Two theorems about the geometry of the critical points of a complex polynomial

Manuel Eberl

April 18, 2024

Abstract

This entry formalises two well-known results about the geometric relation between the roots of a complex polynomial and its critical points, i.e. the roots of its derivative.

The first of these is the Gau β-Lucas Theorem: The critical points of a complex polynomial lie inside the convex hull of its roots.

The second one is Jensen's Theorem: Every non-real critical point of a real polynomial lies inside a disc between two conjugate roots. These discs are called the Jensen discs: the Jensen disc of a pair of conjugate roots $a \pm b i$ is the smallest disc that contains both of them, i.e. the disc with centre a and radius b.

Contents

1 Missing Library Material 3
1.1 Multisets 3
1.2 Polynomials 4
1.3 Polynomials over algebraically closed fields 5
1.4 Complex polynomials and conjugation 7
$1.5 n$-ary product rule for the derivative 7
1.6 Facts about complex numbers 8
2 The Gauß-Lucas Theorem 10
3 Jensen's Theorem 13

1 Missing Library Material

```
theory Polynomial_Crit_Geometry_Library
imports
    "HOL-Computational_Algebra.Computational_Algebra"
    "HOL-Library.FuncSet"
    "Polynomial_Interpolation.Ring_Hom_Poly"
begin
```


1.1 Multisets

lemma size_repeat_mset [simp]: "size (repeat_mset $n A$) = n * size A" by (induction n) auto

```
lemma count image mset inj:
```

 "inj \(f \Longrightarrow\) count (image_mset \(f\) A) (\(f\) x) \(=\) count \(A x "\)
 by (induction A) (auto dest!: injD)
 lemma count_le_size: "count Ax size A"
by (induction A) auto
lemma image_mset_cong_simp:
$"^{\prime} M=M^{\prime} \Longrightarrow(\bigwedge x . x \in \# M=s i m p=>x=g x) \Longrightarrow\{\# f x \cdot x \in \# M \#\}=\{\# g$
x. x $\in \#$ M'\#\}"
unfolding simp_implies_def by (auto intro: image_mset_cong)
lemma sum_mset_nonneg:
fixes A :: "'a :: ordered_comm_monoid_add multiset"
assumes " $\backslash x . x \in \# A \Longrightarrow x \geq 0$ "
shows "sum_mset $A \geq 0$ "
using assms by (induction A) auto
lemma sum_mset_pos:
fixes A :: "'a :: ordered_comm_monoid_add multiset"
assumes " $A \neq\{\#\}$ "
assumes " $\ x . x \in \# A \Longrightarrow x>0 "$
shows "sum_mset A > 0 "
proof -
from assms obtain x where $" x \in \#$ "
by auto
hence "A = \{\#x\#\} + (A - \{\#x\#\})"
by auto
also have "sum_mset $\ldots=x+\operatorname{sum} m_{-}$met (A - \{\#x\#\})"
by simp
also have "... > 0"
proof (rule add_pos_nonneg)
show "x > 0"
using $\langle x \in \# A>$ assms by auto
show "sum_mset (A - \{\#x\#\}) ≥ 0 "
using assms sum_mset_nonneg by (metis in_diffD order_less_imp_le)

```
    qed
    finally show ?thesis .
qed
```


1.2 Polynomials

```
lemma order_pos_iff: " \(p \neq 0 \Longrightarrow\) order \(\mathrm{x} p>0 \longleftrightarrow\) poly \(p \mathrm{x}=0\) "
    by (cases "order x \(p=0\) ") (auto simp: order_root order_OI)
lemma order_prod_mset:
    \(" \mathrm{O} \notin \# P \Longrightarrow\) order x (prod_mset \(P\) ) = sum_mset (image_mset ( \(\lambda\) p. order
\(\mathrm{x} p) P\) )"
    by (induction \(P\) ) (auto simp: order_mult)
```

lemma order_prod:
$"(\bigwedge x . x \in I \Longrightarrow f x \neq 0) \Longrightarrow$ order $x(p r o d f I)=\left(\sum i \in I\right.$. order x
(fi))"
by (induction I rule: infinite_finite_induct) (auto simp: order_mult)
lemma order_linear_factor:
assumes "a $\neq 0 \vee b \neq 0$ "
shows "order $x[: a, b:]=(i f ~ b * x+a=0$ then 1 else 0)"
proof (cases "b * x + a = 0")
case True
have "order x [:a, b:] \leq degree [:a, b:]"
using assms by (intro order_degree) auto
also have "... ≤ 1 "
by simp
finally have "order $x[: a, b:] \leq 1 "$.
moreover have "order x [:a, b:] > 0"
using assms True by (subst order_pos_iff) (auto simp: algebra_simps)
ultimately have "order x [:a, b:] = 1"
by linarith
with True show ?thesis
by simp
qed (auto intro!: order_OI simp: algebra_simps)
lemma order_linear_factor' [simp]:
assumes " $a \neq 0 \vee b \neq 0 "$ " $b * x+a=0 "$
shows "order x [:a, b:] = 1"
using assms by (subst order_linear_factor) auto
lemma degree_prod_mset_eq: " $0 \notin \# P \Longrightarrow$ degree (prod_mset P) $=\left(\sum p \in \# P\right.$.
degree p)"
for P :: "'a::idom poly multiset"
by (induction P) (auto simp: degree_mult_eq)
lemma degree_prod_list_eq: " $0 \notin$ set $p s \Longrightarrow$ degree (prod_list ps) = ($\sum p \leftarrow p s$.
degree p)"
for ps :: "'a::idom poly list"
by (induction ps) (auto simp: degree_mult_eq prod_list_zero_iff)
lemma order_conv_multiplicity:
assumes " $p \neq 0$ "
shows "order x $p=$ multiplicity $[:-x, 1:] p$ "
using assms order[of $p x]$ multiplicity_eqI by metis

1.3 Polynomials over algebraically closed fields

```
lemma irreducible_alg_closed_imp_degree_1:
    assumes "irreducible (p :: 'a :: alg_closed_field poly)"
    shows "degree p = 1"
proof -
    have "\neg(degree p > 1)"
        using assms alg_closed_imp_reducible by blast
    moreover from assms have "degree p = 0"
        by (auto simp: irreducible_def is_unit_iff_degree)
    ultimately show ?thesis
        by linarith
qed
lemma prime_poly_alg_closedE:
    assumes "prime (q :: 'a :: {alg_closed_field, field_gcd} poly)"
    obtains c where "q=[:-c, 1:]" "poly q c = 0"
proof -
    from assms have "degree q = 1"
        by (intro irreducible_alg_closed_imp_degree_1 prime_elem_imp_irreducible)
auto
    then obtain a b where q: "q = [:a, b:]"
        by (metis One_nat_def degree_pCons_eq_if nat.distinct(1) nat.inject
pCons_cases)
    have "unit_factor q = 1"
            using assms by auto
    thus ?thesis
            using that[of "-a"] q <degree q = 1>
            by (auto simp: unit_factor_poly_def one_pCons dvd_field_iff is_unit_unit_factor
split: if_splits)
qed
lemma prime_factors_alg_closed_poly_bij_betw:
    assumes "p f (0 :: 'a :: {alg_closed_field, field_gcd} poly)"
    shows "bij_betw (\lambdax. [:-x, 1:]) {x. poly p x = 0} (prime_factors p)"
proof (rule bij_betwI[of _ _ _ "\lambdaq. -poly q O"], goal_cases)
    case 1
    have [simp]: "p div [:1:] = p" for p :: "'a poly"
        by (simp add: pCons_one)
    show ?case using assms
        by (auto simp: in_prime_factors_iff dvd_iff_poly_eq_0 prime_def
```

```
    prime_elem_linear_field_poly normalize_poly_def one_pCons)
qed (auto simp: in_prime_factors_iff elim!: prime_poly_alg_closedE dvdE)
lemma alg_closed_imp_factorization':
    assumes "p f= (0 :: 'a :: alg_closed_field poly)"
    shows "p = smult (lead_coeff p) (\x | poly p x = 0. [:-x, 1:] ~ order
x p)"
proof -
    obtain A where A: "size A = degree p" "p = smult (lead_coeff p) (\prodx\in#A.
[:- x, 1:])"
        using alg_closed_imp_factorization[OF assms] by blast
    have "set_mset A = {x. poly p x = 0}" using assms
        by (subst A(2)) (auto simp flip: poly_hom.prod_mset_image simp: image_image)
    note A(2)
    also have "(\prodx\in#A. [:- x, 1:]) =
                            (\prodx\in(\lambdax. [:- x, 1:]) ` set_mset A. x ^ count {#[:- x,
1:]. x \in# A#} x)"
            by (subst prod_mset_multiplicity) simp_all
    also have "set_mset A = {x. poly p x = 0}" using assms
        by (subst A(2)) (auto simp flip: poly_hom.prod_mset_image simp: image_image)
    also have "(\prodx\in(\lambdax. [:- x, 1:]) ` {x. poly p x = 0}. x ^ count {#[:-
x, 1:]. x \in# A#} x) =
                            (\prodx | poly p x = 0. [:- x, 1:] ~ count {#[:- x, 1:]. x \in#
A#} [:- x, 1:])"
        by (subst prod.reindex) (auto intro: inj_onI)
    also have "(\lambdax. count {#[:- x, 1:]. x \in# A#} [:- x, 1:]) = count A"
        by (subst count_image_mset_inj) (auto intro!: inj_onI)
    also have "count A = (\lambdax. order x p)"
    proof
        fix x :: 'a
        have "order x p = order x (\prodx\in#A. [:- x, 1:])"
            using assms by (subst A(2)) (auto simp: order_smult order_prod_mset)
    also have "... = (\sum y\in#A. order x [:-y, 1:])"
        by (subst order_prod_mset) (auto simp: multiset.map_comp o_def)
    also have "image_mset ( }\lambda\textrm{y}\mathrm{ . order x [:-y, 1:]) A = image_mset ( }\lambday\mathrm{ .
if y = x then 1 else 0) A"
            using order_power_n_n[of y 1 for y :: 'a]
            by (intro image_mset_cong) (auto simp: order_OI)
        also have "... = replicate_mset (count A x) 1 + replicate_mset (size
A - count A x) O"
                by (induction A) (auto simp: add_ac Suc_diff_le count_le_size)
            also have "sum_mset ... = count A x"
                by simp
        finally show "count A x = order x p" ..
    qed
    finally show ?thesis .
qed
```


1.4 Complex polynomials and conjugation

```
lemma complex_poly_real_coeffsE:
    assumes "set (coeffs p)\subseteq\mathbb{R}"
    obtains p' where "p = map_poly complex_of_real p'"
proof (rule that)
    have "coeff p n \in \mathbb{R" for n}
        using assms by (metis Reals_O coeff_in_coeffs in_mono le_degree zero_poly.rep_eq)
    thus "p = map_poly complex_of_real (map_poly Re p)"
        by (subst map_poly_map_poly) (auto simp: poly_eq_iff o_def coeff_map_poly)
qed
lemma order_map_poly_cnj:
    assumes "p\not=0"
    shows "order x (map_poly cnj p) = order (cnj x) p"
proof -
    have "order x (map_poly cnj p) \leq order (cnj x) p" if p: "p f= 0" for
p :: "complex poly" and x
    proof (rule order_max)
        interpret map_poly_idom_hom cnj
            by standard auto
        interpret field_hom cnj
                by standard auto
            have "[:-x, 1:] ~ order x (map_poly cnj p) dvd map_poly cnj p"
                using order[of "map_poly cnj p" x] p by simp
            also have "[:-x, 1:] ~ order x (map_poly cnj p) =
                    map_poly cnj ([:-cnj x, 1:] ~ order x (map_poly cnj p))"
                by (simp add: hom_power)
            finally show "[:-cnj x, 1:] ~ order x (map_poly cnj p) dvd p"
                by (rule dvd_map_poly_hom_imp_dvd)
    qed fact+
    from this[of p x] and this[of "map_poly cnj p" "cnj x"] and assms show
?thesis
        by (simp add: map_poly_map_poly o_def)
qed
```


$1.5 \quad n$-ary product rule for the derivative

```
lemma has_field_derivative_prod_mset [derivative_intros]:
    assumes "\\x. \overline{x }\in# A\Longrightarrow (f x has_field_derivative f' x) (at z)"
    shows "((\lambdau. \x\in#A. f x u) has_field_derivative (\sumx\in#A. f' x *
    (\prody\in#A-{#x#}. f y z))) (at z)"
    using assms
proof (induction A)
    case (add x A)
    note [derivative_intros] = add
    note [cong] = image_mset_cong_simp
    show ?case
            by (auto simp: field_simps multiset.map_comp o_def intro!: derivative_eq_intros)
qed auto
```

```
lemma has_field_derivative_prod [derivative_intros]:
    assumes "\x. x f A \Longrightarrow (f x has_field_derivative f' x) (at z)"
    shows "((\lambdau. \x\inA. f x u) has_field_derivative (\sumx\inA. f' x * (\prody\inA-{x}.
f y z))) (at z)"
    using assms
proof (cases "finite A")
    case [simp, intro]: True
    have "((\lambdau. Пx\inA. f x u) has_field_derivative
                (\sumx\inA. f' x * (\prody\in#mset_set A-{#x#}. f y z))) (at z)"
        using has_field_derivative_prod_mset[of "mset_set A" f f' z] assms
        by (simp add: prod_unfold_prod_mset sum_unfold_sum_mset)
    also have "(\sumx\inA. f' x * (\prody\in#mset_set A-{#x#}. f y z)) =
                    (\sumx\inA. f' x * (\prody\in#mset_set (A-{x}). f y z))"
        by (intro sum.cong) (auto simp: mset_set_Diff)
    finally show ?thesis
        by (simp add: prod_unfold_prod_mset)
qed auto
lemma has_field_derivative_prod_mset':
    assumes "\x. x \in# A\Longrightarrowfx z = 0"
    assumes "\x. x \in# A \Longrightarrow (f x has_field_derivative f' x) (at z)"
    defines "P \equiv (\lambdaA u. \x\in#A. f x u)"
    shows "(P A has_field_derivative (P A z * (\sumx\in#A. f' x / f x z)))
(at z)"
    using assms
    by (auto intro!: derivative_eq_intros cong: image_mset_cong_simp
                simp: sum_distrib_right mult_ac prod_mset_diff image_mset_Diff
multiset.map_comp o_def)
lemma has_field_derivative_prod':
    assumes "\x. x \inA\Longrightarrowfxz = 0"
    assumes "\x. x \in A \Longrightarrow (f x has_field_derivative f' x) (at z)"
    defines "P \equiv ( }\lambda
    shows "(P A has_field_derivative (PA z * (\sumx\inA. f' x / f x z)))
(at z)"
proof (cases "finite A")
    case True
    show ?thesis using assms True
        by (auto intro!: derivative_eq_intros
            simp: prod_diff1 sum_distrib_left sum_distrib_right mult_ac)
qed (auto simp: P_def)
```


1.6 Facts about complex numbers

lemma Re_sum_mset: "Re (sum_mset X) = ($\sum \mathrm{x} \in \# X . \operatorname{Re} \mathrm{x}$)" by (induction X) auto
lemma Im_sum_mset: "Im (sum_mset X) = ($\sum \mathrm{x} \in \# X$. Im x)"

```
    by (induction X) auto
lemma Re_sum_mset': "Re (\sumx\in#X. f x) = (\sumx\in#X. Re (fx))"
    by (induction X) auto
lemma Im_sum_mset': "Im (\sumx\in#X. f x) = (\sumx\in#X. Im (f x))"
    by (induction X) auto
lemma inverse_complex_altdef: "inverse z = cnj z / norm z ^ 2"
    by (metis complex_div_cnj inverse_eq_divide mult_1)
end
theory Polynomial_Crit_Geometry
imports
    "HOL-Computational_Algebra.Computational_Algebra"
    "HOL-Analysis.Analysis"
    Polynomial_Crit_Geometry_Library
begin
```


Figure 1: Example for the Gauß-Lucas Theorem: The roots (\bullet) and critical points (○) of $x^{7}-2 x^{6}+x^{5}+x^{4}-(1+i) x^{3}-15 i x^{2}-4(1-i) x-7$. The critical points all lie inside the convex hull of the roots (\square).

2 The Gauß-Lucas Theorem

The following result is known as the Gauß-Lucas Theorem: The critical points of a non-constant complex polynomial lie inside the convex hull of its roots.
The proof is relatively straightforward by writing the polynomial in the form

$$
p(x)=\prod_{i=1}^{n}\left(x-x_{i}\right)^{a_{i}}
$$

from which we get the derivative

$$
p^{\prime}(x)=p(x) \cdot \sum_{i=1}^{n} \frac{a_{i}}{x-x_{i}} .
$$

With some more calculations, one can then see that every root x of p^{\prime} can be written as

$$
x=\sum_{i=1}^{n} \frac{u_{i}}{U} \cdot x_{i}
$$

where $u_{i}=\frac{a_{i}}{\left|x-x_{i}\right|^{2}}$ and $U=\sum_{i=1}^{n} u_{i}$.
theorem pderiv_roots_in_convex_hull:

```
    fixes p :: "complex poly"
    assumes "degree p = 0"
    shows "{z. poly (pderiv p) z = 0} \subseteq convex hull {z. poly p z = 0}"
proof safe
    fix z :: complex
    assume "poly (pderiv p) z = 0"
    show "z \in convex hull {z. poly p z = 0}"
    proof (cases "poly p z = 0")
        case True
        thus ?thesis by (simp add: hull_inc)
    next
        case False
        hence [simp]: "p \not= 0" by auto
        define }\alpha\mathrm{ where " }\alpha=\mathrm{ lead_coeff p"
        have p_eq: "p = smult \alpha (\prodz | poly p z = 0. [:- z, 1:] ^ order z
p)"
            unfolding \alpha_def by (rule alg_closed_imp_factorization') fact
            have poly_p: "poly p = ( }\mp@subsup{\lambda}{w.}{*}\alpha*\mathrm{ ( \z | poly p z = 0. (w - z) - order
z p))"
            by (subst p_eq) (simp add: poly_prod fun_eq_iff)
    define S where "S = (\sumw l poly p w = 0. of_nat (order w p) / (z
- w))"
    define u :: "complex => real" where "u = ( }\mp@subsup{\lambda}{\textrm{w}}{}
norm (z - w) - 2)"
    define U where "U = (\sum w | poly p w = 0. u w)"
    have u_pos: "u w > 0" if "poly p w = 0" for w
        using that False by (auto simp: u_def order_pos_iff intro!: divide_pos_pos)
    hence "U > O" unfolding U_def
        using assms fundamental_theorem_of_algebra[of p] False
        by (intro sum_pos poly_roots_finite) (auto simp: constant_degree)
    note [derivative_intros del] = has_field_derivative_prod
    note [derivative_intros] = has_field_derivative_prod'
    have "(poly p has_field_derivative poly p z *
                    (\sumw | poly p w = 0. of_nat (order w p) *
                    (z - w) ^ (order w p - 1) / (z - w) ^ order w p) ) (at
z)"
        (is "(_ has_field_derivative _ * ?S') _") using False
        by (subst (1 2) poly_p)
            (auto intro!: derivative_eq_intros simp: order_pos_iff mult_ac
power_diff S_def)
    also have "?S' = S" unfolding S_def
    proof (intro sum.cong refl, goal_cases)
        case (1 w)
        with False have "w \not= z" and "order w p > 0"
            by (auto simp: order_pos_iff)
        thus ?case by (simp add: power_diff)
    qed
```

```
    finally have "(poly p has_field_derivative poly p z * S) (at z)".
    hence "poly (pderiv p) z = poly p z * S"
    by (rule sym[OF DERIV_unique]) (auto intro: poly_DERIV)
    with <poly (pderiv p) z = 0> and <poly p z \not= 0> have "S = 0" by
simp
```

 also have " \(\mathrm{S}=\left(\sum \mathrm{w}\right.\) | poly p w = 0 . of_nat (order w \(p\)) * cnj z / norm
 (z - w) ~ 2 -
of_nat (order w p) * cnj w / norm
(z - w) - 2)"
unfolding S_def by (intro sum.cong refl, subst complex_div_cnj)
(auto simp: diff_divide_distrib ring_distribs)
also have ${ }^{\prime} . . .=\operatorname{cnj} z *\left(\sum \mathrm{w} \mid \operatorname{poly} \bar{p} \mathrm{w}=0 . \mathrm{u}\right.$ w) $-\left(\sum \mathrm{w} \mid\right.$ poly p
$\mathrm{w}=0 . \mathrm{u} \mathrm{w} * \mathrm{cnj} \mathrm{w}) "$
by (simp add: sum_subtractf sum_distrib_left mult_ac u_def)
finally have "cnj z * ($\sum \mathrm{w}$ l poly p w = O. of_real (u w)) =
($\sum \mathrm{w}$ | poly $p \mathrm{w}=0$. of_real (u w) * cnj w)" by simp
from arg_cong[OF this, of cnj]
have " z * of_real $U=\left(\sum \mathrm{w} \mid\right.$ poly $p \mathrm{w}=0$. of_real (u w) * w)"
unfolding complex_cnj_mult by (simp add: U_def)
hence $" z=\left(\sum \mathrm{w} \mid\right.$ poly $p \mathrm{w}=0$. of_real (u w) * w) / of_real $U "$
using $\langle U\rangle$ O〉 by (simp add: divide_simps)
also have "... = ($\sum \mathrm{w}$ | poly $\mathrm{p} \mathrm{w}=0$. ($\mathrm{u} \mathrm{w} / \mathrm{U}$) $*_{R} \mathrm{w}$)"
by (subst sum_divide_distrib) (auto simp: scaleR_conv_of_real)
finally have $z_{-} e q: ~ " z=\left(\sum \mathrm{w} \mid \operatorname{poly} p \mathrm{w}=0\right.$. (u w / U) $*_{R}$ w)".
show "z \in convex hull \{z. poly $p z=0\} "$
proof (subst $z_{-} e q$, rule convex_sum)
have " ($\sum \mathrm{i} \in\left\{\begin{array}{l}\text { W. poly } p \mathrm{w}=0 \overline{\}} . \mathrm{u} i / U)=U / U "\end{array}\right.$
by (subst (2) U_def) (simp add: sum_divide_distrib)
also have "... = 1 " using $\langle U\rangle 0\rangle$ by simp
finally show " ($\sum \mathrm{i} \in\{\mathrm{w}$. poly $\left.p \mathrm{w}=0\} . \mathrm{u} \mathrm{i} / \mathrm{U}\right)=1 "$.
qed (insert 〈U > 0〉 u_pos,
auto simp: hull_inc intro!: divide_nonneg_pos less_imp_le poly_roots_finite)
qed
qed

Figure 2: Example for Jensen's Theorem: The roots (\bullet) and critical points (o) of the polynomial $x^{7}-3 x^{6}+2 x^{5}+8 x^{4}+10 x^{3}-10 x+1$.

It can be seen that all the non-real critical points lie inside a Jensen disc (○), whereas there can be real critical points that do not lie inside a Jensen disc.

3 Jensen's Theorem

For each root w of a real polynomial p, the Jensen disc of w is the smallest disc containing both w and \bar{w}, i.e. the disc with centre $\operatorname{Re}(w)$ and radius $|\operatorname{Im}(w)|$.
We now show that if p is a real polynomial, every non-real critical point of p lies inside a Jensen disc of one of its non-real roots.
definition jensen_disc :: "complex \Rightarrow complex set" where
"jensen_disc w = cball (of_real (Re w)) |Im w|"
theorem pderiv_root_in_jensen_disc:
fixes p :: "complex poly"
assumes "set (coeffs p) $\subseteq \mathbb{R}$ " and "degree $p \neq 0 "$
assumes "poly (pderiv p) z = 0" and "z $\notin \mathbb{R} "$
shows "ヨ w. w $\notin \mathbb{R} \wedge$ poly p w $=0 \wedge z \in$ jensen_disc w"
proof (rule ccontr)
have real_coeffs: "coeff $p n \in \mathbb{R}$ " for n
using assms(1) by (metis Reals_0 coeff_0 coeff_in_coeffs le_degree subsetD)
define d where $" d=(\lambda x$. dist $z(\operatorname{Re} x) \sim 2-\operatorname{Im} x$ ~2)"
assume *: " $\neg(\exists$ w. w $\notin \mathbb{R} \wedge$ poly p w $=0 \wedge z \in$ jensen_disc w)"
have d_pos: "d w > 0" if "poly p w $=0$ " "w $\notin \mathbb{R}$ " for w
proof -
have "dist z (Re w) > $\mid I m$ w|"
using * that unfolding d_def jensen_disc_def by (auto simp: dist_commute)
hence "dist z (Re w) - $2>|\operatorname{Im} w|$ - 2" by (intro power_strict_mono) auto
thus ?thesis by (simp add: d_def)
qed
have "poly p z $\neq 0$ "
using d_pos[of z] assms by (auto simp: d_def dist_norm cmod_power2)
hence [simp]: " $p \neq 0$ " by auto
define α where " $\alpha=$ lead_coeff p "
have [simp]: " $\alpha \neq 0 "$
using assms(4) by (auto simp: $\alpha_{-} d e f$)
obtain A where $p_{-} e q: ~ " p=\operatorname{smult} \alpha\left(\prod x \in \# A .[:-x, 1:]\right) "$
unfolding α_{-}def using alg_closed_imp_factorization[of p] by auto
have poly_p: "poly $p=\left(\lambda_{\mathrm{w}} . \alpha *\left(\prod z \in \# A . \mathrm{w}-z\right)\right.$)"
by (subst p_eq) (simp add: poly_prod_mset fun_eq_iff)
have [simp]: "poly $p z=0 \longleftrightarrow z \in \# A "$ for z
by (auto simp: poly_p $\left.\alpha_{-} d e f\right)$
define Apos where "Apos $=$ filter_mset (λ_{w}. Im w > 0) A"
define Aneg where "Aneg $=$ filter_mset (λ_{w}. Im w < $)$ A"
define $A 0$ where "AO = filter_mset ($\lambda \mathrm{w}$. Im w = 0) A "
have " $A=$ Apos + Aneg $+A 0$ "
unfolding Apos_def Aneg_def AO_def by (induction A) auto

```
    have count_A: "count \(A\) w \(=\) order w \(p\) " for w
    proof -
        have " \(0 \notin \#\{\#[:-x, 1:] . x \in \# A \#\} "\)
            by auto
    hence "order w \(p=\left(\sum x \in \# A\right.\). order w [:- \(\left.\left.x, 1:\right]\right) "\)
        by (simp add: p_eq order_smult order_prod_mset multiset.map_comp
o_def)
    also have "... = ( \(\sum x \in \# A\). if \(w=x\) then 1 else 0 )"
        by (simp add: order_linear_factor)
    also have "... = count \(A\) w"
        by (induction A) auto
    finally show ?thesis ..
qed
have "Aneg = image_mset cnj Apos"
```

```
    proof (rule multiset_eqI)
    fix x :: complex
    have "order (cnj x) (map_poly cnj p) = order x p"
        by (subst order_map_poly_cnj) auto
    also have "map_poly cnj p = p"
        using assms(1) by (metis Reals_cnj_iff map_poly_idI' subsetD)
    finally have [simp]: "order (cnj x) p = order x p".
    have "count (image_mset cnj Apos) (cnj (cnj x)) = count Apos (cnj
x)"
        by (subst count_image_mset_inj) (auto simp: inj_on_def)
    also have "... = count Aneg x"
        by (simp add: Apos_def Aneg_def count_A)
    finally show "count Aneg x = count (image_mset cnj Apos) x"
        by simp
    qed
    have [simp]: "cnj x \in# A \longleftrightarrow x \in# A" for x
    proof -
    have "cnj x \in# A \longleftrightarrow poly p (cnj x) = 0"
        by simp
    also have "poly p (cnj x) = cnj (poly (map_poly cnj p) x)"
        by simp
    also have "map_poly cnj p = p"
        using real_coeffs by (intro poly_eqI) (auto simp: coeff_map_poly
Reals_cnj_iff)
    finally show ?thesis
        by simp
    qed
    define N where "N = ( }\lambda\textrm{x}.\operatorname{norm ((z - x) * (z - cnj x)))"
    have N_pos: "N x > O" if "x \in# A" for x
    using that <poly p z f= 0> by (auto simp: N_def)
have N_nonneg: "N x \geq 0" and [simp]: "N x = 0" if "x \in# A" for x
    using N_pos[OF that] by simp_all
We show that \(\left(\sum x \in \# A .1 /(z-x)\right)=0\)（which is relatively obvious）and then that the imaginary part of this sum is positive，which is a contradiction．
```

```
define \(S\) where \(" S=\left(\sum x \in \# A .1 /(z-x)\right) "\)
```

define S where $" S=\left(\sum x \in \# A .1 /(z-x)\right) "$
note [derivative_intros del] = has_field_derivative_prod_mset
note [derivative_intros del] = has_field_derivative_prod_mset
note [derivative_intros] = has_field_derivative_prod_mset'
note [derivative_intros] = has_field_derivative_prod_mset'
have "(poly p has_field_derivative poly p z * S) (at z)"
have "(poly p has_field_derivative poly p z * S) (at z)"
using <poly p z $=0$ 〉 unfolding S_def
using <poly p z $=0$ 〉 unfolding S_def
by (subst (1 2) poly_p)
by (subst (1 2) poly_p)
(auto intro!: derivative_eq_intros simp: order_pos_iff mult_ac
(auto intro!: derivative_eq_intros simp: order_pos_iff mult_ac
power_diff multiset.map_comp o_def)
power_diff multiset.map_comp o_def)
hence "poly (pderiv p) z = poly p z * S"
hence "poly (pderiv p) z = poly p z * S"
by (rule sym[OF DERIV_unique]) (auto intro: poly_DERIV)
by (rule sym[OF DERIV_unique]) (auto intro: poly_DERIV)
with <poly (pderiv p) z = 0> and <poly pz $=0$ 〉 have " $\mathrm{S}=0$ " by simp

```
with <poly (pderiv p) z = 0> and <poly pz \(=0\) 〉 have " \(\mathrm{S}=0\) " by simp
```

For determining Im S, we decompose the sum into real roots and pairs of conjugate and merge the sum of each pair of conjugate roots.

```
    have \(\operatorname{lIm} S=\left(\sum x \in \# A p o s . \operatorname{Im}(1 /(z-x))\right)+\left(\sum x \in \# A n e g . \operatorname{Im}(1 /(z\right.\)
- x)) ) + ( \(\sum x \in \# A 0\). \(\left.\operatorname{Im}(1 /(z-x))\right)\)
    by (simp add: \(S_{-} \operatorname{def}\langle A=A p o s+A n e g+A 0\rangle I m_{-}\)sum_mset')
    also have "Aneg = image_mset cnj Apos"
        by fact
    also have " \(\left(\sum x \in \# \ldots . \operatorname{Im}(1 /(z-x))\right)=\left(\sum x \in \# A p o s . \operatorname{Im}(1 /(z-\right.\)
cnj x)))"
            by (simp add: multiset.map_comp o_def)
    also have " \(\left(\sum x \in \# A p o s . \operatorname{Im}(1 /(z-x))\right)+\left(\sum x \in \# A p o s . \operatorname{Im}(1 /(z-\right.\)
cnj x))) =
                    \(\left(\sum x \in \# \text { Apos. } \operatorname{Im}(1 /(z-x)+1 /(z-c n j x))\right)^{\prime \prime}\)
            by (subst sum_mset.distrib [symmetric]) simp_all
    also have "image_mset \((\lambda x\). \(\operatorname{Im}(1 /(z-x)+1 /(z-c n j x)))\) Apos
                    image_mset ( \(\lambda \mathrm{x} .-2\) * \(\operatorname{Im} z * d x / N x\) - 2) Apos"
    proof (intro image_mset_cong, goal_cases)
        case (1 x)
        have "1 / (z-x) + \(1 /(z-c n j x)=(2 * z-(x+c n j x))\) * inverse
((z - x) * (z - cnj x))"
        using <poly p z \(\neq 0\) > 1
        by (auto simp: divide_simps Apos_def complex_is_Real_iff simp flip:
Reals_cnj_iff)
    also have " \(\mathrm{x}+\operatorname{cnj} \mathrm{x}=2\) * Re x "
        by (subst complex_add_cnj) auto
    also have "inverse \(((z-x) *(z-c n j x))=(c n j z-c n j x) *(c n j\)
z - x) / N x " 2"
        by (subst inverse_complex_altdef) (simp_all add: N_def)
    also have "Im ((2*z - complex_of_real (2 * Re x)) * ( \((c n j z-c n j\)
x) * (cnj z-x) / N x - 2) ) \(=\)
```



```
/ Nx " \({ }^{\prime \prime}\)
        by (simp add: algebra_simps power2_eq_square)
    also have "Im z - 2 - Im x \(x^{2}+(\operatorname{Re} x-\operatorname{Re} z) ~-2=d x "\)
                unfolding dist_norm cmod_power2 d_def by (simp add: power2_eq_square
algebra_simps)
            finally show ?case .
    qed
    also have "sum_mset \(\ldots=-\operatorname{Im} z *\left(\sum x \in \# A p o s .2 * d x / N x\right.\) - 2)"
        by (subst sum_mset_distrib_left) (simp_all add: multiset.map_comp
o_def mult_ac)
    also have "image_mset \((\lambda x\). Im (1 / ( \(z-x)\) ) AO = image_mset ( \(\lambda x\). -Im
\(z / N x\) ) AO"
    proof (intro image_mset_cong, goal_cases)
            case (1 x)
            have [simp]: "Im \(x=0 "\)
                using 1 by (auto simp: AO_def)
            have [simp]: "cnj x = x"
```

```
        by (auto simp: complex_eq_iff)
    show "Im (1 / (z - x)) = -Im z / N x"
        by (simp add: Im_divide N_def cmod_power2 norm_power flip: power2_eq_square)
    qed
    also have "sum_mset ... = - Im z * (\sumx\in#AO. 1 / N x)"
        by (simp add: sum_mset_distrib_left multiset.map_comp o_def)
    also have "-Im z* (\sumx\in#Apos. 2*dx/Nx - 2) + ...=
                        -Im z* ((\sumx\in#Apos. 2*dx/Nx - 2) + (\sumx\in#AO. 1/
N x))"
        by algebra
    also have "Im S = 0"
        using <S = 0> by simp
    finally have "((\sumx\in#Apos. 2 * dx/N x - 2) + (\sumx\in#AO. 1/N x))
= 0"
        using <z & R> by (simp add: complex_is_Real_iff)
    moreover have "((\sumx\in#Apos. 2*dx/Nx - 2) + (\sumx\in#AO. 1/N
x)) > 0"
    proof -
        have "A = {#}"
            using <degree p # 0> p_eq by fastforce
        hence "Apos \not= {#} \vee AO = {#}"
            using <Aneg = image_mset cnj Apos><A = Apos + Aneg + AO> by auto
        thus ?thesis
        proof
            assume "Apos #= {#}"
            hence "(\sumx\in#Apos. 2*dx/N x - 2) > 0"
            by (intro sum_mset_pos)
                (auto intro!: mult_pos_pos divide_pos_pos d_pos simp: Apos_def
complex_is_Real_iff)
            thus ?thesis
                by (intro add_pos_nonneg sum_mset_nonneg) (auto intro!: N_nonneg
simp: AO_def)
    next
            assume "AO \not= {#}"
            hence "(\sumx\in#AO. 1/N x) > 0"
                            by (intro sum_mset_pos) (auto intro!: divide_pos_pos N_pos simp:
AO_def)
            thus ?thesis
            by (intro add_nonneg_pos sum_mset_nonneg)
                (auto intro!: N_pos less_imp_le[OF d_pos] mult_nonneg_nonneg
divide_nonneg_pos
                                    simp: Apos_def complex_is_Real_iff)
        qed
    qed
    ultimately show False
        by simp
qed
```

end

References

[1] F. Enescu. Math 4444/6444 Polynomials 2, Lecture Notes, Lecture 9. https://math.gsu.edu/fenescu/fall2010/lec9-polyn-2010.pdf, 2010.
[2] M. Marden. Geometry of Polynomials. American Mathematical Society Mathematical Surveys. American Mathematical Society, 1966.

