Two theorems about the geometry of the critical points of a complex polynomial

Manuel Eberl

April 18, 2024

Abstract

This entry formalises two well-known results about the geometric relation between the roots of a complex polynomial and its critical points, i.e. the roots of its derivative.

The first of these is the Gau β-Lucas Theorem: The critical points of a complex polynomial lie inside the convex hull of its roots.

The second one is Jensen's Theorem: Every non-real critical point of a real polynomial lies inside a disc between two conjugate roots. These discs are called the Jensen discs: the Jensen disc of a pair of conjugate roots $a \pm b i$ is the smallest disc that contains both of them, i.e. the disc with centre a and radius b.

Contents

1 Missing Library Material 3
1.1 Multisets 3
1.2 Polynomials 3
1.3 Polynomials over algebraically closed fields 4
1.4 Complex polynomials and conjugation 5
$1.5 \quad n$-ary product rule for the derivative 5
1.6 Facts about complex numbers 5
2 The Gauß-Lucas Theorem 7
3 Jensen's Theorem 9

1 Missing Library Material

```
theory Polynomial_Crit_Geometry_Library
imports
    "HOL-Computational_Algebra.Computational_Algebra"
    "HOL-Library.FuncSet"
    "Polynomial_Interpolation.Ring_Hom_Poly"
begin
```


1.1 Multisets

lemma size_repeat_mset [simp]: "size (repeat_mset $n A$) = n * size A"
$\langle p r o o f\rangle$
lemma count_image_mset_inj:
"inj $f \Longrightarrow$ count (image_mset $f A)(f x)=\operatorname{count} A x "$
〈proof〉
lemma count_le_size: "count Ax size A"
$\langle p r o o f\rangle$
lemma image_mset_cong_simp:
$"^{\prime} M=M^{\prime} \Longrightarrow(\bigwedge x . x \in \# M=s i m p=>x=g x) \Longrightarrow\{\# f x \cdot x \in \# M \#\}=\{\# g$
x. x $\left.\in \# M^{\prime} \#\right\} "$
$\langle p r o o f\rangle$
lemma sum_mset_nonneg:
fixes A :: "'a :: ordered_comm_monoid_add multiset"
assumes " $\backslash x . x \in \# A \Longrightarrow x \geq 0 "$
shows "sum_mset $A \geq 0$ "
$\langle p r o o f\rangle$
lemma sum_mset_pos:
fixes A :: "'a :: ordered_comm_monoid_add multiset"
assumes " $A \neq\{\#\}$ "
assumes " $\backslash x . x \in \# A \Longrightarrow x>0 "$
shows "sum_mset A > 0 "
$\langle p r o o f\rangle$

1.2 Polynomials

```
lemma order_pos_iff: "p = 0 corder x p > 0 \longleftrightarrow poly p x = 0"
    \langleproof\rangle
lemma order_prod_mset:
    "O \not## P \Longrightarrow order x (prod_mset P) = sum_mset (image_mset ( }\lambda\mathrm{ p. order
x p) P)"
    <proof>
```

lemma order_prod:

```
    "(\bigwedgex. x \in I\Longrightarrowfx}=|0)\Longrightarrow\mathrm{ order x (prod f I) = ( Mi|I. order }
(f i))"
    \langleproof\rangle
lemma order_linear_factor:
    assumes "a = 0 v b = 0"
    shows "order x [:a, b:] = (if b * x + a = 0 then 1 else 0)"
<proof\rangle
lemma order_linear_factor' [simp]:
    assumes "a f=0\vee b f=0" "b * x + a = 0"
    shows "order x [:a, b:] = 1"
    \langleproof\rangle
lemma degree_prod_mset_eq: "0 &#P\Longrightarrow degree (prod_mset P) = (\sump\in#P.
degree p)"
    for P :: "'a::idom poly multiset"
    \langleproof\rangle
lemma degree_prod_list_eq: "0 # set ps \Longrightarrow degree (prod_list ps) = (\sump\leftarrowps.
degree p)"
    for ps :: "'a::idom poly list"
    <proof\rangle
lemma order_conv_multiplicity:
    assumes "p\not=0"
    shows "order x p = multiplicity [:-x, 1:] p"
    \langleproof\rangle
```


1.3 Polynomials over algebraically closed fields

```
lemma irreducible_alg_closed_imp_degree_1:
    assumes "irreducible (p :: 'a :: alg_closed_field poly)"
    shows "degree p = 1"
\langleproof\rangle
lemma prime_poly_alg_closedE:
    assumes "prime (q :: 'a :: {alg_closed_field, field_gcd} poly)"
    obtains c where "q = [:-c, 1:]" "poly q c = 0"
<proof>
lemma prime_factors_alg_closed_poly_bij_betw:
    assumes "p f= (0 :: 'a :: {alg_closed_field, field_gcd} poly)"
    shows "bij_betw (\lambdax. [:-x, 1:]) {x. poly p x = 0} (prime_factors p)"
<proof\rangle
lemma alg_closed_imp_factorization':
    assumes "p f= (0 :: 'a :: alg_closed_field poly)"
    shows "p = smult (lead_coeff p) (\prodx | poly p x = 0. [:-x, 1:] ~ order
```

$$
\begin{aligned}
& x \quad \text { p)" } \\
& \langle\text { proof }\rangle
\end{aligned}
$$

1．4 Complex polynomials and conjugation

```
lemma complex_poly_real_coeffsE:
    assumes "set (coeffs p)\subseteq\mathbb{R}"
    obtains p' where "p = map_poly complex_of_real p'"
<proof\rangle
lemma order_map_poly_cnj:
    assumes "p\not=0"
    shows "order x (map_poly cnj p) = order (cnj x) p"
\langleproof\rangle
```


1.5 n－ary product rule for the derivative

```
lemma has_field_derivative_prod_mset [derivative_intros]:
    assumes "\x. x \in# A \Longrightarrow (f x has_field_derivative f' x) (at z)"
    shows "((\lambdau. Пx\in#A. f x u) has_field_derivative (\sum x\in#A. f' x *
(\prody\in#A-{#x#}. f y z))) (at z)"
    \langleproof\rangle
```

lemma has_field_derivative_prod [derivative_intros]:
assumes " $\backslash x . x \in A \Longrightarrow$ (f x has_field_derivative $f^{\prime} x$) (at z)"

f y z))) (at z)"
\langle proof〉
lemma has_field_derivative_prod_mset':
assumes " $\backslash x . x \in \# A \Longrightarrow f \times z \neq 0 "$
assumes " $\ x . x \in \# A \Longrightarrow$ ($f x$ has_field_derivative $f^{\prime} x$) (at z)"
defines " $P \equiv$ ($\lambda A \mathrm{u} . \prod \mathrm{x} \in \# A . f \mathrm{x} u$)"
shows "(P A has_field_derivative ($\left.P A z *\left(\sum x \in \# A . f \prime x / f x z\right)\right)$)
(at z)"
$\langle p r o o f\rangle$
lemma has_field_derivative_prod':
assumes " $\backslash x . x \in A \Longrightarrow f x z \neq 0 "$
assumes " $\bigwedge x . x \in A \Longrightarrow$ ($f x$ has_field_derivative f ' x) (at z)"
defines " $P \equiv\left(\lambda A u . \prod x \in A . f x u\right) "$
shows "(P A has_field_derivative ($P A z *\left(\sum x \in A . f^{\prime} x / f x z\right)$)
(at z)"
〈proof〉

1．6 Facts about complex numbers

```
lemma Re_sum_mset: "Re (sum_mset X) = (\sum x\in#X. Re x)"
    \langleproof\rangle
```

```
lemma Im_sum_mset: "Im (sum_mset X) = ( \(\sum \mathrm{x} \in \# X\). Im x)"
    \(\langle p r o o f\rangle\)
    lemma Re_sum_mset': "Re \(\left(\sum x \in \# X . f x\right)=\left(\sum x \in \# X . \operatorname{Re}(f x)\right) "\)
    〈proof〉
    lemma Im_sum_mset': "Im \(\left(\sum x \in \# X . f x\right)=\left(\sum x \in \# X . \operatorname{Im}(f x)\right) "\)
        \(\langle p r o o f\rangle\)
    lemma inverse_complex_altdef: "inverse z = cnj z / norm z - 2"
        \(\langle p r o o f\rangle\)
    end
    theory Polynomial_Crit_Geometry
    imports
    "HOL-Computational_Algebra.Computational_Algebra"
    "HOL-Analysis.Analysis"
    Polynomial_Crit_Geometry_Library
begin
```


Figure 1: Example for the Gauß-Lucas Theorem: The roots (\bullet) and critical points (○) of $x^{7}-2 x^{6}+x^{5}+x^{4}-(1+i) x^{3}-15 i x^{2}-4(1-i) x-7$. The critical points all lie inside the convex hull of the roots (\square).

2 The Gauß-Lucas Theorem

The following result is known as the Gauß-Lucas Theorem: The critical points of a non-constant complex polynomial lie inside the convex hull of its roots.
The proof is relatively straightforward by writing the polynomial in the form

$$
p(x)=\prod_{i=1}^{n}\left(x-x_{i}\right)^{a_{i}}
$$

from which we get the derivative

$$
p^{\prime}(x)=p(x) \cdot \sum_{i=1}^{n} \frac{a_{i}}{x-x_{i}} .
$$

With some more calculations, one can then see that every root x of p^{\prime} can be written as

$$
x=\sum_{i=1}^{n} \frac{u_{i}}{U} \cdot x_{i}
$$

where $u_{i}=\frac{a_{i}}{\left|x-x_{i}\right|^{2}}$ and $U=\sum_{i=1}^{n} u_{i}$.
theorem pderiv_roots_in_convex_hull:
fixes p :: "complex poly"
assumes "degree $p \neq 0$ "
shows "\{z. poly (pderiv p) $z=0\} \subseteq$ convex hull $\{z$. poly $p z=0\} "$ $\langle p r o o f\rangle$

Figure 2: Example for Jensen's Theorem: The roots (\bullet) and critical points (o) of the polynomial $x^{7}-3 x^{6}+2 x^{5}+8 x^{4}+10 x^{3}-10 x+1$.

It can be seen that all the non-real critical points lie inside a Jensen disc (○), whereas there can be real critical points that do not lie inside a Jensen disc.

3 Jensen's Theorem

For each root w of a real polynomial p, the Jensen disc of w is the smallest disc containing both w and \bar{w}, i.e. the disc with centre $\operatorname{Re}(w)$ and radius $|\operatorname{Im}(w)|$.
We now show that if p is a real polynomial, every non-real critical point of p lies inside a Jensen disc of one of its non-real roots.
definition jensen_disc :: "complex \Rightarrow complex set" where
"jensen_disc w = cball (of_real (Re w)) |Im w|"
theorem pderiv_root_in_jensen_disc:
fixes p :: "complex poly"
assumes "set (coeffs p) $\subseteq \mathbb{R}^{\prime \prime}$ and "degree $p \neq 0 "$
assumes "poly (pderiv p) z = 0" and "z $\notin \mathbb{R} "$
shows $" \exists$ w. w $\notin \mathbb{R} \wedge$ poly p w $=0 \wedge z \in$ jensen_disc w"
$\langle p r o o f\rangle$
end

References

[1] F. Enescu. Math 4444/6444 Polynomials 2, Lecture Notes, Lecture 9. https://math.gsu.edu/fenescu/fall2010/lec9-polyn-2010.pdf, 2010.
[2] M. Marden. Geometry of Polynomials. American Mathematical Society Mathematical Surveys. American Mathematical Society, 1966.

