Polygonal Number Theorem

Kevin Lee, Zhengkun Ye and Angeliki Koutsoukou-Argyraki
April 18, 2024

Abstract

We formalize the proofs of Cauchy's and Legendre's Polygonal Number Theorems given in Melvyn B. Nathanson's book 'Additive Number Theory: The Classical Bases' [2].

For $m \geq 1$, the k-th polygonal number of order $m+2$ is defined to be $p_{m}(k)=\frac{m k(k-1)}{2}+k$. The theorems state that: - If $m \geq 4$ and $N \geq 108 m$, then N can be written as the sum of $m+1$ polygonal numbers of order $m+2$, at most four of which are different from 0 or 1 . If $N \geq 324$, then N can be written as the sum of five pentagonal numbers, at least one of which is 0 or 1. - Let $m \geq 3$ and $N \geq 28 m^{3}$. If m is odd, then N is the sum of four polygonal numbers of order $m+2$. If m is even, then N is the sum of five polygonal numbers of order $m+2$, at least one of which is 0 or 1 .

We also formalize the proof of Gauss's theorem which states that every non-negative integer is the sum of three triangular numbers.

Contents

1 Technical Lemmas 3
1.1 Lemma 1.10 in [2] 3
1.2 Lemma 1.11 in [2] 3
1.3 Lemma 1.12 in [2] 4
2 Polygonal Number Theorem 6
2.1 Gauss's Theorem on Triangular Numbers 6
2.2 Cauchy's Polygonal Number Theorem 6
2.3 Legendre's Polygonal Number Theorem 8

Acknowledgements

The project was completed during the 2023 summer internship of the first two authors within the Cambridge Mathematics Placements (CMP) Programme, supervised by the third author and hosted at the Department of Computer Science and Technology, University of Cambridge. All three authors were funded by the ERC Advanced Grant ALEXANDRIA (Project GA 742178) led by Lawrence C. Paulson.
Kevin Lee and Zhengkun Ye wish to thank the Zulip community for help with beginners' questions.

1 Technical Lemmas

We show three lemmas used in the proof of both main theorems．
theory Polygonal－Number－Theorem－Lemmas
imports Three－Squares．Three－Squares
begin

1．1 Lemma 1.10 in［2］

This lemma is split into two parts．We modify the proof given in［2］slightly as we require the second result to hold for $l=2$ in the proof of Legendre＇s polygonal number theorem．

```
theorem interval-length-greater-than-four:
    fixes \(m N L\) :: real
    assumes \(m \geq 3\)
    assumes \(N \geq 2 * m\)
    assumes \(L=(2 / 3+\operatorname{sqrt}(8 * N / m-8))-(1 / 2+\operatorname{sqrt}(6 * N / m-3))\)
    shows \(N \geq 108 * m \Longrightarrow L>4\)
〈proof〉
```

theorem interval-length-greater-than-lm:
fixes $m N$:: real
fixes $L l::$ real
assumes $m \geq 3$
assumes $N \geq 2 * m$
assumes $L=(2 / 3+\operatorname{sqrt}(8 * N / m-8))-(1 / 2+\operatorname{sqrt}(6 * N / m-3))$
shows $l \geq 2 \wedge N \geq 7 * l \wedge 2 * m \wedge 3 \Longrightarrow L>l * m$
$\langle p r o o f\rangle$
lemmas interval－length－greater－than－2m $[$ simp $]=$ interval－length－greater－than－lm ［where $l=2$ ，simplified］

1．2 Lemma 1.11 in［2］

We show Lemma 1.11 in［2］which is also known as Cauchy＇s Lemma．

```
theorem Cauchy-lemma:
    fixes \(m\) abr :: real
    assumes \(m \geq 3 N \geq 2 * m\)
    and \(0 \leq a 0 \leq b 0 \leq r r<m\)
    and \(N=m *(a-b) / 2+b+r\)
    and \(1 / 2+\operatorname{sqrt}(6 * N / m-3) \leq b \wedge b \leq 2 / 3+\operatorname{sqrt}(8 * N / m-8)\)
    shows \(b^{\wedge} 2<4 * a \wedge 3 * a<b\) ヘ2 \(+2 * b+4\)
\(\langle p r o o f\rangle\)
```

lemmas Cauchy-lemma-r-eq-zero $=$ Cauchy-lemma $[$ where $r=0$, simplified]

1.3 Lemma 1.12 in [2]

lemma not-one:
fixes $a b:: n a t$
assumes $a \geq 1$
assumes $b \geq 1$
assumes $\exists k 1$:: nat. $a=2 * k 1+1$
assumes $\exists k 2::$ nat. $b=2 * k 2+1$
assumes $b^{\wedge} 2<4 * a$
shows $4 * a-b^{\wedge} 2 \neq 1$
$\langle p r o o f\rangle$
lemma not-two:
fixes $a b$:: nat
assumes $a \geq 1$
assumes $b \geq 1$
assumes $\exists k 1$:: nat. $a=2 * k 1+1$
assumes $1: \exists k 2::$ nat. $b=2 * k 2+1$
assumes b へ $2<4 * a$
shows $4 * a-b \subset 2 \neq 2$
$\langle p r o o f\rangle$
The following lemma shows that given odd positive integers x, y, z and b, where $x \geq y \geq z$, we may pick a suitable integer u where $u=z$ or $u=-z$, such that $b+x+y+u \equiv 0 \quad(\bmod 4)$.

```
lemma suit- \(z\) :
    fixes \(b x y z\) :: nat
    assumes odd \(b \wedge\) odd \(x \wedge\) odd \(y \wedge\) odd \(z\)
    assumes \(x \geq y \wedge y \geq z\)
    shows \(\exists u::\) int. \((u=z \vee u=-z) \wedge(b+x+y+u) \bmod 4=0\)
\(\langle p r o o f\rangle\)
lemma four-terms-bin-exp-allsum:
    fixes \(b\) stuv :: int
    assumes \(b=s+t+u+v\)
    shows \(b^{\wedge} 2=t^{\wedge} 2+u\) 2 \(2+s\) へ2 \(+v^{\wedge} 2+2 * t * u+2 * s * v+2 * t * s+2 * t * v+2 * u\)
* \(s+2 * u * v\)
\(\langle p r o o f\rangle\)
lemma four-terms-bin-exp-twodiff:
    fixes \(b\) stuv :: int
```

```
assumes \(b=s+t-u-v\)
shows \(b^{\wedge} 2=t^{\wedge} 2+u^{\wedge} 2+s^{\wedge} 2+v^{\wedge} 2-2 * t * u-2 * s * v+2 * t * s-2 * t * v-2 * u\)
* \(s+2 * u * v\)
\(\langle p r o o f\rangle\)
```

If a quadratic with positive leading coefficient is always non-negative, its discriminant is non-positive.

```
lemma qua-disc:
    fixes \(a b c\) :: real
    assumes \(a>0\)
    assumes \(\forall x:\) :real. \(a * x \wedge^{\wedge} 2+b * x+c \geq 0\)
    shows \(b\) へ \(2-4 * a * c \leq 0\)
\(\langle p r o o f\rangle\)
```

The following lemma shows for any point on a 3D sphere with radius a, the sum of its coordinates lies between $\sqrt{3 a}$ and $-\sqrt{3 a}$.

```
lemma three-terms-Cauchy-Schwarz:
    fixes \(x\) y \(z\) a :: real
    assumes \(a>0\)
    assumes \(x\) ^2+y^2 \(+z\) ^2 \(=a\)
    shows \((x+y+z) \geq-\operatorname{sqrt}(3 * a) \wedge(x+y+z) \leq \operatorname{sqrt}(3 * a)\)
\(\langle p r o o f\rangle\)
```

We adapt the lemma above through changing the types for the convenience of our proof.

```
lemma three-terms-Cauchy-Schwarz-nat-ver:
    fixes \(x y z a\) :: nat
    assumes \(a>0\)
    assumes \(x\) ^2 \(+y\) ^2 \(+z\) ^2 \(=a\)
    shows \((x+y+z) \geq-\operatorname{sqrt}(3 * a) \wedge(x+y+z) \leq \operatorname{sqrt}(3 * a)\)
\(\langle p r o o f\rangle\)
```

This theorem is Lemma 1.12 in [2], which shows for odd positive integers a and b satisfying certain properties, there exist four non-negative integers s, t, u and v such that $a=s^{2}+t^{2}+u^{2}+v^{2}$ and $b=s+t+u+v$. We use the Three Squares Theorem AFP entry [1].
theorem four-nonneg-int-sum:
fixes $a b$:: nat
assumes $a \geq 1$
assumes $b \geq 1$
assumes odd a
assumes odd b
assumes 3: ~2 $_{2}<4 * a$
assumes $3 * a<b$ へ $2+2 * b+4$

```
    shows \(\exists s t u v::\) int. \(s \geq 0 \wedge t \geq 0 \wedge u \geq 0 \wedge v \geq 0 \wedge a=s \wedge 2+t \wedge 2+u \wedge 2\)
\(+v^{\text {へ2 }}\) へ
    \(b=s+t+u+v\)
\(\langle p r o o f\rangle\)
end
```


2 Polygonal Number Theorem

2.1 Gauss's Theorem on Triangular Numbers

We show Gauss's theorem which states that every non-negative integer is the sum of three triangles, using the Three Squares Theorem AFP entry [1]. This corresponds to Theorem 1.8 in [2].

```
theory Polygonal-Number-Theorem-Gauss
    imports Polygonal-Number-Theorem-Lemmas
begin
```

The following is the formula for the k-th polygonal number of order $m+2$.

```
definition polygonal-number :: nat \(\Rightarrow\) nat \(\Rightarrow\) nat
    where polygonal-number \(m k=m * k *(k-1)\) div \(2+k\)
```

When $m=1$, the polygonal numbers have order 3 and the formula represents triangular numbers. Gauss showed that all natural numbers can be written as the sum of three triangular numbers. In other words, the triangular numbers form an additive basis of order 3 of the natural numbers.

```
theorem Gauss-Sum-of-Three-Triangles:
    fixes n :: nat
        shows \exists x y z.n= polygonal-number 1 x + polygonal-number 1 y + polygo-
nal-number 1 z
<proof>
end
```


2.2 Cauchy's Polygonal Number Theorem

We will use the definition of the polygonal numbers from the Gauss Theorem theory file which also imports the Three Squares Theorem AFP entry [1].

```
theory Polygonal-Number-Theorem-Cauchy
    imports Polygonal-Number-Theorem-Gauss
begin
```

The following lemma shows there are two consecutive odd integers in any four consecutive integers.

```
lemma two-consec-odd:
    fixes a1 a2 a3 a4 :: int
```

```
assumes \(a 1-a 2=1\)
assumes \(a 2-a 3=1\)
assumes \(a 3-a 4=1\)
shows \(\exists k 1 k 2::\) int. \(\{k 1, k 2\} \subseteq\{a 1, a 2, a 3, a 4\} \wedge(k 2=k 1+2) \wedge o d d k 1\)
```

```
<proof\rangle
```

```
<proof\rangle
```

This lemma proves that for two consecutive integers b_{1} and b_{2}, and $r \in$ $\{0,1, \ldots, m-3\}$, numbers of the form $b_{1}+r$ and $b_{2}+r$ can cover all the congruence classes modulo m.

```
lemma cong-classes:
    fixes b1 b2 :: int
    fixes \(m\) :: nat
    assumes \(m \geq 4\)
    assumes odd b1
    assumes \(b 2=b 1+2\)
    shows \(\forall N:: n a t . \exists b::\) int. \(\exists r:: n a t .(r \leq m-3) \wedge[N=b+r](\bmod m) \wedge(b=b 1 \vee\)
\(b=b\) 2)
\(\langle p r o o f\rangle\)
```

The strong form of Cauchy's polygonal number theorem shows for a natural number N satisfying certain conditions, it may be written as the sum of $m+1$ polygonal numbers of order $m+2$, at most four of which are different from 0 or 1 . This corresponds to Theorem 1.9 in [2].

```
theorem Strong-Form-of-Cauchy-Polygonal-Number-Theorem-1:
    fixes \(m N\) :: nat
    assumes \(m \geq 4\)
    assumes \(N \geq 108 * m\)
    shows \(\exists x s::\) nat list. (length \(x s=m+1) \wedge(\) sum-list \(x s=N) \wedge(\forall k \leq 3 . \exists a\).
xs! \(k=\) polygonal-number \(m\) a)
    \(\wedge(\forall k \in\{4 \ldots m\} . x s!k=0 \vee x s!k=1)\)
\(\langle p r o o f\rangle\)
```

theorem Strong-Form-of-Cauchy-Polygonal-Number-Theorem-2:
fixes N :: nat
assumes $N \geq 324$
shows \exists p1 p2 p3 p4 r ::nat. $N=p 1+p 2+p 3+p 4+r \wedge(\exists k 1 . p 1=$ polygo-
nal-number 3 k1) $\wedge(\exists k 2 . p 2=$ polygonal-number $3 k 2)$
$\wedge(\exists k 3 \cdot p 3=$ polygonal-number $3 k 3) \wedge\left(\exists k_{4} \cdot p_{4}=\right.$ polygonal-number $\left.3 k_{4}\right) \wedge(r$
$=0 \vee r=1)$
$\langle p r o o f\rangle$
end

2.3 Legendre's Polygonal Number Theorem

We will use the definition of the polygonal numbers from the Gauss Theorem theory file which also imports the Three Squares Theorem AFP entry [1].

```
theory Polygonal-Number-Theorem-Legendre
    imports Polygonal-Number-Theorem-Gauss
begin
```

This lemma shows that under certain conditions, an integer N can be written as the sum of four polygonal numbers.

```
lemma sum-of-four-polygonal-numbers:
    fixes \(N m\) :: nat
    fixes \(b::\) int
    assumes \(m \geq 3\)
    assumes \(N \geq 2 * m\)
    assumes \([N=b](\bmod m)\)
    assumes odd-b: odd \(b\)
    assumes \(b \in\{1 / 2+\operatorname{sqrt}(6 * N / m-3)\).. \(2 / 3+\operatorname{sqrt}(8 * N / m-8)\}\)
    assumes \(N \geq 9\)
    shows \(\exists k 1 k 2 k 3 k 4\). \(N=\) polygonal-number \(m k 1+\) polygonal-number \(m k 2+\)
polygonal-number m \(k 3+\) polygonal-number \(m k 4\)
\(\langle p r o o f\rangle\)
```

We show Legendre's polygonal number theorem which corresponds to Theorem 1.10 in [2].

```
theorem Legendre-Polygonal-Number-Theorem:
    fixes \(m N\) :: nat
    assumes \(m \geq 3\)
    assumes \(N \geq 28 * m^{\wedge} 3\)
    shows odd \(m \Longrightarrow \exists k 1\) k2 \(k 3\) k4::nat. \(N=\) polygonal-number \(m k 1+\) polygo-
nal-number \(m k 2+\) polygonal-number \(m k 3+\) polygonal-number \(m k 4\)
and even \(m \Longrightarrow \exists k 1 k 2 k 3 k 4 k 5:: n a t . N=\) polygonal-number \(m k 1+\) polygo-
nal-number \(m k 2+\) polygonal-number \(m k 3+\) polygonal-number \(m k 4+\) polygo-
nal-number m \(k 5 \wedge(k 1=0 \vee k 1=1 \vee k 2=0 \vee k 2=1 \vee k 3=0 \vee k 3=1\)
\(\left.\vee k_{4}=0 \vee k_{4}=1 \vee k 5=0 \vee k 5=1\right)\)
\(\langle p r o o f\rangle\)
end
```


References

[1] A. Danilkin and L. Chevalier. Three squares theorem. Archive of Formal Proofs, May 2023. https://isa-afp.org/entries/Three_Squares.html, Formal proof development.
[2] M. B. Nathanson. Additive Number Theory: The Classical Bases, volume 164 of Graduate Texts in Mathematics. Springer, New York, 1996.

