map (uncurry (\rightarrow)) (\delta \# \Delta)
            \preceq map \ (uncurry \ (\rightarrow)) \ (\mathfrak{Y} \ \Psi \ (\delta \# \Delta) \ominus ?f \ \Psi \ (\delta \# \Delta) @ ?g \ \Psi \ (\delta \# \Delta))
       proof (cases find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi = None)
         case True
         moreover
         from Cons have
             map\ (uncurry\ (
ightarrow))\ (\delta\ \#\ \Delta)\ \preceq\ map\ (uncurry\ (
ightarrow))\ (\delta\ \#\ \mathfrak{Y})\ \Psi\ \Delta\ \ominus\ {\it ?f}\ \Psi
\Delta @ ?\mathfrak{g} \Psi \Delta)
            by (simp add: stronger-theory-left-right-cons trivial-implication)
         moreover
         have mset (map (uncurry (\rightarrow)) (\delta \# \mathfrak{Y} \Psi \Delta \ominus ?f \Psi \Delta @ ?g \Psi \Delta))
             = mset \ (map \ (uncurry \ (\rightarrow)) \ (\mathfrak{Y} \ \Psi \ \Delta \ominus \ \mathfrak{F} \ \Psi \ \Delta \ @ \ ((\delta \ \# \ \Delta) \ominus \ \mathfrak{B} \ \Psi \ \Delta)))
            by (simp,
                 metis (no-types, lifting)
                        add\text{-}mset\text{-}add\text{-}single
                        image\text{-}mset\text{-}single
                        image-mset-union
                        second\text{-}component\text{-}msub
                        mset-subset-eq-multiset-union-diff-commute)
         moreover have
            \forall \Psi \Phi. \Psi \prec \Phi
                 = (\exists \Sigma. map snd \Sigma = \Psi)
                        \land mset (map fst \Sigma) \subseteq \# mset \Phi
                        \land (\forall \xi. \ \xi \notin set \ \Sigma \lor \vdash (uncurry (\rightarrow) \ \xi)))
              by (simp add: Ball-def-raw stronger-theory-relation-def)
         moreover have
            ((uncurry (\rightarrow) \delta) \# map (uncurry (\rightarrow)) \Delta)
             \leq ((uncurry (\rightarrow) \delta) \# map (uncurry (\rightarrow)) (\mathfrak{Y} \Psi \Delta \ominus (?f \Psi \Delta))
                 @ map (uncurry (\rightarrow)) (?g \Psi \Delta))
            using calculation by auto
          ultimately show ?thesis
            by (simp, metis union-mset-add-mset-right)
       next
         case False
         from this obtain \psi where
            \psi: find (\lambda \psi. uncurry (\rightarrow) \psi = snd \delta) \Psi = Some \psi
                uncurry (\rightarrow) \psi = snd \delta
            \mathbf{using}\ find	ext{-}Some	ext{-}predicate
            by fastforce
         let ?\alpha = fst \psi
         let ?\beta = fst \delta
```

```
let ?\gamma = snd \psi
          have (\lambda \ \delta. \ fst \ \delta \rightarrow snd \ \delta) = uncurry \ (\rightarrow) \ \mathbf{by} \ fastforce
          hence ?\beta \rightarrow ?\alpha \rightarrow ?\gamma = uncurry (\rightarrow) \delta \text{ using } \psi(2) \text{ by } met is
          moreover
          let ?A = \mathfrak{Y} (remove 1 \psi \Psi) \Delta
          let ?B = \mathfrak{A} (remove1 \psi \Psi) \Delta
          let ?C = \mathfrak{B} \ (remove1 \ \psi \ \Psi) \ \Delta
          let ?D = ?A \ominus ((remove1 \ \psi \ \Psi) \ominus ?B)
          have mset ((remove1 \ \psi \ \Psi) \ominus ?B) \subseteq \# mset ?A
             using Y-witness-first-component-diff-decomposition by simp
           {
            assume mset \ \Psi - add\text{-}mset \ \psi \ (mset \ (\mathfrak{A} \ (remove1 \ \psi \ \Psi) \ \Delta)) \subseteq \# \ mset \ (\mathfrak{Y})
(remove1 \ \psi \ \Psi) \ \Delta)
             moreover have B: \forall \Phi \Psi. \exists \Delta. \Psi \subseteq \# \Phi \longrightarrow \Psi + \Delta = \Phi
                \mathbf{by}\ (\mathit{metis}\ \mathit{subset-mset.le-iff-add})
             moreover obtain f where
                A: mset (2) (remove1 \ \psi \ \Psi) \ \Delta)
                          - (mset \ \Psi - add\text{-}mset \ \psi \ (mset \ (\mathfrak{A} \ (remove1 \ \psi \ \Psi) \ \Delta)))
                       = f (mset (\mathfrak{Y}) (remove1 \psi \Psi) \Delta))
                             (mset \ \Psi - add\text{-}mset \ \psi \ (mset \ (\mathfrak{A} \ (remove1 \ \psi \ \Psi) \ \Delta)))
                by blast
             ultimately obtain g where
                B: \forall p. add\text{-mset } p \ (mset \ (\mathfrak{Y} \ (remove1 \ \psi \ \Psi) \ \Delta))
                              - (mset \ \Psi - add\text{-}mset \ \psi \ (mset \ (\mathfrak{A} \ (remove1 \ \psi \ \Psi) \ \Delta)))
                          = add-mset p
                                (g \ (mset \ (\mathfrak{Y}) \ (remove1 \ \psi \ \Psi) \ \Delta))
                                (mset \ \Psi - add\text{-}mset \ \psi \ (mset \ (\mathfrak{A} \ (remove1 \ \psi \ \Psi) \ \Delta))))
                by (metis add-diff-cancel-left' union-mset-add-mset-right)
             have g \ (mset \ (\mathfrak{Y} \ (remove1 \ \psi \ \Psi) \ \Delta))
                        (mset \ \Psi - add\text{-}mset \ \psi \ (mset \ (\mathfrak{A} \ (remove1 \ \psi \ \Psi) \ \Delta)))
                      = add\text{-}mset (fst \ \psi, (fst \ \psi \rightarrow fst \ \delta) \rightarrow snd \ \psi)
                                     (mset \ (\mathfrak{Y}) \ (remove1 \ \psi \ \Psi) \ \Delta))
                         - (mset \ \Psi - add\text{-}mset \ \psi \ (mset \ (\mathfrak{A} \ (remove1 \ \psi \ \Psi) \ \Delta)))
                         - \{ \#(fst \ \psi, (fst \ \psi \rightarrow fst \ \delta) \rightarrow snd \ \psi) \# \}
                by (simp \ add: B)
             then have C:
                g \ (mset \ (\mathfrak{Y}) \ (remove1 \ \psi \ \Psi) \ \Delta))
                    (mset \ \Psi - add\text{-}mset \ \psi \ (mset \ (\mathfrak{A} \ (remove1 \ \psi \ \Psi) \ \Delta)))
                  = mset \ (\mathfrak{Y} \ (remove1 \ \psi \ \Psi) \ \Delta)
                             - (mset \ \Psi - add\text{-}mset \ \psi \ (mset \ (\mathfrak{A} \ (remove1 \ \psi \ \Psi) \ \Delta)))
                by simp
             let ?S_1 =
                \{\#\ x \to y.
                     (x, y) \in \# add\text{-}mset (fst \ \psi, (fst \ \psi \to fst \ \delta) \to snd \ \psi)
                                               (mset \ (\mathfrak{Y} \ (remove1 \ \psi \ \Psi) \ \Delta))
                                   - (mset \ \Psi - add\text{-}mset \ \psi \ (mset \ (\mathfrak{A} \ (remove1 \ \psi \ \Psi) \ \Delta)))
                 #}
             let ?S_2 =
                add-mset
```

```
(fst \ \psi \rightarrow (fst \ \psi \rightarrow fst \ \delta) \rightarrow snd \ \psi)
                 \{\#\ x \to y.
                      (x, y) \in \# mset (\mathfrak{Y} (remove1 \ \psi \ \Psi) \ \Delta)
                                   - (mset \Psi
                                         - add-mset \psi (mset (\mathfrak{A} (remove1 \psi \Psi) \Delta)))
                  #}
            have ?S_1 = ?S_2
              using A C by (simp \ add: B)
         hence mset (map\ (uncurry\ (\rightarrow))
                        (((?\alpha, (?\alpha \rightarrow ?\beta) \rightarrow ?\gamma) \# ?A) \ominus remove1 \psi (\Psi \ominus ?B)
                          @ (remove1 \ \delta \ ((\delta \# \Delta) \ominus ?C))))
                 = mset ((?\alpha \rightarrow (?\alpha \rightarrow ?\beta) \rightarrow ?\gamma) # map (uncurry (\rightarrow)) (?D @ (\Delta \ominus
(C)
            using
               add-mset-add-single
               image-mset-add-mset
               prod.simps(2)
               subset-mset.diff-add-assoc2
               \forall mset \ (remove1 \ \psi \ \Psi \ominus \mathfrak{A} \ (remove1 \ \psi \ \Psi) \ \Delta) \subseteq \# \ mset \ (\mathfrak{Y}) \ (remove1 \ \psi)
\Psi) \Delta)
              by fastforce
         moreover
         have \vdash (?\alpha \rightarrow (?\alpha \rightarrow ?\beta) \rightarrow ?\gamma) \rightarrow ?\beta \rightarrow ?\alpha \rightarrow ?\gamma
         proof -
            let ?\Gamma = [(?\alpha \rightarrow (?\alpha \rightarrow ?\beta) \rightarrow ?\gamma), ?\beta, ?\alpha]
            have ?\Gamma : \vdash ?\alpha \rightarrow (?\alpha \rightarrow ?\beta) \rightarrow ?\gamma
                  ?\Gamma :\vdash ?\alpha
              by (simp add: list-deduction-reflection)+
            hence ?\Gamma :\vdash (?\alpha \rightarrow ?\beta) \rightarrow ?\gamma
               using list-deduction-modus-ponens by blast
            moreover have ?\Gamma : \vdash ?\beta
              by (simp add: list-deduction-reflection)
            hence ?\Gamma : \vdash ?\alpha \rightarrow ?\beta
            using axiom-k list-deduction-modus-ponens list-deduction-weaken by blast
            ultimately have ?\Gamma :\vdash ?\gamma
               using list-deduction-modus-ponens by blast
            thus ?thesis
               unfolding list-deduction-def by simp
         hence (?\beta \rightarrow ?\alpha \rightarrow ?\gamma \# map (uncurry (\rightarrow)) \Delta) \leq
                   (?\alpha \rightarrow (?\alpha \rightarrow ?\beta) \rightarrow ?\gamma \# map (uncurry (\rightarrow)) (?D @ (\Delta \ominus ?C)))
            using Cons stronger-theory-left-right-cons by blast
          ultimately show ?thesis
            using \psi by (simp add: stronger-theory-relation-alt-def)
       qed
    then show ?case by blast
  qed
```

```
thus ?thesis by blast
qed
lemma (in implication-logic) xcomponent-ycomponent-connection:
  map\ (uncurry\ (\rightarrow))\ (\mathfrak{X}_{\bullet}\ \Psi\ \Delta) = map\ snd\ (\mathfrak{Y}_{\bullet}\ \Psi\ \Delta)
proof -
  have \forall \Psi. map (uncurry (\rightarrow)) (\mathfrak{X}_{\bullet} \Psi \Delta) = map \ snd \ (\mathfrak{Y}_{\bullet} \Psi \Delta)
  proof (induct \Delta)
    case Nil
    then show ?case by simp
  next
    case (Cons \delta \Delta)
     {
       fix \Psi
       have map (uncurry (\rightarrow)) (\mathfrak{X}_{\bullet} \Psi (\delta \# \Delta)) = map \ snd \ (\mathfrak{Y}_{\bullet} \Psi (\delta \# \Delta))
         using Cons
         by (cases find (\lambda \psi. (uncurry (\rightarrow)) \psi = snd \delta) \Psi = None, simp, fastforce)
    then show ?case by blast
  qed
  thus ?thesis by blast
qed
lemma (in classical-logic) xwitness-ywitness-measure-deduction-intro:
  assumes mset\ (map\ snd\ \Psi)\subseteq \#\ mset\ \Gamma
        and mset (map snd \Delta) \subseteq# mset (map (uncurry (\rightarrow)) \Psi @ \Gamma \ominus (map snd
\Psi))
       and map (uncurry (\rightarrow)) \Delta @ (map (uncurry (\rightarrow)) \Psi @ \Gamma \ominus map snd \Psi) \ominus
map\ snd\ \Delta\ \$\vdash\ \Phi
            (is ?\Gamma_0 \$\vdash \Phi)
         shows map (uncurry (\rightarrow)) (\mathfrak{Y} \ \Psi \ \Delta) @
                   (map\ (uncurry\ (\rightarrow))\ (\mathfrak{X}\ \Psi\ \Delta)\ @\ \Gamma\ \ominus\ map\ snd\ (\mathfrak{X}\ \Psi\ \Delta))\ \ominus
                     map \ snd \ (\mathfrak{Y} \ \Psi \ \Delta) \ \$\vdash \ \Phi
            (is ?Γ $⊢ Φ)
proof -
  let ?A = map (uncurry (\rightarrow)) (\mathfrak{Y} \Psi \Delta)
  let ?B = map (uncurry (\rightarrow)) (\mathfrak{X} \Psi \Delta)
  let ?C = \Psi \ominus \mathfrak{A} \Psi \Delta
  let ?D = map (uncurry (\rightarrow)) ?C
  let ?E = \Delta \ominus \mathfrak{B} \Psi \Delta
  let ?F = map (uncurry (\rightarrow)) ?E
  let ?G = map \ snd \ (\mathfrak{B} \ \Psi \ \Delta)
  let ?H = map (uncurry (\rightarrow)) (\mathfrak{X}_{\bullet} \Psi \Delta)
  let ?I = \mathfrak{A} \Psi \Delta
  let ?J = map \ snd \ (\mathfrak{X} \ \Psi \ \Delta)
  let ?K = map \ snd \ (\mathfrak{Y} \ \Psi \ \Delta)
  have mset\ (map\ (uncurry\ (\rightarrow))\ (\mathfrak{Y}\ \Phi\ \Delta\ominus\ ?C\ @\ ?E)) = mset\ (?A\ominus\ ?D\ @\ ?F)
    by (simp add: Y-witness-first-component-diff-decomposition)
  hence (map\ (uncurry\ (\rightarrow))\ \Delta) \preceq (?A \ominus ?D @ ?F)
```

```
using Y-witness-right-stronger-theory
          stronger-theory-relation-alt-def
    by (simp, metis (no-types, lifting))
  hence {}^{g}\Gamma_{0} \preceq (({}^{g}A \ominus {}^{g}D @ {}^{g}F) @ (map (uncurry (\rightarrow)) \Psi @ \Gamma \ominus map snd \Psi)
\ominus map snd \Delta)
    using stronger-theory-combine stronger-theory-reflexive by blast
  moreover
  have \spadesuit: mset ?G \subseteq \# mset (map (uncurry (<math>\rightarrow)) \Psi)
          mset \ (\mathfrak{B} \ \Psi \ \Delta) \subseteq \# \ mset \ \Delta
          mset\ (map\ snd\ ?E)\subseteq \#\ mset\ (\Gamma\ominus\ map\ snd\ \Psi)
          mset\ (map\ (uncurry\ (\rightarrow))\ \Psi\ominus\ ?G)=mset\ ?D
          mset ?D \subseteq \# mset ?A
          mset\ (map\ snd\ ?I) \subseteq \#\ mset\ (map\ snd\ \Psi)
          mset\ (map\ snd\ ?I) \subseteq \#\ mset\ \Gamma
          mset \ (map \ snd \ (?I @ ?E)) = mset ?J
    using second-component-msub
          second-component-diff-msub
          second\mbox{-}component\mbox{-}snd\mbox{-}projection\mbox{-}msub
          first-component-second-component-mset-connection
          X-witness-map-snd-decomposition
    by (simp,
        simp,
        metis \ assms(2),
        simp add: image-mset-Diff first-component-msub,
        simp add: Y-witness-first-component-diff-decomposition,
        simp add: image-mset-subseteq-mono first-component-msub,
     metis assms(1) first-component-msub map-monotonic subset-mset.dual-order.trans,
        simp)
  hence mset \ \Delta - mset \ (\mathfrak{B} \ \Psi \ \Delta) + mset \ (\mathfrak{B} \ \Psi \ \Delta) = mset \ \Delta
  hence \heartsuit: \{\#x \to y. \ (x, y) \in \# \ mset \ \Psi\#\} + (mset \ \Gamma - image-mset \ snd \ (mset
\Psi))
                                            - image-mset snd (mset \Delta)
          = \{ \#x \to y. \ (x, y) \in \# \ mset \ \Psi \# \} + (mset \ \Gamma - image-mset \ snd \ (mset \ \Psi)) \}
                                            -image\text{-}mset\ snd\ (mset\ \Delta-mset\ (\mathfrak{B}\ \Psi\ \Delta))
                                            - image-mset snd (mset (\mathfrak{B} \ \Psi \ \Delta))
            image-mset snd (mset \Psi – mset (\mathfrak{A} \Psi \Delta)) + image-mset snd (mset (\mathfrak{A} \Psi \Delta))
\Psi \Delta))
          = image\text{-}mset \ snd \ (mset \ \Psi)
    using •
    by (metis (no-types) diff-diff-add-mset image-mset-union,
      metis (no-types) image-mset-union first-component-msub subset-mset.diff-add)
  then have mset \ \Gamma - image\text{-}mset \ snd \ (mset \ \Psi)
                    -image\text{-}mset\ snd\ (mset\ \Delta-mset\ (\mathfrak{B}\ \Psi\ \Delta))
           = mset \Gamma - (image-mset snd (mset \Psi - mset (\mathfrak{A} \Psi \Delta))
                    + image-mset snd (mset (\mathfrak{X} \Psi \Delta)))
    using \spadesuit by (simp, metis (full-types) diff-diff-add-mset)
  hence mset ((map\ (uncurry\ (\rightarrow))\ \Psi\ @\ \Gamma\ \ominus\ map\ snd\ \Psi)\ \ominus\ map\ snd\ \Delta)
```

```
= mset \ (?D \ @ \ (\Gamma \ominus ?J) \ominus map \ snd \ ?C)
       using \heartsuit \spadesuit by (simp, metis (no-types) add.commute subset-mset.add-diff-assoc)
    ultimately have ?\Gamma_0 \preceq ((?A \ominus ?D @ ?F) @ ?D @ (\Gamma \ominus ?J) \ominus map snd ?C)
        unfolding stronger-theory-relation-alt-def
        by simp
    moreover
    have mset ?F = mset (?B \ominus ?H)
               mset ?D \subseteq \# mset ?A
               mset\ (map\ snd\ (\Psi\ominus\ ?I))\subseteq \#\ mset\ (\Gamma\ominus\ ?J)
        by (simp add: X-witness-second-component-diff-decomposition,
                 simp add: Y-witness-first-component-diff-decomposition,
                 simp, metis (no-types, lifting)
                                          \heartsuit(2) \triangleq (8) \ add.assoc \ assms(1) \ assms(2) \ image-mset-union
                                          X	ext{-}witness	ext{-}msub \ merge	ext{-}witness	ext{-}msub	ext{-}intro
                                          second\hbox{-}component\hbox{-}merge\hbox{-}witness\hbox{-}snd\hbox{-}projection
                                          mset-map
                                          subset-mset.le-diff-conv2
                                          union-code)
    hence mset ((?A \ominus ?D @ ?F) @ ?D @ (\Gamma \ominus ?J) \ominus map snd ?C)
               = mset \ (?A \ @ \ (?B \ominus ?H \ @ \ \Gamma \ominus ?J) \ominus map \ snd \ ?C)
                 mset ?H \subseteq \# mset ?B
                 \{\#x \rightarrow y. \ (x, \ y) \in \# \ \mathit{mset} \ (\mathfrak{X}_{\bullet} \ \Psi \ \Delta) \#\} = \mathit{mset} \ (\mathit{map} \ \mathit{snd} \ (\mathfrak{Y}_{\bullet} \ \Psi \ \Delta))
        by (simp add: subset-mset.diff-add-assoc,
                 simp add: X-witness-second-component-diff-decomposition,
                 metis xcomponent-ycomponent-connection mset-map uncurry-def)
    hence mset ((?A \ominus ?D @ ?F) @ ?D @ (\Gamma \ominus ?J) \ominus map snd ?C)
               = mset \ (?A @ (?B @ \Gamma \ominus ?J) \ominus (?H @ map snd ?C))
                \{\#x \to y. \ (x, y) \in \# \ mset \ (\mathfrak{X}_{\bullet} \ \Psi \ \Delta)\#\} + image\text{-mset snd} \ (mset \ \Psi - \ mset \ A) = \{\#x \to y. \ (x, y) \in \# \ mset \ (\mathfrak{X}_{\bullet} \ \Psi \ \Delta)\#\} + image\text{-mset snd} \ (mset \ \Psi - \ mset \ A) = \{\#x \to y. \ (x, y) \in \# \ mset \ (\mathfrak{X}_{\bullet} \ \Psi \ \Delta)\#\} + image\text{-mset snd} \ (mset \ \Psi - \ mset \ A) = \{\#x \to y. \ (x, y) \in \# \ mset \ (\mathfrak{X}_{\bullet} \ \Psi \ \Delta)\#\} + image\text{-mset snd} \ (mset \ \Psi - \ mset \ A) = \{\#x \to y. \ (x, y) \in \# \ mset \ (\mathfrak{X}_{\bullet} \ \Psi \ \Delta)\#\} + image\text{-mset snd} \ (mset \ \Psi - \ mset \ A) = \{\#x \to y. \ (x, y) \in \# \ mset \ (\mathfrak{X}_{\bullet} \ \Psi \ \Delta)\#\} + image\text{-mset snd} \ (mset \ \Psi - \ mset \ A) = \{\#x \to y. \ (x, y) \in \# \ M \ A) = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ (x, y) \in \# \ M \ A\} = \{\#x \to y. \ M \ A\} = \{\#x \to y. \ M \ A\} = \{\#x \to y. \ M \ A\} 
(\mathfrak{A} \ \Psi \ \Delta))
               = mset (map \ snd (\mathfrak{Y} \ \Psi \ \Delta))
        using Y-witness-map-snd-decomposition
        by (simp add: subset-mset.diff-add-assoc, force)
    hence mset ((?A \ominus ?D @ ?F) @ ?D @ (\Gamma \ominus ?J) \ominus map snd ?C)
               = mset (?A @ (?B @ \Gamma \ominus ?J) \ominus ?K)
        by (simp)
    ultimately have ?\Gamma_0 \preceq (?A \otimes (?B \otimes \Gamma \ominus ?J) \ominus ?K)
        unfolding stronger-theory-relation-alt-def
        by metis
    thus ?thesis
        using assms(3) measure-stronger-theory-left-monotonic
        by blast
qed
lemma (in classical-logic) measure-cons-cons-right-permute:
    assumes \Gamma \$ \vdash (\varphi \# \psi \# \Phi)
    shows \Gamma \$ \vdash (\psi \# \varphi \# \Phi)
proof -
    from assms obtain \Psi where \Psi:
        mset \ (map \ snd \ \Psi) \subseteq \# \ mset \ \Gamma
```

```
map (uncurry (\sqcup)) \Psi :\vdash \varphi
    map\ (uncurry\ (\rightarrow))\ \Psi\ @\ \Gamma\ \ominus\ (map\ snd\ \Psi)\ \$\vdash\ (\psi\ \#\ \Phi)
    by fastforce
  let ?\Gamma_0 = map (uncurry (\rightarrow)) \Psi @ \Gamma \ominus (map snd \Psi)
  from \Psi(\beta) obtain \Delta where \Delta:
    mset\ (map\ snd\ \Delta)\subseteq \#\ mset\ ?\Gamma_0
    map\ (uncurry\ (\sqcup))\ \Delta :\vdash \psi
    (map\ (uncurry\ (\rightarrow))\ \Delta\ @\ ?\Gamma_0\ominus (map\ snd\ \Delta))\ \$\vdash\ \Phi
    using measure-deduction.simps(2) by blast
  let ?\Psi' = \mathfrak{X} \Psi \Delta
  let ?\Gamma_1 = map (uncurry (\rightarrow)) ?\Psi' @ \Gamma \ominus (map snd ?\Psi')
  let ?\Delta' = \mathfrak{Y} \Psi \Delta
  have (map\ (uncurry\ (\rightarrow))\ ?\Delta' @\ ?\Gamma_1 \ominus (map\ snd\ ?\Delta')) $\vdash \Phi
        map\ (uncurry\ (\sqcup))\ \Psi \preceq map\ (uncurry\ (\sqcup))\ ?\Delta'
    using \Psi(1) \Delta(1) \Delta(3)
           xwitness-ywitness-measure-deduction-intro
            Y-witness-left-stronger-theory
    by auto
  hence ?\Gamma_1 \$ \vdash (\varphi \# \Phi)
    using \Psi(1) \Psi(2) \Delta(1)
            Y-witness-msub measure-deduction.simps(2)
           stronger-theory-deduction-monotonic
    by blast
  thus ?thesis
    using \Psi(1) \Delta(1) \Delta(2)
           X	ext{-}witness	ext{-}msub
           X-witness-right-stronger-theory
           measure-deduction.simps(2)
           stronger-theory-deduction-monotonic
    by blast
qed
lemma (in classical-logic) measure-cons-remove1:
  assumes \varphi \in set \Phi
    shows \Gamma \Vdash \Phi = \Gamma \Vdash (\varphi \# (remove1 \varphi \Phi))
proof -
  from \langle \varphi \in set \Phi \rangle
  have \forall \Gamma. \Gamma \Vdash \Phi = \Gamma \Vdash (\varphi \# (remove1 \varphi \Phi))
  proof (induct \Phi)
    case Nil
    then show ?case by simp
  next
    case (Cons \chi \Phi)
     {
      fix \Gamma
      \mathbf{have}\ \Gamma\ \$\vdash\ (\chi\ \#\ \Phi) = \Gamma\ \$\vdash\ (\varphi\ \#\ (\mathit{remove1}\ \varphi\ (\chi\ \#\ \Phi)))
       proof (cases \chi = \varphi)
         \mathbf{case} \ \mathit{True}
         then show ?thesis by simp
```

```
\mathbf{next}
         {\bf case}\ \mathit{False}
         hence \varphi \in set \Phi
           using Cons. prems by simp
         with Cons.hyps have \Gamma \Vdash (\chi \# \Phi) = \Gamma \Vdash (\chi \# \varphi \# (remove1 \varphi \Phi))
         hence \Gamma \Vdash (\chi \# \Phi) = \Gamma \Vdash (\varphi \# \chi \# (remove1 \varphi \Phi))
           using measure-cons-cons-right-permute by blast
         then show ?thesis using \langle \chi \neq \varphi \rangle by simp
      \mathbf{qed}
    }
    then show ?case by blast
  thus ?thesis using assms by blast
qed
lemma (in classical-logic) witness-stronger-theory:
  assumes mset \ (map \ snd \ \Psi) \subseteq \# \ mset \ \Gamma
  shows (map\ (uncurry\ (\rightarrow))\ \Psi\ @\ \Gamma\ \ominus\ (map\ snd\ \Psi))\ \preceq\ \Gamma
  have \forall \Gamma. mset (map snd \Psi) \subseteq \# mset \Gamma \longrightarrow (map (uncurry (<math>\rightarrow))) \Psi @ \Gamma \ominus
(map \ snd \ \Psi)) \leq \Gamma
  proof (induct \Psi)
    {\bf case}\ Nil
    then show ?case by simp
  next
    case (Cons \psi \Psi)
    let ?\gamma = snd \psi
     {
      fix \Gamma
      assume mset (map snd (\psi \# \Psi)) \subseteq \# mset \Gamma
       hence mset (map \ snd \ \Psi) \subseteq \# \ mset \ (remove1 \ (snd \ \psi) \ \Gamma)
         by (simp add: insert-subset-eq-iff)
       with Cons have
        (map\ (uncurry\ (\rightarrow))\ \Psi\ @\ (remove1\ (snd\ \psi)\ \Gamma)\ \ominus\ (map\ snd\ \Psi))\ \preceq\ (remove1\ (snd\ \psi)\ \Gamma)
?\gamma \Gamma)
         by blast
      hence (map\ (uncurry\ (\rightarrow))\ \Psi\ @\ \Gamma\ominus (map\ snd\ (\psi\ \#\ \Psi))) \preceq (remove1\ ?\gamma\ \Gamma)
         by (simp add: stronger-theory-relation-alt-def)
       moreover
       have (uncurry (\rightarrow)) = (\lambda \psi. fst \psi \rightarrow snd \psi)
         by fastforce
       hence \vdash ?\gamma \rightarrow uncurry (\rightarrow) \psi
         using axiom-k by simp
       ultimately have
        (map\ (uncurry\ (\rightarrow))\ (\psi\ \#\ \Psi)\ @\ \Gamma\ominus (map\ snd\ (\psi\ \#\ \Psi))) \preceq (?\gamma\ \#\ (remove1)
         using stronger-theory-left-right-cons by auto
       hence (map\ (uncurry\ (\rightarrow))\ (\psi\ \#\ \Psi)\ @\ \Gamma\ \ominus\ (map\ snd\ (\psi\ \#\ \Psi)))\ \preceq\ \Gamma
```

```
using stronger-theory-relation-alt-def
                  \langle mset \ (map \ snd \ (\psi \ \# \ \Psi)) \subseteq \# \ mset \ \Gamma \rangle
                  mset\text{-}subset\text{-}eqD
          by fastforce
     then show ?case by blast
  qed
  thus ?thesis using assms by blast
qed
lemma (in classical-logic) measure-msub-weaken:
  assumes mset\ \Psi \subseteq \#\ mset\ \Phi
       and \Gamma \Vdash \Phi
    shows \Gamma \Vdash \Psi
proof -
  \mathbf{have} \ \forall \ \Psi \ \Gamma. \ \mathit{mset} \ \Psi \subseteq \# \ \mathit{mset} \ \Phi \longrightarrow \Gamma \ \$ \vdash \ \Phi \longrightarrow \Gamma \ \$ \vdash \ \Psi
  proof (induct \Phi)
     case Nil
     then show ?case by simp
     case (Cons \varphi \Phi)
     {
       \mathbf{fix}\ \Psi\ \Gamma
       assume \mathit{mset}\ \Psi \subseteq \#\ \mathit{mset}\ (\varphi\ \#\ \Phi)
                \Gamma \$ \vdash (\varphi \# \Phi)
       hence \Gamma \Vdash \Phi
          using measure-deduction.simps(2)
                  measure-stronger-theory-left-monotonic
                  witness-stronger-theory
          by blast
       have \Gamma \Vdash \Psi
       proof (cases \varphi \in set \Psi)
          \mathbf{case} \ \mathit{True}
          hence mset\ (remove1\ \varphi\ \Psi)\subseteq \#\ mset\ \Phi
             using \langle mset \ \Psi \subseteq \# \ mset \ (\varphi \ \# \ \Phi) \rangle
                    subset-eq-diff-conv
             by force
          hence \forall \Gamma. \Gamma \Vdash \Phi \longrightarrow \Gamma \Vdash (remove1 \varphi \Psi)
             using Cons by blast
          hence \Gamma \$ \vdash (\varphi \# (remove1 \varphi \Psi))
             using \langle \Gamma \Vdash (\varphi \# \Phi) \rangle by fastforce
          then show ?thesis
             using \langle \varphi \in set \ \Psi \rangle
                    measure\text{-}cons\text{-}remove1
            by blast
       \mathbf{next}
          {f case} False
          have mset \ \Psi \subseteq \# \ mset \ \Phi + add\text{-}mset \ \varphi \ (mset \ [])
             using \langle mset \ \Psi \subseteq \# \ mset \ (\varphi \ \# \ \Phi) \rangle by auto
```

```
hence mset \ \Psi \subseteq \# \ mset \ \Phi
           by (metis (no-types) False
                                  diff-single-trivial
                                  in-multiset-in-set mset.simps(1)
                                  subset-eq-diff-conv)
        then show ?thesis
           \mathbf{using} \ \langle \Gamma \ \$ \vdash \ \Phi \rangle \ \mathit{Cons}
           by blast
      \mathbf{qed}
    then show ?case by blast
  with assms show ?thesis by blast
qed
lemma (in classical-logic) measure-stronger-theory-right-antitonic:
  assumes \Psi \prec \Phi
      and \Gamma \Vdash \Phi
    shows \Gamma \Vdash \Psi
  \mathbf{have}\ \forall\,\Psi\ \Gamma.\ \Psi\preceq\Phi\longrightarrow\Gamma\ \$\vdash\Phi\longrightarrow\Gamma\ \$\vdash\Psi
  proof (induct \Phi)
    case Nil
    then show ?case
      using measure-deduction.simps(1)
             stronger-theory-empty-list-intro
      by blast
  next
    case (Cons \varphi \Phi)
      fix \Psi \Gamma
      assume \Gamma \$ \vdash (\varphi \# \Phi)
              \Psi \preceq (\varphi \# \Phi)
      from this obtain \Sigma where
        \Sigma: map snd \Sigma = \Psi
            mset\ (map\ fst\ \Sigma)\subseteq \#\ mset\ (\varphi\ \#\ \Phi)
            \forall (\varphi, \psi) \in set \ \Sigma. \vdash \varphi \to \psi
        unfolding stronger-theory-relation-def
        by auto
      hence \Gamma \Vdash \Psi
      proof (cases \varphi \in set (map fst \Sigma))
        case True
        from this obtain \psi where (\varphi,\psi) \in set \Sigma
           by (induct \Sigma, simp, fastforce)
        hence A: mset (map snd (remove1 (\varphi, \psi) \Sigma)) = mset (remove1 \psi \Psi)
           and B: mset (map fst (remove1 (\varphi, \psi) \Sigma)) \subseteq \# mset \Phi
           using \Sigma remove1-pairs-list-projections-snd
                    remove 1-pairs-list-projections-fst
                    subset-eq-diff-conv
```

```
by fastforce+
         have \forall (\varphi, \psi) \in set (remove1 (\varphi, \psi) \Sigma). \vdash \varphi \rightarrow \psi
           using \Sigma(3) by fastforce+
         hence (remove1 \ \psi \ \Psi) \preceq \Phi
           unfolding stronger-theory-relation-alt-def using A B by blast
         moreover
         \mathbf{from} \ \langle \Gamma \ \$ \vdash \ (\varphi \ \# \ \Phi) \rangle \ \mathbf{obtain} \ \Delta \ \mathbf{where}
           \Delta: mset\ (map\ snd\ \Delta) \subseteq \#\ mset\ \Gamma
                map\ (uncurry\ (\sqcup))\ \Delta :\vdash \varphi
                (map\ (uncurry\ (\rightarrow))\ \Delta\ @\ \Gamma\ \ominus\ (map\ snd\ \Delta))\ \$\vdash\ \Phi
           by auto
        ultimately have (map\ (uncurry\ (\rightarrow))\ \Delta\ @\ \Gamma\ \ominus\ (map\ snd\ \Delta))\ \$\vdash\ remove1
\psi \Psi
           using Cons by blast
         moreover have map (uncurry (\sqcup)) \Delta :\vdash \psi
           using \Delta(2) \Sigma(3) \langle (\varphi, \psi) \in set \Sigma \rangle
                  list-deduction-weaken
                  list\text{-}deduction\text{-}modus\text{-}ponens
           by blast
         ultimately have \langle \Gamma \ \$ \vdash (\psi \ \# \ (remove1 \ \psi \ \Psi)) \rangle
           using \Delta(1) by auto
         moreover from \langle (\varphi, \psi) \in set \Sigma \rangle \Sigma(1) have \psi \in set \Psi
           by force
         hence mset \ \Psi \subseteq \# \ mset \ (\psi \ \# \ (remove1 \ \psi \ \Psi))
           by auto
         ultimately show ?thesis using measure-msub-weaken by blast
       next
         case False
         hence mset (map\ fst\ \Sigma) \subseteq \#\ mset\ \Phi
           using \Sigma(2)
           by (simp,
               metis add-mset-add-single
                      diff-single-trivial
                     mset	ext{-}map\ set	ext{-}mset
                     subset-eq-diff-conv)
        hence \Psi \prec \Phi
           using \Sigma(1) \Sigma(3)
           unfolding stronger-theory-relation-def
           by auto
         moreover from \langle \Gamma \ \$ \vdash \ (\varphi \# \Phi) \rangle have \Gamma \ \$ \vdash \ \Phi
           using measure-deduction.simps(2)
                measure-stronger-theory-left-monotonic
                witness-stronger-theory
           by blast
         ultimately show ?thesis using Cons by blast
      qed
    then show ?case by blast
  qed
```

```
qed
lemma (in classical-logic) measure-witness-right-split:
     assumes mset\ (map\ snd\ \Psi) \subseteq \#\ mset\ \Phi
      shows \Gamma \Vdash (map \ (uncurry \ (\sqcup)) \ \Psi @ map \ (uncurry \ (\to)) \ \Psi @ \Phi \ominus (map \ snd)
\Psi)) = \Gamma \ $\rightarrow \Phi$
proof -
      have \forall \Gamma \Phi. mset (map snd \Psi) \subseteq \# mset \Phi \longrightarrow
                \Gamma \$ \vdash \Phi = \Gamma \$ \vdash (map \ (uncurry \ (\sqcup)) \ \Psi @ \ map \ (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (map \ (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (map \ (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (map \ (Uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \ (\to)) \ \Psi @ \ \Phi \ominus (uncurry \
snd \Psi))
      proof (induct \ \Psi)
           case Nil
           then show ?case by simp
      next
           case (Cons \psi \Psi)
                fix \Gamma \Phi
                let ?\chi = fst \psi
                let ?\varphi = snd \psi
                 let ?\Phi' = map (uncurry (\sqcup)) (\psi \# \Psi) @
                                                map\ (uncurry\ (\rightarrow))\ (\psi\ \#\ \Psi)\ @
                                                \Phi \ominus map \ snd \ (\psi \# \Psi)
                 let ?\Phi_0 = map (uncurry (\sqcup)) \Psi @
                                                map\ (uncurry\ (\rightarrow))\ \Psi\ @
                                                (remove1 ? \varphi \Phi) \ominus map \ snd \ \Psi
                 assume mset\ (map\ snd\ (\psi\ \#\ \Psi))\subseteq \#\ mset\ \Phi
                 hence mset\ (map\ snd\ \Psi)\subseteq \#\ mset\ (remove1\ ?\varphi\ \Phi)
                                   mset \ (?\varphi \# remove1 ?\varphi \Phi) = mset \Phi
                      by (simp add: insert-subset-eq-iff)+
                 hence \Gamma \Vdash \Phi = \Gamma \Vdash (?\varphi \# remove1 ?\varphi \Phi)
                                 \forall \Gamma. \Gamma \$\vdash (remove1 ?\varphi \Phi) = \Gamma \$\vdash ?\Phi_0
                         by (metis list.set-intros(1) measure-cons-remove1 set-mset-mset,
                                      metis Cons.hyps)
                 moreover
                 have (uncurry (\sqcup)) = (\lambda \psi. fst \psi \sqcup snd \psi)
                                (uncurry (\rightarrow)) = (\lambda \psi. fst \psi \rightarrow snd \psi)
                      by fastforce+
                 hence mset ?\Phi' \subseteq \# mset (?\chi \sqcup ?\varphi \# ?\chi \rightarrow ?\varphi \# ?\Phi_0)
                                   mset \ (?\chi \sqcup ?\varphi \# ?\chi \rightarrow ?\varphi \# ?\Phi_0) \subseteq \# mset ?\Phi'
                                   (is mset ?X \subseteq \# mset ?Y)
                      by fastforce+
                 hence \Gamma \Vdash ?\Phi' = \Gamma \Vdash (?\varphi \# ?\Phi_0)
                       using measure-formula-right-split
                                        measure\text{-}msub\text{-}weaken
                      by blast
                 ultimately have \Gamma \Vdash \Phi = \Gamma \Vdash \mathscr{P} \Phi'
                      by fastforce
           }
```

thus ?thesis using assms by blast

```
then show ?case by blast
  qed
  with assms show ?thesis by blast
qed
primrec (in classical-logic)
  submerge-witness :: ('a \times 'a) \ list \Rightarrow ('a \times 'a) \ list \Rightarrow ('a \times 'a) \ list \in \mathfrak{E})
     \mathfrak{E} \Sigma [] = map (\lambda \sigma. (\bot, (uncurry (\sqcup)) \sigma)) \Sigma
  \mid \mathfrak{E} \Sigma (\delta \# \Delta) =
        (case find (\lambda \sigma. (uncurry (\rightarrow)) \sigma = snd \delta) \Sigma of
                None \Rightarrow \mathfrak{E} \Sigma \Delta
             | Some \sigma \Rightarrow (fst \ \sigma, (fst \ \delta \ \sqcap fst \ \sigma) \sqcup snd \ \sigma) \# (\mathfrak{E} (remove1 \ \sigma \ \Sigma) \ \Delta))
\mathbf{lemma} \ (\mathbf{in} \ classical\text{-}logic) \ submerge\text{-}witness\text{-}stronger\text{-}theory\text{-}left:
   map\ (uncurry\ (\sqcup))\ \Sigma \preceq map\ (uncurry\ (\sqcup))\ (\mathfrak{E}\ \Sigma\ \Delta)
proof -
  have \forall \Sigma. map (uncurry (\sqcup)) \Sigma \leq map (uncurry (\sqcup)) (\mathfrak{E} \Sigma \Delta)
  proof (induct \Delta)
     case Nil
       fix \Sigma
       {
          fix \varphi
         \mathbf{have} \vdash (\bot \sqcup \varphi) \to \varphi
            unfolding disjunction-def
          using ex-falso-quodlibet modus-ponens excluded-middle-elimination by blast
       }
       note tautology = this
       have map (uncurry (\sqcup)) \Sigma \leq map (uncurry (\sqcup)) (\mathfrak{E} \Sigma [])
          by (induct \Sigma,
               simp,
               simp add: stronger-theory-left-right-cons tautology)
     then show ?case by auto
  next
     case (Cons \delta \Delta)
       fix \Sigma
       have map (uncurry (\sqcup)) \Sigma \leq map (uncurry (\sqcup)) (\mathfrak{E} \Sigma (\delta \# \Delta))
       proof (cases find (\lambda \sigma. (uncurry (\rightarrow)) \sigma = snd \delta) \Sigma = None)
          case True
          then show ?thesis using Cons by simp
       next
          {\bf case}\ \mathit{False}
          from this obtain \sigma where
            \sigma: find (\lambda \sigma. uncurry (\rightarrow) \sigma = snd \delta) \Sigma = Some \sigma
                uncurry (\rightarrow) \sigma = snd \delta
                \sigma \in set \Sigma
```

```
using find-Some-predicate find-Some-set-membership
            by fastforce
          {
            fix \alpha \beta \gamma
            have \vdash (\alpha \sqcup (\gamma \sqcap \alpha) \sqcup \beta) \rightarrow (\alpha \sqcup \beta)
              let ?\varphi = (\langle \alpha \rangle \sqcup (\langle \gamma \rangle \sqcap \langle \alpha \rangle) \sqcup \langle \beta \rangle) \rightarrow (\langle \alpha \rangle \sqcup \langle \beta \rangle)
              have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi \text{ by } \textit{fastforce}
              hence \vdash ( ?\varphi ) using propositional-semantics by blast
              thus ?thesis by simp
            qed
         }
         note tautology = this
         let ?\alpha = fst \ \sigma
         let ?\beta = snd \sigma
         let ?\gamma = fst \delta
         have (uncurry\ (\sqcup)) = (\lambda\ \sigma.\ fst\ \sigma\ \sqcup\ snd\ \sigma) by fastforce
         hence (uncurry (\sqcup)) \sigma = ?\alpha \sqcup ?\beta  by simp
         hence A: \vdash (?\alpha \sqcup (?\gamma \sqcap ?\alpha) \sqcup ?\beta) \rightarrow (uncurry (\sqcup)) \sigma using tautology by
simp
         moreover
         have map (uncurry (\sqcup)) (remove1 \sigma \Sigma)
                \leq map \ (uncurry \ (\sqcup)) \ (\mathfrak{E} \ (remove1 \ \sigma \ \Sigma) \ \Delta)
            using Cons by simp
         ultimately have A:
            map\ (uncurry\ (\sqcup))\ (\sigma\ \#\ (remove1\ \sigma\ \Sigma))
             \preceq (?\alpha \sqcup (?\gamma \sqcap ?\alpha) \sqcup ?\beta \# map (uncurry (\sqcup)) (\mathfrak{E} (remove1 \sigma \Sigma) \Delta))
             using stronger-theory-left-right-cons by fastforce
         from \sigma(3) have mset \Sigma = mset (\sigma \# (remove1 \sigma \Sigma))
            by simp
            hence mset (map (uncurry (\sqcup)) \Sigma) = mset (map (uncurry (\sqcup)) (\sigma #
(remove1 \sigma \Sigma)))
            by (metis mset-map)
         hence B: map (uncurry (\sqcup)) \Sigma \leq map (uncurry (\sqcup)) (\sigma \# (remove1 \sigma \Sigma))
            by (simp add: msub-stronger-theory-intro)
         have ( fst \sigma
                  \sqcup (fst \ \delta \ \sqcap fst \ \sigma)
                   \sqcup snd \sigma \# map(\lambda(x, y). x \sqcup y) (\mathfrak{E} (remove1 \sigma \Sigma) \Delta)) \succeq map(\lambda(x, y). x \sqcup y)
y). x \sqcup y) \Sigma
            by (metis
                   (no-types, lifting)
                    A B
                    stronger-theory-transitive
                   uncurry-def)
         thus ?thesis using A B \sigma by simp
       qed
    then show ?case by auto
  qed
```

```
thus ?thesis by blast
qed
lemma (in classical-logic) submerge-witness-msub:
  mset\ (map\ snd\ (\mathfrak{E}\ \Sigma\ \Delta))\subseteq \#\ mset\ (map\ (uncurry\ (\sqcup))\ (\mathfrak{J}\ \Sigma\ \Delta))
  have \forall \Sigma. mset (map snd (\mathfrak{E} \Sigma \Delta)) \subseteq \# mset (map (uncurry (\sqcup)) (\mathfrak{J} \Sigma \Delta))
  proof (induct \Delta)
     {\bf case}\ Nil
     {
       fix \Sigma
       have mset (map snd (\mathfrak{E} \Sigma [])) \subseteq \#
               mset\ (map\ (uncurry\ (\sqcup))\ (\mathfrak{J}\ \Sigma\ []))
         by (induct \Sigma, simp+)
     then show ?case by blast
  next
     case (Cons \delta \Delta)
       fix \Sigma
       have mset (map snd (\mathfrak{E} \Sigma (\delta \# \Delta))) \subseteq \#
               mset\ (map\ (uncurry\ (\sqcup))\ (\mathfrak{J}\ \Sigma\ (\delta\ \#\ \Delta)))
          \mathbf{using}\ \mathit{Cons}
          by (cases find (\lambda \sigma. (uncurry (\rightarrow)) \sigma = snd \delta) \Sigma = None,
               simp,
               meson\ diff-subset-eq-self
                       insert-subset-eq-iff
                       mset-subset-eq-add-mset-cancel
                       subset-mset.dual-order.trans,
               fastforce)
     }
     then show ?case by blast
  qed
  thus ?thesis by blast
qed
\mathbf{lemma} \ (\mathbf{in} \ classical\text{-}logic) \ submerge\text{-}witness\text{-}stronger\text{-}theory\text{-}right:
    map (uncurry (\sqcup)) \Delta
 \preceq (map (uncurry (\rightarrow)) (\mathfrak{E} \Sigma \Delta) @ map (uncurry (\Box)) (\mathfrak{J} \Sigma \Delta) \ominus map snd (\mathfrak{E} \Sigma)
\Delta))
proof -
  have \forall \ \Sigma. \ map \ (uncurry \ (\sqcup)) \ \Delta
              \preceq (map \ (uncurry \ (\rightarrow)) \ (\mathfrak{E} \ \Sigma \ \Delta) \ @ \ map \ (uncurry \ (\sqcup)) \ (\mathfrak{J} \ \Sigma \ \Delta) \ \ominus \ map
snd \ (\mathfrak{E} \ \Sigma \ \Delta))
  \mathbf{proof}(induct \ \Delta)
     {\bf case}\ Nil
     then show ?case by simp
  next
     case (Cons \delta \Delta)
```

```
fix \Sigma
                have map (uncurry (\sqcup)) (\delta \# \Delta) \leq
                             (map (uncurry (\rightarrow)) (\mathfrak{E} \Sigma (\delta \# \Delta))
                                 @ map (uncurry (\sqcup)) (\mathfrak{J} \Sigma (\delta \# \Delta))
                                        \ominus map snd (\mathfrak{E} \Sigma (\delta \# \Delta)))
                proof (cases find (\lambda \sigma. (uncurry (\rightarrow)) \sigma = snd \delta) \Sigma = None)
                      case True
                     from Cons obtain \Phi where \Phi:
                           map \ snd \ \Phi = map \ (uncurry \ (\sqcup)) \ \Delta
                           mset \ (map \ fst \ \Phi) \subseteq \#
                                    mset\ (map\ (uncurry\ (\rightarrow))\ (\mathfrak{E}\ \Sigma\ \Delta)
                                                    @ map (uncurry (\sqcup)) (\mathfrak{J} \Sigma \Delta) \ominus map snd (\mathfrak{E} \Sigma \Delta))
                           \forall (\gamma, \sigma) \in set \ \Phi. \vdash \gamma \to \sigma
                           unfolding stronger-theory-relation-def
                           by fastforce
                     let ?\Phi' = (uncurry(\sqcup) \delta, (uncurry(\sqcup)) \delta) \# \Phi
                     have map snd ?\Phi' = map (uncurry (\sqcup)) (\delta \# \Delta)  using \Phi(1) by simp
                     moreover
                     from \Phi(2) have A:
                           image-mset fst (mset \Phi)
                      \subseteq \# \{ \#x \to y. (x, y) \in \# mset (\mathfrak{E} \Sigma \Delta) \# \}
                                + (\{\#x \sqcup y. (x, y) \in \# mset (\mathfrak{J} \Sigma \Delta)\#\} - image\text{-mset snd (mset } (\mathfrak{E} \Sigma)\})
\Delta)))
                           by simp
                      have image-mset snd (mset (\mathfrak{E} \Sigma \Delta)) \subseteq \# \{ \#x \sqcup y. (x, y) \in \# \text{ mset } (\mathfrak{J} \Sigma \Delta) \}
\Delta)#}
                           using submerge-witness-msub by force
                     then have B: \{\#case\ \delta\ of\ (x,\ xa) \Rightarrow x \sqcup xa\#\}
                                                   \subseteq \# \ add\text{-mset} \ (case \ \delta \ of \ (x, \ xa) \Rightarrow x \sqcup xa)
                                                                                     \{\#x \sqcup y. (x, y) \in \# \text{ mset } (\mathfrak{J} \Sigma \Delta)\#\} - \text{image-mset snd}
(mset (\mathfrak{E} \Sigma \Delta))
                           by (metis add-mset-add-single subset-mset.le-add-diff)
                    have add-mset (case \delta of (x, xa) \Rightarrow x \sqcup xa) \{\#x \sqcup y. (x, y) \in \# \text{ mset } (\mathfrak{J} \Sigma) \}
\Delta)#}
                                     -image\text{-mset} \ snd \ (mset \ (\mathfrak{E} \ \Sigma \ \Delta)) - \{\#case \ \delta \ of \ (x, xa) \Rightarrow x \sqcup xa\#\}
                                  = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} - image\text{-mset snd} \ (mset \ (\mathfrak{E} \Sigma) \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta) \# \} = \{ \#x \sqcup y. \ (x, y) \in \# \ mset \ (\mathfrak{J} \Sigma \Delta
\Delta))
                           by force
                        then have add-mset (case \delta of (x, xa) \Rightarrow x \sqcup xa) (image-mset fst (mset
\Phi))
                                              - (add\text{-}mset\ (case\ \delta\ of\ (x,\ xa) \Rightarrow x \sqcup xa)\ \{\#x \sqcup y.\ (x,\ y) \in \#\ mset
(\mathfrak{J} \Sigma \Delta) \# \}
                                                  -image-mset\ snd\ (mset\ (\mathfrak{E}\ \Sigma\ \Delta)))
                                         \subseteq \# \{ \#x \to y. (x, y) \in \# mset (\mathfrak{E} \Sigma \Delta) \# \}
                           using A B by (metis (no-types) add-mset-add-single
                                                                                                               subset-eq-diff-conv
                                                                                                                subset-mset.diff-diff-right)
                     hence add-mset (case \delta of (x, xa) \Rightarrow x \sqcup xa) (image-mset fst (mset \Phi))
```

```
\subseteq \# \{ \#x \to y. (x, y) \in \# mset (\mathfrak{E} \Sigma \Delta) \# \}
                   + (add\text{-}mset\ (case\ \delta\ of\ (x,\ xa) \Rightarrow x \sqcup xa)\ \{\#x \sqcup y.\ (x,\ y) \in \#\ mset\ (\mathfrak{J})\}
\Sigma \Delta)\#
                    -image\text{-}mset\ snd\ (mset\ (\mathfrak{E}\ \Sigma\ \Delta)))
              using subset-eq-diff-conv by blast
           hence
              mset \ (map \ fst \ ?\Phi') \subseteq \#
                  mset\ (map\ (uncurry\ (\rightarrow))\ (\mathfrak{E}\ \Sigma\ (\delta\ \#\ \Delta))
                          @ map (uncurry (\sqcup)) (\mathfrak{J} \Sigma (\delta \# \Delta))
                               \ominus map snd (\mathfrak{E} \Sigma (\delta \# \Delta)))
              using True \Phi(2)
              by simp
           moreover have \forall (\gamma, \sigma) \in set ?\Phi' \cdot \vdash \gamma \rightarrow \sigma
              using \Phi(\beta) trivial-implication by auto
           ultimately show ?thesis
              unfolding stronger-theory-relation-def
              by blast
        next
           case False
           from this obtain \sigma where
              \sigma: find (\lambda \sigma. uncurry (\rightarrow) \sigma = snd \delta) \Sigma = Some \sigma
                  uncurry (\rightarrow) \sigma = snd \delta
              \mathbf{using}\ \mathit{find}\text{-}Some\text{-}predicate
              by fastforce
           moreover from Cons have
              map (uncurry (\sqcup)) \Delta \preceq
              (map\ (uncurry\ (\rightarrow))\ (\mathfrak{E}\ (remove1\ \sigma\ \Sigma)\ \Delta)\ @
                 remove1 ((fst \ \delta \ \sqcap \ fst \ \sigma) \ \sqcup \ snd \ \sigma)
                  (((fst \ \delta \ \sqcap fst \ \sigma) \ \sqcup \ snd \ \sigma \ \# \ map \ (uncurry \ (\sqcup)) \ (\Im \ (remove1 \ \sigma \ \Sigma) \ \Delta))
                      \ominus map snd (\mathfrak{E} (remove1 \sigma \Sigma) \Delta)))
              unfolding stronger-theory-relation-alt-def
              by simp
           moreover
              \mathbf{have} \vdash (\alpha \to ((\gamma \sqcap \alpha) \sqcup \beta)) \to (\gamma \sqcup (\alpha \to \beta))
              proof -
                let ?\varphi = (\langle \alpha \rangle \to ((\langle \gamma \rangle \sqcap \langle \alpha \rangle) \sqcup \langle \beta \rangle)) \to (\langle \gamma \rangle \sqcup (\langle \alpha \rangle \to \langle \beta \rangle))
                have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi \text{ by } fastforce
                hence \vdash ( ?\varphi ) using propositional-semantics by blast
                thus ?thesis by simp
             qed
           }
           note tautology = this
          let ?\alpha = fst \ \sigma
          let ?\beta = snd \sigma
          let ?\gamma = fst \delta
          have (\lambda \ \delta. \ uncurry \ (\sqcup) \ \delta) = (\lambda \ \delta. \ fst \ \delta \ \sqcup \ snd \ \delta)
                  (\lambda \ \sigma. \ uncurry \ (\rightarrow) \ \sigma) = (\lambda \ \sigma. \ fst \ \sigma \rightarrow snd \ \sigma) by fastforce+
```

```
hence (uncurry (\sqcup) \delta) = (?\gamma \sqcup (?\alpha \to ?\beta)) using \sigma(2) by simp
          hence \vdash (?\alpha \rightarrow ((?\gamma \sqcap ?\alpha) \sqcup ?\beta)) \rightarrow (uncurry (\sqcup) \delta) using tautology by
auto
         ultimately show ?thesis
            using stronger-theory-left-right-cons
            by fastforce
       \mathbf{qed}
    then show ?case by auto
  \mathbf{qed}
  thus ?thesis by simp
qed
{f lemma} (in {\it classical-logic}) {\it merge-witness-cons-measure-deduction}:
  assumes map (uncurry (\sqcup)) \Sigma :\vdash \varphi
       and mset\ (map\ snd\ \Delta)\subseteq \#\ mset\ (map\ (uncurry\ (\to))\ \Sigma\ @\ \Gamma\ \ominus\ map\ snd\ \Sigma)
       and map\ (uncurry\ (\sqcup))\ \Delta\ \$\vdash\ \Phi
    shows map (uncurry (\sqcup)) (\mathfrak{J} \Sigma \Delta) \Vdash (\varphi \# \Phi)
proof -
  let ?\Sigma' = \mathfrak{E} \Sigma \Delta
  let ?\Gamma = map (uncurry (\rightarrow)) ?\Sigma' @ map (uncurry (\Box)) (\mathfrak{J} \Sigma \Delta) \ominus map snd ?\Sigma'
  have ?\Gamma \ \Phi
    using assms(3)
            submerge	ext{-}witness	ext{-}stronger	ext{-}theory	ext{-}right
            measure-stronger-theory-left-monotonic
    by blast
  moreover have map (uncurry (\sqcup)) ?\Sigma' :\vdash \varphi
    using assms(1)
            stronger-theory-deduction-monotonic
            submerge	ext{-}witness	ext{-}stronger	ext{-}theory	ext{-}left
    by blast
  ultimately show ?thesis
    using submerge-witness-msub
    by fastforce
qed
primrec (in classical-logic)
  recover-witness-A :: ('a \times 'a) \ list \Rightarrow ('a \times 'a) \ list \Rightarrow ('a \times 'a) \ list \Rightarrow ('a \times 'a) \ list (\mathfrak{P})
  where
    \mathfrak{P} \Sigma [] = \Sigma
  \mid \mathfrak{P} \Sigma (\delta \# \Delta) =
        (case find (\lambda \sigma. snd \sigma = (uncurry (\sqcup)) \delta) \Sigma of
                None \Rightarrow \mathfrak{P} \Sigma \Delta
             | Some \sigma \Rightarrow (fst \ \sigma \sqcup fst \ \delta, \ snd \ \delta) \# (\mathfrak{P} \ (remove1 \ \sigma \ \Sigma) \ \Delta))
primrec (in classical-logic)
  recover-complement-A :: ('a \times 'a) \ list \Rightarrow ('a \times 'a) \ list \Rightarrow ('a \times 'a) \ list \Rightarrow ('a \times 'a) \ list (\mathfrak{P}^C)
  where
    \mathfrak{P}^C \Sigma [] = []
```

```
\mid \mathfrak{P}^C \Sigma (\delta \# \Delta) =
         (case find (\lambda \sigma. snd \sigma = (uncurry (\sqcup)) \delta) \Sigma of
                 None \Rightarrow \delta \# \mathfrak{P}^C \Sigma \Delta
               | Some \sigma \Rightarrow (\mathfrak{P}^{C} (remove1 \ \sigma \ \Sigma) \ \Delta))
primrec (in classical-logic)
   recover-witness-B :: ('a \times 'a) list \Rightarrow ('a \times 'a) list \Rightarrow ('a \times 'a) list (\mathfrak{Q})
   where
     \mathfrak{Q} \Sigma [] = []
  \mid \mathfrak{Q} \Sigma (\delta \# \Delta) =
         (case find (\lambda \sigma. (snd \sigma) = (uncurry (\sqcup)) \delta) \Sigma of
                  None \Rightarrow \delta \# \mathfrak{Q} \Sigma \Delta
               | Some \sigma \Rightarrow (fst \ \delta, (fst \ \sigma \sqcup fst \ \delta) \rightarrow snd \ \delta) \# (\mathfrak{Q} \ (remove1 \ \sigma \ \Sigma) \ \Delta))
\mathbf{lemma} \ (\mathbf{in} \ classical\text{-}logic) \ recover\text{-}witness\text{-}A\text{-}left\text{-}stronger\text{-}theory:}
   map\ (uncurry\ (\sqcup))\ \Sigma \preceq map\ (uncurry\ (\sqcup))\ (\mathfrak{P}\ \Sigma\ \Delta)
proof -
  have \forall \ \Sigma. \ map \ (uncurry \ (\sqcup)) \ \Sigma \leq map \ (uncurry \ (\sqcup)) \ (\mathfrak{P} \ \Sigma \ \Delta)
  proof (induct \Delta)
     case Nil
        fix \Sigma
        have map (uncurry (\sqcup)) \Sigma \leq map (uncurry (\sqcup)) (\mathfrak{P} \Sigma [])
          by(induct \Sigma, simp+)
     then show ?case by auto
     case (Cons \delta \Delta)
      {
        fix \Sigma
        have map (uncurry (\sqcup)) \Sigma \leq map (uncurry (\sqcup)) (\mathfrak{P} \Sigma (\delta \# \Delta))
        proof (cases find (\lambda \sigma. snd \sigma = uncurry (\sqcup) \delta) \Sigma = None)
          \mathbf{case} \ \mathit{True}
          then show ?thesis using Cons by simp
        next
          case False
          from this obtain \sigma where
             \sigma: find (\lambda \sigma. \ snd \ \sigma = uncurry (\sqcup) \ \delta) \ \Sigma = Some \ \sigma
                  snd \ \sigma = uncurry \ (\sqcup) \ \delta
                 \sigma \in set \Sigma
             \mathbf{using}\ find	ext{-}Some	ext{-}predicate
                     find-Some-set-membership
             by fastforce
          let ?\alpha = fst \ \sigma
          let ?\beta = fst \delta
          let ?\gamma = snd \delta
          have uncurry (\sqcup) = (\lambda \delta. \text{ fst } \delta \sqcup \text{ snd } \delta) by fastforce
          hence \vdash ((?\alpha \sqcup ?\beta) \sqcup ?\gamma) \rightarrow uncurry (\sqcup) \sigma
             using \sigma(2) biconditional-def disjunction-associativity
```

```
by auto
        moreover
        have map (uncurry (\sqcup)) (remove1 \sigma \Sigma)
             \leq map \ (uncurry \ (\sqcup)) \ (\mathfrak{P} \ (remove1 \ \sigma \ \Sigma) \ \Delta)
           using Cons by simp
         ultimately have map (uncurry (\sqcup)) (\sigma \# (remove1 \ \sigma \ \Sigma))
                         \leq map (uncurry (\sqcup)) (\mathfrak{P} \Sigma (\delta \# \Delta))
           \mathbf{by}\ (simp,\ metis\ stronger-theory-left-right-cons)
         moreover
        from \sigma(3) have mset \Sigma = mset (\sigma \# (remove1 \sigma \Sigma))
           hence mset (map (uncurry (\sqcup)) \Sigma) = mset (map (uncurry (\sqcup)) (\sigma #
(remove1 \sigma \Sigma)))
           by (metis mset-map)
        hence map (uncurry (\sqcup)) \Sigma \prec map (uncurry (\sqcup)) (\sigma \# (remove1 \sigma \Sigma))
           by (simp add: msub-stronger-theory-intro)
        ultimately show ?thesis
           using stronger-theory-transitive by blast
      qed
    then show ?case by blast
  qed
  thus ?thesis by auto
qed
lemma (in classical-logic) recover-witness-A-mset-equiv:
  assumes mset \ (map \ snd \ \Sigma) \subseteq \# \ mset \ (map \ (uncurry \ (\sqcup)) \ \Delta)
  shows mset (map snd (\mathfrak{P} \Sigma \Delta @ \mathfrak{P}^C \Sigma \Delta)) = mset (map snd \Delta)
proof -
  have \forall \Sigma. mset (map \ snd \ \Sigma) \subseteq \# \ mset (map \ (uncurry \ (\sqcup)) \ \Delta)
           \longrightarrow mset \ (map \ snd \ (\mathfrak{P} \ \Sigma \ \Delta \ @ \ \mathfrak{P}^C \ \Sigma \ \Delta)) = mset \ (map \ snd \ \Delta)
  proof (induct \ \Delta)
    case Nil
    then show ?case by simp
  next
    case (Cons \delta \Delta)
      fix \Sigma :: ('a \times 'a) \ list
      assume \star: mset\ (map\ snd\ \Sigma) \subseteq \#\ mset\ (map\ (uncurry\ (\sqcup))\ (\delta\ \#\ \Delta))
      have mset (map snd (\mathfrak{P} \Sigma (\delta \# \Delta) @ \mathfrak{P}^C \Sigma (\delta \# \Delta))) = mset (map snd (\delta
\# \Delta))
      proof (cases find (\lambda \sigma. snd \sigma = uncurry (\sqcup) \delta) \Sigma = None)
        case True
        hence uncurry (\sqcup) \delta \notin set (map \ snd \ \Sigma)
        proof (induct \Sigma)
           case Nil
           then show ?case by simp
        next
```

```
case (Cons \sigma \Sigma)
          then show ?case
            by (cases (uncurry (\sqcup)) \delta = snd \ \sigma, fastforce+)
          moreover have mset (map \ snd \ \Sigma) \subseteq \# \ mset \ (map \ (uncurry \ (\sqcup)) \ \Delta) +
\{\#uncurry\ (\sqcup)\ \delta\#\}
          using \star by fastforce
        ultimately have mset\ (map\ snd\ \Sigma)\subseteq \#\ mset\ (map\ (uncurry\ (\sqcup))\ \Delta)
          by (metis diff-single-trivial
                     in	ext{-}multiset	ext{-}in	ext{-}set
                     subset-eq-diff-conv)
        then show ?thesis using Cons True by simp
      next
        {f case}\ {\it False}
        from this obtain \sigma where
          \sigma: find (\lambda \sigma. snd \ \sigma = uncurry (\Box) \ \delta) \ \Sigma = Some \ \sigma
             snd \ \sigma = uncurry \ (\sqcup) \ \delta
             \sigma \in set \Sigma
          using find-Some-predicate
                find-Some-set-membership
          by fastforce
        have A: mset \ (map \ snd \ \Sigma)
              \subseteq \# mset (map (uncurry (\sqcup)) \Delta) + add\text{-mset} (uncurry (\sqcup) \delta) (mset [])
          using \star by auto
        have (fst \sigma, uncurry (\sqcup) \delta) \in \# mset \Sigma
          by (metis (no-types) \sigma(2) \sigma(3) prod.collapse set-mset-mset)
        then have B: mset (map snd (remove1 (fst \sigma, uncurry (\sqcup) \delta) \Sigma))
                     = mset (map \ snd \ \Sigma) - \{\#uncurry \ (\sqcup) \ \delta\#\}
          by (meson remove1-pairs-list-projections-snd)
        have (fst \sigma, uncurry (\sqcup) \delta) = \sigma
          by (metis \sigma(2) prod.collapse)
        then have mset\ (map\ snd\ \Sigma)\ -\ add\text{-}mset\ (uncurry\ (\sqcup)\ \delta)\ (mset\ [])
                  = mset (map \ snd \ (remove1 \ \sigma \ \Sigma))
          using B by simp
        hence mset (map \ snd \ (remove1 \ \sigma \ \Sigma)) \subseteq \# \ mset \ (map \ (uncurry \ (\sqcup)) \ \Delta)
          using A by (metis (no-types) subset-eq-diff-conv)
        with \sigma(1) Cons show ?thesis by simp
      qed
    }
    then show ?case by simp
  qed
  with assms show ?thesis by blast
lemma (in classical-logic) recover-witness-B-stronger-theory:
  assumes mset \ (map \ snd \ \Sigma) \subseteq \# \ mset \ (map \ (uncurry \ (\sqcup)) \ \Delta)
  shows (map\ (uncurry\ (\rightarrow))\ \Sigma\ @\ map\ (uncurry\ (\sqcup))\ \Delta\ \ominus\ map\ snd\ \Sigma)
         \leq map (uncurry (\sqcup)) (\mathfrak{Q} \Sigma \Delta)
proof -
```

```
have \forall \Sigma. mset (map \ snd \ \Sigma) \subseteq \# \ mset (map \ (uncurry \ (\sqcup)) \ \Delta)
           \longrightarrow (\mathit{map}\ (\mathit{uncurry}\ (\rightarrow))\ \Sigma\ @\ \mathit{map}\ (\mathit{uncurry}\ (\sqcup))\ \Delta\ \ominus\ \mathit{map}\ \mathit{snd}\ \Sigma)
               \leq map (uncurry (\sqcup)) (\mathfrak{Q} \Sigma \Delta)
  \mathbf{proof}(induct \ \Delta)
    case Nil
    then show ?case by simp
  next
     case (Cons \delta \Delta)
     {
       \mathbf{fix} \ \Sigma :: ('a \times 'a) \ \mathit{list}
       assume ★: mset\ (map\ snd\ \Sigma) \subseteq \#\ mset\ (map\ (uncurry\ (\sqcup))\ (\delta\ \#\ \Delta))
       have (map\ (uncurry\ (\rightarrow))\ \Sigma\ @\ map\ (uncurry\ (\sqcup))\ (\delta\ \#\ \Delta)\ \ominus\ map\ snd\ \Sigma)
              \leq map (uncurry (\sqcup)) (\mathfrak{Q} \Sigma (\delta \# \Delta))
       proof (cases find (\lambda \sigma. snd \sigma = uncurry (\sqcup) \delta) \Sigma = None)
         \mathbf{case} \ \mathit{True}
         hence uncurry (\sqcup) \delta \notin set (map \ snd \ \Sigma)
         proof (induct \Sigma)
            case Nil
            then show ?case by simp
         next
            case (Cons \sigma \Sigma)
            then show ?case
              by (cases uncurry (\sqcup) \delta = snd \ \sigma, fastforce+)
         hence mset (map\ (uncurry\ (\rightarrow))\ \Sigma\ @\ (map\ (uncurry\ (\sqcup))\ (\delta\ \#\ \Delta))\ \ominus\ map
snd \Sigma)
                = mset (uncurry (\sqcup) \delta \# map (uncurry (\rightarrow)) \Sigma
                         @ map (uncurry (\sqcup)) \Delta \ominus map \ snd \ \Sigma)
                mset\ (map\ snd\ \Sigma)\subseteq \#\ mset\ (map\ (uncurry\ (\sqcup))\ \Delta)
            using *
            by (simp, simp,
                 metis add-mset-add-single
                        diff-single-trivial
                        image\text{-}set
                        mset-map
                        set	ext{-}mset	ext{-}mset
                        subset-eq-diff-conv)
         moreover from this have
            (map\ (uncurry\ (\rightarrow))\ \Sigma\ @\ map\ (uncurry\ (\sqcup))\ \Delta\ \ominus\ map\ snd\ \Sigma)
             \leq map (uncurry (\sqcup)) (\mathfrak{Q} \Sigma \Delta)
            using Cons
            by auto
         hence (uncurry (\sqcup) \delta \# map (uncurry (\to)) \Sigma @ map (uncurry <math>(\sqcup)) \Delta \ominus
map snd \Sigma)
                  \leq map \ (uncurry \ (\sqcup)) \ (\mathfrak{Q} \ \Sigma \ (\delta \ \# \ \Delta))
            using True
            by (simp add: stronger-theory-left-right-cons trivial-implication)
         ultimately show ?thesis
            {\bf unfolding}\ stronger-theory-relation-alt-def
```

```
by simp
              next
                   {\bf case}\ \mathit{False}
                 let ?\Gamma = map (uncurry (\rightarrow)) \Sigma @ (map (uncurry (\Box)) (\delta \# \Delta)) \ominus map snd
\sum
                   from False obtain \sigma where
                        \sigma \text{: find } (\lambda \sigma \text{. snd } \sigma = \textit{uncurry } (\sqcup) \ \delta) \ \Sigma = \textit{Some } \sigma
                               snd \ \sigma = uncurry \ (\sqcup) \ \delta
                               \sigma \in set \Sigma
                        \mathbf{using}\ find	ext{-}Some	ext{-}predicate
                                      find-Some-set-membership
                        by fastforce
                   let ?\Gamma_0 = map (uncurry (\rightarrow)) (remove1 \sigma \Sigma)
                                               @ (map\ (uncurry\ (\sqcup))\ \Delta) \ominus map\ snd\ (remove1\ \sigma\ \Sigma)
                  let ?\alpha = fst \ \sigma
                  let ?\beta = fst \delta
                  let ?\gamma = snd \delta
                  have uncurry (\sqcup) = (\lambda \sigma. fst \sigma \sqcup snd \sigma)
                               uncurry (\rightarrow) = (\lambda \ \sigma. \ fst \ \sigma \rightarrow snd \ \sigma)
                        by fastforce+
                   hence uncurry (\rightarrow) \sigma = ?\alpha \rightarrow (?\beta \sqcup ?\gamma)
                        using \sigma(2)
                        by simp
                   from \sigma(3) have mset (\sigma \# (remove1 \ \sigma \ \Sigma)) = mset \ \Sigma  by simp
                   hence \spadesuit: mset\ (map\ snd\ (\sigma\ \#\ (remove1\ \sigma\ \Sigma))) = mset\ (map\ snd\ \Sigma)
                                                  mset\ (map\ (uncurry\ (\rightarrow))\ (\sigma\ \#\ (remove1\ \sigma\ \Sigma))) = mset\ (map\ (ma
(uncurry (\rightarrow)) \Sigma
                        by (metis mset-map)+
                   hence mset \ ?\Gamma = mset \ (map \ (uncurry \ (\rightarrow)) \ (\sigma \ \# \ (remove1 \ \sigma \ \Sigma))
                                                                                   @ (uncurry (\sqcup) \delta \# map (uncurry (\sqcup)) \Delta)
                                                                                               \ominus map snd (\sigma \# (remove1 \sigma \Sigma)))
                        by simp
                   hence ?\Gamma \leq (?\alpha \rightarrow (?\beta \sqcup ?\gamma) \# ?\Gamma_0)
                        using \sigma(2) \langle uncurry (\rightarrow) \sigma = ?\alpha \rightarrow (?\beta \sqcup ?\gamma) \rangle
                        by (simp add: msub-stronger-theory-intro)
                     moreover have mset (map snd (remove1 \sigma \Sigma)) \subseteq \# mset (map (uncurry
(\sqcup)) \Delta)
                        using \spadesuit(1)
                        by (simp,
                                 metis (no-types, lifting)
                                               \star \sigma(2)
                                               list.simps(9)
                                               mset.simps(2)
                                               mset-map
                                               uncurry-def
                                               mset-subset-eq-add-mset-cancel)
                     with Cons have \heartsuit: ?\Gamma_0 \leq map \ (uncurry \ (\sqcup)) \ (\mathfrak{Q} \ (remove1 \ \sigma \ \Sigma) \ \Delta) by
simp
                   {
```

```
fix \alpha \beta \gamma
             \mathbf{have} \vdash (\beta \sqcup (\alpha \sqcup \beta) \to \gamma) \to (\alpha \to (\beta \sqcup \gamma))
             proof -
               let ?\varphi = (\langle \beta \rangle \sqcup (\langle \alpha \rangle \sqcup \langle \beta \rangle) \to \langle \gamma \rangle) \to (\langle \alpha \rangle \to (\langle \beta \rangle \sqcup \langle \gamma \rangle))
               have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi by fastforce
               hence \vdash ( ?\varphi ) using propositional-semantics by blast
               thus ?thesis by simp
            qed
          }
          hence \vdash (?\beta \sqcup (?\alpha \sqcup ?\beta) \rightarrow ?\gamma) \rightarrow (?\alpha \rightarrow (?\beta \sqcup ?\gamma))
          hence (?\alpha \rightarrow (?\beta \sqcup ?\gamma) \# ?\Gamma_0) \leq map (uncurry (\sqcup)) (\mathfrak{Q} \Sigma (\delta \# \Delta))
             using \sigma(1) \heartsuit
             \mathbf{by}\ (simp,\ metis\ stronger-theory-left-right-cons)
          ultimately show ?thesis
             using stronger-theory-transitive by blast
       qed
     then show ?case by simp
   thus ?thesis using assms by blast
qed
lemma (in classical-logic) recover-witness-B-mset-equiv:
  assumes mset (map \ snd \ \Sigma) \subseteq \# \ mset \ (map \ (uncurry \ (\sqcup)) \ \Delta)
  shows mset\ (map\ snd\ (\mathfrak{Q}\ \Sigma\ \Delta))
         = mset \ (map \ (uncurry \ (\rightarrow)) \ (\mathfrak{P} \ \Sigma \ \Delta) \ @ map \ snd \ \Delta \ominus map \ snd \ (\mathfrak{P} \ \Sigma \ \Delta))
proof -
  have \forall \Sigma. mset (map \ snd \ \Sigma) \subseteq \# \ mset (map \ (uncurry \ (\sqcup)) \ \Delta)
        \longrightarrow mset (map snd (\mathfrak{Q} \Sigma \Delta)) = mset (map (uncurry (\rightarrow)) (\mathfrak{P} \Sigma \Delta) @ map
snd (\mathfrak{P}^C \Sigma \Delta)
  proof (induct \Delta)
     case Nil
     then show ?case by simp
  next
     case (Cons \delta \Delta)
       fix \Sigma :: ('a \times 'a) \ list
       assume \star: mset\ (map\ snd\ \Sigma) \subseteq \#\ mset\ (map\ (uncurry\ (\sqcup))\ (\delta\ \#\ \Delta))
       have mset (map snd (\mathfrak{Q} \Sigma (\delta \# \Delta)))
           = mset (map (uncurry (\rightarrow)) (\mathfrak{P} \Sigma (\delta \# \Delta)) @ map snd (\mathfrak{P}^C \Sigma (\delta \# \Delta)))
       proof (cases find (\lambda \sigma. snd \sigma = uncurry (\sqcup) \delta) \Sigma = None)
          case True
          hence uncurry (\sqcup) \delta \notin set (map \ snd \ \Sigma)
          proof (induct \Sigma)
             case Nil
             then show ?case by simp
          next
             case (Cons \ \sigma \ \Sigma)
```

```
then show ?case
             by (cases (uncurry (\sqcup)) \delta = snd \ \sigma, fastforce+)
        qed
          moreover have mset (map snd \Sigma) \subseteq \# mset (map (uncurry (\sqcup)) \Delta) +
\{\#uncurry\ (\sqcup)\ \delta\#\}
           using \star by force
         ultimately have mset\ (map\ snd\ \Sigma)\subseteq \#\ mset\ (map\ (uncurry\ (\sqcup))\ \Delta)
           by (metis diff-single-trivial in-multiset-in-set subset-eq-diff-conv)
        then show ?thesis using True Cons by simp
      next
        {\bf case}\ \mathit{False}
        from this obtain \sigma where
           \sigma: find (\lambda \sigma. \ snd \ \sigma = uncurry (\sqcup) \ \delta) \ \Sigma = Some \ \sigma
              snd \ \sigma = uncurry \ (\sqcup) \ \delta
              \sigma \in set \Sigma
           using find-Some-predicate
                 find-Some-set-membership
           \mathbf{by}\ \mathit{fastforce}
         hence (fst \sigma, uncurry (\sqcup) \delta) \in \# mset \Sigma
           by (metis (full-types) prod.collapse set-mset-mset)
         then have mset (map \ snd \ (remove1 \ (fst \ \sigma, \ uncurry \ (\sqcup) \ \delta) \ \Sigma))
                   = mset (map \ snd \ \Sigma) - \{\#uncurry \ (\sqcup) \ \delta\#\}
           by (meson remove1-pairs-list-projections-snd)
         moreover have
         mset \ (map \ snd \ \Sigma)
     \subseteq \# mset (map (uncurry (\sqcup)) \Delta) + add\text{-}mset (uncurry (\sqcup) \delta) (mset \parallel)
           using \star by force
         ultimately have mset\ (map\ snd\ (remove1\ \sigma\ \Sigma))
             \subseteq \# mset (map (uncurry (\sqcup)) \Delta)
          by (metis (no-types) \sigma(2) mset.simps(1) prod.collapse subset-eq-diff-conv)
        with \sigma(1) Cons show ?thesis by simp
      qed
    then show ?case by blast
  qed
  thus ?thesis
    \mathbf{using}\ assms\ recover\text{-}witness\text{-}A\text{-}mset\text{-}equiv
    by (simp, metis add-diff-cancel-left')
qed
\mathbf{lemma} \ (\mathbf{in} \ classical\text{-}logic) \ recover\text{-}witness\text{-}B\text{-}right\text{-}stronger\text{-}theory:}
  map (uncurry (\rightarrow)) \Delta \leq map (uncurry (\rightarrow)) (\mathfrak{Q} \Sigma \Delta)
proof -
  have \forall \Sigma. map (uncurry (\rightarrow)) \Delta \leq map (uncurry (\rightarrow)) (\mathfrak{Q} \Sigma \Delta)
  proof (induct \Delta)
    case Nil
    then show ?case by simp
  next
    case (Cons \delta \Delta)
```

```
{
       fix \Sigma
       have map (uncurry (\rightarrow)) (\delta \# \Delta) \leq map (uncurry (\rightarrow)) (\mathfrak{Q} \Sigma (\delta \# \Delta))
       proof (cases find (\lambda \sigma. snd \sigma = uncurry (\sqcup) \delta) \Sigma = None)
         case True
         then show ?thesis
            using Cons
            by (simp add: stronger-theory-left-right-cons trivial-implication)
       next
         case False
         from this obtain \sigma where \sigma:
            find (\lambda \sigma. \ snd \ \sigma = uncurry \ (\sqcup) \ \delta) \ \Sigma = Some \ \sigma
            by fastforce
         let ?\alpha = fst \delta
         let ?\beta = snd \delta
         let ?\gamma = fst \sigma
         have uncurry (\rightarrow) = (\lambda \delta. \text{ fst } \delta \rightarrow \text{ snd } \delta) by fastforce
         hence uncurry (\rightarrow) \delta = ?\alpha \rightarrow ?\beta by auto
         moreover have \vdash (?\alpha \rightarrow (?\gamma \sqcup ?\alpha) \rightarrow ?\beta) \rightarrow ?\alpha \rightarrow ?\beta
            unfolding disjunction-def
            using axiom-k axiom-s modus-ponens flip-implication
            by blast
         ultimately show ?thesis
            using Cons \sigma
            by (simp add: stronger-theory-left-right-cons)
       qed
    }
    then show ?case by simp
  qed
  thus ?thesis by simp
qed
lemma (in classical-logic) recoverWitnesses-mset-equiv:
  assumes mset \ (map \ snd \ \Delta) \subseteq \# \ mset \ \Gamma
       and mset\ (map\ snd\ \Sigma)\subseteq \#\ mset\ (map\ (uncurry\ (\sqcup))\ \Delta)
    shows mset (\Gamma \ominus map \ snd \ \Delta)
           = mset ((map (uncurry (\rightarrow)) (\mathfrak{P} \Sigma \Delta) @ \Gamma \ominus map snd (\mathfrak{P} \Sigma \Delta)) \ominus map)
snd (\mathfrak{Q} \Sigma \Delta)
proof -
  have mset (\Gamma \ominus map \ snd \ \Delta) = mset (\Gamma \ominus map \ snd \ (\mathfrak{P}^C \ \Sigma \ \Delta) \ominus map \ snd \ (\mathfrak{P}^C \ \Sigma \ \Delta))
\Sigma \Delta)
    using assms(2) recover-witness-A-mset-equiv
    by (simp add: union-commute)
  moreover have \forall \ \Sigma. \ mset \ (map \ snd \ \Sigma) \subseteq \# \ mset \ (map \ (uncurry \ (\sqcup)) \ \Delta)
                      \longrightarrow mset \ (\Gamma \ominus map \ snd \ (\mathfrak{P}^C \ \Sigma \ \Delta))
                         = (mset \ ((map \ (uncurry \ (\rightarrow)) \ (\mathfrak{P} \ \Sigma \ \Delta) \ @ \ \Gamma) \ominus map \ snd \ (\mathfrak{Q} \ \Sigma))
\Delta)))
    using assms(1)
  proof (induct \ \Delta)
```

```
case Nil
    then show ?case by simp
  next
     case (Cons \delta \Delta)
    from Cons.prems have snd \delta \in set \Gamma
       using mset-subset-eqD by fastforce
    from Cons.prems have \heartsuit: mset (map snd \Delta) \subseteq \# mset \Gamma
       using subset-mset.dual-order.trans
       by fastforce
       fix \Sigma :: ('a \times 'a) \ list
       assume \star: mset\ (map\ snd\ \Sigma) \subseteq \#\ mset\ (map\ (uncurry\ (\sqcup))\ (\delta\ \#\ \Delta))
       have mset \ (\Gamma \ominus map \ snd \ (\mathfrak{P}^C \ \Sigma \ (\delta \ \# \ \Delta)))
           = \textit{mset} \; ((\textit{map} \; (\textit{uncurry} \; (\rightarrow)) \; (\mathfrak{P} \; \Sigma \; (\delta \; \# \; \Delta)) \; @ \; \Gamma) \; \ominus \; \textit{map} \; \textit{snd} \; (\mathfrak{Q} \; \Sigma \; (\delta \; \# \; \Delta)) \; (\mathfrak{P} \; \Gamma) \; )
\Delta)))
       proof (cases find (\lambda \sigma. snd \sigma = uncurry (\sqcup) \delta) \Sigma = None)
         case True
         hence uncurry (\sqcup) \delta \notin set (map \ snd \ \Sigma)
         proof (induct \Sigma)
            case Nil
            then show ?case by simp
         next
            case (Cons \sigma \Sigma)
            then show ?case
              by (cases (uncurry (\sqcup)) \delta = snd \ \sigma, fastforce+)
           moreover have mset (map snd \Sigma) \subseteq \# mset (map (uncurry (\sqcup)) \Delta) +
\{\#uncurry\ (\sqcup)\ \delta\#\}
            using \star by auto
         ultimately have mset\ (map\ snd\ \Sigma)\subseteq \#\ mset\ (map\ (uncurry\ (\sqcup))\ \Delta)
         by (metis (full-types) diff-single-trivial in-multiset-in-set subset-eq-diff-conv)
         with Cons.hyps \heartsuit have mset (\Gamma \ominus map \ snd \ (\mathfrak{P}^C \ \Sigma \ \Delta))
                                    = mset ((map (uncurry (\rightarrow)) (\mathfrak{P} \Sigma \Delta) @ \Gamma) \ominus map snd
(\mathfrak{Q} \Sigma \Delta)
         thus ?thesis using True \langle snd \delta \in set \Gamma \rangle by simp
       next
         {f case} False
         from this obtain \sigma where \sigma:
            find (\lambda \sigma. \ snd \ \sigma = uncurry \ (\sqcup) \ \delta) \ \Sigma = Some \ \sigma
            snd \ \sigma = uncurry \ (\sqcup) \ \delta
            \sigma \in set \Sigma
            using find-Some-predicate
                   find-Some-set-membership
            by fastforce
         with \star have mset (map snd (remove1 \sigma \Sigma)) \subseteq \# mset (map (uncurry (\sqcup))
\Delta)
            by (simp, metis (no-types, lifting)
                               add-mset-remove-trivial-eq
```

```
image-mset-add-mset
                                                           in\text{-}multiset\text{-}in\text{-}set
                                                           mset-subset-eq-add-mset-cancel)
                  with Cons.hyps have mset (\Gamma \ominus map \ snd \ (\mathfrak{P}^C \ (remove1 \ \sigma \ \Sigma) \ \Delta))
                                                              = mset ((map (uncurry (\rightarrow)) (\mathfrak{P} (remove1 \sigma \Sigma) \Delta) @ \Gamma)
                                                                                \ominus map snd (\mathfrak{Q} (remove1 \sigma \Sigma) \Delta))
                       using \heartsuit by blast
                  then show ?thesis using \sigma by simp
             qed
         }
         then show ?case by blast
    moreover have image-mset snd (mset (\mathfrak{P}^C \Sigma \Delta)) = mset (map snd \Delta \ominus map
snd (\mathfrak{P} \Sigma \Delta)
         using assms(2) recover-witness-A-mset-equiv
         by (simp, metis (no-types) diff-union-cancelL list-subtract-mset-homomorphism
mset-map
   then have mset \Gamma - (image\text{-}mset \ snd \ (mset \ (\mathfrak{P}^C \Sigma \Delta)) + image\text{-}mset \ snd \ (mset
(\mathfrak{P} \ \Sigma \ \Delta)))
                       = \{ \#x \rightarrow y. \ (x, y) \in \# \ mset \ (\mathfrak{P} \ \Sigma \ \Delta) \# \}
                          + (mset \ \Gamma - image\text{-}mset \ snd \ (mset \ (\mathfrak{P} \ \Sigma \ \Delta))) - image\text{-}mset \ snd \ (mset \ snd \ (mset \ snd \
(\mathfrak{Q} \Sigma \Delta)
         using calculation
                       assms(2)
                       recover\text{-}witness\text{-}A\text{-}mset\text{-}equiv
                       recover\text{-}witness\text{-}B\text{-}mset\text{-}equiv
         by fastforce
    ultimately
    show ?thesis
         using assms recover-witness-A-mset-equiv
         by simp
qed
theorem (in classical-logic) measure-deduction-generalized-witness:
    \Gamma \$ \vdash (\Phi @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land 
                                                         map (uncurry (\sqcup)) \Sigma \$\vdash \Phi \land
                                                         (map\ (uncurry\ (\rightarrow))\ \Sigma\ @\ \Gamma\ \ominus\ (map\ snd\ \Sigma))\ \$\vdash\ \Psi)
proof -
    have \forall \ \Gamma \ \Psi. \ \Gamma \ \$\vdash \ (\Phi @ \Psi) = (\exists \ \Sigma. \ mset \ (map \ snd \ \Sigma) \subseteq \# \ mset \ \Gamma \ \land
                                                                                      map (uncurry (\sqcup)) \Sigma \$ \vdash \Phi \land
                                                                                    (map\ (uncurry\ (\rightarrow))\ \Sigma\ @\ \Gamma\ \ominus\ (map\ snd\ \Sigma))\ \$\vdash\ \Psi)
    proof (induct \Phi)
         case Nil
          {
             fix Γ Ψ
             have \Gamma \Vdash ([] @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land 
                                                                             map (uncurry (\sqcup)) \Sigma \$\vdash [] \land
                                                                             map\ (uncurry\ (\rightarrow))\ \Sigma\ @\ \Gamma\ \ominus\ map\ snd\ \Sigma\ \$\vdash\ \Psi)
             proof (rule iffI)
```

```
assume \Gamma \Vdash ([] @ \Psi)
                  moreover
                 have \Gamma \Vdash ([] @ \Psi) = (mset \ (map \ snd \ []) \subseteq \# \ mset \ \Gamma \land 
                                                                                                 map (uncurry (\sqcup)) [] \$ \vdash [] \land
                                                                                                 map\ (uncurry\ (\rightarrow))\ []\ @\ \Gamma\ \ominus\ (map\ snd\ [])\ \$\vdash\ \Psi)
                         by simp
                   ultimately show \exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land
                                                                                           map (uncurry (\sqcup)) \Sigma \$ \vdash [] \land
                                                                                           map\ (uncurry\ (\rightarrow))\ \Sigma\ @\ \Gamma\ \ominus\ map\ snd\ \Sigma\ \$\vdash\ \Psi
                         by metis
            next
                  assume \exists \Sigma. mset (map \ snd \ \Sigma) \subseteq \# \ mset \ \Gamma \land
                                                          map\ (uncurry\ (\sqcup))\ \Sigma\ \$\vdash\ []\ \land
                                                          map\ (uncurry\ (\rightarrow))\ \Sigma\ @\ \Gamma\ \ominus\ map\ snd\ \Sigma\ \$\vdash\ \Psi
                  from this obtain \Sigma where
                         \Sigma: mset\ (map\ snd\ \Sigma) \subseteq \#\ mset\ \Gamma
                                   map\ (uncurry\ (\rightarrow))\ \Sigma\ @\ \Gamma\ \ominus\ map\ snd\ \Sigma\ \$\vdash\ ([]\ @\ \Psi)
                         by fastforce
                  hence (map\ (uncurry\ (\rightarrow))\ \Sigma\ @\ \Gamma\ \ominus\ map\ snd\ \Sigma)\ \preceq\ \Gamma
                         using witness-stronger-theory by auto
                  with \Sigma(2) show \Gamma \Vdash ([] @ \Psi)
                         using measure-stronger-theory-left-monotonic by blast
           qed
      }
     then show ?case by blast
next
      case (Cons \varphi \Phi)
      {
           fix Γ Ψ
           have \Gamma \Vdash ((\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \cong \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \cong \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \cong \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) \cong \# mset \Gamma \land (\varphi \# \Phi) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) @ \Psi) = (\exists \Sigma. mset (map snd \Sigma) @ \Psi) = (
                                                                                                                        map (uncurry (\sqcup)) \Sigma \$\vdash (\varphi \# \Phi) \land
                                                                                                                        map\ (uncurry\ (\rightarrow))\ \Sigma\ @\ \Gamma\ \ominus\ map\ snd\ \Sigma\ \$\vdash\ \Psi)
            proof (rule iffI)
                  assume \Gamma \ \Vdash ((\varphi \# \Phi) @ \Psi)
                  from this obtain \Sigma where
                         \Sigma: mset\ (map\ snd\ \Sigma) \subseteq \#\ mset\ \Gamma
                                   map\ (uncurry\ (\sqcup))\ \Sigma :\vdash \varphi
                                   map\ (uncurry\ (\rightarrow))\ \Sigma\ @\ \Gamma\ \ominus\ (map\ snd\ \Sigma)\ \$\vdash\ (\Phi\ @\ \Psi)
                                   (is ?\Gamma_0 \$\vdash (\Phi @ \Psi))
                         by auto
                  from this(3) obtain \Delta where
                         \Delta: mset\ (map\ snd\ \Delta) \subseteq \#\ mset\ ?\Gamma_0
                                   map\ (uncurry\ (\sqcup))\ \Delta\ \$\vdash\ \Phi
                                   map\ (uncurry\ (\rightarrow))\ \Delta\ @\ ?\Gamma_0\ \ominus\ (map\ snd\ \Delta)\ \$\vdash\ \Psi
                         using Cons
                         by auto
                  let ?\Sigma' = \mathfrak{J} \Sigma \Delta
                  have map (uncurry (\sqcup)) ?\Sigma' \$ \vdash (\varphi \# \Phi)
                         using \Delta(1) \Delta(2) \Sigma(2) merge-witness-cons-measure-deduction by blast
```

```
moreover have mset (map snd ?\Sigma') \subseteq \# mset \Gamma
    using \Delta(1) \Sigma(1) merge-witness-msub-intro by blast
  moreover have map (uncurry (\rightarrow)) ?\Sigma' @ \Gamma \ominus map \ snd ?\Sigma' \$ \vdash \Psi
    using \Delta(1) \Delta(3) merge-witness-measure-deduction-intro by blast
  ultimately show
    \exists \Sigma. \ mset \ (map \ snd \ \Sigma) \subseteq \# \ mset \ \Gamma \ \land
          map\ (uncurry\ (\sqcup))\ \Sigma\ \$\vdash\ (\varphi\ \#\ \Phi)\ \land
          map\ (uncurry\ (\rightarrow))\ \Sigma\ @\ \Gamma\ \ominus\ map\ snd\ \Sigma\ \$\vdash\ \Psi
    by fast
next
  assume \exists \Sigma. mset (map \ snd \ \Sigma) \subseteq \# \ mset \ \Gamma \land
                map (uncurry (\sqcup)) \Sigma \$\vdash (\varphi \# \Phi) \land
                map\ (uncurry\ (\rightarrow))\ \Sigma\ @\ \Gamma\ \ominus\ map\ snd\ \Sigma\ \$\vdash\ \Psi
  from this obtain \Delta where \Delta:
    mset \ (map \ snd \ \Delta) \subseteq \# \ mset \ \Gamma
    map (uncurry (\sqcup)) \Delta \$\vdash (\varphi \# \Phi)
    map\ (uncurry\ (	o))\ \Delta\ @\ \Gamma\ \ominus\ map\ snd\ \Delta\ \$\vdash\ \Psi
    by auto
  from this obtain \Sigma where \Sigma:
    mset\ (map\ snd\ \Sigma)\subseteq \#\ mset\ (map\ (uncurry\ (\sqcup))\ \Delta)
    map (uncurry (\sqcup)) \Sigma :\vdash \varphi
    map\ (uncurry\ (\rightarrow))\ \Sigma\ @\ (map\ (uncurry\ (\sqcup))\ \Delta)\ \ominus\ map\ snd\ \Sigma\ \$\vdash\ \Phi
    by auto
  let \Omega = \mathfrak{P} \Sigma \Delta
  let ?\Xi = \mathfrak{Q} \Sigma \Delta
 let ?\Gamma_0 = map \ (uncurry \ (\rightarrow)) \ ?\Omega @ \Gamma \ominus map \ snd \ ?\Omega
  let ?\Gamma_1 = map \ (uncurry \ (\rightarrow)) ?\Xi @ ?\Gamma_0 \ominus map \ snd ?\Xi
  have mset (\Gamma \ominus map \ snd \ \Delta) = mset \ (?\Gamma_0 \ominus map \ snd \ ?\Xi)
    using \Delta(1) \Sigma(1) recover Witnesses-mset-equiv by blast
  hence (\Gamma \ominus map \ snd \ \Delta) \preceq (?\Gamma_0 \ominus map \ snd \ ?\Xi)
    by (simp add: msub-stronger-theory-intro)
  hence ?\Gamma_1 \$ \vdash \Psi
    using \Delta(3) measure-stronger-theory-left-monotonic
           stronger-theory-combine
           recover-witness-B-right-stronger-theory
    by blast
  moreover
  have mset\ (map\ snd\ ?\Xi)\subseteq \#\ mset\ ?\Gamma_0
    using \Sigma(1) \Delta(1) recover-witness-B-mset-equiv
    by (simp,
         metis\ list-subtract-monotonic
                list-subtract-mset-homomorphism
                mset-map)
  moreover
  have map (uncurry (\sqcup)) ?\equiv \$\vdash \Phi
    using \Sigma(1) recover-witness-B-stronger-theory
           \Sigma(3) measure-stronger-theory-left-monotonic by blast
  ultimately have ?\Gamma_0 \$\vdash (\Phi @ \Psi)
    using Cons by fast
```

```
moreover
        have mset\ (map\ snd\ ?\Omega) \subseteq \#\ mset\ (map\ snd\ \Delta)
           using \Sigma(1) recover-witness-A-mset-equiv
           by (simp, metis mset-subset-eq-add-left)
         hence mset (map \ snd \ ?\Omega) \subseteq \# \ mset \ \Gamma \ using \ \Delta(1) \ by \ simp
         moreover
        have map (uncurry (\sqcup)) \Omega :\vdash \varphi
           using \Sigma(2)
                  recover-witness-A-left-stronger-theory
                  stronger-theory-deduction-monotonic\\
           by blast
         ultimately show \Gamma \ ((\varphi \# \Phi) @ \Psi)
           \mathbf{by} \ (simp, \ blast)
      qed
    then show ?case by metis
  qed
  thus ?thesis by blast
qed
lemma (in classical-logic) measure-list-deduction-antitonic:
  assumes \Gamma \Vdash \Psi
      and \Psi \coloneq \varphi
    \mathbf{shows}\ \Gamma \coloneq \varphi
  using assms
proof (induct \Psi arbitrary: \Gamma \varphi)
  case Nil
  then show ?case
    \mathbf{using}\ \mathit{list-deduction-weaken}
    by simp
next
  case (Cons \psi \Psi)
  hence \Psi : \vdash \psi \to \varphi
    \mathbf{using}\ \mathit{list-deduction-theorem}\ \mathbf{by}\ \mathit{blast}
  from \langle \Gamma \Vdash (\psi \# \Psi) \rangle obtain \Sigma where \Sigma:
    mset\ (map\ snd\ \Sigma) \subseteq \#\ mset\ \Gamma
    map\ (uncurry\ (\sqcup))\ \Sigma :\vdash \psi
    map\ (uncurry\ (	o))\ \Sigma\ @\ \Gamma\ \ominus\ map\ snd\ \Sigma\ \$\vdash\ \Psi
    by auto
  hence \Gamma : \vdash \psi \to \varphi
    using
      measure-stronger-theory-left-monotonic\\
      witness-stronger-theory
      \langle \Psi : \vdash \psi \to \varphi \rangle
      Cons
    by blast
  moreover
  have \Gamma : \vdash \psi
    using \Sigma(1) \Sigma(2)
```

```
stronger-theory-deduction-monotonic
           witness\hbox{-}weaker\hbox{-}theory
    by blast
  ultimately show ?case using list-deduction-modus-ponens by auto
qed
Finally, we may establish that (\$\vdash) is transitive.
theorem (in classical-logic) measure-transitive:
  assumes \Gamma \Vdash \Lambda
      and \Lambda \ \$ \vdash \ \Delta
    shows \Gamma \Vdash \Delta
  using assms
proof (induct \Delta arbitrary: \Gamma \Lambda)
  case Nil
  then show ?case by simp
next
  case (Cons \delta \Delta)
  from this obtain \Sigma where \Sigma:
    mset \ (map \ snd \ \Sigma) \subseteq \# \ mset \ \Lambda
    map\ (uncurry\ (\sqcup))\ \Sigma :\vdash \delta
    map\ (uncurry\ (\rightarrow))\ \Sigma\ @\ \Lambda\ \ominus\ map\ snd\ \Sigma\ \$\vdash\ \Delta
    by auto
  hence \Gamma \Vdash (map \ (uncurry \ (\sqcup)) \ \Sigma \ @ \ map \ (uncurry \ (\to)) \ \Sigma \ @ \ \Lambda \ominus (map \ snd))
\Sigma))
    {\bf using} \ {\it Cons} \ {\it measure-witness-right-split}
    by simp
  from this obtain \Psi where \Psi:
    mset \ (map \ snd \ \Psi) \subseteq \# \ mset \ \Gamma
    map \ (uncurry \ (\sqcup)) \ \Psi \ \$\vdash \ map \ (uncurry \ (\sqcup)) \ \Sigma
     map\ (uncurry\ (\rightarrow))\ \Psi\ @\ \Gamma\ \ominus\ map\ snd\ \Psi\ \$\vdash\ (map\ (uncurry\ (\rightarrow))\ \Sigma\ @\ \Lambda\ \ominus
map snd \Sigma)
    {\bf using}\ measure-deduction-generalized\text{-}witness
    by fastforce
  have map (uncurry (\rightarrow)) \Psi @ \Gamma \ominus map \ snd \ \Psi \ \$\vdash \Delta
    using \Sigma(3) \ \Psi(3) \ Cons
    by auto
  moreover
  have map (uncurry (\sqcup)) \Psi :\vdash \delta
    using \Psi(2) \Sigma(2) measure-list-deduction-antitonic
    by blast
  ultimately show ?case
    using \Psi(1)
    by fastforce
qed
```

2.6 Measure Deduction Cancellation Rules

In this chapter we go over how to cancel formulae occurring in measure deduction judgements.

The first observation is that tautologies can always be canceled on either side of the turnstile.

```
lemma (in classical-logic) measure-tautology-right-cancel:
  assumes \vdash \varphi
  \mathbf{shows}\ \Gamma\ \$\vdash\ (\varphi\ \#\ \Phi) = \Gamma\ \$\vdash\ \Phi
proof (rule iffI)
  assume \Gamma \$ \vdash (\varphi \# \Phi)
  from this obtain \Sigma where \Sigma:
    mset \ (map \ snd \ \Sigma) \subseteq \# \ mset \ \Gamma
    map (uncurry (\sqcup)) \Sigma :\vdash \varphi
    map\ (uncurry\ (\rightarrow))\ \Sigma\ @\ \Gamma\ \ominus\ map\ snd\ \Sigma\ \$\vdash\ \Phi
    by auto
  thus \Gamma \Vdash \Phi
    using measure-stronger-theory-left-monotonic
           witness-stronger-theory
    by blast
next
  \mathbf{assume}\ \Gamma\ \$\vdash\ \Phi
  hence map (uncurry (\rightarrow)) [] @ \Gamma \ominus map \ snd [] \$ \vdash \Phi
         mset \ (map \ snd \ []) \subseteq \# \ mset \ \Gamma
         map\ (uncurry\ (\sqcup))\ []:\vdash \varphi
    using assms
    by simp+
  thus \Gamma \$ \vdash (\varphi \# \Phi)
    using measure-deduction.simps(2)
    by blast
qed
lemma (in classical-logic) measure-tautology-left-cancel [simp]:
  assumes \vdash \gamma
  \mathbf{shows}\ (\gamma\ \#\ \Gamma)\ \$\vdash\ \Phi = \Gamma\ \$\vdash\ \Phi
proof (rule iffI)
  assume (\gamma \# \Gamma) \Vdash \Phi
  moreover have \Gamma \Vdash \Gamma
    by (simp add: stronger-theory-to-measure-deduction)
  hence \Gamma \$ \vdash (\gamma \# \Gamma)
    using assms measure-tautology-right-cancel
    by simp
  ultimately show \Gamma \Vdash \Phi
    using measure-transitive by blast
  \mathbf{assume}\ \Gamma\ \$\vdash\ \Phi
  moreover have mset \ \Gamma \subseteq \# \ mset \ (\gamma \ \# \ \Gamma)
    \mathbf{by} \ simp
```

```
hence (\gamma \# \Gamma) \$ \vdash \Gamma
    \mathbf{using}\ \mathit{msub-stronger-theory-intro}
           stronger-theory-to-measure-deduction\\
    by blast
  ultimately show (\gamma \# \Gamma) \Vdash \Phi
    using measure-transitive by blast
\mathbf{qed}
{f lemma} (in {\it classical-logic}) {\it measure-deduction-one-collapse}:
  \Gamma \$ \vdash [\varphi] = \Gamma : \vdash \varphi
proof (rule iffI)
  assume \Gamma \Vdash [\varphi]
  from this obtain \Sigma where
    \Sigma: mset\ (map\ snd\ \Sigma) \subseteq \#\ mset\ \Gamma
       map (uncurry (\sqcup)) \Sigma :\vdash \varphi
    by auto
  hence map (uncurry (\sqcup)) \Sigma \preceq \Gamma
    using witness-weaker-theory by blast
  thus \Gamma :\vdash \varphi using \Sigma(2)
    using stronger-theory-deduction-monotonic by blast
\mathbf{next}
  assume \Gamma : \vdash \varphi
  let ?\Sigma = map (\lambda \gamma. (\bot, \gamma)) \Gamma
  have \Gamma \leq map \ (uncurry \ (\sqcup)) \ ?\Sigma
  proof (induct \Gamma)
    case Nil
    then show ?case by simp
  next
    case (Cons \gamma \Gamma)
    have \vdash (\bot \sqcup \gamma) \to \gamma
      unfolding disjunction-def
      using ex-falso-quodlibet modus-ponens excluded-middle-elimination
      by blast
    then show ?case using Cons
      by (simp add: stronger-theory-left-right-cons)
  \mathbf{qed}
  hence map\ (uncurry\ (\sqcup))\ ?\Sigma :\vdash \varphi
    using \langle \Gamma : \vdash \varphi \rangle stronger-theory-deduction-monotonic by blast
  moreover have mset (map \ snd \ ?\Sigma) \subseteq \# \ mset \ \Gamma \ \mathbf{by} \ (induct \ \Gamma, \ simp+)
  ultimately show \Gamma \Vdash [\varphi]
    using measure-deduction.simps(1)
           measure-deduction.simps(2)
    by blast
qed
Split cases, which are occurrences of \psi \sqcup \varphi \# \psi \to \varphi \# \ldots, also cancel and
simplify to just \varphi \# \ldots We previously established \Gamma \Vdash \psi \sqcup \varphi \# \psi \to \varphi
\# \Phi = \Gamma \$\rightarrow \varphi \# \Phi$ as part of the proof of transitivity.
```

```
lemma (in classical-logic) measure-formula-left-split:
  \psi \sqcup \varphi \# \psi \to \varphi \# \Gamma \$ \vdash \Phi = \varphi \# \Gamma \$ \vdash \Phi
proof (rule iffI)
  \mathbf{assume}\ \varphi\ \#\ \Gamma\ \$\vdash\ \Phi
  have \psi \sqcup \varphi \# \psi \to \varphi \# \Gamma \Vdash (\psi \sqcup \varphi \# \psi \to \varphi \# \Gamma)
    {f using}\ stronger-theory-to-measure-deduction
            stronger-theory-reflexive
    by blast
  hence \psi \sqcup \varphi \# \psi \rightarrow \varphi \# \Gamma \Vdash (\varphi \# \Gamma)
     using measure-formula-right-split by blast
  with \langle \varphi \# \Gamma \Vdash \Phi \rangle show \psi \sqcup \varphi \# \psi \to \varphi \# \Gamma \Vdash \Phi
    using measure-transitive by blast
next
  assume \psi \sqcup \varphi \# \psi \rightarrow \varphi \# \Gamma \Vdash \Phi
  have \varphi \# \Gamma \$ \vdash (\varphi \# \Gamma)
    using stronger-theory-to-measure-deduction
            stronger-theory-reflexive
    by blast
  hence \varphi \# \Gamma \$ \vdash (\psi \sqcup \varphi \# \psi \to \varphi \# \Gamma)
    using measure-formula-right-split by blast
  with \langle \psi \sqcup \varphi \# \psi \rightarrow \varphi \# \Gamma \$ \vdash \Phi \rangle show \varphi \# \Gamma \$ \vdash \Phi
     using measure-transitive by blast
qed
lemma (in classical-logic) measure-witness-left-split [simp]:
  assumes mset\ (map\ snd\ \Sigma)\subseteq \#\ mset\ \Gamma
  shows (map\ (uncurry\ (\sqcup))\ \Sigma\ @\ map\ (uncurry\ (\to))\ \Sigma\ @\ \Gamma\ \ominus\ (map\ snd\ \Sigma))\ \$\vdash
\Phi = \Gamma \ \P 
  \mathbf{using}\ \mathit{assms}
proof (induct \Sigma arbitrary: \Gamma)
  case Nil
  then show ?case by simp
next
  case (Cons \sigma \Sigma)
  let ?\chi = fst \ \sigma
  let ?\gamma = snd \sigma
  let \mathcal{T}_0 = map \ (uncurry \ (\sqcup)) \ \Sigma \ @ \ map \ (uncurry \ (\to)) \ \Sigma \ @ \ \Gamma \ \ominus \ map \ snd \ (\sigma \ \#)
  let \mathcal{T}' = map \ (uncurry \ (\sqcup)) \ (\sigma \# \Sigma) \ @map \ (uncurry \ (\to)) \ (\sigma \# \Sigma) \ @\Gamma \ominus
map snd (\sigma \# \Sigma)
  assume mset\ (map\ snd\ (\sigma\ \#\ \Sigma))\subseteq \#\ mset\ \Gamma
  hence A: add-mset (snd \sigma) (image-mset snd (mset \Sigma)) \subseteq \# mset \Gamma by simp
  hence B: image-mset snd (mset \Sigma) + (mset \Gamma - image-mset snd (mset \Sigma))
            = add\text{-}mset \ (snd \ \sigma) \ (image\text{-}mset \ snd \ (mset \ \Sigma))
              + (mset \ \Gamma - add\text{-}mset \ (snd \ \sigma) \ (image\text{-}mset \ snd \ (mset \ \Sigma)))
      by (metis (no-types) mset-subset-eq-insertD subset-mset.add-diff-inverse sub-
set-mset-def)
  have \{\#x \to y. (x, y) \in \# mset \Sigma \#\}
              + mset \Gamma - add\text{-}mset (snd \sigma) (image\text{-}mset snd (mset \Sigma))
```

```
= \{ \#x \rightarrow y. \ (x, y) \in \# \ mset \ \Sigma \# \}
            + (mset \ \Gamma - add\text{-}mset \ (snd \ \sigma) \ (image\text{-}mset \ snd \ (mset \ \Sigma)))
  using A subset-mset.diff-add-assoc by blast
hence \{\#x \to y. (x, y) \in \# \text{ mset } \Sigma \#\} + (\text{mset } \Gamma - \text{image-mset snd } (\text{mset } \Sigma))
      = add-mset (snd \sigma) ({\#x \rightarrow y. (x, y) \in \# mset \Sigma \#}
            + mset \Gamma - add-mset (snd \sigma) (image-mset snd (mset \Sigma)))
  using B by auto
hence C:
  mset \ (map \ snd \ \Sigma) \subseteq \# \ mset \ \Gamma
  mset\ (map\ (uncurry\ (\sqcup))\ \Sigma\ @\ map\ (uncurry\ (\to))\ \Sigma\ @\ \Gamma\ \ominus\ map\ snd\ \Sigma)
 = mset (?\gamma \# ?\Gamma_0)
  using \langle mset \ (map \ snd \ (\sigma \ \# \ \Sigma)) \subseteq \# \ mset \ \Gamma \rangle
         subset\text{-}mset.dual\text{-}order.trans
  by (fastforce+)
hence \Gamma \Vdash \Phi = (?\chi \sqcup ?\gamma \# ?\chi \rightarrow ?\gamma \# ?\Gamma_0) \Vdash \Phi
proof -
  have \forall \Gamma \Delta. \neg mset (map snd \Sigma) \subseteq \# mset \Gamma
              \vee \neg \Gamma \Vdash \Phi
              \vee \neg mset (map (uncurry (\sqcup)) \Sigma
                          @ map (uncurry (\rightarrow)) \Sigma
                          @~\Gamma \ominus \textit{map snd }\Sigma)
                   \subseteq \# mset \Delta
              \vee \ \Delta \ \$ \vdash \ \Phi
    using Cons.hyps measure-msub-left-monotonic by blast
  moreover
  {
    assume \neg \Gamma \Vdash \Phi
    then have \exists \Delta. mset (snd \sigma \# map (uncurry (\sqcup)) \Sigma
                              @ map (uncurry (\rightarrow)) \Sigma
                              @ \Gamma \ominus map \ snd \ (\sigma \# \Sigma))
                        \subseteq \# mset \Delta
                      \wedge \, \neg \, \Gamma \, \$ \vdash \, \Phi
                      \wedge \neg \Delta \$ \vdash \Phi
       \mathbf{by}\ (\mathit{metis}\ (\mathit{no-types})\ \mathit{Cons.hyps}\ \mathit{C}\ \mathit{subset-mset.dual-order.reft})
    then have ?thesis
       using measure-formula-left-split measure-msub-left-monotonic by blast
  }
  ultimately show ?thesis
   by (metis (full-types) C measure-formula-left-split subset-mset.dual-order.reft)
qed
moreover
have (uncurry (\sqcup)) = (\lambda \psi. fst \psi \sqcup snd \psi)
      (uncurry (\rightarrow)) = (\lambda \psi. fst \psi \rightarrow snd \psi)
  by fastforce+
hence mset ?\Gamma' = mset (?\chi \sqcup ?\gamma \# ?\chi \rightarrow ?\gamma \# ?\Gamma_0)
  by fastforce
hence (?\chi \sqcup ?\gamma \# ?\chi \rightarrow ?\gamma \# ?\Gamma_0) \Vdash \Phi = ?\Gamma' \Vdash \Phi
  by (metis
         (mono-tags, lifting)
```

```
measure-msub-left-monotonic
          subset-mset.dual-order.refl)
  ultimately have \Gamma \Vdash \Phi = ?\Gamma' \Vdash \Phi
   by fastforce
  then show ?case by blast
qed
We now have enough to establish the cancellation rule for (\$\vdash).
lemma (in classical-logic) measure-cancel: (\Delta @ \Gamma) $\to (\Delta @ \Phi) = \Gamma $\to \Phi
proof -
  {
    fix \Delta \Gamma \Phi
    \mathbf{assume}\ \Gamma\ \$\vdash\ \Phi
    hence (\Delta @ \Gamma) \$ \vdash (\Delta @ \Phi)
    proof (induct \Delta)
      case Nil
      then show ?case by simp
    next
      case (Cons \delta \Delta)
      let ?\Sigma = [(\delta, \delta)]
      have map (uncurry (\sqcup)) ?\Sigma :\vdash \delta
        unfolding disjunction-def list-deduction-def
        by (simp add: Peirces-law)
      moreover have mset (map \ snd \ ?\Sigma) \subseteq \# \ mset (\delta \# \Delta) by simp
      moreover have map (uncurry (\rightarrow)) ?\Sigma @ ((\delta \# \Delta) @ \Gamma) \ominus map \ snd ?<math>\Sigma \$ \vdash
(\Delta @ \Phi)
        using Cons
        by (simp add: trivial-implication)
      moreover have map snd [(\delta, \delta)] = [\delta] by force
      ultimately show ?case
        by (metis\ (no\text{-}types)\ measure\text{-}deduction.simps(2)
                              append-Cons
                              list.set-intros(1)
                              mset.simps(1)
                              mset.simps(2)
                              mset-subset-eq-single
                              set-mset-mset)
  } note forward-direction = this
    assume (\Delta @ \Gamma) \$\vdash (\Delta @ \Phi)
    hence \Gamma \Vdash \Phi
    proof (induct \Delta)
      \mathbf{case}\ \mathit{Nil}
      then show ?case by simp
    next
      case (Cons \delta \Delta)
      have mset\ ((\delta \# \Delta) @ \Phi) = mset\ ((\Delta @ \Phi) @ [\delta]) by simp
      with Cons.prems have ((\delta \# \Delta) @ \Gamma) \$\vdash ((\Delta @ \Phi) @ [\delta])
```

```
by (metis measure-msub-weaken
                                                        subset-mset.dual-order.refl)
                   from this obtain \Sigma where \Sigma:
                         mset\ (map\ snd\ \Sigma)\subseteq \#\ mset\ ((\delta\ \#\ \Delta)\ @\ \Gamma)
                         map (uncurry (\sqcup)) \Sigma \$\vdash (\Delta @ \Phi)
                         map\ (uncurry\ (\rightarrow))\ \Sigma\ @\ ((\delta\ \#\ \Delta)\ @\ \Gamma)\ \ominus\ map\ snd\ \Sigma\ \$\vdash\ [\delta]
                         by (metis append-assoc measure-deduction-generalized-witness)
                   show ?case
                   proof (cases find (\lambda \sigma. snd \sigma = \delta) \Sigma = None)
                         {\bf case}\  \, True
                        hence \delta \notin set \ (map \ snd \ \Sigma)
                         proof (induct \Sigma)
                               case Nil
                               then show ?case by simp
                         next
                               case (Cons \sigma \Sigma)
                               then show ?case by (cases snd \sigma = \delta, simp+)
                         qed
                         with \Sigma(1) have mset\ (map\ snd\ \Sigma)\subseteq \#\ mset\ (\Delta\ @\ \Gamma)
                               by (simp, metis add-mset-add-single
                                                                                 diff-single-trivial
                                                                                 mset	ext{-}map
                                                                                 set	ext{-}mset	ext{-}mset
                                                                                 subset-eq-diff-conv)
                         thus ?thesis
                               using measure-stronger-theory-left-monotonic
                                                  witness-weaker-theory
                                                  Cons.hyps \Sigma(2)
                               by blast
                   next
                         case False
                         from this obtain \sigma \chi where
                               \sigma: \sigma = (\chi, \delta)
                                        \sigma \in set \Sigma
                               using find-Some-predicate
                                                 find-Some-set-membership
                               by fastforce
                         let ?\Sigma' = remove1 \sigma \Sigma
                         let ?\Sigma_A = map (uncurry (\sqcup)) ?\Sigma'
                        let ?\Sigma_B = map (uncurry (\rightarrow)) ?\Sigma'
                        have mset \Sigma = mset (?\Sigma' @ [(\chi, \delta)])
                                         mset \Sigma = mset ((\chi, \delta) \# ?\Sigma')
                               using \sigma by simp+
                       hence mset\ (map\ (uncurry\ (\sqcup))\ \Sigma) = mset\ (map\ (uncurry\ (\sqcup))\ (?\Sigma'\ @\ [(\chi, \square))\ (?\Sigma')\ (?\Sigma
\delta)]))
                                            mset\ (map\ snd\ \Sigma) = mset\ (map\ snd\ ((\chi, \delta) \# ?\Sigma'))
                                              mset\ (map\ (uncurry\ (\rightarrow))\ \Sigma) = mset\ (map\ (uncurry\ (\rightarrow))\ ((\chi,\ \delta)\ \#
 ?\Sigma'))
                               by (metis mset-map)+
```

```
hence mset (map\ (uncurry\ (\sqcup))\ \Sigma) = mset\ (?\Sigma_A\ @\ [\chi\ \sqcup\ \delta])
               mset\ (map\ (uncurry\ (\rightarrow))\ \Sigma\ @\ ((\delta\ \#\ \Delta)\ @\ \Gamma)\ \ominus\ map\ snd\ \Sigma)
               = mset \ (\chi \to \delta \# ?\Sigma_B @ (\Delta @ \Gamma) \ominus map \ snd ?\Sigma')
           by simp+
        hence
           ?\Sigma_A @ [\chi \sqcup \delta] \$\vdash (\Delta @ \Phi)
           \chi \to \delta \# (?\Sigma_B @ (\Delta @ \Gamma) \ominus map \ snd ?\Sigma') \$ \vdash [\delta]
           using \Sigma(2) \Sigma(3)
           by (metis measure-msub-left-monotonic subset-mset.dual-order.reft, simp)
         moreover
        have \vdash ((\chi \to \delta) \to \delta) \to (\chi \sqcup \delta)
           unfolding disjunction-def
           using modus-ponens
                 pseudo-scotus
                 flip-hypothetical-syllogism
           by blast
         ultimately have (?\Sigma_A @ ?\Sigma_B @ (\Delta @ \Gamma) \ominus map \ snd ?\Sigma') \ \vdash (\Delta @ \Phi)
           \mathbf{using}\ measure\text{-}deduction\text{-}one\text{-}collapse
                 list\text{-}deduction\text{-}theorem
                  list-deduction-modus-ponens
                  list-deduction-weaken
                 forward\text{-}direction
                  measure\hbox{-}transitive
           by meson
        moreover
        have \delta = snd \ \sigma
              snd \ \sigma \in set \ (map \ snd \ \Sigma)
           by (simp add: \sigma(1), simp add: \sigma(2))
         with \Sigma(1) have mset (map snd (remove1 \sigma \Sigma)) \subseteq \# mset (remove1 \delta ((\delta
\# \Delta) @ \Gamma))
           by (metis insert-DiffM
                      insert-subset-eq-iff
                      mset-remove1
                      \sigma(1) \ \sigma(2)
                      remove1-pairs-list-projections-snd
                      set-mset-mset)
        hence mset (map\ snd\ (remove1\ \sigma\ \Sigma)) \subseteq \#\ mset\ (\Delta\ @\ \Gamma) by simp
        ultimately show ?thesis
           using measure-witness-left-split Cons.hyps
           \mathbf{by} blast
      \mathbf{qed}
    qed
  }
  with forward-direction show ?thesis by auto
lemma (in classical-logic) measure-biconditional-cancel:
  assumes \vdash \gamma \leftrightarrow \varphi
  shows (\gamma \# \Gamma) \$ \vdash (\varphi \# \Phi) = \Gamma \$ \vdash \Phi
```

```
proof -
  from assms have (\gamma \# \Phi) \preceq (\varphi \# \Phi) (\varphi \# \Phi) \preceq (\gamma \# \Phi)
    {f unfolding}\ biconditional	ext{-}def
    by (simp add: stronger-theory-left-right-cons)+
  hence (\gamma \# \Phi) \$ \vdash (\varphi \# \Phi)
         (\varphi \# \Phi) \$\vdash (\gamma \# \Phi)
    using stronger-theory-to-measure-deduction by blast+
  moreover
  have \Gamma \Vdash \Phi = (\gamma \# \Gamma) \Vdash (\gamma \# \Phi)
    by (metis append-Cons append-Nil measure-cancel)+
  ultimately
  have \Gamma \Vdash \Phi \Longrightarrow \gamma \# \Gamma \Vdash (\varphi \# \Phi)
        \gamma \ \# \ \Gamma \ \$ \vdash (\varphi \ \# \ \Phi) \Longrightarrow \Gamma \ \$ \vdash \ \Phi
    using measure-transitive by blast+
  thus ?thesis by blast
qed
```

2.7 Measure Deduction Substitution Rules

Just like conventional deduction, if two formulae are equivalent then they may be substituted for one another.

```
lemma (in classical-logic) right-measure-sub:
  \mathbf{assumes} \vdash \varphi \leftrightarrow \psi
  shows \Gamma \$ \vdash (\varphi \# \Phi) = \Gamma \$ \vdash (\psi \# \Phi)
  have \Gamma \$ \vdash (\varphi \# \Phi) = (\psi \# \Gamma) \$ \vdash (\psi \# \varphi \# \Phi)
    using measure-cancel [where \Delta=[\psi] and \Gamma=\Gamma and \Phi=\varphi # \Phi] by simp
  also have ... = (\psi \# \Gamma) \$ \vdash (\varphi \# \psi \# \Phi)
    using measure-cons-cons-right-permute by blast
  also have ... = \Gamma \$ \vdash (\psi \# \Phi)
    using assms biconditional-symmetry-rule measure-biconditional-cancel by blast
  finally show ?thesis.
qed
\mathbf{lemma} \ (\mathbf{in} \ classical\text{-}logic) \ left\text{-}measure\text{-}sub:
  assumes \vdash \gamma \leftrightarrow \chi
  \mathbf{shows}\ (\gamma\ \#\ \Gamma)\ \$\vdash\ \Phi = (\chi\ \#\ \Gamma)\ \$\vdash\ \Phi
proof -
  have (\gamma \# \Gamma) \Vdash \Phi = (\chi \# \gamma \# \Gamma) \Vdash (\chi \# \Phi)
    using measure-cancel [where \Delta{=}[\chi] and \Gamma{=}(\gamma~\#~\Gamma) and \Phi{=}\Phi] by \mathit{simp}
  also have ... = (\gamma \# \chi \# \Gamma) \$ \vdash (\chi \# \Phi)
       measure\text{-}cons\text{-}cons\text{-}right\text{-}permute
       stronger-theory-to-measure-deduction
       measure\text{-}transitive
       stronger-theory-reflexive
    by blast
  also have ... = (\chi \ \# \ \Gamma) \ \$ \vdash \ \Phi
```

using assms biconditional-symmetry-rule measure-biconditional-cancel by blast finally show ?thesis . \mathbf{qed}

2.8 Measure Deduction Sum Rules

We next establish analogues of the rule in probability that $\mathcal{P} \alpha + \mathcal{P} \beta = \mathcal{P} (\alpha \sqcup \beta) + \mathcal{P} (\alpha \sqcap \beta)$. This equivalence holds for both sides of the (\$\bullet\$-) turnstile.

```
lemma (in classical-logic) right-measure-sum-rule:
  \Gamma \$ \vdash (\alpha \# \beta \# \Phi) = \Gamma \$ \vdash (\alpha \sqcup \beta \# \alpha \sqcap \beta \# \Phi)
  have A: mset (\alpha \sqcup \beta \# \beta \to \alpha \# \beta \# \Phi) = mset (\beta \to \alpha \# \beta \# \alpha \sqcup \beta \# \Phi)
by simp
  have B: \vdash (\beta \to \alpha) \leftrightarrow (\beta \to (\alpha \sqcap \beta))
     let ?\varphi = (\langle \beta \rangle \to \langle \alpha \rangle) \leftrightarrow (\langle \beta \rangle \to (\langle \alpha \rangle \sqcap \langle \beta \rangle))
     have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi by fastforce
     hence \vdash ( ?\varphi ) using propositional-semantics by blast
     thus ?thesis by simp
  qed
   have C: \vdash \beta \leftrightarrow (\beta \sqcup (\alpha \sqcap \beta))
   proof -
     let ?\varphi = \langle \beta \rangle \leftrightarrow (\langle \beta \rangle \sqcup (\langle \alpha \rangle \sqcap \langle \beta \rangle))
     have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi \text{ by } fastforce
     hence \vdash ( ?\varphi ) using propositional-semantics by blast
     thus ?thesis by simp
   qed
  have \Gamma \Vdash (\alpha \# \beta \# \Phi) = \Gamma \Vdash (\beta \sqcup \alpha \# \beta \to \alpha \# \beta \# \Phi)
     using measure-formula-right-split by blast
  also have ... = \Gamma \$ \vdash (\alpha \sqcup \beta \# \beta \rightarrow \alpha \# \beta \# \Phi)
     using disjunction-commutativity right-measure-sub by blast
  also have ... = \Gamma \ (\beta \rightarrow \alpha \# \beta \# \alpha \sqcup \beta \# \Phi)
     by (metis A measure-msub-weaken subset-mset.dual-order.reft)
   also have ... = \Gamma \ (\beta \rightarrow (\alpha \sqcap \beta) \# \beta \# \alpha \sqcup \beta \# \Phi)
     using B right-measure-sub by blast
   also have ... = \Gamma \$\( (\beta \# \beta \rightarrow (\alpha \pi \beta) \# \alpha \lorerrightarrow \beta \# \Phi)
     using measure-cons-cons-right-permute by blast
  also have ... = \Gamma \ \vdash (\beta \sqcup (\alpha \sqcap \beta) \# \beta \rightarrow (\alpha \sqcap \beta) \# \alpha \sqcup \beta \# \Phi)
     using C right-measure-sub by blast
  also have ... = \Gamma \$ \vdash (\alpha \sqcap \beta \# \alpha \sqcup \beta \# \Phi)
     using measure-formula-right-split by blast
   finally show ?thesis
     using measure-cons-cons-right-permute by blast
lemma (in classical-logic) left-measure-sum-rule:
  (\alpha \# \beta \# \Gamma) \$ \vdash \Phi = (\alpha \sqcup \beta \# \alpha \sqcap \beta \# \Gamma) \$ \vdash \Phi
```

```
proof — have *: mset (\alpha \sqcup \beta \# \alpha \sqcap \beta \# \alpha \# \beta \# \Gamma) = mset (\alpha \# \beta \# \alpha \sqcup \beta \# \alpha \sqcap \beta \# \Gamma) by simp have (\alpha \# \beta \# \Gamma) $\mathbb{P} \in \Phi = (\alpha \sqcup \beta \# \alpha \sqcap \beta \# \alpha
```

2.9 Measure Deduction Exchange Rule

As we will see, a key result is that we can move formulae from the right hand side of the (\$\bigse\$) turnstile to the left.

We observe a novel logical principle, which we call *exchange*. This principle follows immediately from the split rules and cancellation rules.

```
lemma (in classical-logic) measure-exchange:  (\gamma \# \Gamma) \Vdash (\varphi \# \Phi) = (\varphi \to \gamma \# \Gamma) \Vdash (\gamma \to \varphi \# \Phi)  proof – have  (\gamma \# \Gamma) \Vdash (\varphi \# \Phi) = (\varphi \sqcup \gamma \# \varphi \to \gamma \# \Gamma) \Vdash (\gamma \sqcup \varphi \# \gamma \to \varphi \# \Phi)  using measure-formula-left-split measure-formula-right-split by blast+ thus ?thesis using measure-biconditional-cancel disjunction-commutativity by blast qed
```

The exchange rule allows us to prove an analogue of the rule in classical logic that $\Gamma : \vdash \varphi = (\sim \varphi \# \Gamma) : \vdash \bot$ for measure deduction.

```
theorem (in classical-logic) measure-negation-swap: \Gamma \Vdash (\varphi \# \Phi) = (\sim \varphi \# \Gamma) \Vdash (\bot \# \Phi) proof - have \Gamma \Vdash (\varphi \# \Phi) = (\bot \# \Gamma) \Vdash (\bot \# \varphi \# \Phi) by (metis append-Cons append-Nil measure-cancel) also have ... = (\bot \# \Gamma) \Vdash (\varphi \# \bot \# \Phi) using measure-cons-cons-right-permute by blast also have ... = (\sim \varphi \# \Gamma) \Vdash (\bot \to \varphi \# \bot \# \Phi) unfolding negation-def
```

```
using measure-exchange by blast also have ... = (\sim \varphi \# \Gamma) \Vdash (\bot \# \Phi) using ex-falso-quodlibet measure-tautology-right-cancel by blast finally show ?thesis . qed
```

2.10 Definition of Counting Deduction

The theorem $\Gamma \Vdash \varphi \# \Phi = \sim \varphi \# \Gamma \Vdash \bot \# \Phi$ gives rise to another kind of judgement: how many times can a list of premises Γ prove a formula φ ?. We call this kind of judgment counting deduction. As with measure deduction, bits of Γ get "used up" with each dispatched conclusion.

```
\begin{array}{l} \mathbf{primrec} \ (\mathbf{in} \ classical\text{-}logic) \\ counting\text{-}deduction :: 'a \ list \Rightarrow nat \Rightarrow 'a \Rightarrow bool \ (\text{-} \#\vdash \text{-} \text{-} [60,100,59] \ 60) \\ \mathbf{where} \\ \Gamma  \#\vdash 0  \varphi = True \\ \mid \Gamma  \#\vdash (Suc \ n)  \varphi = (\exists \ \Psi. \ mset \ (map \ snd \ \Psi) \subseteq \# \ mset \ \Gamma  \land \\ map \ (uncurry \ (\sqcup)) \ \Psi   \vdash \varphi  \land \\ map \ (uncurry \ (\to)) \ \Psi  @ \Gamma \ominus (map \ snd \ \Psi)  \#\vdash n \ \varphi) \end{array}
```

2.11 Converting Back and Forth from Counting Deduction to Measure Deduction

We next show how to convert back and forth from counting deduction to measure deduction.

First, we show that trivially counting deduction is a special case of measure deduction.

```
lemma (in classical-logic) counting-deduction-to-measure-deduction: \Gamma \not \Vdash n \varphi = \Gamma \not \Vdash (replicate \ n \ \varphi) by (induct n arbitrary: \Gamma, simp+)
```

We next prove a few helpful lemmas regarding counting deduction.

```
lemma (in classical-logic) counting-deduction-tautology-weaken: assumes \vdash \varphi shows \Gamma \# \vdash n \varphi proof (induct n) case \theta then show ?case by simp next case (Suc n) hence \Gamma \$ \vdash (\varphi \# replicate \ n \ \varphi)
```

```
using assms
          counting\hbox{-} deduction\hbox{-} to\hbox{-} measure\hbox{-} deduction
          measure\text{-}tautology\text{-}right\text{-}cancel
    by blast
  hence \Gamma \$ \vdash replicate (Suc \ n) \varphi
    by simp
  then show ?case
    using counting-deduction-to-measure-deduction
    by blast
qed
lemma (in classical-logic) counting-deduction-weaken:
  assumes n \leq m
      and \Gamma \# \vdash m \varphi
    shows \Gamma \# \vdash n \varphi
proof -
  have \Gamma \$ \vdash replicate \ m \ \varphi
    using assms(2) counting-deduction-to-measure-deduction
    by blast
  hence \Gamma \$ \vdash replicate \ n \ \varphi
    by (metis append-Nil2
              assms(1)
              le-iff-add
              measure-deduction.simps(1)
              measure-deduction-generalized\text{-}witness
              replicate-add)
  thus ?thesis
    using counting-deduction-to-measure-deduction
    by blast
qed
lemma (in classical-logic) counting-deduction-implication:
 \mathbf{assumes} \vdash \varphi \rightarrow \psi
    and \Gamma \not \# \vdash n \varphi
   shows \Gamma \# \vdash n \psi
proof -
  have replicate n \psi \leq replicate n \varphi
    using stronger-theory-left-right-cons assms(1)
    by (induct \ n, \ auto)
  thus ?thesis
    using assms(2)
          measure\mbox{-}stronger\mbox{-}theory\mbox{-}right\mbox{-}antitonic
          counting-deduction-to-measure-deduction
    by blast
qed
Finally, we use \Gamma \ \Psi \ \Phi = \sim \varphi \# \Gamma \ \Gamma \ to prove that measure
deduction reduces to counting deduction.
{\bf theorem} \ ({\bf in} \ classical\text{-}logic) \ measure\text{-}deduction\text{-}to\text{-}counting\text{-}deduction:
```

```
\Gamma \$ \vdash \Phi = (\sim \Phi @ \Gamma) \# \vdash (length \Phi) \bot
proof -
  have \forall \Psi. \Gamma \Vdash (\Phi @ \Psi) = (\sim \Phi @ \Gamma) \Vdash (replicate (length \Phi) \perp @ \Psi)
  proof (induct \Phi arbitrary: \Gamma)
    case Nil
    then show ?case by simp
  next
    case (Cons \varphi \Phi)
    {
      fix \Psi
      have \Gamma \Vdash ((\varphi \# \Phi) @ \Psi) = (\sim \varphi \# \Gamma) \Vdash (\bot \# \Phi @ \Psi)
        using measure-negation-swap by auto
      moreover have mset\ (\Phi\ @\ (\bot\ \#\ \Psi)) = mset\ (\bot\ \#\ \Phi\ @\ \Psi)
        by simp
      ultimately have \Gamma \ ((\varphi \# \Phi) @ \Psi) = (\sim \varphi \# \Gamma) \ \vdash (\Phi @ (\bot \# \Psi))
        by (metis measure-msub-weaken subset-mset.order-refl)
      hence
        \Gamma \$ \vdash ((\varphi \# \Phi) @ \Psi)
             = (\sim \Phi @ (\sim \varphi \# \Gamma)) \$ \vdash (replicate (length \Phi) \bot @ (\bot \# \Psi))
        using Cons
        by blast
      moreover have
        mset \ (\sim \Phi \ @ \ (\sim \varphi \ \# \ \Gamma)) = mset \ (\sim (\varphi \ \# \ \Phi) \ @ \ \Gamma)
        mset \ (replicate \ (length \ \Phi) \perp @ \ (\bot \# \ \Psi))
             = mset \ (replicate \ (length \ (\varphi \# \Phi)) \perp @ \Psi)
        by simp+
      ultimately have
       \Gamma \$\vdash ((\varphi \# \Phi) @ \Psi) = \sim (\varphi \# \Phi) @ \Gamma \$\vdash (replicate (length (\varphi \# \Phi)) \perp @
\Psi)
        by (metis
               append.assoc
               append-Cons
               append-Nil
               length-Cons
               replicate-append-same
               list-subtract.simps(1)
               map\mbox{-}ident\ replicate\mbox{-}Suc
               measure-msub-left-monotonic
               map-list-subtract-mset-containment)
    then show ?case by blast
  \mathbf{qed}
  thus ?thesis
    by (metis append-Nil2 counting-deduction-to-measure-deduction)
qed
```

2.12 Measure Deduction Soundess

The last major result for measure deduction we have to show is *soundness*. That is, judgments in measure deduction of lists of formulae can be translated into tautologies for inequalities of finitely additive probability measures over those same formulae (using the same underlying classical logic).

```
lemma (in classical-logic) negated-measure-deduction:
  \sim \Gamma \$ \vdash (\varphi \# \Phi) =
    (\exists \ \Psi. \ mset \ (map \ fst \ \Psi) \subseteq \# \ mset \ \Gamma \ \land
             \sim (map \ (uncurry \ (\backslash)) \ \Psi) : \vdash \varphi \land
             \sim (map \ (uncurry \ (\sqcap)) \ \Psi \ @ \ \Gamma \ominus (map \ fst \ \Psi)) \ \$ \vdash \ \Phi)
proof (rule iffI)
  \mathbf{assume} \sim \Gamma \ \$ \vdash \ (\varphi \ \# \ \Phi)
  from this obtain \Psi where \Psi:
    mset\ (map\ snd\ \Psi)\subseteq \#\ mset\ (\sim\ \Gamma)
    map\ (uncurry\ (\sqcup))\ \Psi :\vdash \varphi
    map\ (uncurry\ (\rightarrow))\ \Psi\ @\ {\color{red} \sim}\ \Gamma\ \ominus\ map\ snd\ \Psi\ \${\vdash}\ \Phi
    using measure-deduction.simps(2)
    by metis
  from this obtain \Delta where \Delta:
     mset \ \Delta \subseteq \# \ mset \ \Gamma
    map snd \Psi = \sim \Delta
    unfolding map-negation-def
    using mset-sub-map-list-exists [where f=\sim and \Gamma=\Gamma]
    by metis
  let ?\Psi = zip \ \Delta \ (map \ fst \ \Psi)
  from \Delta(2) have map fst ?\Psi = \Delta
    unfolding map-negation-def
    by (metis length-map map-fst-zip)
  with \Delta(1) have mset\ (map\ fst\ ?\Psi) \subseteq \#\ mset\ \Gamma
    by simp
  moreover have \forall \Delta. map snd \Psi = \sim \Delta \longrightarrow
                          map\ (uncurry\ (\sqcup))\ \Psi \preceq \sim (map\ (uncurry\ (\backslash))\ (zip\ \Delta\ (map\ fst
\Psi)))
  proof (induct \Psi)
    case Nil
    then show ?case by simp
  next
    case (Cons \psi \Psi)
    let ?\psi = fst \ \psi
     {
       fix \Delta
      assume map snd (\psi \# \Psi) = \sim \Delta
       from this obtain \gamma where \gamma: \sim \gamma = snd \psi \gamma = hd \Delta by auto
       from \langle map \ snd \ (\psi \# \Psi) = \sim \Delta \rangle have map \ snd \ \Psi = \sim (tl \ \Delta) by auto
       with Cons.hyps have
         map\ (uncurry\ (\sqcup))\ \Psi \preceq \sim (map\ (uncurry\ (\backslash))\ (zip\ (tl\ \Delta)\ (map\ fst\ \Psi)))
         by auto
```

```
moreover
                     fix \psi \gamma
                     have \vdash \sim (\gamma \setminus \psi) \rightarrow (\psi \sqcup \sim \gamma)
                           unfolding disjunction-def
                                                     subtraction\text{-}def
                                                     conjunction-def
                                                     negation-def
                           by (meson modus-ponens
                                                     flip\mbox{-}implication
                                                     hypothetical-syllogism)
                \} note tautology = this
                have uncurry (\sqcup) = (\lambda \psi. (fst \psi) \sqcup (snd \psi))
                     by fastforce
                with \gamma have uncurry (\sqcup) \psi = ?\psi \sqcup \sim \gamma
                     by simp
                with tautology have \vdash \sim (\gamma \setminus ?\psi) \rightarrow uncurry (\sqcup) \psi
                     by simp
                ultimately have map (uncurry (\sqcup)) (\psi \# \Psi) \leq
                                                               \sim (map \ (uncurry \ (\setminus)) \ ((zip \ ((hd \ \Delta) \ \# \ (tl \ \Delta)) \ (map \ fst \ (\psi \ \# \ (tl \ \Delta)))))
\Psi)))))
                     using stronger-theory-left-right-cons \gamma(2)
                     by simp
                hence map (uncurry (\sqcup)) (\psi \# \Psi) \leq
                                \sim (map \ (uncurry \ (\setminus)) \ (zip \ \Delta \ (map \ fst \ (\psi \ \# \ \Psi))))
                     using \langle map \ snd \ (\psi \# \Psi) = \sim \Delta \rangle by force
           }
           thus ?case by blast
      with \Psi(2) \Delta(2) have \sim (map (uncurry (\setminus)) ? \Psi) :\vdash \varphi
           using stronger-theory-deduction-monotonic by blast
      moreover
      have (map\ (uncurry\ (\rightarrow))\ \Psi\ @\ \sim\ \Gamma\ \ominus\ map\ snd\ \Psi)\ \preceq
                      \sim (map \ (uncurry \ (\sqcap)) \ ?\Psi \ @ \ \Gamma \ominus (map \ fst \ ?\Psi))
      proof -
           from \Delta(1) have mset\ (\sim \Gamma \ominus \sim \Delta) = mset\ (\sim (\Gamma \ominus \Delta))
                by (simp add: image-mset-Diff)
           hence mset (\sim \Gamma \ominus map \ snd \ \Psi) = mset (\sim (\Gamma \ominus map \ fst \ ?\Psi))
                using \Psi(1) \Delta(2) \langle map \ fst \ ?\Psi = \Delta \rangle by simp
           hence (\sim \Gamma \ominus map \ snd \ \Psi) \preceq \sim (\Gamma \ominus map \ fst \ ?\Psi)
                by (simp add: msub-stronger-theory-intro)
           moreover have \forall \Delta. map snd \Psi = \sim \Delta \longrightarrow
                                                                   map \ (uncurry \ (\rightarrow)) \ \Psi \preceq \sim (map \ (uncurry \ (\sqcap)) \ (zip \ \Delta \ (map \ (uncurry \ (\sqcap))) \ (zip \ \Delta \ (map \ (uncurry \ (\sqcap))) \ (zip \ \Delta \ (map \ (uncurry \ (\sqcap))) \ (zip \ \Delta \ (map \ (uncurry \ (\sqcap))) \ (zip \ \Delta \ (map \ (uncurry \ (\sqcap))) \ (zip \ \Delta \ (map \ (uncurry \ (\sqcap))) \ (zip \ \Delta \ (map \ (uncurry \ (\sqcap))) \ (zip \ \Delta \ (map \ (uncurry \ (\sqcap)))) \ (zip \ \Delta \ (map \ (uncurry \ (\sqcap))) \ (zip \ \Delta \ (map \ (uncurry \ (\sqcap))) \ (zip \ \Delta \ (map \ (uncurry \ (\sqcap)))) \ (zip \ \Delta \ (map \ (uncurry \ (\sqcap)))) \ (zip \ \Delta \ (map \ (uncurry \ (\sqcap)))) \ (zip \ \Delta \ (map \ (uncurry \ (\sqcap)))) \ (zip \ \Delta \ (map \ (uncurry \ (\sqcap)))) \ (zip \ \Delta \ (map \ (uncurry \ (\sqcap)))) \ (zip \ \Delta \ (map \ (uncurry \ (\sqcap)))) \ (zip \ \Delta \ (map \ (uncurry \ (\sqcap)))) \ (zip \ \Delta \ (map \ (uncurry \ (\square)))) \ (zip \ \Delta \ (map \ (uncurry \ (\square)))) \ (zip \ \Delta \ (map \ (uncurry \ (\square)))) \ (zip \ \Delta \ (map \ (uncurry \ (\square)))) \ (zip \ \Delta \ (map \ (uncurry \ (\square)))) \ (zip \ \Delta \ (map \ (uncurry \ (\square)))) \ (zip \ \Delta \ (map \ (uncurry \ (\square)))) \ (zip \ \Delta \ (map \ (uncurry \ (\square)))) \ (zip \ \Delta \ (map \ (uncurry \ (\square)))) \ (zip \ \Delta \ (map \ (uncurry \ (\square)))) \ (zip \ \Delta \ (uncurry \ (\square))) \ (zip \ \Delta \ (uncurry \ (\square)))) \ (zip \ \Delta \ (uncurry \ (\square))) \ (zi
fst \ \Psi)))
           proof (induct \Psi)
                case Nil
                then show ?case by simp
           next
                case (Cons \psi \Psi)
```

```
let ?\psi = fst \psi
        fix \Delta
         assume map snd (\psi \# \Psi) = \sim \Delta
         from this obtain \gamma where \gamma: \sim \gamma = snd \psi \gamma = hd \Delta by auto
         from \langle map \; snd \; (\psi \# \Psi) = \sim \Delta \rangle have map \; snd \; \Psi = \sim (tl \; \Delta) by auto
         with Cons.hyps have
           map\ (uncurry\ (\rightarrow))\ \Psi \preceq \sim (map\ (uncurry\ (\sqcap))\ (zip\ (tl\ \Delta)\ (map\ fst\ \Psi)))
           by simp
         moreover
         {
           fix \psi \gamma
           have \vdash \sim (\gamma \sqcap \psi) \rightarrow (\psi \rightarrow \sim \gamma)
             unfolding disjunction-def
                         conjunction-def
                         negation-def
             by (meson modus-ponens
                         flip-implication
                         hypothetical-syllogism)
         } note tautology = this
         have (uncurry (\rightarrow)) = (\lambda \psi. (fst \psi) \rightarrow (snd \psi))
           by fastforce
         with \gamma have uncurry (\rightarrow) \psi = ?\psi \rightarrow \sim \gamma
           by simp
         with tautology have \vdash \sim (\gamma \sqcap ?\psi) \rightarrow (uncurry (\rightarrow)) \psi
           by simp
         ultimately have map (uncurry (\rightarrow)) (\psi \# \Psi) \preceq
                            \sim (map \ (uncurry \ (\sqcap)) \ ((zip \ ((hd \ \Delta) \ \# \ (tl \ \Delta)) \ (map \ fst \ (\psi \ \# \ (tl \ \Delta)))))
\Psi))))))
           using stronger-theory-left-right-cons \gamma(2)
           by simp
         hence map (uncurry (\rightarrow)) (\psi \# \Psi) \preceq
                \sim (map \ (uncurry \ (\sqcap)) \ (zip \ \Delta \ (map \ fst \ (\psi \ \# \ \Psi))))
           using \langle map \; snd \; (\psi \; \# \; \Psi) = \sim \Delta \rangle by force
      then show ?case by blast
    qed
    ultimately have (map\ (uncurry\ (\rightarrow))\ \Psi\ @ \sim \Gamma \ominus map\ snd\ \Psi) \preceq
                        (\sim (map \ (uncurry \ (\sqcap)) \ ?\Psi) \ @ \sim (\Gamma \ominus (map \ fst \ ?\Psi)))
      using stronger-theory-combine \Delta(2)
      by metis
    thus ?thesis by simp
  qed
  hence \sim (map \ (uncurry \ (\sqcap)) \ ?\Psi \ @ \ \Gamma \ominus (map \ fst \ ?\Psi)) \ \$\vdash \Phi
    using \Psi(3) measure-stronger-theory-left-monotonic
    by blast
  ultimately show \exists \Psi. mset (map\ fst\ \Psi) \subseteq \# \ mset\ \Gamma \land 
                            \sim (map \ (uncurry \ (\backslash)) \ \Psi) :\vdash \varphi \land
                            \sim (map \ (uncurry \ (\sqcap)) \ \Psi \ @ \ \Gamma \ominus (map \ fst \ \Psi)) \ \$ \vdash \Phi
```

```
by metis
next
  assume \exists \Psi. mset (map fst \Psi) \subseteq \# mset \Gamma \land
                 \sim (map \ (uncurry \ (\backslash)) \ \Psi) : \vdash \varphi \land
                 \sim (map \ (uncurry \ (\sqcap)) \ \Psi \ @ \ \Gamma \ominus map \ fst \ \Psi) \ \$ \vdash \ \Phi
  from this obtain \Psi where \Psi:
    mset \ (map \ fst \ \Psi) \subseteq \# \ mset \ \Gamma
    \sim (map \ (uncurry \ (\backslash)) \ \Psi) : \vdash \varphi
    \sim (map \ (uncurry \ (\sqcap)) \ \Psi \ @ \ \Gamma \ominus map \ fst \ \Psi) \ \$ \vdash \ \Phi
    by auto
  let ?\Psi = zip \ (map \ snd \ \Psi) \ (\sim \ (map \ fst \ \Psi))
  from \Psi(1) have mset (map snd ?\Psi) \subseteq \# mset (\sim \Gamma)
    by (simp, metis image-mset-subseteq-mono multiset.map-comp)
  moreover have \sim (map \ (uncurry \ (\setminus)) \ \Psi) \preceq map \ (uncurry \ (\sqcup)) \ ?\Psi
  proof (induct \Psi)
    case Nil
    then show ?case by simp
  next
    case (Cons \psi \Psi)
    let ?\gamma = fst \psi
    let ?\psi = snd \psi
    {
      fix \psi \gamma
       \mathbf{have} \vdash (\psi \sqcup \sim \gamma) \to \sim (\gamma \setminus \psi)
         unfolding disjunction-def
                    subtraction\text{-}def
                     conjunction-def
                    negation-def
         by (meson modus-ponens
                    flip-implication
                    hypothetical-syllogism)
    } note tautology = this
    have \sim \circ uncurry (\setminus) = (\lambda \psi. \sim ((fst \psi) \setminus (snd \psi)))
          uncurry (\sqcup) = (\lambda (\psi, \gamma). \psi \sqcup \gamma)
       by fastforce+
    with tautology have \vdash uncurry (\sqcup) (?\psi, \sim ?\gamma) \rightarrow (\sim \circ uncurry (\backslash)) \psi
       by fastforce
    with Cons.hyps have
       ((\sim \circ uncurry (\setminus)) \psi \# \sim (map (uncurry (\setminus)) \Psi)) \preceq
        (uncurry (\sqcup) (?\psi, \sim ?\gamma) \# map (uncurry (\sqcup)) (zip (map snd \Psi) (\sim (map snd \Psi)))
fst \ \Psi))))
       using stronger-theory-left-right-cons by blast
    thus ?case by simp
  qed
  with \Psi(2) have map (uncurry (\sqcup)) ?\Psi :\vdash \varphi
    using stronger-theory-deduction-monotonic by blast
  moreover have \sim (map (uncurry (\sqcap)) \Psi @ \Gamma \ominus map fst \Psi) <math>\preceq
                   (map\ (uncurry\ (\rightarrow))\ ?\Psi\ @\sim\Gamma\ominus\ map\ snd\ ?\Psi)
  proof -
```

```
have \sim (map \ (uncurry \ (\sqcap)) \ \Psi) \preceq map \ (uncurry \ (\rightarrow)) \ ?\Psi
    proof (induct \Psi)
      {\bf case}\ Nil
      then show ?case by simp
      case (Cons \psi \Psi)
      let ?\gamma = fst \psi
      let ?\psi = snd \psi
      {
        fix \psi \gamma
        \mathbf{have} \vdash (\psi \to \sim \gamma) \to \sim (\gamma \sqcap \psi)
          unfolding disjunction-def
                     conjunction\text{-}def
                     negation-def
          by (meson modus-ponens
                     flip-implication
                     hypothetical-syllogism)
      } note tautology = this
      have \sim \circ uncurry (\sqcap) = (\lambda \psi. \sim ((fst \psi) \sqcap (snd \psi)))
            uncurry (\rightarrow) = (\lambda (\psi, \gamma), \psi \rightarrow \gamma)
        by fastforce+
      with tautology have \vdash uncurry (\rightarrow) (?\psi, \sim ?\gamma) \rightarrow (\sim o uncurry (\sqcap)) \psi
        by fastforce
      with Cons.hyps have
        ((\sim \circ \ uncurry \ (\sqcap)) \ \psi \ \# \sim (map \ (uncurry \ (\sqcap)) \ \Psi)) \ \preceq
        (uncurry (\rightarrow) (?\psi, \sim ?\gamma) \# map (uncurry (\rightarrow)) (zip (map snd \Psi) (\sim (map snd \Psi))))
fst \ \Psi))))
        using stronger-theory-left-right-cons by blast
      then show ?case by simp
    qed
    moreover have mset (\sim (\Gamma \ominus map \ fst \ \Psi)) = mset (\sim \Gamma \ominus map \ snd \ ?\Psi)
      using \Psi(1)
      by (simp add: image-mset-Diff multiset.map-comp)
    hence \sim (\Gamma \ominus map \ fst \ \Psi) \preceq (\sim \Gamma \ominus map \ snd \ ?\Psi)
      using
        stronger-theory-reflexive
        stronger-theory-right-permutation
      by blast
    ultimately show ?thesis
      using stronger-theory-combine
      \mathbf{by} \ simp
  qed
  hence map (uncurry (\rightarrow)) ?\Psi @ \sim \Gamma \ominus map \ snd \ ?\Psi \$\vdash \Phi
    using \Psi(3) measure-stronger-theory-left-monotonic by blast
  ultimately show \sim \Gamma \$ \vdash (\varphi \# \Phi)
    using measure-deduction.simps(2) by blast
lemma (in probability-logic) measure-deduction-soundness:
```

```
assumes \sim \Gamma \ \sim \Phi
shows (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
have \forall \ \Gamma. \sim \Gamma \ \$ \vdash \sim \Phi \longrightarrow (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
proof (induct \Phi)
  {\bf case}\ Nil
  then show ?case
  by (simp, metis (full-types) ex-map-conv probability-non-negative sum-list-nonneg)
next
  case (Cons \varphi \Phi)
  {
     fix \Gamma
     \mathbf{assume} \sim \Gamma \ \$ \vdash \sim (\varphi \ \# \ \Phi)
     hence \sim \Gamma \ (\sim \varphi \# \sim \Phi) by simp
     from this obtain \Psi where \Psi:
        mset\ (map\ fst\ \Psi)\subseteq \#\ mset\ \Gamma
        \sim (map \ (uncurry \ (\backslash)) \ \Psi) : \vdash \sim \varphi
        \boldsymbol{\sim} \; (\mathit{map} \; (\mathit{uncurry} \; (\sqcap)) \; \Psi \; @ \; \Gamma \; \ominus \; (\mathit{map} \; \mathit{fst} \; \Psi)) \; \$ \vdash \boldsymbol{\sim} \; \Phi
        using negated-measure-deduction by blast
     let ?\Gamma = \Gamma \ominus (map \ fst \ \Psi)
     let ?\Psi_1 = map (uncurry (\)) \Psi
     let ?\Psi_2 = map (uncurry (\sqcap)) \Psi
     have (\sum \varphi' \leftarrow \Phi \cdot \mathcal{P} \varphi') \leq (\sum \varphi \leftarrow (\mathcal{P}_2 @ \mathcal{P}_1) \cdot \mathcal{P} \varphi)
        using Cons \ \Psi(3) by blast
     moreover
     have \mathcal{P} \varphi \leq (\sum \varphi \leftarrow ?\Psi_1. \mathcal{P} \varphi)
        using \Psi(2)
                biconditional-weaken
                list-deduction-def
                map\-negation\-list\-implication
                set-deduction-base-theory
                implication-list-summation-inequality
        by blast
    ultimately have (\sum \varphi' \leftarrow (\varphi \# \Phi). \mathcal{P} \varphi') \leq (\sum \gamma \leftarrow (?\Psi_1 @ ?\Psi_2 @ ?\Gamma). \mathcal{P} \gamma)
     moreover have (\sum \varphi' \leftarrow (?\Psi_1 @ ?\Psi_2). \mathcal{P} \varphi') = (\sum \gamma \leftarrow (map \ \textit{fst} \ \Psi). \mathcal{P} \gamma)
     proof (induct \ \Psi)
        case Nil
        then show ?case by simp
     next
        \mathbf{case}\ (\mathit{Cons}\ \psi\ \Psi)
        let ?\Psi_1 = map (uncurry (\)) \Psi
        let ?\Psi_2 = map (uncurry (\sqcap)) \Psi
        let ?\psi_1 = uncurry (\) \psi
        let ?\psi_2 = uncurry (\sqcap) \psi
        assume (\sum \varphi' \leftarrow (?\Psi_1 @ ?\Psi_2). \mathcal{P} \varphi') = (\sum \gamma \leftarrow (map \ fst \ \Psi). \mathcal{P} \gamma)
          let ?\gamma = fst \psi
```

```
let ?\psi = snd \ \psi
               have uncurry(\) = (\lambda \ \psi. \ (fst \ \psi) \ \setminus \ (snd \ \psi))
                      uncurry (\sqcap) = (\lambda \psi. (fst \psi) \sqcap (snd \psi))
                  by fastforce+
               moreover have \mathcal{P} ?\gamma = \mathcal{P} (?\gamma \setminus ?\psi) + \mathcal{P} (?\gamma \sqcap ?\psi)
                  by (simp add: subtraction-identity)
               ultimately have \mathcal{P} ? \gamma = \mathcal{P} ? \psi_1 + \mathcal{P} ? \psi_2
                  by simp
            }
           moreover have mset (?\psi_1 \# ?\psi_2 \# (?\Psi_1 @ ?\Psi_2)) =
                                    mset (map (uncurry (\))) (\psi \# \Psi) @ map (uncurry (\sqcap)) (\psi \#
\Psi))
               (is mset - = mset ?rhs)
               \mathbf{by} \ simp
           hence (\sum \varphi' \leftarrow (?\psi_1 \# ?\psi_2 \# (?\Psi_1 @ ?\Psi_2)). \mathcal{P} \varphi') = (\sum \gamma \leftarrow ?rhs. \mathcal{P} \gamma)
               by auto
            ultimately show ?case by simp
         moreover have mset ((map\ fst\ \Psi)\ @\ ?\Gamma) = mset\ \Gamma
           using \Psi(1)
           \mathbf{by} \ simp
         \begin{array}{l} \mathbf{hence} \ (\sum \varphi' \leftarrow ((map \ fst \ \Psi) \ @ \ ?\Gamma). \ \mathcal{P} \ \varphi') = (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \\ \mathbf{by} \ (metis \ mset\text{-}map \ sum\text{-}mset\text{-}sum\text{-}list) \\ \mathbf{ultimately \ have} \ (\sum \varphi' \leftarrow (\varphi \ \# \ \Phi). \ \mathcal{P} \ \varphi') \leq \ (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \end{array}
           by simp
      then show ?case by blast
  qed
  thus ?thesis using assms by blast
qed
```

Chapter 3

MaxSAT

We turn now to showing that counting deduction reduces to MaxSAT, the problem of finding the maximal number of satisfiable clauses in a list of clauses.

3.1 Definition of Relative Maximal Clause Collections

Given a list of assumptions Φ and formula φ , we can think of those maximal sublists of Φ that do not prove φ . While in practice we will care about $\varphi = \bot$, we provide a general definition in the more general axiom class implication-logic.

```
definition (in implication-logic) relative-maximals :: 'a list \Rightarrow 'a list set (\mathcal{M})
  where
     \mathcal{M} \Gamma \varphi =
           \{\ \Phi.\ \mathit{mset}\ \Phi\subseteq\#\ \mathit{mset}\ \Gamma
                 \wedge \neg \Phi : \vdash \varphi
                 \land \ (\forall \ \Psi. \ \mathit{mset} \ \Psi \subseteq \# \ \mathit{mset} \ \Gamma \longrightarrow \neg \ \Psi : \vdash \varphi \longrightarrow \mathit{length} \ \Psi \leq \mathit{length} \ \Phi) \ \}
lemma (in implication-logic) relative-maximals-finite: finite (\mathcal{M} \Gamma \varphi)
proof -
  {
     fix \Phi
     assume \Phi \in \mathcal{M} \Gamma \varphi
     hence set \ \Phi \subseteq set \ \Gamma
             \mathit{length}\ \Phi \leq \mathit{length}\ \Gamma
        unfolding relative-maximals-def
        using mset-subset-eqD
                length-sub-mset
                mset	eq	eq	eq
        by fastforce+
  }
```

```
hence \mathcal{M} \Gamma \varphi \subseteq \{xs. \ set \ xs \subseteq set \ \Gamma \land length \ xs \le length \ \Gamma \}
by auto
moreover
have finite \{xs. \ set \ xs \subseteq set \ \Gamma \land length \ xs \le length \ \Gamma \}
using finite-lists-length-le by blast
ultimately show ?thesis using rev-finite-subset by auto
qed
```

We know that φ is not a tautology if and only if the set of relative maximal sublists has an element.

```
\mathbf{lemma} \ (\mathbf{in} \ \mathit{implication-logic}) \ \mathit{relative-maximals-existence} :
  (\neg \vdash \varphi) = (\exists \ \Sigma. \ \Sigma \in \mathcal{M} \ \Gamma \ \varphi)
proof (rule iffI)
  \mathbf{assume} \neg \vdash \varphi
  show \exists \Sigma. \Sigma \in \mathcal{M} \Gamma \varphi
  proof (rule ccontr)
     assume \nexists \Sigma. \Sigma \in \mathcal{M} \Gamma \varphi
     hence \diamondsuit: \forall \Phi. mset \Phi \subseteq \# mset \Gamma \longrightarrow
                            \neg \ \Phi : \vdash \varphi \longrightarrow
                            (\exists \Psi. mset \ \Psi \subseteq \# mset \ \Gamma \land \neg \ \Psi : \vdash \varphi \land length \ \Psi > length \ \Phi)
        unfolding relative-maximals-def
        by fastforce
      {
        \mathbf{fix} \ n
        have \exists \ \Psi. \ mset \ \Psi \subseteq \# \ mset \ \Gamma \ \land \ \neg \ \Psi : \vdash \varphi \ \land \ length \ \Psi > n
           using \Diamond
           by (induct n,
                 metis
                    \langle \neg \vdash \varphi \rangle
                    list.size(3)
                    list-deduction-base-theory
                    mset.simps(1)
                    subset-mset.zero-le,
                 metis
                    Nat.lessE
                   Suc-less-eq)
     hence \exists \ \Psi. \ \textit{mset} \ \Psi \subseteq \# \ \textit{mset} \ \Gamma \ \land \ \textit{length} \ \Psi > \textit{length} \ \Gamma
        by auto
     thus False
        using size-mset-mono by fastforce
  qed
next
  assume \exists \Sigma. \Sigma \in \mathcal{M} \Gamma \varphi
  thus \neg \vdash \varphi
     unfolding relative-maximals-def
     using list-deduction-weaken
     \mathbf{by} blast
qed
```

```
lemma (in implication-logic) relative-maximals-complement-deduction:
  assumes \Phi \in \mathcal{M} \Gamma \varphi
      and \psi \in set \ (\Gamma \ominus \Phi)
    shows \Phi : \vdash \psi \to \varphi
proof (rule ccontr)
  \mathbf{assume} \neg \Phi : \vdash \psi \rightarrow \varphi
  hence \neg (\psi \# \Phi) :\vdash \varphi
    by (simp add: list-deduction-theorem)
  moreover
  have mset \ \Phi \subseteq \# \ mset \ \Gamma \ \psi \in \# \ mset \ (\Gamma \ominus \Phi)
    using assms
    unfolding relative-maximals-def
    by (blast, meson in-multiset-in-set)
  hence mset\ (\psi \# \Phi) \subseteq \# mset\ \Gamma
    by (simp, metis add-mset-add-single
                     mset\text{-}subset\text{-}eq\text{-}mono\text{-}add\text{-}left\text{-}cancel
                     mset-subset-eq-single
                     subset-mset.add-diff-inverse)
  ultimately have length (\psi \# \Phi) \leq length (\Phi)
    using assms
    unfolding relative-maximals-def
    by blast
  thus False
    by simp
qed
lemma (in implication-logic) relative-maximals-set-complement [simp]:
  assumes \Phi \in \mathcal{M} \Gamma \varphi
  shows set (\Gamma \ominus \Phi) = set \Gamma - set \Phi
proof (rule equalityI)
  show set (\Gamma \ominus \Phi) \subseteq set \Gamma - set \Phi
  proof (rule subsetI)
    fix \psi
    assume \psi \in set \ (\Gamma \ominus \Phi)
    moreover from this have \Phi : \vdash \psi \rightarrow \varphi
      using assms
      {f using}\ relative{-}maximals{-}complement{-}deduction
      by blast
    hence \psi \notin set \Phi
      using assms
            list-deduction-modus-ponens
            list-deduction-reflection
            relative-maximals-def
      by blast
    ultimately show \psi \in set \ \Gamma - set \ \Phi
      using list-subtract-set-trivial-upper-bound [where \Gamma = \Gamma and \Phi = \Phi]
      by blast
  qed
```

```
next
  \mathbf{show} \ \mathit{set} \ \Gamma - \mathit{set} \ \Phi \subseteq \mathit{set} \ (\Gamma \ominus \Phi)
    by (simp add: list-subtract-set-difference-lower-bound)
\mathbf{lemma} \ (\mathbf{in} \ implication\text{-}logic) \ relative\text{-}maximals\text{-}complement\text{-}equiv:}
  assumes \Phi \in \mathcal{M} \Gamma \varphi
       and \psi \in set \Gamma
    shows \Phi : \vdash \psi \to \varphi = (\psi \notin set \Phi)
proof (rule iffI)
  \mathbf{assume}\ \Phi \coloneq \psi \to \varphi
  thus \psi \notin set \Phi
    using assms(1)
           list\text{-}deduction\text{-}modus\text{-}ponens
           list-deduction-reflection
           relative-maximals-def
    by blast
\mathbf{next}
  assume \psi \notin set \Phi
  thus \Phi : \vdash \psi \to \varphi
    using assms relative-maximals-complement-deduction
    by auto
\mathbf{qed}
lemma (in implication-logic) maximals-length-equiv:
  assumes \Phi \in \mathcal{M} \Gamma \varphi
      and \Psi \in \mathcal{M} \Gamma \varphi
    shows length \Phi = length \ \Psi
  using assms
  by (simp add: dual-order.antisym relative-maximals-def)
lemma (in implication-logic) maximals-list-subtract-length-equiv:
  assumes \Phi \in \mathcal{M} \Gamma \varphi
      and \Psi \in \mathcal{M} \Gamma \varphi
    shows length (\Gamma \ominus \Phi) = length \ (\Gamma \ominus \Psi)
proof -
  have length \Phi = length \ \Psi
    using assms maximals-length-equiv
    by blast
  moreover
  have mset\ \Phi \subseteq \#\ mset\ \Gamma
        mset\ \Psi \subseteq \#\ mset\ \Gamma
    \mathbf{using} \ \mathit{assms} \ \mathit{relative-maximals-def} \ \mathbf{by} \ \mathit{blast} +
  hence length (\Gamma \ominus \Phi) = length \Gamma - length \Phi
         length \ (\Gamma \ominus \Psi) = length \ \Gamma - length \ \Psi
    by (metis list-subtract-mset-homomorphism size-Diff-submset size-mset)+
  ultimately show ?thesis by metis
qed
```

We can think of $\Gamma :\vdash \varphi$ as saying "the relative maximal sublists of Γ are not

```
the entire list".
\mathbf{lemma} \ (\mathbf{in} \ implication\text{-}logic) \ relative\text{-}maximals\text{-}max\text{-}list\text{-}deduction:
  \Gamma :\vdash \varphi = (\forall \Phi \in \mathcal{M} \Gamma \varphi. 1 \leq length (\Gamma \ominus \Phi))
proof cases
  \mathbf{assume} \vdash \varphi
  hence \Gamma : \vdash \varphi \mathcal{M} \Gamma \varphi = \{\}
    unfolding relative-maximals-def
    by (simp add: list-deduction-weaken)+
  then show ?thesis by blast
next
  assume \neg \vdash \varphi
  from this obtain \Omega where \Omega: \Omega \in \mathcal{M} \Gamma \varphi
    using relative-maximals-existence by blast
  from this have mset \Omega \subseteq \# mset \Gamma
    unfolding relative-maximals-def by blast
  hence \diamondsuit: length (\Gamma \ominus \Omega) = length \Gamma - length \Omega
    by (metis list-subtract-mset-homomorphism
                size	ext{-}Diff	ext{-}submset
                size-mset)
  show ?thesis
  proof (cases \Gamma :\vdash \varphi)
    assume \Gamma : \vdash \varphi
    from \Omega have mset \ \Omega \subset \# \ mset \ \Gamma
       by (metis (no-types, lifting)
                  Diff-cancel
                  Diff-eq-empty-iff
                  \langle \Gamma : \vdash \varphi \rangle
                  list\text{-}deduction\text{-}monotonic
                  relative{-maximals-def}
                  mem-Collect-eq
                  mset-eq-setD
                  subset-mset.dual-order.not-eq-order-implies-strict)
    hence length \Omega < length \Gamma
       using mset-subset-size by fastforce
    hence 1 \leq length \Gamma - length \Omega
       by (simp \ add: Suc-leI)
    with \diamondsuit have 1 \leq length \ (\Gamma \ominus \Omega)
      by simp
    with \langle \Gamma : \vdash \varphi \rangle \Omega show ?thesis
       by (metis\ maximals-list-subtract-length-equiv)
    assume \neg \Gamma :\vdash \varphi
    moreover have mset\ \Gamma \subseteq \#\ mset\ \Gamma
       by simp
    moreover have length \Omega \leq length \Gamma
       using \langle mset \ \Omega \subseteq \# \ mset \ \Gamma \rangle \ length\text{-sub-mset mset-eq-length}
       by fastforce
    ultimately have length \Omega = length \Gamma
       using \Omega
```

```
\begin{array}{c} \textbf{unfolding} \ \textit{relative-maximals-def} \\ \textbf{by} \ (\textit{simp add: dual-order.antisym}) \\ \textbf{hence} \ 1 > \textit{length} \ (\Gamma \ominus \Omega) \\ \textbf{using} \ \diamondsuit \\ \textbf{by} \ \textit{simp} \\ \textbf{with} \ (\neg \Gamma : \vdash \varphi) \ \Omega \ \textbf{show} \ ?\textit{thesis} \\ \textbf{by} \ \textit{fastforce} \\ \textbf{qed} \\ \textbf{qed} \end{array}
```

3.2 Definition of MaxSAT

We next turn to defining an abstract form of MaxSAT, which is largest the number of simultaneously satisfiable propositions in a list of propositions.

Unlike conventional MaxSAT, we don't actually work at the *semantic* level, i.e. constructing a model for the Tarski truth relation \models . Instead, we just count the elements in a maximal, consistent sublist (i.e., a maximal sub list Σ such that $\neg \Sigma :\vdash \bot$) of the list of assumptions Γ we have at hand.

Because we do not work at the semantic level, computing if $MaxSAT \Gamma \leq n$ is not in general CoNP-Complete, as it is classically classified [1]. In the special case that the underlying logic is the *classical propositional calculus*, then the complexity is CoNP-Complete. But we could imagine the underlying logic to be linear temporal logic or even first order logic. In such cases the complexity class would be higher in the complexity hierarchy.

```
definition (in implication-logic) relative-MaxSAT :: 'a list \Rightarrow 'a \Rightarrow nat (| - |- [45])
    (\mid \Gamma \mid_{\varphi}) = (if \mathcal{M} \Gamma \varphi = \{\} then 0 else Max \{ length \Phi \mid \Phi. \Phi \in \mathcal{M} \Gamma \varphi \})
abbreviation (in classical-logic) MaxSAT :: 'a \ list \Rightarrow nat
  where
     MaxSAT \Gamma \equiv |\Gamma|_{\perp}
definition (in implication-logic) complement-relative-MaxSAT :: 'a list \Rightarrow 'a \Rightarrow
nat ( \| - \| - [45] )
  where
    (\parallel \Gamma \parallel_{\varphi}) = length \Gamma - |\Gamma|_{\varphi}
lemma (in implication-logic) relative-MaxSAT-intro:
  assumes \Phi \in \mathcal{M} \Gamma \varphi
  shows length \Phi = |\Gamma|_{\varphi}
  have \forall n \in \{ length \Psi \mid \Psi. \Psi \in \mathcal{M} \Gamma \varphi \}. n \leq length \Phi
        length \Phi \in \{ length \Psi \mid \Psi. \Psi \in \mathcal{M} \Gamma \varphi \}
    using assms relative-maximals-def
    by auto
```

```
moreover
  have finite { length \Psi \mid \Psi. \Psi \in \mathcal{M} \Gamma \varphi }
   \mathbf{using}\ \mathit{finite-imageI}\ \mathit{relative-maximals-finite}
  ultimately have Max \{ length \Psi \mid \Psi. \Psi \in \mathcal{M} \Gamma \varphi \} = length \Phi
   using Max-eqI
   by blast
  thus ?thesis
   using assms relative-MaxSAT-def
   by auto
qed
{f lemma} (in implication-logic) complement-relative-MaxSAT-intro:
  assumes \Phi \in \mathcal{M} \Gamma \varphi
 shows length (\Gamma \ominus \Phi) = ||\Gamma||_{\varphi}
proof -
  have mset\ \Phi \subseteq \#\ mset\ \Gamma
   using assms
   unfolding relative-maximals-def
  moreover from this have length (\Gamma \ominus \Phi) = length \Gamma - length \Phi
   by (metis list-subtract-mset-homomorphism size-Diff-submset size-mset)
  ultimately show ?thesis
   unfolding complement-relative-MaxSAT-def
   by (metis assms relative-MaxSAT-intro)
qed
lemma (in implication-logic) length-MaxSAT-decomposition:
  length \ \Gamma = (\mid \Gamma \mid_{\varphi}) + \parallel \Gamma \parallel_{\varphi}
proof (cases \mathcal{M} \Gamma \varphi = \{\})
  case True
  then show ?thesis
   unfolding relative-MaxSAT-def
             complement-relative-MaxSAT-def
   by simp
next
  case False
  from this obtain \Phi where \Phi \in \mathcal{M} \Gamma \varphi
  moreover from this have mset \Phi \subseteq \# mset \Gamma
   unfolding relative-maximals-def
   by auto
  moreover from this have length (\Gamma \ominus \Phi) = length \Gamma - length \Phi
   by (metis list-subtract-mset-homomorphism size-Diff-submset size-mset)
  ultimately show ?thesis
   {\bf unfolding} \ \ complement\mbox{-} relative\mbox{-} MaxSAT\mbox{-} def
   using list-subtract-msub-eq relative-MaxSAT-intro
   by fastforce
qed
```

3.3 Reducing Counting Deduction to MaxSAT

Here we present a major result: counting deduction may be reduced to MaxSAT.

```
primrec MaxSAT-optimal-pre-witness :: 'a list \Rightarrow ('a list \times 'a) list (\mathfrak{V})
  where
    \mathfrak{V} \; [] = []
  |\mathfrak{V}(\psi \# \Psi) = (\Psi, \psi) \# \mathfrak{V} \Psi
{\bf lemma}\ {\it MaxSAT-optimal-pre-witness-element-inclusion}:
  \forall (\Delta, \delta) \in set (\mathfrak{V} \Psi). set (\mathfrak{V} \Delta) \subseteq set (\mathfrak{V} \Psi)
  by (induct \Psi, fastforce+)
{\bf lemma}\ {\it MaxSAT-optimal-pre-witness-nonelement}:
  assumes length \Delta \ge length \Psi
  shows (\Delta, \delta) \notin set (\mathfrak{V} \Psi)
  using assms
proof (induct \Psi)
  case Nil
  then show ?case by simp
next
  case (Cons \psi \Psi)
  hence \Psi \neq \Delta by auto
  then show ?case using Cons by simp
qed
lemma MaxSAT-optimal-pre-witness-distinct: distinct (\mathfrak{V} \Psi)
  by (induct \Psi, simp, simp add: MaxSAT-optimal-pre-witness-nonelement)
lemma MaxSAT-optimal-pre-witness-length-iff-eq:
  \forall (\Delta, \delta) \in set (\mathfrak{V} \Psi). \ \forall (\Sigma, \sigma) \in set (\mathfrak{V} \Psi). \ (length \Delta = length \Sigma) = ((\Delta, \delta) =
(\Sigma,\sigma)
proof (induct \Psi)
  case Nil
  then show ?case by simp
\mathbf{next}
  case (Cons \psi \Psi)
  {
    fix \Delta
    fix \delta
    assume (\Delta, \delta) \in set (\mathfrak{V} (\psi \# \Psi))
        and length \Delta = length \Psi
    hence (\Delta, \delta) = (\Psi, \psi)
      by (simp add: MaxSAT-optimal-pre-witness-nonelement)
  hence \forall (\Delta, \delta) \in set (\mathfrak{V} (\psi \# \Psi)). (length \Delta = length \Psi) = ((\Delta, \delta) = (\Psi, \psi))
    \mathbf{by} blast
  with Cons show ?case
    by auto
```

```
qed
```

```
{\bf lemma}\ \textit{mset-distinct-msub-down}:
 assumes mset\ A\subseteq\#\ mset\ B
     and distinct B
   shows distinct A
  using assms
  by (meson distinct-append mset-le-perm-append perm-distinct-iff)
\mathbf{lemma}\ \mathit{mset-remdups-set-sub-iff}\colon
  (\mathit{mset}\ (\mathit{remdups}\ A) \subseteq \#\ \mathit{mset}\ (\mathit{remdups}\ B)) = (\mathit{set}\ A \subseteq \mathit{set}\ B)
  have \forall B. (mset (remdups A) \subseteq \# mset (remdups B)) = (set A \subseteq set B)
  proof (induct A)
   case Nil
   then show ?case by simp
  next
   case (Cons\ a\ A)
   then show ?case
   proof (cases \ a \in set \ A)
     case True
     then show ?thesis using Cons by auto
    next
     {f case} False
     {
       \mathbf{fix} \ B
        have (mset\ (remdups\ (a\ \#\ A))\ \subseteq \#\ mset\ (remdups\ B))\ =\ (set\ (a\ \#\ A)\ \subseteq
set B)
       proof (rule iffI)
         assume assm: mset\ (remdups\ (a\ \#\ A))\subseteq \#\ mset\ (remdups\ B)
         hence mset (remdups\ A) \subseteq \# mset (remdups\ B) - {\#a\#}
           using False
           by (simp add: insert-subset-eq-iff)
         hence mset (remdups\ A) \subseteq \# mset (remdups\ (removeAll\ a\ B))
           by (metis diff-subset-eq-self
                     distinct-remdups
                     distinct	ext{-}remove1	ext{-}removeAll
                     mset-distinct-msub-down
                     mset\text{-}remove1
                     set-eq-iff-mset-eq-distinct
                     set-remdups set-removeAll)
         hence set A \subseteq set (removeAll \ a \ B)
           using Cons.hyps by blast
         moreover from assm\ False\ \mathbf{have}\ a \in set\ B
           using mset-subset-eq-insertD by fastforce
         ultimately show set (a \# A) \subseteq set B
           by auto
       next
         assume assm: set (a \# A) \subseteq set B
```

```
hence set A \subseteq set (removeAll \ a \ B) using False
          by auto
         hence mset \ (remdups \ A) \subseteq \# \ mset \ (remdups \ B) - \{\#a\#\}
          by (metis Cons.hyps
                    distinct-remdups
                    mset\text{-}remdups\text{-}subset\text{-}eq
                    mset-remove1 remove-code(1)
                    set-remdups set-remove1-eq
                    set	ext{-}removeAll
                    subset-mset.dual-order.trans)
         moreover from assm False have a \in set B by auto
         ultimately show mset (remdups (a \# A)) \subseteq \# mset (remdups B)
           by (simp add: False insert-subset-eq-iff)
       qed
     then show ?thesis by simp
   qed
 qed
 thus ?thesis by blast
qed
lemma range-characterization:
  (mset\ X = mset\ [0.. < length\ X]) = (distinct\ X \land (\forall\ x \in set\ X.\ x < length\ X))
proof (rule iffI)
 assume mset X = mset [0..< length X]
 thus distinct X \land (\forall x \in set \ X. \ x < length \ X)
     by (metis atLeastLessThan-iff count-mset-0-iff distinct-count-atmost-1 dis-
tinct-upt set-upt)
 assume distinct X \land (\forall x \in set X. \ x < length X)
 moreover
   \mathbf{fix} \ n
   have \forall X. n = length X \longrightarrow
             distinct \ X \land (\forall x \in set \ X. \ x < length \ X) \longrightarrow
             mset X = mset [0..< length X]
   proof(induct n)
     case \theta
     then show ?case by simp
   next
     case (Suc \ n)
     {
       \mathbf{fix}\ X
       assume A: n + 1 = length X
          and B: distinct X
          and C: \forall x \in set X. x < length X
       have n \in set X
       proof (rule ccontr)
         assume n \notin set X
```

```
from A have A': n = length (tl X)
   by simp
  from B have B': distinct (tl X)
   by (simp add: distinct-tl)
  have C': \forall x \in set (tl X). x < length (tl X)
   by (metis
         A
         A'
         C
         \langle n \notin set X \rangle
         Suc\text{-}eq\text{-}plus1
         Suc-le-eq
         Suc-le-mono
         le-less
         list.set-sel(2)
         list.size(3)
         nat.simps(3))
  from A' B' C' Suc have mset (tl X) = mset [0..< n]
   by blast
  from A have X = hd X \# tl X
   by (metis Suc-eq-plus1 list.exhaust-sel list.size(3) nat.simps(3))
  with B \ \langle mset \ (tl \ X) = mset \ [0..< n] \rangle have hd \ X \notin set \ [0..< n]
   by (metis\ distinct.simps(2)\ mset-eq-setD)
  hence hd X \ge n by simp
  with C \langle n \notin set X \rangle \langle X = hd X \# tl X \rangle show False
   by (metis A Suc-eq-plus1 Suc-le-eq le-neq-trans list.set-intros(1) not-less)
let ?X' = remove1 \ n \ X
have A': n = length ?X'
  by (metis\ A\ \langle n\in set\ X\rangle\ diff-add-inverse2\ length-remove1)
have B': distinct ?X'
  by (simp \ add: B)
have C': \forall x \in set ?X'. x < length ?X'
  by (metis A A' B C
           DiffE
           Suc\text{-}eq\text{-}plus1
           Suc-le-eq
           Suc-le-mono
           le-neg-trans
           set-remove1-eq
           singletonI)
hence mset ?X' = mset [0..< n]
  using A'B'C'Suc
  by auto
hence mset\ (n \# ?X') = mset\ [0..< n+1]
  by simp
hence mset X = mset [0..< length X]
  by (metis\ A\ \langle n\in set\ X\rangle\ perm-remove)
```

}

```
then show ?case by fastforce
   \mathbf{qed}
  ultimately show mset X = mset [0..< length X]
   by blast
qed
lemma distinct-pigeon-hole:
 fixes X :: nat \ list
 assumes distinct X
     and X \neq []
   shows \exists n \in set X. n + 1 \ge length X
proof (rule ccontr)
 assume \star: \neg (\exists n \in set X. length X \leq n + 1)
 hence \forall n \in set X. n < length X by fastforce
 hence mset X = mset [0..< length X]
   using assms(1) range-characterization
   by fastforce
  with assms(2) have length X - 1 \in set X
   by (metis
         diff-zero
         last\hbox{-} in\hbox{-} set
         last-upt
         length\mbox{-}greater\mbox{-}0\mbox{-}conv
         length-upt mset-eq-setD)
 with \star show False
   by (metis One-nat-def Suc-eq-plus1 Suc-pred le-refl length-pos-if-in-set)
qed
lemma MaxSAT-optimal-pre-witness-pigeon-hole:
 assumes mset \Sigma \subseteq \# mset (\mathfrak{V} \Psi)
     and \Sigma \neq []
   shows \exists (\Delta, \delta) \in set \Sigma. length \Delta + 1 \geq length \Sigma
proof -
 have distinct \Sigma
   using assms
         MaxSAT-optimal-pre-witness-distinct
         mset	ext{-}distinct	ext{-}msub	ext{-}down
   by blast
  with assms(1) have distinct (map (length \circ fst) \Sigma)
 proof (induct \Sigma)
   case Nil
   then show ?case by simp
  next
   case (Cons \sigma \Sigma)
   hence mset \Sigma \subseteq \# mset (\mathfrak{V} \Psi)
         distinct \Sigma
     by (metis mset.simps(2) mset-subset-eq-insertD subset-mset-def, simp)
   with Cons.hyps have distinct (map (\lambda a. length (fst a)) \Sigma) by simp
```

```
moreover
    obtain \delta \Delta where \sigma = (\Delta, \delta)
       by fastforce
    hence (\Delta, \delta) \in set (\mathfrak{V} \Psi)
       using Cons.prems mset-subset-eq-insertD
       bv fastforce
    hence \forall \ (\Sigma, \sigma) \in set \ (\mathfrak{V} \ \Psi). \ (length \ \Delta = length \ \Sigma) = ((\Delta, \ \delta) = (\Sigma, \ \sigma))
       using MaxSAT-optimal-pre-witness-length-iff-eq [where \Psi=\Psi]
       by fastforce
    hence \forall (\Sigma, \sigma) \in set \Sigma. (length \Delta = length \Sigma) = ((\Delta, \delta) = (\Sigma, \sigma))
       \mathbf{using} \ \langle mset \ \Sigma \subseteq \# \ mset \ (\mathfrak{V} \ \Psi) \rangle
     by (metis (no-types, lifting) Un-iff mset-le-perm-append perm-set-eq set-append)
    hence length (fst \sigma) \notin set (map (\lambda a. length (fst a)) \Sigma)
       using Cons.prems(2) \langle \sigma = (\Delta, \delta) \rangle
       by fastforce
    ultimately show ?case by simp
  qed
  moreover have length (map (length \circ fst) \Sigma) = length \Sigma by simp
  moreover have map (length \circ fst) \Sigma \neq [] using assms by simp
  ultimately show ?thesis
    \mathbf{using}\ \mathit{distinct-pigeon-hole}
    by fastforce
qed
abbreviation (in classical-logic)
  MaxSAT-optimal-witness :: 'a \Rightarrow 'a \ list \Rightarrow ('a \times 'a) \ list (\mathfrak{W})
  where \mathfrak{W} \varphi \Xi \equiv map (\lambda(\Psi, \psi), (\Psi : \to \varphi, \psi)) (\mathfrak{V} \Xi)
abbreviation (in classical-logic)
  disjunction\text{-}MaxSAT\text{-}optimal\text{-}witness :: 'a \Rightarrow 'a \ list \Rightarrow 'a \ list \ (\mathfrak{W}_{\sqcup})
  where \mathfrak{W}_{\sqcup} \varphi \Psi \equiv map (uncurry (\sqcup)) (\mathfrak{W} \varphi \Psi)
abbreviation (in classical-logic)
  implication-MaxSAT-optimal-witness :: 'a \Rightarrow 'a \ list \Rightarrow 'a \ list \ (\mathfrak{W}_{\rightarrow})
  where \mathfrak{W}_{\rightarrow} \varphi \Psi \equiv map \; (uncurry \; (\rightarrow)) \; (\mathfrak{W} \; \varphi \; \Psi)
lemma (in classical-logic) MaxSAT-optimal-witness-conjunction-identity:
  \vdash \sqcap (\mathfrak{W}_{\sqcup} \varphi \Psi) \leftrightarrow (\varphi \sqcup \sqcap \Psi)
proof (induct \Psi)
  case Nil
  then show ?case
    unfolding biconditional-def
                disjunction-def
    using axiom-k
            modus\hbox{-}ponens
            verum-tautology
    by (simp, blast)
next
  case (Cons \psi \Psi)
```

```
have \vdash (\Psi :\to \varphi) \leftrightarrow (\prod \Psi \to \varphi)
      by (simp add: list-curry-uncurry)
   hence \vdash \bigcap (map (uncurry (\sqcup)) (\mathfrak{W} \varphi (\psi \# \Psi)))
             \leftrightarrow ((\sqcap \Psi \rightarrow \varphi \sqcup \psi) \sqcap \sqcap (map (uncurry (\sqcup)) (\mathfrak{W} \varphi \Psi)))
      unfolding biconditional-def
      \mathbf{using}\ conjunction\text{-}monotonic
                disjunction{-}monotonic
   moreover have \vdash (( \sqcap \Psi \to \varphi \sqcup \psi) \sqcap \sqcap (map (uncurry (\sqcup)) (\mathfrak{W} \varphi \Psi)))
                           \leftrightarrow ((\square \ \Psi \to \varphi \sqcup \psi) \sqcap (\varphi \sqcup \square \ \Psi))
      using Cons.hyps biconditional-conjunction-weaken-rule
      by blast
   moreover
      fix \varphi \psi \chi
      \mathbf{have} \vdash ((\chi \rightarrow \varphi \sqcup \psi) \sqcap (\varphi \sqcup \chi)) \leftrightarrow (\varphi \sqcup (\psi \sqcap \chi))
         let ?\varphi = ((\langle \chi \rangle \to \langle \varphi \rangle \sqcup \langle \psi \rangle) \sqcap (\langle \varphi \rangle \sqcup \langle \chi \rangle)) \leftrightarrow (\langle \varphi \rangle \sqcup (\langle \psi \rangle \sqcap \langle \chi \rangle))
         have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi \text{ by } fastforce
         hence \vdash ( ?\varphi ) using propositional-semantics by blast
         thus ?thesis by simp
      qed
   ultimately have \vdash \sqcap (map \ (uncurry \ (\sqcup)) \ (\mathfrak{W} \ \varphi \ (\psi \ \# \ \Psi))) \leftrightarrow (\varphi \ \sqcup \ (\psi \ \sqcap \ \sqcap ))
      \mathbf{using}\ biconditional	ext{-}transitivity	ext{-}rule
      by blast
   then show ?case by simp
qed
lemma (in classical-logic) MaxSAT-optimal-witness-deduction:
  \vdash \mathfrak{W}_{\sqcup} \varphi \Psi : \rightarrow \varphi \leftrightarrow \Psi : \rightarrow \varphi
proof -
   \mathbf{have} \vdash \mathfrak{W}_{\sqcup} \ \varphi \ \Psi : \rightarrow \varphi \leftrightarrow ( \ \ (\mathfrak{W}_{\sqcup} \ \varphi \ \Psi) \rightarrow \varphi)
      by (simp add: list-curry-uncurry)
   moreover
   {
      fix \alpha \beta \gamma
      have \vdash (\alpha \leftrightarrow \beta) \rightarrow ((\alpha \rightarrow \gamma) \leftrightarrow (\beta \rightarrow \gamma))
         let ?\varphi = (\langle \alpha \rangle \leftrightarrow \langle \beta \rangle) \rightarrow ((\langle \alpha \rangle \rightarrow \langle \gamma \rangle) \leftrightarrow (\langle \beta \rangle \rightarrow \langle \gamma \rangle))
         have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi \text{ by } fastforce
         hence \vdash ( ?\varphi ) using propositional-semantics by blast
         thus ?thesis by simp
      \mathbf{qed}
   ultimately have \vdash \mathfrak{W}_{\sqcup} \varphi \Psi :\rightarrow \varphi \leftrightarrow ((\varphi \sqcup \square \Psi) \rightarrow \varphi)
      using modus-ponens
                biconditional\hbox{-} transitivity\hbox{-} rule
```

```
MaxSAT-optimal-witness-conjunction-identity
      by blast
   moreover
   {
      fix \alpha \beta
     \mathbf{have} \vdash ((\alpha \sqcup \beta) \to \alpha) \leftrightarrow (\beta \to \alpha)
     proof -
         let ?\varphi = ((\langle \alpha \rangle \sqcup \langle \beta \rangle) \to \langle \alpha \rangle) \leftrightarrow (\langle \beta \rangle \to \langle \alpha \rangle)
         have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi \text{ by } fastforce
         hence \vdash ( ?\varphi ) using propositional-semantics by blast
         thus ?thesis by simp
      qed
   }
   ultimately have \vdash \mathfrak{W}_{\sqcup} \varphi \Psi : \rightarrow \varphi \leftrightarrow (\square \Psi \rightarrow \varphi)
      using biconditional-transitivity-rule by blast
   thus ?thesis
      using biconditional-symmetry-rule
               biconditional\hbox{-} transitivity\hbox{-} rule
               list-curry-uncurry
      by blast
qed
lemma (in classical-logic) optimal-witness-split-identity:
  \vdash (\mathfrak{W}_{\sqcup} \varphi \ (\psi \ \# \ \Xi)) :\rightarrow \varphi \rightarrow (\mathfrak{W}_{\to} \varphi \ (\psi \ \# \ \Xi)) :\rightarrow \varphi \rightarrow \Xi :\rightarrow \varphi
proof (induct \ \Xi)
   case Nil
   have \vdash ((\varphi \sqcup \psi) \to \varphi) \to ((\varphi \to \psi) \to \varphi) \to \varphi
   proof -
      let ?\varphi = ((\langle \varphi \rangle \sqcup \langle \psi \rangle) \to \langle \varphi \rangle) \to ((\langle \varphi \rangle \to \langle \psi \rangle) \to \langle \varphi \rangle) \to \langle \varphi \rangle
      have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi by fastforce
      hence \vdash ( ?\varphi ) using propositional-semantics by blast
      thus ?thesis by simp
   qed
   then show ?case by simp
next
   case (Cons \xi \Xi)
  let ?A = \mathfrak{W}_{\sqcup} \varphi \; \Xi : \to \varphi
  let ?B = \mathfrak{W}_{\rightarrow} \varphi \; \Xi : \rightarrow \varphi
  let ?X = \Xi : \rightarrow \varphi
  from Cons.hyps have \vdash ((?X \sqcup \psi) \to ?A) \to ((?X \to \psi) \to ?B) \to ?X by simp
  moreover
  have \vdash (((?X \sqcup \psi) \to ?A) \to ((?X \to \psi) \to ?B) \to ?X)
           \rightarrow ((\xi \rightarrow ?X \sqcup \psi) \rightarrow (?X \sqcup \xi) \rightarrow ?A) \rightarrow (((\xi \rightarrow ?X) \rightarrow \psi) \rightarrow (?X \rightarrow \xi))
\rightarrow ?B) \rightarrow \xi \rightarrow ?X
  proof -
      let ?\varphi = (((\langle ?X \rangle \sqcup \langle \psi \rangle) \to \langle ?A \rangle) \to ((\langle ?X \rangle \to \langle \psi \rangle) \to \langle ?B \rangle) \to \langle ?X \rangle) \to
                    ((\langle \xi \rangle \to \langle ?X \rangle \sqcup \langle \psi \rangle) \to (\langle ?X \rangle \sqcup \langle \xi \rangle) \to \langle ?A \rangle) \to
                    (((\langle \xi \rangle \to \langle ?X \rangle) \to \langle \psi \rangle) \to (\langle ?X \rangle \to \langle \xi \rangle) \to \langle ?B \rangle) \to
```

```
\langle ?X \rangle
     have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi \text{ by } fastforce
     hence \vdash ( ?\varphi ) using propositional-semantics by blast
     thus ?thesis by simp
  ged
  ultimately
  have \vdash ((\xi \rightarrow ?X \sqcup \psi) \rightarrow (?X \sqcup \xi) \rightarrow ?A) \rightarrow (((\xi \rightarrow ?X) \rightarrow \psi) \rightarrow (?X \rightarrow \xi))
\rightarrow ?B) \rightarrow \xi \rightarrow ?X
     using modus-ponens
     by blast
  thus ?case by simp
qed
\mathbf{lemma} \ (\mathbf{in} \ \mathit{classical-logic}) \ \mathit{disj-conj-impl-duality} :
  \vdash (\varphi \to \chi \sqcap \psi \to \chi) \leftrightarrow ((\varphi \sqcup \psi) \to \chi)
proof -
  \mathbf{let} \ ?\varphi = (\langle \varphi \rangle \to \langle \chi \rangle \sqcap \langle \psi \rangle \to \langle \chi \rangle) \leftrightarrow ((\langle \varphi \rangle \sqcup \langle \psi \rangle) \to \langle \chi \rangle)
  have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi \text{ by } fastforce
  hence \vdash ( ?\varphi ) using propositional-semantics by blast
  thus ?thesis by simp
qed
lemma (in classical-logic) weak-disj-of-conj-equiv:
   (\forall \sigma \in set \ \Sigma. \ \sigma : \vdash \varphi) = \vdash \bigsqcup \ (map \ \bigcap \ \Sigma) \to \varphi
proof (induct \Sigma)
  case Nil
  then show ?case
     by (simp add: ex-falso-quodlibet)
\mathbf{next}
  case (Cons \sigma \Sigma)
  have (\forall \sigma' \in set \ (\sigma \# \Sigma). \ \sigma' :\vdash \varphi) = (\sigma :\vdash \varphi \land (\forall \sigma' \in set \Sigma. \ \sigma' :\vdash \varphi)) by simp
    also have ... = (\vdash \sigma :\rightarrow \varphi \land \vdash \bigsqcup (map \sqcap \Sigma) \rightarrow \varphi) using Cons.hyps
list-deduction-def by simp
  also have ... = (\vdash \sqcap \sigma \to \varphi \land \vdash \sqcup (map \sqcap \Sigma) \to \varphi)
     using list-curry-uncurry weak-biconditional-weaken by blast
  also have ... = (\vdash \sqcap \sigma \rightarrow \varphi \sqcap \mid \mid (map \sqcap \Sigma) \rightarrow \varphi) by simp
  using disj-conj-impl-duality weak-biconditional-weaken by blast
   finally show ?case by simp
qed
lemma (in classical-logic) arbitrary-disj-concat-equiv:
  \vdash \bigsqcup (\Phi @ \Psi) \leftrightarrow (\bigsqcup \Phi \sqcup \bigsqcup \Psi)
\mathbf{proof}\;(induct\;\Phi)
  case Nil
  then show ?case
     \mathbf{bv} (simp,
          meson ex-falso-quodlibet
                  modus-ponens
```

```
biconditional-introduction
                                                         disjunction\hbox{-}elimination
                                                          disjunction-right-introduction
                                                         trivial-implication)
next
        case (Cons \varphi \Phi)
        \mathbf{have} \vdash \bigsqcup \ (\Phi \ @ \ \Psi) \leftrightarrow (\bigsqcup \ \Phi \ \sqcup \ \bigsqcup \ \Psi) \rightarrow (\varphi \ \sqcup \ \bigsqcup \ (\Phi \ @ \ \Psi)) \leftrightarrow ((\varphi \ \sqcup \ \bigsqcup \ \Phi) \ \sqcup )
       proof -
                let ?\varphi =
                         (\langle \bigsqcup^{\cdot} \ (\Phi \ @ \ \Psi) \rangle \ \leftrightarrow \ (\langle \bigsqcup \ \Phi \rangle \ \sqcup \ \langle \bigsqcup \ \Psi \rangle)) \ \rightarrow \ (\langle \varphi \rangle \ \sqcup \ \langle \bigsqcup \ (\Phi \ @ \ \Psi) \rangle) \ \leftrightarrow \ ((\langle \varphi \rangle \ \sqcup \ ( \Box \ \Psi ) )) \ )
\langle \bigsqcup \Phi \rangle ) \sqcup \langle \bigsqcup \Psi \rangle )
                have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi \text{ by } fastforce
                hence \vdash ( ?\varphi ) using propositional-semantics by blast
                thus ?thesis by simp
        then show ?case using Cons modus-ponens by simp
qed
lemma (in classical-logic) arbitrary-conj-concat-equiv:
       \vdash \sqcap (\Phi @ \Psi) \leftrightarrow (\sqcap \Phi \sqcap \sqcap \Psi)
proof (induct \Phi)
        {\bf case}\ {\it Nil}
         then show ?case
                by (simp,
                                 meson modus-ponens
                                                         biconditional-introduction
                                                          conjunction-introduction
                                                         conjunction\hbox{-}right\hbox{-}elimination
                                                         verum-tautology)
\mathbf{next}
        case (Cons \varphi \Phi)
        \mathbf{have} \vdash \prod \ (\Phi \ @ \ \Psi) \leftrightarrow (\prod \ \Phi \sqcap \prod \ \Psi) \rightarrow (\varphi \sqcap \prod \ (\Phi \ @ \ \Psi)) \leftrightarrow ((\varphi \sqcap \prod \ \Phi) \sqcap ) )
\prod \Psi
      proof -
                let ?\varphi =
                         (\langle \stackrel{\cdot}{\bigcap} \ (\Phi \ @ \ \Psi) \rangle \ \leftrightarrow \ (\langle \stackrel{\cdot}{\bigcap} \ \Phi \rangle \ \sqcap \ \langle \stackrel{\cdot}{\bigcap} \ \Psi \rangle)) \ \rightarrow \ (\langle \varphi \rangle \ \sqcap \ \langle \stackrel{\cdot}{\bigcap} \ (\Phi \ @ \ \Psi) \rangle) \ \leftrightarrow \ ((\langle \varphi \rangle \ \sqcap \ (\varphi ) \ \sqcap \ (
 \langle | \Phi \rangle \rangle \cap \langle | \Psi \rangle \rangle
                have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi \text{ by } fastforce
                hence \vdash ( ?\varphi ) using propositional-semantics by blast
                thus ?thesis by simp
        then show ?case using Cons modus-ponens by simp
\mathbf{qed}
lemma (in classical-logic) conj-absorption:
        assumes \chi \in set \Phi
        \mathbf{shows} \vdash \prod \ \Phi \leftrightarrow (\chi \sqcap \prod \ \Phi)
        using assms
```

```
proof (induct \Phi)
  case Nil
  then show ?case by simp
\mathbf{next}
  case (Cons \varphi \Phi)
  then show ?case
  proof (cases \varphi = \chi)
    {\bf case}\  \, True
    then show ?thesis
       by (simp,
            metis biconditional-def
                   implication-distribution
                   trivial-implication
                   weak\hbox{-}biconditional\hbox{-}weaken
                   weak-conjunction-deduction-equivalence)
  next
    case False
    then show ?thesis
       by (metis Cons.prems
                   arbitrary-conjunction.simps(2)
                   modus-ponens
                   arbitrary\-conjunction\-antitone
                   biconditional \hbox{-} introduction
                   remdups.simps(2)
                   set\text{-}remdups
                   set-subset-Cons)
  qed
qed
lemma (in classical-logic) conj-extract: \vdash \bigsqcup (map ((\sqcap) \varphi) \Psi) \leftrightarrow (\varphi \sqcap \bigsqcup \Psi)
proof (induct \Psi)
  case Nil
  then show ?case
   by (simp add: ex-falso-quodlibet biconditional-def conjunction-right-elimination)
\mathbf{next}
  case (Cons \psi \Psi)
  have \vdash | | (map ((\sqcap) \varphi) \Psi) \leftrightarrow (\varphi \sqcap | | \Psi)
          \rightarrow ((\varphi \sqcap \psi) \sqcup | | (map ((\sqcap) \varphi) \Psi)) \leftrightarrow (\varphi \sqcap (\psi \sqcup | | \Psi))
  proof -
    let ?\varphi = \langle \bigsqcup (map ((\sqcap) \varphi) \Psi) \rangle \leftrightarrow (\langle \varphi \rangle \sqcap \langle \bigsqcup \Psi \rangle)
                 \rightarrow ((\langle \varphi \rangle \sqcap \langle \psi \rangle) \sqcup \langle \bigsqcup \ (map \ ((\sqcap) \ \varphi) \ \Psi) \rangle) \leftrightarrow (\langle \varphi \rangle \sqcap (\langle \psi \rangle \sqcup \langle \bigsqcup \ \Psi \rangle))
    have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi \text{ by } fastforce
    hence \vdash ( ?\varphi ) using propositional-semantics by blast
    thus ?thesis by simp
  qed
  then show ?case using Cons modus-ponens by simp
\mathbf{lemma} (in \mathit{classical-logic}) \mathit{conj-multi-extract}:
```

```
\vdash \bigsqcup \ (map \ \bigcap \ (map \ ((@) \ \Delta) \ \Sigma)) \leftrightarrow (\bigcap \ \Delta \ \sqcap \ \bigsqcup \ (map \ \bigcap \ \Sigma))
proof (induct \Sigma)
   case Nil
   then show ?case
      by (simp, metis\ list.simps(8)\ arbitrary-disjunction.simps(1)\ conj-extract)
   case (Cons \sigma \Sigma)
   moreover have
      \vdash \quad \bigsqcup \ (map \ \lceil \ (@) \ \Delta) \ \Sigma)) \leftrightarrow (\lceil \ \Delta \ \sqcap \ \bigsqcup \ (map \ \lceil \ \Sigma))
         \rightarrow \prod (\Delta @ \sigma) \leftrightarrow (\prod \Delta \sqcap \prod \sigma)
         \rightarrow ( \  \  \, (\Delta @ \sigma) \sqcup \  \  \, (map\ (\  \  \, \circ \ (@)\ \Delta)\ \Sigma)) \leftrightarrow (\  \  \, \Delta \sqcap (\  \  \, \sigma \sqcup \  \  \, (map\ \sqcap \  \, ))))
\Sigma)))
  proof -
      let ?\varphi =
             \langle \bigsqcup \ (map \ \bigcap \ (map \ ((@) \ \Delta) \ \Sigma)) \rangle \leftrightarrow (\langle \bigcap \ \Delta \rangle \ \cap \ \langle \bigsqcup \ (map \ \bigcap \ \Sigma) \rangle)
          \rightarrow \langle \bigcap \ (\Delta \ @ \ \sigma) \rangle \leftrightarrow (\langle \bigcap \ \Delta \rangle \ \cap \ \langle \bigcap \ \sigma \rangle)
         \rightarrow (\langle \bigcap (\Delta @ \sigma) \rangle \sqcup \langle \bigsqcup (map (\bigcap \circ (@) \Delta) \Sigma) \rangle) \leftrightarrow (\langle \bigcap \Delta \rangle \sqcap (\langle \bigcap \sigma \rangle \sqcup \langle \bigsqcup \sigma \rangle)))
(map \mid \Sigma)\rangle))
      have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi by fastforce
      hence \vdash ( ?\varphi ) using propositional-semantics by blast
      thus ?thesis by simp
   qed
   hence
      \vdash ( \sqcap (\Delta @ \sigma) \sqcup \sqcup (map ( \sqcap \circ (@) \Delta) \Sigma)) \leftrightarrow ( \sqcap \Delta \sqcap (\sqcap \sigma \sqcup \sqcup (map \sqcap )))
\Sigma)))
      using Cons.hyps arbitrary-conj-concat-equiv modus-ponens by blast
   then show ?case by simp
qed
lemma (in classical-logic) extract-inner-concat:
   \vdash \mid \mid (map \ ( \bigcap \circ (map \ snd \circ (@) \ \Delta)) \ \Psi) \leftrightarrow ( \bigcap (map \ snd \ \Delta) \ \sqcap \mid \mid (map \ ( \bigcap \circ (map \ snd \ \Delta)) \ \sqcap \mid ))
map\ snd)\ \Psi))
proof (induct \Delta)
   {\bf case}\ {\it Nil}
   then show ?case
      by (simp,
            meson\ modus-ponens
                     biconditional-introduction
                     conjunction-introduction
                     conjunction-right-elimination
                     verum-tautology)
next
   case (Cons \chi \Delta)
   let ?\Delta' = map \ snd \ \Delta
  let ?\chi' = snd \chi
  let ?\Pi = \lambda \varphi. \square (map \ snd \ \varphi)
   let ?\Pi\Delta = \lambda\varphi. \square (?\Delta' @ map snd \varphi)
   from Cons have
     \vdash \mid \mid (map ? \Pi \Delta \Psi) \leftrightarrow ( \mid \mid ? \Delta' \mid \mid \mid (map ? \Pi \Psi))
```

```
by auto
   moreover have \star: map (\lambda \varphi. ?\chi' \sqcap ?\Pi\Delta \varphi) = map ((\sqcap) ?\chi') \circ map ?\Pi\Delta
     by fastforce
   have | \mid (map \ (\lambda \varphi. \ ?\chi' \sqcap \ ?\Pi\Delta \ \varphi) \ \Psi) = | \mid (map \ ((\sqcap) \ ?\chi') \ (map \ ?\Pi\Delta \ \Psi))
     by (simp add: \star)
  hence
     \vdash \bigsqcup (map (\lambda \varphi. ?\chi' \sqcap ?\Pi\Delta \varphi) \Psi) \leftrightarrow (?\chi' \sqcap \bigsqcup (map (\lambda \varphi. ?\Pi\Delta \varphi) \Psi))
     using conj-extract by presburger
   moreover have
     \vdash \bigsqcup \ (\mathit{map} \ ?\!\Pi\Delta \ \Psi) \leftrightarrow (\bigcap \ ?\!\Delta' \sqcap \bigsqcup \ (\mathit{map} \ ?\!\Pi \ \Psi))
     \rightarrow \bigsqcup (map (\lambda \varphi. ?\chi' \sqcap ?\Pi\Delta \varphi) \Psi) \leftrightarrow (?\chi' \sqcap \bigsqcup (map ?\Pi\Delta \Psi))
     \rightarrow \bigsqcup (map (\lambda \varphi. ?\chi' \sqcap ?\Pi\Delta \varphi) \Psi) \leftrightarrow ((?\chi' \sqcap \sqcap ?\Delta') \sqcap \bigsqcup (map ?\Pi \Psi))
  proof -
     let ?\varphi = \langle \bigsqcup (map \ ?\Pi\Delta \ \Psi) \rangle \leftrightarrow (\langle \bigcap \ ?\Delta' \rangle \ \sqcap \ \langle \bigsqcup \ (map \ ?\Pi \ \Psi) \rangle)
                   \rightarrow \langle \bigsqcup (map \ (\lambda \varphi. \ ?\chi' \sqcap \ ?\Pi\Delta \ \varphi) \ \Psi) \rangle \leftrightarrow (\langle ?\chi' \rangle \sqcap \langle \bigsqcup (map \ ?\Pi\Delta \ \Psi) \rangle)
                     \rightarrow \langle \bigsqcup (map (\lambda \varphi. ?\chi' \sqcap ?\Pi\Delta \varphi) \Psi) \rangle \leftrightarrow ((\langle ?\chi' \rangle \sqcap \langle \square ?\Delta' \rangle) \sqcap \langle \bigsqcup ?\Delta' \rangle) 
(map ?\Pi \Psi)\rangle)
     have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi \text{ by } fastforce
     hence \vdash ( ?\varphi ) using propositional-semantics by blast
     thus ?thesis by simp
  qed
  ultimately have \vdash \bigsqcup (map (\lambda \varphi. ?\chi' \sqcap \sqcap (?\Delta' @ map snd \varphi)) \Psi)
                        \leftrightarrow ((?\chi' \sqcap \sqcap ?\Delta') \sqcap \sqcup (map (\lambda \varphi. \sqcap (map snd \varphi)) \Psi))
     using modus-ponens by blast
   thus ?case by simp
qed
lemma (in classical-logic) extract-inner-concat-remdups:
  \vdash \bigsqcup (map ( \bigcap \circ (map \ snd \circ remdups \circ (@) \ \Delta)) \ \Psi) \leftrightarrow
     proof -
  have \forall \Psi . \vdash | | (map ( \bigcap \circ (map \ snd \circ remdups \circ (@) \Delta)) \Psi) \leftrightarrow
                    ( \bigcap (map \ snd \ \Delta) \cap \bigsqcup (map \ (\bigcap \circ (map \ snd \circ remdups)) \ \Psi))
   proof (induct \ \Delta)
     case Nil
     then show ?case
        by (simp,
             meson modus-ponens
                      biconditional-introduction
                      conjunction-introduction
                      conjunction-right-elimination
                      verum-tautology)
  next
     case (Cons \delta \Delta)
      {
        fix \Psi
                          \leftrightarrow ( ( (map \ snd \ (\delta \# \Delta)) \cap (map \ ((map \ snd \circ remdups)) \ \Psi))
        proof (cases \delta \in set \Delta)
```

```
assume \delta \in set \Delta
         have
                  \rightarrow | | (map ( \square \circ (map \ snd \circ remdups \circ (@) \ \Delta)) \ \Psi)|
                   \leftrightarrow ( ( (map \ snd \ \Delta) \ \cap \ ) \ (map \ ( (map \ snd \ \circ \ remdups)) \ \Psi))
               \rightarrow \bigsqcup (map ( \bigcap \circ (map \ snd \circ remdups \circ (@) \ \Delta)) \ \Psi)
                 \leftrightarrow ((snd \ \delta \sqcap \sqcap \ (map \ snd \ \Delta)) \sqcap \sqcup \ (map \ (\sqcap \ \circ \ (map \ snd \ \circ \ remdups))
\Psi))
         proof -
                             \langle \bigcap (map \ snd \ \Delta) \rangle \leftrightarrow (\langle snd \ \delta \rangle \cap \langle \bigcap (map \ snd \ \Delta) \rangle)
           let ?\varphi =
                        \leftrightarrow (\langle \bigcap (map \ snd \ \Delta) \rangle \ \cap \ \langle \bigsqcup (map \ (\bigcap \circ (map \ snd \circ remdups))
\Psi)\rangle)
                       \leftrightarrow ((\langle snd \ \delta \rangle \ \sqcap \ \langle \prod \ (map \ snd \ \Delta) \rangle) \ \sqcap \ \langle | \ | \ (map \ (\prod \ \circ \ (map \ snd \ \circ ) ) \ | \ \langle | \ | \ | \ \rangle) \ | \ \rangle)
remdups)) \Psi \rangle \rangle
            have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi \text{ by } fastforce
            hence \vdash ( ?\varphi ) using propositional-semantics by blast
            thus ?thesis by simp
          qed
         moreover have \vdash \bigcap (map snd \Delta) \leftrightarrow (snd \delta \sqcap \bigcap (map snd \Delta))
            by (simp \ add: \langle \delta \in set \ \Delta \rangle \ conj-absorption)
         ultimately have
           \vdash \quad \bigsqcup \ (map \ (\bigcap \circ \ (map \ snd \circ \ remdups \circ \ (@) \ \Delta)) \ \Psi)
                \leftrightarrow ((snd \ \delta \ \sqcap \ \square \ (map \ snd \ \Delta)) \ \sqcap \ | \ (map \ (\square \circ (map \ snd \circ remdups))
\Psi))
            using Cons.hyps modus-ponens by blast
         moreover have map snd \circ remdups \circ (@) (\delta \# \Delta) = map \ snd \circ remdups
o (@) ∆
            using \langle \delta \in set \ \Delta \rangle by fastforce
         ultimately show ?thesis using Cons by simp
         assume \delta \notin set \Delta
         hence †:
           (\lambda \psi. \ \Box) (map snd (if \delta \in set \ \psi then remdups (\Delta @ \psi) else \delta \# remdups
(\Delta @ \psi))))
              = \bigcap \circ (map \ snd \circ remdups \circ (@) \ (\delta \# \Delta))
            by fastforce+
         show ?thesis
         proof (induct \ \Psi)
            case Nil
            then show ?case
             by (simp, metis list.simps(8) arbitrary-disjunction.simps(1) conj-extract)
         next
            case (Cons \psi \Psi)
            \mathbf{have} \vdash \bigsqcup \ (map \ (\bigcap \ \circ \ (map \ snd \ \circ \ remdups \ \circ \ (@) \ \Delta)) \ [\psi])
                   \leftrightarrow ( ( (map \ snd \ \Delta) \ \cap \ (map \ ( (map \ snd \ \circ \ remdups)) \ [\psi]))
              using \forall \Psi . \vdash | | (map ( \bigcap \circ (map \ snd \circ remdups \circ (@) \ \Delta)) \ \Psi)
```

```
\leftrightarrow ( \bigcap (map \ snd \ \Delta) \ \sqcap \bigsqcup (map \ (\bigcap \circ (map \ snd \circ remdups)) \ \Psi)) \rangle
                          by blast
                      hence
                          \vdash (\sqcap (map snd (remdups (\Delta @ \psi))) \sqcup \bot)
                                  \leftrightarrow ( ( (map \ snd \ \Delta) \ \cap \ (map \ snd \ (remdups \ \psi)) \ \sqcup \ \bot)
                      by simp
                      hence *:
                          \vdash \sqcap (map \ snd \ (remdups \ (\Delta @ \psi))) \leftrightarrow (\sqcap (map \ snd \ \Delta) \sqcap \sqcap (map \ snd \ d))
(remdups \ \psi)))
                           by (metis
                                         (no-types, opaque-lifting)
                                         biconditional-conjunction-weaken-rule
                                         biconditional\hbox{-} symmetry\hbox{-} rule
                                         biconditional\hbox{-} transitivity\hbox{-} rule
                                         disjunction-def
                                         double-negation-biconditional
                                         negation-def)
                                                   have ⊢
                                          \leftrightarrow ( [ (map \ snd \ (\delta \# \Delta)) \ | \ | \ (map \ ([ \circ \ (map \ snd \circ \ remdups))) \ ) \ ) \ ))
\Psi))
                           using Cons by blast
                      hence \lozenge: \vdash \quad \bigsqcup \ (map \ (\bigcap \circ (map \ snd \circ remdups \circ (@) \ (\delta \# \Delta))) \ \Psi)
                                                         \leftrightarrow ((snd \ \delta \ \sqcap \ \sqcap \ (map \ snd \ \Delta)) \ \sqcap \ \bigsqcup \ (map \ (\sqcap \ \circ \ (map \ snd \ \circ
remdups)) \Psi))
                           by simp
                      show ?case
                      proof (cases \delta \in set \psi)
                           assume \delta \in set \ \psi
                           have snd \ \delta \in set \ (map \ snd \ (remdups \ \psi))
                               using \langle \delta \in set \ \psi \rangle by auto
                       hence \spadesuit: \vdash \sqcap (map \ snd \ (remdups \ \psi)) \leftrightarrow (snd \ \delta \sqcap \sqcap) \ (map \ snd \ (remdups \ remdups \ remdu
\psi)))
                               \mathbf{using}\ conj\text{-}absorption\ \mathbf{by}\ blast
                          have
                                                 \psi))))
                                      \rightarrow ( [ (map \ ( \bigcap \circ (map \ snd \circ remdups \circ (@) \ (\delta \ \# \ \Delta))) \ \Psi)))))
                                                           \leftrightarrow ((snd \ \delta \ \sqcap \ \sqcap \ (map \ snd \ \Delta)) \ \sqcap \ | \ (map \ (\sqcap \ \circ \ (map \ snd \ \circ
remdups)) \Psi)))
                                    \rightarrow ( [ (map \ snd \ (remdups \ (\Delta @ \psi))) \leftrightarrow ( [ (map \ snd \ \Delta) \ \square \ ] \ (map \ snd \ \Delta)) ) )
snd\ (remdups\ \psi))))
                                                      (    (map \ snd \ (remdups \ (\Delta @ \psi))) 
                                                        \sqcup \sqcup (map (\sqcap \circ (map \ snd \circ remdups \circ (@) (\delta \# \Delta))) \Psi))
                                             \leftrightarrow ((snd \ \delta \ \sqcap \ \square \ (map \ snd \ \Delta)))
                                                            \sqcap ( \sqcap (map \ snd \ (remdups \ \psi)) \sqcup \sqcup (map \ (\sqcap \circ (map \ snd \circ )))) \sqcup \sqcup (map \ (\sqcap \circ (map \ snd \circ ))))
remdups)) \Psi)))
                           proof -
                               let ?\varphi =
                                       (\langle \bigcap (map \ snd \ (remdups \ \psi)) \rangle \leftrightarrow (\langle snd \ \delta \rangle \cap \langle \bigcap (map \ snd \ (remdups \ \psi)) \rangle))
```

```
\psi))\rangle))
                                                                                                                                                                                               (\langle \bigsqcup (map ( \bigcap \circ (map \ snd \circ remdups \circ (@) (\delta \# \Delta))) \ \Psi) \rangle
                                                                                                                                                                                    remdups)) \Psi)\rangle))
                                                                                                                                                      \rightarrow \quad (\langle \bigcap \ (\mathit{map \ snd} \ (\mathit{remdups} \ (\Delta \ @ \ \psi))) \rangle
                                                                                                                                                                                \leftrightarrow (\langle \bigcap (map \ snd \ \Delta) \rangle \ \cap \ \langle \bigcap (map \ snd \ (remdups \ \psi)) \rangle))
                                                                                                                                                                                                                  (\langle \bigcap \ (map \ snd \ (remdups \ (\Delta \ @ \ \psi))) \rangle
                                                                                                                                                                                                                           \sqcup \; \langle \bigsqcup \; (\mathit{map} \; ( \bigcap \; \circ \; (\mathit{map} \; \mathit{snd} \; \circ \; \mathit{remdups} \; \circ \; (@) \; (\delta \; \# \; \Delta))) \; \Psi) \rangle)
                                                                                                                                                                                \leftrightarrow ((\langle snd \ \delta \rangle \ \sqcap \ \langle \prod \ (map \ snd \ \Delta) \rangle)
                                                                                                                                                                                                                       \sqcap (\langle \bigcap (map \ snd \ (remdups \ \psi)) \rangle \sqcup \langle \bigsqcup (map \ (\bigcap \circ (map \ snd \circ ))) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ ))) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ ))) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ ))) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ ))) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ ))) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ ))) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ ))) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ ))) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ ))) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ ))) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ ))) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ ))) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ ))) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ ))) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ ))) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ ))) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ ))) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ ))) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ ))) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ ))) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ ))) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd \circ )) \rangle \sqcup \langle \bigcup (map \ snd 
remdups)) \Psi)\rangle))
                                                                                                                          have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi \text{ by } fastforce
                                                                                                                          hence \vdash ( ?\varphi ) using propositional-semantics by blast
                                                                                                                          thus ?thesis by simp
                                                                                                           qed
                                                                                                           hence
                                                                                                                                                                                         \leftrightarrow ((snd \ \delta \ \sqcap \ \square \ (map \ snd \ \Delta)))
                                                                                                                                                                                                                                \sqcap (\sqcap (map \ snd \ (remdups \ \psi)) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ ))) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | (map \ snd \circ )) \sqcup | (map \ (nap \ snd \circ )) \sqcup | (map \ snd \circ )) \sqcup | (map \ snd \circ )) \sqcup | (map \ snd \circ ) \sqcup | (map \ snd \circ )) \sqcup | (map \ snd \circ ))
remdups)) \Psi)))
                                                                                                                            using \star \diamondsuit \spadesuit modus-ponens by blast
                                                                                                           thus ?thesis using \langle \delta \notin set \Delta \rangle \langle \delta \in set \psi \rangle
                                                                                                                            by (simp \ add: \dagger)
                                                                                         next
                                                                                                         assume \delta \notin set \psi
                                                                                                         have
                                                                                                                        \vdash
                                                                                                                                                                                                        ( \bigsqcup \ (map \ ( \bigcap \ \circ \ (map \ snd \ \circ \ remdups \ \circ \ (@) \ (\delta \ \# \ \Delta))) \ \Psi)
                                                                                                                                                                                                                     \leftrightarrow ((snd \ \delta \ \sqcap \ \sqcap \ (map \ snd \ \Delta)) \ \sqcap \ \bigsqcup \ (map \ (\sqcap \ \circ \ (map \ snd \ \circ
 remdups)) \Psi)))
                                                                                                                                               \rightarrow ( (map \ snd \ (remdups \ (\Delta @ \psi))) \leftrightarrow ( (map \ snd \ \Delta) \cap (map \ snd \ \Delta)) ) )
 snd\ (remdups\ \psi))))
                                                                                                                                                                                                                   ((snd \ \delta \ \sqcap \ \square \ (map \ snd \ (remdups \ (\Delta \ @ \ \psi)))))
                                                                                                                                                                                                                   \sqcup \; \bigsqcup \; (\mathit{map} \; ( \bigcap \; \circ \; (\mathit{map} \; \mathit{snd} \; \circ \; \mathit{remdups} \; \circ \; (@) \; (\delta \; \# \; \Delta))) \; \Psi))
                                                                                                                                                                                  \leftrightarrow ((snd \ \delta \ \sqcap \ \sqcap \ (map \ snd \ \Delta)))
                                                                                                                                                                                                                                        \sqcap (\sqcap (map \ snd \ (remdups \ \psi)) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (\sqcap \circ (map \ snd \circ ))) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ ))) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | \mid (map \ (nap \ snd \circ )) \sqcup | (map \ snd \circ )) \sqcup | (map \ snd \circ )) \sqcup | (map \ snd \circ ) \sqcup | (map \ snd \circ )) \sqcup | (map \ snd \circ ) \sqcup | (map \ snd \circ )) \sqcup | (map \ snd \circ ))
remdups)) \Psi)))
                                                                                                         proof -
                                                                                                                        let ?\varphi =
                                                                                                                                                                                                    (\langle \bigsqcup (map ( \bigcap \circ (map \ snd \circ remdups \circ (@) (\delta \# \Delta))) \Psi) \rangle)
                                                                                                                                                                                      \leftrightarrow ((\langle \mathit{snd} \ \delta \rangle \ \sqcap \ \langle \prod \ (\mathit{map} \ \mathit{snd} \ \Delta) \rangle) \ \sqcap \ \langle \bigsqcup \ (\mathit{map} \ (\prod \ \circ \ (\mathit{map} \ \mathit{snd} \ \circ) \ )) \ | \ \langle \bigsqcup \ (\mathit{map} \ (\bigcap \ \circ \ (\mathit{map} \ \mathit{snd} \ \circ) \ )) \ | \ \langle \bigsqcup \ (\mathit{map} \ (\bigcap \ \circ \ (\mathit{map} \ \mathit{snd} \ \circ) \ )) \ | \ \langle \bigsqcup \ (\mathit{map} \ (\bigcap \ \circ \ (\mathit{map} \ \mathit{snd} \ \circ) \ )) \ | \ \langle \bigsqcup \ (\mathit{map} \ (\bigcap \ \circ \ (\mathit{map} \ \mathit{snd} \ \circ) \ )) \ | \ \langle \bigsqcup \ (\mathit{map} \ (\bigcap \ \circ \ (\mathit{map} \ \mathit{snd} \ \circ) \ )) \ | \ \langle \bigsqcup \ (\mathit{map} \ (\bigcap \ \circ \ (\mathit{map} \ \mathit{snd} \ \circ) \ )) \ | \ \langle \bigsqcup \ (\mathit{map} \ (\bigcap \ \circ \ (\mathit{map} \ \mathit{snd} \ \circ) \ )) \ | \ \langle \bigsqcup \ (\mathit{map} \ (\bigcap \ \circ \ (\mathit{map} \ \mathit{snd} \ \circ) \ )) \ | \ \langle \bigsqcup \ (\mathit{map} \ (\bigcap \ \circ \ (\mathit{map} \ \mathit{snd} \ \circ) \ )) \ | \ \langle \bigsqcup \ (\mathit{map} \ (\bigcap \ \circ \ (\mathit{map} \ \mathit{snd} \ \circ) \ )) \ | \ \langle \bigsqcup \ (\mathit{map} \ (\bigcap \ \circ \ (\mathit{map} \ \mathit{snd} \ \circ) \ )) \ | \ \langle \bigsqcup \ (\mathit{map} \ (\bigcap \ \circ \ (\mathit{map} \ \mathit{snd} \ \circ) \ )) \ | \ \langle \bigsqcup \ (\mathit{map} \ (\bigcap \ \circ \ (\mathit{map} \ \mathit{snd} \ \circ) \ )) \ | \ \langle \bigsqcup \ (\mathit{map} \ (\bigcap \ \circ \ (\mathit{map} \ \mathit{snd} \ \circ) \ )) \ | \ \langle \bigsqcup \ (\mathit{map} \ (\bigcap \ \circ \ (\mathit{map} \ \mathit{snd} \ \circ) \ )) \ | \ \langle \bigsqcup \ (\mathit{map} \ (\bigcap \ \circ \ (\mathit{map} \ \mathit{snd} \ \circ) \ )) \ | \ \langle \bigsqcup \ (\mathit{map} \ (\bigcap \ \circ \ (\mathit{map} \ \mathit{snd} \ \circ) \ )) \ | \ \langle \bigsqcup \ (\mathit{map} \ (\bigcap \ \circ \ (\mathit{map} \ \mathit{snd} \ \circ) \ )) \ | \ \langle \bigsqcup \ (\mathit{map} \ (\bigcap \ \cup \ (\mathit{map} \ \mathit{snd} \ \circ) \ )) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map} \ (i) \ ) \ | \ \langle \bigsqcup \ (\mathit{map
 remdups)) \Psi)\rangle))
                                                                                                                                                                                             (\langle \bigcap (map \ snd \ (remdups \ (\Delta @ \psi))) \rangle
                                                                                                                                                                                \leftrightarrow (\langle \bigcap (map \ snd \ \Delta) \rangle \ \cap \ \langle \bigcap (map \ snd \ (remdups \ \psi)) \rangle))
                                                                                                                                                                                       ((\langle snd \ \delta \rangle \ \sqcap \ \langle \prod \ (map \ snd \ (remdups \ (\Delta \ @ \ \psi))) \rangle)
                                                                                                                                                                                                                   \sqcup \left\langle \bigsqcup \left( map \left( \bigcap \circ \left( map \ snd \circ remdups \circ (@) \ (\delta \# \Delta) \right) \right) \Psi \right) \right\rangle \right\rangle
                                                                                                                                                                                \leftrightarrow ((\langle snd \ \delta \rangle \ \sqcap \ \langle \prod \ (map \ snd \ \Delta) \rangle))
                                                                                                                                                                                                                   \sqcap (\langle \bigcap (map \ snd \ (remdups \ \psi)) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) \rangle ) \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap \circ (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ (\bigcap (map \ snd \circ )) ) \rangle \sqcup \langle \bigcup (map \ snd \circ ) ) \rangle \sqcup \langle \bigcup (map \ snd \circ ) \rangle \sqcup \langle \bigcup (map \ snd \circ ) ) \rangle 
remdups)) \Psi)\rangle))
```

```
have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi \text{ by } fastforce
                    hence \vdash ( ?\varphi ) using propositional-semantics by blast
                    thus ?thesis by simp
                 qed
                 hence
                          ((snd \ \delta \ \sqcap \ \square \ (map \ snd \ (remdups \ (\Delta @ \psi)))))
                             \sqcup \sqcup (map (\sqcap \circ (map \ snd \circ remdups \circ (@) (\delta \# \Delta))) \Psi))
                         \leftrightarrow ((snd \ \delta \ \sqcap \ \square \ (map \ snd \ \Delta)))
                                   \sqcap ( \sqcap (map \ snd \ (remdups \ \psi)) \sqcup \sqcup (map \ (\sqcap \circ (map \ snd \circ )))))
remdups)) \Psi)))
                    using \star \diamondsuit modus-ponens by blast
                 then show ?thesis using \langle \delta \notin set \ \psi \rangle \ \langle \delta \notin set \ \Delta \rangle by (simp \ add: \ \dagger)
           qed
        qed
     then show ?case by fastforce
   qed
   thus ?thesis by blast
qed
lemma (in classical-logic) optimal-witness-list-intersect-biconditional:
   assumes mset \ \Xi \subseteq \# \ mset \ \Gamma
        and mset \ \Phi \subseteq \# \ mset \ (\Gamma \ominus \Xi)
        and mset \ \Psi \subseteq \# \ mset \ (\mathfrak{W}_{\to} \ \varphi \ \Xi)
     \mathbf{shows} \,\, \exists \,\, \Sigma. \,\, \vdash \, ((\Phi \,\, @ \,\, \Psi) : \rightarrow \varphi) \,\, \leftrightarrow \, ( \, \bigsqcup \,\, (\mathit{map} \,\, \bigcap \,\, \Sigma) \,\, \rightarrow \, \varphi)
                     \land (\forall \ \sigma \in set \ \Sigma. \ mset \ \sigma \subseteq \# \ mset \ \Gamma \land length \ \sigma + 1 \ge length \ (\Phi @ \Psi))
proof -
  have \exists \ \Sigma. \vdash (\Psi :\to \varphi) \leftrightarrow (\bigsqcup (map \ \bigcap \ \Sigma) \to \varphi)
                   \land \ (\forall \ \sigma \in \mathit{set} \ \Sigma. \ \mathit{mset} \ \sigma \subseteq \# \ \mathit{mset} \ \Xi \ \land \ \mathit{length} \ \sigma + \ 1 \geq \mathit{length} \ \Psi)
   proof -
     from assms(3) obtain \Psi_0 :: ('a \ list \times 'a) \ list where \Psi_0:
        mset \ \Psi_0 \subseteq \# \ mset \ (\mathfrak{V} \ \Xi)
        map \ (\lambda(\Psi,\psi). \ (\Psi:\to\varphi\to\psi)) \ \Psi_0=\Psi
        using mset-sub-map-list-exists by fastforce
     let \mbox{P}\Pi_C = \lambda \ (\Delta, \delta) \ \Sigma. \ (map \ ((\#) \ (\Delta, \ \delta)) \ \Sigma) \ @ \ (map \ ((@) \ (\mathfrak{V} \ \Delta)) \ \Sigma)
     let ?T_{\Sigma} = \lambda \Psi. foldr ?\Pi_C \Psi [[]]
     let ?\Sigma = map \ (map \ snd \circ remdups) \ (?T_{\Sigma} \ \Psi_{0})
     have I: \vdash (\Psi : \rightarrow \varphi) \leftrightarrow (\mid \mid (map \mid ?\Sigma) \rightarrow \varphi)
        let ?\Sigma_{\alpha} = map \ (map \ snd) \ (?T_{\Sigma} \ \Psi_{0})
        let ?\Psi' = map (\lambda(\Psi, \psi). (\Psi : \rightarrow \varphi \rightarrow \psi)) \Psi_0
        {
           fix \Psi :: ('a \ list \times 'a) \ list
           let ?\Sigma_{\alpha} = map \ (map \ snd) \ (?T_{\Sigma} \ \Psi)
           let ?\Sigma = map \ (map \ snd \circ remdups) \ (?T_{\Sigma} \ \Psi)
           have \vdash ( [ (map \ [ ?\Sigma_{\alpha}) \rightarrow \varphi) \leftrightarrow ( [ (map \ [ ?\Sigma) \rightarrow \varphi) ]
           proof (induct \Psi)
              case Nil
```

```
then show ?case by (simp add: biconditional-reflection)
                                                                   next
                                                                                   case (Cons \Delta \delta \Psi)
                                                                                   let ?\Delta = fst \ \Delta \delta
                                                                                   let ?\delta = snd \ \Delta \delta
                                                                                   let ?\Sigma_{\alpha} = map \ (map \ snd) \ (?T_{\Sigma} \ \Psi)
                                                                                   let ?\Sigma = map \ (map \ snd \circ remdups) \ (?T_{\Sigma} \ \Psi)
                                                                                   let ?\Sigma_{\alpha}' = map \ (map \ snd) \ (?T_{\Sigma} \ ((?\Delta,?\delta) \ \# \ \Psi))
                                                                                   let ?\Sigma' = map \ (map \ snd \circ remdups) \ (?T_{\Sigma} \ ((?\Delta,?\delta) \# \Psi))
                                                                                   {
                                                                                                    \mathbf{fix} \ \Delta :: 'a \ list
                                                                                                  fix \delta :: 'a
                                                                                                  let ?\Sigma_{\alpha}' = map \ (map \ snd) \ (?T_{\Sigma} \ ((\Delta, \delta) \ \# \ \Psi))
                                                                                                let ?\Sigma' = map \ (map \ snd \circ remdups) \ (?T_{\Sigma} \ ((\Delta, \delta) \# \Psi))
                                                                                                let ?\Phi = map \ (map \ snd \circ (@) \ [(\Delta, \delta)]) \ (?T_{\Sigma} \ \Psi)
                                                                                                let ?\Psi = map \ (map \ snd \circ (@) \ (\mathfrak{V} \ \Delta)) \ (?T_{\Sigma} \ \Psi)
                                                                                                  let ?\Delta = map \ (map \ snd \circ remdups \circ (@) \ [(\Delta, \delta)]) \ (?T_{\Sigma} \ \Psi)
                                                                                                let \Omega = map \ (map \ snd \circ remdups \circ (@) \ (\mathfrak{V} \ \Delta)) \ (PT_{\Sigma} \ \Psi)
                                                                                                    have \vdash (| \mid (map \mid ?\Phi @ map \mid ?\Psi) \leftrightarrow (| \mid (map \mid ?\Phi) \sqcup | \mid (map \mid ?\Phi) \sqcup |
 \sqcap ?\Psi))) \rightarrow
                                                                                                                                                               (\bigsqcup (map \sqcap ?\Delta @ map \sqcap ?\Omega) \leftrightarrow (\bigsqcup (map \sqcap ?\Delta) \sqcup \bigsqcup (map \sqcap \square ?\Delta)))
     (\Omega))) \rightarrow
                                                                                                                                                                    (\bigsqcup (map \sqcap ?\Phi) \leftrightarrow (\prod [\delta] \sqcap \bigsqcup (map \sqcap ?\Sigma_{\alpha}))) \rightarrow
                                                                                                                                                                    (\bigsqcup (map \sqcap ?\Psi) \leftrightarrow (\prod \Delta \sqcap \bigsqcup (map \sqcap ?\Sigma_{\alpha}))) \rightarrow
                                                                                                                                                                   (\bigsqcup (map \sqcap ?\Delta) \leftrightarrow (\prod [\delta] \sqcap \bigsqcup (map \sqcap ?\Sigma))) \rightarrow
                                                                                                                                                                   ( \bigsqcup (map \sqcap ?\Omega) \leftrightarrow ( \bigcap \Delta \sqcap \bigsqcup (map \sqcap ?\Sigma))) \rightarrow
                                                                                                                                                                   ((| \mid (map \mid ?\Sigma_{\alpha}) \rightarrow \varphi) \leftrightarrow (| \mid (map \mid ?\Sigma) \rightarrow \varphi)) \rightarrow
                                                                                                                                                                   \sqcap ?\Omega) \rightarrow \varphi))
                                                                                                  proof -
                                                                                                                 let ?\varphi =
                                                                                                                                       (\langle \bigsqcup \ (\mathit{map} \ \bigcap \ ?\Phi \ @ \ \mathit{map} \ \bigcap \ ?\Psi) \rangle \ \leftrightarrow \ (\langle \bigsqcup \ (\mathit{map} \ \bigcap \ ?\Phi) \rangle \ \sqcup \ \langle \bigsqcup \ (\mathit{map} \ \bigcap \ ?\Phi) \rangle \ \sqcup \ \langle \bigsqcup \ (\mathit{map} \ \bigcap \ P) \rangle \ \sqcup \ \langle \bigsqcup \ (\mathit{map} \ \bigcap \ P) \rangle \ \sqcup \ \langle \bigsqcup \ (\mathit{map} \ \bigcap \ P) \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \ \sqcup \ \langle \bigsqcup \ P \rangle \rangle \
(\langle \bigsqcup \ (map \ \bigcap \ ?\Delta \ @ \ map \ \bigcap \ ?\Omega) \rangle \leftrightarrow (\langle \bigsqcup \ (map \ \bigcap \ ?\Delta) \rangle \sqcup \langle \bigsqcup \ (map \ \bigcap \ ?\Delta) \rangle ) \sqcup \langle \bigsqcup \ (map \ \bigcap \ ?\Delta) \rangle \sqcup \langle \bigsqcup \ (map \ \bigcap \ ?\Delta) \rangle \cup \langle \bigsqcup \ (map \ \bigcap \ ?\Delta) \rangle \cup \langle \bigsqcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigsqcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigsqcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigsqcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigsqcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigsqcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigsqcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigsqcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup \ (map \ \bigcap \ .2\Delta) \rangle \cup \langle \bigcup
(\langle \bigsqcup (map \sqcap ?\Phi) \rangle \leftrightarrow (\langle \bigcap [\delta] \rangle \sqcap \langle \bigsqcup (map \sqcap ?\Sigma_{\alpha}) \rangle)) \rightarrow
                                                                                                                                            (\langle \bigsqcup (map \sqcap ?\Psi) \rangle \leftrightarrow (\langle \bigcap \Delta \rangle \sqcap \langle \bigsqcup (map \sqcap ?\Sigma_{\alpha}) \rangle)) \rightarrow
                                                                                                                                            (\langle \bigsqcup (map \ \square \ ?\Delta) \rangle \leftrightarrow (\langle \bigsqcup (\delta] \rangle \ \square \ \langle \bigsqcup (map \ \square \ ?\Sigma) \rangle)) \rightarrow
                                                                                                                                            (\langle \bigsqcup \ (map \ \bigcap \ ?\Omega) \rangle \leftrightarrow (\langle \bigcap \ \Delta \rangle \ \cap \ \langle \bigsqcup \ (map \ \bigcap \ ?\Sigma) \rangle)) \rightarrow
                                                                                                                                            ((\langle \bigsqcup (map \sqcap ?\Sigma_{\alpha}) \rangle \to \langle \varphi \rangle) \leftrightarrow (\langle \bigsqcup (map \sqcap ?\Sigma) \rangle \to \langle \varphi \rangle)) \to
                                                                                                                                                     ((\langle \bigsqcup \ (map \ \bigcap \ ?\Phi \ @ \ map \ \bigcap \ ?\Psi) \rangle \rightarrow \langle \varphi \rangle) \leftrightarrow (\langle \bigsqcup \ (map \ \bigcap \ ?\Delta \ @ \ map \ \bigcap \ ?A \ @ \ map \ \bigcap \ A \ Map \ Map \ \bigcap \ A \ Map \ Map \ \bigcap \ A \ Map \ \bigcap \ A \ Map \ Ma
 map \mid (\Omega) \rangle \rightarrow \langle \varphi \rangle)
                                                                                                                 have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi \text{ by } fastforce
                                                                                                                 hence \vdash ( ?\varphi ) using propositional-semantics by blast
                                                                                                                 thus ?thesis by simp
                                                                                                    qed
                                                                                                    moreover
                                                                                                    have map snd (\mathfrak{V} \Delta) = \Delta by (induct \Delta, auto)
```

```
\square ?\Psi))
                       \vdash \bigsqcup (map \sqcap ?\Delta @ map \sqcap ?\Omega) \leftrightarrow (\bigsqcup (map \sqcap ?\Delta) \sqcup \bigsqcup (map \sqcap \square ?\Delta))
(\Omega)
                        \vdash \bigsqcup (map \sqcap ?\Phi) \leftrightarrow (\lceil \delta \rceil \sqcap \bigsqcup (map \lceil ?\Sigma_{\alpha}))
                        \vdash \bigsqcup (map \sqcap ?\Psi) \leftrightarrow (\bigcap \Delta \sqcap \bigsqcup (map \sqcap ?\Sigma_{\alpha}))
                        \vdash \bigsqcup \ (map \ \bigcap \ ?\Delta) \leftrightarrow (\bigcap \ [\delta] \ \sqcap \bigsqcup \ (map \ \bigcap \ ?\Sigma))
                        \vdash \bigsqcup (map \sqcap ?\Omega) \leftrightarrow (\bigcap \Delta \sqcap \bigsqcup (map \sqcap ?\Sigma))
                   using arbitrary-disj-concat-equiv
                           extract-inner-concat [where \Delta = [(\Delta, \delta)] and \Psi = ?T_{\Sigma} \Psi]
                           extract-inner-concat [where \Delta = \mathfrak{V} \Delta and \Psi = ?T_{\Sigma} \Psi]
                           extract-inner-concat-remdups [where \Delta = [(\Delta, \delta)] and \Psi = ?T_{\Sigma}
\Psi
                          extract-inner-concat-remdups [where \Delta = \mathfrak{V} \Delta and \Psi = ?T_{\Sigma} \Psi]
                   by auto
                ultimately have
                   \vdash (( \sqcup (map \sqcap ?\Sigma_{\alpha}) \to \varphi) \leftrightarrow ( \sqcup (map \sqcap ?\Sigma) \to \varphi)) \to
                       (| \mid (map \mid ?\Phi @ map \mid ?\Psi) \rightarrow \varphi) \leftrightarrow (| \mid (map \mid ?\Delta @ map \mid )
(\Omega) \to \varphi
                   using modus-ponens by blast
                moreover have (\#) (\Delta, \delta) = (@) [(\Delta, \delta)] by fastforce
                ultimately have
                   \vdash ((\bigsqcup (map \sqcap ?\Sigma_{\alpha}) \to \varphi) \leftrightarrow (\bigsqcup (map \sqcap ?\Sigma) \to \varphi)) \to
                       by auto
             }
             hence
                \vdash ((\bigsqcup (map \sqcap ?\Sigma_{\alpha}') \to \varphi) \leftrightarrow (\bigsqcup (map \sqcap ?\Sigma') \to \varphi))
                using Cons modus-ponens by blast
             moreover have \Delta \delta = (?\Delta,?\delta) by fastforce
             ultimately show ?case by metis
           qed
        hence \vdash (\bigsqcup (map \sqcap ?\Sigma_{\alpha}) \to \varphi) \leftrightarrow (\bigsqcup (map \sqcap ?\Sigma) \to \varphi) by blast
        moreover have \vdash (?\Psi' : \rightarrow \varphi) \leftrightarrow (\bigsqcup (map \sqcap ?\Sigma_{\alpha}) \rightarrow \varphi)
        proof (induct \Psi_0)
           case Nil
          have \vdash \varphi \leftrightarrow ((\top \sqcup \bot) \rightarrow \varphi)
           proof -
             let ?\varphi = \langle \varphi \rangle \leftrightarrow ((\top \sqcup \bot) \rightarrow \langle \varphi \rangle)
             have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi \text{ by } fastforce
             hence \vdash ( ?\varphi ) using propositional-semantics by blast
             thus ?thesis by simp
           qed
           thus ?case by simp
        next
           case (Cons \psi_0 \Psi_0)
          let ?\Xi = fst \psi_0
          let ?\delta = snd \psi_0
          let ?\Psi' = map (\lambda(\Psi, \psi). (\Psi : \to \varphi \to \psi)) \Psi_0
```

```
let ?\Sigma_{\alpha} = map \ (map \ snd) \ (?T_{\Sigma} \ \Psi_{0})
                         fix \Xi :: 'a \ list
                         have map snd (\mathfrak{V} \Xi) = \Xi by (induct \Xi, auto)
                         hence map snd \circ (@) (\mathfrak{V} \Xi) = (@) \Xi \circ map \ snd \ by \ fastforce
                 moreover have (map \ snd \circ (\#) \ (?\Xi, ?\delta)) = (@) \ [?\delta] \circ map \ snd \ \mathbf{by} \ fastforce
                   ultimately have †:
                          map\ (map\ snd)\ (?T_{\Sigma}\ (\psi_0\ \#\ \Psi_0)) = map\ ((\#)\ ?\delta)\ ?\Sigma_{\alpha}\ @\ map\ ((@)\ ?\Xi)
 ?\Sigma_{\alpha}
                         map\ (\lambda(\Psi,\psi).\ (\Psi:\to\varphi\to\psi))\ (\psi_0\ \#\ \Psi_0)=\ ?\Xi:\to\varphi\to\ ?\delta\ \#\ ?\Psi'
                         by (simp add: case-prod-beta')+
                 have A: \vdash (?\Psi': \to \varphi) \leftrightarrow (\bigsqcup (map \sqcap ?\Sigma_{\alpha}) \to \varphi) using Cons.hyps by auto
                   have B: \vdash (?\Xi :\to \varphi) \leftrightarrow (\square ?\Xi \to \varphi)
                         by (simp add: list-curry-uncurry)
                      have C: \vdash \bigsqcup (map \sqcap (map ((\#) ? \delta) ? \Sigma_{\alpha}) @ map \sqcap (map ((@) ? \Xi))
 ?\Sigma_{\alpha}))
                                               \leftrightarrow (| | (map \mid (map ((\#) ?\delta) ?\Sigma_{\alpha})) \sqcup | | (map \mid (map ((@) ?\Xi))
 ?\Sigma_{\alpha})))
                         using arbitrary-disj-concat-equiv by blast
                   have map \bigcap (map\ ((\#)\ ?\delta)\ ?\Sigma_{\alpha}) = (map\ ((\bigcap)\ ?\delta)\ (map\ \bigcap\ ?\Sigma_{\alpha})) by auto
                   \mathbf{hence}\ D: \vdash \bigsqcup\ (\mathit{map}\ \lceil\ (\mathit{map}\ ((\#)\ ?\delta)\ ?\Sigma_\alpha)) \leftrightarrow (?\delta\ \sqcap\ \bigsqcup\ (\mathit{map}\ \lceil\ ?\Sigma_\alpha))
                         using conj-extract by presburger
                   have E: \vdash \bigsqcup (map \sqcap (map ((@) ?\Xi) ?\Sigma_{\alpha})) \leftrightarrow (\sqcap ?\Xi \sqcap \bigsqcup (map \sqcap ?\Sigma_{\alpha}))
                         using conj-multi-extract by blast
                   have
                                                 (?\Psi':\to\varphi)\leftrightarrow(\coprod(map\ \square\ ?\Sigma_{\alpha})\to\varphi)
                                             (?\Xi:\to\varphi)\leftrightarrow([]?\Xi\to\varphi)
                                              \leftrightarrow ( \bigsqcup (map \sqcap (map ((\#) ?\delta) ?\Sigma_{\alpha})) \sqcup \bigsqcup (map \sqcap (map ((@) ?\Xi)) ) \sqcup (map ((@) ?\Xi)) ) \square ((@) ((@) ?\Xi)) ) \square ((@) (@) ((@) ?\Xi
?\Sigma_{\alpha})))
                                                   \rightarrow ((?\Xi:\rightarrow\varphi\rightarrow?\delta)\rightarrow?\Psi':\rightarrow\varphi)
                                       \leftrightarrow ( \bigsqcup (map \sqcap (map ((\#) ?\delta) ?\Sigma_{\alpha}) @ map \sqcap (map ((@) ?\Xi) ?\Sigma_{\alpha}) )
\rightarrow \varphi)
                   proof -
                         let ?\varphi =
                                                     \langle ?\Psi' : \to \varphi \rangle \leftrightarrow (\langle \bigsqcup (map \bigsqcup ?\Sigma_{\alpha}) \rangle \to \langle \varphi \rangle)
                                                         \langle (?\Xi:\to\varphi)\rangle \leftrightarrow \overline{(\langle \lceil ?\Xi\rangle \to \langle \varphi\rangle)}
                                                                 \langle \bigsqcup (map \mid (map ((\#) ?\delta) ?\Sigma_{\alpha}) @ map \mid (map ((@) ?\Xi)) \rangle
?\Sigma_{\alpha}))\rangle
                                               \leftrightarrow (\langle \bigsqcup (map \bigsqcup (map ((\#) ?\delta) ?\Sigma_{\alpha})) \rangle \sqcup \langle \bigsqcup (map \bigsqcup (map ((@)
(\Xi) (\Sigma_{\alpha}))
                                                                \langle \bigsqcup (map \sqcap (map ((\#) ?\delta) ?\Sigma_{\alpha})) \rangle \leftrightarrow (\langle ?\delta \rangle \sqcap \langle \bigsqcup (map \sqcap )
                                                        \langle \bigsqcup \ (map \ \bigcap \ (map \ ((@) \ ?\Xi) \ ?\Sigma_{\alpha})) \rangle \leftrightarrow (\langle \bigcap \ ?\Xi \rangle \ \cap \ \langle \bigsqcup \ (map \ \bigcap \ \square) \rangle) \rangle
 (\Sigma_{\alpha})\rangle
                                      \rightarrow ((\langle ?\Xi : \rightarrow \varphi \rangle \rightarrow \langle ?\delta \rangle) \rightarrow \langle ?\Psi' : \rightarrow \varphi \rangle)
```

```
\leftrightarrow (\langle \bigsqcup (map \sqcap (map ((\#) ?\delta) ?\Sigma_{\alpha}) @ map \sqcap (map ((@) ?\Xi)
(\Sigma_{\alpha})\rangle \rightarrow \langle \varphi \rangle
           have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi by fastforce
           hence \vdash ( ?\varphi ) using propositional-semantics by blast
           thus ?thesis by simp
         qed
         hence
          \vdash ((?\Xi :\to \varphi \to ?\delta) \to ?\Psi' :\to \varphi) \\ \leftrightarrow (\coprod (map \sqcap (map ((\#) ?\delta) ?\Sigma_{\alpha}) @ map \sqcap (map ((@) ?\Xi) ?\Sigma_{\alpha})) \to
\varphi)
           using A B C D E modus-ponens by blast
         thus ?case using † by simp
       qed
      ultimately show ?thesis using biconditional-transitivity-rule \Psi_0 by blast
    have II: \forall \sigma \in set ?\Sigma. length \sigma + 1 > length \Psi
    proof -
      let ?\mathcal{F} = length \circ fst
      let ?S = sort\text{-}key (-?F)
      let ?\Sigma' = map \ (map \ snd \circ remdups) \ (?T_{\Sigma} \ (?S \ \Psi_0))
      have mset \ \Psi_0 = mset \ (?S \ \Psi_0) \ by \ simp
      have \forall \Phi. mset \Psi_0 = mset \Phi \longrightarrow mset (map mset (?T_{\Sigma} \Psi_0)) = mset (map
mset (?T_{\Sigma} \Phi))
       proof (induct \Psi_0)
         case Nil
         then show ?case by simp
       next
         case (Cons \psi \Psi_0)
         obtain \Delta \delta where \psi = (\Delta, \delta) by fastforce
         {
           fix \Phi
           assume mset\ (\psi \ \#\ \Psi_0) = mset\ \Phi
           hence mset \ \Psi_0 = mset \ (remove1 \ \psi \ \Phi)
             by (simp add: union-single-eq-diff)
           have \psi \in set \ \Phi \ using \ \langle mset \ (\psi \# \Psi_0) = mset \ \Phi \rangle
             by (metis list.set-intros(1) set-mset-mset)
          hence mset (map mset (?T_{\Sigma} \Phi)) = mset (map mset (?T_{\Sigma} (\psi \# (remove1)))))
\psi \Phi))))
           proof (induct \Phi)
             case Nil
             then show ?case by simp
           next
             case (Cons \varphi \Phi)
             then show ?case proof (cases \varphi = \psi)
                case True
               then show ?thesis by simp
             next
               {f case} False
```

```
let ?\Sigma' = ?T_{\Sigma} (\psi \# (remove1 \psi \Phi))
                have \dagger: mset\ (map\ mset\ ?\Sigma') = mset\ (map\ mset\ (?T_{\Sigma}\ \Phi))
                   using Cons False by simp
                obtain \Delta' \delta'
                   where \varphi = (\Delta', \delta')
                  by fastforce
                let ?\Sigma = ?T_{\Sigma} (remove1 \ \psi \ \Phi)
                let ?m = image\text{-}mset mset
                have
                   mset\ (map\ mset\ (?T_{\Sigma}\ (\psi\ \#\ remove1\ \psi\ (\varphi\ \#\ \Phi)))) =
                    mset \ (map \ mset \ (?\Pi_C \ \psi \ (?\Pi_C \ \varphi \ ?\Sigma)))
                   using False by simp
                hence mset (map mset (?T_{\Sigma} (\psi \# remove1 \psi (\varphi \# \Phi)))) =
                        (?\mathfrak{m} \circ (image\text{-}mset ((\#) \psi) \circ image\text{-}mset ((\#) \varphi))) (mset ?\Sigma) +
                          (?\mathfrak{m} \circ (image\text{-}mset ((\#) \ \psi) \circ image\text{-}mset ((@) (\mathfrak{V} \ \Delta')))) \ (mset)
?\Sigma) +
                          (?m \circ (image-mset ((@) (V \Delta)) \circ image-mset ((#) \varphi))) (mset
?\Sigma) +
                           (\mathfrak{P}\mathfrak{m} \circ (image\text{-}mset\ ((@)\ (\mathfrak{V}\ \Delta)) \circ image\text{-}mset\ ((@)\ (\mathfrak{V}\ \Delta'))))
(mset ?\Sigma)
                   using \langle \psi = (\Delta, \delta) \rangle \langle \varphi = (\Delta', \delta') \rangle
                   by (simp add: multiset.map-comp)
                hence mset (map mset (?T_{\Sigma} (\psi \# remove1 \psi (\varphi \# \Phi)))) =
                        (?\mathfrak{m} \circ (image\text{-}mset ((\#) \varphi) \circ image\text{-}mset ((\#) \psi))) (mset ?\Sigma) +
                          (?m \circ (image\text{-}mset ((@) (\mathfrak{V} \Delta')) \circ image\text{-}mset ((\#) \psi))) (mset)
?\Sigma) +
                          (?m \circ (image\text{-}mset ((\#) \varphi) \circ image\text{-}mset ((@) (\mathfrak{V} \Delta)))) (mset)
?\Sigma) +
                           (?m \circ (image\text{-}mset ((@) (\mathfrak{V} \Delta')) \circ image\text{-}mset ((@) (\mathfrak{V} \Delta))))
(mset ?\Sigma)
                   by (simp add: image-mset-cons-homomorphism
                                   image-mset-append-homomorphism
                                   image	ext{-}mset	ext{-}add	ext{-}collapse
                                   add\text{-}mset\text{-}commute
                                   add.commute)
                hence mset (map \; mset \; (?T_{\Sigma} \; (\psi \; \# \; remove1 \; \psi \; (\varphi \; \# \; \Phi)))) =
                        (?m \circ (image\text{-}mset ((\#) \varphi))) (mset ?\Sigma') +
                        (?m \circ (image-mset ((@) (\mathfrak{V} \Delta')))) (mset ?\Sigma')
                   using \langle \psi = (\Delta, \delta) \rangle
                   by (simp add: multiset.map-comp)
                hence mset (map mset (?T_{\Sigma} (\psi \# remove1 \psi (\varphi \# \Phi)))) =
                        image-mset ((+) \{\#\varphi\#\}) (mset (map mset ?\Sigma')) +
                        image-mset ((+) (mset (\mathfrak{V} \Delta'))) (mset (map mset ?\Sigma'))
                  by (simp add: image-mset-cons-homomorphism
                                   image-mset-append-homomorphism)
                hence mset (map mset (?T_{\Sigma} (\psi \# remove1 \psi (\varphi \# \Phi)))) =
                        image-mset ((+) \{\#\varphi\#\}) (mset (map mset (?T_{\Sigma}\Phi))) +
                        image-mset ((+) (mset (\mathfrak{V} \Delta'))) (mset (map mset (?T_{\Sigma} \Phi)))
                   using † by auto
```

```
hence mset (map mset (?T_{\Sigma} (\psi \# remove1 \psi (\varphi \# \Phi)))) =
                      (?\mathfrak{m} \circ (image\text{-}mset ((\#) \varphi))) (mset (?T_{\Sigma} \Phi)) +
                      (?\mathfrak{m} \circ (image\text{-}mset ((@) (\mathfrak{V} \Delta')))) (mset (?T_{\Sigma} \Phi))
                 by (simp add: image-mset-cons-homomorphism
                                image-mset-append-homomorphism)
              thus ?thesis using \langle \varphi = (\Delta', \delta') \rangle by (simp add: multiset.map-comp)
            qed
          qed
                      image-mset mset (image-mset ((#) \psi) (mset (?T_{\Sigma} (remove1 \psi
           hence
\Phi))))) +
                     image-mset mset (image-mset ((@) (\mathfrak{V} \Delta)) (mset (?T_{\Sigma} (remove1
\psi \Phi))))
                  = image-mset mset (?T_{\Sigma} \Phi))
            by (simp add: \langle \psi = (\Delta, \delta) \rangle multiset.map-comp)
              image-mset ((+) \{ \# \psi \# \}) (image-mset mset (mset (?T_{\Sigma} (remove1 \psi
\Phi))))) +
             image-mset ((+) (mset (\mathfrak{V} \Delta))) (image-mset mset (mset (?T_{\Sigma} (remove1))
\psi \Phi))))
              = image-mset mset (mset (?T_{\Sigma} \Phi))
        by (simp add: image-mset-cons-homomorphism image-mset-append-homomorphism)
          hence
            image-mset ((+) \{\# \psi \#\}) (image-mset mset (mset (?T_{\Sigma} \Psi_0))) +
              image-mset ((+) (mset (\mathfrak{V} \Delta))) (image-mset mset (mset (?T_{\Sigma} \Psi_{0})))
           = image-mset\ mset\ (mset\ (?T_{\Sigma}\ \Phi))
            using Cons \langle mset \ \Psi_0 = mset \ (remove1 \ \psi \ \Phi) \rangle
            by fastforce
          hence
            image-mset mset (image-mset ((#) \psi) (mset (?T_{\Sigma} \Psi_0))) +
             image-mset mset (image-mset ((@) (\mathfrak{V} \Delta)) (mset (?T_{\Sigma} \Psi_{0})))
            = image-mset mset (mset (?T_{\Sigma} \Phi))
        by (simp add: image-mset-cons-homomorphism image-mset-append-homomorphism)
          hence mset (map mset (?T_{\Sigma} (\psi \# \Psi_0))) = mset (map mset (?T_{\Sigma} \Phi))
            by (simp add: \langle \psi = (\Delta, \delta) \rangle multiset.map-comp)
        }
        then show ?case by blast
      qed
      hence mset (map mset (?T_{\Sigma} \Psi_0)) = mset (map mset (?T_{\Sigma} (?S \Psi_0)))
        using \langle mset \ \Psi_0 = mset \ (?S \ \Psi_0) \rangle by blast
                   mset\ (map\ (mset\ \circ\ (map\ snd)\ \circ\ remdups)\ (?T_{\Sigma}\ \Psi_{0}))
               = mset \ (map \ (mset \circ (map \ snd) \circ remdups) \ (?T_{\Sigma} \ (?S \ \Psi_0)))
        \mathbf{using}\ \mathit{mset-mset-map-snd-remdups}\ \mathbf{by}\ \mathit{blast}
      hence mset (map mset ?\Sigma) = mset (map mset ?\Sigma')
        by (simp add: fun.map-comp)
      hence set (map \ mset \ ?\Sigma) = set \ (map \ mset \ ?\Sigma')
        using mset-eq-setD by blast
      hence \forall \ \sigma \in set \ ?\Sigma. \ \exists \ \sigma' \in set \ ?\Sigma'. \ mset \ \sigma = mset \ \sigma'
        by fastforce
      hence \forall \ \sigma \in set \ ?\Sigma. \ \exists \ \sigma' \in set \ ?\Sigma'. \ length \ \sigma = length \ \sigma'
```

```
using mset-eq-length by blast
      have mset (?S \Psi_0) \subseteq \# mset (\mathfrak{V} \Xi)
        by (simp add: \Psi_0(1))
      {
        \mathbf{fix} \ n
        have \forall \ \Psi. \ mset \ \Psi \subseteq \# \ mset \ (\mathfrak{V} \ \Xi) \longrightarrow
                      sorted (map (- ?\mathcal{F}) \Psi) \longrightarrow
                      length \Psi = n \longrightarrow
                       (\forall \ \sigma' \in set \ (map \ (map \ snd \circ remdups) \ (?T_{\Sigma} \ \Psi)). \ length \ \sigma' + 1
\geq n
        proof(induct n)
           case \theta
           then show ?case by simp
        \mathbf{next}
           case (Suc \ n)
             fix \Psi :: ('a \ list \times 'a) \ list
             assume A: mset \ \Psi \subseteq \# \ mset \ (\mathfrak{V} \ \Xi)
                and B: sorted (map (-?F) \Psi)
                and C: length \Psi = n + 1
             obtain \Delta \delta where (\Delta, \delta) = hd \Psi
               using prod.collapse by blast
             let ?\Psi' = tl \Psi
             have mset ?\Psi' \subseteq \# mset (\mathfrak{V} \Xi) using A
             by (induct \Psi, simp, simp, meson mset-subset-eq-insertD subset-mset-def)
             moreover
             have sorted (map (-?\mathcal{F}) (tl \Psi))
               using B
               by (simp add: map-tl sorted-tl)
             moreover have length ?\Psi' = n using C
             ultimately have \star: \forall \sigma' \in set (map (map snd \circ remdups) (?T_{\Sigma} ?\Psi')).
length \sigma' + 1 \ge n
               using Suc
               by blast
             from C have \Psi = (\Delta, \delta) \# ?\Psi'
               by (metis \langle (\Delta, \delta) = hd \Psi \rangle
                           One-nat-def
                           add-is-0
                          list.exhaust-sel
                          list.size(3)
                          nat.simps(3))
             have distinct ((\Delta, \delta) \# ?\Psi')
               using A \triangleleft \Psi = (\Delta, \delta) \# ?\Psi'
                      MaxSAT-optimal-pre-witness-distinct
                      mset	ext{-}distinct	ext{-}msub	ext{-}down
               bv fastforce
             hence set ((\Delta, \delta) \# ?\Psi') \subseteq set (\mathfrak{V} \Xi)
               by (metis A \land \Psi = (\Delta, \delta) \# ?\Psi')
```

```
Un-iff
                              mset-le-perm-append
                              perm-set-eq set-append
                              subsetI)
               hence \forall (\Delta', \delta') \in set ?\Psi'. (\Delta, \delta) \neq (\Delta', \delta')
                      \forall (\Delta', \delta') \in set (\mathfrak{V} \Xi). ((\Delta, \delta) \neq (\Delta', \delta')) \longrightarrow (length \Delta \neq length)
\Delta')
                       set ?\Psi' \subseteq set (\mathfrak{V} \Xi)
                 using MaxSAT-optimal-pre-witness-length-iff-eq [where \Psi=\Xi]
                         \langle distinct ((\Delta, \delta) \# ?\Psi') \rangle
                 by auto
               hence \forall (\Delta', \delta') \in set ?\Psi'. length \Delta \neq length \Delta'
                       sorted (map (-?\mathcal{F}) ((\Delta, \delta) \# ?\Psi'))
                 using B \langle \Psi = (\Delta, \delta) \# ?\Psi' \rangle
                 by (fastforce, auto)
               hence \forall (\Delta', \delta') \in set ?\Psi'. length \Delta > length \Delta'
                 by fastforce
                 fix \sigma' :: 'a \ list
                 assume \sigma' \in set \ (map \ (map \ snd \circ remdups) \ (?T_{\Sigma} \ \Psi))
                 hence \sigma' \in set \ (map \ (map \ snd \circ remdups) \ (?T_{\Sigma} \ ((\Delta, \delta) \# ?\Psi')))
                    using \langle \Psi = (\Delta, \delta) \# ?\Psi' \rangle
                    by simp
                 from this obtain \psi where \psi:
                    \psi \in set (?T_{\Sigma} ?\Psi')
                    \sigma' = (map \ snd \circ remdups \circ (\#) \ (\Delta, \delta)) \ \psi \ \lor
                     \sigma' = (map \ snd \circ remdups \circ (@) (\mathfrak{V} \Delta)) \psi
                    by fastforce
                 hence length \sigma' \geq n
                 proof (cases \sigma' = (map \ snd \circ remdups \circ (\#) \ (\Delta, \delta)) \ \psi)
                    case True
                      \mathbf{fix} \ \Psi :: ('a \ list \times 'a) \ list
                      \mathbf{fix} \ n :: nat
                      assume \forall (\Delta, \delta) \in set \ \Psi. \ n > length \ \Delta
                      hence \forall \ \sigma \in set \ (?T_{\Sigma} \ \Psi). \ \forall \ (\Delta, \delta) \in set \ \sigma. \ n > length \ \Delta
                      proof (induct \ \Psi)
                         case Nil
                         then show ?case by simp
                       next
                         case (\mathit{Cons}\ \psi\ \Psi)
                         obtain \Delta \delta where \psi = (\Delta, \delta)
                           by fastforce
                         hence n > length \ \Delta  using Cons.prems by fastforce
                         have \theta: \forall \sigma \in set \ (?T_{\Sigma} \ \Psi). \forall \ (\Delta', \delta') \in set \ \sigma. n > length \ \Delta'
                            using Cons by simp
                           \mathbf{fix} \ \sigma :: ('a \ list \times \ 'a) \ list
                           fix \psi' :: 'a list \times 'a
```

```
assume 1: \sigma \in set (?T_{\Sigma} (\psi \# \Psi))
                                and 2: \psi' \in set \sigma
                            obtain \Delta' \delta' where \psi' = (\Delta', \delta')
                              by fastforce
                             have 3: \sigma \in (\#) (\Delta, \delta) 'set (?T_{\Sigma} \Psi) \vee \sigma \in (@) (\mathfrak{V} \Delta) 'set
(?T_{\Sigma} \Psi)
                              using 1 \langle \psi = (\Delta, \delta) \rangle by simp
                            have n > length \Delta'
                            proof (cases \sigma \in (\#) (\Delta, \delta) 'set (?T_{\Sigma} \Psi))
                              {\bf case}\  \, True
                              from this obtain \sigma' where
                                 set \sigma = insert (\Delta, \delta) (set \sigma')
                                 \sigma' \in set (?T_{\Sigma} \Psi)
                                 by auto
                              then show ?thesis
                                 using \theta \ \langle \psi' \in set \ \sigma \rangle \ \langle \psi' = (\Delta', \delta') \rangle \ \langle n > length \ \Delta \rangle
                            \mathbf{next}
                              case False
                              from this and 3 obtain \sigma' where \sigma':
                                 set \ \sigma = set \ (\mathfrak{V} \ \Delta) \cup (set \ \sigma')
                                 \sigma' \in set (?T_{\Sigma} \Psi)
                                 by auto
                              have \forall (\Delta', \delta') \in set (\mathfrak{V} \Delta). length \Delta > length \Delta'
                                 by (metis (mono-tags, lifting)
                                                case-prodI2
                                                MaxSAT-optimal-pre-witness-nonelement
                                                not-le)
                              hence \forall (\Delta', \delta') \in set (\mathfrak{V} \Delta). \ n > length \Delta'
                                 using \langle n \rangle length \Delta \rangle by auto
                              then show ?thesis using \theta \sigma' \langle \psi' \in set \sigma \rangle \langle \psi' = (\Delta', \delta') \rangle by
fast force
                            qed
                            hence n > length (fst \psi') using \langle \psi' = (\Delta', \delta') \rangle by fastforce
                         then show ?case by fastforce
                       qed
                  hence \forall \sigma \in set \ (?T_{\Sigma} ?\Psi'). \ \forall \ (\Delta', \delta') \in set \ \sigma. \ length \ \Delta > length \ \Delta'
                       using \forall (\Delta', \delta') \in set ?\Psi'. length \Delta > length \Delta' >
                       by blast
                    then show ?thesis using True \star \psi(1) by fastforce
                 next
                    case False
                    have \forall (\Delta', \delta') \in set ?\Psi'. length \Delta \geq length \Delta'
                       using \forall (\Delta', \delta') \in set ?\Psi'. length \Delta > length \Delta' >
                    hence \forall (\Delta', \delta') \in set \ \Psi. \ length \ \Delta \geq length \ \Delta'
                       using \langle \Psi = (\Delta, \delta) \# ?\Psi' \rangle
```

```
by (metis case-prodI2 eq-iff prod.sel(1) set-ConsD)
                  hence length \ \Delta + 1 \ge length \ \Psi
                    using \ A \ MaxSAT-optimal-pre-witness-pigeon-hole
                    by fastforce
                  hence length \ \Delta \geq n
                     using C
                    by simp
                  have length \Delta = length \ (\mathfrak{V} \ \Delta)
                    by (induct \ \Delta, simp+)
                  hence length (remdups (\mathfrak{V} \Delta)) = length (\mathfrak{V} \Delta)
                    \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \mathit{MaxSAT-optimal-pre-witness-distinct})
                  hence length (remdups (\mathfrak{V} \Delta)) \geq n
                    using \langle length \ \Delta = length \ (\mathfrak{V} \ \Delta) \rangle \ \langle n \leq length \ \Delta \rangle
                    by linarith
                  have mset (remdups (\mathfrak{V} \Delta @ \psi)) = mset (remdups (\psi @ \mathfrak{V} \Delta))
                    by (simp add: mset-remdups)
                  hence length (remdups (\mathfrak{V} \Delta @ \psi)) \geq length (remdups (\mathfrak{V} \Delta))
                          by (metis le-cases length-sub-mset mset-remdups-append-msub
size-mset)
                  hence length (remdups (\mathfrak{V} \Delta @ \psi)) \geq n
                     using \langle n \leq length \ (remdups \ (\mathfrak{V} \ \Delta)) \rangle dual-order trans by blast
                  thus ?thesis using False \psi(2)
                    by simp
               \mathbf{qed}
             hence \forall \ \sigma' \in set \ (map \ (map \ snd \circ remdups) \ (?T_{\Sigma} \ \Psi)). \ length \ \sigma' \geq n
               by blast
           then show ?case by fastforce
         qed
      hence \forall \ \sigma' \in set \ ?\Sigma'. \ length \ \sigma' + 1 \ge length \ (?S \ \Psi_0)
         using \langle mset \ (?S \ \Psi_0) \subseteq \# \ mset \ (\mathfrak{V} \ \Xi) \rangle
        by fastforce
      hence \forall \ \sigma' \in set \ ?\Sigma'. length \sigma' + 1 \ge length \ \Psi_0 by simp
      hence \forall \ \sigma \in set \ ?\Sigma. \ length \ \sigma + 1 > length \ \Psi_0
         using \forall \sigma \in set ?\Sigma. \exists \sigma' \in set ?\Sigma'. length \sigma = length \sigma' \rangle
         by fastforce
      thus ?thesis using \Psi_0 by fastforce
    qed
    have III: \forall \ \sigma \in set \ ?\Sigma. \ mset \ \sigma \subseteq \# \ mset \ \Xi
    proof -
      have remdups \ (\mathfrak{V} \ \Xi) = \mathfrak{V} \ \Xi
         by (simp add: MaxSAT-optimal-pre-witness-distinct distinct-remdups-id)
      from \Psi_0(1) have set \Psi_0 \subseteq set \ (\mathfrak{V} \ \Xi)
         by (metis (no-types, lifting) (remdups (\mathfrak{V} \Xi) = \mathfrak{V} \Xi)
                                            mset-remdups-set-sub-iff
                                            mset-remdups-subset-eq
                                            subset-mset.dual-order.trans)
```

```
hence \forall \ \sigma \in set \ (?T_{\Sigma} \ \Psi_0). \ set \ \sigma \subseteq set \ (\mathfrak{V} \ \Xi)
                     proof (induct \Psi_0)
                            case Nil
                            then show ?case by simp
                     next
                            case (Cons \psi \Psi_0)
                           hence \forall \ \sigma \in set \ (?T_{\Sigma} \ \Psi_0). \ set \ \sigma \subseteq set \ (\mathfrak{V} \ \Xi) \ \textbf{by} \ auto
                            obtain \Delta \delta where \psi = (\Delta, \delta) by fastforce
                            hence (\Delta, \delta) \in set (\mathfrak{V} \Xi) using Cons by simp
                                    fix \sigma :: ('a \ list \times 'a) \ list
                                    assume \star: \sigma \in (\#) (\Delta, \delta) 'set (?T_{\Sigma} \Psi_0) \cup (@) (\mathfrak{V} \Delta) 'set (?T_{\Sigma} \Psi_0)
                                    have set \sigma \subseteq set \ (\mathfrak{V} \ \Xi)
                                    proof (cases \sigma \in (\#) (\Delta, \delta) 'set (?T_{\Sigma} \Psi_0))
                                           case True
                                          then show ?thesis
                                                  using \forall \forall \sigma \in set \ (?T_{\Sigma} \Psi_0). set \sigma \subseteq set \ (\mathfrak{V} \Xi) \land (\Delta, \delta) \in set \ (\Delta, \delta) \cap (\Delta,
                                                 by fastforce
                                    next
                                           case False
                                          hence \sigma \in (@) (\mathfrak{V} \Delta) ' set (?T_{\Sigma} \Psi_0) using \star by simp
                                           moreover have set (\mathfrak{V} \Delta) \subseteq set (\mathfrak{V} \Xi)
                                                using MaxSAT-optimal-pre-witness-element-inclusion \langle (\Delta, \delta) \in set \ (\mathfrak{V}) \rangle
\Xi)
                                                 by fastforce
                                           ultimately show ?thesis
                                                 using \forall \sigma \in set \ (?T_{\Sigma} \Psi_0). \ set \ \sigma \subseteq set \ (\mathfrak{V} \Xi) \rangle
                                                 by force
                                   \mathbf{qed}
                              hence \forall \sigma \in (\#) (\Delta, \delta) 'set (?T_{\Sigma} \Psi_0) \cup (@) (\mathfrak{V} \Delta) 'set (?T_{\Sigma} \Psi_0). set \sigma
\subseteq set (\mathfrak{V}\Xi)
                                    by auto
                            thus ?case using \langle \psi = (\Delta, \delta) \rangle by simp
                     hence \forall \sigma \in set \ (?T_{\Sigma} \Psi_0). \ mset \ (remdups \ \sigma) \subseteq \# \ mset \ (remdups \ (\mathfrak{V} \Xi))
                            using mset-remdups-set-sub-iff by blast
                     hence \forall \ \sigma \in set \ ?\Sigma. \ mset \ \sigma \subseteq \# \ mset \ (map \ snd \ (\mathfrak{V} \ \Xi))
                             using map-monotonic \langle remdups \ (\mathfrak{V} \ \Xi) = \mathfrak{V} \ \Xi \rangle
                            by auto
                     moreover have map snd (\mathfrak{V} \Xi) = \Xi by (induct \Xi, simp+)
                     ultimately show ?thesis by simp
              show ?thesis using I II III by fastforce
        qed
        from this obtain \Sigma_0 where \Sigma_0:
              \vdash (\Psi : \rightarrow \varphi) \leftrightarrow (\bigsqcup (map \sqcap \Sigma_0) \rightarrow \varphi)
              \forall \ \sigma \in set \ \Sigma_0. \ mset \ \sigma \subseteq \# \ mset \ \Xi \ \land \ length \ \sigma + 1 \ge length \ \Psi
              by blast
```

```
moreover
  have (\Phi @ \Psi) : \rightarrow \varphi = \Phi : \rightarrow (\Psi : \rightarrow \varphi) by (induct \ \Phi, simp+)
  \mathbf{hence} \vdash ((\Phi \ @ \ \Psi) :\rightarrow \varphi) \leftrightarrow (\prod \ \Phi \rightarrow (\Psi :\rightarrow \varphi))
     by (simp add: list-curry-uncurry)
  moreover have \vdash (\Psi :\to \varphi) \leftrightarrow (\bigsqcup (map \sqcap \Sigma_0) \to \varphi)
                      \rightarrow (\Phi @ \Psi) : \rightarrow \varphi \leftrightarrow (\overline{\square} \Phi \rightarrow \Psi : \rightarrow \varphi)
                      \rightarrow (\Phi @ \Psi) : \rightarrow \varphi \leftrightarrow ((\bigcap \Phi \sqcap \bigsqcup (map \bigcap \Sigma_0)) \rightarrow \varphi)
   proof -
     let ?\varphi = \langle \Psi : \to \varphi \rangle \leftrightarrow (\langle \bigsqcup (map \sqcap \Sigma_0) \rangle \to \langle \varphi \rangle)
               \to \langle (\Phi @ \Psi) : \to \varphi \rangle \leftrightarrow (\langle \bigcap \Phi \rangle \to \langle \Psi : \to \varphi \rangle)
               \rightarrow \langle (\Phi @ \Psi) : \rightarrow \varphi \rangle \leftrightarrow ((\langle \bigcap \Phi \rangle \sqcap \langle \bigsqcup (map \bigcap \Sigma_0) \rangle) \rightarrow \langle \varphi \rangle)
     have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi \text{ by } fastforce
     hence \vdash ( ?\varphi ) using propositional-semantics by blast
     thus ?thesis by simp
   qed
  moreover
  let ?\Sigma = map((@) \Phi) \Sigma_0
  have \forall \varphi \ \psi \ \chi. \vdash (\varphi \rightarrow \psi) \rightarrow \chi \rightarrow \psi \lor \neg \vdash \chi \rightarrow \varphi
     by (meson modus-ponens flip-hypothetical-syllogism)
   using append-dnf-distribute biconditional-def by fastforce
   ultimately have \vdash (\Phi @ \Psi) : \rightarrow \varphi \leftrightarrow (\bigsqcup (map \sqcap ?\Sigma) \rightarrow \varphi)
     {\bf using} \ modus-ponens \ biconditional-transitivity-rule
     by blast
   moreover
   {
     fix \sigma
     assume \sigma \in set ?\Sigma
     from this obtain \sigma_0 where \sigma_0: \sigma = \Phi @ \sigma_0 \sigma_0 \in set \Sigma_0 by (simp, blast)
     hence mset \ \sigma_0 \subseteq \# \ mset \ \Xi \ using \ \Sigma_0(2) \ by \ blast
     hence mset \ \sigma \subseteq \# \ mset \ (\Phi \ @ \ \Xi) \ using \ \sigma_0(1) \ by \ simp
     hence mset \ \sigma \subseteq \# \ mset \ \Gamma \ \mathbf{using} \ assms(1) \ assms(2)
        by (simp, meson subset-mset.dual-order.trans subset-mset.le-diff-conv2)
     moreover
     have length \sigma + 1 \ge length \ (\Phi @ \Psi) using \Sigma_0(2) \ \sigma_0 by simp
     ultimately have mset \sigma \subseteq \# mset \Gamma length \sigma + 1 \ge length (\Phi @ \Psi) by auto
   }
  ultimately
  show ?thesis by blast
qed
lemma (in classical-logic) relative-maximals-optimal-witness:
  assumes \neg \vdash \varphi
  shows \theta < (\parallel \Gamma \parallel_{\varphi})
      = (\exists \Sigma. mset (map snd \Sigma) \subseteq \# mset \Gamma \land
                   map (uncurry (\sqcup)) \Sigma :\vdash \varphi \land
                   1 + (\parallel map \ (uncurry \ (\rightarrow)) \ \Sigma \ @ \ \Gamma \ominus map \ snd \ \Sigma \ \parallel_{\varphi}) = \parallel \Gamma \ \parallel_{\varphi})
proof (rule iffI)
  assume \theta < \| \Gamma \|_{\varphi}
```

```
from this obtain \Xi where \Xi: \Xi \in \mathcal{M} \Gamma \varphi length \Xi < length \Gamma
  using \langle \neg \vdash \varphi \rangle
         complement\text{-}relative\text{-}MaxSAT\text{-}def
         relative	ext{-}MaxSAT	ext{-}intro
         relative-maximals-existence
  by fastforce
from this obtain \psi where \psi: \psi \in set (\Gamma \ominus \Xi)
  by (metis \ \langle \theta < || \Gamma ||_{\varphi})
              less-not-refl
              list.exhaust
              list.set-intros(1)
              list.size(3)
              complement-relative-MaxSAT-intro)
let ?\Sigma = \mathfrak{W} \varphi (\psi \# \Xi)
let ?\Sigma_A = \mathfrak{W}_{\sqcup} \varphi \ (\psi \# \Xi)
let ?\Sigma_B = \mathfrak{W}_{\to} \varphi \ (\psi \# \Xi)
have \diamondsuit: mset\ (\psi\ \#\ \Xi)\ \subseteq \#\ mset\ \Gamma
          \psi \ \# \ \Xi : \vdash \varphi
  using \Xi(1) \psi
         relative-maximals-def
         list-deduction-theorem
         relative{-}maximals{-}complement{-}deduction
         msub-list-subtract-elem-cons-msub [where \Xi = \Xi]
  by blast+
moreover have map snd ?\Sigma = \psi \# \Xi by (induct \Xi, simp+)
ultimately have ?\Sigma_A :\vdash \varphi
                   mset\ (map\ snd\ ?\Sigma) \subseteq \#\ mset\ \Gamma
  using MaxSAT-optimal-witness-deduction
         list-deduction-def weak-biconditional-weaken
  by (metis+)
moreover
  let ?\Gamma' = ?\Sigma_B @ \Gamma \ominus map \ snd ?\Sigma
  have A: length ?\Sigma_B = 1 + length \Xi
    by (induct \ \Xi, simp+)
  have B: ?\Sigma_B \in \mathcal{M} ?\Gamma' \varphi
  proof -
    have \neg ?\Sigma_B :\vdash \varphi
       by (metis (no-types, lifting)
                  \Xi(1) \langle ?\Sigma_A : \vdash \varphi \rangle
                   modus\mbox{-}ponens\ list\mbox{-}deduction\mbox{-}def
                   optimal-witness-split-identity
                   relative-maximals-def
                  mem-Collect-eq)
    moreover have mset ? \Sigma_B \subseteq \# mset ? \Gamma'
       by simp
    hence \forall \Psi. mset \Psi \subseteq \# mset ?\Gamma' \longrightarrow \neg \Psi : \vdash \varphi \longrightarrow length \Psi \leq length ?\Sigma_B
    proof -
      have \forall \ \Psi \in \mathcal{M} \ ?\Gamma' \ \varphi. \ length \ \Psi = length \ ?\Sigma_B
```

```
proof (rule ccontr)
  assume \neg (\forall \Psi \in \mathcal{M} ? \Gamma' \varphi. length \Psi = length ? \Sigma_B)
  from this obtain \Psi where
     \Psi \colon \Psi \in \mathcal{M} \ ?\Gamma' \varphi
        length \Psi \neq length ?\Sigma_B
    by blast
  have length \Psi \geq length ? \Sigma_B
     using \Psi(1)
           \langle \neg ? \Sigma_B : \vdash \varphi \rangle
            \langle mset ? \Sigma_B \subseteq \# mset ? \Gamma' \rangle
    unfolding relative-maximals-def
    by blast
  hence length \Psi > length ? \Sigma_B
    using \Psi(2)
    by linarith
  have length \Psi = length \ (\Psi \ominus ?\Sigma_B) + length \ (\Psi \cap ?\Sigma_B)
     (is length \Psi = length ?A + length ?B)
    by (metis (no-types, lifting)
                 length-append
                 list-diff-intersect-comp
                 mset-append
                 mset-eq-length)
  {
     fix \sigma
    assume mset\ \sigma\subseteq\#\ mset\ \Gamma
             length \ \sigma + 1 \ge length \ (?A @ ?B)
    hence length \sigma + 1 \ge length \Psi
       using \langle length \ \Psi = length \ ?A + length \ ?B \rangle
       by simp
    hence length \sigma + 1 > length ? \Sigma_B
       using \langle length \Psi \rangle length ?\Sigma_B \rangle by linarith
     hence length \sigma + 1 > length \Xi + 1
       using A by simp
     hence length \ \sigma > length \ \Xi \ by \ linarith
    have \sigma : \vdash \varphi
    proof (rule ccontr)
       assume \neg \sigma :\vdash \varphi
       hence length \ \sigma \leq length \ \Xi
         using \langle mset \ \sigma \subseteq \# \ mset \ \Gamma \rangle \ \Xi(1)
         unfolding relative-maximals-def
         \mathbf{by} blast
       thus False using \langle length \ \sigma \rangle length \ \Xi \rangle by linarith
    qed
  }
  moreover
  have mset\ \Psi \subseteq \#\ mset\ ?\Gamma'
        \neg \Psi :\vdash \varphi
        \forall \Phi. \ \textit{mset} \ \Phi \subseteq \# \ \textit{mset} \ ?\Gamma' \land \neg \ \Phi : \vdash \varphi \longrightarrow \textit{length} \ \Phi \leq \textit{length} \ \Psi
    using \Psi(1) relative-maximals-def by blast+
```

```
hence mset ?A \subseteq \# mset (\Gamma \ominus map snd ?\Sigma)
              by (simp add: add.commute subset-eq-diff-conv)
            hence mset ?A \subseteq \# mset (\Gamma \ominus (\psi \# \Xi))
              using \langle map \ snd \ ? \Sigma = \psi \ \# \ \Xi \rangle by metis
            moreover
            have mset ?B \subseteq \# mset (\mathfrak{W}_{\rightarrow} \varphi (\psi \# \Xi))
              using list-intersect-right-project by blast
            ultimately obtain \Sigma where \Sigma: \vdash ((?A @ ?B) : \rightarrow \varphi) \leftrightarrow ( (map \sqcap \Sigma))
\rightarrow \varphi)
                                               \forall \sigma \in set \ \Sigma. \ \sigma : \vdash \varphi
              using \Diamond optimal-witness-list-intersect-biconditional
              by metis
            hence \vdash | | (map \sqcap \Sigma) \rightarrow \varphi
              using weak-disj-of-conj-equiv by blast
            hence ?A @ ?B :\vdash \varphi
              using \Sigma(1) modus-ponens list-deduction-def weak-biconditional-weaken
              by blast
            moreover have set \ (?A @ ?B) = set \ \Psi
              using list-diff-intersect-comp union-code set-mset-mset by metis
            hence ?A @ ?B :\vdash \varphi = \Psi :\vdash \varphi
              using list-deduction-monotonic by blast
            ultimately have \Psi :\vdash \varphi by metis
            thus False using \Psi(1) unfolding relative-maximals-def by blast
         qed
         moreover have \exists \ \Psi. \ \Psi \in \mathcal{M} \ ?\Gamma' \varphi
            using assms relative-maximals-existence by blast
         ultimately show ?thesis
            using relative-maximals-def
            by fastforce
       qed
       ultimately show ?thesis
         unfolding relative-maximals-def
         by fastforce
    have C: \forall \Xi \Gamma \varphi. \Xi \in \mathcal{M} \Gamma \varphi \longrightarrow length \Xi = |\Gamma|_{\varphi}
       using relative-MaxSAT-intro by blast
    then have D: length \Xi = |\Gamma|_{\varphi}
       using \langle \Xi \in \mathcal{M} \Gamma \varphi \rangle by blast
    have
       \forall (\Sigma ::'a \ list) \ \Gamma \ n. \ (\neg \ mset \ \Sigma \subseteq \# \ mset \ \Gamma \ \lor \ length \ (\Gamma \ominus \Sigma) \neq n) \ \lor \ length \ \Gamma
= n + length \Sigma
       using list-subtract-msub-eq by blast
     then have E: length \Gamma = length \ (\Gamma \ominus map \ snd \ (\mathfrak{W} \ \varphi \ (\psi \ \# \ \Xi))) + length \ (\psi \ \# \ \Xi)
\# \Xi)
       using \langle map \; snd \; (\mathfrak{W} \; \varphi \; (\psi \; \# \; \Xi)) = \psi \; \# \; \Xi \rangle \langle mset \; (\psi \; \# \; \Xi) \subseteq \# \; mset \; \Gamma \rangle  by
presburger
    have 1 + length \Xi = | \mathfrak{W}_{\rightarrow} \varphi (\psi \# \Xi) @ \Gamma \ominus map \ snd (\mathfrak{W} \varphi (\psi \# \Xi)) |_{\varphi}
       using CBA by presburger
    hence 1 + (\parallel map \ (uncurry \ (\rightarrow)) \ ?\Sigma @ \Gamma \ominus map \ snd \ ?\Sigma \parallel_{\varphi}) = \parallel \Gamma \parallel_{\varphi}
```

```
using D \to map \ snd \ (\mathfrak{W} \varphi \ (\psi \# \Xi)) = \psi \# \Xi > complement-relative-MaxSAT-def
\mathbf{by}\ force
  ultimately
   show \exists \Sigma. mset (map \ snd \Sigma) \subseteq \# \ mset \Gamma \land
                  map (uncurry (\sqcup)) \Sigma :\vdash \varphi \land
                  1 + (\parallel map \ (uncurry \ (\rightarrow)) \ \Sigma \ @ \ \Gamma \ominus map \ snd \ \Sigma \ \parallel_{\varphi}) = \| \ \Gamma \ \parallel_{\varphi}
  by metis
\mathbf{next}
  assume \exists \Sigma. mset (map \ snd \Sigma) \subseteq \# \ mset \Gamma \land
                   map\ (uncurry\ (\sqcup))\ \Sigma :\vdash \varphi \land
                   1 + (\parallel map \ (uncurry \ (\rightarrow)) \ \Sigma \ @ \ \Gamma \ominus map \ snd \ \Sigma \ \parallel_{\varphi}) = \parallel \Gamma \ \parallel_{\varphi}
  thus \theta < \| \Gamma \|_{\varphi}
     by auto
qed
primrec (in implication-logic)
   MaxSAT-witness :: ('a \times 'a) list \Rightarrow 'a list \Rightarrow ('a \times 'a) list (\mathfrak{U})
  where
    \mathfrak{U} - [] = []
  \mid \mathfrak{U} \Sigma (\xi \# \Xi) = (case find (\lambda \sigma. \xi = snd \sigma) \Sigma of
                              None \Rightarrow \mathfrak{U} \Sigma \Xi
                           | Some \sigma \Rightarrow \sigma \# (\mathfrak{U} (remove1 \ \sigma \ \Sigma) \ \Xi))
\mathbf{lemma} \ (\mathbf{in} \ implication\text{-}logic) \ \mathit{MaxSAT-witness-right-msub} :
   mset\ (map\ snd\ (\mathfrak{U}\ \Sigma\ \Xi))\subseteq \#\ mset\ \Xi
proof -
  have \forall \Sigma. mset (map snd (\mathfrak{U} \Sigma \Xi)) \subseteq \# mset \Xi
  proof (induct \ \Xi)
     case Nil
     then show ?case by simp
  next
    case (Cons \xi \Xi)
     {
       fix \Sigma
       have mset\ (map\ snd\ (\mathfrak{U}\ \Sigma\ (\xi\ \#\ \Xi)))\subseteq \#\ mset\ (\xi\ \#\ \Xi)
       proof (cases find (\lambda \sigma. \xi = snd \sigma) \Sigma)
          {\bf case}\ None
          then show ?thesis
             by (simp, metis Cons.hyps
                                 add-mset-add-single
                                 mset-map mset-subset-eq-add-left subset-mset.order-trans)
       next
          case (Some \sigma)
          note \sigma = this
          hence \xi = snd \ \sigma
             by (meson find-Some-predicate)
          moreover
```

```
have \sigma \in set \Sigma
        using \sigma
        proof (induct \Sigma)
          case Nil
          then show ?case by simp
        \mathbf{next}
          case (Cons \sigma' \Sigma)
          then show ?case
            by (cases \xi = snd \sigma', simp+)
        ultimately show ?thesis using \sigma Cons.hyps by simp
    }
    then show ?case by simp
  qed
  thus ?thesis by simp
qed
lemma (in implication-logic) MaxSAT-witness-left-msub:
  mset \ (\mathfrak{U} \ \Sigma \ \Xi) \subseteq \# \ mset \ \Sigma
proof -
  have \forall \Sigma. mset (\mathfrak{U} \Sigma \Xi) \subseteq \# mset \Sigma
  proof (induct \ \Xi)
    {\bf case}\ Nil
    then show ?case by simp
  next
    case (Cons \ \xi \ \Xi)
    {
      fix \Sigma
      have mset \ (\mathfrak{U} \ \Sigma \ (\xi \ \# \ \Xi)) \subseteq \# \ mset \ \Sigma
      proof (cases find (\lambda \sigma. \xi = snd \sigma) \Sigma)
        case None
        then show ?thesis using Cons.hyps by simp
      next
        case (Some \sigma)
        note \sigma = this
        hence \sigma \in set \Sigma
        proof (induct \Sigma)
          case Nil
          then show ?case by simp
        next
          case (Cons \sigma' \Sigma)
          then show ?case
            by (cases \xi = snd \sigma', simp+)
        qed
          moreover from Cons.hyps have mset (\mathfrak{U} (remove1 \sigma \Sigma) \Xi) \subseteq \# mset
(remove1 \sigma \Sigma)
          by blast
        hence mset (\mathfrak{U} \Sigma (\xi \# \Xi)) \subseteq \# mset (\sigma \# remove1 \sigma \Sigma) using \sigma by <math>simp
```

```
ultimately show ?thesis by simp
     qed
   then show ?case by simp
  ged
  thus ?thesis by simp
\mathbf{qed}
lemma (in implication-logic) MaxSAT-witness-right-projection:
  mset\ (map\ snd\ (\mathfrak{U}\ \Sigma\ \Xi)) = mset\ ((map\ snd\ \Sigma)\ \cap\ \Xi)
proof -
 have \forall \Sigma. mset (map \ snd \ (\mathfrak{U} \ \Sigma \ \Xi)) = mset \ ((map \ snd \ \Sigma) \cap \Xi)
  proof (induct \ \Xi)
   case Nil
   then show ?case by simp
  next
   case (Cons \xi \Xi)
     fix \Sigma
     have mset (map snd (\mathfrak{U} \Sigma (\xi \# \Xi))) = mset (map snd \Sigma \cap \xi \# \Xi)
     proof (cases find (\lambda \sigma. \xi = snd \sigma) \Sigma)
       {\bf case}\ None
       hence \xi \notin set \ (map \ snd \ \Sigma)
       proof (induct \Sigma)
         case Nil
         then show ?case by simp
       next
         case (Cons \sigma \Sigma)
         have find (\lambda \sigma. \xi = snd \sigma) \Sigma = None
              \xi \neq snd \sigma
           using Cons.prems
          by (auto, metis Cons.prems find.simps(2) find-None-iff list.set-intros(1))
         then show ?case using Cons.hyps by simp
       qed
       then show ?thesis using None Cons.hyps by simp
     next
       case (Some \sigma)
       hence \sigma \in set \Sigma \xi = snd \sigma
         by (meson find-Some-predicate find-Some-set-membership)+
       moreover
       from \langle \sigma \in set \ \Sigma \rangle have mset \ \Sigma = mset \ (\sigma \# (remove1 \ \sigma \ \Sigma))
         by simp
        hence mset (map \ snd \ \Sigma) = mset ((snd \ \sigma) \ \# \ (remove1 \ (snd \ \sigma) \ (map \ snd \ ))
\Sigma)))
             mset\ (map\ snd\ \Sigma) = mset\ (map\ snd\ (\sigma\ \#\ (remove1\ \sigma\ \Sigma)))
         by (simp add: \langle \sigma \in set \Sigma \rangle, metis map-monotonic subset-mset.eq-iff)
        \Sigma))
         by simp
```

```
ultimately show ?thesis using Some Cons.hyps by simp
        qed
     then show ?case by simp
   ged
   thus ?thesis by simp
\mathbf{qed}
lemma (in classical-logic) witness-list-implication-rule:
  \vdash (map\ (uncurry\ (\sqcup))\ \Sigma :\to \varphi) \to \bigcap\ (map\ (\lambda\ (\chi,\,\xi).\ (\chi\to\xi)\to\varphi)\ \Sigma) \to \varphi
proof (induct \Sigma)
   case Nil
   then show ?case using axiom-k by simp
\mathbf{next}
   case (Cons \sigma \Sigma)
  let ?\chi = fst \ \sigma
  let ?\xi = snd \sigma
   let ?\Sigma_A = map (uncurry (\sqcup)) \Sigma
  let ?\Sigma_B = map (\lambda (\chi, \xi). (\chi \to \xi) \to \varphi) \Sigma
assume \vdash ?\Sigma_A :\to \varphi \to \prod ?\Sigma_B \to \varphi
   moreover have
     \vdash (?\Sigma_A : \to \varphi \to \sqcap ?\Sigma_B \to \varphi)
       \rightarrow ((?\chi \sqcup ?\xi) \rightarrow ?\Sigma_A : \rightarrow \varphi) \rightarrow (((?\chi \rightarrow ?\xi) \rightarrow \varphi) \sqcap \sqcap ?\Sigma_B) \rightarrow \varphi
   proof-
        let ?\varphi = (\langle ?\Sigma_A : \to \varphi \rangle \to \langle \square ?\Sigma_B \rangle \to \langle \varphi \rangle)
                     \rightarrow (((\langle ?\chi\rangle \sqcup \langle ?\xi\rangle) \rightarrow \langle ?\Sigma_A : \rightarrow \varphi\rangle) \rightarrow (((\langle ?\chi\rangle \rightarrow \langle ?\xi\rangle) \rightarrow \langle \varphi\rangle) \sqcap \langle \square
(\Sigma_B) \to \langle \varphi \rangle
        have \forall \mathfrak{M}. \mathfrak{M} \models_{prop} ?\varphi \text{ by } fastforce
        hence \vdash ( ?\varphi ) using propositional-semantics by blast
        thus ?thesis by simp
  qed
   ultimately have \vdash ((?\chi \sqcup ?\xi) \to ?\Sigma_A : \to \varphi) \to (((?\chi \to ?\xi) \to \varphi) \sqcap \sqcap ?\Sigma_B)
     using modus-ponens by blast
  moreover
  have (\lambda \ \sigma. \ (\textit{fst} \ \sigma \to \textit{snd} \ \sigma) \to \varphi) = (\lambda \ (\chi, \, \xi). \ (\chi \to \xi) \to \varphi)
          uncurry (\sqcup) = (\lambda \ \sigma. \ fst \ \sigma \ \sqcup \ snd \ \sigma)
     by fastforce+
   hence (\lambda\ (\chi,\,\xi).\ (\chi\to\xi)\to\varphi)\ \sigma=(?\chi\to?\xi)\to\varphi
           uncurry (\sqcup) \sigma = ?\chi \sqcup ?\xi
     by metis+
   ultimately show ?case by simp
\mathbf{lemma} \ (\mathbf{in} \ classical\text{-}logic) \ witness\text{-}relative\text{-}MaxSAT\text{-}increase:}
   assumes \neg \vdash \varphi
        and mset\ (map\ snd\ \Sigma)\subseteq \#\ mset\ \Gamma
        and map (uncurry (\sqcup)) \Sigma :\vdash \varphi
     shows (\mid \Gamma \mid_{\varphi}) < (\mid map \ (uncurry \ (\rightarrow)) \ \Sigma @ \Gamma \ominus map \ snd \ \Sigma \mid_{\varphi})
```

```
proof -
  from \langle \neg \vdash \varphi \rangle obtain \Xi where \Xi : \Xi \in \mathcal{M} \ \Gamma \ \varphi
     using relative-maximals-existence by blast
  let ?\Sigma' = \Sigma \ominus \mathfrak{U} \Sigma \Xi
  let ?\Sigma\Xi' = map (uncurry (\Box)) (\mathfrak{U} \Sigma \Xi) @ map (uncurry (\rightarrow)) (\mathfrak{U} \Sigma \Xi)
  have mset \Sigma = mset (\mathfrak{U} \Sigma \Xi @ ?\Sigma') by (simp add: MaxSAT-witness-left-msub)
  hence set (map\ (uncurry\ (\sqcup))\ \Sigma) = set\ (map\ (uncurry\ (\sqcup))\ ((\mathfrak{U}\ \Sigma\ \Xi)\ @\ ?\Sigma'))
     by (metis\ mset\text{-}map\ mset\text{-}eq\text{-}setD)
  hence map (uncurry (\sqcup)) ((\mathfrak{U} \Sigma \Xi) @ ?\Sigma') :\vdash \varphi
     using list-deduction-monotonic assms(3)
     by blast
  hence map (uncurry (\sqcup)) (\mathfrak{U} \Sigma \Xi) @ map (uncurry (\sqcup)) ?\Sigma' :\vdash \varphi by simp
  moreover
  {
    fix \Phi \Psi
     have ((\Phi @ \Psi) : \rightarrow \varphi) = (\Phi : \rightarrow (\Psi : \rightarrow \varphi))
       by (induct \Phi, simp+)
     hence (\Phi @ \Psi) : \vdash \varphi = \Phi : \vdash (\Psi : \rightarrow \varphi)
       unfolding list-deduction-def
       by (induct \Phi, simp+)
  ultimately have map (uncurry (\sqcup)) (\mathfrak{U} \Sigma \Xi) :\vdash map (uncurry (\sqcup)) ?\Sigma' :\rightarrow \varphi
     by simp
  moreover have set (map\ (uncurry\ (\sqcup))\ (\mathfrak{U}\ \Sigma\ \Xi))\subseteq set\ ?\Sigma\Xi'
     by simp
  ultimately have ?\Sigma\Xi' := map (uncurry (\sqcup)) ?\Sigma' :\rightarrow \varphi
     using list-deduction-monotonic by blast
  hence ?\Sigma\Xi' :\vdash \prod (map (\lambda (\chi, \gamma). (\chi \to \gamma) \to \varphi) ?\Sigma') \to \varphi
     using \ list-deduction-modus-ponens
            list-deduction-weaken
            witness-list-implication-rule
     by blast
  using measure-deduction-one-collapse by metis
  hence
     ?\Sigma\Xi' \otimes (map \ snd \ (\mathfrak{U} \ \Sigma \ \Xi)) \ominus (map \ snd \ (\mathfrak{U} \ \Sigma \ \Xi))
         \Vdash [ [ (map (\lambda (\chi, \gamma). (\chi \to \gamma) \to \varphi) ? \Sigma') \to \varphi] ]
  hence map snd (\mathfrak{U} \Sigma \Xi) $\operatorname{\subset} \bigcup \left( map \left( \lambda \left( \chi, \gamma \right). \left( \chi \to \gamma \right) \rightarrow \varphi \right) ?\Sigma' \rightarrow \varphi \right]
     using measure-witness-left-split [where \Gamma=map snd (\mathfrak{U} \Sigma \Xi)
                                                     and \Sigma = \mathfrak{U} \Sigma \Xi
     by fastforce
  hence map snd (\mathfrak{U} \Sigma \Xi) $\bigset [\bigcap (map (\lambda (\chi, \gamma)). (\chi \rightarrow \gamma) \rightarrow \varphi) ?\Sigma') \rightarrow \varphi]
     using MaxSAT-witness-right-projection by auto
  hence map snd (\mathfrak{U} \Sigma \Xi) :- \square (map (\lambda (\chi, \gamma). (\chi \to \gamma) \to \varphi) ?\Sigma') \to \varphi
     using measure-deduction-one-collapse by blast
     map \ snd \ (\mathfrak{U} \ \Sigma \ \Xi) \ @ \ \Xi \ \ominus \ (map \ snd \ \Sigma) \ \vdash \ \bigcap \ (map \ (\lambda \ (\chi, \ \gamma). \ (\chi \ \rightarrow \ \gamma) \ \rightarrow \ \varphi)
?\Sigma') \rightarrow \varphi
```

```
(is ?\Xi_0 :\vdash -)
  \mathbf{using}\ \mathit{list-deduction-monotonic}
  by (metis (no-types, lifting) append-Nil2
                                   measure\text{-}cancel
                                    measure-deduction.simps(1)
                                    measure-list-deduction-antitonic)
have mset \ \Xi = mset \ (\Xi \ominus (map \ snd \ \Sigma)) + mset \ (\Xi \cap (map \ snd \ \Sigma))
  using list-diff-intersect-comp by blast
hence mset \ \Xi = mset \ ((map \ snd \ \Sigma) \cap \Xi) + mset \ (\Xi \ominus (map \ snd \ \Sigma))
by (metis subset-mset.inf-commute list-intersect-mset-homomorphism union-commute)
hence mset \Xi = mset \ (map \ snd \ (\mathfrak{U} \ \Sigma \ \Xi)) + mset \ (\Xi \ominus (map \ snd \ \Sigma))
  using MaxSAT-witness-right-projection by simp
hence mset \Xi = mset ?\Xi_0
  by simp
hence set \Xi = set ?\Xi_0
  by (metis\ mset\text{-}eq\text{-}setD)
have \neg ?\Xi_0 :\vdash [ (map (\lambda (\chi, \gamma). (\chi \to \gamma) \to \varphi) ?\Sigma')
proof (rule notI)
  assume \mathcal{E}_0 : \vdash \prod (map (\lambda (\chi, \gamma). (\chi \to \gamma) \to \varphi) ? \Sigma')
  hence ?\Xi_0 :\vdash \varphi
    using \star list-deduction-modus-ponens by blast
  hence \Xi : \vdash \varphi
    using list-deduction-monotonic \langle set \Xi = set ?\Xi_0 \rangle by blast
  thus False
    using \Xi relative-maximals-def by blast
qed
moreover
have mset\ (map\ snd\ (\mathfrak{U}\ \Sigma\ \Xi))\subseteq \#\ mset\ \mathscr{E}_0
     \mathit{mset}\ (\mathit{map}\ (\mathit{uncurry}\ (\rightarrow))\ (\mathfrak{U}\ \Sigma\ \Xi)\ @\ \mathscr{?}\Xi_0\ \ominus\ \mathit{map}\ \mathit{snd}\ (\mathfrak{U}\ \Sigma\ \Xi))
    = mset \ (map \ (uncurry \ (\rightarrow)) \ (\mathfrak{U} \ \Sigma \ \Xi) \ @ \ \Xi \ \ominus \ (map \ snd \ \Sigma))
     (\mathbf{is} - = mset ?\Xi_1)
  by auto
hence ?\Xi_1 \leq ?\Xi_0
  by (metis add.commute
             witness-stronger-theory
             add-diff-cancel-right'
             list-subtract.simps(1)
             list-subtract-mset-homomorphism
             list-diff-intersect-comp
             list-intersect-right-project
             m sub\text{-}stronger\text{-}theory\text{-}intro
             stronger-theory-combine
             stronger-theory-empty-list-intro
             self-append-conv)
ultimately have
  \neg \ ?\Xi_1 :\vdash \bigcap \ (map \ (\lambda \ (\chi, \gamma). \ (\chi \to \gamma) \to \varphi) \ ?\Sigma')
  using stronger-theory-deduction-monotonic by blast
from this obtain \chi \gamma where
  (\chi,\gamma) \in set ?\Sigma'
```

```
\neg (\chi \to \gamma) \# ?\Xi_1 :\vdash \varphi
    \mathbf{using}\ \mathit{list-deduction-theorem}
    by fastforce
  have mset (\chi \to \gamma \# ?\Xi_1) \subseteq \# mset (map (uncurry (<math>\to)) \Sigma @ \Gamma \ominus map \ snd \ \Sigma)
  proof -
    let ?A = map (uncurry (\rightarrow)) \Sigma
    let ?B = map (uncurry (\rightarrow)) (\mathfrak{U} \Sigma \Xi)
    have (\chi, \gamma) \in (set \Sigma - set (\mathfrak{U} \Sigma \Xi))
    proof -
      from \langle (\chi, \gamma) \in set ?\Sigma' \rangle have \gamma \in \# mset (map \ snd \ (\Sigma \ominus \mathfrak{U} \Sigma \Xi))
        by (metis set-mset-mset image-eqI set-map snd-conv)
      hence \gamma \in \# mset (map snd \Sigma \ominus map snd (\mathfrak{U} \Sigma \Xi))
        by (metis\ MaxSAT-witness-left-msub\ map-list-subtract-mset-equivalence)
      hence \gamma \in \# mset (map snd \Sigma \ominus (map snd \Sigma \cap \Xi))
      by (metis MaxSAT-witness-right-projection list-subtract-mset-homomorphism)
      hence \gamma \in \# mset \ (map \ snd \ \Sigma \ominus \Xi)
        by (metis add-diff-cancel-right'
                    list\text{-}subtract\text{-}mset\text{-}homomorphism
                   list-diff-intersect-comp)
      moreover from assms(2) have mset\ (map\ snd\ \Sigma\ominus\Xi)\subseteq\#\ mset\ (\Gamma\ominus\Xi)
          by (simp, metis list-subtract-monotonic list-subtract-mset-homomorphism
mset-map)
      ultimately have \gamma \in \# mset \ (\Gamma \ominus \Xi)
        by (simp\ add:\ mset\text{-}subset\text{-}eqD)
      hence \gamma \in set \ (\Gamma \ominus \Xi)
        using set-mset-mset by fastforce
      hence \gamma \in set \ \Gamma - set \ \Xi
        using \Xi by simp
      hence \gamma \notin set \; \Xi
        by blast
      hence \forall \Sigma. (\chi, \gamma) \notin set (\mathfrak{U} \Sigma \Xi)
      proof (induct \ \Xi)
        case Nil
        then show ?case by simp
      next
        case (Cons \xi \Xi)
         {
          \mathbf{fix}\ \Sigma
           have (\chi, \gamma) \notin set (\mathfrak{U} \Sigma (\xi \# \Xi))
           proof (cases find (\lambda \sigma. \xi = snd \sigma) \Sigma)
             case None
             then show ?thesis using Cons by simp
           next
             case (Some \sigma)
             moreover from this have snd \sigma = \xi
               using find-Some-predicate by fastforce
             with Cons. prems have \sigma \neq (\chi, \gamma) by fastforce
             ultimately show ?thesis using Cons by simp
           qed
```

```
then show ?case by blast
      qed
      moreover from \langle (\chi, \gamma) \in set ? \Sigma' \rangle have (\chi, \gamma) \in set \Sigma
        by (meson list-subtract-set-trivial-upper-bound subsetCE)
      ultimately show ?thesis by fastforce
    qed
    with \langle (\chi, \gamma) \in set ?\Sigma' \rangle have mset ((\chi, \gamma) \# \mathfrak{U} \Sigma \Xi) \subseteq \# mset \Sigma
      by (meson MaxSAT-witness-left-msub msub-list-subtract-elem-cons-msub)
    hence mset (\chi \rightarrow \gamma \# ?B) \subseteq \# mset (map (uncurry (<math>\rightarrow)) \Sigma)
      by (metis (no-types, lifting)
             \langle (\chi, \gamma) \in set ?\Sigma' \rangle
             MaxSAT	ext{-}witness	ext{-}left	ext{-}msub
             map\mbox{-}list\mbox{-}subtract\mbox{-}mset\mbox{-}equivalence
             map-monotonic
             mset-eq-setD msub-list-subtract-elem-cons-msub
             pair-imageI
             set-map
             uncurry-def)
    moreover
    have mset \ \Xi \subseteq \# \ mset \ \Gamma
      using \Xi relative-maximals-def
    hence mset (\Xi \ominus (map \ snd \ \Sigma)) \subseteq \# \ mset \ (\Gamma \ominus (map \ snd \ \Sigma))
      using list-subtract-monotonic by blast
    ultimately show ?thesis
      using subset-mset.add-mono by fastforce
  qed
  moreover have length ?\Xi_1 = length ?\Xi_0
    by simp
  hence length ?\Xi_1 = length \Xi
    using \langle mset \ \Xi = mset \ ?\Xi_0 \rangle \ mset\text{-}eq\text{-}length
    by metis
  hence length ((\chi \to \gamma) \# ?\Xi_1) = length \Xi + 1
  hence length ((\chi \to \gamma) \# ?\Xi_1) = (|\Gamma|_{\varphi}) + 1
    using \Xi
    by (simp add: relative-MaxSAT-intro)
  moreover from \langle \neg \vdash \varphi \rangle obtain \Omega where \Omega: \Omega \in \mathcal{M} (map (uncurry (\rightarrow)) \Sigma @
\Gamma \ominus map \ snd \ \Sigma) \ \varphi
    using relative-maximals-existence by blast
  ultimately have length \Omega \geq (|\Gamma|_{\varphi}) + 1
    using relative-maximals-def
    by (metis (no-types, lifting) \langle \neg \chi \rightarrow \gamma \# ?\Xi_1 : \vdash \varphi \rangle mem-Collect-eq)
  thus ?thesis
    using \Omega relative-MaxSAT-intro by auto
```

lemma (in classical-logic) relative-maximals-counting-deduction-lower-bound:

```
assumes \neg \vdash \varphi
     shows (\Gamma \# \vdash n \varphi) = (n \leq || \Gamma ||_{\varphi})
  have \forall \Gamma. (\Gamma \# \vdash n \varphi) = (n \leq || \Gamma ||_{\varphi})
  proof(induct n)
     case \theta
     then show ?case by simp
  next
     case (Suc \ n)
     {
       fix \Gamma
       assume \Gamma \# \vdash (Suc \ n) \varphi
       from this obtain \Sigma where \Sigma:
          mset \ (map \ snd \ \Sigma) \subseteq \# \ mset \ \Gamma
          map\ (uncurry\ (\sqcup))\ \Sigma :\vdash \varphi
          map\ (uncurry\ (\rightarrow))\ \Sigma\ @\ \Gamma\ \ominus\ (map\ snd\ \Sigma)\ \#\vdash\ n\ \varphi
          bv fastforce
       let ?\Gamma' = map (uncurry (\rightarrow)) \Sigma @ \Gamma \ominus (map snd \Sigma)
       have length \Gamma = length ?\Gamma'
          using \Sigma(1) list-subtract-msub-eq by fastforce
       hence (\|\Gamma\|_{\varphi}) > (\|?\Gamma'\|_{\varphi})
         by (metis \Sigma(1) \Sigma(2) \langle \neg \vdash \varphi \rangle
                       witness\text{-}relative\text{-}MaxSAT\text{-}increase
                       length-MaxSAT-decomposition
                       add-less-cancel-right
                       nat-add-left-cancel-less)
       with \Sigma(3) Suc.hyps have Suc n \leq ||\Gamma||_{\varphi}
          by auto
     }
     moreover
     {
       fix \Gamma
       assume Suc \ n \leq ||\Gamma||_{\varphi}
       from this obtain \Sigma where \Sigma:
          mset \ (map \ snd \ \Sigma) \subseteq \# \ mset \ \Gamma
          map (uncurry (\sqcup)) \Sigma :\vdash \varphi
          1 + (\parallel map \ (uncurry \ (\rightarrow)) \ \Sigma \ @ \ \Gamma \ominus map \ snd \ \Sigma \ \parallel_{\varphi}) = \| \ \Gamma \ \parallel_{\varphi}
          (is 1 + (\parallel ?\Gamma' \parallel_{\varphi}) = \parallel \Gamma \parallel_{\varphi})
          by (metis Suc-le-D assms relative-maximals-optimal-witness zero-less-Suc)
       have n \leq \| ?\Gamma' \|_{\varphi}
          using \Sigma(3) \langle Suc \ n \leq || \Gamma ||_{\varphi} \rangle by linarith
       hence ?\Gamma' \# \vdash n \varphi \text{ using } Suc \text{ by } blast
       hence \Gamma \# \vdash (Suc \ n) \varphi  using \Sigma(1) \Sigma(2) by fastforce
     }
     ultimately show ?case by metis
  qed
  thus ?thesis by auto
qed
```

As a brief aside, we may observe that φ is a tautology if and only if count-

```
ing deduction can prove it for any given number of times. This follows
immediately from \neg \vdash \varphi \Longrightarrow \Gamma \# \vdash n \varphi = (n \leq || \Gamma ||_{\varphi}).
lemma (in classical-logic) counting-deduction-tautology-equiv:
  (\forall n. \Gamma \# \vdash n \varphi) = \vdash \varphi
proof (cases \vdash \varphi)
  {f case}\ True
  then show ?thesis
    by (simp add: counting-deduction-tautology-weaken)
  case False
  have \neg \Gamma \# \vdash (1 + length \Gamma) \varphi
  proof (rule notI)
    assume \Gamma \# \vdash (1 + length \Gamma) \varphi
    hence 1 + length \Gamma \le ||\Gamma||_{\varphi}
       using \langle \neg \vdash \varphi \rangle relative-maximals-counting-deduction-lower-bound by blast
    hence 1 + length \Gamma \leq length \Gamma
       using complement-relative-MaxSAT-def by fastforce
    thus False by linarith
  qed
  then show ?thesis
    using \langle \neg \vdash \varphi \rangle by blast
qed
theorem (in classical-logic) relative-maximals-max-counting-deduction:
  \Gamma \not\Vdash n \varphi = (\forall \Phi \in \mathcal{M} \Gamma \varphi. n \leq length (\Gamma \ominus \Phi))
proof (cases \vdash \varphi)
  {f case}\ {\it True}
  from \langle \vdash \varphi \rangle have \Gamma \# \vdash n \varphi
    using counting-deduction-tautology-weaken
    by blast
  moreover from \langle \vdash \varphi \rangle have \mathcal{M} \Gamma \varphi = \{\}
    using relative-maximals-existence by auto
  hence \forall \Phi \in \mathcal{M} \Gamma \varphi. n < length (\Gamma \ominus \Phi) by blast
  ultimately show ?thesis by meson
next
  case False
  from \langle \neg \vdash \varphi \rangle have (\Gamma \# \vdash n \varphi) = (n \leq ||\Gamma||_{\varphi})
    \mathbf{by}\ (simp\ add:\ relative-maximals-counting-deduction-lower-bound)
  moreover have (n \leq || \Gamma ||_{\varphi}) = (\forall \Phi \in \mathcal{M} \Gamma \varphi. n \leq length (\Gamma \ominus \Phi))
  proof (rule iffI)
    assume n \leq ||\Gamma||_{\omega}
      fix \Phi
      assume \Phi \in \mathcal{M} \Gamma \varphi
      hence n \leq length \ (\Gamma \ominus \Phi)
         using \langle n \leq || \Gamma ||_{\varphi} \rangle complement-relative-MaxSAT-intro by auto
    thus \forall \Phi \in \mathcal{M} \ \Gamma \ \varphi. n \leq length \ (\Gamma \ominus \Phi) by blast
  next
```

```
assume \forall \Phi \in \mathcal{M} \ \Gamma \ \varphi. \ n \leq length \ (\Gamma \ominus \Phi)
     with \langle \neg \vdash \varphi \rangle obtain \Phi where
       \Phi \in \mathcal{M} \ \Gamma \ \varphi
       n \leq length \ (\Gamma \ominus \Phi)
       {\bf using} \ \textit{relative-maximals-existence}
       \mathbf{by} blast
    thus n \leq ||\Gamma||_{\varphi}
       \mathbf{by}\ (\mathit{simp\ add:\ complement-relative-MaxSAT-intro})
  ultimately show ?thesis by metis
qed
\mathbf{lemma} \ (\mathbf{in} \ consistent\text{-}classical\text{-}logic}) \ counting\text{-}deduction\text{-}to\text{-}maxsat:
  (\Gamma \#\vdash n \perp) = (MaxSAT \Gamma + n \leq length \Gamma)
  by (metis
          add.commute
          consistency
          length\hbox{-}MaxSAT\hbox{-}decomposition
          relative-maximals-counting-deduction-lower-bound\\
          nat-add-left-cancel-le)
```

Chapter 4

Inequality Completeness For Probability Logic

4.1 Limited Counting Deduction Completeness

The reduction of counting deduction to MaxSAT allows us to first prove completeness for counting deduction, as maximal consistent sublists allow us to recover maximally consistent sets, which give rise to Dirac measures.

The completeness result first presented here, where all of the propositions on the left hand side are the same, will be extended later.

```
lemma (in probability-logic) list-probability-upper-bound:
  (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq real \ (length \ \Gamma)
proof (induct \ \Gamma)
  case Nil
  then show ?case by simp
next
  case (Cons \gamma \Gamma)
  moreover have P \gamma \leq 1 using unity-upper-bound by blast
  ultimately have \mathcal{P} \gamma + (\sum \gamma \leftarrow \Gamma, \mathcal{P} \gamma) \leq 1 + real (length \Gamma) by linarith
  then show ?case by simp
\textbf{theorem} \ (\textbf{in} \ classical-logic}) \ dirac-limited-counting-deduction-completeness:
  (\forall \ \mathcal{P} \in dirac\text{-measures. real } n * \mathcal{P} \ \varphi \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)) = \sim \Gamma \ \# \vdash \ n \ (\sim \varphi)
proof -
    \mathbf{fix} \ \mathcal{P} :: \ 'a \Rightarrow \mathit{real}
    assume P \in dirac-measures
    from this interpret probability-logic (\lambda \varphi . \vdash \varphi) (\rightarrow) \perp \mathcal{P}
       unfolding dirac-measures-def
       by auto
    assume \sim \Gamma \# \vdash n \ (\sim \varphi)
    moreover have replicate n (\sim \varphi) = \sim (replicate \ n \ \varphi)
```

```
by (induct \ n, \ auto)
  ultimately have \sim \Gamma \ \sim (replicate \ n \ \varphi)
    using counting-deduction-to-measure-deduction by metis
  hence (\sum \varphi \leftarrow (replicate \ n \ \varphi). \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
    {\bf using}\ measure-deduction\text{-}soundness
    by blast
  moreover have (\sum \varphi \leftarrow (replicate \ n \ \varphi). \ \mathcal{P} \ \varphi) = real \ n * \mathcal{P} \ \varphi
    by (induct\ n,\ simp,\ simp\ add:\ semiring-normalization-rules(3))
  ultimately have real n * \mathcal{P} \varphi \leq (\sum \gamma \leftarrow \Gamma. \mathcal{P} \gamma)
    by simp
moreover
{
  assume \neg \sim \Gamma \# \vdash n \ (\sim \varphi)
  have \exists \ \mathcal{P} \in \textit{dirac-measures. real } n * \mathcal{P} \ \varphi > (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
    have \exists \Phi. \Phi \in \mathcal{M} (\sim \Gamma) (\sim \varphi)
      using
         \langle \neg \sim \Gamma \# \vdash n (\sim \varphi) \rangle
         relative-maximals-existence
         counting-deduction-tautology-weaken
      by blast
    from this obtain \Phi where \Phi:
      (\sim \Phi) \in \mathcal{M} (\sim \Gamma) (\sim \varphi)
      mset\ \Phi\subseteq\#\ mset\ \Gamma
      unfolding map-negation-def
      by (metis
              (mono-tags, lifting)
              relative-maximals-def
             mem-Collect-eq
             mset-sub-map-list-exists)
    hence \neg \vdash \varphi \rightarrow | \mid \Phi
      using
         biconditional\hbox{-}weaken
         list-deduction-def
         map-negation-list-implication
         set-deduction-base-theory
         relative-maximals-def
      by blast
    from this obtain \Omega where \Omega: MCS \Omega \varphi \in \Omega \sqcup \Phi \notin \Omega
      by (meson
              insert	ext{-}subset
             formula-consistent-def
             formula-maximal-consistency
             formula-maximally-consistent-extension\\
              formula-maximally-consistent-set-def-def
              set-deduction-base-theory
              set\mbox{-} deduction\mbox{-} reflection
              set-deduction-theorem)
```

```
let ?P = \lambda \chi. if \chi \in \Omega then (1 :: real) else 0
from \Omega have \mathscr{P} \in \mathit{dirac\text{-}measures}
  using MCS-dirac-measure by blast
moreover
from this interpret probability-logic (\lambda \varphi . \vdash \varphi) (\rightarrow) \perp ?P
  unfolding dirac-measures-def
  by auto
have \forall \varphi \in set \Phi. ?P \varphi = \theta
   using \Phi(1) \Omega(1) \Omega(3) arbitrary-disjunction-exclusion-MCS by auto
with \Phi(2) have (\sum \gamma \leftarrow \Gamma. P \gamma) = (\sum \gamma \leftarrow (\Gamma \ominus \Phi). P \gamma)
proof (induct \Phi)
  case Nil
  then show ?case by simp
next
  case (Cons \varphi \Phi)
  then show ?case
  proof -
     obtain \omega :: 'a where
       \omega: \neg mset \Phi \subseteq \# mset \Gamma
            \vee\ \omega\in set\ \Phi\wedge\omega\in\Omega
            \vee \ (\sum \gamma \leftarrow \Gamma. \ ?\mathcal{P} \ \gamma) = (\sum \gamma \leftarrow \Gamma \ominus \Phi. \ ?\mathcal{P} \ \gamma)
       using Cons.hyps by fastforce
     have A:
       \forall (f :: 'a \Rightarrow real) (\Gamma :: 'a \ list) \Phi.
             \neg \ \mathit{mset} \ \Phi \subseteq \# \ \mathit{mset} \ \Gamma
          \vee \; \textit{sum-list} \; ((\sum \varphi \leftarrow \Phi. \; f \; \varphi) \; \# \; \textit{map} \; f \; (\Gamma \ominus \Phi)) = (\sum \gamma \leftarrow \Gamma. \; f \; \gamma)
       using listSubstract-multisubset-list-summation by auto
     have B: \forall rs. sum\text{-list } ((0::real) \# rs) = sum\text{-list } rs
       by auto
     have C: \forall r \ rs. \ (0::real) = r \lor sum\text{-list} \ (r \# rs) \neq sum\text{-list} \ rs
       by simp
    have D: \forall f. \ sum\text{-list} \ (sum\text{-list} \ (map \ f \ (\varphi \ \# \ \Phi)) \ \# \ map \ f \ (\Gamma \ominus (\varphi \ \# \ \Phi)))
                   = (sum\text{-}list (map f \Gamma)::real)
       using A Cons.prems(1) by blast
     have E: mset \Phi \subseteq \# mset \Gamma
       using Cons.prems(1) subset-mset.dual-order.trans by force
     then have F: \forall f. (0::real) = sum\text{-}list (map f \Phi)
                           \vee sum-list (map\ f\ \Gamma) \neq sum-list (map\ f\ (\Gamma \ominus \Phi))
       using C A by (metis (no-types))
     then have G: (\sum \varphi' \leftarrow (\varphi \# \Phi). \ ?P \ \varphi') = \theta \lor \omega \in \Omega
       using E \omega Cons.prems(2) by auto
    have H: \forall \Gamma \ r :: real. \ r = (\sum_{\gamma} \gamma \leftarrow \Gamma. \ ?P \ \gamma) \ \lor \ \omega \in set \ \Phi
                             \forall r \neq (\sum \gamma \leftarrow (\varphi \# \Gamma). ?P \gamma)
       using Cons.prems(2) by auto
     have (1::real) \neq 0 by linarith
     moreover
     { assume \omega \notin set \Phi
       then have \omega \notin \Omega \vee (\sum \gamma \leftarrow \Gamma. ?P \gamma) = (\sum \gamma \leftarrow \Gamma \ominus (\varphi \# \Phi). ?P \gamma)
```

```
using H F E D B \omega by (metis (no-types) sum-list. Cons) }
          ultimately have ?thesis
            using G D B by (metis Cons.prems(2) list.set-intros(2))
          then show ?thesis
            by linarith
        \mathbf{qed}
      \mathbf{qed}
      hence (\sum \gamma \leftarrow \Gamma. ?P \gamma) \leq real (length (\Gamma \ominus \Phi))
        \mathbf{using}\ \mathit{list-probability-upper-bound}
        by auto
            moreover
      have length (\sim \Gamma \ominus \sim \Phi) < n
        by (metis not-le \Phi(1) \leftarrow (\sim \Gamma) \# \vdash n (\sim \varphi))
                  relative-maximals-max-counting-deduction\\
                  maximals-list-subtract-length-equiv)
      hence real (length (\sim \Gamma \ominus \sim \Phi)) < real n
        by simp
      with \Omega(2) have real (length (\sim \Gamma \ominus \sim \Phi)) < real n * ?P \varphi
        by simp
      moreover
      have (\sim (\Gamma \ominus \Phi)) \rightleftharpoons (\sim \Gamma \ominus \sim \Phi)
        unfolding map-negation-def
        by (metis \Phi(2) map-list-subtract-mset-equivalence)
      with perm-length have length (\Gamma \ominus \Phi) = length \ (\sim \Gamma \ominus \sim \Phi)
        by (metis length-map local.map-negation-def)
      hence real (length (\Gamma \ominus \Phi)) = real (length (\sim \Gamma \ominus \sim \Phi))
        by simp
      ultimately show ?thesis
        by force
    qed
  ultimately show ?thesis by fastforce
qed
```

4.2 Measure Deduction Completeness

Since measure deduction may be reduced to counting deduction, we have measure deduction is complete.

```
lemma (in classical-logic) dirac-measure-deduction-completeness:  (\forall \ \mathcal{P} \in \textit{dirac-measures}. \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)) = \sim \Gamma \ \$ \vdash \sim \Phi  proof –  \{ \text{ fix } \mathcal{P} :: \ 'a \Rightarrow \textit{real } \\ \text{ assume } \mathcal{P} \in \textit{dirac-measures} \\ \text{ from } \textit{this } \text{ interpret } \textit{probability-logic} \ (\lambda \ \varphi. \ \vdash \ \varphi) \ (\rightarrow) \perp \mathcal{P} \\ \text{ unfolding } \textit{dirac-measures-def} \\ \text{ by } \textit{auto} \\ \text{ assume } \sim \Gamma \ \$ \vdash \sim \Phi
```

```
hence (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
       {\bf using}\ measure-deduction\text{-}soundness
       by blast
  }
  moreover
     \mathbf{assume} \ \neg \sim \Gamma \ \$ \vdash \sim \Phi
    have \exists \ \mathcal{P} \in \textit{dirac-measures}. \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) > (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
     proof -
       using measure-deduction-to-counting-deduction by blast
       have \sim (\sim \Phi) @ \sim \Gamma \#\vdash (length (\sim \Phi)) \perp = \sim (\sim \Phi) @ \sim \Gamma \#\vdash (length)
\Phi) \perp
          by (induct \Phi, auto)
       moreover have \vdash \sim \top \to \bot
          by (simp add: negation-def)
       ultimately have \neg \sim (\sim \Phi @ \Gamma) \# \vdash (length \Phi) (\sim \top)
          using counting-deduction-implication by fastforce
       from this obtain \mathcal{P} where \mathcal{P}:
          \mathcal{P} \in \mathit{dirac}\text{-}\mathit{measures}
          real (length \Phi) * \mathcal{P} \top > (\sum \gamma \leftarrow (\sim \Phi @ \Gamma). \mathcal{P} \gamma)
          {\bf using} \ dirac-limited-counting-deduction-completeness
          by fastforce
       from this interpret probability-logic (\lambda \varphi . \vdash \varphi) (\rightarrow) \perp \mathcal{P}
          unfolding dirac-measures-def
          by auto
       from \mathcal{P}(2) have real (length \Phi) > (\sum \gamma \leftarrow \sim \Phi. \ \mathcal{P} \ \gamma) + (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
          by (simp add: probability-unity)
       moreover have (\sum \gamma \leftarrow \sim \Phi. \ \mathcal{P} \ \gamma) = real \ (length \ \Phi) - (\sum \gamma \leftarrow \Phi. \ \mathcal{P} \ \gamma)
          using complementation
          by (induct \Phi, auto)
       ultimately show ?thesis
          using \mathcal{P}(1) by auto
    qed
  ultimately show ?thesis by fastforce
qed
{\bf theorem} \ ({\bf in} \ classical\text{-}logic) \ measure\text{-}deduction\text{-}completeness:}
  (\forall \ \mathcal{P} \in \textit{probabilities.} \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)) = \textcolor{red}{\sim} \ \Gamma \ \$ \vdash \textcolor{red}{\sim} \ \Phi
proof -
  {
     \mathbf{fix} \ \mathcal{P} :: 'a \Rightarrow real
     assume P \in probabilities
     from this interpret probability-logic (\lambda \varphi . \vdash \varphi) (\rightarrow) \perp \mathcal{P}
       unfolding probabilities-def
       by auto
     assume \sim \Gamma \ \sim \Phi
```

```
\begin{array}{l} \textbf{hence} \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \\ \textbf{using} \ measure-deduction-soundness} \\ \textbf{by} \ blast \\ \textbf{} \\ \textbf{} \\ \textbf{thus} \ ?thesis \\ \textbf{using} \ dirac-measures-subset \ dirac-measure-deduction-completeness} \\ \textbf{by} \ fastforce \\ \textbf{qed} \end{array}
```

4.3 Counting Deduction Completeness

Leveraging our measure deduction completeness result, we may extend our limited counting deduction completeness theorem to full completeness.

```
lemma (in classical-logic) measure-left-commute:
  (\Phi @ \Psi) \$ \vdash \Xi = (\Psi @ \Phi) \$ \vdash \Xi
  have (\Phi @ \Psi) \preceq (\Psi @ \Phi) (\Psi @ \Phi) \preceq (\Phi @ \Psi)
   {f using}\ stronger-theory-reflexive\ stronger-theory-right-permutation\ perm-append-swap
\mathbf{bv} blast+
  thus ?thesis
    using measure-stronger-theory-left-monotonic
    by blast
qed
lemma (in classical-logic) stronger-theory-double-negation-right:
  \Phi \prec \sim (\sim \Phi)
 by (induct \Phi, simp, simp add: double-negation negation-def stronger-theory-left-right-cons)
lemma (in classical-logic) stronger-theory-double-negation-left:
  \sim (\sim \Phi) \prec \Phi
  by (induct \Phi,
      simp,
     simp add: double-negation-converse negation-def stronger-theory-left-right-cons)
\mathbf{lemma} \ (\mathbf{in} \ classical\text{-}logic) \ counting\text{-}deduction\text{-}completeness:}
  (\forall \mathcal{P} \in dirac\text{-measures.} (\sum \varphi \leftarrow \Phi. \mathcal{P} \varphi) \leq (\sum \gamma \leftarrow \Gamma. \mathcal{P} \gamma)) = (\sim \Gamma @ \Phi) \# \vdash
(length \Phi) \perp
proof -
  have (\forall \ \mathcal{P} \in \textit{dirac-measures.} \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma))
             = \sim (\sim \Phi) @ \sim \Gamma \#\vdash (length (\sim \Phi)) \bot
   {\bf using} \ dirac-measure-deduction-completeness \ measure-deduction-to-counting-deduction
  also have ... = \sim (\sim \Phi) @ \sim \Gamma \# \vdash (length \Phi) \perp by (induct \Phi, auto)
  also have ... = \sim \Gamma @ \sim (\sim \Phi) \# \vdash (length \Phi) \bot
    by (simp add: measure-left-commute counting-deduction-to-measure-deduction)
  also have ... = \sim \Gamma @ \Phi \# \vdash (length \Phi) \perp
    by (meson measure-cancel
               stronger\mbox{-}theory\mbox{-}to\mbox{-}measure\mbox{-}deduction
```

```
measure-transitive
counting-deduction-to-measure-deduction
stronger-theory-double-negation-left
stronger-theory-double-negation-right)
finally show ?thesis by blast
qed
```

4.4 Collapse Theorem For Probability Logic

We now turn to proving the collapse theorem for probability logic. This states that any inequality holds for all finitely additive probability measures if and only if it holds for all Dirac measures.

```
theorem (in classical-logic) weakly-additive-completeness-collapse: (\forall \ \mathcal{P} \in probabilities. \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)) \\ = (\forall \ \mathcal{P} \in dirac\text{-}measures. \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)) \\ \mathbf{by} \ (simp \ add: \ dirac\text{-}measure\text{-}deduction\text{-}completeness}) \\ measure\text{-}deduction\text{-}completeness})
```

The collapse theorem may be strengthened to include an arbitrary constant term c. This will be key to characterizing MaxSAT completeness in §4.5.

```
lemma (in classical-logic) nat-dirac-probability:
  \forall \mathcal{P} \in dirac\text{-measures}. \ \exists \ n :: \ nat. \ real \ n = (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi)
proof (induct \Phi)
  case Nil
  then show ?case by simp
next
  case (Cons \varphi \Phi)
     \mathbf{fix} \ \mathcal{P} :: \ 'a \Rightarrow \mathit{real}
     assume P \in \mathit{dirac}\text{-}\mathit{measures}
     from Cons this obtain n where real n = (\sum \varphi' \leftarrow \Phi \cdot \mathcal{P} \varphi') by fastforce
     hence \star: (\sum \varphi' \leftarrow \Phi. \mathcal{P} \varphi') = real \ n \ \mathbf{by} \ simp
have \exists \ n. \ real \ n = (\sum \varphi' \leftarrow (\varphi \# \Phi). \ \mathcal{P} \varphi')
proof (cases \ \mathcal{P} \varphi = 1)
        case True
        then show ?thesis
           by (simp add: ⋆, metis of-nat-Suc)
     next
        case False
        hence \mathcal{P} \varphi = 0 using \langle \mathcal{P} \in dirac\text{-measures} \rangle dirac-measures-def by auto
        then show ?thesis using \star
           by simp
     qed
  thus ?case by blast
```

```
lemma (in classical-logic) dirac-ceiling:
   \forall \mathcal{P} \in \mathit{dirac\text{-}measures}.
          \begin{array}{l} ((\sum\varphi\leftarrow\Phi.~\mathcal{P}~\varphi)~+~c\leq(\sum\gamma\leftarrow\Gamma.~\mathcal{P}~\gamma))\\ = ((\sum\varphi\leftarrow\Phi.~\mathcal{P}~\varphi)~+~\lceil c\rceil\leq(\sum\gamma\leftarrow\Gamma.~\mathcal{P}~\gamma)) \end{array}
proof -
      \mathbf{fix} \; \mathcal{P}
      assume P \in dirac-measures
      proof (rule iffI)
          proof (rule ccontr)
             assume \neg (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + \lceil c \rceil \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
             moreover
             obtain x :: int
                and y :: int
                 and z :: int
                where xyz: x = (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi)

y = \lceil c \rceil

z = (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)

using nat\text{-}dirac\text{-}probability
                 by (metis \triangleleft P \in dirac\text{-}measures) \circ of\text{-}int\text{-}of\text{-}nat\text{-}eq)
             ultimately have x + y - 1 \ge z by linarith
             hence (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + c > (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) using xyz by linarith
             thus False using assm by simp
          qed
      next
          by linarith
      qed
   thus ?thesis by blast
qed
lemma (in probability-logic) probability-replicate-verum:
   fixes n :: nat
   shows (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + n = (\sum \varphi \leftarrow (replicate \ n \ \top) \ @ \ \Phi. \ \mathcal{P} \ \varphi)
   using probability-unity
   by (induct \ n, \ auto)
lemma (in classical-logic) dirac-collapse:
    \begin{array}{l} (\forall \ \mathcal{P} \in \textit{probabilities.} \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + c \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)) \\ = (\forall \ \mathcal{P} \in \textit{dirac-measures.} \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + \lceil c \rceil \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)) \end{array} 
proof
   assume \forall \ \mathcal{P} \in probabilities. \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + c \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) hence \forall \ \mathcal{P} \in dirac\text{-}measures. \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + c \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
```

```
using dirac-measures-subset by fastforce
thus \forall \ \mathcal{P} \in dirac-measures. (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + \lceil c \rceil \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
   using dirac-ceiling by blast
assume assm: \forall \ \mathcal{P} \in \textit{dirac-measures}. \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + \lceil c \rceil \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) show \forall \ \mathcal{P} \in \textit{probabilities}. \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + c \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
proof (cases c \ge \theta)
   case True
   from this obtain n :: nat where real n = \lceil c \rceil
      by (metis (full-types)
                      antisym-conv
                      ceiling-le-zero
                      ceiling	ext{-}zero
                      nat-0-iff
                      nat-eq-iff2
                      of-nat-nat)
      fix \mathcal{P}
      assume P \in dirac\text{-}measures
      from this interpret probability-logic (\lambda \varphi. \vdash \varphi) (\rightarrow) \perp \mathcal{P}
         unfolding dirac-measures-def
         by auto
      have (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + \lceil c \rceil \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
         using assm \langle P \in dirac\text{-}measures \rangle by blast
      hence (\sum \varphi \leftarrow (replicate \ n \ \top) \ @ \ \Phi. \ \mathcal{P} \ \varphi) \le (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
         using \langle real \ n = \lceil c \rceil \rangle
                  probability-replicate-verum [where \Phi = \Phi and n=n]
         by metis
   hence \forall \mathcal{P} \in dirac\text{-}measures.
                  (\sum \varphi \leftarrow (replicate \ n \ \top) \ @ \ \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
      by blast
   hence \dagger: \forall \mathcal{P} \in probabilities.
                   (\sum \varphi \leftarrow (replicate \ n \ \top) \ @ \ \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
      using weakly-additive-completeness-collapse by blast
      fix \mathcal{P}
      assume P \in probabilities
      from this interpret probability-logic (\lambda \varphi . \vdash \varphi) (\rightarrow) \perp \mathcal{P}
         unfolding probabilities-def
         by auto
      have (\sum \varphi \leftarrow (replicate \ n \ \top) \ @ \ \Phi. \ \mathcal{P} \ \varphi) \le (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
         using \dagger \triangleleft P \in probabilities \bowtie by blast
      hence (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + c \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
         using \langle real \ n = \lceil c \rceil \rangle
                   probability-replicate-verum [where \Phi = \Phi and n=n]
         by linarith
   then show ?thesis by blast
```

```
next
      {\bf case}\ \mathit{False}
      hence \lceil c \rceil \leq \theta by auto
      from this obtain n :: nat where real n = - \lceil c \rceil
         by (metis neg-0-le-iff-le of-nat-nat)
         fix \mathcal{P}
         assume P \in dirac-measures
         from this interpret probability-logic (\lambda \varphi . \vdash \varphi) (\rightarrow) \perp \mathcal{P}
            unfolding dirac-measures-def
            by auto
         have (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + [c] \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
            using assm \langle P \in dirac\text{-}measures \rangle by blast
         hence (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow (replicate \ n \ \top) \ @ \ \Gamma. \ \mathcal{P} \ \gamma)
            using \langle real \ n = -\lceil c \rceil \rangle
                      probability-replicate-verum [where \Phi = \Gamma and n=n]
            by linarith
     hence \forall \mathcal{P} \in \mathit{dirac\text{-}measures}.
                     (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow (replicate \ n \ \top) \ @ \ \Gamma. \ \mathcal{P} \ \gamma)
         by blast
      hence \ddagger: \forall \mathcal{P} \in probabilities.
                      (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow (replicate \ n \ \top) \ @ \ \Gamma. \ \mathcal{P} \ \gamma)
         using weakly-additive-completeness-collapse by blast
         fix \mathcal{P}
         assume P \in probabilities
         from this interpret probability-logic (\lambda \varphi . \vdash \varphi) (\rightarrow) \perp \mathcal{P}
            unfolding probabilities-def
            by auto
         have (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow (replicate \ n \ \top) \ @ \ \Gamma. \ \mathcal{P} \ \gamma)
            \mathbf{using} \ddagger \langle \mathcal{P} \in \mathit{probabilities} \rangle \mathbf{by} \mathit{blast}
         hence (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + c \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
            using \langle real \ n = - \lceil c \rceil \rangle
                     probability-replicate-verum [where \Phi = \Gamma and n=n]
            by linarith
      then show ?thesis by blast
   qed
qed
lemma (in classical-logic) dirac-strict-floor:
  \forall \mathcal{P} \in dirac\text{-}measures.
         \begin{array}{l} ((\sum\varphi\leftarrow\Phi.\ \mathcal{P}\ \varphi)\ +\ c<(\sum\gamma\leftarrow\Gamma.\ \mathcal{P}\ \gamma))\\ = ((\sum\varphi\leftarrow\Phi.\ \mathcal{P}\ \varphi)\ +\ \lfloor c\rfloor\ +\ 1\leq(\sum\gamma\leftarrow\Gamma.\ \mathcal{P}\ \gamma)) \end{array}
proof
   \mathbf{fix} \ \mathcal{P} :: 'a \Rightarrow real
  let \mathcal{P}' = (\lambda \varphi. \ \ \mathcal{P} \varphi \ \ ) :: 'a \Rightarrow int
  assume P \in dirac-measures
```

```
hence \forall \varphi . \mathcal{P} \varphi = ?\mathcal{P}' \varphi
      unfolding dirac-measures-def
      by (metis (mono-tags, lifting)
                 mem-Collect-eq
                 of-int-0
                 of-int-1
                 of-int-floor-cancel)
   hence A: (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) = (\sum \varphi \leftarrow \Phi. \ \mathcal{P}' \ \varphi)
      by (induct \Phi, auto)
   have B: (\sum \gamma \leftarrow \Gamma. \mathcal{P} \gamma) = (\sum \gamma \leftarrow \Gamma. \mathcal{P}' \gamma)
      using \forall \varphi. \mathcal{P} \varphi = ?\mathcal{P}' \varphi \Rightarrow \mathbf{by} (induct \Gamma, auto)
   unfolding A B by auto
   also have ... = ((\sum \varphi \leftarrow \Phi. ?P' \varphi) + \lfloor c \rfloor + 1 \leq (\sum \gamma \leftarrow \Gamma. ?P' \gamma))
      by linarith
   using A B by linarith
qed
lemma (in classical-logic) strict-dirac-collapse:
      (\forall \ \mathcal{P} \in probabilities. \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + c < (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma))
     = (\forall \ \mathcal{P} \in \textit{dirac-measures.} \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + [c] + 1 \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma))
proof
   assume \forall \ \mathcal{P} \in probabilities. \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + c < (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) hence \forall \ \mathcal{P} \in dirac\text{-}measures. \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + c < (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
       \mathbf{using}\ \mathit{dirac\text{-}measures\text{-}subset}\ \mathbf{by}\ \mathit{blast}
   thus \forall \ \mathcal{P} \in \textit{dirac-measures.} \ ((\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + \lfloor c \rfloor + 1 \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma))
      using dirac-strict-floor by blast
   assume \forall \ \mathcal{P} \in dirac\text{-}measures.\ ((\sum \varphi \leftarrow \Phi.\ \mathcal{P}\ \varphi) + \lfloor c \rfloor + 1 \leq (\sum \gamma \leftarrow \Gamma.\ \mathcal{P}\ \gamma))
   moreover have \lfloor c \rfloor + 1 = \lceil (\lfloor c \rfloor + 1) :: real \rceil
      by simp
   ultimately have ★:
      \forall \ \mathcal{P} \in \textit{probabilities.} \ ((\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \ + \ \lfloor c \rfloor \ + \ 1 \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma))
      using dirac-collapse [of \Phi \mid c| + 1 \Gamma]
   show \forall \mathcal{P} \in probabilities. ((\sum \varphi \leftarrow \Phi. \mathcal{P} \varphi) + c < (\sum \gamma \leftarrow \Gamma. \mathcal{P} \gamma))
   proof
      \mathbf{fix} \,\, \mathcal{P} :: \, 'a \, \Rightarrow \, \mathit{real} \,
      assume P \in probabilities
      hence (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + \lfloor c \rfloor + 1 \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
      \begin{array}{l} \textbf{using} \star \textbf{by} \ auto \\ \textbf{thus} \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \ + \ c < (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \end{array}
          by linarith
   qed
qed
```

4.5 MaxSAT Completeness For Probability Logic

It follows from the collapse theorem that any probability inequality tautology, include those with *constant terms*, may be reduced to a bounded MaxSAT problem. This is not only a key computational complexity result, but suggests a straightforward algorithm for *computing* probability identities.

```
lemma (in classical-logic) relative-maximals-verum-extract:
  assumes \neg \vdash \varphi
 shows (| replicate n \top @ \Phi |_{\varphi}) = n + (| \Phi |_{\varphi})
proof (induct n)
  case \theta
  then show ?case by simp
next
  case (Suc\ n)
    fix Φ
    obtain \Sigma where \Sigma \in \mathcal{M} \ (\top \ \# \ \Phi) \ \varphi
      using assms relative-maximals-existence by fastforce
    hence \top \in set \Sigma
      by (metis (no-types, lifting)
                list.set-intros(1)
                list-deduction-modus-ponens
                list-deduction-weaken
                relative-maximals-complement-equiv
                relative-maximals-def
                verum-tautology
                mem-Collect-eq)
    hence \neg (remove1 \top \Sigma :\vdash \varphi)
      by (meson \ \langle \Sigma \in \mathcal{M} \ (\top \# \Phi) \ \varphi \rangle
                list.set-intros(1)
                axiom-k
                list-deduction-modus-ponens
                list\-deduction\-monotonic
                list-deduction-weaken
                relative-maximals-complement-equiv
                set-remove1-subset)
    moreover
    have mset \Sigma \subseteq \# mset (\top \# \Phi)
      using \langle \Sigma \in \mathcal{M} \ (\top \# \Phi) \ \varphi \rangle relative-maximals-def by blast
    hence mset (remove1 \top \Sigma) \subseteq \# mset \Phi
      using subset-eq-diff-conv by fastforce
    ultimately have (|\Phi|_{\varphi}) \geq length \ (remove1 \top \Sigma)
      by (metis (no-types, lifting)
                relative	ext{-}MaxSAT	ext{-}intro
                list-deduction-weaken
                relative-maximals-def
                relative-maximals-existence
```

```
mem-Collect-eq)
              hence (|\Phi|_{\varphi}) + 1 \ge length \Sigma
                     by (simp\ add: \langle \top \in set\ \Sigma \rangle\ length-remove1)
              moreover have (|\Phi|_{\omega}) < length \Sigma
              proof (rule ccontr)
                     assume \neg (|\Phi|_{\varphi}) < length \Sigma
                     hence (|\Phi|_{\varphi}) \geq length \Sigma by linarith
                     from this obtain \Delta where \Delta \in \mathcal{M} \Phi \varphi length \Delta \geq length \Sigma
                           using assms relative-MaxSAT-intro relative-maximals-existence by fastforce
                     hence \neg (\top \# \Delta) :\vdash \varphi
                             using list-deduction-modus-ponens
                                                 list-deduction-theorem
                                                 list-deduction-weaken
                                                 relative-maximals-def
                                                 verum-tautology
                            by blast
                     \mathbf{moreover}\ \mathbf{have}\ \mathit{mset}\ (\top\ \#\ \Delta)\ \subseteq \#\ \mathit{mset}\ (\top\ \#\ \Phi)
                             using \langle \Delta \in \mathcal{M} | \Phi | \varphi \rangle relative-maximals-def by auto
                     ultimately have length \Sigma \geq length \ (\top \# \Delta)
                             using \langle \Sigma \in \mathcal{M} \ (\top \# \Phi) \ \varphi \rangle relative-maximals-def by blast
                     hence length \Delta \geq length \ (\top \# \Delta)
                             using \langle length \ \Sigma \leq length \ \Delta \rangle \ dual-order.trans by blast
                     thus False by simp
              qed
              ultimately have (| \top \# \Phi |_{\varphi}) = (1 + | \Phi |_{\varphi})
                 by (metis Suc-eq-plus 1 Suc-le-eq \langle \Sigma \in \mathcal{M} \ (\top \# \Phi) \ \varphi \rangle add.commute le-antisym
relative-MaxSAT-intro)
      thus ?case using Suc by simp
qed
lemma (in classical-logic) complement-MaxSAT-completeness:
       (\forall \ \mathcal{P} \in \textit{dirac-measures.} \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)) = (\textit{length} \ \Phi \leq \| \ \sim \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)) = (\textit{length} \ \Phi \leq \| \ \sim \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P
\Gamma @ \Phi \parallel_{\perp}
proof (cases \vdash \bot)
       case True
      hence \mathcal{M} (\sim \Gamma @ \Phi) \bot = \{\}
              using relative-maximals-existence by auto
        hence length (\sim \Gamma @ \Phi) = \| \sim \Gamma @ \Phi \|_{\perp}
         unfolding complement-relative-MaxSAT-def relative-MaxSAT-def by presburger
        then show ?thesis
         {\bf using} \ True \ counting-deduction-completeness \ counting-deduction-tautology-weaken
              by auto
\mathbf{next}
        case False
        then show ?thesis
         using counting-deduction-completeness relative-maximals-counting-deduction-lower-bound
              by blast
qed
```

```
lemma (in classical-logic) relative-maximals-neg-verum-elim:
  (\mid replicate \ n \ (\sim \top) \ @ \ \Phi \mid_{\varphi}) = (\mid \Phi \mid_{\varphi})
proof (induct n)
  case \theta
  then show ?case by simp
\mathbf{next}
  case (Suc \ n)
  {
    fix \Phi
    have (\mid (\sim \top) \# \Phi \mid_{\varphi}) = (\mid \Phi \mid_{\varphi})
    proof (cases \vdash \varphi)
      case True
      then show ?thesis
        unfolding relative-MaxSAT-def relative-maximals-def
        by (simp add: list-deduction-weaken)
    next
      case False
      from this obtain \Sigma where \Sigma \in \mathcal{M} ((\sim \top) # \Phi) \varphi
         using relative-maximals-existence by fastforce
      have [(\sim \top)] :\vdash \varphi
        by (metis modus-ponens
                    Peirces-law
                    pseudo-scotus
                    list-deduction-theorem
                    list-deduction-weaken
                    negation-def
                   verum-def)
      hence \sim \top \notin set \Sigma
        by (meson \ \langle \Sigma \in \mathcal{M} \ (\sim \top \# \Phi) \ \varphi \rangle
                    list.set-intros(1)
                    list-deduction-base-theory
                    list-deduction-theorem
                   list\text{-}deduction\text{-}weaken
                   relative-maximals-complement-equiv)
      hence remove1 (\sim \top) \Sigma = \Sigma
        by (simp add: remove1-idem)
      moreover have mset \Sigma \subseteq \# mset ((\sim \top) \# \Phi)
         using \langle \Sigma \in \mathcal{M} \ (\sim \top \# \Phi) \ \varphi \rangle relative-maximals-def by blast
      ultimately have mset \Sigma \subseteq \# mset \Phi
      by (metis\ add\text{-}mset\text{-}add\text{-}single\ mset.simps(2)\ mset\text{-}remove1\ subset\text{-}eq\text{-}diff\text{-}conv)
      moreover have \neg (\Sigma : \vdash \varphi)
        using \langle \Sigma \in \mathcal{M} \ (\sim \top \ \# \ \Phi) \ \varphi \rangle relative-maximals-def by blast
      ultimately have (|\Phi|_{\varphi}) \geq length \Sigma
        by (metis (no-types, lifting)
                   relative	ext{-}MaxSAT	ext{-}intro
                    list-deduction-weaken
                    relative-maximals-def
                    relative-maximals-existence
```

```
mem-Collect-eq)
                         hence (|\Phi|_{\varphi}) \geq (|(\sim \top) \# \Phi|_{\varphi})
                                 using \langle \Sigma \in \mathcal{M} \ (\sim \top \ \# \ \Phi) \ \varphi \rangle relative-MaxSAT-intro by auto
                         moreover
                         have (|\Phi|_{\varphi}) \leq (|(\sim \top) \# \Phi|_{\varphi})
                         proof -
                                 obtain \Delta where \Delta \in \mathcal{M} \Phi \varphi
                                          using False relative-maximals-existence by blast
                                 hence
                                          \neg \Delta :\vdash \varphi
                                          mset \ \Delta \subseteq \# \ mset \ ((\sim \top) \ \# \ \Phi)
                                          unfolding relative-maximals-def
                                          by (simp,
                                                          metis (mono-tags, lifting)
                                                                                   Diff-eq-empty-iff-mset
                                                                                   list-subtract.simps(2)
                                                                                   list-subtract-mset-homomorphism
                                                                                   relative-maximals-def
                                                                                   mem-Collect-eq
                                                                                   mset-zero-iff
                                                                                   remove1.simps(1)
                                hence length \Delta \leq length \Sigma
                                          using \langle \Sigma \in \mathcal{M} \ (\sim \top \# \Phi) \ \varphi \rangle relative-maximals-def by blast
                                 thus ?thesis
                                             using \langle \Delta \in \mathcal{M} \ \Phi \ \varphi \rangle \ \langle \Sigma \in \mathcal{M} \ (\sim \top \ \# \ \Phi) \ \varphi \rangle relative-MaxSAT-intro by
auto
                         ultimately show ?thesis
                                 using le-antisym by blast
                qed
        thus ?case using Suc by simp
qed
\mathbf{lemma} \ (\mathbf{in} \ classical\text{-}logic) \ dirac\text{-}MaxSAT\text{-}partial\text{-}completeness:}
       (\forall \ \mathcal{P} \in dirac\text{-measures.} \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)) = (MaxSAT \ (\sim \Gamma \ @ \ P))
\Phi ) \leq length \Gamma)
proof -
         {
                \mathbf{fix} \ \mathcal{P} :: 'a \Rightarrow real
                obtain \varrho :: 'a list \Rightarrow 'a list \Rightarrow 'a \Rightarrow real where
                                      (\forall \Phi \ \Gamma. \ \varrho \ \Phi \ \Gamma \in \mathit{dirac-measures} \ \land \ \neg \ (\sum \varphi \leftarrow \Phi. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ (\varrho \ \Phi \ \Gamma) \ \varphi) \leq (\sum \gamma \leftarrow \Gamma
                                                                       \lor length \Phi \le \| \sim \Gamma @ \Phi \|_{\perp})
                                 \wedge \ (\forall \ \Phi \ \Gamma. \ \mathit{length} \ \Phi \leq (\parallel \ \sim \ \Gamma \ @ \ \Phi \parallel_{\perp})
                                                                                   \longrightarrow (\forall \mathcal{P} \in \textit{dirac-measures.} \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)))
                using complement-MaxSAT-completeness by moura
         moreover have \forall \Gamma \varphi \ n. \ length \Gamma - n \leq (||\Gamma||_{\varphi}) \lor (|\Gamma|_{\varphi}) - n \neq 0
                by (metis add-diff-cancel-right'
```

```
cancel-ab\text{-}semigroup\text{-}add\text{-}class.diff\text{-}right\text{-}commute
                  diff-is-0-eq length-MaxSAT-decomposition)
   moreover have \forall \Gamma \Phi n. length (\Gamma @ \Phi) - n \leq length \Gamma \vee length \Phi - n \neq 0
     by force
   ultimately have
             (\mathcal{P} \in \mathit{dirac\text{-}measures} \longrightarrow (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma))
           \wedge (\mid \sim \Gamma @ \Phi \mid_{\perp}) \leq length (\sim \Gamma)
           \neg (| \sim \Gamma @ \Phi |_{\perp}) \leq length \ (\sim \Gamma)
\land (\exists \mathcal{P}. \ \mathcal{P} \in dirac\text{-measures} \land \neg (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma))
    \mathbf{by} \ (\mathit{metis} \ (\mathit{no-types}) \ \mathit{add-diff-cancel-left'}
                                add-diff-cancel-right
                                diff-is-0-eq length-append
                                length-MaxSAT-decomposition)
  then show ?thesis by auto
qed
lemma (in consistent-classical-logic) dirac-inequality-elim:
  fixes c :: real
  assumes \forall \ \mathcal{P} \in \textit{dirac-measures}. \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + c \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
     shows (MaxSAT (\sim \Gamma @ \Phi) + c \leq length \Gamma)
proof (cases \ c \geq \theta)
   case True
   from this obtain n :: nat where real n = \lceil c \rceil
     by (metis ceiling-mono ceiling-zero of-nat-nat)
   {
     fix \mathcal{P}
     assume \mathcal{P} \in dirac\text{-}measures
     from this interpret probability-logic (\lambda \varphi . \vdash \varphi) (\rightarrow) \perp \mathcal{P}
        unfolding dirac-measures-def
        by auto
     have (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + n \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
        by (metis assms \forall P \in dirac\text{-measures} \forall real \ n = \lceil c \rceil \forall dirac\text{-ceiling})
     hence (\sum \varphi \leftarrow (replicate \ n \ \top) \ @ \ \Phi. \ \mathcal{P} \ \varphi) \le (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
        using probability-replicate-verum [where \Phi = \Phi and n=n]
        by metis
  hence (| \sim \Gamma @ replicate \ n \top @ \Phi |_{\perp}) \leq length \ \Gamma
     using dirac-MaxSAT-partial-completeness by blast
  moreover have mset (\sim \Gamma @ replicate \ n \top @ \Phi) = mset (replicate n \top @ \sim \Gamma
@ Φ)
     by simp
   ultimately have (| replicate n \top @ \sim \Gamma @ \Phi |_{\perp}) \leq length \Gamma
     unfolding relative-MaxSAT-def relative-maximals-def
     by metis
   hence (| \sim \Gamma @ \Phi |_{\perp}) + \lceil c \rceil \leq length \Gamma
     using \langle real \ n = \lceil c \rceil \rangle consistency relative-maximals-verum-extract
     by auto
   then show ?thesis by linarith
```

```
next
  {f case}\ {\it False}
  hence \lceil c \rceil \leq \theta by auto
  from this obtain n :: nat where real n = - \lceil c \rceil
     by (metis neg-0-le-iff-le of-nat-nat)
     fix \mathcal{P}
     assume P \in dirac-measures
     from this interpret probability-logic (\lambda \varphi . \vdash \varphi) (\rightarrow) \perp \mathcal{P}
       unfolding dirac-measures-def
       by auto
     have (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + \lceil c \rceil \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
       using assms \langle P \in \mathit{dirac\text{-}measures} \rangle \ \mathit{dirac\text{-}ceiling}
       by blast
    hence (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma) + n
       using \langle real | n = -\lceil c \rceil \rangle by linarith
     hence (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow (replicate \ n \ \top) \ @ \ \Gamma. \ \mathcal{P} \ \gamma)
       using probability-replicate-verum [where \Phi = \Gamma and n=n]
       by metis
  hence (| \sim (replicate \ n \top @ \Gamma) @ \Phi |_{\perp}) \leq length \ (replicate \ n \top @ \Gamma)
     using dirac-MaxSAT-partial-completeness [where \Phi=\Phi and \Gamma=replicate n \top
@ T]
     by metis
  hence (| \sim \Gamma @ \Phi |_{\perp}) \leq n + length \Gamma
     by (simp add: relative-maximals-neg-verum-elim)
  then show ?thesis using \langle real \ n = - \lceil c \rceil \rangle by linarith
qed
lemma (in classical-logic) dirac-inequality-intro:
  fixes c :: real
  assumes MaxSAT (\sim \Gamma @ \Phi) + c \leq length \Gamma
  shows \forall \ \mathcal{P} \in dirac\text{-measures.} \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + c \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
proof (cases \vdash \bot)
  \mathbf{assume} \vdash \bot
     fix \mathcal{P}
     assume P \in dirac-measures
     from this interpret probability-logic (\lambda \varphi . \vdash \varphi) (\rightarrow) \perp \mathcal{P}
       unfolding dirac-measures-def
       by auto
     have False
       using \langle \vdash \bot \rangle consistency by blast
  then show ?thesis by blast
\mathbf{next}
  assume \neg \vdash \bot
  then show ?thesis
  proof (cases c \geq 0)
```

```
assume c \geq \theta
     from this obtain n :: nat where real n = \lceil c \rceil
        by (metis ceiling-mono ceiling-zero of-nat-nat)
     hence n + (| \sim \Gamma @ \Phi |_{\perp}) \leq length \Gamma
        using assms by linarith
     hence (| replicate n \top @ \sim \Gamma @ \Phi |_{\perp}) \leq length \Gamma
        by (simp add: \langle \neg \vdash \bot \rangle relative-maximals-verum-extract)
      moreover have mset (replicate n \perp @ \sim \Gamma @ \Phi) = mset (\sim \Gamma @ replicate n
\top @ \Phi)
        by simp
     ultimately have (| \sim \Gamma @ replicate \ n \top @ \Phi |_{\perp}) \leq length \ \Gamma
        unfolding relative-MaxSAT-def relative-maximals-def
        by metis
     hence \forall \ \mathcal{P} \in dirac\text{-measures}. \ (\sum \varphi \leftarrow (replicate \ n \ \top) \ @ \ \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P}
        using dirac-MaxSAT-partial-completeness by blast
        fix \mathcal{P}
        \mathbf{assume} \,\, \mathcal{P} \in \mathit{dirac\text{-}measures}
        from this interpret probability-logic (\lambda \varphi . \vdash \varphi) (\rightarrow) \perp \mathcal{P}
           unfolding dirac-measures-def
           by auto
        have (\sum \varphi \leftarrow (replicate \ n \ \top) \ @ \ \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
           using \langle \mathcal{P} \in \mathit{dirac\text{-}measures} \rangle
                   \forall \forall P \in dirac\text{-measures.} (\sum \varphi \leftarrow (replicate \ n \ \top) \ @ \Phi. \ P \ \varphi) \leq (\sum \gamma \leftarrow \Gamma.
\mathcal{P}(\gamma)
        hence (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + n \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
          \mathbf{by}\ (simp\ add:\ probability\text{-}replicate\text{-}verum)
        hence (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + c \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
           using \langle real \ n = real \text{-} of \text{-} int \ \lceil c \rceil \rangle by linarith
     then show ?thesis by blast
   next
     assume \neg (c \ge \theta)
     hence \lceil c \rceil \leq \theta by auto
     from this obtain n :: nat where real n = - \lceil c \rceil
        by (metis neg-0-le-iff-le of-nat-nat)
     hence (| \sim \Gamma @ \Phi |_{\perp}) \leq n + length \Gamma
        using assms by linarith
     hence (| \sim (replicate \ n \top @ \Gamma) @ \Phi |_{\perp}) \leq length \ (replicate \ n \top @ \Gamma)
        by (simp add: relative-maximals-neg-verum-elim)
     hence \forall \mathcal{P} \in dirac\text{-}measures.
                   (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow (replicate \ n \ \top) \ @ \ \Gamma. \ \mathcal{P} \ \gamma)
        \mathbf{using}\ \mathit{dirac}\text{-}\mathit{MaxSAT}\text{-}\mathit{partial}\text{-}\mathit{completeness}\ \mathbf{by}\ \mathit{blast}
      {
        fix \mathcal{P}
        assume P \in dirac\text{-}measures
        from this interpret probability-logic (\lambda \varphi . \vdash \varphi) (\rightarrow) \perp \mathcal{P}
```

```
unfolding dirac-measures-def
         by auto
       have (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow (replicate \ n \ \top) \ @ \ \Gamma. \ \mathcal{P} \ \gamma)
         using \langle \mathcal{P} \in \mathit{dirac\text{-}measures} \rangle
                 \forall \forall \mathcal{P} \in dirac\text{-}measures.
                       (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \leq (\sum \gamma \leftarrow (replicate \ n \ \top) \ @ \ \Gamma. \ \mathcal{P} \ \gamma) \rangle
         bv blast
       hence (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) + \lceil c \rceil \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma)
         using \langle real \ n = - \lceil c \rceil \rangle probability-replicate-verum by auto
       hence (\sum \varphi \leftarrow \Phi. \mathcal{P} \varphi) + c \leq (\sum \gamma \leftarrow \Gamma. \mathcal{P} \gamma)
         by linarith
    then show ?thesis by blast
  qed
qed
lemma (in consistent-classical-logic) dirac-inequality-equiv:
   (\forall \ \delta \in \textit{dirac-measures}. \ (\sum \varphi \leftarrow \Phi. \ \delta \ \varphi) \ + \ c \leq (\sum \gamma \leftarrow \Gamma. \ \delta \ \gamma))
       = (MaxSAT (\sim \Gamma @ \Phi) + (c :: real) \leq length \Gamma)
  using dirac-inequality-elim dirac-inequality-intro consistency by auto
theorem (in consistent-classical-logic) probability-inequality-equiv:
   (\forall \ \mathcal{P} \in \textit{probabilities}. \ (\sum \varphi \leftarrow \Phi. \ \mathcal{P} \ \varphi) \ + \ c \leq (\sum \gamma \leftarrow \Gamma. \ \mathcal{P} \ \gamma))
       = (MaxSAT (\sim \Gamma @ \Phi) + (c :: real) \leq length \Gamma)
  unfolding dirac-collapse
  using dirac-inequality-equiv dirac-ceiling by blast
no-notation first-component (21)
no-notation second-component (3)
no-notation merge-witness (\mathfrak{J})
no-notation X-witness (\mathfrak{X})
no-notation X-component (\mathfrak{X}_{\bullet})
no-notation Y-witness (\mathfrak{Y})
no-notation Y-component (\mathfrak{Y}_{\bullet})
no-notation submerge-witness (\mathfrak{E})
no-notation recover-witness-A (\mathfrak{P})
no-notation recover-complement-A (\mathfrak{P}^C)
no-notation recover-witness-B (\mathfrak{Q})
no-notation relative-maximals (\mathcal{M})
no-notation relative-MaxSAT (| - | [45])
no-notation complement-relative-MaxSAT (\parallel - \parallel- [45])
no-notation MaxSAT-optimal-pre-witness (\mathfrak{V})
no-notation MaxSAT-optimal-witness (\mathfrak{W})
no-notation disjunction-MaxSAT-optimal-witness (\mathfrak{W}_{\perp})
no-notation implication-MaxSAT-optimal-witness (\mathfrak{W}_{\rightarrow})
no-notation MaxSAT-witness (\mathfrak{U})
notation FuncSet.funcset (infixr \rightarrow 60)
```

 \mathbf{end}

Bibliography

[1] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems. *Theoretical Computer Science*, 1(3):237–267, Feb. 1976.