
The Polylogarithm Function

Manuel Eberl

April 18, 2024

Abstract

This entry provides a definition of the Polylogarithm function, com-
monly denoted as Lis(z). Here, z is a complex number and s an integer
parameter. This function can be defined by the power series expression
Lis(z) =

∑∞
k=1

zk

ks for |z| < 1 and analytically extended to the entire
complex plane, except for a branch cut on R≥1.

Several basic properties are also proven, such as the relationship to
the Eulerian polynomials via Li−k(z) = z(1−z)k−1Ak(z) for k ≥ 0, the
derivative formula d

dzLis(z) = 1
zLis−1(z), the relation to the “normal”

logarithm via Li1(z) = − ln(1−z), and the duplication formula Lis(z)+
Lis(−z) = 21−sLis(z2).

Contents
1 Auxiliary material 3

1.1 Miscellaneous . 3
1.2 The slotted complex plane . 5

2 The Polylogarithm Function 9
2.1 Definition and basic properties 9
2.2 Special values . 20
2.3 Duplication formula . 24

1

−2 −1.5 −1 −0.5 0.5

−1

−0.8

−0.6

−0.4

−0.2

0.2

0.4

0.6

0.8

1

Li−3(x)

Li−2(x)

Li−1(x)

Li0(x)

Li1(x)

Li2(x) Li3(x)

x

Figure 1: Plots of Lis(x) for s = −3,−2, . . . , 3 and real inputs x ∈ [−2, 1]

2

1 Auxiliary material
theory Polylog_Library
imports
"HOL-Complex_Analysis.Complex_Analysis"
"Linear_Recurrences.Eulerian_Polynomials"

begin

1.1 Miscellaneous
lemma fps_conv_radius_fps_of_poly [simp]:

fixes p :: "'a :: {banach, real_normed_div_algebra} poly"
shows "fps_conv_radius (fps_of_poly p) = ∞"

proof -
have "conv_radius (poly.coeff p) = conv_radius (λ_. 0 :: 'a)"

using MOST_coeff_eq_0 unfolding cofinite_eq_sequentially by (rule
conv_radius_cong')

also have ". . . = ∞"
by simp

finally show ?thesis
by (simp add: fps_conv_radius_def)

qed

lemma eval_fps_power:
fixes F :: "'a :: {banach, real_normed_div_algebra, comm_ring_1} fps"
assumes z: "norm z < fps_conv_radius F"
shows "eval_fps (F ^ n) z = eval_fps F z ^ n"

proof (induction n)
case 0
thus ?case

by (auto simp: eval_fps_mult)
next

case (Suc n)
have "eval_fps (F ^ Suc n) z = eval_fps (F * F ^ n) z"

by simp
also from z have ". . . = eval_fps F z * eval_fps (F ^ n) z"

by (subst eval_fps_mult) (auto intro!: less_le_trans[OF _ fps_conv_radius_power])
finally show ?case

using Suc.IH by simp
qed

lemma eval_fps_of_poly [simp]: "eval_fps (fps_of_poly p) z = poly p z"
proof -

have "(λn. poly.coeff p n * z ^ n) sums poly p z"
unfolding poly_altdef by (rule sums_finite) (auto simp: coeff_eq_0)

moreover have "(λn. poly.coeff p n * z ^ n) sums eval_fps (fps_of_poly
p) z"

using sums_eval_fps[of z "fps_of_poly p"] by simp
ultimately show ?thesis

using sums_unique2 by blast

3

qed

lemma poly_holomorphic_on [holomorphic_intros]:
assumes [holomorphic_intros]: "f holomorphic_on A"
shows "(λz. poly p (f z)) holomorphic_on A"
unfolding poly_altdef by (intro holomorphic_intros)

lemma simply_connected_eq_global_primitive:
assumes "simply_connected S" "open S" "f holomorphic_on S"
obtains h where "

∧
z. z ∈ S =⇒ (h has_field_derivative f z) (at z)"

using simply_connected_eq_global_primitive[of S] assms that by blast

lemma
assumes "x ∈ closed_segment y z"
shows in_closed_segment_imp_Re_in_closed_segment: "Re x ∈ closed_segment

(Re y) (Re z)" (is ?th1)
and in_closed_segment_imp_Im_in_closed_segment: "Im x ∈ closed_segment

(Im y) (Im z)" (is ?th2)
proof -

from assms obtain t where t: "t ∈ {0..1}" "x = linepath y z t"
by (metis imageE linepath_image_01)

have "Re x = linepath (Re y) (Re z) t" "Im x = linepath (Im y) (Im z)
t"

by (simp_all add: t Re_linepath' Im_linepath')
with t(1) show ?th1 ?th2

using linepath_in_path[of t "Re y" "Re z"] linepath_in_path[of t "Im
y" "Im z"] by simp_all
qed

lemma linepath_in_open_segment: "t ∈ {0<..<1} =⇒ x 6= y =⇒ linepath
x y t ∈ open_segment x y"

unfolding greaterThanLessThan_iff by (metis in_segment(2) linepath_def)

lemma in_open_segment_imp_Re_in_open_segment:
assumes "x ∈ open_segment y z" "Re y 6= Re z"
shows "Re x ∈ open_segment (Re y) (Re z)"

proof -
from assms obtain t where t: "t ∈ {0<..<1}" "x = linepath y z t"

by (metis greaterThanLessThan_iff in_segment(2) linepath_def)
have "Re x = linepath (Re y) (Re z) t"

by (simp_all add: t Re_linepath')
with t(1) show ?thesis

using linepath_in_open_segment[of t "Re y" "Re z"] assms by auto
qed

lemma in_open_segment_imp_Im_in_open_segment:
assumes "x ∈ open_segment y z" "Im y 6= Im z"
shows "Im x ∈ open_segment (Im y) (Im z)"

proof -

4

from assms obtain t where t: "t ∈ {0<..<1}" "x = linepath y z t"
by (metis greaterThanLessThan_iff in_segment(2) linepath_def)

have "Im x = linepath (Im y) (Im z) t"
by (simp_all add: t Im_linepath')

with t(1) show ?thesis
using linepath_in_open_segment[of t "Im y" "Im z"] assms by auto

qed

lemma poly_eulerian_poly_0 [simp]: "poly (eulerian_poly n) 0 = 1"
by (induction n) (auto simp: eulerian_poly.simps(2) Let_def)

lemma eulerian_poly_at_1 [simp]: "poly (eulerian_poly n) 1 = fact n"
by (induction n) (auto simp: eulerian_poly.simps(2) Let_def algebra_simps)

1.2 The slotted complex plane
lemma closed_slot_left: "closed (complex_of_real ` {..c})"

by (intro closed_injective_linear_image) (auto simp: inj_def)

lemma closed_slot_right: "closed (complex_of_real ` {c..})"
by (intro closed_injective_linear_image) (auto simp: inj_def)

lemma complex_slot_left_eq: "complex_of_real ` {..c} = {z. Re z ≤ c
∧ Im z = 0}"

by (auto simp: image_iff complex_eq_iff)

lemma complex_slot_right_eq: "complex_of_real ` {c..} = {z. Re z ≥ c
∧ Im z = 0}"

by (auto simp: image_iff complex_eq_iff)

lemma complex_double_slot_eq:
"complex_of_real ` ({..c1} ∪ {c2..}) = {z. Im z = 0 ∧ (Re z ≤ c1 ∨

Re z ≥ c2)}"
by (auto simp: image_iff complex_eq_iff)

lemma starlike_slotted_complex_plane_left_aux:
assumes z: "z ∈ -(complex_of_real ` {..c})" and c: "c < c'"
shows "closed_segment (complex_of_real c') z ⊆ -(complex_of_real

` {..c})"
proof -

show "closed_segment c' z ⊆ -of_real ` {..c}"
proof (cases "Im z = 0")

case True
thus ?thesis using z c

by (auto simp: closed_segment_same_Im closed_segment_eq_real_ivl
complex_slot_left_eq)

next

5

case False
show ?thesis
proof

fix x assume x: "x ∈ closed_segment (of_real c') z"
consider "x = of_real c'" | "x = z" | "x ∈ open_segment (of_real

c') z"
unfolding open_segment_def using x by blast

thus "x ∈ -complex_of_real ` {..c}"
proof cases

assume "x ∈ open_segment (of_real c') z"
hence "Im x ∈ open_segment (Im (complex_of_real c')) (Im z)"

by (intro in_open_segment_imp_Im_in_open_segment) (use False
in auto)

hence "Im x 6= 0"
by (auto simp: open_segment_eq_real_ivl split: if_splits)

thus ?thesis
by (auto simp: complex_slot_right_eq)

qed (use z c in ‹auto simp: complex_slot_left_eq›)
qed

qed
qed

lemma starlike_slotted_complex_plane_left: "starlike (-(complex_of_real
` {..c}))"

unfolding starlike_def
proof (rule bexI[of _ "of_real c + 1"]; (intro ballI)?)

show "complex_of_real c + 1 ∈ -complex_of_real ` {..c}"
by (auto simp: complex_eq_iff)

show "closed_segment (complex_of_real c + 1) z ⊆ - complex_of_real
` {..c}"

if "z ∈ - complex_of_real ` {..c}" for z
using starlike_slotted_complex_plane_left_aux[OF that, of "c + 1"]

by simp
qed

lemma starlike_slotted_complex_plane_right_aux:
assumes z: "z ∈ -(complex_of_real ` {c..})" and c: "c > c'"
shows "closed_segment (complex_of_real c') z ⊆ -(complex_of_real

` {c..})"
proof -

show "closed_segment c' z ⊆ -of_real ` {c..}"
proof (cases "Im z = 0")

case True
thus ?thesis using z c

by (auto simp: closed_segment_same_Im closed_segment_eq_real_ivl
complex_slot_right_eq)

next
case False

6

show ?thesis
proof

fix x assume x: "x ∈ closed_segment (of_real c') z"
consider "x = of_real c'" | "x = z" | "x ∈ open_segment (of_real

c') z"
unfolding open_segment_def using x by blast

thus "x ∈ -complex_of_real ` {c..}"
proof cases

assume "x ∈ open_segment (of_real c') z"
hence "Im x ∈ open_segment (Im (complex_of_real c')) (Im z)"

by (intro in_open_segment_imp_Im_in_open_segment) (use False
in auto)

hence "Im x 6= 0"
by (auto simp: open_segment_eq_real_ivl split: if_splits)

thus ?thesis
by (auto simp: complex_slot_right_eq)

qed (use z c in ‹auto simp: complex_slot_right_eq›)
qed

qed
qed

lemma starlike_slotted_complex_plane_right: "starlike (-(complex_of_real
` {c..}))"

unfolding starlike_def
proof (rule bexI[of _ "of_real c - 1"]; (intro ballI)?)

show "complex_of_real c - 1 ∈ -complex_of_real ` {c..}"
by (auto simp: complex_eq_iff)

show "closed_segment (complex_of_real c - 1) z ⊆ - complex_of_real
` {c..}"

if "z ∈ - complex_of_real ` {c..}" for z
using starlike_slotted_complex_plane_right_aux[OF that, of "c - 1"]

by simp
qed

lemma starlike_doubly_slotted_complex_plane_aux:
assumes z: "z ∈ -(complex_of_real ` ({..c1} ∪ {c2..}))" and c: "c1

< c" "c < c2"
shows "closed_segment (complex_of_real c) z ⊆ -(complex_of_real `

({..c1} ∪ {c2..}))"
proof -

show "closed_segment c z ⊆ -of_real ` ({..c1} ∪ {c2..})"
proof (cases "Im z = 0")

case True
thus ?thesis using z c

by (auto simp: closed_segment_same_Im closed_segment_eq_real_ivl
complex_double_slot_eq)

next
case False

7

show ?thesis
proof

fix x assume x: "x ∈ closed_segment (of_real c) z"
consider "x = of_real c" | "x = z" | "x ∈ open_segment (of_real

c) z"
unfolding open_segment_def using x by blast

thus "x ∈ -complex_of_real ` ({..c1} ∪ {c2..})"
proof cases

assume "x ∈ open_segment (of_real c) z"
hence "Im x ∈ open_segment (Im (complex_of_real c)) (Im z)"

by (intro in_open_segment_imp_Im_in_open_segment) (use False
in auto)

hence "Im x 6= 0"
by (auto simp: open_segment_eq_real_ivl split: if_splits)

thus ?thesis
by (auto simp: complex_slot_right_eq)

qed (use z c in ‹auto simp: complex_slot_right_eq›)
qed

qed
qed

lemma starlike_doubly_slotted_complex_plane:
assumes "c1 < c2"
shows "starlike (-(complex_of_real ` ({..c1} ∪ {c2..})))"

proof -
from assms obtain c where c: "c1 < c" "c < c2"

using dense by blast
show ?thesis

unfolding starlike_def
proof (rule bexI[of _ "of_real c"]; (intro ballI)?)

show "complex_of_real c ∈ -complex_of_real ` ({..c1} ∪ {c2..})"
using c by (auto simp: complex_eq_iff)

show "closed_segment (complex_of_real c) z ⊆ - complex_of_real `
({..c1} ∪ {c2..})"

if "z ∈ - complex_of_real ` ({..c1} ∪ {c2..})" for z
using starlike_doubly_slotted_complex_plane_aux[OF that, of c] c

by simp
qed

qed

lemma simply_connected_slotted_complex_plane_left:
"simply_connected (-(complex_of_real ` {..c}))"
by (intro starlike_imp_simply_connected starlike_slotted_complex_plane_left)

lemma simply_connected_slotted_complex_plane_right:
"simply_connected (-(complex_of_real ` {c..}))"
by (intro starlike_imp_simply_connected starlike_slotted_complex_plane_right)

lemma simply_connected_doubly_slotted_complex_plane:

8

"c1 < c2 =⇒ simply_connected (-(complex_of_real ` ({..c1} ∪ {c2..})))"
by (intro starlike_imp_simply_connected starlike_doubly_slotted_complex_plane)

end

2 The Polylogarithm Function
theory Polylog
imports
"HOL-Complex_Analysis.Complex_Analysis"
"Linear_Recurrences.Eulerian_Polynomials"
"HOL-Real_Asymp.Real_Asymp"
Polylog_Library

begin

2.1 Definition and basic properties

The principal branch of the Polylogarithm function Lis(z) is defined as

Lis(z) =
∞∑
k=1

zk

ks

for |z| < 1 and elsewhere by analytic continuation. For integer s ≤ 0 it
is holomorphic except for a pole at z = 1. For other values of s it is
holomorphic except for a branch cut along the line [1,∞).
Special values include Li0(z) = z

1−z and Li1(z) = − log(1− z).
One could potentially generalise this to arbitrary s ∈ �, but this makes the
analytic continuation somewhat more complicated, so we chosed not to do
this at this point.
In the following, we define the principal branch of Lis(z) for integer s.
definition polylog :: "int ⇒ complex ⇒ complex" where
"polylog k z =

(if k ≤ 0 then z * poly (eulerian_poly (nat (-k))) z * (1 - z) powi
(k - 1)

else if z ∈ of_real ` {1..} then 0
else (SOME f. f holomorphic_on -of_real`{1..} ∧

(∀ z∈ball 0 1. f z = (
∑

n. of_nat (Suc n) powi (-k)
* z ^ Suc n))) z)"

lemma conv_radius_polylog: "conv_radius (λr. of_nat r powi k :: complex)
= 1"
proof (rule conv_radius_ratio_limit_ereal_nonzero)

have "(λn. ereal (real n powi k / real (Suc n) powi k)) −−−−→ ereal
1"

proof (cases "k ≥ 0")
case True

9

have "(λn. ereal (real n ^ nat k / real (Suc n) ^ nat k)) −−−−→ ereal
1"

by (intro tendsto_ereal) real_asymp
thus ?thesis

using True by (simp add: power_int_def)
next

case False
have "(λn. ereal (inverse (real n) ^ nat (-k) / inverse (real (Suc

n)) ^ nat (-k))) −−−−→ ereal 1"
by (intro tendsto_ereal) real_asymp

thus ?thesis
using False by (simp add: power_int_def)

qed
thus "(λn. ereal (norm (of_nat n powi k :: complex) / norm (of_nat (Suc

n) powi k :: complex))) −−−−→ 1"
unfolding one_ereal_def [symmetric] by (simp add: norm_power_int del:

of_nat_Suc)
qed auto

lemma abs_summable_polylog:
"norm z < 1 =⇒ summable (λr. norm (of_nat r powi k * z ^ r :: complex))"
by (rule abs_summable_in_conv_radius) (use conv_radius_polylog[of k]

in auto)

Two very central results that characterise the polylogarithm:

Li′s(z) =
1

z
Lis−1(z) and Lis(z) =

∞∑
n=1

zn

ns
for |z| < 1

theorem has_field_derivative_polylog [derivative_intros]:
"
∧
z. z ∈ (if k ≤ 0 then -{1} else -(of_real ` {1..})) =⇒

(polylog k has_field_derivative (if z = 0 then 1 else polylog
(k - 1) z / z)) (at z within A)"

and sums_polylog: "norm z < 1 =⇒ (λn. of_nat (Suc n) powi (-k) * z
^ Suc n) sums polylog k z"
proof -

let ?S = "-(complex_of_real ` {1..})"
have "open ?S"

by (intro open_Compl closed_slot_right)
define S where "S = (λk::int. if k ≤ 0 then -{1} else ?S)"
have [simp]: "open (S k)" for k

using ‹open ?S› by (auto simp: S_def)

have *: "(∀ z∈S k. (polylog k has_field_derivative (if z = 0 then 1
else polylog (k - 1) z / z)) (at z)) ∧

(∀ z∈ball 0 1. (λn. of_nat (Suc n) powi (-k) * z ^ Suc n) sums
polylog k z)"

proof (induction "nat k" arbitrary: k)
case 0

10

define k' where "k' = nat (-k)"
have k_eq: "k = -int k'"

using 0 by (simp add: k'_def)

have "(polylog k has_field_derivative (if z = 0 then 1 else polylog
(k - 1) z / z)) (at z)"

if z: "z ∈ S k" for z
proof -

have [simp]: "z 6= 1"
using z 0 by (auto simp: S_def)

write eulerian_poly ("E")
have "polylog (k - 1) z = z * (poly (E (Suc k')) z * (1 - z) powi

(k - 2))"
using 0 by (simp add: polylog_def k_eq nat_add_distrib algebra_simps)

also have ". . . = z * poly (E (Suc k')) z / (1 - z) ^ (k' + 2)"
by (simp add: k_eq power_int_def nat_add_distrib field_simps)

finally have eq1: "polylog (k - 1) z = . . . " .

have "polylog k = (λz. z * poly (E k') z * (1 - z) powi (k - 1))"
using 0 by (simp add: polylog_def [abs_def] k_eq)

also have ". . . = (λz. z * poly (E k') z / (1 - z) ^ Suc k')"
by (simp add: k_eq power_int_def field_simps nat_add_distrib)

finally have eq2: "polylog k = (λz. z * poly (E k') z / (1 - z) ^
Suc k')" .

have "((λz. z * poly (E k') z / (1 - z) ^ Suc k') has_field_derivative
(poly (E (Suc k')) z / (1 - z) ^ (k' + 2))) (at z)"

apply (rule derivative_eq_intros refl poly_DERIV)+
apply (simp)

apply (simp add: eulerian_poly.simps(2) Let_def divide_simps)
apply (simp add: algebra_simps)
done

also note eq2 [symmetric]
also have "poly (E (Suc k')) z / (1 - z) ^ (k' + 2) =

(if z = 0 then 1 else polylog (k - 1) z / z)"
by (subst eq1) (auto)

finally show ?thesis .
qed

moreover have "(λn. of_nat (Suc n) powi (-k) * z ^ Suc n) sums polylog
k z"

if z: "norm z < 1" for z
proof (cases "k = 0")

case True
thus ?thesis using z geometric_sums[of z]

by (auto simp: polylog_def divide_inverse intro!: sums_mult)
next

case False
with 0 have k: "k < 0"

11

by simp
define F where "F = Abs_fps (λn. of_nat n ^ nat (-k) :: complex)"
have "fps_conv_radius (1 - fps_X :: complex fps) ≥ ∞"

by (intro order.trans[OF _ fps_conv_radius_diff]) auto
hence [simp]: "fps_conv_radius (1 - fps_X :: complex fps) = ∞"

by simp
have *: "fps_conv_radius ((1 - fps_X) ^ (nat (-k) + 1) :: complex

fps) ≥ ∞"
by (intro order.trans[OF _ fps_conv_radius_power]) auto

have "ereal (norm z) < 1"
using that by simp

also have "1 ≤ fps_conv_radius F"
unfolding F_def fps_conv_radius_def using conv_radius_polylog[of

"-k"] 0
by (simp add: power_int_def)

finally have "(λn. fps_nth F n * z ^ n) sums eval_fps F z"
by (rule sums_eval_fps)

also have "(λn. fps_nth F n * z ^ n) = (λn. of_nat n powi (-k) *
z ^ n)"

using 0 by (simp add: F_def power_int_def)
also have "eval_fps F z = poly (fps_monom_poly 1 (nat (- k))) z

/
eval_fps ((1 - fps_X) ^ (nat (- k) + 1))

z"
unfolding F_def fps_monom_aux

proof (subst eval_fps_divide')
show "fps_conv_radius (fps_of_poly (fps_monom_poly 1 (nat (-

k)))) > 0"
by simp

show "fps_conv_radius ((1 - fps_X :: complex fps) ^ (nat (- k)
+ 1)) > 0"

by (intro less_le_trans[OF _ fps_conv_radius_power]) auto
show "1 > (0 :: ereal)"

by simp
show "eval_fps ((1 - fps_X) ^ (nat (-k) + 1)) z 6= 0"

if "z ∈ eball 0 1" for z :: complex
using that by (subst eval_fps_power) (auto simp: eval_fps_diff)

show "ereal (norm z) < Min {1, fps_conv_radius (fps_of_poly (fps_monom_poly
1 (nat (- k)))),

fps_conv_radius ((1 - fps_X :: complex fps) ^ (nat (-
k) + 1))}" using * z

by auto
qed auto
also have "eval_fps ((1 - fps_X) ^ (nat (- k) + 1)) z = (1 - z)

^ (nat (-k) + 1)"
by (subst eval_fps_power) (auto simp: eval_fps_diff)

also have ". . . = (1 - z) powi int (nat (-k) + 1)"
by (rule power_int_of_nat [symmetric])

12

also have "int (nat (-k) + 1) = -(k-1)"
using 0 by simp

also have "(poly (fps_monom_poly 1 (nat (- k))) z / (1 - z) powi
- (k - 1)) = polylog k z"

using k
by (auto simp add: fps_monom_poly_def polylog_def power_int_diff)

finally show "(λn. of_nat (Suc n) powi - k * z ^ (Suc n)) sums polylog
k z"

by (subst sums_Suc_iff) (use k in auto)
qed
ultimately show ?case

using 0 by (auto simp: polylog_def [abs_def])
next

case (Suc k' k)
have [simp]: "nat k = Suc k'" "nat (k - 1) = k'"

using Suc(2) by auto
from Suc(2) have k: "k > 0"

by linarith
have deriv: "(polylog (k - 1) has_field_derivative

(if z = 0 then 1 else polylog (k - 2) z / z)) (at z)" if "z
∈ S (k - 1)" for z

using Suc(1)[of "k-1"] that by auto
hence holo: "polylog (k - 1) holomorphic_on S (k - 1)"

by (subst holomorphic_on_open) auto

have sums: "(λn. of_nat (Suc n) powi -(k-1) * z ^ Suc n) sums polylog
(k-1) z"

if "norm z < 1" for z
using that Suc(1)[of "k - 1"] by auto

define g where "g = (λz. if z = 0 then 1 else polylog (k - 1) z /
z)"

have "g holomorphic_on S (k - 1)"
unfolding g_def

proof (rule removable_singularity)
show "(λz. polylog (k - 1) z / z) holomorphic_on S (k - 1) - {0}"

using Suc by (intro holomorphic_intros holomorphic_on_subset[OF
holo]) auto

define F where "F = Abs_fps (λn. of_nat (Suc n) powi (1-k) :: complex)"
have radius: "fls_conv_radius (fps_to_fls F) = 1"
proof -

have "F = fps_shift 1 (Abs_fps (λn. of_int n powi (1 - k)))"
using k by (simp add: F_def fps_eq_iff power_int_def)

also have "fps_conv_radius . . . = 1"
using conv_radius_polylog[of "1 - k"] unfolding fps_conv_radius_shift
by (simp add: fps_conv_radius_def)

finally show ?thesis by simp
qed

13

have "eventually (λz::complex. z ∈ ball 0 1) (nhds 0)"
by (intro eventually_nhds_in_open) auto

hence "eventually (λz::complex. z ∈ ball 0 1 - {0}) (at 0)"
unfolding eventually_at_filter by eventually_elim auto

hence "eventually (λz. eval_fls (fps_to_fls F) z = polylog (k -
1) z / z) (at 0)"

proof eventually_elim
case (elim z)
have "(λn. of_nat (Suc n) powi - (k - 1) * z ^ Suc n / z) sums

(polylog (k - 1) z / z)"
by (intro sums_divide sums) (use elim in auto)

also have "(λn. of_nat (Suc n) powi - (k - 1) * z ^ Suc n / z)
=

(λn. of_nat (Suc n) powi - (k - 1) * z ^ n)"
using elim by auto

finally have "polylog (k - 1) z / z = (
∑

n. of_nat (Suc n) powi
- (k - 1) * z ^ n)"

by (simp add: sums_iff)
also have ". . . = eval_fps F z"

unfolding eval_fps_def F_def by simp
finally show ?case

using radius elim by (simp add: eval_fps_to_fls)
qed
hence "(λz. polylog (k - 1) z / z) has_laurent_expansion fps_to_fls

F"
unfolding has_laurent_expansion_def using radius by auto

hence "(λz. polylog (k - 1) z / z) −0→ fls_nth (fps_to_fls F)
0"

by (intro has_laurent_expansion_imp_tendsto_0 fls_subdegree_fls_to_fps_gt0)
auto

thus "(λy. polylog (k - 1) y / y) −0→ 1"
by (simp add: F_def)

qed auto
hence holo: "g holomorphic_on ?S"

by (rule holomorphic_on_subset) (auto simp: S_def)
have "simply_connected ?S"

by (rule simply_connected_slotted_complex_plane_right)
then obtain f where f: "

∧
z. z ∈ ?S =⇒ (f has_field_derivative g

z) (at z)"
using simply_connected_eq_global_primitive holo ‹open ?S› by blast

define h where "h = (λz. f z - f 0)"
have deriv_h [derivative_intros]: "(h has_field_derivative g z) (at

z)" if "z ∈ ?S" for z
unfolding h_def using that by (auto intro!: derivative_eq_intros

f)
hence holo_h: "h holomorphic_on S k" (is "?P1 h")

by (subst holomorphic_on_open) (use k ‹open ?S› in ‹auto simp: S_def›)

14

have summable: "summable (λn. of_nat n powi (-k) * z ^ n)"
if "norm z < 1" for z :: complex
by (rule summable_in_conv_radius)

(use that conv_radius_polylog[of "-k"] in auto)

define F where "F = Abs_fps (λn. of_nat n powi (-k) :: complex)"
have radius: "fps_conv_radius F = 1"

using conv_radius_polylog[of "-k"] by (simp add: fps_conv_radius_def
F_def)

have F_deriv [derivative_intros]:
"(eval_fps F has_field_derivative g z) (at z)" if "z ∈ ball 0 1"

for z
proof -

have "(eval_fps F has_field_derivative eval_fps (fps_deriv F) z)
(at z)"

using that radius by (auto intro!: derivative_eq_intros)
also have "eval_fps (fps_deriv F) z = g z"
proof (cases "z = 0")

case False
have "(λn. of_nat (Suc n) powi - (k - 1) * z ^ Suc n / z) sums

(polylog (k - 1) z / z)"
by (intro sums_divide sums) (use that in auto)

also have ". . . = g z"
using False by (simp add: g_def)

also have "(λn. of_nat (Suc n) powi - (k - 1) * z ^ Suc n / z)
=

(λn. of_nat (Suc n) powi - (k - 1) * z ^ n)"
using False by simp

finally show ?thesis
by (auto simp add: eval_fps_def F_def sums_iff power_int_diff

power_int_minus field_simps
simp del: of_nat_Suc)

qed (auto simp: F_def g_def eval_fps_at_0)
finally show ?thesis .

qed

hence h_eq_sum: "h z = eval_fps F z" if "z ∈ ball 0 1" for z
proof -

have "∃ c. ∀ z∈ball 0 1. h z - eval_fps F z = c"
proof (rule has_field_derivative_zero_constant)

fix z :: complex assume z: "z ∈ ball 0 1"
have "((λx. h x - eval_fps F x) has_field_derivative 0) (at z)"

using z by (auto intro!: derivative_eq_intros)
thus "((λx. h x - eval_fps F x) has_field_derivative 0) (at z

within ball 0 1)"
using z by (subst at_within_open) auto

qed auto

15

then obtain c where c: "
∧
z. norm z < 1 =⇒ h z - eval_fps F z

= c"
by force

from c[of 0] and k have "c = 0"
by (simp add: h_def F_def eval_fps_at_0)

thus ?thesis
using c[of z] that by auto

qed

have h_eq_sum': "(∀ z∈ball 0 1. h z = (
∑

n. of_nat (Suc n) powi -
k * z ^ Suc n))" (is "?P2 h")

proof safe
fix z :: complex assume z: "z ∈ ball 0 1"
have "summable (λn. of_nat (Suc n) powi - k * z ^ Suc n)"

using z summable[of z] by (subst summable_Suc_iff) auto
also have "?this ←→ summable (λn. of_nat n powi - k * z ^ n)"

by (rule summable_Suc_iff)
finally have "(λn. of_nat (Suc n) powi -k * z ^ Suc n) sums h z"

using h_eq_sum[of z] k unfolding summable_Suc_iff
by (subst sums_Suc_iff) (use z in ‹auto simp: eval_fps_def F_def›)

thus "h z = (
∑

n. of_nat (Suc n) powi - k * z ^ Suc n)"
by (simp add: sums_iff)

qed

define h' where "h' = (SOME h. ?P1 h ∧ ?P2 h)"
have "∃ h. ?P1 h ∧ ?P2 h"

using h_eq_sum' holo_h by blast
from someI_ex[OF this] have h'_props: "?P1 h'" "?P2 h'"

unfolding h'_def by blast+
have h'_eq: "h' z = polylog k z" if "z ∈ S k" for z

using that k by (auto simp: polylog_def h'_def S_def)

have polylog_sums: "(λn. of_nat (Suc n) powi (-k) * z ^ Suc n) sums
polylog k z"

if "norm z < 1" for z
proof -

have "summable (λn. of_nat (Suc n) powi (-k) * z ^ Suc n)"
using summable[of z] that by (subst summable_Suc_iff)

moreover from that have "z ∈ S k"
by (auto simp: S_def)

ultimately show ?thesis
using h'_props using that by (force simp: sums_iff h'_eq)

qed

have eq': "polylog k z = h z" if "z ∈ S k" for z
proof -

have "h' z = h z"
proof (rule analytic_continuation_open[where g = h])

show "h' holomorphic_on S k" "h holomorphic_on S k"

16

by fact+
show "ball 0 1 6= ({} :: complex set)" "open (ball 0 1 :: complex

set)"
by auto

show "open (S k)" "connected (S k)" "ball 0 1 ⊆ S k"
using k ‹open ?S› simply_connected_slotted_complex_plane_right[of

1]
by (auto simp: S_def simply_connected_imp_connected)

show "z ∈ S k"
by fact

show "h' z = h z" if "z ∈ ball 0 1" for z
using h'_props(2) h_eq_sum' that by simp

qed
with that show ?thesis

by (simp add: h'_eq)
qed

have deriv_polylog: "(polylog k has_field_derivative g z) (at z)"
if "z ∈ S k" for z

proof -
have "(h has_field_derivative g z) (at z)"

by (intro deriv_h) (use that k in ‹auto simp: S_def›)
also have "?this ←→ ?thesis"
proof (rule DERIV_cong_ev)

have "eventually (λw. w ∈ S k) (nhds z)"
by (intro eventually_nhds_in_open) (use that in auto)

thus "eventually (λw. h w = polylog k w) (nhds z)"
by eventually_elim (auto simp: eq')

qed auto
finally show ?thesis .

qed

show ?case
using deriv_polylog polylog_sums unfolding g_def by simp

qed

show "(polylog k has_field_derivative (if z = 0 then 1 else polylog
(k - 1) z / z)) (at z within A)"

if "z ∈ (if k ≤ 0 then -{1} else -(of_real ` {1..}))" for z
using * that unfolding S_def by (blast intro: has_field_derivative_at_within)

show "(λn. of_nat (Suc n) powi (-k) * z ^ Suc n) sums polylog k z"
if "norm z < 1" for z

using * that by force
qed

lemma has_field_derivative_polylog' [derivative_intros]:
assumes "(f has_field_derivative f') (at z within A)"
assumes "if k ≤ 0 then f z 6= 1 else Im (f z) 6= 0 ∨ Re (f z) < 1"
shows "((λz. polylog k (f z)) has_field_derivative

17

(if f z = 0 then 1 else polylog (k-1) (f z) / f z) * f')
(at z within A)"
proof -

have "(polylog k ◦ f has_field_derivative
(if f z = 0 then 1 else polylog (k-1) (f z) / f z) * f') (at

z within A)"
using assms(2) by (intro DERIV_chain assms has_field_derivative_polylog)

auto
thus ?thesis

by (simp add: o_def)
qed

lemma polylog_0 [simp]: "polylog k 0 = 0"
proof -

have "(λ_. 0) sums polylog k 0"
using sums_polylog[of 0 k] by simp

moreover have "(λ_. 0 :: complex) sums 0"
by simp

ultimately show ?thesis
using sums_unique2 by blast

qed

A simple consequence of the derivative formula is the following recurrence
for Lis via a contour integral:

Lis(z) =
∫ z

0

1

w
Lis−1(w)dw

theorem polylog_has_contour_integral:
assumes "z /∈ complex_of_real ` ({..-1} ∪ {1..})"
shows "((λw. polylog s w / w) has_contour_integral polylog (s + 1)

z) (linepath 0 z)"
proof -

let ?l = "linepath 0 z"
define A where "A = -complex_of_real ` ({..-1} ∪ {1..})"
have "((λw. if w = 0 then 1 else polylog s w / w) has_contour_integral

(polylog (s + 1) (pathfinish ?l) - polylog (s + 1) (pathstart
?l))) (linepath 0 z)"

proof (rule contour_integral_primitive)
have [simp]: "complex_of_real x = -1 ←→ x = -1" for x

by (simp add: Complex_eq_neg_1 complex_of_real_def)
show "(polylog (s + 1) has_field_derivative (if z = 0 then 1 else

polylog s z / z))
(at z within A)" if "z ∈ A" for z

using that by (intro derivative_eq_intros) (auto simp: A_def split:
if_splits)

next
show "valid_path (linepath 0 z)"

by (rule valid_path_linepath)
next

18

show "path_image (linepath 0 z) ⊆ A"
using assms starlike_doubly_slotted_complex_plane_aux[of z "-1"

1 0]
by (auto simp: A_def)

qed
hence "((λw. if w = 0 then 1 else polylog s w / w) has_contour_integral

(polylog (s + 1) z)) (linepath 0 z)"
by simp

thus ?thesis
unfolding has_contour_integral_def

proof (rule has_integral_spike[rotated 2])
show "negligible {0 :: real}"

by simp
qed (auto simp: vector_derivative_linepath_within)

qed

lemma sums_polylog':
"norm z < 1 =⇒ k 6= 0 =⇒ (λn. of_nat n powi - k * z ^ n) sums polylog

k z"
using sums_polylog[of z k] by (subst (asm) sums_Suc_iff) auto

lemma polylog_altdef1:
"norm z < 1 =⇒ polylog k z = (

∑
n. of_nat (Suc n) powi -k * z ^ Suc

n)"
using sums_polylog[of z k] by (simp add: sums_iff)

lemma polylog_altdef2:
"norm z < 1 =⇒ k 6= 0 =⇒ polylog k z = (

∑
n. of_nat n powi -k * z

^ n)"
using sums_polylog'[of z k] by (simp add: sums_iff)

lemma polylog_at_pole: "polylog k 1 = 0"
by (auto simp: polylog_def)

lemma polylog_at_branch_cut: "x ≥ 1 =⇒ k > 0 =⇒ polylog k (of_real
x) = 0"

by (auto simp: polylog_def)

lemma holomorphic_on_polylog [holomorphic_intros]:
assumes "A ⊆ (if k ≤ 0 then -{1} else -of_real ` {1..})"
shows "polylog k holomorphic_on A"

proof -
let ?S = "-(complex_of_real ` {1..})"
have *: "open ?S"

by (intro open_Compl closed_slot_right)
have "polylog k holomorphic_on (if k ≤ 0 then -{1} else ?S)"

by (subst holomorphic_on_open) (use * in ‹auto intro!: derivative_eq_intros
exI›)

thus ?thesis

19

by (rule holomorphic_on_subset) (use assms in ‹auto split: if_splits›)
qed

lemmas holomorphic_on_polylog' [holomorphic_intros] =
holomorphic_on_compose_gen [OF _ holomorphic_on_polylog[OF order.refl],

unfolded o_def]

lemma analytic_on_polylog [analytic_intros]:
assumes "A ⊆ (if k ≤ 0 then -{1} else -of_real ` {1..})"
shows "polylog k analytic_on A"

proof -
let ?S = "-(complex_of_real ` {1..})"
have *: "open ?S"

by (intro open_Compl closed_slot_right)
have "polylog k analytic_on (if k ≤ 0 then -{1} else ?S)"

by (subst analytic_on_open) (use * in ‹auto intro!: holomorphic_intros›)
thus ?thesis

by (rule analytic_on_subset) (use assms in ‹auto split: if_splits›)
qed

lemmas analytic_on_polylog' [analytic_intros] =
analytic_on_compose_gen [OF _ analytic_on_polylog[OF order.refl], unfolded

o_def]

lemma continuous_on_polylog [analytic_intros]:
assumes "A ⊆ (if k ≤ 0 then -{1} else -of_real ` {1..})"
shows "continuous_on A (polylog k)"

proof -
let ?S = "-(complex_of_real ` {1..})"
have *: "open ?S"

by (intro open_Compl closed_slot_right)
have "continuous_on (if k ≤ 0 then -{1} else ?S) (polylog k)"

by (intro holomorphic_on_imp_continuous_on holomorphic_intros) auto
thus ?thesis

by (rule continuous_on_subset) (use assms in auto)
qed

lemmas continuous_on_polylog' [continuous_intros] =
continuous_on_compose2 [OF continuous_on_polylog [OF order.refl]]

2.2 Special values
lemma polylog_neg_int_left:
"k < 0 =⇒ polylog k z = z * poly (eulerian_poly (nat (-k))) z * (1

- z) powi (k - 1)"
by (auto simp: polylog_def)

lemma polylog_0_left: "polylog 0 z = z / (1 - z)"
by (simp add: polylog_def field_simps)

20

lemma polylog_neg1_left: "polylog (-1) x = x / (1 - x) ^ 2"
by (simp add: polylog_neg_int_left eval_nat_numeral eulerian_poly.simps

power_int_minus field_simps)

lemma polylog_neg2_left: "polylog (-2) x = x * (1 + x) / (1 - x) ^ 3"
by (simp add: polylog_neg_int_left eval_nat_numeral eulerian_poly.simps

power_int_minus field_simps)

lemma polylog_neg3_left: "polylog (-3) x = x * (1 + 4 * x + x2) / (1
- x) ^ 4"

by (simp add: polylog_neg_int_left eval_nat_numeral eulerian_poly.simps
Let_def pderiv_add

pderiv_pCons power_int_minus field_simps numeral_poly)

lemma polylog_1:
assumes "z /∈ of_real ` {1..}"
shows "polylog 1 z = -ln (1 - z)"

proof -
have "(λz. polylog 1 z + ln (1 - z)) constant_on -of_real ` {1..}"
proof (rule has_field_derivative_0_imp_constant_on)

show "connected (-complex_of_real ` {1..})"
using starlike_slotted_complex_plane_right[of 1] starlike_imp_connected

by blast
show "open (- complex_of_real ` {1..})"

using closed_slot_right by blast
show "((λz. polylog 1 z + ln (1 - z)) has_field_derivative 0) (at

z)"
if "z ∈ -of_real ` {1..}" for z
using that
by (auto intro!: derivative_eq_intros simp: complex_nonpos_Reals_iff

complex_slot_right_eq polylog_0_left divide_simps)
qed
then obtain c where c: "

∧
z. z ∈ -of_real`{1..} =⇒ polylog 1 z + ln

(1 - z) = c"
unfolding constant_on_def by blast

from c[of 0] have "c = 0"
by (auto simp: complex_slot_right_eq)

with c[of z] show ?thesis
using assms by (auto simp: add_eq_0_iff)

qed

lemma is_pole_polylog_1:
assumes "k ≤ 0"
shows "is_pole (polylog k) 1"

proof (cases "k = 0")
case True
have "filtermap (λz. -z) (filtermap (λz. z - 1) (at 1)) = filtermap

(λz. -z) (at (0 :: complex))"

21

by (simp add: at_to_0' filtermap_filtermap)
also have ". . . = at 0"

by (subst filtermap_at_minus) auto
finally have "filtermap ((λz. -z) ◦ (λz. z - 1)) (at 1) = at (0 :: complex)"

unfolding filtermap_compose .
hence *: "filtermap (λz. 1 - z) (at 1) = at (0 :: complex)"

by (simp add: o_def)

have "is_pole (λz::complex. z / (1 - z)) 1"
unfolding is_pole_def
by (rule filterlim_divide_at_infinity tendsto_intros)+

(use * in ‹auto simp: filterlim_def›)
also have "(λz. z / (1 - z)) = polylog k"

using True by (auto simp: fun_eq_iff polylog_0_left)
finally show ?thesis .

next
case False
have "∀ F x in at 1. x 6= (1 :: complex)"

using eventually_at zero_less_one by blast
hence ev: "∀ F x in at 1. 1 - x 6= (0 :: complex)"

by eventually_elim auto
have "is_pole (λz::complex. z * poly (eulerian_poly (nat (- k))) z *

(1 - z) powi (k - 1)) 1"
unfolding is_pole_def
by (rule tendsto_mult_filterlim_at_infinity tendsto_eq_intros refl

ev
filterlim_power_int_neg_at_infinity | (use assms in simp;

fail))+
also have "(λz::complex. z * poly (eulerian_poly (nat (- k))) z * (1

- z) powi (k - 1)) =
polylog k"

using assms False by (intro ext) (simp add: polylog_neg_int_left)
finally show ?thesis .

qed

lemma zorder_polylog_1:
assumes "k ≤ 0"
shows "zorder (polylog k) 1 = k - 1"

proof (cases "k = 0")
case True
have "filtermap (λz. -z) (filtermap (λz. z - 1) (at 1)) = filtermap

(λz. -z) (at (0 :: complex))"
by (simp add: at_to_0' filtermap_filtermap)

also have ". . . = at 0"
by (subst filtermap_at_minus) auto

finally have "filtermap ((λz. -z) ◦ (λz. z - 1)) (at 1) = at (0 :: complex)"
unfolding filtermap_compose .

hence *: "filtermap (λz. 1 - z) (at 1) = at (0 :: complex)"
by (simp add: o_def)

22

have "zorder (λz::complex. (-z) / (z - 1) ^ 1) 1 = -int 1"
by (rule zorder_nonzero_div_power [of UNIV]) (auto intro!: holomorphic_intros)

also have "(λz. (-z) / (z - 1) ^ 1) = polylog k"
using True by (auto simp: fun_eq_iff polylog_0_left divide_simps)

(auto simp: algebra_simps)?
finally show ?thesis

using True by simp
next

case False
have "zorder (λz::complex. (-1) ^ nat (1 - k) * z * poly (eulerian_poly

(nat (- k))) z /
(z - 1) ^ nat (1 - k)) 1 = -int (nat (1 - k))" (is "zorder

?f _ = _")
using False assms
by (intro zorder_nonzero_div_power [of UNIV]) (auto intro!: holomorphic_intros)

also have "?f = polylog k"
proof

fix z :: complex
have "(z - 1) ^ nat (1 - k) = (-1) ^ nat (1 - k) * (1 - z) ^ nat (1

- k)"
by (subst power_mult_distrib [symmetric]) auto

thus "?f z = polylog k z"
using False assms by (auto simp: polylog_neg_int_left power_int_def

field_simps)
qed
finally show ?thesis

using False assms by simp
qed

lemma isolated_singularity_polylog_1:
assumes "k ≤ 0"
shows "isolated_singularity_at (polylog k) 1"
unfolding isolated_singularity_at_def using assms
by (intro exI[of _ 1]) (auto intro!: analytic_intros)

lemma not_essential_polylog_1:
assumes "k ≤ 0"
shows "not_essential (polylog k) 1"
unfolding not_essential_def using is_pole_polylog_1[of k] assms by auto

lemma polylog_meromorphic_on [meromorphic_intros]:
assumes "k ≤ 0"
shows "polylog k meromorphic_on {1}"
using assms
by (simp add: isolated_singularity_polylog_1 meromorphic_at_iff not_essential_polylog_1)

23

2.3 Duplication formula

Lastly, we prove the following duplication formula that the polylogarithm
satisfies:

Lis(z) + Lis(−z) = 21−sLis(z2)

The proof is a relatively simple manipulation of infinite sum that defines
Lis(z) for |z| < 1, followed by analytic continuation to its full domain.
theorem polylog_duplication:

assumes "if s ≤ 0 then z /∈ {-1, 1} else z /∈ complex_of_real ` ({..-1}
∪ {1..})"

shows "polylog s z + polylog s (-z) = 2 powi (1 - s) * polylog s (z2)"
proof -

define A where "A = -(if s ≤ 0 then {-1, 1} else complex_of_real `
({..-1} ∪ {1..}))"

show ?thesis
proof (rule analytic_continuation_open[where f = "λz. polylog s z +

polylog s (-z)"])
show "ball 0 1 ⊆ A"

by (auto simp: A_def)
next

have "closed (complex_of_real ` ({..-1} ∪ {1..}))"
unfolding image_Un by (intro open_Compl closed_Un closed_slot_right

closed_slot_left)
thus "open A"

unfolding A_def by auto
next

have "connected (-complex_of_real ` ({..-1} ∪ {1..}))"
by (intro simply_connected_imp_connected simply_connected_doubly_slotted_complex_plane)

auto
moreover have "connected (-{-1, 1 :: complex})"

by (intro path_connected_imp_connected path_connected_complement_countable)
auto

ultimately show "connected A"
unfolding A_def by auto

next
show "(λz. polylog s z + polylog s (- z)) holomorphic_on A"

by (intro holomorphic_intros) (auto simp: complex_eq_iff A_def)
next

show "(λz. 2 powi (1 - s) * polylog s (z2)) holomorphic_on A"
proof (intro holomorphic_intros; safe)

fix z assume z: "z ∈ A"
show "z^2 ∈ (if s ≤ 0 then - {1} else - complex_of_real ` {1..})"
proof (cases "s ≤ 0")

case True
thus ?thesis using z by (auto simp: A_def power2_eq_1_iff)

next
case False
{

24

fix x :: real
assume x: "x ≥ 1" "z ^ 2 = of_real x"
have "Im (z ^ 2) = 0"

by (simp add: x)
hence "Im z = 0 ∨ Re z = 0"

by (simp add: power2_eq_square)
moreover have "Im z ^ 2 ≥ 0"

by auto
hence "Im z ^ 2 > -1"

by linarith
ultimately have "x = Re z ^ 2" "Im z = 0"

using x unfolding power2_eq_square by (auto simp: complex_eq_iff)
with x have "|Re z| ≥ 1"

by (auto simp: power2_ge_1_iff)
with ‹Im z = 0› have "z /∈ A"

using False by (auto simp: A_def complex_double_slot_eq)
}
with False show ?thesis using z

by (auto simp: A_def)
qed

qed
next

show "polylog s z + polylog s (-z) = 2 powi (1 - s) * polylog s (z2)"
if z: "z ∈ ball 0 1" for z

proof -
have ran: "range (λn::nat. Suc (2 * n)) = {n. odd n}"

by (auto simp: image_def elim!: oddE)
have "(λn. of_nat (Suc n) powi -s * (z ^ Suc n + (-z) ^ Suc n))

sums
(polylog s z + polylog s (-z))" (is "?f sums _")

unfolding ring_distribs using z
by (intro sums_add sums_mult sums_polylog) (simp_all add: norm_power)

also have "?this ←→ (λn. ?f (2 * n + 1)) sums (polylog s z + polylog
s (-z))"

by (rule sym, intro sums_mono_reindex) (auto simp: ran strict_mono_def)
also have "(λn. ?f (2 * n + 1)) = (λn. 2 * (2 * of_nat (Suc n))

powi -s * (z2) ^ Suc n)"
by (intro ext) (simp_all add: algebra_simps power_mult power2_eq_square

power_minus')
also have ". . . = (λn. 2 powi (1 - s) * (of_nat (Suc n) powi -s *

(z2) ^ Suc n))" (is "_ = ?g")
by (simp add: power_int_diff power_int_minus fun_eq_iff field_simps

flip: power_int_mult_distrib)
finally have "?g sums (polylog s z + polylog s (-z))" .
moreover have "?g sums (2 powi (1 - s) * polylog s (z2))"

using z by (intro sums_mult sums_polylog) (simp_all add: norm_power
abs_square_less_1)

ultimately show ?thesis
using sums_unique2 by blast

25

qed
qed (use assms in ‹auto simp: A_def›)

qed

end

References

[1] J. Mason and D. Handscomb. Chebyshev Polynomials. CRC Press,
2002.

26

	Auxiliary material
	Miscellaneous
	The slotted complex plane

	The Polylogarithm Function
	Definition and basic properties
	Special values
	Duplication formula

