The Polylogarithm Function

Manuel Eberl

April 18, 2024

Abstract

This entry provides a definition of the Polylogarithm function, commonly denoted as $\operatorname{Li}_{s}(z)$. Here, z is a complex number and s an integer parameter. This function can be defined by the power series expression $\operatorname{Li}_{s}(z)=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{s}}$ for $|z|<1$ and analytically extended to the entire complex plane, except for a branch cut on $\mathbb{R}_{\geq 1}$.

Several basic properties are also proven, such as the relationship to the Eulerian polynomials via $\operatorname{Li}_{-k}(z)=z(1-z)^{k-1} A_{k}(z)$ for $k \geq 0$, the derivative formula $\frac{d}{d z} \mathrm{Li}_{s}(z)=\frac{1}{z} \mathrm{Li}_{s-1}(z)$, the relation to the "normal" logarithm via $\operatorname{Li}_{1}(z)=-\ln (1-z)$, and the duplication formula $\operatorname{Li}_{s}(z)+$ $\operatorname{Li}_{s}(-z)=2^{1-s} \operatorname{Li}_{s}\left(z^{2}\right)$.

Contents

1 Auxiliary material 3
1.1 Miscellaneous 3
1.2 The slotted complex plane 5
2 The Polylogarithm Function 9
2.1 Definition and basic properties 9
2.2 Special values 20
2.3 Duplication formula 24

Figure 1: Plots of $\operatorname{Li}_{s}(x)$ for $s=-3,-2, \ldots, 3$ and real inputs $x \in[-2,1]$

1 Auxiliary material

```
theory Polylog_Library
imports
    "HOL-Complex_Analysis.Complex_Analysis"
    "Linear_Recurrences.Eulerian_Polynomials"
begin
```


1.1 Miscellaneous

```
lemma fps_conv_radius_fps_of_poly [simp]:
    fixes p :: "'a :: {banach, real_normed_div_algebra} poly"
    shows "fps_conv_radius (fps_of_poly p) = \infty"
proof -
    have "conv_radius (poly.coeff p) = conv_radius ( }\mp@subsup{\lambda}{~}{\prime}.0\mathrm{ :: 'a)"
        using MOST_coeff_eq_O unfolding cofinite_eq_sequentially by (rule
conv_radius_cong')
    also have "... = \infty"
        by simp
    finally show ?thesis
        by (simp add: fps_conv_radius_def)
qed
lemma eval_fps_power:
    fixes F :: "'a :: {banach, real_normed_div_algebra, comm_ring_1} fps"
    assumes z: "norm z < fps_conv_radius F"
    shows "eval_fps (F ^ n) z = eval_fps F z ^ n"
proof (induction n)
    case 0
    thus ?case
        by (auto simp: eval_fps_mult)
next
    case (Suc n)
    have "eval_fps (F - Suc n) z = eval_fps (F * F ` n) z"
        by simp
    also from z have "... = eval_fps F z * eval_fps (F ^ n) z"
        by (subst eval_fps_mult) (auto intro!: less_le_trans[OF _ fps_conv_radius_power])
    finally show ?case
        using Suc.IH by simp
qed
lemma eval_fps_of_poly [simp]: "eval_fps (fps_of_poly p) z = poly p z"
proof -
    have "(\lambdan. poly.coeff p n * z ^ n) sums poly p z"
        unfolding poly_altdef by (rule sums_finite) (auto simp: coeff_eq_0)
    moreover have "(\lambdan. poly.coeff p n * z ^ n) sums eval_fps (fps_of_poly
p) z"
            using sums_eval_fps[of z "fps_of_poly p"] by simp
    ultimately show ?thesis
        using sums_unique2 by blast
```

qed

```
lemma poly_holomorphic_on [holomorphic_intros]:
    assumes [holomorphic_intros]: "f holomorphic_on A"
    shows "(\lambdaz. poly p (f z)) holomorphic_on A"
    unfolding poly_altdef by (intro holomorphic_intros)
lemma simply_connected_eq_global_primitive:
    assumes "simply_connected S" "open S" "f holomorphic_on S"
    obtains h where "\z. z G S \Longrightarrow (h has_field_derivative f z) (at z)"
    using simply_connected_eq_global_primitive[of S] assms that by blast
```

```
lemma
    assumes "x \in closed_segment y z"
    shows in_closed_segment_imp_Re_in_closed_segment: "Re x \in closed_segment
(Re y) (Re z)" (is ?th1)
    and in_closed_segment_imp_Im_in_closed_segment: "Im x \in closed_segment
(Im y) (Im z)" (is ?th2)
proof -
    from assms obtain t where t: "t\in{0..1}" "x = linepath y z t"
            by (metis imageE linepath_image_01)
    have "Re x = linepath (Re y) (Re z) t" "Im x = linepath (Im y) (Im z)
t"
            by (simp_all add: t Re_linepath' Im_linepath')
    with t(1) show ?th1 ?th2
            using linepath_in_path[of t "Re y" "Re z"] linepath_in_path[of t "Im
y" "Im z"] by simp_all
qed
lemma linepath_in_open_segment: "t \in {0<..<1} \Longrightarrow x = y \Longrightarrow linepath
x y t \in open_segment x y"
    unfolding greaterThanLessThan_iff by (metis in_segment(2) linepath_def)
lemma in_open_segment_imp_Re_in_open_segment:
    assumes "x 的 open_segment y z" "Re y #= Re z"
    shows "Re x G open_segment (Re y) (Re z)"
proof -
    from assms obtain t where t: "t \in {0<..<1}" "x = linepath y z t"
        by (metis greaterThanLessThan_iff in_segment(2) linepath_def)
    have "Re x = linepath (Re y) (Re z) t"
        by (simp_all add: t Re_linepath')
    with t(1) show ?thesis
        using linepath_in_open_segment[of t "Re y" "Re z"] assms by auto
qed
lemma in_open_segment_imp_Im_in_open_segment:
    assumes "x \in open_segment y z" "Im y #= Im z"
    shows "Im x \in open_segment (Im y) (Im z)"
proof -
```

```
    from assms obtain t where t: "t \in {0<..<1}" "x = linepath y z t"
        by (metis greaterThanLessThan_iff in_segment(2) linepath_def)
    have "Im x = linepath (Im y) (Im z) t"
    by (simp_all add: t Im_linepath')
    with t(1) show ?thesis
        using linepath_in_open_segment[of t "Im y" "Im z"] assms by auto
qed
lemma poly_eulerian_poly_0 [simp]: "poly (eulerian_poly n) 0 = 1"
    by (induction n) (auto simp: eulerian_poly.simps(2) Let_def)
lemma eulerian_poly_at_1 [simp]: "poly (eulerian_poly n) 1 = fact n"
    by (induction n) (auto simp: eulerian_poly.simps(2) Let_def algebra_simps)
```


1.2 The slotted complex plane

```
lemma closed_slot_left: "closed (complex_of_real ` {..c})"
```

lemma closed_slot_left: "closed (complex_of_real `{..c})" by (intro closed_injective_linear_image) (auto simp: inj_def) lemma closed_slot_right: "closed (complex_of_real` {c..})"
by (intro closed_injective_linear_image) (auto simp: inj_def)
lemma complex_slot_left_eq: "complex_of_real `{..c} = {z. Re z \leq c ^ Im z = 0}" by (auto simp: image_iff complex_eq_iff) lemma complex_slot_right_eq: "complex_of_real` {c..} = {z. Re z \geqc
^ Im z = 0}"
by (auto simp: image_iff complex_eq_iff)
lemma complex_double_slot_eq:
"complex_of_real - ({..c1} \cup{c2..}) = {z. Im z = 0 ^ (Re z \leq c1 \vee
Re z \geqc2)}"
by (auto simp: image_iff complex_eq_iff)
lemma starlike_slotted_complex_plane_left_aux:
assumes z: "z \in -(complex_of_real `{..c})" and c: "c < c'" shows "closed_segment (complex_of_real c') z\subseteq -(complex_of_real - {..c})" proof - show "closed_segment c' z \subseteq -of_real` {..c}"
proof (cases "Im z = 0")
case True
thus ?thesis using z c
by (auto simp: closed_segment_same_Im closed_segment_eq_real_ivl
complex_slot_left_eq)
next

```
```

 case False
 show ?thesis
 proof
 fix x assume x: "x \in closed_segment (of_real c') z"
 consider "x = of_real c'" | "x = z" | "x \in open_segment (of_real
 c') z"
unfolding open_segment_def using x by blast
thus "x \in -complex_of_real `{..c}" proof cases assume "x \in open_segment (of_real c') z" hence "Im x \in open_segment (Im (complex_of_real c')) (Im z)" by (intro in_open_segment_imp_Im_in_open_segment) (use False in auto) hence "Im x = 0" by (auto simp: open_segment_eq_real_ivl split: if_splits) thus ?thesis by (auto simp: complex_slot_right_eq) qed (use z c in <auto simp: complex_slot_left_eq>) qed qed qed lemma starlike_slotted_complex_plane_left: "starlike (-(complex_of_real - {..c}))" unfolding starlike_def proof (rule bexI[of _ "of_real c + 1"]; (intro ballI)?) show "complex_of_real c + 1 \in -complex_of_real` {..c}"
by (auto simp: complex_eq_iff)
show "closed_segment (complex_of_real c + 1) z \subseteq - complex_of_real
" {..c}"
if "z \in - complex_of_real `{..c}" for z using starlike_slotted_complex_plane_left_aux[OF that, of "c + 1"] by simp qed lemma starlike_slotted_complex_plane_right_aux: assumes z: "z \in -(complex_of_real` {c..})" and c: "c > c'"
shows "closed_segment (complex_of_real c') z \subseteq -(complex_of_real

- {c..})"
proof -
show "closed_segment c' z \subseteq -of_real ` {c..}"
proof (cases "Im z = 0")
case True
thus ?thesis using z c
by (auto simp: closed_segment_same_Im closed_segment_eq_real_ivl
complex_slot_right_eq)
next
case False

```
```

 show ?thesis
 proof
 fix x assume x: "x \in closed_segment (of_real c') z"
 consider "x = of_real c'" | "x = z" | "x \in open_segment (of_real
 c') z'
unfolding open_segment_def using x by blast
thus "x \in -complex_of_real ` {c..}"
proof cases
assume "x < open_segment (of_real c') z"
hence "Im x \in open_segment (Im (complex_of_real c')) (Im z)"
by (intro in_open_segment_imp_Im_in_open_segment) (use False
in auto)
hence "Im x = 0"
by (auto simp: open_segment_eq_real_ivl split: if_splits)
thus ?thesis
by (auto simp: complex_slot_right_eq)
qed (use z c in <auto simp: complex_slot_right_eq>)
qed
qed
qed

```
lemma starlike_slotted_complex_plane_right: "starlike (-(complex_of_real
    - \{c..\}))"
    unfolding starlike_def
proof (rule bexI[of _ "of_real c - 1"]; (intro ballI)?)
    show "complex_of_real c - \(1 \in\)-complex_of_real - \{c..\}"
        by (auto simp: complex_eq_iff)
    show "closed_segment (complex_of_real c - 1) \(z \subseteq\) - complex_of_real
- \{c...\}"
        if "z \(\in\) - complex_of_real - \{c..\}" for \(z\)
        using starlike_slotted_complex_plane_right_aux[0F that, of "c - 1"]
by simp
qed
lemma starlike_doubly_slotted_complex_plane_aux:
    assumes \(z: ~ " z \in-\left(c o m p l e x \_o f \_r e a l-(\{. . c 1\} \cup\{c 2 .\}).\right) "\) and \(c: ~ " c 1\)
< c" "c < c2"
    shows "closed_segment (complex_of_real c) \(z \subseteq\)-(complex_of_real •
\((\{. . c 1\} \cup\{c 2 .\}).)^{\prime \prime}\)
proof -
    show "closed_segment \(c\) z \(\subseteq\)-of_real - (\{..c1\} \(\cup\{c 2 .\})\).
    proof (cases "Im z = 0")
        case True
        thus ?thesis using z c
            by (auto simp: closed_segment_same_Im closed_segment_eq_real_ivl
complex_double_slot_eq)
    next
        case False
```

 show ?thesis
 proof
 fix x assume x: "x closed_segment (of_real c) z"
 consider "x = of_real c" | "x = z" | "x \in open_segment (of_real
 c) z"
unfolding open_segment_def using x by blast
thus "x\in -complex_of_real - ({..c1} \cup {c2..})"
proof cases
assume "x \in open_segment (of_real c) z"
hence "Im x G open_segment (Im (complex_of_real c)) (Im z)"
by (intro in_open_segment_imp_Im_in_open_segment) (use False
in auto)
hence "Im x = 0"
by (auto simp: open_segment_eq_real_ivl split: if_splits)
thus ?thesis
by (auto simp: complex_slot_right_eq)
qed (use z c in <auto simp: complex_slot_right_eq>)
qed
qed
qed
lemma starlike_doubly_slotted_complex_plane:
assumes "c1 < c2"
shows "starlike (-(complex_of_real `({..c1} \cup {c2..})))" proof - from assms obtain c where c: "c1 < c" "c < c2" using dense by blast show ?thesis unfolding starlike_def proof (rule bexI[of _ " "of_real c"]; (intro ballI)?) show "complex_of_real c \in -complex_of_real` ({..c1} U {c2..})"
using c by (auto simp: complex_eq_iff)
show "closed_segment (complex_of_real c) z \subseteq - complex_of_real `({..c1} \cup{c2..})" if "z \in - complex_of_real - ({..c1} U {c2..})" for z using starlike_doubly_slotted_complex_plane_aux[OF that, of c] c by simp qed qed lemma simply_connected_slotted_complex_plane_left: "simply_connected (-(complex_of_real` {..c}))"
by (intro starlike_imp_simply_connected starlike_slotted_complex_plane_left)
lemma simply_connected_slotted_complex_plane_right:
"simply_connected (-(complex_of_real ` {c..}))"
by (intro starlike_imp_simply_connected starlike_slotted_complex_plane_right)
lemma simply_connected_doubly_slotted_complex_plane:

```
```

"c1 < c2 \Longrightarrow simply_connected (-(complex_of_real ` ({..c1} \cup {c2..})))"
by (intro starlike_imp_simply_connected starlike_doubly_slotted_complex_plane)
end

```

\section*{2 The Polylogarithm Function}
```

theory Polylog
imports
"HOL-Complex_Analysis.Complex_Analysis"
"Linear_Recurrences.Eulerian_Polynomials"
"HOL-Real_Asymp.Real_Asymp"
Polylog_Library
begin

```

\subsection*{2.1 Definition and basic properties}

The principal branch of the Polylogarithm function \(\mathrm{Li}_{s}(z)\) is defined as
\[
\mathrm{Li}_{s}(z)=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{s}}
\]
for \(|z|<1\) and elsewhere by analytic continuation. For integer \(s \leq 0\) it is holomorphic except for a pole at \(z=1\). For other values of \(s\) it is holomorphic except for a branch cut along the line \([1, \infty)\).
Special values include \(\operatorname{Li}_{0}(z)=\frac{z}{1-z}\) and \(\operatorname{Li}_{1}(z)=-\log (1-z)\).
One could potentially generalise this to arbitrary \(s \in \mathbb{C}\), but this makes the analytic continuation somewhat more complicated, so we chosed not to do this at this point.
In the following, we define the principal branch of \(\operatorname{Li}_{s}(z)\) for integer \(s\).
```

definition polylog :: "int \Rightarrow complex \Rightarrow complex" where
"polylog k z =
(if $k \leq 0$ then $z *$ poly (eulerian_poly (nat (-k)) $z *(1-z)$ powi
(k - 1)
else if z \in of_real ` \{1..\} then 0 else (SOME f. f holomorphic_on -of_real`\{1..\} ^
($\forall z \in$ ball 0 1. $f z=\left(\sum n\right.$. of_nat (Suc n) powi (-k)

* z ~Suc n))) z)"
lemma conv_radius_polylog: "conv_radius (λr. of_nat r powi k : : complex)
= $1^{\prime \prime}$
proof (rule conv_radius_ratio_limit_ereal_nonzero)
have " (λ n. ereal (real n powi $k /$ real (Suc n) powi k)) \longrightarrow ereal
1"
proof (cases "k $\geq 0 "$)
case True

```
```

 have "(\lambdan. ereal (real n ^ nat k / real (Suc n) ^ nat k)) \longrightarrow ereal
 1"
by (intro tendsto_ereal) real_asymp
thus ?thesis
using True by (simp add: power_int_def)
next
case False
have "(\lambdan. ereal (inverse (real n) ^ nat (-k) / inverse (real (Suc
n)) ^ nat (-k))) \longrightarrow ereal 1"
by (intro tendsto_ereal) real_asymp
thus ?thesis
using False by (simp add: power_int_def)
qed
thus "(\lambdan. ereal (norm (of_nat n powi k :: complex) / norm (of_nat (Suc
n) powi k :: complex))) \longrightarrow 1"
unfolding one_ereal_def [symmetric] by (simp add: norm_power_int del:
of_nat_Suc)
qed auto
lemma abs_summable_polylog:
"norm z < 1 \Longrightarrow summable (\lambdar. norm (of_nat r powi k * z ^ r :: complex))"
by (rule abs_summable_in_conv_radius) (use conv_radius_polylog[of k]
in auto)

```

Two very central results that characterise the polylogarithm:
\[
\mathrm{Li}_{s}^{\prime}(z)=\frac{1}{z} \mathrm{Li}_{s-1}(z) \quad \text { and } \quad \operatorname{Li}_{s}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{s}} \quad \text { for }|z|<1
\]
theorem has_field_derivative_polylog [derivative_intros]:
\[
" \bigwedge z . z \in(\text { if } k \leq 0 \text { then }-\{1\} \text { else -(of_real }\{1 . .\})) \Longrightarrow
\]
                            (polylog \(k\) has_field_derivative (if \(z=0\) then 1 else polylog
(k - 1) z / z)) (at z within A)"
and sums_polylog: "norm \(z<1 \Longrightarrow\) ( \(\lambda\) n. of_nat (Suc n) powi (-k) * z
- Suc n) sums polylog k z"
proof -
let ?S = "-(complex_of_real - \{1..\})"
have "open ?S"
by (intro open_Compl closed_slot_right)
define \(S\) where "S = ( \(\lambda k\) ::int. if \(k \leq 0\) then \(-\{1\}\) else ?S)"
have [simp]: "open ( \(\mathrm{S} k\) )" for \(k\)
using <open ?S> by (auto simp: S_def)
have *: " \(\forall z \in S k\). (polylog k has_field_derivative (if \(z=0\) then 1
else polylog (k - 1) z / z)) (at z)) ^
\(\forall z \in\) ball 0 1. ( \(\lambda\) n. of_nat (Suc n) powi ( \(-k\) ) \(* z^{\wedge}\) Suc n) sums
polylog \(k\) z)"
proof (induction "nat k" arbitrary: k) case 0
define \(k\) ' where " \(k\) ' = nat ( \(-k\) )"
have \(k_{-} e q: ~ " k=-i n t k^{\prime \prime}\)
using 0 by (simp add: \(k^{\prime} \_d e f\) )
have "(polylog k has_field_derivative (if \(z=0\) then 1 else polylog (k-1) z/z)) (at z)"
if \(z: ~ " z \in S k "\) for \(z\)
proof -
have [simp]: "z \(\neq 1\) "
using z 0 by (auto simp: S_def)
write eulerian_poly ("E")
have "polylog (k-1) z=z*(poly (E (Suck')) z* (1-z) powi (k-2))"
using 0 by (simp add: polylog_def k_eq nat_add_distrib algebra_simps)
also have "... = z * poly (E (Suc k')) z/(1-z) - (k' + 2)"
by (simp add: k_eq power_int_def nat_add_distrib field_simps)
finally have eq1: "polylog (k-1) \(z=\ldots\) ".
have "polylog \(k=\left(\lambda z . z * \operatorname{poly}\left(E k^{\prime}\right) z *(1-z)\right.\) powi (k - 1))" using 0 by (simp add: polylog_def [abs_def] k_eq)
also have "... = ( \(\lambda z . z\) * poly (Ek') z / (1 - z) - Suc k')" by (simp add: k_eq power_int_def field_simps nat_add_distrib)
finally have eq2: "polylog \(k=(\lambda z . z * \operatorname{poly}(E k ') z /(1-z)\) -
Suc k')" .
```

 have " (\(\lambda z . z^{*}\) poly \(\left(E k^{\prime}\right) z /(1-z)\) - Suc k') has_field_derivative
 (poly (E (Suc k')) z / (1-z) - (k' + 2))) (at z)"
 apply (rule derivative_eq_intros refl poly_DERIV)+
 apply (simp)
 apply (simp add: eulerian_poly.simps(2) Let_def divide_simps)
 apply (simp add: algebra_simps)
 done
 also note eq2 [symmetric]
 also have "poly (E (Suc k')) z/(1-z) - (k' + 2) =
 (if \(z=0\) then 1 else polylog \((k-1) z / z\))"
 by (subst eq1) (auto)
 finally show ?thesis.
 qed
 moreover have "(\(\lambda\) n. of_nat (Suc n) powi (\(-k\)) * \(z^{\text {- Suc } n \text {) sums polylog }}\)
 if \(z\) : "norm \(z<1\) " for \(z\)
 proof (cases "k = 0")
 case True
 thus ?thesis using z geometric_sums[of z]
 by (auto simp: polylog_def divide_inverse intro!: sums_mult)
 next
 case False
 with 0 have \(k\) : " \(k<0 "\)
    ```
k \(z^{\prime \prime}\)
by simp
define \(F\) where \(" F=A b s \_f p s(\lambda n\). of_nat \(n\) - nat ( \(-k\) ) : : complex)"
have "fps_conv_radius (1-fps_X :: complex fps) \(\geq \infty\) "
by (intro order.trans[0F _ fps_conv_radius_diff]) auto
hence [simp]: "fps_conv_radius (1-fps_X :: complex fps) = \(\infty\) by simp
have *: "fps_conv_radius ( \(\left(1-f p s_{-} X\right)\) - (nat (-k) + 1) :: complex \(f p s) \geq \infty^{\prime \prime}\)
by (intro order.trans[OF _ fps_conv_radius_power]) auto
have "ereal (norm z) < 1"
using that by simp
also have " \(1 \leq f p s_{-}\)conv_radius \(F\) "
unfolding \(F_{-}\)def fps_conv_radius_def using conv_radius_polylog[of "-k"] 0
by (simp add: power_int_def)
finally have " ( \(\lambda n\). fps_nth \(F n * z{ }^{\wedge} n\) ) sums eval_fps \(F z "\)
by (rule sums_eval_fps)
also have " \(\left(\lambda n\right.\). fps_nth \(F n^{*} z^{-} n\) ) = ( \(\lambda\) n. of_nat \(n\) powi ( \(-k\) ) * \(z^{\text {- }}\) )"
using 0 by (simp add: \(F_{-} d e f\) power_int_def)
also have "eval_fps \(F z=p o l y\left(f p s \_m o n o m \_p o l y ~ 1 ~(n a t ~(-k))\right) ~ z ~\) /
```

 eval_fps ((1 - fps_X) - (nat (- k) + 1))
    ```
\(z^{\prime \prime}\)
unfolding \(F_{-}\)def fps_monom_aux
proof (subst eval_fps_divide')
show "fps_conv_radius (fps_of_poly (fps_monom_poly 1 (nat (k)))) > \(0^{\prime \prime}\)
by simp
show "fps_conv_radius ( \(\left(1-f p s \_X\right.\) : : complex fps) - (nat (-k)
+ 1)) > \(0^{\prime \prime}\)
by (intro less_le_trans[OF _ fps_conv_radius_power]) auto
show "1 > (0 :: ereal)"
by simp
show "eval_fps ((1 - fps_X) - (nat (-k) + 1)) z \(\neq 0\) "
if "z e eball 01 " for \(z\) :: complex
using that by (subst eval_fps_power) (auto simp: eval_fps_diff)
show "ereal (norm z) < Min \{1, fps_conv_radius (fps_of_poly (fps_monom_poly
1 (nat (-k)))),
fps_conv_radius ((1 - fps_X : : complex fps) - (nat (-
k) + 1)) \}" using * z
by auto
qed auto
also have "eval_fps ( \(\left(1-f p s_{-} X\right)\) - (nat \(\left.\left.(-k)+1\right)\right) z=(1-z)\)
- (nat (-k) + 1)"
by (subst eval_fps_power) (auto simp: eval_fps_diff)
also have "... = (1-z) powi int (nat (-k) + 1)"
by (rule power_int_of_nat [symmetric])
```

 also have "int (nat (-k) + 1) = -(k-1)"
 using O by simp
 also have "(poly (fps_monom_poly 1 (nat (- k))) z / (1 - z) powi
 - (k - 1)) = polylog k z"
using k
by (auto simp add: fps_monom_poly_def polylog_def power_int_diff)
finally show "(\lambdan. of_nat (Suc n) powi - k * z - (Suc n)) sums polylog
k z'
by (subst sums_Suc_iff) (use k in auto)
qed
ultimately show ?case
using O by (auto simp: polylog_def [abs_def])
next
case (Suc k' k)
have [simp]: "nat k = Suc k'" "nat (k - 1) = k'"
using Suc(2) by auto
from Suc(2) have k: "k > 0"
by linarith
have deriv: "(polylog (k - 1) has_field_derivative
(if z = O then 1 else polylog (k - 2) z / z)) (at z)" if "z
S (k - 1)" for z
using Suc(1)[of "k-1"] that by auto
hence holo: "polylog (k - 1) holomorphic_on S (k - 1)"
by (subst holomorphic_on_open) auto
have sums: "(\lambdan. of_nat (Suc n) powi -(k-1) * z ` Suc n) sums polylog
(k-1) z"
if "norm z < 1" for z
using that Suc(1)[of "k - 1"] by auto
define g where "g = (\lambdaz. if z = O then 1 else polylog (k - 1) z /
z)"
have "g holomorphic_on S (k - 1)"
unfolding g_def
proof (rule removable_singularity)
show "(\lambdaz. polylog (k - 1) z / z) holomorphic_on S (k - 1) - {0}"
using Suc by (intro holomorphic_intros holomorphic_on_subset[OF
holo]) auto
define F where "F = Abs_fps (}\lambda\mathrm{ n. of_nat (Suc n) powi (1-k) :: complex)"
have radius: "fls_conv_radius (fps_to_fls F) = 1"
proof -
have "F = fps_shift 1 (Abs_fps (\lambdan. of_int n powi (1 - k)))"
using k by (simp add: F_def fps_eq_iff power_int_def)
also have "fps_conv_radius ... = 1"
using conv_radius_polylog[of "1 - k"] unfolding fps_conv_radius_shift
by (simp add: fps_conv_radius_def)
finally show ?thesis by simp
qed

```
```

 have "eventually (\lambdaz::complex. z \in ball 0 1) (nhds 0)"
 by (intro eventually_nhds_in_open) auto
 hence "eventually (\lambdaz::complex. z \in ball 0 1 - {0}) (at 0)"
 unfolding eventually_at_filter by eventually_elim auto
 hence "eventually (\lambdaz. eval_fls (fps_to_fls F) z = polylog (k -
 1) z / z) (at 0)"
proof eventually_elim
case (elim z)
have "(\lambdan. of_nat (Suc n) powi - (k - 1) * z ` Suc n / z) sums
(polylog (k - 1) z / z)"
by (intro sums_divide sums) (use elim in auto)
also have "(\lambdan. of_nat (Suc n) powi - (k - 1) * z - Suc n / z)
=
(\lambdan. of_nat (Suc n) powi - (k - 1) * z ^ n)"
using elim by auto
finally have "polylog (k - 1) z / z = (\sumn. of_nat (Suc n) powi

- (k - 1) * z ^ n)"
by (simp add: sums_iff)
also have "... = eval_fps F z"
unfolding eval_fps_def F_def by simp
finally show ?case
using radius elim by (simp add: eval_fps_to_fls)
qed
hence "(\lambdaz. polylog (k - 1) z / z) has_laurent_expansion fps_to_fls
F"
unfolding has_laurent_expansion_def using radius by auto
hence "(\lambdaz. polylog (k - 1) z / z) -0-> fls_nth (fps_to_fls F)
0"
by (intro has_laurent_expansion_imp_tendsto_0 fls_subdegree_fls_to_fps_gt0)
auto
thus "(\lambday. polylog (k - 1) y / y) -0-> 1"
by (simp add: F_def)
qed auto
hence holo: "g holomorphic_on ?S"
by (rule holomorphic_on_subset) (auto simp: S_def)
have "simply_connected ?S"
by (rule simply_connected_slotted_complex_plane_right)
then obtain f where f: "\z. z \in ?S \Longrightarrow (f has_field_derivative g
z) (at z)"
using simply_connected_eq_global_primitive holo <open ?S> by blast
define h where "h = (\lambdaz.f z - f 0)"
have deriv_h [derivative_intros]: "(h has_field_derivative g z) (at
z)" if "z \in ?S" for z
unfolding h_def using that by (auto intro!: derivative_eq_intros
f)
hence holo_h: "h holomorphic_on S k" (is "?P1 h")
by (subst holomorphic_on_open) (use k <open ?S> in <auto simp: S_def>)

```
```

 have summable: "summable (\lambdan. of_nat n powi (-k) * z ^ n)"
 if "norm z < 1" for z :: complex
 by (rule summable_in_conv_radius)
 (use that conv_radius_polylog[of "-k"] in auto)
 define F where "F = Abs_fps (}\lambdan\mathrm{ . of_nat n powi (-k) :: complex)"
 have radius: "fps_conv_radius F = 1"
 using conv_radius_polylog[of "-k"] by (simp add: fps_conv_radius_def
 F_def)
have F_deriv [derivative_intros]:
"(eval_fps F has_field_derivative g z) (at z)" if "z \in ball 0 1"
for z
proof -
have "(eval_fps F has_field_derivative eval_fps (fps_deriv F) z)
(at z)"
using that radius by (auto intro!: derivative_eq_intros)
also have "eval_fps (fps_deriv F) z = g z"
proof (cases "z = O")
case False
have "(\lambdan. of_nat (Suc n) powi - (k - 1) * z ^ Suc n / z) sums
(polylog (k - 1) z / z)"
by (intro sums_divide sums) (use that in auto)
also have "... = g z"
using False by (simp add: g_def)
also have "(\lambdan. of_nat (Suc n) powi - (k - 1) * z ^ Suc n / z)
=
(\lambdan. of_nat (Suc n) powi - (k - 1) * z ^ n)"
using False by simp
finally show ?thesis
by (auto simp add: eval_fps_def F_def sums_iff power_int_diff
power_int_minus field_simps
simp del: of_nat_Suc)
qed (auto simp: F_def g_def eval_fps_at_0)
finally show ?thesis.
qed
hence h_eq_sum: "h z = eval_fps F z" if "z \in ball O 1" for z
proof -
have "\existsc. }\forallz\in\mathrm{ ball 0 1. h z - eval_fps F z = c"
proof (rule has_field_derivative_zero_constant)
fix z :: complex assume z: "z \in ball 0 1"
have "((\lambdax. h x - eval_fps F x) has_field_derivative 0) (at z)"
using z by (auto intro!: derivative_eq_intros)
thus "((\lambdax. h x - eval_fps F x) has_field_derivative 0) (at z
within ball 0 1)"
using z by (subst at_within_open) auto
qed auto

```
then obtain \(c\) where \(c:\) " \(\ z\). norm \(z<1 \Longrightarrow h z-e v a l \_f p s F z\)
\(=c^{\prime \prime}\)
by force
from \(c[o f 0]\) and \(k\) have \(" c=0 "\) by (simp add: h_def \(F_{-} d e f\) eval_fps_at_0)
thus ?thesis
using \(c[o f z]\) that by auto
qed
have h_eq_sum': "( \(\forall z \in\) ball 0 1. h \(z=\left(\sum n\right.\). of_nat (Suc n) powi \(k * z^{-}\)Suc n))" (is "?P2 h")
proof safe
fix \(z\) :: complex assume \(z: ~ " z \in\) ball 0 1"
have "summable ( \(\lambda\) n. of_nat (Suc n) powi \(-k * z\) - Suc n)"
using \(z\) summable[of \(z\) ] by (subst summable_Suc_iff) auto
also have "?this \(\longleftrightarrow\) summable ( \(\lambda\) n. of_nat \(n\) powi - k* \(z^{\text {~ } n) " ~}\) by (rule summable_Suc_iff)
finally have "( \(\lambda\) n. of_nat (Suc n) powi \(-k * z^{-}\)Suc n) sums h \(z\) " using h_eq_sum[of \(\bar{z}\) ] \(k\) unfolding summable_Suc_iff by (subst sums_Suc_iff) (use \(z\) in <auto simp: eval_fps_def \(F_{-}\)def>)
thus "h \(z=\left(\sum n\right.\). of_nat (Suc n) powi \(-k * z\) - Suc n)" by (simp add: sums_iff)
qed
define \(h^{\prime}\) where " \(h^{\prime}=(S O M E h . ? P 1 h \wedge ? P 2 h) "\)
have " \(\exists \mathrm{h}\). ?P1 h \(\wedge\) ? P2 h"
using h_eq_sum' holo_h by blast
from someI_ex[OF this] have h'_props: "?P1 h'" "?P2 h'" unfolding \(h{ }^{\prime}\) _def by blast+
have \(h^{\prime} \_e q: ~ " h ' z=p o l y l o g k z "\) if " \(z \in S k\) " for \(z\) using that \(k\) by (auto simp: polylog_def \(h^{\prime}\) _def S_def)
have polylog_sums: "( \(\lambda\) n. of_nat (Suc n) powi (-k) * \(z^{\text {- Suc n) sums }}\) polylog k \(z^{\prime \prime}\)
if "norm \(z<1\) " for \(z\)
proof -
have "summable ( \(\lambda n\). of_nat (Suc n) powi ( \(-k\) ) * z - Suc n)" using summable[of z] that by (subst summable_Suc_iff)
moreover from that have " \(z \in S \mathrm{k}\) "
by (auto simp: S_def)
ultimately show ?thesis
using \(h{ }^{\prime}\) _props using that by (force simp: sums_iff h'_eq)
qed
have eq': "polylog \(k z=h z "\) if " \(z \in S k "\) for \(z\)
proof -
have "h' z = h z"
proof (rule analytic_continuation_open[where \(g=h\) ])
show "h' holomorphic_on S k" "h holomorphic_on S k"
```

 by fact+
 show "ball 0 1 f= ({} :: complex set)" "open (ball 0 1 :: complex
 set)"
by auto
show "open (S k)" "connected (S k)" "ball 0 1 \subseteq S k"
using k <open ?S> simply_connected_slotted_complex_plane_right[of
1]
by (auto simp: S_def simply_connected_imp_connected)
show "z \in S k"
by fact
show "h' z = h z" if "z \in ball 0 1" for z
using h'_props(2) h_eq_sum' that by simp
qed
with that show ?thesis
by (simp add: h'_eq)
qed
have deriv_polylog: "(polylog k has_field_derivative g z) (at z)"
if "z\inS k" for z
proof -
have "(h has_field_derivative g z) (at z)"
by (intro deriv_h) (use that k in <auto simp: S_def>)
also have "?this \longleftrightarrow ?thesis"
proof (rule DERIV_cong_ev)
have "eventually (}\mp@subsup{\lambda}{w.}{}.\textrm{w}\inS k) (nhds z)"
by (intro eventually_nhds_in_open) (use that in auto)
thus "eventually (\lambdaw. h w = polylog k w) (nhds z)"
by eventually_elim (auto simp: eq')
qed auto
finally show ?thesis .
qed
show ?case
using deriv_polylog polylog_sums unfolding g_def by simp
qed
show "(polylog k has_field_derivative (if z = O then 1 else polylog
(k - 1) z / z)) (at z within A)"
if "z (if k \leq O then -{1} else -(of_real ` {1..}))" for z
using * that unfolding S_def by (blast intro: has_field_derivative_at_within)
show "(\lambdan. of_nat (Suc n) powi (-k) * z - Suc n) sums polylog k z"
if "norm z < 1" for z
using * that by force
qed
lemma has_field_derivative_polylog' [derivative_intros]:
assumes "(f has_field_derivative f') (at z within A)"
assumes "if k\leq0 then f z f=1 else Im (f z) f=0\vee Re (f z) < 1"
shows "((\lambdaz. polylog k (f z)) has_field_derivative

```
```

 (if f z = O then 1 else polylog (k-1) (f z) / f z) * f')
 (at z within A)"
proof -
have "(polylog k ○ f has_field_derivative
(if f z = O then 1 else polylog (k-1) (f z) / f z) * f') (at
z within A)"
using assms(2) by (intro DERIV_chain assms has_field_derivative_polylog)
auto
thus ?thesis
by (simp add: o_def)
qed
lemma polylog_0 [simp]: "polylog k 0 = 0"
proof -
have "(\lambda_. 0) sums polylog k 0"
using sums_polylog[of 0 k] by simp
moreover have "(\lambda_. 0 :: complex) sums 0"
by simp
ultimately show ?thesis
using sums_unique2 by blast
qed

```

A simple consequence of the derivative formula is the following recurrence for \(\mathrm{Li}_{s}\) via a contour integral:
\[
\operatorname{Li}_{s}(z)=\int_{0}^{z} \frac{1}{w} \operatorname{Li}_{s-1}(w) \mathrm{d} w
\]
```

theorem polylog_has_contour_integral:
assumes "z \not\in complex_of_real `({..-1} \cup {1..})" shows "((\lambdaw. polylog s w / w) has_contour_integral polylog (s + 1) z) (linepath 0 z)" proof - let ?l = "linepath O z" define A where "A = -complex_of_real` ({..-1} \cup {1..})"
have "((\lambdaw. if w = O then 1 else polylog s w / w) has_contour_integral
(polylog (s + 1) (pathfinish ?l) - polylog (s + 1) (pathstart
?1))) (linepath O z)"
proof (rule contour_integral_primitive)
have [simp]: "complex_of_real x = -1 \longleftrightarrow x = -1" for x
by (simp add: Complex_eq_neg_1 complex_of_real_def)
show "(polylog (s + 1) has_field_derivative (if z = 0 then 1 else
polylog s z / z))
(at z within A)" if "z\inA" for z
using that by (intro derivative_eq_intros) (auto simp: A_def split:
if_splits)
next
show "valid_path (linepath 0 z)"
by (rule valid_path_linepath)
next

```
```

 show "path_image (linepath 0 z)\subseteqA"
 using assms starlike_doubly_slotted_complex_plane_aux[of z "-1"
 1 0]
by (auto simp: A_def)
qed
hence "((\lambdaw. if w = 0 then 1 else polylog s w / w) has_contour_integral
(polylog (s + 1) z)) (linepath 0 z)"
by simp
thus ?thesis
unfolding has_contour_integral_def
proof (rule has_integral_spike[rotated 2])
show "negligible {0 :: real}"
by simp
qed (auto simp: vector_derivative_linepath_within)
qed
lemma sums_polylog':
"norm z < 1 \Longrightarrow k = 0 \Longrightarrow (\lambdan. of_nat n powi - k * z - n) sums polylog
k z"
using sums_polylog[of z k] by (subst (asm) sums_Suc_iff) auto
lemma polylog_altdef1:
"norm z < 1 \Longrightarrow polylog k z = (\sumn. of_nat (Suc n) powi -k * z - Suc
n)"
using sums_polylog[of z k] by (simp add: sums_iff)
lemma polylog_altdef2:
"norm z < 1\Longrightarrowk\not=0\Longrightarrow polylog k z = (\sumn. of_nat n powi -k * z
-n)"
using sums_polylog'[of z k] by (simp add: sums_iff)
lemma polylog_at_pole: "polylog k 1 = 0"
by (auto simp: polylog_def)
lemma polylog_at_branch_cut: "x \geq 1 m > 0 \# polylog k (of_real
x) = 0"
by (auto simp: polylog_def)
lemma holomorphic_on_polylog [holomorphic_intros]:
assumes "A \subseteq(if k \leq 0 then -{1} else -of_real - {1..})"
shows "polylog k holomorphic_on A"
proof -
let ?S = "-(complex_of_real ` {1..})"
have *: "open ?S"
by (intro open_Compl closed_slot_right)
have "polylog k holomorphic_on (if k \leq O then -{1} else ?S)"
by (subst holomorphic_on_open) (use * in <auto intro!: derivative_eq_intros
exI>)
thus ?thesis

```
```

 by (rule holomorphic_on_subset) (use assms in <auto split: if_splits>)
 qed
lemmas holomorphic_on_polylog' [holomorphic_intros] =
holomorphic_on_compose_gen [OF _ holomorphic_on_polylog[OF order.refl],
unfolded o_def]
lemma analytic_on_polylog [analytic_intros]:
assumes "A\subseteq (if k\leq0 then -{1} else -of_real `{1..})" shows "polylog k analytic_on A" proof - let ?S = "-(complex_of_real` {1..})"
have *: "open ?S"
by (intro open_Compl closed_slot_right)
have "polylog k analytic_on (if k \leq O then -{1} else ?S)"
by (subst analytic_on_open) (use * in <auto intro!: holomorphic_intros>)
thus ?thesis
by (rule analytic_on_subset) (use assms in <auto split: if_splits>)
qed
lemmas analytic_on_polylog' [analytic_intros] =
analytic_on_compose_gen [OF _ analytic_on_polylog[OF order.refl], unfolded
o_def]
lemma continuous_on_polylog [analytic_intros]:
assumes "A\subseteq (if k\leq0 then -{1} else -of_real `{1..})" shows "continuous_on A (polylog k)" proof - let ?S = "-(complex_of_real` {1..})"
have *: "open ?S"
by (intro open_Compl closed_slot_right)
have "continuous_on (if k \leq O then -{1} else ?S) (polylog k)"
by (intro holomorphic_on_imp_continuous_on holomorphic_intros) auto
thus ?thesis
by (rule continuous_on_subset) (use assms in auto)
qed
lemmas continuous_on_polylog' [continuous_intros] =
continuous_on_compose2 [OF continuous_on_polylog [OF order.refl]]

```

\subsection*{2.2 Special values}
```

lemma polylog_neg_int_left:

```
lemma polylog_neg_int_left:
    "k < 0 \Longrightarrow polylog k z = z * poly (eulerian_poly (nat (-k))) z * (1
    "k < 0 \Longrightarrow polylog k z = z * poly (eulerian_poly (nat (-k))) z * (1
- z) powi (k - 1)"
- z) powi (k - 1)"
    by (auto simp: polylog_def)
    by (auto simp: polylog_def)
lemma polylog_0_left: "polylog 0 z = z / (1 - z)"
lemma polylog_0_left: "polylog 0 z = z / (1 - z)"
    by (simp add: polylog_def field_simps)
```

 by (simp add: polylog_def field_simps)
    ```
```

lemma polylog_neg1_left: "polylog (-1) x = x / (1 - x) ^ 2"
by (simp add: polylog_neg_int_left eval_nat_numeral eulerian_poly.simps
power_int_minus field_simps)
lemma polylog_neg2_left: "polylog (-2) x = x * (1 + x) / (1 - x) ^ 3"
by (simp add: polylog_neg_int_left eval_nat_numeral eulerian_poly.simps
power_int_minus field_simps)
lemma polylog_neg3_left: "polylog (-3) x = x * (1 + 4 * x + x

- x) - 4"
by (simp add: polylog_neg_int_left eval_nat_numeral eulerian_poly.simps
Let_def pderiv_add
pderiv_pCons power_int_minus field_simps numeral_poly)
lemma polylog_1:
assumes "z \& of_real `{1..}" shows "polylog 1 z = - ln (1 - z)" proof - have "(\lambdaz. polylog 1 z + ln (1 - z)) constant_on -of_real` {1..}"
proof (rule has_field_derivative_0_imp_constant_on)
show "connected (-complex_of_real `{1..})" using starlike_slotted_complex_plane_right[of 1] starlike_imp_connected by blast show "open (- complex_of_real` {1..})"
using closed_slot_right by blast
show "((\lambdaz. polylog 1 z + ln (1 - z)) has_field_derivative 0) (at
z)"
if "z\in -of_real ` {1..}" for z using that by (auto intro!: derivative_eq_intros simp: complex_nonpos_Reals_iff complex_slot_right_eq polylog_O_left divide_simps) qed then obtain c where c: "\z. z \in -of_real`{1..} \Longrightarrow polylog 1 z + ln
(1-z) = c'
unfolding constant_on_def by blast
from c[of 0] have "c = O"
by (auto simp: complex_slot_right_eq)
with c[of z] show ?thesis
using assms by (auto simp: add_eq_O_iff)
qed
lemma is_pole_polylog_1:
assumes "k < 0"
shows "is_pole (polylog k) 1"
proof (cases "k = 0")
case True
have "filtermap (\lambdaz. -z) (filtermap (\lambdaz. z - 1) (at 1)) = filtermap
(\lambdaz. -z) (at (0 :: complex))"

```
```

 by (simp add: at_to_O' filtermap_filtermap)
 also have "... = at 0"
 by (subst filtermap_at_minus) auto
 finally have "filtermap ((\lambdaz. -z) ○ (\lambdaz. z - 1)) (at 1) = at (0 :: complex)"
 unfolding filtermap_compose .
 hence *: "filtermap (\lambdaz. 1 - z) (at 1) = at (0 :: complex)"
 by (simp add: o_def)
 have "is_pole (\lambdaz::complex. z / (1 - z)) 1"
 unfolding is_pole_def
 by (rule filterlim_divide_at_infinity tendsto_intros)+
 (use * in <auto simp: filterlim_def>)
 also have "(\lambdaz. z / (1-z)) = polylog k"
 using True by (auto simp: fun_eq_iff polylog_O_left)
 finally show ?thesis.
 next
case False
have "\forallF x in at 1. x f= (1 :: complex)"
using eventually_at zero_less_one by blast
hence ev: "\forall}\mp@subsup{|}{F}{}x\mathrm{ in at 1. 1 - x f= (0 :: complex)"
by eventually_elim auto
have "is_pole (\lambdaz::complex. z * poly (eulerian_poly (nat (- k))) z *
(1 - z) powi (k - 1)) 1"
unfolding is_pole_def
by (rule tendsto_mult_filterlim_at_infinity tendsto_eq_intros refl
ev
filterlim_power_int_neg_at_infinity | (use assms in simp;
fail))+
also have "(\lambdaz::complex. z * poly (eulerian_poly (nat (-k))) z * (1

- z) powi (k - 1)) =
polylog k"
using assms False by (intro ext) (simp add: polylog_neg_int_left)
finally show ?thesis .
qed
lemma zorder_polylog_1:
assumes "k \leq 0"
shows "zorder (polylog k) 1 = k - 1"
proof (cases "k = 0")
case True
have "filtermap (\lambdaz. -z) (filtermap (\lambdaz. z - 1) (at 1)) = filtermap
(\lambdaz. -z) (at (0 :: complex))"
by (simp add: at_to_0' filtermap_filtermap)
also have "... = at 0"
by (subst filtermap_at_minus) auto
finally have "filtermap ((\lambdaz. -z) ○ (\lambdaz. z - 1)) (at 1) = at (0 :: complex)"
unfolding filtermap_compose .
hence *: "filtermap (\lambdaz. 1 - z) (at 1) = at (0 :: complex)"
by (simp add: o_def)

```
```

 have "zorder (\lambdaz::complex. (-z) / (z - 1) - 1) 1 = -int 1"
 by (rule zorder_nonzero_div_power [of UNIV]) (auto intro!: holomorphic_intros)
 also have "(\lambdaz. (-z) / (z-1) ` 1) = polylog k"
 using True by (auto simp: fun_eq_iff polylog_O_left divide_simps)
 (auto simp: algebra_simps)?
finally show ?thesis
using True by simp
next
case False
have "zorder (\lambdaz::complex. (-1) ` nat (1 - k) * z * poly (eulerian_poly
(nat (-k))) z /
(z - 1) ^ nat (1 - k)) 1 = -int (nat (1 - k))" (is "zorder
?f _ = "")
using False assms
by (intro zorder_nonzero_div_power [of UNIV]) (auto intro!: holomorphic_intros)
also have "?f = polylog k"
proof
fix z :: complex
have "(z - 1) ^ nat (1 - k) = (-1) ^ nat (1 - k) * (1 - z) ^ nat (1

- k)"
by (subst power_mult_distrib [symmetric]) auto
thus "?f z = polylog k z"
using False assms by (auto simp: polylog_neg_int_left power_int_def
field_simps)
qed
finally show ?thesis
using False assms by simp
qed
lemma isolated_singularity_polylog_1:
assumes "k\leq0"
shows "isolated_singularity_at (polylog k) 1"
unfolding isolated_singularity_at_def using assms
by (intro exI[of _ 1]) (auto intro!: analytic_intros)
lemma not_essential_polylog_1:
assumes "k\leq0"
shows "not_essential (polylog k) 1"
unfolding not_essential_def using is_pole_polylog_1[of k] assms by auto
lemma polylog_meromorphic_on [meromorphic_intros]:
assumes "k\leq0"
shows "polylog k meromorphic_on {1}"
using assms
by (simp add: isolated_singularity_polylog_1 meromorphic_at_iff not_essential_polylog_1)

```

\subsection*{2.3 Duplication formula}

Lastly, we prove the following duplication formula that the polylogarithm satisfies:
\[
\operatorname{Li}_{s}(z)+\operatorname{Li}_{s}(-z)=2^{1-s} \operatorname{Li}_{s}\left(z^{2}\right)
\]

The proof is a relatively simple manipulation of infinite sum that defines \(\mathrm{Li}_{s}(z)\) for \(|z|<1\), followed by analytic continuation to its full domain.
```

theorem polylog_duplication:
assumes "if s\leq0 then z }\not={-1,1} else z \& complex_of_real `({..-1} U {1..})" shows "polylog s z + polylog s (-z) = 2 powi (1 - s) * polylog s (z')" proof - define A where "A = -(if s \leq O then {-1, 1} else complex_of_real`
({..-1} \cup {1..}))"
show ?thesis
proof (rule analytic_continuation_open[where f = "\lambdaz. polylog s z +
polylog s (-z)"])
show "ball 0 1\subseteqA"
by (auto simp: A_def)
next
have "closed (complex_of_real - ({..-1} \cup{1..}))"
unfolding image_Un by (intro open_Compl closed_Un closed_slot_right
closed_slot_left)
thus "open A"
unfolding A_def by auto
next
have "connected (-complex_of_real - ({..-1} \cup {1..}))"
by (intro simply_connected_imp_connected simply_connected_doubly_slotted_complex_plan
auto
moreover have "connected (-{-1, 1 :: complex})"
by (intro path_connected_imp_connected path_connected_complement_countable)
auto
ultimately show "connected A"
unfolding A_def by auto
next
show "(\lambdaz. polylog s z + polylog s (- z)) holomorphic_on A"
by (intro holomorphic_intros) (auto simp: complex_eq_iff A_def)
next
show "(\lambdaz. 2 powi (1 - s) * polylog s (z
proof (intro holomorphic_intros; safe)
fix z assume z: "z\inA"
show "z^2 \in (if s \leq O then - {1} else - complex_of_real ` {1..})"
proof (cases "s \leq 0")
case True
thus ?thesis using z by (auto simp: A_def power2_eq_1_iff)
next
case False
{

```
```

 fix x :: real
 assume x: "x \geq 1" "z - 2 = of_real x"
 have "Im (z-2) = 0"
 by (simp add: x)
 hence "Im z = 0 V Re z = 0"
 by (simp add: power2_eq_square)
 moreover have "Im z - 2 \geq0"
 by auto
 hence "Im z ^ 2 > -1"
 by linarith
 ultimately have "x = Re z ` 2" "Im z = 0"
 using x unfolding power2_eq_square by (auto simp: complex_eq_iff)
 with x have "|Re z|\geq1"
 by (auto simp: power2_ge_1_iff)
 with <Im z = 0> have "z & A"
 using False by (auto simp: A_def complex_double_slot_eq)
 }
 with False show ?thesis using z
 by (auto simp: A_def)
 qed
 qed
 next
 show "polylog s z + polylog s (-z) = 2 powi (1 - s) * polylog s (z
 if z: "z b ball 0 1" for z
 proof -
 have ran: "range (\lambdan::nat. Suc (2 * n)) = {n. odd n}"
 by (auto simp: image_def elim!: oddE)
 have "(\lambdan. of_nat (Suc n) powi -s * (z ^ Suc n + (-z) - Suc n))
 sums
(polylog s z + polylog s (-z))" (is "?f sums _")
unfolding ring_distribs using z
by (intro sums_add sums_mult sums_polylog) (simp_all add: norm_power)
also have "?this \longleftrightarrow (\lambdan. ?f (2* n + 1)) sums (polylog s z + polylog
s (-z))"
by (rule sym, intro sums_mono_reindex) (auto simp: ran strict_mono_def)
also have "(\lambdan. ?f (2*n + 1)) = (\lambdan. 2* (2* of_nat (Suc n))
powi -s * (z
by (intro ext) (simp_all add: algebra_simps power_mult power2_eq_square
power_minus')
also have "... = (\lambdan. 2 powi (1 - s) * (of_nat (Suc n) powi -s *
(z') - Suc n))" (is "_ = ?g")
by (simp add: power_int_diff power_int_minus fun_eq_iff field_simps
flip: power_int_mult_distrib)
finally have "?g sums (polylog s z + polylog s (-z))".
moreover have "?g sums (2 powi (1 - s) * polylog s (z'))"
using z by (intro sums_mult sums_polylog) (simp_all add: norm_power
abs_square_less_1)
ultimately show ?thesis
using sums_unique2 by blast

```
```

 qed
 qed (use assms in <auto simp: A_def>)
 qed
end

```

\section*{References}
[1] J. Mason and D. Handscomb. Chebyshev Polynomials. CRC Press, 2002.```

