
A Combinator Library for Prefix-Free Codes

Emin Karayel

March 24, 2023

Abstract
This entry contains a set of binary encodings for primitive data

types, such as natural numbers, integers, floating-point numbers as
well as combinators to construct encodings for products, lists, sets or
functions of/between such types.

For natural numbers and integers, the entry contains various en-
codings, such as Elias-Gamma-Codes and exponential Golomb Codes,
which are efficient variable-length codes in use by current compression
formats.

A use-case for this library is measuring the persisted size of a com-
plex data structure without having to hand-craft a dedicated encoding
for it, independent of Isabelle’s internal representation.

1 Introduction
theory Prefix-Free-Code-Combinators

imports
HOL−Library.Extended-Real
HOL−Library.Float
HOL−Library.FuncSet
HOL−Library.List-Lexorder
HOL−Library.Log-Nat
HOL−Library.Sublist

begin

The encoders are represented as partial prefix-free functions.
The advantage of prefix free codes is that they can be easily
combined by concatenation. The approach of using prefix free
codes (on the byte-level) for the representation of complex data
structures is common in many industry encoding libraries (cf.
[2]).
The reason for representing encoders using partial functions,
stems from some use-cases where the objects to be encoded may
be in a much smaller sets, as their type may suggest. For exam-
ple a natural number may be known to have a given range, or a
function may be encodable because it has a finite domain.

1

Note: Prefix-free codes can also be automatically derived using
Huffmans’ algorithm, which was formalized by Blanchette [1].
This is especially useful if it is possible to transmit a dictionary
before the data. On the other hand these standard codes are
useful, when the above is impractical and/or the distribution of
the input is unknown or expected to be close to the one’s implied
by standard codes.
The following section contains general definitions and results,
followed by Section 3 to 10 where encoders for primitive types
and combinators are defined. Each construct is accompanied
by lemmas verifying that they form prefix free codes as well as
bounds on the bit count to encode the data. Section 11 concludes
with a few examples.

2 Encodings
fun opt-prefix where

opt-prefix (Some x) (Some y) = prefix x y |
opt-prefix - - = False

definition opt-comp x y = (opt-prefix x y ∨ opt-prefix y x)

fun opt-append :: bool list option ⇒ bool list option ⇒ bool list option
where

opt-append (Some x) (Some y) = Some (x@y) |
opt-append - - = None

lemma opt-comp-sym: opt-comp x y = opt-comp y x
by (simp add:opt-comp-def , blast)

lemma opt-comp-append:
assumes opt-comp (opt-append x y) z
shows opt-comp x z

proof −
obtain x ′ y ′ z ′ where a: x = Some x ′ y = Some y ′ z = Some z ′

using assms
by (cases x, case-tac[!] y, case-tac[!] z, auto simp: opt-comp-def)

have prefix (x ′@y ′) z ′ ∨ prefix z ′ (x ′@y ′)
using a assms by (simp add:opt-comp-def)

hence prefix x ′ z ′ ∨ prefix z ′ x ′

using prefix-same-cases append-prefixD by blast
thus ?thesis

using a by (simp add:opt-comp-def)
qed

lemma opt-comp-append-2 :
assumes opt-comp x (opt-append y z)

2

shows opt-comp x y
using opt-comp-append opt-comp-sym assms by blast

lemma opt-comp-append-3 :
assumes opt-comp (opt-append x y) (opt-append x z)
shows opt-comp y z
using assms
by (cases x, case-tac[!] y, case-tac[!] z, auto simp: opt-comp-def)

type-synonym ′a encoding = ′a ⇀ bool list

definition is-encoding :: ′a encoding ⇒ bool
where is-encoding f = (∀ x y. opt-prefix (f x) (f y) −→ x = y)

An encoding function is represented as partial functions into lists
of booleans, where each list element represents a bit. Such a
function is defined to be an encoding, if it is prefix-free on its
domain. This is similar to the formalization by Hibon and Paul-
son [4] except for the use of partial functions for the practical
reasons described in Section 1.
lemma is-encodingI :

assumes
∧

x x ′ y y ′. e x = Some x ′ =⇒ e y = Some y ′ =⇒
prefix x ′ y ′ =⇒ x = y

shows is-encoding e
proof −

have opt-prefix (e x) (e y) =⇒ x = y for x y
using assms by (cases e x, case-tac[!] e y, auto)

thus ?thesis by (simp add:is-encoding-def)
qed

lemma is-encodingI-2 :
assumes

∧
x y . opt-comp (e x) (e y) =⇒ x = y

shows is-encoding e
using assms by (simp add:opt-comp-def is-encoding-def)

lemma encoding-triv: is-encoding Map.empty
by (rule is-encodingI-2 , simp add:opt-comp-def)

lemma is-encodingD:
assumes is-encoding e
assumes opt-comp (e x) (e y)
shows x = y
using assms by (auto simp add:opt-comp-def is-encoding-def)

lemma encoding-imp-inj:
assumes is-encoding f
shows inj-on f (dom f)
using assms
by (intro inj-onI , simp add:is-encoding-def , force)

3

fun bit-count :: bool list option ⇒ ereal where
bit-count None = ∞ |
bit-count (Some x) = ereal (length x)

lemma bit-count-finite-imp-dom:
bit-count (f x) < ∞ =⇒ x ∈ dom f
by (cases f x, auto)

lemma bit-count-append:
bit-count (opt-append x y) = bit-count x + bit-count y
by (cases x, case-tac[!] y, simp-all)

3 (Dependent) Products
definition encode-dependent-prod ::

′a encoding ⇒ (′a ⇒ ′b encoding) ⇒ (′a × ′b) encoding
(infixr one 65)
where

encode-dependent-prod e f x =
opt-append (e (fst x)) (f (fst x) (snd x))

lemma dependent-encoding:
assumes is-encoding e1
assumes

∧
x. x ∈ dom e1 =⇒ is-encoding (e2 x)

shows is-encoding (e1 one e2)
proof (rule is-encodingI-2)

fix x y
assume a:opt-comp ((e1 one e2) x) ((e1 one e2) y)
have d:opt-comp (e1 (fst x)) (e1 (fst y))

using a unfolding encode-dependent-prod-def
by (metis opt-comp-append opt-comp-append-2)

hence b:fst x = fst y
using is-encodingD[OF assms(1)] by simp

hence opt-comp (e2 (fst x) (snd x)) (e2 (fst x) (snd y))
using a unfolding encode-dependent-prod-def by (metis opt-comp-append-3)

moreover have fst x ∈ dom e1 using d b
by (cases e1 (fst x), simp-all add:opt-comp-def dom-def)

ultimately have c:snd x = snd y
using is-encodingD[OF assms(2)] by simp

show x = y
using b c by (simp add: prod-eq-iff)

qed

lemma dependent-bit-count:
bit-count ((e1 one e2) (x1,x2)) =

bit-count (e1 x1) + bit-count (e2 x1 x2)
by (simp add: encode-dependent-prod-def bit-count-append)

4

lemma dependent-bit-count-2 :
bit-count ((e1 one e2) x) =

bit-count (e1 (fst x)) + bit-count (e2 (fst x) (snd x))
by (simp add: encode-dependent-prod-def bit-count-append)

This abbreviation is for non-dependent products.
abbreviation encode-prod ::

′a encoding ⇒ ′b encoding ⇒ (′a × ′b) encoding
(infixr ×e 65)
where

encode-prod e1 e2 ≡ e1 one (λ-. e2)

4 Composition
lemma encoding-compose:

assumes is-encoding f
assumes inj-on g {x. p x}
shows is-encoding (λx. if p x then f (g x) else None)
using assms by (simp add:comp-def is-encoding-def inj-onD)

lemma encoding-compose-2 :
assumes is-encoding f
assumes inj g
shows is-encoding (λx. f (g x))
using assms by (simp add:comp-def is-encoding-def inj-onD)

5 Natural Numbers
fun encode-bounded-nat :: nat ⇒ nat ⇒ bool list where

encode-bounded-nat (Suc l) n =
(let r = n ≥ (2^l) in r#encode-bounded-nat l (n−of-bool r∗2^l)) |

encode-bounded-nat 0 - = []

lemma encode-bounded-nat-prefix-free:
fixes u v l :: nat
assumes u < 2^l
assumes v < 2^l
assumes prefix (encode-bounded-nat l u) (encode-bounded-nat l v)
shows u = v
using assms

proof (induction l arbitrary: u v)
case 0
then show ?case by simp

next
case (Suc l)
have prefix (encode-bounded-nat l (u − of-bool (u ≥ 2^l)∗2^l))
(encode-bounded-nat l (v − of-bool (v ≥ 2^l)∗2^l))
and a:(u ≥ 2^l) = (v ≥ 2^l)

5

using Suc(4) by (simp-all add: Let-def split: split-of-bool-asm)
moreover have u − of-bool (u ≥ 2^l)∗2^l < 2^l

using Suc(2) by (cases u < 2^l, auto simp add:of-bool-def)
moreover have v − of-bool (v ≥ 2^l)∗2^l < 2^l

using Suc(3) by (cases v < 2^l, auto simp add:of-bool-def)
ultimately have

u − of-bool (u ≥ 2^l)∗2^l = v − of-bool (v ≥ 2^l)∗2^l
by (intro Suc(1), simp-all)

thus u = v using a by (simp split: split-of-bool-asm)
qed

definition Nbe :: nat ⇒ nat encoding
where Nbe l n = (

if n < l
then Some (encode-bounded-nat (floorlog 2 (l−1)) n)
else None)

Nbe l is encoding for natural numbers strictly smaller than l
using a fixed length encoding.
lemma bounded-nat-bit-count:

bit-count (Nbe l y) = (if y < l then floorlog 2 (l−1) else ∞)
proof −

have a:length (encode-bounded-nat h m) = h for h m
by (induction h arbitrary: m, simp, simp add:Let-def)

show ?thesis
using a by (simp add:Nbe-def)

qed

lemma bounded-nat-bit-count-2 :
assumes y < l
shows bit-count (Nbe l y) = floorlog 2 (l−1)
using assms bounded-nat-bit-count by simp

lemma dom (Nbe l) = {..<l}
by (simp add:Nbe-def dom-def lessThan-def)

lemma bounded-nat-encoding: is-encoding (Nbe l)
proof −

have x < l =⇒ x < 2 ^ floorlog 2 (l−1) for x :: nat
by (intro floorlog-leD floorlog-mono, auto)

thus ?thesis
using encode-bounded-nat-prefix-free
by (intro is-encodingI , simp add:Nbe-def split:if-splits, blast)

qed

fun encode-unary-nat :: nat ⇒ bool list where
encode-unary-nat (Suc l) = False#(encode-unary-nat l) |
encode-unary-nat 0 = [True]

6

lemma encode-unary-nat-prefix-free:
fixes u v :: nat
assumes prefix (encode-unary-nat u) (encode-unary-nat v)
shows u = v
using assms

proof (induction u arbitrary: v)
case 0
then show ?case by (cases v, simp-all)

next
case (Suc u)
then show ?case by (cases v, simp-all)

qed

definition Nue :: nat encoding
where Nue n = Some (encode-unary-nat n)

Nue is encoding for natural numbers using unary encoding. It is
inefficient except for special cases, where the probability of large
numbers decreases exponentially with its magnitude.
lemma unary-nat-bit-count:

bit-count (Nue n) = Suc n
unfolding Nue-def by (induction n, auto)

lemma unary-encoding: is-encoding Nue

using encode-unary-nat-prefix-free
by (intro is-encodingI , simp add:Nue-def)

Encoding for positive numbers using Elias-Gamma code.
definition Nge :: nat encoding where

Nge n =
(if n > 0

then (Nue one (λr . Nbe (2^r)))
(let r = floorlog 2 n − 1 in (r , n − 2^r))

else None)

Nge is an encoding for positive numbers using Elias-Gamma en-
coding[3].
lemma elias-gamma-bit-count:

bit-count (Nge n) = (if n > 0 then 2 ∗ blog 2 nc + 1 else (∞::ereal))
proof (cases n > 0)

case True
define r where r = floorlog 2 n − Suc 0
have floorlog 2 n 6= 0

using True
by (simp add:floorlog-eq-zero-iff)

hence a:floorlog 2 n > 0 by simp

have n < 2^(floorlog 2 n)

7

using True floorlog-bounds by simp
also have ... = 2^(r+1)

using a by (simp add:r-def)
finally have n < 2^(r+1) by simp
hence b:n − 2^r < 2^r by simp
have floorlog 2 (2 ^ r − Suc 0) ≤ r

by (rule floorlog-leI , auto)
moreover have r ≤ floorlog 2 (2 ^ r − Suc 0)

by (cases r , simp, auto intro: floorlog-geI)
ultimately have c:floorlog 2 (2 ^ r − Suc 0) = r

using order-antisym by blast

have bit-count (Nge n) = bit-count (Nue r) +
bit-count (Nbe (2 ^ r) (n − 2 ^ r))

using True by (simp add:Nge-def r-def [symmetric] dependent-bit-count)
also have ... = ereal (r + 1) + ereal (r)

using b c
by (simp add: unary-nat-bit-count bounded-nat-bit-count)

also have ... = 2 ∗ r + 1 by simp
also have ... = 2 ∗ blog 2 nc + 1

using True by (simp add:floorlog-def r-def)
finally show ?thesis using True by simp

next
case False
then show ?thesis by (simp add:Nge-def)

qed

lemma elias-gamma-encoding: is-encoding Nge

proof −
have a: inj-on (λx. let r = floorlog 2 x − 1 in (r , x − 2 ^ r))
{n. 0 < n}

proof (rule inj-onI)
fix x y :: nat
assume x ∈ {n. 0 < n}
hence x-pos: 0 < x by simp
assume y ∈ {n. 0 < n}
hence y-pos: 0 < y by simp
define r where r = floorlog 2 x − Suc 0
assume b:(let r = floorlog 2 x − 1 in (r , x − 2 ^ r)) =
(let r = floorlog 2 y − 1 in (r , y − 2 ^ r))

hence c:r = floorlog 2 y − Suc 0
by (simp-all add:Let-def r-def)

have x − 2^r = y − 2^r using b
by (simp add:Let-def r-def [symmetric] c[symmetric] prod-eq-iff)

moreover have x ≥ 2^r
using r-def x-pos floorlog-bounds by simp

moreover have y ≥ 2^r
using c floorlog-bounds y-pos by simp

ultimately show x = y using eq-diff-iff by blast

8

qed

have is-encoding (λn. Nge n)
unfolding Nge-def using a
by (intro encoding-compose[where f=Nue one (λr . Nbe (2^r))]

dependent-encoding unary-encoding bounded-nat-encoding) auto
thus ?thesis by simp

qed

definition N e :: nat encoding where N e x = Nge (x+1)

N e is an encoding for all natural numbers using exponential
Golomb encoding [6]. Exponential Golomb codes are also used
in video compression applications [5].
lemma exp-golomb-encoding: is-encoding N e

proof −
have is-encoding (λn. N e n)

unfolding N e-def
by (intro encoding-compose-2 [where g=(λn. n + 1)] elias-gamma-encoding,

auto)
thus ?thesis by simp

qed

lemma exp-golomb-bit-count-exact:
bit-count (N e n) = 2 ∗ blog 2 (n+1)c + 1
by (simp add:N e-def elias-gamma-bit-count)

lemma exp-golomb-bit-count:
bit-count (N e n) ≤ (2 ∗ log 2 (real n+1) + 1)
by (simp add:exp-golomb-bit-count-exact add.commute)

lemma exp-golomb-bit-count-est:
assumes n ≤ m
shows bit-count (N e n) ≤ (2 ∗ log 2 (real m+1) + 1)

proof −
have bit-count (N e n) ≤ (2 ∗ log 2 (real n+1) + 1)

using exp-golomb-bit-count by simp
also have ... ≤ (2 ∗ log 2 (real m+1) + 1)

using assms by simp
finally show ?thesis by simp

qed

6 Integers
definition I e :: int encoding where

I e x = N e (nat (if x ≤0 then (−2 ∗ x) else (2∗x−1)))

I e is an encoding for integers using exponential Golomb codes
by embedding the integers into the natural numbers, specifically

9

the positive numbers are embedded into the odd-numbers and
the negative numbers are embedded into the even numbers. The
embedding has the benefit, that the bit count for an integer only
depends on its absolute value.
lemma int-encoding: is-encoding I e

proof −
have inj (λx. nat (if x ≤ 0 then − 2 ∗ x else 2 ∗ x − 1))

by (rule inj-onI , auto simp add:eq-nat-nat-iff , presburger)
thus ?thesis

unfolding I e-def
by (intro exp-golomb-encoding encoding-compose-2 [where f=N e])

auto
qed

lemma int-bit-count: bit-count (I e n) = 2 ∗ blog 2 (2∗|n|+1)c +1
proof −

have a:m > 0 =⇒
blog (real 2) (real (2 ∗ m))c = blog (real 2) (real (2 ∗ m + 1))c
for m :: nat by (rule floor-log-eq-if , auto)

have n > 0 =⇒
blog 2 (2 ∗ real-of-int n)c = blog 2 (2 ∗ real-of-int n + 1)c
using a[where m=nat n] by (simp add:add.commute)

thus ?thesis
by (simp add:I e-def exp-golomb-bit-count-exact floorlog-def)

qed

lemma int-bit-count-1 :
assumes abs n > 0
shows bit-count (I e n) = 2 ∗ blog 2 |n|c +3

proof −
have a:m > 0 =⇒
blog (real 2) (real (2 ∗ m))c = blog (real 2) (real (2 ∗ m + 1))c
for m :: nat by (rule floor-log-eq-if , auto)

have n < 0 =⇒
blog 2 (−2 ∗ real-of-int n)c = blog 2 (1−2 ∗ real-of-int n)c
using a[where m=nat (−n)] by (simp add:add.commute)

hence bit-count (I e n) = 2 ∗ blog 2 (2∗real-of-int |n|)c +1
using assms
by (simp add:I e-def exp-golomb-bit-count-exact floorlog-def)

also have ... = 2 ∗ blog 2 |n|c + 3
using assms by (subst log-mult, auto)

finally show ?thesis by simp
qed

lemma int-bit-count-est-1 :
assumes |n| ≤ r
shows bit-count (I e n) ≤ 2 ∗ log 2 (r+1) +3

proof (cases abs n > 0)
case True

10

have real-of-int blog 2 |real-of-int n|c ≤ log 2 |real-of-int n|
using of-int-floor-le by blast

also have ... ≤ log 2 (real-of-int r+1)
using True assms by force

finally have
real-of-int blog 2 |real-of-int n|c ≤ log 2 (real-of-int r + 1)
by simp

then show ?thesis
using True assms by (simp add:int-bit-count-1)

next
case False
have r ≥ 0 using assms by simp
moreover have n = 0 using False by simp
ultimately show ?thesis by (simp add:I e-def exp-golomb-bit-count-exact)

qed

lemma int-bit-count-est:
assumes |n| ≤ r
shows bit-count (I e n) ≤ 2 ∗ log 2 (2∗r+1) +1

proof −
have bit-count (I e n) ≤ 2 ∗ log 2 (2∗|n|+1) +1

by (simp add:int-bit-count)
also have ... ≤ 2 ∗ log 2 (2∗ r + 1) + 1

using assms by simp
finally show ?thesis by simp

qed

7 Lists
definition Lf e where

Lf e e n xs =
(if length xs = n

then fold (λx y. opt-append y (e x)) xs (Some [])
else None)

Lf e e n is an encoding for lists of length n, where the elements
are encoding using the encoder e.
lemma fixed-list-encoding:

assumes is-encoding e
shows is-encoding (Lf e e n)

proof (induction n)
case 0
then show ?case
by (rule is-encodingI-2 , simp-all add:Lf e-def opt-comp-def split:if-splits)

next
case (Suc n)
show ?case
proof (rule is-encodingI-2)

fix x y

11

assume a:opt-comp (Lf e e (Suc n) x) (Lf e e (Suc n) y)
have b:length x = Suc n using a

by (cases length x = Suc n, simp-all add:Lf e-def opt-comp-def)
then obtain x1 x2 where x-def : x = x1@[x2] length x1 = n

by (metis length-append-singleton lessI nat.inject order .refl
take-all take-hd-drop)

have c:length y = Suc n using a
by (cases length y = Suc n, simp-all add:Lf e-def opt-comp-def)

then obtain y1 y2 where y-def : y = y1@[y2] length y1 = n
by (metis length-append-singleton lessI nat.inject order .refl

take-all take-hd-drop)
have d: opt-comp (opt-append (Lf e e n x1) (e x2))
(opt-append (Lf e e n y1) (e y2))
using a b c by (simp add:Lf e-def x-def y-def)

hence opt-comp (Lf e e n x1) (Lf e e n y1)
using opt-comp-append opt-comp-append-2 by blast

hence e:x1 = y1
using is-encodingD[OF Suc] by blast

hence opt-comp (e x2) (e y2)
using opt-comp-append-3 d by simp

hence x2 = y2
using is-encodingD[OF assms] by blast

thus x = y using e x-def y-def by simp
qed

qed

lemma fixed-list-bit-count:
bit-count (Lf e e n xs) =
(if length xs = n then (

∑
x ← xs. (bit-count (e x))) else ∞)

proof (induction n arbitrary: xs)
case 0
then show ?case by (simp add:Lf e-def)

next
case (Suc n)
show ?case
proof (cases length xs = Suc n)

case True
then obtain x1 x2 where x-def : xs = x1@[x2] length x1 = n

by (metis length-append-singleton lessI nat.inject order .refl
take-all take-hd-drop)

have bit-count (Lf e e n x1) = (
∑

x←x1 . bit-count (e x))
using x-def (2) Suc by simp

then show ?thesis by (simp add:Lf e-def x-def bit-count-append)
next

case False
then show ?thesis by (simp add:Lf e-def)

qed
qed

12

definition Le

where Le e xs = (Nue one (λn. Lf e e n)) (length xs, xs)

Le e is an encoding for arbitrary length lists, where the elements
are encoding using the encoder e.
lemma list-encoding:

assumes is-encoding e
shows is-encoding (Le e)

proof −
have inj (λxs. (length xs, xs))

by (simp add: inj-on-def)

hence is-encoding (λxs. Le e xs)
using assms unfolding Le-def
by (intro encoding-compose-2 [where g= (λx. (length x, x))]

dependent-encoding unary-encoding fixed-list-encoding) auto
thus ?thesis by simp

qed

lemma sum-list-triv-ereal:
fixes a :: ereal
shows sum-list (map (λ-. a) xs) = length xs ∗ a
apply (cases a, simp add:sum-list-triv)
by (induction xs, simp, simp)+

lemma list-bit-count:
bit-count (Le e xs) = (

∑
x ← xs. bit-count (e x) + 1) + 1

proof −
have bit-count (Le e xs) =

ereal (1 + real (length xs)) + (
∑

x←xs. bit-count (e x))
by (simp add: Le-def dependent-bit-count fixed-list-bit-count unary-nat-bit-count)

also have ... = (
∑

x←xs. bit-count (e x)) + (
∑

x ← xs. 1) + 1
by (simp add:ac-simps group-cancel.add1 sum-list-triv-ereal)

also have ... = (
∑

x ← xs. bit-count (e x) + 1) + 1
by (simp add:sum-list-addf)

finally show ?thesis by simp
qed

8 Functions
definition encode-fun :: ′a list ⇒ ′b encoding ⇒ (′a ⇒ ′b) encoding
(infixr →e 65) where
encode-fun xs e f =
(if f ∈ extensional (set xs)

then (Lf e e (length xs) (map f xs))
else None)

xs →e e is an encoding for functions whose domain is set xs,
where the values are encoding using the encoder e.

13

lemma fun-encoding:
assumes is-encoding e
shows is-encoding (xs →e e)

proof −
have a:inj-on (λx. map x xs) {x. x ∈ extensional (set xs)}

by (rule inj-onI) (simp add: extensionalityI)
have is-encoding (λx. (xs →e e) x)

unfolding encode-fun-def
by (intro encoding-compose[where f=Lf e e (length xs)]

fixed-list-encoding assms a)
thus ?thesis by simp

qed

lemma fun-bit-count:
bit-count ((xs →e e) f) =
(if f ∈ extensional (set xs) then (

∑
x ← xs. bit-count (e (f x)))

else ∞)
by (simp add:encode-fun-def fixed-list-bit-count comp-def)

lemma fun-bit-count-est:
assumes f ∈ extensional (set xs)
assumes

∧
x. x ∈ set xs =⇒ bit-count (e (f x)) ≤ a

shows bit-count ((xs →e e) f) ≤ ereal (real (length xs)) ∗ a
proof −

have bit-count ((xs →e e) f) = (
∑

x ← xs. bit-count (e (f x)))
using assms(1) by (simp add:fun-bit-count)

also have ... ≤ (
∑

x ← xs. a)
by (intro sum-list-mono assms(2), simp)

also have ... = ereal (real (length xs)) ∗ a
by (simp add:sum-list-triv-ereal)

finally show ?thesis by simp
qed

9 Finite Sets
definition Se :: ′a encoding ⇒ ′a set encoding where

Se e S =
(if finite S ∧ S ⊆ dom e

then (Le e (linorder .sorted-key-list-of-set (≤) (the ◦ e) S))
else None)

Se e is an encoding for finite sets whose elements are encoded
using the encoder e.
lemma set-encoding:

assumes is-encoding e
shows is-encoding (Se e)

proof −
have a:inj-on (the ◦ e) (dom e)

using inj-on-def

14

by (intro comp-inj-on encoding-imp-inj assms, fastforce)

interpret folding-insort-key (≤) (<) (dom e) (the ◦ e)
using a by (unfold-locales) auto

have is-encoding (λS . Se e S)
unfolding Se-def using sorted-key-list-of-set-inject
by (intro encoding-compose[where f=Le e] list-encoding assms(1)

inj-onI , simp)
thus ?thesis by simp

qed

lemma set-bit-count:
assumes is-encoding e
shows bit-count (Se e S) = (if finite S then (

∑
x ∈ S . bit-count (e

x)+1)+1 else ∞)
proof (cases finite S)

case f :True
have bit-count (Se e S) = (

∑
x∈S . bit-count (e x)+1)+1

proof (cases S ⊆ dom e)
case True

have a:inj-on (the ◦ e) (dom e)
using inj-on-def by (intro comp-inj-on encoding-imp-inj[OF

assms], fastforce)

interpret folding-insort-key (≤) (<) (dom e) (the ◦ e)
using a by (unfold-locales) auto

have b:distinct (linorder .sorted-key-list-of-set (≤) (the ◦ e) S)
(is distinct ?l) using distinct-sorted-key-list-of-set True

distinct-if-distinct-map by auto

have bit-count (Se e S) = (
∑

x←?l. bit-count (e x) + 1) + 1
using f True by (simp add:Se-def list-bit-count)

also have ... = (
∑

x∈S . bit-count (e x)+1)+1
by (simp add: sum-list-distinct-conv-sum-set[OF b]

set-sorted-key-list-of-set[OF True f])
finally show ?thesis by simp

next
case False
hence ∃ i∈S . e i = None by force
hence ∃ i∈S . bit-count (e i) = ∞ by force
hence (

∑
x∈S . bit-count (e x) + 1) = ∞

by (simp add:sum-Pinfty f)
then show ?thesis using False by (simp add:Se-def)

qed
thus ?thesis using f by simp

next
case False

15

then show ?thesis by (simp add:Se-def)
qed

lemma sum-triv-ereal:
fixes a :: ereal
assumes finite S
shows (

∑
- ∈ S . a) = card S ∗ a

proof (cases a)
case (real r)
then show ?thesis by simp

next
case PInf
show ?thesis using assms PInf

by (induction S rule:finite-induct, auto)
next

case MInf
show ?thesis using assms MInf

by (induction S rule:finite-induct, auto)
qed

lemma set-bit-count-est:
assumes is-encoding f
assumes finite S
assumes card S ≤ m
assumes 0 ≤ a
assumes

∧
x. x ∈ S =⇒ bit-count (f x) ≤ a

shows bit-count (Se f S) ≤ ereal (real m) ∗ (a+1) + 1
proof −

have bit-count (Se f S) = (
∑

x∈S . bit-count (f x) + 1) + 1
using assms by (simp add:set-bit-count)

also have ... ≤ (
∑

x∈S . a + 1) + 1
using assms by (intro sum-mono add-mono) auto

also have ... = ereal (real (card S)) ∗ (a + 1) + 1
by (simp add:sum-triv-ereal[OF assms(2)])

also have ... ≤ ereal (real m) ∗ (a+1) + 1
using assms(3 ,4) by (intro add-mono ereal-mult-right-mono) auto

finally show ?thesis by simp
qed

10 Floating point numbers
definition Fe where Fe f = (I e ×e I e) (mantissa f ,exponent f)

lemma float-encoding:
is-encoding Fe

proof −
have inj (λx. (mantissa x, exponent x)) (is inj ?g)
proof (rule injI)

fix x y

16

assume (mantissa x, exponent x) = (mantissa y, exponent y)
hence real-of-float x = real-of-float y

by (simp add:mantissa-exponent)
thus x = y

by (metis real-of-float-inverse)
qed
thus is-encoding (λf . Fe f)

unfolding Fe-def
by (intro encoding-compose-2 [where g=?g]

dependent-encoding int-encoding) auto
qed

lemma suc-n-le-2-pow-n:
fixes n :: nat
shows n + 1 ≤ 2 ^ n
by (induction n, simp, simp)

lemma float-bit-count-1 :
bit-count (Fe f) ≤ 6 + 2 ∗ (log 2 (|mantissa f | + 1) +

log 2 (|exponent f | + 1)) (is ?lhs ≤ ?rhs)
proof −

have ?lhs = bit-count (I e (mantissa f)) +
bit-count (I e (exponent f))
by (simp add:Fe-def dependent-bit-count)

also have ... ≤
ereal (2 ∗ log 2 (real-of-int (|mantissa f | + 1)) + 3) +
ereal (2 ∗ log 2 (real-of-int (|exponent f | + 1)) + 3)
by (intro int-bit-count-est-1 add-mono) auto

also have ... = ?rhs
by simp

finally show ?thesis by simp
qed

The following establishes an estimate for the bit count of a float-
ing point number in non-normalized representation:
lemma float-bit-count-2 :

fixes m :: int
fixes e :: int
defines f ≡ float-of (m ∗ 2 powr e)
shows bit-count (Fe f) ≤

6 + 2 ∗ (log 2 (|m| + 2) + log 2 (|e| + 1))
proof −

have b: (r + 1) ∗ int i ≤ r ∗ (2 ^ i − 1) + 1
if b-assms: r ≥ 1 for r :: int and i :: nat

proof (cases i > 0)
case True
have (r + 1) ∗ int i = r ∗ i + 2 ∗ int ((i−1)+1) − i

using True by (simp add:algebra-simps)
also have ... ≤ r ∗ i + int (2^1) ∗ int (2^(i−1)) − i

17

using b-assms
by (intro add-mono diff-mono mult-mono of-nat-mono suc-n-le-2-pow-n)

simp-all
also have ... = r ∗ i + 2^i − i

using True
by (subst of-nat-mult[symmetric], subst power-add[symmetric])

simp
also have ... = r ∗i + 1 ∗ (2 ^ i − int i − 1) + 1 by simp
also have ... ≤ r ∗i + r ∗ (2 ^ i − int i − 1) + 1

using b-assms
by (intro add-mono mult-mono, simp-all)

also have ... = r ∗ (2 ^ i − 1) + 1
by (simp add:algebra-simps)

finally show ?thesis by simp
next

case False
hence i = 0 by simp
then show ?thesis by simp

qed

have a:log 2 (|mantissa f | + 1) + log 2 (|exponent f | + 1) ≤
log 2 (|m|+2) + log 2 (|e|+1)

proof (cases f=0)
case True then show ?thesis by simp

next
case False
moreover have f = Float m e

by (simp add:f-def Float.abs-eq)
ultimately obtain i :: nat

where m-def : m = mantissa f ∗ 2 ^ i
and e-def : e = exponent f − i

using denormalize-shift by blast

have mantissa-ge-1 : 1 ≤ |mantissa f |
using False mantissa-noteq-0 by fastforce

have (|mantissa f | + 1) ∗ (|exponent f | + 1) =
(|mantissa f | + 1) ∗ (|e+i|+1)
by (simp add:e-def)

also have ... ≤ (|mantissa f | + 1) ∗ ((|e|+|i|)+1)
by (intro mult-mono add-mono, simp-all)

also have ... = (|mantissa f | + 1) ∗ ((|e|+1)+i)
by simp

also have ... = (|mantissa f | + 1) ∗ (|e|+1) + (|mantissa f |+1)∗i
by (simp add:algebra-simps)

also have ... ≤ (|mantissa f | + 1) ∗ (|e|+1) + (|mantissa f | ∗
(2^i−1)+1)

by (intro add-mono b mantissa-ge-1 , simp)
also have ... = (|mantissa f | + 1) ∗ (|e|+1) + (|mantissa f | ∗

18

(2^i−1)+1)∗(1)
by simp

also have
... ≤ (|mantissa f | + 1) ∗ (|e|+1) + (|mantissa f |∗ (2^i−1)+1)∗(|e|+1)

by (intro add-mono mult-left-mono, simp-all)
also have ... = ((|mantissa f | + 1)+(|mantissa f |∗ (2^i−1)+1))∗(|e|+1)

by (simp add:algebra-simps)
also have ... = (|mantissa f |∗2^i+2)∗(|e|+1)

by (simp add:algebra-simps)
also have ... = (|m|+2)∗(|e|+1)

by (simp add:m-def abs-mult)
finally have (|mantissa f | + 1) ∗ (|exponent f | + 1) ≤ (|m|+2)∗(|e|+1)

by simp

hence (|real-of-int (mantissa f)| + 1) ∗ (|of-int (exponent f)| +
1) ≤

(|of-int m|+2)∗(|of-int e|+1)
by (simp flip:of-int-abs) (metis (mono-tags, opaque-lifting) nu-

meral-One
of-int-add of-int-le-iff of-int-mult of-int-numeral)

then show ?thesis by (simp add:log-mult[symmetric])
qed
have bit-count (Fe f) ≤

6 + 2 ∗ (log 2 (|mantissa f | + 1) + log 2 (|exponent f | + 1))
using float-bit-count-1 by simp

also have ... ≤ 6 + 2 ∗ (log 2 (|m| + 2) + log 2 (|e| + 1))
using a by simp

finally show ?thesis by simp
qed

lemma float-bit-count-zero:
bit-count (Fe (float-of 0)) = 2
by (simp add:Fe-def dependent-bit-count int-bit-count

zero-float.abs-eq[symmetric])

end

11 Examples
theory Examples

imports Prefix-Free-Code-Combinators
begin

The following introduces a few examples for encoders:
notepad
begin

define example1 where example1 = N e ×e N e

19

This is an encoder for a pair of natural numbers using exponen-
tial Golomb codes.

Given a pair it is possible to estimate the number of bits neces-
sary to encode it using the bit-count lemmas.

have bit-count (example1 (0 ,1)) = 4
by (simp add:example1-def dependent-bit-count exp-golomb-bit-count-exact)

Note that a finite bit count automatically implies that the en-
coded element is in the domain of the encoding function. This
means usually it is possible to establish a bound on the size of
the datastructure and verify that the value is encodable simul-
taneously.

hence (0 ,1) ∈ dom example1
by (intro bit-count-finite-imp-dom, simp)

define example2
where example2 = [0 ..<42] →e Nbe 314

The second example illustrates the use of the combinator (→e),
which allows encoding functions with a known finite encodable
domain, here we assume the values are smaller than 314 :: ′a on
the domain {..<42 :: ′a}.

have bit-count (example2 f) = 42∗9 (is ?lhs = ?rhs)
if a:f ∈ {0 ..<42} →E {0 ..<314} for f

proof −
have ?lhs = (

∑
x←[0 ..<42]. bit-count (Nbe 314 (f x)))

using a by (simp add:example2-def fun-bit-count PiE-def)
also have ... = (

∑
x←[0 ..<42]. ereal (floorlog 2 313))

using a Pi-def PiE-def bounded-nat-bit-count
by (intro arg-cong[where f=sum-list] map-cong, auto)

also have ... = ?rhs
by (simp add: compute-floorlog sum-list-triv)

finally show ?thesis by simp
qed

define example3
where example3 = N e one (λn. [0 ..<42] →e Nbe n)

The third example is more complex and illustrates the use of
dependent encoders, consider a function with domain {..<42}
whose values are natural numbers in the interval {..<n}. Let
us assume the bound is not known in advance and needs to be
encoded as well. This can be done using a dependent product
encoding, where the first component encodes the bound and the
second component is an encoder parameterized by that value.
end

20

end

References
[1] J. C. Blanchette. The textbook proof of huffman’s algorithm.

Archive of Formal Proofs, Oct. 2008. https://isa-afp.org/entries/
Huffman.html, Formal proof development.

[2] C. Bormann and P. E. Hoffman. Concise Binary Object Represen-
tation (CBOR). RFC 8949, Dec. 2020.

[3] P. Elias. Universal codeword sets and representations of the inte-
gers. IEEE Transactions on Information Theory, 21(2):194–203,
1975.

[4] Q. Hibon and L. C. Paulson. Source coding theorem. Archive
of Formal Proofs, Oct. 2016. https://isa-afp.org/entries/Source_
Coding_Theorem.html, Formal proof development.

[5] I. E. Richardson. H.264 Transform and Coding, chapter 7, pages
179–221. John Wiley & Sons, Ltd, 2010.

[6] J. Teuhola. A compression method for clustered bit-vectors. Infor-
mation Processing Letters, 7(6):308–311, 1978.

21

https://isa-afp.org/entries/Huffman.html
https://isa-afp.org/entries/Huffman.html
https://isa-afp.org/entries/Source_Coding_Theorem.html
https://isa-afp.org/entries/Source_Coding_Theorem.html

	Introduction
	Encodings
	(Dependent) Products
	Composition
	Natural Numbers
	Integers
	Lists
	Functions
	Finite Sets
	Floating point numbers
	Examples

