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Abstract

We formalize Pick’s theorem for finding the area of a simple poly-
gon whose vertices are integral lattice points [1]. We are inspired by
John Harrison’s formalization of Pick’s theorem in HOL Light [2], but
tailor our proof approach to avoid a primary challenge point in his
formalization, which is proving that any polygon with more than three
vertices can be split (in its interior) by a line between some two ver-
tices. Our formalization involves augmenting the existing geometry
libraries in various foundational ways (e.g., by adding the definition of
a polygon and formalizing some key properties thereof).
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1 Misc. Linear Algebra Setup
lemma vec-scaleR-2 : (c::real) ∗R ((vector [a, b])::real^2 ) = vector [a ∗ c, b ∗ c]
proof−

have (c ∗R (vector [a, b])::real^2 )$1 = a ∗ c by simp
moreover have (c ∗R (vector [a, b])::real^2 )$2 = ((vector [a, b])::real^2 )$2 ∗

c by simp
ultimately show ?thesis by (smt (verit, best) exhaust-2 vec-eq-iff vector-2 (1 )

vector-2 (2 ))
qed

definition is-int :: real ⇒ bool where
is-int x ←→ (∃n::int. x = n)

lemma is-int-sum: is-int x ∧ is-int y −→ is-int (x + y)
by (metis is-int-def of-int-add)

lemma is-int-minus: is-int x ∧ is-int y −→ is-int (x − y)
by (metis is-int-def of-int-diff )

lemma is-int-mult: is-int x ∧ is-int y −→ is-int (x ∗ y)
by (metis is-int-def of-int-mult)

definition integral-vec :: real^2 ⇒ bool where
integral-vec v ←→ (is-int (v$1 ) ∧ is-int (v$2 ))

lemma integral-vec-sum: integral-vec v ∧ integral-vec w −→ integral-vec (v + w)
proof(rule impI )

fix v w :: real^2
let ?x = v + w
assume integral-vec v ∧ integral-vec w
then obtain v1 v2 w1 w2 :: int where v$1 = v1 ∧ v$2 = v2 ∧ w$1 = w1 ∧

w$2 = w2
using integral-vec-def is-int-def by auto

then have ?x$1 = v1 + w1 and ?x$2 = v2 + w2 by auto
thus integral-vec ?x using integral-vec-def is-int-def by blast

qed

lemma integral-vec-minus: integral-vec v −→ integral-vec (−v)
proof(rule impI )

assume integral-vec v
then obtain x y :: int where v$1 = x ∧ v$2 = y

using integral-vec-def is-int-def by auto
then have (−v)$1 = −x and (−v)$2 = −y

using integral-vec-def is-int-def by auto
thus integral-vec (−v)

using integral-vec-def is-int-def by blast
qed
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lemma real-2-inner :
shows ((vector [a, b])::(real^2 )) · ((vector [c, d])::(real^2 )) = a∗c + b∗d
(is ?v · ?w = a∗c + b∗d)

proof−
have ?v · ?w = (

∑
i ∈ UNIV . ?v$i · ?w$i) using inner-vec-def [of ?v ?w] by

blast
moreover have ∀ i. ?v$i · ?w$i = ?v$i ∗ ?w$i using inner-real-def by simp
ultimately have ?v · ?w = (

∑
i ∈ UNIV . ?v$i ∗ ?w$i) by presburger

thus ?thesis by (simp add: sum-2 )
qed

lemma integral-vec-2 :
fixes a b :: int
assumes v = vector [a, b]
shows integral-vec v
by (simp add: assms is-int-def integral-vec-def )

definition matrix-inv :: real^2^2 ⇒ real^2^2 ⇒ bool where
matrix-inv A A ′←→ (A ∗∗ A ′ = mat 1 ∧ A ′ ∗∗ A = mat 1 )

lemma mat-vec-mult-2 :
fixes v :: real^2 and

T :: real^2^2
defines x: x ≡ v$1 and y: y ≡ v$2 and

a: a ≡ T$1$1 and b: b ≡ T$1$2 and
c: c ≡ T$2$1 and d: d ≡ T$2$2

shows (T ∗v v) = vector [x∗a + y∗b, x∗c + y∗d]
proof−

have (T ∗v v)$1 = x∗a + y∗b by (simp add: a b matrix-vector-mult-def sum-2
x y)
moreover have (T ∗v v)$2 = x∗c + y∗d by (simp add: c d matrix-vector-mult-def

sum-2 x y)
ultimately show T ∗v v = vector [x∗a + y∗b, x∗c + y∗d]

by (smt (verit) exhaust-2 vec-eq-iff vector-2 (1 ) vector-2 (2 ))
qed

definition integral-mat :: real^2^2 ⇒ bool where
integral-mat T ←→ (∀ v. integral-vec v −→ integral-vec (T ∗v v))

definition integral-mat-surj :: real^2^2 ⇒ bool where
integral-mat-surj T ←→ (∀ v. integral-vec v −→ (∃w. integral-vec w ∧ T ∗v w =

v))

definition integral-mat-bij :: real^2^2 ⇒ bool where
integral-mat-bij T ←→ integral-mat T ∧ integral-mat-surj T

lemma integral-mat-integral-vec: integral-mat A −→ integral-vec v −→ integral-vec
(A ∗v v)

using integral-mat-def by blast
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lemma integral-mat-int-entries:
fixes T :: real^2^2
assumes integral-mat T
defines a: a ≡ T$1$1 and b: b ≡ T$1$2 and

c: c ≡ T$2$1 and d: d ≡ T$2$2
shows is-int a ∧ is-int b ∧ is-int c ∧ is-int d

proof−
let ?v = vector [1 , 0 ]
have integral-vec (?v) using integral-vec-2 [of ?v 1 0 ] by auto
then have integral-vec (T ∗v ?v) using assms integral-mat-def by blast
moreover have T ∗v ?v = vector [a, c]

using mat-vec-mult-2 [of T ?v] a b c d by auto
ultimately have integral-vec (vector [a, c]) by auto
then have 1 : is-int a ∧ is-int c using integral-vec-def by auto

let ?w = vector [0 , 1 ]
have integral-vec (?w) using integral-vec-2 [of ?w 0 1 ] by auto
then have integral-vec (T ∗v ?w) using assms integral-mat-def by blast
moreover have T ∗v ?w = vector [b, d]

using mat-vec-mult-2 [of T ?w] a b c d by auto
ultimately have integral-vec (vector [b, d]) by auto
then have 2 : is-int b ∧ is-int d using integral-vec-def by auto

thus ?thesis using 1 2 by auto
qed

2 Integral Bijective Matrix Determinant
lemma integral-mat-int-det:

fixes T :: real^2^2
assumes integral-mat T
shows is-int (det T )

proof−
obtain a b c d where abcd: T$1$1 = a ∧ T$1$2 = b ∧ T$2$1 = c ∧ T$2$2

= d by auto
have abcd-int: is-int a ∧ is-int b ∧ is-int c ∧ is-int d

using integral-mat-int-entries[of T ] abcd assms by auto
obtain ai bi ci di :: int where abcdi: ai = a ∧ bi = b ∧ ci = c ∧ di = d

using abcd-int is-int-def by auto
have det T = a∗d − b∗c using det-2 [of T ] abcd by auto
also have ... = ai∗di − bi∗ci using abcdi by auto
finally show ?thesis using is-int-def by blast

qed

lemma integral-mat-bij-inv:
fixes T :: real^2^2
assumes integral-mat-bij T
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obtains Tinv where invertible T ∧ integral-mat-bij Tinv ∧ matrix-inv T Tinv
proof−

let ?e1 = vector [1 , 0 ]
let ?e2 = vector [0 , 1 ]
let ?I = (vector [?e1 , ?e2 ])::(real^2^2 )
have id: ?I = ((mat 1 )::(real^2^2 ))

unfolding vec-eq-iff
by (smt (verit, ccfv-threshold) exhaust-2 mat-def vec-lambda-beta vector-2 )

have integral-vec ?e1
by (simp add: integral-vec-def is-int-def )

moreover have integral-vec ?e2
by (simp add: integral-vec-def is-int-def )

ultimately obtain x y where xy: T ∗v x = ?e1 ∧ integral-vec x ∧ T ∗v y =
?e2 ∧ integral-vec y

by (meson assms integral-mat-bij-def integral-mat-surj-def )

let ?Tinv = transpose (vector [x, y])::(real^2^2 )
have T ∗∗ ?Tinv = mat 1 (is ?TxTinv = mat 1 )
proof−

have column 1 ?TxTinv = T ∗v (column 1 ?Tinv)
by (metis matrix-vector-mul-assoc matrix-vector-mult-basis)

also have ... = T ∗v x
by (simp add: row-def )

finally have [simp]: column 1 ?TxTinv = ?e1
using xy by presburger

have column 2 ?TxTinv = T ∗v (column 2 ?Tinv)
by (metis matrix-vector-mul-assoc matrix-vector-mult-basis)

also have ... = T ∗v y
by (simp add: row-def )

finally have [simp]: column 2 ?TxTinv = ?e2
using xy by presburger

have ∀ v. ?TxTinv ∗v v = v
proof(rule allI )

fix v :: real^2

have (?TxTinv ∗v v)$1 = (column 1 ?TxTinv)$1 ∗ v$1 + (column 2
?TxTinv)$1 ∗ v$2

by (metis (no-types, lifting) cart-eq-inner-axis mat-vec-mult-2 matrix-vector-mul-component
matrix-vector-mult-basis mult.commute vector-2 (1 ))

also have ... = v$1 by simp
finally have v1 : (?TxTinv ∗v v)$1 = v$1 .

have (?TxTinv ∗v v)$2 = (column 1 ?TxTinv)$2 ∗ v$1 + (column 2
?TxTinv)$2 ∗ v$2

by (metis (no-types, lifting) cart-eq-inner-axis mat-vec-mult-2 matrix-vector-mul-component
matrix-vector-mult-basis mult.commute vector-2 (2 ))

also have ... = v$2 by simp
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finally have v2 : (?TxTinv ∗v v)$2 = v$2 .

show ?TxTinv ∗v v = v using v1 v2 by (metis mat-vec-mult-2 matrix-vector-mul-lid)
qed
thus ?thesis by (simp add: matrix-eq)

qed
then have matrix-inv T ?Tinv

by (simp add: Integral-Matrix.matrix-inv-def matrix-left-right-inverse)
moreover have invertible T using calculation invertible-def matrix-inv-def by

blast
moreover have integral-mat-bij ?Tinv

by (smt (verit, del-insts) ‹T ∗∗ Finite-Cartesian-Product.transpose (vector
[x, y]) = mat 1 › assms integral-mat-bij-def integral-mat-def integral-mat-surj-def
matrix-left-right-inverse matrix-mul-lid matrix-vector-mul-assoc)

ultimately show ?thesis
using ‹T ∗∗ Finite-Cartesian-Product.transpose (vector [x, y]) = mat 1 › in-

vertible-right-inverse that by blast
qed

lemma integral-mat-bij-det-pm1 :
fixes T :: real^2^2
assumes integral-mat-bij T
shows det T = 1 ∨ det T = −1

proof−
obtain Tinv where Tinv: invertible T ∧ integral-mat-bij Tinv ∧ matrix-inv T

Tinv
using integral-mat-bij-inv[of T ] assms by auto

moreover have is-int (det Tinv)
using integral-mat-bij-def integral-mat-int-det[of Tinv] calculation by auto

moreover have is-int (det T )
using integral-mat-bij-def integral-mat-int-det[of T ] assms by auto

moreover have det Tinv = 1 / det T
proof−
have id: Tinv ∗∗ T = mat 1 using Tinv unfolding matrix-inv-def invertible-def

by (simp add: verit-sko-ex ′)
have det Tinv ∗ det T = det (Tinv ∗∗ T ) by (simp add: det-mul)
also have ... = det ((mat 1 )::real^2^2 ) using id by auto
also have ... = (1 ::real) by auto
finally have det Tinv ∗ det T = 1 .
thus ?thesis using invertible-det-nz nonzero-eq-divide-eq by fastforce

qed
ultimately have T-Tinv-int: is-int (det T ) ∧ is-int (1 / det T ) by auto
thus det T = 1 ∨ det T = −1
proof−

have abs (det T ) ≤ 1 (is ?D ≤ 1 )
proof(rule ccontr)

assume ¬ ?D ≤ 1
then have ?D > 1 by auto
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moreover from this have 1 / ?D < 1 by auto
moreover from calculation have 1 / ?D > 0 by auto
ultimately have ¬ is-int (1 / ?D) unfolding is-int-def by force
moreover from T-Tinv-int have is-int (1 / ?D)

by (smt (verit) ‹1 / |det T | < 1 › abs-div-pos abs-divide abs-ge-self
abs-minus-cancel divide-cancel-left divide-pos-neg int-less-real-le is-int-def of-int-code(2 ))

ultimately show False by auto
qed
then have det T ≥ −1 ∧ det T ≤ 1

using assms by auto
moreover have det T 6= 0 using integral-mat-bij-inv invertible-det-nz assms

by auto
ultimately show det T = 1 ∨ det T = −1 using is-int-def T-Tinv-int by

auto
qed

qed

end
theory Polygon-Jordan-Curve
imports

HOL−Analysis.Cartesian-Space
HOL−Analysis.Path-Connected
Poincare-Bendixson.Poincare-Bendixson
Integral-Matrix

begin

3 Polygon Definitions
type-synonym R-to-R2 = (real ⇒ real^2 )

definition closed-path :: R-to-R2 ⇒ bool where
closed-path g ←→ path g ∧ pathstart g = pathfinish g

definition path-inside :: R-to-R2 ⇒ (real^2 ) set where
path-inside g = inside (path-image g)

definition path-outside :: R-to-R2 ⇒ (real^2 ) set where
path-outside g = outside (path-image g)

fun make-polygonal-path :: (real^2 ) list ⇒ R-to-R2 where
make-polygonal-path [] = linepath 0 0
| make-polygonal-path [a] = linepath a a
| make-polygonal-path [a,b] = linepath a b
| make-polygonal-path (a # b # xs) = (linepath a b) +++ make-polygonal-path (b
# xs)

definition polygonal-path :: R-to-R2 ⇒ bool where
polygonal-path g ←→ g ∈ make-polygonal-path‘{xs :: (real^2 ) list. True}
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definition all-integral :: (real^2 ) list ⇒ bool where
all-integral l = (∀ x ∈ set l. integral-vec x)

definition polygon :: R-to-R2 ⇒ bool where
polygon g ←→ polygonal-path g ∧ simple-path g ∧ closed-path g

definition integral-polygon :: R-to-R2 ⇒ bool where
integral-polygon g ←→
(polygon g ∧ (∃ vts. g = make-polygonal-path vts ∧ all-integral vts))

definition make-triangle :: real^2 ⇒ real^2 ⇒ real^2 ⇒ R-to-R2 where
make-triangle a b c = make-polygonal-path [a, b, c, a]

definition polygon-of :: R-to-R2 ⇒ (real^2 ) list ⇒ bool where
polygon-of p vts ←→ polygon p ∧ p = make-polygonal-path vts

definition good-linepath :: real^2 ⇒ real^2 ⇒ (real^2 ) list ⇒ bool where
good-linepath a b vts ←→ (let p = make-polygonal-path vts in

a 6= b ∧ {a, b} ⊆ set vts ∧ path-image (linepath a b) ⊆ path-inside p ∪ {a, b})

definition good-polygonal-path :: real^2 ⇒ (real^2 ) list ⇒ real^2 ⇒ (real^2 ) list
⇒ bool where

good-polygonal-path a cutvts b vts ←→ (
let p = make-polygonal-path vts in
let p-cut = make-polygonal-path ([a] @ cutvts @ [b]) in
(a 6= b ∧ {a, b} ⊆ set vts ∧ path-image (p-cut) ⊆ path-inside p ∪ {a, b} ∧

loop-free p-cut))

4 Jordan Curve Theorem for Polygons
definition inside-outside :: R-to-R2 ⇒ (real^2 ) set ⇒ (real^2 ) set ⇒ bool where

inside-outside p ins outs ←→
(ins 6= {} ∧ open ins ∧ connected ins ∧
outs 6= {} ∧ open outs ∧ connected outs ∧
bounded ins ∧ ¬ bounded outs ∧
ins ∩ outs = {} ∧ ins ∪ outs = − path-image p ∧
frontier ins = path-image p ∧ frontier outs = path-image p)

lemma Jordan-inside-outside-real2 :
fixes p :: real ⇒ real^2
assumes simple-path p pathfinish p = pathstart p
shows inside(path-image p) 6= {} ∧

open(inside(path-image p)) ∧
connected(inside(path-image p)) ∧
outside(path-image p) 6= {} ∧
open(outside(path-image p)) ∧
connected(outside(path-image p)) ∧
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bounded(inside(path-image p)) ∧
¬ bounded(outside(path-image p)) ∧
inside(path-image p) ∩ outside(path-image p) = {} ∧
inside(path-image p) ∪ outside(path-image p) =
− path-image p ∧
frontier(inside(path-image p)) = path-image p ∧
frontier(outside(path-image p)) = path-image p

proof −
have good-type: c1-on-open-R2-axioms TYPE((real, 2 ) vec)

unfolding c1-on-open-R2-axioms-def by auto
have inside(path-image p) 6= {} ∧

open(inside(path-image p)) ∧
connected(inside(path-image p)) ∧
outside(path-image p) 6= {} ∧
open(outside(path-image p)) ∧
connected(outside(path-image p)) ∧
bounded(inside(path-image p)) ∧
¬ bounded(outside(path-image p)) ∧
inside(path-image p) ∩ outside(path-image p) = {} ∧
inside(path-image p) ∪ outside(path-image p) =
− path-image p ∧
frontier(inside(path-image p)) = path-image p ∧
frontier(outside(path-image p)) = path-image p

using assms c1-on-open-R2 .Jordan-inside-outside-R2 [of - - - p]
unfolding c1-on-open-R2-def c1-on-open-euclidean-def c1-on-open-def using

good-type
by (metis continuous-on-empty equals0D open-empty)

then show ?thesis unfolding inside-outside-def
using path-inside-def path-outside-def by auto

qed

lemma inside-outside-polygon:
fixes p :: R-to-R2
assumes polygon: polygon p
shows inside-outside p (path-inside p) (path-outside p)

proof−
have good-type: c1-on-open-R2-axioms TYPE((real, 2 ) vec)

unfolding c1-on-open-R2-axioms-def by auto
have simple-path p pathfinish p = pathstart p using assms polygon-def closed-path-def

by auto
then show ?thesis using Jordan-inside-outside-real2 unfolding inside-outside-def

using path-inside-def path-outside-def by auto
qed

lemma inside-outside-unique:
fixes p :: R-to-R2
assumes polygon p
assumes io1 : inside-outside p inside1 outside1
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assumes io2 : inside-outside p inside2 outside2
shows inside1 = inside2 ∧ outside1 = outside2

proof −
have inner1 : inside(path-image p) = inside1
using dual-order .antisym inside-subset interior-eq interior-inside-frontier
using io1 unfolding inside-outside-def
by metis

have inner2 : inside(path-image p) = inside2
using dual-order .antisym inside-subset interior-eq interior-inside-frontier
using io2 unfolding inside-outside-def
by metis

have eq1 : inside1 = inside2
using inner1 inner2
by auto

have h1 : inside1 ∪ outside1 = − path-image p
using io1 unfolding inside-outside-def by auto

have h2 : inside1 ∩ outside1 = {}
using io1 unfolding inside-outside-def by auto

have outer1 : outside(path-image p) = outside1
using io1 inner1 unfolding inside-outside-def
using h1 h2 outside-inside by auto

have h3 : inside2 ∪ outside2 = − path-image p
using io2 unfolding inside-outside-def by auto

have h4 : inside2 ∩ outside2 = {}
using io2 unfolding inside-outside-def by auto

have outer2 : outside(path-image p) = outside2
using io2 inner2 unfolding inside-outside-def
using h3 h4 outside-inside by auto

then have eq2 : outside1 = outside2
using outer1 outer2 by auto

then show ?thesis using eq1 eq2 by auto
qed

lemma polygon-jordan-curve:
fixes p :: R-to-R2
assumes polygon p
obtains inside outside where

inside-outside p inside outside
proof−

have good-type: c1-on-open-R2-axioms TYPE((real, 2 ) vec)
unfolding c1-on-open-R2-axioms-def by auto

have simple-path p pathfinish p = pathstart p using assms polygon-def closed-path-def
by auto

then obtain inside outside where
inside 6= {} open inside connected inside
outside 6= {} open outside connected outside
bounded inside ¬ bounded outside inside ∩ outside = {}
inside ∪ outside = − path-image p
frontier inside = path-image p
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frontier outside = path-image p
using c1-on-open-R2 .Jordan-curve-R2 [of - - - p]
unfolding c1-on-open-R2-def c1-on-open-euclidean-def c1-on-open-def using

good-type
by (metis continuous-on-empty equals0D open-empty)

then show ?thesis
using inside-outside-def that by auto

qed

lemma connected-component-image:
fixes f :: ′a::euclidean-space ⇒ ′b::euclidean-space
assumes linear f bij f
shows f ‘ (connected-component-set S x) = connected-component-set (f ‘ S) (f

x)
proof −

have conn:
∧

S . connected S =⇒ connected (f ‘ S)
by (simp add: assms(1 ) connected-linear-image)

then have h1 :
∧

T . T ∈ {T . connected T ∧ x ∈ T ∧ T ⊆ S} =⇒ f ‘ T ∈ {T .
connected T ∧ (f x) ∈ T ∧ T ⊆ (f ‘ S)}

by auto
then have subset1 : f ‘ connected-component-set S x ⊆ connected-component-set

(f ‘ S) (f x)
using connected-component-Union

by (smt (verit, ccfv-threshold) assms(2 ) bij-is-inj connected-component-eq-empty
connected-component-maximal connected-component-refl-eq connected-component-subset
connected-connected-component image-is-empty inj-image-mem-iff mem-Collect-eq)
have

∧
S . connected (f ‘ S) =⇒ connected S

using assms connected-continuous-image assms linear-continuous-on linear-conv-bounded-linear
bij-is-inj homeomorphism-def linear-homeomorphism-image
by (smt (verit, del-insts))

then have h2 :
∧

T . f ‘ T ∈ {T . connected T ∧ (f x) ∈ T ∧ T ⊆ (f ‘ S)} =⇒
T ∈ {T . connected T ∧ x ∈ T ∧ T ⊆ S}

by (simp add: assms(2 ) bij-is-inj image-subset-iff inj-image-mem-iff subsetI )
then have subset2 : connected-component-set (f ‘ S) (f x) ⊆ f ‘ connected-component-set

S x
using connected-component-Union[of S x] connected-component-Union[of f‘S f

x]
by (smt (verit, del-insts) assms(2 ) bij-is-inj connected-component-eq-empty con-

nected-component-maximal connected-component-refl-eq connected-component-subset
connected-connected-component image-mono inj-image-mem-iff mem-Collect-eq sub-
set-imageE)

show f ‘ (connected-component-set S x) = connected-component-set (f ‘ S) (f x)
using subset1 subset2 by auto

qed

lemma bounded-map:
fixes f :: ′a::euclidean-space ⇒ ′b::euclidean-space
assumes linear f bij f
shows bounded (f ‘ S) = bounded S
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proof −
have h1 : bounded S =⇒ bounded (f ‘ S)

using assms
using bounded-linear-image linear-conv-bounded-linear by blast

have bounded-linear f
using linear-conv-bounded-linear assms by auto

then have bounded-linear (inv f )
using assms unfolding bij-def

by (smt (verit, ccfv-threshold) bij-betw-def bij-betw-subset dim-image-eq inv-equality
linear-conv-bounded-linear linear-surjective-isomorphism subset-UNIV )

then have h2 : bounded (f ‘ S) =⇒ bounded S
using assms
by (metis bij-is-inj bounded-linear-image image-inv-f-f )

then show ?thesis
using assms h1 h2 by auto

qed

lemma inside-bijective-linear-image:
fixes f :: ′a::euclidean-space ⇒ ′b::euclidean-space
fixes c :: real ⇒ ′a
assumes c-simple:path c
assumes linear f bij f
shows inside (f ‘ (path-image c)) = f ‘ (inside(path-image c))

proof −
have set1 : {x. x /∈ f ‘ path-image c} = f ‘ {x. x /∈ path-image c}

using assms path-image-compose unfolding bij-def
by (smt (verit, best) UNIV-I imageE inj-image-mem-iff mem-Collect-eq subsetI

subset-antisym)
have linear-inv: linear (inv f )

using assms
by (metis bij-imp-bij-inv bij-is-inj inv-o-cancel linear-injective-left-inverse o-inv-o-cancel)

have bij-inv: bij (inv f )
using assms
using bij-imp-bij-inv by blast

have inset1 :
∧

x. x ∈ {x. bounded (connected-component-set (− f ‘ path-image
c) x)} =⇒ x ∈ f ‘ {x. bounded (connected-component-set (− path-image c) x)}

proof −
fix x
assume ∗: x ∈ {x. bounded (connected-component-set (− f ‘ path-image c) x)}
have inj f

using assms(3 ) bij-betw-imp-inj-on by blast
then show x ∈ f ‘ {x. bounded (connected-component-set (− path-image c) x)}

using ∗ connected-component-image[OF linear-inv bij-inv]
by (smt (z3 ) ‹

∧
x S . inv f ‘ connected-component-set S x = connected-component-set

(inv f ‘ S) (inv f x)› ‹bij (inv f )› ‹linear (inv f )› ‹x ∈ {x. bounded (connected-component-set
(− f ‘ path-image c) x)}› bij-image-Compl-eq bounded-map connected-component-eq-empty
image-empty image-inv-f-f mem-Collect-eq)

qed
have inset2 :

∧
x. x ∈ f ‘ {x. bounded (connected-component-set (− path-image
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c) x)} =⇒ x ∈ {x. bounded (connected-component-set (− f ‘ path-image c) x)}
proof −

fix x
assume x ∈ f ‘ {x. bounded (connected-component-set (− path-image c) x)}
then obtain x1 where x = f x1 x1 ∈ {x. bounded (connected-component-set

(− path-image c) x)}
by auto

then show x ∈ {x. bounded (connected-component-set (− f ‘ path-image c) x)}

using bounded-map[OF assms(2 ) assms(3 )] connected-component-image[OF
assms(2 ) assms(3 )]

by (metis assms(3 ) bij-image-Compl-eq mem-Collect-eq)
qed
have set2 : f ‘ {x. bounded (connected-component-set (− path-image c) x)} = {x.

bounded (connected-component-set (− f ‘ path-image c) x)}
using inset1 inset2 by auto

have inset1 :
∧

x. x ∈ f ‘ {x. x /∈ path-image c ∧ bounded (connected-component-set
(− path-image c) x)} =⇒

x∈ {x. x /∈ f ‘ path-image c ∧ bounded (connected-component-set (− f ‘
path-image c) x)}

proof −
fix x
assume x ∈ f ‘ {x. x /∈ path-image c ∧ bounded (connected-component-set (−

path-image c) x)}
then show x∈ {x. x /∈ f ‘ path-image c ∧ bounded (connected-component-set

(− f ‘ path-image c) x)}
by (metis (no-types, lifting) image-iff mem-Collect-eq set1 set2 )

qed
have inset2 :

∧
x. x∈ {x. x /∈ f ‘ path-image c ∧ bounded (connected-component-set

(− f ‘ path-image c) x)} =⇒
x ∈ f ‘ {x. x /∈ path-image c ∧ bounded (connected-component-set (− path-image

c) x)}
proof −

fix x
assume x∈ {x. x /∈ f ‘ path-image c ∧ bounded (connected-component-set (−

f ‘ path-image c) x)}
then show x ∈ f ‘ {x. x /∈ path-image c ∧ bounded (connected-component-set

(− path-image c) x)}
by (smt (verit, best) image-iff mem-Collect-eq set2 )

qed
have same-set: {x. x /∈ f ‘ path-image c ∧ bounded (connected-component-set (−

f ‘ path-image c) x)} =
f ‘ {x. x /∈ path-image c ∧ bounded (connected-component-set (− path-image c)

x)}
using inset1 inset2
by blast

have ins1 :
∧

x. x ∈ inside (f ‘ path-image c) =⇒ x ∈ f ‘ inside (path-image c)
proof −

fix x

14



assume ∗: x ∈ inside (f ‘ path-image c)
show x ∈ f ‘ inside (path-image c)

by (metis (no-types) ∗ same-set inside-def )
qed
then have inside (f ‘ (path-image c)) ⊆ f ‘ (inside(path-image c))

by auto
have ins2 :

∧
xa. xa ∈ inside (path-image c) =⇒ f xa ∈ inside (f ‘ path-image c)

proof −
fix xa
assume ∗: xa ∈ inside (path-image c)
show f xa ∈ inside (f ‘ path-image c)

by (metis (no-types, lifting) ∗ same-set assms(3 ) bij-def inj-image-mem-iff
inside-def mem-Collect-eq)

qed
then have f ‘ (inside(path-image c)) ⊆ inside (f ‘ (path-image c))

by auto
show ?thesis
using ins1 ins2 by auto

qed

lemma bij-image-intersection:
assumes path-image c1 ∩ path-image c2 = S
assumes bij f
assumes c ∈ path-image (f ◦ c1 ) ∩ path-image (f ◦ c2 )
shows c ∈ f ‘ S
proof −

have c ∈ f ‘ path-image c1 ∩ f ‘ path-image c2
using assms path-image-compose[of f c1 ] path-image-compose[of f c2 ]
by auto

then obtain w where c-is: w ∈ path-image c1 ∧ w ∈ path-image c2 ∧ c = f
w

using assms unfolding bij-def inj-def surj-def
by auto

then have w ∈ S
using assms by auto

then show c ∈ f ‘ S
using c-is by auto

qed

theorem (in c1-on-open-R2 ) split-inside-simple-closed-curve-locale:
fixes c :: real ⇒ ′a
assumes c1-simple:simple-path c1 and c1-start: pathstart c1 = a and c1-end:

pathfinish c1 = b
assumes c2-simple: simple-path c2 and c2-start: pathstart c2 = a and c2-end:

pathfinish c2 = b
assumes c-simple: simple-path c and c-start: pathstart c = a and c-end: pathfin-

ish c = b
assumes a-neq-b: a 6= b
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and c1c2 : path-image c1 ∩ path-image c2 = {a,b}
and c1c: path-image c1 ∩ path-image c = {a,b}
and c2c: path-image c2 ∩ path-image c = {a,b}
and ne-12 : path-image c ∩ inside(path-image c1 ∪ path-image c2 ) 6= {}

obtains inside(path-image c1 ∪ path-image c) ∩ inside(path-image c2 ∪ path-image
c) = {}

inside(path-image c1 ∪ path-image c) ∪ inside(path-image c2 ∪ path-image
c) ∪

(path-image c − {a,b}) = inside(path-image c1 ∪ path-image c2 )
proof −

let ?cc1 = (complex-of ◦ c1 )
let ?cc2 = (complex-of ◦ c2 )
let ?cc = (complex-of ◦ c)
have cc1-simple:simple-path ?cc1

using bij-betw-imp-inj-on c1-simple complex-of-bij
using simple-path-linear-image-eq[OF complex-of-linear ]
by blast

have cc1-start:pathstart ?cc1 = (complex-of a)
using c1-start by (simp add:pathstart-compose)

have cc1-end:pathfinish ?cc1 = (complex-of b)
using c1-end by (simp add: pathfinish-compose)

have cc2-simple:simple-path ?cc2
using c2-simple complex-of-bij bij-betw-imp-inj-on
using simple-path-linear-image-eq[OF complex-of-linear ]
by blast

have cc2-start:pathstart ?cc2 = (complex-of a)
using c2-start by (simp add:pathstart-compose)

have cc2-end:pathfinish ?cc2 = (complex-of b)
using c2-end by (simp add: pathfinish-compose)

have cc-simple:simple-path ?cc using c-simple complex-of-bij
using bij-betw-imp-inj-on
using simple-path-linear-image-eq[OF complex-of-linear ]
by blast

have cc-start:pathstart ?cc = (complex-of a)
using c-start by (simp add:pathstart-compose)

have cc-end:pathfinish ?cc = (complex-of b)
using c-end by (simp add: pathfinish-compose)

have ca-neq-cb: complex-of a 6= complex-of b
using a-neq-b
by (meson bij-betw-imp-inj-on complex-of-bij inj-eq)

have image-set-eq1 : {complex-of a, complex-of b} ⊆ path-image ?cc1 ∩ path-image
?cc2

using c1c2 path-image-compose[of complex-of c1 ] path-image-compose[of com-
plex-of c2 ]

by auto
have image-set-eq2 :

∧
c. c ∈ path-image ?cc1 ∩ path-image ?cc2 =⇒ c ∈{complex-of

a, complex-of b}
using bij-image-intersection[of c1 c2 {a, b} complex-of ]
using c1c2 complex-of-bij by auto
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have cc1c2 : path-image ?cc1 ∩ path-image ?cc2 = {(complex-of a),(complex-of
b)}

using image-set-eq1 image-set-eq2 by auto
have image-set-eq1 : {complex-of a, complex-of b} ⊆ path-image ?cc1 ∩ path-image

?cc
using c1c path-image-compose[of complex-of c1 ] path-image-compose[of com-

plex-of c]
by auto

have image-set-eq2 :
∧

c. c ∈ path-image ?cc1 ∩ path-image ?cc =⇒ c ∈{complex-of
a, complex-of b}

using bij-image-intersection[of c1 c {a, b} complex-of ]
using c1c complex-of-bij by auto

have cc1c: path-image ?cc1 ∩ path-image ?cc = {(complex-of a),(complex-of b)}

using image-set-eq1 image-set-eq2 by auto
have image-set-eq1 : {complex-of a, complex-of b} ⊆ path-image ?cc2 ∩ path-image

?cc
using c2c path-image-compose[of complex-of c2 ] path-image-compose[of com-

plex-of c]
by auto

have image-set-eq2 :
∧

c. c ∈ path-image ?cc2 ∩ path-image ?cc =⇒ c ∈{complex-of
a, complex-of b}

using bij-image-intersection[of c2 c {a, b} complex-of ]
using c2c complex-of-bij by auto

have cc2c: path-image ?cc2 ∩ path-image ?cc = {(complex-of a),(complex-of b)}
using image-set-eq1 image-set-eq2 by auto

let ?j = c1 +++ (reversepath c)
let ?cj = ?cc1 +++ (reversepath ?cc)
have cj-and-j: path-image ?cj = complex-of ‘ (path-image ?j)

by (metis path-compose-join path-compose-reversepath path-image-compose)
have pathstart (reversepath c) = b

using c-end
by auto

then have j-path: path (c1 +++ (reversepath c))
using c1-end c1-simple c-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)

then have path ?j ∧ path-image ?j = path-image c1 ∪ path-image c
using ‹pathstart (reversepath c) = b› c1-end path-image-join path-image-reversepath

by blast
then have inside(path-image c1 ∪ path-image c) = inside(path-image ?j)

by auto
have pathstart (reversepath ?cc) = complex-of b

using cc-end
by auto

then have cj-path: path ?cj
using cc1-end cc1-simple cc-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)
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then have path ?cj ∧ path-image ?cj = path-image ?cc1 ∪ path-image ?cc
by (metis ‹pathstart (reversepath (complex-of ◦ c)) = complex-of b› cc1-end

path-image-join path-image-reversepath)
then have ins-cj: inside(path-image ?cc1 ∪ path-image ?cc) = inside (path-image

?cj)
by auto

have inside(path-image ?cj) = complex-of ‘ (inside(path-image ?j))
using inside-bijective-linear-image[of ?j complex-of ] j-path
using cj-and-j complex-of-bij complex-of-linear by presburger

then have i1 : inside(path-image ?cc1 ∪ path-image ?cc) = complex-of ‘ (inside(path-image
c1 ∪ path-image c)) using complex-of-real-of unfolding image-comp

using cj-and-j
by (simp add: ins-cj ‹inside (path-image c1 ∪ path-image c) = inside (path-image

(c1 +++ reversepath c))›)

let ?j2 = c2 +++ (reversepath c)
let ?cj2 = ?cc2 +++ (reversepath ?cc)
have cj2-and-j2 : path-image ?cj2 = complex-of ‘ (path-image ?j2 )

by (metis path-compose-join path-compose-reversepath path-image-compose)
have pathstart (reversepath c) = b

using c-end by auto
then have j2-path: path (c2 +++ (reversepath c))

using c2-end c2-simple c-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)

then have path ?j2 ∧ path-image ?j2 = path-image c2 ∪ path-image c
using ‹pathstart (reversepath c) = b› c2-end path-image-join path-image-reversepath

by blast
then have inside(path-image c2 ∪ path-image c) = inside(path-image ?j2 )

by auto
have pathstart (reversepath ?cc) = complex-of b

using cc-end by auto
then have cj2-path: path ?cj2

using cc2-end cc2-simple cc-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)

then have path ?cj2 ∧ path-image ?cj2 = path-image ?cc2 ∪ path-image ?cc
by (metis ‹pathstart (reversepath (complex-of ◦ c)) = complex-of b› cc2-end

path-image-join path-image-reversepath)
then have ins-cj2 : inside(path-image ?cc2 ∪ path-image ?cc) = inside (path-image

?cj2 )
by auto

have inside(path-image ?cj2 ) = complex-of ‘ (inside(path-image ?j2 ))
using inside-bijective-linear-image[of ?j2 complex-of ] j2-path
using cj2-and-j2 complex-of-bij complex-of-linear
by presburger

then have i2 : inside (path-image (complex-of ◦ c2 ) ∪ path-image (complex-of ◦
c))

= complex-of ‘ inside (path-image c2 ∪ path-image c)
using cj2-and-j2
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by (simp add: ins-cj2 ‹inside (path-image c2 ∪ path-image c) = inside (path-image
(c2 +++ reversepath c))›)

let ?j3 = c2 +++ (reversepath c1 )
let ?cj3 = ?cc2 +++ (reversepath ?cc1 )
have cj3-and-j3 : path-image ?cj3 = complex-of ‘ (path-image ?j3 )

by (metis path-compose-join path-compose-reversepath path-image-compose)
have pathstart (reversepath c1 ) = b

using c1-end by auto
then have j3-path: path (c2 +++ (reversepath c1 ))

using c2-end c2-simple c1-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)

then have path-j3 : path ?j3 ∧ path-image ?j3 = path-image c2 ∪ path-image c1
using ‹pathstart (reversepath c1 ) = b› c2-end path-image-join path-image-reversepath

by blast
then have inside(path-image c2 ∪ path-image c1 ) = inside(path-image ?j3 )
by auto

have pathstart (reversepath ?cc1 ) = complex-of b
using cc1-end by auto

then have cj3-path: path ?cj3
using cc2-end cc2-simple cc1-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)

then have path-cj3 : path ?cj3 ∧ path-image ?cj3 = path-image ?cc2 ∪ path-image
?cc1

by (metis ‹pathstart (reversepath (complex-of ◦ c1 )) = complex-of b› cc2-end
path-image-join path-image-reversepath)
then have ins-cj3 : inside(path-image ?cc2 ∪ path-image ?cc1 ) = inside (path-image

?cj3 )
by auto

have inside(path-image ?cj3 ) = complex-of ‘ (inside(path-image ?j3 ))
using inside-bijective-linear-image[of ?j3 complex-of ] j3-path
using cj3-and-j3 complex-of-bij complex-of-linear
by presburger

then have i3 : inside (path-image (complex-of ◦ c1 ) ∪ path-image (complex-of ◦
c2 ))

= complex-of ‘ inside (path-image c1 ∪ path-image c2 )
by (simp add: path-cj3 path-j3 sup-commute)

obtain y where y-prop: y ∈ path-image c ∩ inside (path-image c1 ∪ path-image
c2 )

using ne-12 by auto
then have y-in1 : complex-of y ∈ path-image ?cc

by (metis IntD1 image-eqI path-image-compose)
have y-in2 : complex-of y ∈ complex-of ‘ (inside (path-image c1 ∪ path-image

c2 ))
using y-prop by auto

then have cne-12 : path-image ?cc ∩ inside(path-image ?cc1 ∪ path-image ?cc2 )
6= {}

using ne-12 y-in1 y-in2 i3 by force
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obtain for-reals: inside(path-image ?cc1 ∪ path-image ?cc) ∩ inside(path-image
?cc2 ∪ path-image ?cc) = {}

inside(path-image ?cc1 ∪ path-image ?cc) ∪ inside(path-image ?cc2 ∪
path-image ?cc) ∪

(path-image ?cc − {complex-of a, complex-of b}) = inside(path-image ?cc1
∪ path-image ?cc2 )

using split-inside-simple-closed-curve[OF cc1-simple cc1-start cc1-end cc2-simple
cc2-start

cc2-end cc-simple cc-start cc-end ca-neq-cb cc1c2 cc1c cc2c cne-12 ]
by auto

let ?rin1 = real-of ‘ inside(path-image ?cc1 ∪ path-image ?cc)
let ?rin2 = real-of ‘ inside(path-image ?cc2 ∪ path-image ?cc)

have h1 : inside(path-image c1 ∪ path-image c) ∩ inside(path-image c2 ∪ path-image
c) 6= {} =⇒ False

proof−
assume inside(path-image c1 ∪ path-image c) ∩ inside(path-image c2 ∪

path-image c) 6= {}
then obtain a where a-prop: a ∈ inside(path-image c1 ∪ path-image c) ∧ a

∈ inside(path-image c2 ∪ path-image c)
by auto

have in1 : complex-of a ∈ inside (path-image (complex-of ◦ c1 ) ∪ path-image
(complex-of ◦ c))

using a-prop i1 by auto
have in2 : complex-of a ∈ inside (path-image (complex-of ◦ c2 ) ∪ path-image

(complex-of ◦ c))
using a-prop i2 by auto

show False using in1 in2 for-reals(1 ) by auto
qed
have h: path-image (complex-of ◦ c) − {complex-of a, complex-of b} = complex-of

‘ (path-image c) − complex-of ‘{a,b}
using path-image-compose by auto

have complex-of ‘ path-image c − complex-of ‘ {a, b} = complex-of ‘ (path-image
c − {a, b})

proof −
have

∧
x. x ∈ (complex-of ‘ path-image c − complex-of ‘ {a, b}) ←→ x ∈

complex-of ‘ (path-image c − {a, b})
using Diff-iff bij-betw-imp-inj-on complex-of-bij image-iff inj-eq by (smt (z3 ))

then show ?thesis by blast
qed
then have path-image (complex-of ◦ c) − {complex-of a, complex-of b} = com-

plex-of ‘ (path-image c − {a,b})
using h by simp

then have h2 : inside(path-image c1 ∪ path-image c) ∪ inside(path-image c2 ∪
path-image c) ∪

(path-image c − {a,b}) = inside(path-image c1 ∪ path-image c2 )
proof−

have
∧

x . x ∈ inside(path-image c1 ∪ path-image c2 ) ←→ complex-of x ∈
complex-of ‘ inside (path-image c1 ∪ path-image c2 )
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using i3 by (metis bij-betw-imp-inj-on complex-of-bij image-iff inj-eq)
then have in-iff :

∧
x. x ∈ inside(path-image c1 ∪ path-image c2 ) ←→ com-

plex-of x ∈ inside (path-image (complex-of ◦ c1 ) ∪ path-image (complex-of ◦ c))
∪

inside (path-image (complex-of ◦ c2 ) ∪ path-image (complex-of ◦ c)) ∪
(path-image (complex-of ◦ c) − {complex-of a, complex-of b})

using for-reals(2 )
using i3 by presburger

have
∧

x. complex-of x ∈ inside (path-image (complex-of ◦ c1 ) ∪ path-image
(complex-of ◦ c)) ∪

inside (path-image (complex-of ◦ c2 ) ∪ path-image (complex-of ◦ c)) ∪
(path-image (complex-of ◦ c) − {complex-of a, complex-of b})
←→ complex-of x ∈ inside (path-image (complex-of ◦ c1 ) ∪ path-image

(complex-of ◦ c))
∨ complex-of x ∈ inside (path-image (complex-of ◦ c2 ) ∪ path-image

(complex-of ◦ c))
∨ complex-of x ∈ (path-image (complex-of ◦ c) − {complex-of a, complex-of

b})
by blast

then have
∧

x. complex-of x ∈ inside (path-image (complex-of ◦ c1 ) ∪ path-image
(complex-of ◦ c)) ∪

inside (path-image (complex-of ◦ c2 ) ∪ path-image (complex-of ◦ c)) ∪
(path-image (complex-of ◦ c) − {complex-of a, complex-of b})
←→ x ∈ inside(path-image c1 ∪ path-image c) ∪ inside(path-image c2 ∪

path-image c) ∪
(path-image c − {a,b})

using i1 i2 i3 Un-iff ‹path-image (complex-of ◦ c) − {complex-of a, complex-of
b} = complex-of ‘ (path-image c − {a, b})› bij-betw-imp-inj-on complex-of-bij im-
age-iff inj-def

by (smt (verit, best))
then have

∧
x. x ∈ inside(path-image c1 ∪ path-image c2 )←→ x ∈ (inside(path-image

c1 ∪ path-image c) ∪ inside(path-image c2 ∪ path-image c) ∪
(path-image c − {a,b}))

using in-iff by meson
then show ?thesis by auto

qed
show ?thesis using that h1 h2 by auto

qed

lemma split-inside-simple-closed-curve-real2 :
fixes c :: real ⇒ real^2
assumes c1-simple:simple-path c1 and c1-start: pathstart c1 = a and c1-end:

pathfinish c1 = b
assumes c2-simple: simple-path c2 and c2-start: pathstart c2 = a and c2-end:

pathfinish c2 = b
assumes c-simple: simple-path c and c-start: pathstart c = a and c-end: pathfin-

ish c = b
assumes a-neq-b: a 6= b

and c1c2 : path-image c1 ∩ path-image c2 = {a,b}
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and c1c: path-image c1 ∩ path-image c = {a,b}
and c2c: path-image c2 ∩ path-image c = {a,b}
and ne-12 : path-image c ∩ inside(path-image c1 ∪ path-image c2 ) 6= {}

obtains inside(path-image c1 ∪ path-image c) ∩ inside(path-image c2 ∪ path-image
c) = {}

inside(path-image c1 ∪ path-image c) ∪ inside(path-image c2 ∪ path-image
c) ∪

(path-image c − {a,b}) = inside(path-image c1 ∪ path-image c2 )
proof −

have good-type: c1-on-open-R2-axioms TYPE((real, 2 ) vec)
unfolding c1-on-open-R2-axioms-def by auto

then show ?thesis
using c1-on-open-R2 .split-inside-simple-closed-curve-locale[of - - - c1 a b c2 c]

assms
unfolding c1-on-open-R2-def c1-on-open-euclidean-def c1-on-open-def
using good-type that by blast

qed

end
theory Polygon-Lemmas
imports

Polygon-Jordan-Curve
HOL−Library.Sublist
HOL.Set-Interval
HOL.Fun

begin

5 Properties of make polygonal path, pathstart
and pathfinish of a polygon

lemma make-polygonal-path-induct[case-names Empty Single Two Multiple]:
fixes ell :: (real^2 ) list
assumes empty:

∧
ell. ell = [] =⇒ P ell

and single:
∧

ell. [[length ell = 1 ]] =⇒ P ell
and two:

∧
ell. [[length ell = 2 ]] =⇒ P ell

and multiple:
∧

ell.
[[length ell > 2 ;
P ([(ell!0 ), (ell!1 )]);
P ((ell!1 )#(drop 2 ell))]] =⇒ P ell

shows P ell
apply(induct ell rule: make-polygonal-path.induct)
using empty single two multiple by auto

lemma make-polygonal-path-gives-path:
fixes v :: (real^2 ) list
shows path (make-polygonal-path v)

proof(induction length v arbitrary: v)
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case 0
thus path (make-polygonal-path v)

by auto
next

case (Suc x)
show ?case

by (smt (verit, best) Suc.hyps(1 ) Suc.hyps(2 ) Suc-length-conv list.distinct(1 )
list.inject make-polygonal-path.elims path-join-imp path-linepath pathfinish-linepath
pathstart-join pathstart-linepath)
qed

corollary polygonal-path-is-path:
fixes g :: R-to-R2
assumes polygonal-path g
shows path g
using assms polygonal-path-def make-polygonal-path-gives-path by auto

lemma polygon-to-polygonal-path:
fixes p :: R-to-R2
assumes polygon p
obtains ell where p = make-polygonal-path ell
using assms unfolding polygon-def polygonal-path-def
by auto

lemma polygon-pathstart:
fixes g :: R-to-R2
assumes l 6= []
assumes g = make-polygonal-path l
shows pathstart g = l!0
using assms make-polygonal-path.simps
by (smt (verit) list.discI list.expand make-polygonal-path.elims nth-Cons-0 path-

start-join pathstart-linepath)

lemma polygon-pathfinish:
fixes g :: R-to-R2
assumes l 6= []
assumes g = make-polygonal-path l
shows pathfinish g = l!(length l − 1 )
using assms

proof (induct length l arbitrary: g l)
case 0
then show ?case by auto

next
case (Suc x)
{assume ∗: length l = 1

then obtain a where l-is: l = [a]
by (metis Suc.prems(1 ) Suc-neq-Zero diff-Suc-1 diff-self-eq-0 length-Cons

remdups-adj.cases)
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then have pathfinish g = a
using Suc make-polygonal-path.simps
by (simp add: pathfinish-def )

then have pathfinish g = l!(length l − 1 )
using Suc l-is
by auto

} moreover {assume ∗: length l = 2
then obtain a b where l-is: l = [a, b]

by (metis (no-types, opaque-lifting) One-nat-def Suc-eq-plus1 list.size(3 )
list.size(4 ) min-list.cases nat.simps(1 ) nat.simps(3 ) numeral-2-eq-2 )

then have g-is: g = linepath a b
using Suc by auto

have pf : pathfinish g = b using g-is by auto
then have pathfinish g = l!(length l − 1 )

using Suc ∗ l-is
by auto

}
moreover {assume ∗: length l > 2

then obtain a b c where l-is: l = a # b # c
by (metis Suc.prems(1 ) Zero-neq-Suc length-Cons less-Suc0 list.size(3 )

numeral-2-eq-2 remdups-adj.cases)
then have g-is: g = (linepath a b) +++ make-polygonal-path (b # c)

using Suc l-is
proof −

have c 6= []
using ∗ l-is by auto

then show ?thesis
by (metis (full-types) Suc(4 ) l-is list.exhaust make-polygonal-path.simps(4 ))

qed
then have pf : pathfinish g = pathfinish (make-polygonal-path (b # c))

by auto
have len-x: length (b # c) = x

using l-is Suc by auto
then have pathfinish (make-polygonal-path (b # c)) = (b # c)!(length l − 2 )

using Suc.hyps l-is
by simp

then have pathfinish g = l!(length l − 1 )
using l-is pf
by auto

}
ultimately show ?case

using Suc
by (metis One-nat-def less-Suc-eq-0-disj less-antisym numeral-2-eq-2 )

qed

lemma make-polygonal-path-image-property:
assumes length vts ≥ 2
assumes p-is-path: x ∈ path-image (make-polygonal-path vts)
shows ∃ k < length vts − 1 . x ∈ path-image (linepath (vts ! k) (vts ! (k + 1 )))
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using assms
proof (induct vts)

case Nil
then show ?case by auto

next
case (Cons a vts)
then have len-gteq: length vts ≥ 1

by simp
{assume ∗: length vts = 1

then obtain b where vts-is: vts = [b]
by (metis One-nat-def ‹1 ≤ length vts› drop-eq-Nil id-take-nth-drop less-numeral-extra(1 )

self-append-conv2 take-eq-Nil2 )
then have x ∈ path-image (make-polygonal-path [a, b])

using Cons by auto
then have x ∈ path-image (linepath a b)

by auto
then have x ∈ path-image (linepath ((a#vts) ! 0 ) ((a#vts) ! 1 ))

using Cons vts-is
by force

then have ∃ k<length (a # vts) − 1 . x ∈ path-image (linepath ((a # vts) ! k)
((a # vts) ! (k + 1 )))

using ∗
by simp

} moreover {assume ∗: length vts > 1
then obtain b vts ′ where vts-is: vts = b # vts ′

by (metis One-nat-def le-zero-eq len-gteq list.exhaust list.size(3 ) n-not-Suc-n)
then have x ∈ path-image ((linepath a b) +++ make-polygonal-path (b # vts ′))

using Cons
by (metis (no-types, lifting) ∗ One-nat-def length-Cons list.exhaust list.size(3 )

make-polygonal-path.simps(4 ) nat-less-le)
then have eo: x ∈path-image ((linepath a b)) ∨ x ∈ path-image (make-polygonal-path

(b # vts ′))
using not-in-path-image-join by blast

{assume ∗∗ : x ∈path-image ((linepath a b))
then have ∃ k<length (a # vts) − 1 . x ∈ path-image (linepath ((a # vts) ! k)

((a # vts) ! (k + 1 )))
using vts-is
by auto

} moreover {assume ∗∗ : x ∈ path-image (make-polygonal-path (b # vts ′))
then have ∃ k<length vts − 1 . x ∈ path-image (linepath (vts ! k) (vts ! (k +

1 )))
using Cons.hyps(1 ) ∗
by (simp add: Suc-leI vts-is)

then have ∃ k<length (a # vts) − 1 . x ∈ path-image (linepath ((a # vts) ! k)
((a # vts) ! (k + 1 )))

using add.commute add-diff-cancel-left ′ length-Cons less-diff-conv nth-Cons-Suc
plus-1-eq-Suc by auto

}
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ultimately have ∃ k<length (a # vts) − 1 . x ∈ path-image (linepath ((a #
vts) ! k) ((a # vts) ! (k + 1 )))

using eo by auto
}
ultimately show ?case

using len-gteq
by fastforce

qed

lemma linepaths-subset-make-polygonal-path-image:
assumes length vts ≥ 2
assumes k < length vts − 1
shows path-image (linepath (vts ! k) (vts ! (k + 1 ))) ⊆ path-image (make-polygonal-path

vts)
using assms

proof (induct vts arbitrary: k)
case Nil
then show ?case by auto

next
case (Cons a vts)
{ assume ∗: length vts = 1

then have k-is: k = 0
using Cons.prems(2 ) by auto

obtain b where vts-is: vts = [b]
using ∗

by (metis One-nat-def drop-eq-Nil id-take-nth-drop le-numeral-extra(4 ) self-append-conv2
take-eq-Nil2 zero-less-one)

then have path-image (make-polygonal-path (a # vts)) = path-image (linepath
a b)

by auto
then have path-image (linepath ((a # vts) ! k) ((a # vts) ! (k + 1 )))
⊆ path-image (make-polygonal-path (a # vts))
using k-is vts-is
by simp

} moreover
{ assume ∗: length vts > 1

then obtain b c vts ′ where vts-is: vts = b#c#vts ′

by (metis diff-0-eq-0 diff-Suc-1 diff-is-0-eq leD length-Cons list.exhaust list.size(3 ))
{ assume ∗∗: k = 0

then have same-path-image: path-image (linepath ((a # vts) ! k) ((a # vts)
! (k + 1 ))) = path-image (linepath a b)

using vts-is
by auto

have path-image (linepath a b) ⊆ path-image (make-polygonal-path (a # b
#c#vts ′))

using vts-is make-polygonal-path.simps path-image-join
by (metis (no-types, lifting) Un-iff list.discI nth-Cons-0 pathfinish-linepath

polygon-pathstart subsetI )
then have path-image (linepath ((a # vts) ! k) ((a # vts) ! (k + 1 ))) ⊆
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path-image (make-polygonal-path (a # vts))
using vts-is same-path-image
by presburger

} moreover {assume ∗∗: k > 0
then have k-minus-lt: k−1 < length vts − 1

using Cons
by auto

then have path-image-is: path-image (linepath ((a # vts) ! k) ((a # vts) ! (k
+ 1 ))) = path-image (linepath (vts ! (k −1 )) (vts ! k))

using ∗∗
by auto

then have path-im-subset1 : path-image (linepath (vts ! (k−1 )) (vts ! k)) ⊆
path-image (make-polygonal-path vts)

using k-minus-lt Cons.hyps(1 )[of k−1 ] ∗ ∗∗ Suc-leI Suc-pred add.right-neutral
add-Suc-right nat-1-add-1 plus-1-eq-Suc

by auto
have path-im-subset2 : path-image (make-polygonal-path vts) ⊆ path-image

(make-polygonal-path (a # vts))
using vts-is make-polygonal-path.simps(4 )
by (metis dual-order .refl list.distinct(1 ) nth-Cons-0 path-image-join pathfin-

ish-linepath polygon-pathstart sup.coboundedI2 )
then have path-image (linepath ((a # vts) ! k) ((a # vts) ! (k + 1 ))) ⊆

path-image (make-polygonal-path (a # vts))
using path-image-is path-im-subset1 path-im-subset2
by blast
}
ultimately have path-image (linepath ((a # vts) ! k) ((a # vts) ! (k + 1 )))

⊆ path-image (make-polygonal-path (a # vts))
by blast

}
ultimately show ?case
by (metis Cons.prems(1 ) Suc-1 leD length-Cons linorder-neqE-nat nat-add-left-cancel-less

plus-1-eq-Suc)
qed

lemma vertices-on-path-image: shows set vts ⊆ path-image (make-polygonal-path
vts)
proof (induct vts rule:make-polygonal-path.induct)

case 1
then show ?case by auto

next
case (2 a)
then show ?case by auto

next
case (3 a b)
then show ?case by auto

next
case (4 a b v va)
then have a-in-image: a ∈ path-image (make-polygonal-path (a # b # v # va))
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using make-polygonal-path.simps
by (metis list.distinct(1 ) nth-Cons-0 pathstart-in-path-image polygon-pathstart)

have path-image-union:
path-image (make-polygonal-path (a # b # v # va))
= path-image (linepath a b) ∪ path-image (make-polygonal-path (b # v # va))

by (metis make-polygonal-path.simps(4 ) linepath-1 ′ list.discI nth-Cons-0 path-image-join
pathfinish-def polygon-pathstart)

have set (a # b # v # va) = {a} ∪ set( b # v # va)
by auto

then show ?case using a-in-image 4 make-polygonal-path.simps
path-image-union by auto

qed

lemma path-image-cons-union:
assumes p = make-polygonal-path vts
assumes p ′ = make-polygonal-path vts ′

assumes vts ′ 6= []
assumes vts = a # vts ′ ∧ b = vts ′!0
shows path-image p = path-image (linepath a b) ∪ path-image p ′

proof−
have pathfinish (linepath a b) = pathstart p ′ using assms polygon-pathstart by

auto
moreover have length vts = 2 =⇒ ?thesis
by (smt (verit) Cons-nth-drop-Suc One-nat-def Suc-1 assms(1 ) assms(2 ) assms(3 )

assms(4 ) closed-segment-idem diff-Suc-1 drop0 drop-eq-Nil insert-subset le-iff-sup
le-numeral-extra(4 ) length-Cons length-greater-0-conv list.discI list.inject list.set(1 )
list.set(2 ) make-polygonal-path.elims path-image-linepath sup-commute vertices-on-path-image)

moreover have length vts > 2 =⇒ ?thesis
by (metis (no-types, lifting) Cons-nth-drop-Suc One-nat-def Suc-1 assms(1 )

assms(2 ) assms(3 ) assms(4 ) calculation(1 ) drop0 drop-Suc-Cons length-greater-0-conv
make-polygonal-path.simps(4 ) path-image-join)

moreover have length vts ≥ 2 using assms by (simp add: Suc-le-eq)
ultimately show ?thesis by linarith

qed

lemma polygonal-path-image-linepath-union:
assumes p = make-polygonal-path vts
assumes n = length vts
assumes n ≥ 2
shows path-image p = (

⋃
{path-image (linepath (vts!i) (vts!(i+1 ))) | i. i ≤ n

− 2})
using assms

proof(induct n arbitrary: vts p)
case 0
then show ?case by linarith

next
case (Suc n)
{ assume ∗: Suc n = 2
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then obtain a b where ab: vts = [a, b]
by (metis Suc.prems(2−3 ) Cons-nth-drop-Suc One-nat-def Suc-1 drop0

drop-eq-Nil lessI pos2 )
then have path-image p = path-image (linepath a b)

using make-polygonal-path.simps Suc.prems by presburger
moreover have ... = (

⋃
{path-image (linepath (vts!i) (vts!(i+1 ))) | i. i ≤ Suc

n − 2})
using ab Suc.prems
by (smt (verit, ccfv-threshold) Suc-eq-plus1 Sup-least Sup-upper ∗ diff-is-0-eq

diff-zero dual-order .refl mem-Collect-eq nth-Cons-0 nth-Cons-Suc subset-antisym)
ultimately have ?case by presburger

} moreover
{ assume ∗: Suc n > 2

then obtain a b vts ′ where vts ′: vts = a # vts ′ ∧ b = vts ′!0 ∧ vts ′ = tl vts
by (metis Suc.prems(2 ) list.collapse list.size(3 ) nat.distinct(1 ))

let ?p ′ = make-polygonal-path vts ′

let ?P ′ = path-image ?p ′

let ?P = path-image p
let ?P-union = (

⋃
{path-image (linepath (vts!i) (vts!(i+1 ))) | i. i ≤ n − 1})

have vts ′-len: length vts ′ = n using vts ′ Suc.prems by fastforce
then have ?P ′ = (

⋃
{path-image (linepath (vts ′!i) (vts ′!(i+1 ))) | i. i ≤ n −

2})
using Suc.prems Suc.hyps ∗ by force

moreover have ∀ i ≤ n−2 . vts ′!i = vts!(i+1 ) ∧ vts ′!(i+1 ) = vts!(i+2 ) using
vts ′ by force

ultimately have ?P ′ = (
⋃
{path-image (linepath (vts!(i+1 )) (vts!(i+2 ))) | i.

i ≤ n − 2})
by fastforce

moreover have ... = (
⋃
{path-image (linepath (vts!i) (vts!(i+1 ))) | i. 1 ≤ i

∧ i ≤ n − 1})
(is ... = ?P ′-union)

proof−
have

∧
x i. x ∈ {vts ! Suc i−−vts ! Suc (Suc i)}

=⇒ i ≤ n − 2
=⇒ ∃ xa. (∃ i. xa = {vts ! i−−vts ! Suc i} ∧ Suc 0 ≤ i ∧ i ≤ n − Suc 0 )

∧ x ∈ xa
by (metis ∗ One-nat-def Suc-diff-Suc Suc-le-mono add-2-eq-Suc ′ bot-nat-0 .extremum

diff-Suc-Suc le-add-diff-inverse plus-1-eq-Suc)
moreover have

∧
x i. x ∈ {vts ! i−−vts ! Suc i}

=⇒ Suc 0 ≤ i
=⇒ i ≤ n − Suc 0
=⇒ ∃ xa. (∃ i. xa = {vts ! Suc i−−vts ! Suc (Suc i)} ∧ i ≤ n − 2 ) ∧ x ∈

xa
by (metis ∗ Suc-diff-Suc gr0-implies-Suc linorder-not-le not-less-eq-eq nu-

meral-2-eq-2 )
ultimately show ?thesis by auto

qed
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moreover have path-image (linepath a b) ∪ ?P ′-union = ?P-union
proof−

have
∧

x. x ∈ {a−−b} =⇒ ∃ xa. (∃ i. xa = {vts ! i−−vts ! Suc i} ∧ i ≤ n −
Suc 0 ) ∧ x ∈ xa

using vts ′ by fastforce
moreover have

∧
x i. x ∈ {vts ! i−−vts ! Suc i}

=⇒ ∀ xa. (∀ i≥Suc 0 . xa = {vts ! i−−vts ! Suc i} −→ ¬ i ≤ n − Suc 0 )
∨ x /∈ xa

=⇒ i ≤ n − Suc 0
=⇒ x ∈ {a−−b}
by (metis Suc-le-eq bot-nat-0 .not-eq-extremum nth-Cons-0 nth-Cons-Suc

vts ′)
ultimately show ?thesis by auto

qed
moreover have ?P = (path-image (linepath a b)) ∪ ?P ′

using Suc.prems vts ′ path-image-cons-union
by (metis One-nat-def Suc-1 vts ′-len bot-nat-0 .extremum list.size(3 ) not-less-eq-eq)
ultimately have ?case by force

}
ultimately show ?case using Suc.prems by linarith

qed

6 Loop Free Properties
lemma constant-linepath-is-not-loop-free:

shows ¬(loop-free ((linepath a a)::real ⇒ real^2 ))
proof −

have all-zero1 :
∧

x y::real. (1 − x) ∗R (a::real^2 ) + x ∗R a = a
by auto

have all-zero2 :
∧

x y::real. (1 − y) ∗R (a::real^2 ) + y ∗R a = a
by auto

then have ∃ x::real∈{0 ..1}. ∃ y::real∈{0 ..1}. x 6= y ∧ (x = 0 −→ y 6= 1 ) ∧ (x
= 1 −→ y 6= 0 )

by (metis atLeastAtMost-iff field-lbound-gt-zero less-eq-real-def linorder-not-less
zero-less-one)
then show ?thesis

unfolding loop-free-def linepath-def
using all-zero1 all-zero2 by auto

qed

lemma doubling-back-is-not-loop-free:
assumes a 6= b
shows ¬(loop-free ((make-polygonal-path [a, b, a])::real ⇒ real^2 ))

proof −
let ?p1 = (1/4 ::real)
let ?p2 = (3/4 ::real)
have same-point: ((linepath a b) +++ (linepath b a)) (1/4 ::real) = ((linepath a

b) +++ (linepath b a)) (3/4 ::real)
unfolding linepath-def joinpaths-def by auto
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have ?p1 ∈ {0 ..1} ∧ ?p2 ∈ {0 ..1} ∧ ?p1 6= ?p2 ∧ (?p1 = 0 −→ ?p2 6= 1 ) ∧
(?p1 = 1 −→ ?p2 6= 0 )

by auto
then have ∃ x∈{0 ..1}. ∃ y∈{0 ..1}.

(linepath a b +++ linepath b a) x = (linepath a b +++ linepath b a) y
∧ x 6= y ∧ (x = 0 −→ y 6= 1 ) ∧ (x = 1 −→ y 6= 0 )

using same-point by blast
then have ¬(loop-free ((linepath a b) +++ (linepath b a)))

unfolding loop-free-def by auto
then show ?thesis using make-polygonal-path.simps

by auto
qed

lemma not-loop-free-first-component:
assumes ¬(loop-free p1 )
shows ¬(loop-free (p1+++p2 ))

proof −
obtain x y where xy-prop: 0 ≤ x x≤ 1 0 ≤ y y≤ 1 x 6= y

(x = 0 −→ y 6= 1 ) (x = 1 −→ y 6= 0 )
p1 x = p1 y

using assms unfolding loop-free-def
by auto

then have xy-prop2 : 0 ≤ x/2 x/2≤ 1/2 0 ≤ y/2 y/2≤ 1/2 x/2 6= y/2
by auto

then have (p1+++p2 ) (x/2 ) = (p1+++p2 ) (y/2 )
unfolding joinpaths-def using xy-prop(8 )
by auto

then have props: (p1 +++ p2 ) (x/2 ) = (p1 +++ p2 ) (y/2 ) ∧
(x/2 ) 6= (y/2 ) ∧ ((x/2 ) = 0 −→ (y/2 ) 6= 1 ) ∧ ((x/2 ) = 1 −→ (y/2 ) 6=

0 )
using xy-prop2 by auto

have x/2 ∈ {0 ..1} ∧ y/2 ∈ {0 ..1}
using xy-prop2 by auto

then have ∃ x∈{0 ..1}.
∃ y∈{0 ..1}.

(p1 +++ p2 ) x = (p1 +++ p2 ) y ∧
x 6= y ∧ (x = 0 −→ y 6= 1 ) ∧ (x = 1 −→ y 6= 0 )

using props
by blast

then show ?thesis
unfolding loop-free-def by auto

qed

lemma not-loop-free-second-component:
assumes pathfinish-pathstart: pathfinish p1 = pathstart p2
assumes ¬(loop-free p2 )
shows ¬(loop-free (p1+++p2 ))

proof −
obtain x y where xy-prop: 0 ≤ x x≤ 1 0 ≤ y y≤ 1 x 6= y
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(x = 0 −→ y 6= 1 ) (x = 1 −→ y 6= 0 )
p2 x = p2 y

using assms unfolding loop-free-def
by auto

then have xy-prop2 : (x + 1 )/2 ≥ 1/2 (x + 1 )/2 ≤ 1 (y + 1 )/2 ≥ 1/2 (y +
1 )/2 ≤ 1
(x + 1 )/2 6= (y + 1 )/2

by auto
have x-same: 2∗((x + 1 )/2 ) − 1 = x
by (metis add.right-neutral add-diff-eq cancel-comm-monoid-add-class.diff-cancel

class-dense-linordered-field.between-same mult-1 mult-2 times-divide-eq-left times-divide-eq-right)
have y-same: 2∗((y + 1 )/2 ) − 1 = y
by (metis add.right-neutral add-diff-eq cancel-comm-monoid-add-class.diff-cancel

class-dense-linordered-field.between-same mult-1 mult-2 times-divide-eq-left times-divide-eq-right)
have p2 (2∗((x + 1 )/2 ) − 1 ) = p2 (2∗((y + 1 )/2 ) −1 )

using xy-prop(8 ) x-same y-same
by auto

have relate-start-finish: p1 1 = p2 0
using pathfinish-pathstart
unfolding pathfinish-def pathstart-def
by auto

then have xh1 : (x + 1 )/2 = 1/2 =⇒ (p1 +++ p2 ) ((x + 1 )/2 ) = p2 x
unfolding joinpaths-def
by auto

have xh2 : (x + 1 )/2 > 1/2 =⇒ (p1 +++ p2 ) ((x + 1 )/2 ) = p2 x
using xy-prop2 unfolding joinpaths-def
using x-same by force

then have xh: (p1 +++ p2 ) ((x + 1 )/2 ) = p2 x
using xh1 xh2 xy-prop2
by linarith

have yh1 : (y + 1 )/2 = 1/2 =⇒ (p1 +++ p2 ) ((y + 1 )/2 ) = p2 y
using relate-start-finish unfolding joinpaths-def
by auto

have yh2 : (y + 1 )/2 > 1/2 =⇒ (p1 +++ p2 ) ((y + 1 )/2 ) = p2 y
using xy-prop2 unfolding joinpaths-def
using y-same by force

then have yh: (p1 +++ p2 ) ((y + 1 )/2 ) = p2 y
using yh1 yh2 xy-prop2
by linarith

then have same-eval: (p1+++p2 ) ((x + 1 )/2 ) = (p1+++p2 ) ((y + 1 )/2 )
using xh yh xy-prop(8 )
by presburger

have inset1 : (x + 1 )/2 ∈ {0 ..1}
using xy-prop2
by simp

have inset2 : (y + 1 )/2 ∈ {0 ..1}
using xy-prop2
by simp

have ∃ x∈{0 ..1}.
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∃ y∈{0 ..1}.
(p1 +++ p2 ) x = (p1 +++ p2 ) y ∧
x 6= y ∧ (x = 0 −→ y 6= 1 ) ∧ (x = 1 −→ y 6= 0 )

using xy-prop2 same-eval inset1 inset2
by fastforce

then show ?thesis
unfolding loop-free-def by auto

qed

lemma loop-free-subpath:
assumes path p
assumes u-and-v: u ∈ {0 ..1} v ∈ {0 ..1} u < v
assumes ¬ (loop-free (subpath u v p))
shows ¬ (loop-free p)

proof −
have path (subpath u v p)

using path-subpath assms by auto
then show ?thesis using simple-path-subpath assms

unfolding simple-path-def
by blast

qed

lemma loop-free-associative:
assumes path p
assumes path q
assumes path r
assumes pathfinish p = pathstart q
assumes pathfinish q = pathstart r
shows ¬ (loop-free ((p +++ q) +++ r)) ←→ ¬ (loop-free (p +++ (q +++ r)))
by (metis (mono-tags, lifting) assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 )

path-join-imp pathfinish-join pathstart-join simple-path-assoc simple-path-def )

lemma polygon-at-least-3-vertices:
assumes polygon p and

p = make-polygonal-path vts
shows card (set vts) ≥ 3

using assms
proof (induct vts rule: make-polygonal-path.induct)

case 1
then show ?case unfolding polygon-def

using constant-linepath-is-not-loop-free make-polygonal-path.simps(1 )
by (metis simple-path-def )

next
case (2 a)
then show ?case unfolding polygon-def

using constant-linepath-is-not-loop-free make-polygonal-path.simps(2 )
by (metis simple-path-def )

next
case (3 a b)
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{ assume ∗: a = b
then have False using 3 unfolding polygon-def

using constant-linepath-is-not-loop-free make-polygonal-path.simps(3 )
by (metis simple-path-def )

} moreover {assume ∗: a 6= b
then have False using 3 unfolding polygon-def closed-path-def

pathstart-def pathfinish-def using make-polygonal-path.simps(3 )
by (simp add: linepath-0 ′ linepath-1 ′)

}
ultimately show ?case

by auto
next

case (4 a b v va)
have finset: finite (set (a # b # v # va))

by blast
have subset: {a, b, v} ⊆ set (a # b # v # va)

by auto
have neq1 : a 6= b

using constant-linepath-is-not-loop-free not-loop-free-first-component
by (metis 4 .prems(2 ) make-polygonal-path.simps(4 ) polygon-def assms(1 ) sim-

ple-path-def )
have loop-free-2 : loop-free (make-polygonal-path (b # v # va))

using 4 not-loop-free-second-component
by (metis make-polygonal-path.simps(4 ) polygon-def list.distinct(1 ) nth-Cons-0

pathfinish-linepath polygon-pathstart simple-path-def )
have contra: b = v =⇒ ¬(loop-free (make-polygonal-path (b # v # va)))

using constant-linepath-is-not-loop-free[of b] make-polygonal-path.simps
not-loop-free-first-component
by (metis neq-Nil-conv)

then have neq2 : b 6= v
using loop-free-2 contra
by auto

have ¬ loop-free ((linepath a b) +++ (linepath b a))
using doubling-back-is-not-loop-free[of a b] neq1
by auto

have make-path-is: make-polygonal-path (a # b # a # va) = (linepath a b) +++
((linepath b a) +++ (make-polygonal-path (a#va)))

using make-polygonal-path.simps
by (metis (no-types, opaque-lifting) 4 .prems(1 ) 4 .prems(2 ) closed-path-def poly-

gon-def ‹¬ loop-free (linepath a b +++ linepath b a)› linepath-1 ′ min-list.cases
nth-Cons-0 pathfinish-def pathfinish-join polygon-pathstart simple-path-def )

have ¬ loop-free (((linepath a b) +++ (linepath b a)) +++ (make-polygonal-path
(a#va)))

using make-polygonal-path.simps not-loop-free-first-component
using ‹¬ loop-free (linepath a b +++ linepath b a)›
by auto

then have ¬ loop-free (make-polygonal-path (a # b # a # va))
using loop-free-associative
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by (metis make-polygonal-path-gives-path list.discI make-path-is nth-Cons-0
path-linepath pathfinish-linepath pathstart-linepath polygon-pathstart)

then have neq3 : v 6= a
using 4
using polygon-def simple-path-def by blast

have card-3 : card {a, b, v} = 3
using neq1 neq2 neq3
by auto

then show ?case
using subset finset
by (metis card-mono)

qed

lemma polygon-vertices-length-at-least-4 :
assumes polygon p and

p = make-polygonal-path vts
shows length vts ≥ 4

proof −
have card-set: card (set vts) ≥ 3

using polygon-at-least-3-vertices assms
by blast

have len-gt3 : length vts ≥ 3
using card-length local.card-set order-trans by blast

then have non-empty: vts 6= []
using card-set
by auto

have eq: p 0 = p 1
using assms unfolding polygon-def closed-path-def pathstart-def pathfinish-def

by auto
have p0 : p 0 = vts ! 0

using polygon-pathstart[OF non-empty] using assms unfolding pathstart-def
by auto

have p1 : p 1 = vts ! (length vts − 1 )
using polygon-pathfinish[OF non-empty] using assms unfolding pathfinish-def
by auto

have vts ! 0 = vts ! (length vts −1 )
using assms unfolding polygon-def
using p0 p1 eq by auto

then have set vts = set (drop 1 vts)
using len-gt3
by (smt (verit, best) Cons-nth-drop-Suc Suc-eq-plus1 Suc-le-eq add.commute

add-0 add-leD2 drop0 dual-order .refl insert-subset last.simps last-conv-nth last-in-set
list.distinct(1 ) list.set(2 ) numeral-3-eq-3 order-antisym-conv)

then have length (drop 1 vts) ≥ 3
using card-set
by (metis dual-order .trans length-remdups-card-conv length-remdups-leq)

then show ?thesis
using card-set
by (metis One-nat-def Suc-1 Suc-eq-plus1 Suc-pred add-Suc-right length-drop
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length-greater-0-conv non-empty not-less-eq-eq numeral-3-eq-3 numeral-Bit0 )
qed

lemma linepath-loop-free:
assumes a 6= b
shows loop-free (linepath a b)
unfolding loop-free-def linepath-def
by (smt (z3 ) add.assoc add.commute add-scaleR-degen assms diff-add-cancel

scaleR-left-diff-distrib)

7 Explicit Linepath Characterization of Polygonal
Paths

lemma triangle-linepath-images:
fixes x :: real
assumes vts = [a, b, c]
assumes p = make-polygonal-path vts
shows x ∈ {0 ..1/2} =⇒ p x = ((linepath a b)) (2∗x)
x ∈ {1/2 ..1} =⇒ p x = ((linepath b c)) (2∗x − 1 )

proof−
fix x :: real
assume x ∈ {0 ..1/2}
thus p x = ((linepath a b)) (2∗x)

unfolding assms
using make-polygonal-path.simps(4 )[of a b c Nil] unfolding joinpaths-def by

presburger
next

fix x :: real
assume ∗: x ∈ {1/2 ..1}
{ assume x > 1/2

then have p x = ((linepath b c)) (2∗x − 1 )
unfolding assms
using make-polygonal-path.simps(4 )[of a b c Nil] unfolding joinpaths-def by

force
} moreover
{ assume x = 1/2

then have p x = b ∧ ((linepath b c)) (2∗x − 1 ) = b
unfolding assms
using make-polygonal-path.simps(4 )[of a b c Nil] unfolding joinpaths-def
by (simp add: linepath-def mult.commute)

}
ultimately show p x = ((linepath b c)) (2∗x − 1 ) using ∗ by fastforce

qed

lemma polygon-linepath-images1 :
fixes n:: nat
assumes n ≥ 3
assumes length ell = n
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assumes x ∈ {0 ..1/2}
shows make-polygonal-path ell x = ((linepath (ell ! 0 ) (ell ! 1 ))) (2∗x)

proof −
have make-polygonal-path ell = linepath (ell ! 0 ) (ell ! 1 ) +++ make-polygonal-path

(drop 1 ell)
using make-polygonal-path.simps
by (smt (verit, del-insts) numeral-3-eq-3 Cons-nth-drop-Suc One-nat-def Suc-1

Suc-eq-plus1 add-Suc-right assms(1 ) assms(2 ) drop0 length-greater-0-conv less-add-Suc2
list.size(3 ) not-numeral-le-zero nth-Cons-0 numeral-Bit0 order-less-le-trans plus-1-eq-Suc)

then show ?thesis
using assms make-polygonal-path.simps
by (simp add: joinpaths-def )

qed

lemma sum-insert [simp]:
assumes x /∈ F and finite F
shows (

∑
y∈insert x F . P y) = (

∑
y∈F . P y) + P x

using assms insert-def by(simp add: add.commute)

lemma sum-of-index-diff [simp]:
fixes f :: nat ⇒ ′a::comm-monoid-add
shows (

∑
i∈{a..<a+b}. f (i−a)) = (

∑
i∈{..<b}. f (i))

proof (induction b)
case 0
then show ?case by simp

next
case (Suc b)
then show ?case by simp

qed

lemma sum-of-index-diff2 [simp]:
fixes f :: nat ⇒ ′a::comm-monoid-add
shows (

∑
i∈{a+c..b+c}. f (i)) = (

∑
i∈{a..b}. f (i+c))

using Set-Interval.comm-monoid-add-class.sum.shift-bounds-cl-nat-ivl by blast

lemma sum-split [simp]:
fixes f :: nat ⇒ ′a::comm-monoid-add
assumes c ∈ {a..b}
shows (

∑
i ∈ {a..b}. f i) = (

∑
i ∈ {a..c}. f i) + (

∑
i ∈ {c+1 ..b}. f i)

by (metis Suc-eq-plus1 Suc-le-mono assms atLeastAtMost-iff atLeastLessThanSuc-atLeastAtMost
le-SucI sum.atLeastLessThan-concat)

lemma summation-helper :
fixes x :: real
fixes k :: nat
assumes 1 ≤ k
shows (2 ::real) ∗ (

∑
i = 1 ..k. 1 / 2 ^ i) − 1 = (

∑
i = 1 ..(k−1 ). (1 / (2^i)))
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proof−
have frac-cancel: ∀ i::nat ≥ 1 . 2 / (2^i) = 2 / (2 ∗ (2 ::real)^(i−1 ))

using power .simps(2 )[of 2 ::real] by (metis Suc-diff-le diff-Suc-1 )
have (2 ::real) ∗ (

∑
i = 1 ..k. 1 / 2^i) = (

∑
i = 1 ..k. (2 / 2^i))

by (simp add: sum-distrib-left)
also have ... = (

∑
i = 1 ..k. (2 / (2 ∗ 2^(i−1 )))) using frac-cancel by simp

also have ... = (
∑

i = 1 ..k. (1 / (2^(i−1 )))) by force
also have ... = (

∑
i = 1 ..<(k+1 ). (1 / (2^(i−1 ))))

using Suc-eq-plus1 atLeastLessThanSuc-atLeastAtMost by presburger
also have ... = (

∑
i ∈ {..<k}. (1 / (2^i)))

using sum-of-index-diff [of λi. (1 / 2^i) 1 k] by simp
finally have (2 ::real) ∗ (

∑
i = 1 ..k. 1 / 2 ^ i) = (

∑
i = 0 ..(k−1 ). (1 / (2^i)))

by (metis assms atLeast0AtMost diff-Suc-1 lessThan-Suc-atMost nat-le-iff-add
plus-1-eq-Suc)

then have (2 ::real) ∗ (
∑

i = 1 ..k. 1 / 2 ^ i) − 1 = (
∑

i = 0 ..(k−1 ). (1 /
(2^i))) − 1

by auto
also have ... = (

∑
i = 1 ..(k−1 ). (1 / (2^i))) + (1/2^0 ) − 1

using sum-insert[of 0 {1 ..k−1} power (1/2 )]
by (simp add: Icc-eq-insert-lb-nat add.commute)

also have ... = (
∑

i = 1 ..(k−1 ). (1 / (2^i))) by force
finally show (2 ::real) ∗ (

∑
i = 1 ..k. 1 / 2 ^ i) − 1 = (

∑
i = 1 ..(k−1 ). (1 /

(2^i))) .
qed

lemma polygon-linepath-images2 :
fixes n k:: nat
fixes ell:: (real^2 ) list
fixes f :: nat ⇒ real ⇒ real
assumes n ≥ 3
assumes 0 ≤ k ∧ k ≤ n − 3
assumes length ell = n
assumes p: p = make-polygonal-path ell
assumes f = (λk x. (x − (

∑
i ∈ {1 ..k}. 1/(2^i))) ∗ (2^(k+1 )))

assumes x ∈ {(
∑

i ∈ {1 ..k}. 1/(2^i))..(
∑

i ∈ {1 ..(k + 1 )}. 1/(2^i))}
shows p x = ((linepath (ell ! k) (ell ! (k+1 )) (f k x)))
using assms

proof (induct n arbitrary: ell k x p)
case 0
then show ?case by auto

next
case (Suc n)
{ assume ∗: k = 0

have x: x ∈ {0 ..1/2} using ∗ Suc.prems(6 ) by simp
moreover have f k x = 2∗x using ∗ Suc.prems(5 ) by simp
ultimately have ?case
using polygon-linepath-images1 [of Suc n ell x , OF Suc.prems(1 ) Suc.prems(3 )

x] ∗
by (simp add: Suc.prems(4 ))
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} moreover
{ assume ∗: k ≥ 1

then have suc-n: Suc n > 3 using Suc.prems(2 ) by linarith
then have ell-is: ell = (ell!0 ) # (ell!1 ) # (ell!2 ) # (drop 3 ell)

using Suc.prems(3 )
by (metis Cons-nth-drop-Suc One-nat-def Suc-1 Suc-le-lessD drop0 nat-less-le

numeral-3-eq-3 )
then have ell ′-is: drop 1 ell = (ell!1 ) # (ell!2 ) # (drop 3 ell)

by (metis One-nat-def diff-Suc-1 drop0 drop-Cons-numeral numerals(1 ))
let ?ell ′ = drop 1 ell
have len-ell ′: length ?ell ′ > 2 using suc-n Suc.prems(3 ) by simp
let ?p ′ = make-polygonal-path ?ell ′
have p-tl: p = (linepath (ell ! 0 ) (ell ! 1 )) +++ make-polygonal-path (drop 1

ell)
using Suc.prems(4 ) Suc.prems(3 ) ∗ make-polygonal-path.simps ell-is ell ′-is
by metis

have (
∑

i = 1 ..k. 1 / (2 ^ i::real)) ≥ (
∑

i = 1 ..1 . 1 / (2 ^ i::real))
using Suc.prems(2 ) ∗

proof (induct k)
case 0
then show ?case by auto

next
case (Suc k)
{ assume ∗: 1 = Suc k

then have ?case by auto
} moreover {assume ∗: 1 < Suc k

then have 1 ≤ k ∧ k ≤ Suc n − 3
using Suc.prems by auto

then have ind-h: (
∑

i = 1 ..1 . 1 / (2 ^ i::real)) ≤ (
∑

i = 1 ..k. 1 / 2 ^ i)
using Suc.hyps Suc.prems(2 ) by blast

have (
∑

i = 1 ..Suc k. 1 /( 2 ^ i::real)) = 1/(2^(Suc k)) + (
∑

i = 1 ..k. 1
/ (2 ^ i::real))

using ∗ by simp
then have (

∑
i = 1 ..Suc k. 1 /( 2 ^ i::real)) > (

∑
i = 1 ..k. 1 / (2 ^

i::real))
by simp

then have ?case using ind-h by linarith
}
ultimately show ?case by linarith

qed
then have (

∑
i = 1 ..k. 1 / (2 ^ i::real)) ≥ 1/2

by auto
then have x-gteq: x ≥ 1/2 using Suc.prems(2 ,6 )

by (meson atLeastAtMost-iff order-trans)
have xonehalf : p x = ?p ′ (2∗x − 1 ) if x-is: x = 1/2 using p-tl joinpaths-def
proof −

have p x = (linepath (ell ! 0 ) (ell ! 1 )) 1
using p-tl joinpaths-def x-is
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by (metis mult.commute nle-le nonzero-divide-eq-eq zero-neq-numeral)
then have p x = ell ! 1

using polygon-pathfinish[of [(ell ! 0 ), (ell ! 1 )]] unfolding pathfinish-def
using make-polygonal-path.simps by simp

then have p x = make-polygonal-path (drop 1 ell) 0
using polygon-pathstart[of drop 1 ell] ∗ len-ell ′ unfolding pathstart-def
by simp

then show ?thesis using x-is by force
qed

have x-gtonehalf : x > 1/2 =⇒ p x = ?p ′ (2∗x − 1 ) using p-tl joinpaths-def
by (smt (verit, ccfv-threshold))

then have px: p x = ?p ′ (2∗x − 1 ) using xonehalf x-gtonehalf x-gteq
by linarith

{ assume k-eq: k = 1
then have f k x = (x − (

∑
i = 1 ..1 . 1 / 2 ^ i)) ∗ 2 ^ 2

using Suc.prems(5 ) by auto
then have fkx: f k x = 4∗x − 2

by auto
have x ∈ {1/2 ..3/4}

using k-eq Suc.prems(6 ) by auto
then have 2∗x − 1 ∈ {0 ..1/2} by simp
then have ?p ′ (2∗x − 1 ) = (linepath (?ell ′!0 ) (?ell ′!1 )) (4∗x − 2 )

using Suc.hyps[of k ?ell ′ ?p ′ 2∗x − 1 ] Suc.prems
by (smt (verit, ccfv-SIG) suc-n diff-Suc-1 leD le-Suc-eq length-drop poly-

gon-linepath-images1 )
also have ... = (linepath (ell!1 ) (ell!2 )) (4∗x − 2 )

using ∗ Suc.prems(3 )
using ell ′-is by fastforce

also have ... = ((linepath (ell ! k) (ell ! (k+1 )) (f k x))) using k-eq
Suc.prems(5 ) fkx

by (smt (verit, del-insts) nat-1-add-1 )
finally have ?case using px by simp

} moreover
{ assume k-gt: k > 1
then have fkminus: f (k−1 ) (2 ∗ x − 1 ) = ((2 ∗ x − 1 ) − (

∑
i = 1 ..(k−1 ).

1 / 2 ^ i)) ∗ 2 ^ k
using Suc.prems(5 ) by force

have fk: f k x = (x − (
∑

i = 1 ..k. 1 / 2 ^ i)) ∗ 2 ^ (k + 1 )
using Suc.prems(5 ) by blast

have f-is: f (k − 1 ) (2 ∗ x − 1 ) = f k x
proof−

have i: ∀ i::nat ∈ {2 ..k}. i − 2 + 2 = i
by auto

have f (k − 1 ) (2 ∗ x − 1 ) = (2 ∗ x − 1 − (
∑

i = 1 ..k − 1 . 1 / 2 ^ i))
∗ 2 ^ (k − 1 + 1 )

unfolding Suc.prems(5 ) by auto
also have ... = (x − 1/2 − (

∑
i = 1 ..k − 1 . 1 / 2^i) / 2 ) ∗ 2 ^ (k + 1 )

using k-gt by fastforce
also have ... = (x − 1/2 − (

∑
i = 1 ..k − 1 . (1 / 2^i) / 2 )) ∗ 2 ^ (k + 1 )
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by (simp add: sum-divide-distrib)
also have ... = (x − 1/2 − (

∑
i = 1 ..k − 1 . (1 / 2 )^i ∗ 1/2 )) ∗ 2 ^ (k

+ 1 )
by (simp add: power-divide)

also have ... = (x − 1/2 − (
∑

i = 1 ..k − 1 . (1 / 2 )^(i+1 ))) ∗ 2 ^ (k +
1 ) by force

also have ... = (x − 1/2 − (
∑

i = 1 ..<1 + (k − 1 ). (1 / 2 )^(i+1 ))) ∗ 2
^ (k + 1 )

using Suc-eq-plus1-left atLeastLessThanSuc-atLeastAtMost by presburger
also have ... = (x − 1/2 − (

∑
i = 1 ..<1 + (k − 1 ). (1 / 2 )^(i − 1 +

2 ))) ∗ 2 ^ (k + 1 )
by auto

also have ... = (x − 1/2 − (
∑

i ∈ {..<k − 1}. ((1 / 2 )^(i+2 )))) ∗ 2 ^
(k + 1 )

using sum-of-index-diff [of (λx. (1/2 )^(x+2 )) 1 k−1 ] by metis
also have ... = (x − 1/2 − (

∑
i ∈ {2 ..<k − 1 + 2}. ((1 / 2 )^(i − 2 +

2 )))) ∗ 2 ^ (k + 1 )
using sum-of-index-diff [of (λx. (1/2 )^(x+2 )) 2 k−1 ] by (smt (verit)

add.commute)
also have ... = (x − 1/2 − (

∑
i ∈ {2 ..k}. ((1 / 2 )^(i − 2 + 2 )))) ∗ 2 ^

(k + 1 )
using k-gt atLeastLessThanSuc-atLeastAtMost by force

also have ... = (x − 1/2 − (
∑

i ∈ {2 ..k}. ((1 / 2 )^(i)))) ∗ 2 ^ (k + 1 )
using i by force

also have ... = (x − (1/2 + (
∑

i ∈ {2 ..k}. ((1 / 2 )^(i))))) ∗ 2 ^ (k + 1 )
by argo

also have ... = (x − (
∑

i = 1 ..k. (1 / 2 )^(i))) ∗ 2 ^ (k + 1 )
using sum-insert[of 1 {2 ..k} λx. (1/2 )^x]
by (smt (verit, ccfv-SIG) Suc-1 Suc-n-not-le-n atLeastAtMost-iff atLeast-

AtMost-insertL finite-atLeastAtMost k-gt less-imp-le-nat power-one-right)
also have ... = (x − (

∑
i = 1 ..k. 1 / (2^i))) ∗ 2 ^ (k + 1 ) by (meson

power-one-over)
also have ... = f k x using fk by argo
finally show ?thesis .

qed

have ih1 : 3 ≤ n using suc-n by force
have ih2 : 0 ≤ k − 1 ∧ k − 1 ≤ n − 3 using k-gt Suc.prems(2 ) Suc.prems(3 )

by auto
have ih3 : length ?ell ′ = n using Suc.prems(3 ) by auto
have ih4 : ?p ′ = make-polygonal-path ?ell ′ by blast

have 2∗x − 1 ≥ (
∑

i ∈ {1 ..k−1}. 1/(2^i))
proof−

have (2 ::real) ∗ (
∑

i = 1 ..k. 1 / 2 ^ i) − 1 = (
∑

i = 1 ..(k−1 ). (1 /
(2^i)))

using summation-helper k-gt by auto
moreover have x ≥ (

∑
i = 1 ..k. 1 / 2 ^ i) using Suc.prems(6 ) by

presburger
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ultimately show 2∗x − 1 ≥ (
∑

i ∈ {1 ..k−1}. 1/(2^i)) by linarith
qed
moreover have 2∗x − 1 ≤ (

∑
i ∈ {1 ..k}. 1/(2^i))

proof−
have (2 ::real) ∗ (

∑
i ∈ {1 ..(k + 1 )}. 1/(2^i)) − 1 = (

∑
i ∈ {1 ..k}.

1/(2^i))
using summation-helper [of k + 1 ] k-gt by auto

moreover have x ≤ (
∑

i ∈ {1 ..(k + 1 )}. 1/(2^i)) using Suc.prems(6 )
by presburger

ultimately show ?thesis by linarith
qed
ultimately have 2∗x − 1 ∈ {(

∑
i ∈ {1 ..k−1}. 1/(2^i))..(

∑
i ∈ {1 ..k}.

1/(2^i))} by presburger
then have ih5 : 2∗x − 1 ∈ {(

∑
i ∈ {1 ..k−1}. 1/(2^i))..(

∑
i ∈ {1 ..k−1+1}.

1/(2^i))}
using k-gt by auto

have p = make-polygonal-path (ell!0 # ell!1 # ell!2 # (drop 3 ell))
using ell-is Suc.prems(4 ) by argo

then have p = (linepath (ell!0 ) (ell!1 )) +++ make-polygonal-path (ell!1 #
ell!2 # (drop 3 ell))

using make-polygonal-path.simps by auto
then have p x = ?p ′ (2∗x − 1 ) unfolding joinpaths-def using x-gteq px by

fastforce
also have ... = (linepath (?ell ′!(k−1 )) (?ell ′!k)) (f (k−1 ) (2∗x − 1 ))
using Suc.hyps[OF ih1 ih2 ih3 ih4 Suc.prems(5 ), of 2∗x − 1 , OF ih5 ] using

k-gt by auto
also have ... = (linepath (ell!k) (ell!(k+1 ))) (f (k−1 ) (2∗x − 1 ))

using Suc.prems(2 ) Suc.prems(3 )
by (smt (verit, del-insts) add-implies-diff ell ′-is ell-is k-gt nth-Cons-pos

order-le-less-trans trans-less-add1 zero-less-one-class.zero-le-one)
also have ... = (linepath (ell!k) (ell!(k+1 ))) (f k x)

using f-is by auto
finally have ?case .

}
ultimately have ?case using Suc.prems(2 ) ∗ by linarith

}
ultimately show ?case

using Suc.prems by linarith
qed

lemma polygon-linepath-images3 :
fixes n k:: nat
fixes ell:: (real^2 ) list
assumes n ≥ 3
assumes length ell = n
assumes p = make-polygonal-path ell
assumes x ∈ {(

∑
i ∈ {1 ..n−2}. 1/(2^i))..1}

assumes f = (λx. (x − (
∑

i ∈ {1 ..n−2}. 1/(2^i))) ∗ (2^(n−2 )))
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shows p x = (linepath (ell ! (n−2 )) (ell ! (n−1 ))) (f x)
using assms

proof (induct n arbitrary: ell k x p f )
case 0
then show ?case by auto

next
case (Suc n)
{ assume ∗: Suc n = 3

then have ell-is: ell = [ell ! 0 , ell ! 1 , ell ! 2 ]
using Suc.prems(2 )

by (metis Cons-nth-drop-Suc One-nat-def Suc-1 cancel-comm-monoid-add-class.diff-cancel
drop0 length-0-conv length-drop lessI less-add-Suc2 numeral-3-eq-3 plus-1-eq-Suc
zero-less-Suc)

have (
∑

i = 1 ..(Suc n)−2 . 1 / ((2 ^ i)::real)) = (
∑

i∈{1}. 1 / ((2 ^ i)::real))
by (simp add: ∗)

then have eq1 : (
∑

i = 1 ..(Suc n)−2 . 1 / ((2 ^ i)::real)) = 1/2
by auto

then have f-is: f = (λx. (x − (1/2 )) ∗ 2 ) using ∗ Suc.prems(5 ) by auto
have x ∈ {(1/2 )::real..1} using eq1 Suc.prems(4 ) by metis
moreover then have p x = linepath (ell ! 1 ) (ell ! 2 ) (2 ∗ x − 1 )

using triangle-linepath-images(2 ) using ell-is Suc.prems(3 ) by blast
moreover have f x = 2∗x − 1 using f-is by simp
ultimately have p x = (linepath (ell ! ((Suc n)−2 )) (ell ! ((Suc n)−1 ))) (f x)

using ∗ Suc.prems ell-is
by (metis One-nat-def Suc-1 diff-Suc-1 diff-Suc-Suc numeral-3-eq-3 )

} moreover
{ assume ∗: Suc n > 3

let ?ell ′ = drop 1 ell
let ?p ′ = make-polygonal-path ?ell ′
let ?x ′ = 2∗x − 1
let ?f ′ = (λx. (x − (

∑
i ∈ {1 ..n−2}. 1/(2^i))) ∗ (2^(n−2 )))

have ell-is: ell = ell!0 # ell!1 # ell!2 # (drop 3 ell)
by (metis ∗ Cons-nth-drop-Suc One-nat-def Suc.prems(2 ) Suc-1 drop0 le-Suc-eq

linorder-not-less numeral-3-eq-3 zero-less-Suc)
then have p-tl: p = (linepath (ell ! 0 ) (ell ! 1 )) +++ make-polygonal-path

(drop 1 ell)
using make-polygonal-path.simps(4 )[of ell!0 ell!1 ell!2 drop 3 ell]
by (metis One-nat-def Suc.prems(3 ) drop-0 drop-Suc-Cons)

have sum-split: (
∑

i = 1 ..Suc n − 2 . 1 / (2 ^ i::real)) = 1/(2^1 ::real) + (
∑

i
= 2 ..Suc n − 2 . 1 / (2 ^ i::real))

using ∗
by (metis Suc-1 Suc-eq-plus1 Suc-lessD add-le-imp-le-diff diff-Suc-Suc eval-nat-numeral(3 )

less-Suc-eq-le sum.atLeast-Suc-atMost)
let ?k = Suc n
have helper-arith:

∧
i. i > 0 =⇒ 1 / (2 ^ i::real) > 0 by simp

have k ≥ 2 =⇒ (
∑

i = 2 ..k. 1 / (2 ^ i::real)) > 0 for k
proof (induct k)

case 0
then show ?case by auto
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next
case (Suc k)
{assume ∗: Suc k = 2

then have (
∑

i = 2 ..Suc k. 1 / (2 ^ i::real)) = (
∑

i = 2 ..2 . 1 / (2 ^
i::real))

by presburger
then have ?case

using helper-arith
by (simp add: ∗)

} moreover {assume ∗: Suc k > 2
then have ind-h: 0 < (

∑
i = 2 ..k. 1 / (2 ^ i::real))

using Suc.hyps less-Suc-eq-le by blast
have (

∑
i = 2 ..Suc k. 1 / (2 ^ i::real)) = (

∑
i = 2 ..k. 1 / (2 ^ i::real))

+ 1 / (2 ^ (Suc k)::real)
using Suc.prems add.commute by auto

then have ?case using ind-h helper-arith
by (smt (verit) divide-less-0-1-iff zero-le-power)

}
ultimately show ?case

using Suc.prems by linarith
qed
then have (

∑
i = 2 ..Suc n − 2 . 1 / (2 ^ i::real)) > 0

using ∗ by auto
then have (

∑
i = 1 ..Suc n − 2 . 1 / (2 ^ i::real)) > 1/2

using sum-split by auto
then have x > 1/2 using Suc.prems(4 )

by (smt (verit, del-insts) atLeastAtMost-iff linorder-not-le order-le-less-trans)
then have p ′x ′-eq-px: ?p ′ ?x ′ = p x unfolding joinpaths-def by (simp add:

joinpaths-def p-tl)

have 1 : n ≥ 3 using ∗ by auto
have 2 : length ?ell ′ = n using Suc.prems(2 ) by simp
have 3 : ?p ′ = make-polygonal-path ?ell ′ by auto
have x ≤ 1 using Suc.prems(4 ) by auto
then have x ′-lteq: 2∗x − 1 ≤ 1 by auto
have x ≥ (

∑
i = 1 ..Suc n − 2 . 1 / 2 ^ i)

using Suc.prems(4 ) by auto
then have x ′-gteq: ?x ′ ≥ (

∑
i = 1 ..n − 2 . 1 / 2 ^ i)

using summation-helper [of Suc n − 2 ] ∗
by (smt (verit) Suc.prems(1 ) Suc-1 Suc-diff-le Suc-leD Suc-le-mono diff-Suc-1

diff-Suc-eq-diff-pred eval-nat-numeral(3 ))
have 4 : ?x ′ ∈ {(

∑
i = 1 ..n − 2 . 1 / 2 ^ i)..1} using Suc.prems(4 )

using summation-helper [of Suc n − 2 ] ∗ x ′-lteq x ′-gteq atLeastAtMost-iff by
blast

have 5 : ?f ′ = (λx. (x − (
∑

i = 1 ..n − 2 . 1 / 2 ^ i)) ∗ 2 ^ (n − 2 )) by auto
have f x = (x − (

∑
i = 1 ..Suc n − 2 . 1 / 2 ^ i)) ∗ 2 ^ (n − 2 )∗2

proof −
have (λr . (r − (

∑
n = 1 ..n − 1 . 1 / 2 ^ n)) ∗ 2 ^ (n − 1 )) = f

by (simp add: Suc.prems(5 ))
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then have 2 ^ (n − 1 ) ∗ (x − (
∑

n = 1 ..n − 1 . 1 / 2 ^ n)) = f x
using Groups.mult-ac(2 ) by blast

then have (x − (
∑

n = 1 ..n − 1 . 1 / 2 ^ n)) ∗ (2 ^ (n − Suc 1 ) ∗ 2 ) = f x
by (metis (no-types) Groups.mult-ac(2 ) Suc.prems(2 ) diff-Suc-1 diff-Suc-Suc

ell-is length-Cons power .simps(2 ))
then show ?thesis

by (metis (no-types) Groups.mult-ac(1 ) Suc-1 diff-Suc-Suc)
qed
then have fx-is: f x = (2∗x − 2∗(

∑
i = 1 ..Suc n − 2 . 1 / 2 ^ i))∗ 2 ^ (n −

2 )
by argo

have sum-is: 1 + (
∑

i = 1 ..n − 2 . 1 /( 2 ^ i::real)) = 2∗(
∑

i = 1 ..Suc n −
2 . 1 / (2 ^ i::real))

proof −
have sum-ish1 : (

∑
i = 1 ..Suc n − 2 . 1 / (2 ^ i::real)) = 1/2 + (

∑
i =

2 ..Suc n − 2 . 1 / (2 ^ i::real))
by (metis power-one-right sum-split)

have n ≥ 2 =⇒ 2∗(
∑

i = 2 ..n − 1 . 1 / (2 ^ i::real)) = (
∑

i = 1 ..n − 2 .
1 /( 2 ^ i::real))

proof (induct n)
case 0
then show ?case by auto

next
case (Suc n)
{assume ∗: Suc n = 2

then have ?case by auto
} moreover {assume ∗: Suc n > 2

then have ind-h: 2 ∗ (
∑

i = 2 ..n − 1 . 1 / (2 ^ i::real)) = (
∑

i = 1 ..n
− 2 . 1 / (2 ^ i::real))

using Suc by fastforce
have mult: 2∗1/(2^(Suc n − 1 )::real) = 1/(2^(n − 1 )::real)

using ∗
by (smt (z3 ) One-nat-def add-diff-inverse-nat bot-nat-0 .not-eq-extremum

diff-Suc-1 div-by-1 le-zero-eq less-Suc-eq-le mult.commute nonzero-mult-div-cancel-left
nonzero-mult-divide-mult-cancel-left plus-1-eq-Suc power-Suc zero-less-numeral)

have sum-prop:
∧

a::nat.
∧

f ::nat⇒real.(
∑

i = 1 ..a. (f i)) + (f (a+1 )) =
(
∑

i = 1 ..a+1 . (f i))
by auto

have n − 2 + 1 = n − 1
using ∗ by auto

then have sum-same: (
∑

i = 1 ..n − 2 . 1 / (2 ^ i::real)) + 1 / 2 ^ (n
− 1 ) = (

∑
i = 1 ..n − 1 . 1 / (2 ^ i::real))

using ∗ sum-prop[of λi. 1 / (2 ^ i::real) n−2 ] by metis
have 2 ∗ (

∑
i = 2 ..Suc n − 1 . 1 / (2 ^ i::real)) = 2 ∗ ((

∑
i = 2 ..n −

1 . 1 / (2 ^ i::real)) + 1/(2^(Suc n − 1 )::real))
using ∗

by (smt (z3 ) add-2-eq-Suc add-diff-inverse-nat diff-Suc-1 distrib-left-numeral
ind-h not-less-eq sum.cl-ivl-Suc)

then have 2 ∗ (
∑

i = 2 ..Suc n − 1 . 1 / (2 ^ i::real)) = (
∑

i = 1 ..n −
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2 . 1 / (2 ^ i::real)) + 2∗1/(2^(Suc n − 1 )::real)
using ind-h by argo

then have 2 ∗ (
∑

i = 2 ..Suc n − 1 . 1 / (2 ^ i::real)) = (
∑

i = 1 ..n −
2 . 1 / (2 ^ i::real)) + 1/(2^(n − 1 )::real)

using ∗ mult by auto
then have ?case using sum-same by auto

}
ultimately show ?case by fastforce

qed
then have sum-ish2 :2∗(

∑
i = 2 ..Suc n − 2 . 1 / (2 ^ i::real)) = (

∑
i =

1 ..n − 2 . 1 /( 2 ^ i::real))
using ∗ by auto

show ?thesis using sum-ish1 sum-ish2 by simp
qed
have ?p ′ ?x ′ = (linepath (?ell ′ ! (n−2 )) (?ell ′ ! (n−1 ))) (?f ′ ?x ′)

using Suc.hyps[OF 1 2 3 4 5 ] by blast
moreover have ?f ′ ?x ′ = f x

using Suc.prems(5 ) fx-is sum-is
by (smt (verit, best))

moreover have ?ell ′ ! (n−2 ) = ell ! ((Suc n)−2 )
by (metis Nat.diff-add-assoc One-nat-def Suc.prems(1 ) Suc.prems(2 ) Suc-1

add-diff-cancel-left le-add1 nth-drop numeral-3-eq-3 plus-1-eq-Suc)
moreover have ?ell ′ ! (n−1 ) = ell ! ((Suc n)−1 )

using Suc.prems(1 ) Suc.prems(2 ) by auto
ultimately have ?case using p ′x ′-eq-px by presburger

}
ultimately show ?case using Suc.prems(1 ) by linarith

qed

8 A Triangle is a Polygon
lemma not-collinear-linepaths-intersect-helper :

assumes not-collinear : ¬collinear {a,b,c}
assumes 0 ≤ k1
assumes k1 ≤ 1
assumes 0 ≤ k2
assumes k2 ≤ 1
assumes eo: k2 = 0 =⇒ k1 6= 1
shows ¬ ((linepath a b) k1 = (linepath b c) k2 )

proof −
have a-neq-b:a 6= b

using not-collinear
by auto

then have nonz-1 : a − b 6= 0
by auto

have b-neq-c: b 6= c
using not-collinear
by auto

then have nonz-2 : b − c 6= 0
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by auto
have ¬ collinear {a−b, 0 , c−b}

using not-collinear
by (metis NO-MATCH-def collinear-3 insert-commute)

then have notcollinear : ¬ collinear { 0 , a−b, c−b}
by (simp add: insert-commute)

have (1 − k1 ) ∗R a + k1 ∗R b = (1 − k2 ) ∗R b + k2 ∗R c =⇒ (a − k1∗R a)
+ k1 ∗R b = (b − k2 ∗R b) + k2 ∗R c

by (metis add-diff-cancel scaleR-collapse)
then have (1 − k1 ) ∗R a + k1 ∗R b = (1 − k2 ) ∗R b + k2 ∗R c =⇒ (1 − k1 )
∗R a + k1 ∗R b − b = − k2 ∗R b + k2 ∗R c

by (metis (no-types, lifting) add-diff-cancel-left scaleR-collapse scaleR-minus-left
uminus-add-conv-diff )

then have (1 − k1 ) ∗R a + k1 ∗R b = (1 − k2 ) ∗R b + k2 ∗R c =⇒ (1 − k1 )
∗R a + k1 ∗R b − b = k2 ∗R (c−b)

by (simp add: scaleR-right-diff-distrib)
then have rewrite: (1 − k1 ) ∗R a + k1 ∗R b = (1 − k2 ) ∗R b + k2 ∗R c =⇒

(1−k1 )∗R(a − b) = k2 ∗R (c−b)
by (metis add-diff-cancel-right scaleR-collapse scaleR-right-diff-distrib)

{assume ∗: k2 6= 0
then have (1 − k1 ) ∗R a + k1 ∗R b = (1 − k2 ) ∗R b + k2 ∗R c =⇒ c − b =

((1−k1 )/k2 )∗R(a − b)
using rewrite assms(2−3 )
by (smt (verit, ccfv-SIG) vector-fraction-eq-iff )

then have (1 − k1 ) ∗R a + k1 ∗R b = (1 − k2 ) ∗R b + k2 ∗R c =⇒ collinear
{0 , a−b, c−b}

using collinear-lemma[of a −b c−b] by auto
then have (1 − k1 ) ∗R a + k1 ∗R b = (1 − k2 ) ∗R b + k2 ∗R c =⇒ False

using notcollinear by auto
} moreover {assume ∗: k2 = 0

then have k1 6=1
using assms by auto

then have (1 − k1 ) ∗R a + k1 ∗R b = (1 − k2 ) ∗R b + k2 ∗R c =⇒ a − b =
(k2/(1−k1 )) ∗R (c−b)

using rewrite
by (smt (verit, ccfv-SIG) vector-fraction-eq-iff )

then have (1 − k1 ) ∗R a + k1 ∗R b = (1 − k2 ) ∗R b + k2 ∗R c =⇒ collinear
{0 , a−b, c−b}

using collinear-lemma[of c−b a−b]
by (simp add: insert-commute)

then have (1 − k1 ) ∗R a + k1 ∗R b = (1 − k2 ) ∗R b + k2 ∗R c =⇒ False
using notcollinear by auto

}
ultimately show ?thesis

unfolding linepath-def
by blast

qed
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lemma not-collinear-linepaths-intersect-helper-2 :
assumes not-collinear : ¬collinear {a,b,c}
assumes 0 ≤ k1
assumes k1 ≤ 1
assumes 0 ≤ k2
assumes k2 ≤ 1
assumes eo: k1 = 0 =⇒ k2 6= 1
shows ¬ ((linepath a b) k1 = (linepath c a) k2 )
using not-collinear-linepaths-intersect-helper [of c a b k2 k1 ] assms
by (simp add: insert-commute)

lemma not-collinear-loopfree-path:
∧

a b c::real^2 . ¬collinear {a,b,c} =⇒ loop-free
((linepath a b) +++ (linepath b c))
proof −

fix a b c::real^2
assume not-collinear : ¬collinear {a,b,c}
then have a-neq-b:a 6= b

by auto
have b-neq-c: b 6= c

using not-collinear
by auto

have
∧

x y::real. (linepath a b +++ linepath b c) x = (linepath a b +++ linepath
b c) y =⇒

x < y =⇒
x = 0 −→ y 6= 1 =⇒ 0 ≤ x =⇒ x ≤ 1 =⇒ 0 ≤ y =⇒ y ≤ 1 =⇒ False

proof −
fix x y:: real
assume same-eval: (linepath a b +++ linepath b c) x = (linepath a b +++

linepath b c) y
assume x-neq-y: x < y
assume x-zero-imp: x = 0 −→ y 6= 1
assume x-gt: 0 ≤ x
assume x-lt: x ≤ 1
assume y-gt: 0 ≤ y
assume y-lt: y ≤ 1
{assume ∗: x ≤ 1/2 ∧ y ≤ 1/2

then have (1 − 2 ∗ x) ∗R a + (2 ∗ x) ∗R b = (1 − 2 ∗ y) ∗R a + (2 ∗ y)
∗R b =⇒ False

using x-gt y-gt x-neq-y a-neq-b linepath-loop-free[of a b]
by (smt (z3 ) add-diff-cancel-left add-diff-cancel-right ′ add-diff-eq scaleR-cancel-left

scaleR-left-diff-distrib)
then have False

using ∗ same-eval unfolding joinpaths-def linepath-def
by auto

} moreover {assume ∗: x > 1/2 ∧ y > 1/2
have False

using x-lt y-lt x-neq-y b-neq-c linepath-loop-free[of b c]
using ∗ same-eval unfolding joinpaths-def linepath-def

by (smt (z3 ) add-diff-cancel-left add-diff-cancel-right ′ add-diff-eq scaleR-cancel-left
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scaleR-collapse scaleR-left-diff-distrib)
} moreover {assume ∗: x ≤ 1/2 ∧ y > 1/2

then have lp-eq: (linepath a b) (2 ∗ x) = (linepath b c) (2 ∗ y − 1 )
using ∗ same-eval unfolding joinpaths-def
by auto

have (2 ∗ y − 1 ) = 0 −→ (2∗x) 6= 1 ∧ 0 ≤ (2∗x) ∧ (2∗x) ≤ 1 ∧ 0 ≤ (2
∗ y − 1 ) ∧ (2 ∗ y − 1 ) ≤ 1

using x-lt x-gt x-neq-y ∗ by auto
then have False

using lp-eq not-collinear-linepaths-intersect-helper [of a b c 2∗x 2 ∗ y − 1 ]
not-collinear
using ∗ x-gt y-lt by auto

}
ultimately show False

using x-lt y-lt x-neq-y
by linarith

qed
then have

∧
x y::real. (linepath a b +++ linepath b c) x = (linepath a b +++

linepath b c) y =⇒
x 6= y =⇒
x = 0 −→ y 6= 1 =⇒ x = 1 −→ y 6= 0 =⇒ 0 ≤ x =⇒ x ≤ 1 =⇒ 0 ≤ y

=⇒ y ≤ 1 =⇒ False
by (metis linorder-less-linear)

then show loop-free (linepath a b +++ linepath b c)
unfolding loop-free-def
by (metis atLeastAtMost-iff )

qed

lemma triangle-is-polygon:
∧

a b c. ¬collinear {a,b,c} =⇒ polygon (make-triangle
a b c)
proof −

fix a b c::real^2
assume not-coll:¬collinear {a,b,c}
then have a-neq-b:a 6= b

by auto
have b-neq-c: b 6= c

using not-coll
by auto

have a-neq-c: c 6= a
using not-coll
using collinear-3-eq-affine-dependent by blast

let ?vts = [a, b, c, a]
have polygonal-path: polygonal-path (make-polygonal-path [a, b, c, a])

by (metis Collect-const UNIV-I image-eqI polygonal-path-def )
then have path: path (make-polygonal-path [a, b, c, a])

by auto
then have closed-path: closed-path (make-polygonal-path [a, b, c, a])

unfolding closed-path-def using polygon-pathstart polygon-pathfinish
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by auto
let ?seg1 = (linepath a b) +++ (linepath b c)
have lf1 : loop-free ((linepath a b) +++ (linepath b c))

using not-collinear-loopfree-path not-coll
by auto

then have ∀ x∈{0 ..1}. ∀ y∈{0 ..1}. ?seg1 x = ?seg1 y −→ x = y
using a-neq-c unfolding loop-free-def
by (metis (no-types, lifting) path-defs(2 ) pathfinish-def pathfinish-join pathfin-

ish-linepath pathstart-join pathstart-linepath)
let ?seg2 = (linepath b c) +++ (linepath c a)
have lf2 : loop-free ((linepath b c) +++ (linepath c a))

using not-collinear-loopfree-path not-coll
by (simp add: insert-commute)

then have ∀ x∈{0 ..1}. ∀ y∈{0 ..1}. ?seg2 x = ?seg2 y −→ x = y
using a-neq-b unfolding loop-free-def
by (metis (no-types, lifting) path-defs(2 ) pathfinish-def pathfinish-join pathfin-

ish-linepath pathstart-join pathstart-linepath)
let ?seg3 = (linepath c a) +++ (linepath a b)
have lf3 : loop-free ((linepath c a) +++ (linepath a b))

using not-collinear-loopfree-path not-coll
by (simp add: insert-commute)

then have ∀ x∈{0 ..1}. ∀ y∈{0 ..1}. ?seg3 x = ?seg3 y −→ x = y
using b-neq-c unfolding loop-free-def
by (metis (no-types, lifting) path-defs(2 ) pathfinish-def pathfinish-join pathfin-

ish-linepath pathstart-join pathstart-linepath)
have mpp-is: ∀ x∈{0 ..1}. make-polygonal-path [a, b, c, a] x = ((linepath a b)

+++ (linepath b c) +++ (linepath c a)) x
by auto

have x-in-int1 : ∀ x∈{0 ..(1/2 )}. make-polygonal-path [a, b, c, a] x = ((linepath
a b)) (2∗x)

using mpp-is
unfolding joinpaths-def by auto

have x-in-int2 : ∀ x∈{1/2<..(3/4 )}. make-polygonal-path [a, b, c, a] x = ((linepath
b c)) (2∗(2∗x − 1 ))

using mpp-is unfolding joinpaths-def
by auto

have x-in-int3 : ∀ x∈{3/4<..1}. make-polygonal-path [a, b, c, a] x = ((linepath
c a)) (2 ∗ (2 ∗ x − 1 ) − 1 )

using mpp-is unfolding joinpaths-def
by auto

have
∧

x y. 0 ≤ x ∧ x ≤ 1 ∧ 0 ≤ y ∧ y ≤ 1 ∧ x 6= y ∧ (x = 0 −→ y 6= 1 ) ∧
(x = 1 −→ y 6= 0 ) =⇒ make-polygonal-path [a, b, c, a] x = make-polygonal-path
[a, b, c, a] y =⇒ False

proof −
fix x y:: real
assume big: 0 ≤ x ∧ x ≤ 1 ∧ 0 ≤ y ∧ y ≤ 1 ∧ x 6= y ∧ (x = 0 −→ y 6= 1 )

∧ (x = 1 −→ y 6= 0 )
assume false-hyp: make-polygonal-path [a, b, c, a] x = make-polygonal-path [a,

b, c, a] y
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{assume ∗: x ∈ {0 ..(1/2 )}
then have x-eval: make-polygonal-path [a, b, c, a] x = ((linepath a b)) (2∗x)

using x-in-int1 by auto
{assume ∗∗: y ∈ {0 ..(1/2 )}

then have y-eval: make-polygonal-path [a, b, c, a] y = ((linepath a b))
(2∗y)

using x-in-int1 by auto
then have ((linepath a b)) (2∗x) = ((linepath a b)) (2∗y)

using false-hyp x-eval y-eval by auto
then have False

using linepath-loop-free big ∗ ∗∗
unfolding loop-free-def

using a-neq-b add-diff-cancel-left add-diff-cancel-right ′ add-diff-eq
linepath-def scaleR-cancel-left scaleR-collapse scaleR-left-diff-distrib

by (smt (verit))
} moreover {assume ∗∗: y ∈ {(1/2 )<..(3/4 )}

then have y-eval: make-polygonal-path [a, b, c, a] y = ((linepath b c))
(2∗(2∗y − 1 ))

using x-in-int2 by auto
then have ((linepath a b)) (2∗x) = ((linepath b c)) (2∗(2∗y − 1 ))

using false-hyp x-eval y-eval by auto
then have False

using big ∗ ∗∗ not-collinear-linepaths-intersect-helper [of a b c 2∗x
(2∗(2∗y − 1 ))] not-coll

by auto
} moreover {assume ∗∗: y ∈ {(3/4 )<..1}

then have y-eval: make-polygonal-path [a, b, c, a] y = ((linepath c a))
((2 ∗ (2 ∗ y − 1 ) − 1 ))

using x-in-int3 by auto
then have ((linepath a b)) (2∗x) = ((linepath c a)) ((2 ∗ (2 ∗ y − 1 )

− 1 ))
using false-hyp x-eval y-eval by auto

then have False
using big ∗ ∗∗ not-collinear-linepaths-intersect-helper-2 [of a b c (2∗x)

((2 ∗ (2 ∗ y − 1 ) − 1 ))] not-coll
by auto

}
ultimately have False

using big
by (metis atLeastAtMost-iff greaterThanAtMost-iff linorder-not-le)

} moreover {assume ∗: x ∈ {(1/2 )<..(3/4 )}
then have x-eval: make-polygonal-path [a, b, c, a] x = ((linepath b c))

(2∗(2∗x − 1 ))
using x-in-int2 by auto

{assume ∗∗: y ∈ {0 ..(1/2 )}
then have y-eval: make-polygonal-path [a, b, c, a] y = ((linepath a b))

(2∗y)
using x-in-int1 by auto

then have lp-eq: ((linepath a b)) (2∗y) = ((linepath b c)) (2∗(2∗x − 1 ))
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using false-hyp x-eval y-eval by auto
have 2 ∗ (2 ∗ x − 1 ) 6= 0

using ∗ by auto
then have False
using lp-eq big ∗ ∗∗ not-collinear-linepaths-intersect-helper [of a b c 2∗y

(2∗(2∗x − 1 ))] not-coll
by auto

} moreover {assume ∗∗: y ∈ {(1/2 )<..(3/4 )}
then have y-eval: make-polygonal-path [a, b, c, a] y = ((linepath b c))

(2∗(2∗y − 1 ))
using x-in-int2 by auto
then have lp-eq: ((linepath b c)) (2∗(2∗y − 1 )) = ((linepath b c))

(2∗(2∗x − 1 ))
using false-hyp x-eval y-eval by auto

then have False
using linepath-loop-free[OF b-neq-c] big ∗ ∗∗
unfolding loop-free-def

using add-diff-cancel-left add-diff-cancel-right ′ add-diff-eq linepath-def
scaleR-cancel-left scaleR-collapse scaleR-left-diff-distrib

by (smt (verit) b-neq-c)
} moreover {assume ∗∗: y ∈ {(3/4 )<..1}

then have y-eval: make-polygonal-path [a, b, c, a] y = ((linepath c a))
((2 ∗ (2 ∗ y − 1 ) − 1 ))

using x-in-int3 by auto
then have lp-eq: ((linepath b c)) (2∗(2∗x − 1 )) = ((linepath c a)) ((2

∗ (2 ∗ y − 1 ) − 1 ))
using false-hyp x-eval y-eval
by auto

have not-coll2 : ¬ collinear {b, c, a}
using not-coll
by (simp add: insert-commute)

have 2 ∗ (2 ∗ x − 1 ) 6= 0
using ∗ by auto

then have False using lp-eq
using big ∗ ∗∗ not-collinear-linepaths-intersect-helper [of b c a 2∗(2∗x

− 1 ) (2 ∗ (2 ∗ y − 1 ) − 1 )] not-coll2
by auto

}
ultimately have False

using big
by (metis atLeastAtMost-iff greaterThanAtMost-iff linorder-not-le)

} moreover {assume ∗: x ∈ {(3/4 )<..1}
then have x-eval: make-polygonal-path [a, b, c, a] x = ((linepath c a)) ((2

∗ (2 ∗ x − 1 ) − 1 ))
using x-in-int3 by auto

{assume ∗∗: y ∈ {0 ..(1/2 )}
then have y-eval: make-polygonal-path [a, b, c, a] y = ((linepath a b))

(2∗y)
using x-in-int1 by auto
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then have lp-eq: ((linepath c a)) ((2 ∗ (2 ∗ x − 1 ) − 1 )) = ((linepath
a b)) (2∗y)

using x-eval y-eval
using false-hyp by presburger

have not-coll2 : ¬ collinear {c, a, b}
using not-coll
by (simp add: insert-commute)

have ((2 ∗ (2 ∗ x − 1 ) − 1 )) 6= 0
using ∗ by auto

then have False
using lp-eq big ∗ ∗∗ not-coll2
not-collinear-linepaths-intersect-helper [of c a b (2 ∗ (2 ∗ x − 1 ) − 1 )

2∗y]
by auto

} moreover {assume ∗∗: y ∈ {(1/2 )<..(3/4 )}
then have y-eval: make-polygonal-path [a, b, c, a] y = ((linepath b c))

(2∗(2∗y − 1 ))
using x-in-int2 by auto

then have lp-eq: ((linepath b c)) (2∗(2∗y − 1 )) = ((linepath c a)) ((2
∗ (2 ∗ x − 1 ) − 1 ))

using x-eval y-eval false-hyp
using false-hyp by presburger

have not-coll2 : ¬ collinear {b, c, a}
using not-coll
by (simp add: insert-commute)

have ((2 ∗ (2 ∗ x − 1 ) − 1 )) 6= 0
using ∗ by auto

then have False
using lp-eq big ∗ ∗∗ not-coll2
not-collinear-linepaths-intersect-helper [of b c a (2∗(2∗y − 1 )) (2 ∗ (2

∗ x − 1 ) − 1 )]
by auto

} moreover {assume ∗∗: y ∈ {(3/4 )<..1}
then have y-eval: make-polygonal-path [a, b, c, a] y = ((linepath c a))

((2 ∗ (2 ∗ y − 1 ) − 1 ))
using x-in-int3 by auto

then have ((linepath c a)) ((2 ∗ (2 ∗ y − 1 ) − 1 )) = ((linepath c a))
((2 ∗ (2 ∗ x − 1 ) − 1 ))

using x-eval y-eval false-hyp
using false-hyp by presburger

then have False
using linepath-loop-free[OF a-neq-c] big ∗ ∗∗
unfolding loop-free-def

using add-diff-cancel-left add-diff-cancel-right ′ add-diff-eq linepath-def
scaleR-cancel-left scaleR-collapse scaleR-left-diff-distrib

by (smt (verit) a-neq-c add-diff-cancel-left ′)
}
ultimately have False

using big
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by (metis atLeastAtMost-iff greaterThanAtMost-iff linorder-not-le)
}
ultimately show False using big

by (metis atLeastAtMost-iff greaterThanAtMost-iff linorder-not-le)
qed
then have loop-free: loop-free (make-polygonal-path [a, b, c, a])

unfolding loop-free-def
by (meson atLeastAtMost-iff )

show polygon (make-triangle a b c)
unfolding make-triangle-def polygon-def simple-path-def
using polygonal-path closed-path loop-free by auto

qed

lemma have-wraparound-vertex:
assumes polygon p
assumes p = make-polygonal-path vts
shows vts = (take (length vts −1 ) vts)@[vts ! 0 ]

proof −
have card (set vts) ≥ 3

using polygon-at-least-3-vertices assms by auto
then have nonempty: vts 6= []

by auto
then have vts = (take (length vts −1 ) vts)@[vts ! (length vts − 1 )]

by (metis append-butlast-last-id butlast-conv-take last-conv-nth)
then show ?thesis

using assms(1 ) unfolding polygon-def closed-path-def
using polygon-pathstart[OF nonempty assms(2 )] polygon-pathfinish[OF nonempty

assms(2 )]
by presburger

qed

lemma polygon-at-least-3-vertices-wraparound:
assumes polygon p
assumes p = make-polygonal-path vts
shows card (set (take (length vts −1 ) vts)) ≥ 3

proof −
let ?distinct-vts = take (length vts −1 ) vts
have card-vts: card (set vts) ≥ 3

using polygon-at-least-3-vertices assms by auto
then have vts-is: vts = ?distinct-vts@[vts ! 0 ]

using have-wraparound-vertex assms by auto
then have ?distinct-vts 6= []

using card-vts
by (metis One-nat-def append-Nil distinct-card distinct-singleton eval-nat-numeral(3 )

length-append-singleton list.size(3 ) not-less-eq-eq one-le-numeral)
then have vts ! 0 ∈ set ?distinct-vts

by (metis ‹vts = take (length vts − 1 ) vts @ [vts ! 0 ]› length-greater-0-conv
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nth-append nth-mem)
then have card (set ?distinct-vts) = card (set vts)

using vts-is
by (metis Un-insert-right append.right-neutral insert-absorb list.set(2 ) set-append)

then show ?thesis using card-vts by auto
qed

9 Polygon Vertex Rotation
definition rotate-polygon-vertices:: ′a list ⇒ nat ⇒ ′a list

where rotate-polygon-vertices ell i =
(let ell1 = rotate i (butlast ell) in ell1 @ [ell1 ! 0 ])

lemma rotate-polygon-vertices-same-set:
assumes polygon (make-polygonal-path vts)
shows set (rotate-polygon-vertices vts i) = set vts

proof −
have card-gteq: card (set vts) ≥ 3

using polygon-at-least-3-vertices assms
by auto

then have len-gteq: length vts ≥ 3
using card-length order-trans by blast

let ?ell1 = rotate i (take (length vts − 1 ) vts)
have inset: vts ! 0 = vts ! (length vts − 1 )
using assms polygon-pathstart polygon-pathfinish unfolding polygon-def closed-path-def
by (metis len-gteq list.size(3 ) not-numeral-le-zero)

have set vts = set (take (length vts − 1 ) vts) ∪ {vts ! (length vts − 1 )}
by (metis Cons-nth-drop-Suc One-nat-def Un-insert-right assms card.empty

diff-zero drop-rev length-greater-0-conv list.set(1 ) list.set(2 ) not-numeral-le-zero
order .refl polygon-at-least-3-vertices rev-nth set-rev sup-bot.right-neutral take-all)

then have set vts = set (take (length vts − 1 ) vts)
using inset
by (metis (no-types, lifting) One-nat-def Suc-neq-Zero Suc-pred Un-insert-right

add-diff-cancel-left ′ butlast-conv-take diff-is-0-eq ′ insert-absorb len-gteq length-butlast
length-greater-0-conv list.size(3 ) nth-mem nth-take numeral-3-eq-3 plus-1-eq-Suc
sup-bot.right-neutral)

then have same-set: set vts = set ?ell1
by auto

then have rotate i (take (length vts − 1 ) vts) ! 0 ∈ set vts
using len-gteq

by (metis card-gteq card-length le-zero-eq length-greater-0-conv list.size(3 ) nth-mem
numeral-3-eq-3 zero-less-Suc)

then have set vts = set (?ell1 @ [?ell1 ! 0 ])
using same-set by auto

then show ?thesis
unfolding rotate-polygon-vertices-def
using card-gteq
by (metis butlast-conv-take)

qed
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lemma arb-rotation-as-single-rotation:
fixes i:: nat
shows rotate-polygon-vertices vts (Suc i) = rotate-polygon-vertices (rotate-polygon-vertices

vts i) 1
unfolding rotate-polygon-vertices-def
by (metis butlast-snoc plus-1-eq-Suc rotate-rotate)

lemma rotation-sum:
fixes i j :: nat
shows rotate-polygon-vertices vts (i + j) = rotate-polygon-vertices (rotate-polygon-vertices

vts i) j
proof(induct j)

case 0
thus ?case by (metis Nat.add-0-right butlast-snoc id-apply rotate0 rotate-polygon-vertices-def )

next
case (Suc j)
have rotate-polygon-vertices vts (i + (Suc j)) = rotate-polygon-vertices vts (Suc

(i + j)) by simp
also have ... = rotate-polygon-vertices (rotate-polygon-vertices vts (i + j)) 1

using arb-rotation-as-single-rotation by blast
also have ... = rotate-polygon-vertices (rotate-polygon-vertices (rotate-polygon-vertices

vts i) j) 1
using Suc.hyps by simp

also have ... = rotate-polygon-vertices (rotate-polygon-vertices vts i) (Suc j)
using arb-rotation-as-single-rotation by metis

finally show ?case .
qed

lemma rotated-polygon-vertices-helper :
fixes p :: R-to-R2
assumes poly-p: polygon p
assumes p-is-path: p = make-polygonal-path vts
assumes p ′-is: p ′ = make-polygonal-path (rotate-polygon-vertices vts 1 )
shows (vts ! 0 ) = (rotate-polygon-vertices vts 1 ) ! (length (rotate-polygon-vertices

vts 1 ) − 2 )
(rotate-polygon-vertices vts 1 ) ! (length (rotate-polygon-vertices vts 1 ) − 1 )

= (vts ! 1 )
proof −

have len-gteq: length vts ≥ 3
using polygon-at-least-3-vertices assms
using card-length order-trans by blast

let ?rotated-vts = rotate-polygon-vertices vts 1
have same-len: length ?rotated-vts = length vts

unfolding rotate-polygon-vertices-def using length-rotate
by (metis One-nat-def Suc-pred card.empty length-append-singleton length-butlast

length-greater-0-conv list.set(1 ) not-numeral-le-zero p-is-path poly-p polygon-at-least-3-vertices)
then have len-rotated-gt-eq3 : length ?rotated-vts ≥ 3

using len-gteq by auto
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show vts1 : vts ! 0 = ?rotated-vts ! (length ?rotated-vts − 2 )
unfolding rotate-polygon-vertices-def
using nth-rotate[of length ?rotated-vts − 2 butlast vts 1 ]
Suc-diff-Suc butlast-snoc length-butlast length-greater-0-conv lessI less-nat-zero-code

list.size(3 ) mod-self nat-1-add-1 nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def
same-len zero-less-diff

by (smt (z3 ) One-nat-def len-gteq length-append-singleton numeral-le-one-iff
semiring-norm(70 ))

have (rotate 1 (butlast vts)) ! 0 = vts ! 1
unfolding rotate-polygon-vertices-def
using nth-rotate[of 0 butlast vts 1 ] len-gteq len-rotated-gt-eq3
by (metis (no-types, lifting) One-nat-def Suc-le-eq length-butlast less-diff-conv

less-nat-zero-code mod-less not-gr-zero nth-butlast numeral-3-eq-3 plus-1-eq-Suc)
then show vts2 : ?rotated-vts ! (length ?rotated-vts − 1 ) = vts ! 1

unfolding rotate-polygon-vertices-def
by (smt (verit, best) Suc-diff-Suc Suc-eq-plus1 butlast-snoc length-butlast length-greater-0-conv

less-nat-zero-code list.size(3 ) nth-append-length one-add-one rotate-polygon-vertices-def
zero-less-diff )
qed

lemma rotate-polygon-vertices-same-length:
fixes vts :: (real^2 ) list
assumes length vts ≥ 1
shows length vts = length (rotate-polygon-vertices vts i)
using assms

proof(induction length vts arbitrary: i)
case 0
then show ?case by auto

next
case (Suc x)
then show ?case using arb-rotation-as-single-rotation[of vts x]

by (metis diff-Suc-1 length-append-singleton length-butlast length-rotate ro-
tate-polygon-vertices-def )
qed

lemma rotated-polygon-vertices-helper2 :
assumes len-gteq: length vts ≥ 2
assumes i < length vts − 1
assumes hd vts = last vts
shows (rotate-polygon-vertices vts 1 ) ! i = vts ! (i+1 )

proof −
let ?rotated-vts = rotate-polygon-vertices vts 1
have length (butlast vts) = length vts − 1

by auto
then have same-len: length ?rotated-vts = length vts

unfolding rotate-polygon-vertices-def using length-rotate len-gteq
by (metis dual-order .trans le-add-diff-inverse length-append-singleton one-le-numeral

plus-1-eq-Suc)
then have len-rotated-gt-eq3 : length ?rotated-vts ≥ 2
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using len-gteq by auto
let ?n = length vts
{assume ∗: i < length vts − 2
then have same-mod: (1 + i) mod length (butlast vts) = 1+i

using assms by simp
have i < length (butlast vts)

using assms by simp
then have rotate 1 (butlast vts) ! i = butlast vts ! (i + 1 )

using nth-rotate[of i butlast vts 1 ] same-mod
by (metis add.commute)
then have (rotate-polygon-vertices vts 1 ) ! i = vts ! (i+1 )

by (metis (no-types, lifting) Suc-eq-plus1 ‹i < length (butlast vts)› butlast-snoc
length-butlast length-greater-0-conv less-nat-zero-code list.size(3 ) mod-less-divisor
nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def same-len same-mod)
} moreover {assume ∗: i = length vts − 2
then have same-mod: (1 + i) mod length (butlast vts) = 0

using assms
by (metis Suc-diff-Suc ‹length (butlast vts) = length vts − 1 › length-greater-0-conv

less-nat-zero-code list.size(3 ) mod-Suc mod-if one-add-one plus-1-eq-Suc zero-less-diff )
have i < length (butlast vts)

using assms by simp
then have rotate-prop: rotate 1 (butlast vts) ! i = butlast vts ! 0

using nth-rotate[of i butlast vts 1 ] same-mod
by metis
have butlast vts ! 0 = vts ! 0

using assms(1 )
by (simp add: nth-butlast)

then have butlast vts ! 0 = vts ! (length vts − 1 )
by (metis assms(3 ) hd-conv-nth last-conv-nth length-0-conv zero-diff )

then have (rotate-polygon-vertices vts 1 ) ! i = vts ! (i+1 )
by (metis ∗ rotate-prop Suc-diff-Suc Suc-eq-plus1 ‹butlast vts ! 0 = vts ! 0 ›

add-2-eq-Suc ′ le-add-diff-inverse2 len-gteq less-add-Suc2 one-add-one same-len but-
last-snoc length-butlast lessI nth-butlast rotate-polygon-vertices-def )

}
ultimately show ?thesis

using assms(2 ) by linarith
qed

lemma polygon-rotation-t-translation1 :
assumes polygon-of p vts
assumes p ′ = make-polygonal-path (rotate-polygon-vertices vts 1 )
(is p ′ = make-polygonal-path ?vts ′)

assumes x ′ ∈ {(
∑

i ∈ {1 ..k}. 1/(2^i))..(
∑

i ∈ {1 ..k+1}. 1/(2^i))}
assumes n = length vts
assumes 0 ≤ k ∧ k ≤ n − 4
assumes l = x ′ − (

∑
i ∈ {1 ..k}. 1/(2^i))

assumes x = l/2 + (
∑

i ∈ {1 ..(k + 1 )}. 1/(2^i))
shows x ∈ {(

∑
i ∈ {1 ..k+1}. 1/(2^i))..(

∑
i ∈ {1 ..k+2}. 1/(2^i))}

p ′ x ′ = p x
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proof−
let ?f = λ(k::nat) (x::real). (x − (

∑
i ∈ {1 ..k}. 1/(2^i))) ∗ (2^(k+1 ))

have x ≥ (
∑

i ∈ {1 ..k+1}. 1/(2^i))
proof−

have l ≥ 0 using assms(3 ,6 ) by auto
then show ?thesis using assms(7 ) by linarith

qed
moreover have x ≤ (

∑
i ∈ {1 ..k+2}. 1/(2^i))

proof−
have x ′ ≤ (

∑
i ∈ {1 ..k+1}. 1/(2^i)) using assms(3 ) by presburger

then have l ≤ (
∑

i ∈ {1 ..k+1}. 1/(2^i)) − (
∑

i ∈ {1 ..k}. 1/(2^i)) using
assms(6 ) by argo

also have ... = (1/2^(k+1 )) + (
∑

i ∈ {1 ..k}. 1/(2^i)) − (
∑

i ∈ {1 ..k}.
1/(2^i))

using sum-insert[of k+1 {1 ..k} λi. 1/(2^i)]
by (smt (verit) Suc-eq-plus1 Suc-n-not-le-n add.commute atLeastAtMost-

Suc-conv atLeastAtMost-iff finite-atLeastAtMost le-add2 one-add-one)
also have ... = (1/2^(k+1 )) by argo
finally have l ≤ (1/2^(k+1 )) .
then have x ≤ (1/2^(k+1 ))/2 + (

∑
i ∈ {1 ..k+1}. 1/(2^i)) using assms(7 )

by simp
also have ... = 1/2^(k+2 ) + (

∑
i ∈ {1 ..k+1}. 1/(2^i)) by simp

also have ... = (
∑

i ∈ {1 ..k+2}. 1/(2^i))
using sum-insert[of k+2 {1 ..k+2} λi. 1/(2^i)] by simp

finally show ?thesis .
qed
ultimately show x: x ∈ {(

∑
i ∈ {1 ..k+1}. 1/(2^i))..(

∑
i ∈ {1 ..k+2}. 1/(2^i))}

by presburger
have 1 : n ≥ 4 using polygon-vertices-length-at-least-4 assms

using polygon-of-def by blast
then have 2 : length vts = length ?vts ′

using assms rotate-polygon-vertices-same-length by auto
then have 3 : length ?vts ′ = n using assms by auto

have p ′ x ′ = ((linepath (?vts ′ ! k) (?vts ′ ! (k+1 )) (?f k x ′)))
using polygon-linepath-images2 [of n k ?vts ′ p ′ ?f x ′] assms(2 ,3 ,5 ) 1 3 by

fastforce
moreover have p x = ((linepath (vts ! (k+1 )) (vts ! (k+2 )) (?f (k+1 ) x)))

using polygon-linepath-images2 [of n k+1 vts p ?f x] assms(2 ,3 ,5 ) 1 2 3 x
by (smt (verit, ccfv-threshold) Nat.diff-add-assoc add.commute add-diff-cancel-left

add-le-imp-le-left add-left-mono assms(1 ) nat-add-1-add-1 one-plus-numeral poly-
gon-of-def semiring-norm(2 ) semiring-norm(4 ) trans-le-add1 )

moreover have ?vts ′ ! k = vts ! (k+1 )
using rotated-polygon-vertices-helper2
by (smt (verit, best) 1 Nat.le-diff-conv2 Suc-pred ′ add-leD1 assms(1 ) assms(4 )

assms(5 ) diff-diff-cancel diff-less have-wraparound-vertex hd-conv-nth leD length-greater-0-conv
less-Suc-eq nat-less-le numeral-Bit0 numeral-eq-one-iff polygon-of-def semiring-norm(83 )
snoc-eq-iff-butlast zero-less-numeral)

moreover have ?vts ′ ! (k+1 ) = vts ! (k+2 )

59



using rotated-polygon-vertices-helper2 [of vts k+1 ]
by (metis (no-types, lifting) assms(1 ,4 ,5 ) 1 One-nat-def Suc-diff-Suc add-Suc-right

diff-zero have-wraparound-vertex hd-conv-nth le-add-diff-inverse2 less-add-Suc2 nat-less-le
not-less-eq-eq numeral-Bit0 one-add-one plus-1-eq-Suc polygon-of-def snoc-eq-iff-butlast)

moreover have ?f k x ′ = ?f (k+1 ) x using assms(6 ) assms(7 ) by force
ultimately show p ′ x ′ = p x by presburger

qed

lemma polygon-rotation-t-translation1-strict:
assumes polygon-of p vts
assumes p ′ = make-polygonal-path (rotate-polygon-vertices vts 1 )
(is p ′ = make-polygonal-path ?vts ′)

assumes x ′ ∈ {(
∑

i ∈ {1 ..k}. 1/(2^i))..<(
∑

i ∈ {1 ..k+1}. 1/(2^i))}
assumes n = length vts
assumes 0 ≤ k ∧ k ≤ n − 4
assumes l = x ′ − (

∑
i ∈ {1 ..k}. 1/(2^i))

assumes x = l/2 + (
∑

i ∈ {1 ..(k + 1 )}. 1/(2^i))
shows x ∈ {(

∑
i ∈ {1 ..k+1}. 1/(2^i))..<(

∑
i ∈ {1 ..k+2}. 1/(2^i))}

p ′ x ′ = p x
proof −
let ?f = λ(k::nat) (x::real). (x − (

∑
i ∈ {1 ..k}. 1/(2^i))) ∗ (2^(k+1 ))

have x ≥ (
∑

i ∈ {1 ..k+1}. 1/(2^i))
proof−

have l ≥ 0 using assms(3 ,6 ) by auto
then show ?thesis using assms(7 ) by linarith

qed
moreover have x < (

∑
i ∈ {1 ..k+2}. 1/(2^i))

proof−
have x ′ < (

∑
i ∈ {1 ..k+1}. 1/(2^i)) using assms(3 ) by auto

then have l < (
∑

i ∈ {1 ..k+1}. 1/(2^i)) − (
∑

i ∈ {1 ..k}. 1/(2^i)) using
assms(6 ) by argo

also have ... = (1/2^(k+1 )) + (
∑

i ∈ {1 ..k}. 1/(2^i)) − (
∑

i ∈ {1 ..k}.
1/(2^i))

using sum-insert[of k+1 {1 ..k} λi. 1/(2^i)]
by (smt (verit) Suc-eq-plus1 Suc-n-not-le-n add.commute atLeastAtMost-

Suc-conv atLeastAtMost-iff finite-atLeastAtMost le-add2 one-add-one)
also have ... = (1/2^(k+1 )) by argo
finally have l < (1/2^(k+1 )) .
then have x < (1/2^(k+1 ))/2 + (

∑
i ∈ {1 ..k+1}. 1/(2^i)) using assms(7 )

by simp
also have ... = 1/2^(k+2 ) + (

∑
i ∈ {1 ..k+1}. 1/(2^i)) by simp

also have ... = (
∑

i ∈ {1 ..k+2}. 1/(2^i))
using sum-insert[of k+2 {1 ..k+2} λi. 1/(2^i)] by simp

finally show ?thesis .
qed
ultimately show x ∈ {(

∑
i ∈ {1 ..k+1}. 1/(2^i))..<(

∑
i ∈ {1 ..k+2}. 1/(2^i))}

by auto
show p ′ x ′ = p x
using assms(3 ) polygon-rotation-t-translation1 [OF assms(1 ) assms(2 ) - assms(4 )
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assms(5 ) assms(6 ) assms(7 )]
by (meson atLeastAtMost-iff atLeastLessThan-iff less-eq-real-def )

qed

lemma polygon-rotation-t-translation2 :
assumes polygon-of p vts
assumes p ′ = make-polygonal-path (rotate-polygon-vertices vts 1 )
(is p ′ = make-polygonal-path ?vts ′)

assumes n = length vts
assumes x ′ ∈ {(

∑
i ∈ {1 ..(n−3 )}. 1/(2^i))..(

∑
i ∈ {1 ..(n−2 )}. 1/(2^i))}

assumes x = x ′ + 1/(2^(n−2 ))
shows x ∈ {(

∑
i ∈ {1 ..n−2}. 1/(2^i))..1}

p ′ x ′ = p x
proof−

let ?k = n−3
let ?f ′ = (λ(k::nat) x::real. (x − (

∑
i ∈ {1 ..k}. 1/(2^i))) ∗ (2^(k+1 )))

have n-geq-4 : n ≥ 4 using polygon-vertices-length-at-least-4 assms
using polygon-of-def by blast

moreover then have same-len: length vts = length ?vts ′

using assms rotate-polygon-vertices-same-length[of vts] by auto
moreover then have length ?vts ′ = n using assms(3 ) by auto
ultimately have p ′x ′: p ′ x ′ = ((linepath (?vts ′ ! ?k) (?vts ′ ! (?k+1 )) (?f ′ ?k

x ′)))
using polygon-linepath-images2 [of n ?k ?vts ′ p ′ ?f ′ x ′] assms
by (smt (verit, ccfv-threshold) One-nat-def Suc-diff-Suc diff-diff-left diff-is-0-eq ′

le-add2 le-add-diff-inverse2 linorder-not-le nat-le-linear numeral-3-eq-3 numeral-Bit0
numeral-le-iff numeral-le-one-iff numerals(1 ) one-plus-numeral plus-1-eq-Suc trans-le-add2 )

let ?f = (λx::real. (x − (
∑

i ∈ {1 ..n−2}. 1/(2^i))) ∗ (2^(n−2 )))
have sum-prop:

∧
i::nat.

∧
f ::nat⇒real. (

∑
i = 1 ..i. f i) + f (i + 1 ) = (

∑
i

= 1 ..i+1 . f i)
by auto

have sum-upto: (
∑

i = 1 ..n − 3 . 1 / (2 ^ i::real)) + 1 / 2 ^ (n − 2 ) = (
∑

i
= 1 ..n − 2 . 1 / (2 ^ i::real))

using sum-prop[of λi. 1 / (2 ^ i::real) n−3 ] n-geq-4
by (smt (verit, del-insts) Nat.add-diff-assoc2 add-numeral-left diff-cancel2 le-add-diff-inverse

le-numeral-extra(4 ) nat-1-add-1 nat-add-left-cancel-le numeral-Bit1 numerals(1 ) semir-
ing-norm(2 ) semiring-norm(8 ) trans-le-add1 )

have x ′ ≥ (
∑

i = 1 ..?k. 1 / 2 ^ i)
using assms by presburger

then have x-geq: x ≥ (
∑

i ∈ {1 ..n−2}. 1/(2^i))
using assms(5 ) sum-upto
by linarith

have x ′ ≤ (
∑

i = 1 ..n − 2 . 1 / 2 ^ i)
using assms(4 ) by auto

then have x-leq: x ≤ 1
using assms(5 )

by (smt (verit, del-insts) add.left-commute add-diff-cancel-left ′ diff-diff-eq le-add-diff-inverse2
le-numeral-extra(4 ) n-geq-4 nat-add-1-add-1 numeral-Bit0 numeral-Bit1 sum-upto
summation-helper trans-le-add2 )
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show x ∈ {(
∑

i ∈ {1 ..n−2}. 1/(2^i))..1}
using x-geq x-leq
by auto

then have px: p x = (linepath (vts ! (n−2 )) (vts ! (n−1 ))) (?f x)
using polygon-linepath-images3 [of n vts p x ?f ] n-geq-4 assms polygon-of-def

by fastforce
moreover have ?vts ′ ! (n − 3 ) = vts ! (n−2 )

using n-geq-4 assms(3 ) rotated-polygon-vertices-helper2 assms(1−3 )
unfolding polygon-of-def

by (smt (verit) One-nat-def Suc-diff-Suc add.commute diff-is-0-eq diff-less
dual-order .trans have-wraparound-vertex hd-conv-nth le-add-diff-inverse length-greater-0-conv
linorder-not-le nat-1-add-1 not-add-less2 numeral-3-eq-3 plus-1-eq-Suc pos2 rotated-polygon-vertices-helper(1 )
same-len snoc-eq-iff-butlast)

moreover have ?vts ′ ! (n − 2 ) = vts ! (n − 1 )
using n-geq-4 assms(3 ) assms
unfolding polygon-of-def

by (metis closed-path-def list.size(3 ) not-numeral-le-zero polygon-def polygon-pathfinish
polygon-pathstart rotated-polygon-vertices-helper(1 ) same-len)

moreover have ?f ′ ?k x ′ = ?f x using assms(4−5 ) n-geq-4
by (smt (verit, del-insts) One-nat-def Suc-diff-Suc Suc-eq-plus1 add-diff-cancel-right ′

add-numeral-left le-antisym linorder-not-le numeral-3-eq-3 numeral-code(2 ) numer-
als(1 ) semiring-norm(2 ) sum-upto trans-le-add2 )

ultimately show p ′ x ′ = p x using px p ′x ′

by (smt (verit, ccfv-SIG) Nat.add-diff-assoc2 assms(5 ) diff-cancel2 le-add-diff-inverse
le-add-diff-inverse2 le-numeral-extra(4 ) n-geq-4 nat-1-add-1 numeral-Bit0 numeral-Bit1
trans-le-add1 )
qed

lemma polygon-rotation-t-translation2-strict:
assumes polygon-of p vts
assumes p ′ = make-polygonal-path (rotate-polygon-vertices vts 1 )
(is p ′ = make-polygonal-path ?vts ′)

assumes n = length vts
assumes x ′ ∈ {(

∑
i ∈ {1 ..(n−3 )}. 1/(2^i))..<(

∑
i ∈ {1 ..(n−2 )}. 1/(2^i))}

assumes x = x ′ + 1/(2^(n−2 ))
shows x ∈ {(

∑
i ∈ {1 ..n−2}. 1/(2^i))..<1}

p ′ x ′ = p x
proof −
have n-geq-4 : n ≥ 4 using polygon-vertices-length-at-least-4 assms

using polygon-of-def by blast
have sum-prop:

∧
i::nat.

∧
f ::nat⇒real. (

∑
i = 1 ..i. f i) + f (i + 1 ) = (

∑
i

= 1 ..i+1 . f i)
by auto

have sum-upto: (
∑

i = 1 ..n − 3 . 1 / (2 ^ i::real)) + 1 / 2 ^ (n − 2 ) = (
∑

i
= 1 ..n − 2 . 1 / (2 ^ i::real))

using sum-prop[of λi. 1 / (2 ^ i::real) n−3 ] n-geq-4
by (smt (verit, del-insts) Nat.add-diff-assoc2 add-numeral-left diff-cancel2 le-add-diff-inverse

le-numeral-extra(4 ) nat-1-add-1 nat-add-left-cancel-le numeral-Bit1 numerals(1 ) semir-
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ing-norm(2 ) semiring-norm(8 ) trans-le-add1 )
have x-geq: x ≥ (

∑
i ∈ {1 ..n−2}. 1/(2^i))

using assms(4 ) polygon-rotation-t-translation2 [OF assms(1 ) assms(2 ) assms(3 )
- assms(5 )]

by simp
have x ′ < (

∑
i = 1 ..n − 2 . 1 / 2 ^ i)

using assms(4 ) by auto
then have x-leq: x < 1

using assms(5 )
by (smt (verit, del-insts) add.left-commute add-diff-cancel-left ′ diff-diff-eq le-add-diff-inverse2

le-numeral-extra(4 ) n-geq-4 nat-add-1-add-1 numeral-Bit0 numeral-Bit1 sum-upto
summation-helper trans-le-add2 )

show x ∈ {(
∑

i ∈ {1 ..n−2}. 1/(2^i))..<1}
using x-geq x-leq by auto

show p ′ x ′ = p x
using assms(4 ) polygon-rotation-t-translation2 [OF assms(1 ) assms(2 ) assms(3 )

- assms(5 )]
by (meson atLeastAtMost-iff atLeastLessThan-iff less-eq-real-def )

qed

lemma polygon-rotation-t-translation3 :
assumes polygon-of p vts
assumes p ′ = make-polygonal-path (rotate-polygon-vertices vts 1 )
(is p ′ = make-polygonal-path ?vts ′)

assumes x ′ ∈ {(
∑

i ∈ {1 ..n−2}. 1/(2^i))..1}
assumes n = length vts
assumes l = x ′ − (

∑
i ∈ {1 ..n−2}. 1/(2^i))

assumes x = l ∗ (2^(n−3 ))
shows x ∈ {0 ..1/2}

p ′ x ′ = p x
proof−

let ?f = (λx::real. (x − (
∑

i ∈ {1 ..n−2}. 1/(2^i))) ∗ (2^(n−2 )))
have n-geq-4 : n ≥ 4 using polygon-vertices-length-at-least-4 assms

using polygon-of-def by blast
moreover then have same-len: length vts = length ?vts ′

using assms rotate-polygon-vertices-same-length by auto
moreover have length-vts ′: length ?vts ′ = n

using assms(4 ) same-len by auto
ultimately have p ′x ′: p ′ x ′ = (linepath (?vts ′ ! (n−2 )) (?vts ′ ! (n−1 ))) (?f x ′)

using polygon-linepath-images3 [of n ?vts ′ p ′ x ′ ?f ] assms
unfolding polygon-of-def by fastforce

have x-is: x = (x ′ − (
∑

i = 1 ..n − 2 . 1 / 2 ^ i)) ∗ 2 ^ (n − 3 )
using assms(5−6 ) by auto

then have x-gt: x ≥ 0
using assms(3 ) by simp

have sum-prop: k ≥ 1 =⇒ 1 − (
∑

i = 1 ..k. 1 / (2 ^ i::real)) = 1/(2^k) for k
proof (induct k)

case 0
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then show ?case by auto
next

case (Suc k)
{ assume ∗ :Suc k = 1

then have ?case by auto
} moreover
{ assume ∗: Suc k > 1

then have 1 − (
∑

i = 1 ..k. 1 / (2 ^ i::real)) = 1 / 2 ^ k
using Suc by linarith

then have ?case by simp
}
ultimately show ?case

by linarith
qed
have x ′ ≤ 1

using assms(3 ) by auto
then have x ≤ (1 − (

∑
i = 1 ..n − 2 . 1 / (2 ^ i::real))) ∗ 2 ^ (n − 3 )

using x-is
using mult-right-mono zero-le-power by fastforce

then have x ≤ 1/(2^(n−2 ))∗2^(n−3 )
using sum-prop n-geq-4
by auto

then have x-lt: x ≤ 1/2
using n-geq-4
by (smt (verit, ccfv-SIG) One-nat-def Suc-1 Suc-diff-Suc add-diff-cancel-right ′

diff-is-0-eq dual-order .trans linorder-not-le nonzero-mult-divide-mult-cancel-right2
numeral-3-eq-3 numeral-code(2 ) power .simps(2 ) power-commutes power-not-zero
times-divide-eq-left zero-neq-numeral)

then show x ∈ {0 ..1/2}
using x-gt x-lt by auto

moreover have n ≥ 3 using n-geq-4 by auto
ultimately have px: p x = (linepath (vts ! 0 ) (vts ! 1 )) (2 ∗ x)

using polygon-linepath-images1 [of n vts] assms unfolding polygon-of-def by
blast

have ?vts ′ ! (n−2 ) = vts ! 0 ∧ ?vts ′ ! (n−1 ) = vts ! 1
unfolding rotate-polygon-vertices-def
by (metis length-vts ′ assms(1 ) polygon-of-def rotate-polygon-vertices-def ro-

tated-polygon-vertices-helper(1 ) rotated-polygon-vertices-helper(2 ))
moreover have ?f x ′ = 2 ∗ x
proof−

have 2 ∗ x = 2 ∗ (x ′ − (
∑

i ∈ {1 ..n−2}. 1/(2^i))) ∗ (2^(n−3 )) using assms
by auto

moreover have ... = (x ′ − (
∑

i ∈ {1 ..n−2}. 1/(2^i))) ∗ (2^(n−2 ))
using n-geq-4 Suc-1 Suc-diff-Suc Suc-le-eq bot-nat-0 .not-eq-extremum diff-Suc-1

le-antisym mult.left-commute mult.right-neutral mult-cancel-left not-less-eq-eq num-double
numeral-3-eq-3 numeral-eq-Suc numeral-times-numeral power .simps(2 ) pred-numeral-simps(2 )
zero-less-diff zero-neq-numeral

proof −
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have f1 : ∀ r ra. (ra::real) ∗ r = r ∗ ra
by simp

have f2 : ∀ r n ra. (r ::real) ∗ (r ^ n ∗ ra) = r ^ Suc n ∗ ra
by simp

have f3 : pred-numeral (num.Bit1 num.One) = Suc (Suc 0 )
by simp

have f4 : Suc 0 = 1
by linarith

have Suc 1 < n
using n-geq-4 by linarith

then have 2 ∗ ((x ′ − (
∑

n = 1 ..n − Suc 1 . 1 / 2 ^ n)) ∗ 2 ^ (n − 3 )) =
(x ′ − (

∑
n = 1 ..n − Suc 1 . 1 / 2 ^ n)) ∗ 2 ^ (n − Suc 1 )

using f4 f3 f2 f1 Suc-diff-Suc numeral-eq-Suc by presburger
then show ?thesis

by (metis (no-types) Suc-1 mult.assoc)
qed
moreover have ... = ?f x ′ by auto
ultimately show ?thesis by presburger

qed
ultimately show p ′ x ′ = p x using p ′x ′ px by auto

qed

lemma polygon-rotation-t-translation3-strict:
assumes polygon-of p vts
assumes p ′ = make-polygonal-path (rotate-polygon-vertices vts 1 )
(is p ′ = make-polygonal-path ?vts ′)

assumes x ′ ∈ {(
∑

i ∈ {1 ..n−2}. 1/(2^i))..<1}
assumes n = length vts
assumes l = x ′ − (

∑
i ∈ {1 ..n−2}. 1/(2^i))

assumes x = l ∗ (2^(n−3 ))
shows x ∈ {0 ..<1/2}

p ′ x ′ = p x
proof −

have n-geq-4 : n ≥ 4 using polygon-vertices-length-at-least-4 assms
using polygon-of-def by blast

have x-is: x = (x ′ − (
∑

i = 1 ..n − 2 . 1 / 2 ^ i)) ∗ 2 ^ (n − 3 )
using assms(5−6 ) by auto

then have x-gt: x ≥ 0
using assms(3 ) by simp

have sum-prop: k ≥ 1 =⇒ 1 − (
∑

i = 1 ..k. 1 / (2 ^ i::real)) = 1/(2^k) for k
proof (induct k)

case 0
then show ?case by auto

next
case (Suc k)
{ assume ∗ :Suc k = 1

then have ?case by auto
} moreover
{ assume ∗: Suc k > 1
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then have 1 − (
∑

i = 1 ..k. 1 / (2 ^ i::real)) = 1 / 2 ^ k
using Suc by linarith

then have ?case by simp
}
ultimately show ?case

by linarith
qed
have x ′ < 1

using assms(3 ) by auto
then have x < (1 − (

∑
i = 1 ..n − 2 . 1 / (2 ^ i::real))) ∗ 2 ^ (n − 3 )

using x-is
using mult-right-mono zero-le-power by fastforce

then have x < 1/(2^(n−2 ))∗2^(n−3 )
using sum-prop n-geq-4
by auto

then have x-lt: x < 1/2
using n-geq-4
by (smt (verit, ccfv-SIG) One-nat-def Suc-1 Suc-diff-Suc add-diff-cancel-right ′

diff-is-0-eq dual-order .trans linorder-not-le nonzero-mult-divide-mult-cancel-right2
numeral-3-eq-3 numeral-code(2 ) power .simps(2 ) power-commutes power-not-zero
times-divide-eq-left zero-neq-numeral)

show x ∈ {0 ..<1/2}
using x-lt x-gt by auto

show p ′ x ′ = p x
using assms(3 ) polygon-rotation-t-translation3 [OF assms(1 ) assms(2 ) - assms(4 )

assms(5 ) assms(6 )]
by simp

qed

lemma f-gteq-0-sum-gt:
∧

f ::nat ⇒ real. (
∧

i::nat. (f i) > 0 ) =⇒ a > b =⇒ (
∑

i
= 1 ..a. (f i)) > (

∑
i = 1 ..b. (f i)) for a b :: nat

proof (induct a arbitrary: b)
case 0
then show ?case by auto

next
case (Suc a)
{assume ∗: b = a

then have sum f {1 ..(Suc a)} = sum f {1 .. b} + f (Suc a)
by force

then have ?case
using Suc(2 )[of Suc a] ∗ by linarith

} moreover {assume ∗: b < a
then have ?case using Suc
by (smt (verit, ccfv-threshold) Suc-eq-plus1 dual-order .trans le-add2 sum.nat-ivl-Suc ′)

}
ultimately show ?case

using Suc.prems(2 ) less-antisym by blast
qed
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lemma rotation-intervals-disjoint:
assumes k1 6= k2
shows {

∑
i = 1 ..k1 . 1 / (2 ^ i::real)..<

∑
i = 1 ..k1+1 . 1 / 2 ^ i} ∩ {

∑
i =

1 ..k2 . 1 / (2 ^ i::real)..<
∑

i = 1 ..k2+1 . 1 / 2 ^ i} = {}
proof −

have lambda-gt: (
∧

i. 0 < 1 / (2 ^ i::real))
by simp

have h1 : ?thesis if ∗:k1 < k2
proof −

have eo: k1+1 ≤ k2
using ∗ by auto

have k1+1 = k2 =⇒ (
∑

i = 1 ..k1+1 . 1 / 2 ^ i) ≤ (
∑

i = 1 ..k2 . 1 / (2 ^
i::real))

by auto
have (

∑
i = 1 ..k1+1 . 1 / 2 ^ i) ≤ (

∑
i = 1 ..k2 . 1 / (2 ^ i::real)) if ∗∗:

k1+1 < k2
using f-gteq-0-sum-gt[OF lambda-gt ∗∗]
using less-eq-real-def by presburger

then have (
∑

i = 1 ..k1+1 . 1 / 2 ^ i) ≤ (
∑

i = 1 ..k2 . 1 / (2 ^ i::real))
using ∗ eo by fastforce

then show ?thesis by auto
qed
have h2 : ?thesis if ∗: k2 < k1

proof −
have eo: k2+1 ≤ k1

using ∗ by auto
have k2+1 = k1 =⇒ (

∑
i = 1 ..k2+1 . 1 / 2 ^ i) ≤ (

∑
i = 1 ..k1 . 1 / (2 ^

i::real))
by auto

have (
∑

i = 1 ..k2+1 . 1 / 2 ^ i) ≤ (
∑

i = 1 ..k1 . 1 / (2 ^ i::real)) if ∗∗:
k2+1 < k1

using f-gteq-0-sum-gt[OF lambda-gt ∗∗]
using less-eq-real-def by presburger

then have (
∑

i = 1 ..k2+1 . 1 / 2 ^ i) ≤ (
∑

i = 1 ..k1 . 1 / (2 ^ i::real))
using ∗ eo by fastforce

then show ?thesis by auto
qed
show ?thesis

using h1 h2 assms by linarith
qed

lemma bounding-interval-helper1 :
shows (

∑
i = 1 ..k. 1 / (2 ^ i::real)) = (2^k − 1 )/(2^k)

proof(induct k)
case 0
then show ?case by simp

next
case (Suc k)
have (

∑
i = 1 ..(Suc k). 1 / (2 ^ i::real)) = (

∑
i = 1 ..k. 1 / (2 ^ i::real)) +
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1/2^(Suc k)
by force

also have ... = (2^k − 1 )/(2^k) + 1/2^(Suc k) using Suc.hyps by presburger
also have ... = (2^k − 1 )/(2^k) + 1/2^(k+1 ) by simp
also have ... = (2^(k+1 ) − 1 )/(2^(k+1 ))
by (smt (verit, del-insts) Suc add.commute add-diff-cancel-right ′ add-divide-distrib

calculation field-sum-of-halves le-add2 plus-1-eq-Suc power-divide power-one sum-
mation-helper)

finally show ?case by force
qed

lemma bounding-interval-helper2 :
fixes x :: real
assumes x ∈ {0 ..<1}
shows ∃ k. x < (

∑
i = 1 ..k. 1 / (2 ^ i::real))

proof−
let ?f = λk::nat. (2^k − 1 )/(2^k)
have lim: ∀ ε::real>0 . ∃ k. (1 − (?f k)) < ε
proof clarify

fix ε::real
assume ε > 0
then obtain m where m > 0 ∧ 1 / m < ε
by (metis Groups.mult-ac(2 ) divide-less-eq linordered-field-no-ub order-less-trans

zero-less-divide-1-iff )
moreover obtain k where 2^k > m using real-arch-pow by fastforce
ultimately have 1 / (2^k) < ε by (smt (verit) frac-less2 )
moreover have (1 ::real) − ((2^k − 1 ) / (2^k)) = (1/(2^k)) by (simp add:

diff-divide-distrib)
ultimately show ∃ k. 1 − (2^k − 1 ) / (2^k) < ε by (smt (verit))

qed
have ∃ k. ?f k > x
proof−

let ?ε = 1 − x
obtain k where 1 − (?f k) < ?ε by (metis assms lim atLeastLessThan-iff

diff-gt-0-iff-gt)
thus ?thesis by auto

qed
thus ?thesis using bounding-interval-helper1 by presburger

qed

lemma bounding-interval-for-reals-btw01 :
fixes x::real
assumes x ∈ {0 ..<1}
shows ∃ k. x ∈ {(

∑
i ∈ {1 ..k}. 1/(2^i::real))..<(

∑
i ∈ {1 ..(k + 1 )}. 1/(2^i))}

proof −
let ?S = λk. (

∑
i = 1 ..k. 1 / (2 ^ i::real))

let ?A = {k::nat. x < (
∑

i = 1 ..k. 1 / (2 ^ i::real))}
let ?m = LEAST k. k ∈ ?A
have ∃ k. x < (

∑
i = 1 ..k. 1 / (2 ^ i::real)) using assms bounding-interval-helper2
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by blast
then have ?m ∈ ?A by (metis (mono-tags, lifting) LeastI2-wellorder mem-Collect-eq)
moreover then have ?m − 1 /∈ ?A

by (smt (verit, ccfv-SIG) One-nat-def Suc-n-not-le-n Suc-pred ′ assms atLeast-
LessThan-iff atLeastatMost-empty ′ bot-nat-0 .not-eq-extremum linorder-not-less mem-Collect-eq
not-less-Least sum.empty)

ultimately have x < (
∑

i = 1 ..?m. 1 / (2 ^ i::real)) ∧ x ≥ (
∑

i = 1 ..?m−1 .
1 / (2 ^ i::real))

by simp
thus ?thesis
by (smt (verit, best) add.commute assms atLeastLessThan-iff le-add-diff-inverse

linorder-not-less sum.head-if )
qed

lemma all-rotation-intervals-between-0and1 :
shows {(

∑
i ∈ {1 ..k}. 1/(2^i::real))..(

∑
i ∈ {1 ..(k+1 )}. 1/(2^i))} ⊆ {0 ..<1}

proof −
have gt:

∧
k. (

∑
i ∈ {1 ..k}. 1/(2^i::real)) ≥ 0

by (simp add: sum-nonneg)
have lt:

∧
k. (

∑
i ∈ {1 ..k}. 1/(2^i::real)) < 1

by (smt (verit, ccfv-SIG) diff-Suc-1 f-gteq-0-sum-gt less-Suc-eq-le linorder-not-le
summation-helper zero-less-divide-1-iff zero-less-power)

show ?thesis
using gt lt
by (meson atLeastAtMost-subseteq-atLeastLessThan-iff )

qed

lemma all-rotation-intervals-between-0and1-strict:
shows {(

∑
i ∈ {1 ..k}. 1/(2^i::real))..<(

∑
i ∈ {1 ..(k+1 )}. 1/(2^i))} ⊆ {0 ..<1}

using all-rotation-intervals-between-0and1
by (smt (verit, ccfv-SIG) atLeastAtMost-subseteq-atLeastLessThan-iff ivl-subset

nle-le order-trans)

lemma one-polygon-rotation-is-loop-free:
assumes polygon-of p vts
assumes p ′ = make-polygonal-path (rotate-polygon-vertices vts 1 )
(is p ′ = make-polygonal-path ?vts ′)

shows loop-free p ′

proof(rule ccontr)
assume ¬ loop-free p ′

moreover have p ′ 0 = p ′ 1
using assms

by (smt (verit, ccfv-SIG) assms(2 ) butlast-snoc length-butlast linepath-0 ′ linepath-1 ′

make-polygonal-path.simps(1 ) not-gr-zero nth-append-length nth-butlast path-defs(2 )
path-defs(3 ) polygon-pathfinish polygon-pathstart rotate-polygon-vertices-def )

ultimately obtain x ′ y ′ where x ′y ′: x ′ < y ′ ∧ {x ′, y ′} ⊆ {0 ..<1} ∧ p ′ x ′ = p ′

y ′

unfolding loop-free-def
by (smt (verit, del-insts) atLeastAtMost-iff atLeastLessThan-iff bot-least in-
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sert-subset linorder-not-le order .refl order-antisym zero-less-one)

let ?n = length vts
have n-geq-4 : ?n ≥ 4 using polygon-vertices-length-at-least-4 assms

using polygon-of-def by blast
obtain xk where x ′-in: x ′ ∈ {(

∑
i ∈ {1 ..xk}. 1/(2^i))..<(

∑
i ∈ {1 ..(xk + 1 )}.

1/(2^i))} using x ′y ′

using bounding-interval-for-reals-btw01 x ′y ′

by (metis insert-subset )
then have xk-gteq: xk ≥ 0

by blast
obtain yk where y ′-in: y ′ ∈ {(

∑
i ∈ {1 ..yk}. 1/(2^i))..<(

∑
i ∈ {1 ..(yk + 1 )}.

1/(2^i))}
using bounding-interval-for-reals-btw01 x ′y ′

by (metis insert-subset)
then have yk-gteq: yk ≥ 0

by blast

have all-pows-of-2-pos: (
∧

i. 0 < 1 / (2 ^ i::real))
by simp

let ?x1 = (x ′ − (
∑

i ∈ {1 ..xk}. 1/(2^i)))/2 + (
∑

i ∈ {1 ..(xk + 1 )}. 1/(2^i))
have xk-lt-nminus3 : xk ≤ ?n − 4 =⇒ ?x1 ∈ {(

∑
i ∈ {1 ..xk+1}. 1/(2^i))..<(

∑
i

∈ {1 ..xk+2}. 1/(2^i))} ∧ p ?x1 = p ′ x ′

using polygon-rotation-t-translation1-strict[OF assms(1 ) assms(2 ) x ′-in] xk-gteq
by metis

let ?y1 = (y ′ − (
∑

i ∈ {1 ..yk}. 1/(2^i)))/2 + (
∑

i ∈ {1 ..(yk + 1 )}. 1/(2^i))
have yk-lt-nminus3 : yk ≤ ?n − 4 =⇒ ?y1 ∈ {(

∑
i ∈ {1 ..yk+1}. 1/(2^i))..<(

∑
i

∈ {1 ..yk+2}. 1/(2^i))} ∧ p ?y1 = p ′ y ′

using polygon-rotation-t-translation1-strict[OF assms(1 ) assms(2 ) y ′-in] yk-gteq

by metis

let ?x2 = x ′ + 1/(2^(?n−2 ))
have xk = ?n−3 =⇒ x ′ ∈ {

∑
i = 1 ..length vts − 3 . 1 / (2 ^ i::real)..<

∑
i =

1 ..length vts − 2 . 1 / 2 ^ i}
using x ′-in

by (smt (verit, best) Nat.add-diff-assoc2 ‹4 ≤ length vts› diff-cancel2 le-add-diff-inverse
nat-add-left-cancel-le nat-le-linear numeral-Bit0 numeral-Bit1 numerals(1 ) trans-le-add1 )

then have xk-eq-nminus3 : xk = ?n − 3 =⇒ p ?x2 = p ′ x ′ ∧ ?x2 ∈ {(
∑

i ∈
{1 ..?n−2}. 1/(2^i))..<1}

using polygon-rotation-t-translation2-strict[OF assms(1 ) assms(2 ), of ?n x ′

?x2 ] x ′-in xk-gteq
by presburger

let ?y2 = y ′ + 1/(2^(?n−2 ))
have yk = ?n−3 =⇒ y ′ ∈ {

∑
i = 1 ..length vts − 3 . 1 / (2 ^ i::real)..<

∑
i =

1 ..length vts − 2 . 1 / 2 ^ i}
using y ′-in
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by (smt (verit, best) Nat.add-diff-assoc2 ‹4 ≤ length vts› diff-cancel2 le-add-diff-inverse
nat-add-left-cancel-le nat-le-linear numeral-Bit0 numeral-Bit1 numerals(1 ) trans-le-add1 )

then have yk-eq-nminus3 : yk = ?n − 3 =⇒ p ?y2 = p ′ y ′ ∧ ?y2 ∈ {(
∑

i ∈
{1 ..?n−2}. 1/(2^i))..<1}

using polygon-rotation-t-translation2-strict[OF assms(1 ) assms(2 ), of ?n y ′

?y2 ] x ′-in xk-gteq
by presburger

let ?x3 = (x ′ − (
∑

i ∈ {1 ..?n−2}. 1/(2^i)))∗(2^(?n−3 ))
have x ′-leq: x ′ < 1

using x ′y ′ by simp
have x ′-geq: xk ≥ ?n − 2 =⇒ (

∑
i = 1 ..xk. 1 / (2 ^ i::real)) ≥ (

∑
i = 1 ..length

vts − 2 . 1 / (2 ^ i::real))
using x ′-in f-gteq-0-sum-gt[of λi. 1 / (2 ^ i::real)]

by (metis le-antisym less-eq-real-def linorder-not-le zero-less-divide-1-iff zero-less-numeral
zero-less-power)

have xk ≥ ?n−2 =⇒ x ′ ∈ {
∑

i = 1 ..length vts − 2 . 1 / (2 ^ i::real)..<1}
using x ′-leq x ′-geq x ′-in
by fastforce

then have xk-gt-nminus3 : xk ≥ ?n − 2 =⇒ p ?x3 = p ′ x ′ ∧ ?x3 ∈ {0 ..<1/2}
using polygon-rotation-t-translation3-strict[OF assms(1 ) assms(2 ), of x ′ ?n]

xk-gteq
by presburger

let ?y3 = (y ′ − (
∑

i ∈ {1 ..?n−2}. 1/(2^i)))∗(2^(?n−3 ))
have y ′-leq: y ′ < 1

using x ′y ′ by simp
have y ′-geq: yk ≥ ?n − 2 =⇒ (

∑
i = 1 ..yk. 1 / (2 ^ i::real)) ≥ (

∑
i = 1 ..length

vts − 2 . 1 / (2 ^ i::real))
using y ′-in f-gteq-0-sum-gt[of λi. 1 / (2 ^ i::real)]

by (metis le-antisym less-eq-real-def linorder-not-le zero-less-divide-1-iff zero-less-numeral
zero-less-power)

have yk ≥ ?n−2 =⇒ y ′ ∈ {
∑

i = 1 ..length vts − 2 . 1 / (2 ^ i::real)..<1}
using y ′-leq y ′-geq y ′-in
by fastforce

then have yk-gt-nminus3 : yk ≥ ?n − 2 =⇒ p ?y3 = p ′ y ′ ∧ ?y3 ∈ {0 ..<1/2}
using polygon-rotation-t-translation3-strict[OF assms(1 ) assms(2 ), of y ′ ?n]

yk-gteq
by presburger

have interval-helper : a1 ≥ b2 ∧x ∈ {a1 ..<a2} ∧ y ∈ {b1 ..<b2} =⇒ y < x for
a1 a2 b1 b2 x y::real

by simp

{ assume xk-lt: xk < ?n − 3
then have p-x ′: p ?x1 = p ′ x ′

using xk-lt-nminus3 by auto
have x1-in: ?x1 ∈ {(

∑
i ∈ {1 ..(xk + 1 )}. 1/(2^i))..<(

∑
i ∈ {1 ..(xk + 2 )}.

1/(2^i))}
using xk-lt xk-lt-nminus3
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by auto
then have x1-in-01 : ?x1 ∈ {0 ..<1}

using all-rotation-intervals-between-0and1-strict[of xk+1 ]
by fastforce

{ assume yk-lt: yk < ?n − 3
then have p-y ′: p ?y1 = p ′ y ′

using yk-lt-nminus3 by auto
have y1-in: ?y1 ∈ {(

∑
i ∈ {1 ..(yk + 1 )}. 1/(2^i))..<(

∑
i ∈ {1 ..(yk + 2 )}.

1/(2^i))}
using yk-lt yk-lt-nminus3 by auto

then have y1-in-01 : ?y1 ∈ {0 ..<1}
using all-rotation-intervals-between-0and1-strict[of yk+1 ]
by fastforce

have {
∑

i = 1 ..xk + 1 . 1 / 2 ^ i..<
∑

i = 1 ..xk + 2 . 1 / (2 ^ i::real)} ∩ {
∑

i
= 1 ..yk + 1 . 1 / (2 ^ i::real)..<

∑
i = 1 ..yk + 2 . 1 / 2 ^ i} = {} if xk-neq:xk 6=

yk
using rotation-intervals-disjoint[of xk+1 yk+1 ] xk-neq
by fastforce

then have eq-then-eq: ?x1 = ?y1 =⇒ xk = yk
using x1-in y1-in
by (smt (verit) Int-iff empty-iff )

have xk = yk =⇒ ?x1 6= ?y1
using x ′y ′ x1-in y1-in by simp

then have ?x1 6= ?y1
using eq-then-eq by blast

moreover have {?x1 , ?y1} ⊆ {0 ..<1}
using x1-in-01 y1-in-01 by fast

ultimately have ?x1 6= ?y1 ∧ {?x1 , ?y1} ⊆ {0 ..<1} ∧ p ?x1 = p ?y1
using p-x ′ p-y ′ x ′y ′ by presburger

then have ∃ x y . x 6= y ∧ {x, y} ⊆ {0 ..<1} ∧ p x = p y
by auto

then have False
using assms(1 ) unfolding polygon-of-def polygon-def simple-path-def loop-free-def

by fastforce
} moreover { assume yk = ?n − 3

then have y2 : p ?y2 = p ′ y ′ ∧ ?y2 ∈ {(
∑

i ∈ {1 ..?n−2}. 1/(2^i))..<1}
using yk-eq-nminus3
by auto

then have y2-in-01 : ?y2 ∈ {0 ..<1}
using all-rotation-intervals-between-0and1-strict[of ?n−2 ]
by fastforce

have xkplus-eq: xk + 2 = ?n − 2 =⇒ (
∑

i ∈ {1 ..(xk + 2 )}. 1/(2^i::real)) ≤
(
∑

i ∈ {1 ..?n−2}. 1/(2^i))
by simp

have xkplus-lt: xk + 2 < ?n − 2 =⇒ (
∑

i ∈ {1 ..(xk + 2 )}. 1/(2^i::real)) ≤
(
∑

i ∈ {1 ..?n−2}. 1/(2^i))
using xk-lt f-gteq-0-sum-gt[OF all-pows-of-2-pos, of xk + 2 ?n − 2 ]
by (smt (verit, best) f-gteq-0-sum-gt zero-less-divide-1-iff zero-less-power)

then have (
∑

i ∈ {1 ..(xk + 2 )}. 1/(2^i::real)) ≤ (
∑

i ∈ {1 ..?n−2}. 1/(2^i))
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using xkplus-eq xkplus-lt xk-lt
using One-nat-def Suc-diff-Suc Suc-eq-plus1 Suc-le-eq add-Suc-right le-neq-implies-less

linorder-not-le nat-1-add-1 nat-diff-split numeral-3-eq-3 xk-gteq by linarith
then have ?x1 6= ?y2

using x1-in y2
by (smt (verit, ccfv-SIG) interval-helper)

moreover have {?x1 , ?y2} ⊆ {0 ..<1}
using x1-in-01 y2-in-01 by fast

ultimately have ?x1 6= ?y2 ∧ {?x1 , ?y2} ⊆ {0 ..<1} ∧ p ?x1 = p ?y2
using p-x ′ y2 x ′y ′ by presburger

then have ∃ x y . x 6= y ∧ {x, y} ⊆ {0 ..<1} ∧ p x = p y
by auto

then have False
using assms(1 ) unfolding polygon-of-def polygon-def simple-path-def

loop-free-def
by fastforce

}
moreover { assume yk > ?n − 3

then have y3 : p ?y3 = p ′ y ′ ∧ ?y3 ∈ {0 ..<(1/2 ::real)}
using yk-gt-nminus3
by auto

then have y3-in-01 : ?y3 ∈ {0 ..<1}
by simp

have simplify-interval: (
∑

i = 1 ..1 . 1 / (2 ^ i::real)) = 1/2
by simp

then have xk-eq-0 : xk = 0 =⇒ (
∑

i ∈ {1 ..(xk + 1 )}. 1/(2^i::real)) ≥ 1/2
by simp

have xk > 0 =⇒ (
∑

i ∈ {1 ..(xk + 1 )}. 1/(2^i::real)) ≥ 1/2
using f-gteq-0-sum-gt[OF all-pows-of-2-pos, of 1 xk +1 ]
simplify-interval

by (smt (verit, ccfv-SIG) Suc-le-eq add.commute add.right-neutral all-pows-of-2-pos
f-gteq-0-sum-gt linorder-not-le plus-1-eq-Suc)

then have (
∑

i ∈ {1 ..(xk + 1 )}. 1/(2^i::real)) ≥ 1/2
using xk-eq-0 xk-gteq by blast

then have ?x1 6= ?y3
using x1-in y3
by (smt (verit, best) interval-helper)

moreover have {?x1 , ?y3} ⊆ {0 ..<1}
using x1-in-01 y3-in-01 by fast

ultimately have ?x1 6= ?y3 ∧ {?x1 , ?y3} ⊆ {0 ..<1} ∧ p ?x1 = p ?y3
using p-x ′ y3 x ′y ′

by presburger
then have ∃ x y . x 6= y ∧ {x, y} ⊆ {0 ..<1} ∧ p x = p y

by auto
then have False

using assms(1 ) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def

by fastforce
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}
ultimately have False by linarith

} moreover {assume xk-eq : xk = ?n−3
then have p-x ′: p ?x2 = p ′ x ′

using xk-eq-nminus3 by auto
have x2-in: ?x2 ∈ {(

∑
i ∈ {1 ..?n−2}. 1/(2^i))..<1}

using xk-eq xk-eq-nminus3
by auto

then have ?x2 ≥ 0
using n-geq-4

by (metis add-sign-intros(4 ) atLeastLessThan-iff insert-subset leD nle-le
power-one-over x ′y ′ zero-le-power zero-less-divide-1-iff zero-less-numeral)

then have x2-in-01 : ?x2 ∈ {0 ..<1}
using x2-in by auto

{ assume yk < ?n − 3
then have interval-helper-helper : (

∑
i = 1 ..yk + 1 . 1 / (2 ^ i::real)) ≤ (

∑
i

= 1 ..xk. 1 / (2 ^ i::real))
using xk-eq f-gteq-0-sum-gt

by (metis Suc-eq-plus1 less-eq-real-def linorder-neqE-nat not-less-eq zero-less-divide-1-iff
zero-less-numeral zero-less-power)

then have x ′ > y ′

using x ′-in y ′-in interval-helper [of (
∑

i = 1 ..yk + 1 . 1 / (2 ^ i::real))
(
∑

i = 1 ..xk. 1 / (2 ^ i::real))]
by blast

then have False using x ′y ′

by auto
} moreover { assume yk = ?n − 3

then have y2 : p ?y2 = p ′ y ′ ∧ ?y2 ∈ {(
∑

i ∈ {1 ..?n−2}. 1/(2^i))..<1}
using yk-eq-nminus3
by auto

then have y2-in-01 : ?y2 ∈ {0 ..<1}
using all-rotation-intervals-between-0and1-strict[of ?n−2 ]
by fastforce

then have ?x2 6= ?y2
using x ′y ′ by auto

moreover have {?x2 , ?y2} ⊆ {0 ..<1}
using x2-in-01 y2-in-01 by fast

ultimately have ?x2 6= ?y2 ∧ {?x2 , ?y2} ⊆ {0 ..<1} ∧ p ?x2 = p ?y2
using p-x ′ y2 x ′y ′ by presburger

then have ∃ x y . x 6= y ∧ {x, y} ⊆ {0 ..<1} ∧ p x = p y
by meson

then have False
using assms(1 ) unfolding polygon-of-def polygon-def simple-path-def

loop-free-def
by fastforce

} moreover { assume yk-gt: yk > ?n − 3
then have y3 : p ?y3 = p ′ y ′

using yk-gt-nminus3 by auto
have y3-in: ?y3 ∈ {0 ..<1/2}
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using yk-gt yk-gt-nminus3
by auto

then have y3-in-01 : ?y3 ∈ {0 ..<1}
by auto

have (
∑

i = 1 ..length vts − 2 . 1 / (2 ^ i::real)) > (
∑

i = 1 ..1 . 1 / (2 ^
i::real))

using n-geq-4 f-gteq-0-sum-gt[OF all-pows-of-2-pos,of 1 length vts − 2 ]
by fastforce

then have (
∑

i = 1 ..length vts − 2 . 1 / (2 ^ i::real)) > 1/2
by simp

then have ?x2 6= ?y3
using y3-in x2-in by auto

moreover have {?x2 , ?y3} ⊆ {0 ..<1}
using x2-in-01 y3-in-01 by fast

ultimately have ?x2 6= ?y3 ∧ {?x2 , ?y3} ⊆ {0 ..<1} ∧ p ?x2 = p ?y3
using p-x ′ y3 x ′y ′ by presburger

then have ∃ x y . x 6= y ∧ {x, y} ⊆ {0 ..<1} ∧ p x = p y
by meson

then have False
using assms(1 ) unfolding polygon-of-def polygon-def simple-path-def

loop-free-def
by fastforce

}
ultimately have False

using not-less-iff-gr-or-eq by auto
} moreover { assume xk-gt: xk > ?n − 3

then have p-x ′: p ?x3 = p ′ x ′

using xk-gt-nminus3 by auto
have x3-in: ?x3 ∈ {0 ..<1/2}

using xk-gt xk-gt-nminus3
by auto

then have x3-in-01 : ?x3 ∈ {0 ..<1}
by auto

{ assume yk ≤ ?n − 3
then have (

∑
i = 1 ..xk. 1 / (2 ^ i::real)) ≥ (

∑
i = 1 ..yk + 1 . 1 / (2 ^

i::real))
using xk-gt f-gteq-0-sum-gt[of λi. 1 / (2 ^ i::real) xk yk]

proof −
obtain rr :: nat ⇒ real where

f1 : ∀B-x. rr B-x = 1 / 2 ^ B-x
by force

then have f2 : ∀n. 0 < rr n
by simp

have yk < xk
using ‹length vts − 3 < xk› ‹yk ≤ length vts − 3 › order-le-less-trans by

blast
then show ?thesis
using f2 f1 by (metis (no-types) Suc-eq-plus1 f-gteq-0-sum-gt less-eq-real-def

nat-neq-iff not-less-eq order .refl)
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qed
then have x ′ > y ′

using x ′-in y ′-in interval-helper [of (
∑

i = 1 ..yk + 1 . 1 / (2 ^ i::real)) (
∑

i
= 1 ..xk. 1 / (2 ^ i::real))]

by blast
then have False using x ′y ′

by auto
} moreover
{ assume yk-gt: yk > ?n − 3

then have p-y ′: p ?y3 = p ′ y ′

using yk-gt-nminus3 by auto
have y3-in: ?y3 ∈ {0 ..<1/2}

using yk-gt yk-gt-nminus3
by auto

then have y3-in-01 : ?y3 ∈ {0 ..<1}
by auto

have (x ′ − (
∑

i = 1 ..length vts − 2 . 1 / 2 ^ i)) 6=
(y ′ − (

∑
i = 1 ..length vts − 2 . 1 / 2 ^ i))

using x ′y ′ by auto
then have ?x3 6= ?y3 by auto
moreover have {?x3 , ?y3} ⊆ {0 ..<1}

using x3-in-01 y3-in-01 by fast
ultimately have ?x3 6= ?y3 ∧ {?x3 , ?y3} ⊆ {0 ..<1} ∧ p ?x3 = p ?y3

using p-x ′ p-y ′ x ′y ′

by presburger
then have ∃ x y . x 6= y ∧ {x, y} ⊆ {0 ..<1} ∧ p x = p y

by meson
then have False

using assms(1 ) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def

by fastforce
}
ultimately have False by linarith

}
ultimately show False by linarith

qed

lemma one-rotation-is-polygon:
fixes p :: R-to-R2
fixes i :: nat
assumes poly-p: polygon p and

p-is-path: p = make-polygonal-path vts and
p ′-is: p ′ = make-polygonal-path (rotate-polygon-vertices vts 1 )
(is p ′ = make-polygonal-path ?vts ′)

shows polygon p ′

proof−
have polygonal-path p ′ using p ′-is by (simp add: polygonal-path-def )
moreover have closed-path p ′

using p ′-is unfolding rotate-polygon-vertices-def closed-path-def
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by (metis (no-types, opaque-lifting) Nil-is-append-conv append-self-conv2 diff-Suc-1
hd-append2 hd-conv-nth length-append-singleton make-polygonal-path-gives-path not-Cons-self
nth-Cons-0 nth-append-length pathfinish-def pathstart-def polygon-pathfinish poly-
gon-pathstart)

moreover have simple-path p ′

using one-polygon-rotation-is-loop-free
by (metis make-polygonal-path-gives-path p ′-is p-is-path poly-p polygon-of-def

simple-path-def )
ultimately show ?thesis unfolding polygon-def by simp

qed

lemma rotation-is-polygon:
fixes p :: R-to-R2
fixes i:: nat
assumes polygon p and

p = make-polygonal-path vts
shows polygon (make-polygonal-path (rotate-polygon-vertices vts i))
using assms

proof (induct i)
case 0
then show ?case using rotate0 unfolding rotate-polygon-vertices-def
by (smt (z3 ) assms(2 ) butlast.simps(1 ) butlast-conv-take eq-id-iff have-wraparound-vertex

hd-append2 hd-conv-nth rotate-polygon-vertices-def rotate-polygon-vertices-same-set
self-append-conv2 the-elem-set)
next

case (Suc i)
then show ?case using one-rotation-is-polygon arb-rotation-as-single-rotation

by metis
qed

lemma polygon-rotate-mod:
fixes vts :: (real^2 ) list
assumes n = length vts
assumes n ≥ 2
assumes hd vts = last vts
shows rotate-polygon-vertices vts (n − 1 ) = vts

proof−
let ?vts ′ = rotate (n − 1 ) (butlast vts)
have rotate-polygon-vertices vts (n − 1 ) = ?vts ′ @ [?vts ′!0 ]

unfolding rotate-polygon-vertices-def by metis
moreover have ?vts ′ = butlast vts using assms by simp
moreover have ... = rotate 0 (butlast vts) by simp
moreover then have ... @ [...!0 ] = rotate-polygon-vertices vts 0

unfolding rotate-polygon-vertices-def by metis
moreover have ... = vts

unfolding rotate-polygon-vertices-def using assms
by (metis (no-types, lifting) Suc-le-eq calculation(3 ) hd-conv-nth length-butlast

length-greater-0-conv nat-1-add-1 nth-butlast order-less-le-trans plus-1-eq-Suc pos2
snoc-eq-iff-butlast zero-less-diff )
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ultimately show ?thesis by argo
qed

lemma polygon-rotate-mod-arb:
fixes vts :: (real^2 ) list
assumes n = length vts
assumes n ≥ 2
assumes hd vts = last vts
shows rotate-polygon-vertices vts ((n − 1 ) ∗ i) = vts

proof(induct i)
case 0
then show ?case using polygon-rotate-mod
by (metis append.right-neutral append-Nil assms(1 ) assms(2 ) assms(3 ) id-apply

length-butlast mult-zero-right rotate0 rotate-append rotate-polygon-vertices-def )
next

case (Suc i)
then have vts = rotate-polygon-vertices vts ((n − 1 ) ∗ i) using Suc.prems by

argo
also have ... = rotate-polygon-vertices vts ((n − 1 ) ∗ Suc i)
using polygon-rotate-mod assms(1 ) assms(2 ) assms(3 ) calculation rotation-sum
by (metis mult-Suc-right)

finally show ?case by argo
qed

lemma unrotation-is-polygon:
fixes p :: R-to-R2
fixes i:: nat
assumes polygon (make-polygonal-path (rotate-polygon-vertices vts i))

(is polygon (make-polygonal-path ?vts ′))
p = make-polygonal-path vts
hd vts = last vts

shows polygon p
proof−

have len-vts: length vts ≥ 2
using assms polygon-vertices-length-at-least-4 rotate-polygon-vertices-same-length
by (metis (no-types, opaque-lifting) Suc-1 Suc-eq-numeral Suc-le-lessD diff-is-0-eq ′

eval-nat-numeral(2 ) gr-implies-not0 length-append-singleton length-butlast length-rotate
not-less-eq-eq rotate-polygon-vertices-def )

let ?n = length vts − 1
obtain k where k: k∗?n > i

using len-vts
by (metis Suc-1 Suc-le-eq add-0 div-less-iff-less-mult le-add2 less-diff-conv)

let ?j = k∗?n − i
have j-i-n: ?j + i = k∗?n using k by simp

have rotate-polygon-vertices ?vts ′ ?j = rotate-polygon-vertices vts (?j + i)
using rotation-sum[of vts i ?n] by (simp add: add.commute rotation-sum)

also have ... = rotate-polygon-vertices vts (k∗?n) using assms j-i-n by presburger
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also have ... = vts using polygon-rotate-mod-arb len-vts assms by (metis mult.commute)
finally show ?thesis using rotation-is-polygon assms by metis

qed

lemma rotated-polygon-vertices:
assumes vts ′ = rotate-polygon-vertices vts j
assumes hd vts = last vts
assumes length vts ≥ 2
assumes j ≤ i ∧ i < length vts
shows vts ! i = vts ′ ! (i − j)
using assms

proof(induct j arbitrary: vts vts ′)
case 0
then show ?case
by (metis Suc-1 Suc-le-eq diff-is-0-eq diff-zero hd-conv-nth id-apply length-butlast

linorder-not-le list.size(3 ) nth-butlast rotate0 rotate-polygon-vertices-def snoc-eq-iff-butlast)
next

case (Suc j)
then have vts ′ = rotate-polygon-vertices (rotate-polygon-vertices vts 1 ) j

by (metis plus-1-eq-Suc rotation-sum)
moreover have ...!(i − Suc j) = (rotate-polygon-vertices vts 1 )!(i − 1 )
using Suc.hyps Suc.prems(3 ) Suc.prems(4 ) Suc-1 Suc-diff-le Suc-leD diff-Suc-Suc

hd-conv-nth length-append-singleton length-butlast length-rotate nth-butlast rotate-polygon-vertices-def
snoc-eq-iff-butlast zero-less-Suc

by (smt (z3 ) One-nat-def Suc.prems(1 ) Suc.prems(2 ) Suc-eq-plus1 Suc-le-eq
arb-rotation-as-single-rotation calculation diff-diff-cancel diff-is-0-eq diff-less-mono
diff-zero not-less-eq-eq plus-1-eq-Suc rotated-polygon-vertices-helper2 )

moreover have ... = vts!i using rotated-polygon-vertices-helper2
by (metis Suc.prems(2 ) Suc.prems(3 ) Suc.prems(4 ) add-leD1 le-add-diff-inverse2

less-diff-conv plus-1-eq-Suc)
ultimately show ?case

by presburger
qed

lemma polygon-path-image:
assumes poly-p: polygon p
assumes p-is-path: p = make-polygonal-path vts
shows path-image p = p‘ {0 ..< 1}

proof −
have vts-nonempty: vts 6= []

using polygon-at-least-3-vertices[OF poly-p p-is-path]
by auto

have at-0 : p ‘ {0} = {pathstart p}
using p-is-path
by (metis image-empty image-insert pathstart-def )

have at-1 : p ‘ {1} = {pathfinish p}
using p-is-path
by (simp add: pathfinish-def )

have same-point: p 0 = p 1
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using assms unfolding polygon-def closed-path-def using polygon-pathstart[OF
vts-nonempty p-is-path]

using polygon-pathfinish[OF vts-nonempty p-is-path]
at-0 at-1 by auto

have
∧

x. x ∈ p ‘ {0 ..1} =⇒ x ∈ p ‘ {0 ..<1}
proof −

fix x
assume x ∈ p ‘ {0 ..1}
then have ∃ k ∈ {0 ..1}. p k = x

by auto
then obtain k where k-prop: k ∈ {0 ..1} ∧ p k = x

by auto
{assume ∗: k < 1

then have ∃ k ∈ {0 ..<1}. p k = x
using k-prop by auto

} moreover {assume ∗: k = 1
then have p 0 = x

using same-point k-prop by auto
then have ∃ k ∈ {0 ..<1}. p k = x

by auto
}
ultimately have ∃ k ∈ {0 ..<1}. p k = x

using k-prop
by (metis atLeastAtMost-iff order-less-le)

then show x ∈ p ‘ {0 ..<1}
by auto

qed
then show ?thesis

unfolding path-image-def by auto
qed

lemma polygon-vts-one-rotation:
fixes p :: R-to-R2
assumes poly-p: polygon p and

p-is-path: p = make-polygonal-path vts and
p ′-is: p ′ = make-polygonal-path (rotate-polygon-vertices vts 1 )

shows path-image p = path-image p ′

proof −
let ?rotated-vts = (rotate-polygon-vertices vts 1 )
have card (set vts) ≥ 3

using polygon-at-least-3-vertices[OF poly-p p-is-path]
by auto

then have len-gt-eq3 : length vts ≥ 3
using card-length order-trans by blast

have same-len: length ?rotated-vts = length vts
unfolding rotate-polygon-vertices-def using length-rotate

by (metis One-nat-def Suc-pred card.empty length-append-singleton length-butlast
length-greater-0-conv list.set(1 ) not-numeral-le-zero p-is-path poly-p polygon-at-least-3-vertices)

then have len-rotated-gt-eq2 : length ?rotated-vts ≥ 2
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using len-gt-eq3 by auto
have h1 :

∧
x. x ∈ (path-image p) =⇒ x ∈ path-image p ′

proof −
fix x
assume x ∈ (path-image p)
then have ∃ k<length vts − 1 . x ∈ path-image (linepath (vts ! k) (vts ! (k +

1 )))
using p-is-path len-gt-eq3 make-polygonal-path-image-property[of vts x]
by auto

then obtain k where k-prop: k < length vts − 1 ∧ x ∈ path-image (linepath
(vts ! k) (vts ! (k + 1 )))

by auto
{assume ∗: k = 0

have vts1 : vts ! 0 = ?rotated-vts ! (length ?rotated-vts − 2 )
unfolding rotate-polygon-vertices-def
using nth-rotate[of length ?rotated-vts − 2 butlast vts 1 ]
by (metis (no-types, lifting) ∗ One-nat-def Suc-pred butlast-snoc diff-diff-left

k-prop length-butlast lessI mod-self nat-1-add-1 nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def
same-len)

have (rotate 1 (butlast vts)) ! 0 = vts ! 1
using nth-rotate[of 0 butlast vts 1 ] len-gt-eq3
by (simp add: less-diff-conv mod-if nth-butlast)

then have vts2 : vts ! 1 = ?rotated-vts ! (length ?rotated-vts − 1 )
unfolding rotate-polygon-vertices-def
by (metis butlast-snoc length-butlast nth-append-length)

then have path-image (linepath (vts ! k) (vts ! (k + 1 ))) ⊆ path-image p ′

using linepaths-subset-make-polygonal-path-image[of vts 0 ]
len-rotated-gt-eq2 ∗
by (metis (no-types, lifting) One-nat-def Suc-eq-plus1 Suc-pred diff-diff-left

diff-less k-prop less-numeral-extra(1 ) linepaths-subset-make-polygonal-path-image nat-1-add-1
p ′-is same-len vts1 )

then have x ∈ path-image p ′

using k-prop vts1 vts2
by auto

}
moreover {assume ∗: k > 0

then have k-minus-prop: k − 1 < length (rotate-polygon-vertices vts 1 ) − 1
using same-len k-prop less-imp-diff-less
by presburger

then have vts1 : vts ! k = ?rotated-vts ! (k−1 )
using nth-rotate[of k−1 butlast vts 1 ] len-gt-eq3
same-len
by (metis ∗ One-nat-def Suc-pred butlast-snoc k-prop length-butlast mod-less

nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def )
have vts2 : vts ! (k+1 ) = ?rotated-vts ! k

using nth-rotate[of k butlast vts 1 ] len-gt-eq3 k-minus-prop
by (metis (no-types, lifting) ∗ Suc-eq-plus1 Suc-leI butlast-snoc have-wraparound-vertex

k-prop le-imp-less-Suc length-butlast mod-less mod-self nat-less-le nth-append-length
nth-butlast p-is-path plus-1-eq-Suc poly-p rotate-polygon-vertices-def same-len)
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have path-image (linepath (?rotated-vts ! (k−1 )) (?rotated-vts ! k)) ⊆ path-image
p ′

using linepaths-subset-make-polygonal-path-image[OF len-rotated-gt-eq2
k-minus-prop] p ′-is

by (simp add: ∗)
then have x ∈ path-image p ′

using k-prop vts1 vts2
by auto

}
ultimately show x ∈ path-image p ′

by auto
qed
have h2 :

∧
x. x ∈ (path-image p ′) =⇒ x ∈ path-image p

proof −
fix x
assume x ∈ (path-image p ′)
then have ∃ k<length ?rotated-vts − 1 . x ∈ path-image (linepath (?rotated-vts

! k) (?rotated-vts ! (k + 1 )))
using p ′-is len-rotated-gt-eq2 make-polygonal-path-image-property[of ?rotated-vts

x]
by auto

then obtain k where k-prop: k < length ?rotated-vts − 1 ∧ x ∈ path-image
(linepath (?rotated-vts ! k) (?rotated-vts ! (k + 1 )))

by auto
{assume ∗: k = length ?rotated-vts − 2

have vts1 : vts ! 0 = ?rotated-vts ! (length ?rotated-vts − 2 )
unfolding rotate-polygon-vertices-def
using nth-rotate[of length ?rotated-vts − 2 butlast vts 1 ]

by (metis ∗ Suc-diff-Suc Suc-le-eq butlast-snoc k-prop len-rotated-gt-eq2
length-butlast mod-self nat-1-add-1 nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def
same-len zero-less-Suc)

have (rotate 1 (butlast vts)) ! 0 = vts ! 1
unfolding rotate-polygon-vertices-def
using nth-rotate[of 0 butlast vts 1 ] len-gt-eq3 len-rotated-gt-eq2
by (metis (no-types, lifting) One-nat-def Suc-le-eq diff-diff-left length-butlast

less-nat-zero-code mod-less not-gr-zero nth-butlast numeral-3-eq-3 plus-1-eq-Suc zero-less-diff )
then have vts2 : ?rotated-vts ! (k+1 ) = vts ! 1

unfolding rotate-polygon-vertices-def
by (metis ∗ Suc-diff-Suc Suc-eq-plus1 Suc-le-eq len-rotated-gt-eq2 length-butlast

length-rotate nat-1-add-1 nth-append-length same-len)
have path-image (linepath (vts ! 0 ) (vts ! 1 )) ⊆ path-image p

using linepaths-subset-make-polygonal-path-image[of vts 0 ]
len-gt-eq3 ∗ less-diff-conv p-is-path same-len
by auto

then have x ∈ path-image p
using ∗ vts1 vts2 k-prop
by auto

} moreover {assume ∗: k < length ?rotated-vts − 2
then have vts1 : ?rotated-vts ! k = vts ! (k+1 )
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using nth-rotate[of k butlast vts 1 ] len-gt-eq3 ∗
same-len
by (smt (z3 ) Suc-eq-plus1 butlast-snoc diff-diff-left k-prop length-butlast

less-diff-conv mod-less nat-1-add-1 nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def )
have vts2 : ?rotated-vts ! (k+1 ) = vts ! (k+2 )

using nth-rotate[of k+1 butlast vts 1 ] len-gt-eq3 ∗
by (smt (verit, ccfv-threshold) One-nat-def Suc-le-eq add-Suc-right but-

last-snoc diff-diff-left have-wraparound-vertex len-rotated-gt-eq2 length-butlast less-diff-conv
mod-less mod-self nat-1-add-1 nat-less-le nth-append-length nth-butlast p-is-path
plus-1-eq-Suc poly-p rotate-polygon-vertices-def same-len)

have path-image (linepath (vts ! (k+1 )) (vts ! (k + 2 ))) ⊆ path-image p
using linepaths-subset-make-polygonal-path-image[of vts k+1 ]
len-gt-eq3 ∗ less-diff-conv p-is-path same-len
by auto

then have x ∈ path-image p
using vts1 vts2 k-prop
by auto

}
ultimately show x ∈ path-image p

using k-prop Suc-eq-plus1 add-le-imp-le-diff diff-diff-left len-rotated-gt-eq2
less-diff-conv2 linorder-neqE-nat not-less-eq one-add-one

by linarith
qed
then show ?thesis

using h1 h2 by auto
qed

lemma polygon-vts-arb-rotation:
fixes p :: R-to-R2
assumes polygon p and

p = make-polygonal-path vts
shows path-image p = path-image (make-polygonal-path (rotate-polygon-vertices

vts i))
using assms

proof (induct i)
case 0
then show ?case unfolding rotate-polygon-vertices-def

by (metis One-nat-def arb-rotation-as-single-rotation polygon-vts-one-rotation
rotate-polygon-vertices-def rotation-is-polygon)
next

case (Suc i)
let ?p ′ = make-polygonal-path (rotate-polygon-vertices vts (Suc i))
{assume ∗: i = 0

have path-image p = path-image ?p ′

using Suc polygon-vts-one-rotation[of p vts]
by (simp add: ∗)

}
moreover {assume ∗: i > 0

have path-image p = path-image ?p ′
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using polygon-vts-one-rotation arb-rotation-as-single-rotation rotation-is-polygon

by (metis Suc.hyps Suc.prems(1 ) assms(2 ))
}
ultimately show ?case by auto

qed

10 Translating a Polygon
lemma linepath-translation:

linepath ((λx. x + u) a) ((λx. x + u) b) = (λx. x + u) ◦ (linepath a b)
proof−

let ?l = linepath ((λx. x + u) a) ((λx. x + u) b)
let ?l ′ = (λx. x + u) ◦ (linepath a b)
have ?l x = ?l ′ x for x
proof−

have ?l x = (1 − x) ∗R (a + u) + x ∗R (b + u) unfolding linepath-def by
simp

also have ... = ((1 − x) ∗R a + x ∗R b) + u by (simp add: scaleR-right-distrib)
also have ... = ?l ′ x unfolding linepath-def by simp
finally show ?thesis .

qed
thus ?thesis by fast

qed

lemma make-polygonal-path-translate:
assumes length vts ≥ 2
shows make-polygonal-path (map (λx. x + u) vts) = (λx. x + u) ◦ (make-polygonal-path

vts)
using assms

proof(induct length vts arbitrary: u vts)
case 0
then show ?case by presburger

next
case (Suc n)
let ?vts ′ = map (λx. x + u) vts
let ?p ′ = make-polygonal-path ?vts ′

{ assume Suc n = 2
then obtain a b where ab: vts = [a, b]

by (metis (no-types, lifting) One-nat-def Suc.hyps(2 ) Suc-1 Suc-length-conv
length-0-conv)

then have ?vts ′ = [(λx. x + u) a, (λx. x + u) b] by simp
then have ?p ′ = linepath ((λx. x + u) a) ((λx. x + u) b)

using make-polygonal-path.simps(3 ) by presburger
also have ... = (λx. x + u) ◦ (linepath a b) using linepath-translation by auto
also have ... = (λx. x + u) ◦ (make-polygonal-path vts) using ab by auto
finally have ?case .

} moreover
{ assume ∗: Suc n > 2
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then obtain a b c rest where abc: vts = a # b # c # rest
by (metis One-nat-def Suc.hyps(2 ) Suc-1 Suc-leI Suc-le-length-iff )

let ?vts-tl = tl vts
let ?p-tl = make-polygonal-path ?vts-tl
let ?vts ′-tl = map (λx. x + u) ?vts-tl
let ?p ′-tl = make-polygonal-path ?vts ′-tl

have ?vts ′-tl = tl ?vts ′ by (simp add: map-tl)
then have ?p ′ = (linepath (?vts ′!0 ) (?vts ′!1 )) +++ ?p ′-tl

using make-polygonal-path.simps(4 ) abc by force
moreover have ?p ′-tl = (λx. x + u) ◦ (?p-tl) using Suc.hyps(1 ) Suc.hyps(2 )

∗ by force
moreover have (linepath (?vts ′!0 ) (?vts ′!1 )) = (λx. x + u) ◦ (linepath a b)

using abc linepath-translation by auto
ultimately have ?case by (simp add: abc path-compose-join)

}
ultimately show ?case using Suc by linarith

qed

lemma translation-is-polygon:
assumes polygon-of p vts
shows polygon-of ((λx. x + u) ◦ p) (map (λx. x + u) vts) (is polygon-of ?p ′

?vts ′)
proof−

have length vts ≥ 3
by (metis One-nat-def Suc-eq-plus1 Suc-le-eq add-Suc-right assms nat-less-le nu-

meral-3-eq-3 numeral-Bit0 one-add-one polygon-of-def polygon-vertices-length-at-least-4 )
then have ∗: ?p ′ = make-polygonal-path ?vts ′

using make-polygonal-path-translate assms unfolding polygon-of-def by force
moreover have polygon ?p ′

proof−
have polygonal-path ?p ′ unfolding polygonal-path-def using ∗ by simp
moreover have simple-path ?p ′

using assms unfolding polygon-of-def polygon-def
using simple-path-translation-eq[of u p]
by (metis add.commute fun.map-cong)

moreover have closed-path ?p ′

proof−
have ?p ′ 0 = p 0 + u by simp
moreover have ?p ′ 1 = p 1 + u by simp
moreover have p 0 = p 1

using assms
unfolding polygon-of-def polygon-def closed-path-def pathstart-def pathfin-

ish-def
by blast

moreover have path ?p ′ using make-polygonal-path-gives-path ∗ by simp
ultimately show ?thesis

unfolding closed-path-def pathstart-def pathfinish-def
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by argo
qed
ultimately show ?thesis unfolding polygon-def by blast

qed
ultimately show ?thesis unfolding polygon-of-def by blast

qed

11 Misc. properties
lemma tail-of-loop-free-polygonal-path-is-loop-free:

assumes loop-free (make-polygonal-path (x#tail)) (is loop-free ?p) and
length tail ≥ 2

shows loop-free (make-polygonal-path tail) (is loop-free ?p ′)
proof−

obtain y z tail ′ where tail ′: tail = y # z # tail ′
by (metis One-nat-def Suc-1 assms(2 ) length-Cons list.exhaust-sel list.size(3 )

not-less-eq-eq zero-le)
have path ?p ∧ path ?p ′ using make-polygonal-path-gives-path by auto
have loop-free ?p using assms unfolding simple-path-def by auto
moreover have ?p = (linepath x y) +++ ?p ′

using tail ′ make-polygonal-path.simps(4 ) by (simp add: tail ′)
moreover from calculation have loop-free ?p ′

by (metis make-polygonal-path-gives-path not-loop-free-second-component path-join-path-ends)
ultimately show ?thesis

using make-polygonal-path-gives-path simple-path-def by blast
qed

lemma tail-of-simple-polygonal-path-is-simple:
assumes simple-path (make-polygonal-path (x#tail)) (is simple-path ?p) and

length tail ≥ 2
shows simple-path (make-polygonal-path tail) (is simple-path ?p ′)
using tail-of-loop-free-polygonal-path-is-loop-free unfolding simple-path-def
using assms(1 ) assms(2 ) make-polygonal-path-gives-path simple-path-def by blast

lemma interior-vtx-in-path-image-interior :
fixes vts :: (real^2 ) list
assumes x ∈ set (butlast (drop 1 vts))
shows ∃ t. t ∈ {0<..<1} ∧ (make-polygonal-path vts) t = x
using assms

proof(induct vts rule: make-polygonal-path.induct)
case 1
then show ?case by simp

next
case (2 a)
then show ?case by simp

next
case (3 a b)
then show ?case by simp

next
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case ih: (4 a b c tail ′)
let ?vts = a # b # c # tail ′
let ?tl = b # c # tail ′
let ?p = make-polygonal-path ?vts
let ?p-tl = make-polygonal-path ?tl
{ assume x ∈ set (butlast (drop 1 ?tl))

then obtain t ′ where t ′: t ′ ∈ {0<..<1} ∧ ?p-tl t ′ = x using ih by blast
then have ?p ((t ′ + 1 ) / 2 ) = x

unfolding make-polygonal-path.simps joinpaths-def
by (smt (verit, del-insts) field-sum-of-halves greaterThanLessThan-iff mult-2-right

not-numeral-le-zero zero-le-divide-iff )
moreover have (t ′ + 1 ) / 2 ∈ {0<..<1} using t ′ by force
ultimately have ?case

by blast
} moreover
{ assume x /∈ set (butlast (drop 1 ?tl))

then have x = b
by (metis One-nat-def butlast.simps(2 ) drop0 drop-Suc-Cons ih.prems list.distinct(1 )

set-ConsD)
then have ?p (1/2 ) = x unfolding make-polygonal-path.simps joinpaths-def

by (simp add: linepath-1 ′)
moreover have ((1/2 )::(real)) ∈ ({0<..<1}::(real set)) by simp
ultimately have ?case by blast

}
ultimately show ?case by auto

qed

lemma loop-free-polygonal-path-vts-distinct:
assumes loop-free (make-polygonal-path vts)
shows distinct (butlast vts)
using assms

proof(induct vts rule: make-polygonal-path.induct)
case 1
then show ?case by simp

next
case (2 a)
then show ?case by simp

next
case (3 a b)
then show ?case by simp

next
case ih: (4 a b c tail ′)
let ?vts = a # b # c # tail ′
let ?tl = b # c # tail ′
let ?p = make-polygonal-path ?vts
let ?p-tl = make-polygonal-path ?tl

have distinct (butlast ?tl)
using ih tail-of-loop-free-polygonal-path-is-loop-free by simp
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moreover have a /∈ set (butlast ?tl)
proof(rule ccontr)

assume a-in: ¬ a /∈ set (butlast ?tl)
then have a ∈ set (butlast (drop 1 ?vts)) by simp
then obtain t where t: t ∈ {0<..<1} ∧ ?p t = a

using vertices-on-path-image interior-vtx-in-path-image-interior by metis
then show False

using ih.prems unfolding simple-path-def loop-free-def
by (metis atLeastAtMost-iff greaterThanLessThan-iff less-eq-real-def less-numeral-extra(3 )

less-numeral-extra(4 ) list.distinct(1 ) nth-Cons-0 path-defs(2 ) polygon-pathstart zero-less-one-class.zero-le-one)
qed
ultimately show ?case by simp

qed

lemma loop-free-polygonal-path-vts-drop1-distinct:
assumes loop-free (make-polygonal-path vts)
shows distinct (drop 1 vts)

proof −
let ?p = make-polygonal-path vts
let ?last-vts = vts ! ((length vts) − 1 )
have distinct (butlast vts)
using assms loop-free-polygonal-path-vts-distinct
by auto
then have distinct-butlast: distinct (butlast (drop 1 vts))

by (metis distinct-drop drop-butlast)
{assume ∗: length vts > 1

have len-drop1 : length (drop 1 vts) = (length vts) − 1
using ∗ by simp

have simp-len: 1 + ((length vts) − 2 ) = (length vts) − 1
using ∗ by simp

then have vts-access: vts ! (1 + (length vts − 2 )) = vts ! ((length vts) − 1 )
by argo

have drop 1 vts ! ((length vts) − 2 ) = vts ! (1 + (length vts − 2 ))
using ∗ using nth-drop[of 1 vts (length vts) − 2 ] by auto

then have ?last-vts = (drop 1 vts) ! ((length vts) − 2 )
using ∗ simp-len vts-access by argo

then have ?last-vts = (drop 1 vts) ! (length (drop 1 vts) − 1 )
using ∗ len-drop1
using diff-diff-left nat-1-add-1 by presburger

then have drop1-is: drop 1 vts = (butlast (drop 1 vts))@[?last-vts]
using ∗

by (metis append-butlast-last-id drop-eq-Nil leD length-butlast nth-append-length)
have last-vts-not-in: ?last-vts /∈ set (butlast (drop 1 vts))
proof(rule ccontr)

assume a-in: ¬ ?last-vts /∈ set (butlast (drop 1 vts))
then have ?last-vts ∈ set (butlast (drop 1 vts)) by simp
then obtain t where t: t ∈ {0<..<1} ∧ ?p t = ?last-vts

using vertices-on-path-image interior-vtx-in-path-image-interior by metis
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have vts ! (length vts − 1 ) = ?p 1
using polygon-pathfinish[of vts ?p] ∗
by (metis list.size(3 ) not-one-less-zero pathfinish-def )

then show False
using t assms unfolding loop-free-def

by (metis atLeastAtMost-iff greaterThanLessThan-iff leD less-eq-real-def zero-less-one-class.zero-le-one)
qed
have

∧
b::(real^2 ) list. distinct b ∧ a /∈ set b =⇒ distinct (b @[a]) for a::real^2

by simp
then have ?thesis using last-vts-not-in drop1-is distinct-butlast by metis
}
then show ?thesis by force

qed

lemma simple-polygonal-path-vts-distinct:
assumes simple-path (make-polygonal-path vts)
shows distinct (butlast vts)
using assms loop-free-polygonal-path-vts-distinct
unfolding simple-path-def
by blast

lemma edge-subset-path-image:
assumes p = make-polygonal-path vts and

(i::int) ∈ {0 ..<((length vts) − 1 )} and
x = vts!i and
y = vts!(i+1 )

shows path-image (linepath x y) ⊆ path-image p (is ?xy-img ⊆ ?p-img)
using assms

proof(induct vts arbitrary: p i rule: make-polygonal-path.induct)
case 1
then show ?case by simp

next
case (2 a)
then show ?case by simp

next
case (3 a b)
then show ?case by (simp add: nth-Cons ′)

next
case ih: (4 a b c tl)
let ?tl = b # c # tl
let ?p-tl = make-polygonal-path (?tl)
{ assume i = 0

then have ?case
by (metis (mono-tags, lifting) ih(2 ) ih(4 ) ih(5 ) Suc-eq-plus1 UnCI list.distinct(1 )

make-polygonal-path.simps(4 ) nth-Cons-0 nth-Cons-Suc path-image-join pathfin-
ish-linepath polygon-pathstart subsetI )

} moreover
{ assume i > 0
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then have x = ?tl!(i−1 ) by (simp add: ih.prems(3 ))
moreover have y = ?tl!i by (simp add: ih.prems(4 ))
moreover have i − 1 ∈ {0 ..<(length (?tl) − 1 )} using ih.prems(2 ) by force
ultimately have ?xy-img ⊆ path-image ?p-tl using ih(1 ) by (simp add: ‹0 <

i›)
then have ?case

unfolding ih(2 ) make-polygonal-path.simps
by (smt (verit, ccfv-SIG) UnCI make-polygonal-path.simps(4 ) make-polygonal-path-gives-path

path-image-join path-join-path-ends subsetI subset-iff )
}
ultimately show ?case by linarith

qed

12 Properties of Sublists of Polygonal Path Vertex
Lists

lemma make-polygonal-path-image-append-var :
assumes length vts1 ≥ 2
shows path-image (make-polygonal-path (vts1 @ [v])) = path-image (make-polygonal-path

vts1 +++ (linepath (vts1 ! (length vts1 − 1 )) v))
using assms

proof (induct vts1 )
case Nil
then show ?case by auto

next
case (Cons a vts1 )
{assume ∗: length vts1 = 1

then obtain b where vts1 = [b]
by (metis Cons-nth-drop-Suc One-nat-def drop0 drop-eq-Nil le-numeral-extra(4 )

less-numeral-extra(1 ))
then have path-image (make-polygonal-path ((a # vts1 ) @ [v])) =

path-image (make-polygonal-path (a # vts1 ) +++ linepath ((a # vts1 ) !
(length (a # vts1 ) − 1 )) v)

using make-polygonal-path.simps
by simp

} moreover {assume ∗ : length vts1 > 1
then obtain b c vts1 ′ where vts1 = b # c # vts1 ′

by (metis One-nat-def length-0-conv length-Cons less-numeral-extra(4 ) not-one-less-zero
remdups-adj.cases)

then have h1 : make-polygonal-path ((a # vts1 ) @ [v]) = (linepath a b) +++
(make-polygonal-path (vts1 @ [v]))

using make-polygonal-path.simps(4 )
by auto

have path-image (make-polygonal-path (vts1 @ [v])) =
path-image (make-polygonal-path vts1 +++ linepath (vts1 ! (length vts1 − 1 ))

v)
using ∗ Cons by auto

then have path-image (make-polygonal-path ((a # vts1 ) @ [v])) =
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path-image (make-polygonal-path (a # vts1 ) +++ linepath ((a # vts1 ) ! (length
(a # vts1 ) − 1 )) v)

using h1
by (metis (no-types, lifting) Cons.prems Suc-1 Suc-le-eq Un-assoc ‹vts1 = b # c

# vts1 ′› add-diff-cancel-left ′ append-Cons length-Cons list.discI make-polygonal-path.simps(4 )
nth-Cons-0 nth-Cons-pos path-image-join pathfinish-linepath pathstart-linepath plus-1-eq-Suc
polygon-pathfinish polygon-pathstart zero-less-diff )

}
ultimately show ?case

by (metis Cons.prems Suc-1 add-diff-cancel-left ′ le-neq-implies-less length-Cons
not-less-eq plus-1-eq-Suc)
qed

lemma make-polygonal-path-image-append-helper :
assumes length vts1 ≥ 1 ∧ length vts2 ≥ 1
shows path-image (make-polygonal-path (vts1 @ [v] @ [v] @ vts2 )) = path-image

(make-polygonal-path (vts1 @ [v] @ vts2 ))
using assms

proof (induct vts1 )
case Nil
then show ?case by auto

next
case (Cons a vts1 )
{ assume ∗: length vts1 = 0

have path-image (make-polygonal-path ([a] @ [v] @ vts2 )) =
path-image ((linepath a v) +++ make-polygonal-path (v # vts2 ))

using make-polygonal-path.simps
by (metis Cons.prems One-nat-def append-Cons append-Nil append-take-drop-id

linorder-not-le list.distinct(1 ) list.exhaust not-less-eq-eq take-hd-drop)
then have path-image (make-polygonal-path ([a] @ [v] @ vts2 )) =

path-image (linepath a v) ∪ path-image (make-polygonal-path (v # vts2 ))
by (metis list.discI nth-Cons-0 path-image-join pathfinish-linepath polygon-pathstart)
have image-helper1 : path-image (make-polygonal-path ([a] @ [v] @ [v] @ vts2 ))

= path-image (linepath a v +++ make-polygonal-path (v # v # vts2 ))
by simp

have path-image (make-polygonal-path (v # v # vts2 )) = path-image ((linepath
v v) +++ make-polygonal-path (v # vts2 ))

using make-polygonal-path.simps
by (metis Cons.prems One-nat-def append-Cons append-Nil append-take-drop-id

linorder-not-le list.distinct(1 ) list.exhaust not-less-eq-eq take-hd-drop)
moreover have ... = path-image (linepath v v) ∪ path-image (make-polygonal-path

(v # vts2 ))
by (metis list.discI nth-Cons-0 path-image-join pathfinish-linepath poly-

gon-pathstart)
ultimately have image-helper2 : path-image (make-polygonal-path (v # v #

vts2 )) = {v} ∪ path-image (make-polygonal-path (v # vts2 ))
by auto

have v ∈ path-image (make-polygonal-path (v # vts2 ))
using vertices-on-path-image by fastforce
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then have path-image (make-polygonal-path ([a] @ [v] @ [v] @ vts2 )) =
path-image (make-polygonal-path ([a] @ [v] @ vts2 ))

using image-helper1 image-helper2
by (metis ‹path-image (make-polygonal-path ([a] @ [v] @ vts2 )) = path-image

(linepath a v) ∪ path-image (make-polygonal-path (v # vts2 ))› insert-absorb in-
sert-is-Un list.simps(3 ) nth-Cons-0 path-image-join pathfinish-linepath polygon-pathstart)

}
moreover {assume ∗: length vts1 > 0
then have ind-hyp: path-image (make-polygonal-path (vts1 @ [v] @ [v] @ vts2 ))

=
path-image (make-polygonal-path (vts1 @ [v] @ vts2 ))

using Cons.hyps Cons.prems by linarith
obtain b vts3 where vts1-is: vts1 = b#vts3

using ∗
by (metis ∗ Cons-nth-drop-Suc drop0 )

then have path-image1 : path-image (make-polygonal-path ((a # vts1 ) @ [v] @
[v] @ vts2 )) =

path-image ((linepath a b) +++ make-polygonal-path (vts1 @ [v] @ [v] @
vts2 ))

by (smt (verit, best) Cons.prems Nil-is-append-conv append-Cons length-greater-0-conv
less-numeral-extra(1 ) list.inject make-polygonal-path.elims order-less-le-trans)

obtain c d where bcd: vts1 @ [v] @ vts2 = b # c # d
using vts1-is
by (metis append-Cons append-Nil neq-Nil-conv)

have path-image2 : path-image (make-polygonal-path ((a # vts1 ) @ [v] @ vts2 ))
= path-image ((linepath a b) +++ make-polygonal-path (vts1 @ [v] @ vts2 ))

using make-polygonal-path.simps bcd
by auto

have path-image (make-polygonal-path ((a # vts1 ) @ [v] @ [v] @ vts2 )) =
path-image (make-polygonal-path ((a # vts1 ) @ [v] @ vts2 ))

using ind-hyp path-image1 path-image2
by (smt (verit, del-insts) Nil-is-append-conv append-Cons nth-Cons-0 path-image-join

pathfinish-linepath polygon-pathstart vts1-is)
}
ultimately show ?case

using Cons.prems
by blast

qed

lemma make-polygonal-path-image-append:
assumes length vts1 ≥ 2 ∧ length vts2 ≥ 2
shows path-image (make-polygonal-path (vts1 @ vts2 )) = path-image (make-polygonal-path

vts1 +++ (linepath (vts1 ! (length vts1 − 1 )) (vts2 ! 0 )) +++ make-polygonal-path
vts2 )

using assms
proof (induct vts1 )

case Nil
then show ?case

by simp
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next
case (Cons a vts1 )
{assume ∗: length vts1 = 1

then obtain b where vts1-is: vts1 = [b]
by (metis Cons-nth-drop-Suc One-nat-def drop0 drop-eq-Nil le-numeral-extra(4 )

less-numeral-extra(1 ))
then have make-polygonal-path ((a # vts1 ) @ vts2 ) = make-polygonal-path (a

# b # vts2 )
by simp

then have make-polygonal-path ((a # vts1 ) @ vts2 ) = (linepath a b) +++
(make-polygonal-path (b # vts2 ))

by (metis Cons.prems length-0-conv make-polygonal-path.simps(4 ) neq-Nil-conv
not-numeral-le-zero)

then have make-polygonal-path ((a # vts1 ) @ vts2 ) = make-polygonal-path
(a # vts1 ) +++ (make-polygonal-path (b # vts2 ))

using vts1-is make-polygonal-path.simps(3 )
by simp

then have make-polygonal-path ((a # vts1 ) @ vts2 ) = make-polygonal-path
(a # vts1 ) +++ linepath b (vts2 ! 0 ) +++ make-polygonal-path vts2

using Cons.prems
by (smt (verit, ccfv-SIG) ∗ Suc-1 add-diff-cancel-left ′ diff-is-0-eq ′ length-greater-0-conv

list.size(4 ) make-polygonal-path.elims make-polygonal-path.simps(4 ) nth-Cons-0 or-
der-less-le-trans plus-1-eq-Suc pos2 vts1-is zero-neq-one)

then have make-polygonal-path ((a # vts1 ) @ vts2 ) =
make-polygonal-path (a # vts1 ) +++

linepath ((a # vts1 ) ! (length (a # vts1 ) − 1 )) (vts2 ! 0 ) +++ make-polygonal-path
vts2

using vts1-is
by simp

} moreover {assume ∗: length vts1 > 1
then obtain b c vts1 ′ where vts1 ′: vts1 = b # c # vts1 ′

by (metis One-nat-def length-0-conv length-Cons less-numeral-extra(4 ) not-one-less-zero
remdups-adj.cases)

then have h1 : make-polygonal-path ((a # vts1 ) @ vts2 ) = (linepath a b) +++
(make-polygonal-path (vts1 @ vts2 ))

using make-polygonal-path.simps(4 )
by auto

have ind-h: path-image (make-polygonal-path (vts1 @ vts2 )) =
path-image (make-polygonal-path vts1 +++
linepath (vts1 ! (length vts1 − 1 )) (vts2 ! 0 ) +++ make-polygonal-path vts2 )

using Cons ∗ by linarith
then have path-image (make-polygonal-path ((a # vts1 ) @ vts2 )) = path-image

((linepath a b)) ∪ path-image((make-polygonal-path vts1 +++
linepath (vts1 ! (length vts1 − 1 )) (vts2 ! 0 ) +++ make-polygonal-path vts2 ))
by (metis h1 make-polygonal-path-gives-path path-image-join path-join-path-ends)

then have path-image (make-polygonal-path ((a # vts1 ) @ vts2 )) = (path-image
(linepath a b) ∪ path-image (make-polygonal-path vts1 )) ∪

path-image((linepath (vts1 ! (length vts1 − 1 )) (vts2 ! 0 ) +++ make-polygonal-path
vts2 ))
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by (metis (no-types, opaque-lifting) ∗ Un-assoc not-one-less-zero linepath-0 ′

list.size(3 )
path-image-join pathstart-def pathstart-join polygon-pathfinish)

then have image-helper : path-image (make-polygonal-path ((a # vts1 ) @ vts2 ))
= (path-image (make-polygonal-path (a # vts1 ))) ∪

path-image((linepath (vts1 ! (length vts1 − 1 )) (vts2 ! 0 ) +++ make-polygonal-path
vts2 ))

by (metis neq-Nil-conv nth-Cons ′ path-image-cons-union vts1 ′)
have vts1 ! (length vts1 − 1 ) = (a # vts1 ) ! (length (a # vts1 ) − 1 )

using Cons.prems
by (simp add: Suc-le-eq)

then have path-image (make-polygonal-path ((a # vts1 ) @ vts2 )) =
path-image
(make-polygonal-path (a # vts1 ) +++
linepath ((a # vts1 ) ! (length (a # vts1 ) − 1 )) (vts2 ! 0 ) +++ make-polygonal-path

vts2 )
using image-helper

by (metis (no-types, lifting) Cons.prems length-greater-0-conv order-less-le-trans
path-image-join pathstart-join pathstart-linepath polygon-pathfinish pos2 )

}
ultimately show ?case using Cons.prems

by fastforce
qed

lemma make-polygonal-path-image-append-alt:
assumes p = make-polygonal-path vts
assumes p1 = make-polygonal-path vts1
assumes p2 = make-polygonal-path vts2
assumes last vts1 = hd vts2
assumes length vts1 ≥ 2 ∧ length vts2 ≥ 2
assumes vts = vts1 @ (tl vts2 )
shows path-image p = path-image (p1 +++ p2 )

proof−
have path-image p = path-image p1 ∪ path-image p2

by (smt (z3 ) Nitpick.size-list-simp(2 ) One-nat-def Suc-1 assms diff-Suc-1
last-conv-nth length-greater-0-conv list.collapse list.sel(3 ) make-polygonal-path.elims
make-polygonal-path.simps(3 ) make-polygonal-path-image-append make-polygonal-path-image-append-var
nat-less-le not-less-eq-eq nth-Cons-0 order-less-le-trans path-image-join polygon-pathfinish
polygon-pathstart pos2 length-Cons length-tl path-image-cons-union pathfinish-linepath
pathstart-join sup.absorb-iff1 sup.absorb-iff2 )

thus ?thesis
by (metis assms(2 ) assms(3 ) assms(4 ) assms(5 ) hd-conv-nth last-conv-nth

length-greater-0-conv order-less-le-trans path-image-join polygon-pathfinish polygon-pathstart
pos2 )
qed

lemma cont-incr-interval-image:
fixes f :: real ⇒ real
assumes a ≤ b
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assumes continuous-on {a..b} f
assumes ∀ x ∈ {a..b}. ∀ y ∈ {a..b}. x ≤ y −→ f x ≤ f y
shows f‘{a..b} = {f a..f b}

proof−
have f‘{a..b} ⊆ {f a..f b}
proof(rule subsetI )

fix x
assume x ∈ f‘{a..b}
then obtain t where t ∈ {a..b} ∧ f t = x by blast
moreover then have a ≤ t ∧ t ≤ b by presburger
ultimately show x ∈ {f a..f b} using assms(3 ) by auto

qed
moreover have {f a..f b} ⊆ f‘{a..b}
proof−

obtain c d where f‘{a..b} = {c..d} using continuous-image-closed-interval
assms by meson

moreover then have f a ∈ {c..d} using assms(1 ) by auto
moreover have f b ∈ {c..d} using assms(1 ) calculation by auto
moreover have {f a..f b} ⊆ {c..d} using calculation by simp
ultimately show ?thesis by presburger

qed
ultimately show ?thesis by blast

qed

lemma two-x-minus-one-image:
assumes f = (λx::real. 2∗x − 1 )
assumes a ≤ b
shows f‘{a..b} = {f a..f b}

proof−
have continuous-on {a..b} f
proof−

have continuous-on {a..b} (λx::real. x) by simp
then have continuous-on {a..b} (λx::real. 2∗x) using continuous-on-mult-const

by blast
thus continuous-on {a..b} f

unfolding assms using continuous-on-translation-eq[of {a..b} −1 (λx::real.
2∗x)] by auto

qed
thus ?thesis using cont-incr-interval-image assms by force

qed

lemma vts-split-path-image:
assumes p = make-polygonal-path vts
assumes p1 = make-polygonal-path vts1
assumes p2 = make-polygonal-path vts2
assumes vts1 = take i vts
assumes vts2 = drop (i−1 ) vts
assumes n = length vts
assumes 1 ≤ i ∧ i < n
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assumes x = (2^(i−1 ) − 1 )/(2^(i−1 ))
shows path-image p1 = p‘{0 ..x} ∧ path-image p2 = p‘{x..1}
using assms

proof(induct i arbitrary: p p1 p2 vts vts1 vts2 n x)
case 0
then show ?case by linarith

next
case (Suc i)
{ assume ∗: Suc i = 1

then obtain a where a: vts1 = [a]
using Suc.prems

by (metis One-nat-def gr-implies-not0 list.collapse list.size(3 ) take-eq-Nil
take-tl zero-neq-one)

moreover have vts2 = vts using ∗ Suc.prems by force
ultimately have p1 = linepath a a ∧ p2 = p

using Suc.prems make-polygonal-path.simps by meson
moreover have x = 0 using Suc.prems ∗ by simp
moreover have path-image p1 = {a} using calculation by simp
moreover have p‘{0 ..0} = {p 0} by auto
moreover then have p‘{0 ..0} = {a} using Suc.prems

by (metis a gr0-conv-Suc list.discI nth-Cons-0 nth-take pathstart-def poly-
gon-pathstart take-eq-Nil)

moreover have path-image p1 = p‘{0 ..x} using calculation by presburger
moreover have path-image p2 = p‘{x..1} using calculation unfolding path-image-def

by fast
ultimately have ?case by blast

} moreover
{ assume ∗: Suc i > 1

let ?a = vts!0
let ?b = vts!1
let ?l = linepath ?a ?b
let ?L = path-image ?l
let ?tl = tl vts
let ?vts1 ′ = take i ?tl
let ?vts2 ′ = drop (i−1 ) ?tl
let ?p ′ = make-polygonal-path ?tl
let ?p1 ′ = make-polygonal-path ?vts1 ′

let ?p2 ′ = make-polygonal-path ?vts2 ′

let ?x ′ = ((2 ::real)^(i−1 )−1 )/(2^(i−1 ))
let ?P1 ′ = path-image ?p1 ′

let ?P2 ′ = path-image ?p2 ′

have i: 1 ≤ i ∧ i < length ?tl
using Suc.prems ∗ by (metis Suc-eq-plus1 length-tl less-Suc-eq-le less-diff-conv)
then have ih: ?P1 ′ = ?p ′‘{0 ..?x ′} ∧ ?P2 ′ = ?p ′‘{?x ′..1}
using Suc.hyps[of ?p ′ ?tl ?p1 ′ ?vts1 ′ ?p2 ′ ?vts2 ′ length ?tl ?x ′] by presburger

let ?f = λx::real. 2∗x − 1
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have fx: ?f x = ?x ′

by (metis i Suc.prems(8 ) bounding-interval-helper1 diff-Suc-1 summation-helper)

moreover have fhalf : ?f (1/2 ) = 0 by simp
moreover have f1 : ?f 1 = 1 by simp
ultimately have f : ?f‘{x..1} = {?x ′..1} ∧ ?f‘{1/2 ..x} = {0 ..?x ′}

using two-x-minus-one-image by auto
have x: 1/2 ≤ x ∧ x ≤ 1
by (smt (verit) divide-le-eq-1-pos divide-nonneg-nonneg fhalf fx two-realpow-ge-one)

have n ≥ 3 using Suc.prems ∗ by linarith
then have p: p = ?l +++ ?p ′

proof −
have f1 : ∀ vs. (vs::(real, 2 ) vec list) 6= [] ∨ ¬ 1 < Suc (length vs)

by simp
have 1 < Suc n

using Suc.prems(7 ) by linarith
then show ?thesis

by (smt (verit) f1 Suc-le-lessD i One-nat-def Suc.prems(6 ) Suc.prems(7 )
Suc-less-eq ‹p = make-polygonal-path vts› hd-conv-nth length-Cons length-tl less-Suc-eq
list.collapse list.exhaust make-polygonal-path.simps(4 ) nth-Cons-Suc zero-order(3 ))

qed
have p-to-p ′: ∀ y ≥ 1/2 . p y = (?p ′ ◦ ?f ) y
proof clarify

fix y :: real
assume ∗: y ≥ 1/2
{ assume ∗∗: y = 1/2

then have p y = ?b
by (smt (verit) fhalf joinpaths-def linepath-1 ′ p)

moreover have ?f y = 0 using ∗∗ by simp
moreover have ?p ′ 0 = ?b

by (metis i One-nat-def Suc.prems(6 ) length-greater-0-conv length-tl
list.size(3 ) nth-tl pathstart-def polygon-pathstart zero-order(3 ))

ultimately have p y = (?p ′ ◦ ?f ) y by simp
} moreover
{ assume ∗∗: y > 1/2

then have p y = ?p ′ (?f y) unfolding p joinpaths-def by simp
then have p y = (?p ′ ◦ ?f ) y by force

}
ultimately show p y = (?p ′ ◦ ?f ) y using ∗ by fastforce

qed

have {0 ..x} = {0 ..1/2} ∪ {1/2 ..x} using x by (simp add: ivl-disj-un-two-touch(4 ))
then have p‘{0 ..x} = p‘{0 ..1/2} ∪ p‘{1/2 ..x} by blast
also have ... = ?L ∪ p‘{1/2 ..x}
proof−
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have ?L ⊆ p‘{0 ..1/2}
proof(rule subsetI )

fix a
assume ∗: a ∈ ?L
then obtain t where t: t ∈ {0 ..1} ∧ ?l t = a unfolding path-image-def

by blast
then have p (t/2 ) = a unfolding p joinpaths-def by auto
moreover have t/2 ∈ {0 ..1/2} using t by simp
ultimately show a ∈ p‘{0 ..1/2} by blast

qed
moreover have p‘{0 ..1/2} ⊆ ?L
proof(rule subsetI )

fix a
assume ∗: a ∈ p‘{0 ..1/2}
then obtain t where t ∈ {0 ..1/2} ∧ p t = a by blast

moreover then have ?l (2∗t) = p t unfolding p joinpaths-def by presburger
moreover have 2∗t ∈ {0 ..1} using calculation by simp
ultimately show a ∈ ?L unfolding path-image-def by auto

qed
ultimately have ?L = p‘{0 ..1/2} by blast
thus ?thesis by presburger

qed
also have ... = ?L ∪ (?p ′ ◦ ?f )‘{1/2 ..x} using p-to-p ′ by simp
also have ... = ?L ∪ ?p ′‘{0 ..?x ′} using f by (metis image-comp)
also have ... = ?L ∪ ?P1 ′ using ih by blast
also have ... = path-image p1
proof−

have take i (tl vts) 6= [] by (metis i less-zeroE list.size(3 ) not-one-le-zero
take-eq-Nil2 )

thus ?thesis using path-image-cons-union[of p1 vts1 ?p1 ′ ?vts1 ′ ?a ?b]
by (metis ∗ Nitpick.size-list-simp(2 ) One-nat-def Suc.prems(2 ) Suc.prems(4 )

Suc.prems(6 ) Suc.prems(7 ) bot-nat-0 .extremum-strict hd-conv-nth length-greater-0-conv
nth-take nth-tl take-Suc take-tl)

qed
finally have 1 : path-image p1 = p‘{0 ..x} by argo

have p‘{x..1} = (?p ′ ◦ ?f )‘{x..1} using p-to-p ′ x by simp
also have ... = ?p ′‘{?x ′..1} using f by (metis image-comp)
also have ... = ?P2 ′ using ih by presburger
also have ... = path-image p2

using path-image-cons-union
by (metis Suc.prems(3 ) Suc.prems(5 ) diff-Suc-1 drop-Suc gr0-implies-Suc i

linorder-neqE-nat not-less-zero not-one-le-zero)
finally have 2 : path-image p2 = p‘{x..1} by argo

have ?case using 1 2 by fast
}
ultimately show ?case using Suc.prems by linarith

qed
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lemma drop-i-is-loop-free:
fixes vts :: (real^2 ) list
assumes m = length vts
assumes i ≤ m − 2
assumes vts ′ = drop i vts
assumes p = make-polygonal-path vts
assumes p ′ = make-polygonal-path vts ′

assumes loop-free p
shows loop-free p ′

using assms
proof(induct i arbitrary: vts ′ p ′)

case 0
then show ?case by simp

next
case (Suc i)

let ?vts ′′ = drop i vts
let ?p ′′ = make-polygonal-path ?vts ′′

have ih: loop-free ?p ′′

using Suc.hyps Suc.prems(2 ) Suc.prems(6 ) Suc-leD assms(1 ) assms(4 ) by
blast

obtain a b where ab: ?vts ′′ = a # vts ′ ∧ b = vts ′ ! 0
by (metis Cons-nth-drop-Suc Suc.prems(3 ) constant-linepath-is-not-loop-free

drop-eq-Nil ih linorder-not-less make-polygonal-path.simps(1 ))
then have ?vts ′′ = a # b # (vts ′ ! 1 ) # (drop 2 vts ′)

by (smt (verit, ccfv-threshold) Cons-nth-drop-Suc Suc.prems(2 ) Suc.prems(3 )
Suc-1 Suc-diff-Suc Suc-le-eq assms(1 ) diff-Suc-1 diff-is-0-eq drop-drop le-add-diff-inverse
length-drop nat-le-linear not-less-eq-eq zero-less-Suc)

then have ?p ′′ = (linepath a b) +++ p ′

using make-polygonal-path.simps(4 )[of a b vts ′ ! 1 drop 2 vts ′] Suc.prems by
(simp add: ab)

moreover have pathfinish (linepath a b) = pathstart p ′

using Suc.prems ab
by (metis constant-linepath-is-not-loop-free ih make-polygonal-path.simps(2 )

pathfinish-linepath polygon-pathstart)
ultimately have arc p ′ using simple-path-joinE

by (metis ih make-polygonal-path-gives-path simple-path-def )
then show ?case using arc-imp-simple-path simple-path-def by blast

qed

lemma joinpaths-tl-transform:
assumes f = (λx::real. 2∗x − 1 )
assumes pathfinish g1 = pathstart g2
assumes p = g1 +++ g2
assumes x ≥ 1/2
shows p x = g2 (f x)

proof−
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{ assume x = 1/2
moreover then have f x = 0 using assms by fastforce
ultimately have p x = pathfinish g1 ∧ g2 (f x) = pathfinish g1

using assms unfolding pathfinish-def pathstart-def joinpaths-def by force
then have p x = g2 (f x) using assms unfolding joinpaths-def by simp

} moreover
{ assume x > 1/2

then have p x = g2 (f x) using assms unfolding joinpaths-def by simp
}
ultimately show p x = g2 (f x) using assms by fastforce

qed

lemma joinpaths-tl-image-transform:
assumes f = (λx::real. 2∗x − 1 )
assumes pathfinish g1 = pathstart g2
assumes p = g1 +++ g2
assumes 1/2 ≤ a ∧ a ≤ b
shows p‘{a..b} = g2‘{f a..f b}

proof−
have ∀ x ∈ {a..b}. p x = g2 (f x) using assms joinpaths-tl-transform[of f g1 g2

p] by force
then have p‘{a..b} = (g2 ◦ f )‘{a..b} by simp
also have ... = g2‘{f a..f b} using two-x-minus-one-image by (metis assms(1 ,4 )

image-comp)
finally show ?thesis .

qed

lemma vts-sublist-path-image:
assumes p = make-polygonal-path vts
assumes p ′ = make-polygonal-path vts ′

assumes vts ′ = take j (drop i vts)
assumes m = length vts
assumes n = length vts ′

assumes k = i + j
assumes k ≤ m − 1 ∧ 2 ≤ j
assumes x1 = (2^i − 1 )/(2^i)
assumes x2 = (2^(k−1 ) − 1 )/(2^(k−1 ))
shows path-image p ′ = p‘{x1 ..x2}
using assms

proof(induct i arbitrary: vts p p ′ vts ′ m k x1 x2 )
case 0
then show ?case using vts-split-path-image[of p drop 0 vts p ′ vts ′ - - j m x2 ]
by (metis (no-types, opaque-lifting) Suc-diff-le add-0 cancel-comm-monoid-add-class.diff-cancel

diff-is-0-eq div-by-1 drop.simps(1 ) drop-0 le-add-diff-inverse length-drop less-one
linorder-not-le plus-1-eq-Suc pos2 power .simps(1 ))
next

case (Suc i)

let ?vts-tl = tl vts
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let ?vts-tl ′ = take j (drop i ?vts-tl)
let ?p-tl = make-polygonal-path ?vts-tl
let ?m ′ = m−1
let ?k ′ = i+j
let ?x1 ′ = (2^i − 1 )/(2^i)
let ?x2 ′ = (2^(?k ′−1 ) − 1 )/(2^(?k ′−1 ))
let ?f = λx. 2∗x − 1

have vts ′ = ?vts-tl ′ using Suc.prems by (metis drop-Suc)
then have p ′ = make-polygonal-path ?vts-tl ′ using Suc.prems by argo
then have ih: path-image p ′ = ?p-tl‘{?x1 ′..?x2 ′}

using Suc.hyps[of ?p-tl ?vts-tl p ′ ?vts-tl ′ ?m ′ ?k ′ ?x1 ′ ?x2 ′] Suc.prems
by (smt (verit, ccfv-SIG) Suc-eq-plus1 add-diff-cancel-right ′ add-leD1 diff-diff-left

diff-is-0-eq drop-Suc le-add-diff-inverse length-tl linorder-not-le not-add-less2 )

let ?a = vts!0
let ?b = vts!1
let ?l = linepath ?a ?b
have p: p = ?l +++ ?p-tl
proof−

have length vts ≥ 3 using Suc.prems by linarith
then obtain c w where vts = ?a # ?b # c # w

by (metis Cons-nth-drop-Suc One-nat-def Suc-le-eq drop0 numeral-3-eq-3
order-less-le)

thus ?thesis
using Suc.prems make-polygonal-path.simps(4 )[of ?a ?b c w] by (metis

list.sel(3 ))
qed
moreover have x1 ≥ 1/2 using Suc.prems by (simp add: plus-1-eq-Suc)
moreover have x2 ≥ x1

using Suc.prems
by (smt (verit, best) Nat.diff-add-assoc2 One-nat-def add-Suc-shift add-diff-cancel-left ′

add-mono-thms-linordered-semiring(2 ) diff-add-cancel dual-order .trans group-cancel.rule0
numeral-One one-le-numeral one-le-power plus-1-eq-Suc power-increasing real-shrink-le
trans-le-add2 )

moreover have pathfinish ?l = pathstart ?p-tl
by (metis One-nat-def Suc.prems(4 ) Suc.prems(6 ) Suc.prems(7 ) Suc-neq-Zero

add-is-0 diff-is-0-eq ′ diff-zero length-tl linorder-not-less list.size(3 ) nth-tl pathfin-
ish-linepath polygon-pathstart)

ultimately have p‘{x1 ..x2} = ?p-tl‘{?f x1 ..?f x2}
using joinpaths-tl-image-transform[of ?f ?l ?p-tl p x1 x2 ] by presburger

also have ... = ?p-tl‘{?x1 ′..?x2 ′}
by (metis (no-types, lifting) Nat.add-diff-assoc Suc.prems(6−9 ) add.commute

add-leD1 bounding-interval-helper1 diff-Suc-1 le-add2 nat-1-add-1 plus-1-eq-Suc sum-
mation-helper)

also have ... = path-image p ′ using ih by blast
finally show ?case by argo

qed
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lemma one-append-simple-path:
fixes vts :: (real^2 ) list
assumes vts = vts ′ @ [z]
assumes n = length vts
assumes n ≥ 3
assumes p = make-polygonal-path vts
assumes p ′ = make-polygonal-path vts ′

assumes simple-path p
shows simple-path p ′

using assms
proof(induct n arbitrary: vts vts ′ p p ′)

case 0
then show ?case by linarith

next
case (Suc n)
{ assume ∗: Suc n = 3

then obtain a b c where abc: vts = [a, b, c] ∧ vts ′ = [a, b]
using Suc.prems
by (smt (z3 ) Suc-le-length-iff Suc-length-conv append-Cons diff-Suc-1 drop0

length-0-conv length-append-singleton numeral-3-eq-3 )
then have p ′ = linepath a b

by (simp add: Suc.prems(5 ))
moreover have a 6= b using loop-free-polygonal-path-vts-distinct Suc.prems

by (metis abc butlast-snoc distinct-length-2-or-more simple-path-def )
ultimately have ?case by blast

} moreover
{ assume ∗: Suc n > 3

then obtain a b tl ′ where ab: vts ′ = a # tl ′ ∧ b = tl ′!0 using Suc.prems
by (metis Suc-le-length-iff Suc-le-mono length-append-singleton numeral-3-eq-3 )

moreover then have p = make-polygonal-path (a # (tl ′@ [z])) using Suc.prems
by auto

moreover then have p: p = linepath a b +++ make-polygonal-path (tl ′ @ [z])
using make-polygonal-path.simps ab

by (smt (verit, ccfv-threshold) ∗ Cons-nth-drop-Suc One-nat-def Suc.prems(1 )
Suc.prems(2 ) Suc-1 Suc-less-eq append-Cons drop0 length-Cons length-append-singleton
length-greater-0-conv list.size(3 ) not-numeral-less-one numeral-3-eq-3 )

moreover then have simple-path ... using Suc.prems by meson
ultimately have pre-ih: simple-path (make-polygonal-path (tl ′ @ [z]))
using Suc.prems(1 ) Suc.prems(2 ) Suc.prems(3 ) ab tail-of-simple-polygonal-path-is-simple

by simp
then have ih: simple-path (make-polygonal-path tl ′)

using Suc.hyps ∗ Suc.prems(1 ) Suc.prems(2 ) ab by force
have simple-path ((linepath a b) +++ make-polygonal-path tl ′)
proof−

let ?g1 = linepath a b
let ?g2 = make-polygonal-path tl ′
let ?G1 = path-image ?g1
let ?G2 = path-image ?g2
have pathfinish ?g2 = last tl ′
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by (metis constant-linepath-is-not-loop-free ih last-conv-nth make-polygonal-path.simps(1 )
polygon-pathfinish simple-path-def )

also have ... = vts ! (length vts − 2 )
by (metis ab Suc.prems(1 ) Suc-1 constant-linepath-is-not-loop-free diff-Suc-1

diff-Suc-Suc ih impossible-Cons last.simps last-conv-nth length-Cons length-append-singleton
list.discI make-polygonal-path.simps(1 ) nle-le nth-append order-less-le simple-path-def )

finally have pathfinish-g2 : pathfinish ?g2 = vts ! (length vts − 2 ) .

have pathfinish ?g1 = pathstart ?g2
by (metis ab constant-linepath-is-not-loop-free ih linepath-1 ′ make-polygonal-path.simps(1 )

pathfinish-def polygon-pathstart simple-path-def )
moreover have arc ?g1

by (metis Suc.prems(6 ) p arc-linepath constant-linepath-is-not-loop-free
not-loop-free-first-component simple-path-def )

moreover have arc ?g2
proof−

have pathstart ?g2 = b
using calculation(1 ) by auto

moreover have b = vts!1
by (metis ab One-nat-def Suc.prems(1 ) Suc.prems(2 ) Suc.prems(3 )

Suc-le-eq length-append-singleton not-less-eq-eq nth-Cons-Suc nth-append numeral-3-eq-3 )
moreover have last tl ′ 6= vts!1

using loop-free-polygonal-path-vts-distinct Suc.prems
by (metis pre-ih ab append-Nil append-butlast-last-id butlast-conv-take but-

last-snoc calculation(2 ) constant-linepath-is-not-loop-free hd-conv-nth ih index-Cons
index-last list.collapse make-polygonal-path.simps(2 ) simple-path-def take0 )

ultimately have pathfinish ?g2 6= b
using pathfinish-g2 ‹pathfinish (make-polygonal-path tl ′) = last tl ′› by

presburger
thus ?thesis
using ‹pathstart (make-polygonal-path tl ′) = b› arc-simple-path ih by blast

qed
moreover have ?G1 ∩ ?G2 ⊆ {pathstart ?g2}
proof(rule subsetI )

let ?z = ((2 ::real)^(n−1 ) − 1 )/(2^(n−1 ))
have g1 : ?G1 = p‘{0 ..1/2}
proof−

have take 2 vts = [a, b]
by (smt (verit) ∗ One-nat-def Suc.prems(1 ) Suc.prems(2 ) Suc-1 ab ap-

pend-Cons butlast-snoc drop0 drop-Suc-Cons length-append-singleton less-Suc-eq-le
not-less-eq-eq nth-butlast numeral-3-eq-3 plus-1-eq-Suc same-append-eq take-Suc-Cons
take-Suc-eq take-add take-all-iff )

then have ?g1 = make-polygonal-path (take 2 vts)
using make-polygonal-path.simps by presburger

moreover have 1 < n using ∗ by linarith
ultimately have ?G1 = p‘{0 ..(2^(2−1 ) − 1 )/(2^(2−1 ))}

using vts-split-path-image
by (metis ∗ Suc.prems(2 ) Suc.prems(4 ) Suc-1 Suc-leD Suc-lessD

eval-nat-numeral(3 ) order .refl)
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thus ?thesis by force
qed
have g2 : ?G2 = p‘{1/2 ..?z}
proof−

have tl ′ = take (n − 1 ) (drop 1 vts)
using ab Suc.prems(1 ) Suc.prems(2 ) by simp

moreover then have ?g2 = make-polygonal-path (take (n − 1 ) (drop 1
vts)) by blast

ultimately have ?G2 = p‘{(2^1 − 1 )/(2^1 )..?z}
using vts-sublist-path-image[of p vts ?g2 tl ′ n−1 1 - - n ((2 ::real)^1 −

1 )/(2^1 ) ?z]
by (metis ∗ Suc.prems(1 ) Suc.prems(2 ) Suc.prems(4 ) Suc-eq-plus1

ab add-0 add-Suc-shift add-le-imp-le-diff diff-Suc-Suc diff-zero eval-nat-numeral(3 )
length-Cons length-append less-Suc-eq-le list.size(3 ) order .refl)

thus ?thesis by simp
qed
have 1/2 ≤ ?z

using ∗ bounding-interval-helper1 [of n−1 ] Suc.prems
by (smt (verit) One-nat-def diff-Suc-Suc less-diff-conv numeral-3-eq-3

one-le-power plus-1-eq-Suc power-one-right power-strict-increasing-iff real-shrink-le
add-2-eq-Suc diff-add-inverse less-trans-Suc numeral-eq-Suc pos2 self-le-power zero-less-diff )

moreover have ?z < 1 by auto
ultimately have z: 1/2 ≤ ?z ∧ ?z < 1 by blast

fix x
assume x ∈ ?G1 ∩ ?G2
then obtain t1 t2 where t1t2 : t1 ∈ {0 ..1/2} ∧ t2 ∈ {1/2 ..?z} ∧ p t1 =

x ∧ p t2 = x
by (smt (verit, del-insts) g1 g2 Int-iff imageE path-image-def )

moreover have (t1 = t2 ) ∨ (t1 = 0 ∧ t2 = 1 ) ∨ (t1 = 1 ∧ t2 = 0 )
proof−

have t1 ∈ {0 ..1} ∧ t2 ∈ {0 ..1}
by (meson t1t2 z atLeastAtMost-iff dual-order .trans less-eq-real-def )

thus ?thesis
using Suc.prems(6 ) unfolding simple-path-def loop-free-def using t1t2

by presburger
qed
moreover have t1 = 1/2 using calculation by force
ultimately have x = pathstart ?g2

by (metis ab constant-linepath-is-not-loop-free dual-order .refl eq-divide-eq-numeral1 (1 )
ih joinpaths-def make-polygonal-path.simps(1 ) mult.commute p pathfinish-def pathfin-
ish-linepath polygon-pathstart simple-path-def zero-neq-numeral)

thus x ∈ {pathstart ?g2} by simp
qed

ultimately show ?thesis using arc-join-eq ih by (metis arc-imp-simple-path)
qed
moreover have vts ′ = a # tl ′ using Suc.prems ab by argo
moreover have p ′ = (linepath a b) +++ make-polygonal-path tl ′
proof −
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have Suc (length tl ′) = length vts ′ by (simp add: ab)
then show ?thesis

by (metis (no-types) ∗ Cons-nth-drop-Suc Suc.prems(1 ) Suc.prems(2 )
Suc.prems(5 ) Suc-lessD ab drop-0 length-append-singleton make-polygonal-path.simps(4 )
not-less-eq numeral-3-eq-3 )

qed
ultimately have ?case by blast

}
ultimately show ?case using Suc.prems by linarith

qed

lemma take-i-is-loop-free:
fixes vts :: (real^2 ) list
assumes n = length vts
assumes 2 ≤ i ∧ i ≤ n
assumes vts ′ = take i vts
assumes p = make-polygonal-path vts
assumes p ′ = make-polygonal-path vts ′

assumes loop-free p
shows loop-free p ′

using assms
proof(induct n−i arbitrary: vts ′ i p p ′)

case 0
moreover then have p = p ′ by auto
ultimately show ?case by argo

next
case (Suc x)

let ?i ′ = i+1
let ?q-vts = take (i+1 ) vts
let ?q = make-polygonal-path ?q-vts

have n−?i ′ = x using Suc.hyps(2 ) by linarith
then have loop-free ?q using Suc.hyps Suc.prems(2 ) Suc.prems(4 ) Suc.prems(6 )

assms(1 ) by auto
moreover obtain z where ?q = make-polygonal-path (vts ′ @ [z])

unfolding Suc.prems(3 )
by (metis Suc.hyps(2 ) Suc-eq-plus1 assms(1 ) take-Suc-conv-app-nth zero-less-Suc

zero-less-diff )
ultimately show loop-free p ′

unfolding Suc.prems using one-append-simple-path unfolding simple-path-def
by (metis One-nat-def Suc.prems(2 ) Suc-1 add-diff-cancel-right ′ append-take-drop-id

assms(1 ) diff-diff-cancel length-append length-append-singleton length-drop make-polygonal-path-gives-path
not-less-eq-eq numeral-3-eq-3 )
qed

lemma sublist-is-loop-free:
fixes vts :: (real^2 ) list
assumes p = make-polygonal-path vts
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assumes p ′ = make-polygonal-path vts ′

assumes loop-free p
assumes m = length vts
assumes n = length vts ′

assumes sublist vts ′ vts
assumes n ≥ 2 ∧ m ≥ 2
shows loop-free p ′

proof−
obtain pre post where vts: vts = pre @ vts ′ @ post using assms(6 ) unfolding

sublist-def by blast
then have vts ′ @ post = drop (length pre) vts using vts by simp
moreover have vts ′ = take (length vts ′) (vts ′ @ post) using vts by simp
moreover have loop-free (make-polygonal-path (vts ′ @ post))

using drop-i-is-loop-free assms calculation
by (smt (verit, del-insts) One-nat-def Suc-1 Suc-leD diff-diff-cancel drop-all

le-diff-iff ′ length-append length-drop list.size(3 ) nat-le-linear not-numeral-le-zero
numeral-3-eq-3 trans-le-add1 )

ultimately show ?thesis
using take-i-is-loop-free assms
by (metis sublist-append-rightI sublist-length-le)

qed

lemma diff-points-path-image-set-property:
fixes a b:: real^2
assumes a 6= b
shows path-image (linepath a b) 6= {a, b}

proof −
have not-a: (linepath a b) (1/2 ) 6= a
by (smt (verit) add-diff-cancel-left ′ assms divide-eq-0-iff linepath-def scaleR-cancel-left

scaleR-collapse)
have not-b: (linepath a b) (1/2 ) 6= b
by (smt (verit, ccfv-SIG) add-diff-cancel-right ′ assms divide-eq-1-iff linepath-def

scaleR-cancel-left scaleR-collapse)
have (linepath a b) (1/2 ) ∈ path-image (linepath a b)

unfolding path-image-def by simp
then show ?thesis using not-a not-b by blast

qed

lemma polygonal-path-vertex-t:
assumes p = make-polygonal-path vts
assumes n = length vts
assumes n ≥ 1
assumes 0 ≤ i ∧ i < n − 1
assumes x = (2^i − 1 )/(2^i)
shows vts!i = p x
using assms

proof(induct i arbitrary: p vts n x)
case 0
then show ?case
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by (metis bot-nat-0 .extremum cancel-comm-monoid-add-class.diff-cancel diff-is-0-eq
div-0 less-nat-zero-code list.size(3 ) pathstart-def polygon-pathstart power-0 )
next

case (Suc i)

let ?vts ′ = tl vts
let ?p ′ = make-polygonal-path ?vts ′

let ?x ′ = (2^i − 1 )/(2^i)

have p x = ?p ′ ?x ′

proof−
let ?a = vts!0
let ?b = vts!1
let ?l = linepath ?a ?b
have n ≥ 3 using Suc.prems by linarith
then have length ?vts ′ ≥ 2 by (simp add: Suc.prems(2 ))
then have p = ?l +++ ?p ′

using Suc.prems make-polygonal-path.simps(4 )[of ?a ?b ?vts ′!1 drop 2 ?vts ′]
by (metis (no-types, opaque-lifting) Cons-nth-drop-Suc Suc-1 bot-nat-0 .not-eq-extremum

diff-Suc-1 diff-is-0-eq drop-0 drop-Suc less-Suc-eq zero-less-diff )
moreover have pathfinish ?l = pathstart ?p ′

by (metis One-nat-def ‹2 ≤ length (tl vts)› length-greater-0-conv nth-tl or-
der-less-le-trans pathfinish-linepath polygon-pathstart pos2 )

moreover have (λx::real. 2 ∗ x − 1 ) x = ?x ′

using Suc.prems(5 ) Suc-eq-plus1 bounding-interval-helper1 diff-Suc-1 le-add2
summation-helper

by presburger
ultimately show ?thesis using joinpaths-tl-transform[of λx. 2∗x − 1 ?l ?p ′ p

x]
by (smt (verit, del-insts) divide-nonneg-nonneg half-bounded-equal two-realpow-ge-one)

qed
moreover have vts!(i+1 ) = ?vts ′!i using Suc.prems by (simp add: nth-tl)
moreover have ?vts ′!i = ?p ′ ?x ′ using Suc.hyps Suc.prems by force
ultimately show ?case by simp

qed

lemma loop-free-split-int:
assumes p = make-polygonal-path vts ∧ loop-free p
assumes vts1 = take i vts
assumes vts2 = drop (i−1 ) vts
assumes c1 = make-polygonal-path vts1
assumes c2 = make-polygonal-path vts2
assumes n = length vts
assumes 1 ≤ i ∧ i < n
shows (path-image c1 ) ∩ (path-image c2 ) ⊆ {pathstart c1 , pathstart c2}
(is ?C1 ∩ ?C2 ⊆ {pathstart c1 , pathstart c2})

proof(rule subsetI )
let ?t = ((2 ::real)^(i−1 ) − 1 )/(2^(i−1 ))
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fix x
assume x ∈ ?C1 ∩ ?C2
moreover have c1c2 : ?C1 = p‘{0 ..?t} ∧ ?C2 = p‘{?t..1}

using vts-split-path-image assms polygon-of-def by metis
ultimately obtain t1 t2 where t1t2 : t1 ∈ {0 ..?t} ∧ t2 ∈ {?t..1} ∧ p t1 = x
∧ p t2 = x by auto

moreover have t1 ∈ {0 ..1} ∧ t2 ∈ {0 ..1} using calculation by force
moreover have (t1 = t2 ) ∨ (t1 = 0 ∧ t2 = 1 )
using assms(1 ) calculation unfolding polygon-of-def polygon-def simple-path-def

loop-free-def
by fastforce

ultimately have x ∈ {p ?t, p 0} by fastforce
moreover have p ?t = pathstart c2

using assms polygonal-path-vertex-t
by (smt (verit, ccfv-SIG) Cons-nth-drop-Suc diff-less-mono le-eq-less-or-eq

length-drop less-imp-diff-less less-trans-Suc less-zeroE linorder-neqE-nat list.size(3 )
nth-Cons-0 numeral-1-eq-Suc-0 numerals(1 ) polygon-of-def polygon-pathstart)

moreover have p 0 = pathstart c1 using assms
by (metis One-nat-def diff-is-0-eq diff-zero linorder-not-less nth-take path-

start-def polygon-pathstart take-eq-Nil zero-less-Suc)
ultimately show x ∈ {pathstart c1 , pathstart c2} by blast

qed

lemma loop-free-arc-split-int:
assumes p = make-polygonal-path vts ∧ loop-free p ∧ arc p
assumes vts1 = take i vts
assumes vts2 = drop (i−1 ) vts
assumes c1 = make-polygonal-path vts1
assumes c2 = make-polygonal-path vts2
assumes n = length vts
assumes 1 ≤ i ∧ i < n
shows (path-image c1 ) ∩ (path-image c2 ) ⊆ {pathstart c2}
(is ?C1 ∩ ?C2 ⊆ {pathstart c2})

proof(rule subsetI )
let ?t = ((2 ::real)^(i−1 ) − 1 )/(2^(i−1 ))

fix x
assume x ∈ ?C1 ∩ ?C2
moreover have c1c2 : ?C1 = p‘{0 ..?t} ∧ ?C2 = p‘{?t..1}

using vts-split-path-image assms polygon-of-def by metis
ultimately obtain t1 t2 where t1t2 : t1 ∈ {0 ..?t} ∧ t2 ∈ {?t..1} ∧ p t1 = x
∧ p t2 = x by auto

moreover have t1 ∈ {0 ..1} ∧ t2 ∈ {0 ..1} using calculation by force
moreover have (t1 = t2 ) ∨ (t1 = 0 ∧ t2 = 1 )
using assms(1 ) calculation unfolding polygon-of-def polygon-def simple-path-def

loop-free-def
by fastforce

moreover then have t1 = t2
using assms(1 ) unfolding arc-def using calculation(1 ) inj-on-contraD by
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fastforce
ultimately have x ∈ {p ?t} by fastforce
moreover have p ?t = pathstart c2

using assms polygonal-path-vertex-t
by (smt (verit, ccfv-SIG) Cons-nth-drop-Suc diff-less-mono le-eq-less-or-eq

length-drop less-imp-diff-less less-trans-Suc less-zeroE linorder-neqE-nat list.size(3 )
nth-Cons-0 numeral-1-eq-Suc-0 numerals(1 ) polygon-of-def polygon-pathstart)

ultimately show x ∈ {pathstart c2} by fast
qed

lemma loop-free-append:
assumes p = make-polygonal-path vts
assumes p1 = make-polygonal-path vts1
assumes p2 = make-polygonal-path vts2
assumes vts = vts1 @ (tl vts2 )
assumes loop-free p1 ∧ loop-free p2
assumes path-image p1 ∩ path-image p2 ⊆ {pathstart p1 , pathstart p2}
assumes last vts2 6= hd vts1 −→ path-image p1 ∩ path-image p2 ⊆ {pathstart

p2}
assumes last vts1 = hd vts2
assumes arc p1 ∧ arc p2
shows loop-free p
using assms

proof(induct length vts1 arbitrary: p p1 p2 vts vts1 vts2 rule: less-induct)
case less
have 1 : length vts1 ≥ 2

using less
by (metis Suc-1 arc-distinct-ends constant-linepath-is-not-loop-free diff-is-0-eq ′

make-polygonal-path.simps(1 ) not-less-eq-eq polygon-pathfinish polygon-pathstart)
moreover have length vts2 ≥ 2

using less.prems
by (metis One-nat-def Suc-1 Suc-leI arc-distinct-ends diff-Suc-1 length-greater-0-conv

make-polygonal-path.simps(1 ) nat-less-le pathfinish-linepath pathstart-linepath poly-
gon-pathfinish polygon-pathstart)

ultimately have length vts ≥ 3 using less assms(4 ) by auto
{ assume ∗: length vts1 = 2

then obtain a b where vts1 = [a, b]
by (metis 1 Cons-nth-drop-Suc One-nat-def Suc-1 drop0 drop-eq-Nil lessI pos2 )
then have p1 : p1 = linepath a b

using less make-polygonal-path.simps(3 ) by metis
have p: p = p1 +++ p2

using p1 less
by (smt (verit) ‹vts1 = [a, b]› append-Cons assms(4 ) constant-linepath-is-not-loop-free

last-ConsL last-ConsR list.exhaust-sel list.inject list.simps(3 ) make-polygonal-path.elims
self-append-conv2 )

have b: pathstart p2 ∈ path-image p1 ∩ path-image p2
by (metis IntI less(3 ,4 ,6 ,9 ) constant-linepath-is-not-loop-free hd-conv-nth

last-conv-nth make-polygonal-path.simps(1 ) pathfinish-in-path-image pathstart-in-path-image
polygon-pathfinish polygon-pathstart)
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{ assume pathstart p1 = pathfinish p2
then have ?case using simple-path-join-loop-eq[of p2 p1 ] less.prems

by (metis make-polygonal-path-gives-path p path-join-eq simple-path-def )
} moreover
{ assume ∗∗: pathstart p1 6= pathfinish p2

then have path-image p1 ∩ path-image p2 = {pathstart p2}
using less.prems b

by (metis constant-linepath-is-not-loop-free empty-subsetI hd-conv-nth in-
sert-subset last-conv-nth make-polygonal-path.simps(1 ) polygon-pathfinish polygon-pathstart
subset-antisym)

then have ?case
using arc-join-eq[of p1 p2 ]

by (metis less(2 ,4 ,10 ) arc-imp-simple-path arc-join-eq-alt make-polygonal-path-gives-path
p path-join-path-ends simple-path-def )

}
ultimately have ?case by blast

} moreover
{ assume ∗: length vts1 > 2

then have len-p1 : length vts1 ≥ 3 by linarith
then obtain a b vts-tl where ab: vts = a # vts-tl ∧ b = hd vts-tl

by (metis ‹3 ≤ length vts› length-0-conv list.collapse not-numeral-le-zero)
have vts1-char : vts1 = (vts1 ! 0 ) # (vts1 ! 1 ) # (vts1 ! 2 ) # (drop 3 vts1 )

using len-p1
by (metis 1 Cons-nth-drop-Suc One-nat-def Suc-1 drop0 length-greater-0-conv

linorder-not-less list.size(3 ) not-less-eq-eq not-numeral-le-zero numeral-3-eq-3 )
then have tail-vts1-char : tl vts1 = (vts1 ! 1 ) # (vts1 ! 2 ) # (drop 3 vts1 )

by (metis list.sel(3 ))

let ?l = linepath a b
let ?vts1-tl = tl vts1
let ?p1-tl = make-polygonal-path ?vts1-tl
let ?vts2-tl = tl vts2
let ?p2-tl = make-polygonal-path ?vts2-tl
let ?p-tl = make-polygonal-path vts-tl

have p: p = ?l +++ ?p-tl
unfolding less.prems(1 )

by (smt (verit, ccfv-SIG) Suc-le-length-iff ‹3 ≤ length vts› ab list.discI
list.sel(1 ) list.sel(3 ) make-polygonal-path.elims numeral-3-eq-3 )

have p1 : p1 = ?l +++ ?p1-tl
using ab unfolding less.prems(2 )

by (smt (verit, ccfv-SIG) ∗ Nitpick.size-list-simp(2 ) One-nat-def Suc-1 Suc-le-eq
hd-append2 less.prems(4 ) list.sel(1 ) list.sel(3 ) make-polygonal-path.elims nat-less-le
tl-append2 )

have p1-img: path-image ?l ∩ path-image ?p1-tl = {pathstart ?p1-tl}
by (metis arc-join-eq-alt less.prems(2 ) less.prems(9 ) make-polygonal-path-gives-path

p1 path-join-path-ends)
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have vts-tl = ?vts1-tl @ (tl vts2 )
using less.prems(4 ) ab

by (metis ∗ length-greater-0-conv list.sel(3 ) order .strict-trans pos2 tl-append2 )
moreover have loop-free ?p1-tl ∧ loop-free p2

using ‹3 ≤ length vts1 › less.prems(2 ) less.prems(5 ) sublist-is-loop-free by
fastforce

moreover have path-image ?p1-tl ∩ path-image p2 ⊆ {pathstart p2}
proof−

have path-image ?p1-tl ⊆ path-image p1
by (metis (no-types, opaque-lifting) ∗ Suc-1 Suc-lessD length-tl less.prems(2 )

list.collapse list.size(3 ) order .refl path-image-cons-union sup.bounded-iff zero-less-diff
zero-order(3 ))

then have path-image ?p1-tl ∩ path-image p2 ⊆ {pathstart p1 , pathstart p2}
using less by blast

moreover have pathstart p1 /∈ path-image ?p1-tl
proof(rule ccontr)

assume ¬ pathstart p1 /∈ path-image ?p1-tl
then have pathstart p1 ∈ path-image ?p1-tl by blast
thus False

by (metis (no-types, lifting) IntI arc-def arc-simple-path less(10 ) make-polygonal-path-gives-path
p1 p1-img path-join-path-ends pathstart-in-path-image pathstart-join simple-path-joinE
singletonD)

qed
ultimately have path-image ?p1-tl ∩ path-image p2 ⊆ {pathstart p2} by

blast
thus ?thesis by blast

qed
moreover then have last vts2 6= hd ?vts1-tl
−→ path-image ?p1-tl ∩ path-image p2 ⊆ {pathstart p2} by blast

moreover have last ?vts1-tl = hd vts2
by (metis ∗ Suc-1 drop-Nil drop-Suc-Cons last-drop last-tl less.prems(8 )

list.collapse)
moreover have arc ?p1-tl ∧ arc p2

by (smt (verit, best) ∗ Nitpick.size-list-simp(2 ) Suc-1 arc-imp-simple-path
constant-linepath-is-not-loop-free diff-Suc-Suc diff-is-0-eq leD length-greater-0-conv
length-tl less.prems(2 ) less.prems(5 ) less.prems(9 ) list.sel(3 ) make-polygonal-path.elims
make-polygonal-path-gives-path order .strict-trans path-join-path-ends pos2 simple-path-joinE)

ultimately have ih1 : loop-free ?p-tl
using less.hyps[of ?vts1-tl ?p-tl vts-tl ?p1-tl p2 vts2 ] ∗ less.prems(3 ) by

fastforce

have p-tl-img: path-image ?p-tl = path-image ?p1-tl ∪ path-image p2
by (metis (no-types, lifting) ∗ Suc-1 Suc-le-eq ‹2 ≤ length vts2 › ‹last (tl vts1 ) =

hd vts2 › ‹vts-tl = tl vts1 @ tl vts2 › hd-conv-nth last-conv-nth length-greater-0-conv
length-tl less.prems(3 ) less-diff-conv make-polygonal-path-image-append-alt order-less-le-trans
path-image-join plus-1-eq-Suc polygon-pathfinish polygon-pathstart pos2 )

have 1 : length [a, b] < length vts1 using ‹3 ≤ length vts1 › by fastforce
moreover have 2 : p = make-polygonal-path vts using less.prems(1 ) by auto
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moreover have 3 : ?l = make-polygonal-path [a, b] by simp
moreover have 4 : ?p-tl = make-polygonal-path vts-tl using less by simp
moreover have 5 : vts = [a, b] @ tl vts-tl

using ab ‹3 ≤ length vts› append-eq-Cons-conv by fastforce
moreover have 6 : loop-free ?l ∧ loop-free ?p-tl
proof−

have sublist [a, b] vts1
by (metis (no-types, opaque-lifting) 1 Cons-nth-drop-Suc Suc-lessD ab ap-

pend-Cons drop0 length-Cons less.prems(4 ) list.sel(1 ) list.sel(3 ) list.size(3 ) sub-
list-take take0 take-Suc-Cons)

then have loop-free (make-polygonal-path [a, b])
using sublist-is-loop-free ∗ less.prems(2 ) less.prems(5 ) by fastforce

then have loop-free ?l using make-polygonal-path.simps(3 ) by simp
thus ?thesis using ih1 by simp

qed
moreover have 9 : last [a, b] = hd vts-tl by (simp add: ab)
moreover have 10 : arc ?l ∧ arc ?p-tl
proof−

have pathstart ?p-tl = b
by (metis 6 ab constant-linepath-is-not-loop-free hd-conv-nth make-polygonal-path.simps(1 )

polygon-pathstart)
moreover have pathfinish ?p-tl 6= b
proof(rule ccontr)

assume ¬ pathfinish ?p-tl 6= b
have pathfinish ?p-tl = pathfinish p2

by (smt (verit) 5 9 Nil-tl ‹2 ≤ length vts2 › ‹¬ pathfinish (make-polygonal-path
vts-tl) 6= b› ab arc-distinct-ends last-append last-conv-nth last-tl length-tl less.prems(3 )
less.prems(4 ) less.prems(9 ) list.size(3 ) not-numeral-le-zero polygon-pathfinish poly-
gon-pathstart)

moreover have b ∈ path-image p1
by (metis list.size(3 )1 Cons-nth-drop-Suc Suc-lessD UnCI ab append-eq-conv-conj

drop0 hd-append2 hd-conv-nth length-Cons less.prems(2 ) less.prems(4 ) list.distinct(1 )
list.sel(3 ) path-image-cons-union pathstart-in-path-image polygon-pathstart tl-append2 )

moreover have b 6= pathstart p1
by (metis (no-types, lifting) 1 6 ab constant-linepath-is-not-loop-free

dual-order .strict-trans hd-append2 hd-conv-nth length-greater-0-conv less.prems(2 )
less.prems(4 ) list.sel(1 ) list.size(3 ) polygon-pathstart)

moreover have b 6= pathfinish p2
by (metis (no-types, lifting) Int-insert-right-if1 arc-distinct-ends cal-

culation(2 ) calculation(3 ) insert-absorb insert-iff insert-not-empty less.prems(6 )
less.prems(9 ) pathfinish-in-path-image subset-iff )

ultimately show False
using ‹¬ pathfinish (make-polygonal-path vts-tl) 6= b› by fastforce

qed
ultimately have pathstart ?p-tl 6= pathfinish ?p-tl by simp
then have arc ?p-tl

using ih1 arc-def loop-free-cases make-polygonal-path-gives-path by metis
moreover have arc ?l by (metis 6 arc-linepath constant-linepath-is-not-loop-free)

ultimately show ?thesis by blast
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qed
moreover have 7 : path-image ?l ∩ path-image ?p-tl ⊆ {pathstart ?l, pathstart

?p-tl}
proof−

have path-image ?l ⊆ path-image p1
by (metis Un-iff ‹loop-free (make-polygonal-path (tl vts1 )) ∧ loop-free

p2 › ‹vts-tl = tl vts1 @ tl vts2 › ab constant-linepath-is-not-loop-free hd-append2
hd-conv-nth make-polygonal-path.simps(1 ) p1 path-image-join pathfinish-linepath
polygon-pathstart subsetI )

then have path-image ?l ∩ path-image p2 ⊆ {pathstart p1 , pathstart p2}
using less.prems(6 ) by auto

moreover have pathstart p2 /∈ path-image ?l
by (smt (verit, ccfv-threshold) 10 Int-insert-left-if1 ‹arc (make-polygonal-path

(tl vts1 )) ∧ arc p2 › ‹last (tl vts1 ) = hd vts2 › ‹loop-free (make-polygonal-path (tl
vts1 )) ∧ loop-free p2 › arc-def arc-distinct-ends arc-join-eq-alt constant-linepath-is-not-loop-free
hd-conv-nth insert-absorb last-conv-nth less.prems(3 ) less.prems(9 ) make-polygonal-path.simps(1 )
p1 path-join-eq pathfinish-in-path-image polygon-pathfinish polygon-pathstart single-
ton-insert-inj-eq ′)

ultimately have path-image ?l ∩ path-image ?p-tl ⊆ {pathstart p1 , pathstart
?p1-tl}

using p1-img p-tl-img by blast
moreover have pathstart ?p1-tl = pathstart ?p-tl
by (metis 2 less.prems(2 ) make-polygonal-path-gives-path p p1 path-join-path-ends)
moreover have pathstart p1 = pathstart ?l by (simp add: p1 )
ultimately show ?thesis by argo

qed
moreover have 8 : last vts-tl 6= hd [a, b]
−→ path-image ?l ∩ path-image ?p-tl ⊆ {pathstart ?p-tl}

proof clarify
fix x
assume a1 : last vts-tl 6= hd [a, b]
assume a2 : x ∈ path-image ?l
assume a3 : x ∈ path-image ?p-tl

have hd vts1 6= last vts2
using less.prems

by (metis a1 ‹vts-tl = tl vts1 @ tl vts2 › ab arc-distinct-ends constant-linepath-is-not-loop-free
hd-append2 last-appendR last-tl length-tl list.sel(1 ) list.size(3 ) make-polygonal-path.simps(1 )
polygon-pathfinish polygon-pathstart)

then have p1-p2-int: path-image p1 ∩ path-image p2 ⊆ {pathstart p2}
using less.prems by argo

have x 6= pathstart ?l
proof(rule ccontr)

assume ∗∗: ¬ x 6= pathstart ?l
have pathstart ?l /∈ path-image ?p1-tl

by (metis Int-iff arc-distinct-ends arc-join-eq-alt empty-iff insertE less.prems(2 )
less.prems(9 ) make-polygonal-path-gives-path p1 path-join-path-ends pathstart-in-path-image)

then have pathstart ?l ∈ path-image p2 using p1-img p-tl-img ∗∗ a3 by
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blast
then have pathstart ?l ∈ path-image p1 ∩ path-image p2

by (metis IntI p1 pathstart-in-path-image pathstart-join)
moreover have pathstart ?l 6= pathstart p2

by (metis arc-distinct-ends constant-linepath-is-not-loop-free hd-conv-nth
last-conv-nth less.prems(2 ) less.prems(3 ) less.prems(5 ) less.prems(8 ) less.prems(9 )
make-polygonal-path.simps(1 ) p1 pathstart-join polygon-pathfinish polygon-pathstart)

ultimately show False using p1-p2-int by blast
qed
moreover have x = pathstart ?l ∨ x = pathstart ?p-tl using 7 a2 a3 by

blast
ultimately show x = pathstart ?p-tl by fast

qed
ultimately have ?case using less.hyps[of [a, b] p vts ?l ?p-tl vts-tl] by blast

}
ultimately show ?case using less 1 by linarith

qed

lemma sublist-path-image-subset:
assumes sublist vts1 vts2
assumes length vts1 ≥ 1
shows path-image (make-polygonal-path vts1 ) ⊆ path-image (make-polygonal-path

vts2 )
proof−

let ?p1 = make-polygonal-path vts1
let ?p2 = make-polygonal-path vts2
let ?m = length vts1
let ?n = length vts2
have n-geq-m: ?n ≥ ?m by (simp add: assms(1 ) sublist-length-le)

have ?thesis if ∗: length vts1 = 1
proof−

have path-image ?p1 = {vts1 !0}
by (metis Cons-nth-drop-Suc One-nat-def closed-segment-idem drop0 drop-eq-Nil

le-numeral-extra(4 ) make-polygonal-path.simps(2 ) path-image-linepath that zero-less-one)
moreover have vts1 !0 ∈ set vts2

by (metis assms(1 ) less-numeral-extra(1 ) nth-mem set-mono-sublist subsetD
that)

ultimately show ?thesis
using vertices-on-path-image by force

qed
moreover have ?thesis if ∗: length vts1 ≥ 2
proof−

obtain pre post where sublist: vts2 = pre @ vts1 @ post
using assms(1 ) unfolding sublist-def by blast

let ?i = length pre
let ?j = length vts1
let ?k = ?i + ?j
let ?x1 = (2^?i − 1 )/2^(?i)::real
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let ?x2 = (2^(?k−1 ) − 1 )/(2^(?k−1 ))::real
let ?x = (2 ^ (?i − 1 ) − 1 ) / 2 ^ (?i − 1 )::real
have path-image ?p1 = ?p2 ‘ {?x1 ..?x2} if ∗∗: length post ≥ 1

using sublist ∗ ∗∗ vts-sublist-path-image[of ?p2 vts2 ?p1 vts1 ?j ?i ?n ?m ?k
?x1 ?x2 ]

by fastforce
moreover have path-image ?p1 = ?p2 ‘ {?x1 ..1} if ∗∗: length post = 0
proof−

have sublist: vts2 = pre @ vts1 using ∗∗ sublist by blast
moreover have vts1 = drop ?i vts2 using sublist ∗ by simp
moreover have 1 ≤ ?i + 1 ∧ ?i + 1 < length vts2 using sublist ∗ ∗∗ by

simp
ultimately show ?thesis
using vts-split-path-image[of ?p2 vts2 - - ?p1 vts1 ?i + 1 ?n ?x1 ] add-diff-cancel-right ′

by metis
qed

moreover have ?p2 ‘ {?x1 ..?x2} ⊆ path-image ?p2 ∧ ?p2 ‘ {?x1 ..1} ⊆
path-image ?p2

proof−
have {?x1 ..?x2} ⊆ {0 ..1} ∧ {?x1 ..1} ⊆ {0 ..1} by simp
thus ?thesis unfolding path-image-def by blast

qed
ultimately show ?thesis by (metis less-one linorder-not-le)

qed
ultimately show ?thesis using assms by linarith

qed

lemma integral-on-edge-subset-integral-on-path:
assumes p = make-polygonal-path vts and

(i::int) ∈ {0 ..<((length vts) − 1 )} and
x = vts!i and
y = vts!(i+1 )

shows {v. integral-vec v ∧ v ∈ path-image (linepath x y)}
⊆ {v. integral-vec v ∧ v ∈ path-image p}

using assms edge-subset-path-image by blast

lemma sublist-pair-integral-subset-integral-on-path:
assumes p = make-polygonal-path vts and

sublist [x, y] vts
shows {v. integral-vec v ∧ v ∈ path-image (linepath x y)}

⊆ {v. integral-vec v ∧ v ∈ path-image p}
using assms integral-on-edge-subset-integral-on-path

proof−
obtain pre post where vts: vts = pre @ [x, y] @ post using assms(2 ) sublist-def

by blast
let ?i = length pre
have x = vts!?i using vts by simp
moreover have y = vts!(?i + 1 )

by (metis vts add.right-neutral append-Cons nth-Cons-Suc nth-append-length
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nth-append-length-plus plus-1-eq-Suc)
moreover have ?i ∈ {0 ..<((length vts) − 1 )} using vts by force
ultimately show ?thesis using assms(1 ) integral-on-edge-subset-integral-on-path

by auto
qed

lemma sublist-integral-subset-integral-on-path:
assumes length ell ≥ 2
assumes p = make-polygonal-path vts and

sublist ell vts
shows {v. integral-vec v ∧ v ∈ path-image (make-polygonal-path ell)}

⊆ {v. integral-vec v ∧ v ∈ path-image p}
proof−

obtain pre post where vts: vts = pre @ ell @ post using assms(3 ) sublist-def
by blast

then have len-vts: length vts ≥ 2
using assms(1 )
by auto

let ?i = length pre
have v ∈ path-image p if ∗: v ∈ path-image (make-polygonal-path ell) for v
proof −

have ∃ j::nat. v ∈ path-image (linepath (ell ! j) (ell ! (j+1 ))) ∧ j+1 < length
ell

using ∗ polygonal-path-image-linepath-union assms(1 )
by (meson less-diff-conv make-polygonal-path-image-property)

then obtain j where v-in: v ∈ path-image (linepath (ell ! j) (ell ! (j+1 )))
j+1 < length ell

by auto
then have ell-at: ell ! j = vts ! (j + length pre) ∧ ell ! (j+1 ) = vts ! (j + 1

+ length pre)
using vts
by (simp add: nth-append)

then have v-in2 : v ∈ path-image (linepath (vts ! (j + length pre)) (vts ! (j +
length pre + 1 )))

using v-in(1 ) by simp
have j + 1 + length pre < length vts

using ell-at v-in(2 ) vts by auto
then have j-plus: j + length pre < length vts − 1

by auto
then show ?thesis using v-in2 linepaths-subset-make-polygonal-path-image[OF

len-vts j-plus] assms(1 )
assms(2 ) by auto

qed
then show ?thesis by blast

qed

13 Reversing Polygonal Path Vertex List
lemma rev-vts-path-image:
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shows path-image (make-polygonal-path (rev vts)) = path-image (make-polygonal-path
vts)
proof −

{ assume length vts ≤ 1
then have ?thesis
by (smt (verit, best) One-nat-def Suc-length-conv le-SucE le-zero-eq length-0-conv

rev.simps(1 ) rev-singleton-conv)
} moreover
{ fix x

assume ∗: x ∈ path-image (make-polygonal-path (rev vts)) ∧ length vts ≥ 2
then obtain k where k-prop: k<length (rev vts) − 1 ∧ x ∈ path-image (linepath

(rev vts ! k) (rev vts ! (k + 1 )))
using make-polygonal-path-image-property[of rev vts] by auto

have p1 : rev vts ! k = vts ! (length vts − k − 1 )
using rev-nth
by (metis Suc-lessD ‹k < length (rev vts) − 1 ∧ x ∈ path-image (linepath

(rev vts ! k) (rev vts ! (k + 1 )))› add.commute diff-diff-left length-rev less-diff-conv
plus-1-eq-Suc)

have p2 : rev vts ! (k + 1 ) = vts ! (length vts − k − 2 )
using rev-nth[of k+1 vts] k-prop
by force

then have x ∈ path-image (linepath (vts ! (length vts − k − 1 )) (vts ! (length
vts − k − 2 )))

using k-prop p1 p2 by auto
then have x ∈ path-image (linepath (vts ! (length vts − k − 2 )) (vts ! (length

vts − k − 1 )))
using reversepath-linepath path-image-reversepath
by metis

then have x ∈ path-image (make-polygonal-path vts)
using linepaths-subset-make-polygonal-path-image ∗ k-prop

by (smt (verit, best) Nat.diff-add-assoc add.commute add-diff-cancel-left ′

diff-le-self length-rev less-Suc-eq less-diff-conv linorder-not-less nat-1-add-1 nat-neq-iff
plus-1-eq-Suc subsetD)

} moreover
{ fix x

assume ∗: x ∈ path-image (make-polygonal-path vts) ∧ length vts ≥ 2
then obtain k where k-prop: k<length vts − 1 ∧ x ∈ path-image (linepath

(vts ! k) (vts ! (k + 1 )))
using make-polygonal-path-image-property[of vts] by auto

have p1 : vts ! k = (rev vts) ! (length vts − k − 1 )
using rev-nth k-prop

by (metis Suc-eq-plus1 Suc-lessD diff-diff-left length-rev less-diff-conv rev-rev-ident)
have p2 : vts ! (k + 1 ) = (rev vts) ! (length vts − k − 2 )

using rev-nth[of k+1 ]
by (smt (verit) Suc-eq-plus1 add-2-eq-Suc ′ diff-diff-left k-prop length-rev

less-diff-conv rev-rev-ident)
then have x ∈ path-image (linepath (rev vts ! (length vts − k − 2 )) (rev vts !

(length vts − k − 1 )))
using reversepath-linepath path-image-reversepath
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by (metis k-prop p1 )
then have x ∈ path-image (make-polygonal-path (rev vts))

using linepaths-subset-make-polygonal-path-image k-prop ∗
by (smt (verit, best) Suc-1 Suc-diff-Suc Suc-eq-plus1 Suc-le-eq Suc-lessD

bot-nat-0 .not-eq-extremum diff-commute diff-diff-left diff-less length-rev less-numeral-extra(1 )
subsetD zero-less-diff )

}
ultimately show ?thesis by force

qed

lemma rev-vts-is-loop-free:
assumes p = make-polygonal-path vts
assumes loop-free p
shows loop-free (make-polygonal-path (rev vts))
using assms

proof(induct length vts arbitrary: p vts)
case 0
then show ?case by simp

next
case (Suc n)
then have Suc n ≥ 2
by (metis One-nat-def Suc-length-conv constant-linepath-is-not-loop-free le-SucE

le-add1 le-numeral-Suc length-greater-0-conv list.size(3 ) make-polygonal-path.simps(2 )
numeral-One plus-1-eq-Suc pred-numeral-simps(2 ) semiring-norm(26 ))

moreover
{ assume ∗: Suc n = 2

then obtain a b where ab: p = linepath a b
using Suc.prems make-polygonal-path.simps(3 )

by (metis (no-types, opaque-lifting) Cons-nth-drop-Suc One-nat-def Suc.hyps(2 )
Suc-1 diff-Suc-1 drop-0 drop-Suc length-0-conv length-tl zero-less-Suc)

moreover then have a 6= b using Suc.prems(2 ) constant-linepath-is-not-loop-free
by blast

ultimately have loop-free (linepath b a) by (simp add: linepath-loop-free)
moreover have make-polygonal-path (rev vts) = linepath b a

by (smt (z3 ) ∗ Cons-nth-drop-Suc One-nat-def Suc.hyps(2 ) Suc.prems(1 )
Suc-1 Suc-diff-Suc ab butlast-snoc diff-Suc-1 drop0 hd-conv-nth hd-rev last-conv-nth
length-butlast length-rev lessI linepath-1 ′ make-polygonal-path.simps(3 ) nth-append-length
pathstart-def pathstart-linepath pos2 rev.simps(2 ) rev-is-Nil-conv rev-take take-eq-Nil)

ultimately have ?case by simp
} moreover
{ assume ∗: Suc n > 2

let ?vts ′ = butlast vts
let ?p ′ = make-polygonal-path ?vts ′

let ?vts ′-rev = rev ?vts ′

let ?p ′-rev = make-polygonal-path ?vts ′-rev

let ?vts-rev = rev vts
let ?p-rev = make-polygonal-path ?vts-rev
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obtain y z where yz: y = last ?vts ′ ∧ z = last vts by blast
let ?l = linepath y z
let ?l-rev = linepath z y
have loop-free ?p ′

by (metis ∗ Suc.hyps(2 ) Suc.prems(1 ) Suc.prems(2 ) butlast-conv-take diff-Suc-1
le-add2 less-Suc-eq-le plus-1-eq-Suc take-i-is-loop-free)

then have loop-free-p ′-rev: loop-free ?p ′-rev using Suc.hyps by force
moreover have rev vts = z # ?vts ′-rev

by (metis Suc.hyps(2 ) yz append-butlast-last-id length-0-conv nat.distinct(1 )
rev-eq-Cons-iff rev-rev-ident)

moreover have y = hd ?vts ′-rev using yz by (simp add: hd-rev)
ultimately have p-rev: ?p-rev = ?l-rev +++ ?p ′-rev
by (smt (verit, best) constant-linepath-is-not-loop-free list.sel(1 ) make-polygonal-path.elims

make-polygonal-path.simps(4 ))

have [y, z] = drop (n−1 ) vts
using yz Suc.hyps(2 )
by (metis (no-types, opaque-lifting) ∗ Cons-nth-drop-Suc Suc-1 Suc-diff-Suc

Suc-lessD Suc-n-not-le-n append-butlast-last-id append-eq-conv-conj diff-Suc-1 last-conv-nth
length-0-conv length-butlast less-nat-zero-code linorder-not-le nth-take)

then have ?l = make-polygonal-path (drop (n−1 ) vts)
using make-polygonal-path.simps by metis

moreover have ?p ′ = make-polygonal-path (take n vts)
using Suc.hyps(2 ) by (metis butlast-conv-take diff-Suc-1 )

ultimately have path-image ?l ∩ path-image ?p ′ ⊆ {pathstart ?l, pathstart
?p ′}

using loop-free-split-int
by (smt (verit, ccfv-SIG) Int-commute Suc.hyps(2 ) Suc.prems(1 ) Suc.prems(2 )

Suc-1 Suc-le-mono ‹2 ≤ Suc n› insert-commute lessI )
moreover have path-image ?l = path-image ?l-rev by auto
moreover have path-image ?p ′ = path-image ?p ′-rev

using ∗ Suc.hyps(2 ) rev-vts-path-image by force
moreover have pathstart ?l = pathfinish ?l-rev by simp
moreover have pathstart ?p ′ = pathfinish ?p ′-rev

by (metis Nil-is-rev-conv last.simps last-conv-nth last-rev list.distinct(1 )
list.exhaust-sel make-polygonal-path.simps(1 ) make-polygonal-path.simps(2 ) nth-Cons-0
polygon-pathfinish polygon-pathstart)

ultimately have path-image-int:
path-image ?l-rev ∩ path-image ?p ′-rev ⊆ {pathfinish ?l-rev, pathfinish

?p ′-rev}
by argo

have 1 : pathfinish ?l-rev = pathstart ?p ′-rev
by (metis make-polygonal-path-gives-path p-rev path-join-path-ends)

{ assume pathfinish ?p ′-rev = pathstart ?l-rev
then have ?case using simple-path-join-loop 1 p-rev path-image-int

by (smt (verit, del-insts) Suc.hyps(2 ) Suc.prems(1 ) Suc.prems(2 ) Suc-1
‹linepath y z = make-polygonal-path (drop (n − 1 ) vts)› ‹loop-free (make-polygonal-path
(rev (butlast vts)))› constant-linepath-is-not-loop-free diff-Suc-Suc drop-i-is-loop-free
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dual-order .eq-iff insert-commute linepath-loop-free make-polygonal-path-gives-path
path-linepath pathfinish-linepath pathstart-linepath simple-path-cases simple-path-def )

} moreover
{ assume pathfinish ?p ′-rev 6= pathstart ?l-rev

then have pathstart p 6= pathfinish p
by (metis Suc.prems(1 ) ‹loop-free (make-polygonal-path (butlast vts))› ‹path-

start (make-polygonal-path (butlast vts)) = pathfinish (make-polygonal-path (rev
(butlast vts)))› butlast-conv-take constant-linepath-is-not-loop-free last-conv-nth less-nat-zero-code
make-polygonal-path.simps(1 ) nat-neq-iff nth-take pathstart-linepath polygon-pathfinish
polygon-pathstart take-eq-Nil yz)

then have arc p
by (metis Suc.prems(1 ) Suc.prems(2 ) arc-def loop-free-cases make-polygonal-path-gives-path)
then have path-image ?l-rev ∩ path-image ?p ′-rev ⊆ {pathstart ?p ′-rev}

using loop-free-arc-split-int
by (metis 1 Int-commute Suc.hyps(2 ) Suc.prems(1 ) Suc.prems(2 ) ‹2 ≤ Suc

n› ‹linepath y z = make-polygonal-path (drop (n − 1 ) vts)› ‹make-polygonal-path
(butlast vts) = make-polygonal-path (take n vts)› ‹path-image (linepath y z) =
path-image (linepath z y)› ‹path-image (make-polygonal-path (butlast vts)) = path-image
(make-polygonal-path (rev (butlast vts)))› ‹pathstart (linepath y z) = pathfinish
(linepath z y)› le-numeral-Suc lessI numerals(1 ) pred-numeral-simps(2 ) semiring-norm(26 ))

moreover have arc ?l-rev
by (metis Suc.hyps(2 ) Suc.prems(1 ) Suc.prems(2 ) Suc-1 ‹[y, z] = drop (n −

1 ) vts› arc-linepath constant-linepath-is-not-loop-free diff-Suc-Suc drop-i-is-loop-free
dual-order .refl make-polygonal-path.simps(3 ))

moreover have arc ?p ′-rev
proof−
have ?p ′-rev 0 = last (butlast vts) by (metis 1 pathfinish-linepath pathstart-def

yz)
moreover have ?p ′-rev 1 = hd (butlast vts)

by (metis ‹loop-free (make-polygonal-path (butlast vts))› ‹pathstart (make-polygonal-path
(butlast vts)) = pathfinish (make-polygonal-path (rev (butlast vts)))› constant-linepath-is-not-loop-free
hd-conv-nth make-polygonal-path.simps(1 ) pathfinish-def polygon-pathstart)

moreover have last (butlast vts) 6= hd (butlast vts) using Suc.prems
by (metis (no-types, lifting) ∗ Suc.hyps(2 ) Suc-1 diff-is-0-eq index-Cons

index-last leD length-butlast less-diff-conv less-imp-le-nat list.collapse list.size(3 )
loop-free-polygonal-path-vts-distinct not-one-le-zero plus-1-eq-Suc)

ultimately have ?p ′-rev 0 6= ?p ′-rev 1 by simp
thus ?thesis using loop-free-p ′-rev

by (metis arc-def loop-free-cases make-polygonal-path-gives-path pathfin-
ish-def pathstart-def )

qed
ultimately have ?case

using arc-join-eq[OF 1 ] arc-imp-simple-path p-rev simple-path-def by auto
}
ultimately have ?case by blast

}
ultimately show ?case by linarith

qed
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lemma rev-vts-is-polygon:
assumes polygon-of p vts
shows polygon (make-polygonal-path (rev vts))
using rev-vts-is-loop-free assms
unfolding polygon-of-def polygon-def simple-path-def
using make-polygonal-path-gives-path
by (metis One-nat-def closed-path-def UNIV-def length-greater-0-conv polygon-pathfinish

polygon-pathstart polygonal-path-def rangeI rev.simps(1 ) rev-nth rev-rev-ident)

end
theory Linepath-Collinearity

imports Polygon-Lemmas

begin

14 Collinearity Properties
lemma points-on-linepath-collinear :

assumes exists-c: (∃ c. a − b = c ∗R u)
assumes x-in-linepath: x ∈ path-image (linepath a b)
shows (∃ c. x − a = c ∗R u) (∃ c. b − x = c ∗R u)

proof −
obtain k :: real where k-prop: 0 ≤ k ∧ k ≤ 1 ∧ x = (1 − k) ∗R a + k ∗R b

using x-in-linepath unfolding linepath-def path-image-def by fastforce
then have x = a − k ∗R a + k ∗R b

by (simp add: eq-diff-eq)
then have x − a= − k ∗R a + k ∗R b

by auto
then have xminusa: x − a = −k∗R(a − b)

by (simp add: scaleR-right-diff-distrib)
obtain c where c-prop: a − b = c ∗R u using exists-c by blast
show (∃ c. x − a = c ∗R u) using xminusa c-prop

by (metis scaleR-scaleR)
then show (∃ c. b − x = c ∗R u)

using exists-c
by (metis (no-types, opaque-lifting) add-diff-eq diff-add-cancel minus-diff-eq

scaleR-left-distrib)
qed

lemma three-points-collinear-property:
fixes a b:: real^2
assumes exists-c1 : (∃ c. a − x1 = c ∗R u)
assumes exists-c2 : (∃ c. a − x2 = c ∗R u)
shows ∃ c. x1 − x2 = c∗R u

proof −
obtain c1 where c1-prop: a − x1 = c1 ∗R u

using exists-c1 by auto
obtain c2 where c2-prop: a − x2 = c2 ∗R u

using exists-c2 by auto
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then have a − x2 − (a − x1 ) = c2 ∗R u − c1 ∗R u
using c1-prop c2-prop by simp

then have a − x2 − (a − x1 ) = (c2 − c1 ) ∗R u
by (simp add: scaleR-left-diff-distrib)

then show ?thesis
by auto

qed

lemma in-path-image-imp-collinear :
fixes a b:: real^2
assumes k ∈ path-image (linepath a b)
shows collinear {a, b, k}

proof −
obtain w where w-prop: w ∈ {0 ..1} ∧ k = (1 − w) ∗R a + w ∗R b

using assms unfolding path-image-def linepath-def by fast
have collinear {0 , a−b, (1 − w) ∗R a + (w−1 ) ∗R b}

using collinear
by (smt (verit) collinear-lemma diff-minus-eq-add scaleR-minus-left scaleR-right-diff-distrib)

then have collinear {0 , a − b, k − b}
using w-prop
by (metis (no-types, lifting) add.commute add-diff-cancel-left collinear-lemma

scaleR-collapse scaleR-right-diff-distrib)
then show ?thesis using assms collinear-alt collinear-3 [of a b k]

by auto
qed

lemma two-linepath-colinearity-property:
fixes a b c d:: real^2
assumes y 6= z ∧ {y, z} ⊆ (path-image (linepath a b)) ∩ (path-image (linepath

c d))
shows collinear {a, b, c, d}

proof −
have collinear {a, b, y, z}

using in-path-image-imp-collinear assms
by (metis (no-types, lifting) Int-closed-segment collinear-4-3 inf .boundedE inf-idem

insert-absorb2 insert-subset path-image-linepath pathstart-in-path-image pathstart-linepath)
moreover have collinear {c, d, y, z}

using in-path-image-imp-collinear assms
by (metis (no-types, lifting) Int-closed-segment collinear-4-3 inf .boundedE inf-idem

insert-absorb2 insert-subset path-image-linepath pathstart-in-path-image pathstart-linepath)
ultimately show ?thesis

using assms collinear-3-eq-affine-dependent collinear-4-3 insert-absorb2 in-
sert-commute

by (smt (z3 ) collinear-3-trans)
qed

lemma polygon-vts-not-collinear :
assumes polygon-of p vts
shows ¬ collinear (set vts)
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proof −
have len-vts: length vts ≥ 3

using polygon-at-least-3-vertices assms unfolding polygon-of-def
using card-length dual-order .trans by blast

have compact-and-connected: compact (path-image p) ∧ connected (path-image
p)

using inside-outside-polygon assms unfolding polygon-of-def
using compact-simple-path-image connected-simple-path-image polygon-def
by auto

have nonempty-path-image: path-image p 6= {}
using assms unfolding polygon-of-def
using vertices-on-path-image by simp

have collinear-imp: collinear (set vts) =⇒ (collinear (path-image p))
proof −

assume collinear (set vts)
then obtain u where u-prop: ∀ x∈set vts. ∀ y∈set vts. ∃ c. x − y = c ∗R u

unfolding collinear-def by blast
then have ∃ c. x − y = c ∗R u if xy-in-pathimage: y∈path-image p ∧ x∈path-image

p for x y
proof −
obtain k1 where k1-prop: k1<length vts − 1 ∧ x ∈ path-image (linepath (vts

! k1 ) (vts ! (k1 + 1 )))
using make-polygonal-path-image-property xy-in-pathimage len-vts
by (metis One-nat-def Suc-1 Suc-leD assms numeral-3-eq-3 polygon-of-def )

then have ∃ c. (vts ! k1 ) − (vts ! (k1 + 1 )) = c ∗R u
by (meson add-lessD1 in-set-conv-nth less-diff-conv u-prop)

obtain k2 where k2-prop: k2<length vts − 1 ∧ y ∈ path-image (linepath (vts
! k2 ) (vts ! (k2 + 1 )))

using make-polygonal-path-image-property xy-in-pathimage len-vts
by (metis One-nat-def Suc-1 Suc-leD assms numeral-3-eq-3 polygon-of-def )

have ∃ c. vts ! (k2 + 1 ) − (vts ! k1 ) = c ∗R u
using u-prop k1-prop k2-prop
by (meson add-lessD1 less-diff-conv nth-mem)

have k2-vts-prop: ∃ c. vts ! (k2 + 1 ) − (vts ! k2 ) = c ∗R u
using u-prop k2-prop by fastforce

have ex-c-k2 : ∃ c. vts ! (k2 + 1 ) − y = c ∗R u
using points-on-linepath-collinear [of vts ! (k2 + 1 ) vts ! k2 u y] k2-prop

k2-vts-prop
by (meson add-lessD1 points-on-linepath-collinear(2 ) less-diff-conv nth-mem

u-prop)
have k1-vts-prop: ∃ c. vts ! (k1 + 1 ) − (vts ! k1 ) = c ∗R u

using u-prop k1-prop by fastforce
have ex-c-k1-y: ∃ c. vts ! (k1 + 1 ) − y = c ∗R u

using points-on-linepath-collinear [of vts ! (k1 + 1 ) vts ! k1 u y] k1-prop
k1-vts-prop

by (meson ‹∃ c. vts ! (k2 + 1 ) − vts ! k1 = c ∗R u› ‹∃ c. vts ! k1 − vts !
(k1 + 1 ) = c ∗R u› three-points-collinear-property ex-c-k2 )

have ex-c-k1-x: ∃ c. vts ! (k1 + 1 ) − x = c ∗R u
using points-on-linepath-collinear [of vts ! (k1 + 1 ) vts ! k1 u x] k1-prop
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k1-vts-prop
by (meson add-lessD1 points-on-linepath-collinear(2 ) less-diff-conv nth-mem

u-prop)
show ?thesis

using ex-c-k1-y ex-c-k1-y three-points-collinear-property ex-c-k1-x by blast
qed
then show (collinear (path-image p)) unfolding collinear-def by auto

qed
{ assume ∗: collinear (set vts)

then obtain a b::real^2 where im-closed: path-image p = closed-segment a b
using collinear-imp compact-convex-collinear-segment-alt[of path-image p]

compact-and-connected nonempty-path-image
by blast

have inside (closed-segment a b) = {}
by (simp add: inside-convex)

then have path-inside p = {}
unfolding path-inside-def using im-closed by auto

then have False
using inside-outside-polygon assms unfolding polygon-of-def inside-outside-def

by blast
}
then show ?thesis by blast

qed

lemma not-collinear-with-subset:
assumes collinear A
assumes ¬ collinear (A ∪ {x})
assumes card A > 2
assumes a ∈ A
shows ¬ collinear ((A − {a}) ∪ {x})

proof−
obtain u v where uv: u ∈ A ∧ v ∈ A ∧ u 6= v ∧ u 6= a ∧ v 6= a
proof−

have card (A − {a}) ≥ 2 using assms by auto
then obtain u B where u ∈ (A − {a}) ∧ B = (A − {a} − {u})
by (metis bot-nat-0 .extremum-unique card.empty ex-in-conv zero-neq-numeral)

moreover then obtain v where v ∈ B
by (metis Diff-iff One-nat-def Suc-1 assms(3 ) assms(4 ) card.empty card.insert

equals0I finite.intros(1 ) finite-insert insert-Diff insert-commute less-irrefl)
ultimately show ?thesis using that by blast

qed
then have x /∈ affine hull {u, v}

using assms
by (smt (verit, ccfv-threshold) Un-commute Un-upper1 collinear-affine-hull-collinear

hull-insert hull-mono insert-absorb insert-is-Un insert-subset)
moreover have u ∈ A − {a} ∧ v ∈ A − {a} using uv by blast
ultimately show ?thesis
by (metis UnCI collinear-3-imp-in-affine-hull collinear-triples insert-absorb sin-

gletonD uv)
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qed

lemma vec-diff-scale-collinear :
fixes a b c :: real^2
assumes b − a = m ∗R (c − a)
shows collinear {a, b, c}

proof−
{ assume m = 0

then have b = a using assms by simp
then have collinear {a, b, c} by auto

} moreover
{ assume m-nz: m 6= 0

then have c-eq: c = (1/m) ∗R (b − a) + a using assms by simp
then have c − b = (1/m − 1 ) ∗R (b − a) using m-nz by (simp add:

scaleR-left.diff )
then obtain m ′ where c − b = m ′ ∗R (b − a) by fast

then have c − b ∈ span({b − a}) by (simp add: span-breakdown-eq)
moreover from this have b − c ∈ span({b − a}) using span-0 span-add-eq2

by fastforce
moreover have c − a ∈ span({b − a}) using assms by (simp add: span-breakdown-eq

c-eq)
moreover from this have a − c ∈ span({b − a}) using span-0 span-add-eq2

by fastforce
moreover have b − a ∈ span({b − a}) by (simp add: span-base)
moreover from this have a − b ∈ span({b − a}) using span-0 span-add-eq2

by fastforce
moreover have ∀ v ∈ {a, b, c}. v − v ∈ span({b − a}) by (simp add: span-0 )
ultimately have ∀ v ∈ {a, b, c}. ∀w ∈ {a, b, c}. v − w ∈ span({b − a}) by

blast
then have ∀ v ∈ {a, b, c}. ∀w ∈ {a, b, c}. ∃ k. v − w = k ∗R (b − a)

by (simp add: span-breakdown-eq)
then have collinear {a, b, c} using collinear-def by blast

}
ultimately show ?thesis using assms by auto

qed

15 Linepath Properties
lemma good-linepath-comm: good-linepath a b vts =⇒ good-linepath b a vts

unfolding good-linepath-def
by (metis (no-types, opaque-lifting) insert-commute path-image-linepath segment-convex-hull)

lemma finite-set-linepaths:
assumes polygon: polygon p
assumes polygonal-path: p = make-polygonal-path vts
shows finite {(a, b). (a, b) ∈ set vts × set vts}

proof −
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have finite (set vts)
using polygonal-path by auto

then have finite (set vts × set vts)
by blast

then show ?thesis
by auto

qed

lemma linepaths-intersect-once-or-collinear :
fixes a b c d :: real^2
assumes path-image (linepath a b) ∩ path-image (linepath c d) 6= {}
shows collinear {a, b, c, d} ∨ (∃ x. path-image (linepath a b) ∩ path-image

(linepath c d) = {x})
proof safe

assume ¬ (∃ x. path-image (linepath a b) ∩ path-image (linepath c d) = {x})
then obtain x y where x 6= y ∧ {x, y} ⊆ path-image (linepath a b) ∩ path-image

(linepath c d)
using assms by blast

then show collinear {a, b, c, d} using two-linepath-colinearity-property by
meson
qed

lemma linepaths-intersect-once-or-collinear-alt:
fixes a b c d :: real^2
assumes path-image (linepath a b) ∩ path-image (linepath c d) 6= {}
shows collinear {a, b, c, d} ∨ card (path-image (linepath a b) ∩ path-image

(linepath c d)) = 1
proof−

have card (path-image (linepath a b) ∩ path-image (linepath c d)) = 1
←→ (∃ x. path-image (linepath a b) ∩ path-image (linepath c d) = {x})

using is-singleton-altdef is-singleton-def by blast
thus ?thesis using linepaths-intersect-once-or-collinear assms by presburger

qed

lemma path-image-linepath-union:
fixes a b :: ′a::euclidean-space
assumes d ∈ path-image (linepath a b)
shows path-image (linepath a b) = path-image (linepath a d) ∪ path-image

(linepath d b)
proof−

have path-image (linepath a b) = closed-segment a b using path-image-linepath
by simp

also then have ... = closed-segment a d ∪ closed-segment d b
using Un-closed-segment assms by blast

also have ... = path-image (linepath a d) ∪ path-image (linepath d b)
using path-image-linepath by simp

ultimately show ?thesis by order
qed
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lemma path-image-linepath-split:
assumes i < (length vts) − 1
assumes x ∈ path-image (linepath (vts!i) (vts!(i+1 )))
assumes x-notin: x /∈ set vts
shows path-image (make-polygonal-path vts) = path-image (make-polygonal-path

((take (i+1 ) vts) @ [x] @ (drop (i+1 ) vts)))
using assms

proof(induct length vts arbitrary: vts i x)
case 0
then show ?case by linarith

next
case (Suc n)
let ?vts ′ = (take (i+1 ) vts) @ [x] @ (drop (i+1 ) vts)
let ?p = make-polygonal-path vts
let ?p ′ = make-polygonal-path ?vts ′

have Suc n ≥ 2 using Suc by linarith
then obtain v1 v2 vts-tail where vts-is: vts = v1#v2#vts-tail
by (metis Suc(2 ) Cons-nth-drop-Suc One-nat-def Suc-1 Suc-le-eq drop0 zero-less-Suc)

{ assume ∗: i = 0
then have vts ′-is: ?vts ′ = [v1 , x, v2 ] @ vts-tail

using vts-is by simp
then have x-in: x ∈ path-image (linepath v1 v2 )

using ∗ Suc.prems vts-is by simp
{ assume ∗: vts-tail = []

then have p-is: path-image ?p = path-image (linepath v1 v2 )
using vts-is make-polygonal-path.simps(3 )[of v1 v2 ]
by simp

have path-image ?p ′ = path-image (linepath v1 x) ∪ path-image (linepath x
v2 )

using vts ′-is ∗ make-polygonal-path.simps(4 )[of v1 x v2 []]
using make-polygonal-path.simps(3 )[of x v2 ]
by (metis append.right-neutral list.discI nth-Cons-0 path-image-cons-union)

then have ?case
using p-is path-image-linepath-union[of x v1 v2 ] assms(3 ) vts-is x-in by

blast
} moreover
{ assume ∗: vts-tail 6= []

then have path-image ?p = path-image (linepath v1 v2 ) ∪ path-image
(make-polygonal-path (v2#vts-tail))

using path-image-cons-union vts-is by (metis list.discI nth-Cons-0 )
moreover have path-image (linepath v1 x) ∪ path-image (linepath x v2 ) =

path-image (linepath v1 v2 )
using path-image-linepath-union x-in by blast

ultimately have ?case
by (metis (no-types, lifting) append-Cons append-Nil inf-sup-aci(6 ) list.discI

nth-Cons-0 path-image-cons-union vts ′-is)
}
ultimately have ?case by blast
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} moreover
{ assume ∗ :i > 0

then have Suc n > 2 using Suc by linarith

let ?vts-tl = tl vts
let ?vts-tl ′ = (take i ?vts-tl) @ [x] @ (drop i ?vts-tl)
let ?p-tl = make-polygonal-path ?vts-tl
let ?p-tl ′ = make-polygonal-path ?vts-tl ′

have ?vts-tl!(i−1 ) = vts!i ∧ ?vts-tl!i = vts!(i+1 ) using Suc ∗ by (simp add:
vts-is)

moreover then have x ∈ path-image (linepath (?vts-tl!(i−1 )) (?vts-tl!i))
using Suc by presburger

ultimately have path-image ?p-tl = path-image ?p-tl ′
using Suc
by (smt (verit) ∗ One-nat-def Suc-leI diff-Suc-1 le-add-diff-inverse2 length-tl

less-diff-conv list.sel(3 ) list.set-intros(2 ) vts-is)
moreover have path-image ?p = path-image (linepath v1 v2 ) ∪ path-image

?p-tl
using path-image-cons-union vts-is by auto

ultimately have ?case
by (smt (verit, ccfv-threshold) Nil-is-append-conv Suc-eq-plus1 ‹i = 0 =⇒

path-image (make-polygonal-path vts) = path-image (make-polygonal-path (take (i
+ 1 ) vts @ [x] @ drop (i + 1 ) vts))› append-Cons append-same-eq append-take-drop-id
drop-Suc hd-append2 hd-conv-nth list.sel(1 ) list.sel(3 ) path-image-cons-union take-eq-Nil
vts-is)

}
ultimately show ?case by linarith

qed

lemma linepath-split-is-loop-free:
assumes d ∈ path-image (linepath a b)
assumes d /∈ {a, b}
shows loop-free (make-polygonal-path [a, d, b]) (is loop-free ?p)

proof−
let ?l1 = linepath a d
let ?l2 = linepath d b
have path-image ?l1 ∩ path-image ?l2 = {d} using Int-closed-segment assms(1 )

by auto
moreover have arc ?l1 ∧ arc ?l2 using assms(2 ) by fastforce
ultimately show ?thesis

by (metis arc-imp-simple-path arc-join-eq-alt make-polygonal-path.simps(3 )
make-polygonal-path.simps(4 ) pathfinish-linepath pathstart-linepath simple-path-def )
qed

lemma loop-free-linepath-split-is-loop-free:
assumes p = make-polygonal-path vts
assumes loop-free p
assumes n = length vts
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assumes i < n − 1
assumes x ∈ path-image (linepath (vts!i) (vts!(i+1 ))) ∧ x /∈ set vts
assumes vts ′ = (take (i+1 ) vts) @ [x] @ (drop (i+1 ) vts)
assumes p ′ = make-polygonal-path vts ′

shows loop-free p ′ ∧ path-image p ′ = path-image p
using assms

proof(induct i arbitrary: p vts p ′ vts ′ n)
case 0
let ?vts-tl = tl vts
let ?p-tl = make-polygonal-path ?vts-tl
let ?vts ′-tl = tl vts ′

let ?p ′-tl = make-polygonal-path ?vts ′-tl
let ?a = vts!0
let ?b = vts!1
let ?l = linepath ?a ?b
let ?l ′ = make-polygonal-path [?a, x, ?b]

have vts ′: vts ′ = [?a, x] @ ?vts-tl
using 0
by (metis (no-types, lifting) Suc-eq-plus1 append-Cons append-eq-append-conv2

append-self-conv bot-nat-0 .not-eq-extremum diff-is-0-eq drop0 drop-Suc list.collapse
nth-Cons-0 take-Suc take-all-iff take-eq-Nil)

have x /∈ {?a, ?b}
by (metis 0 (3−5 ) One-nat-def Suc-eq-plus1 bot-nat-0 .not-eq-extremum diff-is-0-eq

insert-iff less-diff-conv nth-mem singletonD take-Suc-eq take-all-iff )
then have lf-l ′: loop-free ?l ′ using linepath-split-is-loop-free[of x ?a ?b] 0 by

simp

{ assume length ?vts-tl = 1
then have vts ′ = [?a, x, ?b]
by (metis Cons-nth-drop-Suc One-nat-def append-eq-Cons-conv drop0 drop-eq-Nil

le-numeral-extra(4 ) nth-tl vts ′ zero-less-one)
then have ?case using linepath-split-is-loop-free path-image-linepath-split
by (metis 0 .prems(1 ) 0 .prems(3 ) 0 .prems(4 ) 0 .prems(5 ) 0 .prems(6 ) 0 .prems(7 )

lf-l ′)
} moreover
{ assume ∗: length ?vts-tl ≥ 2

then have p: p = ?l +++ ?p-tl
using make-polygonal-path.simps(4 )[of ?a ?b]

by (metis (no-types, opaque-lifting) 0 (1 ) 0 (3 ) 0 (4 ) Cons-nth-drop-Suc
One-nat-def Suc-1 Suc-le-eq diff-is-0-eq drop-0 drop-Suc length-tl less-nat-zero-code
nat-le-linear nth-tl)

have loop-free ?p-tl
using tail-of-loop-free-polygonal-path-is-loop-free 0 ∗
by (metis list.exhaust-sel list.sel(2 ))

moreover have l-l ′: path-image ?l = path-image ?l ′
using path-image-linepath-split 0
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by (metis One-nat-def Suc-eq-plus1 list.discI make-polygonal-path.simps(3 )
nth-Cons-0 path-image-cons-union path-image-linepath-union)

moreover have path-image ?l ′ ∩ path-image ?p-tl ⊆ {?a, ?b}
by (metis (mono-tags, opaque-lifting) p l-l ′ 0 .prems(1 ) 0 .prems(2 ) make-polygonal-path-gives-path

path-join-path-ends pathfinish-linepath pathstart-linepath simple-path-def simple-path-joinE)
moreover have arc p −→ path-image ?l ′ ∩ path-image ?p-tl ⊆ {?b}

using p l-l ′
by (metis arc-def arc-join-eq make-polygonal-path-gives-path path-join-eq

path-linepath pathfinish-linepath)
moreover have arc p ←→ hd [?a, x, ?b] 6= last (tl vts)
by (metis ∗ 0 .prems(1 ) 0 .prems(2 ) arc-def arc-simple-path last-conv-nth last-tl

list.sel(1 ) list.sel(2 ) list.size(3 ) loop-free-cases make-polygonal-path-gives-path not-numeral-le-zero
polygon-pathfinish polygon-pathstart)

moreover have vts ′ = [?a, x, ?b] @ tl ?vts-tl
by (metis drop-Suc 0 .prems(3 ) 0 .prems(4 ) One-nat-def append-Cons ap-

pend-Nil append-take-drop-id length-tl nth-tl take-Suc-conv-app-nth take-eq-Nil vts ′)
moreover have last [?a, x, ?b] = hd ?vts-tl
by (metis 0 .prems(3 ) 0 .prems(4 ) One-nat-def hd-conv-nth last.simps length-greater-0-conv

length-tl list.discI nth-tl)
moreover have pathfinish ?l = pathstart ?p-tl
by (metis (no-types) 0 .prems(1 ) make-polygonal-path.simps(3 ) make-polygonal-path-gives-path

p path-join-eq)
moreover have

∧
v va vb vs. pathfinish (linepath v va) = pathstart (make-polygonal-path

(va # vb # vs))

by (metis (no-types) make-polygonal-path.simps(3 ) make-polygonal-path.simps(4 )
make-polygonal-path-gives-path path-join-eq)

ultimately have loop-free p ′

using loop-free-append[of p ′ vts ′ ?l ′ [?a, x, ?b] ?p-tl ?vts-tl]
by (metis (no-types) 0 .prems(1 ) 0 .prems(2 ) 0 .prems(7 ) arc-simple-path lf-l ′

make-polygonal-path.simps(3 ) make-polygonal-path.simps(4 ) make-polygonal-path-gives-path
p pathfinish-join pathstart-linepath simple-path-def simple-path-joinE)

then have ?case
using 0 (1 ) 0 (3 ) 0 (4 ) 0 (5 ) 0 (6 ) 0 (7 ) path-image-linepath-split by blast

}
ultimately show ?case

by (metis 0 (3 ,4 ) One-nat-def Suc-lessI length-tl less-eq-Suc-le nat-1-add-1
plus-1-eq-Suc)
next

case (Suc i)
let ?vts-tl = tl vts
let ?p-tl = make-polygonal-path ?vts-tl
let ?vts ′-tl = tl vts ′

let ?p ′-tl = make-polygonal-path ?vts ′-tl
let ?a = vts!0
let ?b = vts!1
let ?l = linepath ?a ?b

have ?vts-tl!i = vts!(Suc i) ∧ ?vts-tl!(i+1 ) = vts!((Suc i) + 1 )
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by (metis Suc.prems(3 ) Suc.prems(4 ) add-Suc-right add-Suc-shift diff-is-0-eq
linorder-not-le list.exhaust-sel list.size(3 ) not-less-zero nth-Cons-Suc)

moreover have set ?vts-tl ⊆ set vts
by (metis list.sel(2 ) list.set-sel(2 ) subsetI )

ultimately have x ∈ path-image (linepath (?vts-tl!i) (?vts-tl!(i+1 ))) ∧ x /∈ set
?vts-tl

using Suc.prems(5 ) by auto
moreover have vts ′-tl: ?vts ′-tl = (take (i+1 ) ?vts-tl) @ [x] @ (drop (i+1 )

?vts-tl)
by (metis Suc.prems(3 ) Suc.prems(4 ) Suc.prems(6 ) Suc-eq-plus1 drop-Suc leD

length-tl take-all-iff take-eq-Nil take-tl tl-append2 zero-eq-add-iff-both-eq-0 zero-neq-one)
moreover have loop-free ?p-tl

using tail-of-loop-free-polygonal-path-is-loop-free Suc.prems
by (metis Nitpick.size-list-simp(2 ) Suc-1 Suc-leI Suc-neq-Zero diff-0-eq-0 diff-Suc-1

less-one linorder-neqE-nat list.collapse not-less-zero)
ultimately have ih: loop-free ?p ′-tl ∧ path-image ?p ′-tl = path-image ?p-tl

using Suc.prems Suc.hyps[of ?p-tl ?vts-tl - ?vts ′-tl ?p ′-tl] by simp

have p: p = ?l +++ ?p-tl
proof −

have f1 : ∀ vs. (hd (tl vs)::(real, 2 ) vec) = vs ! 1 ∨ [] = vs ∨ [] = tl vs
by (metis (no-types) One-nat-def hd-conv-nth list.collapse nth-Cons-Suc)

have [] 6= tl vts ∧ vts 6= [] ∧ tl vts 6= [hd (tl vts)]
by (metis Suc.prems(1 ) Suc.prems(2 ) ‹loop-free (make-polygonal-path (tl vts))›

constant-linepath-is-not-loop-free make-polygonal-path.simps(1 ) make-polygonal-path.simps(2 ))
then have p = make-polygonal-path [hd vts, vts ! 1 ] +++ make-polygonal-path

(tl vts) ∧ vts 6= []
using f1 by (metis (full-types) Suc.prems(1 ) list.collapse make-polygonal-path.simps(3 )

make-polygonal-path.simps(4 ))
then show ?thesis

by (simp add: hd-conv-nth)
qed

have length vts ′ ≥ 3 using Suc.prems by force
moreover have ab: ?a = vts ′!0 ∧ ?b = vts ′!1

using Suc.prems
by (smt (verit, ccfv-SIG) One-nat-def Suc-eq-plus1 add-Suc-right append-Cons

drop0 drop-Suc length-tl less-nat-zero-code list.exhaust-sel list.size(3 ) nat-diff-split
nth-Cons-0 nth-Cons-Suc take-Suc zero-less-Suc)

ultimately have p ′: p ′ = ?l +++ ?p ′-tl
using Suc.prems(7 ) make-polygonal-path.simps(4 )[of ?a ?b]
by (metis (no-types, opaque-lifting) Cons-nth-drop-Suc One-nat-def Suc-leD

Suc-le-eq drop0 drop-Suc numeral-3-eq-3 )

have nonarc: path-image ?l ∩ path-image ?p-tl ⊆ {?a, ?b}
using simple-path-join-loop-eq Suc.prems

by (smt (verit, ccfv-threshold) p One-nat-def length-tl less-zeroE make-polygonal-path-gives-path
nth-tl order .strict-iff-not order-le-less-trans path-join-eq path-linepath pathfinish-linepath
pathstart-linepath polygon-pathstart simple-path-def simple-path-joinE take-Nil take-all-iff )
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have arc: arc p −→ path-image ?l ∩ path-image ?p-tl ⊆ {?b}
using arc-join-eq

by (metis Suc.prems(1 ) p make-polygonal-path-gives-path path-join-eq path-linepath
pathfinish-linepath)

{ assume arc p
moreover then have path-image ?l ∩ path-image ?p ′-tl ⊆ {?b} using arc ih

by presburger
moreover have pathfinish ?l = pathstart ?p ′-tl
by (metis Suc.prems(7 ) make-polygonal-path-gives-path p ′ path-join-path-ends)

ultimately have ?case using p ′ arc-join-eq[of ?l ?p ′-tl]
by (smt (verit, ccfv-SIG) Nil-is-append-conv Suc.prems(3 ) Suc.prems(4 )

Suc-eq-plus1 vts ′-tl arc-simple-path drop-eq-Nil ih last-appendR last-conv-nth last-drop
leD length-tl make-polygonal-path-gives-path p path-image-join path-join-eq path-linepath
pathfinish-linepath polygon-pathfinish simple-path-def simple-path-joinE take-all-iff
take-eq-Nil)

} moreover
{ assume ¬ arc p

then have pathstart ?l = pathfinish ?p ′-tl ∧ pathfinish ?l = pathstart ?p ′-tl
by (smt (verit, del-insts) Nil-is-append-conv Nil-tl One-nat-def Suc.prems(2 )

Suc.prems(3 ) Suc.prems(4 ) Suc-eq-plus1 vts ′-tl ab arc-def drop-eq-Nil last-appendR
last-conv-nth last-drop leD length-tl list.collapse loop-free-cases make-polygonal-path-gives-path
nth-Cons-Suc p path-join-eq path-linepath pathfinish-join pathfinish-linepath path-
start-join polygon-pathfinish polygon-pathstart take-all-iff take-eq-Nil)

then have ?case using simple-path-join-loop-eq[of ?l ?p ′-tl] p ′ nonarc
by (smt (verit, ccfv-threshold) One-nat-def Suc.prems(2 ) Suc.prems(3 ) Suc.prems(4 )

arc-def constant-linepath-is-not-loop-free dual-order .strict-trans ih leD length-tl loop-free-cases
make-polygonal-path-gives-path not-loop-free-first-component nth-tl p path-image-join
path-linepath pathfinish-linepath pathstart-linepath polygon-pathstart simple-path-def
simple-path-join-loop-eq take-all-iff take-eq-Nil zero-less-Suc)

}
ultimately show ?case by argo

qed

lemma polygon-linepath-split-is-polygon:
assumes polygon-of p vts
assumes i < (length vts) − 1
assumes a = vts!i ∧ b = vts!(i+1 )
assumes x ∈ path-image (linepath a b) ∧ x /∈ set vts
assumes vts ′ = (take (i+1 ) vts) @ [x] @ (drop (i+1 ) vts)
shows polygon (make-polygonal-path vts ′)

proof−
let ?p ′ = make-polygonal-path vts ′

have path ?p ′ using assms make-polygonal-path-gives-path by presburger
moreover have loop-free ?p ′ using assms loop-free-linepath-split-is-loop-free

by (metis polygon-def polygon-of-def simple-path-def )
moreover have closed-path ?p ′

proof−
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have hd vts ′ = hd vts
using assms

by (metis hd-append2 hd-take le-diff-conv linorder-not-less take-all-iff take-eq-Nil2
trans-less-add2 zero-less-one)

moreover have last vts ′ = last vts
using assms linordered-semidom-class.add-diff-inverse by auto

ultimately show ?thesis
by (metis closed-path-def ‹path ?p ′› append-butlast-last-id append-eq-conv-conj

append-is-Nil-conv assms(1 ) assms(5 ) have-wraparound-vertex hd-conv-nth length-butlast
not-Cons-self nth-append-length polygon-of-def polygon-pathfinish polygon-pathstart)

qed
ultimately show ?thesis unfolding polygon-def polygonal-path-def simple-path-def

assms(5 ) by blast
qed

16 Measure of linepaths
lemma linepath-is-negligible-vertical:

fixes a b :: real^2
assumes a$1 = b$1
defines p ≡ linepath a b
shows negligible (path-image p)

proof−
have p-t: ∀ t ∈ {0 ..1}. (p t)$1 = a$1

using linepath-in-path p-def segment-vertical assms by blast

let ?x = a$1
let ?e1 = (vector [1 , 0 ])::real^2

have (1 ::real) ∈ Basis by simp
then have axis 1 (1 ::real) ∈ (

⋃
i.

⋃
u∈(Basis::(real set)). {axis i u}) by blast

moreover have ?e1 = axis 1 (1 ::real)
unfolding axis-def vector-def by auto

ultimately have e1-basis: ?e1 ∈ (Basis::((real^2 ) set)) by simp
then have negligible {v. v · ?e1 = ?x} (is negligible ?S)

using negligible-standard-hyperplane by auto
moreover have ∀ t ∈ {0 ..1}. (p t) · ?e1 = ?x
proof clarify

fix t :: real
assume t: t ∈ {0 ..1}
have (p t) · ?e1 = (p t)$1

by (smt (verit, best) e1-basis cart-eq-inner-axis vec-nth-Basis vector-2 (1 ))
also have ... = ?x using p-t t by blast
finally show (p t) · ?e1 = ?x .

qed
moreover from this have path-image p ⊆ ?S unfolding path-image-def by

blast
ultimately show ?thesis using negligible-subset by blast

qed
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lemma linepath-is-negligible-non-vertical:
fixes a b :: real^2
assumes a$1 < b$1
defines p ≡ linepath a b
shows negligible (path-image p)

proof−
let ?A = (vector [vector [1 , b$1 − a$1 ], vector [0 , b$2 − a$2 ]])::(real^2^2 )
let ?f1 = λv::real^2 . (?A ∗v v)
let ?id = λv::real^2 . v
let ?f-a = λv::real^2 . a
let ?f2 = λv. ?id v + ?f-a v
let ?f = ?f2 ◦ ?f1

let ?O = (vector [0 , 0 ])::real^2
let ?e2 = (vector [0 , 1 ])::real^2
let ?y-unit-seg-path = linepath ?O ?e2
let ?y-unit-seg = path-image ?y-unit-seg-path

have ∀ t ∈ {0 ..1}. ?f (?y-unit-seg-path t) = p t
proof clarify

fix t :: real
assume t: t ∈ {0 ..1}
then obtain v where v: ?y-unit-seg-path t = v by auto
then have v = (1 − t) ∗R ?O + t ∗R ?e2 unfolding linepath-def by auto
then have v = t ∗R ?e2

by (smt (verit, best) t v exhaust-2 linepath-0 scaleR-zero-left vec-eq-iff vec-
tor-2 (1 ) vector-2 (2 ) vector-scaleR-component)

then have ?f v = p t
proof−

assume v = t ∗R vector [0 , 1 ]
then have v = vector [t ∗ 0 , t ∗ 1 ]
by (smt (verit, del-insts) exhaust-2 mult-cancel-left1 real-scaleR-def scaleR-zero-right

vec-eq-iff vector-2 (1 ) vector-2 (2 ) vector-scaleR-component)
then have v: v = vector [0 , t] by auto

have f1 : ?f1 v = vector [t ∗ (b$1 − a$1 ), t ∗ (b$2 − a$2 )] (is ?f1 v = ?f1-v)
by (simp add: mat-vec-mult-2 v)

have ?f2 ?f1-v = vector [t ∗ (b$1 − a$1 ), t ∗ (b$2 − a$2 )] + vector [a$1 ,
a$2 ]

by (smt (verit) exhaust-2 vec-eq-iff vector-2 (1 ) vector-2 (2 ))
also have ... = vector [t ∗ (b$1 − a$1 ) + a$1 , t ∗ (b$2 − a$2 ) + a$2 ]

by (smt (verit, del-insts) vector-add-component exhaust-2 vec-eq-iff vec-
tor-2 (1 ) vector-2 (2 ))

also have ... = vector [t ∗ b$1 + (1 − t) ∗ a$1 , t ∗ b$2 + (1 − t) ∗ a$2 ]
by argo

also have ... = t ∗R b + (1 − t) ∗R a
by (smt (verit, del-insts) exhaust-2 real-scaleR-def vec-eq-iff vector-2 (1 )
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vector-2 (2 ) vector-add-component vector-scaleR-component)
finally have ?f2 ?f1-v = t ∗R b + (1 − t) ∗R a .
thus ?thesis using p-def f1 unfolding linepath-def by simp

qed
thus ?f (?y-unit-seg-path t) = p t using v by simp

qed

then have ?f ‘ ?y-unit-seg = path-image p unfolding path-image-def by force
moreover have ?f differentiable-on ?y-unit-seg
proof−

have linear ?f1 by auto
then have ?f1 differentiable-on ?y-unit-seg

using linear-imp-differentiable by (simp add: linear-imp-differentiable-on)
moreover have ?f2 differentiable-on (?f1 ‘ ?y-unit-seg)
proof−

have ?id differentiable-on ?f1 ‘ ?y-unit-seg
using differentiable-const by simp

moreover have ?f-a differentiable-on ?f1 ‘ ?y-unit-seg
using differentiable-ident by simp

ultimately show ?f2 differentiable-on ?f1 ‘ ?y-unit-seg
using differentiable-compose by simp

qed
ultimately show ?thesis using differentiable-compose

by (simp add: differentiable-chain-within differentiable-on-def )
qed
moreover have negligible ?y-unit-seg

using linepath-is-negligible-vertical[of ?O ?e2 ] by simp
ultimately show ?thesis

using negligible-differentiable-image-negligible by fastforce
qed

lemma linepath-is-negligible:
fixes a b :: real^2
defines p ≡ linepath a b
shows negligible (path-image p)

proof−
{ assume a$1 = b$1

then have ?thesis using linepath-is-negligible-vertical p-def by blast
} moreover
{ assume a$1 < b$1

then have ?thesis using linepath-is-negligible-non-vertical p-def by blast
} moreover
{ assume a: a$1 > b$1

let ?p-rev = reversepath p
have path-image p = path-image ?p-rev by simp
moreover have ?p-rev = linepath b a using p-def by simp
ultimately have ?thesis using a linepath-is-negligible-non-vertical[of b a] by

simp
}
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ultimately show ?thesis by linarith
qed

lemma linepath-has-emeasure-0 :
emeasure lebesgue (path-image (linepath (a::(real^2 )) (b::(real^2 )))) = 0
using linepath-is-negligible emeasure-notin-sets negligible-iff-emeasure0 by blast

lemma linepath-has-measure-0 :
measure lebesgue (path-image (linepath (a::(real^2 )) (b::(real^2 )))) = 0
using linepath-has-emeasure-0 linepath-is-negligible negligible-imp-measure0 by

blast

end
theory Polygon-Convex-Lemmas
imports

Polygon-Lemmas
Linepath-Collinearity

begin

17 Misc. Convex Polygon Properties
lemma polygon-path-image-subset-convex:

assumes length vts > 0
shows path-image (make-polygonal-path vts) ⊆ convex hull (set vts) (is path-image

?p ⊆ ?S)
using assms

proof(induct vts rule: make-polygonal-path.induct)
case 1
then show ?case by simp

next
case (2 a)
then show ?case by auto

next
case (3 a b)
show ?case (is path-image ?p ⊆ ?S)
proof(rule subsetI )

fix x
assume x-in-path-image: x ∈ path-image ?p
then have x ∈ path-image (linepath a b) by auto
thus x ∈ ?S

unfolding path-image-def linepath-def
by (smt (verit, ccfv-SIG) ‹x ∈ path-image (linepath a b)› convex-alt con-

vex-convex-hull hull-subset in-mono in-segment(1 ) linepath-image-01 list.set-intros(1 )
path-image-def set-subset-Cons)

qed
next

case (4 a b c tl)
let ?vts = a # b # c # tl
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show ?case (is path-image ?p ⊆ ?S)
proof(rule subsetI )

fix x
assume x-in-path-image: x ∈ path-image ?p
show x ∈ ?S
proof cases

assume x ∈ set ?vts
thus ?thesis by (simp add: hull-inc)

next
assume x-notin: x /∈ set ?vts
obtain u where p-u: u ∈ {0 ..1} ∧ ?p u = x

using x-in-path-image unfolding path-image-def by auto
then have p-head-tail: ?p = (linepath a b) +++ make-polygonal-path (b # c

# tl)
by auto

have abc-in-S : set ?vts ⊆ convex hull (set ?vts) by (simp add: hull-subset)
{ assume u-assm: u ≤ 1/2

then have ?p u = (1 − 2 ∗ u) ∗R a + (2 ∗ u) ∗R b
using p-head-tail unfolding linepath-def joinpaths-def
by presburger

hence x ∈ ?S
using abc-in-S convexD-alt[of ?S a b 2 ∗ u] u-assm p-u by simp

} moreover
{ assume u-assm: u > 1/2

then have x = (make-polygonal-path (b # c # tl) (2 ∗ u − 1 )) (is x =
(?p ′ (2 ∗ u − 1 )))

using p-head-tail p-u unfolding linepath-def joinpaths-def by auto
moreover have 0 < (2 ∗ u − 1 ) using u-assm by linarith
ultimately have x ∈ path-image ?p ′

using p-u by (simp add: path-image-def )
moreover have path-image ?p ′ ⊆ convex hull (set (b # c # tl)) using

4 (1 ) by auto
moreover have ... ⊆ convex hull (set (a # b # c # tl))

by (meson hull-mono set-subset-Cons)
ultimately have x ∈ ?S by auto

}
ultimately show ?thesis by linarith

qed
qed

qed

lemma convex-contains-simple-closed-path-imp-contains-path-inside:
assumes convex S
assumes simple-path p ∧ closed-path p
assumes path-image p ⊆ S
shows path-inside p ⊆ S
by (metis (no-types, opaque-lifting) Compl-subset-Compl-iff Un-subset-iff assms(1 )

assms(3 ) boolean-algebra-class.boolean-algebra.double-compl outside-subset-convex
path-inside-def union-with-inside)
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lemma convex-polygon-is-convex-hull:
assumes polygon p
assumes convex (path-inside p ∪ path-image p)
assumes p = make-polygonal-path vts
shows convex hull (set vts) = path-inside p ∪ path-image p (is ?hull = ?poly)

proof−
have ?hull ⊆ ?poly
proof(rule subsetI )

fix x
assume x ∈ ?hull
moreover have ∀H . (convex H ∧ (set vts) ⊆ H ) −→ ?hull ⊆ H by (simp

add: hull-minimal)
moreover have convex (?poly) ∧ (set vts) ⊆ ?poly

using assms(2 ) assms(3 ) vertices-on-path-image by auto
ultimately show x ∈ ?poly by auto

qed
moreover have ?hull ⊇ ?poly
proof(rule subsetI )

fix x
assume x ∈ ?poly
moreover have path-image p ⊆ ?hull

using polygon-path-image-subset-convex[of vts] polygon-at-least-3-vertices
assms

by force
moreover from calculation have path-inside p ⊆ ?hull
using convex-contains-simple-closed-path-imp-contains-path-inside polygon-def

assms(1 )
by auto

ultimately show x ∈ ?hull by auto
qed
ultimately show ?thesis by auto

qed

lemma convex-polygon-inside-is-convex-hull-interior :
assumes polygon p
assumes convex (path-inside p)
assumes p = make-polygonal-path vts
shows interior (convex hull (set vts)) = path-inside p
by (metis (no-types, lifting) assms closure-Un-frontier convex-closure convex-interior-closure

convex-polygon-is-convex-hull inside-outside-def inside-outside-polygon interior-eq)

lemma convex-polygon-inside-is-convex-hull-interior2 :
assumes polygon p
assumes convex (path-inside p ∪ path-image p)
assumes p = make-polygonal-path vts
shows interior (convex hull (set vts)) = path-inside p
using assms closure-Un-frontier convex-closure convex-interior-closure convex-polygon-is-convex-hull

inside-outside-def inside-outside-polygon interior-eq
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by (smt (verit, best) List.finite-set compact-eq-bounded-closed finite-imp-compact-convex-hull
frontier-complement inside-frontier-eq-interior outside-inside path-inside-def path-outside-def
sup-commute)

lemma polygon-convex-iff :
assumes polygon p
shows convex (path-inside p) ←→ convex (path-inside p ∪ path-image p)
using convex-polygon-inside-is-convex-hull-interior
using convex-polygon-inside-is-convex-hull-interior2
by (metis Jordan-inside-outside-real2 closed-path-def assms closure-Un-frontier

convex-closure convex-interior convex-polygon-is-convex-hull path-inside-def poly-
gon-def polygon-to-polygonal-path)

lemma convex-polygon-frontier-is-path-image:
assumes polygon-of p vts
assumes convex (path-inside p)
shows frontier (convex hull (set vts)) = path-image p
using assms
unfolding frontier-def polygon-of-def
by (metis (no-types, lifting) Jordan-inside-outside-real2 closed-path-def convex-closure-interior

convex-convex-hull convex-polygon-inside-is-convex-hull-interior frontier-def inte-
rior-interior path-inside-def polygon-def )

lemma convex-polygon-frontier-is-path-image2 :
assumes polygon p
assumes convex (path-inside p)
shows frontier (path-image p ∪ path-inside p) = path-image p
using assms
by (simp add: Jordan-inside-outside-real2 closed-path-def path-inside-def poly-

gon-def union-with-inside)

lemma convex-polygon-frontier-is-path-image3 :
assumes polygon p
assumes convex (path-image p ∪ path-inside p)
shows frontier (path-image p ∪ path-inside p) = path-image p
using assms polygon-convex-iff
by (simp add: convex-polygon-frontier-is-path-image2 sup-commute)

lemma polygon-frontier-is-path-image:
assumes polygon p
shows frontier (path-inside p) = path-image p
using inside-outside-polygon unfolding inside-outside-def
using assms by presburger

lemma convex-path-inside-means-convex-polygon:
assumes polygon p
assumes frontier (convex hull (set vts)) = path-image p
shows convex (path-inside p)
by (metis List.finite-set assms(2 ) convex-convex-hull convex-interior finite-imp-bounded-convex-hull

139



inside-frontier-eq-interior path-inside-def )

lemma convex-hull-of-polygon-is-convex-hull-of-vts:
assumes polygon-of p vts
shows convex hull (path-image p ∪ path-inside p) = convex hull (set vts)

proof −
have len-vts: length vts > 0
by (metis assms card.empty empty-set length-greater-0-conv not-numeral-le-zero

polygon-at-least-3-vertices polygon-of-def )
have path-image p ∪ path-inside p ⊆ convex hull (set vts)

using polygon-path-image-subset-convex[OF len-vts]
using assms convex-contains-simple-closed-path-imp-contains-path-inside poly-

gon-def polygon-of-def by auto
then have subset1 : convex hull (path-image p ∪ path-inside p) ⊆ convex hull

(set vts)
by (simp add: convex-hull-subset)

have set vts ⊆ path-image p ∪ path-inside p using assms vertices-on-path-image

by (simp add: polygon-of-def sup.coboundedI1 )
then have subset2 : convex hull (set vts) ⊆ convex hull (path-image p ∪ path-inside

p)
by (simp add: hull-mono)

show ?thesis using subset1 subset2
by auto

qed

lemma convex-hull-frontier-polygon:
assumes polygon-of p vts
assumes ¬ set vts ⊆ frontier (convex hull (set vts))
shows ¬ convex (path-inside p)
by (metis assms(1 ) assms(2 ) convex-polygon-frontier-is-path-image polygon-of-def

vertices-on-path-image)

lemma frontier-int-subset:
assumes A ⊆ B
shows (frontier B) ∩ A ⊆ frontier A
by (metis assms closure-Un-frontier frontier-Int inf .absorb-iff2 inf-sup-aci(1 )

subset-Un-eq sup-inf-distrib2 )

lemma in-frontier-in-subset:
assumes A ⊆ B
assumes x ∈ frontier B
assumes x ∈ A
shows x ∈ frontier A
by (metis assms frontier-int-subset IntI in-mono)

lemma in-frontier-in-subset-convex-hull:
assumes A ⊆ B
assumes x ∈ frontier (convex hull B)
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assumes x ∈ convex hull A
shows x ∈ frontier (convex hull A)
by (metis in-frontier-in-subset assms hull-mono)

lemma convex-hull-two-extreme-points:
fixes S :: ′a::euclidean-space set
assumes finite S
assumes convex hull S 6= {}
assumes ∀ x. convex hull S 6= {x}
shows card {x. x extreme-point-of (convex hull S)} ≥ 2 (is card ?ep ≥ 2 )

proof−
have compact (convex hull S) by (simp add: assms(1 ) finite-imp-compact-convex-hull)
then have convex hull S = convex hull ?ep

using Krein-Milman-Minkowski[OF - convex-convex-hull] by blast
moreover then obtain x where x ∈ ?ep using assms(2 ) by fastforce
moreover have ?ep 6= {x} using assms(3 ) calculation(1 ) by force
ultimately obtain y where x ∈ ?ep ∧ y ∈ ?ep ∧ x 6= y by blast
moreover have finite ?ep using assms(1 ) extreme-points-of-convex-hull finite-subset

by blast
ultimately show ?thesis

by (metis (no-types, lifting) One-nat-def Orderings.order-eq-iff Suc-1 Suc-leI
card-1-singletonE card-gt-0-iff empty-iff insert-Diff not-less-eq-eq singleton-insert-inj-eq)
qed

lemma convex-hull-two-vts-on-frontier :
fixes S :: ′a::euclidean-space set
assumes card S ≥ 2
shows card (S ∩ frontier (convex hull S)) ≥ 2

proof−
have S ⊆ convex hull S by (simp add: hull-subset)
then have convex hull S 6= {} ∧ card (convex hull S) 6= 1
by (metis Suc-1 add-leD2 assms card.empty card-1-singletonE convex-hull-eq-empty

not-one-le-zero numeral-le-one-iff plus-1-eq-Suc semiring-norm(69 ) subset-singletonD)
moreover have finite S using assms by (metis Suc-1 Suc-leD card-eq-0-iff

not-one-le-zero)
ultimately have card {x. x extreme-point-of (convex hull S)} ≥ 2

using convex-hull-two-extreme-points by fastforce
moreover have {x. x extreme-point-of (convex hull S)} ⊆ S ∩ frontier (convex

hull S)
proof−
have {x. x extreme-point-of (convex hull S)} ⊆ S by (simp add: extreme-points-of-convex-hull)
moreover have {x. x extreme-point-of (convex hull S)} ∩ interior (convex hull

S) = {}
using extreme-point-not-in-interior by blast

moreover have {x. x extreme-point-of (convex hull S)} ⊆ convex hull S
using ‹S ⊆ convex hull S› calculation(1 ) by blast

moreover have convex hull S = interior (convex hull S) ∪ frontier (convex
hull S)

by (metis (no-types, lifting) Diff-empty Suc-1 assms card.infinite closure-Un-frontier
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closure-convex-hull convex-closure-interior convex-convex-hull empty-subsetI finite-imp-compact
frontier-def interior-interior not-less-eq-eq sup-absorb2 zero-less-one-class.zero-le-one)

ultimately show ?thesis by blast
qed
ultimately show ?thesis

by (smt (verit, del-insts) assms extreme-points-of-convex-hull card-gt-0-iff fi-
nite-Int linorder-not-less not-numeral-le-zero order-less-le order-less-le-trans psub-
set-card-mono)
qed

18 Vertices on Convex Frontier Implies Polygon is
Convex

lemma convex-cut-aux:
assumes ∀ v ∈ S . z · v ≤ 0
shows convex hull S ⊆ {x. z · x ≤ 0}
by (simp add: assms convex-halfspace-le hull-minimal subsetI )

lemma convex-cut-aux ′:
assumes ∀ v ∈ S . z · v ≥ 0
shows convex hull S ⊆ {x. z · x ≥ 0}
using convex-cut-aux[of S −z] assms by auto

lemma convex-cut:
assumes z 6= 0
assumes {x. z · x = 0} ∩ interior (convex hull S) 6= {}
obtains v1 v2 where v1 6= v2 ∧ {v1 , v2} ⊆ S ∧ v1 ∈ {x. z · x < 0} ∧ v2 ∈
{x. z · x > 0}
proof−

let ?P1 = {x. z · x ≤ 0}
let ?P2 = {x. z · x ≥ 0}
have frontier ?P1 = {x. z · x = 0}

by (simp add: assms(1 ) frontier-halfspace-le)
moreover have frontier ?P2 = {x. z · x = 0}

by (simp add: assms(1 ) frontier-halfspace-ge)
ultimately have ¬ convex hull S ⊆ ?P1 ∧ ¬ convex hull S ⊆ ?P2
by (smt (verit, ccfv-SIG) DiffE IntE assms(2 ) disjoint-iff frontier-def inf .absorb-iff2

interior-Int)
moreover have (∀ v ∈ S . z · v ≤ 0 ) =⇒ convex hull S ⊆ ?P1 using con-

vex-cut-aux by blast
moreover have (∀ v ∈ S . z · v ≥ 0 ) =⇒ convex hull S ⊆ ?P2 using con-

vex-cut-aux ′ by blast
ultimately obtain v1 v2 where {v1 , v2} ⊆ S ∧ z · v1 < 0 ∧ z · v2 > 0

using linorder-not-le by auto
thus ?thesis using that by fastforce

qed

lemma affine-2-int-convex:
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fixes S :: ′a::euclidean-space set
assumes {a, b} ⊆ S
assumes {a, b} ⊆ frontier (convex hull S)
assumes affine hull {a, b} ∩ interior (convex hull S) 6= {}
shows affine hull {a, b} ∩ convex hull S = convex hull {a, b}

proof−
let ?H = convex hull S
let ?L = affine hull {a, b} ∩ ?H
have 1 : ?L ⊇ convex hull {a, b}

by (meson Int-greatest assms(1 ) convex-hull-subset-affine-hull hull-mono)
moreover have ?L ⊆ convex hull {a, b}
proof(rule subsetI )

fix x
assume ∗: x ∈ ?L
then obtain u v where uv: x = u ∗R a + v ∗R b ∧ u + v = 1 using

affine-hull-2 by blast

have rel-interior ?L ⊆ rel-interior ?H
using subset-rel-interior-convex[of ?L ?H ]

by (metis assms(3 ) convex-affine-hull convex-convex-hull convex-rel-interior-inter-two
inf-bot-right inf-le2 rel-interior-affine-hull rel-interior-nonempty-interior)

moreover have ab-frontier : a ∈ frontier ?H ∧ b ∈ frontier ?H using assms
by blast

ultimately have ab-rel-frontier : a ∈ rel-frontier ?L ∧ b ∈ rel-frontier ?L
by (metis IntI affine-affine-hull assms(3 ) convex-affine-rel-frontier-Int con-

vex-convex-hull hull-subset inf-commute insert-subset)

{ assume ∗∗: u < 0
then have b ∈ open-segment a x
proof−

from uv have b = (1/v) ∗R x − (u/v) ∗R a
by (smt (verit, ccfv-threshold) ∗∗ divide-inverse-commute inverse-eq-divide

real-vector-affinity-eq vector-space-assms(3 ) Groups.add-ac(2 ))
moreover from uv have 1/v − u/v = 1

by (metis ∗∗ add.commute add-cancel-right-left diff-divide-distrib di-
vide-self-if eq-diff-eq ′ not-one-less-zero)

ultimately have b = (1 − 1/v) ∗R a + (1/v) ∗R x by (simp add: diff-eq-eq)
moreover from uv ∗∗ have 0 < 1/v ∧ 1/v < 1 by simp
ultimately show ?thesis

by (metis 1 ab-rel-frontier affine-hull-sing convex-hull-singleton empty-iff
equalityI in-segment(2 ) inf-le1 insert-absorb rel-frontier-sing scaleR-collapse sin-
gletonI )

qed
then have b ∈ rel-interior (convex hull {a, x})

by (metis empty-iff open-segment-idem rel-interior-closed-segment seg-
ment-convex-hull)

moreover have x ∈ ?H using ∗ by blast
ultimately have b ∈ interior ?H

by (smt (verit, ccfv-threshold) ∗ IntD2 Int-empty-right 1 affine-affine-hull
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affine-hull-affine-Int-nonempty-interior affine-hull-convex-hull assms(3 ) convex-Int
convex-affine-hull convex-convex-hull convex-rel-interior-inter-two hull-hull hull-redundant-eq
insert-commute insert-subsetI rel-interior-affine-hull rel-interior-mono rel-interior-nonempty-interior
rel-interior-subset subset-hull subset-iff )

then have False by (metis DiffD2 ab-frontier frontier-def )
} moreover
{ assume ∗∗: v < 0

then have a ∈ open-segment b x
proof−

from uv have a = (1/u) ∗R x − (v/u) ∗R b
by (smt (verit, ccfv-threshold) ∗∗ divide-inverse-commute inverse-eq-divide

real-vector-affinity-eq vector-space-assms(3 ) Groups.add-ac(2 ))
moreover from uv have 1/u − v/u = 1
by (metis ∗∗ add-cancel-right-left diff-divide-distrib divide-self-if eq-diff-eq ′

not-one-less-zero)
ultimately have a = (1 − 1/u) ∗R b + (1/u) ∗R x by (simp add: diff-eq-eq)

moreover from uv ∗∗ have 0 < 1/u ∧ 1/u < 1 by simp
ultimately show ?thesis

by (metis 1 ab-rel-frontier affine-hull-sing convex-hull-singleton empty-iff
equalityI in-segment(2 ) inf-le1 insert-absorb rel-frontier-sing scaleR-collapse sin-
gletonI )

qed
then have a ∈ rel-interior (convex hull {b, x})

by (metis empty-iff open-segment-idem rel-interior-closed-segment seg-
ment-convex-hull)

moreover have x ∈ ?H using ∗ by blast
ultimately have a ∈ interior ?H

by (smt (verit, ccfv-threshold) ∗ IntD2 Int-empty-right 1 affine-affine-hull
affine-hull-affine-Int-nonempty-interior affine-hull-convex-hull assms(3 ) convex-Int
convex-affine-hull convex-convex-hull convex-rel-interior-inter-two hull-hull hull-redundant-eq
insert-commute insert-subsetI rel-interior-affine-hull rel-interior-mono rel-interior-nonempty-interior
rel-interior-subset subset-hull subset-iff )

then have False by (metis DiffD2 ab-frontier frontier-def )
}
ultimately have 0 ≤ u ∧ u ≤ 1 ∧ 0 ≤ v ∧ v ≤ 1 using uv by argo
thus x ∈ convex hull {a, b} by (simp add: convexD hull-inc uv)

qed
ultimately show ?thesis by blast

qed

lemma halfplane-frontier-affine-hull:
fixes b v :: real^2
assumes b 6= 0
assumes v 6= 0
assumes b ∈ {x. v · x = 0}
shows {x. v · x = 0} = affine hull {0 , b}

proof−
let ?F = {x. v · x = 0}
let ?A = affine hull {0 , b}
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have ?F ⊆ ?A
proof(rule subsetI )

fix y
assume ∗: y ∈ ?F
have y ∈ ?A if y = 0 by (simp add: assms(2 ) hull-inc that)
moreover have y ∈ ?A if b$1 6= 0
proof−

have v · y = 0 using ∗ by fast
moreover have v · b = 0 using assms by force
moreover have v · y = v$1 ∗ y$1 + v$2 ∗ y$2 by (simp add: inner-vec-def

sum-2 real-2-inner)
moreover have v · b = v$1 ∗ b$1 + v$2 ∗ b$2 by (simp add: inner-vec-def

sum-2 real-2-inner)
ultimately have 0 : v$1 ∗ y$1 + v$2 ∗ y$2 = 0 ∧ 0 = v$1 ∗ b$1 + v$2 ∗

b$2 by auto
moreover obtain c where c: y$1 = c ∗ b$1 using ‹b$1 6= 0 ›

by (metis hyperplane-eq-Ex inner-real-def mult.commute)
ultimately have v$1 ∗ y$1 + v$2 ∗ y$2 = 0 ∧ 0 = c ∗ v$1 ∗ b$1 + c ∗

v$2 ∗ b$2 by algebra
then have v$1 ∗ y$1 + v$2 ∗ y$2 = v$1 ∗ y$1 + c ∗ v$2 ∗ b$2 using c

by algebra
then have v$2 ∗ y$2 = c ∗ v$2 ∗ b$2 by argo
then have y$2 = c ∗ b$2
by (smt (verit, ccfv-threshold) 0 exhaust-2 mult.commute mult.left-commute

mult-cancel-left that assms vec-eq-iff zero-index)
then have y = c ∗R b using c
by (smt (verit) exhaust-2 real-scaleR-def vec-eq-iff vector-scaleR-component)

then have y ∈ span {0 , b} by (meson insert-subset span-mul span-superset)
thus y ∈ ?A

by (simp add: affine-hull-span-0 assms(2 ) hull-inc)
qed
moreover have y ∈ ?A if b$2 6= 0
proof−

have v · y = 0 using ∗ by fast
moreover have v · b = 0 using assms by force
moreover have v · y = v$1 ∗ y$1 + v$2 ∗ y$2 by (simp add: inner-vec-def

sum-2 real-2-inner)
moreover have v · b = v$1 ∗ b$1 + v$2 ∗ b$2 by (simp add: inner-vec-def

sum-2 real-2-inner)
ultimately have 0 : v$1 ∗ y$1 + v$2 ∗ y$2 = 0 ∧ 0 = v$1 ∗ b$1 + v$2 ∗

b$2 by auto
moreover obtain c where c: y$2 = c ∗ b$2 using ‹b$2 6= 0 ›

by (metis hyperplane-eq-Ex inner-real-def mult.commute)
ultimately have v$1 ∗ y$1 + v$2 ∗ y$2 = 0 ∧ 0 = c ∗ v$1 ∗ b$1 + c ∗

v$2 ∗ b$2 by algebra
then have v$1 ∗ y$1 + v$2 ∗ y$2 = 0 ∧ 0 = c ∗ v$1 ∗ b$1 + v$2 ∗ y$2

using c by algebra
then have v$1 ∗ y$1 = c ∗ v$1 ∗ b$1 by argo
then have y$1 = c ∗ b$1
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by (smt (verit, ccfv-threshold) 0 exhaust-2 mult.commute mult.left-commute
mult-cancel-left that assms vec-eq-iff zero-index)

then have y = c ∗R b using c
by (smt (verit) exhaust-2 real-scaleR-def vec-eq-iff vector-scaleR-component)

then have y ∈ span {0 , b} by (meson insert-subset span-mul span-superset)
thus y ∈ ?A

by (simp add: affine-hull-span-0 assms(2 ) hull-inc)
qed
ultimately show y ∈ ?A
by (metis (mono-tags, opaque-lifting) assms(1 ) exhaust-2 vec-eq-iff zero-index)

qed
moreover have ?A ⊆ ?F
proof(rule subsetI )

fix x
assume x ∈ ?A
then obtain α β where x = α ∗R 0 + β ∗R b ∧ α + β = 1 using affine-hull-2

by blast
then have v · x = α ∗ (v · 0 ) + β ∗ (v · b) by (simp add: assms(1 ))
then have v · x = 0 using assms(3 ) by auto
thus x ∈ ?F by fast

qed
ultimately show ?thesis by blast

qed

lemma vts-on-convex-frontier-aux:
assumes polygon-of p vts
assumes vts!0 = 0
assumes set vts ⊆ frontier (convex hull (set vts))
shows path-image (linepath (vts!0 ) (vts!1 )) ⊆ frontier (convex hull (set vts))

proof−
let ?H = convex hull (set vts)
let ?a = vts!0
let ?b = vts!1
let ?l = linepath ?a ?b
let ?L = path-image ?l
let ?A = affine hull {?a, ?b}
let ?x = ?b − ?a

obtain v where v: v · ?x = 0 ∧ v 6= 0
proof−

let ?v = (vector [?x$2 , −?x$1 ])::(real^2 )
have ?a 6= ?b
by (smt (verit, best) Cons-nth-drop-Suc One-nat-def Suc-le-eq arc-distinct-ends

assms(1 ) assms(2 ) card.empty drop0 empty-set length-greater-0-conv list.sel(1 )
list.sel(3 ) make-polygonal-path.elims make-polygonal-path.simps(1 ) make-polygonal-path.simps(2 )
nth-drop pathfinish-linepath pathstart-linepath plus-1-eq-Suc polygon-at-least-3-vertices
polygon-def polygon-of-def polygon-pathstart rel-simps(28 ) simple-path-joinE)

then have ?x 6= 0 by simp
then have ?v · ?x = 0 ∧ ?v 6= 0
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proof−
have ?v · ?x = (?x$2 ∗ ?x$1 ) + (−?x$1 ∗ ?x$2 )

by (simp add: inner-vec-def sum-2 real-2-inner)
then have ?v · ?x = 0 by argo
moreover have ?v 6= 0

by (smt (verit, best) ‹?x 6= 0 › exhaust-2 vec-eq-iff vector-2 (1 ) vector-2 (2 )
zero-index)

ultimately show ?thesis by blast
qed
thus ?thesis using that by blast

qed

let ?P1 = {x. v · x ≤ 0}
let ?P2 = {x. v · x ≥ 0}
let ?P1-int = {x. v · x < 0}
let ?P2-int = {x. v · x > 0}
let ?F = {x. v · x = 0}

have ?b 6= 0
by (smt (verit) Cons-nth-drop-Suc One-nat-def Suc-le-eq Suc-le-length-iff arc-distinct-ends

assms(1 ) assms(2 ) card.empty drop0 drop-eq-Nil empty-set le-numeral-extra(4 )
length-greater-0-conv list.inject make-polygonal-path.elims make-polygonal-path.simps(2 )
nat-less-le pathfinish-linepath pathstart-linepath polygon-at-least-3-vertices polygon-def
polygon-of-def polygon-pathstart rel-simps(28 ) simple-path-joinE)

moreover have ?b ∈ ?F using assms(2 ) v by auto
ultimately have F : ?F = ?A

using halfplane-frontier-affine-hull[of ?b v] v assms(2 ) by presburger
moreover have ?L ⊆ ?A by (simp add: convex-hull-subset-affine-hull segment-convex-hull)
ultimately have L-subset-F : ?L ⊆ ?F by blast
have L-subset-H : ?L ⊆ ?H
by (metis (no-types, lifting) add-gr-0 assms(1 ) card.empty convex-contains-segment

convex-convex-hull diff-less empty-set hull-subset leD length-greater-0-conv less-numeral-extra(1 )
nth-mem numeral-3-eq-3 path-image-linepath plus-1-eq-Suc polygon-at-least-3-vertices
polygon-of-def rotate-polygon-vertices-same-set rotated-polygon-vertices-helper(2 ) sub-
set-code(1 ))

have frontier-P1 : frontier ?P1 = ?F by (simp add: v frontier-halfspace-le)
have frontier-P2 : frontier ?P2 = ?F by (simp add: v frontier-halfspace-ge)
have interior-P1 : interior ?P1 = ?P1-int by (simp add: v)
have interior-P2 : interior ?P2 = ?P2-int by (simp add: v)
have convex-P1 : convex ?P1 by (simp add: convex-halfspace-le)
have convex-P2 : convex ?P2 by (simp add: convex-halfspace-ge)
have P1-int-P2 : ?P1 ∩ ?P2 = ?F by (simp add: halfspace-Int-eq(1 ))

let ?H1 = ?H ∩ ?P1
let ?H2 = ?H ∩ ?P2

have ¬ collinear (set vts) using polygon-vts-not-collinear assms(1 ) by simp
then have nonempty-interior-H : interior ?H 6= {}
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by (smt (verit, ccfv-SIG) Jordan-inside-outside-real2 closed-path-def Un-Int-eq(4 )
assms(1 ) convex-hull-of-polygon-is-convex-hull-of-vts disjoint-iff hull-subset inf .orderE
interior-Int interior-eq interior-subset path-inside-def polygon-def polygon-of-def )

have convex-H1 : convex ?H1 by (simp add: convex-Int convex-P1 )
have convex-H2 : convex ?H2 by (simp add: convex-Int convex-P2 )

have ?H ⊆ ?P1 ∨ ?H ⊆ ?P2
proof(rule ccontr)

assume ∗: ¬ (?H ⊆ ?P1 ∨ ?H ⊆ ?P2 )
moreover have interior ?H ⊆ ?P1 =⇒ ?H ⊆ ?P1
by (metis (no-types, lifting) Int-Un-eq(3 ) Krein-Milman-frontier List.finite-set

P1-int-P2 closure-Un-frontier closure-convex-hull closure-mono compact-frontier con-
vex-closure-interior convex-convex-hull finite-imp-compact-convex-hull frontier-P1
nonempty-interior-H )

moreover have interior ?H ⊆ ?P2 =⇒ ?H ⊆ ?P2
by (metis (no-types, lifting) Int-Un-eq(3 ) Krein-Milman-frontier List.finite-set

P1-int-P2 calculation(1 ) calculation(2 ) closure-Un-frontier closure-convex-hull clo-
sure-mono compact-frontier convex-closure-interior convex-convex-hull emptyE fi-
nite-imp-compact-convex-hull frontier-P2 inf-commute subsetI )

ultimately have interior ?H ∩ ?P1 6= {} ∧ interior ?H ∩ −?P1 6= {} by
force

moreover have path-connected (interior ?H ) by (simp add: convex-imp-path-connected)
ultimately have F-int-interior-H : ?F ∩ interior ?H 6= {}
by (metis (no-types, lifting) path-connected-frontier ComplD disjoint-eq-subset-Compl

frontier-P1 subset-eq)
then obtain v1 v2 where v1v2 : v1 6= v2 ∧ {v1 , v2} ⊆ set vts
∧ v1 ∈ interior ?P1 ∧ v2 ∈ interior ?P2

using convex-cut frontier-P1 interior-P1 interior-P2 v by metis
then obtain i j where ij: vts!i = v1 ∧ vts!j = v2
∧ 2 ≤ i ∧ 2 ≤ j ∧ i 6= j ∧ i < length vts − 1 ∧ j < length vts − 1

proof−
obtain i j where vts!i = v1 ∧ vts!j = v2 ∧ i 6= j ∧ i < length vts ∧ j <

length vts
by (metis in-set-conv-nth insert-subset v1v2 )

moreover have 2 ≤ i
proof−

{ assume i = 0 ∨ i = 1
then have vts!i = ?a ∨ vts!i = ?b by blast
then have vts!i ∈ ?F by (simp add: F hull-inc)
then have False using calculation(1 ) interior-P1 v1v2 by auto

}
thus ?thesis by presburger

qed
moreover have 2 ≤ j
proof−

{ assume j = 0 ∨ j = 1
then have vts!j = ?a ∨ vts!j = ?b by blast
then have vts!j ∈ ?F by (simp add: F hull-inc)
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then have False using calculation(1 ) interior-P2 v1v2 by auto
}
thus ?thesis by presburger

qed
moreover have False if i = length vts − 1
by (metis (no-types, lifting) F assms(1 ) calculation(1 ) frontier-P1 frontier-def

have-wraparound-vertex hull-subset insertCI insert-Diff last-conv-nth last-snoc less-nat-zero-code
list.size(3 ) polygon-of-def subset-Diff-insert that v1v2 )

moreover have False if j = length vts − 1
by (metis (no-types, lifting) F assms(1 ) calculation(1 ) frontier-P2 frontier-def

have-wraparound-vertex hull-subset insertCI insert-Diff last-conv-nth last-snoc less-nat-zero-code
list.size(3 ) polygon-of-def subset-Diff-insert that v1v2 )

ultimately show ?thesis using that by fastforce
qed

let ?i ′ = min i j
let ?j ′ = max i j
let ?vts ′ = take (?j ′ − ?i ′ + 1 ) (drop ?i ′ vts)
let ?p ′ = make-polygonal-path ?vts ′

have vts ′-sublist: sublist ?vts ′ vts using sublist-order .order .trans by blast
then have vts ′-sublist-tl: sublist ?vts ′ (tl vts)

by (metis Suc-1 Suc-eq-plus1 drop-Suc ij max-def min-def nat-minus-add-max
not-less-eq-eq sublist-drop sublist-order .dual-order .trans sublist-take)

have p ′-start-finish: {pathstart ?p ′, pathfinish ?p ′} = {v1 , v2}
proof−

have ?vts ′!0 = vts!?i ′ using ij by force
moreover have ?vts ′!(?j ′ − ?i ′) = vts!?j ′
using diff-is-0-eq diff-zero ij less-numeral-extra(1 ) max.cobounded1 min-absorb2

min-def nth-drop nth-take order-less-imp-le
by fastforce

moreover have (vts!?i ′ = v1 ∧ vts!?j ′ = v2 ) ∨ (vts!?i ′ = v2 ∧ vts!?j ′ = v1 )
using ij by linarith

moreover have pathstart ?p ′ = ?vts ′!0 ∧ pathfinish ?p ′ = ?vts ′!(?j ′ − ?i ′)
using ij min-diff polygon-pathfinish polygon-pathstart

by (smt (verit, ccfv-SIG) add-diff-cancel-right ′ add-diff-inverse-nat length-drop
length-take less-diff-conv max.commute max-min-same(1 ) min.absorb4 nat-minus-add-max
not-add-less2 plus-1-eq-Suc plus-nat.simps(2 ) take-eq-Nil zero-less-one)

ultimately show ?thesis by auto
qed
then have path-image ?p ′ ∩ interior ?P2 6= {} ∧ path-image ?p ′ ∩ interior

?P1 6= {}
by (metis v1v2 IntI doubleton-eq-iff empty-iff pathfinish-in-path-image path-

start-in-path-image)
then have path-image ?p ′ ∩ −?P1 6= {} ∧ path-image ?p ′ ∩ ?P1 6= {}

using interior-P2
by (smt (verit, best) disjoint-iff-not-equal in-mono inf-shunt interior-P1

mem-Collect-eq)
moreover have path-connected (path-image ?p ′)

149



using make-polygonal-path-gives-path path-connected-path-image by blast
ultimately obtain z where z: z ∈ path-image ?p ′ ∩ ?F
by (smt (verit, del-insts) path-connected-frontier DiffE Diff-triv all-not-in-conv

frontier-P1 )
moreover have path-image ?p ′ ⊆ ?H
proof−

have path-image p ⊆ ?H
by (metis assms(1 ) insert-subset length-pos-if-in-set polygon-of-def poly-

gon-path-image-subset-convex v1v2 )
moreover have path-image ?p ′ ⊆ path-image p
by (metis (no-types, lifting) vts ′-sublist sublist-path-image-subset One-nat-def

Suc-leI p ′-start-finish assms(1 ) doubleton-eq-iff length-greater-0-conv make-polygonal-path.simps(1 )
pathfinish-linepath pathstart-linepath polygon-of-def v1v2 )

ultimately show ?thesis by blast
qed
ultimately have z ∈ path-image ?p ′ ∩ (?H ∩ ?F) by blast
moreover have ?H ∩ ?F = ?L

using affine-2-int-convex[of ?a ?b set vts]
by (smt (verit, best) assms(3 ) F F-int-interior-H inf-commute segment-convex-hull

path-image-linepath Suc-1 add-leD2 assms(1 ) empty-subsetI insert-subset length-greater-0-conv
lessI nat-neq-iff nth-mem numeral-Bit0 order .strict-iff-not plus-1-eq-Suc polygon-of-def
polygon-vertices-length-at-least-4 take-all-iff take-eq-Nil IntE inf .orderE)

ultimately have z ∈ ?L ∩ path-image ?p ′ by blast
moreover have ?L ∩ path-image ?p ′ ⊆ {?a, ?b}
proof−

let ?p-tl = make-polygonal-path (tl vts)
have p = make-polygonal-path vts ∧ loop-free p

using assms unfolding polygon-of-def polygon-def simple-path-def by blast
moreover have [?a, ?b] = take 2 vts
by (metis Cons-nth-drop-Suc One-nat-def Suc-1 append-Cons append-Nil cal-

culation constant-linepath-is-not-loop-free drop0 drop-eq-Nil insert-subset length-pos-if-in-set
linorder-not-le make-polygonal-path.simps(2 ) take0 take-Suc-conv-app-nth v1v2 )

moreover have tl vts = drop (2 − 1 ) vts by (simp add: drop-Suc)
moreover have ?l = make-polygonal-path [?a, ?b] using make-polygonal-path.simps

by simp
moreover have length vts > 2 using ij by linarith
moreover have pathstart ?l = ?a ∧ pathstart ?p-tl = ?b

using calculation(3 ) calculation(5 ) polygon-pathstart by auto
ultimately have ?L ∩ path-image ?p-tl ⊆ {?a, ?b}

using loop-free-split-int[of p vts [?a, ?b] 2 tl vts ?l ?p-tl length vts] by auto
moreover have path-image ?p ′ ⊆ path-image ?p-tl

using sublist-path-image-subset
by (metis add.commute ij le-add2 length-drop length-take less-diff-conv

min.absorb4 min.cobounded1 min-def vts ′-sublist-tl)
ultimately show ?thesis by blast

qed
ultimately have ∗: z = ?a ∨ z = ?b by blast

let ?i = ?i ′

150



let ?j = ?j ′ − ?i ′ + 1
let ?k = ?i + ?j
let ?x1 = (2^?i − 1 )/(2^?i)::real
let ?x2 = (2^(?k−1 ) − 1 )/(2^(?k−1 ))::real

have ?vts ′ = take ?j (drop ?i vts) by blast
moreover have ?k ≤ length vts − 1 ∧ 2 ≤ ?j using ij by linarith
ultimately have path-image ?p ′ = p‘{?x1 ..?x2}

using vts-sublist-path-image assms(1 ) unfolding polygon-of-def by metis
moreover have x1x2 : ?x1 > 1/2 ∧ ?x2 < 1
proof−

have ?i ′ ≥ 2 using ij by linarith
then have (1 ::real) < 2^?i ′ − 1
by (smt (z3 ) dual-order .strict-trans1 linorder-le-less-linear numeral-le-one-iff

power-one-right power-strict-increasing semiring-norm(69 ))
thus ?thesis by simp

qed
moreover have p 0 /∈ p‘{?x1 ..?x2} ∧ p (1/2 ) /∈ p‘{?x1 ..?x2}
proof−

have False if ∗: p 0 ∈ p‘{?x1 ..?x2}
proof−

obtain t where t: t ∈ {?x1 ..?x2} ∧ p t = p 0 using ∗ by auto
then have t ≥ ?x1 ∧ t ≤ ?x2 by presburger
then have 1/2 < t ∧ t < 1 using x1x2 by argo
thus False

using t assms(1 ) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def

by force
qed
moreover have False if ∗: p (1/2 ) ∈ p‘{?x1 ..?x2}
proof−

obtain t where t: t ∈ {?x1 ..?x2} ∧ p t = p (1/2 ) using ∗ by auto
then have t ≥ ?x1 ∧ t ≤ ?x2 by presburger
then have 1/2 < t ∧ t < 1 using x1x2 by argo
thus False

using t assms(1 ) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def

by fastforce
qed
ultimately show ?thesis by fast

qed
moreover have ?a = p 0

by (metis assms(1 ) card.empty empty-set not-numeral-le-zero pathstart-def
polygon-at-least-3-vertices polygon-of-def polygon-pathstart)

moreover have ?b = p (1/2 )
proof−

have p = ?l +++ (make-polygonal-path (tl vts))
by (smt (verit, best) One-nat-def Suc-1 assms(1 ) ij length-Cons length-greater-0-conv

length-tl less-imp-le-nat list.sel(3 ) list.size(3 ) make-polygonal-path.elims nth-Cons-0
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nth-tl order-less-le-trans polygon-of-def pos2 zero-less-diff )
then have p (1/2 ) = ?l 1

unfolding joinpaths-def by simp
thus ?thesis by (simp add: linepath-1 ′)

qed
ultimately have ?a /∈ path-image ?p ′ ∧ ?b /∈ path-image ?p ′ by presburger
thus False using z ∗ by blast

qed
then have frontier ?P1 ∩ ?H ⊆ frontier ?H ∨ frontier ?P2 ∩ ?H ⊆ frontier ?H

using frontier-int-subset by auto
moreover have ?L ⊆ frontier ?P1 ∧ ?L ⊆ frontier ?P2

using frontier-P1 frontier-P2 L-subset-F by presburger
ultimately show ?thesis using L-subset-H by fast

qed

lemma vts-on-convex-frontier-aux ′:
assumes polygon-of p vts
assumes set vts ⊆ frontier (convex hull (set vts))
shows path-image (linepath (vts!0 ) (vts!1 )) ⊆ frontier (convex hull (set vts))

proof−
let ?a = vts!0
let ?f = λv. v + (−?a)
let ?vts ′ = map ?f vts
let ?p ′ = make-polygonal-path ?vts ′

have len-vts: length vts ≥ 2
using assms(1 ) polygon-of-def polygon-vertices-length-at-least-4 by fastforce

then have p ′: ?p ′ = ?f ◦ p
using make-polygonal-path-translate[of vts −?a] assms unfolding polygon-of-def

by presburger
then have 0 : ?vts ′!0 = 0

by (metis len-vts neg-eq-iff-add-eq-0 nth-map order-less-le-trans pos2 )
moreover have vts ′: set ?vts ′ = ?f ‘ (set vts) by simp
ultimately have convex hull (set ?vts ′) = ?f ‘ (convex hull (set vts))

using convex-hull-translation[of −?a set vts] by force
then have frontier (convex hull (set ?vts ′)) = frontier (?f ‘ (convex hull (set

vts)))
by auto

then have frontier-translation:
frontier (convex hull (set ?vts ′)) = ?f ‘ (frontier ((convex hull (set vts))))

using frontier-translation[of −?a convex hull (set vts)] by simp

have ?f (vts!0 ) = ?vts ′!0 ∧ ?f (vts!1 ) = ?vts ′!1 using 0 len-vts by auto
then have linepath-translation:

?f ‘ path-image (linepath (vts!0 ) (vts!1 )) = path-image (linepath (?vts ′!0 )
(?vts ′!1 ))

using linepath-translation[of ?a −?a vts!1 ] by (simp add: path-image-compose)

have polygon-of ?p ′ ?vts ′ using translation-is-polygon assms(1 ) p ′ by presburger
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moreover have set ?vts ′ ⊆ frontier (convex hull (set ?vts ′))
proof−

have frontier (convex hull (set ?vts ′)) = frontier (convex hull (?f ‘ (set vts)))
using vts ′ by presburger

then have frontier (convex hull (set ?vts ′)) = ?f ‘ (frontier (convex hull (set
vts)))

using frontier-translation by presburger
thus ?thesis using vts ′ assms(2 ) by auto

qed
ultimately have path-image (linepath (?vts ′!0 ) (?vts ′!1 )) ⊆ frontier (convex hull

(set ?vts ′))
using vts-on-convex-frontier-aux assms 0 by blast

then have ?f ‘ path-image (linepath (vts!0 ) (vts!1 )) ⊆ ?f ‘ (frontier ((convex hull
(set vts))))

using linepath-translation frontier-translation by argo
thus ?thesis by force

qed

lemma vts-on-convex-frontier :
assumes polygon-of p vts
assumes set vts ⊆ frontier (convex hull (set vts))
assumes i < length vts − 1
shows path-image (linepath (vts!i) (vts!(i+1 ))) ⊆ frontier (convex hull (set vts))

proof−
let ?vts ′ = rotate-polygon-vertices vts i
let ?p ′ = make-polygonal-path ?vts ′

have polygon-of ?p ′ ?vts ′

using assms(1 ) polygon-of-def rotation-is-polygon by blast
moreover have set ?vts ′ ⊆ frontier (convex hull (set ?vts ′))

using assms(1 ) assms(2 ) polygon-of-def rotate-polygon-vertices-same-set by
auto

ultimately have path-image (linepath (?vts ′!0 ) (?vts ′!1 )) ⊆ frontier (convex hull
(set ?vts ′))

using vts-on-convex-frontier-aux ′ by presburger
moreover have ?vts ′!0 = vts!i ∧ ?vts ′!1 = vts!(i+1 )

using assms(3 )
using rotated-polygon-vertices[of ?vts ′ vts i i+1 ]
using rotated-polygon-vertices[of ?vts ′ vts i i]

by (smt (verit, best) Suc-leI add.commute add.right-neutral add-2-eq-Suc ′

add-diff-cancel-left ′ add-lessD1 assms(1 ) have-wraparound-vertex hd-Nil-eq-last hd-conv-nth
last-snoc le-add1 less-diff-conv plus-1-eq-Suc polygon-of-def )

moreover have frontier (convex hull (set ?vts ′)) = frontier (convex hull (set
vts))

by (metis assms(1 ) polygon-of-def rotate-polygon-vertices-same-set)
ultimately show ?thesis by argo

qed

lemma vts-on-frontier-means-path-image-on-frontier :
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assumes polygon-of p vts
assumes set vts ⊆ frontier (convex hull (set vts))
shows path-image p ⊆ frontier (convex hull (set vts))

proof(rule subsetI )
let ?H = convex hull (set vts)
fix x assume x ∈ path-image p
moreover have path-image p = (

⋃
{path-image (linepath (vts!i) (vts!(i+1 ))) |

i. i ≤ (length vts) − 2})
using polygonal-path-image-linepath-union assms unfolding polygon-of-def

by (metis (no-types, lifting) add-leD2 numeral-Bit0 polygon-vertices-length-at-least-4 )
ultimately obtain i where i ≤ (length vts) − 2 ∧ x ∈ path-image (linepath

(vts!i) (vts!(i+1 )))
by blast

thus x ∈ frontier ?H
by (smt (verit, ccfv-SIG) One-nat-def Suc-diff-Suc add.commute add-2-eq-Suc ′

assms(1 ) assms(2 ) in-mono le-add1 le-zero-eq less-Suc-eq-le less-diff-conv linorder-not-less
plus-1-eq-Suc vts-on-convex-frontier vts-on-convex-frontier-aux ′)
qed

lemma vts-on-convex-frontier-interior :
assumes polygon-of p vts
assumes set vts ⊆ frontier (convex hull (set vts))
shows path-inside p = interior (convex hull (set vts))

proof−
let ?H = convex hull (set vts)

have path-inside p ⊆ interior (convex hull (set vts))
by (metis (no-types, lifting) Un-empty assms(1 ) convex-contains-simple-closed-path-imp-contains-path-inside

convex-convex-hull convex-hull-eq-empty convex-hull-of-polygon-is-convex-hull-of-vts
empty-set inside-outside-def inside-outside-polygon interior-maximal length-greater-0-conv
polygon-def polygon-of-def polygon-path-image-subset-convex)

moreover have interior (convex hull (set vts)) ⊆ path-inside p
proof(rule ccontr)

assume ∗: ¬ interior (convex hull (set vts)) ⊆ path-inside p
then obtain x where x: x ∈ interior (convex hull (set vts)) − path-inside p

by blast
obtain y where y: y ∈ path-inside p
using inside-outside-polygon assms unfolding inside-outside-def polygon-of-def

by fastforce

let ?l = linepath x y
have 1 : path-image ?l ⊆ interior ?H

by (metis (no-types, lifting) DiffE calculation convex-contains-segment con-
vex-convex-hull convex-interior in-mono linepath-image-01 path-defs(4 ) x y)

have path-image ?l ∩ frontier (path-inside p) 6= {}
using inside-outside-polygon assms unfolding inside-outside-def polygon-of-def
by (smt (verit) ∗ Diff-disjoint Diff-eq-empty-iff Int-Un-eq(2 ) Int-assoc Un-Int-eq(3 )

assms(1 ) calculation connected-Int-frontier convex-connected convex-convex-hull con-
vex-interior frontier-def inf .absorb-iff2 vts-on-frontier-means-path-image-on-frontier)
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then have 2 : path-image ?l ∩ path-image p 6= {}
using inside-outside-polygon assms unfolding inside-outside-def polygon-of-def

by blast

show False
using 1 2 vts-on-frontier-means-path-image-on-frontier
using Diff-disjoint Int-lower2 Int-subset-iff assms(1 ) assms(2 ) frontier-def

inf-le1
by fastforce

qed
ultimately show ?thesis by blast

qed

lemma vts-subset-frontier :
assumes polygon-of p vts
assumes set vts ⊆ frontier (convex hull (set vts))
shows convex (path-image p ∪ path-inside p)
by (metis assms(1 ) assms(2 ) vts-on-convex-frontier-interior convex-convex-hull

convex-interior polygon-convex-iff polygon-of-def sup-commute)

lemma convex-hull-of-nonconvex-polygon-strict-subset-ep:
assumes polygon-of p vts
assumes ¬ (convex (path-image p ∪ path-inside p))
shows {v. v extreme-point-of (convex hull (set vts))} ⊂ set vts

proof−
let ?ep = {v. v extreme-point-of (convex hull (set vts))}
let ?H = convex hull (set vts)
have ?ep ⊆ frontier ?H
by (metis Krein-Milman-frontier List.finite-set convex-convex-hull extreme-point-of-convex-hull

finite-imp-compact-convex-hull mem-Collect-eq subsetI )
thus ?thesis using assms vts-subset-frontier extreme-points-of-convex-hull by

force
qed

lemma convex-hull-of-nonconvex-polygon-strict-subset:
assumes polygon-of p vts
assumes ¬ (convex (path-image p ∪ path-inside p))
shows ∃ v ∈ set vts. v ∈ interior (convex hull (set vts))
using assms vts-subset-frontier
by (smt (verit) Diff-iff UnCI closure-Un-frontier frontier-def hull-inc subsetI )

lemma convex-polygon-means-linepaths-inside:
fixes p :: R-to-R2
assumes polygon-of p vts
assumes convex-is: convex hull (set vts) = (path-inside p ∪ path-image p)
assumes a-in: a ∈ (path-inside p ∪ path-image p)
assumes b-in: b ∈ (path-inside p ∪ path-image p)
shows path-image (linepath a b) ⊆ (path-inside p ∪ path-image p)

proof −
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let ?conv = path-inside p ∪ path-image p
have ∀ u≥0 . ∀ v≥0 . u + v = 1 −→ u ∗R a + v ∗R b ∈ ?conv

using convex-is a-in b-in unfolding convex-def
by (metis (no-types, lifting) convexD convex-convex-hull convex-is)

then have (1 − x) ∗R a + x ∗R b ∈ ?conv if x-in: x ∈ {0 ..1} for x
using x-in by auto

then show ?thesis unfolding linepath-def path-image-def
by fast

qed

end
theory Polygon-Splitting
imports

HOL−Analysis.Complete-Measure
Polygon-Jordan-Curve
Polygon-Convex-Lemmas

begin

19 Polygon Splitting
lemma split-up-a-list-into-3-parts:

fixes i j:: nat
assumes i < length vts ∧ j < length vts ∧ i < j
shows
vts = (take i vts) @ ((vts ! i) # ((take (j − i − 1 ) (drop (Suc i) vts)) @ (vts !

j) # drop (j − i) (drop (Suc i) vts)))
proof −

let ?x = vts ! i
let ?y = vts ! j
let ?vts1 = (take i vts)
let ?drop-list = drop (Suc i) vts
have vts-is: vts = ?vts1 @ vts!i # drop (Suc i) vts

using split-list assms
by (meson id-take-nth-drop)

then have len-vts1 : length ?vts1 = i
using length-take[of i vts] assms
by auto

have gt-eq: j − i − 1 ≥ 0
using assms by auto

let ?ind = j − i − 1
have drop-is: drop (Suc i) vts ! (j − i − 1 ) = ?y

using assms by auto
then have drop-list-is: ?drop-list = take ?ind ?drop-list @ ?y # (drop (j − i)

?drop-list)
by (metis Suc-diff-Suc Suc-leI assms diff-Suc-1 diff-less-mono id-take-nth-drop

length-drop)
have length (drop (Suc ?ind) ?drop-list) = length vts − j − 1

using length-drop[of Suc (j − i − 1 ) (drop (Suc i) vts)] length-take assms
by auto
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then show ?thesis
using vts-is drop-list-is len-vts1
by presburger

qed

definition is-polygon-cut :: (real^2 ) list ⇒ real^2 ⇒ real^2 ⇒ bool where
is-polygon-cut vts x y =

(x 6= y ∧
polygon (make-polygonal-path vts) ∧
{x, y} ⊆ set vts ∧
path-image (linepath x y) ∩ path-image (make-polygonal-path vts) = {x, y} ∧
path-image (linepath x y) ∩ path-inside (make-polygonal-path vts) 6= {})

definition is-polygon-cut-path :: (real^2 ) list ⇒ R-to-R2 ⇒ bool where
is-polygon-cut-path vts cutpath =
(let x = pathstart cutpath ; y = pathfinish cutpath in
(x 6= y ∧
polygon (make-polygonal-path vts) ∧
{x, y} ⊆ set vts ∧
simple-path cutpath ∧
path-image cutpath ∩ path-image (make-polygonal-path vts) = {x, y} ∧
path-image cutpath ∩ path-inside (make-polygonal-path vts) 6= {}))

definition is-polygon-split ::
(real^2 ) list ⇒ nat ⇒ nat ⇒ bool where
is-polygon-split vts i j =
(i < length vts ∧ j < length vts ∧ i < j ∧
(let vts1 = (take i vts) in
let vts2 = (take (j − i − 1 ) (drop (Suc i) vts)) in
let vts3 = drop (j − i) (drop (Suc i) vts) in
let x = vts ! i in
let y = vts ! j in
let p = make-polygonal-path (vts@[vts!0 ]) in
let p1 = make-polygonal-path (x#(vts2@[y, x])) in
let p2 = make-polygonal-path (vts1 @ [x, y] @ vts3 @ [vts ! 0 ]) in
let c1 = make-polygonal-path (x#(vts2@[y])) in
let c2 = make-polygonal-path (vts1 @ [x, y] @ vts3 ) in
(is-polygon-cut (vts@[vts!0 ]) x y ∧
polygon p ∧ polygon p1 ∧ polygon p2 ∧
path-inside p1 ∩ path-inside p2 = {} ∧
path-inside p1 ∪ path-inside p2 ∪ (path-image (linepath x y) − {x, y}) =

path-inside p
∧ ((path-image p1 ) − (path-image (linepath x y))) ∩ ((path-image p2 ) −

(path-image (linepath x y)))
= {}
∧ path-image p

= ((path-image p1 ) − (path-image (linepath x y))) ∪ ((path-image p2 ) −
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(path-image (linepath x y))) ∪ {x, y}
)))

definition is-polygon-split-path :: (real^2 ) list ⇒ nat ⇒ nat ⇒ (real^2 ) list ⇒
bool where

is-polygon-split-path vts i j cutvts =
(i < length vts ∧ j < length vts ∧ i < j ∧
(let vts1 = (take i vts) in
let vts2 = (take (j − i − 1 ) (drop (Suc i) vts)) in
let vts3 = drop (j − i) (drop (Suc i) vts) in
let x = vts!i in
let y = vts!j in
let cutpath = make-polygonal-path (x # cutvts @ [y]) in
let p = make-polygonal-path (vts@[vts!0 ]) in
let p1 = make-polygonal-path (x#(vts2 @ [y] @ (rev cutvts) @ [x])) in
let p2 = make-polygonal-path (vts1 @ ([x] @ cutvts @ [y]) @ vts3 @ [vts ! 0 ]) in
let c1 = make-polygonal-path (x#(vts2@[y])) in
let c2 = make-polygonal-path (vts1 @ ([x] @ cutvts @ [y]) @ vts3 ) in
(is-polygon-cut-path (vts@[vts!0 ]) cutpath ∧
polygon p ∧ polygon p1 ∧ polygon p2 ∧
path-inside p1 ∩ path-inside p2 = {} ∧
path-inside p1 ∪ path-inside p2 ∪ (path-image cutpath − {x, y}) = path-inside

p
∧ ((path-image p1 ) − (path-image cutpath)) ∩ ((path-image p2 ) − (path-image

cutpath)) = {}
∧ path-image p
= ((path-image p1 ) − (path-image cutpath)) ∪ ((path-image p2 ) − (path-image

cutpath)) ∪ {x, y}
)))

lemma polygon-split-add-measure:
fixes p p1 p2 :: R-to-R2
assumes is-polygon-split vts i j
assumes vts1 = (take i vts)

vts2 = (take (j − i − 1 ) (drop (Suc i) vts))
vts3 = drop (j − i) (drop (Suc i) vts)
x = vts ! i
y = vts ! j
p = make-polygonal-path (vts@[vts!0 ])
p1 = make-polygonal-path (x#(vts2@[y, x]))
p2 = make-polygonal-path (vts1 @ [x, y] @ vts3 @ [vts ! 0 ])

defines M1 ≡ measure lebesgue (path-inside p1 ) and
M2 ≡ measure lebesgue (path-inside p2 ) and
M ≡ measure lebesgue (path-inside p)

shows M1 + M2 = M
proof−

let ?cut = linepath x y
let ?cut-open-image = (path-image ?cut) − {x, y}
let ?P = path-inside p
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let ?P1 = path-inside p1
let ?P2 = path-inside p2
let ?M = space lebesgue
let ?A = sets lebesgue
let ?µ = emeasure lebesgue

have open ?P1
by (metis assms(1 ) assms(3 ) assms(5 ) assms(6 ) assms(8 ) closed-path-image

is-polygon-split-def open-inside path-inside-def polygon-def simple-path-def )
then have P1-measurable: ?P1 ∈ ?A by simp

have open ?P2
by (metis assms(1 ) assms(2 ) assms(4 ) assms(5 ) assms(6 ) assms(9 ) closed-path-image

is-polygon-split-def open-inside path-inside-def polygon-def simple-path-def )
then have P2-measurable: ?P2 ∈ ?A by simp

have ?P1 ∩ ?P2 = {}
by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) assms(8 )

assms(9 ) is-polygon-split-def )
then have sum-union-finite: ?µ ?P1 + ?µ ?P2 = ?µ (?P1 ∪ ?P2 )

using plus-emeasure P1-measurable P2-measurable by blast

have measure lebesgue ?P1 = ?µ ?P1
by (metis assms(1 ) assms(3 ) assms(5 ) assms(6 ) assms(8 ) bounded-inside

bounded-set-imp-lmeasurable bounded-simple-path-image emeasure-eq-ennreal-measure
emeasure-notin-sets ennreal-0 fmeasurableD2 is-polygon-split-def measure-zero-top
path-inside-def polygon-def )

moreover have measure lebesgue ?P2 = ?µ ?P2
by (metis Sigma-Algebra.measure-def assms(1 ) assms(2 ) assms(4 ) assms(5 )

assms(6 ) assms(9 ) bounded-inside bounded-path-image bounded-set-imp-lmeasurable
emeasure-eq-ennreal-measure emeasure-notin-sets enn2real-top ennreal-0 fmeasur-
ableD2 is-polygon-split-def path-inside-def polygon-def simple-path-def )

ultimately have ?µ (?P1 ∪ ?P2 ) = M1 + M2
using assms(10 ) assms(11 ) sum-union-finite by auto

moreover have ?µ (?P1 ∪ ?P2 ) = ?µ ?P
proof−

have ?µ (path-image ?cut) = 0 using linepath-has-emeasure-0 by blast
then have (path-image ?cut) ∈ null-sets lebesgue by auto
moreover have {x, y} ∈ null-sets lebesgue by simp

ultimately have ?cut-open-image ∈ null-sets lebesgue using measure-Diff-null-set
by auto

moreover have ?P = ?P1 ∪ ?P2 ∪ ?cut-open-image
by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) assms(7 )

assms(8 ) assms(9 ) is-polygon-split-def )
ultimately show ?thesis

by (simp add: P1-measurable P2-measurable emeasure-Un-null-set sets.Un)
qed
ultimately show ?thesis
by (smt (verit, best) M1-def M2-def M-def emeasure-eq-ennreal-measure enn2real-ennreal
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ennreal-neq-top measure-nonneg)
qed

lemma polygonal-paths-measurable:
shows path-image (make-polygonal-path vts) ∈ sets lebesgue

proof (induct vts rule: make-polygonal-path-induct)
case (Empty ell)
then show ?case by auto

next
case (Single ell)
then obtain a where ell = [a]
by (metis Cons-nth-drop-Suc One-nat-def drop0 drop-eq-Nil le-numeral-extra(4 )

zero-less-one)
then show ?case using make-polygonal-path.simps(2 )[of a] by simp

next
case (Two ell)
then obtain a b where ell = [a, b]
by (metis Cons-nth-drop-Suc One-nat-def Suc-1 append-Nil drop-eq-Nil2 dual-order .refl

id-take-nth-drop lessI pos2 take0 )
then show ?case using make-polygonal-path.simps(3 )[of a b] by simp

next
case (Multiple ell)
then have ell = (ell ! 0 ) # (ell ! 1 ) # (ell ! 2 ) # (drop 3 ell)
by (metis Cons-nth-drop-Suc One-nat-def Suc-1 drop0 le-Suc-eq linorder-not-less

numeral-3-eq-3 )
then have make-polygonal-path ell =

linepath (ell ! 0 ) (ell ! 1 ) +++ make-polygonal-path (ell ! 1 # ell ! 2 # (drop
3 ell))

by (metis make-polygonal-path.simps(4 ))

then have path-image (make-polygonal-path ell) = path-image (linepath (ell ! 0 )
(ell ! 1 )) ∪ path-image (make-polygonal-path (ell ! 1 # ell ! 2 # (drop 2 ell)))

using Cons-nth-drop-Suc Multiple.hyps(1 ) One-nat-def Suc-1 Un-assoc ‹ell =
ell ! 0 # ell ! 1 # ell ! 2 # drop 3 ell› list.discI make-polygonal-path.simps(2 )
make-polygonal-path.simps(3 ) nth-Cons-0 numeral-3-eq-3 path-image-cons-union

proof−
have f1 : ell = ell ! 0 # ell ! 1 # ell ! Suc 1 # drop 3 ell

using Suc-1 ‹ell = ell ! 0 # ell ! 1 # ell ! 2 # drop 3 ell› by presburger
have Suc 1 < length ell

by (smt (z3 ) Suc-1 ‹2 < length ell›)
then have f2 : drop (Suc 1 ) ell = ell ! Suc 1 # drop (Suc (Suc 1 )) ell

by (smt (z3 ) Cons-nth-drop-Suc)
have f3 : ∀ v va vs. path-image (make-polygonal-path (v # va # vs)) = path-image

(linepath v va) ∪ path-image (make-polygonal-path (va # vs))
by (metis (no-types) list.discI nth-Cons-0 path-image-cons-union)

have f4 : ∀V v va. path-image (linepath (v::(real, 2 ) vec) va) ∪ (path-image
(linepath va va) ∪ V ) = path-image (linepath v va) ∪ V

by auto
have path-image (make-polygonal-path ell) = path-image (make-polygonal-path
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(ell ! 0 # ell ! 1 # drop (Suc 1 ) ell))
using f2 f1 by (simp add: numeral-3-eq-3 )

then have path-image (make-polygonal-path ell) = path-image (linepath (ell !
0 ) (ell ! 1 )) ∪ path-image (make-polygonal-path (ell ! 1 # ell ! Suc 1 # drop (Suc
1 ) ell))

using f4 f3 f2 by presburger
then show ?thesis

using Suc-1 by presburger
qed

then show ?case using Multiple(3 )
by (metis (no-types, lifting) Cons-nth-drop-Suc Multiple.hyps(1 ) Multiple.hyps(2 )

One-nat-def Suc-1 ‹ell = ell ! 0 # ell ! 1 # ell ! 2 # drop 3 ell› list.discI
make-polygonal-path.simps(3 ) nth-Cons-0 numeral-3-eq-3 path-image-cons-union sets.Un)

qed

lemma polygonal-path-has-emeasure-0 :
shows emeasure lebesgue (path-image (make-polygonal-path vts)) = 0

proof (induct vts)
case Nil
then show ?case by auto

next
case (Cons a vts)
then show ?case

by (metis linepath-is-negligible make-polygonal-path.simps(2 ) negligible-Un neg-
ligible-iff-emeasure0 path-image-cons-union polygonal-paths-measurable)
qed

lemma polygon-split-path-add-measure:
fixes p p1 p2 :: R-to-R2
assumes is-polygon-split-path vts i j cutvts
assumes vts1 = (take i vts)

vts2 = (take (j − i − 1 ) (drop (Suc i) vts))
vts3 = drop (j − i) (drop (Suc i) vts)
x = vts ! i
y = vts ! j
p = make-polygonal-path (vts@[vts!0 ])
p1 = make-polygonal-path (x#(vts2 @ [y] @ (rev cutvts) @ [x]))
p2 = make-polygonal-path (vts1 @ ([x] @ cutvts @ [y]) @ vts3 @ [vts ! 0 ])

defines M1 ≡ measure lebesgue (path-inside p1 ) and
M2 ≡ measure lebesgue (path-inside p2 ) and
M ≡ measure lebesgue (path-inside p)

shows M1 + M2 = M
proof−

let ?cut = make-polygonal-path (x # cutvts @ [y])
let ?cut-open-image = (path-image ?cut) − {x, y}
let ?P = path-inside p
let ?P1 = path-inside p1
let ?P2 = path-inside p2
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let ?M = space lebesgue
let ?A = sets lebesgue
let ?µ = emeasure lebesgue

have open ?P1
by (metis assms(1 ) assms(3 ) assms(5 ) assms(6 ) assms(8 ) closed-path-image

is-polygon-split-path-def open-inside path-inside-def polygon-def simple-path-def )
then have P1-measurable: ?P1 ∈ ?A by simp

have open ?P2
by (metis assms(1 ) assms(2 ) assms(4 ) assms(5 ) assms(6 ) assms(9 ) closed-path-image

is-polygon-split-path-def open-inside path-inside-def polygon-def simple-path-def )
then have P2-measurable: ?P2 ∈ ?A by simp

have ?P1 ∩ ?P2 = {}
by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) assms(8 )

assms(9 ) is-polygon-split-path-def )
then have sum-union-finite: ?µ ?P1 + ?µ ?P2 = ?µ (?P1 ∪ ?P2 )

using plus-emeasure P1-measurable P2-measurable by blast

have ?µ (path-image q) = 0 =⇒ (path-image q) ∈ null-sets lebesgue if ∗:
path-image q ∈ sets lebesgue for q::real ⇒ (real, 2 ) vec

using null-sets-def ∗ by blast

have measure lebesgue ?P1 = ?µ ?P1
by (metis assms(1 ) assms(3 ) assms(5 ) assms(6 ) assms(8 ) bounded-inside

bounded-set-imp-lmeasurable bounded-simple-path-image emeasure-eq-ennreal-measure
emeasure-notin-sets ennreal-0 fmeasurableD2 is-polygon-split-path-def measure-zero-top
path-inside-def polygon-def )

moreover have measure lebesgue ?P2 = ?µ ?P2
by (metis Sigma-Algebra.measure-def assms(1 ) assms(2 ) assms(4 ) assms(5 )

assms(6 ) assms(9 ) bounded-inside bounded-path-image bounded-set-imp-lmeasurable
emeasure-eq-ennreal-measure emeasure-notin-sets enn2real-top ennreal-0 fmeasur-
ableD2 is-polygon-split-path-def path-inside-def polygon-def simple-path-def )

ultimately have ?µ (?P1 ∪ ?P2 ) = M1 + M2
using assms(10 ) assms(11 ) sum-union-finite by auto

moreover have ?µ (?P1 ∪ ?P2 ) = ?µ ?P
proof−

have ?µ (path-image ?cut) = 0 using polygonal-path-has-emeasure-0
by presburger

then have (path-image ?cut) ∈ null-sets lebesgue using polygonal-paths-measurable
by blast

moreover have {x, y} ∈ null-sets lebesgue by simp
ultimately have ?cut-open-image ∈ null-sets lebesgue using measure-Diff-null-set

by auto
moreover have ?P = ?P1 ∪ ?P2 ∪ ?cut-open-image
by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) assms(7 )

assms(8 ) assms(9 ) is-polygon-split-path-def )
ultimately show ?thesis
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by (simp add: P1-measurable P2-measurable emeasure-Un-null-set sets.Un)
qed
ultimately show ?thesis
by (smt (verit, best) M1-def M2-def M-def emeasure-eq-ennreal-measure enn2real-ennreal

ennreal-neq-top measure-nonneg)
qed

lemma polygon-cut-path-to-split-path-vtx0 :
fixes p :: R-to-R2
assumes polygon-p: polygon p and

i-gt: i > 0 and
i-lt: i < length vts and
p-is: p = make-polygonal-path (vts @ [vts ! 0 ]) and
cutpath: cutpath = make-polygonal-path ([vts!0 ] @ cutvts @ [vts!i]) and
have-cut: is-polygon-cut-path (vts @ [vts!0 ]) cutpath

shows is-polygon-split-path vts 0 i cutvts
proof −

let ?vts2 = take (i − 1 ) (drop 1 vts)
let ?vts3 = drop i (drop 1 vts)
let ?x = vts ! 0
let ?y = vts ! i

let ?c3-vts = [?x] @ cutvts @ [?y]
let ?c3 = cutpath
let ?c3-rev-vts = rev ?c3-vts
let ?c3-rev = make-polygonal-path ?c3-rev-vts
let ?c3 ′ = reversepath ?c3

let ?p = make-polygonal-path (vts @ [vts ! 0 ])
let ?p1-vts = ?x # ?vts2 @ ?c3-rev-vts
let ?p1 = make-polygonal-path ?p1-vts
let ?p1-rot-vts = ?c3-rev-vts @ ?vts2 @ [?y]
let ?p1-rot = make-polygonal-path ?p1-rot-vts
let ?p2-vts = ?c3-vts @ ?vts3 @ [?x]
let ?p2 = make-polygonal-path ?p2-vts
let ?c1-vts = ?x # ?vts2 @ [?y]
let ?c1 = make-polygonal-path ?c1-vts
let ?c2-vts = [?y] @ ?vts3 @ [?x]
let ?c2 = reversepath (make-polygonal-path ?c2-vts)
let ?c2 ′-vts = [?y] @ ?vts3 @ [?x]
let ?c2 ′ = (make-polygonal-path (?c2 ′-vts))

have distinct-vts: distinct vts
using polygon-p p-is
using polygon-def simple-polygonal-path-vts-distinct by force

have len-vts-gteq3 : length vts ≥ 3
using polygon-p p-is polygon-vertices-length-at-least-4 by fastforce

then have ?x # ?vts2 @ [?y] = take (i+1 ) (vts@ [vts ! 0 ])
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by (smt (verit, ccfv-threshold) i-gt Cons-nth-drop-Suc Suc-eq-plus1 Suc-pred ′

add-less-cancel-left butlast-snoc drop0 drop-drop hd-drop-conv-nth i-lt length-append-singleton
length-greater-0-conv less-imp-le-nat linorder-not-less list.size(3 ) plus-1-eq-Suc take-Suc-Cons
take-all-iff take-butlast take-hd-drop)

have [?y] @ ?vts3 @ [?x] = drop (i) (vts @ [vts ! 0 ])
using i-gt
by (metis (no-types, lifting) Cons-eq-appendI Cons-nth-drop-Suc Suc-eq-plus1

append-Nil diff-is-0-eq ′ drop-0 drop-append drop-drop i-lt less-imp-le-nat)

have card-gteq: card (set vts) ≥ 3
using polygon-at-least-3-vertices-wraparound polygon-p p-is
by (metis butlast-conv-take butlast-snoc)

then have vts 6= []
by auto

then have vts-is: vts = ?x # ?vts2 @ ?y # ?vts3
using split-up-a-list-into-3-parts[of 0 vts i] i-gt i-lt
by auto

have elem-prop1 : last ?c1-vts = ?y
by (metis (no-types, lifting) last.simps snoc-eq-iff-butlast)

have elem-prop2 : (vts ! 0 # (rev ?vts3 ) @ [vts ! i]) !
(length (vts ! 0 # drop i (drop 1 vts) @ [vts ! i]) − 1 ) = vts ! i

by (metis diff-Suc-1 length-Cons length-append-singleton length-rev nth-Cons-Suc
nth-append-length)

have path-image cutpath = path-image ?c3 ′ by simp
then have path-image ?p1 = path-image (?c1 +++ ?c3-rev)

using elem-prop1 assms make-polygonal-path-image-append-alt[of ?p1 ?p1-vts
?c1 ?c1-vts ?c3-rev ?c3-rev-vts]

by simp
also have ... = path-image ?c1 ∪ path-image ?c3-rev
by (metis (no-types, opaque-lifting) append-Cons append-Nil elem-prop1 hd-conv-nth

last-conv-nth list.discI list.sel(1 ) path-image-join polygon-pathfinish polygon-pathstart
rev.simps(2 ) rev-rev-ident)

finally have image-prop: path-image ?p1 = path-image ?c1 ∪ path-image cutpath
using rev-vts-path-image cutpath by presburger

have path-image ?c3 ′ = path-image ?c3
using cutpath rev-vts-path-image by force

then have path-image-p1 : path-image ?c1 ∪ path-image ?c3 = path-image ?p1
using image-prop by presburger

have ?p2-vts = ?c3-vts @ (tl ?c2-vts) by simp
then have path-image ?p2 = path-image (?c3 +++ ?c2 ′)

using make-polygonal-path-image-append-alt[of ?p2 ?p2-vts ?c3 ?c3-vts ?c2 ′

?c2-vts]
unfolding assms by auto

then have path-image-p2 : path-image ?c2 ∪ path-image ?c3 = path-image ?p2
by (metis (no-types, opaque-lifting) Un-commute append-Cons append-Nil cut-

path last-conv-nth nth-Cons-0 path-image-join path-image-reversepath polygon-pathfinish
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polygon-pathstart snoc-eq-iff-butlast)

have drop 1 vts = take (i − 1 ) (drop 1 vts) @ [vts ! i] @ drop i (drop 1 vts)
by (metis (no-types, lifting) Cons-eq-appendI Cons-nth-drop-Suc Suc-eq-plus1

Suc-pred ′ append.simps(1 ) append-take-drop-id drop-drop i-gt i-lt)
then have vts-is: vts @ [vts ! 0 ] = vts ! 0 # take (i − 1 ) (drop 1 vts) @ [vts !

i] @ drop i (drop 1 vts) @ [vts ! 0 ]
by (metis (no-types, opaque-lifting) Cons-nth-drop-Suc One-nat-def append.assoc

append-Cons drop0 i-lt length-pos-if-in-set nth-mem)
let ?vts1 ′ = take (i − 1 ) (drop 1 vts)
let ?vts2 ′ = drop i (drop 1 vts)
have path-im-p: path-image

(make-polygonal-path
((vts ! 0 # ?vts1 ′) @ [vts ! i] @ [vts ! i] @ ?vts2 ′ @ [vts ! 0 ])) =

path-image
(make-polygonal-path
((vts ! 0 # ?vts1 ′) @ [vts ! i] @ ?vts2 ′ @ [vts ! 0 ]))

using make-polygonal-path-image-append-helper [of vts ! 0 # ?vts1 ′ ?vts2 ′ @
[vts ! 0 ]] by auto

have path-image
(make-polygonal-path
((vts ! 0 # ?vts1 ′) @ [vts ! i] @ [vts ! i] @ ?vts2 ′ @ [vts ! 0 ])) = path-image

(make-polygonal-path ((vts ! 0 # ?vts1 ′) @ [vts ! i]) +++ (linepath (vts ! i) (vts !
i)) +++ make-polygonal-path ([vts ! i] @ ?vts2 ′ @ [vts ! 0 ]))

using make-polygonal-path-image-append[of (vts ! 0 # ?vts1 ′) @ [vts ! i] [vts !
i] @ ?vts2 ′ @ [vts ! 0 ]]

by (smt (verit) add-2-eq-Suc ′ append.assoc append-Cons diff-Suc-1 le-add2
length-Cons length-append-singleton nth-Cons-0 nth-append-length)

then have path-image p = path-image (make-polygonal-path ((vts ! 0 # ?vts1 ′)
@ [vts ! i]) +++ (linepath (vts ! i) (vts ! i)) +++ make-polygonal-path ([vts ! i] @
?vts2 ′ @ [vts ! 0 ]))

using path-im-p p-is vts-is
by simp

then have path-image p = path-image ?c1 ∪ path-image (linepath (vts ! i) (vts
! i)) ∪ path-image (make-polygonal-path ([vts ! i] @ ?vts2 ′ @ [vts ! 0 ]))

by (metis (no-types, lifting) Un-assoc append-Cons elem-prop1 list.discI nth-Cons-0
path-image-join pathfinish-linepath pathstart-join pathstart-linepath polygon-pathfinish
polygon-pathstart last-conv-nth)
moreover have ... = path-image ?c1 ∪ {vts ! i} ∪ path-image (make-polygonal-path

([vts ! i] @ ?vts2 ′ @ [vts ! 0 ]))
by auto

moreover have ... = path-image ?c1 ∪ path-image (make-polygonal-path ([vts !
i] @ ?vts2 ′ @ [vts ! 0 ]))

using vertices-on-path-image by fastforce
ultimately have path-image-p: path-image p = path-image ?c1 ∪ path-image

?c2
using path-image-reversepath by blast
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have simple-path-polygon: simple-path (make-polygonal-path (?x # ?vts2 @ ?y
# ?vts3 @ [?x]))

using polygon-p p-is vts-is
using Cons-eq-appendI append-self-conv2 polygon-def by auto

then have loop-free-polygon: loop-free (make-polygonal-path (?x # ?vts2 @ ?y
# ?vts3 @ [?x]))

unfolding simple-path-def by auto

have loop-free-p: loop-free p
using polygon-p p-is unfolding polygon-def simple-path-def by auto

have sublist-c1 : sublist (?x # ?vts2 @ [?y]) vts
using ‹vts ! 0 # take (i − 1 ) (drop 1 vts) @ [vts ! i] = take (i + 1 ) (vts @ [vts

! 0 ])› i-lt by auto
then have sublist-c1 : sublist (?x # ?vts2 @ [?y]) (vts@[vts !0 ])

by (metis ‹vts ! 0 # take (i − 1 ) (drop 1 vts) @ [vts ! i] = take (i + 1 ) (vts
@ [vts ! 0 ])› sublist-take)

then have loop-free ?c1
using sublist-is-loop-free p-is loop-free-p sublist-c1

by (metis One-nat-def Suc-1 Suc-eq-plus1 Suc-leI Suc-le-mono ‹vts ! 0 #
take (i − 1 ) (drop 1 vts) @ [vts ! i] = take (i + 1 ) (vts @ [vts ! 0 ])› i-gt i-lt
length-append-singleton less-imp-le-nat take-i-is-loop-free)

then have simple-c1 : simple-path ?c1
unfolding simple-path-def
using make-polygonal-path-gives-path by blast

have start-c1 : pathstart ?c1 = ?x
using polygon-pathstart
by (metis Cons-eq-appendI list.discI nth-Cons-0 )

have finish-c1 : pathfinish ?c1 = ?y
using polygon-pathfinish

by (metis Cons-eq-appendI diff-Suc-1 length-append-singleton list.discI nth-append-length)

have sublist-c2 : sublist ([?y] @ ?vts3 @ [?x]) (vts@[vts !0 ])
by (metis ‹[vts ! i] @ drop i (drop 1 vts) @ [vts ! 0 ] = drop i (vts @ [vts ! 0 ])›

sublist-drop)
have i ≤ length (tl vts) using i-lt by fastforce
then have loop-free ?c2

by (metis (no-types) Suc-1 ‹[vts ! i] @ drop i (drop 1 vts) @ [vts ! 0 ] = drop
i (vts @ [vts ! 0 ])› ‹vts 6= []› butlast-snoc drop-Suc drop-i-is-loop-free length-butlast
length-drop loop-free-p loop-free-reversepath p-is tl-append2 )

then have simple-c2 : simple-path ?c2
unfolding simple-path-def
using make-polygonal-path-gives-path
using path-imp-reversepath by blast

have start-c2 : pathstart ?c2 = ?x
using polygon-pathfinish
by (metis (no-types, lifting) Nil-is-append-conv last-appendR last-conv-nth path-

start-reversepath polygon-pathfinish snoc-eq-iff-butlast)
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have finish-c2 : pathfinish ?c2 = ?y
using polygon-pathstart by auto

have path-image-int: path-image ?c1 ⊆ path-image ?p
unfolding path-image-def
by (metis Un-upper1 p-is path-image-def path-image-p)

moreover have path-image ?p ∩ path-image ?c3 ⊆ {vts ! 0 , vts ! i}
using have-cut unfolding is-polygon-cut-path-def
by (metis (no-types, lifting) Int-commute append-Cons append-is-Nil-conv cut-

path last-appendR last-conv-nth last-snoc not-Cons-self2 nth-Cons-0 polygon-pathfinish
polygon-pathstart set-eq-subset)

ultimately have vts-subset-c1c3 : path-image ?c1 ∩ path-image ?c3 ⊆ {?x, ?y}
by blast

have other-subset1 : {vts ! 0 , vts ! i} ⊆ path-image ?c1
using vertices-on-path-image by fastforce

have other-subset2 : {vts ! 0 , vts ! i} ⊆ path-image ?c3
unfolding assms using vertices-on-path-image by force

then have c1-inter-c3 : path-image ?c1 ∩ path-image ?c3 = {vts ! 0 , vts ! i}
using vts-subset-c1c3 other-subset1 other-subset2 by blast

then have path-image ?c1 ∩ path-image ?c3-rev = {pathstart ?c1 , pathstart
?c3-rev}

by (metis rev-vts-path-image append-Cons append-Nil cutpath hd-conv-nth list.discI
list.sel(1 ) polygon-pathstart rev.simps(2 ) rev-rev-ident)

then have c1-inter-c3 ′: path-image (make-polygonal-path (vts ! 0 # take (i −
1 ) (drop 1 vts) @ [vts ! i])) ∩

path-image (make-polygonal-path (rev ([vts ! 0 ] @ cutvts @ [vts ! i])))
⊆ {pathstart (make-polygonal-path (vts ! 0 # take (i − 1 ) (drop 1 vts) @ [vts !

i])),
pathstart (make-polygonal-path (rev ([vts ! 0 ] @ cutvts @ [vts ! i])))}

by blast
have last-is-head: last ?c3-rev-vts = hd ?c1-vts by auto
have vts-append: vts ! 0 # take (i − 1 ) (drop 1 vts) @ rev ([vts ! 0 ] @ cutvts @

[vts ! i]) =
(vts ! 0 # take (i − 1 ) (drop 1 vts) @ [vts ! i]) @
tl (rev ([vts ! 0 ] @ cutvts @ [vts ! i]))
by simp

have loop-free: loop-free (make-polygonal-path (vts ! 0 # take (i − 1 ) (drop 1
vts) @ [vts ! i])) ∧

loop-free (make-polygonal-path (rev ([vts ! 0 ] @ cutvts @ [vts ! i])))
by (metis Suc-eq-plus1 Suc-le-mono Zero-neq-Suc ‹vts ! 0 # take (i − 1 ) (drop

1 vts) @ [vts ! i] = take (i + 1 ) (vts @ [vts ! 0 ])› cutpath diff-Suc-1 have-cut
i-gt i-lt is-polygon-cut-path-def length-append-singleton less-2-cases less-imp-le-nat
less-nat-zero-code linorder-le-less-linear loop-free-p p-is rev-vts-is-loop-free simple-path-def
take-i-is-loop-free)

have last-is-head2 :
last (vts ! 0 # take (i − 1 ) (drop 1 vts) @ [vts ! i]) =
hd (rev ([vts ! 0 ] @ cutvts @ [vts ! i])) by simp
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have arcs: arc (make-polygonal-path (vts ! 0 # take (i − 1 ) (drop 1 vts) @ [vts
! i])) ∧

arc (make-polygonal-path (rev ([vts ! 0 ] @ cutvts @ [vts ! i])))
using Nil-is-append-conv append-Cons constant-linepath-is-not-loop-free cutpath

finish-c1 have-cut hd-conv-nth is-polygon-cut-path-def last-appendR last-conv-nth
last-is-head last-is-head2 last-snoc list.sel(1 ) loop-free make-polygonal-path.simps(1 )
make-polygonal-path-gives-path polygon-pathfinish polygon-pathstart simple-path-def
simple-path-imp-arc loop-free

by (smt (verit, ccfv-SIG))
then have loop-free ?p1

using loop-free-append[of ?p1 ?p1-vts ?c1 ?c1-vts ?c3-rev ?c3-rev-vts,
OF - - - vts-append loop-free c1-inter-c3 ′ - last-is-head2 arcs] using

last-is-head by blast

then have simple-path ?p1
unfolding simple-path-def
using make-polygonal-path-gives-path by blast

moreover have closed-path ?p1
using polygon-pathstart polygon-pathfinish
unfolding closed-path-def
using elem-prop1 make-polygonal-path-gives-path
by (smt (verit, best) append-is-Nil-conv last-ConsR last-appendR last-conv-nth

last-snoc list.discI nth-Cons-0 rev-append singleton-rev-conv)
ultimately have polygon-p1 : polygon ?p1 unfolding polygon-def polygonal-path-def

by fastforce

have path-image-int: path-image ?c2 ⊆ path-image (make-polygonal-path (vts @
[vts ! 0 ]))

unfolding path-image-def using path-image-p
by (simp add: p-is path-image-def )

then have vts-subset-c2c3 : path-image ?c2 ∩ path-image ?c3 ⊆ {?x, ?y}
using have-cut unfolding is-polygon-cut-path-def using ‹path-image (make-polygonal-path

(vts @ [vts ! 0 ])) ∩ path-image cutpath ⊆ {vts ! 0 , vts ! i}› by auto
have other-subset3 : {vts ! 0 , vts ! i} ⊆ path-image ?c2

using vertices-on-path-image by fastforce
have other-subset4 : {vts ! 0 , vts ! i} ⊆ path-image ?c3

unfolding assms using vertices-on-path-image by fastforce
have c2-inter-c3 : path-image ?c2 ∩ path-image ?c3 = {vts ! 0 , vts ! i}

using vts-subset-c2c3 other-subset3 other-subset4 by blast
have path-p2 : path ?p2

using make-polygonal-path-gives-path by blast
have pathfinish ?p2 = vts ! 0

using polygon-pathfinish
by (metis Nil-is-append-conv last-appendR last-conv-nth last-snoc list.discI )

then have closed-p2 : closed-path ?p2
unfolding closed-path-def using polygon-pathstart
using path-p2 by auto
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have ([vts ! 0 ] @ cutvts @ [vts ! i]) @ drop i (drop 1 vts) @ [vts ! 0 ] =
([vts ! 0 ] @ cutvts @ [vts ! i]) @ tl ([vts ! i] @ drop i (drop 1 vts) @ [vts ! 0 ])

by force
moreover have loop-free cutpath ∧

loop-free (make-polygonal-path ([vts ! i] @ drop i (drop 1 vts) @ [vts ! 0 ]))
by (metis ‹loop-free (reversepath (make-polygonal-path ([vts ! i] @ drop i

(drop 1 vts) @ [vts ! 0 ])))› cutpath loop-free loop-free-reversepath rev-rev-ident
rev-vts-is-loop-free reversepath-reversepath)

moreover have path-image cutpath ∩ path-image (make-polygonal-path ([vts ! i]
@ drop i (drop 1 vts) @ [vts ! 0 ]))

⊆ {pathstart cutpath,
pathstart (make-polygonal-path ([vts ! i] @ drop i (drop 1 vts) @ [vts ! 0 ]))}

using c2-inter-c3 cutpath polygon-pathstart by auto
moreover have last ([vts ! i] @ drop i (drop 1 vts) @ [vts ! 0 ]) 6= hd ([vts ! 0 ]

@ cutvts @ [vts ! i]) −→
path-image cutpath ∩ path-image (make-polygonal-path ([vts ! i] @ drop i (drop

1 vts) @ [vts ! 0 ]))
⊆ {pathstart (make-polygonal-path ([vts ! i] @ drop i (drop 1 vts) @ [vts ! 0 ]))}

by simp
moreover have last ([vts ! 0 ] @ cutvts @ [vts ! i]) = hd ([vts ! i] @ drop i (drop

1 vts) @ [vts ! 0 ])
by simp

moreover have arc cutpath ∧ arc (make-polygonal-path ([vts ! i] @ drop i (drop
1 vts) @ [vts ! 0 ]))

by (metis (no-types, lifting) arc-simple-path arcs calculation(2 ) finish-c1 fin-
ish-c2 have-cut is-polygon-cut-path-def make-polygonal-path-gives-path pathfinish-reversepath
pathstart-reversepath simple-path-def start-c1 start-c2 )

ultimately have loop-free ?p2
using loop-free-append[of ?p2 ?p2-vts ?c3 ?c3-vts ?c2 ′ ?c2 ′-vts,

OF - - -] using cutpath by blast
then have polygon-p2 : polygon ?p2
using path-p2 closed-p2 unfolding polygon-def simple-path-def polygonal-path-def

by blast

have simple-c3 : simple-path ?c3
using have-cut unfolding is-polygon-cut-path-def by meson

have start-c3 : pathstart ?c3 = ?x unfolding assms using polygon-pathstart by
simp

have finish-c3 : pathfinish ?c3 = ?y unfolding assms using polygon-pathfinish
by simp

have pathstart cutpath = ?x using assms polygon-pathstart by force
moreover have pathfinish cutpath = ?y using assms polygon-pathfinish by simp
ultimately have vts-neq: vts ! 0 6= vts ! i

using have-cut unfolding is-polygon-cut-path-def by force
have c1-inter-c2 : path-image ?c1 ∩ path-image ?c2 = {vts ! 0 , vts ! i}
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proof−
obtain i where i1 : (?x # ?vts2 @ [?y] = take i (vts @ [vts!0 ])) and

i2 : ([?y] @ ?vts3 @ [?x] = drop (i−1 ) (vts @ [vts!0 ]))
by (metis ‹[vts ! i] @ drop i (drop 1 vts) @ [vts ! 0 ] = drop i (vts @ [vts ! 0 ])›

‹vts ! 0 # take (i − 1 ) (drop 1 vts) @ [vts ! i] = take (i + 1 ) (vts @ [vts ! 0 ])›
add.commute add-diff-cancel-left ′)

moreover have 1 : i ≥ 1 ∧ i < length (vts @ [vts!0 ])
by (metis (no-types, lifting) bot-nat-0 .extremum less-one Nil-is-append-conv ap-

pend-Cons calculation diff-is-0-eq drop-Cons ′ linorder-not-less list.inject not-Cons-self2
same-append-eq take-all vts-is vts-neq)

moreover have 2 : ?p = make-polygonal-path (vts @ [vts!0 ]) ∧ loop-free ?p
unfolding polygon-of-def using p-is polygon-p unfolding polygon-def sim-

ple-path-def by blast
ultimately have path-image ?c1 ∩ path-image (make-polygonal-path ([?y] @

?vts3 @ [?x])) ⊆ {pathstart ?c1 , pathstart (make-polygonal-path ([?y] @ ?vts3 @
[?x]))}

using loop-free-split-int[of ?p vts @ [vts!0 ] ?x # ?vts2 @ [?y] i [?y] @ ?vts3
@ [?x] ?c1 make-polygonal-path ([?y] @ ?vts3 @ [?x]) length (vts @ [vts!0 ]),

OF 2 i1 i2 - - - 1 ]
by presburger

moreover have path-image ?c2 = path-image (make-polygonal-path ([?y] @
?vts3 @ [?x])) using path-image-reversepath by fast

moreover have pathstart (make-polygonal-path ([?y] @ ?vts3 @ [?x])) = ?y
using polygon-pathstart by auto

moreover have pathstart ?c1 = ?x using polygon-pathstart by auto
ultimately show ?thesis

using other-subset1 other-subset3 subset-antisym by force
qed

have non-empty-inter : path-image ?c3 ∩ inside(path-image ?c1 ∪ path-image
?c2 ) 6= {}

using have-cut path-image-p p-is
unfolding is-polygon-cut-path-def path-inside-def
by fastforce

have p1-minus: ((path-image ?p1 ) − (path-image ?c3 )) = path-image ?c1 − {?x,
?y}

using c1-inter-c3 path-image-p1 by blast
have p2-minus: ((path-image ?p2 ) − (path-image ?c3 )) = path-image ?c2 − {?x,

?y}
using c2-inter-c3 path-image-p2 by auto

then have path-im-intersect-minus: ((path-image ?p1 ) − (path-image ?c3 )) ∩
((path-image ?p2 ) − (path-image (linepath ?x ?y))) = {}

using c1-inter-c2 p1-minus p2-minus
by blast

have ((path-image ?p1 ) − (path-image ?c3 )) ∪ ((path-image ?p2 ) − (path-image
?c3 )) ∪ {?x, ?y} = ((path-image ?p1 ) − (path-image ?c3 ) ∪ {?x, ?y}) ∪ ((path-image
?p2 ) − (path-image ?c3 ) ∪ {?x, ?y})
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by auto
then have ((path-image ?p1 ) − (path-image (?c3 ))) ∪ ((path-image ?p2 ) −

(path-image (?c3 ))) ∪ {?x, ?y} = ((path-image ?c1 ) − {?x, ?y} ∪ {?x, ?y}) ∪
((path-image ?c2 ) − {?x, ?y} ∪ {?x, ?y})

using p1-minus p2-minus by simp
then have ((path-image ?p1 ) − (path-image (?c3 ))) ∪ ((path-image ?p2 ) −

(path-image (?c3 ))) ∪ {?x, ?y} = path-image ?c1 ∪ path-image ?c2
using other-subset1 other-subset3 by auto

then have path-im-intersect-union: path-image ?p = ((path-image ?p1 ) − (path-image
(?c3 ))) ∪ ((path-image ?p2 ) − (path-image (?c3 ))) ∪ {?x, ?y}

using path-image-p p-is by auto

have inside(path-image ?c1 ∪ path-image ?c3 ) ∩ inside(path-image ?c2 ∪ path-image
?c3 ) = {}
using split-inside-simple-closed-curve-real2 [OF simple-c1 start-c1 finish-c1 sim-

ple-c2 start-c2 finish-c2
simple-c3 start-c3 finish-c3 vts-neq c1-inter-c2 c1-inter-c3 c2-inter-c3

non-empty-inter ]
by fast
then have empty-inter : path-inside ?p1 ∩ path-inside ?p2 = {}

using path-image-p1 path-image-p2 unfolding path-inside-def
by force

have inside(path-image ?c1 ∪ path-image ?c3 ) ∪ inside(path-image ?c2 ∪
path-image ?c3 ) ∪

(path-image ?c3 − {vts ! 0 , vts ! i}) = inside(path-image ?c1 ∪ path-image
?c2 )

using split-inside-simple-closed-curve-real2 [OF simple-c1 start-c1 finish-c1 sim-
ple-c2 start-c2 finish-c2

simple-c3 start-c3 finish-c3 vts-neq c1-inter-c2 c1-inter-c3 c2-inter-c3
non-empty-inter ]

by fast
then have inside: path-inside ?p1 ∪ path-inside ?p2 ∪ (path-image ?c3 − {?x,

?y}) = path-inside p
using path-image-p1 path-image-p1 path-image-p unfolding path-inside-def

by (smt (z3 ) Diff-cancel Int-Un-distrib2 c1-inter-c2 c1-inter-c3 finish-c1 inf-commute
inf-sup-absorb nonempty-simple-path-endless path-image-p2 simple-c1 start-c1 )

have first-part: 0 < length vts ∧
i < length vts ∧
0 < i
using assms
by auto

have second-part-helper : is-polygon-cut-path (vts @ [vts ! 0 ]) cutpath ∧
polygon ?p ∧
polygon ?p1 ∧
polygon ?p2 ∧
path-inside ?p1 ∩ path-inside ?p2 = {} ∧

path-inside ?p1 ∪ path-inside ?p2 ∪ (path-image (?c3 ) − {?x, ?y}) =
path-inside p
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∧ ((path-image ?p1 ) − (path-image (?c3 ))) ∩ ((path-image ?p2 ) − (path-image
(?c3 ))) = {}
∧ path-image ?p = ((path-image ?p1 ) − (path-image (?c3 ))) ∪ ((path-image

?p2 ) − (path-image (?c3 ))) ∪ {?x, ?y}
using polygon-p p-is polygon-p1 polygon-p2 empty-inter inside have-cut path-im-intersect-minus

path-im-intersect-union
proof−
have {} = path-image cutpath ∪ path-image (make-polygonal-path (vts ! 0 # take

(i − 1 ) (drop 1 vts) @ [vts ! i])) ∩ path-image (reversepath (make-polygonal-path
([vts ! i] @ drop i (drop 1 vts) @ [vts ! 0 ]))) − path-image cutpath

using c1-inter-c2 c2-inter-c3 by fastforce
then have {} = (path-image cutpath ∪ path-image (make-polygonal-path (vts

! 0 # take (i − 1 ) (drop 1 vts) @ [vts ! i]))) ∩ (path-image cutpath ∪ path-image
(reversepath (make-polygonal-path ([vts ! i] @ drop i (drop 1 vts) @ [vts ! 0 ])))) −
path-image cutpath

by blast
then show ?thesis

using empty-inter have-cut inside polygon-p1 polygon-p2 Int-Diff image-prop
p-is path-im-intersect-union path-image-p2 polygon-p

by auto
qed
have vts-relation: (let vts1 = take 0 vts; vts2 = take (i − 0 − 1 ) (drop (Suc 0 )

vts);
vts3 = drop (i − 0 ) (drop (Suc 0 ) vts); x = vts ! 0 ; y = vts ! i;
p = make-polygonal-path (vts @ [vts ! 0 ]); p1 = make-polygonal-path (x #

vts2 @ ?c3-rev-vts);
p2 = make-polygonal-path (?c3-vts @ vts3 @ [x]) in
vts1 = [] ∧ vts2 = ?vts2 ∧ vts3 = ?vts3 ∧ p = ?p ∧ p1 = ?p1 ∧ p2 =

?p2 )
by simp

have second-part: (let vts1 = take 0 vts; vts2 = take (i − 0 − 1 ) (drop (Suc 0 )
vts);

vts3 = drop (i − 0 ) (drop (Suc 0 ) vts); x = vts ! 0 ; y = vts ! i;
p = make-polygonal-path (vts @ [vts ! 0 ]); p1 = make-polygonal-path (x #

vts2 @ ?c3-rev-vts);
p2 = make-polygonal-path (vts1 @ ?c3-vts @ vts3 @ [vts ! 0 ])

in is-polygon-cut-path (vts @ [vts ! 0 ]) cutpath ∧
polygon p ∧
polygon p1 ∧
polygon p2 ∧
path-inside p1 ∩ path-inside p2 = {} ∧

path-inside p1 ∪ path-inside p2 ∪ (path-image cutpath − {x, y}) = path-inside
p
∧ ((path-image p1 ) − (path-image (cutpath))) ∩ ((path-image p2 ) − (path-image

(cutpath))) = {} ∧
path-image p = ((path-image p1 ) − (path-image (cutpath))) ∪ ((path-image

p2 ) − (path-image (cutpath))) ∪ {x, y})
using second-part-helper vts-relation p-is
by (metis self-append-conv2 )
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show ?thesis
unfolding is-polygon-split-path-def [of vts 0 i cutvts]
using first-part second-part
by (smt (verit, ccfv-threshold) append-Cons append-Nil cutpath rev.simps(2 )

rev-append rev-is-Nil-conv)
qed

lemma polygon-cut-path-to-split-path:
fixes p :: R-to-R2
assumes polygon p

p = make-polygonal-path (vts @ [vts ! 0 ])
is-polygon-cut-path (vts @ [vts!0 ]) cutpath
vts1 ≡ (take i vts)
vts2 ≡ (take (j − i − 1 ) (drop (Suc i) vts))
vts3 ≡ drop (j − i) (drop (Suc i) vts)
x ≡ vts ! i
y ≡ vts ! j
cutpath = make-polygonal-path ([x] @ cutvts @ [y])
i < length vts ∧ j < length vts ∧ i < j
p1 ≡ make-polygonal-path (x#(vts2@([y] @ (rev cutvts) @ [x]))) and
p2 ≡ make-polygonal-path (vts1 @ ([x] @ cutvts @ [y]) @ vts3 @ [(vts1 @

[x]) ! 0 ])
shows is-polygon-split-path vts i j cutvts

proof−
let ?poly-vts-rot = rotate-polygon-vertices (vts @ [vts ! 0 ]) i
let ?vts-rot = butlast ?poly-vts-rot
let ?p-rot = make-polygonal-path ?poly-vts-rot
let ?i-rot = j − i
have rot-poly: polygon ?p-rot using assms(1 ) assms(2 ) rotation-is-polygon by

blast
have i-rot: ?i-rot > 0 ∧ ?i-rot < length ?poly-vts-rot − 1

using assms(10 ) rotate-polygon-vertices-same-length by fastforce
have vtsi: vts ! i = ?poly-vts-rot ! 0

using rotated-polygon-vertices[of ?poly-vts-rot vts @ [vts!0 ] i i]
by (metis (no-types, lifting) One-nat-def Suc-1 assms(10 ) diff-self-eq-0 hd-conv-nth

last-snoc length-append-singleton less-imp-le-nat linorder-not-le not-less-eq-eq nth-append
take-all-iff take-eq-Nil)

have vtsj: vts ! j = ?poly-vts-rot ! ?i-rot
using rotated-polygon-vertices[of ?poly-vts-rot vts @ [vts!0 ] i j]
by (smt (verit, ccfv-SIG) One-nat-def Suc-1 assms(10 ) butlast-snoc hd-append2

hd-conv-nth last-snoc leD length-append-singleton less-Suc-eq-le less-imp-le-nat not-less-eq-eq
nth-butlast take-all-iff take-eq-Nil)

have is-polygon-cut-path ?poly-vts-rot cutpath
proof−

have ?poly-vts-rot ! 0 6= ?poly-vts-rot ! ?i-rot
using assms(3 ) unfolding is-polygon-cut-path-def using vtsi vtsj

using append-Cons append-is-Nil-conv assms(7 ) assms(8 ) assms(9 ) last-appendR
last-conv-nth polygon-pathfinish polygon-pathstart

by force
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moreover have {?poly-vts-rot ! 0 , ?poly-vts-rot ! ?i-rot} ⊆ set (?poly-vts-rot
@ [?poly-vts-rot ! 0 ])

using assms(3 ) unfolding is-polygon-cut-path-def using i-rot vtsi vtsj by
fastforce

moreover have path-image cutpath ∩ path-image ?p-rot = {?poly-vts-rot ! 0 ,
?poly-vts-rot ! ?i-rot}

using polygon-vts-arb-rotation vtsi vtsj assms(3 ) is-polygon-cut-path-def
by (metis (no-types, lifting) append.assoc append-Cons assms(7 ) assms(8 )

assms(9 ) last-conv-nth nth-Cons-0 polygon-pathfinish polygon-pathstart snoc-eq-iff-butlast)
moreover have path-image cutpath ∩ path-inside (?p-rot) 6= {}

using vtsi vtsj assms(3 ) polygon-vts-arb-rotation
unfolding is-polygon-cut-path-def path-inside-def by metis

ultimately show ?thesis
unfolding is-polygon-cut-path-def

using rot-poly assms(3 ) is-polygon-cut-path-def rotate-polygon-vertices-same-set
vtsi vtsj

by (metis polygon-vts-arb-rotation)
qed
then have rot-cut: is-polygon-cut-path (?vts-rot @ [?vts-rot!0 ]) cutpath

by (metis butlast-snoc rotate-polygon-vertices-def )
have rot-cut-butlast: make-polygonal-path ?poly-vts-rot = make-polygonal-path

(?vts-rot @ [?vts-rot!0 ])
by (metis butlast-snoc rotate-polygon-vertices-def )

have split-rot: is-polygon-split-path ?vts-rot 0 ?i-rot cutvts
using rot-cut rot-cut-butlast
by (smt (verit, ccfv-SIG) assms(7 ) assms(8 ) assms(9 ) dual-order .strict-trans

i-rot is-polygon-cut-path-def length-butlast nth-butlast polygon-cut-path-to-split-path-vtx0
vtsi vtsj)

let ?vts1-rot = take 0 ?vts-rot
let ?vts2-rot = take (j − i − 0 − 1 ) (drop (Suc 0 ) ?vts-rot)
let ?vts3-rot = drop (j − i − 0 ) (drop (Suc 0 ) ?vts-rot)
let ?x-rot = ?vts-rot ! 0
let ?y-rot = ?vts-rot ! (j − i)
let ?p1-rot-vts = ?x-rot # ?vts2-rot @ [?y-rot] @ (rev cutvts) @ [?x-rot]
let ?p1-rot = make-polygonal-path ?p1-rot-vts
let ?p2-rot-vts = ?vts1-rot @ [?x-rot] @ cutvts @ [?y-rot] @ ?vts3-rot @ [?vts-rot

! 0 ]
let ?p2-rot = make-polygonal-path ?p2-rot-vts

let ?p1-vts = x # vts2 @ [y] @ (rev cutvts) @ [x]
let ?p2-vts = vts1 @ [x] @ cutvts @ [y] @ vts3 @ [(vts1 @ [x]) ! 0 ]

have p2-firstlast: hd ?p2-vts = last ?p2-vts
by (metis (no-types, lifting) append-is-Nil-conv append-self-conv2 hd-append2

hd-conv-nth last-appendR last-snoc list.discI list.sel(1 ))

have length (drop (Suc i) vts) = length vts − i − 1
by simp
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then have len-prop: length (drop (Suc i) vts) ≥ j − i − 1
using assms(9 ) assms(10 ) diff-le-mono less-or-eq-imp-le by presburger

have drop-take: rotate i vts = drop i vts @ take i vts
using rotate-drop-take[of i vts] assms(10 ) mod-less by presburger

then have drop-take-suc: drop (Suc 0 ) (rotate i vts) = drop (Suc i) vts @ take
i vts

using assms(10 ) by simp
then have take (j − Suc i) (drop (Suc 0 ) (rotate i vts)) = take (j − Suc i) (drop

(Suc i) vts)
using len-prop by force

then have vts2 : take (j − i − 0 − 1 ) (drop (Suc 0 ) (butlast (rotate-polygon-vertices
(vts @ [vts ! 0 ]) i))) = vts2

using assms(5 ) unfolding rotate-polygon-vertices-def
by (metis Suc-eq-plus1 butlast-snoc diff-diff-left diff-zero)

have xy: ?x-rot = x ∧ ?y-rot = y
using vtsi vtsj assms by (metis is-polygon-split-path-def nth-butlast split-rot)

moreover have path-image p = path-image ?p-rot
using assms(1 ) assms(2 ) polygon-vts-arb-rotation by auto

moreover then have path-inside p = path-inside ?p-rot unfolding path-inside-def
by simp

moreover have ?p1-rot-vts = ?p1-vts using xy vts2 by presburger
moreover then have path-image p1 = path-image ?p1-rot using assms by argo
moreover then have path-inside p1 = path-inside ?p1-rot unfolding path-inside-def

by argo
moreover have polygon p1

using calculation split-rot assms(11 ) unfolding is-polygon-split-path-def
by (smt (verit, ccfv-SIG) vts2 )

moreover have ?p2-rot-vts = rotate-polygon-vertices ?p2-vts i
proof−

have butlast (vts1 @ [x] @ cutvts @ [y] @ vts3 @ [(vts1 @ [x]) ! 0 ])
= vts1 @ [x] @ cutvts @ [y] @ vts3

by (simp add: butlast-append)
also have rotate i ... = [x] @ cutvts @ [y] @ vts3 @ vts1

using assms(4 )
by (metis (no-types, lifting) drop-take add-diff-cancel-right ′ append.assoc

assms(10 ) diff-diff-cancel length-append length-drop length-rotate less-imp-le-nat
rotate-append)

finally have rotate-polygon-vertices ?p2-vts i = [x] @ cutvts @ [y] @ vts3 @
vts1 @ [x]

unfolding rotate-polygon-vertices-def by simp
moreover have ?vts3-rot = vts3 @ vts1

using assms(4 ,6 ) unfolding rotate-polygon-vertices-def
by (smt (verit, del-insts) One-nat-def Suc-diff-Suc Suc-leI drop-take-suc

assms(10 ) butlast-snoc diff-is-0-eq diff-zero drop0 drop-append i-rot le-add-diff-inverse
len-prop length-drop nat-less-le)
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ultimately show ?thesis by (simp add: xy)
qed
moreover then have polygon p2

using unrotation-is-polygon[of ?p2-vts i p2 ] split-rot assms(12 ) p2-firstlast
unfolding is-polygon-split-path-def
by (smt (verit) append.assoc)

moreover then have path-image p2 = path-image (?p2-rot)
using assms(12 ) polygon-vts-arb-rotation calculation by auto

moreover then have path-inside p2 = path-inside ?p2-rot unfolding path-inside-def
by presburger

ultimately show is-polygon-split-path vts i j cutvts
using split-rot unfolding is-polygon-split-path-def
using One-nat-def assms bot-nat-0 .not-eq-extremum butlast-snoc hd-append2

hd-conv-nth hd-take le-add2 length-0-conv length-Cons length-append length-butlast
nth-append-length rot-cut-butlast rotate-polygon-vertices-same-length take-eq-Nil

by (smt (verit) append.assoc butlast-conv-take have-wraparound-vertex is-polygon-cut-path-def
rotate-polygon-vertices-same-set)
qed

lemma good-polygonal-path-implies-polygon-split-path:
assumes polygon p
assumes p = make-polygonal-path (vts @ [vts!0 ])
assumes good-polygonal-path v1 cutvts v2 (vts @ [vts!0 ])
assumes i < length vts ∧ j < length vts
assumes vts ! i = v1
assumes vts ! j = v2
assumes i < j
shows is-polygon-split-path vts i j cutvts

proof−
let ?cutpath = make-polygonal-path ([v1 ] @ cutvts @ [v2 ])
let ?p-path = make-polygonal-path (vts @ [vts!0 ])
have linepath-subset: path-image ?cutpath ⊆ path-inside ?p-path ∪ {v1 , v2}

using assms(3 ) unfolding good-polygonal-path-def by meson
have linepath-ends: pathstart ?cutpath = v1 ∧ pathfinish ?cutpath = v2

using polygon-pathfinish polygon-pathstart by force
then have vs-subset1 : {v1 , v2} ⊆ path-image ?cutpath

using vertices-on-path-image by fastforce
have vs-subset2 : {v1 , v2} ⊆ path-image (make-polygonal-path (vts @ [vts ! 0 ]))

using assms(4−6 ) vertices-on-path-image[of vts]
using vertices-on-path-image by fastforce

have path-inside ?p-path ∩ path-image ?p-path = {}
using inside-outside-polygon[OF assms(1 )] assms(2 ) unfolding inside-outside-def
by blast

then have linepath-path: path-image ?cutpath ∩ path-image (make-polygonal-path
(vts @ [vts ! 0 ])) = {v1 , v2}

using linepath-subset vs-subset1 vs-subset2
by blast

have ?cutpath (5 / 10 ) ∈ path-image ?cutpath
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unfolding path-image-def by auto
have v1-neq-v2 : v1 6= v2

using assms(3 ) unfolding good-polygonal-path-def
by fastforce

have not-v1 : ?cutpath (0 .5 ::real) = v1 =⇒ False
proof −

assume ∗: ?cutpath (0 .5 ::real) = v1
then have ?cutpath (0 .5 ::real) = ?cutpath 0

using linepath-ends unfolding pathstart-def by simp
moreover have loop-free ?cutpath using assms unfolding good-polygonal-path-def

by metis
ultimately show False unfolding loop-free-def by fastforce

qed
have not-v2 : ?cutpath (0 .5 ::real) = v2 =⇒ False
proof−

assume ∗: ?cutpath (0 .5 ::real) = v2
then have ?cutpath (0 .5 ::real) = ?cutpath 1

using linepath-ends unfolding pathfinish-def by simp
moreover have loop-free ?cutpath using assms unfolding good-polygonal-path-def

by metis
ultimately show False unfolding loop-free-def by fastforce

qed
then have ?cutpath (0 .5 ::real) 6= v1 ∧ ?cutpath (0 .5 ::real) 6= v2

using not-v1 not-v2 by auto
then have linepath-inside: path-image ?cutpath ∩ path-inside (make-polygonal-path

(vts @ [vts ! 0 ])) 6= {}
using linepath-subset
using ‹?cutpath (5 / 10 ) ∈ path-image ?cutpath› by blast

have is-polygon-cut-path (vts @ [vts!0 ]) ?cutpath
using assms(3 ) assms(1−2 ) unfolding good-polygonal-path-def is-polygon-cut-path-def
using linepath-path linepath-inside
by (metis linepath-ends make-polygonal-path-gives-path simple-path-def )

then show ?thesis using polygon-cut-path-to-split-path assms by blast
qed

lemma good-path-iff :
good-linepath a b vts ←→ good-polygonal-path a [] b vts
unfolding good-linepath-def good-polygonal-path-def
using linepath-loop-free by auto

lemma polygon-cut-iff : is-polygon-cut (vts @ [vts!0 ]) (vts!i) (vts!j)
←→ is-polygon-cut-path (vts @ [vts!0 ]) (linepath (vts!i) (vts!j))

unfolding is-polygon-cut-def is-polygon-cut-path-def
by (metis pathfinish-linepath pathstart-linepath simple-path-linepath)

lemma polygon-split-iff : is-polygon-split vts i j ←→ is-polygon-split-path vts i j []
unfolding is-polygon-split-def is-polygon-split-path-def
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by (smt (verit, ccfv-threshold) append-Cons append-Nil make-polygonal-path.simps(3 )
polygon-cut-iff rev.simps(1 ))

lemma polygon-cut-to-split-vtx0 :
fixes p :: R-to-R2
assumes polygon-p: polygon p and

i-gt: i > 0 and
i-lt: i < length vts and
p-is: p = make-polygonal-path (vts @ [vts ! 0 ]) and
have-cut: is-polygon-cut (vts @ [vts!0 ]) (vts!0 ) (vts!i)

shows is-polygon-split vts 0 i
using have-cut i-gt i-lt p-is polygon-cut-path-to-split-path-vtx0 polygon-cut-iff poly-

gon-p polygon-split-iff
by force

lemma polygon-cut-to-split:
fixes p :: R-to-R2
assumes is-polygon-cut (vts @ [vts!0 ]) (vts!i) (vts!j)

i < length vts ∧ j < length vts ∧ i < j
shows is-polygon-split vts i j
by (metis append-Cons append-Nil assms is-polygon-cut-def make-polygonal-path.simps(3 )

polygon-cut-path-to-split-path polygon-cut-iff polygon-split-iff )

lemma good-linepath-implies-polygon-split:
assumes polygon p
assumes p = make-polygonal-path (vts @ [vts!0 ])
assumes good-linepath v1 v2 (vts @ [vts!0 ])
assumes i < length vts ∧ j < length vts
assumes vts ! i = v1
assumes vts ! j = v2
assumes i < j
shows is-polygon-split vts i j
using assms good-path-iff good-polygonal-path-implies-polygon-split-path polygon-split-iff
by auto

end
theory Triangle-Lemmas
imports

Polygon-Convex-Lemmas
Integral-Matrix
Affine-Arithmetic.Floatarith-Expression
HOL−Analysis.Topology-Euclidean-Space
HOL−Analysis.Equivalence-Lebesgue-Henstock-Integration
HOL−Analysis.Inner-Product
HOL−Analysis.Line-Segment
HOL−Analysis.Convex-Euclidean-Space
HOL−Analysis.Change-Of-Vars

begin
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20 Triangles
definition elem-triangle :: real^2 ⇒ real^2 ⇒ real^2 ⇒ bool where

elem-triangle a b c ←→
¬ collinear {a, b, c}
∧ integral-vec a ∧ integral-vec b ∧ integral-vec c
∧ {x. x ∈ convex hull {a, b, c} ∧ integral-vec x} = {a, b, c}

definition triangle-mat :: real^2 ⇒ real^2 ⇒ real^2 ⇒ real^2^2 where
triangle-mat a b c = transpose (vector [b − a, c − a])

definition triangle-linear :: real^2 ⇒ real^2 ⇒ real^2 ⇒ (real^2 ⇒ real^2 )
where

triangle-linear a b c = (λx. (triangle-mat a b c) ∗v x)

definition triangle-affine :: real^2 ⇒ real^2 ⇒ real^2 ⇒ (real^2 ⇒ real^2 ) where
triangle-affine a b c = (λx. a + (triangle-mat a b c) ∗v x)

abbreviation unit-square ≡
(convex hull {vector [0 , 0 ], vector [0 , 1 ], vector [1 , 1 ], vector [1 , 0 ]})::((real^2 )

set)

abbreviation unit-triangle ≡
(convex hull {vector [0 , 0 ], vector [1 , 0 ], vector [0 , 1 ]})::((real^2 ) set)

abbreviation unit-triangle ′ ≡
(convex hull {vector [1 , 1 ], vector [1 , 0 ], vector [0 , 1 ]})::((real^2 ) set)

lemma triangle-inside-is-convex-hull-interior :
assumes polygon-of p [a, b, c, a]
shows path-inside p = interior (convex hull {a, b, c})

proof−
have path-image p = closed-segment a b ∪ closed-segment b c ∪ closed-segment

c a
proof−

have path-image (linepath a b) = closed-segment a b by simp
moreover have path-image (linepath b c) = closed-segment b c by simp
moreover have path-image (linepath c a) = closed-segment c a by simp

moreover have path-image p = path-image (linepath a b) ∪ path-image (linepath
b c) ∪ path-image (linepath c a)

using calculation assms(1 ) unfolding polygon-of-def make-polygonal-path.simps
by (simp add: path-image-join sup-assoc)

ultimately show ?thesis by simp
qed
moreover have DIM ((real, 2 ) vec) = 2 by simp
ultimately show ?thesis using inside-of-triangle[of a b c] unfolding path-inside-def

by presburger
qed
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lemma triangle-is-convex:
assumes p = make-triangle a b c and ¬ collinear {a, b, c}
shows convex (path-inside p) (is convex ?s)
using triangle-inside-is-convex-hull-interior assms(1 ) assms(2 )
using make-triangle-def polygon-of-def triangle-is-polygon
by auto

lemma affine-comp-linear-trans: triangle-affine a b c = (λx. x + a) ◦ (triangle-linear
a b c)

apply (simp add: triangle-affine-def triangle-linear-def )
by auto

lemma triangle-linear-der :
fixes a b c :: real^2
defines T ≡ triangle-linear a b c
shows (T has-derivative T ) (at x)

proof−
have linear T using T-def by (simp add: triangle-linear-def )
then have bounded-linear T by (simp add: linear-linear)
thus ?thesis using bounded-linear-imp-has-derivative by blast

qed

lemma triangle-affine-der :
fixes a b c :: real^2
assumes S ∈ sets lebesgue and x ∈ S
defines A ≡ triangle-affine a b c and T ≡ triangle-linear a b c
shows x ∈ S =⇒ (A has-derivative T ) (at x within S)

proof−
assume xin: x ∈ S
let ?trans = λx::real^2 . x + a
have comp: (?trans ◦ T ) = (λx. (T x) + a)

by auto
have ∀ x. A x = (?trans ◦ T ) x unfolding A-def T-def using affine-comp-linear-trans

by auto
moreover then have Ax-is: (

∧
x. x ∈ S =⇒ A x = ((λx. x + a) ◦ T ) x)

by auto
moreover have trans-der : (?trans has-derivative id) (at x within S)

by (metis (full-types) add.commute assms(2 ) eq-id-iff has-derivative-transform
shift-has-derivative-id)
moreover have Tder : (T has-derivative T ) (at x within S) using triangle-linear-der

by (simp add: T-def bounded-linear-imp-has-derivative triangle-linear-def )
moreover have comp-der : ((?trans ◦ T ) has-derivative T ) (at x within S)

using has-derivative-add-const[OF Tder ] comp
by simp

ultimately show (A has-derivative T ) (at x within S)
using triangle-affine-def triangle-linear-def affine-comp-linear-trans o-apply

add.commute vector-derivative-chain-within assms(2 ) has-derivative-add-const has-derivative-transform
A-def T-def

by force
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qed

lemma triangle-linear-inj:
fixes a b c :: real^2
assumes ¬ collinear {a, b, c}
defines L ≡ triangle-linear a b c
shows inj L

proof−
let ?M = triangle-mat a b c
let ?m-11 = (b − a)$1
let ?m-12 = (c − a)$1
let ?m-21 = (b − a)$2
let ?m-22 = (c − a)$2
have det ?M = ?m-11∗?m-22 − ?m-12∗?m-21

unfolding triangle-mat-def
by (metis det-2 det-transpose mult.commute vector-2 (1 ) vector-2 (2 ))

moreover have ?m-11∗?m-22 6= ?m-12∗?m-21
proof(rule ccontr)

assume ¬ ?m-11∗?m-22 6= ?m-12∗?m-21
then have eq: ?m-11∗?m-22 = ?m-12∗?m-21 by simp
{ assume ∗: ?m-21 = 0 ∧ ?m-22 6= 0

then have ?m-11 = 0 using eq by simp
then have ?m-11 = 0 ∧ ?m-21 = 0 using ∗ by auto
then have b − a = 0 by (metis (no-types, opaque-lifting) exhaust-2 vec-eq-iff

zero-index)
then have collinear {a, b, c} by simp
then have False using assms by fastforce

} moreover
{ assume ∗: ?m-21 6= 0 ∧ ?m-22 = 0

then have ?m-12 = 0 using eq by simp
then have ?m-12 = 0 ∧ ?m-22 = 0 using ∗ by auto
then have c − a = 0 by (metis (no-types, opaque-lifting) exhaust-2 vec-eq-iff

zero-index)
then have collinear {a, b, c} by (simp add: collinear-3-eq-affine-dependent)
then have False using assms by fastforce

} moreover
{ assume ∗: ?m-21 = 0 ∧ ?m-22 = 0

{ assume ?m-11 = 0
then have b − a = 0 using ∗

by (metis (no-types, opaque-lifting) exhaust-2 vec-eq-iff zero-index)
then have False using assms(1 ) by auto

} moreover
{ assume ?m-11 6= 0

then obtain k where ?m-12 = k ∗ ?m-11 using nonzero-divide-eq-eq by
blast

moreover have ?m-22 = k ∗ ?m-21 using ∗ by auto
ultimately have c − a = k ∗R (b − a)

by (smt (verit, del-insts) exhaust-2 real-scaleR-def vec-eq-iff vector-scaleR-component)
then have collinear {a, b, c}
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using vec-diff-scale-collinear [of c a k b] by (simp add: insert-commute)
then have False using assms(1 ) by fastforce

}
ultimately have False using assms by fastforce

} moreover
{ assume ∗: ?m-21 6= 0 ∧ ?m-22 6= 0

then have ?m-11/?m-21 = ?m-12/?m-22 using eq frac-eq-eq by blast
then obtain m where ?m-11 = m∗?m-12 ∧ ?m-21 = m∗?m-22

using nonzero-divide-eq-eq ∗
by (metis (no-types, lifting) mult.commute times-divide-eq-left)

then have b − a = m ∗s (c − a)
by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-smult-component)

then have b − a = m ∗R (c − a) by (simp add: scalar-mult-eq-scaleR)
then have collinear {a, b, c} using vec-diff-scale-collinear by auto
then have False using assms by auto

}
ultimately show False by fastforce

qed
ultimately have det ?M 6= 0 by linarith
thus ?thesis by (simp add: L-def inj-matrix-vector-mult invertible-det-nz trian-

gle-linear-def )
qed

lemma triangle-affine-inj:
fixes a b c :: real^2
assumes ¬ collinear {a, b, c}
defines A ≡ triangle-affine a b c
shows inj A

proof−
have inj (triangle-linear a b c) using triangle-linear-inj[of a b c] assms by auto
moreover have inj (λx. x + a) by simp
moreover have A = (λx. x + a) ◦ (triangle-linear a b c)

by (simp add: A-def affine-comp-linear-trans)
ultimately show ?thesis using inj-compose by blast

qed

lemma triangle-linear-integrable:
fixes a b c :: real^2
assumes S ∈ lmeasurable
defines T ≡ triangle-linear a b c
shows (λx. abs (det (matrix (T )))) integrable-on S (is (λx. ?c) integrable-on S)
using integrable-on-const[of S ?c] assms(1 ) by blast

lemma measure-differentiable-image-eq-affine:
fixes a b c :: real^2
defines A ≡ triangle-affine a b c and T ≡ triangle-linear a b c
assumes S ∈ lmeasurable and ¬ collinear {a, b, c}
shows measure lebesgue (A ‘ S) = integral S (λx. abs (det (matrix T )))

proof−
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have
∧

x. x ∈ S =⇒ (A has-derivative T ) (at x within S)
using triangle-affine-der A-def T-def assms(3 ) by blast

moreover have inj-on A S
using A-def assms(3 ) assms(4 ) triangle-affine-inj inj-on-subset by blast

moreover have (λx. abs (det (matrix (T )))) integrable-on S
by (simp add: T-def assms(3 ) triangle-linear-integrable)

ultimately show ?thesis
using measure-differentiable-image-eq[of - - λx. T ] assms(3 ) by blast

qed

lemma triangle-affine-img:
fixes a b c :: real^2
defines A ≡ triangle-affine a b c
shows convex hull {a, b, c} = A ‘ unit-triangle

proof−
let ?O = (vector [0 , 0 ])::real^2
let ?e1 = (vector [1 , 0 ])::real^2
let ?e2 = (vector [0 , 1 ])::real^2

let ?translate-a = λx. x + a

let ?T = triangle-linear a b c

define al where al = ?T ?O
define bl where bl = ?T ?e1
define cl where cl = ?T ?e2

have a: a = ?translate-a al
proof−

have al = ?O
by (simp add: al-def mat-vec-mult-2 triangle-linear-def )

then show ?thesis
by (metis (no-types, opaque-lifting) add-0 mat-vec-mult-2 matrix-vector-mult-0

mult-zero-right zero-index)
qed
have b: b = ?translate-a bl
proof−

have col1 : column 1 (triangle-mat a b c) = b − a
by (metis column-transpose row-def triangle-mat-def vec-lambda-eta vec-

tor-2 (1 ))
then have bl = b − a
using bl-def unfolding triangle-linear-def triangle-mat-def matrix-vector-mult-def

using matrix-vector-mult-basis[of triangle-mat a b c 1 ]
by (simp add: col1 axis-def bl-def mat-vec-mult-2 triangle-linear-def )

then show ?thesis by simp
qed
have c: c = ?translate-a cl
proof−

have col2 : column 2 (triangle-mat a b c) = c − a
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by (metis column-transpose row-def triangle-mat-def vec-lambda-eta vec-
tor-2 (2 ))

then have cl = c − a
using cl-def unfolding triangle-linear-def triangle-mat-def matrix-vector-mult-def

using matrix-vector-mult-basis[of triangle-mat a b c 2 ]
by (simp add: col2 axis-def cl-def mat-vec-mult-2 triangle-linear-def )

then show ?thesis by simp
qed

have linear ?T using triangle-linear-def by force
then have ?T ‘ unit-triangle = convex hull {al, bl, cl}

using convex-hull-linear-image al-def bl-def cl-def by force
also have ?translate-a ‘ ... = convex hull {a, b, c}

using a b c convex-hull-translation[of a {al, bl, cl}]
by (metis (no-types, lifting) add.commute image-cong image-empty image-insert)

finally have ?translate-a ‘ (?T ‘ unit-triangle) = convex hull {a, b, c} .
moreover have ?translate-a ◦ ?T = A unfolding A-def using affine-comp-linear-trans

by auto
ultimately show ?thesis by fastforce

qed

lemma triangle-affine-e1-e2 :
fixes a b c :: real^2
defines A ≡ triangle-affine a b c
shows (triangle-affine a b c) (vector [0 , 0 ]) = a

(triangle-affine a b c) (vector [1 , 0 ]) = b
(triangle-affine a b c) (vector [0 , 1 ]) = c

proof−
let ?M = triangle-mat a b c
let ?L = triangle-linear a b c
let ?A = triangle-affine a b c
let ?O = (vector [0 , 0 ])::(real^2 )
let ?e1 = (vector [1 , 0 ])::(real^2 )
let ?e2 = (vector [0 , 1 ])::(real^2 )

show ?A ?O = a
unfolding triangle-affine-def triangle-mat-def
by (metis (no-types, opaque-lifting) add.right-neutral diff-self mult-zero-right

scaleR-left-diff-distrib transpose-matrix-vector vec-scaleR-2 vector-matrix-mult-0 )
show ?A ?e1 = b
proof−

have ?L ?e1 = ?M ∗v ?e1 unfolding triangle-linear-def by blast
also have ... = vector [1∗(?M$1$1 ) + 0∗(?M$1$2 ), 1∗(?M$2$1 ) + 0∗(?M$2$2 )]

unfolding triangle-linear-def triangle-mat-def
using mat-vec-mult-2 by force

also have ... = vector [1∗(b − a)$1 + 0∗(?M$1$2 ), 1∗(b − a)$2 + 0∗(?M$2$2 )]
unfolding triangle-mat-def transpose-def by simp

also have ... = vector [(b − a)$1 , (b − a)$2 ] by argo
also have ... = b − a
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by (smt (verit) exhaust-2 vec-eq-iff vector-2 (1 ) vector-2 (2 ))
finally show ?thesis unfolding triangle-affine-def triangle-linear-def by simp

qed
show ?A ?e2 = c
proof−

have ?L ?e2 = ?M ∗v ?e2 unfolding triangle-linear-def by blast
also have ... = vector [0∗(?M$1$1 ) + 1∗(?M$1$2 ), 0∗(?M$2$1 ) + 1∗(?M$2$2 )]

unfolding triangle-linear-def triangle-mat-def
using mat-vec-mult-2 by force

also have ... = vector [0∗(?M$1$1 ) + 1∗(c − a)$1 , 0∗(?M$2$1 ) + 1∗(c −
a)$2 ]

unfolding triangle-mat-def transpose-def by simp
also have ... = vector [(c − a)$1 , (c − a)$2 ] by argo
also have ... = c − a

by (smt (verit) exhaust-2 vec-eq-iff vector-2 (1 ) vector-2 (2 ))
finally show ?thesis unfolding triangle-affine-def triangle-linear-def by simp

qed
qed

lemma triangle-measure-integral-of-det:
fixes a b c :: real^2
defines S ≡ convex hull {a, b, c}
assumes ¬ collinear {a, b, c}
shows measure lebesgue S =

integral unit-triangle (λ(x::real^2 ). abs (det (matrix (triangle-linear a b
c))))
proof−

let ?A = triangle-affine a b c
let ?T = triangle-linear a b c

have bounded unit-triangle by (simp add: finite-imp-bounded-convex-hull)
then have lmeasurable-S : unit-triangle ∈ lmeasurable

using bounded-set-imp-lmeasurable measurable-convex by blast

have S = ?A ‘ unit-triangle using S-def triangle-affine-img by blast
then have measure lebesgue S = measure lebesgue (?A ‘ unit-triangle) by blast
moreover have

measure lebesgue (?A ‘ unit-triangle)
= integral unit-triangle (λ(x::real^2 ). abs (det (matrix ?T )))
using measure-differentiable-image-eq-affine[OF lmeasurable-S assms(2 )] by

auto
ultimately show ?thesis by auto

qed

lemma triangle-affine-preserves-interior :
assumes A = triangle-affine a b c and L = triangle-linear a b c
assumes ¬ collinear {a, b, c}
shows A ‘ (interior S) = interior (A ‘ S)

proof−
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let ?trans = λx::real^2 . x + a
have linear L by (simp add: assms(2 ) triangle-linear-def )
moreover have surj L

using triangle-linear-inj[of a b c] linear-injective-imp-surjective[of L] assms
calculation

by blast
ultimately have L: interior(L ‘ S) = L ‘ (interior S)

using interior-surjective-linear-image by blast
moreover have interior(?trans ‘ S) = ?trans ‘ (interior S)

using interior-translation
by (metis (no-types, lifting) add.commute image-cong)

moreover have A = ?trans ◦ L using assms triangle-affine-def triangle-linear-def
by fastforce

ultimately show ?thesis
by (smt (verit, del-insts) add.commute image-comp image-cong interior-translation)

qed

lemma triangle-affine-preserves-affine-hull:
assumes A = triangle-affine a b c
assumes ¬ collinear {a, b, c}
shows A ‘ (affine hull S) = affine hull (A ‘ S)

proof−
let ?L = triangle-linear a b c
have linear ?L by (simp add: triangle-linear-def )
then have ?L ‘ (affine hull S) = affine hull (?L ‘ S)

by (simp add: affine-hull-linear-image linear-linear)
then show ?thesis

unfolding assms(1 ) triangle-affine-def
by (metis affine-hull-translation image-image triangle-linear-def )

qed

lemma triangle-measure-convex-hull-measure-path-inside-same:
assumes p-triangle: p = make-triangle a b c
assumes elem-triangle: elem-triangle a b c
shows measure lebesgue (convex hull {a, b, c}) = measure lebesgue (path-inside

p)
(is measure lebesgue ?S = measure lebesgue ?I )

proof−
have bounded ?S by (simp add: finite-imp-bounded-convex-hull)
then have measure lebesgue (frontier ?S) = measure lebesgue ?S − measure

lebesgue (interior ?S)
using measure-frontier [of ?S ] by auto

then have ... = 0
by (metis convex-convex-hull negligible-convex-frontier negligible-imp-measure0 )

moreover have ?I = interior ?S
using assms triangle-is-convex

by (metis (no-types, lifting) make-triangle-def convex-polygon-inside-is-convex-hull-interior
empty-set insert-absorb2 insert-commute list.simps(15 ) elem-triangle-def triangle-is-polygon)

ultimately show ?thesis by auto
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qed

lemma on-triangle-path-image-cases:
assumes p = make-triangle a b c
assumes d ∈ path-image p
shows d ∈ path-image (linepath a b) ∨ d ∈ path-image (linepath b c) ∨ d ∈

path-image (linepath c a)
using assms unfolding make-triangle-def
by (metis make-polygonal-path.simps(3 ) make-polygonal-path.simps(4 ) not-in-path-image-join)

lemma on-triangle-frontier-cases:
fixes a b c :: real^2
assumes ¬ collinear {a, b, c}
assumes d ∈ frontier (convex hull {a, b, c})
shows d ∈ path-image (linepath a b) ∨ d ∈ path-image (linepath b c) ∨ d ∈

path-image (linepath c a)
proof−

let ?p = make-triangle a b c
have polygon ?p by (simp add: assms(1 ) triangle-is-polygon)
then have path-image ?p = frontier (convex hull {a, b, c})

unfolding make-triangle-def
by (smt (verit, ccfv-threshold) assms(1 ) convex-polygon-frontier-is-path-image2

convex-polygon-is-convex-hull empty-set insert-absorb2 insert-commute list.simps(15 )
make-triangle-def polygon-convex-iff sup-commute triangle-is-convex)

thus ?thesis using on-triangle-path-image-cases assms(2 ) by blast
qed

lemma triangle-path-image-subset-convex:
assumes p = make-triangle a b c
shows path-image p ⊆ convex hull {a, b, c}
using polygon-path-image-subset-convex polygon-at-least-3-vertices make-triangle-def
by (metis (no-types, lifting) assms empty-set insert-absorb2 insert-commute in-

sert-iff length-pos-if-in-set list.simps(15 ))

lemma triangle-convex-hull:
assumes p = make-triangle a b c and ¬ collinear {a, b, c}
shows convex hull {a, b, c} = (path-image p) ∪ (path-inside p)
using triangle-is-convex[OF assms(1 ) assms(2 )]
by (smt (z3 ) Un-commute assms(1 ) assms(2 ) closure-Un-frontier convex-closure

convex-polygon-is-convex-hull insert-absorb2 insert-commute inside-outside-def in-
side-outside-polygon list.set(1 ) list.set(2 ) make-triangle-def triangle-is-polygon)

end
theory Unit-Geometry
imports

HOL−Analysis.Polytope
Polygon-Jordan-Curve
Triangle-Lemmas
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begin

21 Measure Setup
lemma finite-convex-is-measurable:

fixes p :: (real^2 ) set
assumes p = convex hull l and finite l
shows p ∈ sets lebesgue

proof−
have polytope p

unfolding polytope-def using assms by force
hence compact p using polytope-imp-compact by auto
thus ?thesis using lmeasurable-compact by blast

qed

lemma unit-square-lebesgue: unit-square ∈ sets lebesgue
using finite-convex-is-measurable by auto

lemma unit-triangle-lebesgue: unit-triangle ∈ sets lebesgue
using finite-convex-is-measurable by auto

lemma unit-triangle-lmeasurable: unit-triangle ∈ lmeasurable
by (simp add: bounded-convex-hull bounded-set-imp-lmeasurable unit-triangle-lebesgue)

22 Unit Triangle
lemma unit-triangle-vts-not-collinear :
¬ collinear {(vector [0 , 0 ])::real^2 , vector [1 , 0 ], vector [0 , 1 ]}
(is ¬ collinear {?a, ?b, ?c})

proof(rule ccontr)
assume ¬ ¬ collinear {?a, ?b, ?c}
then have collinear {?a, ?b, ?c} by auto
then obtain u :: real^2 where u: u 6= 0 ∧

(∀ x∈{?a, ?b, ?c}. ∀ y∈{?a, ?b, ?c}. ∃ c. x − y = c ∗R u)
by (meson collinear)

then obtain c1 c2 where c1 : ?b − ?a = c1 ∗R u and c2 : ?c − ?a = c2 ∗R u
by blast

then have c1 ∗R u = ?b
by (metis (no-types, opaque-lifting) diff-zero scaleR-eq-0-iff vector-2 (1 ) vec-

tor-2 (2 ) vector-minus-component vector-scaleR-component zero-neq-one)
moreover have c2 ∗R u = ?c using c1 c2 calculation by force
ultimately have u$1 = 0 ∧ u$2 = 0
by (metis scaleR-eq-0-iff vector-2 (1 ) vector-2 (2 ) vector-scaleR-component zero-neq-one)

then have u = 0
by (metis (mono-tags, opaque-lifting) exhaust-2 vec-eq-iff zero-index)

moreover have u 6= 0 using u by auto
ultimately show False by auto

188



qed

lemma unit-triangle-convex:
assumes p = (make-polygonal-path [vector [0 , 0 ], vector [1 , 0 ], vector [0 , 1 ],

vector [0 , 0 ]])
(is p = make-polygonal-path [?O, ?e1 , ?e2 , ?O])

shows convex (path-inside p)
proof−

have ¬ collinear {?O, ?e1 , ?e2} by (simp add: unit-triangle-vts-not-collinear)
thus ?thesis using triangle-is-convex make-triangle-def assms by force

qed

lemma unit-triangle-char :
shows unit-triangle = {x. 0 ≤ x $ 1 ∧ 0 ≤ x $ 2 ∧ x $ 1 + x $ 2 ≤ 1}
(is unit-triangle = ?S)

proof−
have unit-triangle ⊆ ?S
proof(rule subsetI )

fix x assume x ∈ unit-triangle
then obtain a b c where

x = a ∗R (vector [0 , 0 ]) + b ∗R (vector [1 , 0 ]) + c ∗R (vector [0 , 1 ])
∧ a ≥ 0 ∧ b ≥ 0 ∧ c ≥ 0 ∧ a + b + c = 1

using convex-hull-3 by blast
thus x ∈ {x. 0 ≤ x $ 1 ∧ 0 ≤ x $ 2 ∧ x $ 1 + x $ 2 ≤ 1} by simp

qed
moreover have ?S ⊆ unit-triangle
proof(rule subsetI )

fix x assume x ∈ ?S
then obtain b c where bc: x$1 = b ∧ x$2 = c ∧ 0 ≤ b ∧ 0 ≤ c ∧ b + c ≤

1 by blast
moreover then obtain a where a ≥ 0 ∧ a + b + c = 1 using that[of 1 −

b − c] by argo
moreover have a ∗R ((vector [0 , 0 ])::(real^2 )) = vector [0 , 0 ] by (simp add:

vec-scaleR-2 )
moreover have x = (a ∗R vector [0 , 0 ]) + (b ∗R vector [1 , 0 ]) + (c ∗R vector

[0 , 1 ])
using segment-horizontal bc by fastforce

ultimately show x ∈ unit-triangle using convex-hull-3 by blast
qed
ultimately show ?thesis by blast

qed

lemma unit-triangle-interior-char :
shows interior unit-triangle = {x. 0 < x $ 1 ∧ 0 < x $ 2 ∧ x $ 1 + x $ 2 <

1}
(is interior unit-triangle = ?S)

proof−
have interior unit-triangle ⊆ ?S
proof(rule subsetI )
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fix x assume x ∈ interior unit-triangle
moreover have DIM (real^2 ) = 2 by simp
ultimately obtain a b c where

x = a ∗R (vector [0 , 0 ]) + b ∗R (vector [1 , 0 ]) + c ∗R (vector [0 , 1 ])
∧ a > 0 ∧ b > 0 ∧ c > 0 ∧ a + b + c = 1

using interior-convex-hull-3-minimal[of (vector [0 , 0 ])::(real^2 ) (vector [1 ,
0 ])::(real^2 ) (vector [0 , 1 ])::(real^2 )]

using unit-triangle-vts-not-collinear
by auto

thus x ∈ {x. 0 < x $ 1 ∧ 0 < x $ 2 ∧ x $ 1 + x $ 2 < 1} by simp
qed
moreover have ?S ⊆ interior unit-triangle
proof(rule subsetI )

fix x assume x ∈ ?S
then obtain b c where bc: x$1 = b ∧ x$2 = c ∧ 0 < b ∧ 0 < c ∧ b + c <

1 by blast
moreover then obtain a where a > 0 ∧ a + b + c = 1 using that[of 1 −

b − c] by argo
moreover have a ∗R ((vector [0 , 0 ])::(real^2 )) = vector [0 , 0 ] by (simp add:

vec-scaleR-2 )
moreover have x = (a ∗R vector [0 , 0 ]) + (b ∗R vector [1 , 0 ]) + (c ∗R vector

[0 , 1 ])
using segment-horizontal bc by fastforce

moreover have DIM (real^2 ) = 2 by simp
ultimately show x ∈ interior unit-triangle

using interior-convex-hull-3-minimal[of (vector [0 , 0 ])::(real^2 ) (vector [1 ,
0 ])::(real^2 ) (vector [0 , 1 ])::(real^2 )]

using unit-triangle-vts-not-collinear
by fast

qed
ultimately show ?thesis by blast

qed

lemma unit-triangle-is-elementary: elem-triangle (vector [0 , 0 ]) (vector [1 , 0 ])
(vector [0 , 1 ])
(is elem-triangle ?a ?b ?c)

proof−
let ?UT = unit-triangle
have ¬ collinear {?a, ?b, ?c} using unit-triangle-vts-not-collinear by auto
moreover have integral-vec ?a ∧ integral-vec ?b ∧ integral-vec ?c

by (simp add: integral-vec-def is-int-def )
moreover have {x ∈ ?UT . integral-vec x} = {?a, ?b, ?c} (is ?UT-integral =

?abc)
proof−

have ?UT-integral ⊇ ?abc using calculation(2 ) hull-subset by fastforce
moreover have ?UT-integral ⊆ ?abc
proof −

have
∧

x. x ∈ unit-triangle =⇒ integral-vec x =⇒ x 6= vector [0 , 0 ] =⇒ x 6=
vector [1 , 0 ] =⇒ x 6= vector [0 , 1 ] =⇒ False

190



proof−
fix x
assume ∗: x ∈ unit-triangle

integral-vec x
x 6= vector [0 , 0 ]

x 6= vector [1 , 0 ]
x 6= vector [0 , 1 ]

then have x-inset: x ∈{x. 0 ≤ x $ 1 ∧ 0 ≤ x $ 2 ∧ x $ 1 + x $ 2 ≤ 1}
using unit-triangle-char by auto

have x $ 1 = 1 =⇒ x $ 2 6= 0
using ∗
by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-2 (1 ) vector-2 (2 ))

then have x $ 1 = 1 =⇒ x $ 1 + x $ 2 > 1 ∨ x $ 2 < 0
using ∗(2 ) unfolding integral-vec-def is-int-def
by linarith

then have x1-not-1 : x$1 = 1 =⇒ False
using x-inset by simp

have x $ 1 = 0 =⇒ x $ 2 6= 0 ∧ x $ 2 6= 1
using ∗
by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-2 (1 ) vector-2 (2 ))

then have x $ 1 = 0 =⇒ x $ 1 + x $ 2 > 1 ∨ x $ 1 + x $ 2 < 0
using ∗(2 ) unfolding integral-vec-def is-int-def
by auto

then have x1-not-0 : x $ 1 = 0 =⇒ False
using x-inset by simp

have x1-not-lt0 : x $ 1 < 0 =⇒ False
using x-inset by auto

have x1-not-gt1 : x $ 1 > 1 =⇒ False
using x-inset by auto

then show False using x1-not-0 x1-not-1 x1-not-lt0 x1-not-gt1
using ∗(2 ) unfolding integral-vec-def is-int-def
by force

qed
then have ∃ x ∈ ?UT-integral. x /∈ ?abc ∧ integral-vec x =⇒ False

by blast
then show ?thesis by blast

qed
ultimately show ?thesis by blast

qed
ultimately show ?thesis unfolding elem-triangle-def by auto

qed

lemma unit-triangles-same-area:
measure lebesgue unit-triangle ′ = measure lebesgue unit-triangle

proof−
let ?a = (vector [1 , 1 ])::real^2
let ?b = (vector [0 , 1 ])::real^2
let ?c = (vector [1 , 0 ])::real^2
let ?A = triangle-affine ?a ?b ?c
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let ?L = triangle-linear ?a ?b ?c
have collinear-second-component:

∧
c::real^2 . collinear {?a, ?b, c} =⇒ c $ 2 =

1
proof −

fix p
assume collinear {?a, ?b, p}
then obtain u where u-prop: ∀ x∈{vector [1 , 1 ], vector [0 , 1 ], p}.

∀ y∈{vector [1 , 1 ], vector [0 , 1 ], p}. ∃ c. x − y = c ∗R u
unfolding collinear-def by auto

then have c-ab: ∃ c. ?a − ?b = c ∗R u
by blast

then have u-2 : u $ 2 = 0
using vector-2
by (metis cancel-comm-monoid-add-class.diff-cancel diff-zero scaleR-eq-0-iff

vector-minus-component vector-scaleR-component zero-neq-one)
have u-1 : u$1 6= 0

using c-ab vector-2
by (smt (z3 ) scaleR-right-diff-distrib vector-minus-component vector-scaleR-component)
then have (∃ c. ?a − p = c ∗R u) ∧ (∃ c. ?b − p = c ∗R u)

using u-prop by blast
then show p $ 2 = 1

using u-1 u-2
by (metis eq-iff-diff-eq-0 scaleR-zero-right vector-2 (2 ) vector-minus-component

vector-scaleR-component)
qed
have unit-triangle ′ = convex hull {?a, ?b, ?c} by (simp add: insert-commute)
then have ?A ‘ unit-triangle = unit-triangle ′ using triangle-affine-img[of ?a ?b

?c] by argo
moreover have abs (det (matrix ?L)) = 1
proof−

have matrix ?L = transpose (vector [?b − ?a, ?c − ?a])
unfolding triangle-linear-def
by (simp add: triangle-mat-def )

also have det ... = det (vector [?b − ?a, ?c − ?a]) using det-transpose by
blast

also have ... = (?b − ?a)$1 ∗ (?c − ?a)$2 − (?c − ?a)$1 ∗ (?b − ?a)$2
using det-2 by (metis mult.commute vector-2 (1 ) vector-2 (2 ))

finally show ?thesis by simp
qed
moreover have ¬ collinear {?a, ?b, ?c} using collinear-second-component vec-

tor-2 by force
ultimately have measure lebesgue unit-triangle ′= integral unit-triangle (λ(x::real^2 ).

1 )
using triangle-measure-integral-of-det[of ?a ?b ?c]

by (smt (verit, ccfv-SIG) Henstock-Kurzweil-Integration.integral-cong insert-commute)
also have ... = measure lebesgue unit-triangle

by (simp add: lmeasure-integral unit-triangle-lmeasurable)
finally show ?thesis .

qed
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23 Unit Square
lemma convex-hull-4 :

convex hull {a,b,c,d} = { u ∗R a + v ∗R b + w ∗R c + t ∗R d | u v w t. 0 ≤ u
∧ 0 ≤ v ∧ 0 ≤ w ∧ 0 ≤ t ∧ u + v + w + t = 1}
proof −

have fin: finite {a,b,c,d} finite {b,c,d} finite {c,d} finite {d}
by auto

have ∗:
∧

x y z w ::real. x + y + z + w = 1 ←→ x = 1 − y − z − w
by (auto simp: field-simps)

show ?thesis
unfolding convex-hull-finite[OF fin(1 )]
unfolding convex-hull-finite-step[OF fin(2 )]
unfolding convex-hull-finite-step[OF fin(3 )]
unfolding convex-hull-finite-step[OF fin(4 )]
unfolding ∗
apply auto
apply (smt (verit, ccfv-threshold) add.commute diff-add-cancel diff-diff-eq)

subgoal for v w t
apply (rule exI [where x=1 − v − w − t], simp)
apply (rule exI [where x=v], simp)
apply (rule exI [where x=w], simp)
apply (rule exI [where x=λx. t], simp)
done

done
qed

lemma unit-square-characterization-helper :
fixes a b :: real
assumes 0 ≤ a ∧ a ≤ 1 ∧ 0 ≤ b ∧ b ≤ 1 and

a ≤ b
obtains u v w t where

vector [a, b] = u ∗R ((vector [0 , 0 ])::real^2 )
+ v ∗R (vector [0 , 1 ])
+ w ∗R (vector [1 , 1 ])
+ t ∗R (vector [1 , 0 ])
∧ 0 ≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧ 0 ≤ t ∧ u + v + w + t = 1

proof−
let ?a = (vector [0 , 0 ])::(real^2 )
let ?b = (vector [0 , 1 ])::(real^2 )
let ?c = (vector [1 , 1 ])::(real^2 )
let ?d = (vector [1 , 0 ])::(real^2 )
let ?w = a
let ?v = b − a
let ?u = (1 − ?w − ?v)::real
let ?t = 0 ::real
let ?T = {u ∗R ?a + v ∗R ?b + w ∗R ?c + t ∗R ?d | u v w t. 0 ≤ u ∧ 0 ≤ v
∧ 0 ≤ w ∧ 0 ≤ t ∧ u + v + w + t = 1}

have ?u ∗R ?a = 0
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by (smt (verit, del-insts) exhaust-2 scaleR-zero-right vec-eq-iff vector-2 (1 ) vec-
tor-2 (2 ) zero-index)

moreover have ?w ∗R ?c = vector [a, a]
proof−

have (?w ∗R ?c)$1 = a by simp
moreover have (?w ∗R ?c)$2 = a by simp
ultimately show ?thesis by (smt (verit) vec-eq-iff exhaust-2 vector-2 (1 ) vec-

tor-2 (2 ))
qed
moreover have ?v ∗R ?b = vector [0 , b − a]
proof−

have (?v ∗R ?b)$1 = 0 by fastforce
moreover have (?v ∗R ?b)$2 = b − a by simp
ultimately show ?thesis by (smt (verit) vec-eq-iff exhaust-2 vector-2 (1 ) vec-

tor-2 (2 ))
qed
ultimately have ?u ∗R ?a + ?v ∗R ?b + ?w ∗R ?c + ?t ∗R ?d = vector [0 , b
− a] + vector [a, a]

by fastforce
also have ... = vector [a, b]

by (smt (verit, del-insts) diff-add-cancel exhaust-2 vec-eq-iff vector-2 (1 ) vec-
tor-2 (2 ) vector-add-component)

finally have vector [a, b] = ?u ∗R ?a + ?v ∗R ?b + ?w ∗R ?c + ?t ∗R ?d by
presburger

moreover have 0 ≤ ?u ∧ ?u ≤ 1 ∧ 0 ≤ ?v ∧ ?v ≤ 1 using assms by simp
moreover have 0 ≤ ?w ∧ ?w ≤ 1 ∧ 0 ≤ ?t ∧ ?t ≤ 1 using assms by simp
moreover have ?u + ?v + ?w + ?t = 1 by argo
ultimately show ?thesis using that[of ?u ?v ?w ?t] by blast

qed

lemma unit-square-characterization:
unit-square = {x. 0 ≤ x$1 ∧ x$1 ≤ 1 ∧ 0 ≤ x$2 ∧ x$2 ≤ 1} (is unit-square

= ?S)
proof−

let ?a = (vector [0 , 0 ])::(real^2 )
let ?b = (vector [0 , 1 ])::(real^2 )
let ?c = (vector [1 , 1 ])::(real^2 )
let ?d = (vector [1 , 0 ])::(real^2 )
let ?T = {u ∗R ?a + v ∗R ?b + w ∗R ?c + t ∗R ?d | u v w t. 0 ≤ u ∧ 0 ≤ v
∧ 0 ≤ w ∧ 0 ≤ t ∧ u + v + w + t = 1}

have unit-square = ?T using convex-hull-4 by blast
moreover have ?T ⊆ ?S
proof(rule subsetI )

fix x
assume x ∈ ?T
then obtain u v w t where x = u ∗R ?a + v ∗R ?b + w ∗R ?c + t ∗R ?d and

0 ≤ u and 0 ≤ v and 0 ≤ w and 0 ≤ t and u + v + w + t = 1 by auto
moreover from this have

x$1 = u ∗ 0 + v ∗ 0 + w ∗ 1 + t ∗ 1 ∧ x$2 = u ∗ 0 + v ∗ 1 + w ∗ 1 +
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t ∗ 0 by simp
ultimately have 0 ≤ x$1 ∧ x$1 ≤ 1 ∧ 0 ≤ x$2 ∧ x$2 ≤ 1 by linarith
thus x ∈ ?S by blast

qed
moreover have ?S ⊆ ?T
proof(rule subsetI )

fix x :: real^2
assume ∗: x ∈ ?S
{ assume x$1 < x$2

then have x$1 ≤ x$2 by fastforce
then obtain u v w t where vector [x$1 , x$2 ] = u ∗R ?a + v ∗R ?b + w ∗R

?c + t ∗R ?d ∧ 0 ≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧ 0 ≤ t ∧ u + v + w + t = 1
using ∗ unit-square-characterization-helper [of x$1 x$2 ] by blast

moreover have x = vector [x$1 , x$2 ]
by (smt (verit, ccfv-threshold) exhaust-2 vec-eq-iff vector-2 (1 ) vector-2 (2 ))

ultimately have x ∈ ?T by force
} moreover
{ assume x$1 ≥ x$2

then obtain u v w t where ∗∗: vector [x$2 , x$1 ] = u ∗R ?a + v ∗R ?b +
w ∗R ?c + t ∗R ?d ∧ 0 ≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧ 0 ≤ t ∧ u + v + w + t = 1

using ∗ unit-square-characterization-helper [of x$2 x$1 ] by blast
have x1 : x$1 = v + w using ∗∗
by (smt (verit, ccfv-threshold) mult-cancel-left1 real-scaleR-def scaleR-zero-right

vector-2 (2 ) vector-add-component vector-scaleR-component)
have x2 : x$2 = w + t using ∗∗
by (smt (verit) mult-cancel-left1 real-scaleR-def scaleR-zero-right vector-2 (1 )

vector-add-component vector-scaleR-component)
have (u ∗R ?a + t ∗R ?b + w ∗R ?c + v ∗R ?d)$1 = w + v by auto
moreover have (u ∗R ?a + t ∗R ?b + w ∗R ?c + v ∗R ?d)$2 = t + w by

fastforce
ultimately have u ∗R ?a + t ∗R ?b + w ∗R ?c + v ∗R ?d = vector [w +

v, t + w]
by (smt (verit) vec-eq-iff exhaust-2 vector-2 (1 ) vector-2 (2 ))

also have ... = x using x1 x2
by (smt (verit, del-insts) add.commute exhaust-2 vec-eq-iff vector-2 (1 )

vector-2 (2 ))
ultimately have x ∈ ?T

by (smt (verit, ccfv-SIG) ∗∗ mem-Collect-eq)
}
ultimately show x ∈ ?T by argo

qed
ultimately show ?thesis by auto

qed

lemma e1e2-basis:
defines e1 ≡ (vector [1 , 0 ])::(real^2 ) and

e2 ≡ (vector [0 , 1 ])::(real^2 )
shows e1 = axis 1 (1 ::real) and e1 ∈ (Basis::((real^2 ) set)) and

e2 = axis 2 (1 ::real) and e2 ∈ (Basis::((real^2 ) set))
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proof−
have (1 ::real) ∈ Basis by simp
then have axis 1 (1 ::real) ∈ (

⋃
i.

⋃
u∈(Basis::(real set)). {axis i u}) by blast

moreover show e1-axis: e1 = axis 1 (1 ::real)
unfolding axis-def vector-def e1-def by auto

ultimately show e1-basis: e1 ∈ (Basis::((real^2 ) set)) by simp

have (1 ::real) ∈ Basis by simp
then have axis 1 (1 ::real) ∈ (

⋃
i.

⋃
u∈(Basis::(real set)). {axis i u}) by blast

moreover show e2-axis: e2 = axis 2 (1 ::real)
unfolding axis-def vector-def e2-def by auto

ultimately show e2-basis: e2 ∈ (Basis::((real^2 ) set)) by simp
qed

lemma unit-square-cbox: unit-square = cbox (vector [0 , 0 ]) (vector [1 , 1 ])
proof−

let ?O = (vector [0 , 0 ])::(real^2 )
let ?e1 = (vector [1 , 0 ])::(real^2 )
let ?e2 = (vector [0 , 1 ])::(real^2 )
let ?I = (vector [1 , 1 ])::(real^2 )
let ?cbox = {x. ∀ i∈Basis. ?O · i ≤ x · i ∧ x · i ≤ ?I · i}

have unit-square = {x. 0 ≤ x$1 ∧ x$1 ≤ 1 ∧ 0 ≤ x$2 ∧ x$2 ≤ 1} (is unit-square
= ?S)

using unit-square-characterization by auto
moreover have ?S ⊆ ?cbox
proof(rule subsetI )

fix x
assume ∗: x ∈ ?S
have ?O · ?e1 ≤ x · ?e1 ∧ x · ?e1 ≤ ?I · ?e1

using e1e2-basis
by (smt (verit, del-insts) ∗ cart-eq-inner-axis mem-Collect-eq vector-2 (1 ))

moreover have ?O · ?e2 ≤ x · ?e2 ∧ x · ?e2 ≤ ?I · ?e2
using e1e2-basis
by (smt (verit, del-insts) ∗ cart-eq-inner-axis mem-Collect-eq vector-2 (2 ))

ultimately show x ∈ ?cbox
by (smt (verit, best) ∗ axis-index cart-eq-inner-axis exhaust-2 mem-Collect-eq

vector-2 (1 ) vector-2 (2 ))
qed
moreover have ?cbox ⊆ ?S
proof(rule subsetI )

fix x :: real^2
assume ∗: x ∈ ?cbox
then have 0 ≤ ?e1 · x using e1e2-basis
by (metis (no-types, lifting) cart-eq-inner-axis inner-commute mem-Collect-eq

vector-2 (1 ))
moreover have ?e1 · x ≤ 1 using e1e2-basis
by (smt (verit, ccfv-SIG) ∗ inner-axis inner-commute mem-Collect-eq real-inner-1-right

vector-2 (1 ))
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moreover have 0 ≤ ?e2 · x
by (metis (no-types, lifting) ∗ cart-eq-inner-axis e1e2-basis(3 ) e1e2-basis(4 )

inner-commute mem-Collect-eq vector-2 (2 ))
moreover have ?e2 · x ≤ 1

by (metis (no-types, lifting) ∗ cart-eq-inner-axis e1e2-basis(3 ) e1e2-basis(4 )
inner-commute mem-Collect-eq vector-2 (2 ))

moreover have ?e1 · x = x$1
by (simp add: cart-eq-inner-axis e1e2-basis inner-commute)

moreover have ?e2 · x = x$2
by (simp add: cart-eq-inner-axis e1e2-basis inner-commute)

ultimately show x ∈ ?S by force
qed
ultimately show ?thesis unfolding cbox-def by order

qed

lemma unit-square-area: measure lebesgue unit-square = 1
proof−

let ?e1 = (vector [1 , 0 ])::(real^2 )
let ?e2 = (vector [0 , 1 ])::(real^2 )
have unit-square = cbox (vector [0 , 0 ]) (vector [1 , 1 ]) (is unit-square = cbox

?O ?I )
using unit-square-cbox by blast

also have emeasure lborel ... = 1 using emeasure-lborel-cbox-eq
proof−

have ?I · ?e1 = (1 ::real)
by (simp add: e1e2-basis(1 ) inner-axis ′ inner-commute)

moreover have ?I · ?e2 = (1 ::real) by (simp add: e1e2-basis(3 ) inner-axis ′

inner-commute)
ultimately have basis-dot: ∀ b ∈ Basis. ?I · b = 1

by (metis (full-types) axis-inverse e1e2-basis(1 ) e1e2-basis(3 ) exhaust-2 )

have ?O · ?e1 ≤ ?I · ?e1 by (simp add: e1e2-basis(1 ) inner-axis)
moreover have ?O · ?e2 ≤ ?I · ?e2 by (simp add: e1e2-basis(3 ) inner-axis)
ultimately have ∀ b ∈ Basis. ?O · b ≤ ?I · b
by (smt (verit, ccfv-threshold) axis-index cart-eq-inner-axis exhaust-2 insert-iff

vector-2 (1 ) vector-2 (2 ))
then have emeasure lborel (cbox ?O ?I ) = (

∏
b∈Basis. (?I − ?O) · b)

using emeasure-lborel-cbox-eq by auto
also have ... = (

∏
b∈Basis. ?I · b)

by (smt (verit, del-insts) axis-index diff-zero euclidean-all-zero-iff exhaust-2
inner-axis real-inner-1-right vector-2 (1 ) vector-2 (2 ))

also have ... = (
∏

b∈Basis. (1 ::real)) using basis-dot by fastforce
finally show ?thesis by simp

qed
finally have emeasure lborel unit-square = 1 .
moreover have emeasure lborel unit-square = measure lebesgue unit-square

by (simp add: emeasure-eq-measure2 unit-square-cbox)
ultimately show ?thesis by fastforce

qed
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24 Unit Triangle Area is 1/2
lemma unit-triangle ′-char :

shows unit-triangle ′ = {x. x $ 1 ≤ 1 ∧ x $ 2 ≤ 1 ∧ x $ 1 + x $ 2 ≥ 1}
proof −

let ?I = (vector [1 , 1 ])::real^2
let ?e1 = (vector [1 , 0 ])::real^2
let ?e2 = (vector [0 , 1 ])::real^2
have unit-triangle ′ = {u ∗R ?I + v ∗R ?e1 + w ∗R ?e2 | u v w. 0 ≤ u ∧ 0 ≤

v ∧ 0 ≤ w ∧ u + v + w = 1}
using convex-hull-3 [of ?I ?e1 ?e2 ] by auto

moreover have
∧

u v w. u ∗R ?I + v ∗R ?e1 + w ∗R ?e2 = ((vector [u + v, u
+ w])::real^2 )

proof−
fix u v w :: real

let ?v-e1 = ((vector [v, 0 ])::real^2 )
let ?w-e2 = ((vector [0 , w])::real^2 )
let ?u-I = ((vector [u, u])::real^2 )

have u ∗R ?I = ?u-I using vec-scaleR-2 by simp
moreover have v ∗R ?e1 = ?v-e1 using vec-scaleR-2 by simp
moreover have w ∗R ?e2 = ?w-e2 using vec-scaleR-2 by simp
ultimately have 1 : u ∗R ?I + v ∗R ?e1 + w ∗R ?e2 = ?u-I + ?v-e1 + ?w-e2

by argo
moreover have (?u-I + ?v-e1 + ?w-e2 )$1 = u + v

using vector-add-component by simp
moreover have (?u-I + ?v-e1 + ?w-e2 )$2 = u + w

using vector-add-component by simp
ultimately have ?u-I + ?v-e1 + ?w-e2 = ((vector [u + v, u + w])::real^2 )

using vector-2 exhaust-2 by (smt (verit, del-insts) vec-eq-iff )
thus u ∗R ?I + v ∗R ?e1 + w ∗R ?e2 = ((vector [u + v, u + w])::real^2 )

using 1 by argo
qed
ultimately have 1 : unit-triangle ′ = {(vector [u + v, u + w])::real^2 | u v w. 0
≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧ u + v + w = 1}

(is unit-triangle ′ = ?S)
by presburger

have unit-triangle ′ = {(vector [x, y])::real^2 | x y. 0 ≤ x ∧ x ≤ 1 ∧ 0 ≤ y ∧ y
≤ 1 ∧ x + y ≥ 1}

(is unit-triangle ′ = ?T )
proof−

have
∧

x y::real. ∃ u v w. 0 ≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧ u + v + w = 1 ∧ x = u
+ v ∧ y = u + w

=⇒ 0 ≤ x ∧ x ≤ 1 ∧ 0 ≤ y ∧ y ≤ 1 ∧ x + y ≥ 1 by force
moreover have ∗:

∧
x y::real. 0 ≤ x ∧ x ≤ 1 ∧ 0 ≤ y ∧ y ≤ 1 ∧ x + y ≥ 1

=⇒ ∃ u v w. 0 ≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧ u + v + w = 1 ∧ x = u + v ∧ y
= u + w

proof−
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fix x y :: real
let ?u = y + x − 1
let ?v = 1 − y
let ?w = 1 − x
assume 0 ≤ x ∧ x ≤ 1 ∧ 0 ≤ y ∧ y ≤ 1 ∧ 1 ≤ x + y
then have 0 ≤ ?u ∧ 0 ≤ ?v ∧ 0 ≤ ?w ∧ ?u + ?v + ?w = 1 ∧ x = ?u +

?v ∧ y = ?u + ?w by argo
thus ∃ u v w. 0 ≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧ u + v + w = 1 ∧ x = u + v ∧ y

= u + w by blast
qed
ultimately have ∀ x y::real. ((∃ u v w. 0 ≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧ u + v + w

= 1 ∧ x = u + v ∧ y = u + w)
←→ (0 ≤ x ∧ x ≤ 1 ∧ 0 ≤ y ∧ y ≤ 1 ∧ x + y ≥ 1 ))

by metis
then have ∀ z::real^2 . ((∃ u v w. 0 ≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧ u + v + w = 1

∧ z$1 = u + v ∧ z$2 = u + w)
←→ (0 ≤ z$1 ∧ z$1 ≤ 1 ∧ 0 ≤ z$2 ∧ z$2 ≤ 1 ∧ z$1 + z$2 ≥ 1 )) by

presburger
then have ∀ z::real^2 . ((∃ u v w. 0 ≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧ u + v + w = 1

∧ z = vector [u + v, u + w])
←→ (∃ x y. 0 ≤ x ∧ x ≤ 1 ∧ 0 ≤ y ∧ y ≤ 1 ∧ x + y ≥ 1 ∧ z = vector

[x, y]))
by (smt (verit) ∗)

moreover have ∀ z::real^2 . z ∈ ?S ←→ (∃ u v w. 0 ≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧
u + v + w = 1 ∧ z = vector [u + v, u + w])

by blast
moreover have ∀ z::real^2 . z ∈ ?T ←→ (∃ x y. 0 ≤ x ∧ x ≤ 1 ∧ 0 ≤ y ∧ y

≤ 1 ∧ x + y ≥ 1 ∧ z = vector [x, y])
by blast

ultimately have ?S = ?T by auto
then show ?thesis using 1 by auto

qed
moreover have {x. 0 ≤ x$1 ∧ x$1 ≤ 1 ∧ 0 ≤ x$2 ∧ x$2 ≤ 1 ∧ x$1 + x$2
≥ 1} ⊆ ?T

proof(rule subsetI )
fix z :: real^2
assume ∗: z ∈ {x. 0 ≤ x$1 ∧ x$1 ≤ 1 ∧ 0 ≤ x$2 ∧ x$2 ≤ 1 ∧ x$1 + x$2

≥ 1}
then obtain x y :: real where z = vector [x, y] ∧ 0 ≤ x using forall-vector-2

by fastforce
moreover from this have x ≤ 1 ∧ 0 ≤ y ∧ y ≤ 1 ∧ x + y ≥ 1 using ∗

vector-2 [of x y] by simp
ultimately show z ∈ ?T by blast

qed
moreover have ?T ⊆ {x. 0 ≤ x$1 ∧ x$1 ≤ 1 ∧ 0 ≤ x$2 ∧ x$2 ≤ 1 ∧ x$1 +

x$2 ≥ 1}
using vector-2 by force

ultimately show ?thesis
by (smt (verit, best) Collect-cong subset-antisym)
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qed

lemma unit-square-split-diag:
shows unit-square = unit-triangle ∪ unit-triangle ′

proof−
let ?S = ({vector [0 , 0 ], vector [0 , 1 ], vector [1 , 0 ]})::((real^2 ) set)
let ?S ′ = ({vector [1 , 1 ], vector [0 , 1 ], vector [1 , 0 ]})::((real^2 ) set)
have unit-triangle ∪ unit-triangle ′ ⊆ convex hull (?S ∪ ?S ′) by (simp add:

hull-mono)
moreover have convex hull (?S ∪ ?S ′) ⊆ unit-triangle ∪ unit-triangle ′

by (smt (z3 ) Un-commute Un-left-commute Un-upper1 in-mono insert-is-Un
mem-Collect-eq subsetI sup.idem unit-square-characterization unit-triangle-char unit-triangle ′-char)
moreover have unit-square = convex hull (?S ∪ ?S ′) by (simp add: insert-commute)
ultimately show ?thesis by blast

qed

lemma unit-triangle-INT-unit-triangle ′-measure:
measure lebesgue (unit-triangle ∩ unit-triangle ′) = 0

proof −
let ?e1 = (vector [1 , 0 ])::real^2
let ?e2 = (vector [0 , 1 ])::real^2
have unit-triangle ∩ unit-triangle ′ = {x::(real^2 ). 0 ≤ x $ 1 ∧ x $ 1 ≤ 1 ∧ 0
≤ x $ 2 ∧ x $ 2 ≤ 1 ∧ x $ 1 + x $ 2 = 1}

(is unit-triangle ∩ unit-triangle ′ = ?S)
using unit-triangle-char unit-triangle ′-char
by auto

also have ... = path-image (linepath ?e2 ?e1 )
(is ... = ?p)

proof−
have ?S ⊆ ?p
proof(rule subsetI )

fix x :: real^2
assume x ∈ ?S
then have ∗: 0 ≤ 1 − x$2 ∧ x$2 = 1 − x$1 ∧ 0 ≤ x$2 ∧ x$2 ≤ 1 by

simp

have x$2 ∗R ?e2 + x$1 ∗R ?e1 = vector [x$1 , x$2 ]
proof−

have (x$1 ∗R ?e1 )$1 = x$1 by simp
moreover have (x$1 ∗R ?e1 )$2 = 0 by auto
moreover have (x$2 ∗R ?e2 )$1 = 0 by auto
moreover have (x$2 ∗R ?e2 )$2 = x$2 by fastforce
ultimately have x$1 ∗R ?e1 = vector [x$1 , 0 ] ∧ x$2 ∗R ?e2 = vector [0 ,

x$2 ]
by (smt (verit, ccfv-SIG) exhaust-2 vec-eq-iff vector-2 (1 ) vector-2 (2 ))

then have x$1 ∗R ?e1 + x$2 ∗R ?e2 = vector [x$1 , 0 ] + vector [0 , x$2 ]
by auto

moreover from this have (x$1 ∗R ?e1 + x$2 ∗R ?e2 )$1 = x$1 by auto
moreover from calculation have (x$1 ∗R ?e1 + x$2 ∗R ?e2 )$2 = x$2
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by auto
ultimately show ?thesis
by (smt (verit) add.commute exhaust-2 vec-eq-iff vector-2 (1 ) vector-2 (2 ))

qed
also have ... = x

by (smt (verit, best) exhaust-2 vec-eq-iff vector-2 (1 ) vector-2 (2 ))
finally have x$2 ∗R ?e2 + x$1 ∗R ?e1 = x .
then have x = (λx. (1 − x) ∗R ?e2 + x ∗R ?e1 ) (x$1 ) ∧ x$1 ∈ {0 ..1}

using ∗ by auto
thus x ∈ ?p unfolding path-image-def linepath-def by fast

qed
moreover have ?p ⊆ ?S
proof(rule subsetI )

fix x
assume ∗: x ∈ ?p
then obtain t where ∗: x = (1 − t) ∗R ?e2 + t ∗R ?e1 ∧ t ∈ {0 ..1}

unfolding path-image-def linepath-def by blast
moreover from this have x$1 = t by simp
moreover from calculation have x$2 = 1 − t by simp
moreover from calculation have 0 ≤ t ∧ t ≤ 1 ∧ 0 ≤ 1 − t ∧ 1 − t ≤ 1

by simp
ultimately show x ∈ ?S by simp

qed
ultimately show ?thesis by blast

qed
also have measure lebesgue ?p = 0 using linepath-has-measure-0 by blast
finally show ?thesis .

qed

lemma unit-triangle-area: measure lebesgue unit-triangle = 1/2
proof−

let ?µ = measure lebesgue
have ?µ unit-square = ?µ unit-triangle + ?µ unit-triangle ′

using unit-square-split-diag unit-triangle-INT-unit-triangle ′-measure
by (simp add: finite-imp-bounded-convex-hull measurable-convex measure-Un3 )

thus ?thesis using unit-triangles-same-area unit-square-area by simp
qed

end
theory Elementary-Triangle-Area
imports

Unit-Geometry

begin

25 Area of Elementary Triangle is 1/2
lemma nonint-in-square-img-IMP-nonint-triangle-img:

assumes A = triangle-affine a b c
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assumes x ∈ unit-square
assumes ¬ integral-vec x
assumes integral-vec (A x)
assumes elem-triangle a b c
obtains x ′ where x ′ ∈ unit-triangle ∧ ¬ integral-vec x ′ ∧ integral-vec (A x ′)

proof−
{ assume x ∈ unit-triangle

then have ?thesis using assms that by blast
} moreover
{ assume ∗: x /∈ unit-triangle

then have x /∈ {x. 0 ≤ x $ 1 ∧ 0 ≤ x $ 2 ∧ x $ 1 + x $ 2 ≤ 1}
using unit-triangle-char by argo

then have x2x1-ge-1 : x$1 + x$2 > 1 using assms(2 ) unit-square-characterization
by force

let ?x ′1 = 1 − x$1
let ?x ′2 = 1 − x$2
let ?x ′ = vector [?x ′1 , ?x ′2 ]
have ?x ′1 + ?x ′2 ≤ 1 using x2x1-ge-1 by argo
then have ?x ′ ∈ unit-triangle

using unit-triangle-char assms(2 ) unit-square-characterization by auto
moreover have ¬ integral-vec ?x ′

proof−
have ¬ is-int (x$1 ) ∨ ¬ is-int (x$2 ) using assms(3 ) unfolding inte-

gral-vec-def by blast
then have ¬ is-int (?x ′1 ) ∨ ¬ is-int (?x ′2 )

using is-int-minus
by (metis diff-add-cancel is-int-def minus-diff-eq of-int-1 uminus-add-conv-diff )
thus ?thesis unfolding integral-vec-def by auto

qed
moreover have integral-vec (A ?x ′)
proof−

let ?L = triangle-linear a b c
have A-comp: A = (λx. x + a) ◦ ?L by (simp add: affine-comp-linear-trans

assms(1 ))
then have Lx-int: integral-vec (?L x)

by (smt (verit, del-insts) assms(4 ) assms(5 ) comp-apply diff-add-cancel
diff-minus-eq-add integral-vec-minus integral-vec-sum elem-triangle-def )

have linear ?L by (simp add: triangle-linear-def )
moreover have ?L ?x ′ = ?L (vector [1 , 1 ] − x)

by (simp add: mat-vec-mult-2 triangle-linear-def )
ultimately have ?L ?x ′ = ?L (vector [1 , 1 ]) − ?L x by (simp add: linear-diff )
moreover have integral-vec (?L (vector [1 , 1 ]))
proof−

have ?L (vector [1 , 1 ]) = vector [(b − a)$1 + (c − a)$1 , (b − a)$2 + (c
− a)$2 ]

unfolding triangle-linear-def triangle-mat-def transpose-def using mat-vec-mult-2
by simp

also have ... = (b − a) + (c − a)
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by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-2 (1 ) vector-2 (2 )
vector-add-component)

finally show ?thesis using assms(5 ) unfolding elem-triangle-def
by (metis ab-group-add-class.ab-diff-conv-add-uminus integral-vec-minus

integral-vec-sum)
qed
ultimately have integral-vec (?L ?x ′)

using Lx-int integral-vec-sum integral-vec-minus by force
then show ?thesis using A-comp assms(5 ) integral-vec-sum elem-triangle-def

by auto
qed
ultimately have ?thesis using that by blast

}
ultimately show ?thesis by blast

qed

lemma elem-triangle-integral-mat-bij:
fixes a b c :: real^2
assumes elem-triangle a b c
defines L ≡ triangle-mat a b c
shows integral-mat-bij L

proof−
let ?A = triangle-affine a b c

have L: L = transpose (vector [b − a, c − a]) (is L = transpose (vector [?w1 ,
?w2 ]))

unfolding triangle-mat-def L-def by auto

have integral-vec ?w1 ∧ integral-vec ?w2
by (metis ab-group-add-class.ab-diff-conv-add-uminus assms(1 ) integral-vec-minus

integral-vec-sum elem-triangle-def )
then have L-int-entries: ∀ i∈{1 , 2}. ∀ j∈{1 , 2}. is-int (L$i$j)

by (simp add: L-def triangle-mat-def Finite-Cartesian-Product.transpose-def
integral-vec-def )

have L-integral: integral-mat L unfolding integral-mat-def
proof(rule allI )

fix v :: real^2
show integral-vec v −→ integral-vec (L ∗v v)
proof(rule impI )

assume v-int-assm: integral-vec v
let ?Lv = L ∗v v

have ?Lv$1 = L$1$1 ∗ v$1 + L$1$2 ∗ v$2 by (simp add: mat-vec-mult-2 )
then have Lv1-int: is-int (?Lv$1 )

using L-int-entries v-int-assm is-int-sum is-int-mult by (simp add: inte-
gral-vec-def )

have ?Lv$2 = L$2$1 ∗ v$1 + L$2$2 ∗ v$2 by (simp add: mat-vec-mult-2 )
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then have Lv2-int: is-int (?Lv$2 )
using L-int-entries v-int-assm is-int-sum is-int-mult by (simp add: inte-

gral-vec-def )

show integral-vec (L ∗v v)
by (simp add: Lv1-int Lv2-int integral-vec-def )

qed
qed
moreover have integral-mat-surj L

unfolding integral-mat-surj-def
proof(rule allI )

fix v :: real^2
show integral-vec v −→ (∃w. integral-vec w ∧ L ∗v w = v)
proof(rule impI )

assume ∗: integral-vec v
obtain w :: real^2 where w: L ∗v w = v

using triangle-linear-inj assms(1 ) full-rank-injective full-rank-surjective
unfolding elem-triangle-def L-def triangle-linear-def surj-def
by (smt (verit, best) iso-tuple-UNIV-I )

moreover have integral-vec w
proof(rule ccontr)

assume ∗∗: ¬ integral-vec w
let ?w1 = w$1
let ?w2 = w$2
let ?w1 ′ = w$1 − (floor (w$1 ))
let ?w2 ′ = w$2 − (floor (w$2 ))
let ?w ′ = (vector [?w1 ′, ?w2 ′])::(real^2 )
have ?w1 ′ ∈ {0 ..1} ∧ ?w2 ′ ∈ {0 ..1}

by (metis add.commute add.right-neutral atLeastAtMost-iff floor-correct
floor-frac frac-def of-int-0 real-of-int-floor-add-one-ge)

then have ?w ′ ∈ unit-square using unit-square-characterization by auto
moreover have ¬ integral-vec ?w ′

by (metis ∗∗ eq-iff-diff-eq-0 floor-frac floor-of-int frac-def integral-vec-def
is-int-def of-int-0 vector-2 (1 ) vector-2 (2 ))

moreover have integral-vec (?A ?w ′)
proof−

have ?w ′ = vector [w$1 , w$2 ] − vector [floor (w$1 ), floor (w$2 )]
(is ?w ′ = vector [w$1 , w$2 ] − ?floor-w)

by (smt (verit, del-insts) exhaust-2 list.simps(8 ) list.simps(9 ) vec-eq-iff
vector-2 (1 ) vector-2 (2 ) vector-minus-component)

then have ?w ′ = w − vector [floor (w$1 ), floor (w$2 )]
by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-2 (1 ) vector-2 (2 )

vector-minus-component)
moreover have ?A ?w ′ = (L ∗v ?w ′) + a unfolding triangle-affine-def

L-def by simp
ultimately have ?A ?w ′ = v − (L ∗v ?floor-w) + a

by (simp add: matrix-vector-mult-diff-distrib w)
moreover have integral-vec v ∧ integral-vec a ∧ integral-vec (L ∗v ?floor-w)

using ∗ assms(1 ) L-integral integral-mat-integral-vec integral-vec-2
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unfolding elem-triangle-def
by blast

ultimately show ?thesis
by (metis ab-group-add-class.ab-diff-conv-add-uminus integral-vec-minus

integral-vec-sum)
qed
ultimately obtain w ′′ where w ′′: w ′′ ∈ unit-triangle ∧ ¬ integral-vec w ′′

∧ integral-vec (?A w ′′)
using nonint-in-square-img-IMP-nonint-triangle-img[of ?A a b c ?w ′]

assms(1 ) by blast
moreover have ?A w ′′ /∈ {a, b, c}
proof−

have inj ?A using assms(1 ) elem-triangle-def triangle-affine-inj by auto
moreover have ?A (vector [0 , 0 ]) = a

by (metis (no-types, opaque-lifting) add.commute add-0 mat-vec-mult-2 ma-
trix-vector-mult-0-right real-scaleR-def scaleR-zero-right triangle-affine-def zero-index)

moreover have ?A (vector [1 , 0 ]) = b
unfolding triangle-affine-def triangle-mat-def transpose-def

by (metis (no-types) Finite-Cartesian-Product.transpose-def add.commute
column-transpose diff-add-cancel e1e2-basis(1 ) matrix-vector-mult-basis row-def vec-lambda-eta
vector-2 (1 ))

moreover have ?A (vector [0 , 1 ]) = c
proof−

have (?A (vector [0 , 1 ]))$1 = c$1
by (metis L-def L add.commute column-transpose diff-add-cancel

e1e2-basis(3 ) matrix-vector-mult-basis row-def triangle-affine-def vec-lambda-eta vec-
tor-2 (2 ))

moreover have (?A (vector [0 , 1 ]))$2 = c$2
by (metis add.commute column-transpose diff-add-cancel e1e2-basis(3 )

matrix-vector-mult-basis row-def triangle-affine-def triangle-mat-def vec-lambda-eta
vector-2 (2 ))

ultimately show ?thesis by (smt (verit, ccfv-SIG) exhaust-2 vec-eq-iff )
qed
moreover have w ′′ 6= vector [0 , 0 ] ∧ w ′′ 6= vector [0 , 1 ] ∧ w ′′ 6= vector

[1 , 0 ]
using w ′′ elem-triangle-def unit-triangle-is-elementary by blast

ultimately show ?thesis by (metis inj-eq insertE singletonD)
qed
moreover have ?A ‘ unit-triangle = convex hull {a, b, c}

using triangle-affine-img by blast
ultimately show False using assms unfolding elem-triangle-def by blast

qed
ultimately show ∃w. integral-vec w ∧ L ∗v w = v by auto

qed
qed
ultimately show ?thesis unfolding integral-mat-bij-def by auto

qed

lemma elem-triangle-measure-integral-of-1 :
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fixes a b c :: real^2
defines S ≡ convex hull {a, b, c}
assumes elem-triangle a b c
shows measure lebesgue S = integral unit-triangle (λ(x::real^2 ). 1 )

proof−
let ?T = triangle-linear a b c
have integral-mat-bij (matrix ?T ) (is integral-mat-bij ?T-mat)

by (simp add: assms(2 ) elem-triangle-integral-mat-bij triangle-linear-def )
then have abs (det ?T-mat) = 1

using integral-mat-bij-det-pm1 by fastforce
thus ?thesis
using S-def assms(2 ) triangle-measure-integral-of-det elem-triangle-def by force

qed

lemma elem-triangle-area-is-half :
fixes a b c :: real^2
assumes elem-triangle a b c
defines S ≡ convex hull {a, b, c}
shows measure lebesgue S = 1/2 (is ?S-area = 1/2 )

proof−
have ¬ collinear {a, b, c} using elem-triangle-def assms(1 ) by blast
then have measure lebesgue S = integral unit-triangle (λx::real^2 . 1 )

using S-def assms(1 ) elem-triangle-measure-integral-of-1 by blast
also have ... = measure lebesgue unit-triangle
using unit-triangle-is-elementary elem-triangle-measure-integral-of-1 unit-triangle-area
by metis

finally show ?thesis by (simp add: unit-triangle-area)
qed

end
theory Pick
imports

Polygon-Splitting
Elementary-Triangle-Area

begin

26 Setup
26.1 Integral Points Cardinality Properties
lemma bounded-finite:

fixes A:: (real^2 ) set
assumes bounded A
shows finite {x::(real^2 ). integral-vec x ∧ x ∈ A} (is finite ?A-int)

proof−
obtain M where M : ∀ x ∈ A. norm x ≤ M using assms bounded-def by (meson

bounded-iff )

let ?M-bounded-ints = {n. n ∈ {−M ..M} ∧ is-int n}
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let ?M-bounded-int-vecs = {v::(real^2 ). v$1 ∈ ?M-bounded-ints ∧ v$2 ∈ ?M-bounded-ints}

have ∀ x::(real^2 ). norm (x$1 ) ≤ norm x ∧ (x$2 ) ≤ norm x
by (smt (verit, ccfv-threshold) Finite-Cartesian-Product.norm-nth-le real-norm-def )

then have ∀ x ∈ ?A-int. norm (x$1 ) ≤ M ∧ norm (x$2 ) ≤ M
using M dual-order .trans Finite-Cartesian-Product.norm-nth-le by blast

then have ∀ x ∈ ?A-int. x$1 ∈ ?M-bounded-ints ∧ x$2 ∈ ?M-bounded-ints
using integral-vec-def intervalE by auto

then have ∀ x ∈ ?A-int. x ∈ ?M-bounded-int-vecs by blast
moreover have finite ?M-bounded-int-vecs
proof−

obtain S :: int set where S : S = {n. ∃m ∈ ?M-bounded-ints. n = m} ∧ (∀n
∈ S . norm n ≤ M )

by (simp add: abs-le-iff )
then have finite-S : finite S

by (metis infinite-int-iff-unbounded le-floor-iff linorder-not-less norm-of-int
of-int-abs)

have finite-M-bounded-ints: finite ?M-bounded-ints
proof−

let ?f = λn::real. THE m::int. n = m
have ∀n ∈ ?M-bounded-ints. ∃ !m::int. n = m using is-int-def by force
moreover have inj-on ?f ?M-bounded-ints using inj-on-def is-int-def by

force
moreover have ?f ‘ ?M-bounded-ints ⊆ S using calculation S subsetI by

auto
ultimately show ?thesis using finite-imageD finite-S by (simp add: inj-on-finite)
qed
show ?thesis
proof−

let ?f = λx::(real^2 ). (THE m::int. m = x$1 , THE n::int. n = x$2 )
have inj-on ?f ?M-bounded-int-vecs

unfolding inj-on-def
proof clarify

fix x y :: real^2
assume x1-int: is-int (x$1 )
assume x2-int: is-int (x$2 )
assume y1-int: is-int (y$1 )
assume y2-int: is-int (y$2 )
assume x1y1-int-eq: (THE m. real-of-int m = x$1 ) = (THE m. real-of-int

m = y$1 )
assume x2y2-int-eq: (THE n. real-of-int n = x$2 ) = (THE n. real-of-int n

= y$2 )

have ∃ !m. m = x$1
by blast

moreover have ∃ !n. n = y$1
by blast
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moreover have (THE m. real-of-int m = x$1 ) = (THE m. real-of-int m =
y$1 )

using x1y1-int-eq by auto
ultimately have x1y1 : x$1 = y$1

using x1-int y1-int is-int-def by auto

have ∃ !m. m = x$2
by blast

moreover have ∃ !n. n = y$2
by blast

moreover have (THE m. real-of-int m = x$2 ) = (THE m. real-of-int m =
y$2 )

using x2y2-int-eq by auto
ultimately have x2y2 : x$2 = y$2

using x2-int y2-int is-int-def by auto

show x = y using x1y1 x2y2
by (metis (no-types, lifting) exhaust-2 vec-eq-iff )

qed
moreover have ?f ‘ ?M-bounded-int-vecs ⊆ S × S
proof(rule subsetI )

fix mn
assume mn ∈ ?f ‘ ?M-bounded-int-vecs
then obtain v where v:

v ∈ ?M-bounded-int-vecs ∧ ?f v = mn ∧ (∃ !m. v$1 = m) ∧ (∃ !n. v$2 =
n)

using is-int-def by auto
let ?m = fst mn
let ?n = snd mn

have ?m = (THE m::int. m = v$1 ) using v
by (meson fstI )

moreover have ∃ ! m::int. m = v$1 using v is-int-def
by (metis (no-types, lifting) mem-Collect-eq of-int-eq-iff )

ultimately have m-in-S : ?m ∈ S
by (metis (mono-tags, lifting) S mem-Collect-eq theI ′ v)

have ?n = (THE n::int. n = v$2 ) using v
by (meson sndI )

moreover have ∃ ! n::int. n = v$2 using v is-int-def
by (metis (no-types, lifting) mem-Collect-eq of-int-eq-iff )

ultimately have n-in-S : ?n ∈ S
by (metis (mono-tags, lifting) S mem-Collect-eq theI ′ v)

show mn ∈ S × S using m-in-S n-in-S v by auto
qed
ultimately show ?thesis

by (meson finite-S finite-SigmaI finite-imageD finite-subset)
qed
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qed
ultimately show ?thesis

by (smt (verit) finite-subset subsetI )
qed

lemma finite-path-image:
assumes polygon p
shows finite {x. integral-vec x ∧ x ∈ path-image p}
using bounded-finite inside-outside-polygon
unfolding inside-outside-def
by (meson assms bounded-simple-path-image polygon-def )

lemma finite-path-inside:
assumes polygon p
shows finite {x. integral-vec x ∧ x ∈ path-inside p}
using bounded-finite inside-outside-polygon
unfolding inside-outside-def
using assms by presburger

lemma bounded-finite-inside:
fixes B:: (real^2 ) set
assumes simple-path p
shows bounded (path-inside p)
using assms
by (simp add: bounded-inside bounded-simple-path-image path-inside-def )

lemma finite-integral-points-path-image:
assumes simple-path p
shows finite {x. integral-vec x ∧ x ∈ path-image p}
using bounded-finite bounded-simple-path-image assms by blast

lemma finite-integral-points-path-inside:
assumes simple-path p
shows finite {x. integral-vec x ∧ x ∈ path-inside p}
using bounded-finite bounded-finite-inside assms by blast

27 Pick splitting
lemma pick-split-path-union-main:

assumes is-split: is-polygon-split-path vts i j cutvts
assumes vts1 = (take i vts)
assumes vts2 = (take (j − i − 1 ) (drop (Suc i) vts))
assumes vts3 = drop (j − i) (drop (Suc i) vts)
assumes x = vts!i
assumes y = vts!j
assumes cutpath = make-polygonal-path (x # cutvts @ [y])
assumes p: p = make-polygonal-path (vts@[vts!0 ]) (is p = make-polygonal-path

?p-vts)
assumes p1 : p1 = make-polygonal-path (x#(vts2 @ [y] @ (rev cutvts) @ [x]))
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(is p1 = make-polygonal-path ?p1-vts)
assumes p2 : p2 = make-polygonal-path (vts1 @ ([x] @ cutvts @ [y]) @ vts3 @

[vts ! 0 ]) (is p2 = make-polygonal-path ?p2-vts)
assumes I1 : I1 = card {x. integral-vec x ∧ x ∈ path-inside p1}
assumes B1 : B1 = card {x. integral-vec x ∧ x ∈ path-image p1}
assumes I2 : I2 = card {x. integral-vec x ∧ x ∈ path-inside p2}
assumes B2 : B2 = card {x. integral-vec x ∧ x ∈ path-image p2}
assumes I : I = card {x. integral-vec x ∧ x ∈ path-inside p}
assumes B: B = card {x. integral-vec x ∧ x ∈ path-image p}
assumes all-integral-vts: all-integral vts
shows measure lebesgue (path-inside p1 ) = I1 + B1/2 − 1

=⇒ measure lebesgue (path-inside p2 ) = I2 + B2/2 − 1
=⇒ measure lebesgue (path-inside p) = I + B/2 − 1

measure lebesgue (path-inside p) = I + B/2 − 1
=⇒ measure lebesgue (path-inside p2 ) = I2 + B2/2 − 1
=⇒ measure lebesgue (path-inside p1 ) = I1 + B1/2 − 1

measure lebesgue (path-inside p) = I + B/2 − 1
=⇒ measure lebesgue (path-inside p1 ) = I1 + B1/2 − 1
=⇒ measure lebesgue (path-inside p2 ) = I2 + B2/2 − 1

proof −
let ?p-im = {x. integral-vec x ∧ x ∈ path-image p}
let ?p1-im = {x. integral-vec x ∧ x ∈ path-image p1}
let ?p2-im = {x. integral-vec x ∧ x ∈ path-image p2}
let ?p-int = {x. integral-vec x ∧ x ∈ path-inside p}
let ?p1-int = {x. integral-vec x ∧ x ∈ path-inside p1}
let ?p2-int = {x. integral-vec x ∧ x ∈ path-inside p2}

have vts: vts = vts1 @ (x # (vts2 @ y # vts3 ))
using assms split-up-a-list-into-3-parts
using is-polygon-split-path-def by blast

have polygon p
using finite-path-image assms(1 ) p unfolding is-polygon-split-path-def
by (smt (verit, best))

then have B-finite: finite ?p-im
using finite-path-image by auto

have polygon-p1 : polygon p1
using finite-path-image assms(1 ) p1 unfolding is-polygon-split-path-def
by (smt (z3 ) assms(3 ) assms(5 ) assms(6 ))

then have B1-finite: finite ?p1-im
using finite-path-image by auto

have polygon-p2 : polygon p2
using finite-path-image assms(1 ) p1 unfolding is-polygon-split-path-def
by (smt (z3 ) assms(2 ) assms(4 ) assms(5 ) assms(6 ) p2 )

then have B2-finite: finite ?p2-im
using finite-path-image by auto

have vts-distinct: distinct vts
using simple-polygonal-path-vts-distinct
by (metis ‹polygon p› butlast-snoc p polygon-def )
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then have x-neq-y: x 6= y
by (metis assms(1 ) assms(5 ) assms(6 ) index-first index-nth-id is-polygon-split-path-def )

then have card-2 : card {x, y} = 2
by auto

have polygon-split-props: (is-polygon-cut-path (vts@[vts!0 ]) cutpath ∧
polygon p ∧ polygon p1 ∧ polygon p2 ∧
path-inside p1 ∩ path-inside p2 = {} ∧
path-inside p1 ∪ path-inside p2 ∪ (path-image cutpath − {x, y}) = path-inside

p
∧ ((path-image p1 ) − (path-image cutpath)) ∩ ((path-image p2 ) − (path-image

cutpath)) = {}
∧ path-image p = ((path-image p1 ) − (path-image cutpath)) ∪ ((path-image p2 )

− (path-image cutpath)) ∪ {x, y})
using assms
by (meson is-polygon-split-path-def )

have measure-sum: measure lebesgue (path-inside p) = measure lebesgue (path-inside
p1 ) + measure lebesgue (path-inside p2 )

using polygon-split-path-add-measure assms
by (smt (verit, del-insts))

let ?yx-int = {k. integral-vec k ∧ k ∈ path-image (make-polygonal-path (y#rev
cutvts@[x]))}

let ?xy-int = {k. integral-vec k ∧ k ∈ path-image cutpath}
have yx-int-is-xy-int: ?yx-int = ?xy-int

using rev-vts-path-image[of x # cutvts @ [y]] assms(7 ) by simp
have x # vts2 @ [y] @ rev cutvts @ [x] = (x#vts2 ) @ ([y] @ rev cutvts @ [x]) @

[]
by simp

then have sublist ([y]@rev cutvts@[x]) ?p1-vts
unfolding sublist-def by blast

then have subset1 :
?xy-int ⊆ ?p1-im
using sublist-integral-subset-integral-on-path p1 yx-int-is-xy-int
by force

have len-gteq: length (x # cutvts @ [y]) ≥ 2
by auto

have sublist-p2 : sublist (x # cutvts @ [y]) ?p2-vts
unfolding sublist-def by auto

then have subset2 :
?xy-int ⊆ ?p2-im
using sublist-integral-subset-integral-on-path[OF len-gteq p2 sublist-p2 ]
assms(7 ) by blast

let ?S1 = ?p1-im − ?xy-int
let ?S2 = ?p2-im − ?xy-int
have disjoint-1 : ?S1 ∩ ?S2 = {}

using polygon-split-props by blast
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have integral-xy: integral-vec x ∧ integral-vec y
using all-integral-vts vts
using all-integral-def by auto

have nonempty: y # rev cutvts @ [x] 6= []
by simp

have trivial: make-polygonal-path (y # rev cutvts @ [x]) = make-polygonal-path
(y # rev cutvts @ [x])

by auto
have pathstart (make-polygonal-path (y#rev cutvts@[x])) = y ∧ pathfinish (make-polygonal-path

(y#rev cutvts@[x])) = x
using polygon-pathstart[OF nonempty trivial] polygon-pathfinish[OF nonempty

trivial]
by (metis last.simps last-conv-nth nonempty nth-Cons-0 snoc-eq-iff-butlast)

then have x-in-y-in: x ∈ path-image (make-polygonal-path (y#rev cutvts@[x]))
∧ y ∈ path-image (make-polygonal-path (y#rev cutvts@[x]))

unfolding pathstart-def pathfinish-def path-image-def
by (metis ‹pathstart (make-polygonal-path (y # rev cutvts @ [x])) = y ∧

pathfinish (make-polygonal-path (y # rev cutvts @ [x])) = x› path-image-def pathfin-
ish-in-path-image pathstart-in-path-image)

then have {x, y} ⊆ ?yx-int
using integral-xy
by simp

then have disjoint-2 : (?S1 ∪ ?S2 ) ∩ {x, y} = {}
by (simp add: yx-int-is-xy-int)

have path-image p =
path-image p1 − path-image cutpath ∪
(path-image p2 − path-image cutpath) ∪
{x, y}

using polygon-split-props by auto
then have set-union: ?p-im = (?S1 ∪ ?S2 ) ∪ {x, y}

using polygon-split-props integral-xy by auto
then have add-card: B = card (?p1-im − ?xy-int) + card (?p2-im − ?xy-int)

+ card {x, y}
using B-finite using disjoint-1 disjoint-2
by (metis (no-types, lifting) B card-Un-disjoint finite-Un)

have sub1 : card (?p1-im − ?xy-int) = B1 − card ?xy-int
using B1-finite B1 subset1
by (meson card-Diff-subset finite-subset)

have sub2 : card (?p2-im − ?xy-int) = B2 − card ?xy-int
using B2-finite B2 subset2
by (meson card-Diff-subset finite-subset)

have B: B = (B1 − card ?xy-int) + (B2 − card ?xy-int) + card {x, y}
using add-card sub1 sub2
by auto

then have B-sum-h: B = B1 + B2 − 2∗card ?xy-int + 2
using card-2
by (smt (verit, best) B1 B1-finite B2 B2-finite Nat.add-diff-assoc add.commute

card-mono diff-diff-left mult-2 subset1 subset2 )
then have B1 + B2 = B + 2∗card ?xy-int − 2
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by (metis (no-types, lifting) B1 B1-finite B2 B2-finite add-mono-thms-linordered-semiring(1 )
card-mono diff-add-inverse2 le-add2 mult-2 ordered-cancel-comm-monoid-diff-class.add-diff-assoc2
subset1 subset2 )

then have B-sum: (B1 + B2 )/2 = B/2 + card ?xy-int − 1
by (smt (verit) B-sum-h field-sum-of-halves le-add2 mult-2 nat-1-add-1 of-nat-1

of-nat-add of-nat-diff ordered-cancel-comm-monoid-diff-class.add-diff-assoc2 )
have casting-h:

∧
A B:: nat. A ≥ B =⇒ real (A − B) = real A − real B

by auto
have path-inside p1 ∪ path-inside p2 ∪ (path-image cutpath − {x, y}) =

path-inside p
using polygon-split-props by auto

then have interior-union: ?p-int = (?xy-int − {x, y}) ∪ ?p1-int ∪ ?p2-int
by blast

have finite-inside-p: finite ?p-int
using bounded-finite inside-outside-polygon
by (simp add: polygon-split-props inside-outside-def )

have finite-pathimage: finite (?xy-int − {x, y})
using B1-finite finite-subset subset1 by auto

have finite-inside-p1 : finite ?p1-int
using polygon-split-props bounded-finite inside-outside-polygon
using finite-Un finite-inside-p interior-union by auto

have finite-inside-p2 : finite ?p2-int
using polygon-split-props bounded-finite inside-outside-polygon
using finite-Un finite-inside-p interior-union by auto

have path-image-inside-disjoint1 : (?xy-int − {x, y}) ∩ (?p1-int) = {}
using subset1 inside-outside-polygon[OF polygon-p1 ]
unfolding inside-outside-def by auto

have path-image-inside-disjoint2 : (?xy-int − {x, y}) ∩ (?p2-int) = {}
using subset2 inside-outside-polygon[OF polygon-p2 ]
unfolding inside-outside-def by auto

have (?xy-int − {x, y}) ∩ (?p1-int ∪ ?p2-int) = {}
using subset2 path-image-inside-disjoint1 path-image-inside-disjoint2
by auto

then have I-is: I = card (?xy-int − {x, y}) +
card (?p1-int ∪ ?p2-int)
using interior-union I finite-inside-p1 finite-inside-p2

by (metis (no-types, lifting) card-Un-disjoint finite-Un finite-pathimage sup-assoc)

have disjoint-4 : ?p1-int ∩ ?p2-int = {}
using polygon-split-props by auto

then have I = card (?xy-int − {x, y}) +
I1 + I2
using I-is finite-inside-p1 finite-inside-p2
by (simp add: I1 I2 card-Un-disjoint)

have interior-subset: (?xy-int − {x, y}) ⊆ ?p-int
using interior-union by auto

have x-y-subset: {x, y} ⊆ ?xy-int
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using x-in-y-in rev-vts-path-image[of x # cutvts @ [y]] assms(7 )
integral-xy
using yx-int-is-xy-int by blast

have real (card (?xy-int − {x, y})) =
real (card (?xy-int )) − real (card {x, y})

using x-y-subset
by (metis (no-types, lifting) B2-finite card-Diff-subset card-mono finite-subset

of-nat-diff subset2 )
then have card-diff : real (card (?xy-int − {x, y})) =
real (card (?xy-int )) − 2

using card-2 by auto
then have I = I1 + I2 + (card (?xy-int − {x, y}))

using I I1 I2 interior-union finite-inside-p1 finite-inside-p2
by (simp add: I-is disjoint-4 card-Un-disjoint)

then have I = I1 + I2 + real (card (?xy-int)) − 2
using card-diff
by linarith

then have I-sum: I1 + I2 = I − real (card ?xy-int) + 2
by fastforce

{assume pick1 : measure lebesgue (path-inside p1 ) = I1 + B1/2 − 1
assume pick2 : measure lebesgue (path-inside p2 ) = I2 + B2/2 − 1

have measure lebesgue (path-inside p) = I1 + I2 + (B1+B2 )/2 −2
using pick1 pick2 measure-sum by auto

then have measure lebesgue (path-inside p) = I − real (card ?xy-int) + 2 +
B/2 + card ?xy-int − 1 − 2
using I-sum B-sum
by linarith

then have measure lebesgue (path-inside p) = I + B/2 − 1 by auto
}
then show measure lebesgue (path-inside p1 ) = I1 + B1/2 − 1 =⇒ measure

lebesgue (path-inside p2 ) = I2 + B2/2 − 1 =⇒ measure lebesgue (path-inside p)
= I + B/2 − 1

by blast

{assume pick1 : measure lebesgue (path-inside p) = I + B/2 − 1
assume pick2 : measure lebesgue (path-inside p2 ) = I2 + B2/2 − 1
then have real I + real B / 2 − 1 = (measure lebesgue (path-inside p1 )) +

I2 + B2/2 −1
using measure-sum pick1 pick2 by auto

then have measure lebesgue (path-inside p) = I − real (card ?xy-int) + 2 +
B/2 + card ?xy-int − 1 − 2
using I-sum B-sum pick1
by linarith

then have measure lebesgue (path-inside p1 ) = I1 + B1/2 − 1
using B-sum ‹real I = real (I1 + I2 ) + real (card {k. integral-vec k ∧ k ∈

path-image cutpath}) − 2 › field-sum-of-halves measure-sum of-nat-add
pick1 pick2 by auto

}
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then show measure lebesgue (path-inside p) = I + B/2 − 1 =⇒ measure
lebesgue (path-inside p2 ) = I2 + B2/2 − 1 =⇒ measure lebesgue (path-inside p1 )
= I1 + B1/2 − 1

by blast

{assume pick1 : measure lebesgue (path-inside p) = I + B/2 − 1
assume pick2 : measure lebesgue (path-inside p1 ) = I1 + B1/2 − 1
then have real I + real B / 2 − 1 = (measure lebesgue (path-inside p2 )) +

I1 + B1/2 −1
using measure-sum pick1 pick2 by auto

then have measure lebesgue (path-inside p) = I − real (card ?xy-int) + 2 +
B/2 + card ?xy-int − 1 − 2
using I-sum B-sum pick1
by linarith

then have measure lebesgue (path-inside p2 ) = I2 + B2/2 − 1
using B-sum ‹real I = real (I1 + I2 ) + real (card {k. integral-vec k ∧ k ∈

path-image cutpath}) − 2 › field-sum-of-halves measure-sum of-nat-add
using pick2 by auto

}
then show measure lebesgue (path-inside p) = I + B/2 − 1 =⇒ measure lebesgue

(path-inside p1 ) = I1 + B1/2 − 1 =⇒ measure lebesgue (path-inside p2 ) = I2 +
B2/2 − 1

by blast
qed

lemma pick-split-union:
assumes is-split: is-polygon-split vts i j
assumes vts1 = (take i vts)
assumes vts2 = (take (j − i − 1 ) (drop (Suc i) vts))
assumes vts3 = drop (j − i) (drop (Suc i) vts)
assumes x = vts ! i
assumes y = vts ! j
assumes p: p = make-polygonal-path (vts@[vts!0 ]) (is p = make-polygonal-path

?p-vts)
assumes p1 : p1 = make-polygonal-path (x#(vts2@[y, x])) (is p1 = make-polygonal-path

?p1-vts)
assumes p2 : p2 = make-polygonal-path (vts1 @ [x, y] @ vts3 @ [vts ! 0 ]) (is p2

= make-polygonal-path ?p2-vts)
assumes I1 : I1 = card {x. integral-vec x ∧ x ∈ path-inside p1}
assumes B1 : B1 = card {x. integral-vec x ∧ x ∈ path-image p1}
assumes pick1 : measure lebesgue (path-inside p1 ) = I1 + B1/2 − 1
assumes I2 : I2 = card {x. integral-vec x ∧ x ∈ path-inside p2}
assumes B2 : B2 = card {x. integral-vec x ∧ x ∈ path-image p2}
assumes pick2 : measure lebesgue (path-inside p2 ) = I2 + B2/2 − 1
assumes I : I = card {x. integral-vec x ∧ x ∈ path-inside p}
assumes B: B = card {x. integral-vec x ∧ x ∈ path-image p}
assumes all-integral-vts: all-integral vts
shows measure lebesgue (path-inside p) = I + B/2 − 1

measure lebesgue (path-inside p) = measure lebesgue (path-inside p1 ) +
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measure lebesgue (path-inside p2 )
proof −

let ?p-im = {x. integral-vec x ∧ x ∈ path-image p}
let ?p1-im = {x. integral-vec x ∧ x ∈ path-image p1}
let ?p2-im = {x. integral-vec x ∧ x ∈ path-image p2}
let ?p-int = {x. integral-vec x ∧ x ∈ path-inside p}
let ?p1-int = {x. integral-vec x ∧ x ∈ path-inside p1}
let ?p2-int = {x. integral-vec x ∧ x ∈ path-inside p2}

have vts: vts = vts1 @ (x # (vts2 @ y # vts3 ))
using assms split-up-a-list-into-3-parts
using is-polygon-split-def by blast

have polygon p
using finite-path-image assms(1 ) p unfolding is-polygon-split-def
by (smt (verit, best))

then have B-finite: finite ?p-im
using finite-path-image by auto

have polygon-p1 : polygon p1
using finite-path-image assms(1 ) p1 unfolding is-polygon-split-def
by (smt (z3 ) assms(3 ) assms(5 ) assms(6 ))

then have B1-finite: finite ?p1-im
using finite-path-image by auto

have polygon-p2 : polygon p2
using finite-path-image assms(1 ) p1 unfolding is-polygon-split-def
by (smt (z3 ) assms(2 ) assms(4 ) assms(5 ) assms(6 ) p2 )

then have B2-finite: finite ?p2-im
using finite-path-image by auto

have vts-distinct: distinct vts
using simple-polygonal-path-vts-distinct
by (metis ‹polygon p› butlast-snoc p polygon-def )

then have x-neq-y: x 6= y
by (metis assms(1 ) assms(5 ) assms(6 ) index-first index-nth-id is-polygon-split-def )

then have card-2 : card {x, y} = 2
by auto

have polygon-split-props: is-polygon-cut ?p-vts x y ∧
polygon p ∧ polygon p1 ∧ polygon p2 ∧
path-inside p1 ∩ path-inside p2 = {} ∧
path-inside p1 ∪ path-inside p2 ∪ (path-image (linepath x y) − {x, y})

= path-inside p ∧ ((path-image p1 ) − (path-image (linepath x y))) ∩
((path-image p2 ) − (path-image (linepath x y))) = {}
∧ path-image p = ((path-image p1 ) − (path-image (linepath x y))) ∪ ((path-image

p2 ) − (path-image (linepath x y))) ∪ {x, y}
using assms
by (meson is-polygon-split-def )

have measure lebesgue (path-inside p) = measure lebesgue (path-inside p1 ) +
measure lebesgue (path-inside p2 )

using polygon-split-add-measure assms
by (smt (verit, del-insts))
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then have measure-sum: measure lebesgue (path-inside p) = I1 + I2 + (B1+B2 )/2
−2

using pick1 pick2 by auto

let ?yx-int = {k. integral-vec k ∧ k ∈ path-image (linepath y x)}
let ?xy-int = {k. integral-vec k ∧ k ∈ path-image (linepath x y)}
have yx-int-is-xy-int: ?yx-int = ?xy-int

by (simp add: closed-segment-commute)

have sublist [y, x] ?p1-vts by (simp add: sublist-Cons-right)
then have subset1 :

?xy-int ⊆ ?p1-im
using sublist-pair-integral-subset-integral-on-path p1 yx-int-is-xy-int by blast

have subset2 :
?xy-int ⊆ ?p2-im
using sublist-pair-integral-subset-integral-on-path p2 by blast

let ?S1 = ?p1-im − ?xy-int
let ?S2 = ?p2-im − ?xy-int
have disjoint-1 : ?S1 ∩ ?S2 = {}

using polygon-split-props by blast

have integral-xy: integral-vec x ∧ integral-vec y
using all-integral-vts vts
using all-integral-def by auto

then have {x, y} ⊆ ?yx-int
by simp

then have disjoint-2 : (?S1 ∪ ?S2 ) ∩ {x, y} = {}
by simp

have path-image p =
path-image p1 − path-image (linepath x y) ∪
(path-image p2 − path-image (linepath x y)) ∪
{x, y}

using polygon-split-props by auto
then have set-union: ?p-im = (?S1 ∪ ?S2 ) ∪ {x, y}

using polygon-split-props integral-xy by auto
then have add-card: B = card (?p1-im − ?xy-int) + card (?p2-im − ?xy-int)

+ card {x, y}
using B-finite using disjoint-1 disjoint-2
by (metis (no-types, lifting) B card-Un-disjoint finite-Un)

have sub1 : card (?p1-im − ?xy-int) = B1 − card ?xy-int
using B1-finite B1 subset1
by (meson card-Diff-subset finite-subset)

have sub2 : card (?p2-im − ?xy-int) = B2 − card ?xy-int
using B2-finite B2 subset2
by (meson card-Diff-subset finite-subset)

have B: B = (B1 − card ?xy-int) + (B2 − card ?xy-int) + card {x, y}
using add-card sub1 sub2
by auto
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then have B-sum-h: B = B1 + B2 − 2∗card ?xy-int + 2
using card-2
by (smt (verit, best) B1 B1-finite B2 B2-finite Nat.add-diff-assoc add.commute

card-mono diff-diff-left mult-2 subset1 subset2 )
then have B1 + B2 = B + 2∗card ?xy-int − 2
by (metis (no-types, lifting) B1 B1-finite B2 B2-finite add-mono-thms-linordered-semiring(1 )

card-mono diff-add-inverse2 le-add2 mult-2 ordered-cancel-comm-monoid-diff-class.add-diff-assoc2
subset1 subset2 )

then have B-sum: (B1 + B2 )/2 = B/2 + card ?xy-int − 1
by (smt (verit) B-sum-h field-sum-of-halves le-add2 mult-2 nat-1-add-1 of-nat-1

of-nat-add of-nat-diff ordered-cancel-comm-monoid-diff-class.add-diff-assoc2 )
have casting-h:

∧
A B:: nat. A ≥ B =⇒ real (A − B) = real A − real B

by auto
have path-inside p1 ∪ path-inside p2 ∪ (path-image (linepath x y) − {x, y}) =

path-inside p
using polygon-split-props by auto

then have interior-union: ?p-int = (?xy-int − {x, y}) ∪ ?p1-int ∪ ?p2-int
by blast

have finite-inside-p: finite ?p-int
using bounded-finite inside-outside-polygon
by (simp add: polygon-split-props inside-outside-def )

have finite-pathimage: finite (?xy-int − {x, y})
using B1-finite finite-subset subset1 by auto

have finite-inside-p1 : finite ?p1-int
using polygon-split-props bounded-finite inside-outside-polygon
using finite-Un finite-inside-p interior-union by auto

have finite-inside-p2 : finite ?p2-int
using polygon-split-props bounded-finite inside-outside-polygon
using finite-Un finite-inside-p interior-union by auto

have path-image-inside-disjoint1 : (?xy-int − {x, y}) ∩ (?p1-int) = {}
using subset1 inside-outside-polygon[OF polygon-p1 ]
unfolding inside-outside-def by auto

have path-image-inside-disjoint2 : (?xy-int − {x, y}) ∩ (?p2-int) = {}
using subset2 inside-outside-polygon[OF polygon-p2 ]
unfolding inside-outside-def by auto

have (?xy-int − {x, y}) ∩ (?p1-int ∪ ?p2-int) = {}
using subset2 path-image-inside-disjoint1 path-image-inside-disjoint2
by auto

then have I-is: I = card (?xy-int − {x, y}) +
card (?p1-int ∪ ?p2-int)
using interior-union I finite-inside-p1 finite-inside-p2

by (metis (no-types, lifting) card-Un-disjoint finite-Un finite-pathimage sup-assoc)

have disjoint-4 : ?p1-int ∩ ?p2-int = {}
using polygon-split-props by auto

then have I = card (?xy-int − {x, y}) +
I1 + I2
using I-is finite-inside-p1 finite-inside-p2
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by (simp add: I1 I2 card-Un-disjoint)
have interior-subset: (?xy-int − {x, y}) ⊆ ?p-int

using interior-union by auto
have x-y-subset: {x, y} ⊆ ?xy-int

using local.set-union by auto
have real (card (?xy-int − {x, y})) =
real (card (?xy-int )) − real (card {x, y})

using x-y-subset
by (metis (no-types, lifting) B2-finite card-Diff-subset card-mono finite-subset

of-nat-diff subset2 )
then have card-diff : real (card (?xy-int − {x, y})) =
real (card (?xy-int )) − 2

using card-2 by auto
then have I = I1 + I2 + (card (?xy-int − {x, y}))

using I I1 I2 interior-union finite-inside-p1 finite-inside-p2
by (simp add: I-is disjoint-4 card-Un-disjoint)

then have I = I1 + I2 + real (card (?xy-int)) − 2
using card-diff
by linarith

then have I-sum: I1 + I2 = I − real (card ?xy-int) + 2
by fastforce

have measure lebesgue (path-inside p) = I − real (card ?xy-int) + 2 +
B/2 + card ?xy-int − 1 − 2
using measure-sum I-sum B-sum
by linarith

then show measure lebesgue (path-inside p) = I + B/2 − 1 by auto

show measure lebesgue (path-inside p) = measure lebesgue (path-inside p1 ) +
measure lebesgue (path-inside p2 )

using ‹Sigma-Algebra.measure lebesgue (path-inside p) = Sigma-Algebra.measure
lebesgue (path-inside p1 ) + Sigma-Algebra.measure lebesgue (path-inside p2 )› by
blast
qed

lemma pick-split-path-union:
assumes is-split: is-polygon-split-path vts i j cutvts
assumes vts1 = (take i vts)
assumes vts2 = (take (j − i − 1 ) (drop (Suc i) vts))
assumes vts3 = drop (j − i) (drop (Suc i) vts)
assumes x = vts!i
assumes y = vts!j
assumes cutpath = make-polygonal-path (x # cutvts @ [y])
assumes p: p = make-polygonal-path (vts@[vts!0 ]) (is p = make-polygonal-path

?p-vts)
assumes p1 : p1 = make-polygonal-path (x#(vts2 @ [y] @ (rev cutvts) @ [x]))

(is p1 = make-polygonal-path ?p1-vts)
assumes p2 : p2 = make-polygonal-path (vts1 @ ([x] @ cutvts @ [y]) @ vts3 @

[vts ! 0 ]) (is p2 = make-polygonal-path ?p2-vts)
assumes I1 : I1 = card {x. integral-vec x ∧ x ∈ path-inside p1}
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assumes B1 : B1 = card {x. integral-vec x ∧ x ∈ path-image p1}
assumes pick1 : measure lebesgue (path-inside p1 ) = I1 + B1/2 − 1
assumes I2 : I2 = card {x. integral-vec x ∧ x ∈ path-inside p2}
assumes B2 : B2 = card {x. integral-vec x ∧ x ∈ path-image p2}
assumes pick2 : measure lebesgue (path-inside p2 ) = I2 + B2/2 − 1
assumes I : I = card {x. integral-vec x ∧ x ∈ path-inside p}
assumes B: B = card {x. integral-vec x ∧ x ∈ path-image p}
assumes all-integral-vts: all-integral vts
shows measure lebesgue (path-inside p) = I + B/2 − 1
using pick-split-path-union-main pick1 pick2 (1 ) assms by blast

lemma pick-triangle-basic-split:
assumes p = make-triangle a b c and distinct [a, b, c] and ¬ collinear {a, b,

c} and
d-prop: d ∈ path-image (linepath a b) ∧ d /∈ {a, b, c}

shows good-linepath c d [a, d, b, c, a]
∧ path-image (make-polygonal-path [a, d, b, c, a]) = path-image p

proof−
let ?l = linepath c d
let ?L = path-image ?l
let ?P = path-image p
let ?vts ′ = [a, d, b, c, a]
let ?p ′ = make-polygonal-path ?vts ′

let ?P ′ = path-image ?p ′

have h1 : path-image (make-polygonal-path [a, b, c, a]) = path-image (linepath a
b) ∪ path-image (linepath b c) ∪ path-image (linepath c a)

using polygonal-path-image-linepath-union by (simp add: path-image-join sup.assoc)
have h2 : path-image (make-polygonal-path [a, d, b, c, a]) = path-image (linepath a

d) ∪ path-image (linepath d b) ∪ path-image (linepath b c) ∪ path-image (linepath
c a)

using polygonal-path-image-linepath-union by (simp add: path-image-join sup.assoc)
have h3 : path-image (linepath a b) = path-image (linepath a d) ∪ path-image

(linepath d b)
using path-image-linepath-union d-prop by auto

have 1 : ?P ′ = ?P
using h1 h2 h3
using assms(1 ) make-triangle-def by force

have {c, d} = ?L ∩ ?P
proof(rule ccontr)

have subs: {c, d} ⊆ ?L ∩ ?P
using assms(1 ) vertices-on-path-image unfolding make-triangle-def

by (metis IntD2 IntI assms(4 ) empty-subsetI inf-sup-absorb insert-subset
list.discI list.simps(15 ) nth-Cons-0 path-image-cons-union pathfinish-in-path-image
pathfinish-linepath pathstart-in-path-image pathstart-linepath)

assume ∗: {c, d} 6= ?L ∩ ?P
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then obtain z where z: z 6= c ∧ z 6= d ∧ z ∈ ?L ∩ ?P using subs by blast
then have cases:

z ∈ path-image (linepath a b) ∨ z ∈ path-image (linepath b c) ∨ z ∈ path-image
(linepath c a)

using 1 h2 h3 by blast
{ assume ∗∗: z ∈ path-image (linepath a b)

moreover have z ∈ ?L ∧ d ∈ ?L ∧ d ∈ path-image (linepath a b) using
assms z by force

ultimately have {z, d} ⊆ ?L ∩ path-image (linepath a b) ∧ z 6= d using z
by blast

then have collinear {a, b, c, d} using two-linepath-colinearity-property by
fastforce

then have False using assms(2 ) assms(3 ) collinear-4-3 by auto
} moreover
{ assume ∗∗: z ∈ path-image (linepath b c)

then have collinear {a, b, c, d} using two-linepath-colinearity-property[of z
- b c c d]

by (smt (verit) ∗∗ IntE assms(3 ) collinear-3-trans d-prop in-path-image-imp-collinear
insertCI insert-commute z)

then have False using assms(2 ) assms(3 ) collinear-4-3 by auto
} moreover
{ assume ∗∗: z ∈ path-image (linepath c a)

then have collinear {a, b, c, d} using two-linepath-colinearity-property[of z
- c a c d]

by (smt (verit) IntD1 assms(3 ) collinear-3-trans d-prop in-path-image-imp-collinear
insert-commute insert-iff z)

then have False using assms(2 ) assms(3 ) collinear-4-3 by auto
}
ultimately show False using cases by argo

qed
moreover have ?L ⊆ path-inside p ∪ ?P
proof−

have convex hull {a, b, c} = path-inside p ∪ ?P
by (simp add: Un-commute assms(1 ) assms(3 ) triangle-convex-hull)

moreover have ?L ⊆ convex hull {a, b, c}
by (smt (verit, ccfv-threshold) assms empty-subsetI hull-insert hull-mono in-

sert-commute insert-mono insert-subset path-image-linepath segment-convex-hull)
ultimately show ?thesis by blast

qed
ultimately have ?L ⊆ path-inside p ∪ {c, d} by blast
then have ?L ⊆ path-inside ?p ′ ∪ {c, d} using 1 unfolding path-inside-def by

presburger
then have 2 : good-linepath c d ?vts ′ using assms unfolding good-linepath-def

by auto

thus ?thesis using 1 by blast
qed
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28 Convex Hull Has Good Linepath
lemma leq-2-extreme-points-means-collinear :

fixes vts :: ′a::euclidean-space set
assumes finite vts
assumes card {v. v extreme-point-of (convex hull vts)} ≤ 2
shows collinear vts
using assms
by (metis Krein-Milman-polytope affine-hull-convex-hull collinear-affine-hull-collinear

collinear-small extreme-points-of-convex-hull finite-subset)

lemma convex-hull-non-extreme-point-in-open-seg:
assumes H = convex hull vts
assumes x ∈ H − {v. v extreme-point-of H}
shows ∃ a b. a ∈ H ∧ b ∈ H ∧ x ∈ open-segment a b
using assms unfolding extreme-point-of-def by blast

lemma convex-hull-extreme-points-vertex-split:
fixes vts :: (real^2 ) set
assumes H = convex hull vts
assumes finite vts
assumes card {v. v extreme-point-of H} ≥ 4
assumes {a, b, c} ⊆ {v. v extreme-point-of H} ∧ distinct [a, b, c]
shows path-image (linepath a b) ∩ interior H 6= {}
∨ path-image (linepath b c) ∩ interior H 6= {}
∨ path-image (linepath c a) ∩ interior H 6= {}

proof−
let ?ep = {v. v extreme-point-of H}

have H : H = convex hull ?ep using Krein-Milman-polytope assms(1 ) assms(2 )
by blast

let ?H ′ = convex hull {a, b, c}

have not-collinear : ¬ collinear {a, b, c}
proof(rule ccontr)

assume ¬ ¬ collinear {a, b, c}
then have collinear {a, b, c} by blast
then have a ∈ path-image (linepath b c)
∨ b ∈ path-image (linepath a c)
∨ c ∈ path-image (linepath a b)

using collinear-between-cases unfolding between-def
by (smt (verit, del-insts) between-mem-segment closed-segment-eq collinear-between-cases

doubleton-eq-iff path-image-linepath)
moreover have a 6= b ∧ b 6= c ∧ a 6= c using assms by simp

ultimately have a ∈ open-segment b c ∨ b ∈ open-segment a c ∨ c ∈
open-segment a b

using closed-segment-eq-open by auto
moreover have a extreme-point-of H ∧ b extreme-point-of H ∧ c extreme-point-of

H
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using assms by blast
ultimately show False unfolding extreme-point-of-def by blast

qed

have strict-subset: interior ?H ′ ⊂ interior H
proof−

have interior ?H ′ ⊆ interior H
by (metis H assms(4 ) hull-mono interior-mono)

moreover have ?H ′ ⊂ H
proof−

have card {a, b, c} ≤ 3
by (metis card.empty card-insert-disjoint collinear-2 finite.emptyI finite-insert

insert-absorb nat-le-linear not-collinear numeral-3-eq-3 )
then have card (?ep − {a, b, c}) ≥ 1

using assms(3 ) assms(4 ) by auto
then obtain d where d ∈ ?ep − {a, b, c}

by (metis One-nat-def all-not-in-conv card.empty not-less-eq-eq zero-le)
thus ?thesis
by (metis DiffE H assms(4 ) extreme-point-of-convex-hull hull-mono mem-Collect-eq

order-less-le)
qed
ultimately show ?thesis

by (metis (no-types, lifting) assms(1 ) assms(2 ) closure-convex-hull con-
vex-closure-rel-interior convex-convex-hull convex-hull-eq-empty convex-polygon-frontier-is-path-image2
dual-order .strict-iff-order finite.emptyI finite.insertI finite-imp-bounded-convex-hull
finite-imp-compact frontier-empty insert-not-empty inside-frontier-eq-interior not-collinear
path-inside-def polygon-frontier-is-path-image rel-interior-nonempty-interior sup-bot.right-neutral
triangle-convex-hull triangle-is-convex triangle-is-polygon)

qed
moreover have interior ?H ′ 6= {}
by (metis not-collinear convex-convex-hull convex-hull-eq-empty convex-polygon-frontier-is-path-image2

finite.emptyI finite.insertI finite-imp-bounded-convex-hull frontier-empty insert-not-empty
inside-frontier-eq-interior path-inside-def polygon-frontier-is-path-image sup-bot.right-neutral
triangle-convex-hull triangle-is-convex triangle-is-polygon)

ultimately obtain x y where xy: x ∈ interior ?H ′ ∧ y ∈ interior H − interior
?H ′ by blast

let ?l = linepath x y

have x ∈ interior ?H ′ ∧ y ∈ −(interior ?H ′) using xy by blast
then have path-image ?l ∩ interior ?H ′ 6= {} ∧ path-image ?l ∩ −(interior ?H ′)
6= {} by auto
moreover have path-connected (interior ?H ′) by (simp add: convex-imp-path-connected)
ultimately obtain z where z: z ∈ path-image ?l ∩ frontier (interior ?H ′)
by (metis Diff-eq Diff-eq-empty-iff all-not-in-conv convex-convex-hull convex-imp-path-connected

path-connected-not-frontier-subset path-image-linepath segment-convex-hull)
moreover have path-image ?l ⊆ interior H using xy convex-interior [of H ]
by (metis DiffD1 IntD2 strict-subset assms(1 ) closed-segment-subset convex-convex-hull

inf .strict-order-iff path-image-linepath)
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ultimately have z-interior : z ∈ interior H by blast

have z ∈ frontier (interior ?H ′) using z by blast
moreover have frontier (interior ?H ′)

= path-image (linepath a b) ∪ path-image (linepath b c) ∪ path-image (linepath
c a)

proof−
let ?p = make-triangle a b c
have path-inside ?p = interior ?H ′

by (metis not-collinear bounded-convex-hull bounded-empty bounded-insert con-
vex-convex-hull convex-polygon-frontier-is-path-image2 inside-frontier-eq-interior path-inside-def
triangle-convex-hull triangle-is-convex triangle-is-polygon)

then have path-image ?p = frontier (interior ?H ′)
by (metis not-collinear polygon-frontier-is-path-image triangle-is-polygon)

moreover have path-image ?p
= path-image (linepath a b) ∪ path-image (linepath b c) ∪ path-image (linepath

c a)
by (metis Un-assoc list.discI make-polygonal-path.simps(3 ) make-triangle-def

nth-Cons-0 path-image-cons-union)
ultimately show ?thesis by presburger

qed
ultimately show ?thesis using z-interior by blast

qed

lemma convex-hull-has-vertex-split-helper-wlog:
assumes p = make-triangle a b c and distinct [a, b, c] and ¬ collinear {a, b,

c} and
d-prop: d ∈ path-image (linepath a b) ∧ d /∈ {a, b, c}

shows path-image (linepath c d) ∩ path-inside p 6= {}
proof−

have good-linepath c d [a, d, b, c, a]
∧ path-image (make-polygonal-path [a, d, b, c, a]) = path-image p

using pick-triangle-basic-split[of p a b c d] assms by fast
thus ?thesis

unfolding good-linepath-def
by (smt (verit, del-insts) Int-Un-eq(4 ) Int-insert-right-if1 Un-insert-right diff-points-path-image-set-property

le-iff-inf path-inside-def pathfinish-in-path-image pathfinish-linepath pathstart-in-path-image
pathstart-linepath)
qed

lemma convex-hull-has-vertex-split-helper :
assumes p = make-triangle a b c and distinct [a, b, c] and ¬ collinear {a, b,

c} and
d-prop: d ∈ path-image p ∧ d /∈ {a, b, c}

shows ∃ x y. {x, y} ⊆ {a, b, c, d} ∧ x 6= y ∧ path-image (linepath x y) ∩
path-inside p 6= {}
proof−

{ assume d ∈ path-image (linepath a b)
then have ?thesis
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using convex-hull-has-vertex-split-helper-wlog[of p a b c d] assms(1 ) assms(2 )
assms(3 ) d-prop

by fastforce
} moreover
{ assume ∗: d ∈ path-image (linepath b c)

let ?p ′ = make-triangle b c a
have path-image (linepath a d) ∩ path-inside ?p ′ 6= {}

using convex-hull-has-vertex-split-helper-wlog[of ?p ′ b c a d]
by (metis (no-types, opaque-lifting) ∗ assms(3 ) collinear-2 d-prop distinct-length-2-or-more

distinct-singleton insert-absorb2 insert-commute)
moreover have path-inside ?p ′ = path-inside p

unfolding make-triangle-def
by (smt (verit, best) assms(1 ) assms(3 ) convex-polygon-frontier-is-path-image2

insert-commute make-triangle-def path-inside-def triangle-convex-hull triangle-is-convex
triangle-is-polygon)

ultimately have ?thesis using assms by auto
} moreover
{ assume ∗: d ∈ path-image (linepath c a)

let ?p ′ = make-triangle c a b
have path-image (linepath b d) ∩ path-inside ?p ′ 6= {}

using convex-hull-has-vertex-split-helper-wlog[of ?p ′ c a b d]
by (metis (no-types, opaque-lifting) ∗ assms(3 ) collinear-2 d-prop distinct-length-2-or-more

distinct-singleton insert-absorb2 insert-commute)
moreover have path-inside ?p ′ = path-inside p

unfolding make-triangle-def
by (smt (verit, ccfv-SIG) assms(1 ) assms(3 ) convex-polygon-frontier-is-path-image2

insert-commute make-triangle-def path-inside-def triangle-convex-hull triangle-is-convex
triangle-is-polygon)

ultimately have ?thesis using assms by auto
}
ultimately show ?thesis using on-triangle-path-image-cases assms(1 ) d-prop

by fast
qed

lemma convex-hull-has-vertex-split:
fixes vts :: (real^2 ) set
assumes H = convex hull vts
assumes ¬ collinear vts
assumes card vts > 3
assumes finite vts
shows ∃ a b. {a, b} ⊆ vts ∧ a 6= b ∧ path-image (linepath a b) ∩ interior H 6=
{}
proof−

let ?ep = {v. v extreme-point-of H}
have ep: ?ep ⊆ vts by (simp add: assms(1 ) extreme-points-of-convex-hull)
have card-ep: card ?ep ≥ 3
by (metis One-nat-def Suc-1 assms(1 ) assms(2 ) assms(3 ) card.infinite leq-2-extreme-points-means-collinear

not-less-eq-eq not-less-zero numeral-3-eq-3 )
obtain a b c where abc: {a, b, c} ⊆ ?ep ∧ a 6= b ∧ b 6= c ∧ a 6= c
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proof−
obtain a A where a ∈ ?ep ∧ A = ?ep − {a} ∧ card A ≥ 2 using card-ep by

force
moreover then obtain b B where b ∈ A ∧ B = A − {b} ∧ card B ≥ 1
by (metis Suc-1 Suc-diff-le bot.extremum-uniqueI bot-nat-0 .extremum card-Diff-singleton

card-eq-0-iff diff-Suc-1 less-Suc-eq-le less-one linorder-not-le subset-emptyI )
moreover then obtain c C where c ∈ B ∧ C = B − {c} ∧ card C ≥ 0
by (metis One-nat-def bot-nat-0 .extremum card.empty equals0I not-less-eq-eq)

ultimately have {a, b, c} ⊆ ?ep ∧ a 6= b ∧ b 6= c ∧ a 6= c by blast
thus ?thesis using that by auto

qed
{ assume ∗: card ?ep = 3

then have abc: ?ep = {a, b, c}
by (metis abc card-3-iff card-gt-0-iff numeral-3-eq-3 order-less-le psubset-card-mono

zero-less-Suc)
obtain d where d: d ∈ vts ∧ d 6= a ∧ d 6= b ∧ d 6= c

by (metis ∗ assms(3 ) abc ep insertCI nat-less-le subsetI subset-antisym)
{ assume d ∈ interior H

then have d ∈ path-image (linepath a d) ∩ interior H by simp
then have ?thesis using ep abc d by auto

} moreover
{ assume ∗∗∗: d /∈ interior H

let ?p = make-triangle a b c
have H : H = convex hull ?ep
proof−

have compact H
by (metis assms(1 ) assms(3 ) card-eq-0-iff finite-imp-compact-convex-hull

gr-implies-not0 )
moreover have convex H using convex-convex-hull[of vts] assms by blast
ultimately have H = closure (convex hull ?ep) using Krein-Milman[of H ]

by fast
thus ?thesis using abc by auto

qed
then have interior : path-inside ?p = interior H

using abc
by (metis assms(1 ,2 ) affine-hull-convex-hull collinear-affine-hull-collinear

convex-convex-hull convex-polygon-frontier-is-path-image2 finite.intros(1 ) finite-imp-bounded-convex-hull
finite-insert inside-frontier-eq-interior path-inside-def triangle-convex-hull triangle-is-convex
triangle-is-polygon)

then have d-frontier : d ∈ frontier H
by (metis ∗∗∗ Diff-iff assms(1 ) UnCI d closure-Un-frontier frontier-def

hull-subset in-mono)
moreover have path-image ?p = frontier H

using convex-polygon-frontier-is-path-image
by (metis assms(1 ,2 ) H abc affine-hull-convex-hull collinear-affine-hull-collinear

convex-polygon-frontier-is-path-image2 triangle-convex-hull triangle-is-convex trian-
gle-is-polygon)

ultimately have d ∈ path-image ?p by blast
moreover have ¬ collinear {a, b, c}
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by (metis H assms(1 ,2 ) abc affine-hull-convex-hull collinear-affine-hull-collinear)
moreover then have distinct [a, b, c]

by (metis collinear-2 distinct.simps(2 ) distinct-singleton empty-set in-
sert-absorb list.simps(15 ))

moreover have d /∈ {a, b, c} using d by blast
ultimately have ?thesis

using abc d convex-hull-has-vertex-split-helper [of ?p a b c d]
by (metis (no-types, lifting) insert-subset interior subset-trans ep)

}
ultimately have ?thesis by fast

} moreover
{ assume ∗: card ?ep ≥ 4

moreover have {a, b, c} ⊆ ?ep ∧ distinct [a, b, c] using abc by fastforce
ultimately have path-image (linepath a b) ∩ interior H 6= {}
∨ path-image (linepath b c) ∩ interior H 6= {}
∨ path-image (linepath c a) ∩ interior H 6= {}
using convex-hull-extreme-points-vertex-split[OF assms(1 ) assms(4 ) ∗] by

presburger
then have ?thesis

by (metis (no-types, lifting) ep abc insert-subset subset-trans)
}
ultimately show ?thesis using card-ep by fastforce

qed

lemma convex-polygon-has-good-linepath-helper :
assumes polygon-of p vts
assumes convex (path-inside p ∪ path-image p)
assumes card (set vts) > 3
obtains a b where {a, b} ⊆ set vts ∧ a 6= b ∧ ¬ path-image (linepath a b) ⊆

path-image p
proof−

let ?H = convex hull (set vts)
obtain a b where ab: {a, b} ⊆ set vts ∧ a 6= b ∧ path-image (linepath a b) ∩

interior ?H 6= {}
using convex-hull-has-vertex-split assms polygon-vts-not-collinear unfolding

polygon-of-def
by fastforce

moreover have interior ?H = path-inside p
using assms(1 ) assms(2 ) convex-polygon-inside-is-convex-hull-interior poly-

gon-convex-iff polygon-of-def
by blast

ultimately have path-image (linepath a b) ∩ path-inside p 6= {} by simp
moreover have path-inside p ∩ path-image p = {} using path-inside-def by

auto
moreover have path-image (linepath a b) ⊆ path-image p ∪ path-inside p
by (metis ab assms(1 ) assms(2 ) convex-polygon-is-convex-hull hull-mono path-image-linepath

polygon-of-def segment-convex-hull sup-commute)
ultimately have ¬ path-image (linepath a b) ⊆ path-image p by fast
thus ?thesis using ab that by meson
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qed

lemma convex-polygon-has-good-linepath:
assumes convex (path-inside p ∪ path-image p)
assumes polygon p
assumes p = make-polygonal-path vts
assumes card (set vts) > 3
shows ∃ a b. good-linepath a b vts

proof−
let ?T = convex hull (set vts)
have T : path-image p ∪ path-inside p = ?T
by (metis Un-commute assms(1 ) assms(2 ) assms(3 ) convex-polygon-is-convex-hull)

obtain a b where ab: a 6= b ∧ {a, b} ⊆ set vts ∧ ¬ path-image (linepath a b) ⊆
path-image p

using convex-polygon-has-good-linepath-helper assms unfolding polygon-of-def
by metis

let ?S = path-image (linepath a b)

have p-is-frontier : frontier ?T = path-image p
using convex-polygon-frontier-is-path-image assms polygon-of-def polygon-convex-iff

by blast

have closure ?T = ?T by (simp add: finite-imp-compact)
then have ?S ⊆ closure ?T using ab by (simp add: hull-mono segment-convex-hull)
moreover have convex ?T using convex-convex-hull by auto
moreover have convex ?S by simp
moreover have rel-interior ?S = open-segment a b

by (metis ab path-image-linepath rel-interior-closed-segment)
moreover have rel-interior ?T = interior ?T
by (metis p-is-frontier Diff-empty ab calculation(1 ) frontier-def rel-interior-nonempty-interior)

ultimately have open-segment a b ⊆ interior ?T
using subset-rel-interior-convex by (metis ab p-is-frontier frontier-def rel-frontier-def )

then have (open-segment a b) ∩ path-image p = {}
using p-is-frontier frontier-def by auto

then have closed-segment a b ∩ path-image p = {a, b}
by (metis (no-types, lifting) Int-Un-distrib2 Int-absorb2 Un-commute ab assms(3 )

closed-segment-eq-open subset-trans sup-bot.right-neutral vertices-on-path-image)
then have path-image (linepath a b) ∩ path-image p = {a, b} by simp
thus ?thesis

using ab unfolding good-linepath-def
by (smt (verit, ccfv-threshold) IntI UnCI UnE T assms(3 ) hull-mono path-image-linepath

segment-convex-hull subset-iff )
qed

29 Pick’s Theorem
definition integral-inside:

integral-inside p = {x. integral-vec x ∧ x ∈ path-inside p}
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definition integral-boundary:
integral-boundary p = {x. integral-vec x ∧ x ∈ path-image p}

29.1 Pick’s Theorem Triangle Case
definition pick-triangle:

pick-triangle p a b c ←→
p = make-triangle a b c
∧ all-integral [a, b, c]
∧ distinct [a, b, c]
∧ ¬ collinear {a, b, c}

definition pick-holds:
pick-holds p ←→
(let I = card {x. integral-vec x ∧ x ∈ path-inside p} in
let B = card {x. integral-vec x ∧ x ∈ path-image p} in

measure lebesgue (path-inside p) = I + B/2 − 1 )

lemma pick-triangle-wlog-helper :
assumes pick-triangle p a b c and

I = card (integral-inside p) and
B = card (integral-boundary p) and
integral-inside p = {} and
integral-vec d ∧ d ∈ path-image (linepath a b) ∧ d /∈ {a, b, c} and d /∈

{a, b, c} and
ih:

∧
p ′ a ′ b ′ c ′. (card (integral-inside p ′) + card (integral-boundary p ′) <

I + B) =⇒ pick-triangle p ′ a ′ b ′ c ′ =⇒ pick-holds p ′

shows measure lebesgue (path-inside p) = I + B/2 − 1
proof−
have polygon-p: polygon p using triangle-is-polygon assms unfolding pick-triangle

by presburger
then have polygon-of : polygon-of p [a, b, c, a]
unfolding polygon-of-def using assms unfolding make-triangle-def pick-triangle

by auto

let ?p ′ = make-polygonal-path [a, d, b, c, a]

have good-linepath c d [a, d, b, c, a] ∧ path-image (make-polygonal-path [a, d, b,
c, a]) = path-image p

using pick-triangle-basic-split assms unfolding pick-triangle by presburger
then have ∗: good-linepath d c [a, d, b, c, a] ∧ path-image (make-polygonal-path

[a, d, b, c, a]) = path-image p
using good-linepath-comm by blast

have polygon-new: polygon (make-polygonal-path [a, d, b, c, a])
using polygon-linepath-split-is-polygon[OF polygon-of , of 0 a b d [a, d, b, c, a]]

assms
by force

have h1 : make-polygonal-path [a, d, b, c, a] = make-polygonal-path ([a, d, b, c]
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@ [[a, d, b, c] ! 0 ])
by auto

have h2 : good-linepath d c ([a, d, b, c] @ [[a, d, b, c] ! 0 ])
using ∗ by auto

have h3 : (1 ::nat) < length [a, d, b, c] ∧ (3 ::nat) < length [a, d, b, c]
by auto

then have polygon-split: is-polygon-split [a, d, b, c] 1 3
using good-linepath-implies-polygon-split[OF polygon-new h1 h2 h3 ] by auto

let ?p1 = make-polygonal-path (d # [b] @ [c, d])
let ?p2 = make-polygonal-path ([a] @ [d, c] @ [] @ [[a, d, b, c] ! 0 ])
let ?I1 = card {x. integral-vec x ∧ x ∈ path-inside ?p1}
let ?B1 = card {x. integral-vec x ∧ x ∈ path-image ?p1}
let ?I2 = card {x. integral-vec x ∧ x ∈ path-inside ?p2}
let ?B2 = card {x. integral-vec x ∧ x ∈ path-image ?p2}
have p1-triangle: ?p1 = make-triangle d b c

unfolding make-triangle-def by auto
have p2-triangle: ?p2 = make-triangle a d c

unfolding make-triangle-def by auto
have I-is: I = card {x. integral-vec x ∧ x ∈ path-inside (make-polygonal-path [a,

d, b, c, a])}
using path-image-linepath-split[of 0 [a, b, c, a] d] ∗ assms path-inside-def

integral-inside by presburger
have B-is: B = card {x. integral-vec x ∧ x ∈ path-image (make-polygonal-path

[a, d, b, c, a])}
using path-image-linepath-split[of 0 [a, b, c, a] d]
using ∗ assms path-inside-def integral-boundary by presburger

have all-integral-assump: all-integral [a, d, b, c]
using assms unfolding all-integral-def pick-triangle by force

have dist-indh1 : distinct [d, b, c]
using assms unfolding pick-triangle by auto

have coll-indh1 : ¬ collinear {d, b, c}
using assms pick-triangle

by (smt (verit) collinear-3-trans dist-indh1 distinct-length-2-or-more in-path-image-imp-collinear
insert-commute)

have path-inside-inside: path-inside (make-polygonal-path (d # [b] @ [c, d])) ⊆
path-inside p

using polygon-split unfolding is-polygon-split-def
by (smt (z3 ) ∗ One-nat-def Un-iff append-Cons append-Nil diff-Suc-1 drop0

drop-Suc-Cons nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-inside-def subsetI take-Suc-Cons
take-eq-Nil2 )
then have indh1-card1 : card {x. integral-vec x ∧ x ∈ path-inside (make-polygonal-path

(d # [b] @ [c, d]))}≤ card {x. integral-vec x ∧ x ∈ path-inside p}
by (metis (no-types, lifting) assms(4 ) integral-inside Collect-empty-eq card.empty

le-zero-eq subsetD)
have indh1-card2 : card {x. integral-vec x ∧ x ∈ path-image (make-polygonal-path

(d # [b] @ [c, d]))} < card {x. integral-vec x ∧ x ∈ path-image p}
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proof−
have path-image-union: path-image (make-polygonal-path (d # [b] @ [c, d])) =

path-image (linepath d b) ∪ path-image (linepath b c) ∪ path-image (linepath c d)
using path-image-cons-union p1-triangle make-triangle-def

by (metis (no-types, lifting) inf-sup-aci(6 ) list.discI make-polygonal-path.simps(3 )
nth-Cons-0 )

have path-image-db: path-image (linepath d b) ⊆ path-image p
by (metis assms(5 ) list.discI nth-Cons-0 path-image-cons-union path-image-linepath-union

polygon-of polygon-of-def sup.cobounded2 sup.coboundedI1 )
have path-image-bc: path-image (linepath b c) ⊆ path-image p

using assms(1 ) linepaths-subset-make-polygonal-path-image[of [a, b, c, a] 1 ]
unfolding pick-triangle make-triangle-def

by simp
have path-image-cd1 : path-image (linepath c d) − {c, d} ⊆ path-inside p

using polygon-split unfolding is-polygon-split-def
by (smt (z3 ) One-nat-def ‹good-linepath c d [a, d, b, c, a] ∧ path-image

(make-polygonal-path [a, d, b, c, a]) = path-image p› append-Cons append-Nil in-
sert-commute nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-image-linepath path-inside-def
segment-convex-hull sup.cobounded2 )

have path-image-cd2 : {c, d} ⊆ path-image p
using linepaths-subset-make-polygonal-path-image assms(1 ) unfolding pick-triangle

make-triangle-def
by (metis (no-types, lifting) ‹good-linepath c d [a, d, b, c, a] ∧ path-image

(make-polygonal-path [a, d, b, c, a]) = path-image p› good-linepath-def subset-trans
vertices-on-path-image)

have path-image (linepath c d) ⊆ path-image p ∪ path-inside p
using path-image-cd1 path-image-cd2 by auto

moreover have integral-inside p = {} using assms by force
ultimately have path-image-cd: integral-boundary (linepath c d) ⊆ inte-

gral-boundary p unfolding integral-inside integral-boundary by blast
have a-neq-d: a 6= d

using assms(5 ) by auto
have a-neq-c: a 6= c

using assms(1 ) unfolding pick-triangle by simp
have a-in-image: a ∈ path-image p
using assms(1 ) unfolding pick-triangle make-triangle-def using vertices-on-path-image

by fastforce
have path-image (linepath c d) ∩ path-image p = {c, d}

using ∗ unfolding good-linepath-def
by (smt (verit, ccfv-SIG) One-nat-def h1 insert-commute is-polygon-cut-def

is-polygon-split-def nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-image-linepath
polygon-split segment-convex-hull)

then have a-not-in1 : a /∈ path-image (linepath c d)
using a-neq-c a-neq-d a-in-image by blast

have a-not-in2 : a /∈ path-image (linepath d b)
using Int-closed-segment assms(5 ) by auto

have a-not-in3 : a /∈ path-image (linepath b c)
by (metis (no-types, lifting) assms(1 ) in-path-image-imp-collinear insert-commute

pick-triangle)
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then have a /∈ path-image (linepath d b) ∪ path-image (linepath b c) ∪
path-image (linepath c d)

using a-not-in1 a-not-in2 a-not-in3 by simp
then have a ∈ integral-boundary p ∧ a /∈ integral-boundary (make-polygonal-path

[d, b, c, d])
using path-image-union using integral-boundary a-in-image all-integral-assump

all-integral-def by auto
then have strict-subset: integral-boundary (make-polygonal-path [d, b, c, d]) ⊂

integral-boundary p
using path-image-union path-image-db path-image-bc path-image-cd
unfolding integral-boundary by auto

have integral-inside (make-polygonal-path [d, b, c, d]) = {}
using path-inside-inside assms unfolding integral-inside by auto

then show ?thesis using assms(2−3 ) strict-subset bounded-finite
using finite-path-inside finite-path-image
by (simp add: integral-boundary polygon-p psubset-card-mono)

qed
have fewer-points-p1 : card {x. integral-vec x ∧ x ∈ path-inside (make-polygonal-path

(d # [b] @ [c, d]))} +
card {x. integral-vec x ∧ x ∈ path-image (make-polygonal-path (d # [b] @ [c,

d]))}
< card {x. integral-vec x ∧ x ∈ path-inside p} +
card {x. integral-vec x ∧ x ∈ path-image p}

using indh1-card1 indh1-card2 by linarith
have indh-1 : Sigma-Algebra.measure lebesgue (path-inside ?p1 ) = real ?I1 + real

?B1 / 2 − 1
using assms fewer-points-p1 p1-triangle all-integral-assump dist-indh1 coll-indh1

all-integral-def
unfolding pick-holds pick-triangle integral-inside integral-boundary by simp

have dist-indh2 : distinct [a, d, c]
using assms unfolding pick-triangle by auto

have coll-indh2 : ¬ collinear {a, d, c}
using assms pick-triangle

by (smt (verit) collinear-3-trans dist-indh2 distinct-length-2-or-more in-path-image-imp-collinear
insert-commute)

have path-inside-inside: path-inside (make-polygonal-path (a # [d] @ [c, a])) ⊆
path-inside p

using polygon-split unfolding is-polygon-split-def
by (smt (z3 ) ∗ One-nat-def Un-iff append-Cons append-Nil diff-Suc-1 drop0

drop-Suc-Cons nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-inside-def subsetI take-Suc-Cons
take-eq-Nil2 )
then have indh2-card1 : card {x. integral-vec x ∧ x ∈ path-inside (make-polygonal-path

(a # [d] @ [c, a]))}≤ card {x. integral-vec x ∧ x ∈ path-inside p}
by (metis (no-types, lifting) assms(4 ) integral-inside Collect-empty-eq card.empty

le-zero-eq subsetD)
have indh2-card2 : card {x. integral-vec x ∧ x ∈ path-image (make-polygonal-path

(a # [d] @ [c, a]))} < card {x. integral-vec x ∧ x ∈ path-image p}
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proof−
have path-image-union: path-image (make-polygonal-path (a # [d] @ [c, a])) =

path-image (linepath a d) ∪ path-image (linepath d c) ∪ path-image (linepath c a)
using path-image-cons-union p2-triangle make-triangle-def

by (metis Un-assoc append.left-neutral append-Cons list.discI make-polygonal-path.simps(3 )
nth-Cons-0 )

have path-image-ad: path-image (linepath a d) ⊆ path-image p
by (metis ‹good-linepath c d [a, d, b, c, a] ∧ path-image (make-polygonal-path

[a, d, b, c, a]) = path-image p› inf-sup-absorb le-iff-inf list.discI nth-Cons-0 path-image-cons-union)
have path-image-ca: path-image (linepath c a) ⊆ path-image p

using assms(1 ) linepaths-subset-make-polygonal-path-image[of [a, b, c, a] 2 ]
unfolding pick-triangle make-triangle-def

by simp
have path-image-cd1 : path-image (linepath d c) − {c, d} ⊆ path-inside p

using polygon-split unfolding is-polygon-split-def
by (smt (z3 ) One-nat-def ‹good-linepath c d [a, d, b, c, a] ∧ path-image

(make-polygonal-path [a, d, b, c, a]) = path-image p› append-Cons append-Nil in-
sert-commute nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-image-linepath path-inside-def
segment-convex-hull sup.cobounded2 )

have path-image-cd2 : {c, d} ⊆ path-image p
using linepaths-subset-make-polygonal-path-image assms(1 ) unfolding pick-triangle

make-triangle-def
by (metis (no-types, lifting) ‹good-linepath c d [a, d, b, c, a] ∧ path-image

(make-polygonal-path [a, d, b, c, a]) = path-image p› good-linepath-def subset-trans
vertices-on-path-image)

have path-image (linepath d c) ⊆ path-image p ∪ path-inside p
using path-image-cd1 path-image-cd2 by auto

moreover have integral-inside p = {} using assms by force
ultimately have path-image-cd: integral-boundary (linepath d c) ⊆ inte-

gral-boundary p unfolding integral-inside integral-boundary by blast
have b-neq-d: b 6= d

using assms(5 ) by auto
have b-neq-c: b 6= c

using assms(1 ) unfolding pick-triangle by simp
have b-in-image: b ∈ path-image p
using assms(1 ) unfolding pick-triangle make-triangle-def using vertices-on-path-image

by fastforce
have path-image (linepath d c) ∩ path-image p = {d, c}

using ∗ unfolding good-linepath-def
by (smt (verit, ccfv-SIG) One-nat-def h1 insert-commute is-polygon-cut-def

is-polygon-split-def nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-image-linepath
polygon-split segment-convex-hull)

then have b-not-in1 : b /∈ path-image (linepath d c)
using b-neq-c b-neq-d b-in-image by blast

have b-not-in2 : b /∈ path-image (linepath a d)
using Int-closed-segment assms(5 ) by auto

have b-not-in3 : b /∈ path-image (linepath c a)
by (metis (no-types, lifting) assms(1 ) in-path-image-imp-collinear insert-commute
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pick-triangle)
then have b /∈ path-image (linepath a d) ∪ path-image (linepath d c) ∪

path-image (linepath c a)
using b-not-in1 b-not-in2 b-not-in3 by simp

then have b ∈ integral-boundary p ∧ b /∈ integral-boundary (make-polygonal-path
[a, d, c, a])

using path-image-union using integral-boundary b-in-image all-integral-assump
all-integral-def by auto

then have strict-subset: integral-boundary (make-polygonal-path [a, d, c, a]) ⊂
integral-boundary p

using path-image-union path-image-ad path-image-ca path-image-cd
unfolding integral-boundary by auto

have integral-inside (make-polygonal-path [a, d, c, a]) = {}
using path-inside-inside assms unfolding integral-inside by auto

then show ?thesis using assms(2−3 ) strict-subset bounded-finite
using finite-path-inside finite-path-image
by (simp add: integral-boundary polygon-p psubset-card-mono)

qed
have fewer-points-p2 : card {x. integral-vec x ∧ x ∈ path-inside (make-polygonal-path

([a, d, c, a]))} +
card {x. integral-vec x ∧ x ∈ path-image (make-polygonal-path ([a, d, c, a]))}
< card {x. integral-vec x ∧ x ∈ path-inside p} +
card {x. integral-vec x ∧ x ∈ path-image p}

using indh2-card1 indh2-card2 by simp
have indh-2 : Sigma-Algebra.measure lebesgue (path-inside ?p2 ) = real ?I2 + real

?B2 / 2 − 1
using fewer-points-p2 using assms fewer-points-p2 p2-triangle all-integral-assump

dist-indh2 coll-indh2 all-integral-def
unfolding pick-holds pick-triangle integral-inside integral-boundary by simp

have Sigma-Algebra.measure lebesgue (path-inside ?p1 ) = real ?I1 + real ?B1 /
2 − 1 =⇒

Sigma-Algebra.measure lebesgue (path-inside ?p2 ) = real ?I2 + real ?B2 / 2
− 1 =⇒

I = card {x. integral-vec x ∧ x ∈ path-inside (make-polygonal-path [a, d, b, c,
a])} =⇒

B = card {x. integral-vec x ∧ x ∈ path-image (make-polygonal-path [a, d, b,
c, a])} =⇒

all-integral [a, d, b, c] =⇒
Sigma-Algebra.measure lebesgue (path-inside (make-polygonal-path [a, d, b, c,

a])) =
real I + real B / 2 − 1

using pick-split-union[OF polygon-split, of [a] [b] [] d c ?p ′] by auto
then have Sigma-Algebra.measure lebesgue (path-inside (make-polygonal-path [a,

d, b, c, a])) =
real I + real B / 2 − 1

using I-is B-is all-integral-assump indh-1 indh-2 by auto
thus measure lebesgue (path-inside p) = I + B/2 − 1
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using path-image-linepath-split[of 0 [a, b, c, a] d] by (metis path-inside-def ∗)
qed

lemma pick-triangle-helper :
assumes pick-triangle p a b c and

I = card (integral-inside p) and
B = card (integral-boundary p) and
integral-inside p = {} and
integral-vec d ∧ d /∈ {a, b, c} and d /∈ {a, b, c} and
d ∈ path-image (linepath a b)
∨ d ∈ path-image (linepath b c)
∨ d ∈ path-image (linepath c a) and

ih:
∧

p ′ a ′ b ′ c ′. (card (integral-inside p ′) + card (integral-boundary p ′) <
I + B) =⇒ pick-triangle p ′ a ′ b ′ c ′ =⇒ pick-holds p ′

shows measure lebesgue (path-inside p) = I + B/2 − 1
proof−

{ assume d ∈ path-image (linepath a b)
then have ?thesis using pick-triangle-wlog-helper assms by blast

} moreover
{ assume ∗: d ∈ path-image (linepath b c)

let ?p ′ = make-polygonal-path (rotate-polygon-vertices [a, b, c, a] 1 )
let ?I ′ = card (integral-inside ?p ′)
let ?B ′ = card (integral-boundary ?p ′)

have p ′-p: path-image ?p ′ = path-image p ∧ path-inside ?p ′ = path-inside p
unfolding path-inside-def
using assms(1 ) make-triangle-def pick-triangle polygon-vts-arb-rotation trian-

gle-is-polygon
by auto

have rotate-polygon-vertices [a, b, c, a] 1 = [b, c, a, b]
unfolding rotate-polygon-vertices-def by simp

then have pick-triangle-p ′: pick-triangle ?p ′ b c a
using assms unfolding pick-triangle
by (smt (verit, best) all-integral-def distinct-length-2-or-more insert-commute

list.simps(15 ) make-triangle-def )
then have measure lebesgue (path-inside ?p ′) = ?I ′ + ?B ′/2 − 1

using pick-triangle-wlog-helper [of ?p ′ b c a ?I ′ ?B ′ d] assms
using integral-boundary integral-inside ∗ insert-commute pick-triangle-p ′ p ′-p
by auto

moreover have ?I ′ = I ∧ ?B ′ = B using p ′-p integral-boundary integral-inside
assms(2 ) assms(3 ) by presburger

ultimately have ?thesis using p ′-p by auto
} moreover
{ assume ∗: d ∈ path-image (linepath c a)

let ?p ′ = make-polygonal-path (rotate-polygon-vertices [a, b, c, a] 2 )
let ?I ′ = card (integral-inside ?p ′)
let ?B ′ = card (integral-boundary ?p ′)
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have p ′-p: path-image ?p ′ = path-image p ∧ path-inside ?p ′ = path-inside p
unfolding path-inside-def
using assms(1 ) make-triangle-def pick-triangle polygon-vts-arb-rotation trian-

gle-is-polygon
by auto

have rotate-polygon-vertices [a, b, c, a] 1 = [b, c, a, b]
unfolding rotate-polygon-vertices-def by simp

also have rotate-polygon-vertices ... 1 = [c, a, b, c]
unfolding rotate-polygon-vertices-def by simp

ultimately have rotate-polygon-vertices [a, b, c, a] 2 = [c, a, b, c]
by (metis Suc-1 arb-rotation-as-single-rotation)

then have pick-triangle-p ′: pick-triangle ?p ′ c a b
using assms unfolding pick-triangle
by (smt (verit, best) all-integral-def distinct-length-2-or-more insert-commute

list.simps(15 ) make-triangle-def )
then have measure lebesgue (path-inside ?p ′) = ?I ′ + ?B ′/2 − 1

using pick-triangle-wlog-helper [of ?p ′ c a b ?I ′ ?B ′ d] assms
using integral-boundary integral-inside ∗ insert-commute pick-triangle-p ′ p ′-p
by auto

moreover have ?I ′ = I ∧ ?B ′ = B using p ′-p integral-boundary integral-inside
assms(2 ) assms(3 ) by presburger

ultimately have ?thesis using p ′-p by auto
}
ultimately show ?thesis using assms by blast

qed

lemma triangle-3-split-helper :
fixes a b :: ′a::euclidean-space
assumes a ∈ frontier S
assumes b ∈ interior S
assumes convex S
assumes closed S
shows path-image (linepath a b) ∩ frontier S = {a}

proof−
let ?L = path-image (linepath a b)
have a ∈ S ∧ b ∈ S using assms frontier-subset-closed interior-subset by auto
then have ?L ⊆ S
using assms hull-minimal segment-convex-hull by (simp add: closed-segment-subset)

then have ?L ⊆ closure S using assms(4 ) by auto
moreover have convex ?L by simp
moreover have ?L ∩ interior S 6= {} using assms(2 ) by auto
moreover then have ¬ ?L ⊆ rel-frontier S

by (metis DiffE assms(2 ) interior-subset-rel-interior pathfinish-in-path-image
pathfinish-linepath rel-frontier-def subsetD)

ultimately have rel-interior ?L ⊆ rel-interior S
using subset-rel-interior-convex[of ?L S ] assms by fastforce

then have open-segment a b ⊆ interior S
by (metis all-not-in-conv assms(2 ) empty-subsetI open-segment-eq-empty ′ path-image-linepath
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rel-interior-closed-segment rel-interior-nonempty-interior)
moreover have ?L = closed-segment a b by auto
moreover have interior S ∩ frontier S = {} by (simp add: frontier-def )
ultimately have ?L ∩ frontier S ⊆ {a, b}
by (smt (verit) Diff-iff disjoint-iff inf-commute inf-le1 open-segment-def subsetD

subsetI )
moreover have b /∈ frontier S by (simp add: assms(2 ) frontier-def )
ultimately show ?thesis using assms(1 ) by auto

qed

lemma unit-triangle-interior-point-not-collinear-e1-e2 :
assumes p = make-triangle (vector [0 , 0 ]) (vector [1 , 0 ]) (vector [0 , 1 ])
(is p = make-triangle ?O ?e1 ?e2 )

assumes z ∈ path-inside p
shows ¬ collinear {?O, ?e1 , z}

proof−
have path-inside p = interior (convex hull {?O, ?e1 , ?e2})

by (metis assms(1 ) bounded-convex-hull bounded-empty bounded-insert con-
vex-convex-hull convex-polygon-frontier-is-path-image2 inside-frontier-eq-interior path-inside-def
triangle-convex-hull triangle-is-convex triangle-is-polygon unit-triangle-vts-not-collinear)

then have z ∈ interior (convex hull {?O, ?e1 , ?e2}) using assms by simp
then have z: z$1 > 0 ∧ z$2 > 0
using assms(1 ) assms(2 ) unit-triangle-interior-char make-triangle-def by blast

have abc: ?O$1 = 0 ∧ ?O$2 = 0 ∧ ?e1$2 = 0 ∧ ?e2$1 = 0 by simp

show ¬ collinear {?O, ?e1 , z}
proof(rule ccontr)

assume ¬ ¬ collinear {?O, ?e1 , z}
then have ∗: collinear {?O, ?e1 , z} by blast
then obtain u c1 c2 where u: ?O − ?e1 = c1 ∗R u ∧ ?e1 − z = c2 ∗R u

unfolding collinear-def by blast
moreover have c1 6= 0
proof−

have (?O − ?e1 )$1 = −1 by simp
moreover have (?O − ?e1 )$1 = (c1 ∗R u)$1 using u by presburger
ultimately show ?thesis by force

qed
moreover have (?O − ?e1 )$2 = 0 by simp
moreover have (?O − ?e1 )$2 = (c1 ∗R u)$2 by (simp add: calculation(1 ))
ultimately have u$2 = 0 by auto
thus False

by (smt (verit, ccfv-threshold) u abc scaleR-eq-0-iff vector-minus-component
vector-scaleR-component z)

qed
qed

lemma triangle-interior-point-not-collinear-vertices-wlog-helper :
assumes p = make-triangle a b c
assumes polygon p
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assumes z ∈ path-inside p
shows ¬ collinear {a, b, z}

proof−
let ?O = (vector [0 , 0 ])::(real^2 )
let ?e1 = (vector [1 , 0 ])::(real^2 )
let ?e2 = (vector [0 , 1 ])::(real^2 )
let ?M = triangle-affine a b c
have a: ?M ?O = a

using triangle-affine-e1-e2 by blast
have b: ?M ?e1 = b using triangle-affine-e1-e2 by simp
have c: ?M ?e2 = c using triangle-affine-e1-e2 by simp

have abc-not-collinear : ¬ collinear {a, b, c}
using assms polygon-vts-not-collinear unfolding make-triangle-def polygon-of-def

by (metis (no-types, lifting) empty-set insertCI insert-absorb insert-commute
list.simps(15 ))

have convex hull {a, b, c} = convex hull {?M ?O, ?M ?e1 , ?M ?e2}
using a b c by simp

also have ... = ?M ‘ (convex hull {?O, ?e1 , ?e2})
using calculation triangle-affine-img by blast

also have interior-preserve: interior ... = ?M ‘ (interior (convex hull {?O, ?e1 ,
?e2}))

using triangle-affine-preserves-interior [of ?M a b c - convex hull {?O, ?e1 ,
?e2}]

using abc-not-collinear
by presburger

finally have z: z ∈ ?M ‘ (interior (convex hull {?O, ?e1 , ?e2}))
using assms(1 ) assms(2 ) assms(3 ) make-triangle-def polygon-of-def trian-

gle-inside-is-convex-hull-interior
by auto

then obtain z ′ where z ′: z ′ ∈ interior (convex hull {?O, ?e1 , ?e2}) ∧ ?M z ′

= z by fast
then have ¬ collinear {?O, ?e1 , z ′}
by (metis convex-convex-hull convex-polygon-frontier-is-path-image2 finite.intros(1 )

finite-imp-bounded-convex-hull finite-insert inside-frontier-eq-interior path-inside-def
triangle-convex-hull triangle-is-convex triangle-is-polygon unit-triangle-interior-point-not-collinear-e1-e2
unit-triangle-vts-not-collinear)

then have z ′-notin: z ′ /∈ affine hull {?O, ?e1} using affine-hull-3-imp-collinear
by blast

then have ?M z ′ /∈ affine hull {?M ?O, ?M ?e1}
proof−

have inj ?M using triangle-affine-inj abc-not-collinear by blast
then have ?M z ′ /∈ ?M ‘ (affine hull {?O, ?e1}) using z ′-notin by (simp add:

inj-image-mem-iff )
moreover have ?M ‘ (affine hull {?O, ?e1}) = affine hull {?M ?O, ?M ?e1}
using triangle-affine-preserves-affine-hull[of - a b c] abc-not-collinear by simp

ultimately show ?thesis by blast
qed
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then have z /∈ affine hull {a, b} using a b z ′ by argo
thus ?thesis
by (metis interior-preserve z affine-hull-convex-hull affine-hull-nonempty-interior

collinear-2 collinear-3-affine-hull collinear-affine-hull-collinear empty-iff insert-absorb2
triangle-affine-img unit-triangle-vts-not-collinear z ′)
qed

lemma triangle-interior-point-not-collinear-vertices:
assumes p = make-triangle a b c
assumes polygon p
assumes z ∈ path-inside p
shows ¬ collinear {a, b, z} ∧ ¬ collinear {a, c, z} ∧ ¬ collinear {b, c, z}

proof−
let ?p1 = make-triangle b c a
let ?p2 = make-triangle c a b
have p1 : ?p1 = make-polygonal-path (rotate-polygon-vertices [a, b, c, a] 1 )

using assms unfolding make-triangle-def rotate-polygon-vertices-def by fast-
force

have p2 : ?p2 = make-polygonal-path (rotate-polygon-vertices [a, b, c, a] 2 )
using assms unfolding make-triangle-def rotate-polygon-vertices-def by (simp

add: numeral-Bit0 )

have path-inside ?p1 = path-inside p ∧ path-inside ?p2 = path-inside p
using p1 p2 unfolding path-inside-def
using assms(1 ) assms(2 ) make-triangle-def polygon-vts-arb-rotation by force

then have z ∈ path-inside ?p1 ∧ z ∈ path-inside ?p2 using assms by force
moreover have polygon ?p1 ∧ polygon ?p2

using assms make-triangle-def p1 p2 rotation-is-polygon by presburger
ultimately show ?thesis

using assms triangle-interior-point-not-collinear-vertices-wlog-helper
by (smt (verit, best) insert-commute)

qed

lemma triangle-3-split:
assumes p = make-triangle a b c
assumes polygon p
assumes z ∈ path-inside p
shows is-polygon-split-path [a, b, c] 0 1 [z]

is-polygon-split [a, z, b, c] 1 3
a /∈ path-image (make-triangle z b c) ∪ path-inside (make-triangle z b c)
b /∈ path-image (make-triangle a z c) ∪ path-inside (make-triangle a z c)
c /∈ path-image (make-triangle a b z) ∪ path-inside (make-triangle a b z)

proof−
let ?q = make-polygonal-path [a, z, b, c, a]
let ?cutpath = make-polygonal-path [a, z, b]
let ?vts = [a, b, c, a]

let ?l1 = linepath a z

239



let ?l2 = linepath z b
let ?S = path-inside p ∪ path-image p
have convex (path-inside p)
using triangle-is-convex assms(1 ,2 ) polygon-vts-not-collinear unfolding make-triangle-def
by (simp add: polygon-of-def triangle-inside-is-convex-hull-interior)

then have convex: convex (path-inside p ∪ path-image p)
using polygon-convex-iff assms(2 ) by simp

then have frontier : frontier ?S = path-image p
using convex-polygon-frontier-is-path-image3 by (simp add: assms(2 ) sup-commute)

have interior : interior ?S = path-inside p
by (metis Jordan-inside-outside-real2 closed-path-def ‹convex (path-inside p)›

assms(2 ) closure-Un-frontier convex-interior-closure interior-open path-inside-def
polygon-def )

have not-collinear : ¬ collinear {a, b, z} ∧ ¬ collinear {a, c, z} ∧ ¬ collinear
{b, c, z}

using triangle-interior-point-not-collinear-vertices assms(1 ) assms(2 ) assms(3 )
by blast

have a = pathstart ?cutpath ∧ b = pathfinish ?cutpath by simp
moreover have a 6= b
by (metis assms(1 ) assms(2 ) constant-linepath-is-not-loop-free make-polygonal-path.simps(4 )

make-triangle-def not-loop-free-first-component polygon-def simple-path-def )
moreover have polygon p by (simp add: assms(2 ))
moreover have {a, b} ⊆ set ?vts by force
moreover have simple-path ?cutpath

by (simp add: insert-commute not-collinear not-collinear-loopfree-path sim-
ple-path-def )

moreover have path-image ?cutpath ∩ path-image p = {a, b}
proof−

have {a, b} ⊆ path-image ?cutpath ∩ path-image p
by (metis (no-types, lifting) Int-subset-iff Un-subset-iff assms(1 ) insert-is-Un

list.simps(15 ) make-triangle-def vertices-on-path-image)
moreover have path-image ?cutpath ∩ path-image p ⊆ {a, b}
proof−

have z ∈ interior ?S using assms interior by fast
moreover then have a ∈ frontier ?S ∧ b ∈ frontier ?S

using vertices-on-path-image
using ‹{a, b} ⊆ path-image (make-polygonal-path [a, z, b]) ∩ path-image p›

frontier by force
moreover have closed ?S using frontier frontier-subset-eq by auto
ultimately have path-image ?l1 ∩ path-image p = {a} ∧ path-image ?l2 ∩

path-image p = {b}
using triangle-3-split-helper convex frontier

by (metis (no-types, lifting) insert-commute path-image-linepath segment-convex-hull)
moreover have path-image ?cutpath = path-image ?l1 ∪ path-image ?l2
by (metis list.discI make-polygonal-path.simps(3 ) nth-Cons-0 path-image-cons-union)
ultimately show ?thesis by blast

qed
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ultimately show ?thesis by blast
qed
moreover have path-image ?cutpath ∩ path-inside p 6= {}
by (metis (no-types, opaque-lifting) Int-Un-distrib2 Un-absorb2 Un-empty assms(3 )

insert-disjoint(2 ) list.simps(15 ) vertices-on-path-image)
ultimately have cutpath: is-polygon-cut-path ?vts ?cutpath

using assms unfolding make-triangle-def is-polygon-cut-path-def by simp
thus 1 : is-polygon-split-path [a, b, c] 0 1 [z]
using polygon-cut-path-to-split-path assms(2 ) by (simp add: assms(1 ,2 ) make-triangle-def )

let ?l = linepath z c
let ?vts = [a, z, b, c, a]

have c-noton-cutpath: c /∈ path-image ?cutpath
by (smt (verit) UnE assms(1 ) assms(2 ) assms(3 ) in-path-image-imp-collinear

insert-commute make-polygonal-path.simps(3 ) neq-Nil-conv nth-Cons-0 path-image-cons-union
triangle-interior-point-not-collinear-vertices)

have z 6= c
proof−

have c ∈ path-image p
by (metis assms(1 ) insert-subset list.simps(15 ) make-triangle-def vertices-on-path-image)
moreover have path-image p ∩ path-inside p = {}

by (simp add: disjoint-iff inside-def path-inside-def )
ultimately show ?thesis using assms(3 ) by blast

qed
moreover have polygon-q: polygon ?q

using 1 unfolding is-polygon-split-path-def

by (smt (z3 ) One-nat-def append-Cons append-Nil diff-self-eq-0 drop0 drop-append
length-Cons length-drop length-greater-0-conv list.size(3 ) nth-Cons-0 nth-Cons-Suc
take-0 )

moreover have {z, c} ⊆ set ?vts by force
moreover have l-q-int: path-image ?l ∩ path-image ?q = {z, c}
proof−

have {z, c} ⊆ path-image ?l ∩ path-image ?q
by (metis (no-types, lifting) Int-subset-iff calculation(3 ) dual-order .trans

hull-subset path-image-linepath segment-convex-hull vertices-on-path-image)
moreover
{ fix x

assume ∗: x ∈ path-image ?l ∩ path-image ?q ∧ x 6= z ∧ x 6= c
then have x ∈ path-image ?q by blast
then have x ∈ path-image (linepath a z)
∨ x ∈ path-image (linepath z b)
∨ x ∈ path-image (linepath b c)
∨ x ∈ path-image (linepath c a)

by (metis UnE list.discI make-polygonal-path.simps(3 ) nth-Cons-0 path-image-cons-union)
moreover
{ assume x ∈ path-image (linepath a z)
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then have x ∈ path-image (linepath a z) ∧ x ∈ path-image (linepath z c)
using ∗ by blast

moreover have z ∈ path-image (linepath a z) ∧ z ∈ path-image (linepath z
c) by simp

moreover have x 6= z using ∗ by blast
ultimately have collinear {a, z, c}

by (smt (verit, best) collinear-3-trans in-path-image-imp-collinear in-
sert-commute)

then have False using not-collinear by (simp add: insert-commute)
} moreover
{ assume x ∈ path-image (linepath z b)

then have x ∈ path-image (linepath z b) ∧ x ∈ path-image (linepath z c)
using ∗ by blast

moreover have z ∈ path-image (linepath z b) ∧ z ∈ path-image (linepath z
c) by simp

moreover have x 6= z using ∗ by blast
ultimately have collinear {z, b, c}

by (smt (verit, best) collinear-3-trans in-path-image-imp-collinear in-
sert-commute)

then have False using not-collinear by (simp add: insert-commute)
} moreover
{ assume x ∈ path-image (linepath b c)

then have x ∈ path-image (linepath b c) ∧ x ∈ path-image (linepath z c)
using ∗ by blast

moreover have c ∈ path-image (linepath b c) ∧ z ∈ path-image (linepath z
c) by simp

moreover have x 6= c using ∗ by blast
ultimately have collinear {b, z, c}

by (smt (verit, best) collinear-3-trans in-path-image-imp-collinear in-
sert-commute)

then have False using not-collinear by (simp add: insert-commute)
} moreover
{ assume x ∈ path-image (linepath c a)

then have x ∈ path-image (linepath c a) ∧ x ∈ path-image (linepath z c)
using ∗ by blast

moreover have c ∈ path-image (linepath c a) ∧ z ∈ path-image (linepath z
c) by simp

moreover have x 6= c using ∗ by blast
ultimately have collinear {a, z, c}

by (smt (verit, best) collinear-3-trans in-path-image-imp-collinear in-
sert-commute)

then have False using not-collinear by (simp add: insert-commute)
}
ultimately have False by blast

}
ultimately show ?thesis by blast

qed
moreover have path-image ?l ∩ path-inside ?q 6= {}
proof(rule ccontr)

242



let ?p ′ = make-triangle a b z

assume ¬ path-image ?l ∩ path-inside ?q 6= {}
then have path-image ?l ∩ path-inside ?q = {} by blast
then have ∗: rel-interior (path-image ?l) ∩ path-inside ?q = {}

by (meson disjoint-iff rel-interior-subset subset-eq)

have path-image ?l ⊆ path-image p ∪ path-inside p
by (metis UnCI assms(1 ) assms(3 ) empty-subsetI hull-minimal insert-subset

list.simps(15 ) local.convex make-triangle-def path-image-linepath segment-convex-hull
sup-commute vertices-on-path-image)

then have path-image ?l ⊆ convex hull {a, b, c}
by (smt (verit, best) assms(1 ) convex-polygon-is-convex-hull cutpath empty-set

insertCI insert-absorb insert-commute is-polygon-cut-path-def list.simps(15 ) local.convex
make-triangle-def sup-commute)

then have rel-interior (path-image ?l) ⊆ interior (convex hull {a, b, c})
by (smt (verit, ccfv-threshold) Diff-disjoint IntE IntI Un-upper1 assms(1 )

assms(2 ) assms(3 ) calculation(4 ) closure-Un-frontier convex-polygon-is-convex-hull
convex-segment(1 ) dual-order .trans empty-iff empty-set insertCI insert-absorb2 in-
sert-commute interior list.simps(15 ) local.convex make-triangle-def path-image-linepath
rel-frontier-def rel-interior-nonempty-interior subsetD subset-rel-interior-convex)

then have rel-interior : rel-interior (path-image ?l) ⊆ path-inside p
by (smt (verit, best) assms(1 ) convex-polygon-is-convex-hull cutpath empty-set

insertCI insert-absorb insert-commute interior is-polygon-cut-path-def list.simps(15 )
local.convex make-triangle-def )

have (let vts1 = []; vts2 = [];
vts3 = [c]; x = a; y = b;
cutpath = ?cutpath; p = make-polygonal-path ([a, b, c] @ [[a, b, c] ! 0 ]);
p1 = make-polygonal-path (x # vts2 @ [y] @ rev [z] @ [x]);
p2 = make-polygonal-path (vts1 @ ([x] @ [z] @ [y]) @ vts3 @ [[a, b, c] !

0 ]);
c1 = make-polygonal-path (x # vts2 @ [y]); c2 = make-polygonal-path

(vts1 @ ([x] @ [z] @ [y]) @ vts3 )
in is-polygon-cut-path ([a, b, c] @ [[a, b, c] ! 0 ]) ?cutpath ∧

polygon p ∧
polygon p1 ∧
polygon p2 ∧
path-inside p1 ∩ path-inside p2 = {} ∧

path-inside p1 ∪ path-inside p2 ∪ (path-image cutpath − {x, y}) =
path-inside p ∧

(path-image p1 − path-image cutpath) ∩ (path-image p2 − path-image
?cutpath) = {} ∧

path-image p = path-image p1 − path-image ?cutpath ∪ (path-image p2 −
path-image ?cutpath) ∪ {x, y})

using 1 unfolding is-polygon-split-path-def by fastforce
then have (let

p = make-polygonal-path ([a, b, c] @ [[a, b, c] ! 0 ]);
p1 = make-polygonal-path (a # [] @ [b] @ rev [z] @ [a]);
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p2 = make-polygonal-path ([] @ ([a] @ [z] @ [b]) @ [c] @ [[a, b, c] ! 0 ])
in path-inside p1 ∪ path-inside p2 ∪ (path-image ?cutpath − {a, b}) =

path-inside p
∧ (path-image p1 − path-image ?cutpath) ∩ (path-image p2 − path-image

?cutpath) = {})
by meson

moreover have ?q = make-polygonal-path ([] @ ([a] @ [z] @ [b]) @ [c] @ [[a,
b, c] ! 0 ])

by simp
moreover have ?p ′ = make-polygonal-path (a # [] @ [b] @ rev [z] @ [a])

unfolding make-triangle-def by simp
moreover have p = make-polygonal-path ([a, b, c] @ [[a, b, c] ! 0 ])

unfolding assms make-triangle-def by auto
ultimately have path-inside-p: path-inside ?p ′

∪ path-inside ?q
∪ (path-image ?cutpath − {a, b}) = path-inside p
∧ (path-image ?p ′ − path-image ?cutpath) ∩ (path-image ?q − path-image

?cutpath) = {}
using 1 unfolding make-triangle-def is-polygon-split-path-def by metis

moreover have a ∈ path-image ?cutpath ∧ a /∈ path-inside ?p ′ ∪ path-inside
?q

by (metis (no-types, lifting) UnI1 ‹a = pathstart (make-polygonal-path
[a, z, b]) ∧ b = pathfinish (make-polygonal-path [a, z, b])› assms(1 ) assms(2 )
collinear-2 insert-absorb2 insert-commute path-inside-p pathstart-in-path-image tri-
angle-interior-point-not-collinear-vertices-wlog-helper)

moreover have b ∈ path-image ?cutpath ∧ b /∈ path-inside ?p ′ ∪ path-inside
?q

by (metis UnI1 ‹a = pathstart (make-polygonal-path [a, z, b]) ∧ b = pathfin-
ish (make-polygonal-path [a, z, b])› assms(1 ) assms(2 ) collinear-2 insert-absorb2
path-inside-p pathfinish-in-path-image triangle-interior-point-not-collinear-vertices-wlog-helper)

ultimately have rel-interior (path-image ?l) ⊆
(path-inside ?p ′ − path-image ?cutpath)
∪ (path-image ?cutpath − {a, b})

using rel-interior ∗ by blast
then have rel-interior (path-image ?l) ⊆ path-inside ?p ′ ∪ path-image ?cutpath

by blast
moreover have path-image ?cutpath ⊆ path-image ?p ′

proof−
have path-image ?cutpath = path-image (linepath a z) ∪ path-image (linepath

z b)
by (metis list.discI make-polygonal-path.simps(3 ) nth-Cons-0 path-image-cons-union)
moreover have path-image (linepath a z) = path-image (linepath z a)
∧ path-image (linepath z b) = path-image (linepath b z)

by (simp add: insert-commute)
moreover have path-image (linepath z a) ⊆ path-image ?p ′

∧ path-image (linepath b z) ⊆ path-image ?p ′

unfolding make-triangle-def
by (metis Un-commute Un-upper2 list.discI nth-Cons-0 path-image-cons-union

sup.coboundedI2 )
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ultimately show ?thesis by blast
qed
ultimately have rel-interior (path-image ?l) ⊆ path-inside ?p ′ ∪ path-image

?p ′ by fast
then have rel-interior (path-image ?l) ⊆ convex hull {a, z, b}

unfolding make-triangle-def
by (simp add: insert-commute make-triangle-def not-collinear sup-commute

triangle-convex-hull)
then have closure (rel-interior (path-image ?l)) ⊆ closure (convex hull {a, z,

b})
using closure-mono by blast

then have path-image ?l ⊆ convex hull {a, z, b} by (simp add: convex-closure-rel-interior)
then have c: c ∈ path-image ?p ′ ∪ path-inside ?p ′

unfolding make-triangle-def
by (metis (no-types, lifting) IntE insertCI insert-commute l-q-int make-triangle-def

not-collinear subsetD triangle-convex-hull)

moreover have c /∈ path-image ?p ′

proof−
have c ∈ path-image ?q − path-image ?cutpath using c-noton-cutpath l-q-int

by auto
moreover have (path-image ?p ′ − path-image ?cutpath) ∩ (path-image ?q −

path-image ?cutpath) = {}
using path-inside-p by fastforce

ultimately show ?thesis by blast
qed
moreover have c /∈ path-inside ?p ′

by (smt (verit, ccfv-threshold) DiffI IntD1 UnI1 UnI2 ‹path-image (make-polygonal-path
[a, z, b]) ∩ path-image p = {a, b}› ‹path-image (make-polygonal-path [a, z, b]) ⊆
path-image (make-triangle a b z)› assms(1 ) assms(2 ) calculation(2 ) collinear-2
in-mono insert-absorb2 path-inside-p triangle-interior-point-not-collinear-vertices)

ultimately show False by blast
qed
ultimately have cutpath: is-polygon-cut ?vts z c

using assms unfolding make-triangle-def is-polygon-cut-def by blast
thus 2 : is-polygon-split [a, z, b, c] 1 3

using polygon-cut-to-split
by (metis One-nat-def append-Cons append-Nil diff-Suc-1 length-Cons length-greater-0-conv

lessI list.discI list.size(3 ) nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 polygon-cut-to-split
zero-less-diff )

let ?p1 = make-triangle a z c
let ?p2 = make-triangle z b c
let ?p3 = make-triangle a b z

have (path-image ?p1 − path-image (linepath z c)) ∩ (path-image ?p2 − path-image
(linepath z c)) = {}

using 2 unfolding make-triangle-def is-polygon-split-def
by (smt (z3 ) Int-commute One-nat-def Suc-1 append-Cons append-Nil diff-numeral-Suc
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diff-zero drop0 drop-Suc-Cons nth-Cons-0 nth-Cons-Suc nth-Cons-numeral pred-numeral-simps(3 )
take0 take-Cons-numeral take-Suc-Cons)

moreover have a /∈ path-image (linepath z c) ∧ b /∈ path-image (linepath z c)
by (metis (no-types, lifting) assms(1 ) assms(2 ) assms(3 ) in-path-image-imp-collinear

insert-commute triangle-interior-point-not-collinear-vertices)
moreover have a ∈ path-image ?p1 ∧ b ∈ path-image ?p2
by (metis insert-subset list.simps(15 ) make-triangle-def vertices-on-path-image)

ultimately have a /∈ path-image ?p2 ∧ b /∈ path-image ?p1 by auto
moreover have a /∈ path-inside ?p2 ∧ b /∈ path-inside ?p1
proof−

have a /∈ path-inside p
by (metis (no-types, lifting) assms(1 ) assms(2 ) collinear-2 insertCI in-

sert-absorb triangle-interior-point-not-collinear-vertices)
moreover have b /∈ path-inside p
using assms(1 ) assms(2 ) triangle-interior-point-not-collinear-vertices-wlog-helper

by fastforce
moreover have path-inside ?p2 ⊆ path-inside ?q

using 2 unfolding is-polygon-split-def
by (smt (z3 ) One-nat-def UnCI append-Cons diff-Suc-1 drop0 drop-Suc-Cons

make-triangle-def nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 self-append-conv2 sub-
setI take0 take-Suc-Cons)

moreover have path-inside ?p1 ⊆ path-inside ?q
using 2 unfolding is-polygon-split-def

by (smt (z3 ) One-nat-def Un-assoc append-Cons diff-Suc-1 drop0 drop-Suc-Cons
inf-sup-absorb le-iff-inf make-triangle-def nth-Cons-0 nth-Cons-Suc numeral-3-eq-3
self-append-conv2 sup-commute take0 take-Suc-Cons)

moreover have path-inside ?q ⊆ path-inside p
using 1 unfolding is-polygon-split-path-def
by (smt (z3 ) One-nat-def Un-subset-iff Un-upper1 append-Cons append-Nil

assms(1 ) diff-zero drop0 drop-Suc-Cons make-triangle-def nth-Cons-0 nth-Cons-Suc
take0 )

ultimately show ?thesis by blast
qed
moreover show a /∈ path-image ?p2 ∪ path-inside ?p2 using calculation by

simp
ultimately show b /∈ path-image ?p1 ∪ path-inside ?p1 by simp

have (path-image ?p3 − path-image ?cutpath) ∩ (path-image ?q − path-image
?cutpath) = {}

using 1 unfolding make-triangle-def is-polygon-split-path-def
by (smt (z3 ) One-nat-def append-Cons append-Nil diff-self-eq-0 diff-zero drop0

drop-Suc-Cons nth-Cons-0 nth-Cons-Suc rev-singleton-conv take-0 )
moreover have c ∈ path-image ?q using l-q-int by auto
ultimately have c /∈ path-image ?p3 using c-noton-cutpath by blast
moreover have c /∈ path-inside ?p3
proof−

have c /∈ path-inside p
using assms(1 ) assms(2 ) triangle-interior-point-not-collinear-vertices by

fastforce
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moreover have path-inside ?p3 ⊆ path-inside p
using 1 unfolding is-polygon-split-path-def

by (smt (z3 ) One-nat-def Un-assoc Un-upper1 append-Cons append-Nil
assms(1 ) diff-Suc-Suc diff-zero make-triangle-def nth-Cons-0 nth-Cons-Suc rev-singleton-conv
take0 )

ultimately show ?thesis by blast
qed
ultimately show c /∈ path-image ?p3 ∪ path-inside ?p3 by blast

qed

lemma smaller-triangle:
assumes ¬ collinear {a, b, c} ∧ ¬ collinear {a ′, b ′, c ′}
assumes p = make-triangle a b c
assumes p ′ = make-triangle a ′ b ′ c ′

assumes path-inside p ⊆ path-inside p ′

assumes ∃ d. integral-vec d ∧ d ∈ path-image p ′ ∪ path-inside p ′ ∧ d /∈ path-image
p ∪ path-inside p
shows card (integral-inside p) + card (integral-boundary p) < card (integral-inside

p ′) + card (integral-boundary p ′)
proof−

have simple-path p using assms unfolding make-triangle-def
using assms(2 ) polygon-def triangle-is-polygon by presburger

then have finite-p: finite (integral-inside p) ∧ finite (integral-boundary p) using
assms unfolding make-triangle-def

using integral-boundary integral-inside finite-integral-points-path-image finite-integral-points-path-inside
by metis

have simple-path p ′ using assms unfolding make-triangle-def
using assms(3 ) polygon-def triangle-is-polygon by presburger

then have finite-p ′: finite (integral-inside p ′) ∧ finite (integral-boundary p ′) using
assms unfolding make-triangle-def

using integral-boundary integral-inside finite-integral-points-path-image finite-integral-points-path-inside
by metis

have polygon p using assms(1 ,2 ) triangle-is-polygon by blast
then have 1 : (integral-inside p) ∩ (integral-boundary p) = {}

unfolding integral-inside integral-boundary using inside-outside-polygon un-
folding inside-outside-def by blast

have polygon p ′ using assms(1 ,3 ) triangle-is-polygon by blast
then have 2 : (integral-inside p ′) ∩ (integral-boundary p ′) = {}

unfolding integral-inside integral-boundary using inside-outside-polygon un-
folding inside-outside-def by blast

have path-image-subset: path-image p ⊆ path-image p ′ ∪ path-inside p ′

proof−
have p-frontier : path-image p = frontier (convex hull {a, b, c})

by (simp add: assms(1 ) assms(2 ) convex-polygon-frontier-is-path-image2 tri-
angle-convex-hull triangle-is-convex triangle-is-polygon)

have p ′-frontier : path-image p ′ = frontier (convex hull {a ′, b ′, c ′})
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by (simp add: assms(1 ) assms(3 ) convex-polygon-frontier-is-path-image2 tri-
angle-convex-hull triangle-is-convex triangle-is-polygon)

have p-interior : path-inside p = interior (convex hull {a, b, c})
by (simp add: bounded-convex-hull p-frontier inside-frontier-eq-interior path-inside-def )
have p ′-interior : path-inside p ′ = interior (convex hull {a ′, b ′, c ′})
by (simp add: bounded-convex-hull p ′-frontier inside-frontier-eq-interior path-inside-def )

have interior (convex hull {a, b, c}) ⊆ interior (convex hull {a ′, b ′, c ′})
using assms p-interior p ′-interior by argo

moreover have compact (convex hull {a, b, c}) ∧ compact (convex hull {a ′,
b ′, c ′})

by (simp add: compact-convex-hull)
ultimately have frontier (convex hull {a, b, c})
⊆ interior (convex hull {a ′, b ′, c ′}) ∪ frontier (convex hull {a ′, b ′, c ′})
by (smt (verit, ccfv-threshold) Jordan-inside-outside-real2 closed-path-def

‹polygon p ′› ‹polygon p› assms(1 ) assms(2 ) closure-Un closure-Un-frontier clo-
sure-convex-hull finite.emptyI finite-imp-compact finite-insert p ′-frontier p ′-interior
p-interior path-inside-def polygon-def subset-trans sup.absorb-iff1 sup-commute tri-
angle-convex-hull)

then show ?thesis using p ′-frontier p ′-interior p-frontier by blast
qed

have card ((integral-inside p) ∪ (integral-boundary p)) = card (integral-inside p)
+ card (integral-boundary p)

using 1 finite-p by (simp add: card-Un-disjoint)
moreover have card ((integral-inside p ′) ∪ (integral-boundary p ′)) = card (integral-inside

p ′) + card (integral-boundary p ′)
using 2 finite-p ′ by (simp add: card-Un-disjoint)

moreover have (integral-inside p) ∪ (integral-boundary p) ⊆ (integral-inside p ′)
∪ (integral-boundary p ′)

using assms path-image-subset unfolding integral-inside integral-boundary by
blast
moreover then have (integral-inside p) ∪ (integral-boundary p) ⊂ (integral-inside

p ′) ∪ (integral-boundary p ′) using assms unfolding integral-inside integral-boundary
by blast

ultimately show ?thesis by (metis finite-Un finite-p ′ psubset-card-mono)
qed

lemma pick-elem-triangle:
fixes p :: R-to-R2
assumes p-triangle: p = make-triangle a b c
assumes elem-triangle: elem-triangle a b c
assumes I = card {x. integral-vec x ∧ x ∈ path-inside p} and

B = card {x. integral-vec x ∧ x ∈ path-image p}
shows measure lebesgue (path-inside p) = I + B/2 − 1

proof −
have polygon-p: polygon p

using p-triangle triangle-is-polygon elem-triangle
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unfolding elem-triangle-def by auto
then have path-inside p ∩ path-image p = {}

using inside-outside-polygon[of p] unfolding inside-outside-def
by auto

let ?p = polygon (make-polygonal-path [a, b, c, a])
have a-neq-b:a 6= b

using elem-triangle unfolding elem-triangle-def
by auto

have b-neq-c: b 6= c
using elem-triangle unfolding elem-triangle-def
by auto

have a-neq-c: c 6= a
using elem-triangle unfolding elem-triangle-def
using collinear-3-eq-affine-dependent by blast

have path-image p ⊆ convex hull {a, b, c}
using triangle-path-image-subset-convex p-triangle by auto

then have
{x. integral-vec x ∧ x ∈ path-image p} ⊆ {x. integral-vec x ∧ x ∈ convex hull

{a, b, c}}
by auto

also have ... = {a, b, c}
using elem-triangle unfolding elem-triangle-def by auto

finally have {x. integral-vec x ∧ x ∈ path-image p} ⊆ {a, b, c} .
moreover have {x. integral-vec x ∧ x ∈ path-image p} ⊇ {a, b, c}

by (smt (verit) Collect-mono-iff make-triangle-def ‹{x. integral-vec x ∧ x ∈ con-
vex hull {a, b, c}} = {a, b, c}› empty-set insert-subset list.simps(15 ) mem-Collect-eq
p-triangle subsetD vertices-on-path-image)

ultimately have {x. integral-vec x ∧ x ∈ path-image p} = {a, b, c} by auto
then have card-2 : B = 3

using a-neq-b b-neq-c a-neq-c assms(4 )
by simp

have {x. integral-vec x ∧ x ∈ path-inside p} = {}
proof−

have path-inside p ⊆ convex hull {a, b, c}
by (smt (verit, best) Diff-insert-absorb make-triangle-def convex-polygon-inside-is-convex-hull-interior

empty-iff empty-set insert-Diff-single insert-commute interior-subset list.simps(15 )
p-triangle polygon-p elem-triangle elem-triangle-def triangle-is-convex)

then have
{x. integral-vec x ∧ x ∈ path-inside p} ⊆ {x. integral-vec x ∧ x ∈ convex hull

{a, b, c}}
by auto

also have ... = {a, b, c}
using ‹{x. integral-vec x ∧ x ∈ convex hull {a, b, c}} = {a, b, c}› by auto

finally have {x. integral-vec x ∧ x ∈ path-inside p} ⊆ {a, b, c} .
moreover have
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{x. integral-vec x ∧ x ∈ path-inside p} ∩ {x. integral-vec x ∧ x ∈ path-image
p} = {}

using ‹path-inside p ∩ path-image p = {}› by auto
ultimately show ?thesis

using ‹{x. integral-vec x ∧ x ∈ path-image p} = {a, b, c}› by auto
qed
then have card-1 : I = 0

using assms(3 )
by (metis card.empty)

have I + B/2 − 1 = 1/2
using card-1 card-2 assms
by auto

then show ?thesis
using elem-triangle-area-is-half [OF assms(2 )] triangle-measure-convex-hull-measure-path-inside-same[OF

assms(1 ) assms(2 )]
by auto

qed

lemma pick-triangle-lemma:
fixes p :: R-to-R2
assumes p = make-triangle a b c and all-integral [a, b, c] and distinct [a, b, c]

and ¬ collinear {a, b, c}
I = card {x. integral-vec x ∧ x ∈ path-inside p} and
B = card {x. integral-vec x ∧ x ∈ path-image p}

shows measure lebesgue (path-inside p) = I + B/2 − 1
using assms

proof(induction card {x. integral-vec x ∧ x ∈ path-inside p} + card {x. integral-vec
x ∧ x ∈ path-image p} arbitrary: p a b c I B rule:less-induct)

case less
have polygon-p: polygon p using triangle-is-polygon[OF less.prems(4 )] less.prems(1 )

by simp
then have polygon-of : polygon-of p [a, b, c, a]
unfolding polygon-of-def using less.prems(1 ) unfolding make-triangle-def by

auto

have convex-hull-char : convex hull {a, b, c} = path-inside p ∪ path-image p
using triangle-convex-hull[OF less.prems(1 ) less.prems(4 )] by auto

then have interior-convex-hull: {x. integral-vec x ∧ x ∈ path-inside p} ∪ {x.
integral-vec x ∧ x ∈ path-image p} = {x ∈ convex hull {a, b, c}. integral-vec x}

by auto
have vts-in-path-image: a ∈ path-image p ∧ b ∈ path-image p ∧ c ∈ path-image

p
using assms(1 ) unfolding make-triangle-def using vertices-on-path-image

by (metis (mono-tags, lifting) insertCI less.prems(1 ) list.simps(15 ) make-triangle-def
subset-code(1 ))

have integral-vts: integral-vec a ∧ integral-vec b ∧ integral-vec c
using less.prems(2 )
by (simp add: all-integral-def )
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then have subset: {a, b, c} ⊆ {x. integral-vec x ∧ x ∈ path-image p}
using vts-in-path-image integral-vts by simp

have finite-integral-on-path-im: finite {x. integral-vec x ∧ x ∈ path-image p}
using finite-integral-points-path-image triangle-is-polygon[OF less.prems(4 )]
unfolding make-triangle-def polygon-def
using less.prems(1 ) make-triangle-def by auto

have B-3-if : B > 3 if other-point-in-set: {x. integral-vec x ∧ x ∈ path-image p}
6= {a, b, c}

proof −
have ∃ d. d /∈ {a, b, c} ∧ d ∈ {x. integral-vec x ∧ x ∈ path-image p}

using other-point-in-set subset
by blast

then obtain d where d-prop: d /∈ {a, b, c} ∧ d ∈ {x. integral-vec x ∧ x ∈
path-image p}

by auto
then have subset2 : {a, b, c, d} ⊆{x. integral-vec x ∧ x ∈ path-image p}

using d-prop subset by auto
have distinct [a, b, c, d]

using d-prop
using less.prems(3 ) by auto

then have card-is: card {a, b, c, d} = 4
by simp

show ?thesis using subset2 card-is finite-integral-on-path-im
by (metis (no-types, lifting) Suc-le-eq card-mono eval-nat-numeral(2 ) less.prems(6 )

semiring-norm(26 ) semiring-norm(27 ))
qed
{ assume ∗: I = 0

have finite {x. integral-vec x ∧ x ∈ path-inside p}
using finite-integral-points-path-inside triangle-is-polygon[OF less.prems(4 )]
unfolding make-triangle-def
by (simp add: less.prems(1 ) make-triangle-def polygon-def )

then have empty-inside: {x. integral-vec x ∧ x ∈ path-inside p} = {}
using ∗ less.prems(5 ) by auto

{ assume ∗∗: B = 3
have {x ∈ convex hull {a, b, c}. integral-vec x} = {a, b, c}

using ∗ ∗∗ less.prems(5−6 ) B-3-if interior-convex-hull empty-inside
by blast

then have elem-triangle a b c
unfolding elem-triangle-def using less.prems(4 ) integral-vts by simp

then have measure lebesgue (path-inside p) = I + B/2 − 1
using pick-elem-triangle less.prems by auto

}
moreover
{ assume ∗: B > 3

then obtain d where d: integral-vec d ∧ d ∈ path-image p ∧ d /∈ {a, b, c}
by (smt (verit, del-insts) subset finite-integral-on-path-im less.prems(3 )

card-3-iff collinear-3-eq-affine-dependent less.prems(4 ) less.prems(6 ) less-not-refl
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mem-Collect-eq subsetI subset-antisym)
have path-image (make-polygonal-path [a, b, c, a]) = path-image (linepath a

b) ∪ path-image (linepath b c) ∪ path-image (linepath c a)
by (metis (no-types, lifting) list.discI make-polygonal-path.simps(3 ) nth-Cons-0

path-image-cons-union sup-assoc)
then have d ∈ path-image (linepath a b)
∨ d ∈ path-image (linepath b c)
∨ d ∈ path-image (linepath c a)

using d less.prems(1 ) unfolding make-triangle-def polygon-of-def
by blast

then have measure lebesgue (path-inside p) = I + B/2 − 1
using pick-triangle-helper less.prems less.hyps empty-inside d
unfolding pick-holds pick-triangle integral-inside integral-boundary
apply simp by blast

}
ultimately have measure lebesgue (path-inside p) = I + B/2 − 1

using B-3-if
by (metis (no-types, lifting) card.empty card-insert-disjoint collinear-2 fi-

nite.emptyI finite.insertI insert-absorb less.prems(4 ) less.prems(6 ) numeral-3-eq-3 )
}
moreover
{ assume ∗: I > 0

then obtain d where d-inside: integral-vec d ∧ d ∈ path-inside p
using less.prems(5 )

by (metis (mono-tags, lifting) Collect-empty-eq add-0 canonically-ordered-monoid-add-class.lessE
card-0-eq card-ge-0-finite)

have a ∈ path-image p
using vertices-on-path-image polygon-of unfolding polygon-of-def by fastforce
then have a-inset: a ∈ path-inside p ∪ path-image p

by fastforce
have convex-hull-set: convex hull set [a, b, c, a] = path-inside p ∪ path-image

p
using convex-hull-char
by (simp add: insert-commute)
then have ad-linepath-inside: path-image (linepath a d) ⊆ path-inside p ∪

path-image p
using d-inside convex-polygon-means-linepaths-inside[OF polygon-of con-

vex-hull-set a-inset]
by blast

have b ∈ path-image p
using vertices-on-path-image polygon-of unfolding polygon-of-def by fastforce
then have b-inset: b ∈ path-inside p ∪ path-image p

by fastforce
have bd-linepath-inside: path-image (linepath b d) ⊆ path-inside p ∪ path-image

p
using d-inside convex-polygon-means-linepaths-inside[OF polygon-of con-

vex-hull-set b-inset]
by blast

have c ∈ path-image p
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using vertices-on-path-image polygon-of unfolding polygon-of-def by fastforce
then have c-inset: c ∈ path-inside p ∪ path-image p

by fastforce
then have cd-linepath-inside: path-image (linepath c d) ⊆ path-inside p ∪

path-image p
using d-inside convex-hull-char convex-polygon-means-linepaths-inside[OF

polygon-of convex-hull-set c-inset]
by blast

let ?p1 = make-triangle a d c
let ?p2 = make-triangle d b c
let ?p3 = make-triangle a b d

have triangle-split:
is-polygon-split-path [a, b, c] 0 1 [d]
is-polygon-split [a, d, b, c] 1 3
a /∈ path-image ?p2 ∪ path-inside ?p2
b /∈ path-image ?p1 ∪ path-inside ?p1
c /∈ path-image ?p3 ∪ path-inside ?p3

using triangle-3-split[of p a b c d] less.prems d-inside polygon-p apply fastforce
using triangle-3-split[of p a b c d] less.prems d-inside polygon-p apply fastforce
using triangle-3-split[of p a b c d] less.prems d-inside polygon-p apply fastforce
using triangle-3-split[of p a b c d] less.prems d-inside polygon-p apply fastforce
using triangle-3-split[of p a b c d] less.prems d-inside polygon-p by fastforce

let ?q = make-polygonal-path [a, d, b, c, a]
let ?I1 = card (integral-inside ?p1 )
let ?B1 = card (integral-boundary ?p1 )
let ?I2 = card (integral-inside ?p2 )
let ?B2 = card (integral-boundary ?p2 )
let ?I3 = card (integral-inside ?p3 )
let ?B3 = card (integral-boundary ?p3 )
let ?Iq = card (integral-inside ?q)
let ?Bq = card (integral-boundary ?q)
have measure lebesgue (path-inside ?p1 ) = ?I1 + ?B1/2 − 1
proof−

have path-inside ?p1 ⊆ path-inside ?q
using triangle-split(2 ) unfolding is-polygon-split-def

by (smt (z3 ) One-nat-def Un-assoc Un-upper1 append-Cons append-Nil
diff-Suc-Suc diff-zero drop0 drop-Suc-Cons make-triangle-def nth-Cons-0 nth-Cons-Suc
numeral-3-eq-3 sup-commute take0 take-Suc-Cons)

moreover have path-inside ?q ⊆ path-inside p
using triangle-split(1 ) unfolding is-polygon-split-path-def
by (smt (z3 ) One-nat-def Un-assoc Un-subset-iff append-Cons append-Nil

diff-zero drop0 drop-Suc-Cons less.prems(1 ) make-triangle-def nth-Cons-0 nth-Cons-Suc
sup.cobounded2 take0 )

ultimately have path-inside ?p1 ⊆ path-inside p by blast
moreover have ¬ collinear {a, d, c}
by (metis d-inside insert-commute less.prems(1 ) polygon-p triangle-interior-point-not-collinear-vertices)
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moreover have ¬ collinear {a, b, c} by (simp add: less.prems(4 ))
moreover have integral-vec b

using integral-vts by blast
moreover have b ∈ path-image p

using vts-in-path-image by auto
ultimately have card (integral-inside ?p1 ) + card (integral-boundary ?p1 )

< card (integral-inside p) + card (integral-boundary p)
using smaller-triangle[of a d c a b c ?p1 p] triangle-split(4 ) less.prems(1 )

less-imp-le-nat
by blast

thus ?thesis
using less.hyps[of ?p1 a d c] unfolding integral-inside integral-boundary

using ‹¬ collinear {a, d, c}› all-integral-def d-inside integral-vts less.prems(1 )
less.prems(3 ) triangle-split(3 ) triangle-split(5 )

by fastforce
qed
moreover have measure lebesgue (path-inside ?p2 ) = ?I2 + ?B2/2 − 1
proof−

have path-inside ?p2 ⊆ path-inside ?q
using triangle-split(2 ) unfolding is-polygon-split-def

by (smt (z3 ) One-nat-def Un-assoc Un-upper1 append-Cons append-Nil
diff-Suc-Suc diff-zero drop0 drop-Suc-Cons make-triangle-def nth-Cons-0 nth-Cons-Suc
numeral-3-eq-3 sup-commute take0 take-Suc-Cons)

moreover have path-inside ?q ⊆ path-inside p
using triangle-split(1 ) unfolding is-polygon-split-path-def
by (smt (z3 ) One-nat-def Un-assoc Un-subset-iff append-Cons append-Nil

diff-zero drop0 drop-Suc-Cons less.prems(1 ) make-triangle-def nth-Cons-0 nth-Cons-Suc
sup.cobounded2 take0 )

ultimately have path-inside ?p2 ⊆ path-inside p by blast
moreover have ¬ collinear {d, b, c}
by (metis d-inside insert-commute less.prems(1 ) polygon-p triangle-interior-point-not-collinear-vertices)
moreover have ¬ collinear {a, b, c} by (simp add: less.prems(4 ))
moreover have integral-vec a

using integral-vts by blast
moreover have a ∈ path-image p

using vts-in-path-image by auto
ultimately have card (integral-inside ?p2 ) + card (integral-boundary ?p2 )

< card (integral-inside p) + card (integral-boundary p)
using smaller-triangle[of d b c a b c ?p2 p] triangle-split(3 ) less.prems(1 )

less-imp-le-nat
by blast

thus ?thesis
using less.hyps[of ?p2 d b c] unfolding integral-inside integral-boundary

using ‹¬ collinear {d, b, c}› all-integral-def d-inside integral-vts less.prems(1 )
less.prems(3 ) triangle-split(3 ) triangle-split(5 )

by fastforce
qed
moreover have measure lebesgue (path-inside ?p3 ) = ?I3 + ?B3/2 − 1
proof−

254



have path-inside ?p3 ⊆ path-inside p
using triangle-split(1 ) unfolding is-polygon-split-path-def

by (smt (z3 ) One-nat-def Un-assoc Un-upper1 append-Cons append-Nil
diff-Suc-Suc diff-zero less.prems(1 ) make-triangle-def nth-Cons-0 nth-Cons-Suc rev-singleton-conv
take0 )

moreover have ¬ collinear {a, b, d}
by (metis d-inside less.prems(1 ) polygon-p triangle-interior-point-not-collinear-vertices)
moreover have ¬ collinear {a, b, c} by (simp add: less.prems(4 ))
moreover have integral-vec c

using integral-vts by blast
moreover have c ∈ path-image p

using vts-in-path-image by auto
ultimately have card (integral-inside ?p3 ) + card (integral-boundary ?p3 )

< card (integral-inside p) + card (integral-boundary p)
using smaller-triangle[of a b d a b c ?p3 p] triangle-split(5 ) less.prems(1 )

less-imp-le-nat
by blast

thus ?thesis
using less.hyps[of ?p3 a b d] unfolding integral-inside integral-boundary

using ‹¬ collinear {a, b, d}› all-integral-def d-inside integral-vts less.prems(1 )
less.prems(3 ) triangle-split(3 ) triangle-split(5 )

by fastforce
qed
moreover have measure lebesgue (path-inside ?q) = ?Iq + ?Bq/2 − 1

using pick-split-union[OF triangle-split(2 ),
of [a] [b] [] d c ?q ?p2 ?p1 ?I2 ?B2 ?I1 ?B1 ?Iq ?Bq]

using calculation
unfolding integral-inside integral-boundary make-triangle-def
using all-integral-def d-inside less.prems(2 ) by force

ultimately have ?case
using pick-split-path-union[OF triangle-split(1 ),

of [] [] [c] a b make-polygonal-path (a # [d] @ [b]) p ?p3 ?q ?I3 ?B3 ?Iq
?Bq I B]

unfolding integral-inside integral-boundary make-triangle-def less.prems
using less.prems(2 ) by force

}
ultimately show ?case by blast

qed

29.2 Pocket properties
definition index-not-in-set :: (real^2 ) list ⇒ (real^2 ) set ⇒ nat ⇒ bool

where index-not-in-set vts A i ←→ i ∈ {i. i < length vts ∧ vts ! i /∈ A}

definition min-index-not-in-set:: (real^2 ) list ⇒ (real^2 ) set ⇒ nat
where min-index-not-in-set vts A = (LEAST i. index-not-in-set vts A i)

definition nonzero-index-in-set :: (real^2 ) list ⇒ (real^2 ) set ⇒ nat ⇒ bool
where

255



nonzero-index-in-set vts A i ←→ i ∈ {i. 0 < i ∧ i < length vts ∧ vts ! i ∈ A}

definition min-nonzero-index-in-set :: (real^2 ) list ⇒ (real^2 ) set ⇒ nat where
min-nonzero-index-in-set vts A = (LEAST i. nonzero-index-in-set vts A i)

definition construct-pocket-0 :: (real^2 ) list ⇒ (real^2 ) set ⇒ (real^2 ) list where
construct-pocket-0 vts A = take ((min-nonzero-index-in-set vts A) + 1 ) vts

definition is-pocket-0 :: (real^2 ) list ⇒ (real^2 ) list ⇒ bool where
is-pocket-0 vts vts ′←→

polygon (make-polygonal-path vts)
∧ (∃ i. vts ′ = take i vts)
∧ 3 ≤ length vts ′ ∧ length vts ′ < length vts
∧ hd vts ′ ∈ frontier (convex hull (set vts)) ∧ last vts ′ ∈ frontier (convex hull

(set vts))
∧ set (tl (butlast vts ′)) ⊆ interior (convex hull (set vts))

definition fill-pocket-0 :: (real^2 ) list ⇒ nat ⇒ (real^2 ) list where
fill-pocket-0 vts i = (hd vts) # (drop (i−1 ) vts)

lemma min-nonzero-index-in-set-exists:
assumes set (tl vts) ∩ A 6= {}
shows ∃ i. nonzero-index-in-set vts A i

proof−
obtain v where v: v ∈ A ∩ set (tl vts) using assms by blast
then obtain i where (tl vts)!i = v ∧ i < length (tl vts) by (meson IntD2

in-set-conv-nth)
then obtain j where vts!j = v ∧ 0 < j ∧ j < length vts using nth-tl by fastforce
thus ?thesis unfolding nonzero-index-in-set-def using v by blast

qed

lemma min-nonzero-index-in-set-defined:
assumes set (tl vts) ∩ A 6= {}
defines i ≡ min-nonzero-index-in-set vts A
shows nonzero-index-in-set vts A i ∧ (∀ j < i. ¬ nonzero-index-in-set vts A j)

proof−
have ∃ i. nonzero-index-in-set vts A i using assms min-nonzero-index-in-set-exists

by blast
then have nonzero-index-in-set vts A i

using assms unfolding min-nonzero-index-in-set-def
using LeastI-ex by blast

moreover have (∀ j < i. ¬ nonzero-index-in-set vts A j)
by (metis assms(2 ) wellorder-Least-lemma(2 ) leD min-nonzero-index-in-set-def )

ultimately show ?thesis by blast
qed

lemma min-index-not-in-set-exists:

256



assumes set vts ⊃ A
shows ∃ i. index-not-in-set vts A i

proof−
obtain v where v ∈ set vts ∧ v /∈ A using assms by blast
then obtain i where i < length vts ∧ vts ! i /∈ A by (metis in-set-conv-nth)
thus ?thesis unfolding index-not-in-set-def by blast

qed

lemma min-index-not-in-set-defined:
assumes set vts ⊃ A
defines i ≡ min-index-not-in-set vts A
shows index-not-in-set vts A i ∧ (∀ j < i. ¬ index-not-in-set vts A j)

proof−
have ∃ i. index-not-in-set vts A i using assms min-index-not-in-set-exists by

simp
then have index-not-in-set vts A i

using assms unfolding min-index-not-in-set-def
using LeastI-ex by blast

moreover have (∀ j < i. ¬ index-not-in-set vts A j)
by (metis assms(2 ) wellorder-Least-lemma(2 ) leD min-index-not-in-set-def )

ultimately show ?thesis by blast
qed

lemma min-nonzero-index-in-set-bound:
assumes set (tl vts) ∩ A 6= {}
shows min-nonzero-index-in-set vts A < length vts
using min-nonzero-index-in-set-defined assms unfolding nonzero-index-in-set-def

by blast

lemma construct-pocket-0-subset-vts:
assumes set (tl vts) ∩ A 6= {}
shows set (construct-pocket-0 vts A) ⊆ set vts

proof−
let ?i = min-nonzero-index-in-set vts A
have nonzero-index-in-set vts A ?i using min-nonzero-index-in-set-defined assms

by presburger
then have ?i < length vts unfolding nonzero-index-in-set-def by blast
thus ?thesis unfolding construct-pocket-0-def by (simp add: set-take-subset)

qed

lemma min-index-not-in-set-0 :
assumes set vts ⊃ A
assumes vts!0 ∈ A
defines i ≡ min-index-not-in-set vts A
defines r ≡ i − 1
shows vts!r ∈ A

proof−
have ∗: index-not-in-set vts A i ∧ (∀ j<i. ¬ index-not-in-set vts A j)

using min-index-not-in-set-defined[of A vts, OF assms(1 )] unfolding i-def by
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blast
moreover then have r < i

unfolding r-def i-def min-index-not-in-set-def index-not-in-set-def
by (metis (no-types, lifting) assms(2 ) bot-nat-0 .not-eq-extremum diff-less mem-Collect-eq

zero-less-one)
ultimately have ¬ index-not-in-set vts A r by blast
thus ?thesis
unfolding index-not-in-set-def using assms ∗ index-not-in-set-def less-imp-diff-less

by force
qed

lemma construct-pocket-0-last-in-set:
assumes set (tl vts) ∩ A 6= {}
assumes vts!0 ∈ A
defines p ≡ construct-pocket-0 vts A
shows last p ∈ A

proof−
let ?i = min-nonzero-index-in-set vts A
have ∗: nonzero-index-in-set vts A ?i using assms(1 ) min-nonzero-index-in-set-defined

by blast
then have length p = min-nonzero-index-in-set vts A + 1

unfolding p-def construct-pocket-0-def nonzero-index-in-set-def by simp
then have last p = p!?i
by (metis add-diff-cancel-right ′ last-conv-nth length-0-conv zero-eq-add-iff-both-eq-0

zero-neq-one)
also have ... = vts!?i

unfolding p-def construct-pocket-0-def by simp
also have ... ∈ A using ∗ unfolding nonzero-index-in-set-def by force
finally show ?thesis .

qed

lemma construct-pocket-0-first-last-distinct:
assumes card A ≥ 2
assumes A ⊆ set vts
assumes distinct (butlast vts)
assumes hd vts = last vts
shows hd (construct-pocket-0 vts A) 6= last (construct-pocket-0 vts A)

proof−
let ?n = min-nonzero-index-in-set vts A
have set (tl vts) ∩ A 6= {}
by (metis (no-types, lifting) Diff-cancel Int-commute Int-insert-right-if1 Nat.le-diff-conv2

Suc-1 add-leD1 assms(1 ) assms(2 ) card.empty card-Diff-singleton inf .orderE list.collapse
list.sel(2 ) list.set(2 ) not-one-le-zero plus-1-eq-Suc subset-insert)
then have n-defined: nonzero-index-in-set vts A ?n ∧ (∀ j < ?n. ¬ nonzero-index-in-set

vts A j)
using min-nonzero-index-in-set-defined by presburger

obtain a b where ab: a 6= b ∧ {a, b} ⊆ A by (metis assms(1 ) card-2-iff ex-card)
then obtain i j where ij: vts!i = a ∧ vts!j = b ∧ i < length vts ∧ j < length

vts ∧ i 6= j
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by (metis (no-types, opaque-lifting) assms(2 ) in-set-conv-nth insert-subset sub-
setD)

have ?thesis if ∗: ?n < length vts − 1
proof−

have ?n > 0 using n-defined unfolding nonzero-index-in-set-def by blast
then have n-bound ′: ?n > 0 ∧ ?n < length (butlast vts) using ∗ by fastforce
then have hd vts 6= vts!?n

by (metis assms(3 ) distinct-Ex1 hd-conv-nth ij in-set-conv-nth length-0-conv
length-pos-if-in-set less-nat-zero-code nth-butlast)

moreover then have vts!?n 6= last vts using assms(4 ) by simp
moreover have last (construct-pocket-0 vts A) = vts!?n

using n-defined
unfolding construct-pocket-0-def
by (metis Cons-nth-drop-Suc Suc-eq-plus1 n-bound ′ ∗ last-snoc less-diff-conv

list.sel(1 ) nth-butlast take-butlast take-hd-drop)
moreover have hd (construct-pocket-0 vts A) = hd vts

unfolding construct-pocket-0-def by force
ultimately show ?thesis by presburger

qed
moreover have ?thesis if ∗: ?n = length vts − 1
proof−

have {i, j} ⊆ {i. i < length vts ∧ vts ! i ∈ A} using ij ab by simp
moreover have i 6= 0 ∨ j 6= 0 using ij by argo
ultimately have nonzero-index-in-set vts A i ∨ nonzero-index-in-set vts A j

unfolding nonzero-index-in-set-def by simp
then have ?n = i ∨ ?n = j

by (metis n-defined Suc-diff-1 gr-implies-not-zero ij linorder-cases not-less-eq
∗)

moreover then have last (construct-pocket-0 vts A) = vts!?n
by (metis Suc-eq-plus1 construct-pocket-0-def hd-drop-conv-nth ij snoc-eq-iff-butlast

take-hd-drop)
ultimately show ?thesis
by (metis (no-types, lifting) ij ab Suc-eq-plus1 assms(4 ) bot-nat-0 .not-eq-extremum

hd-conv-nth insert-subset last-conv-nth less-diff-conv list.size(3 ) mem-Collect-eq n-defined
nat-neq-iff nonzero-index-in-set-def not-less-eq that)

qed
ultimately show ?thesis using n-defined unfolding nonzero-index-in-set-def

by fastforce
qed

lemma construct-pocket-is-pocket:
assumes polygon (make-polygonal-path vts)
assumes vts!0 ∈ frontier (convex hull (set vts))
assumes vts!1 /∈ frontier (convex hull (set vts))
shows is-pocket-0 vts (construct-pocket-0 vts (set vts ∩ frontier (convex hull (set

vts))))
proof−

let ?vts ′ = construct-pocket-0 vts (set vts ∩ frontier (convex hull (set vts)))
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have ex-i: ∃ i. ?vts ′ = take i vts unfolding construct-pocket-0-def by blast
moreover have 3 ≤ length ?vts ′

by (smt (verit) Cons-nth-drop-Suc IntI Int-iff One-nat-def Suc-1 Suc-diff-Suc
Suc-lessI add-diff-cancel-right ′ add-gr-0 append-Nil2 assms(1 ) assms(2 ) assms(3 )
butlast.simps(1 ) butlast.simps(2 ) butlast-conv-take calculation cancel-comm-monoid-add-class.diff-cancel
card.empty construct-pocket-0-def construct-pocket-0-first-last-distinct construct-pocket-0-last-in-set
convex-hull-two-vts-on-frontier diff-diff-cancel diff-is-0-eq diff-is-0-eq ′ drop0 empty-iff
empty-set have-wraparound-vertex hd-conv-nth hd-drop-conv-nth hd-take id-take-nth-drop
last.simps last-conv-nth last-drop last-in-set last-snoc leI le-add2 le-numeral-extra(4 )
le-trans length-0-conv length-greater-0-conv length-take length-tl length-upt less-2-cases
less-numeral-extra(1 ) less-numeral-extra(3 ) linorder-not-less list.distinct(1 ) list.sel(2 )
list.sel(3 ) list.size(3 ) min.absorb4 not-gr-zero not-less-eq-eq not-numeral-le-zero nth-mem
numeral-3-eq-3 plus-1-eq-Suc polygon-at-least-3-vertices polygon-at-least-3-vertices-wraparound
polygon-def pos2 rev.simps(1 ) self-append-conv2 simple-polygonal-path-vts-distinct
snoc-eq-iff-butlast subset-iff take-all-iff take-eq-Nil take-hd-drop)

moreover have vts ′-length: length ?vts ′ < length vts
by (metis (no-types, lifting) One-nat-def Suc-1 assms(1 ) calculation(1 ) calcula-

tion(2 ) construct-pocket-0-first-last-distinct convex-hull-two-vts-on-frontier have-wraparound-vertex
hd-conv-nth inf-le1 last-snoc leI le-add2 le-trans length-take min.absorb4 not-numeral-le-zero
numeral-3-eq-3 plus-1-eq-Suc polygon-at-least-3-vertices polygon-def simple-polygonal-path-vts-distinct
take-all-iff take-eq-Nil)

moreover have hd ?vts ′ ∈ frontier (convex hull (set vts))
by (metis assms(2 ) bot-nat-0 .not-eq-extremum calculation(1 ) calculation(2 )

hd-conv-nth hd-take list.size(3 ) not-numeral-le-zero take-eq-Nil)
moreover have last ?vts ′ ∈ frontier (convex hull (set vts))
by (smt (verit, ccfv-SIG) Cons-nth-drop-Suc Int-iff assms(1 ) assms(2 ) card-length

construct-pocket-0-last-in-set drop0 drop-eq-Nil empty-iff have-wraparound-vertex
last-drop last-in-set le-add2 le-trans linorder-not-less list.sel(3 ) list.simps(15 ) not-less-eq-eq
numeral-3-eq-3 plus-1-eq-Suc polygon-at-least-3-vertices snoc-eq-iff-butlast)

moreover have set (tl (butlast ?vts ′)) ⊆ interior (convex hull (set vts))
proof−

let ?A = (set vts ∩ frontier (convex hull (set vts)))
let ?r = min-nonzero-index-in-set vts ?A
have nonzero-index-in-set vts ?A ?r
∧ (∀ j<min-nonzero-index-in-set vts ?A. ¬ nonzero-index-in-set vts ?A j)

by (metis min-nonzero-index-in-set-defined IntI Nitpick.size-list-simp(2 ) One-nat-def
add-leD1 assms(1 ) assms(2 ) calculation(2 ) calculation(3 ) empty-iff empty-set have-wraparound-vertex
last-in-set last-snoc last-tl less-one not-one-le-zero nth-mem numeral-3-eq-3 plus-1-eq-Suc)

then have ∀ i. (0 < i ∧ i < ?r) −→ vts!i /∈ ?A unfolding nonzero-index-in-set-def
by force

then have ∀ i. (0 < i ∧ i < ?r) −→ vts!i /∈ frontier (convex hull (set vts))
using calculation(3 ) construct-pocket-0-def by fastforce

then have ∀ i. (0 < i ∧ i < ?r) −→ vts!i ∈ interior (convex hull (set vts))
by (smt (verit, ccfv-threshold) Cons-nth-drop-Suc DiffI IntI One-nat-def

add-leD1 assms(1 ) assms(2 ) calculation(2 ) calculation(3 ) closure-subset drop0 dual-order .strict-trans2
empty-iff frontier-def have-wraparound-vertex hull-subset inf .strict-coboundedI2 inf .strict-order-iff
last-drop last-in-set last-snoc length-greater-0-conv list.discI list.sel(3 ) min-nonzero-index-in-set-bound
nth-mem numeral-3-eq-3 plus-1-eq-Suc subset-eq)

moreover have tl (butlast ?vts ′) = drop 1 (take ?r vts)

260



unfolding construct-pocket-0-def
by (metis One-nat-def add-implies-diff antisym-conv2 butlast-take construct-pocket-0-def

drop-0 drop-Suc linorder-le-cases take-all vts ′-length)
moreover have ∀ v ∈ set (drop 1 (take ?r vts)). ∃ i. 0 < i ∧ i < ?r ∧ vts!i =

v
proof

fix v assume ∗: v ∈ set (drop 1 (take ?r vts))
then obtain i ′ where i ′: (drop 1 (take ?r vts))!i ′ = v ∧ i ′ < ?r − 1

by (smt (z3 ) Cons-nth-drop-Suc One-nat-def ex-i butlast-conv-take cal-
culation(2 ) drop0 hd-conv-nth hd-take index-less-size-conv length-drop length-take
less-imp-le-nat linorder-not-less list.collapse list.sel(2 ) min.absorb4 nth-index take-all-iff
take-eq-Nil vts ′-length)

then have (take ?r vts)!(i ′ + 1 ) = v
by (metis ∗ add.commute drop-eq-Nil empty-iff empty-set nle-le nth-drop)

thus ∃ i. 0 < i ∧ i < ?r ∧ vts!i = v
by (metis add-gr-0 i ′ less-diff-conv nth-take zero-less-one)

qed
ultimately show ?thesis by fastforce

qed
ultimately show ?thesis unfolding is-pocket-0-def using assms(1 ) by argo

qed

lemma exists-point-above-interior :
fixes a :: real^2
assumes a ∈ interior (convex hull S)
obtains x where x ∈ S ∧ x$2 > a$2

proof−
have False if ∀ x ∈ S . x$2 ≤ a$2
proof−

have S ⊆ {x. x · (vector [0 , 1 ]) ≤ a$2}
proof(rule subsetI )

fix x
assume x ∈ S
then have x$2 ≤ a$2 using that by blast
moreover have x · (vector [0 , 1 ]) = x$1 ∗ 0 + x$2 ∗ 1

by (simp add: cart-eq-inner-axis e1e2-basis(3 ))
ultimately show x ∈ {x. x · (vector [0 , 1 ]) ≤ a$2} by simp

qed
then have ∗: convex hull S ⊆ {x. x · (vector [0 , 1 ]) ≤ a$2}
proof−

have S ⊆ {v. vector [0 , 1 ] · v ≤ a $ 2}
by (simp add: ‹S ⊆ {x. x · vector [0 , 1 ] ≤ a $ 2}› inner-commute)

then have convex hull S ⊆ {v. vector [0 , 1 ] · v ≤ a $ 2}
by (simp add: convex-halfspace-le hull-minimal)

then show ?thesis
by (simp add: inner-commute)

qed
moreover have a · (vector [0 , 1 ]) = a$2 by (simp add: cart-eq-inner-axis
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e1e2-basis(3 ))
moreover have frontier {x. x · ((vector [0 , 1 ])::(real^2 )) ≤ a$2}

= {x. x · (vector [0 , 1 ]) = a$2}
using frontier-halfspace-le[of (vector [0 , 1 ])::(real^2 ) a$2 ]
by (smt (verit) Collect-cong inner-commute vector-2 (2 ) zero-index)

ultimately have a ∈ frontier {x. x · (vector [0 , 1 ]) ≤ a$2} by blast
thus False
by (metis (mono-tags, lifting) Diff-iff ∗ assms frontier-def in-frontier-in-subset

in-mono interior-subset)
qed
thus ?thesis using that by fastforce

qed

lemma exists-point-above-convex-hull-interior :
fixes S :: (real^2 ) set
assumes S 6= {}
assumes compact S
obtains x where x ∈ S − (interior (convex hull S)) ∧ (∀ y ∈ interior (convex

hull S). x$2 > y$2 )
proof−

let ?H = convex hull S
let ?e2 = (vector [0 , 1 ])::(real^2 )
let ?f = (λx. x$2 )::(real^2 ⇒ real)
have continuous-on {x. True} ?f by (simp add: continuous-on-component)
moreover have compact (convex hull S) using assms(2 ) compact-convex-hull

by blast
moreover from calculation have compact (?f‘?H )

using compact-continuous-image continuous-on-subset by blast
ultimately obtain x max where x: x ∈ ?H ∧ ?f x = max ∧ (∀ y ∈ ?H . y$2 ≤

max)
by (smt (verit) Collect-mono assms(1 ) convex-hull-eq-empty convex-hull-explicit

continuous-attains-sup continuous-on-subset)

have ?H ∩ {x. ?e2 · x = max} 6= {}
by (metis (mono-tags, lifting) cart-eq-inner-axis disjoint-iff e1e2-basis(3 ) in-

ner-commute mem-Collect-eq x)
moreover have ?H ∩ {x. ?e2 · x = max} = {} if (∀ x ∈ S . x$2 < max)
proof−

have S ⊆ {x. ?e2 · x < max}
using that by (simp add: cart-eq-inner-axis e1e2-basis(3 ) inner-commute

subset-eq)
moreover have convex {x. ?e2 · x < max} by (simp add: convex-halfspace-lt)
ultimately show ?thesis using hull-minimal by blast

qed
ultimately have ∃ x ∈ S . x$2 ≥ max by force
moreover have ?H ⊆ {x. ?e2 · x ≤ max}

using x
by (simp add: cart-eq-inner-axis e1e2-basis(3 ) inner-commute subsetI )

moreover then have interior ?H ⊆ {x. ?e2 · x < max}
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by (metis (mono-tags) convex-empty empty-iff inner-zero-left interior-halfspace-le
interior-mono real-inner-1-left separating-hyperplane-set-0 vector-2 (2 ) zero-index)

ultimately have x /∈ interior ?H ∧ (∀ y ∈ interior ?H . x$2 > y$2 )
by (smt (verit) cart-eq-inner-axis e1e2-basis(3 ) in-mono inner-commute mem-Collect-eq

x)
thus ?thesis using that ‹∃ x∈S . max ≤ x $ 2 › x by fastforce

qed

lemma flip-function:
defines M ≡ (vector [vector [1 , 0 ], vector [0 , −1 ]])::(real^2^2 )
defines f ≡ λv. M ∗v v
defines g ≡ (λv. vector [v$1 , −v$2 ])::(real^2 ⇒ real^2 )
shows inj f f = g

proof−
have det M = M$1$1 ∗ M$2$2 − M$1$2 ∗ M$2$1 using det-2 by blast
thus inj f by (simp add: inj-matrix-vector-mult invertible-det-nz f-def M-def )

have
∧

x. f x = g x
proof−

fix x
have f x = vector [M$1$1 ∗ x$1 + M$1$2 ∗ x$2 , M$2$1 ∗ x$1 + M$2$2

∗ x$2 ]
by (simp add: M-def f-def mat-vec-mult-2 )

also have ... = vector [x$1 , −x$2 ] by (simp add: M-def )
finally show f x = g x using f-def g-def by blast

qed
thus f = g by (simp add: f-def g-def )

qed

lemma exists-point-below-convex-hull-interior :
fixes S :: (real^2 ) set
assumes S 6= {}
assumes compact S
obtains x where x ∈ S − (interior (convex hull S)) ∧ (∀ y ∈ interior (convex

hull S). x$2 < y$2 )
proof−

let ?M = (vector [vector [1 , 0 ], vector [0 , −1 ]])::(real^2^2 )
let ?f = λv. ?M ∗v v
let ?g = (λv. vector [v$1 , −v$2 ])::(real^2 ⇒ real^2 )

let ?H ′ = ?g‘(convex hull S)
let ?S ′ = ?g‘S

have interior : ?f‘(interior (convex hull S)) = interior (convex hull (?f‘S))
by (smt (verit, best) flip-function convex-hull-linear-image interior-injective-linear-image

matrix-vector-mul-linear)
have hull: ?H ′ = convex hull ?S ′

proof−
have (∗v) (vector [vector [1 , 0 ], vector [0 , − 1 ]]) ‘ (convex hull S) = convex

263



hull ((∗v) (vector [vector [1 , 0 ], vector [0 , − 1 ]]) ‘ S ::(real, 2 ) vec set)
by (simp add: convex-hull-linear-image)

then show ?thesis
by (simp add: flip-function)

qed
moreover have compact ?S ′

proof−
have continuous-on {x. True} ?f using matrix-vector-mult-linear-continuous-on

by blast
then have continuous-on {x. True} ?g using flip-function by simp
thus ?thesis using assms(2 ) compact-continuous-image continuous-on-subset

flip-function by blast
qed
moreover have ?S ′ 6= {} using assms(1 ) by blast
ultimately obtain x ′ where x ′: x ′ ∈ ?S ′ − (interior ?H ′) ∧ (∀ y ∈ interior

?H ′. x ′$2 > y$2 )
using exists-point-above-convex-hull-interior [of ?S ′] by auto

moreover have ?S ′ − (interior ?H ′) = ?f‘(S − (interior (convex hull S)))
proof−

have ?f‘(S − (interior (convex hull S))) = ?S ′ − ?f‘(interior (convex hull S))
by (metis (no-types, lifting) flip-function(1 ) flip-function(2 ) image-cong im-

age-set-diff )
thus ?thesis using flip-function(2 ) interior hull by auto

qed
ultimately obtain x where ?g x = x ′ ∧ x ∈ S − interior (convex hull S)

using flip-function by auto
moreover have (∀ y∈interior (convex hull S). x $ 2 < y $ 2 )
proof clarify

fix y
assume y ∈ interior (convex hull S)
then have (?g x)$2 > (?g y)$2

using x ′ interior hull flip-function by (metis (no-types, lifting) calculation
image-eqI )

thus x$2 < y$2 by simp
qed
ultimately show ?thesis using that by fast

qed

lemma exists-point-above-all:
fixes p q :: R-to-R2
defines H ≡ convex hull (path-image p ∪ path-image q)
assumes path p ∧ path q
assumes p‘{0<..<1} ⊆ interior H
assumes (p 0 )$2 = 0 ∧ (p 1 )$2 = 0
assumes ∃ x ∈ p‘{0<..<1}. x$2 ≥ 0
obtains x where x ∈ path-image q ∧ (∀ y ∈ path-image p. x$2 > y$2 )

proof−
let ?S = path-image p ∪ path-image q
let ?H = convex hull ?S
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obtain x where x: x ∈ ?S − (interior ?H ) ∧ (∀ y ∈ interior ?H . x$2 > y$2 )
by (metis exists-point-above-convex-hull-interior Un-empty assms(2 ) compact-Un

compact-path-image path-image-nonempty)
then have x /∈ p‘{0<..<1} using H-def assms(3 ) by blast
moreover have x ∈ ?S using x by blast
ultimately have x ∈ path-image q ∨ x ∈ (path-image p) − p‘{0<..<1} by blast
moreover have {0 ..1} − {0<..<1} = {0 ::real, 1} by fastforce
ultimately have x ∈ path-image q ∨ x ∈ p‘{0 , 1}

by (smt (verit, best) image-diff-subset path-image-def subsetD)
moreover have x$2 > (p 0 )$2 ∧ x$2 > (p 1 )$2

using H-def assms(3 ) assms(4 ) assms(5 ) x by fastforce
ultimately have x ∈ path-image q ∧ x$2 > (p 0 )$2 ∧ x$2 > (p 1 )$2 ∧ (∀ y ∈

p‘{0<..<1}. x$2 > y$2 )
using H-def assms(3 ) x by auto

moreover have path-image p = p‘{0<..<1} ∪ {p 0 , p 1}
proof−

have {0<..<1} ∪ {0 ::real, 1} = {0 ..1} by force
thus ?thesis unfolding path-image-def by blast

qed
ultimately show ?thesis by (simp add: that)

qed

lemma exists-point-below-all:
fixes p q :: R-to-R2
defines H ≡ convex hull (path-image p ∪ path-image q)
assumes path p ∧ path q
assumes p‘{0<..<1} ⊆ interior H
assumes (p 0 )$2 = 0 ∧ (p 1 )$2 = 0
assumes ∃ x ∈ path-image p ∪ path-image q. x$2 < 0
obtains x where x ∈ path-image q ∧ (∀ y ∈ path-image p. x$2 < y$2 )

proof−
let ?thesis ′ = ∃ x. x ∈ path-image q ∧ (∀ y ∈ path-image p. x$2 < y$2 )
have ?thesis ′ if ∃ x ∈ path-image p. x$2 < 0
proof−

have ∗: ∃ x ∈ p‘{0<..<1}. x$2 < 0
proof−

have (p 0 )$2 = 0 ∧ (p 1 )$2 = 0 by (simp add: assms(4 ))
thus ?thesis

using that unfolding path-image-def
using atLeastAtMost-iff less-eq-real-def
by fastforce

qed
let ?S = path-image p ∪ path-image q
let ?H = convex hull ?S
obtain x where x: x ∈ ?S − (interior ?H ) ∧ (∀ y ∈ interior ?H . x$2 < y$2 )

by (metis exists-point-below-convex-hull-interior Un-empty assms(2 ) com-
pact-Un compact-path-image path-image-nonempty)

then have x /∈ p‘{0<..<1} using H-def assms(3 ) by blast
moreover have x ∈ ?S using x by blast
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ultimately have x ∈ path-image q ∨ x ∈ (path-image p) − p‘{0<..<1} by
blast

moreover have {0 ..1} − {0<..<1} = {0 ::real, 1} by fastforce
ultimately have x ∈ path-image q ∨ x ∈ p‘{0 , 1}

by (smt (verit, best) image-diff-subset path-image-def subsetD)
moreover have x$2 < (p 0 )$2 ∧ x$2 < (p 1 )$2

by (smt (verit, ccfv-SIG) ∗ H-def assms(3 ) assms(4 ) subset-eq x)
ultimately have x$2 < (p 0 )$2 ∧ x$2 < (p 1 )$2 ∧ (∀ y ∈ p‘{0<..<1}. x$2

< y$2 )
using H-def assms(3 ) x by blast

moreover have path-image p = p‘{0<..<1} ∪ {p 0 , p 1}
proof−

have {0<..<1} ∪ {0 ::real, 1} = {0 ..1} by force
thus ?thesis unfolding path-image-def by blast

qed
ultimately have ∀ y ∈ path-image p. x$2 < y$2 by fast
thus ?thesis using x by fast

qed
moreover then have ?thesis ′ if ¬ (∃ x ∈ path-image p. x$2 < 0 ) using assms(5 )

by fastforce
ultimately show ?thesis using that by blast

qed

lemma pocket-fill-line-int-aux:
fixes x y z :: real^2
defines a ≡ y$1
assumes x = 0
assumes a > 0 ∧ y$2 = 0
assumes z$1 < 0 ∨ z$1 > a
assumes z$2 = 0
assumes convex A ∧ compact A
assumes {x, y, z} ⊆ A
assumes {x, y} ⊆ frontier A
shows z ∈ frontier A ∧ closed-segment x y ⊆ frontier A

proof(rule disjE [OF assms(4 )])
assume z$1 > a
moreover have xyz: x$1 = 0 ∧ x$2 = 0 ∧ y$1 = a ∧ y$2 = 0 ∧ z$2 = 0

by (simp add: a-def assms(2 ) assms(3 ) assms(5 ))
ultimately have y: y ∈ path-image (linepath x z) (is - ∈ ?L)

using segment-horizontal assms(3 ) by force
moreover have y-neq: y 6= x ∧ y 6= z

by (metis a-def assms(2 ) assms(3 ) assms(4 ) not-less-iff-gr-or-eq zero-index)
ultimately have y ∈ rel-interior ?L
by (metis UnE closed-segment-eq-open closed-segment-idem insert-Diff insert-iff

path-image-linepath rel-interior-closed-segment singleton-insert-inj-eq)
moreover have ?L ⊆ A using assms closed-segment-subset by auto
moreover have z ∈ interior A ∪ frontier A

by (metis Diff-iff UnI1 UnI2 assms(6 ) calculation(2 ) closure-convex-hull con-
vex-hull-eq frontier-def in-mono pathfinish-in-path-image pathfinish-linepath)
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ultimately have z ∈ frontier A
by (metis (no-types, lifting) Int-iff UnE y y-neq assms(6 ) assms(8 ) com-

pact-imp-closed insert-subset singletonD triangle-3-split-helper)
moreover have closed-segment x y ⊆ frontier A
proof(rule ccontr)

assume ¬ closed-segment x y ⊆ frontier A
then obtain v where v ∈ closed-segment x y − frontier A by blast
moreover then have v ∈ closed-segment x y ∩ interior A

by (metis (no-types, lifting) DiffD1 DiffD2 DiffI Int-iff assms(6 ) assms(7 )
closed-segment-subset closure-convex-hull convex-hull-eq frontier-def insert-subset
subsetD)

moreover from calculation have v 6= x ∧ v 6= y using assms(8 ) by auto
moreover from calculation have v$1 < a

by (smt (z3 ) DiffD1 a-def assms(2 ) assms(3 ) exhaust-2 segment-horizontal
vec-eq-iff zero-index)

moreover from calculation have y ∈ open-segment v z
by (smt (z3 ) Diff-iff xyz insert-iff open-segment-def open-segment-idem

path-image-linepath segment-horizontal y y-neq)
ultimately have y ∈ interior A

by (metis (no-types, lifting) IntD2 assms(6 ) assms(7 ) closure-convex-hull
convex-hull-eq in-interior-closure-convex-segment insertI2 singletonI subsetD)

thus False using assms(8 ) frontier-def by auto
qed
ultimately show z ∈ frontier A ∧ closed-segment x y ⊆ frontier A by blast

next
assume ∗: z$1 < 0
moreover have xyz: x$1 = 0 ∧ x$2 = 0 ∧ y$1 = a ∧ y$2 = 0 ∧ z$2 = 0

by (simp add: a-def assms(2 ) assms(3 ) assms(5 ))
ultimately have x: x ∈ path-image (linepath y z) (is - ∈ ?L ′)

using segment-horizontal assms(3 ) by force
moreover have x-neq: y 6= x ∧ x 6= z

by (metis a-def assms(2 ) assms(3 ) assms(4 ) not-less-iff-gr-or-eq zero-index)
ultimately have x ∈ rel-interior ?L ′

by (metis UnE closed-segment-eq-open closed-segment-idem insert-Diff insert-iff
path-image-linepath rel-interior-closed-segment singleton-insert-inj-eq)

moreover have ?L ′ ⊆ A
proof−

have y ∈ A ∧ z ∈ A using assms by blast
thus ?thesis by (simp add: assms(6 ) closed-segment-subset)

qed
moreover have z ∈ interior A ∪ frontier A

by (metis Diff-iff UnI1 UnI2 assms(6 ) calculation(2 ) closure-convex-hull con-
vex-hull-eq frontier-def in-mono pathfinish-in-path-image pathfinish-linepath)

ultimately have z ∈ frontier A
by (metis (no-types, lifting) Int-iff UnE x x-neq assms(6 ) assms(8 ) com-

pact-imp-closed insert-subset singletonD triangle-3-split-helper)
moreover have closed-segment x y ⊆ frontier A
proof(rule ccontr)

assume ¬ closed-segment x y ⊆ frontier A
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then obtain v where v ∈ closed-segment x y − frontier A by blast
moreover then have v ∈ closed-segment x y ∩ interior A

by (metis (no-types, lifting) DiffD1 DiffD2 DiffI Int-iff assms(6 ) assms(7 )
closed-segment-subset closure-convex-hull convex-hull-eq frontier-def insert-subset
subsetD)

moreover from calculation have v 6= x ∧ v 6= y using assms(8 ) by auto
moreover from calculation have v$1 > 0

by (smt (z3 ) DiffD1 a-def assms(2 ) assms(3 ) exhaust-2 segment-horizontal
vec-eq-iff zero-index)

moreover from calculation have x ∈ open-segment v z
by (smt (z3 ) Diff-iff xyz insert-iff open-segment-def open-segment-idem

path-image-linepath segment-horizontal x x-neq)
ultimately have x ∈ interior A

by (metis (no-types, lifting) IntD2 assms(6 ) assms(7 ) closure-convex-hull
convex-hull-eq in-interior-closure-convex-segment insertI2 singletonI subsetD)

thus False using assms(8 ) frontier-def by auto
qed
ultimately show z ∈ frontier A ∧ closed-segment x y ⊆ frontier A by blast

qed

lemma axis-dist:
fixes a b :: real^2
shows a$2 = b$2 =⇒ dist a b = dist (a$1 ) (b$1 ) a$1 = b$1 =⇒ dist a b =

dist (a$2 ) (b$2 )
proof−

have dist a b = norm (b − a) by (metis dist-commute dist-norm)
also have ... = sqrt ((b − a) · (b − a)) using norm-eq-sqrt-inner by blast
also have ... = sqrt ((b − a)$1 ∗ (b − a)$1 + (b − a)$2 ∗ (b − a)$2 )

by (simp add: inner-vec-def sum-2 )
finally have ∗: dist a b = sqrt ((b − a)$1 ∗ (b − a)$1 + (b − a)$2 ∗ (b −

a)$2 ) .
show a$2 = b$2 =⇒ dist a b = dist (a$1 ) (b$1 )

a$1 = b$1 =⇒ dist a b = dist (a$2 ) (b$2 )
apply (simp add: ∗ dist-real-def )
by (simp add: ∗ dist-real-def )

qed

lemma dist-bound-1 :
fixes a b x :: real^2
assumes a$2 = x$2
assumes b ∈ ball x ε
assumes ε < dist a x
shows a$1 < x$1 =⇒ b$1 > a$1 a$1 > x$1 =⇒ b$1 < a$1

proof−
have 1 : dist a x = dist (a$1 ) (x$1 ) using axis-dist assms(1 ) by blast
have 2 : dist (b$1 ) (x$1 ) < ε

by (metis assms(2 ) dist-commute dist-vec-nth-le mem-ball order-le-less-trans)
show a$1 < x$1 =⇒ b$1 > a$1 a$1 > x$1 =⇒ b$1 < a$1
apply (smt (verit, ccfv-threshold) assms(1 ) assms(3 ) 1 2 dist-norm real-norm-def )
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by (smt (verit, ccfv-threshold) assms(1 ) assms(3 ) 1 2 dist-norm real-norm-def )
qed

lemma dist-bound-2 :
fixes a b x :: real^2
assumes a$1 = x$1
assumes b ∈ ball x ε
assumes ε < dist a x
shows a$2 < x$2 =⇒ b$2 > a$2 a$2 > x$2 =⇒ b$2 < a$2

proof−
have 1 : dist a x = dist (a$2 ) (x$2 ) using axis-dist assms(1 ) by blast
have 2 : dist (b$2 ) (x$2 ) < ε

by (metis assms(2 ) dist-commute dist-vec-nth-le mem-ball order-le-less-trans)
show a$2 < x$2 =⇒ b$2 > a$2 a$2 > x$2 =⇒ b$2 < a$2
apply (smt (verit, ccfv-threshold) assms(1 ) assms(3 ) 1 2 dist-norm real-norm-def )
by (smt (verit, ccfv-threshold) assms(1 ) assms(3 ) 1 2 dist-norm real-norm-def )

qed

lemma linepath-bound-1 :
fixes x y :: real^2
shows a < x$1 ∧ a < y$1 =⇒ ∀ v ∈ path-image (linepath x y). a < v$1

x$1 < b ∧ y$1 < b =⇒ ∀ v ∈ path-image (linepath x y). v$1 < b
proof−

have ∗: ∀ v ∈ path-image (linepath x y). ∃ u ∈ {0 ..1}. v = (1 − u) ∗R x + u ∗R
y

by (simp add: image-iff linepath-def path-image-def )
have 1 : ∀ u ∈ {0 ..1}. a < ((1 − u) ∗R x + u ∗R y)$1 if a < x$1 ∧ a < y$1
proof clarify

fix u assume u ∈ {0 ..1 ::real}
then have ∗: u ≥ 0 ∧ 1 − u ≥ 0 by simp
then show a < ((1 − u) ∗R x + u ∗R y)$1

by (smt (z3 ) that scaleR-collapse scaleR-left-mono vector-add-component
vector-scaleR-component)

qed
have 2 : ∀ u ∈ {0 ..1}. ((1 − u) ∗R x + u ∗R y)$1 < b if x$1 < b ∧ y$1 < b
proof clarify

fix u assume u ∈ {0 ..1 ::real}
then have ∗: u ≥ 0 ∧ 1 − u ≥ 0 by simp
then show ((1 − u) ∗R x + u ∗R y)$1 < b

by (smt (z3 ) that scaleR-collapse scaleR-left-mono vector-add-component
vector-scaleR-component)

qed
show a < x$1 ∧ a < y$1 =⇒ ∀ v ∈ path-image (linepath x y). a < v$1 using
∗ 1 by fastforce

show x$1 < b ∧ y$1 < b =⇒ ∀ v ∈ path-image (linepath x y). v$1 < b using
∗ 2 by fastforce
qed

lemma linepath-bound-2 :
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fixes x y :: real^2
shows a < x$2 ∧ a < y$2 =⇒ ∀ v ∈ path-image (linepath x y). a < v$2

x$2 < b ∧ y$2 < b =⇒ ∀ v ∈ path-image (linepath x y). v$2 < b
proof−

have ∗: ∀ v ∈ path-image (linepath x y). ∃ u ∈ {0 ..1}. v = (1 − u) ∗R x + u ∗R
y

by (simp add: image-iff linepath-def path-image-def )
have 1 : ∀ u ∈ {0 ..1}. a < ((1 − u) ∗R x + u ∗R y)$2 if a < x$2 ∧ a < y$2
proof clarify

fix u assume u ∈ {0 ..1 ::real}
then have ∗: u ≥ 0 ∧ 1 − u ≥ 0 by simp
then show a < ((1 − u) ∗R x + u ∗R y)$2

by (smt (z3 ) that scaleR-collapse scaleR-left-mono vector-add-component
vector-scaleR-component)

qed
have 2 : ∀ u ∈ {0 ..1}. ((1 − u) ∗R x + u ∗R y)$2 < b if x$2 < b ∧ y$2 < b
proof clarify

fix u assume u ∈ {0 ..1 ::real}
then have ∗: u ≥ 0 ∧ 1 − u ≥ 0 by simp
then show ((1 − u) ∗R x + u ∗R y)$2 < b

by (smt (z3 ) that scaleR-collapse scaleR-left-mono vector-add-component
vector-scaleR-component)

qed
show a < x$2 ∧ a < y$2 =⇒ ∀ v ∈ path-image (linepath x y). a < v$2 using
∗ 1 by fastforce

show x$2 < b ∧ y$2 < b =⇒ ∀ v ∈ path-image (linepath x y). v$2 < b using
∗ 2 by fastforce
qed

lemma linepath-int-corner :
fixes x y z :: real^2
assumes x$2 6= y$2
assumes y$2 = z$2
shows path-image (linepath x y) ∩ path-image (linepath y z) = {y}
(is path-image ?l1 ∩ path-image ?l2 = {y})

proof−
have 1 : y ∈ path-image ?l1 ∩ path-image ?l2 by simp

have ∀ t ∈ {0 ..1}. (?l1 t)$2 = y$2 −→ t = 1
proof clarify

fix t :: real
assume 1 : t ∈ {0 ..1}
assume 2 : (?l1 t)$2 = y$2

have (?l1 t)$2 = ((1 − t) ∗ (x$2 ) + t ∗ (y$2 )) by (simp add: linepath-def )
thus t = 1
by (smt (verit, best) assms 2 distrib-right inner-real-def mult.commute real-inner-1-right

vector-space-over-itself .scale-cancel-left)
qed
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then have ∀ t ∈ {0 ..1}. (?l1 t)$2 = y$2 ←→ t = 1 by (metis linepath-1 ′)
moreover have ∀ t ∈ {0 ..1}. (?l2 t)$2 = y$2

unfolding linepath-def
by (metis (no-types, lifting) assms(2 ) segment-degen-1 vector-add-component

vector-scaleR-component)
ultimately have 2 : path-image ?l1 ∩ path-image ?l2 ⊆ {y}

by (smt (verit, best) 1 IntD1 IntD2 imageE path-defs(4 ) singleton-iff subsetI )

show ?thesis using 1 2 by fastforce
qed

lemma linepath-int-vertical:
fixes w x y z :: real^2
assumes w$1 6= y$1
assumes w$1 = x$1
assumes y$1 = z$1
shows path-image (linepath w x) ∩ path-image (linepath y z) = {}
using assms segment-vertical by fastforce

lemma linepath-int-horizontal:
fixes w x y z :: real^2
assumes w$2 6= y$2
assumes w$2 = x$2
assumes y$2 = z$2
shows path-image (linepath w x) ∩ path-image (linepath y z) = {}
using assms segment-horizontal by fastforce

lemma linepath-int-columns:
fixes w x y z :: real^2
assumes w$1 < y$1 ∧ w$1 < z$1
assumes x$1 < y$1 ∧ x$1 < z$1
shows path-image (linepath w x) ∩ path-image (linepath y z) = {}
(is path-image ?l1 ∩ path-image ?l2 = {})

proof−
have ∀ t1 ∈ {0 ..1}. ∀ t2 ∈ {0 ..1}. (?l2 t2 )$1 > (?l1 t1 )$1
by (smt (verit, ccfv-SIG) assms linepath-bound-1 linepath-in-path path-image-linepath)

thus ?thesis by (smt (verit, best) disjoint-iff imageE path-image-def )
qed

lemma linepath-int-rows:
fixes w x y z :: real^2
assumes w$2 < y$2 ∧ w$2 < z$2
assumes x$2 < y$2 ∧ x$2 < z$2
shows path-image (linepath w x) ∩ path-image (linepath y z) = {}
(is path-image ?l1 ∩ path-image ?l2 = {})

proof−
have ∀ t1 ∈ {0 ..1}. ∀ t2 ∈ {0 ..1}. (?l2 t2 )$2 > (?l1 t1 )$2
by (smt (verit, ccfv-SIG) assms linepath-bound-2 linepath-in-path path-image-linepath)

thus ?thesis by (smt (verit, best) disjoint-iff imageE path-image-def )
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qed

lemma horizontal-segment-at-0 :
assumes a > 0
shows closed-segment ((vector [0 , 0 ])::(real^2 )) (vector [a, 0 ]) = {x. x$2 = 0
∧ x$1 ∈ {0 ..a}}

(is ?l = ?s)
proof−

have ?l ⊆ ?s
proof(rule subsetI )

fix x
assume ∗: x ∈ ?l
then have x$2 = 0 using segment-horizontal by auto
moreover have 0 ≤ x$1 ∧ x$1 ≤ a using ∗ assms segment-horizontal by

force
ultimately show x ∈ ?s by force

qed
moreover have ?s ⊆ ?l
proof(rule subsetI )

fix x
assume ∗: x ∈ ?s
then have x = (x$1 / a) ∗R (vector [a, 0 ]) + (1 − (x$1 / a)) ∗R (vector [0 ,

0 ])
proof−

have (x$1 / a) ∗R ((vector [a, 0 ])::(real^2 )) = vector [x$1 , 0 ]
using vec-scaleR-2 assms by fastforce

moreover have (1 − (x$1 / a)) ∗R ((vector [0 , 0 ])::(real^2 )) = vector [0 ,
0 ]

using vec-scaleR-2 by simp
moreover have x = vector [x$1 , 0 ]
by (smt (verit) ∗ exhaust-2 mem-Collect-eq vec-eq-iff vector-2 (1 ) vector-2 (2 ))
ultimately show ?thesis

by (metis add-cancel-right-right scaleR-collapse vec-scaleR-2 vector-2 (2 ))
qed
moreover have x$1 / a ∈ {0 ..1} using ∗ assms by fastforce
ultimately show x ∈ ?l

by (smt (verit, del-insts) add.commute atLeastAtMost-iff mem-Collect-eq
closed-segment-def )

qed
ultimately show ?thesis by blast

qed

lemma horizontal-segment-at-0 ′:
fixes x y :: real^2
assumes a > 0
assumes x$1 = 0 ∧ x$2 = 0 ∧ y$1 = a ∧ y$2 = 0
shows closed-segment x y = {x. x$2 = 0 ∧ x$1 ∈ {0 ..a}}

proof−
have x = vector [0 , 0 ] ∧ y = vector [a, 0 ]
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by (smt (verit, best) assms(2 ) exhaust-2 vec-eq-iff vector-2 (1 ) vector-2 (2 ))
thus ?thesis using horizontal-segment-at-0 assms by presburger

qed

lemma pocket-fill-line-int-aux1 :
fixes p q :: R-to-R2
defines p0 ≡ pathstart p
defines p1 ≡ pathfinish p
defines q0 ≡ pathstart q
defines q1 ≡ pathfinish q
defines a ≡ p1$1
defines l ≡ closed-segment p0 p1
assumes simple-path p
assumes simple-path q
assumes p0$1 = 0 ∧ p0$2 = 0 ∧ p1$2 = 0
assumes a > 0
assumes path-image q ∩ {x. x$2 = 0} ⊆ l
assumes path-image p ∩ {x. x$2 = 0} ⊆ l
assumes ∀ v ∈ path-image p. q0$2 ≤ v$2
assumes ∀ v ∈ path-image p. q1$2 > v$2
shows path-image p ∩ path-image q 6= {}

proof−
have p0 : p0 = 0

by (metis (mono-tags, opaque-lifting) assms(9 ) exhaust-2 vec-eq-iff zero-index)
moreover have p1 : p1 = vector [a, 0 ]

by (smt (verit) a-def assms(9 ) exhaust-2 vec-eq-iff vector-2 (1 ) vector-2 (2 ))

obtain a-x where a-x: ∀ v ∈ path-image p ∪ path-image q. a-x < v$1
proof−

let ?a-x = Inf ((λv. v$1 )‘(path-image p ∪ path-image q))
have compact (path-image p ∪ path-image q)

by (simp add: assms(7 ) assms(8 ) compact-Un compact-simple-path-image)
moreover have continuous-on UNIV ((λv. v$1 )::(real^2 ⇒ real))

by (simp add: continuous-on-component)
ultimately have ∗: compact ((λv. v$1 )‘(path-image p ∪ path-image q))

by (meson compact-continuous-image continuous-on-subset top-greatest)
then have ∀ x ∈ ((λv. v$1 )‘(path-image p ∪ path-image q)). ?a-x ≤ x
by (simp add: assms(7 ) assms(8 ) bounded-component-cart bounded-has-Inf (1 )

bounded-simple-path-image)
thus ?thesis using that[of ?a-x − 1 ] by (smt (verit, ccfv-SIG) assms(10 )

imageI )
qed
obtain b-x where b-x: ∀ v ∈ path-image p ∪ path-image q. b-x > v$1
proof−

let ?b-x = Sup ((λv. v$1 )‘(path-image p ∪ path-image q))
have compact (path-image p ∪ path-image q)

by (simp add: assms(7 ) assms(8 ) compact-Un compact-simple-path-image)
moreover have continuous-on UNIV ((λv. v$1 )::(real^2 ⇒ real))

by (simp add: continuous-on-component)
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ultimately have ∗: compact ((λv. v$1 )‘(path-image p ∪ path-image q))
by (meson compact-continuous-image continuous-on-subset top-greatest)

then have ∀ x ∈ ((λv. v$1 )‘(path-image p ∪ path-image q)). ?b-x ≥ x
by (simp add: assms(7 ) assms(8 ) bounded-component-cart bounded-has-Sup(1 )

bounded-simple-path-image)
thus ?thesis using that[of ?b-x + 1 ] by (smt (verit, ccfv-SIG) assms(10 )

imageI )
qed
obtain b-y where b-y: ∀ v ∈ path-image p ∪ path-image q. b-y > v$2
proof−

let ?b-y = Sup ((λv. v$2 )‘(path-image p ∪ path-image q))
have compact (path-image p ∪ path-image q)

by (simp add: assms(7 ) assms(8 ) compact-Un compact-simple-path-image)
moreover have continuous-on UNIV ((λv. v$2 )::(real^2 ⇒ real))

by (simp add: continuous-on-component)
ultimately have ∗: compact ((λv. v$2 )‘(path-image p ∪ path-image q))

by (meson compact-continuous-image continuous-on-subset top-greatest)
then have ∀ x ∈ ((λv. v$2 )‘(path-image p ∪ path-image q)). ?b-y ≥ x
by (simp add: assms(7 ) assms(8 ) bounded-component-cart bounded-has-Sup(1 )

bounded-simple-path-image)
thus ?thesis using that[of ?b-y + 1 ] by (smt (verit, ccfv-SIG) assms(10 )

imageI )
qed

let ?l1 = linepath p1 (vector [b-x, 0 ])
let ?l2 = linepath (vector [b-x, 0 ]) ((vector [b-x, b-y])::(real^2 ))
let ?l3 = linepath (vector [b-x, b-y]) ((vector [a-x, b-y])::(real^2 ))
let ?l4 = linepath (vector [a-x, b-y]) ((vector [a-x, 0 ])::(real^2 ))
let ?l5 = linepath (vector [a-x, 0 ]) p0

let ?R ′ = ?l1 +++ ?l2 +++ ?l3 +++ ?l4 +++ ?l5
let ?R = p +++ ?R ′

have R-y-b: ∀ v ∈ path-image ?R. v$2 ≤ b-y
proof−

have ∀ v ∈ path-image ?l1 . v$2 ≤ b-y
by (metis UnCI assms(9 ) b-y less-eq-real-def p1-def path-image-linepath pathfin-

ish-in-path-image segment-horizontal vector-2 (2 ))
moreover have ∀ v ∈ path-image ?l2 . v$2 ≤ b-y

by (smt (verit, ccfv-SIG) UnCI assms(9 ) b-y p0-def path-image-linepath
pathstart-in-path-image segment-vertical vector-2 (1 ) vector-2 (2 ))

moreover have ∀ v ∈ path-image ?l3 . v$2 ≤ b-y
by (simp add: segment-horizontal)

moreover have ∀ v ∈ path-image ?l4 . v$2 ≤ b-y
by (smt (verit, best) UnCI assms(9 ) b-y p0-def path-image-linepath path-

start-in-path-image segment-vertical vector-2 (1 ) vector-2 (2 ))
moreover have ∀ v ∈ path-image ?l5 . v$2 ≤ b-y

by (smt (verit) UnI1 assms(9 ) b-y linepath-image-01 p0-def path-defs(4 )
pathstart-in-path-image segment-horizontal vector-2 (2 ))

274



ultimately show ?thesis by (smt (verit, best) UnCI b-y not-in-path-image-join)
qed
have R-y-q0 : ∀ v ∈ path-image ?R. v$2 ≥ q0$2
proof−

have ∀ v ∈ path-image ?l1 . v$2 ≥ q0$2
using assms(13 ) assms(9 ) p1-def pathfinish-in-path-image segment-horizontal

by fastforce
moreover have ∀ v ∈ path-image ?l2 . v$2 ≥ q0$2
by (smt (z3 ) UnCI assms(13 ) assms(9 ) b-y p1-def path-image-linepath pathfin-

ish-in-path-image segment-vertical vector-2 (1 ) vector-2 (2 ))
moreover have ∀ v ∈ path-image ?l3 . v$2 ≥ q0$2
by (metis calculation(2 ) ends-in-segment(2 ) path-image-linepath segment-horizontal

vector-2 (2 ))
moreover have ∀ v ∈ path-image ?l4 . v$2 ≥ q0$2
by (smt (z3 ) UnCI assms(13 ) assms(9 ) b-y p1-def path-image-linepath pathfin-

ish-in-path-image segment-vertical vector-2 (1 ) vector-2 (2 ))
moreover have ∀ v ∈ path-image ?l5 . v$2 ≥ q0$2
by (metis assms(13 ) assms(9 ) p0-def path-image-linepath pathstart-in-path-image

segment-horizontal vector-2 (2 ))
ultimately show ?thesis

by (metis assms(13 ) not-in-path-image-join)
qed

have R-x-a: ∀ v ∈ path-image ?R. v$1 ≥ a-x
proof−

have ∀ v ∈ path-image ?l1 . v$2 ≥ a-x
by (metis UnCI a-x assms(9 ) linorder-le-cases linorder-not-less p0-def path-image-linepath

pathstart-in-path-image segment-horizontal vector-2 (2 ))
moreover have ∀ v ∈ path-image ?l2 . v$2 ≥ a-x

by (smt (z3 ) UnCI assms(9 ) b-y calculation p0-def path-image-linepath path-
start-in-path-image pathstart-linepath segment-vertical vector-2 (1 ) vector-2 (2 ))

moreover have ∀ v ∈ path-image ?l3 . v$2 ≥ a-x
by (metis calculation(2 ) ends-in-segment(2 ) path-image-linepath segment-horizontal

vector-2 (2 ))
moreover have ∀ v ∈ path-image ?l4 . v$2 ≥ a-x

by (smt (z3 ) assms(9 ) calculation(1 ) calculation(3 ) ends-in-segment(1 )
path-image-linepath segment-vertical vector-2 (1 ) vector-2 (2 ))

moreover have ∀ v ∈ path-image ?l5 . v$2 ≥ a-x
by (smt (verit, del-insts) UnCI a-x assms(9 ) p0-def path-image-linepath

pathstart-in-path-image segment-horizontal vector-2 (2 ))
ultimately show ?thesis
by (smt (z3 ) UnCI a-x assms(9 ) b-x not-in-path-image-join p1-def path-image-linepath

pathfinish-in-path-image segment-horizontal segment-vertical vector-2 (1 ) vector-2 (2 ))
qed

have closed: closed-path ?R using assms p0-def unfolding simple-path-def closed-path-def
by simp

have simple: simple-path ?R
proof−
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have arc ?R ′

proof−
let ?a = p1
let ?b = (vector [b-x, 0 ])::(real^2 )
let ?c = (vector [b-x, b-y])::(real^2 )
let ?d = (vector [a-x, b-y])::(real^2 )
let ?e = (vector [a-x, 0 ])::(real^2 )
let ?f = p0

have arcs: arc ?l1 ∧ arc ?l2 ∧ arc ?l3 ∧ arc ?l4 ∧ arc ?l5
by (smt (verit, ccfv-SIG) UnCI a-x arc-linepath assms(9 ) b-x b-y p0-def

p1-def pathfinish-in-path-image pathstart-in-path-image vector-2 (1 ) vector-2 (2 ))

have l4l5 : path-image ?l4 ∩ path-image ?l5 = {pathfinish ?l4}
using linepath-int-corner [of ?d ?e ?f ] arc-simple-path arcs constant-linepath-is-not-loop-free

p0 simple-path-def
by auto

have l3l4 : path-image ?l3 ∩ path-image ?l4 = {pathfinish ?l3}
using linepath-int-corner [of ?c ?d ?e]

by (metis Int-commute arc-simple-path arcs closed-segment-commute linepath-0 ′

linepath-int-corner path-image-linepath pathfinish-linepath pathstart-def vector-2 (2 ))
have l2l3 : path-image ?l2 ∩ path-image ?l3 = {pathfinish ?l2}

using linepath-int-corner [of ?b ?c ?d]
by (metis Int-commute arc-simple-path arcs linepath-0 ′ linepath-int-corner

pathfinish-linepath pathstart-def vector-2 (2 ))
have l1l2 : path-image ?l1 ∩ path-image ?l2 = {pathfinish ?l1}

using linepath-int-corner [of ?a ?b ?c]
by (metis Int-commute arc-distinct-ends arcs assms(9 ) closed-segment-commute

linepath-int-corner path-image-linepath pathfinish-linepath pathstart-linepath vector-2 (2 ))

have l3l5 : path-image ?l3 ∩ path-image ?l5 = {}
using linepath-int-horizontal[of ?c ?d ?e ?f ]

by (metis arc-distinct-ends arcs assms(9 ) linepath-int-horizontal pathfin-
ish-linepath pathstart-linepath vector-2 (2 ))

have l2l4 : path-image ?l2 ∩ path-image ?l4 = {}
using linepath-int-vertical[of ?b ?c ?d ?e]
by (metis arc-distinct-ends arcs linepath-int-vertical pathfinish-linepath path-

start-linepath vector-2 (1 ))
have l1l3 : path-image ?l1 ∩ path-image ?l3 = {}

using linepath-int-vertical[of ?a ?b ?c ?d]
by (metis arc-distinct-ends arcs assms(9 ) linepath-int-horizontal pathfin-

ish-linepath pathstart-linepath vector-2 (2 ))

have l2l5 : path-image ?l2 ∩ path-image ?l5 = {}
using linepath-int-columns[of ?b ?c ?e ?f ]

by (smt (verit, ccfv-threshold) Int-commute UnCI a-x b-x linepath-int-columns
p0 p0-def pathstart-in-path-image pathstart-join vector-2 (1 ) verit-comp-simplify1 (3 ))

have l1l4 : path-image ?l1 ∩ path-image ?l4 = {}
using linepath-int-columns[of ?a ?b ?d ?e]
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by (smt (z3 ) UnCI a-x assms(9 ) b-x disjoint-iff p1-def path-image-linepath
pathfinish-in-path-image segment-horizontal segment-vertical vector-2 (1 ) vector-2 (2 ))

have l1l5 : path-image ?l1 ∩ path-image ?l5 = {}
using linepath-int-columns[of ?a ?b ?e ?f ]

by (smt (z3 ) UnCI a-def a-x assms(10 ) assms(9 ) b-x disjoint-iff p1-def
path-image-linepath pathfinish-in-path-image segment-horizontal vector-2 (1 ) vec-
tor-2 (2 ))

have path-image ?l4 ∩ path-image ?l5 = {pathfinish ?l4}
using l4l5 by blast

moreover have sf-45 : pathfinish ?l4 = pathstart ?l5 by simp
ultimately have arc (?l4 +++ ?l5 )

by (metis arc-join-eq-alt arcs)
moreover have path-image ?l3 ∩ path-image (?l4 +++ ?l5 ) = {pathfinish

?l3}
using l3l4 l3l5

by (metis (no-types, lifting) Int-Un-distrib sf-45 insert-is-Un path-image-join)
moreover have sf-345 : pathfinish ?l3 = pathstart (?l4 +++ ?l5 ) by simp
ultimately have arc (?l3 +++ ?l4 +++ ?l5 )

by (metis arc-join-eq-alt arcs)
moreover have path-image ?l2 ∩ path-image (?l3 +++ ?l4 +++ ?l5 ) =

{pathfinish ?l2}
using l2l3 l2l4 l2l5

by (smt (verit) Int-Un-distrib sf-45 sf-345 insert-is-Un path-image-join
sup-bot-left)

moreover have sf-2345 : pathfinish ?l2 = pathstart (?l3 +++ ?l4 +++ ?l5 )
by simp

ultimately have arc (?l2 +++ ?l3 +++ ?l4 +++ ?l5 )
by (metis arc-join-eq-alt arcs)

moreover have path-image ?l1 ∩ path-image (?l2 +++ ?l3 +++ ?l4 +++
?l5 ) = {pathfinish ?l1}

proof−
have path-image (?l2 +++ ?l3 +++ ?l4 +++ ?l5 )

= path-image ?l2 ∪ path-image ?l3 ∪ path-image ?l4 ∪ path-image ?l5
by (simp add: path-image-join sup-assoc)

thus ?thesis using l1l2 l1l3 l1l4 l1l5 by blast
qed
moreover have pathfinish ?l1 = pathstart (?l2 +++ ?l3 +++ ?l4 +++

?l5 ) by simp
ultimately show arc (?l1 +++ ?l2 +++ ?l3 +++ ?l4 +++ ?l5 )

by (metis arc-join-eq-alt arcs)
qed
moreover have loop-free p using assms(1 ) assms(7 ) simple-path-def by blast
moreover have path-image ?R ′ ∩ path-image p = {p0 , p1}
proof−
have path-image p ∩ path-image ?l2 = {} using b-x segment-vertical by auto

moreover have path-image p ∩ path-image ?l3 = {} using b-y segment-horizontal
by auto
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moreover have path-image p ∩ path-image ?l4 = {} using a-x segment-vertical
by auto

moreover have path-image p ∩ path-image ?l1 = {p1}
proof−

have p1 ∈ path-image p using p1-def by blast
moreover have path-image p ∩ path-image ?l1 ⊆ {p1}
proof(rule subsetI )

fix x assume ∗: x ∈ path-image p ∩ path-image ?l1
then have x$1 ≤ a

using a-def assms(10 ) assms(12 ) assms(9 ) l-def linepath-image-01
segment-horizontal by auto

moreover have x$1 ≥ a
by (smt (z3 ) ∗ Int-iff Un-iff a-def assms(9 ) b-x linepath-image-01

path-defs(4 ) segment-horizontal vector-2 (1 ) vector-2 (2 ))
moreover have x$2 = 0 using ∗ assms(9 ) segment-horizontal by auto

ultimately show x ∈ {p1} using a-def assms(9 ) segment-vertical by
fastforce

qed
ultimately show ?thesis by auto

qed
moreover have path-image p ∩ path-image ?l5 = {p0}
proof−

have p0 ∈ path-image p using p0-def by blast
moreover have path-image p ∩ path-image ?l5 ⊆ {p0}
proof(rule subsetI )

fix x assume ∗: x ∈ path-image p ∩ path-image ?l5
then have x$1 ≤ 0

using R-x-a assms(9 ) p0-def pathstart-in-path-image segment-horizontal
by fastforce

moreover have x$1 ≥ 0
proof−
have x ∈ {x. x$2 = 0} using ∗ assms(9 ) segment-horizontal by fastforce

then have x ∈ l using ∗ assms(12 ) by auto
thus ?thesis using a-def assms(10 ) assms(9 ) l-def segment-horizontal

by auto
qed
moreover have x$2 = 0 using ∗ assms(9 ) segment-horizontal by auto

ultimately show x ∈ {p0} using a-def assms(9 ) segment-vertical by
fastforce

qed
ultimately show ?thesis by auto

qed
moreover have path-image ?R ′

= path-image ?l1 ∪ path-image ?l2 ∪ path-image ?l3 ∪ path-image ?l4 ∪
path-image ?l5

by (simp add: Un-assoc path-image-join)
ultimately show ?thesis by fast

qed
moreover have arc p
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using a-def arc-simple-path assms(10 ) assms(7 ) p0 p0-def p1-def by fastforce
ultimately show ?thesis
by (metis (no-types, lifting) simple-path-join-loop-eq Int-commute dual-order .refl

p0-def p1-def pathfinish-join pathfinish-linepath pathstart-join pathstart-linepath)
qed

have inside-outside: inside-outside ?R (path-inside ?R) (path-outside ?R)
using closed simple Jordan-inside-outside-real2

by (simp add: closed-path-def inside-outside-def path-inside-def path-outside-def )

have interior-frontier : path-inside ?R = interior (path-inside ?R)
∧ frontier (path-inside ?R) = path-image ?R

using inside-outside interior-open unfolding inside-outside-def by auto

have path-image q ∩ path-image ?l1 ⊆ {p1}
proof(rule subsetI )

fix x assume ∗: x ∈ path-image q ∩ path-image ?l1
then have x$1 ≤ a using a-def assms(10 ) assms(11 ) assms(9 ) l-def seg-

ment-horizontal by auto
moreover have x$1 ≥ a
by (smt (z3 ) ∗ Int-iff Un-iff a-def assms(9 ) b-x linepath-image-01 path-defs(4 )

segment-horizontal vector-2 (1 ) vector-2 (2 ))
moreover have x$2 = 0 using ∗ assms(9 ) segment-horizontal by auto
ultimately show x ∈ {p1} using a-def assms(9 ) segment-vertical by fastforce

qed
moreover have path-image q ∩ path-image ?l5 ⊆ {p0}
proof(rule subsetI )

fix x assume ∗: x ∈ path-image q ∩ path-image ?l5
then have x$1 ≤ 0

using R-x-a assms(9 ) p0-def pathstart-in-path-image segment-horizontal by
fastforce

moreover have x$1 ≥ 0
using ∗ a-def assms(10 ) assms(11 ) assms(9 ) l-def segment-horizontal by auto

moreover have x$2 = 0 using ∗ assms(9 ) segment-horizontal by auto
ultimately show x ∈ {p0} using a-def assms(9 ) segment-vertical by fastforce

qed
moreover have ?thesis if p1 ∈ path-image q ∩ path-image ?l1 using p1-def that

by blast
moreover have ?thesis if p0 ∈ path-image q ∩ path-image ?l5 using p0-def that

by blast
moreover have ?thesis if

q-int-l1 : path-image q ∩ path-image ?l1 = {} and
q-int-l5 : path-image q ∩ path-image ?l5 = {}

proof−
have q-int-l2 : path-image q ∩ path-image ?l2 = {}

using b-x segment-vertical by auto
moreover have q-int-l3 : path-image q ∩ path-image ?l3 = {}

using UnCI b-y segment-horizontal by auto
moreover have q-int-l4 : path-image q ∩ path-image ?l4 = {}
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using a-x segment-vertical by auto
moreover have ?thesis if q0 ∈ path-image p using q0-def that by blast
moreover have path-image q ∩ path-image ?R 6= {} if q0 /∈ path-image p
proof−

have q0 ∈ path-outside ?R

proof−
let ?e2 ′ = (vector [0 , −1 ])::(real^2 )
let ?ray = λd. q0 + d ∗R ?e2 ′

have ¬ (∃ d>0 . ?ray d ∈ path-image ?R)
proof−

have ∀ d>0 . (?ray d)$2 < q0$2 by auto
thus ?thesis using R-y-q0 by fastforce

qed
moreover have bounded (path-inside ?R) using bounded-finite-inside simple

by blast
moreover have ?e2 ′ 6= 0 by (metis vector-2 (2 ) zero-index zero-neq-neg-one)

ultimately have q0 /∈ path-inside ?R
using ray-to-frontier [of path-inside ?R] interior-frontier by metis

moreover have q0 /∈ path-image ?R
using that q-int-l1 q-int-l2 q-int-l3 q-int-l4 q-int-l5
by (simp add: disjoint-iff not-in-path-image-join pathstart-in-path-image

q0-def )
ultimately show ?thesis using inside-outside unfolding inside-outside-def

by blast
qed
then have q0 ∈ − (path-inside ?R)
by (metis ComplI IntI equals0D inside-Int-outside path-inside-def path-outside-def )
moreover have q1 ∈ path-inside ?R

proof−
let ?e = (vector [q1$1 , b-y])::(real^2 )
let ?d1 = (vector [b-x, b-y])::(real^2 )
let ?d2 = (vector [a-x, b-y])::(real^2 )
obtain ε where ε: 0 < ε ∧ ε < dist ?e q1 ∧ ε < dist ?e ?d1 ∧ ε < dist ?e

?d2
proof−

have ?e 6= q1
by (metis UnCI b-y order-less-irrefl pathfinish-in-path-image q1-def

vector-2 (2 ))
moreover have ?e 6= ?d1

by (smt (verit) UnCI b-x pathfinish-in-path-image q1-def vector-2 (1 ))
moreover have ?e 6= ?d2

by (metis UnCI a-x order-less-irrefl pathfinish-in-path-image q1-def
vector-2 (1 ))

ultimately have 0 < dist ?e q1 ∧ 0 < dist ?e ?d1 ∧ 0 < dist ?e ?d2 by
simp

then have 0 < Min {dist ?e q1 , dist ?e ?d1 , dist ?e ?d2} by auto
then obtain ε where 0 < ε ∧ ε < Min {dist ?e q1 , dist ?e ?d1 , dist ?e
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?d2}
by (meson field-lbound-gt-zero)

thus ?thesis using that by auto
qed
then have ?e ∈ path-image ?l3

by (simp add: a-x b-x q1-def segment-horizontal less-eq-real-def pathfin-
ish-in-path-image)

then have ?e ∈ path-image ?R by (simp add: p1-def path-image-join)
then have ?e ∈ frontier (path-inside ?R)

using inside-outside unfolding inside-outside-def by blast
then obtain int-p where int-p: int-p ∈ ball ?e ε ∧ int-p ∈ path-inside ?R

by (meson ε inside-outside frontier-straddle mem-ball)

have int-p-x: a-x < int-p$1 ∧ int-p$1 < b-x
by (metis (mono-tags, lifting) dist-bound-1 UnI2 ε a-x b-x dist-commute

int-p pathfinish-in-path-image q1-def vector-2 (1 ) vector-2 (2 ))
have int-p$2 < b-y
proof(rule ccontr)

have int-p$2 6= b-y
proof−

have int-p$2 = b-y =⇒ int-p ∈ path-image ?l3
using int-p-x by (simp add: segment-horizontal)

moreover have int-p ∈ path-image ?l3 =⇒ int-p ∈ path-image ?R
by (simp add: p1-def path-image-join)

moreover have path-image ?R ∩ path-inside ?R = {}
using inside-outside unfolding inside-outside-def by blast

ultimately show ?thesis using int-p by fast
qed
moreover assume ¬ int-p$2 < b-y
ultimately have ∗: int-p$2 > b-y by simp

let ?e2 = (vector [0 , 1 ])::(real^2 )
let ?ray = λd. int-p + d ∗R ?e2
have ¬ (∃ d>0 . ?ray d ∈ path-image ?R)
proof−

have ∀ d>0 . (?ray d)$2 > b-y using ∗ by auto
thus ?thesis using R-y-b by fastforce

qed
moreover have bounded (path-inside ?R) using bounded-finite-inside

simple by blast
moreover have ?e2 6= 0 using e1e2-basis(4 ) by force
ultimately have int-p /∈ path-inside ?R

using ray-to-frontier [of path-inside ?R] interior-frontier by metis
thus False using int-p by blast

qed
moreover have int-p$2 > q1$2
proof−
have dist int-p ?e < ε using ε dist-commute-lessI int-p mem-ball by blast
then have dist (int-p$2 ) (?e$2 ) < ε by (smt (verit, best) dist-vec-nth-le)
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then have 1 : int-p$2 > ?e$2 − ε by (simp add: dist-real-def )

have q1$1 = ?e$1 by simp
then have dist q1 ?e = dist (q1$2 ) (?e$2 ) using axis-dist by blast
then have q1$2 < ?e$2 − ε

by (smt (verit) UnCI ε b-y dist-commute dist-real-def pathfinish-in-path-image
q1-def vector-2 (2 ))

moreover have q1$2 < ?e$2 by (simp add: b-y pathfinish-in-path-image
q1-def )

moreover have dist q1 ?e > ε by (metis ε dist-commute)
ultimately have q1$2 < ?e$2 − ε by presburger
thus ?thesis using 1 by force

qed
ultimately have int-p-y: int-p$2 < b-y ∧ int-p$2 > q1$2 by blast

let ?int-l = linepath int-p q1

have path-image ?int-l ∩ path-image p = {}
proof−

have ∀ x ∈ path-image p. (?int-l 0 )$2 > x$2
by (smt (verit) int-p-y assms(14 ) linepath-0 ′)

moreover have ∀ x ∈ path-image p. (?int-l 1 )$2 > x$2
by (simp add: assms(14 ) linepath-1 ′)

ultimately have ∀ x ∈ path-image p. ∀ y ∈ path-image ?int-l. y$2 > x$2
by (metis assms(14 ) linepath-0 ′ linepath-bound-2 (1 ))

thus ?thesis by blast
qed
moreover have path-image ?int-l ∩ path-image ?l1 = {}
by (smt (verit, best) assms(14 ) assms(9 ) disjoint-iff int-p-y linepath-int-rows

p0-def pathstart-in-path-image vector-2 (2 ))
moreover have path-image ?int-l ∩ path-image ?l2 = {}

by (metis UnCI b-x int-p-x linepath-int-columns pathfinish-in-path-image
q1-def vector-2 (1 ))

moreover have path-image ?int-l ∩ path-image ?l3 = {}
using int-p-y linepath-int-rows by auto

moreover have path-image ?int-l ∩ path-image ?l4 = {}
by (metis UnCI a-x inf-commute int-p-x linepath-int-columns pathfin-

ish-in-path-image q1-def vector-2 (1 ))
moreover have path-image ?int-l ∩ path-image ?l5 = {}
by (smt (verit, best) assms(14 ) assms(9 ) disjoint-iff int-p-y linepath-int-rows

p0-def pathstart-in-path-image vector-2 (2 ))
ultimately have path-image ?int-l ∩ path-image ?R = {}

by (simp add: disjoint-iff not-in-path-image-join)
then have path-image ?int-l ⊆ path-inside ?R ∨ path-image ?int-l ⊆

path-outside ?R
by (smt (verit, ccfv-SIG) convex-imp-path-connected convex-segment(1 ) dis-

joint-insert(1 ) insert-Diff inside-outside-def int-p linepath-image-01 local.inside-outside
path-connected-not-frontier-subset path-defs(4 ) pathstart-in-path-image pathstart-linepath)

moreover have ?int-l 0 = int-p ∧ int-p ∈ path-inside ?R
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using int-p by (simp add: linepath-0 ′)
ultimately have path-image ?int-l ⊆ path-inside ?R

using inside-outside-def local.inside-outside by auto
thus ?thesis by auto

qed
ultimately have path-image q ∩ − (path-inside ?R) 6= {} ∧ path-image q ∩

(path-inside ?R) 6= {}
unfolding q0-def q1-def by fast

moreover have path-connected (path-image q)
by (simp add: assms(8 ) path-connected-path-image simple-path-imp-path)

moreover have path-image ?R = frontier (path-inside ?R)
using inside-outside unfolding inside-outside-def p0-def path-inside-def by

auto
ultimately show ?thesis by (metis Diff-eq Diff-eq-empty-iff path-connected-not-frontier-subset)
qed
ultimately show ?thesis

by (smt (verit, ccfv-threshold) disjoint-iff-not-equal not-in-path-image-join
q-int-l1 q-int-l5 )

qed
ultimately show ?thesis by auto

qed

lemma pocket-fill-line-int-aux2 :
fixes p q :: R-to-R2
fixes A :: (real^2 ) set
defines p0 ≡ pathstart p
defines p1 ≡ pathfinish p
defines a ≡ p1$1
defines l ≡ closed-segment p0 p1
assumes simple-path p
assumes p0$1 = 0 ∧ p0$2 = 0 ∧ p1$2 = 0
assumes a > 0
assumes convex A ∧ compact A
assumes {p0 , p1} ⊆ frontier A
assumes p ‘ {0<..<1} ⊆ interior A
shows path-image p ∩ {x. x$2 = 0} ⊆ l

proof−
have l: l = {x. x$2 = 0 ∧ x$1 ∈ {0 ..a}}

using horizontal-segment-at-0 ′ a-def assms(6 ) assms(7 ) l-def by presburger
have endpoints: (p 0 )$1 = 0 ∧ (p 0 )$2 = 0 ∧ (p 1 )$1 = a ∧ (p 1 )$2 = 0

by (metis a-def assms(6 ) p0-def p1-def pathfinish-def pathstart-def )

have False if ∗: ∃ t ∈ {0 ..1}. (p t)$2 = 0 ∧ ((p t)$1 > a ∨ (p t)$1 < 0 )
proof−

obtain t where t ∈ {0<..<1} ∧ (p t)$2 = 0 ∧ ((p t)$1 > a ∨ (p t)$1 < 0 )
by (metis ∗ assms(7 ) endpoints atLeastAtMost-iff greaterThanLessThan-iff

less-eq-real-def linorder-not-le)
then obtain x where x: x ∈ p‘{0<..<1} ∧ x$2 = 0 ∧ (x$1 > a ∨ x$1 < 0 )

by blast

283



thus False
using pocket-fill-line-int-aux[of p0 p1 x A]

by (smt (verit, del-insts) Diff-iff a-def assms(10 ) assms(6 ) assms(7 ) assms(8 )
assms(9 ) empty-subsetI endpoints exhaust-2 frontier-def frontier-subset-compact in-
sert-subset interior-subset p0-def pathstart-def subset-eq vec-eq-iff zero-index)

qed
then have ∀ t ∈ {0 ..1}. (p t)$2 = 0 −→ (p t)$1 ∈ {0 ..a} by fastforce
then have ∀ v ∈ path-image p. v$2 = 0 −→ v$1 ∈ {0 ..a} by (simp add: imageE

path-defs(4 ))
thus ?thesis using l by blast

qed

lemma three-points-on-line:
fixes a b :: ′a::real-vector
assumes A = affine hull {a, b}
assumes a 6= b
assumes {x, y, z} ⊆ A
assumes x 6= y ∧ y 6= z ∧ x 6= z
shows x ∈ open-segment y z ∨ y ∈ open-segment x z ∨ z ∈ open-segment x y

proof−
let ?u = b − a

have ∗:
∧
α β γ::real. α ∈ open-segment β γ

=⇒ a + α ∗R ?u ∈ open-segment (a + β ∗R ?u) (a + γ ∗R ?u)
proof−

fix α β γ :: real
assume ∗: α ∈ open-segment β γ

define x where x ≡ a + α ∗R ?u
define y where y ≡ a + β ∗R ?u
define z where z ≡ a + γ ∗R ?u

obtain v where v: α = (1 − v) ∗ β + v ∗ γ ∧ v ∈ {0<..<1}
by (metis (no-types, lifting) ∗ imageE in-segment(2 ) real-scaleR-def seg-

ment-image-interval(2 ))
then have x = a + ((1 − v) ∗ β + v ∗ γ) ∗R ?u using x-def by blast
also have ... = a + (((1 − v) ∗ β) ∗R ?u) + ((v ∗ γ) ∗R ?u) by (simp add:

scaleR-left.add)
also have ... = a + ((1 − v) ∗R (β ∗R ?u)) + (v ∗R (γ ∗R ?u)) by simp
also have ... = a + ((1 − v) ∗R (y − a)) + (v ∗R (z − a)) by (simp add:

y-def z-def )
also have ... = a + y − a − v ∗R (y − a) + v ∗R (z − a) by (simp add:

scaleR-left-diff-distrib)
also have ... = y − v ∗R (y − a) + v ∗R (z − a) by simp
also have ... = y − (v ∗R y) + (v ∗R a) + (v ∗R z) − (v ∗R a) by (simp add:

scaleR-right-diff-distrib)
also have ... = (1 − v) ∗R y + v ∗R z by (metis add-diff-cancel diff-add-eq

scaleR-collapse)
finally have x = (1 − v) ∗R y + v ∗R z .
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moreover have 0 ≤ 1 − v ∧ 1 − v ≤ 1 using v by fastforce
ultimately have x ∈ closed-segment y z using in-segment(1 ) by auto
moreover have x 6= y ∧ x 6= z
by (metis ∗ add-diff-cancel-left ′ assms(2 ) eq-iff-diff-eq-0 in-open-segment-iff-line

open-segment-commute open-segment-subsegment scaleR-right-imp-eq x-def y-def z-def )
ultimately show a + α ∗R ?u ∈ open-segment (a + β ∗R ?u) (a + γ ∗R ?u)

unfolding open-segment-def using x-def y-def z-def by force
qed

obtain α β γ where xyz: x = a + α ∗R ?u ∧ y = a + β ∗R ?u ∧ z = a + γ
∗R ?u

using affine-hull-2-alt[of a b] assms(1 ) assms(3 ) by auto
then have α 6= β ∧ β 6= γ ∧ α 6= γ using assms by blast
moreover have α ∈ closed-segment β γ ∨ β ∈ closed-segment α γ ∨ γ ∈

closed-segment α β
by (metis atLeastAtMost-iff closed-segment-commute less-eq-real-def less-max-iff-disj

linorder-not-less real-Icc-closed-segment)
ultimately have α ∈ open-segment β γ ∨ β ∈ open-segment α γ ∨ γ ∈

open-segment α β
unfolding open-segment-def by fast

thus ?thesis using ∗ xyz by presburger
qed

lemma pocket-fill-line-int-aux3 :
fixes A :: (real^2 ) set
assumes convex A ∧ compact A
assumes v 6= 0
assumes closed-segment 0 w ⊆ frontier A (is closed-segment ?a ?b ⊆ -)
assumes w · v = 0
assumes w 6= 0
shows (A ⊆ {x. x · v ≤ 0} ∨ A ⊆ {x. x · v ≥ 0}) (is A ⊆ ?P1 ∨ A ⊆ ?P2 )

proof−
have frontiers: frontier ?P1 = frontier ?P2 ∧ frontier ?P1 ⊆ ?P2 ∧ frontier

?P2 ⊆ ?P1
by (smt (verit, ccfv-threshold) Collect-mono assms(2 ) frontier-halfspace-component-ge

frontier-halfspace-le inner-commute subset-antisym)
have frontier : frontier ?P1 = {x. x · v = 0}

by (simp add: assms(2 ) frontier-halfspace-component-ge frontiers)

have ?thesis if interior A 6= {}
proof−

have interior A ⊆ ?P1 ∨ interior A ⊆ ?P2
proof(rule ccontr)

assume ¬ (interior A ⊆ ?P1 ∨ interior A ⊆ ?P2 )
then obtain x y where xy: x ∈ ((interior A) ∩ ?P1 ) − ?P2 ∧ y ∈ ((interior

A) ∩ ?P2 ) − ?P1
by fastforce
moreover have x ∈ frontier ?P1 ∪ interior ?P1 ∧ y ∈ frontier ?P2 ∪

interior ?P2
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by (metis DiffD1 IntD2 Un-Diff-cancel2 frontiers closure-Un-frontier fron-
tier-def interior-subset sup.orderE xy)

ultimately have xy ′: x ∈ (interior A) ∩ interior ?P1 ∧ y ∈ (interior A) ∩
interior ?P2

using frontiers by blast
then have closed-segment x y ∩ frontier ?P1 6= {}
by (metis (no-types, lifting) DiffD1 DiffD2 Int-iff convex-closed-segment con-

vex-imp-path-connected empty-iff ends-in-segment(1 ) ends-in-segment(2 ) in-mono
path-connected-not-frontier-subset xy)

moreover have closed-segment x y ⊆ interior A
by (metis convex-interior Int-iff assms(1 ) convex-contains-segment xy ′)

ultimately obtain z where z: z ∈ interior A ∩ frontier ?P1 by blast

have closed-segment ?a ?b ⊆ frontier ?P1
proof(rule subsetI )

fix x
assume x ∈ closed-segment ?a ?b
then obtain u where x = (1 − u) ∗R ?a + u ∗R ?b ∧ 0 ≤ u ∧ u ≤ 1

unfolding closed-segment-def by blast
then have x · v = u ∗R (?b · v) by simp
moreover have ?b · v = 0 by (simp add: assms(4 ))
ultimately have x · v = 0 by simp
thus x ∈ frontier ?P1 using frontier by blast

qed
moreover have z /∈ closed-segment ?a ?b using assms(3 ) frontier-def z by

fastforce
ultimately have z ∈ frontier ?P1 − closed-segment ?a ?b using z by blast
moreover have collinear {z, ?a, ?b}
proof−

have {z, ?a, ?b} ⊆ {x. x · v = 0}
using ‹{0−−w} ⊆ frontier {x. x · v ≤ 0}› frontier z by auto

moreover have {x. x · v = 0} = affine hull {?a, ?b}
by (metis (no-types, lifting) Collect-mono assms(2 ) assms(5 ) calculation

halfplane-frontier-affine-hull inner-commute insert-subset subset-antisym)
ultimately show ?thesis using collinear-affine-hull by auto

qed
ultimately have ?a ∈ open-segment z ?b ∨ ?b ∈ open-segment z ?a

using three-points-on-line[of {x. x · v = 0}]
by (smt (z3 ) ‹z /∈ {0−−w}› assms(5 ) collinear-3-imp-in-affine-hull ends-in-segment(1 )

ends-in-segment(2 ) hull-redundant hull-subset insert-commute open-closed-segment
three-points-on-line)

moreover have open-segment z ?b ⊆ interior A ∧ open-segment z ?a ⊆
interior A

proof−
have closed-segment z ?b ⊆ A ∧ closed-segment z ?a ⊆ A

by (meson IntD1 assms(1 ) assms(3 ) closed-segment-subset ends-in-segment(1 )
ends-in-segment(2 ) frontier-subset-compact in-mono interior-subset z)

then have rel-interior (closed-segment z ?b) ⊆ interior A
∧ rel-interior (closed-segment z ?a) ⊆ interior A
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by (metis IntD1 ‹z /∈ {0−−w}› assms(1 ) closure-convex-hull convex-hull-eq
in-interior-closure-convex-segment order-class.order-eq-iff rel-interior-closed-segment
subsetD subset-closed-segment z)

moreover have rel-interior (closed-segment z ?b) = open-segment z ?b
∧ rel-interior (closed-segment z ?a) = open-segment z ?a
by (metis ‹z /∈ {0−−w}› closed-segment-commute ends-in-segment(1 )

rel-interior-closed-segment)
ultimately show ?thesis by force

qed
ultimately have ?a ∈ interior A ∨ ?b ∈ interior A by fast
thus False using assms(3 ) frontier-def by auto

qed
then have closure (interior A) ⊆ closure ?P1 ∨ closure (interior A) ⊆ closure

?P2
using closure-mono by blast

moreover have closed ?P1 ∧ closed ?P2
by (simp add: closed-halfspace-component-ge closed-halfspace-component-le)

moreover have closure (interior A) = A
using assms(1 )
by (simp add: compact-imp-closed convex-closure-interior that)

ultimately show ?thesis using closure-closed by auto
qed
moreover have ?thesis if interior A = {}
proof(rule ccontr)

assume ¬ (A ⊆ ?P1 ∨ A ⊆ ?P2 )
then obtain x y where xy: x ∈ (A ∩ ?P1 ) − ?P2 ∧ y ∈ (A ∩ ?P2 ) − ?P1

by fastforce
moreover have x ∈ frontier ?P1 ∪ interior ?P1 ∧ y ∈ frontier ?P2 ∪ interior

?P2
by (metis DiffD1 IntD2 Un-Diff-cancel2 frontiers closure-Un-frontier fron-

tier-def interior-subset sup.orderE xy)
ultimately have xy ′: x ∈ A ∩ interior ?P1 ∧ y ∈ A ∩ interior ?P2 using

frontiers by blast
have ¬ collinear {?a, ?b, x, y}
proof(rule ccontr)

assume ¬ ¬ collinear {?a, ?b, x, y}
then have ∗: collinear {?a, ?b, x, y} by blast
then have {?a, ?b, x, y} ⊆ affine hull {?a, ?b}

by (metis assms(5 ) collinear-3-imp-in-affine-hull collinear-4-3 hull-subset
insert-subset)

moreover have affine hull {?a, ?b} = {x. x · v = 0}
by (smt (verit) DiffE ∗ assms(2 ) assms(4 ) assms(5 ) collinear-3-imp-in-affine-hull

collinear-4-3 halfplane-frontier-affine-hull inner-commute mem-Collect-eq xy)
moreover have ... = frontier ?P1 ∧ ... = frontier ?P2

using frontiers assms(2 ) frontier-halfspace-component-ge by blast
ultimately show False using frontiers xy by auto

qed
then obtain c1 c2 c3 where c123 : ¬ collinear {c1 , c2 , c3} ∧ {c1 , c2 , c3}

⊆ {?a, ?b, x, y}
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by (metis assms(5 ) collinear-4-3 insert-mono subset-insertI )
then have interior (convex hull {c1 , c2 , c3}) 6= {}
by (metis Jordan-inside-outside-real2 closed-path-def make-triangle-def path-inside-def

polygon-def polygon-of-def triangle-inside-is-convex-hull-interior triangle-is-polygon)
moreover have {c1 , c2 , c3} ⊆ A

by (smt (verit, del-insts) c123 xy ′ assms(1 ) assms(3 ) empty-subsetI fron-
tier-subset-compact in-mono inf .orderE insert-absorb insert-mono le-infE subsetI
subset-closed-segment)

ultimately have interior A 6= {}
by (metis assms(1 ) interior-mono subset-empty subset-hull)

thus False using that by blast
qed
ultimately show ?thesis by blast

qed

lemma pocket-fill-line-int-aux4 :
fixes p q :: R-to-R2
fixes A :: (real^2 ) set
defines p0 ≡ pathstart p
defines p1 ≡ pathfinish p
defines q0 ≡ pathstart q
defines q1 ≡ pathfinish q
defines a ≡ p1$1
defines l ≡ closed-segment p0 p1
assumes simple-path p
assumes simple-path q
assumes path-image p ∩ path-image q = {}
assumes p0$1 = 0 ∧ p0$2 = 0 ∧ p1$2 = 0
assumes a > 0
assumes ∀ v ∈ path-image p. q0$2 ≤ v$2
assumes ∀ v ∈ path-image p. q1$2 > v$2
assumes convex A ∧ compact A
assumes {p0 , p1} ⊆ frontier A
assumes p‘{0<..<1} ⊆ interior A
assumes path-image q ⊆ A
shows l ⊆ frontier A ∀ x ∈ (path-image p) ∪ (path-image q). x$2 ≥ 0 q0$2 = 0

proof−
have l: l = {x. x$2 = 0 ∧ x$1 ∈ {0 ..a}}

using horizontal-segment-at-0 ′ a-def assms(10 ) assms(11 ) l-def by presburger
have endpoints: (p 0 )$1 = 0 ∧ (p 0 )$2 = 0 ∧ (p 1 )$1 = a ∧ (p 1 )$2 = 0

by (metis a-def assms(10 ) p0-def p1-def pathfinish-def pathstart-def )

have l ⊆ frontier A if ¬ (path-image q ∩ {x. x$2 = 0} ⊆ l)
proof−

from that obtain x where x ∈ path-image q ∩ {x. x$2 = 0} ∧ (x$1 < 0 ∨
x$1 > a)

by (smt (verit) Int-Collect a-def assms(10 ) endpoints l-def p0-def pathstart-def
segment-horizontal subsetI )

thus ?thesis
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using pocket-fill-line-int-aux[of p0 p1 x A] unfolding l-def
by (smt (verit, del-insts) IntD2 Int-commute a-def assms(11 ) assms(14 )

assms(15 ) assms(17 ) assms(10 ) endpoints exhaust-2 frontier-subset-compact in-
sert-subset mem-Collect-eq p0-def pathstart-def subset-eq vec-eq-iff zero-index)

qed
moreover have False if (path-image q ∩ {x. x$2 = 0} ⊆ l)
proof−

have (path-image p ∩ {x. x$2 = 0} ⊆ l)
using pocket-fill-line-int-aux2

by (metis a-def assms(10 ) assms(11 ) assms(14 ) assms(15 ) assms(16 ) assms(7 )
l-def p0-def p1-def )

then have path-image p ∩ path-image q 6= {}
using pocket-fill-line-int-aux1

by (metis (mono-tags, lifting) assms(11 ) assms(12 ) assms(13 ) assms(7 )
assms(8 ) endpoints l-def p0-def p1-def pathfinish-def pathstart-def q0-def q1-def
that)

thus False by (simp add: assms(9 ))
qed
ultimately show ∗: l ⊆ frontier A by blast

show ∀ x ∈ (path-image p) ∪ (path-image q). x$2 ≥ 0
proof(rule ccontr)

assume ¬ (∀ x ∈ (path-image p) ∪ (path-image q). x$2 ≥ 0 )
then have ∃ x ∈ (path-image p) ∪ (path-image q). x$2 < 0 using linorder-not-le

by blast
then obtain x where x: x ∈ ((path-image p) ∪ (path-image q)) ∩ A ∧ x$2 <

0
using assms(12 ) assms(17 ) pathstart-in-path-image q0-def by fastforce

let ?v = (vector [0 , 1 ])::(real^2 )
have 1 : ?v 6= 0 by (simp add: e1e2-basis(3 ))
have 2 : closed-segment 0 p1 ⊆ frontier A

by (smt (verit, del-insts) ∗ Int-closed-segment closed-segment-eq double-
ton-eq-iff endpoints l-def p0-def pathstart-def segment-vertical zero-index)

have 3 : p1 · ?v = 0 by (metis assms(10 ) cart-eq-inner-axis e1e2-basis(3 ))
have 4 : p1 6= 0 using a-def assms(11 ) by force
have ∗: (A ⊆ {x. x · ?v ≤ 0} ∨ A ⊆ {x. x · ?v ≥ 0})

using pocket-fill-line-int-aux3 [OF assms(14 ) 1 2 3 4 ] by blast
moreover have q1$2 > 0 using assms(10 ) assms(13 ) p0-def pathstart-in-path-image

by fastforce
ultimately show False

by (metis (no-types, lifting) IntE x assms(17 ) e1e2-basis(3 ) inner-axis
linorder-not-less mem-Collect-eq pathfinish-in-path-image q1-def real-inner-1-right
subsetD)

qed
moreover have q0$2 ≤ 0 using assms(10 ) assms(12 ) p1-def by force
moreover have q0 ∈ (path-image p) ∪ (path-image q)

by (simp add: pathstart-in-path-image q0-def )
ultimately show q0$2 = 0 by force
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qed

lemma pocket-fill-line-int-aux5 :
fixes p q :: R-to-R2
fixes A :: (real^2 ) set
defines p0 ≡ pathstart p
defines p1 ≡ pathfinish p
defines q0 ≡ pathstart q
defines q1 ≡ pathfinish q
defines a ≡ p1$1
defines l ≡ closed-segment p0 p1
assumes simple-path p
assumes simple-path q
assumes path-image p ∩ path-image q = {q0 , q1}
assumes p0$1 = 0 ∧ p0$2 = 0 ∧ p1$2 = 0
assumes a > 0
assumes A = convex hull (path-image p ∪ path-image q)
assumes {p0 , p1} ⊆ frontier A
assumes p‘{0<..<1} ⊆ interior A
assumes path-image q ⊆ A
assumes ∃ x ∈ p‘{0<..<1}. x$2 ≥ 0
assumes q0 = p1 ∧ q1 = p0
shows l ⊆ frontier A ∀ x ∈ path-image p ∪ path-image q. x$2 ≥ 0

proof−
have 1 : l ⊆ frontier A if ∀ x ∈ path-image p ∪ path-image q. x$2 ≥ 0
proof−

have ∀ x ∈ path-image p ∪ path-image q. x · (vector [0 , 1 ]) ≥ 0
by (simp add: e1e2-basis(3 ) inner-axis that)

then have ∀ x ∈ A. x · (vector [0 , 1 ]) ≥ 0
by (smt (verit, ccfv-threshold) convex-cut-aux ′ assms(12 ) inner-commute

mem-Collect-eq subset-eq)
then have A ⊆ {x. x · (vector [0 , 1 ]) ≥ 0} by blast
moreover have frontier {x. x · ((vector [0 , 1 ])::(real^2 )) ≥ 0} = {x. x ·

(vector [0 , 1 ]) = 0}
by (metis dual-order .refl frontier-halfspace-component-ge not-one-le-zero vec-

tor-2 (2 ) zero-index)
moreover have l ⊆ {x. x · (vector [0 , 1 ]) = 0}
proof−
have ∀ x ∈ l. x$2 = 0 using assms(10 ) l-def segment-horizontal by presburger
thus ?thesis by (simp add: cart-eq-inner-axis e1e2-basis(3 ) subset-eq)

qed
ultimately show ?thesis
by (smt (verit, best) Un-upper1 assms(12 ) closed-segment-subset convex-convex-hull

hull-subset in-frontier-in-subset l-def p0-def p1-def pathfinish-in-path-image path-
start-in-path-image subset-eq)

qed
have 2 : False if tht: ¬ (∀ x ∈ (path-image p) ∪ (path-image q). x$2 ≥ 0 )
proof−
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obtain x tx where x: tx ∈ {0 ..1} ∧ q tx = x ∧ (∀ z ∈ path-image p. x$2 <
z$2 )

using exists-point-below-all[of p q] that
by (smt (verit, del-insts) tht assms(10 ) assms(12 ) assms(14 ) assms(7 )

assms(8 ) image-iff p0-def p1-def path-image-def pathfinish-def pathstart-def sim-
ple-path-imp-path)

obtain y ty where y: ty ∈ {0 ..1} ∧ q ty = y ∧ (∀ x ∈ path-image p. y$2 >
x$2 )

using exists-point-above-all[of p q]
by (smt (verit, del-insts) assms(10 ) assms(12 ) assms(14 ) assms(16 ) assms(7 )

assms(8 ) image-iff p0-def p1-def path-image-def pathfinish-def pathstart-def sim-
ple-path-imp-path)

let ?Q =
λq ′. simple-path q ′ ∧ path-image p ∩ path-image q ′ = {}
∧ q ′ 0 = q tx ∧ q ′ 1 = q ty
∧ path-image q ′ ⊆ path-image q

have ∗:
∧

q ′. ?Q q ′ =⇒ False
proof−

fix q ′

assume ∗: ?Q q ′

have 2 : simple-path q ′ by (simp add: ∗)
have 3 : path-image p ∩ path-image q ′ = {} by (simp add: ∗)
have 6 : ∀ v∈path-image p. pathstart q ′ $ 2 ≤ v $ 2

by (simp add: ∗ less-eq-real-def pathstart-def x)
have 7 : ∀ v∈path-image p. v $ 2 < pathfinish q ′ $ 2 by (simp add: ∗ pathfin-

ish-def y)
have 11 : path-image q ′ ⊆ A using ∗ assms(15 ) by blast
have ∀ x ∈ (path-image p) ∪ (path-image q ′). x$2 ≥ 0

using pocket-fill-line-int-aux4 (2 )[of p, OF - 2 3 - - 6 7 - - - 11 ]
by (metis a-def assms(10 ) assms(11 ) assms(12 ) assms(13 ) assms(14 )

assms(7 ) assms(8 ) compact-Un compact-convex-hull compact-simple-path-image con-
vex-convex-hull p0-def p1-def )

thus False
by (smt (verit) ∗ UnCI assms(10 ) p0-def pathstart-def pathstart-in-path-image

x)
qed

have lf : (∀ t ∈ {0 ..1}. (q t = q0 ∨ q t = q1 ) −→ (t = 0 ∨ t = 1 ))
using assms(8 )

unfolding q0-def q1-def simple-path-def loop-free-def pathstart-def pathfin-
ish-def

by fastforce
have endpoints: q tx 6= q0 ∧ q ty 6= q0 ∧ q tx 6= q1 ∧ q ty 6= q1
by (metis x y assms(10 ) assms(17 ) order-less-le p0-def pathstart-in-path-image)

have tx-neq-ty: tx 6= ty using pathstart-in-path-image x y by fastforce
moreover have False if tx < ty
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proof−
have path-image p ∩ path-image (subpath tx ty q) = {}
(is path-image p ∩ path-image ?q ′ = {})

proof−
have q0 /∈ path-image ?q ′ ∧ q1 /∈ path-image ?q ′

proof−
have {tx..ty} ⊆ {0 ..1} using x y by simp
then have (∀ t ∈ {tx..ty}. (q t = q0 ∨ q t = q1 ) −→ (t = 0 ∨ t = 1 ))

using lf by blast
moreover have 0 /∈ {tx..ty} ∧ 1 /∈ {tx..ty}

by (metis atLeastAtMost-iff dual-order .eq-iff endpoints pathfinish-def
pathstart-def q0-def q1-def x y)

moreover have path-image ?q ′= q‘{tx..ty} by (simp add: path-image-subpath
that)

ultimately show ?thesis by fastforce
qed
thus ?thesis

by (smt (verit, best) Int-empty-right Int-insert-right-if0 assms(9 ) boolean-algebra-cancel.inf2
inf .absorb-iff1 path-image-subpath-subset x y)

qed
thus ?thesis using ∗[of ?q ′]
by (metis assms(8 ) tx-neq-ty path-image-subpath-subset pathfinish-def pathfin-

ish-subpath pathstart-def pathstart-subpath simple-path-subpath x y)
qed
moreover have False if ty < tx
proof−

have path-image p ∩ path-image (reversepath (subpath tx ty q)) = {}
(is path-image p ∩ path-image ?q ′ = {})

proof−
have q0 /∈ path-image ?q ′ ∧ q1 /∈ path-image ?q ′

proof−
have {ty..tx} ⊆ {0 ..1} using x y by simp
then have (∀ t ∈ {ty..tx}. (q t = q0 ∨ q t = q1 ) −→ (t = 0 ∨ t = 1 ))

using lf by blast
moreover have 0 /∈ {ty..tx} ∧ 1 /∈ {ty..tx}

by (metis atLeastAtMost-iff dual-order .eq-iff endpoints pathfinish-def
pathstart-def q0-def q1-def x y)

moreover have path-image ?q ′ = q‘{ty..tx}
by (simp add: path-image-subpath reversepath-subpath that)

ultimately show ?thesis by fastforce
qed
thus ?thesis
by (smt (verit) Int-commute assms(9 ) inf .absorb-iff2 inf .assoc inf-bot-right

insert-disjoint(2 ) path-image-reversepath path-image-subpath-subset x y)
qed
thus ?thesis using ∗[of ?q ′]
by (metis ∗ assms(8 ) tx-neq-ty path-image-subpath-commute path-image-subpath-subset

pathfinish-def pathfinish-subpath pathstart-def pathstart-subpath reversepath-subpath
simple-path-subpath x y)
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qed
ultimately show False by fastforce

qed
show l ⊆ frontier A ∀ x ∈ (path-image p) ∪ (path-image q). x$2 ≥ 0

using 1 2 apply blast
using 1 2 by blast

qed

lemma pocket-fill-line-int-aux6 :
fixes p q :: R-to-R2
defines p0 ≡ pathstart p
defines p1 ≡ pathfinish p
defines q0 ≡ pathstart q
defines q1 ≡ pathfinish q
defines a ≡ p1$1
assumes simple-path p
assumes simple-path q
assumes p0 = 0 ∧ p1$2 = 0
assumes a > 0
assumes q0$1 ∈ {0 ..a} ∧ q0$2 = 0
assumes ∀ x ∈ path-image p. q1$2 > x$2
assumes ∀ x ∈ path-image p ∪ path-image q. x$2 ≥ 0
shows path-image p ∩ path-image q 6= {}

proof−
let ?l1 = linepath p1 (vector [a, −1 ])
let ?l2 = linepath ((vector [a, −1 ])::(real^2 )) (vector [0 , −1 ])
let ?l3 = linepath ((vector [0 , −1 ])::(real^2 )) 0

let ?R ′ = ?l1 +++ ?l2 +++ ?l3
let ?R = p +++ ?R ′

have closed: closed-path ?R
proof−

have path ?R using assms(6 ) p1-def simple-path-imp-path by auto
moreover have pathstart ?R = pathstart p by simp
moreover have pathfinish ?R = pathfinish ?l3 by simp
moreover have pathstart p = 0 using assms(8 ) p0-def by fastforce
moreover have pathfinish ?l3 = 0 by simp
ultimately show ?thesis unfolding closed-path-def by presburger

qed
have simple: simple-path ?R
proof−

have arc ?R ′

proof−
let ?a = p1
let ?b = (vector [a, −1 ])::(real^2 )
let ?c = (vector [0 , −1 ])::(real^2 )
let ?d = 0 ::(real^2 )
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have arcs: arc ?l1 ∧ arc ?l2 ∧ arc ?l3
by (metis arc-linepath assms(8 ) assms(9 ) vector-2 (1 ) vector-2 (2 ) verit-comp-simplify1 (1 )

zero-index zero-neq-neg-one)

have l2l3 : path-image ?l2 ∩ path-image ?l3 = {pathfinish ?l2}
using linepath-int-corner [of ?b ?c ?d]

by (metis Int-commute closed-segment-commute linepath-int-corner path-image-linepath
pathfinish-linepath vector-2 (2 ) zero-index zero-neq-neg-one)

have l1l2 : path-image ?l1 ∩ path-image ?l2 = {pathfinish ?l1}
using linepath-int-corner [of ?a ?b ?c] by (simp add: assms(8 ))

have l1l3 : path-image ?l1 ∩ path-image ?l3 = {}
using linepath-int-vertical[of ?a ?b ?c ?d] a-def assms(9 ) linepath-int-vertical

by auto

have path-image ?l2 ∩ path-image ?l3 = {pathfinish ?l2}
using l2l3 by blast

moreover have sf-23 : pathfinish ?l2 = pathstart ?l3 by simp
ultimately have arc (?l2 +++ ?l3 )

by (metis arc-join-eq-alt arcs)
moreover have path-image ?l1 ∩ path-image (?l2 +++ ?l3 ) = {pathfinish

?l1}
using l1l2 l1l3

by (metis (no-types, lifting) Int-Un-distrib sf-23 insert-is-Un path-image-join)
moreover have pathfinish ?l1 = pathstart (?l2 +++ ?l3 ) by simp
ultimately show arc (?l1 +++ ?l2 +++ ?l3 )

by (metis arc-join-eq-alt arcs)
qed
moreover have loop-free p using assms(6 ) simple-path-def by blast
moreover have path-image ?R ′ ∩ path-image p = {p0 , p1}
proof−

have path-image ?l1 ∩ path-image p = {p1}
proof−

have ∀ x ∈ path-image p. x$2 ≥ 0 by (simp add: assms(12 ))
moreover have ∀ x ∈ path-image ?l1 . x$2 ≤ 0 using a-def assms(8 )

segment-vertical by force
ultimately have ∀ x ∈ path-image p ∩ path-image ?l1 . x$2 = 0 by fastforce
moreover have ∀ x ∈ path-image ?l1 . x$2 = 0 −→ x = p1

by (metis (mono-tags, opaque-lifting) a-def assms(8 ) exhaust-2 path-image-linepath
segment-vertical vec-eq-iff vector-2 (1 ))

ultimately have ∀ x ∈ path-image p ∩ path-image ?l1 . x = p1 by fast
moreover have p1 ∈ path-image ?l1 ∧ p1 ∈ path-image p using p1-def

by auto
ultimately show ?thesis by blast

qed
moreover have path-image ?l2 ∩ path-image p = {}
by (smt (verit, best) segment-horizontal assms(12 ) UnCI disjoint-iff path-image-linepath

vector-2 (2 ))
moreover have path-image ?l3 ∩ path-image p = {p0}
proof−
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have ∀ x ∈ path-image p. x$2 ≥ 0 by (simp add: assms(12 ))
moreover have ∀ x ∈ path-image ?l3 . x$2 ≤ 0 using a-def assms(8 )

segment-vertical by force
ultimately have ∀ x ∈ path-image p ∩ path-image ?l3 . x$2 = 0 by fastforce
moreover have ∀ x ∈ path-image ?l3 . x$2 = 0 −→ x = p0
by (metis (no-types, opaque-lifting) assms(8 ) exhaust-2 path-image-linepath

segment-vertical vec-eq-iff vector-2 (1 ) zero-index)
ultimately have ∀ x ∈ path-image p ∩ path-image ?l3 . x = p0 by fast
moreover have p0 ∈ path-image ?l3 ∧ p0 ∈ path-image p using assms(8 )

p0-def by fastforce
ultimately show ?thesis by blast

qed
ultimately show ?thesis
by (smt (verit, del-insts) Int-Un-distrib Int-commute Un-assoc Un-insert-right

insert-is-Un path-image-join pathfinish-linepath pathstart-join pathstart-linepath)
qed
moreover have arc p

using closed-path-def arc-distinct-ends assms(6 ) calculation(1 ) closed p1-def
simple-path-imp-arc

by force
ultimately show ?thesis
by (metis (no-types, opaque-lifting) Int-commute closed-path-def closed dual-order .refl

linepath-0 ′ p0-def p1-def pathfinish-join pathstart-def pathstart-join simple-path-join-loop-eq)
qed

have inside-outside: inside-outside ?R (path-inside ?R) (path-outside ?R)
using closed simple Jordan-inside-outside-real2

by (simp add: closed-path-def inside-outside-def path-inside-def path-outside-def )

have interior-frontier : path-inside ?R = interior (path-inside ?R)
∧ frontier (path-inside ?R) = path-image ?R

using inside-outside interior-open unfolding inside-outside-def by auto

have R-y-q1 : ∀ x ∈ path-image ?R. x$2 < q1$2
proof−

have ∗: ∀ x ∈ path-image p. x$2 < q1$2 using assms(11 ) by blast
moreover have ∀ x ∈ path-image ?l1 . x$2 < q1$2

using a-def assms(8 ) ∗ p1-def pathfinish-in-path-image segment-vertical by
fastforce

moreover have ∀ x ∈ path-image ?l2 . x$2 < q1$2
using assms(8 ) ∗ p1-def pathfinish-in-path-image segment-horizontal by fast-

force
moreover have ∀ x ∈ path-image ?l3 . x$2 < q1$2
using assms(8 ) ∗ p1-def pathfinish-in-path-image segment-vertical by fastforce

ultimately show ?thesis by (metis not-in-path-image-join)
qed
have R-y-0 : ∀ x ∈ path-image ?R. x$2 ≥ −1
proof−

have ∀ x ∈ path-image ?l1 . x$2 ≥ −1 using a-def assms(8 ) segment-vertical
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by fastforce
moreover have ∀ x ∈ path-image ?l2 . x$2 ≥ −1 using segment-horizontal by

auto
moreover have ∀ x ∈ path-image ?l3 . x$2 ≥ −1 using segment-vertical by

auto
moreover have ∀ x ∈ path-image p. x$2 ≥ −1 using assms(12 ) by force
ultimately show ?thesis by (metis not-in-path-image-join)

qed

have ?thesis if p0 ∈ path-image q ∨ p1 ∈ path-image q using p0-def p1-def that
by blast

moreover have ?thesis if p0 /∈ path-image q ∧ p1 /∈ path-image q ∧ q0 /∈
path-image p

proof−
have q-int-l1 : path-image q ∩ path-image ?l1 = {}
proof−

have ∀ x ∈ path-image q. x$2 ≥ 0 by (simp add: assms(12 ))
moreover have ∀ x ∈ path-image ?l1 . x$2 = 0 −→ x = p1
by (metis (mono-tags, opaque-lifting) a-def assms(8 ) exhaust-2 path-image-linepath

segment-vertical vec-eq-iff vector-2 (1 ))
ultimately show ?thesis using that a-def assms(8 ) segment-vertical by

fastforce
qed
moreover have q-int-l2 : path-image q ∩ path-image ?l2 = {}
by (smt (verit, ccfv-threshold) UnCI assms(12 ) disjoint-iff path-image-linepath

segment-horizontal vector-2 (2 ))
moreover have q-int-l3 : path-image q ∩ path-image ?l3 = {}
proof−

have ∀ x ∈ path-image q. x$2 ≥ 0 by (simp add: assms(12 ))
moreover have ∀ x ∈ path-image ?l3 . x$2 = 0 −→ x = p0

by (metis (no-types, opaque-lifting) assms(8 ) exhaust-2 path-image-linepath
segment-vertical vec-eq-iff vector-2 (1 ) zero-index)

ultimately show ?thesis using that a-def assms(8 ) segment-vertical by
fastforce

qed
ultimately have q0-notin-R: q0 /∈ path-image ?R
using that by (simp add: disjoint-iff not-in-path-image-join pathstart-in-path-image

q0-def )

have path-image q ∩ path-image ?R 6= {}
proof−

have q0 ∈ path-inside ?R
proof−

let ?e = (vector [q0$1 , −1 ])::(real^2 )
let ?d1 = (vector [a, −1 ])::(real^2 )
let ?d2 = (vector [0 , −1 ])::(real^2 )

have 0 < q0$1 ∧ q0$1 < a
by (smt (verit) a-def assms(10 ) assms(8 ) atLeastAtMost-iff exhaust-2
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linorder-not-less pathstart-in-path-image q0-def that vec-eq-iff zero-index)
then have q0$1 > 0 ∧ a − q0$1 > 0 by simp
then have min (min (q0$1 ) (a − q0$1 )) 1 > 0 (is ?ε ′ > 0 ) by linarith
then have 0 < ?ε ′/2 ∧ ?ε ′/2 < 1 ∧ ?ε ′/2 < q0$1 ∧ ?ε ′/2 < a − q0$1

by argo
then obtain ε where ε: 0 < ε ∧ ε < 1 ∧ ε < q0$1 ∧ ε < a − q0$1 by

blast
moreover have ?e ∈ frontier (path-inside ?R)

by (smt (verit, del-insts) UnCI ‹0 < q0 $ 1 ∧ 0 < a − q0 $ 1 › in-
terior-frontier p1-def path-image-join path-image-linepath pathfinish-linepath path-
start-join pathstart-linepath segment-horizontal vector-2 (1 ) vector-2 (2 ))

ultimately obtain int-p where int-p: int-p ∈ ball ?e ε ∩ path-inside ?R
by (meson inside-outside frontier-straddle mem-ball IntI )

have int-p-x: int-p$1 > 0 ∧ int-p$1 < a
proof−

have int-p$1 > 0
proof(rule ccontr)

assume ¬ int-p$1 > 0
moreover have dist (int-p$1 ) (q0$1 ) < q0$1

by (smt (verit) IntE ε dist-commute dist-vec-nth-le int-p mem-ball
vector-2 (1 ))

ultimately show False using dist-real-def by force
qed
moreover have int-p$1 < a
proof(rule ccontr)

assume ¬ int-p$1 < a
moreover have dist (int-p$1 ) (q0$1 ) < a − q0$1

by (smt (verit) IntE ε dist-commute dist-vec-nth-le int-p mem-ball
vector-2 (1 ))

ultimately show False using dist-real-def by force
qed
ultimately show ?thesis by blast

qed
have int-p-y: int-p$2 > −1 ∧ int-p$2 < 0
proof−

have int-p$2 > −1
proof(rule ccontr)

assume ∗: ¬ int-p$2 > −1
then have int-p$2 ≤ −1 by simp
let ?e2 ′ = (vector [0 , −1 ])::(real^2 )
let ?ray = λd. int-p + d ∗R ?e2 ′

have ¬ (∃ d>0 . ?ray d ∈ path-image ?R)
proof−

have ∀ d>0 . (?ray d)$2 < −1 using ∗ by auto
thus ?thesis using R-y-0 by force

qed
moreover have bounded (path-inside ?R) using bounded-finite-inside

simple by blast
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moreover have ?e2 ′ 6= 0 by (metis vector-2 (2 ) zero-index zero-neq-neg-one)
ultimately have int-p /∈ path-inside ?R

using ray-to-frontier [of path-inside ?R] interior-frontier by metis
thus False using int-p by blast

qed
moreover have int-p$2 < 0
proof(rule ccontr)

assume ¬ int-p$2 < 0
then have dist int-p ?e ≥ 1

by (smt (verit, del-insts) dist-real-def dist-vec-nth-le vector-2 (2 ))
thus False by (smt (verit, del-insts) IntD1 ε dist-commute int-p mem-ball)
qed
ultimately show ?thesis by blast

qed

let ?int-l = linepath int-p q0

have path-image ?int-l ∩ path-image ?l1 = {}
using ‹0 < q0 $ 1 ∧ q0 $ 1 < a› a-def int-p-x linepath-int-columns by

auto
moreover have path-image ?int-l ∩ path-image ?l2 = {}

by (smt (verit, best) assms(10 ) disjoint-iff int-p-y linepath-int-rows vec-
tor-2 (2 ))

moreover have path-image ?int-l ∩ path-image ?l3 = {}
by (smt (verit, del-insts) ε disjoint-iff int-p-x linepath-int-columns vec-

tor-2 (1 ) zero-index)
moreover have path-image ?int-l ∩ path-image p = {}
proof−

have ∀ t ∈ {0 ..1}. (?int-l t)$2 = 0 −→ t = 1
unfolding linepath-def using assms(10 ) int-p-y by force

then have ∀ x ∈ path-image ?int-l. x$2 = 0 −→ x = q0
unfolding path-image-def using linepath-1 ′ by fastforce

moreover have ∀ x ∈ path-image p. x$2 ≥ 0 by (simp add: assms(12 ))
moreover have ∀ x ∈ path-image ?int-l. x$2 ≤ 0

by (smt (verit) assms(10 ) int-p-y linepath-bound-2 (2 ))
ultimately show ?thesis using that by fastforce

qed
ultimately have path-image ?int-l ∩ path-image ?R = {}

by (simp add: disjoint-iff not-in-path-image-join)

then have path-image ?int-l ⊆ path-inside ?R ∨ path-image ?int-l ⊆
path-outside ?R

by (metis IntD2 IntI convex-imp-path-connected convex-segment(1 ) empty-iff
int-p interior-frontier path-connected-not-frontier-subset path-image-linepath path-
start-in-path-image pathstart-linepath)

moreover have ?int-l 0 = int-p ∧ int-p ∈ path-inside ?R
using int-p by (simp add: linepath-0 ′)

ultimately have path-image ?int-l ⊆ path-inside ?R
using inside-outside-def local.inside-outside by auto
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thus ?thesis by auto
qed
then have q0 ∈ − (path-outside ?R)
by (metis ComplI IntI equals0D inside-Int-outside path-inside-def path-outside-def )
moreover have q1 ∈ path-outside ?R
proof−

let ?e2 = (vector [0 , 1 ])::(real^2 )
let ?ray = λd. q1 + d ∗R ?e2
have ¬ (∃ d>0 . ?ray d ∈ path-image ?R)
proof−

have ∀ d>0 . (?ray d)$2 > q1$2 by simp
thus ?thesis using R-y-q1 by fastforce

qed
moreover have bounded (path-inside ?R) using bounded-finite-inside simple

by blast
moreover have ?e2 6= 0 using e1e2-basis(4 ) by force
ultimately have q1 /∈ path-inside ?R

using ray-to-frontier [of path-inside ?R] interior-frontier by metis
moreover have q1 /∈ path-image ?R using R-y-q1 by blast

ultimately show ?thesis using inside-outside unfolding inside-outside-def
by blast

qed
ultimately have path-image q ∩ − (path-outside ?R) 6= {}
∧ path-image q ∩ (path-outside ?R) 6= {}

using q0-def q1-def by blast
moreover have path-connected (path-image q)

using assms(7 ) path-connected-path-image simple-path-def by blast
moreover have path-image ?R = frontier (path-outside ?R)
using inside-outside unfolding inside-outside-def p0-def path-inside-def by

blast
ultimately show ?thesis by (metis Diff-eq Diff-eq-empty-iff path-connected-not-frontier-subset)
qed

thus ?thesis by (meson q-int-l1 q-int-l2 q-int-l3 disjoint-iff not-in-path-image-join)
qed
ultimately show ?thesis using q0-def by blast

qed

lemma pocket-fill-line-int-aux7 :
fixes p q :: R-to-R2
fixes A :: (real^2 ) set
defines p0 ≡ pathstart p
defines p1 ≡ pathfinish p
defines q0 ≡ pathstart q
defines q1 ≡ pathfinish q
defines a ≡ p1$1
defines l ≡ open-segment p0 p1
assumes simple-path p
assumes simple-path q
assumes path-image p ∩ path-image q = {q0 , q1}
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assumes p0$1 = 0 ∧ p0$2 = 0 ∧ p1$2 = 0
assumes a > 0
assumes A = convex hull (path-image p ∪ path-image q)
assumes {p0 , p1} ⊆ frontier A
assumes p‘{0<..<1} ⊆ interior A
assumes ∃ x ∈ p‘{0<..<1}. x$2 ≥ 0
assumes q0 = p1 ∧ q1 = p0
shows path-image q ∩ l = {} closed-segment p0 p1 ⊆ frontier A

proof−
have 1 : path-image p ∩ path-image q = {pathstart q, pathfinish q}

by (simp add: assms(9 ) q0-def q1-def )
have 2 : pathstart p $ 1 = 0 ∧ pathstart p $ 2 = 0 ∧ pathfinish p $ 2 = 0

using assms(10 ) p0-def p1-def by blast
have 3 : 0 < pathfinish p $ 1 using a-def assms(11 ) p1-def by auto
have 4 : A = convex hull (path-image p ∪ path-image q) by (simp add: assms(12 ))
have 5 : {pathstart p, pathfinish p} ⊆ frontier A using assms(13 ) p0-def p1-def

by blast
have 6 : p ‘ {0<..<1} ⊆ interior A using assms(14 ) by blast
have 7 : path-image q ⊆ A using assms(12 ) hull-subset by force
have 8 : ∃ x ∈ p‘{0<..<1}. x$2 ≥ 0 using assms(15 ) by blast
have 9 : pathstart q = pathfinish p ∧ pathfinish q = pathstart p

using assms(16 ) p0-def p1-def q0-def q1-def by fastforce
have ∗: ∀ x ∈ (path-image p) ∪ (path-image q). x$2 ≥ 0

using pocket-fill-line-int-aux5 (2 )[OF assms(7 ) assms(8 ) 1 2 3 4 5 6 7 8 9 ] by
blast

show closed-segment p0 p1 ⊆ frontier A
using pocket-fill-line-int-aux5 (1 )[OF assms(7 ) assms(8 ) 1 2 3 4 5 6 7 8 9 ]
unfolding l-def p0-def p1-def by blast

show path-image q ∩ l = {}
proof(rule ccontr)

assume ¬ path-image q ∩ l = {}
then obtain x tx where x: tx ∈ {0 ..1} ∧ q tx = x ∧ x ∈ l

by (metis (no-types, lifting) disjoint-iff imageE path-image-def )
obtain y ty where y: ty ∈ {0 ..1} ∧ q ty = y ∧ (∀ x ∈ path-image p. y$2 >

x$2 )
using exists-point-above-all[of p q]
by (smt (verit, del-insts) 4 6 8 assms(10 ) assms(7 ) assms(8 ) p0-def p1-def

pathfinish-def pathstart-def simple-path-def image-iff path-image-def )

have lf : (∀ t ∈ {0 ..1}. (q t = q0 ∨ q t = q1 ) −→ (t = 0 ∨ t = 1 ))
using assms(8 )

unfolding q0-def q1-def simple-path-def loop-free-def pathstart-def pathfin-
ish-def

by fastforce
have endpoints: q tx 6= q0 ∧ q ty 6= q0 ∧ q tx 6= q1 ∧ q ty 6= q1 ∧ tx 6= ty
proof−

have (q ty)$2 > 0 by (metis assms(10 ) p0-def pathstart-in-path-image y)
moreover have (q tx)$2 = 0
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proof−
have q tx ∈ closed-segment q0 q1

using assms(16 ) l-def open-closed-segment open-segment-commute x by
blast

thus ?thesis by (simp add: assms(10 ) assms(16 ) segment-horizontal)
qed
moreover have q0 /∈ open-segment q0 q1 ∧ q1 /∈ open-segment q0 q1

by (simp add: open-segment-def )
ultimately show ?thesis

using assms(10 ) assms(16 ) l-def open-segment-commute x by auto
qed

let ?Q =
λq ′. simple-path q ′ ∧ path-image p ∩ path-image q ′ = {}
∧ q ′ 0 = q tx ∧ q ′ 1 = q ty
∧ path-image q ′ ⊆ path-image q

have ∗∗:
∧

q ′. ?Q q ′ =⇒ False
proof−

fix q ′

assume ∗∗: ?Q q ′

have 1 : simple-path q ′ by (simp add: ∗∗)
have 2 : pathstart p = 0 ∧ pathfinish p $ 2 = 0

by (metis (mono-tags, lifting) assms(10 ) exhaust-2 p0-def p1-def vec-eq-iff
zero-index)

have 3 : 0 < pathfinish p $ 1 using a-def assms(11 ) p1-def by blast
have 4 : pathstart q ′ $ 1 ∈ {0 ..pathfinish p $ 1} ∧ pathstart q ′ $ 2 = 0
proof−

have q ′ 0 ∈ closed-segment p0 p1 using ∗∗ l-def open-closed-segment x by
auto

thus ?thesis
by (smt (z3 ) 2 a-def assms(11 ) atLeastAtMost-iff atLeastatMost-empty

p0-def p1-def pathstart-def pathstart-subpath segment-horizontal zero-index)
qed

have 5 : ∀ x∈path-image p. x $ 2 < pathfinish q ′ $ 2 by (simp add: ∗∗
pathfinish-def y)

have 6 : ∀ x∈path-image p ∪ path-image q ′. 0 ≤ x $ 2 using ∗ ∗∗ by blast
have path-image p ∩ path-image q ′ 6= {}

using pocket-fill-line-int-aux6 [OF assms(7 ) 1 2 3 4 5 6 ] by simp
thus False using ∗∗ by blast

qed

have False if tx < ty
proof−

let ?q ′ = subpath tx ty q
have q0 /∈ path-image ?q ′ ∧ q1 /∈ path-image ?q ′

proof−
have {tx..ty} ⊆ {0 ..1} using x y by simp
then have (∀ t ∈ {tx..ty}. (q t = q0 ∨ q t = q1 ) −→ (t = 0 ∨ t = 1 ))

using lf by blast
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moreover have 0 /∈ {tx..ty} ∧ 1 /∈ {tx..ty}
by (metis atLeastAtMost-iff dual-order .eq-iff endpoints pathfinish-def

pathstart-def q0-def q1-def x y)
moreover have path-image ?q ′= q‘{tx..ty} by (simp add: path-image-subpath

that)
ultimately show ?thesis by fastforce

qed
then have ?Q ?q ′

by (smt (verit, best) assms(8 ) assms(9 ) disjoint-insert(1 ) endpoints
inf .absorb-iff1 inf-bot-right inf-left-commute path-image-subpath-subset pathfinish-def
pathfinish-subpath pathstart-def pathstart-subpath simple-path-subpath x y)

thus False using ∗∗ by auto
qed
moreover have False if tx > ty
proof−

let ?q ′ = reversepath (subpath ty tx q)
have q0 /∈ path-image ?q ′ ∧ q1 /∈ path-image ?q ′

proof−
have {ty..tx} ⊆ {0 ..1} using x y by simp
then have (∀ t ∈ {ty..tx}. (q t = q0 ∨ q t = q1 ) −→ (t = 0 ∨ t = 1 ))

using lf by blast
moreover have 0 /∈ {ty..tx} ∧ 1 /∈ {ty..tx}

by (metis atLeastAtMost-iff dual-order .eq-iff endpoints pathfinish-def
pathstart-def q0-def q1-def x y)

moreover have path-image ?q ′= q‘{ty..tx} by (simp add: path-image-subpath
that)

ultimately show ?thesis by fastforce
qed
then have ?Q ?q ′

by (smt (verit) assms(8 ) assms(9 ) endpoints inf .absorb-iff2 inf .assoc
inf-bot-left insert-disjoint(2 ) path-image-subpath-subset pathstart-def pathstart-subpath
reversepath-def reversepath-subpath simple-path-subpath x y)

thus False using ∗∗ by blast
qed
ultimately show False using endpoints by linarith

qed
qed

lemma frontier-injective-linear-image:
fixes f :: ′a::euclidean-space ⇒ ′a::euclidean-space
assumes linear f inj f
shows f ‘ (frontier S) = frontier (f ‘ S)
using interior-injective-linear-image closure-injective-linear-image frontier-def

assms
by (metis image-set-diff )

lemma pocket-fill-line-int-aux8 :
fixes p q :: R-to-R2
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fixes A :: (real^2 ) set
defines p0 ≡ pathstart p
defines p1 ≡ pathfinish p
defines q0 ≡ pathstart q
defines q1 ≡ pathfinish q
defines a ≡ p1$1
defines l ≡ open-segment p0 p1
assumes simple-path p
assumes simple-path q
assumes path-image p ∩ path-image q = {q0 , q1}
assumes p0$1 = 0 ∧ p0$2 = 0 ∧ p1$2 = 0
assumes a > 0
assumes A = convex hull (path-image p ∪ path-image q)
assumes {p0 , p1} ⊆ frontier A
assumes p‘{0<..<1} ⊆ interior A
assumes q0 = p1 ∧ q1 = p0
shows path-image q ∩ l = {} ∧ l ⊆ frontier A

proof−
have ?thesis if ex: ∃ x ∈ p‘{0<..<1}. x$2 ≥ 0
using ex a-def assms dual-order .trans l-def p0-def p1-def pocket-fill-line-int-aux7 (1 )

pocket-fill-line-int-aux7 (2 ) q0-def q1-def segment-open-subset-closed that

by (smt (verit) a-def assms dual-order .trans l-def p0-def p1-def pocket-fill-line-int-aux7 (1 )
pocket-fill-line-int-aux7 (2 ) q0-def q1-def segment-open-subset-closed that)

moreover have ?thesis if ¬ (∃ x ∈ p‘{0<..<1}. x$2 ≥ 0 )
proof−

let ?M = (vector [vector [1 , 0 ], vector [0 , −1 ]])::(real^2^2 )
let ?f = λv. ?M ∗v v
let ?g = (λv. vector [v$1 , −v$2 ])::(real^2 ⇒ real^2 )
define p ′ where p ′ ≡ ?f ◦ p
define q ′ where q ′ ≡ ?f ◦ q
define A ′ where A ′ ≡ ?f‘A

have inj: inj ?f and f-eq-g: ?f = ?g
using flip-function(1 ) apply blast
using flip-function(2 ) by blast

have 4 : pathstart p ′ $ 1 = 0 ∧ pathstart p ′ $ 2 = 0 ∧ pathfinish p ′ $ 2 = 0
by (smt (verit, best) assms(10 ) f-eq-g o-apply p ′-def p0-def p1-def pathfinish-def

pathstart-def vector-2 (1 ) vector-2 (2 ))
have startfinish: pathstart p ′ = pathstart p ∧ pathfinish p ′ = pathfinish p

by (metis (mono-tags, opaque-lifting) 4 assms(10 ) exhaust-2 f-eq-g o-apply
p ′-def p0-def p1-def pathfinish-def vec-eq-iff vector-2 (1 ))

have 1 : simple-path p ′ using inj by (simp add: assms(7 ) simple-path-linear-image-eq
p ′-def )

have 2 : simple-path q ′ using inj by (simp add: assms(8 ) simple-path-linear-image-eq
q ′-def )

have 3 : path-image p ′ ∩ path-image q ′ = {pathstart q ′, pathfinish q ′}
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proof−
have path-image p ′ ∩ path-image q ′ = ?f‘(path-image p ∩ path-image q)

unfolding p ′-def q ′-def by (simp add: image-Int inj path-image-compose)
also have ... = ?f‘{q0 , q1} using assms(9 ) by presburger
finally show ?thesis

by (simp add: startfinish pathfinish-compose pathstart-compose q ′-def q0-def
q1-def )

qed
have 5 : 0 < pathfinish p ′ $ 1

by (metis (mono-tags, lifting) a-def assms(11 ) f-eq-g o-apply p ′-def p1-def
pathfinish-def vector-2 (1 ))

have 6 : A ′ = convex hull (path-image p ′ ∪ path-image q ′)
proof−

have path-image (?f ◦ p) = ?f‘(path-image p) using path-image-compose by
blast

moreover have path-image (?f ◦ q) = ?f‘(path-image q) using path-image-compose
by blast

moreover have ?f‘(path-image p ∪ path-image q) = ?f‘(path-image p) ∪
?f‘(path-image q)

by blast
moreover have A ′ = convex hull (?f‘(path-image p ∪ path-image q))

by (simp add: assms(12 ) convex-hull-linear-image A ′-def )
ultimately show ?thesis using p ′-def q ′-def A ′-def by argo

qed
have 7 : {pathstart p ′, pathfinish p ′} ⊆ frontier A ′

using frontier-injective-linear-image
by (smt (verit, best) 3 A ′-def assms(13 ) assms(15 ) assms(9 ) doubleton-eq-iff

image-Int inj inj-image-subset-iff matrix-vector-mul-linear p ′-def p0-def p1-def path-image-linear-image
pathfinish-compose pathstart-compose q ′-def q0-def q1-def )

have 8 : p ′‘{0<..<1} ⊆ interior A ′

proof−
have ?f‘(interior A) = interior A ′ by (simp add: A ′-def inj interior-injective-linear-image)

thus ?thesis using assms(14 ) p ′-def by auto
qed
have 9 : ∃ x ∈ p ′‘{0<..<1}. x$2 ≥ 0
proof−

have ∃ x ∈ p‘{0<..<1}. x$2 < 0
by (metis that all-not-in-conv bot.extremum greaterThanLessThan-subseteq-greaterThanLessThan

image-is-empty verit-comp-simplify1 (3 ) zero-less-one)
then obtain x where x ∈ p‘{0<..<1} ∧ x$2 < 0 by presburger
moreover then have (?g x)$2 > 0 by fastforce

ultimately show ?thesis by (smt (verit, ccfv-threshold) f-eq-g image-iff
o-apply p ′-def )

qed
have 10 : pathstart q ′ = pathfinish p ′ ∧ pathfinish q ′ = pathstart p ′

by (metis (mono-tags, lifting) assms(15 ) o-apply p ′-def p0-def p1-def pathfin-
ish-def pathstart-def q ′-def q0-def q1-def )

have path-image q ′ ∩ open-segment (pathstart p ′) (pathfinish p ′) = {}
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using pocket-fill-line-int-aux7 (1 )[OF 1 2 3 4 5 6 7 8 9 10 ] by blast
then have path-image q ′ ∩ l = {} using startfinish unfolding l-def p0-def

p1-def by simp
moreover have on-l:

∧
x. x ∈ l =⇒ ?g x ∈ l

proof−
fix x :: real^2
assume x ∈ l
moreover then have x$2 = 0 by (metis assms(6 ,10 ) segment-horizontal

open-closed-segment)
moreover then have (?g x)$2 = 0 by simp
moreover have (?g x)$1 = x$1 by simp
ultimately show ?g x ∈ l by (smt (verit, ccfv-SIG) exhaust-2 vec-eq-iff )

qed
ultimately have path-image q ∩ l = {}

by (metis (no-types, lifting) disjoint-iff f-eq-g image-eqI path-image-compose
q ′-def )

moreover have l ⊆ frontier A
proof−

have pathstart p ′ = pathstart p ∧ pathfinish p ′ = pathfinish p
using startfinish by auto

then have ?f‘l ⊆ frontier A ′

using pocket-fill-line-int-aux7 (2 )[OF 1 2 3 4 5 6 7 8 9 10 ] on-l f-eq-g l-def
p0-def p1-def segment-open-subset-closed

by force
thus ?thesis
by (metis (no-types, lifting) A ′-def frontier-injective-linear-image inj inj-image-subset-iff

matrix-vector-mul-linear)
qed
ultimately show ?thesis by fast

qed
ultimately show ?thesis by argo

qed

lemma simple-path-linear-image:
assumes simple-path p
assumes inj f ∧ bounded-linear f
shows simple-path (f ◦ p)

proof−
have continuous-on {x. True} f using assms(2 ) linear-continuous-on by blast
then have 1 : path (f ◦ p)
by (metis Collect-cong UNIV-I assms(1 ) continuous-on-subset path-continuous-image

simple-path-imp-path top-empty-eq top-greatest top-set-def )

have inj-on p {0<..<1} by (simp add: assms(1 ) simple-path-inj-on)
then have inj-on (f ◦ p) {0<..<1} by (meson assms(2 ) comp-inj-on inj-on-subset

top-greatest)
then have loop-free (f ◦ p)
by (metis (mono-tags, lifting) assms(1 ) assms(2 ) comp-apply inj-eq loop-free-def

simple-path-def )
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thus ?thesis using 1 unfolding simple-path-def by blast
qed

lemma vts-interior :
fixes vts
defines p ≡ make-polygonal-path vts
assumes convex H
assumes ∀ j ∈ {0<..<length vts − 1}. vts!j /∈ frontier H
assumes loop-free p
assumes path-image p ⊆ H
assumes length vts ≥ 3
shows p‘{0<..<1} ⊆ interior H

proof(rule subsetI )
fix x assume ∗: x ∈ p‘{0<..<1}
then obtain t where t: x = p t ∧ t ∈ {0<..<1} by blast
then have x 6= p 0 ∧ x 6= p 1 using assms(4 ) unfolding loop-free-def by

fastforce
then have x-neq: x 6= hd vts ∧ x 6= last vts

by (metis assms(4 ) constant-linepath-is-not-loop-free hd-conv-nth last-conv-nth
make-polygonal-path.simps(1 ) p-def pathfinish-def pathstart-def polygon-pathfinish
polygon-pathstart)

have x ∈ interior H if ∗∗: ∃ i<length vts. x = vts!i
proof−

obtain i where i: i < length vts ∧ x = vts!i using ∗∗ by blast
then have i 6= 0 ∧ i 6= length vts − 1

by (metis x-neq gr-implies-not0 hd-conv-nth last-conv-nth list.size(3 ))
then have i ∈ {0<..<length vts − 1} using i by fastforce
then have vts!i /∈ frontier H using assms(3 ) by blast
then have vts!i ∈ interior H

by (metis DiffI assms(5 ) closure-subset frontier-def i nth-mem p-def subsetD
vertices-on-path-image)

thus ?thesis using assms(3 ) i by blast
qed
moreover have x ∈ interior H if ∗∗: ¬ (∃ i<length vts. x = vts!i)
proof−

have x ∈ path-image p using ∗ unfolding path-image-def by force
then obtain i where i: x ∈ path-image (linepath (vts!i) (vts!(i+1 ))) ∧ i <

length vts − 1
using make-polygonal-path-image-property[of vts x] assms(6 ) unfolding p-def

by auto
moreover then have x 6= vts!i ∧ x 6= vts!(i+1 ) using ∗∗ by force

ultimately have x ∈ open-segment (vts!i) (vts!(i+1 )) by (simp add: open-segment-def )
moreover then have x ∈ rel-interior (path-image (linepath (vts!i) (vts!(i+1 ))))
by (metis empty-iff open-segment-idem path-image-linepath rel-interior-closed-segment)
moreover have interior-nonempty: vts!i ∈ interior H ∨ vts!(i+1 ) ∈ interior

H
proof(rule ccontr)

assume ¬ (vts!i ∈ interior H ∨ vts!(i+1 ) ∈ interior H )
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then have vts!i ∈ frontier H ∧ vts!(i+1 ) ∈ frontier H
using assms(5 ) closure-subset frontier-def i p-def vertices-on-path-image by

fastforce
thus False

by (metis assms(3 ) i Suc-1 Suc-eq-plus1 add.commute add.right-neutral
assms(6 ) eval-nat-numeral(3 ) greaterThanLessThan-iff less-diff-conv linorder-not-le
not-gr-zero not-less-eq-eq)

qed
ultimately have x ∈ rel-interior H
by (smt (verit, ccfv-SIG) add-diff-inverse-nat assms(2 ) assms(5 ) convex-same-rel-interior-closure-straddle

empty-iff i in-interior-closure-convex-segment less-diff-conv less-nat-zero-code nat-diff-split
nth-mem open-segment-commute p-def rel-interior-nonempty-interior subset-eq trans-less-add2
vertices-on-path-image)

moreover have interior H 6= {} using interior-nonempty by blast
ultimately show ?thesis using rel-interior-nonempty-interior by blast

qed
ultimately show x ∈ interior H by blast

qed

lemma pocket-fill-line-int-0 :
assumes polygon-of r vts
defines H ≡ convex hull (set vts)
assumes 2 ≤ i ∧ i < length vts − 1
defines a ≡ hd vts
defines b ≡ vts!i
assumes {a, b} ⊆ frontier H
assumes ∀ j ∈ {0<..<i}. vts!j /∈ frontier H
assumes a = 0
shows path-image (linepath a b) ∩ path-image r = {a, b}

path-image (linepath a b) ⊆ frontier H
proof−

let ?x = (b − a)
let ?e = norm (b − a) ∗R ((vector [1 , 0 ])::(real^2 ))
have norm ?x = norm ?e by (simp add: e1e2-basis(1 ))
then obtain f where f : orthogonal-transformation f ∧ det(matrix f ) = 1 ∧ f

?x = ?e
using rotation-exists by (metis two-le-card)

have bij: bij f ∧ linear f
using f orthogonal-transformation-bij orthogonal-transformation-def by blast

let ?p-vts = take (i + 1 ) vts
let ?q-vts = drop i vts
let ?p = make-polygonal-path ?p-vts
let ?q = make-polygonal-path ?q-vts

let ?p ′ = f ◦ ?p
let ?q ′ = f ◦ ?q
let ?H ′ = convex hull (path-image ?p ′ ∪ path-image ?q ′)
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have vts-split: vts = ?p-vts @ (tl ?q-vts)
by (metis Suc-eq-plus1 append-take-drop-id drop-Suc tl-drop)

have simple-path r using assms(1 ) unfolding polygon-of-def polygon-def by
blast

then have a-neq-b: a 6= b
using simple-polygonal-path-vts-distinct[of vts]

by (metis (mono-tags, lifting) a-def assms(1 ) assms(3 ) b-def bot-nat-0 .extremum-strict
butlast-conv-take constant-linepath-is-not-loop-free distinct-nth-eq-iff dual-order .strict-trans2
hd-conv-nth length-butlast make-polygonal-path.simps(1 ) nat-neq-iff nth-take poly-
gon-of-def pos2 simple-path-def )

have H-r : H = convex hull (path-image r)
by (metis (no-types, lifting) H-def Un-subset-iff assms(1 ) convex-convex-hull

convex-hull-eq convex-hull-of-polygon-is-convex-hull-of-vts hull-mono hull-subset or-
der-antisym-conv polygon-of-def vertices-on-path-image)

moreover have r-union: path-image r = (path-image ?p) ∪ (path-image ?q)
proof−

let ?i = i + 1
let ?x = ((2 ::real) ^ (?i − 1 ) − 1 ) / 2 ^ (?i − 1 )
have ?x ∈ {0 ..1} ∧ path-image ?p = r‘{0 ..?x} ∧ path-image ?q = r‘{?x..1}

using vts-split-path-image[of r vts ?p ?p-vts ?q ?q-vts ?i - ?x]
by (smt (verit, ccfv-SIG) add.commute add-diff-cancel-left ′ assms(1 ) assms(3 )

atLeastAtMost-iff atLeastatMost-empty ′ image-empty le-add1 less-diff-conv path-image-nonempty
polygon-of-def )

thus ?thesis by (metis atLeastAtMost-iff image-Un ivl-disj-un-two-touch(4 )
path-image-def )

qed
moreover have f‘H = convex hull (f‘(path-image r))

using bij by (simp add: calculation(1 ) convex-hull-linear-image)
ultimately have H-image: ?H ′= f‘H by (simp add: image-Un path-image-compose)

have p-image: path-image ?p ′ = f‘(path-image ?p) using path-image-compose by
blast

have q-image: path-image ?q ′ = f‘(path-image ?q) using path-image-compose by
blast

have pathstart-p: pathstart ?p = a
by (metis Suc-eq-plus1 a-def assms(3 ) gr-implies-not0 hd-conv-nth length-tl

less-Suc-eq-0-disj list.sel(2 ) list.size(3 ) nth-take polygon-pathstart take-eq-Nil)
have pathfinish-p: pathfinish ?p = b
by (metis (no-types, lifting) H-def H-r add-diff-cancel-right ′ assms(3 ) b-def con-

vex-hull-eq-empty length-take less-add-one less-diff-conv min.absorb4 nth-append
one-neq-zero path-image-nonempty polygon-pathfinish set-empty take-eq-Nil vts-split
zero-eq-add-iff-both-eq-0 )

then have pathstart-q: pathstart ?q = b using assms(3 ) b-def polygon-pathstart
by force
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have pathstart-p ′: pathstart ?p ′ = f a using pathstart-compose pathstart-p by
blast

have pathfinish-p ′: pathfinish ?p ′ = f b using pathfinish-compose pathfinish-p by
blast

have pathstart-q ′: pathstart ?q ′ = f b using pathstart-compose pathstart-q by
blast

have sublist ?p-vts vts by auto
then have lf-p: loop-free ?p

by (metis add.commute assms(1 ) assms(3 ) less-diff-conv less-imp-le-nat poly-
gon-def polygon-of-def simple-path-def take-i-is-loop-free trans-le-add2 )

then have simple-p: simple-path ?p
using assms unfolding polygon-of-def
by (meson make-polygonal-path-gives-path simple-path-def )

have sublist ?q-vts vts by auto
then have lf-q: loop-free ?q

by (metis (no-types, lifting) Suc-1 Suc-diff-Suc assms(1 ) assms(3 ) diff-is-0-eq
drop-i-is-loop-free less-Suc-eq-le less-zeroE linorder-not-less polygon-def polygon-of-def
simple-path-def )

then have simple-q: simple-path ?q
using assms unfolding polygon-of-def
by (meson make-polygonal-path-gives-path simple-path-def )

have bounded-linear : bounded-linear f using bij linear-conv-bounded-linear by
blast

have 1 : simple-path ?p ′

using simple-p simple-path-linear-image bij bij-is-inj bounded-linear
by blast

have 2 : simple-path ?q ′

using simple-q simple-path-linear-image bij bij-is-inj bounded-linear
by blast

have 3 : path-image ?p ′ ∩ path-image ?q ′ = {pathstart ?q ′, pathfinish ?q ′}
proof−

have path-image ?p ∩ path-image ?q ⊆ {pathstart ?q, pathfinish ?q}
using loop-free-split-int[of r vts ?p-vts i ?q-vts ?p ?q]
by (smt (verit, ccfv-threshold) a-def add-diff-cancel-right ′ assms(1 ) assms(3 )

constant-linepath-is-not-loop-free drop-eq-Nil have-wraparound-vertex hd-conv-nth
insert-commute last-conv-nth last-drop last-snoc le-add2 less-diff-conv lf-q linorder-not-less
loop-free-split-int make-polygonal-path.simps(1 ) pathstart-p polygon-def polygon-of-def
polygon-pathfinish simple-path-def )

moreover have pathstart ?q ∈ path-image ?q ∧ pathfinish ?q ∈ path-image ?q
by blast

moreover have pathstart ?q ∈ path-image ?p ∧ pathfinish ?q ∈ path-image ?p
by (smt (verit, ccfv-SIG) a-def add-diff-cancel-right ′ assms(1 ) assms(3 ) b-def

constant-linepath-is-not-loop-free drop-eq-Nil have-wraparound-vertex hd-conv-nth
last-conv-nth last-drop last-snoc length-take less-add-one less-diff-conv lf-q linorder-not-less
list.size(3 ) make-polygonal-path.simps(1 ) min.absorb4 nth-take pathfinish-in-path-image
pathstart-in-path-image pathstart-p pathstart-q polygon-of-def polygon-pathfinish take-eq-Nil
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zero-eq-add-iff-both-eq-0 zero-neq-one)
ultimately have path-image ?p ∩ path-image ?q = {pathstart ?q, pathfinish

?q} by fast
moreover have path-image ?p ′∩ path-image ?q ′= f‘(path-image ?p ∩ path-image

?q)
by (metis bij bij-is-inj image-Int p-image q-image)

ultimately show ?thesis by (simp add: pathfinish-compose pathstart-compose)
qed
have 4 : (pathstart ?p ′)$1 = 0 ∧ (pathstart ?p ′)$2 = 0 ∧ (pathfinish ?p ′)$2 = 0
proof−

have f ?x = ?e using f by blast
then have f b − f a = ?e

by (metis assms(8 ) diff-zero f norm-eq-zero orthogonal-transformation-norm)
moreover have f a = 0 by (metis assms(8 ) f norm-eq-zero orthogonal-transformation-norm)
moreover from calculation have f b = ?e by force
ultimately show ?thesis using pathfinish-p ′ pathstart-p ′ by auto

qed
have 5 : (pathfinish ?p ′)$1 > 0
proof−

have pathfinish ?p ′ = f b using pathfinish-p ′ by auto
moreover have f b = ?e using assms(8 ) f by auto
moreover have ?e$1 = norm ?x by simp
ultimately show ?thesis using a-neq-b by auto

qed
have 6 : ?H ′ = convex hull (path-image ?p ′ ∪ path-image ?q ′) by blast
have 7 : {pathstart ?p ′, pathfinish ?p ′} ⊆ frontier ?H ′

proof−
have {pathstart ?p, pathfinish ?p} ⊆ frontier H

using pathstart-p pathfinish-p assms(6 ) by fastforce
then have f‘{pathstart ?p, pathfinish ?p} ⊆ f‘(frontier H ) by blast
moreover have f‘(frontier H ) = frontier (f‘H )

by (simp add: bij bij-is-inj frontier-injective-linear-image)
ultimately show ?thesis using H-image by (simp add: pathfinish-compose

pathstart-compose)
qed
have 8 : ?p ′‘{0<..<1} ⊆ interior ?H ′

proof−
have 1 : convex H by (simp add: H-def )
have 2 : ∀ j∈{0<..<length ?p-vts − 1}. ?p-vts ! j /∈ frontier H

by (simp add: add.commute assms(3 ) assms(7 ) less-diff-conv)
have 3 : loop-free ?p using lf-p by blast
have 4 : path-image ?p ⊆ H using H-r hull-subset r-union by fastforce
have 5 : length ?p-vts ≥ 3 using assms(3 ) by force
have ?p‘{0<..<1} ⊆ interior H using vts-interior [OF 1 2 3 4 5 ] by argo
moreover have f‘(?p‘{0<..<1}) = ?p ′‘{0<..<1} by (meson image-comp)
moreover have f‘(interior H ) = interior ?H ′

using H-image interior-injective-linear-image[of f H ] by (simp add: bij
bij-is-inj)

ultimately show ?thesis by fast
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qed
have 9 : pathstart ?q ′ = pathfinish ?p ′ ∧ pathfinish ?q ′ = pathstart ?p ′

by (metis (mono-tags, lifting) H-def H-r a-def assms(1 ) constant-linepath-is-not-loop-free
convex-hull-eq-empty drop-eq-Nil have-wraparound-vertex hd-conv-nth last-conv-nth
last-drop last-snoc lf-q linorder-not-less make-polygonal-path.simps(1 ) path-image-nonempty
pathfinish-compose pathfinish-p pathstart-compose pathstart-p pathstart-q polygon-of-def
polygon-pathfinish set-empty)

let ?l = open-segment a b
let ?l ′ = open-segment (pathstart ?p ′) (pathfinish ?p ′)

have ∗: path-image ?q ′ ∩ open-segment (pathstart ?p ′) (pathfinish ?p ′) = {} ∧
?l ′ ⊆ frontier ?H ′

using pocket-fill-line-int-aux8 [OF 1 2 3 4 5 6 7 8 9 ] by blast
moreover have l-image: ?l ′ = f‘?l
proof−

have f a = pathstart ?p ′ ∧ f b = pathfinish ?p ′ using pathfinish-p ′ pathstart-p ′

by presburger
moreover have

∧
a b. f‘(open-segment a b) = open-segment (f a) (f b)

by (simp add: bij bij-is-inj open-segment-linear-image)
ultimately show ?thesis by presburger

qed
moreover have path-image ?q ′ = f‘(path-image ?q) using q-image by blast
ultimately have path-image ?q ∩ ?l = {} by blast
moreover have path-image ?p ∩ ?l = {}
proof−

from 8 have path-image ?p ′ ∩ ?l ′ = {}
proof−

have ?p ′‘{0<..<1} ∩ ?l ′ = {}
by (smt (verit, ccfv-SIG) ∗ 8 Diff-disjoint disjoint-iff frontier-def subset-iff )

moreover have ?p ′ 0 /∈ ?l ′
by (metis ∗ 9 IntI empty-iff pathfinish-in-path-image pathstart-def )

moreover have ?p ′ 1 /∈ ?l ′
by (metis ∗ 9 Int-iff emptyE pathfinish-def pathstart-in-path-image)

ultimately show ?thesis
by (smt (verit, ccfv-SIG) ∗ 1 3 9 Int-Un-eq(4 ) Un-Diff-cancel Un-iff dis-

joint-iff insert-commute simple-path-endless)
qed
thus ?thesis using l-image bij p-image by auto

qed
ultimately have path-image r ∩ ?l = {}

by (simp add: r-union boolean-algebra.conj-disj-distrib inf-commute)
moreover have a ∈ path-image r using pathstart-p r-union by auto
moreover have b ∈ path-image r using pathfinish-p r-union by auto
moreover have (path-image (linepath a b)) = ?l ∪ {a, b} by (simp add:

closed-segment-eq-open)
ultimately show path-image (linepath a b) ∩ path-image r = {a, b} by auto

have l ′-frontier : ?l ′ ⊆ frontier ?H ′ using ∗ by presburger
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have ?l ⊆ frontier H
proof−

have ?l ′ = f‘?l using l-image by blast
moreover have frontier ?H ′ = f‘(frontier H )

by (metis H-image bij bij-is-inj frontier-injective-linear-image)
ultimately have f‘?l ⊆ f‘(frontier H ) using l ′-frontier by argo
thus ?thesis by (simp add: bij bij-is-inj inj-image-subset-iff )

qed
moreover have closed-segment a b = path-image (linepath a b) by simp
moreover have closed-segment a b = ?l ∪ {a, b} by (simp add: closed-segment-eq-open)
moreover have a ∈ frontier H ∧ b ∈ frontier H using assms(6 ) by auto
ultimately show path-image (linepath a b) ⊆ frontier H by simp

qed

lemma linepath-translation: (λv. v − a) ◦ (linepath x y) = linepath ((λv. v − a)
x) ((λv. v − a) y)

by (auto simp: linepath-def algebra-simps)

lemma linepath-image-translation:
path-image ((λv. v − a) ◦ (linepath x y)) = path-image (linepath ((λv. v − a)

x) ((λv. v − a) y))
using linepath-translation by metis

lemma make-polygonal-path-translate:
assumes length vts ≥ 1
shows (λv. v − a) ◦ (make-polygonal-path vts) = make-polygonal-path (map (λv.

v − a) vts)
using assms

proof(induct length vts arbitrary: vts a)
case 0
then show ?case by linarith

next
case (Suc n)
{ assume ∗: Suc n = 1

then have make-polygonal-path vts = linepath (vts!0 ) (vts!0 )
by (metis Cons-nth-drop-Suc One-nat-def Suc.hyps(2 ) Suc.prems drop0 drop-eq-Nil

less-numeral-extra(1 ) make-polygonal-path.simps(2 ))
then have (λv. v − a) ◦ (make-polygonal-path vts) = linepath ((vts!0 ) − a)

((vts!0 ) − a)
by fastforce

then have ?case
by (metis Cons-nth-drop-Suc One-nat-def Suc.hyps(2 ) Suc.prems ∗ drop0

drop-eq-Nil list.map(1 ) list.simps(9 ) make-polygonal-path.simps(2 ) zero-less-one)
} moreover
{ assume ∗: Suc n = 2

then have make-polygonal-path vts = linepath (vts!0 ) (vts!1 )
by (metis (no-types, lifting) Cons-nth-drop-Suc One-nat-def Suc.hyps(2 ) Suc-1

diff-Suc-1 drop0 drop-Suc drop-eq-Nil le-numeral-extra(4 ) length-tl less-numeral-extra(1 )
make-polygonal-path.simps(3 ) nth-tl pos2 )
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then have (λv. v − a) ◦ (make-polygonal-path vts) = linepath ((vts!0 ) − a)
((vts!1 ) − a)

using linepath-translation by auto
then have ?case

by (metis (no-types, lifting) ∗ Cons-nth-drop-Suc One-nat-def Suc.hyps(2 )
Suc-1 drop0 drop-eq-Nil length-map lessI make-polygonal-path.simps(3 ) nat-le-linear
nth-map pos2 )

} moreover
{ assume ∗: Suc n ≥ 3

then obtain h h ′ t where vts: vts = h # h ′ # t
by (metis Suc.hyps(2 ) Suc-le-length-iff numeral-3-eq-3 )

then have (λv. v − a) ◦ (make-polygonal-path (h ′ # t))
= make-polygonal-path (map (λv. v − a) (h ′ # t))

using Suc.hyps(1 ) Suc.hyps(2 ) ∗ by auto
moreover have (λv. v − a) ◦ (linepath h h ′) = linepath (h − a) (h ′ − a)

using linepath-translation by blast
moreover have make-polygonal-path vts = (linepath h h ′) +++ (make-polygonal-path

(h ′ # t))
by (metis ∗ Suc.hyps(2 ) Suc-le-length-iff vts list.sel(3 ) make-polygonal-path.simps(4 )

numeral-3-eq-3 )
ultimately have ?case

by (smt (verit) list.discI list.inject list.simps(9 ) make-polygonal-path.elims
path-compose-join vts)

}
ultimately show ?case using Suc.prems by linarith

qed

lemma pocket-fill-line-int:
assumes polygon-of r vts
defines H ≡ convex hull (set vts)
assumes 2 ≤ i ∧ i < length vts − 1
defines a ≡ hd vts
defines b ≡ vts!i
assumes {a, b} ⊆ frontier H
assumes ∀ j ∈ {0<..<i}. vts!j /∈ frontier H
shows path-image (linepath a b) ∩ path-image r = {a, b}

path-image (linepath a b) ⊆ frontier H
proof−

let ?f = (λv. v − a)::(real^2 ⇒ real^2 )
let ?r ′ = ?f ◦ r
let ?vts ′ = map ?f vts
let ?H ′ = convex hull (set ?vts ′)
let ?a ′ = ?f a
let ?b ′ = ?f b

have 5 : hd ?vts ′ = 0
by (metis One-nat-def a-def assms(3 ) cancel-comm-monoid-add-class.diff-cancel

lessI list.map-sel(1 ) list.size(3 ) nat-diff-split-asm not-less-zero)
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have a ′b ′: ?a ′ = hd ?vts ′ ∧ ?b ′ = ?vts ′!i using 5 assms(3 ) b-def by force

have frontier-H ′: frontier ?H ′ = ?f ‘ (frontier H )
using frontier-translation[of −a H ]

by (metis (no-types, lifting) H-def convex-hull-translation image-cong list.set-map
uminus-add-conv-diff )

have simple-path r using assms(1 ) polygon-def polygon-of-def by blast
then have simple-path ?r ′ using simple-path-translation-eq[of −a r ] by simp
moreover have ?r ′ = make-polygonal-path ?vts ′

using make-polygonal-path-translate assms(1 ) assms(3 ) polygon-of-def by auto
moreover have closed-path ?r ′

by (smt (verit, best) closed-path-def add-diff-inverse-nat assms(1 ) assms(3 ) cal-
culation(1 ) calculation(2 ) dual-order .refl gr-implies-not0 hd-conv-nth length-map
less-Suc-eq-le list.map-disc-iff list.map-sel(1 ) nat-diff-split-asm nth-map plus-1-eq-Suc
polygon-def polygon-of-def polygon-pathfinish polygon-pathstart simple-path-def )

ultimately have 1 : polygon-of ?r ′ ?vts ′

unfolding polygon-of-def polygon-def polygon-def polygonal-path-def by blast
have 2 : 2 ≤ i ∧ i < length ?vts ′ − 1 using assms(3 ) by auto
have 3 : {hd ?vts ′, ?vts ′!i} ⊆ frontier ?H ′

using a ′b ′ frontier-H ′

by (metis (no-types, lifting) assms(6 ) image-empty image-insert image-mono)
have 4 : ∀ j ∈ {0<..<i}. ?vts ′!j /∈ frontier ?H ′

proof
fix j assume ∗: j ∈ {0<..<i}
then have vts!j /∈ frontier H using assms(7 ) by blast
then have ?f (vts!j) /∈ frontier ?H ′ using frontier-H ′ by auto
thus ?vts ′!j /∈ frontier ?H ′ using Nat.le-imp-diff-is-add ∗ assms(3 ) by auto

qed

have path-image (linepath ?a ′ ?b ′) ∩ path-image ?r ′ = {?a ′, ?b ′}
using pocket-fill-line-int-0 (1 )[OF 1 2 3 4 5 ] a ′b ′ by argo

moreover have {?a ′, ?b ′} = ?f‘{a, b} by simp
moreover have path-image (linepath ?a ′ ?b ′) = ?f‘(path-image (linepath a b))

using linepath-image-translation path-image-compose by blast
moreover have path-image ?r ′ = ?f‘(path-image r) using path-image-compose

by blast
ultimately have ?f‘(path-image (linepath a b)) ∩ ?f‘(path-image r) = ?f‘{a, b}

by argo
then have ?f‘(path-image (linepath a b) ∩ path-image r) = ?f‘{a, b} by (simp

add: image-Int)
moreover have bij ?f by (simp add: bij-diff-right)
ultimately show path-image (linepath a b) ∩ path-image r = {a, b}

by (meson bij-is-inj inj-image-eq-iff )

have path-image (linepath ?a ′ ?b ′) ⊆ frontier ?H ′

using pocket-fill-line-int-0 (2 )[OF 1 2 3 4 5 ] a ′b ′ by argo
thus path-image (linepath a b) ⊆ frontier H

by (metis ‹bij ?f › ‹path-image (linepath ?a ′ ?b ′) = ?f‘(path-image (linepath a
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b))› bij-betw-imp-inj-on frontier-H ′ inj-image-subset-iff )
qed

lemma path-connected-simple-path-endless:
assumes simple-path p
shows path-connected (path-image p − {pathstart p, pathfinish p}) (is path-connected

?S)
proof−

have continuous-on {0<..<1} p
using assms(1 ) unfolding simple-path-def path-def

by (meson continuous-on-path dual-order .refl greaterThanLessThan-subseteq-atLeastAtMost-iff
path-def )

moreover have path-connected {0<..<1 ::real} by simp
ultimately have path-connected (p‘{0<..<1}) using path-connected-continuous-image

by blast
thus ?thesis using simple-path-endless assms by metis

qed

lemma simple-loop-split:
assumes simple-path p ∧ closed-path p
assumes simple-path q
assumes path-image q ∩ path-image p = {q 0 , q 1}
assumes path-image q ∩ path-inside p 6= {}
shows q‘{0<..<1} ⊆ path-inside p

proof−
have inside-outside: inside-outside p (path-inside p) (path-outside p)

using Jordan-inside-outside-real2 closed-path-def assms(1 ) inside-outside-def
path-inside-def path-outside-def

by presburger

obtain x where x: x ∈ path-image q ∩ path-inside p using assms(4 ) by blast
then obtain tx where tx ∈ {0 ..1} ∧ q tx = x unfolding path-image-def by

fast
moreover then have tx 6= 0 ∧ tx 6= 1

using assms(3 ) inside-outside x unfolding inside-outside-def by auto
ultimately have tx: tx ∈ {0<..<1} ∧ q tx = x by simp

have connected (q‘{0<..<1})
using connected-simple-path-endless simple-path-endless assms(2 ) by metis

then have path-connected (q‘{0<..<1})
using path-connected-simple-path-endless assms(2 ) simple-path-endless by metis

moreover have q‘{0<..<1} ∩ path-inside p 6= {} using tx x by blast
moreover have q‘{0<..<1} ∩ frontier (path-inside p) = {}

using inside-outside unfolding inside-outside-def
by (smt (verit, del-insts) Diff-Int-distrib2 assms(2 ,3 ) diff-eq inf-compl-bot-right

inf-idem inf-sup-aci(1 ) pathfinish-def pathstart-def simple-path-endless)
ultimately show ?thesis

using path-connected-not-frontier-subset[of q‘{0<..<1} path-inside p] by fast
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qed

lemma pocket-path-interior-aux:
assumes simple-path p ∧ simple-path q
assumes arc p ∧ arc q
assumes q 0 = p 1 ∧ q 1 = p 0
assumes path-image p ∩ path-image q = {p 0 , q 0}
defines A ≡ convex hull (path-image p ∪ path-image q)
defines l ≡ linepath (p 0 ) (p 1 )
assumes p‘{0<..<1} ⊆ interior A
assumes path-image l ⊆ frontier A
assumes path-image q ∩ path-image l = {l 0 , q 0}
shows p‘{0<..<1} ∩ path-inside (l +++ q) 6= {}

simple-path (l +++ q) ∧ closed-path (l +++ q)
path-image p ∩ path-image (l +++ q) = {p 0 , p 1}

proof−
let ?r = l +++ q
let ?Ir = path-inside ?r
let ?Or = path-outside ?r
show closed-simple-r : simple-path ?r ∧ closed-path ?r

using simple-path-join-loop[of l q] assms unfolding pathstart-def pathfinish-def
by (metis (no-types, opaque-lifting) closed-path-def arc-linepath arc-simple-path

dual-order .refl inf-commute linepath-0 ′ linepath-1 ′ pathfinish-def pathfinish-join path-
start-def pathstart-join simple-path-def )

then have inside-outside-r : inside-outside ?r ?Ir ?Or
by (simp add: Jordan-inside-outside-real2 closed-path-def inside-outside-def

path-inside-def path-outside-def )

have l-p-endpoints: l 0 = p 0 ∧ l 1 = p 1 by (simp add: l-def linepath-0 ′

linepath-1 ′)
have l-q-endpoints: l 0 = q 1 ∧ l 1 = q 0 by (simp add: assms(3 ) l-p-endpoints)
have p-int-l: p‘{0<..<1} ∩ path-image l = {} using assms(7 ,8 ) unfolding

frontier-def by blast
have q-int-l: q‘{0<..<1} ∩ path-image l = {}

by (metis (no-types, opaque-lifting) assms(9 ) Diff-iff Int-Diff all-not-in-conv
assms(1 ) assms(3 ) inf-sup-aci(1 ) insert-commute l-def linepath-0 ′ pathfinish-def
pathstart-def simple-path-endless)

have interval: {0 ..1 ::real} = {0<..<1} ∪ {0 , 1} by fastforce
have lf-l: loop-free l

using closed-simple-r not-loop-free-first-component simple-path-def by blast

let ?p ′ = reversepath p
let ?s = l +++ ?p ′

let ?Is = path-inside ?s
let ?Os = path-outside ?s
have arc ?p ′ ∧ arc l

by (metis assms(2 ) arc-linepath arc-reversepath arc-simple-path l-def pathfin-
ish-def pathstart-def )

moreover have p ′-int-l: path-image ?p ′ ∩ path-image l = {?p ′ 0 , l 0}
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proof−
have path-image p ∩ path-image l = {l 0 , l 1}
proof−

have {l 0 , l 1} ⊆ path-image p ∩ path-image l
using assms(3 ) assms(4 ) l-def linepath-0 ′ linepath-1 ′ by fastforce

moreover have path-image p = p‘{0<..<1} ∪ {p 0 , p 1}
using interval unfolding path-image-def by blast

ultimately show ?thesis using p-int-l l-p-endpoints by simp
qed
moreover have ?p ′ 0 = l 1 by (simp add: l-def linepath-1 ′ reversepath-def )
moreover have path-image p = path-image ?p ′ by simp
ultimately show ?thesis by (metis doubleton-eq-iff )

qed
ultimately have closed-simple-s: closed-path ?s ∧ simple-path ?s

using simple-path-join-loop[of l ?p ′] assms unfolding pathstart-def pathfin-
ish-def

by (metis (no-types, opaque-lifting) closed-path-def dual-order .refl inf-commute
insert-commute linepath-0 ′ linepath-1 ′ pathfinish-def pathfinish-join pathfinish-reversepath
pathstart-def pathstart-join pathstart-reversepath simple-path-def )

then have inside-outside-s: inside-outside ?s ?Is ?Os
by (simp add: Jordan-inside-outside-real2 closed-path-def inside-outside-def

path-inside-def path-outside-def )

have r-inside-subset: path-inside ?r ⊆ interior A
proof−

have path-image l ⊆ A ∧ path-image q ⊆ A
by (metis A-def Un-upper2 assms(1 ) assms(8 ) compact-Un compact-convex-hull

compact-simple-path-image frontier-subset-compact hull-subset subset-trans)
thus ?thesis
by (metis (no-types, lifting) A-def closed-simple-r convex-contains-simple-closed-path-imp-contains-path-inside

convex-convex-hull inside-outside-def inside-outside-r interior-eq interior-mono sub-
set-path-image-join)

qed
have s-inside-subset: path-inside ?s ⊆ interior A
proof−

have path-image l ⊆ A ∧ path-image p ⊆ A
by (metis A-def Un-upper1 assms(1 ) assms(8 ) compact-Un compact-convex-hull

compact-simple-path-image frontier-subset-compact hull-subset subset-trans)
thus ?thesis

by (metis A-def Jordan-inside-outside-real2 closed-path-def closed-simple-s
convex-contains-simple-closed-path-imp-contains-path-inside convex-convex-hull in-
terior-maximal path-image-reversepath path-inside-def subset-path-image-join)

qed

have q-outside: q‘{0<..<1} ⊆ path-outside ?s
proof(rule ccontr)

let ?ep = {v. v extreme-point-of A}
assume ¬ q‘{0<..<1} ⊆ path-outside ?s
then have ∃ x ∈ q‘{0<..<1}. x ∈ path-inside ?s ∪ path-image ?s
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using inside-outside-s unfolding inside-outside-def by auto
then have q‘{0<..<1} ⊆ path-inside ?s

using simple-loop-split[of p q]
by (smt (verit) DiffE IntI Int-Un-distrib2 closed-path-def UnE ‹arc (reversepath

p) ∧ arc l› arc-imp-path assms(1 ) assms(2 ) assms(3 ) assms(4 ) closed-simple-r
closed-simple-s doubleton-eq-iff emptyE inf .commute l-def path-image-join path-image-reversepath
path-join-eq pathfinish-join pathfinish-linepath pathstart-join pathstart-linepath sim-
ple-loop-split simple-path-endless simple-path-joinE sup-absorb2 )

then have q‘{0<..<1} ∩ frontier A = {} using frontier-def s-inside-subset by
fastforce

then have (path-image p ∪ path-image q) ∩ frontier A = {p 0 , p 1}
by (smt (z3 ) Diff-disjoint Int-Un-distrib Un-Diff-Int Un-Int-eq(3 ) assms(1 )

assms(3 ) assms(4 ) assms(7 ) assms(8 ) assms(9 ) frontier-def inf .commute inf .orderE
inf-idem inf-left-commute insert-commute l-p-endpoints pathfinish-def pathstart-def
simple-path-endless)

moreover have ?ep⊆ path-image p ∪ path-image q
by (simp add: extreme-points-of-convex-hull A-def )

moreover have ?ep ⊆ frontier A
using extreme-point-not-in-interior

proof−
have ?ep ∩ interior A = {}

using extreme-point-not-in-interior by blast
thus ?thesis
by (smt (verit, ccfv-SIG) A-def Int-Un-distrib2 Un-Diff-cancel assms(1 ) calcu-

lation(2 ) closure-convex-hull compact-Un compact-simple-path-image dual-order .trans
frontier-def hull-subset inf .absorb-iff2 inf-commute sup-bot-left)

qed
ultimately have ∗: ?ep ⊆ {p 0 , p 1} by auto
have A = path-image l
proof−

have convex A ∧ compact A
by (simp add: A-def arc-imp-path assms(2 ) compact-Un compact-convex-hull

compact-path-image)
then have A-ep: A = convex hull ?ep using Krein-Milman-Minkowski by

blast
moreover have finite ?ep using ∗ infinite-super by auto
moreover have A 6= {} by (simp add: A-def )
moreover have ∀ x. A 6= {x} using assms(7 ) by fastforce

ultimately have card ?ep ≥ 2 using convex-hull-two-extreme-points by metis
then have ?ep = {p 0 , p 1}

by (metis ∗ One-nat-def Suc-1 add-leD2 card.empty card-insert-disjoint
card-seteq finite.emptyI finite.insertI insert-absorb plus-1-eq-Suc)

then have A = closed-segment (p 0 ) (p 1 ) by (metis A-ep segment-convex-hull)
thus ?thesis by (simp add: l-def )

qed
then have interior A = {}

by (metis A-def Diff-eq-empty-iff assms(1 ) assms(8 ) closure-convex-hull
compact-Un compact-simple-path-image double-diff dual-order .refl frontier-def in-
terior-subset)
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thus False using inside-outside-def inside-outside-r r-inside-subset by auto
qed

let ?e = l (1/2 )
have l-on-r-frontier : path-image l ⊆ frontier (path-inside ?r)

using inside-outside-r unfolding inside-outside-def
by (metis Un-upper1 closed-simple-r ‹arc (reversepath p) ∧ arc l› arc-def

assms(2 ) path-image-join path-join-eq simple-path-def )
moreover have path-image l ⊆ frontier (path-inside ?s)

using inside-outside-s unfolding inside-outside-def
by (simp add: l-def path-image-join pathstart-def reversepath-def )

ultimately have e-frontier : ?e ∈ frontier (path-inside ?r) ∧ ?e ∈ frontier
(path-inside ?s)

by (simp add: path-defs(4 ) subsetD)

have e-notin: ?e /∈ path-image p ∪ path-image q
proof−

have ?e /∈ path-image p
proof−

have ?e 6= l 0 ∧ ?e 6= l 1 using lf-l unfolding loop-free-def by fastforce
then have ?e 6= p 0 ∧ ?e 6= p 1 using l-p-endpoints by simp
moreover have ?e /∈ p‘{0<..<1} using p-int-l unfolding path-image-def

by fastforce
ultimately show ?thesis using p-int-l unfolding path-image-def by fastforce
qed
moreover have ?e /∈ path-image q
proof−

have ?e 6= l 0 ∧ ?e 6= l 1 using lf-l unfolding loop-free-def by fastforce
then have ?e 6= q 0 ∧ ?e 6= q 1 using l-q-endpoints by simp
moreover have ?e /∈ q‘{0<..<1} using q-int-l unfolding path-image-def

by fastforce
ultimately show ?thesis using q-int-l unfolding path-image-def by fastforce

qed
ultimately show ?thesis by blast

qed
obtain ε where ε: ε > 0 ∧ ball ?e ε ∩ path-image p = {} ∧ ball ?e ε ∩ path-image

q = {}
proof−

have ?e /∈ path-image p using e-notin by simp
moreover have compact (path-image p) by (simp add: assms(2 ) compact-arc-image)
moreover have ?e /∈ path-image q using e-notin by simp

moreover have compact (path-image q) by (simp add: assms(2 ) compact-arc-image)
ultimately obtain ε1 ε2 where
ε1 > 0 ∧ ball ?e ε1 ∩ path-image p = {} ∧ ε2 > 0 ∧ ball ?e ε2 ∩ path-image

q = {}
by (meson assms(1 ) not-on-path-ball simple-path-imp-path)

thus ?thesis using that[of min ε1 ε2 ] by (simp add: disjoint-iff )
qed
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obtain z-r where z-r : z-r ∈ ball ?e ε ∩ path-inside ?r
by (metis e-frontier ε all-not-in-conv disjoint-iff frontier-straddle mem-ball)

obtain z-s where z-s: z-s ∈ ball ?e ε ∩ path-inside ?s
by (metis e-frontier ε all-not-in-conv disjoint-iff frontier-straddle mem-ball)

have z-s-in-r : z-s ∈ path-inside ?r
proof−

let ?l-z = linepath z-r z-s
have z-r ∈ interior A ∧ z-s ∈ interior A

using r-inside-subset s-inside-subset z-r z-s by blast
then have path-image ?l-z ⊆ interior A by (simp add: A-def closed-segment-subset)
then have 1 : path-image ?l-z ∩ path-image l = {}

by (smt (verit) Diff-iff assms(8 ) disjoint-iff frontier-def subsetD)

have convex (ball ?e ε) by simp
then have path-image ?l-z ⊆ ball ?e ε

by (metis IntD1 closed-segment-subset path-image-linepath z-r z-s)
then have 2 : path-image ?l-z ∩ path-image q = {} using ε by blast

show ?thesis
by (smt (verit, best) 1 2 IntI Int-Un-distrib Int-Un-distrib2 Jordan-inside-outside-real2

closed-path-def ε ‹path-image (linepath z-r z-s) ⊆ ball (l (1 / 2 )) ε› arc-def assms(2 )
closed-simple-r emptyE in-mono inf .assoc le-iff-inf path-connected-not-frontier-subset
path-connected-path-image path-image-join path-inside-def path-join-path-ends path-linepath
pathfinish-in-path-image pathfinish-linepath pathstart-in-path-image pathstart-linepath
sup.order-iff z-r)

qed

let ?xq = q (1/2 )
let ?z = z-s

let ?v = ?xq − ?z
let ?ray = λd. ?z + d ∗R ?v
let ?rayline = linepath ?z ?xq
have z-ray: ?z = ?ray 0 by simp
have xq-ray: ?xq = ?ray 1 by simp
have xq-rayline: ?xq = ?rayline 1 unfolding linepath-def by simp
have ?xq ∈ path-image ?r
by (metis (mono-tags, opaque-lifting) Un-iff atLeastAtMost-iff imageI l-q-endpoints

less-eq-real-def path-defs(4 ) path-image-join pathfinish-def pathstart-def pos-half-less
zero-less-divide-1-iff zero-less-numeral zero-less-one)

then have xq-frontier : ?xq ∈ frontier (path-inside ?r)
using inside-outside-r unfolding inside-outside-def by auto

have xq-neq-z: ?xq 6= ?z
proof−

have ?xq ∈ path-image ?r
proof−

have q (1 / 2 ) ∈ path-image q
by (simp add: path-defs(4 ))
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thus ?thesis
by (simp add: l-q-endpoints path-image-join pathfinish-def pathstart-def )

qed
thus ?thesis using z-s-in-r inside-outside-r unfolding inside-outside-def by

blast
qed
then have v-neq-0 : ?v 6= 0 by simp

have bounded (path-inside ?r) using inside-outside-r unfolding inside-outside-def
by blast

moreover have ?z ∈ interior (path-inside ?r)
by (metis inside-outside-def inside-outside-r interior-eq z-s-in-r)

ultimately obtain d where d: 0 < d ∧ ?ray d ∈ frontier (path-inside ?r)
∧ (∀ e ∈ {0 ..<d}. ?ray e ∈ interior (path-inside ?r))
using ray-to-frontier [of path-inside ?r ?z ?v] by (metis atLeastLessThan-iff

v-neq-0 )

have interior-inside-r : interior (path-inside ?r) = path-inside ?r
by (meson inside-outside-def inside-outside-r interior-eq)

have d-leq-1 : d ≤ 1
proof(rule ccontr)

assume ¬ d ≤ 1
then have d > 1 by simp
moreover have ?ray 1 ∈ frontier (path-inside ?r) using xq-ray xq-frontier by

argo
ultimately show False using d unfolding frontier-def by fastforce

qed

have z-inside: ?z ∈ path-inside ?s using z-s by blast
moreover have ?rayline d ∈ path-outside ?s
proof−

have ?rayline d /∈ path-image l if d < 1
proof−

have ?rayline 0 ∈ interior A
using r-inside-subset by (simp add: linepath-0 ′ subsetD z-s-in-r)

moreover have path-image ?rayline ⊆ closure A
proof−

have closure A = A
using A-def assms(1 ) closure-convex-hull compact-Un compact-simple-path-image

by blast
moreover have ?rayline 0 ∈ A using ‹?rayline 0 ∈ interior A› inte-

rior-subset by blast
moreover have ?rayline 1 ∈ A

using path-image-def A-def hull-subset xq-rayline by fastforce
ultimately show ?thesis

by (metis A-def closed-segment-subset convex-convex-hull linepath-0 ′

linepath-1 ′ path-image-linepath)
qed
moreover have ¬ path-image ?rayline ⊆ rel-frontier A
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proof−
have path-image ?rayline ∩ interior A 6= {}

using ‹?rayline 0 ∈ interior A› unfolding path-image-def by fastforce
moreover have interior A ∩ rel-frontier A = {}

using rel-frontier-def rel-interior-nonempty-interior by auto
ultimately show ?thesis by blast

qed
ultimately have rel-interior (path-image ?rayline) ⊆ rel-interior A

using subset-rel-interior-convex[of path-image ?rayline A] by (simp add:
A-def )

moreover have interior A = rel-interior A
using ‹?rayline 0 ∈ interior A› rel-interior-nonempty-interior by auto

moreover have ?rayline d ∈ ?rayline‘{0<..<1} using that d by simp
ultimately show ?thesis
by (smt (verit, del-insts) DiffD1 DiffD2 Un-iff xq-neq-z arc-linepath arc-simple-path

assms(8 ) closed-segment-eq-open frontier-def path-image-linepath pathfinish-linepath
pathstart-linepath rel-interior-closed-segment simple-path-endless subset-eq)

qed
moreover have ?rayline d /∈ path-image l if d = 1

using that q-int-l unfolding linepath-def by (simp add: disjoint-iff )
moreover have ?rayline d ∈ path-image ?r

by (metis (no-types, lifting) add-diff-eq d diff-add-eq inside-outside-def in-
side-outside-r linepath-def scale-left-diff-distrib scale-one scale-right-diff-distrib)

ultimately show ?thesis
by (smt (verit, ccfv-SIG) d-leq-1 Diff-iff Int-iff closed-path-def ‹arc (reversepath

p) ∧ arc l› arc-def assms(1 ) assms(3 ) assms(9 ) closed-simple-r insert-commute
l-def l-p-endpoints not-in-path-image-join path-join-eq pathfinish-join pathfinish-linepath
pathstart-join pathstart-linepath q-outside simple-path-def simple-path-endless sub-
setD)

qed
moreover have ?z ∈ ?rayline‘{0 ..d}

using z-ray unfolding linepath-def
by (smt (verit, del-insts) add.commute atLeastAtMost-iff cancel-comm-monoid-add-class.diff-cancel

d diff-zero image-iff less-eq-real-def segment-degen-1 )
moreover have ?rayline d ∈ ?rayline‘{0 ..d} by (simp add: d less-eq-real-def )
ultimately have ?rayline‘{0 ..d} ∩ path-inside ?s 6= {} ∧ ?rayline‘{0 ..d} ∩

path-outside ?s 6= {}
by blast

then have ?rayline‘{0 ..d} ∩ path-inside ?s 6= {} ∧ ?rayline‘{0 ..d} ∩ − path-inside
?s 6= {}

using inside-outside-s unfolding inside-outside-def by (meson ComplI dis-
joint-iff )

moreover have path-connected (?rayline‘{0 ..d})
proof−

have ?rayline‘{0 ..d} = path-image (subpath 0 d ?rayline) by (simp add: d
path-image-subpath)

moreover have path (subpath 0 d ?rayline) using d d-leq-1 by auto
ultimately show ?thesis by (metis path-connected-path-image)

qed
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ultimately have ?rayline‘{0 ..d} ∩ frontier (path-inside ?s) 6= {}
using path-connected-frontier [of ?rayline‘{0 ..d} path-inside ?s] by (metis dis-

joint-iff )
then have ?rayline‘{0 ..d} ∩ path-image ?s 6= {} using inside-outside-s unfold-

ing inside-outside-def by argo
moreover have ?rayline 0 /∈ path-image ?s
proof−

have ?xq 6= p 0
by (metis (full-types) disjoint-iff greaterThanLessThan-iff imageI l-p-endpoints

pathstart-def pathstart-in-path-image pos-half-less q-int-l zero-less-divide-1-iff zero-less-numeral
zero-less-one)

moreover have ?xq 6= p 1
by (metis (full-types) disjoint-iff greaterThanLessThan-iff imageI l-p-endpoints

pathfinish-def pathfinish-in-path-image pos-half-less q-int-l zero-less-divide-1-iff zero-less-numeral
zero-less-one)

moreover have ?xq /∈ p‘{0<..<1}
proof−

have ?xq ∈ q‘{0<..<1} by fastforce
thus ?thesis by (metis assms(1 ,3 ,4 ) Diff-iff Int-iff pathfinish-def pathstart-def

simple-path-endless)
qed
moreover have ?xq /∈ path-image l

by (metis disjoint-iff greaterThanLessThan-iff imageI pos-half-less q-int-l
zero-less-divide-1-iff zero-less-numeral zero-less-one)

ultimately show ?thesis
by (metis (no-types, lifting) ComplD UnI1 z-inside inside-outside-def in-

side-outside-s linepath-0 ′)
qed
moreover have ?rayline d /∈ path-image ?s

using ‹?rayline d ∈ path-outside ?s› inside-outside-def inside-outside-s by auto
moreover have {0 ..d} = {0<..<d} ∪ {0 , d} using d by fastforce
ultimately have ?rayline‘{0<..<d} ∩ path-image ?s 6= {} unfolding path-image-def

by blast
moreover have ?rayline‘{0<..<d} = ?ray‘{0<..<d}

unfolding linepath-def by (auto simp: algebra-simps)
moreover have ?ray‘{0<..<d} ⊆ path-inside ?r using d interior-inside-r by

fastforce
ultimately have path-image ?s ∩ path-inside ?r 6= {} by blast
moreover have path-image l ∩ path-inside ?r = {}

by (metis (no-types, opaque-lifting) Diff-disjoint Int-assoc l-on-r-frontier fron-
tier-def inf .orderE inf-bot-left inf-sup-aci(1 ) interior-inside-r)

moreover have p‘{0<..<1} = path-image ?s − path-image l
proof−

have path-image ?s = path-image p ∪ path-image l
by (simp add: l-p-endpoints path-image-join pathfinish-def sup-commute)

moreover have p‘{0<..<1} = path-image p − {p 0 , p 1}
by (metis assms(1 ) pathfinish-def pathstart-def simple-path-endless)

ultimately have path-image ?s = p‘{0<..<1} ∪ {p 0 , p 1} ∪ path-image l
using assms(3 ) assms(9 ) l-p-endpoints by auto
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moreover have p 1 ∈ path-image l ∧ p 0 ∈ path-image l by (simp add: l-def )
ultimately show ?thesis using p-int-l by blast

qed
ultimately show p‘{0<..<1} ∩ path-inside (l +++ q) 6= {} by auto

show path-image p ∩ path-image (l +++ q) = {p 0 , p 1}
by (smt (verit, best) Int-Un-distrib Un-absorb assms(1 ) assms(3 ) assms(4 )

closed-simple-r insert-commute l-p-endpoints p ′-int-l path-image-join path-image-reversepath
path-join-path-ends reversepath-def simple-path-imp-path)
qed

lemma pocket-path-interior :
assumes simple-path p ∧ simple-path q
assumes arc p ∧ arc q
assumes q 0 = p 1 ∧ q 1 = p 0
assumes path-image p ∩ path-image q = {p 0 , q 0}
defines A ≡ convex hull (path-image p ∪ path-image q)
defines l ≡ linepath (p 0 ) (p 1 )
assumes p‘{0<..<1} ⊆ interior A
assumes path-image l ⊆ frontier A
assumes path-image q ∩ path-image l = {l 0 , q 0}
shows p‘{0<..<1} ⊆ path-inside (l +++ q)
using pocket-path-interior-aux[of p q] simple-loop-split[of l +++ q p] assms
by (metis (no-types, lifting) DiffE disjoint-iff simple-path-endless)

lemma pocket-path-good:
assumes polygon (make-polygonal-path vts)
assumes vts!0 ∈ frontier (convex hull (set vts))
assumes vts!1 /∈ frontier (convex hull (set vts))
assumes ¬ convex (path-image (make-polygonal-path vts) ∪ path-inside (make-polygonal-path

vts))
defines pocket-path-vts ≡ construct-pocket-0 vts (set vts ∩ frontier (convex hull

(set vts)))
defines pocket ≡ make-polygonal-path (pocket-path-vts @ [pocket-path-vts!0 ])
defines filled-vts ≡ fill-pocket-0 vts (length pocket-path-vts)
defines filled-p ≡ make-polygonal-path filled-vts
defines a ≡ hd pocket-path-vts
defines b ≡ last pocket-path-vts
defines good-pocket-path-vts ≡ tl (butlast pocket-path-vts)
shows polygon filled-p

is-polygon-split-path (butlast filled-vts) 0 1 good-pocket-path-vts
polygon pocket
card (set pocket-path-vts) < card (set vts)
card (set filled-vts) < card (set vts)

proof−
let ?p = make-polygonal-path vts
let ?A = set vts ∩ frontier (convex hull (set vts))
let ?filled-vts-tl = tl filled-vts
let ?filled-p-tl = make-polygonal-path ?filled-vts-tl
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let ?pocket-vts = pocket-path-vts @ [pocket-path-vts!0 ]
let ?pocket-path = make-polygonal-path pocket-path-vts
let ?l = linepath a b

let ?r = min-nonzero-index-in-set vts ?A
have int-A-nonempty: set (tl vts) ∩ ?A 6= {}
by (metis (mono-tags, lifting) IntI Nitpick.size-list-simp(2 ) Suc-eq-plus1 assms(1 )

assms(2 ) card-length empty-iff have-wraparound-vertex last-in-set last-tl le-add1
le-trans not-less-eq-eq numeral-3-eq-3 polygon-at-least-3-vertices snoc-eq-iff-butlast)
then have r-defined: nonzero-index-in-set vts ?A ?r ∧ (∀ i < ?r . ¬ nonzero-index-in-set

vts ?A i)
using min-nonzero-index-in-set-defined[of vts ?A] by fast

have two-vts-on-frontier : 2 ≤ card ?A
by (metis convex-hull-two-vts-on-frontier One-nat-def Suc-1 add-leD2 assms(1 )

numeral-3-eq-3 plus-1-eq-Suc polygon-at-least-3-vertices)
moreover have frontier-vts-subset: ?A ⊆ set vts by force
moreover have distinct-vts: distinct (butlast vts)

using assms(1 ) polygon-def simple-polygonal-path-vts-distinct by blast
moreover have hd-last-vts: hd vts = last vts

by (metis assms(1 ) have-wraparound-vertex hd-conv-nth snoc-eq-iff-butlast)
ultimately have a-neq-b: a 6= b

using a-def b-def construct-pocket-0-first-last-distinct pocket-path-vts-def by
presburger

have length filled-vts ≥ 2
unfolding filled-vts-def fill-pocket-0-def
by (smt (verit, best) One-nat-def Suc-1 Suc-diff-Suc a-def a-neq-b b-def con-

struct-pocket-0-def diff-is-0-eq diff-zero hd-Nil-eq-last length-drop length-greater-0-conv
length-tl list.sel(3 ) not-less-eq-eq pocket-path-vts-def sublist-length-le sublist-take)

moreover have filled-vts-0 : a = filled-vts!0
unfolding filled-vts-def fill-pocket-0-def a-def pocket-path-vts-def construct-pocket-0-def
by auto

moreover have filled-vts-1 : b = filled-vts!1
by (smt (verit, del-insts) filled-vts-def fill-pocket-0-def b-def pocket-path-vts-def

construct-pocket-0-def Cons-nth-drop-Suc Nitpick.size-list-simp(2 ) a-def a-neq-b add.right-neutral
drop0 drop-eq-Nil hd-Nil-eq-last last-conv-nth length-take length-tl linorder-not-less
list.sel(3 ) min.absorb4 nat-le-linear not-less-eq-eq nth-drop nth-take plus-1-eq-Suc
take-all-iff zero-less-diff )

ultimately have filled-vts: filled-vts = [a, b] @ tl ?filled-vts-tl
by (metis (no-types, lifting) Nitpick.size-list-simp(2 ) One-nat-def Suc-1 ap-

pend-Nil append-eq-Cons-conv length-greater-0-conv list.collapse not-less-eq-eq nth-Cons-0
nth-tl order-less-le-trans pos2 )

have 1 : polygon-of ?p vts unfolding polygon-of-def using assms(1 ) by blast
have 2 : 2 ≤ ?r ∧ ?r < length vts − 1
proof−

have ?r 6= 0 ∧ ?r 6= 1
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using assms(2 ,3 ) min-nonzero-index-in-set-def nonzero-index-in-set-def r-defined
by fastforce

then have 1 : ?r ≥ 2 by simp

have ∃ i ∈ {0<..<length vts − 1}. vts!i ∈ frontier (convex hull (set vts))
proof−

have card ((set vts) ∩ frontier (convex hull (set vts))) ≥ 2
using two-vts-on-frontier by blast

then obtain v where v ∈ set vts ∧ v ∈ frontier (convex hull set vts) ∧ v 6=
hd vts

by (metis hd-last-vts Int-iff a-neq-b assms(2 ) b-def construct-pocket-0-last-in-set
convex-hull-empty empty-set fill-pocket-0-def filled-vts-0 filled-vts-def frontier-empty
hd-conv-nth int-A-nonempty last-in-set nth-Cons-0 pocket-path-vts-def )

thus ?thesis
by (metis hd-last-vts assms(1 ) in-set-conv-nth diff-Suc-1 gr0-implies-Suc

greaterThanLessThan-iff have-wraparound-vertex last-conv-nth le-eq-less-or-eq less-Suc-eq-le
less-one nat.simps(3 ) nat-le-linear snoc-eq-iff-butlast)

qed
then have 2 : ?r < length vts − 1

using r-defined
unfolding min-nonzero-index-in-set-def nonzero-index-in-set-def

by (smt (verit, del-insts) Int-iff add.commute add-diff-cancel-left ′ add-diff-inverse-nat
greaterThanLessThan-iff less-imp-diff-less mem-Collect-eq nat-less-le nth-mem)

show ?thesis using 1 2 by blast
qed
have ab: a = hd vts ∧ b = vts!?r
by (metis (no-types, lifting) 2 Suc-1 int-A-nonempty ab-semigroup-add-class.add-ac(1 )

add-Suc-right b-def construct-pocket-0-def fill-pocket-0-def filled-vts-0 filled-vts-def
hd-drop-conv-nth last-snoc le-add-diff-inverse2 min-nonzero-index-in-set-bound nth-Cons-0
plus-1-eq-Suc pocket-path-vts-def take-hd-drop)

have 3 : {hd vts, vts ! ?r} ⊆ frontier (convex hull set vts)
using ab assms(1 ) assms(2 ) assms(3 ) b-def construct-pocket-is-pocket is-pocket-0-def

pocket-path-vts-def
by fastforce

have 4 : ∀ j∈{0<..<?r}. vts ! j /∈ frontier (convex hull set vts)
using r-defined unfolding nonzero-index-in-set-def by fastforce

have l-int-p: path-image (linepath (hd vts) (vts ! ?r)) ∩ path-image ?p = {hd vts,
vts ! ?r}

using pocket-fill-line-int[OF 1 2 3 4 ] by blast
have l-frontier : path-image (linepath (hd vts) (vts ! ?r)) ⊆ frontier (convex hull

(set vts))
using pocket-fill-line-int[OF 1 2 3 4 ] by blast

have path-image ?filled-p-tl ∩ path-image ?l = {a, b}
proof−

have path-image (linepath (hd vts) (vts ! ?r)) ∩ path-image ?p = {hd vts, vts !
?r}
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using pocket-fill-line-int[OF 1 2 3 4 ] by blast
moreover have path-image ?filled-p-tl ⊆ path-image ?p
proof−

have sublist ?filled-vts-tl vts by (simp add: fill-pocket-0-def filled-vts-def )
thus ?thesis using ‹2 ≤ length filled-vts› sublist-path-image-subset by auto

qed
moreover have a ∈ path-image ?filled-p-tl ∧ b ∈ path-image ?filled-p-tl

by (smt (verit, best) Cons-nth-drop-Suc Diff-insert-absorb One-nat-def Suc-1
‹2 ≤ length filled-vts› drop0 drop-eq-Nil fill-pocket-0-def filled-vts-0 filled-vts-1 filled-vts-def
hd-last-vts last-drop last-in-set linorder-not-le list.sel(3 ) not-less-eq-eq nth-Cons-0
order-less-le-trans pathstart-in-path-image polygon-pathstart pos2 subset-Diff-insert
vertices-on-path-image)

ultimately show ?thesis using ab by auto
qed
moreover have hd-filled: hd ?filled-vts-tl = last [a, b]
unfolding filled-vts-def fill-pocket-0-def pocket-path-vts-def construct-pocket-0-def
by (metis construct-pocket-0-def fill-pocket-0-def filled-vts filled-vts-def hd-append2

last-ConsL last-ConsR list.sel(1 ) list.sel(3 ) list.simps(3 ) pocket-path-vts-def tl-append2 )
moreover have last-filled: last ?filled-vts-tl = hd [a, b]
unfolding filled-vts-def fill-pocket-0-def pocket-path-vts-def construct-pocket-0-def

using r-defined a-def assms(1 ) assms(2 ) assms(3 ) construct-pocket-is-pocket
hd-last-vts is-pocket-0-def pocket-path-vts-def

by fastforce
moreover have loop-free ?filled-p-tl
proof−

have sublist ?filled-vts-tl vts
unfolding filled-vts-def fill-pocket-0-def pocket-path-vts-def construct-pocket-0-def

using r-defined
by force

thus ?thesis
by (smt (verit, del-insts) Nitpick.size-list-simp(2 ) Suc-1 ‹2 ≤ length filled-vts›

‹b = filled-vts ! 1 › a-neq-b assms(1 ) diff-is-0-eq dual-order .strict-trans1 last-conv-nth
last-filled le-antisym length-greater-0-conv length-tl list.sel(1 ) list.size(3 ) not-less-eq-eq
nth-tl polygon-def pos2 simple-path-def sublist-is-loop-free sublist-length-le)

qed
moreover have loop-free ?l using a-neq-b linepath-loop-free by blast
moreover have filled-vts: filled-vts = [a, b] @ tl ?filled-vts-tl using filled-vts by

blast
moreover have arc ?l

by (smt (verit) arc-linepath calculation(5 ) constant-linepath-is-not-loop-free)
moreover have arc ?filled-p-tl

by (smt (z3 ) arc-simple-path calculation(2 ) calculation(3 ) calculation(4 ) cal-
culation(7 ) hd-Nil-eq-last hd-conv-nth last.simps last-conv-nth list.discI list.sel(1 )
make-polygonal-path-gives-path pathfinish-linepath pathstart-linepath polygon-pathfinish
polygon-pathstart simple-path-def )

moreover have ?l = make-polygonal-path [a, b]
using make-polygonal-path.simps by presburger

ultimately have lf-filled: loop-free filled-p
by (smt (z3 ) Nat.add-diff-assoc One-nat-def Suc-pred ′ add-Suc-shift append-butlast-last-id
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arc-distinct-ends butlast.simps(2 ) filled-p-def hd-Nil-eq-last hd-conv-nth inf-sup-aci(1 )
last-ConsR less-numeral-extra(1 ) list.sel(1 ) list.simps(3 ) list.size(3 ) list.size(4 )
loop-free-append nth-append-length order-eq-refl plus-1-eq-Suc polygon-pathfinish poly-
gon-pathstart)

show polygon-filled-p: polygon filled-p
unfolding polygon-def

by (metis closed-path-def UNIV-def append-is-Nil-conv filled-p-def filled-vts
hd-append2 last.simps last-conv-nth last-filled lf-filled list.discI list.exhaust-sel make-polygonal-path-gives-path
nth-Cons-0 polygon-pathfinish polygon-pathstart polygonal-path-def rangeI simple-path-def )

have {a, b} ⊆ set filled-vts
using filled-vts by (smt (z3 ) UnCI empty-set list.simps(15 ) set-append sub-

set-iff )
moreover have pocket-path: ?pocket-path = make-polygonal-path ([a] @ good-pocket-path-vts

@ [b])
by (metis (no-types, lifting) a-def a-neq-b append-Cons append-Nil append-butlast-last-id

b-def good-pocket-path-vts-def hd-Nil-eq-last hd-conv-nth last-conv-nth length-butlast
list.collapse list.size(3 ) tl-append2 )

moreover have path-image ?pocket-path ⊆ path-inside filled-p ∪ {a, b}
proof−

let ?p = ?pocket-path
let ?q = ?filled-p-tl
let ?H = convex hull (path-image ?p ∪ path-image ?q)
have b: pocket-path-vts = take (?r + 1 ) vts

unfolding pocket-path-vts-def construct-pocket-0-def by blast
moreover then have c ′: ?filled-vts-tl = drop ?r vts unfolding filled-vts-def

fill-pocket-0-def
using 2 by fastforce

ultimately have vts = pocket-path-vts @ tl ?filled-vts-tl
by (metis Suc-eq-plus1 append-take-drop-id drop-Suc tl-drop)

then have path-image ?p = path-image ?p ∪ path-image ?q
by (metis Suc-1 a-def a-neq-b b-def diff-is-0-eq hd-Nil-eq-last hd-conv-nth

hd-filled last.simps last-conv-nth last-filled list.discI list.sel(1 ) make-polygonal-path-image-append-alt
not-less-eq-eq path-image-join polygon-pathfinish polygon-pathstart)

moreover have convex hull (path-image ?p) = convex hull (set vts)
by (metis (no-types, lifting) 1 Un-subset-iff convex-hull-of-polygon-is-convex-hull-of-vts

hull-Un-subset hull-mono subset-antisym vertices-on-path-image)
ultimately have H-eq: ?H = convex hull (set vts) by presburger

have a: ?p = make-polygonal-path vts ∧ loop-free ?p
using assms(1 ) polygon-def simple-path-def by blast

have c: ?filled-vts-tl = drop ((?r + 1 ) − 1 ) vts using c ′ by simp
have h: 1 ≤ ?r + 1 ∧ ?r + 1 < length vts using 2 by linarith
have path-image ?p ∩ path-image ?q ⊆ {?p 0 , ?q 0}

using loop-free-split-int[OF a b c - - - h] by (simp add: pathstart-def )
moreover have ?p 0 ∈ path-image ?p ∧ ?p 0 ∈ path-image ?q

by (metis a-def a-neq-b b-def hd-Nil-eq-last hd-conv-nth hd-filled last.simps
last-conv-nth last-filled list.sel(1 ) pathfinish-in-path-image pathstart-def pathstart-in-path-image
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polygon-pathfinish polygon-pathstart)
moreover have ?q 0 ∈ path-image ?p ∧ ?q 0 ∈ path-image ?q

by (metis a-def a-neq-b b-def hd-Nil-eq-last hd-conv-nth hd-filled last.simps
last-conv-nth last-filled list.sel(1 ) pathfinish-in-path-image pathstart-def pathstart-in-path-image
polygon-pathfinish polygon-pathstart)

ultimately have 4 : path-image ?p ∩ path-image ?q = {?p 0 , ?q 0} by fastforce

have 1 : simple-path ?p ∧ simple-path ?q
by (metis (no-types, lifting) One-nat-def Suc-1 Suc-le-eq ‹arc ?filled-p-tl›

arc-simple-path assms(1 ) assms(2 ) assms(3 ) construct-pocket-is-pocket is-pocket-0-def
le-add2 make-polygonal-path-gives-path numeral-3-eq-3 order-le-less-trans plus-1-eq-Suc
pocket-path-vts-def polygon-def simple-path-def sublist-is-loop-free sublist-take)

have 2 : arc ?p ∧ arc ?q
by (metis 1 ‹arc ?filled-p-tl› a-def a-neq-b b-def hd-Nil-eq-last hd-conv-nth

last-conv-nth polygon-pathfinish polygon-pathstart simple-path-cases)
have 3 : ?q 0 = ?p 1 ∧ ?q 1 = ?p 0
by (metis 1 a-def append-Cons b-def constant-linepath-is-not-loop-free filled-vts

hd-conv-nth last-conv-nth last-filled list.sel(1 ) list.sel(3 ) make-polygonal-path.simps(1 )
pathfinish-def pathstart-def polygon-pathfinish polygon-pathstart simple-path-def )

have 5 : ?p ‘ {0<..<1} ⊆ interior ?H
proof−

have ∀ j ∈ {0<..<?r}. vts!j /∈ frontier (convex hull (set vts))
by (smt (verit, del-insts) Int-iff dual-order .strict-trans greaterThanLessThan-iff

int-A-nonempty mem-Collect-eq min-nonzero-index-in-set-defined nonzero-index-in-set-def
nth-mem)

moreover have ?r = length pocket-path-vts − 1 using b h by auto
moreover have ∀ j < ?r . vts!j = pocket-path-vts!j using b by auto
ultimately have ∀ j ∈ {0<..<length pocket-path-vts − 1}. pocket-path-vts!j

/∈ frontier ?H
using H-eq by simp

moreover have loop-free ?pocket-path using 1 simple-path-def by auto
ultimately show ?thesis

by (metis vts-interior Un-subset-iff assms(1 ) assms(2 ) assms(3 ) con-
struct-pocket-is-pocket convex-convex-hull hull-subset is-pocket-0-def pocket-path-vts-def )

qed
have 6 : path-image (linepath (?p 0 ) (?p 1 )) ⊆ frontier ?H

by (metis l-frontier H-eq 3 a-def a-neq-b ab b-def hd-Nil-eq-last hd-conv-nth
hd-filled last.simps last-filled list.discI list.sel(1 ) pathstart-def polygon-pathstart)

have 7 : path-image ?q ∩ path-image (linepath (?p 0 ) (?p 1 )) = {linepath (?p
0 ) (?p 1 ) 0 , ?q 0}

by (metis 3 ‹path-image (make-polygonal-path (tl filled-vts)) ∩ path-image
(linepath a b) = {a, b}› a-def a-neq-b b-def hd-Nil-eq-last hd-filled last.simps last-conv-nth
last-filled linepath-0 ′ list.sel(1 ) pathfinish-def polygon-pathfinish)

have ?p ‘ {0<..<1} ⊆ path-inside (linepath (?p 0 ) (?p 1 ) +++ ?q)
using pocket-path-interior [OF 1 2 3 4 5 6 7 ] by blast

then have ?p‘{0<..<1} ⊆ path-inside filled-p
by (smt (verit) 3 ‹2 ≤ length filled-vts› a-def a-neq-b b-def filled-p-def

filled-vts-0 hd-Nil-eq-last hd-filled last.simps last-filled length-greater-0-conv list.discI
list.sel(1 ) list.sel(3 ) make-polygonal-path.elims nth-Cons-0 order-less-le-trans path-
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start-def polygon-pathstart pos2 )
moreover have ?p 0 = a ∧ ?p 1 = b

by (metis 3 a-def a-neq-b b-def hd-Nil-eq-last hd-conv-nth hd-filled last.simps
last-filled list.discI list.sel(1 ) pathstart-def polygon-pathstart)

ultimately show ?thesis
by (metis 1 Diff-subset-conv a-def a-neq-b b-def hd-Nil-eq-last hd-conv-nth

last-conv-nth polygon-pathfinish polygon-pathstart simple-path-endless sup-commute)
qed
moreover have loop-free-pocket-path: loop-free ?pocket-path
proof−

have sublist pocket-path-vts vts
by (simp add: construct-pocket-0-def pocket-path-vts-def )

moreover have loop-free ?p
using assms(1 ) polygon-def simple-path-def by blast

moreover have length pocket-path-vts ≥ 2
by (metis Suc-1 a-def a-neq-b b-def diff-is-0-eq ′ hd-Nil-eq-last hd-conv-nth

last-conv-nth not-less-eq-eq)
moreover have length vts ≥ 2

by (meson calculation(1 ) calculation(3 ) le-trans sublist-length-le)
ultimately show ?thesis using sublist-is-loop-free by blast

qed
ultimately have good-polygonal-path: good-polygonal-path a good-pocket-path-vts

b filled-vts
by (metis a-neq-b filled-p-def good-polygonal-path-def )

have filled-vts-as-butlast: filled-vts = (butlast filled-vts) @ [(butlast filled-vts)!0 ]
by (metis Nitpick.size-list-simp(2 ) append.right-neutral butlast-conv-take filled-p-def

filled-vts have-wraparound-vertex length-butlast length-tl less-Suc-eq-0-disj list.discI
list.sel(2 ) list.sel(3 ) nth-butlast polygon-filled-p)

then have filled-p-as-butlast:
filled-p = make-polygonal-path ((butlast filled-vts) @ [(butlast filled-vts)!0 ])

unfolding filled-p-def filled-vts-def by argo
have le: 0 < (1 ::nat) by simp

have filled-0-a: (butlast filled-vts) ! 0 = a
by (metis append-Cons append-Nil butlast.simps(2 ) filled-vts nth-Cons-0 filled-vts-0 )

have filled-1-b: (butlast filled-vts) ! 1 = b
by (metis (no-types, opaque-lifting) filled-vts-1 filled-vts-as-butlast a-neq-b ap-

pend-Cons append-Nil butlast-conv-take filled-0-a filled-vts length-butlast less-one
linorder-not-le nat-less-le nth-append-length nth-butlast take0 )

have 01 : 0 < length (butlast filled-vts) ∧ 1 < length (butlast filled-vts)
by (metis One-nat-def Suc-lessI filled-vts-1 filled-vts-as-butlast a-neq-b ap-

pend-eq-Cons-conv filled-0-a length-greater-0-conv nth-Cons-Suc nth-append-length)
show is-split-path:

is-polygon-split-path (butlast filled-vts) 0 1 good-pocket-path-vts
using good-polygonal-path-implies-polygon-split-path

[OF polygon-filled-p filled-p-as-butlast - 01 filled-0-a filled-1-b le]
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using good-polygonal-path filled-vts-as-butlast
by presburger

have polygon-pocket-rev: polygon (make-polygonal-path (a#([] @ [b] @ (rev good-pocket-path-vts)
@ [a])))

unfolding is-polygon-split-path-def
by (smt (z3 ) 01 One-nat-def add-diff-cancel-left ′ add-diff-cancel-right ′ filled-0-a

filled-1-b is-polygon-split-path-def is-split-path nth-butlast plus-1-eq-Suc take0 )
moreover have rev-pocket-vts: rev ?pocket-vts = a#([] @ [b] @ (rev good-pocket-path-vts)

@ [a])
by (smt (verit) a-def a-neq-b append.left-neutral append-Cons append-butlast-last-id

b-def good-pocket-path-vts-def hd-Nil-eq-last hd-append2 hd-conv-nth last-conv-nth
length-butlast list.collapse list.size(3 ) rev.simps(1 ) rev.simps(2 ) rev-append)

ultimately show polygon pocket
by (metis polygon-pocket-rev rev-vts-is-polygon polygon-of-def pocket-def rev-rev-ident)

have card (set vts) = length (butlast vts)
using distinct-vts

by (smt (verit, ccfv-threshold) Suc-n-not-le-n Un-insert-right append-Nil2 assms(1 )
butlast-conv-take distinct-card dual-order .strict-trans have-wraparound-vertex hd-conv-nth
hd-in-set hd-take insert-absorb length-0-conv length-butlast less-eq-Suc-le linorder-linear
list.set(2 ) not-numeral-le-zero numeral-3-eq-3 polygon-at-least-3-vertices-wraparound
polygon-vertices-length-at-least-4 set-append)

then have set pocket-path-vts ⊂ set vts
unfolding pocket-path-vts-def construct-pocket-0-def
using r-defined

by (smt (verit, ccfv-threshold) Cons-nth-drop-Suc One-nat-def Suc-diff-Suc
Suc-le-lessD add-diff-cancel-right ′ assms(1 ) assms(2 ) assms(3 ) butlast-conv-take
butlast-snoc card-length construct-pocket-0-def construct-pocket-is-pocket drop0 fill-pocket-0-def
filled-vts-def is-pocket-0-def is-polygon-split-path-def is-split-path leD le-less-Suc-eq
length-butlast length-drop length-greater-0-conv list.inject numeral-3-eq-3 plus-1-eq-Suc
pocket-path-vts-def polygon-at-least-3-vertices-wraparound psubsetI set-take-subset
take-eq-Nil add-eq-0-iff-both-eq-0 add-gr-0 cancel-comm-monoid-add-class.diff-cancel
diff-zero dual-order .strict-trans filled-p-def length-Cons length-tl less-imp-diff-less
list.sel(3 ) list.size(3 ) not-less-eq-eq polygon-filled-p zero-less-one zero-neq-one)

thus card (set pocket-path-vts) < card (set vts) by (simp add: psubset-card-mono)

have card (set vts) = card (set (butlast vts))
by (smt (z3 ) Cons-nth-drop-Suc List.finite-set One-nat-def Suc-1 Suc-le-lessD

two-vts-on-frontier distinct-vts hd-last-vts frontier-vts-subset butlast.simps(1 ) but-
last-conv-take card-insert-if card-length card-mono distinct-card drop0 drop-eq-Nil
dual-order .trans last-in-set last-tl length-butlast length-greater-0-conv length-tl list.collapse
list.sel(3 ) list.simps(15 ) set-take-subset verit-la-disequality)

moreover have length good-pocket-path-vts ≥ 1
unfolding good-pocket-path-vts-def pocket-path-vts-def construct-pocket-0-def
using convex-hull-of-nonconvex-polygon-strict-subset[OF - assms(4 ), of vts]
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using Suc-le-eq assms(1 ) assms(2 ) assms(3 ) construct-pocket-0-def construct-pocket-is-pocket
is-pocket-0-def numeral-3-eq-3

by auto
ultimately show card (set filled-vts) < card (set vts)

unfolding filled-vts-def fill-pocket-0-def good-pocket-path-vts-def pocket-path-vts-def
by (smt (verit) Nitpick.size-list-simp(2 ) Suc-1 Suc-diff-Suc Suc-n-not-le-n ‹2 ≤

length filled-vts› distinct-vts hd-last-vts card-length diff-is-0-eq diff-less distinct-card
drop-eq-Nil fill-pocket-0-def filled-vts-def insert-absorb last-drop last-in-set le leI
le-less-Suc-eq length-Cons length-butlast length-drop length-tl less-imp-diff-less list.simps(15 )
order-less-le-trans pocket-path-vts-def )
qed

29.3 Arbitrary Polygon Case
lemma pick-rotate:

assumes polygon-of p vts
assumes all-integral vts
obtains p ′ vts ′ where polygon-of p ′ vts ′

∧ vts ′!0 ∈ frontier (convex hull (set vts ′))
∧ path-image p ′ = path-image p
∧ all-integral vts ′

∧ set vts ′ = set vts
proof−

obtain v where v: v ∈ set vts ∩ frontier (convex hull (set vts))
proof−

obtain v where v ∈ set vts ∧ v extreme-point-of (convex hull (set vts))
using assms unfolding polygon-of-def

by (metis List.finite-set card.empty convex-convex-hull convex-hull-eq-empty ex-
treme-point-exists-convex extreme-point-of-convex-hull finite-imp-compact-convex-hull
not-numeral-le-zero polygon-at-least-3-vertices)

then have v ∈ set vts ∧ v ∈ frontier (convex hull (set vts))
by (metis Krein-Milman-frontier List.finite-set convex-convex-hull extreme-point-of-convex-hull

finite-imp-compact-convex-hull)
thus ?thesis using that by blast

qed
obtain i where i: vts!i = v ∧ i < length vts by (meson IntE in-set-conv-nth v)
let ?vts-rotated = rotate-polygon-vertices vts i
let ?p-rotated = make-polygonal-path ?vts-rotated
have same-set: set vts = set ?vts-rotated

using assms unfolding polygon-of-def
using rotate-polygon-vertices-same-set
by force

moreover have ∗: ?vts-rotated!0 ∈ frontier (convex hull (set ?vts-rotated))
proof−

have ?vts-rotated!0 = vts!i
using assms unfolding polygon-of-def

by (metis add-leD2 diff-self-eq-0 have-wraparound-vertex hd-conv-nth i last-snoc
less-nat-zero-code list.size(3 ) nat-le-linear numeral-Bit0 polygon-vertices-length-at-least-4
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rotated-polygon-vertices)
moreover have vts!i ∈ frontier (convex hull (set vts)) using v i by blast
ultimately show ?thesis using same-set by argo

qed
moreover have polygon ?p-rotated

using rotation-is-polygon assms unfolding polygon-of-def by blast
moreover have all-integral ?vts-rotated

using rotate-polygon-vertices-same-set assms
unfolding all-integral-def polygon-of-def by blast

moreover have path-image ?p-rotated = path-image p
using assms unfolding polygon-of-def using polygon-vts-arb-rotation by force

moreover then have path-inside ?p-rotated = path-inside p unfolding path-inside-def
by simp

ultimately show ?thesis using polygon-of-def that by blast
qed

lemma pick-unrotated:
fixes p :: R-to-R2
assumes polygon: polygon p
assumes polygonal-path: p = make-polygonal-path vts
assumes int-vertices: all-integral vts
assumes I-is: I = card {x. integral-vec x ∧ x ∈ path-inside p}
assumes B-is: B = card {x. integral-vec x ∧ x ∈ path-image p}
assumes vts!0 ∈ frontier (convex hull (set vts))
shows measure lebesgue (path-inside p) = I + B/2 − 1
using assms

proof (induct card (set vts) arbitrary: vts p I B rule: less-induct)
case less
have B-finite: finite {x. integral-vec x ∧ x ∈ path-image p}

using finite-path-image less(2 ) by auto
have set vts ⊆ {x. integral-vec x ∧ x ∈ path-image p}

using less(3 ) vertices-on-path-image[of vts] less(4 )
unfolding all-integral-def
by auto

then have card-vts: card (set vts) ≥ 3
using polygon-at-least-3-vertices[OF less(2 ) less(3 )] card-mono order-trans
by blast

have vts-wraparound: vts ! 0 = vts ! (length vts − 1 )
using less(2−3 ) polygon-pathstart polygon-pathfinish
unfolding polygon-def closed-path-def
by (metis diff-0-eq-0 length-0-conv)

then have vts-is: vts = (butlast vts) @ [vts ! 0 ]
by (metis butlast-conv-take have-wraparound-vertex less.prems(1 ) less.prems(2 ))

have same-set: set vts = set (butlast (vts))
by (metis ListMem-iff Un-insert-right append.right-neutral butlast.simps(2 ) con-

stant-linepath-is-not-loop-free elem hd-conv-nth insert-absorb less.prems(1 ) less.prems(2 )
list.collapse list.simps(15 ) make-polygonal-path.simps(2 ) polygon-def set-append sim-
ple-path-def vts-is)

have distinct-butlast-vts: distinct (butlast vts)
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using simple-polygonal-path-vts-distinct less(2−3 )
unfolding polygon-def
by auto

have card-butlast-vts: card (set vts) = card (set (butlast vts))
using vts-wraparound
by (smt (verit, best) List.finite-set butlast-conv-take card-distinct card-length

card-mono card-vts diff-is-0-eq diff-less distinct-butlast-vts distinct-card drop-rev
dual-order .strict-trans1 le-SucE length-append-singleton length-greater-0-conv less-numeral-extra(1 )
less-numeral-extra(4 ) nth-eq-iff-index-eq one-less-numeral-iff order-class.order-eq-iff
semiring-norm(77 ) set-drop-subset set-rev vts-is)

then have card-set-len-butlast: card (set vts) = length (butlast vts)
using distinct-butlast-vts
by (metis distinct-card)

{ assume triangle: card (set vts) = 3
then have length (butlast vts) = 3

using card-set-len-butlast
by auto

then have butlast vts = [vts ! 0 , vts ! 1 , vts ! 2 ]
by (metis (no-types, lifting) Cons-nth-drop-Suc One-nat-def Suc-1 card-set-len-butlast

card-vts drop0 drop-eq-Nil lessI nth-append numeral-3-eq-3 one-less-numeral-iff semir-
ing-norm(77 ) vts-is zero-less-numeral)

then have vts-is: vts = [vts ! 0 , vts ! 1 , vts ! 2 , vts ! 0 ]
using vts-is by auto

then have p-make-triangle: p = make-triangle (vts ! 0 ) (vts ! 1 ) (vts ! 2 )
using less(3 ) unfolding make-triangle-def by simp

then have not-collinear : ¬ collinear {vts ! 0 , vts ! 1 , vts ! 2}
using vts-is less(2 ) polygon-vts-not-collinear [of p vts] unfolding polygon-of-def

make-triangle-def
by (smt (verit, ccfv-threshold) insert-absorb2 insert-commute list.set(1 )

list.simps(15 ))
have all-integral: all-integral [vts ! 0 , vts ! 1 , vts ! 2 ]

using less.prems(3 ) vts-is unfolding all-integral-def
by (simp add: ‹butlast vts = [vts ! 0 , vts ! 1 , vts ! 2 ]› in-set-butlastD)

have distinct: distinct [vts ! 0 , vts ! 1 , vts ! 2 ]
using ‹butlast vts = [vts ! 0 , vts ! 1 , vts ! 2 ]› distinct-butlast-vts by presburger

have pick-triangle: pick-triangle p (vts ! 0 ) (vts ! 1 ) (vts ! 2 )
using pick-triangle p-make-triangle less(2 ) not-collinear all-integral distinct
by simp

then have ?case
using pick-triangle-lemma[OF p-make-triangle all-integral distinct not-collinear ]

less.prems(4−5 )
by blast

} moreover
{ assume non-triangle: card (set vts) > 3

{ assume convex: convex (path-image p ∪ path-inside p)
then obtain a b where good-linepath a b vts

using convex-polygon-has-good-linepath non-triangle
by (metis inf-sup-aci(5 ) less.prems(1 ) less.prems(2 ))

then have ab-prop: a 6= b ∧ {a, b} ⊆ set vts ∧ path-image (linepath a b) ⊆
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path-inside p ∪ {a, b}
unfolding good-linepath-def less.prems(2 ) by presburger

then have ab-prop-restate: a 6= b ∧ a ∈ set (butlast vts) ∧ b ∈ set (butlast
vts)

using same-set
by simp

have good-linepath-ab: good-linepath a b ((butlast vts) @ [(butlast vts) ! 0 ])
using ab-prop vts-is unfolding good-linepath-def
using ab-prop-restate empty-set hd-append2 hd-conv-nth insert-absorb in-

sert-not-empty less.prems(2 ) same-set
by (smt (z3 ))

then have good-linepath-ba: good-linepath b a ((butlast vts) @ [(butlast vts) !
0 ])

using good-linepath-comm good-linepath-def by blast
obtain i1 j1 where ij-prop: i1 < length (butlast vts) ∧ j1 < length (butlast

vts) ∧
butlast vts ! i1 = a ∧
butlast vts ! j1 = b ∧ i1 6= j1

using ab-prop-restate
by (metis distinct-Ex1 distinct-butlast-vts)

have i-lt-then: i1 < j1 =⇒ is-polygon-split (butlast vts) i1 j1
using good-linepath-implies-polygon-split[OF less(2 ), of butlast vts] vts-is

same-set
using ij-prop good-linepath-ab good-linepath-ba
by (metis ab-prop-restate length-pos-if-in-set less.prems(2 ) nth-butlast)

have j-lt-then: j1 < i1 =⇒ is-polygon-split (butlast vts) j1 i1
using good-linepath-implies-polygon-split[OF less(2 ), of butlast vts] vts-is

same-set
using ij-prop good-linepath-ab good-linepath-ba
by (metis ab-prop-restate length-pos-if-in-set less.prems(2 ) nth-butlast)

obtain i j where polygon-split: is-polygon-split (butlast vts) i j
using i-lt-then j-lt-then ij-prop
by (meson nat-neq-iff )

then have ij-prop: i < length (butlast vts) ∧ j < length (butlast vts) ∧ i < j
unfolding is-polygon-split-def
by blast

have p-is: p = make-polygonal-path (butlast vts @ [butlast vts ! 0 ])
using less(3 ) vts-is
by (metis length-greater-0-conv nth-butlast same-set set-empty)

let ?vts1 = take i (butlast vts)
let ?vts2 = take (j − i − 1 ) (drop (Suc i) (butlast vts))
let ?vts3 = drop (j − i) (drop (Suc i) (butlast vts))

let ?vtsp1 = (butlast vts ! i # ?vts2 @ [butlast vts ! j, butlast vts ! i])
have finite-butlast: finite (set (butlast vts))

by blast
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have vtsp1-subset: set ?vtsp1 ⊆ set (butlast vts)
using ij-prop

by (smt (verit, del-insts) Un-commute append-Cons append-Nil dual-order .trans
insert-subset list.simps(15 ) nth-mem set-append set-drop-subset set-take-subset)

let ?p1 = make-polygonal-path ?vtsp1
let ?I1 = card {x. integral-vec x ∧ x ∈ path-inside ?p1}
let ?B1 = card {x. integral-vec x ∧ x ∈ path-image ?p1}
have polygon-p1 : polygon ?p1

using polygon-split unfolding is-polygon-split-def by metis

let ?vtsp2 = ?vts1 @ [butlast vts ! i, butlast vts ! j] @ ?vts3 @ [butlast vts ! 0 ]
let ?p2 = make-polygonal-path ?vtsp2
have polygon-p2 : polygon ?p2

using polygon-split unfolding is-polygon-split-def by metis

have j-neq: j 6= i + 1
by (smt (verit, ccfv-SIG) One-nat-def Suc-n-not-le-n Suc-numeral add-Suc-shift

add-implies-diff cancel-ab-semigroup-add-class.diff-right-commute length-Cons length-append
list.size(3 ) numeral-3-eq-3 plus-1-eq-Suc polygon-p1 polygon-vertices-length-at-least-4
semiring-norm(2 ) semiring-norm(8 ) take-eq-Nil)

have subset1 : set (take i (butlast vts)) ⊆ set (butlast vts)
using ij-prop by (meson set-take-subset)

have subset2 : set ([butlast vts ! i, butlast vts ! j]) ⊆ set (butlast vts)
using ij-prop by simp

have subset3 : set (take i (butlast vts) @
[butlast vts ! i, butlast vts ! j]) ⊆ set (butlast vts)

using subset1 subset2 by auto
have subset4 : set (drop (j − i) (drop (Suc i) (butlast vts)) @ [butlast vts ! 0 ])

⊆ set (butlast vts)
using ij-prop set-drop-subset
by (metis (no-types, opaque-lifting) Un-commute append-Cons append-Nil

card-set-len-butlast drop0 drop-drop drop-eq-Nil2 hd-append2 hd-conv-nth in-set-conv-decomp
insert-subset linorder-not-less list.simps(15 ) non-triangle not-less-eq not-less-iff-gr-or-eq
numeral-3-eq-3 same-set set-append snoc-eq-iff-butlast vts-is)

then have main-subset: set ?vtsp2 ⊆ set (butlast vts)
using subset3 subset4 by simp

have subset-p1 : set ?vtsp1 ⊂ set (butlast vts)
using ij-prop distinct-butlast-vts

proof−
have card (set ?vtsp2 ) ≥ 3

using polygon-p2 polygon-at-least-3-vertices by blast
moreover have set ?vtsp1 ∩ set ?vtsp2 = {vts!i, vts!j}
proof−

have set ?vts2 ∩ set ?vts3 = {}
by (metis append-take-drop-id diff-le-self distinct-append distinct-butlast-vts

set-take-disj-set-drop-if-distinct)
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moreover have set ?vts2 ∩ set ?vts1 = {}
proof−

have set ?vts2 ⊆ set (drop (i + 1 ) vts)
by (metis add.commute drop-butlast in-set-butlastD in-set-takeD

plus-1-eq-Suc subset-code(1 ))
moreover have set (drop (i + 1 ) vts) ∩ set ?vts1 ⊆ {last vts}
proof−

have set (drop (i + 1 ) (butlast vts)) ∩ set ?vts1 = {}
by (simp add: Int-commute set-take-disj-set-drop-if-distinct dis-

tinct-butlast-vts)
moreover have set (drop (i + 1 ) vts) = set (drop (i + 1 ) (butlast

vts)) ∪ {last vts}
proof−

have drop (i + 1 ) vts = (drop (i + 1 ) ((butlast vts) @ [last vts]))
by (metis last-snoc vts-is)

thus ?thesis using ij-prop by force
qed
ultimately show ?thesis by blast

qed
moreover have last vts /∈ set ?vts2

by (metis card-set-len-butlast card-vts distinct-butlast-vts dual-order .strict-trans1
in-set-takeD index-nth-id last-snoc nth-butlast numeral-3-eq-3 set-drop-if-index vts-is
zero-less-Suc)

ultimately show ?thesis by force
qed

moreover have vts!i ∈ set ?vtsp1 by (metis ij-prop list.set-intros(1 )
nth-butlast)

moreover have vts!j ∈ set ?vtsp1 using ij-prop nth-butlast by fastforce
moreover have vts!i ∈ set ?vtsp2

by (metis UnCI ij-prop list.set-intros(1 ) nth-butlast set-append)
moreover have vts!j ∈ set ?vtsp2 using ij-prop nth-butlast by force
moreover have set ?vtsp1 = set ?vts2 ∪ {vts!i, vts!j}
by (smt (verit, ccfv-SIG) Un-insert-right empty-set ij-prop insert-absorb2

insert-commute list.simps(15 ) nth-butlast set-append)
moreover have set ?vtsp2 = set ?vts1 ∪ set ?vts3 ∪ {vts!i, vts!j, vts!0}
proof−

have vts!i = (butlast vts)!i by (metis ij-prop nth-butlast)
moreover have vts!j = (butlast vts)!j by (metis ij-prop nth-butlast)
moreover have vts!0 = (butlast vts)!0

by (metis ij-prop leD length-greater-0-conv nth-butlast take-all-iff
take-eq-Nil)

ultimately show ?thesis by force
qed
moreover have vts!0 /∈ set ?vts2
by (metis distinct-butlast-vts in-set-conv-decomp in-set-takeD index-nth-id

length-pos-if-in-set nth-butlast same-set set-drop-if-index vts-is zero-less-Suc)
ultimately show ?thesis by blast

qed
ultimately have card (set ?vtsp2 ) > card (set ?vtsp1 ∩ set ?vtsp2 )
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by (smt (verit, del-insts) card-length empty-set leI le-trans length-Cons
list.simps(15 ) list.size(3 ) not-less-eq-eq numeral-3-eq-3 )

then have ∃ v. v ∈ set ?vtsp2 ∧ v /∈ (set ?vtsp1 ∩ set ?vtsp2 )
by (smt (verit) Int-lower2 Orderings.order-eq-iff less-not-refl subset-code(1 ))
then obtain v where v ∈ set ?vtsp2 − set ?vtsp1 by blast
thus ?thesis

by (metis main-subset Diff-eq-empty-iff length-pos-if-in-set less-numeral-extra(3 )
list.set(1 ) list.size(3 ) psubsetI vtsp1-subset)

qed
then have card (set ?vtsp1 ) < card (set (butlast vts))

using card-subset-eq[OF finite-butlast]
by (meson finite-butlast psubset-card-mono)

then have card-lt-p1 : card (set ?vtsp1 ) < card (set vts)
using same-set by argo

have set ?vtsp1 ⊆ set vts
using ij-prop
using same-set subset-p1 by blast

then have all-integral-p1 : all-integral ?vtsp1
using less(4 ) unfolding all-integral-def
by blast

obtain p1 ′ vtsp1 ′ where p1-rot: polygon-of p1 ′ vtsp1 ′

∧ vtsp1 ′!0 ∈ frontier (convex hull (set vtsp1 ′))
∧ path-image p1 ′ = path-image ?p1
∧ all-integral vtsp1 ′

∧ set vtsp1 ′ = set ?vtsp1
using pick-rotate less polygon-p1 unfolding polygon-of-def
using all-integral-p1
by blast

let ?I1 ′ = card {x. integral-vec x ∧ x ∈ path-inside p1 ′}
let ?B1 ′ = card {x. integral-vec x ∧ x ∈ path-image p1 ′}

have measure lebesgue (path-inside p1 ′) = real ?I1 ′ + real ?B1 ′ / 2 − 1
using less(1 ) polygon-split card-lt-p1 p1-rot unfolding polygon-of-def by

force
then have indh1 : Sigma-Algebra.measure lebesgue (path-inside ?p1 ) = real

?I1 + real ?B1 / 2 − 1
using p1-rot unfolding path-inside-def by metis

have vts ! (i+1 ) /∈ set (take i (butlast vts))
using distinct-butlast-vts j-neq ij-prop

proof−
have i + 1 < length vts − 2 using distinct-butlast-vts j-neq ij-prop by

fastforce
then have vts ! (i+1 ) = (butlast vts) ! (i+1 ) by (simp add: nth-butlast)
moreover then have ∀ j < i + 1 . (butlast vts) ! j 6= (butlast vts) ! (i+1 )

using distinct-butlast-vts distinct-nth-eq-iff ij-prop by fastforce
moreover have set (take i (butlast vts)) = {vts!j | j. j < i}
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proof−
have set (take i (butlast vts)) ⊆ {vts!j | j. j < i}

by (smt (verit, ccfv-SIG) dual-order .strict-trans ij-prop in-set-conv-nth
length-take mem-Collect-eq min.absorb4 nth-butlast nth-take subsetI )

moreover have {vts!j | j. j < i} ⊆ set (take i (butlast vts))
by (smt (verit, del-insts) dual-order .strict-trans ij-prop in-set-conv-nth

length-take mem-Collect-eq min.absorb4 nth-butlast nth-take subsetI )
ultimately show ?thesis by blast

qed
ultimately show ?thesis
by (metis (no-types, lifting) add.commute ij-prop in-set-conv-nth length-take

min.absorb4 nth-take trans-less-add2 )
qed
moreover have vts ! (i+1 ) 6= butlast vts ! i

by (metis (no-types, lifting) ij-prop add.commute add-cancel-right-right
distinct-butlast-vts distinct-nth-eq-iff less-trans-Suc nth-append plus-1-eq-Suc vts-is
zero-neq-one)

moreover have vts ! (i+1 ) 6= butlast vts ! j
by (metis (no-types, lifting) add.commute distinct-butlast-vts distinct-nth-eq-iff

ij-prop j-neq less-trans-Suc nth-append plus-1-eq-Suc vts-is)
ultimately have vts ! (i+1 ) /∈ set (take i (butlast vts) @

[butlast vts ! i, butlast vts ! j]) by force
moreover have vts ! (i+1 ) /∈ set (drop (j − i) (drop (Suc i) (butlast vts)) @

[butlast vts ! 0 ])
proof−

have vts ! (i+1 ) /∈ set (drop (j − i + Suc i) (butlast vts))
by (metis (no-types, lifting) add.commute distinct-butlast-vts ij-prop in-

dex-nth-id less-add-same-cancel2 less-trans-Suc nth-append plus-1-eq-Suc set-drop-if-index
vts-is zero-less-diff )

moreover have vts ! (i+1 ) 6= butlast vts ! 0
by (metis (no-types, lifting) ij-prop Nil-is-append-conv add.commute

distinct-butlast-vts distinct-nth-eq-iff length-greater-0-conv less-trans-Suc list.discI
nat.distinct(1 ) nth-append plus-1-eq-Suc same-set set-empty vts-is)

ultimately show ?thesis by simp
qed
ultimately have vts ! (i+1 ) /∈ set (take i (butlast vts) @

[butlast vts ! i, butlast vts ! j] @
drop (j − i) (drop (Suc i) (butlast vts)) @ [butlast vts ! 0 ])

by auto
then have subset-butlast-p2 : set ?vtsp2 ⊂ set (butlast vts)

using main-subset ij-prop
by (metis (no-types, lifting) antisym-conv2 length-butlast less-diff-conv

nth-mem same-set)
then have card-lt-p2 : card (set ?vtsp2 ) < card (set vts)

using card-subset-eq[OF finite-butlast]
by (metis finite-butlast psubset-card-mono same-set)

have subset-p2 : set ?vtsp2 ⊂ set vts
using subset-butlast-p2 same-set
by presburger
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then have all-integral-p2 : all-integral ?vtsp2
using less(4 ) unfolding all-integral-def
by blast

let ?p2 = make-polygonal-path (take i (butlast vts) @ [butlast vts ! i, butlast
vts ! j] @

drop (j − i) (drop (Suc i) (butlast vts)) @ [butlast vts ! 0 ])
let ?I2 = card {x. integral-vec x ∧ x ∈ path-inside ?p2}
let ?B2 = card {x. integral-vec x ∧ x ∈ path-image ?p2}
have polygon-p2 : polygon ?p2

using polygon-split unfolding is-polygon-split-def by metis

have vtsp2-0 : ?vtsp2 !0 ∈ frontier (convex hull (set ?vtsp2 ))
proof−

have ?vtsp2 !0 = vts!0
by (metis (no-types, lifting) append-Cons ij-prop length-greater-0-conv

less-nat-zero-code nat-neq-iff nth-append nth-append-length nth-butlast nth-take take-eq-Nil)
then have ?vtsp2 !0 ∈ frontier (convex hull (set vts)) using less by argo
moreover have ?vtsp2 !0 ∈ (convex hull (set ?vtsp2 ))

by (meson append-is-Nil-conv hull-inc length-greater-0-conv neq-Nil-conv
nth-mem)

moreover have convex hull (set ?vtsp2 ) ⊆ convex hull (set vts)
by (metis hull-mono main-subset same-set)

ultimately show ?thesis using in-frontier-in-subset by blast
qed

have indh2 : Sigma-Algebra.measure lebesgue (path-inside ?p2 ) = real ?I2 +
real ?B2 / 2 − 1

using less(1 )[OF card-lt-p2 polygon-p2 - all-integral-p2 - - vtsp2-0 ] poly-
gon-split

by blast

have all-integral (butlast vts) =⇒
Sigma-Algebra.measure lebesgue (path-inside p) = real (card {x. integral-vec

x ∧ x ∈ path-inside p}) + real (card {x. integral-vec x ∧ x ∈ path-image p}) / 2
− 1

using pick-split-union
[OF polygon-split, of ?vts1 ?vts2 ?vts3 butlast vts ! i butlast vts ! j p ?p1

?p2 ?I1 ?B1 ?I2 ?B2 ]
using indh1 indh2 p-is
by blast

then have ?case
using less(4−6 ) unfolding all-integral-def
using same-set by presburger

} moreover
{ assume non-convex: ¬ (convex (path-image p ∪ path-inside p))

let ?vts-ch = set vts ∩ frontier (convex hull (set vts))
have finite-vts: finite (set vts)

using less

340



by force
have subset-ch: ?vts-ch ⊂ set vts

using vts-subset-frontier
using less.prems(1 ) less.prems(2 ) non-convex polygon-of-def by blast

then have card-ch: card (?vts-ch) < card (set vts)
using finite-vts
by (simp add: psubset-card-mono)

let ?vts-ch-list = filter (λv. v ∈ ?vts-ch) vts

let ?r-idx = min-index-not-in-set vts ?vts-ch
let ?r = ?r-idx − 1
let ?rotated-vts = rotate-polygon-vertices vts ?r
let ?pr = make-polygonal-path ?rotated-vts

have subset-ch-list: set ?vts-ch-list ⊂ set vts using subset-ch by auto
then have r-defined: index-not-in-set vts ?vts-ch ?r-idx
∧ (∀ j < ?r-idx. ¬ index-not-in-set vts ?vts-ch j)

using min-index-not-in-set-defined[of ?vts-ch vts] by fastforce

have pr-image: path-image p = path-image ?pr
using polygon-vts-arb-rotation less by blast

then have measure lebesgue (path-inside ?pr) = measure lebesgue (path-inside
p)

unfolding path-inside-def by presburger
have rotated-vts-set: set ?rotated-vts = set vts

using less.prems(1 ) less.prems(2 ) rotate-polygon-vertices-same-set by auto
then have card (set ?rotated-vts) = card (set vts) by argo
have polygon-rotation: polygon ?pr using rotation-is-polygon less by blast

let ?pocket-path-vts = construct-pocket-0 ?rotated-vts ?vts-ch

let ?a = hd ?pocket-path-vts
let ?b = last ?pocket-path-vts
let ?l = linepath ?a ?b

have vts!0 ∈ ?vts-ch
by (metis IntI length-greater-0-conv less.prems(6 ) nth-mem snoc-eq-iff-butlast

vts-is)
then have vts-r : vts!?r ∈ ?vts-ch

using min-index-not-in-set-0 subset-ch by presburger
moreover have rotated-0 : ?rotated-vts!0 = vts!?r

using rotated-polygon-vertices[of ?rotated-vts vts ?r ?r ]
by (metis (no-types, lifting) Suc-1 Suc-leI card-gt-0-iff card-set-len-butlast

diff-is-0-eq ′ finite-vts hd-conv-nth index-not-in-set-def le-refl length-butlast less-imp-diff-less
mem-Collect-eq r-defined set-empty snoc-eq-iff-butlast vts-is zero-less-diff )

ultimately have rotated-0-in: ?rotated-vts!0 ∈ ?vts-ch by presburger
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then have b-in: ?b ∈ set vts
using construct-pocket-0-last-in-set[of ?rotated-vts ?vts-ch]

by (smt (verit, ccfv-threshold) Int-iff One-nat-def closed-path-def Suc-leI
card-0-eq card-set-len-butlast empty-iff finite-vts last-conv-nth last-in-set last-tl length-butlast
length-greater-0-conv length-tl list.size(3 ) polygon-def polygon-pathfinish polygon-pathstart
polygon-rotation rotate-polygon-vertices-same-length set-empty)

have 2 ≤ card ?vts-ch
using convex-hull-two-vts-on-frontier

by (metis One-nat-def Suc-1 add-leD2 card-vts numeral-3-eq-3 plus-1-eq-Suc)
moreover have ?vts-ch ⊆ set ?rotated-vts

using less.prems(1 ) less.prems(2 ) rotate-polygon-vertices-same-set by force
moreover have distinct (butlast ?rotated-vts)
using polygon-def polygon-rotation simple-polygonal-path-vts-distinct by blast
moreover have hd-last-rotated: hd ?rotated-vts = last ?rotated-vts
by (metis have-wraparound-vertex hd-conv-nth polygon-rotation snoc-eq-iff-butlast)
ultimately have a-neq-b: ?a 6= ?b

using construct-pocket-0-first-last-distinct
by (smt (verit) Collect-cong Int-def mem-Collect-eq set-filter)

let ?pocket-vts = ?pocket-path-vts @ [?rotated-vts!0 ]

let ?pocket-good-path-vts = tl (butlast ?pocket-path-vts)

let ?filled-vts = fill-pocket-0 ?rotated-vts (length ?pocket-path-vts)
let ?filled-vts-tl = tl ?filled-vts
let ?filled-p-tl = make-polygonal-path ?filled-vts-tl
let ?filled-p = make-polygonal-path ?filled-vts
let ?pocket-path = make-polygonal-path ?pocket-path-vts
let ?pocket = make-polygonal-path ?pocket-vts

have non-convex-rot: ¬ convex (path-image ?pr ∪ path-inside ?pr)
using non-convex by (simp add: path-inside-def pr-image)

have 0 : ?rotated-vts!0 ∈ frontier (convex hull (set ?rotated-vts))
using less.prems(1 ) less.prems(2 ) rotate-polygon-vertices-same-set ro-

tated-0-in by fastforce
have 1 : ?rotated-vts!1 /∈ frontier (convex hull (set ?rotated-vts))
proof−

have ?rotated-vts!1 = vts!(?r + 1 )
using rotated-polygon-vertices[of ?rotated-vts vts ?r ?r + 1 ]

by (smt (verit, ccfv-threshold) Suc-1 Suc-leI card-gt-0-iff card-set-len-butlast
diff-is-0-eq ′ finite-vts hd-conv-nth index-not-in-set-def le-refl length-butlast less-imp-diff-less
mem-Collect-eq r-defined set-empty snoc-eq-iff-butlast vts-is zero-less-diff Suc-diff-Suc
add.commute add-diff-cancel-left ′ bot-nat-0 .not-eq-extremum less-imp-le-nat plus-1-eq-Suc)

also have ... /∈ frontier (convex hull (set ?rotated-vts))
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using r-defined unfolding index-not-in-set-def
by (smt (verit, best) Int-iff Suc-leI add.commute add-diff-inverse-nat

bot-nat-0 .not-eq-extremum diff-is-0-eq ′ mem-Collect-eq nat-less-le nth-mem plus-1-eq-Suc
rotated-vts-set vts-r zero-less-diff )

finally show ?thesis .
qed
then have split:

is-polygon-split-path (butlast ?filled-vts) 0 1 ?pocket-good-path-vts
and polygon-filled-p: polygon ?filled-p
and polygon-pocket: polygon ?pocket
and pocket-path-vts-card: card (set ?pocket-path-vts) < card (set vts)
and filled-vts-card: card (set ?filled-vts) < card (set vts)

using pocket-path-good[OF - 0 1 non-convex-rot] polygon-rotation ro-
tated-vts-set apply argo

using pocket-path-good[OF - 0 1 non-convex-rot] polygon-rotation ro-
tated-vts-set apply argo

using pocket-path-good[OF - 0 1 non-convex-rot] polygon-rotation ro-
tated-vts-set

apply (metis add-gr-0 construct-pocket-0-def nth-take zero-less-one)
using pocket-path-good[OF - 0 1 non-convex-rot] polygon-rotation ro-

tated-vts-set apply argo
using pocket-path-good[OF - 0 1 non-convex-rot] polygon-rotation ro-

tated-vts-set by argo

have vts-0-frontier : ?rotated-vts!0 ∈ frontier (convex hull (set vts))
using rotated-0-in by simp

have filled-0 : ?filled-vts!0 = ?rotated-vts!0
by (metis convex-hull-empty empty-set fill-pocket-0-def frontier-empty hd-conv-nth

length-pos-if-in-set less.prems(6 ) less-numeral-extra(3 ) list.size(3 ) nth-Cons-0 ro-
tated-vts-set)

have pocket-0 : ?pocket-vts!0 = ?rotated-vts!0
unfolding construct-pocket-0-def
by (simp add: less-numeral-extra(1 ) nth-append trans-less-add2 )

have subset-pocket-path-vts: set ?pocket-path-vts ⊆ set vts
using construct-pocket-0-subset-vts

by (metis construct-pocket-0-def less.prems(1 ) less.prems(2 ) rotate-polygon-vertices-same-set
set-take-subset)

moreover have set ?pocket-good-path-vts ⊆ set ?pocket-path-vts
by (smt (verit, best) butlast-conv-take list.exhaust-sel list.sel(2 ) set-subset-Cons

set-take-subset subset-trans)
ultimately have subset-pocket-good-path: set ?pocket-good-path-vts ⊆ set vts

by blast
then have subset-pocket: set ?pocket-vts ⊆ set vts
by (metis (mono-tags, lifting) have-wraparound-vertex less.prems(1 ) less.prems(2 )

polygon-rotation rotate-polygon-vertices-same-set set-append subset-code(1 ) subset-pocket-path-vts
sup.bounded-iff )

have set ?filled-vts ⊆ set ?rotated-vts
unfolding fill-pocket-0-def
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by (metis b-in hd-in-set insert-subset length-pos-if-in-set less-numeral-extra(3 )
list.simps(15 ) list.size(3 ) rotated-vts-set set-drop-subset)

then have subset-filled: set ?filled-vts ⊆ set vts
using rotated-vts-set by blast

have taut1 : ?filled-p = make-polygonal-path ?filled-vts by blast
have all-integral-filled-vts: all-integral ?filled-vts

using subset-filled less by (meson all-integral-def subset-iff )
have taut2 : card (integral-inside ?filled-p) = card {x. integral-vec x ∧ x ∈

path-inside ?filled-p}
unfolding integral-inside by blast

have taut3 : card (integral-boundary ?filled-p) = card {x. integral-vec x ∧ x ∈
path-image ?filled-p}

unfolding integral-boundary by blast
have filled-vts-0-frontier : ?filled-vts!0 ∈ frontier (convex hull (set ?filled-vts))
proof−

have ?filled-vts!0 ∈ frontier (convex hull set vts)
using filled-0 vts-0-frontier by presburger

moreover have ?filled-vts!0 ∈ convex hull (set ?filled-vts)
by (metis have-wraparound-vertex hull-inc in-set-conv-decomp poly-

gon-filled-p)
moreover have set ?filled-vts ⊆ set vts using subset-filled by force
ultimately show ?thesis using in-frontier-in-subset-convex-hull by blast

qed

have ih-filled: measure lebesgue (path-inside ?filled-p)
= card (integral-inside ?filled-p) + ((card (integral-boundary ?filled-p)) /

2 ) − 1
using less(1 )[OF filled-vts-card polygon-filled-p taut1 all-integral-filled-vts

taut2 taut3 filled-vts-0-frontier ]
by blast

have set ?pocket-path-vts ⊂ set vts
using pocket-path-vts-card subset-pocket-path-vts by force

moreover have pocket-path-set: set ?pocket-path-vts = set ?pocket-vts
by (smt (verit) Nil-is-append-conv rotated-0 a-neq-b append-Cons append-Nil

hd-Nil-eq-last hd-append2 hd-conv-nth hd-in-set insert-absorb list.simps(15 ) pocket-0
rev-append set-append set-rev)

ultimately have set ?pocket-vts ⊂ set vts by blast
then have pocket-vts-card: card (set ?pocket-vts) < card (set vts)

by (meson finite-vts psubset-card-mono)
have all-integral-pocket-vts: all-integral ?pocket-vts

using subset-pocket less unfolding all-integral-def by blast
have taut1 : ?pocket = make-polygonal-path ?pocket-vts by blast
have taut2 : card (integral-inside ?pocket) = card {x. integral-vec x ∧ x ∈

path-inside ?pocket}
unfolding integral-inside by blast

have taut3 : card (integral-boundary ?pocket) = card {x. integral-vec x ∧ x ∈
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path-image ?pocket}
unfolding integral-boundary by blast

have pocket-vts-0-frontier : ?pocket-vts!0 ∈ frontier (convex hull (set ?pocket-vts))
proof−

have ?pocket-vts!0 ∈ frontier (convex hull set vts)
using pocket-0 vts-0-frontier by presburger

moreover have ?pocket-vts!0 ∈ convex hull (set ?pocket-vts)
by (smt (verit, del-insts) hull-inc in-set-conv-decomp pocket-0 )

moreover have set ?pocket-vts ⊆ set vts using subset-pocket by force
ultimately show ?thesis using in-frontier-in-subset-convex-hull by blast

qed

have ih-pocket: measure lebesgue (path-inside ?pocket) = card (integral-inside
?pocket) + ((card (integral-boundary ?pocket)) / 2 ) − 1

using less(1 )[OF pocket-vts-card polygon-pocket taut1 all-integral-pocket-vts
taut2 taut3 pocket-vts-0-frontier ]

by blast

let ?i = 0 ::nat
let ?j = 1 ::nat
let ?vts = butlast ?filled-vts
let ?vts1 = []
let ?vts2 = []
let ?vts3 = butlast (drop 2 ?filled-vts)
let ?cutvts = ?pocket-good-path-vts
let ?p = ?filled-p
let ?p1 = make-polygonal-path (?a # ?vts2 @ [?b] @ rev ?cutvts @ [?a])
let ?p2 = ?pr
let ?I1 = card {x. integral-vec x ∧ x ∈ path-inside ?p1}
let ?B1 = card {x. integral-vec x ∧ x ∈ path-image ?p1}
let ?I2 = card {x. integral-vec x ∧ x ∈ path-inside ?p2}
let ?B2 = card {x. integral-vec x ∧ x ∈ path-image ?p2}
let ?I = card {x. integral-vec x ∧ x ∈ path-inside ?p}
let ?B = card {x. integral-vec x ∧ x ∈ path-image ?p}

have rev ?pocket-vts = (?a # ?vts2 @ [?b] @ rev ?cutvts @ [?a])
by (smt (verit) a-neq-b append-Nil append-butlast-last-id hd-Nil-eq-last

hd-append2 hd-conv-nth last-conv-nth length-butlast list.collapse list.size(3 ) pocket-0
rev.simps(2 ) rev-append rev-rev-ident snoc-eq-iff-butlast)

then have pocket-rev-image: path-image ?pocket = path-image ?p1
using polygon-at-least-3-vertices polygon-pocket card-length

by (smt (verit, best) One-nat-def Suc-1 le-add2 le-trans numeral-3-eq-3
plus-1-eq-Suc rev-vts-path-image polygon-at-least-3-vertices polygon-pocket card-length)

then have pocket-rev-inside: path-inside ?pocket = path-inside ?p1
unfolding path-inside-def by argo

have split ′: is-polygon-split-path ?vts ?i ?j ?cutvts using split by blast
have 0 : ?vts1 = take ?i ?vts by auto
have 1 : ?vts2 = take (?j − ?i − 1 ) (drop (Suc ?i) ?vts) by simp
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have 2 : ?vts3 = drop (?j − ?i) (drop (Suc ?i) ?vts)
by (metis (no-types, lifting) One-nat-def Suc-1 diff-zero drop-butlast drop-drop

plus-1-eq-Suc)
have 3 : ?a = ?vts ! ?i
by (smt (z3 ) Nil-is-append-conv pocket-path-set filled-0 hd-conv-nth is-polygon-split-path-def

length-greater-0-conv list.distinct(1 ) nth-append nth-butlast pocket-0 set-empty split ′)
have 4 : ?b = ?vts ! ?j
proof−

have ?b = ?filled-vts!1
unfolding construct-pocket-0-def fill-pocket-0-def

by (smt (z3 ) Suc-eq-plus1 a-neq-b construct-pocket-0-def diff-Suc-1
diff-is-0-eq ′ drop-eq-Nil hd-conv-nth hd-drop-conv-nth hd-last-rotated last-conv-nth
length-take linorder-not-less min.absorb4 nat-le-linear not-less-eq-eq nth-Cons ′ nth-take
one-neq-zero take-all-iff take-eq-Nil)

thus ?thesis by (metis is-polygon-split-path-def nth-butlast split ′)
qed
have 5 : ?pocket-path = make-polygonal-path (?a # ?cutvts @ [?b])

by (smt (verit, ccfv-SIG) a-neq-b butlast.simps(2 ) butlast-tl hd-Cons-tl
hd-Nil-eq-last last.simps snoc-eq-iff-butlast)

have 6 : ?p = make-polygonal-path (?vts @ [?vts!0 ])
by (metis (no-types, lifting) butlast-conv-take have-wraparound-vertex is-polygon-split-path-def

nth-butlast polygon-filled-p split ′)
have 7 : ?p1 = make-polygonal-path (?a # ?vts2 @ [?b] @ rev ?cutvts @ [?a])

by blast
have 8 : ?p2 = make-polygonal-path (?vts1 @ ([?a] @ ?cutvts @ [?b]) @ ?vts3

@ [?vts!0 ])
proof−

have ?rotated-vts = ?vts1 @ ([?a] @ ?cutvts @ [?b]) @ ?vts3 @ [?vts!0 ]
unfolding construct-pocket-0-def fill-pocket-0-def

by (smt (verit) 3 Suc-1 hd-last-rotated a-neq-b append-Cons append-Nil ap-
pend-butlast-last-id append-take-drop-id construct-pocket-0-def drop-Suc drop-drop
drop-eq-Nil fill-pocket-0-def hd-Nil-eq-last hd-append2 hd-conv-nth last-conv-nth last-drop
length-Cons length-take length-tl linorder-not-less list.collapse list.sel(3 ) list.size(3 )
min.absorb4 plus-1-eq-Suc take-all-iff )

thus ?thesis by argo
qed
have 9 : ?I1 = card {x. integral-vec x ∧ x ∈ path-inside ?p1} by blast
have 10 : ?B1 = card {x. integral-vec x ∧ x ∈ path-image ?p1} by blast
have 11 : ?I2 = card {x. integral-vec x ∧ x ∈ path-inside ?p2} by blast
have 12 : ?B2 = card {x. integral-vec x ∧ x ∈ path-image ?p2} by blast
have 13 : ?I = card {x. integral-vec x ∧ x ∈ path-inside ?p} by blast
have 14 : ?B = card {x. integral-vec x ∧ x ∈ path-image ?p} by blast
have 15 : all-integral ?vts

using subset-filled less
unfolding all-integral-def

by (metis (no-types, lifting) all-integral-def all-integral-filled-vts in-set-butlastD)
have 16 : measure lebesgue (path-inside ?p) = ?I + ?B/2 − 1

using ih-filled unfolding integral-inside integral-boundary by blast
have 17 : measure lebesgue (path-inside ?p1 ) = ?I1 + ?B1/2 − 1
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using ih-pocket unfolding integral-inside integral-boundary using pocket-rev-image
pocket-rev-inside by force

have measure lebesgue (path-inside ?p2 ) = ?I2 + ?B2/2 − 1
using pick-split-path-union-main(3 )
[OF split ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ] less(5−6 ) by blast

moreover have ?I2 = I using less(5 ) pr-image path-inside-def by presburger
moreover have ?B2 = B using less(6 ) pr-image path-image-def by pres-

burger
ultimately have ?case by (simp add: path-inside-def pocket-rev-inside

pr-image)
}
ultimately have ?case by blast

}
ultimately show ?case using card-vts by linarith

qed

theorem pick:
fixes p :: R-to-R2
assumes polygon p
assumes p = make-polygonal-path vts
assumes all-integral vts
assumes I = card {x. integral-vec x ∧ x ∈ path-inside p}
assumes B = card {x. integral-vec x ∧ x ∈ path-image p}
shows measure lebesgue (path-inside p) = I + B/2 − 1

proof−
obtain p ′ vts ′ where polygon-of p ′ vts ′

∧ vts ′!0 ∈ frontier (convex hull (set vts ′))
∧ path-image p ′ = path-image p
∧ all-integral vts ′

∧ set vts ′ = set vts
using pick-rotate assms unfolding polygon-of-def by blast

thus ?thesis using assms pick-unrotated unfolding path-inside-def polygon-of-def
by fastforce
qed

end
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