Pick's Theorem

Sage Binder and Katherine Kosaian

May 14, 2024

Abstract

We formalize Pick's theorem for finding the area of a simple polygon whose vertices are integral lattice points [1]. We are inspired by John Harrison's formalization of Pick's theorem in HOL Light [2], but tailor our proof approach to avoid a primary challenge point in his formalization, which is proving that any polygon with more than three vertices can be split (in its interior) by a line between some two vertices. Our formalization involves augmenting the existing geometry libraries in various foundational ways (e.g., by adding the definition of a polygon and formalizing some key properties thereof).

Contents

1 Misc. Linear Algebra Setup 3
2 Integral Bijective Matrix Determinant 5
3 Polygon Definitions 8
4 Jordan Curve Theorem for Polygons 9
5 Properties of make polygonal path, pathstart and pathfinish of a polygon 22
6 Loop Free Properties 30
7 Explicit Linepath Characterization of Polygonal Paths 36
8 A Triangle is a Polygon 46
9 Polygon Vertex Rotation 55
10 Translating a Polygon 84
11 Misc. properties 86
12 Properties of Sublists of Polygonal Path Vertex Lists 90
13 Reversing Polygonal Path Vertex List 117
14 Collinearity Properties 121
15 Linepath Properties 125
16 Measure of linepaths 133
17 Misc. Convex Polygon Properties 136
18 Vertices on Convex Frontier Implies Polygon is Convex 142
19 Polygon Splitting 156
20 Triangles 179
21 Measure Setup 188
22 Unit Triangle 188
23 Unit Square 193
24 Unit Triangle Area is $1 / 2$ 198
25 Area of Elementary Triangle is $1 / 2$ 202
26 Setup 206
26.1 Integral Points Cardinality Properties 206
27 Pick splitting 209
28 Convex Hull Has Good Linepath 222
29 Pick's Theorem 229
29.1 Pick's Theorem Triangle Case 229
29.2 Pocket properties 255
29.3 Arbitrary Polygon Case 332
theory Integral-Matrix
imports
Complex-MainHOL-Analysis.Finite-Cartesian-Product
HOL-Analysis.Linear-Algebra
HOL-Analysis.Determinants
begin

1 Misc. Linear Algebra Setup

```
lemma vec-scaleR-2: \((c::\) real \() *_{R}((\) vector \([a, b])::\) real 2 \()=\operatorname{vector}[a * c, b * c]\)
proof-
    have \(\left(c *_{R}\right.\) (vector \(\left.[a, b]\right)::\) real^2) \(\$ 1=a * c\) by \(\operatorname{simp}\)
    moreover have \(\left(c *_{R}\right.\) (vector \(\left.[a, b]\right)::\) real^2) \(\$ 2=((\) vector \([a, b])::\) real^2 \() \$ 2 *\)
    by \(\operatorname{simp}\)
    ultimately show ?thesis by (smt (verit, best) exhaust-2 vec-eq-iff vector-2(1)
vector-2(2))
qed
definition is-int :: real \(\Rightarrow\) bool where
    is-int \(x \longleftrightarrow(\exists n::\) int. \(x=n)\)
lemma is-int-sum: is-int \(x \wedge\) is-int \(y \longrightarrow i s\)-int \((x+y)\)
    by (metis is-int-def of-int-add)
lemma is-int-minus: is-int \(x \wedge\) is-int \(y \longrightarrow\) is-int \((x-y)\)
    by (metis is-int-def of-int-diff)
lemma is-int-mult: is-int \(x \wedge i s\)-int \(y \longrightarrow i s\)-int \((x * y)\)
    by (metis is-int-def of-int-mult)
definition integral-vec :: real^2 \(\Rightarrow\) bool where
    integral-vec \(v \longleftrightarrow(\) is-int \((v \$ 1) \wedge\) is-int (v\$2))
lemma integral-vec-sum: integral-vec \(v \wedge\) integral-vec \(w \longrightarrow\) integral-vec \((v+w)\)
proof (rule impI)
    fix \(v w\) :: real^2
    let \(? x=v+w\)
    assume integral-vec \(v \wedge\) integral-vec \(w\)
    then obtain v1 v2 w1 w2 :: int where \(v \$ 1=v 1 \wedge v \$ 2=v 2 \wedge w \$ 1=w 1 \wedge\)
\(w \$ 2=w 2\)
    using integral-vec-def is-int-def by auto
    then have ? \(x \$ 1=v 1+w 1\) and \(? x \$ 2=v 2+w 2\) by auto
    thus integral-vec ?x using integral-vec-def is-int-def by blast
qed
lemma integral-vec-minus: integral-vec \(v \longrightarrow\) integral-vec \((-v)\)
proof (rule impI)
    assume integral-vec \(v\)
    then obtain \(x y::\) int where \(v \$ 1=x \wedge v \$ 2=y\)
        using integral-vec-def is-int-def by auto
    then have \((-v) \$ 1=-x\) and \((-v) \$ 2=-y\)
        using integral-vec-def is-int-def by auto
    thus integral-vec \((-v)\)
        using integral-vec-def is-int-def by blast
qed
```

```
lemma real-2-inner:
    shows \(((\) vector \([a, b])::(\) real^2 \()) \cdot((\) vector \([c, d])::(\) real^2 \())=a * c+b * d\)
        (is ? \(v \cdot ? w=a * c+b * d)\)
proof-
    have ?v • ? \(w=\left(\sum i \in U N I V\right.\). ?v\$i • ? \(\left.w \$ i\right)\) using inner-vec-def[of ?v ?w] by
blast
    moreover have \(\forall i\). ? \(v \$ i\) ? \(w \$ i=\) ? \(v \$ i *\) ? \(w \$ i\) using inner-real-def by simp
    ultimately have ? \(v \cdot ? w=\left(\sum i \in U N I V\right.\). ? \(v \$ i *\) ? \(\left.w \$ i\right)\) by presburger
    thus ?thesis by (simp add: sum-2)
qed
lemma integral-vec-2:
    fixes \(a b\) :: int
    assumes \(v=\) vector \([a, b]\)
    shows integral-vec \(v\)
    by (simp add: assms is-int-def integral-vec-def)
definition matrix-inv :: real^2^2 \(\Rightarrow\) real 2 2^2 \(\Rightarrow\) bool where
    matrix-inv \(A A^{\prime} \longleftrightarrow\left(A * * A^{\prime}=\right.\) mat \(1 \wedge A^{\prime} * * A=\) mat 1\()\)
lemma mat-vec-mult-2:
    fixes \(v:\) real 2 and
            \(T::\) real^2への
    defines \(x: x \equiv v \$ 1\) and \(y: y \equiv v \$ 2\) and
                    \(a: a \equiv T \$ 1 \$ 1\) and \(b: b \equiv T \$ 1 \$ 2\) and
            \(c: c \equiv T \$ 2 \$ 1\) and \(d: d \equiv T \$ 2 \$ 2\)
    shows \((T * v v)=\) vector \([x * a+y * b, x * c+y * d]\)
proof-
    have \((T * v v) \$ 1=x * a+y * b\) by (simp add: a b matrix-vector-mult-def sum-2
\(x y\) )
    moreover have \((T * v v) \$ 2=x * c+y * d\) by (simp add: cd matrix-vector-mult-def
sum-2 \(x\) y)
    ultimately show \(T * v v=\) vector \([x * a+y * b, x * c+y * d]\)
            by (smt (verit) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
qed
definition integral-mat :: real^2^2 \(\Rightarrow\) bool where
    integral-mat \(T \longleftrightarrow(\forall v\). integral-vec \(v \longrightarrow\) integral-vec \((T * v v))\)
definition integral-mat-surj :: real^2^2 \(\Rightarrow\) bool where
    integral-mat-surj \(T \longleftrightarrow(\forall v\). integral-vec \(v \longrightarrow(\exists w\). integral-vec \(w \wedge T * v w=\)
\(v)\) )
definition integral-mat-bij :: real^2へ2 \(\Rightarrow\) bool where
    integral-mat-bij \(T \longleftrightarrow\) integral-mat \(T \wedge\) integral-mat-surj \(T\)
lemma integral－mat－integral－vec：integral－mat \(A \longrightarrow\) integral－vec \(v \longrightarrow\) integral－vec \((A * v v)\)
using integral－mat－def by blast
```

```
lemma integral-mat-int-entries:
    fixes T :: real^2^2
    assumes integral-mat T
    defines }a:a\equivT$1$1\mathrm{ and }b:b\equivT$1$2 an
                c:c\equivT$2$1 and d:d\equivT$2$2
    shows is-int a ^is-int b}\wedge is-int c\wedge is-int d
proof-
    let ?v = vector [1,0]
    have integral-vec (?v) using integral-vec-2[of ?v 1 0] by auto
    then have integral-vec (T*v ?v) using assms integral-mat-def by blast
    moreover have T*v ?v = vector [a,c]
        using mat-vec-mult-2[of T ?v] abced by auto
    ultimately have integral-vec (vector [a,c]) by auto
    then have 1: is-int a ^ is-int c using integral-vec-def by auto
    let ? w = vector [0, 1]
    have integral-vec (?w) using integral-vec-2[of ?w 0 1] by auto
    then have integral-vec (T*v ?w) using assms integral-mat-def by blast
    moreover have T*v ?w = vector [b,d]
        using mat-vec-mult-2[of T ?w] a b c d by auto
    ultimately have integral-vec (vector [ }b,d]\mathrm{ ) by auto
    then have 2: is-int b}\wedge is-int d using integral-vec-def by aut
    thus ?thesis using 1 2 by auto
qed
```


2 Integral Bijective Matrix Determinant

```
lemma integral-mat-int-det:
    fixes T :: real^2^2
    assumes integral-mat T
    shows is-int (det T)
proof-
    obtain abcd where abcd:T$1$1=a\wedgeT$1$2=b\wedgeT$2$1=c^T$2$2
=d by auto
    have abcd-int:is-int a ^ is-int b ^ is-int c ^ is-int d
        using integral-mat-int-entries[of T] abcd assms by auto
    obtain ai bi ci di :: int where abcdi: ai=a\wedge bi=b\wedge ci=c^di=d
        using abcd-int is-int-def by auto
    have det T = a*d - b*c using det-2[of T] abcd by auto
    also have ... = ai*di - bi*ci using abcdi by auto
    finally show ?thesis using is-int-def by blast
qed
lemma integral-mat-bij-inv:
    fixes T :: real^2`2
    assumes integral-mat-bij T
```

obtains Tinv where invertible $T \wedge$ integral-mat-bij Tinv \wedge matrix-inv T Tinv proof-
let $?, e 1=$ vector $[1,0]$
let $?, 2 \mathrm{Z}=$ vector $[0,1]$
let $? I=($ vector $[? e 1$, ? $e 2])::($ realへ2へ2 $)$
have $i d: ? I=(($ mat 1$)::($ real^2~2 $))$
unfolding vec-eq-iff
by (smt (verit, ccfv-threshold) exhaust-2 mat-def vec-lambda-beta vector-2)
have integral-vec ?e1
by (simp add: integral-vec-def is-int-def)
moreover have integral-vec ?e2
by (simp add: integral-vec-def is-int-def)
ultimately obtain $x y$ where $x y: T * v x=? e 1 \wedge$ integral-vec $x \wedge T * v y=$?e2 \wedge integral-vec y
by (meson assms integral-mat-bij-def integral-mat-surj-def)
let ?Tinv $=$ transpose $($ vector $[x, y])::($ real^2~2 $)$
have T **?Tinv $=$ mat 1 (is? TxTinv $=$ mat 1)
proof-
have column 1?TxTinv $=T * v($ column 1?Tinv $)$
by (metis matrix-vector-mul-assoc matrix-vector-mult-basis)
also have $\ldots=T * v x$ by (simp add: row-def)
finally have [simp]: column 1?TxTinv $=? e 1$ using $x y$ by presburger
have column 2 ?TxTinv $=T * v($ column 2 ?Tinv $)$
by (metis matrix-vector-mul-assoc matrix-vector-mult-basis)
also have $\ldots=T * v y$
by (simp add: row-def)
finally have $[$ simp $]$: column 2 ? TxTinv $=? ~ e 2$ using $x y$ by presburger
have $\forall v$. ?TxTinv $* v v=v$
proof (rule allI)
fix $v:$ real~2
have $(? T x T i n v * v v) \$ 1=($ column 1 ?TxTinv $) \$ 1 * v \$ 1+($ column 2
?TxTinv) $\$ 1 * v \$ 2$
by (metis (no-types, lifting) cart-eq-inner-axis mat-vec-mult-2 matrix-vector-mul-component matrix-vector-mult-basis mult.commute vector-2(1))
also have $\ldots=v \$ 1$ by simp
finally have $v 1$: $(? T x T i n v * v v) \$ 1=v \$ 1$.
have $(? T x T i n v * v v) \$ 2=($ column 1 ?TxTinv $) \$ 2 * v \$ 1+($ column 2
?TxTinv)\$2 * v\$2
by (metis (no-types, lifting) cart-eq-inner-axis mat-vec-mult-2 matrix-vector-mul-component matrix-vector-mult-basis mult.commute vector-2(2))
also have $\ldots=v \$ 2$ by simp
finally have $v 2$: $(? T x T i n v * v v) \$ 2=v \$ 2$.
show? TxTinv $* v v=v$ using $v 1$ v2 by (metis mat-vec-mult-2 matrix-vector-mul-lid)
qed
thus ?thesis by (simp add: matrix-eq)
qed
then have matrix-inv T ?Tinv
by (simp add: Integral-Matrix.matrix-inv-def matrix-left-right-inverse)
moreover have invertible T using calculation invertible-def matrix-inv-def by blast
moreover have integral-mat-bij ?Tinv
by (smt (verit, del-insts) $\langle T * *$ Finite-Cartesian-Product.transpose (vector $[x, y])=$ mat 1\rangle assms integral-mat-bij-def integral-mat-def integral-mat-surj-def matrix-left-right-inverse matrix-mul-lid matrix-vector-mul-assoc)
ultimately show ?thesis
using $\langle T$ ** Finite-Cartesian-Product.transpose (vector $[x, y])=$ mat 1\rangle in-vertible-right-inverse that by blast
qed
lemma integral-mat-bij-det-pm1:
fixes T :: real^2^2
assumes integral-mat-bij T
shows $\operatorname{det} T=1 \vee \operatorname{det} T=-1$
proof-
obtain Tinv where Tinv: invertible $T \wedge$ integral-mat-bij Tinv \wedge matrix-inv T
Tinv
using integral-mat-bij-inv[of T] assms by auto
moreover have is-int (det Tinv)
using integral-mat-bij-def integral-mat-int-det[of Tinv] calculation by auto
moreover have is-int ($\operatorname{det} T$)
using integral-mat-bij-def integral-mat-int-det[of T] assms by auto
moreover have $\operatorname{det} \operatorname{Tinv}=1 / \operatorname{det} T$
proof-
have $i d$: Tinv ** $^{\prime}=$ mat 1 using Tinv unfolding matrix-inv-def invertible-def by (simp add: verit-sko-ex')
have $\operatorname{det} \operatorname{Tinv} * \operatorname{det} T=\operatorname{det}(\operatorname{Tinv}$ ** $T)$ by (simp add: det-mul)
also have $\ldots=\operatorname{det}((\operatorname{mat} 1):$:real^2^2) using id by auto
also have $\ldots=(1::$ real $)$ by auto
finally have $\operatorname{det} \operatorname{Tinv} * \operatorname{det} T=1$.
thus ?thesis using invertible-det-nz nonzero-eq-divide-eq by fastforce
qed
ultimately have T-Tinv-int: is-int $(\operatorname{det} T) \wedge$ is-int $(1 / \operatorname{det} T)$ by auto
thus $\operatorname{det} T=1 \vee \operatorname{det} T=-1$
proof-
have abs $(\operatorname{det} T) \leq 1($ is ? $D \leq 1)$
proof (rule ccontr)
assume \neg ? $D \leq 1$
then have ? $D>1$ by auto
moreover from this have $1 /$? $D<1$ by auto
moreover from calculation have $1 / ? D>0$ by auto
ultimately have \neg is-int $(1 / ? D)$ unfolding is-int-def by force
moreover from T-Tinv-int have is-int (1/?D)
by (smt (verit) $<1 / \mid$ det $T|<1\rangle$ abs-div-pos abs-divide abs-ge-self abs-minus-cancel divide-cancel-left divide-pos-neg int-less-real-le is-int-def of-int-code(2))
ultimately show False by auto
qed
then have $\operatorname{det} T \geq-1 \wedge \operatorname{det} T \leq 1$
using assms by auto
moreover have det $T \neq 0$ using integral-mat-bij-inv invertible-det-nz assms by auto
ultimately show det $T=1 \vee \operatorname{det} T=-1 \mathbf{u s i n g}$ is-int-def T-Tinv-int by auto
qed
qed
end
theory Polygon-Jordan-Curve
imports
HOL-Analysis.Cartesian-Space
HOL-Analysis.Path-Connected
Poincare-Bendixson.Poincare-Bendixson
Integral-Matrix
begin

3 Polygon Definitions

```
type-synonym \(R\)-to-R2 \(=(\) real \(\Rightarrow\) real^2 \()\)
definition closed-path \(:: R\)-to-R2 \(\Rightarrow\) bool where
    closed-path \(g \longleftrightarrow\) path \(g \wedge\) pathstart \(g=\) pathfinish \(g\)
definition path-inside :: R-to-R2 \(\Rightarrow\) (real^2) set where
    path-inside \(g=\) inside (path-image \(g\) )
definition path-outside :: R-to-R2 \(\Rightarrow\) (real 2) set where
    path-outside \(g=\) outside (path-image \(g\) )
fun make-polygonal-path \(::\) (real^2) list \(\Rightarrow\) R-to-R2 where
    make-polygonal-path [] = linepath 00
| make-polygonal-path \([a]=\) linepath a a
| make-polygonal-path \([a, b]=\) linepath \(a b\)
| make-polygonal-path \((a \# b \# x s)=(\) linepath \(a b)+++\) make-polygonal-path \((b\)
\# \(x s\) )
definition polygonal-path :: \(R\)-to-R2 \(\Rightarrow\) bool where
    polygonal-path \(g \longleftrightarrow g \in\) make-polygonal-path‘\{xs :: (real^2) list. True \(\}\)
```

```
definition all-integral :: (real^2) list }=>\mathrm{ bool where
    all-integral l}=(\forallx\in\mathrm{ set l. integral-vec }x
definition polygon :: R-to-R2 }=>\mathrm{ bool where
    polygon g}\longleftrightarrow\mathrm{ polygonal-path g}\wedge\mathrm{ simple-path g}\wedge\mathrm{ closed-path g
definition integral-polygon :: R-to-R2 => bool where
    integral-polygon g}
    (polygon g}\wedge(\existsvts.g= make-polygonal-path vts \wedge all-integral vts))
definition make-triangle :: real`2 }=>\mathrm{ real^2 }=>\mathrm{ real^2 }=>\mathrm{ R-to-R2 where
    make-triangle a b c = make-polygonal-path [a,b,c,a]
definition polygon-of :: R-to-R2 }=>\mathrm{ (real^2) list }=>\mathrm{ bool where
    polygon-of p vts \longleftrightarrow polygon p}\wedge p= make-polygonal-path vt
definition good-linepath :: real^2 }=>\mathrm{ real^2 }=>\mathrm{ (real^2) list }=>\mathrm{ bool where
    good-linepath a b vts \longleftrightarrow (let p= make-polygonal-path vts in
        a\not=b\wedge{a,b}\subseteq set vts ^ path-image (linepath a b)\subseteq path-inside p\cup{a,b})
definition good-polygonal-path :: real^2 }=>\mathrm{ (real^2) list }=>\mathrm{ real`22 }=>\mathrm{ (real^2) list
=> bool where
    good-polygonal-path a cutvts b vts \longleftrightarrow(
    let p= make-polygonal-path vts in
    let p-cut = make-polygonal-path ([a] @ cutvts @ [b]) in
    (a\not=b\wedge{a,b}\subseteq set vts ^ path-image (p-cut)\subseteq path-inside p \cup{a,b}^
loop-free p-cut))
```


4 Jordan Curve Theorem for Polygons

```
definition inside-outside \(:: R-\) to-R2 \(\Rightarrow\) (real^2) set \(\Rightarrow\) (real^2) set \(\Rightarrow\) bool where inside-outside \(p\) ins outs \(\longleftrightarrow\)
(ins \(\neq\{ \} \wedge\) open ins \(\wedge\) connected ins \(\wedge\)
outs \(\neq\{ \} \wedge\) open outs \(\wedge\) connected outs \(\wedge\)
bounded ins \(\wedge \neg\) bounded outs \(\wedge\)
ins \(\cap\) outs \(=\{ \} \wedge\) ins \(\cup\) outs \(=-\) path-image \(p \wedge\)
frontier ins \(=\) path-image \(p \wedge\) frontier outs \(=\) path-image \(p)\)
lemma Jordan-inside-outside-real2:
fixes \(p::\) real \(\Rightarrow\) real^2
assumes simple-path \(p\) pathfinish \(p=\) pathstart \(p\)
shows inside \((\) path-image \(p) \neq\{ \} \wedge\)
open \((\) inside \((\) path-image \(p)) \wedge\)
connected (inside (path-image p)) \(\wedge\)
outside \((\) path-image \(p) \neq\{ \} \wedge\)
open \((\) outside \((\) path-image \(p)) \wedge\)
connected(outside (path-image p)) \(\wedge\)
```

```
    bounded(inside(path-image p)) ^
    \neg \text { bounded(outside (path-image p)) ^}
    inside(path-image p)\cap outside(path-image p)={}^
    inside (path-image p)\cupoutside(path-image p)=
    - path-image p ^
    frontier(inside(path-image p))= path-image p}
    frontier(outside(path-image p)) = path-image p
proof -
have good-type: c1-on-open-R2-axioms TYPE((real, 2) vec)
    unfolding c1-on-open-R2-axioms-def by auto
    have inside(path-image p)}\not={}
        open(inside(path-image p))}
        connected(inside(path-image p)) ^
        outside(path-image p)}\not={}^
        open(outside(path-image p)) ^
        connected(outside(path-image p)) ^
        bounded(inside(path-image p)) ^
        bounded(outside(path-image p)) ^
        inside(path-image p) \cap outside(path-image p)={}^
        inside(path-image p)\cup outside(path-image p)=
        - path-image p ^
            frontier(inside(path-image p)) = path-image p}
            frontier(outside(path-image p)) = path-image p
    using assms c1-on-open-R2.Jordan-inside-outside-R2[of - - p]
        unfolding c1-on-open-R2-def c1-on-open-euclidean-def c1-on-open-def using
good-type
    by (metis continuous-on-empty equals0D open-empty)
    then show ?thesis unfolding inside-outside-def
    using path-inside-def path-outside-def by auto
qed
lemma inside-outside-polygon:
    fixes }p:: R-to-R
    assumes polygon: polygon p
    shows inside-outside p (path-inside p) (path-outside p)
proof-
    have good-type: c1-on-open-R2-axioms TYPE((real, 2) vec)
        unfolding c1-on-open-R2-axioms-def by auto
    have simple-path p pathfinish p = pathstart p using assms polygon-def closed-path-def
by auto
    then show ?thesis using Jordan-inside-outside-real2 unfolding inside-outside-def
        using path-inside-def path-outside-def by auto
qed
lemma inside-outside-unique:
    fixes }p::R\mathrm{ -to-R2
    assumes polygon p
    assumes io1: inside-outside p inside1 outside1
```

assumes io2: inside-outside p inside2 outside2
shows inside1 $=$ inside2 \wedge outside1 $=$ outside2

proof -

have inner 1: inside (path-image p) $=$ inside1
using dual-order.antisym inside-subset interior-eq interior-inside-frontier
using io1 unfolding inside-outside-def
by metis
have inner2: inside(path-image p) $=$ inside2
using dual-order.antisym inside-subset interior-eq interior-inside-frontier using io2 unfolding inside-outside-def
by metis
have eq1: inside1 = inside2
using inner1 inner2
by auto
have h1: inside $1 \cup$ outside $1=-$ path-image p using io1 unfolding inside-outside-def by auto
have h2: inside1 \cap outside $1=\{ \}$
using io1 unfolding inside-outside-def by auto
have outer1: outside(path-image p) = outside1 using io1 inner1 unfolding inside-outside-def using h1 h2 outside-inside by auto
have h3: inside2 \cup outside $2=-$ path-image p using io2 unfolding inside-outside-def by auto
have h_{4} : inside2 \cap outside $2=\{ \}$
using io2 unfolding inside-outside-def by auto
have outer2: outside (path-image p) = outside2 using io2 inner2 unfolding inside-outside-def using h3 h4 outside-inside by auto
then have eq2: outside1 $=$ outside2 using outer 1 outer2 by auto
then show? ?thesis using eq1 eq2 by auto
qed
lemma polygon-jordan-curve:
fixes $p:: R$-to-R2
assumes polygon p
obtains inside outside where
inside-outside p inside outside
proof-
have good-type: c1-on-open-R2-axioms TYPE((real, 2) vec)
unfolding c1-on-open-R2-axioms-def by auto
have simple-path p pathfinish $p=$ pathstart p using assms polygon-def closed-path-def
by auto
then obtain inside outside where
inside $\neq\{ \}$ open inside connected inside
outside $\neq\{ \}$ open outside connected outside
bounded inside \neg bounded outside inside \cap outside $=\{ \}$
inside \cup outside $=-$ path-image p
frontier inside $=$ path-image p

```
    frontier outside = path-image p
    using c1-on-open-R2.Jordan-curve-R2[of - - - p]
    unfolding c1-on-open-R2-def c1-on-open-euclidean-def c1-on-open-def using
good-type
    by (metis continuous-on-empty equals0D open-empty)
    then show ?thesis
    using inside-outside-def that by auto
qed
lemma connected-component-image:
    fixes f :: 'a::euclidean-space => 'b::euclidean-space
    assumes linear f bijf
    shows f'(connected-component-set S x) = connected-component-set (f'S)(f
x)
proof -
    have conn: }\S.\mathrm{ connected S Connected (f'S)
        by (simp add: assms(1) connected-linear-image)
    then have h1: \T.T\in{T. connected T^x\inT^T\subseteqS}\Longrightarrowf'T\in{T.
connected T}\wedge(fx)\inT\wedgeT\subseteq(f'S)
    by auto
    then have subset1: f' connected-component-set S x\subseteq connected-component-set
(f'S) (fx)
        using connected-component-Union
    by (smt (verit, ccfv-threshold) assms(2) bij-is-inj connected-component-eq-empty
connected-component-maximal connected-component-refl-eq connected-component-subset
connected-connected-component image-is-empty inj-image-mem-iff mem-Collect-eq)
have }\S\mathrm{ . connected (f'S) }\Longrightarrow\mathrm{ connected S
    using assms connected-continuous-image assms linear-continuous-on linear-conv-bounded-linear
    bij-is-inj homeomorphism-def linear-homeomorphism-image
    by (smt (verit, del-insts))
    then have h2: \T. f' T\in{T. connected T^(fx) \inT^T\subseteq(f'S)}\Longrightarrow
T\in{T. connected T^x\inT^T\subseteqS}
    by (simp add: assms(2) bij-is-inj image-subset-iff inj-image-mem-iff subsetI)
    then have subset2: connected-component-set (f'S) (fx)\subseteqf'connected-component-set
Sx
    using connected-component-Union[of S x] connected-component-Union[of f`S f
x]
    by (smt (verit, del-insts) assms(2) bij-is-inj connected-component-eq-empty con-
nected-component-maximal connected-component-refl-eq connected-component-subset
connected-connected-component image-mono inj-image-mem-iff mem-Collect-eq sub-
set-imageE)
    show f'(connected-component-set S x) = connected-component-set (f'S) (f x)
        using subset1 subset2 by auto
qed
lemma bounded-map:
    fixes f :: 'a::euclidean-space = 'b::euclidean-space
    assumes linear f bij f
    shows bounded (f'S) = bounded S
```

```
proof -
    have h1: bounded S\Longrightarrow bounded (f'S)
        using assms
        using bounded-linear-image linear-conv-bounded-linear by blast
    have bounded-linear f
        using linear-conv-bounded-linear assms by auto
    then have bounded-linear (inv f)
        using assms unfolding bij-def
    by (smt (verit, ccfv-threshold) bij-betw-def bij-betw-subset dim-image-eq inv-equality
linear-conv-bounded-linear linear-surjective-isomorphism subset-UNIV)
    then have h2: bounded (f'S)\Longrightarrow bounded S
        using assms
        by (metis bij-is-inj bounded-linear-image image-inv-f-f)
    then show ?thesis
    using assms h1 h2 by auto
qed
lemma inside-bijective-linear-image:
    fixes f :: 'a::euclidean-space }=>\mp@subsup{}{}{\prime}b::\mathrm{ euclidean-space
    fixes c :: real }=>\mp@subsup{}{}{\prime}
    assumes c-simple:path c
    assumes linear f bij f
    shows inside (f'(path-image c)) =f'(inside(path-image c))
proof -
    have set1: {x. x\not\inf`}\mathrm{ path-image c} = f'{x. x & path-image c }
        using assms path-image-compose unfolding bij-def
        by (smt (verit, best) UNIV-I imageE inj-image-mem-iff mem-Collect-eq subsetI
subset-antisym)
    have linear-inv: linear (inv f)
        using assms
    by (metis bij-imp-bij-inv bij-is-inj inv-o-cancel linear-injective-left-inverse o-inv-o-cancel)
    have bij-inv: bij (inv f)
            using assms
            using bij-imp-bij-inv by blast
    have inset1: }\x.x\in{x.bounded (connected-component-set (-f` path-image
c) x)}\Longrightarrowx\in '`{x. bounded (connected-component-set (- path-image c) x)}
    proof -
        fix }
        assume *: x }\in{x\mathrm{ . bounded (connected-component-set (-f`path-image c) x)}
        have inj f
            using assms(3) bij-betw-imp-inj-on by blast
    then show }x\inf'{x.bounded (connected-component-set (- path-image c) x)
                using * connected-component-image[OF linear-inv bij-inv]
            by (smt (z3) <\\xS.invf` connected-component-set S x = connected-component-set
(invf'S) (invfx)\rangle\langlebij (invf)\rangle<linear (invf)\rangle\langlex\in{x.bounded (connected-component-set
(-f`path-image c)x)}> bij-image-Compl-eq bounded-map connected-component-eq-empty
image-empty image-inv-f-f mem-Collect-eq)
    qed
    have inset2: \x. x f f'{x. bounded (connected-component-set (- path-image
```

c) $x)\} \Longrightarrow x \in\{x$. bounded (connected-component-set ($-f$ ‘path-image c) $x)\}$
proof -
fix x
assume $x \in f$ ' $\{x$. bounded (connected-component-set (- path-image c) x) $\}$
then obtain $x 1$ where $x=f x 1 x 1 \in\{x$. bounded (connected-component-set $(-$ path-image c) $x)\}$
by auto
then show $x \in\{x$. bounded (connected-component-set $(-f$ 'path-image $c) x)\}$
using bounded-map[OF assms(2) assms(3)] connected-component-image $[O F$ $\operatorname{assms(2)} \operatorname{assms}(3)]$
by (metis assms(3) bij-image-Compl-eq mem-Collect-eq)
qed
have set2: f ' $\{x$. bounded (connected-component-set (- path-image c) $x)\}=\{x$. bounded (connected-component-set ($-f^{\prime}$ path-image c) $\left.\left.x\right)\right\}$
using inset1 inset2 by auto
have inset1: $\bigwedge x . x \in f^{\prime}\{x . x \notin$ path-image $c \wedge$ bounded (connected-component-set $(-$ path-image c) $x)\} \Longrightarrow$
$x \in\{x . x \notin f$ ' path-image $c \wedge$ bounded (connected-component-set ($-f$ ‘ path-image c) $x)\}$
proof -
fix x
assume $x \in f$ ' $\{x . x \notin$ path-image $c \wedge$ bounded (connected-component-set $(-$ path-image c) x) $\}$
then show $x \in\left\{x . x \notin f^{‘}\right.$ path-image $c \wedge$ bounded (connected-component-set $(-f$ ' path-image $c) x)\}$
by (metis (no-types, lifting) image-iff mem-Collect-eq set1 set2)
qed
have inset2: $\bigwedge x . x \in\left\{x . x \notin f^{\prime}\right.$ path-image $c \wedge$ bounded (connected-component-set $\left(-f^{\prime}\right.$ path-image $\left.\left.\left.c\right) x\right)\right\} \Longrightarrow$
$x \in f$ ' $\{x . x \notin$ path-image $c \wedge$ bounded (connected-component-set (- path-image c) $x)\}$
proof -
fix x
assume $x \in\left\{x . x \notin f^{\prime}\right.$ path-image $c \wedge$ bounded (connected-component-set (f ' path-image c) x) $\}$
then show $x \in f$ ' $\{x . x \notin$ path-image $c \wedge$ bounded (connected-component-set $(-$ path-image c) $x)\}$
by (smt (verit, best) image-iff mem-Collect-eq set2)
qed
have same-set: $\left\{x . x \notin f^{\prime}\right.$ path-image $c \wedge$ bounded (connected-component-set (f ' path-image c) $x)\}=$
f ' $\{x . x \notin$ path-image $c \wedge$ bounded (connected-component-set (- path-image c) x) $\}$
using inset1 inset2
by blast
have ins1: $\bigwedge x . x \in$ inside (f 'path-image c) $\Longrightarrow x \in f$ 'inside (path-image c)
proof -
fix x

```
    assume *: x\in inside (f ' path-image c)
    show }x\inf\mathrm{ ' inside (path-image c)
        by (metis (no-types) * same-set inside-def)
    qed
    then have inside (f'(path-image c))\subseteqf'(inside(path-image c))
    by auto
    have ins2: \xa. xa \in inside (path-image c)\Longrightarrowfxa\ininside (f'path-image c)
    proof -
    fix xa
    assume *: xa \in inside (path-image c)
    show f xa \in inside (f'path-image c)
        by (metis (no-types, lifting) * same-set assms(3) bij-def inj-image-mem-iff
inside-def mem-Collect-eq)
    qed
    then have f'(inside(path-image c))\subseteqinside (f '(path-image c))
    by auto
    show ?thesis
    using ins1 ins2 by auto
qed
lemma bij-image-intersection:
    assumes path-image c1 \cap path-image c2 =S
    assumes bijf
    assumes c\in path-image (f\circc1) \cap path-image (f\circc2)
    shows c\inf'S
    proof -
    have c\inf'path-image c1 \capf' path-image c2
        using assms path-image-compose[of f c1] path-image-compose[of f c\mathcal{L}
        by auto
    then obtain w where c-is:w\in path-image c1 }\wedgew\in\mathrm{ path-image c2 }\wedgec=
w
            using assms unfolding bij-def inj-def surj-def
            by auto
    then have w}\in
            using assms by auto
    then show c\inf'S
    using c-is by auto
qed
```

theorem (in c1-on-open-R2) split-inside-simple-closed-curve-locale:
fixes $c::$ real $\Rightarrow{ }^{\prime} a$
assumes c1-simple:simple-path c1 and c1-start: pathstart c1 $=a$ and $c 1$-end:
pathfinish c1 $=b$
assumes c2-simple: simple-path c2 and c2-start: pathstart $c \mathcal{2}=a$ and $c 2$-end:
pathfinish $c \mathcal{Z}=b$
assumes c-simple: simple-path c and c-start: pathstart $c=a$ and c-end: pathfin-
ish $c=b$
assumes a-neq- $b: a \neq b$
and c1c2: path-image c1 \cap path-image $c 2=\{a, b\}$
and c1c: path-image c1 \cap path-image $c=\{a, b\}$
and c2c: path-image $c \mathcal{2} \cap$ path-image $c=\{a, b\}$
and ne-12: path-image $c \cap$ inside(path-image c1 \cup path-image $c \mathcal{Z}) \neq\{ \}$
obtains inside $($ path-image $c 1 \cup$ path-image $c) \cap$ inside $($ path-image $c 2 \cup$ path-image c) $=\{ \}$
inside $($ path-image $c 1 \cup$ path-image $c) \cup$ inside $($ path-image $c \mathcal{2} \cup$ path-image
c) \cup
(path-image $c-\{a, b\})=$ inside $($ path-image $c 1 \cup$ path-image $c 2)$
proof -
let ? $c c 1=($ complex-of $\circ c 1)$
let ? $c c 2=($ complex-of $\circ c 2)$
let $? c c=($ complex - of $\circ c)$
have cc1-simple:simple-path ?cc1
using bij-betw-imp-inj-on c1-simple complex-of-bij
using simple-path-linear-image-eq[OF complex-of-linear]
by blast
have cc1-start:pathstart ?cc1 $=($ complex-of a $)$
using c1-start by (simp add:pathstart-compose)
have cc1-end:pathfinish ?cc1 $=($ complex-of b) using c1-end by (simp add: pathfinish-compose)
have cc2-simple:simple-path ?cc2
using c2-simple complex-of-bij bij-betw-imp-inj-on using simple-path-linear-image-eq[OF complex-of-linear] by blast
have cc2-start:pathstart ?cc2 $=($ complex-of a $)$ using c2-start by (simp add:pathstart-compose)
have cc2-end:pathfinish ?cc2 $=($ complex-of b)
using c2-end by (simp add: pathfinish-compose)
have cc-simple:simple-path ?cc using c-simple complex-of-bij
using bij-betw-imp-inj-on
using simple-path-linear-image-eq[OF complex-of-linear]
by blast
have cc-start:pathstart ? $c c=($ complex-of $a)$
using c-start by (simp add:pathstart-compose)
have cc-end:pathfinish ?cc $=($ complex-of $b)$
using c-end by (simp add: pathfinish-compose)
have ca-neq-cb: complex-of $a \neq$ complex-of b
using $a-n e q-b$
by (meson bij-betw-imp-inj-on complex-of-bij inj-eq)
have image-set-eq1: \{complex-of a, complex-of b\} \subseteq path-image ?cc1 \cap path-image ?cc2
using c1c2 path-image-compose[of complex-of c1] path-image-compose[of com-plex-of c2]
by auto
have image-set-eq2: $\bigwedge c . c \in$ path-image ? ccc1 \cap path-image ? $c c 2 \Longrightarrow c \in\{$ complex-of a, complex-of b\}
using bij-image-intersection[of c1 c2 $\{a, b\}$ complex-of]
using c1c2 complex-of-bij by auto
have cc1c2: path-image?cc1 \cap path-image ?cc2 $=\{($ complex-of $a),($ complex-of b) $\}$
using image-set-eq1 image-set-eq2 by auto
have image-set-eq1: \{complex-of a, complex-of b\} \subseteq path-image? $c c 1 \cap$ path-image ?cc
using c1c path-image-compose[of complex-of c1] path-image-compose[of com-plex-of $c]$
by auto
have image-set-eq2: $\bigwedge c . c \in$ path-image ? cc1 \cap path-image $? c c \Longrightarrow c \in\{$ complex-of a, complex-of b\}
using bij-image-intersection[of c1 c \{a, b\} complex-of]
using c1c complex-of-bij by auto
have cc1c: path-image ?cc1 \cap path-image ? $c c=\{($ complex-of a $),($ complex-of b) $\}$
using image-set-eq1 image-set-eq2 by auto
have image-set-eq1: \{complex-of a, complex-of b\} \subseteq path-image ?cc2 \cap path-image ? cc
using c2c path-image-compose[of complex-of c2] path-image-compose[of com-plex-of c]
by auto
have image-set-eq2: $\bigwedge c . c \in$ path-image ?cc2 \cap path-image ? $c c \Longrightarrow c \in\{$ complex-of a, complex-of b\}
using bij-image-intersection[of c2 $c\{a, b\}$ complex-of]
using c2c complex-of-bij by auto
have cc2c: path-image ?cc2 \cap path-image ? $c c=\{($ complex-of a $),($ complex-of b $)\}$
using image-set-eq1 image-set-eq2 by auto
let $? j=c 1+++($ reversepath $c)$
let ? $c j=$?cc1 +++ (reversepath ?cc)
have cj-and-j: path-image ?cj = complex-of ' (path-image ?j)
by (metis path-compose-join path-compose-reversepath path-image-compose)
have pathstart (reversepath c) $=b$
using c-end
by auto
then have j-path: path $(c 1+++($ reversepath $c))$
using c1-end c1-simple c-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)
then have path ? j \wedge path-image ? $j=$ path-image c1 \cup path-image c
using <pathstart (reversepath c) $=b\rangle c 1$-end path-image-join path-image-reversepath by blast
then have inside (path-image c1 \cup path-image $c)=$ inside $($ path-image ? $j)$
by auto
have pathstart (reversepath ? cc) $=$ complex-of b
using cc-end
by auto
then have cj-path: path? $c j$
using cc1-end cc1-simple cc-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)

```
    then have path ?cj ^ path-image ?cj = path-image ?cc1 \cup path-image ?cc
    by (metis <pathstart (reversepath (complex-of ○ c)) = complex-of b>cc1-end
path-image-join path-image-reversepath)
    then have ins-cj: inside(path-image ?cc1 \cup path-image ?cc) = inside (path-image
?cj)
    by auto
    have inside(path-image ?cj) = complex-of '(inside(path-image ?j))
    using inside-bijective-linear-image[of ?j complex-of] j-path
    using cj-and-j complex-of-bij complex-of-linear by presburger
    then have i1: inside(path-image ?cc1 \cup path-image ?cc) = complex-of '(inside(path-image
c1 \cup path-image c)) using complex-of-real-of unfolding image-comp
    using cj-and-j
    by (simp add: ins-cj <inside (path-image c1 \cup path-image c)= inside (path-image
(c1 +++ reversepath c))>)
    let ?j2 = c2 ++++ (reversepath c)
    let ?cj2 = ?cc2 +++ (reversepath ?cc)
    have cj2-and-j2: path-image ?cj2 = complex-of '(path-image ?j2)
    by (metis path-compose-join path-compose-reversepath path-image-compose)
    have pathstart (reversepath c)=b
    using c-end by auto
    then have j\mathcal{D}\mathrm{ -path: path (c2 +++ (reversepath c))}
    using c\mathcal{L}-end c2-simple c-simple unfolding simple-path-def path-def
    by (metis continuous-on-joinpaths path-def path-reversepath)
    then have path ?j2 ^ path-image ?j2 = path-image c2 \cup path-image c
    using <pathstart (reversepath c) = b> c\mathcal{L-end path-image-join path-image-reversepath}
by blast
    then have inside(path-image c2 \cup path-image c)= inside(path-image ?j\mathbb{O}
        by auto
    have pathstart (reversepath ?cc) = complex-of b
    using cc-end by auto
    then have cj2-path: path ?cj2
    using cc2-end cc2-simple cc-simple unfolding simple-path-def path-def
    by (metis continuous-on-joinpaths path-def path-reversepath)
    then have path ?cj2 ^ path-image ?cj\mathcal{N = path-image ?cc\mathcal{Z }\cup path-image ?cc}
        by (metis <pathstart (reversepath (complex-of ○c)) = complex-of b>cc\mathcal{2-end}
path-image-join path-image-reversepath)
    then have ins-cj2: inside(path-image ?cc2 \cup path-image ?cc) = inside (path-image
?cj2)
    by auto
    have inside(path-image ?cj2) = complex-of '(inside(path-image ?j2))
        using inside-bijective-linear-image[of ?j2 complex-of] j2-path
        using cj2-and-j2 complex-of-bij complex-of-linear
        by presburger
    then have i2: inside (path-image (complex-of ○ c\mathcal{L})\cup path-image (complex-of ○
c))
    = complex-of ' inside (path-image c2 \cup path-image c)
    using cj2-and-j2
```

by（simp add：ins－cj2〈inside（path－image c2 \cup path－image $c)=$ inside $($ path－image $(c 2+++$ reversepath $c))\rangle)$
let ${ }^{2} j 3=c 2+++($ reversepath $c 1)$
let ？cj3 $=$ ？cc2 $+++($ reversepath ？cc1 $)$
have cj3－and－j3：path－image ？cj3＝complex－of＇（path－image ？j3）
by（metis path－compose－join path－compose－reversepath path－image－compose）
have pathstart（reversepath c1）$=b$
using c1－end by auto
then have $j 3$－path：path $(c 2+++($ reversepath $c 1))$
using c2－end c2－simple c1－simple unfolding simple－path－def path－def
by（metis continuous－on－joinpaths path－def path－reversepath）
then have path－j3：path ？$j 3 \wedge$ path－image ？$j 3=$ path－image $c \mathcal{Z} \cup$ path－image c1
using＜pathstart（reversepath c1）＝b〉 c2－end path－image－join path－image－reversepath by blast
then have inside（path－image c2 \cup path－image c1）$=$ inside（path－image ？$j 3$ ）
by auto
have pathstart（reversepath ？cc1）$=$ complex－of b
using cc1－end by auto
then have cj3－path：path ？cj3
using cc2－end cc2－simple cc1－simple unfolding simple－path－def path－def
by（metis continuous－on－joinpaths path－def path－reversepath）
then have path－cj3：path ？cj3 \wedge path－image ？cj3＝path－image ？cc2 \cup path－image ？cc1
by（metis＜pathstart（reversepath（complex－of \circ c1））$=$ complex－of b〉cc2－end path－image－join path－image－reversepath）
then have ins－cj3：inside（path－image ？cc2 \cup path－image ？cc1）$=$ inside（path－image ？cj3）
by auto
have inside（path－image ？cj3）$=$ complex－of＇$($ inside $($ path－image ？$j 3))$
using inside－bijective－linear－image［of ？j3 complex－of］j3－path
using cj3－and－j3 complex－of－bij complex－of－linear
by presburger
then have $i 3$ ：inside（path－image（complex－of \circ c1）\cup path－image（complex－of \circ c2））
$=$ complex－of＇inside（path－image c1 \cup path－image c2）
by（simp add：path－cj3 path－j3 sup－commute）
obtain y where y－prop：$y \in$ path－image $c \cap$ inside（path－image c1 \cup path－image c2）
using $n e-12$ by auto
then have y－in1：complex－of $y \in$ path－image？cc
by（metis IntD1 image－eqI path－image－compose）
have y－in2：complex－of $y \in$ complex－of＇（inside（path－image c1 \cup path－image c2））
using y－prop by auto
then have cne－12：path－image ？cc \cap inside（path－image ？cc1 \cup path－image？cc2） $\neq\{ \}$
using ne－12 y－in1 y－in2 $i 3$ by force
obtain for-reals: inside(path-image ?cc1 \cup path-image ?cc) \cap inside(path-image ? $c c 2 \cup$ path-image $? c c)=\{ \}$
inside $($ path-image ?cc1 \cup path-image ?cc $) \cup$ inside $($ path-image ?cc2 \cup path-image ?cc) \cup
(path-image ?cc - \{complex-of a, complex-of $b\})=$ inside (path-image ?cc1 \cup path-image? cc2)
using split-inside-simple-closed-curve[OF cc1-simple cc1-start cc1-end cc2-simple cc2-start
cc2-end cc-simple cc-start cc-end ca-neq-cb cc1c2 cc1c cc2c cne-12]
by auto
let ?rin $1=$ real-of ' inside (path-image ?cc1 \cup path-image ?cc)
let ?rin2 $=$ real-of ' inside $($ path-image ?cc2 \cup path-image?cc $)$
have $h 1$: inside $($ path-image $c 1 \cup$ path-image $c) \cap$ inside $($ path-image $c 2 \cup$ path-image c) $\neq\{ \} \Longrightarrow$ False
proof-
assume inside $($ path-image c1 \cup path-image $c) \cap$ inside(path-image c2 \cup path-image $c) \neq\{ \}$
then obtain a where a-prop: $a \in$ inside(path-image c1 \cup path-image $c) \wedge a$ \in inside $($ path-image $c \mathcal{2} \cup$ path-image c)
by auto
have in1: complex-of $a \in$ inside (path-image (complex-of \circ c1) \cup path-image (complex-of $\circ c$))
using a-prop i1 by auto
have in2: complex-of $a \in$ inside (path-image (complex-of \circ c2) \cup path-image (complex-of $\circ c$)) using a-prop i2 by auto
show False using in1 in2 for-reals(1) by auto
qed
have h : path-image (complex-of $\circ c$) $-\{$ complex-of a, complex-of $b\}=$ complex-of ' (path-image $c)-$ complex-of ' $\{a, b\}$
using path-image-compose by auto
have complex-of 'path-image c - complex-of ' $\{a, b\}=$ complex-of ' (path-image $c-\{a, b\})$
proof -
have $\Lambda x . x \in($ complex-of ' path-image $c-$ complex-of' $\{a, b\}) \longleftrightarrow x \in$ complex-of ' (path-image $c-\{a, b\})$ using Diff-iff bij-betw-imp-inj-on complex-of-bij image-iff inj-eq by (smt (z3))
then show ?thesis by blast
qed
then have path-image (complex-of $\circ c$) $-\{$ complex-of a, complex-of $b\}=$ com-plex-of '(path-image $c-\{a, b\})$ using h by simp
then have $h 2:$ inside $($ path-image c1 \cup path-image $c) \cup$ inside $($ path-image $c \mathcal{Z} \cup$ path-image $c) \cup$

```
        (path-image c - {a,b})=inside(path-image c1 \cup path-image c2)
```

 proof-
 have \(\bigwedge x . x \in\) inside \((\) path-image c1 \(\cup\) path-image \(c 2) \longleftrightarrow\) complex-of \(x \in\)
 complex-of ' inside (path-image c1 \cup path-image c2)
using $i 3$ by (metis bij-betw-imp-inj-on complex-of-bij image-iff inj-eq)
then have in-iff: $\bigwedge x . x \in$ inside $($ path-image c1 \cup path-image c2) \longleftrightarrow com-plex-of $x \in$ inside (path-image (complex-of $\circ c 1) \cup$ path-image (complex-of $\circ c$)) \cup
inside (path-image (complex-of \circ c2) \cup path-image $($ complex-of $\circ c)) \cup$ (path-image (complex-of $\circ c$) - \{complex-of a, complex-of $b\}$)
using for-reals(2)
using $i 3$ by presburger
have $\bigwedge x$. complex-of $x \in$ inside (path-image (complex-of $\circ c 1) \cup$ path-image $($ complex-of $\circ c)) \cup$
inside (path-image (complex-of \circ c2) \cup path-image $($ complex-of $\circ c)) \cup$
(path-image (complex-of $\circ c$) - \{complex-of a, complex-of b\})
\longleftrightarrow complex-of $x \in$ inside (path-image (complex-of \circ c1) \cup path-image (complex-of $\circ c$))
\checkmark complex-of $x \in$ inside (path-image (complex-of \circ c2) \cup path-image (complex-of $\circ c$))
\vee complex-of $x \in($ path-image (complex-of $\circ c)-\{$ complex-of a, complex-of b\})
by blast
then have $\wedge x$. complex-of $x \in$ inside (path-image (complex-of $\circ c 1$) \cup path-image $($ complex-of $\circ c)) \cup$
inside (path-image (complex-of \circ c2) \cup path-image $($ complex-of $\circ c)) \cup$
(path-image (complex-of $\circ c$) - \{complex-of a, complex-of b\})
$\longleftrightarrow x \in$ inside (path-image c1 \cup path-image $c) \cup$ inside(path-image $c 2 \cup$ path-image c) \cup

$$
\text { (path-image } c-\{a, b\})
$$

using $i 1$ i2 i3 Un-iff <path-image (complex-of $\circ c$) - \{complex-of a, complex-of $b\}=$ complex-of ' (path-image $c-\{a, b\})$) bij-betw-imp-inj-on complex-of-bij im-age-iff inj-def
by (smt (verit, best))
then have $\bigwedge x . x \in$ inside $($ path-image $c 1 \cup$ path-image $c 2) \longleftrightarrow x \in($ inside $($ path-image $c 1 \cup$ path-image $c) \cup$ inside $($ path-image $c \mathbb{2} \cup$ path-image $c) \cup$
(path-image $c-\{a, b\})$)
using in-iff by meson
then show? thesis by auto qed
show ?thesis using that h1 h2 by auto
qed
lemma split-inside-simple-closed-curve-real2:
fixes $c::$ real \Rightarrow real ${ }^{\wedge}$ 2
assumes c1-simple:simple-path c1 and c1-start: pathstart $c 1=a$ and $c 1$-end: pathfinish c1 $=b$
assumes c2-simple: simple-path c2 and c2-start: pathstart c2 $=a$ and $c 2$-end: pathfinish $c \mathcal{2}=b$
assumes c-simple: simple-path c and c-start: pathstart $c=a$ and c-end: pathfinish $c=b$
assumes a-neq- $b: a \neq b$
and c1c2: path-image c1 \cap path-image $c 2=\{a, b\}$
and c1c: path-image c1 \cap path-image $c=\{a, b\}$
and c2c: path-image c2 \cap path-image $c=\{a, b\}$
and ne-12: path-image $c \cap$ inside(path-image c1 \cup path-image $c 2) \neq\{ \}$
obtains inside (path-image c1 \cup path-image $c) \cap$ inside $($ path-image $c 2 \cup$ path-image c) $=\{ \}$
inside $($ path-image $c 1 \cup$ path-image $c) \cup$ inside $($ path-image $c 2 \cup$ path-image
c) \cup
$($ path-image $c-\{a, b\})=$ inside $($ path-image $c 1 \cup$ path-image $c \mathcal{L})$
proof -
have good-type: c1-on-open-R2-axioms TYPE((real, 2) vec)
unfolding c1-on-open-R2-axioms-def by auto
then show ?thesis
using c1-on-open-R2.split-inside-simple-closed-curve-locale[of---c1ablll assms
unfolding c1-on-open-R2-def c1-on-open-euclidean-def c1-on-open-def using good-type that by blast
qed
end
theory Polygon-Lemmas
imports
Polygon-Jordan-Curve
HOL-Library.Sublist
HOL.Set-Interval
HOL.Fun
begin

5 Properties of make polygonal path, pathstart and pathfinish of a polygon

lemma make-polygonal-path-induct[case-names Empty Single Two Multiple]:
fixes ell :: (real^2) list
assumes empty: \bigwedge ell. ell $=[] \Longrightarrow P$ ell
and single: \bigwedge ell. \llbracket length ell $=1 \rrbracket \Longrightarrow P$ ell
and two: \bigwedge ell. $\llbracket l e n g t h ~ e l l ~=2 \rrbracket \Longrightarrow P e l l ~$
and multiple: $\bigwedge e l l$.
【length ell > 2;
P ([(ell!0), (ell!1)]);
$P(($ ell!1) $) \#(d r o p 2$ ell $))] \Longrightarrow P$ ell
shows P ell
apply(induct ell rule: make-polygonal-path.induct)
using empty single two multiple by auto
lemma make-polygonal-path-gives-path:
fixes $v::$ (real^2) list
shows path (make-polygonal-path v)
proof(induction length v arbitrary: v)

```
    case 0
    thus path (make-polygonal-path v)
    by auto
next
    case (Suc x)
    show ?case
    by (smt (verit, best) Suc.hyps(1) Suc.hyps(2) Suc-length-conv list.distinct(1)
list.inject make-polygonal-path.elims path-join-imp path-linepath pathfinish-linepath
pathstart-join pathstart-linepath)
qed
corollary polygonal-path-is-path:
    fixes g:: R-to-R2
    assumes polygonal-path g
    shows path g
    using assms polygonal-path-def make-polygonal-path-gives-path by auto
lemma polygon-to-polygonal-path:
    fixes }p::R\mathrm{ -to- R2
    assumes polygon p
    obtains ell where p= make-polygonal-path ell
    using assms unfolding polygon-def polygonal-path-def
    by auto
lemma polygon-pathstart:
    fixes g :: R-to-R2
    assumes l\not=[]
    assumes g= make-polygonal-path l
    shows pathstart g=l!0
    using assms make-polygonal-path.simps
    by (smt (verit) list.discI list.expand make-polygonal-path.elims nth-Cons-0 path-
start-join pathstart-linepath)
lemma polygon-pathfinish:
    fixes g:: R-to-R2
    assumes l\not=[]
    assumes g= make-polygonal-path l
    shows pathfinish g=l!(length l - 1)
    using assms
proof (induct length l arbitrary: g l)
    case 0
    then show ?case by auto
next
    case (Suc x)
    {assume *: length l=1
        then obtain a where l-is:l=[a]
                            by (metis Suc.prems(1) Suc-neq-Zero diff-Suc-1 diff-self-eq-0 length-Cons
remdups-adj.cases)
```

```
    then have pathfinish g=a
        using Suc make-polygonal-path.simps
        by (simp add: pathfinish-def)
    then have pathfinish g=l!(length l - 1)
        using Suc l-is
        by auto
    } moreover {assume *: length l=2
    then obtain ab where l-is:l=[a,b]
        by (metis (no-types, opaque-lifting) One-nat-def Suc-eq-plus1 list.size(3)
list.size(4) min-list.cases nat.simps(1) nat.simps(3) numeral-2-eq-2)
    then have g-is: g= linepath a b
        using Suc by auto
    have pf: pathfinish g=b using g-is by auto
    then have pathfinish g}=l!(length l-1
        using Suc * l-is
        by auto
    }
    moreover {assume *: length l>2
        then obtain abc}\mathrm{ where l-is:l=a#b#c
            by (metis Suc.prems(1) Zero-neq-Suc length-Cons less-Suc0 list.size(3)
numeral-2-eq-2 remdups-adj.cases)
    then have g-is:g=(linepath a b) +++ make-polygonal-path (b # c)
        using Suc l-is
    proof -
        have c\not=[]
            using * l-is by auto
            then show ?thesis
            by (metis (full-types) Suc(4) l-is list.exhaust make-polygonal-path.simps(4))
            qed
            then have pf: pathfinish g = pathfinish (make-polygonal-path (b # c))
                by auto
            have len-x: length (b # c) = x
            using l-is Suc by auto
    then have pathfinish (make-polygonal-path (b# c)) = (b # c)!(length l - 2)
        using Suc.hyps l-is
        by simp
    then have pathfinish g=l!(length l - 1)
        using l-is pf
        by auto
    }
    ultimately show ?case
    using Suc
    by (metis One-nat-def less-Suc-eq-0-disj less-antisym numeral-2-eq-2)
qed
lemma make-polygonal-path-image-property:
    assumes length vts \geq2
    assumes p-is-path: x \in path-image (make-polygonal-path vts)
    shows \existsk< length vts - 1. x f path-image (linepath (vts!k) (vts!(k+1)))
```

using assms
proof (induct vts)
case Nil
then show ?case by auto
next
case (Cons a vts)
then have len-gteq: length vts ≥ 1
by simp
\{assume $*$: length vts $=1$
then obtain b where $v t s-i s: v t s=[b]$
by (metis One-nat-def $\langle 1 \leq$ length vts〉drop-eq-Nil id-take-nth-drop less-numeral-extra(1)
self-append-conv2 take-eq-Nil2)
then have $x \in$ path-image (make-polygonal-path $[a, b]$)
using Cons by auto
then have $x \in$ path-image (linepath ab)
by auto
then have $x \in$ path-image (linepath $((a \# v t s)!0)((a \# v t s)!1))$
using Cons vts-is
by force
then have $\exists k<$ length $(a \# v t s)-1 . x \in$ path-image (linepath $((a \# v t s)!k)$ $((a \# v t s)!(k+1)))$
using *
by simp
\} moreover \{assume $*$: length vts >1
then obtain $b v t s^{\prime}$ where $v t s-i s: v t s=b \# v t s^{\prime}$
by (metis One-nat-def le-zero-eq len-gteq list.exhaust list.size(3) n-not-Suc-n)
then have $x \in$ path-image ((linepath a b) +++ make-polygonal-path ($b \#$ vts' $)$)

using Cons

by (metis (no-types, lifting) * One-nat-def length-Cons list.exhaust list.size(3) make-polygonal-path.simps(4) nat-less-le)
then have eo: $x \in$ path-image $(($ linepath $a b)) \vee x \in$ path-image (make-polygonal-path (b \# vts' ${ }^{\prime}$)
using not-in-path-image-join by blast
\{assume $* *: x \in$ path-image ((linepath a b))
then have $\exists k<$ length $(a \#$ vts $)-1 . x \in$ path-image (linepath $((a \# v t s)!k)$
$((a \# v t s)!(k+1)))$
using $v t s-i s$
by auto
\} moreover \{assume $* *: x \in$ path-image (make-polygonal-path (b \# vts'))
then have $\exists k<$ length vts $-1 . x \in$ path-image (linepath (vts! $k)(v t s!(k+$ 1)))
using Cons.hyps(1) *
by (simp add: Suc-leI vts-is)
then have $\exists k<$ length $(a \# v t s)-1 . x \in$ path-image (linepath $((a \# v t s)!k)$
$((a \neq v t s)!(k+1)))$
using add.commute add-diff-cancel-left' length-Cons less-diff-conv nth-Cons-Suc plus-1-eq-Suc by auto
\}
ultimately have $\exists k<$ length $(a \#$ vts $)-1 . x \in$ path-image (linepath $((a \#$ $v t s)!k)((a \# v t s)!(k+1)))$
using eo by auto
\}
ultimately show ?case
using len-gteq
by fastforce
qed
lemma linepaths-subset-make-polygonal-path-image:
assumes length vts ≥ 2
assumes $k<$ length vts -1
shows path-image (linepath $(v t s!k)(v t s!(k+1))) \subseteq$ path-image (make-polygonal-path $v t s)$
using assms
proof (induct vts arbitrary: k)
case Nil
then show? case by auto
next
case (Cons a vts)
\{ assume $*$: length vts $=1$
then have k - $i s: k=0$
using Cons.prems(2) by auto
obtain b where $v t s$-is: vts $=[b]$ using *
by (metis One-nat-def drop-eq-Nil id-take-nth-drop le-numeral-extra (4) self-append-conv2 take-eq-Nil2 zero-less-one)
then have path-image (make-polygonal-path $(a \# v t s))=$ path-image (linepath $a b)$
by auto
then have path-image (linepath $((a \# v t s)!k)((a \# v t s)!(k+1)))$
\subseteq path-image (make-polygonal-path (a \# vts))
using k-is vts-is
by simp
\} moreover
$\{$ assume $*$: length vts >1
then obtain $b c v t s^{\prime}$ where $v t s-i s: v t s=b \# c \# v t s^{\prime}$
by (metis diff-0-eq-0 diff-Suc-1 diff-is-0-eq leD length-Cons list.exhaust list.size(3))
\{ assume $* *: k=0$
then have same-path-image: path-image (linepath $((a \#$ vts $)!k)((a \#$ vts $)$
$!(k+1)))=$ path-image (linepath a b)
using vts-is
by auto
have path-image (linepath $a b$) \subseteq path-image (make-polygonal-path ($a \neq b$ $\left.\# c \# v t s^{\prime}\right)$)
using vts-is make-polygonal-path.simps path-image-join
by (metis (no-types, lifting) Un-iff list.discI nth-Cons-0 pathfinish-linepath polygon-pathstart subsetI)
then have path-image (linepath $((a \#$ vts $)!k)((a \# v t s)!(k+1))) \subseteq$

```
path-image (make-polygonal-path (a # vts))
        using vts-is same-path-image
        by presburger
    } moreover {assume **: k>0
    then have k-minus-lt: k-1<length vts - 1
        using Cons
        by auto
    then have path-image-is: path-image (linepath ((a# vts)!k) ((a# vts)!(k
+1)))}=\mathrm{ path-image (linepath (vts! (k-1)) (vts!k))
        using **
        by auto
    then have path-im-subset1: path-image (linepath (vts ! (k-1)) (vts!k))\subseteq
path-image (make-polygonal-path vts)
    using k-minus-lt Cons.hyps(1)[of k-1]*** Suc-leI Suc-pred add.right-neutral
add-Suc-right nat-1-add-1 plus-1-eq-Suc
    by auto
    have path-im-subset2: path-image (make-polygonal-path vts) \subseteq path-image
(make-polygonal-path (a # vts))
    using vts-is make-polygonal-path.simps(4)
    by (metis dual-order.refl list.distinct(1) nth-Cons-0 path-image-join pathfin-
ish-linepath polygon-pathstart sup.coboundedI2)
    then have path-image (linepath ((a # vts)!k) ((a # vts)! (k + 1)))\subseteq
path-image (make-polygonal-path (a # vts))
    using path-image-is path-im-subset1 path-im-subset2
    by blast
    }
    ultimately have path-image (linepath ((a# vts)!k) ((a#vts)!(k+1)))
\subseteq \text { path-image (make-polygonal-path (a \# vts))}
        by blast
    }
    ultimately show ?case
    by (metis Cons.prems(1) Suc-1 leD length-Cons linorder-neqE-nat nat-add-left-cancel-less
plus-1-eq-Suc)
qed
lemma vertices-on-path-image: shows set vts \subseteq path-image (make-polygonal-path
vts)
proof (induct vts rule:make-polygonal-path.induct)
    case 1
    then show ?case by auto
next
    case (2 a)
    then show ?case by auto
next
    case (3 a b)
    then show ?case by auto
next
    case (4 a b v va)
    then have a-in-image: a path-image (make-polygonal-path ( a # b #v # va))
```

using make-polygonal-path.simps
by (metis list.distinct(1) nth-Cons-0 pathstart-in-path-image polygon-pathstart)
have path-image-union:
path-image (make-polygonal-path ($a \# b \# v \# v a$))
$=$ path-image (linepath a b) \cup path-image (make-polygonal-path $(b \# v \#$ va) $)$
by (metis make-polygonal-path.simps(4) linepath-1' list.discI nth-Cons-0 path-image-join pathfinish-def polygon-pathstart)
have $\operatorname{set}(a \# b \# v \# v a)=\{a\} \cup \operatorname{set}(b \# v \# v a)$
by auto
then show ?case using a-in-image 4 make-polygonal-path.simps path-image-union by auto
qed
lemma path-image-cons-union:
assumes $p=$ make-polygonal-path vts
assumes $p^{\prime}=$ make-polygonal-path vts ${ }^{\prime}$
assumes $v t s^{\prime} \neq[]$
assumes vts $=a \# v t s^{\prime} \wedge b=v t s^{\prime}!0$
shows path-image $p=$ path-image (linepath a b) \cup path-image p^{\prime}
proof-
have pathfinish (linepath a b) = pathstart p^{\prime} using assms polygon-pathstart by
auto
moreover have length vts $=2 \Longrightarrow$?thesis
by (smt (verit) Cons-nth-drop-Suc One-nat-def Suc-1 assms(1) assms(2) assms(3)
$\operatorname{assms}(4)$ closed-segment-idem diff-Suc-1 drop0 drop-eq-Nil insert-subset le-iff-sup
le-numeral-extra(4) length-Cons length-greater-0-conv list.discI list.inject list.set(1)
list.set(2) make-polygonal-path.elims path-image-linepath sup-commute vertices-on-path-image)
moreover have length vts $>2 \Longrightarrow$?thesis
by (metis (no-types, lifting) Cons-nth-drop-Suc One-nat-def Suc-1 assms(1)
$\operatorname{assms}(2) \operatorname{assms}(3) \operatorname{assms}(4)$ calculation(1) drop0 drop-Suc-Cons length-greater-0-conv make-polygonal-path.simps(4) path-image-join)
moreover have length vts ≥ 2 using assms by (simp add: Suc-le-eq)
ultimately show ?thesis by linarith
qed
lemma polygonal-path-image-linepath-union:
assumes $p=$ make-polygonal-path vts
assumes $n=$ length vts
assumes $n \geq 2$
shows path-image $p=(\bigcup$ \{path-image (linepath $(v t s!i)(v t s!(i+1))) \mid i . i \leq n$

- 2\})
using assms
proof (induct n arbitrary: vts p)
case 0
then show ?case by linarith
next
case (Suc n)
\{ assume $*$: Suc $n=2$
then obtain $a b$ where $a b: v t s=[a, b]$
by (metis Suc.prems(2-3) Cons-nth-drop-Suc One-nat-def Suc-1 drop0 drop-eq-Nil lessI pos2)
then have path-image $p=$ path-image (linepath a b)
using make-polygonal-path.simps Suc.prems by presburger
moreover have $\ldots=(\bigcup$ \{path-image (linepath $(v t s!i)(v t s!(i+1))) \mid i . i \leq$ Suc $n-2\}$)
using ab Suc.prems
by (smt (verit, ccfv-threshold) Suc-eq-plus1 Sup-least Sup-upper $*$ diff-is-0-eq diff-zero dual-order.refl mem-Collect-eq nth-Cons-0 nth-Cons-Suc subset-antisym)
ultimately have ?case by presburger
\} moreover
\{ assume $*$: Suc $n>2$
then obtain $a b v t s^{\prime}$ where $v t s^{\prime}: v t s=a \# v t s^{\prime} \wedge b=v t s^{\prime}!0 \wedge v t s^{\prime}=t l v t s$ by (metis Suc.prems(2) list.collapse list.size(3) nat.distinct(1))
let $? p^{\prime}=$ make-polygonal-path vts ${ }^{\prime}$
let $? P^{\prime}=$ path-image $? p^{\prime}$
let $? P=$ path-image p
let $? P$-union $=(\bigcup$ \{path-image $($ linepath $(v t s!i)(v t s!(i+1))) \mid i . i \leq n-1\})$
have $v t s^{\prime}$-len: length vts ${ }^{\prime}=n$ using vts' Suc.prems by fastforce
then have $? P^{\prime}=\left(\bigcup\right.$ \{path-image (linepath $\left.\left(v t s^{\prime}!i\right)\left(v t s^{\prime}!(i+1)\right)\right) \mid i . i \leq n-$ 2\})
using Suc.prems Suc.hyps * by force
moreover have $\forall i \leq n-2$. vts $!~ i=v t s!(i+1) \wedge v t s^{\prime}!(i+1)=v t s!(i+2)$ using $v t s^{\prime}$ by force
ultimately have $? P^{\prime}=(\bigcup$ \{path-image (linepath $($ vts $!(i+1))(v t s!(i+2))) \mid i$. $i \leq n-2\}$)
by fastforce
moreover have $\ldots=(\bigcup$ \{path-image (linepath $(v t s!i)(v t s!(i+1))) \mid i .1 \leq i$ $\wedge i \leq n-1\})$
(is $\ldots=? P^{\prime}$-union)
proof -
have $\bigwedge x$ i. $x \in\{v t s!$ Suc $i--v t s!S u c(S u c i)\}$
$\Longrightarrow i \leq n-2$
$\Longrightarrow \exists x a .(\exists i . x a=\{v t s!i--v t s!$ Suc $i\} \wedge$ Suc $0 \leq i \wedge i \leq n-S u c 0)$
$\wedge x \in x a$
by (metis * One-nat-def Suc-diff-Suc Suc-le-mono add-2-eq-Suc' bot-nat-0.extremum diff-Suc-Suc le-add-diff-inverse plus-1-eq-Suc)
moreover have $\bigwedge x i . x \in\{v t s!i--v t s!S u c i\}$
\Longrightarrow Suc $0 \leq i$
$\Longrightarrow i \leq n-$ Suc 0
$\Longrightarrow \exists x a .(\exists i . x a=\{$ vts ! Suc $i--v t s!$ Suc $($ Suc $i)\} \wedge i \leq n-2) \wedge x \in$
$x a$
by (metis * Suc-diff-Suc gr0-implies-Suc linorder-not-le not-less-eq-eq nu-meral-2-eq-2)
ultimately show ?thesis by auto qed
moreover have path-image (linepath a b) $\cup ? P^{\prime}$-union $=$?P-union proof -
have $\bigwedge x . x \in\{a--b\} \Longrightarrow \exists x a .(\exists i . x a=\{$ vts $!i--v t s!$ Suc $i\} \wedge i \leq n-$ Suc 0) $\wedge x \in x a$
using vts' by fastforce
moreover have $\bigwedge x i . x \in\{v t s!i--v t s!S u c i\}$
$\Longrightarrow \forall x a .(\forall i \geq$ Suc 0. xa $=\{$ vts $!i--v t s!$ Suc $i\} \longrightarrow \neg i \leq n-$ Suc 0$)$
$\vee x \notin x a$

$$
\Longrightarrow i \leq n-S u c 0
$$

$\Longrightarrow x \in\{a--b\}$
by (metis Suc-le-eq bot-nat-0.not-eq-extremum nth-Cons-0 nth-Cons-Suc
$\left.v t s^{\prime}\right)$
ultimately show ?thesis by auto
qed
moreover have $? P=($ path-image $($ linepath a $b)) \cup ? P^{\prime}$
using Suc.prems vts' path-image-cons-union
by (metis One-nat-def Suc-1 vts'-len bot-nat-0.extremum list.size(3) not-less-eq-eq)
ultimately have ?case by force
\}
ultimately show ?case using Suc.prems by linarith
qed

6 Loop Free Properties

lemma constant-linepath-is-not-loop-free:
shows $\neg($ loop-free $(($ linepath $a \operatorname{a}):$:real \Rightarrow real^2) $)$
proof -
have all-zero1: $\bigwedge x y$::real. $(1-x) *_{R}(a::$ real^2 $)+x *_{R} a=a$ by auto
have all-zero2: $\bigwedge x y:$:real. $(1-y) *_{R}(a::$ real^2 $)+y *_{R} a=a$ by auto
then have $\exists x::$ real $\in\{0 . .1\} . \exists y::$ real $\in\{0 . .1\} . x \neq y \wedge(x=0 \longrightarrow y \neq 1) \wedge(x$ $=1 \longrightarrow y \neq 0$)
by (metis atLeastAtMost-iff field-lbound-gt-zero less-eq-real-def linorder-not-less zero-less-one)
then show ?thesis
unfolding loop-free-def linepath-def
using all-zero1 all-zero2 by auto
qed
lemma doubling-back-is-not-loop-free:
assumes $a \neq b$
shows $\neg($ loop-free ($($ make-polygonal-path $[a, b, a])::$ real \Rightarrow real^2 $)$)
proof -
let $? p 1=(1 / 4:$:real $)$
let ? $p 2=(3 / 4:$:real $)$
have same-point: $(($ linepath $a b)+++($ linepath $b a))(1 / 4::$ real $)=(($ linepath a
b) $+++($ linepath b a) $)(3 / 4::$ real $)$
unfolding linepath-def joinpaths-def by auto

```
    have ?p1 \in{0..1} ^ ?p2 \in{0..1} ^ ?p1 f=?p2 ^(?p1 = 0 \longrightarrow? P2 f 1) ^
(?p1 = 1 \longrightarrow? p2 = 0)
    by auto
    then have }\existsx\in{0..1}.\existsy\in{0..1}
            (linepath a b +++ linepath b a) x = (linepath a b +++ linepath b a) y
            \wedge x\not=y^(x=0\longrightarrowy\not=1)\wedge(x=1\longrightarrowy\not=0)
    using same-point by blast
    then have }\neg(loop-free ((linepath a b) +++ (linepath b a )))
    unfolding loop-free-def by auto
    then show ?thesis using make-polygonal-path.simps
    by auto
qed
lemma not-loop-free-first-component:
    assumes }\neg(loop-free p1
    shows }\neg(loop-free (p1+++p2)
proof -
    obtain xy where xy-prop: 0\leqx x\leq10\leqyy\leq1x\not=y
        (x=0\longrightarrowy\not=1)(x=1\longrightarrowy\not=0)
    p1x=p1y
    using assms unfolding loop-free-def
    by auto
then have xy-prop2:0\leqx/2 x/2\leq 1/2 0 \leq y/2 y/2\leq 1/2 x/2 = y/2
    by auto
    then have (p1+++p2) (x/2) =(p1+++p2) (y/2)
    unfolding joinpaths-def using xy-prop(8)
    by auto
    then have props: (p1+++p2) (x/2) = (p1+++ p2) (y/2)^
            (x/2) f(y/2)^((x/2)=0\longrightarrow(y/2)\not=1)\wedge((x/2)=1\longrightarrow(y/2)\not=
0)
    using xy-prop2 by auto
    have }x/2\in{0..1}\wedgey/2\in{0..1
    using xy-prop2 by auto
    then have }\existsx\in{0..1}
        \existsy\in{0..1}.
        (p1+++p2) x = (p1+++ p2) y^
        x\not=y^(x=0\longrightarrowy\not=1)\wedge(x=1\longrightarrowy\not=0)
    using props
    by blast
    then show ?thesis
    unfolding loop-free-def by auto
qed
lemma not-loop-free-second-component:
assumes pathfinish-pathstart: pathfinish p1 \(=\) pathstart p2
assumes \(\neg\) (loop-free p2)
shows \(\neg(\) loop-free \((p 1+++p 2))\)
proof -
obtain \(x y\) where \(x y\)-prop: \(0 \leq x x \leq 10 \leq y y \leq 1 x \neq y\)
```

```
\((x=0 \longrightarrow y \neq 1)(x=1 \longrightarrow y \neq 0)\)
\(p 2 x=p 2 y\)
using assms unfolding loop-free-def
    by auto
    then have xy-prop2: \((x+1) / 2 \geq 1 / 2(x+1) / 2 \leq 1(y+1) / 2 \geq 1 / 2(y+\)
1)/ \(2 \leq 1\)
    \((x+1) / 2 \neq(y+1) / 2\)
```

 by auto
 have \(x\)-same: \(2 *((x+1) / 2)-1=x\)
 by (metis add.right-neutral add-diff-eq cancel-comm-monoid-add-class.diff-cancel
 class-dense-linordered-field.between-same mult-1 mult-2 times-divide-eq-left times-divide-eq-right)
have y-same: $2 *((y+1) / 2)-1=y$
by (metis add.right-neutral add-diff-eq cancel-comm-monoid-add-class.diff-cancel
class-dense-linordered-field.between-same mult-1 mult-2 times-divide-eq-left times-divide-eq-right)
have $p_{2}(2 *((x+1) / 2)-1)=p 2(2 *((y+1) / 2)-1)$
using $x y$-prop(8) x-same y-same
by auto
have relate-start-finish: p1 $1=p 20$
using pathfinish-pathstart
unfolding pathfinish-def pathstart-def
by auto
then have $x h 1:(x+1) / 2=1 / 2 \Longrightarrow(p 1+++p 2)((x+1) / 2)=p 2 x$
unfolding joinpaths-def
by auto
have xh2: $(x+1) / 2>1 / 2 \Longrightarrow(p 1+++p 2)((x+1) / 2)=p 2 x$
using xy-prop2 unfolding joinpaths-def
using x-same by force
then have $x h:(p 1+++p 2)((x+1) / 2)=p 2 x$
using xh1 xh2 xy-prop2
by linarith
have $y h 1:(y+1) / 2=1 / 2 \Longrightarrow(p 1+++p 2)((y+1) / 2)=p 2 y$
using relate-start-finish unfolding joinpaths-def
by auto
have yh2: $(y+1) / 2>1 / 2 \Longrightarrow(p 1+++p 2)((y+1) / 2)=p 2 y$
using xy-prop2 unfolding joinpaths-def
using y-same by force
then have $y h:(p 1+++p 2)((y+1) / 2)=p 2 y$
using yh1 yh2 xy-prop2
by linarith
then have same-eval: $(p 1+++p 2)((x+1) / 2)=(p 1+++p 2)((y+1) / \mathcal{Z})$
using $x h$ yh $x y$-prop (8)
by presburger
have inset1: $(x+1) / 2 \in\{0 . .1\}$
using $x y$-prop 2
by simp
have inset2: $(y+1) / 2 \in\{0 . .1\}$
using $x y$-prop2
by simp
have $\exists x \in\{0 . .1\}$.

```
\existsy\in{0..1}.
    (p1+++ p2) x = (p1+++ p2) y ^
    x\not=y^(x=0\longrightarrowy\not=1)\wedge(x=1\longrightarrowy\not=0)
    using xy-prop2 same-eval inset1 inset2
    by fastforce
    then show ?thesis
    unfolding loop-free-def by auto
qed
lemma loop-free-subpath:
    assumes path p
    assumes u-and-v:u\in{0..1} v\in{0..1}u<v
    assumes }\neg\mathrm{ (loop-free (subpath u v p))
    shows }\neg(loop-free p
proof -
    have path (subpath u v p)
        using path-subpath assms by auto
    then show ?thesis using simple-path-subpath assms
        unfolding simple-path-def
        by blast
qed
lemma loop-free-associative:
    assumes path p
    assumes path q
    assumes path r
    assumes pathfinish p = pathstart q
    assumes pathfinish q = pathstart r
    shows }\neg(\mathrm{ loop-free }((p+++q)+++r))\longleftrightarrow \longleftrightarrow (loop-free (p+++(q+++r))
    by (metis (mono-tags, lifting) assms(1) assms(2) assms(3) assms(4) assms(5)
path-join-imp pathfinish-join pathstart-join simple-path-assoc simple-path-def)
lemma polygon-at-least-3-vertices:
    assumes polygon p and
        p = make-polygonal-path vts
        shows card (set vts)\geq3
    using assms
proof (induct vts rule: make-polygonal-path.induct)
    case 1
    then show ?case unfolding polygon-def
        using constant-linepath-is-not-loop-free make-polygonal-path.simps(1)
        by (metis simple-path-def)
next
    case (2 a)
    then show ?case unfolding polygon-def
        using constant-linepath-is-not-loop-free make-polygonal-path.simps(2)
        by (metis simple-path-def)
next
    case (3 a b)
```

```
    \{ assume \(*: a=b\)
    then have False using 3 unfolding polygon-def
        using constant-linepath-is-not-loop-free make-polygonal-path.simps(3)
        by (metis simple-path-def)
    \} moreover \{assume \(*: a \neq b\)
    then have False using 3 unfolding polygon-def closed-path-def
        pathstart-def pathfinish-def using make-polygonal-path.simps(3)
        by (simp add: linepath-0' linepath-1')
    \}
    ultimately show ?case
    by auto
next
    case (4 \(a b v v a\) )
    have finset: finite (set \((a \# b \# v \# v a))\)
    by blast
    have subset: \(\{a, b, v\} \subseteq \operatorname{set}(a \# b \# v \# v a)\)
    by auto
    have neq1: \(a \neq b\)
    using constant-linepath-is-not-loop-free not-loop-free-first-component
    by (metis 4.prems(2) make-polygonal-path.simps(4) polygon-def assms(1) sim-
ple-path-def)
    have loop-free-2: loop-free (make-polygonal-path ( \(b\) \# v \# va) )
        using 4 not-loop-free-second-component
    by (metis make-polygonal-path.simps(4) polygon-def list.distinct(1) nth-Cons-0
pathfinish-linepath polygon-pathstart simple-path-def)
    have contra: \(b=v \Longrightarrow \neg(l o o p-f r e e ~(m a k e-p o l y g o n a l-p a t h ~(b \# v \# v a)))\)
        using constant-linepath-is-not-loop-free[of b] make-polygonal-path.simps
        not-loop-free-first-component
    by (metis neq-Nil-conv)
    then have neq2: \(b \neq v\)
        using loop-free-2 contra
        by auto
    have \(\neg\) loop-free ((linepath a b) +++ (linepath \(b a)\) )
        using doubling-back-is-not-loop-free[of a b] neq1
        by auto
    have make-path-is: make-polygonal-path \((a \# b \# a \# v a)=(\) linepath \(a b)+++\)
((linepath \(b a)+++(\) make-polygonal-path \((a \# v a)))\)
    using make-polygonal-path.simps
    by (metis (no-types, opaque-lifting) 4.prems(1) 4.prems(2) closed-path-def poly-
gon-def \(\neg\) loop-free (linepath a \(b+++\) linepath \(b a)\) 〉linepath-1' min-list.cases
nth-Cons-0 pathfinish-def pathfinish-join polygon-pathstart simple-path-def)
    have \(\neg\) loop-free \((((\) linepath \(a b)+++\) (linepath ba)) +++ (make-polygonal-path
(a\#va)))
    using make-polygonal-path.simps not-loop-free-first-component
    using «ᄀ loop-free (linepath a b+++ linepath \(b\) a) 〉
    by auto
    then have \(\neg\) loop-free (make-polygonal-path ( \(a \# b \# a \#\) va) )
    using loop-free-associative
```

by (metis make-polygonal-path-gives-path list.discI make-path-is nth-Cons-0 path-linepath pathfinish-linepath pathstart-linepath polygon-pathstart)
then have neq3: $v \neq a$
using 4
using polygon-def simple-path-def by blast
have card-3: card $\{a, b, v\}=3$
using neq1 neq2 neq3
by auto
then show ?case
using subset finset
by (metis card-mono)
qed
lemma polygon-vertices-length-at-least-4:
assumes polygon p and
$p=$ make-polygonal-path vts
shows length vts ≥ 4
proof -
have card-set: card (set vts) ≥ 3
using polygon-at-least-3-vertices assms
by blast
have len-gt3: length vts ≥ 3
using card-length local.card-set order-trans by blast
then have non-empty: vts $\neq[]$
using card-set
by auto
have eq: $p 0=p 1$
using assms unfolding polygon-def closed-path-def pathstart-def pathfinish-def
by auto
have $p 0: p 0=v t s!0$
using polygon-pathstart[OF non-empty] using assms unfolding pathstart-def by auto
have $p 1: p 1=$ vts ! (length vts -1$)$
using polygon-pathfinish[OF non-empty] using assms unfolding pathfinish-def by auto
have vts! $0=$ vts ! (length vts -1)
using assms unfolding polygon-def
using $p 0$ p1 eq by auto
then have set vts $=$ set (drop 1 vts)
using len-gt3
by (smt (verit, best) Cons-nth-drop-Suc Suc-eq-plus1 Suc-le-eq add.commute add-0 add-leD2 drop0 dual-order.refl insert-subset last.simps last-conv-nth last-in-set list.distinct(1) list.set(2) numeral-3-eq-3 order-antisym-conv)
then have length (drop 1 vts$) \geq 3$
using card-set
by (metis dual-order.trans length-remdups-card-conv length-remdups-leq)
then show ?thesis
using card-set
by (metis One-nat-def Suc-1 Suc-eq-plus1 Suc-pred add-Suc-right length-drop
length-greater-0-conv non-empty not-less-eq-eq numeral-3-eq-3 numeral-Bit0) qed
lemma linepath-loop-free:
assumes $a \neq b$
shows loop-free (linepath a b)
unfolding loop-free-def linepath-def
by (smt (z3) add.assoc add.commute add-scaleR-degen assms diff-add-cancel scaleR-left-diff-distrib)

7 Explicit Linepath Characterization of Polygonal Paths

lemma triangle-linepath-images:
fixes x :: real
assumes vts $=[a, b, c]$
assumes $p=$ make-polygonal-path vts
shows $x \in\{0 . .1 / 2\} \Longrightarrow p x=(($ linepath $a b))(2 * x)$
$x \in\{1 / 2 . .1\} \Longrightarrow p x=(($ linepath $b c))(2 * x-1)$
proof -
fix x :: real
assume $x \in\{0 . .1 / 2\}$
thus $p x=(($ linepath $a b))(2 * x)$
unfolding assms
using make-polygonal-path.simps(4)[of abceNil] unfolding joinpaths-def by
presburger
next
fix x :: real
assume $*: x \in\{1 / 2 . .1\}$
\{ assume $x>1 / 2$
then have $p x=(($ linepath $b c))(2 * x-1)$
unfolding assms
using make-polygonal-path.simps(4)[of abcNil] unfolding joinpaths-def by
force
\} moreover
\{ assume $x=1 / 2$
then have $p x=b \wedge(($ linepath $b c))(2 * x-1)=b$
unfolding assms
using make-polygonal-path.simps(4)[of abceNil] unfolding joinpaths-def by (simp add: linepath-def mult.commute)
\}
ultimately show $p x=(($ linepath $b c))(2 * x-1)$ using $*$ by fastforce
qed
lemma polygon-linepath-images1:
fixes n : nat
assumes $n \geq 3$
assumes length ell $=n$

```
    assumes }x\in{0..1/2
    shows make-polygonal-path ell x = ((linepath (ell!0) (ell!1))) (2*x)
proof -
    have make-polygonal-path ell = linepath (ell!0) (ell!1) +++ make-polygonal-path
(drop 1 ell)
    using make-polygonal-path.simps
    by (smt (verit, del-insts) numeral-3-eq-3 Cons-nth-drop-Suc One-nat-def Suc-1
Suc-eq-plus1 add-Suc-right assms(1) assms(2) drop0 length-greater-0-conv less-add-Suc2
list.size(3) not-numeral-le-zero nth-Cons-0 numeral-Bit0 order-less-le-trans plus-1-eq-Suc)
    then show ?thesis
    using assms make-polygonal-path.simps
    by (simp add: joinpaths-def)
qed
lemma sum-insert [simp]:
    assumes }x\not\inF\mathrm{ and finite F
    shows (\sumy\ininsert x F.Py)=(\sumy\inF.Py)+Px
    using assms insert-def by(simp add: add.commute)
lemma sum-of-index-diff [simp]:
    fixes f:: nat = 'a::comm-monoid-add
    shows (\sumi\in{a..<a+b}.f(i-a))=(\sumi\in{..<b}.f(i))
proof (induction b)
    case 0
    then show ?case by simp
next
    case (Suc b)
    then show ?case by simp
qed
lemma sum-of-index-diff2 [simp]:
    fixes f :: nat => 'a::comm-monoid-add
    shows (\sumi\in{a+c..b+c}.f(i))=(\sumi\in{a..b}.f(i+c))
    using Set-Interval.comm-monoid-add-class.sum.shift-bounds-cl-nat-ivl by blast
lemma sum-split [simp]:
    fixes f :: nat => 'a::comm-monoid-add
    assumes c}\in{a..b
    shows (\sumi\in{a..b}.fi)=(\sumi\in{a..c}.fi)+(\sumi\in{c+1..b}.fi)
    by (metis Suc-eq-plus1 Suc-le-mono assms atLeastAtMost-iff atLeastLessThanSuc-atLeastAtMost
le-SucI sum.atLeastLessThan-concat)
lemma summation-helper:
    fixes }x\mathrm{ :: real
    fixes }k:: na
    assumes 1\leqk
    shows (2::real)* (\sumi=1..k.1/ 2` i) - 1 = (\sumi=1..(k-1).(1/ (2`i)))
```

```
proof
    have frac-cancel: \foralli::nat \geq 1. 2 / (2`i) = 2 / (2 * (2::real)^(i-1))
    using power.simps(2)[of 2::real] by (metis Suc-diff-le diff-Suc-1)
    have (2::real) * (\sumi=1..k.1 / 2`i) = (\sumi=1..k. (2 / 2`i))
        by (simp add: sum-distrib-left)
    also have ... = (\sumi=1..k. (2 / (2* 2` (i-1)))) using frac-cancel by simp
    also have ... = (\sumi=1..k.(1 / (2`(i-1)))) by force
    also have ... = (\sumi=1..< (k+1).(1 / (2`(i-1))))
        using Suc-eq-plus1 atLeastLessThanSuc-atLeastAtMost by presburger
    also have ... = (\sumi\in{..<k}.(1 / (2`i)))
        using sum-of-index-diff[of \lambdai. (1 / 2`i) 1 k] by simp
    finally have (2::real)* (\sumi=1..k. 1 / 2^ i) = (\sumi=0..(k-1). (1 / (2`i)))
        by (metis assms atLeast0AtMost diff-Suc-1 lessThan-Suc-atMost nat-le-iff-add
plus-1-eq-Suc)
    then have (2::real)* (\sumi=1..k. 1 / 2 ` i) - 1 = (\sumi=0..(k-1).(1 /
(2`i))) - 1
        by auto
    also have ... = (\sumi=1..(k-1). (1/(2`i)))+(1/2`0) - 1
        using sum-insert[of 0 {1..k-1} power (1/2)]
        by (simp add: Icc-eq-insert-lb-nat add.commute)
    also have ... = (\sumi=1..(k-1). (1 / (2`i))) by force
    finally show (2::real)* (\sumi=1..k. 1 / 2^ i) - 1 = (\sumi=1..(k-1).(1/
(2`i))).
qed
lemma polygon-linepath-images2:
    fixes n k:: nat
    fixes ell:: (real^2) list
    fixes f :: nat }=>\mathrm{ real }=>\mathrm{ real
    assumes n\geq3
    assumes 0\leqk^k\leqn-3
    assumes length ell = n
    assumes p: p = make-polygonal-path ell
    assumes f=(\lambdakx. (x-(\sumi\in{1..k}.1/(2`i)))*(2`(k+1)))
    assumes }x\in{(\sumi\in{1..k}.1/(2`i))..(\sumi\in{1..(k+1)}.1/(2`i))
    shows px=((linepath (ell!k) (ell! (k+1)) (fkx)))
    using assms
proof (induct n arbitrary: ell k x p)
    case 0
    then show ?case by auto
next
    case (Suc n)
    { assume *: k=0
        have x: x \in{0..1/2} using * Suc.prems(6) by simp
        moreover have fkx=2*x using * Suc.prems(5) by simp
        ultimately have ?case
        using polygon-linepath-images1[of Suc n ell x,OF Suc.prems(1) Suc.prems(3)
x] *
            by (simp add: Suc.prems(4))
```

```
    } moreover
    { assume *: k\geq1
    then have suc-n: Suc n> 3 using Suc.prems(2) by linarith
    then have ell-is: ell = (ell!0) # (ell!1) # (ell!2) # (drop 3 ell)
        using Suc.prems(3)
        by (metis Cons-nth-drop-Suc One-nat-def Suc-1 Suc-le-lessD drop0 nat-les-le
numeral-3-eq-3)
    then have ell'-is:drop 1 ell =(ell!1) # (ell!2) # (drop 3 ell)
        by (metis One-nat-def diff-Suc-1 drop0 drop-Cons-numeral numerals(1))
    let?ell' = drop 1 ell
    have len-ell': length ?ell' > 2 using suc-n Suc.prems(3) by simp
    let ? p' = make-polygonal-path ?ell'
    have p-tl: p=(linepath (ell!0) (ell! 1)) +++ make-polygonal-path (drop 1
ell)
        using Suc.prems(4) Suc.prems(3) * make-polygonal-path.simps ell-is ell'-is
        by metis
    have }(\sumi=1..k.1/ (2`i::real) )\geq(\sumi=1..1. 1/ (2^i::real ) )
        using Suc.prems(2) *
    proof (induct k)
        case 0
        then show ?case by auto
    next
        case (Suc k)
        { assume *: 1 = Suc k
            then have ?case by auto
        } moreover {assume *: 1<Suc k
            then have 1\leqk^k\leqSucn-3
                    using Suc.prems by auto
            then have ind-h: (\sumi=1..1. 1 / (2`i::real ) ) \leq (\sumi=1..k. 1 / 2` i)
                using Suc.hyps Suc.prems(2) by blast
            have }(\sumi=1..Suc k.1/( 2`i::real))=1/(2`(Suc k)) + (\sumi=1..k. 1
/ (2`i::real))
            using * by simp
                then have (\sumi=1..Suc k.1/( 2 ^i::real ) ) > (\sumi=1..k.1 / (2^
i::real))
            by simp
            then have ?case using ind-h by linarith
        }
        ultimately show ?case by linarith
    qed
    then have (\sumi=1..k. 1 / (2` i::real)) \geq 1/2
        by auto
    then have x-gteq: x \geq 1/2 using Suc.prems(2,6)
        by (meson atLeastAtMost-iff order-trans)
    have xonehalf: px=? 'p}(2*x-1) if x-is: x=1/2 using p-tl joinpaths-de
    proof -
        have px=(linepath (ell!0)(ell!1)) 1
            using p-tl joinpaths-def x-is
```

by（metis mult．commute nle－le nonzero－divide－eq－eq zero－neq－numeral）
then have $p x=$ ell ！ 1
using polygon－pathfinish［of［（ell！0），（ell！1）］］unfolding pathfinish－def using make－polygonal－path．simps by simp
then have $p x=$ make－polygonal－path（drop 1 ell） 0
using polygon－pathstart［of drop 1 ell $]$＊len－ell＇unfolding pathstart－def
by simp
then show？thesis using x－is by force
qed
have x－gtonehalf：$x>1 / 2 \Longrightarrow p x=? p^{\prime}(2 * x-1)$ using p－tl joinpaths－def
by（smt（verit，ccfv－threshold））
then have $p x: p x=? p^{\prime}(2 * x-1)$ using xonehalf x－gtonehalf x－gteq by linarith
\｛ assume k－eq：$k=1$
then have $f k x=\left(x-\left(\sum i=1 . .1 .1 / 2^{\wedge} i\right)\right) * 2$－2
using Suc．prems（5）by auto
then have $f k x$ ：$f k x=4 * x-2$
by auto
have $x \in\{1 / 2 . .3 / 4\}$
using k－eq Suc．prems（6）by auto
then have $2 * x-1 \in\{0 . .1 / 2\}$ by simp
then have ？$p^{\prime}(2 * x-1)=($ linepath $(? e l l '!0)(? e l l!!1))(4 * x-2)$
using Suc．hyps［of k ？ell＇？p＇2＊x－1］Suc．prems
by（smt（verit，ccfv－SIG）suc－n diff－Suc－1 leD le－Suc－eq length－drop poly－ gon－linepath－images1）
also have $\ldots=($ linepath $($ ell！1）$)($ ell！2 $))(4 * x-2)$
using＊Suc．prems（3）
using ell＇－is by fastforce
also have $\ldots=(($ linepath $($ ell $!k)($ ell ！$(k+1))(f k x)))$ using k－eq
Suc．prems（5）fkx
by（smt（verit，del－insts）nat－1－add－1）
finally have ？case using $p x$ by simp
\} moreover
\｛ assume k－$g t: k>1$
then have fkminus：$f(k-1)(2 * x-1)=\left((2 * x-1)-\left(\sum i=1 . .(k-1)\right.\right.$ ．
$\left.1 / 2^{\wedge} i\right)$ ）＊${ }^{\wedge} k$
using Suc．prems（5）by force
have $f k: f k x=\left(x-\left(\sum i=1\right.\right.$ ．．k． $1 /$ 2 $\left.\left.^{\wedge} i\right)\right) *$ 2 $^{\wedge}(k+1)$
using Suc．prems（5）by blast
have f－is：$f(k-1)(2 * x-1)=f k x$
proof－
have $i: \forall i::$ nat $\in\{2 . . k\} . i-2+2=i$
by auto
have $f(k-1)(2 * x-1)=\left(2 * x-1-\left(\sum i=1 . . k-1.1 / 2^{\wedge} i\right)\right)$
＊2 ${ }^{\wedge}(k-1+1)$
unfolding Suc．prems（5）by auto
also have $\ldots=\left(x-1 / 2-\left(\sum i=1 . . k-1.1 / 2 へ i\right) / 2\right) * 2 へ(k+1)$
using k－gt by fastforce
also have $\ldots=\left(x-1 / 2-\left(\sum i=1 . . k-1 .(1 / 2 へ i) / 2\right)\right) * 2^{\wedge}(k+1)$
by (simp add: sum-divide-distrib)
also have $\ldots=\left(x-1 / 2-\left(\sum i=1 . . k-1 .(1 / 2) \uparrow i * 1 / 2\right)\right) * \mathcal{Z}^{\wedge}(k$ $+1)$
by (simp add: power-divide)
also have $\ldots=\left(x-1 / 2-\left(\sum i=1 . . k-1 .(1 / 2) \uparrow(i+1)\right)\right) * 2^{\wedge}(k+$ 1) by force
also have $\ldots=\left(x-1 / 2-\left(\sum i=1 . .<1+(k-1) .(1 / 2) \wedge(i+1)\right)\right) * 2$ - $(k+1)$
using Suc-eq-plus1-left atLeastLessThanSuc-atLeastAtMost by presburger
also have $\ldots=\left(x-1 / 2-\left(\sum i=1 . .<1+(k-1) .(1 / 2) \uparrow(i-1+\right.\right.$ 2)) $) * 2^{\wedge}(k+1)$
by auto
also have $\ldots=\left(x-1 / 2-\left(\sum i \in\{. .<k-1\} .((1 / 2) \uparrow(i+2))\right)\right) * \mathcal{Z}^{\wedge}$ $(k+1)$
using sum-of-index-diff $[$ of $(\lambda x$. (1/2) $(x+2)) 1 k-1]$ by metis
also have $\ldots=\left(x-1 / 2-\left(\sum i \in\{2 . .<k-1+2\} .((1 / 2) \uparrow(i-2+\right.\right.$ 2)))) * ${ }^{\wedge}(k+1)$
using sum-of-index-diff $[$ of $(\lambda x$. (1/2) $(x+2))$ 2 $k-1]$ by (smt (verit) add.commute)
also have $\ldots=\left(x-1 / 2-\left(\sum i \in\{2 . . k\} .((1 / 2) \uparrow(i-2+2))\right)\right) * 2^{\wedge}$ $(k+1)$
using k-gt atLeastLessThanSuc-atLeastAtMost by force
also have $\ldots=\left(x-1 / 2-\left(\sum i \in\{2 . . k\} .((1 / 2) \uparrow(i))\right)\right) * \mathcal{Z}^{\wedge}(k+1)$ using i by force
also have $\ldots=\left(x-\left(1 / 2+\left(\sum i \in\{2 . . k\} .((1 / 2) \uparrow(i))\right)\right)\right) * \mathcal{2}^{\wedge}(k+1)$ by argo
also have $\ldots=\left(x-\left(\sum i=1 . . k .(1 / 2) \uparrow(i)\right)\right) * 2^{\wedge}(k+1)$
using sum-insert[of $1\{2 . . k\} \lambda x$. (1/2) x]
by (smt (verit, ccfv-SIG) Suc-1 Suc-n-not-le-n atLeastAtMost-iff atLeast-AtMost-insertL finite-atLeastAtMost k-gt less-imp-le-nat power-one-right)
also have $\ldots=\left(x-\left(\sum i=1 . . k .1 /\left(2^{\wedge} i\right)\right)\right) * 2^{\wedge}(k+1)$ by (meson power-one-over)
also have $\ldots=f k x$ using $f k$ by argo
finally show ?thesis.
qed
have ih1: $3 \leq n$ using suc- n by force
have ih2: $0 \leq k-1 \wedge k-1 \leq n-3$ using k-gt Suc.prems(2) Suc.prems(3) by auto
have ih3: length ? ell' $=n$ using Suc.prems(3) by auto
have ih4: ? $p^{\prime}=$ make-polygonal-path ? ell' by blast
have $2 * x-1 \geq\left(\sum i \in\{1 . . k-1\}\right.$. $1 /\left(\right.$ 2^i $\left.\left.^{2}\right)\right)$
proof-
have $(2::$ real $) *\left(\sum i=1 . . k .1 / 2^{\wedge} i\right)-1=\left(\sum i=1 . .(k-1) .(1 /\right.$ (2 $\left.{ }^{-} i\right)$)
using summation-helper k-gt by auto
moreover have $x \geq\left(\sum i=1 . . k\right.$. $\left.1 / 2^{\wedge} i\right)$ using Suc.prems(6) by presburger
ultimately show $2 * x-1 \geq\left(\sum i \in\{1 . . k-1\} .1 /\left(\mathcal{L}^{\wedge} i\right)\right)$ by linarith qed
moreover have $2 * x-1 \leq\left(\sum i \in\{1 . . k\} .1 /\left(\mathcal{L}^{\curlywedge} i\right)\right)$
proof-
have $(2::$ real $) *\left(\sum i \in\{1 . .(k+1)\} .1 /(2 \widehat{i})\right)-1=\left(\sum i \in\{1 . . k\}\right.$. $1 /(2 ` i))$
using summation-helper $[$ of $k+1] k$-gt by auto
moreover have $x \leq\left(\sum i \in\{1 . .(k+1)\} .1 /(2 \widehat{2})\right)$ using Suc.prems(6)
by presburger
ultimately show ?thesis by linarith
qed
ultimately have $2 * x-1 \in\left\{\left(\sum i \in\{1 . . k-1\} .1 /\left(\mathcal{D}^{-} i\right)\right) . .\left(\sum i \in\{1 . . k\}\right.\right.$. $1 /(2 \uparrow i))\}$ by presburger
then have $\operatorname{ih5}: 2 * x-1 \in\left\{\left(\sum i \in\{1 . . k-1\} .1 /\left(\mathcal{2}^{\wedge} i\right)\right) . .\left(\sum i \in\{1 . . k-1+1\}\right.\right.$. $1 /(2 ` i))\}$ using k-gt by auto
have $p=$ make-polygonal-path (ell!0 \# ell!1 \# ell!2 \# (drop 3 ell)) using ell-is Suc.prems(4) by argo
then have $p=($ linepath $($ ell! 0$)($ ell!1 $))+++$ make-polygonal-path (ell! 1 \# ell!2 \# (drop 3 ell))
using make-polygonal-path.simps by auto
then have $p x=? p^{\prime}(2 * x-1)$ unfolding joinpaths-def using x-gteq $p x$ by fastforce
also have $\ldots=\left(\right.$ linepath $\left.\left(? e l l^{\prime}!(k-1)\right)\left(? e l l^{\prime}!k\right)\right)(f(k-1)(2 * x-1))$
using Suc.hyps[OF ih1 ih2 ih3 ih4 Suc.prems(5), of 2*x - 1, OF ih5] using
k-gt by auto
also have $\ldots=($ linepath $($ ell! $k)(e l l!(k+1)))(f(k-1)(2 * x-1))$
using Suc.prems(2) Suc.prems(3)
by (smt (verit, del-insts) add-implies-diff ell'-is ell-is k-gt nth-Cons-pos order-le-less-trans trans-less-add1 zero-less-one-class.zero-le-one)
also have $\ldots=($ linepath $(e l l!k)(e l l!(k+1)))(f k x)$
using f-is by auto
finally have ?case.
\}
ultimately have ?case using Suc.prems(2) * by linarith
\}
ultimately show ? case
using Suc.prems by linarith
qed
lemma polygon-linepath-images3:
fixes $n k:$: nat
fixes ell:: (realへ2) list
assumes $n \geq 3$
assumes length ell $=n$
assumes $p=$ make-polygonal-path ell
assumes $x \in\left\{\left(\sum i \in\{1 . . n-2\} .1 /(2 \widehat{i})\right) . .1\right\}$
assumes $f=\left(\lambda x .\left(x-\left(\sum i \in\{1 . . n-2\} .1 /(2 \mathfrak{})\right)\right) *(2 \uparrow(n-2))\right)$

```
    shows p x = (linepath (ell!(n-2)) (ell! (n-1))) (f x)
    using assms
proof (induct n arbitrary: ell kx pf)
    case 0
    then show ?case by auto
next
    case (Suc n)
    { assume *: Suc n=3
    then have ell-is: ell = [ell!0, ell!1, ell!2]
        using Suc.prems(2)
        by (metis Cons-nth-drop-Suc One-nat-def Suc-1 cancel-comm-monoid-add-class.diff-cancel
drop0 length-0-conv length-drop lessI less-add-Suc2 numeral-3-eq-3 plus-1-eq-Suc
zero-less-Suc)
    have (\sumi=1..(Suc n)-2. 1 / ((2^i)::real)) = (\sumi\in{1}.1 / ((2^i)::real))
        by (simp add:*)
    then have eq1:(\sumi=1..(Suc n)-2.1 / ((2^i)::real ) ) = 1/2
        by auto
    then have f-is: f=(\lambdax.(x-(1/2))* 2) using * Suc.prems(5) by auto
    have }x\in{(1/2)::\mathrm{ real..1} using eq1 Suc.prems(4) by metis
    moreover then have px= linepath (ell!1) (ell!2) (2*x-1)
        using triangle-linepath-images(2) using ell-is Suc.prems(3) by blast
    moreover have fx=2*x-1 using f-is by simp
    ultimately have px=(linepath (ell ! ((Suc n)-2)) (ell! ((Suc n)-1))) (fx)
        using * Suc.prems ell-is
        by (metis One-nat-def Suc-1 diff-Suc-1 diff-Suc-Suc numeral-3-eq-3)
    } moreover
    { assume *: Suc n> 3
    let ?ell' = drop 1 ell
    let ?p' = make-polygonal-path ?ell'
    let ? }\mp@subsup{x}{}{\prime}=2*x-
    let ?f' = (\lambdax. (x-(\sumi\in{1..n-2}.1/(2`i)))*(2^(n-2)))
    have ell-is: ell = ell!0 # ell!1 # ell!2 # (drop 3 ell)
    by (metis * Cons-nth-drop-Suc One-nat-def Suc.prems(2) Suc-1 drop0 le-Suc-eq
linorder-not-less numeral-3-eq-3 zero-less-Suc)
            then have p-tl: p = (linepath (ell!0) (ell!1)) +++ make-polygonal-path
(drop 1 ell)
        using make-polygonal-path.simps(4)[of ell!0 ell!1 ell!2 drop 3 ell]
        by (metis One-nat-def Suc.prems(3) drop-0 drop-Suc-Cons)
    have sum-split: (\sumi=1..Suc n-2.1 / (2^i::real)) = 1/(2^1::real ) + (\sumi
=2..Suc n-2.1 / (2` i::real))
            using *
    by (metis Suc-1 Suc-eq-plus1 Suc-lessD add-le-imp-le-diff diff-Suc-Suc eval-nat-numeral(3)
less-Suc-eq-le sum.atLeast-Suc-atMost)
    let ? k = Suc n
    have helper-arith: \i. i>0\Longrightarrow1/(2^ i::real)>0 by simp
    have }k\geq2.2\Longrightarrow(\sumi=2..k.1 / (\mp@subsup{)}{}{`}i::real))>0 for 
    proof (induct k)
        case 0
        then show ?case by auto
```


next

case (Suc k)
\{assume *: Suc $k=2$
then have $\left(\sum i=2 . . S u c k .1 /\left(2^{\wedge} i::\right.\right.$ real $\left.)\right)=\left(\sum i=2 . .2 .1 /\left(2^{\wedge}\right.\right.$ $i:$:real))
by presburger
then have? case
using helper-arith
by (simp add: *)
\} moreover \{assume $*$: Suc $k>2$
then have ind-h: $0<\left(\sum i=2 . . k .1 /\left(2^{\wedge} i::\right.\right.$ real $\left.)\right)$
using Suc.hyps less-Suc-eq-le by blast
have $\left(\sum i=2 . . S u c k .1 /\left(\right.\right.$ 2 $^{\text {ヘ }} i::$ real $\left.)\right)=\left(\sum i=2 . . k .1 /\left(\right.\right.$ 2 $^{\wedge} i::$ real $\left.)\right)$ $+1 /\left({ }^{\wedge}\right.$ (Suc k)::real)
using Suc.prems add.commute by auto
then have ? case using ind-h helper-arith
by (smt (verit) divide-less-0-1-iff zero-le-power)
\}
ultimately show ?case
using Suc.prems by linarith
qed
then have $\left(\sum i=2 . . S u c n-2.1 /\left(2^{\wedge} i::\right.\right.$ real $\left.)\right)>0$
using $*$ by auto
then have $\left(\sum i=1 . . S u c n-2.1 /\left(2^{\wedge} i::\right.\right.$ real $\left.)\right)>1 / 2$
using sum-split by auto
then have $x>1 / 2$ using Suc.prems(4)
by (smt (verit, del-insts) atLeastAtMost-iff linorder-not-le order-le-less-trans)
then have $p^{\prime} x^{\prime}$-eq-px: ? $p^{\prime} ? x^{\prime}=p x$ unfolding joinpaths-def by (simp add: joinpaths-def p-tl)
have $1: n \geq 3$ using $*$ by auto
have 2: length ? ell' $=n$ using Suc.prems(2) by simp
have 3: ? $p^{\prime}=$ make-polygonal-path ?ell' by auto
have $x \leq 1$ using Suc.prems(4) by auto
then have x^{\prime}-lteq: $2 * x-1 \leq 1$ by auto
have $x \geq\left(\sum i=1 . . S u c n-2.1 / 2^{\wedge} i\right)$
using Suc.prems(4) by auto
then have x^{\prime}-gteq: ? $x^{\prime} \geq\left(\sum i=1 . . n-2.1 / 2^{\wedge} i\right)$
using summation-helper[of Suc n-2] *
by (smt (verit) Suc.prems(1) Suc-1 Suc-diff-le Suc-leD Suc-le-mono diff-Suc-1 diff-Suc-eq-diff-pred eval-nat-numeral(3))
have 4: ? $x^{\prime} \in\left\{\left(\sum i=1 . . n-2.1 / 2^{\wedge} i\right) . .1\right\}$ using Suc.prems(4)
using summation-helper[of Suc n - 2] $* x^{\prime}$-lteq x^{\prime}-gteq atLeastAtMost-iff by blast
have 5: ? $f^{\prime}=\left(\lambda x .\left(x-\left(\sum i=1 . . n-2.1 / 2^{\wedge} i\right)\right) * 2^{\wedge}(n-2)\right)$ by auto
have $f x=\left(x-\left(\sum i=1 . . S u c n-2.1 / 2^{\wedge} i\right)\right) * 2^{\wedge}(n-2) * \mathcal{2}$
proof -
have $\left(\lambda r .\left(r-\left(\sum n=1 . . n-1.1 / 2^{\wedge} n\right)\right) * 2^{\wedge}(n-1)\right)=f$
by (simp add: Suc.prems(5))
then have $2^{\wedge}(n-1) *\left(x-\left(\sum n=1 . . n-1.1 / 2^{\wedge} n\right)\right)=f x$
using Groups.mult-ac(2) by blast
then have $\left(x-\left(\sum n=1 . . n-1.1 / \mathcal{Z}^{\wedge} n\right)\right) *\left(\mathcal{Z}^{\wedge}(n-S u c 1) *\right.$ 2 $)=f x$ by (metis (no-types) Groups.mult-ac(2) Suc.prems(2) diff-Suc-1 diff-Suc-Suc ell-is length-Cons power.simps(2))

```
then show ?thesis
    by (metis (no-types) Groups.mult-ac(1) Suc-1 diff-Suc-Suc)
```

 qed
 then have \(f x\)-is: \(f x=\left(2 * x-2 *\left(\sum i=1 . . S u c n-2.1 / 2{ }^{\wedge} i\right)\right) * 2^{\wedge}(n-\) 2)
 by argo
have sum-is: $1+\left(\sum i=1\right.$..n-2.1/(2ヘi::real $\left.)\right)=2 *\left(\sum i=1 . . S u c n-\right.$ 2. $1 /\left(2^{\wedge} i::\right.$ real $\left.)\right)$

proof -

have sum-ish1: $\left(\sum i=1\right.$. Suc $n-2.1 /\left(\right.$ 2 $^{\wedge} i::$ real $\left.)\right)=1 / 2+\left(\sum i=\right.$ 2..Suc $n-2.1$ / (2^i::real) $)$
by (metis power-one-right sum-split)
have $n \geq 2 \Longrightarrow 2 *\left(\sum i=2 . . n-1.1 /\left(2^{\wedge} i::\right.\right.$ real $\left.)\right)=\left(\sum i=1 . . n-2\right.$. $1 /\left(2^{\wedge} i:\right.$ real $\left.)\right)$
proof (induct n)
case 0
then show? ?case by auto
next
case (Suc n)
\{assume $*$: Suc $n=2$
then have ?case by auto
\} moreover \{assume $*$: Suc $n>2$
then have ind-h: 2* $\left(\sum i=2 . . n-1.1 /\left(2^{\wedge} i::\right.\right.$ real $\left.)\right)=\left(\sum i=1 . . n\right.$ - 2. $1 /\left(2^{\wedge} i::\right.$ real $)$)
using Suc by fastforce
have mult: $2 * 1 /\left(\right.$ 2^ $^{\text {(Suc } n-1)}::$ real $)=1 /\left(\right.$ 2^ $^{\wedge}(n-1)::$ real $)$ using *
by (smt (z3) One-nat-def add-diff-inverse-nat bot-nat-0.not-eq-extremum diff-Suc-1 div-by-1 le-zero-eq less-Suc-eq-le mult.commute nonzero-mult-div-cancel-left nonzero-mult-divide-mult-cancel-left plus-1-eq-Suc power-Suc zero-less-numeral)
have sum-prop: $\bigwedge a::$ nat. $\bigwedge f::$ nat \Rightarrow real. $\left(\sum i=1 . . a .(f i)\right)+(f(a+1))=$ $\left(\sum i=1 . . a+1 .(f i)\right)$
by auto
have $n-2+1=n-1$
using $*$ by auto
then have sum-same: $\left(\sum i=1 . . n-2.1 /\left(2^{\wedge} i::\right.\right.$ real $\left.)\right)+1 / 2^{\wedge}(n$
$-1)=\left(\sum i=1 . . n-1.1 /\left(2{ }^{\text {~ }} i::\right.\right.$ real $\left.)\right)$
using * sum-prop $\left[\right.$ of $\lambda i .1 /\left(2^{\wedge} i::\right.$ real) $\left.n-2\right]$ by metis
have $2 *\left(\sum i=2 . . S u c n-1.1 /\left(\right.\right.$ 2 $^{\wedge} i::$ real $\left.)\right)=2 *\left(\left(\sum i=2 . . n-\right.\right.$ 1. $1 /\left(\right.$ 2 $^{\text {へ }} i:$ real $\left.)\right)+1 /\left(\mathcal{2}^{\wedge}(\right.$ Suc $n-1)::$ real $\left.)\right)$
using *
by (smt (z3) add-2-eq-Suc add-diff-inverse-nat diff-Suc-1 distrib-left-numeral ind-h not-less-eq sum.cl-ivl-Suc)

$$
\text { then have } 2 *\left(\sum i=2 . . S u c n-1.1 /\left(\mathcal{R}^{\wedge} i:: \text { real }\right)\right)=\left(\sum i=1 . . n-\right.
$$

2. $1 /\left(\mathcal{2}^{\wedge} i::\right.$ real $\left.)\right)+2 * 1 /\left(\right.$ 2^^ $^{\wedge}($ Suc $n-1)::$ real $)$ using ind-h by argo
then have $2 *\left(\sum i=2 .\right.$. Suc $n-1.1 /\left(\mathcal{Z ~}^{\wedge} i:\right.$ real $\left.)\right)=\left(\sum i=1 . . n-\right.$ 2. $1 /\left(\mathcal{2}^{\wedge} i::\right.$ real $\left.)\right)+1 /\left(2^{\wedge}(n-1)::\right.$ real $)$
using $*$ mult by auto
then have ?case using sum-same by auto
\}
ultimately show ?case by fastforce
qed
then have sum-ish2:2*($\sum i=2 . . S u c n-2.1 /\left(\right.$ 2 $^{\wedge} i::$ real $\left.)\right)=\left(\sum i=\right.$ 1..n-2.1/($\boldsymbol{2}^{\wedge} i::$ real $\left.)\right)$
using * by auto
show ?thesis using sum-ish1 sum-ish2 by simp
qed
have ? $p^{\prime} ? x^{\prime}=\left(\right.$ linepath $\left.\left(? e l l^{\prime}!(n-2)\right)\left(? e l l^{\prime}!(n-1)\right)\right)\left(? f^{\prime} ? x^{\prime}\right)$ using Suc.hyps[OF 12345$]$ by blast
moreover have ? $f^{\prime} ? x^{\prime}=f x$ using Suc.prems(5) fx-is sum-is by (smt (verit, best))
moreover have ?ell' ! (n-2) $=$ ell! $!($ Suc $n)-2)$
by (metis Nat.diff-add-assoc One-nat-def Suc.prems(1) Suc.prems(2) Suc-1 add-diff-cancel-left le-add1 nth-drop numeral-3-eq-3 plus-1-eq-Suc)
moreover have ?ell' ! $(n-1)=$ ell ! $(($ Suc $n)-1)$
using Suc.prems(1) Suc.prems(2) by auto
ultimately have ?case using $p^{\prime} x^{\prime}-e q-p x$ by presburger
\}
ultimately show ?case using Suc.prems(1) by linarith
qed

8 A Triangle is a Polygon

lemma not-collinear-linepaths-intersect-helper:
assumes not-collinear: \neg collinear $\{a, b, c\}$
assumes $0 \leq k 1$
assumes $k 1 \leq 1$
assumes $0 \leq k 2$
assumes $k 2 \leq 1$
assumes eo: $k 2=0 \Longrightarrow k 1 \neq 1$
shows $\neg(($ linepath $a b) k 1=($ linepath $b c) k 2)$
proof -
have a-neq- $b: a \neq b$
using not-collinear
by auto
then have nonz-1: $a-b \neq 0$
by auto
have b-neq-c: $b \neq c$
using not-collinear
by auto
then have nonz-2: $b-c \neq 0$

```
    by auto
    have ᄀ collinear {a-b, 0,c-b}
    using not-collinear
    by (metis NO-MATCH-def collinear-3 insert-commute)
    then have notcollinear: }\neg\mathrm{ collinear { 0, a-b,c-b}
    by (simp add: insert-commute)
    have (1-k1)**Ra+k1 *R b = (1-k2) *R b +k2 *R}c\Longrightarrow(a-k1**Ra
+k1**R b = (b-k2 **R b) +k2 **}
    by (metis add-diff-cancel scaleR-collapse)
    then have (1-k1)**R}a+k1\mp@subsup{*}{R}{}b=(1-k2)\mp@subsup{*}{R}{}b+k2\mp@subsup{*}{R}{}c\Longrightarrow(1-k1
*R
    by (metis (no-types, lifting) add-diff-cancel-left scaleR-collapse scaleR-minus-left
uminus-add-conv-diff)
    then have (1-k1)**R}a+k1\mp@subsup{*}{R}{}b=(1-k2)\mp@subsup{*}{R}{}b+k2\mp@subsup{*}{R}{}c\Longrightarrow(1-k1
*R
    by (simp add: scaleR-right-diff-distrib)
    then have rewrite: (1-k1)*R}a+k1\mp@subsup{*}{R}{}b=(1-k2)\mp@subsup{*}{R}{}b+k2\mp@subsup{*}{R}{}c
(1-k1)**R(a-b)=k2 *R
    by (metis add-diff-cancel-right scaleR-collapse scaleR-right-diff-distrib)
    {assume *: k2 \not=0
    then have (1-k1) *R a + k1 *R b = (1-k2) *R b + k2 *R}c>\Longrightarrowc-b
((1-k1)/k2)*R(a-b)
    using rewrite assms(2-3)
    by (smt (verit, ccfv-SIG) vector-fraction-eq-iff)
    then have (1-k1) *Ra+k1 *R}b=(1-k2) *R b + k2 *R c \Longrightarrowcollinear
{0,a-b,c-b}
    using collinear-lemma[of a -b c-b] by auto
    then have (1-k1)*R}a+k1\mp@subsup{*}{R}{}b=(1-k2)\mp@subsup{*}{R}{}b+k2\mp@subsup{*}{R}{}c>>Fals
    using notcollinear by auto
} moreover {assume *: k2 = 0
    then have k1 \not=1
        using assms by auto
    then have (1-k1)*R}a+k1\mp@subsup{*}{R}{}b=(1-k2)\mp@subsup{*}{R}{}b+k2\mp@subsup{*}{R}{}c\Longrightarrowa-b
(k2/(1-k1)) *R (c-b)
    using rewrite
    by (smt (verit, ccfv-SIG) vector-fraction-eq-iff)
    then have (1-k1) *R a + k1 *R b = (1-k2) *R b + k2 * *R c \Longrightarrowcollinear
{0,a-b,c-b}
    using collinear-lemma[of c-b a-b]
    by (simp add: insert-commute)
    then have (1-k1) *Ra+k1 *R}b=(1-k2)*R b + k2 *Rc c Fals
    using notcollinear by auto
    }
    ultimately show ?thesis
    unfolding linepath-def
    by blast
qed
```

lemma not-collinear-linepaths-intersect-helper-2:
assumes not-collinear: \neg collinear $\{a, b, c\}$
assumes $0 \leq k 1$
assumes $k 1 \leq 1$
assumes $0 \leq k 2$
assumes $k 2 \leq 1$
assumes eo: $k 1=0 \Longrightarrow k 2 \neq 1$
shows $\neg(($ linepath $a b) k 1=($ linepath $c a) k 2)$
using not-collinear-linepaths-intersect-helper[of callllaks assms
by (simp add: insert-commute)
lemma not-collinear-loopfree-path: $\bigwedge a b c::$ real^2. \neg collinear $\{a, b, c\} \Longrightarrow$ loop-free $(($ linepath $a b)+++($ linepath $b c))$
proof -
fix $a b c:$:real^2
assume not-collinear: \neg collinear $\{a, b, c\}$
then have $a-n e q-b: a \neq b$
by auto
have b-neq-c: $b \neq c$
using not-collinear
by auto
have $\bigwedge x y$::real. (linepath a $b+++$ linepath $b c) x=($ linepath $a b+++$ linepath
b c) $y \Longrightarrow$
$x<y \Longrightarrow$
$x=0 \longrightarrow y \neq 1 \Longrightarrow 0 \leq x \Longrightarrow x \leq 1 \Longrightarrow 0 \leq y \Longrightarrow y \leq 1 \Longrightarrow$ False
proof -
fix $x y$:: real
assume same-eval: (linepath a $b+++$ linepath $b c) x=($ linepath $a b+++$
linepath bc) y
assume x-neq-y: $x<y$
assume x-zero-imp: $x=0 \longrightarrow y \neq 1$
assume x-gt: $0 \leq x$
assume x-lt: $x \leq 1$
assume y-gt: $0 \leq y$
assume y-lt: $y \leq 1$
\{assume $*: x \leq 1 / 2 \wedge y \leq 1 / 2$
then have $(1-2 * x) *_{R} a+(2 * x) *_{R} b=(1-2 * y) *_{R} a+(2 * y)$
$*_{R} b \Longrightarrow$ False
using x-gt y-gt x-neq-y a-neq-b linepath-loop-free[of $a b]$
by (smt (z3) add-diff-cancel-left add-diff-cancel-right' add-diff-eq scaleR-cancel-left scale R-left-diff-distrib)
then have False
using * same-eval unfolding joinpaths-def linepath-def
by auto
\} moreover \{assume $*: x>1 / 2 \wedge y>1 / 2$
have False
using x-lt y-lt x-neq-y b-neq-c linepath-loop-free $\left[\begin{array}{lll}o f & b & c\end{array}\right]$
using * same-eval unfolding joinpaths-def linepath-def
by (smt (z3) add-diff-cancel-left add-diff-cancel-right' add-diff-eq scaleR-cancel-left

```
scaleR-collapse scaleR-left-diff-distrib)
    } moreover {assume *: x < 1/2 ^ y>1/2
        then have lp-eq:(linepath a b) (2*x)=(linepath b c) (2*y-1)
            using * same-eval unfolding joinpaths-def
            by auto
        have (2*y-1)=0\longrightarrow(2*x)\not=1\wedge0\leq(2*x)\wedge(2*x)\leq1^0\leq(2
*y-1)\wedge(2*y-1)\leq1
            using x-lt x-gt x-neq-y * by auto
        then have False
            using lp-eq not-collinear-linepaths-intersect-helper[of a b c 2*x 2*y-1]
            not-collinear
            using * x-gt y-lt by auto
    }
    ultimately show False
        using x-lt y-lt x-neq-y
        by linarith
    qed
    then have \x y::real. (linepath a b+++ linepath b c) x = (linepath a b +++
linepath b c) y\Longrightarrow
                x\not=y\Longrightarrow
                x=0\longrightarrowy\not=1\Longrightarrowx=1\longrightarrowy\not=0\Longrightarrow0\leqx\Longrightarrowx\leq1\Longrightarrow0\leqy
y\leq1\Longrightarrow False
    by (metis linorder-less-linear)
    then show loop-free (linepath a b +++ linepath b c)
    unfolding loop-free-def
    by (metis atLeastAtMost-iff)
qed
lemma triangle-is-polygon: \bigwedgeabc.\negcollinear {a,b,c} \Longrightarrow polygon (make-triangle
abc)
proof -
    fix a b c::real^2
    assume not-coll:\negcollinear {a,b,c}
    then have a-neq-b:a\not=b
    by auto
    have b-neq-c: b\not=c
    using not-coll
    by auto
    have a-neq-c: c\not=a
    using not-coll
    using collinear-3-eq-affine-dependent by blast
    let ?vts = [a,b,c,a]
    have polygonal-path: polygonal-path (make-polygonal-path [a,b,c,a])
    by (metis Collect-const UNIV-I image-eqI polygonal-path-def)
    then have path: path (make-polygonal-path [a,b,c,a])
    by auto
    then have closed-path: closed-path (make-polygonal-path [a,b,c,a])
    unfolding closed-path-def using polygon-pathstart polygon-pathfinish
```

```
    by auto
    let ? seg1 \(=(\) linepath \(a b)+++(\) linepath \(b c)\)
    have lf1: loop-free ((linepath a b) \(+++(\) linepath \(b c))\)
    using not-collinear-loopfree-path not-coll
    by auto
    then have \(\forall x \in\{0 . .1\} . \forall y \in\{0 . .1\}\). ?seg1 \(x=? \operatorname{seg} 1 y \longrightarrow x=y\)
    using a-neq-c unfolding loop-free-def
    by (metis (no-types, lifting) path-defs(2) pathfinish-def pathfinish-join pathfin-
ish-linepath pathstart-join pathstart-linepath)
    let ? seg2 \(=(\) linepath \(b c)+++(\) linepath \(c a)\)
    have lf2: loop-free ((linepath bc) +++ (linepath ca) \()\)
        using not-collinear-loopfree-path not-coll
    by (simp add: insert-commute)
    then have \(\forall x \in\{0 . .1\} . \forall y \in\{0 . .1\}\). ? seg2 \(x=\) ? seg2 \(y \longrightarrow x=y\)
    using \(a\)-neq-b unfolding loop-free-def
    by (metis (no-types, lifting) path-defs(2) pathfinish-def pathfinish-join pathfin-
ish-linepath pathstart-join pathstart-linepath)
    let ? seg \(3=(\) linepath \(c a)+++(\) linepath \(a b)\)
    have lf3: loop-free ((linepath ca) +++ (linepath a b))
    using not-collinear-loopfree-path not-coll
    by (simp add: insert-commute)
then have \(\forall x \in\{0 . .1\} . \forall y \in\{0 . .1\}\). ? \(\operatorname{seg} 3 x=? \operatorname{seg} 3 y \longrightarrow x=y\)
    using \(b\)-neq-c unfolding loop-free-def
    by (metis (no-types, lifting) path-defs(2) pathfinish-def pathfinish-join pathfin-
ish-linepath pathstart-join pathstart-linepath)
    have mpp-is: \(\forall x \in\{0 . .1\}\). make-polygonal-path \([a, b, c, a] x=((l i n e p a t h ~ a b)\)
\(+++(\) linepath \(b c)+++(\) linepath \(c a)) x\)
    by auto
    have \(x\)-in-int1: \(\forall x \in\{0 . .(1 / 2)\}\). make-polygonal-path \([a, b, c, a] x=((\) linepath
a b)) (2*x)
    using mpp-is
    unfolding joinpaths-def by auto
    have \(x\)-in-int2: \(\forall x \in\{1 / 2<. .(3 / 4)\}\). make-polygonal-path \([a, b, c, a] x=((\) linepath
\(b c))(2 *(2 * x-1))\)
    using mpp-is unfolding joinpaths-def
    by auto
    have \(x\)-in-int3: \(\forall x \in\{3 / 4<. .1\}\). make-polygonal-path \([a, b, c, a] x=((\) linepath
ca) \()(2 *(2 * x-1)-1)\)
    using mpp-is unfolding joinpaths-def
    by auto
    have \(\wedge x y .0 \leq x \wedge x \leq 1 \wedge 0 \leq y \wedge y \leq 1 \wedge x \neq y \wedge(x=0 \longrightarrow y \neq 1) \wedge\)
\((x=1 \longrightarrow y \neq 0) \Longrightarrow\) make-polygonal-path \([a, b, c, a] x=\) make-polygonal-path
\([a, b, c, a] y \Longrightarrow\) False
    proof -
    fix \(x y\) :: real
    assume big: \(0 \leq x \wedge x \leq 1 \wedge 0 \leq y \wedge y \leq 1 \wedge x \neq y \wedge(x=0 \longrightarrow y \neq 1)\)
\(\wedge(x=1 \longrightarrow y \neq 0)\)
    assume false-hyp: make-polygonal-path \([a, b, c, a] x=\) make-polygonal-path \([a\),
\(b, c, a] y\)
```

\{assume $*: x \in\{0 . .(1 / 2)\}$
then have x-eval: make-polygonal-path $[a, b, c, a] x=(($ linepath a $b))(2 * x)$ using x-in-int1 by auto
\{assume $* *: y \in\{0 . .(1 / 2)\}$
then have y-eval: make-polygonal-path $[a, b, c, a] y=((l i n e p a t h ~ a b))$
using x-in-int1 by auto
then have $(($ linepath $a b))(2 * x)=(($ linepath $a b))(2 * y)$
using false-hyp x-eval y-eval by auto
then have False
using linepath-loop-free big * **
unfolding loop-free-def
using a-neq-b add-diff-cancel-left add-diff-cancel-right' add-diff-eq
linepath-def scaleR-cancel-left scaleR-collapse scaleR-left-diff-distrib by (smt (verit))
$\}$ moreover $\{$ assume $* *: y \in\{(1 / 2)<. .(3 / 4)\}$
then have y-eval: make-polygonal-path $[a, b, c, a] y=(($ linepath $b c))$ $(2 *(2 * y-1))$
using x-in-int2 by auto
then have $(($ linepath $a b))(2 * x)=(($ linepath $b c))(2 *(2 * y-1))$ using false-hyp x-eval y-eval by auto
then have False
using big * ** not-collinear-linepaths-intersect-helper[of abla $\begin{aligned} & \text { * }\end{aligned}$
$(2 *(2 * y-1))]$ not-coll by auto
$\}$ moreover \{assume $* *: y \in\{(3 / 4)<. .1\}$
then have y-eval: make-polygonal-path $[a, b, c, a] y=(($ linepath $c a))$
$((2 *(2 * y-1)-1))$
using x-in-int3 by auto
then have $(($ linepath $a b))(2 * x)=(($ linepath $c a))((2 *(2 * y-1)$

- 1))
using false-hyp x-eval y-eval by auto
then have False
using big * ** not-collinear-linepaths-intersect-helper-2[of abce (2*x)
$((2 *(2 * y-1)-1))]$ not-coll
by auto
\}
ultimately have False
using big
by (metis atLeastAtMost-iff greaterThanAtMost-iff linorder-not-le)
\} moreover \{assume $*: x \in\{(1 / 2)<. .(3 / 4)\}$
then have x-eval: make-polygonal-path $[a, b, c, a] x=(($ linepath $b c))$
$(2 *(2 * x-1))$
using x-in-int2 by auto
\{assume $* *: y \in\{0 . .(1 / 2)\}$
then have y-eval: make-polygonal-path $[a, b, c, a] y=(($ linepath $a b))$
$(2 * y)$
using x-in-int1 by auto
then have lp-eq: $(($ linepath $a b))(2 * y)=(($ linepath $b c))(2 *(2 * x-1))$
using false-hyp x-eval y-eval by auto
have $2 *(2 * x-1) \neq 0$
using $*$ by auto
then have False
using lp-eq big * ** not-collinear-linepaths-intersect-helper[of a b c $2 * y$
($2 *(2 * x-1))]$ not-coll
by auto
\} moreover \{assume $* *: y \in\{(1 / 2)<. .(3 / 4)\}$
then have y-eval: make-polygonal-path $[a, b, c, a] y=(($ linepath $b c))$ $(2 *(2 * y-1))$
using x-in-int2 by auto
then have lp-eq: $(($ linepath $b c))(2 *(2 * y-1))=(($ linepath $b c))$ $(2 *(2 * x-1))$
using false-hyp x-eval y-eval by auto
then have False
using linepath-loop-free[OF b-neq-c] big ***
unfolding loop-free-def
using add-diff-cancel-left add-diff-cancel-right' add-diff-eq linepath-def scaleR-cancel-left scaleR-collapse scaleR-left-diff-distrib
by (smt (verit) b-neq-c)
$\}$ moreover \{assume $* *: y \in\{(3 / 4)<. .1\}$
then have y-eval: make-polygonal-path $[a, b, c, a] y=(($ linepath $c a))$
$((2 *(2 * y-1)-1))$
using x-in-int3 by auto
then have lp-eq: $(($ linepath $b c))(2 *(2 * x-1))=(($ linepath $c a))((2$ * $(2 * y-1)-1)$)
using false-hyp x-eval y-eval
by auto
have not-coll2: \neg collinear $\{b, c, a\}$
using not-coll
by (simp add: insert-commute)
have $2 *(2 * x-1) \neq 0$
using $*$ by auto
then have False using lp-eq
using big $* * *$ not-collinear-linepaths-intersect-helper [of bcal $2 *(2 * x$
$-1)(2 *(2 * y-1)-1)]$ not-coll2
by auto
\}
ultimately have False
using big
by (metis atLeastAtMost-iff greaterThanAtMost-iff linorder-not-le)
\} moreover \{assume $*: x \in\{(3 / 4)<. .1\}$
then have x-eval: make-polygonal-path $[a, b, c, a] x=(($ linepath $c a))((2$
* $(2 * x-1)-1)$)
using x-in-int3 by auto
\{assume $* *: y \in\{0 . .(1 / 2)\}$
then have y-eval: make-polygonal-path $[a, b, c, a] y=(($ linepath $a b))$
$(2 * y)$
using x-in-int1 by auto
then have lp-eq: $(($ linepath $c a))((2 *(2 * x-1)-1))=(($ linepath $a b)$) $(2 * y)$
using x-eval y-eval
using false-hyp by presburger
have not-coll2: \neg collinear $\{c, a, b\}$
using not-coll
by (simp add: insert-commute)
have $((2 *(2 * x-1)-1)) \neq 0$
using $*$ by auto
then have False
using lp-eq big * ** not-coll2
not-collinear-linepaths-intersect-helper $[$ of cab(2*(2*x-1)-1)
$2 * y]$
by auto
$\}$ moreover \{assume $* *: y \in\{(1 / 2)<. .(3 / 4)\}$
then have y-eval: make-polygonal-path $[a, b, c, a] y=(($ linepath $b c))$ $(2 *(2 * y-1))$
using x-in-int2 by auto
then have lp-eq: $(($ linepath $b c))(2 *(2 * y-1))=(($ linepath $c a))((2$ * $(2 * x-1)-1)$)
using x-eval y-eval false-hyp
using false-hyp by presburger
have not-coll2: \neg collinear $\{b, c, a\}$
using not-coll
by (simp add: insert-commute)
have $((2 *(2 * x-1)-1)) \neq 0$
using $*$ by auto
then have False
using lp-eq big * ** not-coll2
not-collinear-linepaths-intersect-helper[of bca(2*(2*y-1)) (2*(2) * $x-1)-1$]
by auto
$\}$ moreover \{assume $* *: y \in\{(3 / 4)<. .1\}$
then have y-eval: make-polygonal-path $[a, b, c, a] y=(($ linepath $c a))$
$((2 *(2 * y-1)-1))$
using x-in-int3 by auto
then have $(($ linepath $c a))((2 *(2 * y-1)-1))=(($ linepath $c a))$
$((2 *(2 * x-1)-1))$
using x-eval y-eval false-hyp
using false-hyp by presburger
then have False
using linepath-loop-free[OF a-neq-c] big * **
unfolding loop-free-def
using add-diff-cancel-left add-diff-cancel-right' add-diff-eq linepath-def scaleR-cancel-left scaleR-collapse scaleR-left-diff-distrib
by (smt (verit) a-neq-c add-diff-cancel-left')
\}
ultimately have False
using big

```
            by (metis atLeastAtMost-iff greaterThanAtMost-iff linorder-not-le)
        }
        ultimately show False using big
        by (metis atLeastAtMost-iff greaterThanAtMost-iff linorder-not-le)
    qed
    then have loop-free: loop-free (make-polygonal-path [a,b,c,a])
        unfolding loop-free-def
    by (meson atLeastAtMost-iff)
show polygon (make-triangle a b c)
    unfolding make-triangle-def polygon-def simple-path-def
    using polygonal-path closed-path loop-free by auto
qed
lemma have-wraparound-vertex:
    assumes polygon p
    assumes p= make-polygonal-path vts
    shows vts=(take (length vts -1) vts)@[vts!0]
proof -
    have card (set vts) \geq3
        using polygon-at-least-3-vertices assms by auto
    then have nonempty: vts }\not=[
        by auto
    then have vts =(take (length vts -1) vts)@[vts!(length vts - 1)]
        by (metis append-butlast-last-id butlast-conv-take last-conv-nth)
    then show ?thesis
        using assms(1) unfolding polygon-def closed-path-def
    using polygon-pathstart[OF nonempty assms(2)] polygon-pathfinish[OF nonempty
assms(2)]
    by presburger
qed
lemma polygon-at-least-3-vertices-wraparound:
    assumes polygon p
    assumes p= make-polygonal-path vts
    shows card (set (take (length vts -1) vts)) \geq 3
proof -
    let ?distinct-vts = take (length vts - 1) vts
    have card-vts: card (set vts)\geq3
        using polygon-at-least-3-vertices assms by auto
    then have vts-is:vts =?distinct-vts@[vts!0]
        using have-wraparound-vertex assms by auto
    then have ?distinct-vts \not= []
        using card-vts
    by (metis One-nat-def append-Nil distinct-card distinct-singleton eval-nat-numeral(3)
length-append-singleton list.size(3) not-less-eq-eq one-le-numeral)
    then have vts! 0 E set ?distinct-vts
        by (metis <vts = take (length vts - 1) vts @ [vts!0]> length-greater-0-conv
```

```
nth-append nth-mem)
    then have card (set ?distinct-vts) = card (set vts)
        using vts-is
    by (metis Un-insert-right append.right-neutral insert-absorb list.set(2) set-append)
    then show ?thesis using card-vts by auto
qed
```


9 Polygon Vertex Rotation

definition rotate-polygon-vertices:: 'a list \Rightarrow nat \Rightarrow 'a list where rotate-polygon-vertices ell $i=$ $($ let ell1 $=$ rotate $i($ butlast ell $)$ in ell1 @ [ell1! 0])
lemma rotate-polygon-vertices-same-set:
assumes polygon (make-polygonal-path vts)
shows set (rotate-polygon-vertices vts i) $=$ set vts
proof -
have card-gteq: card (set vts) ≥ 3
using polygon-at-least-3-vertices assms
by auto
then have len-gteq: length vts ≥ 3
using card-length order-trans by blast
let ?ell1 $=$ rotate $i($ take $($ length vts -1$)$ vts $)$
have inset: vts ! $0=$ vts ! (length vts -1)
using assms polygon-pathstart polygon-pathfinish unfolding polygon-def closed-path-def
by (metis len-gteq list.size(3) not-numeral-le-zero)
have set vts $=$ set (take (length vts -1$)$ vts $) \cup\{v t s!($ length vts -1$)\}$
by (metis Cons-nth-drop-Suc One-nat-def Un-insert-right assms card.empty
diff-zero drop-rev length-greater-0-conv list.set(1) list.set(2) not-numeral-le-zero order.refl polygon-at-least-3-vertices rev-nth set-rev sup-bot.right-neutral take-all)
then have set vts $=$ set (take (length vts -1$)$ vts)
using inset
by (metis (no-types, lifting) One-nat-def Suc-neq-Zero Suc-pred Un-insert-right add-diff-cancel-left' butlast-conv-take diff-is-0-eq' insert-absorb len-gteq length-butlast length-greater-0-conv list.size(3) nth-mem nth-take numeral-3-eq-3 plus-1-eq-Suc sup-bot.right-neutral)
then have same-set: set vts $=$ set ?ell1
by auto
then have rotate $i($ take (length vts -1$)$ vts) $!0 \in$ set vts using len-gteq
by (metis card-gteq card-length le-zero-eq length-greater-0-conv list.size(3) nth-mem numeral-3-eq-3 zero-less-Suc)
then have set vts $=$ set (?ell1 @ [?ell1! 0] $)$
using same-set by auto
then show?thesis
unfolding rotate-polygon-vertices-def
using card-gteq
by (metis butlast-conv-take)
qed

```
lemma arb-rotation-as-single-rotation:
    fixes i:: nat
    shows rotate-polygon-vertices vts (Suc i) = rotate-polygon-vertices (rotate-polygon-vertices
vts i) 1
    unfolding rotate-polygon-vertices-def
    by (metis butlast-snoc plus-1-eq-Suc rotate-rotate)
lemma rotation-sum:
    fixes i j :: nat
    shows rotate-polygon-vertices vts (i+j) = rotate-polygon-vertices (rotate-polygon-vertices
vts i) j
proof(induct j)
    case 0
    thus ?case by (metis Nat.add-0-right butlast-snoc id-apply rotate0 rotate-polygon-vertices-def)
next
    case (Suc j)
    have rotate-polygon-vertices vts (i+(Suc j)) = rotate-polygon-vertices vts (Suc
(i+j)) by simp
    also have ... = rotate-polygon-vertices (rotate-polygon-vertices vts (i+j)) 1
        using arb-rotation-as-single-rotation by blast
    also have ... = rotate-polygon-vertices (rotate-polygon-vertices (rotate-polygon-vertices
vts i) j) 1
        using Suc.hyps by simp
    also have ... = rotate-polygon-vertices (rotate-polygon-vertices vts i) (Suc j)
        using arb-rotation-as-single-rotation by metis
    finally show ?case .
qed
lemma rotated-polygon-vertices-helper:
    fixes p:: R-to-R2
    assumes poly-p: polygon p
    assumes p-is-path: p = make-polygonal-path vts
    assumes p'-is: p' = make-polygonal-path (rotate-polygon-vertices vts 1)
    shows (vts!0)=(rotate-polygon-vertices vts 1)! (length (rotate-polygon-vertices
vts 1) - 2)
    (rotate-polygon-vertices vts 1)!(length (rotate-polygon-vertices vts 1) - 1)
=(vts!1)
proof -
    have len-gteq: length vts \geq3
        using polygon-at-least-3-vertices assms
        using card-length order-trans by blast
    let ?rotated-vts = rotate-polygon-vertices vts 1
    have same-len: length ?rotated-vts = length vts
        unfolding rotate-polygon-vertices-def using length-rotate
    by (metis One-nat-def Suc-pred card.empty length-append-singleton length-butlast
length-greater-0-conv list.set(1) not-numeral-le-zero p-is-path poly-p polygon-at-least-3-vertices)
    then have len-rotated-gt-eq3: length ?rotated-vts \geq 3
        using len-gteq by auto
```

```
    show vts1:vts! 0 = ?rotated-vts!(length ?rotated-vts - 2)
    unfolding rotate-polygon-vertices-def
    using nth-rotate[of length ?rotated-vts - 2 butlast vts 1]
    Suc-diff-Suc butlast-snoc length-butlast length-greater-0-conv lessI less-nat-zero-code
list.size(3) mod-self nat-1-add-1 nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def
same-len zero-less-diff
    by (smt (z3) One-nat-def len-gteq length-append-singleton numeral-le-one-iff
semiring-norm(70))
    have (rotate 1 (butlast vts))! 0 = vts ! 1
    unfolding rotate-polygon-vertices-def
    using nth-rotate[of 0 butlast vts 1] len-gteq len-rotated-gt-eq3
    by (metis (no-types, lifting) One-nat-def Suc-le-eq length-butlast less-diff-conv
less-nat-zero-code mod-less not-gr-zero nth-butlast numeral-3-eq-3 plus-1-eq-Suc)
    then show vts2: ?rotated-vts!(length ?rotated-vts - 1) =vts! 1
    unfolding rotate-polygon-vertices-def
    by (smt (verit, best) Suc-diff-Suc Suc-eq-plus1 butlast-snoc length-butlast length-greater-0-conv
less-nat-zero-code list.size(3) nth-append-length one-add-one rotate-polygon-vertices-def
zero-less-diff)
qed
lemma rotate-polygon-vertices-same-length:
    fixes vts :: (real^2) list
    assumes length vts \geq1
    shows length vts = length (rotate-polygon-vertices vts i)
    using assms
proof(induction length vts arbitrary: i)
    case 0
    then show ?case by auto
next
    case (Suc x)
    then show ?case using arb-rotation-as-single-rotation[of vts x]
        by (metis diff-Suc-1 length-append-singleton length-butlast length-rotate ro-
tate-polygon-vertices-def)
qed
lemma rotated-polygon-vertices-helper2:
    assumes len-gteq: length vts \geq2
    assumes i< length vts - 1
    assumes hd vts = last vts
    shows (rotate-polygon-vertices vts 1)!i=vts!(i+1)
proof -
    let ?rotated-vts = rotate-polygon-vertices vts 1
    have length (butlast vts) = length vts - 1
        by auto
    then have same-len: length ?rotated-vts = length vts
            unfolding rotate-polygon-vertices-def using length-rotate len-gteq
            by (metis dual-order.trans le-add-diff-inverse length-append-singleton one-le-numeral
plus-1-eq-Suc)
    then have len-rotated-gt-eq3: length ?rotated-vts \geq2
```

using len－gteq by auto
let $? n=$ length vts
\｛assume $*: i<$ length vts -2
then have same－mod：$(1+i)$ mod length（butlast vts）$=1+i$
using assms by simp
have $i<$ length（butlast vts）
using assms by simp
then have rotate 1 （butlast vts）！$i=$ butlast vts $!(i+1)$
using nth－rotate［of i butlast vts 1］same－mod
by（metis add．commute）
then have（rotate－polygon－vertices vts 1$)!i=v t s!(i+1)$
by（metis（no－types，lifting）Suc－eq－plus1 $\langle i<$ length（butlast vts）〉butlast－snoc length－butlast length－greater－0－conv less－nat－zero－code list．size（3）mod－less－divisor nth－butlast plus－1－eq－Suc rotate－polygon－vertices－def same－len same－mod）
\} moreover \{assume $*: i=$ length vts -2
then have same－mod：$(1+i)$ mod length（butlast vts $)=0$
using assms
by（metis Suc－diff－Suc 〈length（butlast vts）＝length vts -1\rangle length－greater－0－conv
less－nat－zero－code list．size（3）mod－Suc mod－if one－add－one plus－1－eq－Suc zero－less－diff）
have $i<$ length（butlast vts）
using assms by simp
then have rotate－prop：rotate 1 （butlast vts）！$i=$ butlast vts ！ 0
using nth－rotate［of i butlast vts 1］same－mod
by metis
have butlast vts！ $0=$ vts ！ 0
using assms（1）
by（simp add：nth－butlast）
then have butlast vts ！ $0=$ vts $!($ length vts -1$)$
by（metis assms（3）hd－conv－nth last－conv－nth length－0－conv zero－diff）
then have（rotate－polygon－vertices vts 1$)!i=v t s!(i+1)$
by（metis＊rotate－prop Suc－diff－Suc Suc－eq－plus1 〈butlast vts！ $0=v t s!0\rangle$
add－2－eq－Suc＇le－add－diff－inverse2 len－gteq less－add－Suc2 one－add－one same－len but－
last－snoc length－butlast lessI nth－butlast rotate－polygon－vertices－def）
\}
ultimately show ？thesis
using assms（2）by linarith
qed
lemma polygon－rotation－t－translation1：
assumes polygon－of p vts
assumes $p^{\prime}=$ make－polygonal－path（rotate－polygon－vertices vts 1）
（is $p^{\prime}=$ make－polygonal－path ？vts＇）
assumes $x^{\prime} \in\left\{\left(\sum i \in\{1 . . k\} .1 /\left(\mathcal{R}^{`} i\right)\right) . .\left(\sum i \in\{1 . . k+1\} .1 /\left(\mathscr{2}^{`} i\right)\right)\right\}$
assumes $n=$ length vts
assumes $0 \leq k \wedge k \leq n-4$
assumes $l=x^{\prime}-\left(\sum i \in\{1 . . k\} .1 /(2 \widehat{2})\right)$
assumes $x=l / 2+\left(\sum i \in\{1 . .(k+1)\} .1 /(2 \mathfrak{} i)\right)$
shows $x \in\left\{\left(\sum i \in\{1 . . k+1\} .1 /\left(\right.\right.\right.$ 2$\left.\left.^{\wedge} i\right)\right) . .\left(\sum i \in\{1 . . k+2\} .1 /\left(\right.\right.$ 2$\left.\left.\left.^{`} i\right)\right)\right\}$ $p^{\prime} x^{\prime}=p x$

proof -

let ?f $=\lambda(k:$:nat $)(x::$ real $) .\left(x-\left(\sum i \in\{1 . . k\} .1 /\left(\right.\right.\right.$ 2$\left.\left.\left.^{\wedge} i\right)\right)\right) *\left(\mathcal{D}^{\wedge}(k+1)\right)$
have $x \geq\left(\sum i \in\{1 . . k+1\}\right.$. $\left.1 /\left(\mathcal{D}^{\wedge} i\right)\right)$
proof-
have $l \geq 0$ using $\operatorname{assms}(3,6)$ by auto
then show ?thesis using assms(7) by linarith
qed
moreover have $x \leq\left(\sum i \in\{1 . . k+2\} .1 /(2 \widehat{2})\right)$
proof-
have $x^{\prime} \leq\left(\sum i \in\{1 . . k+1\}\right.$. $\left.1 /\left(\mathcal{2}^{-} i\right)\right)$ using assms(3) by presburger
then have $l \leq\left(\sum i \in\{1 . . k+1\} .1 /\left(\mathfrak{D}^{\wedge} i\right)\right)-\left(\sum i \in\{1 . . k\} .1 /\left(\mathcal{D}^{\wedge} i\right)\right)$ using $\operatorname{assms}(6)$ by argo
also have $\ldots=\left(1 / \mathscr{Z}^{\wedge}(k+1)\right)+\left(\sum i \in\{1 . . k\} .1 /(2 \wedge i)\right)-\left(\sum i \in\{1 . . k\}\right.$. $1 /\left(2^{\wedge} i\right)$)
using sum-insert[of $k+1\{1 . . k\} \lambda i .1 /\left(\right.$ 2 $\left.\left.^{\wedge} i\right)\right]$
by (smt (verit) Suc-eq-plus1 Suc-n-not-le-n add.commute atLeastAtMost-
Suc-conv atLeastAtMost-iff finite-atLeastAtMost le-add2 one-add-one)
also have $\ldots=\left(1 / \mathscr{D}^{\wedge}(k+1)\right)$ by argo
finally have $l \leq(1 / 2 \wedge(k+1))$.
then have $x \leq\left(1 / \mathcal{2}^{\wedge}(k+1)\right) / 2+\left(\sum i \in\{1 \ldots k+1\} .1 /\left({ }^{2} \mathfrak{i}\right)\right)$ using $\operatorname{assms}(7)$
by simp
also have $\ldots=1 / \mathcal{D}^{\wedge}(k+2)+\left(\sum i \in\{1 . . k+1\} .1 /\left(\mathcal{D}^{2} i\right)\right)$ by simp
also have $\ldots=\left(\sum i \in\{1 . . k+2\} .1 /(2 ` i)\right)$
using sum-insert[of $k+2\{1 . . k+2\} \lambda i .1 /(2-i)]$ by simp
finally show ?thesis .
qed
ultimately show $x: x \in\left\{\left(\sum i \in\{1 . . k+1\} .1 /\left(\mathcal{Q}^{`} i\right)\right) . .\left(\sum i \in\{1 . . k+2\} .1 /\left(\mathcal{D}^{\wedge} i\right)\right)\right\}$
by presburger
have $1: n \geq 4$ using polygon-vertices-length-at-least-4 assms using polygon-of-def by blast
then have 2: length vts = length ?vts'
using assms rotate-polygon-vertices-same-length by auto
then have 3: length ? vts' $=n$ using assms by auto
have $p^{\prime} x^{\prime}=\left(\left(\right.\right.$ linepath $\left.\left.\left(? v t s^{\prime}!k\right)\left(? v t s^{\prime}!(k+1)\right)\left(? f k x^{\prime}\right)\right)\right)$
using polygon-linepath-images2[of $n k$?vts' p^{\prime} ?f $\left.x\right] \operatorname{assms}(2,3,5) 13$ by fastforce
moreover have $p x=(($ linepath $(v t s!(k+1))(v t s!(k+2))(? f(k+1) x)))$
using polygon-linepath-images2[of $n k+1$ vts p ?f $x] \operatorname{assms}(2,3,5) 123 x$
by (smt (verit, ccfv-threshold) Nat.diff-add-assoc add.commute add-diff-cancel-left add-le-imp-le-left add-left-mono assms(1) nat-add-1-add-1 one-plus-numeral poly-gon-of-def semiring-norm(2) semiring-norm(4) trans-le-add1)
moreover have ?vts $!k=v t s!(k+1)$
using rotated-polygon-vertices-helper2
by (smt (verit, best) 1 Nat.le-diff-conv2 Suc-pred' add-leD1 assms(1) assms(4)
$\operatorname{assms}(5)$ diff-diff-cancel diff-less have-wraparound-vertex hd-conv-nth leD length-greater-0-conv less-Suc-eq nat-less-le numeral-Bit0 numeral-eq-one-iff polygon-of-def semiring-norm(83) snoc-eq-iff-butlast zero-less-numeral)
moreover have ?vts' $!(k+1)=v t s!(k+2)$
using rotated-polygon-vertices-helper2[of vts $k+1$]
by (metis (no-types, lifting) assms $(1,4,5) 1$ One-nat-def Suc-diff-Suc add-Suc-right diff-zero have-wraparound-vertex hd-conv-nth le-add-diff-inverse2 less-add-Suc2 nat-less-le not-less-eq-eq numeral-Bit0 one-add-one plus-1-eq-Suc polygon-of-def snoc-eq-iff-butlast)
moreover have ?f $k x^{\prime}=$?f $(k+1) x$ using $\operatorname{assms}(6) \operatorname{assms}(7)$ by force
ultimately show $p^{\prime} x^{\prime}=p x$ by presburger
qed
lemma polygon-rotation-t-translation1-strict:
assumes polygon-of p vts
assumes $p^{\prime}=$ make-polygonal-path (rotate-polygon-vertices vts 1)
(is $p^{\prime}=$ make-polygonal-path ?vts')
assumes $x^{\prime} \in\left\{\left(\sum i \in\{1 . . k\} .1 /\left(\mathfrak{Z}^{\wedge} i\right)\right) . .<\left(\sum i \in\{1 . . k+1\} .1 /\left(\mathcal{Z}^{\wedge} i\right)\right)\right\}$
assumes $n=$ length vts
assumes $0 \leq k \wedge k \leq n-4$
assumes $l=x^{\prime}-\left(\sum i \in\{1 . . k\} .1 /(2 ` i)\right)$
assumes $x=l / 2+\left(\sum i \in\{1 . .(k+1)\} .1 /\left(\mathcal{R}^{-} i\right)\right)$
shows $x \in\left\{\left(\sum i \in\{1 . . k+1\} .1 /(2 \mathcal{i} i)\right) . .<\left(\sum i \in\{1 . . k+2\} .1 /(2 \widehat{ })\right)\right\}$

$$
p^{\prime} x^{\prime}=p x
$$

proof -
let ?f $=\lambda(k::$ nat $)(x::$ real $) .\left(x-\left(\sum i \in\{1 . . k\} .1 /(2 へ i)\right)\right) *(2 \wedge(k+1))$
have $x \geq\left(\sum i \in\{1 . . k+1\}\right.$. $\left.1 /(2 \widehat{2})\right)$
proof-
have $l \geq 0$ using assms $(3,6)$ by auto
then show ?thesis using assms(7) by linarith
qed
moreover have $x<\left(\sum i \in\{1 . . k+2\} .1 /(2 \widehat{2})\right)$
proof-
have $x^{\prime}<\left(\sum i \in\{1 . . k+1\}\right.$. $\left.1 /\left(\mathcal{2}^{-} i\right)\right)$ using assms(3) by auto
then have $l<\left(\sum i \in\{1 . . k+1\} .1 /\left(\mathbb{2}^{\wedge} i\right)\right)-\left(\sum i \in\{1 . . k\} .1 /\left(\mathcal{D}^{-} i\right)\right)$ using $\operatorname{assms}(6)$ by argo
also have $\ldots=\left(1 / \mathscr{D}^{\wedge}(k+1)\right)+\left(\sum i \in\{1 . . k\} .1 /\left(\mathcal{D}^{\wedge} i\right)\right)-\left(\sum i \in\{1 . . k\}\right.$. 1/(2へi))
using sum-insert[of $\left.k+1\{1 . . k\} \lambda i .1 /\left(2^{2} i\right)\right]$
by (smt (verit) Suc-eq-plus1 Suc-n-not-le-n add.commute atLeastAtMost-
Suc-conv atLeastAtMost-iff finite-atLeastAtMost le-add2 one-add-one)
also have $\ldots=\left(1 / \mathcal{D}^{\wedge}(k+1)\right)$ by argo
finally have $l<\left(1 / \mathcal{D}^{\wedge}(k+1)\right)$.
then have $x<\left(1 / \mathscr{D}^{\wedge}(k+1)\right) / \mathscr{2}+\left(\sum i \in\{1 . . k+1\} .1 /\left(\mathfrak{Z}^{\wedge} i\right)\right)$ using $\operatorname{assms}(7)$
by simp
also have $\ldots=1 / \mathcal{Z}^{\wedge}(k+2)+\left(\sum i \in\{1 . . k+1\} .1 /\left(\mathcal{L}^{\wedge} i\right)\right)$ by simp
also have $\ldots=\left(\sum i \in\{1 . . k+2\} .1 /(2 ` i)\right)$
using sum-insert[of $k+2\{1 . . k+2\} \lambda i .1 /(2 ` i)]$ by simp
finally show ?thesis .
qed
ultimately show $x \in\left\{\left(\sum i \in\{1 . . k+1\} .1 /\left(\mathcal{R}^{-} i\right)\right) . .<\left(\sum i \in\{1 . . k+2\} .1 /\left(\mathcal{L}^{-} i\right)\right)\right\}$ by auto
show $p^{\prime} x^{\prime}=p x$
using $\operatorname{assms}(3)$ polygon-rotation-t-translation1[OF assms(1) assms(2) - assms(4)

```
assms(5) assms(6) assms(7)]
    by (meson atLeastAtMost-iff atLeastLessThan-iff less-eq-real-def)
qed
lemma polygon-rotation-t-translation2:
    assumes polygon-of p vts
    assumes }\mp@subsup{p}{}{\prime}=\mathrm{ make-polygonal-path (rotate-polygon-vertices vts 1)
    (is }\mp@subsup{p}{}{\prime}=\mathrm{ make-polygonal-path ?vts')
    assumes }n=l=\mp@code{lenth vts
    assumes }\mp@subsup{x}{}{\prime}\in{(\sumi\in{1..(n-3)}.1/(2`i))..(\sumi\in{1..(n-2)}.1/(2`i))
    assumes x = 㐌+1/(2`(n-2))
    shows }x\in{(\sumi\in{1..n-2}.1/(2`i))..1
        p' (}\mp@subsup{x}{}{\prime}=p
proof-
    let ? }k=n-
    let ?f' = (\lambda(k::nat) x::real. (x - (\sumi\in{1..k}. 1/(2`i)))*(2`(k+1)))
    have n-geq-4: n\geq4 using polygon-vertices-length-at-least-4 assms
        using polygon-of-def by blast
    moreover then have same-len: length vts = length ?vts'
    using assms rotate-polygon-vertices-same-length[of vts] by auto
    moreover then have length ?vts' = n using assms(3) by auto
    ultimately have p'x': p' 的=((linepath (?vts'!?k) (?vts'! (?k+1)) (?f'?k
x')))
    using polygon-linepath-images2[of n ?k ?vts' p'?f'x] assms
    by (smt (verit, ccfv-threshold) One-nat-def Suc-diff-Suc diff-diff-left diff-is-0-eq'
le-add2 le-add-diff-inverse2 linorder-not-le nat-le-linear numeral-3-eq-3 numeral-Bit0
numeral-le-iff numeral-le-one-iff numerals(1) one-plus-numeral plus-1-eq-Suc trans-le-add2)
    let ?f = (\lambdax::real. (x - (\sumi f {1..n-2}. 1/(2`i)))* (2`(n-2)))
    have sum-prop: \bigwedgei::nat. \f::nat }=>\mathrm{ real. ( }\sumi=1..i.fi)+f(i+1)=(\sum
= 1..i+1.fi)
    by auto
    have sum-upto: (\sumi=1..n-3.1 / (2^ i::real))+1/2^(n-2) = (\sumi
= 1..n-2.1 / (2` i::real))
    using sum-prop[of \lambdai. 1 / (2 ^ i::real) n-3] n-geq-4
    by (smt (verit, del-insts) Nat.add-diff-assoc2 add-numeral-left diff-cancel2 le-add-diff-inverse
le-numeral-extra(4) nat-1-add-1 nat-add-left-cancel-le numeral-Bit1 numerals(1) semir-
ing-norm(2) semiring-norm(8) trans-le-add1)
    have }\mp@subsup{x}{}{\prime}\geq(\sumi=1..?k.1/2`i
    using assms by presburger
    then have x-geq: }x\geq(\sumi\in{1..n-2}.1/(2`i)
    using assms(5) sum-upto
    by linarith
    have }\mp@subsup{x}{}{\prime}\leq(\sumi=1..n-2.1/2^i
    using assms(4) by auto
    then have x-leq: }x\leq
        using assms(5)
    by (smt (verit, del-insts) add.left-commute add-diff-cancel-left' diff-diff-eq le-add-diff-inverse2
le-numeral-extra(4) n-geq-4 nat-add-1-add-1 numeral-Bit0 numeral-Bit1 sum-upto
summation-helper trans-le-add2)
```

show $x \in\left\{\left(\sum i \in\{1 . . n-2\} .1 /(2 へ i)\right) . .1\right\}$
using x-geq x-leq
by auto
then have $p x: p x=($ linepath $(v t s!(n-2))(v t s!(n-1)))(? f x)$
using polygon-linepath-images3[of n vts p x ?f] n-geq- 4 assms polygon-of-def
by fastforce
moreover have ?vts $!(n-3)=v t s!(n-2)$
using n-geq-4 assms(3) rotated-polygon-vertices-helper2 assms ($1-3$)
unfolding polygon-of-def
by (smt (verit) One-nat-def Suc-diff-Suc add.commute diff-is-0-eq diff-less
dual-order.trans have-wraparound-vertex hd-conv-nth le-add-diff-inverse length-greater-0-conv
linorder-not-le nat-1-add-1 not-add-less2 numeral-3-eq-3 plus-1-eq-Suc pos2 rotated-polygon-vertices-helper (1) same-len snoc-eq-iff-butlast)
moreover have ?vts' $!(n-2)=$ vts $!(n-1)$
using n-geq-4 assms(3) assms
unfolding polygon-of-def
by (metis closed-path-def list.size(3) not-numeral-le-zero polygon-def polygon-pathfinish
polygon-pathstart rotated-polygon-vertices-helper(1) same-len)
moreover have ? $f^{\prime} ? k x^{\prime}=$?f x using $\operatorname{assms}(4-5) n$-geq-4
by (smt (verit, del-insts) One-nat-def Suc-diff-Suc Suc-eq-plus1 add-diff-cancel-right'
add-numeral-left le-antisym linorder-not-le numeral-3-eq-3 numeral-code(2) numer-
als(1) semiring-norm(2) sum-upto trans-le-add2)
ultimately show $p^{\prime} x^{\prime}=p x$ using $p x p^{\prime} x^{\prime}$
by (smt (verit, ccfv-SIG) Nat.add-diff-assoc2 assms(5) diff-cancel2 le-add-diff-inverse le-add-diff-inverse2 le-numeral-extra(4) n-geq-4 nat-1-add-1 numeral-Bit0 numeral-Bit1 trans-le-add1)
qed
lemma polygon-rotation-t-translation2-strict:
assumes polygon-of p vts
assumes $p^{\prime}=$ make-polygonal-path (rotate-polygon-vertices vts 1)
(is $p^{\prime}=$ make-polygonal-path ?vts ${ }^{\prime}$)
assumes $n=$ length vts
assumes $x^{\prime} \in\left\{\left(\sum i \in\{1 . .(n-3)\} .1 /(2 \widehat{i})\right) . .<\left(\sum i \in\{1 . .(n-2)\} .1 /(2 \widehat{ })\right)\right\}$
assumes $x=x^{\prime}+1 /\left(\mathcal{Z}^{\wedge}(n-2)\right)$
shows $x \in\left\{\left(\sum i \in\{1 . . n-2\} .1 /\left(\right.\right.\right.$ 2^i $\left.\left.\left.^{2}\right)\right) . .<1\right\}$ $p^{\prime} x^{\prime}=p x$
proof -
have n-geq-4: $n \geq 4$ using polygon-vertices-length-at-least- 4 assms
using polygon-of-def by blast
have sum-prop: $\bigwedge i::$ nat. $\bigwedge f:: n a t \Rightarrow$ real. $\left(\sum i=1 . . i . f i\right)+f(i+1)=\left(\sum i\right.$
$=1 . . i+1 . f i)$
by auto
have sum-upto: $\left(\sum i=1 . . n-3.1 /\left(\mathcal{2}^{\wedge} i::\right.\right.$ real $\left.)\right)+1 / 2^{\wedge}(n-2)=\left(\sum i\right.$
$=1 . . n-2.1 /\left(2^{\wedge} i::\right.$ real $\left.)\right)$
using sum-prop[of λi. $1 /\left(2^{\wedge} i::\right.$ real $\left.) n-3\right] n$-geq- 4
by (smt (verit, del-insts) Nat.add-diff-assoc2 add-numeral-left diff-cancel2 le-add-diff-inverse
le-numeral-extra(4) nat-1-add-1 nat-add-left-cancel-le numeral-Bit1 numerals(1) semir-

```
ing-norm(2) semiring-norm(8) trans-le-add1)
    have \(x\)-geq: \(x \geq\left(\sum i \in\{1 . . n-2\}\right.\). \(\left.1 /(2 \widehat{2})\right)\)
    using \(\operatorname{assms}(4)\) polygon-rotation-t-translation2[OF \(\operatorname{assms}\) (1) \(\operatorname{assms}\) (2) \(\operatorname{assms}\) (3)
- \(\operatorname{assms}(5)]\)
        by simp
    have \(x^{\prime}<\left(\sum i=1 . . n-2.1 / 2^{へ} i\right)\)
    using assms(4) by auto
    then have \(x\)-leq: \(x<1\)
        using assms(5)
    by (smt (verit, del-insts) add.left-commute add-diff-cancel-left' diff-diff-eq le-add-diff-inverse2
le-numeral-extra(4) n-geq-4 nat-add-1-add-1 numeral-Bit0 numeral-Bit1 sum-upto
summation-helper trans-le-add2)
    show \(x \in\left\{\left(\sum i \in\{1 . . n-2\} .1 /\left(2^{-} i\right)\right) . .<1\right\}\)
    using \(x\)-geq \(x\)-leq by auto
    show \(p^{\prime} x^{\prime}=p x\)
    using assms(4) polygon-rotation-t-translation2[OF assms(1) assms(2) assms(3)
- \(\operatorname{assms}(5)]\)
    by (meson atLeastAtMost-iff atLeastLessThan-iff less-eq-real-def)
qed
lemma polygon-rotation-t-translation3:
    assumes polygon-of \(p\) vts
    assumes \(p^{\prime}=\) make-polygonal-path (rotate-polygon-vertices vts 1)
    (is \(p^{\prime}=\) make-polygonal-path ?vts')
assumes \(x^{\prime} \in\left\{\left(\sum i \in\{1 . . n-2\} .1 /(2 \widehat{ })\right) . .1\right\}\)
assumes \(n=\) length vts
assumes \(l=x^{\prime}-\left(\sum i \in\{1 . . n-2\} .1 /(2 \uparrow i)\right)\)
assumes \(x=l *\left(2^{\wedge}(n-3)\right)\)
shows \(x \in\{0 . .1 / 2\}\)
        \(p^{\prime} x^{\prime}=p x\)
proof-
    let ?f \(=\left(\lambda x::\right.\) real. \(\left(x-\left(\sum i \in\{1 . . n-2\} .1 /(2\right.\right.\) 2 \(\left.\left.i)\right)\right) *(2\) ( \(\left.\left.n-2)\right)\right)\)
    have \(n\)-geq-4: \(n \geq 4\) using polygon-vertices-length-at-least-4 assms
        using polygon-of-def by blast
    moreover then have same-len: length vts = length ?vts'
        using assms rotate-polygon-vertices-same-length by auto
    moreover have length-vts': length ?vts' \(=n\)
        using assms(4) same-len by auto
ultimately have \(p^{\prime} x^{\prime}: p^{\prime} x^{\prime}=\left(\right.\) linepath \(\left.\left(? v t s^{\prime}!(n-2)\right)\left(? v t s^{\prime}!(n-1)\right)\right)\left(? f x^{\prime}\right)\)
        using polygon-linepath-images3[of \(n\) ?vts' \(p^{\prime} x^{\prime}\) ?f] assms
        unfolding polygon-of-def by fastforce
    have \(x\) - \(i s: x=\left(x^{\prime}-\left(\sum i=1 . . n-2.1 / 2^{\wedge} i\right)\right) * 2 \bigwedge(n-3)\)
    using assms (5-6) by auto
then have \(x-g t: x \geq 0\)
        using \(\operatorname{assms}(3)\) by \(\operatorname{simp}\)
    have sum-prop: \(k \geq 1 \Longrightarrow 1-\left(\sum i=1 . . k .1 /\left(2^{\wedge} i::\right.\right.\) real \(\left.)\right)=1 /\left(2^{\wedge} k\right)\) for \(k\)
    proof (induct \(k\) )
    case 0
```

```
    then show ?case by auto
next
    case (Suc k)
    { assume *:Suc k=1
        then have ?case by auto
    } moreover
    { assume *: Suc k>1
        then have 1- (\sumi=1..k.1/(2^i::real))=1/2^}
            using Suc by linarith
        then have?case by simp
    }
    ultimately show ?case
        by linarith
qed
have }\mp@subsup{x}{}{\prime}\leq
    using assms(3) by auto
then have }x\leq(1-(\sumi=1..n-2.1 / (2^i::real)))* 2 ^ (n-3
    using }x\mathrm{ -is
    using mult-right-mono zero-le-power by fastforce
then have }x\leq1/(2`(n-2))*2`(n-3
    using sum-prop n-geq-4
    by auto
then have }x\mathrm{ -lt: }x\leq1/
    using n-geq-4
    by (smt (verit, ccfv-SIG) One-nat-def Suc-1 Suc-diff-Suc add-diff-cancel-right'
diff-is-0-eq dual-order.trans linorder-not-le nonzero-mult-divide-mult-cancel-right2
numeral-3-eq-3 numeral-code(2) power.simps(2) power-commutes power-not-zero
times-divide-eq-left zero-neq-numeral)
    then show }x\in{0..1/2
    using x-gt x-lt by auto
    moreover have n\geq3 using n-geq-4 by auto
    ultimately have px: px=(linepath (vts!0) (vts!1)) (2*x)
        using polygon-linepath-images1[of n vts] assms unfolding polygon-of-def by
blast
    have ?vts'! (n-2) = vts! 0 ^ ?vts'! ( n-1) = vts! 1
    unfolding rotate-polygon-vertices-def
    by (metis length-vts' assms(1) polygon-of-def rotate-polygon-vertices-def ro-
tated-polygon-vertices-helper(1) rotated-polygon-vertices-helper(2))
    moreover have ?f }\mp@subsup{x}{}{\prime}=2*
    proof-
    have 2 *x=2 * (x' - (\sumi\in{1..n-2}.1/(2`i)))*(2`(n-3)) using assms
by auto
    moreover have ... = (x' - (\sumi\in{1..n-2 }. 1/(2`i))) * (2`(n-2))
    using n-geq-4 Suc-1 Suc-diff-Suc Suc-le-eq bot-nat-0.not-eq-extremum diff-Suc-1
le-antisym mult.left-commute mult.right-neutral mult-cancel-left not-less-eq-eq num-double
numeral-3-eq-3 numeral-eq-Suc numeral-times-numeral power.simps(2) pred-numeral-simps(2)
zero-less-diff zero-neq-numeral
    proof -
```

```
    have \(f 1\) : \(\forall r\) ra. \((r a::\) real \() * r=r * r a\)
        by \(\operatorname{simp}\)
        have f2: \(\forall r n\) ra. \((r::\) real \() *(r \wedge n * r a)=r \wedge\) Suc \(n * r a\)
        by \(\operatorname{simp}\)
    have f3: pred-numeral (num.Bit1 num.One) \(=\) Suc (Suc 0)
        by \(\operatorname{simp}\)
    have \(f_{4}\) : Suc \(0=1\)
        by linarith
    have Suc \(1<n\)
        using \(n\)-geq-4 by linarith
    then have \(2 *\left(\left(x^{\prime}-\left(\sum n=1 . . n-S u c 1.1 / 2^{\wedge} n\right)\right) * 2^{\wedge}(n-3)\right)=\)
\(\left(x^{\prime}-\left(\sum n=1 . . n-S u c 1.1 / 2^{\wedge} n\right)\right) * 2^{\wedge}(n-S u c 1)\)
            using \(f_{4}\) f3 f2 f1 Suc-diff-Suc numeral-eq-Suc by presburger
    then show ?thesis
                by (metis (no-types) Suc-1 mult.assoc)
    qed
    moreover have ... = ?f \(x^{\prime}\) by auto
    ultimately show ?thesis by presburger
qed
    ultimately show \(p^{\prime} x^{\prime}=p x\) using \(p^{\prime} x^{\prime} p x\) by auto
qed
lemma polygon-rotation-t-translation3-strict:
    assumes polygon-of \(p\) vts
    assumes \(p^{\prime}=\) make-polygonal-path (rotate-polygon-vertices vts 1 )
    (is \(p^{\prime}=\) make-polygonal-path ?vts')
    assumes \(x^{\prime} \in\left\{\left(\sum i \in\{1 . . n-2\} .1 /(2 へ i)\right) . .<1\right\}\)
    assumes \(n=\) length vts
    assumes \(l=x^{\prime}-\left(\sum i \in\{1 . . n-2\} .1 /\left(\mathcal{L}^{-} i\right)\right)\)
    assumes \(x=l *\left(2^{\wedge}(n-3)\right)\)
    shows \(x \in\{0 . .<1 / 2\}\)
        \(p^{\prime} x^{\prime}=p x\)
proof -
    have \(n\)-geq-4: \(n \geq 4\) using polygon-vertices-length-at-least- 4 assms
    using polygon-of-def by blast
have \(x\)-is: \(x=\left(x^{\prime}-\left(\sum i=1 . . n-2.1 / 2^{\wedge} i\right)\right) * 2^{\wedge}(n-3)\)
    using assms (5-6) by auto
    then have \(x-g t: x \geq 0\)
    using assms(3) by simp
    have sum-prop: \(k \geq 1 \Longrightarrow 1-\left(\sum i=1\right.\)..k. \(1 /\left(2^{\wedge} i::\right.\) real \(\left.)\right)=1 /\left(\mathcal{Z}^{\wedge} k\right)\) for \(k\)
    proof (induct \(k\) )
        case 0
        then show? case by auto
    next
        case (Suc k)
    \{ assume \(*\) :Suc \(k=1\)
        then have? case by auto
    \} moreover
    \{ assume \(*\) : Suc \(k>1\)
```

```
        then have 1- (\sumi=1..k.1/ (2^ i::real ) ) = 1/ 2^ k
            using Suc by linarith
    then have ?case by simp
    }
    ultimately show ?case
        by linarith
qed
have }\mp@subsup{x}{}{\prime}<
    using assms(3) by auto
then have }x<(1-(\sumi=1..n-2.1 / (2` i::real)))* 2^ (n-3
    using }x\mathrm{ -is
    using mult-right-mono zero-le-power by fastforce
then have }x<1/(2`(n-2))*2`(n-3
    using sum-prop n-geq-4
    by auto
then have }x\mathrm{ -lt: }x<1/
    using n-geq-4
    by (smt (verit, ccfv-SIG) One-nat-def Suc-1 Suc-diff-Suc add-diff-cancel-right'
diff-is-0-eq dual-order.trans linorder-not-le nonzero-mult-divide-mult-cancel-right2
numeral-3-eq-3 numeral-code(2) power.simps(2) power-commutes power-not-zero
times-divide-eq-left zero-neq-numeral)
    show }x\in{0..<1/2
    using x-lt x-gt by auto
    show }\mp@subsup{p}{}{\prime}\mp@subsup{x}{}{\prime}=p
    using assms(3) polygon-rotation-t-translation3[OF assms(1) assms(2) - assms(4)
assms(5) assms(6)]
    by simp
qed
```



```
= 1..a. (fi))>(\sumi=1..b. (fi)) for a b :: nat
    proof (induct a arbitrary: b)
    case 0
    then show ?case by auto
    next
    case (Suc a)
    {assume *: b=a
            then have sumf{1..(Suc a)}=\operatorname{sum f{1.. b} +f(Suc a)}
                by force
            then have ?case
                using Suc(2)[of Suc a] * by linarith
    } moreover {assume *: b<a
            then have ?case using Suc
            by (smt (verit, ccfv-threshold) Suc-eq-plus1 dual-order.trans le-add2 sum.nat-ivl-Suc')
    }
    ultimately show ?case
        using Suc.prems(2) less-antisym by blast
    qed
```

```
lemma rotation-intervals-disjoint:
    assumes \(k 1 \neq k\) 2
    shows \(\left\{\sum i=1\right.\)..k1. \(1 /\left(2^{\wedge} i::\right.\) real \(\left.) . .<\sum i=1 . . k 1+1.1 / 2^{\wedge} i\right\} \cap\left\{\sum i=\right.\)
1..k2. \(1 /\left(2^{\wedge} i::\right.\) real \(\left.) . .<\sum i=1 . . k 2+1.1 / 2^{\wedge} i\right\}=\{ \}\)
proof -
    have lambda-gt: ( \(\bigwedge i .0<1 /\left(2^{\wedge} i::\right.\) real \(\left.)\right)\)
        by \(\operatorname{simp}\)
    have \(h 1\) : ?thesis if \(*: k 1<k 2\)
    proof -
        have eo: \(k 1+1 \leq k 2\)
            using * by auto
        have \(k 1+1=k \mathcal{L} \Longrightarrow\left(\sum i=1 . . k 1+1.1 / 2^{\wedge} i\right) \leq\left(\sum i=1 . . k 2.1 / 2^{\wedge}\right.\)
\(i:\) :real))
            by auto
            have \(\left(\sum i=1 . . k 1+1.1 / 2^{\wedge} i\right) \leq\left(\sum i=1 . . k 2.1 /\left(\right.\right.\) 2 \(^{\wedge} i::\) real \(\left.)\right)\) if \(* *\) :
\(k 1+1<k 2\)
            using f-gteq-0-sum-gt[OF lambda-gt **]
            using less-eq-real-def by presburger
    then have \(\left(\sum i=1 . . k 1+1.1 / 2^{\wedge} i\right) \leq\left(\sum i=1 . . k 2.1 /\left(2^{\wedge} i::\right.\right.\) real \(\left.)\right)\)
                using * eo by fastforce
            then show ?thesis by auto
    qed
    have \(h 2\) : ?thesis if \(*: k 2<k 1\)
            proof -
    have eo: \(k 2+1 \leq k 1\)
            using \(*\) by auto
            have \(k 2+1=k 1 \Longrightarrow\left(\sum i=1 . . k 2+1.1 / 2^{\wedge} i\right) \leq\left(\sum i=1 . . k 1.1 / 2^{\wedge}\right.\)
\(i:\) :real))
            by auto
            have \(\left(\sum i=1 . . k 2+1.1 / 2^{\wedge} i\right) \leq\left(\sum i=1 . . k 1.1 /\left(\mathcal{R}^{\wedge} i::\right.\right.\) real \(\left.)\right)\) if \(* *\) :
\(k 2+1<k 1\)
            using \(f\)-gteq-0-sum-gt[OF lambda-gt **]
            using less-eq-real-def by presburger
    then have \(\left(\sum i=1 . . k 2+1.1 / 2^{\wedge} i\right) \leq\left(\sum i=1 . . k 1.1 /\left(2^{\wedge} i::\right.\right.\) real \(\left.)\right)\)
            using \(*\) eo by fastforce
            then show ?thesis by auto
    qed
    show ?thesis
    using h1 h2 assms by linarith
qed
lemma bounding-interval-helper1:
    shows \(\left(\sum i=1\right.\)..k. \(1 /\left(2^{\wedge} i::\right.\) real \(\left.)\right)=(2 \wedge k-1) /(2 \wedge k)\)
proof (induct \(k\) )
    case 0
    then show ?case by simp
next
    case (Suc \(k\) )
    have \(\left(\sum i=1 . .(\right.\) Suc \(k) .1 /\left(2^{\wedge} i::\right.\) real \(\left.)\right)=\left(\sum i=1 . . k .1 /\left(\right.\right.\) 2 \(^{\wedge} i::\) real \(\left.)\right)+\)
```

by force
also have $\ldots=\left(\mathscr{D}^{\wedge} k-1\right) /\left(\mathscr{2}^{\wedge} k\right)+1 / \mathscr{Z}^{\wedge}($ Suc $k)$ using Suc.hyps by presburger
also have $\ldots=\left(\mathcal{Z}^{\wedge} k-1\right) /\left(\right.$ 2^ $\left.^{\wedge}\right)+1 / \mathscr{D}^{\wedge}(k+1)$ by simp
also have $\ldots=\left(2^{\wedge}(k+1)-1\right) /\left(2^{\wedge}(k+1)\right)$
by (smt (verit, del-insts) Suc add.commute add-diff-cancel-right' add-divide-distrib calculation field-sum-of-halves le-add2 plus-1-eq-Suc power-divide power-one sum-mation-helper)
finally show? case by force
qed
lemma bounding-interval-helper2:
fixes x :: real
assumes $x \in\{0 . .<1\}$
shows $\exists k . x<\left(\sum i=1 . . k .1 /\left(2^{\wedge} i:: r e a l\right)\right)$
proof-
let ?f $=\lambda k:$:nat. $\left(\right.$ 2^ $\left.^{2}-1\right) /\left(\right.$ 2^k $\left.^{2}\right)$
have lim: $\forall \varepsilon:$:real $>0 . \exists k .(1-(? f k))<\varepsilon$
proof clarify
fix ε ::real
assume $\varepsilon>0$
then obtain m where $m>0 \wedge 1 / m<\varepsilon$
by (metis Groups.mult-ac(2) divide-less-eq linordered-field-no-ub order-less-trans zero-less-divide-1-iff)
moreover obtain k where $2 \wedge k>m$ using real-arch-pow by fastforce
ultimately have $1 /(2 \wedge k)<\varepsilon$ by (smt (verit) frac-less2)
moreover have $(1::$ real $)-\left(\left(2^{\wedge} k-1\right) /\left(2^{\wedge} k\right)\right)=\left(1 /\left(2^{\wedge} k\right)\right)$ by $(\operatorname{simp}$ add:
diff-divide-distrib)
ultimately show $\exists k .1-\left(2^{\wedge} k-1\right) /\left(2^{\wedge} k\right)<\varepsilon$ by $(s m t(v e r i t))$
qed
have $\exists k$. ?f $k>x$
proof-
let $? \varepsilon=1-x$
obtain k where $1-($?f $k)<$? ε by (metis assms lim atLeastLessThan-iff diff-gt-0-iff-gt)
thus ?thesis by auto
qed
thus ?thesis using bounding-interval-helper1 by presburger
qed
lemma bounding-interval-for-reals-btw01:
fixes x ::real
assumes $x \in\{0 . .<1\}$
shows $\exists k . x \in\left\{\left(\sum i \in\{1 . . k\} .1 /\left(\mathscr{2}^{\wedge} i::\right.\right.\right.$ real $\left.\left.)\right) . .<\left(\sum i \in\{1 . .(k+1)\} .1 /\left(\mathcal{D}^{2} i\right)\right)\right\}$
proof -
let $? S=\lambda k .\left(\sum i=1 . . k .1 /\left(2^{\wedge} i::\right.\right.$ real $\left.)\right)$
let $? A=\left\{k::\right.$ nat. $x<\left(\sum i=1 . . k .1 /\left(2^{\wedge} i::\right.\right.$ real $\left.\left.)\right)\right\}$
let $? m=$ LEAST $k . k \in$? A
have $\exists k . x<\left(\sum i=1 . . k\right.$. $1 /\left({ }^{\wedge}\right.$ ^ $i::$ real $)$) using assms bounding-interval-helper2
by blast
then have ? $m \in ?$ A by (metis (mono-tags, lifting) LeastI2-wellorder mem-Collect-eq)
moreover then have ? $m-1 \notin ? A$
by (smt (verit, ccfv-SIG) One-nat-def Suc-n-not-le-n Suc-pred' assms atLeast-
LessThan-iff atLeastatMost-empty' bot-nat-0 .not-eq-extremum linorder-not-less mem-Collect-eq
not-less-Least sum.empty)
ultimately have $x<\left(\sum i=1 .\right.$. ? m. $1 /\left(\right.$ 2 $^{\wedge} i::$ real $\left.)\right) \wedge x \geq\left(\sum i=1 \ldots ? m-1\right.$.
$1 /\left(\right.$ $^{\wedge} i:$ real $)$)
by simp
thus ?thesis
by (smt (verit, best) add.commute assms atLeastLessThan-iff le-add-diff-inverse
linorder-not-less sum.head-if)
qed
lemma all-rotation-intervals-between-Oand1:
shows $\left\{\left(\sum i \in\{1 . . k\} .1 /\left(\right.\right.\right.$ 2^i $^{2}:$ real $\left.\left.)\right) . .\left(\sum i \in\{1 . .(k+1)\} .1 /\left(\mathcal{D}^{\text {® }} i\right)\right)\right\} \subseteq\{0 . .<1\}$
proof -
have $g t: \bigwedge k .\left(\sum i \in\{1 . . k\} .1 /\left(\mathcal{Z}^{`} i::\right.\right.$ real $\left.)\right) \geq 0$
by (simp add: sum-nonneg)
have $l t: \wedge k .\left(\sum i \in\{1 . . k\} .1 /(2 ` i::\right.$ real $\left.)\right)<1$
by (smt (verit, ccfv-SIG) diff-Suc-1 f-gteq-0-sum-gt less-Suc-eq-le linorder-not-le summation-helper zero-less-divide-1-iff zero-less-power)
show ?thesis
using gt $l t$
by (meson atLeastAtMost-subseteq-atLeastLessThan-iff)
qed
lemma all-rotation-intervals-between-0and1-strict:
shows $\left\{\left(\sum i \in\{1 . . k\} .1 /\left(\mathcal{R}^{\imath} i::\right.\right.\right.$ real $\left.\left.)\right) . .<\left(\sum i \in\{1 . .(k+1)\} .1 /\left(\mathcal{D}^{\wedge} i\right)\right)\right\} \subseteq\{0 . .<1\}$
using all-rotation-intervals-between-0and1
by (smt (verit, ccfv-SIG) atLeastAtMost-subseteq-atLeastLessThan-iff ivl-subset nle-le order-trans)
lemma one-polygon-rotation-is-loop-free:
assumes polygon-of p vts
assumes $p^{\prime}=$ make-polygonal-path (rotate-polygon-vertices vts 1)
(is $p^{\prime}=$ make-polygonal-path ?vts')
shows loop-free p^{\prime}
proof (rule ccontr)
assume \neg loop-free p^{\prime}
moreover have $p^{\prime} 0=p^{\prime} 1$
using assms
by (smt (verit, ccfv-SIG) assms(2) butlast-snoc length-butlast linepath-0' linepath-1' make-polygonal-path.simps(1) not-gr-zero nth-append-length nth-butlast path-defs(2) path-defs(3) polygon-pathfinish polygon-pathstart rotate-polygon-vertices-def)
ultimately obtain $x^{\prime} y^{\prime}$ where $x^{\prime} y^{\prime}: x^{\prime}<y^{\prime} \wedge\left\{x^{\prime}, y^{\prime}\right\} \subseteq\{0 . .<1\} \wedge p^{\prime} x^{\prime}=p^{\prime}$ y^{\prime}
unfolding loop-free-def
by (smt (verit, del-insts) atLeastAtMost-iff atLeastLessThan-iff bot-least in-
sert－subset linorder－not－le order．refl order－antisym zero－less－one）
let $? n=$ length $v t s$
have n－geq－4：？$n \geq 4$ using polygon－vertices－length－at－least－4 assms using polygon－of－def by blast
obtain $x k$ where $x^{\prime}-i n: x^{\prime} \in\left\{\left(\sum i \in\{1 . . x k\} .1 /\left(\mathfrak{D}^{\wedge} i\right)\right) . .<\left(\sum i \in\{1 . .(x k+1)\}\right.\right.$ ． $\left.\left.1 /\left(\mathcal{L}^{-} i\right)\right)\right\}$ using $x^{\prime} y^{\prime}$
using bounding－interval－for－reals－btw01 $x^{\prime} y^{\prime}$
by（metis insert－subset ）
then have $x k$－gteq：$x k \geq 0$
by blast
obtain $y k$ where $y^{\prime}-i n: y^{\prime} \in\left\{\left(\sum i \in\{1 . . y k\} .1 /\left(\mathscr{D}^{\wedge} i\right)\right) . .<\left(\sum i \in\{1 . .(y k+1)\}\right.\right.$ ． $1 /(2 ` i))\}$
using bounding－interval－for－reals－btw01 $x^{\prime} y^{\prime}$
by（metis insert－subset）
then have $y k$－gteq：$y k \geq 0$
by blast
have all－pows－of－2－pos：（ $\bigwedge i .0<1 /\left(\right.$ 2 $^{\text {ヘ }} i:$ ：real $\left.)\right)$
by simp

have $x k$－lt－nminus3：$x k \leq ? n-4 \Longrightarrow$ ？$x 1 \in\left\{\left(\sum i \in\{1 . . x k+1\} .1 /\left({ }^{2} i\right)\right) . .<\left(\sum i\right.\right.$ $\left.\left.\in\{1 . . x k+2\} .1 /\left(\mathcal{D}^{\wedge} i\right)\right)\right\} \wedge p ? x 1=p^{\prime} x^{\prime}$
using polygon－rotation－t－translation1－strict $\left[\right.$ OF $\operatorname{assms(1)} \operatorname{assms}$（2）$x^{\prime}$－in］xk－gteq by metis
let ？$y 1=\left(y^{\prime}-\left(\sum i \in\{1 . . y k\} .1 /\left(\mathfrak{D}^{2} i\right)\right)\right) / \mathscr{D}+\left(\sum i \in\{1 . .(y k+1)\}\right.$ ． $\left.1 /\left(\mathscr{D}^{2} i\right)\right)$
have $y k$－lt－nminus3：$y k \leq ? n-4 \Longrightarrow$ ？y1 $\in\left\{\left(\sum i \in\{1 . . y k+1\} .1 /(2 \widehat{2})\right) . .<\left(\sum i\right.\right.$ $\left.\left.\in\{1 . . y k+2\} .1 /\left(\mathcal{D}^{\wedge} i\right)\right)\right\} \wedge p$ ？$y 1=p^{\prime} y^{\prime}$
using polygon－rotation－t－translation1－strict［OF assms（1）assms（2）y^{\prime}－in］yk－gteq
by metis
let ？$x 2=x^{\prime}+1 /\left(\right.$ 2 $\left.^{\wedge}(? n-2)\right)$
have $x k=$ ？$n-3 \Longrightarrow x^{\prime} \in\left\{\sum i=1\right.$ ．．length vts $-3.1 /\left(2^{\wedge} i::\right.$ real $) . .<\sum i=$ 1．．length vts－2．1／2ヘi\}
using x^{\prime}－in
by（smt（verit，best）Nat．add－diff－assoc2 $\langle 4 \leq$ length vts〉diff－cancel2 le－add－diff－inverse nat－add－left－cancel－le nat－le－linear numeral－Bit0 numeral－Bit1 numerals（1）trans－le－add1）
then have $x k$－eq－nminus3：$x k=? n-3 \Longrightarrow p ? x \mathcal{Z}=p^{\prime} x^{\prime} \wedge$ ？$x \mathcal{Z} \in\left\{\left(\sum i \in\right.\right.$ $\{1 . . ? n-2\} .1 /(2-i)) . .<1\}$
using polygon－rotation－t－translation2－strict［OF assms（1）assms（2），of ？n x^{\prime} ？．x2］x^{\prime}－in $x k$－gteq
by presburger
let ？y $2=y^{\prime}+1 /(2 \wedge(? n-2))$
have $y k=$ ？$n-3 \Longrightarrow y^{\prime} \in\left\{\sum i=1\right.$ ．．length vts $-3.1 /\left(2^{\wedge} i::\right.$ real $) . .<\sum i=$ 1．．length vts－2．1／2 $\left.{ }^{\wedge} i\right\}$
using $y^{\prime}-i n$
by (smt (verit, best) Nat.add-diff-assoc2 $\langle 4 \leq$ length vts〉diff-cancel2 le-add-diff-inverse nat-add-left-cancel-le nat-le-linear numeral-Bit0 numeral-Bit1 numerals(1) trans-le-add1)
then have $y k$-eq-nminus3: $y k=? n-3 \Longrightarrow p ? y 2=p^{\prime} y^{\prime} \wedge ? y 2 \in\left\{\left(\sum i \in\right.\right.$ $\{1 . . ? n-2\} .1 /(2$ - $i)) . .<1\}$
using polygon-rotation-t-translation2-strict[OF $\operatorname{assms(1)} \operatorname{assms(2),~of~?n~} y^{\prime}$?y2] x^{\prime}-in $x k$-gteq
by presburger
let ? $x 3=\left(x^{\prime}-\left(\sum i \in\{1 . . ? n-2\} .1 /(2 \uparrow i)\right)\right) *(2 \wedge(? n-3))$
have x^{\prime}-leq: $x^{\prime}<1$
using $x^{\prime} y^{\prime}$ by simp
have x^{\prime}-geq: $x k \geq$? $n-2 \Longrightarrow\left(\sum i=1\right.$..xk. $1 /\left(\right.$ 2 $^{\wedge} i::$ real $\left.)\right) \geq\left(\sum i=1\right.$..length vts - 2. $1 /\left(2^{\wedge} i:\right.$ real $)$)
using x^{\prime}-in f-gteq- 0 -sum-gt[of λi. $1 /\left(2^{\wedge} i:\right.$:real $\left.)\right]$
by (metis le-antisym less-eq-real-def linorder-not-le zero-less-divide-1-iff zero-less-numeral zero-less-power)
have $x k \geq$? $n-2 \Longrightarrow x^{\prime} \in\left\{\sum i=1\right.$..length vts $-2.1 /\left(2^{\wedge} i::\right.$ real $\left.) . .<1\right\}$
using x^{\prime}-leq x^{\prime}-geq x^{\prime}-in
by fastforce
then have $x k$-gt-nminus3: $x k \geq ? n-2 \Longrightarrow p ? x 3=p^{\prime} x^{\prime} \wedge ? x 3 \in\{0 . .<1 / 2\}$
using polygon-rotation-t-translation3-strict[OF $\operatorname{assms}(1) \operatorname{assms}(2)$, of $\left.x^{\prime} ? n\right]$
$x k$-gteq
by presburger
let ? $y 3=\left(y^{\prime}-\left(\sum i \in\{1 . . ? n-2\} .1 /(2 \widehat{2})\right)\right) *(2 \uparrow(? n-3))$
have y^{\prime}-leq: $y^{\prime}<1$
using $x^{\prime} y^{\prime}$ by simp
have y^{\prime}-geq: yk \geq ? $n-2 \Longrightarrow\left(\sum i=1 . . y k .1 /\left(\right.\right.$ 2 $^{\wedge} i::$ real $\left.)\right) \geq\left(\sum i=1\right.$..length vts - 2.1/(2ヘi::real) $)$
using y^{\prime}-in f-gteq-0-sum-gt[of λi. $1 /\left(\mathcal{2 ~}^{\wedge} i:\right.$:real $)$]
by (metis le-antisym less-eq-real-def linorder-not-le zero-less-divide-1-iff zero-less-numeral zero-less-power)
have $y k \geq$? $n-2 \Longrightarrow y^{\prime} \in\left\{\sum i=1\right.$..length vts $-2.1 /\left(2^{\wedge} i::\right.$ real $\left.) . .<1\right\}$
using y^{\prime}-leq y^{\prime}-geq y^{\prime}-in
by fastforce
then have $y k$-gt-nminus3: $y k \geq ? n-2 \Longrightarrow p ? y 3=p^{\prime} y^{\prime} \wedge ? y 3 \in\{0 . .<1 / 2\}$ using polygon-rotation-t-translation3-strict[OF $\operatorname{assms}(1) \operatorname{assms}(2)$, of $\left.y^{\prime} ? n\right]$ $y k$-gteq
by presburger
have interval-helper: $a 1 \geq b 2 \wedge x \in\{a 1 . .<a 2\} \wedge y \in\{b 1 . .<b 2\} \Longrightarrow y<x$ for a1 a2 b1 b2 x y: real
by simp
\{ assume $x k$-lt: $x k<? n-3$
then have $p-x^{\prime}: p ? x 1=p^{\prime} x^{\prime}$
using $x k$-lt-nminus3 by auto
have $x 1$-in: ? $x 1 \in\left\{\left(\sum i \in\{1 . .(x k+1)\} .1 /(2 \widehat{2})\right) . .<\left(\sum i \in\{1 . .(x k+2)\}\right.\right.$. $1 /(2 ` i))\}$
using $x k$-lt $x k$-lt-nminus3
by auto
then have $x 1$-in-01: ? $x 1 \in\{0 . .<1\}$
using all-rotation-intervals-between-Oand1-strict[of $x k+1]$
by fastforce
\{ assume $y k-l t: y k<? n-3$
then have $p-y^{\prime}: p ? y 1=p^{\prime} y^{\prime}$
using yk-lt-nminus3 by auto
have y1-in: ? $y 1 \in\left\{\left(\sum i \in\{1 . .(y k+1)\} .1 /\left(\mathfrak{2}^{-} i\right)\right) . .<\left(\sum i \in\{1 . .(y k+2)\}\right.\right.$. $\left.\left.1 /\left(2^{\wedge} i\right)\right)\right\}$
using yk-lt yk-lt-nminus3 by auto
then have y1-in-01: ? $y 1 \in\{0 . .<1\}$
using all-rotation-intervals-between-Oand1-strict[of $y k+1]$
by fastforce
have $\left\{\sum i=1 . . x k+1.1 / 2^{\wedge} i . .<\sum i=1 . . x k+2.1 /\left(\mathcal{2}^{\wedge} i::\right.\right.$ real $\left.)\right\} \cap\left\{\sum i\right.$ $=1 . . y k+1.1 /\left(\right.$ 2 $^{\wedge} i::$ real $\left.) . .<\sum i=1 . . y k+2.1 / 2^{\wedge} i\right\}=\{ \}$ if $x k-n e q: x k \neq$ yk
using rotation-intervals-disjoint[of $x k+1 y k+1] x k$-neq
by fastforce
then have eq-then-eq: ? $x 1=? y 1 \Longrightarrow x k=y k$
using $x 1$-in $y 1$-in
by (smt (verit) Int-iff empty-iff)
have $x k=y k \Longrightarrow$? $x 1 \neq$? $y 1$
using $x^{\prime} y^{\prime}$ x1-in y1-in by simp
then have ? $x 1 \neq$? $y 1$
using eq-then-eq by blast
moreover have $\{? x 1$, ? $y 1\} \subseteq\{0 . .<1\}$
using x1-in-01 y1-in-01 by fast
ultimately have $? x 1 \neq ? y 1 \wedge\{? x 1, ? y 1\} \subseteq\{0 . .<1\} \wedge p ? x 1=p ? y 1$
using $p-x^{\prime} p-y^{\prime} x^{\prime} y^{\prime}$ by presburger
then have $\exists x y . x \neq y \wedge\{x, y\} \subseteq\{0 . .<1\} \wedge p x=p y$
by auto
then have False
using assms(1) unfolding polygon-of-def polygon-def simple-path-def loop-free-def by fastforce
\} moreover \{ assume $y k=? n-3$
then have y2: p ? $y 2=p^{\prime} y^{\prime} \wedge$? $y 2 \in\left\{\left(\sum i \in\{1 . . ? n-2\} .1 /(2 \widehat{2})\right) . .<1\right\}$
using $y k$-eq-nminus3
by auto
then have $y 2$-in-01: $? y 2 \in\{0 . .<1\}$
using all-rotation-intervals-between-Oand1-strict[of ? $n-2$]
by fastforce
have xkplus-eq: $x k+2=? n-2 \Longrightarrow\left(\sum i \in\{1 . .(x k+2)\} .1 /(2 \widehat{2}::\right.$ real $\left.)\right) \leq$ ($\left.\sum i \in\{1 . . ? n-2\} .1 /(2 \sim i)\right)$
by simp
have xkplus-lt: xk+2<?n-2 $\Longrightarrow\left(\sum i \in\{1 . .(x k+2)\} .1 /\left(\right.\right.$ 2 $^{\text {` }} \mathrm{i}::$ real $\left.)\right) \leq$ ($\left.\sum i \in\{1 . . ? n-2\} .1 /\left(\mathbb{Z}^{\wedge} i\right)\right)$
using $x k$-lt f-gteq-0-sum-gt[OF all-pows-of-2-pos, of $x k+2$? $n-2]$
by (smt (verit, best) f-gteq-0-sum-gt zero-less-divide-1-iff zero-less-power)

using xkplus-eq xkplus-lt xk-lt
using One-nat-def Suc-diff-Suc Suc-eq-plus1 Suc-le-eq add-Suc-right le-neq-implies-less
linorder-not-le nat-1-add-1 nat-diff-split numeral-3-eq-3 xk-gteq by linarith
then have ? $x 1 \neq ?$? 2
using $x 1$-in y^{2}
by (smt (verit, ccfv-SIG) interval-helper)
moreover have $\{? x 1, ? y 2\} \subseteq\{0 . .<1\}$ using $x 1$-in-01 y2-in-01 by fast
ultimately have $? x 1 \neq ? y 2 \wedge\{? x 1, ? y 2\} \subseteq\{0 . .<1\} \wedge p ? x 1=p ? y 2$ using $p-x^{\prime} y^{2} x^{\prime} y^{\prime}$ by presburger
then have $\exists x y . x \neq y \wedge\{x, y\} \subseteq\{0 . .<1\} \wedge p x=p y$ by auto
then have False
using assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by fastforce
\}
moreover $\{$ assume $y k>? n-3$
then have $y 3: p ? y 3=p^{\prime} y^{\prime} \wedge ? y 3 \in\{0 . .<(1 / 2::$ real $)\}$
using yk-gt-nminus3
by auto
then have $y 3$-in-01: ? $y 3 \in\{0 . .<1\}$
by simp
have simplify-interval: $\left(\sum i=1 . .1 .1 /\left(2^{\wedge} i::\right.\right.$ real $\left.)\right)=1 / 2$
by simp
then have $x k$-eq- $0: x k=0 \Longrightarrow\left(\sum i \in\{1 . .(x k+1)\} .1 /(2\right.$ ^i $::$ real $\left.)\right) \geq 1 / 2$
by simp
have $x k>0 \Longrightarrow\left(\sum i \in\{1 \ldots(x k+1)\} .1 /\left(\mathfrak{D}^{\wedge} i::\right.\right.$ real $\left.)\right) \geq 1 / 2$
using f-gteq-0-sum-gt[OF all-pows-of-2-pos, of 1 xk +1]
simplify-interval
by (smt (verit, ccfv-SIG) Suc-le-eq add.commute add.right-neutral all-pows-of-2-pos f-gteq-0-sum-gt linorder-not-le plus-1-eq-Suc)
then have $\left(\sum i \in\{1 \ldots(x k+1)\} .1 /\left(\mathcal{D}^{\mathcal{C} i}::\right.\right.$ real $\left.)\right) \geq 1 / 2$ using $x k$-eq-0 xk-gteq by blast
then have ? $x 1 \neq ? y 3$
using $x 1-i n y 3$
by (smt (verit, best) interval-helper)
moreover have $\{? x 1, ? y 3\} \subseteq\{0 . .<1\}$
using $x 1-i n-01$ y3-in-01 by fast
ultimately have $? x 1 \neq ? y\} \wedge\{? x 1, ? y 3\} \subseteq\{0 . .<1\} \wedge p ? x 1=p ? y 3$ using $p-x^{\prime} y 3 x^{\prime} y^{\prime}$ by presburger
then have $\exists x y . x \neq y \wedge\{x, y\} \subseteq\{0 . .<1\} \wedge p x=p y$
by auto
then have False
using assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by fastforce

\}

ultimately have False by linarith
\} moreover \{assume $x k$-eq : $x k=? n-3$
then have $p-x^{\prime}: p$? $x 2=p^{\prime} x^{\prime}$
using $x k$-eq-nminus3 by auto
have x2-in: ? $x 2 \in\left\{\left(\sum i \in\{1 . . ? n-2\} .1 /(2 \uparrow i)\right) . .<1\right\}$
using $x k$-eq $x k$-eq-nminus3
by auto
then have ? $x 2 \geq 0$
using n-geq-4
by (metis add-sign-intros(4) atLeastLessThan-iff insert-subset leD nle-le power-one-over $x^{\prime} y^{\prime}$ zero-le-power zero-less-divide-1-iff zero-less-numeral)
then have $x 2$-in-01: ? $x 2 \in\{0 . .<1\}$
using $x 2-i n$ by auto
\{ assume $y k<? n-3$
then have interval-helper-helper: $\left(\sum i=1 . . y k+1.1 /\left(2^{\wedge} i::\right.\right.$ real $\left.)\right) \leq\left(\sum i\right.$
$=1 . . x k .1 /\left(\mathcal{2}^{\text {^ }} i::\right.$ real $)$)
using $x k$-eq f-gteq-0-sum-gt
by (metis Suc-eq-plus1 less-eq-real-def linorder-neqE-nat not-less-eq zero-less-divide-1-iff zero-less-numeral zero-less-power)
then have $x^{\prime}>y^{\prime}$
using x^{\prime}-in y^{\prime}-in interval-helper $\left[o f\left(\sum i=1 . . y k+1.1 /\left(2^{\wedge} i::\right.\right.\right.$ real $\left.)\right)$
($\sum i=1 . . x k .1 /\left(2^{\wedge} i::\right.$ real $)$)]
by blast
then have False using $x^{\prime} y^{\prime}$ by auto
\} moreover \{ assume $y k=? n-3$
then have y2: p ? y2 $=p^{\prime} y^{\prime} \wedge$? $y 2 \in\left\{\left(\sum i \in\{1 . . ? n-2\} .1 /(2 へ i)\right) . .<1\right\}$
using $y k$-eq-nminus3
by auto
then have y2-in-01: ${ }^{2} y 2 \in\{0 . .<1\}$
using all-rotation-intervals-between-0and1-strict[of ? $n-2]$
by fastforce
then have ? $x 2 \neq ? y 2$
using $x^{\prime} y^{\prime}$ by auto
moreover have $\{? x 2, ? y 2\} \subseteq\{0 . .<1\}$
using x2-in-01 y2-in-01 by fast
ultimately have $? x 2 \neq ? y^{2} \wedge\{? x 2, ? y 2\} \subseteq\{0 . .<1\} \wedge p ? x 2=p ? y 2$
using $p-x^{\prime} y^{2} x^{\prime} y^{\prime}$ by presburger
then have $\exists x y . x \neq y \wedge\{x, y\} \subseteq\{0 . .<1\} \wedge p x=p y$
by meson
then have False
using assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by fastforce
\} moreover \{ assume $y k$-gt: $y k>? n-3$
then have y3: p ? y3 $=p^{\prime} y^{\prime}$
using $y k$-gt-nminus3 by auto
have y3-in: ? y3 $\in\{0 . .<1 / 2\}$
using yk-gt yk-gt-nminus3
by auto
then have y3-in-01: ? y $3 \in\{0 . .<1\}$
by auto
have $\left(\sum i=1 . . l e n g t h\right.$ vts $-2.1 /\left(2^{\wedge} i::\right.$ real $\left.)\right)>\left(\sum i=1 . .1 .1 /\left(2^{\wedge}\right.\right.$ $i:$:real))
using n-geq-4 f-gteq-0-sum-gt[OF all-pows-of-2-pos,of 1 length vts - 2]
by fastforce
then have $\left(\sum i=1\right.$..length vts $-2.1 /\left(2^{\wedge} i::\right.$ real $\left.)\right)>1 / 2$
by simp
then have ? $x 2 \neq$? y3
using $y 3$-in $x 2$-in by auto
moreover have $\{? x 2, ? y 3\} \subseteq\{0 . .<1\}$ using x2-in-01 y3-in-01 by fast
ultimately have $? x 2 \neq ? y 3 \wedge\{? x 2, ? y 3\} \subseteq\{0 . .<1\} \wedge p ? x 2=p ? y 3$ using $p-x^{\prime} y 3 x^{\prime} y^{\prime}$ by presburger
then have $\exists x y . x \neq y \wedge\{x, y\} \subseteq\{0 . .<1\} \wedge p x=p y$
by meson
then have False
using assms(1) unfolding polygon-of-def polygon-def simple-path-def loop-free-def
by fastforce
\}
ultimately have False
using not-less-iff-gr-or-eq by auto
\} moreover \{ assume $x k$-gt: $x k>$? $n-3$
then have $p-x^{\prime}: p ? x 3=p^{\prime} x^{\prime}$
using $x k$-gt-nminus3 by auto
have $x 3$-in: $? x 3 \in\{0 . .<1 / 2\}$
using $x k$-gt $x k$-gt-nminus3
by auto
then have $x 3$-in-01: ? $x 3 \in\{0 . .<1\}$
by auto
$\{$ assume $y k \leq ? n-3$
then have $\left(\sum i=1 . . x k .1 /\left(2^{\wedge} i:\right.\right.$ real $\left.)\right) \geq\left(\sum i=1 . . y k+1.1 /\left(2^{\wedge}\right.\right.$ $i:$:real))
using $x k$-gt f-gteq-0-sum-gt[of λi. $1 /(2 へ i::$ real $) x k y k]$
proof -
obtain $r r$:: nat \Rightarrow real where
f1: $\forall B-x$. rr $B-x=1 / 2^{\wedge} B-x$
by force
then have f2: $\forall n .0<r r n$
by simp
have $y k<x k$
using 〈length vts $-3<x k\rangle\langle y k \leq$ length vts -3\rangle order-le-less-trans by blast
then show ?thesis
using fo f1 by (metis (no-types) Suc-eq-plus1 f-gteq-0-sum-gt less-eq-real-def nat-neq-iff not-less-eq order.refl)

```
    qed
    then have }\mp@subsup{x}{}{\prime}>\mp@subsup{y}{}{\prime
        using x'-in y'-in interval-helper[of ( }\sum=1...yk+1.1 / (2` i::real))(\sum
= 1..xk. 1 / (2 ^i::real) )]
        by blast
        then have False using x'y'
        by auto
    } moreover
    { assume yk-gt: yk > ?n - }
        then have p-\mp@subsup{y}{}{\prime}:p?y3=\mp@subsup{p}{}{\prime}\mp@subsup{y}{}{\prime}
        using yk-gt-nminus3 by auto
        have y3-in:?y3 }\in{0..<1/2
        using yk-gt yk-gt-nminus3
        by auto
    then have y3-in-01: ?y3 }\in{0...<1
        by auto
    have (x' - (\sumi=1 ..length vts - 2.1 / 2`i)) \not=
```



```
        using }\mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime}\mathrm{ by auto
    then have ?x} # ?y3 by auto
    moreover have {?x3,?y3}\subseteq{0..<1}
        using x3-in-01 y3-in-01 by fast
    ultimately have ?x3 \not=?y3^{?x3, ?y3}\subseteq{0..<1}\wedge p?x3=p ? y3
        using p-\mp@subsup{x}{}{\prime}p-\mp@subsup{y}{}{\prime}}\mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime
        by presburger
    then have \exists x y. x\not=y^{x,y}\subseteq{0..<1}^px=py
        by meson
    then have False
            using assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
            by fastforce
        }
        ultimately have False by linarith
    }
    ultimately show False by linarith
qed
lemma one-rotation-is-polygon:
    fixes p:: R-to-R2
    fixes }i:: na
    assumes poly-p: polygon p and
        p-is-path: p= make-polygonal-path vts and
        p'-is: p' = make-polygonal-path (rotate-polygon-vertices vts 1)
            (is p}=\mathrm{ make-polygonal-path ?vts')
    shows polygon p}\mp@subsup{}{}{\prime
proof-
    have polygonal-path p' using p'-is by (simp add: polygonal-path-def)
    moreover have closed-path p
    using p'-is unfolding rotate-polygon-vertices-def closed-path-def
```

by (metis (no-types, opaque-lifting) Nil-is-append-conv append-self-conv2 diff-Suc-1 hd-append2 hd-conv-nth length-append-singleton make-polygonal-path-gives-path not-Cons-self nth-Cons-0 nth-append-length pathfinish-def pathstart-def polygon-pathfinish poly-gon-pathstart)
moreover have simple-path p^{\prime}
using one-polygon-rotation-is-loop-free
by (metis make-polygonal-path-gives-path p^{\prime}-is p-is-path poly-p polygon-of-def simple-path-def)
ultimately show ?thesis unfolding polygon-def by simp
qed
lemma rotation-is-polygon:
fixes $p:: R$-to- $R 2$
fixes $i::$ nat
assumes polygon p and
$p=$ make-polygonal-path vts
shows polygon (make-polygonal-path (rotate-polygon-vertices vts i))
using assms
proof (induct i)
case 0
then show ?case using rotate 0 unfolding rotate-polygon-vertices-def
by (smt (z3) assms(2) butlast.simps(1) butlast-conv-take eq-id-iff have-wraparound-vertex
hd-append2 hd-conv-nth rotate-polygon-vertices-def rotate-polygon-vertices-same-set
self-append-conv2 the-elem-set)
next
case (Suc i)
then show ?case using one-rotation-is-polygon arb-rotation-as-single-rotation
by metis
qed
lemma polygon-rotate-mod:
fixes vts :: (real^2) list
assumes $n=$ length vts
assumes $n \geq 2$
assumes $h d$ vts $=$ last vts
shows rotate-polygon-vertices vts $(n-1)=v t s$
proof-
let ?vts' $=$ rotate $(n-1)($ butlast vts)
have rotate-polygon-vertices vts $(n-1)=? v t s^{\prime} @[? v t s!0]$
unfolding rotate-polygon-vertices-def by metis
moreover have ? ${ }^{2} t s^{\prime}=$ butlast vts using assms by simp
moreover have $\ldots=$ rotate 0 (butlast vts) by simp
moreover then have ... @ [...!0] = rotate-polygon-vertices vts 0
unfolding rotate-polygon-vertices-def by metis
moreover have ... = vts
unfolding rotate-polygon-vertices-def using assms
by (metis (no-types, lifting) Suc-le-eq calculation(3) hd-conv-nth length-butlast length-greater-0-conv nat-1-add-1 nth-butlast order-less-le-trans plus-1-eq-Suc pos2 snoc-eq-iff-butlast zero-less-diff)

```
    ultimately show ?thesis by argo
qed
lemma polygon-rotate-mod-arb:
    fixes vts :: (real^2) list
    assumes n = length vts
    assumes n\geq2
    assumes hd vts = last vts
    shows rotate-polygon-vertices vts ((n-1)*i)=vts
proof(induct i)
    case 0
    then show ?case using polygon-rotate-mod
    by (metis append.right-neutral append-Nil assms(1) assms(2) assms(3) id-apply
length-butlast mult-zero-right rotate0 rotate-append rotate-polygon-vertices-def)
next
    case (Suc i)
    then have vts = rotate-polygon-vertices vts ((n-1)*i) using Suc.prems by
argo
    also have ... = rotate-polygon-vertices vts ((n-1)*Suc i)
        using polygon-rotate-mod assms(1) assms(2) assms(3) calculation rotation-sum
            by (metis mult-Suc-right)
    finally show ?case by argo
qed
lemma unrotation-is-polygon:
    fixes p:: R-to-R2
    fixes i:: nat
    assumes polygon (make-polygonal-path (rotate-polygon-vertices vts i))
                            (is polygon (make-polygonal-path ?vts'))
                p= make-polygonal-path vts
                hd vts = last vts
    shows polygon p
proof-
    have len-vts:length vts \geq2
    using assms polygon-vertices-length-at-least-4 rotate-polygon-vertices-same-length
    by (metis (no-types, opaque-lifting) Suc-1 Suc-eq-numeral Suc-le-lessD diff-is-0-eq'
eval-nat-numeral(2) gr-implies-not0 length-append-singleton length-butlast length-rotate
not-less-eq-eq rotate-polygon-vertices-def)
    let ? n = length vts - 1
    obtain k}\mathrm{ where k: k*?n>i
    using len-vts
    by (metis Suc-1 Suc-le-eq add-0 div-less-iff-less-mult le-add2 less-diff-conv)
    let ?j = k*?n - i
    have j-i-n:?j +i=k*?n using k by simp
    have rotate-polygon-vertices ?vts' ?j = rotate-polygon-vertices vts (?j +i)
    using rotation-sum[of vts i ?n] by (simp add: add.commute rotation-sum)
    also have ... = rotate-polygon-vertices vts ( }k*\mathrm{ ? n) using assms j-i-n by presburger
```

```
    also have .. = vts using polygon-rotate-mod-arb len-vts assms by (metis mult.commute)
    finally show ?thesis using rotation-is-polygon assms by metis
qed
lemma rotated-polygon-vertices:
    assumes vts' = rotate-polygon-vertices vts j
    assumes hd vts = last vts
    assumes length vts \geq2
    assumes j\leqi^i< length vts
    shows vts!i=vts'! (i-j)
    using assms
proof(induct j arbitrary: vts vts')
    case 0
    then show ?case
    by (metis Suc-1 Suc-le-eq diff-is-0-eq diff-zero hd-conv-nth id-apply length-butlast
linorder-not-le list.size(3) nth-butlast rotate0 rotate-polygon-vertices-def snoc-eq-iff-butlast)
next
    case (Suc j)
    then have vts' = rotate-polygon-vertices(rotate-polygon-vertices vts 1) j
    by (metis plus-1-eq-Suc rotation-sum)
    moreover have ...!(i - Suc j) = (rotate-polygon-vertices vts 1)!(i - 1)
    using Suc.hyps Suc.prems(3) Suc.prems(4) Suc-1 Suc-diff-le Suc-leD diff-Suc-Suc
hd-conv-nth length-append-singleton length-butlast length-rotate nth-butlast rotate-polygon-vertices-def
snoc-eq-iff-butlast zero-less-Suc
    by (smt (z3) One-nat-def Suc.prems(1) Suc.prems(2) Suc-eq-plus1 Suc-le-eq
arb-rotation-as-single-rotation calculation diff-diff-cancel diff-is-0-eq diff-less-mono
diff-zero not-less-eq-eq plus-1-eq-Suc rotated-polygon-vertices-helper2)
    moreover have ... = vts!i using rotated-polygon-vertices-helper2
    by (metis Suc.prems(2) Suc.prems(3) Suc.prems(4) add-leD1 le-add-diff-inverse2
less-diff-conv plus-1-eq-Suc)
    ultimately show ?case
    by presburger
qed
lemma polygon-path-image:
    assumes poly-p: polygon p
    assumes p-is-path: p = make-polygonal-path vts
    shows path-image p = p`{0 ..<1}
proof -
    have vts-nonempty: vts }\not=[
    using polygon-at-least-3-vertices[OF poly-p p-is-path]
    by auto
    have at-0: p'{0} = {pathstart p}
    using p-is-path
    by (metis image-empty image-insert pathstart-def)
    have at-1: p'{1}={pathfinish p}
    using p-is-path
    by (simp add: pathfinish-def)
have same-point: p 0 = p 1
```

using assms unfolding polygon-def closed-path-def using polygon-pathstart[OF vts-nonempty p-is-path]
using polygon-pathfinish[OF vts-nonempty p-is-path]
at-0 at- 1 by auto
have $\bigwedge x . x \in p^{\prime}\{0 . .1\} \Longrightarrow x \in p^{\prime}\{0 . .<1\}$
proof -
fix x
assume $x \in p^{\prime}\{0 . .1\}$
then have $\exists k \in\{0 . .1\} . p k=x$
by auto
then obtain k where k-prop: $k \in\{0 . .1\} \wedge p k=x$
by auto
\{assume $*: k<1$
then have $\exists k \in\{0 . .<1\} . p k=x$ using k-prop by auto
\} moreover \{assume $*: k=1$
then have $p 0=x$
using same-point k-prop by auto
then have $\exists k \in\{0 . .<1\} . p k=x$
by auto
\}
ultimately have $\exists k \in\{0 . .<1\} . p k=x$
using k-prop
by (metis atLeastAtMost-iff order-less-le)
then show $x \in p$ ' $\{0 . .<1\}$
by auto
qed
then show ?thesis
unfolding path-image-def by auto
qed
lemma polygon-vts-one-rotation:
fixes $p:: R$-to- $R 2$
assumes poly- p : polygon p and p-is-path: $p=$ make-polygonal-path vts and p^{\prime}-is: $p^{\prime}=$ make-polygonal-path (rotate-polygon-vertices vts 1)
shows path-image $p=$ path-image p^{\prime}
proof -
let ?rotated-vts $=($ rotate-polygon-vertices vts 1$)$
have card (set vts) ≥ 3
using polygon-at-least-3-vertices[OF poly-p p-is-path]
by auto
then have len-gt-eq3: length vts ≥ 3
using card-length order-trans by blast
have same-len: length ?rotated-vts $=$ length vts
unfolding rotate-polygon-vertices-def using length-rotate
by (metis One-nat-def Suc-pred card.empty length-append-singleton length-butlast
length-greater-0-conv list.set(1) not-numeral-le-zero p-is-path poly-p polygon-at-least-3-vertices)
then have len-rotated-gt-eq2: length ?rotated-vts ≥ 2
using len-gt-eq3 by auto
have $h 1: \bigwedge x . x \in($ path-image $p) \Longrightarrow x \in$ path-image p^{\prime}
proof -
fix x
assume $x \in($ path-image $p)$
then have $\exists k<$ length vts $-1 . x \in$ path-image (linepath $(v t s!k)(v t s!(k+$ 1)))
using p-is-path len-gt-eq3 make-polygonal-path-image-property[of vts x]
by auto
then obtain k where k-prop: $k<$ length vts $-1 \wedge x \in$ path-image (linepath
(vts!k) (vts! $(k+1))$)
by auto
\{assume $*: k=0$
have vts $1: v t s!0=$?rotated-vts ! (length ?rotated-vts - 2)
unfolding rotate-polygon-vertices-def
using nth-rotate[of length ?rotated-vts - 2 butlast vts 1]
by (metis (no-types, lifting) * One-nat-def Suc-pred butlast-snoc diff-diff-left
k-prop length-butlast lessI mod-self nat-1-add-1 nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def same-len)
have (rotate 1 (butlast vts))! $0=$ vts ! 1
using nth-rotate[of 0 butlast vts 1] len-gt-eq3
by (simp add: less-diff-conv mod-if nth-butlast)
then have vts2: vts $!1=$?rotated-vts $!$ (length ?rotated-vts -1)
unfolding rotate-polygon-vertices-def
by (metis butlast-snoc length-butlast nth-append-length)
then have path-image (linepath $(v t s!k)(v t s!(k+1))) \subseteq$ path-image p^{\prime}
using linepaths-subset-make-polygonal-path-image[of vts 0]
len-rotated-gt-eq2 *
by (metis (no-types, lifting) One-nat-def Suc-eq-plus1 Suc-pred diff-diff-left
diff-less k-prop less-numeral-extra(1) linepaths-subset-make-polygonal-path-image nat-1-add-1 p^{\prime}-is same-len vts1)
then have $x \in$ path-image p^{\prime}
using k-prop vts1 vts2
by auto
\}
moreover \{assume $*: k>0$
then have k-minus-prop: $k-1<$ length (rotate-polygon-vertices vts 1) -1
using same-len k-prop less-imp-diff-less
by presburger
then have vts $1:$ vts $!k=$?rotated-vts $!(k-1)$
using nth-rotate[of $k-1$ butlast vts 1] len-gt-eq3
same-len
by (metis * One-nat-def Suc-pred butlast-snoc k-prop length-butlast mod-less nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def)
have vts2: vts $!(k+1)=$?rotated-vts $!k$
using nth-rotate[of k butlast vts 1] len-gt-eq3 k-minus-prop
by (metis (no-types, lifting) * Suc-eq-plus1 Suc-leI butlast-snoc have-wraparound-vertex k-prop le-imp-less-Suc length-butlast mod-less mod-self nat-less-le nth-append-length nth-butlast p-is-path plus-1-eq-Suc poly-p rotate-polygon-vertices-def same-len)

```
    have path-image (linepath (?rotated-vts!(k-1)) (?rotated-vts!k))\subseteq path-image
p
            using linepaths-subset-make-polygonal-path-image[OF len-rotated-gt-eq2
k-minus-prop] p'-is
            by (simp add:*)
            then have }x\in\mathrm{ path-image p'
            using k-prop vts1 vts2
            by auto
    }
    ultimately show }x\in\mathrm{ path-image p'
        by auto
    qed
    have h2: \x. x (path-image p')\Longrightarrowx\in path-image p
    proof -
    fix }
    assume }x\in(path-image p'
    then have }\existsk<length ?rotated-vts - 1. x f path-image (linepath (?rotated-vt
!k)(?rotated-vts!(k+1)))
    using }\mp@subsup{p}{}{\prime}\mathrm{ -is len-rotated-gt-eq2 make-polygonal-path-image-property[of ?rotated-vts
x]
        by auto
    then obtain }k\mathrm{ where k-prop: }k<l=\mp@code{length ?rotated-vts - 1 ^x\in path-image
(linepath (?rotated-vts!k) (?rotated-vts! (k+1)))
    by auto
    {assume *: k= length ?rotated-vts - 2
    have vts1:vts!0 = ?rotated-vts !(length ?rotated-vts - 2)
            unfolding rotate-polygon-vertices-def
            using nth-rotate[of length ?rotated-vts - 2 butlast vts 1]
                by (metis * Suc-diff-Suc Suc-le-eq butlast-snoc k-prop len-rotated-gt-eq2
length-butlast mod-self nat-1-add-1 nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def
same-len zero-less-Suc)
    have (rotate 1 (butlast vts))! 0 = vts! 1
            unfolding rotate-polygon-vertices-def
            using nth-rotate[of 0 butlast vts 1] len-gt-eq3 len-rotated-gt-eq2
            by (metis (no-types, lifting) One-nat-def Suc-le-eq diff-diff-left length-butlast
less-nat-zero-code mod-less not-gr-zero nth-butlast numeral-3-eq-3 plus-1-eq-Suc zero-less-diff)
    then have vts2: ?rotated-vts ! (k+1)=vts!1
            unfolding rotate-polygon-vertices-def
    by (metis * Suc-diff-Suc Suc-eq-plus1 Suc-le-eq len-rotated-gt-eq2 length-butlast
length-rotate nat-1-add-1 nth-append-length same-len)
    have path-image (linepath (vts!0) (vts!1))\subseteq path-image p
            using linepaths-subset-make-polygonal-path-image[of vts 0]
            len-gt-eq3 * less-diff-conv p-is-path same-len
            by auto
    then have }x\in\mathrm{ path-image p
            using * vts1 vts2 k-prop
            by auto
} moreover {assume *: k< length ?rotated-vts - 2
    then have vts1:?rotated-vts ! k=vts! (k+1)
```

```
            using nth-rotate[of k butlast vts 1] len-gt-eq3 *
            same-len
            by (smt (z3) Suc-eq-plus1 butlast-snoc diff-diff-left k-prop length-butlast
less-diff-conv mod-less nat-1-add-1 nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def)
    have vts2: ?rotated-vts ! (k+1) = vts ! (k+2)
        using nth-rotate[of k+1 butlast vts 1] len-gt-eq3 *
            by (smt (verit, ccfv-threshold) One-nat-def Suc-le-eq add-Suc-right but-
last-snoc diff-diff-left have-wraparound-vertex len-rotated-gt-eq2 length-butlast less-diff-conv
mod-less mod-self nat-1-add-1 nat-less-le nth-append-length nth-butlast p-is-path
plus-1-eq-Suc poly-p rotate-polygon-vertices-def same-len)
    have path-image (linepath (vts!(k+1)) (vts! (k+2)))\subseteq path-image p
            using linepaths-subset-make-polygonal-path-image[of vts k+1]
            len-gt-eq3 * less-diff-conv p-is-path same-len
            by auto
    then have }x\in\mathrm{ path-image p
            using vts1 vts2 k-prop
            by auto
    }
    ultimately show }x\in\mathrm{ path-image p
            using k-prop Suc-eq-plus1 add-le-imp-le-diff diff-diff-left len-rotated-gt-eq2
less-diff-conv2 linorder-neqE-nat not-less-eq one-add-one
    by linarith
    qed
    then show ?thesis
    using h1 h2 by auto
qed
lemma polygon-vts-arb-rotation:
    fixes p:: R-to-R2
    assumes polygon p and
        p = make-polygonal-path vts
    shows path-image p = path-image (make-polygonal-path (rotate-polygon-vertices
vts i))
    using assms
proof (induct i)
    case 0
    then show ?case unfolding rotate-polygon-vertices-def
        by (metis One-nat-def arb-rotation-as-single-rotation polygon-vts-one-rotation
rotate-polygon-vertices-def rotation-is-polygon)
next
    case (Suc i)
    let ? p' = make-polygonal-path (rotate-polygon-vertices vts (Suc i))
    {assume *: i=0
    have path-image p = path-image ? p
            using Suc polygon-vts-one-rotation[of p vts]
            by (simp add:*)
    }
    moreover {assume *: i> 0
    have path-image p= path-image ? p
```

using polygon-vts-one-rotation arb-rotation-as-single-rotation rotation-is-polygon
by (metis Suc.hyps Suc.prems(1) assms(2))
\}
ultimately show ?case by auto
qed

10 Translating a Polygon

lemma linepath-translation:
linepath $((\lambda x . x+u) a)((\lambda x . x+u) b)=(\lambda x . x+u) \circ($ linepath $a b)$
proof-
let ?l $=$ linepath $((\lambda x . x+u) a)((\lambda x . x+u) b)$
let $? l^{\prime}=(\lambda x . x+u) \circ($ linepath $a b)$
have ?l $x=$? $l^{\prime} x$ for x
proof -
have ?l $x=(1-x) *_{R}(a+u)+x *_{R}(b+u)$ unfolding linepath-def by simp
also have $\ldots=\left((1-x) *_{R} a+x *_{R} b\right)+u$ by (simp add: scaleR-right-distrib)
also have $\ldots=$? $l^{\prime} x$ unfolding linepath-def by simp
finally show ?thesis.
qed
thus ?thesis by fast
qed
lemma make-polygonal-path-translate:
assumes length vts ≥ 2
shows make-polygonal-path $(\operatorname{map}(\lambda x . x+u) v t s)=(\lambda x . x+u) \circ($ make-polygonal-path vts)
using assms
proof (induct length vts arbitrary: u vts)
case 0
then show ?case by presburger
next
case (Suc n)
let ${ }^{2} v t s^{\prime}=\operatorname{map}(\lambda x . x+u) v t s$
let $? p^{\prime}=$ make-polygonal-path ?vts ${ }^{\prime}$
\{ assume Suc $n=2$
then obtain $a b$ where $a b: v t s=[a, b]$
by (metis (no-types, lifting) One-nat-def Suc.hyps(2) Suc-1 Suc-length-conv length-0-conv)
then have ? ${ }^{\text {tts }}{ }^{\prime}=[(\lambda x . x+u) a,(\lambda x . x+u) b]$ by simp
then have ? $p^{\prime}=$ linepath $((\lambda x . x+u) a)((\lambda x . x+u) b)$
using make-polygonal-path.simps(3) by presburger
also have $\ldots=(\lambda x \cdot x+u) \circ($ linepath a b) using linepath-translation by auto
also have $\ldots=(\lambda x . x+u) \circ($ make-polygonal-path vts) using ab by auto
finally have ?case .
\} moreover
\{ assume *: Suc $n>2$

```
    then obtain ab c rest where abc: vts = a # b # c # rest
        by (metis One-nat-def Suc.hyps(2) Suc-1 Suc-leI Suc-le-length-iff)
    let ?vts-tl = tl vts
    let ?p-tl = make-polygonal-path ?vts-tl
    let ?vts'-tl = map ( }\lambdax.x+u)\mathrm{ ?vts-tl
    let ?p'-tl = make-polygonal-path ?vts'-tl
    have ?vts'-tl = tl ?vts' by (simp add: map-tl)
    then have ?p' = (linepath (?vts!!0) (?vts'!1)) +++ ?p'-tl
        using make-polygonal-path.simps(4) abc by force
    moreover have ? p
* by force
    moreover have (linepath (?vts!!0) (?vts'!1)) = (\lambdax.x+u)\circ(linepath a b)
        using abc linepath-translation by auto
    ultimately have ?case by (simp add: abc path-compose-join)
}
ultimately show ?case using Suc by linarith
qed
lemma translation-is-polygon:
    assumes polygon-of p vts
    shows polygon-of ((\lambdax.x+u)\circp) (map (\lambdax.x + u) vts) (is polygon-of ?p'
?vts')
proof-
    have length vts \geq 3
    by (metis One-nat-def Suc-eq-plus1 Suc-le-eq add-Suc-right assms nat-less-le nu-
meral-3-eq-3 numeral-Bit0 one-add-one polygon-of-def polygon-vertices-length-at-least-4 )
    then have *: ? p' = make-polygonal-path ?vts'
    using make-polygonal-path-translate assms unfolding polygon-of-def by force
    moreover have polygon ? p'
    proof-
        have polygonal-path ?p' unfolding polygonal-path-def using * by simp
        moreover have simple-path ?p
            using assms unfolding polygon-of-def polygon-def
            using simple-path-translation-eq[of u p]
            by (metis add.commute fun.map-cong)
    moreover have closed-path ?p'
    proof-
            have ? p p}0=p0+u\mathrm{ by simp
            moreover have ? p' 1=p1+u by simp
            moreover have p 0=p1
                using assms
                    unfolding polygon-of-def polygon-def closed-path-def pathstart-def pathfin-
ish-def
            by blast
            moreover have path ? p' using make-polygonal-path-gives-path * by simp
            ultimately show ?thesis
                unfolding closed-path-def pathstart-def pathfinish-def
```

```
        by argo
    qed
    ultimately show ?thesis unfolding polygon-def by blast
    qed
    ultimately show ?thesis unfolding polygon-of-def by blast
qed
```


11 Misc. properties

lemma tail-of-loop-free-polygonal-path-is-loop-free:
assumes loop-free (make-polygonal-path (x\#tail)) (is loop-free ?p) and length tail ≥ 2
shows loop-free (make-polygonal-path tail) (is loop-free ? p^{\prime})
proof-
obtain y z tail' where tail': tail $=y \# z \#$ tail $^{\prime}$
by (metis One-nat-def Suc-1 assms(2) length-Cons list.exhaust-sel list.size(3)
not-less-eq-eq zero-le)
have path ?p \wedge path ? p^{\prime} using make-polygonal-path-gives-path by auto
have loop-free ?p using assms unfolding simple-path-def by auto
moreover have $? p=($ linepath $x y)+++? p^{\prime}$
using tail' make-polygonal-path.simps(4) by (simp add: tail')
moreover from calculation have loop-free ? p^{\prime}
by (metis make-polygonal-path-gives-path not-loop-free-second-component path-join-path-ends)
ultimately show ?thesis
using make-polygonal-path-gives-path simple-path-def by blast
qed
lemma tail-of-simple-polygonal-path-is-simple:
assumes simple-path (make-polygonal-path ($x \#$ tail)) (is simple-path ?p) and length tail ≥ 2
shows simple-path (make-polygonal-path tail) (is simple-path ?p')
using tail-of-loop-free-polygonal-path-is-loop-free unfolding simple-path-def
using assms(1) assms(2) make-polygonal-path-gives-path simple-path-def by blast
lemma interior-vtx-in-path-image-interior:
fixes vts :: (real ~2) list
assumes $x \in$ set (butlast (drop 1 vts))
shows $\exists t . t \in\{0<. .<1\} \wedge$ (make-polygonal-path vts) $t=x$
using assms
proof (induct vts rule: make-polygonal-path.induct)
case 1
then show? case by simp
next
case (2 a)
then show? case by simp
next
case ($3 a b$)
then show? case by simp
next

```
    case ih: (4 a b c tail')
    let ?vts = a#b# c# tail'
    let ?tl = b # c # tail'
    let ?p = make-polygonal-path ?vts
    let ?p-tl = make-polygonal-path ?tl
    { assume x set (butlast (drop 1 ?tl))
    then obtain t' where t': t' 
    then have ? }p((\mp@subsup{t}{}{\prime}+1)/2)=
        unfolding make-polygonal-path.simps joinpaths-def
    by (smt (verit, del-insts) field-sum-of-halves greaterThanLessThan-iff mult-2-right
not-numeral-le-zero zero-le-divide-iff)
    moreover have (t'+1)/2 & {0<..<1} using t' by force
    ultimately have ?case
        by blast
    } moreover
    { assume x & set (butlast (drop 1 ?tl))
    then have x=b
    by (metis One-nat-def butlast.simps(2) drop0 drop-Suc-Cons ih.prems list.distinct(1)
set-ConsD)
    then have ?p (1/2) = x unfolding make-polygonal-path.simps joinpaths-def
            by (simp add: linepath-1')
    moreover have ((1/2)::(real)) \in({0<..<1}::(real set)) by simp
    ultimately have ?case by blast
}
    ultimately show ?case by auto
qed
lemma loop-free-polygonal-path-vts-distinct:
    assumes loop-free (make-polygonal-path vts)
    shows distinct (butlast vts)
    using assms
proof(induct vts rule: make-polygonal-path.induct)
    case 1
    then show?case by simp
next
    case (2 a)
    then show ?case by simp
next
    case (3 a b)
    then show ?case by simp
next
    case ih:(4 a b c tail')
    let ?vts = a#b # c # tail'
    let ?tl = b # c # tail'
    let ?p = make-polygonal-path ?vts
    let ?p-tl = make-polygonal-path ?tl
    have distinct (butlast ?tl)
    using ih tail-of-loop-free-polygonal-path-is-loop-free by simp
```

```
    moreover have a\not\in set (butlast ?tl)
    proof(rule ccontr)
    assume a-in:\nega\not\in set (butlast ?tl)
    then have a fet (butlast (drop 1 ?vts)) by simp
    then obtain t where t:t\in{0<..<1}\wedge?pt=a
        using vertices-on-path-image interior-vtx-in-path-image-interior by metis
    then show False
        using ih.prems unfolding simple-path-def loop-free-def
    by (metis atLeastAtMost-iff greaterThanLessThan-iff less-eq-real-def less-numeral-extra(3)
less-numeral-extra(4) list.distinct(1) nth-Cons-0 path-defs(2) polygon-pathstart zero-less-one-class.zero-le-one)
    qed
    ultimately show ?case by simp
qed
```

lemma loop-free-polygonal-path-vts-drop1-distinct:
assumes loop-free (make-polygonal-path vts)
shows distinct (drop 1 vts)
proof -
let $? p=$ make-polygonal-path vts
let ?last-vts $=v t s!(($ length vts $)-1)$
have distinct (butlast vts)
using assms loop-free-polygonal-path-vts-distinct
by auto
then have distinct-butlast: distinct (butlast (drop 1 vts))
by (metis distinct-drop drop-butlast)
\{assume $*$: length vts >1
have len-drop1: length (drop 1 vts) $=($ length vts $)-1$
using * by simp
have simp-len: $1+(($ length vts $)-2)=($ length $v t s)-1$
using * by simp
then have vts-access: vts ! $(1+($ length vts -2$))=v t s!((l e n g t h ~ v t s)-1)$
by argo
have drop 1 vts ! ((length vts) - 2) $=$ vts $!(1+($ length vts -2$))$
using $*$ using nth-drop[of 1 vts (length vts) - 2] by auto
then have ?last-vts $=($ drop 1 vts $)!(($ length vts $)-2)$
using $*$ simp-len vts-access by argo
then have ?last-vts $=($ drop 1 vts $)!($ length $($ drop 1 vts $)-1)$
using * len-drop1
using diff-diff-left nat-1-add-1 by presburger
then have drop1-is: drop 1 vts $=($ butlast $($ drop 1 vts $)) @[? l a s t-v t s]$
using *
by (metis append-butlast-last-id drop-eq-Nil leD length-butlast nth-append-length)
have last-vts-not-in: ?last-vts \notin set (butlast (drop 1 vts))
proof (rule ccontr)
assume a-in: \neg ?last-vts \notin set (butlast (drop 1 vts))
then have ?last-vts \in set (butlast (drop 1 vts)) by simp
then obtain t where $t: t \in\{0<. .<1\} \wedge$? $p t=$?last-vts
using vertices-on-path-image interior-vtx-in-path-image-interior by metis

```
    have vts!(length vts - 1) = ?p 1
            using polygon-pathfinish[of vts ?p] *
            by (metis list.size(3) not-one-less-zero pathfinish-def)
    then show False
            using t assms unfolding loop-free-def
            by (metis atLeastAtMost-iff greaterThanLessThan-iff leD less-eq-real-def zero-less-one-class.zero-le-one)
        qed
        have \b::(real^2) list.distinct b ^a\not\in set b\Longrightarrow distinct (b@ [a]) for a::real^2
    by simp
    then have ?thesis using last-vts-not-in drop1-is distinct-butlast by metis
    }
        then show ?thesis by force
qed
lemma simple-polygonal-path-vts-distinct:
    assumes simple-path (make-polygonal-path vts)
    shows distinct (butlast vts)
    using assms loop-free-polygonal-path-vts-distinct
    unfolding simple-path-def
    by blast
lemma edge-subset-path-image:
    assumes p=make-polygonal-path vts and
        (i::int) }\in{0..<((length vts) - 1)} and
        x=vts!i and
        y=vts!(i+1)
    shows path-image (linepath x y)\subseteq path-image p (is ?xy-img \subseteq?p-img)
    using assms
proof(induct vts arbitrary: p i rule: make-polygonal-path.induct)
    case 1
    then show ?case by simp
next
    case (2 a)
    then show?case by simp
next
    case (3 a b)
    then show ?case by (simp add: nth-Cons')
next
    case ih:(4abctl)
    let ?tl = b # c #tl
    let ?p-tl = make-polygonal-path (?tl)
    { assume i=0
        then have ?case
        by (metis (mono-tags, lifting) ih(2) ih(4) ih(5) Suc-eq-plus1 UnCI list.distinct(1)
make-polygonal-path.simps(4) nth-Cons-0 nth-Cons-Suc path-image-join pathfin-
ish-linepath polygon-pathstart subsetI)
    } moreover
    { assume i>0
```

```
    then have x=?tt!(i-1) by (simp add: ih.prems(3))
    moreover have y=?tl!i by (simp add: ih.prems(4))
    moreover have i-1\in{0..<(length (?tl) - 1)} using ih.prems(2) by force
    ultimately have ?xy-img \subseteq path-image ?p-tl using ih(1) by (simp add:<0<
i`)
    then have ?case
        unfolding ih(2) make-polygonal-path.simps
    by (smt (verit, ccfv-SIG) UnCI make-polygonal-path.simps(4) make-polygonal-path-gives-path
path-image-join path-join-path-ends subsetI subset-iff)
    }
    ultimately show ?case by linarith
qed
```


12 Properties of Sublists of Polygonal Path Vertex Lists

lemma make-polygonal-path-image-append-var:
assumes length vts1 ≥ 2
shows path-image (make-polygonal-path (vts1 @ [v])) = path-image (make-polygonal-path vts $1+++($ linepath $(v t s 1!($ length vts1 -1$)) v))$
using assms
proof (induct vts1)
case Nil
then show? case by auto
next
case (Cons a vts1)
\{assume $*$: length vts1 $=1$
then obtain b where $v t s 1=[b]$
by (metis Cons-nth-drop-Suc One-nat-def drop0 drop-eq-Nil le-numeral-extra(4)
less-numeral-extra(1))
then have path-image (make-polygonal-path $((a \#$ vts1) @ $[v]))=$
path-image (make-polygonal-path (a \# vts1) +++ linepath ((a \# vts1) !
(length $(a \#$ vts1) -1$)) v$)
using make-polygonal-path.simps
by simp
\} moreover \{assume $*$: length vts1 >1
then obtain $b c$ vts1' where vts1 $=b \# c \# v t s 1^{\prime}$
by (metis One-nat-def length-0-conv length-Cons less-numeral-extra(4) not-one-less-zero
remdups-adj.cases)
then have $h 1$: make-polygonal-path $((a \# v t s 1) @[v])=($ linepath a $b)+++$
(make-polygonal-path (vts1 @ [v]))
using make-polygonal-path.simps(4)
by auto
have path-image (make-polygonal-path (vts1 @ [v])) =
path-image (make-polygonal-path vts1 +++ linepath $(v t s 1!(l e n g t h ~ v t s 1-1))$
v)
using * Cons by auto
then have path-image (make-polygonal-path $((a \# v t s 1) @[v]))=$
path-image (make-polygonal-path (a \# vts1) +++ linepath $((a \#$ vts1) ! (length $(a \# v t s 1)-1)) v)$

using $h 1$

by (metis (no-types, lifting) Cons.prems Suc-1 Suc-le-eq Un-assoc «vts1 $=b \# c$ \# vts1'> add-diff-cancel-left' append-Cons length-Cons list.discI make-polygonal-path.simps(4) nth-Cons-0 nth-Cons-pos path-image-join pathfinish-linepath pathstart-linepath plus-1-eq-Suc polygon-pathfinish polygon-pathstart zero-less-diff)
\}
ultimately show ?case
by (metis Cons.prems Suc-1 add-diff-cancel-left' le-neq-implies-less length-Cons not-less-eq plus-1-eq-Suc)
qed
lemma make-polygonal-path-image-append-helper:
assumes length vts $1 \geq 1 \wedge$ length vts2 ≥ 1
shows path-image (make-polygonal-path (vts1 @ [v] @ [v] @ vts2)) = path-image
(make-polygonal-path (vts1 @ [v] @ vts2))
using assms
proof (induct vts1)
case Nil
then show? case by auto
next
case (Cons a vts1)
\{ assume $*$: length vts1 $=0$
have path-image (make-polygonal-path ([a] @ [v] @ vts2)) = path-image ((linepath a v) +++ make-polygonal-path (v \# vts2))
using make-polygonal-path.simps
by (metis Cons.prems One-nat-def append-Cons append-Nil append-take-drop-id linorder-not-le list.distinct(1) list.exhaust not-less-eq-eq take-hd-drop)
then have path-image (make-polygonal-path ([a]@ [v]@ vts2))= path-image (linepath a v) \cup path-image (make-polygonal-path $(v \#$ vts2))
by (metis list.discI nth-Cons-0 path-image-join pathfinish-linepath polygon-pathstart)
have image-helper1: path-image (make-polygonal-path ([a]@ [v] @ [v]@ vts2)) $=$ path-image (linepath a $v+++$ make-polygonal-path (v \# v \# vts2))
by simp
have path-image (make-polygonal-path $(v \# v \#$ vts® $))=$ path-image $(($ linepath
$v v)+++$ make-polygonal-path (v \# vts2))
using make-polygonal-path.simps
by (metis Cons.prems One-nat-def append-Cons append-Nil append-take-drop-id linorder-not-le list.distinct(1) list.exhaust not-less-eq-eq take-hd-drop)
moreover have $\ldots=$ path-image (linepath $v v$) \cup path-image (make-polygonal-path (v \# vts2))
by (metis list.discI nth-Cons-0 path-image-join pathfinish-linepath poly-gon-pathstart)
ultimately have image-helper2: path-image (make-polygonal-path (v \# v \# $v t s 2))=\{v\} \cup$ path-image (make-polygonal-path $(v \#$ vts2 $)$)
by auto
have $v \in$ path-image (make-polygonal-path ($v \#$ vts2))
using vertices-on-path-image by fastforce

```
    then have path-image (make-polygonal-path ([a]@ [v]@ [v]@ vts2))=
    path-image (make-polygonal-path ([a] @ [v] @ vts2))
    using image-helper1 image-helper2
    by (metis<path-image (make-polygonal-path ([a]@ [v] @ vts2)) = path-image
(linepath a v) \cup path-image (make-polygonal-path (v # vts2))> insert-absorb in-
sert-is-Un list.simps(3) nth-Cons-0 path-image-join pathfinish-linepath polygon-pathstart)
    }
    moreover {assume *: length vts1 > 0
    then have ind-hyp: path-image (make-polygonal-path (vts1@ [v]@ [v]@ vts2))
=
    path-image (make-polygonal-path (vts1 @ [v] @ vts2))
        using Cons.hyps Cons.prems by linarith
    obtain b vts3 where vts1-is:vts1 = b#vts3
        using *
        by (metis * Cons-nth-drop-Suc drop0)
    then have path-image1: path-image (make-polygonal-path ((a # vts1) @ [v] @
[v]@ (vts2))=
        path-image ((linepath a b) +++ make-polygonal-path (vts1 @ [v] @ [v]@
vts2))
    by (smt (verit, best) Cons.prems Nil-is-append-conv append-Cons length-greater-0-conv
less-numeral-extra(1) list.inject make-polygonal-path.elims order-less-le-trans)
    obtain cd where bcd:vts1 @ [v] @ vts2 = b # c##d
        using vts1-is
        by (metis append-Cons append-Nil neq-Nil-conv)
    have path-image2: path-image (make-polygonal-path ((a#vts1) @ [v]@vts2))
= path-image ((linepath a b) +++ make-polygonal-path (vts1@ [v] @ vts2))
            using make-polygonal-path.simps bcd
            by auto
    have path-image (make-polygonal-path ((a#vts1)@ [v]@ [v]@ vts\Omega))}
    path-image (make-polygonal-path ((a#vts1) @ [v]@ vts2))
            using ind-hyp path-image1 path-image2
    by (smt (verit, del-insts) Nil-is-append-conv append-Cons nth-Cons-0 path-image-join
pathfinish-linepath polygon-pathstart vts1-is)
    }
    ultimately show ?case
        using Cons.prems
        by blast
    qed
lemma make-polygonal-path-image-append:
assumes length vts \(1 \geq 2 \wedge\) length vts \(2 \geq 2\)
shows path-image (make-polygonal-path (vts1 @ vts2)) = path-image (make-polygonal-path
vts1 \(+++(\) linepath \((v t s 1!(l e n g t h ~ v t s 1-1))(v t s 2!0))+++\) make-polygonal-path
vts2)
using assms
proof (induct vts1)
case Nil
then show?case
by \(\operatorname{simp}\)
```


next

case (Cons a vts1)
\{assume $*$: length vts1 = 1
then obtain b where vts1-is: vts1 $=[b]$
by (metis Cons-nth-drop-Suc One-nat-def drop0 drop-eq-Nil le-numeral-extra(4) less-numeral-extra(1))
then have make-polygonal-path $((a \# v t s 1) @$ vts2 $)=$ make-polygonal-path $(a$ \# b \# vts2)
by simp
then have make-polygonal-path $((a \#$ vts1 $) @$ vts2 $)=($ linepath a b) +++ (make-polygonal-path (b \# vts2))
by (metis Cons.prems length-0-conv make-polygonal-path.simps(4) neq-Nil-conv not-numeral-le-zero)
then have make-polygonal-path $((a \#$ vts1 $) @$ vts2 $)=$ make-polygonal-path (a \# vts1) +++ (make-polygonal-path (b \# vts2))
using vts1-is make-polygonal-path.simps(3)
by simp
then have make-polygonal-path $((a \#$ vts1 $)$ @ vts2 $)=$ make-polygonal-path (a \# vts1) +++ linepath $b(v t s 2!0)+++$ make-polygonal-path vts2
using Cons.prems
by (smt (verit, ccfv-SIG) * Suc-1 add-diff-cancel-left' diff-is-0-eq' length-greater-0-conv list.size(4) make-polygonal-path.elims make-polygonal-path.simps(4) nth-Cons-0 or-der-less-le-trans plus-1-eq-Suc pos2 vts1-is zero-neq-one)
then have make-polygonal-path ((a\#vts1) @ vts2) =
make-polygonal-path (a \# vts1) +++
linepath $((a \# v t s 1)!(l e n g t h(a \# v t s 1)-1))(v t s 2!0)+++$ make-polygonal-path vts2
using vts1-is
by simp
\} moreover \{assume $*$: length vts $1>1$
then obtain $b c$ vts1' where $v t s 1=b \# c \# v t s 1^{\prime}$
by (metis One-nat-def length-0-conv length-Cons less-numeral-extra(4) not-one-less-zero remdups-adj.cases)
then have h1: make-polygonal-path $((a \#$ vts1 $) @$ vts2 $)=($ linepath a $b)+++$ (make-polygonal-path (vts1 @ vts2))
using make-polygonal-path.simps(4)
by auto
have ind-h: path-image (make-polygonal-path (vts1 @ vts2)) =
path-image (make-polygonal-path vts1 +++
linepath (vts1! (length vts1 - 1)) (vts2! 0) +++ make-polygonal-path vts2 $)$
using Cons *
by linarith
then have path-image (make-polygonal-path ((a \# vts1) @ vts2)) = path-image $(($ linepath a b $)) \cup$ path-image $(($ make-polygonal-path vts1 +++
linepath (vts1! (length vts1 - 1)) (vts2!0) +++ make-polygonal-path vts2)) using $h 1$
by (metis (mono-tags, lifting) * Nil-is-append-conv $\langle v t s 1=b \# c \# v t s 1 '>a p-$ pend-Cons length-greater-0-conv linordered-nonzero-semiring-class.zero-le-one nth-Cons-0 order-le-less-trans path-image-join pathfinish-linepath polygon-pathstart)
then have path-image (make-polygonal-path $((a \#$ vts1 $) @$ vts2 $))=($ path-image $($ linepath a b) \cup path-image (make-polygonal-path vts1)) \cup
path-image $(($ linepath $(v t s 1!(l e n g t h ~ v t s 1-1))(v t s 2!0)+++$ make-polygonal-path vts2))
by (metis (no-types, lifting) * Un-assoc length-greater-0-conv order-le-less-trans path-image-join pathstart-join pathstart-linepath polygon-pathfinish zero-less-one-class.zero-le-one)
then have image-helper: path-image (make-polygonal-path ((a\#vts1) @ vts2))
$=($ path-image $($ make-polygonal-path $(a \#$ vts1 $))) \cup$
path-image $(($ linepath $(v t s 1!($ length vts1 -1$))(v t s 2!0)+++$ make-polygonal-path vts2))
by (metis (no-types, lifting) * 〈vts1 $=b \# c \# v t s 1$ '〉 length-greater-0-conv make-polygonal-path.simps(4) nth-Cons-0 order-le-less-trans path-image-join pathfin-ish-linepath polygon-pathstart zero-less-one-class.zero-le-one)
have vts1! (length vts1 - 1$)=(a \# v t s 1)!($ length $(a \# v t s 1)-1)$
using Cons.prems
by (simp add: Suc-le-eq)
then have path-image (make-polygonal-path $((a \# v t s 1) @ v t s 2))=$
path-image
(make-polygonal-path (a \# vts1) +++
linepath $((a \#$ vts1 $)!($ length $(a \# v t s 1)-1))(v t s 2!0)+++$ make-polygonal-path $v t s 2)$
using image-helper
by (metis (no-types, lifting) Cons.prems length-greater-0-conv order-less-le-trans path-image-join pathstart-join pathstart-linepath polygon-pathfinish pos2)
\}
ultimately show ?case using Cons.prems
by fastforce
qed
lemma make-polygonal-path-image-append-alt:
assumes $p=$ make-polygonal-path vts
assumes $p 1=$ make-polygonal-path vts 1
assumes $p 2=$ make-polygonal-path vts2
assumes last vts $1=h d$ vts2
assumes length vts $1 \geq 2 \wedge$ length vts2 ≥ 2
assumes vts = vts1 @ (tl vts2)
shows path-image $p=$ path-image $(p 1+++p 2)$
proof-
have path-image $p=$ path-image $p 1 \cup$ path-image p2
by (smt (z3) Nitpick.size-list-simp(2) One-nat-def Suc-1 assms diff-Suc-1
last-conv-nth length-greater-0-conv list.collapse list.sel(3) make-polygonal-path.elims make-polygonal-path.simps (3) make-polygonal-path-image-append make-polygonal-path-image-append-var nat-less-le not-less-eq-eq nth-Cons-0 order-less-le-trans path-image-join polygon-pathfinish polygon-pathstart pos2 length-Cons length-tl path-image-cons-union pathfinish-linepath pathstart-join sup.absorb-iff1 sup.absorb-iff2)
thus ?thesis
by (metis assms(2) assms(3) assms(4) assms(5) hd-conv-nth last-conv-nth length-greater-0-conv order-less-le-trans path-image-join polygon-pathfinish polygon-pathstart pos2)

qed

lemma cont-incr-interval-image:
fixes $f:$ real \Rightarrow real
assumes $a \leq b$
assumes continuous-on $\{a . . b\} f$
assumes $\forall x \in\{a . . b\} . \forall y \in\{a . . b\} . x \leq y \longrightarrow f x \leq f y$
shows $f \bullet\{a . . b\}=\{f a . . f b\}$
proof-
have $f^{\prime}\{a . . b\} \subseteq\{f a$..f $b\}$
proof (rule subsetI)
fix x
assume $x \in f^{\prime}\{a . . b\}$
then obtain t where $t \in\{a . . b\} \wedge f t=x$ by blast
moreover then have $a \leq t \wedge t \leq b$ by presburger
ultimately show $x \in\{f a . . f b\}$ using assms(3) by auto
qed
moreover have $\{f a . . f b\} \subseteq f^{c}\{a . . b\}$
proof-
obtain $c d$ where $f^{\prime}\{a . . b\}=\{c . . d\}$ using continuous-image-closed-interval assms by meson
moreover then have $f a \in\{c . . d\}$ using assms(1) by auto
moreover have $f b \in\{c . . d\}$ using assms(1) calculation by auto
moreover have $\{f a . . f b\} \subseteq\{c . . d\}$ using calculation by simp
ultimately show ?thesis by presburger
qed
ultimately show ?thesis by blast
qed
lemma two-x-minus-one-image:
assumes $f=(\lambda x::$ real. $2 * x-1)$
assumes $a \leq b$
shows $f^{\prime}\{a . . b\}=\{f a$ a.f $b\}$
proof-
have continuous-on $\{a . . b\} f$
proof-
have continuous-on $\{a . . b\}$ ($\lambda x::$ real. $x)$ by simp
then have continuous-on $\{a . . b\}(\lambda x::$ real. $2 * x)$ using continuous-on-mult-const

by blast

thus continuous-on $\{a . . b\} f$
unfolding assms using continuous-on-translation-eq[of $\{a . . b\}-1$ (λx ::real.
$2 * x)]$ by auto
qed
thus ?thesis using cont-incr-interval-image assms by force
qed
lemma vts-split-path-image:
assumes $p=$ make-polygonal-path vts
assumes p1 = make-polygonal-path vts1

```
    assumes p2 = make-polygonal-path vts2
    assumes vts1 = take i vts
    assumes vts2 = drop (i-1) vts
    assumes n= length vts
    assumes 1\leqi^i<n
    assumes x =( 2` (i-1)-1)/(\mp@subsup{\mathcal{V}}{}{`}(i-1))
    shows path-image p1 = p`{0..x} ^ path-image p\mathscr{Z}= p`{x..1}
    using assms
proof(induct i arbitrary: p p1 p2 vts vts1 vts2 n x)
    case 0
    then show ?case by linarith
next
    case (Suc i)
    { assume *: Suc i=1
    then obtain a where a:vts1 = [a]
            using Suc.prems
                    by (metis One-nat-def gr-implies-not0 list.collapse list.size(3) take-eq-Nil
take-tl zero-neq-one)
    moreover have vts2 = vts using * Suc.prems by force
    ultimately have p1 = linepath a a ^ p2 = p
            using Suc.prems make-polygonal-path.simps by meson
    moreover have x=0 using Suc.prems * by simp
    moreover have path-image p1={a} using calculation by simp
    moreover have p}{{0..0}={专0} by aut
    moreover then have p`{0..0} ={a} using Suc.prems
            by (metis a gr0-conv-Suc list.discI nth-Cons-0 nth-take pathstart-def poly-
gon-pathstart take-eq-Nil)
    moreover have path-image p1 = p{{0..x} using calculation by presburger
    moreover have path-image p\mathcal{L}=p`{x..1} using calculation unfolding path-image-def
by fast
    ultimately have ?case by blast
    } moreover
    { assume *:Suc i> 1
    let ?a = vts!0
    let ?b = vts!1
    let ?l = linepath ?a ?b
    let ?L = path-image ?l
    let ?tl = tl vts
    let ?vts1' = take i ?tl
    let ?vts\mp@subsup{Q}{}{\prime}=drop (i-1) ?tl
    let ? p' = make-polygonal-path ?tl
    let ?p1'= make-polygonal-path ?vts1'
    let ?p2'= make-polygonal-path ?vts\mp@subsup{'}{}{\prime}
    let ? }\mp@subsup{x}{}{\prime}=((2::\mathrm{ real )}`(i-1)-1)/(\mp@subsup{2}{}{`}(i-1)
    let ?P1'= path-image ?p1'
    let ?P2' = path-image ?p\mp@subsup{2}{}{\prime}
    have i:1\leqi^i<length ?tl
```

using Suc.prems * by (metis Suc-eq-plus1 length-tl less-Suc-eq-le less-diff-conv) then have $i h: ? P 1^{\prime}=? p^{\prime}\left\{0 . . ? x^{\prime}\right\} \wedge ? P \mathcal{R}^{\prime}=? p^{\prime}\left\{? x^{\prime} . .1\right\}$
using Suc.hyps $\left[o f\right.$? p^{\prime} ?tl ?p1' ?vts1' ?p2' ?vts2' length ?tl ?x $]$ by presburger
let $? f=\lambda x:$:real. $2 * x-1$
have $f x$: ?f $x=$? x^{\prime}
by (metis i Suc.prems(8) bounding-interval-helper1 diff-Suc-1 summation-helper)
moreover have fhalf: ?f $(1 / 2)=0$ by simp
moreover have f1: ?f $1=1$ by simp
ultimately have $f: ? f^{\prime}\{x . .1\}=\left\{? x^{\prime} . .1\right\} \wedge$?f $\{1 / 2 . . x\}=\left\{0 . . ? x^{\prime}\right\}$
using two-x-minus-one-image by auto
have $x: 1 / 2 \leq x \wedge x \leq 1$
by (smt (verit) divide-le-eq-1-pos divide-nonneg-nonneg fhalf fx two-realpow-ge-one)
have $n \geq 3$ using Suc.prems * by linarith
then have $p: p=? l+++? p^{\prime}$
proof -
have f1: \forall vs. (vs::(real, 2) vec list) $\neq[] \vee \neg 1<$ Suc (length vs)
by simp
have $1<$ Suc n
using Suc.prems(7) by linarith
then show ?thesis
by (smt (verit) f1 Suc-le-lessD i One-nat-def Suc.prems(6) Suc.prems(7)
Suc-less-eq «p = make-polygonal-path vts〉hd-conv-nth length-Cons length-tl less-Suc-eq
list.collapse list.exhaust make-polygonal-path.simps(4) nth-Cons-Suc zero-order(3))

```
qed
have \(p\)-to- \(p^{\prime}: \forall y \geq 1 / 2 . p y=\left(? p^{\prime} \circ ? f\right) y\)
proof clarify
    fix \(y\) :: real
    assume \(*: y \geq 1 / 2\)
    \{ assume \(* *: y=1 / 2\)
            then have \(p y=? b\)
                by (smt (verit) fhalf joinpaths-def linepath-1' \(p\) )
            moreover have ?f \(y=0\) using \(* *\) by simp
            moreover have ? \(p^{\prime} 0=? b\)
                    by (metis i One-nat-def Suc.prems(6) length-greater-0-conv length-tl
list.size(3) nth-tl pathstart-def polygon-pathstart zero-order(3))
            ultimately have \(p y=\left(? p^{\prime} \circ ? f\right) y\) by \(\operatorname{simp}\)
    \} moreover
    \{ assume \(* *: y>1 / 2\)
            then have \(p y=? p^{\prime}\) (?f y) unfolding \(p\) joinpaths-def by simp
            then have \(p y=\left(? p^{\prime} \circ ? f\right) y\) by force
    \}
    ultimately show \(p y=\left(? p^{\prime} \circ ? f\right) y\) using \(*\) by fastforce
qed
```

```
have \(\{0 . . x\}=\{0 . .1 / 2\} \cup\{1 / 2 \ldots x\}\) using \(x\) by (simp add: ivl-disj-un-two-touch(4))
```

 then have \(p\left\{\{0 . . x\}=p ،\{0 . .1 / 2\} \cup p^{،}\{1 / 2 . . x\}\right.\) by blast
 also have \(\ldots=? L \cup p\{1 / 2 . . x\}\)
 proof-
 have \(? L \subseteq p^{\prime}\{0 . .1 / 2\}\)
 proof(rule subsetI)
 fix \(a\)
 assume \(*: a \in ? L\)
 then obtain \(t\) where \(t: t \in\{0 . .1\} \wedge ? l t=a\) unfolding path-image-def
 by blast
then have $p(t / \mathcal{Z})=a$ unfolding p joinpaths-def by auto
moreover have $t / 2 \in\{0 . .1 / 2\}$ using t by simp
ultimately show $a \in p^{،}\{0 . .1 / 2\}$ by blast
qed
moreover have $p^{‘}\{0 . .1 / 2\} \subseteq ? L$
proof (rule subsetI)
fix a
assume $*: a \in p ‘\{0 . .1 / 2\}$
then obtain t where $t \in\{0 . .1 / 2\} \wedge p t=a$ by blast
moreover then have ?l $(2 * t)=p t$ unfolding p joinpaths-def by presburger
moreover have $2 * t \in\{0 . .1\}$ using calculation by simp
ultimately show $a \in$? L unfolding path-image-def by auto
qed
ultimately have $? L=p\{0 . .1 / 2\}$ by blast
thus ?thesis by presburger
qed
also have $\ldots=? L \cup\left(? p^{\prime} \circ ? f\right) ‘\{1 / 2 . . x\}$ using $p-t o-p^{\prime}$ by simp
also have $\ldots=? L \cup ? p^{\prime}\left\{0 \ldots ? x^{\prime}\right\}$ using f by (metis image-comp)
also have $\ldots=? L \cup ? P 1^{\prime}$ using ih by blast
also have $\ldots=$ path-image p1
proof-
have take $i(t l v t s) \neq[]$ by (metis i less-zeroE list.size(3) not-one-le-zero
take-eq-Nil2)
thus ?thesis using path-image-cons-union[of p1 vts1 ?p1' ?vts1' ?a ?b]
by (metis * Nitpick.size-list-simp(2) One-nat-def Suc.prems(2) Suc.prems(4)
Suc.prems(6) Suc.prems(7) bot-nat-0.extremum-strict hd-conv-nth length-greater-0-conv
nth-take nth-tl take-Suc take-tl)
qed
finally have 1 : path-image $p 1=p^{〔}\{0 . . x\}$ by argo
have $\left.p^{〔}\{x . .1\}=\left(? p^{\prime} \circ ? f\right) \not\right)^{‘}\{x . .1\}$ using $p-t o-p^{\prime} x$ by simp
also have $\ldots=$? $p^{\prime}\left\{?{ }^{\prime} x^{\prime} . .1\right\}$ using f by (metis image-comp)
also have $\ldots=? P 2^{\prime}$ using $i h$ by presburger
also have $\ldots=$ path-image $p 2$
using path-image-cons-union
by (metis Suc.prems(3) Suc.prems(5) diff-Suc-1 drop-Suc gr0-implies-Suc i
linorder-neqE-nat not-less-zero not-one-le-zero)
finally have 2: path-image $p^{2}=p^{〔}\{x . .1\}$ by argo

```
        have ?case using 12 by fast
    }
    ultimately show ?case using Suc.prems by linarith
qed
```

lemma drop-i-is-loop-free:
fixes vts :: (real 2) list
assumes $m=$ length vts
assumes $i \leq m-2$
assumes $v t s^{\prime}=d r o p i v t s$
assumes $p=$ make-polygonal-path vts
assumes $p^{\prime}=$ make-polygonal-path vts ${ }^{\prime}$
assumes loop-free p
shows loop-free p^{\prime}
using assms
proof (induct i arbitrary: vts' p^{\prime})
case 0
then show? case by simp
next
case (Suc i)
let ?vts" $=$ drop i vts
let ? $p^{\prime \prime}=$ make-polygonal-path ?vts"
have ih: loop-free ? $p^{\prime \prime}$
using Suc.hyps Suc.prems(2) Suc.prems(6) Suc-leD assms(1) assms(4) by
blast
obtain $a b$ where $a b: ?^{2} t s^{\prime \prime}=a \# v t s^{\prime} \wedge b=v t s^{\prime}!0$
by (metis Cons-nth-drop-Suc Suc.prems(3) constant-linepath-is-not-loop-free
drop-eq-Nil ih linorder-not-less make-polygonal-path.simps(1))
then have ?vts" $=a \# b \#\left(v t s^{\prime}!1\right) \#(d r o p 2 v t s)$
by (smt (verit, ccfv-threshold) Cons-nth-drop-Suc Suc.prems(2) Suc.prems(3)
Suc-1 Suc-diff-Suc Suc-le-eq assms(1) diff-Suc-1 diff-is-0-eq drop-drop le-add-diff-inverse
length-drop nat-le-linear not-less-eq-eq zero-less-Suc)
then have $? p^{\prime \prime}=($ linepath $a b)+++p^{\prime}$
using make-polygonal-path.simps(4)[of a b vts'! 1 drop 2 vts $]$ Suc.prems by
(simp add: ab)
moreover have pathfinish (linepath a b) $=$ pathstart p^{\prime}
using Suc.prems ab
by (metis constant-linepath-is-not-loop-free ih make-polygonal-path.simps(2)
pathfinish-linepath polygon-pathstart)
ultimately have arc p^{\prime} using simple-path-joinE
by (metis ih make-polygonal-path-gives-path simple-path-def)
then show? ?ase using arc-imp-simple-path simple-path-def by blast
qed
lemma joinpaths-tl-transform:
assumes $f=(\lambda x::$ real. $2 * x-1)$

```
    assumes pathfinish g1 = pathstart g2
    assumes p=g1+++ g2
    assumes }x\geq1/
    shows p x = g2 ( f x )
proof-
    { assume x = 1/2
        moreover then have fx=0 using assms by fastforce
        ultimately have px= pathfinish g1 ^g2 (fx)= pathfinish g1
            using assms unfolding pathfinish-def pathstart-def joinpaths-def by force
        then have p x = g2 ( fx) using assms unfolding joinpaths-def by simp
    } moreover
    { assume x > 1/2
        then have px=g2(fx) using assms unfolding joinpaths-def by simp
    }
    ultimately show px=g2 ( fx) using assms by fastforce
qed
lemma joinpaths-tl-image-transform:
    assumes }f=(\lambdax::real. 2*x-1
    assumes pathfinish g1 = pathstart g2
    assumes p=g1+++g2
    assumes 1/2 \leqa^a\leqb
    shows p`{a..b} = g2`{f a..f b}
proof-
    have }\forallx\in{a..b}.px=g2 (fx) using assms joinpaths-tl-transform[of f g1 g2
p] by force
    then have p`{a..b} = (g2\circf)`{a..b} by simp
    also have ... = g2`{fa..f b} using two-x-minus-one-image by (metis assms(1,4)
image-comp)
    finally show ?thesis .
qed
lemma vts-sublist-path-image:
    assumes p= make-polygonal-path vts
    assumes p'= make-polygonal-path vts'
    assumes vts' = take j (drop i vts)
    assumes m= length vts
    assumes n= length vts'
    assumes k=i+j
    assumes k\leqm-1^2\leqj
    assumes x1 = (\mathscr{2}i}-1)/(\mathbb{N}i
    assumes x2 = (2`(k-1) - 1)/(2`(k-1))
    shows path-image p' = p`{x1..x2}
    using assms
proof(induct i arbitrary:vts p p vts'm k x1 x2)
    case 0
    then show ?case using vts-split-path-image[of p drop 0 vts p
    by (metis (no-types, opaque-lifting) Suc-diff-le add-0 cancel-comm-monoid-add-class.diff-cancel
diff-is-0-eq div-by-1 drop.simps(1) drop-0 le-add-diff-inverse length-drop less-one
```

```
linorder-not-le plus-1-eq-Suc pos2 power.simps(1))
next
    case (Suc i)
    let ?vts-tl = tl vts
    let ?vts-tl' = take j (drop i ?vts-tl)
    let ?p-tl= make-polygonal-path ?vts-tl
    let ? m' = m-1
    let ? }\mp@subsup{k}{}{\prime}=i+
    let ?.x1' = (2`i - 1)/(2`i)
    let ?x\mp@subsup{\mathbb{R}}{}{\prime}=(\mp@subsup{\mathscr{D}}{}{`}(?\mp@subsup{k}{}{\prime}-1)-1)/(2`(?\mp@subsup{k}{}{\prime}-1))
    let ?f = \lambdax. 2*x-1
    have vts' = ?vts-tl' using Suc.prems by (metis drop-Suc)
    then have p' = make-polygonal-path ?vts-tl' using Suc.prems by argo
    then have ih: path-image p' = ?p-tl`{?x1'..?x2'}
    using Suc.hyps[of ?p-tl ?vts-tl p' ?vts-tl' ?m' ?k' ?x1' ?x2 ] Suc.prems
    by (smt (verit, ccfv-SIG) Suc-eq-plus1 add-diff-cancel-right' add-leD1 diff-diff-left
diff-is-0-eq drop-Suc le-add-diff-inverse length-tl linorder-not-le not-add-less2)
    let ?a = vts!0
    let ?b = vts!1
    let ?l = linepath ?a ?b
    have p: p=?l +++ ?p-tl
    proof-
    have length vts \geq3 using Suc.prems by linarith
    then obtain c w where vts = ?a # ?b # c #w
            by (metis Cons-nth-drop-Suc One-nat-def Suc-le-eq drop0 numeral-3-eq-3
order-less-le)
    thus ?thesis
            using Suc.prems make-polygonal-path.simps(4)[of ?a ?b c w] by (metis
list.sel(3))
    qed
    moreover have x1 \geq1/2 using Suc.prems by (simp add: plus-1-eq-Suc)
    moreover have x2 \geqx1
        using Suc.prems
    by (smt (verit, best) Nat.diff-add-assoc2 One-nat-def add-Suc-shift add-diff-cancel-left'
add-mono-thms-linordered-semiring(2) diff-add-cancel dual-order.trans group-cancel.rule0
numeral-One one-le-numeral one-le-power plus-1-eq-Suc power-increasing real-shrink-le
trans-le-add2)
    moreover have pathfinish ?l = pathstart ?p-tl
        by (metis One-nat-def Suc.prems(4)Suc.prems(6)Suc.prems(7) Suc-neq-Zero
add-is-0 diff-is-0-eq' diff-zero length-tl linorder-not-less list.size(3) nth-tl pathfin-
ish-linepath polygon-pathstart)
    ultimately have p}\mp@subsup{p}{}{`}{x1..x2}=?p-tl`{?f x1 ..?f x2
    using joinpaths-tl-image-transform[of ?f ?l ?p-tl p x1 x2] by presburger
also have ... = ?p-tl'{ ?x1'..?x2'}
    by (metis (no-types, lifting) Nat.add-diff-assoc Suc.prems(6-9) add.commute
add-leD1 bounding-interval-helper1 diff-Suc-1 le-add2 nat-1-add-1 plus-1-eq-Suc sum-
```

```
mation-helper)
    also have ... = path-image p' using ih by blast
    finally show ?case by argo
qed
lemma one-append-simple-path:
    fixes vts :: (real^2) list
    assumes vts=vts'@ @ [z]
    assumes n= length vts
    assumes n\geq3
    assumes p= make-polygonal-path vts
    assumes p'= make-polygonal-path vts'
    assumes simple-path p
    shows simple-path p'
    using assms
proof(induct n arbitrary:vts vts' p p')
    case 0
    then show ?case by linarith
next
    case (Suc n)
    { assume *: Suc n=3
    then obtain abc where abc: vts=[a,b,c]^vts'=[a,b]
            using Suc.prems
            by (smt (z3) Suc-le-length-iff Suc-length-conv append-Cons diff-Suc-1 drop0
length-0-conv length-append-singleton numeral-3-eq-3)
    then have p' = linepath a b
                by (simp add:Suc.prems(5))
    moreover have a\not=b using loop-free-polygonal-path-vts-distinct Suc.prems
                by (metis abc butlast-snoc distinct-length-2-or-more simple-path-def)
    ultimately have ?case by blast
    } moreover
    { assume *:Suc n>3
        then obtain a b tl' where ab: vts'}=a#t\mp@subsup{l}{}{\prime}\wedgeb=tl!!0 using Suc.prem
        by (metis Suc-le-length-iff Suc-le-mono length-append-singleton numeral-3-eq-3)
    moreover then have p=make-polygonal-path (a# (t\mp@subsup{l}{}{\prime}@[z])) using Suc.prems
by auto
    moreover then have p:p=linepath a b +++ make-polygonal-path (tl' @ [z])
            using make-polygonal-path.simps ab
        by (smt (verit, ccfv-threshold) * Cons-nth-drop-Suc One-nat-def Suc.prems(1)
Suc.prems(2) Suc-1 Suc-less-eq append-Cons drop0 length-Cons length-append-singleton
length-greater-0-conv list.size(3) not-numeral-less-one numeral-3-eq-3)
    moreover then have simple-path ... using Suc.prems by meson
    ultimately have pre-ih: simple-path (make-polygonal-path (tl' @ [z]))
    using Suc.prems(1) Suc.prems(2) Suc.prems(3) ab tail-of-simple-polygonal-path-is-simple
by simp
    then have ih: simple-path (make-polygonal-path tl')
        using Suc.hyps * Suc.prems(1) Suc.prems(2) ab by force
    have simple-path ((linepath a b) +++ make-polygonal-path tl')
    proof -
```

let $? g 1=$ linepath $a b$
let ? $g 2=$ make-polygonal-path $t l^{\prime}$
let ? $G 1=$ path-image ?g1
let ?G2 $=$ path-image ?g2
have pathfinish ? $g 2=$ last $t l^{\prime}$
by (metis constant-linepath-is-not-loop-free ih last-conv-nth make-polygonal-path.simps(1) polygon-pathfinish simple-path-def)
also have $\ldots=$ vts $!($ length vts -2$)$
by (metis ab Suc.prems(1) Suc-1 constant-linepath-is-not-loop-free diff-Suc-1 diff-Suc-Suc ih impossible-Cons last.simps last-conv-nth length-Cons length-append-singleton list.discI make-polygonal-path.simps(1) nle-le nth-append order-less-le simple-path-def)
finally have pathfinish-g2: pathfinish ? g2 $=$ vts ! (length vts -2$)$.
have pathfinish ?g1 = pathstart ?g2
by (metis ab constant-linepath-is-not-loop-free ih linepath-1' make-polygonal-path.simps(1) pathfinish-def polygon-pathstart simple-path-def)
moreover have arc ? g1
by (metis Suc.prems(6) parc-linepath constant-linepath-is-not-loop-free not-loop-free-first-component simple-path-def)
moreover have arc ? g2
proof-
have pathstart ? g2 $=b$
using calculation(1) by auto
moreover have $b=v t s!1$
by (metis ab One-nat-def Suc.prems(1) Suc.prems(2) Suc.prems(3)
Suc-le-eq length-append-singleton not-less-eq-eq nth-Cons-Suc nth-append numeral-3-eq-3)
moreover have last $t l^{\prime} \neq v t s!1$
using loop-free-polygonal-path-vts-distinct Suc.prems
by (metis pre-ih ab append-Nil append-butlast-last-id butlast-conv-take but-last-snoc calculation(2) constant-linepath-is-not-loop-free hd-conv-nth ih index-Cons index-last list.collapse make-polygonal-path.simps(2) simple-path-def take0)
ultimately have pathfinish ? g2 $\neq b$
using pathfinish-g2 〈pathfinish (make-polygonal-path $t l^{\prime}$) = last tl'〉 by
presburger
thus ?thesis
using <pathstart (make-polygonal-path $\left.\left.t l^{\prime}\right)=b\right\rangle$ arc-simple-path ih by blast
qed
moreover have ?G1 \cap ?G2 \subseteq \{pathstart ?g2 \}
proof (rule subsetI)
let $? z=((2::$ real $) \wedge(n-1)-1) /\left(\mathcal{D}^{\wedge}(n-1)\right)$
have $g 1$: ? $G 1=p\{0 . .1 / 2\}$
proof-
have take 2 vts $=[a, b]$
by (smt (verit) * One-nat-def Suc.prems(1) Suc.prems(2) Suc-1 ab ap-pend-Cons butlast-snoc drop0 drop-Suc-Cons length-append-singleton less-Suc-eq-le not-less-eq-eq nth-butlast numeral-3-eq-3 plus-1-eq-Suc same-append-eq take-Suc-Cons take-Suc-eq take-add take-all-iff)
then have ?g1 = make-polygonal-path (take 2 vts)
using make-polygonal-path.simps by presburger
moreover have $1<n$ using $*$ by linarith
ultimately have ? $G 1=p ‘\left\{0 . .\left(2^{\wedge}(2-1)-1\right) /\left(2^{\wedge}(2-1)\right)\right\}$
using vts-split-path-image
by (metis * Suc.prems(2) Suc.prems(4) Suc-1 Suc-leD Suc-lessD
eval-nat-numeral(3) order.refl)
thus ?thesis by force
qed
have $g 2: ? G 2=p\{1 / 2 . . ? z\}$
proof-
have $t l^{\prime}=$ take $(n-1)($ drop 1 vts $)$
using ab Suc.prems(1) Suc.prems(2) by simp
moreover then have ? $\mathrm{g}_{2}=$ make-polygonal-path (take $(n-1)($ drop 1 vts)) by blast
ultimately have $? G 2=p\left\{\left(\mathbb{2}^{\wedge} 1-1\right) /\left(\mathscr{R}^{\wedge} 1\right) . . ? z\right\}$
using vts-sublist-path-image[of p vts ?g2 tl' $n-11--n\left((2:: \text { real) })^{\wedge} 1-\right.$ 1)/($\left.2^{\wedge} 1\right) ?$?
by (metis * Suc.prems(1) Suc.prems(2) Suc.prems(4) Suc-eq-plus1 ab add-0 add-Suc-shift add-le-imp-le-diff diff-Suc-Suc diff-zero eval-nat-numeral(3) length-Cons length-append less-Suc-eq-le list.size(3) order.refl)
thus ?thesis by simp
qed
have $1 / 2 \leq ? z$
using * bounding-interval-helper1[of $n-1$] Suc.prems
by (smt (verit) One-nat-def diff-Suc-Suc less-diff-conv numeral-3-eq-3
one-le-power plus-1-eq-Suc power-one-right power-strict-increasing-iff real-shrink-le add-2-eq-Suc diff-add-inverse less-trans-Suc numeral-eq-Suc pos2 self-le-power zero-less-diff)
moreover have ? $z<1$ by auto
ultimately have $z: 1 / 2 \leq ? z \wedge ? z<1$ by blast
fix x
assume $x \in ? G 1 \cap$?G2
then obtain $t 1$ t2 where $t 1 t 2: t 1 \in\{0 . .1 / 2\} \wedge t 2 \in\{1 / 2 . . ? z\} \wedge p t 1=$ $x \wedge p t 2=x$
by (smt (verit, del-insts) g1 g2 Int-iff imageE path-image-def)
moreover have $(t 1=t 2) \vee(t 1=0 \wedge t 2=1) \vee(t 1=1 \wedge t 2=0)$
proof-
have $t 1 \in\{0 . .1\} \wedge t 2 \in\{0 . .1\}$
by (meson t1t2 z atLeastAtMost-iff dual-order.trans less-eq-real-def)
thus ?thesis using Suc.prems(6) unfolding simple-path-def loop-free-def using t1t2
by presburger
qed
moreover have $t 1=1 / 2$ using calculation by force
ultimately have $x=$ pathstart ? $g 2$
by (metis ab constant-linepath-is-not-loop-free dual-order.refl eq-divide-eq-numeral1 (1) ih joinpaths-def make-polygonal-path.simps(1) mult.commute p pathfinish-def pathfin-ish-linepath polygon-pathstart simple-path-def zero-neq-numeral)
thus $x \in\{$ pathstart ? $g 2\}$ by simp
qed
ultimately show ?thesis using arc-join-eq ih by (metis arc-imp-simple-path)
qed
moreover have $v t s^{\prime}=a \# t l^{\prime}$ using Suc.prems ab by argo
moreover have $p^{\prime}=($ linepath $a b)+++$ make-polygonal-path $t l^{\prime}$
proof -
have Suc (length $t l^{\prime}$) $=$ length $v t s^{\prime}$ by (simp add: ab)
then show ?thesis
by (metis (no-types) * Cons-nth-drop-Suc Suc.prems(1) Suc.prems(2)
Suc.prems(5) Suc-lessD ab drop-0 length-append-singleton make-polygonal-path.simps(4)
not-less-eq numeral-3-eq-3)
qed
ultimately have ?case by blast
\}
ultimately show ?case using Suc.prems by linarith
qed
lemma take-i-is-loop-free:
fixes vts :: (real 2) list
assumes $n=$ length vts
assumes $2 \leq i \wedge i \leq n$
assumes $\mathrm{vts}^{\prime}=$ take $i \mathrm{vts}$
assumes $p=$ make-polygonal-path vts
assumes $p^{\prime}=$ make-polygonal-path vts'
assumes loop-free p
shows loop-free p^{\prime}
using assms
proof (induct $n-i$ arbitrary: vts ${ }^{\prime} i$ p p^{\prime})
case 0
moreover then have $p=p^{\prime}$ by auto
ultimately show ?case by argo
next
case (Suc x)
let $? i^{\prime}=i+1$
let $? q$-vts $=$ take $(i+1)$ vts
let $? q=$ make-polygonal-path ? q-vts
have $n-? i^{\prime}=x$ using Suc.hyps(2) by linarith
then have loop-free ?q using Suc.hyps Suc.prems(2) Suc.prems(4) Suc.prems(6) assms(1) by auto
moreover obtain z where ? $q=$ make-polygonal-path (vts' @ $[z]$)
unfolding Suc.prems(3)
by (metis Suc.hyps(2) Suc-eq-plus1 assms(1) take-Suc-conv-app-nth zero-less-Suc zero-less-diff)
ultimately show loop-free p^{\prime}
unfolding Suc.prems using one-append-simple-path unfolding simple-path-def
by (metis One-nat-def Suc.prems(2) Suc-1 add-diff-cancel-right' append-take-drop-id assms(1) diff-diff-cancel length-append length-append-singleton length-drop make-polygonal-path-gives-path not-less-eq-eq numeral-3-eq-3)

qed

lemma sublist-is-loop-free:
fixes vts :: (real^2) list
assumes $p=$ make-polygonal-path vts
assumes $p^{\prime}=$ make-polygonal-path vts ${ }^{\prime}$
assumes loop-free p
assumes $m=$ length vts
assumes $n=$ length $v t s^{\prime}$
assumes sublist vts ${ }^{\prime}$ vts
assumes $n \geq 2 \wedge m \geq 2$
shows loop-free p^{\prime}
proof-
obtain pre post where vts: vts $=$ pre @ vts' @ post using $\operatorname{assms}(6)$ unfolding sublist-def by blast
then have vts' @ post = drop (length pre) vts using vts by simp
moreover have $v t s^{\prime}=$ take (length vts $\left.{ }^{\prime}\right)\left(v t s^{\prime} @\right.$ post) using vts by simp
moreover have loop-free (make-polygonal-path (vts' @ post))
using drop-i-is-loop-free assms calculation
by (smt (verit, del-insts) One-nat-def Suc-1 Suc-leD diff-diff-cancel drop-all
le-diff-iff' length-append length-drop list.size(3) nat-le-linear not-numeral-le-zero
numeral-3-eq-3 trans-le-add1)
ultimately show ?thesis
using take-i-is-loop-free assms
by (metis sublist-append-rightI sublist-length-le)
qed
lemma diff-points-path-image-set-property:
fixes $a b:$: real ${ }^{\wedge}$ 2
assumes $a \neq b$
shows path-image (linepath a b) $\neq\{a, b\}$
proof -
have not-a: (linepath a b) $(1 / 2) \neq a$
by (smt (verit) add-diff-cancel-left' assms divide-eq-0-iff linepath-def scaleR-cancel-left scaleR-collapse)
have not-b: (linepath ab) $(1 / 2) \neq b$
by (smt (verit, ccfv-SIG) add-diff-cancel-right' assms divide-eq-1-iff linepath-def
scaleR-cancel-left scaleR-collapse)
have (linepath ab) (1/2) \in path-image (linepath a b)
unfolding path-image-def by simp
then show ?thesis using not-a not-b by blast
qed
lemma polygonal-path-vertex-t:
assumes $p=$ make-polygonal-path vts
assumes $n=$ length vts
assumes $n \geq 1$
assumes $0 \leq i \wedge i<n-1$
assumes $x=(2 へ i-1) /\left(\right.$ 2^i $\left.^{2}\right)$

```
    shows vts!i = px
    using assms
proof(induct i arbitrary: p vts n x)
    case 0
    then show ?case
    by (metis bot-nat-0.extremum cancel-comm-monoid-add-class.diff-cancel diff-is-0-eq
div-0 less-nat-zero-code list.size(3) pathstart-def polygon-pathstart power-0)
next
    case (Suc i)
    let ?vts' = tl vts
    let ? p' = make-polygonal-path ?vts'
    let ? }\mp@subsup{x}{}{\prime}=(2`\mathfrak{N}i-1)/(2```
    have px=? ? ' ? 'x
    proof-
    let ?a = vts!0
    let ?b = vts!1
    let ?l = linepath ?a ?b
    have n\geq3 using Suc.prems by linarith
    then have length ?vts' \geq2 by (simp add: Suc.prems(2))
    then have p=?l +++? ? p
        using Suc.prems make-polygonal-path.simps(4)[of ?a ?b ?vts'!1 drop 2 ?vts]
    by (metis (no-types, opaque-lifting) Cons-nth-drop-Suc Suc-1 bot-nat-0.not-eq-extremum
diff-Suc-1 diff-is-0-eq drop-0 drop-Suc less-Suc-eq zero-less-diff)
    moreover have pathfinish ?l = pathstart ? p'
        by (metis One-nat-def <2 \leq length (tl vts)> length-greater-0-conv nth-tl or-
der-less-le-trans pathfinish-linepath polygon-pathstart pos2)
    moreover have ( }\lambdax::\mathrm{ real. 2 * x - 1) x = ? }\mp@subsup{x}{}{\prime
        using Suc.prems(5) Suc-eq-plus1 bounding-interval-helper1 diff-Suc-1 le-add2
summation-helper
        by presburger
    ultimately show ?thesis using joinpaths-tl-transform[of \lambdax. 2*x - 1 ?l ?p' p
x]
    by (smt (verit, del-insts) divide-nonneg-nonneg half-bounded-equal two-realpow-ge-one)
    qed
    moreover have vts!(i+1) = ?vts!!i using Suc.prems by (simp add: nth-tl)
    moreover have ?vts!!i=? ? ' ? ' ' using Suc.hyps Suc.prems by force
    ultimately show ?case by simp
qed
lemma loop-free-split-int:
    assumes p= make-polygonal-path vts ^ loop-free p
    assumes vts1 = take i vts
    assumes vts2 = drop (i-1) vts
    assumes c1 = make-polygonal-path vts1
    assumes c2 = make-polygonal-path vts2
    assumes n= length vts
    assumes 1\leqi^i<n
```

shows $($ path-image c1 $) \cap($ path-image c2 $) \subseteq\{$ pathstart c1, pathstart c2 $\}$
(is ?C1 \cap ? C2 \subseteq \{pathstart c1, pathstart c2 $\}$)
proof (rule subsetI)
let $? t=((2::$ real $) \uparrow(i-1)-1) /\left(\mathcal{R}^{\wedge}(i-1)\right)$
fix x
assume $x \in ? C 1 \cap ? C 2$
moreover have $c 1 c 2: ? C 1=p\{0 . . ? t\} \wedge ? C 2=p^{〔}\{? t . .1\}$
using vts-split-path-image assms polygon-of-def by metis
ultimately obtain $t 1$ t2 where $t 1 t 2: t 1 \in\{0 . . ? t\} \wedge t 2 \in\{? t . .1\} \wedge p t 1=x$
$\wedge p t 2=x$ by auto
moreover have $t 1 \in\{0 . .1\} \wedge t 2 \in\{0 . .1\}$ using calculation by force
moreover have $(t 1=t 2) \vee(t 1=0 \wedge t 2=1)$
using assms(1) calculation unfolding polygon-of-def polygon-def simple-path-def loop-free-def
by fastforce
ultimately have $x \in\{p$?t, $p 0\}$ by fastforce
moreover have $p ? t=$ pathstart $c \mathcal{Z}$
using assms polygonal-path-vertex-t
by (smt (verit, ccfv-SIG) Cons-nth-drop-Suc diff-less-mono le-eq-less-or-eq length-drop less-imp-diff-less less-trans-Suc less-zeroE linorder-neqE-nat list.size(3) nth-Cons-0 numeral-1-eq-Suc-0 numerals(1) polygon-of-def polygon-pathstart)
moreover have $p 0=$ pathstart c1 using assms
by (metis One-nat-def diff-is-0-eq diff-zero linorder-not-less nth-take path-start-def polygon-pathstart take-eq-Nil zero-less-Suc)
ultimately show $x \in\{$ pathstart c1, pathstart c2 $\}$ by blast
qed
lemma loop-free-arc-split-int:
assumes $p=$ make-polygonal-path vts \wedge loop-free $p \wedge$ arc p
assumes vts $1=$ take i vts
assumes vts2 $=d r o p(i-1)$ vts
assumes $c 1=$ make-polygonal-path vts1
assumes $c 2=$ make-polygonal-path vts2
assumes $n=$ length vts
assumes $1 \leq i \wedge i<n$
shows (path-image c1) $\cap($ path-image c2 $) \subseteq\{$ pathstart $c 2\}$
(is ?C1 \cap ?C2 $\subseteq\{$ pathstart c2 $\}$)
proof (rule subsetI)
let $? t=((2::$ real $) \wedge(i-1)-1) /\left(\mathcal{D}^{\wedge}(i-1)\right)$
fix x
assume $x \in$?C1 \cap ?C2
moreover have $c 1 c 2: ? C 1=p\{0 . . ? t\} \wedge ? C 2=p\{? t . .1\}$
using vts-split-path-image assms polygon-of-def by metis
ultimately obtain $t 1$ t2 where $t 1 t 2: t 1 \in\{0 . . ? t\} \wedge t 2 \in\{? t . .1\} \wedge p t 1=x$ $\wedge p$ t2 $=x$ by auto
moreover have $t 1 \in\{0 . .1\} \wedge t 2 \in\{0 . .1\}$ using calculation by force
moreover have $(t 1=t 2) \vee(t 1=0 \wedge t 2=1)$
using assms(1) calculation unfolding polygon-of-def polygon-def simple-path-def loop-free-def
by fastforce
moreover then have $t 1=t 2$
using assms(1) unfolding arc-def using calculation(1) inj-on-contraD by fastforce
ultimately have $x \in\{p$?t $\}$ by fastforce
moreover have p ?t = pathstart $c \mathcal{L}$
using assms polygonal-path-vertex- t
by (smt (verit, ccfv-SIG) Cons-nth-drop-Suc diff-less-mono le-eq-less-or-eq length-drop less-imp-diff-less less-trans-Suc less-zeroE linorder-neqE-nat list.size(3) nth-Cons-0 numeral-1-eq-Suc-0 numerals(1) polygon-of-def polygon-pathstart)
ultimately show $x \in\{$ pathstart $c 2\}$ by fast
qed
lemma loop-free-append:
assumes $p=$ make-polygonal-path vts
assumes $p 1=$ make-polygonal-path vts1
assumes $p 2=$ make-polygonal-path vts2
assumes vts $=v t s 1$ @ ($t l v t s 2$)
assumes loop-free p1 ^loop-free p2
assumes path-image p1 \cap path-image $p 2 \subseteq$ \{pathstart p1, pathstart p2 $\}$
assumes last vts $2 \neq h d$ vts $1 \longrightarrow$ path-image p1 \cap path-image $p 2 \subseteq\{$ pathstart p2\}
assumes last vts1 $=h d v t s 2$
assumes arc p1 $\wedge \operatorname{arc} p 2$
shows loop-free p
using assms
proof(induct length vts1 arbitrary: p p1 p2 vts vts1 vts2 rule: less-induct)
case less
have 1: length vts $1 \geq 2$

using less

by (metis Suc-1 arc-distinct-ends constant-linepath-is-not-loop-free diff-is-0-eq ${ }^{\prime}$
make-polygonal-path.simps(1) not-less-eq-eq polygon-pathfinish polygon-pathstart)
moreover have length vts $2 \geq 2$
using less.prems
by (metis One-nat-def Suc-1 Suc-leI arc-distinct-ends diff-Suc-1 length-greater-0-conv
make-polygonal-path.simps(1) nat-less-le pathfinish-linepath pathstart-linepath poly-
gon-pathfinish polygon-pathstart)
ultimately have length vts ≥ 3 using less assms(4) by auto
\{ assume $*$: length vts $1=2$
then obtain $a b$ where vts1 $=[a, b]$
by (metis 1 Cons-nth-drop-Suc One-nat-def Suc-1 drop0 drop-eq-Nil lessI pos2)
then have $p 1: p 1=$ linepath $a b$
using less make-polygonal-path.simps(3) by metis
have $p: p=p 1+++p 2$
using $p 1$ less
by (smt (verit) $\langle v t s 1=[a, b]\rangle$ append-Cons assms(4) constant-linepath-is-not-loop-free last-ConsL last-ConsR list.exhaust-sel list.inject list.simps(3) make-polygonal-path.elims
self-append-conv2)
have b : pathstart $p 2 \in$ path-image $p 1 \cap$ path-image $p 2$
by (metis IntI less $(3,4,6,9)$ constant-linepath-is-not-loop-free hd-conv-nth last-conv-nth make-polygonal-path.simps (1) pathfinish-in-path-image pathstart-in-path-image polygon-pathfinish polygon-pathstart)
\{ assume pathstart $p 1=$ pathfinish p2
then have ?case using simple-path-join-loop-eq[of p2 p1] less.prems by (metis make-polygonal-path-gives-path p path-join-eq simple-path-def)
\} moreover
\{ assume $* *$: pathstart p1 \neq pathfinish p2
then have path-image p1 \cap path-image p2 $=\{$ pathstart $p 2\}$
using less.prems b
by (metis constant-linepath-is-not-loop-free empty-subsetI hd-conv-nth in-sert-subset last-conv-nth make-polygonal-path.simps(1) polygon-pathfinish polygon-pathstart subset-antisym)
then have ?case
using arc-join-eq[of p1 p2]
by (metis less $(2,4,10)$ arc-imp-simple-path arc-join-eq-alt make-polygonal-path-gives-path p path-join-path-ends simple-path-def)
\}
ultimately have ? case by blast
\} moreover
\{ assume $*$: length vts1 > 2
then have len-p1: length vts1 ≥ 3 by linarith
then obtain $a b$ vts-tl where $a b: v t s=a \# v t s-t l \wedge b=h d v t s-t l$
by (metis $\langle 3 \leq$ length vts〉 length-0-conv list.collapse not-numeral-le-zero)
have vts1-char: vts1 $=(v t s 1!0) \#(v t s 1!1) \#(v t s 1!2) \#(d r o p 3 v t s 1)$
using len-p1
by (metis 1 Cons-nth-drop-Suc One-nat-def Suc-1 drop0 length-greater-0-conv linorder-not-less list.size(3) not-less-eq-eq not-numeral-le-zero numeral-3-eq-3)
then have tail-vts1-char: tl vts1 = (vts1! 1) \# (vts1!2) \# (drop 3 vts1)
by (metis list.sel(3))
let $? l=$ linepath $a b$
let ?vts1-tl = tl vts1
let ? $p 1-t l=$ make-polygonal-path ?vts1-tl
let ?vts2-tl $=t l v t s 2$
let ?p2-tl $=$ make-polygonal-path ?vts2-tl
let $? p-t l=$ make-polygonal-path vts-tl
have $p: p=? l+++? p-t l$
unfolding less.prems(1)
by (smt (verit, ccfv-SIG) Suc-le-length-iff 〈3
list.sel(1) list.sel(3) make-polygonal-path.elims numeral-3-eq-3)
have $p 1: p 1=? l+++$? $p 1-t l$
using ab unfolding less.prems(2)
by (smt (verit, ccfv-SIG) * Nitpick.size-list-simp(2) One-nat-def Suc-1 Suc-le-eq hd-append2 less.prems(4) list.sel(1) list.sel(3) make-polygonal-path.elims nat-less-le tl-append2)
have $p 1$－img：path－image ？l \cap path－image ？p1－tl $=\{$ pathstart ？p1－tl\}
by（metis arc－join－eq－alt less．prems（2）less．prems（9）make－polygonal－path－gives－path p1 path－join－path－ends）
have vts－tl＝？vts1－tl＠（tl vts2）
using less．prems（4）ab
by（metis＊length－greater－0－conv list．sel（3）order．strict－trans pos2 tl－append2）
moreover have loop－free ？p1－tl \wedge loop－free p2
using 〈3 \leq length vts1〉less．prems（2）less．prems（5）sublist－is－loop－free by fastforce
moreover have path－image ？p1－tl \cap path－image p2 $\subseteq\{$ pathstart $p 2\}$
proof－
have path－image ？p1－tl \subseteq path－image p1
by（metis（no－types，opaque－lifting）＊Suc－1 Suc－lessD length－tl less．prems（2）
list．collapse list．size（3）order．refl path－image－cons－union sup．bounded－iff zero－less－diff zero－order（3））
then have path－image ？$p 1-t l \cap$ path－image $p 2 \subseteq\{$ pathstart $p 1$ ，pathstart $p 2\}$ using less by blast
moreover have pathstart p1 \notin path－image ？p1－tl
proof（rule ccontr）
assume \neg pathstart p1 \notin path－image ？p1－tl
then have pathstart $p 1 \in$ path－image ？p1－tl by blast
thus False
by（metis（no－types，lifting）IntI arc－def arc－simple－path less（10）make－polygonal－path－gives－path
p1 p1－img path－join－path－ends pathstart－in－path－image pathstart－join simple－path－joinE singletonD）
qed
ultimately have path－image ？p1－tl \cap path－image $p 2 \subseteq\{$ pathstart $p 2\}$ by blast
thus ？thesis by blast
qed
moreover then have last vts2 $\neq h d$ ？vts1－tl
\longrightarrow path－image ？p1－tl \cap path－image p2 \subseteq \｛pathstart p2\} by blast
moreover have last ？vts1－tl $=h d$ vts2
by（metis＊Suc－1 drop－Nil drop－Suc－Cons last－drop last－tl less．prems（8） list．collapse）
moreover have arc ？p1－tl \wedge arc p2
by（smt（verit，best）＊Nitpick．size－list－simp（2）Suc－1 arc－imp－simple－path constant－linepath－is－not－loop－free diff－Suc－Suc diff－is－0－eq leD length－greater－0－conv length－tl less．prems（2）less．prems（5）less．prems（9）list．sel（3）make－polygonal－path．elims make－polygonal－path－gives－path order．strict－trans path－join－path－ends pos2 simple－path－joinE）
ultimately have ih1：loop－free ？p－tl
using less．hyps［of ？vts1－tl ？p－tl vts－tl ？p1－tl p2 vts2］＊less．prems（3）by fastforce
have p－tl－img：path－image ？p－tl $=$ path－image ？p1－tl \cup path－image $p 2$
by（metis（no－types，lifting）＊Suc－1 Suc－le－eq 〈2 \leq length vts2〉〈last $(t l$ vts1）$=$ $h d v t s 2\rangle\langle v t s-t l=t l v t s 1$＠tl vts2〉hd－conv－nth last－conv－nth length－greater－0－conv
length－tl less．prems（3）less－diff－conv make－polygonal－path－image－append－alt order－less－le－trans path－image－join plus－1－eq－Suc polygon－pathfinish polygon－pathstart pos2）
have 1：length $[a, b]<$ length vts1 using $\langle 3 \leq$ length vts1〉 by fastforce
moreover have 2：$p=$ make－polygonal－path vts using less．prems（1）by auto
moreover have 3：？l＝make－polygonal－path $[a, b]$ by simp
moreover have 4：？p－tl＝make－polygonal－path vts－tl using less by simp
moreover have 5：vts $=[a, b]$＠tl vts－tl
using $a b<3 \leq$ length vts〉 append－eq－Cons－conv by fastforce
moreover have 6：loop－free ？l \wedge loop－free ？p－tl
proof－
have sublist $[a, b]$ vts1
by（metis（no－types，opaque－lifting） 1 Cons－nth－drop－Suc Suc－lessD ab ap－ pend－Cons drop0 length－Cons less．prems（4）list．sel（1）list．sel（3）list．size（3）sub－ list－take take0 take－Suc－Cons）
then have loop－free（make－polygonal－path $[a, b]$ ）
using sublist－is－loop－free＊less．prems（2）less．prems（5）by fastforce
then have loop－free？using make－polygonal－path．simps（3）by simp
thus ？thesis using ih1 by simp

qed

moreover have 9：last $[a, b]=h d$ vts－tl by（simp add：ab）
moreover have 10：arc ？l \wedge arc ？p－tl

proof－

have pathstart ？$p-t l=b$
by（metis 6 ab constant－linepath－is－not－loop－free hd－conv－nth make－polygonal－path．simps（1） polygon－pathstart）
moreover have pathfinish ？$p-t l \neq b$
proof（rule ccontr）
assume \neg pathfinish ？$p-t l \neq b$
have pathfinish ？$p-t l=$ pathfinish p2
by（smt（verit） 59 Nil－tl 〈2 \leq length vts2〉 \neg pathfinish（make－polygonal－path $v t s-t l) \neq b>a b$ arc－distinct－ends last－append last－conv－nth last－tl length－tl less．prems（3） less．prems（4）less．prems（9）list．size（3）not－numeral－le－zero polygon－pathfinish poly－ gon－pathstart）
moreover have $b \in$ path－image $p 1$
by（metis list．size（3）1 Cons－nth－drop－Suc Suc－lessD UnCI ab append－eq－conv－conj drop0 hd－append2 hd－conv－nth length－Cons less．prems（2）less．prems（4）list．distinct（1） list．sel（3）path－image－cons－union pathstart－in－path－image polygon－pathstart tl－append2）
moreover have $b \neq$ pathstart p1
by（metis（no－types，lifting） 16 ab constant－linepath－is－not－loop－free dual－order．strict－trans hd－append2 hd－conv－nth length－greater－0－conv less．prems（2） less．prems（4）list．sel（1）list．size（3）polygon－pathstart）
moreover have $b \neq$ pathfinish $p 2$
by（metis（no－types，lifting）Int－insert－right－if1 arc－distinct－ends cal－ culation（2）calculation（3）insert－absorb insert－iff insert－not－empty less．prems（6） less．prems（9）pathfinish－in－path－image subset－iff）
ultimately show False
using \prec pathfinish（make－polygonal－path vts－tl）$\neq b\rangle$ by fastforce
qed
ultimately have pathstart ？p－tl \neq pathfinish ？p－tl by simp
then have arc ？p－tl
using ih1 arc－def loop－free－cases make－polygonal－path－gives－path by metis
moreover have arc ？l by（metis 6 arc－linepath constant－linepath－is－not－loop－free）
ultimately show ？thesis by blast
qed
moreover have 7：path－image ？l \cap path－image ？p－tl $\subseteq\{$ pathstart ？l，pathstart ？$p-t l\}$

proof－

have path－image ？l \subseteq path－image $p 1$
by（metis Un－iff 〈loop－free（make－polygonal－path（tl vts1））＾loop－free p2 $\rangle\langle v t s-t l=t l v t s 1 @ t l v t s 2\rangle a b$ constant－linepath－is－not－loop－free hd－append2 $h d-c o n v-n t h ~ m a k e-p o l y g o n a l-p a t h . s i m p s(1) ~ p 1 ~ p a t h-i m a g e-j o i n ~ p a t h f i n i s h-l i n e p a t h ~$ polygon－pathstart subsetI）
then have path－image ？l \cap path－image $p 2 \subseteq$ \｛pathstart p1，pathstart p2\}
using less．prems（6）by auto
moreover have pathstart p2 \notin path－image ？l
by（smt（verit，ccfv－threshold） 10 Int－insert－left－if1 «arc（make－polygonal－path $(t l v t s 1)) \wedge$ arc p2〉〈last（tl vts1）$=h d$ vts2〉〈loop－free（make－polygonal－path（ $t l$ vts1））\wedge loop－free p2＞arc－def arc－distinct－ends arc－join－eq－alt constant－linepath－is－not－loop－free hd－conv－nth insert－absorb last－conv－nth less．prems（3）less．prems（9）make－polygonal－path．simps（1） p1 path－join－eq pathfinish－in－path－image polygon－pathfinish polygon－pathstart single－ ton－insert－inj－eq＇）
ultimately have path－image ？l \cap path－image ？p－tl \subseteq \｛pathstart p1，pathstart ？$p 1-t l\}$
using $p 1$－img p－tl－img by blast
moreover have pathstart ？p1－tl＝pathstart ？p－tl
by（metis 2 less．prems（2）make－polygonal－path－gives－path p p1 path－join－path－ends）
moreover have pathstart $p 1=$ pathstart ？l by（simp add：p1）
ultimately show ？thesis by argo
qed
moreover have 8：last vts－tl $\neq h d[a, b]$
\longrightarrow path－image ？l \cap path－image ？p－tl $\subseteq\{$ pathstart ？p－tl\}
proof clarify
fix x
assume a1：last vts－tl $\neq h d[a, b]$
assume a2：$x \in$ path－image？
assume $a 3: x \in$ path－image ？p－tl
have hd vts $1 \neq$ last vts2
using less．prems
by（metis a1 〈vts－tl＝tl vts1＠tl vts2〉ab arc－distinct－ends constant－linepath－is－not－loop－free hd－append2 last－appendR last－tl length－tl list．sel（1）list．size（3）make－polygonal－path．simps（1） polygon－pathfinish polygon－pathstart）
then have p1－p2－int：path－image p1 \cap path－image p2 $\subseteq\{$ pathstart $p 2\}$
using less．prems by argo
have $x \neq$ pathstart ？l
proof（rule ccontr）

```
        assume **: \negx\not= pathstart ?l
    have pathstart ?l & path-image ?p1-tl
    by (metis Int-iff arc-distinct-ends arc-join-eq-alt empty-iff insertE less.prems(2)
less.prems(9) make-polygonal-path-gives-path p1 path-join-path-ends pathstart-in-path-image)
            then have pathstart ?l \in path-image p2 using p1-img p-tl-img ** a3 by
blast
    then have pathstart ?l \in path-image p1 \cap path-image p2
        by (metis IntI p1 pathstart-in-path-image pathstart-join)
    moreover have pathstart ?l f pathstart p2
        by (metis arc-distinct-ends constant-linepath-is-not-loop-free hd-conv-nth
last-conv-nth less.prems(2) less.prems(3) less.prems(5) less.prems(8) less.prems(9)
make-polygonal-path.simps(1) p1 pathstart-join polygon-pathfinish polygon-pathstart)
            ultimately show False using p1-p2-int by blast
    qed
    moreover have }x=\mathrm{ pathstart ?l }\veex=\mathrm{ pathstart ?p-tl using 7 a2 a3 by
blast
            ultimately show x = pathstart ?p-tl by fast
        qed
        ultimately have ?case using less.hyps[of [a,b] p vts ?l ?p-tl vts-tl] by blast
    }
    ultimately show ?case using less 1 by linarith
qed
lemma sublist-path-image-subset:
    assumes sublist vts1 vts2
    assumes length vts1 \geq1
    shows path-image (make-polygonal-path vts1) \subseteq path-image (make-polygonal-path
vts2)
proof -
    let ?p1 = make-polygonal-path vts1
    let ?p2 = make-polygonal-path vts2
    let ?m = length vts1
    let ?n = length vts2
    have n-geq-m:?n \geq?m by (simp add: assms(1) sublist-length-le)
    have ?thesis if *: length vts1 = 1
    proof-
    have path-image ?p1 = {vts1!0}
    by (metis Cons-nth-drop-Suc One-nat-def closed-segment-idem drop0 drop-eq-Nil
le-numeral-extra(4) make-polygonal-path.simps(2) path-image-linepath that zero-less-one)
    moreover have vts1!0 \in set vts2
            by (metis assms(1) less-numeral-extra(1) nth-mem set-mono-sublist subsetD
that)
    ultimately show ?thesis
            using vertices-on-path-image by force
    qed
    moreover have ?thesis if *: length vts1 \geq2
    proof-
    obtain pre post where sublist:vts2 = pre @ vts1 @ post
```

using assms(1) unfolding sublist-def by blast
let $? i=$ length pre
let $? j=$ length vts 1
let $? k=? i+? j$
let ? $x 1=\left(\right.$ 2^? $\left.^{\text {? }} \boldsymbol{i}-1\right) /$ D. $^{\text {^ }}(? i):$:real
let ? $x 2=\left(2^{2}(? k-1)-1\right) /\left(\mathcal{V}^{\wedge}(? k-1)\right)::$ real
let $? x=\left(\mathcal{Z}^{\wedge}(? i-1)-1\right) / \mathcal{Z}^{\wedge}(? i-1):$:real
have path-image ?p1 = ?p2' $\{? x 1 . . ? x 2\}$ if $* *$: length post ≥ 1
using sublist $* * *$ vts-sublist-path-image[of ?p2 vts2 ?p1 vts1 ?j ?i ?n ?m ?k
? $x 1$? x 2]
by fastforce
moreover have path-image ?p1 = ?p2' $\{? x 1 . .1\}$ if $* *$: length post $=0$
proof-
have sublist: vts2 = pre @ vts1 using $* *$ sublist by blast
moreover have vts1 = drop ? i vts2 using sublist $*$ by simp
moreover have $1 \leq ? i+1 \wedge ? i+1<$ length vts2 using sublist $* * *$ by
simp
ultimately show ?thesis
using vts-split-path-image[of ?p2 vts2 - - ?p1 vts1 ? $i+1$? n ? x 1$]$ add-diff-cancel-right'
by metis
qed
moreover have ?p2 ' $\{? x 1 . . ? x 2\} \subseteq$ path-image ?p2 \wedge ?p2' $\{? x 1 . .1\} \subseteq$
path-image ?p2
proof -
have $\{? x 1 \ldots ? x 2\} \subseteq\{0 . .1\} \wedge\{? x 1 . .1\} \subseteq\{0 . .1\}$ by simp
thus ?thesis unfolding path-image-def by blast
qed
ultimately show?thesis by (metis less-one linorder-not-le)
qed
ultimately show ?thesis using assms by linarith
qed
lemma integral-on-edge-subset-integral-on-path:
assumes $p=$ make-polygonal-path vts and
$(i::$ int $) \in\{0 . .<(($ length vts $)-1)\}$ and
$x=v t s!i$ and
$y=v t s!(i+1)$
shows $\{v$. integral-vec $v \wedge v \in$ path-image (linepath $x y)\}$
$\subseteq\{v$. integral-vec $v \wedge v \in$ path-image $p\}$
using assms edge-subset-path-image by blast
lemma sublist-pair-integral-subset-integral-on-path:
assumes $p=$ make-polygonal-path vts and sublist $[x, y]$ vts
shows $\{v$. integral-vec $v \wedge v \in$ path-image (linepath $x y)\}$ $\subseteq\{v$. integral-vec $v \wedge v \in$ path-image $p\}$
using assms integral-on-edge-subset-integral-on-path proof-
obtain pre post where vts: vts = pre @ $[x, y]$ @ post using assms(2) sublist-def
moreover have $y=v t s!(? i+1)$
by (metis vts add.right-neutral append-Cons nth-Cons-Suc nth-append-length
nth-append-length-plus plus-1-eq-Suc)
moreover have ? $i \in\{0 . .<(($ length vts $)-1)\}$ using vts by force
ultimately show ?thesis using assms (1) integral-on-edge-subset-integral-on-path
by auto
qed
lemma sublist-integral-subset-integral-on-path:
assumes length ell \geq 2
assumes $p=$ make-polygonal-path vts and
sublist ell vts
shows $\{v$. integral-vec $v \wedge v \in$ path-image (make-polygonal-path ell) $\}$
$\subseteq\{v$. integral-vec $v \wedge v \in$ path-image $p\}$
proof-
obtain pre post where vts: vts = pre @ ell @ post using assms(3) sublist-def
by blast
then have len-vts: length vts ≥ 2
using assms(1)
by auto
let $? i=$ length pre
have $v \in$ path-image p if $*: v \in$ path-image (make-polygonal-path ell) for v
proof -
have $\exists j::$ nat. $v \in$ path-image (linepath $($ ell ! $j)($ ell ! $(j+1))) \wedge j+1<$ length
ell
using $*$ polygonal-path-image-linepath-union assms(1)
by (meson less-diff-conv make-polygonal-path-image-property)
then obtain j where v-in: $v \in$ path-image (linepath $($ ell ! $j)($ ell ! $(j+1)))$
$j+1<$ length ell
by auto
then have ell-at: ell $!j=v t s!(j+$ length pre $) \wedge$ ell $!(j+1)=v t s!(j+1$

+ length pre)
using vts
by (simp add: nth-append)
then have v-in2: $v \in$ path-image (linepath (vts ! $(j+$ length pre $))(v t s!(j+$
length pre +1)))
using v-in(1) by simp
have $j+1+$ length pre $<$ length vts
using ell-at v-in(2) vts by auto
then have j-plus: $j+$ length pre $<$ length vts -1
by auto
then show ?thesis using v-in2 linepaths-subset-make-polygonal-path-image $[O F$
len-vts j-plus] assms(1)
$\operatorname{assms}(2)$ by auto
qed
then show? ?thesis by blast

qed

13 Reversing Polygonal Path Vertex List

lemma rev-vts-path-image:
shows path-image (make-polygonal-path (rev vts)) = path-image (make-polygonal-path $v t s)$ proof -
$\{$ assume length vts ≤ 1
then have ?thesis
by (smt (verit, best) One-nat-def Suc-length-conv le-SucE le-zero-eq length-0-conv rev.simps(1) rev-singleton-conv)

\} moreover

\{ fix x
assume $*: x \in$ path-image (make-polygonal-path (rev vts)) \wedge length vts ≥ 2
then obtain k where k-prop: $k<$ length (rev vts) $-1 \wedge x \in$ path-image (linepath
(rev vts ! k) (rev vts $!(k+1))$)
using make-polygonal-path-image-property[of rev vts] by auto
have $p 1$: rev vts $!k=v t s!($ length vts $-k-1)$
using rev-nth
by (metis Suc-lessD $\langle k<$ length (rev vts) $-1 \wedge x \in$ path-image (linepath
(rev vts $!k)($ rev vts $!(k+1))$) > add.commute diff-diff-left length-rev less-diff-conv plus-1-eq-Suc)
have $p 2$: rev vts $!(k+1)=$ vts $!($ length vts $-k-2)$
using rev-nth[of $k+1$ vts] k-prop
by force
then have $x \in$ path-image (linepath (vts! (length vts $-k-1$)) (vts ! (length vts - k - 2)))
using k-prop p1 p2 by auto
then have $x \in$ path-image (linepath (vts! (length vts $-k-2)$) (vts! (length $v t s-k-1))$)
using reversepath-linepath path-image-reversepath
by metis
then have $x \in$ path-image (make-polygonal-path vts)
using linepaths-subset-make-polygonal-path-image $* k$-prop
by (smt (verit, best) Nat.diff-add-assoc add.commute add-diff-cancel-left'
diff-le-self length-rev less-Suc-eq less-diff-conv linorder-not-less nat-1-add-1 nat-neq-iff plus-1-eq-Suc subsetD)
\} moreover
$\{$ fix x
assume $*: x \in$ path-image (make-polygonal-path vts) \wedge length vts ≥ 2
then obtain k where k-prop: $k<$ length vts $-1 \wedge x \in$ path-image (linepath (vts!k) (vts! $(k+1))$)
using make-polygonal-path-image-property[of vts] by auto
have $p 1:$ vts $!k=($ rev vts $)!($ length vts $-k-1)$
using rev-nth k-prop
by (metis Suc-eq-plus1 Suc-lessD diff-diff-left length-rev less-diff-conv rev-rev-ident)
have p 2: vts $!(k+1)=($ rev vts $)!($ length vts $-k-2)$
using rev-nth[of $k+1$]
by (smt (verit) Suc-eq-plus1 add-2-eq-Suc' diff-diff-left k-prop length-rev less-diff-conv rev-rev-ident)
then have $x \in$ path-image (linepath (rev vts! (length vts $-k-2)$) (rev vts! (length vts $-k-1$)))
using reversepath-linepath path-image-reversepath
by (metis k-prop p1)
then have $x \in$ path-image (make-polygonal-path (rev vts))
using linepaths-subset-make-polygonal-path-image k-prop *
by (smt (verit, best) Suc-1 Suc-diff-Suc Suc-eq-plus1 Suc-le-eq Suc-lessD bot-nat-0.not-eq-extremum diff-commute diff-diff-left diff-less length-rev less-numeral-extra(1) subsetD zero-less-diff)
\}
ultimately show ?thesis by force qed
lemma rev-vts-is-loop-free:
assumes $p=$ make-polygonal-path vts
assumes loop-free p
shows loop-free (make-polygonal-path (rev vts))
using assms
proof (induct length vts arbitrary: p vts)
case 0
then show? case by simp
next
case (Suc n)
then have Suc $n \geq 2$
by (metis One-nat-def Suc-length-conv constant-linepath-is-not-loop-free le-SucE le-add1 le-numeral-Suc length-greater-0-conv list.size(3) make-polygonal-path.simps(2)
numeral-One plus-1-eq-Suc pred-numeral-simps(2) semiring-norm(26))
moreover
\{ assume *: Suc $n=2$
then obtain $a b$ where $a b: p=$ linepath $a b$
using Suc.prems make-polygonal-path.simps(3)
by (metis (no-types, opaque-lifting) Cons-nth-drop-Suc One-nat-def Suc.hyps(2)
Suc-1 diff-Suc-1 drop-0 drop-Suc length-0-conv length-tl zero-less-Suc)
moreover then have $a \neq b$ using Suc.prems(2) constant-linepath-is-not-loop-free by blast
ultimately have loop-free (linepath ba) by (simp add: linepath-loop-free)
moreover have make-polygonal-path (rev vts) $=$ linepath $b a$
by (smt (z3) * Cons-nth-drop-Suc One-nat-def Suc.hyps(2) Suc.prems(1)
Suc-1 Suc-diff-Suc ab butlast-snoc diff-Suc-1 drop0 hd-conv-nth hd-rev last-conv-nth length-butlast length-rev lessI linepath-1' make-polygonal-path.simps(3) nth-append-length pathstart-def pathstart-linepath pos2 rev.simps(2) rev-is-Nil-conv rev-take take-eq-Nil)
ultimately have? case by simp
\} moreover
\{ assume $*$: Suc $n>2$
let ?vts' $=$ butlast vts
let $? p^{\prime}=$ make-polygonal-path ?vts ${ }^{\prime}$
let ?vts'-rev $=$ rev ? $v t s^{\prime}$
let $? p^{\prime}$-rev $=$ make-polygonal-path ?vts'-rev
let ?vts-rev $=$ rev vts
let ? p-rev $=$ make-polygonal-path ?vts-rev
obtain $y z$ where $y z: y=$ last ? vts ${ }^{\prime} \wedge z=$ last vts by blast
let $? l=$ linepath $y z$
let ?l-rev $=$ linepath $z y$
have loop-free? p^{\prime}
by (metis * Suc.hyps(2) Suc.prems(1) Suc.prems(2) butlast-conv-take diff-Suc-1 le-add2 less-Suc-eq-le plus-1-eq-Suc take-i-is-loop-free)
then have loop-free- p^{\prime}-rev: loop-free ? p^{\prime}-rev using Suc.hyps by force
moreover have rev vts $=z \#$? vts'-rev
by (metis Suc.hyps(2) yz append-butlast-last-id length-0-conv nat.distinct(1)
rev-eq-Cons-iff rev-rev-ident)
moreover have $y=h d$? vts'-rev using $y z$ by (simp add: hd-rev)
ultimately have p-rev: ? p-rev $=$? l-rev +++ ? p^{\prime}-rev
by (smt (verit, best) constant-linepath-is-not-loop-free list.sel(1) make-polygonal-path.elims make-polygonal-path.simps(4))
have $[y, z]=\operatorname{drop}(n-1)$ vts
using yz Suc.hyps(2)
by (metis (no-types, opaque-lifting) * Cons-nth-drop-Suc Suc-1 Suc-diff-Suc
Suc-lessD Suc-n-not-le-n append-butlast-last-id append-eq-conv-conj diff-Suc-1 last-conv-nth
length-O-conv length-butlast less-nat-zero-code linorder-not-le nth-take)
then have ?l = make-polygonal-path $(\operatorname{drop}(n-1)$ vts $)$
using make-polygonal-path.simps by metis
moreover have ? $p^{\prime}=$ make-polygonal-path (take n vts)
using Suc.hyps(2) by (metis butlast-conv-take diff-Suc-1)
ultimately have path-image ?l \cap path-image ?p $p^{\prime} \subseteq$ \{pathstart ?l, pathstart $\left.? p^{\prime}\right\}$
using loop-free-split-int
by (smt (verit, ccfv-SIG) Int-commute Suc.hyps(2) Suc.prems(1) Suc.prems(2)
Suc-1 Suc-le-mono 〈2 \leq Suc $n\rangle$ insert-commute lessI)
moreover have path-image ?l = path-image ?l-rev by auto
moreover have path-image ? $p^{\prime}=$ path-image $? p^{\prime}$-rev
using * Suc.hyps(2) rev-vts-path-image by force
moreover have pathstart ?l = pathfinish ?l-rev by simp
moreover have pathstart ? $p^{\prime}=$ pathfinish ? p^{\prime}-rev
by (metis Nil-is-rev-conv last.simps last-conv-nth last-rev list.distinct(1)
list.exhaust-sel make-polygonal-path.simps(1) make-polygonal-path.simps(2) nth-Cons-0 polygon-pathfinish polygon-pathstart)
ultimately have path-image-int:
path-image ?l-rev \cap path-image ?p'-rev \subseteq \{pathfinish ?l-rev, pathfinish ? $\left.p^{\prime}-r e v\right\}$
by argo
have 1: pathfinish ?l-rev = pathstart ? ${ }^{\prime}$ '-rev
by (metis make-polygonal-path-gives-path p-rev path-join-path-ends)
\｛ assume pathfinish ？ p^{\prime}－rev $=$ pathstart ？${ }^{\text {？}}$－rev
then have ？case using simple－path－join－loop 1 p－rev path－image－int
by（smt（verit，del－insts）Suc．hyps（2）Suc．prems（1）Suc．prems（2）Suc－1
＜linepath $y z=$ make－polygonal－path（drop $(n-1)$ vts）〉 〈loop－free（make－polygonal－path
（rev（butlast vts）））＞constant－linepath－is－not－loop－free diff－Suc－Suc drop－i－is－loop－free dual－order．eq－iff insert－commute linepath－loop－free make－polygonal－path－gives－path path－linepath pathfinish－linepath pathstart－linepath simple－path－cases simple－path－def）
\} moreover
\｛ assume pathfinish $?{ }^{2}{ }^{\prime}$－rev \neq pathstart $?$ ？－rev
then have pathstart $p \neq$ pathfinish p
by（metis Suc．prems（1）〈loop－free（make－polygonal－path（butlast vts））〉 〈path－ start（make－polygonal－path（butlast vts））＝pathfinish（make－polygonal－path（rev （butlast vts）））＞butlast－conv－take constant－linepath－is－not－loop－free last－conv－nth less－nat－zero－code make－polygonal－path．simps（1）nat－neq－iff nth－take pathstart－linepath polygon－pathfinish polygon－pathstart take－eq－Nil yz）
then have arc p
by（metis Suc．prems（1）Suc．prems（2）arc－def loop－free－cases make－polygonal－path－gives－path）
then have path－image ？l－rev \cap path－image ${ }^{?}{ }^{p}$＇－rev $\subseteq\left\{\right.$ pathstart $? p^{\prime}$－rev $\}$
using loop－free－arc－split－int
by（metis 1 Int－commute Suc．hyps（2）Suc．prems（1）Suc．prems（2）＜2 \leq Suc $n\rangle\langle$ linepath $y z=$ make－polygonal－path（drop $(n-1)$ vts）〉〈make－polygonal－path （butlast vts）$=$ make－polygonal－path（take n vts）〉＜path－image（linepath $y z)=$ path－image $($ linepath $z y)\rangle\langle$ path－image $($ make－polygonal－path $($ butlast vts $))=$ path－image （make－polygonal－path（rev（butlast vts）））〉＜pathstart（linepath $y z$ ）$=$ pathfinish （linepath z y）＞le－numeral－Suc lessI numerals（1）pred－numeral－simps（2）semiring－norm（26））
moreover have arc ？ l－rev
by（metis Suc．hyps（2）Suc．prems（1）Suc．prems（2）Suc－1 $\leqslant[y, z]=\operatorname{drop}(n-$ 1）vts＞arc－linepath constant－linepath－is－not－loop－free diff－Suc－Suc drop－i－is－loop－free dual－order．refl make－polygonal－path．simps（3））
moreover have arc ？p^{\prime}－rev
proof－
have ？p^{\prime}－rev $0=$ last（butlast vts）by（metis 1 pathfinish－linepath pathstart－def
yz）
moreover have ？p^{\prime}－rev $1=h d$（butlast vts）
by（metis «loop－free（make－polygonal－path（butlast vts））〉 〈pathstart（make－polygonal－path $($ butlast vts $))=$ pathfinish $($ make－polygonal－path $($ rev（butlast vts）$))\rangle$ constant－linepath－is－not－loop－free hd－conv－nth make－polygonal－path．simps（1）pathfinish－def polygon－pathstart）
moreover have last（butlast vts）$\neq h d$（butlast vts）using Suc．prems
by（metis（no－types，lifting）＊Suc．hyps（2）Suc－1 diff－is－0－eq index－Cons index－last leD length－butlast less－diff－conv less－imp－le－nat list．collapse list．size（3） loop－free－polygonal－path－vts－distinct not－one－le－zero plus－1－eq－Suc）
ultimately have $? p^{\prime}$－rev $0 \neq ? p^{\prime}$－rev 1 by simp
thus ？thesis using loop－free－p＇－rev
by（metis arc－def loop－free－cases make－polygonal－path－gives－path pathfin－
ish－def pathstart－def）
qed
ultimately have ？case
using arc－join－eq［OF 1］arc－imp－simple－path p－rev simple－path－def by auto \}

```
        ultimately have ?case by blast
    }
    ultimately show ?case by linarith
qed
lemma rev-vts-is-polygon:
    assumes polygon-of p vts
    shows polygon (make-polygonal-path (rev vts))
    using rev-vts-is-loop-free assms
    unfolding polygon-of-def polygon-def simple-path-def
    using make-polygonal-path-gives-path
    by (metis One-nat-def closed-path-def UNIV-def length-greater-0-conv polygon-pathfinish
polygon-pathstart polygonal-path-def rangeI rev.simps(1) rev-nth rev-rev-ident)
end
theory Linepath-Collinearity
    imports Polygon-Lemmas
```


begin

14 Collinearity Properties

lemma points-on-linepath-collinear:
assumes exists-c: $\left(\exists c . a-b=c *_{R} u\right)$
assumes x-in-linepath: $x \in$ path-image (linepath a b)
shows $\left(\exists c . x-a=c *_{R} u\right)\left(\exists c . b-x=c *_{R} u\right)$
proof -
obtain $k::$ real where k-prop: $0 \leq k \wedge k \leq 1 \wedge x=(1-k) *_{R} a+k *_{R} b$
using x-in-linepath unfolding linepath-def path-image-def by fastforce
then have $x=a-k *_{R} a+k *_{R} b$
by (simp add: eq-diff-eq)
then have $x-a=-k *_{R} a+k *_{R} b$
by auto
then have xminusa: $x-a=-k *_{R}(a-b)$
by (simp add: scaleR-right-diff-distrib)
obtain c where c-prop: $a-b=c *_{R} u$ using exists- c by blast
show ($\exists c . x-a=c *_{R} u$) using xminusa c-prop
by (metis scaleR-scaleR)
then show $\left(\exists c . b-x=c *_{R} u\right)$
using exists-c
by (metis (no-types, opaque-lifting) add-diff-eq diff-add-cancel minus-diff-eq
scaleR-left-distrib)
qed
lemma three-points-collinear-property:
fixes $a b:$: real ${ }^{\wedge} 2$
assumes exists-c1: $\left(\exists c . a-x 1=c *_{R} u\right)$
assumes exists-c2: $\left(\exists c . a-x 2=c *_{R} u\right)$
shows $\exists c . x 1-x 2=c *_{R} u$

```
proof -
    obtain \(c 1\) where c1-prop: \(a-x 1=c 1 *_{R} u\)
        using exists-c1 by auto
    obtain \(c \mathcal{2}\) where \(c 2\)-prop: \(a-x \mathcal{Z}=c \mathcal{2} *_{R} u\)
        using exists-c2 by auto
    then have \(a-x \mathcal{2}-(a-x 1)=c \mathcal{2} *_{R} u-c 1 *_{R} u\)
        using c1-prop c2-prop by simp
    then have \(a-x 2-(a-x 1)=(c 2-c 1) *_{R} u\)
        by (simp add: scaleR-left-diff-distrib)
    then show?thesis
        by auto
qed
lemma in-path-image-imp-collinear:
    fixes \(a b\) :: real^2
    assumes \(k \in\) path-image (linepath \(a b\) )
    shows collinear \(\{a, b, k\}\)
proof -
    obtain \(w\) where \(w\)-prop: \(w \in\{0 . .1\} \wedge k=(1-w) *_{R} a+w *_{R} b\)
        using assms unfolding path-image-def linepath-def by fast
    have collinear \(\left\{0, a-b,(1-w) *_{R} a+(w-1) *_{R} b\right\}\)
        using collinear
        by (smt (verit) collinear-lemma diff-minus-eq-add scaleR-minus-left scaleR-right-diff-distrib)
    then have collinear \(\{0, a-b, k-b\}\)
        using w-prop
        by (metis (no-types, lifting) add.commute add-diff-cancel-left collinear-lemma
scaleR-collapse scaleR-right-diff-distrib)
    then show ?thesis using assms collinear-alt collinear-3[ of a bll \(k\)
        by auto
qed
lemma two-linepath-colinearity-property:
    fixes \(a b c d::\) real \({ }^{\text {®2 }}\)
    assumes \(y \neq z \wedge\{y, z\} \subseteq(\) path-image (linepath a b)) \(\cap\) (path-image (linepath
c d))
    shows collinear \(\{a, b, c, d\}\)
proof -
    have collinear \(\{a, b, y, z\}\)
        using in-path-image-imp-collinear assms
    by (metis (no-types, lifting) Int-closed-segment collinear-4-3 inf.boundedE inf-idem
insert-absorb2 insert-subset path-image-linepath pathstart-in-path-image pathstart-linepath)
    moreover have collinear \(\{c, d, y, z\}\)
        using in-path-image-imp-collinear assms
        by (metis (no-types, lifting) Int-closed-segment collinear-4-3 inf.boundedE inf-idem
insert-absorb2 insert-subset path-image-linepath pathstart-in-path-image pathstart-linepath)
    ultimately show ?thesis
            using assms collinear-3-eq-affine-dependent collinear-4-3 insert-absorb2 in-
sert-commute
    by (smt (z3) collinear-3-trans)
```


qed

lemma polygon-vts-not-collinear:
assumes polygon-of p vts
shows \neg collinear (set vts)
proof -
have len-vts: length vts ≥ 3
using polygon-at-least-3-vertices assms unfolding polygon-of-def
using card-length dual-order.trans by blast
have compact-and-connected: compact (path-image p) \wedge connected (path-image
p)
using inside-outside-polygon assms unfolding polygon-of-def
using compact-simple-path-image connected-simple-path-image polygon-def by auto
have nonempty-path-image: path-image $p \neq\{ \}$
using assms unfolding polygon-of-def
using vertices-on-path-image by simp
have collinear-imp: collinear (set vts) $\Longrightarrow($ collinear $($ path-image $p))$
proof -
assume collinear (set vts)
then obtain u where u-prop: $\forall x \in$ set vts. $\forall y \in$ set vts. $\exists c . x-y=c *_{R} u$ unfolding collinear-def by blast
then have $\exists c . x-y=c *_{R} u$ if $x y$-in-pathimage: $y \in$ path-image $p \wedge x \in$ path-image p for $x y$
proof -
obtain $k 1$ where $k 1$-prop: $k 1<$ length vts $-1 \wedge x \in$ path-image (linepath (vts ! k1) (vts! $(k 1+1)))$
using make-polygonal-path-image-property xy-in-pathimage len-vts
by (metis One-nat-def Suc-1 Suc-leD assms numeral-3-eq-3 polygon-of-def)
then have $\exists c$. (vts ! $k 1)-(v t s!(k 1+1))=c *_{R} u$
by (meson add-lessD1 in-set-conv-nth less-diff-conv u-prop)
obtain $k 2$ where $k 2$-prop: $k 2<$ length vts $-1 \wedge y \in$ path-image (linepath (vts ! k2) (vts! $(k 2+1)))$
using make-polygonal-path-image-property xy-in-pathimage len-vts
by (metis One-nat-def Suc-1 Suc-leD assms numeral-3-eq-3 polygon-of-def)
have $\exists c$. vts! $(k 2+1)-(v t s!k 1)=c *_{R} u$
using u-prop k1-prop k2-prop
by (meson add-lessD1 less-diff-conv nth-mem)
have k2-vts-prop: $\exists c . v t s!(k 2+1)-(v t s!k \mathscr{L})=c *_{R} u$
using u-prop $k 2$-prop by fastforce
have ex-c-k2: $\exists c$. vts ! $(k 2+1)-y=c *_{R} u$
using points-on-linepath-collinear $[$ of vts ! $(k 2+1)$ vts ! k2 u y] k2-prop
k2-vts-prop
by (meson add-lessD1 points-on-linepath-collinear(2) less-diff-conv nth-mem u-prop)
have $k 1$-vts-prop: $\exists c . v t s!(k 1+1)-(v t s!k 1)=c *_{R} u$
using u-prop k1-prop by fastforce
have ex-c-k1-y: \exists c. vts ! $(k 1+1)-y=c *_{R} u$ using points-on-linepath-collinear $[o f$ vts $!(k 1+1)$ vts ! k1 u y] k1-prop
by (meson $\left.\exists \exists \mathrm{c} . v t s!(k 2+1)-v t s!k 1=c *_{R} u\right\rangle\langle\exists c . v t s!k 1-v t s!$ $\left.(k 1+1)=c *_{R} u\right\rangle$ three-points-collinear-property ex-c-k2)
have ex-c-k1-x: $\exists c . v t s!(k 1+1)-x=c *_{R} u$
using points-on-linepath-collinear $[$ of vts ! $(k 1+1)$ vts ! k1 u x] k1-prop k1-vts-prop
by (meson add-lessD1 points-on-linepath-collinear(2) less-diff-conv nth-mem u-prop)
show ?thesis
using ex-c-k1-y ex-c-k1-y three-points-collinear-property ex-c-k1-x by blast qed
then show (collinear (path-image p)) unfolding collinear-def by auto qed
\{ assume *: collinear (set vts)
then obtain $a b::$ real 2 where im-closed: path-image $p=$ closed-segment a b using collinear-imp compact-convex-collinear-segment-alt[of path-image p] compact-and-connected nonempty-path-image
by blast
have inside (closed-segment a b) $=\{ \}$
by (simp add: inside-convex)
then have path-inside $p=\{ \}$
unfolding path-inside-def using im-closed by auto
then have False
using inside-outside-polygon assms unfolding polygon-of-def inside-outside-def by blast
\}
then show ?thesis by blast
qed
lemma not-collinear-with-subset:
assumes collinear A
assumes \neg collinear $(A \cup\{x\})$
assumes card $A>2$
assumes $a \in A$
shows \neg collinear $((A-\{a\}) \cup\{x\})$
proof-
obtain $u v$ where $u v: u \in A \wedge v \in A \wedge u \neq v \wedge u \neq a \wedge v \neq a$
proof-
have card $(A-\{a\}) \geq 2$ using assms by auto
then obtain $u B$ where $u \in(A-\{a\}) \wedge B=(A-\{a\}-\{u\})$
by (metis bot-nat-0.extremum-unique card.empty ex-in-conv zero-neq-numeral)
moreover then obtain v where $v \in B$
by (metis Diff-iff One-nat-def Suc-1 assms(3) assms(4) card.empty card.insert equals0I finite.intros(1) finite-insert insert-Diff insert-commute less-irrefl)
ultimately show ?thesis using that by blast
qed
then have $x \notin$ affine hull $\{u, v\}$
using assms
by (smt (verit, ccfv-threshold) Un-commute Un-upper1 collinear-affine-hull-collinear

```
hull-insert hull-mono insert-absorb insert-is-Un insert-subset)
    moreover have }u\inA-{a}\wedgev\inA-{a}\mathrm{ using uv by blast
    ultimately show ?thesis
    by (metis UnCI collinear-3-imp-in-affine-hull collinear-triples insert-absorb sin-
gletonD uv)
qed
lemma vec-diff-scale-collinear:
    fixes ab c :: real^2
    assumes b-a=m**}(c-a
    shows collinear {a,b,c}
proof-
    { assume m=0
        then have b=a using assms by simp
        then have collinear {a,b,c} by auto
    } moreover
    { assume m-nz: m\not=0
        then have c-eq: c=(1/m)**}(b-a)+a using assms by simp
            then have c - b=(1/m-1) *R (b-a) using m-nz by (simp add:
scaleR-left.diff)
            then obtain m' where c-b=\mp@subsup{m}{}{\prime}\mp@subsup{*}{R}{\prime}(b-a) by fast
        then have c - b\in span({b-a}) by (simp add: span-breakdown-eq)
        moreover from this have b-c\in\operatorname{span({b-a}) using span-0 span-add-eq2}
by fastforce
    moreover have c-a\in\operatorname{span({b-a}) using assms by (simp add: span-breakdown-eq}
c-eq)
    moreover from this have }a-c\in\operatorname{span}({b-a})\mathrm{ using span-0 span-add-eq2
by fastforce
    moreover have b-a\in\operatorname{span({b-a}) by (simp add: span-base)}
    moreover from this have }a-b\in\operatorname{span({b-a}) using span-0 span-add-eq2
by fastforce
    moreover have }\forallv\in{a,b,c}.v-v\in\operatorname{span}({b-a}) by (simp add: span-0
    ultimately have }\forallv\in{a,b,c}.\forallw\in{a,b,c}.v-w\in\operatorname{span}({b-a})\mathrm{ by
blast
    then have }\forallv\in{a,b,c}.\forallw\in{a,b,c}.\existsk.v-w=k\mp@subsup{*}{R}{}(b-a
            by (simp add: span-breakdown-eq)
    then have collinear {a,b,c} using collinear-def by blast
    }
    ultimately show ?thesis using assms by auto
qed
```


15 Linepath Properties

lemma good-linepath-comm: good-linepath $a b$ vts \Longrightarrow good-linepath $b a v t s$ unfolding good-linepath-def
by (metis (no-types, opaque-lifting) insert-commute path-image-linepath segment-convex-hull)

```
lemma finite-set-linepaths:
    assumes polygon: polygon p
    assumes polygonal-path: p= make-polygonal-path vts
    shows finite {(a,b). (a,b)\in set vts }\times\mathrm{ set vts}
proof -
    have finite (set vts)
        using polygonal-path by auto
    then have finite (set vts }\times\mathrm{ set vts)
        by blast
    then show ?thesis
        by auto
qed
lemma linepaths-intersect-once-or-collinear:
    fixes ab c d :: real^2
    assumes path-image (linepath a b) \cap path-image (linepath c d) }={
    shows collinear {a,b,c,d} \vee (\existsx. path-image (linepath a b) \cap path-image
(linepath c d)}={x}
proof safe
    assume }\neg(\existsx\mathrm{ . path-image (linepath a b) }\cap\mathrm{ path-image (linepath c d) ={x})
    then obtain x y where }x\not=y\wedge{x,y}\subseteq\mathrm{ path-image (linepath a b) }\cap\mathrm{ path-image
(linepath c d)
    using assms by blast
    then show collinear {a,b,c,d} using two-linepath-colinearity-property by
meson
qed
lemma linepaths-intersect-once-or-collinear-alt:
    fixes abcd :: real^2
    assumes path-image (linepath a b) \cap path-image (linepath c d) }={{
    shows collinear {a,b,c,d} \vee card (path-image (linepath a b) \cap path-image
(linepath c d))}=
proof-
    have card (path-image (linepath a b) \cap path-image (linepath c d)) = =1
        \longleftrightarrow(\existsx. path-image (linepath a b) \cap path-image (linepath c d) ={x})
    using is-singleton-altdef is-singleton-def by blast
    thus ?thesis using linepaths-intersect-once-or-collinear assms by presburger
qed
lemma path-image-linepath-union:
    fixes a b :: 'a::euclidean-space
    assumes d}\in\mathrm{ path-image (linepath a b)
    shows path-image (linepath a b) = path-image (linepath a d) \cup path-image
(linepath d b)
proof-
    have path-image (linepath a b) = closed-segment a b using path-image-linepath
by simp
    also then have ... = closed-segment a d \cup closed-segment d b
        using Un-closed-segment assms by blast
```

```
    also have...\(=\) path-image \((\) linepath a \(d) \cup\) path-image \((\) linepath \(d b)\)
        using path-image-linepath by simp
    ultimately show ?thesis by order
qed
lemma path-image-linepath-split:
    assumes \(i<(\) length vts \()-1\)
    assumes \(x \in\) path-image (linepath (vts! \(i)(v t s!(i+1))\) )
    assumes \(x\)-notin: \(x \notin\) set vts
    shows path-image (make-polygonal-path vts) \(=\) path-image (make-polygonal-path
\(((\) take (i+1) vts) @ \([x]\) @ (drop (i+1) vts)))
    using assms
\(\operatorname{proof}(\) induct length vts arbitrary: vts \(i x)\)
    case 0
    then show ?case by linarith
next
    case (Suc n)
    let ? \(\mathrm{vts} s^{\prime}=(\) take \((i+1)\) vts \()\) @ \([x]\) @ (drop (i+1) vts)
    let \(? p=\) make-polygonal-path vts
    let \(?^{?} p^{\prime}=\) make-polygonal-path \({ }^{2}\) vts \({ }^{\prime}\)
    have Suc \(n \geq 2\) using Suc by linarith
    then obtain \(v 1\) v2 vts-tail where vts-is: vts \(=v 1 \# v 2 \# v t s-t a i l\)
    by (metis Suc(2) Cons-nth-drop-Suc One-nat-def Suc-1 Suc-le-eq drop0 zero-less-Suc)
    \(\{\) assume \(*: i=0\)
    then have vts'-is: ? vts' \(=[v 1, x, v 2] @\) vts-tail
        using \(v t s-i s\) by simp
    then have \(x\)-in: \(x \in\) path-image (linepath v1 v2)
        using * Suc.prems vts-is by simp
    \{ assume *: vts-tail \(=[]\)
        then have \(p\)-is: path-image \(? p=\) path-image (linepath v1 v2)
                using vts-is make-polygonal-path.simps(3)[of v1 v2]
                by simp
        have path-image \(? p^{\prime}=\) path-image (linepath v1 \(\left.x\right) \cup\) path-image (linepath \(x\)
v2)
        using vts'-is * make-polygonal-path.simps(4)[of v1 x v2 []]
        using make-polygonal-path.simps(3)[of \(x\) v2]
        by (metis append.right-neutral list.discI nth-Cons-0 path-image-cons-union)
        then have? case
            using \(p\)-is path-image-linepath-union[of \(x\) v1 v2] assms(3) vts-is \(x\)-in by
blast
    \} moreover
    \{ assume \(*\) : vts-tail \(\neq[]\)
            then have path-image ? \(p=\) path-image \((\) linepath v1 v2) \(\cup\) path-image
(make-polygonal-path (v2\#vts-tail))
            using path-image-cons-union vts-is by (metis list.discI nth-Cons-0)
            moreover have path-image (linepath v1 \(x\) ) \(\cup\) path-image (linepath \(x\) v2) \(=\)
path-image (linepath v1 v2)
        using path-image-linepath-union \(x\)-in by blast
```

ultimately have ?case
by (metis (no-types, lifting) append-Cons append-Nil inf-sup-aci(6) list.discI nth-Cons-0 path-image-cons-union vts'-is)
\}
ultimately have ?case by blast
\} moreover
\{ assume $*: i>0$
then have Suc $n>2$ using Suc by linarith
let ?vts-tl $=t l$ vts
let ? $v t s-t l^{\prime}=($ take i ?vts-tl) @ $[x]$ @ (drop i ? vts-tl)
let ? p-tl $=$ make-polygonal-path ?vts-tl
let ?p-tl' $=$ make-polygonal-path ?vts-tl ${ }^{\prime}$
have ?vts-tl! $(i-1)=v t s!i \wedge$?vts-tl! $i=v t s!(i+1)$ using $S u c *$ by $(s i m p$ add: $v t s-i s)$
moreover then have $x \in$ path-image (linepath (?vts-tl! $(i-1)$) (?vts-tl!i))
using Suc by presburger
ultimately have path-image ? p - $t l=$ path-image ? p - $t l^{\prime}$
using Suc
by (smt (verit) * One-nat-def Suc-leI diff-Suc-1 le-add-diff-inverse2 length-tl less-diff-conv list.sel(3) list.set-intros(2) vts-is)
moreover have path-image ?p = path-image (linepath v1 v2) \cup path-image ? $p-t l$
using path-image-cons-union vts-is by auto
ultimately have ?case
by (smt (verit, ccfv-threshold) Nil-is-append-conv Suc-eq-plus1 $\langle i=0 \Longrightarrow$ path-image (make-polygonal-path vts) = path-image (make-polygonal-path (take (i $+1) v t s @[x] @ \operatorname{drop}(i+1) v t s))>$ append-Cons append-same-eq append-take-drop-id drop-Suc hd-append2 hd-conv-nth list.sel(1) list.sel(3) path-image-cons-union take-eq-Nil vts-is)
\}
ultimately show ?case by linarith
qed
lemma linepath-split-is-loop-free:
assumes $d \in$ path-image (linepath a b)
assumes $d \notin\{a, b\}$
shows loop-free (make-polygonal-path $[a, d, b]$) (is loop-free? p)
proof-
let $? l 1=$ linepath ad
let $? 12=$ linepath $d b$
have path-image ?l1 \cap path-image ? $12=\{d\}$ using Int-closed-segment assms (1)
by auto
moreover have arc ?l1 ^ arc ? 12 using assms(2) by fastforce
ultimately show ?thesis
by (metis arc-imp-simple-path arc-join-eq-alt make-polygonal-path.simps(3)
make-polygonal-path.simps(4) pathfinish-linepath pathstart-linepath simple-path-def) qed
lemma loop-free-linepath-split-is-loop-free:
assumes $p=$ make-polygonal-path vts
assumes loop-free p
assumes $n=$ length vts
assumes $i<n-1$
assumes $x \in$ path-image (linepath $(v t s!i)(v t s!(i+1))) \wedge x \notin$ set vts
assumes $v t s^{\prime}=($ take $(i+1)$ vts $) @[x] @($ drop $(i+1) v t s)$
assumes $p^{\prime}=$ make-polygonal-path vts'
shows loop-free $p^{\prime} \wedge$ path-image $p^{\prime}=$ path-image p
using assms
proof(induct i arbitrary: p vts p^{\prime} vts ${ }^{\prime} n$)
case 0
let ?vts-tl $=t l v t s$
let ?p-tl $=$ make-polygonal-path ?vts-tl
let ? $v t s^{\prime}-t l=t l ~ v t s^{\prime}$
let $? p^{\prime}-t l=$ make-polygonal-path ?vts' $-t l$
let $? a=v t s!0$
let $? b=v t s!1$
let $? l=$ linepath $? a ? b$
let $? l^{\prime}=$ make-polygonal-path $[? a, x, ? b]$
have vts': vts' $=[? a, x] @$?vts-tl
using 0
by (metis (no-types, lifting) Suc-eq-plus1 append-Cons append-eq-append-conv2 append-self-conv bot-nat-0.not-eq-extremum diff-is-0-eq drop0 drop-Suc list.collapse nth-Cons-0 take-Suc take-all-iff take-eq-Nil)
have $x \notin\{? a, ? b\}$
by (metis $0(3-5)$ One-nat-def Suc-eq-plus1 bot-nat-0.not-eq-extremum diff-is-0-eq insert-iff less-diff-conv nth-mem singletonD take-Suc-eq take-all-iff)
then have $l f-l$ ': loop-free ? l^{\prime} using linepath-split-is-loop-free[of x ? a ?b] 0 by simp

```
    \{ assume length ?vts-tl \(=1\)
    then have \(v t s^{\prime}=[? a, x, ? b]\)
    by (metis Cons-nth-drop-Suc One-nat-def append-eq-Cons-conv drop0 drop-eq-Nil
le-numeral-extra(4) nth-tl vts' zero-less-one)
    then have ?case using linepath-split-is-loop-free path-image-linepath-split
    by (metis 0.prems(1) 0.prems(3) 0.prems(4) 0.prems(5) 0.prems(6) 0.prems(7)
\(\left.l f-l^{\prime}\right)\)
    \} moreover
    \{ assume \(*\) : length ?vts-tl \(\geq 2\)
    then have \(p: p=? l+++? p-t l\)
            using make-polygonal-path.simps(4)[of ?a ? ? 1
                    by (metis (no-types, opaque-lifting) \(0(1) 0(3) 0(4)\) Cons-nth-drop-Suc
One-nat-def Suc-1 Suc-le-eq diff-is-0-eq drop-0 drop-Suc length-tl less-nat-zero-code
nat-le-linear nth-tl)
```

have loop-free ?p-tl
using tail-of-loop-free-polygonal-path-is-loop-free $0 *$
by (metis list.exhaust-sel list.sel(2))
moreover have l - l^{\prime} : path-image ?l = path-image ? l^{\prime}
using path-image-linepath-split 0
by (metis One-nat-def Suc-eq-plus1 list.discI make-polygonal-path.simps(3)
nth-Cons-0 path-image-cons-union path-image-linepath-union)
moreover have path-image ? $l^{\prime} \cap$ path-image ?p-tl $\subseteq\{? a, ? b\}$
by (metis (mono-tags, opaque-lifting) pl-l' 0.prems(1) 0.prems(2) make-polygonal-path-gives-path path-join-path-ends pathfinish-linepath pathstart-linepath simple-path-def simple-path-joinE)
moreover have arc $p \longrightarrow$ path-image ? $l^{\prime} \cap$ path-image ?p-tl $\subseteq\{? b\}$
using $p l-l^{\prime}$
by (metis arc-def arc-join-eq make-polygonal-path-gives-path path-join-eq path-linepath pathfinish-linepath)
moreover have arc $p \longleftrightarrow h d[? a, x, ? b] \neq$ last (tl vts)
by (metis * 0.prems(1) 0.prems(2) arc-def arc-simple-path last-conv-nth last-tl list.sel(1) list.sel(2) list.size(3) loop-free-cases make-polygonal-path-gives-path not-numeral-le-zero polygon-pathfinish polygon-pathstart)
moreover have vts ${ }^{\prime}=[? a, x, ? b] @ t l ? v t s-t l$
by (metis drop-Suc 0.prems(3) 0.prems(4) One-nat-def append-Cons ap-pend-Nil append-take-drop-id length-tl nth-tl take-Suc-conv-app-nth take-eq-Nil vts')
moreover have last $[? a, x, ? b]=h d$?vts-tl
by (metis 0.prems (3) 0.prems(4) One-nat-def hd-conv-nth last.simps length-greater-0-conv length-tl list.discI nth-tl)
moreover have pathfinish ?l = pathstart ? p-tl
by (metis (no-types) 0.prems(1) make-polygonal-path.simps(3) make-polygonal-path-gives-path p path-join-eq)
moreover have $\bigwedge v v a v b v s$. pathfinish (linepath $v v a)=$ pathstart (make-polygonal-path
$(v a \# v b \# v s))$
by (metis (no-types) make-polygonal-path.simps(3) make-polygonal-path.simps(4)
make-polygonal-path-gives-path path-join-eq)
ultimately have loop-free p^{\prime}
using loop-free-append[of $\left.p^{\prime} v t s^{\prime} ? l^{\prime}[? a, x, ? b] ? p-t l ? v t s-t l\right]$
by (metis (no-types) 0.prems(1) 0.prems(2) 0.prems(7) arc-simple-path lf-l' make-polygonal-path.simps(3) make-polygonal-path.simps(4) make-polygonal-path-gives-path p pathfinish-join pathstart-linepath simple-path-def simple-path-joinE)
then have ?case
using $O(1) O(3) O(4) O(5) O(6) O(7)$ path-image-linepath-split by blast
\}
ultimately show ?case
by (metis $0(3,4)$ One-nat-def Suc-lessI length-tl less-eq-Suc-le nat-1-add-1
plus-1-eq-Suc)
next
case (Suc i)
let ?vts-tl = tl vts
let ? p-tl $=$ make-polygonal-path ?vts-tl
let ?vts'-tl $=t l$ vts ${ }^{\prime}$
let ? p^{\prime}-tl $=$ make-polygonal-path ?vts'-tl

$$
\text { let } ? a=v t s!0
$$

let $? b=v t s!1$
let $? l=$ linepath $? a ? b$

$$
\text { have ?vts-tl! } i=v t s!(\text { Suc } i) \wedge \text { ?vts-tt! }(i+1)=v t s!((\text { Suc } i)+1)
$$

by (metis Suc.prems(3) Suc.prems(4) add-Suc-right add-Suc-shift diff-is-0-eq linorder-not-le list.exhaust-sel list.size(3) not-less-zero nth-Cons-Suc)
moreover have set ?vts-tl \subseteq set vts
by (metis list.sel(2) list.set-sel(2) subsetI)
ultimately have $x \in$ path-image (linepath (?vts-tl! $i)($?vts-tl! $(i+1))) \wedge x \notin$ set ?vts-tl
using Suc.prems(5) by auto
moreover have $v t s^{\prime}-t l$: ?vts'-tl $=($ take $(i+1)$?vts-tl $) @[x]$ @ $(d r o p(i+1)$?vts-tl)
by (metis Suc.prems(3) Suc.prems(4) Suc.prems(6) Suc-eq-plus1 drop-Suc leD length-tl take-all-iff take-eq-Nil take-tl tl-append2 zero-eq-add-iff-both-eq-0 zero-neq-one)
moreover have loop-free ? p-tl
using tail-of-loop-free-polygonal-path-is-loop-free Suc.prems
by (metis Nitpick.size-list-simp(2) Suc-1 Suc-leI Suc-neq-Zero diff-0-eq-0 diff-Suc-1 less-one linorder-neqE-nat list.collapse not-less-zero)
ultimately have ih: loop-free ? $p^{\prime}-t l \wedge$ path-image ? p^{\prime} - $t l=$ path-image ? p - $t l$
using Suc.prems Suc.hyps [of ?p-tl ?vts-tl - ?vts'-tl ?p'-tl] by simp

```
    have \(p: p=? l+++? p-t l\)
    proof -
    have \(f 1\) : \(\forall\) vs. \((h d(t l v s)::(r e a l, 2)\) vec \()=v s!1 \vee[]=v s \vee[]=t l\) vs
            by (metis (no-types) One-nat-def hd-conv-nth list.collapse nth-Cons-Suc)
    have []\(\neq t l\) vts \(\wedge v t s \neq[] \wedge t l\) vts \(\neq[h d(t l v t s)]\)
    by (metis Suc.prems(1) Suc.prems(2) 〈loop-free (make-polygonal-path (tl vts))〉
constant-linepath-is-not-loop-free make-polygonal-path.simps(1) make-polygonal-path.simps(2))
    then have \(p=\) make-polygonal-path \([h d\) vts, vts ! 1] +++ make-polygonal-path
\((t l v t s) \wedge v t s \neq[]\)
    using \(f 1\) by (metis (full-types) Suc.prems(1) list.collapse make-polygonal-path.simps(3)
make-polygonal-path.simps(4))
    then show ?thesis
        by (simp add: hd-conv-nth)
    qed
```

have length vts ${ }^{\prime} \geq 3$ using Suc.prems by force
moreover have $a b: ? a=v t s^{\prime}!0 \wedge ? b=v t s^{\prime}!1$
using Suc.prems
by (smt (verit, ccfv-SIG) One-nat-def Suc-eq-plus1 add-Suc-right append-Cons drop0 drop-Suc length-tl less-nat-zero-code list.exhaust-sel list.size(3) nat-diff-split nth-Cons-0 nth-Cons-Suc take-Suc zero-less-Suc)
ultimately have $p^{\prime}: p^{\prime}=? l+++? p^{\prime}-t l$
using Suc.prems(7) make-polygonal-path.simps(4)[of ?a ? b]
by (metis (no-types, opaque-lifting) Cons-nth-drop-Suc One-nat-def Suc-leD
Suc-le-eq drop0 drop-Suc numeral-3-eq-3)
have nonarc: path-image ?l \cap path-image $? p-t l \subseteq\{? a, ? b\}$
using simple-path-join-loop-eq Suc.prems
by (smt (verit, ccfv-threshold) p One-nat-def length-tl less-zeroE make-polygonal-path-gives-path nth-tl order.strict-iff-not order-le-less-trans path-join-eq path-linepath pathfinish-linepath pathstart-linepath polygon-pathstart simple-path-def simple-path-joinE take-Nil take-all-iff)
have arc: arc $p \longrightarrow$ path-image ?l \cap path-image ?p-tl $\subseteq\{? b\}$
using arc-join-eq
by (metis Suc.prems(1) p make-polygonal-path-gives-path path-join-eq path-linepath pathfinish-linepath)
\{ assume arc p
moreover then have path-image ?l \cap path-image ? p^{\prime}-tl $\subseteq\{? b\}$ using arc ih
by presburger
moreover have pathfinish ?l = pathstart $? p^{\prime}-t l$
by (metis Suc.prems(7) make-polygonal-path-gives-path p' path-join-path-ends)
ultimately have ?case using p^{\prime} arc-join-eq[of ?l ? p^{\prime}-tl]
by (smt (verit, ccfv-SIG) Nil-is-append-conv Suc.prems(3) Suc.prems(4) Suc-eq-plus1 vts'-tl arc-simple-path drop-eq-Nil ih last-appendR last-conv-nth last-drop leD length-tl make-polygonal-path-gives-path p path-image-join path-join-eq path-linepath pathfinish-linepath polygon-pathfinish simple-path-def simple-path-joinE take-all-iff take-eq-Nil)
\} moreover
$\{$ assume $\neg \operatorname{arc} p$
then have pathstart ?l = pathfinish $? p^{\prime}-t l \wedge$ pathfinish $? l=$ pathstart $? p^{\prime}-t l$
by (smt (verit, del-insts) Nil-is-append-conv Nil-tl One-nat-def Suc.prems(2)
Suc.prems(3) Suc.prems(4) Suc-eq-plus1 vts'-tl ab arc-def drop-eq-Nil last-appendR last-conv-nth last-drop leD length-tl list.collapse loop-free-cases make-polygonal-path-gives-path nth-Cons-Suc p path-join-eq path-linepath pathfinish-join pathfinish-linepath path-start-join polygon-pathfinish polygon-pathstart take-all-iff take-eq-Nil)
then have ?case using simple-path-join-loop-eq $\left[o f\right.$?l ? p^{\prime}-tl] p^{\prime} nonarc
by (smt (verit, ccfv-threshold) One-nat-def Suc.prems(2) Suc.prems(3) Suc.prems(4) arc-def constant-linepath-is-not-loop-free dual-order.strict-trans ih leD length-tl loop-free-cases make-polygonal-path-gives-path not-loop-free-first-component nth-tl p path-image-join path-linepath pathfinish-linepath pathstart-linepath polygon-pathstart simple-path-def simple-path-join-loop-eq take-all-iff take-eq-Nil zero-less-Suc)
\}
ultimately show ?case by argo
qed
lemma polygon-linepath-split-is-polygon:
assumes polygon-of p vts
assumes $i<($ length vts $)-1$
assumes $a=v t s!i \wedge b=v t s!(i+1)$
assumes $x \in$ path-image (linepath $a b) \wedge x \notin$ set vts
assumes $v t s^{\prime}=($ take $(i+1)$ vts $) @[x] @($ drop $(i+1) v t s)$
shows polygon (make-polygonal-path vts')
proof-
let $? p^{\prime}=$ make-polygonal-path vts'

```
have path ?p' using assms make-polygonal-path-gives-path by presburger
moreover have loop-free? ? ' using assms loop-free-linepath-split-is-loop-free
    by (metis polygon-def polygon-of-def simple-path-def)
moreover have closed-path ? p'
proof-
    have hd vts' = hd vts
        using assms
    by (metis hd-append2 hd-take le-diff-conv linorder-not-less take-all-iff take-eq-Nil2
trans-less-add2 zero-less-one)
    moreover have last vts' = last vts
        using assms linordered-semidom-class.add-diff-inverse by auto
    ultimately show ?thesis
    by (metis closed-path-def <path ?p'> append-butlast-last-id append-eq-conv-conj
append-is-Nil-conv assms(1) assms(5) have-wraparound-vertex hd-conv-nth length-butlast
not-Cons-self nth-append-length polygon-of-def polygon-pathfinish polygon-pathstart)
    qed
    ultimately show ?thesis unfolding polygon-def polygonal-path-def simple-path-def
assms(5) by blast
qed
```


16 Measure of linepaths

lemma linepath-is-negligible-vertical:
fixes $a b::$ real ${ }^{\wedge}$ 2
assumes $a \$ 1=b \$ 1$
defines $p \equiv$ linepath a b
shows negligible (path-image p)
proof-
have $p-t: \forall t \in\{0 . .1\} .(p t) \$ 1=a \$ 1$
using linepath-in-path p-def segment-vertical assms by blast
let $? x=a \$ 1$
let ? $e 1=($ vector $[1,0]):$:real^2
have $(1::$ real $) \in$ Basis by simp
then have axis $1(1::$ real $) \in(\bigcup i . \bigcup u \in($ Basis::(real set $))$. $\{$ axis $i u\})$ by blast
moreover have ?e1 = axis 1 ($1::$ real)
unfolding axis-def vector-def by auto
ultimately have e1-basis: ?e1 \in (Basis::((real^2) set)) by simp
then have negligible $\{v . v \cdot ? e 1=? x\}$ (is negligible ?S)
using negligible-standard-hyperplane by auto
moreover have $\forall t \in\{0 . .1\}$. $(p t) \cdot ? e 1=? x$
proof clarify
fix t :: real
assume $t: t \in\{0 . .1\}$
have $(p t) \cdot ? e 1=(p t) \$ 1$
by (smt (verit, best) e1-basis cart-eq-inner-axis vec-nth-Basis vector-2(1))
also have $\ldots=$? x using $p-t t$ by blast
finally show $(p t) \cdot ? e 1=? x$.

qed

moreover from this have path-image $p \subseteq ? S$ unfolding path-image-def by blast
ultimately show ?thesis using negligible-subset by blast
qed
lemma linepath-is-negligible-non-vertical:
fixes $a b$:: real~2
assumes $a \$ 1<b \$ 1$
defines $p \equiv$ linepath a b
shows negligible (path-image p)
proof-
let $? A=($ vector $[$ vector $[1, b \$ 1-a \$ 1]$, vector $[0, b \$ 2-a \$ 2]]):($ real 2 2~2 $)$
let ?f1 $=\lambda v$::real^2. $(? A * v v)$
let ? $i d=\lambda v$: :real^2. v
let ? $\mathrm{f}-\mathrm{a}=\lambda v$: :real^2. a
let ?f2 $=\lambda v$. ?id $v+$?f-a v
let ?f $=$?f2 \circ ?f1
let $? O=($ vector $[0,0])::$ real ${ }^{\text {®2 }}$
let ? $e 2=($ vector $[0,1]):$:real^2
let ?y-unit-seg-path $=$ linepath ?O ?e2
let $?$ y-unit-seg $=$ path-image $? y$-unit-seg-path
have $\forall t \in\{0 . .1\}$. ?f $($? y-unit-seg-path $t)=p t$
proof clarify
fix t :: real
assume $t: t \in\{0 . .1\}$
then obtain v where v : ? y-unit-seg-path $t=v$ by auto
then have $v=(1-t) *_{R} ? O+t *_{R}$? e2 unfolding linepath-def by auto
then have $v=t *_{R}$? $e 2$
by (smt (verit, best) $t v$ exhaust-2 linepath-0 scaleR-zero-left vec-eq-iff vec-
tor-2(1) vector-2(2) vector-scaleR-component)
then have ?f $v=p t$
proof-
assume $v=t *_{R}$ vector $[0,1]$
then have $v=$ vector $[t * 0, t * 1]$
by (smt (verit, del-insts) exhaust-2 mult-cancel-left1 real-scaleR-def scaleR-zero-right vec-eq-iff vector-2(1) vector-2(2) vector-scaleR-component)
then have $v: v=$ vector $[0, t]$ by auto
have f1: ? $f 1 v=$ vector $[t *(b \$ 1-a \$ 1), t *(b \$ 2-a \$ 2)]$ (is? $f 1 v=$? $f 1-v)$ by (simp add: mat-vec-mult-2 v)
have ?f2 ?f1-v $=$ vector $[t *(b \$ 1-a \$ 1), t *(b \$ 2-a \$ 2)]+$ vector $[a \$ 1$, $a \$ 2]$
by (smt (verit) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
also have $\ldots=$ vector $[t *(b \$ 1-a \$ 1)+a \$ 1, t *(b \$ 2-a \$ 2)+a \$ 2]$
by (smt (verit, del-insts) vector-add-component exhaust-2 vec-eq-iff vec-

```
tor-2(1) vector-2(2))
    also have ... = vector [t*b$1+(1-t)*a$1,t*b$2 + (1-t)*a$2]
by argo
    also have ... =t t*R b + (1-t) *R a
        by (smt (verit, del-insts) exhaust-2 real-scaleR-def vec-eq-iff vector-2(1)
vector-2(2) vector-add-component vector-scaleR-component)
    finally have ?f2 ?f1-v = t* *R b + (1-t)**Ra.
    thus ?thesis using p-def f1 unfolding linepath-def by simp
    qed
    thus ?f (?y-unit-seg-path t) = pt using v by simp
qed
    then have ?f '?y-unit-seg = path-image p unfolding path-image-def by force
    moreover have ?f differentiable-on ?y-unit-seg
    proof-
    have linear ?f1 by auto
    then have ?f1 differentiable-on ?y-unit-seg
        using linear-imp-differentiable by (simp add: linear-imp-differentiable-on)
    moreover have ?f2 differentiable-on (?f1'?y-unit-seg)
    proof -
        have ?id differentiable-on?f1'?y-unit-seg
            using differentiable-const by simp
            moreover have ?f-a differentiable-on?f1'?y-unit-seg
                using differentiable-ident by simp
            ultimately show ?f2 differentiable-on ?f1'?y-unit-seg
                using differentiable-compose by simp
    qed
    ultimately show ?thesis using differentiable-compose
        by (simp add: differentiable-chain-within differentiable-on-def)
    qed
    moreover have negligible ?y-unit-seg
    using linepath-is-negligible-vertical[of ?O ?e2] by simp
    ultimately show ?thesis
    using negligible-differentiable-image-negligible by fastforce
qed
lemma linepath-is-negligible:
    fixes a b :: real`2
    defines p}\equiv\mathrm{ linepath a b
    shows negligible (path-image p)
proof -
    { assume a$1 = b$1
    then have ?thesis using linepath-is-negligible-vertical p-def by blast
    } moreover
    { assume a$1<b$1
        then have ?thesis using linepath-is-negligible-non-vertical p-def by blast
    } moreover
    { assume a:a$1 > b$1
        let ?p-rev = reversepath p
```

```
    have path-image p = path-image ?p-rev by simp
    moreover have ?p-rev = linepath b a using p-def by simp
    ultimately have ?thesis using a linepath-is-negligible-non-vertical[of b a] by
simp
    }
    ultimately show ?thesis by linarith
qed
lemma linepath-has-emeasure-0:
    emeasure lebesgue (path-image (linepath (a::(real`2)) (b::(real^2)))) = 0
    using linepath-is-negligible emeasure-notin-sets negligible-iff-emeasure0 by blast
lemma linepath-has-measure-0:
    measure lebesgue (path-image (linepath (a::(real^2)) (b::(real^2)))) =0
    using linepath-has-emeasure-0 linepath-is-negligible negligible-imp-measure0 by
blast
end
theory Polygon-Convex-Lemmas
imports
    Polygon-Lemmas
    Linepath-Collinearity
```


begin

17 Misc. Convex Polygon Properties

```
lemma polygon-path-image-subset-convex:
    assumes length vts > 0
    shows path-image (make-polygonal-path vts)\subseteq convex hull (set vts) (is path-image
?p}\subseteq?S
    using assms
proof(induct vts rule: make-polygonal-path.induct)
    case 1
    then show ?case by simp
next
    case (2 a)
    then show ?case by auto
next
    case (3 a b)
    show ?case (is path-image ?p }\subseteq\mathrm{ ?S)
    proof(rule subsetI)
        fix }
        assume x-in-path-image: x f path-image ?p
        then have }x\in\mathrm{ path-image (linepath a b) by auto
        thus }x\in\mathrm{ ?S
            unfolding path-image-def linepath-def
            by (smt (verit, ccfv-SIG) <x \in path-image (linepath a b)> convex-alt con-
vex-convex-hull hull-subset in-mono in-segment(1) linepath-image-01 list.set-intros(1)
```

```
path-image-def set-subset-Cons)
    qed
next
    case (4abc ll)
    let ?vts=a#b#c#tl
    show ?case (is path-image ?p }\subseteq\mathrm{ ?S)
    proof(rule subsetI)
        fix }
        assume x-in-path-image: }x\in\mathrm{ path-image ?p
        show }x\in\mathrm{ ?S
        proof cases
            assume x f set ?vts
            thus ?thesis by (simp add: hull-inc)
        next
            assume x-notin: x }\not=\mathrm{ set ?vts
            obtain }u\mathrm{ where p-u:u}\in{0..1}\wedge?p u=
            using x-in-path-image unfolding path-image-def by auto
        then have p-head-tail: ?p = (linepath a b) +++ make-polygonal-path (b #c
# tl)
            by auto
            have abc-in-S: set ?vts \subseteqconvex hull (set ?vts) by (simp add: hull-subset)
            { assume u-assm: u \leq 1/2
                then have ?p u=(1-2*u) *R}a+(2*u)**R b
                    using p-head-tail unfolding linepath-def joinpaths-def
                    by presburger
                hence }x\in\mathrm{ ?S
                    using abc-in-S convexD-alt[of ?S a b 2 *u] u-assm p-u by simp
            } moreover
            { assume u-assm: u> 1/2
                then have }x=(\mathrm{ make-polygonal-path (b#c#tl) (2*u-1)) (is x=
(? p}\mp@subsup{p}{}{\prime}(2*u-1))
                using p-head-tail p-u unfolding linepath-def joinpaths-def by auto
                moreover have 0< (2*u-1) using u-assm by linarith
                    ultimately have }x\in\mathrm{ path-image ? p
                    using p-u by (simp add: path-image-def)
                moreover have path-image ? p'\subseteq convex hull (set (b#c#tl)) using
4(1) by auto
            moreover have ... \subseteqconvex hull (set ( a # b #c # tl))
                    by (meson hull-mono set-subset-Cons)
                ultimately have }x\in\mathrm{ ?S by auto
            }
            ultimately show ?thesis by linarith
        qed
    qed
qed
lemma convex-contains-simple-closed-path-imp-contains-path-inside:
    assumes convex S
    assumes simple-path p}\wedge closed-path 
```


assumes path-image $p \subseteq S$

shows path-inside $p \subseteq S$
by (metis (no-types, opaque-lifting) Compl-subset-Compl-iff Un-subset-iff assms(1) $\operatorname{assms}(3)$ boolean-algebra-class.boolean-algebra.double-compl outside-subset-convex path-inside-def union-with-inside)
lemma convex-polygon-is-convex-hull:
assumes polygon p
assumes convex (path-inside $p \cup$ path-image p)
assumes $p=$ make-polygonal-path vts
shows convex hull (set vts) $=$ path-inside $p \cup$ path-image p (is ?hull $=$?poly)
proof-
have ?hull \subseteq ? poly
proof (rule subsetI)
fix x
assume $x \in$?hull
moreover have $\forall H .($ convex $H \wedge($ set vts $) \subseteq H) \longrightarrow$?hull $\subseteq H$ by $($ simp
add: hull-minimal)
moreover have convex $($?poly $) \wedge($ set vts $) \subseteq$?poly
using assms(2) assms(3) vertices-on-path-image by auto
ultimately show $x \in$? poly by auto
qed
moreover have ?hull \supseteq ?poly
proof (rule subsetI)
fix x
assume $x \in$?poly
moreover have path-image $p \subseteq$?hull
using polygon-path-image-subset-convex[of vts] polygon-at-least-3-vertices
assms
by force
moreover from calculation have path-inside $p \subseteq$?hull
using convex-contains-simple-closed-path-imp-contains-path-inside polygon-def
assms (1)
by auto
ultimately show $x \in$?hull by auto
qed
ultimately show ?thesis by auto
qed
lemma convex-polygon-inside-is-convex-hull-interior:
assumes polygon p
assumes convex (path-inside p)
assumes $p=$ make-polygonal-path vts
shows interior (convex hull (set vts)) = path-inside p
by (metis (no-types, lifting) assms closure-Un-frontier convex-closure convex-interior-closure
convex-polygon-is-convex-hull inside-outside-def inside-outside-polygon interior-eq)
lemma convex-polygon-inside-is-convex-hull-interior2:
assumes polygon p

```
    assumes convex (path-inside p U path-image p)
    assumes p= make-polygonal-path vts
    shows interior (convex hull (set vts)) = path-inside p
    using assms closure-Un-frontier convex-closure convex-interior-closure convex-polygon-is-convex-hull
inside-outside-def inside-outside-polygon interior-eq
    by (smt (verit, best) List.finite-set compact-eq-bounded-closed finite-imp-compact-convex-hull
frontier-complement inside-frontier-eq-interior outside-inside path-inside-def path-outside-def
sup-commute)
lemma polygon-convex-iff:
    assumes polygon p
    shows convex (path-inside p) \longleftrightarrow convex (path-inside p \cup path-image p)
    using convex-polygon-inside-is-convex-hull-interior
    using convex-polygon-inside-is-convex-hull-interior2
    by (metis Jordan-inside-outside-real2 closed-path-def assms closure-Un-frontier
convex-closure convex-interior convex-polygon-is-convex-hull path-inside-def poly-
gon-def polygon-to-polygonal-path)
lemma convex-polygon-frontier-is-path-image:
    assumes polygon-of p vts
    assumes convex (path-inside p)
    shows frontier (convex hull (set vts)) = path-image p
    using assms
    unfolding frontier-def polygon-of-def
    by (metis (no-types, lifting) Jordan-inside-outside-real2 closed-path-def convex-closure-interior
convex-convex-hull convex-polygon-inside-is-convex-hull-interior frontier-def inte-
rior-interior path-inside-def polygon-def)
lemma convex-polygon-frontier-is-path-image2:
    assumes polygon p
    assumes convex (path-inside p)
    shows frontier (path-image p \cup path-inside p) = path-image p
    using assms
    by (simp add: Jordan-inside-outside-real2 closed-path-def path-inside-def poly-
gon-def union-with-inside)
lemma convex-polygon-frontier-is-path-image3:
    assumes polygon p
    assumes convex (path-image p \cup path-inside p)
    shows frontier (path-image p\cup path-inside p) = path-image p
    using assms polygon-convex-iff
    by (simp add: convex-polygon-frontier-is-path-image2 sup-commute)
lemma polygon-frontier-is-path-image:
    assumes polygon p
    shows frontier (path-inside p) = path-image p
    using inside-outside-polygon unfolding inside-outside-def
    using assms by presburger
```

```
lemma convex-path-inside-means-convex-polygon:
    assumes polygon p
    assumes frontier (convex hull (set vts)) = path-image p
    shows convex (path-inside p)
    by (metis List.finite-set assms(2) convex-convex-hull convex-interior finite-imp-bounded-convex-hull
inside-frontier-eq-interior path-inside-def)
lemma convex-hull-of-polygon-is-convex-hull-of-vts:
    assumes polygon-of p vts
    shows convex hull (path-image p}\cup\mathrm{ path-inside p) = convex hull (set vts)
proof -
    have len-vts: length vts > 0
        by (metis assms card.empty empty-set length-greater-0-conv not-numeral-le-zero
polygon-at-least-3-vertices polygon-of-def)
    have path-image p\cup path-inside p\subseteqconvex hull (set vts)
        using polygon-path-image-subset-convex[OF len-vts]
        using assms convex-contains-simple-closed-path-imp-contains-path-inside poly-
gon-def polygon-of-def by auto
    then have subset1: convex hull (path-image p\cup path-inside p)\subseteq convex hull
(set vts)
    by (simp add: convex-hull-subset)
    have set vts \subseteq path-image p\cup path-inside p using assms vertices-on-path-image
    by (simp add: polygon-of-def sup.coboundedI1)
    then have subset2: convex hull (set vts)\subseteq convex hull (path-image p \cup path-inside
p)
    by (simp add: hull-mono)
    show ?thesis using subset1 subset2
        by auto
    qed
lemma convex-hull-frontier-polygon:
    assumes polygon-of p vts
    assumes \neg set vts \subseteq frontier (convex hull (set vts))
    shows \neg convex (path-inside p)
    by (metis assms(1) assms(2) convex-polygon-frontier-is-path-image polygon-of-def
vertices-on-path-image)
lemma frontier-int-subset:
    assumes A\subseteqB
    shows (frontier B) \capA\subseteq frontier A
    by (metis assms closure-Un-frontier frontier-Int inf.absorb-iff2 inf-sup-aci(1)
subset-Un-eq sup-inf-distrib2)
lemma in-frontier-in-subset:
    assumes }A\subseteq
    assumes }x\in\mathrm{ frontier }
    assumes }x\in
    shows }x\in\mathrm{ frontier A
```

by (metis assms frontier-int-subset IntI in-mono)
lemma in-frontier-in-subset-convex-hull:
assumes $A \subseteq B$
assumes $x \in$ frontier (convex hull B)
assumes $x \in$ convex hull A
shows $x \in$ frontier (convex hull A)
by (metis in-frontier-in-subset assms hull-mono)
lemma convex-hull-two-extreme-points:
fixes S :: ' $a::$ euclidean-space set
assumes finite S
assumes convex hull $S \neq\{ \}$
assumes $\forall x$. convex hull $S \neq\{x\}$
shows card $\{x$. x extreme-point-of (convex hull S) $\} \geq 2$ (is card ?ep \geq 2)
proof-
have compact (convex hull S) by (simp add: assms(1) finite-imp-compact-convex-hull)
then have convex hull $S=$ convex hull ? ep
using Krein-Milman-Minkowski[OF - convex-convex-hull] by blast
moreover then obtain x where $x \in$?ep using assms(2) by fastforce
moreover have ? $e p \neq\{x\}$ using assms(3) calculation(1) by force
ultimately obtain y where $x \in ? e p \wedge y \in ? e p \wedge x \neq y$ by blast
moreover have finite? ep using assms(1) extreme-points-of-convex-hull finite-subset
by blast
ultimately show ?thesis
by (metis (no-types, lifting) One-nat-def Orderings.order-eq-iff Suc-1 Suc-leI
card-1-singletonE card-gt-0-iff empty-iff insert-Diff not-less-eq-eq singleton-insert-inj-eq)
qed
lemma convex-hull-two-vts-on-frontier:
fixes S :: ' $a::$ euclidean-space set
assumes card $S \geq 2$
shows card $(S \cap$ frontier $($ convex hull $S)) \geq 2$
proof-
have $S \subseteq$ convex hull S by (simp add: hull-subset)
then have convex hull $S \neq\{ \} \wedge$ card (convex hull $S) \neq 1$
by (metis Suc-1 add-leD2 assms card.empty card-1-singletonE convex-hull-eq-empty not-one-le-zero numeral-le-one-iff plus-1-eq-Suc semiring-norm(69) subset-singletonD)
moreover have finite S using assms by (metis Suc-1 Suc-leD card-eq-0-iff not-one-le-zero)
ultimately have card $\{x$. x extreme-point-of (convex hull $S)\} \geq 2$
using convex-hull-two-extreme-points by fastforce
moreover have $\{x . x$ extreme-point-of (convex hull S) $\} \subseteq S \cap$ frontier (convex
hull S)
proof-
have $\{x$. x extreme-point-of (convex hull $S)\} \subseteq S$ by (simp add: extreme-points-of-convex-hull)
moreover have $\{x$. x extreme-point-of (convex hull S) $\} \cap$ interior (convex hull $S)=\{ \}$
using extreme-point-not-in-interior by blast
moreover have $\{x . x$ extreme-point-of (convex hull $S)\} \subseteq$ convex hull S
using $\langle S \subseteq$ convex hull $S\rangle$ calculation (1) by blast
moreover have convex hull $S=$ interior (convex hull S) \cup frontier (convex hull S)
by (metis (no-types, lifting) Diff-empty Suc-1 assms card.infinite closure-Un-frontier closure-convex-hull convex-closure-interior convex-convex-hull empty-subsetI finite-imp-compact frontier-def interior-interior not-less-eq-eq sup-absorb2 zero-less-one-class.zero-le-one)
ultimately show ?thesis by blast
qed
ultimately show ?thesis
by (smt (verit, del-insts) assms extreme-points-of-convex-hull card-gt-0-iff fi-nite-Int linorder-not-less not-numeral-le-zero order-less-le order-less-le-trans psub-set-card-mono)
qed

18 Vertices on Convex Frontier Implies Polygon is Convex

lemma convex-cut-aux:
assumes $\forall v \in S . z \cdot v \leq 0$
shows convex hull $S \subseteq\{x . z \cdot x \leq 0\}$
by (simp add: assms convex-halfspace-le hull-minimal subsetI)
lemma convex-cut-aux':
assumes $\forall v \in S . z \cdot v \geq 0$
shows convex hull $S \subseteq\{x . z \cdot x \geq 0\}$
using convex-cut-aux[of $S-z]$ assms by auto
lemma convex-cut:
assumes $z \neq 0$
assumes $\{x . z \cdot x=0\} \cap$ interior (convex hull $S) \neq\{ \}$
obtains v1 v2 where $v 1 \neq v 2 \wedge\{v 1, v 2\} \subseteq S \wedge v 1 \in\{x . z \cdot x<0\} \wedge v 2 \in$
$\{x . z \cdot x>0\}$
proof -
let ? $P 1=\{x . z \cdot x \leq 0\}$
let ? P2 $=\{x . z \cdot x \geq 0\}$
have frontier ?P1 $=\{x . z \cdot x=0\}$
by (simp add: assms(1) frontier-halfspace-le)
moreover have frontier ? P2 $=\{x . z \cdot x=0\}$
by (simp add: assms(1) frontier-halfspace-ge)
ultimately have \neg convex hull $S \subseteq ? P 1 \wedge \neg$ convex hull $S \subseteq ? P 2$
by (smt (verit, ccfv-SIG) DiffE IntE assms(2) disjoint-iff frontier-def inf.absorb-iffz interior-Int)
moreover have $(\forall v \in S . z \cdot v \leq 0) \Longrightarrow$ convex hull $S \subseteq$?P1 using con-vex-cut-aux by blast
moreover have $(\forall v \in S . z \cdot v \geq 0) \Longrightarrow$ convex hull $S \subseteq$?P2 using con-vex-cut-aux' by blast
ultimately obtain $v 1 v 2$ where $\{v 1, v 2\} \subseteq S \wedge z \cdot v 1<0 \wedge z \cdot v 2>0$
using linorder-not-le by auto
thus ?thesis using that by fastforce
qed
lemma affine-2-int-convex:
fixes S :: 'a::euclidean-space set
assumes $\{a, b\} \subseteq S$
assumes $\{a, b\} \subseteq$ frontier (convex hull S)
assumes affine hull $\{a, b\} \cap$ interior (convex hull $S) \neq\{ \}$
shows affine hull $\{a, b\} \cap$ convex hull $S=$ convex hull $\{a, b\}$
proof-
let ? $H=$ convex hull S
let $? L=$ affine hull $\{a, b\} \cap$? H
have 1: ? $L \supseteq$ convex hull $\{a, b\}$
by (meson Int-greatest assms(1) convex-hull-subset-affine-hull hull-mono)
moreover have ? $L \subseteq$ convex hull $\{a, b\}$
proof(rule subsetI)
fix x
assume $*: x \in ? L$
then obtain $u v$ where $u v: x=u *_{R} a+v *_{R} b \wedge u+v=1$ using
affine-hull-2 by blast
have rel-interior $? L \subseteq$ rel-interior ? H
using subset-rel-interior-convex[of ?L ? H]
by (metis assms(3) convex-affine-hull convex-convex-hull convex-rel-interior-inter-two inf-bot-right inf-le2 rel-interior-affine-hull rel-interior-nonempty-interior)
moreover have ab-frontier: $a \in$ frontier ? $H \wedge b \in$ frontier ? H using assms by blast
ultimately have ab-rel-frontier: $a \in$ rel-frontier $? L \wedge b \in$ rel-frontier ? L
by (metis IntI affine-affine-hull assms(3) convex-affine-rel-frontier-Int con-vex-convex-hull hull-subset inf-commute insert-subset)
\{ assume $* *: u<0$
then have $b \in$ open-segment $a x$
proof-
from $u v$ have $b=(1 / v) *_{R} x-(u / v) *_{R} a$
by (smt (verit, ccfv-threshold) ** divide-inverse-commute inverse-eq-divide real-vector-affinity-eq vector-space-assms(3) Groups.add-ac(2))
moreover from $u v$ have $1 / v-u / v=1$
by (metis $* *$ add.commute add-cancel-right-left diff-divide-distrib di-vide-self-if eq-diff-eq' not-one-less-zero)
ultimately have $b=(1-1 / v) *_{R} a+(1 / v) *_{R} x$ by (simp add: diff-eq-eq)
moreover from $u v * *$ have $0<1 / v \wedge 1 / v<1$ by simp
ultimately show ?thesis
by (metis 1 ab-rel-frontier affine-hull-sing convex-hull-singleton empty-iff equalityI in-segment(2) inf-le1 insert-absorb rel-frontier-sing scaleR-collapse singletonI)
qed
then have $b \in$ rel-interior (convex hull $\{a, x\}$)
by (metis empty-iff open-segment-idem rel-interior-closed-segment seg-ment-convex-hull)
moreover have $x \in$? H using $*$ by blast
ultimately have $b \in$ interior ? H
by (smt (verit, ccfv-threshold) * IntD2 Int-empty-right 1 affine-affine-hull affine-hull-affine-Int-nonempty-interior affine-hull-convex-hull assms(3) convex-Int convex-affine-hull convex-convex-hull convex-rel-interior-inter-two hull-hull hull-redundant-eq insert-commute insert-subsetI rel-interior-affine-hull rel-interior-mono rel-interior-nonempty-interior rel-interior-subset subset-hull subset-iff)
then have False by (metis DiffD2 ab-frontier frontier-def)
\} moreover
\{ assume $* *: v<0$
then have $a \in$ open-segment $b x$ proof-
from $u v$ have $a=(1 / u) *_{R} x-(v / u) *_{R} b$
by (smt (verit, ccfv-threshold) ** divide-inverse-commute inverse-eq-divide real-vector-affinity-eq vector-space-assms(3) Groups.add-ac(2))
moreover from $u v$ have $1 / u-v / u=1$
by (metis $* *$ add-cancel-right-left diff-divide-distrib divide-self-if eq-diff-eq' not-one-less-zero)
ultimately have $a=(1-1 / u) *_{R} b+(1 / u) *_{R} x$ by (simp add: diff-eq-eq)
moreover from $u v * *$ have $0<1 / u \wedge 1 / u<1$ by simp
ultimately show ?thesis
by (metis 1 ab-rel-frontier affine-hull-sing convex-hull-singleton empty-iff equalityI in-segment(2) inf-le1 insert-absorb rel-frontier-sing scaleR-collapse singletonI)
qed
then have $a \in$ rel-interior (convex hull $\{b, x\}$)
by (metis empty-iff open-segment-idem rel-interior-closed-segment seg-ment-convex-hull)
moreover have $x \in$?H using $*$ by blast
ultimately have $a \in$ interior ?H
by (smt (verit, ccfv-threshold) * IntD2 Int-empty-right 1 affine-affine-hull affine-hull-affine-Int-nonempty-interior affine-hull-convex-hull assms(3) convex-Int convex-affine-hull convex-convex-hull convex-rel-interior-inter-two hull-hull hull-redundant-eq insert-commute insert-subsetI rel-interior-affine-hull rel-interior-mono rel-interior-nonempty-interior rel-interior-subset subset-hull subset-iff)
then have False by (metis DiffD2 ab-frontier frontier-def)
\}
ultimately have $0 \leq u \wedge u \leq 1 \wedge 0 \leq v \wedge v \leq 1$ using $u v$ by argo
thus $x \in$ convex hull $\{a, b\}$ by (simp add: convexD hull-inc uv)
qed
ultimately show ?thesis by blast
qed
lemma halfplane-frontier-affine-hull:
fixes $b v::$ real~2
assumes $b \neq 0$
assumes $v \neq 0$

```
    assumes \(b \in\{x . v \cdot x=0\}\)
    shows \(\{x . v \cdot x=0\}=\) affine hull \(\{0, b\}\)
proof -
    let ? \(F=\{x . v \cdot x=0\}\)
    let ? \(A=\) affine hull \(\{0, b\}\)
    have ? \(F \subseteq ? A\)
    proof(rule subsetI)
        fix \(y\)
        assume \(*: y \in ? F\)
        have \(y \in ? A\) if \(y=0\) by (simp add: assms(2) hull-inc that)
        moreover have \(y \in ? A\) if \(b \$ 1 \neq 0\)
        proof -
            have \(v \cdot y=0\) using \(*\) by fast
            moreover have \(v \cdot b=0\) using assms by force
            moreover have \(v \cdot y=v \$ 1 * y \$ 1+v \$ 2 * y \$ 2\) by (simp add: inner-vec-def
sum-2 real-2-inner)
                            moreover have \(v \cdot b=v \$ 1 * b \$ 1+v \$ 2 * b \$ 2\) by (simp add: inner-vec-def
sum-2 real-2-inner)
                            ultimately have \(0: v \$ 1 * y \$ 1+v \$ 2 * y \$ 2=0 \wedge 0=v \$ 1 * b \$ 1+v \$ 2 *\)
b\$2 by auto
    moreover obtain \(c\) where \(c: y \$ 1=c * b \$ 1\) using \(\langle b \$ 1 \neq 0\rangle\)
            by (metis hyperplane-eq-Ex inner-real-def mult.commute)
                            ultimately have \(v \$ 1 * y \$ 1+v \$ 2 * y \$ 2=0 \wedge 0=c * v \$ 1 * b \$ 1+c *\)
\(v \$ 2 * b \$ 2\) by algebra
                            then have \(v \$ 1 * y \$ 1+v \$ 2 * y \$ 2=v \$ 1 * y \$ 1+c * v \$ 2 * b \$ 2\) using \(c\)
by algebra
                            then have \(v \$ 2 * y \$ 2=c * v \$ 2 * b \$ 2\) by argo
                            then have \(y \$ 2=c * b \$ 2\)
                            by (smt (verit, ccfv-threshold) 0 exhaust-2 mult.commute mult.left-commute
mult-cancel-left that assms vec-eq-iff zero-index)
    then have \(y=c *_{R} b\) using \(c\)
    by (smt (verit) exhaust-2 real-scaleR-def vec-eq-iff vector-scaleR-component)
    then have \(y \in \operatorname{span}\{0, b\}\) by (meson insert-subset span-mul span-superset)
    thus \(y \in\) ? \(A\)
        by (simp add: affine-hull-span-0 assms(2) hull-inc)
    qed
    moreover have \(y \in ? A\) if \(b \$ 2 \neq 0\)
    proof-
        have \(v \cdot y=0\) using \(*\) by fast
        moreover have \(v \cdot b=0\) using assms by force
        moreover have \(v \cdot y=v \$ 1 * y \$ 1+v \$ 2 * y \$ 2\) by (simp add: inner-vec-def
sum-2 real-2-inner)
        moreover have \(v \cdot b=v \$ 1 * b \$ 1+v \$ 2 * b \$ 2\) by (simp add: inner-vec-def
sum-2 real-2-inner)
    ultimately have \(0: v \$ 1 * y \$ 1+v \$ 2 * y \$ 2=0 \wedge 0=v \$ 1 * b \$ 1+v \$ 2 *\)
b\$2 by auto
    moreover obtain \(c\) where \(c: y \$ 2=c * b \$ 2\) using \(\langle b \$ 2 \neq 0\rangle\)
    by (metis hyperplane-eq-Ex inner-real-def mult.commute)
    ultimately have \(v \$ 1 * y \$ 1+v \$ 2 * y \$ 2=0 \wedge 0=c * v \$ 1 * b \$ 1+c *\)
```

$v \$ 2 * b \$ 2$ by algebra
then have $v \$ 1 * y \$ 1+v \$ 2 * y \$ 2=0 \wedge 0=c * v \$ 1 * b \$ 1+v \$ 2 * y \$ 2$
using c by algebra
then have $v \$ 1 * y \$ 1=c * v \$ 1 * b \$ 1$ by argo
then have $y \$ 1=c * b \$ 1$
by (smt (verit, ccfv-threshold) 0 exhaust-2 mult.commute mult.left-commute mult-cancel-left that assms vec-eq-iff zero-index)
then have $y=c *_{R} b$ using c
by (smt (verit) exhaust-2 real-scaleR-def vec-eq-iff vector-scale R-component)
then have $y \in \operatorname{span}\{0, b\}$ by (meson insert-subset span-mul span-superset)
thus $y \in$? A
by (simp add: affine-hull-span-0 assms(2) hull-inc)
qed
ultimately show $y \in ? A$
by (metis (mono-tags, opaque-lifting) assms(1) exhaust-2 vec-eq-iff zero-index)
qed
moreover have ? $A \subseteq ? F$
proof (rule subsetI)
fix x
assume $x \in$? A
then obtain $\alpha \beta$ where $x=\alpha *_{R} 0+\beta *_{R} b \wedge \alpha+\beta=1$ using affine-hull-2 by blast
then have $v \cdot x=\alpha *(v \cdot 0)+\beta *(v \cdot b)$ by (simp add: assms(1))
then have $v \cdot x=0$ using assms(3) by auto
thus $x \in ? F$ by fast
qed
ultimately show ?thesis by blast
qed
lemma vts-on-convex-frontier-aux:
assumes polygon-of p vts
assumes vts! $0=0$
assumes set vts \subseteq frontier (convex hull (set vts))
shows path-image (linepath $(v t s!0)(v t s!1)) \subseteq$ frontier (convex hull (set vts))
proof-
let $? H=$ convex hull (set vts)
let ? $a=v t s!0$
let $? b=v t s!1$
let $? l=$ linepath $? a ? b$
let $? L=$ path-image ?l
let $? A=$ affine hull $\{? a, ? b\}$
let $? x=? b-? a$
obtain v where $v: v \cdot ? x=0 \wedge v \neq 0$
proof -
let $? v=($ vector $[? x \$ 2,-? x \$ 1])::($ real 2$)$
have ? $a \neq$? b
by (smt (verit, best) Cons-nth-drop-Suc One-nat-def Suc-le-eq arc-distinct-ends $\operatorname{assms}(1)$ assms(2) card.empty drop0 empty-set length-greater-0-conv list.sel(1)
list.sel(3) make-polygonal-path.elims make-polygonal-path.simps(1) make-polygonal-path.simps(2) nth-drop pathfinish-linepath pathstart-linepath plus-1-eq-Suc polygon-at-least-3-vertices polygon-def polygon-of-def polygon-pathstart rel-simps(28) simple-path-joinE)
then have $? x \neq 0$ by simp
then have ? $v \cdot ? x=0 \wedge ? v \neq 0$
proof-
have ? $v \cdot ? x=(? x \$ 2 * ? x \$ 1)+(-? x \$ 1 * ? x \$ 2)$
by (simp add: inner-vec-def sum-2 real-2-inner)
then have ? $v \cdot ? x=0$ by argo
moreover have ? $v \neq 0$
by (smt (verit, best) 〈? $x \neq 0\rangle$ exhaust-2 vec-eq-iff vector-2(1) vector-2(2)
zero-index)
ultimately show ?thesis by blast
qed
thus ?thesis using that by blast
qed
let ? PP1 $=\{x . v \cdot x \leq 0\}$
let $? P 2=\{x . v \cdot x \geq 0\}$
let ?P1-int $=\{x . v \cdot x<0\}$
let ?P2-int $=\{x . v \cdot x>0\}$
let ? $F=\{x . v \cdot x=0\}$
have $? b \neq 0$
by (smt (verit) Cons-nth-drop-Suc One-nat-def Suc-le-eq Suc-le-length-iff arc-distinct-ends assms(1) assms(2) card.empty drop0 drop-eq-Nil empty-set le-numeral-extra(4) length-greater-0-conv list.inject make-polygonal-path.elims make-polygonal-path.simps(2) nat-less-le pathfinish-linepath pathstart-linepath polygon-at-least-3-vertices polygon-def polygon-of-def polygon-pathstart rel-simps(28) simple-path-joinE)
moreover have ? $b \in ? F$ using assms(2) v by auto
ultimately have F : ? $F=$? A
using halfplane-frontier-affine-hull[of ?b v] v assms(2) by presburger
moreover have ? $L \subseteq$? A by (simp add: convex-hull-subset-affine-hull segment-convex-hull)
ultimately have L-subset- $F: ? L \subseteq$? F by blast
have L-subset- $H:$? $L \subseteq$? H
by (metis (no-types, lifting) add-gr-0 assms(1) card.empty convex-contains-segment convex-convex-hull diff-less empty-set hull-subset leD length-greater-0-conv less-numeral-extra(1) nth-mem numeral-3-eq-3 path-image-linepath plus-1-eq-Suc polygon-at-least-3-vertices polygon-of-def rotate-polygon-vertices-same-set rotated-polygon-vertices-helper(2) sub-set-code(1))
have frontier-P1: frontier ?P1 $=? F$ by (simp add: v frontier-halfspace-le)
have frontier-P2: frontier ?P2 $=? F$ by (simp add: v frontier-halfspace-ge)
have interior-P1: interior ?P1 $=$?P1-int by (simp add: v)
have interior-P2: interior ? P2 $2=? P 2-i n t$ by $(\operatorname{simp}$ add: v)
have convex-P1: convex ?P1 by (simp add: convex-halfspace-le)
have convex-P2: convex ?P2 by (simp add: convex-halfspace-ge)
have P1-int-P2: ?P1 \cap ?P2 $=? F$ by (simp add: halfspace-Int-eq(1))
let $? H 1=? H \cap ? P 1$
let $? \mathrm{H}_{2}=? H \cap ? P 2$
have \neg collinear (set vts) using polygon-vts-not-collinear assms(1) by simp
then have nonempty-interior-H: interior $? H \neq\{ \}$
by (smt (verit, ccfv-SIG) Jordan-inside-outside-real2 closed-path-def Un-Int-eq(4)
assms (1) convex-hull-of-polygon-is-convex-hull-of-vts disjoint-iff hull-subset inf.orderE interior-Int interior-eq interior-subset path-inside-def polygon-def polygon-of-def)
have convex-H1: convex ?H1 by (simp add: convex-Int convex-P1)
have convex-H2: convex ?H2 by (simp add: convex-Int convex-P2)
have ? $H \subseteq ? P 1 \vee ? H \subseteq ? P 2$
proof (rule ccontr)
assume $*: \neg(? H \subseteq ? P 1 \vee ? H \subseteq ? P 2)$
moreover have interior ? $H \subseteq ? P 1 \Longrightarrow ? H \subseteq ? P 1$
by (metis (no-types, lifting) Int-Un-eq(3) Krein-Milman-frontier List.finite-set P1-int-P2 closure-Un-frontier closure-convex-hull closure-mono compact-frontier con-vex-closure-interior convex-convex-hull finite-imp-compact-convex-hull frontier-P1 nonempty-interior- H)
moreover have interior ? $H \subseteq ? P 2 \Longrightarrow$? $H \subseteq$?P2
by (metis (no-types, lifting) Int-Un-eq(3) Krein-Milman-frontier List.finite-set P1-int-P2 calculation(1) calculation(2) closure-Un-frontier closure-convex-hull clo-sure-mono compact-frontier convex-closure-interior convex-convex-hull emptyE fi-nite-imp-compact-convex-hull frontier-P2 inf-commute subsetI)
ultimately have interior ? $H \cap ? P 1 \neq\{ \} \wedge$ interior $? H \cap-? P 1 \neq\{ \}$ by force
moreover have path-connected (interior ?H) by (simp add: convex-imp-path-connected)
ultimately have F-int-interior- $H: ? F \cap$ interior $? H \neq\{ \}$
by (metis (no-types, lifting) path-connected-frontier ComplD disjoint-eq-subset-Compl frontier-P1 subset-eq)
then obtain v1 v2 where v1v2: v1 $\neq v 2 \wedge\{v 1, v 2\} \subseteq$ set vts $\wedge v 1 \in$ interior ? P1 $\wedge v 2 \in$ interior ?P2
using convex-cut frontier-P1 interior-P1 interior-P2 v by metis
then obtain $i j$ where $i j: v t s!i=v 1 \wedge v t s!j=v 2$ $\wedge 2 \leq i \wedge 2 \leq j \wedge i \neq j \wedge i<$ length vts $-1 \wedge j<$ length vts -1
proof -
obtain $i j$ where $v t s!i=v 1 \wedge v t s!j=v 2 \wedge i \neq j \wedge i<$ length vts $\wedge j<$
length vts
by (metis in-set-conv-nth insert-subset v1v2)
moreover have $2 \leq i$
proof-
$\{$ assume $i=0 \vee i=1$
then have vts $!i=? a \vee v t s!i=? b$ by blast
then have vts! $i \in ? F$ by (simp add: F hull-inc)
then have False using calculation(1) interior-P1 v1v2 by auto \} thus ?thesis by presburger
qed
moreover have $2 \leq j$
proof-
$\{$ assume $j=0 \vee j=1$
then have $v t s!j=? a \vee v t s!j=? b$ by blast
then have $v t s!j \in ? F$ by (simp add: F hull-inc)
then have False using calculation(1) interior-P2 v1v2 by auto
\}
thus ?thesis by presburger
qed
moreover have False if $i=$ length vts -1
by (metis (no-types, lifting) Fassms(1) calculation(1) frontier-P1 frontier-def
have-wraparound-vertex hull-subset insertCI insert-Diff last-conv-nth last-snoc less-nat-zero-code list.size(3) polygon-of-def subset-Diff-insert that v1v2)
moreover have False if $j=$ length vts -1
by (metis (no-types, lifting) Fassms(1) calculation(1) frontier-P2 frontier-def
have-wraparound-vertex hull-subset insertCI insert-Diff last-conv-nth last-snoc less-nat-zero-code list.size(3) polygon-of-def subset-Diff-insert that v1v2)
ultimately show ?thesis using that by fastforce
qed
let $? i^{\prime}=\min i j$
let $? j^{\prime}=\max i j$
let $? v t s^{\prime}=$ take $\left(? j^{\prime}-? i^{\prime}+1\right)\left(d r o p ? i^{\prime} v t s\right)$
let ? $p^{\prime}=$ make-polygonal-path ?vts ${ }^{\prime}$
have vts'-sublist: sublist ?vts' vts using sublist-order.order.trans by blast
then have $v t s^{\prime}$-sublist-tl: sublist ?vts' ${ }^{\prime}$ (tl vts)
by (metis Suc-1 Suc-eq-plus1 drop-Suc ij max-def min-def nat-minus-add-max not-less-eq-eq sublist-drop sublist-order.dual-order.trans sublist-take)
have p^{\prime}-start-finish: $\left\{\right.$ pathstart $? p^{\prime}$, pathfinish $\left.? p^{\prime}\right\}=\{v 1, v 2\}$ proof-
have ?vts! $0=v t s!? i^{\prime}$ using $i j$ by force
moreover have ?vts! $\left(? j^{\prime}-? i^{\prime}\right)=v t s!? j^{\prime}$
using diff-is-0-eq diff-zero ij less-numeral-extra(1) max.cobounded1 min-absorb2 min-def nth-drop nth-take order-less-imp-le
by fastforce
moreover have $\left(v t s!? i^{\prime}=v 1 \wedge v t s!? j^{\prime}=v 2\right) \vee\left(v t s!? i^{\prime}=v 2 \wedge v t s!? j^{\prime}=v 1\right)$ using $i j$ by linarith
moreover have pathstart $? p^{\prime}=? v t s^{\prime}!0 \wedge$ pathfinish $? p^{\prime}=? v t s^{\prime}!\left(? j^{\prime}-? i^{\prime}\right)$
using ij min-diff polygon-pathfinish polygon-pathstart
by (smt (verit, ccfv-SIG) add-diff-cancel-right' add-diff-inverse-nat length-drop length-take less-diff-conv max.commute max-min-same(1) min.absorb4 nat-minus-add-max not-add-less2 plus-1-eq-Suc plus-nat.simps(2) take-eq-Nil zero-less-one)
ultimately show ?thesis by auto
qed
then have path-image ? $p^{\prime} \cap$ interior $? P 2 \neq\{ \} \wedge$ path-image $? p^{\prime} \cap$ interior $? P 1 \neq\{ \}$
by (metis v1v2 IntI doubleton-eq-iff empty-iff pathfinish-in-path-image path-start-in-path-image)
then have path-image $? p^{\prime} \cap-? P 1 \neq\{ \} \wedge$ path-image $? p^{\prime} \cap ? P 1 \neq\{ \}$
using interior-P2
by (smt (verit, best) disjoint-iff-not-equal in-mono inf-shunt interior-P1 mem-Collect-eq)
moreover have path-connected (path-image ?p')
using make-polygonal-path-gives-path path-connected-path-image by blast
ultimately obtain z where $z: z \in$ path-image ? $p^{\prime} \cap ? F$
by (smt (verit, del-insts) path-connected-frontier DiffE Diff-triv all-not-in-conv frontier-P1)
moreover have path-image ? $p^{\prime} \subseteq ? H$
proof -
have path-image $p \subseteq$?H
by (metis assms(1) insert-subset length-pos-if-in-set polygon-of-def poly-gon-path-image-subset-convex v1v2)
moreover have path-image ? $p^{\prime} \subseteq$ path-image p
by (metis (no-types, lifting) vts'-sublist sublist-path-image-subset One-nat-def
Suc-leI p'-start-finish assms(1) doubleton-eq-iff length-greater-0-conv make-polygonal-path.simps(1) pathfinish-linepath pathstart-linepath polygon-of-def v1v2)
ultimately show ?thesis by blast
qed
ultimately have $z \in$ path-image ? $p^{\prime} \cap(? H \cap ? F)$ by blast
moreover have ? $H \cap ? F=$? L
using affine-2-int-convex[of ?a ?b set vts]
by (smt (verit, best) assms(3) F F-int-interior-H inf-commute segment-convex-hull path-image-linepath Suc-1 add-leD2 assms(1) empty-subsetI insert-subset length-greater-0-conv lessI nat-neq-iff nth-mem numeral-Bit0 order.strict-iff-not plus-1-eq-Suc polygon-of-def polygon-vertices-length-at-least-4 take-all-iff take-eq-Nil IntE inf.orderE)
ultimately have $z \in ? L \cap$ path-image ? p^{\prime} by blast
moreover have ? $L \cap$ path-image $? p^{\prime} \subseteq\{? a, ? b\}$
proof -
let ? p-tl $=$ make-polygonal-path ($t l v t s$)
have $p=$ make-polygonal-path vts \wedge loop-free p
using assms unfolding polygon-of-def polygon-def simple-path-def by blast
moreover have $[? a, ? b]=$ take 2 vts
by (metis Cons-nth-drop-Suc One-nat-def Suc-1 append-Cons append-Nil calculation constant-linepath-is-not-loop-free drop0 drop-eq-Nil insert-subset length-pos-if-in-set linorder-not-le make-polygonal-path.simps(2) take0 take-Suc-conv-app-nth v1v2)
moreover have $t l$ vts $=d r o p(2-1)$ vts by (simp add: drop-Suc)
moreover have $? l=$ make-polygonal-path $[? a, ? b]$ using make-polygonal-path.simps by simp
moreover have length vts >2 using $i j$ by linarith
moreover have pathstart ?l $=? a \wedge$ pathstart $? p-t l=? b$
using calculation(3) calculation(5) polygon-pathstart by auto
ultimately have ? $L \cap$ path-image ? $p-t l \subseteq\{? a, ? b\}$
using loop-free-split-int[of p vts [?a, ?b] 2 tl vts ?l ?p-tl length vts] by auto
moreover have path-image ? $p^{\prime} \subseteq$ path-image ?p-tl
using sublist-path-image-subset
by (metis add.commute ij le-add2 length-drop length-take less-diff-conv min.absorb4 min.cobounded1 min-def vts'-sublist-tl)
ultimately show ?thesis by blast
qed
ultimately have $*: z=? a \vee z=? b$ by blast
let $? \mathfrak{i}=? i^{\prime}$
let $? j=? j^{\prime}-? i^{\prime}+1$
let $? \mathfrak{k}=? \mathfrak{i}+? \mathfrak{j}$
let $? x 1=\left(2^{\wedge} ? \mathfrak{i}-1\right) /\left(2^{\wedge} ? \mathfrak{i}\right)::$ real
let $? x 2=(2 \uparrow(? \mathfrak{k}-1)-1) /(2 \uparrow(? \mathfrak{k}-1)):$:real
have ?vts' = take ?j (drop ?i vts) by blast
moreover have $? \mathfrak{k} \leq$ length vts $-1 \wedge 2 \leq$?j using ij by linarith
ultimately have path-image ? $p^{\prime}=p\{$? x1 .. ? $x 2\}$
using vts-sublist-path-image assms(1) unfolding polygon-of-def by metis
moreover have $x 1 x 2$: ? $x 1>1 / 2 \wedge$? $x 2<1$
proof-
have $? i^{\prime} \geq 2$ using $i j$ by linarith
then have $(1::$ real $)<\mathcal{Z}^{\wedge} ? i^{\prime}-1$
by (smt (z3) dual-order.strict-trans1 linorder-le-less-linear numeral-le-one-iff
power-one-right power-strict-increasing semiring-norm(69))
thus ?thesis by simp
qed
moreover have $p 0 \notin p^{\prime}\{? x 1 \ldots ? x 2\} \wedge p(1 / 2) \notin p \not \subset\{? x 1 \ldots ? x 2\}$
proof-
have False if $*: p 0 \in p\{? x 1 \ldots ? x 2\}$
proof-
obtain t where $t: t \in\{? x 1 \ldots ? x 2\} \wedge p t=p 0$ using $*$ by auto
then have $t \geq ? x 1 \wedge t \leq$? $x 2$ by presburger
then have $1 / 2<t \wedge t<1$ using $x 1 x 2$ by argo
thus False
using t assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by force
qed
moreover have False if $*: p(1 / 2) \in p^{‘}\{? x 1$.. ?x2 $\}$
proof -
obtain t where $t: t \in\{? x 1 \ldots ? x 2\} \wedge p t=p(1 / 2)$ using $*$ by auto
then have $t \geq ? x 1 \wedge t \leq ? x 2$ by presburger
then have $1 / 2<t \wedge t<1$ using $x 1 x 2$ by argo
thus False
using t assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by fastforce
qed
ultimately show ?thesis by fast
qed
moreover have $? a=p 0$
by (metis assms(1) card.empty empty-set not-numeral-le-zero pathstart-def polygon-at-least-3-vertices polygon-of-def polygon-pathstart)
moreover have $? b=p(1 / 2)$
proof -
have $p=? l+++$ (make-polygonal-path (tl vts))
by (smt (verit, best) One-nat-def Suc-1 assms(1) ij length-Cons length-greater-0-conv length-tl less-imp-le-nat list.sel(3) list.size(3) make-polygonal-path.elims nth-Cons-0
nth-tl order-less-le-trans polygon-of-def pos2 zero-less-diff)
then have $p(1 / 2)=? l 1$
unfolding joinpaths-def by simp
thus ?thesis by (simp add: linepath-1')
qed
ultimately have $? a \notin$ path-image $? p^{\prime} \wedge ? b \notin$ path-image $? p^{\prime}$ by presburger
thus False using $z *$ by blast
qed
then have frontier ?P1 \cap ? $H \subseteq$ frontier ? $H \vee$ frontier ? P2 $\mathcal{Z} \cap H \subseteq$ frontier ? H using frontier-int-subset by auto
moreover have ? $L \subseteq$ frontier ?P1 \wedge ? $L \subseteq$ frontier ?P2
using frontier-P1 frontier-P2 L-subset-F by presburger
ultimately show ?thesis using L-subset- H by fast
qed
lemma vts-on-convex-frontier-aux':
assumes polygon-of p vts
assumes set vts \subseteq frontier (convex hull (set vts))
shows path-image (linepath $(v t s!0)(v t s!1)) \subseteq$ frontier (convex hull (set vts))
proof-
let ? $a=v t s!0$
let ?f $=\lambda v \cdot v+(-? a)$
let ?vts ${ }^{\prime}=m a p$?f vts
let $? p^{\prime}=$ make-polygonal-path ?vts ${ }^{\prime}$
have len-vts: length vts ≥ 2
using assms(1) polygon-of-def polygon-vertices-length-at-least-4 by fastforce
then have $p^{\prime}: ? p^{\prime}=? f \circ p$
using make-polygonal-path-translate[of vts - ? a] assms unfolding polygon-of-def
by presburger
then have 0 : ?vts $!0=0$
by (metis len-vts neg-eq-iff-add-eq-0 nth-map order-less-le-trans pos2)
moreover have vts': set ? vts' = ?f ' (set vts) by simp
ultimately have convex hull (set ?vts') = ?f ' (convex hull (set vts))
using convex-hull-translation[of - ?a set vts] by force
then have frontier (convex hull (set ?vts')) = frontier (?f' (convex hull (set vts)))
by auto
then have frontier-translation:
frontier $($ convex hull $($ set ?vts' $))=$?f ' $($ frontier $(($ convex hull $($ set vts $))))$
using frontier-translation $[$ of - ?a convex hull (set vts)] by simp
have ?f $(v t s!0)=$?vts! $0 \wedge$?f $(v t s!1)=$?vts'! 1 using 0 len-vts by auto
then have linepath-translation:
?f • path-image (linepath (vts!0) (vts!1)) = path-image (linepath (?vts! ! $)$ (?vts!!1))
using linepath-translation[of ?a - ?a vts!1] by (simp add: path-image-compose)
have polygon-of ? p^{\prime} ? vts' using translation-is-polygon assms(1) p^{\prime} by presburger
moreover have set ?vts ${ }^{\prime} \subseteq$ frontier $($ convex hull (set ?vts' $)$) proof-
have frontier (convex hull (set ?vts')) = frontier (convex hull (?f ' (set vts))) using vts ${ }^{\prime}$ by presburger
then have frontier (convex hull (set ?vts')) = ?f ' (frontier (convex hull (set vts)))
using frontier-translation by presburger
thus ?thesis using vts' assms(2) by auto
qed
ultimately have path-image (linepath (?vts! 0) (?vts! $!1) \subseteq$ frontier (convex hull (set ?vts'))
using vts-on-convex-frontier-aux assms 0 by blast
then have ?f ' path-image (linepath (vts! 0$)($ vts! 1$)) \subseteq$?f ' (frontier ((convex hull (set vts))))
using linepath-translation frontier-translation by argo
thus ?thesis by force
qed
lemma vts-on-convex-frontier:
assumes polygon-of p vts
assumes set vts \subseteq frontier (convex hull (set vts))
assumes $i<$ length vts -1
shows path-image (linepath $(v t s!i)(v t s!(i+1))) \subseteq$ frontier (convex hull (set vts)) proof-
let ?vts ${ }^{\prime}=$ rotate-polygon-vertices vts i
let $? p^{\prime}=$ make-polygonal-path ?vts ${ }^{\prime}$
have polygon-of ? p^{\prime} ?vts'
using assms(1) polygon-of-def rotation-is-polygon by blast
moreover have set ?vts ${ }^{\prime} \subseteq$ frontier (convex hull (set ?vts'))
using assms(1) assms(2) polygon-of-def rotate-polygon-vertices-same-set by auto
ultimately have path-image (linepath $(? v t s!0)(? v t s!1)) \subseteq$ frontier (convex hull (set ?vts'))
using vts-on-convex-frontier-aux ${ }^{\prime}$ by presburger
moreover have ?vts $!0=v t s!i \wedge$?vts $!1=v t s!(i+1)$
using assms(3)
using rotated-polygon-vertices[of ?vts' vts $i i+1]$
using rotated-polygon-vertices[of ?vts' vts $i i]$
by (smt (verit, best) Suc-leI add.commute add.right-neutral add-2-eq-Suc'
add-diff-cancel-left' add-lessD1 assms(1) have-wraparound-vertex hd-Nil-eq-last hd-conv-nth last-snoc le-add1 less-diff-conv plus-1-eq-Suc polygon-of-def)
moreover have frontier (convex hull (set ?vts')) = frontier (convex hull (set vts))

```
    by (metis assms(1) polygon-of-def rotate-polygon-vertices-same-set)
    ultimately show ?thesis by argo
qed
lemma vts-on-frontier-means-path-image-on-frontier:
    assumes polygon-of p vts
    assumes set vts \subseteqfrontier (convex hull (set vts))
    shows path-image p}\subseteq\mathrm{ frontier (convex hull (set vts))
proof(rule subsetI)
    let ?H = convex hull (set vts)
    fix }x\mathrm{ assume }x\in\mathrm{ path-image }
    moreover have path-image p = (\bigcup {path-image (linepath (vts!i) (vts!(i+1)))|
i. i\leq(length vts) - 2})
    using polygonal-path-image-linepath-union assms unfolding polygon-of-def
    by (metis (no-types, lifting) add-leD2 numeral-Bit0 polygon-vertices-length-at-least-4)
    ultimately obtain }i\mathrm{ where }i\leq(length vts) - 2 ^ x fath-image (linepath
(vts!i) (vts!(i+1)))
    by blast
    thus }x\in\mathrm{ frontier ?H
    by (smt (verit, ccfv-SIG) One-nat-def Suc-diff-Suc add.commute add-2-eq-Suc'
assms(1) assms(2) in-mono le-add1 le-zero-eq less-Suc-eq-le less-diff-conv linorder-not-less
plus-1-eq-Suc vts-on-convex-frontier vts-on-convex-frontier-aux')
qed
lemma vts-on-convex-frontier-interior:
    assumes polygon-of p vts
    assumes set vts \subseteqfrontier (convex hull (set vts))
    shows path-inside p= interior (convex hull (set vts))
proof -
    let ?H = convex hull (set vts)
    have path-inside p\subseteqinterior (convex hull (set vts))
    by (metis (no-types, lifting) Un-empty assms(1) convex-contains-simple-closed-path-imp-contains-path-inside
convex-convex-hull convex-hull-eq-empty convex-hull-of-polygon-is-convex-hull-of-vts
empty-set inside-outside-def inside-outside-polygon interior-maximal length-greater-0-conv
polygon-def polygon-of-def polygon-path-image-subset-convex)
    moreover have interior (convex hull (set vts))\subseteq path-inside p
    proof(rule ccontr)
    assume *: ᄀ interior (convex hull (set vts)) \subseteq path-inside p
    then obtain x where x: x\in interior (convex hull (set vts)) - path-inside p
by blast
    obtain y where y: y\in path-inside p
    using inside-outside-polygon assms unfolding inside-outside-def polygon-of-def
by fastforce
    let ?l = linepath x y
    have 1: path-image ?l \subseteq interior ?H
        by (metis (no-types, lifting) DiffE calculation convex-contains-segment con-
vex-convex-hull convex-interior in-mono linepath-image-01 path-defs(4) x y)
```

have path-image ?l \cap frontier (path-inside p) $\neq\{ \}$
using inside-outside-polygon assms unfolding inside-outside-def polygon-of-def
by (smt (verit) * Diff-disjoint Diff-eq-empty-iff Int-Un-eq(2) Int-assoc Un-Int-eq(3) assms(1) calculation connected-Int-frontier convex-connected convex-convex-hull con-vex-interior frontier-def inf.absorb-iff2 vts-on-frontier-means-path-image-on-frontier)
then have 2: path-image ?l \cap path-image $p \neq\{ \}$
using inside-outside-polygon assms unfolding inside-outside-def polygon-of-def by blast
show False
using 12 vts-on-frontier-means-path-image-on-frontier
using Diff-disjoint Int-lower2 Int-subset-iff assms(1) assms(2) frontier-def inf-le1
by fastforce
qed
ultimately show ?thesis by blast
qed
lemma vts-subset-frontier:
assumes polygon-of p vts
assumes set vts \subseteq frontier (convex hull (set vts))
shows convex (path-image $p \cup$ path-inside p)
by (metis assms(1) assms(2) vts-on-convex-frontier-interior convex-convex-hull convex-interior polygon-convex-iff polygon-of-def sup-commute)
lemma convex-hull-of-nonconvex-polygon-strict-subset-ep:
assumes polygon-of p vts
assumes $\neg($ convex $($ path-image $p \cup$ path-inside $p))$
shows $\{v . v$ extreme-point-of $($ convex hull (set vts)) $\} \subset$ set vts
proof -
let $? e p=\{v . v$ extreme-point-of (convex hull (set vts)) $\}$
let $? H=$ convex hull (set vts)
have ?ep \subseteq frontier ?H
by (metis Krein-Milman-frontier List.finite-set convex-convex-hull extreme-point-of-convex-hull finite-imp-compact-convex-hull mem-Collect-eq subsetI)
thus ?thesis using assms vts-subset-frontier extreme-points-of-convex-hull by
force
qed
lemma convex-hull-of-nonconvex-polygon-strict-subset:
assumes polygon-of p vts
assumes $\neg($ convex (path-image $p \cup$ path-inside $p))$
shows $\exists v \in$ set vts. $v \in$ interior (convex hull (set vts))
using assms vts-subset-frontier
by (smt (verit) Diff-iff UnCI closure-Un-frontier frontier-def hull-inc subsetI)
lemma convex-polygon-means-linepaths-inside:
fixes $p:: R$-to- $R 2$
assumes polygon-of p vts

```
    assumes convex-is: convex hull (set vts) = (path-inside p \cup path-image p)
    assumes a-in:a (path-inside p\cup path-image p)
    assumes b-in: b\in(path-inside p\cup path-image p)
    shows path-image (linepath a b)\subseteq(path-inside p\cup path-image p)
proof -
    let ?conv = path-inside p 的喑-image p
    have }\forallu\geq0.\forallv\geq0.u+v=1\longrightarrowu*Ra+v*R b\in?con
        using convex-is a-in b-in unfolding convex-def
        by (metis (no-types, lifting) convexD convex-convex-hull convex-is)
    then have (1-x)* *R}a+x\mp@subsup{*}{R}{}b\in?conv if x-in: x\in{0..1} for x
        using x-in by auto
    then show ?thesis unfolding linepath-def path-image-def
        by fast
qed
end
theory Polygon-Splitting
imports
    HOL-Analysis.Complete-Measure
    Polygon-Jordan-Curve
    Polygon-Convex-Lemmas
begin
```


19 Polygon Splitting

lemma split-up-a-list-into-3-parts:
fixes $i j$:: nat
assumes $i<$ length vts $\wedge j<$ length vts $\wedge i<j$
shows
$v t s=($ take $i v t s) @((v t s!i) \#(($ take $(j-i-1)(d r o p(S u c i) v t s)) @(v t s!$
j) \# drop $(j-i)(\operatorname{drop}($ Suc $i) v t s)))$
proof -
let ? $x=v t s!i$
let $? y=v t s!j$
let ?vts1 $=($ take i vts $)$
let ?drop-list $=$ drop $(S u c i)$ vts
have vts-is: vts = ?vts1 @ vts! $i \# d r o p$ (Suc i) vts
using split-list assms
by (meson id-take-nth-drop)
then have len-vts1: length ?vts1 $=i$
using length-take[of i vts] assms
by auto
have gt-eq: $j-i-1 \geq 0$
using assms by auto
let ? ind $=j-i-1$
have drop-is: drop (Suc i) vts! $(j-i-1)=? y$
using assms by auto
then have drop-list-is: ?drop-list = take ?ind ?drop-list @ ?y \# (drop (j-i)
?drop-list)
by (metis Suc-diff-Suc Suc-leI assms diff-Suc-1 diff-less-mono id-take-nth-drop length-drop)
have length (drop (Suc ?ind) ?drop-list) $=$ length vts $-j-1$ using length-drop[of Suc ($j-i-1$) (drop (Suc i) vts)] length-take assms by auto
then show?thesis
using vts-is drop-list-is len-vts1
by presburger
qed
definition is-polygon-cut :: (real ${ }^{2}$ 2) list \Rightarrow real^2 \Rightarrow real^2 \Rightarrow bool where
is-polygon-cut vts $x y=$
$(x \neq y \wedge$
polygon (make-polygonal-path vts) \wedge
$\{x, y\} \subseteq$ set vts \wedge
path-image (linepath $x y$) \cap path-image (make-polygonal-path vts) $=\{x, y\} \wedge$
path-image (linepath $x y) \cap$ path-inside (make-polygonal-path vts) $\neq\{ \}$)
definition is-polygon-cut-path :: (real^2) list \Rightarrow R-to-R2 \Rightarrow bool where
is-polygon-cut-path vts cutpath $=$
(let $x=$ pathstart cutpath $; y=$ pathfinish cutpath in
$(x \neq y \wedge$
polygon (make-polygonal-path vts) \wedge
$\{x, y\} \subseteq$ set vts \wedge
simple-path cutpath \wedge
path-image cutpath \cap path-image (make-polygonal-path vts) $=\{x, y\} \wedge$
path-image cutpath \cap path-inside (make-polygonal-path vts) $\neq\{ \})$)
definition is-polygon-split ::

```
    (real^2) list \(\Rightarrow\) nat \(\Rightarrow\) nat \(\Rightarrow\) bool where
    is-polygon-split vts \(i j=\)
    ( \(i<\) length vts \(\wedge j<\) length vts \(\wedge i<j \wedge\)
    (let vts1 \(=(\) take \(i v t s)\) in
    let vts2 \(=(\) take \((j-i-1)(\) drop \((S u c i) v t s))\) in
    let vts3 \(=\operatorname{drop}(j-i)(\operatorname{drop}(\) Suc \(i) v t s)\) in
    let \(x=v t s!i\) in
    let \(y=v t s!j\) in
    let \(p=\) make-polygonal-path \((v t s @[v t s!0])\) in
    let \(p 1=\) make-polygonal-path \((x \#(v t s 2 @[y, x]))\) in
    let p2 = make-polygonal-path (vts1 @ \([x, y]\) @ vts3 @ [vts! 0]) in
    let \(c 1=\) make-polygonal-path \((x \#(v t s 2 @[y]))\) in
    let \(c 2=\) make-polygonal-path \((v t s 1 @[x, y] @ v t s 3)\) in
    (is-polygon-cut (vts@[vts!0]) x y \(\wedge\)
    polygon \(p \wedge\) polygon \(p 1 \wedge\) polygon p2 \(\wedge\)
    path-inside \(p 1 \cap\) path-inside \(p 2=\{ \} \wedge\)
    path-inside p1 \(\cup\) path-inside p2 \(\cup(\) path-image (linepath \(x y)-\{x, y\})=\)
path-inside \(p\)
```

```
    ^((path-image p1) - (path-image (linepath x y))) \cap ((path-image p2) -
(path-image (linepath x y)))
    = {}
    ^ path-image p
    =((path-image p1) - (path-image (linepath x y))) \cup ((path-image p2) -
(path-image (linepath x y))) \cup{x,y}
    )))
definition is-polygon-split-path :: (real^2) list }=>\mathrm{ nat }=>\mathrm{ nat }=>\mathrm{ (real^2) list }
bool where
    is-polygon-split-path vts i j cutvts =
    (i< length vts ^j< length vts }\wedgei<j
    (let vts1 = (take i vts) in
    let vts2 = (take (j-i-1) (drop (Suc i)vts)) in
    let vts3 = drop (j - i) (drop (Suc i) vts) in
    let x = vts!i in
    let y = vts!j in
    let cutpath = make-polygonal-path (x # cutvts @ [y]) in
    let p= make-polygonal-path (vts@[vts!0]) in
    let p1 = make-polygonal-path (x#(vts2 @ [y] @ (rev cutvts) @ [x])) in
    let p2 = make-polygonal-path (vts1 @ ([x] @ cutvts @ [y])@ vts3 @ [vts!0]) in
    let c1 = make-polygonal-path (x#(vts2@[y])) in
    let c\mathcal{Z = make-polygonal-path (vts1 @ ([x] @ cutvts @ [y]) @ vts3) in}
    (is-polygon-cut-path(vts@[vts!0]) cutpath ^
    polygon p ^ polygon p1 ^ polygon p2 ^
    path-inside p1 \cap path-inside p2 ={}^
    path-inside p1\cup path-inside p2\cup(path-image cutpath - {x,y})=path-inside
p
    \wedge((path-image p1) - (path-image cutpath)) \cap((path-image p2) - (path-image
cutpath))}={
    \wedge ~ p a t h - i m a g e ~ p
    =((path-image p1) - (path-image cutpath)) \cup((path-image p2) - (path-image
cutpath))\cup{x,y}
    )))
lemma polygon-split-add-measure:
    fixes p p1 p2 :: R-to-R2
    assumes is-polygon-split vts i j
    assumes vts1 = (take i vts)
    vts2 = (take (j-i-1) (drop (Suc i)vts))
    vts3 = drop (j - i) (drop (Suc i)vts)
    x=vts!i
    y=vts!j
    p= make-polygonal-path (vts@[vts!0])
    p1 = make-polygonal-path (x#(vts2@[y,x]))
    p2 = make-polygonal-path (vts1 @ [x,y] @ vts3 @ [vts!0])
defines M1 \equiv measure lebesgue (path-inside p1) and
    M2 \equiv measure lebesgue (path-inside p2) and
    M\equiv measure lebesgue (path-inside p)
```

$$
\begin{aligned}
& \text { shows } M 1+M 2=M \\
& \text { proof- } \\
& \text { let ?cut }=\text { linepath } x y \\
& \text { let ?cut-open-image }=(\text { path-image ?cut })-\{x, y\} \\
& \text { let ?P }=\text { path-inside } p \\
& \text { let ?P1 = path-inside } p 1 \\
& \text { let ?P2 }=\text { path-inside } p 2 \\
& \text { let } ? M=\text { space lebesgue } \\
& \text { let } ? A=\text { sets lebesgue } \\
& \text { let } ? \mu=\text { emeasure lebesgue }
\end{aligned}
$$

 have open? P1
 by (metis assms(1) assms(3) assms(5) assms(6) assms(8) closed-path-image
 is-polygon-split-def open-inside path-inside-def polygon-def simple-path-def)
then have P1-measurable: ?P1 \in ?A by simp
have open ?P2
by (metis assms(1) assms(2) assms(4) assms(5) assms(6) assms(9) closed-path-image
is-polygon-split-def open-inside path-inside-def polygon-def simple-path-def)
then have P2-measurable: ?P2 \in ?A by simp
have ?P1 \cap ?P2 $=\{ \}$
by (metis assms(1) assms(2) assms(3) assms(4) $\operatorname{assms(5)} \operatorname{assms}(6) \operatorname{assms}(8)$
$\operatorname{assms}(9)$ is-polygon-split-def)
then have sum-union-finite: ? $\mu ? P 1+? \mu ? P 2=? \mu(? P 1 \cup ? P 2)$
using plus-emeasure P1-measurable P2-measurable by blast
have measure lebesgue ?P1 $=$? μ ?P1
by (metis assms(1) assms(3) assms(5) assms(6) assms(8) bounded-inside
bounded-set-imp-lmeasurable bounded-simple-path-image emeasure-eq-ennreal-measure
emeasure-notin-sets ennreal-0 fmeasurableD2 is-polygon-split-def measure-zero-top
path-inside-def polygon-def)
moreover have measure lebesgue ?P2 = ? μ ? P2
by (metis Sigma-Algebra.measure-def assms(1) assms(2) assms(4) assms(5)
$\operatorname{assms}(6)$ assms (9) bounded-inside bounded-path-image bounded-set-imp-lmeasurable
emeasure-eq-ennreal-measure emeasure-notin-sets enn2real-top ennreal-0 fmeasur-
ableD2 is-polygon-split-def path-inside-def polygon-def simple-path-def)
ultimately have ? $\mu(? P 1 \cup ? P 2)=M 1+M 2$
using assms(10) assms(11) sum-union-finite by auto
moreover have ? $\mu(? P 1 \cup ? P 2)=? \mu ? P$
proof-
have ? μ (path-image ?cut) $=0$ using linepath-has-emeasure-0 by blast
then have (path-image ?cut) \in null-sets lebesgue by auto
moreover have $\{x, y\} \in$ null-sets lebesgue by simp
ultimately have ?cut-open-image \in null-sets lebesgue using measure-Diff-null-set
by auto
moreover have ? $P=? P 1 \cup ? P 2 \cup$?cut-open-image
by (metis assms(1) assms(2) assms(3) assms(4) assms(5) assms(6) assms(7)
$\operatorname{assms}(8) \operatorname{assms}(9)$ is-polygon-split-def)

ultimately show ？thesis

by（simp add：P1－measurable P2－measurable emeasure－Un－null－set sets．Un） qed
ultimately show ？thesis
by（smt（verit，best）M1－def M2－def M－def emeasure－eq－ennreal－measure enn2real－ennreal ennreal－neq－top measure－nonneg）
qed
lemma polygonal－paths－measurable：
shows path－image（make－polygonal－path vts）\in sets lebesgue
proof（induct vts rule：make－polygonal－path－induct）
case（Empty ell）
then show？case by auto
next
case（Single ell）
then obtain a where ell $=[a]$
by（metis Cons－nth－drop－Suc One－nat－def drop0 drop－eq－Nil le－numeral－extra（4） zero－less－one）
then show ？case using make－polygonal－path．simps（2）$[$ of a］by simp
next
case（Two ell）
then obtain $a b$ where ell $=[a, b]$
by（metis Cons－nth－drop－Suc One－nat－def Suc－1 append－Nil drop－eq－Nil2 dual－order．refl id－take－nth－drop lessI pos2 take0）
then show ？case using make－polygonal－path．simps（3）［of a b］by simp
next
case（Multiple ell）

by（metis Cons－nth－drop－Suc One－nat－def Suc－1 drop0 le－Suc－eq linorder－not－less numeral－3－eq－3）
then have make－polygonal－path ell $=$
linepath（ell！0）（ell！1）＋＋＋make－polygonal－path（ell！1 \＃ell！2 \＃（drop 3 ell））
by（metis make－polygonal－path．simps（4））
then have path－image（make－polygonal－path ell）＝path－image（linepath（ell！0） （ell！1））\cup path－image（make－polygonal－path（ell！ 1 \＃ell！ 2 \＃（drop 2 ell $)$ ）
using Cons－nth－drop－Suc Multiple．hyps（1）One－nat－def Suc－1 Un－assoc 〈ell＝ ell！ 0 \＃ell！1 \＃ell！2 \＃drop 3 ell〉 list．discI make－polygonal－path．simps（2） make－polygonal－path．simps（3）nth－Cons－0 numeral－3－eq－3 path－image－cons－union proof－
have f1：ell＝ell！ 0 \＃ell！ 1 \＃ell！Suc 1 \＃drop 3 ell
using Suc－1 〈ell＝ell！0 \＃ell！1 \＃ell！2 \＃drop 3 ell〉 by presburger
have Suc $1<$ length ell
by $(s m t(z 3)$ Suc－1 〈2 $<$ length ell〉）
then have f2：drop（Suc 1）ell＝ell！Suc 1 \＃drop（Suc（Suc 1））ell by（smt（z3）Cons－nth－drop－Suc）
have $f 3: \forall v$ va vs．path－image（make－polygonal－path $(v \#$ va $\# v s))=$ path－image （linepath v va）\cup path－image（make－polygonal－path $(v a \#$ vs $)$ ）
by (metis (no-types) list.discI nth-Cons-0 path-image-cons-union)
have $f_{4}: \forall V$ va. path-image (linepath (v::(real, 2) vec) va) \cup (path-image (linepath va va) $\cup V$) = path-image (linepath v va) $\cup V$
by auto
have path-image (make-polygonal-path ell) $=$ path-image (make-polygonal-path (ell!0 \# ell! 1 \# drop (Suc 1) ell))
using f2 f1 by (simp add: numeral-3-eq-3)
then have path-image (make-polygonal-path ell) $=$ path-image (linepath (ell!
$0)($ ell! 1)) \cup path-image (make-polygonal-path (ell! 1 \# ell!Suc 1 \# drop (Suc 1) ell))
using $f 4$ f3 f2 by presburger
then show ?thesis
using Suc-1 by presburger
qed
then show ?case using Multiple(3)
by (metis (no-types, lifting) Cons-nth-drop-Suc Multiple.hyps(1) Multiple.hyps(2)
One-nat-def Suc-1 〈ell = ell ! 0 \# ell! 1 \# ell! 2 \# drop 3 ell〉 list.discI make-polygonal-path.simps(3) nth-Cons-0 numeral-3-eq-3 path-image-cons-union sets.Un)

qed

lemma polygonal-path-has-emeasure-0:
shows emeasure lebesgue (path-image (make-polygonal-path vts)) $=0$
proof (induct vts)
case Nil
then show ?case by auto

next

case (Cons a vts)
then show? case
by (metis linepath-is-negligible make-polygonal-path.simps(2) negligible-Un neg-ligible-iff-emeasure0 path-image-cons-union polygonal-paths-measurable)
qed
lemma polygon-split-path-add-measure:
fixes p p1 $p 2$:: R-to- $R 2$
assumes is-polygon-split-path vts $i j$ cutvts
assumes vts $1=($ take i vts $)$
$v t s 2=($ take $(j-i-1)(d r o p(S u c i) v t s))$
$v t s 3=\operatorname{drop}(j-i)(\operatorname{drop}($ Suc $i) v t s)$
$x=v t s!i$
$y=v t s!j$
$p=$ make-polygonal-path (vts@[vts!0])
$p 1=$ make-polygonal-path (x\#(vts2 @ [y] @ (rev cutvts) @ $[x])$)
p2 = make-polygonal-path (vts1 @ ([x] @ cutvts @ [y]) @ vts3 @ [vts!0])
defines $M 1 \equiv$ measure lebesgue (path-inside p1) and
M2 \equiv measure lebesgue (path-inside p2) and
$M \equiv$ measure lebesgue (path-inside p)
shows $M 1+M 2=M$
proof-
let ?cut $=$ make-polygonal-path $(x \#$ cutvts @ $[y])$
let ?cut-open-image $=($ path-image ?cut $)-\{x, y\}$
let $? P=$ path-inside p
let ?P1 = path-inside p1
let $? P 2=$ path-inside $p 2$
let $? M=$ space lebesgue
let $? A=$ sets lebesgue
let $? \mu=$ emeasure lebesgue
have open ?P1
by (metis assms(1) assms(3) assms(5) assms(6) assms(8) closed-path-image is-polygon-split-path-def open-inside path-inside-def polygon-def simple-path-def) then have P1-measurable: ?P1 $\in ?$ A by simp
have open ?P2
by (metis assms(1) assms(2) assms(4) assms(5) assms(6) assms(9) closed-path-image is-polygon-split-path-def open-inside path-inside-def polygon-def simple-path-def)
then have P2-measurable: ?P2 \in ? A by simp
have $? P 1 \cap ? P 2=\{ \}$
by (metis assms(1) assms(2) assms(3) assms(4) assms(5) assms(6) assms(8)
$\operatorname{assms}(9)$ is-polygon-split-path-def)
then have sum-union-finite: ? $\mu ? P 1+? \mu ? P 2=? \mu(? P 1 \cup ? P 2)$
using plus-emeasure P1-measurable P2-measurable by blast
have $? \mu($ path-image $q)=0 \Longrightarrow($ path-image $q) \in$ null-sets lebesgue if $*$: path-image $q \in$ sets lebesgue for $q::$ real \Rightarrow (real, 2) vec
using null-sets-def * by blast
have measure lebesgue ? $P 1=? \mu$? $P 1$
by (metis assms(1) assms(3) assms(5) assms(6) assms(8) bounded-inside bounded-set-imp-lmeasurable bounded-simple-path-image emeasure-eq-ennreal-measure emeasure-notin-sets ennreal-0 fmeasurableD2 is-polygon-split-path-def measure-zero-top path-inside-def polygon-def)
moreover have measure lebesgue ? P2 $=? \mu ? P 2$
by (metis Sigma-Algebra.measure-def assms(1) assms(2) assms(4) assms(5) assms (6) assms(9) bounded-inside bounded-path-image bounded-set-imp-lmeasurable emeasure-eq-ennreal-measure emeasure-notin-sets enn2real-top ennreal-0 fmeasurableD2 is-polygon-split-path-def path-inside-def polygon-def simple-path-def)
ultimately have ? $\mu(? P 1 \cup ? P 2)=M 1+M 2$
using assms(10) assms(11) sum-union-finite by auto
moreover have ? $\mu(? P 1 \cup ? P 2)=? \mu ? P$
proof-
have ? μ (path-image ?cut) $=0$ using polygonal-path-has-emeasure-0 by presburger
then have (path-image ?cut) \in null-sets lebesgue using polygonal-paths-measurable by blast
moreover have $\{x, y\} \in$ null-sets lebesgue by simp
ultimately have ?cut-open-image \in null-sets lebesgue using measure-Diff-null-set

```
by auto
    moreover have ?P = ?P1 \cup?P2 \cup?cut-open-image
    by (metis assms(1) assms(2) assms(3) assms(4) assms(5) assms(6) assms(7)
assms(8) assms(9) is-polygon-split-path-def)
    ultimately show ?thesis
            by (simp add: P1-measurable P2-measurable emeasure-Un-null-set sets.Un)
    qed
    ultimately show ?thesis
    by (smt (verit, best) M1-def M2-def M-def emeasure-eq-ennreal-measure enn2real-ennreal
ennreal-neq-top measure-nonneg)
qed
lemma polygon-cut-path-to-split-path-vtx0:
    fixes p:: R-to-R2
    assumes polygon-p: polygon p and
        i-gt: i>0 and
        i-lt:i< length vts and
        p-is: p = make-polygonal-path (vts @ [vts!0]) and
        cutpath:cutpath = make-polygonal-path ([vts!0] @ cutvts @ [vts!i]) and
        have-cut: is-polygon-cut-path (vts @ [vts!0]) cutpath
    shows is-polygon-split-path vts 0 i cutvts
proof -
    let ?vts2 = take (i - 1) (drop 1 vts)
    let ?vts3 = drop i (drop 1 vts)
    let ?x = vts! 0
    let ?y = vts!i
    let ?c3-vts=[?x]@ cutvts @ [?y]
    let ?c3 = cutpath
    let ?c3-rev-vts = rev ?c3-vts
    let ?c3-rev = make-polygonal-path ?c3-rev-vts
    let ?c3'= reversepath ?c3
    let ?p = make-polygonal-path (vts @ [vts!0])
    let ?p1-vts = ?x # ?vts2 @ ?c3-rev-vts
    let ?p1 = make-polygonal-path ?p1-vts
    let ?p1-rot-vts = ?c3-rev-vts @ ?vts2 @ [?y]
    let ?p1-rot = make-polygonal-path ?p1-rot-vts
    let ?p2-vts = ?c3-vts @ ?vts3 @ [?x]
    let ?p2 = make-polygonal-path ?p2-vts
    let ?c1-vts = ?x # ?vts2 @ [?y]
    let ?c1 = make-polygonal-path ?c1-vts
    let ?c2-vts = [?y] @ ?vts3 @ [?x]
    let ?c2 = reversepath (make-polygonal-path ?c2-vts)
    let ?c2'-vts = [?y] @ ?vts3 @ [?x]
    let ?c\mp@subsup{2}{}{\prime}=(\mathrm{ make-polygonal-path }(?c\mp@subsup{\mathcal{Z}}{}{\prime}-vts))
    have distinct-vts: distinct vts
    using polygon-p p-is
```

using polygon-def simple-polygonal-path-vts-distinct by force
have len-vts-gteq3: length vts ≥ 3
using polygon-p p-is polygon-vertices-length-at-least-4 by fastforce
then have ? x \# ?vts2 @ [?y] = take (i+1) (vts@ [vts! 0])
by (smt (verit, ccfv-threshold) i-gt Cons-nth-drop-Suc Suc-eq-plus1 Suc-pred' add-less-cancel-left butlast-snoc drop0 drop-drop hd-drop-conv-nth i-lt length-append-singleton length-greater-0-conv less-imp-le-nat linorder-not-less list.size(3) plus-1-eq-Suc take-Suc-Cons take-all-iff take-butlast take-hd-drop)
have [?y] @ ?vts3 @ [?x] = drop (i) (vts @ [vts!0])
using i-gt
by (metis (no-types, lifting) Cons-eq-appendI Cons-nth-drop-Suc Suc-eq-plus1
append-Nil diff-is-0-eq' drop-0 drop-append drop-drop i-lt less-imp-le-nat)
have card-gteq: card (set vts) ≥ 3
using polygon-at-least-3-vertices-wraparound polygon-p p-is
by (metis butlast-conv-take butlast-snoc)
then have vts $\neq[]$
by auto
then have vts-is: vts =? x \# ?vts2 @ ?y \# ?vts3
using split-up-a-list-into-3-parts[of 0 vts $i] i$-gt i-lt
by auto
have elem-prop1: last ?c1-vts $=$? y
by (metis (no-types, lifting) last.simps snoc-eq-iff-butlast)
have elem-prop2: (vts! 0 \# (rev ?vts3) @ [vts!i])!
(length (vts ! 0 \# drop $i($ drop 1 vts) @ $[v t s!i])-1)=v t s!i$
by (metis diff-Suc-1 length-Cons length-append-singleton length-rev nth-Cons-Suc nth-append-length)
have path-image cutpath $=$ path-image ?c3' by simp
then have path-image ?p1 $=$ path-image $(? c 1+++$?c3-rev $)$
using elem-prop1 assms make-polygonal-path-image-append-alt[of ?p1 ?p1-vts
?c1 ?c1-vts ?c3-rev ?c3-rev-vts]
by simp
also have $\ldots=$ path-image ?c1 \cup path-image ?c3-rev
by (metis (no-types, opaque-lifting) append-Cons append-Nil elem-prop1 hd-conv-nth
last-conv-nth list.discI list.sel(1) path-image-join polygon-pathfinish polygon-pathstart rev.simps(2) rev-rev-ident)
finally have image-prop: path-image ?p1 = path-image ?c1 \cup path-image cutpath
using rev-vts-path-image cutpath by presburger
have path-image $? c 3^{\prime}=$ path-image ?c3 using cutpath rev-vts-path-image by force
then have path-image-p1: path-image ?c1 \cup path-image?c3 = path-image ?p1
using image-prop by presburger
have ?p2-vts = ?c3-vts @ (tl ?c2-vts) by simp
then have path-image ?p2 $=$ path-image $(? c 3+++? c 2$ ' $)$ using make-polygonal-path-image-append-alt[of ?p2 ?p2-vts ?c3 ?c3-vts ?c2'

? $c 2-v t s]$

unfolding assms by auto
then have path-image-p2: path-image ?c2 \cup path-image ?c3 $=$ path-image ?p2 by (metis (no-types, opaque-lifting) Un-commute append-Cons append-Nil cutpath last-conv-nth nth-Cons-0 path-image-join path-image-reversepath polygon-pathfinish polygon-pathstart snoc-eq-iff-butlast)
have drop 1 vts $=$ take $(i-1)($ drop 1 vts $) @[v t s!i] @ d r o p i(d r o p 1 v t s)$
by (metis (no-types, lifting) Cons-eq-appendI Cons-nth-drop-Suc Suc-eq-plus1 Suc-pred' append.simps(1) append-take-drop-id drop-drop i-gt i-lt)
then have vts-is: vts @ [vts!0] = vts! 0 \# take (i - 1) (drop 1 vts) @ [vts !
i] @ drop $i($ drop 1 vts) @ [vts! 0]
by (metis (no-types, opaque-lifting) Cons-nth-drop-Suc One-nat-def append.assoc append-Cons drop0 i-lt length-pos-if-in-set nth-mem)
let ?vts1' $=$ take $(i-1)($ drop 1 vts$)$
let ?vts2' $=$ drop $i($ drop 1 vts$)$
have path-im-p: path-image
(make-polygonal-path
$\left(\left(v t s!0 \# ? v t s 1^{\prime}\right) @[v t s!i] @[v t s!i] @\right.$?vts2' $\left.\left.{ }^{\prime} @[v t s!0]\right)\right)=$ path-image
(make-polygonal-path
((vts!0 \# ?vts1') @ [vts!i] @ ?vts2' @ [vts!0]))
using make-polygonal-path-image-append-helper[of vts!0 \# ?vts1' ?vts2' @ [vts! 0]] by auto
have path-image
(make-polygonal-path
((vts! 0 \# ?vts1) @ [vts ! i] @ [vts ! i] @ ?vts2' @ [vts! 0])) = path-image (make-polygonal-path ((vts!0 \# ?vts1) $)$ @ [vts! i]) $+++(l i n e p a t h ~(v t s!i)(v t s!~$ i)) +++ make-polygonal-path ([vts!i] @ ?vts2' @ [vts!0]))
using make-polygonal-path-image-append[of (vts! 0 \# ?vts1') @ [vts!i] [vts! i] @ ?vts2' @ [vts ! 0]]
by (smt (verit) add-2-eq-Suc' append.assoc append-Cons diff-Suc-1 le-add2 length-Cons length-append-singleton nth-Cons-0 nth-append-length)
then have path-image $p=$ path-image (make-polygonal-path ((vts!0 \# ?vts1') @ $[v t s!i])+++($ linepath $(v t s!i)(v t s!i))+++$ make-polygonal-path $([v t s!i] @$?vts2' @ [vts! 0]))
using path-im-p p-is vts-is
by simp
then have path-image $p=$ path-image ?c1 \cup path-image (linepath (vts $!i$) (vts $!i)) \cup$ path-image (make-polygonal-path ([vts!i] @ ?vts2' @ [vts!0]))
by (metis (no-types, lifting) Un-assoc append-Cons elem-prop 1 list.discI nth-Cons-0 path-image-join pathfinish-linepath pathstart-join pathstart-linepath polygon-pathfinish polygon-pathstart last-conv-nth)
moreover have $\ldots=$ path-image ?c1 $\cup\{$ vts $!i\} \cup$ path-image (make-polygonal-path ([vts!i]@ ?vts2' @ [vts! 0]))
by auto
moreover have ... = path-image ?c1 \cup path-image (make-polygonal-path ([vts ! i] @ ?vts2' @ [vts!0]))
using vertices-on-path-image by fastforce
ultimately have path-image-p: path-image $p=$ path-image ?c1 \cup path-image ? $c 2$
using path-image-reversepath by blast
have simple-path-polygon: simple-path (make-polygonal-path (?x \# ?vts2 @ ?y \# ?vts3 @ [?x]))
using polygon-p p-is vts-is
using Cons-eq-appendI append-self-conv2 polygon-def by auto
then have loop-free-polygon: loop-free (make-polygonal-path (?x \# ?vts2 @ ?y \# ?vts3 @ [?x]))
unfolding simple-path-def by auto
have loop-free-p: loop-free p
using polygon-p p-is unfolding polygon-def simple-path-def by auto
have sublist-c1: sublist (?x \# ?vts2 @ [?y]) vts
using $\langle v t s!0 \#$ take $(i-1)($ drop $1 v t s) @[v t s!i]=$ take $(i+1)(v t s @[v t s$
! 0]) > i-lt by auto
then have sublist-c1: sublist (?x \# ?vts2 @ [?y]) (vts@[vts !0])
by (metis «vts! 0 \# take ($i-1$) (drop 1 vts) @ $[v t s!i]=$ take $(i+1)(v t s$ @ [vts! 0])> sublist-take)
then have loop-free ?c1
using sublist-is-loop-free p-is loop-free-p sublist-c1
by (metis One-nat-def Suc-1 Suc-eq-plus1 Suc-leI Suc-le-mono «vts ! 0 \# take $(i-1)($ drop 1 vts $) @[v t s!i]=$ take $(i+1)(v t s @[v t s!0])$ > i-gt i-lt length-append-singleton less-imp-le-nat take-i-is-loop-free)
then have simple-c1: simple-path ?c1
unfolding simple-path-def
using make-polygonal-path-gives-path by blast
have start-c1: pathstart ?c1 $=$? x
using polygon-pathstart
by (metis Cons-eq-appendI list.discI nth-Cons-0)
have finish-c1: pathfinish ?c1 = ? y
using polygon-pathfinish
by (metis Cons-eq-appendI diff-Suc-1 length-append-singleton list.discI nth-append-length)
have sublist-c2: sublist ([?.y] @ ?vts3 @ [?x]) (vts@[vts !0])
by (metis $\langle[v t s!i] @$ drop $i($ drop 1 vts) @ $[v t s!0]=$ drop $i(v t s @[v t s!0])$ > sublist-drop)
have $i \leq$ length ($t l$ vts) using i-lt by fastforce
then have loop-free ?c2
by (metis (no-types) Suc-1 <[vts! i] @ drop i (drop 1 vts) @ $[v t s!0]=$ drop $i(v t s @[v t s!0])\rangle\langle v t s \neq[]\rangle$ butlast-snoc drop-Suc drop-i-is-loop-free length-butlast length-drop loop-free-p loop-free-reversepath p-is tl-append2)
then have simple-c2: simple-path?c2
unfolding simple-path-def
using make-polygonal-path-gives-path
using path-imp-reversepath by blast
have start-c2: pathstart ?c2 $=$? x
using polygon-pathfinish
by (metis (no-types, lifting) Nil-is-append-conv last-appendR last-conv-nth path-
start-reversepath polygon-pathfinish snoc-eq-iff-butlast)
have finish-c2: pathfinish ?c2 $=? y$
using polygon-pathstart by auto
have path-image-int: path-image ?c1 \subseteq path-image ?p
unfolding path-image-def
by (metis Un-upper1 p-is path-image-def path-image-p)
moreover have path-image ?p \cap path-image ?c3 $\subseteq\{$ vts $!0$, vts $!i\}$
using have-cut unfolding is-polygon-cut-path-def
by (metis (no-types, lifting) Int-commute append-Cons append-is-Nil-conv cutpath last-appendR last-conv-nth last-snoc not-Cons-self2 nth-Cons-0 polygon-pathfinish polygon-pathstart set-eq-subset)
ultimately have vts-subset-c1c3: path-image ?c1 \cap path-image ?c3 $\subseteq\{? x, ? y\}$ by blast
have other-subset1: $\{$ vts ! 0 , vts $!i\} \subseteq$ path-image ?c1
using vertices-on-path-image by fastforce
have other-subset2: $\{v t s!0, v t s!i\} \subseteq$ path-image ?c3
unfolding assms using vertices-on-path-image by force
then have c1-inter-c3: path-image ?c1 \cap path-image ? $c 3=\{v t s!0$, vts $!i\}$
using vts-subset-c1c3 other-subset1 other-subset2 by blast
then have path-image ?c1 \cap path-image ?c3-rev $=\{$ pathstart ?c1, pathstart ? c3-rev\}
by (metis rev-vts-path-image append-Cons append-Nil cutpath hd-conv-nth list.discI list.sel(1) polygon-pathstart rev.simps(2) rev-rev-ident)
then have c1-inter-c3': path-image (make-polygonal-path (vts!0 \# take (i-

1) $($ drop 1 vts$) @[v t s!i])) \cap$
path-image (make-polygonal-path (rev ([vts!0] @ cutvts @ [vts!i])))
\subseteq \{pathstart (make-polygonal-path (vts! 0 \# take $(i-1)$ (drop 1 vts) @ [vts!
$i])$),
pathstart (make-polygonal-path (rev ([vts!0] @ cutvts @ [vts!i])))\}
by blast
have last-is-head: last ?c3-rev-vts $=h d$?c1-vts by auto
have vts-append: vts!0 \# take (i-1) (drop 1 vts) @ rev ([vts!0] @ cutvts @ $[v t s!i])=$
(vts! 0 \# take $(i-1)($ drop 1 vts $) @[v t s!i]) @$
$t l(r e v([v t s!0] @ c u t v t s @[v t s!i]))$
by simp
have loop-free: loop-free (make-polygonal-path (vts! 0 \# take (i-1) (drop 1 vts) @ [vts! i])) ^
loop-free (make-polygonal-path (rev ([vts!0] @ cutvts @ [vts!i])))
by (metis Suc-eq-plus1 Suc-le-mono Zero-neq-Suc «vts! 0 \# take (i-1) (drop 1 vts) @ $[v t s!i]=$ take $(i+1)(v t s @[v t s!0])$ cutpath diff-Suc-1 have-cut i-gt i-lt is-polygon-cut-path-def length-append-singleton less-2-cases less-imp-le-nat
less-nat-zero-code linorder-le-less-linear loop-free-p p-is rev-vts-is-loop-free simple-path-def take-i-is-loop-free)
have last-is-head2:
last (vts! 0 \# take $(i-1)($ drop 1 vts $) @[v t s!i])=$ $h d$ (rev ([vts! 0] @ cutvts @ [vts! i])) by simp
have arcs: arc (make-polygonal-path (vts! 0 \# take ($i-1$) (drop 1 vts) @ [vts $!i])) \wedge$
$\operatorname{arc}($ make-polygonal-path (rev ([vts!0] @ cutvts @ [vts!i])))
using Nil-is-append-conv append-Cons constant-linepath-is-not-loop-free cutpath finish-c1 have-cut hd-conv-nth is-polygon-cut-path-def last-appendR last-conv-nth last-is-head last-is-head2 last-snoc list.sel(1) loop-free make-polygonal-path.simps(1) make-polygonal-path-gives-path polygon-pathfinish polygon-pathstart simple-path-def simple-path-imp-arc loop-free
by (smt (verit, ccfv-SIG))
then have loop-free ?p1
using loop-free-append[of ?p1 ?p1-vts ?c1 ?c1-vts ?c3-rev ?c3-rev-vts,
OF - - vts-append loop-free c1-inter-c3' - last-is-head2 arcs] using last-is-head by blast
```
then have simple-path ?p1
    unfolding simple-path-def
    using make-polygonal-path-gives-path by blast
moreover have closed-path ?p1
    using polygon-pathstart polygon-pathfinish
    unfolding closed-path-def
    using elem-prop1 make-polygonal-path-gives-path
    by (smt (verit, best) append-is-Nil-conv last-ConsR last-appendR last-conv-nth
last-snoc list.discI nth-Cons-0 rev-append singleton-rev-conv)
    ultimately have polygon-p1: polygon ?p1 unfolding polygon-def polygonal-path-def
by fastforce
```

have path-image-int: path-image?c2 \subseteq path-image (make-polygonal-path (vts @ [vts!0]))
unfolding path-image-def using path-image-p
by (simp add: p-is path-image-def)
then have vts-subset-c2c3: path-image ?c2 \cap path-image ?c3 $\subseteq\{? x, ? y\}$
using have-cut unfolding is-polygon-cut-path-def using <path-image (make-polygonal-path
$($ vts @ [vts! 0] $)) \cap$ path-image cutpath $\subseteq\{$ vts ! 0, vts ! i $\}$ > by auto
have other-subset3: $\{$ vts ! 0 , vts $!i\} \subseteq$ path-image ?cz
using vertices-on-path-image by fastforce
have other-subset $4:\{v t s!0$, vts $!i\} \subseteq$ path-image ?c3
unfolding assms using vertices-on-path-image by fastforce
have $c 2$-inter-c3: path-image ?c2 \cap path-image ? $c 3=\{$ vts ! $0, v t s!i\}$
using vts-subset-c2c3 other-subset3 other-subset4 by blast
have path-p2: path ?p2
using make-polygonal-path-gives-path by blast
have pathfinish ?p2 $=$ vts ! 0
using polygon-pathfinish
by (metis Nil-is-append-conv last-appendR last-conv-nth last-snoc list.discI)
then have closed-p2: closed-path ?p2
unfolding closed-path-def using polygon-pathstart
using path-p2 by auto
have ([vts!0]@ cutvts @ [vts! i]) @ drop $i($ drop 1 vts $) @[v t s!0]=$ ([vts!0] @ cutvts @ [vts!i]) @ tl ([vts!i] @ drop $i(d r o p 1 v t s) @[v t s!0])$
by force
moreover have loop-free cutpath \wedge
loop-free (make-polygonal-path ([vts!i] @ drop i(drop 1 vts) @ [vts!0]))
by (metis 〈loop-free (reversepath (make-polygonal-path ([vts ! i] @ drop i (drop 1 vts) @ [vts ! 0]))) > cutpath loop-free loop-free-reversepath rev-rev-ident rev-vts-is-loop-free reversepath-reversepath)
moreover have path-image cutpath \cap path-image (make-polygonal-path ([vts!i] @ drop $i($ drop 1 vts) @ [vts!0]))
\subseteq \{pathstart cutpath,
pathstart (make-polygonal-path ([vts!i] @ drop i(drop 1 vts) @ [vts!0]))\}
using c2-inter-c3 cutpath polygon-pathstart by auto
moreover have last ([vts!i] @ drop $i($ drop 1 vts) @ [vts! 0$]) \neq h d([v t s!0]$ @ cutvts @ [vts!i]) \longrightarrow
path-image cutpath \cap path-image (make-polygonal-path ([vts!i] @ drop i (drop 1 vts) @ [vts! 0]))
$\subseteq\{$ pathstart (make-polygonal-path $([v t s!i]$ @ drop $i($ drop 1 vts) @ $[v t s!0]))\}$ by simp
moreover have last $([v t s!0] @$ cutvts @ $[v t s!i])=h d([v t s!i] @ d r o p i(d r o p$ 1 vts) @ [vts!0])
by simp
moreover have arc cutpath \wedge arc (make-polygonal-path ([vts!i] @ drop i (drop 1 vts) @ [vts! 0]))
by (metis (no-types, lifting) arc-simple-path arcs calculation(2) finish-c1 fin-ish-c2 have-cut is-polygon-cut-path-def make-polygonal-path-gives-path pathfinish-reversepath pathstart-reversepath simple-path-def start-c1 start-c2)
ultimately have loop-free? p 2
using loop-free-append[of ?p2 ?p2-vts ?c3 ?c3-vts ?c2' ?c2'-vts, OF - --] using cutpath by blast
then have polygon-p2: polygon ? p 2
using path-p2 closed-p2 unfolding polygon-def simple-path-def polygonal-path-def
by blast
have simple-c3: simple-path ?c3
using have-cut unfolding is-polygon-cut-path-def by meson
have start-c3: pathstart ?c3 $=$? x unfolding assms using polygon-pathstart by simp
have finish-c3: pathfinish ?c3 = ?y unfolding assms using polygon-pathfinish by simp
have pathstart cutpath $=$? x using assms polygon-pathstart by force
moreover have pathfinish cutpath $=$? y using assms polygon-pathfinish by simp ultimately have vts-neq: vts ! $0 \neq v t s!i$
using have-cut unfolding is-polygon-cut-path-def by force
have c1-inter-c2: path-image ?c1 \cap path-image ?c2 $=\{v t s!0, v t s!i\}$
proof-
obtain i where i1: (? x \# ?vts2 @ [?y] = take $i(v t s @[v t s!0])$) and i2: ([?y] @ ?vts3 @ [?x] = drop (i-1) (vts @ [vts!0]))
by (metis «[vts! i] @ drop $i($ drop 1 vts $) @[v t s!0]=d r o p ~ i(v t s ~ @ ~[v t s!0])>~$〈vts! 0 \# take ($i-1$) (drop 1 vts) @ $[v t s!i]=$ take $(i+1)(v t s @[v t s!0])\rangle$ add.commute add-diff-cancel-left')
moreover have $1: i \geq 1 \wedge i<$ length (vts @ [vts!0])
by (metis (no-types, lifting) bot-nat-0.extremum less-one Nil-is-append-conv ap-pend-Cons calculation diff-is-0-eq drop-Cons' linorder-not-less list.inject not-Cons-self2 same-append-eq take-all vts-is vts-neq)
moreover have 2: ? $p=$ make-polygonal-path (vts @ [vts!0]) ^ loop-free ?p
unfolding polygon-of-def using p-is polygon-p unfolding polygon-def sim-ple-path-def by blast
ultimately have path-image ?c1 \cap path-image (make-polygonal-path ([?y] @ ?vts3 @ [?x])) \subseteq \{pathstart ?c1, pathstart (make-polygonal-path ([?y] @ ?vts3 @ [? $? \mathrm{x}])$)\}
using loop-free-split-int[of ?p vts @ [vts!0] ?x \# ?vts2 @ [?y] $i[? y]$ @ ?vts3 @ [?x] ?c1 make-polygonal-path ([? ?] @ ?vts3 @ [? $x]$) length (vts @ [vts!0]), OF 2 i1 i2 - - 1]
by presburger
moreover have path-image ?c2 = path-image (make-polygonal-path ([?y] @ ?vts3 @ [?x])) using path-image-reversepath by fast
moreover have pathstart (make-polygonal-path ([?y] @ ?vts3 @ [?x])) =?y using polygon-pathstart by auto
moreover have pathstart ?c1 $=? x$ using polygon-pathstart by auto
ultimately show ?thesis
using other-subset1 other-subset3 subset-antisym by force
qed
have non-empty-inter: path-image ?c3 \cap inside(path-image ?c1 \cup path-image ? c 2) $\neq\{ \}$
using have-cut path-image-p p-is
unfolding is-polygon-cut-path-def path-inside-def
by fastforce
have p1-minus: $(($ path-image ?p1 $)-($ path-image ?c3 $))=$ path-image ?c1 $-\{? x$, ? $y\}$
using c1-inter-c3 path-image-p1 by blast
have p2-minus: $(($ path-image ?p2 $)-($ path-image ?c3 $))=$ path-image ?c2 $-\{? x$, ? $y\}$
using c2-inter-c3 path-image-p2 by auto
then have path-im-intersect-minus: ((path-image ?p1) - (path-image ?c3)) \cap $(($ path-image ?p2 $)-($ path-image (linepath ? x ? $y)))=\{ \}$
using c1-inter-c2 p1-minus p2-minus
by blast
have $(($ path-image ?p1 $)-($ path-image ?c3 $)) \cup(($ path-image ?p2 $)-($ path-image ?c3 $)) \cup\{? x, ? y\}=(($ path-image ? $p 1)-($ path-image ?c3 $) \cup\{? x, ? y\}) \cup(($ path-image ?p2) $-($ path-image ?c3 $) \cup\{? x, ? y\})$
by auto
then have $(($ path-image ?p1) $-($ path-image $(? c 3))) \cup(($ path-image ?p2 $)-$ $($ path-image $(? c 3))) \cup\{? x, ? y\}=(($ path-image ?c1 $)-\{? x, ? y\} \cup\{? x, ? y\}) \cup$ $(($ path-image ?c2) $-\{? x, ? y\} \cup\{? x, ? y\})$
using $p 1$-minus p2-minus by simp
then have $(($ path-image ?p1) $-($ path-image $(? c 3))) \cup(($ path-image ?p2 $)-$ $($ path-image $(? c 3))) \cup\{? x, ? y\}=$ path-image $? c 1 \cup$ path-image $? c \mathcal{L}$
using other-subset1 other-subset3 by auto
then have path-im-intersect-union: path-image ? $p=(($ path-image $? p 1)-($ path-image $(? c 3))) \cup(($ path-image ?p2 $)-($ path-image $(? c 3))) \cup\{? x, ? y\}$ using path-image- p-is by auto
have inside (path-image ?c1 \cup path-image ?c3) \cap inside (path-image ?c2 \cup path-image ? $c 3)=\{ \}$
using split-inside-simple-closed-curve-real2[OF simple-c1 start-c1 finish-c1 sim-ple-c2 start-c2 finish-c2 simple-c3 start-c3 finish-c3 vts-neq c1-inter-c2 c1-inter-c3 c2-inter-c3 non-empty-inter]
by fast
then have empty-inter: path-inside ?p1 \cap path-inside ?p2 $=\{ \}$
using path-image-p1 path-image-p2 unfolding path-inside-def
by force
have inside(path-image ?c1 \cup path-image ?c3) \cup inside (path-image ?c2 \cup path-image ?c3) \cup
(path-image ?c3 $-\{v t s!0, v t s!i\})=$ inside $($ path-image ? $c 1 \cup$ path-image ?c2)
using split-inside-simple-closed-curve-real2 [OF simple-c1 start-c1 finish-c1 sim-ple-c2 start-c2 finish-c2
simple-c3 start-c3 finish-c3 vts-neq c1-inter-c2 c1-inter-c3 c2-inter-c3
non-empty-inter]
by fast
then have inside: path-inside ?p1 \cup path-inside ?p2 \cup (path-image ?c3 $-\{? x$, ? $y\})=$ path-inside p
using path-image-p1 path-image-p1 path-image-p unfolding path-inside-def
by (smt (z3) Diff-cancel Int-Un-distrib2 c1-inter-c2 c1-inter-c3 finish-c1 inf-commute inf-sup-absorb nonempty-simple-path-endless path-image-p2 simple-c1 start-c1)
have first-part: $0<$ length vts \wedge
$i<$ length vts \wedge
$0<i$
using assms
by auto
have second-part-helper: is-polygon-cut-path (vts @ [vts!0]) cutpath \wedge polygon ?p \wedge

polygon ?p1 \wedge

polygon? ? $2 \wedge$
path-inside ? $p 1 \cap$ path-inside ? $p 2=\{ \} \wedge$
path-inside ?p1 \cup path-inside ?p2 $\cup($ path-image $(? c 3)-\{? x, ? y\})=$ path-inside p
$\wedge(($ path-image ?p1 $)-($ path-image $(? c 3))) \cap(($ path-image ?p2 $)-($ path-image $(? c 3)))=\{ \}$
\wedge path-image ? $p=(($ path-image ?p 1$)-($ path-image $(? c 3))) \cup(($ path-image ?p2) $-($ path-image $(? c 3))) \cup\{? x, ? y\}$
using polygon-p p-is polygon-p1 polygon-p2 empty-inter inside have-cut path-im-intersect-minus path-im-intersect-union

proof-

have $\}=$ path-image cutpath \cup path-image (make-polygonal-path (vts ! $0 \#$ take $(i-1)($ drop 1 vts$) @[v t s!i])) \cap$ path-image (reversepath (make-polygonal-path ([vts!i] @ drop $i($ drop 1 vts) @ [vts ! 0]))) - path-image cutpath
using c1-inter-c2 c2-inter-c3 by fastforce
then have $\}=($ path-image cutpath \cup path-image (make-polygonal-path (vts $!0 \#$ take $(i-1)($ drop 1 vts $) @[v t s!i]))) \cap($ path-image cutpath \cup path-image (reversepath (make-polygonal-path ([vts! i] @ drop $i(d r o p 1$ vts) @ $[v t s!0])))$)-path-image cutpath
by blast
then show? ?thesis
using empty-inter have-cut inside polygon-p1 polygon-p2 Int-Diff image-prop p-is path-im-intersect-union path-image-p2 polygon-p
by auto
qed
have vts-relation: (let vts1 $=$ take 0 vts; vts2 $=\operatorname{take}(i-0-1)(\operatorname{drop}(S u c 0)$ $v t s)$;

$$
v t s 3=\operatorname{drop}(i-0)(\operatorname{drop}(\text { Suc } 0) \text { vts }) ; x=v t s!0 ; y=v t s!i ;
$$

$p=$ make-polygonal-path (vts @ [vts!0]); p1 = make-polygonal-path $(x \#$ vts2 @ ?c3-rev-vts);

$$
p 2=\text { make-polygonal-path (?c3-vts @ vts3 @ [x]) in }
$$

$$
v t s 1=[] \wedge v t s 2=? v t s 2 \wedge v t s 3=? v t s 3 \wedge p=? p \wedge p 1=? p 1 \wedge p 2=
$$?p2)

by simp
have second-part: (let vts1 $=$ take 0 vts; vts2 $=\operatorname{take}(i-0-1)($ drop (Suc 0) $v t s)$;
$v t s 3=\operatorname{drop}(i-0)(d r o p(S u c ~ 0) v t s) ; x=v t s!0 ; y=v t s!i ;$
$p=$ make-polygonal-path (vts @ [vts!0]);p1=make-polygonal-path $(x \#$ vts2 @ ?c3-rev-vts);
p2 = make-polygonal-path (vts1 @ ?c3-vts @ vts3 @ [vts!0])
in is-polygon-cut-path (vts @ [vts!0]) cutpath \wedge
polygon $p \wedge$
polygon p1 \wedge
polygon p2 \wedge
path-inside p1 \cap path-inside p2 $=\{ \} \wedge$
path-inside p1 \cup path-inside p2 $\cup($ path-image cutpath $-\{x, y\})=$ path-inside p
$\wedge(($ path-image p1 $)-($ path-image $($ cutpath $))) \cap(($ path-image p2 $)-($ path-image

```
(cutpath)))}={}
        path-image p = ((path-image p1) - (path-image (cutpath))) \cup ((path-image
p2) - (path-image (cutpath))) \cup{x,y})
    using second-part-helper vts-relation p-is
    by (metis self-append-conv2)
    show ?thesis
    unfolding is-polygon-split-path-def[of vts 0 i cutvts]
    using first-part second-part
    by (smt (verit, ccfv-threshold) append-Cons append-Nil cutpath rev.simps(2)
rev-append rev-is-Nil-conv)
qed
lemma polygon-cut-path-to-split-path:
    fixes p:: R-to-R2
    assumes polygon p
    p=make-polygonal-path (vts @ [vts!0])
    is-polygon-cut-path (vts @ [vts!0]) cutpath
    vts1 \equiv (take i vts)
    vts2 \equiv(take (j-i-1) (drop (Suc i)vts))
    vts3 \equivdrop (j - i) (drop (Suc i)vts)
    x \equivvts!i
    y\equivvts!j
    cutpath = make-polygonal-path ([x] @ cutvts @ [y])
    i<length vts }\wedgej<length vts ^i<
    p1 \equivmake-polygonal-path (x#(vts2@([y] @ (rev cutvts)@ [x]))) and
    p2 \equivmake-polygonal-path (vts1@ ([x] @ cutvts @ [y]) @ vts3 @ [(vts1 @
[x])!0])
        shows is-polygon-split-path vts i j cutvts
proof-
    let ?poly-vts-rot = rotate-polygon-vertices (vts @ [vts!0]) i
    let ?vts-rot = butlast ?poly-vts-rot
    let ?p-rot = make-polygonal-path ?poly-vts-rot
    let ?i-rot = j -i
    have rot-poly: polygon ?p-rot using assms(1) assms(2) rotation-is-polygon by
blast
    have i-rot: ?i-rot > 0 ^ ?i-rot < length ?poly-vts-rot - 1
        using assms(10) rotate-polygon-vertices-same-length by fastforce
    have vtsi:vts!i= ?poly-vts-rot!0
        using rotated-polygon-vertices[of ?poly-vts-rot vts @ [vts!0] i i]
    by (metis (no-types, lifting) One-nat-def Suc-1 assms(10) diff-self-eq-0 hd-conv-nth
last-snoc length-append-singleton less-imp-le-nat linorder-not-le not-less-eq-eq nth-append
take-all-iff take-eq-Nil)
    have vtsj:vts ! j = ?poly-vts-rot !?i-rot
        using rotated-polygon-vertices[of ?poly-vts-rot vts @ [vts!0] i j]
    by (smt (verit, ccfv-SIG) One-nat-def Suc-1 assms(10) butlast-snoc hd-append2
hd-conv-nth last-snoc leD length-append-singleton less-Suc-eq-le less-imp-le-nat not-less-eq-eq
nth-butlast take-all-iff take-eq-Nil)
    have is-polygon-cut-path ?poly-vts-rot cutpath
    proof-
```

have ?poly-vts-rot ! $0 \neq$?poly-vts-rot!?i-rot
using assms(3) unfolding is-polygon-cut-path-def using vtsi vtsj
using append-Cons append-is-Nil-conv assms(7) assms(8) assms(9) last-appendR
last-conv-nth polygon-pathfinish polygon-pathstart
by force
moreover have $\{$?poly-vts-rot ! 0 , ?poly-vts-rot ! ?i-rot $\} \subseteq$ set (?poly-vts-rot @ [?poly-vts-rot! 0])
using assms(3) unfolding is-polygon-cut-path-def using i-rot vtsi vtsj by fastforce
moreover have path-image cutpath \cap path-image ? p-rot $=\{$?poly-vts-rot ! 0 , ?poly-vts-rot!?i-rot\}
using polygon-vts-arb-rotation vtsi vtsj assms(3) is-polygon-cut-path-def
by (metis (no-types, lifting) append.assoc append-Cons assms(7) assms(8)
$\operatorname{assms}(9)$ last-conv-nth nth-Cons-0 polygon-pathfinish polygon-pathstart snoc-eq-iff-butlast)
moreover have path-image cutpath \cap path-inside $(? p-r o t) \neq\{ \}$
using vtsi vtsj assms(3) polygon-vts-arb-rotation
unfolding is-polygon-cut-path-def path-inside-def by metis
ultimately show ?thesis
unfolding is-polygon-cut-path-def
using rot-poly assms(3) is-polygon-cut-path-def rotate-polygon-vertices-same-set vtsi vtsj
by (metis polygon-vts-arb-rotation)
qed
then have rot-cut: is-polygon-cut-path (?vts-rot @ [?vts-rot!0]) cutpath
by (metis butlast-snoc rotate-polygon-vertices-def)
have rot-cut-butlast: make-polygonal-path ?poly-vts-rot $=$ make-polygonal-path (?vts-rot @ [?vts-rot! 0])
by (metis butlast-snoc rotate-polygon-vertices-def)
have split-rot: is-polygon-split-path ?vts-rot 0 ?i-rot cutvts
using rot-cut rot-cut-butlast
by (smt (verit, ccfv-SIG) assms(7) assms(8) assms(9) dual-order.strict-trans i-rot is-polygon-cut-path-def length-butlast nth-butlast polygon-cut-path-to-split-path-vtx0 vtsi vtsj)
let ?vts1-rot $=$ take 0 ?vts-rot
let ?vts2-rot $=$ take $(j-i-0-1)($ drop (Suc 0) ?vts-rot)
let ?vts3-rot $=\operatorname{drop}(j-i-0)($ drop (Suc 0) ?vts-rot)
let ?x-rot $=$?vts-rot! 0
let ? y-rot $=$? vts-rot ! $(j-i)$
let ?p1-rot-vts = ?x-rot \# ?vts2-rot @ [?y-rot] @ (rev cutvts) @ [?x-rot]
let ?p1-rot $=$ make-polygonal-path ?p1-rot-vts
let ?p2-rot-vts =?vts1-rot @ [?x-rot] @ cutvts @ [?y-rot] @ ?vts3-rot @ [?vts-rot ! 0]
let ?p2-rot $=$ make-polygonal-path ?p2-rot-vts
let ? p1-vts $=x \#$ vts2 @ $[y]$ @ (rev cutvts) @ $[x]$
let ?p2-vts=vts1 @ $[x]$ @ cutvts @ $[y]$ @ vts3 @ $[(v t s 1 @[x])!0]$
have p2-firstlast: hd ?p2-vts = last ?p2-vts
by (metis (no-types, lifting) append-is-Nil-conv append-self-conv2 hd-append2 $h d$-conv-nth last-appendR last-snoc list.discI list.sel(1))
have length (drop (Suc i) vts) $=$ length vts $-i-1$
by simp
then have len-prop: length (drop (Suc i) vts) $\geq j-i-1$
using assms(9) assms(10) diff-le-mono less-or-eq-imp-le by presburger
have drop-take: rotate i vts $=$ drop i vts @ take $i v t s$
using rotate-drop-take[of i vts] assms(10) mod-less by presburger
then have drop-take-suc: drop (Suc 0) (rotate ivts) =drop (Suc i) vts @ take i vts
using $\operatorname{assms}(10)$ by simp
then have take $(j-S u c i)($ drop $($ Suc 0$)($ rotate $i v t s))=$ take $(j-S u c i)($ drop (Suc i) vts)
using len-prop by force
then have vts2: take $(j-i-0-1)$ (drop (Suc 0) (butlast (rotate-polygon-vertices $(v t s @[v t s!0]) i)))=v t s 2$
using assms(5) unfolding rotate-polygon-vertices-def
by (metis Suc-eq-plus1 butlast-snoc diff-diff-left diff-zero)
have $x y: ? x$-rot $=x \wedge$? y-rot $=y$
using vtsi vtsj assms by (metis is-polygon-split-path-def nth-butlast split-rot)
moreover have path-image $p=$ path-image ? p-rot
using assms(1) assms(2) polygon-vts-arb-rotation by auto
moreover then have path-inside $p=$ path-inside ? p-rot unfolding path-inside-def by simp
moreover have ? $p 1$-rot-vts $=$? p1-vts using $x y$ vts2 by presburger
moreover then have path-image p1 path-image ?p1-rot using assms by argo
moreover then have path-inside p1 = path-inside ?p1-rot unfolding path-inside-def
by argo
moreover have polygon p1
using calculation split-rot assms(11) unfolding is-polygon-split-path-def
by (smt (verit, ccfv-SIG) vts2)
moreover have ?p2-rot-vts $=$ rotate-polygon-vertices ?p2-vts i
proof-
have butlast (vts1 @ $[x]$ @ cutvts @ $[y]$ @ vts3 @ $[(v t s 1 @[x])!0])$ $=v t s 1 @[x] @$ cutvts @ $[y] @$ vts3
by (simp add: butlast-append)
also have rotate $i . . .=[x]$ @ cutvts @ $[y]$ @ vts3 @ vts1 using assms(4)
by (metis (no-types, lifting) drop-take add-diff-cancel-right' append.assoc assms(10) diff-diff-cancel length-append length-drop length-rotate less-imp-le-nat rotate-append)
finally have rotate-polygon-vertices ?p2-vts $i=[x]$ @ cutvts @ $[y]$ @ vts3 @ vts1 @ [x]
unfolding rotate-polygon-vertices-def by simp
moreover have ?vts3-rot = vts3 @ vts1
using $\operatorname{assms}(4,6)$ unfolding rotate-polygon-vertices-def
by (smt (verit, del-insts) One-nat-def Suc-diff-Suc Suc-leI drop-take-suc $\operatorname{assms}(10)$ butlast-snoc diff-is-0-eq diff-zero drop0 drop-append i-rot le-add-diff-inverse len-prop length-drop nat-less-le)
ultimately show ?thesis by (simp add: xy)
qed
moreover then have polygon $p 2$
using unrotation-is-polygon[of ?p2-vts i p2] split-rot assms(12) p2-firstlast
unfolding is-polygon-split-path-def
by (smt (verit) append.assoc)
moreover then have path-image p2 $=$ path-image $(? p 2-r o t)$
using assms(12) polygon-vts-arb-rotation calculation by auto
moreover then have path-inside p2 $=$ path-inside ?p2-rot unfolding path-inside-def
by presburger
ultimately show is-polygon-split-path vts i j cutvts
using split-rot unfolding is-polygon-split-path-def
using One-nat-def assms bot-nat-0.not-eq-extremum butlast-snoc hd-append2
$h d$-conv-nth hd-take le-add2 length-0-conv length-Cons length-append length-butlast
nth-append-length rot-cut-butlast rotate-polygon-vertices-same-length take-eq-Nil
by (smt (verit) append.assoc butlast-conv-take have-wraparound-vertex is-polygon-cut-path-def
rotate-polygon-vertices-same-set)
qed
lemma good-polygonal-path-implies-polygon-split-path:
assumes polygon p
assumes $p=$ make-polygonal-path (vts @ [vts!0])
assumes good-polygonal-path v1 cutvts v2 (vts @ [vts!0])
assumes $i<$ length vts $\wedge j<$ length vts
assumes vts $!i=v 1$
assumes vts $!j=v 2$
assumes $i<j$
shows is-polygon-split-path vts $i j$ cutvts
proof-
let ?cutpath = make-polygonal-path ([v1] @ cutvts @ [v2])
let ?p-path $=$ make-polygonal-path $(v t s @[v t s!0])$
have linepath-subset: path-image ?cutpath \subseteq path-inside ?p-path $\cup\{v 1, v 2\}$
using assms(3) unfolding good-polygonal-path-def by meson
have linepath-ends: pathstart ?cutpath $=v 1 \wedge$ pathfinish ?cutpath $=$ v2
using polygon-pathfinish polygon-pathstart by force
then have vs-subset1: $\{v 1, v 2\} \subseteq$ path-image ?cutpath using vertices-on-path-image by fastforce
have vs-subset2: $\{v 1, v 2\} \subseteq$ path-image (make-polygonal-path (vts @ [vts!0]))
using $\operatorname{assms}(4-6)$ vertices-on-path-image[of vts]
using vertices-on-path-image by fastforce
have path-inside ? p-path \cap path-image ? p-path $=\{ \}$
using inside-outside-polygon[OF assms(1)] assms(2) unfolding inside-outside-def
by blast
then have linepath-path: path-image ?cutpath \cap path-image (make-polygonal-path $(v t s @[v t s!0]))=\{v 1, v 2\}$
using linepath-subset vs-subset1 vs-subset2
by blast
have ?cutpath (5 / 10) \in path-image ?cutpath
unfolding path-image-def by auto
have v1-neq-v2: v1 $\neq v 2$
using assms(3) unfolding good-polygonal-path-def
by fastforce
have not-v1: ?cutpath $(0.5::$ real $)=v 1 \Longrightarrow$ False
proof -
assume $*$:?cutpath ($0.5::$ real $)=v 1$
then have ?cutpath $(0.5::$ real $)=$?cutpath 0
using linepath-ends unfolding pathstart-def by simp
moreover have loop-free? cutpath using assms unfolding good-polygonal-path-def by metis
ultimately show False unfolding loop-free-def by fastforce
qed
have not-v2: ?cutpath $(0.5::$ real $)=v 2 \Longrightarrow$ False
proof -
assume $*$: ?cutpath ($0.5::$ real $)=$ v2
then have ?cutpath $(0.5::$ real $)=$?cutpath 1
using linepath-ends unfolding pathfinish-def by simp
moreover have loop-free ?cutpath using assms unfolding good-polygonal-path-def
by metis
ultimately show False unfolding loop-free-def by fastforce
qed
then have ?cutpath $(0.5::$ real $) \neq v 1 \wedge$?cutpath $(0.5::$ real $) \neq v 2$
using not-v1 not-v2 by auto
then have linepath-inside: path-image ?cutpath \cap path-inside (make-polygonal-path
$(v t s @[v t s!0])) \neq\{ \}$
using linepath-subset
using 〈?cutpath $(5 / 10) \in$ path-image ?cutpath〉 by blast
have is-polygon-cut-path (vts @ [vts!0]) ?cutpath
using assms(3) assms(1-2) unfolding good-polygonal-path-def is-polygon-cut-path-def using linepath-path linepath-inside
by (metis linepath-ends make-polygonal-path-gives-path simple-path-def)
then show ?thesis using polygon-cut-path-to-split-path assms by blast qed
lemma good-path-iff:
good-linepath $a b$ vts \longleftrightarrow good-polygonal-path a [] b vts
unfolding good-linepath-def good-polygonal-path-def
using linepath-loop-free by auto
lemma polygon-cut-iff: is-polygon-cut (vts @ [vts!0]) (vts!i) (vts!j)
\longleftrightarrow is-polygon-cut-path (vts @ [vts!0]) (linepath (vts!i) (vts!j))
unfolding is-polygon-cut-def is-polygon-cut-path-def by (metis pathfinish-linepath pathstart-linepath simple-path-linepath)
lemma polygon-split-iff: is-polygon-split vts $i j \longleftrightarrow$ is-polygon-split-path vts $i j$ [] unfolding is-polygon-split-def is-polygon-split-path-def by (smt (verit, ccfv-threshold) append-Cons append-Nil make-polygonal-path.simps(3) polygon-cut-iff rev.simps(1))
lemma polygon-cut-to-split-vtx0:
fixes $p:: R$-to- $R 2$
assumes polygon-p: polygon p and
$i-g t: i>0$ and
i-lt: $i<$ length vts and
p-is: $p=$ make-polygonal-path (vts @ [vts!0]) and
have-cut: is-polygon-cut (vts @ [vts!0]) (vts!0) (vts!i)
shows is-polygon-split vts $0 i$
using have-cut i-gt i-lt p-is polygon-cut-path-to-split-path-vtx0 polygon-cut-iff poly-
gon-p polygon-split-iff
by force
lemma polygon-cut-to-split:
fixes $p:: R$-to- $R 2$
assumes is-polygon-cut (vts @ [vts!0]) (vts!i) (vts!j)
$i<$ length vts $\wedge j<$ length vts $\wedge i<j$
shows is-polygon-split vts $i j$
by (metis append-Cons append-Nil assms is-polygon-cut-def make-polygonal-path.simps(3)
polygon-cut-path-to-split-path polygon-cut-iff polygon-split-iff)
lemma good-linepath-implies-polygon-split:
assumes polygon p
assumes $p=$ make-polygonal-path (vts @ [vts!0])
assumes good-linepath v1 v2 (vts @ [vts!0])
assumes $i<$ length vts $\wedge j<$ length vts
assumes vts $!i=v 1$
assumes vts $!j=v 2$
assumes $i<j$
shows is-polygon-split vts $i j$
using assms good-path-iff good-polygonal-path-implies-polygon-split-path polygon-split-iff
by auto
end
theory Triangle-Lemmas
imports
Polygon-Convex-Lemmas
Integral-Matrix
Affine-Arithmetic.Floatarith-Expression
HOL-Analysis.Topology-Euclidean-Space
HOL-Analysis.Equivalence-Lebesgue-Henstock-Integration
HOL-Analysis.Inner-Product

HOL-Analysis.Line-Segment
HOL-Analysis.Convex-Euclidean-Space
HOL-Analysis.Change-Of-Vars

begin

20 Triangles

definition elem-triangle :: real^2 \Rightarrow real^2 \Rightarrow real $22 \Rightarrow$ bool where
elem-triangle a bcu
\neg collinear $\{a, b, c\}$
\wedge integral-vec $a \wedge$ integral-vec $b \wedge$ integral-vec c
$\wedge\{x . x \in$ convex hull $\{a, b, c\} \wedge$ integral-vec $x\}=\{a, b, c\}$
definition triangle-mat :: real^2 \Rightarrow real ${ }^{\wedge} 2 \Rightarrow$ real ${ }^{2} 2 \Rightarrow$ real^2^2 where triangle-mat abcetranspose (vector $[b-a, c-a]$)
definition triangle-linear :: real^2 \Rightarrow real^2 \Rightarrow real^2 \Rightarrow (real^2 \Rightarrow real^2) where
triangle-linear abce(λx. (triangle-mat $a b c) * v x)$
definition triangle-affine $:$: real^2 \Rightarrow real^2 \Rightarrow real^2 $\Rightarrow($ real^2 \Rightarrow real 2$)$ where
triangle-affine a $b c=(\lambda x . a+($ triangle-mat $a b c) * v x)$
abbreviation unit-square \equiv
(convex hull $\{$ vector $[0,0]$, vector $[0,1]$, vector $[1,1]$, vector $[1,0]\})::(($ realへ2) set)
abbreviation unit-triangle \equiv
(convex hull $\{$ vector $[0,0]$, vector $[1,0]$, vector $[0,1]\})::\left(\left(\right.\right.$ real $\left.{ }^{\wedge} 2\right)$ set $)$
abbreviation unit-triangle ${ }^{\prime} \equiv$
(convex hull $\{$ vector $[1,1]$, vector $[1,0]$, vector $[0,1]\})::(($ real 2) set $)$
lemma triangle-inside-is-convex-hull-interior:
assumes polygon-of $p[a, b, c, a]$
shows path-inside $p=$ interior (convex hull $\{a, b, c\}$)
proof-
have path-image $p=$ closed-segment $a b \cup$ closed-segment $b c \cup$ closed-segment c a
proof -
have path-image (linepath a b) $=$ closed-segment $a b$ by simp
moreover have path-image (linepath $b c$) $=$ closed-segment $b c$ by simp
moreover have path-image (linepath ca) closed-segment caby bimp
moreover have path-image $p=$ path-image (linepath a b) \cup path-image (linepath
$b c) \cup$ path-image (linepath c a)
using calculation assms(1) unfolding polygon-of-def make-polygonal-path.simps by (simp add: path-image-join sup-assoc)
ultimately show ?thesis by simp
qed
moreover have $D I M(($ real, 2) vec) $=2$ by simp
ultimately show ?thesis using inside-of-triangle $[$ of $a b c]$ unfolding path-inside-def
by presburger
qed
lemma triangle-is-convex:
assumes $p=$ make-triangle $a b c$ and \neg collinear $\{a, b, c\}$
shows convex (path-inside p) (is convex ? s)
using triangle-inside-is-convex-hull-interior assms(1) assms(2)
using make-triangle-def polygon-of-def triangle-is-polygon
by auto
lemma affine-comp-linear-trans: triangle-affine abc=($\lambda x . x+a) \circ($ triangle-linear $a b c)$
apply (simp add: triangle-affine-def triangle-linear-def)
by auto
lemma triangle-linear-der:
fixes $a b c::$ real ${ }^{\wedge}$ 2
defines $T \equiv$ triangle-linear abc
shows (Thas-derivative T) (at x)
proof-
have linear T using T-def by (simp add: triangle-linear-def)
then have bounded-linear T by (simp add: linear-linear)
thus ?thesis using bounded-linear-imp-has-derivative by blast
qed
lemma triangle-affine-der:
fixes $a b c::$ real^2
assumes $S \in$ sets lebesgue and $x \in S$
defines $A \equiv$ triangle-affine $a b c$ and $T \equiv$ triangle-linear abc
shows $x \in S \Longrightarrow(A$ has-derivative $T)($ at x within $S)$
proof -
assume xin: $x \in S$
let ?trans $=\lambda x:$:real ${ }^{\text {2 } 2 . ~} x+a$
have comp: $($?trans $\circ T)=(\lambda x .(T x)+a)$
by auto
have $\forall x . A x=($?trans $\circ T) x$ unfolding A-def T-def using affine-comp-linear-trans
by auto
moreover then have $A x$-is: $(\bigwedge x . x \in S \Longrightarrow A x=((\lambda x . x+a) \circ T) x)$
by auto
moreover have trans-der: (?trans has-derivative id) (at x within S)
by (metis (full-types) add.commute assms(2) eq-id-iff has-derivative-transform shift-has-derivative-id)
moreover have Tder: (Thas-derivative T) (at x within S) using triangle-linear-der by (simp add: T-def bounded-linear-imp-has-derivative triangle-linear-def)
moreover have comp-der: ((?trans ○ T) has-derivative T) (at x within S) using has-derivative-add-const[OF Tder] comp

```
    by simp
    ultimately show (A has-derivative T) (at x within S)
    using triangle-affine-def triangle-linear-def affine-comp-linear-trans o-apply
add.commute vector-derivative-chain-within assms(2) has-derivative-add-const has-derivative-transform
A-def T-def
    by force
qed
lemma triangle-linear-inj:
    fixes ab c :: real^2
    assumes \neg collinear {a,b,c}
    defines L \equivtriangle-linear a b c
    shows inj L
proof -
    let ?M = triangle-mat a b c
    let ?m-11 = (b-a)$1
    let ?m-12 = (c-a)$1
    let ?m-21 = (b-a)$2
    let ?m-22 = (c-a)$2
    have det ?M = ?m-11*?m-22 - ?m-12*?m-21
            unfolding triangle-mat-def
            by (metis det-2 det-transpose mult.commute vector-2(1) vector-2(2))
    moreover have ?m-11*?m-22 }==?m-12*?m-2
    proof(rule ccontr)
            assume ᄀ? m-11*?m-22 }=\mathrm{ ? ?m-12*?m-21
            then have eq: ?m-11*?m-22 =?m-12*?m-21 by simp
            { assume *: ?m-21 = 0^ ?m-22 }=
            then have ?m-11 = 0 using eq by simp
            then have ?m-11=0^ ?m-21=0 using * by auto
            then have b -a=0 by (metis (no-types, opaque-lifting) exhaust-2 vec-eq-iff
zero-index)
            then have collinear {a,b,c} by simp
            then have False using assms by fastforce
            } moreover
    { assume *: ?m-21 \not=0^?m-22 = 0
            then have ?m-12 = 0 using eq by simp
            then have ?m-12=0^?m-22 = 0 using * by auto
            then have }c-a=0\mathrm{ by (metis (no-types, opaque-lifting) exhaust-2 vec-eq-iff
zero-index)
            then have collinear {a,b,c} by (simp add: collinear-3-eq-affine-dependent)
            then have False using assms by fastforce
            } moreover
    { assume *:?m-21 = 0^?m-22 = 0
            { assume ?m-11=0
                then have b - a=0 using *
                    by (metis (no-types, opaque-lifting) exhaust-2 vec-eq-iff zero-index)
                then have False using assms(1) by auto
            } moreover
            { assume ?m-11 f=0
```

then obtain k where ? $m-12=k * ? m-11$ using nonzero-divide-eq-eq by
moreover have ? m-22 $=k *$? m-21 using $*$ by auto
ultimately have $c-a=k *_{R}(b-a)$
by (smt (verit, del-insts) exhaust-2 real-scaleR-def vec-eq-iff vector-scaleR-component)
then have collinear $\{a, b, c\}$
using vec-diff-scale-collinear[of callable by (simp add: insert-commute)
then have False using assms(1) by fastforce
\}
ultimately have False using assms by fastforce
\} moreover
$\{$ assume $*: ? m-21 \neq 0 \wedge ? m-22 \neq 0$
then have ? $m-11 / ? m-21=? m-12 / ? m-22$ using eq frac-eq-eq by blast
then obtain m where ? $m-11=m * ? m-12 \wedge$? $m-21=m * ? m-22$
using nonzero-divide-eq-eq *
by (metis (no-types, lifting) mult.commute times-divide-eq-left)
then have $b-a=m * s(c-a)$
by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-smult-component)
then have $b-a=m *_{R}(c-a)$ by (simp add: scalar-mult-eq-scale R)
then have collinear $\{a, b, c\}$ using vec-diff-scale-collinear by auto
then have False using assms by auto
\}
ultimately show False by fastforce
qed
ultimately have det $? M \neq 0$ by linarith
thus ?thesis by (simp add: L-def inj-matrix-vector-mult invertible-det-nz trian-gle-linear-def)
qed
lemma triangle-affine-inj:
fixes $a b c::$ real ${ }^{\wedge}$ 2
assumes \neg collinear $\{a, b, c\}$
defines $A \equiv$ triangle-affine a $b c$
shows inj A
proof-
have inj (triangle-linear abc) using triangle-linear-inj[of abc] assms by auto
moreover have $\operatorname{inj}(\lambda x . x+a)$ by simp
moreover have $A=(\lambda x . x+a) \circ($ triangle-linear a $b c)$
by (simp add: A-def affine-comp-linear-trans)
ultimately show ?thesis using inj-compose by blast
qed
lemma triangle-linear-integrable:
fixes abc:: real^2
assumes $S \in$ lmeasurable
defines $T \equiv$ triangle-linear abc
shows $(\lambda x$. abs ($\operatorname{det}($ matrix $(T)))$) integrable-on $S(i s(\lambda x$. ?c) integrable-on $S)$
using integrable-on-const[of S ?c] assms(1) by blast
lemma measure-differentiable-image-eq-affine:
fixes $a b c$:: real^2
defines $A \equiv$ triangle-affine $a b c$ and $T \equiv$ triangle-linear $a b c$
assumes $S \in$ lmeasurable and \neg collinear $\{a, b, c\}$
shows measure lebesgue $\left(A^{\prime} S\right)=$ integral $S(\lambda x$ abs $(\operatorname{det}($ matrix $T)))$
proof-
have $\bigwedge x . x \in S \Longrightarrow(A$ has-derivative $T)$ (at x within $S)$ using triangle-affine-der A-def T-def assms(3) by blast
moreover have inj-on $A S$ using A-def assms(3) assms(4) triangle-affine-inj inj-on-subset by blast
moreover have $(\lambda x$. abs $(\operatorname{det}($ matrix $(T))))$ integrable-on S
by (simp add: T-def assms(3) triangle-linear-integrable)
ultimately show ?thesis
using measure-differentiable-image-eq[of - - $\lambda x . T] \operatorname{assms}(3)$ by blast
qed
lemma triangle-affine-img:
fixes $a b c::$ real^2
defines $A \equiv$ triangle-affine a $b c$
shows convex hull $\{a, b, c\}=A$ 'unit-triangle
proof-
let ? $O=($ vector $[0,0])::$ real ${ }^{\wedge}$ 2
let ? $e 1=($ vector $[1,0]):$:real^2
let $?, 22=($ vector $[0,1]):$:real^2
let ?translate- $a=\lambda x \cdot x+a$
let $? T=$ triangle-linear $a b c$
define $a l$ where $a l=? T$? O
define $b l$ where $b l=$? T ? $e 1$
define $c l$ where $c l=$?T ? e2
have $a: a=$?translate- a al
proof-
have $a l=$? O
by (simp add: al-def mat-vec-mult-2 triangle-linear-def)
then show ?thesis
by (metis (no-types, opaque-lifting) add-0 mat-vec-mult-2 matrix-vector-mult-0
mult-zero-right zero-index)
qed
have $b: b=$?translate- $a b l$
proof-
have col1: column 1 (triangle-mat abc)=b-a
by (metis column-transpose row-def triangle-mat-def vec-lambda-eta vec-tor-2(1))
then have $b l=b-a$
using bl-def unfolding triangle-linear-def triangle-mat-def matrix-vector-mult-def using matrix-vector-mult-basis[of triangle-mat abccl]
by (simp add: col1 axis-def bl-def mat-vec-mult-2 triangle-linear-def) then show? ?hesis by simp

qed

have $c: c=$?translate-a $c l$
proof-
have col2: column 2 (triangle-mat abc)=c-a
by (metis column-transpose row-def triangle-mat-def vec-lambda-eta vec-tor-2(2))
then have $c l=c-a$
using cl-def unfolding triangle-linear-def triangle-mat-def matrix-vector-mult-def
using matrix-vector-mult-basis[of triangle-mat abce 2]
by (simp add: col2 axis-def cl-def mat-vec-mult-2 triangle-linear-def)
then show? thesis by simp
qed
have linear ?T using triangle-linear-def by force
then have ?T' unit-triangle $=$ convex hull $\{a l, b l, c l\}$
using convex-hull-linear-image al-def bl-def cl-def by force
also have ?translate-a ${ }^{`} \ldots=$ convex hull $\{a, b, c\}$
using $a b c$ convex-hull-translation[of $a\{a l, b l, c l\}]$
by (metis (no-types, lifting) add.commute image-cong image-empty image-insert)
finally have ?translate-a' (?T' unit-triangle $)=$ convex hull $\{a, b, c\}$.
moreover have ?translate- $a \circ$? $T=A$ unfolding A-def using affine-comp-linear-trans by auto
ultimately show ?thesis by fastforce
qed
lemma triangle-affine-e1-e2:
fixes $a b c::$ real ${ }^{\text {2 } 2 ~}$
defines $A \equiv$ triangle-affine abc
shows (triangle-affine abc) (vector $[0,0])=a$
$($ triangle-affine $a b c)($ vector $[1,0])=b$
$($ triangle-affine $a b c)($ vector $[0,1])=c$
proof-
let $? M=$ triangle-mat $a b c$
let $? L=$ triangle-linear $a b c$
let ? A $=$ triangle-affine $a b c$
let ? $O=($ vector $[0,0])::($ real^2 $)$
let ?e1 $=($ vector $[1,0])::\left(\right.$ real $\left.{ }^{\text {2 } 2) ~}\right)$
let ? $e 2=($ vector $[0,1])::($ real^2 $)$
show ? A ? $O=a$
unfolding triangle-affine-def triangle-mat-def
by (metis (no-types, opaque-lifting) add.right-neutral diff-self mult-zero-right
scaleR-left-diff-distrib transpose-matrix-vector vec-scaleR-2 vector-matrix-mult-0)
show ? A ? e $1=b$
proof-
have ?L ?e1 $=$? $M * v$?e1 unfolding triangle-linear-def by blast
also have $\ldots=$ vector $[1 *(? M \$ 1 \$ 1)+0 *(? M \$ 1 \$ 2), 1 *(? M \$ 2 \$ 1)+0 *(? M \$ 2 \$ 2)]$

```
        unfolding triangle-linear-def triangle-mat-def
        using mat-vec-mult-2 by force
    also have ... = vector [ }1*(b-a)$1+0*(?M$1$2), 1*(b-a)$2+0*(?M$2$2)
        unfolding triangle-mat-def transpose-def by simp
    also have ... = vector [(b-a)$1,(b-a)$2] by argo
    also have ... = b - a
        by (smt (verit) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
    finally show ?thesis unfolding triangle-affine-def triangle-linear-def by simp
qed
show ?A ?e2 = c
proof-
    have ?L ?e2 = ?M *v ?e2 unfolding triangle-linear-def by blast
    also have ... = vector [ }0*(?M$1$1)+1*(?M$1$2),0*(?M$2$1)+1*(?M$2$2)
        unfolding triangle-linear-def triangle-mat-def
        using mat-vec-mult-2 by force
    also have ... = vector [0*(?M$1$1)+1*(c-a)$1,0*(?M$2$1)+1*(c-
a)$2]
            unfolding triangle-mat-def transpose-def by simp
    also have ... = vector [(c-a)$1,(c-a)$2] by argo
    also have ... = c-a
        by (smt (verit) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
    finally show ?thesis unfolding triangle-affine-def triangle-linear-def by simp
    qed
qed
lemma triangle-measure-integral-of-det:
    fixes a b c :: real^2
    defines S \equivconvex hull {a,b,c}
    assumes \neg collinear {a,b,c}
    shows measure lebesgue S=
        integral unit-triangle (\lambda(x::real`2). abs (det (matrix (triangle-linear a b
c))))
proof -
    let ?A = triangle-affine a b c
    let ?T = triangle-linear a bc
    have bounded unit-triangle by (simp add: finite-imp-bounded-convex-hull)
    then have lmeasurable-S: unit-triangle }\inlmeasurable
    using bounded-set-imp-lmeasurable measurable-convex by blast
    have}S=?A`|nit-triangle using S-def triangle-affine-img by blas
    then have measure lebesgue S= measure lebesgue (?A` unit-triangle) by blast
    moreover have
        measure lebesgue (?A` 'unit-triangle)
            = integral unit-triangle ( ( (x::real^2). abs (det (matrix ?T)))
            using measure-differentiable-image-eq-affine[OF lmeasurable-S assms(2)] by
auto
    ultimately show ?thesis by auto
qed
```

```
lemma triangle-affine-preserves-interior:
    assumes }A=\mathrm{ triangle-affine a b c and L=triangle-linear a b c
    assumes \neg collinear {a,b,c}
    shows A`}(\mathrm{ interior }S)=\mathrm{ interior (A`}S
proof-
    let ?trans = \lambdax::real^2. }x+
    have linear L by (simp add: assms(2) triangle-linear-def)
    moreover have surj L
        using triangle-linear-inj[lof a bll] linear-injective-imp-surjective[of L] assms
calculation
    by blast
    ultimately have L: interior (L'S)=L'(interior S)
    using interior-surjective-linear-image by blast
    moreover have interior(?trans'S) =?trans '(interior S)
        using interior-translation
        by (metis (no-types, lifting) add.commute image-cong)
    moreover have A=?trans \circ L using assms triangle-affine-def triangle-linear-def
by fastforce
    ultimately show ?thesis
    by (smt (verit, del-insts) add.commute image-comp image-cong interior-translation)
qed
lemma triangle-affine-preserves-affine-hull:
    assumes }A=\mathrm{ triangle-affine a b c
    assumes \neg collinear {a,b,c}
    shows A'(affine hull S)= affine hull (A'S)
proof
    let ?L = triangle-linear a b c
    have linear ?L by (simp add: triangle-linear-def)
    then have ?L'(affine hull S) = affine hull (?L'S)
        by (simp add: affine-hull-linear-image linear-linear)
    then show ?thesis
        unfolding assms(1) triangle-affine-def
    by (metis affine-hull-translation image-image triangle-linear-def)
qed
lemma triangle-measure-convex-hull-measure-path-inside-same:
    assumes p-triangle: p=make-triangle a b c
    assumes elem-triangle: elem-triangle a b c
    shows measure lebesgue (convex hull {a,b,c}) = measure lebesgue (path-inside
p)
    (is measure lebesgue ?S = measure lebesgue ?I)
proof-
    have bounded ?S by (simp add: finite-imp-bounded-convex-hull)
    then have measure lebesgue (frontier ?S) = measure lebesgue ?S - measure
lebesgue (interior ?S)
    using measure-frontier[of ?S] by auto
    then have ... = 0
```

by (metis convex-convex-hull negligible-convex-frontier negligible-imp-measure0)
moreover have ?I $=$ interior ? S
using assms triangle-is-convex
by (metis (no-types, lifting) make-triangle-def convex-polygon-inside-is-convex-hull-interior empty-set insert-absorb2 insert-commute list.simps(15) elem-triangle-def triangle-is-polygon)
ultimately show ?thesis by auto

qed

lemma on-triangle-path-image-cases:
assumes $p=$ make-triangle $a b c$
assumes $d \in$ path-image p
shows $d \in$ path-image (linepath $a b) \vee d \in$ path-image (linepath $b c) \vee d \in$ path-image (linepath ca)
using assms unfolding make-triangle-def
by (metis make-polygonal-path.simps(3) make-polygonal-path.simps(4) not-in-path-image-join)
lemma on-triangle-frontier-cases:
fixes $a b c$:: real^2
assumes \neg collinear $\{a, b, c\}$
assumes $d \in$ frontier (convex hull $\{a, b, c\}$)
shows $d \in$ path-image (linepath $a b) \vee d \in$ path-image (linepath $b c) \vee d \in$
path-image (linepath ca)
proof-
let $? p=$ make-triangle a $b c$
have polygon ?p by (simp add: assms(1) triangle-is-polygon)
then have path-image ? $p=$ frontier (convex hull $\{a, b, c\}$)
unfolding make-triangle-def
by (smt (verit, ccfv-threshold) assms(1) convex-polygon-frontier-is-path-image2
convex-polygon-is-convex-hull empty-set insert-absorb2 insert-commute list.simps(15)
make-triangle-def polygon-convex-iff sup-commute triangle-is-convex)
thus ?thesis using on-triangle-path-image-cases assms(2) by blast
qed
lemma triangle-path-image-subset-convex:
assumes $p=$ make-triangle a $b c$
shows path-image $p \subseteq$ convex hull $\{a, b, c\}$
using polygon-path-image-subset-convex polygon-at-least-3-vertices make-triangle-def
by (metis (no-types, lifting) assms empty-set insert-absorb2 insert-commute in-sert-iff length-pos-if-in-set list.simps(15))
lemma triangle-convex-hull:
assumes $p=$ make-triangle $a b c$ and \neg collinear $\{a, b, c\}$
shows convex hull $\{a, b, c\}=($ path-image $p) \cup($ path-inside $p)$
using triangle-is-convex[OF assms(1) assms(2)]
by (smt (z3) Un-commute assms(1) assms(2) closure-Un-frontier convex-closure convex-polygon-is-convex-hull insert-absorb2 insert-commute inside-outside-def in-side-outside-polygon list.set(1) list.set(2) make-triangle-def triangle-is-polygon)

```
end
theory Unit-Geometry
imports
    HOL-Analysis.Polytope
    Polygon-Jordan-Curve
    Triangle-Lemmas
```


begin

21 Measure Setup

```
lemma finite-convex-is-measurable:
    fixes p :: (real^2) set
    assumes p=convex hull l and finite l
    shows p\in sets lebesgue
proof-
    have polytope p
        unfolding polytope-def using assms by force
    hence compact p using polytope-imp-compact by auto
    thus ?thesis using lmeasurable-compact by blast
qed
lemma unit-square-lebesgue: unit-square \in sets lebesgue
    using finite-convex-is-measurable by auto
lemma unit-triangle-lebesgue: unit-triangle }\in\mathrm{ sets lebesgue
    using finite-convex-is-measurable by auto
lemma unit-triangle-lmeasurable: unit-triangle \in lmeasurable
    by (simp add: bounded-convex-hull bounded-set-imp-lmeasurable unit-triangle-lebesgue)
```


22 Unit Triangle

lemma unit-triangle-vts-not-collinear:
\neg collinear $\{($ vector $[0,0])::$ real^2, vector $[1,0]$, vector $[0,1]\}$
(is \neg collinear $\{? a, ? b, ? c\})$
proof(rule ccontr)
assume $\neg \neg$ collinear $\{? a, ? b, ? c\}$
then have collinear $\{? a, ? b, ? c\}$ by auto
then obtain $u::$ real 2 where $u: u \neq 0 \wedge$
$\left(\forall x \in\{? a, ? b, ? c\} . \forall y \in\{? a, ? b, ? c\} . \exists c . x-y=c *_{R} u\right)$
by (meson collinear)
then obtain $c 1 c 2$ where $c 1: ? b-? a=c 1 *_{R} u$ and $c 2: ? c-? a=c 2 *_{R} u$ by blast
then have $c 1 *_{R} u=? b$
by (metis (no-types, opaque-lifting) diff-zero scaleR-eq-0-iff vector-2(1) vec-tor-2(2) vector-minus-component vector-scaleR-component zero-neq-one)
moreover have $c 2 *_{R} u=$? c using $c 1$ c2 calculation by force
ultimately have $u \$ 1=0 \wedge u \$ 2=0$
by (metis scaleR-eq-0-iff vector-2(1) vector-2(2) vector-scaleR-component zero-neq-one)
then have $u=0$
by (metis (mono-tags, opaque-lifting) exhaust-2 vec-eq-iff zero-index)
moreover have $u \neq 0$ using u by auto
ultimately show False by auto
qed
lemma unit-triangle-convex:
assumes $p=($ make-polygonal-path $[$ vector $[0,0]$, vector $[1,0]$, vector $[0,1]$, vector $[0,0]]$)
(is $p=$ make-polygonal-path $[? O, ? e 1, ? e 2, ? O]$)
shows convex (path-inside p)
proof-
have \neg collinear $\{? O$, ?e1, ?e2\} by (simp add: unit-triangle-vts-not-collinear)
thus ?thesis using triangle-is-convex make-triangle-def assms by force
qed
lemma unit-triangle-char:
shows unit-triangle $=\{x .0 \leq x \$ 1 \wedge 0 \leq x \$ 2 \wedge x \$ 1+x \$ 2 \leq 1\}$
(is unit-triangle $=? S$)
proof-
have unit-triangle $\subseteq ? S$
proof (rule subsetI)
fix x assume $x \in$ unit-triangle
then obtain $a b c$ where

$$
\begin{aligned}
& x=a *_{R}(\text { vector }[0,0])+b *_{R}(\text { vector }[1,0])+c *_{R}(\text { vector }[0,1]) \\
& \wedge a \geq 0 \wedge b \geq 0 \wedge c \geq 0 \wedge a+b+c=1
\end{aligned}
$$

using convex-hull-3 by blast
thus $x \in\{x .0 \leq x \$ 1 \wedge 0 \leq x \$ 2 \wedge x \$ 1+x \$ 2 \leq 1\}$ by simp
qed
moreover have ? $S \subseteq$ unit-triangle
proof(rule subsetI)
fix x assume $x \in$? S
then obtain $b c$ where $b c: x \$ 1=b \wedge x \$ 2=c \wedge 0 \leq b \wedge 0 \leq c \wedge b+c \leq$ 1 by blast
moreover then obtain a where $a \geq 0 \wedge a+b+c=1$ using that[of $1-$ $b-c]$ by argo
moreover have $a *_{R}(($ vector $[0,0])::($ real $\mathcal{\sim}))=\operatorname{vector}[0,0]$ by $(\operatorname{simp}$ add: vec-scaleR-2)
moreover have $x=\left(a *_{R}\right.$ vector $\left.[0,0]\right)+\left(b *_{R}\right.$ vector $\left.[1,0]\right)+\left(c *_{R}\right.$ vector $[0,1])$
using segment-horizontal bc by fastforce
ultimately show $x \in$ unit-triangle using convex-hull-3 by blast qed
ultimately show?thesis by blast
qed
lemma unit-triangle-interior-char:
shows interior unit-triangle $=\{x .0<x \$ 1 \wedge 0<x \$ 2 \wedge x \$ 1+x \$ 2<$ 1\}
(is interior unit-triangle $=? S$)
proof-
have interior unit-triangle \subseteq ?S
proof(rule subsetI)
fix x assume $x \in$ interior unit-triangle
moreover have $D I M($ real^2 $)=2$ by simp
ultimately obtain $a b c$ where
$x=a *_{R}($ vector $[0,0])+b *_{R}($ vector $[1,0])+c *_{R}($ vector $[0,1])$

$$
\wedge a>0 \wedge b>0 \wedge c>0 \wedge a+b+c=1
$$

using interior-convex-hull-3-minimal[of (vector $[0,0])::($ real^2) (vector $[1$, $0])::\left(\right.$ real ${ }^{\text {® }}$) $)($ vector $[0,1])::($ real^2) $]$
using unit-triangle-vts-not-collinear
by auto
thus $x \in\{x .0<x \$ 1 \wedge 0<x \$ 2 \wedge x \$ 1+x \$ 2<1\}$ by simp
qed
moreover have ?S \subseteq interior unit-triangle
proof(rule subsetI)
fix x assume $x \in$? S
then obtain $b c$ where $b c: x \$ 1=b \wedge x \$ 2=c \wedge 0<b \wedge 0<c \wedge b+c<$ 1 by blast
moreover then obtain a where $a>0 \wedge a+b+c=1$ using that[of $1-$ $b-c]$ by argo
moreover have $a *_{R}(($ vector $[0,0])::($ real $\wedge 2))=\operatorname{vector}[0,0]$ by $(\operatorname{simp}$ add: vec-scaleR-2)
moreover have $x=\left(a *_{R}\right.$ vector $\left.[0,0]\right)+\left(b *_{R}\right.$ vector $\left.[1,0]\right)+\left(c *_{R}\right.$ vector $[0,1])$
using segment-horizontal bc by fastforce
moreover have $D I M($ real 2$)=2$ by simp
ultimately show $x \in$ interior unit-triangle
using interior-convex-hull-3-minimal[of (vector [0, 0])::(real^2) (vector [1, $0])::($ real^2) (vector $[0,1])::($ real^2)]
using unit-triangle-vts-not-collinear
by fast
qed
ultimately show ?thesis by blast
qed
lemma unit-triangle-is-elementary: elem-triangle (vector $[0,0])$ (vector $[1,0]$) (vector $[0,1]$)
(is elem-triangle ?a ?b ?c)
proof-
let ?UT $=$ unit-triangle
have \neg collinear $\{? a, ? b, ? c\}$ using unit-triangle-vts-not-collinear by auto
moreover have integral-vec ?a \wedge integral-vec ?b \wedge integral-vec ?c
by (simp add: integral-vec-def is-int-def)
moreover have $\{x \in ? U T$. integral-vec $x\}=\{? a, ? b, ? c\}$ (is ?UT-integral $=$? $a b c$)

```
    proof-
    have ?UT-integral \supseteq ?abc using calculation(2) hull-subset by fastforce
    moreover have ?UT-integral \subseteq?abc
    proof -
    have }\x.x\in\mathrm{ unit-triangle }\Longrightarrow\mathrm{ integral-vec }x\Longrightarrowx\not=\mathrm{ vector }[0,0]\Longrightarrowx\not
vector [1,0] \Longrightarrowx\not= vector [0, 1] \Longrightarrow False
    proof-
            fix }
            assume *: x \in unit-triangle
                    integral-vec x
                    x\not= vector [0,0]
                    x\not= vector [1,0]
                    x\not= vector [0, 1]
            then have x-inset: }x\in{x.0\leqx$1\wedge0\leqx$2\wedgex$1+x$2\leq1
                using unit-triangle-char by auto
            have x$1=1\Longrightarrowx$2 =0
                using *
                by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
            then have }x$1=1\Longrightarrowx$1+x$2>1\veex$2<
                    using *(2) unfolding integral-vec-def is-int-def
                    by linarith
            then have x1-not-1: x$1=1\Longrightarrow False
            using x-inset by simp
            have }x$1=0\Longrightarrowx$2\not=0\wedgex$2\not=
                    using *
                    by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
            then have }x$1=0\Longrightarrowx$1+x$2>1\veex$1+x$2<
                    using *(2) unfolding integral-vec-def is-int-def
                    by auto
            then have x1-not-0: x $ 1 = 0 C False
                    using x-inset by simp
            have x1-not-lt0: x $ 1<0\Longrightarrow False
                using x-inset by auto
            have x1-not-gt1: x $ 1>1\Longrightarrow False
                    using x-inset by auto
            then show False using x1-not-0 x1-not-1 x1-not-lt0 x1-not-gt1
                    using *(2) unfolding integral-vec-def is-int-def
                    by force
            qed
            then have }\existsx\in\mathrm{ ?UT-integral. }x\not\in\mathrm{ ?abc ^ integral-vec }x\Longrightarrow\mathrm{ False
                by blast
            then show ?thesis by blast
        qed
        ultimately show ?thesis by blast
qed
ultimately show ?thesis unfolding elem-triangle-def by auto
qed
lemma unit-triangles-same-area:
```

```
    measure lebesgue unit-triangle}\mp@subsup{}{}{\prime}=\mathrm{ measure lebesgue unit-triangle
proof-
    let ?a = (vector [1, 1])::real^2
    let ?b = (vector [0, 1])::real^2
    let ?c = (vector [1, 0])::real^2
    let ?A = triangle-affine ?a ?b ?c
    let ?L = triangle-linear ?a ?b ?c
    have collinear-second-component: \c::real^2. collinear {?a,?b,c}\Longrightarrowc$2=
1
    proof -
    fix p
    assume collinear {?a, ?b,p}
    then obtain }u\mathrm{ where u-prop: }\forallx\in{\mathrm{ vector [1, 1], vector [0, 1], p}.
                \forally\in{vector [1, 1], vector [0, 1], p}. \existsc. x-y=c** u
            unfolding collinear-def by auto
    then have c-ab:\existsc.?a - ?b = c**R}
        by blast
    then have u-2:u$2=0
            using vector-2
            by (metis cancel-comm-monoid-add-class.diff-cancel diff-zero scaleR-eq-0-iff
vector-minus-component vector-scaleR-component zero-neq-one)
    have u-1:u$1 = 0
            using c-ab vector-2
    by (smt (z3) scaleR-right-diff-distrib vector-minus-component vector-scaleR-component)
    then have ( }\exists\textrm{c}
            using u-prop by blast
    then show p$2 = 1
            using u-1 u-2
            by (metis eq-iff-diff-eq-0 scaleR-zero-right vector-2(2) vector-minus-component
vector-scaleR-component)
    qed
    have unit-triangle' = convex hull {?a, ?b,?c} by (simp add: insert-commute)
    then have ?A ' unit-triangle = unit-triangle' using triangle-affine-img[of ?a ?b
    ?c] by argo
    moreover have abs (det (matrix ?L)) = 1
    proof-
    have matrix ?L = transpose (vector [?b - ?a, ?c - ?a])
        unfolding triangle-linear-def
        by (simp add: triangle-mat-def)
    also have det ... = det (vector [?b - ?a, ?c - ?a]) using det-transpose by
blast
    also have ... = (?b - ?a)$1* (?c - ?a)$2 - (?c - ?a)$1*(?b - ?a)$2
                using det-2 by (metis mult.commute vector-2(1) vector-2(2))
    finally show ?thesis by simp
    qed
    moreover have }\neg\mathrm{ collinear {?a, ?b,?c} using collinear-second-component vec-
tor-2 by force
    ultimately have measure lebesgue unit-triangle' = integral unit-triangle ( }\lambda\mathrm{ ( }x\mathrm{ ::real^2).
1)
```

using triangle-measure-integral-of-det[of ?a ?b ?c]
by (smt (verit, ccfv-SIG) Henstock-Kurzweil-Integration.integral-cong insert-commute)
also have $\ldots=$ measure lebesgue unit-triangle
by (simp add: lmeasure-integral unit-triangle-lmeasurable)
finally show ?thesis .
qed

23 Unit Square

lemma convex-hull-4:
convex hull $\{a, b, c, d\}=\left\{u *_{R} a+v *_{R} b+w *_{R} c+t *_{R} d \mid u v w t .0 \leq u\right.$
$\wedge 0 \leq v \wedge 0 \leq w \wedge 0 \leq t \wedge u+v+w+t=1\}$
proof -
have fin: finite $\{a, b, c, d\}$ finite $\{b, c, d\}$ finite $\{c, d\}$ finite $\{d\}$
by auto
have $*: \bigwedge x y z w$::real. $x+y+z+w=1 \longleftrightarrow x=1-y-z-w$
by (auto simp: field-simps)
show ?thesis
unfolding convex-hull-finite[OF fin(1)]
unfolding convex-hull-finite-step[OF fin(2)]
unfolding convex-hull-finite-step[OF fin(3)]
unfolding convex-hull-finite-step[OF fin(4)]
unfolding *
apply auto
apply (smt (verit, ccfv-threshold) add.commute diff-add-cancel diff-diff-eq)
subgoal for $v w t$
apply (rule exI [where $x=1-v-w-t]$, simp)
apply (rule exI [where $x=v$], simp)
apply (rule exI [where $x=w$], simp)
apply (rule exI [where $x=\lambda x$. t], simp)
done
done
qed
lemma unit-square-characterization-helper:
fixes $a b$:: real
assumes $0 \leq a \wedge a \leq 1 \wedge 0 \leq b \wedge b \leq 1$ and

$$
a \leq b
$$

obtains $u v w t$ where
vector $[a, b]=u *_{R}(($ vector $[0,0])::$ real 2$)$
$+v *_{R}($ vector $[0,1])$
$+w *_{R}($ vector $[1,1])$
$+t *_{R}($ vector $[1,0])$
$\wedge 0 \leq u \wedge 0 \leq v \wedge 0 \leq w \wedge 0 \leq t \wedge u+v+w+t=1$
proof-
let $? a=($ vector $[0,0])::($ real^2 $)$
let $? b=($ vector $[0,1])::\left(\right.$ real ${ }^{\wedge}$ 2)
let ?c $=($ vector $[1,1])::($ real^2 $)$
let $? d=($ vector $[1,0])::($ real^2 $)$

let ? $w=a$

let ? $v=b-a$
let $? u=(1-? w-? v):$:real
let ? $t=0:$:real
let ? $T=\left\{u *_{R} ? a+v *_{R} ? b+w *_{R} ? c+t *_{R} ? d \mid u v w t .0 \leq u \wedge 0 \leq v\right.$ $\wedge 0 \leq w \wedge 0 \leq t \wedge u+v+w+t=1\}$
have ? $u *_{R}$? $a=0$
by (smt (verit, del-insts) exhaust-2 scaleR-zero-right vec-eq-iff vector-2(1) vec-tor-2(2) zero-index)
moreover have ? $w *_{R}$? $c=\operatorname{vector}[a, a]$
proof -
have $\left(? w *_{R} ? c\right) \$ 1=a$ by simp
moreover have $\left(? w *_{R}\right.$?c) $\$ 2=a$ by simp
ultimately show ?thesis by (smt (verit) vec-eq-iff exhaust-2 vector-2 (1) vec-tor-2(2))
qed
moreover have ? $v *_{R} ? b=$ vector $[0, b-a]$
proof-
have $\left(? v *_{R} ? b\right) \$ 1=0$ by fastforce
moreover have $\left(? v *_{R} ? b\right) \$ 2=b-a$ by simp
ultimately show ?thesis by (smt (verit) vec-eq-iff exhaust-2 vector-2(1) vec-tor-2(2))
qed
ultimately have ? $u *_{R} ? a+? v *_{R} ? b+? w *_{R} ? c+? t *_{R} ? d=$ vector $[0, b$ $-a]+$ vector $[a, a]$
by fastforce
also have $\ldots=$ vector $[a, b]$
by (smt (verit, del-insts) diff-add-cancel exhaust-2 vec-eq-iff vector-2(1) vec-tor-2(2) vector-add-component)
finally have vector $[a, b]=? u *_{R} ? a+? v *_{R} ? b+? w *_{R} ? c+? t *_{R} ? d$ by presburger
moreover have $0 \leq ? u \wedge ? u \leq 1 \wedge 0 \leq ? v \wedge ? v \leq 1$ using assms by simp moreover have $0 \leq ? w \wedge ? w \leq 1 \wedge 0 \leq ? t \wedge ? t \leq 1$ using assms by simp moreover have ? $u+? v+? w+? t=1$ by argo
ultimately show ?thesis using that [of ?u ?v ?w ?t] by blast
qed
lemma unit-square-characterization:
unit-square $=\{x .0 \leq x \$ 1 \wedge x \$ 1 \leq 1 \wedge 0 \leq x \$ 2 \wedge x \$ 2 \leq 1\}$ (is unit-square
$=? S)$
proof-
let $? a=($ vector $[0,0])::($ realへ2 $)$
let $? b=($ vector $[0,1])::($ real^2 $)$
let $? c=($ vector $[1,1])::($ realへ2 $)$
let $? d=($ vector $[1,0])::($ real^2 $)$
let $? T=\left\{u *_{R} ? a+v *_{R} ? b+w *_{R} ? c+t *_{R} ? d \mid u v w t .0 \leq u \wedge 0 \leq v\right.$
$\wedge 0 \leq w \wedge 0 \leq t \wedge u+v+w+t=1\}$
have unit-square $=$?T using convex-hull-4 by blast
moreover have ?T \subseteq ?S

```
proof(rule subsetI)
    fix \(x\)
    assume \(x \in ? T\)
    then obtain \(u v w t\) where \(x=u *_{R} ? a+v *_{R} ? b+w *_{R} ? c+t *_{R} ? d\) and
        \(0 \leq u\) and \(0 \leq v\) and \(0 \leq w\) and \(0 \leq t\) and \(u+v+w+t=1\) by auto
    moreover from this have
        \(x \$ 1=u * 0+v * 0+w * 1+t * 1 \wedge x \$ 2=u * 0+v * 1+w * 1+\)
\(t * 0\) by \(\operatorname{simp}\)
    ultimately have \(0 \leq x \$ 1 \wedge x \$ 1 \leq 1 \wedge 0 \leq x \$ 2 \wedge x \$ 2 \leq 1\) by linarith
    thus \(x \in\) ?S by blast
qed
moreover have ? \(S \subseteq\) ? \(T\)
proof(rule subsetI)
    fix \(x\) :: real^2
    assume \(*: x \in ? S\)
    \{ assume \(x \$ 1<x \$ 2\)
        then have \(x \$ 1 \leq x \$ 2\) by fastforce
        then obtain \(u v w t\) where vector \([x \$ 1, x \$ 2]=u *_{R} ? a+v *_{R} ? b+w *_{R}\)
\(? c+t *_{R} ? d \wedge 0 \leq u \wedge 0 \leq v \wedge 0 \leq w \wedge 0 \leq t \wedge u+v+w+t=1\)
            using * unit-square-characterization-helper[of \(x \$ 1 x \$ 2]\) by blast
        moreover have \(x=\) vector \([x \$ 1, x \$ 2]\)
            by (smt (verit, ccfv-threshold) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
        ultimately have \(x \in\) ?T by force
    \(\}\) moreover
    \{ assume \(x \$ 1 \geq x \$ 2\)
            then obtain \(u v w t\) where \(* *\) : vector \([x \$ 2, x \$ 1]=u *_{R} ? a+v *_{R} ? b+\)
\(w *_{R} ? c+t *_{R}\) ? \(d \wedge 0 \leq u \wedge 0 \leq v \wedge 0 \leq w \wedge 0 \leq t \wedge u+v+w+t=1\)
            using * unit-square-characterization-helper [of x\$2 x\$1] by blast
            have \(x 1: x \$ 1=v+w\) using \(* *\)
            by (smt (verit, ccfv-threshold) mult-cancel-left1 real-scaleR-def scaleR-zero-right
vector-2(2) vector-add-component vector-scaleR-component)
    have \(x 2: x \$ 2=w+t\) using \(* *\)
    by (smt (verit) mult-cancel-left1 real-scaleR-def scaleR-zero-right vector-2(1)
vector-add-component vector-scaleR-component)
    have \(\left(u *_{R} ? a+t *_{R} ? b+w *_{R} ? c+v *_{R}\right.\) ? \(\left.d\right) \$ 1=w+v\) by auto
    moreover have \(\left(u *_{R} ? a+t *_{R} ? b+w *_{R} ? c+v *_{R} ? d\right) \$ 2=t+w\) by
fastforce
    ultimately have \(u *_{R} ? a+t *_{R} ? b+w *_{R} ? c+v *_{R} ? d=\operatorname{vector}[w+\)
\(v, t+w]\)
            by (smt (verit) vec-eq-iff exhaust-2 vector-2(1) vector-2(2))
    also have \(\ldots=x\) using \(x 1 \times 2\)
                by (smt (verit, del-insts) add.commute exhaust-2 vec-eq-iff vector-2(1)
vector-2(2))
    ultimately have \(x \in ? T\)
            by (smt (verit, ccfv-SIG) ** mem-Collect-eq)
    \}
    ultimately show \(x \in\) ? \(T\) by argo
qed
ultimately show ?thesis by auto
```


qed

lemma e1e2-basis:

defines $e 1 \equiv($ vector $[1,0])::($ real^2) and

$$
e 2 \equiv(\text { vector }[0,1])::(\text { real^2 })
$$

shows e1 = axis $1(1::$ real $)$ and e1 $\in($ Basis::((real^2) set)) and $e 2=$ axis $2(1::$ real $)$ and $e 2 \in($ Basis: $:(($ real 2$)$ set $))$
proof-
have $(1::$ real $) \in$ Basis by simp
then have axis 1 (1::real) $\in(\bigcup i . \bigcup u \in($ Basis:: (real set) $)$. \{axis $i u\})$ by blast moreover show e1-axis: e1 = axis 1 ($1::$ real $)$
unfolding axis-def vector-def e1-def by auto
ultimately show e1-basis: e1 $\in($ Basis: : ((real^2) set $)$) by simp
have $(1::$ real $) \in$ Basis by simp
then have axis $1(1::$ real $) \in(\bigcup i . \bigcup u \in($ Basis:: (real set $))$. \{axis $i u\})$ by blast
moreover show e2-axis: e2 = axis 2 (1::real)
unfolding axis-def vector-def e2-def by auto
ultimately show e2-basis: e2 \in (Basis::((real^2) set)) by simp
qed
lemma unit-square-cbox: unit-square $=\operatorname{cbox}($ vector $[0,0])($ vector $[1,1])$
proof -
let ? $O=($ vector $[0,0])::($ real^2 $)$
let $? e 1=($ vector $[1,0])::($ real^2 $)$
let ? $e 2=($ vector $[0,1])::($ real^2 $)$
let $? I=($ vector $[1,1])::($ real 2$)$
let ?cbox $=\{x . \forall i \in$ Basis. ? $O \cdot i \leq x \cdot i \wedge x \cdot i \leq ? I \cdot i\}$
have unit-square $=\{x .0 \leq x \$ 1 \wedge x \$ 1 \leq 1 \wedge 0 \leq x \$ 2 \wedge x \$ 2 \leq 1\}$ (is unit-square $=$? S)
using unit-square-characterization by auto
moreover have ? $S \subseteq$?cbox
proof (rule subsetI)
fix x
assume $*: x \in$? S
have ? $O \cdot ? e 1 \leq x \cdot ? e 1 \wedge x \cdot ? e 1 \leq ? I \cdot ? e 1$
using e1e2-basis
by (smt (verit, del-insts) * cart-eq-inner-axis mem-Collect-eq vector-2(1))
moreover have ? $O \cdot ? e 2 \leq x \cdot ? e 2 \wedge x \cdot ? e 2 \leq ? I \cdot ? e 2$
using e1e2-basis
by (smt (verit, del-insts) * cart-eq-inner-axis mem-Collect-eq vector-2(2))
ultimately show $x \in$? cbox
by (smt (verit, best) * axis-index cart-eq-inner-axis exhaust-2 mem-Collect-eq vector-2(1) vector-2(2))
qed
moreover have ?cbox \subseteq ? S
proof (rule subsetI)
fix x :: real^2

```
    assume *: x f ?cbox
    then have 0\leq?e1 \cdot x using e1e2-basis
    by (metis (no-types, lifting) cart-eq-inner-axis inner-commute mem-Collect-eq
vector-2(1))
    moreover have ?e1 \cdot x \leq 1 using e1e2-basis
    by (smt (verit, ccfv-SIG)* inner-axis inner-commute mem-Collect-eq real-inner-1-right
vector-2(1))
    moreover have 0 \leq ? e2 • x
        by (metis (no-types, lifting) * cart-eq-inner-axis e1e2-basis(3) e1e2-basis(4)
inner-commute mem-Collect-eq vector-2(2))
    moreover have ? e2 • x \leq 1
        by (metis (no-types, lifting) * cart-eq-inner-axis e1e2-basis(3) e1e2-basis(4)
inner-commute mem-Collect-eq vector-2(2))
    moreover have ? e1 • x = x$1
        by (simp add: cart-eq-inner-axis e1e2-basis inner-commute)
    moreover have ? e2 • }x=x$
            by (simp add: cart-eq-inner-axis e1e2-basis inner-commute)
    ultimately show }x\in\mathrm{ ?S by force
    qed
    ultimately show ?thesis unfolding cbox-def by order
qed
lemma unit-square-area: measure lebesgue unit-square = 1
proof-
    let ?e1 = (vector [1,0])::(real^2)
    let ?e2 = (vector [0, 1])::(real^2)
    have unit-square = cbox (vector [0, 0]) (vector [1, 1]) (is unit-square = cbox
?O ?I)
    using unit-square-cbox by blast
    also have emeasure lborel ... = 1 using emeasure-lborel-cbox-eq
    proof
    have ?I · ?e1 = (1::real)
        by (simp add: e1e2-basis(1) inner-axis' inner-commute)
    moreover have ?I • ?e2 = (1::real) by (simp add: e1e2-basis(3) inner-axis'
inner-commute)
    ultimately have basis-dot: }\forallb\in\mathrm{ Basis. ?I • b = 1
            by (metis (full-types) axis-inverse e1e2-basis(1) e1e2-basis(3) exhaust-2)
    have ?O • ?e1 \leq ?I • ?e1 by (simp add: e1e2-basis(1) inner-axis)
    moreover have ?O • ?e2 \leq?I • ?e2 by (simp add: e1e2-basis(3) inner-axis)
    ultimately have }\forallb\inBasis. ?O | b < ?I . b
        by (smt (verit, ccfv-threshold) axis-index cart-eq-inner-axis exhaust-2 insert-iff
vector-2(1) vector-2(2))
    then have emeasure lborel (cbox ?O ?I) = (\prod b\inBasis. (?I - ?O) •b)
            using emeasure-lborel-cbox-eq by auto
    also have ... = (\prodb\inBasis. ?I P b)
            by (smt (verit, del-insts) axis-index diff-zero euclidean-all-zero-iff exhaust-2
inner-axis real-inner-1-right vector-2(1) vector-2(2))
    also have ... = (\prodb\inBasis. (1::real)) using basis-dot by fastforce
```

```
    finally show ?thesis by simp
    qed
    finally have emeasure lborel unit-square =1.
    moreover have emeasure lborel unit-square = measure lebesgue unit-square
    by (simp add: emeasure-eq-measure2 unit-square-cbox)
    ultimately show ?thesis by fastforce
qed
```


24 Unit Triangle Area is 1/2

```
lemma unit-triangle'-char:
    shows unit-triangle \({ }^{\prime}=\{x . x \$ 1 \leq 1 \wedge x \$ 2 \leq 1 \wedge x \$ 1+x \$ 2 \geq 1\}\)
proof -
    let \(? I=(\) vector \([1,1])::\) real^2
    let \(?\), e \(1=(\) vector \([1,0]):\) :real^2
    let \(?, e 2=(\) vector \([0,1])::\) real^2
    have unit-triangle' \(=\left\{u *_{R} ? I+v *_{R} ? e 1+w *_{R} ? e 2 \mid u v w .0 \leq u \wedge 0 \leq\right.\)
\(v \wedge 0 \leq w \wedge u+v+w=1\}\)
    using convex-hull-3[of ?I ?e1 ?e2] by auto
    moreover have \(\Lambda u v w . u *_{R} ? I+v *_{R} ? e 1+w *_{R}\) ? \(e 2=((v e c t o r[u+v, u\)
\(+w])::\) real^2)
    proof-
    fix \(u v w\) :: real
    let ? v-e1 \(=((\) vector \([v, 0])::\) real^2 \()\)
    let ? \(w-e 2=((\) vector \([0, w])::\) real^2) \()\)
    let \(? u-I=((\) vector \([u, u])::\) real^2 \()\)
    have \(u *_{R}\) ? I \(=\) ? u- \(I\) using vec-scaleR-2 by simp
    moreover have \(v *_{R}\) ? e1 = ? v-e1 using vec-scaleR-2 by simp
    moreover have \(w *_{R}\) ? \(e 2=\) ? w-e2 using vec-scaleR-2 by simp
    ultimately have \(1: u *_{R} ? I+v *_{R} ? e 1+w *_{R} ? e 2=? u-I+? v-e 1+? w-e 2\)
by argo
    moreover have (?u-I +?v-e1 + ?w-e2) \(\$ 1=u+v\)
        using vector-add-component by simp
    moreover have (? \(u-I+? v-e 1+? w-e 2) \$ 2=u+w\)
        using vector-add-component by simp
    ultimately have ? \(u-I+? v-e 1+\) ? w-e2 \(=((v e c t o r[u+v, u+w])::\) real 2 2 \()\)
        using vector-2 exhaust-2 by (smt (verit, del-insts) vec-eq-iff)
    thus \(u *_{R} ? I+v *_{R}\) ? e1 \(+w *_{R}\) ? e2 \(=((v e c t o r ~[u+v, u+w]):\) :real^2)
using 1 by argo
    qed
    ultimately have 1: unit-triangle \(=\{(\operatorname{vector}[u+v, u+w])::\) real^2 |uvw. 0
\(\leq u \wedge 0 \leq v \wedge 0 \leq w \wedge u+v+w=1\}\)
    (is unit-triangle \({ }^{\prime}=? S\) )
    by presburger
    have unit-triangle \({ }^{\prime}=\{(\) vector \([x, y])::\) real \(2 \mid x y .0 \leq x \wedge x \leq 1 \wedge 0 \leq y \wedge y\)
\(\leq 1 \wedge x+y \geq 1\}\)
    (is unit-triangle \(\left.{ }^{\prime}=? T\right)\)
```


proof-

have $\wedge x$ y::real. $\exists u v w .0 \leq u \wedge 0 \leq v \wedge 0 \leq w \wedge u+v+w=1 \wedge x=u$ $+v \wedge y=u+w$
$\Longrightarrow 0 \leq x \wedge x \leq 1 \wedge 0 \leq y \wedge y \leq 1 \wedge x+y \geq 1$ by force
moreover have $*: \wedge x y::$ real. $0 \leq x \wedge x \leq 1 \wedge 0 \leq y \wedge y \leq 1 \wedge x+y \geq 1$

$$
\Longrightarrow \exists u v w .0 \leq u \wedge 0 \leq v \wedge 0 \leq w \wedge u+v+w=1 \wedge x=u+v \wedge y
$$

$$
=u+w
$$

proof

fix x :: real
let ? $u=y+x-1$
let ? $v=1-y$
let ? $w=1-x$
assume $0 \leq x \wedge x \leq 1 \wedge 0 \leq y \wedge y \leq 1 \wedge 1 \leq x+y$
then have $0 \leq ? u \wedge 0 \leq ? v \wedge 0 \leq ? w \wedge ? u+? v+? w=1 \wedge x=? u+$ $? v \wedge y=? u+? w$ by argo
thus $\exists u v w .0 \leq u \wedge 0 \leq v \wedge 0 \leq w \wedge u+v+w=1 \wedge x=u+v \wedge y$ $=u+w$ by blast
qed
ultimately have $\forall x y$::real. $((\exists u v w .0 \leq u \wedge 0 \leq v \wedge 0 \leq w \wedge u+v+w$ $=1 \wedge x=u+v \wedge y=u+w)$

$$
\longleftrightarrow(0 \leq x \wedge x \leq 1 \wedge 0 \leq y \wedge y \leq 1 \wedge x+y \geq 1))
$$

by metis
then have $\forall z::$ real^2. $((\exists u v w .0 \leq u \wedge 0 \leq v \wedge 0 \leq w \wedge u+v+w=1$ $\wedge z \$ 1=u+v \wedge z \$ 2=u+w)$
$\longleftrightarrow(0 \leq z \$ 1 \wedge z \$ 1 \leq 1 \wedge 0 \leq z \$ 2 \wedge z \$ 2 \leq 1 \wedge z \$ 1+z \$ 2 \geq 1))$ by presburger
then have $\forall z::$ real^2. $((\exists u v w .0 \leq u \wedge 0 \leq v \wedge 0 \leq w \wedge u+v+w=1$ $\wedge z=$ vector $[u+v, u+w])$
$\longleftrightarrow(\exists x y .0 \leq x \wedge x \leq 1 \wedge 0 \leq y \wedge y \leq 1 \wedge x+y \geq 1 \wedge z=$ vector $[x, y]))$
by (smt (verit) *)
moreover have $\forall z::$ real $_2 . z \in ? S \longleftrightarrow(\exists u v w .0 \leq u \wedge 0 \leq v \wedge 0 \leq w \wedge$ $u+v+w=1 \wedge z=$ vector $[u+v, u+w])$
by blast
moreover have $\forall z::$ real $2 . . z \in ? T \longleftrightarrow(\exists x y .0 \leq x \wedge x \leq 1 \wedge 0 \leq y \wedge y$ $\leq 1 \wedge x+y \geq 1 \wedge z=$ vector $[x, y])$ by blast
ultimately have ? $S=? T$ by auto
then show ?thesis using 1 by auto
qed
moreover have $\{x .0 \leq x \$ 1 \wedge x \$ 1 \leq 1 \wedge 0 \leq x \$ 2 \wedge x \$ 2 \leq 1 \wedge x \$ 1+x \$ 2$ $\geq 1\} \subseteq ? T$
proof(rule subsetI)
fix $z::$ real^2
assume $*: z \in\{x .0 \leq x \$ 1 \wedge x \$ 1 \leq 1 \wedge 0 \leq x \$ 2 \wedge x \$ 2 \leq 1 \wedge x \$ 1+x \$ 2$ $\geq 1\}$
then obtain $x y$:: real where $z=$ vector $[x, y] \wedge 0 \leq x$ using forall-vector-2 by fastforce
moreover from this have $x \leq 1 \wedge 0 \leq y \wedge y \leq 1 \wedge x+y \geq 1$ using *

```
vector-2[of \(x y]\) by simp
    ultimately show \(z \in\) ? \(T\) by blast
    qed
    moreover have \(? T \subseteq\{x .0 \leq x \$ 1 \wedge x \$ 1 \leq 1 \wedge 0 \leq x \$ 2 \wedge x \$ 2 \leq 1 \wedge x \$ 1+\)
\(x \$ 2 \geq 1\}\)
            using vector-2 by force
    ultimately show ?thesis
    by (smt (verit, best) Collect-cong subset-antisym)
qed
lemma unit-square-split-diag:
    shows unit-square \(=\) unit-triangle \(\cup\) unit-triangle \({ }^{\prime}\)
proof-
    let ? \(S=(\{\) vector \([0,0]\), vector \([0,1]\), vector \([1,0]\})::((\) real^2) set \()\)
    let ? \(S^{\prime}=(\{\) vector \([1,1]\), vector \([0,1]\), vector \([1,0]\})::((\) real 2\()\) set \()\)
    have unit-triangle \(\cup\) unit-triangle \(\subseteq\) convex hull \(\left(? S \cup\right.\) ? \(S^{\prime}\) ) by (simp add:
hull-mono)
    moreover have convex hull \(\left(? S \cup ? S^{\prime}\right) \subseteq\) unit-triangle \(\cup\) unit-triangle'
            by (smt (z3) Un-commute Un-left-commute Un-upper1 in-mono insert-is-Un
mem-Collect-eq subsetI sup.idem unit-square-characterization unit-triangle-char unit-triangle'-char)
    moreover have unit-square \(=\) convex hull \(\left(? S \cup ? S^{\prime}\right)\) by (simp add: insert-commute)
    ultimately show ?thesis by blast
qed
lemma unit-triangle-INT-unit-triangle'-measure:
    measure lebesgue (unit-triangle \(\cap\) unit-triangle') \(=0\)
proof -
    let ? \(e 1=(\) vector \([1,0])::\) real^2
    let \(? e 2=(\) vector \([0,1])::\) real^2
    have unit-triangle \(\cap\) unit-triangle \({ }^{\prime}=\{x::(\) real 2\() .0 \leq x \$ 1 \wedge x \$ 1 \leq 1 \wedge 0\)
\(\leq x \$ 2 \wedge x \$ 2 \leq 1 \wedge x \$ 1+x \$ 2=1\}\)
            (is unit-triangle \(\cap\) unit-triangle' \(=\) ?S)
            using unit-triangle-char unit-triangle'-char
            by auto
    also have \(\ldots=\) path-image (linepath ?e2 ?e1)
            (is \(\ldots=\) ? \(p\) )
    proof-
            have ? \(S \subseteq ? p\)
            proof (rule subsetI)
            fix \(x\) :: real^2
            assume \(x \in\) ? \(S\)
            then have \(*: 0 \leq 1-x \$ 2 \wedge x \$ 2=1-x \$ 1 \wedge 0 \leq x \$ 2 \wedge x \$ 2 \leq 1\) by
simp
            have \(x \$ 2 *_{R} ? e 2+x \$ 1 *_{R} ? e 1=\operatorname{vector}[x \$ 1, x \$ 2]\)
            proof-
                have \(\left(x \$ 1 *_{R}\right.\) ? \(\left.e 1\right) \$ 1=x \$ 1\) by simp
                moreover have \(\left(x \$ 1 *_{R}\right.\) ? e 1\() \$ 2=0\) by auto
                moreover have \(\left(x \$ 2 *_{R}\right.\) ? \(\left.e 2\right) \$ 1=0\) by auto
```

moreover have $\left(x \$ 2 *_{R}\right.$? $\left.e 2\right) \$ 2=x \$ 2$ by fastforce
ultimately have $x \$ 1 *_{R}$? e1 $=$ vector $[x \$ 1,0] \wedge x \$ 2 *_{R} ? e 2=$ vector $[0$, $x \$ 2]$
by (smt (verit, ccfv-SIG) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
then have $x \$ 1 *_{R}$? e1 $+x \$ 2 *_{R}$? e $2=$ vector $[x \$ 1,0]+\operatorname{vector}[0, x \$ 2]$ by auto
moreover from this have $\left(x \$ 1 *_{R} ? e 1+x \$ 2 *_{R} ? e 2\right) \$ 1=x \$ 1$ by auto
moreover from calculation have $\left(x \$ 1 *_{R} ? e 1+x \$ 2 *_{R} ? e 2\right) \$ 2=x \$ 2$
by auto
ultimately show ?thesis
by (smt (verit) add.commute exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
qed
also have $\ldots=x$
by (smt (verit, best) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
finally have $x \$ 2 *_{R}$? $e 2+x \$ 1 *_{R}$? $e 1=x$.
then have $x=\left(\lambda x .(1-x) *_{R} ? e 2+x *_{R} ? e 1\right)(x \$ 1) \wedge x \$ 1 \in\{0 . .1\}$
using * by auto
thus $x \in ? p$ unfolding path-image-def linepath-def by fast
qed
moreover have ? $p \subseteq$?S
proof (rule subsetI)
fix x
assume $*: x \in ? p$
then obtain t where $*: x=(1-t) *_{R} ? e 2+t *_{R} ? e 1 \wedge t \in\{0 . .1\}$
unfolding path-image-def linepath-def by blast
moreover from this have $x \$ 1=t$ by simp
moreover from calculation have $x \$ 2=1-t$ by simp
moreover from calculation have $0 \leq t \wedge t \leq 1 \wedge 0 \leq 1-t \wedge 1-t \leq 1$
by simp
ultimately show $x \in ? S$ by simp
qed
ultimately show ?thesis by blast
qed
also have measure lebesgue $? p=0$ using linepath-has-measure-0 by blast finally show? thesis.
qed
lemma unit-triangle-area: measure lebesgue unit-triangle $=1 / 2$
proof-
let ? $\mu=$ measure lebesgue
have $? \mu$ unit-square $=? \mu$ unit-triangle $+? \mu$ unit-triangle ${ }^{\prime}$
using unit-square-split-diag unit-triangle-INT-unit-triangle'-measure
by (simp add: finite-imp-bounded-convex-hull measurable-convex measure-Un3)
thus ?thesis using unit-triangles-same-area unit-square-area by simp
qed
end
theory Elementary-Triangle-Area
imports

```
Unit-Geometry
```


begin

25 Area of Elementary Triangle is 1/2

```
lemma nonint-in-square-img-IMP-nonint-triangle-img:
    assumes \(A=\) triangle-affine a \(b c\)
    assumes \(x \in\) unit-square
    assumes \(\neg\) integral-vec \(x\)
    assumes integral-vec ( \(A x\) )
    assumes elem-triangle a bc
    obtains \(x^{\prime}\) where \(x^{\prime} \in\) unit-triangle \(\wedge \neg\) integral-vec \(x^{\prime} \wedge\) integral-vec \(\left(A x^{\prime}\right)\)
proof -
    \{ assume \(x \in\) unit-triangle
    then have ?thesis using assms that by blast
    \} moreover
    \{ assume \(*: x \notin\) unit-triangle
        then have \(x \notin\{x .0 \leq x \$ 1 \wedge 0 \leq x \$ 2 \wedge x \$ 1+x \$ 2 \leq 1\}\)
            using unit-triangle-char by argo
    then have \(x 2 x 1-g e-1: x \$ 1+x \$ 2>1\) using assms(2) unit-square-characterization
by force
        let \(? x^{\prime} 1=1-x \$ 1\)
        let \({ }^{\prime} x^{\prime} 2=1-x \$ 2\)
        let \(? x^{\prime}=\) vector \(\left[? x^{\prime} 1, ? x^{\prime 2}\right.\) ? \(]\)
        have ? \(x^{\prime} 1+\) ? \(x^{\prime} 2 \leq 1\) using \(x 2 x 1-g e-1\) by argo
        then have ? \(x^{\prime} \in\) unit-triangle
            using unit-triangle-char assms(2) unit-square-characterization by auto
    moreover have \(\neg\) integral-vec ? \(x^{\prime}\)
    proof -
            have \(\neg\) is-int \((x \$ 1) \vee \neg\) is-int ( \(x \$ 2\) ) using assms(3) unfolding inte-
gral-vec-def by blast
        then have \(\neg\) is-int \(\left(? x^{\prime} 1\right) \vee \neg\) is-int \(\left(? x^{\prime 2} 2\right)\)
            using is-int-minus
        by (metis diff-add-cancel is-int-def minus-diff-eq of-int-1 uminus-add-conv-diff)
        thus ?thesis unfolding integral-vec-def by auto
    qed
    moreover have integral-vec \(\left(A ? x^{\prime}\right)\)
    proof -
        let \(? L=\) triangle-linear \(a b c\)
        have \(A\)-comp: \(A=(\lambda x . x+a) \circ\) ? \(L\) by (simp add: affine-comp-linear-trans
\(\operatorname{assms}(1)\) )
        then have Lx-int: integral-vec (?L \(x\) )
            by (smt (verit, del-insts) assms(4) assms(5) comp-apply diff-add-cancel
diff-minus-eq-add integral-vec-minus integral-vec-sum elem-triangle-def)
    have linear ?L by (simp add: triangle-linear-def)
    moreover have ? \(L ? x^{\prime}=? L\) (vector \(\left.[1,1]-x\right)\)
            by (simp add: mat-vec-mult-2 triangle-linear-def)
```

ultimately have $? L ? x^{\prime}=? L$ (vector $\left.[1,1]\right)-? L x$ by (simp add: linear-diff)
moreover have integral-vec (?L (vector [1, 1]))
proof-
have ? $L($ vector $[1,1])=$ vector $[(b-a) \$ 1+(c-a) \$ 1,(b-a) \$ 2+(c$ $-a) \$ 2]$
unfolding triangle-linear-def triangle-mat-def transpose-def using mat-vec-mult-2 by simp
also have $\ldots=(b-a)+(c-a)$
by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-2(1) vector-2(2) vector-add-component)
finally show ?thesis using assms(5) unfolding elem-triangle-def
by (metis ab-group-add-class.ab-diff-conv-add-uminus integral-vec-minus integral-vec-sum)
qed
ultimately have integral-vec (?L ? x^{\prime})
using Lx-int integral-vec-sum integral-vec-minus by force
then show ?thesis using A-comp assms(5) integral-vec-sum elem-triangle-def
by auto
qed
ultimately have ?thesis using that by blast
\}
ultimately show ?thesis by blast
qed
lemma elem-triangle-integral-mat-bij:
fixes $a b c$:: realへ2
assumes elem-triangle a bc
defines $L \equiv$ triangle-mat abc
shows integral-mat-bij L
proof-
let ? $A=$ triangle-affine $a b c$
have $L: L=$ transpose (vector $[b-a, c-a]$) (is $L=$ transpose (vector $[? w 1$, ?w2]))
unfolding triangle-mat-def L-def by auto
have integral-vec ?w1 ^ integral-vec ?w2
by (metis ab-group-add-class.ab-diff-conv-add-uminus assms(1) integral-vec-minus integral-vec-sum elem-triangle-def)
then have L-int-entries: $\forall i \in\{1,2\} . \forall j \in\{1,2\}$. is-int $(L \$ i \$ j)$
by (simp add: L-def triangle-mat-def Finite-Cartesian-Product.transpose-def integral-vec-def)
have L-integral: integral-mat L unfolding integral-mat-def
proof (rule allI)
fix $v::$ real^2
show integral-vec $v \longrightarrow$ integral-vec $(L * v v)$
proof (rule impI)
assume v-int-assm: integral-vec v

$$
\text { let } ? L v=L * v v
$$

have ? $L v \$ 1=L \$ 1 \$ 1 * v \$ 1+L \$ 1 \$ 2 * v \$ 2$ by (simp add: mat-vec-mult-2) then have Lv1-int: is-int (?Lv\$1)
using L-int-entries v-int-assm is-int-sum is-int-mult by (simp add: inte-gral-vec-def)
have ? $L v \$ 2=L \$ 2 \$ 1 * v \$ 1+L \$ 2 \$ 2 * v \$ 2$ by (simp add: mat-vec-mult-2)
then have Lv2-int: is-int (?Lv\$2)
using L-int-entries v-int-assm is-int-sum is-int-mult by (simp add: inte-gral-vec-def)

```
        show integral-vec ( }L*vv
            by (simp add: Lv1-int Lv2-int integral-vec-def)
    qed
qed
```

moreover have integral-mat-surj L
unfolding integral-mat-surj-def
proof (rule allI)
fix $v::$ real ${ }^{\text {~2 }}$
show integral-vec $v \longrightarrow(\exists$. integral-vec $w \wedge L * v w=v)$
proof (rule impI)
assume $*$: integral-vec v
obtain $w:$ real~2 where $w: L * v w=v$
using triangle-linear-inj assms(1) full-rank-injective full-rank-surjective
unfolding elem-triangle-def L-def triangle-linear-def surj-def
by (smt (verit, best) iso-tuple-UNIV-I)
moreover have integral-vec w
proof (rule ccontr)
assume $* *$: \neg integral-vec w
let ? $w 1=w \$ 1$
let ? $w 2=w \$ 2$
let ? $w 1^{\prime}=w \$ 1-($ floor $(w \$ 1))$
let ? $w 2^{\prime}=w \$ 2-($ floor $(w \$ 2))$
let $? w^{\prime}=\left(\right.$ vector $\left[? w 1^{\prime}\right.$, ? w2 $\left.]\right)::($ real^2 $)$
have $? w 1^{\prime} \in\{0 . .1\} \wedge ? w 2^{\prime} \in\{0 . .1\}$
by (metis add.commute add.right-neutral atLeastAtMost-iff floor-correct
floor-frac frac-def of-int-0 real-of-int-floor-add-one-ge)
then have ? $w^{\prime} \in$ unit-square using unit-square-characterization by auto
moreover have \neg integral-vec ? w^{\prime}
by (metis $* *$ eq-iff-diff-eq-0 floor-frac floor-of-int frac-def integral-vec-def
is-int-def of-int-0 vector-2(1) vector-2(2))
moreover have integral-vec (?A ?w')
proof-
have ? $w^{\prime}=$ vector $[w \$ 1, w \$ 2]-$ vector $[$ floor $(w \$ 1)$, floor $(w \$ 2)]$
(is ? $w^{\prime}=$ vector $[w \$ 1, w \$ 2]-$?floor $\left.-w\right)$
by (smt (verit, del-insts) exhaust-2 list.simps(8) list.simps(9) vec-eq-iff
vector-2(1) vector-2(2) vector-minus-component)
then have ? $w^{\prime}=w-$ vector $[$ floor $(w \$ 1)$, floor $(w \$ 2)]$
by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-2(1) vector-2(2) vector-minus-component)
moreover have ?A ? $w^{\prime}=\left(L * v ? w^{\prime}\right)+a$ unfolding triangle-affine-def L-def by simp
ultimately have ?A ? $w^{\prime}=v-(L * v$? floor- $w)+a$
by (simp add: matrix-vector-mult-diff-distrib w)
moreover have integral-vec $v \wedge$ integral-vec $a \wedge$ integral-vec ($L * v$? floor-w)
using $* \operatorname{assms}(1)$ L-integral integral-mat-integral-vec integral-vec-2
unfolding elem-triangle-def
by blast
ultimately show ?thesis
by (metis ab-group-add-class.ab-diff-conv-add-uminus integral-vec-minus integral-vec-sum)
qed
ultimately obtain $w^{\prime \prime}$ where $w^{\prime \prime}: w^{\prime \prime} \in$ unit-triangle $\wedge \neg$ integral-vec $w^{\prime \prime}$ \wedge integral-vec (?A w')
 assms(1) by blast
moreover have ? $A w^{\prime \prime} \notin\{a, b, c\}$
proof-
have inj ?A using assms(1) elem-triangle-def triangle-affine-inj by auto
moreover have ?A (vector $[0,0])=a$
by (metis (no-types, opaque-lifting) add.commute add-0 mat-vec-mult-2 ma-trix-vector-mult-0-right real-scaleR-def scaleR-zero-right triangle-affine-def zero-index)
moreover have ?A (vector $[1,0])=b$
unfolding triangle-affine-def triangle-mat-def transpose-def
by (metis (no-types) Finite-Cartesian-Product.transpose-def add.commute column-transpose diff-add-cancel e1e2-basis(1) matrix-vector-mult-basis row-def vec-lambda-eta vector-2(1))
moreover have ?A (vector $[0,1])=c$
proof-
have $(? A($ vector $[0,1])) \$ 1=c \$ 1$
by (metis L-def L add.commute column-transpose diff-add-cancel e1e2-basis(3) matrix-vector-mult-basis row-def triangle-affine-def vec-lambda-eta vec-tor-2(2))
moreover have $(? A($ vector $[0,1])) \$ 2=c \$ 2$
by (metis add.commute column-transpose diff-add-cancel e1e2-basis(3) matrix-vector-mult-basis row-def triangle-affine-def triangle-mat-def vec-lambda-eta vector-2(2))
ultimately show ?thesis by (smt (verit, ccfv-SIG) exhaust-2 vec-eq-iff)
qed
moreover have $w^{\prime \prime} \neq$ vector $[0,0] \wedge w^{\prime \prime} \neq$ vector $[0,1] \wedge w^{\prime \prime} \neq$ vector $[1,0]$
using $w^{\prime \prime}$ elem-triangle-def unit-triangle-is-elementary by blast
ultimately show ?thesis by (metis inj-eq insertE singletonD)
qed
moreover have ?A' unit-triangle $=$ convex hull $\{a, b, c\}$
using triangle-affine-img by blast
ultimately show False using assms unfolding elem-triangle-def by blast

```
        qed
        ultimately show }\exists\textrm{w}\mathrm{ . integral-vec }w\wedgeL*vw=v\mathrm{ by auto
        qed
    qed
    ultimately show ?thesis unfolding integral-mat-bij-def by auto
qed
lemma elem-triangle-measure-integral-of-1:
    fixes ab c :: real^2
    defines }S\equiv\mathrm{ convex hull {a,b,c}
    assumes elem-triangle a b c
    shows measure lebesgue S = integral unit-triangle ( }\lambda\mathrm{ (x::real^2). 1)
proof -
    let ?T = triangle-linear a b c
    have integral-mat-bij (matrix ?T) (is integral-mat-bij ?T-mat)
        by (simp add: assms(2) elem-triangle-integral-mat-bij triangle-linear-def)
    then have abs (det ?T-mat) = 1
        using integral-mat-bij-det-pm1 by fastforce
    thus ?thesis
        using S-def assms(2) triangle-measure-integral-of-det elem-triangle-def by force
qed
lemma elem-triangle-area-is-half:
    fixes abc:: real^2
    assumes elem-triangle a b c
    defines S \equivconvex hull {a,b,c}
    shows measure lebesgue S=1/2 (is ?S-area = 1/2)
proof
    have }\neg\mathrm{ collinear {a,b,c} using elem-triangle-def assms(1) by blast
    then have measure lebesgue S= integral unit-triangle ( }\lambdax::real^2.1
    using S-def assms(1) elem-triangle-measure-integral-of-1 by blast
    also have ... = measure lebesgue unit-triangle
    using unit-triangle-is-elementary elem-triangle-measure-integral-of-1 unit-triangle-area
    by metis
    finally show ?thesis by (simp add: unit-triangle-area)
qed
end
theory Pick
imports
    Polygon-Splitting
    Elementary-Triangle-Area
begin
```


26 Setup

26.1 Integral Points Cardinality Properties

lemma bounded-finite:
fixes $A:$ (realへ2) set
assumes bounded A
shows finite $\{x::($ real 2$)$. integral-vec $x \wedge x \in A\}$ (is finite ? A-int) proof-
obtain M where $M: \forall x \in A$. norm $x \leq M$ using assms bounded-def by (meson bounded-iff)
let ?M-bounded-ints $=\{n . n \in\{-M . . M\} \wedge$ is-int $n\}$
let ?M-bounded-int-vecs $=\{v::($ realへ2). $v \$ 1 \in$? M-bounded-ints $\wedge v \$ 2 \in$?M-bounded-ints $\}$
have $\forall x::($ real 2$)$. norm $(x \$ 1) \leq$ norm $x \wedge(x \$ 2) \leq$ norm x
by (smt (verit, ccfv-threshold) Finite-Cartesian-Product.norm-nth-le real-norm-def)
then have $\forall x \in$? A-int. norm $(x \$ 1) \leq M \wedge$ norm $(x \$ 2) \leq M$
using M dual-order.trans Finite-Cartesian-Product.norm-nth-le by blast
then have $\forall x \in$?A-int. $x \$ 1 \in$? M-bounded-ints $\wedge x \$ 2 \in$? M-bounded-ints using integral-vec-def intervalE by auto
then have $\forall x \in$? A-int. $x \in$?M-bounded-int-vecs by blast
moreover have finite? M-bounded-int-vecs

proof-

obtain $S::$ int set where $S: S=\{n . \exists m \in$?M-bounded-ints. $n=m\} \wedge(\forall n$ $\in S$. norm $n \leq M$)
by (simp add: abs-le-iff)
then have finite-S: finite S
by (metis infinite-int-iff-unbounded le-floor-iff linorder-not-less norm-of-int of-int-abs)

have finite-M-bounded-ints: finite ?M-bounded-ints

 proof-let ?f $=\lambda n::$ real. THE m::int. $n=m$
have $\forall n \in$? M-bounded-ints. \exists ! $m:: i n t . ~ n=m$ using is-int-def by force
moreover have inj-on ?f ?M-bounded-ints using inj-on-def is-int-def by
force
moreover have ?f ' ?M-bounded-ints $\subseteq S$ using calculation S subsetI by auto
ultimately show ?thesis using finite-imageD finite-S by (simp add: inj-on-finite)
qed
show ?thesis
proof -
let ?f $=\lambda x::($ real^2). (THE $m::$ int. $m=x \$ 1$, THE $n::$ int. $n=x \$ 2)$
have inj-on ?f ?M-bounded-int-vecs
unfolding inj-on-def
proof clarify
fix $x y$: real ${ }^{\sim}$ 2
assume $x 1$-int: is-int ($x \$ 1$)
assume $x 2$-int: is-int ($x \$ 2$)
assume y1-int: is-int ($y \$ 1$)
assume y2-int: is-int (y\$2)
assume $x 1 y 1$-int-eq: (THE m. real-of-int $m=x \$ 1)=(T H E m$. real-of-int
$m=y \$ 1)$
assume $x 2 y 2$-int-eq: (THE n. real-of-int $n=x \$ 2)=($ THE n. real-of-int n $=y \$ 2)$
have $\exists!m . m=x \$ 1$
by blast
moreover have $\exists!n . n=y \$ 1$
by blast
moreover have (THE m. real-of-int $m=x \$ 1)=($ THE m. real-of-int $m=$ $y \$ 1)$
using x1y1-int-eq by auto
ultimately have $x 1 y 1: x \$ 1=y \$ 1$
using $x 1$-int $y 1$-int is-int-def by auto
have $\exists!m . m=x \$ 2$
by blast
moreover have \exists !n. $n=y \$ 2$
by blast
moreover have (THE m. real-of-int $m=x \$ 2)=($ THE m. real-of-int $m=$
using x2y2-int-eq by auto
ultimately have $x 2 y 2: x \$ 2=y \$ 2$
using $x 2$-int $y 2$-int is-int-def by auto
show $x=y$ using $x 1 y 1$ x2y2
by (metis (no-types, lifting) exhaust-2 vec-eq-iff)
qed
moreover have ?f ' ?M-bounded-int-vecs $\subseteq S \times S$
proof (rule subsetI)
fix $m n$
assume $m n \in$?f ' ?M-bounded-int-vecs
then obtain v where v :
$v \in$?M-bounded-int-vecs \wedge ? $f v=m n \wedge(\exists!m . v \$ 1=m) \wedge(\exists!n . v \$ 2=$
n)
using is-int-def by auto
let $? m=f s t m n$
let $? n=s n d m n$
have $? m=($ THE $m::$ int. $m=v \$ 1)$ using v
by (meson $f s t I$)
moreover have \exists ! m::int. $m=v \$ 1$ using v is-int-def
by (metis (no-types, lifting) mem-Collect-eq of-int-eq-iff)
ultimately have m-in-S: ? $m \in S$
by (metis (mono-tags, lifting) S mem-Collect-eq the $I^{\prime} v$)
have $?^{n}=($ THE $n::$ int. $n=v \$ 2)$ using v
by (meson sndI)
moreover have \exists ! n::int. $n=v \$ 2$ using v is-int-def
by (metis (no-types, lifting) mem-Collect-eq of-int-eq-iff)

```
            ultimately have n-in-S: ? }n\in
                    by (metis (mono-tags, lifting) S mem-Collect-eq theI' v)
            show mn\inS\timesS using m-in-S n-in-Sv by auto
        qed
        ultimately show ?thesis
        by (meson finite-S finite-SigmaI finite-imageD finite-subset)
        qed
    qed
    ultimately show ?thesis
        by (smt (verit) finite-subset subsetI)
qed
lemma finite-path-image:
    assumes polygon p
    shows finite {x. integral-vec }x\wedgex\in\mathrm{ path-image p}
    using bounded-finite inside-outside-polygon
    unfolding inside-outside-def
    by (meson assms bounded-simple-path-image polygon-def)
lemma finite-path-inside:
    assumes polygon p
    shows finite {x. integral-vec }x\wedgex\in\mathrm{ path-inside p}
    using bounded-finite inside-outside-polygon
    unfolding inside-outside-def
    using assms by presburger
lemma bounded-finite-inside:
    fixes B:: (real^2) set
    assumes simple-path p
    shows bounded (path-inside p)
    using assms
    by (simp add: bounded-inside bounded-simple-path-image path-inside-def)
lemma finite-integral-points-path-image:
    assumes simple-path p
    shows finite {x. integral-vec }x\wedgex\in\mathrm{ path-image p}
    using bounded-finite bounded-simple-path-image assms by blast
lemma finite-integral-points-path-inside:
    assumes simple-path p
    shows finite {x. integral-vec }x\wedgex\in\mathrm{ path-inside p}
    using bounded-finite bounded-finite-inside assms by blast
```


27 Pick splitting

lemma pick-split-path-union-main:
assumes is-split: is-polygon-split-path vts ij cutvts
assumes vts $1=($ take $i v t s)$

```
    assumes vts2 \(=(\) take \((j-i-1)(\operatorname{drop}(\) Suc \(i) v t s))\)
    assumes vts3 \(=\operatorname{drop}(j-i)(\operatorname{drop}(S u c i) v t s)\)
    assumes \(x=v t s!i\)
    assumes \(y=v t s!j\)
    assumes cutpath \(=\) make-polygonal-path \((x \#\) cutvts @ \([y])\)
    assumes \(p: p=\) make-polygonal-path (vts@[vts!0]) (is \(p=\) make-polygonal-path
? \(p\)-vts)
    assumes \(p 1: p 1=\) make-polygonal-path \((x \#(v t s 2\) @ \([y]\) @ (rev cutvts) @ \([x])\) )
(is \(p 1=\) make-polygonal-path ?p1-vts)
    assumes p2: p2 = make-polygonal-path (vts1 @ ([x] @ cutvts @ \([y]\) ) @ vts3 @
[vts!0]) (is p2 = make-polygonal-path ?p2-vts)
    assumes I1: I1 \(=\) card \(\{x\). integral-vec \(x \wedge x \in\) path-inside \(p 1\}\)
    assumes \(B 1: B 1=\) card \(\{x\). integral-vec \(x \wedge x \in\) path-image \(p 1\}\)
    assumes I2: \(I 2=\operatorname{card}\{x\). integral-vec \(x \wedge x \in\) path-inside \(p 2\}\)
    assumes \(B 2: B 2=\) card \(\{x\). integral-vec \(x \wedge x \in\) path-image \(p 2\}\)
    assumes \(I: I=\operatorname{card}\{x\). integral-vec \(x \wedge x \in\) path-inside \(p\}\)
    assumes \(B: B=\operatorname{card}\{x\). integral-vec \(x \wedge x \in\) path-image \(p\}\)
    assumes all-integral-vts: all-integral vts
    shows measure lebesgue (path-inside p1) \(=I 1+B 1 / 2-1\)
        \(\Longrightarrow\) measure lebesgue (path-inside p2) \(=I 2+B 2 / 2-1\)
        \(\Longrightarrow\) measure lebesgue (path-inside \(p\) ) \(=I+B / 2-1\)
    measure lebesgue (path-inside \(p\) ) \(=I+B / 2-1\)
    \(\Longrightarrow\) measure lebesgue (path-inside p2) \(=\) I2 + B2/2 -1
    \(\Longrightarrow\) measure lebesgue (path-inside p1) \(=I 1+B 1 / 2-1\)
    measure lebesgue (path-inside \(p\) ) \(=I+B / 2-1\)
        \(\Longrightarrow\) measure lebesgue (path-inside p1) \(=I 1+B 1 / 2-1\)
        \(\Longrightarrow\) measure lebesgue (path-inside p2) \(=\) I2 + B2/2 -1
proof -
    let \(? p\)-im \(=\{x\). integral-vec \(x \wedge x \in\) path-image \(p\}\)
    let ? \(p 1\)-im \(=\{x\). integral-vec \(x \wedge x \in\) path-image \(p 1\}\)
    let ? \(p 2\)-im \(=\{x\). integral-vec \(x \wedge x \in\) path-image \(p 2\}\)
    let ? \(p\)-int \(=\{x\). integral-vec \(x \wedge x \in\) path-inside \(p\}\)
    let ? \(p 1\)-int \(=\{x\). integral-vec \(x \wedge x \in\) path-inside \(p 1\}\)
    let ?p2-int \(=\{x\). integral-vec \(x \wedge x \in\) path-inside \(p 2\}\)
    have vts: vts = vts1 @ \((x \#(v t s 2\) @ \(y \# v t s 3))\)
    using assms split-up-a-list-into-3-parts
    using is-polygon-split-path-def by blast
    have polygon \(p\)
    using finite-path-image assms(1) p unfolding is-polygon-split-path-def
    by (smt (verit, best))
    then have \(B\)-finite: finite ? \(p\)-im
    using finite-path-image by auto
    have polygon-p1: polygon p1
    using finite-path-image assms(1) p1 unfolding is-polygon-split-path-def
    by (smt (z3) \(\operatorname{assms}(3) \operatorname{assms}(5) \operatorname{assms}(6))\)
    then have B1-finite: finite ?p1-im
    using finite-path-image by auto
    have polygon-p2: polygon p2
```

using finite-path-image assms(1) p1 unfolding is-polygon-split-path-def by (smt (z3) assms(2) assms(4) assms(5) assms(6) p2)
then have B2-finite: finite ? p 2-im
using finite-path-image by auto
have vts-distinct: distinct vts
using simple-polygonal-path-vts-distinct
by (metis 〈polygon p 〉 butlast-snoc p polygon-def)
then have x-neq-y: $x \neq y$
by (metis assms(1) assms(5) assms(6) index-first index-nth-id is-polygon-split-path-def)
then have card-2: card $\{x, y\}=2$
by auto
have polygon-split-props: (is-polygon-cut-path (vts@[vts!0]) cutpath \wedge
polygon $p \wedge$ polygon $p 1 \wedge$ polygon p $2 \wedge$
path-inside $p 1 \cap$ path-inside $p 2=\{ \} \wedge$
path-inside $p 1 \cup$ path-inside p2 $\cup($ path-image cutpath $-\{x, y\})=$ path-inside
p
$\wedge(($ path-image p1) $-($ path-image cutpath $)) \cap(($ path-image p2 $)-($ path-image cutpath $)=\{ \}$
\wedge path-image $p=(($ path-image $p 1)-($ path-image cutpath $)) \cup(($ path-image $p 2)$
$-($ path-image cutpath $)) \cup\{x, y\})$
using assms
by (meson is-polygon-split-path-def)
have measure-sum: measure lebesgue (path-inside p) $=$ measure lebesgue (path-inside $p 1)+$ measure lebesgue (path-inside p2)
using polygon-split-path-add-measure assms
by (smt (verit, del-insts))
let ? $y x$-int $=\{k$. integral-vec $k \wedge k \in$ path-image (make-polygonal-path (y\#rev cutvts@ $[x]))\}$
let ? $x y$-int $=\{k$. integral-vec $k \wedge k \in$ path-image cutpath $\}$
have $y x$-int-is-xy-int: ? $y x$-int $=$? $x y$-int
using rev-vts-path-image[of x \# cutvts @ [y]] assms(7) by simp
have $x \# v t s 2$ @ $[y]$ @ rev cutvts @ $[x]=(x \# v t s 2)$ @ $([y]$ @ rev cutvts @ $[x])$ @ []
by simp
then have sublist ([y]@rev cutvts@[x]) ?p1-vts
unfolding sublist-def by blast
then have subset1:
? $x y$-int \subseteq ? p 1 -im
using sublist-integral-subset-integral-on-path p1 yx-int-is-xy-int
by force
have len-gteq: length $(x \#$ cutvts $@[y]) \geq 2$
by auto
have sublist-p2: sublist (x \# cutvts @ [y]) ?p2-vts
unfolding sublist-def by auto
then have subset2:
? $x y$-int \subseteq ? $p 2-i m$
using sublist-integral-subset-integral-on-path[OF len-gteq p2 sublist-p2] $\operatorname{assms}(7)$ by blast
let ?S1 $=$? p1-im - ? $x y$-int
let ?S2 $=$? p2-im - ? $x y$-int
have disjoint-1: ?S1 \cap ?S2 $=\{ \}$
using polygon-split-props by blast
have integral-xy: integral-vec $x \wedge$ integral-vec y
using all-integral-vts vts
using all-integral-def by auto
have nonempty: y \# rev cutvts @ $[x] \neq[]$
by simp
have trivial: make-polygonal-path (y \# rev cutvts @ $[x]$) = make-polygonal-path
(y \# rev cutvts @ $[x]$)
by auto
have pathstart (make-polygonal-path $(y \#$ rev cutvts $@[x]))=y \wedge$ pathfinish (make-polygonal-path
$(y \#$ rev cutvts $@[x]))=x$
using polygon-pathstart[OF nonempty trivial] polygon-pathfinish[OF nonempty trivial] by (metis last.simps last-conv-nth nonempty nth-Cons-0 snoc-eq-iff-butlast)
then have x-in-y-in: $x \in$ path-image (make-polygonal-path ($y \#$ rev cutvts@ $[x]$))
$\wedge y \in$ path-image (make-polygonal-path ($y \#$ rev cutvts $@[x]$))
unfolding pathstart-def pathfinish-def path-image-def
by (metis <pathstart (make-polygonal-path (y \# rev cutvts @ $[x])$) $=y \wedge$ pathfinish (make-polygonal-path $(y \#$ rev cutvts @ $[x])$) $=x\rangle$ path-image-def pathfin-ish-in-path-image pathstart-in-path-image)
then have $\{x, y\} \subseteq$? $y x$-int
using integral-xy
by simp
then have disjoint-2: $(? S 1 \cup$?S2 $) \cap\{x, y\}=\{ \}$
by (simp add: yx-int-is-xy-int)
have path-image $p=$ path-image p1 - path-image cutpath \cup
(path-image p2 - path-image cutpath) \cup $\{x, y\}$
using polygon-split-props by auto
then have set-union: ? $p-i m=(? S 1 \cup ? S 2) \cup\{x, y\}$
using polygon-split-props integral-xy by auto
then have add-card: $B=$ card (?p1-im - ?xy-int $)+$ card $(? p 2-i m-$?xy-int $)$
$+\operatorname{card}\{x, y\}$
using B-finite using disjoint-1 disjoint-2
by (metis (no-types, lifting) B card-Un-disjoint finite-Un)
have sub1: card (?p1-im - ?xy-int) $=B 1-$ card ? $x y-i n t$
using B1-finite B1 subset1
by (meson card-Diff-subset finite-subset)
have sub2: card (?p2-im - ?xy-int) $=$ B2 - card ? $x y$-int
using B2-finite B2 subset2
by (meson card-Diff-subset finite-subset)
have $B: B=(B 1-$ card ? $x y$-int $)+(B 2-$ card ? $x y$-int $)+\operatorname{card}\{x, y\}$
using add-card sub1 sub2
by auto
then have B-sum- $h: B=B 1+B 2-2 * c a r d$? $x y$-int +2
using card-2
by (smt (verit, best) B1 B1-finite B2 B2-finite Nat.add-diff-assoc add.commute card-mono diff-diff-left mult-2 subset1 subset2)
then have $B 1+B 2=B+2 *$ card ? $x y$-int -2
by (metis (no-types, lifting) B1 B1-finite B2 B2-finite add-mono-thms-linordered-semiring(1) card-mono diff-add-inverse2 le-add2 mult-2 ordered-cancel-comm-monoid-diff-class.add-diff-assoc2 subset1 subset2)
then have B-sum: $(B 1+B 2) / 2=B / 2+$ card ? xy-int -1
by (smt (verit) B-sum-h field-sum-of-halves le-add2 mult-2 nat-1-add-1 of-nat-1 of-nat-add of-nat-diff ordered-cancel-comm-monoid-diff-class.add-diff-assoc2)
have casting-h: $\bigwedge A B::$ nat. $A \geq B \Longrightarrow \operatorname{real}(A-B)=\operatorname{real} A-\operatorname{real} B$
by auto
have path-inside p1 \cup path-inside p2 \cup (path-image cutpath $-\{x, y\})=$ path-inside p
using polygon-split-props by auto
then have interior-union: ?p-int $=(? x y$-int $-\{x, y\}) \cup$?p1-int \cup ?p2-int
by blast
have finite-inside-p: finite ?p-int
using bounded-finite inside-outside-polygon
by (simp add: polygon-split-props inside-outside-def)
have finite-pathimage: finite (?xy-int $-\{x, y\}$)
using B1-finite finite-subset subset1 by auto
have finite-inside-p1: finite ?p1-int using polygon-split-props bounded-finite inside-outside-polygon using finite-Un finite-inside-p interior-union by auto
have finite-inside-p2: finite ?p2-int using polygon-split-props bounded-finite inside-outside-polygon using finite-Un finite-inside-p interior-union by auto
have path-image-inside-disjoint1: $(? x y$-int $-\{x, y\}) \cap(? p 1$-int $)=\{ \}$
using subset1 inside-outside-polygon[OF polygon-p1]
unfolding inside-outside-def by auto
have path-image-inside-disjoint2: $(? x y$-int $-\{x, y\}) \cap(? p 2-i n t)=\{ \}$
using subset2 inside-outside-polygon[OF polygon-p2]
unfolding inside-outside-def by auto
have $($? $x y$-int $-\{x, y\}) \cap(? p 1$-int $\cup ? p 2$-int $)=\{ \}$
using subset2 path-image-inside-disjoint1 path-image-inside-disjoint2
by auto
then have I-is: $I=$ card $(? x y-$ int $-\{x, y\})+$
card (?p1-int \cup ?p2-int)
using interior-union I finite-inside-p1 finite-inside-p2
by (metis (no-types, lifting) card-Un-disjoint finite-Un finite-pathimage sup-assoc)
have disjoint-4: ?p1-int \cap ?p2-int $=\{ \}$
using polygon-split-props by auto
then have $I=\operatorname{card}(? x y$-int $-\{x, y\})+$ $I 1+I 2$
using I-is finite-inside-p1 finite-inside-p2
by (simp add: I1 I2 card-Un-disjoint)
have interior-subset: $(? x y$-int $-\{x, y\}) \subseteq$?p-int
using interior-union by auto
have x - y-subset: $\{x, y\} \subseteq$? xy-int
using x-in- y-in rev-vts-path-image $[$ of $x \#$ cutvts @ [y]] assms(7)
integral-xy
using yx-int-is-xy-int by blast
have $\operatorname{real}(\operatorname{card}(? x y$-int $-\{x, y\}))=$
real ($\operatorname{card}($? $x y$-int $))-\operatorname{real}(\operatorname{card}\{x, y\})$
using x - y-subset
by (metis (no-types, lifting) B2-finite card-Diff-subset card-mono finite-subset of-nat-diff subset2)
then have card-diff: real (card $(? x y$-int $-\{x, y\}))=$
real (card (?xy-int)) - 2
using card-2 by auto
then have $I=I 1+I 2+(\operatorname{card}(? x y-i n t-\{x, y\}))$
using I I1 I2 interior-union finite-inside-p1 finite-inside-p2
by (simp add: I-is disjoint-4 card-Un-disjoint)
then have $I=I 1+I 2+\operatorname{real}(\operatorname{card}(? x y-i n t))-2$
using card-diff
by linarith
then have I-sum: $I 1+I 2=I-$ real $($ card ? $x y$-int $)+2$
by fastforce
\{assume pick1: measure lebesgue (path-inside p1) $=I 1+B 1 / 2-1$
assume pick2: measure lebesgue (path-inside p2) $=I 2+B 2 / 2-1$
have measure lebesgue (path-inside $p)=I 1+I 2+(B 1+B 2) / 2-2$
using pick1 pick2 measure-sum by auto
then have measure lebesgue (path-inside $p)=I-$ real $($ card ? $x y$-int $)+2+$
$B / 2+$ card? $x y$-int - $1-2$
using I-sum B-sum
by linarith
then have measure lebesgue (path-inside p) $=I+B / 2-1$ by auto
\}
then show measure lebesgue (path-inside p1) $=I 1+B 1 / 2-1 \Longrightarrow$ measure lebesgue $($ path-inside $p 2)=I 2+B 2 / 2-1 \Longrightarrow$ measure lebesgue $($ path-inside p) $=I+B / 2-1$
by blast
\{assume pick1: measure lebesgue (path-inside p) $=I+B / 2-1$
assume pick2: measure lebesgue (path-inside p2) $=$ I2 + B2/2 -1
then have real $I+$ real $B / 2-1=($ measure lebesgue $($ path-inside $p 1))+$
I2 + B2/2 - 1
using measure-sum pick1 pick2 by auto
then have measure lebesgue (path-inside $p)=I-\operatorname{real}(\operatorname{card}$? $x y$-int $)+2+$
$B / 2+$ card ？$x y-i n t-1-2$
using I－sum B－sum pick1
by linarith
then have measure lebesgue（path－inside p1）$=I 1+B 1 / 2-1$
using B－sum 〈real $I=$ real $(I 1+I 2)+$ real（card $\{k$ ．integral－vec $k \wedge k \in$ path－image cutpath\}) - 2〉 field-sum-of-halves measure-sum of-nat-add pick1 pick2 by auto
\}
then show measure lebesgue（path－inside p ）$=I+B / 2-1 \Longrightarrow$ measure lebesgue（path－inside p2）$=I 2+$ B2／2 $-1 \Longrightarrow$ measure lebesgue（path－inside p1） $=I 1+B 1 / 2-1$
by blast
\｛assume pick1：measure lebesgue（path－inside p ）$=I+B / 2-1$
assume pick2：measure lebesgue（path－inside p1）$=I 1+B 1 / 2-1$
then have real $I+$ real $B / 2-1=($ measure lebesgue $($ path－inside p2）$)+$ $I 1+B 1 / 2-1$
using measure－sum pick1 pick2 by auto
then have measure lebesgue（path－inside $p)=I-$ real $($ card ？$x y$－int $)+2+$ B／2＋card ？$x y$－int－ 1 － 2
using I－sum B－sum pick1
by linarith
then have measure lebesgue（path－inside p2）$=I 2+$ B2／2 -1
using B－sum \langle real $I=$ real $(I 1+I 2)+$ real（card $\{k$ ．integral－vec $k \wedge k \in$ path－image cutpath\}) - 2〉 field-sum-of-halves measure-sum of-nat-add
using pick2 by auto
\}
then show measure lebesgue（path－inside $p)=I+B / 2-1 \Longrightarrow$ measure lebesgue $($ path－inside p1）$=I 1+B 1 / 2-1 \Longrightarrow$ measure lebesgue $($ path－inside $p 2)=I 2+$ B2／2－1
by blast
qed
lemma pick－split－union：
assumes is－split：is－polygon－split vts $i j$
assumes vts $1=($ take $i v t s)$
assumes vts2 $=($ take $(j-i-1)(\operatorname{drop}(S u c i) v t s))$
assumes vts3 $=\operatorname{drop}(j-i)(\operatorname{drop}($ Suc $i) v t s)$
assumes $x=v t s!i$
assumes $y=v t s!j$
assumes $p: p=$ make－polygonal－path（vts＠［vts！0］）（is $p=$ make－polygonal－path
？p－vts）
assumes $p 1: p 1=$ make－polygonal－path $(x \#(v t s 2 @[y, x]))($ is $p 1=$ make－polygonal－path
？$p 1-v t s$ ）
assumes p2：p2＝make－polygonal－path（vts1＠$[x, y]$＠vts3＠［vts！0］）（is p2 $=$ make－polygonal－path ？p2－vts）
assumes I1：$I 1=\operatorname{card}\{x$ ．integral－vec $x \wedge x \in$ path－inside $p 1\}$
assumes $B 1: B 1=\operatorname{card}\{x$ ．integral－vec $x \wedge x \in$ path－image $p 1\}$
assumes pick1：measure lebesgue（path－inside p1）$=I 1+B 1 / 2-1$

```
assumes I2: I2 \(=\) card \(\{x\). integral-vec \(x \wedge x \in\) path-inside p2\}
assumes \(B 2: B 2=\) card \(\{x\). integral-vec \(x \wedge x \in\) path-image \(p 2\}\)
assumes pick2: measure lebesgue (path-inside p2) \(=\) I2 + B2/2 -1
assumes \(I: I=\operatorname{card}\{x\). integral-vec \(x \wedge x \in\) path-inside \(p\}\)
assumes \(B: B=\operatorname{card}\{x\). integral-vec \(x \wedge x \in\) path-image \(p\}\)
assumes all-integral-vts: all-integral vts
shows measure lebesgue (path-inside \(p\) ) \(=I+B / 2-1\)
    measure lebesgue (path-inside \(p\) ) \(=\) measure lebesgue (path-inside p1) +
measure lebesgue (path-inside p2)
proof -
    let ? \(p\)-im \(=\{x\). integral-vec \(x \wedge x \in\) path-image \(p\}\)
    let ? \(p 1\)-im \(=\{x\). integral-vec \(x \wedge x \in\) path-image \(p 1\}\)
    let ? \(p 2\)-im \(=\{x\). integral-vec \(x \wedge x \in\) path-image \(p 2\}\)
    let ? \(p\)-int \(=\{x\). integral-vec \(x \wedge x \in\) path-inside \(p\}\)
    let ? p1-int \(=\{x\). integral-vec \(x \wedge x \in\) path-inside \(p 1\}\)
    let ?p2-int \(=\{x\). integral-vec \(x \wedge x \in\) path-inside \(p 2\}\)
    have vts: vts = vts1 @ (x \# (vts2 @ y \# vts3))
    using assms split-up-a-list-into-3-parts
    using is-polygon-split-def by blast
have polygon \(p\)
    using finite-path-image assms(1) p unfolding is-polygon-split-def
    by (smt (verit, best))
then have \(B\)-finite: finite ?p-im
    using finite-path-image by auto
have polygon-p1: polygon p1
    using finite-path-image assms(1) p1 unfolding is-polygon-split-def
    by (smt (z3) assms(3) assms(5) assms(6))
then have B1-finite: finite ?p1-im
    using finite-path-image by auto
    have polygon-p2: polygon p2
        using finite-path-image assms(1) p1 unfolding is-polygon-split-def
        by (smt (z3) assms(2) assms(4) assms(5) assms(6) p2)
    then have B2-finite: finite ?p2-im
    using finite-path-image by auto
    have vts-distinct: distinct vts
    using simple-polygonal-path-vts-distinct
    by (metis 〈polygon p〉 butlast-snoc p polygon-def)
then have \(x\)-neq-y: \(x \neq y\)
    by (metis assms(1) assms(5) assms (6) index-first index-nth-id is-polygon-split-def)
then have card-2: card \(\{x, y\}=2\)
    by auto
have polygon-split-props: is-polygon-cut ? \(p\)-vts \(x y \wedge\)
    polygon \(p \wedge\) polygon p1 \(\wedge\) polygon p2 \(\wedge\)
        path-inside \(p 1 \cap\) path-inside \(p 2=\{ \} \wedge\)
        path-inside p1 \(\cup\) path-inside p2 \(\cup(\) path-image (linepath \(x y)-\{x, y\})\)
            \(=\) path-inside \(p \wedge((\) path-image p1) \(-(\) path-image \((\) linepath \(x y))) \cap\)
\(((\) path-image p2 \()-(\) path-image \((\) linepath \(x y)))=\{ \}\)
```

\wedge path-image $p=(($ path-image $p 1)-($ path-image $($ linepath $x y))) \cup(($ path-image p2) - (path-image $($ linepath $x y))) \cup\{x, y\}$
using assms
by (meson is-polygon-split-def)
have measure lebesgue (path-inside p) = measure lebesgue (path-inside p1) + measure lebesgue (path-inside p2)
using polygon-split-add-measure assms
by (smt (verit, del-insts))
then have measure-sum: measure lebesgue (path-inside $p)=I 1+I 2+(B 1+B 2) / 2$ -2
using pick1 pick2 by auto
let ? $y x$-int $=\{k$. integral-vec $k \wedge k \in$ path-image (linepath $y x)\}$
let ? $x y$-int $=\{k$. integral-vec $k \wedge k \in$ path-image (linepath $x y$) $\}$
have $y x$-int-is-xy-int: ? $y x$-int $=$? $x y$-int
by (simp add: closed-segment-commute)
have sublist $[y, x]$?p1-vts by (simp add: sublist-Cons-right)
then have subset1:
? xy-int \subseteq ? p1-im
using sublist-pair-integral-subset-integral-on-path p1 yx-int-is-xy-int by blast
have subset?:
? $x y$-int \subseteq ? $p 2$-im
using sublist-pair-integral-subset-integral-on-path p2 by blast
let ?S1 $=$?p1-im - ? $x y$-int
let ?S2 $=$? p2-im - ? $x y$-int
have disjoint-1: ?S1 \cap ?S2 $=\{ \}$
using polygon-split-props by blast
have integral-xy: integral-vec $x \wedge$ integral-vec y
using all-integral-vts vts
using all-integral-def by auto
then have $\{x, y\} \subseteq$? $y x$-int
by simp
then have disjoint-2: $(? S 1 \cup$?S2 $) \cap\{x, y\}=\{ \}$
by simp
have path-image $p=$
path-image p1 - path-image (linepath $x y) \cup$
(path-image p2 - path-image (linepath $x y)) \cup$
$\{x, y\}$
using polygon-split-props by auto
then have set-union: ? p-im $=(? S 1 \cup ? S 2) \cup\{x, y\}$
using polygon-split-props integral-xy by auto
then have add-card: $B=$ card (?p1-im - ? $x y$-int $)+\operatorname{card}(? p 2-i m-$?xy-int $)$
$+\operatorname{card}\{x, y\}$
using B-finite using disjoint-1 disjoint-2
by (metis (no-types, lifting) B card-Un-disjoint finite-Un)
have sub1: card (?p1-im - ?xy-int) $=$ B1 - card ? xy-int
using B1-finite B1 subset1
by (meson card-Diff-subset finite-subset)
have sub2: card (?p2-im - ?xy-int) $=$ B2 - card ? $x y$-int
using B2-finite B2 subset2
by (meson card-Diff-subset finite-subset)
have $B: B=(B 1-$ card ? $x y$-int $)+(B 2-$ card ? $x y$-int $)+\operatorname{card}\{x, y\}$
using add-card sub1 sub2
by auto
then have B-sum- $h: B=B 1+B 2-2 *$ card ? $x y$-int +2
using card-2
by (smt (verit, best) B1 B1-finite B2 B2-finite Nat.add-diff-assoc add.commute
card-mono diff-diff-left mult-2 subset1 subset2)
then have $B 1+B 2=B+2 *$ card ? $x y$-int -2
by (metis (no-types, lifting) B1 B1-finite B2 B2-finite add-mono-thms-linordered-semiring(1) card-mono diff-add-inverse2 le-add2 mult-2 ordered-cancel-comm-monoid-diff-class.add-diff-assoc2 subset1 subset2)
then have B-sum: $(B 1+B 2) / 2=B / 2+$ card ? $x y$-int -1
by (smt (verit) B-sum-h field-sum-of-halves le-add2 mult-2 nat-1-add-1 of-nat-1 of-nat-add of-nat-diff ordered-cancel-comm-monoid-diff-class.add-diff-assoc2)
have casting-h: $\bigwedge A B::$ nat. $A \geq B \Longrightarrow$ real $(A-B)=$ real $A-$ real B
by auto
have path-inside p1 \cup path-inside p2 $\cup($ path-image $($ linepath $x y)-\{x, y\})=$ path-inside p
using polygon-split-props by auto
then have interior-union: ? p-int $=(? x y$-int $-\{x, y\}) \cup$?p1-int \cup ?p2-int by blast
have finite-inside-p: finite ?p-int
using bounded-finite inside-outside-polygon
by (simp add: polygon-split-props inside-outside-def)
have finite-pathimage: finite (?xy-int $-\{x, y\}$)
using B1-finite finite-subset subset1 by auto
have finite-inside-p1: finite ?p1-int
using polygon-split-props bounded-finite inside-outside-polygon
using finite-Un finite-inside-p interior-union by auto
have finite-inside-p2: finite ?p2-int
using polygon-split-props bounded-finite inside-outside-polygon
using finite-Un finite-inside-p interior-union by auto
have path-image-inside-disjoint1: $(? x y$-int $-\{x, y\}) \cap(? p 1$-int $)=\{ \}$
using subset1 inside-outside-polygon[OF polygon-p1]
unfolding inside-outside-def by auto
have path-image-inside-disjoint2: $(? x y$-int $-\{x, y\}) \cap(? p 2-i n t)=\{ \}$
using subset2 inside-outside-polygon[OF polygon-p2]
unfolding inside-outside-def by auto
have $($? $x y$-int $-\{x, y\}) \cap(? p 1$-int $\cup ? p 2$-int $)=\{ \}$
using subset2 path-image-inside-disjoint1 path-image-inside-disjoint2
by auto
then have I-is: $I=$ card $(? x y$-int $-\{x, y\})+$ card (?p1-int \cup ?p2-int)
using interior-union I finite-inside-p1 finite-inside-p2
by (metis (no-types, lifting) card-Un-disjoint finite-Un finite-pathimage sup-assoc)
have disjoint-4: ?p1-int \cap ?p2-int $=\{ \}$
using polygon-split-props by auto
then have $I=\operatorname{card}(? x y$-int $-\{x, y\})+$ $I 1+I 2$
using I-is finite-inside-p1 finite-inside-p2 by (simp add: I1 I2 card-Un-disjoint)
have interior-subset: $(? x y$-int $-\{x, y\}) \subseteq ? p$-int
using interior-union by auto
have x - y-subset: $\{x, y\} \subseteq$? $x y$-int
using local.set-union by auto
have $\operatorname{real}(\operatorname{card}(? x y$-int $-\{x, y\}))=$
real (card (?xy-int $))-$ real (card $\{x, y\})$
using x - y-subset
by (metis (no-types, lifting) B2-finite card-Diff-subset card-mono finite-subset of-nat-diff subset2)
then have card-diff: real $($ card $($? $x y$-int $-\{x, y\}))=$
real (card (?xy-int)) - 2
using card-2 by auto
then have $I=I 1+I 2+(\operatorname{card}(? x y$-int $-\{x, y\}))$
using I I1 I2 interior-union finite-inside-p1 finite-inside-p2
by (simp add: I-is disjoint-4 card-Un-disjoint)
then have $I=I 1+I 2+\operatorname{real}(\operatorname{card}(? x y$-int $))-2$
using card-diff
by linarith
then have I-sum: $I 1+I 2=I-$ real $($ card ? $x y$-int $)+2$
by fastforce
have measure lebesgue (path-inside $p)=I-$ real $($ card ? $x y$-int $)+2+$ $B / 2+$ card ? $x y$-int - 1 - 2
using measure-sum I-sum B-sum
by linarith
then show measure lebesgue (path-inside p) $=I+B / 2-1$ by auto
show measure lebesgue (path-inside p) $=$ measure lebesgue (path-inside $p 1)+$ measure lebesgue (path-inside p2)
using 〈Sigma-Algebra.measure lebesgue (path-inside p) =Sigma-Algebra.measure lebesgue (path-inside p1) + Sigma-Algebra.measure lebesgue (path-inside p2)> by blast
qed
lemma pick-split-path-union:
assumes is-split: is-polygon-split-path vts i j cutvts
assumes vts $1=($ take i vts $)$
assumes vts2 $=($ take $(j-i-1)($ drop (Suc i) vts $))$
assumes vts3 $=\operatorname{drop}(j-i)(d r o p(S u c i) v t s)$
assumes $x=v t s!i$
assumes $y=v t s!j$
assumes cutpath $=$ make-polygonal-path $(x \#$ cutvts @ $[y])$
assumes $p: p=$ make-polygonal-path (vts@[vts!0]) (is $p=$ make-polygonal-path ? p-vts)
assumes p1: p1 = make-polygonal-path (x\#(vts2 @ [y] @ (rev cutvts) @ $[x])$) (is $p 1=$ make-polygonal-path ?p1-vts)
assumes p2: p2 = make-polygonal-path (vts1 @ ([x] @ cutvts @ [y]) @ vts3 @
[vts!0]) (is p2 = make-polygonal-path ?p2-vts)
assumes I1: I1 $=$ card $\{x$. integral-vec $x \wedge x \in$ path-inside $p 1\}$
assumes $B 1: B 1=$ card $\{x$. integral-vec $x \wedge x \in$ path-image $p 1\}$
assumes pick1: measure lebesgue (path-inside p1) $=I 1+B 1 / 2-1$
assumes I2: I2 $=$ card $\{x$. integral-vec $x \wedge x \in$ path-inside $p 2\}$
assumes B2: B2 = card $\{x$. integral-vec $x \wedge x \in$ path-image $p 2\}$
assumes pick2: measure lebesgue (path-inside p2) $=$ I2 + B2/2 -1
assumes $I: I=\operatorname{card}\{x$. integral-vec $x \wedge x \in$ path-inside $p\}$
assumes $B: B=\operatorname{card}\{x$. integral-vec $x \wedge x \in$ path-image $p\}$
assumes all-integral-vts: all-integral vts
shows measure lebesgue (path-inside $p)=I+B / 2-1$
using pick-split-path-union-main pick1 pick2(1) assms by blast
lemma pick-triangle-basic-split:
assumes $p=$ make-triangle $a b c$ and distinct $[a, b, c]$ and \neg collinear $\{a, b$, c\} and
d-prop: $d \in$ path-image (linepath $a b) \wedge d \notin\{a, b, c\}$
shows good-linepath $c d[a, d, b, c, a]$
\wedge path-image (make-polygonal-path $[a, d, b, c, a])=$ path-image p
proof -
let $? l=$ linepath $c d$
let $? L=$ path-image ?l
let $? P=$ path-image p
let ${ }^{2} v t s^{\prime}=[a, d, b, c, a]$
let $? p^{\prime}=$ make-polygonal-path ?vts'
let $? P^{\prime}=$ path-image $? p^{\prime}$
have h1: path-image (make-polygonal-path $[a, b, c, a])=$ path-image (linepath a b) \cup path-image $($ linepath $b c) \cup$ path-image (linepath $c a)$
using polygonal-path-image-linepath-union by (simp add: path-image-join sup.assoc)
have h2: path-image (make-polygonal-path $[a, d, b, c, a]$) = path-image (linepath a
d) \cup path-image $($ linepath $d b) \cup$ path-image $($ linepath $b c) \cup$ path-image (linepath c a)
using polygonal-path-image-linepath-union by (simp add: path-image-join sup.assoc) have h3: path-image (linepath ab) = path-image (linepath ad) \cup path-image (linepath d b)
using path-image-linepath-union d-prop by auto
have 1: ? $P^{\prime}=? P$
using $h 1 \mathrm{~h} 2 \mathrm{~h} 3$
using assms(1) make-triangle-def by force
have $\{c, d\}=? L \cap ? P$

```
proof(rule ccontr)
```

 have subs: \(\{c, d\} \subseteq ? L \cap ? P\)
 using assms(1) vertices-on-path-image unfolding make-triangle-def
 by (metis IntD2 IntI assms(4) empty-subsetI inf-sup-absorb insert-subset list.discI list.simps(15) nth-Cons-0 path-image-cons-union pathfinish-in-path-image pathfinish-linepath pathstart-in-path-image pathstart-linepath)
 assume $*:\{c, d\} \neq ? L \cap ? P$
then obtain z where $z: z \neq c \wedge z \neq d \wedge z \in ? L \cap$?P using subs by blast
then have cases:
$z \in$ path-image (linepath $a b) \vee z \in$ path-image (linepath $b c) \vee z \in$ path-image (linepath ca)
using 1 h2 h3 by blast
\{ assume $* *: z \in$ path-image (linepath $a b$)
moreover have $z \in ? L \wedge d \in ? L \wedge d \in$ path-image (linepath ab) using assms z by force
ultimately have $\{z, d\} \subseteq ? L \cap$ path-image (linepath $a b$) $\wedge z \neq d$ using z by blast
then have collinear $\{a, b, c, d\}$ using two-linepath-colinearity-property by fastforce
then have False using assms(2) assms(3) collinear-4-3 by auto
\} moreover
\{ assume $* *: z \in$ path-image (linepath $b c$)
then have collinear $\{a, b, c, d\}$ using two-linepath-colinearity-property[of z $-b c c c c$
by (smt (verit) ** IntE assms(3) collinear-3-trans d-prop in-path-image-imp-collinear insertCI insert-commute z)
then have False using assms(2) assms(3) collinear-4-3 by auto
\} moreover
\{ assume $* *: z \in$ path-image (linepath c a)
then have collinear $\{a, b, c, d\}$ using two-linepath-colinearity-property $[o f z$ - call $\begin{array}{cc} & d]\end{array}$
by (smt (verit) IntD1 assms(3) collinear-3-trans d-prop in-path-image-imp-collinear insert-commute insert-iff z)
then have False using assms(2) assms(3) collinear-4-3 by auto
\}
ultimately show False using cases by argo
qed
moreover have ?L \subseteq path-inside $p \cup ? P$
proof-
have convex hull $\{a, b, c\}=$ path-inside $p \cup$? P
by (simp add: Un-commute assms(1) assms(3) triangle-convex-hull)
moreover have ? $L \subseteq$ convex hull $\{a, b, c\}$
by (smt (verit, ccfv-threshold) assms empty-subsetI hull-insert hull-mono in-
sert-commute insert-mono insert-subset path-image-linepath segment-convex-hull)
ultimately show ?thesis by blast
qed
ultimately have $? L \subseteq$ path-inside $p \cup\{c, d\}$ by blast
then have ? $L \subseteq$ path-inside ? $p^{\prime} \cup\{c, d\}$ using 1 unfolding path-inside-def by
presburger
then have 2: good-linepath $c d$?vts' using assms unfolding good-linepath-def by auto
thus ?thesis using 1 by blast
qed

28 Convex Hull Has Good Linepath

lemma leq-2-extreme-points-means-collinear:
fixes vts :: 'a::euclidean-space set
assumes finite vts
assumes card $\{v . v$ extreme-point-of (convex hull vts) $\} \leq 2$
shows collinear vts
using assms
by (metis Krein-Milman-polytope affine-hull-convex-hull collinear-affine-hull-collinear collinear-small extreme-points-of-convex-hull finite-subset)
lemma convex-hull-non-extreme-point-in-open-seg:
assumes $H=$ convex hull vts
assumes $x \in H-\{v . v$ extreme-point-of $H\}$
shows $\exists a b . a \in H \wedge b \in H \wedge x \in$ open-segment $a b$
using assms unfolding extreme-point-of-def by blast
lemma convex-hull-extreme-points-vertex-split:
fixes vts :: (realへ2) set
assumes $H=$ convex hull vts
assumes finite vts
assumes card $\{v . v$ extreme-point-of $H\} \geq 4$
assumes $\{a, b, c\} \subseteq\{v . v$ extreme-point-of $H\} \wedge \operatorname{distinct}[a, b, c]$
shows path-image (linepath ab) \cap interior $H \neq\{ \}$
\checkmark path-image (linepath $b c) \cap$ interior $H \neq\{ \}$
\checkmark path-image (linepath ca) \cap interior $H \neq\{ \}$
proof-
let ?ep $=\{v . v$ extreme-point-of $H\}$
have $H: H=$ convex hull ?ep using Krein-Milman-polytope $\operatorname{assms}(1) \operatorname{assms}(2)$
by blast
let $? H^{\prime}=$ convex hull $\{a, b, c\}$
have not-collinear: \neg collinear $\{a, b, c\}$
proof (rule ccontr)
assume $\neg \neg$ collinear $\{a, b, c\}$
then have collinear $\{a, b, c\}$ by blast
then have $a \in$ path-image (linepath $b c$)
$\vee b \in$ path-image (linepath ac)
$\vee c \in$ path-image (linepath a b)
using collinear-between-cases unfolding between-def
by (smt (verit, del-insts) between-mem-segment closed-segment-eq collinear-between-cases

```
doubleton-eq-iff path-image-linepath)
    moreover have }a\not=b\wedgeb\not=c\wedgea\not=c\mathrm{ using assms by simp
        ultimately have a\in open-segment b}c\veeb\in\mathrm{ open-segment a c }\veec
open-segment a b
        using closed-segment-eq-open by auto
    moreover have a extreme-point-of H}\wedgeb\mathrm{ extreme-point-of H}\wedgec\mathrm{ extreme-point-of
H
        using assms by blast
    ultimately show False unfolding extreme-point-of-def by blast
    qed
```

 have strict-subset: interior ? \(H^{\prime} \subset\) interior \(H\)
 proof-
 have interior ? \(H^{\prime} \subseteq\) interior \(H\)
 by (metis \(H \operatorname{assms}(4)\) hull-mono interior-mono)
 moreover have ? \(H^{\prime} \subset H\)
 proof -
 have card \(\{a, b, c\} \leq 3\)
 by (metis card.empty card-insert-disjoint collinear-2 finite.emptyI finite-insert
 insert-absorb nat-le-linear not-collinear numeral-3-eq-3)
then have card $(? e p-\{a, b, c\}) \geq 1$
using assms(3) assms(4) by auto
then obtain d where $d \in ? e p-\{a, b, c\}$
by (metis One-nat-def all-not-in-conv card.empty not-less-eq-eq zero-le)
thus ?thesis
by (metis Diffe H assms(4) extreme-point-of-convex-hull hull-mono mem-Collect-eq
order-less-le)
qed
ultimately show ?thesis
by (metis (no-types, lifting) assms(1) assms(2) closure-convex-hull con-
vex-closure-rel-interior convex-convex-hull convex-hull-eq-empty convex-polygon-frontier-is-path-image2
dual-order.strict-iff-order finite.emptyI finite.insertI finite-imp-bounded-convex-hull
finite-imp-compact frontier-empty insert-not-empty inside-frontier-eq-interior not-collinear
path-inside-def polygon-frontier-is-path-image rel-interior-nonempty-interior sup-bot.right-neutral
triangle-convex-hull triangle-is-convex triangle-is-polygon)
qed
moreover have interior $? H^{\prime} \neq\{ \}$
by (metis not-collinear convex-convex-hull convex-hull-eq-empty convex-polygon-frontier-is-path-image2
finite.emptyI finite.insertI finite-imp-bounded-convex-hull frontier-empty insert-not-empty
inside-frontier-eq-interior path-inside-def polygon-frontier-is-path-image sup-bot.right-neutral
triangle-convex-hull triangle-is-convex triangle-is-polygon)
ultimately obtain $x y$ where $x y: x \in$ interior ? $H^{\prime} \wedge y \in$ interior H - interior
? H^{\prime} by blast
let $? l=$ linepath $x y$
have $x \in$ interior $? H^{\prime} \wedge y \in-\left(\right.$ interior ? $\left.H^{\prime}\right)$ using $x y$ by blast
then have path-image ?l \cap interior $? H^{\prime} \neq\{ \} \wedge$ path-image $? l \cap-\left(\right.$ interior $\left.? H^{\prime}\right)$
$\neq\{ \}$ by auto

```
    moreover have path-connected (interior ? 'H') by (simp add: convex-imp-path-connected)
    ultimately obtain z where z:z f path-image ?l \cap frontier (interior ?H')
    by (metis Diff-eq Diff-eq-empty-iff all-not-in-conv convex-convex-hull convex-imp-path-connected
path-connected-not-frontier-subset path-image-linepath segment-convex-hull)
    moreover have path-image ?l \subseteq interior H using xy convex-interior[of H]
    by (metis DiffD1 IntD2 strict-subset assms(1) closed-segment-subset convex-convex-hull
inf.strict-order-iff path-image-linepath)
    ultimately have z-interior: z\in interior H by blast
    have z\in frontier (interior ?H') using z by blast
    moreover have frontier (interior ?H')
        = path-image (linepath a b) \cup path-image (linepath b c) \cup path-image (linepath
c a)
    proof-
        let ?p = make-triangle a b c
        have path-inside ?p = interior ? H'
            by (metis not-collinear bounded-convex-hull bounded-empty bounded-insert con-
vex-convex-hull convex-polygon-frontier-is-path-image2 inside-frontier-eq-interior path-inside-def
triangle-convex-hull triangle-is-convex triangle-is-polygon)
            then have path-image ?p = frontier (interior ?H')
                by (metis not-collinear polygon-frontier-is-path-image triangle-is-polygon)
    moreover have path-image ?p
            = path-image (linepath a b)\cup path-image (linepath b c) \cup path-image (linepath
c a)
            by (metis Un-assoc list.discI make-polygonal-path.simps(3) make-triangle-def
nth-Cons-0 path-image-cons-union)
    ultimately show ?thesis by presburger
    qed
    ultimately show ?thesis using z-interior by blast
qed
lemma convex-hull-has-vertex-split-helper-wlog:
    assumes p= make-triangle a b c and distinct [a,b,c] and }\neg\mathrm{ collinear {a, b,
c} and
            d-prop:d f path-image (linepath a b) }\d\notd{a,b,c
    shows path-image (linepath c d) \cap path-inside p}\not={
proof-
    have good-linepath c d [a,d,b,c,a]
            \wedge path-image (make-polygonal-path [a,d,b,c,a]) = path-image p
        using pick-triangle-basic-split[of p a b ccll assms by fast
    thus ?thesis
        unfolding good-linepath-def
    by (smt (verit, del-insts) Int-Un-eq(4) Int-insert-right-if1 Un-insert-right diff-points-path-image-set-property
le-iff-inf path-inside-def pathfinish-in-path-image pathfinish-linepath pathstart-in-path-image
pathstart-linepath)
qed
lemma convex-hull-has-vertex-split-helper:
    assumes p= make-triangle a b c and distinct [a,b,c] and }\neg\mathrm{ collinear {a,b,
```

c\} and
d-prop: $d \in$ path-image $p \wedge d \notin\{a, b, c\}$
shows $\exists x y .\{x, y\} \subseteq\{a, b, c, d\} \wedge x \neq y \wedge$ path-image (linepath $x y) \cap$
path-inside $p \neq\{ \}$
proof-
$\{$ assume $d \in$ path-image (linepath $a b$)
then have ?thesis
using convex-hull-has-vertex-split-helper-wlog[of pabllllassms(1) assms(2)
assms(3) d-prop
by fastforce
\} moreover
\{ assume $*: d \in$ path-image (linepath $b c$)
let $? p^{\prime}=$ make-triangle $b c a$
have path-image (linepath a d) \cap path-inside ? $p^{\prime} \neq\{ \}$
using convex-hull-has-vertex-split-helper-wlog[of ?p' b c a $\left.\begin{array}{l}\text { l }\end{array}\right]$
by (metis (no-types, opaque-lifting) $* \operatorname{assms}(3)$ collinear-2 d-prop distinct-length-2-or-more distinct-singleton insert-absorb2 insert-commute)
moreover have path-inside ? $p^{\prime}=$ path-inside p
unfolding make-triangle-def
by (smt (verit, best) assms(1) assms(3) convex-polygon-frontier-is-path-image2
insert-commute make-triangle-def path-inside-def triangle-convex-hull triangle-is-convex triangle-is-polygon)
ultimately have ?thesis using assms by auto
\} moreover
\{ assume $*: d \in$ path-image (linepath ca)
let $? p^{\prime}=$ make-triangle c a b
have path-image (linepath bd) \cap path-inside ? $p^{\prime} \neq\{ \}$
using convex-hull-has-vertex-split-helper-wlog[of ?p' c a $\left.\begin{array}{l}\text { b } \\ \hline\end{array}\right]$
by (metis (no-types, opaque-lifting) $* \operatorname{assms}(3)$ collinear-2 d-prop distinct-length-2-or-more distinct-singleton insert-absorb2 insert-commute)
moreover have path-inside ? $p^{\prime}=$ path-inside p
unfolding make-triangle-def
by (smt (verit, ccfv-SIG) assms(1) assms(3) convex-polygon-frontier-is-path-image2 insert-commute make-triangle-def path-inside-def triangle-convex-hull triangle-is-convex triangle-is-polygon)
ultimately have ?thesis using assms by auto \}
ultimately show ?thesis using on-triangle-path-image-cases assms(1) d-prop by fast
qed
lemma convex-hull-has-vertex-split:
fixes vts :: (real~2) set
assumes $H=$ convex hull vts
assumes \neg collinear vts
assumes card vts >3
assumes finite vts
shows $\exists a b .\{a, b\} \subseteq v t s \wedge a \neq b \wedge$ path-image (linepath $a b) \cap$ interior $H \neq$ \{\}

proof-

let ?ep $=\{v . v$ extreme-point-of $H\}$
have ep: ?ep $\subseteq v t s$ by (simp add: assms(1) extreme-points-of-convex-hull)
have card-ep: card ?ep ≥ 3
by (metis One-nat-def Suc-1 assms(1) assms(2) assms(3) card.infinite leq-2-extreme-points-means-collinear not-less-eq-eq not-less-zero numeral-3-eq-3)
obtain $a b c$ where $a b c:\{a, b, c\} \subseteq ? e p \wedge a \neq b \wedge b \neq c \wedge a \neq c$ proof-
obtain $a A$ where $a \in ? e p \wedge A=$? $e p-\{a\} \wedge$ card $A \geq 2$ using card-ep by force
moreover then obtain $b B$ where $b \in A \wedge B=A-\{b\} \wedge$ card $B \geq 1$
by (metis Suc-1 Suc-diff-le bot.extremum-uniqueI bot-nat-0.extremum card-Diff-singleton
card-eq-0-iff diff-Suc-1 less-Suc-eq-le less-one linorder-not-le subset-emptyI)
moreover then obtain $c C$ where $c \in B \wedge C=B-\{c\} \wedge$ card $C \geq 0$
by (metis One-nat-def bot-nat-0.extremum card.empty equals0I not-less-eq-eq)
ultimately have $\{a, b, c\} \subseteq ? e p \wedge a \neq b \wedge b \neq c \wedge a \neq c$ by blast
thus ?thesis using that by auto
qed
\{ assume $*$: card ? ep $=3$
then have $a b c$: ? $e p=\{a, b, c\}$
by (metis abc card-3-iff card-gt-0-iff numeral-3-eq-3 order-less-le psubset-card-mono zero-less-Suc)
obtain d where $d: d \in v t s \wedge d \neq a \wedge d \neq b \wedge d \neq c$
by (metis * assms(3) abc ep insertCI nat-less-le subsetI subset-antisym)
\{ assume $d \in$ interior H
then have $d \in$ path-image (linepath a d) \cap interior H by simp
then have ?thesis using ep abc d by auto
\} moreover
\{ assume $* * *: d \notin$ interior H
let $? p=$ make-triangle $a b c$
have $H: H=$ convex hull ?ep
proof-
have compact H
by (metis assms(1) assms(3) card-eq-0-iff finite-imp-compact-convex-hull gr-implies-not0)
moreover have convex H using convex-convex-hull[of vts] assms by blast
ultimately have $H=$ closure (convex hull ?ep) using Krein-Milman [of H]
by fast
thus ?thesis using abc by auto
qed
then have interior: path-inside ? $p=$ interior H
using $a b c$
by (metis assms $(1,2)$ affine-hull-convex-hull collinear-affine-hull-collinear convex-convex-hull convex-polygon-frontier-is-path-image2 finite.intros(1) finite-imp-bounded-convex-hull finite-insert inside-frontier-eq-interior path-inside-def triangle-convex-hull triangle-is-convex triangle-is-polygon)
then have d-frontier: $d \in$ frontier H
by (metis *** Diff-iff assms(1) UnCI d closure-Un-frontier frontier-def hull-subset in-mono)
moreover have path-image ?p $=$ frontier H
using convex-polygon-frontier-is-path-image
by (metis assms $(1,2)$ H abc affine-hull-convex-hull collinear-affine-hull-collinear convex-polygon-frontier-is-path-image2 triangle-convex-hull triangle-is-convex trian-gle-is-polygon)
ultimately have $d \in$ path-image ? p by blast
moreover have \neg collinear $\{a, b, c\}$
by (metis H assms $(1,2)$ abc affine-hull-convex-hull collinear-affine-hull-collinear)
moreover then have distinct $[a, b, c]$
by (metis collinear-2 distinct.simps(2) distinct-singleton empty-set in-sert-absorb list.simps(15))
moreover have $d \notin\{a, b, c\}$ using d by blast
ultimately have ?thesis
using abc d convex-hull-has-vertex-split-helper[of ?p a $\left.\begin{array}{llll} & c & d\end{array}\right]$
by (metis (no-types, lifting) insert-subset interior subset-trans ep)
\}
ultimately have ?thesis by fast

$\}$ moreover

\{ assume $*$: card ? $e p \geq 4$
moreover have $\{a, b, c\} \subseteq$? $e p \wedge$ distinct $[a, b, c]$ using $a b c$ by fastforce
ultimately have path-image (linepath ab) \cap interior $H \neq\{ \}$
\vee path-image (linepath bc) \cap interior $H \neq\{ \}$
\vee path-image (linepath c a) \cap interior $H \neq\{ \}$
using convex-hull-extreme-points-vertex-split[OF $\operatorname{assms}(1) \operatorname{assms}(4) *]$ by presburger
then have ?thesis
by (metis (no-types, lifting) ep abc insert-subset subset-trans)
\}
ultimately show ?thesis using card-ep by fastforce
qed
lemma convex-polygon-has-good-linepath-helper:
assumes polygon-of p vts
assumes convex (path-inside $p \cup$ path-image p)
assumes card (set vts) > 3
obtains $a b$ where $\{a, b\} \subseteq$ set vts $\wedge a \neq b \wedge \neg$ path-image (linepath $a b$) \subseteq path-image p
proof-
let ? $\mathrm{H}=$ convex hull (set vts)
obtain $a b$ where $a b:\{a, b\} \subseteq$ set vts $\wedge a \neq b \wedge$ path-image (linepath $a b) \cap$ interior ? $H \neq\{ \}$
using convex-hull-has-vertex-split assms polygon-vts-not-collinear unfolding polygon-of-def
by fastforce
moreover have interior $? H=$ path-inside p
using assms(1) assms(2) convex-polygon-inside-is-convex-hull-interior poly-
gon-convex-iff polygon-of-def
by blast
ultimately have path-image (linepath $a b) \cap$ path-inside $p \neq\{ \}$ by simp
moreover have path-inside $p \cap$ path-image $p=\{ \}$ using path-inside-def by auto
moreover have path-image (linepath a b) \subseteq path-image $p \cup$ path-inside p
by (metis ab assms(1) assms(2) convex-polygon-is-convex-hull hull-mono path-image-linepath
polygon-of-def segment-convex-hull sup-commute)
ultimately have \neg path-image (linepath $a b$) \subseteq path-image p by fast
thus ?thesis using ab that by meson
qed
lemma convex-polygon-has-good-linepath:
assumes convex (path-inside $p \cup$ path-image p)
assumes polygon p
assumes $p=$ make-polygonal-path vts
assumes card (set vts) > 3
shows $\exists a b$. good-linepath $a b$ vts
proof-
let ? $T=$ convex hull (set vts)
have T : path-image $p \cup$ path-inside $p=$? T
by (metis Un-commute assms(1) assms(2) assms(3) convex-polygon-is-convex-hull)
obtain $a b$ where $a b: a \neq b \wedge\{a, b\} \subseteq$ set vts $\wedge \neg$ path-image (linepath $a b) \subseteq$ path-image p
using convex-polygon-has-good-linepath-helper assms unfolding polygon-of-def by metis
let $? S=$ path-image (linepath a b)
have p-is-frontier: frontier ?T $=$ path-image p
using convex-polygon-frontier-is-path-image assms polygon-of-def polygon-convex-iff
by blast
have closure ? $T=? T$ by (simp add: finite-imp-compact)
then have ? $S \subseteq$ closure ? T using $a b$ by (simp add: hull-mono segment-convex-hull)
moreover have convex?T using convex-convex-hull by auto
moreover have convex ?S by simp
moreover have rel-interior ? $S=$ open-segment ab
by (metis ab path-image-linepath rel-interior-closed-segment)
moreover have rel-interior ? $T=$ interior ? T
by (metis p-is-frontier Diff-empty ab calculation(1) frontier-def rel-interior-nonempty-interior)
ultimately have open-segment $a b \subseteq$ interior ?T
using subset-rel-interior-convex by (metis ab p-is-frontier frontier-def rel-frontier-def)
then have (open-segment $a b$) \cap path-image $p=\{ \}$
using p-is-frontier frontier-def by auto
then have closed-segment $a b \cap$ path-image $p=\{a, b\}$
by (metis (no-types, lifting) Int-Un-distrib2 Int-absorb2 Un-commute ab assms(3)
closed-segment-eq-open subset-trans sup-bot.right-neutral vertices-on-path-image)
then have path-image (linepath $a b$) \cap path-image $p=\{a, b\}$ by simp
thus ?thesis
using ab unfolding good-linepath-def
by (smt (verit, ccfv-threshold) IntI UnCI UnE T assms(3) hull-mono path-image-linepath

29 Pick's Theorem

definition integral-inside:
integral-inside $p=\{x$. integral-vec $x \wedge x \in$ path-inside $p\}$
definition integral-boundary:
integral-boundary $p=\{x$. integral-vec $x \wedge x \in$ path-image $p\}$

29.1 Pick's Theorem Triangle Case

definition pick-triangle:
pick-triangle pabc \longleftrightarrow
$p=$ make-triangle a bc
\wedge all-integral $[a, b, c]$
\wedge distinct $[a, b, c]$
$\wedge \neg$ collinear $\{a, b, c\}$
definition pick-holds:
pick-holds $p \longleftrightarrow$
(let $I=$ card $\{x$. integral-vec $x \wedge x \in$ path-inside $p\}$ in
let $B=$ card $\{x$. integral-vec $x \wedge x \in$ path-image $p\}$ in measure lebesgue (path-inside p) $=I+B / 2-1$)
lemma pick-triangle-wlog-helper:
assumes pick-triangle $p a b c$ and
$I=$ card (integral-inside p) and
$B=$ card (integral-boundary p) and
integral-inside $p=\{ \}$ and
integral-vec $d \wedge d \in$ path-image (linepath $a b) \wedge d \notin\{a, b, c\}$ and $d \notin$
$\{a, b, c\}$ and
ih: $\bigwedge p^{\prime} a^{\prime} b^{\prime} c^{\prime} .\left(\right.$ card (integral-inside $\left.p^{\prime}\right)+$ card (integral-boundary $\left.p^{\prime}\right)<$
$I+B) \Longrightarrow$ pick-triangle $p^{\prime} a^{\prime} b^{\prime} c^{\prime} \Longrightarrow$ pick-holds p^{\prime}
shows measure lebesgue (path-inside p) $=I+B / 2-1$
proof-
have polygon-p: polygon p using triangle-is-polygon assms unfolding pick-triangle by presburger
then have polygon-of: polygon-of $p[a, b, c, a]$
unfolding polygon-of-def using assms unfolding make-triangle-def pick-triangle by auto
let $? p^{\prime}=$ make-polygonal-path $[a, d, b, c, a]$
have good-linepath $c d[a, d, b, c, a] \wedge$ path-image (make-polygonal-path $[a, d, b$, $c, a])=$ path-image p
using pick-triangle-basic-split assms unfolding pick-triangle by presburger
then have $*$: good-linepath $d c[a, d, b, c, a] \wedge$ path-image (make-polygonal-path
$[a, d, b, c, a])=$ path-image p
using good-linepath-comm by blast
have polygon-new: polygon (make-polygonal-path $[a, d, b, c, a]$)
using polygon-linepath-split-is-polygon[OF polygon-of, of 0 abd $d a, d, b, c, a]]$ assms
by force
have h1: make-polygonal-path $[a, d, b, c, a]=$ make-polygonal-path $([a, d, b, c]$ @ $[[a, d, b, c]!0])$
by auto
have h2: good-linepath $d c([a, d, b, c]$ @ $[[a, d, b, c]!0])$
using * by auto
have h3: $(1::$ nat $)<$ length $[a, d, b, c] \wedge(3::$ nat $)<$ length $[a, d, b, c]$
by auto
then have polygon-split: is-polygon-split $[a, d, b, c] 13$
using good-linepath-implies-polygon-split[OF polygon-new h1 h2 h3] by auto
let $? p 1=$ make-polygonal-path $(d \#[b]$ @ $[c, d])$
let ?p2 = make-polygonal-path ([a]@ [d, c] @ [] @ [[a,d,b,c]!0])
let ?I1 $=$ card $\{x$. integral-vec $x \wedge x \in$ path-inside?p1\}
let ? B $1=$ card $\{x$. integral-vec $x \wedge x \in$ path-image ? 1$\}$
let ?I2 $=$ card $\{x$. integral-vec $x \wedge x \in$ path-inside ?p2 $\}$
let ?B2 $=$ card $\{x$. integral-vec $x \wedge x \in$ path-image ?p2 $\}$
have p1-triangle: ?p1 = make-triangle $d b c$
unfolding make-triangle-def by auto
have $p 2$-triangle: ? $p 2=$ make-triangle a d c
unfolding make-triangle-def by auto
have I-is: $I=$ card $\{x$. integral-vec $x \wedge x \in$ path-inside (make-polygonal-path $[a$, $d, b, c, a])\}$
using path-image-linepath-split[of $0[a, b, c, a] d] *$ assms path-inside-def integral-inside by presburger
have B-is: $B=$ card $\{x$. integral-vec $x \wedge x \in$ path-image (make-polygonal-path $[a, d, b, c, a])\}$
using path-image-linepath-split $[$ of $0[a, b, c, a] d]$
using * assms path-inside-def integral-boundary by presburger
have all-integral-assump: all-integral $[a, d, b, c]$
using assms unfolding all-integral-def pick-triangle by force
have dist-indh 1: distinct $[d, b, c]$
using assms unfolding pick-triangle by auto
have coll-indh1: \neg collinear $\{d, b, c\}$
using assms pick-triangle
by (smt (verit) collinear-3-trans dist-indh1 distinct-length-2-or-more in-path-image-imp-collinear insert-commute)
have path-inside-inside: path-inside (make-polygonal-path $(d \#[b] @[c, d])) \subseteq$ path-inside p
using polygon-split unfolding is-polygon-split-def
by (smt (z3) * One-nat-def Un-iff append-Cons append-Nil diff-Suc-1 drop0
drop-Suc-Cons nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-inside-def subsetI take-Suc-Cons take-eq-Nil2)
then have indh1-card1: card $\{x$. integral-vec $x \wedge x \in$ path-inside (make-polygonal-path $(d \#[b] @[c, d]))\} \leq$ card $\{x$. integral-vec $x \wedge x \in$ path-inside $p\}$
by (metis (no-types, lifting) assms(4) integral-inside Collect-empty-eq card.empty le-zero-eq subsetD)
have indh1-card2: card $\{x$. integral-vec $x \wedge x \in$ path-image (make-polygonal-path $(d \#[b] @[c, d]))\}<$ card $\{x$. integral-vec $x \wedge x \in$ path-image $p\}$

proof-

have path-image-union: path-image (make-polygonal-path $(d \#[b] @[c, d]))=$ path-image (linepath db) \cup path-image (linepath $b c) \cup$ path-image (linepath $c d$) using path-image-cons-union p1-triangle make-triangle-def
by (metis (no-types, lifting) inf-sup-aci(6) list.discI make-polygonal-path.simps(3) nth-Cons-0)
have path-image-db: path-image (linepath $d b$) \subseteq path-image p
by (metis assms(5) list.discI nth-Cons-0 path-image-cons-union path-image-linepath-union polygon-of polygon-of-def sup.cobounded2 sup.coboundedI1)
have path-image-bc: path-image (linepath bc) \subseteq path-image p
using assms(1) linepaths-subset-make-polygonal-path-image $[o f[a, b, c, a] 1]$
unfolding pick-triangle make-triangle-def by simp
have path-image-cd1: path-image (linepath $c d)-\{c, d\} \subseteq$ path-inside p using polygon-split unfolding is-polygon-split-def
by (smt (z3) One-nat-def <good-linepath c d $[a, d, b, c, a] \wedge$ path-image (make-polygonal-path $[a, d, b, c, a]$) $=$ path-image $p>$ append-Cons append-Nil in-sert-commute nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-image-linepath path-inside-def segment-convex-hull sup.cobounded2)
have path-image-cd2: $\{c, d\} \subseteq$ path-image p
using linepaths-subset-make-polygonal-path-image assms(1) unfolding pick-triangle make-triangle-def
by (metis (no-types, lifting) <good-linepath $c d[a, d, b, c, a] \wedge$ path-image (make-polygonal-path $[a, d, b, c, a])=$ path-image $p\rangle$ good-linepath-def subset-trans vertices-on-path-image)
have path-image (linepath cd) \subseteq path-image $p \cup$ path-inside p
using path-image-cd1 path-image-cd2 by auto
moreover have integral-inside $p=\{ \}$ using assms by force
ultimately have path-image-cd: integral-boundary (linepath c d) \subseteq inte-gral-boundary p unfolding integral-inside integral-boundary by blast
have a-neq- $d: a \neq d$ using assms(5) by auto
have a-neq-c: $a \neq c$
using assms(1) unfolding pick-triangle by simp
have a-in-image: $a \in$ path-image p
using assms(1) unfolding pick-triangle make-triangle-def using vertices-on-path-image by fastforce
have path-image (linepath cd) \cap path-image $p=\{c, d\}$
using $*$ unfolding good-linepath-def
by (smt (verit, ccfv-SIG) One-nat-def h1 insert-commute is-polygon-cut-def is-polygon-split-def nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-image-linepath polygon-split segment-convex-hull)
then have a-not-in1: $a \notin$ path-image (linepath $c d$)
using a-neq-c a-neq-d a-in-image by blast
have a-not-in2: $a \notin$ path-image (linepath $d b$) using Int-closed-segment assms(5) by auto
have a-not-in3: a \notin path-image (linepath $b c$)
by (metis (no-types, lifting) assms(1) in-path-image-imp-collinear insert-commute pick-triangle)
then have $a \notin$ path-image (linepath d b) \cup path-image (linepath $b c$) \cup path-image (linepath c d)
using a-not-in1 a-not-in2 a-not-in3 by simp
then have $a \in$ integral-boundary $p \wedge a \notin$ integral-boundary (make-polygonal-path $[d, b, c, d])$
using path-image-union using integral-boundary a-in-image all-integral-assump all-integral-def by auto
then have strict-subset: integral-boundary (make-polygonal-path $[d, b, c, d]) \subset$ integral-boundary p
using path-image-union path-image-db path-image-bc path-image-cd unfolding integral-boundary by auto
have integral-inside (make-polygonal-path $[d, b, c, d])=\{ \}$ using path-inside-inside assms unfolding integral-inside by auto
then show ?thesis using assms(2-3) strict-subset bounded-finite using finite-path-inside finite-path-image by (simp add: integral-boundary polygon-p psubset-card-mono)
qed
have fewer-points-p1: card \{x. integral-vec $x \wedge x \in$ path-inside (make-polygonal-path $(d$ \# [b] @ $[c, d]))\}+$
card $\{x$. integral-vec $x \wedge x \in$ path-image (make-polygonal-path $(d \#[b] @[c$,
$d])$) $\}$
$<$ card $\{x$. integral-vec $x \wedge x \in$ path-inside $p\}+$ card $\{x$. integral-vec $x \wedge x \in$ path-image $p\}$
using indh1-card1 indh1-card2 by linarith
have indh-1: Sigma-Algebra.measure lebesgue (path-inside ?p1) $=$ real ? I1 + real ? B1 / 2-1
using assms fewer-points-p1 p1-triangle all-integral-assump dist-indh1 coll-indh1 all-integral-def
unfolding pick-holds pick-triangle integral-inside integral-boundary by simp
have dist-indh2: distinct $[a, d, c]$
using assms unfolding pick-triangle by auto
have coll-indh2: \neg collinear $\{a, d, c\}$
using assms pick-triangle
by (smt (verit) collinear-3-trans dist-indh2 distinct-length-2-or-more in-path-image-imp-collinear insert-commute)
have path-inside-inside: path-inside (make-polygonal-path $(a \#[d] @[c, a])) \subseteq$ path-inside p
using polygon-split unfolding is-polygon-split-def
by (smt (z3) * One-nat-def Un-iff append-Cons append-Nil diff-Suc-1 drop0
drop-Suc-Cons nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-inside-def subsetI take-Suc-Cons

take-eq-Nil2)

then have indh2-card1: card $\{x$. integral-vec $x \wedge x \in$ path-inside (make-polygonal-path $(a \#[d] @[c, a]))\} \leq$ card $\{x$. integral-vec $x \wedge x \in$ path-inside $p\}$
by (metis (no-types, lifting) assms(4) integral-inside Collect-empty-eq card.empty le-zero-eq subsetD)
have indh2-card2: card $\{x$. integral-vec $x \wedge x \in$ path-image (make-polygonal-path $(a \#[d] @[c, a]))\}<\operatorname{card}\{x$. integral-vec $x \wedge x \in$ path-image $p\}$
proof-
have path-image-union: path-image (make-polygonal-path $(a \#[d] @[c, a]))=$ path-image (linepath a d) \cup path-image (linepath d $c) \cup$ path-image (linepath c a) using path-image-cons-union p2-triangle make-triangle-def
by (metis Un-assoc append.left-neutral append-Cons list.discI make-polygonal-path.simps(3) nth-Cons-0)
have path-image-ad: path-image (linepath a d) \subseteq path-image p
by (metis <good-linepath c d $[a, d, b, c, a] \wedge$ path-image (make-polygonal-path
$[a, d, b, c, a])=$ path-image $p>$ inf-sup-absorb le-iff-inf list.discI nth-Cons-0 path-image-cons-union)
have path-image-ca: path-image (linepath ca) \subseteq path-image p
using assms(1) linepaths-subset-make-polygonal-path-image[of $[a, b, c, a]$ 2]
unfolding pick-triangle make-triangle-def by simp
have path-image-cd1: path-image (linepath $d c$) $-\{c, d\} \subseteq$ path-inside p
using polygon-split unfolding is-polygon-split-def
by (smt (z3) One-nat-def <good-linepath c d $[a, d, b, c, a] \wedge$ path-image (make-polygonal-path $[a, d, b, c, a])=$ path-image $p>$ append-Cons append-Nil in-sert-commute nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-image-linepath path-inside-def segment-convex-hull sup.cobounded2)
have path-image-cd2: $\{c, d\} \subseteq$ path-image p
using linepaths-subset-make-polygonal-path-image assms(1) unfolding pick-triangle make-triangle-def
by (metis (no-types, lifting) 〈good-linepath $c d[a, d, b, c, a] \wedge$ path-image
(make-polygonal-path $[a, d, b, c, a])=$ path-image $p>$ good-linepath-def subset-trans
vertices-on-path-image)
have path-image (linepath $d c$) \subseteq path-image $p \cup$ path-inside p using path-image-cd1 path-image-cd2 by auto
moreover have integral-inside $p=\{ \}$ using assms by force
ultimately have path-image-cd: integral-boundary (linepath $d c$) \subseteq inte-gral-boundary p unfolding integral-inside integral-boundary by blast
have b-neq- $d: b \neq d$ using assms(5) by auto
have b-neq-c: $b \neq c$
using assms(1) unfolding pick-triangle by simp
have b-in-image: $b \in$ path-image p
using assms(1) unfolding pick-triangle make-triangle-def using vertices-on-path-image by fastforce
have path-image (linepath $d c$) \cap path-image $p=\{d, c\}$
using * unfolding good-linepath-def
by (smt (verit, ccfv-SIG) One-nat-def h1 insert-commute is-polygon-cut-def
is-polygon-split-def nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-image-linepath
polygon-split segment-convex-hull)
then have b-not-in1: $b \notin$ path-image (linepath $d c$) using b-neq-c b-neq-d b-in-image by blast
have b-not-in2: $b \notin$ path-image (linepath $a d$) using Int-closed-segment assms(5) by auto
have b-not-in3: $b \notin$ path-image (linepath c a)
by (metis (no-types, lifting) assms(1) in-path-image-imp-collinear insert-commute pick-triangle)
then have $b \notin$ path-image (linepath ad) \cup path-image (linepath d c) \cup path-image (linepath ca)
using b-not-in1 b-not-in2 b-not-in3 by simp
then have $b \in$ integral-boundary $p \wedge b \notin$ integral-boundary (make-polygonal-path $[a, d, c, a])$
using path-image-union using integral-boundary b-in-image all-integral-assump all-integral-def by auto
then have strict-subset: integral-boundary (make-polygonal-path $[a, d, c, a]) \subset$ integral-boundary p
using path-image-union path-image-ad path-image-ca path-image-cd unfolding integral-boundary by auto
have integral-inside (make-polygonal-path $[a, d, c, a])=\{ \}$ using path-inside-inside assms unfolding integral-inside by auto
then show ?thesis using assms(2-3) strict-subset bounded-finite
using finite-path-inside finite-path-image
by (simp add: integral-boundary polygon-p psubset-card-mono)
qed
have fewer-points-p2: card \{x. integral-vec $x \wedge x \in$ path-inside (make-polygonal-path $([a, d, c, a]))\}+$ card $\{x$. integral-vec $x \wedge x \in$ path-image (make-polygonal-path $([a, d, c, a]))\}$ $<$ card $\{x$. integral-vec $x \wedge x \in$ path-inside $p\}+$ card $\{x$. integral-vec $x \wedge x \in$ path-image $p\}$
using indh2-card1 indh2-card2 by simp
have indh-2: Sigma-Algebra.measure lebesgue (path-inside ?p2) $=$ real ?I2 + real ?B2 / 2-1
using fewer-points-p2 using assms fewer-points-p2 p2-triangle all-integral-assump dist-indh2 coll-indh2 all-integral-def
unfolding pick-holds pick-triangle integral-inside integral-boundary by simp
have Sigma-Algebra.measure lebesgue (path-inside ?p1) = real ?I1 + real ?B1 / 2-1 \Longrightarrow Sigma-Algebra.measure lebesgue (path-inside ?p2) = real?I2 + real ?B2 / 2 $-1 \Longrightarrow$
$I=$ card $\{x$. integral-vec $x \wedge x \in$ path-inside (make-polygonal-path $[a, d, b, c$,
a] $)\} \Longrightarrow$
$B=$ card $\{x$. integral-vec $x \wedge x \in$ path-image (make-polygonal-path $[a, d, b$, $c, a])\} \Longrightarrow$
all-integral $[a, d, b, c] \Longrightarrow$
Sigma-Algebra.measure lebesgue (path-inside (make-polygonal-path $[a, d, b, c$, a])) $=$
real $I+$ real $B / 2-1$
using pick-split-union $[O F$ polygon-split, of $[a][b][] d c$?p $]$ by auto
then have Sigma-Algebra.measure lebesgue (path-inside (make-polygonal-path $[a$, $d, b, c, a]))=$
real $I+$ real $B / 2-1$
using I-is B-is all-integral-assump indh-1 indh-2 by auto
thus measure lebesgue (path-inside p) $=I+B / 2-1$
using path-image-linepath-split $[$ of $0[a, b, c, a] d]$ by (metis path-inside-def $*$) qed
lemma pick-triangle-helper:
assumes pick-triangle pabc and
$I=$ card (integral-inside p) and
$B=$ card (integral-boundary p) and
integral-inside $p=\{ \}$ and
integral-vec $d \wedge d \notin\{a, b, c\}$ and $d \notin\{a, b, c\}$ and
$d \in$ path-image (linepath a b)
$\vee d \in$ path-image (linepath $b c$)
$\vee d \in$ path-image (linepath ca) and
ih: $\wedge p^{\prime} a^{\prime} b^{\prime} c^{\prime} .\left(\right.$ card (integral-inside $\left.p^{\prime}\right)+$ card $\left(\right.$ integral-boundary $\left.p^{\prime}\right)<$
$I+B) \Longrightarrow$ pick-triangle $p^{\prime} a^{\prime} b^{\prime} c^{\prime} \Longrightarrow$ pick-holds p^{\prime}
shows measure lebesgue (path-inside p) $=I+B / 2-1$
proof-
$\{$ assume $d \in$ path-image (linepath ab)
then have ?thesis using pick-triangle-wlog-helper assms by blast
\} moreover
\{ assume $*: d \in$ path-image (linepath $b c$)
let $? p^{\prime}=$ make-polygonal-path $($ rotate-polygon-vertices $[a, b, c, a] 1)$
let $? I^{\prime}=$ card (integral-inside ? p^{\prime})
let $? B^{\prime}=$ card (integral-boundary ? p^{\prime})
have p^{\prime} - p : path-image ? $p^{\prime}=$ path-image $p \wedge$ path-inside ? $p^{\prime}=$ path-inside p unfolding path-inside-def
using assms(1) make-triangle-def pick-triangle polygon-vts-arb-rotation trian-gle-is-polygon
by auto
have rotate-polygon-vertices $[a, b, c, a] 1=[b, c, a, b]$
unfolding rotate-polygon-vertices-def by simp
then have pick-triangle- $p^{\prime}:$ pick-triangle ? $p^{\prime} b c a$
using assms unfolding pick-triangle
by (smt (verit, best) all-integral-def distinct-length-2-or-more insert-commute list.simps(15) make-triangle-def)
then have measure lebesgue (path-inside ? p^{\prime}) $=? I^{\prime}+? B^{\prime} / 2-1$
using pick-triangle-wlog-helper [of ? p^{\prime} blllla ? $\left.I^{\prime} ? B^{\prime} d\right]$ assms
using integral-boundary integral-inside $*$ insert-commute pick-triangle- $p^{\prime} p^{\prime}-p$ by auto
moreover have $? I^{\prime}=I \wedge ? B^{\prime}=B$ using $p^{\prime}-p$ integral-boundary integral-inside $\operatorname{assms(2)} \operatorname{assms(3)}$ by presburger
ultimately have ?thesis using $p^{\prime}-p$ by auto \} moreover
\{ assume $*: d \in$ path-image (linepath ca)
let $? p^{\prime}=$ make-polygonal-path (rotate-polygon-vertices $[a, b, c, a]$ 2)
let $? I^{\prime}=\operatorname{card}$ (integral-inside ? p^{\prime})
let $? B^{\prime}=$ card (integral-boundary ? p^{\prime})
have p^{\prime} - p : path-image ? $p^{\prime}=$ path-image $p \wedge$ path-inside $? p^{\prime}=$ path-inside p unfolding path-inside-def
using assms(1) make-triangle-def pick-triangle polygon-vts-arb-rotation trian-
gle-is-polygon
by auto
have rotate-polygon-vertices $[a, b, c, a] 1=[b, c, a, b]$
unfolding rotate-polygon-vertices-def by simp
also have rotate-polygon-vertices ... $1=[c, a, b, c]$
unfolding rotate-polygon-vertices-def by simp
ultimately have rotate-polygon-vertices $[a, b, c, a] 2=[c, a, b, c]$
by (metis Suc-1 arb-rotation-as-single-rotation)
then have pick-triangle-p': pick-triangle ? p^{\prime} c a b
using assms unfolding pick-triangle
by (smt (verit, best) all-integral-def distinct-length-2-or-more insert-commute list.simps(15) make-triangle-def)
then have measure lebesgue (path-inside ? p^{\prime}) $=? I^{\prime}+? B^{\prime} / 2-1$
using pick-triangle-wlog-helper $\left[o f ? p^{\prime} c\right.$ a b ? $\left.I^{\prime} ? B^{\prime} d\right]$ assms
using integral-boundary integral-inside $*$ insert-commute pick-triangle-p' $p^{\prime}-p$ by auto
moreover have $? I^{\prime}=I \wedge ? B^{\prime}=B$ using $p^{\prime}-p$ integral-boundary integral-inside $\operatorname{assms}(2) \operatorname{assms}(3)$ by presburger
ultimately have ?thesis using $p^{\prime}-p$ by auto
\}
ultimately show ?thesis using assms by blast
qed
lemma triangle-3-split-helper:
fixes $a b$:: 'a::euclidean-space
assumes $a \in$ frontier S
assumes $b \in$ interior S
assumes convex S
assumes closed S
shows path-image (linepath a b) \cap frontier $S=\{a\}$
proof -
let $? L=$ path-image (linepath a b)
have $a \in S \wedge b \in S$ using assms frontier-subset-closed interior-subset by auto then have ? $L \subseteq S$
using assms hull-minimal segment-convex-hull by (simp add: closed-segment-subset)
then have ? $L \subseteq$ closure S using assms(4) by auto
moreover have convex ? L by simp
moreover have ? $L \cap$ interior $S \neq\{ \}$ using assms(2) by auto

```
    moreover then have \(\neg\) ? \(L \subseteq\) rel-frontier \(S\)
    by (metis Diffe assms(2) interior-subset-rel-interior pathfinish-in-path-image
pathfinish-linepath rel-frontier-def subsetD)
    ultimately have rel-interior ? \(L \subseteq\) rel-interior \(S\)
        using subset-rel-interior-convex[of ?L S] assms by fastforce
    then have open-segment \(a b \subseteq\) interior \(S\)
    by (metis all-not-in-conv assms(2) empty-subsetI open-segment-eq-empty' path-image-linepath
rel-interior-closed-segment rel-interior-nonempty-interior)
    moreover have ? \(L=\) closed-segment \(a b\) by auto
    moreover have interior \(S \cap\) frontier \(S=\{ \}\) by (simp add: frontier-def)
    ultimately have ? \(L \cap\) frontier \(S \subseteq\{a, b\}\)
    by (smt (verit) Diff-iff disjoint-iff inf-commute inf-le1 open-segment-def subsetD
subsetI)
    moreover have \(b \notin\) frontier \(S\) by (simp add: assms(2) frontier-def)
    ultimately show ?thesis using assms(1) by auto
qed
lemma unit-triangle-interior-point-not-collinear-e1-e2:
    assumes \(p=\) make-triangle (vector \([0,0])(\) vector \([1,0])(\) vector \([0,1])\)
        (is \(p=\) make-triangle ?O ?e1 ? e2)
    assumes \(z \in\) path-inside \(p\)
    shows \(\neg\) collinear \(\{? O, ? e 1, z\}\)
proof-
    have path-inside \(p=\) interior (convex hull \(\{? O, ? e 1, ? e 2\}\) )
            by (metis assms(1) bounded-convex-hull bounded-empty bounded-insert con-
vex-convex-hull convex-polygon-frontier-is-path-image2 inside-frontier-eq-interior path-inside-def
triangle-convex-hull triangle-is-convex triangle-is-polygon unit-triangle-vts-not-collinear)
    then have \(z \in\) interior (convex hull \{?O,?e1, ?e2 \}) using assms by simp
    then have \(z: z \$ 1>0 \wedge z \$ 2>0\)
    using assms(1) assms(2) unit-triangle-interior-char make-triangle-def by blast
    have \(a b c: ? O \$ 1=0 \wedge\) ? \(O \$ 2=0 \wedge\) ? \(e 1 \$ 2=0 \wedge\) ? \(e 2 \$ 1=0\) by simp
    show \(\neg\) collinear \(\{? O, ? e 1, z\}\)
    proof (rule ccontr)
    assume \(\neg \neg\) collinear \(\{? O, ? e 1, z\}\)
    then have \(*\) : collinear \(\{? O, ? e 1, z\}\) by blast
    then obtain \(u c 1 c 2\) where \(u: ? O-? e 1=c 1 *_{R} u \wedge ? e 1-z=c 2 *_{R} u\)
        unfolding collinear-def by blast
    moreover have \(c 1 \neq 0\)
    proof -
        have \((? O-? e 1) \$ 1=-1\) by \(\operatorname{simp}\)
        moreover have \((? O-\) ? e1 \() \$ 1=\left(c 1 *_{R} u\right) \$ 1\) using \(u\) by presburger
        ultimately show ?thesis by force
    qed
    moreover have (? \(O-? e 1\) ) \(\$ 2=0\) by simp
    moreover have \((? O-? e 1) \$ 2=\left(c 1 *_{R} u\right) \$ 2\) by (simp add: calculation(1))
    ultimately have \(u \$ 2=0\) by auto
    thus False
        by (smt (verit, ccfv-threshold) u abc scaleR-eq-0-iff vector-minus-component
```

```
vector-scaleR-component z)
    qed
qed
```

lemma triangle-interior-point-not-collinear-vertices-wlog-helper:
assumes $p=$ make-triangle $a b c$
assumes polygon p
assumes $z \in$ path-inside p
shows \neg collinear $\{a, b, z\}$
proof-
let ? $O=($ vector $[0,0])::($ real^2 $)$
let ? $e 1=($ vector $[1,0])::($ real^2 $)$
let $? e 2=($ vector $[0,1])::($ real^2 $)$
let $? M=$ triangle-affine a $b c$
have a : ? M ? $O=a$
using triangle-affine-e1-e2 by blast
have $b: ? M$? $e 1=b$ using triangle-affine-e1-e2 by simp
have $c: ? M ? e 2=c$ using triangle-affine-e1-e2 by simp
have abc-not-collinear: \neg collinear $\{a, b, c\}$
using assms polygon-vts-not-collinear unfolding make-triangle-def polygon-of-def
by (metis (no-types, lifting) empty-set insertCI insert-absorb insert-commute
list.simps(15))
have convex hull $\{a, b, c\}=$ convex hull $\{? M$? $O, ? M$? $e 1, ? M ? e 2\}$
using $a b c$ by simp
also have $\ldots=$? ${ }^{\prime}$ ' (convex hull $\{? O$, ?e1, ?e2 $\left.\}\right)$
using calculation triangle-affine-img by blast
also have interior-preserve: interior $\ldots=$? M^{\prime} (interior (convex hull \{?O, ?e1,
?e2\}))
using triangle-affine-preserves-interior $[$ of ?M abc-convex hull \{?O, ?e1,
?e2\}]
using abc-not-collinear
by presburger
finally have $z: z \in ? M$ ' (interior (convex hull $\{? O, ? e 1, ? e 2\})$)
using assms(1) assms(2) assms(3) make-triangle-def polygon-of-def trian-
gle-inside-is-convex-hull-interior
by auto
then obtain z^{\prime} where $z^{\prime}: z^{\prime} \in$ interior (convex hull $\left.\{? O, ? e 1, ? e 2\}\right) \wedge ? M z^{\prime}$
$=z$ by fast
then have \neg collinear $\left\{? O, ? e 1, z^{\prime}\right\}$
by (metis convex-convex-hull convex-polygon-frontier-is-path-image2 finite.intros(1)
finite-imp-bounded-convex-hull finite-insert inside-frontier-eq-interior path-inside-def
triangle-convex-hull triangle-is-convex triangle-is-polygon unit-triangle-interior-point-not-collinear-e1-e2
unit-triangle-vts-not-collinear)
then have z^{\prime}-notin: $z^{\prime} \notin$ affine hull $\{? O, ? e 1\}$ using affine-hull-3-imp-collinear
by blast
then have ?M $z^{\prime} \notin$ affine hull $\{? M$? $O, ? M$? e 1$\}$
proof-

```
    have inj ?M using triangle-affine-inj abc-not-collinear by blast
    then have ?M z' &?M'(affine hull {?O,?e1}) using z'-notin by (simp add:
inj-image-mem-iff)
    moreover have ?M'(affine hull {?O,?e1}) = affine hull {?M ?O, ?M ?e1}
            using triangle-affine-preserves-affine-hull[of-abc] abc-not-collinear by simp
    ultimately show ?thesis by blast
    qed
    then have z}\not\in\mathrm{ affine hull {a,b} using a b z' by argo
    thus ?thesis
    by (metis interior-preserve z affine-hull-convex-hull affine-hull-nonempty-interior
collinear-2 collinear-3-affine-hull collinear-affine-hull-collinear empty-iff insert-absorb2
triangle-affine-img unit-triangle-vts-not-collinear z')
qed
lemma triangle-interior-point-not-collinear-vertices:
    assumes p= make-triangle a b c
    assumes polygon p
    assumes z\in path-inside p
    shows \neg collinear {a,b,z} ^\neg collinear {a,c,z} ^\neg collinear {b,c,z}
proof-
    let ?p1 = make-triangle b c a
    let ?p2 = make-triangle c a b
    have p1:?p1 = make-polygonal-path (rotate-polygon-vertices [a,b,c,a] 1)
        using assms unfolding make-triangle-def rotate-polygon-vertices-def by fast-
force
    have p2:?p2 = make-polygonal-path (rotate-polygon-vertices [a,b,c,a] 2)
        using assms unfolding make-triangle-def rotate-polygon-vertices-def by (simp
add: numeral-Bit0)
    have path-inside ?p1 = path-inside p\wedge path-inside ?p2 = path-inside p
        using p1 p2 unfolding path-inside-def
        using assms(1) assms(2) make-triangle-def polygon-vts-arb-rotation by force
    then have z\in path-inside ?p1 ^ z\in path-inside ?p2 using assms by force
    moreover have polygon ?p1 ^ polygon ?p2
        using assms make-triangle-def p1 p2 rotation-is-polygon by presburger
    ultimately show ?thesis
        using assms triangle-interior-point-not-collinear-vertices-wlog-helper
        by (smt (verit, best) insert-commute)
qed
lemma triangle-3-split:
    assumes p= make-triangle a b c
    assumes polygon p
    assumes z\in path-inside p
    shows is-polygon-split-path [a,b,c] 01 [z]
    is-polygon-split [a,z,b,c] 13
    a\not\in path-image (make-triangle z b c) \cup path-inside (make-triangle z b c)
    b\not\inpath-image (make-triangle a z c)\cup path-inside (make-triangle a z c)
```

```
        c \not\in path-image (make-triangle a b z) \cup path-inside (make-triangle a b z)
proof
    let ?q = make-polygonal-path [a,z,b,c,a]
    let ?cutpath = make-polygonal-path [a,z,b]
    let ?vts = [a,b,c,a]
    let ?l1 = linepath a z
    let ?12 = linepath z b
    let ?S = path-inside p\cup path-image p
    have convex (path-inside p)
    using triangle-is-convex assms(1,2) polygon-vts-not-collinear unfolding make-triangle-def
        by (simp add: polygon-of-def triangle-inside-is-convex-hull-interior)
    then have convex: convex (path-inside p \cup path-image p)
        using polygon-convex-iff assms(2) by simp
    then have frontier: frontier ?S = path-image p
    using convex-polygon-frontier-is-path-image3 by (simp add: assms(2) sup-commute)
    have interior: interior ?S = path-inside p
        by (metis Jordan-inside-outside-real2 closed-path-def <convex (path-inside p)〉
assms(2) closure-Un-frontier convex-interior-closure interior-open path-inside-def
polygon-def)
    have not-collinear: \neg collinear {a,b,z} ^\neg collinear {a,c,z} ^\neg collinear
{b,c,z}
    using triangle-interior-point-not-collinear-vertices assms(1) assms(2) assms(3)
by blast
    have }a=\mathrm{ pathstart ?cutpath }\wedgeb=\mathrm{ pathfinish ?cutpath by simp
moreover have a\not=b
    by (metis assms(1) assms(2) constant-linepath-is-not-loop-free make-polygonal-path.simps(4)
make-triangle-def not-loop-free-first-component polygon-def simple-path-def)
    moreover have polygon p by (simp add: assms(2))
    moreover have {a,b}\subseteq set ?vts by force
    moreover have simple-path ?cutpath
        by (simp add: insert-commute not-collinear not-collinear-loopfree-path sim-
ple-path-def)
    moreover have path-image ?cutpath \cap path-image p ={a,b}
    proof-
    have {a,b}\subseteq path-image ?cutpath \cap path-image p
            by (metis (no-types, lifting) Int-subset-iff Un-subset-iff assms(1) insert-is-Un
list.simps(15) make-triangle-def vertices-on-path-image)
    moreover have path-image ?cutpath \cap path-image p}\subseteq{a,b
    proof
            have z\in interior ?S using assms interior by fast
            moreover then have a\infrontier ?S }\wedgeb\in\mathrm{ frontier ?S
                    using vertices-on-path-image
                    using }\langle{a,b}\subseteq\mathrm{ path-image (make-polygonal-path [a,z,b]) }\cap\mathrm{ path-image p>
frontier by force
            moreover have closed?S using frontier frontier-subset-eq by auto
            ultimately have path-image ?l1 \cap path-image p ={a}^ path-image ?l2 }
```

path-image $p=\{b\}$
using triangle-3-split-helper convex frontier
by (metis (no-types, lifting) insert-commute path-image-linepath segment-convex-hull)
moreover have path-image ?cutpath $=$ path-image ?l1 \cup path-image ?12
by (metis list.discI make-polygonal-path.simps(3) nth-Cons-0 path-image-cons-union)
ultimately show ?thesis by blast
qed
ultimately show ?thesis by blast
qed
moreover have path-image ?cutpath \cap path-inside $p \neq\{ \}$
by (metis (no-types, opaque-lifting) Int-Un-distrib2 Un-absorb2 Un-empty assms(3)
insert-disjoint(2) list.simps(15) vertices-on-path-image)
ultimately have cutpath: is-polygon-cut-path ?vts?cutpath
using assms unfolding make-triangle-def is-polygon-cut-path-def by simp
thus 1: is-polygon-split-path $[a, b, c] 01[z]$
using polygon-cut-path-to-split-path assms(2) by (simp add: assms (1,2) make-triangle-def)
let $? l=$ linepath $z c$
let ?vts $=[a, z, b, c, a]$
have c-noton-cutpath: $c \notin$ path-image ?cutpath
by (smt (verit) UnE assms(1) assms(2) assms(3) in-path-image-imp-collinear
insert-commute make-polygonal-path.simps(3) neq-Nil-conv nth-Cons-0 path-image-cons-union triangle-interior-point-not-collinear-vertices)

```
have \(z \neq c\)
proof-
    have \(c \in\) path-image \(p\)
    by (metis assms(1) insert-subset list.simps(15) make-triangle-def vertices-on-path-image)
    moreover have path-image \(p \cap\) path-inside \(p=\{ \}\)
        by (simp add: disjoint-iff inside-def path-inside-def)
    ultimately show ?thesis using assms(3) by blast
qed
moreover have polygon- \(q\) : polygon ? \(q\)
    using 1 unfolding is-polygon-split-path-def
    by (smt (z3) One-nat-def append-Cons append-Nil diff-self-eq-0 drop0 drop-append
length-Cons length-drop length-greater-0-conv list.size(3) nth-Cons-0 nth-Cons-Suc
take-0)
    moreover have \(\{z, c\} \subseteq\) set ?vts by force
    moreover have \(l\) - \(q\)-int: path-image ?l \(\cap\) path-image ? \(q=\{z, c\}\)
    proof-
    have \(\{z, c\} \subseteq\) path-image \(? l \cap\) path-image \(? q\)
            by (metis (no-types, lifting) Int-subset-iff calculation(3) dual-order.trans
hull-subset path-image-linepath segment-convex-hull vertices-on-path-image)
    moreover
    \(\{\) fix \(x\)
        assume \(*: x \in\) path-image \(? l \cap\) path-image \(? q \wedge x \neq z \wedge x \neq c\)
        then have \(x \in\) path-image ? \(q\) by blast
```

then have $x \in$ path-image (linepath $a z$)
$\vee x \in$ path-image (linepath $z b$)
$\vee x \in$ path-image (linepath $b c$)
$\vee x \in$ path-image (linepath c a)
by (metis UnE list.discI make-polygonal-path.simps(3) nth-Cons-0 path-image-cons-union)
moreover
\{ assume $x \in$ path-image (linepath $a z$)
then have $x \in$ path-image (linepath $a z) \wedge x \in$ path-image (linepath $z c$) using $*$ by blast
moreover have $z \in$ path-image (linepath $a z) \wedge z \in$ path-image (linepath z
c) by simp
moreover have $x \neq z$ using $*$ by blast
ultimately have collinear $\{a, z, c\}$
by (smt (verit, best) collinear-3-trans in-path-image-imp-collinear in-sert-commute)
then have False using not-collinear by (simp add: insert-commute)
\} moreover
$\{$ assume $x \in$ path-image (linepath $z b$)
then have $x \in$ path-image (linepath $z b) \wedge x \in$ path-image (linepath $z c$) using * by blast
moreover have $z \in$ path-image (linepath $z b$) $\wedge z \in$ path-image (linepath z c) by simp
moreover have $x \neq z$ using $*$ by blast
ultimately have collinear $\{z, b, c\}$
by (smt (verit, best) collinear-3-trans in-path-image-imp-collinear in-sert-commute)
then have False using not-collinear by (simp add: insert-commute)
\} moreover
\{ assume $x \in$ path-image (linepath $b c$)
then have $x \in$ path-image (linepath $b c) \wedge x \in$ path-image (linepath $z c$) using * by blast
moreover have $c \in$ path-image (linepath $b c$) $\wedge z \in$ path-image (linepath z
c) by simp
moreover have $x \neq c$ using $*$ by blast
ultimately have collinear $\{b, z, c\}$
by (smt (verit, best) collinear-3-trans in-path-image-imp-collinear in-sert-commute)
then have False using not-collinear by (simp add: insert-commute)
\} moreover
\{ assume $x \in$ path-image (linepath c a)
then have $x \in$ path-image (linepath $c a) \wedge x \in$ path-image (linepath $z c$) using * by blast
moreover have $c \in$ path-image (linepath $c a$) $\wedge z \in$ path-image (linepath z
c) by simp
moreover have $x \neq c$ using $*$ by blast
ultimately have collinear $\{a, z, c\}$
by (smt (verit, best) collinear-3-trans in-path-image-imp-collinear in-sert-commute)
then have False using not-collinear by (simp add: insert-commute)

```
        }
        ultimately have False by blast
    }
        ultimately show ?thesis by blast
    qed
    moreover have path-image ?l \cap path-inside ?q # {}
    proof(rule ccontr)
    let ? p' = make-triangle a bz
    assume }\neg\mathrm{ path-image ?l }\cap\mathrm{ path-inside ? q }\not={
    then have path-image ?l \cap path-inside ? q = {} by blast
    then have *: rel-interior (path-image ?)}\cap\mathrm{ path-inside ? q = {}
        by (meson disjoint-iff rel-interior-subset subset-eq)
    have path-image ?l \ path-image p\cup path-inside p
    by (metis UnCI assms(1) assms(3) empty-subsetI hull-minimal insert-subset
list.simps(15) local.convex make-triangle-def path-image-linepath segment-convex-hull
sup-commute vertices-on-path-image)
    then have path-image ?l }\subseteq\mathrm{ convex hull {a,b,c}
    by (smt (verit, best) assms(1) convex-polygon-is-convex-hull cutpath empty-set
insertCI insert-absorb insert-commute is-polygon-cut-path-def list.simps(15) local.convex
make-triangle-def sup-commute)
    then have rel-interior (path-image ?l)\subseteq interior (convex hull {a,b,c})
    by (smt (verit, ccfv-threshold) Diff-disjoint IntE IntI Un-upper1 assms(1)
assms(2) assms(3) calculation(4) closure-Un-frontier convex-polygon-is-convex-hull
convex-segment(1) dual-order.trans empty-iff empty-set insertCI insert-absorb2 in-
sert-commute interior list.simps(15) local.convex make-triangle-def path-image-linepath
rel-frontier-def rel-interior-nonempty-interior subsetD subset-rel-interior-convex)
    then have rel-interior: rel-interior (path-image ?l) \subseteq path-inside p
    by (smt (verit, best) assms(1) convex-polygon-is-convex-hull cutpath empty-set
insertCI insert-absorb insert-commute interior is-polygon-cut-path-def list.simps(15)
local.convex make-triangle-def)
    have (let vts1 = [];vts2 = [];
    vts3=[c];x=a;y=b;
    cutpath = ?cutpath; p= make-polygonal-path ([a,b,c]@ [[a,b,c]!0]);
    p1 = make-polygonal-path (x # vts2 @ [y] @ rev [z]@ [x]);
    p2 = make-polygonal-path (vts1 @ ([x] @ [z] @ [y]) @ vts3 @ [[a,b,c]!
0]);
            c1 = make-polygonal-path (x # vts2 @ [y]); c2 = make-polygonal-path
(vts1@ ([x]@ [z]@ [y]) @ vts3)
    in is-polygon-cut-path ([a,b,c]@ @[a,b,c]!0]) ?cutpath ^
        polygon p}
        polygon p1 ^
        polygon p2 ^
        path-inside p1\cap path-inside p2 = {}^
            path-inside p1 \cup path-inside p2 \cup (path-image cutpath - {x,y})=
path-inside p ^
        (path-image p1 - path-image cutpath) \cap (path-image p2 - path-image
```


? cutpath $)=\{ \} \wedge$

path-image $p=$ path-image p1 - path-image ?cutpath $\cup($ path-image p2 -path-image ?cutpath) $\cup\{x, y\})$ using 1 unfolding is-polygon-split-path-def by fastforce
then have (let
$p=$ make-polygonal-path $([a, b, c] @[[a, b, c]!0])$;
$p 1=$ make-polygonal-path $(a \#[] @[b] @ \operatorname{rev}[z] @[a])$;
$p 2=$ make-polygonal-path ([] @ ([a]@ $[z]$ @ $[b]$) @ $[c] @[[a, b, c]!0]$)
in path-inside p1 \cup path-inside p2 $\cup($ path-image ?cutpath $-\{a, b\})=$ path-inside p
\wedge (path-image p1 - path-image ?cutpath $) \cap($ path-image p2 - path-image ?cutpath $)=\{ \}$)
by meson
moreover have ? $q=$ make-polygonal-path $([]$ @ ([a]@ $[z]$ @ $[b]$) @ $[c]$ @ $[[a$, $b, c]!0]$)
by simp
moreover have $? p^{\prime}=$ make-polygonal-path (a \# [] @ $[b] @ \operatorname{rev}[z] @[a]$)
unfolding make-triangle-def by simp
moreover have $p=$ make-polygonal-path $([a, b, c] @[[a, b, c]!0])$
unfolding assms make-triangle-def by auto
ultimately have path-inside-p: path-inside ? p^{\prime}
\cup path-inside ?q
$\cup($ path-image ?cutpath $-\{a, b\})=$ path-inside p
$\wedge\left(\right.$ path-image ? $p^{\prime}-$ path-image ?cutpath $) \cap($ path-image ? $q-$ path-image ?cutpath) $=\{ \}$
using 1 unfolding make-triangle-def is-polygon-split-path-def by metis
moreover have $a \in$ path-image ?cutpath $\wedge a \notin$ path-inside ? $p^{\prime} \cup$ path-inside $? q$
by (metis (no-types, lifting) UnI1 $\langle a=$ pathstart (make-polygonal-path
$[a, z, b]) \wedge b=$ pathfinish (make-polygonal-path $[a, z, b]$) > assms(1) assms(2) collinear-2 insert-absorb2 insert-commute path-inside-p pathstart-in-path-image tri-angle-interior-point-not-collinear-vertices-wlog-helper)
moreover have $b \in$ path-image ?cutpath $\wedge b \notin$ path-inside ? $p^{\prime} \cup$ path-inside ?q
by (metis UnI1 $\langle a=$ pathstart (make-polygonal-path $[a, z, b]) \wedge b=$ pathfinish (make-polygonal-path [a, z, b])> assms(1) assms(2) collinear-2 insert-absorb2 path-inside-p pathfinish-in-path-image triangle-interior-point-not-collinear-vertices-wlog-helper)
ultimately have rel-interior (path-image ?l) \subseteq
(path-inside ?p' - path-image ?cutpath)
$\cup($ path-image ?cutpath $-\{a, b\})$
using rel-interior $*$ by blast
then have rel-interior $\left(\right.$ path-image ?l) \subseteq path-inside ?p ${ }^{\prime} \cup$ path-image ?cutpath by blast
moreover have path-image ?cutpath \subseteq path-image ?p'

proof-

have path-image ?cutpath $=$ path-image (linepath a z) \cup path-image (linepath $z b)$
by (metis list.discI make-polygonal-path.simps(3) nth-Cons-0 path-image-cons-union)
moreover have path-image (linepath a z) $=$ path-image (linepath $z a)$
\wedge path-image $($ linepath $z b)=$ path-image $($ linepath $b z)$
by (simp add: insert-commute)
moreover have path-image (linepath z a) \subseteq path-image ? p^{\prime}
\wedge path-image (linepath $b z$) \subseteq path-image ? p^{\prime}
unfolding make-triangle-def
by (metis Un-commute Un-upper2 list.discI nth-Cons-0 path-image-cons-union sup.coboundedI2)
ultimately show?thesis by blast
qed
ultimately have rel-interior (path-image ?l) \subseteq path-inside $? p^{\prime} \cup$ path-image ? p^{\prime} by fast
then have rel-interior $($ path-image ?l) \subseteq convex hull $\{a, z, b\}$
unfolding make-triangle-def
by (simp add: insert-commute make-triangle-def not-collinear sup-commute triangle-convex-hull)
then have closure $($ rel-interior $($ path-image ?l) $) \subseteq$ closure $($ convex hull $\{a, z$, b\})
using closure-mono by blast
then have path-image ?l \subseteq convex hull $\{a, z, b\}$ by (simp add: convex-closure-rel-interior)
then have $c: c \in$ path-image ? $p^{\prime} \cup$ path-inside ? p^{\prime}
unfolding make-triangle-def
by (metis (no-types, lifting) IntE insertCI insert-commute l-q-int make-triangle-def not-collinear subsetD triangle-convex-hull)
moreover have $c \notin$ path-image ? p^{\prime}
proof -
have $c \in$ path-image ? q - path-image ?cutpath using c-noton-cutpath l-q-int by auto
moreover have (path-image ? $p^{\prime}-$ path-image ?cutpath $) \cap($ path-image ? $q-$ path-image ?cutpath $)=\{ \}$
using path-inside-p by fastforce
ultimately show ?thesis by blast
qed
moreover have $c \notin$ path-inside ? p^{\prime}
by (smt (verit, ccfv-threshold) DiffI IntD1 UnI1 UnI2 〈path-image (make-polygonal-path
$[a, z, b]) \cap$ path-image $p=\{a, b\}\rangle\langle p a t h-i m a g e($ make-polygonal-path $[a, z, b]) \subseteq$ path-image (make-triangle a b z) > assms(1) assms(2) calculation(2) collinear-2
in-mono insert-absorb2 path-inside-p triangle-interior-point-not-collinear-vertices)
ultimately show False by blast
qed
ultimately have cutpath: is-polygon-cut ?vts zc
using assms unfolding make-triangle-def is-polygon-cut-def by blast
thus 2: is-polygon-split [a,z,b,c] 13
using polygon-cut-to-split
by (metis One-nat-def append-Cons append-Nil diff-Suc-1 length-Cons length-greater-0-conv lessI list.discI list.size(3) nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 polygon-cut-to-split zero-less-diff)
let ?p1 $=$ make-triangle a $z c$
let ?p2 $=$ make-triangle $z b c$
let ?p3 $=$ make-triangle $a b z$
have $($ path-image ?p1 - path-image (linepath $z c)) \cap($ path-image ?p2 - path-image
$($ linepath $z c))=\{ \}$
using 2 unfolding make-triangle-def is-polygon-split-def
by $($ smt (z3) Int-commute One-nat-def Suc-1 append-Cons append-Nil diff-numeral-Suc
diff-zero drop0 drop-Suc-Cons nth-Cons-0 nth-Cons-Suc nth-Cons-numeral pred-numeral-simps(3) take0 take-Cons-numeral take-Suc-Cons)
moreover have $a \notin$ path-image (linepath $z c) \wedge b \notin$ path-image (linepath $z c$)
by (metis (no-types, lifting) assms(1) assms(2) assms(3) in-path-image-imp-collinear
insert-commute triangle-interior-point-not-collinear-vertices)
moreover have $a \in$ path-image ?p1 $\wedge b \in$ path-image ?p2
by (metis insert-subset list.simps(15) make-triangle-def vertices-on-path-image)
ultimately have $a \notin$ path-image ?p2 $\wedge b \notin$ path-image ?p1 by auto
moreover have $a \notin$ path-inside ?p2 $\wedge b \notin$ path-inside ?p1
proof-
have $a \notin$ path-inside p
by (metis (no-types, lifting) assms(1) assms(2) collinear-2 insertCI in-
sert-absorb triangle-interior-point-not-collinear-vertices)
moreover have $b \notin$ path-inside p
using assms(1) assms(2) triangle-interior-point-not-collinear-vertices-wlog-helper
by fastforce
moreover have path-inside ?p2 \subseteq path-inside ?q using 2 unfolding is-polygon-split-def
by (smt (z3) One-nat-def UnCI append-Cons diff-Suc-1 drop0 drop-Suc-Cons make-triangle-def nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 self-append-conv2 subsetI take0 take-Suc-Cons)
moreover have path-inside ?p1 \subseteq path-inside ?q
using 2 unfolding is-polygon-split-def
by (smt (z3) One-nat-def Un-assoc append-Cons diff-Suc-1 drop0 drop-Suc-Cons inf-sup-absorb le-iff-inf make-triangle-def nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 self-append-conv2 sup-commute take0 take-Suc-Cons)
moreover have path-inside ? $q \subseteq$ path-inside p
using 1 unfolding is-polygon-split-path-def
by (smt (z3) One-nat-def Un-subset-iff Un-upper1 append-Cons append-Nil assms(1) diff-zero drop0 drop-Suc-Cons make-triangle-def nth-Cons-0 nth-Cons-Suc take0)
ultimately show ?thesis by blast
qed
moreover show $a \notin$ path-image ?p2 \cup path-inside ?p2 using calculation by simp
ultimately show $b \notin$ path-image ?p1 \cup path-inside ?p1 by simp
have (path-image ?p3 - path-image ?cutpath) \cap (path-image ?q - path-image ?cutpath $)=\{ \}$
using 1 unfolding make-triangle-def is-polygon-split-path-def
by (smt (z3) One-nat-def append-Cons append-Nil diff-self-eq-0 diff-zero drop0 drop-Suc-Cons nth-Cons-0 nth-Cons-Suc rev-singleton-conv take-0)
moreover have $c \in$ path-image ? q using $l-q-i n t$ by auto
ultimately have $c \notin$ path-image ?p3 using c-noton-cutpath by blast
moreover have $c \notin$ path-inside ?p3
proof-
have $c \notin$ path-inside p
using assms(1) assms(2) triangle-interior-point-not-collinear-vertices by
fastforce
moreover have path-inside ?p3 \subseteq path-inside p
using 1 unfolding is-polygon-split-path-def
by (smt (z3) One-nat-def Un-assoc Un-upper1 append-Cons append-Nil
assms(1) diff-Suc-Suc diff-zero make-triangle-def nth-Cons-0 nth-Cons-Suc rev-singleton-conv
take0)
ultimately show ?thesis by blast
qed
ultimately show $c \notin$ path-image ?p3 \cup path-inside ?p3 by blast
qed
lemma smaller-triangle:
assumes \neg collinear $\{a, b, c\} \wedge \neg$ collinear $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$
assumes $p=$ make-triangle a $b c$
assumes $p^{\prime}=$ make-triangle $a^{\prime} b^{\prime} c^{\prime}$
assumes path-inside $p \subseteq$ path-inside p^{\prime}
assumes \exists d. integral-vec $d \wedge d \in$ path-image $p^{\prime} \cup$ path-inside $p^{\prime} \wedge d \notin$ path-image $p \cup$ path-inside p
shows card (integral-inside p) + card (integral-boundary p) $<$ card (integral-inside
$\left.p^{\prime}\right)+\operatorname{card}$ (integral-boundary p^{\prime})
proof-
have simple-path p using assms unfolding make-triangle-def
using assms(2) polygon-def triangle-is-polygon by presburger
then have finite-p: finite (integral-inside p) \wedge finite (integral-boundary p) using assms unfolding make-triangle-def
using integral-boundary integral-inside finite-integral-points-path-image finite-integral-points-path-inside by metis
have simple-path p^{\prime} using assms unfolding make-triangle-def
using assms (3) polygon-def triangle-is-polygon by presburger
then have finite- p^{\prime} : finite (integral-inside p^{\prime}) \wedge finite (integral-boundary p^{\prime}) using assms unfolding make-triangle-def
using integral-boundary integral-inside finite-integral-points-path-image finite-integral-points-path-inside by metis
have polygon p using assms $(1,2)$ triangle-is-polygon by blast
then have 1: (integral-inside $p) \cap($ integral-boundary $p)=\{ \}$
unfolding integral-inside integral-boundary using inside-outside-polygon un-
folding inside-outside-def by blast
have polygon p^{\prime} using assms $(1,3)$ triangle-is-polygon by blast
then have 2: (integral-inside $\left.p^{\prime}\right) \cap\left(\right.$ integral-boundary $\left.p^{\prime}\right)=\{ \}$
unfolding integral-inside integral-boundary using inside-outside-polygon un-
folding inside-outside-def by blast
have path-image-subset: path-image $p \subseteq$ path-image $p^{\prime} \cup$ path-inside p^{\prime} proof-
have p-frontier: path-image $p=$ frontier (convex hull $\{a, b, c\}$)
by (simp add: assms(1) assms(2) convex-polygon-frontier-is-path-image2 tri-angle-convex-hull triangle-is-convex triangle-is-polygon)
have p^{\prime}-frontier: path-image $p^{\prime}=$ frontier (convex hull $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$)
by (simp add: assms(1) assms(3) convex-polygon-frontier-is-path-image2 tri-angle-convex-hull triangle-is-convex triangle-is-polygon)
have p-interior: path-inside $p=$ interior (convex hull $\{a, b, c\}$)
by (simp add: bounded-convex-hull p-frontier inside-frontier-eq-interior path-inside-def)
have p^{\prime}-interior: path-inside $p^{\prime}=$ interior (convex hull $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$)
by (simp add: bounded-convex-hull p^{\prime}-frontier inside-frontier-eq-interior path-inside-def)
have interior (convex hull $\{a, b, c\}) \subseteq$ interior (convex hull $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$)
using assms p-interior p^{\prime}-interior by argo
moreover have compact (convex hull $\{a, b, c\}) \wedge$ compact (convex hull $\left\{a^{\prime}\right.$, $\left.\left.b^{\prime}, c^{\prime}\right\}\right)$
by (simp add: compact-convex-hull)
ultimately have frontier (convex hull $\{a, b, c\}$)
\subseteq interior $\left(\right.$ convex hull $\left.\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}\right) \cup$ frontier (convex hull $\left.\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}\right)$
by (smt (verit, ccfv-threshold) Jordan-inside-outside-real2 closed-path-def〈polygon $\left.p^{\prime}\right\rangle\langle p o l y g o n ~ p 〉 \operatorname{assms}(1) \operatorname{assms}(2)$ closure-Un closure-Un-frontier clo-sure-convex-hull finite.emptyI finite-imp-compact finite-insert p^{\prime}-frontier p^{\prime}-interior p-interior path-inside-def polygon-def subset-trans sup.absorb-iff1 sup-commute tri-angle-convex-hull)
then show ?thesis using p^{\prime}-frontier p^{\prime}-interior p-frontier by blast qed
have card $(($ integral-inside $p) \cup($ integral-boundary $p))=\operatorname{card}($ integral-inside $p)$ + card (integral-boundary p)
using 1 finite-p by (simp add: card-Un-disjoint)
moreover have card $\left(\left(\right.\right.$ integral-inside $\left.p^{\prime}\right) \cup\left(\right.$ integral-boundary $\left.\left.p^{\prime}\right)\right)=$ card $($ integral-inside $\left.p^{\prime}\right)+\operatorname{card}$ (integral-boundary $\left.p^{\prime}\right)$
using 2 finite- p^{\prime} by (simp add: card-Un-disjoint)
moreover have (integral-inside $p) \cup($ integral-boundary $p) \subseteq\left(\right.$ integral-inside $\left.p^{\prime}\right)$
\cup (integral-boundary p^{\prime})
using assms path-image-subset unfolding integral-inside integral-boundary by blast
moreover then have (integral-inside $p) \cup($ integral-boundary $p) \subset($ integral-inside
$\left.p^{\prime}\right) \cup\left(\right.$ integral-boundary $\left.p^{\prime}\right)$ using assms unfolding integral-inside integral-boundary by blast
ultimately show ?thesis by (metis finite-Un finite-p' psubset-card-mono)
qed
lemma pick-elem-triangle:
fixes $p:: R$-to- $R 2$
assumes p-triangle: $p=$ make-triangle $a b c$
assumes elem-triangle: elem-triangle a $b c$
assumes $I=$ card $\{x$. integral-vec $x \wedge x \in$ path-inside $p\}$ and
$B=$ card $\{x$. integral-vec $x \wedge x \in$ path-image $p\}$
shows measure lebesgue (path-inside p) $=I+B / 2-1$
proof -
have polygon-p: polygon p
using p-triangle triangle-is-polygon elem-triangle
unfolding elem-triangle-def by auto
then have path-inside $p \cap$ path-image $p=\{ \}$
using inside-outside-polygon[of p] unfolding inside-outside-def
by auto
let ? $p=$ polygon (make-polygonal-path $[a, b, c, a]$)
have a-neq-b: $a \neq b$
using elem-triangle unfolding elem-triangle-def
by auto
have b-neq-c: $b \neq c$
using elem-triangle unfolding elem-triangle-def
by auto
have $a-n e q-c: c \neq a$
using elem-triangle unfolding elem-triangle-def
using collinear-3-eq-affine-dependent by blast
have path-image $p \subseteq$ convex hull $\{a, b, c\}$
using triangle-path-image-subset-convex p-triangle by auto
then have
$\{x$. integral-vec $x \wedge x \in$ path-image $p\} \subseteq\{x$. integral-vec $x \wedge x \in$ convex hull $\{a, b, c\}\}$
by auto
also have $\ldots=\{a, b, c\}$
using elem-triangle unfolding elem-triangle-def by auto
finally have $\{x$. integral-vec $x \wedge x \in$ path-image $p\} \subseteq\{a, b, c\}$.
moreover have $\{x$. integral-vec $x \wedge x \in$ path-image $p\} \supseteq\{a, b, c\}$
by (smt (verit) Collect-mono-iff make-triangle-def $\vee\{x$. integral-vec $x \wedge x \in$ convex hull $\{a, b, c\}\}=\{a, b, c\}>$ empty-set insert-subset list.simps(15) mem-Collect-eq p-triangle subsetD vertices-on-path-image)
ultimately have $\{x$. integral-vec $x \wedge x \in$ path-image $p\}=\{a, b, c\}$ by auto
then have card-2: $B=3$
using a-neq-b b-neq-c a-neq-c assms(4)
by simp
have $\{x$. integral-vec $x \wedge x \in$ path-inside $p\}=\{ \}$
proof-
have path-inside $p \subseteq$ convex hull $\{a, b, c\}$
by (smt (verit, best) Diff-insert-absorb make-triangle-def convex-polygon-inside-is-convex-hull-interior empty-iff empty-set insert-Diff-single insert-commute interior-subset list.simps(15) p-triangle polygon-p elem-triangle elem-triangle-def triangle-is-convex)
then have
$\{x$. integral-vec $x \wedge x \in$ path-inside $p\} \subseteq\{x$. integral-vec $x \wedge x \in$ convex hull $\{a, b, c\}\}$
by auto
also have $\ldots=\{a, b, c\}$
using $\langle\{x$. integral-vec $x \wedge x \in$ convex hull $\{a, b, c\}\}=\{a, b, c\}\rangle$ by auto
finally have $\{x$. integral-vec $x \wedge x \in$ path-inside $p\} \subseteq\{a, b, c\}$.

moreover have

\{x. integral-vec $x \wedge x \in$ path-inside $p\} \cap\{x$. integral-vec $x \wedge x \in$ path-image $p\}=\{ \}$
using 〈path-inside $p \cap$ path-image $p=\{ \}$ 〉 by auto
ultimately show ?thesis
using $\langle\{x$. integral-vec $x \wedge x \in$ path-image $p\}=\{a, b, c\}\rangle$ by auto
qed
then have card-1: $I=0$
using assms(3)
by (metis card.empty)
have $I+B / 2-1=1 / 2$
using card-1 card-2 assms
by auto
then show?thesis
using elem-triangle-area-is-half[OF assms(2)] triangle-measure-convex-hull-measure-path-inside-same[OF $\operatorname{assms}(1) \operatorname{assms}(2)]$
by auto
qed
lemma pick-triangle-lemma:
fixes $p:: R$-to- $R 2$
assumes $p=$ make-triangle a $b c$ and all-integral $[a, b, c]$ and distinct $[a, b, c]$ and \neg collinear $\{a, b, c\}$
$I=$ card $\{x$. integral-vec $x \wedge x \in$ path-inside $p\}$ and $B=$ card $\{x$. integral-vec $x \wedge x \in$ path-image $p\}$
shows measure lebesgue (path-inside p) $=I+B / 2-1$
using assms
$\operatorname{proof}($ induction card $\{x$. integral-vec $x \wedge x \in$ path-inside $p\}+$ card $\{x$. integral-vec $x \wedge x \in$ path-image $p\}$ arbitrary: pabcIBrule:less-induct)

case less

have polygon-p: polygon p using triangle-is-polygon[OF less.prems(4)] less.prems(1)
by simp
then have polygon-of: polygon-of $p[a, b, c, a]$
unfolding polygon-of-def using less.prems(1) unfolding make-triangle-def by auto
have convex-hull-char: convex hull $\{a, b, c\}=$ path-inside $p \cup$ path-image p
using triangle-convex-hull[OF less.prems(1) less.prems(4)] by auto
then have interior-convex-hull: $\{x$. integral-vec $x \wedge x \in$ path-inside $p\} \cup\{x$. integral-vec $x \wedge x \in$ path-image $p\}=\{x \in$ convex hull $\{a, b, c\}$. integral-vec $x\}$ by auto
have vts-in-path-image: $a \in$ path-image $p \wedge b \in$ path-image $p \wedge c \in$ path-image
p
using assms(1) unfolding make-triangle-def using vertices-on-path-image by (metis (mono-tags, lifting) insertCI less.prems(1) list.simps(15) make-triangle-def subset-code(1))
have integral-vts: integral-vec $a \wedge$ integral-vec $b \wedge$ integral-vec c
using less.prems(2)
by (simp add: all-integral-def)
then have subset: $\{a, b, c\} \subseteq\{x$. integral-vec $x \wedge x \in$ path-image $p\}$
using vts-in-path-image integral-vts by simp
have finite-integral-on-path-im: finite $\{x$. integral-vec $x \wedge x \in$ path-image $p\}$
using finite-integral-points-path-image triangle-is-polygon[OF less.prems(4)]
unfolding make-triangle-def polygon-def
using less.prems(1) make-triangle-def by auto
have B-3-if: $B>3$ if other-point-in-set: $\{x$. integral-vec $x \wedge x \in$ path-image $p\}$ $\neq\{a, b, c\}$
proof -
have $\exists d . d \notin\{a, b, c\} \wedge d \in\{x$. integral-vec $x \wedge x \in$ path-image $p\}$ using other-point-in-set subset
by blast
then obtain d where d-prop: $d \notin\{a, b, c\} \wedge d \in\{x$. integral-vec $x \wedge x \in$ path-image $p\}$ by auto
then have subset2: $\{a, b, c, d\} \subseteq\{x$. integral-vec $x \wedge x \in$ path-image $p\}$ using d-prop subset by auto
have distinct $[a, b, c, d]$ using d-prop using less.prems(3) by auto
then have card-is: card $\{a, b, c, d\}=4$ by simp
show ?thesis using subset2 card-is finite-integral-on-path-im by (metis (no-types, lifting) Suc-le-eq card-mono eval-nat-numeral(2) less.prems(6) semiring-norm(26) semiring-norm(27))
qed
\{ assume $*: I=0$
have finite $\{x$. integral-vec $x \wedge x \in$ path-inside $p\}$
using finite-integral-points-path-inside triangle-is-polygon[OF less.prems(4)] unfolding make-triangle-def
by (simp add: less.prems(1) make-triangle-def polygon-def)
then have empty-inside: $\{x$. integral-vec $x \wedge x \in$ path-inside $p\}=\{ \}$ using $*$ less.prems(5) by auto
$\{$ assume $* *: B=3$
have $\{x \in$ convex hull $\{a, b, c\}$. integral-vec $x\}=\{a, b, c\}$
using $* * *$ less.prems $(5-6) B$-3-if interior-convex-hull empty-inside by blast
then have elem-triangle $a b c$
unfolding elem-triangle-def using less.prems(4) integral-vts by simp then have measure lebesgue (path-inside p) $=I+B / 2-1$
using pick-elem-triangle less.prems by auto \}

moreover

\{ assume $*: B>3$
then obtain d where d : integral-vec $d \wedge d \in$ path-image $p \wedge d \notin\{a, b, c\}$
by (smt (verit, del-insts) subset finite-integral-on-path-im less.prems(3) card-3-iff collinear-3-eq-affine-dependent less.prems(4) less.prems(6) less-not-refl mem-Collect-eq subsetI subset-antisym)
have path-image (make-polygonal-path $[a, b, c, a])=$ path-image (linepath a b) \cup path-image (linepath $b c) \cup$ path-image (linepath ca)
by (metis (no-types, lifting) list.discI make-polygonal-path.simps(3) nth-Cons-0 path-image-cons-union sup-assoc)
then have $d \in$ path-image (linepath a b)
$\vee d \in$ path-image (linepath $b c$)
$\vee d \in$ path-image (linepath ca)
using d less.prems(1) unfolding make-triangle-def polygon-of-def
by blast
then have measure lebesgue (path-inside p) $=I+B / 2-1$
using pick-triangle-helper less.prems less.hyps empty-inside d
unfolding pick-holds pick-triangle integral-inside integral-boundary
apply simp by blast
\}
ultimately have measure lebesgue (path-inside p) $=I+B / 2-1$
using B-3-if
by (metis (no-types, lifting) card.empty card-insert-disjoint collinear-2 finite.emptyI finite.insertI insert-absorb less.prems(4) less.prems(6) numeral-3-eq-3) \}

moreover

\{ assume $*: I>0$
then obtain d where d-inside: integral-vec $d \wedge d \in$ path-inside p using less.prems(5)
by (metis (mono-tags, lifting) Collect-empty-eq add-0 canonically-ordered-monoid-add-class.lessE card-0-eq card-ge-0-finite)
have $a \in$ path-image p
using vertices-on-path-image polygon-of unfolding polygon-of-def by fastforce
then have a-inset: $a \in$ path-inside $p \cup$ path-image p
by fastforce
have convex-hull-set: convex hull set $[a, b, c, a]=$ path-inside $p \cup$ path-image p
using convex-hull-char
by (simp add: insert-commute)
then have ad-linepath-inside: path-image (linepath a d) \subseteq path-inside $p \cup$ path-image p
using d-inside convex-polygon-means-linepaths-inside[OF polygon-of con-vex-hull-set a-inset]
by blast
have $b \in$ path-image p
using vertices-on-path-image polygon-of unfolding polygon-of-def by fastforce
then have b-inset: $b \in$ path-inside $p \cup$ path-image p

```
        by fastforce
    have bd-linepath-inside: path-image (linepath b d)\subseteq path-inside p}\cup\mathrm{ path-image
p
            using d-inside convex-polygon-means-linepaths-inside[OF polygon-of con-
vex-hull-set b-inset]
    by blast
    have c\in path-image p
    using vertices-on-path-image polygon-of unfolding polygon-of-def by fastforce
    then have c-inset: c\in path-inside p\cup path-image p
    by fastforce
    then have cd-linepath-inside: path-image (linepath c d) \subseteq path-inside p}
path-image p
            using d-inside convex-hull-char convex-polygon-means-linepaths-inside[OF
polygon-of convex-hull-set c-inset]
    by blast
    let ?p1 = make-triangle a d c
    let ?p2 = make-triangle d bc
    let ?p3 = make-triangle a bd
    have triangle-split:
            is-polygon-split-path [a,b,c] 0 1 [d]
            is-polygon-split [a,d,b,c] 13
            a\not\in path-image ?p2 \cup path-inside ?p2
            b\not\in path-image ?p1 \cup path-inside ?p1
            c\not\in path-image ?p3 \cup path-inside ?p3
    using triangle-3-split[of p a b c d] less.prems d-inside polygon-p apply fastforce
    using triangle-3-split[of p ablcl] less.prems d-inside polygon-p apply fastforce
    using triangle-3-split[of p a b c d] less.prems d-inside polygon-p apply fastforce
    using triangle-3-split[of pabccd] less.prems d-inside polygon-p apply fastforce
    using triangle-3-split[of p
    let ?q = make-polygonal-path [a,d, b, c,a]
    let ?I1 = card (integral-inside ?p1)
    let ?B1 = card (integral-boundary ?p1)
    let ?I2 = card (integral-inside ?p2)
    let ?B2 = card (integral-boundary ?p2)
    let ?I3 = card (integral-inside ?p3)
    let ?B3 = card (integral-boundary ?p3)
    let ?Iq = card (integral-inside ?q)
    let ? Bq= card (integral-boundary ?q)
    have measure lebesgue (path-inside ?p1) =?I1 + ?B1/2 - 1
    proof-
    have path-inside ?p1 \subseteq path-inside ?q
        using triangle-split(2) unfolding is-polygon-split-def
            by (smt (z3) One-nat-def Un-assoc Un-upper1 append-Cons append-Nil
diff-Suc-Suc diff-zero drop0 drop-Suc-Cons make-triangle-def nth-Cons-0 nth-Cons-Suc
numeral-3-eq-3 sup-commute take0 take-Suc-Cons)
    moreover have path-inside ?q}\subseteq\mathrm{ path-inside p
```

using triangle-split(1) unfolding is-polygon-split-path-def
by (smt (z3) One-nat-def Un-assoc Un-subset-iff append-Cons append-Nil diff-zero drop0 drop-Suc-Cons less.prems(1) make-triangle-def nth-Cons-0 nth-Cons-Suc sup.cobounded2 take0)
ultimately have path-inside ?p1 \subseteq path-inside p by blast
moreover have \neg collinear $\{a, d, c\}$
by (metis d-inside insert-commute less.prems (1) polygon-p triangle-interior-point-not-collinear-vertices)
moreover have \neg collinear $\{a, b, c\}$ by (simp add: less.prems(4))
moreover have integral-vec b
using integral-vts by blast
moreover have $b \in$ path-image p
using vts-in-path-image by auto
ultimately have card (integral-inside ?p1) + card (integral-boundary ?p1)
$<\operatorname{card}$ (integral-inside p) + card (integral-boundary p)

less-imp-le-nat
by blast
thus ?thesis
using less.hyps $\left[o f\right.$? p1 a $\left.\begin{array}{lll} & d\end{array}\right]$ unfolding integral-inside integral-boundary
using $\langle\neg$ collinear $\{a, d, c\}$ 〉 all-integral-def d-inside integral-vts less.prems (1)
less.prems(3) triangle-split(3) triangle-split(5)
by fastforce
qed
moreover have measure lebesgue (path-inside ?p2) $=$? I2 + ?B2/2 -1
proof-
have path-inside ?p2 \subseteq path-inside ?q
using triangle-split(2) unfolding is-polygon-split-def
by (smt (z3) One-nat-def Un-assoc Un-upper1 append-Cons append-Nil diff-Suc-Suc diff-zero drop0 drop-Suc-Cons make-triangle-def nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 sup-commute take (take-Suc-Cons)
moreover have path-inside ? $q \subseteq$ path-inside p
using triangle-split(1) unfolding is-polygon-split-path-def
by (smt (z3) One-nat-def Un-assoc Un-subset-iff append-Cons append-Nil diff-zero drop 0 drop-Suc-Cons less.prems(1) make-triangle-def nth-Cons-0 nth-Cons-Suc sup.cobounded2 take0)
ultimately have path-inside ?p2 \subseteq path-inside p by blast
moreover have \neg collinear $\{d, b, c\}$
by (metis d-inside insert-commute less.prems(1) polygon-p triangle-interior-point-not-collinear-vertices)
moreover have \neg collinear $\{a, b, c\}$ by (simp add: less.prems(4))
moreover have integral-vec a
using integral-vts by blast
moreover have $a \in$ path-image p
using vts-in-path-image by auto
ultimately have card (integral-inside ?p2) + card (integral-boundary ?p2)
$<\operatorname{card}$ (integral-inside p) + card (integral-boundary p)

less-imp-le-nat
by blast
thus ?thesis
using less.hyps $[o f$? p2 $d b c]$ unfolding integral-inside integral-boundary
using $\langle\neg$ collinear $\{d, b, c\}$ 〉 all-integral-def d-inside integral-vts less.prems (1)
less.prems(3) triangle-split(3) triangle-split(5)
by fastforce
qed
moreover have measure lebesgue (path-inside ?p3) =?I3 + ?B3/2 - 1
proof -
have path-inside ?p3 \subseteq path-inside p
using triangle-split(1) unfolding is-polygon-split-path-def
by (smt (z3) One-nat-def Un-assoc Un-upper1 append-Cons append-Nil diff-Suc-Suc diff-zero less.prems(1) make-triangle-def nth-Cons-0 nth-Cons-Suc rev-singleton-conv take0)
moreover have \neg collinear $\{a, b, d\}$
by (metis d-inside less.prems(1) polygon-p triangle-interior-point-not-collinear-vertices)
moreover have \neg collinear $\{a, b, c\}$ by (simp add: less.prems(4))
moreover have integral-vec c
using integral-vts by blast
moreover have $c \in$ path-image p
using vts-in-path-image by auto
ultimately have card (integral-inside ?p3) + card (integral-boundary ?p3)
$<$ card (integral-inside p) + card (integral-boundary p)
using smaller-triangle[of $a b d a b c$?p3 p] triangle-split(5) less.prems(1)
less-imp-le-nat
by blast
thus ?thesis
using less.hyps $[o f$?p3 $a b d]$ unfolding integral-inside integral-boundary
using $\langle\neg$ collinear $\{a, b, d\}$ 〉 all-integral-def d-inside integral-vts less.prems(1)
less.prems(3) triangle-split(3) triangle-split(5)
by fastforce
qed
moreover have measure lebesgue (path-inside ?q) $=$? $I q+$?Bq/2 -1
using pick-split-union[OF triangle-split(2),
of $[a][b][] d c$? q ?p2 ?p1 ?I2 ?B2 ?I1 ?B1 ?Iq ?Bq]
using calculation
unfolding integral-inside integral-boundary make-triangle-def
using all-integral-def d-inside less.prems(2) by force
ultimately have ?case
using pick-split-path-union[OF triangle-split(1),
of [] [] [c] a b make-polygonal-path ($a \neq[d]$ @ [b]) p ?p3 ?q ?I3 ?B3 ?Iq
? $B q I B]$
unfolding integral-inside integral-boundary make-triangle-def less.prems
using less.prems(2) by force
\}
ultimately show ?case by blast
qed

29.2 Pocket properties

definition index-not-in-set :: (real^2) list \Rightarrow (real^2) set \Rightarrow nat \Rightarrow bool
where index-not-in-set vts $A i \longleftrightarrow i \in\{i . i<$ length vts $\wedge v t s!i \notin A\}$
definition min-index-not-in-set:: (real^2) list \Rightarrow (real^2) set \Rightarrow nat where min-index-not-in-set vts $A=(L E A S T$ i. index-not-in-set vts $A i)$
definition nonzero-index-in-set $::$ (real^2) list \Rightarrow (real^2) set \Rightarrow nat \Rightarrow bool where nonzero-index-in-set vts $A i \longleftrightarrow i \in\{i .0<i \wedge i<$ length vts $\wedge v t s!i \in A\}$
definition min-nonzero-index-in-set $::$ (real^2) list \Rightarrow (real^2) set \Rightarrow nat where min-nonzero-index-in-set vts $A=($ LEAST i. nonzero-index-in-set vts A i)
definition construct-pocket-0 :: (real^2) list \Rightarrow (real^2) set \Rightarrow (real^2) list where construct-pocket-0 vts $A=$ take ($($ min-nonzero-index-in-set vts $A)+1)$ vts
definition is-pocket-0 :: (real^2) list \Rightarrow (real^2) list \Rightarrow bool where
is-pocket-0 vts vts ${ }^{\prime} \longleftrightarrow$
polygon (make-polygonal-path vts)
$\wedge\left(\exists i . v t s^{\prime}=\right.$ take $\left.i v t s\right)$
$\wedge 3 \leq$ length vts ${ }^{\prime} \wedge$ length vts ${ }^{\prime}<$ length vts
$\wedge h d v t s^{\prime} \in$ frontier $\left(\right.$ convex hull (set vts)) \wedge last vts ${ }^{\prime} \in$ frontier (convex hull (set vts))
$\wedge \operatorname{set}(t l($ butlast vts'$)) \subseteq$ interior $($ convex hull (set vts))
definition fill-pocket-0 :: (real^2) list \Rightarrow nat \Rightarrow (real^2) list where fill-pocket-0 vts $i=(h d v t s) \#(d r o p(i-1) v t s)$
lemma min-nonzero-index-in-set-exists:
assumes set (tl vts) $\cap A \neq\{ \}$
shows $\exists i$. nonzero-index-in-set vts $A i$
proof-
obtain v where $v: v \in A \cap$ set ($t l v t s$) using assms by blast
then obtain i where ($t l v t s$)! $i=v \wedge i<$ length ($t l v t s$) by (meson IntD2 in-set-conv-nth)
then obtain j where $v t s!j=v \wedge 0<j \wedge j<$ length vts using $n t h-t l$ by fastforce thus ?thesis unfolding nonzero-index-in-set-def using v by blast
qed
lemma min-nonzero-index-in-set-defined:
assumes set (tl vts) $\cap A \neq\{ \}$
defines $i \equiv$ min-nonzero-index-in-set vts A
shows nonzero-index-in-set vts $A i \wedge(\forall j<i$. \neg nonzero-index-in-set vts $A j)$
proof-
have $\exists i$. nonzero-index-in-set vts $A i$ using assms min-nonzero-index-in-set-exists by blast
then have nonzero-index-in-set vts A i
using assms unfolding min-nonzero-index-in-set-def
using LeastI-ex by blast
moreover have $(\forall j<i$. \neg nonzero-index-in-set vts $A j$)
by (metis assms(2) wellorder-Least-lemma(2) leD min-nonzero-index-in-set-def) ultimately show ?thesis by blast
qed
lemma min-index-not-in-set-exists:
assumes set vts $\supset A$
shows $\exists i$. index-not-in-set vts $A i$
proof-
obtain v where $v \in$ set vts $\wedge v \notin A$ using assms by blast
then obtain i where $i<$ length vts $\wedge v t s!i \notin A$ by (metis in-set-conv-nth)
thus ?thesis unfolding index-not-in-set-def by blast qed
lemma min-index-not-in-set-defined:
assumes set vts $\supset A$
defines $i \equiv$ min-index-not-in-set vts A
shows index-not-in-set vts $A i \wedge(\forall j<i . \neg$ index-not-in-set vts $A j)$
proof-
have $\exists i$. index-not-in-set vts $A i$ using assms min-index-not-in-set-exists by simp
then have index-not-in-set vts $A i$
using assms unfolding min-index-not-in-set-def
using LeastI-ex by blast
moreover have $(\forall j<i$. \neg index-not-in-set vts $A j$)
by (metis assms(2) wellorder-Least-lemma(2) leD min-index-not-in-set-def)
ultimately show ?thesis by blast
qed
lemma min-nonzero-index-in-set-bound:
assumes set (tl vts) $\cap A \neq\{ \}$
shows min-nonzero-index-in-set vts $A<$ length vts
using min-nonzero-index-in-set-defined assms unfolding nonzero-index-in-set-def by blast
lemma construct-pocket-0-subset-vts:
assumes set (tl vts) $\cap A \neq\{ \}$
shows set (construct-pocket-0 vts A) \subseteq set vts
proof-
let $? i=\min$-nonzero-index-in-set vts A
have nonzero-index-in-set vts A ?i using min-nonzero-index-in-set-defined assms by presburger
then have ?i < length vts unfolding nonzero-index-in-set-def by blast
thus ?thesis unfolding construct-pocket-0-def by (simp add: set-take-subset)
qed
lemma min-index-not-in-set-0:
assumes set vts $\supset A$

```
    assumes vts!0 \in A
    defines }i\equiv\mathrm{ min-index-not-in-set vts A
    defines r\equivi-1
    shows vts!r \inA
proof-
    have *: index-not-in-set vts A i}\wedge(\forallj<i.\neg index-not-in-set vts A j)
    using min-index-not-in-set-defined[of A vts, OF assms(1)] unfolding i-def by
blast
    moreover then have r<i
        unfolding r-def i-def min-index-not-in-set-def index-not-in-set-def
    by (metis (no-types, lifting) assms(2) bot-nat-0.not-eq-extremum diff-less mem-Collect-eq
zero-less-one)
    ultimately have }\neg\mathrm{ index-not-in-set vts A r by blast
    thus ?thesis
    unfolding index-not-in-set-def using assms * index-not-in-set-def less-imp-diff-less
by force
qed
lemma construct-pocket-0-last-in-set:
    assumes set (tl vts)\capA\not={}
    assumes vts!0 \in A
    defines p\equiv construct-pocket-0 vts A
    shows last p\inA
proof
    let ?i = min-nonzero-index-in-set vts A
    have *: nonzero-index-in-set vts A ?i using assms(1) min-nonzero-index-in-set-defined
by blast
    then have length p = min-nonzero-index-in-set vts A+1
            unfolding p-def construct-pocket-0-def nonzero-index-in-set-def by simp
    then have last p=p!?i
    by (metis add-diff-cancel-right' last-conv-nth length-0-conv zero-eq-add-iff-both-eq-0
zero-neq-one)
    also have ... = vts!?i
            unfolding p-def construct-pocket-0-def by simp
    also have ... \inA using * unfolding nonzero-index-in-set-def by force
    finally show ?thesis .
qed
lemma construct-pocket-0-first-last-distinct:
    assumes card A\geq2
    assumes A\subseteq set vts
    assumes distinct (butlast vts)
    assumes hd vts = last vts
    shows hd (construct-pocket-0 vts A) = last (construct-pocket-0 vts A)
proof-
    let ?n = min-nonzero-index-in-set vts A
    have set (tl vts) \capA\not={}
    by (metis (no-types, lifting) Diff-cancel Int-commute Int-insert-right-if1 Nat.le-diff-conv2
Suc-1 add-leD1 assms(1) assms(2) card.empty card-Diff-singleton inf.orderE list.collapse
```

list.sel(2) list.set(2) not-one-le-zero plus-1-eq-Suc subset-insert)
then have n-defined: nonzero-index-in-set vts A ? $n \wedge(\forall j<? n$. \neg nonzero-index-in-set vts $A j$)
using min-nonzero-index-in-set-defined by presburger
obtain $a b$ where $a b: a \neq b \wedge\{a, b\} \subseteq A$ by (metis assms(1) card-2-iff ex-card)
then obtain $i j$ where $i j: v t s!i=a \wedge v t s!j=b \wedge i<$ length vts $\wedge j<$ length $v t s \wedge i \neq j$
by (metis (no-types, opaque-lifting) assms(2) in-set-conv-nth insert-subset subsetD)

```
have ?thesis if \(*:\) ? \(n<\) length vts -1
proof-
    have \({ }^{2} n>0\) using \(n\)-defined unfolding nonzero-index-in-set-def by blast
    then have \(n\)-bound \({ }^{\prime}: ~ ? n>0 \wedge ? n<\) length (butlast vts) using \(*\) by fastforce
    then have \(h d\) vts \(\neq v t s!? n\)
                by (metis assms(3) distinct-Ex1 hd-conv-nth ij in-set-conv-nth length-0-conv
length-pos-if-in-set less-nat-zero-code nth-butlast)
    moreover then have vts! ? \(n \neq\) last vts using assms(4) by simp
    moreover have last (construct-pocket-0 vts A) \(=\) vts!?n
        using \(n\)-defined
        unfolding construct-pocket-0-def
        by (metis Cons-nth-drop-Suc Suc-eq-plus1 n-bound' * last-snoc less-diff-conv
list.sel(1) nth-butlast take-butlast take-hd-drop)
    moreover have \(h d\) (construct-pocket- 0 vts \(A\) ) \(=h d\) vts
        unfolding construct-pocket-0-def by force
    ultimately show ?thesis by presburger
qed
moreover have ?thesis if \(*: ? n=\) length vts - 1
proof-
    have \(\{i, j\} \subseteq\{i . i<\) length vts \(\wedge v t s!i \in A\}\) using \(i j a b\) by simp
    moreover have \(i \neq 0 \vee j \neq 0\) using \(i j\) by argo
    ultimately have nonzero-index-in-set vts \(A i \vee\) nonzero-index-in-set vts \(A j\)
        unfolding nonzero-index-in-set-def by simp
    then have ? \(n=i \vee ? n=j\)
            by (metis \(n\)-defined Suc-diff-1 gr-implies-not-zero ij linorder-cases not-less-eq
*)
    moreover then have last (construct-pocket-0 vts A) \(=\) vts!?n
    by (metis Suc-eq-plus1 construct-pocket-0-def hd-drop-conv-nth ij snoc-eq-iff-butlast
take-hd-drop)
    ultimately show ?thesis
    by (metis (no-types, lifting) ij ab Suc-eq-plus1 assms(4) bot-nat-0.not-eq-extremum
hd-conv-nth insert-subset last-conv-nth less-diff-conv list.size(3) mem-Collect-eq n-defined
nat-neq-iff nonzero-index-in-set-def not-less-eq that)
    qed
    ultimately show ?thesis using \(n\)-defined unfolding nonzero-index-in-set-def
by fastforce
qed
lemma construct-pocket-is-pocket:
```

assumes polygon (make-polygonal-path vts)
assumes vts $!0 \in$ frontier (convex hull (set vts))
assumes vts! $1 \notin$ frontier (convex hull (set vts))
shows is-pocket-0 vts (construct-pocket-0 vts (set vts \cap frontier (convex hull (set vts))))
proof-
let ?vts ${ }^{\prime}=$ construct-pocket-0 vts (set vts \cap frontier (convex hull (set vts)))
have ex-i: $\exists i$. ?vts' $=$ take i vts unfolding construct-pocket- 0 -def by blast
moreover have $3 \leq$ length ?vts'
by (smt (verit) Cons-nth-drop-Suc IntI Int-iff One-nat-def Suc-1 Suc-diff-Suc Suc-lessI add-diff-cancel-right' add-gr-0 append-Nil2 assms(1) assms(2) assms(3) butlast.simps(1) butlast.simps(2) butlast-conv-take calculation cancel-comm-monoid-add-class.diff-cancel card.empty construct-pocket-0-def construct-pocket-0-first-last-distinct construct-pocket-0-last-in-set convex-hull-two-vts-on-frontier diff-diff-cancel diff-is-0-eq diff-is-0-eq' drop0 empty-iff empty-set have-wraparound-vertex hd-conv-nth hd-drop-conv-nth hd-take id-take-nth-drop last.simps last-conv-nth last-drop last-in-set last-snoc leI le-add2 le-numeral-extra(4) le-trans length-0-conv length-greater-0-conv length-take length-tl length-upt less-2-cases less-numeral-extra (1) less-numeral-extra (3) linorder-not-less list.distinct(1) list.sel(2) list.sel(3) list.size(3) min.absorb4 not-gr-zero not-less-eq-eq not-numeral-le-zero nth-mem numeral-3-eq-3 plus-1-eq-Suc polygon-at-least-3-vertices polygon-at-least-3-vertices-wraparound polygon-def pos2 rev.simps(1) self-append-conv2 simple-polygonal-path-vts-distinct snoc-eq-iff-butlast subset-iff take-all-iff take-eq-Nil take-hd-drop)
moreover have vts'-length: length ?vts' < length vts
by (metis (no-types, lifting) One-nat-def Suc-1 assms(1) calculation(1) calculation(2) construct-pocket-0-first-last-distinct convex-hull-two-vts-on-frontier have-wraparound-vertex hd-conv-nth inf-le1 last-snoc leI le-add2 le-trans length-take min.absorb4 not-numeral-le-zero numeral-3-eq-3 plus-1-eq-Suc polygon-at-least-3-vertices polygon-def simple-polygonal-path-vts-distinct take-all-iff take-eq-Nil)
moreover have $h d$? vts ${ }^{\prime} \in$ frontier (convex hull (set vts))
by (metis assms(2) bot-nat-0.not-eq-extremum calculation(1) calculation(2)
hd-conv-nth hd-take list.size(3) not-numeral-le-zero take-eq-Nil)
moreover have last ?vts' \in frontier (convex hull (set vts))
by (smt (verit, ccfv-SIG) Cons-nth-drop-Suc Int-iff assms(1) assms(2) card-length
construct-pocket-0-last-in-set drop0 drop-eq-Nil empty-iff have-wraparound-vertex
last-drop last-in-set le-add2 le-trans linorder-not-less list.sel(3) list.simps(15) not-less-eq-eq
numeral-3-eq-3 plus-1-eq-Suc polygon-at-least-3-vertices snoc-eq-iff-butlast)
moreover have set ($t l$ (butlast ?vts' $)$) \subseteq interior (convex hull (set vts))
proof-
let $? A=($ set vts \cap frontier $($ convex hull (set vts $))$)
let $? r=$ min-nonzero-index-in-set vts $? A$
have nonzero-index-in-set vts?A ?r
$\wedge(\forall j<\min -n o n z e r o-i n d e x-i n-s e t ~ v t s ? A . \neg$ nonzero-index-in-set vts ?A $j)$
by (metis min-nonzero-index-in-set-defined IntI Nitpick.size-list-simp(2) One-nat-def add-leD1 assms(1) assms(2) calculation(2) calculation(3) empty-iff empty-set have-wraparound-vertex last-in-set last-snoc last-tl less-one not-one-le-zero nth-mem numeral-3-eq-3 plus-1-eq-Suc)
then have $\forall i .(0<i \wedge i<? r) \longrightarrow v t s!i \notin ? A$ unfolding nonzero-index-in-set-def by force
then have $\forall i .(0<i \wedge i<? r) \longrightarrow v t s!i \notin$ frontier (convex hull (set vts))
using calculation(3) construct-pocket-0-def by fastforce

```
    then have }\foralli.(0<i\wedgei<?r)\longrightarrowvts!i\in interior (convex hull (set vts)
    by (smt (verit, ccfv-threshold) Cons-nth-drop-Suc DiffI IntI One-nat-def
add-leD1 assms(1) assms(2) calculation(2) calculation(3) closure-subset drop0 dual-order.strict-trans2
empty-iff frontier-def have-wraparound-vertex hull-subset inf.strict-coboundedI2 inf.strict-order-iff
last-drop last-in-set last-snoc length-greater-0-conv list.discI list.sel(3) min-nonzero-index-in-set-bound
nth-mem numeral-3-eq-3 plus-1-eq-Suc subset-eq)
    moreover have tl (butlast ?vts') = drop 1 (take ?r vts)
            unfolding construct-pocket-0-def
    by (metis One-nat-def add-implies-diff antisym-conv2 butlast-take construct-pocket-0-def
drop-0 drop-Suc linorder-le-cases take-all vts'-length)
    moreover have }\forallv\in\operatorname{set}(drop1 (take ?r vts)). \existsi.0<i\wedgei<?r ^vts! i
v
    proof
    fix v assume *: v\in set (drop 1 (take ?r vts))
    then obtain }\mp@subsup{i}{}{\prime}\mathrm{ where }\mp@subsup{i}{}{\prime}:(\mathrm{ drop 1 (take ?r vts))!'' = v ^ i'< ?r - 1
            by (smt (z3) Cons-nth-drop-Suc One-nat-def ex-i butlast-conv-take cal-
culation(2) drop0 hd-conv-nth hd-take index-less-size-conv length-drop length-take
less-imp-le-nat linorder-not-less list.collapse list.sel(2) min.absorb4 nth-index take-all-iff
take-eq-Nil vts'-length)
            then have (take ?r vts)!( }\mp@subsup{i}{}{\prime}+1)=
            by (metis * add.commute drop-eq-Nil empty-iff empty-set nle-le nth-drop)
            thus \existsi. 0<i^i<? ? }\wedgevts!i=
            by (metis add-gr-0 i' less-diff-conv nth-take zero-less-one)
    qed
    ultimately show ?thesis by fastforce
    qed
    ultimately show ?thesis unfolding is-pocket-0-def using assms(1) by argo
qed
lemma exists-point-above-interior:
    fixes a :: real^2
    assumes a interior (convex hull S)
    obtains }x\mathrm{ where }x\inS\wedgex$2>a$
proof-
    have False if }\forallx\inS.x$2\leqa$
    proof-
        have S\subseteq{x.x\cdot(vector [0,1])\leqa$2}
        proof(rule subsetI)
            fix }
            assume }x\in
            then have }x$2\leqa$2\mathrm{ using that by blast
            moreover have x • (vector [0, 1]) = x$1*0 + x$2 * 1
                    by (simp add: cart-eq-inner-axis e1e2-basis(3))
                    ultimately show }x\in{x.x\cdot(vector [0,1])\leqa$2} by sim
        qed
        then have *: convex hull S\subseteq{x.x \cdot(vector [0, 1]) \leqa$2}
        proof
            have S\subseteq{v. vector [0, 1] v val$2}
```

```
            by (simp add: <S\subseteq{x.x - vector [0, 1]\leqa $ 2}> inner-commute)
            then have convex hull S\subseteq{v. vector [0,1] • v\leqa$2}
            by (simp add: convex-halfspace-le hull-minimal)
            then show ?thesis
                by (simp add: inner-commute)
    qed
                            moreover have a \cdot(vector [0, 1]) =a$2 by (simp add: cart-eq-inner-axis
e1e2-basis(3))
    moreover have frontier {x.x • ((vector [0,1])::(real^2)) \leqa$2}
```



```
            using frontier-halfspace-le[of (vector [0, 1])::(real^2) a$2]
            by (smt (verit) Collect-cong inner-commute vector-2(2) zero-index)
    ultimately have a\infrontier {x.x • (vector [0, 1]) \leqa$2 } by blast
    thus False
                            by (metis (mono-tags, lifting) Diff-iff * assms frontier-def in-frontier-in-subset
in-mono interior-subset)
    qed
    thus ?thesis using that by fastforce
qed
lemma exists-point-above-convex-hull-interior:
    fixes S :: (real`2) set
    assumes S\not={}
    assumes compact S
    obtains x where x\inS-(interior (convex hull S)) ^(\forally\ininterior (convex
hull S). x$2 > y$2)
proof-
    let ?H = convex hull S
    let ? e2 = (vector [0, 1])::(real^2)
    let ?f = (\lambdax. x$2)::(real^2 }=>\mathrm{ real )
    have continuous-on {x. True} ?f by (simp add: continuous-on-component)
    moreover have compact (convex hull S) using assms(2) compact-convex-hull
by blast
    moreover from calculation have compact (?f`?H)
    using compact-continuous-image continuous-on-subset by blast
    ultimately obtain x max where }x:x\in?H\wedge?f x=max ^(\forally\in?H.y$2\leq
max)
    by (smt (verit) Collect-mono assms(1) convex-hull-eq-empty convex-hull-explicit
continuous-attains-sup continuous-on-subset)
    have ? H}\cap{x.?ee2 \cdot x = max} \not={
        by (metis (mono-tags, lifting) cart-eq-inner-axis disjoint-iff e1e2-basis(3) in-
ner-commute mem-Collect-eq x)
    moreover have ?H \cap {x. ?e2 • x = max} ={} if ( }\forallx\inS.x$2<max
    proof-
        have S\subseteq{x. ?e2 . x< max }
            using that by (simp add: cart-eq-inner-axis e1e2-basis(3) inner-commute
subset-eq)
    moreover have convex {x. ?e2 • x < max} by (simp add: convex-halfspace-lt)
```

ultimately show ?thesis using hull-minimal by blast
qed
ultimately have $\exists x \in S . x \$ 2 \geq$ max by force
moreover have ? $H \subseteq\{x$. ? $e 2 \cdot x \leq \max \}$
using x
by (simp add: cart-eq-inner-axis e1e2-basis(3) inner-commute subsetI)
moreover then have interior ? $H \subseteq\{x$. ? $e 2 \cdot x<\max \}$
by (metis (mono-tags) convex-empty empty-iff inner-zero-left interior-halfspace-le interior-mono real-inner-1-left separating-hyperplane-set-0 vector-2(2) zero-index)
ultimately have $x \notin$ interior ? $H \wedge(\forall y \in$ interior ? $H . x \$ 2>y \$ 2)$
by (smt (verit) cart-eq-inner-axis e1e2-basis(3) in-mono inner-commute mem-Collect-eq
x)
thus ?thesis using that $\langle\exists x \in S . \max \leq x \$ 2\rangle x$ by fastforce
qed
lemma flip-function:
defines $M \equiv$ (vector $[$ vector $[1,0]$, vector $[0,-1]])::($ real^2^2) $)$
defines $f \equiv \lambda v . M * v v$
defines $g \equiv(\lambda v$. vector $[v \$ 1,-v \$ 2])::($ real^2 \Rightarrow real^2)
shows $\operatorname{inj} f f=g$
proof -
have $\operatorname{det} M=M \$ 1 \$ 1 * M \$ 2 \$ 2-M \$ 1 \$ 2 * M \$ 2 \$ 1$ using det-2 by blast
thus inj f by (simp add: inj-matrix-vector-mult invertible-det-nz f-def M-def)
have $\bigwedge x . f x=g x$
proof-
fix x
have $f x=$ vector $[M \$ 1 \$ 1 * x \$ 1+M \$ 1 \$ 2 * x \$ 2, M \$ 2 \$ 1 * x \$ 1+M \$ 2 \$ 2$

* x \$2]
by (simp add: M-def f-def mat-vec-mult-2)
also have $\ldots=$ vector $[x \$ 1,-x \$ 2]$ by (simp add: M-def)
finally show $f x=g x$ using f-def g-def by blast
qed
thus $f=g$ by (simp add: f-def g-def)
qed
lemma exists-point-below-convex-hull-interior:
fixes $S::\left(\right.$ real ${ }^{\text {~2 }}$) set
assumes $S \neq\{ \}$
assumes compact S
obtains x where $x \in S-($ interior (convex hull $S)) \wedge(\forall y \in$ interior (convex
hull S). $x \$ 2<y \$ 2$)
proof-
let ? $M=($ vector $[$ vector $[1,0]$, vector $[0,-1]])::($ real^2~2 $)$
let ?f $=\lambda v . ? M * v v$
let $? g=(\lambda v$. vector $[v \$ 1,-v \$ 2])::($ real^2 \Rightarrow real^2 $)$
let $? H^{\prime}=? g^{\prime}($ convex hull $S)$
let $? S^{\prime}=? g^{\prime} S$
have interior: ?f'(interior (convex hull $S)$) $=$ interior (convex hull (?f'S))
by (smt (verit, best) flip-function convex-hull-linear-image interior-injective-linear-image matrix-vector-mul-linear)
have hull: ? $H^{\prime}=$ convex hull ? S^{\prime}
proof -
have $(* v)($ vector $[$ vector $[1,0]$, vector $[0,-1]])$ ' $($ convex hull $S)=$ convex hull $((* v)$ (vector $[$ vector $[1,0]$, vector $[0,-1]]) \cdot S::($ real, 2) vec set $)$
by (simp add: convex-hull-linear-image)
then show ?thesis
by (simp add: flip-function)
qed
moreover have compact? S^{\prime}
proof-
have continuous-on $\{x$. True $\}$?f using matrix-vector-mult-linear-continuous-on by blast
then have continuous-on $\{x$. True $\}$?g using fip-function by simp
thus ?thesis using assms(2) compact-continuous-image continuous-on-subset flip-function by blast
qed
moreover have $? S^{\prime} \neq\{ \}$ using assms(1) by blast
ultimately obtain x^{\prime} where $x^{\prime}: x^{\prime} \in ? S^{\prime}-\left(\right.$ interior $\left.? H^{\prime}\right) \wedge(\forall y \in$ interior ? $\left.H^{\prime} . x^{\prime} \$ 2>y \$ 2\right)$
using exists-point-above-convex-hull-interior[of ?S'] by auto
moreover have ? $S^{\prime}-\left(\right.$ interior ? $\left.H^{\prime}\right)=? f^{\prime}(S-($ interior $($ convex hull $S)))$
proof-
have ? $f^{\prime}(S-($ interior $($ convex hull $S)))=? S^{\prime}-? f^{\prime}($ interior $($ convex hull $S))$
by (metis (no-types, lifting) flip-function(1) flip-function(2) image-cong im-age-set-diff)
thus ?thesis using flip-function(2) interior hull by auto
qed
ultimately obtain x where ? $g x=x^{\prime} \wedge x \in S-$ interior (convex hull S)
using flip-function by auto
moreover have $(\forall y \in$ interior (convex hull $S) . x \$ 2<y \$ 2)$
proof clarify
fix y
assume $y \in$ interior (convex hull S)
then have $(? g x) \$ 2>(? g y) \$ 2$
using x^{\prime} interior hull flip-function by (metis (no-types, lifting) calculation
image-eqI)
thus $x \$ 2<y \$ 2$ by simp
qed
ultimately show ?thesis using that by fast
qed
lemma exists-point-above-all:
fixes $p q:: R$-to- $R 2$
defines $H \equiv$ convex hull (path-image $p \cup$ path-image q)
assumes path $p \wedge$ path q

```
    assumes p`{0<..<1}\subseteq interior H
    assumes (p 0)$2=0^(p 1)$2=0
    assumes }\existsx\in\mp@subsup{p}{}{\prime}{0<..<1}. x$2\geq
    obtains x where }x\in\mathrm{ path-image q}\wedge(\forally\in\mathrm{ path-image p. x$2>y$2)
proof-
    let ?S = path-image p \cup path-image q
    let ?H = convex hull ?S
    obtain x where x: x\in?S - (interior ?H) ^(\forally\in interior ?H. x$2>y$2)
    by (metis exists-point-above-convex-hull-interior Un-empty assms(2) compact-Un
compact-path-image path-image-nonempty)
    then have }x\not\inp`{0<..<1} using H-def assms(3) by blas
    moreover have }x\in\mathrm{ ?S using }x\mathrm{ by blast
    ultimately have x\in path-image q}\veex\in(\mathrm{ path-image p) - p`{0<..<1} by blast
    moreover have {0..1}-{0<..<1}={0::real, 1} by fastforce
    ultimately have x f path-image q\vee 
            by (smt (verit, best) image-diff-subset path-image-def subsetD)
    moreover have x$2 > ( 
        using H-def assms(3) assms(4) assms(5) x by fastforce
    ultimately have }x\in\mathrm{ path-image }q\wedgex$2>(p0)$2 \wedge x$2>(p1)$2\wedge(\forally
p`{0<..<1}. x$2 > y$2)
    using H-def assms(3) x by auto
    moreover have path-image p = p{{0<..<1}\cup{p 0, p 1}
    proof-
        have {0<..<1}\cup{0::real, 1}={0..1} by force
        thus ?thesis unfolding path-image-def by blast
    qed
    ultimately show ?thesis by (simp add: that)
qed
lemma exists-point-below-all:
    fixes p q :: R-to-R2
    defines H\equiv convex hull (path-image p \cup path-image q)
    assumes path p ^ path q
    assumes p`{0<..<1}\subseteq interior H
    assumes (p 0)$2 = 0 ^(ll
    assumes }\existsx\in\mathrm{ path-image }p\cup\mathrm{ path-image q. x$2 < 0
    obtains }x\mathrm{ where }x\in\mathrm{ path-image q}\wedge(\forally\in\mathrm{ path-image p. x$2<y$2)
proof-
    let ?thesis' }=\existsx.x\in\mathrm{ path-image q ^( }\forally\in\mathrm{ path-image p. x$2 < y$2)
    have ?thesis' if }\existsx\in\mathrm{ path-image p. x$2 <0
    proof-
        have *: \existsx\in p`{0<..<1}. x$2<0
        proof -
            have (p 0)$2 = 0^( 
            thus ?thesis
                using that unfolding path-image-def
                using atLeastAtMost-iff less-eq-real-def
                by fastforce
    qed
```

let ? $S=$ path-image $p \cup$ path-image q
let ? $H=$ convex hull ?S
obtain x where $x: x \in ? S-($ interior $? H) \wedge(\forall y \in$ interior ? $H . x \$ 2<y \$ 2)$
by (metis exists-point-below-convex-hull-interior Un-empty assms(2) com-pact-Un compact-path-image path-image-nonempty)
then have $x \notin p ‘\{0<. .<1\}$ using H-def assms(3) by blast
moreover have $x \in$? S using x by blast
ultimately have $x \in$ path-image $q \vee x \in($ path-image $p)-p 〔\{0<. .<1\}$ by blast
moreover have $\{0 . .1\}-\{0<. .<1\}=\{0::$ real, 1$\}$ by fastforce
ultimately have $x \in$ path-image $q \vee x \in p^{\prime}\{0,1\}$
by (smt (verit, best) image-diff-subset path-image-def subsetD)
moreover have $x \$ 2<\left(\begin{array}{ll}p & 0\end{array}\right) \$ 2 \wedge x \$ 2<\left(\begin{array}{ll}p & 1\end{array}\right) \$ 2$
by (smt (verit, ccfv-SIG) * H-def $\operatorname{assms}(3) \operatorname{assms}(4)$ subset-eq $x)$
ultimately have $x \$ 2<\left(\begin{array}{ll}p & 0\end{array}\right) \$ 2 \wedge x \$ 2<\left(\begin{array}{ll}p & 1\end{array}\right) \$ 2 \wedge\left(\forall y \in p^{\prime}\{0<. .<1\} . x \$ 2\right.$ $<y \$ 2$)
using H-def assms(3) x by blast
moreover have path-image $p=p^{\prime}\{0<. .<1\} \cup\{p 0, p 1\}$
proof-
have $\{0<. .<1\} \cup\{0::$ real, 1$\}=\{0 . .1\}$ by force
thus ?thesis unfolding path-image-def by blast
qed
ultimately have $\forall y \in$ path-image $p . x \$ 2<y \$ 2$ by fast
thus ?thesis using x by fast
qed
moreover then have ?thesis' if $\neg(\exists x \in$ path-image $p . x \$ 2<0)$ using assms(5) by fastforce
ultimately show ?thesis using that by blast
qed
lemma pocket-fill-line-int-aux:
fixes x y $z::$ real^2
defines $a \equiv y \$ 1$
assumes $x=0$
assumes $a>0 \wedge y \$ 2=0$
assumes $z \$ 1<0 \vee z \$ 1>a$
assumes $z \$ 2=0$
assumes convex $A \wedge$ compact A
assumes $\{x, y, z\} \subseteq A$
assumes $\{x, y\} \subseteq$ frontier A
shows $z \in$ frontier $A \wedge$ closed-segment $x y$ frontier A
$\operatorname{proof}($ rule disjE[OF assms(4)])
assume $z \$ 1>a$
moreover have $x y z: x \$ 1=0 \wedge x \$ 2=0 \wedge y \$ 1=a \wedge y \$ 2=0 \wedge z \$ 2=0$
by (simp add: a-def assms(2) assms(3) assms(5))
ultimately have $y: y \in$ path-image (linepath $x z$) (is $-\in ? L)$
using segment-horizontal assms(3) by force
moreover have y-neq: $y \neq x \wedge y \neq z$
by (metis a-def assms(2) assms(3) assms(4) not-less-iff-gr-or-eq zero-index)
ultimately have $y \in$ rel-interior ? L
by (metis UnE closed-segment-eq-open closed-segment-idem insert-Diff insert-iff path-image-linepath rel-interior-closed-segment singleton-insert-inj-eq)
moreover have ? $L \subseteq A$ using assms closed-segment-subset by auto
moreover have $z \in$ interior $A \cup$ frontier A
by (metis Diff-iff UnI1 UnI2 assms(6) calculation(2) closure-convex-hull con-vex-hull-eq frontier-def in-mono pathfinish-in-path-image pathfinish-linepath)
ultimately have $z \in$ frontier A
by (metis (no-types, lifting) Int-iff UnE y y-neq assms(6) assms(8) com-pact-imp-closed insert-subset singletonD triangle-3-split-helper)
moreover have closed-segment x y frontier A
proof (rule ccontr)
assume \neg closed-segment $x y \subseteq$ frontier A
then obtain v where $v \in$ closed-segment $x y$ - frontier A by blast
moreover then have $v \in$ closed-segment x y interior A
by (metis (no-types, lifting) DiffD1 DiffD2 DiffI Int-iff assms(6) assms(7) closed-segment-subset closure-convex-hull convex-hull-eq frontier-def insert-subset subsetD)
moreover from calculation have $v \neq x \wedge v \neq y$ using assms(8) by auto
moreover from calculation have $v \$ 1<a$
by (smt (z3) DiffD1 a-def assms(2) assms(3) exhaust-2 segment-horizontal vec-eq-iff zero-index)
moreover from calculation have $y \in$ open-segment $v z$
by (smt (z3) Diff-iff xyz insert-iff open-segment-def open-segment-idem path-image-linepath segment-horizontal y y-neq)
ultimately have $y \in$ interior A
by (metis (no-types, lifting) IntD2 assms(6) assms(7) closure-convex-hull convex-hull-eq in-interior-closure-convex-segment insertI2 singletonI subsetD)
thus False using assms(8) frontier-def by auto
qed
ultimately show $z \in$ frontier $A \wedge$ closed-segment $x y \subseteq$ frontier A by blast next
assume $*: z \$ 1<0$
moreover have $x y z: x \$ 1=0 \wedge x \$ 2=0 \wedge y \$ 1=a \wedge y \$ 2=0 \wedge z \$ 2=0$
by (simp add: a-def assms(2) assms(3) assms(5))
ultimately have $x: x \in$ path-image (linepath $y z$) (is $-\in ? L^{\prime}$)
using segment-horizontal assms(3) by force
moreover have x-neq: $y \neq x \wedge x \neq z$
by (metis a-def assms(2) assms(3) assms(4) not-less-iff-gr-or-eq zero-index)
ultimately have $x \in$ rel-interior ? L^{\prime}
by (metis UnE closed-segment-eq-open closed-segment-idem insert-Diff insert-iff path-image-linepath rel-interior-closed-segment singleton-insert-inj-eq)
moreover have ? $L^{\prime} \subseteq A$
proof-
have $y \in A \wedge z \in A$ using assms by blast
thus ?thesis by (simp add: assms(6) closed-segment-subset)
qed
moreover have $z \in$ interior $A \cup$ frontier A
by (metis Diff-iff UnI1 UnI2 assms(6) calculation(2) closure-convex-hull con-

```
vex-hull-eq frontier-def in-mono pathfinish-in-path-image pathfinish-linepath)
    ultimately have z\in frontier A
            by (metis (no-types, lifting) Int-iff UnE x x-neq assms(6) assms(8) com-
pact-imp-closed insert-subset singletonD triangle-3-split-helper)
    moreover have closed-segment x y \subseteqfrontier A
    proof(rule ccontr)
    assume }\neg\mathrm{ closed-segment x y }\subseteq\mathrm{ frontier A
    then obtain v}\mathrm{ where v}\in\mathrm{ closed-segment x y- frontier A by blast
    moreover then have v\in closed-segment x y \cap interior A
                by (metis (no-types, lifting) DiffD1 DiffD2 DiffI Int-iff assms(6) assms(7)
closed-segment-subset closure-convex-hull convex-hull-eq frontier-def insert-subset
subsetD)
    moreover from calculation have v}=x\wedgev\not=y\mathrm{ using assms(8) by auto
    moreover from calculation have v$1>0
            by (smt (z3) DiffD1 a-def assms(2) assms(3) exhaust-2 segment-horizontal
vec-eq-iff zero-index)
    moreover from calculation have }x\in\mathrm{ open-segment vz
            by (smt (z3) Diff-iff xyz insert-iff open-segment-def open-segment-idem
path-image-linepath segment-horizontal x x-neq)
    ultimately have }x\in\mathrm{ interior A
            by (metis (no-types, lifting) IntD2 assms(6) assms(7) closure-convex-hull
convex-hull-eq in-interior-closure-convex-segment insertI2 singletonI subsetD)
    thus False using assms(8) frontier-def by auto
    qed
    ultimately show z frontier A}\wedge\mathrm{ closed-segment x y ¢ frontier }A\mathrm{ by blast
qed
lemma axis-dist:
    fixes a b :: real^2
    shows a$2 = b$2 \Longrightarrow dist a b = dist (a$1)(b$1) a$1 = b$1 \Longrightarrow dist a b =
dist (a$2) (b$2)
proof-
    have dist a b=norm (b-a) by (metis dist-commute dist-norm)
    also have ... = sqrt ((b-a) • (b-a)) using norm-eq-sqrt-inner by blast
    also have ... = sqrt (( }b-a)$1*(b-a)$1+(b-a)$2*(b-a)$2
    by (simp add: inner-vec-def sum-2)
    finally have *: dist a b = sqrt ((b-a)$1* (b-a)$1+(b-a)$2*(b-
a)$2).
    show a$2 = b$2 \Longrightarrow dist a b = dist (a$1) (b$1)
            a$1=b$1\Longrightarrowdist a b = dist (a$2) (b$2)
    apply (simp add:* dist-real-def)
    by (simp add:* dist-real-def)
qed
lemma dist-bound-1:
    fixes a b x :: real`2
    assumes a$2 = x$2
    assumes b\in ball x \varepsilon
    assumes }\varepsilon<d\mathrm{ dist ax
```

```
    shows }a$1<x$1\Longrightarrowb$1>a$1a$1>x$1\Longrightarrowb$1<a$
proof-
    have 1: dist a x = dist (a$1) (x$1) using axis-dist assms(1) by blast
    have 2: dist (b$1) (x$1)<\varepsilon
            by (metis assms(2) dist-commute dist-vec-nth-le mem-ball order-le-less-trans)
    show a$1<x$1\Longrightarrowb$1>a$1 a$1>x$1\Longrightarrowb$1<a$1
    apply (smt (verit, ccfv-threshold) assms(1) assms(3) 12 dist-norm real-norm-def)
    by (smt (verit, ccfv-threshold) assms(1) assms(3) 12 dist-norm real-norm-def)
qed
lemma dist-bound-2:
    fixes ab x :: real`2
    assumes a$1 = x$1
    assumes b\in ball x \varepsilon
    assumes }\varepsilon<\mathrm{ dist ax
    shows a$2 < x$2 \Longrightarrowb$2>a$2 a$2>x$2 \Longrightarrow b$2 <a$2
proof-
    have 1: dist a x = dist (a$2) (x$2) using axis-dist assms(1) by blast
    have 2: dist (b$2) (x$2) < <
    by (metis assms(2) dist-commute dist-vec-nth-le mem-ball order-le-less-trans)
    show a$2<x$2\Longrightarrowb$2>a$2a$2>x$2\Longrightarrowb$2<a$2
    apply (smt (verit, ccfv-threshold) assms(1) assms(3) 12 dist-norm real-norm-def)
    by (smt (verit, ccfv-threshold) assms(1) assms(3) 1 2 dist-norm real-norm-def)
qed
lemma linepath-bound-1:
    fixes x y :: real`2
    shows }a<x$1\wedgea<y$1\Longrightarrow\forallv\in\mathrm{ path-image (linepath x y). a<v$1
        x$1<b\wedgey$1<b\Longrightarrow\forallv\in path-image (linepath x y).v$1<b
proof-
    have *: \forallv\in path-image (linepath x y). \existsu\in{0..1}.v=(1-u)**R x +u**
y
    by (simp add: image-iff linepath-def path-image-def)
    have 1: }\forallu\in{0..1}.a<((1-u)\mp@subsup{*}{R}{}x+u\mp@subsup{*}{R}{}y)$1\mathrm{ if }a<x$1\wedgea<y$
    proof clarify
    fix }u\mathrm{ assume }u\in{0..1::real
    then have *: u\geq0^1-u\geq0 by simp
    then show }a<((1-u)\mp@subsup{*}{R}{}x+u\mp@subsup{*}{R}{}y)$
            by (smt (z3) that scaleR-collapse scaleR-left-mono vector-add-component
vector-scaleR-component)
    qed
    have 2: }\forallu\in{0..1}.((1-u)\mp@subsup{*}{R}{}x+u\mp@subsup{*}{R}{}y)$1<b\mathrm{ if }x$1<b\wedgey$1<
    proof clarify
            fix u assume }u\in{0..1::real
            then have *: u\geq0^1-u\geq0 by simp
    then show ((1-u)\mp@subsup{*}{R}{}x+u\mp@subsup{*}{R}{}y)$1<b
                    by (smt (z3) that scaleR-collapse scaleR-left-mono vector-add-component
vector-scaleR-component)
    qed
```

```
    show }a<x$1\wedgea<y$1\Longrightarrow\forallv\in\mathrm{ path-image (linepath x y). a<v$1 using
* 1 by fastforce
    show }x$1<b\wedgey$1<b\Longrightarrow\forallv\in\mathrm{ path-image (linepath x y).v$1<b using
* 2 by fastforce
qed
lemma linepath-bound-2:
    fixes x y :: real^2
    shows }a<x$2\wedgea<y$2\Longrightarrow\forallv\in\mathrm{ path-image (linepath x y). a<v$2
        x$2<b\wedgey$2<b\Longrightarrow\forallv\in path-image (linepath x y).v$2<b
proof
    have *: }\forallv\in\mathrm{ path-image (linepath x y). }\existsu\in{0..1}.v=(1-u)*\mp@subsup{R}{R}{}x+u*\mp@subsup{*}{R}{
y
            by (simp add: image-iff linepath-def path-image-def)
    have 1: }\forallu\in{0..1}.a< ((1-u)*R x +u**R y)$2 if a<x$2 ^a<y$2
    proof clarify
            fix u assume u\in{0..1::real}
            then have *: u\geq0^1-u\geq0 by simp
            then show }a<((1-u)\mp@subsup{*}{R}{}x+u\mp@subsup{*}{R}{}y)$
                by (smt (z3) that scaleR-collapse scaleR-left-mono vector-add-component
vector-scaleR-component)
    qed
    have 2: }\forallu\in{0..1}.((1-u)\mp@subsup{*}{R}{}x+u\mp@subsup{*}{R}{}y)$2<b\mathrm{ if }x$2<b\wedgey$2<
    proof clarify
            fix }u\mathrm{ assume }u\in{0..1::real
            then have *: u\geq0^1-u\geq0 by simp
            then show ((1-u)\mp@subsup{*}{R}{}x+u\mp@subsup{*}{R}{}y)$2<b
            by (smt (z3) that scaleR-collapse scaleR-left-mono vector-add-component
vector-scaleR-component)
    qed
    show }a<x$2\wedgea<y$2\Longrightarrow\forallv\in\mathrm{ path-image (linepath x y). a<v$2 using
* 1 by fastforce
    show }x$2<b\wedgey$2<b\Longrightarrow\forallv\in\mathrm{ path-image (linepath x y).v$2 < b using
* 2 by fastforce
qed
lemma linepath-int-corner:
    fixes x y z :: real^2
    assumes x$2 = y$2
    assumes y$2 = z$2
    shows path-image (linepath x y) \cap path-image (linepath yz)={y}
    (is path-image ?l1 \cap path-image ?12 = {y})
proof
    have 1:y f path-image ?l1 \cap path-image ?l2 by simp
    have }\forallt\in{0..1}.(?l1 t)$2=y$2\longrightarrowt=
    proof clarify
        fix t:: real
        assume 1:t\in{0..1}
```

```
    assume 2: (?l1 t)$2=y$2
    have (?l1 t)$2 = ((1-t)*(x$2) +t*(y$2)) by (simp add: linepath-def)
    thus }t=
    by (smt (verit, best) assms 2 distrib-right inner-real-def mult.commute real-inner-1-right
vector-space-over-itself.scale-cancel-left)
    qed
    then have }\forallt\in{0..1}.(?11 t)$2=y$2\longleftrightarrowt=1 by (metis linepath-1'
    moreover have }\forallt\in{0..1}.(?l2 t)$2=y$
    unfolding linepath-def
    by (metis (no-types, lifting) assms(2) segment-degen-1 vector-add-component
vector-scaleR-component)
    ultimately have 2: path-image ?l1 \cap path-image ?l2 }\subseteq{y
    by (smt (verit, best) 1 IntD1 IntD2 imageE path-defs(4) singleton-iff subsetI)
    show ?thesis using 12 by fastforce
qed
lemma linepath-int-vertical:
    fixes wx y z :: real^2
    assumes w$1 = y$1
    assumes w$1 = x$1
    assumes y$1 = z$1
    shows path-image (linepath w x) \cap path-image (linepath y z)={}
    using assms segment-vertical by fastforce
lemma linepath-int-horizontal:
    fixes wx y z :: real`2
    assumes w$2 == y$2
    assumes w$2 = x$2
    assumes y$2 = z$2
    shows path-image (linepath wx) \cap path-image (linepath yz)={}
    using assms segment-horizontal by fastforce
lemma linepath-int-columns:
    fixes wx y z :: real^2
    assumes w$1<y$1 ^w$1<z$1
    assumes x$1<y$1^x$1<z$1
    shows path-image (linepath wx) \cap path-image (linepath yz)={}
        (is path-image ?l1 \cap path-image ?l2 = {})
proof-
    have }\forallt1\in{0..1}.\forallt2\in{0..1}.(?12 t2)$1>(?l1 t1)$
        by (smt (verit, ccfv-SIG) assms linepath-bound-1 linepath-in-path path-image-linepath)
    thus ?thesis by (smt (verit, best) disjoint-iff imageE path-image-def)
qed
lemma linepath-int-rows:
    fixes wx yz :: real`2
    assumes w$2 < y$2 ^w$2 < z$2
```

```
    assumes }x$2<y$2\wedgex$2<z$
    shows path-image (linepath wx) \cap path-image (linepath yz)={}
    (is path-image ?l1 \cap path-image ?12 = {})
proof-
    have }\forallt1\in{0..1}.\forallt2\in{0..1}.(?12 t2)$2 > (?l1 t1)$2
    by (smt (verit, ccfv-SIG) assms linepath-bound-2 linepath-in-path path-image-linepath)
    thus ?thesis by (smt (verit, best) disjoint-iff imageE path-image-def)
qed
lemma horizontal-segment-at-0:
    assumes a>0
    shows closed-segment ((vector [0, 0])::(real^2)) (vector [a,0]) ={x.x$2 = 0
\wedge x$1\in{0..a}}
    (is ?l = ?s)
proof-
    have ?l \subseteq?s
    proof(rule subsetI)
    fix }
    assume *: x & ?l
    then have x$2 = 0 using segment-horizontal by auto
    moreover have 0\leqx$1^x$1\leqa using * assms segment-horizontal by
force
    ultimately show }x\in\mathrm{ ?s by force
    qed
    moreover have ?s \subseteq ?l
    proof(rule subsetI)
    fix }
    assume *: x }\in\mathrm{ ?s
    then have x = (x$1/a)*R (vector [a,0]) +(1-(x$1/a))*R (vector [0,
0])
    proof -
        have (x$1 / a)** ((vector [a,0])::(real`2)) = vector [x$1,0]
            using vec-scaleR-2 assms by fastforce
            moreover have (1-(x$1/a)) *R ((vector [0,0])::(real^2)) = vector [0,
0]
            using vec-scaleR-2 by simp
            moreover have }x=\mathrm{ vector [ }x$1,0
            by (smt (verit) * exhaust-2 mem-Collect-eq vec-eq-iff vector-2(1) vector-2(2))
            ultimately show ?thesis
            by (metis add-cancel-right-right scaleR-collapse vec-scaleR-2 vector-2(2))
    qed
    moreover have }x$1/a\in{0..1} using * assms by fastforc
    ultimately show }x\in?
            by (smt (verit, del-insts) add.commute atLeastAtMost-iff mem-Collect-eq
closed-segment-def)
    qed
    ultimately show ?thesis by blast
qed
```

```
lemma horizontal-segment-at-0'
    fixes \(x y\) :: real^2
    assumes \(a>0\)
    assumes \(x \$ 1=0 \wedge x \$ 2=0 \wedge y \$ 1=a \wedge y \$ 2=0\)
    shows closed-segment \(x y=\{x . x \$ 2=0 \wedge x \$ 1 \in\{0 . . a\}\}\)
proof-
    have \(x=\) vector \([0,0] \wedge y=\) vector \([a, 0]\)
    by (smt (verit, best) assms(2) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
    thus ?thesis using horizontal-segment-at-0 assms by presburger
qed
lemma pocket-fill-line-int-aux1:
    fixes \(p q:: R\)-to- \(R 2\)
    defines \(p 0 \equiv\) pathstart \(p\)
    defines \(p 1 \equiv\) pathfinish \(p\)
    defines \(q 0 \equiv\) pathstart \(q\)
    defines \(q 1 \equiv\) pathfinish \(q\)
    defines \(a \equiv p 1 \$ 1\)
    defines \(l \equiv\) closed-segment p0 p1
    assumes simple-path \(p\)
    assumes simple-path \(q\)
    assumes \(p 0 \$ 1=0 \wedge p 0 \$ 2=0 \wedge p 1 \$ 2=0\)
    assumes \(a>0\)
    assumes path-image \(q \cap\{x . x \$ 2=0\} \subseteq l\)
    assumes path-image \(p \cap\{x . x \$ 2=0\} \subseteq l\)
    assumes \(\forall v \in\) path-image p. \(q 0 \$ 2 \leq v \$ 2\)
    assumes \(\forall v \in\) path-image p. q1\$2 \(>v \$ 2\)
    shows path-image \(p \cap\) path-image \(q \neq\{ \}\)
proof-
    have \(p 0: p 0=0\)
    by (metis (mono-tags, opaque-lifting) assms(9) exhaust-2 vec-eq-iff zero-index)
    moreover have p1: p1 = vector \([a, 0]\)
    by (smt (verit) a-def assms(9) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
    obtain \(a\) - \(x\) where \(a-x: \forall v \in\) path-image \(p \cup\) path-image \(q . a-x<v \$ 1\)
    proof -
        let ? \(a-x=\operatorname{Inf}\left((\lambda v . v \$ 1){ }^{\prime}(\right.\) path-image \(p \cup\) path-image \(\left.q)\right)\)
        have compact (path-image \(p \cup\) path-image \(q\) )
            by (simp add: assms(7) assms(8) compact-Un compact-simple-path-image)
            moreover have continuous-on UNIV \(((\lambda v . v \$ 1)::(\) real \(2 \Rightarrow\) real \())\)
                by (simp add: continuous-on-component)
            ultimately have \(*\) : compact \(((\lambda v . v \$ 1)\) '(path-image \(p \cup\) path-image \(q))\)
                    by (meson compact-continuous-image continuous-on-subset top-greatest)
            then have \(\forall x \in((\lambda v . v \$ 1)\) '( path-image \(p \cup\) path-image \(q)\) ).? \(a-x \leq x\)
            by (simp add: assms(7) assms(8) bounded-component-cart bounded-has-Inf(1)
bounded-simple-path-image)
            thus ?thesis using that[of ? a-x - 1] by (smt (verit, ccfv-SIG) assms(10)
imageI)
    qed
```

obtain $b-x$ where $b-x: \forall v \in$ path-image $p \cup$ path-image $q . b-x>v \$ 1$ proof-
let $? b-x=\operatorname{Sup}\left((\lambda v . v \$ 1){ }^{\prime}(\right.$ path-image $p \cup$ path-image $\left.q)\right)$
have compact (path-image $p \cup$ path-image q)
by (simp add: assms(7) assms(8) compact-Un compact-simple-path-image)
moreover have continuous-on UNIV $((\lambda v . v \$ 1)::($ real $2 \Rightarrow$ real $))$
by (simp add: continuous-on-component)
ultimately have $*$: compact $((\lambda v . v \$ 1)$ ' (path-image $p \cup$ path-image $q))$
by (meson compact-continuous-image continuous-on-subset top-greatest)
then have $\forall x \in\left((\lambda v . v \$ 1)^{\text {' }}\right.$ (path-image $p \cup$ path-image $\left.q\right)$). ?b- $x \geq x$
by (simp add: assms(7) assms(8) bounded-component-cart bounded-has-Sup(1)
bounded-simple-path-image)
thus ?thesis using that $[$ of ? b-x +1$]$ by (smt (verit, ccfv-SIG) assms(10)
imageI)
qed
obtain $b-y$ where $b-y: \forall v \in$ path-image $p \cup$ path-image $q . b-y>v \$ 2$
proof-
let $? b-y=\operatorname{Sup}\left((\lambda v . v \$ 2){ }^{\prime}(\right.$ path-image $p \cup$ path-image $\left.q)\right)$
have compact (path-image $p \cup$ path-image q)
by (simp add: assms(7) assms(8) compact-Un compact-simple-path-image)
moreover have continuous-on UNIV ($(\lambda v . v \$ 2)::($ real $2 \Rightarrow$ real $))$
by (simp add: continuous-on-component)
ultimately have $*$: compact $((\lambda v . v \$ 2)$ ' $($ path-image $p \cup$ path-image $q))$
by (meson compact-continuous-image continuous-on-subset top-greatest)
then have $\forall x \in((\lambda v . v \$ 2)$ '(path-image $p \cup$ path-image $q))$. ? $b-y \geq x$
by (simp add: assms(7) assms(8) bounded-component-cart bounded-has-Sup(1) bounded-simple-path-image)
thus ?thesis using that $[$ of ?b-y +1$]$ by (smt (verit, ccfv-SIG) assms(10) imageI)
qed
let ? $11=$ linepath $p 1($ vector $[b-x, 0])$
let ?12 $=$ linepath $($ vector $[b-x, 0])(($ vector $[b-x, b-y])::($ real^2 $))$
let ? $13=$ linepath $($ vector $[b-x, b-y])(($ vector $[a-x, b-y])::($ real 2$))$
let $? l_{4}=$ linepath $($ vector $[a-x, b-y])(($ vector $[a-x, 0])::($ real^2 $))$
let ? $15=$ linepath $($ vector $[a-x, 0]) p 0$
let $? R^{\prime}=? ? 11+++? 12+++? 13+++? 14+++? 15$
let $? R=p+++? R^{\prime}$
have $R-y$-b: $\forall v \in$ path-image? $R . v \$ 2 \leq b-y$
proof-
have $\forall v \in$ path-image ?l1. $v \$ 2 \leq b-y$
by (metis UnCI assms(9) b-y less-eq-real-def p1-def path-image-linepath pathfin-ish-in-path-image segment-horizontal vector-2(2))
moreover have $\forall v \in$ path-image ? $12 . v \$ 2 \leq b-y$
by (smt (verit, ccfv-SIG) UnCI assms(9) b-y p0-def path-image-linepath pathstart-in-path-image segment-vertical vector-2(1) vector-2(2))
moreover have $\forall v \in$ path-image ?l3. $v \$ 2 \leq b-y$
by (simp add: segment-horizontal)
moreover have $\forall v \in$ path-image ?l4. $v \$ 2 \leq b-y$
by (smt (verit, best) UnCI assms(9) b-y p0-def path-image-linepath path-start-in-path-image segment-vertical vector-2(1) vector-2(2))
moreover have $\forall v \in$ path-image ? $15 . v \$ 2 \leq b-y$
by (smt (verit) UnI1 assms(9) b-y linepath-image-01 p0-def path-defs(4)
pathstart-in-path-image segment-horizontal vector-2(2))
ultimately show ?thesis by (smt (verit, best) UnCI b-y not-in-path-image-join)
qed
have $R-y-q 0: \forall v \in$ path-image ?R. $v \$ 2 \geq q 0 \$ 2$
proof-
have $\forall v \in$ path-image ?l1. v\$2 $\geq q 0 \$ 2$
using assms(13) assms(9) p1-def pathfinish-in-path-image segment-horizontal by fastforce
moreover have $\forall v \in$ path-image ?12. $v \$ 2 \geq q 0 \$ 2$
by $(s m t(z 3) U n C I ~ a s s m s(13) ~ a s s m s(9) ~ b-y ~ p 1-d e f ~ p a t h-i m a g e-l i n e p a t h ~ p a t h f i n-~$ ish-in-path-image segment-vertical vector-2(1) vector-2(2))
moreover have $\forall v \in$ path-image ? $13 . v \$ 2 \geq q 0 \$ 2$
by (metis calculation(2) ends-in-segment(2) path-image-linepath segment-horizontal vector-2(2))
moreover have $\forall v \in$ path-image ? $14 . v \$ 2 \geq q 0 \$ 2$
by (smt (z3) UnCI assms(13) assms(9) b-y p1-def path-image-linepath pathfin-
ish-in-path-image segment-vertical vector-2(1) vector-2(2))
moreover have $\forall v \in$ path-image ? $15 . v \$ 2 \geq q 0 \$ 2$
by (metis assms(13) assms(9) p0-def path-image-linepath pathstart-in-path-image segment-horizontal vector-2(2))
ultimately show ?thesis
by (metis assms(13) not-in-path-image-join)
qed
have $R-x-a: \forall v \in$ path-image ? $R . v \$ 1 \geq a-x$
proof -
have $\forall v \in$ path-image ?l1. v\$2 $\geq a-x$
by (metis UnCI a-x assms(9) linorder-le-cases linorder-not-less p0-def path-image-linepath
pathstart-in-path-image segment-horizontal vector-2(2))
moreover have $\forall v \in$ path-image ?l2. $v \$ 2 \geq a-x$
by (smt (z3) UnCI assms(9) b-y calculation p0-def path-image-linepath path-start-in-path-image pathstart-linepath segment-vertical vector-2(1) vector-2(2))
moreover have $\forall v \in$ path-image ? $13 . v \$ 2 \geq a-x$
by (metis calculation(2) ends-in-segment(2) path-image-linepath segment-horizontal vector-2(2))
moreover have $\forall v \in$ path-image ?l4. v $\$ 2 \geq a-x$ by (smt (z3) assms(9) calculation(1) calculation(3) ends-in-segment(1) path-image-linepath segment-vertical vector-2(1) vector-2(2))
moreover have $\forall v \in$ path-image ?l5. v\$2 $\geq a-x$
by (smt (verit, del-insts) UnCI $a-x \operatorname{assms}(9)$ p0-def path-image-linepath
pathstart-in-path-image segment-horizontal vector-2(2))
ultimately show ?thesis
by (smt (z3) UnCI a-x assms(9) b-x not-in-path-image-join p1-def path-image-linepath
pathfinish-in-path-image segment-horizontal segment-vertical vector-2(1) vector-2(2))
qed
have closed: closed-path ?R using assms p0-def unfolding simple-path-def closed-path-def
by simp
have simple: simple-path ?R
proof-
have arc? R^{\prime}
proof -
let $? a=p 1$
let $? b=($ vector $[b-x, 0])::($ real^2) $)$
let $? c=($ vector $[b-x, b-y])::\left(\right.$ real $\left._2\right)$
let ? $d=($ vector $[a-x, b-y])::($ real 2$)$
let $? e=($ vector $[a-x, 0])::($ real^2 $)$
let $? f=p 0$
have arcs: arc ?l1 \wedge arc ? $12 \wedge$ arc ? $13 \wedge \operatorname{arc} ? l 4 \wedge \operatorname{arc} ? l 5$
by (smt (verit, ccfv-SIG) UnCI a-x arc-linepath assms(9) b-x b-y p0-def
p1-def pathfinish-in-path-image pathstart-in-path-image vector-2(1) vector-2(2))
have l4l5: path-image ?l4 \cap path-image ?l5 $=\{$ pathfinish ?l4 $\}$
using linepath-int-corner[of ?d ?e ?f] arc-simple-path arcs constant-linepath-is-not-loop-free p0 simple-path-def
by auto
have l3l4: path-image ?l3 \cap path-image ? $14=\{$ pathfinish ? 13$\}$
using linepath-int-corner [of ?c ?d ?e]
by (metis Int-commute arc-simple-path arcs closed-segment-commute linepath-0' linepath-int-corner path-image-linepath pathfinish-linepath pathstart-def vector-2(2))
have l2l3: path-image ?l2 \cap path-image ? $13=\{$ pathfinish ? 12$\}$
using linepath-int-corner $[$ of ?b ?c ? d $]$
by (metis Int-commute arc-simple-path arcs linepath-0' linepath-int-corner pathfinish-linepath pathstart-def vector-2(2))
have l1l2: path-image ?l1 \cap path-image ?l2 $=\{$ pathfinish ?l1 $\}$
using linepath-int-corner[of ?a ?b ?c]
by (metis Int-commute arc-distinct-ends arcs assms (9) closed-segment-commute linepath-int-corner path-image-linepath pathfinish-linepath pathstart-linepath vector-2(2))
have 13l5: path-image ? $13 \cap$ path-image ? $15=\{ \}$
using linepath-int-horizontal[of ?c ?d ?e ?f]
by (metis arc-distinct-ends arcs assms(9) linepath-int-horizontal pathfin-ish-linepath pathstart-linepath vector-2(2))
have 12l4: path-image ? $12 \cap$ path-image ? $l_{4}=\{ \}$
using linepath-int-vertical[of ?b ?c ?d ?e]
by (metis arc-distinct-ends arcs linepath-int-vertical pathfinish-linepath path-start-linepath vector-2(1))
have l113: path-image ? $11 \cap$ path-image ? $13=\{ \}$
using linepath-int-vertical[of ?a ?b ?c ?d]
by (metis arc-distinct-ends arcs assms(9) linepath-int-horizontal pathfin-ish-linepath pathstart-linepath vector-2(2))
have 12l5: path-image ? $12 \cap$ path-image ? $15=\{ \}$
using linepath-int-columns[of ?b ?c ?e ?f]
by (smt (verit, ccfv-threshold) Int-commute UnCI a-x b-x linepath-int-columns p0 p0-def pathstart-in-path-image pathstart-join vector-2(1) verit-comp-simplify1 (3))
have l1l4: path-image ?l1 \cap path-image ?l4 $=\{ \}$
using linepath-int-columns[of ?a ?b ?d ?e]
by (smt (z3) UnCI a-x assms(9) b-x disjoint-iff p1-def path-image-linepath pathfinish-in-path-image segment-horizontal segment-vertical vector-2(1) vector-2(2))
have l1l5: path-image ?l1 \cap path-image ? $15=\{ \}$
using linepath-int-columns $[o f$?a ? b ?e ?f]
by (smt (z3) UnCI a-def $a-x \operatorname{assms}(10) \operatorname{assms}(9) b-x$ disjoint-iff p1-def path-image-linepath pathfinish-in-path-image segment-horizontal vector-2(1) vec-tor-2(2))
have path-image ?l4 \cap path-image ?l5 $=\{$ pathfinish ? 14$\}$
using $l 415$ by blast
moreover have $s f-45$: pathfinish ? $14=$ pathstart ? 15 by simp
ultimately have arc (?l4 +++ ?15)
by (metis arc-join-eq-alt arcs)
moreover have path-image ?13 \cap path-image $(? 14+++$?15 $)=\{$ pathfinish ?13\}
using 13141315
by (metis (no-types, lifting) Int-Un-distrib sf-45 insert-is-Un path-image-join)
moreover have sf-345: pathfinish ? $13=$ pathstart $(? 14+++? 15)$ by simp
ultimately have arc (?13 +++? ? $14+++$?15)
by (metis arc-join-eq-alt arcs)
moreover have path-image ?12 \cap path-image $(? 13+++$? $14+++$?15 $)=$ \{pathfinish ?l2\}
using l2l3 l2l4 1215
by (smt (verit) Int-Un-distrib sf-45 sf-345 insert-is-Un path-image-join sup-bot-left)
moreover have sf-2345: pathfinish ?l2 $=$ pathstart $(? 13+++? 14+++? 15)$ by simp
ultimately have $\operatorname{arc}(? 12+++? 13+++? 14+++? 15)$
by (metis arc-join-eq-alt arcs)
moreover have path-image ?l1 \cap path-image $(? 12+++? 13+++? l 4+++$
?l5) $=\{$ pathfinish ?l1 $\}$
proof -
have path-image $(? 12+++? 13+++? / 4+++? 15)$
$=$ path-image ?12 \cup path-image ?13 \cup path-image ?l4 \cup path-image ?15
by (simp add: path-image-join sup-assoc)
thus ?thesis using l112 l113 1114 l115 by blast
qed
moreover have pathfinish ?l1 = pathstart (?l2 $+++? 13+++? l 4+++$
?l5) by simp
ultimately show arc (? $11+++? 12+++? 13+++? 14+++? 15)$
by (metis arc-join-eq-alt arcs)
qed
moreover have loop-free p using assms(1) assms(7) simple-path-def by blast moreover have path-image? $R^{\prime} \cap$ path-image $p=\{p 0, p 1\}$
proof-
have path-image $p \cap$ path-image ? $12=\{ \}$ using b-x segment-vertical by auto moreover have path-image $p \cap$ path-image ? $13=\{ \}$ using b-y segment-horizontal by auto
moreover have path-image $p \cap$ path-image ? $\imath_{4}=\{ \}$ using $a-x$ segment-vertical by auto
moreover have path-image $p \cap$ path-image ?l1 $=\{p 1\}$
proof -
have $p 1 \in$ path-image p using $p 1$-def by blast
moreover have path-image $p \cap$ path-image ? $l 1 \subseteq\{p 1\}$
proof (rule subsetI)
fix x assume $*: x \in$ path-image $p \cap$ path-image ?l1
then have $x \$ 1 \leq a$
using a-def assms(10) assms(12) assms(9) l-def linepath-image-01 segment-horizontal by auto
moreover have $x \$ 1 \geq a$
by (smt (z3) * Int-iff Un-iff a-def assms(9) b-x linepath-image-01
path-defs(4) segment-horizontal vector-2(1) vector-2(2))
moreover have $x \$ 2=0$ using $* \operatorname{assms}(9)$ segment-horizontal by auto
ultimately show $x \in\{p 1\}$ using a-def $\operatorname{assms}(9)$ segment-vertical by
fastforce
qed
ultimately show ?thesis by auto
qed
moreover have path-image $p \cap$ path-image ?l5 $=\{p 0\}$
proof-
have $p 0 \in$ path-image p using $p 0$-def by blast
moreover have path-image $p \cap$ path-image ? $15 \subseteq\{p 0\}$
proof (rule subsetI)
fix x assume $*: x \in$ path-image $p \cap$ path-image ?/5
then have $x \$ 1 \leq 0$
using R-x-a assms(9) p0-def pathstart-in-path-image segment-horizontal
by fastforce
moreover have $x \$ 1 \geq 0$
proof-
have $x \in\{x . x \$ 2=0\}$ using $* \operatorname{assms}(9)$ segment-horizontal by fastforce
then have $x \in l$ using $*$ assms (12) by auto
thus ?thesis using a-def assms(10) assms(9) l-def segment-horizontal
by auto
qed
moreover have $x \$ 2=0$ using $* \operatorname{assms}(9)$ segment-horizontal by auto
ultimately show $x \in\{p 0\}$ using a-def $\operatorname{assms}(9)$ segment-vertical by fastforce
qed
ultimately show ?thesis by auto
qed
moreover have path-image? R^{\prime}
$=$ path-image ? $11 \cup$ path-image ? $12 \cup$ path-image ? $13 \cup$ path-image ? $14 \cup$ path-image ?!5
by (simp add: Un-assoc path-image-join)
ultimately show ?thesis by fast
qed
moreover have arc p
using a-def arc-simple-path assms(10) assms(7) p0 p0-def p1-def by fastforce ultimately show ?thesis
by (metis (no-types, lifting) simple-path-join-loop-eq Int-commute dual-order.refl p0-def p1-def pathfinish-join pathfinish-linepath pathstart-join pathstart-linepath)
qed
have inside-outside: inside-outside ?R (path-inside ?R) (path-outside ?R)
using closed simple Jordan-inside-outside-real2
by (simp add: closed-path-def inside-outside-def path-inside-def path-outside-def)
have interior-frontier: path-inside ? $R=$ interior (path-inside ? R)
\wedge frontier (path-inside ? R) $=$ path-image $? R$
using inside-outside interior-open unfolding inside-outside-def by auto
have path-image $q \cap$ path-image $? l 1 \subseteq\{p 1\}$
proof (rule subsetI)
fix x assume $*: x \in$ path-image $q \cap$ path-image ?l1
then have $x \$ 1 \leq a$ using a-def $\operatorname{assms}(10) \operatorname{assms}(11) \operatorname{assms}(9) l$-def seg-ment-horizontal by auto
moreover have $x \$ 1 \geq a$
by $(s m t(z 3) *$ Int-iff Un-iff a-def assms(9) b-x linepath-image-01 path-defs(4) segment-horizontal vector-2(1) vector-2(2))
moreover have $x \$ 2=0$ using $* \operatorname{assms}(9)$ segment-horizontal by auto
ultimately show $x \in\{p 1\}$ using a-def assms(9) segment-vertical by fastforce
qed
moreover have path-image $q \cap$ path-image ? $15 \subseteq\{p 0\}$
proof (rule subsetI)
fix x assume $*: x \in$ path-image $q \cap$ path-image ? 15
then have $x \$ 1 \leq 0$
using R-x-a assms(9) p0-def pathstart-in-path-image segment-horizontal by fastforce
moreover have $x \$ 1 \geq 0$
using $*$ a-def $\operatorname{assms}(10) \operatorname{assms}(11) \operatorname{assms}(9)$ l-def segment-horizontal by auto
moreover have $x \$ 2=0$ using $* \operatorname{assms}(9)$ segment-horizontal by auto
ultimately show $x \in\{p 0\}$ using a-def assms (9) segment-vertical by fastforce qed
moreover have ?thesis if $p 1 \in$ path-image $q \cap$ path-image? 11 using $p 1$-def that by blast
moreover have ?thesis if $p 0 \in$ path-image $q \cap$ path-image ?15 using $p 0$-def that by blast
moreover have ?thesis if
q-int-l1: path-image $q \cap$ path-image $? l 1=\{ \}$ and

```
        q-int-l5: path-image q \cap path-image ?15 ={}
proof-
    have q-int-l2: path-image q\cap path-image ?l2 = {}
        using b-x segment-vertical by auto
    moreover have q-int-l3: path-image q\cap path-image ?l3 ={}
        using UnCI b-y segment-horizontal by auto
    moreover have q-int-l/4: path-image q\cap path-image ?l4 ={}
        using a-x segment-vertical by auto
    moreover have ?thesis if q0 \in path-image p using q0-def that by blast
    moreover have path-image q}\cap\mathrm{ path-image ?R }\not={}\mathrm{ if q0 & path-image p
    proof -
        have q0 \in path-outside ?R
    proof -
        let ?e2' = (vector [0, -1])::(real`2)
        let ?ray = \lambdad.q0 +d * R ?e2'
        have }\neg(\existsd>0\mathrm{ . ?ray d f path-image ?R)
        proof-
            have }\foralld>0.(?ray d)$2 < q0$2 by aut
            thus ?thesis using R-y-q0 by fastforce
            qed
    moreover have bounded (path-inside ?R) using bounded-finite-inside simple
by blast
    moreover have ?e2' }=0\mathrm{ by (metis vector-2(2) zero-index zero-neq-neg-one)
        ultimately have q0 & path-inside ?R
            using ray-to-frontier[of path-inside ?R] interior-frontier by metis
            moreover have q0 & path-image ?R
            using that q-int-l1 q-int-l2 q-int-l3 q-int-l4 q-int-l5
                by (simp add: disjoint-iff not-in-path-image-join pathstart-in-path-image
q0-def)
            ultimately show ?thesis using inside-outside unfolding inside-outside-def
by blast
    qed
    then have q0 \in - (path-inside ?R)
    by (metis ComplI IntI equals0D inside-Int-outside path-inside-def path-outside-def)
    moreover have q1 \in path-inside ?R
    proof -
        let ?e = (vector [q1$1,b-y])::(real^2)
        let ?d1 = (vector [b-x,b-y])::(real^2)
        let ?d2 = (vector [a-x,b-y])::(real^2)
        obtain }\varepsilon\mathrm{ where }\varepsilon:0<\varepsilon\wedge\varepsilon<dist ?e q1 \wedge\varepsilon<dist?e ?d1 ^\varepsilon< dist ?
?d2
    proof-
        have ?e }\not=q
                    by (metis UnCI b-y order-less-irrefl pathfinish-in-path-image q1-def
vector-2(2))
            moreover have ?e }\not=\mathrm{ ? ?d1
                by (smt (verit) UnCI b-x pathfinish-in-path-image q1-def vector-2(1))
```

moreover have $? e \neq ? d 2$
by (metis UnCI a-x order-less-irrefl pathfinish-in-path-image q1-def vector-2(1))
ultimately have $0<$ dist ?e q1 $\wedge 0<$ dist ?e ?d1 $\wedge 0<$ dist ?e ?d2 by simp
then have $0<\operatorname{Min}\{$ dist ?e q1, dist ?e ? d1, dist ?e ?d2\} by auto then obtain ε where $0<\varepsilon \wedge \varepsilon<\operatorname{Min}\{$ dist ?e q1, dist ?e ? d1, dist ? e ? d2\}
by (meson field-lbound-gt-zero)
thus ?thesis using that by auto
qed
then have $? e \in$ path-image ?l3
by (simp add: a-x b-x q1-def segment-horizontal less-eq-real-def pathfin-ish-in-path-image)
then have ?e \in path-image ? R by (simp add: p1-def path-image-join)
then have ? $e \in$ frontier (path-inside ?R)
using inside-outside unfolding inside-outside-def by blast
then obtain int-p where int-p: int-p \in ball ?e $\varepsilon \wedge$ int- $p \in$ path-inside ?R by (meson ε inside-outside frontier-straddle mem-ball)
have int-p-x: $a-x<i n t-p \$ 1 \wedge$ int- $p \$ 1<b-x$
by (metis (mono-tags, lifting) dist-bound-1 UnI2 ε a-x b-x dist-commute int-p pathfinish-in-path-image q1-def vector-2(1) vector-2(2))
have int-p\$2<b-y
proof (rule ccontr)
have int-p\$2 $\neq b-y$
proof-
have int-p\$2 $=b-y \Longrightarrow$ int- $p \in$ path-image ?13
using int- $p-x$ by (simp add: segment-horizontal)
moreover have int- $p \in$ path-image ?l3 \Longrightarrow int- $p \in$ path-image ? R
by (simp add: p1-def path-image-join)
moreover have path-image ? $R \cap$ path-inside ? $R=\{ \}$
using inside-outside unfolding inside-outside-def by blast
ultimately show ?thesis using int-p by fast
qed
moreover assume \neg int-p $\$ 2<b-y$
ultimately have $*$: int- $p \$ 2>b-y$ by simp
let $? e 2=($ vector $[0,1])::($ real^2 $)$
let ? ray $=\lambda d$. int- $p+d *_{R}$? e 2
have $\neg(\exists d>0$. ?ray $d \in$ path-image ? $R)$
proof-
have $\forall d>0$. (?ray $d) \$ 2>b-y$ using $*$ by auto
thus ?thesis using $R-y$ - b by fastforce
qed
moreover have bounded (path-inside ? R) using bounded-finite-inside simple by blast
moreover have ? $e 2 \neq 0$ using e1e2-basis(4) by force
ultimately have int-p \notin path-inside ?R
using ray-to-frontier[of path-inside ?R] interior-frontier by metis thus False using int-p by blast
qed
moreover have int-p\$2>q1\$2
proof-
have dist int-p $? e<\varepsilon$ using ε dist-commute-lessI int- p mem-ball by blast then have dist (int-p\$2) (?e\$2) < $\boldsymbol{\varepsilon}$ by (smt (verit, best) dist-vec-nth-le)
then have 1 : int-p\$2>?e\$2- $\mathbf{\varepsilon}$ by (simp add: dist-real-def)
have $q 1 \$ 1=? e \$ 1$ by simp
then have dist q1 ? e = dist (q1\$2) (?e\$2) using axis-dist by blast
then have $q 1 \$ 2<? e \$ 2-\varepsilon$
by (smt (verit) UnCI \& b-y dist-commute dist-real-def pathfinish-in-path-image q1-def vector-2(2))
moreover have $q 1 \$ 2<? e \$ 2$ by (simp add: b-y pathfinish-in-path-image q1-def)
moreover have dist q1 ?e $>\varepsilon$ by (metis ε dist-commute)
ultimately have $q 1 \$ 2<? e \$ 2-\varepsilon$ by presburger
thus ?thesis using 1 by force
qed
ultimately have int-p-y: int-p\$2<b-y^int-p\$2>q1\$2 by blast
let ? int-l = linepath int-p q1
have path-image ? int-l \cap path-image $p=\{ \}$
proof-
have $\forall x \in$ path-image p. (?int-l 0)\$2>x\$2
by (smt (verit) int-p-y assms(14) linepath-0')
moreover have $\forall x \in$ path-image p. (?int-l 1)\$2 $>x \$ 2$
by (simp add: assms(14) linepath-1')
ultimately have $\forall x \in$ path-image $p . \forall y \in$ path-image ? int-l. $y \$ 2>x \$ 2$
by (metis assms(14) linepath-0' linepath-bound-2(1))
thus ?thesis by blast
qed
moreover have path-image ?int-l \cap path-image ? $11=\{ \}$
by (smt (verit, best) assms(14) assms (9) disjoint-iff int-p-y linepath-int-rows p0-def pathstart-in-path-image vector-2(2))
moreover have path-image ? int-l \cap path-image ? $12=\{ \}$
by (metis UnCI b-x int-p-x linepath-int-columns pathfinish-in-path-image q1-def vector-2(1))
moreover have path-image ?int-l \cap path-image ? $13=\{ \}$
using int-p-y linepath-int-rows by auto
moreover have path-image ?int-l \cap path-image ? $l_{4}=\{ \}$
by (metis UnCI a-x inf-commute int-p-x linepath-int-columns pathfin-ish-in-path-image q1-def vector-2(1))
moreover have path-image ? int-l \cap path-image ? $15=\{ \}$
by (smt (verit, best) assms(14) assms(9) disjoint-iff int-p-y linepath-int-rows p0-def pathstart-in-path-image vector-2(2))
ultimately have path-image ? int-l \cap path-image $? R=\{ \}$
by (simp add: disjoint-iff not-in-path-image-join)
then have path-image ? int-l \subseteq path-inside ? $R \vee$ path-image ?int-l \subseteq path-outside? R
by (smt (verit, ccfv-SIG) convex-imp-path-connected convex-segment(1) dis-joint-insert(1) insert-Diff inside-outside-def int-p linepath-image-01 local.inside-outside path-connected-not-frontier-subset path-defs(4) pathstart-in-path-image pathstart-linepath)
moreover have ?int-l $0=$ int- $p \wedge$ int $-p \in$ path-inside? R
using int-p by (simp add: linepath-0')
ultimately have path-image ?int-l \subseteq path-inside ? R
using inside-outside-def local.inside-outside by auto
thus ?thesis by auto

qed

ultimately have path-image $q \cap-($ path-inside $? R) \neq\{ \} \wedge$ path-image $q \cap$
(path-inside ? R) $\neq\{ \}$
unfolding $q 0$-def $q 1$-def by fast
moreover have path-connected (path-image q)
by (simp add: assms(8) path-connected-path-image simple-path-imp-path)
moreover have path-image ? $R=$ frontier (path-inside ? R)
using inside-outside unfolding inside-outside-def p0-def path-inside-def by auto
ultimately show?thesis by (metis Diff-eq Diff-eq-empty-iff path-connected-not-frontier-subset)
qed
ultimately show ?thesis
by (smt (verit, ccfv-threshold) disjoint-iff-not-equal not-in-path-image-join q-int-l1 q-int-l5)
qed
ultimately show ?thesis by auto
qed
lemma pocket-fill-line-int-aux2:
fixes $p q:: R$-to- $R 2$
fixes $A::$ (real 2) set
defines $p 0 \equiv$ pathstart p
defines $p 1 \equiv$ pathfinish p
defines $a \equiv p 1 \$ 1$
defines $l \equiv$ closed-segment p0 p1
assumes simple-path p
assumes $p 0 \$ 1=0 \wedge p 0 \$ 2=0 \wedge p 1 \$ 2=0$
assumes $a>0$
assumes convex $A \wedge$ compact A
assumes $\{p 0, p 1\} \subseteq$ frontier A
assumes p ' $\{0<. .<1\} \subseteq$ interior A
shows path-image $p \cap\{x . x \$ 2=0\} \subseteq l$
proof-
have $l: l=\{x . x \$ 2=0 \wedge x \$ 1 \in\{0 . . a\}\}$
using horizontal-segment-at-0' a-def assms(6) assms(7) l-def by presburger
have endpoints: $\left(\begin{array}{ll}p & 0\end{array}\right) \$ 1=0 \wedge(p 0) \$ 2=0 \wedge\left(\begin{array}{ll}p & 1\end{array}\right) \$ 1=a \wedge\left(\begin{array}{ll}p & 1\end{array}\right) \$ 2=0$
by (metis a-def assms(6) p0-def p1-def pathfinish-def pathstart-def)

```
have False if \(*: \exists t \in\{0 . .1\} .(p t) \$ 2=0 \wedge((p t) \$ 1>a \vee(p t) \$ 1<0)\)
proof-
    obtain \(t\) where \(t \in\{0<. .<1\} \wedge(p t) \$ 2=0 \wedge((p t) \$ 1>a \vee(p t) \$ 1<0)\)
        by (metis * assms(7) endpoints atLeastAtMost-iff greaterThanLessThan-iff
less-eq-real-def linorder-not-le)
    then obtain \(x\) where \(x: x \in p\{0<. .<1\} \wedge x \$ 2=0 \wedge(x \$ 1>a \vee x \$ 1<0)\)
by blast
    thus False
        using pocket-fill-line-int-aux[of p0 p1 x A]
        by (smt (verit, del-insts) Diff-iff a-def assms(10) assms(6) assms(7) assms(8)
assms(9) empty-subsetI endpoints exhaust-2 frontier-def frontier-subset-compact in-
sert-subset interior-subset p0-def pathstart-def subset-eq vec-eq-iff zero-index)
    qed
    then have \(\forall t \in\{0 . .1\} .(p t) \$ 2=0 \longrightarrow(p t) \$ 1 \in\{0 . . a\}\) by fastforce
    then have \(\forall v \in\) path-image \(p . v \$ 2=0 \longrightarrow v \$ 1 \in\{0 . . a\}\) by (simp add: imageE
path-defs(4))
    thus ?thesis using \(l\) by blast
qed
lemma three-points-on-line:
    fixes \(a b::\) ' \(a:\) :real-vector
    assumes \(A=\) affine hull \(\{a, b\}\)
    assumes \(a \neq b\)
    assumes \(\{x, y, z\} \subseteq A\)
    assumes \(x \neq y \wedge y \neq z \wedge x \neq z\)
    shows \(x \in\) open-segment \(y z \vee y \in\) open-segment \(x z \vee z \in\) open-segment \(x y\)
proof-
    let \(? u=b-a\)
    have \(*: \Lambda \alpha \beta \gamma::\) real. \(\alpha \in\) open-segment \(\beta \gamma\)
        \(\Longrightarrow a+\alpha *_{R}\) ? \(u \in\) open-segment \(\left(a+\beta *_{R}\right.\) ? \(\left.u\right)\left(a+\gamma *_{R}\right.\) ? \(\left.u\right)\)
    proof-
    fix \(\alpha \beta \gamma\) :: real
    assume \(*: \alpha \in\) open-segment \(\beta \gamma\)
    define \(x\) where \(x \equiv a+\alpha *_{R}\) ? \(u\)
    define \(y\) where \(y \equiv a+\beta *_{R}\) ? \(u\)
    define \(z\) where \(z \equiv a+\gamma *_{R}\) ? \(u\)
    obtain \(v\) where \(v: \alpha=(1-v) * \beta+v * \gamma \wedge v \in\{0<. .<1\}\)
            by (metis (no-types, lifting) * imageE in-segment(2) real-scaleR-def seg-
ment-image-interval(2))
    then have \(x=a+((1-v) * \beta+v * \gamma) *_{R}\) ? \(u\) using \(x\)-def by blast
    also have \(\ldots=a+\left(((1-v) * \beta) *_{R} ? u\right)+\left((v * \gamma) *_{R} ? u\right)\) by (simp add:
scaleR-left.add)
    also have \(\ldots=a+\left((1-v) *_{R}\left(\beta *_{R} ? u\right)\right)+\left(v *_{R}\left(\gamma *_{R}\right.\right.\) ? \(\left.\left.u\right)\right)\) by simp
    also have \(\ldots=a+\left((1-v) *_{R}(y-a)\right)+\left(v *_{R}(z-a)\right)\) by (simp add:
\(y\)-def \(z\)-def)
    also have \(\ldots=a+y-a-v *_{R}(y-a)+v *_{R}(z-a)\) by (simp add:
```

scaleR-left-diff-distrib)
also have $\ldots=y-v *_{R}(y-a)+v *_{R}(z-a)$ by simp
also have $\ldots=y-\left(v *_{R} y\right)+\left(v *_{R} a\right)+\left(v *_{R} z\right)-\left(v *_{R} a\right)$ by (simp add: scaleR-right-diff-distrib)
also have $\ldots=(1-v) *_{R} y+v *_{R} z$ by (metis add-diff-cancel diff-add-eq scaleR-collapse)
finally have $x=(1-v) *_{R} y+v *_{R} z$.
moreover have $0 \leq 1-v \wedge 1-v \leq 1$ using v by fastforce
ultimately have $x \in$ closed-segment $y z$ using in-segment(1) by auto
moreover have $x \neq y \wedge x \neq z$
by (metis * add-diff-cancel-left' assms(2) eq-iff-diff-eq-0 in-open-segment-iff-line open-segment-commute open-segment-subsegment scaleR-right-imp-eq x-def y-def z-def)
ultimately show $a+\alpha *_{R}$? $u \in$ open-segment $\left(a+\beta *_{R}\right.$? $\left.u\right)\left(a+\gamma *_{R}\right.$? $\left.u\right)$
unfolding open-segment-def using x-def y-def z-def by force
qed
obtain $\alpha \beta \gamma$ where $x y z: x=a+\alpha *_{R}$? $u \wedge y=a+\beta *_{R} ?$? $u \wedge z=a+\gamma$ $*_{R}$? u
using affine-hull-2-alt[of ab] assms(1) assms(3) by auto
then have $\alpha \neq \beta \wedge \beta \neq \gamma \wedge \alpha \neq \gamma$ using assms by blast
moreover have $\alpha \in$ closed-segment $\beta \gamma \vee \beta \in$ closed-segment $\alpha \gamma \vee \gamma \in$ closed-segment $\alpha \beta$
by (metis atLeastAtMost-iff closed-segment-commute less-eq-real-def less-max-iff-disj linorder-not-less real-Icc-closed-segment)
ultimately have $\alpha \in$ open-segment $\beta \gamma \vee \beta \in$ open-segment $\alpha \gamma \vee \gamma \in$ open-segment $\alpha \beta$
unfolding open-segment-def by fast
thus ?thesis using $* x y z$ by presburger
qed
lemma pocket-fill-line-int-aux3:
fixes A :: (real^2) set
assumes convex $A \wedge$ compact A
assumes $v \neq 0$
assumes closed-segment $0 w \subseteq$ frontier A (is closed-segment ?a ?b \subseteq-)
assumes $w \cdot v=0$
assumes $w \neq 0$
shows $(A \subseteq\{x . x \cdot v \leq 0\} \vee A \subseteq\{x . x \cdot v \geq 0\})($ is $A \subseteq ? P 1 \vee A \subseteq ? P 2)$
proof -
have frontiers: frontier ? PP1 $=$ frontier ?P2 \wedge frontier ?P1 $\subseteq ? P 2 \wedge$ frontier $? P 2 \subseteq ? P 1$
by (smt (verit, ccfv-threshold) Collect-mono assms(2) frontier-halfspace-component-ge frontier-halfspace-le inner-commute subset-antisym)
have frontier: frontier ?P1 $=\{x . x \cdot v=0\}$
by (simp add: assms(2) frontier-halfspace-component-ge frontiers)
have ?thesis if interior $A \neq\{ \}$
proof-
have interior $A \subseteq ? P 1 \vee$ interior $A \subseteq ? P 2$
assume $\neg($ interior $A \subseteq ? P 1 \vee$ interior $A \subseteq ? P \mathcal{Z})$
then obtain $x y$ where $x y: x \in(($ interior $A) \cap ? P 1)-? P 2 \wedge y \in(($ interior A) \cap ? P2) - ? P1
by fastforce
moreover have $x \in$ frontier ?P1 \cup interior ?P1 $\wedge y \in$ frontier ?P2 \cup interior ?P2
by (metis DiffD1 IntD2 Un-Diff-cancel2 frontiers closure-Un-frontier fron-tier-def interior-subset sup.orderE xy)
ultimately have $x y^{\prime}: x \in($ interior $A) \cap$ interior ?P1 $\wedge y \in($ interior $A) \cap$ interior ?P2
using frontiers by blast
then have closed-segment x y frontier ? P1 $\neq\{ \}$
by (metis (no-types, lifting) DiffD1 DiffD2 Int-iff convex-closed-segment con-vex-imp-path-connected empty-iff ends-in-segment(1) ends-in-segment(2) in-mono path-connected-not-frontier-subset xy)
moreover have closed-segment $x y \subseteq$ interior A
by (metis convex-interior Int-iff assms(1) convex-contains-segment xy')
ultimately obtain z where $z: z \in$ interior $A \cap$ frontier ?P1 by blast
have closed-segment ?a ? $b \subseteq$ frontier ?P1
proof (rule subsetI)
fix x
assume $x \in$ closed-segment ?a ?b
then obtain u where $x=(1-u) *_{R} ? a+u *_{R} ? b \wedge 0 \leq u \wedge u \leq 1$
unfolding closed-segment-def by blast
then have $x \cdot v=u *_{R}(? b \cdot v)$ by simp
moreover have ?b $\cdot v=0$ by (simp add: assms(4))
ultimately have $x \cdot v=0$ by simp
thus $x \in$ frontier ?P1 using frontier by blast
qed
moreover have $z \notin$ closed-segment ?a ? ?b using assms(3) frontier-def z by fastforce
ultimately have $z \in$ frontier ?P1 - closed-segment ?a ?b using z by blast
moreover have collinear $\{z, ? a, ? b\}$
proof -
have $\{z, ? a, ? b\} \subseteq\{x . x \cdot v=0\}$
using $\langle\{0--w\} \subseteq$ frontier $\{x . x \cdot v \leq 0\}>$ frontier z by auto
moreover have $\{x . x \cdot v=0\}=$ affine hull $\{? a, ? b\}$
by (metis (no-types, lifting) Collect-mono assms(2) assms(5) calculation halfplane-frontier-affine-hull inner-commute insert-subset subset-antisym)
ultimately show ?thesis using collinear-affine-hull by auto
qed
ultimately have $? a \in$ open-segment $z ? b \vee ? b \in$ open-segment $z ? a$
using three-points-on-line[of $\{x . x \cdot v=0\}]$
by $($ smt $(z 3)\langle z \notin\{0--w\}\rangle$ assms (5) collinear-3-imp-in-affine-hull ends-in-segment (1)
ends-in-segment(2) hull-redundant hull-subset insert-commute open-closed-segment three-points-on-line)
moreover have open-segment $z ? b \subseteq$ interior $A \wedge$ open-segment $z ? a \subseteq$
interior A
proof-
have closed-segment $z ? b \subseteq A \wedge$ closed-segment $z ? a \subseteq A$
by (meson IntD1 assms(1) assms(3) closed-segment-subset ends-in-segment(1) ends-in-segment(2) frontier-subset-compact in-mono interior-subset z)
then have rel-interior (closed-segment $z ? b) \subseteq$ interior A \wedge rel-interior (closed-segment z ? a $) \subseteq$ interior A
by (metis IntD1 $\langle\not \not \notin\{0--w\}$ assms(1) closure-convex-hull convex-hull-eq in-interior-closure-convex-segment order-class.order-eq-iff rel-interior-closed-segment subsetD subset-closed-segment z)
moreover have rel-interior (closed-segment $z ? b)=$ open-segment $z ? b$
\wedge rel-interior (closed-segment $z ? a)=$ open-segment z ?a
by (metis $\langle z \notin\{0--w\}$ closed-segment-commute ends-in-segment(1) rel-interior-closed-segment)
ultimately show ?thesis by force
qed
ultimately have $? a \in$ interior $A \vee ? b \in$ interior A by fast
thus False using assms(3) frontier-def by auto
qed
then have closure $($ interior $A) \subseteq$ closure ?P1 \vee closure $($ interior $A) \subseteq$ closure ?P2
using closure-mono by blast
moreover have closed? P1 \wedge closed ?P2
by (simp add: closed-halfspace-component-ge closed-halfspace-component-le)
moreover have closure (interior A) $=A$
using assms(1)
by (simp add: compact-imp-closed convex-closure-interior that)
ultimately show ?thesis using closure-closed by auto
qed
moreover have ?thesis if interior $A=\{ \}$
proof (rule ccontr)
assume $\neg(A \subseteq ? P 1 \vee A \subseteq ? P 2)$
then obtain $x y$ where $x y: x \in(A \cap ? P 1)-? P 2 \wedge y \in(A \cap ? P 2)-? P 1$ by fastforce
moreover have $x \in$ frontier ?P1 \cup interior ?P1 $\wedge y \in$ frontier ?P2 \cup interior ?P2
by (metis DiffD1 IntD2 Un-Diff-cancel2 frontiers closure-Un-frontier fron-tier-def interior-subset sup.orderE xy)
ultimately have $x y^{\prime}: x \in A \cap$ interior ? PP1 $\wedge y \in A \cap$ interior ?P2 using frontiers by blast
have \neg collinear $\{? a, ? b, x, y\}$
proof (rule ccontr)
assume $\neg \neg$ collinear $\{? a, ? b, x, y\}$
then have $*$: collinear $\{? a, ? b, x, y\}$ by blast
then have $\{? a, ? b, x, y\} \subseteq$ affine hull $\{? a, ? b\}$
by (metis assms(5) collinear-3-imp-in-affine-hull collinear-4-3 hull-subset insert-subset)
moreover have affine hull $\{? a, ? b\}=\{x . x \cdot v=0\}$
by (smt (verit) Diffe * assms(2) assms(4) assms(5) collinear-3-imp-in-affine-hull
collinear-4-3 halfplane-frontier-affine-hull inner-commute mem-Collect-eq xy)
moreover have $\ldots=$ frontier ? P1 $\wedge \ldots=$ frontier ?P2
using frontiers assms(2) frontier-halfspace-component-ge by blast
ultimately show False using frontiers $x y$ by auto
qed
then obtain $c 1 c 2 c 3$ where $c 123: \neg$ collinear $\{c 1, c 2, c 3\} \wedge\{c 1, c 2, c 3\}$ $\subseteq\{? a, ? b, x, y\}$
by (metis assms(5) collinear-4-3 insert-mono subset-insertI)
then have interior (convex hull $\{c 1, c 2, c 3\}$) $\neq\{ \}$
by (metis Jordan-inside-outside-real2 closed-path-def make-triangle-def path-inside-def
polygon-def polygon-of-def triangle-inside-is-convex-hull-interior triangle-is-polygon)
moreover have $\{c 1, c 2, c 3\} \subseteq A$
by (smt (verit, del-insts) c123 xy' assms(1) assms(3) empty-subsetI fron-tier-subset-compact in-mono inf.orderE insert-absorb insert-mono le-infE subsetI subset-closed-segment)
ultimately have interior $A \neq\{ \}$
by (metis assms(1) interior-mono subset-empty subset-hull)
thus False using that by blast
qed
ultimately show ?thesis by blast
qed
lemma pocket-fill-line-int-aux4:
fixes $p q:: R$-to- $R 2$
fixes $A::$ (real 2) set
defines $p 0 \equiv$ pathstart p
defines $p 1 \equiv$ pathfinish p
defines $q 0 \equiv$ pathstart q
defines $q 1 \equiv$ pathfinish q
defines $a \equiv p 1 \$ 1$
defines $l \equiv$ closed-segment p0 p1
assumes simple-path p
assumes simple-path q
assumes path-image $p \cap$ path-image $q=\{ \}$
assumes $p 0 \$ 1=0 \wedge p 0 \$ 2=0 \wedge p 1 \$ 2=0$
assumes $a>0$
assumes $\forall v \in$ path-image p. $q 0 \$ 2 \leq v \$ 2$
assumes $\forall v \in$ path-image p. q1 $\$ 2>v \$ 2$
assumes convex $A \wedge$ compact A
assumes $\{p 0, p 1\} \subseteq$ frontier A
assumes $p^{‘}\{0<. .<1\} \subseteq$ interior A
assumes path-image $q \subseteq A$
shows $l \subseteq$ frontier $A \forall x \in($ path-image $p) \cup($ path-image $q) . x \$ 2 \geq 0 q 0 \$ 2=0$
proof-
have $l: l=\{x . x \$ 2=0 \wedge x \$ 1 \in\{0 . . a\}\}$
using horizontal-segment-at-0' a-def assms(10) assms(11) l-def by presburger
have endpoints: $\left(\begin{array}{ll}p & 0\end{array}\right) \$ 1=0 \wedge(p 0) \$ 2=0 \wedge\left(\begin{array}{ll}p & 1\end{array}\right) \$ 1=a \wedge\left(\begin{array}{ll}p & 1\end{array}\right) \$ 2=0$
by (metis a-def assms(10) p0-def p1-def pathfinish-def pathstart-def)

```
have \(l \subseteq\) frontier \(A\) if \(\neg(\) path-image \(q \cap\{x . x \$ 2=0\} \subseteq l)\)
```

proof-
from that obtain x where $x \in$ path-image $q \cap\{x . x \$ 2=0\} \wedge(x \$ 1<0 \vee$ $x \$ 1>a)$
by (smt (verit) Int-Collect a-def assms(10) endpoints l-def p0-def pathstart-def segment-horizontal subsetI)
thus ?thesis
using pocket-fill-line-int-aux[of p0 p1xA] unfolding l-def
by (smt (verit, del-insts) IntD2 Int-commute a-def assms(11) assms(14) $\operatorname{assms}(15) \operatorname{assms}(17)$ assms(10) endpoints exhaust-2 frontier-subset-compact in-sert-subset mem-Collect-eq p0-def pathstart-def subset-eq vec-eq-iff zero-index)
qed
moreover have False if (path-image $q \cap\{x . x \$ 2=0\} \subseteq l$)
proof-
have (path-image $p \cap\{x . x \$ 2=0\} \subseteq l$)
using pocket-fill-line-int-aux2
by (metis a-def assms(10) assms(11) assms(14) assms(15) assms(16) assms(7) l-def p0-def p1-def)
then have path-image $p \cap$ path-image $q \neq\{ \}$ using pocket-fill-line-int-aux1
by (metis (mono-tags, lifting) assms(11) assms(12) assms(13) assms(7) $\operatorname{assms}(8)$ endpoints l-def p0-def p1-def pathfinish-def pathstart-def q0-def q1-def that)
thus False by (simp add: assms(9))
qed
ultimately show $*: l \subseteq$ frontier A by blast

```
show }\forallx\in(\mathrm{ path-image p) }\cup(\mathrm{ path-image q). x$2 }\geq
proof(rule ccontr)
    assume}\neg(\forallx\in(\mathrm{ path-image p) U(path-image q). x$2 }\geq0
    then have }\existsx\in(\mathrm{ path-image p) U(path-image q). x$2<0 using linorder-not-le
by blast
    then obtain x where x: x\in((path-image p)\cup(path-image q)) \capA\wedgex$2<
O
                using assms(12) assms(17) pathstart-in-path-image q0-def by fastforce
```

let ? $v=($ vector $[0,1])::($ real^2 $)$
have 1: ? $v \neq 0$ by (simp add: e1e2-basis(3))
have 2: closed-segment 0 p1 \subseteq frontier A
by (smt (verit, del-insts) * Int-closed-segment closed-segment-eq double-ton-eq-iff endpoints l-def p0-def pathstart-def segment-vertical zero-index)
have 3: p1 \cdot ? v $=0$ by (metis assms(10) cart-eq-inner-axis e1e2-basis(3))
have 4: p1 $\neq 0$ using a-def assms(11) by force
have $*:(A \subseteq\{x . x \cdot ? v \leq 0\} \vee A \subseteq\{x . x \cdot ? v \geq 0\})$
using pocket-fill-line-int-aux3[OF assms(14) 123 4] by blast
moreover have $q 1 \$ 2>0$ using $\operatorname{assms}(10) \operatorname{assms}$ (13) p0-def pathstart-in-path-image
by fastforce
ultimately show False
by (metis (no-types, lifting) IntE x assms(17) e1e2-basis(3) inner-axis

```
linorder-not-less mem-Collect-eq pathfinish-in-path-image q1-def real-inner-1-right
subsetD)
    qed
    moreover have q0$2 \leq 0 using assms(10) assms(12) p1-def by force
    moreover have q0 \in(path-image p)\cup(path-image q)
    by (simp add: pathstart-in-path-image q0-def)
    ultimately show q0$2 = 0 by force
qed
lemma pocket-fill-line-int-aux5:
    fixes p q :: R-to-R2
    fixes }A::(\mathrm{ real`2) set
    defines p0 \equiv pathstart p
    defines p1 \equiv pathfinish p
    defines q0 \equiv pathstart q
    defines q1 \equiv pathfinish q
    defines }a\equivp1$
    defines l\equivclosed-segment p0 p1
    assumes simple-path p
    assumes simple-path q
    assumes path-image p\cap path-image q}={q0,q1
    assumes p0$1=0^p0$2=0^p1$2=0
    assumes a>0
    assumes A= convex hull (path-image p\cup path-image q)
    assumes {p0, p1}\subseteq frontier A
    assumes p`{0<..<1}\subseteq interior A
    assumes path-image q\subseteqA
    assumes }\existsx\in\mp@subsup{p}{}{\prime}{0<..<1}. x$2\geq
    assumes q0=p1^q1=p0
    shows l\subseteq frontier A \forallx\in path-image p\cup path-image q. x$2 \geq0
proof-
    have 1:l\subseteq frontier A if }\forallx\in\mathrm{ path-image p }\cup\mathrm{ path-image q. x$2 }\geq
    proof-
        have }\forallx\in\mathrm{ path-image p}\cup\mathrm{ path-image q. x • (vector [0, 1]) }\geq
            by (simp add: e1e2-basis(3) inner-axis that)
        then have }\forallx\inA.x\cdot(vector [0,1])\geq
            by (smt (verit, ccfv-threshold) convex-cut-aux' assms(12) inner-commute
mem-Collect-eq subset-eq)
    then have A\subseteq{x.x • (vector [0, 1])\geq0} by blast
        moreover have frontier {x.x • ((vector [0,1])::(real^2)) \geq0} ={x.x.
(vector [0, 1]) = 0}
            by (metis dual-order.refl frontier-halfspace-component-ge not-one-le-zero vec-
tor-2(2) zero-index)
    moreover have l\subseteq{x.x\cdot(vector [0,1])=0}
    proof -
        have }\forallx\inl.x$2=0 using assms(10) l-def segment-horizontal by presburger
        thus ?thesis by (simp add: cart-eq-inner-axis e1e2-basis(3) subset-eq)
    qed
```

ultimately show ?thesis
by (smt (verit, best) Un-upper1 assms(12) closed-segment-subset convex-convex-hull hull-subset in-frontier-in-subset l-def p0-def p1-def pathfinish-in-path-image path-start-in-path-image subset-eq)

qed

have 2: False if tht: $\neg(\forall x \in($ path-image $p) \cup($ path-image $q) . x \$ 2 \geq 0)$
proof-
obtain $x t x$ where $x: t x \in\{0 . .1\} \wedge q t x=x \wedge(\forall z \in$ path-image $p . x \$ 2<$ z\$2)
using exists-point-below-all[of p q] that
by (smt (verit, del-insts) tht assms(10) assms(12) assms(14) assms(7) $\operatorname{assms}(8)$ image-iff p0-def p1-def path-image-def pathfinish-def pathstart-def sim-ple-path-imp-path)
obtain y ty where $y: t y \in\{0 . .1\} \wedge q t y=y \wedge(\forall x \in$ path-image $p . y \$ 2>$ $x \$ 2)$
using exists-point-above-all[of p p]
by (smt (verit, del-insts) assms(10) assms(12) assms(14) assms(16) assms(7) $\operatorname{assms}(8)$ image-iff p0-def p1-def path-image-def pathfinish-def pathstart-def sim-ple-path-imp-path)
let ? $Q=$
λq^{\prime}. simple-path $q^{\prime} \wedge$ path-image $p \cap$ path-image $q^{\prime}=\{ \}$
$\wedge q^{\prime} 0=q t x \wedge q^{\prime} 1=q t y$
\wedge path-image $q^{\prime} \subseteq$ path-image q
have $*: \bigwedge q^{\prime}$. ? $Q q^{\prime} \Longrightarrow$ False
proof -
fix q^{\prime}
assume *: ? $Q q^{\prime}$
have 2: simple-path q^{\prime} by (simp add:*)
have 3: path-image $p \cap$ path-image $q^{\prime}=\{ \}$ by (simp add: *)
have $6: \forall v \in$ path-image p. pathstart $q^{\prime} \$ 2 \leq v \$ 2$
by (simp add: * less-eq-real-def pathstart-def x)
have 7: $\forall v \in$ path-image p.v $\$ 2<$ pathfinish $q^{\prime} \$ 2$ by (simp add: * pathfin-ish-def y)
have 11: path-image $q^{\prime} \subseteq A$ using $*$ assms(15) by blast
have $\forall x \in($ path-image $p) \cup\left(\right.$ path-image $\left.q^{\prime}\right) . x \$ 2 \geq 0$
using pocket-fill-line-int-aux4(2)[of p, OF - 2 3--67--11]
by (metis a-def assms(10) assms(11) assms(12) assms(13) assms(14) $\operatorname{assms}(7) \operatorname{assms}(8)$ compact-Un compact-convex-hull compact-simple-path-image con-vex-convex-hull p0-def p1-def)
thus False

x)
qed
have $l f:(\forall t \in\{0 . .1\} .(q t=q 0 \vee q t=q 1) \longrightarrow(t=0 \vee t=1))$
using assms(8)
unfolding q0-def q1-def simple-path-def loop-free-def pathstart-def pathfin-
ish-def
by fastforce
have endpoints: $q t x \neq q 0 \wedge q t y \neq q 0 \wedge q t x \neq q 1 \wedge q t y \neq q 1$
by (metis x y $\operatorname{assms}(10) \operatorname{assms}(17)$ order-less-le p0-def pathstart-in-path-image)
have $t x$-neq-ty: $t x \neq t y$ using pathstart-in-path-image $x y$ by fastforce
moreover have False if $t x<t y$
proof -
have path-image $p \cap$ path-image (subpath tx ty q) $=\{ \}$
(is path-image $p \cap$ path-image ? $q^{\prime}=\{ \}$)
proof -
have $q 0 \notin$ path-image ? $q^{\prime} \wedge q 1 \notin$ path-image ? q^{\prime}
proof-
have $\{t x . . t y\} \subseteq\{0 . .1\}$ using x y by simp
then have $(\forall t \in\{t x . . t y\} .(q t=q 0 \vee q t=q 1) \longrightarrow(t=0 \vee t=1))$
using $l f$ by blast
moreover have $0 \notin\{t x . . t y\} \wedge 1 \notin\{t x . . t y\}$
by (metis atLeastAtMost-iff dual-order.eq-iff endpoints pathfinish-def
pathstart-def q0-def q1-def x y)
moreover have path-image ? $q^{\prime}=q^{〔}\{t x . . t y\}$ by (simp add: path-image-subpath that)
ultimately show ?thesis by fastforce
qed
thus ?thesis
by (smt (verit, best) Int-empty-right Int-insert-right-if0 assms (9) boolean-algebra-cancel.inf2
inf.absorb-iff1 path-image-subpath-subset $x y$)
qed
thus ?thesis using $*[o f ? q$ ']
by (metis assms (8) tx-neq-ty path-image-subpath-subset pathfinish-def pathfin-
ish-subpath pathstart-def pathstart-subpath simple-path-subpath x y)
qed
moreover have False if $t y<t x$
proof -
have path-image $p \cap$ path-image (reversepath (subpath tx ty $q)$) $=\{ \}$
(is path-image $p \cap$ path-image ${ }^{\prime} q^{\prime}=\{ \}$)
proof-
have $q 0 \notin$ path-image ? $q^{\prime} \wedge q 1 \notin$ path-image ? q^{\prime}
proof-
have $\{t y . . t x\} \subseteq\{0 . .1\}$ using $x y$ by simp
then have $(\forall t \in\{t y . . t x\} .(q t=q 0 \vee q t=q 1) \longrightarrow(t=0 \vee t=1))$
using lf by blast
moreover have $0 \notin\{t y . . t x\} \wedge 1 \notin\{t y . . t x\}$
by (metis atLeastAtMost-iff dual-order.eq-iff endpoints pathfinish-def
pathstart-def q0-def q1-def $x y$)
moreover have path-image ? $q^{\prime}=q^{\prime}\{t y . . t x\}$
by (simp add: path-image-subpath reversepath-subpath that)
ultimately show ?thesis by fastforce
qed
thus?thesis
by (smt (verit) Int-commute assms(9) inf.absorb-iff2 inf.assoc inf-bot-right insert-disjoint(2) path-image-reversepath path-image-subpath-subset $x y$)
qed
thus ?thesis using $*[o f ? q]$
by (metis * assms(8) tx-neq-ty path-image-subpath-commute path-image-subpath-subset pathfinish-def pathfinish-subpath pathstart-def pathstart-subpath reversepath-subpath simple-path-subpath $x y$)
qed
ultimately show False by fastforce
qed
show $l \subseteq$ frontier $A \forall x \in($ path-image $p) \cup($ path-image $q) . x \$ 2 \geq 0$
using 12 apply blast
using 12 by blast
qed
lemma pocket-fill-line-int-aux6:
fixes $p q:: R$-to- $R 2$
defines $p 0 \equiv$ pathstart p
defines $p 1 \equiv$ pathfinish p
defines $q 0 \equiv$ pathstart q
defines $q 1 \equiv$ pathfinish q
defines $a \equiv p 1 \$ 1$
assumes simple-path p
assumes simple-path q
assumes $p 0=0 \wedge p 1 \$ 2=0$
assumes $a>0$
assumes $q 0 \$ 1 \in\{0 . . a\} \wedge q 0 \$ 2=0$
assumes $\forall x \in$ path-image p. q1\$2 $>x \$ 2$
assumes $\forall x \in$ path-image $p \cup$ path-image q. $x \$ 2 \geq 0$
shows path-image $p \cap$ path-image $q \neq\{ \}$
proof-
let ? $11=$ linepath $p 1($ vector $[a,-1])$
let ? $12=$ linepath $(($ vector $[a,-1])::($ real^2 $))($ vector $[0,-1])$
let ? $13=$ linepath $(($ vector $[0,-1])::($ real^2 $)) 0$
let $? R^{\prime}=? l 1+++$? $12+++$? 13
let $? R=p+++? R^{\prime}$
have closed: closed-path ?R
proof-
have path ? R using assms (6) p1-def simple-path-imp-path by auto
moreover have pathstart ? $R=$ pathstart p by simp
moreover have pathfinish ? $R=$ pathfinish ?l3 by simp
moreover have pathstart $p=0$ using $\operatorname{assms}(8) p 0$-def by fastforce
moreover have pathfinish ? $13=0$ by simp
ultimately show ?thesis unfolding closed-path-def by presburger
qed
have simple: simple-path ?R
proof-

```
    have arc ? \(R^{\prime}\)
    proof -
    let \(? a=p 1\)
    let ? \(b=(\) vector \([a,-1])::(\) real^2 \()\)
    let \(? c=(\) vector \([0,-1])::\left(\right.\) real \(\left.{ }^{\wedge}\right)\)
    let \(? d=0::\left(\right.\) real \({ }^{\wedge}\) 2)
```

have arcs: arc ?l1 \wedge arc ? $12 \wedge$ arc ? 13
by (metis arc-linepath assms(8) assms(9) vector-2(1) vector-2(2) verit-comp-simplify1 (1) zero-index zero-neq-neg-one)
have l213: path-image ?12 \cap path-image ? $13=\{$ pathfinish ? 12$\}$
using linepath-int-corner [of ?b ?c ?d]
by (metis Int-commute closed-segment-commute linepath-int-corner path-image-linepath pathfinish-linepath vector-2(2) zero-index zero-neq-neg-one)
have l112: path-image ?l1 \cap path-image ? $12=\{$ pathfinish ? 11$\}$
using linepath-int-corner[of ?a ? ? ? c c] by (simp add: assms(8))
have l113: path-image ? $11 \cap$ path-image ? $13=\{ \}$
using linepath-int-vertical[of ?a ?b ?c ? d d a-def assms (9) linepath-int-vertical by auto
have path-image ?!2 \cap path-image ? $13=\{$ pathfinish ? 12$\}$
using l2l3 by blast
moreover have sf-23: pathfinish ? $12=$ pathstart ? 13 by simp
ultimately have arc (?12 +++ ? 13)
by (metis arc-join-eq-alt arcs)
moreover have path-image ?l1 \cap path-image $(? 12+++$?13 $)=\{$ pathfinish
? 11$\}$
using l112 l113
by (metis (no-types, lifting) Int-Un-distrib sf-23 insert-is-Un path-image-join)
moreover have pathfinish ?l1 = pathstart (?12 +++ ?l3) by simp
ultimately show arc (?11 +++ ? $12+++$? 13)
by (metis arc-join-eq-alt arcs)
qed
moreover have loop-free p using assms(6) simple-path-def by blast
moreover have path-image ? $R^{\prime} \cap$ path-image $p=\{p 0, p 1\}$
proof -
have path-image ?l1 \cap path-image $p=\{p 1\}$
proof-
have $\forall x \in$ path-image $p . x \$ 2 \geq 0$ by (simp add: assms(12))
moreover have $\forall x \in$ path-image ?l1. $x \$ 2 \leq 0$ using a-def $\operatorname{assms}(8)$
segment-vertical by force
ultimately have $\forall x \in$ path-image $p \cap$ path-image ?l1. $x \$ 2=0$ by fastforce
moreover have $\forall x \in$ path-image ?l1. $x \$ 2=0 \longrightarrow x=p 1$
by (metis (mono-tags, opaque-lifting) a-def assms(8) exhaust-2 path-image-linepath segment-vertical vec-eq-iff vector-2(1))
ultimately have $\forall x \in$ path-image $p \cap$ path-image ?l1. $x=p 1$ by fast
moreover have $p 1 \in$ path-image ?l1 $\wedge p 1 \in$ path-image p using p1-def
by auto
ultimately show ?thesis by blast
qed
moreover have path-image ?12 \cap path-image $p=\{ \}$
by (smt (verit, best) segment-horizontal assms(12) UnCI disjoint-iff path-image-linepath vector-2(2))
moreover have path-image ? $13 \cap$ path-image $p=\{p 0\}$
proof-
have $\forall x \in$ path-image $p . x \$ 2 \geq 0$ by (simp add: assms(12))
moreover have $\forall x \in$ path-image ?13. $x \$ 2 \leq 0$ using a-def $\operatorname{assms}(8)$ segment-vertical by force
ultimately have $\forall x \in$ path-image $p \cap$ path-image ?13. $x \$ 2=0$ by fastforce
moreover have $\forall x \in$ path-image ?l3. $x \$ 2=0 \longrightarrow x=p 0$
by (metis (no-types, opaque-lifting) assms(8) exhaust-2 path-image-linepath segment-vertical vec-eq-iff vector-2 (1) zero-index)
ultimately have $\forall x \in$ path-image $p \cap$ path-image ?l3. $x=p 0$ by fast
moreover have $p 0 \in$ path-image ? $13 \wedge p 0 \in$ path-image p using $\operatorname{assms}(8)$
p0-def by fastforce
ultimately show ?thesis by blast
qed
ultimately show ?thesis
by (smt (verit, del-insts) Int-Un-distrib Int-commute Un-assoc Un-insert-right
insert-is-Un path-image-join pathfinish-linepath pathstart-join pathstart-linepath)
qed
moreover have arc p
using closed-path-def arc-distinct-ends assms(6) calculation(1) closed p1-def
simple-path-imp-arc
by force
ultimately show ?thesis
by (metis (no-types, opaque-lifting) Int-commute closed-path-def closed dual-order.refl linepath-0' p0-def p1-def pathfinish-join pathstart-def pathstart-join simple-path-join-loop-eq)
qed
have inside-outside: inside-outside ?R (path-inside ?R) (path-outside ?R)
using closed simple Jordan-inside-outside-real2
by (simp add: closed-path-def inside-outside-def path-inside-def path-outside-def)
have interior-frontier: path-inside ? $R=$ interior (path-inside ? R)
\wedge frontier (path-inside ?R) $=$ path-image ? R
using inside-outside interior-open unfolding inside-outside-def by auto
have $R-y$-q1: $\forall x \in$ path-image ? R. $x \$ 2<q 1 \$ 2$
proof-
have $*: \forall x \in$ path-image p. $x \$ 2<q 1 \$ 2$ using assms(11) by blast
moreover have $\forall x \in$ path-image ?l1. $x \$ 2<q 1 \$ 2$
using a-def assms(8) * p1-def pathfinish-in-path-image segment-vertical by fastforce
moreover have $\forall x \in$ path-image ?12. $x \$ 2<q 1 \$ 2$
using assms(8) * p1-def pathfinish-in-path-image segment-horizontal by fastforce
moreover have $\forall x \in$ path-image ?13. $x \$ 2<q 1 \$ 2$
using $\operatorname{assms}(8) * p 1$-def pathfinish-in-path-image segment-vertical by fastforce ultimately show ?thesis by (metis not-in-path-image-join)
qed
have $R-y-0: \forall x \in$ path-image ? $R . x \$ 2 \geq-1$
proof-
have $\forall x \in$ path-image ?l1. $x \$ 2 \geq-1$ using a-def assms(8) segment-vertical by fastforce
moreover have $\forall x \in$ path-image ?12. $x \$ 2 \geq-1$ using segment-horizontal by auto
moreover have $\forall x \in$ path-image ?13. $x \$ 2 \geq-1$ using segment-vertical by auto
moreover have $\forall x \in$ path-image p. $x \$ 2 \geq-1$ using assms(12) by force ultimately show ?thesis by (metis not-in-path-image-join)
qed
have ?thesis if $p 0 \in$ path-image $q \vee p 1 \in$ path-image q using $p 0$-def p1-def that by blast
moreover have ?thesis if $p 0 \notin$ path-image $q \wedge p 1 \notin$ path-image $q \wedge q 0 \notin$ path-image p
proof-
have q-int-l1: path-image $q \cap$ path-image ?l1 $=\{ \}$
proof -
have $\forall x \in$ path-image $q . x \$ 2 \geq 0$ by (simp add: assms(12))
moreover have $\forall x \in$ path-image ? l1. $x \$ 2=0 \longrightarrow x=p 1$
by (metis (mono-tags, opaque-lifting) a-def assms(8) exhaust-2 path-image-linepath segment-vertical vec-eq-iff vector-2(1))
ultimately show ?thesis using that a-def assms(8) segment-vertical by fastforce
qed
moreover have q-int-l2: path-image $q \cap$ path-image ? $12=\{ \}$
by (smt (verit, ccfv-threshold) UnCI assms(12) disjoint-iff path-image-linepath segment-horizontal vector-2(2))
moreover have q-int-l3: path-image $q \cap$ path-image ?l3 $=\{ \}$
proof -
have $\forall x \in$ path-image $q . x \$ 2 \geq 0$ by (simp add: assms(12))
moreover have $\forall x \in$ path-image ?13. $x \$ 2=0 \longrightarrow x=p 0$
by (metis (no-types, opaque-lifting) assms(8) exhaust-2 path-image-linepath segment-vertical vec-eq-iff vector-2(1) zero-index)
ultimately show ?thesis using that a-def assms(8) segment-vertical by fastforce
qed
ultimately have q0-notin-R: q0 \notin path-image ?R
using that by (simp add: disjoint-iff not-in-path-image-join pathstart-in-path-image q0-def)
have path-image $q \cap$ path-image $? R \neq\{ \}$
proof-
have q0 \in path-inside ?R

proof-

let ? $e=($ vector $[q 0 \$ 1,-1])::($ real 2 2 $)$
let ? $d 1=($ vector $[a,-1])::($ real^2 $)$
let ? $d 2=($ vector $[0,-1])::($ real^2 $)$
have $0<q 0 \$ 1 \wedge q 0 \$ 1<a$
by (smt (verit) a-def assms(10) assms(8) atLeastAtMost-iff exhaust-2 linorder-not-less pathstart-in-path-image q0-def that vec-eq-iff zero-index)
then have $q 0 \$ 1>0 \wedge a-q 0 \$ 1>0$ by simp
then have $\min (\min (q 0 \$ 1)(a-q 0 \$ 1)) 1>0\left(\right.$ is $\left.? \varepsilon^{\prime}>0\right)$ by linarith
then have $0<? \varepsilon^{\prime} / 2 \wedge ? \varepsilon^{\prime} / 2<1 \wedge ? \varepsilon^{\prime} / 2<q 0 \$ 1 \wedge ? \varepsilon^{\prime} / 2<a-q 0 \$ 1$ by argo
then obtain ε where $\varepsilon: 0<\varepsilon \wedge \varepsilon<1 \wedge \varepsilon<q 0 \$ 1 \wedge \varepsilon<a-q 0 \$ 1$ by blast
moreover have ?e \in frontier (path-inside ?R)
by (smt (verit, del-insts) UnCI $\langle 0<q 0 \$ 1 \wedge 0<a-q 0 \$ 1\rangle$ in-terior-frontier p1-def path-image-join path-image-linepath pathfinish-linepath path-start-join pathstart-linepath segment-horizontal vector-2(1) vector-2(2))
ultimately obtain int-p where int-p: int-p \in ball ?e $\varepsilon \cap$ path-inside ? R by (meson inside-outside frontier-straddle mem-ball IntI)

$$
\text { have int- } p-x \text { : int-p } \$ 1>0 \wedge \text { int- } p \$ 1<a
$$

proof-
have int-p $\$ 1>0$
proof (rule ccontr)
assume \neg int- $p \$ 1>0$
moreover have dist (int-p\$1) $(q 0 \$ 1)<q 0 \$ 1$
by (smt (verit) IntE ε dist-commute dist-vec-nth-le int-p mem-ball
vector-2(1))
ultimately show False using dist-real-def by force
qed
moreover have int-p $\$ 1<a$
proof (rule ccontr)
assume \neg int- $p \$ 1<a$
moreover have dist (int-p\$1) (q0\$1)<a-q0\$1
by (smt (verit) IntE ε dist-commute dist-vec-nth-le int-p mem-ball vector-2(1))
ultimately show False using dist-real-def by force
qed
ultimately show ?thesis by blast
qed
have int-p-y: int-p\$2>-1 \wedge int- $p \$ 2<0$
proof-
have int- $p \$ 2>-1$
proof (rule ccontr)
assume $*$: ᄀ int-p\$2 >-1
then have int-p $\$ 2 \leq-1$ by simp
let $?^{2} \mathrm{Z}^{\prime}=($ vector $[0,-1])::($ realへ2 $)$
let ? ray $=\lambda d$. int- $p+d *_{R}$? $e 2^{\prime}$

```
    have \(\neg(\exists d>0\). ?ray \(d \in\) path-image ? \(R)\)
```

 proof -
 have \(\forall d>0\). (?ray d)\$2<-1 using \(*\) by auto
 thus ?thesis using \(R-y\) - 0 by force
 qed
 moreover have bounded (path-inside ?R) using bounded-finite-inside
 simple by blast
moreover have $? . e^{2} \prime \neq 0$ by (metis vector-2(2) zero-index zero-neq-neg-one)
ultimately have int-p \notin path-inside ? R
using ray-to-frontier[of path-inside ?R] interior-frontier by metis
thus False using int-p by blast
qed
moreover have int-p $\$ 2<0$
proof (rule ccontr)
assume \neg int-p $\$ 2<0$
then have dist int- p ? $e \geq 1$
by (smt (verit, del-insts) dist-real-def dist-vec-nth-le vector-2(2))
thus False by (smt (verit, del-insts) IntD1 \& dist-commute int-p mem-ball)
qed
ultimately show ?thesis by blast
qed
let ?int-l $=$ linepath int-p q0
have path-image ? int-l \cap path-image ? $11=\{ \}$
using $\langle 0<q 0 \$ 1 \wedge q 0 \$ 1<a\rangle a$-def int-p-x linepath-int-columns by
auto
moreover have path-image ?int-l \cap path-image ? $12=\{ \}$
by (smt (verit, best) assms(10) disjoint-iff int-p-y linepath-int-rows vec-
tor-2(2))
moreover have path-image ?int-l \cap path-image ?l3 $=\{ \}$
by (smt (verit, del-insts) ε disjoint-iff int-p-x linepath-int-columns vec-
tor-2(1) zero-index)
moreover have path-image ?int-l \cap path-image $p=\{ \}$
proof-
have $\forall t \in\{0 . .1\}$. (? int-l $t) \$ 2=0 \longrightarrow t=1$
unfolding linepath-def using assms(10) int-p-y by force
then have $\forall x \in$ path-image ? int-l. $x \$ 2=0 \longrightarrow x=q 0$
unfolding path-image-def using linepath-1' by fastforce
moreover have $\forall x \in$ path-image $p . x \$ 2 \geq 0$ by (simp add: assms(12))
moreover have $\forall x \in$ path-image ? int-l. $x \$ 2 \leq 0$
by (smt (verit) assms(10) int-p-y linepath-bound-2(2))
ultimately show ?thesis using that by fastforce
qed
ultimately have path-image ? int-l \cap path-image ? $R=\{ \}$
by (simp add: disjoint-iff not-in-path-image-join)
then have path-image ?int-l \subseteq path-inside ? $R \vee$ path-image ?int-l \subseteq
path-outside ? R
by (metis IntD2 IntI convex-imp-path-connected convex-segment(1) empty-iff int-p interior-frontier path-connected-not-frontier-subset path-image-linepath path-start-in-path-image pathstart-linepath)

```
            moreover have ?int-l 0 = int-p ^ int-p \in path-inside ?R
```

 using int-p by (simp add: linepath-0')
 ultimately have path-image ?int-l \(\subseteq\) path-inside ? \(R\)
 using inside-outside-def local.inside-outside by auto
 thus ?thesis by auto
 qed
then have $q 0 \in-$ (path-outside ?R)
by (metis ComplI IntI equals0D inside-Int-outside path-inside-def path-outside-def)
moreover have q1 \in path-outside ? R
proof -
let $?,{ }^{2}=($ vector $[0,1])::($ real^2 $)$
let ? ray $=\lambda d$. $q 1+d *_{R}$? e2
have $\neg(\exists d>0$. ?ray $d \in$ path-image ? $R)$
proof-
have $\forall d>0$. (? ray $d) \$ 2>q 1 \$ 2$ by simp
thus ?thesis using $R-y-q 1$ by fastforce
qed
moreover have bounded (path-inside ?R) using bounded-finite-inside simple
by blast
moreover have ? $e 2 \neq 0$ using e1e2-basis(4) by force
ultimately have $q 1 \notin$ path-inside ? R
using ray-to-frontier [of path-inside ?R] interior-frontier by metis
moreover have q1 \notin path-image ? R using $R-y$-q1 by blast
ultimately show ?thesis using inside-outside unfolding inside-outside-def
by blast
qed
ultimately have path-image $q \cap-($ path-outside $? R) \neq\{ \}$
\wedge path-image $q \cap($ path-outside $? R) \neq\{ \}$
using q0-def q1-def by blast
moreover have path-connected (path-image q)
using assms(7) path-connected-path-image simple-path-def by blast
moreover have path-image ? $R=$ frontier (path-outside ? R)
using inside-outside unfolding inside-outside-def p0-def path-inside-def by
blast
ultimately show ?thesis by (metis Diff-eq Diff-eq-empty-iff path-connected-not-frontier-subset)
qed
thus ?thesis by (meson q-int-l1 q-int-l2 q-int-l3 disjoint-iff not-in-path-image-join)
qed
ultimately show ?thesis using q0-def by blast
qed
lemma pocket-fill-line-int-aux7:
fixes $p q:: R$-to- $R 2$
fixes $A::\left(\right.$ real ${ }^{\wedge}$ 2) set
defines $p 0 \equiv$ pathstart p
defines $p 1 \equiv$ pathfinish p

```
    defines \(q 0 \equiv\) pathstart \(q\)
    defines \(q 1 \equiv\) pathfinish \(q\)
    defines \(a \equiv p 1 \$ 1\)
    defines \(l \equiv\) open-segment p0 p1
    assumes simple-path \(p\)
    assumes simple-path \(q\)
    assumes path-image \(p \cap\) path-image \(q=\{q 0, q 1\}\)
    assumes \(p 0 \$ 1=0 \wedge p 0 \$ 2=0 \wedge p 1 \$ 2=0\)
    assumes \(a>0\)
    assumes \(A=\) convex hull (path-image \(p \cup\) path-image \(q\) )
    assumes \(\{p 0, p 1\} \subseteq\) frontier \(A\)
    assumes \(p \not\{0<. .<1\} \subseteq\) interior \(A\)
    assumes \(\exists x \in p ،\{0<. .<1\} . x \$ 2 \geq 0\)
    assumes \(q 0=p 1 \wedge q 1=p 0\)
    shows path-image \(q \cap l=\{ \}\) closed-segment p0 p1 \(\subseteq\) frontier \(A\)
proof-
    have 1: path-image \(p \cap\) path-image \(q=\{\) pathstart \(q\), pathfinish \(q\}\)
    by (simp add: assms(9) q0-def q1-def)
    have 2: pathstart \(p \$ 1=0 \wedge\) pathstart \(p \$ 2=0 \wedge\) pathfinish \(p \$ 2=0\)
    using assms(10) p0-def p1-def by blast
    have 3: \(0<\) pathfinish \(p \$ 1\) using \(a\)-def assms(11) p1-def by auto
    have 4: \(A=\) convex hull (path-image \(p \cup\) path-image \(q\) ) by (simp add: assms(12))
    have 5: \{pathstart \(p\), pathfinish \(p\} \subseteq\) frontier \(A\) using assms(13) p0-def p1-def
by blast
    have \(6: p\) ' \(\{0<. .<1\} \subseteq\) interior \(A\) using \(\operatorname{assms}(14)\) by blast
    have 7: path-image \(q \subseteq A\) using assms(12) hull-subset by force
    have \(8: \exists x \in p ‘\{0<. .<1\} . x \$ 2 \geq 0\) using assms(15) by blast
    have 9: pathstart \(q=\) pathfinish \(p \wedge\) pathfinish \(q=\) pathstart \(p\)
    using \(\operatorname{assms}(16)\) p0-def p1-def q0-def q1-def by fastforce
    have \(*: \forall x \in(\) path-image \(p) \cup(\) path-image \(q) . x \$ 2 \geq 0\)
    using pocket-fill-line-int-aux5(2)[OF \(\operatorname{assms}(7) \operatorname{assms}(8) 12345678\) 9] by
blast
    show closed-segment p0 p1 \(\subseteq\) frontier \(A\)
    using pocket-fill-line-int-aux5(1)[OF assms(7) assms(8) 123456789\(]\)
    unfolding \(l\)-def \(p 0\)-def \(p 1\)-def by blast
    show path-image \(q \cap l=\{ \}\)
    proof (rule ccontr)
    assume \(\neg\) path-image \(q \cap l=\{ \}\)
    then obtain \(x t x\) where \(x: t x \in\{0 . .1\} \wedge q t x=x \wedge x \in l\)
        by (metis (no-types, lifting) disjoint-iff imageE path-image-def)
    obtain \(y\) ty where \(y: t y \in\{0 . .1\} \wedge q t y=y \wedge(\forall x \in\) path-image \(p . y \$ 2>\)
\(x \$ 2)\)
    using exists-point-above-all[ of \(p q]\)
    by (smt (verit, del-insts) 468 assms(10) assms(7) assms(8) p0-def p1-def
pathfinish-def pathstart-def simple-path-def image-iff path-image-def)
```

have $l f:(\forall t \in\{0 . .1\} .(q t=q 0 \vee q t=q 1) \longrightarrow(t=0 \vee t=1))$
using assms(8)
unfolding q0-def q1-def simple-path-def loop-free-def pathstart-def pathfin-ish-def
by fastforce
have endpoints: $q t x \neq q 0 \wedge q t y \neq q 0 \wedge q t x \neq q 1 \wedge q t y \neq q 1 \wedge t x \neq t y$ proof -
have $(q$ ty) $\$ 2>0$ by (metis assms(10) p0-def pathstart-in-path-image y)
moreover have $(q t x) \$ 2=0$
proof-
have q tx \in closed-segment q0 q1
using assms(16) l-def open-closed-segment open-segment-commute x by
blast
thus ?thesis by (simp add: assms(10) assms(16) segment-horizontal) qed
moreover have $q 0 \notin$ open-segment $q 0 q 1 \wedge q 1 \notin$ open-segment q0 q1
by (simp add: open-segment-def)
ultimately show ?thesis
using assms(10) assms(16) l-def open-segment-commute x by auto qed

$$
\text { let } ? Q=
$$

λq^{\prime}. simple-path $q^{\prime} \wedge$ path-image $p \cap$ path-image $q^{\prime}=\{ \}$
$\wedge q^{\prime} 0=q t x \wedge q^{\prime} 1=q t y$
\wedge path-image $q^{\prime} \subseteq$ path-image q
have **: $\bigwedge q^{\prime}$. ? $Q q^{\prime} \Longrightarrow$ False
proof -
fix q^{\prime}
assume $* *$: ? $Q q^{\prime}$
have 1: simple-path q^{\prime} by (simp add: **)
have 2: pathstart $p=0 \wedge$ pathfinish $p \$ 2=0$
by (metis (mono-tags, lifting) assms(10) exhaust-2 p0-def p1-def vec-eq-iff zero-index)
have 3: $0<$ pathfinish $p \$ 1$ using a-def assms(11) p1-def by blast
have 4: pathstart $q^{\prime} \$ 1 \in\{0$..pathfinish $p \$ 1\} \wedge$ pathstart $q^{\prime} \$ 2=0$

proof-

have $q^{\prime} 0 \in$ closed-segment p0 p1 using $* * l$-def open-closed-segment x by auto
thus ?thesis
by (smt (z3) 2 a-def assms(11) atLeastAtMost-iff atLeastatMost-empty p0-def p1-def pathstart-def pathstart-subpath segment-horizontal zero-index)
qed
have 5: $\forall x \in$ path-image p. x \$ 2 $<$ pathfinish $q^{\prime} \$ 2$ by (simp add: ** pathfinish-def y)
have $6: \forall x \in$ path-image $p \cup$ path-image $q^{\prime} .0 \leq x \$ 2$ using $* * *$ by blast
have path-image $p \cap$ path-image $q^{\prime} \neq\{ \}$
using pocket-fill-line-int-aux6[OF assms(7) 123456$]$ by simp
thus False using $* *$ by blast
qed
have False if $t x<t y$
proof
let $? q^{\prime}=$ subpath $t x$ ty q
have $q 0 \notin$ path-image $? q^{\prime} \wedge q 1 \notin$ path-image $? q^{\prime}$
proof-
have $\{t x . . t y\} \subseteq\{0 . .1\}$ using x y by simp
then have $(\forall t \in\{t x . . t y\} .(q t=q 0 \vee q t=q 1) \longrightarrow(t=0 \vee t=1))$
using lf by blast
moreover have $0 \notin\{t x . . t y\} \wedge 1 \notin\{t x . . t y\}$
by (metis atLeastAtMost-iff dual-order.eq-iff endpoints pathfinish-def
pathstart-def q0-def q1-def x y)
moreover have path-image ? $q^{\prime}=q^{〔}\{$ tx..ty $\}$ by (simp add: path-image-subpath
that)
ultimately show ?thesis by fastforce
qed
then have ? Q ? q^{\prime}
by (smt (verit, best) assms(8) assms(9) disjoint-insert(1) endpoints inf.absorb-iff1 inf-bot-right inf-left-commute path-image-subpath-subset pathfinish-def pathfinish-subpath pathstart-def pathstart-subpath simple-path-subpath x y)
thus False using ** by auto
qed
moreover have False if $t x>t y$
proof -
let $? q^{\prime}=$ reversepath (subpath ty $t x q$)
have $q 0 \notin$ path-image ? $q^{\prime} \wedge q 1 \notin$ path-image? q^{\prime}
proof-
have $\{t y . . t x\} \subseteq\{0 . .1\}$ using x by simp
then have $(\forall t \in\{t y . . t x\} .(q t=q 0 \vee q t=q 1) \longrightarrow(t=0 \vee t=1))$
using $l f$ by blast
moreover have $0 \notin\{t y . . t x\} \wedge 1 \notin\{t y . . t x\}$
by (metis atLeastAtMost-iff dual-order.eq-iff endpoints pathfinish-def pathstart-def q0-def q1-def x y)
moreover have path-image ? $q^{\prime}=q^{‘}\{t y$..tx $\}$ by (simp add: path-image-subpath that)
ultimately show ?thesis by fastforce
qed
then have ? Q ? q^{\prime}
by (smt (verit) assms(8) assms(9) endpoints inf.absorb-iff2 inf.assoc inf-bot-left insert-disjoint(2) path-image-subpath-subset pathstart-def pathstart-subpath reversepath-def reversepath-subpath simple-path-subpath $x y$)
thus False using ** by blast
qed
ultimately show False using endpoints by linarith
qed
qed
lemma frontier-injective-linear-image:
fixes f :: 'a::euclidean-space \Rightarrow ' $a::$ euclidean-space
assumes linear f inj f

```
    shows f`(frontier S) = frontier (f 'S)
    using interior-injective-linear-image closure-injective-linear-image frontier-def
assms
    by (metis image-set-diff)
lemma pocket-fill-line-int-aux8:
    fixes p q :: R-to-R2
    fixes }A::(\mathrm{ real`2) set
    defines p0 \equiv pathstart p
    defines p1 \equiv pathfinish p
    defines q0 \equiv pathstart q
    defines q1 \equiv pathfinish q
    defines }a\equivp1$
    defines l \equivopen-segment p0 p1
    assumes simple-path p
    assumes simple-path q
    assumes path-image p\cap path-image q}={q0,q1
    assumes p0$1=0^p0$2=0\wedgep1$2=0
    assumes a>0
    assumes A= convex hull (path-image p 的解-image q)
    assumes {p0, p1}\subseteq frontier A
    assumes p`{0<..<1}\subseteq interior A
    assumes q0 = p1 ^ q1 = p0
    shows path-image q\capl={}\wedgel\subseteq frontier A
proof-
    have ?thesis if ex: \existsx\in p{0<..<1}. x$2 \geq0
    using ex a-def assms dual-order.trans l-def p0-def p1-def pocket-fll-line-int-aux7(1)
pocket-fill-line-int-aux7(2) q0-def q1-def segment-open-subset-closed that
    by (smt (verit) a-def assms dual-order.trans l-def p0-def p1-def pocket-fil-line-int-aux7(1)
pocket-fill-line-int-aux7(2) q0-def q1-def segment-open-subset-closed that)
    moreover have ?thesis if }\neg(\existsx\inp{{0<..<1}. x$2\geq0
    proof
    let ?M = (vector [vector [1,0], vector [0, -1]])::(real`2`2)
    let ?f = \lambdav. ?M *v v
    let ?g = (\lambdav.vector [v$1,-v$2])::(real^2 }=>\mathrm{ real^2)
    define p' where p' \equiv?f \circp
    define q}\mp@subsup{q}{}{\prime}\mathrm{ where }\mp@subsup{q}{}{\prime}\equiv?f\circ\rho
    define }\mp@subsup{A}{}{\prime}\mathrm{ where }\mp@subsup{A}{}{\prime}\equiv? \\mp@subsup{f}{}{`}
    have inj: inj ?f and f-eq-g: ?f = ?g
            using flip-function(1) apply blast
                using flip-function(2) by blast
    have 4: pathstart p'$1=0 ^ pathstart p'$ 2 = 0 ^ pathfinish p'$ 2 = 0
    by (smt (verit, best) assms(10) f-eq-g o-apply p'-def p0-def p1-def pathfinish-def
pathstart-def vector-2(1) vector-2(2))
    have startfinish: pathstart p' = pathstart p ^ pathfinish p' = pathfinish p
                by (metis (mono-tags, opaque-lifting) & assms(10) exhaust-2 f-eq-g o-apply
```

```
\(p^{\prime}\)-def p0-def p1-def pathfinish-def vec-eq-iff vector-2(1))
```

 have 1: simple-path \(p^{\prime}\) using \(\operatorname{inj}\) by (simp add: assms(7) simple-path-linear-image-eq
 p^{\prime}-def)
have 2: simple-path q^{\prime} using inj by (simp add: assms(8) simple-path-linear-image-eq
$q^{\prime}-d e f$)
have 3: path-image $p^{\prime} \cap$ path-image $q^{\prime}=\left\{\right.$ pathstart q^{\prime}, pathfinish $\left.q^{\prime}\right\}$
proof -
have path-image $p^{\prime} \cap$ path-image $q^{\prime}=$? f' (path-image $p \cap$ path-image q)
unfolding p^{\prime}-def q^{\prime}-def by (simp add: image-Int inj path-image-compose)
also have $\ldots=$? $f\{q 0, q 1\}$ using $\operatorname{assms}(9)$ by presburger
finally show ?thesis
by (simp add: startfinish pathfinish-compose pathstart-compose q^{\prime}-def q0-def
q1-def)
qed
have 5: $0<$ pathfinish $p^{\prime} \$ 1$
by (metis (mono-tags, lifting) a-def assms(11) f-eq-g o-apply p'-def p1-def
pathfinish-def vector-2(1))
have $6: A^{\prime}=$ convex hull (path-image $p^{\prime} \cup$ path-image $\left.q^{\prime}\right)$
proof-
have path-image $(? f \circ p)=? f^{\prime}($ path-image $p)$ using path-image-compose by
blast
moreover have path-image $(? f \circ q)=? f^{\prime}($ path-image $q)$ using path-image-compose
by blast
moreover have ? $f^{‘}($ path-image $p \cup$ path-image $q)=? f^{‘}($ path-image $p) \cup$
? f ${ }^{\prime}$ (path-image q)
by blast
moreover have $A^{\prime}=$ convex hull (?f'(path-image $p \cup$ path-image $\left.q\right)$)
by (simp add: assms(12) convex-hull-linear-image A^{\prime}-def)
ultimately show ?thesis using p^{\prime}-def q^{\prime}-def A^{\prime}-def by argo
qed
have 7: $\left\{\right.$ pathstart p^{\prime}, pathfinish $\left.p^{\prime}\right\} \subseteq$ frontier A^{\prime}
using frontier-injective-linear-image
by (smt (verit, best) 3 A'-def assms(13) assms(15) assms(9) doubleton-eq-iff
image-Int inj inj-image-subset-iff matrix-vector-mul-linear p^{\prime}-def p0-def p1-def path-image-linear-image
pathfinish-compose pathstart-compose q^{\prime}-def q0-def q1-def)
have 8: $p^{\prime \prime}\{0<. .<1\} \subseteq$ interior A^{\prime}
proof-
have ? $f^{\prime}($ interior $A)=$ interior A^{\prime} by (simp add: A^{\prime}-def inj interior-injective-linear-image)
thus ?thesis using assms(14) p^{\prime}-def by auto
qed
have 9: $\exists x \in p^{\prime}\{0<. .<1\} . x \$ 2 \geq 0$
proof -
have $\exists x \in p^{`}\{0<. .<1\} . x \$ 2<0$
by (metis that all-not-in-conv bot.extremum greaterThanLessThan-subseteq-greaterThanLessThan
image-is-empty verit-comp-simplify1 (3) zero-less-one)
then obtain x where $x \in p^{〔}\{0<. .<1\} \wedge x \$ 2<0$ by presburger
moreover then have (?g x) $\$ 2>0$ by fastforce
ultimately show ?thesis by (smt (verit, ccfv-threshold) f-eq-g image-iff
o-apply p^{\prime}-def)
qed
have 10: pathstart $q^{\prime}=$ pathfinish $p^{\prime} \wedge$ pathfinish $q^{\prime}=$ pathstart p^{\prime}
by (metis (mono-tags, lifting) assms(15) o-apply p^{\prime}-def p0-def p1-def pathfin-
ish-def pathstart-def $\left.q^{\prime}-\operatorname{def} q 0-d e f ~ q 1-d e f\right)$
have path-image $q^{\prime} \cap$ open-segment (pathstart $\left.p^{\prime}\right)\left(\right.$ pathfinish $\left.p^{\prime}\right)=\{ \}$
using pocket-fill-line-int-aux7(1)[OF 123456789 10] by blast
then have path-image $q^{\prime} \cap l=\{ \}$ using startfinish unfolding l-def p0-def
$p 1-d e f$ by simp
moreover have on-l: $\bigwedge x . x \in l \Longrightarrow ? g x \in l$
proof-
fix x :: real^2
assume $x \in l$
moreover then have $x \$ 2=0$ by (metis assms $(6,10)$ segment-horizontal
open-closed-segment)
moreover then have $(? g x) \$ 2=0$ by simp
moreover have $(? g x) \$ 1=x \$ 1$ by simp
ultimately show ? $g x \in l$ by (smt (verit, ccfv-SIG) exhaust-2 vec-eq-iff)
qed
ultimately have path-image $q \cap l=\{ \}$
by (metis (no-types, lifting) disjoint-iff f-eq-g image-eqI path-image-compose
$\left.q^{\prime}-d e f\right)$
moreover have $l \subseteq$ frontier A
proof -
have pathstart $p^{\prime}=$ pathstart $p \wedge$ pathfinish $p^{\prime}=$ pathfinish p
using startfinish by auto
then have ?f' $l \subseteq$ frontier A^{\prime}
using pocket-fill-line-int-aux7(2)[OF 123456789 10] on-l f-eq-g l-def
p0-def p1-def segment-open-subset-closed
by force
thus ?thesis
by (metis (no-types, lifting) A'-def frontier-injective-linear-image inj inj-image-subset-iff
matrix-vector-mul-linear)
qed
ultimately show ?thesis by fast
qed
ultimately show ?thesis by argo
qed
lemma simple-path-linear-image:
assumes simple-path p
assumes $\operatorname{inj} f \wedge$ bounded-linear f
shows simple-path $(f \circ p)$
proof-
have continuous-on $\{x$. True $\}$ using assms(2) linear-continuous-on by blast
then have 1: path $(f \circ p)$
by (metis Collect-cong UNIV-I assms(1) continuous-on-subset path-continuous-image
simple-path-imp-path top-empty-eq top-greatest top-set-def)

```
have inj-on p {0<..<1} by (simp add: assms(1) simple-path-inj-on)
then have inj-on (f\circp){0<..<1} by (meson assms(2) comp-inj-on inj-on-subset
top-greatest)
    then have loop-free ( }f\circp\mathrm{ )
    by (metis (mono-tags, lifting) assms(1) assms(2) comp-apply inj-eq loop-free-def
simple-path-def)
    thus ?thesis using 1 unfolding simple-path-def by blast
qed
lemma vts-interior:
    fixes vts
    defines p\equiv make-polygonal-path vts
    assumes convex H
    assumes }\forallj\in{0<..<length vts - 1}.vts! j\not\in frontier H
    assumes loop-free p
    assumes path-image p\subseteqH
    assumes length vts \geq3
    shows p}{{0<..<1}\subseteq\mathrm{ interior H
proof(rule subsetI)
    fix }x\mathrm{ assume *: }x\inp\mp@code{p {0<..<1}
    then obtain t where t:x=pt\wedget\in{0<..<1} by blast
    then have }x\not=p0\wedgex\not=p1\mathrm{ using assms(4) unfolding loop-free-def by
fastforce
    then have x-neq: x\not= hd vts }\wedgex\not= last vt
    by (metis assms(4) constant-linepath-is-not-loop-free hd-conv-nth last-conv-nth
make-polygonal-path.simps(1) p-def pathfinish-def pathstart-def polygon-pathfinish
polygon-pathstart)
    have }x\in\mathrm{ interior H if **: }\existsi<length vts. x = vts! 
    proof-
    obtain i where i: i< length vts }\wedgex=vts!i using ** by blas
    then have i\not=0\wedgei\not= length vts - 1
        by (metis x-neq gr-implies-not0 hd-conv-nth last-conv-nth list.size(3))
    then have }i\in{0<..<length vts - 1} using i by fastforce
    then have vts!i\not\in frontier H using assms(3) by blast
    then have vts!i\in interior H
                by (metis DiffI assms(5) closure-subset frontier-def i nth-mem p-def subsetD
vertices-on-path-image)
    thus ?thesis using assms(3) i by blast
qed
moreover have }x\in\mathrm{ interior }H\mathrm{ if **: }\neg(\existsi<length vts. x=vts! i
proof-
    have x f path-image p using * unfolding path-image-def by force
    then obtain i where i:x f path-image (linepath (vts!i) (vts!(i+1))) ^i<
length vts - 1
    using make-polygonal-path-image-property[of vts x] assms(6) unfolding p-def
by auto
    moreover then have }x\not=vts!i\wedgex\not=vts!(i+1) using ** by forc
```

ultimately have $x \in$ open-segment (vts $!i)(v t s!(i+1))$ by (simp add: open-segment-def)
moreover then have $x \in$ rel-interior (path-image (linepath (vts! $i)(v t s!(i+1)))$)
by (metis empty-iff open-segment-idem path-image-linepath rel-interior-closed-segment)
moreover have interior-nonempty: vts! $i \in$ interior $H \vee v t s!(i+1) \in$ interior
H
proof (rule ccontr)
assume $\neg(v t s!i \in$ interior $H \vee v t s!(i+1) \in$ interior $H)$
then have vts $!i \in$ frontier $H \wedge v t s!(i+1) \in$ frontier H
using assms(5) closure-subset frontier-def i p-def vertices-on-path-image by
fastforce
thus False
by (metis assms(3) i Suc-1 Suc-eq-plus1 add.commute add.right-neutral
$\operatorname{assms}(6)$ eval-nat-numeral(3) greaterThanLessThan-iff less-diff-conv linorder-not-le
not-gr-zero not-less-eq-eq)
qed
ultimately have $x \in$ rel-interior H
by (smt (verit, ccfv-SIG) add-diff-inverse-nat assms(2) assms(5) convex-same-rel-interior-closure-straddle empty-iff i in-interior-closure-convex-segment less-diff-conv less-nat-zero-code nat-diff-split nth-mem open-segment-commute p-def rel-interior-nonempty-interior subset-eq trans-less-add2 vertices-on-path-image)
moreover have interior $H \neq\{ \}$ using interior-nonempty by blast
ultimately show ?thesis using rel-interior-nonempty-interior by blast
qed
ultimately show $x \in$ interior H by blast
qed
lemma pocket-fill-line-int-0:
assumes polygon-of r vts
defines $H \equiv$ convex hull (set vts)
assumes $2 \leq i \wedge i<$ length vts -1
defines $a \equiv h d$ vts
defines $b \equiv v t s!i$
assumes $\{a, b\} \subseteq$ frontier H
assumes $\forall j \in\{0<. .<i\}$. vts! $j \notin$ frontier H
assumes $a=0$
shows path-image (linepath a b) \cap path-image $r=\{a, b\}$ path-image (linepath a b) \subseteq frontier H
proof-
let ? $x=(b-a)$
let $? e=\operatorname{norm}(b-a) *_{R}\left((\right.$ vector $[1,0])::\left(\right.$ real $\left.\left.{ }^{\wedge} 2\right)\right)$
have norm ? $x=$ norm ?e by (simp add: e1e2-basis(1))
then obtain f where f : orthogonal-transformation $f \wedge \operatorname{det}($ matrix $f)=1 \wedge f$
$? x=? e$
using rotation-exists by (metis two-le-card)
have bij: bij $f \wedge$ linear f
using f orthogonal-transformation-bij orthogonal-transformation-def by blast
let ?p-vts $=$ take $(i+1)$ vts
let ? q-vts $=$ drop i vts
let $? p=$ make-polygonal-path ?p-vts
let $? q=$ make-polygonal-path ? q-vts
let $? p^{\prime}=f \circ ? p$
let ? $q^{\prime}=f \circ ? q$
let $? H^{\prime}=$ convex hull $\left(\right.$ path-image $? p^{\prime} \cup$ path-image ? $\left.q^{\prime}\right)$
have vts-split: vts = ?p-vts @ (tl ?q-vts)
by (metis Suc-eq-plus1 append-take-drop-id drop-Suc tl-drop)
have simple-path r using assms(1) unfolding polygon-of-def polygon-def by blast
then have $a-n e q-b: a \neq b$
using simple-polygonal-path-vts-distinct[of vts]
by (metis (mono-tags, lifting) a-def assms(1) assms(3) b-def bot-nat-0 .extremum-strict butlast-conv-take constant-linepath-is-not-loop-free distinct-nth-eq-iff dual-order.strict-trans2 hd-conv-nth length-butlast make-polygonal-path.simps(1) nat-neq-iff nth-take poly-gon-of-def pos2 simple-path-def)
have H - r : $H=$ convex hull (path-image r)
by (metis (no-types, lifting) H-def Un-subset-iff assms(1) convex-convex-hull convex-hull-eq convex-hull-of-polygon-is-convex-hull-of-vts hull-mono hull-subset or-der-antisym-conv polygon-of-def vertices-on-path-image)
moreover have r-union: path-image $r=($ path-image? $p) \cup($ path-image ? $q)$
proof -
let ? $i=i+1$
let $? x=((2::$ real $) \wedge(? i-1)-1) / 2^{\wedge}(? i-1)$
have $? x \in\{0 . .1\} \wedge$ path-image $? p=r^{\prime}\{0 . . ? x\} \wedge$ path-image $? q=r^{‘}\{? x . .1\}$
using vts-split-path-image[of r vts ?p ?p-vts ?q ?q-vts ? i - ? x]
by (smt (verit, ccfv-SIG) add.commute add-diff-cancel-left' assms(1) assms(3)
atLeastAtMost-iff atLeastatMost-empty' image-empty le-add1 less-diff-conv path-image-nonempty polygon-of-def)
thus ?thesis by (metis atLeastAtMost-iff image-Un ivl-disj-un-two-touch(4) path-image-def)
qed
moreover have $f^{\prime} H=$ convex hull ($f^{\prime}($ path-image $r)$)
using bij by (simp add: calculation(1) convex-hull-linear-image)
ultimately have H-image: $? H^{\prime}=f^{`} H$ by (simp add: image-Un path-image-compose)
have p-image: path-image ? $p^{\prime}=f^{\prime}($ path-image ?p) using path-image-compose by blast
have q-image: path-image ? $q^{\prime}=f^{\prime}($ path-image ?q) using path-image-compose by blast
have pathstart-p: pathstart ? $p=a$
by (metis Suc-eq-plus1 a-def assms(3) gr-implies-not0 hd-conv-nth length-tl less-Suc-eq-0-disj list.sel(2) list.size(3) nth-take polygon-pathstart take-eq-Nil)
have pathfinish-p: pathfinish ?p $=b$
by (metis (no-types, lifting) H-def H-r add-diff-cancel-right' assms(3) b-def con-vex-hull-eq-empty length-take less-add-one less-diff-conv min.absorb4 nth-append one-neq-zero path-image-nonempty polygon-pathfinish set-empty take-eq-Nil vts-split zero-eq-add-iff-both-eq-0)
then have pathstart- q : pathstart ? $q=b$ using assms(3) b-def polygon-pathstart by force
have pathstart- $p^{\prime}:$ pathstart $? p^{\prime}=f a$ using pathstart-compose pathstart-p by blast
have pathfinish-p': pathfinish ? $p^{\prime}=f b$ using pathfinish-compose pathfinish-p by blast
have pathstart- $q^{\prime}:$ pathstart $? q^{\prime}=f b$ using pathstart-compose pathstart- q by blast
have sublist ?p-vts vts by auto
then have lf-p:loop-free ?p
by (metis add.commute assms(1) assms(3) less-diff-conv less-imp-le-nat poly-gon-def polygon-of-def simple-path-def take-i-is-loop-free trans-le-add2)
then have simple-p: simple-path?p
using assms unfolding polygon-of-def
by (meson make-polygonal-path-gives-path simple-path-def)
have sublist ? q-vts vts by auto
then have $l f$ - q : loop-free? q
by (metis (no-types, lifting) Suc-1 Suc-diff-Suc assms(1) assms(3) diff-is-0-eq drop-i-is-loop-free less-Suc-eq-le less-zeroE linorder-not-less polygon-def polygon-of-def simple-path-def)
then have simple-q: simple-path ? q
using assms unfolding polygon-of-def
by (meson make-polygonal-path-gives-path simple-path-def)
have bounded-linear: bounded-linear f using bij linear-conv-bounded-linear by blast
have 1: simple-path ? p^{\prime}
using simple-p simple-path-linear-image bij bij-is-inj bounded-linear by blast
have 2: simple-path ? q^{\prime}
using simple-q simple-path-linear-image bij bij-is-inj bounded-linear by blast
have 3: path-image ? $p^{\prime} \cap$ path-image $? q^{\prime}=\left\{\right.$ pathstart $? q^{\prime}$, pathfinish $\left.? q^{\prime}\right\}$
proof-
have path-image ? $p \cap$ path-image ? $q \subseteq\{$ pathstart ? q, pathfinish ? $q\}$
using loop-free-split-int[of r vts ?p-vts i ? q-vts ?p ? $q]$
by (smt (verit, ccfv-threshold) a-def add-diff-cancel-right' assms(1) assms(3) constant-linepath-is-not-loop-free drop-eq-Nil have-wraparound-vertex hd-conv-nth insert-commute last-conv-nth last-drop last-snoc le-add2 less-diff-conv lf-q linorder-not-less loop-free-split-int make-polygonal-path.simps(1) pathstart-p polygon-def polygon-of-def polygon-pathfinish simple-path-def)
moreover have pathstart ? $q \in$ path-image ? $q \wedge$ pathfinish ? $q \in$ path-image ?q
by blast
moreover have pathstart ? $q \in$ path-image ?p \wedge pathfinish ?q \in path-image ?p
by (smt (verit, ccfv-SIG) a-def add-diff-cancel-right' assms(1) assms(3) b-def constant-linepath-is-not-loop-free drop-eq-Nil have-wraparound-vertex hd-conv-nth last-conv-nth last-drop last-snoc length-take less-add-one less-diff-conv lf-q linorder-not-less list.size(3) make-polygonal-path.simps(1) min.absorb4 nth-take pathfinish-in-path-image pathstart-in-path-image pathstart-p pathstart-q polygon-of-def polygon-pathfinish take-eq-Nil zero-eq-add-iff-both-eq-0 zero-neq-one)
ultimately have path-image ? $p \cap$ path-image ? $q=\{$ pathstart $? q$, pathfinish ?q\} by fast
moreover have path-image ? $p^{\prime} \cap$ path-image $? q^{\prime}=f^{\prime}($ path-image $? p \cap$ path-image ?q)
by (metis bij bij-is-inj image-Int p-image q-image)
ultimately show ?thesis by (simp add: pathfinish-compose pathstart-compose)
qed
have $4:\left(\right.$ pathstart $\left.? p^{\prime}\right) \$ 1=0 \wedge\left(\right.$ pathstart $\left.? p^{\prime}\right) \$ 2=0 \wedge\left(\right.$ pathfinish $\left.? p^{\prime}\right) \$ 2=0$
proof-
have f ? $x=$? e using f by blast
then have $f b-f a=$? e
by (metis assms(8) diff-zero f norm-eq-zero orthogonal-transformation-norm)
moreover have $f a=0$ by (metis assms(8) f norm-eq-zero orthogonal-transformation-norm)
moreover from calculation have $f b=$? e by force
ultimately show ?thesis using pathfinish-p' pathstart-p' by auto
qed
have 5: $\left(\right.$ pathfinish ? $\left.p^{\prime}\right) \$ 1>0$
proof-
have pathfinish ? $p^{\prime}=f b$ using pathfinish-p' by auto
moreover have $f b=$?e using assms (8) f by auto
moreover have ? $e \$ 1=$ norm ? x by simp
ultimately show ?thesis using $a-n e q-b$ by auto
qed
have 6: ? $H^{\prime}=$ convex hull (path-image ? $p^{\prime} \cup$ path-image ? q^{\prime}) by blast
have 7: $\left\{\right.$ pathstart ? p^{\prime}, pathfinish ? $\left.p^{\prime}\right\} \subseteq$ frontier ? H^{\prime}
proof -
have $\{$ pathstart ?p, pathfinish $? p\} \subseteq$ frontier H
using pathstart-p pathfinish-p assms(6) by fastforce
then have $f^{\prime}\{$ pathstart ? p, pathfinish ? $p\} \subseteq f^{\prime}($ frontier $H)$ by blast
moreover have $f^{\prime}($ frontier $H)=$ frontier $\left(f^{\prime} H\right)$
by (simp add: bij bij-is-inj frontier-injective-linear-image)
ultimately show ?thesis using H-image by (simp add: pathfinish-compose
pathstart-compose)
qed
have 8: ? $p^{\prime}\{0<. .<1\} \subseteq$ interior ? H^{\prime}
proof-
have 1: convex H by (simp add: H-def)
have 2: $\forall j \in\{0<. .<$ length ? p-vts -1$\}$.? p-vts $!j \notin$ frontier H
by (simp add: add.commute assms(3) assms(7) less-diff-conv)
have 3: loop-free ?p using $l f-p$ by blast
have 4: path-image ? $p \subseteq H$ using H-r hull-subset r-union by fastforce
have 5: length ? p-vts ≥ 3 using assms(3) by force
have ? $p *\{0<. .<1\} \subseteq$ interior H using vts-interior $[O F 12345]$ by argo
moreover have $f^{\prime}\left(? p^{\prime}\{0<. .<1\}\right)=? p^{\prime}\{0<. .<1\}$ by (meson image-comp)
moreover have $f^{\prime}($ interior $H)=$ interior ? H^{\prime}
using H-image interior-injective-linear-image[of $f H$] by (simp add: bij bij-is-inj)
ultimately show?thesis by fast
qed
have 9: pathstart ? $q^{\prime}=$ pathfinish ? $p^{\prime} \wedge$ pathfinish ? $q^{\prime}=$ pathstart $? p^{\prime}$
by (metis (mono-tags, lifting) H-def H-r a-def assms(1) constant-linepath-is-not-loop-free convex-hull-eq-empty drop-eq-Nil have-wraparound-vertex hd-conv-nth last-conv-nth last-drop last-snoc lf-q linorder-not-less make-polygonal-path.simps(1) path-image-nonempty pathfinish-compose pathfinish-p pathstart-compose pathstart-p pathstart-q polygon-of-def polygon-pathfinish set-empty)
let $? l=$ open-segment $a b$
let ? $l^{\prime}=$ open-segment $\left(\right.$ pathstart $\left.? p^{\prime}\right)\left(\right.$ pathfinish $\left.? p^{\prime}\right)$
have $*$: path-image ? $q^{\prime} \cap$ open-segment (pathstart ? p^{\prime}) (pathfinish ?p $\left.{ }^{\prime}\right)=\{ \} \wedge$ $? l^{\prime} \subseteq$ frontier ? H^{\prime}
using pocket-fill-line-int-aux8[OF 123456789$]$ by blast
moreover have l-image: ? $l^{\prime}=f^{\prime} ? l$
proof-
have $f a=$ pathstart $? p^{\prime} \wedge f b=$ pathfinish ? $p^{\prime} \mathbf{u s i n g}$ pathfinish- p^{\prime} pathstart- p^{\prime} by presburger
moreover have $\bigwedge a b$. $f^{\prime}($ open-segment $a b)=$ open-segment $(f a)(f b)$
by (simp add: bij bij-is-inj open-segment-linear-image)
ultimately show ?thesis by presburger
qed
moreover have path-image ? $q^{\prime}=f^{\prime}($ path-image ? $q)$ using q-image by blast
ultimately have path-image ? $q \cap ? l=\{ \}$ by blast
moreover have path-image ?p $\cap ? l=\{ \}$
proof-
from 8 have path-image ? $p^{\prime} \cap ? l^{\prime}=\{ \}$
proof -
have $? p^{\prime}\{0<. .<1\} \cap ? l^{\prime}=\{ \}$
by (smt (verit, ccfv-SIG) * 8 Diff-disjoint disjoint-iff frontier-def subset-iff)
moreover have ? $p^{\prime} 0 \notin ? l^{\prime}$
by (metis * 9 IntI empty-iff pathfinish-in-path-image pathstart-def)
moreover have ? $p^{\prime} 1 \notin ? l^{\prime}$
by (metis * 9 Int-iff emptyE pathfinish-def pathstart-in-path-image)
ultimately show ?thesis
by (smt (verit, ccfv-SIG) * 139 Int-Un-eq(4) Un-Diff-cancel Un-iff dis-
joint-iff insert-commute simple-path-endless)
qed
thus ?thesis using l-image bij p-image by auto
qed
ultimately have path-image $r \cap ? l=\{ \}$
by (simp add: r-union boolean-algebra.conj-disj-distrib inf-commute)

```
    moreover have a\in path-image r using pathstart-p r-union by auto
    moreover have b\in path-image r using pathfinish-p r-union by auto
    moreover have (path-image (linepath a b)) = ?l \cup {a, b} by (simp add:
closed-segment-eq-open)
    ultimately show path-image (linepath a b) \cap path-image r = {a,b} by auto
    have l'-frontier: ?l }\subseteq\subseteqf\mathrm{ frontier ? }\mp@subsup{H}{}{\prime}\mathrm{ using * by presburger
    have ?l }\subseteq\mathrm{ frontier H
    proof-
    have ?l}\mp@subsup{l}{}{\prime}=\mp@subsup{f}{}{\prime}?l\mathrm{ using l-image by blast
    moreover have frontier ?H'}=\mp@subsup{f}{}{\prime}(\mathrm{ frontier H)
            by (metis H-image bij bij-is-inj frontier-injective-linear-image)
    ultimately have f}\mp@subsup{f}{}{\prime}?l\subseteq\mp@subsup{f}{}{\prime}(\mathrm{ frontier H) using l'-frontier by argo
    thus ?thesis by (simp add: bij bij-is-inj inj-image-subset-iff)
    qed
    moreover have closed-segment a b = path-image (linepath a b) by simp
    moreover have closed-segment a b=?l\cup{a,b} by (simp add: closed-segment-eq-open)
    moreover have a\infrontier H}\wedgeb\in\mathrm{ frontier H using assms(6) by auto
    ultimately show path-image (linepath a b) \subseteqfrontier H by simp
qed
lemma linepath-translation: (\lambdav.v-a)\circ(linepath x y) = linepath ((\lambdav.v-a)
x) ((\lambdav.v-a) y)
    by (auto simp: linepath-def algebra-simps)
lemma linepath-image-translation:
    path-image ((\lambdav.v-a)\circ(linepath x y )) = path-image (linepath }((\lambdav.v-a
x) ((\lambdav.v-a) y))
    using linepath-translation by metis
lemma make-polygonal-path-translate:
    assumes length vts \geq1
    shows (\lambdav.v - a)\circ(make-polygonal-path vts)= make-polygonal-path (map ( }\lambdav
v-a) vts)
    using assms
proof(induct length vts arbitrary:vts a)
    case 0
    then show ?case by linarith
next
    case (Suc n)
    { assume *: Suc n=1
        then have make-polygonal-path vts = linepath (vts!0) (vts!0)
        by (metis Cons-nth-drop-Suc One-nat-def Suc.hyps(2) Suc.prems drop0 drop-eq-Nil
less-numeral-extra(1) make-polygonal-path.simps(2))
    then have (\lambdav.v - a) ○(make-polygonal-path vts) = linepath ((vts!0) -a)
((vts!0) - a)
            by fastforce
        then have?case
            by (metis Cons-nth-drop-Suc One-nat-def Suc.hyps(2) Suc.prems * drop0
```

drop-eq-Nil list.map(1) list.simps(9) make-polygonal-path.simps(2) zero-less-one)
\} moreover
\{ assume $*$: Suc $n=2$
then have make-polygonal-path vts $=$ linepath (vts! 0) (vts!1)
by (metis (no-types, lifting) Cons-nth-drop-Suc One-nat-def Suc.hyps(2) Suc-1 diff-Suc-1 drop0 drop-Suc drop-eq-Nil le-numeral-extra(4) length-tl less-numeral-extra(1) make-polygonal-path.simps(3) nth-tl posQ)
then have $(\lambda v . v-a) \circ($ make-polygonal-path vts $)=$ linepath $((v t s!0)-a)$ $((v t s!1)-a)$ using linepath-translation by auto
then have ?case
by (metis (no-types, lifting) * Cons-nth-drop-Suc One-nat-def Suc.hyps(2)
Suc-1 drop0 drop-eq-Nil length-map lessI make-polygonal-path.simps(3) nat-le-linear nth-map pos2)
\} moreover
\{ assume $*$: Suc $n \geq 3$
then obtain $h h^{\prime} t$ where vts: vts $=h \# h^{\prime} \# t$
by (metis Suc.hyps(2) Suc-le-length-iff numeral-3-eq-3)
then have $(\lambda v . v-a) \circ\left(\right.$ make-polygonal-path $\left.\left(h^{\prime} \# t\right)\right)$ $=$ make-polygonal-path $\left(\operatorname{map}(\lambda v . v-a)\left(h^{\prime} \# t\right)\right)$ using Suc.hyps(1) Suc.hyps(2) * by auto
moreover have $(\lambda v . v-a) \circ\left(\right.$ linepath $\left.h h^{\prime}\right)=\operatorname{linepath}(h-a)\left(h^{\prime}-a\right)$
using linepath-translation by blast
moreover have make-polygonal-path vts $=\left(\right.$ linepath $\left.h h^{\prime}\right)+++($ make-polygonal-path $\left.\left(h^{\prime} \# t\right)\right)$
by (metis * Suc.hyps(2) Suc-le-length-iff vts list.sel(3) make-polygonal-path.simps(4) numeral-3-eq-3)
ultimately have ? case
by (smt (verit) list.discI list.inject list.simps(9) make-polygonal-path.elims path-compose-join vts)
\}
ultimately show ?case using Suc.prems by linarith
qed
lemma pocket-fill-line-int:
assumes polygon-of r vts
defines $H \equiv$ convex hull (set vts)
assumes $2 \leq i \wedge i<$ length vts -1
defines $a \equiv h d v t s$
defines $b \equiv v t s!i$
assumes $\{a, b\} \subseteq$ frontier H
assumes $\forall j \in\{0<. .<i\}$. vts! $j \notin$ frontier H
shows path-image (linepath a b) \cap path-image $r=\{a, b\}$ path-image (linepath a b) \subseteq frontier H
proof-
let ? $f=(\lambda v . v-a)::\left(\right.$ real ${ }^{\text {® } 2 ~} \Rightarrow$ real^2 $)$
let $? r^{\prime}=? f \circ r$
let ?vts ${ }^{\prime}=m a p$?f vts
let $? H^{\prime}=$ convex hull $($ set ?vts' $)$
let $? a^{\prime}=$?f a
let $? b^{\prime}=? f b$
have 5: hd ?vts ${ }^{\prime}=0$
by (metis One-nat-def a-def assms(3) cancel-comm-monoid-add-class.diff-cancel lessI list.map-sel(1) list.size(3) nat-diff-split-asm not-less-zero)
have $a^{\prime} b^{\prime}: ? a^{\prime}=h d ? v t s^{\prime} \wedge ? b^{\prime}=? v t s^{\prime}!i$ using $5 \operatorname{assms}(3) b$-def by force
have frontier- H^{\prime} : frontier ? $H^{\prime}=$?f ' $($ frontier $H)$
using frontier-translation[of $-a H$]
by (metis (no-types, lifting) H-def convex-hull-translation image-cong list.set-map uminus-add-conv-diff)
have simple-path r using assms(1) polygon-def polygon-of-def by blast
then have simple-path ? r^{\prime} using simple-path-translation-eq[of -a r] by simp
moreover have ? $r^{\prime}=$ make-polygonal-path ?vts ${ }^{\prime}$
using make-polygonal-path-translate assms(1) assms(3) polygon-of-def by auto
moreover have closed-path ? r^{\prime}
by (smt (verit, best) closed-path-def add-diff-inverse-nat assms(1) assms(3) calculation(1) calculation(2) dual-order.refl gr-implies-not0 hd-conv-nth length-map less-Suc-eq-le list.map-disc-iff list.map-sel(1) nat-diff-split-asm nth-map plus-1-eq-Suc polygon-def polygon-of-def polygon-pathfinish polygon-pathstart simple-path-def)
ultimately have 1 : polygon-of ? r^{\prime} ? vts'
unfolding polygon-of-def polygon-def polygon-def polygonal-path-def by blast
have 2: $2 \leq i \wedge i<$ length ?vts ${ }^{\prime}-1$ using assms(3) by auto
have 3: $\{$ hd ? vts', ?vts'! $i\} \subseteq$ frontier ? H^{\prime}
using $a^{\prime} b^{\prime}$ frontier- H^{\prime}
by (metis (no-types, lifting) assms(6) image-empty image-insert image-mono)
have $4: \forall j \in\{0<. .<i\}$. ?vts ! $j \notin$ frontier ? H^{\prime}
proof
fix j assume $*: j \in\{0<. .<i\}$
then have $v t s!j \notin$ frontier H using assms(7) by blast
then have ?f (vts! $j) \notin$ frontier ? H^{\prime} using frontier- H^{\prime} by auto
thus ?vts' $!j \notin$ frontier ? H^{\prime} using Nat.le-imp-diff-is-add $* \operatorname{assms}(3)$ by auto
qed
have path-image (linepath ? $\left.a^{\prime} ? b^{\prime}\right) \cap$ path-image $? r^{\prime}=\left\{? a^{\prime}, ? b^{\prime}\right\}$
using pocket-fill-line-int-0(1)[OF 122345$] a^{\prime} b^{\prime}$ by argo
moreover have $\left\{? a^{\prime}, ? b^{\prime}\right\}=? f^{\prime}\{a, b\}$ by simp
moreover have path-image (linepath $\left.? a^{\prime} ? b^{\prime}\right)=? f^{\prime}($ path-image (linepath a b))
using linepath-image-translation path-image-compose by blast
moreover have path-image ? $r^{\prime}=$? $f^{\prime}($ path-image $r)$ using path-image-compose by blast
ultimately have ? $f^{\prime}($ path-image $($ linepath a $b)) \cap ? f^{\prime}($ path-image $r)=? f^{\prime}\{a, b\}$ by argo
then have ? $f^{\prime}($ path-image (linepath a b) \cap path-image $r)=? f ‘\{a, b\}$ by (simp add: image-Int)
moreover have bij ?f by (simp add: bij-diff-right)
ultimately show path－image（linepath a b ）\cap path－image $r=\{a, b\}$
by（meson bij－is－inj inj－image－eq－iff）
have path－image（linepath ？$\left.a^{\prime} ? b^{\prime}\right) \subseteq$ frontier ？H^{\prime}
using pocket－fill－line－int－0（2）［OF 122345$] a^{\prime} b^{\prime}$ by argo
thus path－image（linepath a b ）\subseteq frontier H
by（metis 〈bij ？f〉〈path－image（linepath ？$\left.a^{\prime} ? b^{\prime}\right)=? f^{\prime}($ path－image（linepath a
b））＞bij－betw－imp－inj－on frontier－H^{\prime} inj－image－subset－iff）
qed
lemma path－connected－simple－path－endless：
assumes simple－path p
shows path－connected（path－image $p-\{$ pathstart p ，pathfinish $p\}$ ）（is path－connected ？S）
proof－
have continuous－on $\{0<. .<1\} p$
using assms（1）unfolding simple－path－def path－def
by（meson continuous－on－path dual－order．refl greaterThanLessThan－subseteq－atLeastAtMost－iff path－def）
moreover have path－connected $\{0<. .<1::$ real $\}$ by simp
ultimately have path－connected $\left(p^{‘}\{0<. .<1\}\right)$ using path－connected－continuous－image by blast
thus ？thesis using simple－path－endless assms by metis
qed
lemma simple－loop－split：
assumes simple－path $p \wedge$ closed－path p
assumes simple－path q
assumes path－image $q \cap$ path－image $p=\{q 0, q 1\}$
assumes path－image $q \cap$ path－inside $p \neq\{ \}$
shows $q^{*}\{0<. .<1\} \subseteq$ path－inside p
proof－
have inside－outside：inside－outside p（path－inside p ）（path－outside p）
using Jordan－inside－outside－real2 closed－path－def assms（1）inside－outside－def
path－inside－def path－outside－def
by presburger
obtain x where $x: x \in$ path－image $q \cap$ path－inside p using assms（4）by blast then obtain $t x$ where $t x \in\{0 . .1\} \wedge q t x=x$ unfolding path－image－def by fast
moreover then have $t x \neq 0 \wedge t x \neq 1$
using assms（3）inside－outside x unfolding inside－outside－def by auto
ultimately have $t x: t x \in\{0<. .<1\} \wedge q t x=x$ by simp
have connected（ $\left.q^{‘}\{0<. .<1\}\right)$
using connected－simple－path－endless simple－path－endless assms（2）by metis
then have path－connected $\left(q^{*}\{0<. .<1\}\right)$
using path－connected－simple－path－endless assms（2）simple－path－endless by metis
moreover have $q \not\{0<. .<1\} \cap$ path-inside $p \neq\{ \}$ using $t x x$ by blast
moreover have $q \not\{0<. .<1\} \cap$ frontier (path-inside p) $=\{ \}$
using inside-outside unfolding inside-outside-def
by (smt (verit, del-insts) Diff-Int-distrib2 assms(2,3) diff-eq inf-compl-bot-right inf-idem inf-sup-aci(1) pathfinish-def pathstart-def simple-path-endless)
ultimately show ?thesis
using path-connected-not-frontier-subset $\left[\right.$ of $q^{‘}\{0<. .<1\}$ path-inside $\left.p\right]$ by fast qed
lemma pocket-path-interior-aux:
assumes simple-path $p \wedge$ simple-path q
assumes arc $p \wedge \operatorname{arc} q$
assumes $q 0=p 1 \wedge q 1=p 0$
assumes path-image $p \cap$ path-image $q=\left\{\begin{array}{lll}p & 0, q & 0\end{array}\right\}$
defines $A \equiv$ convex hull (path-image $p \cup$ path-image q)
defines l 三 linepath ($p 0$) ($\left.\begin{array}{c} \\ 1\end{array}\right)$
assumes $p<\{0<. .<1\} \subseteq$ interior A
assumes path-image $l \subseteq$ frontier A
assumes path-image $q \cap$ path-image $l=\{l 0, q 0\}$
shows $p^{‘}\{0<. .<1\} \cap$ path-inside $(l+++q) \neq\{ \}$
simple-path $(l+++q) \wedge$ closed-path $(l+++q)$
path-image $p \cap$ path-image $(l+++q)=\{p 0, p 1\}$
proof-
let ? $r=l+++q$
let ? Ir $=$ path-inside ? r
let ?Or $=$ path-outside ? r
show closed-simple-r: simple-path ?r \wedge closed-path ?r
using simple-path-join-loop[of l q] assms unfolding pathstart-def pathfinish-def
by (metis (no-types, opaque-lifting) closed-path-def arc-linepath arc-simple-path
dual-order.refl inf-commute linepath-0' linepath-1 ' pathfinish-def pathfinish-join path-start-def pathstart-join simple-path-def)
then have inside-outside-r: inside-outside ?r ? Ir ?Or
by (simp add: Jordan-inside-outside-real2 closed-path-def inside-outside-def path-inside-def path-outside-def)
have l-p-endpoints: $l 0=p 0 \wedge l 1=p 1$ by (simp add: l-def linepath-0' linepath-1 ${ }^{\prime}$)
have l-q-endpoints: $l 0=q 1 \wedge l 1=q 0$ by (simp add: assms(3) l-p-endpoints)
have p-int-l: $p\{0<. .<1\} \cap$ path-image $l=\{ \}$ using $\operatorname{assms}(7,8)$ unfolding frontier-def by blast
have q-int-l: $q^{‘}\{0<. .<1\} \cap$ path-image $l=\{ \}$
by (metis (no-types, opaque-lifting) assms(9) Diff-iff Int-Diff all-not-in-conv $\operatorname{assms}(1) \operatorname{assms}(3)$ inf-sup-aci(1) insert-commute l-def linepath-0' pathfinish-def pathstart-def simple-path-endless)
have interval: $\{0 . .1::$ real $\}=\{0<. .<1\} \cup\{0,1\}$ by fastforce
have $l f$ - l : loop-free l
using closed-simple-r not-loop-free-first-component simple-path-def by blast
let $? p^{\prime}=$ reversepath p

$$
\text { let } ? s=l+++? p^{\prime}
$$

let ? Is = path-inside ?s
let ?Os $=$ path-outside ?s
have arc ? $p^{\prime} \wedge$ arc l
by (metis assms(2) arc-linepath arc-reversepath arc-simple-path l-def pathfin-ish-def pathstart-def)
moreover have p^{\prime}-int-l: path-image ? $p^{\prime} \cap$ path-image $l=\left\{? p^{\prime} 0, l 0\right\}$
proof-
have path-image $p \cap$ path-image $l=\{l 0, l 1\}$
proof -
have $\{l 0, l 1\} \subseteq$ path-image $p \cap$ path-image l
using assms(3) assms(4) l-def linepath-0' linepath-1' by fastforce
moreover have path-image $p=p\{0<. .<1\} \cup\{p 0, p 1\}$
using interval unfolding path-image-def by blast
ultimately show ?thesis using p-int-l l-p-endpoints by simp
qed
moreover have ? $p^{\prime} 0=l 1$ by (simp add: l-def linepath- 1 ' reversepath-def)
moreover have path-image $p=$ path-image ? p^{\prime} by simp
ultimately show ?thesis by (metis doubleton-eq-iff)
qed
ultimately have closed-simple-s: closed-path ?s \wedge simple-path ?s
using simple-path-join-loop[of l ?p ${ }^{\text {] }}$ assms unfolding pathstart-def pathfin-ish-def
by (metis (no-types, opaque-lifting) closed-path-def dual-order.refl inf-commute insert-commute linepath-0' linepath-1' pathfinish-def pathfinish-join pathfinish-reversepath pathstart-def pathstart-join pathstart-reversepath simple-path-def)
then have inside-outside-s: inside-outside ?s ?Is ?Os
by (simp add: Jordan-inside-outside-real2 closed-path-def inside-outside-def path-inside-def path-outside-def)

```
    have r-inside-subset: path-inside ?r }\subseteq\mathrm{ interior A
    proof-
    have path-image l}\subseteqA\wedge path-image q\subseteq
```

 by (metis \(A\)-def Un-upper2 assms (1) assms (8) compact-Un compact-convex-hull
 compact-simple-path-image frontier-subset-compact hull-subset subset-trans)
thus ?thesis
by (metis (no-types, lifting) A-def closed-simple-r convex-contains-simple-closed-path-imp-contains-path-ins convex-convex-hull inside-outside-def inside-outside-r interior-eq interior-mono sub-set-path-image-join)
qed
have s-inside-subset: path-inside ?s \subseteq interior A
proof-
have path-image $l \subseteq A \wedge$ path-image $p \subseteq A$
by (metis A-def Un-upper1 assms(1) assms(8) compact-Un compact-convex-hull compact-simple-path-image frontier-subset-compact hull-subset subset-trans)
thus ?thesis
by (metis A-def Jordan-inside-outside-real2 closed-path-def closed-simple-s convex-contains-simple-closed-path-imp-contains-path-inside convex-convex-hull in-terior-maximal path-image-reversepath path-inside-def subset-path-image-join)
qed
have q-outside: $q\{0<. .<1\} \subseteq$ path-outside ?s
proof (rule ccontr)
let ? $e p=\{v . v$ extreme-point-of $A\}$
assume $\neg q^{‘}\{0<. .<1\} \subseteq$ path-outside?s
then have $\exists x \in q^{\star}\{0<. .<1\} . x \in$ path-inside ?s \cup path-image ?s
using inside-outside-s unfolding inside-outside-def by auto
then have $q\{0<. .<1\} \subseteq$ path-inside ?s
using simple-loop-split[of $p q]$
by (smt (verit) DiffE IntI Int-Un-distrib2 closed-path-def UnE <arc (reversepath p) \wedge arc l> arc-imp-path assms(1) assms(2) assms(3) assms(4) closed-simple-r closed-simple-s doubleton-eq-iff emptyE inf.commute l-def path-image-join path-image-reversepath path-join-eq pathfinish-join pathfinish-linepath pathstart-join pathstart-linepath sim-ple-loop-split simple-path-endless simple-path-joinE sup-absorb2)
then have $q^{〔}\{0<. .<1\} \cap$ frontier $A=\{ \}$ using frontier-def s-inside-subset by fastforce
then have (path-image $p \cup$ path-image q) \cap frontier $A= \begin{cases}p & 0, p 1\}\end{cases}$ by (smt (z3) Diff-disjoint Int-Un-distrib Un-Diff-Int Un-Int-eq(3) assms(1) $\operatorname{assms}(3) \operatorname{assms}(4) \operatorname{assms}(7) \operatorname{assms}(8) \operatorname{assms}(9)$ frontier-def inf.commute inf.orderE inf-idem inf-left-commute insert-commute l-p-endpoints pathfinish-def pathstart-def simple-path-endless)
moreover have ? $e p \subseteq$ path-image $p \cup$ path-image q
by (simp add: extreme-points-of-convex-hull A-def)
moreover have ? $e p \subseteq$ frontier A
using extreme-point-not-in-interior
proof-
have ?ep \cap interior $A=\{ \}$
using extreme-point-not-in-interior by blast
thus ?thesis
by (smt (verit, ccfv-SIG) A-def Int-Un-distrib2 Un-Diff-cancel assms(1) calculation(2) closure-convex-hull compact-Un compact-simple-path-image dual-order.trans frontier-def hull-subset inf.absorb-iff2 inf-commute sup-bot-left)

qed

ultimately have $*: ? e p \subseteq\{p 0, p 1\}$ by auto
have $A=$ path-image l
proof -
have convex $A \wedge$ compact A
by (simp add: A-def arc-imp-path assms(2) compact-Un compact-convex-hull compact-path-image)
then have A-ep: $A=$ convex hull ?ep using Krein-Milman-Minkowski by blast
moreover have finite ?ep using * infinite-super by auto
moreover have $A \neq\{ \}$ by (simp add: A-def)
moreover have $\forall x . A \neq\{x\}$ using $\operatorname{assms}(7)$ by fastforce
ultimately have card ?ep ≥ 2 using convex-hull-two-extreme-points by metis then have ? $e p=\left\{\begin{array}{lll}p & 0, p 1\end{array}\right\}$
by (metis * One-nat-def Suc-1 add-leD2 card.empty card-insert-disjoint card-seteq finite.emptyI finite.insertI insert-absorb plus-1-eq-Suc)
then have $A=$ closed-segment $\left(\begin{array}{ll}p & 0\end{array}\right)\left(\begin{array}{ll}p & 1\end{array}\right)$ by (metis A-ep segment-convex-hull) thus ?thesis by (simp add: l-def)
qed
then have interior $A=\{ \}$
by (metis A-def Diff-eq-empty-iff assms(1) assms(8) closure-convex-hull compact-Un compact-simple-path-image double-diff dual-order.refl frontier-def in-terior-subset)
thus False using inside-outside-def inside-outside-r r-inside-subset by auto qed
let $? e=l(1 / 2)$
have l-on- r-frontier: path-image $l \subseteq$ frontier (path-inside ? r)
using inside-outside-r unfolding inside-outside-def
by (metis Un-upper1 closed-simple-r 〈arc (reversepath p) \wedge arc l〉arc-def $\operatorname{assms}(2)$ path-image-join path-join-eq simple-path-def)
moreover have path-image $l \subseteq$ frontier (path-inside?s)
using inside-outside-s unfolding inside-outside-def
by (simp add: l-def path-image-join pathstart-def reversepath-def)
ultimately have e-frontier: ?e \in frontier (path-inside ?r) $\wedge ? e \in$ frontier (path-inside ?s)
by (simp add: path-defs(4) subsetD)
have e-notin: ? $e \notin$ path-image $p \cup$ path-image q
proof-
have ? $e \notin$ path-image p
proof-
have $? e \neq l 0 \wedge ? e \neq l 1$ using $l f-l$ unfolding loop-free-def by fastforce
then have ? $e \neq p 0 \wedge ? e \neq p 1$ using l-p-endpoints by simp
moreover have ? $e \notin p\{0<. .<1\}$ using p-int-l unfolding path-image-def
by fastforce
ultimately show ?thesis using p-int-l unfolding path-image-def by fastforce
qed
moreover have $? e \notin$ path-image q
proof -
have $? e \neq l 0 \wedge ? e \neq l 1$ using $l f$-l unfolding loop-free-def by fastforce
then have $? e \neq q 0 \wedge ? e \neq q 1$ using l-q-endpoints by simp
moreover have ? $e \notin q^{*}\{0<. .<1\}$ using q-int-l unfolding path-image-def
by fastforce
ultimately show? ?thesis using q-int-l unfolding path-image-def by fastforce
qed
ultimately show ?thesis by blast
qed
obtain ε where $\varepsilon: \varepsilon>0 \wedge$ ball ?e $\varepsilon \cap$ path-image $p=\{ \} \wedge$ ball ? $e \varepsilon \cap$ path-image $q=\{ \}$
proof-
have $? e \notin$ path-image p using e-notin by simp
moreover have compact (path-image p) by (simp add: assms(2) compact-arc-image)
moreover have ? e \notin path-image q using e-notin by simp
moreover have compact (path-image q) by (simp add: assms(2) compact-arc-image)
ultimately obtain $\varepsilon 1 \varepsilon 2$ where
$\varepsilon 1>0 \wedge$ ball ?e $\varepsilon 1 \cap$ path-image $p=\{ \} \wedge \varepsilon \mathcal{Z}>0 \wedge$ ball ?e $\varepsilon \mathcal{Z} \cap$ path-image $q=\{ \}$
by (meson assms(1) not-on-path-ball simple-path-imp-path)
thus ?thesis using that[of min $\varepsilon 1$ ع2] by (simp add: disjoint-iff)
qed
obtain z-r where $z-r: z-r \in$ ball $? e \varepsilon \cap$ path-inside ?r
by (metis e-frontier ε all-not-in-conv disjoint-iff frontier-straddle mem-ball)
obtain z-s where z-s: z-s \in ball ? $e \in \cap$ path-inside ?s
by (metis e-frontier ε all-not-in-conv disjoint-iff frontier-straddle mem-ball)
have z-s-in-r: $z-s \in$ path-inside ?r
proof-
let ?l-z $=$ linepath $z-r z-s$
have $z-r \in$ interior $A \wedge z-s \in$ interior A
using r-inside-subset s-inside-subset $z-r z$-s by blast
then have path-image ?l-z \subseteq interior A by (simp add: A-def closed-segment-subset)
then have 1: path-image ?l-z \cap path-image $l=\{ \}$
by (smt (verit) Diff-iff assms(8) disjoint-iff frontier-def subsetD)
have convex (ball ?e e ε) by simp
then have path-image ?l-z \subseteq ball ?e ε
by (metis IntD1 closed-segment-subset path-image-linepath $z-r z-s)$
then have 2: path-image ?l-z \cap path-image $q=\{ \}$ using ε by blast
show ?thesis
by (smt (verit, best) 12 IntI Int-Un-distrib Int-Un-distrib2 Jordan-inside-outside-real2
closed-path-def $\varepsilon\langle$ path-image (linepath $z-r z-s) \subseteq b a l l(l(1 / 2)) \varepsilon\rangle \operatorname{arc}-d e f \operatorname{assms}(2)$
closed-simple-r emptyE in-mono inf.assoc le-iff-inf path-connected-not-frontier-subset path-connected-path-image path-image-join path-inside-def path-join-path-ends path-linepath pathfinish-in-path-image pathfinish-linepath pathstart-in-path-image pathstart-linepath sup.order-iff $z-r$)
qed
let ? $x q=q(1 / 2)$
let ? $z=z-s$
let $? v=? x q-? z$
let ? ray $=\lambda d . ? z+d *_{R}$? v
let ? rayline $=$ linepath ? z ? $x q$
have z-ray: ? $z=$? ray 0 by simp
have $x q$-ray: ? $x q=$? ray 1 by simp
have $x q$-rayline: ? $x q=$?rayline 1 unfolding linepath-def by simp
have ? $x q \in$ path-image ?r
by (metis (mono-tags, opaque-lifting) Un-iff atLeastAtMost-iff imageI l-q-endpoints less-eq-real-def path-defs(4) path-image-join pathfinish-def pathstart-def pos-half-less zero-less-divide-1-iff zero-less-numeral zero-less-one)
then have $x q$-frontier: ? $x q \in$ frontier (path-inside ? r)
using inside-outside-r unfolding inside-outside-def by auto
have $x q-n e q-z: ? x q \neq ? z$
proof-
have ? $x q \in$ path-image ?r
proof-
have $q(1 / 2) \in$ path-image q
by (simp add: path-defs(4))
thus ?thesis
by (simp add: l-q-endpoints path-image-join pathfinish-def pathstart-def)
qed
thus ?thesis using z-s-in-r inside-outside-r unfolding inside-outside-def by blast
qed
then have $v-n e q-0: ? v \neq 0$ by simp
have bounded (path-inside ?r) using inside-outside-r unfolding inside-outside-def by blast
moreover have $? z \in$ interior (path-inside ? r)
by (metis inside-outside-def inside-outside-r interior-eq z-s-in-r)
ultimately obtain d where $d: 0<d \wedge$? ray $d \in$ frontier (path-inside ? r)
$\wedge(\forall e \in\{0 . .<d\}$. ? ray $e \in$ interior (path-inside ? r) $)$
using ray-to-frontier[of path-inside ?r ?z ?v] by (metis atLeastLessThan-iff v-neq-0)
have interior-inside-r: interior (path-inside ? r) = path-inside ? r by (meson inside-outside-def inside-outside-r interior-eq)
have d-leq-1: $d \leq 1$
proof (rule ccontr)
assume $\neg d \leq 1$
then have $d>1$ by simp
moreover have ? ray $1 \in$ frontier (path-inside ?r) using $x q$-ray $x q$-frontier by argo
ultimately show False using d unfolding frontier-def by fastforce
qed
have z-inside: ? $z \in$ path-inside ?s using z-s by blast
moreover have ?rayline $d \in$ path-outside?s
proof-
have ? rayline $d \notin$ path-image l if $d<1$
proof-
have ? rayline $0 \in$ interior A
using r-inside-subset by (simp add: linepath-0' subsetD z-s-in-r)
moreover have path-image ? rayline \subseteq closure A
proof-
have closure $A=A$
using A-def assms(1) closure-convex-hull compact-Un compact-simple-path-image by blast
moreover have ? rayline $0 \in A$ using〈?rayline $0 \in$ interior A 〉inte-rior-subset by blast
moreover have ？rayline $1 \in A$
using path－image－def A－def hull－subset $x q$－rayline by fastforce
ultimately show ？thesis
by（metis A－def closed－segment－subset convex－convex－hull linepath－0＇
linepath－1＇path－image－linepath）
qed
moreover have \neg path－image ？rayline \subseteq rel－frontier A
proof－
have path－image ？rayline \cap interior $A \neq\{ \}$
using〈？rayline $0 \in$ interior A 〉 unfolding path－image－def by fastforce moreover have interior $A \cap$ rel－frontier $A=\{ \}$
using rel－frontier－def rel－interior－nonempty－interior by auto ultimately show ？thesis by blast
qed
ultimately have rel－interior（path－image ？rayline）\subseteq rel－interior A using subset－rel－interior－convex［of path－image ？rayline A］by（simp add：
A－def）
moreover have interior $A=$ rel－interior A
using〈？rayline $0 \in$ interior A 〉rel－interior－nonempty－interior by auto
moreover have ？rayline $d \in$ ？rayline $\{0<. .<1\}$ using that d by simp ultimately show ？thesis
by（smt（verit，del－insts）DiffD1 DiffD2 Un－iff xq－neq－z arc－linepath arc－simple－path assms（8）closed－segment－eq－open frontier－def path－image－linepath pathfinish－linepath pathstart－linepath rel－interior－closed－segment simple－path－endless subset－eq）
qed
moreover have ？rayline $d \notin$ path－image l if $d=1$
using that q－int－l unfolding linepath－def by（simp add：disjoint－iff）
moreover have ？rayline $d \in$ path－image ？r
by（metis（no－types，lifting）add－diff－eq d diff－add－eq inside－outside－def in－ side－outside－r linepath－def scale－left－diff－distrib scale－one scale－right－diff－distrib）
ultimately show ？thesis
by（smt（verit，ccfv－SIG）d－leq－1 Diff－iff Int－iff closed－path－def 〈arc（reversepath $p) \wedge$ arc l＞arc－def assms（1）assms（3）assms（9）closed－simple－r insert－commute l－def l－p－endpoints not－in－path－image－join path－join－eq pathfinish－join pathfinish－linepath pathstart－join pathstart－linepath q－outside simple－path－def simple－path－endless sub－ setD）
qed
moreover have ？$z \in$ ？rayline $\{\{0 . . d\}$
using z－ray unfolding linepath－def
by（smt（verit，del－insts）add．commute atLeastAtMost－iff cancel－comm－monoid－add－class．diff－cancel d diff－zero image－iff less－eq－real－def segment－degen－1）
moreover have ？rayline $d \in$ ？rayline $\{0 . . d\}$ by（simp add：d less－eq－real－def）
ultimately have ？rayline $\{0 . . d\} \cap$ path－inside ？s $\neq\{ \} \wedge$ ？rayline $\{0 . . d\} \cap$ path－outside ？s $\neq\{ \}$
by blast
then have ？rayline $\{0 . . d\} \cap$ path－inside ？s $\neq\{ \} \wedge$ ？rayline $‘\{0 . . d\} \cap-$ path－inside ？$s \neq\{ \}$
using inside－outside－s unfolding inside－outside－def by（meson ComplI dis－ joint－iff）
moreover have path-connected (? rayline‘\{0..d\})
proof-
have ?rayline $\{\{0 . . d\}=$ path-image (subpath $0 d$?rayline) by (simp add: d path-image-subpath)
moreover have path (subpath $0 d$? ? $a y l i n e$) using $d d$-leq- 1 by auto
ultimately show ?thesis by (metis path-connected-path-image)
qed
ultimately have ?rayline $\{0 . . d\} \cap$ frontier (path-inside ? s) $\neq\{ \}$
using path-connected-frontier[of ? Payline‘\{0..d\} path-inside ?s] by (metis dis-joint-iff)
then have ? rayline $\{00 . . d\} \cap$ path-image $? s \neq\{ \}$ using inside-outside-s unfolding inside-outside-def by argo
moreover have ?rayline $0 \notin$ path-image ?s
proof-
have $? x q \neq p 0$
by (metis (full-types) disjoint-iff greaterThanLess Than-iff imageI l-p-endpoints pathstart-def pathstart-in-path-image pos-half-less q-int-l zero-less-divide-1-iff zero-less-numeral zero-less-one)
moreover have ? $x q \neq p 1$
by (metis (full-types) disjoint-iff greaterThanLessThan-iff imageI l-p-endpoints pathfinish-def pathfinish-in-path-image pos-half-less q-int-l zero-less-divide-1-iff zero-less-numeral
zero-less-one)
moreover have $? x q \notin p\{0<. .<1\}$
proof-
have $? x q \in q^{*}\{0<. .<1\}$ by fastforce
thus ? thesis by (metis assms(1,3,4) Diff-iff Int-iff pathfinish-def pathstart-def simple-path-endless)
qed
moreover have ? $x q \notin$ path-image l
by (metis disjoint-iff greaterThanLessThan-iff imageI pos-half-less q-int-l
zero-less-divide-1-iff zero-less-numeral zero-less-one)
ultimately show? thesis
by (metis (no-types, lifting) ComplD UnI1 z-inside inside-outside-def in-side-outside-s linepath-0 ${ }^{\prime}$)
qed
moreover have ?rayline $d \notin$ path-image ?s
using 〈? ${ }^{\text {rayline }} d \in$ path-outside ? ${ }^{\text {s }}$ 〉 inside-outside-def inside-outside-s by auto
moreover have $\{0 . . d\}=\{0<. .<d\} \cup\{0, d\}$ using d by fastforce
ultimately have ? rayline $\{0<. .<d\} \cap$ path-image ? s $\neq\{ \}$ unfolding path-image-def
by blast
moreover have ? rayline $\{0<. .<d\}=$? ray $\{0<. .<d\}$
unfolding linepath-def by (auto simp: algebra-simps)
moreover have ? ray $\{0<. .<d\} \subseteq$ path-inside ?r using d interior-inside-r by fastforce
ultimately have path-image ?s \cap path-inside $? r \neq\{ \}$ by blast
moreover have path-image $l \cap$ path-inside $? r=\{ \}$
by (metis (no-types, opaque-lifting) Diff-disjoint Int-assoc l-on-r-frontier fron-tier-def inf.orderE inf-bot-left inf-sup-aci(1) interior-inside-r)
moreover have $p\{0<. .<1\}=$ path-image ?s - path-image l

```
proof-
    have path-image ?s = path-image p \cup path-image l
        by (simp add: l-p-endpoints path-image-join pathfinish-def sup-commute)
    moreover have p}{{0<..<1}= path-image p-{p0, p1
        by (metis assms(1) pathfinish-def pathstart-def simple-path-endless)
    ultimately have path-image ?s = p{0<..<1}\cup{p 0, p1} }\cup\mathrm{ path-image l
        using assms(3) assms(9) l-p-endpoints by auto
    moreover have pl\in path-image l ^p 0\in path-image l by (simp add:l-def)
    ultimately show ?thesis using p-int-l by blast
qed
ultimately show p`{0<..<1} \cap path-inside (l+++q)\not={} by auto
```



```
    by (smt (verit, best) Int-Un-distrib Un-absorb assms(1) assms(3) assms(4)
closed-simple-r insert-commute l-p-endpoints p'-int-l path-image-join path-image-reversepath
path-join-path-ends reversepath-def simple-path-imp-path)
qed
lemma pocket-path-interior:
    assumes simple-path p}\wedge\mathrm{ simple-path q
    assumes arc p ^ arc q
    assumes q0=p1^q1=p0
    assumes path-image p \cap path-image q}={p0,q0
    defines }A\equiv\mathrm{ convex hull (path-image p }\cup\mathrm{ path-image q)
    defines l \equivlinepath (p 0) ( 
    assumes p}{{0<..<1}\subseteq\mathrm{ interior A
    assumes path-image l\subseteq frontier A
    assumes path-image q\cap path-image l={l 0,q0}
    shows p}{{0<..<1}\subseteq path-inside (l+++ q
    using pocket-path-interior-aux[of p q] simple-loop-split[of l +++ q p] assms
    by (metis (no-types, lifting) DiffE disjoint-iff simple-path-endless)
lemma pocket-path-good:
    assumes polygon (make-polygonal-path vts)
    assumes vts!0\in frontier (convex hull (set vts))
    assumes vts!1 & frontier (convex hull (set vts))
    assumes \neg convex (path-image (make-polygonal-path vts) \cup path-inside (make-polygonal-path
vts))
    defines pocket-path-vts \equiv construct-pocket-0 vts (set vts \cap frontier (convex hull
(set vts)))
    defines pocket \equiv make-polygonal-path (pocket-path-vts @ [pocket-path-vts!0])
    defines filled-vts \equiv fill-pocket-0 vts (length pocket-path-vts)
    defines filled-p \equiv make-polygonal-path filled-vts
    defines a \equivhd pocket-path-vts
    defines b\equiv last pocket-path-vts
    defines good-pocket-path-vts \equivtl (butlast pocket-path-vts)
    shows polygon filled-p
        is-polygon-split-path (butlast filled-vts) 0 1 good-pocket-path-vts
        polygon pocket
```

```
    card (set pocket-path-vts) < card (set vts)
    card (set filled-vts) < card (set vts)
proof -
    let ?p = make-polygonal-path vts
    let ?A = set vts \cap frontier (convex hull (set vts))
    let ?filled-vts-tl = tl filled-vts
    let ?filled-p-tl = make-polygonal-path ?filled-vts-tl
    let ?pocket-vts = pocket-path-vts @ [pocket-path-vts!0]
    let ?pocket-path = make-polygonal-path pocket-path-vts
    let ?l = linepath a b
```

 let \(? r=\) min-nonzero-index-in-set vts ? A
 have int-A-nonempty: set (\(t l\) vts) \(\cap ? A \neq\{ \}\)
 by (metis (mono-tags, lifting) IntI Nitpick.size-list-simp(2) Suc-eq-plus1 assms(1)
 assms(2) card-length empty-iff have-wraparound-vertex last-in-set last-tl le-add1
le-trans not-less-eq-eq numeral-3-eq-3 polygon-at-least-3-vertices snoc-eq-iff-butlast)
then have r-defined: nonzero-index-in-set vts ? A ? $r \wedge(\forall i<$? $r . \neg$ nonzero-index-in-set
vts ?A i)
using min-nonzero-index-in-set-defined[of vts ?A] by fast
have two-vts-on-frontier: $2 \leq$ card ? A
by (metis convex-hull-two-vts-on-frontier One-nat-def Suc-1 add-leD2 assms(1)
numeral-3-eq-3 plus-1-eq-Suc polygon-at-least-3-vertices)
moreover have frontier-vts-subset: ?A \subseteq set vts by force
moreover have distinct-vts: distinct (butlast vts)
using assms(1) polygon-def simple-polygonal-path-vts-distinct by blast
moreover have hd-last-vts: hd vts = last vts
by (metis assms(1) have-wraparound-vertex hd-conv-nth snoc-eq-iff-butlast)
ultimately have $a-n e q-b: a \neq b$
using a-def b-def construct-pocket-0-first-last-distinct pocket-path-vts-def by
presburger
have length filled-vts ≥ 2
unfolding filled-vts-def fill-pocket-0-def
by (smt (verit, best) One-nat-def Suc-1 Suc-diff-Suc a-def a-neq-b b-def con-
struct-pocket-0-def diff-is-0-eq diff-zero hd-Nil-eq-last length-drop length-greater-0-conv
length-tl list.sel(3) not-less-eq-eq pocket-path-vts-def sublist-length-le sublist-take)
moreover have filled-vts-0: $a=$ filled-vts! 0
unfolding filled-vts-def fill-pocket-0-def a-def pocket-path-vts-def construct-pocket-0-def
by auto
moreover have filled-vts-1: $b=$ filled-vts! 1
by (smt (verit, del-insts) filled-vts-def fill-pocket-0-def b-def pocket-path-vts-def
construct-pocket-0-def Cons-nth-drop-Suc Nitpick.size-list-simp(2) a-def a-neq-b add.right-neutral
drop0 drop-eq-Nil hd-Nil-eq-last last-conv-nth length-take length-tl linorder-not-less
list.sel(3) min.absorb4 nat-le-linear not-less-eq-eq nth-drop nth-take plus-1-eq-Suc
take-all-iff zero-less-diff)
ultimately have filled-vts: filled-vts $=[a, b] @ t l$?filled-vts-tl
by (metis (no-types, lifting) Nitpick.size-list-simp(2) One-nat-def Suc-1 ap-
pend-Nil append-eq-Cons-conv length-greater-0-conv list.collapse not-less-eq-eq nth-Cons-0 nth-tl order-less-le-trans pos2)
have 1: polygon-of ?p vts unfolding polygon-of-def using assms(1) by blast
have 2: $2 \leq$? $r \wedge$? $r<$ length vts -1
proof-
have $? r \neq 0 \wedge ? r \neq 1$
using assms(2,3) min-nonzero-index-in-set-def nonzero-index-in-set-def r-defined by fastforce
then have 1:? ≥ 2 by simp
have $\exists i \in\{0<. .<$ length vts -1$\}$. vts $!i \in$ frontier (convex hull (set vts))
proof-
have card $(($ set vts $) \cap$ frontier $($ convex hull $($ set vts $))) \geq 2$ using two-vts-on-frontier by blast
then obtain v where $v \in$ set vts $\wedge v \in$ frontier (convex hull set vts) $\wedge v \neq$ $h d$ vts
by (metis hd-last-vts Int-iff a-neq-b assms(2) b-def construct-pocket-0-last-in-set convex-hull-empty empty-set fill-pocket-0-def filled-vts-0 filled-vts-def frontier-empty hd-conv-nth int-A-nonempty last-in-set nth-Cons-0 pocket-path-vts-def)
thus ?thesis
by (metis hd-last-vts assms(1) in-set-conv-nth diff-Suc-1 gr0-implies-Suc greaterThanLessThan-iff have-wraparound-vertex last-conv-nth le-eq-less-or-eq less-Suc-eq-le less-one nat.simps(3) nat-le-linear snoc-eq-iff-butlast)
qed
then have 2: ? $r<$ length vts -1
using r-defined
unfolding min-nonzero-index-in-set-def nonzero-index-in-set-def
by (smt (verit, del-insts) Int-iff add.commute add-diff-cancel-left' add-diff-inverse-nat greaterThanLessThan-iff less-imp-diff-less mem-Collect-eq nat-less-le nth-mem)
show ?thesis using 12 by blast
qed
have $a b: a=h d$ vts $\wedge b=v t s!? r$
by (metis (no-types, lifting) 2 Suc-1 int-A-nonempty ab-semigroup-add-class.add-ac(1)
add-Suc-right b-def construct-pocket-0-def fill-pocket-O-def filled-vts-0 filled-vts-def
hd-drop-conv-nth last-snoc le-add-diff-inverse2 min-nonzero-index-in-set-bound nth-Cons-0 plus-1-eq-Suc pocket-path-vts-def take-hd-drop)
have 3: $\{h d$ vts, vts ! ? $r\} \subseteq$ frontier (convex hull set vts)
using ab assms(1) assms(2) assms(3) b-def construct-pocket-is-pocket is-pocket-0-def pocket-path-vts-def
by fastforce
have 4: $\forall j \in\{0<. .<$? $r\}$. vts $!j \notin$ frontier (convex hull set vts)
using r-defined unfolding nonzero-index-in-set-def by fastforce
have l-int-p: path-image (linepath (hd vts) (vts!?r)) \cap path-image ? $p=\{h d$ vts, vts! ? r \}
using pocket-fill-line-int[OF 123 4] by blast
have l-frontier: path-image (linepath (hd vts) (vts!?r)) \subseteq frontier (convex hull (set vts))
using pocket－fill－line－int［OF 12234$]$ by blast
have path－image ？filled－p－tl \cap path－image ？l $=\{a, b\}$
proof－
have path－image（linepath（hd vts）（vts！？r））\cap path－image ？$p=\{h d$ vts，vts ！
？$r\}$
using pocket－fill－line－int［OF 12034$]$ by blast
moreover have path－image ？filled－p－tl \subseteq path－image ？p
proof－
have sublist ？filled－vts－tl vts by（simp add：fill－pocket－O－def filled－vts－def）
thus ？thesis using＜2 \leq length filled－vts〉 sublist－path－image－subset by auto
qed
moreover have $a \in$ path－image ？filled－$p-t l \wedge b \in$ path－image ？filled－$p-t l$
by（smt（verit，best）Cons－nth－drop－Suc Diff－insert－absorb One－nat－def Suc－1〈2 \leq length filled－vts〉 drop0 drop－eq－Nil fill－pocket－0－def filled－vts－0 filled－vts－1 filled－vts－def
 order－less－le－trans pathstart－in－path－image polygon－pathstart pos2 subset－Diff－insert vertices－on－path－image）
ultimately show ？thesis using $a b$ by auto
qed
moreover have $h d$－filled：$h d$ ？filled－vts－tl $=$ last $[a, b]$
unfolding filled－vts－def fill－pocket－0－def pocket－path－vts－def construct－pocket－0－def
by（metis construct－pocket－0－def fill－pocket－O－def filled－vts filled－vts－def hd－append2
last－ConsL last－ConsR list．sel（1）list．sel（3）list．simps（3）pocket－path－vts－def tl－append2）
moreover have last－filled：last ？filled－vts－tl $=h d[a, b]$
unfolding filled－vts－def fill－pocket－0－def pocket－path－vts－def construct－pocket－0－def
using r－defined a－def assms（1）assms（2）assms（3）construct－pocket－is－pocket hd－last－vts is－pocket－0－def pocket－path－vts－def
by fastforce
moreover have loop－free？filled－p－tl
proof－
have sublist ？filled－vts－tl vts
unfolding filled－vts－def fill－pocket－0－def pocket－path－vts－def construct－pocket－0－def
using r－defined
by force
thus ？thesis
by（smt（verit，del－insts）Nitpick．size－list－simp（2）Suc－1〈2 \leq length filled－vts〉 $\left\langle b=\right.$ filled－vts ！1 ${ }^{2}$ a－neq－b assms（1）diff－is－0－eq dual－order．strict－trans1 last－conv－nth last－filled le－antisym length－greater－0－conv length－tl list．sel（1）list．size（3）not－less－eq－eq nth－tl polygon－def pos2 simple－path－def sublist－is－loop－free sublist－length－le）
qed
moreover have loop－free ？l using a－neq－b linepath－loop－free by blast
moreover have filled－vts：filled－vts $=[a, b] @ t l$ ？filled－vts－tl using filled－vts by blast
moreover have arc ？l
by（smt（verit）arc－linepath calculation（5）constant－linepath－is－not－loop－free）
moreover have arc ？filled－p－tl
by（smt（z3）arc－simple－path calculation（2）calculation（3）calculation（4）cal－
culation(7) hd-Nil-eq-last hd-conv-nth last.simps last-conv-nth list.discI list.sel(1) make-polygonal-path-gives-path pathfinish-linepath pathstart-linepath polygon-pathfinish polygon-pathstart simple-path-def)
moreover have ?l = make-polygonal-path $[a, b]$
using make-polygonal-path.simps by presburger
ultimately have lf-filled: loop-free filled-p
by (smt (z3) Nat.add-diff-assoc One-nat-def Suc-pred' add-Suc-shift append-butlast-last-id arc-distinct-ends butlast.simps(2) filled-p-def hd-Nil-eq-last hd-conv-nth inf-sup-aci(1) last-ConsR less-numeral-extra(1) list.sel(1) list.simps(3) list.size(3) list.size(4) loop-free-append nth-append-length order-eq-refl plus-1-eq-Suc polygon-pathfinish poly-gon-pathstart)
show polygon-filled-p: polygon filled-p
unfolding polygon-def
by (metis closed-path-def UNIV-def append-is-Nil-conv filled-p-def filled-vts
hd-append2 last.simps last-conv-nth last-filled lf-filled list.discI list.exhaust-sel make-polygonal-path-gives-path nth-Cons-0 polygon-pathfinish polygon-pathstart polygonal-path-def rangeI simple-path-def)
have $\{a, b\} \subseteq$ set filled-vts
using filled-vts by (smt (z3) UnCI empty-set list.simps(15) set-append sub-set-iff)
moreover have pocket-path: ?pocket-path = make-polygonal-path ([a] @ good-pocket-path-vts
@ [b])
by (metis (no-types, lifting) a-def a-neq-b append-Cons append-Nil append-butlast-last-id
b-def good-pocket-path-vts-def hd-Nil-eq-last hd-conv-nth last-conv-nth length-butlast list.collapse list.size(3) tl-append2)
moreover have path-image ?pocket-path \subseteq path-inside filled- $p \cup\{a, b\}$
proof -
let ?p $=$?pocket-path
let ? $\mathrm{q}=$? filled $-p-t l$
let ? $H=$ convex hull (path-image ?p \cup path-image ?q)
have b : pocket-path-vts = take $(? r+1)$ vts
unfolding pocket-path-vts-def construct-pocket-O-def by blast
moreover then have c^{\prime} : ?filled-vts-tl $=$ drop ?r vts unfolding filled-vts-def
fill-pocket-0-def
using 2 by fastforce
ultimately have $v t s=$ pocket-path-vts @ tl ?filled-vts-tl
by (metis Suc-eq-plus1 append-take-drop-id drop-Suc tl-drop)
then have path-image ?p $=$ path-image ?p \cup path-image ?q
by (metis Suc-1 a-def a-neq-b b-def diff-is-0-eq hd-Nil-eq-last hd-conv-nth
hd-filled last.simps last-conv-nth last-filled list.discI list.sel(1) make-polygonal-path-image-append-alt not-less-eq-eq path-image-join polygon-pathfinish polygon-pathstart)
moreover have convex hull (path-image ?p) = convex hull (set vts)
by (metis (no-types, lifting) 1 Un-subset-iff convex-hull-of-polygon-is-convex-hull-of-vts
hull-Un-subset hull-mono subset-antisym vertices-on-path-image)
ultimately have H-eq: ? $H=$ convex hull (set vts) by presburger
have a : ? $p=$ make-polygonal-path vts \wedge loop-free ?p
using assms(1) polygon-def simple-path-def by blast
have c：？filled－vts－tl $=$ drop $((? r+1)-1)$ vts using c^{\prime} by simp
have $h: 1 \leq ? r+1 \wedge ? r+1<$ length vts using 2 by linarith
have path－image ？p \cap path－image ？q $\subseteq\{$ ？p 0 ，？q 0$\}$
using loop－free－split－int［OF a b c－－h］by（simp add：pathstart－def）
moreover have ？p $0 \in$ path－image ？p \wedge ？p $0 \in$ path－image ？q
by（metis a－def a－neq－b b－def hd－Nil－eq－last hd－conv－nth hd－filled last．simps
last－conv－nth last－filled list．sel（1）pathfinish－in－path－image pathstart－def pathstart－in－path－image polygon－pathfinish polygon－pathstart）
moreover have ？q $0 \in$ path－image ？p \wedge ？q $0 \in$ path－image ？q
by（metis a－def a－neq－b b－def hd－Nil－eq－last hd－conv－nth hd－filled last．simps last－conv－nth last－filled list．sel（1）pathfinish－in－path－image pathstart－def pathstart－in－path－image polygon－pathfinish polygon－pathstart）
ultimately have 4：path－image ？p \cap path－image ？q $=\{?$ p $0, ? q 0\}$ by fastforce
have 1：simple－path ？p \wedge simple－path ？q
by（metis（no－types，lifting）One－nat－def Suc－1 Suc－le－eq〈arc ？filled－p－tl〉 arc－simple－path assms（1）assms（2）assms（3）construct－pocket－is－pocket is－pocket－0－def le－add2 make－polygonal－path－gives－path numeral－3－eq－3 order－le－less－trans plus－1－eq－Suc pocket－path－vts－def polygon－def simple－path－def sublist－is－loop－free sublist－take）
have 2：arc ？p \wedge arc ？q
by（metis 1 〈arc ？filled－p－tl〉 a－def a－neq－b b－def hd－Nil－eq－last hd－conv－nth last－conv－nth polygon－pathfinish polygon－pathstart simple－path－cases）
have 3：？q $0=$ ？p $1 \wedge$ ？q $1=$ ？p 0
by（metis 1 a－def append－Cons b－def constant－linepath－is－not－loop－free filled－vts hd－conv－nth last－conv－nth last－filled list．sel（1）list．sel（3）make－polygonal－path．simps（1） pathfinish－def pathstart－def polygon－pathfinish polygon－pathstart simple－path－def）
have 5：？p＇$\{0<. .<1\} \subseteq$ interior ？H
proof－
have $\forall j \in\{0<. .<$ ？$r\}$ ．vts！$\ddagger \notin$ frontier（convex hull（set vts））
by（smt（verit，del－insts）Int－iff dual－order．strict－trans greaterThanLessThan－iff int－A－nonempty mem－Collect－eq min－nonzero－index－in－set－defined nonzero－index－in－set－def nth－mem）
moreover have $? r=$ length pocket－path－vts -1 using $b h$ by auto
moreover have $\forall j<$ ？r．vts！$j=$ pocket－path－vts！j using b by auto
ultimately have $\forall j \in\{0<. .<$ length pocket－path－vts -1$\}$ ．pocket－path－vts！j
\notin frontier ？H
using $H-e q$ by simp
moreover have loop－free ？pocket－path using 1 simple－path－def by auto
ultimately show ？thesis
by（metis vts－interior Un－subset－iff assms（1）assms（2）assms（3）con－
struct－pocket－is－pocket convex－convex－hull hull－subset is－pocket－0－def pocket－path－vts－def）
qed
have 6：path－image（linepath（？p 0）（？p 1））\subseteq frontier ？H
by（metis l－frontier H－eq 3 a－def a－neq－b ab b－def hd－Nil－eq－last hd－conv－nth hd－filled last．simps last－filled list．discI list．sel（1）pathstart－def polygon－pathstart）
have 7：path－image ？q \cap path－image（linepath $(? \mathrm{p} 0)(? \mathrm{p} 1))=\{$ linepath（？p $0)(? \mathrm{p} 1) 0$, ？q 0$\}$
by（metis $3<p a t h-i m a g e ~(m a k e-p o l y g o n a l-p a t h ~(t l ~ f i l l e d-v t s)) ~ \cap ~ p a t h-i m a g e ~$ （linepath $a b)=\{a, b\}>a$－def a－neq－b b－def hd－Nil－eq－last hd－filled last．simps last－conv－nth
last-filled linepath-0' list.sel(1) pathfinish-def polygon-pathfinish)
have ?p' $\{0<. .<1\} \subseteq$ path-inside (linepath (?p 0) (?p 1) +++ ?q) using pocket-path-interior[OF 1234567$]$ by blast
then have ?p $\{0<. .<1\} \subseteq$ path-inside filled-p
by (smt (verit) $3<2 \leq$ length filled-vts〉 a-def a-neq-b b-def filled-p-def filled-vts-0 hd-Nil-eq-last hd-filled last.simps last-filled length-greater-0-conv list.discI list.sel(1) list.sel(3) make-polygonal-path.elims nth-Cons-0 order-less-le-trans path-start-def polygon-pathstart pos2)
moreover have ?p $0=a \wedge$?p $1=b$
by (metis 3 a-def a-neq-b b-def hd-Nil-eq-last hd-conv-nth hd-filled last.simps last-filled list.discI list.sel(1) pathstart-def polygon-pathstart)
ultimately show ?thesis
by (metis 1 Diff-subset-conv a-def a-neq-b b-def hd-Nil-eq-last hd-conv-nth last-conv-nth polygon-pathfinish polygon-pathstart simple-path-endless sup-commute) qed
moreover have loop-free-pocket-path: loop-free ?pocket-path
proof-
have sublist pocket-path-vts vts
by (simp add: construct-pocket-0-def pocket-path-vts-def)
moreover have loop-free ?p
using assms(1) polygon-def simple-path-def by blast
moreover have length pocket-path-vts ≥ 2
by (metis Suc-1 a-def a-neq-b b-def diff-is-0-eq' hd-Nil-eq-last hd-conv-nth last-conv-nth not-less-eq-eq)
moreover have length vts ≥ 2
by (meson calculation(1) calculation(3) le-trans sublist-length-le)
ultimately show ?thesis using sublist-is-loop-free by blast
qed
ultimately have good-polygonal-path: good-polygonal-path a good-pocket-path-vts b filled-vts
by (metis a-neq-b filled-p-def good-polygonal-path-def)
have filled-vts-as-butlast: filled-vts $=($ butlast filled-vts $)$ @ [(butlast filled-vts)! 0]
by (metis Nitpick.size-list-simp (2) append.right-neutral butlast-conv-take filled-p-def filled-vts have-wraparound-vertex length-butlast length-tl less-Suc-eq-0-disj list.discI list.sel(2) list.sel(3) nth-butlast polygon-filled-p)
then have filled-p-as-butlast:
filled- $p=$ make-polygonal-path $(($ butlast filled-vts) @ [(butlast filled-vts)!0])
unfolding filled-p-def filled-vts-def by argo
have le: $0<$ (1::nat) by simp
have filled-0-a: (butlast filled-vts)! $0=a$
by (metis append-Cons append-Nil butlast.simps(2) filled-vts nth-Cons-0 filled-vts-0)
have filled-1-b: (butlast filled-vts) ! $1=b$
by (metis (no-types, opaque-lifting) filled-vts-1 filled-vts-as-butlast a-neq-b ap-pend-Cons append-Nil butlast-conv-take filled-0-a filled-vts length-butlast less-one linorder-not-le nat-less-le nth-append-length nth-butlast take0)
have 01: $0<$ length (butlast filled-vts) $\wedge 1<$ length (butlast filled-vts)
by (metis One-nat-def Suc-lessI filled-vts-1 filled-vts-as-butlast a-neq-b ap-pend-eq-Cons-conv filled-0-a length-greater-0-conv nth-Cons-Suc nth-append-length)
show is-split-path:
is-polygon-split-path (butlast filled-vts) 01 good-pocket-path-vts
using good-polygonal-path-implies-polygon-split-path
[OF polygon-filled-p filled-p-as-butlast - 01 filled-0-a filled-1-b le]
using good-polygonal-path filled-vts-as-butlast
by presburger
have polygon-pocket-rev: polygon (make-polygonal-path (a\#([] @ [b] @ (rev good-pocket-path-vts) @ $[a])$))
unfolding is-polygon-split-path-def
by (smt (z3) 01 One-nat-def add-diff-cancel-left' add-diff-cancel-right' filled-0-a filled-1-b is-polygon-split-path-def is-split-path nth-butlast plus-1-eq-Suc take0)
moreover have rev-pocket-vts: rev ?pocket-vts $=a \#([] @[b] @$ (rev good-pocket-path-vts) @ $[a]$)
by (smt (verit) a-def a-neq-b append.left-neutral append-Cons append-butlast-last-id
b-def good-pocket-path-vts-def hd-Nil-eq-last hd-append2 hd-conv-nth last-conv-nth
length-butlast list.collapse list.size(3) rev.simps(1) rev.simps(2) rev-append)
ultimately show polygon pocket
by (metis polygon-pocket-rev rev-vts-is-polygon polygon-of-def pocket-def rev-rev-ident)
have card (set vts) $=$ length (butlast vts)
using distinct-vts
by (smt (verit, ccfv-threshold) Suc-n-not-le-n Un-insert-right append-Nil2 assms(1)
butlast-conv-take distinct-card dual-order.strict-trans have-wraparound-vertex hd-conv-nth
$h d$-in-set hd-take insert-absorb length-0-conv length-butlast less-eq-Suc-le linorder-linear list.set(2) not-numeral-le-zero numeral-3-eq-3 polygon-at-least-3-vertices-wraparound polygon-vertices-length-at-least-4 set-append)
then have set pocket-path-vts \subset set vts
unfolding pocket-path-vts-def construct-pocket-0-def
using r-defined
by (smt (verit, ccfv-threshold) Cons-nth-drop-Suc One-nat-def Suc-diff-Suc Suc-le-lessD add-diff-cancel-right' assms(1) assms(2) assms(3) butlast-conv-take butlast-snoc card-length construct-pocket-0-def construct-pocket-is-pocket drop0 fill-pocket-0-def filled-vts-def is-pocket-0-def is-polygon-split-path-def is-split-path leD le-less-Suc-eq length-butlast length-drop length-greater-0-conv list.inject numeral-3-eq-3 plus-1-eq-Suc pocket-path-vts-def polygon-at-least-3-vertices-wraparound psubsetI set-take-subset take-eq-Nil add-eq-0-iff-both-eq-0 add-gr-0 cancel-comm-monoid-add-class.diff-cancel diff-zero dual-order.strict-trans filled-p-def length-Cons length-tl less-imp-diff-less list.sel(3) list.size(3) not-less-eq-eq polygon-filled-p zero-less-one zero-neq-one)
thus card (set pocket-path-vts) < card (set vts) by (simp add: psubset-card-mono)
have $\operatorname{card}($ set vts $)=\operatorname{card}($ set (butlast vts $))$
by (smt (z3) Cons-nth-drop-Suc List.finite-set One-nat-def Suc-1 Suc-le-lessD
two-vts-on-frontier distinct-vts hd-last-vts frontier-vts-subset butlast.simps(1) but-last-conv-take card-insert-if card-length card-mono distinct-card drop0 drop-eq-Nil dual-order.trans last-in-set last-tl length-butlast length-greater-0-conv length-tl list.collapse list.sel(3) list.simps(15) set-take-subset verit-la-disequality)
moreover have length good-pocket-path-vts ≥ 1
unfolding good-pocket-path-vts-def pocket-path-vts-def construct-pocket-0-def
using convex-hull-of-nonconvex-polygon-strict-subset[OF - assms(4), of vts]
using Suc-le-eq assms(1) assms(2) assms(3) construct-pocket-O-def construct-pocket-is-pocket is-pocket-0-def numeral-3-eq-3
by auto
ultimately show card (set filled-vts) < card (set vts)
unfolding filled-vts-def fill-pocket-0-def good-pocket-path-vts-def pocket-path-vts-def
by (smt (verit) Nitpick.size-list-simp(2) Suc-1 Suc-diff-Suc Suc-n-not-le-n «2 \leq length filled-vts> distinct-vts hd-last-vts card-length diff-is-0-eq diff-less distinct-card drop-eq-Nil fill-pocket-O-def filled-vts-def insert-absorb last-drop last-in-set le leI le-less-Suc-eq length-Cons length-butlast length-drop length-tl less-imp-diff-less list.simps(15) order-less-le-trans pocket-path-vts-def)
qed

29.3 Arbitrary Polygon Case

lemma pick-rotate:
assumes polygon-of p vts
assumes all-integral vts
obtains p^{\prime} vts' where polygon-of p^{\prime} vts'
$\wedge v t s^{\prime}!0 \in$ frontier (convex hull (set vts'))
\wedge path-image $p^{\prime}=$ path-image p
\wedge all-integral vts ${ }^{\prime}$
\wedge set vts' $=$ set vts
proof-
obtain v where $v: v \in$ set vts \cap frontier (convex hull (set vts))
proof-
obtain v where $v \in$ set vts $\wedge v$ extreme-point-of (convex hull (set vts))
using assms unfolding polygon-of-def
by (metis List.finite-set card.empty convex-convex-hull convex-hull-eq-empty ex-
treme-point-exists-convex extreme-point-of-convex-hull finite-imp-compact-convex-hull not-numeral-le-zero polygon-at-least-3-vertices)
then have $v \in$ set vts $\wedge v \in$ frontier (convex hull (set vts))
by (metis Krein-Milman-frontier List.finite-set convex-convex-hull extreme-point-of-convex-hull
finite-imp-compact-convex-hull)
thus ?thesis using that by blast
qed
obtain i where $i: v t s!i=v \wedge i<l e n g t h ~ v t s$ by (meson IntE in-set-conv-nth v)
let ?vts-rotated $=$ rotate-polygon-vertices vts i
let ?p-rotated $=$ make-polygonal-path ?vts-rotated
have same-set: set vts $=$ set ?vts-rotated
using assms unfolding polygon-of-def
using rotate-polygon-vertices-same-set
by force
moreover have $*:$?vts-rotated $!0 \in$ frontier (convex hull (set ?vts-rotated))
proof-
have ?vts-rotated! $0=$ vts! i
using assms unfolding polygon-of-def
by (metis add-leD2 diff-self-eq-0 have-wraparound-vertex hd-conv-nth i last-snoc less-nat-zero-code list.size(3) nat-le-linear numeral-Bit0 polygon-vertices-length-at-least-4 rotated-polygon-vertices)
moreover have vts $i \in$ frontier (convex hull (set vts)) using $v i$ by blast
ultimately show ?thesis using same-set by argo
qed
moreover have polygon ?p-rotated
using rotation-is-polygon assms unfolding polygon-of-def by blast
moreover have all-integral ?vts-rotated
using rotate-polygon-vertices-same-set assms
unfolding all-integral-def polygon-of-def by blast
moreover have path-image ? p-rotated $=$ path-image p
using assms unfolding polygon-of-def using polygon-vts-arb-rotation by force
moreover then have path-inside ? p-rotated $=$ path-inside p unfolding path-inside-def
by simp
ultimately show ?thesis using polygon-of-def that by blast
qed
lemma pick-unrotated:
fixes $p:: R$-to- $R 2$
assumes polygon: polygon p
assumes polygonal-path: $p=$ make-polygonal-path vts
assumes int-vertices: all-integral vts
assumes I-is: $I=$ card $\{x$. integral-vec $x \wedge x \in$ path-inside $p\}$
assumes B-is: $B=\operatorname{card}\{x$. integral-vec $x \wedge x \in$ path-image $p\}$
assumes vts! $0 \in$ frontier (convex hull (set vts))
shows measure lebesgue (path-inside p) $=I+B / 2-1$
using assms
proof (induct card (set vts) arbitrary: vts p I B rule: less-induct)
case less
have B-finite: finite $\{x$. integral-vec $x \wedge x \in$ path-image $p\}$
using finite-path-image less(2) by auto
have set vts $\subseteq\{x$. integral-vec $x \wedge x \in$ path-image $p\}$
using less(3) vertices-on-path-image[of vts] less(4)
unfolding all-integral-def
by auto
then have card-vts: card (set vts) ≥ 3
using polygon-at-least-3-vertices[OF less(2) less(3)] card-mono order-trans
by blast
have vts-wraparound: vts ! $0=v t s!($ length vts -1$)$
using less $(2-3)$ polygon-pathstart polygon-pathfinish
unfolding polygon-def closed-path-def
by (metis diff-0-eq-0 length-0-conv)
then have vts-is: vts $=($ butlast vts $) @[v t s!0]$
by（metis butlast－conv－take have－wraparound－vertex less．prems（1）less．prems（2））
have same－set：set vts $=$ set（butlast（vts））
by（metis ListMem－iff Un－insert－right append．right－neutral butlast．simps（2）con－ stant－linepath－is－not－loop－free elem hd－conv－nth insert－absorb less．prems（1）less．prems（2） list．collapse list．simps（15）make－polygonal－path．simps（2）polygon－def set－append sim－ ple－path－def vts－is）
have distinct－butlast－vts：distinct（butlast vts）
using simple－polygonal－path－vts－distinct less（2－3）
unfolding polygon－def
by auto
have card－butlast－vts：card（set vts）$=$ card $($ set（butlast vts）$)$
using vts－wraparound
by（smt（verit，best）List．finite－set butlast－conv－take card－distinct card－length card－mono card－vts diff－is－0－eq diff－less distinct－butlast－vts distinct－card drop－rev dual－order．strict－trans1 le－SucE length－append－singleton length－greater－0－conv less－numeral－extra（1） less－numeral－extra（4）nth－eq－iff－index－eq one－less－numeral－iff order－class．order－eq－iff semiring－norm（77）set－drop－subset set－rev vts－is）
then have card－set－len－butlast：card（set vts）$=$ length（butlast vts）
using distinct－butlast－vts
by（metis distinct－card）
\｛ assume triangle：card（set vts）$=3$
then have length（butlast vts）$=3$
using card－set－len－butlast
by auto
then have butlast vts $=[$ vts！0，vts！1，vts！2］
by（metis（no－types，lifting）Cons－nth－drop－Suc One－nat－def Suc－1 card－set－len－butlast card－vts drop0 drop－eq－Nil lessI nth－append numeral－3－eq－3 one－less－numeral－iff semir－ ing－norm（77）vts－is zero－less－numeral）
then have vts－is：vts $=[$ vts ！ 0 ，vts ！1，vts ！2，vts ！0］
using vts－is by auto
then have p－make－triangle：$p=$ make－triangle（vts！0）（vts！1）（vts！2）
using less（3）unfolding make－triangle－def by simp
then have not－collinear：\neg collinear $\{$ vts ！0，vts！1，vts！2\}
using vts－is less（2）polygon－vts－not－collinear［of p vts］unfolding polygon－of－def make－triangle－def
by（smt（verit，ccfv－threshold）insert－absorb2 insert－commute list．set（1） list．simps（15））
have all－integral：all－integral［vts！0，vts！1，vts！2］
using less．prems（3）vts－is unfolding all－integral－def
by（simp add：〈butlast vts $=[$ vts！0，vts！1，vts！2］〉 in－set－butlastD $)$
have distinct：distinct $[$ vts ！0，vts ！1，vts！2］
using 〈butlast vts $=[$ vts！0，vts！1，vts！2］〉 distinct－butlast－vts by presburger
have pick－triangle：pick－triangle p（vts！0）（vts！1）（vts！2）
using pick－triangle p－make－triangle less（2）not－collinear all－integral distinct
by simp
then have ？case
using pick－triangle－lemma［OF p－make－triangle all－integral distinct not－collinear］ less．prems（4－5）
by blast

\} moreover

\{ assume non-triangle: card (set vts) > 3
\{ assume convex: convex (path-image $p \cup$ path-inside p)
then obtain $a b$ where good-linepath $a b$ vts
using convex-polygon-has-good-linepath non-triangle
by (metis inf-sup-aci(5) less.prems(1) less.prems(2))
then have ab-prop: $a \neq b \wedge\{a, b\} \subseteq$ set vts \wedge path-image (linepath $a b) \subseteq$ path-inside $p \cup\{a, b\}$
unfolding good-linepath-def less.prems(2) by presburger
then have ab-prop-restate: $a \neq b \wedge a \in \operatorname{set}$ (butlast vts) $\wedge b \in$ set (butlast vts)
using same-set
by simp
have good-linepath-ab: good-linepath a b ((butlast vts) @ [(butlast vts)! 0]) using ab-prop vts-is unfolding good-linepath-def
using ab-prop-restate empty-set hd-append2 hd-conv-nth insert-absorb in-sert-not-empty less.prems(2) same-set
by (smt (z3))
then have good-linepath-ba: good-linepath ba((butlast vts) @ [(butlast vts)! 0])
using good-linepath-comm good-linepath-def by blast
obtain $i 1 j 1$ where $i j$-prop: i1 < length (butlast vts) $\wedge j 1<$ length (butlast vts) \wedge
butlast vts ! $i 1=a \wedge$
butlast vts ! $j 1=b \wedge i 1 \neq j 1$
using ab-prop-restate
by (metis distinct-Ex1 distinct-butlast-vts)
have i-lt-then: $i 1<j 1 \Longrightarrow$ is-polygon-split (butlast vts) i1 j1
using good-linepath-implies-polygon-split[OF less(2), of butlast vts] vts-is same-set
using ij-prop good-linepath-ab good-linepath-ba
by (metis ab-prop-restate length-pos-if-in-set less.prems(2) nth-butlast)
have j-lt-then: $j 1<i 1 \Longrightarrow$ is-polygon-split (butlast vts) $j 1$ i1
using good-linepath-implies-polygon-split[OF less(2), of butlast vts] vts-is same-set
using ij-prop good-linepath-ab good-linepath-ba
by (metis ab-prop-restate length-pos-if-in-set less.prems(2) nth-butlast)
obtain $i j$ where polygon-split: is-polygon-split (butlast vts) ij
using i-lt-then j-lt-then ij-prop
by (meson nat-neq-iff)
then have ij-prop: $i<$ length (butlast vts) $\wedge j<$ length (butlast vts) $\wedge i<j$ unfolding is-polygon-split-def
by blast
have p-is: $p=$ make-polygonal-path (butlast vts @ [butlast vts ! 0]) using less(3) vts-is
by (metis length-greater-0-conv nth-butlast same-set set-empty)
let ?vts $1=$ take $i($ butlast vts $)$
let ?vts2 $=\operatorname{take}(j-i-1)($ drop $($ Suc $i)($ butlast vts $))$
let ?vts3 $=\operatorname{drop}(j-i)(\operatorname{drop}($ Suc $i)($ butlast vts $))$
let ? vtsp $1=($ butlast vts $!i \#$?vts2 @ [butlast vts $!j$, butlast vts ! $i])$
have finite-butlast: finite (set (butlast vts))
by blast
have vtsp1-subset: set ?vtsp $1 \subseteq$ set (butlast vts)
using ij-prop
by (smt (verit, del-insts) Un-commute append-Cons append-Nil dual-order.trans insert-subset list.simps(15) nth-mem set-append set-drop-subset set-take-subset)
let ?p1 = make-polygonal-path ?vtsp 1
let ? $11=$ card $\{x$. integral-vec $x \wedge x \in$ path-inside ? $p 1\}$
let ?B1 $=$ card $\{x$. integral-vec $x \wedge x \in$ path-image ?p1 $\}$
have polygon-p1: polygon ?p1
using polygon-split unfolding is-polygon-split-def by metis
let ?vtsp2 = ?vts1 @ [butlast vts! i, butlast vts! j] @ ?vts3 @ [butlast vts!0]
let ?p2 = make-polygonal-path ?vtsp2
have polygon-p2: polygon?p2
using polygon-split unfolding is-polygon-split-def by metis
have j-neq: $j \neq i+1$
by (smt (verit, ccfv-SIG) One-nat-def Suc-n-not-le-n Suc-numeral add-Suc-shift add-implies-diff cancel-ab-semigroup-add-class.diff-right-commute length-Cons length-append list.size(3) numeral-3-eq-3 plus-1-eq-Suc polygon-p1 polygon-vertices-length-at-least-4 semiring-norm(2) semiring-norm (8) take-eq-Nil)
have subset1: set (take i (butlast vts)) \subseteq set (butlast vts) using ij-prop by (meson set-take-subset)
have subset2: set $([$ butlast vts $!i$, butlast vts $!j]) \subseteq$ set (butlast vts) using ij-prop by simp
have subset3: set (take i (butlast vts) @
$[$ butlast vts ! i, butlast vts $!j]) \subseteq$ set (butlast vts)
using subset1 subset2 by auto
have subsetf: set (drop $(j-i)(\operatorname{drop}($ Suc $i)($ butlast vts $)) @[$ butlast vts! 0]) \subseteq set (butlast vts)
using ij-prop set-drop-subset
by (metis (no-types, opaque-lifting) Un-commute append-Cons append-Nil card-set-len-butlast drop0 drop-drop drop-eq-Nil2 hd-append2 hd-conv-nth in-set-conv-decomp insert-subset linorder-not-less list.simps(15) non-triangle not-less-eq not-less-iff-gr-or-eq numeral-3-eq-3 same-set set-append snoc-eq-iff-butlast vts-is)
then have main-subset: set ?vtsp $2 \subseteq$ set (butlast vts)
using subset3 subset千 by simp
have subset-p1: set ?vtsp $1 \subset$ set (butlast vts)
using ij-prop distinct-butlast-vts
proof -

```
    have card (set ?vtsp2) \geq3
        using polygon-p2 polygon-at-least-3-vertices by blast
        moreover have set ?vtsp1 \cap set ?vtsp2 = {vts!i,vts!j}
        proof-
    have set ?vts2 \cap set ?vts3 = {}
    by (metis append-take-drop-id diff-le-self distinct-append distinct-butlast-vts
set-take-disj-set-drop-if-distinct)
    moreover have set ?vts2 \cap set ?vts1 = {}
    proof-
        have set ?vts2 \subseteq set (drop (i+1) vts)
                            by (metis add.commute drop-butlast in-set-butlastD in-set-takeD
plus-1-eq-Suc subset-code(1))
    moreover have set (drop (i+1)vts)\cap set ?vts1\subseteq{last vts}
        proof -
            have set (drop (i+1) (butlast vts)) \cap set ?vts1 = {}
                    by (simp add: Int-commute set-take-disj-set-drop-if-distinct dis-
tinct-butlast-vts)
                moreover have set (drop (i+1)vts) = set (drop (i+1) (butlast
vts)) \cup{last vts}
                    proof-
                            have drop (i+1)vts=(drop (i + 1) ((butlast vts) @ [last vts]))
                            by (metis last-snoc vts-is)
                            thus ?thesis using ij-prop by force
                    qed
                    ultimately show ?thesis by blast
        qed
        moreover have last vts & set ?vts2
    by (metis card-set-len-butlast card-vts distinct-butlast-vts dual-order.strict-trans1
in-set-takeD index-nth-id last-snoc nth-butlast numeral-3-eq-3 set-drop-if-index vts-is
zero-less-Suc)
            ultimately show ?thesis by force
    qed
        moreover have vts!i \in set ?vtsp1 by (metis ij-prop list.set-intros(1)
nth-butlast)
    moreover have vts!j \in set ?vtsp1 using ij-prop nth-butlast by fastforce
    moreover have vts!i }\in\mathrm{ set ?vtsp2
        by (metis UnCI ij-prop list.set-intros(1) nth-butlast set-append)
    moreover have vts!j \in set ?vtsp2 using ij-prop nth-butlast by force
    moreover have set ?vtsp1 = set ?vts2 \cup {vts!i,vts!j}
    by (smt (verit, ccfv-SIG) Un-insert-right empty-set ij-prop insert-absorb2
insert-commute list.simps(15) nth-butlast set-append)
    moreover have set ?vtsp2 = set ?vts1 }\cup\mathrm{ set ?vts3 }\cup{vts!i,vts!j,vts!0
    proof-
    have vts!i = (butlast vts)!i by (metis ij-prop nth-butlast)
    moreover have vts! j = (butlast vts)!j by (metis ij-prop nth-butlast)
    moreover have vts!0 = (butlast vts)!0
                by (metis ij-prop leD length-greater-0-conv nth-butlast take-all-iff
take-eq-Nil)
            ultimately show ?thesis by force
```


qed

moreover have vts! $0 \notin$ set ? vts2
by (metis distinct-butlast-vts in-set-conv-decomp in-set-takeD index-nth-id length-pos-if-in-set nth-butlast same-set set-drop-if-index vts-is zero-less-Suc)
ultimately show ?thesis by blast
qed
ultimately have card (set ?vtsp2) > card (set ?vtsp1 \cap set ?vtsp2)
by (smt (verit, del-insts) card-length empty-set leI le-trans length-Cons list.simps(15) list.size(3) not-less-eq-eq numeral-3-eq-3)
then have $\exists v . v \in$ set ?vtsp2 $\wedge v \notin$ (set ?vtsp1 \cap set ?vtsp2)
by (smt (verit) Int-lower2 Orderings.order-eq-iff less-not-refl subset-code(1))
then obtain v where $v \in$ set ?vtsp2 - set ?vtsp1 by blast
thus ?thesis
by (metis main-subset Diff-eq-empty-iff length-pos-if-in-set less-numeral-extra(3)
list.set(1) list.size(3) psubsetI vtsp1-subset)
qed
then have card (set ?vtsp1) < card (set (butlast vts))
using card-subset-eq[OF finite-butlast]
by (meson finite-butlast psubset-card-mono)
then have card-lt-p1: card (set ?vtsp1) < card (set vts)
using same-set by argo
have set ?vtsp $1 \subseteq$ set vts
using ij-prop
using same-set subset-p1 by blast
then have all-integral-p1: all-integral ?vtsp1
using less(4) unfolding all-integral-def
by blast
obtain p1'vtsp1' where p1-rot: polygon-of p1'vtsp1'
\wedge vtsp 1 '! $0 \in$ frontier (convex hull (set vtsp1'))
\wedge path-image p1' $=$ path-image ?p1
\wedge all-integral vtsp1'
\wedge set vtsp1' = set ?vtsp1
using pick-rotate less polygon-p1 unfolding polygon-of-def
using all-integral-p1
by blast
let ${ }^{2} I 1^{\prime}=$ card $\left\{x\right.$. integral-vec $x \wedge x \in$ path-inside $\left.p 1^{\prime}\right\}$
let ? $B 1^{\prime}=\operatorname{card}\left\{x\right.$. integral-vec $x \wedge x \in$ path-image $\left.p 1^{\prime}\right\}$
have measure lebesgue (path-inside p1') = real ?I1' + real ? B1' / 2 - 1
using less(1) polygon-split card-lt-p1 p1-rot unfolding polygon-of-def by
force
then have indh1: Sigma-Algebra.measure lebesgue (path-inside ?p1) = real ?I1 + real ? B1 / 2-1
using p1-rot unfolding path-inside-def by metis
have vts $!(i+1) \notin$ set (take $i($ butlast vts) $)$
using distinct-butlast-vts j-neq ij-prop
proof-
have $i+1<$ length vts -2 using distinct-butlast-vts j-neq ij-prop by fastforce
then have vts $!(i+1)=($ butlast vts $)!(i+1)$ by $($ simp add: nth-butlast $)$
moreover then have $\forall j<i+1$. (butlast vts) ! $j \neq($ butlast vts) ! $(i+1)$
using distinct-butlast-vts distinct-nth-eq-iff ij-prop by fastforce
moreover have set (take $i($ butlast vts) $)=\{v t s!j \mid j . j<i\}$
proof-
have set $($ take $i($ butlast vts $)) \subseteq\{v t s!j \mid j . j<i\}$
by (smt (verit, ccfv-SIG) dual-order.strict-trans ij-prop in-set-conv-nth length-take mem-Collect-eq min.absorb4 nth-butlast nth-take subsetI)
moreover have $\{v t s!j \mid j . j<i\} \subseteq$ set (take i (butlast vts))
by (smt (verit, del-insts) dual-order.strict-trans ij-prop in-set-conv-nth length-take mem-Collect-eq min.absorb 4 nth-butlast nth-take subsetI)
ultimately show ?thesis by blast
qed
ultimately show ?thesis
by (metis (no-types, lifting) add.commute ij-prop in-set-conv-nth length-take min.absorb 4 nth-take trans-less-add2)
qed
moreover have vts $!(i+1) \neq$ butlast vts $!i$
by (metis (no-types, lifting) ij-prop add.commute add-cancel-right-right distinct-butlast-vts distinct-nth-eq-iff less-trans-Suc nth-append plus-1-eq-Suc vts-is zero-neq-one)
moreover have vts $!(i+1) \neq$ butlast vts $!j$
by (metis (no-types, lifting) add.commute distinct-butlast-vts distinct-nth-eq-iff ij-prop j-neq less-trans-Suc nth-append plus-1-eq-Suc vts-is)
ultimately have vts ! $(i+1) \notin$ set (take i (butlast vts) @
[butlast vts! i, butlast vts ! j]) by force
moreover have vts $!(i+1) \notin \operatorname{set}(\operatorname{drop}(j-i)($ drop $($ Suc $i)($ butlast vts $)) @$ [butlast vts! 0])
proof-
have vts $!(i+1) \notin \operatorname{set}(\operatorname{drop}(j-i+$ Suc $i)($ butlast vts $))$
by (metis (no-types, lifting) add.commute distinct-butlast-vts ij-prop in-dex-nth-id less-add-same-cancel2 less-trans-Suc nth-append plus-1-eq-Suc set-drop-if-index vts-is zero-less-diff)
moreover have vts $!(i+1) \neq$ butlast vts ! 0
by (metis (no-types, lifting) ij-prop Nil-is-append-conv add.commute distinct-butlast-vts distinct-nth-eq-iff length-greater-0-conv less-trans-Suc list.discI nat.distinct(1) nth-append plus-1-eq-Suc same-set set-empty vts-is)
ultimately show? ?thesis by simp
qed
ultimately have vts $!(i+1) \notin$ set (take $i($ butlast vts) @
[butlast vts ! i, butlast vts ! j] @
$\operatorname{drop}(j-i)($ drop $($ Suc $i)($ butlast vts $)) @[$ butlast vts! 0])
by auto
then have subset-butlast-p2: set ?vtsp2 \subset set (butlast vts)
using main-subset ij-prop
by (metis (no-types, lifting) antisym-conv2 length-butlast less-diff-conv
nth-mem same-set)
then have card-lt-p2: card (set ?vtsp2) < card (set vts)
using card-subset-eq[OF finite-butlast]
by (metis finite-butlast psubset-card-mono same-set)
have subset-p2: set ?vtsp2 \subset set vts
using subset-butlast-p2 same-set
by presburger
then have all-integral-p2: all-integral ?vtsp2
using less(4) unfolding all-integral-def
by blast
let ?p2 $=$ make-polygonal-path (take $i($ butlast vts) @ [butlast vts!i,butlast vts! $j]$ @
drop $(j-i)($ drop $($ Suc $i)($ butlast vts $)) @[$ butlast vts! 0])
let ? I2 $=$ card $\{x$. integral-vec $x \wedge x \in$ path-inside ?p2 $\}$
let ? B2 $=$ card $\{x$. integral-vec $x \wedge x \in$ path-image? ? 2$\}$
have polygon-p2: polygon ?p2
using polygon-split unfolding is-polygon-split-def by metis
have vtsp2-0: ?vtsp2! $0 \in$ frontier (convex hull (set ?vtsp2))
proof-
have ?vtsp2! $0=v t s!0$
by (metis (no-types, lifting) append-Cons ij-prop length-greater-0-conv
less-nat-zero-code nat-neq-iff nth-append nth-append-length nth-butlast nth-take take-eq-Nil)
then have ?vtsp2! $0 \in$ frontier (convex hull (set vts)) using less by argo
moreover have ?vtsp2! $0 \in$ (convex hull (set ?vtsp2))
by (meson append-is-Nil-conv hull-inc length-greater-0-conv neq-Nil-conv nth-mem)
moreover have convex hull (set ?vtsp2) \subseteq convex hull (set vts)
by (metis hull-mono main-subset same-set)
ultimately show ?thesis using in-frontier-in-subset by blast
qed
have indh2: Sigma-Algebra.measure lebesgue (path-inside ?p2) $=$ real ?I2 + real ? B2 / 2 - 1
using less(1)[OF card-lt-p2 polygon-p2 - all-integral-p2 - - vtsp2-0] poly-gon-split
by blast
have all-integral (butlast vts) \Longrightarrow
Sigma-Algebra.measure lebesgue (path-inside p) $=$ real (card $\{x$. integral-vec $x \wedge x \in$ path-inside $p\})+$ real $($ card $\{x$. integral-vec $x \wedge x \in$ path-image $p\}) / 2$ -1
using pick-split-union
[OF polygon-split, of ?vts1 ?vts2 ?vts3 butlast vts ! i butlast vts ! j p ?p1
?p2 ? 11 ?B1 ?I2 ?B2]
using indh1 indh2 p-is
by blast
then have ?case

```
    using less(4-6) unfolding all-integral-def
    using same-set by presburger
    } moreover
    { assume non-convex: \neg(convex (path-image p \cup path-inside p))
    let ?vts-ch = set vts \cap frontier (convex hull (set vts))
    have finite-vts: finite (set vts)
        using less
        by force
    have subset-ch: ?vts-ch \subset set vts
        using vts-subset-frontier
        using less.prems(1) less.prems(2) non-convex polygon-of-def by blast
    then have card-ch:card (?vts-ch) < card (set vts)
        using finite-vts
        by (simp add: psubset-card-mono)
    let ?vts-ch-list = filter ( }\lambdav.v\in\mathrm{ ?vts-ch) vts
    let ?r-idx = min-index-not-in-set vts ?vts-ch
    let ?r r ? ? r-idx - 1
    let ?rotated-vts = rotate-polygon-vertices vts ?r
    let ?pr = make-polygonal-path ?rotated-vts
    have subset-ch-list: set ?vts-ch-list }\subset\mathrm{ set vts using subset-ch by auto
    then have r-defined: index-not-in-set vts ?vts-ch ?r-idx
        \wedge (\forallj< ?r-idx. ᄀ index-not-in-set vts ?vts-ch j)
        using min-index-not-in-set-defined[of ?vts-ch vts] by fastforce
    have pr-image: path-image p = path-image ?pr
        using polygon-vts-arb-rotation less by blast
    then have measure lebesgue (path-inside ?pr) = measure lebesgue (path-inside
p)
        unfolding path-inside-def by presburger
    have rotated-vts-set: set ?rotated-vts = set vts
        using less.prems(1) less.prems(2) rotate-polygon-vertices-same-set by auto
    then have card (set ?rotated-vts) = card (set vts) by argo
    have polygon-rotation: polygon ?pr using rotation-is-polygon less by blast
    let ?pocket-path-vts = construct-pocket-0 ?rotated-vts ?vts-ch
    let ?a = hd ?pocket-path-vts
    let ?b = last ?pocket-path-vts
    let ?l = linepath ?a ?b
    have vts!0 \in?vts-ch
    by (metis IntI length-greater-0-conv less.prems(6) nth-mem snoc-eq-iff-butlast
vts-is)
    then have vts-r:vts!?r \in?vts-ch
```

using min-index-not-in-set-0 subset-ch by presburger
moreover have rotated- 0 : ?rotated-vts! $0=v t s!$?r
using rotated-polygon-vertices[of ?rotated-vts vts ?r ?r]
by (metis (no-types, lifting) Suc-1 Suc-leI card-gt-0-iff card-set-len-butlast diff-is-0-eq' finite-vts hd-conv-nth index-not-in-set-def le-refl length-butlast less-imp-diff-less mem-Collect-eq r-defined set-empty snoc-eq-iff-butlast vts-is zero-less-diff)
ultimately have rotated- 0 -in: ?rotated-vts! $0 \in$?vts-ch by presburger
then have b-in: $? b \in$ set vts
using construct-pocket-0-last-in-set[of ?rotated-vts ?vts-ch]
by (smt (verit, ccfv-threshold) Int-iff One-nat-def closed-path-def Suc-leI card-0-eq card-set-len-butlast empty-iff finite-vts last-conv-nth last-in-set last-tl length-butlast length-greater-0-conv length-tl list.size(3) polygon-def polygon-pathfinish polygon-pathstart polygon-rotation rotate-polygon-vertices-same-length set-empty)
have $2 \leq$ card ? vts-ch
using convex-hull-two-vts-on-frontier
by (metis One-nat-def Suc-1 add-leD2 card-vts numeral-3-eq-3 plus-1-eq-Suc)
moreover have ?vts-ch \subseteq set ?rotated-vts
using less.prems(1) less.prems(2) rotate-polygon-vertices-same-set by force
moreover have distinct (butlast ?rotated-vts)
using polygon-def polygon-rotation simple-polygonal-path-vts-distinct by blast
moreover have hd-last-rotated: hd ?rotated-vts = last ?rotated-vts
by (metis have-wraparound-vertex hd-conv-nth polygon-rotation snoc-eq-iff-butlast)
ultimately have a-neq- $b: ? a \neq ? b$
using construct-pocket-0-first-last-distinct
by (smt (verit) Collect-cong Int-def mem-Collect-eq set-filter)
let ?pocket-vts = ?pocket-path-vts @ [?rotated-vts!0]
let ?pocket-good-path-vts $=t l$ (butlast ?pocket-path-vts)
let ?filled-vts $=$ fill-pocket-0 ?rotated-vts (length ?pocket-path-vts)
let ?filled-vts- $t l=t l$? filled-vts
let ?filled- $p-t l=$ make-polygonal-path ?filled-vts-tl
let ?filled- $p=$ make-polygonal-path ?filled-vts
let ?pocket-path $=$ make-polygonal-path ?pocket-path-vts
let ?pocket $=$ make-polygonal-path ?pocket-vts
have non-convex-rot: \neg convex (path-image ?pr \cup path-inside ?pr)
using non-convex by (simp add: path-inside-def pr-image)
have 0: ?rotated-vts! $0 \in$ frontier (convex hull (set ?rotated-vts))
using less.prems(1) less.prems(2) rotate-polygon-vertices-same-set ro-tated-0-in by fastforce
have 1: ?rotated-vts! $1 \notin$ frontier (convex hull (set ?rotated-vts))
proof-
have ?rotated-vts! $1=v t s!(? r+1)$
using rotated-polygon-vertices[of ?rotated-vts vts ?r ?r +1$]$
by (smt (verit, ccfv-threshold) Suc-1 Suc-leI card-gt-0-iff card-set-len-butlast diff-is- 0 -eq' finite-vts hd-conv-nth index-not-in-set-def le-refl length-butlast less-imp-diff-less mem-Collect-eq r-defined set-empty snoc-eq-iff-butlast vts-is zero-less-diff Suc-diff-Suc add.commute add-diff-cancel-left' bot-nat-0 .not-eq-extremum less-imp-le-nat plus-1-eq-Suc)
also have $\ldots \notin$ frontier (convex hull (set ?rotated-vts))
using r-defined unfolding index-not-in-set-def
by (smt (verit, best) Int-iff Suc-leI add.commute add-diff-inverse-nat bot-nat-0.not-eq-extremum diff-is-0-eq' mem-Collect-eq nat-less-le nth-mem plus-1-eq-Suc rotated-vts-set vts-r zero-less-diff)
finally show ?thesis.
qed
then have split:
is-polygon-split-path (butlast ?filled-vts) 01 ?pocket-good-path-vts
and polygon-filled-p: polygon ?filled-p
and polygon-pocket: polygon ?pocket
and pocket-path-vts-card: card (set ?pocket-path-vts) < card (set vts)
and filled-vts-card: card (set ?filled-vts) < card (set vts)
using pocket-path-good[OF - 01 non-convex-rot $]$ polygon-rotation ro-tated-vts-set apply argo
using pocket-path-good[OF - 01 non-convex-rot $]$ polygon-rotation ro-tated-vts-set apply argo
using pocket-path-good[OF - 01 non-convex-rot $]$ polygon-rotation ro-tated-vts-set
apply (metis add-gr-0 construct-pocket-0-def nth-take zero-less-one)
using pocket-path-good[OF - 01 non-convex-rot $]$ polygon-rotation ro-tated-vts-set apply argo
using pocket-path-good[OF - 01 non-convex-rot $]$ polygon-rotation ro-tated-vts-set by argo
have vts-0-frontier: ?rotated-vts! $0 \in$ frontier (convex hull (set vts))
using rotated-0-in by simp
have filled-0: ?filled-vts! $0=$?rotated-vts! 0
by (metis convex-hull-empty empty-set fill-pocket-0-def frontier-empty hd-conv-nth length-pos-if-in-set less.prems(6) less-numeral-extra(3) list.size(3) nth-Cons-0 ro-tated-vts-set)
have pocket- 0 : ?pocket-vts! $0=$?rotated-vts! 0
unfolding construct-pocket-0-def
by (simp add: less-numeral-extra(1) nth-append trans-less-add2)
have subset-pocket-path-vts: set ?pocket-path-vts \subseteq set vts
using construct-pocket-0-subset-vts
by (metis construct-pocket-0-def less.prems(1) less.prems(2) rotate-polygon-vertices-same-set set-take-subset)
moreover have set ?pocket-good-path-vts \subseteq set ?pocket-path-vts
by (smt (verit, best) butlast-conv-take list.exhaust-sel list.sel(2) set-subset-Cons set-take-subset subset-trans)
ultimately have subset-pocket-good-path: set ?pocket-good-path-vts \subseteq set vts
by blast
then have subset-pocket: set ?pocket-vts \subseteq set vts
by (metis (mono-tags, lifting) have-wraparound-vertex less.prems(1) less.prems(2)
polygon-rotation rotate-polygon-vertices-same-set set-append subset-code(1) subset-pocket-path-vts sup.bounded-iff)
have set ?filled-vts \subseteq set ?rotated-vts unfolding fill-pocket-0-def
by (metis b-in hd-in-set insert-subset length-pos-if-in-set less-numeral-extra(3) list.simps(15) list.size(3) rotated-vts-set set-drop-subset)
then have subset-filled: set?filled-vts \subseteq set vts
using rotated-vts-set by blast
have taut1: ?filled- $p=$ make-polygonal-path ?filled-vts by blast
have all-integral-filled-vts: all-integral ?filled-vts
using subset-filled less by (meson all-integral-def subset-iff)
have taut2: card (integral-inside ?filled-p) $=$ card $\{x$. integral-vec $x \wedge x \in$ path-inside? ?flled-p\}
unfolding integral-inside by blast
have taut3: card (integral-boundary ?filled-p) $=$ card $\{x$. integral-vec $x \wedge x \in$ path-image ?filled- p \} unfolding integral-boundary by blast
have filled-vts-0-frontier: ?filled-vts! $0 \in$ frontier (convex hull (set ?filled-vts))

proof-

have ?filled-vts! $0 \in$ frontier (convex hull set vts)
using filled-0 vts-0-frontier by presburger
moreover have ?filled-vts! $0 \in$ convex hull (set?filled-vts)
by (metis have-wraparound-vertex hull-inc in-set-conv-decomp poly-
gon-filled-p)
moreover have set ?filled-vts \subseteq set vts using subset-filled by force
ultimately show ?thesis using in-frontier-in-subset-convex-hull by blast
qed
have ih-filled: measure lebesgue (path-inside ?filled-p)
$=\operatorname{card}($ integral-inside ?filled- $p)+(($ card (integral-boundary ?filled-p $)) /$
2) -1
using less(1)[OF filled-vts-card polygon-filled-p taut1 all-integral-filled-vts taut2 taut3 filled-vts-0-frontier]
by blast
have set ?pocket-path-vts \subset set vts
using pocket-path-vts-card subset-pocket-path-vts by force
moreover have pocket-path-set: set ?pocket-path-vts = set ?pocket-vts
by (smt (verit) Nil-is-append-conv rotated-0 a-neq-b append-Cons append-Nil
 rev-append set-append set-rev)
ultimately have set ?pocket-vts \subset set vts by blast
then have pocket-vts-card: card (set ?pocket-vts) < card (set vts)
by (meson finite-vts psubset-card-mono)
have all-integral-pocket-vts: all-integral ?pocket-vts
using subset-pocket less unfolding all-integral-def by blast
have taut1: ?pocket = make-polygonal-path ?pocket-vts by blast
have taut2: card (integral-inside ?pocket) $=\operatorname{card}\{x$. integral-vec $x \wedge x \in$ path-inside ?pocket\}
unfolding integral-inside by blast
have taut3: card (integral-boundary ? pocket) $=$ card $\{x$. integral-vec $x \wedge x \in$ path-image ?pocket\}
unfolding integral-boundary by blast
have pocket-vts-0-frontier: ?pocket-vts! $0 \in$ frontier (convex hull (set ?pocket-vts))
proof-
have ?pocket-vts! $0 \in$ frontier (convex hull set vts)
using pocket-0 vts-0-frontier by presburger
moreover have ?pocket-vts! $0 \in$ convex hull (set ?pocket-vts)
by (smt (verit, del-insts) hull-inc in-set-conv-decomp pocket-0)
moreover have set ?pocket-vts \subseteq set vts using subset-pocket by force
ultimately show ?thesis using in-frontier-in-subset-convex-hull by blast

qed

have ih-pocket: measure lebesgue (path-inside ?pocket) $=$ card (integral-inside ?pocket $)+(($ card (integral-boundary ?pocket $)) / 2)-1$
using less(1)[OF pocket-vts-card polygon-pocket taut1 all-integral-pocket-vts taut2 taut3 pocket-vts-0-frontier]
by blast
let $? i=0::$ nat
let ? $j=1::$ nat
let ?vts $=$ butlast ?filled-vts
let ?vts1 $=[]$
let ?vts2 $=[]$
let ? vts3 $=$ butlast (drop 2 ?filled-vts)
let ?cutvts $=$?pocket-good-path-vts
let ? $p=$?filled $-p$
let ?p1 = make-polygonal-path (?a \# ?vts2 @ [?b] @ rev ?cutvts @ [?a])
let ? $p 2=$? $p r$
let ? $11=$ card $\{x$. integral-vec $x \wedge x \in$ path-inside ?p 1$\}$
let ?B1 $=\operatorname{card}\{x$. integral-vec $x \wedge x \in$ path-image ?p1 $\}$
let ? I2 $=$ card $\{x$. integral-vec $x \wedge x \in$ path-inside ?p2 $\}$
let ?B2 $=$ card $\{x$. integral-vec $x \wedge x \in$ path-image ?p2 $\}$
let ? $I=$ card $\{x$. integral-vec $x \wedge x \in$ path-inside ? $p\}$
let $? B=\operatorname{card}\{x$. integral-vec $x \wedge x \in$ path-image ? $p\}$
have rev ?pocket-vts = (?a \# ?vts2 @ [?b] @ rev?cutvts @ [?a])
by (smt (verit) a-neq-b append-Nil append-butlast-last-id hd-Nil-eq-last hd-append2 hd-conv-nth last-conv-nth length-butlast list.collapse list.size(3) pocket-0 rev.simps(2) rev-append rev-rev-ident snoc-eq-iff-butlast)
then have pocket-rev-image: path-image ?pocket = path-image ?p1
using polygon-at-least-3-vertices polygon-pocket card-length
by (smt (verit, best) One-nat-def Suc-1 le-add2 le-trans numeral-3-eq-3
plus-1-eq-Suc rev-vts-path-image polygon-at-least-3-vertices polygon-pocket card-length) then have pocket-rev-inside: path-inside ?pocket = path-inside ?p1 unfolding path-inside-def by argo
have split': is-polygon-split-path ?vts ?i ?j ?cutvts using split by blast
have 0 : ?vts $1=$ take ? ? ? vts by auto
have 1: ?vts2 $=$ take $(? j-? i-1)($ drop $(S u c ? i)$?vts $)$ by simp
have 2: ?vts3 $=\operatorname{drop}(? j-$?i) $(\operatorname{drop}($ Suc ?i) ?vts $)$
by (metis (no-types, lifting) One-nat-def Suc-1 diff-zero drop-butlast drop-drop plus-1-eq-Suc)
have 3: ?a $=$?vts ! ? i
by (smt (z3) Nil-is-append-conv pocket-path-set filled-0 hd-conv-nth is-polygon-split-path-def length-greater-0-conv list.distinct(1) nth-append nth-butlast pocket-0 set-empty split')
have 4: ?b $=$?vts $!? j$
proof-
have ?b = ?filled-vts! 1
unfolding construct-pocket-0-def fill-pocket-0-def
by (smt (z3) Suc-eq-plus1 a-neq-b construct-pocket-0-def diff-Suc-1
diff-is-O-eq' drop-eq-Nil hd-conv-nth hd-drop-conv-nth hd-last-rotated last-conv-nth length-take linorder-not-less min.absorb4 nat-le-linear not-less-eq-eq nth-Cons' nth-take one-neq-zero take-all-iff take-eq-Nil)
thus ?thesis by (metis is-polygon-split-path-def nth-butlast split')
qed
have 5: ?pocket-path = make-polygonal-path (?a \# ?cutvts @ [?b])
by (smt (verit, ccfv-SIG) a-neq-b butlast.simps(2) butlast-tl hd-Cons-tl
hd-Nil-eq-last last.simps snoc-eq-iff-butlast)
have 6: ?p = make-polygonal-path (?vts @ [?vts!0])
by (metis (no-types, lifting) butlast-conv-take have-wraparound-vertex is-polygon-split-path-def nth-butlast polygon-filled-p split')
have 7: ?p1 = make-polygonal-path (?a \# ?vts2 @ [?b] @ rev ?cutvts @ [?a]) by blast
have 8:?p2 = make-polygonal-path (?vts1 @ ([?a] @ ?cutvts @ [?b]) @ ?vts3 @ [?vts!0])
proof-
have ?rotated-vts =?vts1 @ ([?a] @ ?cutvts @ [?b]) @ ?vts3 @ [?vts!0]
unfolding construct-pocket-0-def fill-pocket-0-def
by (smt (verit) 3 Suc-1 hd-last-rotated a-neq-b append-Cons append-Nil ap-pend-butlast-last-id append-take-drop-id construct-pocket-0-def drop-Suc drop-drop drop-eq-Nil fill-pocket-0-def hd-Nil-eq-last hd-append2 hd-conv-nth last-conv-nth last-drop length-Cons length-take length-tl linorder-not-less list.collapse list.sel(3) list.size(3) min.absorb4 plus-1-eq-Suc take-all-iff)
thus?thesis by argo
qed
have 9: ?I1 $=$ card $\{x$. integral-vec $x \wedge x \in$ path-inside ?p 1$\}$ by blast
have 10: ?B1 $=$ card $\{x$. integral-vec $x \wedge x \in$ path-image ? 1$\}$ by blast
have 11: ? I2 $=$ card $\{x$. integral-vec $x \wedge x \in$ path-inside ? $p 2\}$ by blast
have 12: ?B2 $=\operatorname{card}\{x$. integral-vec $x \wedge x \in$ path-image? ? 2$\}$ by blast
have 13: ?I $=$ card $\{x$. integral-vec $x \wedge x \in$ path-inside ? $p\}$ by blast
have 14:? $B=$ card $\{x$. integral-vec $x \wedge x \in$ path-image ?p $\}$ by blast
have 15: all-integral ?vts
using subset-filled less
unfolding all-integral-def
by (metis (no-types, lifting) all-integral-def all-integral-filled-vts in-set-butlastD)
have 16: measure lebesgue (path-inside ?p) $=$? $I+$? $B / 2-1$
using ih-filled unfolding integral-inside integral-boundary by blast
have 17: measure lebesgue (path-inside ? $p 1$) $=$? $I 1+?$ B1 $/ 2-1$
using ih-pocket unfolding integral-inside integral-boundary using pocket-rev-image pocket-rev-inside by force
have measure lebesgue (path-inside ?p2) $=$? I2 + ?B2/2 -1
using pick-split-path-union-main(3)
[OF split' 012345678910111213141516 17] less (5-6) by blast
moreover have ?I2 $=I$ using less(5) pr-image path-inside-def by presburger moreover have ? B2 $=B$ using less(6) pr-image path-image-def by presburger
ultimately have ?case by (simp add: path-inside-def pocket-rev-inside pr-image)
\}
ultimately have ?case by blast
\}
ultimately show ?case using card-vts by linarith
qed
theorem pick:
fixes $p:: R$-to- $R 2$
assumes polygon p
assumes $p=$ make-polygonal-path vts
assumes all-integral vts
assumes $I=$ card $\{x$. integral-vec $x \wedge x \in$ path-inside $p\}$
assumes $B=$ card $\{x$. integral-vec $x \wedge x \in$ path-image $p\}$
shows measure lebesgue (path-inside p) $=I+B / 2-1$
proof-
obtain p^{\prime} vts ${ }^{\prime}$ where polygon-of p^{\prime} vts ${ }^{\prime}$
$\wedge v t s^{\prime}!0 \in$ frontier (convex hull (set vts $\left.\left.{ }^{\prime}\right)\right)$
\wedge path-image $p^{\prime}=$ path-image p
\wedge all-integral vts ${ }^{\prime}$
\wedge set vts ${ }^{\prime}=$ set vts
using pick-rotate assms unfolding polygon-of-def by blast
thus ?thesis using assms pick-unrotated unfolding path-inside-def polygon-of-def by fastforce
qed
end

References

[1] B. Grünbaum and G. C. Shephard. Pick's theorem. The American Mathematical Monthly, 100(2):150-161, 1993.
[2] J. Harrison. A formal proof of Pick's theorem. Math. Struct. Comput. Sci., 21(4):715-729, 2011.

