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Abstract

We formalize the proofs of Cauchy’s and Legendre’s Polygonal
Number Theorems given in Melvyn B. Nathanson’s book ‘Additive
Number Theory: The Classical Bases’ [2].

For m ≥ 1, the k-th polygonal number of order m+ 2 is defined to
be pm(k) = mk(k−1)

2 + k. The theorems state that:
• If m ≥ 4 and N ≥ 108m, then N can be written as the sum of

m+ 1 polygonal numbers of order m+ 2, at most four of which
are different from 0 or 1. If N ≥ 324, then N can be written as
the sum of five pentagonal numbers, at least one of which is 0 or
1.

• Let m ≥ 3 and N ≥ 28m3. If m is odd, then N is the sum of
four polygonal numbers of order m + 2. If m is even, then N is
the sum of five polygonal numbers of order m+2, at least one of
which is 0 or 1.

We also formalize the proof of Gauss’s theorem which states that every
non-negative integer is the sum of three triangular numbers.
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1 Technical Lemmas

We show three lemmas used in the proof of both main theorems.
theory Polygonal-Number-Theorem-Lemmas

imports Three-Squares.Three-Squares

begin

1.1 Lemma 1.10 in [2]

This lemma is split into two parts. We modify the proof given in [2] slightly
as we require the second result to hold for l = 2 in the proof of Legendre’s
polygonal number theorem.
theorem interval-length-greater-than-four :

fixes m N L :: real
assumes m ≥ 3
assumes N ≥ 2∗m
assumes L = (2/3 + sqrt (8∗N/m − 8 )) − (1/2 + sqrt (6∗N/m − 3 ))
shows N ≥ 108∗m =⇒ L > 4

〈proof 〉

theorem interval-length-greater-than-lm:
fixes m N :: real
fixes L l :: real
assumes m ≥ 3
assumes N ≥ 2∗m
assumes L = (2/3 + sqrt (8∗N/m − 8 )) − (1/2 + sqrt (6∗N/m − 3 ))
shows l ≥ 2 ∧ N ≥ 7∗l^2∗m^3 =⇒ L > l∗m

〈proof 〉

lemmas interval-length-greater-than-2m [simp] = interval-length-greater-than-lm
[where l=2 , simplified]

1.2 Lemma 1.11 in [2]

We show Lemma 1.11 in [2] which is also known as Cauchy’s Lemma.
theorem Cauchy-lemma:

fixes m N a b r :: real
assumes m ≥ 3 N ≥ 2∗m
and 0 ≤ a 0 ≤ b 0 ≤ r r < m
and N = m∗(a − b)/2 + b + r
and 1/2 + sqrt (6∗N/m − 3 ) ≤ b ∧ b ≤ 2/3 + sqrt (8∗N/m − 8 )
shows b^2 < 4∗a ∧ 3∗a < b^2 + 2∗b + 4

〈proof 〉
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lemmas Cauchy-lemma-r-eq-zero = Cauchy-lemma [where r=0 , simplified]

1.3 Lemma 1.12 in [2]
lemma not-one:

fixes a b :: nat
assumes a≥1
assumes b≥1
assumes ∃ k1 :: nat. a = 2∗k1+1
assumes ∃ k2 :: nat. b = 2∗k2+1
assumes b^2 < 4∗a
shows 4∗a−b^2 6= 1

〈proof 〉

lemma not-two:
fixes a b :: nat
assumes a≥1
assumes b≥1
assumes ∃ k1 :: nat. a = 2∗k1+1
assumes 1 :∃ k2 :: nat. b = 2∗k2+1
assumes b^2 < 4∗a
shows 4∗a−b^2 6= 2

〈proof 〉

The following lemma shows that given odd positive integers x, y, z and b,
where x ≥ y ≥ z, we may pick a suitable integer u where u = z or u = −z,
such that b+ x+ y + u ≡ 0 (mod 4).
lemma suit-z:

fixes b x y z :: nat
assumes odd b ∧ odd x ∧ odd y ∧ odd z
assumes x≥y ∧ y≥z
shows ∃ u :: int. (u=z ∨ u=−z) ∧ (b+x+y+u) mod 4 = 0

〈proof 〉

lemma four-terms-bin-exp-allsum:
fixes b s t u v :: int
assumes b = s+t+u+v
shows b^2 = t^2+u^2+s^2+v^2+2∗t∗u+2 ∗ s ∗ v + 2∗t ∗ s + 2∗t ∗ v +2∗u

∗ s +2∗u ∗ v

〈proof 〉

lemma four-terms-bin-exp-twodiff :
fixes b s t u v :: int
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assumes b = s+t−u−v
shows b^2 = t^2+u^2+s^2+v^2−2∗t∗u−2 ∗ s ∗ v + 2∗t ∗ s − 2∗t ∗ v −2∗u

∗ s +2∗u ∗ v

〈proof 〉

If a quadratic with positive leading coefficient is always non-negative, its
discriminant is non-positive.
lemma qua-disc:

fixes a b c :: real
assumes a>0
assumes ∀ x::real. a∗x^2+b∗x+c ≥0
shows b^2 − 4∗a∗c ≤ 0

〈proof 〉

The following lemma shows for any point on a 3D sphere with radius a, the
sum of its coordinates lies between

√
3a and −

√
3a.

lemma three-terms-Cauchy-Schwarz:
fixes x y z a :: real
assumes a > 0
assumes x^2+y^2+z^2 = a
shows (x+y+z)≥−sqrt(3∗a) ∧ (x+y+z)≤sqrt(3∗a)

〈proof 〉

We adapt the lemma above through changing the types for the convenience
of our proof.
lemma three-terms-Cauchy-Schwarz-nat-ver :

fixes x y z a :: nat
assumes a>0
assumes x^2+y^2+z^2 = a
shows (x+y+z)≥−sqrt(3∗a) ∧ (x+y+z)≤sqrt(3∗a)

〈proof 〉

This theorem is Lemma 1.12 in [2], which shows for odd positive integers
a and b satisfying certain properties, there exist four non-negative integers
s, t, u and v such that a = s2 + t2 + u2 + v2 and b = s+ t+ u+ v. We use
the Three Squares Theorem AFP entry [1].
theorem four-nonneg-int-sum:

fixes a b :: nat
assumes a≥1
assumes b≥1
assumes odd a
assumes odd b
assumes 3 :b^2 < 4∗a
assumes 3∗a < b^2+2∗b+4
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shows ∃ s t u v :: int. s ≥ 0 ∧ t ≥ 0 ∧ u ≥ 0 ∧ v ≥ 0 ∧ a = s^2 + t^2 + u^2
+ v^2 ∧
b = s+t+u+v

〈proof 〉
end

2 Polygonal Number Theorem
2.1 Gauss’s Theorem on Triangular Numbers

We show Gauss’s theorem which states that every non-negative integer is
the sum of three triangles, using the Three Squares Theorem AFP entry [1].
This corresponds to Theorem 1.8 in [2].
theory Polygonal-Number-Theorem-Gauss

imports Polygonal-Number-Theorem-Lemmas
begin

The following is the formula for the k-th polygonal number of order m+ 2.
definition polygonal-number :: nat ⇒ nat ⇒ nat

where polygonal-number m k = m∗k∗(k−1 ) div 2 + k

When m = 1, the polygonal numbers have order 3 and the formula represents
triangular numbers. Gauss showed that all natural numbers can be written
as the sum of three triangular numbers. In other words, the triangular
numbers form an additive basis of order 3 of the natural numbers.
theorem Gauss-Sum-of-Three-Triangles:

fixes n :: nat
shows ∃ x y z. n = polygonal-number 1 x + polygonal-number 1 y + polygo-

nal-number 1 z

〈proof 〉
end

2.2 Cauchy’s Polygonal Number Theorem

We will use the definition of the polygonal numbers from the Gauss Theorem
theory file which also imports the Three Squares Theorem AFP entry [1].
theory Polygonal-Number-Theorem-Cauchy

imports Polygonal-Number-Theorem-Gauss
begin

The following lemma shows there are two consecutive odd integers in any
four consecutive integers.
lemma two-consec-odd:

fixes a1 a2 a3 a4 :: int
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assumes a1−a2 = 1
assumes a2−a3 = 1
assumes a3−a4 = 1
shows ∃ k1 k2 :: int. {k1 , k2} ⊆ {a1 , a2 , a3 , a4} ∧ (k2 = k1+2 ) ∧ odd k1

〈proof 〉

This lemma proves that for two consecutive integers b1 and b2, and r ∈
{0, 1, . . . ,m − 3}, numbers of the form b1 + r and b2 + r can cover all the
congruence classes modulo m.
lemma cong-classes:

fixes b1 b2 :: int
fixes m :: nat
assumes m ≥ 4
assumes odd b1
assumes b2 = b1 + 2
shows ∀N ::nat. ∃ b::int. ∃ r ::nat. (r ≤ m−3 ) ∧ [N=b+r ] (mod m) ∧ (b = b1 ∨

b = b2 )

〈proof 〉

The strong form of Cauchy’s polygonal number theorem shows for a natural
number N satisfying certain conditions, it may be written as the sum of
m+1 polygonal numbers of order m+2, at most four of which are different
from 0 or 1. This corresponds to Theorem 1.9 in [2].
theorem Strong-Form-of-Cauchy-Polygonal-Number-Theorem-1 :

fixes m N :: nat
assumes m≥4
assumes N≥108∗m
shows ∃ xs :: nat list. (length xs = m+1 ) ∧ (sum-list xs = N ) ∧ (∀ k≤3 . ∃ a.

xs! k = polygonal-number m a)
∧ (∀ k ∈ {4 ..m} . xs! k = 0 ∨ xs! k = 1 )

〈proof 〉

theorem Strong-Form-of-Cauchy-Polygonal-Number-Theorem-2 :
fixes N :: nat
assumes N≥324
shows ∃ p1 p2 p3 p4 r ::nat. N = p1+p2+p3+p4+r ∧ (∃ k1 . p1 = polygo-

nal-number 3 k1 ) ∧ (∃ k2 . p2 = polygonal-number 3 k2 )
∧ (∃ k3 . p3 = polygonal-number 3 k3 ) ∧ (∃ k4 . p4 = polygonal-number 3 k4 ) ∧ (r
= 0 ∨ r = 1 )

〈proof 〉
end
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2.3 Legendre’s Polygonal Number Theorem

We will use the definition of the polygonal numbers from the Gauss Theorem
theory file which also imports the Three Squares Theorem AFP entry [1].
theory Polygonal-Number-Theorem-Legendre

imports Polygonal-Number-Theorem-Gauss
begin

This lemma shows that under certain conditions, an integer N can be written
as the sum of four polygonal numbers.
lemma sum-of-four-polygonal-numbers:

fixes N m :: nat
fixes b :: int
assumes m ≥ 3
assumes N ≥ 2∗m
assumes [N = b] (mod m)
assumes odd-b: odd b
assumes b ∈ {1/2 + sqrt (6∗N/m − 3 ) .. 2/3 + sqrt (8∗N/m − 8 )}
assumes N ≥ 9
shows ∃ k1 k2 k3 k4 . N = polygonal-number m k1 + polygonal-number m k2 +

polygonal-number m k3 + polygonal-number m k4

〈proof 〉

We show Legendre’s polygonal number theorem which corresponds to The-
orem 1.10 in [2].
theorem Legendre-Polygonal-Number-Theorem:

fixes m N :: nat
assumes m ≥ 3
assumes N ≥ 28∗m^3
shows odd m =⇒ ∃ k1 k2 k3 k4 ::nat. N = polygonal-number m k1 + polygo-

nal-number m k2 + polygonal-number m k3 + polygonal-number m k4
and even m =⇒ ∃ k1 k2 k3 k4 k5 ::nat. N = polygonal-number m k1 + polygo-
nal-number m k2 + polygonal-number m k3 + polygonal-number m k4 + polygo-
nal-number m k5 ∧ (k1 = 0 ∨ k1 = 1 ∨ k2 = 0 ∨ k2 = 1 ∨ k3 = 0 ∨ k3 = 1
∨ k4 = 0 ∨ k4 = 1 ∨ k5 = 0 ∨ k5 = 1 )

〈proof 〉
end
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