
Pick’s Theorem

Sage Binder and Katherine Kosaian

September 1, 2025

Abstract

We formalize Pick’s theorem for finding the area of a simple poly-
gon whose vertices are integral lattice points [1]. We are inspired by
John Harrison’s formalization of Pick’s theorem in HOL Light [2], but
tailor our proof approach to avoid a primary challenge point in his
formalization, which is proving that any polygon with more than three
vertices can be split (in its interior) by a line between some two ver-
tices. Our formalization involves augmenting the existing geometry
libraries in various foundational ways (e.g., by adding the definition of
a polygon and formalizing some key properties thereof).

Contents
1 Misc. Linear Algebra Setup 3

2 Integral Bijective Matrix Determinant 5

3 Polygon Definitions 8

4 Jordan Curve Theorem for Polygons 9

5 Properties of make polygonal path, pathstart and pathfinish
of a polygon 22

6 Loop Free Properties 30

7 Explicit Linepath Characterization of Polygonal Paths 36

8 A Triangle is a Polygon 46

9 Polygon Vertex Rotation 55

10 Translating a Polygon 84

11 Misc. properties 86

1

12 Properties of Sublists of Polygonal Path Vertex Lists 90

13 Reversing Polygonal Path Vertex List 116

14 Collinearity Properties 121

15 Linepath Properties 125

16 Measure of linepaths 133

17 Misc. Convex Polygon Properties 136

18 Vertices on Convex Frontier Implies Polygon is Convex 142

19 Polygon Splitting 156

20 Triangles 179

21 Measure Setup 188

22 Unit Triangle 188

23 Unit Square 193

24 Unit Triangle Area is 1/2 198

25 Area of Elementary Triangle is 1/2 201

26 Setup 206
26.1 Integral Points Cardinality Properties 206

27 Pick splitting 209

28 Convex Hull Has Good Linepath 222

29 Pick’s Theorem 228
29.1 Pick’s Theorem Triangle Case 229
29.2 Pocket properties . 255
29.3 Arbitrary Polygon Case . 332

theory Integral-Matrix
imports

Complex-Main
HOL−Analysis.Finite-Cartesian-Product
HOL−Analysis.Linear-Algebra
HOL−Analysis.Determinants

begin

2

1 Misc. Linear Algebra Setup
lemma vec-scaleR-2 : (c::real) ∗R ((vector [a, b])::real^2) = vector [a ∗ c, b ∗ c]
proof−

have (c ∗R (vector [a, b])::real^2)$1 = a ∗ c by simp
moreover have (c ∗R (vector [a, b])::real^2)$2 = ((vector [a, b])::real^2)$2 ∗

c by simp
ultimately show ?thesis by (smt (verit, best) exhaust-2 vec-eq-iff vector-2 (1)

vector-2 (2))
qed

definition is-int :: real ⇒ bool where
is-int x ←→ (∃n::int. x = n)

lemma is-int-sum: is-int x ∧ is-int y −→ is-int (x + y)
by (metis is-int-def of-int-add)

lemma is-int-minus: is-int x ∧ is-int y −→ is-int (x − y)
by (metis is-int-def of-int-diff)

lemma is-int-mult: is-int x ∧ is-int y −→ is-int (x ∗ y)
by (metis is-int-def of-int-mult)

definition integral-vec :: real^2 ⇒ bool where
integral-vec v ←→ (is-int (v$1) ∧ is-int (v$2))

lemma integral-vec-sum: integral-vec v ∧ integral-vec w −→ integral-vec (v + w)
proof(rule impI)

fix v w :: real^2
let ?x = v + w
assume integral-vec v ∧ integral-vec w
then obtain v1 v2 w1 w2 :: int where v$1 = v1 ∧ v$2 = v2 ∧ w$1 = w1 ∧

w$2 = w2
using integral-vec-def is-int-def by auto

then have ?x$1 = v1 + w1 and ?x$2 = v2 + w2 by auto
thus integral-vec ?x using integral-vec-def is-int-def by blast

qed

lemma integral-vec-minus: integral-vec v −→ integral-vec (−v)
proof(rule impI)

assume integral-vec v
then obtain x y :: int where v$1 = x ∧ v$2 = y

using integral-vec-def is-int-def by auto
then have (−v)$1 = −x and (−v)$2 = −y

using integral-vec-def is-int-def by auto
thus integral-vec (−v)

using integral-vec-def is-int-def by blast
qed

3

lemma real-2-inner :
shows ((vector [a, b])::(real^2)) · ((vector [c, d])::(real^2)) = a∗c + b∗d
(is ?v · ?w = a∗c + b∗d)

proof−
have ?v · ?w = (

∑
i ∈ UNIV . ?v$i · ?w$i) using inner-vec-def [of ?v ?w] by

blast
moreover have ∀ i. ?v$i · ?w$i = ?v$i ∗ ?w$i using inner-real-def by simp
ultimately have ?v · ?w = (

∑
i ∈ UNIV . ?v$i ∗ ?w$i) by presburger

thus ?thesis by (simp add: sum-2)
qed

lemma integral-vec-2 :
fixes a b :: int
assumes v = vector [a, b]
shows integral-vec v
by (simp add: assms is-int-def integral-vec-def)

definition matrix-inv :: real^2^2 ⇒ real^2^2 ⇒ bool where
matrix-inv A A ′←→ (A ∗∗ A ′ = mat 1 ∧ A ′ ∗∗ A = mat 1)

lemma mat-vec-mult-2 :
fixes v :: real^2 and

T :: real^2^2
defines x: x ≡ v$1 and y: y ≡ v$2 and

a: a ≡ T$1$1 and b: b ≡ T$1$2 and
c: c ≡ T$2$1 and d: d ≡ T$2$2

shows (T ∗v v) = vector [x∗a + y∗b, x∗c + y∗d]
proof−

have (T ∗v v)$1 = x∗a + y∗b by (simp add: a b matrix-vector-mult-def sum-2
x y)
moreover have (T ∗v v)$2 = x∗c + y∗d by (simp add: c d matrix-vector-mult-def

sum-2 x y)
ultimately show T ∗v v = vector [x∗a + y∗b, x∗c + y∗d]

by (smt (verit) exhaust-2 vec-eq-iff vector-2 (1) vector-2 (2))
qed

definition integral-mat :: real^2^2 ⇒ bool where
integral-mat T ←→ (∀ v. integral-vec v −→ integral-vec (T ∗v v))

definition integral-mat-surj :: real^2^2 ⇒ bool where
integral-mat-surj T ←→ (∀ v. integral-vec v −→ (∃w. integral-vec w ∧ T ∗v w =

v))

definition integral-mat-bij :: real^2^2 ⇒ bool where
integral-mat-bij T ←→ integral-mat T ∧ integral-mat-surj T

lemma integral-mat-integral-vec: integral-mat A −→ integral-vec v −→ integral-vec
(A ∗v v)

using integral-mat-def by blast

4

lemma integral-mat-int-entries:
fixes T :: real^2^2
assumes integral-mat T
defines a: a ≡ T$1$1 and b: b ≡ T$1$2 and

c: c ≡ T$2$1 and d: d ≡ T$2$2
shows is-int a ∧ is-int b ∧ is-int c ∧ is-int d

proof−
let ?v = vector [1 , 0]
have integral-vec (?v) using integral-vec-2 [of ?v 1 0] by auto
then have integral-vec (T ∗v ?v) using assms integral-mat-def by blast
moreover have T ∗v ?v = vector [a, c]

using mat-vec-mult-2 [of T ?v] a b c d by auto
ultimately have integral-vec (vector [a, c]) by auto
then have 1 : is-int a ∧ is-int c using integral-vec-def by auto

let ?w = vector [0 , 1]
have integral-vec (?w) using integral-vec-2 [of ?w 0 1] by auto
then have integral-vec (T ∗v ?w) using assms integral-mat-def by blast
moreover have T ∗v ?w = vector [b, d]

using mat-vec-mult-2 [of T ?w] a b c d by auto
ultimately have integral-vec (vector [b, d]) by auto
then have 2 : is-int b ∧ is-int d using integral-vec-def by auto

thus ?thesis using 1 2 by auto
qed

2 Integral Bijective Matrix Determinant
lemma integral-mat-int-det:

fixes T :: real^2^2
assumes integral-mat T
shows is-int (det T)

proof−
obtain a b c d where abcd: T$1$1 = a ∧ T$1$2 = b ∧ T$2$1 = c ∧ T$2$2

= d by auto
have abcd-int: is-int a ∧ is-int b ∧ is-int c ∧ is-int d

using integral-mat-int-entries[of T] abcd assms by auto
obtain ai bi ci di :: int where abcdi: ai = a ∧ bi = b ∧ ci = c ∧ di = d

using abcd-int is-int-def by auto
have det T = a∗d − b∗c using det-2 [of T] abcd by auto
also have ... = ai∗di − bi∗ci using abcdi by auto
finally show ?thesis using is-int-def by blast

qed

lemma integral-mat-bij-inv:
fixes T :: real^2^2
assumes integral-mat-bij T

5

obtains Tinv where invertible T ∧ integral-mat-bij Tinv ∧ matrix-inv T Tinv
proof−

let ?e1 = vector [1 , 0]
let ?e2 = vector [0 , 1]
let ?I = (vector [?e1 , ?e2])::(real^2^2)
have id: ?I = ((mat 1)::(real^2^2))

unfolding vec-eq-iff
by (smt (verit, ccfv-threshold) exhaust-2 mat-def vec-lambda-beta vector-2)

have integral-vec ?e1
by (simp add: integral-vec-def is-int-def)

moreover have integral-vec ?e2
by (simp add: integral-vec-def is-int-def)

ultimately obtain x y where xy: T ∗v x = ?e1 ∧ integral-vec x ∧ T ∗v y =
?e2 ∧ integral-vec y

by (meson assms integral-mat-bij-def integral-mat-surj-def)

let ?Tinv = transpose (vector [x, y])::(real^2^2)
have T ∗∗ ?Tinv = mat 1 (is ?TxTinv = mat 1)
proof−

have column 1 ?TxTinv = T ∗v (column 1 ?Tinv)
by (metis matrix-vector-mul-assoc matrix-vector-mult-basis)

also have ... = T ∗v x
by (simp add: row-def)

finally have [simp]: column 1 ?TxTinv = ?e1
using xy by presburger

have column 2 ?TxTinv = T ∗v (column 2 ?Tinv)
by (metis matrix-vector-mul-assoc matrix-vector-mult-basis)

also have ... = T ∗v y
by (simp add: row-def)

finally have [simp]: column 2 ?TxTinv = ?e2
using xy by presburger

have ∀ v. ?TxTinv ∗v v = v
proof(rule allI)

fix v :: real^2

have (?TxTinv ∗v v)$1 = (column 1 ?TxTinv)$1 ∗ v$1 + (column 2
?TxTinv)$1 ∗ v$2

by (metis (no-types, lifting) cart-eq-inner-axis mat-vec-mult-2 matrix-vector-mul-component
matrix-vector-mult-basis mult.commute vector-2 (1))

also have ... = v$1 by simp
finally have v1 : (?TxTinv ∗v v)$1 = v$1 .

have (?TxTinv ∗v v)$2 = (column 1 ?TxTinv)$2 ∗ v$1 + (column 2
?TxTinv)$2 ∗ v$2

by (metis (no-types, lifting) cart-eq-inner-axis mat-vec-mult-2 matrix-vector-mul-component
matrix-vector-mult-basis mult.commute vector-2 (2))

also have ... = v$2 by simp

6

finally have v2 : (?TxTinv ∗v v)$2 = v$2 .

show ?TxTinv ∗v v = v using v1 v2 by (metis mat-vec-mult-2 matrix-vector-mul-lid)
qed
thus ?thesis by (simp add: matrix-eq)

qed
then have matrix-inv T ?Tinv

by (simp add: Integral-Matrix.matrix-inv-def matrix-left-right-inverse)
moreover have invertible T using calculation invertible-def matrix-inv-def by

blast
moreover have integral-mat-bij ?Tinv

by (smt (verit, del-insts) ‹T ∗∗ Finite-Cartesian-Product.transpose (vector
[x, y]) = mat 1 › assms integral-mat-bij-def integral-mat-def integral-mat-surj-def
matrix-left-right-inverse matrix-mul-lid matrix-vector-mul-assoc)

ultimately show ?thesis
using ‹T ∗∗ Finite-Cartesian-Product.transpose (vector [x, y]) = mat 1 › in-

vertible-right-inverse that by blast
qed

lemma integral-mat-bij-det-pm1 :
fixes T :: real^2^2
assumes integral-mat-bij T
shows det T = 1 ∨ det T = −1

proof−
obtain Tinv where Tinv: invertible T ∧ integral-mat-bij Tinv ∧ matrix-inv T

Tinv
using integral-mat-bij-inv[of T] assms by auto

moreover have is-int (det Tinv)
using integral-mat-bij-def integral-mat-int-det[of Tinv] calculation by auto

moreover have is-int (det T)
using integral-mat-bij-def integral-mat-int-det[of T] assms by auto

moreover have det Tinv = 1 / det T
proof−
have id: Tinv ∗∗ T = mat 1 using Tinv unfolding matrix-inv-def invertible-def

by (simp add: verit-sko-ex ′)
have det Tinv ∗ det T = det (Tinv ∗∗ T) by (simp add: det-mul)
also have ... = det ((mat 1)::real^2^2) using id by auto
also have ... = (1 ::real) by auto
finally have det Tinv ∗ det T = 1 .
thus ?thesis using invertible-det-nz nonzero-eq-divide-eq by fastforce

qed
ultimately have T-Tinv-int: is-int (det T) ∧ is-int (1 / det T) by auto
thus det T = 1 ∨ det T = −1
proof−

have abs (det T) ≤ 1 (is ?D ≤ 1)
proof(rule ccontr)

assume ¬ ?D ≤ 1
then have ?D > 1 by auto

7

moreover from this have 1 / ?D < 1 by auto
moreover from calculation have 1 / ?D > 0 by auto
ultimately have ¬ is-int (1 / ?D) unfolding is-int-def by force
moreover from T-Tinv-int have is-int (1 / ?D)

by (smt (verit) ‹1 / |det T | < 1 › abs-div-pos abs-divide abs-ge-self
abs-minus-cancel divide-cancel-left divide-pos-neg int-less-real-le is-int-def of-int-code(2))

ultimately show False by auto
qed
then have det T ≥ −1 ∧ det T ≤ 1

using assms by auto
moreover have det T 6= 0 using integral-mat-bij-inv invertible-det-nz assms

by auto
ultimately show det T = 1 ∨ det T = −1 using is-int-def T-Tinv-int by

auto
qed

qed

end
theory Polygon-Jordan-Curve
imports

HOL−Analysis.Cartesian-Space
HOL−Analysis.Path-Connected
Poincare-Bendixson.Poincare-Bendixson
Integral-Matrix

begin

3 Polygon Definitions
type-synonym R-to-R2 = (real ⇒ real^2)

definition closed-path :: R-to-R2 ⇒ bool where
closed-path g ←→ path g ∧ pathstart g = pathfinish g

definition path-inside :: R-to-R2 ⇒ (real^2) set where
path-inside g = inside (path-image g)

definition path-outside :: R-to-R2 ⇒ (real^2) set where
path-outside g = outside (path-image g)

fun make-polygonal-path :: (real^2) list ⇒ R-to-R2 where
make-polygonal-path [] = linepath 0 0
| make-polygonal-path [a] = linepath a a
| make-polygonal-path [a,b] = linepath a b
| make-polygonal-path (a # b # xs) = (linepath a b) +++ make-polygonal-path (b
xs)

definition polygonal-path :: R-to-R2 ⇒ bool where
polygonal-path g ←→ g ∈ make-polygonal-path‘{xs :: (real^2) list. True}

8

definition all-integral :: (real^2) list ⇒ bool where
all-integral l = (∀ x ∈ set l. integral-vec x)

definition polygon :: R-to-R2 ⇒ bool where
polygon g ←→ polygonal-path g ∧ simple-path g ∧ closed-path g

definition integral-polygon :: R-to-R2 ⇒ bool where
integral-polygon g ←→
(polygon g ∧ (∃ vts. g = make-polygonal-path vts ∧ all-integral vts))

definition make-triangle :: real^2 ⇒ real^2 ⇒ real^2 ⇒ R-to-R2 where
make-triangle a b c = make-polygonal-path [a, b, c, a]

definition polygon-of :: R-to-R2 ⇒ (real^2) list ⇒ bool where
polygon-of p vts ←→ polygon p ∧ p = make-polygonal-path vts

definition good-linepath :: real^2 ⇒ real^2 ⇒ (real^2) list ⇒ bool where
good-linepath a b vts ←→ (let p = make-polygonal-path vts in

a 6= b ∧ {a, b} ⊆ set vts ∧ path-image (linepath a b) ⊆ path-inside p ∪ {a, b})

definition good-polygonal-path :: real^2 ⇒ (real^2) list ⇒ real^2 ⇒ (real^2) list
⇒ bool where

good-polygonal-path a cutvts b vts ←→ (
let p = make-polygonal-path vts in
let p-cut = make-polygonal-path ([a] @ cutvts @ [b]) in
(a 6= b ∧ {a, b} ⊆ set vts ∧ path-image (p-cut) ⊆ path-inside p ∪ {a, b} ∧

loop-free p-cut))

4 Jordan Curve Theorem for Polygons
definition inside-outside :: R-to-R2 ⇒ (real^2) set ⇒ (real^2) set ⇒ bool where

inside-outside p ins outs ←→
(ins 6= {} ∧ open ins ∧ connected ins ∧
outs 6= {} ∧ open outs ∧ connected outs ∧
bounded ins ∧ ¬ bounded outs ∧
ins ∩ outs = {} ∧ ins ∪ outs = − path-image p ∧
frontier ins = path-image p ∧ frontier outs = path-image p)

lemma Jordan-inside-outside-real2 :
fixes p :: real ⇒ real^2
assumes simple-path p pathfinish p = pathstart p
shows inside(path-image p) 6= {} ∧

open(inside(path-image p)) ∧
connected(inside(path-image p)) ∧
outside(path-image p) 6= {} ∧
open(outside(path-image p)) ∧
connected(outside(path-image p)) ∧

9

bounded(inside(path-image p)) ∧
¬ bounded(outside(path-image p)) ∧
inside(path-image p) ∩ outside(path-image p) = {} ∧
inside(path-image p) ∪ outside(path-image p) =
− path-image p ∧
frontier(inside(path-image p)) = path-image p ∧
frontier(outside(path-image p)) = path-image p

proof −
have good-type: c1-on-open-R2-axioms TYPE((real, 2) vec)

unfolding c1-on-open-R2-axioms-def by auto
have inside(path-image p) 6= {} ∧

open(inside(path-image p)) ∧
connected(inside(path-image p)) ∧
outside(path-image p) 6= {} ∧
open(outside(path-image p)) ∧
connected(outside(path-image p)) ∧
bounded(inside(path-image p)) ∧
¬ bounded(outside(path-image p)) ∧
inside(path-image p) ∩ outside(path-image p) = {} ∧
inside(path-image p) ∪ outside(path-image p) =
− path-image p ∧
frontier(inside(path-image p)) = path-image p ∧
frontier(outside(path-image p)) = path-image p

using assms c1-on-open-R2 .Jordan-inside-outside-R2 [of - - - p]
unfolding c1-on-open-R2-def c1-on-open-euclidean-def c1-on-open-def using

good-type
by (metis continuous-on-empty equals0D open-empty)

then show ?thesis unfolding inside-outside-def
using path-inside-def path-outside-def by auto

qed

lemma inside-outside-polygon:
fixes p :: R-to-R2
assumes polygon: polygon p
shows inside-outside p (path-inside p) (path-outside p)

proof−
have good-type: c1-on-open-R2-axioms TYPE((real, 2) vec)

unfolding c1-on-open-R2-axioms-def by auto
have simple-path p pathfinish p = pathstart p using assms polygon-def closed-path-def

by auto
then show ?thesis using Jordan-inside-outside-real2 unfolding inside-outside-def

using path-inside-def path-outside-def by auto
qed

lemma inside-outside-unique:
fixes p :: R-to-R2
assumes polygon p
assumes io1 : inside-outside p inside1 outside1

10

assumes io2 : inside-outside p inside2 outside2
shows inside1 = inside2 ∧ outside1 = outside2

proof −
have inner1 : inside(path-image p) = inside1
using dual-order .antisym inside-subset interior-eq interior-inside-frontier
using io1 unfolding inside-outside-def
by metis

have inner2 : inside(path-image p) = inside2
using dual-order .antisym inside-subset interior-eq interior-inside-frontier
using io2 unfolding inside-outside-def
by metis

have eq1 : inside1 = inside2
using inner1 inner2
by auto

have h1 : inside1 ∪ outside1 = − path-image p
using io1 unfolding inside-outside-def by auto

have h2 : inside1 ∩ outside1 = {}
using io1 unfolding inside-outside-def by auto

have outer1 : outside(path-image p) = outside1
using io1 inner1 unfolding inside-outside-def
using h1 h2 outside-inside by auto

have h3 : inside2 ∪ outside2 = − path-image p
using io2 unfolding inside-outside-def by auto

have h4 : inside2 ∩ outside2 = {}
using io2 unfolding inside-outside-def by auto

have outer2 : outside(path-image p) = outside2
using io2 inner2 unfolding inside-outside-def
using h3 h4 outside-inside by auto

then have eq2 : outside1 = outside2
using outer1 outer2 by auto

then show ?thesis using eq1 eq2 by auto
qed

lemma polygon-jordan-curve:
fixes p :: R-to-R2
assumes polygon p
obtains inside outside where

inside-outside p inside outside
proof−

have good-type: c1-on-open-R2-axioms TYPE((real, 2) vec)
unfolding c1-on-open-R2-axioms-def by auto

have simple-path p pathfinish p = pathstart p using assms polygon-def closed-path-def
by auto

then obtain inside outside where
inside 6= {} open inside connected inside
outside 6= {} open outside connected outside
bounded inside ¬ bounded outside inside ∩ outside = {}
inside ∪ outside = − path-image p
frontier inside = path-image p

11

frontier outside = path-image p
using c1-on-open-R2 .Jordan-curve-R2 [of - - - p]
unfolding c1-on-open-R2-def c1-on-open-euclidean-def c1-on-open-def using

good-type
by (metis continuous-on-empty equals0D open-empty)

then show ?thesis
using inside-outside-def that by auto

qed

lemma connected-component-image:
fixes f :: ′a::euclidean-space ⇒ ′b::euclidean-space
assumes linear f bij f
shows f ‘ (connected-component-set S x) = connected-component-set (f ‘ S) (f

x)
proof −

have conn:
∧

S . connected S =⇒ connected (f ‘ S)
by (simp add: assms(1) connected-linear-image)

then have h1 :
∧

T . T ∈ {T . connected T ∧ x ∈ T ∧ T ⊆ S} =⇒ f ‘ T ∈ {T .
connected T ∧ (f x) ∈ T ∧ T ⊆ (f ‘ S)}

by auto
then have subset1 : f ‘ connected-component-set S x ⊆ connected-component-set

(f ‘ S) (f x)
using connected-component-Union

by (smt (verit, ccfv-threshold) assms(2) bij-is-inj connected-component-eq-empty
connected-component-maximal connected-component-refl-eq connected-component-subset
connected-connected-component image-is-empty inj-image-mem-iff mem-Collect-eq)
have

∧
S . connected (f ‘ S) =⇒ connected S

using assms connected-continuous-image assms linear-continuous-on linear-conv-bounded-linear
bij-is-inj homeomorphism-def linear-homeomorphism-image
by (smt (verit, del-insts))

then have h2 :
∧

T . f ‘ T ∈ {T . connected T ∧ (f x) ∈ T ∧ T ⊆ (f ‘ S)} =⇒
T ∈ {T . connected T ∧ x ∈ T ∧ T ⊆ S}

by (simp add: assms(2) bij-is-inj image-subset-iff inj-image-mem-iff subsetI)
then have subset2 : connected-component-set (f ‘ S) (f x) ⊆ f ‘ connected-component-set

S x
using connected-component-Union[of S x] connected-component-Union[of f‘S f

x]
by (smt (verit, del-insts) assms(2) bij-is-inj connected-component-eq-empty con-

nected-component-maximal connected-component-refl-eq connected-component-subset
connected-connected-component image-mono inj-image-mem-iff mem-Collect-eq sub-
set-imageE)

show f ‘ (connected-component-set S x) = connected-component-set (f ‘ S) (f x)
using subset1 subset2 by auto

qed

lemma bounded-map:
fixes f :: ′a::euclidean-space ⇒ ′b::euclidean-space
assumes linear f bij f
shows bounded (f ‘ S) = bounded S

12

proof −
have h1 : bounded S =⇒ bounded (f ‘ S)

using assms
using bounded-linear-image linear-conv-bounded-linear by blast

have bounded-linear f
using linear-conv-bounded-linear assms by auto

then have bounded-linear (inv f)
using assms unfolding bij-def

by (smt (verit, ccfv-threshold) bij-betw-def bij-betw-subset dim-image-eq inv-equality
linear-conv-bounded-linear linear-surjective-isomorphism subset-UNIV)

then have h2 : bounded (f ‘ S) =⇒ bounded S
using assms
by (metis bij-is-inj bounded-linear-image image-inv-f-f)

then show ?thesis
using assms h1 h2 by auto

qed

lemma inside-bijective-linear-image:
fixes f :: ′a::euclidean-space ⇒ ′b::euclidean-space
fixes c :: real ⇒ ′a
assumes c-simple:path c
assumes linear f bij f
shows inside (f ‘ (path-image c)) = f ‘ (inside(path-image c))

proof −
have set1 : {x. x /∈ f ‘ path-image c} = f ‘ {x. x /∈ path-image c}

using assms path-image-compose unfolding bij-def
by (smt (verit, best) UNIV-I imageE inj-image-mem-iff mem-Collect-eq subsetI

subset-antisym)
have linear-inv: linear (inv f)

using assms
by (metis bij-imp-bij-inv bij-is-inj inv-o-cancel linear-injective-left-inverse o-inv-o-cancel)

have bij-inv: bij (inv f)
using assms
using bij-imp-bij-inv by blast

have inset1 :
∧

x. x ∈ {x. bounded (connected-component-set (− f ‘ path-image
c) x)} =⇒ x ∈ f ‘ {x. bounded (connected-component-set (− path-image c) x)}

proof −
fix x
assume ∗: x ∈ {x. bounded (connected-component-set (− f ‘ path-image c) x)}
have inj f

using assms(3) bij-betw-imp-inj-on by blast
then show x ∈ f ‘ {x. bounded (connected-component-set (− path-image c) x)}

using ∗ connected-component-image[OF linear-inv bij-inv]
by (smt (z3) ‹

∧
x S . inv f ‘ connected-component-set S x = connected-component-set

(inv f ‘ S) (inv f x)› ‹bij (inv f)› ‹linear (inv f)› ‹x ∈ {x. bounded (connected-component-set
(− f ‘ path-image c) x)}› bij-image-Compl-eq bounded-map connected-component-eq-empty
image-empty image-inv-f-f mem-Collect-eq)

qed
have inset2 :

∧
x. x ∈ f ‘ {x. bounded (connected-component-set (− path-image

13

c) x)} =⇒ x ∈ {x. bounded (connected-component-set (− f ‘ path-image c) x)}
proof −

fix x
assume x ∈ f ‘ {x. bounded (connected-component-set (− path-image c) x)}
then obtain x1 where x = f x1 x1 ∈ {x. bounded (connected-component-set

(− path-image c) x)}
by auto

then show x ∈ {x. bounded (connected-component-set (− f ‘ path-image c) x)}

using bounded-map[OF assms(2) assms(3)] connected-component-image[OF
assms(2) assms(3)]

by (metis assms(3) bij-image-Compl-eq mem-Collect-eq)
qed
have set2 : f ‘ {x. bounded (connected-component-set (− path-image c) x)} = {x.

bounded (connected-component-set (− f ‘ path-image c) x)}
using inset1 inset2 by auto

have inset1 :
∧

x. x ∈ f ‘ {x. x /∈ path-image c ∧ bounded (connected-component-set
(− path-image c) x)} =⇒

x∈ {x. x /∈ f ‘ path-image c ∧ bounded (connected-component-set (− f ‘
path-image c) x)}

proof −
fix x
assume x ∈ f ‘ {x. x /∈ path-image c ∧ bounded (connected-component-set (−

path-image c) x)}
then show x∈ {x. x /∈ f ‘ path-image c ∧ bounded (connected-component-set

(− f ‘ path-image c) x)}
by (metis (no-types, lifting) image-iff mem-Collect-eq set1 set2)

qed
have inset2 :

∧
x. x∈ {x. x /∈ f ‘ path-image c ∧ bounded (connected-component-set

(− f ‘ path-image c) x)} =⇒
x ∈ f ‘ {x. x /∈ path-image c ∧ bounded (connected-component-set (− path-image

c) x)}
proof −

fix x
assume x∈ {x. x /∈ f ‘ path-image c ∧ bounded (connected-component-set (−

f ‘ path-image c) x)}
then show x ∈ f ‘ {x. x /∈ path-image c ∧ bounded (connected-component-set

(− path-image c) x)}
by (smt (verit, best) image-iff mem-Collect-eq set2)

qed
have same-set: {x. x /∈ f ‘ path-image c ∧ bounded (connected-component-set (−

f ‘ path-image c) x)} =
f ‘ {x. x /∈ path-image c ∧ bounded (connected-component-set (− path-image c)

x)}
using inset1 inset2
by blast

have ins1 :
∧

x. x ∈ inside (f ‘ path-image c) =⇒ x ∈ f ‘ inside (path-image c)
proof −

fix x

14

assume ∗: x ∈ inside (f ‘ path-image c)
show x ∈ f ‘ inside (path-image c)

by (metis (no-types) ∗ same-set inside-def)
qed
then have inside (f ‘ (path-image c)) ⊆ f ‘ (inside(path-image c))

by auto
have ins2 :

∧
xa. xa ∈ inside (path-image c) =⇒ f xa ∈ inside (f ‘ path-image c)

proof −
fix xa
assume ∗: xa ∈ inside (path-image c)
show f xa ∈ inside (f ‘ path-image c)

by (metis (no-types, lifting) ∗ same-set assms(3) bij-def inj-image-mem-iff
inside-def mem-Collect-eq)

qed
then have f ‘ (inside(path-image c)) ⊆ inside (f ‘ (path-image c))

by auto
show ?thesis
using ins1 ins2 by auto

qed

lemma bij-image-intersection:
assumes path-image c1 ∩ path-image c2 = S
assumes bij f
assumes c ∈ path-image (f ◦ c1) ∩ path-image (f ◦ c2)
shows c ∈ f ‘ S
proof −

have c ∈ f ‘ path-image c1 ∩ f ‘ path-image c2
using assms path-image-compose[of f c1] path-image-compose[of f c2]
by auto

then obtain w where c-is: w ∈ path-image c1 ∧ w ∈ path-image c2 ∧ c = f
w

using assms unfolding bij-def inj-def surj-def
by auto

then have w ∈ S
using assms by auto

then show c ∈ f ‘ S
using c-is by auto

qed

theorem (in c1-on-open-R2) split-inside-simple-closed-curve-locale:
fixes c :: real ⇒ ′a
assumes c1-simple:simple-path c1 and c1-start: pathstart c1 = a and c1-end:

pathfinish c1 = b
assumes c2-simple: simple-path c2 and c2-start: pathstart c2 = a and c2-end:

pathfinish c2 = b
assumes c-simple: simple-path c and c-start: pathstart c = a and c-end: pathfin-

ish c = b
assumes a-neq-b: a 6= b

15

and c1c2 : path-image c1 ∩ path-image c2 = {a,b}
and c1c: path-image c1 ∩ path-image c = {a,b}
and c2c: path-image c2 ∩ path-image c = {a,b}
and ne-12 : path-image c ∩ inside(path-image c1 ∪ path-image c2) 6= {}

obtains inside(path-image c1 ∪ path-image c) ∩ inside(path-image c2 ∪ path-image
c) = {}

inside(path-image c1 ∪ path-image c) ∪ inside(path-image c2 ∪ path-image
c) ∪

(path-image c − {a,b}) = inside(path-image c1 ∪ path-image c2)
proof −

let ?cc1 = (complex-of ◦ c1)
let ?cc2 = (complex-of ◦ c2)
let ?cc = (complex-of ◦ c)
have cc1-simple:simple-path ?cc1

using bij-betw-imp-inj-on c1-simple complex-of-bij
using simple-path-linear-image-eq[OF complex-of-linear]
by blast

have cc1-start:pathstart ?cc1 = (complex-of a)
using c1-start by (simp add:pathstart-compose)

have cc1-end:pathfinish ?cc1 = (complex-of b)
using c1-end by (simp add: pathfinish-compose)

have cc2-simple:simple-path ?cc2
using c2-simple complex-of-bij bij-betw-imp-inj-on
using simple-path-linear-image-eq[OF complex-of-linear]
by blast

have cc2-start:pathstart ?cc2 = (complex-of a)
using c2-start by (simp add:pathstart-compose)

have cc2-end:pathfinish ?cc2 = (complex-of b)
using c2-end by (simp add: pathfinish-compose)

have cc-simple:simple-path ?cc using c-simple complex-of-bij
using bij-betw-imp-inj-on
using simple-path-linear-image-eq[OF complex-of-linear]
by blast

have cc-start:pathstart ?cc = (complex-of a)
using c-start by (simp add:pathstart-compose)

have cc-end:pathfinish ?cc = (complex-of b)
using c-end by (simp add: pathfinish-compose)

have ca-neq-cb: complex-of a 6= complex-of b
using a-neq-b
by (meson bij-betw-imp-inj-on complex-of-bij inj-eq)

have image-set-eq1 : {complex-of a, complex-of b} ⊆ path-image ?cc1 ∩ path-image
?cc2

using c1c2 path-image-compose[of complex-of c1] path-image-compose[of com-
plex-of c2]

by auto
have image-set-eq2 :

∧
c. c ∈ path-image ?cc1 ∩ path-image ?cc2 =⇒ c ∈{complex-of

a, complex-of b}
using bij-image-intersection[of c1 c2 {a, b} complex-of]
using c1c2 complex-of-bij by auto

16

have cc1c2 : path-image ?cc1 ∩ path-image ?cc2 = {(complex-of a),(complex-of
b)}

using image-set-eq1 image-set-eq2 by auto
have image-set-eq1 : {complex-of a, complex-of b} ⊆ path-image ?cc1 ∩ path-image

?cc
using c1c path-image-compose[of complex-of c1] path-image-compose[of com-

plex-of c]
by auto

have image-set-eq2 :
∧

c. c ∈ path-image ?cc1 ∩ path-image ?cc =⇒ c ∈{complex-of
a, complex-of b}

using bij-image-intersection[of c1 c {a, b} complex-of]
using c1c complex-of-bij by auto

have cc1c: path-image ?cc1 ∩ path-image ?cc = {(complex-of a),(complex-of b)}

using image-set-eq1 image-set-eq2 by auto
have image-set-eq1 : {complex-of a, complex-of b} ⊆ path-image ?cc2 ∩ path-image

?cc
using c2c path-image-compose[of complex-of c2] path-image-compose[of com-

plex-of c]
by auto

have image-set-eq2 :
∧

c. c ∈ path-image ?cc2 ∩ path-image ?cc =⇒ c ∈{complex-of
a, complex-of b}

using bij-image-intersection[of c2 c {a, b} complex-of]
using c2c complex-of-bij by auto

have cc2c: path-image ?cc2 ∩ path-image ?cc = {(complex-of a),(complex-of b)}
using image-set-eq1 image-set-eq2 by auto

let ?j = c1 +++ (reversepath c)
let ?cj = ?cc1 +++ (reversepath ?cc)
have cj-and-j: path-image ?cj = complex-of ‘ (path-image ?j)

by (metis path-compose-join path-compose-reversepath path-image-compose)
have pathstart (reversepath c) = b

using c-end
by auto

then have j-path: path (c1 +++ (reversepath c))
using c1-end c1-simple c-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)

then have path ?j ∧ path-image ?j = path-image c1 ∪ path-image c
using ‹pathstart (reversepath c) = b› c1-end path-image-join path-image-reversepath

by blast
then have inside(path-image c1 ∪ path-image c) = inside(path-image ?j)

by auto
have pathstart (reversepath ?cc) = complex-of b

using cc-end
by auto

then have cj-path: path ?cj
using cc1-end cc1-simple cc-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)

17

then have path ?cj ∧ path-image ?cj = path-image ?cc1 ∪ path-image ?cc
by (metis ‹pathstart (reversepath (complex-of ◦ c)) = complex-of b› cc1-end

path-image-join path-image-reversepath)
then have ins-cj: inside(path-image ?cc1 ∪ path-image ?cc) = inside (path-image

?cj)
by auto

have inside(path-image ?cj) = complex-of ‘ (inside(path-image ?j))
using inside-bijective-linear-image[of ?j complex-of] j-path
using cj-and-j complex-of-bij complex-of-linear by presburger

then have i1 : inside(path-image ?cc1 ∪ path-image ?cc) = complex-of ‘ (inside(path-image
c1 ∪ path-image c)) using complex-of-real-of unfolding image-comp

using cj-and-j
by (simp add: ins-cj ‹inside (path-image c1 ∪ path-image c) = inside (path-image

(c1 +++ reversepath c))›)

let ?j2 = c2 +++ (reversepath c)
let ?cj2 = ?cc2 +++ (reversepath ?cc)
have cj2-and-j2 : path-image ?cj2 = complex-of ‘ (path-image ?j2)

by (metis path-compose-join path-compose-reversepath path-image-compose)
have pathstart (reversepath c) = b

using c-end by auto
then have j2-path: path (c2 +++ (reversepath c))

using c2-end c2-simple c-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)

then have path ?j2 ∧ path-image ?j2 = path-image c2 ∪ path-image c
using ‹pathstart (reversepath c) = b› c2-end path-image-join path-image-reversepath

by blast
then have inside(path-image c2 ∪ path-image c) = inside(path-image ?j2)

by auto
have pathstart (reversepath ?cc) = complex-of b

using cc-end by auto
then have cj2-path: path ?cj2

using cc2-end cc2-simple cc-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)

then have path ?cj2 ∧ path-image ?cj2 = path-image ?cc2 ∪ path-image ?cc
by (metis ‹pathstart (reversepath (complex-of ◦ c)) = complex-of b› cc2-end

path-image-join path-image-reversepath)
then have ins-cj2 : inside(path-image ?cc2 ∪ path-image ?cc) = inside (path-image

?cj2)
by auto

have inside(path-image ?cj2) = complex-of ‘ (inside(path-image ?j2))
using inside-bijective-linear-image[of ?j2 complex-of] j2-path
using cj2-and-j2 complex-of-bij complex-of-linear
by presburger

then have i2 : inside (path-image (complex-of ◦ c2) ∪ path-image (complex-of ◦
c))

= complex-of ‘ inside (path-image c2 ∪ path-image c)
using cj2-and-j2

18

by (simp add: ins-cj2 ‹inside (path-image c2 ∪ path-image c) = inside (path-image
(c2 +++ reversepath c))›)

let ?j3 = c2 +++ (reversepath c1)
let ?cj3 = ?cc2 +++ (reversepath ?cc1)
have cj3-and-j3 : path-image ?cj3 = complex-of ‘ (path-image ?j3)

by (metis path-compose-join path-compose-reversepath path-image-compose)
have pathstart (reversepath c1) = b

using c1-end by auto
then have j3-path: path (c2 +++ (reversepath c1))

using c2-end c2-simple c1-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)

then have path-j3 : path ?j3 ∧ path-image ?j3 = path-image c2 ∪ path-image c1
using ‹pathstart (reversepath c1) = b› c2-end path-image-join path-image-reversepath

by blast
then have inside(path-image c2 ∪ path-image c1) = inside(path-image ?j3)
by auto

have pathstart (reversepath ?cc1) = complex-of b
using cc1-end by auto

then have cj3-path: path ?cj3
using cc2-end cc2-simple cc1-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)

then have path-cj3 : path ?cj3 ∧ path-image ?cj3 = path-image ?cc2 ∪ path-image
?cc1

by (metis ‹pathstart (reversepath (complex-of ◦ c1)) = complex-of b› cc2-end
path-image-join path-image-reversepath)
then have ins-cj3 : inside(path-image ?cc2 ∪ path-image ?cc1) = inside (path-image

?cj3)
by auto

have inside(path-image ?cj3) = complex-of ‘ (inside(path-image ?j3))
using inside-bijective-linear-image[of ?j3 complex-of] j3-path
using cj3-and-j3 complex-of-bij complex-of-linear
by presburger

then have i3 : inside (path-image (complex-of ◦ c1) ∪ path-image (complex-of ◦
c2))

= complex-of ‘ inside (path-image c1 ∪ path-image c2)
by (simp add: path-cj3 path-j3 sup-commute)

obtain y where y-prop: y ∈ path-image c ∩ inside (path-image c1 ∪ path-image
c2)

using ne-12 by auto
then have y-in1 : complex-of y ∈ path-image ?cc

by (metis IntD1 image-eqI path-image-compose)
have y-in2 : complex-of y ∈ complex-of ‘ (inside (path-image c1 ∪ path-image

c2))
using y-prop by auto

then have cne-12 : path-image ?cc ∩ inside(path-image ?cc1 ∪ path-image ?cc2)
6= {}

using ne-12 y-in1 y-in2 i3 by force

19

obtain for-reals: inside(path-image ?cc1 ∪ path-image ?cc) ∩ inside(path-image
?cc2 ∪ path-image ?cc) = {}

inside(path-image ?cc1 ∪ path-image ?cc) ∪ inside(path-image ?cc2 ∪
path-image ?cc) ∪

(path-image ?cc − {complex-of a, complex-of b}) = inside(path-image ?cc1
∪ path-image ?cc2)

using split-inside-simple-closed-curve[OF cc1-simple cc1-start cc1-end cc2-simple
cc2-start

cc2-end cc-simple cc-start cc-end ca-neq-cb cc1c2 cc1c cc2c cne-12]
by auto

let ?rin1 = real-of ‘ inside(path-image ?cc1 ∪ path-image ?cc)
let ?rin2 = real-of ‘ inside(path-image ?cc2 ∪ path-image ?cc)

have h1 : inside(path-image c1 ∪ path-image c) ∩ inside(path-image c2 ∪ path-image
c) 6= {} =⇒ False

proof−
assume inside(path-image c1 ∪ path-image c) ∩ inside(path-image c2 ∪

path-image c) 6= {}
then obtain a where a-prop: a ∈ inside(path-image c1 ∪ path-image c) ∧ a

∈ inside(path-image c2 ∪ path-image c)
by auto

have in1 : complex-of a ∈ inside (path-image (complex-of ◦ c1) ∪ path-image
(complex-of ◦ c))

using a-prop i1 by auto
have in2 : complex-of a ∈ inside (path-image (complex-of ◦ c2) ∪ path-image

(complex-of ◦ c))
using a-prop i2 by auto

show False using in1 in2 for-reals(1) by auto
qed
have h: path-image (complex-of ◦ c) − {complex-of a, complex-of b} = complex-of

‘ (path-image c) − complex-of ‘{a,b}
using path-image-compose by auto

have complex-of ‘ path-image c − complex-of ‘ {a, b} = complex-of ‘ (path-image
c − {a, b})

proof −
have

∧
x. x ∈ (complex-of ‘ path-image c − complex-of ‘ {a, b}) ←→ x ∈

complex-of ‘ (path-image c − {a, b})
using Diff-iff bij-betw-imp-inj-on complex-of-bij image-iff inj-eq by (smt (z3))

then show ?thesis by blast
qed
then have path-image (complex-of ◦ c) − {complex-of a, complex-of b} = com-

plex-of ‘ (path-image c − {a,b})
using h by simp

then have h2 : inside(path-image c1 ∪ path-image c) ∪ inside(path-image c2 ∪
path-image c) ∪

(path-image c − {a,b}) = inside(path-image c1 ∪ path-image c2)
proof−

have
∧

x . x ∈ inside(path-image c1 ∪ path-image c2) ←→ complex-of x ∈
complex-of ‘ inside (path-image c1 ∪ path-image c2)

20

using i3 by (metis bij-betw-imp-inj-on complex-of-bij image-iff inj-eq)
then have in-iff :

∧
x. x ∈ inside(path-image c1 ∪ path-image c2) ←→ com-

plex-of x ∈ inside (path-image (complex-of ◦ c1) ∪ path-image (complex-of ◦ c))
∪

inside (path-image (complex-of ◦ c2) ∪ path-image (complex-of ◦ c)) ∪
(path-image (complex-of ◦ c) − {complex-of a, complex-of b})

using for-reals(2)
using i3 by presburger

have
∧

x. complex-of x ∈ inside (path-image (complex-of ◦ c1) ∪ path-image
(complex-of ◦ c)) ∪

inside (path-image (complex-of ◦ c2) ∪ path-image (complex-of ◦ c)) ∪
(path-image (complex-of ◦ c) − {complex-of a, complex-of b})
←→ complex-of x ∈ inside (path-image (complex-of ◦ c1) ∪ path-image

(complex-of ◦ c))
∨ complex-of x ∈ inside (path-image (complex-of ◦ c2) ∪ path-image

(complex-of ◦ c))
∨ complex-of x ∈ (path-image (complex-of ◦ c) − {complex-of a, complex-of

b})
by blast

then have
∧

x. complex-of x ∈ inside (path-image (complex-of ◦ c1) ∪ path-image
(complex-of ◦ c)) ∪

inside (path-image (complex-of ◦ c2) ∪ path-image (complex-of ◦ c)) ∪
(path-image (complex-of ◦ c) − {complex-of a, complex-of b})
←→ x ∈ inside(path-image c1 ∪ path-image c) ∪ inside(path-image c2 ∪

path-image c) ∪
(path-image c − {a,b})

using i1 i2 i3 Un-iff ‹path-image (complex-of ◦ c) − {complex-of a, complex-of
b} = complex-of ‘ (path-image c − {a, b})› bij-betw-imp-inj-on complex-of-bij im-
age-iff inj-def

by (smt (verit, best))
then have

∧
x. x ∈ inside(path-image c1 ∪ path-image c2)←→ x ∈ (inside(path-image

c1 ∪ path-image c) ∪ inside(path-image c2 ∪ path-image c) ∪
(path-image c − {a,b}))

using in-iff by meson
then show ?thesis by auto

qed
show ?thesis using that h1 h2 by auto

qed

lemma split-inside-simple-closed-curve-real2 :
fixes c :: real ⇒ real^2
assumes c1-simple:simple-path c1 and c1-start: pathstart c1 = a and c1-end:

pathfinish c1 = b
assumes c2-simple: simple-path c2 and c2-start: pathstart c2 = a and c2-end:

pathfinish c2 = b
assumes c-simple: simple-path c and c-start: pathstart c = a and c-end: pathfin-

ish c = b
assumes a-neq-b: a 6= b

and c1c2 : path-image c1 ∩ path-image c2 = {a,b}

21

and c1c: path-image c1 ∩ path-image c = {a,b}
and c2c: path-image c2 ∩ path-image c = {a,b}
and ne-12 : path-image c ∩ inside(path-image c1 ∪ path-image c2) 6= {}

obtains inside(path-image c1 ∪ path-image c) ∩ inside(path-image c2 ∪ path-image
c) = {}

inside(path-image c1 ∪ path-image c) ∪ inside(path-image c2 ∪ path-image
c) ∪

(path-image c − {a,b}) = inside(path-image c1 ∪ path-image c2)
proof −

have good-type: c1-on-open-R2-axioms TYPE((real, 2) vec)
unfolding c1-on-open-R2-axioms-def by auto

then show ?thesis
using c1-on-open-R2 .split-inside-simple-closed-curve-locale[of - - - c1 a b c2 c]

assms
unfolding c1-on-open-R2-def c1-on-open-euclidean-def c1-on-open-def
using good-type that by blast

qed

end
theory Polygon-Lemmas
imports

Polygon-Jordan-Curve
HOL−Library.Sublist
HOL.Set-Interval
HOL.Fun

begin

5 Properties of make polygonal path, pathstart
and pathfinish of a polygon

lemma make-polygonal-path-induct[case-names Empty Single Two Multiple]:
fixes ell :: (real^2) list
assumes empty:

∧
ell. ell = [] =⇒ P ell

and single:
∧

ell. [[length ell = 1]] =⇒ P ell
and two:

∧
ell. [[length ell = 2]] =⇒ P ell

and multiple:
∧

ell.
[[length ell > 2 ;
P ([(ell!0), (ell!1)]);
P ((ell!1)#(drop 2 ell))]] =⇒ P ell

shows P ell
apply(induct ell rule: make-polygonal-path.induct)
using empty single two multiple by auto

lemma make-polygonal-path-gives-path:
fixes v :: (real^2) list
shows path (make-polygonal-path v)

proof(induction length v arbitrary: v)

22

case 0
thus path (make-polygonal-path v)

by auto
next

case (Suc x)
show ?case

by (smt (verit, best) Suc.hyps(1) Suc.hyps(2) Suc-length-conv list.distinct(1)
list.inject make-polygonal-path.elims path-join-imp path-linepath pathfinish-linepath
pathstart-join pathstart-linepath)
qed

corollary polygonal-path-is-path:
fixes g :: R-to-R2
assumes polygonal-path g
shows path g
using assms polygonal-path-def make-polygonal-path-gives-path by auto

lemma polygon-to-polygonal-path:
fixes p :: R-to-R2
assumes polygon p
obtains ell where p = make-polygonal-path ell
using assms unfolding polygon-def polygonal-path-def
by auto

lemma polygon-pathstart:
fixes g :: R-to-R2
assumes l 6= []
assumes g = make-polygonal-path l
shows pathstart g = l!0
using assms make-polygonal-path.simps
by (smt (verit) list.discI list.expand make-polygonal-path.elims nth-Cons-0 path-

start-join pathstart-linepath)

lemma polygon-pathfinish:
fixes g :: R-to-R2
assumes l 6= []
assumes g = make-polygonal-path l
shows pathfinish g = l!(length l − 1)
using assms

proof (induct length l arbitrary: g l)
case 0
then show ?case by auto

next
case (Suc x)
{assume ∗: length l = 1

then obtain a where l-is: l = [a]
by (metis Suc.prems(1) Suc-neq-Zero diff-Suc-1 diff-self-eq-0 length-Cons

remdups-adj.cases)

23

then have pathfinish g = a
using Suc make-polygonal-path.simps
by (simp add: pathfinish-def)

then have pathfinish g = l!(length l − 1)
using Suc l-is
by auto

} moreover {assume ∗: length l = 2
then obtain a b where l-is: l = [a, b]

by (metis (no-types, opaque-lifting) One-nat-def Suc-eq-plus1 list.size(3)
list.size(4) min-list.cases nat.simps(1) nat.simps(3) numeral-2-eq-2)

then have g-is: g = linepath a b
using Suc by auto

have pf : pathfinish g = b using g-is by auto
then have pathfinish g = l!(length l − 1)

using Suc ∗ l-is
by auto

}
moreover {assume ∗: length l > 2

then obtain a b c where l-is: l = a # b # c
by (metis Suc.prems(1) Zero-neq-Suc length-Cons less-Suc0 list.size(3)

numeral-2-eq-2 remdups-adj.cases)
then have g-is: g = (linepath a b) +++ make-polygonal-path (b # c)

using Suc l-is
proof −

have c 6= []
using ∗ l-is by auto

then show ?thesis
by (metis (full-types) Suc(4) l-is list.exhaust make-polygonal-path.simps(4))

qed
then have pf : pathfinish g = pathfinish (make-polygonal-path (b # c))

by auto
have len-x: length (b # c) = x

using l-is Suc by auto
then have pathfinish (make-polygonal-path (b # c)) = (b # c)!(length l − 2)

using Suc.hyps l-is
by simp

then have pathfinish g = l!(length l − 1)
using l-is pf
by auto

}
ultimately show ?case

using Suc
by (metis One-nat-def less-Suc-eq-0-disj less-antisym numeral-2-eq-2)

qed

lemma make-polygonal-path-image-property:
assumes length vts ≥ 2
assumes p-is-path: x ∈ path-image (make-polygonal-path vts)
shows ∃ k < length vts − 1 . x ∈ path-image (linepath (vts ! k) (vts ! (k + 1)))

24

using assms
proof (induct vts)

case Nil
then show ?case by auto

next
case (Cons a vts)
then have len-gteq: length vts ≥ 1

by simp
{assume ∗: length vts = 1

then obtain b where vts-is: vts = [b]
by (metis One-nat-def ‹1 ≤ length vts› drop-eq-Nil id-take-nth-drop less-numeral-extra(1)

self-append-conv2 take-eq-Nil2)
then have x ∈ path-image (make-polygonal-path [a, b])

using Cons by auto
then have x ∈ path-image (linepath a b)

by auto
then have x ∈ path-image (linepath ((a#vts) ! 0) ((a#vts) ! 1))

using Cons vts-is
by force

then have ∃ k<length (a # vts) − 1 . x ∈ path-image (linepath ((a # vts) ! k)
((a # vts) ! (k + 1)))

using ∗
by simp

} moreover {assume ∗: length vts > 1
then obtain b vts ′ where vts-is: vts = b # vts ′

by (metis One-nat-def le-zero-eq len-gteq list.exhaust list.size(3) n-not-Suc-n)
then have x ∈ path-image ((linepath a b) +++ make-polygonal-path (b # vts ′))

using Cons
by (metis (no-types, lifting) ∗ One-nat-def length-Cons list.exhaust list.size(3)

make-polygonal-path.simps(4) nat-less-le)
then have eo: x ∈path-image ((linepath a b)) ∨ x ∈ path-image (make-polygonal-path

(b # vts ′))
using not-in-path-image-join by blast

{assume ∗∗ : x ∈path-image ((linepath a b))
then have ∃ k<length (a # vts) − 1 . x ∈ path-image (linepath ((a # vts) ! k)

((a # vts) ! (k + 1)))
using vts-is
by auto

} moreover {assume ∗∗ : x ∈ path-image (make-polygonal-path (b # vts ′))
then have ∃ k<length vts − 1 . x ∈ path-image (linepath (vts ! k) (vts ! (k +

1)))
using Cons.hyps(1) ∗
by (simp add: Suc-leI vts-is)

then have ∃ k<length (a # vts) − 1 . x ∈ path-image (linepath ((a # vts) ! k)
((a # vts) ! (k + 1)))

using add.commute add-diff-cancel-left ′ length-Cons less-diff-conv nth-Cons-Suc
plus-1-eq-Suc by auto

}

25

ultimately have ∃ k<length (a # vts) − 1 . x ∈ path-image (linepath ((a #
vts) ! k) ((a # vts) ! (k + 1)))

using eo by auto
}
ultimately show ?case

using len-gteq
by fastforce

qed

lemma linepaths-subset-make-polygonal-path-image:
assumes length vts ≥ 2
assumes k < length vts − 1
shows path-image (linepath (vts ! k) (vts ! (k + 1))) ⊆ path-image (make-polygonal-path

vts)
using assms

proof (induct vts arbitrary: k)
case Nil
then show ?case by auto

next
case (Cons a vts)
{ assume ∗: length vts = 1

then have k-is: k = 0
using Cons.prems(2) by auto

obtain b where vts-is: vts = [b]
using ∗

by (metis One-nat-def drop-eq-Nil id-take-nth-drop le-numeral-extra(4) self-append-conv2
take-eq-Nil2 zero-less-one)

then have path-image (make-polygonal-path (a # vts)) = path-image (linepath
a b)

by auto
then have path-image (linepath ((a # vts) ! k) ((a # vts) ! (k + 1)))
⊆ path-image (make-polygonal-path (a # vts))
using k-is vts-is
by simp

} moreover
{ assume ∗: length vts > 1

then obtain b c vts ′ where vts-is: vts = b#c#vts ′

by (metis diff-0-eq-0 diff-Suc-1 diff-is-0-eq leD length-Cons list.exhaust list.size(3))
{ assume ∗∗: k = 0

then have same-path-image: path-image (linepath ((a # vts) ! k) ((a # vts)
! (k + 1))) = path-image (linepath a b)

using vts-is
by auto

have path-image (linepath a b) ⊆ path-image (make-polygonal-path (a # b
#c#vts ′))

using vts-is make-polygonal-path.simps path-image-join
by (metis (no-types, lifting) Un-iff list.discI nth-Cons-0 pathfinish-linepath

polygon-pathstart subsetI)
then have path-image (linepath ((a # vts) ! k) ((a # vts) ! (k + 1))) ⊆

26

path-image (make-polygonal-path (a # vts))
using vts-is same-path-image
by presburger

} moreover {assume ∗∗: k > 0
then have k-minus-lt: k−1 < length vts − 1

using Cons
by auto

then have path-image-is: path-image (linepath ((a # vts) ! k) ((a # vts) ! (k
+ 1))) = path-image (linepath (vts ! (k −1)) (vts ! k))

using ∗∗
by auto

then have path-im-subset1 : path-image (linepath (vts ! (k−1)) (vts ! k)) ⊆
path-image (make-polygonal-path vts)

using k-minus-lt Cons.hyps(1)[of k−1] ∗ ∗∗ Suc-leI Suc-pred add.right-neutral
add-Suc-right nat-1-add-1 plus-1-eq-Suc

by auto
have path-im-subset2 : path-image (make-polygonal-path vts) ⊆ path-image

(make-polygonal-path (a # vts))
using vts-is make-polygonal-path.simps(4)
by (metis dual-order .refl list.distinct(1) nth-Cons-0 path-image-join pathfin-

ish-linepath polygon-pathstart sup.coboundedI2)
then have path-image (linepath ((a # vts) ! k) ((a # vts) ! (k + 1))) ⊆

path-image (make-polygonal-path (a # vts))
using path-image-is path-im-subset1 path-im-subset2
by blast
}
ultimately have path-image (linepath ((a # vts) ! k) ((a # vts) ! (k + 1)))

⊆ path-image (make-polygonal-path (a # vts))
by blast

}
ultimately show ?case
by (metis Cons.prems(1) Suc-1 leD length-Cons linorder-neqE-nat nat-add-left-cancel-less

plus-1-eq-Suc)
qed

lemma vertices-on-path-image: shows set vts ⊆ path-image (make-polygonal-path
vts)
proof (induct vts rule:make-polygonal-path.induct)

case 1
then show ?case by auto

next
case (2 a)
then show ?case by auto

next
case (3 a b)
then show ?case by auto

next
case (4 a b v va)
then have a-in-image: a ∈ path-image (make-polygonal-path (a # b # v # va))

27

using make-polygonal-path.simps
by (metis list.distinct(1) nth-Cons-0 pathstart-in-path-image polygon-pathstart)

have path-image-union:
path-image (make-polygonal-path (a # b # v # va))
= path-image (linepath a b) ∪ path-image (make-polygonal-path (b # v # va))

by (metis make-polygonal-path.simps(4) linepath-1 ′ list.discI nth-Cons-0 path-image-join
pathfinish-def polygon-pathstart)

have set (a # b # v # va) = {a} ∪ set(b # v # va)
by auto

then show ?case using a-in-image 4 make-polygonal-path.simps
path-image-union by auto

qed

lemma path-image-cons-union:
assumes p = make-polygonal-path vts
assumes p ′ = make-polygonal-path vts ′

assumes vts ′ 6= []
assumes vts = a # vts ′ ∧ b = vts ′!0
shows path-image p = path-image (linepath a b) ∪ path-image p ′

proof−
have pathfinish (linepath a b) = pathstart p ′ using assms polygon-pathstart by

auto
moreover have length vts = 2 =⇒ ?thesis
by (smt (verit) Cons-nth-drop-Suc One-nat-def Suc-1 assms(1) assms(2) assms(3)

assms(4) closed-segment-idem diff-Suc-1 drop0 drop-eq-Nil insert-subset le-iff-sup
le-numeral-extra(4) length-Cons length-greater-0-conv list.discI list.inject list.set(1)
list.set(2) make-polygonal-path.elims path-image-linepath sup-commute vertices-on-path-image)

moreover have length vts > 2 =⇒ ?thesis
by (metis (no-types, lifting) Cons-nth-drop-Suc One-nat-def Suc-1 assms(1)

assms(2) assms(3) assms(4) calculation(1) drop0 drop-Suc-Cons length-greater-0-conv
make-polygonal-path.simps(4) path-image-join)

moreover have length vts ≥ 2 using assms by (simp add: Suc-le-eq)
ultimately show ?thesis by linarith

qed

lemma polygonal-path-image-linepath-union:
assumes p = make-polygonal-path vts
assumes n = length vts
assumes n ≥ 2
shows path-image p = (

⋃
{path-image (linepath (vts!i) (vts!(i+1))) | i. i ≤ n

− 2})
using assms

proof(induct n arbitrary: vts p)
case 0
then show ?case by linarith

next
case (Suc n)
{ assume ∗: Suc n = 2

28

then obtain a b where ab: vts = [a, b]
by (metis Suc.prems(2−3) Cons-nth-drop-Suc One-nat-def Suc-1 drop0

drop-eq-Nil lessI pos2)
then have path-image p = path-image (linepath a b)

using make-polygonal-path.simps Suc.prems by presburger
moreover have ... = (

⋃
{path-image (linepath (vts!i) (vts!(i+1))) | i. i ≤ Suc

n − 2})
using ab Suc.prems
by (smt (verit, ccfv-threshold) Suc-eq-plus1 Sup-least Sup-upper ∗ diff-is-0-eq

diff-zero dual-order .refl mem-Collect-eq nth-Cons-0 nth-Cons-Suc subset-antisym)
ultimately have ?case by presburger

} moreover
{ assume ∗: Suc n > 2

then obtain a b vts ′ where vts ′: vts = a # vts ′ ∧ b = vts ′!0 ∧ vts ′ = tl vts
by (metis Suc.prems(2) list.collapse list.size(3) nat.distinct(1))

let ?p ′ = make-polygonal-path vts ′

let ?P ′ = path-image ?p ′

let ?P = path-image p
let ?P-union = (

⋃
{path-image (linepath (vts!i) (vts!(i+1))) | i. i ≤ n − 1})

have vts ′-len: length vts ′ = n using vts ′ Suc.prems by fastforce
then have ?P ′ = (

⋃
{path-image (linepath (vts ′!i) (vts ′!(i+1))) | i. i ≤ n −

2})
using Suc.prems Suc.hyps ∗ by force

moreover have ∀ i ≤ n−2 . vts ′!i = vts!(i+1) ∧ vts ′!(i+1) = vts!(i+2) using
vts ′ by force

ultimately have ?P ′ = (
⋃
{path-image (linepath (vts!(i+1)) (vts!(i+2))) | i.

i ≤ n − 2})
by fastforce

moreover have ... = (
⋃
{path-image (linepath (vts!i) (vts!(i+1))) | i. 1 ≤ i

∧ i ≤ n − 1})
(is ... = ?P ′-union)

proof−
have

∧
x i. x ∈ {vts ! Suc i−−vts ! Suc (Suc i)}

=⇒ i ≤ n − 2
=⇒ ∃ xa. (∃ i. xa = {vts ! i−−vts ! Suc i} ∧ Suc 0 ≤ i ∧ i ≤ n − Suc 0)

∧ x ∈ xa
by (metis ∗ One-nat-def Suc-diff-Suc Suc-le-mono add-2-eq-Suc ′ bot-nat-0 .extremum

diff-Suc-Suc le-add-diff-inverse plus-1-eq-Suc)
moreover have

∧
x i. x ∈ {vts ! i−−vts ! Suc i}

=⇒ Suc 0 ≤ i
=⇒ i ≤ n − Suc 0
=⇒ ∃ xa. (∃ i. xa = {vts ! Suc i−−vts ! Suc (Suc i)} ∧ i ≤ n − 2) ∧ x ∈

xa
by (metis ∗ Suc-diff-Suc gr0-implies-Suc linorder-not-le not-less-eq-eq nu-

meral-2-eq-2)
ultimately show ?thesis by auto

qed

29

moreover have path-image (linepath a b) ∪ ?P ′-union = ?P-union
proof−

have
∧

x. x ∈ {a−−b} =⇒ ∃ xa. (∃ i. xa = {vts ! i−−vts ! Suc i} ∧ i ≤ n −
Suc 0) ∧ x ∈ xa

using vts ′ by fastforce
moreover have

∧
x i. x ∈ {vts ! i−−vts ! Suc i}

=⇒ ∀ xa. (∀ i≥Suc 0 . xa = {vts ! i−−vts ! Suc i} −→ ¬ i ≤ n − Suc 0)
∨ x /∈ xa

=⇒ i ≤ n − Suc 0
=⇒ x ∈ {a−−b}
by (metis Suc-le-eq bot-nat-0 .not-eq-extremum nth-Cons-0 nth-Cons-Suc

vts ′)
ultimately show ?thesis by auto

qed
moreover have ?P = (path-image (linepath a b)) ∪ ?P ′

using Suc.prems vts ′ path-image-cons-union
by (metis One-nat-def Suc-1 vts ′-len bot-nat-0 .extremum list.size(3) not-less-eq-eq)
ultimately have ?case by force

}
ultimately show ?case using Suc.prems by linarith

qed

6 Loop Free Properties
lemma constant-linepath-is-not-loop-free:

shows ¬(loop-free ((linepath a a)::real ⇒ real^2))
proof −

have all-zero1 :
∧

x y::real. (1 − x) ∗R (a::real^2) + x ∗R a = a
by auto

have all-zero2 :
∧

x y::real. (1 − y) ∗R (a::real^2) + y ∗R a = a
by auto

then have ∃ x::real∈{0 ..1}. ∃ y::real∈{0 ..1}. x 6= y ∧ (x = 0 −→ y 6= 1) ∧ (x
= 1 −→ y 6= 0)

by (metis atLeastAtMost-iff field-lbound-gt-zero less-eq-real-def linorder-not-less
zero-less-one)
then show ?thesis

unfolding loop-free-def linepath-def
using all-zero1 all-zero2 by auto

qed

lemma doubling-back-is-not-loop-free:
assumes a 6= b
shows ¬(loop-free ((make-polygonal-path [a, b, a])::real ⇒ real^2))

proof −
let ?p1 = (1/4 ::real)
let ?p2 = (3/4 ::real)
have same-point: ((linepath a b) +++ (linepath b a)) (1/4 ::real) = ((linepath a

b) +++ (linepath b a)) (3/4 ::real)
unfolding linepath-def joinpaths-def by auto

30

have ?p1 ∈ {0 ..1} ∧ ?p2 ∈ {0 ..1} ∧ ?p1 6= ?p2 ∧ (?p1 = 0 −→ ?p2 6= 1) ∧
(?p1 = 1 −→ ?p2 6= 0)

by auto
then have ∃ x∈{0 ..1}. ∃ y∈{0 ..1}.

(linepath a b +++ linepath b a) x = (linepath a b +++ linepath b a) y
∧ x 6= y ∧ (x = 0 −→ y 6= 1) ∧ (x = 1 −→ y 6= 0)

using same-point by blast
then have ¬(loop-free ((linepath a b) +++ (linepath b a)))

unfolding loop-free-def by auto
then show ?thesis using make-polygonal-path.simps

by auto
qed

lemma not-loop-free-first-component:
assumes ¬(loop-free p1)
shows ¬(loop-free (p1+++p2))

proof −
obtain x y where xy-prop: 0 ≤ x x≤ 1 0 ≤ y y≤ 1 x 6= y

(x = 0 −→ y 6= 1) (x = 1 −→ y 6= 0)
p1 x = p1 y

using assms unfolding loop-free-def
by auto

then have xy-prop2 : 0 ≤ x/2 x/2≤ 1/2 0 ≤ y/2 y/2≤ 1/2 x/2 6= y/2
by auto

then have (p1+++p2) (x/2) = (p1+++p2) (y/2)
unfolding joinpaths-def using xy-prop(8)
by auto

then have props: (p1 +++ p2) (x/2) = (p1 +++ p2) (y/2) ∧
(x/2) 6= (y/2) ∧ ((x/2) = 0 −→ (y/2) 6= 1) ∧ ((x/2) = 1 −→ (y/2) 6=

0)
using xy-prop2 by auto

have x/2 ∈ {0 ..1} ∧ y/2 ∈ {0 ..1}
using xy-prop2 by auto

then have ∃ x∈{0 ..1}.
∃ y∈{0 ..1}.

(p1 +++ p2) x = (p1 +++ p2) y ∧
x 6= y ∧ (x = 0 −→ y 6= 1) ∧ (x = 1 −→ y 6= 0)

using props
by blast

then show ?thesis
unfolding loop-free-def by auto

qed

lemma not-loop-free-second-component:
assumes pathfinish-pathstart: pathfinish p1 = pathstart p2
assumes ¬(loop-free p2)
shows ¬(loop-free (p1+++p2))

proof −
obtain x y where xy-prop: 0 ≤ x x≤ 1 0 ≤ y y≤ 1 x 6= y

31

(x = 0 −→ y 6= 1) (x = 1 −→ y 6= 0)
p2 x = p2 y

using assms unfolding loop-free-def
by auto

then have xy-prop2 : (x + 1)/2 ≥ 1/2 (x + 1)/2 ≤ 1 (y + 1)/2 ≥ 1/2 (y +
1)/2 ≤ 1
(x + 1)/2 6= (y + 1)/2

by auto
have x-same: 2∗((x + 1)/2) − 1 = x
by (metis add.right-neutral add-diff-eq cancel-comm-monoid-add-class.diff-cancel

class-dense-linordered-field.between-same mult-1 mult-2 times-divide-eq-left times-divide-eq-right)
have y-same: 2∗((y + 1)/2) − 1 = y
by (metis add.right-neutral add-diff-eq cancel-comm-monoid-add-class.diff-cancel

class-dense-linordered-field.between-same mult-1 mult-2 times-divide-eq-left times-divide-eq-right)
have p2 (2∗((x + 1)/2) − 1) = p2 (2∗((y + 1)/2) −1)

using xy-prop(8) x-same y-same
by auto

have relate-start-finish: p1 1 = p2 0
using pathfinish-pathstart
unfolding pathfinish-def pathstart-def
by auto

then have xh1 : (x + 1)/2 = 1/2 =⇒ (p1 +++ p2) ((x + 1)/2) = p2 x
unfolding joinpaths-def
by auto

have xh2 : (x + 1)/2 > 1/2 =⇒ (p1 +++ p2) ((x + 1)/2) = p2 x
using xy-prop2 unfolding joinpaths-def
using x-same by force

then have xh: (p1 +++ p2) ((x + 1)/2) = p2 x
using xh1 xh2 xy-prop2
by linarith

have yh1 : (y + 1)/2 = 1/2 =⇒ (p1 +++ p2) ((y + 1)/2) = p2 y
using relate-start-finish unfolding joinpaths-def
by auto

have yh2 : (y + 1)/2 > 1/2 =⇒ (p1 +++ p2) ((y + 1)/2) = p2 y
using xy-prop2 unfolding joinpaths-def
using y-same by force

then have yh: (p1 +++ p2) ((y + 1)/2) = p2 y
using yh1 yh2 xy-prop2
by linarith

then have same-eval: (p1+++p2) ((x + 1)/2) = (p1+++p2) ((y + 1)/2)
using xh yh xy-prop(8)
by presburger

have inset1 : (x + 1)/2 ∈ {0 ..1}
using xy-prop2
by simp

have inset2 : (y + 1)/2 ∈ {0 ..1}
using xy-prop2
by simp

have ∃ x∈{0 ..1}.

32

∃ y∈{0 ..1}.
(p1 +++ p2) x = (p1 +++ p2) y ∧
x 6= y ∧ (x = 0 −→ y 6= 1) ∧ (x = 1 −→ y 6= 0)

using xy-prop2 same-eval inset1 inset2
by fastforce

then show ?thesis
unfolding loop-free-def by auto

qed

lemma loop-free-subpath:
assumes path p
assumes u-and-v: u ∈ {0 ..1} v ∈ {0 ..1} u < v
assumes ¬ (loop-free (subpath u v p))
shows ¬ (loop-free p)

proof −
have path (subpath u v p)

using path-subpath assms by auto
then show ?thesis using simple-path-subpath assms

unfolding simple-path-def
by blast

qed

lemma loop-free-associative:
assumes path p
assumes path q
assumes path r
assumes pathfinish p = pathstart q
assumes pathfinish q = pathstart r
shows ¬ (loop-free ((p +++ q) +++ r)) ←→ ¬ (loop-free (p +++ (q +++ r)))
by (metis (mono-tags, lifting) assms(1) assms(2) assms(3) assms(4) assms(5)

path-join-imp pathfinish-join pathstart-join simple-path-assoc simple-path-def)

lemma polygon-at-least-3-vertices:
assumes polygon p and

p = make-polygonal-path vts
shows card (set vts) ≥ 3

using assms
proof (induct vts rule: make-polygonal-path.induct)

case 1
then show ?case unfolding polygon-def

using constant-linepath-is-not-loop-free make-polygonal-path.simps(1)
by (metis simple-path-def)

next
case (2 a)
then show ?case unfolding polygon-def

using constant-linepath-is-not-loop-free make-polygonal-path.simps(2)
by (metis simple-path-def)

next
case (3 a b)

33

{ assume ∗: a = b
then have False using 3 unfolding polygon-def

using constant-linepath-is-not-loop-free make-polygonal-path.simps(3)
by (metis simple-path-def)

} moreover {assume ∗: a 6= b
then have False using 3 unfolding polygon-def closed-path-def

pathstart-def pathfinish-def using make-polygonal-path.simps(3)
by (simp add: linepath-0 ′ linepath-1 ′)

}
ultimately show ?case

by auto
next

case (4 a b v va)
have finset: finite (set (a # b # v # va))

by blast
have subset: {a, b, v} ⊆ set (a # b # v # va)

by auto
have neq1 : a 6= b

using constant-linepath-is-not-loop-free not-loop-free-first-component
by (metis 4 .prems(2) make-polygonal-path.simps(4) polygon-def assms(1) sim-

ple-path-def)
have loop-free-2 : loop-free (make-polygonal-path (b # v # va))

using 4 not-loop-free-second-component
by (metis make-polygonal-path.simps(4) polygon-def list.distinct(1) nth-Cons-0

pathfinish-linepath polygon-pathstart simple-path-def)
have contra: b = v =⇒ ¬(loop-free (make-polygonal-path (b # v # va)))

using constant-linepath-is-not-loop-free[of b] make-polygonal-path.simps
not-loop-free-first-component
by (metis neq-Nil-conv)

then have neq2 : b 6= v
using loop-free-2 contra
by auto

have ¬ loop-free ((linepath a b) +++ (linepath b a))
using doubling-back-is-not-loop-free[of a b] neq1
by auto

have make-path-is: make-polygonal-path (a # b # a # va) = (linepath a b) +++
((linepath b a) +++ (make-polygonal-path (a#va)))

using make-polygonal-path.simps
by (metis (no-types, opaque-lifting) 4 .prems(1) 4 .prems(2) closed-path-def poly-

gon-def ‹¬ loop-free (linepath a b +++ linepath b a)› linepath-1 ′ min-list.cases
nth-Cons-0 pathfinish-def pathfinish-join polygon-pathstart simple-path-def)

have ¬ loop-free (((linepath a b) +++ (linepath b a)) +++ (make-polygonal-path
(a#va)))

using make-polygonal-path.simps not-loop-free-first-component
using ‹¬ loop-free (linepath a b +++ linepath b a)›
by auto

then have ¬ loop-free (make-polygonal-path (a # b # a # va))
using loop-free-associative

34

by (metis make-polygonal-path-gives-path list.discI make-path-is nth-Cons-0
path-linepath pathfinish-linepath pathstart-linepath polygon-pathstart)

then have neq3 : v 6= a
using 4
using polygon-def simple-path-def by blast

have card-3 : card {a, b, v} = 3
using neq1 neq2 neq3
by auto

then show ?case
using subset finset
by (metis card-mono)

qed

lemma polygon-vertices-length-at-least-4 :
assumes polygon p and

p = make-polygonal-path vts
shows length vts ≥ 4

proof −
have card-set: card (set vts) ≥ 3

using polygon-at-least-3-vertices assms
by blast

have len-gt3 : length vts ≥ 3
using card-length local.card-set order-trans by blast

then have non-empty: vts 6= []
using card-set
by auto

have eq: p 0 = p 1
using assms unfolding polygon-def closed-path-def pathstart-def pathfinish-def

by auto
have p0 : p 0 = vts ! 0

using polygon-pathstart[OF non-empty] using assms unfolding pathstart-def
by auto

have p1 : p 1 = vts ! (length vts − 1)
using polygon-pathfinish[OF non-empty] using assms unfolding pathfinish-def
by auto

have vts ! 0 = vts ! (length vts −1)
using assms unfolding polygon-def
using p0 p1 eq by auto

then have set vts = set (drop 1 vts)
using len-gt3
by (smt (verit, best) Cons-nth-drop-Suc Suc-eq-plus1 Suc-le-eq add.commute

add-0 add-leD2 drop0 dual-order .refl insert-subset last.simps last-conv-nth last-in-set
list.distinct(1) list.set(2) numeral-3-eq-3 order-antisym-conv)

then have length (drop 1 vts) ≥ 3
using card-set
by (metis dual-order .trans length-remdups-card-conv length-remdups-leq)

then show ?thesis
using card-set
by (metis One-nat-def Suc-1 Suc-eq-plus1 Suc-pred add-Suc-right length-drop

35

length-greater-0-conv non-empty not-less-eq-eq numeral-3-eq-3 numeral-Bit0)
qed

lemma linepath-loop-free:
assumes a 6= b
shows loop-free (linepath a b)
unfolding loop-free-def linepath-def
by (smt (z3) add.assoc add.commute add-scaleR-degen assms diff-add-cancel

scaleR-left-diff-distrib)

7 Explicit Linepath Characterization of Polygonal
Paths

lemma triangle-linepath-images:
fixes x :: real
assumes vts = [a, b, c]
assumes p = make-polygonal-path vts
shows x ∈ {0 ..1/2} =⇒ p x = ((linepath a b)) (2∗x)
x ∈ {1/2 ..1} =⇒ p x = ((linepath b c)) (2∗x − 1)

proof−
fix x :: real
assume x ∈ {0 ..1/2}
thus p x = ((linepath a b)) (2∗x)

unfolding assms
using make-polygonal-path.simps(4)[of a b c Nil] unfolding joinpaths-def by

presburger
next

fix x :: real
assume ∗: x ∈ {1/2 ..1}
{ assume x > 1/2

then have p x = ((linepath b c)) (2∗x − 1)
unfolding assms
using make-polygonal-path.simps(4)[of a b c Nil] unfolding joinpaths-def by

force
} moreover
{ assume x = 1/2

then have p x = b ∧ ((linepath b c)) (2∗x − 1) = b
unfolding assms
using make-polygonal-path.simps(4)[of a b c Nil] unfolding joinpaths-def
by (simp add: linepath-def mult.commute)

}
ultimately show p x = ((linepath b c)) (2∗x − 1) using ∗ by fastforce

qed

lemma polygon-linepath-images1 :
fixes n:: nat
assumes n ≥ 3
assumes length ell = n

36

assumes x ∈ {0 ..1/2}
shows make-polygonal-path ell x = ((linepath (ell ! 0) (ell ! 1))) (2∗x)

proof −
have make-polygonal-path ell = linepath (ell ! 0) (ell ! 1) +++ make-polygonal-path

(drop 1 ell)
using make-polygonal-path.simps
by (smt (verit, del-insts) numeral-3-eq-3 Cons-nth-drop-Suc One-nat-def Suc-1

Suc-eq-plus1 add-Suc-right assms(1) assms(2) drop0 length-greater-0-conv less-add-Suc2
list.size(3) not-numeral-le-zero nth-Cons-0 numeral-Bit0 order-less-le-trans plus-1-eq-Suc)

then show ?thesis
using assms make-polygonal-path.simps
by (simp add: joinpaths-def)

qed

lemma sum-insert [simp]:
assumes x /∈ F and finite F
shows (

∑
y∈insert x F . P y) = (

∑
y∈F . P y) + P x

using assms insert-def by(simp add: add.commute)

lemma sum-of-index-diff [simp]:
fixes f :: nat ⇒ ′a::comm-monoid-add
shows (

∑
i∈{a..<a+b}. f (i−a)) = (

∑
i∈{..<b}. f (i))

proof (induction b)
case 0
then show ?case by simp

next
case (Suc b)
then show ?case by simp

qed

lemma sum-of-index-diff2 [simp]:
fixes f :: nat ⇒ ′a::comm-monoid-add
shows (

∑
i∈{a+c..b+c}. f (i)) = (

∑
i∈{a..b}. f (i+c))

using Set-Interval.comm-monoid-add-class.sum.shift-bounds-cl-nat-ivl by blast

lemma sum-split [simp]:
fixes f :: nat ⇒ ′a::comm-monoid-add
assumes c ∈ {a..b}
shows (

∑
i ∈ {a..b}. f i) = (

∑
i ∈ {a..c}. f i) + (

∑
i ∈ {c+1 ..b}. f i)

by (metis Suc-eq-plus1 Suc-le-mono assms atLeastAtMost-iff atLeastLessThanSuc-atLeastAtMost
le-SucI sum.atLeastLessThan-concat)

lemma summation-helper :
fixes x :: real
fixes k :: nat
assumes 1 ≤ k
shows (2 ::real) ∗ (

∑
i = 1 ..k. 1 / 2 ^ i) − 1 = (

∑
i = 1 ..(k−1). (1 / (2^i)))

37

proof−
have frac-cancel: ∀ i::nat ≥ 1 . 2 / (2^i) = 2 / (2 ∗ (2 ::real)^(i−1))

using power .simps(2)[of 2 ::real] by (metis Suc-diff-le diff-Suc-1)
have (2 ::real) ∗ (

∑
i = 1 ..k. 1 / 2^i) = (

∑
i = 1 ..k. (2 / 2^i))

by (simp add: sum-distrib-left)
also have ... = (

∑
i = 1 ..k. (2 / (2 ∗ 2^(i−1)))) using frac-cancel by simp

also have ... = (
∑

i = 1 ..k. (1 / (2^(i−1)))) by force
also have ... = (

∑
i = 1 ..<(k+1). (1 / (2^(i−1))))

using Suc-eq-plus1 atLeastLessThanSuc-atLeastAtMost by presburger
also have ... = (

∑
i ∈ {..<k}. (1 / (2^i)))

using sum-of-index-diff [of λi. (1 / 2^i) 1 k] by simp
finally have (2 ::real) ∗ (

∑
i = 1 ..k. 1 / 2 ^ i) = (

∑
i = 0 ..(k−1). (1 / (2^i)))

by (metis assms atLeast0AtMost diff-Suc-1 lessThan-Suc-atMost nat-le-iff-add
plus-1-eq-Suc)

then have (2 ::real) ∗ (
∑

i = 1 ..k. 1 / 2 ^ i) − 1 = (
∑

i = 0 ..(k−1). (1 /
(2^i))) − 1

by auto
also have ... = (

∑
i = 1 ..(k−1). (1 / (2^i))) + (1/2^0) − 1

using sum-insert[of 0 {1 ..k−1} power (1/2)]
by (simp add: Icc-eq-insert-lb-nat add.commute)

also have ... = (
∑

i = 1 ..(k−1). (1 / (2^i))) by force
finally show (2 ::real) ∗ (

∑
i = 1 ..k. 1 / 2 ^ i) − 1 = (

∑
i = 1 ..(k−1). (1 /

(2^i))) .
qed

lemma polygon-linepath-images2 :
fixes n k:: nat
fixes ell:: (real^2) list
fixes f :: nat ⇒ real ⇒ real
assumes n ≥ 3
assumes 0 ≤ k ∧ k ≤ n − 3
assumes length ell = n
assumes p: p = make-polygonal-path ell
assumes f = (λk x. (x − (

∑
i ∈ {1 ..k}. 1/(2^i))) ∗ (2^(k+1)))

assumes x ∈ {(
∑

i ∈ {1 ..k}. 1/(2^i))..(
∑

i ∈ {1 ..(k + 1)}. 1/(2^i))}
shows p x = ((linepath (ell ! k) (ell ! (k+1)) (f k x)))
using assms

proof (induct n arbitrary: ell k x p)
case 0
then show ?case by auto

next
case (Suc n)
{ assume ∗: k = 0

have x: x ∈ {0 ..1/2} using ∗ Suc.prems(6) by simp
moreover have f k x = 2∗x using ∗ Suc.prems(5) by simp
ultimately have ?case
using polygon-linepath-images1 [of Suc n ell x , OF Suc.prems(1) Suc.prems(3)

x] ∗
by (simp add: Suc.prems(4))

38

} moreover
{ assume ∗: k ≥ 1

then have suc-n: Suc n > 3 using Suc.prems(2) by linarith
then have ell-is: ell = (ell!0) # (ell!1) # (ell!2) # (drop 3 ell)

using Suc.prems(3)
by (metis Cons-nth-drop-Suc One-nat-def Suc-1 Suc-le-lessD drop0 nat-less-le

numeral-3-eq-3)
then have ell ′-is: drop 1 ell = (ell!1) # (ell!2) # (drop 3 ell)

by (metis One-nat-def diff-Suc-1 drop0 drop-Cons-numeral numerals(1))
let ?ell ′ = drop 1 ell
have len-ell ′: length ?ell ′ > 2 using suc-n Suc.prems(3) by simp
let ?p ′ = make-polygonal-path ?ell ′
have p-tl: p = (linepath (ell ! 0) (ell ! 1)) +++ make-polygonal-path (drop 1

ell)
using Suc.prems(4) Suc.prems(3) ∗ make-polygonal-path.simps ell-is ell ′-is
by metis

have (
∑

i = 1 ..k. 1 / (2 ^ i::real)) ≥ (
∑

i = 1 ..1 . 1 / (2 ^ i::real))
using Suc.prems(2) ∗

proof (induct k)
case 0
then show ?case by auto

next
case (Suc k)
{ assume ∗: 1 = Suc k

then have ?case by auto
} moreover {assume ∗: 1 < Suc k

then have 1 ≤ k ∧ k ≤ Suc n − 3
using Suc.prems by auto

then have ind-h: (
∑

i = 1 ..1 . 1 / (2 ^ i::real)) ≤ (
∑

i = 1 ..k. 1 / 2 ^ i)
using Suc.hyps Suc.prems(2) by blast

have (
∑

i = 1 ..Suc k. 1 /(2 ^ i::real)) = 1/(2^(Suc k)) + (
∑

i = 1 ..k. 1
/ (2 ^ i::real))

using ∗ by simp
then have (

∑
i = 1 ..Suc k. 1 /(2 ^ i::real)) > (

∑
i = 1 ..k. 1 / (2 ^

i::real))
by simp

then have ?case using ind-h by linarith
}
ultimately show ?case by linarith

qed
then have (

∑
i = 1 ..k. 1 / (2 ^ i::real)) ≥ 1/2

by auto
then have x-gteq: x ≥ 1/2 using Suc.prems(2 ,6)

by (meson atLeastAtMost-iff order-trans)
have xonehalf : p x = ?p ′ (2∗x − 1) if x-is: x = 1/2 using p-tl joinpaths-def
proof −

have p x = (linepath (ell ! 0) (ell ! 1)) 1
using p-tl joinpaths-def x-is

39

by (metis mult.commute nle-le nonzero-divide-eq-eq zero-neq-numeral)
then have p x = ell ! 1

using polygon-pathfinish[of [(ell ! 0), (ell ! 1)]] unfolding pathfinish-def
using make-polygonal-path.simps by simp

then have p x = make-polygonal-path (drop 1 ell) 0
using polygon-pathstart[of drop 1 ell] ∗ len-ell ′ unfolding pathstart-def
by simp

then show ?thesis using x-is by force
qed

have x-gtonehalf : x > 1/2 =⇒ p x = ?p ′ (2∗x − 1) using p-tl joinpaths-def
by (smt (verit, ccfv-threshold))

then have px: p x = ?p ′ (2∗x − 1) using xonehalf x-gtonehalf x-gteq
by linarith

{ assume k-eq: k = 1
then have f k x = (x − (

∑
i = 1 ..1 . 1 / 2 ^ i)) ∗ 2 ^ 2

using Suc.prems(5) by auto
then have fkx: f k x = 4∗x − 2

by auto
have x ∈ {1/2 ..3/4}

using k-eq Suc.prems(6) by auto
then have 2∗x − 1 ∈ {0 ..1/2} by simp
then have ?p ′ (2∗x − 1) = (linepath (?ell ′!0) (?ell ′!1)) (4∗x − 2)

using Suc.hyps[of k ?ell ′ ?p ′ 2∗x − 1] Suc.prems
by (smt (verit, ccfv-SIG) suc-n diff-Suc-1 leD le-Suc-eq length-drop poly-

gon-linepath-images1)
also have ... = (linepath (ell!1) (ell!2)) (4∗x − 2)

using ∗ Suc.prems(3)
using ell ′-is by fastforce

also have ... = ((linepath (ell ! k) (ell ! (k+1)) (f k x))) using k-eq
Suc.prems(5) fkx

by (smt (verit, del-insts) nat-1-add-1)
finally have ?case using px by simp

} moreover
{ assume k-gt: k > 1
then have fkminus: f (k−1) (2 ∗ x − 1) = ((2 ∗ x − 1) − (

∑
i = 1 ..(k−1).

1 / 2 ^ i)) ∗ 2 ^ k
using Suc.prems(5) by force

have fk: f k x = (x − (
∑

i = 1 ..k. 1 / 2 ^ i)) ∗ 2 ^ (k + 1)
using Suc.prems(5) by blast

have f-is: f (k − 1) (2 ∗ x − 1) = f k x
proof−

have i: ∀ i::nat ∈ {2 ..k}. i − 2 + 2 = i
by auto

have f (k − 1) (2 ∗ x − 1) = (2 ∗ x − 1 − (
∑

i = 1 ..k − 1 . 1 / 2 ^ i))
∗ 2 ^ (k − 1 + 1)

unfolding Suc.prems(5) by auto
also have ... = (x − 1/2 − (

∑
i = 1 ..k − 1 . 1 / 2^i) / 2) ∗ 2 ^ (k + 1)

using k-gt by fastforce
also have ... = (x − 1/2 − (

∑
i = 1 ..k − 1 . (1 / 2^i) / 2)) ∗ 2 ^ (k + 1)

40

by (simp add: sum-divide-distrib)
also have ... = (x − 1/2 − (

∑
i = 1 ..k − 1 . (1 / 2)^i ∗ 1/2)) ∗ 2 ^ (k

+ 1)
by (simp add: power-divide)

also have ... = (x − 1/2 − (
∑

i = 1 ..k − 1 . (1 / 2)^(i+1))) ∗ 2 ^ (k +
1) by force

also have ... = (x − 1/2 − (
∑

i = 1 ..<1 + (k − 1). (1 / 2)^(i+1))) ∗ 2
^ (k + 1)

using Suc-eq-plus1-left atLeastLessThanSuc-atLeastAtMost by presburger
also have ... = (x − 1/2 − (

∑
i = 1 ..<1 + (k − 1). (1 / 2)^(i − 1 +

2))) ∗ 2 ^ (k + 1)
by auto

also have ... = (x − 1/2 − (
∑

i ∈ {..<k − 1}. ((1 / 2)^(i+2)))) ∗ 2 ^
(k + 1)

using sum-of-index-diff [of (λx. (1/2)^(x+2)) 1 k−1] by metis
also have ... = (x − 1/2 − (

∑
i ∈ {2 ..<k − 1 + 2}. ((1 / 2)^(i − 2 +

2)))) ∗ 2 ^ (k + 1)
using sum-of-index-diff [of (λx. (1/2)^(x+2)) 2 k−1] by (smt (verit)

add.commute)
also have ... = (x − 1/2 − (

∑
i ∈ {2 ..k}. ((1 / 2)^(i − 2 + 2)))) ∗ 2 ^

(k + 1)
using k-gt atLeastLessThanSuc-atLeastAtMost by force

also have ... = (x − 1/2 − (
∑

i ∈ {2 ..k}. ((1 / 2)^(i)))) ∗ 2 ^ (k + 1)
using i by force

also have ... = (x − (1/2 + (
∑

i ∈ {2 ..k}. ((1 / 2)^(i))))) ∗ 2 ^ (k + 1)
by argo

also have ... = (x − (
∑

i = 1 ..k. (1 / 2)^(i))) ∗ 2 ^ (k + 1)
using sum-insert[of 1 {2 ..k} λx. (1/2)^x]
by (smt (verit, ccfv-SIG) Suc-1 Suc-n-not-le-n atLeastAtMost-iff atLeast-

AtMost-insertL finite-atLeastAtMost k-gt less-imp-le-nat power-one-right)
also have ... = (x − (

∑
i = 1 ..k. 1 / (2^i))) ∗ 2 ^ (k + 1) by (meson

power-one-over)
also have ... = f k x using fk by argo
finally show ?thesis .

qed

have ih1 : 3 ≤ n using suc-n by force
have ih2 : 0 ≤ k − 1 ∧ k − 1 ≤ n − 3 using k-gt Suc.prems(2) Suc.prems(3)

by auto
have ih3 : length ?ell ′ = n using Suc.prems(3) by auto
have ih4 : ?p ′ = make-polygonal-path ?ell ′ by blast

have 2∗x − 1 ≥ (
∑

i ∈ {1 ..k−1}. 1/(2^i))
proof−

have (2 ::real) ∗ (
∑

i = 1 ..k. 1 / 2 ^ i) − 1 = (
∑

i = 1 ..(k−1). (1 /
(2^i)))

using summation-helper k-gt by auto
moreover have x ≥ (

∑
i = 1 ..k. 1 / 2 ^ i) using Suc.prems(6) by

presburger

41

ultimately show 2∗x − 1 ≥ (
∑

i ∈ {1 ..k−1}. 1/(2^i)) by linarith
qed
moreover have 2∗x − 1 ≤ (

∑
i ∈ {1 ..k}. 1/(2^i))

proof−
have (2 ::real) ∗ (

∑
i ∈ {1 ..(k + 1)}. 1/(2^i)) − 1 = (

∑
i ∈ {1 ..k}.

1/(2^i))
using summation-helper [of k + 1] k-gt by auto

moreover have x ≤ (
∑

i ∈ {1 ..(k + 1)}. 1/(2^i)) using Suc.prems(6)
by presburger

ultimately show ?thesis by linarith
qed
ultimately have 2∗x − 1 ∈ {(

∑
i ∈ {1 ..k−1}. 1/(2^i))..(

∑
i ∈ {1 ..k}.

1/(2^i))} by presburger
then have ih5 : 2∗x − 1 ∈ {(

∑
i ∈ {1 ..k−1}. 1/(2^i))..(

∑
i ∈ {1 ..k−1+1}.

1/(2^i))}
using k-gt by auto

have p = make-polygonal-path (ell!0 # ell!1 # ell!2 # (drop 3 ell))
using ell-is Suc.prems(4) by argo

then have p = (linepath (ell!0) (ell!1)) +++ make-polygonal-path (ell!1 #
ell!2 # (drop 3 ell))

using make-polygonal-path.simps by auto
then have p x = ?p ′ (2∗x − 1) unfolding joinpaths-def using x-gteq px by

fastforce
also have ... = (linepath (?ell ′!(k−1)) (?ell ′!k)) (f (k−1) (2∗x − 1))
using Suc.hyps[OF ih1 ih2 ih3 ih4 Suc.prems(5), of 2∗x − 1 , OF ih5] using

k-gt by auto
also have ... = (linepath (ell!k) (ell!(k+1))) (f (k−1) (2∗x − 1))

using Suc.prems(2) Suc.prems(3)
by (smt (verit, del-insts) add-implies-diff ell ′-is ell-is k-gt nth-Cons-pos

order-le-less-trans trans-less-add1 zero-less-one-class.zero-le-one)
also have ... = (linepath (ell!k) (ell!(k+1))) (f k x)

using f-is by auto
finally have ?case .

}
ultimately have ?case using Suc.prems(2) ∗ by linarith

}
ultimately show ?case

using Suc.prems by linarith
qed

lemma polygon-linepath-images3 :
fixes n k:: nat
fixes ell:: (real^2) list
assumes n ≥ 3
assumes length ell = n
assumes p = make-polygonal-path ell
assumes x ∈ {(

∑
i ∈ {1 ..n−2}. 1/(2^i))..1}

assumes f = (λx. (x − (
∑

i ∈ {1 ..n−2}. 1/(2^i))) ∗ (2^(n−2)))

42

shows p x = (linepath (ell ! (n−2)) (ell ! (n−1))) (f x)
using assms

proof (induct n arbitrary: ell k x p f)
case 0
then show ?case by auto

next
case (Suc n)
{ assume ∗: Suc n = 3

then have ell-is: ell = [ell ! 0 , ell ! 1 , ell ! 2]
using Suc.prems(2)

by (metis Cons-nth-drop-Suc One-nat-def Suc-1 cancel-comm-monoid-add-class.diff-cancel
drop0 length-0-conv length-drop lessI less-add-Suc2 numeral-3-eq-3 plus-1-eq-Suc
zero-less-Suc)

have (
∑

i = 1 ..(Suc n)−2 . 1 / ((2 ^ i)::real)) = (
∑

i∈{1}. 1 / ((2 ^ i)::real))
by (simp add: ∗)

then have eq1 : (
∑

i = 1 ..(Suc n)−2 . 1 / ((2 ^ i)::real)) = 1/2
by auto

then have f-is: f = (λx. (x − (1/2)) ∗ 2) using ∗ Suc.prems(5) by auto
have x ∈ {(1/2)::real..1} using eq1 Suc.prems(4) by metis
moreover then have p x = linepath (ell ! 1) (ell ! 2) (2 ∗ x − 1)

using triangle-linepath-images(2) using ell-is Suc.prems(3) by blast
moreover have f x = 2∗x − 1 using f-is by simp
ultimately have p x = (linepath (ell ! ((Suc n)−2)) (ell ! ((Suc n)−1))) (f x)

using ∗ Suc.prems ell-is
by (metis One-nat-def Suc-1 diff-Suc-1 diff-Suc-Suc numeral-3-eq-3)

} moreover
{ assume ∗: Suc n > 3

let ?ell ′ = drop 1 ell
let ?p ′ = make-polygonal-path ?ell ′
let ?x ′ = 2∗x − 1
let ?f ′ = (λx. (x − (

∑
i ∈ {1 ..n−2}. 1/(2^i))) ∗ (2^(n−2)))

have ell-is: ell = ell!0 # ell!1 # ell!2 # (drop 3 ell)
by (metis ∗ Cons-nth-drop-Suc One-nat-def Suc.prems(2) Suc-1 drop0 le-Suc-eq

linorder-not-less numeral-3-eq-3 zero-less-Suc)
then have p-tl: p = (linepath (ell ! 0) (ell ! 1)) +++ make-polygonal-path

(drop 1 ell)
using make-polygonal-path.simps(4)[of ell!0 ell!1 ell!2 drop 3 ell]
by (metis One-nat-def Suc.prems(3) drop-0 drop-Suc-Cons)

have sum-split: (
∑

i = 1 ..Suc n − 2 . 1 / (2 ^ i::real)) = 1/(2^1 ::real) + (
∑

i
= 2 ..Suc n − 2 . 1 / (2 ^ i::real))

using ∗
by (metis Suc-1 Suc-eq-plus1 Suc-lessD add-le-imp-le-diff diff-Suc-Suc eval-nat-numeral(3)

less-Suc-eq-le sum.atLeast-Suc-atMost)
let ?k = Suc n
have helper-arith:

∧
i. i > 0 =⇒ 1 / (2 ^ i::real) > 0 by simp

have k ≥ 2 =⇒ (
∑

i = 2 ..k. 1 / (2 ^ i::real)) > 0 for k
proof (induct k)

case 0
then show ?case by auto

43

next
case (Suc k)
{assume ∗: Suc k = 2

then have (
∑

i = 2 ..Suc k. 1 / (2 ^ i::real)) = (
∑

i = 2 ..2 . 1 / (2 ^
i::real))

by presburger
then have ?case

using helper-arith
by (simp add: ∗)

} moreover {assume ∗: Suc k > 2
then have ind-h: 0 < (

∑
i = 2 ..k. 1 / (2 ^ i::real))

using Suc.hyps less-Suc-eq-le by blast
have (

∑
i = 2 ..Suc k. 1 / (2 ^ i::real)) = (

∑
i = 2 ..k. 1 / (2 ^ i::real))

+ 1 / (2 ^ (Suc k)::real)
using Suc.prems add.commute by auto

then have ?case using ind-h helper-arith
by (smt (verit) divide-less-0-1-iff zero-le-power)

}
ultimately show ?case

using Suc.prems by linarith
qed
then have (

∑
i = 2 ..Suc n − 2 . 1 / (2 ^ i::real)) > 0

using ∗ by auto
then have (

∑
i = 1 ..Suc n − 2 . 1 / (2 ^ i::real)) > 1/2

using sum-split by auto
then have x > 1/2 using Suc.prems(4)

by (smt (verit, del-insts) atLeastAtMost-iff linorder-not-le order-le-less-trans)
then have p ′x ′-eq-px: ?p ′ ?x ′ = p x unfolding joinpaths-def by (simp add:

joinpaths-def p-tl)

have 1 : n ≥ 3 using ∗ by auto
have 2 : length ?ell ′ = n using Suc.prems(2) by simp
have 3 : ?p ′ = make-polygonal-path ?ell ′ by auto
have x ≤ 1 using Suc.prems(4) by auto
then have x ′-lteq: 2∗x − 1 ≤ 1 by auto
have x ≥ (

∑
i = 1 ..Suc n − 2 . 1 / 2 ^ i)

using Suc.prems(4) by auto
then have x ′-gteq: ?x ′ ≥ (

∑
i = 1 ..n − 2 . 1 / 2 ^ i)

using summation-helper [of Suc n − 2] ∗
by (smt (verit) Suc.prems(1) Suc-1 Suc-diff-le Suc-leD Suc-le-mono diff-Suc-1

diff-Suc-eq-diff-pred eval-nat-numeral(3))
have 4 : ?x ′ ∈ {(

∑
i = 1 ..n − 2 . 1 / 2 ^ i)..1} using Suc.prems(4)

using summation-helper [of Suc n − 2] ∗ x ′-lteq x ′-gteq atLeastAtMost-iff by
blast

have 5 : ?f ′ = (λx. (x − (
∑

i = 1 ..n − 2 . 1 / 2 ^ i)) ∗ 2 ^ (n − 2)) by auto
have f x = (x − (

∑
i = 1 ..Suc n − 2 . 1 / 2 ^ i)) ∗ 2 ^ (n − 2)∗2

proof −
have (λr . (r − (

∑
n = 1 ..n − 1 . 1 / 2 ^ n)) ∗ 2 ^ (n − 1)) = f

by (simp add: Suc.prems(5))

44

then have 2 ^ (n − 1) ∗ (x − (
∑

n = 1 ..n − 1 . 1 / 2 ^ n)) = f x
using Groups.mult-ac(2) by blast

then have (x − (
∑

n = 1 ..n − 1 . 1 / 2 ^ n)) ∗ (2 ^ (n − Suc 1) ∗ 2) = f x
by (metis (no-types) Groups.mult-ac(2) Suc.prems(2) diff-Suc-1 diff-Suc-Suc

ell-is length-Cons power .simps(2))
then show ?thesis

by (metis (no-types) Groups.mult-ac(1) Suc-1 diff-Suc-Suc)
qed
then have fx-is: f x = (2∗x − 2∗(

∑
i = 1 ..Suc n − 2 . 1 / 2 ^ i))∗ 2 ^ (n −

2)
by argo

have sum-is: 1 + (
∑

i = 1 ..n − 2 . 1 /(2 ^ i::real)) = 2∗(
∑

i = 1 ..Suc n −
2 . 1 / (2 ^ i::real))

proof −
have sum-ish1 : (

∑
i = 1 ..Suc n − 2 . 1 / (2 ^ i::real)) = 1/2 + (

∑
i =

2 ..Suc n − 2 . 1 / (2 ^ i::real))
by (metis power-one-right sum-split)

have n ≥ 2 =⇒ 2∗(
∑

i = 2 ..n − 1 . 1 / (2 ^ i::real)) = (
∑

i = 1 ..n − 2 .
1 /(2 ^ i::real))

proof (induct n)
case 0
then show ?case by auto

next
case (Suc n)
{assume ∗: Suc n = 2

then have ?case by auto
} moreover {assume ∗: Suc n > 2

then have ind-h: 2 ∗ (
∑

i = 2 ..n − 1 . 1 / (2 ^ i::real)) = (
∑

i = 1 ..n
− 2 . 1 / (2 ^ i::real))

using Suc by fastforce
have mult: 2∗1/(2^(Suc n − 1)::real) = 1/(2^(n − 1)::real)

using ∗
by (smt (z3) One-nat-def add-diff-inverse-nat bot-nat-0 .not-eq-extremum

diff-Suc-1 div-by-1 le-zero-eq less-Suc-eq-le mult.commute nonzero-mult-div-cancel-left
nonzero-mult-divide-mult-cancel-left plus-1-eq-Suc power-Suc zero-less-numeral)

have sum-prop:
∧

a::nat.
∧

f ::nat⇒real.(
∑

i = 1 ..a. (f i)) + (f (a+1)) =
(
∑

i = 1 ..a+1 . (f i))
by auto

have n − 2 + 1 = n − 1
using ∗ by auto

then have sum-same: (
∑

i = 1 ..n − 2 . 1 / (2 ^ i::real)) + 1 / 2 ^ (n
− 1) = (

∑
i = 1 ..n − 1 . 1 / (2 ^ i::real))

using ∗ sum-prop[of λi. 1 / (2 ^ i::real) n−2] by metis
have 2 ∗ (

∑
i = 2 ..Suc n − 1 . 1 / (2 ^ i::real)) = 2 ∗ ((

∑
i = 2 ..n −

1 . 1 / (2 ^ i::real)) + 1/(2^(Suc n − 1)::real))
using ∗

by (smt (z3) add-2-eq-Suc add-diff-inverse-nat diff-Suc-1 distrib-left-numeral
ind-h not-less-eq sum.cl-ivl-Suc)

then have 2 ∗ (
∑

i = 2 ..Suc n − 1 . 1 / (2 ^ i::real)) = (
∑

i = 1 ..n −

45

2 . 1 / (2 ^ i::real)) + 2∗1/(2^(Suc n − 1)::real)
using ind-h by argo

then have 2 ∗ (
∑

i = 2 ..Suc n − 1 . 1 / (2 ^ i::real)) = (
∑

i = 1 ..n −
2 . 1 / (2 ^ i::real)) + 1/(2^(n − 1)::real)

using ∗ mult by auto
then have ?case using sum-same by auto

}
ultimately show ?case by fastforce

qed
then have sum-ish2 :2∗(

∑
i = 2 ..Suc n − 2 . 1 / (2 ^ i::real)) = (

∑
i =

1 ..n − 2 . 1 /(2 ^ i::real))
using ∗ by auto

show ?thesis using sum-ish1 sum-ish2 by simp
qed
have ?p ′ ?x ′ = (linepath (?ell ′ ! (n−2)) (?ell ′ ! (n−1))) (?f ′ ?x ′)

using Suc.hyps[OF 1 2 3 4 5] by blast
moreover have ?f ′ ?x ′ = f x

using Suc.prems(5) fx-is sum-is
by (smt (verit, best))

moreover have ?ell ′ ! (n−2) = ell ! ((Suc n)−2)
by (metis Nat.diff-add-assoc One-nat-def Suc.prems(1) Suc.prems(2) Suc-1

add-diff-cancel-left le-add1 nth-drop numeral-3-eq-3 plus-1-eq-Suc)
moreover have ?ell ′ ! (n−1) = ell ! ((Suc n)−1)

using Suc.prems(1) Suc.prems(2) by auto
ultimately have ?case using p ′x ′-eq-px by presburger

}
ultimately show ?case using Suc.prems(1) by linarith

qed

8 A Triangle is a Polygon
lemma not-collinear-linepaths-intersect-helper :

assumes not-collinear : ¬collinear {a,b,c}
assumes 0 ≤ k1
assumes k1 ≤ 1
assumes 0 ≤ k2
assumes k2 ≤ 1
assumes eo: k2 = 0 =⇒ k1 6= 1
shows ¬ ((linepath a b) k1 = (linepath b c) k2)

proof −
have a-neq-b:a 6= b

using not-collinear
by auto

then have nonz-1 : a − b 6= 0
by auto

have b-neq-c: b 6= c
using not-collinear
by auto

then have nonz-2 : b − c 6= 0

46

by auto
have ¬ collinear {a−b, 0 , c−b}

using not-collinear
by (metis NO-MATCH-def collinear-3 insert-commute)

then have notcollinear : ¬ collinear { 0 , a−b, c−b}
by (simp add: insert-commute)

have (1 − k1) ∗R a + k1 ∗R b = (1 − k2) ∗R b + k2 ∗R c =⇒ (a − k1∗R a)
+ k1 ∗R b = (b − k2 ∗R b) + k2 ∗R c

by (metis add-diff-cancel scaleR-collapse)
then have (1 − k1) ∗R a + k1 ∗R b = (1 − k2) ∗R b + k2 ∗R c =⇒ (1 − k1)
∗R a + k1 ∗R b − b = − k2 ∗R b + k2 ∗R c

by (metis (no-types, lifting) add-diff-cancel-left scaleR-collapse scaleR-minus-left
uminus-add-conv-diff)

then have (1 − k1) ∗R a + k1 ∗R b = (1 − k2) ∗R b + k2 ∗R c =⇒ (1 − k1)
∗R a + k1 ∗R b − b = k2 ∗R (c−b)

by (simp add: scaleR-right-diff-distrib)
then have rewrite: (1 − k1) ∗R a + k1 ∗R b = (1 − k2) ∗R b + k2 ∗R c =⇒

(1−k1)∗R(a − b) = k2 ∗R (c−b)
by (metis add-diff-cancel-right scaleR-collapse scaleR-right-diff-distrib)

{assume ∗: k2 6= 0
then have (1 − k1) ∗R a + k1 ∗R b = (1 − k2) ∗R b + k2 ∗R c =⇒ c − b =

((1−k1)/k2)∗R(a − b)
using rewrite assms(2−3)
by (smt (verit, ccfv-SIG) vector-fraction-eq-iff)

then have (1 − k1) ∗R a + k1 ∗R b = (1 − k2) ∗R b + k2 ∗R c =⇒ collinear
{0 , a−b, c−b}

using collinear-lemma[of a −b c−b] by auto
then have (1 − k1) ∗R a + k1 ∗R b = (1 − k2) ∗R b + k2 ∗R c =⇒ False

using notcollinear by auto
} moreover {assume ∗: k2 = 0

then have k1 6=1
using assms by auto

then have (1 − k1) ∗R a + k1 ∗R b = (1 − k2) ∗R b + k2 ∗R c =⇒ a − b =
(k2/(1−k1)) ∗R (c−b)

using rewrite
by (smt (verit, ccfv-SIG) vector-fraction-eq-iff)

then have (1 − k1) ∗R a + k1 ∗R b = (1 − k2) ∗R b + k2 ∗R c =⇒ collinear
{0 , a−b, c−b}

using collinear-lemma[of c−b a−b]
by (simp add: insert-commute)

then have (1 − k1) ∗R a + k1 ∗R b = (1 − k2) ∗R b + k2 ∗R c =⇒ False
using notcollinear by auto

}
ultimately show ?thesis

unfolding linepath-def
by blast

qed

47

lemma not-collinear-linepaths-intersect-helper-2 :
assumes not-collinear : ¬collinear {a,b,c}
assumes 0 ≤ k1
assumes k1 ≤ 1
assumes 0 ≤ k2
assumes k2 ≤ 1
assumes eo: k1 = 0 =⇒ k2 6= 1
shows ¬ ((linepath a b) k1 = (linepath c a) k2)
using not-collinear-linepaths-intersect-helper [of c a b k2 k1] assms
by (simp add: insert-commute)

lemma not-collinear-loopfree-path:
∧

a b c::real^2 . ¬collinear {a,b,c} =⇒ loop-free
((linepath a b) +++ (linepath b c))
proof −

fix a b c::real^2
assume not-collinear : ¬collinear {a,b,c}
then have a-neq-b:a 6= b

by auto
have b-neq-c: b 6= c

using not-collinear
by auto

have
∧

x y::real. (linepath a b +++ linepath b c) x = (linepath a b +++ linepath
b c) y =⇒

x < y =⇒
x = 0 −→ y 6= 1 =⇒ 0 ≤ x =⇒ x ≤ 1 =⇒ 0 ≤ y =⇒ y ≤ 1 =⇒ False

proof −
fix x y:: real
assume same-eval: (linepath a b +++ linepath b c) x = (linepath a b +++

linepath b c) y
assume x-neq-y: x < y
assume x-zero-imp: x = 0 −→ y 6= 1
assume x-gt: 0 ≤ x
assume x-lt: x ≤ 1
assume y-gt: 0 ≤ y
assume y-lt: y ≤ 1
{assume ∗: x ≤ 1/2 ∧ y ≤ 1/2

then have (1 − 2 ∗ x) ∗R a + (2 ∗ x) ∗R b = (1 − 2 ∗ y) ∗R a + (2 ∗ y)
∗R b =⇒ False

using x-gt y-gt x-neq-y a-neq-b linepath-loop-free[of a b]
by (smt (z3) add-diff-cancel-left add-diff-cancel-right ′ add-diff-eq scaleR-cancel-left

scaleR-left-diff-distrib)
then have False

using ∗ same-eval unfolding joinpaths-def linepath-def
by auto

} moreover {assume ∗: x > 1/2 ∧ y > 1/2
have False

using x-lt y-lt x-neq-y b-neq-c linepath-loop-free[of b c]
using ∗ same-eval unfolding joinpaths-def linepath-def

by (smt (z3) add-diff-cancel-left add-diff-cancel-right ′ add-diff-eq scaleR-cancel-left

48

scaleR-collapse scaleR-left-diff-distrib)
} moreover {assume ∗: x ≤ 1/2 ∧ y > 1/2

then have lp-eq: (linepath a b) (2 ∗ x) = (linepath b c) (2 ∗ y − 1)
using ∗ same-eval unfolding joinpaths-def
by auto

have (2 ∗ y − 1) = 0 −→ (2∗x) 6= 1 ∧ 0 ≤ (2∗x) ∧ (2∗x) ≤ 1 ∧ 0 ≤ (2
∗ y − 1) ∧ (2 ∗ y − 1) ≤ 1

using x-lt x-gt x-neq-y ∗ by auto
then have False

using lp-eq not-collinear-linepaths-intersect-helper [of a b c 2∗x 2 ∗ y − 1]
not-collinear
using ∗ x-gt y-lt by auto

}
ultimately show False

using x-lt y-lt x-neq-y
by linarith

qed
then have

∧
x y::real. (linepath a b +++ linepath b c) x = (linepath a b +++

linepath b c) y =⇒
x 6= y =⇒
x = 0 −→ y 6= 1 =⇒ x = 1 −→ y 6= 0 =⇒ 0 ≤ x =⇒ x ≤ 1 =⇒ 0 ≤ y

=⇒ y ≤ 1 =⇒ False
by (metis linorder-less-linear)

then show loop-free (linepath a b +++ linepath b c)
unfolding loop-free-def
by (metis atLeastAtMost-iff)

qed

lemma triangle-is-polygon:
∧

a b c. ¬collinear {a,b,c} =⇒ polygon (make-triangle
a b c)
proof −

fix a b c::real^2
assume not-coll:¬collinear {a,b,c}
then have a-neq-b:a 6= b

by auto
have b-neq-c: b 6= c

using not-coll
by auto

have a-neq-c: c 6= a
using not-coll
using collinear-3-eq-affine-dependent by blast

let ?vts = [a, b, c, a]
have polygonal-path: polygonal-path (make-polygonal-path [a, b, c, a])

by (metis Collect-const UNIV-I image-eqI polygonal-path-def)
then have path: path (make-polygonal-path [a, b, c, a])

by auto
then have closed-path: closed-path (make-polygonal-path [a, b, c, a])

unfolding closed-path-def using polygon-pathstart polygon-pathfinish

49

by auto
let ?seg1 = (linepath a b) +++ (linepath b c)
have lf1 : loop-free ((linepath a b) +++ (linepath b c))

using not-collinear-loopfree-path not-coll
by auto

then have ∀ x∈{0 ..1}. ∀ y∈{0 ..1}. ?seg1 x = ?seg1 y −→ x = y
using a-neq-c unfolding loop-free-def
by (metis (no-types, lifting) path-defs(2) pathfinish-def pathfinish-join pathfin-

ish-linepath pathstart-join pathstart-linepath)
let ?seg2 = (linepath b c) +++ (linepath c a)
have lf2 : loop-free ((linepath b c) +++ (linepath c a))

using not-collinear-loopfree-path not-coll
by (simp add: insert-commute)

then have ∀ x∈{0 ..1}. ∀ y∈{0 ..1}. ?seg2 x = ?seg2 y −→ x = y
using a-neq-b unfolding loop-free-def
by (metis (no-types, lifting) path-defs(2) pathfinish-def pathfinish-join pathfin-

ish-linepath pathstart-join pathstart-linepath)
let ?seg3 = (linepath c a) +++ (linepath a b)
have lf3 : loop-free ((linepath c a) +++ (linepath a b))

using not-collinear-loopfree-path not-coll
by (simp add: insert-commute)

then have ∀ x∈{0 ..1}. ∀ y∈{0 ..1}. ?seg3 x = ?seg3 y −→ x = y
using b-neq-c unfolding loop-free-def
by (metis (no-types, lifting) path-defs(2) pathfinish-def pathfinish-join pathfin-

ish-linepath pathstart-join pathstart-linepath)
have mpp-is: ∀ x∈{0 ..1}. make-polygonal-path [a, b, c, a] x = ((linepath a b)

+++ (linepath b c) +++ (linepath c a)) x
by auto

have x-in-int1 : ∀ x∈{0 ..(1/2)}. make-polygonal-path [a, b, c, a] x = ((linepath
a b)) (2∗x)

using mpp-is
unfolding joinpaths-def by auto

have x-in-int2 : ∀ x∈{1/2<..(3/4)}. make-polygonal-path [a, b, c, a] x = ((linepath
b c)) (2∗(2∗x − 1))

using mpp-is unfolding joinpaths-def
by auto

have x-in-int3 : ∀ x∈{3/4<..1}. make-polygonal-path [a, b, c, a] x = ((linepath
c a)) (2 ∗ (2 ∗ x − 1) − 1)

using mpp-is unfolding joinpaths-def
by auto

have
∧

x y. 0 ≤ x ∧ x ≤ 1 ∧ 0 ≤ y ∧ y ≤ 1 ∧ x 6= y ∧ (x = 0 −→ y 6= 1) ∧
(x = 1 −→ y 6= 0) =⇒ make-polygonal-path [a, b, c, a] x = make-polygonal-path
[a, b, c, a] y =⇒ False

proof −
fix x y:: real
assume big: 0 ≤ x ∧ x ≤ 1 ∧ 0 ≤ y ∧ y ≤ 1 ∧ x 6= y ∧ (x = 0 −→ y 6= 1)

∧ (x = 1 −→ y 6= 0)
assume false-hyp: make-polygonal-path [a, b, c, a] x = make-polygonal-path [a,

b, c, a] y

50

{assume ∗: x ∈ {0 ..(1/2)}
then have x-eval: make-polygonal-path [a, b, c, a] x = ((linepath a b)) (2∗x)

using x-in-int1 by auto
{assume ∗∗: y ∈ {0 ..(1/2)}

then have y-eval: make-polygonal-path [a, b, c, a] y = ((linepath a b))
(2∗y)

using x-in-int1 by auto
then have ((linepath a b)) (2∗x) = ((linepath a b)) (2∗y)

using false-hyp x-eval y-eval by auto
then have False

using linepath-loop-free big ∗ ∗∗
unfolding loop-free-def

using a-neq-b add-diff-cancel-left add-diff-cancel-right ′ add-diff-eq
linepath-def scaleR-cancel-left scaleR-collapse scaleR-left-diff-distrib

by (smt (verit))
} moreover {assume ∗∗: y ∈ {(1/2)<..(3/4)}

then have y-eval: make-polygonal-path [a, b, c, a] y = ((linepath b c))
(2∗(2∗y − 1))

using x-in-int2 by auto
then have ((linepath a b)) (2∗x) = ((linepath b c)) (2∗(2∗y − 1))

using false-hyp x-eval y-eval by auto
then have False

using big ∗ ∗∗ not-collinear-linepaths-intersect-helper [of a b c 2∗x
(2∗(2∗y − 1))] not-coll

by auto
} moreover {assume ∗∗: y ∈ {(3/4)<..1}

then have y-eval: make-polygonal-path [a, b, c, a] y = ((linepath c a))
((2 ∗ (2 ∗ y − 1) − 1))

using x-in-int3 by auto
then have ((linepath a b)) (2∗x) = ((linepath c a)) ((2 ∗ (2 ∗ y − 1)

− 1))
using false-hyp x-eval y-eval by auto

then have False
using big ∗ ∗∗ not-collinear-linepaths-intersect-helper-2 [of a b c (2∗x)

((2 ∗ (2 ∗ y − 1) − 1))] not-coll
by auto

}
ultimately have False

using big
by (metis atLeastAtMost-iff greaterThanAtMost-iff linorder-not-le)

} moreover {assume ∗: x ∈ {(1/2)<..(3/4)}
then have x-eval: make-polygonal-path [a, b, c, a] x = ((linepath b c))

(2∗(2∗x − 1))
using x-in-int2 by auto

{assume ∗∗: y ∈ {0 ..(1/2)}
then have y-eval: make-polygonal-path [a, b, c, a] y = ((linepath a b))

(2∗y)
using x-in-int1 by auto

then have lp-eq: ((linepath a b)) (2∗y) = ((linepath b c)) (2∗(2∗x − 1))

51

using false-hyp x-eval y-eval by auto
have 2 ∗ (2 ∗ x − 1) 6= 0

using ∗ by auto
then have False
using lp-eq big ∗ ∗∗ not-collinear-linepaths-intersect-helper [of a b c 2∗y

(2∗(2∗x − 1))] not-coll
by auto

} moreover {assume ∗∗: y ∈ {(1/2)<..(3/4)}
then have y-eval: make-polygonal-path [a, b, c, a] y = ((linepath b c))

(2∗(2∗y − 1))
using x-in-int2 by auto
then have lp-eq: ((linepath b c)) (2∗(2∗y − 1)) = ((linepath b c))

(2∗(2∗x − 1))
using false-hyp x-eval y-eval by auto

then have False
using linepath-loop-free[OF b-neq-c] big ∗ ∗∗
unfolding loop-free-def

using add-diff-cancel-left add-diff-cancel-right ′ add-diff-eq linepath-def
scaleR-cancel-left scaleR-collapse scaleR-left-diff-distrib

by (smt (verit) b-neq-c)
} moreover {assume ∗∗: y ∈ {(3/4)<..1}

then have y-eval: make-polygonal-path [a, b, c, a] y = ((linepath c a))
((2 ∗ (2 ∗ y − 1) − 1))

using x-in-int3 by auto
then have lp-eq: ((linepath b c)) (2∗(2∗x − 1)) = ((linepath c a)) ((2

∗ (2 ∗ y − 1) − 1))
using false-hyp x-eval y-eval
by auto

have not-coll2 : ¬ collinear {b, c, a}
using not-coll
by (simp add: insert-commute)

have 2 ∗ (2 ∗ x − 1) 6= 0
using ∗ by auto

then have False using lp-eq
using big ∗ ∗∗ not-collinear-linepaths-intersect-helper [of b c a 2∗(2∗x

− 1) (2 ∗ (2 ∗ y − 1) − 1)] not-coll2
by auto

}
ultimately have False

using big
by (metis atLeastAtMost-iff greaterThanAtMost-iff linorder-not-le)

} moreover {assume ∗: x ∈ {(3/4)<..1}
then have x-eval: make-polygonal-path [a, b, c, a] x = ((linepath c a)) ((2

∗ (2 ∗ x − 1) − 1))
using x-in-int3 by auto

{assume ∗∗: y ∈ {0 ..(1/2)}
then have y-eval: make-polygonal-path [a, b, c, a] y = ((linepath a b))

(2∗y)
using x-in-int1 by auto

52

then have lp-eq: ((linepath c a)) ((2 ∗ (2 ∗ x − 1) − 1)) = ((linepath
a b)) (2∗y)

using x-eval y-eval
using false-hyp by presburger

have not-coll2 : ¬ collinear {c, a, b}
using not-coll
by (simp add: insert-commute)

have ((2 ∗ (2 ∗ x − 1) − 1)) 6= 0
using ∗ by auto

then have False
using lp-eq big ∗ ∗∗ not-coll2
not-collinear-linepaths-intersect-helper [of c a b (2 ∗ (2 ∗ x − 1) − 1)

2∗y]
by auto

} moreover {assume ∗∗: y ∈ {(1/2)<..(3/4)}
then have y-eval: make-polygonal-path [a, b, c, a] y = ((linepath b c))

(2∗(2∗y − 1))
using x-in-int2 by auto

then have lp-eq: ((linepath b c)) (2∗(2∗y − 1)) = ((linepath c a)) ((2
∗ (2 ∗ x − 1) − 1))

using x-eval y-eval false-hyp
using false-hyp by presburger

have not-coll2 : ¬ collinear {b, c, a}
using not-coll
by (simp add: insert-commute)

have ((2 ∗ (2 ∗ x − 1) − 1)) 6= 0
using ∗ by auto

then have False
using lp-eq big ∗ ∗∗ not-coll2
not-collinear-linepaths-intersect-helper [of b c a (2∗(2∗y − 1)) (2 ∗ (2

∗ x − 1) − 1)]
by auto

} moreover {assume ∗∗: y ∈ {(3/4)<..1}
then have y-eval: make-polygonal-path [a, b, c, a] y = ((linepath c a))

((2 ∗ (2 ∗ y − 1) − 1))
using x-in-int3 by auto

then have ((linepath c a)) ((2 ∗ (2 ∗ y − 1) − 1)) = ((linepath c a))
((2 ∗ (2 ∗ x − 1) − 1))

using x-eval y-eval false-hyp
using false-hyp by presburger

then have False
using linepath-loop-free[OF a-neq-c] big ∗ ∗∗
unfolding loop-free-def

using add-diff-cancel-left add-diff-cancel-right ′ add-diff-eq linepath-def
scaleR-cancel-left scaleR-collapse scaleR-left-diff-distrib

by (smt (verit) a-neq-c add-diff-cancel-left ′)
}
ultimately have False

using big

53

by (metis atLeastAtMost-iff greaterThanAtMost-iff linorder-not-le)
}
ultimately show False using big

by (metis atLeastAtMost-iff greaterThanAtMost-iff linorder-not-le)
qed
then have loop-free: loop-free (make-polygonal-path [a, b, c, a])

unfolding loop-free-def
by (meson atLeastAtMost-iff)

show polygon (make-triangle a b c)
unfolding make-triangle-def polygon-def simple-path-def
using polygonal-path closed-path loop-free by auto

qed

lemma have-wraparound-vertex:
assumes polygon p
assumes p = make-polygonal-path vts
shows vts = (take (length vts −1) vts)@[vts ! 0]

proof −
have card (set vts) ≥ 3

using polygon-at-least-3-vertices assms by auto
then have nonempty: vts 6= []

by auto
then have vts = (take (length vts −1) vts)@[vts ! (length vts − 1)]

by (metis append-butlast-last-id butlast-conv-take last-conv-nth)
then show ?thesis

using assms(1) unfolding polygon-def closed-path-def
using polygon-pathstart[OF nonempty assms(2)] polygon-pathfinish[OF nonempty

assms(2)]
by presburger

qed

lemma polygon-at-least-3-vertices-wraparound:
assumes polygon p
assumes p = make-polygonal-path vts
shows card (set (take (length vts −1) vts)) ≥ 3

proof −
let ?distinct-vts = take (length vts −1) vts
have card-vts: card (set vts) ≥ 3

using polygon-at-least-3-vertices assms by auto
then have vts-is: vts = ?distinct-vts@[vts ! 0]

using have-wraparound-vertex assms by auto
then have ?distinct-vts 6= []

using card-vts
by (metis One-nat-def append-Nil distinct-card distinct-singleton eval-nat-numeral(3)

length-append-singleton list.size(3) not-less-eq-eq one-le-numeral)
then have vts ! 0 ∈ set ?distinct-vts

by (metis ‹vts = take (length vts − 1) vts @ [vts ! 0]› length-greater-0-conv

54

nth-append nth-mem)
then have card (set ?distinct-vts) = card (set vts)

using vts-is
by (metis Un-insert-right append.right-neutral insert-absorb list.set(2) set-append)

then show ?thesis using card-vts by auto
qed

9 Polygon Vertex Rotation
definition rotate-polygon-vertices:: ′a list ⇒ nat ⇒ ′a list

where rotate-polygon-vertices ell i =
(let ell1 = rotate i (butlast ell) in ell1 @ [ell1 ! 0])

lemma rotate-polygon-vertices-same-set:
assumes polygon (make-polygonal-path vts)
shows set (rotate-polygon-vertices vts i) = set vts

proof −
have card-gteq: card (set vts) ≥ 3

using polygon-at-least-3-vertices assms
by auto

then have len-gteq: length vts ≥ 3
using card-length order-trans by blast

let ?ell1 = rotate i (take (length vts − 1) vts)
have inset: vts ! 0 = vts ! (length vts − 1)
using assms polygon-pathstart polygon-pathfinish unfolding polygon-def closed-path-def
by (metis len-gteq list.size(3) not-numeral-le-zero)

have set vts = set (take (length vts − 1) vts) ∪ {vts ! (length vts − 1)}
by (metis Cons-nth-drop-Suc One-nat-def Un-insert-right assms card.empty

diff-zero drop-rev length-greater-0-conv list.set(1) list.set(2) not-numeral-le-zero
order .refl polygon-at-least-3-vertices rev-nth set-rev sup-bot.right-neutral take-all)

then have set vts = set (take (length vts − 1) vts)
using inset
by (metis (no-types, lifting) One-nat-def Suc-neq-Zero Suc-pred Un-insert-right

add-diff-cancel-left ′ butlast-conv-take diff-is-0-eq ′ insert-absorb len-gteq length-butlast
length-greater-0-conv list.size(3) nth-mem nth-take numeral-3-eq-3 plus-1-eq-Suc
sup-bot.right-neutral)

then have same-set: set vts = set ?ell1
by auto

then have rotate i (take (length vts − 1) vts) ! 0 ∈ set vts
using len-gteq

by (metis card-gteq card-length le-zero-eq length-greater-0-conv list.size(3) nth-mem
numeral-3-eq-3 zero-less-Suc)

then have set vts = set (?ell1 @ [?ell1 ! 0])
using same-set by auto

then show ?thesis
unfolding rotate-polygon-vertices-def
using card-gteq
by (metis butlast-conv-take)

qed

55

lemma arb-rotation-as-single-rotation:
fixes i:: nat
shows rotate-polygon-vertices vts (Suc i) = rotate-polygon-vertices (rotate-polygon-vertices

vts i) 1
unfolding rotate-polygon-vertices-def
by (metis butlast-snoc plus-1-eq-Suc rotate-rotate)

lemma rotation-sum:
fixes i j :: nat
shows rotate-polygon-vertices vts (i + j) = rotate-polygon-vertices (rotate-polygon-vertices

vts i) j
proof(induct j)

case 0
thus ?case by (metis Nat.add-0-right butlast-snoc id-apply rotate0 rotate-polygon-vertices-def)

next
case (Suc j)
have rotate-polygon-vertices vts (i + (Suc j)) = rotate-polygon-vertices vts (Suc

(i + j)) by simp
also have ... = rotate-polygon-vertices (rotate-polygon-vertices vts (i + j)) 1

using arb-rotation-as-single-rotation by blast
also have ... = rotate-polygon-vertices (rotate-polygon-vertices (rotate-polygon-vertices

vts i) j) 1
using Suc.hyps by simp

also have ... = rotate-polygon-vertices (rotate-polygon-vertices vts i) (Suc j)
using arb-rotation-as-single-rotation by metis

finally show ?case .
qed

lemma rotated-polygon-vertices-helper :
fixes p :: R-to-R2
assumes poly-p: polygon p
assumes p-is-path: p = make-polygonal-path vts
assumes p ′-is: p ′ = make-polygonal-path (rotate-polygon-vertices vts 1)
shows (vts ! 0) = (rotate-polygon-vertices vts 1) ! (length (rotate-polygon-vertices

vts 1) − 2)
(rotate-polygon-vertices vts 1) ! (length (rotate-polygon-vertices vts 1) − 1)

= (vts ! 1)
proof −

have len-gteq: length vts ≥ 3
using polygon-at-least-3-vertices assms
using card-length order-trans by blast

let ?rotated-vts = rotate-polygon-vertices vts 1
have same-len: length ?rotated-vts = length vts

unfolding rotate-polygon-vertices-def using length-rotate
by (metis One-nat-def Suc-pred card.empty length-append-singleton length-butlast

length-greater-0-conv list.set(1) not-numeral-le-zero p-is-path poly-p polygon-at-least-3-vertices)
then have len-rotated-gt-eq3 : length ?rotated-vts ≥ 3

using len-gteq by auto

56

show vts1 : vts ! 0 = ?rotated-vts ! (length ?rotated-vts − 2)
unfolding rotate-polygon-vertices-def
using nth-rotate[of length ?rotated-vts − 2 butlast vts 1]
Suc-diff-Suc butlast-snoc length-butlast length-greater-0-conv lessI less-nat-zero-code

list.size(3) mod-self nat-1-add-1 nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def
same-len zero-less-diff

by (smt (z3) One-nat-def len-gteq length-append-singleton numeral-le-one-iff
semiring-norm(70))

have (rotate 1 (butlast vts)) ! 0 = vts ! 1
unfolding rotate-polygon-vertices-def
using nth-rotate[of 0 butlast vts 1] len-gteq len-rotated-gt-eq3
by (metis (no-types, lifting) One-nat-def Suc-le-eq length-butlast less-diff-conv

less-nat-zero-code mod-less not-gr-zero nth-butlast numeral-3-eq-3 plus-1-eq-Suc)
then show vts2 : ?rotated-vts ! (length ?rotated-vts − 1) = vts ! 1

unfolding rotate-polygon-vertices-def
by (smt (verit, best) Suc-diff-Suc Suc-eq-plus1 butlast-snoc length-butlast length-greater-0-conv

less-nat-zero-code list.size(3) nth-append-length one-add-one rotate-polygon-vertices-def
zero-less-diff)
qed

lemma rotate-polygon-vertices-same-length:
fixes vts :: (real^2) list
assumes length vts ≥ 1
shows length vts = length (rotate-polygon-vertices vts i)
using assms

proof(induction length vts arbitrary: i)
case 0
then show ?case by auto

next
case (Suc x)
then show ?case using arb-rotation-as-single-rotation[of vts x]

by (metis diff-Suc-1 length-append-singleton length-butlast length-rotate ro-
tate-polygon-vertices-def)
qed

lemma rotated-polygon-vertices-helper2 :
assumes len-gteq: length vts ≥ 2
assumes i < length vts − 1
assumes hd vts = last vts
shows (rotate-polygon-vertices vts 1) ! i = vts ! (i+1)

proof −
let ?rotated-vts = rotate-polygon-vertices vts 1
have length (butlast vts) = length vts − 1

by auto
then have same-len: length ?rotated-vts = length vts

unfolding rotate-polygon-vertices-def using length-rotate len-gteq
by (metis dual-order .trans le-add-diff-inverse length-append-singleton one-le-numeral

plus-1-eq-Suc)
then have len-rotated-gt-eq3 : length ?rotated-vts ≥ 2

57

using len-gteq by auto
let ?n = length vts
{assume ∗: i < length vts − 2
then have same-mod: (1 + i) mod length (butlast vts) = 1+i

using assms by simp
have i < length (butlast vts)

using assms by simp
then have rotate 1 (butlast vts) ! i = butlast vts ! (i + 1)

using nth-rotate[of i butlast vts 1] same-mod
by (metis add.commute)
then have (rotate-polygon-vertices vts 1) ! i = vts ! (i+1)

by (metis (no-types, lifting) Suc-eq-plus1 ‹i < length (butlast vts)› butlast-snoc
length-butlast length-greater-0-conv less-nat-zero-code list.size(3) mod-less-divisor
nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def same-len same-mod)
} moreover {assume ∗: i = length vts − 2
then have same-mod: (1 + i) mod length (butlast vts) = 0

using assms
by (metis Suc-diff-Suc ‹length (butlast vts) = length vts − 1 › length-greater-0-conv

less-nat-zero-code list.size(3) mod-Suc mod-if one-add-one plus-1-eq-Suc zero-less-diff)
have i < length (butlast vts)

using assms by simp
then have rotate-prop: rotate 1 (butlast vts) ! i = butlast vts ! 0

using nth-rotate[of i butlast vts 1] same-mod
by metis
have butlast vts ! 0 = vts ! 0

using assms(1)
by (simp add: nth-butlast)

then have butlast vts ! 0 = vts ! (length vts − 1)
by (metis assms(3) hd-conv-nth last-conv-nth length-0-conv zero-diff)

then have (rotate-polygon-vertices vts 1) ! i = vts ! (i+1)
by (metis ∗ rotate-prop Suc-diff-Suc Suc-eq-plus1 ‹butlast vts ! 0 = vts ! 0 ›

add-2-eq-Suc ′ le-add-diff-inverse2 len-gteq less-add-Suc2 one-add-one same-len but-
last-snoc length-butlast lessI nth-butlast rotate-polygon-vertices-def)

}
ultimately show ?thesis

using assms(2) by linarith
qed

lemma polygon-rotation-t-translation1 :
assumes polygon-of p vts
assumes p ′ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p ′ = make-polygonal-path ?vts ′)

assumes x ′ ∈ {(
∑

i ∈ {1 ..k}. 1/(2^i))..(
∑

i ∈ {1 ..k+1}. 1/(2^i))}
assumes n = length vts
assumes 0 ≤ k ∧ k ≤ n − 4
assumes l = x ′ − (

∑
i ∈ {1 ..k}. 1/(2^i))

assumes x = l/2 + (
∑

i ∈ {1 ..(k + 1)}. 1/(2^i))
shows x ∈ {(

∑
i ∈ {1 ..k+1}. 1/(2^i))..(

∑
i ∈ {1 ..k+2}. 1/(2^i))}

p ′ x ′ = p x

58

proof−
let ?f = λ(k::nat) (x::real). (x − (

∑
i ∈ {1 ..k}. 1/(2^i))) ∗ (2^(k+1))

have x ≥ (
∑

i ∈ {1 ..k+1}. 1/(2^i))
proof−

have l ≥ 0 using assms(3 ,6) by auto
then show ?thesis using assms(7) by linarith

qed
moreover have x ≤ (

∑
i ∈ {1 ..k+2}. 1/(2^i))

proof−
have x ′ ≤ (

∑
i ∈ {1 ..k+1}. 1/(2^i)) using assms(3) by presburger

then have l ≤ (
∑

i ∈ {1 ..k+1}. 1/(2^i)) − (
∑

i ∈ {1 ..k}. 1/(2^i)) using
assms(6) by argo

also have ... = (1/2^(k+1)) + (
∑

i ∈ {1 ..k}. 1/(2^i)) − (
∑

i ∈ {1 ..k}.
1/(2^i))

using sum-insert[of k+1 {1 ..k} λi. 1/(2^i)]
by (smt (verit) Suc-eq-plus1 Suc-n-not-le-n add.commute atLeastAtMost-

Suc-conv atLeastAtMost-iff finite-atLeastAtMost le-add2 one-add-one)
also have ... = (1/2^(k+1)) by argo
finally have l ≤ (1/2^(k+1)) .
then have x ≤ (1/2^(k+1))/2 + (

∑
i ∈ {1 ..k+1}. 1/(2^i)) using assms(7)

by simp
also have ... = 1/2^(k+2) + (

∑
i ∈ {1 ..k+1}. 1/(2^i)) by simp

also have ... = (
∑

i ∈ {1 ..k+2}. 1/(2^i))
using sum-insert[of k+2 {1 ..k+2} λi. 1/(2^i)] by simp

finally show ?thesis .
qed
ultimately show x: x ∈ {(

∑
i ∈ {1 ..k+1}. 1/(2^i))..(

∑
i ∈ {1 ..k+2}. 1/(2^i))}

by presburger
have 1 : n ≥ 4 using polygon-vertices-length-at-least-4 assms

using polygon-of-def by blast
then have 2 : length vts = length ?vts ′

using assms rotate-polygon-vertices-same-length by auto
then have 3 : length ?vts ′ = n using assms by auto

have p ′ x ′ = ((linepath (?vts ′ ! k) (?vts ′ ! (k+1)) (?f k x ′)))
using polygon-linepath-images2 [of n k ?vts ′ p ′ ?f x ′] assms(2 ,3 ,5) 1 3 by

fastforce
moreover have p x = ((linepath (vts ! (k+1)) (vts ! (k+2)) (?f (k+1) x)))

using polygon-linepath-images2 [of n k+1 vts p ?f x] assms(2 ,3 ,5) 1 2 3 x
by (smt (verit, ccfv-threshold) Nat.diff-add-assoc add.commute add-diff-cancel-left

add-le-imp-le-left add-left-mono assms(1) nat-add-1-add-1 one-plus-numeral poly-
gon-of-def semiring-norm(2) semiring-norm(4) trans-le-add1)

moreover have ?vts ′ ! k = vts ! (k+1)
using rotated-polygon-vertices-helper2
by (smt (verit, best) 1 Nat.le-diff-conv2 Suc-pred ′ add-leD1 assms(1) assms(4)

assms(5) diff-diff-cancel diff-less have-wraparound-vertex hd-conv-nth leD length-greater-0-conv
less-Suc-eq nat-less-le numeral-Bit0 numeral-eq-one-iff polygon-of-def semiring-norm(83)
snoc-eq-iff-butlast zero-less-numeral)

moreover have ?vts ′ ! (k+1) = vts ! (k+2)

59

using rotated-polygon-vertices-helper2 [of vts k+1]
by (metis (no-types, lifting) assms(1 ,4 ,5) 1 One-nat-def Suc-diff-Suc add-Suc-right

diff-zero have-wraparound-vertex hd-conv-nth le-add-diff-inverse2 less-add-Suc2 nat-less-le
not-less-eq-eq numeral-Bit0 one-add-one plus-1-eq-Suc polygon-of-def snoc-eq-iff-butlast)

moreover have ?f k x ′ = ?f (k+1) x using assms(6) assms(7) by force
ultimately show p ′ x ′ = p x by presburger

qed

lemma polygon-rotation-t-translation1-strict:
assumes polygon-of p vts
assumes p ′ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p ′ = make-polygonal-path ?vts ′)

assumes x ′ ∈ {(
∑

i ∈ {1 ..k}. 1/(2^i))..<(
∑

i ∈ {1 ..k+1}. 1/(2^i))}
assumes n = length vts
assumes 0 ≤ k ∧ k ≤ n − 4
assumes l = x ′ − (

∑
i ∈ {1 ..k}. 1/(2^i))

assumes x = l/2 + (
∑

i ∈ {1 ..(k + 1)}. 1/(2^i))
shows x ∈ {(

∑
i ∈ {1 ..k+1}. 1/(2^i))..<(

∑
i ∈ {1 ..k+2}. 1/(2^i))}

p ′ x ′ = p x
proof −
let ?f = λ(k::nat) (x::real). (x − (

∑
i ∈ {1 ..k}. 1/(2^i))) ∗ (2^(k+1))

have x ≥ (
∑

i ∈ {1 ..k+1}. 1/(2^i))
proof−

have l ≥ 0 using assms(3 ,6) by auto
then show ?thesis using assms(7) by linarith

qed
moreover have x < (

∑
i ∈ {1 ..k+2}. 1/(2^i))

proof−
have x ′ < (

∑
i ∈ {1 ..k+1}. 1/(2^i)) using assms(3) by auto

then have l < (
∑

i ∈ {1 ..k+1}. 1/(2^i)) − (
∑

i ∈ {1 ..k}. 1/(2^i)) using
assms(6) by argo

also have ... = (1/2^(k+1)) + (
∑

i ∈ {1 ..k}. 1/(2^i)) − (
∑

i ∈ {1 ..k}.
1/(2^i))

using sum-insert[of k+1 {1 ..k} λi. 1/(2^i)]
by (smt (verit) Suc-eq-plus1 Suc-n-not-le-n add.commute atLeastAtMost-

Suc-conv atLeastAtMost-iff finite-atLeastAtMost le-add2 one-add-one)
also have ... = (1/2^(k+1)) by argo
finally have l < (1/2^(k+1)) .
then have x < (1/2^(k+1))/2 + (

∑
i ∈ {1 ..k+1}. 1/(2^i)) using assms(7)

by simp
also have ... = 1/2^(k+2) + (

∑
i ∈ {1 ..k+1}. 1/(2^i)) by simp

also have ... = (
∑

i ∈ {1 ..k+2}. 1/(2^i))
using sum-insert[of k+2 {1 ..k+2} λi. 1/(2^i)] by simp

finally show ?thesis .
qed
ultimately show x ∈ {(

∑
i ∈ {1 ..k+1}. 1/(2^i))..<(

∑
i ∈ {1 ..k+2}. 1/(2^i))}

by auto
show p ′ x ′ = p x
using assms(3) polygon-rotation-t-translation1 [OF assms(1) assms(2) - assms(4)

60

assms(5) assms(6) assms(7)]
by (meson atLeastAtMost-iff atLeastLessThan-iff less-eq-real-def)

qed

lemma polygon-rotation-t-translation2 :
assumes polygon-of p vts
assumes p ′ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p ′ = make-polygonal-path ?vts ′)

assumes n = length vts
assumes x ′ ∈ {(

∑
i ∈ {1 ..(n−3)}. 1/(2^i))..(

∑
i ∈ {1 ..(n−2)}. 1/(2^i))}

assumes x = x ′ + 1/(2^(n−2))
shows x ∈ {(

∑
i ∈ {1 ..n−2}. 1/(2^i))..1}

p ′ x ′ = p x
proof−

let ?k = n−3
let ?f ′ = (λ(k::nat) x::real. (x − (

∑
i ∈ {1 ..k}. 1/(2^i))) ∗ (2^(k+1)))

have n-geq-4 : n ≥ 4 using polygon-vertices-length-at-least-4 assms
using polygon-of-def by blast

moreover then have same-len: length vts = length ?vts ′

using assms rotate-polygon-vertices-same-length[of vts] by auto
moreover then have length ?vts ′ = n using assms(3) by auto
ultimately have p ′x ′: p ′ x ′ = ((linepath (?vts ′ ! ?k) (?vts ′ ! (?k+1)) (?f ′ ?k

x ′)))
using polygon-linepath-images2 [of n ?k ?vts ′ p ′ ?f ′ x ′] assms
by (smt (verit, ccfv-threshold) One-nat-def Suc-diff-Suc diff-diff-left diff-is-0-eq ′

le-add2 le-add-diff-inverse2 linorder-not-le nat-le-linear numeral-3-eq-3 numeral-Bit0
numeral-le-iff numeral-le-one-iff numerals(1) one-plus-numeral plus-1-eq-Suc trans-le-add2)

let ?f = (λx::real. (x − (
∑

i ∈ {1 ..n−2}. 1/(2^i))) ∗ (2^(n−2)))
have sum-prop:

∧
i::nat.

∧
f ::nat⇒real. (

∑
i = 1 ..i. f i) + f (i + 1) = (

∑
i

= 1 ..i+1 . f i)
by auto

have sum-upto: (
∑

i = 1 ..n − 3 . 1 / (2 ^ i::real)) + 1 / 2 ^ (n − 2) = (
∑

i
= 1 ..n − 2 . 1 / (2 ^ i::real))

using sum-prop[of λi. 1 / (2 ^ i::real) n−3] n-geq-4
by (smt (verit, del-insts) Nat.add-diff-assoc2 add-numeral-left diff-cancel2 le-add-diff-inverse

le-numeral-extra(4) nat-1-add-1 nat-add-left-cancel-le numeral-Bit1 numerals(1) semir-
ing-norm(2) semiring-norm(8) trans-le-add1)

have x ′ ≥ (
∑

i = 1 ..?k. 1 / 2 ^ i)
using assms by presburger

then have x-geq: x ≥ (
∑

i ∈ {1 ..n−2}. 1/(2^i))
using assms(5) sum-upto
by linarith

have x ′ ≤ (
∑

i = 1 ..n − 2 . 1 / 2 ^ i)
using assms(4) by auto

then have x-leq: x ≤ 1
using assms(5)

by (smt (verit, del-insts) add.left-commute add-diff-cancel-left ′ diff-diff-eq le-add-diff-inverse2
le-numeral-extra(4) n-geq-4 nat-add-1-add-1 numeral-Bit0 numeral-Bit1 sum-upto
summation-helper trans-le-add2)

61

show x ∈ {(
∑

i ∈ {1 ..n−2}. 1/(2^i))..1}
using x-geq x-leq
by auto

then have px: p x = (linepath (vts ! (n−2)) (vts ! (n−1))) (?f x)
using polygon-linepath-images3 [of n vts p x ?f] n-geq-4 assms polygon-of-def

by fastforce
moreover have ?vts ′ ! (n − 3) = vts ! (n−2)

using n-geq-4 assms(3) rotated-polygon-vertices-helper2 assms(1−3)
unfolding polygon-of-def

by (smt (verit) One-nat-def Suc-diff-Suc add.commute diff-is-0-eq diff-less
dual-order .trans have-wraparound-vertex hd-conv-nth le-add-diff-inverse length-greater-0-conv
linorder-not-le nat-1-add-1 not-add-less2 numeral-3-eq-3 plus-1-eq-Suc pos2 rotated-polygon-vertices-helper(1)
same-len snoc-eq-iff-butlast)

moreover have ?vts ′ ! (n − 2) = vts ! (n − 1)
using n-geq-4 assms(3) assms
unfolding polygon-of-def

by (metis closed-path-def list.size(3) not-numeral-le-zero polygon-def polygon-pathfinish
polygon-pathstart rotated-polygon-vertices-helper(1) same-len)

moreover have ?f ′ ?k x ′ = ?f x using assms(4−5) n-geq-4
by (smt (verit, del-insts) One-nat-def Suc-diff-Suc Suc-eq-plus1 add-diff-cancel-right ′

add-numeral-left le-antisym linorder-not-le numeral-3-eq-3 numeral-code(2) numer-
als(1) semiring-norm(2) sum-upto trans-le-add2)

ultimately show p ′ x ′ = p x using px p ′x ′

by (smt (verit, ccfv-SIG) Nat.add-diff-assoc2 assms(5) diff-cancel2 le-add-diff-inverse
le-add-diff-inverse2 le-numeral-extra(4) n-geq-4 nat-1-add-1 numeral-Bit0 numeral-Bit1
trans-le-add1)
qed

lemma polygon-rotation-t-translation2-strict:
assumes polygon-of p vts
assumes p ′ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p ′ = make-polygonal-path ?vts ′)

assumes n = length vts
assumes x ′ ∈ {(

∑
i ∈ {1 ..(n−3)}. 1/(2^i))..<(

∑
i ∈ {1 ..(n−2)}. 1/(2^i))}

assumes x = x ′ + 1/(2^(n−2))
shows x ∈ {(

∑
i ∈ {1 ..n−2}. 1/(2^i))..<1}

p ′ x ′ = p x
proof −
have n-geq-4 : n ≥ 4 using polygon-vertices-length-at-least-4 assms

using polygon-of-def by blast
have sum-prop:

∧
i::nat.

∧
f ::nat⇒real. (

∑
i = 1 ..i. f i) + f (i + 1) = (

∑
i

= 1 ..i+1 . f i)
by auto

have sum-upto: (
∑

i = 1 ..n − 3 . 1 / (2 ^ i::real)) + 1 / 2 ^ (n − 2) = (
∑

i
= 1 ..n − 2 . 1 / (2 ^ i::real))

using sum-prop[of λi. 1 / (2 ^ i::real) n−3] n-geq-4
by (smt (verit, del-insts) Nat.add-diff-assoc2 add-numeral-left diff-cancel2 le-add-diff-inverse

le-numeral-extra(4) nat-1-add-1 nat-add-left-cancel-le numeral-Bit1 numerals(1) semir-

62

ing-norm(2) semiring-norm(8) trans-le-add1)
have x-geq: x ≥ (

∑
i ∈ {1 ..n−2}. 1/(2^i))

using assms(4) polygon-rotation-t-translation2 [OF assms(1) assms(2) assms(3)
- assms(5)]

by simp
have x ′ < (

∑
i = 1 ..n − 2 . 1 / 2 ^ i)

using assms(4) by auto
then have x-leq: x < 1

using assms(5)
by (smt (verit, del-insts) add.left-commute add-diff-cancel-left ′ diff-diff-eq le-add-diff-inverse2

le-numeral-extra(4) n-geq-4 nat-add-1-add-1 numeral-Bit0 numeral-Bit1 sum-upto
summation-helper trans-le-add2)

show x ∈ {(
∑

i ∈ {1 ..n−2}. 1/(2^i))..<1}
using x-geq x-leq by auto

show p ′ x ′ = p x
using assms(4) polygon-rotation-t-translation2 [OF assms(1) assms(2) assms(3)

- assms(5)]
by (meson atLeastAtMost-iff atLeastLessThan-iff less-eq-real-def)

qed

lemma polygon-rotation-t-translation3 :
assumes polygon-of p vts
assumes p ′ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p ′ = make-polygonal-path ?vts ′)

assumes x ′ ∈ {(
∑

i ∈ {1 ..n−2}. 1/(2^i))..1}
assumes n = length vts
assumes l = x ′ − (

∑
i ∈ {1 ..n−2}. 1/(2^i))

assumes x = l ∗ (2^(n−3))
shows x ∈ {0 ..1/2}

p ′ x ′ = p x
proof−

let ?f = (λx::real. (x − (
∑

i ∈ {1 ..n−2}. 1/(2^i))) ∗ (2^(n−2)))
have n-geq-4 : n ≥ 4 using polygon-vertices-length-at-least-4 assms

using polygon-of-def by blast
moreover then have same-len: length vts = length ?vts ′

using assms rotate-polygon-vertices-same-length by auto
moreover have length-vts ′: length ?vts ′ = n

using assms(4) same-len by auto
ultimately have p ′x ′: p ′ x ′ = (linepath (?vts ′ ! (n−2)) (?vts ′ ! (n−1))) (?f x ′)

using polygon-linepath-images3 [of n ?vts ′ p ′ x ′ ?f] assms
unfolding polygon-of-def by fastforce

have x-is: x = (x ′ − (
∑

i = 1 ..n − 2 . 1 / 2 ^ i)) ∗ 2 ^ (n − 3)
using assms(5−6) by auto

then have x-gt: x ≥ 0
using assms(3) by simp

have sum-prop: k ≥ 1 =⇒ 1 − (
∑

i = 1 ..k. 1 / (2 ^ i::real)) = 1/(2^k) for k
proof (induct k)

case 0

63

then show ?case by auto
next

case (Suc k)
{ assume ∗ :Suc k = 1

then have ?case by auto
} moreover
{ assume ∗: Suc k > 1

then have 1 − (
∑

i = 1 ..k. 1 / (2 ^ i::real)) = 1 / 2 ^ k
using Suc by linarith

then have ?case by simp
}
ultimately show ?case

by linarith
qed
have x ′ ≤ 1

using assms(3) by auto
then have x ≤ (1 − (

∑
i = 1 ..n − 2 . 1 / (2 ^ i::real))) ∗ 2 ^ (n − 3)

using x-is
using mult-right-mono zero-le-power by fastforce

then have x ≤ 1/(2^(n−2))∗2^(n−3)
using sum-prop n-geq-4
by auto

then have x-lt: x ≤ 1/2
using n-geq-4
by (smt (verit, ccfv-SIG) One-nat-def Suc-1 Suc-diff-Suc add-diff-cancel-right ′

diff-is-0-eq dual-order .trans linorder-not-le nonzero-mult-divide-mult-cancel-right2
numeral-3-eq-3 numeral-code(2) power .simps(2) power-commutes power-not-zero
times-divide-eq-left zero-neq-numeral)

then show x ∈ {0 ..1/2}
using x-gt x-lt by auto

moreover have n ≥ 3 using n-geq-4 by auto
ultimately have px: p x = (linepath (vts ! 0) (vts ! 1)) (2 ∗ x)

using polygon-linepath-images1 [of n vts] assms unfolding polygon-of-def by
blast

have ?vts ′ ! (n−2) = vts ! 0 ∧ ?vts ′ ! (n−1) = vts ! 1
unfolding rotate-polygon-vertices-def
by (metis length-vts ′ assms(1) polygon-of-def rotate-polygon-vertices-def ro-

tated-polygon-vertices-helper(1) rotated-polygon-vertices-helper(2))
moreover have ?f x ′ = 2 ∗ x
proof−

have 2 ∗ x = 2 ∗ (x ′ − (
∑

i ∈ {1 ..n−2}. 1/(2^i))) ∗ (2^(n−3)) using assms
by auto

moreover have ... = (x ′ − (
∑

i ∈ {1 ..n−2}. 1/(2^i))) ∗ (2^(n−2))
using n-geq-4 Suc-1 Suc-diff-Suc Suc-le-eq bot-nat-0 .not-eq-extremum diff-Suc-1

le-antisym mult.left-commute mult.right-neutral mult-cancel-left not-less-eq-eq num-double
numeral-3-eq-3 numeral-eq-Suc numeral-times-numeral power .simps(2) pred-numeral-simps(2)
zero-less-diff zero-neq-numeral

proof −

64

have f1 : ∀ r ra. (ra::real) ∗ r = r ∗ ra
by simp

have f2 : ∀ r n ra. (r ::real) ∗ (r ^ n ∗ ra) = r ^ Suc n ∗ ra
by simp

have f3 : pred-numeral (num.Bit1 num.One) = Suc (Suc 0)
by simp

have f4 : Suc 0 = 1
by linarith

have Suc 1 < n
using n-geq-4 by linarith

then have 2 ∗ ((x ′ − (
∑

n = 1 ..n − Suc 1 . 1 / 2 ^ n)) ∗ 2 ^ (n − 3)) =
(x ′ − (

∑
n = 1 ..n − Suc 1 . 1 / 2 ^ n)) ∗ 2 ^ (n − Suc 1)

using f4 f3 f2 f1 Suc-diff-Suc numeral-eq-Suc by presburger
then show ?thesis

by (metis (no-types) Suc-1 mult.assoc)
qed
moreover have ... = ?f x ′ by auto
ultimately show ?thesis by presburger

qed
ultimately show p ′ x ′ = p x using p ′x ′ px by auto

qed

lemma polygon-rotation-t-translation3-strict:
assumes polygon-of p vts
assumes p ′ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p ′ = make-polygonal-path ?vts ′)

assumes x ′ ∈ {(
∑

i ∈ {1 ..n−2}. 1/(2^i))..<1}
assumes n = length vts
assumes l = x ′ − (

∑
i ∈ {1 ..n−2}. 1/(2^i))

assumes x = l ∗ (2^(n−3))
shows x ∈ {0 ..<1/2}

p ′ x ′ = p x
proof −

have n-geq-4 : n ≥ 4 using polygon-vertices-length-at-least-4 assms
using polygon-of-def by blast

have x-is: x = (x ′ − (
∑

i = 1 ..n − 2 . 1 / 2 ^ i)) ∗ 2 ^ (n − 3)
using assms(5−6) by auto

then have x-gt: x ≥ 0
using assms(3) by simp

have sum-prop: k ≥ 1 =⇒ 1 − (
∑

i = 1 ..k. 1 / (2 ^ i::real)) = 1/(2^k) for k
proof (induct k)

case 0
then show ?case by auto

next
case (Suc k)
{ assume ∗ :Suc k = 1

then have ?case by auto
} moreover
{ assume ∗: Suc k > 1

65

then have 1 − (
∑

i = 1 ..k. 1 / (2 ^ i::real)) = 1 / 2 ^ k
using Suc by linarith

then have ?case by simp
}
ultimately show ?case

by linarith
qed
have x ′ < 1

using assms(3) by auto
then have x < (1 − (

∑
i = 1 ..n − 2 . 1 / (2 ^ i::real))) ∗ 2 ^ (n − 3)

using x-is
using mult-right-mono zero-le-power by fastforce

then have x < 1/(2^(n−2))∗2^(n−3)
using sum-prop n-geq-4
by auto

then have x-lt: x < 1/2
using n-geq-4
by (smt (verit, ccfv-SIG) One-nat-def Suc-1 Suc-diff-Suc add-diff-cancel-right ′

diff-is-0-eq dual-order .trans linorder-not-le nonzero-mult-divide-mult-cancel-right2
numeral-3-eq-3 numeral-code(2) power .simps(2) power-commutes power-not-zero
times-divide-eq-left zero-neq-numeral)

show x ∈ {0 ..<1/2}
using x-lt x-gt by auto

show p ′ x ′ = p x
using assms(3) polygon-rotation-t-translation3 [OF assms(1) assms(2) - assms(4)

assms(5) assms(6)]
by simp

qed

lemma f-gteq-0-sum-gt:
∧

f ::nat ⇒ real. (
∧

i::nat. (f i) > 0) =⇒ a > b =⇒ (
∑

i
= 1 ..a. (f i)) > (

∑
i = 1 ..b. (f i)) for a b :: nat

proof (induct a arbitrary: b)
case 0
then show ?case by auto

next
case (Suc a)
{assume ∗: b = a

then have sum f {1 ..(Suc a)} = sum f {1 .. b} + f (Suc a)
by force

then have ?case
using Suc(2)[of Suc a] ∗ by linarith

} moreover {assume ∗: b < a
then have ?case using Suc
by (smt (verit, ccfv-threshold) Suc-eq-plus1 dual-order .trans le-add2 sum.nat-ivl-Suc ′)

}
ultimately show ?case

using Suc.prems(2) less-antisym by blast
qed

66

lemma rotation-intervals-disjoint:
assumes k1 6= k2
shows {

∑
i = 1 ..k1 . 1 / (2 ^ i::real)..<

∑
i = 1 ..k1+1 . 1 / 2 ^ i} ∩ {

∑
i =

1 ..k2 . 1 / (2 ^ i::real)..<
∑

i = 1 ..k2+1 . 1 / 2 ^ i} = {}
proof −

have lambda-gt: (
∧

i. 0 < 1 / (2 ^ i::real))
by simp

have h1 : ?thesis if ∗:k1 < k2
proof −

have eo: k1+1 ≤ k2
using ∗ by auto

have k1+1 = k2 =⇒ (
∑

i = 1 ..k1+1 . 1 / 2 ^ i) ≤ (
∑

i = 1 ..k2 . 1 / (2 ^
i::real))

by auto
have (

∑
i = 1 ..k1+1 . 1 / 2 ^ i) ≤ (

∑
i = 1 ..k2 . 1 / (2 ^ i::real)) if ∗∗:

k1+1 < k2
using f-gteq-0-sum-gt[OF lambda-gt ∗∗]
using less-eq-real-def by presburger

then have (
∑

i = 1 ..k1+1 . 1 / 2 ^ i) ≤ (
∑

i = 1 ..k2 . 1 / (2 ^ i::real))
using ∗ eo by fastforce

then show ?thesis by auto
qed
have h2 : ?thesis if ∗: k2 < k1

proof −
have eo: k2+1 ≤ k1

using ∗ by auto
have k2+1 = k1 =⇒ (

∑
i = 1 ..k2+1 . 1 / 2 ^ i) ≤ (

∑
i = 1 ..k1 . 1 / (2 ^

i::real))
by auto

have (
∑

i = 1 ..k2+1 . 1 / 2 ^ i) ≤ (
∑

i = 1 ..k1 . 1 / (2 ^ i::real)) if ∗∗:
k2+1 < k1

using f-gteq-0-sum-gt[OF lambda-gt ∗∗]
using less-eq-real-def by presburger

then have (
∑

i = 1 ..k2+1 . 1 / 2 ^ i) ≤ (
∑

i = 1 ..k1 . 1 / (2 ^ i::real))
using ∗ eo by fastforce

then show ?thesis by auto
qed
show ?thesis

using h1 h2 assms by linarith
qed

lemma bounding-interval-helper1 :
shows (

∑
i = 1 ..k. 1 / (2 ^ i::real)) = (2^k − 1)/(2^k)

proof(induct k)
case 0
then show ?case by simp

next
case (Suc k)
have (

∑
i = 1 ..(Suc k). 1 / (2 ^ i::real)) = (

∑
i = 1 ..k. 1 / (2 ^ i::real)) +

67

1/2^(Suc k)
by force

also have ... = (2^k − 1)/(2^k) + 1/2^(Suc k) using Suc.hyps by presburger
also have ... = (2^k − 1)/(2^k) + 1/2^(k+1) by simp
also have ... = (2^(k+1) − 1)/(2^(k+1))
by (smt (verit, del-insts) Suc add.commute add-diff-cancel-right ′ add-divide-distrib

calculation field-sum-of-halves le-add2 plus-1-eq-Suc power-divide power-one sum-
mation-helper)

finally show ?case by force
qed

lemma bounding-interval-helper2 :
fixes x :: real
assumes x ∈ {0 ..<1}
shows ∃ k. x < (

∑
i = 1 ..k. 1 / (2 ^ i::real))

proof−
let ?f = λk::nat. (2^k − 1)/(2^k)
have lim: ∀ ε::real>0 . ∃ k. (1 − (?f k)) < ε
proof clarify

fix ε::real
assume ε > 0
then obtain m where m > 0 ∧ 1 / m < ε
by (metis Groups.mult-ac(2) divide-less-eq linordered-field-no-ub order-less-trans

zero-less-divide-1-iff)
moreover obtain k where 2^k > m using real-arch-pow by fastforce
ultimately have 1 / (2^k) < ε by (smt (verit) frac-less2)
moreover have (1 ::real) − ((2^k − 1) / (2^k)) = (1/(2^k)) by (simp add:

diff-divide-distrib)
ultimately show ∃ k. 1 − (2^k − 1) / (2^k) < ε by (smt (verit))

qed
have ∃ k. ?f k > x
proof−

let ?ε = 1 − x
obtain k where 1 − (?f k) < ?ε by (metis assms lim atLeastLessThan-iff

diff-gt-0-iff-gt)
thus ?thesis by auto

qed
thus ?thesis using bounding-interval-helper1 by presburger

qed

lemma bounding-interval-for-reals-btw01 :
fixes x::real
assumes x ∈ {0 ..<1}
shows ∃ k. x ∈ {(

∑
i ∈ {1 ..k}. 1/(2^i::real))..<(

∑
i ∈ {1 ..(k + 1)}. 1/(2^i))}

proof −
let ?S = λk. (

∑
i = 1 ..k. 1 / (2 ^ i::real))

let ?A = {k::nat. x < (
∑

i = 1 ..k. 1 / (2 ^ i::real))}
let ?m = LEAST k. k ∈ ?A
have ∃ k. x < (

∑
i = 1 ..k. 1 / (2 ^ i::real)) using assms bounding-interval-helper2

68

by blast
then have ?m ∈ ?A by (metis (mono-tags, lifting) LeastI2-wellorder mem-Collect-eq)
moreover then have ?m − 1 /∈ ?A

by (smt (verit, ccfv-SIG) One-nat-def Suc-n-not-le-n Suc-pred ′ assms atLeast-
LessThan-iff atLeastatMost-empty ′ bot-nat-0 .not-eq-extremum linorder-not-less mem-Collect-eq
not-less-Least sum.empty)

ultimately have x < (
∑

i = 1 ..?m. 1 / (2 ^ i::real)) ∧ x ≥ (
∑

i = 1 ..?m−1 .
1 / (2 ^ i::real))

by simp
thus ?thesis
by (smt (verit, best) add.commute assms atLeastLessThan-iff le-add-diff-inverse

linorder-not-less sum.head-if)
qed

lemma all-rotation-intervals-between-0and1 :
shows {(

∑
i ∈ {1 ..k}. 1/(2^i::real))..(

∑
i ∈ {1 ..(k+1)}. 1/(2^i))} ⊆ {0 ..<1}

proof −
have gt:

∧
k. (

∑
i ∈ {1 ..k}. 1/(2^i::real)) ≥ 0

by (simp add: sum-nonneg)
have lt:

∧
k. (

∑
i ∈ {1 ..k}. 1/(2^i::real)) < 1

by (smt (verit, ccfv-SIG) diff-Suc-1 f-gteq-0-sum-gt less-Suc-eq-le linorder-not-le
summation-helper zero-less-divide-1-iff zero-less-power)

show ?thesis
using gt lt
by (meson atLeastAtMost-subseteq-atLeastLessThan-iff)

qed

lemma all-rotation-intervals-between-0and1-strict:
shows {(

∑
i ∈ {1 ..k}. 1/(2^i::real))..<(

∑
i ∈ {1 ..(k+1)}. 1/(2^i))} ⊆ {0 ..<1}

using all-rotation-intervals-between-0and1
by (smt (verit, ccfv-SIG) atLeastAtMost-subseteq-atLeastLessThan-iff ivl-subset

nle-le order-trans)

lemma one-polygon-rotation-is-loop-free:
assumes polygon-of p vts
assumes p ′ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p ′ = make-polygonal-path ?vts ′)

shows loop-free p ′

proof(rule ccontr)
assume ¬ loop-free p ′

moreover have p ′ 0 = p ′ 1
using assms

by (smt (verit, ccfv-SIG) assms(2) butlast-snoc length-butlast linepath-0 ′ linepath-1 ′

make-polygonal-path.simps(1) not-gr-zero nth-append-length nth-butlast path-defs(2)
path-defs(3) polygon-pathfinish polygon-pathstart rotate-polygon-vertices-def)

ultimately obtain x ′ y ′ where x ′y ′: x ′ < y ′ ∧ {x ′, y ′} ⊆ {0 ..<1} ∧ p ′ x ′ = p ′

y ′

unfolding loop-free-def
by (smt (verit, del-insts) atLeastAtMost-iff atLeastLessThan-iff bot-least in-

69

sert-subset linorder-not-le order .refl order-antisym zero-less-one)

let ?n = length vts
have n-geq-4 : ?n ≥ 4 using polygon-vertices-length-at-least-4 assms

using polygon-of-def by blast
obtain xk where x ′-in: x ′ ∈ {(

∑
i ∈ {1 ..xk}. 1/(2^i))..<(

∑
i ∈ {1 ..(xk + 1)}.

1/(2^i))} using x ′y ′

using bounding-interval-for-reals-btw01 x ′y ′

by (metis insert-subset)
then have xk-gteq: xk ≥ 0

by blast
obtain yk where y ′-in: y ′ ∈ {(

∑
i ∈ {1 ..yk}. 1/(2^i))..<(

∑
i ∈ {1 ..(yk + 1)}.

1/(2^i))}
using bounding-interval-for-reals-btw01 x ′y ′

by (metis insert-subset)
then have yk-gteq: yk ≥ 0

by blast

have all-pows-of-2-pos: (
∧

i. 0 < 1 / (2 ^ i::real))
by simp

let ?x1 = (x ′ − (
∑

i ∈ {1 ..xk}. 1/(2^i)))/2 + (
∑

i ∈ {1 ..(xk + 1)}. 1/(2^i))
have xk-lt-nminus3 : xk ≤ ?n − 4 =⇒ ?x1 ∈ {(

∑
i ∈ {1 ..xk+1}. 1/(2^i))..<(

∑
i

∈ {1 ..xk+2}. 1/(2^i))} ∧ p ?x1 = p ′ x ′

using polygon-rotation-t-translation1-strict[OF assms(1) assms(2) x ′-in] xk-gteq
by metis

let ?y1 = (y ′ − (
∑

i ∈ {1 ..yk}. 1/(2^i)))/2 + (
∑

i ∈ {1 ..(yk + 1)}. 1/(2^i))
have yk-lt-nminus3 : yk ≤ ?n − 4 =⇒ ?y1 ∈ {(

∑
i ∈ {1 ..yk+1}. 1/(2^i))..<(

∑
i

∈ {1 ..yk+2}. 1/(2^i))} ∧ p ?y1 = p ′ y ′

using polygon-rotation-t-translation1-strict[OF assms(1) assms(2) y ′-in] yk-gteq

by metis

let ?x2 = x ′ + 1/(2^(?n−2))
have xk = ?n−3 =⇒ x ′ ∈ {

∑
i = 1 ..length vts − 3 . 1 / (2 ^ i::real)..<

∑
i =

1 ..length vts − 2 . 1 / 2 ^ i}
using x ′-in

by (smt (verit, best) Nat.add-diff-assoc2 ‹4 ≤ length vts› diff-cancel2 le-add-diff-inverse
nat-add-left-cancel-le nat-le-linear numeral-Bit0 numeral-Bit1 numerals(1) trans-le-add1)

then have xk-eq-nminus3 : xk = ?n − 3 =⇒ p ?x2 = p ′ x ′ ∧ ?x2 ∈ {(
∑

i ∈
{1 ..?n−2}. 1/(2^i))..<1}

using polygon-rotation-t-translation2-strict[OF assms(1) assms(2), of ?n x ′

?x2] x ′-in xk-gteq
by presburger

let ?y2 = y ′ + 1/(2^(?n−2))
have yk = ?n−3 =⇒ y ′ ∈ {

∑
i = 1 ..length vts − 3 . 1 / (2 ^ i::real)..<

∑
i =

1 ..length vts − 2 . 1 / 2 ^ i}
using y ′-in

70

by (smt (verit, best) Nat.add-diff-assoc2 ‹4 ≤ length vts› diff-cancel2 le-add-diff-inverse
nat-add-left-cancel-le nat-le-linear numeral-Bit0 numeral-Bit1 numerals(1) trans-le-add1)

then have yk-eq-nminus3 : yk = ?n − 3 =⇒ p ?y2 = p ′ y ′ ∧ ?y2 ∈ {(
∑

i ∈
{1 ..?n−2}. 1/(2^i))..<1}

using polygon-rotation-t-translation2-strict[OF assms(1) assms(2), of ?n y ′

?y2] x ′-in xk-gteq
by presburger

let ?x3 = (x ′ − (
∑

i ∈ {1 ..?n−2}. 1/(2^i)))∗(2^(?n−3))
have x ′-leq: x ′ < 1

using x ′y ′ by simp
have x ′-geq: xk ≥ ?n − 2 =⇒ (

∑
i = 1 ..xk. 1 / (2 ^ i::real)) ≥ (

∑
i = 1 ..length

vts − 2 . 1 / (2 ^ i::real))
using x ′-in f-gteq-0-sum-gt[of λi. 1 / (2 ^ i::real)]

by (metis le-antisym less-eq-real-def linorder-not-le zero-less-divide-1-iff zero-less-numeral
zero-less-power)

have xk ≥ ?n−2 =⇒ x ′ ∈ {
∑

i = 1 ..length vts − 2 . 1 / (2 ^ i::real)..<1}
using x ′-leq x ′-geq x ′-in
by fastforce

then have xk-gt-nminus3 : xk ≥ ?n − 2 =⇒ p ?x3 = p ′ x ′ ∧ ?x3 ∈ {0 ..<1/2}
using polygon-rotation-t-translation3-strict[OF assms(1) assms(2), of x ′ ?n]

xk-gteq
by presburger

let ?y3 = (y ′ − (
∑

i ∈ {1 ..?n−2}. 1/(2^i)))∗(2^(?n−3))
have y ′-leq: y ′ < 1

using x ′y ′ by simp
have y ′-geq: yk ≥ ?n − 2 =⇒ (

∑
i = 1 ..yk. 1 / (2 ^ i::real)) ≥ (

∑
i = 1 ..length

vts − 2 . 1 / (2 ^ i::real))
using y ′-in f-gteq-0-sum-gt[of λi. 1 / (2 ^ i::real)]

by (metis le-antisym less-eq-real-def linorder-not-le zero-less-divide-1-iff zero-less-numeral
zero-less-power)

have yk ≥ ?n−2 =⇒ y ′ ∈ {
∑

i = 1 ..length vts − 2 . 1 / (2 ^ i::real)..<1}
using y ′-leq y ′-geq y ′-in
by fastforce

then have yk-gt-nminus3 : yk ≥ ?n − 2 =⇒ p ?y3 = p ′ y ′ ∧ ?y3 ∈ {0 ..<1/2}
using polygon-rotation-t-translation3-strict[OF assms(1) assms(2), of y ′ ?n]

yk-gteq
by presburger

have interval-helper : a1 ≥ b2 ∧x ∈ {a1 ..<a2} ∧ y ∈ {b1 ..<b2} =⇒ y < x for
a1 a2 b1 b2 x y::real

by simp

{ assume xk-lt: xk < ?n − 3
then have p-x ′: p ?x1 = p ′ x ′

using xk-lt-nminus3 by auto
have x1-in: ?x1 ∈ {(

∑
i ∈ {1 ..(xk + 1)}. 1/(2^i))..<(

∑
i ∈ {1 ..(xk + 2)}.

1/(2^i))}
using xk-lt xk-lt-nminus3

71

by auto
then have x1-in-01 : ?x1 ∈ {0 ..<1}

using all-rotation-intervals-between-0and1-strict[of xk+1]
by fastforce

{ assume yk-lt: yk < ?n − 3
then have p-y ′: p ?y1 = p ′ y ′

using yk-lt-nminus3 by auto
have y1-in: ?y1 ∈ {(

∑
i ∈ {1 ..(yk + 1)}. 1/(2^i))..<(

∑
i ∈ {1 ..(yk + 2)}.

1/(2^i))}
using yk-lt yk-lt-nminus3 by auto

then have y1-in-01 : ?y1 ∈ {0 ..<1}
using all-rotation-intervals-between-0and1-strict[of yk+1]
by fastforce

have {
∑

i = 1 ..xk + 1 . 1 / 2 ^ i..<
∑

i = 1 ..xk + 2 . 1 / (2 ^ i::real)} ∩ {
∑

i
= 1 ..yk + 1 . 1 / (2 ^ i::real)..<

∑
i = 1 ..yk + 2 . 1 / 2 ^ i} = {} if xk-neq:xk 6=

yk
using rotation-intervals-disjoint[of xk+1 yk+1] xk-neq
by fastforce

then have eq-then-eq: ?x1 = ?y1 =⇒ xk = yk
using x1-in y1-in
by (smt (verit) Int-iff empty-iff)

have xk = yk =⇒ ?x1 6= ?y1
using x ′y ′ x1-in y1-in by simp

then have ?x1 6= ?y1
using eq-then-eq by blast

moreover have {?x1 , ?y1} ⊆ {0 ..<1}
using x1-in-01 y1-in-01 by fast

ultimately have ?x1 6= ?y1 ∧ {?x1 , ?y1} ⊆ {0 ..<1} ∧ p ?x1 = p ?y1
using p-x ′ p-y ′ x ′y ′ by presburger

then have ∃ x y . x 6= y ∧ {x, y} ⊆ {0 ..<1} ∧ p x = p y
by auto

then have False
using assms(1) unfolding polygon-of-def polygon-def simple-path-def loop-free-def

by fastforce
} moreover { assume yk = ?n − 3

then have y2 : p ?y2 = p ′ y ′ ∧ ?y2 ∈ {(
∑

i ∈ {1 ..?n−2}. 1/(2^i))..<1}
using yk-eq-nminus3
by auto

then have y2-in-01 : ?y2 ∈ {0 ..<1}
using all-rotation-intervals-between-0and1-strict[of ?n−2]
by fastforce

have xkplus-eq: xk + 2 = ?n − 2 =⇒ (
∑

i ∈ {1 ..(xk + 2)}. 1/(2^i::real)) ≤
(
∑

i ∈ {1 ..?n−2}. 1/(2^i))
by simp

have xkplus-lt: xk + 2 < ?n − 2 =⇒ (
∑

i ∈ {1 ..(xk + 2)}. 1/(2^i::real)) ≤
(
∑

i ∈ {1 ..?n−2}. 1/(2^i))
using xk-lt f-gteq-0-sum-gt[OF all-pows-of-2-pos, of xk + 2 ?n − 2]
by (smt (verit, best) f-gteq-0-sum-gt zero-less-divide-1-iff zero-less-power)

then have (
∑

i ∈ {1 ..(xk + 2)}. 1/(2^i::real)) ≤ (
∑

i ∈ {1 ..?n−2}. 1/(2^i))

72

using xkplus-eq xkplus-lt xk-lt
using One-nat-def Suc-diff-Suc Suc-eq-plus1 Suc-le-eq add-Suc-right le-neq-implies-less

linorder-not-le nat-1-add-1 nat-diff-split numeral-3-eq-3 xk-gteq by linarith
then have ?x1 6= ?y2

using x1-in y2
by (smt (verit, ccfv-SIG) interval-helper)

moreover have {?x1 , ?y2} ⊆ {0 ..<1}
using x1-in-01 y2-in-01 by fast

ultimately have ?x1 6= ?y2 ∧ {?x1 , ?y2} ⊆ {0 ..<1} ∧ p ?x1 = p ?y2
using p-x ′ y2 x ′y ′ by presburger

then have ∃ x y . x 6= y ∧ {x, y} ⊆ {0 ..<1} ∧ p x = p y
by auto

then have False
using assms(1) unfolding polygon-of-def polygon-def simple-path-def

loop-free-def
by fastforce

}
moreover { assume yk > ?n − 3

then have y3 : p ?y3 = p ′ y ′ ∧ ?y3 ∈ {0 ..<(1/2 ::real)}
using yk-gt-nminus3
by auto

then have y3-in-01 : ?y3 ∈ {0 ..<1}
by simp

have simplify-interval: (
∑

i = 1 ..1 . 1 / (2 ^ i::real)) = 1/2
by simp

then have xk-eq-0 : xk = 0 =⇒ (
∑

i ∈ {1 ..(xk + 1)}. 1/(2^i::real)) ≥ 1/2
by simp

have xk > 0 =⇒ (
∑

i ∈ {1 ..(xk + 1)}. 1/(2^i::real)) ≥ 1/2
using f-gteq-0-sum-gt[OF all-pows-of-2-pos, of 1 xk +1]
simplify-interval

by (smt (verit, ccfv-SIG) Suc-le-eq add.commute add.right-neutral all-pows-of-2-pos
f-gteq-0-sum-gt linorder-not-le plus-1-eq-Suc)

then have (
∑

i ∈ {1 ..(xk + 1)}. 1/(2^i::real)) ≥ 1/2
using xk-eq-0 xk-gteq by blast

then have ?x1 6= ?y3
using x1-in y3
by (smt (verit, best) interval-helper)

moreover have {?x1 , ?y3} ⊆ {0 ..<1}
using x1-in-01 y3-in-01 by fast

ultimately have ?x1 6= ?y3 ∧ {?x1 , ?y3} ⊆ {0 ..<1} ∧ p ?x1 = p ?y3
using p-x ′ y3 x ′y ′

by presburger
then have ∃ x y . x 6= y ∧ {x, y} ⊆ {0 ..<1} ∧ p x = p y

by auto
then have False

using assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def

by fastforce

73

}
ultimately have False by linarith

} moreover {assume xk-eq : xk = ?n−3
then have p-x ′: p ?x2 = p ′ x ′

using xk-eq-nminus3 by auto
have x2-in: ?x2 ∈ {(

∑
i ∈ {1 ..?n−2}. 1/(2^i))..<1}

using xk-eq xk-eq-nminus3
by auto

then have ?x2 ≥ 0
using n-geq-4

by (metis add-sign-intros(4) atLeastLessThan-iff insert-subset leD nle-le
power-one-over x ′y ′ zero-le-power zero-less-divide-1-iff zero-less-numeral)

then have x2-in-01 : ?x2 ∈ {0 ..<1}
using x2-in by auto

{ assume yk < ?n − 3
then have interval-helper-helper : (

∑
i = 1 ..yk + 1 . 1 / (2 ^ i::real)) ≤ (

∑
i

= 1 ..xk. 1 / (2 ^ i::real))
using xk-eq f-gteq-0-sum-gt

by (metis Suc-eq-plus1 less-eq-real-def linorder-neqE-nat not-less-eq zero-less-divide-1-iff
zero-less-numeral zero-less-power)

then have x ′ > y ′

using x ′-in y ′-in interval-helper [of (
∑

i = 1 ..yk + 1 . 1 / (2 ^ i::real))
(
∑

i = 1 ..xk. 1 / (2 ^ i::real))]
by blast

then have False using x ′y ′

by auto
} moreover { assume yk = ?n − 3

then have y2 : p ?y2 = p ′ y ′ ∧ ?y2 ∈ {(
∑

i ∈ {1 ..?n−2}. 1/(2^i))..<1}
using yk-eq-nminus3
by auto

then have y2-in-01 : ?y2 ∈ {0 ..<1}
using all-rotation-intervals-between-0and1-strict[of ?n−2]
by fastforce

then have ?x2 6= ?y2
using x ′y ′ by auto

moreover have {?x2 , ?y2} ⊆ {0 ..<1}
using x2-in-01 y2-in-01 by fast

ultimately have ?x2 6= ?y2 ∧ {?x2 , ?y2} ⊆ {0 ..<1} ∧ p ?x2 = p ?y2
using p-x ′ y2 x ′y ′ by presburger

then have ∃ x y . x 6= y ∧ {x, y} ⊆ {0 ..<1} ∧ p x = p y
by meson

then have False
using assms(1) unfolding polygon-of-def polygon-def simple-path-def

loop-free-def
by fastforce

} moreover { assume yk-gt: yk > ?n − 3
then have y3 : p ?y3 = p ′ y ′

using yk-gt-nminus3 by auto
have y3-in: ?y3 ∈ {0 ..<1/2}

74

using yk-gt yk-gt-nminus3
by auto

then have y3-in-01 : ?y3 ∈ {0 ..<1}
by auto

have (
∑

i = 1 ..length vts − 2 . 1 / (2 ^ i::real)) > (
∑

i = 1 ..1 . 1 / (2 ^
i::real))

using n-geq-4 f-gteq-0-sum-gt[OF all-pows-of-2-pos,of 1 length vts − 2]
by fastforce

then have (
∑

i = 1 ..length vts − 2 . 1 / (2 ^ i::real)) > 1/2
by simp

then have ?x2 6= ?y3
using y3-in x2-in by auto

moreover have {?x2 , ?y3} ⊆ {0 ..<1}
using x2-in-01 y3-in-01 by fast

ultimately have ?x2 6= ?y3 ∧ {?x2 , ?y3} ⊆ {0 ..<1} ∧ p ?x2 = p ?y3
using p-x ′ y3 x ′y ′ by presburger

then have ∃ x y . x 6= y ∧ {x, y} ⊆ {0 ..<1} ∧ p x = p y
by meson

then have False
using assms(1) unfolding polygon-of-def polygon-def simple-path-def

loop-free-def
by fastforce

}
ultimately have False

using not-less-iff-gr-or-eq by auto
} moreover { assume xk-gt: xk > ?n − 3

then have p-x ′: p ?x3 = p ′ x ′

using xk-gt-nminus3 by auto
have x3-in: ?x3 ∈ {0 ..<1/2}

using xk-gt xk-gt-nminus3
by auto

then have x3-in-01 : ?x3 ∈ {0 ..<1}
by auto

{ assume yk ≤ ?n − 3
then have (

∑
i = 1 ..xk. 1 / (2 ^ i::real)) ≥ (

∑
i = 1 ..yk + 1 . 1 / (2 ^

i::real))
using xk-gt f-gteq-0-sum-gt[of λi. 1 / (2 ^ i::real) xk yk]

proof −
obtain rr :: nat ⇒ real where

f1 : ∀B-x. rr B-x = 1 / 2 ^ B-x
by force

then have f2 : ∀n. 0 < rr n
by simp

have yk < xk
using ‹length vts − 3 < xk› ‹yk ≤ length vts − 3 › order-le-less-trans by

blast
then show ?thesis
using f2 f1 by (metis (no-types) Suc-eq-plus1 f-gteq-0-sum-gt less-eq-real-def

nat-neq-iff not-less-eq order .refl)

75

qed
then have x ′ > y ′

using x ′-in y ′-in interval-helper [of (
∑

i = 1 ..yk + 1 . 1 / (2 ^ i::real)) (
∑

i
= 1 ..xk. 1 / (2 ^ i::real))]

by blast
then have False using x ′y ′

by auto
} moreover
{ assume yk-gt: yk > ?n − 3

then have p-y ′: p ?y3 = p ′ y ′

using yk-gt-nminus3 by auto
have y3-in: ?y3 ∈ {0 ..<1/2}

using yk-gt yk-gt-nminus3
by auto

then have y3-in-01 : ?y3 ∈ {0 ..<1}
by auto

have (x ′ − (
∑

i = 1 ..length vts − 2 . 1 / 2 ^ i)) 6=
(y ′ − (

∑
i = 1 ..length vts − 2 . 1 / 2 ^ i))

using x ′y ′ by auto
then have ?x3 6= ?y3 by auto
moreover have {?x3 , ?y3} ⊆ {0 ..<1}

using x3-in-01 y3-in-01 by fast
ultimately have ?x3 6= ?y3 ∧ {?x3 , ?y3} ⊆ {0 ..<1} ∧ p ?x3 = p ?y3

using p-x ′ p-y ′ x ′y ′

by presburger
then have ∃ x y . x 6= y ∧ {x, y} ⊆ {0 ..<1} ∧ p x = p y

by meson
then have False

using assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def

by fastforce
}
ultimately have False by linarith

}
ultimately show False by linarith

qed

lemma one-rotation-is-polygon:
fixes p :: R-to-R2
fixes i :: nat
assumes poly-p: polygon p and

p-is-path: p = make-polygonal-path vts and
p ′-is: p ′ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p ′ = make-polygonal-path ?vts ′)

shows polygon p ′

proof−
have polygonal-path p ′ using p ′-is by (simp add: polygonal-path-def)
moreover have closed-path p ′

using p ′-is unfolding rotate-polygon-vertices-def closed-path-def

76

by (metis (no-types, opaque-lifting) Nil-is-append-conv append-self-conv2 diff-Suc-1
hd-append2 hd-conv-nth length-append-singleton make-polygonal-path-gives-path not-Cons-self
nth-Cons-0 nth-append-length pathfinish-def pathstart-def polygon-pathfinish poly-
gon-pathstart)

moreover have simple-path p ′

using one-polygon-rotation-is-loop-free
by (metis make-polygonal-path-gives-path p ′-is p-is-path poly-p polygon-of-def

simple-path-def)
ultimately show ?thesis unfolding polygon-def by simp

qed

lemma rotation-is-polygon:
fixes p :: R-to-R2
fixes i:: nat
assumes polygon p and

p = make-polygonal-path vts
shows polygon (make-polygonal-path (rotate-polygon-vertices vts i))
using assms

proof (induct i)
case 0
then show ?case using rotate0 unfolding rotate-polygon-vertices-def
by (smt (z3) assms(2) butlast.simps(1) butlast-conv-take eq-id-iff have-wraparound-vertex

hd-append2 hd-conv-nth rotate-polygon-vertices-def rotate-polygon-vertices-same-set
self-append-conv2 the-elem-set)
next

case (Suc i)
then show ?case using one-rotation-is-polygon arb-rotation-as-single-rotation

by metis
qed

lemma polygon-rotate-mod:
fixes vts :: (real^2) list
assumes n = length vts
assumes n ≥ 2
assumes hd vts = last vts
shows rotate-polygon-vertices vts (n − 1) = vts

proof−
let ?vts ′ = rotate (n − 1) (butlast vts)
have rotate-polygon-vertices vts (n − 1) = ?vts ′ @ [?vts ′!0]

unfolding rotate-polygon-vertices-def by metis
moreover have ?vts ′ = butlast vts using assms by simp
moreover have ... = rotate 0 (butlast vts) by simp
moreover then have ... @ [...!0] = rotate-polygon-vertices vts 0

unfolding rotate-polygon-vertices-def by metis
moreover have ... = vts

unfolding rotate-polygon-vertices-def using assms
by (metis (no-types, lifting) Suc-le-eq calculation(3) hd-conv-nth length-butlast

length-greater-0-conv nat-1-add-1 nth-butlast order-less-le-trans plus-1-eq-Suc pos2
snoc-eq-iff-butlast zero-less-diff)

77

ultimately show ?thesis by argo
qed

lemma polygon-rotate-mod-arb:
fixes vts :: (real^2) list
assumes n = length vts
assumes n ≥ 2
assumes hd vts = last vts
shows rotate-polygon-vertices vts ((n − 1) ∗ i) = vts

proof(induct i)
case 0
then show ?case using polygon-rotate-mod
by (metis append.right-neutral append-Nil assms(1) assms(2) assms(3) id-apply

length-butlast mult-zero-right rotate0 rotate-append rotate-polygon-vertices-def)
next

case (Suc i)
then have vts = rotate-polygon-vertices vts ((n − 1) ∗ i) using Suc.prems by

argo
also have ... = rotate-polygon-vertices vts ((n − 1) ∗ Suc i)
using polygon-rotate-mod assms(1) assms(2) assms(3) calculation rotation-sum
by (metis mult-Suc-right)

finally show ?case by argo
qed

lemma unrotation-is-polygon:
fixes p :: R-to-R2
fixes i:: nat
assumes polygon (make-polygonal-path (rotate-polygon-vertices vts i))

(is polygon (make-polygonal-path ?vts ′))
p = make-polygonal-path vts
hd vts = last vts

shows polygon p
proof−

have len-vts: length vts ≥ 2
using assms polygon-vertices-length-at-least-4 rotate-polygon-vertices-same-length
by (metis (no-types, opaque-lifting) Suc-1 Suc-eq-numeral Suc-le-lessD diff-is-0-eq ′

eval-nat-numeral(2) gr-implies-not0 length-append-singleton length-butlast length-rotate
not-less-eq-eq rotate-polygon-vertices-def)

let ?n = length vts − 1
obtain k where k: k∗?n > i

using len-vts
by (metis Suc-1 Suc-le-eq add-0 div-less-iff-less-mult le-add2 less-diff-conv)

let ?j = k∗?n − i
have j-i-n: ?j + i = k∗?n using k by simp

have rotate-polygon-vertices ?vts ′ ?j = rotate-polygon-vertices vts (?j + i)
using rotation-sum[of vts i ?n] by (simp add: add.commute rotation-sum)

also have ... = rotate-polygon-vertices vts (k∗?n) using assms j-i-n by presburger

78

also have ... = vts using polygon-rotate-mod-arb len-vts assms by (metis mult.commute)
finally show ?thesis using rotation-is-polygon assms by metis

qed

lemma rotated-polygon-vertices:
assumes vts ′ = rotate-polygon-vertices vts j
assumes hd vts = last vts
assumes length vts ≥ 2
assumes j ≤ i ∧ i < length vts
shows vts ! i = vts ′ ! (i − j)
using assms

proof(induct j arbitrary: vts vts ′)
case 0
then show ?case
by (metis Suc-1 Suc-le-eq diff-is-0-eq diff-zero hd-conv-nth id-apply length-butlast

linorder-not-le list.size(3) nth-butlast rotate0 rotate-polygon-vertices-def snoc-eq-iff-butlast)
next

case (Suc j)
then have vts ′ = rotate-polygon-vertices (rotate-polygon-vertices vts 1) j

by (metis plus-1-eq-Suc rotation-sum)
moreover have ...!(i − Suc j) = (rotate-polygon-vertices vts 1)!(i − 1)
using Suc.hyps Suc.prems(3) Suc.prems(4) Suc-1 Suc-diff-le Suc-leD diff-Suc-Suc

hd-conv-nth length-append-singleton length-butlast length-rotate nth-butlast rotate-polygon-vertices-def
snoc-eq-iff-butlast zero-less-Suc

by (smt (z3) One-nat-def Suc.prems(1) Suc.prems(2) Suc-eq-plus1 Suc-le-eq
arb-rotation-as-single-rotation calculation diff-diff-cancel diff-is-0-eq diff-less-mono
diff-zero not-less-eq-eq plus-1-eq-Suc rotated-polygon-vertices-helper2)

moreover have ... = vts!i using rotated-polygon-vertices-helper2
by (metis Suc.prems(2) Suc.prems(3) Suc.prems(4) add-leD1 le-add-diff-inverse2

less-diff-conv plus-1-eq-Suc)
ultimately show ?case

by presburger
qed

lemma polygon-path-image:
assumes poly-p: polygon p
assumes p-is-path: p = make-polygonal-path vts
shows path-image p = p‘ {0 ..< 1}

proof −
have vts-nonempty: vts 6= []

using polygon-at-least-3-vertices[OF poly-p p-is-path]
by auto

have at-0 : p ‘ {0} = {pathstart p}
using p-is-path
by (metis image-empty image-insert pathstart-def)

have at-1 : p ‘ {1} = {pathfinish p}
using p-is-path
by (simp add: pathfinish-def)

have same-point: p 0 = p 1

79

using assms unfolding polygon-def closed-path-def using polygon-pathstart[OF
vts-nonempty p-is-path]

using polygon-pathfinish[OF vts-nonempty p-is-path]
at-0 at-1 by auto

have
∧

x. x ∈ p ‘ {0 ..1} =⇒ x ∈ p ‘ {0 ..<1}
proof −

fix x
assume x ∈ p ‘ {0 ..1}
then have ∃ k ∈ {0 ..1}. p k = x

by auto
then obtain k where k-prop: k ∈ {0 ..1} ∧ p k = x

by auto
{assume ∗: k < 1

then have ∃ k ∈ {0 ..<1}. p k = x
using k-prop by auto

} moreover {assume ∗: k = 1
then have p 0 = x

using same-point k-prop by auto
then have ∃ k ∈ {0 ..<1}. p k = x

by auto
}
ultimately have ∃ k ∈ {0 ..<1}. p k = x

using k-prop
by (metis atLeastAtMost-iff order-less-le)

then show x ∈ p ‘ {0 ..<1}
by auto

qed
then show ?thesis

unfolding path-image-def by auto
qed

lemma polygon-vts-one-rotation:
fixes p :: R-to-R2
assumes poly-p: polygon p and

p-is-path: p = make-polygonal-path vts and
p ′-is: p ′ = make-polygonal-path (rotate-polygon-vertices vts 1)

shows path-image p = path-image p ′

proof −
let ?rotated-vts = (rotate-polygon-vertices vts 1)
have card (set vts) ≥ 3

using polygon-at-least-3-vertices[OF poly-p p-is-path]
by auto

then have len-gt-eq3 : length vts ≥ 3
using card-length order-trans by blast

have same-len: length ?rotated-vts = length vts
unfolding rotate-polygon-vertices-def using length-rotate

by (metis One-nat-def Suc-pred card.empty length-append-singleton length-butlast
length-greater-0-conv list.set(1) not-numeral-le-zero p-is-path poly-p polygon-at-least-3-vertices)

then have len-rotated-gt-eq2 : length ?rotated-vts ≥ 2

80

using len-gt-eq3 by auto
have h1 :

∧
x. x ∈ (path-image p) =⇒ x ∈ path-image p ′

proof −
fix x
assume x ∈ (path-image p)
then have ∃ k<length vts − 1 . x ∈ path-image (linepath (vts ! k) (vts ! (k +

1)))
using p-is-path len-gt-eq3 make-polygonal-path-image-property[of vts x]
by auto

then obtain k where k-prop: k < length vts − 1 ∧ x ∈ path-image (linepath
(vts ! k) (vts ! (k + 1)))

by auto
{assume ∗: k = 0

have vts1 : vts ! 0 = ?rotated-vts ! (length ?rotated-vts − 2)
unfolding rotate-polygon-vertices-def
using nth-rotate[of length ?rotated-vts − 2 butlast vts 1]
by (metis (no-types, lifting) ∗ One-nat-def Suc-pred butlast-snoc diff-diff-left

k-prop length-butlast lessI mod-self nat-1-add-1 nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def
same-len)

have (rotate 1 (butlast vts)) ! 0 = vts ! 1
using nth-rotate[of 0 butlast vts 1] len-gt-eq3
by (simp add: less-diff-conv mod-if nth-butlast)

then have vts2 : vts ! 1 = ?rotated-vts ! (length ?rotated-vts − 1)
unfolding rotate-polygon-vertices-def
by (metis butlast-snoc length-butlast nth-append-length)

then have path-image (linepath (vts ! k) (vts ! (k + 1))) ⊆ path-image p ′

using linepaths-subset-make-polygonal-path-image[of vts 0]
len-rotated-gt-eq2 ∗
by (metis (no-types, lifting) One-nat-def Suc-eq-plus1 Suc-pred diff-diff-left

diff-less k-prop less-numeral-extra(1) linepaths-subset-make-polygonal-path-image nat-1-add-1
p ′-is same-len vts1)

then have x ∈ path-image p ′

using k-prop vts1 vts2
by auto

}
moreover {assume ∗: k > 0

then have k-minus-prop: k − 1 < length (rotate-polygon-vertices vts 1) − 1
using same-len k-prop less-imp-diff-less
by presburger

then have vts1 : vts ! k = ?rotated-vts ! (k−1)
using nth-rotate[of k−1 butlast vts 1] len-gt-eq3
same-len
by (metis ∗ One-nat-def Suc-pred butlast-snoc k-prop length-butlast mod-less

nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def)
have vts2 : vts ! (k+1) = ?rotated-vts ! k

using nth-rotate[of k butlast vts 1] len-gt-eq3 k-minus-prop
by (metis (no-types, lifting) ∗ Suc-eq-plus1 Suc-leI butlast-snoc have-wraparound-vertex

k-prop le-imp-less-Suc length-butlast mod-less mod-self nat-less-le nth-append-length
nth-butlast p-is-path plus-1-eq-Suc poly-p rotate-polygon-vertices-def same-len)

81

have path-image (linepath (?rotated-vts ! (k−1)) (?rotated-vts ! k)) ⊆ path-image
p ′

using linepaths-subset-make-polygonal-path-image[OF len-rotated-gt-eq2
k-minus-prop] p ′-is

by (simp add: ∗)
then have x ∈ path-image p ′

using k-prop vts1 vts2
by auto

}
ultimately show x ∈ path-image p ′

by auto
qed
have h2 :

∧
x. x ∈ (path-image p ′) =⇒ x ∈ path-image p

proof −
fix x
assume x ∈ (path-image p ′)
then have ∃ k<length ?rotated-vts − 1 . x ∈ path-image (linepath (?rotated-vts

! k) (?rotated-vts ! (k + 1)))
using p ′-is len-rotated-gt-eq2 make-polygonal-path-image-property[of ?rotated-vts

x]
by auto

then obtain k where k-prop: k < length ?rotated-vts − 1 ∧ x ∈ path-image
(linepath (?rotated-vts ! k) (?rotated-vts ! (k + 1)))

by auto
{assume ∗: k = length ?rotated-vts − 2

have vts1 : vts ! 0 = ?rotated-vts ! (length ?rotated-vts − 2)
unfolding rotate-polygon-vertices-def
using nth-rotate[of length ?rotated-vts − 2 butlast vts 1]

by (metis ∗ Suc-diff-Suc Suc-le-eq butlast-snoc k-prop len-rotated-gt-eq2
length-butlast mod-self nat-1-add-1 nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def
same-len zero-less-Suc)

have (rotate 1 (butlast vts)) ! 0 = vts ! 1
unfolding rotate-polygon-vertices-def
using nth-rotate[of 0 butlast vts 1] len-gt-eq3 len-rotated-gt-eq2
by (metis (no-types, lifting) One-nat-def Suc-le-eq diff-diff-left length-butlast

less-nat-zero-code mod-less not-gr-zero nth-butlast numeral-3-eq-3 plus-1-eq-Suc zero-less-diff)
then have vts2 : ?rotated-vts ! (k+1) = vts ! 1

unfolding rotate-polygon-vertices-def
by (metis ∗ Suc-diff-Suc Suc-eq-plus1 Suc-le-eq len-rotated-gt-eq2 length-butlast

length-rotate nat-1-add-1 nth-append-length same-len)
have path-image (linepath (vts ! 0) (vts ! 1)) ⊆ path-image p

using linepaths-subset-make-polygonal-path-image[of vts 0]
len-gt-eq3 ∗ less-diff-conv p-is-path same-len
by auto

then have x ∈ path-image p
using ∗ vts1 vts2 k-prop
by auto

} moreover {assume ∗: k < length ?rotated-vts − 2
then have vts1 : ?rotated-vts ! k = vts ! (k+1)

82

using nth-rotate[of k butlast vts 1] len-gt-eq3 ∗
same-len
by (smt (z3) Suc-eq-plus1 butlast-snoc diff-diff-left k-prop length-butlast

less-diff-conv mod-less nat-1-add-1 nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def)
have vts2 : ?rotated-vts ! (k+1) = vts ! (k+2)

using nth-rotate[of k+1 butlast vts 1] len-gt-eq3 ∗
by (smt (verit, ccfv-threshold) One-nat-def Suc-le-eq add-Suc-right but-

last-snoc diff-diff-left have-wraparound-vertex len-rotated-gt-eq2 length-butlast less-diff-conv
mod-less mod-self nat-1-add-1 nat-less-le nth-append-length nth-butlast p-is-path
plus-1-eq-Suc poly-p rotate-polygon-vertices-def same-len)

have path-image (linepath (vts ! (k+1)) (vts ! (k + 2))) ⊆ path-image p
using linepaths-subset-make-polygonal-path-image[of vts k+1]
len-gt-eq3 ∗ less-diff-conv p-is-path same-len
by auto

then have x ∈ path-image p
using vts1 vts2 k-prop
by auto

}
ultimately show x ∈ path-image p

using k-prop Suc-eq-plus1 add-le-imp-le-diff diff-diff-left len-rotated-gt-eq2
less-diff-conv2 linorder-neqE-nat not-less-eq one-add-one

by linarith
qed
then show ?thesis

using h1 h2 by auto
qed

lemma polygon-vts-arb-rotation:
fixes p :: R-to-R2
assumes polygon p and

p = make-polygonal-path vts
shows path-image p = path-image (make-polygonal-path (rotate-polygon-vertices

vts i))
using assms

proof (induct i)
case 0
then show ?case unfolding rotate-polygon-vertices-def

by (metis One-nat-def arb-rotation-as-single-rotation polygon-vts-one-rotation
rotate-polygon-vertices-def rotation-is-polygon)
next

case (Suc i)
let ?p ′ = make-polygonal-path (rotate-polygon-vertices vts (Suc i))
{assume ∗: i = 0

have path-image p = path-image ?p ′

using Suc polygon-vts-one-rotation[of p vts]
by (simp add: ∗)

}
moreover {assume ∗: i > 0

have path-image p = path-image ?p ′

83

using polygon-vts-one-rotation arb-rotation-as-single-rotation rotation-is-polygon

by (metis Suc.hyps Suc.prems(1) assms(2))
}
ultimately show ?case by auto

qed

10 Translating a Polygon
lemma linepath-translation:

linepath ((λx. x + u) a) ((λx. x + u) b) = (λx. x + u) ◦ (linepath a b)
proof−

let ?l = linepath ((λx. x + u) a) ((λx. x + u) b)
let ?l ′ = (λx. x + u) ◦ (linepath a b)
have ?l x = ?l ′ x for x
proof−

have ?l x = (1 − x) ∗R (a + u) + x ∗R (b + u) unfolding linepath-def by
simp

also have ... = ((1 − x) ∗R a + x ∗R b) + u by (simp add: scaleR-right-distrib)
also have ... = ?l ′ x unfolding linepath-def by simp
finally show ?thesis .

qed
thus ?thesis by fast

qed

lemma make-polygonal-path-translate:
assumes length vts ≥ 2
shows make-polygonal-path (map (λx. x + u) vts) = (λx. x + u) ◦ (make-polygonal-path

vts)
using assms

proof(induct length vts arbitrary: u vts)
case 0
then show ?case by presburger

next
case (Suc n)
let ?vts ′ = map (λx. x + u) vts
let ?p ′ = make-polygonal-path ?vts ′

{ assume Suc n = 2
then obtain a b where ab: vts = [a, b]

by (metis (no-types, lifting) One-nat-def Suc.hyps(2) Suc-1 Suc-length-conv
length-0-conv)

then have ?vts ′ = [(λx. x + u) a, (λx. x + u) b] by simp
then have ?p ′ = linepath ((λx. x + u) a) ((λx. x + u) b)

using make-polygonal-path.simps(3) by presburger
also have ... = (λx. x + u) ◦ (linepath a b) using linepath-translation by auto
also have ... = (λx. x + u) ◦ (make-polygonal-path vts) using ab by auto
finally have ?case .

} moreover
{ assume ∗: Suc n > 2

84

then obtain a b c rest where abc: vts = a # b # c # rest
by (metis One-nat-def Suc.hyps(2) Suc-1 Suc-leI Suc-le-length-iff)

let ?vts-tl = tl vts
let ?p-tl = make-polygonal-path ?vts-tl
let ?vts ′-tl = map (λx. x + u) ?vts-tl
let ?p ′-tl = make-polygonal-path ?vts ′-tl

have ?vts ′-tl = tl ?vts ′ by (simp add: map-tl)
then have ?p ′ = (linepath (?vts ′!0) (?vts ′!1)) +++ ?p ′-tl

using make-polygonal-path.simps(4) abc by force
moreover have ?p ′-tl = (λx. x + u) ◦ (?p-tl) using Suc.hyps(1) Suc.hyps(2)

∗ by force
moreover have (linepath (?vts ′!0) (?vts ′!1)) = (λx. x + u) ◦ (linepath a b)

using abc linepath-translation by auto
ultimately have ?case by (simp add: abc path-compose-join)

}
ultimately show ?case using Suc by linarith

qed

lemma translation-is-polygon:
assumes polygon-of p vts
shows polygon-of ((λx. x + u) ◦ p) (map (λx. x + u) vts) (is polygon-of ?p ′

?vts ′)
proof−

have length vts ≥ 3
by (metis One-nat-def Suc-eq-plus1 Suc-le-eq add-Suc-right assms nat-less-le nu-

meral-3-eq-3 numeral-Bit0 one-add-one polygon-of-def polygon-vertices-length-at-least-4)
then have ∗: ?p ′ = make-polygonal-path ?vts ′

using make-polygonal-path-translate assms unfolding polygon-of-def by force
moreover have polygon ?p ′

proof−
have polygonal-path ?p ′ unfolding polygonal-path-def using ∗ by simp
moreover have simple-path ?p ′

using assms unfolding polygon-of-def polygon-def
using simple-path-translation-eq[of u p]
by (metis add.commute fun.map-cong)

moreover have closed-path ?p ′

proof−
have ?p ′ 0 = p 0 + u by simp
moreover have ?p ′ 1 = p 1 + u by simp
moreover have p 0 = p 1

using assms
unfolding polygon-of-def polygon-def closed-path-def pathstart-def pathfin-

ish-def
by blast

moreover have path ?p ′ using make-polygonal-path-gives-path ∗ by simp
ultimately show ?thesis

unfolding closed-path-def pathstart-def pathfinish-def

85

by argo
qed
ultimately show ?thesis unfolding polygon-def by blast

qed
ultimately show ?thesis unfolding polygon-of-def by blast

qed

11 Misc. properties
lemma tail-of-loop-free-polygonal-path-is-loop-free:

assumes loop-free (make-polygonal-path (x#tail)) (is loop-free ?p) and
length tail ≥ 2

shows loop-free (make-polygonal-path tail) (is loop-free ?p ′)
proof−

obtain y z tail ′ where tail ′: tail = y # z # tail ′
by (metis One-nat-def Suc-1 assms(2) length-Cons list.exhaust-sel list.size(3)

not-less-eq-eq zero-le)
have path ?p ∧ path ?p ′ using make-polygonal-path-gives-path by auto
have loop-free ?p using assms unfolding simple-path-def by auto
moreover have ?p = (linepath x y) +++ ?p ′

using tail ′ make-polygonal-path.simps(4) by (simp add: tail ′)
moreover from calculation have loop-free ?p ′

by (metis make-polygonal-path-gives-path not-loop-free-second-component path-join-path-ends)
ultimately show ?thesis

using make-polygonal-path-gives-path simple-path-def by blast
qed

lemma tail-of-simple-polygonal-path-is-simple:
assumes simple-path (make-polygonal-path (x#tail)) (is simple-path ?p) and

length tail ≥ 2
shows simple-path (make-polygonal-path tail) (is simple-path ?p ′)
using tail-of-loop-free-polygonal-path-is-loop-free unfolding simple-path-def
using assms(1) assms(2) make-polygonal-path-gives-path simple-path-def by blast

lemma interior-vtx-in-path-image-interior :
fixes vts :: (real^2) list
assumes x ∈ set (butlast (drop 1 vts))
shows ∃ t. t ∈ {0<..<1} ∧ (make-polygonal-path vts) t = x
using assms

proof(induct vts rule: make-polygonal-path.induct)
case 1
then show ?case by simp

next
case (2 a)
then show ?case by simp

next
case (3 a b)
then show ?case by simp

next

86

case ih: (4 a b c tail ′)
let ?vts = a # b # c # tail ′
let ?tl = b # c # tail ′
let ?p = make-polygonal-path ?vts
let ?p-tl = make-polygonal-path ?tl
{ assume x ∈ set (butlast (drop 1 ?tl))

then obtain t ′ where t ′: t ′ ∈ {0<..<1} ∧ ?p-tl t ′ = x using ih by blast
then have ?p ((t ′ + 1) / 2) = x

unfolding make-polygonal-path.simps joinpaths-def
by (smt (verit, del-insts) field-sum-of-halves greaterThanLessThan-iff mult-2-right

not-numeral-le-zero zero-le-divide-iff)
moreover have (t ′ + 1) / 2 ∈ {0<..<1} using t ′ by force
ultimately have ?case

by blast
} moreover
{ assume x /∈ set (butlast (drop 1 ?tl))

then have x = b
by (metis One-nat-def butlast.simps(2) drop0 drop-Suc-Cons ih.prems list.distinct(1)

set-ConsD)
then have ?p (1/2) = x unfolding make-polygonal-path.simps joinpaths-def

by (simp add: linepath-1 ′)
moreover have ((1/2)::(real)) ∈ ({0<..<1}::(real set)) by simp
ultimately have ?case by blast

}
ultimately show ?case by auto

qed

lemma loop-free-polygonal-path-vts-distinct:
assumes loop-free (make-polygonal-path vts)
shows distinct (butlast vts)
using assms

proof(induct vts rule: make-polygonal-path.induct)
case 1
then show ?case by simp

next
case (2 a)
then show ?case by simp

next
case (3 a b)
then show ?case by simp

next
case ih: (4 a b c tail ′)
let ?vts = a # b # c # tail ′
let ?tl = b # c # tail ′
let ?p = make-polygonal-path ?vts
let ?p-tl = make-polygonal-path ?tl

have distinct (butlast ?tl)
using ih tail-of-loop-free-polygonal-path-is-loop-free by simp

87

moreover have a /∈ set (butlast ?tl)
proof(rule ccontr)

assume a-in: ¬ a /∈ set (butlast ?tl)
then have a ∈ set (butlast (drop 1 ?vts)) by simp
then obtain t where t: t ∈ {0<..<1} ∧ ?p t = a

using vertices-on-path-image interior-vtx-in-path-image-interior by metis
then show False

using ih.prems unfolding simple-path-def loop-free-def
by (metis atLeastAtMost-iff greaterThanLessThan-iff less-eq-real-def less-numeral-extra(3)

less-numeral-extra(4) list.distinct(1) nth-Cons-0 path-defs(2) polygon-pathstart zero-less-one-class.zero-le-one)
qed
ultimately show ?case by simp

qed

lemma loop-free-polygonal-path-vts-drop1-distinct:
assumes loop-free (make-polygonal-path vts)
shows distinct (drop 1 vts)

proof −
let ?p = make-polygonal-path vts
let ?last-vts = vts ! ((length vts) − 1)
have distinct (butlast vts)
using assms loop-free-polygonal-path-vts-distinct
by auto
then have distinct-butlast: distinct (butlast (drop 1 vts))

by (metis distinct-drop drop-butlast)
{assume ∗: length vts > 1

have len-drop1 : length (drop 1 vts) = (length vts) − 1
using ∗ by simp

have simp-len: 1 + ((length vts) − 2) = (length vts) − 1
using ∗ by simp

then have vts-access: vts ! (1 + (length vts − 2)) = vts ! ((length vts) − 1)
by argo

have drop 1 vts ! ((length vts) − 2) = vts ! (1 + (length vts − 2))
using ∗ using nth-drop[of 1 vts (length vts) − 2] by auto

then have ?last-vts = (drop 1 vts) ! ((length vts) − 2)
using ∗ simp-len vts-access by argo

then have ?last-vts = (drop 1 vts) ! (length (drop 1 vts) − 1)
using ∗ len-drop1
using diff-diff-left nat-1-add-1 by presburger

then have drop1-is: drop 1 vts = (butlast (drop 1 vts))@[?last-vts]
using ∗

by (metis append-butlast-last-id drop-eq-Nil leD length-butlast nth-append-length)
have last-vts-not-in: ?last-vts /∈ set (butlast (drop 1 vts))
proof(rule ccontr)

assume a-in: ¬ ?last-vts /∈ set (butlast (drop 1 vts))
then have ?last-vts ∈ set (butlast (drop 1 vts)) by simp
then obtain t where t: t ∈ {0<..<1} ∧ ?p t = ?last-vts

using vertices-on-path-image interior-vtx-in-path-image-interior by metis

88

have vts ! (length vts − 1) = ?p 1
using polygon-pathfinish[of vts ?p] ∗
by (metis list.size(3) not-one-less-zero pathfinish-def)

then show False
using t assms unfolding loop-free-def

by (metis atLeastAtMost-iff greaterThanLessThan-iff leD less-eq-real-def zero-less-one-class.zero-le-one)
qed
have

∧
b::(real^2) list. distinct b ∧ a /∈ set b =⇒ distinct (b @[a]) for a::real^2

by simp
then have ?thesis using last-vts-not-in drop1-is distinct-butlast by metis
}
then show ?thesis by force

qed

lemma simple-polygonal-path-vts-distinct:
assumes simple-path (make-polygonal-path vts)
shows distinct (butlast vts)
using assms loop-free-polygonal-path-vts-distinct
unfolding simple-path-def
by blast

lemma edge-subset-path-image:
assumes p = make-polygonal-path vts and

(i::int) ∈ {0 ..<((length vts) − 1)} and
x = vts!i and
y = vts!(i+1)

shows path-image (linepath x y) ⊆ path-image p (is ?xy-img ⊆ ?p-img)
using assms

proof(induct vts arbitrary: p i rule: make-polygonal-path.induct)
case 1
then show ?case by simp

next
case (2 a)
then show ?case by simp

next
case (3 a b)
then show ?case by (simp add: nth-Cons ′)

next
case ih: (4 a b c tl)
let ?tl = b # c # tl
let ?p-tl = make-polygonal-path (?tl)
{ assume i = 0

then have ?case
by (metis (mono-tags, lifting) ih(2) ih(4) ih(5) Suc-eq-plus1 UnCI list.distinct(1)

make-polygonal-path.simps(4) nth-Cons-0 nth-Cons-Suc path-image-join pathfin-
ish-linepath polygon-pathstart subsetI)

} moreover
{ assume i > 0

89

then have x = ?tl!(i−1) by (simp add: ih.prems(3))
moreover have y = ?tl!i by (simp add: ih.prems(4))
moreover have i − 1 ∈ {0 ..<(length (?tl) − 1)} using ih.prems(2) by force
ultimately have ?xy-img ⊆ path-image ?p-tl using ih(1) by (simp add: ‹0 <

i›)
then have ?case

unfolding ih(2) make-polygonal-path.simps
by (smt (verit, ccfv-SIG) UnCI make-polygonal-path.simps(4) make-polygonal-path-gives-path

path-image-join path-join-path-ends subsetI subset-iff)
}
ultimately show ?case by linarith

qed

12 Properties of Sublists of Polygonal Path Vertex
Lists

lemma make-polygonal-path-image-append-var :
assumes length vts1 ≥ 2
shows path-image (make-polygonal-path (vts1 @ [v])) = path-image (make-polygonal-path

vts1 +++ (linepath (vts1 ! (length vts1 − 1)) v))
using assms

proof (induct vts1)
case Nil
then show ?case by auto

next
case (Cons a vts1)
{assume ∗: length vts1 = 1

then obtain b where vts1 = [b]
by (metis Cons-nth-drop-Suc One-nat-def drop0 drop-eq-Nil le-numeral-extra(4)

less-numeral-extra(1))
then have path-image (make-polygonal-path ((a # vts1) @ [v])) =

path-image (make-polygonal-path (a # vts1) +++ linepath ((a # vts1) !
(length (a # vts1) − 1)) v)

using make-polygonal-path.simps
by simp

} moreover {assume ∗ : length vts1 > 1
then obtain b c vts1 ′ where vts1 = b # c # vts1 ′

by (metis One-nat-def length-0-conv length-Cons less-numeral-extra(4) not-one-less-zero
remdups-adj.cases)

then have h1 : make-polygonal-path ((a # vts1) @ [v]) = (linepath a b) +++
(make-polygonal-path (vts1 @ [v]))

using make-polygonal-path.simps(4)
by auto

have path-image (make-polygonal-path (vts1 @ [v])) =
path-image (make-polygonal-path vts1 +++ linepath (vts1 ! (length vts1 − 1))

v)
using ∗ Cons by auto

then have path-image (make-polygonal-path ((a # vts1) @ [v])) =

90

path-image (make-polygonal-path (a # vts1) +++ linepath ((a # vts1) ! (length
(a # vts1) − 1)) v)

using h1
by (metis (no-types, lifting) Cons.prems Suc-1 Suc-le-eq Un-assoc ‹vts1 = b # c

vts1 ′› add-diff-cancel-left ′ append-Cons length-Cons list.discI make-polygonal-path.simps(4)
nth-Cons-0 nth-Cons-pos path-image-join pathfinish-linepath pathstart-linepath plus-1-eq-Suc
polygon-pathfinish polygon-pathstart zero-less-diff)

}
ultimately show ?case

by (metis Cons.prems Suc-1 add-diff-cancel-left ′ le-neq-implies-less length-Cons
not-less-eq plus-1-eq-Suc)
qed

lemma make-polygonal-path-image-append-helper :
assumes length vts1 ≥ 1 ∧ length vts2 ≥ 1
shows path-image (make-polygonal-path (vts1 @ [v] @ [v] @ vts2)) = path-image

(make-polygonal-path (vts1 @ [v] @ vts2))
using assms

proof (induct vts1)
case Nil
then show ?case by auto

next
case (Cons a vts1)
{ assume ∗: length vts1 = 0

have path-image (make-polygonal-path ([a] @ [v] @ vts2)) =
path-image ((linepath a v) +++ make-polygonal-path (v # vts2))

using make-polygonal-path.simps
by (metis Cons.prems One-nat-def append-Cons append-Nil append-take-drop-id

linorder-not-le list.distinct(1) list.exhaust not-less-eq-eq take-hd-drop)
then have path-image (make-polygonal-path ([a] @ [v] @ vts2)) =

path-image (linepath a v) ∪ path-image (make-polygonal-path (v # vts2))
by (metis list.discI nth-Cons-0 path-image-join pathfinish-linepath polygon-pathstart)
have image-helper1 : path-image (make-polygonal-path ([a] @ [v] @ [v] @ vts2))

= path-image (linepath a v +++ make-polygonal-path (v # v # vts2))
by simp

have path-image (make-polygonal-path (v # v # vts2)) = path-image ((linepath
v v) +++ make-polygonal-path (v # vts2))

using make-polygonal-path.simps
by (metis Cons.prems One-nat-def append-Cons append-Nil append-take-drop-id

linorder-not-le list.distinct(1) list.exhaust not-less-eq-eq take-hd-drop)
moreover have ... = path-image (linepath v v) ∪ path-image (make-polygonal-path

(v # vts2))
by (metis list.discI nth-Cons-0 path-image-join pathfinish-linepath poly-

gon-pathstart)
ultimately have image-helper2 : path-image (make-polygonal-path (v # v #

vts2)) = {v} ∪ path-image (make-polygonal-path (v # vts2))
by auto

have v ∈ path-image (make-polygonal-path (v # vts2))
using vertices-on-path-image by fastforce

91

then have path-image (make-polygonal-path ([a] @ [v] @ [v] @ vts2)) =
path-image (make-polygonal-path ([a] @ [v] @ vts2))

using image-helper1 image-helper2
by (metis ‹path-image (make-polygonal-path ([a] @ [v] @ vts2)) = path-image

(linepath a v) ∪ path-image (make-polygonal-path (v # vts2))› insert-absorb in-
sert-is-Un list.simps(3) nth-Cons-0 path-image-join pathfinish-linepath polygon-pathstart)

}
moreover {assume ∗: length vts1 > 0
then have ind-hyp: path-image (make-polygonal-path (vts1 @ [v] @ [v] @ vts2))

=
path-image (make-polygonal-path (vts1 @ [v] @ vts2))

using Cons.hyps Cons.prems by linarith
obtain b vts3 where vts1-is: vts1 = b#vts3

using ∗
by (metis ∗ Cons-nth-drop-Suc drop0)

then have path-image1 : path-image (make-polygonal-path ((a # vts1) @ [v] @
[v] @ vts2)) =

path-image ((linepath a b) +++ make-polygonal-path (vts1 @ [v] @ [v] @
vts2))

by (smt (verit, best) Cons.prems Nil-is-append-conv append-Cons length-greater-0-conv
less-numeral-extra(1) list.inject make-polygonal-path.elims order-less-le-trans)

obtain c d where bcd: vts1 @ [v] @ vts2 = b # c # d
using vts1-is
by (metis append-Cons append-Nil neq-Nil-conv)

have path-image2 : path-image (make-polygonal-path ((a # vts1) @ [v] @ vts2))
= path-image ((linepath a b) +++ make-polygonal-path (vts1 @ [v] @ vts2))

using make-polygonal-path.simps bcd
by auto

have path-image (make-polygonal-path ((a # vts1) @ [v] @ [v] @ vts2)) =
path-image (make-polygonal-path ((a # vts1) @ [v] @ vts2))

using ind-hyp path-image1 path-image2
by (smt (verit, del-insts) Nil-is-append-conv append-Cons nth-Cons-0 path-image-join

pathfinish-linepath polygon-pathstart vts1-is)
}
ultimately show ?case

using Cons.prems
by blast

qed

lemma make-polygonal-path-image-append:
assumes length vts1 ≥ 2 ∧ length vts2 ≥ 2
shows path-image (make-polygonal-path (vts1 @ vts2)) = path-image (make-polygonal-path

vts1 +++ (linepath (vts1 ! (length vts1 − 1)) (vts2 ! 0)) +++ make-polygonal-path
vts2)

using assms
proof (induct vts1)

case Nil
then show ?case

by simp

92

next
case (Cons a vts1)
{assume ∗: length vts1 = 1

then obtain b where vts1-is: vts1 = [b]
by (metis Cons-nth-drop-Suc One-nat-def drop0 drop-eq-Nil le-numeral-extra(4)

less-numeral-extra(1))
then have make-polygonal-path ((a # vts1) @ vts2) = make-polygonal-path (a

b # vts2)
by simp

then have make-polygonal-path ((a # vts1) @ vts2) = (linepath a b) +++
(make-polygonal-path (b # vts2))

by (metis Cons.prems length-0-conv make-polygonal-path.simps(4) neq-Nil-conv
not-numeral-le-zero)

then have make-polygonal-path ((a # vts1) @ vts2) = make-polygonal-path
(a # vts1) +++ (make-polygonal-path (b # vts2))

using vts1-is make-polygonal-path.simps(3)
by simp

then have make-polygonal-path ((a # vts1) @ vts2) = make-polygonal-path
(a # vts1) +++ linepath b (vts2 ! 0) +++ make-polygonal-path vts2

using Cons.prems
by (smt (verit, ccfv-SIG) ∗ Suc-1 add-diff-cancel-left ′ diff-is-0-eq ′ length-greater-0-conv

list.size(4) make-polygonal-path.elims make-polygonal-path.simps(4) nth-Cons-0 or-
der-less-le-trans plus-1-eq-Suc pos2 vts1-is zero-neq-one)

then have make-polygonal-path ((a # vts1) @ vts2) =
make-polygonal-path (a # vts1) +++

linepath ((a # vts1) ! (length (a # vts1) − 1)) (vts2 ! 0) +++ make-polygonal-path
vts2

using vts1-is
by simp

} moreover {assume ∗: length vts1 > 1
then obtain b c vts1 ′ where vts1 ′: vts1 = b # c # vts1 ′

by (metis One-nat-def length-0-conv length-Cons less-numeral-extra(4) not-one-less-zero
remdups-adj.cases)

then have h1 : make-polygonal-path ((a # vts1) @ vts2) = (linepath a b) +++
(make-polygonal-path (vts1 @ vts2))

using make-polygonal-path.simps(4)
by auto

have ind-h: path-image (make-polygonal-path (vts1 @ vts2)) =
path-image (make-polygonal-path vts1 +++
linepath (vts1 ! (length vts1 − 1)) (vts2 ! 0) +++ make-polygonal-path vts2)

using Cons ∗ by linarith
then have path-image (make-polygonal-path ((a # vts1) @ vts2)) = path-image

((linepath a b)) ∪ path-image((make-polygonal-path vts1 +++
linepath (vts1 ! (length vts1 − 1)) (vts2 ! 0) +++ make-polygonal-path vts2))
by (metis h1 make-polygonal-path-gives-path path-image-join path-join-path-ends)

then have path-image (make-polygonal-path ((a # vts1) @ vts2)) = (path-image
(linepath a b) ∪ path-image (make-polygonal-path vts1)) ∪

path-image((linepath (vts1 ! (length vts1 − 1)) (vts2 ! 0) +++ make-polygonal-path
vts2))

93

by (metis (no-types, opaque-lifting) ∗ Un-assoc not-one-less-zero linepath-0 ′

list.size(3)
path-image-join pathstart-def pathstart-join polygon-pathfinish)

then have image-helper : path-image (make-polygonal-path ((a # vts1) @ vts2))
= (path-image (make-polygonal-path (a # vts1))) ∪

path-image((linepath (vts1 ! (length vts1 − 1)) (vts2 ! 0) +++ make-polygonal-path
vts2))

by (metis neq-Nil-conv nth-Cons ′ path-image-cons-union vts1 ′)
have vts1 ! (length vts1 − 1) = (a # vts1) ! (length (a # vts1) − 1)

using Cons.prems
by (simp add: Suc-le-eq)

then have path-image (make-polygonal-path ((a # vts1) @ vts2)) =
path-image
(make-polygonal-path (a # vts1) +++
linepath ((a # vts1) ! (length (a # vts1) − 1)) (vts2 ! 0) +++ make-polygonal-path

vts2)
using image-helper

by (metis (no-types, lifting) Cons.prems length-greater-0-conv order-less-le-trans
path-image-join pathstart-join pathstart-linepath polygon-pathfinish pos2)

}
ultimately show ?case using Cons.prems

by fastforce
qed

lemma make-polygonal-path-image-append-alt:
assumes p = make-polygonal-path vts
assumes p1 = make-polygonal-path vts1
assumes p2 = make-polygonal-path vts2
assumes last vts1 = hd vts2
assumes length vts1 ≥ 2 ∧ length vts2 ≥ 2
assumes vts = vts1 @ (tl vts2)
shows path-image p = path-image (p1 +++ p2)

proof−
have path-image p = path-image p1 ∪ path-image p2

by (smt (z3) Nitpick.size-list-simp(2) One-nat-def Suc-1 assms diff-Suc-1
last-conv-nth length-greater-0-conv list.collapse list.sel(3) make-polygonal-path.elims
make-polygonal-path.simps(3) make-polygonal-path-image-append make-polygonal-path-image-append-var
nat-less-le not-less-eq-eq nth-Cons-0 order-less-le-trans path-image-join polygon-pathfinish
polygon-pathstart pos2 length-Cons length-tl path-image-cons-union pathfinish-linepath
pathstart-join sup.absorb-iff1 sup.absorb-iff2)

thus ?thesis
by (metis assms(2) assms(3) assms(4) assms(5) hd-conv-nth last-conv-nth

length-greater-0-conv order-less-le-trans path-image-join polygon-pathfinish polygon-pathstart
pos2)
qed

lemma cont-incr-interval-image:
fixes f :: real ⇒ real
assumes a ≤ b

94

assumes continuous-on {a..b} f
assumes ∀ x ∈ {a..b}. ∀ y ∈ {a..b}. x ≤ y −→ f x ≤ f y
shows f‘{a..b} = {f a..f b}

proof−
have f‘{a..b} ⊆ {f a..f b}
proof(rule subsetI)

fix x
assume x ∈ f‘{a..b}
then obtain t where t ∈ {a..b} ∧ f t = x by blast
moreover then have a ≤ t ∧ t ≤ b by presburger
ultimately show x ∈ {f a..f b} using assms(3) by auto

qed
moreover have {f a..f b} ⊆ f‘{a..b}
proof−

obtain c d where f‘{a..b} = {c..d} using continuous-image-closed-interval
assms by meson

moreover then have f a ∈ {c..d} using assms(1) by auto
moreover have f b ∈ {c..d} using assms(1) calculation by auto
moreover have {f a..f b} ⊆ {c..d} using calculation by simp
ultimately show ?thesis by presburger

qed
ultimately show ?thesis by blast

qed

lemma two-x-minus-one-image:
assumes f = (λx::real. 2∗x − 1)
assumes a ≤ b
shows f‘{a..b} = {f a..f b}

proof−
have continuous-on {a..b} f
proof−

have continuous-on {a..b} (λx::real. x) by simp
then have continuous-on {a..b} (λx::real. 2∗x) using continuous-on-mult-const

by blast
thus continuous-on {a..b} f

unfolding assms using continuous-on-translation-eq[of {a..b} −1 (λx::real.
2∗x)] by auto

qed
thus ?thesis using cont-incr-interval-image assms by force

qed

lemma vts-split-path-image:
assumes p = make-polygonal-path vts
assumes p1 = make-polygonal-path vts1
assumes p2 = make-polygonal-path vts2
assumes vts1 = take i vts
assumes vts2 = drop (i−1) vts
assumes n = length vts
assumes 1 ≤ i ∧ i < n

95

assumes x = (2^(i−1) − 1)/(2^(i−1))
shows path-image p1 = p‘{0 ..x} ∧ path-image p2 = p‘{x..1}
using assms

proof(induct i arbitrary: p p1 p2 vts vts1 vts2 n x)
case 0
then show ?case by linarith

next
case (Suc i)
{ assume ∗: Suc i = 1

then obtain a where a: vts1 = [a]
using Suc.prems

by (metis One-nat-def gr-implies-not0 list.collapse list.size(3) take-eq-Nil
take-tl zero-neq-one)

moreover have vts2 = vts using ∗ Suc.prems by force
ultimately have p1 = linepath a a ∧ p2 = p

using Suc.prems make-polygonal-path.simps by meson
moreover have x = 0 using Suc.prems ∗ by simp
moreover have path-image p1 = {a} using calculation by simp
moreover have p‘{0 ..0} = {p 0} by auto
moreover then have p‘{0 ..0} = {a} using Suc.prems

by (metis a gr0-conv-Suc list.discI nth-Cons-0 nth-take pathstart-def poly-
gon-pathstart take-eq-Nil)

moreover have path-image p1 = p‘{0 ..x} using calculation by presburger
moreover have path-image p2 = p‘{x..1} using calculation unfolding path-image-def

by fast
ultimately have ?case by blast

} moreover
{ assume ∗: Suc i > 1

let ?a = vts!0
let ?b = vts!1
let ?l = linepath ?a ?b
let ?L = path-image ?l
let ?tl = tl vts
let ?vts1 ′ = take i ?tl
let ?vts2 ′ = drop (i−1) ?tl
let ?p ′ = make-polygonal-path ?tl
let ?p1 ′ = make-polygonal-path ?vts1 ′

let ?p2 ′ = make-polygonal-path ?vts2 ′

let ?x ′ = ((2 ::real)^(i−1)−1)/(2^(i−1))
let ?P1 ′ = path-image ?p1 ′

let ?P2 ′ = path-image ?p2 ′

have i: 1 ≤ i ∧ i < length ?tl
using Suc.prems ∗ by (metis Suc-eq-plus1 length-tl less-Suc-eq-le less-diff-conv)
then have ih: ?P1 ′ = ?p ′‘{0 ..?x ′} ∧ ?P2 ′ = ?p ′‘{?x ′..1}
using Suc.hyps[of ?p ′ ?tl ?p1 ′ ?vts1 ′ ?p2 ′ ?vts2 ′ length ?tl ?x ′] by presburger

let ?f = λx::real. 2∗x − 1

96

have fx: ?f x = ?x ′

by (metis i Suc.prems(8) bounding-interval-helper1 diff-Suc-1 summation-helper)

moreover have fhalf : ?f (1/2) = 0 by simp
moreover have f1 : ?f 1 = 1 by simp
ultimately have f : ?f‘{x..1} = {?x ′..1} ∧ ?f‘{1/2 ..x} = {0 ..?x ′}

using two-x-minus-one-image by auto
have x: 1/2 ≤ x ∧ x ≤ 1
by (smt (verit) divide-le-eq-1-pos divide-nonneg-nonneg fhalf fx two-realpow-ge-one)

have n ≥ 3 using Suc.prems ∗ by linarith
then have p: p = ?l +++ ?p ′

proof −
have f1 : ∀ vs. (vs::(real, 2) vec list) 6= [] ∨ ¬ 1 < Suc (length vs)

by simp
have 1 < Suc n

using Suc.prems(7) by linarith
then show ?thesis

by (smt (verit) f1 Suc-le-lessD i One-nat-def Suc.prems(6) Suc.prems(7)
Suc-less-eq ‹p = make-polygonal-path vts› hd-conv-nth length-Cons length-tl less-Suc-eq
list.collapse list.exhaust make-polygonal-path.simps(4) nth-Cons-Suc zero-order(3))

qed
have p-to-p ′: ∀ y ≥ 1/2 . p y = (?p ′ ◦ ?f) y
proof clarify

fix y :: real
assume ∗: y ≥ 1/2
{ assume ∗∗: y = 1/2

then have p y = ?b
by (smt (verit) fhalf joinpaths-def linepath-1 ′ p)

moreover have ?f y = 0 using ∗∗ by simp
moreover have ?p ′ 0 = ?b

by (metis i One-nat-def Suc.prems(6) length-greater-0-conv length-tl
list.size(3) nth-tl pathstart-def polygon-pathstart zero-order(3))

ultimately have p y = (?p ′ ◦ ?f) y by simp
} moreover
{ assume ∗∗: y > 1/2

then have p y = ?p ′ (?f y) unfolding p joinpaths-def by simp
then have p y = (?p ′ ◦ ?f) y by force

}
ultimately show p y = (?p ′ ◦ ?f) y using ∗ by fastforce

qed

have {0 ..x} = {0 ..1/2} ∪ {1/2 ..x} using x by (simp add: ivl-disj-un-two-touch(4))
then have p‘{0 ..x} = p‘{0 ..1/2} ∪ p‘{1/2 ..x} by blast
also have ... = ?L ∪ p‘{1/2 ..x}
proof−

97

have ?L ⊆ p‘{0 ..1/2}
proof(rule subsetI)

fix a
assume ∗: a ∈ ?L
then obtain t where t: t ∈ {0 ..1} ∧ ?l t = a unfolding path-image-def

by blast
then have p (t/2) = a unfolding p joinpaths-def by auto
moreover have t/2 ∈ {0 ..1/2} using t by simp
ultimately show a ∈ p‘{0 ..1/2} by blast

qed
moreover have p‘{0 ..1/2} ⊆ ?L
proof(rule subsetI)

fix a
assume ∗: a ∈ p‘{0 ..1/2}
then obtain t where t ∈ {0 ..1/2} ∧ p t = a by blast

moreover then have ?l (2∗t) = p t unfolding p joinpaths-def by presburger
moreover have 2∗t ∈ {0 ..1} using calculation by simp
ultimately show a ∈ ?L unfolding path-image-def by auto

qed
ultimately have ?L = p‘{0 ..1/2} by blast
thus ?thesis by presburger

qed
also have ... = ?L ∪ (?p ′ ◦ ?f)‘{1/2 ..x} using p-to-p ′ by simp
also have ... = ?L ∪ ?p ′‘{0 ..?x ′} using f by (metis image-comp)
also have ... = ?L ∪ ?P1 ′ using ih by blast
also have ... = path-image p1
proof−

have take i (tl vts) 6= [] by (metis i less-zeroE list.size(3) not-one-le-zero
take-eq-Nil2)

thus ?thesis using path-image-cons-union[of p1 vts1 ?p1 ′ ?vts1 ′ ?a ?b]
by (metis ∗ Nitpick.size-list-simp(2) One-nat-def Suc.prems(2) Suc.prems(4)

Suc.prems(6) Suc.prems(7) bot-nat-0 .extremum-strict hd-conv-nth length-greater-0-conv
nth-take nth-tl take-Suc take-tl)

qed
finally have 1 : path-image p1 = p‘{0 ..x} by argo

have p‘{x..1} = (?p ′ ◦ ?f)‘{x..1} using p-to-p ′ x by simp
also have ... = ?p ′‘{?x ′..1} using f by (metis image-comp)
also have ... = ?P2 ′ using ih by presburger
also have ... = path-image p2

using path-image-cons-union
by (metis Suc.prems(3) Suc.prems(5) diff-Suc-1 drop-Suc gr0-implies-Suc i

linorder-neqE-nat not-less-zero not-one-le-zero)
finally have 2 : path-image p2 = p‘{x..1} by argo

have ?case using 1 2 by fast
}
ultimately show ?case using Suc.prems by linarith

qed

98

lemma drop-i-is-loop-free:
fixes vts :: (real^2) list
assumes m = length vts
assumes i ≤ m − 2
assumes vts ′ = drop i vts
assumes p = make-polygonal-path vts
assumes p ′ = make-polygonal-path vts ′

assumes loop-free p
shows loop-free p ′

using assms
proof(induct i arbitrary: vts ′ p ′)

case 0
then show ?case by simp

next
case (Suc i)

let ?vts ′′ = drop i vts
let ?p ′′ = make-polygonal-path ?vts ′′

have ih: loop-free ?p ′′

using Suc.hyps Suc.prems(2) Suc.prems(6) Suc-leD assms(1) assms(4) by
blast

obtain a b where ab: ?vts ′′ = a # vts ′ ∧ b = vts ′ ! 0
by (metis Cons-nth-drop-Suc Suc.prems(3) constant-linepath-is-not-loop-free

drop-eq-Nil ih linorder-not-less make-polygonal-path.simps(1))
then have ?vts ′′ = a # b # (vts ′ ! 1) # (drop 2 vts ′)

by (smt (verit, ccfv-threshold) Cons-nth-drop-Suc Suc.prems(2) Suc.prems(3)
Suc-1 Suc-diff-Suc Suc-le-eq assms(1) diff-Suc-1 diff-is-0-eq drop-drop le-add-diff-inverse
length-drop nat-le-linear not-less-eq-eq zero-less-Suc)

then have ?p ′′ = (linepath a b) +++ p ′

using make-polygonal-path.simps(4)[of a b vts ′ ! 1 drop 2 vts ′] Suc.prems by
(simp add: ab)

moreover have pathfinish (linepath a b) = pathstart p ′

using Suc.prems ab
by (metis constant-linepath-is-not-loop-free ih make-polygonal-path.simps(2)

pathfinish-linepath polygon-pathstart)
ultimately have arc p ′ using simple-path-joinE

by (metis ih make-polygonal-path-gives-path simple-path-def)
then show ?case using arc-imp-simple-path simple-path-def by blast

qed

lemma joinpaths-tl-transform:
assumes f = (λx::real. 2∗x − 1)
assumes pathfinish g1 = pathstart g2
assumes p = g1 +++ g2
assumes x ≥ 1/2
shows p x = g2 (f x)

proof−

99

{ assume x = 1/2
moreover then have f x = 0 using assms by fastforce
ultimately have p x = pathfinish g1 ∧ g2 (f x) = pathfinish g1

using assms unfolding pathfinish-def pathstart-def joinpaths-def by force
then have p x = g2 (f x) using assms unfolding joinpaths-def by simp

} moreover
{ assume x > 1/2

then have p x = g2 (f x) using assms unfolding joinpaths-def by simp
}
ultimately show p x = g2 (f x) using assms by fastforce

qed

lemma joinpaths-tl-image-transform:
assumes f = (λx::real. 2∗x − 1)
assumes pathfinish g1 = pathstart g2
assumes p = g1 +++ g2
assumes 1/2 ≤ a ∧ a ≤ b
shows p‘{a..b} = g2‘{f a..f b}

proof−
have ∀ x ∈ {a..b}. p x = g2 (f x) using assms joinpaths-tl-transform[of f g1 g2

p] by force
then have p‘{a..b} = (g2 ◦ f)‘{a..b} by simp
also have ... = g2‘{f a..f b} using two-x-minus-one-image by (metis assms(1 ,4)

image-comp)
finally show ?thesis .

qed

lemma vts-sublist-path-image:
assumes p = make-polygonal-path vts
assumes p ′ = make-polygonal-path vts ′

assumes vts ′ = take j (drop i vts)
assumes m = length vts
assumes n = length vts ′

assumes k = i + j
assumes k ≤ m − 1 ∧ 2 ≤ j
assumes x1 = (2^i − 1)/(2^i)
assumes x2 = (2^(k−1) − 1)/(2^(k−1))
shows path-image p ′ = p‘{x1 ..x2}
using assms

proof(induct i arbitrary: vts p p ′ vts ′ m k x1 x2)
case 0
then show ?case using vts-split-path-image[of p drop 0 vts p ′ vts ′ - - j m x2]
by (metis (no-types, opaque-lifting) Suc-diff-le add-0 cancel-comm-monoid-add-class.diff-cancel

diff-is-0-eq div-by-1 drop.simps(1) drop-0 le-add-diff-inverse length-drop less-one
linorder-not-le plus-1-eq-Suc pos2 power .simps(1))
next

case (Suc i)

let ?vts-tl = tl vts

100

let ?vts-tl ′ = take j (drop i ?vts-tl)
let ?p-tl = make-polygonal-path ?vts-tl
let ?m ′ = m−1
let ?k ′ = i+j
let ?x1 ′ = (2^i − 1)/(2^i)
let ?x2 ′ = (2^(?k ′−1) − 1)/(2^(?k ′−1))
let ?f = λx. 2∗x − 1

have vts ′ = ?vts-tl ′ using Suc.prems by (metis drop-Suc)
then have p ′ = make-polygonal-path ?vts-tl ′ using Suc.prems by argo
then have ih: path-image p ′ = ?p-tl‘{?x1 ′..?x2 ′}

using Suc.hyps[of ?p-tl ?vts-tl p ′ ?vts-tl ′ ?m ′ ?k ′ ?x1 ′ ?x2 ′] Suc.prems
by (smt (verit, ccfv-SIG) Suc-eq-plus1 add-diff-cancel-right ′ add-leD1 diff-diff-left

diff-is-0-eq drop-Suc le-add-diff-inverse length-tl linorder-not-le not-add-less2)

let ?a = vts!0
let ?b = vts!1
let ?l = linepath ?a ?b
have p: p = ?l +++ ?p-tl
proof−

have length vts ≥ 3 using Suc.prems by linarith
then obtain c w where vts = ?a # ?b # c # w

by (metis Cons-nth-drop-Suc One-nat-def Suc-le-eq drop0 numeral-3-eq-3
order-less-le)

thus ?thesis
using Suc.prems make-polygonal-path.simps(4)[of ?a ?b c w] by (metis

list.sel(3))
qed
moreover have x1 ≥ 1/2 using Suc.prems by (simp add: plus-1-eq-Suc)
moreover have x2 ≥ x1

using Suc.prems
by (smt (verit, best) Nat.diff-add-assoc2 One-nat-def add-Suc-shift add-diff-cancel-left ′

add-mono-thms-linordered-semiring(2) diff-add-cancel dual-order .trans group-cancel.rule0
numeral-One one-le-numeral one-le-power plus-1-eq-Suc power-increasing real-shrink-le
trans-le-add2)

moreover have pathfinish ?l = pathstart ?p-tl
by (metis One-nat-def Suc.prems(4) Suc.prems(6) Suc.prems(7) Suc-neq-Zero

add-is-0 diff-is-0-eq ′ diff-zero length-tl linorder-not-less list.size(3) nth-tl pathfin-
ish-linepath polygon-pathstart)

ultimately have p‘{x1 ..x2} = ?p-tl‘{?f x1 ..?f x2}
using joinpaths-tl-image-transform[of ?f ?l ?p-tl p x1 x2] by presburger

also have ... = ?p-tl‘{?x1 ′..?x2 ′}
by (metis (no-types, lifting) Nat.add-diff-assoc Suc.prems(6−9) add.commute

add-leD1 bounding-interval-helper1 diff-Suc-1 le-add2 nat-1-add-1 plus-1-eq-Suc sum-
mation-helper)

also have ... = path-image p ′ using ih by blast
finally show ?case by argo

qed

101

lemma one-append-simple-path:
fixes vts :: (real^2) list
assumes vts = vts ′ @ [z]
assumes n = length vts
assumes n ≥ 3
assumes p = make-polygonal-path vts
assumes p ′ = make-polygonal-path vts ′

assumes simple-path p
shows simple-path p ′

using assms
proof(induct n arbitrary: vts vts ′ p p ′)

case 0
then show ?case by linarith

next
case (Suc n)
{ assume ∗: Suc n = 3

then obtain a b c where abc: vts = [a, b, c] ∧ vts ′ = [a, b]
using Suc.prems
by (smt (z3) Suc-le-length-iff Suc-length-conv append-Cons diff-Suc-1 drop0

length-0-conv length-append-singleton numeral-3-eq-3)
then have p ′ = linepath a b

by (simp add: Suc.prems(5))
moreover have a 6= b using loop-free-polygonal-path-vts-distinct Suc.prems

by (metis abc butlast-snoc distinct-length-2-or-more simple-path-def)
ultimately have ?case by blast

} moreover
{ assume ∗: Suc n > 3

then obtain a b tl ′ where ab: vts ′ = a # tl ′ ∧ b = tl ′!0 using Suc.prems
by (metis Suc-le-length-iff Suc-le-mono length-append-singleton numeral-3-eq-3)

moreover then have p = make-polygonal-path (a # (tl ′@ [z])) using Suc.prems
by auto

moreover then have p: p = linepath a b +++ make-polygonal-path (tl ′ @ [z])
using make-polygonal-path.simps ab

by (smt (verit, ccfv-threshold) ∗ Cons-nth-drop-Suc One-nat-def Suc.prems(1)
Suc.prems(2) Suc-1 Suc-less-eq append-Cons drop0 length-Cons length-append-singleton
length-greater-0-conv list.size(3) not-numeral-less-one numeral-3-eq-3)

moreover then have simple-path ... using Suc.prems by meson
ultimately have pre-ih: simple-path (make-polygonal-path (tl ′ @ [z]))
using Suc.prems(1) Suc.prems(2) Suc.prems(3) ab tail-of-simple-polygonal-path-is-simple

by simp
then have ih: simple-path (make-polygonal-path tl ′)

using Suc.hyps ∗ Suc.prems(1) Suc.prems(2) ab by force
have simple-path ((linepath a b) +++ make-polygonal-path tl ′)
proof−

let ?g1 = linepath a b
let ?g2 = make-polygonal-path tl ′
let ?G1 = path-image ?g1
let ?G2 = path-image ?g2
have pathfinish ?g2 = last tl ′

102

by (metis constant-linepath-is-not-loop-free ih last-conv-nth make-polygonal-path.simps(1)
polygon-pathfinish simple-path-def)

also have ... = vts ! (length vts − 2)
by (metis ab Suc.prems(1) Suc-1 constant-linepath-is-not-loop-free diff-Suc-1

diff-Suc-Suc ih impossible-Cons last.simps last-conv-nth length-Cons length-append-singleton
list.discI make-polygonal-path.simps(1) nle-le nth-append order-less-le simple-path-def)

finally have pathfinish-g2 : pathfinish ?g2 = vts ! (length vts − 2) .

have pathfinish ?g1 = pathstart ?g2
by (metis ab constant-linepath-is-not-loop-free ih linepath-1 ′ make-polygonal-path.simps(1)

pathfinish-def polygon-pathstart simple-path-def)
moreover have arc ?g1

by (metis Suc.prems(6) p arc-linepath constant-linepath-is-not-loop-free
not-loop-free-first-component simple-path-def)

moreover have arc ?g2
proof−

have pathstart ?g2 = b
using calculation(1) by auto

moreover have b = vts!1
by (metis ab One-nat-def Suc.prems(1) Suc.prems(2) Suc.prems(3)

Suc-le-eq length-append-singleton not-less-eq-eq nth-Cons-Suc nth-append numeral-3-eq-3)
moreover have last tl ′ 6= vts!1

using loop-free-polygonal-path-vts-distinct Suc.prems
by (metis pre-ih ab append-Nil append-butlast-last-id butlast-conv-take but-

last-snoc calculation(2) constant-linepath-is-not-loop-free hd-conv-nth ih index-Cons
index-last list.collapse make-polygonal-path.simps(2) simple-path-def take0)

ultimately have pathfinish ?g2 6= b
using pathfinish-g2 ‹pathfinish (make-polygonal-path tl ′) = last tl ′› by

presburger
thus ?thesis
using ‹pathstart (make-polygonal-path tl ′) = b› arc-simple-path ih by blast

qed
moreover have ?G1 ∩ ?G2 ⊆ {pathstart ?g2}
proof(rule subsetI)

let ?z = ((2 ::real)^(n−1) − 1)/(2^(n−1))
have g1 : ?G1 = p‘{0 ..1/2}
proof−

have take 2 vts = [a, b]
by (smt (verit) ∗ One-nat-def Suc.prems(1) Suc.prems(2) Suc-1 ab ap-

pend-Cons butlast-snoc drop0 drop-Suc-Cons length-append-singleton less-Suc-eq-le
not-less-eq-eq nth-butlast numeral-3-eq-3 plus-1-eq-Suc same-append-eq take-Suc-Cons
take-Suc-eq take-add take-all-iff)

then have ?g1 = make-polygonal-path (take 2 vts)
using make-polygonal-path.simps by presburger

moreover have 1 < n using ∗ by linarith
ultimately have ?G1 = p‘{0 ..(2^(2−1) − 1)/(2^(2−1))}

using vts-split-path-image
by (metis ∗ Suc.prems(2) Suc.prems(4) Suc-1 Suc-leD Suc-lessD

eval-nat-numeral(3) order .refl)

103

thus ?thesis by force
qed
have g2 : ?G2 = p‘{1/2 ..?z}
proof−

have tl ′ = take (n − 1) (drop 1 vts)
using ab Suc.prems(1) Suc.prems(2) by simp

moreover then have ?g2 = make-polygonal-path (take (n − 1) (drop 1
vts)) by blast

ultimately have ?G2 = p‘{(2^1 − 1)/(2^1)..?z}
using vts-sublist-path-image[of p vts ?g2 tl ′ n−1 1 - - n ((2 ::real)^1 −

1)/(2^1) ?z]
by (metis ∗ Suc.prems(1) Suc.prems(2) Suc.prems(4) Suc-eq-plus1

ab add-0 add-Suc-shift add-le-imp-le-diff diff-Suc-Suc diff-zero eval-nat-numeral(3)
length-Cons length-append less-Suc-eq-le list.size(3) order .refl)

thus ?thesis by simp
qed
have 1/2 ≤ ?z

using ∗ bounding-interval-helper1 [of n−1] Suc.prems
by (smt (verit) One-nat-def diff-Suc-Suc less-diff-conv numeral-3-eq-3

one-le-power plus-1-eq-Suc power-one-right power-strict-increasing-iff real-shrink-le
add-2-eq-Suc diff-add-inverse less-trans-Suc numeral-eq-Suc pos2 self-le-power zero-less-diff)

moreover have ?z < 1 by auto
ultimately have z: 1/2 ≤ ?z ∧ ?z < 1 by blast

fix x
assume x ∈ ?G1 ∩ ?G2
then obtain t1 t2 where t1t2 : t1 ∈ {0 ..1/2} ∧ t2 ∈ {1/2 ..?z} ∧ p t1 =

x ∧ p t2 = x
by (smt (verit, del-insts) g1 g2 Int-iff imageE path-image-def)

moreover have (t1 = t2) ∨ (t1 = 0 ∧ t2 = 1) ∨ (t1 = 1 ∧ t2 = 0)
proof−

have t1 ∈ {0 ..1} ∧ t2 ∈ {0 ..1}
by (meson t1t2 z atLeastAtMost-iff dual-order .trans less-eq-real-def)

thus ?thesis
using Suc.prems(6) unfolding simple-path-def loop-free-def using t1t2

by presburger
qed
moreover have t1 = 1/2 using calculation by force
ultimately have x = pathstart ?g2

by (metis ab constant-linepath-is-not-loop-free dual-order .refl eq-divide-eq-numeral1 (1)
ih joinpaths-def make-polygonal-path.simps(1) mult.commute p pathfinish-def pathfin-
ish-linepath polygon-pathstart simple-path-def zero-neq-numeral)

thus x ∈ {pathstart ?g2} by simp
qed

ultimately show ?thesis using arc-join-eq ih by (metis arc-imp-simple-path)
qed
moreover have vts ′ = a # tl ′ using Suc.prems ab by argo
moreover have p ′ = (linepath a b) +++ make-polygonal-path tl ′
proof −

104

have Suc (length tl ′) = length vts ′ by (simp add: ab)
then show ?thesis

by (metis (no-types) ∗ Cons-nth-drop-Suc Suc.prems(1) Suc.prems(2)
Suc.prems(5) Suc-lessD ab drop-0 length-append-singleton make-polygonal-path.simps(4)
not-less-eq numeral-3-eq-3)

qed
ultimately have ?case by blast

}
ultimately show ?case using Suc.prems by linarith

qed

lemma take-i-is-loop-free:
fixes vts :: (real^2) list
assumes n = length vts
assumes 2 ≤ i ∧ i ≤ n
assumes vts ′ = take i vts
assumes p = make-polygonal-path vts
assumes p ′ = make-polygonal-path vts ′

assumes loop-free p
shows loop-free p ′

using assms
proof(induct n−i arbitrary: vts ′ i p p ′)

case 0
moreover then have p = p ′ by auto
ultimately show ?case by argo

next
case (Suc x)

let ?i ′ = i+1
let ?q-vts = take (i+1) vts
let ?q = make-polygonal-path ?q-vts

have n−?i ′ = x using Suc.hyps(2) by linarith
then have loop-free ?q using Suc.hyps Suc.prems(2) Suc.prems(4) Suc.prems(6)

assms(1) by auto
moreover obtain z where ?q = make-polygonal-path (vts ′ @ [z])

unfolding Suc.prems(3)
by (metis Suc.hyps(2) Suc-eq-plus1 assms(1) take-Suc-conv-app-nth zero-less-Suc

zero-less-diff)
ultimately show loop-free p ′

unfolding Suc.prems using one-append-simple-path unfolding simple-path-def
by (metis One-nat-def Suc.prems(2) Suc-1 add-diff-cancel-right ′ append-take-drop-id

assms(1) diff-diff-cancel length-append length-append-singleton length-drop make-polygonal-path-gives-path
not-less-eq-eq numeral-3-eq-3)
qed

lemma sublist-is-loop-free:
fixes vts :: (real^2) list
assumes p = make-polygonal-path vts

105

assumes p ′ = make-polygonal-path vts ′

assumes loop-free p
assumes m = length vts
assumes n = length vts ′

assumes sublist vts ′ vts
assumes n ≥ 2 ∧ m ≥ 2
shows loop-free p ′

proof−
obtain pre post where vts: vts = pre @ vts ′ @ post using assms(6) unfolding

sublist-def by blast
then have vts ′ @ post = drop (length pre) vts using vts by simp
moreover have vts ′ = take (length vts ′) (vts ′ @ post) using vts by simp
moreover have loop-free (make-polygonal-path (vts ′ @ post))

using drop-i-is-loop-free assms calculation
by (smt (verit, del-insts) One-nat-def Suc-1 Suc-leD diff-diff-cancel drop-all

le-diff-iff ′ length-append length-drop list.size(3) nat-le-linear not-numeral-le-zero
numeral-3-eq-3 trans-le-add1)

ultimately show ?thesis
using take-i-is-loop-free assms
by (metis sublist-append-rightI sublist-length-le)

qed

lemma diff-points-path-image-set-property:
fixes a b:: real^2
assumes a 6= b
shows path-image (linepath a b) 6= {a, b}

proof −
have not-a: (linepath a b) (1/2) 6= a
by (smt (verit) add-diff-cancel-left ′ assms divide-eq-0-iff linepath-def scaleR-cancel-left

scaleR-collapse)
have not-b: (linepath a b) (1/2) 6= b
by (smt (verit, ccfv-SIG) add-diff-cancel-right ′ assms divide-eq-1-iff linepath-def

scaleR-cancel-left scaleR-collapse)
have (linepath a b) (1/2) ∈ path-image (linepath a b)

unfolding path-image-def by simp
then show ?thesis using not-a not-b by blast

qed

lemma polygonal-path-vertex-t:
assumes p = make-polygonal-path vts
assumes n = length vts
assumes n ≥ 1
assumes 0 ≤ i ∧ i < n − 1
assumes x = (2^i − 1)/(2^i)
shows vts!i = p x
using assms

proof(induct i arbitrary: p vts n x)
case 0
then show ?case

106

by (metis bot-nat-0 .extremum cancel-comm-monoid-add-class.diff-cancel diff-is-0-eq
div-0 less-nat-zero-code list.size(3) pathstart-def polygon-pathstart power-0)
next

case (Suc i)

let ?vts ′ = tl vts
let ?p ′ = make-polygonal-path ?vts ′

let ?x ′ = (2^i − 1)/(2^i)

have p x = ?p ′ ?x ′

proof−
let ?a = vts!0
let ?b = vts!1
let ?l = linepath ?a ?b
have n ≥ 3 using Suc.prems by linarith
then have length ?vts ′ ≥ 2 by (simp add: Suc.prems(2))
then have p = ?l +++ ?p ′

using Suc.prems make-polygonal-path.simps(4)[of ?a ?b ?vts ′!1 drop 2 ?vts ′]
by (metis (no-types, opaque-lifting) Cons-nth-drop-Suc Suc-1 bot-nat-0 .not-eq-extremum

diff-Suc-1 diff-is-0-eq drop-0 drop-Suc less-Suc-eq zero-less-diff)
moreover have pathfinish ?l = pathstart ?p ′

by (metis One-nat-def ‹2 ≤ length (tl vts)› length-greater-0-conv nth-tl or-
der-less-le-trans pathfinish-linepath polygon-pathstart pos2)

moreover have (λx::real. 2 ∗ x − 1) x = ?x ′

using Suc.prems(5) Suc-eq-plus1 bounding-interval-helper1 diff-Suc-1 le-add2
summation-helper

by presburger
ultimately show ?thesis using joinpaths-tl-transform[of λx. 2∗x − 1 ?l ?p ′ p

x]
by (smt (verit, del-insts) divide-nonneg-nonneg half-bounded-equal two-realpow-ge-one)

qed
moreover have vts!(i+1) = ?vts ′!i using Suc.prems by (simp add: nth-tl)
moreover have ?vts ′!i = ?p ′ ?x ′ using Suc.hyps Suc.prems by force
ultimately show ?case by simp

qed

lemma loop-free-split-int:
assumes p = make-polygonal-path vts ∧ loop-free p
assumes vts1 = take i vts
assumes vts2 = drop (i−1) vts
assumes c1 = make-polygonal-path vts1
assumes c2 = make-polygonal-path vts2
assumes n = length vts
assumes 1 ≤ i ∧ i < n
shows (path-image c1) ∩ (path-image c2) ⊆ {pathstart c1 , pathstart c2}
(is ?C1 ∩ ?C2 ⊆ {pathstart c1 , pathstart c2})

proof(rule subsetI)
let ?t = ((2 ::real)^(i−1) − 1)/(2^(i−1))

107

fix x
assume x ∈ ?C1 ∩ ?C2
moreover have c1c2 : ?C1 = p‘{0 ..?t} ∧ ?C2 = p‘{?t..1}

using vts-split-path-image assms polygon-of-def by metis
ultimately obtain t1 t2 where t1t2 : t1 ∈ {0 ..?t} ∧ t2 ∈ {?t..1} ∧ p t1 = x
∧ p t2 = x by auto

moreover have t1 ∈ {0 ..1} ∧ t2 ∈ {0 ..1} using calculation by force
moreover have (t1 = t2) ∨ (t1 = 0 ∧ t2 = 1)
using assms(1) calculation unfolding polygon-of-def polygon-def simple-path-def

loop-free-def
by fastforce

ultimately have x ∈ {p ?t, p 0} by fastforce
moreover have p ?t = pathstart c2

using assms polygonal-path-vertex-t
by (smt (verit, ccfv-SIG) Cons-nth-drop-Suc diff-less-mono le-eq-less-or-eq

length-drop less-imp-diff-less less-trans-Suc less-zeroE linorder-neqE-nat list.size(3)
nth-Cons-0 numeral-1-eq-Suc-0 numerals(1) polygon-of-def polygon-pathstart)

moreover have p 0 = pathstart c1 using assms
by (metis One-nat-def diff-is-0-eq diff-zero linorder-not-less nth-take path-

start-def polygon-pathstart take-eq-Nil zero-less-Suc)
ultimately show x ∈ {pathstart c1 , pathstart c2} by blast

qed

lemma loop-free-arc-split-int:
assumes p = make-polygonal-path vts ∧ loop-free p ∧ arc p
assumes vts1 = take i vts
assumes vts2 = drop (i−1) vts
assumes c1 = make-polygonal-path vts1
assumes c2 = make-polygonal-path vts2
assumes n = length vts
assumes 1 ≤ i ∧ i < n
shows (path-image c1) ∩ (path-image c2) ⊆ {pathstart c2}
(is ?C1 ∩ ?C2 ⊆ {pathstart c2})

proof(rule subsetI)
let ?t = ((2 ::real)^(i−1) − 1)/(2^(i−1))

fix x
assume x ∈ ?C1 ∩ ?C2
moreover have c1c2 : ?C1 = p‘{0 ..?t} ∧ ?C2 = p‘{?t..1}

using vts-split-path-image assms polygon-of-def by metis
ultimately obtain t1 t2 where t1t2 : t1 ∈ {0 ..?t} ∧ t2 ∈ {?t..1} ∧ p t1 = x
∧ p t2 = x by auto

moreover have t1 ∈ {0 ..1} ∧ t2 ∈ {0 ..1} using calculation by force
moreover have (t1 = t2) ∨ (t1 = 0 ∧ t2 = 1)
using assms(1) calculation unfolding polygon-of-def polygon-def simple-path-def

loop-free-def
by fastforce

moreover then have t1 = t2
using assms(1) unfolding arc-def using calculation(1) inj-on-contraD by

108

fastforce
ultimately have x ∈ {p ?t} by fastforce
moreover have p ?t = pathstart c2

using assms polygonal-path-vertex-t
by (smt (verit, ccfv-SIG) Cons-nth-drop-Suc diff-less-mono le-eq-less-or-eq

length-drop less-imp-diff-less less-trans-Suc less-zeroE linorder-neqE-nat list.size(3)
nth-Cons-0 numeral-1-eq-Suc-0 numerals(1) polygon-of-def polygon-pathstart)

ultimately show x ∈ {pathstart c2} by fast
qed

lemma loop-free-append:
assumes p = make-polygonal-path vts
assumes p1 = make-polygonal-path vts1
assumes p2 = make-polygonal-path vts2
assumes vts = vts1 @ (tl vts2)
assumes loop-free p1 ∧ loop-free p2
assumes path-image p1 ∩ path-image p2 ⊆ {pathstart p1 , pathstart p2}
assumes last vts2 6= hd vts1 −→ path-image p1 ∩ path-image p2 ⊆ {pathstart

p2}
assumes last vts1 = hd vts2
assumes arc p1 ∧ arc p2
shows loop-free p
using assms

proof(induct length vts1 arbitrary: p p1 p2 vts vts1 vts2 rule: less-induct)
case less
have 1 : length vts1 ≥ 2

using less
by (metis Suc-1 arc-distinct-ends constant-linepath-is-not-loop-free diff-is-0-eq ′

make-polygonal-path.simps(1) not-less-eq-eq polygon-pathfinish polygon-pathstart)
moreover have length vts2 ≥ 2

using less.prems
by (metis One-nat-def Suc-1 Suc-leI arc-distinct-ends diff-Suc-1 length-greater-0-conv

make-polygonal-path.simps(1) nat-less-le pathfinish-linepath pathstart-linepath poly-
gon-pathfinish polygon-pathstart)

ultimately have length vts ≥ 3 using less assms(4) by auto
{ assume ∗: length vts1 = 2

then obtain a b where vts1 = [a, b]
by (metis 1 Cons-nth-drop-Suc One-nat-def Suc-1 drop0 drop-eq-Nil lessI pos2)
then have p1 : p1 = linepath a b

using less make-polygonal-path.simps(3) by metis
have p: p = p1 +++ p2

using p1 less
by (smt (verit) ‹vts1 = [a, b]› append-Cons assms(4) constant-linepath-is-not-loop-free

last-ConsL last-ConsR list.exhaust-sel list.inject list.simps(3) make-polygonal-path.elims
self-append-conv2)

have b: pathstart p2 ∈ path-image p1 ∩ path-image p2
by (metis IntI less(3 ,4 ,6 ,9) constant-linepath-is-not-loop-free hd-conv-nth

last-conv-nth make-polygonal-path.simps(1) pathfinish-in-path-image pathstart-in-path-image
polygon-pathfinish polygon-pathstart)

109

{ assume pathstart p1 = pathfinish p2
then have ?case using simple-path-join-loop-eq[of p2 p1] less.prems

by (metis make-polygonal-path-gives-path p path-join-eq simple-path-def)
} moreover
{ assume ∗∗: pathstart p1 6= pathfinish p2

then have path-image p1 ∩ path-image p2 = {pathstart p2}
using less.prems b

by (metis constant-linepath-is-not-loop-free empty-subsetI hd-conv-nth in-
sert-subset last-conv-nth make-polygonal-path.simps(1) polygon-pathfinish polygon-pathstart
subset-antisym)

then have ?case
using arc-join-eq[of p1 p2]

by (metis less(2 ,4 ,10) arc-imp-simple-path arc-join-eq-alt make-polygonal-path-gives-path
p path-join-path-ends simple-path-def)

}
ultimately have ?case by blast

} moreover
{ assume ∗: length vts1 > 2

then have len-p1 : length vts1 ≥ 3 by linarith
then obtain a b vts-tl where ab: vts = a # vts-tl ∧ b = hd vts-tl

by (metis ‹3 ≤ length vts› length-0-conv list.collapse not-numeral-le-zero)
have vts1-char : vts1 = (vts1 ! 0) # (vts1 ! 1) # (vts1 ! 2) # (drop 3 vts1)

using len-p1
by (metis 1 Cons-nth-drop-Suc One-nat-def Suc-1 drop0 length-greater-0-conv

linorder-not-less list.size(3) not-less-eq-eq not-numeral-le-zero numeral-3-eq-3)
then have tail-vts1-char : tl vts1 = (vts1 ! 1) # (vts1 ! 2) # (drop 3 vts1)

by (metis list.sel(3))

let ?l = linepath a b
let ?vts1-tl = tl vts1
let ?p1-tl = make-polygonal-path ?vts1-tl
let ?vts2-tl = tl vts2
let ?p2-tl = make-polygonal-path ?vts2-tl
let ?p-tl = make-polygonal-path vts-tl

have p: p = ?l +++ ?p-tl
unfolding less.prems(1)

by (smt (verit, ccfv-SIG) Suc-le-length-iff ‹3 ≤ length vts› ab list.discI
list.sel(1) list.sel(3) make-polygonal-path.elims numeral-3-eq-3)

have p1 : p1 = ?l +++ ?p1-tl
using ab unfolding less.prems(2)

by (smt (verit, ccfv-SIG) ∗ Nitpick.size-list-simp(2) One-nat-def Suc-1 Suc-le-eq
hd-append2 less.prems(4) list.sel(1) list.sel(3) make-polygonal-path.elims nat-less-le
tl-append2)

have p1-img: path-image ?l ∩ path-image ?p1-tl = {pathstart ?p1-tl}
by (metis arc-join-eq-alt less.prems(2) less.prems(9) make-polygonal-path-gives-path

p1 path-join-path-ends)

110

have vts-tl = ?vts1-tl @ (tl vts2)
using less.prems(4) ab

by (metis ∗ length-greater-0-conv list.sel(3) order .strict-trans pos2 tl-append2)
moreover have loop-free ?p1-tl ∧ loop-free p2

using ‹3 ≤ length vts1 › less.prems(2) less.prems(5) sublist-is-loop-free by
fastforce

moreover have path-image ?p1-tl ∩ path-image p2 ⊆ {pathstart p2}
proof−

have path-image ?p1-tl ⊆ path-image p1
by (metis (no-types, opaque-lifting) ∗ Suc-1 Suc-lessD length-tl less.prems(2)

list.collapse list.size(3) order .refl path-image-cons-union sup.bounded-iff zero-less-diff
zero-order(3))

then have path-image ?p1-tl ∩ path-image p2 ⊆ {pathstart p1 , pathstart p2}
using less by blast

moreover have pathstart p1 /∈ path-image ?p1-tl
proof(rule ccontr)

assume ¬ pathstart p1 /∈ path-image ?p1-tl
then have pathstart p1 ∈ path-image ?p1-tl by blast
thus False

by (metis (no-types, lifting) IntI arc-def arc-simple-path less(10) make-polygonal-path-gives-path
p1 p1-img path-join-path-ends pathstart-in-path-image pathstart-join simple-path-joinE
singletonD)

qed
ultimately have path-image ?p1-tl ∩ path-image p2 ⊆ {pathstart p2} by

blast
thus ?thesis by blast

qed
moreover then have last vts2 6= hd ?vts1-tl
−→ path-image ?p1-tl ∩ path-image p2 ⊆ {pathstart p2} by blast

moreover have last ?vts1-tl = hd vts2
by (metis ∗ Suc-1 drop-Nil drop-Suc-Cons last-drop last-tl less.prems(8)

list.collapse)
moreover have arc ?p1-tl ∧ arc p2

by (smt (verit, best) ∗ Nitpick.size-list-simp(2) Suc-1 arc-imp-simple-path
constant-linepath-is-not-loop-free diff-Suc-Suc diff-is-0-eq leD length-greater-0-conv
length-tl less.prems(2) less.prems(5) less.prems(9) list.sel(3) make-polygonal-path.elims
make-polygonal-path-gives-path order .strict-trans path-join-path-ends pos2 simple-path-joinE)

ultimately have ih1 : loop-free ?p-tl
using less.hyps[of ?vts1-tl ?p-tl vts-tl ?p1-tl p2 vts2] ∗ less.prems(3) by

fastforce

have p-tl-img: path-image ?p-tl = path-image ?p1-tl ∪ path-image p2
by (metis (no-types, lifting) ∗ Suc-1 Suc-le-eq ‹2 ≤ length vts2 › ‹last (tl vts1) =

hd vts2 › ‹vts-tl = tl vts1 @ tl vts2 › hd-conv-nth last-conv-nth length-greater-0-conv
length-tl less.prems(3) less-diff-conv make-polygonal-path-image-append-alt order-less-le-trans
path-image-join plus-1-eq-Suc polygon-pathfinish polygon-pathstart pos2)

have 1 : length [a, b] < length vts1 using ‹3 ≤ length vts1 › by fastforce
moreover have 2 : p = make-polygonal-path vts using less.prems(1) by auto

111

moreover have 3 : ?l = make-polygonal-path [a, b] by simp
moreover have 4 : ?p-tl = make-polygonal-path vts-tl using less by simp
moreover have 5 : vts = [a, b] @ tl vts-tl

using ab ‹3 ≤ length vts› append-eq-Cons-conv by fastforce
moreover have 6 : loop-free ?l ∧ loop-free ?p-tl
proof−

have sublist [a, b] vts1
by (metis (no-types, opaque-lifting) 1 Cons-nth-drop-Suc Suc-lessD ab ap-

pend-Cons drop0 length-Cons less.prems(4) list.sel(1) list.sel(3) list.size(3) sub-
list-take take0 take-Suc-Cons)

then have loop-free (make-polygonal-path [a, b])
using sublist-is-loop-free ∗ less.prems(2) less.prems(5) by fastforce

then have loop-free ?l using make-polygonal-path.simps(3) by simp
thus ?thesis using ih1 by simp

qed
moreover have 9 : last [a, b] = hd vts-tl by (simp add: ab)
moreover have 10 : arc ?l ∧ arc ?p-tl
proof−

have pathstart ?p-tl = b
by (metis 6 ab constant-linepath-is-not-loop-free hd-conv-nth make-polygonal-path.simps(1)

polygon-pathstart)
moreover have pathfinish ?p-tl 6= b
proof(rule ccontr)

assume ¬ pathfinish ?p-tl 6= b
have pathfinish ?p-tl = pathfinish p2

by (smt (verit) 5 9 Nil-tl ‹2 ≤ length vts2 › ‹¬ pathfinish (make-polygonal-path
vts-tl) 6= b› ab arc-distinct-ends last-append last-conv-nth last-tl length-tl less.prems(3)
less.prems(4) less.prems(9) list.size(3) not-numeral-le-zero polygon-pathfinish poly-
gon-pathstart)

moreover have b ∈ path-image p1
by (metis list.size(3)1 Cons-nth-drop-Suc Suc-lessD UnCI ab append-eq-conv-conj

drop0 hd-append2 hd-conv-nth length-Cons less.prems(2) less.prems(4) list.distinct(1)
list.sel(3) path-image-cons-union pathstart-in-path-image polygon-pathstart tl-append2)

moreover have b 6= pathstart p1
by (metis (no-types, lifting) 1 6 ab constant-linepath-is-not-loop-free

dual-order .strict-trans hd-append2 hd-conv-nth length-greater-0-conv less.prems(2)
less.prems(4) list.sel(1) list.size(3) polygon-pathstart)

moreover have b 6= pathfinish p2
by (metis (no-types, lifting) Int-insert-right-if1 arc-distinct-ends cal-

culation(2) calculation(3) insert-absorb insert-iff insert-not-empty less.prems(6)
less.prems(9) pathfinish-in-path-image subset-iff)

ultimately show False
using ‹¬ pathfinish (make-polygonal-path vts-tl) 6= b› by fastforce

qed
ultimately have pathstart ?p-tl 6= pathfinish ?p-tl by simp
then have arc ?p-tl

using ih1 arc-def loop-free-cases make-polygonal-path-gives-path by metis
moreover have arc ?l by (metis 6 arc-linepath constant-linepath-is-not-loop-free)

ultimately show ?thesis by blast

112

qed
moreover have 7 : path-image ?l ∩ path-image ?p-tl ⊆ {pathstart ?l, pathstart

?p-tl}
proof−

have path-image ?l ⊆ path-image p1
by (metis Un-iff ‹loop-free (make-polygonal-path (tl vts1)) ∧ loop-free

p2 › ‹vts-tl = tl vts1 @ tl vts2 › ab constant-linepath-is-not-loop-free hd-append2
hd-conv-nth make-polygonal-path.simps(1) p1 path-image-join pathfinish-linepath
polygon-pathstart subsetI)

then have path-image ?l ∩ path-image p2 ⊆ {pathstart p1 , pathstart p2}
using less.prems(6) by auto

moreover have pathstart p2 /∈ path-image ?l
by (smt (verit, ccfv-threshold) 10 Int-insert-left-if1 ‹arc (make-polygonal-path

(tl vts1)) ∧ arc p2 › ‹last (tl vts1) = hd vts2 › ‹loop-free (make-polygonal-path (tl
vts1)) ∧ loop-free p2 › arc-def arc-distinct-ends arc-join-eq-alt constant-linepath-is-not-loop-free
hd-conv-nth insert-absorb last-conv-nth less.prems(3) less.prems(9) make-polygonal-path.simps(1)
p1 path-join-eq pathfinish-in-path-image polygon-pathfinish polygon-pathstart single-
ton-insert-inj-eq ′)

ultimately have path-image ?l ∩ path-image ?p-tl ⊆ {pathstart p1 , pathstart
?p1-tl}

using p1-img p-tl-img by blast
moreover have pathstart ?p1-tl = pathstart ?p-tl
by (metis 2 less.prems(2) make-polygonal-path-gives-path p p1 path-join-path-ends)
moreover have pathstart p1 = pathstart ?l by (simp add: p1)
ultimately show ?thesis by argo

qed
moreover have 8 : last vts-tl 6= hd [a, b]
−→ path-image ?l ∩ path-image ?p-tl ⊆ {pathstart ?p-tl}

proof clarify
fix x
assume a1 : last vts-tl 6= hd [a, b]
assume a2 : x ∈ path-image ?l
assume a3 : x ∈ path-image ?p-tl

have hd vts1 6= last vts2
using less.prems

by (metis a1 ‹vts-tl = tl vts1 @ tl vts2 › ab arc-distinct-ends constant-linepath-is-not-loop-free
hd-append2 last-appendR last-tl length-tl list.sel(1) list.size(3) make-polygonal-path.simps(1)
polygon-pathfinish polygon-pathstart)

then have p1-p2-int: path-image p1 ∩ path-image p2 ⊆ {pathstart p2}
using less.prems by argo

have x 6= pathstart ?l
proof(rule ccontr)

assume ∗∗: ¬ x 6= pathstart ?l
have pathstart ?l /∈ path-image ?p1-tl

by (metis Int-iff arc-distinct-ends arc-join-eq-alt empty-iff insertE less.prems(2)
less.prems(9) make-polygonal-path-gives-path p1 path-join-path-ends pathstart-in-path-image)

then have pathstart ?l ∈ path-image p2 using p1-img p-tl-img ∗∗ a3 by

113

blast
then have pathstart ?l ∈ path-image p1 ∩ path-image p2

by (metis IntI p1 pathstart-in-path-image pathstart-join)
moreover have pathstart ?l 6= pathstart p2

by (metis arc-distinct-ends constant-linepath-is-not-loop-free hd-conv-nth
last-conv-nth less.prems(2) less.prems(3) less.prems(5) less.prems(8) less.prems(9)
make-polygonal-path.simps(1) p1 pathstart-join polygon-pathfinish polygon-pathstart)

ultimately show False using p1-p2-int by blast
qed
moreover have x = pathstart ?l ∨ x = pathstart ?p-tl using 7 a2 a3 by

blast
ultimately show x = pathstart ?p-tl by fast

qed
ultimately have ?case using less.hyps[of [a, b] p vts ?l ?p-tl vts-tl] by blast

}
ultimately show ?case using less 1 by linarith

qed

lemma sublist-path-image-subset:
assumes sublist vts1 vts2
assumes length vts1 ≥ 1
shows path-image (make-polygonal-path vts1) ⊆ path-image (make-polygonal-path

vts2)
proof−

let ?p1 = make-polygonal-path vts1
let ?p2 = make-polygonal-path vts2
let ?m = length vts1
let ?n = length vts2
have n-geq-m: ?n ≥ ?m by (simp add: assms(1) sublist-length-le)

have ?thesis if ∗: length vts1 = 1
proof−

have path-image ?p1 = {vts1 !0}
by (metis Cons-nth-drop-Suc One-nat-def closed-segment-idem drop0 drop-eq-Nil

le-numeral-extra(4) make-polygonal-path.simps(2) path-image-linepath that zero-less-one)
moreover have vts1 !0 ∈ set vts2

by (metis assms(1) less-numeral-extra(1) nth-mem set-mono-sublist subsetD
that)

ultimately show ?thesis
using vertices-on-path-image by force

qed
moreover have ?thesis if ∗: length vts1 ≥ 2
proof−

obtain pre post where sublist: vts2 = pre @ vts1 @ post
using assms(1) unfolding sublist-def by blast

let ?i = length pre
let ?j = length vts1
let ?k = ?i + ?j
let ?x1 = (2^?i − 1)/2^(?i)::real

114

let ?x2 = (2^(?k−1) − 1)/(2^(?k−1))::real
let ?x = (2 ^ (?i − 1) − 1) / 2 ^ (?i − 1)::real
have path-image ?p1 = ?p2 ‘ {?x1 ..?x2} if ∗∗: length post ≥ 1

using sublist ∗ ∗∗ vts-sublist-path-image[of ?p2 vts2 ?p1 vts1 ?j ?i ?n ?m ?k
?x1 ?x2]

by fastforce
moreover have path-image ?p1 = ?p2 ‘ {?x1 ..1} if ∗∗: length post = 0
proof−

have sublist: vts2 = pre @ vts1 using ∗∗ sublist by blast
moreover have vts1 = drop ?i vts2 using sublist ∗ by simp
moreover have 1 ≤ ?i + 1 ∧ ?i + 1 < length vts2 using sublist ∗ ∗∗ by

simp
ultimately show ?thesis
using vts-split-path-image[of ?p2 vts2 - - ?p1 vts1 ?i + 1 ?n ?x1] add-diff-cancel-right ′

by metis
qed

moreover have ?p2 ‘ {?x1 ..?x2} ⊆ path-image ?p2 ∧ ?p2 ‘ {?x1 ..1} ⊆
path-image ?p2

proof−
have {?x1 ..?x2} ⊆ {0 ..1} ∧ {?x1 ..1} ⊆ {0 ..1} by simp
thus ?thesis unfolding path-image-def by blast

qed
ultimately show ?thesis by (metis less-one linorder-not-le)

qed
ultimately show ?thesis using assms by linarith

qed

lemma integral-on-edge-subset-integral-on-path:
assumes p = make-polygonal-path vts and

(i::int) ∈ {0 ..<((length vts) − 1)} and
x = vts!i and
y = vts!(i+1)

shows {v. integral-vec v ∧ v ∈ path-image (linepath x y)}
⊆ {v. integral-vec v ∧ v ∈ path-image p}

using assms edge-subset-path-image by blast

lemma sublist-pair-integral-subset-integral-on-path:
assumes p = make-polygonal-path vts and

sublist [x, y] vts
shows {v. integral-vec v ∧ v ∈ path-image (linepath x y)}

⊆ {v. integral-vec v ∧ v ∈ path-image p}
using assms integral-on-edge-subset-integral-on-path

proof−
obtain pre post where vts: vts = pre @ [x, y] @ post using assms(2) sublist-def

by blast
let ?i = length pre
have x = vts!?i using vts by simp
moreover have y = vts!(?i + 1)

by (metis vts add.right-neutral append-Cons nth-Cons-Suc nth-append-length

115

nth-append-length-plus plus-1-eq-Suc)
moreover have ?i ∈ {0 ..<((length vts) − 1)} using vts by force
ultimately show ?thesis using assms(1) integral-on-edge-subset-integral-on-path

by auto
qed

lemma sublist-integral-subset-integral-on-path:
assumes length ell ≥ 2
assumes p = make-polygonal-path vts and

sublist ell vts
shows {v. integral-vec v ∧ v ∈ path-image (make-polygonal-path ell)}

⊆ {v. integral-vec v ∧ v ∈ path-image p}
proof−

obtain pre post where vts: vts = pre @ ell @ post using assms(3) sublist-def
by blast

then have len-vts: length vts ≥ 2
using assms(1)
by auto

let ?i = length pre
have v ∈ path-image p if ∗: v ∈ path-image (make-polygonal-path ell) for v
proof −

have ∃ j::nat. v ∈ path-image (linepath (ell ! j) (ell ! (j+1))) ∧ j+1 < length
ell

using ∗ polygonal-path-image-linepath-union assms(1)
by (meson less-diff-conv make-polygonal-path-image-property)

then obtain j where v-in: v ∈ path-image (linepath (ell ! j) (ell ! (j+1)))
j+1 < length ell

by auto
then have ell-at: ell ! j = vts ! (j + length pre) ∧ ell ! (j+1) = vts ! (j + 1

+ length pre)
using vts
by (simp add: nth-append)

then have v-in2 : v ∈ path-image (linepath (vts ! (j + length pre)) (vts ! (j +
length pre + 1)))

using v-in(1) by simp
have j + 1 + length pre < length vts

using ell-at v-in(2) vts by auto
then have j-plus: j + length pre < length vts − 1

by auto
then show ?thesis using v-in2 linepaths-subset-make-polygonal-path-image[OF

len-vts j-plus] assms(1)
assms(2) by auto

qed
then show ?thesis by blast

qed

13 Reversing Polygonal Path Vertex List
lemma rev-vts-path-image:

116

shows path-image (make-polygonal-path (rev vts)) = path-image (make-polygonal-path
vts)
proof −

{ assume length vts ≤ 1
then have ?thesis
by (smt (verit, best) One-nat-def Suc-length-conv le-SucE le-zero-eq length-0-conv

rev.simps(1) rev-singleton-conv)
} moreover
{ fix x

assume ∗: x ∈ path-image (make-polygonal-path (rev vts)) ∧ length vts ≥ 2
then obtain k where k-prop: k<length (rev vts) − 1 ∧ x ∈ path-image (linepath

(rev vts ! k) (rev vts ! (k + 1)))
using make-polygonal-path-image-property[of rev vts] by auto

have p1 : rev vts ! k = vts ! (length vts − k − 1)
using rev-nth
by (metis Suc-lessD ‹k < length (rev vts) − 1 ∧ x ∈ path-image (linepath

(rev vts ! k) (rev vts ! (k + 1)))› add.commute diff-diff-left length-rev less-diff-conv
plus-1-eq-Suc)

have p2 : rev vts ! (k + 1) = vts ! (length vts − k − 2)
using rev-nth[of k+1 vts] k-prop
by force

then have x ∈ path-image (linepath (vts ! (length vts − k − 1)) (vts ! (length
vts − k − 2)))

using k-prop p1 p2 by auto
then have x ∈ path-image (linepath (vts ! (length vts − k − 2)) (vts ! (length

vts − k − 1)))
using reversepath-linepath path-image-reversepath
by metis

then have x ∈ path-image (make-polygonal-path vts)
using linepaths-subset-make-polygonal-path-image ∗ k-prop

by (smt (verit, best) Nat.diff-add-assoc add.commute add-diff-cancel-left ′

diff-le-self length-rev less-Suc-eq less-diff-conv linorder-not-less nat-1-add-1 nat-neq-iff
plus-1-eq-Suc subsetD)

} moreover
{ fix x

assume ∗: x ∈ path-image (make-polygonal-path vts) ∧ length vts ≥ 2
then obtain k where k-prop: k<length vts − 1 ∧ x ∈ path-image (linepath

(vts ! k) (vts ! (k + 1)))
using make-polygonal-path-image-property[of vts] by auto

have p1 : vts ! k = (rev vts) ! (length vts − k − 1)
using rev-nth k-prop

by (metis Suc-eq-plus1 Suc-lessD diff-diff-left length-rev less-diff-conv rev-rev-ident)
have p2 : vts ! (k + 1) = (rev vts) ! (length vts − k − 2)

using rev-nth[of k+1]
by (smt (verit) Suc-eq-plus1 add-2-eq-Suc ′ diff-diff-left k-prop length-rev

less-diff-conv rev-rev-ident)
then have x ∈ path-image (linepath (rev vts ! (length vts − k − 2)) (rev vts !

(length vts − k − 1)))
using reversepath-linepath path-image-reversepath

117

by (metis k-prop p1)
then have x ∈ path-image (make-polygonal-path (rev vts))

using linepaths-subset-make-polygonal-path-image k-prop ∗
by (smt (verit, best) Suc-1 Suc-diff-Suc Suc-eq-plus1 Suc-le-eq Suc-lessD

bot-nat-0 .not-eq-extremum diff-commute diff-diff-left diff-less length-rev less-numeral-extra(1)
subsetD zero-less-diff)

}
ultimately show ?thesis by force

qed

lemma rev-vts-is-loop-free:
assumes p = make-polygonal-path vts
assumes loop-free p
shows loop-free (make-polygonal-path (rev vts))
using assms

proof(induct length vts arbitrary: p vts)
case 0
then show ?case by simp

next
case (Suc n)
then have Suc n ≥ 2
by (metis One-nat-def Suc-length-conv constant-linepath-is-not-loop-free le-SucE

le-add1 le-numeral-Suc length-greater-0-conv list.size(3) make-polygonal-path.simps(2)
numeral-One plus-1-eq-Suc pred-numeral-simps(2) semiring-norm(26))

moreover
{ assume ∗: Suc n = 2

then obtain a b where ab: p = linepath a b
using Suc.prems make-polygonal-path.simps(3)

by (metis (no-types, opaque-lifting) Cons-nth-drop-Suc One-nat-def Suc.hyps(2)
Suc-1 diff-Suc-1 drop-0 drop-Suc length-0-conv length-tl zero-less-Suc)

moreover then have a 6= b using Suc.prems(2) constant-linepath-is-not-loop-free
by blast

ultimately have loop-free (linepath b a) by (simp add: linepath-loop-free)
moreover have make-polygonal-path (rev vts) = linepath b a

by (smt (z3) ∗ Cons-nth-drop-Suc One-nat-def Suc.hyps(2) Suc.prems(1)
Suc-1 Suc-diff-Suc ab butlast-snoc diff-Suc-1 drop0 hd-conv-nth hd-rev last-conv-nth
length-butlast length-rev lessI linepath-1 ′ make-polygonal-path.simps(3) nth-append-length
pathstart-def pathstart-linepath pos2 rev.simps(2) rev-is-Nil-conv rev-take take-eq-Nil)

ultimately have ?case by simp
} moreover
{ assume ∗: Suc n > 2

let ?vts ′ = butlast vts
let ?p ′ = make-polygonal-path ?vts ′

let ?vts ′-rev = rev ?vts ′

let ?p ′-rev = make-polygonal-path ?vts ′-rev

let ?vts-rev = rev vts
let ?p-rev = make-polygonal-path ?vts-rev

118

obtain y z where yz: y = last ?vts ′ ∧ z = last vts by blast
let ?l = linepath y z
let ?l-rev = linepath z y
have loop-free ?p ′

by (metis ∗ Suc.hyps(2) Suc.prems(1) Suc.prems(2) butlast-conv-take diff-Suc-1
le-add2 less-Suc-eq-le plus-1-eq-Suc take-i-is-loop-free)

then have loop-free-p ′-rev: loop-free ?p ′-rev using Suc.hyps by force
moreover have rev vts = z # ?vts ′-rev

by (metis Suc.hyps(2) yz append-butlast-last-id length-0-conv nat.distinct(1)
rev-eq-Cons-iff rev-rev-ident)

moreover have y = hd ?vts ′-rev using yz by (simp add: hd-rev)
ultimately have p-rev: ?p-rev = ?l-rev +++ ?p ′-rev
by (smt (verit, best) constant-linepath-is-not-loop-free list.sel(1) make-polygonal-path.elims

make-polygonal-path.simps(4))

have [y, z] = drop (n−1) vts
using yz Suc.hyps(2)
by (metis (no-types, opaque-lifting) ∗ Cons-nth-drop-Suc Suc-1 Suc-diff-Suc

Suc-lessD Suc-n-not-le-n append-butlast-last-id append-eq-conv-conj diff-Suc-1 last-conv-nth
length-0-conv length-butlast less-nat-zero-code linorder-not-le nth-take)

then have ?l = make-polygonal-path (drop (n−1) vts)
using make-polygonal-path.simps by metis

moreover have ?p ′ = make-polygonal-path (take n vts)
using Suc.hyps(2) by (metis butlast-conv-take diff-Suc-1)

ultimately have path-image ?l ∩ path-image ?p ′ ⊆ {pathstart ?l, pathstart
?p ′}

using loop-free-split-int
by (smt (verit, ccfv-SIG) Int-commute Suc.hyps(2) Suc.prems(1) Suc.prems(2)

Suc-1 Suc-le-mono ‹2 ≤ Suc n› insert-commute lessI)
moreover have path-image ?l = path-image ?l-rev by auto
moreover have path-image ?p ′ = path-image ?p ′-rev

using ∗ Suc.hyps(2) rev-vts-path-image by force
moreover have pathstart ?l = pathfinish ?l-rev by simp
moreover have pathstart ?p ′ = pathfinish ?p ′-rev

by (metis Nil-is-rev-conv last.simps last-conv-nth last-rev list.distinct(1)
list.exhaust-sel make-polygonal-path.simps(1) make-polygonal-path.simps(2) nth-Cons-0
polygon-pathfinish polygon-pathstart)

ultimately have path-image-int:
path-image ?l-rev ∩ path-image ?p ′-rev ⊆ {pathfinish ?l-rev, pathfinish

?p ′-rev}
by argo

have 1 : pathfinish ?l-rev = pathstart ?p ′-rev
by (metis make-polygonal-path-gives-path p-rev path-join-path-ends)

{ assume pathfinish ?p ′-rev = pathstart ?l-rev
then have ?case using simple-path-join-loop 1 p-rev path-image-int

by (smt (verit, del-insts) Suc.hyps(2) Suc.prems(1) Suc.prems(2) Suc-1
‹linepath y z = make-polygonal-path (drop (n − 1) vts)› ‹loop-free (make-polygonal-path
(rev (butlast vts)))› constant-linepath-is-not-loop-free diff-Suc-Suc drop-i-is-loop-free

119

dual-order .eq-iff insert-commute linepath-loop-free make-polygonal-path-gives-path
path-linepath pathfinish-linepath pathstart-linepath simple-path-cases simple-path-def)

} moreover
{ assume pathfinish ?p ′-rev 6= pathstart ?l-rev

then have pathstart p 6= pathfinish p
by (metis Suc.prems(1) ‹loop-free (make-polygonal-path (butlast vts))› ‹path-

start (make-polygonal-path (butlast vts)) = pathfinish (make-polygonal-path (rev
(butlast vts)))› butlast-conv-take constant-linepath-is-not-loop-free last-conv-nth less-nat-zero-code
make-polygonal-path.simps(1) nat-neq-iff nth-take pathstart-linepath polygon-pathfinish
polygon-pathstart take-eq-Nil yz)

then have arc p
by (metis Suc.prems(1) Suc.prems(2) arc-def loop-free-cases make-polygonal-path-gives-path)
then have path-image ?l-rev ∩ path-image ?p ′-rev ⊆ {pathstart ?p ′-rev}

using loop-free-arc-split-int
by (metis 1 Int-commute Suc.hyps(2) Suc.prems(1) Suc.prems(2) ‹2 ≤ Suc

n› ‹linepath y z = make-polygonal-path (drop (n − 1) vts)› ‹make-polygonal-path
(butlast vts) = make-polygonal-path (take n vts)› ‹path-image (linepath y z) =
path-image (linepath z y)› ‹path-image (make-polygonal-path (butlast vts)) = path-image
(make-polygonal-path (rev (butlast vts)))› ‹pathstart (linepath y z) = pathfinish
(linepath z y)› le-numeral-Suc lessI numerals(1) pred-numeral-simps(2) semiring-norm(26))

moreover have arc ?l-rev
by (metis Suc.hyps(2) Suc.prems(1) Suc.prems(2) Suc-1 ‹[y, z] = drop (n −

1) vts› arc-linepath constant-linepath-is-not-loop-free diff-Suc-Suc drop-i-is-loop-free
dual-order .refl make-polygonal-path.simps(3))

moreover have arc ?p ′-rev
proof−
have ?p ′-rev 0 = last (butlast vts) by (metis 1 pathfinish-linepath pathstart-def

yz)
moreover have ?p ′-rev 1 = hd (butlast vts)

by (metis ‹loop-free (make-polygonal-path (butlast vts))› ‹pathstart (make-polygonal-path
(butlast vts)) = pathfinish (make-polygonal-path (rev (butlast vts)))› constant-linepath-is-not-loop-free
hd-conv-nth make-polygonal-path.simps(1) pathfinish-def polygon-pathstart)

moreover have last (butlast vts) 6= hd (butlast vts) using Suc.prems
by (metis (no-types, lifting) ∗ Suc.hyps(2) Suc-1 diff-is-0-eq index-Cons

index-last leD length-butlast less-diff-conv less-imp-le-nat list.collapse list.size(3)
loop-free-polygonal-path-vts-distinct not-one-le-zero plus-1-eq-Suc)

ultimately have ?p ′-rev 0 6= ?p ′-rev 1 by simp
thus ?thesis using loop-free-p ′-rev

by (metis arc-def loop-free-cases make-polygonal-path-gives-path pathfin-
ish-def pathstart-def)

qed
ultimately have ?case

using arc-join-eq[OF 1] arc-imp-simple-path p-rev simple-path-def by auto
}
ultimately have ?case by blast

}
ultimately show ?case by linarith

qed

120

lemma rev-vts-is-polygon:
assumes polygon-of p vts
shows polygon (make-polygonal-path (rev vts))
using rev-vts-is-loop-free assms
unfolding polygon-of-def polygon-def simple-path-def
using make-polygonal-path-gives-path
by (metis One-nat-def closed-path-def UNIV-def length-greater-0-conv polygon-pathfinish

polygon-pathstart polygonal-path-def rangeI rev.simps(1) rev-nth rev-rev-ident)

end
theory Linepath-Collinearity

imports Polygon-Lemmas

begin

14 Collinearity Properties
lemma points-on-linepath-collinear :

assumes exists-c: (∃ c. a − b = c ∗R u)
assumes x-in-linepath: x ∈ path-image (linepath a b)
shows (∃ c. x − a = c ∗R u) (∃ c. b − x = c ∗R u)

proof −
obtain k :: real where k-prop: 0 ≤ k ∧ k ≤ 1 ∧ x = (1 − k) ∗R a + k ∗R b

using x-in-linepath unfolding linepath-def path-image-def by fastforce
then have x = a − k ∗R a + k ∗R b

by (simp add: eq-diff-eq)
then have x − a= − k ∗R a + k ∗R b

by auto
then have xminusa: x − a = −k∗R(a − b)

by (simp add: scaleR-right-diff-distrib)
obtain c where c-prop: a − b = c ∗R u using exists-c by blast
show (∃ c. x − a = c ∗R u) using xminusa c-prop

by (metis scaleR-scaleR)
then show (∃ c. b − x = c ∗R u)

using exists-c
by (metis (no-types, opaque-lifting) add-diff-eq diff-add-cancel minus-diff-eq

scaleR-left-distrib)
qed

lemma three-points-collinear-property:
fixes a b:: real^2
assumes exists-c1 : (∃ c. a − x1 = c ∗R u)
assumes exists-c2 : (∃ c. a − x2 = c ∗R u)
shows ∃ c. x1 − x2 = c∗R u

proof −
obtain c1 where c1-prop: a − x1 = c1 ∗R u

using exists-c1 by auto
obtain c2 where c2-prop: a − x2 = c2 ∗R u

using exists-c2 by auto

121

then have a − x2 − (a − x1) = c2 ∗R u − c1 ∗R u
using c1-prop c2-prop by simp

then have a − x2 − (a − x1) = (c2 − c1) ∗R u
by (simp add: scaleR-left-diff-distrib)

then show ?thesis
by auto

qed

lemma in-path-image-imp-collinear :
fixes a b:: real^2
assumes k ∈ path-image (linepath a b)
shows collinear {a, b, k}

proof −
obtain w where w-prop: w ∈ {0 ..1} ∧ k = (1 − w) ∗R a + w ∗R b

using assms unfolding path-image-def linepath-def by fast
have collinear {0 , a−b, (1 − w) ∗R a + (w−1) ∗R b}

using collinear
by (smt (verit) collinear-lemma diff-minus-eq-add scaleR-minus-left scaleR-right-diff-distrib)

then have collinear {0 , a − b, k − b}
using w-prop
by (metis (no-types, lifting) add.commute add-diff-cancel-left collinear-lemma

scaleR-collapse scaleR-right-diff-distrib)
then show ?thesis using assms collinear-alt collinear-3 [of a b k]

by auto
qed

lemma two-linepath-colinearity-property:
fixes a b c d:: real^2
assumes y 6= z ∧ {y, z} ⊆ (path-image (linepath a b)) ∩ (path-image (linepath

c d))
shows collinear {a, b, c, d}

proof −
have collinear {a, b, y, z}

using in-path-image-imp-collinear assms
by (metis (no-types, lifting) Int-closed-segment collinear-4-3 inf .boundedE inf-idem

insert-absorb2 insert-subset path-image-linepath pathstart-in-path-image pathstart-linepath)
moreover have collinear {c, d, y, z}

using in-path-image-imp-collinear assms
by (metis (no-types, lifting) Int-closed-segment collinear-4-3 inf .boundedE inf-idem

insert-absorb2 insert-subset path-image-linepath pathstart-in-path-image pathstart-linepath)
ultimately show ?thesis

using assms collinear-3-eq-affine-dependent collinear-4-3 insert-absorb2 in-
sert-commute

by (smt (z3) collinear-3-trans)
qed

lemma polygon-vts-not-collinear :
assumes polygon-of p vts
shows ¬ collinear (set vts)

122

proof −
have len-vts: length vts ≥ 3

using polygon-at-least-3-vertices assms unfolding polygon-of-def
using card-length dual-order .trans by blast

have compact-and-connected: compact (path-image p) ∧ connected (path-image
p)

using inside-outside-polygon assms unfolding polygon-of-def
using compact-simple-path-image connected-simple-path-image polygon-def
by auto

have nonempty-path-image: path-image p 6= {}
using assms unfolding polygon-of-def
using vertices-on-path-image by simp

have collinear-imp: collinear (set vts) =⇒ (collinear (path-image p))
proof −

assume collinear (set vts)
then obtain u where u-prop: ∀ x∈set vts. ∀ y∈set vts. ∃ c. x − y = c ∗R u

unfolding collinear-def by blast
then have ∃ c. x − y = c ∗R u if xy-in-pathimage: y∈path-image p ∧ x∈path-image

p for x y
proof −
obtain k1 where k1-prop: k1<length vts − 1 ∧ x ∈ path-image (linepath (vts

! k1) (vts ! (k1 + 1)))
using make-polygonal-path-image-property xy-in-pathimage len-vts
by (metis One-nat-def Suc-1 Suc-leD assms numeral-3-eq-3 polygon-of-def)

then have ∃ c. (vts ! k1) − (vts ! (k1 + 1)) = c ∗R u
by (meson add-lessD1 in-set-conv-nth less-diff-conv u-prop)

obtain k2 where k2-prop: k2<length vts − 1 ∧ y ∈ path-image (linepath (vts
! k2) (vts ! (k2 + 1)))

using make-polygonal-path-image-property xy-in-pathimage len-vts
by (metis One-nat-def Suc-1 Suc-leD assms numeral-3-eq-3 polygon-of-def)

have ∃ c. vts ! (k2 + 1) − (vts ! k1) = c ∗R u
using u-prop k1-prop k2-prop
by (meson add-lessD1 less-diff-conv nth-mem)

have k2-vts-prop: ∃ c. vts ! (k2 + 1) − (vts ! k2) = c ∗R u
using u-prop k2-prop by fastforce

have ex-c-k2 : ∃ c. vts ! (k2 + 1) − y = c ∗R u
using points-on-linepath-collinear [of vts ! (k2 + 1) vts ! k2 u y] k2-prop

k2-vts-prop
by (meson add-lessD1 points-on-linepath-collinear(2) less-diff-conv nth-mem

u-prop)
have k1-vts-prop: ∃ c. vts ! (k1 + 1) − (vts ! k1) = c ∗R u

using u-prop k1-prop by fastforce
have ex-c-k1-y: ∃ c. vts ! (k1 + 1) − y = c ∗R u

using points-on-linepath-collinear [of vts ! (k1 + 1) vts ! k1 u y] k1-prop
k1-vts-prop

by (meson ‹∃ c. vts ! (k2 + 1) − vts ! k1 = c ∗R u› ‹∃ c. vts ! k1 − vts !
(k1 + 1) = c ∗R u› three-points-collinear-property ex-c-k2)

have ex-c-k1-x: ∃ c. vts ! (k1 + 1) − x = c ∗R u
using points-on-linepath-collinear [of vts ! (k1 + 1) vts ! k1 u x] k1-prop

123

k1-vts-prop
by (meson add-lessD1 points-on-linepath-collinear(2) less-diff-conv nth-mem

u-prop)
show ?thesis

using ex-c-k1-y ex-c-k1-y three-points-collinear-property ex-c-k1-x by blast
qed
then show (collinear (path-image p)) unfolding collinear-def by auto

qed
{ assume ∗: collinear (set vts)

then obtain a b::real^2 where im-closed: path-image p = closed-segment a b
using collinear-imp compact-convex-collinear-segment-alt[of path-image p]

compact-and-connected nonempty-path-image
by blast

have inside (closed-segment a b) = {}
by (simp add: inside-convex)

then have path-inside p = {}
unfolding path-inside-def using im-closed by auto

then have False
using inside-outside-polygon assms unfolding polygon-of-def inside-outside-def

by blast
}
then show ?thesis by blast

qed

lemma not-collinear-with-subset:
assumes collinear A
assumes ¬ collinear (A ∪ {x})
assumes card A > 2
assumes a ∈ A
shows ¬ collinear ((A − {a}) ∪ {x})

proof−
obtain u v where uv: u ∈ A ∧ v ∈ A ∧ u 6= v ∧ u 6= a ∧ v 6= a
proof−

have card (A − {a}) ≥ 2 using assms by auto
then obtain u B where u ∈ (A − {a}) ∧ B = (A − {a} − {u})
by (metis bot-nat-0 .extremum-unique card.empty ex-in-conv zero-neq-numeral)

moreover then obtain v where v ∈ B
by (metis Diff-iff One-nat-def Suc-1 assms(3) assms(4) card.empty card.insert

equals0I finite.intros(1) finite-insert insert-Diff insert-commute less-irrefl)
ultimately show ?thesis using that by blast

qed
then have x /∈ affine hull {u, v}

using assms
by (smt (verit, ccfv-threshold) Un-commute Un-upper1 collinear-affine-hull-collinear

hull-insert hull-mono insert-absorb insert-is-Un insert-subset)
moreover have u ∈ A − {a} ∧ v ∈ A − {a} using uv by blast
ultimately show ?thesis
by (metis UnCI collinear-3-imp-in-affine-hull collinear-triples insert-absorb sin-

gletonD uv)

124

qed

lemma vec-diff-scale-collinear :
fixes a b c :: real^2
assumes b − a = m ∗R (c − a)
shows collinear {a, b, c}

proof−
{ assume m = 0

then have b = a using assms by simp
then have collinear {a, b, c} by auto

} moreover
{ assume m-nz: m 6= 0

then have c-eq: c = (1/m) ∗R (b − a) + a using assms by simp
then have c − b = (1/m − 1) ∗R (b − a) using m-nz by (simp add:

scaleR-left.diff)
then obtain m ′ where c − b = m ′ ∗R (b − a) by fast

then have c − b ∈ span({b − a}) by (simp add: span-breakdown-eq)
moreover from this have b − c ∈ span({b − a}) using span-0 span-add-eq2

by fastforce
moreover have c − a ∈ span({b − a}) using assms by (simp add: span-breakdown-eq

c-eq)
moreover from this have a − c ∈ span({b − a}) using span-0 span-add-eq2

by fastforce
moreover have b − a ∈ span({b − a}) by (simp add: span-base)
moreover from this have a − b ∈ span({b − a}) using span-0 span-add-eq2

by fastforce
moreover have ∀ v ∈ {a, b, c}. v − v ∈ span({b − a}) by (simp add: span-0)
ultimately have ∀ v ∈ {a, b, c}. ∀w ∈ {a, b, c}. v − w ∈ span({b − a}) by

blast
then have ∀ v ∈ {a, b, c}. ∀w ∈ {a, b, c}. ∃ k. v − w = k ∗R (b − a)

by (simp add: span-breakdown-eq)
then have collinear {a, b, c} using collinear-def by blast

}
ultimately show ?thesis using assms by auto

qed

15 Linepath Properties
lemma good-linepath-comm: good-linepath a b vts =⇒ good-linepath b a vts

unfolding good-linepath-def
by (metis (no-types, opaque-lifting) insert-commute path-image-linepath segment-convex-hull)

lemma finite-set-linepaths:
assumes polygon: polygon p
assumes polygonal-path: p = make-polygonal-path vts
shows finite {(a, b). (a, b) ∈ set vts × set vts}

proof −

125

have finite (set vts)
using polygonal-path by auto

then have finite (set vts × set vts)
by blast

then show ?thesis
by auto

qed

lemma linepaths-intersect-once-or-collinear :
fixes a b c d :: real^2
assumes path-image (linepath a b) ∩ path-image (linepath c d) 6= {}
shows collinear {a, b, c, d} ∨ (∃ x. path-image (linepath a b) ∩ path-image

(linepath c d) = {x})
proof safe

assume ¬ (∃ x. path-image (linepath a b) ∩ path-image (linepath c d) = {x})
then obtain x y where x 6= y ∧ {x, y} ⊆ path-image (linepath a b) ∩ path-image

(linepath c d)
using assms by blast

then show collinear {a, b, c, d} using two-linepath-colinearity-property by
meson
qed

lemma linepaths-intersect-once-or-collinear-alt:
fixes a b c d :: real^2
assumes path-image (linepath a b) ∩ path-image (linepath c d) 6= {}
shows collinear {a, b, c, d} ∨ card (path-image (linepath a b) ∩ path-image

(linepath c d)) = 1
proof−

have card (path-image (linepath a b) ∩ path-image (linepath c d)) = 1
←→ (∃ x. path-image (linepath a b) ∩ path-image (linepath c d) = {x})

using is-singleton-altdef is-singleton-def by blast
thus ?thesis using linepaths-intersect-once-or-collinear assms by presburger

qed

lemma path-image-linepath-union:
fixes a b :: ′a::euclidean-space
assumes d ∈ path-image (linepath a b)
shows path-image (linepath a b) = path-image (linepath a d) ∪ path-image

(linepath d b)
proof−

have path-image (linepath a b) = closed-segment a b using path-image-linepath
by simp

also then have ... = closed-segment a d ∪ closed-segment d b
using Un-closed-segment assms by blast

also have ... = path-image (linepath a d) ∪ path-image (linepath d b)
using path-image-linepath by simp

ultimately show ?thesis by order
qed

126

lemma path-image-linepath-split:
assumes i < (length vts) − 1
assumes x ∈ path-image (linepath (vts!i) (vts!(i+1)))
assumes x-notin: x /∈ set vts
shows path-image (make-polygonal-path vts) = path-image (make-polygonal-path

((take (i+1) vts) @ [x] @ (drop (i+1) vts)))
using assms

proof(induct length vts arbitrary: vts i x)
case 0
then show ?case by linarith

next
case (Suc n)
let ?vts ′ = (take (i+1) vts) @ [x] @ (drop (i+1) vts)
let ?p = make-polygonal-path vts
let ?p ′ = make-polygonal-path ?vts ′

have Suc n ≥ 2 using Suc by linarith
then obtain v1 v2 vts-tail where vts-is: vts = v1#v2#vts-tail
by (metis Suc(2) Cons-nth-drop-Suc One-nat-def Suc-1 Suc-le-eq drop0 zero-less-Suc)

{ assume ∗: i = 0
then have vts ′-is: ?vts ′ = [v1 , x, v2] @ vts-tail

using vts-is by simp
then have x-in: x ∈ path-image (linepath v1 v2)

using ∗ Suc.prems vts-is by simp
{ assume ∗: vts-tail = []

then have p-is: path-image ?p = path-image (linepath v1 v2)
using vts-is make-polygonal-path.simps(3)[of v1 v2]
by simp

have path-image ?p ′ = path-image (linepath v1 x) ∪ path-image (linepath x
v2)

using vts ′-is ∗ make-polygonal-path.simps(4)[of v1 x v2 []]
using make-polygonal-path.simps(3)[of x v2]
by (metis append.right-neutral list.discI nth-Cons-0 path-image-cons-union)

then have ?case
using p-is path-image-linepath-union[of x v1 v2] assms(3) vts-is x-in by

blast
} moreover
{ assume ∗: vts-tail 6= []

then have path-image ?p = path-image (linepath v1 v2) ∪ path-image
(make-polygonal-path (v2#vts-tail))

using path-image-cons-union vts-is by (metis list.discI nth-Cons-0)
moreover have path-image (linepath v1 x) ∪ path-image (linepath x v2) =

path-image (linepath v1 v2)
using path-image-linepath-union x-in by blast

ultimately have ?case
by (metis (no-types, lifting) append-Cons append-Nil inf-sup-aci(6) list.discI

nth-Cons-0 path-image-cons-union vts ′-is)
}
ultimately have ?case by blast

127

} moreover
{ assume ∗ :i > 0

then have Suc n > 2 using Suc by linarith

let ?vts-tl = tl vts
let ?vts-tl ′ = (take i ?vts-tl) @ [x] @ (drop i ?vts-tl)
let ?p-tl = make-polygonal-path ?vts-tl
let ?p-tl ′ = make-polygonal-path ?vts-tl ′

have ?vts-tl!(i−1) = vts!i ∧ ?vts-tl!i = vts!(i+1) using Suc ∗ by (simp add:
vts-is)

moreover then have x ∈ path-image (linepath (?vts-tl!(i−1)) (?vts-tl!i))
using Suc by presburger

ultimately have path-image ?p-tl = path-image ?p-tl ′
using Suc
by (smt (verit) ∗ One-nat-def Suc-leI diff-Suc-1 le-add-diff-inverse2 length-tl

less-diff-conv list.sel(3) list.set-intros(2) vts-is)
moreover have path-image ?p = path-image (linepath v1 v2) ∪ path-image

?p-tl
using path-image-cons-union vts-is by auto

ultimately have ?case
by (smt (verit, ccfv-threshold) Nil-is-append-conv Suc-eq-plus1 ‹i = 0 =⇒

path-image (make-polygonal-path vts) = path-image (make-polygonal-path (take (i
+ 1) vts @ [x] @ drop (i + 1) vts))› append-Cons append-same-eq append-take-drop-id
drop-Suc hd-append2 hd-conv-nth list.sel(1) list.sel(3) path-image-cons-union take-eq-Nil
vts-is)

}
ultimately show ?case by linarith

qed

lemma linepath-split-is-loop-free:
assumes d ∈ path-image (linepath a b)
assumes d /∈ {a, b}
shows loop-free (make-polygonal-path [a, d, b]) (is loop-free ?p)

proof−
let ?l1 = linepath a d
let ?l2 = linepath d b
have path-image ?l1 ∩ path-image ?l2 = {d} using Int-closed-segment assms(1)

by auto
moreover have arc ?l1 ∧ arc ?l2 using assms(2) by fastforce
ultimately show ?thesis

by (metis arc-imp-simple-path arc-join-eq-alt make-polygonal-path.simps(3)
make-polygonal-path.simps(4) pathfinish-linepath pathstart-linepath simple-path-def)
qed

lemma loop-free-linepath-split-is-loop-free:
assumes p = make-polygonal-path vts
assumes loop-free p
assumes n = length vts

128

assumes i < n − 1
assumes x ∈ path-image (linepath (vts!i) (vts!(i+1))) ∧ x /∈ set vts
assumes vts ′ = (take (i+1) vts) @ [x] @ (drop (i+1) vts)
assumes p ′ = make-polygonal-path vts ′

shows loop-free p ′ ∧ path-image p ′ = path-image p
using assms

proof(induct i arbitrary: p vts p ′ vts ′ n)
case 0
let ?vts-tl = tl vts
let ?p-tl = make-polygonal-path ?vts-tl
let ?vts ′-tl = tl vts ′

let ?p ′-tl = make-polygonal-path ?vts ′-tl
let ?a = vts!0
let ?b = vts!1
let ?l = linepath ?a ?b
let ?l ′ = make-polygonal-path [?a, x, ?b]

have vts ′: vts ′ = [?a, x] @ ?vts-tl
using 0
by (metis (no-types, lifting) Suc-eq-plus1 append-Cons append-eq-append-conv2

append-self-conv bot-nat-0 .not-eq-extremum diff-is-0-eq drop0 drop-Suc list.collapse
nth-Cons-0 take-Suc take-all-iff take-eq-Nil)

have x /∈ {?a, ?b}
by (metis 0 (3−5) One-nat-def Suc-eq-plus1 bot-nat-0 .not-eq-extremum diff-is-0-eq

insert-iff less-diff-conv nth-mem singletonD take-Suc-eq take-all-iff)
then have lf-l ′: loop-free ?l ′ using linepath-split-is-loop-free[of x ?a ?b] 0 by

simp

{ assume length ?vts-tl = 1
then have vts ′ = [?a, x, ?b]
by (metis Cons-nth-drop-Suc One-nat-def append-eq-Cons-conv drop0 drop-eq-Nil

le-numeral-extra(4) nth-tl vts ′ zero-less-one)
then have ?case using linepath-split-is-loop-free path-image-linepath-split
by (metis 0 .prems(1) 0 .prems(3) 0 .prems(4) 0 .prems(5) 0 .prems(6) 0 .prems(7)

lf-l ′)
} moreover
{ assume ∗: length ?vts-tl ≥ 2

then have p: p = ?l +++ ?p-tl
using make-polygonal-path.simps(4)[of ?a ?b]

by (metis (no-types, opaque-lifting) 0 (1) 0 (3) 0 (4) Cons-nth-drop-Suc
One-nat-def Suc-1 Suc-le-eq diff-is-0-eq drop-0 drop-Suc length-tl less-nat-zero-code
nat-le-linear nth-tl)

have loop-free ?p-tl
using tail-of-loop-free-polygonal-path-is-loop-free 0 ∗
by (metis list.exhaust-sel list.sel(2))

moreover have l-l ′: path-image ?l = path-image ?l ′
using path-image-linepath-split 0

129

by (metis One-nat-def Suc-eq-plus1 list.discI make-polygonal-path.simps(3)
nth-Cons-0 path-image-cons-union path-image-linepath-union)

moreover have path-image ?l ′ ∩ path-image ?p-tl ⊆ {?a, ?b}
by (metis (mono-tags, opaque-lifting) p l-l ′ 0 .prems(1) 0 .prems(2) make-polygonal-path-gives-path

path-join-path-ends pathfinish-linepath pathstart-linepath simple-path-def simple-path-joinE)
moreover have arc p −→ path-image ?l ′ ∩ path-image ?p-tl ⊆ {?b}

using p l-l ′
by (metis arc-def arc-join-eq make-polygonal-path-gives-path path-join-eq

path-linepath pathfinish-linepath)
moreover have arc p ←→ hd [?a, x, ?b] 6= last (tl vts)
by (metis ∗ 0 .prems(1) 0 .prems(2) arc-def arc-simple-path last-conv-nth last-tl

list.sel(1) list.sel(2) list.size(3) loop-free-cases make-polygonal-path-gives-path not-numeral-le-zero
polygon-pathfinish polygon-pathstart)

moreover have vts ′ = [?a, x, ?b] @ tl ?vts-tl
by (metis drop-Suc 0 .prems(3) 0 .prems(4) One-nat-def append-Cons ap-

pend-Nil append-take-drop-id length-tl nth-tl take-Suc-conv-app-nth take-eq-Nil vts ′)
moreover have last [?a, x, ?b] = hd ?vts-tl
by (metis 0 .prems(3) 0 .prems(4) One-nat-def hd-conv-nth last.simps length-greater-0-conv

length-tl list.discI nth-tl)
moreover have pathfinish ?l = pathstart ?p-tl
by (metis (no-types) 0 .prems(1) make-polygonal-path.simps(3) make-polygonal-path-gives-path

p path-join-eq)
moreover have

∧
v va vb vs. pathfinish (linepath v va) = pathstart (make-polygonal-path

(va # vb # vs))

by (metis (no-types) make-polygonal-path.simps(3) make-polygonal-path.simps(4)
make-polygonal-path-gives-path path-join-eq)

ultimately have loop-free p ′

using loop-free-append[of p ′ vts ′ ?l ′ [?a, x, ?b] ?p-tl ?vts-tl]
by (metis (no-types) 0 .prems(1) 0 .prems(2) 0 .prems(7) arc-simple-path lf-l ′

make-polygonal-path.simps(3) make-polygonal-path.simps(4) make-polygonal-path-gives-path
p pathfinish-join pathstart-linepath simple-path-def simple-path-joinE)

then have ?case
using 0 (1) 0 (3) 0 (4) 0 (5) 0 (6) 0 (7) path-image-linepath-split by blast

}
ultimately show ?case

by (metis 0 (3 ,4) One-nat-def Suc-lessI length-tl less-eq-Suc-le nat-1-add-1
plus-1-eq-Suc)
next

case (Suc i)
let ?vts-tl = tl vts
let ?p-tl = make-polygonal-path ?vts-tl
let ?vts ′-tl = tl vts ′

let ?p ′-tl = make-polygonal-path ?vts ′-tl
let ?a = vts!0
let ?b = vts!1
let ?l = linepath ?a ?b

have ?vts-tl!i = vts!(Suc i) ∧ ?vts-tl!(i+1) = vts!((Suc i) + 1)

130

by (metis Suc.prems(3) Suc.prems(4) add-Suc-right add-Suc-shift diff-is-0-eq
linorder-not-le list.exhaust-sel list.size(3) not-less-zero nth-Cons-Suc)

moreover have set ?vts-tl ⊆ set vts
by (metis list.sel(2) list.set-sel(2) subsetI)

ultimately have x ∈ path-image (linepath (?vts-tl!i) (?vts-tl!(i+1))) ∧ x /∈ set
?vts-tl

using Suc.prems(5) by auto
moreover have vts ′-tl: ?vts ′-tl = (take (i+1) ?vts-tl) @ [x] @ (drop (i+1)

?vts-tl)
by (metis Suc.prems(3) Suc.prems(4) Suc.prems(6) Suc-eq-plus1 drop-Suc leD

length-tl take-all-iff take-eq-Nil take-tl tl-append2 zero-eq-add-iff-both-eq-0 zero-neq-one)
moreover have loop-free ?p-tl

using tail-of-loop-free-polygonal-path-is-loop-free Suc.prems
by (metis Nitpick.size-list-simp(2) Suc-1 Suc-leI Suc-neq-Zero diff-0-eq-0 diff-Suc-1

less-one linorder-neqE-nat list.collapse not-less-zero)
ultimately have ih: loop-free ?p ′-tl ∧ path-image ?p ′-tl = path-image ?p-tl

using Suc.prems Suc.hyps[of ?p-tl ?vts-tl - ?vts ′-tl ?p ′-tl] by simp

have p: p = ?l +++ ?p-tl
proof −

have f1 : ∀ vs. (hd (tl vs)::(real, 2) vec) = vs ! 1 ∨ [] = vs ∨ [] = tl vs
by (metis (no-types) One-nat-def hd-conv-nth list.collapse nth-Cons-Suc)

have [] 6= tl vts ∧ vts 6= [] ∧ tl vts 6= [hd (tl vts)]
by (metis Suc.prems(1) Suc.prems(2) ‹loop-free (make-polygonal-path (tl vts))›

constant-linepath-is-not-loop-free make-polygonal-path.simps(1) make-polygonal-path.simps(2))
then have p = make-polygonal-path [hd vts, vts ! 1] +++ make-polygonal-path

(tl vts) ∧ vts 6= []
using f1 by (metis (full-types) Suc.prems(1) list.collapse make-polygonal-path.simps(3)

make-polygonal-path.simps(4))
then show ?thesis

by (simp add: hd-conv-nth)
qed

have length vts ′ ≥ 3 using Suc.prems by force
moreover have ab: ?a = vts ′!0 ∧ ?b = vts ′!1

using Suc.prems
by (smt (verit, ccfv-SIG) One-nat-def Suc-eq-plus1 add-Suc-right append-Cons

drop0 drop-Suc length-tl less-nat-zero-code list.exhaust-sel list.size(3) nat-diff-split
nth-Cons-0 nth-Cons-Suc take-Suc zero-less-Suc)

ultimately have p ′: p ′ = ?l +++ ?p ′-tl
using Suc.prems(7) make-polygonal-path.simps(4)[of ?a ?b]
by (metis (no-types, opaque-lifting) Cons-nth-drop-Suc One-nat-def Suc-leD

Suc-le-eq drop0 drop-Suc numeral-3-eq-3)

have nonarc: path-image ?l ∩ path-image ?p-tl ⊆ {?a, ?b}
using simple-path-join-loop-eq Suc.prems

by (smt (verit, ccfv-threshold) p One-nat-def length-tl less-zeroE make-polygonal-path-gives-path
nth-tl order .strict-iff-not order-le-less-trans path-join-eq path-linepath pathfinish-linepath
pathstart-linepath polygon-pathstart simple-path-def simple-path-joinE take-Nil take-all-iff)

131

have arc: arc p −→ path-image ?l ∩ path-image ?p-tl ⊆ {?b}
using arc-join-eq

by (metis Suc.prems(1) p make-polygonal-path-gives-path path-join-eq path-linepath
pathfinish-linepath)

{ assume arc p
moreover then have path-image ?l ∩ path-image ?p ′-tl ⊆ {?b} using arc ih

by presburger
moreover have pathfinish ?l = pathstart ?p ′-tl
by (metis Suc.prems(7) make-polygonal-path-gives-path p ′ path-join-path-ends)

ultimately have ?case using p ′ arc-join-eq[of ?l ?p ′-tl]
by (smt (verit, ccfv-SIG) Nil-is-append-conv Suc.prems(3) Suc.prems(4)

Suc-eq-plus1 vts ′-tl arc-simple-path drop-eq-Nil ih last-appendR last-conv-nth last-drop
leD length-tl make-polygonal-path-gives-path p path-image-join path-join-eq path-linepath
pathfinish-linepath polygon-pathfinish simple-path-def simple-path-joinE take-all-iff
take-eq-Nil)

} moreover
{ assume ¬ arc p

then have pathstart ?l = pathfinish ?p ′-tl ∧ pathfinish ?l = pathstart ?p ′-tl
by (smt (verit, del-insts) Nil-is-append-conv Nil-tl One-nat-def Suc.prems(2)

Suc.prems(3) Suc.prems(4) Suc-eq-plus1 vts ′-tl ab arc-def drop-eq-Nil last-appendR
last-conv-nth last-drop leD length-tl list.collapse loop-free-cases make-polygonal-path-gives-path
nth-Cons-Suc p path-join-eq path-linepath pathfinish-join pathfinish-linepath path-
start-join polygon-pathfinish polygon-pathstart take-all-iff take-eq-Nil)

then have ?case using simple-path-join-loop-eq[of ?l ?p ′-tl] p ′ nonarc
by (smt (verit, ccfv-threshold) One-nat-def Suc.prems(2) Suc.prems(3) Suc.prems(4)

arc-def constant-linepath-is-not-loop-free dual-order .strict-trans ih leD length-tl loop-free-cases
make-polygonal-path-gives-path not-loop-free-first-component nth-tl p path-image-join
path-linepath pathfinish-linepath pathstart-linepath polygon-pathstart simple-path-def
simple-path-join-loop-eq take-all-iff take-eq-Nil zero-less-Suc)

}
ultimately show ?case by argo

qed

lemma polygon-linepath-split-is-polygon:
assumes polygon-of p vts
assumes i < (length vts) − 1
assumes a = vts!i ∧ b = vts!(i+1)
assumes x ∈ path-image (linepath a b) ∧ x /∈ set vts
assumes vts ′ = (take (i+1) vts) @ [x] @ (drop (i+1) vts)
shows polygon (make-polygonal-path vts ′)

proof−
let ?p ′ = make-polygonal-path vts ′

have path ?p ′ using assms make-polygonal-path-gives-path by presburger
moreover have loop-free ?p ′ using assms loop-free-linepath-split-is-loop-free

by (metis polygon-def polygon-of-def simple-path-def)
moreover have closed-path ?p ′

proof−

132

have hd vts ′ = hd vts
using assms

by (metis hd-append2 hd-take le-diff-conv linorder-not-less take-all-iff take-eq-Nil2
trans-less-add2 zero-less-one)

moreover have last vts ′ = last vts
using assms linordered-semidom-class.add-diff-inverse by auto

ultimately show ?thesis
by (metis closed-path-def ‹path ?p ′› append-butlast-last-id append-eq-conv-conj

append-is-Nil-conv assms(1) assms(5) have-wraparound-vertex hd-conv-nth length-butlast
not-Cons-self nth-append-length polygon-of-def polygon-pathfinish polygon-pathstart)

qed
ultimately show ?thesis unfolding polygon-def polygonal-path-def simple-path-def

assms(5) by blast
qed

16 Measure of linepaths
lemma linepath-is-negligible-vertical:

fixes a b :: real^2
assumes a$1 = b$1
defines p ≡ linepath a b
shows negligible (path-image p)

proof−
have p-t: ∀ t ∈ {0 ..1}. (p t)$1 = a$1

using linepath-in-path p-def segment-vertical assms by blast

let ?x = a$1
let ?e1 = (vector [1 , 0])::real^2

have (1 ::real) ∈ Basis by simp
then have axis 1 (1 ::real) ∈ (

⋃
i.

⋃
u∈(Basis::(real set)). {axis i u}) by blast

moreover have ?e1 = axis 1 (1 ::real)
unfolding axis-def vector-def by auto

ultimately have e1-basis: ?e1 ∈ (Basis::((real^2) set)) by simp
then have negligible {v. v · ?e1 = ?x} (is negligible ?S)

using negligible-standard-hyperplane by auto
moreover have ∀ t ∈ {0 ..1}. (p t) · ?e1 = ?x
proof clarify

fix t :: real
assume t: t ∈ {0 ..1}
have (p t) · ?e1 = (p t)$1

by (smt (verit, best) e1-basis cart-eq-inner-axis vec-nth-Basis vector-2 (1))
also have ... = ?x using p-t t by blast
finally show (p t) · ?e1 = ?x .

qed
moreover from this have path-image p ⊆ ?S unfolding path-image-def by

blast
ultimately show ?thesis using negligible-subset by blast

qed

133

lemma linepath-is-negligible-non-vertical:
fixes a b :: real^2
assumes a$1 < b$1
defines p ≡ linepath a b
shows negligible (path-image p)

proof−
let ?A = (vector [vector [1 , b$1 − a$1], vector [0 , b$2 − a$2]])::(real^2^2)
let ?f1 = λv::real^2 . (?A ∗v v)
let ?id = λv::real^2 . v
let ?f-a = λv::real^2 . a
let ?f2 = λv. ?id v + ?f-a v
let ?f = ?f2 ◦ ?f1

let ?O = (vector [0 , 0])::real^2
let ?e2 = (vector [0 , 1])::real^2
let ?y-unit-seg-path = linepath ?O ?e2
let ?y-unit-seg = path-image ?y-unit-seg-path

have ∀ t ∈ {0 ..1}. ?f (?y-unit-seg-path t) = p t
proof clarify

fix t :: real
assume t: t ∈ {0 ..1}
then obtain v where v: ?y-unit-seg-path t = v by auto
then have v = (1 − t) ∗R ?O + t ∗R ?e2 unfolding linepath-def by auto
then have v = t ∗R ?e2

by (smt (verit, best) t v exhaust-2 linepath-0 scaleR-zero-left vec-eq-iff vec-
tor-2 (1) vector-2 (2) vector-scaleR-component)

then have ?f v = p t
proof−

assume v = t ∗R vector [0 , 1]
then have v = vector [t ∗ 0 , t ∗ 1]
by (smt (verit, del-insts) exhaust-2 mult-cancel-left1 real-scaleR-def scaleR-zero-right

vec-eq-iff vector-2 (1) vector-2 (2) vector-scaleR-component)
then have v: v = vector [0 , t] by auto

have f1 : ?f1 v = vector [t ∗ (b$1 − a$1), t ∗ (b$2 − a$2)] (is ?f1 v = ?f1-v)
by (simp add: mat-vec-mult-2 v)

have ?f2 ?f1-v = vector [t ∗ (b$1 − a$1), t ∗ (b$2 − a$2)] + vector [a$1 ,
a$2]

by (smt (verit) exhaust-2 vec-eq-iff vector-2 (1) vector-2 (2))
also have ... = vector [t ∗ (b$1 − a$1) + a$1 , t ∗ (b$2 − a$2) + a$2]

by (smt (verit, del-insts) vector-add-component exhaust-2 vec-eq-iff vec-
tor-2 (1) vector-2 (2))

also have ... = vector [t ∗ b$1 + (1 − t) ∗ a$1 , t ∗ b$2 + (1 − t) ∗ a$2]
by argo

also have ... = t ∗R b + (1 − t) ∗R a
by (smt (verit, del-insts) exhaust-2 real-scaleR-def vec-eq-iff vector-2 (1)

134

vector-2 (2) vector-add-component vector-scaleR-component)
finally have ?f2 ?f1-v = t ∗R b + (1 − t) ∗R a .
thus ?thesis using p-def f1 unfolding linepath-def by simp

qed
thus ?f (?y-unit-seg-path t) = p t using v by simp

qed

then have ?f ‘ ?y-unit-seg = path-image p unfolding path-image-def by force
moreover have ?f differentiable-on ?y-unit-seg
proof−

have linear ?f1 by auto
then have ?f1 differentiable-on ?y-unit-seg

using linear-imp-differentiable by (simp add: linear-imp-differentiable-on)
moreover have ?f2 differentiable-on (?f1 ‘ ?y-unit-seg)
proof−

have ?id differentiable-on ?f1 ‘ ?y-unit-seg
using differentiable-const by simp

moreover have ?f-a differentiable-on ?f1 ‘ ?y-unit-seg
using differentiable-ident by simp

ultimately show ?f2 differentiable-on ?f1 ‘ ?y-unit-seg
using differentiable-compose by simp

qed
ultimately show ?thesis using differentiable-compose

by (simp add: differentiable-chain-within differentiable-on-def)
qed
moreover have negligible ?y-unit-seg

using linepath-is-negligible-vertical[of ?O ?e2] by simp
ultimately show ?thesis

using negligible-differentiable-image-negligible by fastforce
qed

lemma linepath-is-negligible:
fixes a b :: real^2
defines p ≡ linepath a b
shows negligible (path-image p)

proof−
{ assume a$1 = b$1

then have ?thesis using linepath-is-negligible-vertical p-def by blast
} moreover
{ assume a$1 < b$1

then have ?thesis using linepath-is-negligible-non-vertical p-def by blast
} moreover
{ assume a: a$1 > b$1

let ?p-rev = reversepath p
have path-image p = path-image ?p-rev by simp
moreover have ?p-rev = linepath b a using p-def by simp
ultimately have ?thesis using a linepath-is-negligible-non-vertical[of b a] by

simp
}

135

ultimately show ?thesis by linarith
qed

lemma linepath-has-emeasure-0 :
emeasure lebesgue (path-image (linepath (a::(real^2)) (b::(real^2)))) = 0
using linepath-is-negligible emeasure-notin-sets negligible-iff-emeasure0 by blast

lemma linepath-has-measure-0 :
measure lebesgue (path-image (linepath (a::(real^2)) (b::(real^2)))) = 0
using linepath-has-emeasure-0 linepath-is-negligible negligible-imp-measure0 by

blast

end
theory Polygon-Convex-Lemmas
imports

Polygon-Lemmas
Linepath-Collinearity

begin

17 Misc. Convex Polygon Properties
lemma polygon-path-image-subset-convex:

assumes length vts > 0
shows path-image (make-polygonal-path vts) ⊆ convex hull (set vts) (is path-image

?p ⊆ ?S)
using assms

proof(induct vts rule: make-polygonal-path.induct)
case 1
then show ?case by simp

next
case (2 a)
then show ?case by auto

next
case (3 a b)
show ?case (is path-image ?p ⊆ ?S)
proof(rule subsetI)

fix x
assume x-in-path-image: x ∈ path-image ?p
then have x ∈ path-image (linepath a b) by auto
thus x ∈ ?S

unfolding path-image-def linepath-def
by (smt (verit, ccfv-SIG) ‹x ∈ path-image (linepath a b)› convex-alt con-

vex-convex-hull hull-subset in-mono in-segment(1) linepath-image-01 list.set-intros(1)
path-image-def set-subset-Cons)

qed
next

case (4 a b c tl)
let ?vts = a # b # c # tl

136

show ?case (is path-image ?p ⊆ ?S)
proof(rule subsetI)

fix x
assume x-in-path-image: x ∈ path-image ?p
show x ∈ ?S
proof cases

assume x ∈ set ?vts
thus ?thesis by (simp add: hull-inc)

next
assume x-notin: x /∈ set ?vts
obtain u where p-u: u ∈ {0 ..1} ∧ ?p u = x

using x-in-path-image unfolding path-image-def by auto
then have p-head-tail: ?p = (linepath a b) +++ make-polygonal-path (b # c

tl)
by auto

have abc-in-S : set ?vts ⊆ convex hull (set ?vts) by (simp add: hull-subset)
{ assume u-assm: u ≤ 1/2

then have ?p u = (1 − 2 ∗ u) ∗R a + (2 ∗ u) ∗R b
using p-head-tail unfolding linepath-def joinpaths-def
by presburger

hence x ∈ ?S
using abc-in-S convexD-alt[of ?S a b 2 ∗ u] u-assm p-u by simp

} moreover
{ assume u-assm: u > 1/2

then have x = (make-polygonal-path (b # c # tl) (2 ∗ u − 1)) (is x =
(?p ′ (2 ∗ u − 1)))

using p-head-tail p-u unfolding linepath-def joinpaths-def by auto
moreover have 0 < (2 ∗ u − 1) using u-assm by linarith
ultimately have x ∈ path-image ?p ′

using p-u by (simp add: path-image-def)
moreover have path-image ?p ′ ⊆ convex hull (set (b # c # tl)) using

4 (1) by auto
moreover have ... ⊆ convex hull (set (a # b # c # tl))

by (meson hull-mono set-subset-Cons)
ultimately have x ∈ ?S by auto

}
ultimately show ?thesis by linarith

qed
qed

qed

lemma convex-contains-simple-closed-path-imp-contains-path-inside:
assumes convex S
assumes simple-path p ∧ closed-path p
assumes path-image p ⊆ S
shows path-inside p ⊆ S
by (metis (no-types, opaque-lifting) Compl-subset-Compl-iff Un-subset-iff assms(1)

assms(3) boolean-algebra-class.boolean-algebra.double-compl outside-subset-convex
path-inside-def union-with-inside)

137

lemma convex-polygon-is-convex-hull:
assumes polygon p
assumes convex (path-inside p ∪ path-image p)
assumes p = make-polygonal-path vts
shows convex hull (set vts) = path-inside p ∪ path-image p (is ?hull = ?poly)

proof−
have ?hull ⊆ ?poly
proof(rule subsetI)

fix x
assume x ∈ ?hull
moreover have ∀H . (convex H ∧ (set vts) ⊆ H) −→ ?hull ⊆ H by (simp

add: hull-minimal)
moreover have convex (?poly) ∧ (set vts) ⊆ ?poly

using assms(2) assms(3) vertices-on-path-image by auto
ultimately show x ∈ ?poly by auto

qed
moreover have ?hull ⊇ ?poly
proof(rule subsetI)

fix x
assume x ∈ ?poly
moreover have path-image p ⊆ ?hull

using polygon-path-image-subset-convex[of vts] polygon-at-least-3-vertices
assms

by force
moreover from calculation have path-inside p ⊆ ?hull
using convex-contains-simple-closed-path-imp-contains-path-inside polygon-def

assms(1)
by auto

ultimately show x ∈ ?hull by auto
qed
ultimately show ?thesis by auto

qed

lemma convex-polygon-inside-is-convex-hull-interior :
assumes polygon p
assumes convex (path-inside p)
assumes p = make-polygonal-path vts
shows interior (convex hull (set vts)) = path-inside p
by (metis (no-types, lifting) assms closure-Un-frontier convex-closure convex-interior-closure

convex-polygon-is-convex-hull inside-outside-def inside-outside-polygon interior-eq)

lemma convex-polygon-inside-is-convex-hull-interior2 :
assumes polygon p
assumes convex (path-inside p ∪ path-image p)
assumes p = make-polygonal-path vts
shows interior (convex hull (set vts)) = path-inside p
using assms closure-Un-frontier convex-closure convex-interior-closure convex-polygon-is-convex-hull

inside-outside-def inside-outside-polygon interior-eq

138

by (smt (verit, best) List.finite-set compact-eq-bounded-closed finite-imp-compact-convex-hull
frontier-complement inside-frontier-eq-interior outside-inside path-inside-def path-outside-def
sup-commute)

lemma polygon-convex-iff :
assumes polygon p
shows convex (path-inside p) ←→ convex (path-inside p ∪ path-image p)
using convex-polygon-inside-is-convex-hull-interior
using convex-polygon-inside-is-convex-hull-interior2
by (metis Jordan-inside-outside-real2 closed-path-def assms closure-Un-frontier

convex-closure convex-interior convex-polygon-is-convex-hull path-inside-def poly-
gon-def polygon-to-polygonal-path)

lemma convex-polygon-frontier-is-path-image:
assumes polygon-of p vts
assumes convex (path-inside p)
shows frontier (convex hull (set vts)) = path-image p
using assms
unfolding frontier-def polygon-of-def
by (metis (no-types, lifting) Jordan-inside-outside-real2 closed-path-def convex-closure-interior

convex-convex-hull convex-polygon-inside-is-convex-hull-interior frontier-def inte-
rior-interior path-inside-def polygon-def)

lemma convex-polygon-frontier-is-path-image2 :
assumes polygon p
assumes convex (path-inside p)
shows frontier (path-image p ∪ path-inside p) = path-image p
using assms
by (simp add: Jordan-inside-outside-real2 closed-path-def path-inside-def poly-

gon-def union-with-inside)

lemma convex-polygon-frontier-is-path-image3 :
assumes polygon p
assumes convex (path-image p ∪ path-inside p)
shows frontier (path-image p ∪ path-inside p) = path-image p
using assms polygon-convex-iff
by (simp add: convex-polygon-frontier-is-path-image2 sup-commute)

lemma polygon-frontier-is-path-image:
assumes polygon p
shows frontier (path-inside p) = path-image p
using inside-outside-polygon unfolding inside-outside-def
using assms by presburger

lemma convex-path-inside-means-convex-polygon:
assumes polygon p
assumes frontier (convex hull (set vts)) = path-image p
shows convex (path-inside p)
by (metis List.finite-set assms(2) convex-convex-hull convex-interior finite-imp-bounded-convex-hull

139

inside-frontier-eq-interior path-inside-def)

lemma convex-hull-of-polygon-is-convex-hull-of-vts:
assumes polygon-of p vts
shows convex hull (path-image p ∪ path-inside p) = convex hull (set vts)

proof −
have len-vts: length vts > 0
by (metis assms card.empty empty-set length-greater-0-conv not-numeral-le-zero

polygon-at-least-3-vertices polygon-of-def)
have path-image p ∪ path-inside p ⊆ convex hull (set vts)

using polygon-path-image-subset-convex[OF len-vts]
using assms convex-contains-simple-closed-path-imp-contains-path-inside poly-

gon-def polygon-of-def by auto
then have subset1 : convex hull (path-image p ∪ path-inside p) ⊆ convex hull

(set vts)
by (simp add: convex-hull-subset)

have set vts ⊆ path-image p ∪ path-inside p using assms vertices-on-path-image

by (simp add: polygon-of-def sup.coboundedI1)
then have subset2 : convex hull (set vts) ⊆ convex hull (path-image p ∪ path-inside

p)
by (simp add: hull-mono)

show ?thesis using subset1 subset2
by auto

qed

lemma convex-hull-frontier-polygon:
assumes polygon-of p vts
assumes ¬ set vts ⊆ frontier (convex hull (set vts))
shows ¬ convex (path-inside p)
by (metis assms(1) assms(2) convex-polygon-frontier-is-path-image polygon-of-def

vertices-on-path-image)

lemma frontier-int-subset:
assumes A ⊆ B
shows (frontier B) ∩ A ⊆ frontier A
by (metis assms closure-Un-frontier frontier-Int inf .absorb-iff2 inf-sup-aci(1)

subset-Un-eq sup-inf-distrib2)

lemma in-frontier-in-subset:
assumes A ⊆ B
assumes x ∈ frontier B
assumes x ∈ A
shows x ∈ frontier A
by (metis assms frontier-int-subset IntI in-mono)

lemma in-frontier-in-subset-convex-hull:
assumes A ⊆ B
assumes x ∈ frontier (convex hull B)

140

assumes x ∈ convex hull A
shows x ∈ frontier (convex hull A)
by (metis in-frontier-in-subset assms hull-mono)

lemma convex-hull-two-extreme-points:
fixes S :: ′a::euclidean-space set
assumes finite S
assumes convex hull S 6= {}
assumes ∀ x. convex hull S 6= {x}
shows card {x. x extreme-point-of (convex hull S)} ≥ 2 (is card ?ep ≥ 2)

proof−
have compact (convex hull S) by (simp add: assms(1) finite-imp-compact-convex-hull)
then have convex hull S = convex hull ?ep

using Krein-Milman-Minkowski[OF - convex-convex-hull] by blast
moreover then obtain x where x ∈ ?ep using assms(2) by fastforce
moreover have ?ep 6= {x} using assms(3) calculation(1) by force
ultimately obtain y where x ∈ ?ep ∧ y ∈ ?ep ∧ x 6= y by blast
moreover have finite ?ep using assms(1) extreme-points-of-convex-hull finite-subset

by blast
ultimately show ?thesis

by (metis (no-types, lifting) One-nat-def Orderings.order-eq-iff Suc-1 Suc-leI
card-1-singletonE card-gt-0-iff empty-iff insert-Diff not-less-eq-eq singleton-insert-inj-eq)
qed

lemma convex-hull-two-vts-on-frontier :
fixes S :: ′a::euclidean-space set
assumes card S ≥ 2
shows card (S ∩ frontier (convex hull S)) ≥ 2

proof−
have S ⊆ convex hull S by (simp add: hull-subset)
then have convex hull S 6= {} ∧ card (convex hull S) 6= 1
by (metis Suc-1 add-leD2 assms card.empty card-1-singletonE convex-hull-eq-empty

not-one-le-zero numeral-le-one-iff plus-1-eq-Suc semiring-norm(69) subset-singletonD)
moreover have finite S using assms by (metis Suc-1 Suc-leD card-eq-0-iff

not-one-le-zero)
ultimately have card {x. x extreme-point-of (convex hull S)} ≥ 2

using convex-hull-two-extreme-points by fastforce
moreover have {x. x extreme-point-of (convex hull S)} ⊆ S ∩ frontier (convex

hull S)
proof−
have {x. x extreme-point-of (convex hull S)} ⊆ S by (simp add: extreme-points-of-convex-hull)
moreover have {x. x extreme-point-of (convex hull S)} ∩ interior (convex hull

S) = {}
using extreme-point-not-in-interior by blast

moreover have {x. x extreme-point-of (convex hull S)} ⊆ convex hull S
using ‹S ⊆ convex hull S› calculation(1) by blast

moreover have convex hull S = interior (convex hull S) ∪ frontier (convex
hull S)

by (metis (no-types, lifting) Diff-empty Suc-1 assms card.infinite closure-Un-frontier

141

closure-convex-hull convex-closure-interior convex-convex-hull empty-subsetI finite-imp-compact
frontier-def interior-interior not-less-eq-eq sup-absorb2 zero-less-one-class.zero-le-one)

ultimately show ?thesis by blast
qed
ultimately show ?thesis

by (smt (verit, del-insts) assms extreme-points-of-convex-hull card-gt-0-iff fi-
nite-Int linorder-not-less not-numeral-le-zero order-less-le order-less-le-trans psub-
set-card-mono)
qed

18 Vertices on Convex Frontier Implies Polygon is
Convex

lemma convex-cut-aux:
assumes ∀ v ∈ S . z · v ≤ 0
shows convex hull S ⊆ {x. z · x ≤ 0}
by (simp add: assms convex-halfspace-le hull-minimal subsetI)

lemma convex-cut-aux ′:
assumes ∀ v ∈ S . z · v ≥ 0
shows convex hull S ⊆ {x. z · x ≥ 0}
using convex-cut-aux[of S −z] assms by auto

lemma convex-cut:
assumes z 6= 0
assumes {x. z · x = 0} ∩ interior (convex hull S) 6= {}
obtains v1 v2 where v1 6= v2 ∧ {v1 , v2} ⊆ S ∧ v1 ∈ {x. z · x < 0} ∧ v2 ∈
{x. z · x > 0}
proof−

let ?P1 = {x. z · x ≤ 0}
let ?P2 = {x. z · x ≥ 0}
have frontier ?P1 = {x. z · x = 0}

by (simp add: assms(1) frontier-halfspace-le)
moreover have frontier ?P2 = {x. z · x = 0}

by (simp add: assms(1) frontier-halfspace-ge)
ultimately have ¬ convex hull S ⊆ ?P1 ∧ ¬ convex hull S ⊆ ?P2
by (smt (verit, ccfv-SIG) DiffE IntE assms(2) disjoint-iff frontier-def inf .absorb-iff2

interior-Int)
moreover have (∀ v ∈ S . z · v ≤ 0) =⇒ convex hull S ⊆ ?P1 using con-

vex-cut-aux by blast
moreover have (∀ v ∈ S . z · v ≥ 0) =⇒ convex hull S ⊆ ?P2 using con-

vex-cut-aux ′ by blast
ultimately obtain v1 v2 where {v1 , v2} ⊆ S ∧ z · v1 < 0 ∧ z · v2 > 0

using linorder-not-le by auto
thus ?thesis using that by fastforce

qed

lemma affine-2-int-convex:

142

fixes S :: ′a::euclidean-space set
assumes {a, b} ⊆ S
assumes {a, b} ⊆ frontier (convex hull S)
assumes affine hull {a, b} ∩ interior (convex hull S) 6= {}
shows affine hull {a, b} ∩ convex hull S = convex hull {a, b}

proof−
let ?H = convex hull S
let ?L = affine hull {a, b} ∩ ?H
have 1 : ?L ⊇ convex hull {a, b}

by (meson Int-greatest assms(1) convex-hull-subset-affine-hull hull-mono)
moreover have ?L ⊆ convex hull {a, b}
proof(rule subsetI)

fix x
assume ∗: x ∈ ?L
then obtain u v where uv: x = u ∗R a + v ∗R b ∧ u + v = 1 using

affine-hull-2 by blast

have rel-interior ?L ⊆ rel-interior ?H
using subset-rel-interior-convex[of ?L ?H]

by (metis assms(3) convex-affine-hull convex-convex-hull convex-rel-interior-inter-two
inf-bot-right inf-le2 rel-interior-affine-hull rel-interior-nonempty-interior)

moreover have ab-frontier : a ∈ frontier ?H ∧ b ∈ frontier ?H using assms
by blast

ultimately have ab-rel-frontier : a ∈ rel-frontier ?L ∧ b ∈ rel-frontier ?L
by (metis IntI affine-affine-hull assms(3) convex-affine-rel-frontier-Int con-

vex-convex-hull hull-subset inf-commute insert-subset)

{ assume ∗∗: u < 0
then have b ∈ open-segment a x
proof−

from uv have b = (1/v) ∗R x − (u/v) ∗R a
by (smt (verit, ccfv-threshold) ∗∗ divide-inverse-commute inverse-eq-divide

real-vector-affinity-eq vector-space-assms(3) Groups.add-ac(2))
moreover from uv have 1/v − u/v = 1

by (metis ∗∗ add.commute add-cancel-right-left diff-divide-distrib di-
vide-self-if eq-diff-eq ′ not-one-less-zero)

ultimately have b = (1 − 1/v) ∗R a + (1/v) ∗R x by (simp add: diff-eq-eq)
moreover from uv ∗∗ have 0 < 1/v ∧ 1/v < 1 by simp
ultimately show ?thesis

by (metis 1 ab-rel-frontier affine-hull-sing convex-hull-singleton empty-iff
equalityI in-segment(2) inf-le1 insert-absorb rel-frontier-sing scaleR-collapse sin-
gletonI)

qed
then have b ∈ rel-interior (convex hull {a, x})

by (metis empty-iff open-segment-idem rel-interior-closed-segment seg-
ment-convex-hull)

moreover have x ∈ ?H using ∗ by blast
ultimately have b ∈ interior ?H

by (smt (verit, ccfv-threshold) ∗ IntD2 Int-empty-right 1 affine-affine-hull

143

affine-hull-affine-Int-nonempty-interior affine-hull-convex-hull assms(3) convex-Int
convex-affine-hull convex-convex-hull convex-rel-interior-inter-two hull-hull hull-redundant-eq
insert-commute insert-subsetI rel-interior-affine-hull rel-interior-mono rel-interior-nonempty-interior
rel-interior-subset subset-hull subset-iff)

then have False by (metis DiffD2 ab-frontier frontier-def)
} moreover
{ assume ∗∗: v < 0

then have a ∈ open-segment b x
proof−

from uv have a = (1/u) ∗R x − (v/u) ∗R b
by (smt (verit, ccfv-threshold) ∗∗ divide-inverse-commute inverse-eq-divide

real-vector-affinity-eq vector-space-assms(3) Groups.add-ac(2))
moreover from uv have 1/u − v/u = 1
by (metis ∗∗ add-cancel-right-left diff-divide-distrib divide-self-if eq-diff-eq ′

not-one-less-zero)
ultimately have a = (1 − 1/u) ∗R b + (1/u) ∗R x by (simp add: diff-eq-eq)

moreover from uv ∗∗ have 0 < 1/u ∧ 1/u < 1 by simp
ultimately show ?thesis

by (metis 1 ab-rel-frontier affine-hull-sing convex-hull-singleton empty-iff
equalityI in-segment(2) inf-le1 insert-absorb rel-frontier-sing scaleR-collapse sin-
gletonI)

qed
then have a ∈ rel-interior (convex hull {b, x})

by (metis empty-iff open-segment-idem rel-interior-closed-segment seg-
ment-convex-hull)

moreover have x ∈ ?H using ∗ by blast
ultimately have a ∈ interior ?H

by (smt (verit, ccfv-threshold) ∗ IntD2 Int-empty-right 1 affine-affine-hull
affine-hull-affine-Int-nonempty-interior affine-hull-convex-hull assms(3) convex-Int
convex-affine-hull convex-convex-hull convex-rel-interior-inter-two hull-hull hull-redundant-eq
insert-commute insert-subsetI rel-interior-affine-hull rel-interior-mono rel-interior-nonempty-interior
rel-interior-subset subset-hull subset-iff)

then have False by (metis DiffD2 ab-frontier frontier-def)
}
ultimately have 0 ≤ u ∧ u ≤ 1 ∧ 0 ≤ v ∧ v ≤ 1 using uv by argo
thus x ∈ convex hull {a, b} by (simp add: convexD hull-inc uv)

qed
ultimately show ?thesis by blast

qed

lemma halfplane-frontier-affine-hull:
fixes b v :: real^2
assumes b 6= 0
assumes v 6= 0
assumes b ∈ {x. v · x = 0}
shows {x. v · x = 0} = affine hull {0 , b}

proof−
let ?F = {x. v · x = 0}
let ?A = affine hull {0 , b}

144

have ?F ⊆ ?A
proof(rule subsetI)

fix y
assume ∗: y ∈ ?F
have y ∈ ?A if y = 0 by (simp add: assms(2) hull-inc that)
moreover have y ∈ ?A if b$1 6= 0
proof−

have v · y = 0 using ∗ by fast
moreover have v · b = 0 using assms by force
moreover have v · y = v$1 ∗ y$1 + v$2 ∗ y$2 by (simp add: inner-vec-def

sum-2 real-2-inner)
moreover have v · b = v$1 ∗ b$1 + v$2 ∗ b$2 by (simp add: inner-vec-def

sum-2 real-2-inner)
ultimately have 0 : v$1 ∗ y$1 + v$2 ∗ y$2 = 0 ∧ 0 = v$1 ∗ b$1 + v$2 ∗

b$2 by auto
moreover obtain c where c: y$1 = c ∗ b$1 using ‹b$1 6= 0 ›

by (metis hyperplane-eq-Ex inner-real-def mult.commute)
ultimately have v$1 ∗ y$1 + v$2 ∗ y$2 = 0 ∧ 0 = c ∗ v$1 ∗ b$1 + c ∗

v$2 ∗ b$2 by algebra
then have v$1 ∗ y$1 + v$2 ∗ y$2 = v$1 ∗ y$1 + c ∗ v$2 ∗ b$2 using c

by algebra
then have v$2 ∗ y$2 = c ∗ v$2 ∗ b$2 by argo
then have y$2 = c ∗ b$2
by (smt (verit, ccfv-threshold) 0 exhaust-2 mult.commute mult.left-commute

mult-cancel-left that assms vec-eq-iff zero-index)
then have y = c ∗R b using c
by (smt (verit) exhaust-2 real-scaleR-def vec-eq-iff vector-scaleR-component)

then have y ∈ span {0 , b} by (meson insert-subset span-mul span-superset)
thus y ∈ ?A

by (simp add: affine-hull-span-0 assms(2) hull-inc)
qed
moreover have y ∈ ?A if b$2 6= 0
proof−

have v · y = 0 using ∗ by fast
moreover have v · b = 0 using assms by force
moreover have v · y = v$1 ∗ y$1 + v$2 ∗ y$2 by (simp add: inner-vec-def

sum-2 real-2-inner)
moreover have v · b = v$1 ∗ b$1 + v$2 ∗ b$2 by (simp add: inner-vec-def

sum-2 real-2-inner)
ultimately have 0 : v$1 ∗ y$1 + v$2 ∗ y$2 = 0 ∧ 0 = v$1 ∗ b$1 + v$2 ∗

b$2 by auto
moreover obtain c where c: y$2 = c ∗ b$2 using ‹b$2 6= 0 ›

by (metis hyperplane-eq-Ex inner-real-def mult.commute)
ultimately have v$1 ∗ y$1 + v$2 ∗ y$2 = 0 ∧ 0 = c ∗ v$1 ∗ b$1 + c ∗

v$2 ∗ b$2 by algebra
then have v$1 ∗ y$1 + v$2 ∗ y$2 = 0 ∧ 0 = c ∗ v$1 ∗ b$1 + v$2 ∗ y$2

using c by algebra
then have v$1 ∗ y$1 = c ∗ v$1 ∗ b$1 by argo
then have y$1 = c ∗ b$1

145

by (smt (verit, ccfv-threshold) 0 exhaust-2 mult.commute mult.left-commute
mult-cancel-left that assms vec-eq-iff zero-index)

then have y = c ∗R b using c
by (smt (verit) exhaust-2 real-scaleR-def vec-eq-iff vector-scaleR-component)

then have y ∈ span {0 , b} by (meson insert-subset span-mul span-superset)
thus y ∈ ?A

by (simp add: affine-hull-span-0 assms(2) hull-inc)
qed
ultimately show y ∈ ?A
by (metis (mono-tags, opaque-lifting) assms(1) exhaust-2 vec-eq-iff zero-index)

qed
moreover have ?A ⊆ ?F
proof(rule subsetI)

fix x
assume x ∈ ?A
then obtain α β where x = α ∗R 0 + β ∗R b ∧ α + β = 1 using affine-hull-2

by blast
then have v · x = α ∗ (v · 0) + β ∗ (v · b) by (simp add: assms(1))
then have v · x = 0 using assms(3) by auto
thus x ∈ ?F by fast

qed
ultimately show ?thesis by blast

qed

lemma vts-on-convex-frontier-aux:
assumes polygon-of p vts
assumes vts!0 = 0
assumes set vts ⊆ frontier (convex hull (set vts))
shows path-image (linepath (vts!0) (vts!1)) ⊆ frontier (convex hull (set vts))

proof−
let ?H = convex hull (set vts)
let ?a = vts!0
let ?b = vts!1
let ?l = linepath ?a ?b
let ?L = path-image ?l
let ?A = affine hull {?a, ?b}
let ?x = ?b − ?a

obtain v where v: v · ?x = 0 ∧ v 6= 0
proof−

let ?v = (vector [?x$2 , −?x$1])::(real^2)
have ?a 6= ?b
by (smt (verit, best) Cons-nth-drop-Suc One-nat-def Suc-le-eq arc-distinct-ends

assms(1) assms(2) card.empty drop0 empty-set length-greater-0-conv list.sel(1)
list.sel(3) make-polygonal-path.elims make-polygonal-path.simps(1) make-polygonal-path.simps(2)
nth-drop pathfinish-linepath pathstart-linepath plus-1-eq-Suc polygon-at-least-3-vertices
polygon-def polygon-of-def polygon-pathstart rel-simps(28) simple-path-joinE)

then have ?x 6= 0 by simp
then have ?v · ?x = 0 ∧ ?v 6= 0

146

proof−
have ?v · ?x = (?x$2 ∗ ?x$1) + (−?x$1 ∗ ?x$2)

by (simp add: inner-vec-def sum-2 real-2-inner)
then have ?v · ?x = 0 by argo
moreover have ?v 6= 0

by (smt (verit, best) ‹?x 6= 0 › exhaust-2 vec-eq-iff vector-2 (1) vector-2 (2)
zero-index)

ultimately show ?thesis by blast
qed
thus ?thesis using that by blast

qed

let ?P1 = {x. v · x ≤ 0}
let ?P2 = {x. v · x ≥ 0}
let ?P1-int = {x. v · x < 0}
let ?P2-int = {x. v · x > 0}
let ?F = {x. v · x = 0}

have ?b 6= 0
by (smt (verit) Cons-nth-drop-Suc One-nat-def Suc-le-eq Suc-le-length-iff arc-distinct-ends

assms(1) assms(2) card.empty drop0 drop-eq-Nil empty-set le-numeral-extra(4)
length-greater-0-conv list.inject make-polygonal-path.elims make-polygonal-path.simps(2)
nat-less-le pathfinish-linepath pathstart-linepath polygon-at-least-3-vertices polygon-def
polygon-of-def polygon-pathstart rel-simps(28) simple-path-joinE)

moreover have ?b ∈ ?F using assms(2) v by auto
ultimately have F : ?F = ?A

using halfplane-frontier-affine-hull[of ?b v] v assms(2) by presburger
moreover have ?L ⊆ ?A by (simp add: convex-hull-subset-affine-hull segment-convex-hull)
ultimately have L-subset-F : ?L ⊆ ?F by blast
have L-subset-H : ?L ⊆ ?H
by (metis (no-types, lifting) add-gr-0 assms(1) card.empty convex-contains-segment

convex-convex-hull diff-less empty-set hull-subset leD length-greater-0-conv less-numeral-extra(1)
nth-mem numeral-3-eq-3 path-image-linepath plus-1-eq-Suc polygon-at-least-3-vertices
polygon-of-def rotate-polygon-vertices-same-set rotated-polygon-vertices-helper(2) sub-
set-code(1))

have frontier-P1 : frontier ?P1 = ?F by (simp add: v frontier-halfspace-le)
have frontier-P2 : frontier ?P2 = ?F by (simp add: v frontier-halfspace-ge)
have interior-P1 : interior ?P1 = ?P1-int by (simp add: v)
have interior-P2 : interior ?P2 = ?P2-int by (simp add: v)
have convex-P1 : convex ?P1 by (simp add: convex-halfspace-le)
have convex-P2 : convex ?P2 by (simp add: convex-halfspace-ge)
have P1-int-P2 : ?P1 ∩ ?P2 = ?F by (simp add: halfspace-Int-eq(1))

let ?H1 = ?H ∩ ?P1
let ?H2 = ?H ∩ ?P2

have ¬ collinear (set vts) using polygon-vts-not-collinear assms(1) by simp
then have nonempty-interior-H : interior ?H 6= {}

147

by (smt (verit, ccfv-SIG) Jordan-inside-outside-real2 closed-path-def Un-Int-eq(4)
assms(1) convex-hull-of-polygon-is-convex-hull-of-vts disjoint-iff hull-subset inf .orderE
interior-Int interior-eq interior-subset path-inside-def polygon-def polygon-of-def)

have convex-H1 : convex ?H1 by (simp add: convex-Int convex-P1)
have convex-H2 : convex ?H2 by (simp add: convex-Int convex-P2)

have ?H ⊆ ?P1 ∨ ?H ⊆ ?P2
proof(rule ccontr)

assume ∗: ¬ (?H ⊆ ?P1 ∨ ?H ⊆ ?P2)
moreover have interior ?H ⊆ ?P1 =⇒ ?H ⊆ ?P1
by (metis (no-types, lifting) Int-Un-eq(3) Krein-Milman-frontier List.finite-set

P1-int-P2 closure-Un-frontier closure-convex-hull closure-mono compact-frontier con-
vex-closure-interior convex-convex-hull finite-imp-compact-convex-hull frontier-P1
nonempty-interior-H)

moreover have interior ?H ⊆ ?P2 =⇒ ?H ⊆ ?P2
by (metis (no-types, lifting) Int-Un-eq(3) Krein-Milman-frontier List.finite-set

P1-int-P2 calculation(1) calculation(2) closure-Un-frontier closure-convex-hull clo-
sure-mono compact-frontier convex-closure-interior convex-convex-hull emptyE fi-
nite-imp-compact-convex-hull frontier-P2 inf-commute subsetI)

ultimately have interior ?H ∩ ?P1 6= {} ∧ interior ?H ∩ −?P1 6= {} by
force

moreover have path-connected (interior ?H) by (simp add: convex-imp-path-connected)
ultimately have F-int-interior-H : ?F ∩ interior ?H 6= {}
by (metis (no-types, lifting) path-connected-frontier ComplD disjoint-eq-subset-Compl

frontier-P1 subset-eq)
then obtain v1 v2 where v1v2 : v1 6= v2 ∧ {v1 , v2} ⊆ set vts
∧ v1 ∈ interior ?P1 ∧ v2 ∈ interior ?P2

using convex-cut frontier-P1 interior-P1 interior-P2 v by metis
then obtain i j where ij: vts!i = v1 ∧ vts!j = v2
∧ 2 ≤ i ∧ 2 ≤ j ∧ i 6= j ∧ i < length vts − 1 ∧ j < length vts − 1

proof−
obtain i j where vts!i = v1 ∧ vts!j = v2 ∧ i 6= j ∧ i < length vts ∧ j <

length vts
by (metis in-set-conv-nth insert-subset v1v2)

moreover have 2 ≤ i
proof−

{ assume i = 0 ∨ i = 1
then have vts!i = ?a ∨ vts!i = ?b by blast
then have vts!i ∈ ?F by (simp add: F hull-inc)
then have False using calculation(1) interior-P1 v1v2 by auto

}
thus ?thesis by presburger

qed
moreover have 2 ≤ j
proof−

{ assume j = 0 ∨ j = 1
then have vts!j = ?a ∨ vts!j = ?b by blast
then have vts!j ∈ ?F by (simp add: F hull-inc)

148

then have False using calculation(1) interior-P2 v1v2 by auto
}
thus ?thesis by presburger

qed
moreover have False if i = length vts − 1
by (metis (no-types, lifting) F assms(1) calculation(1) frontier-P1 frontier-def

have-wraparound-vertex hull-subset insertCI insert-Diff last-conv-nth last-snoc less-nat-zero-code
list.size(3) polygon-of-def subset-Diff-insert that v1v2)

moreover have False if j = length vts − 1
by (metis (no-types, lifting) F assms(1) calculation(1) frontier-P2 frontier-def

have-wraparound-vertex hull-subset insertCI insert-Diff last-conv-nth last-snoc less-nat-zero-code
list.size(3) polygon-of-def subset-Diff-insert that v1v2)

ultimately show ?thesis using that by fastforce
qed

let ?i ′ = min i j
let ?j ′ = max i j
let ?vts ′ = take (?j ′ − ?i ′ + 1) (drop ?i ′ vts)
let ?p ′ = make-polygonal-path ?vts ′

have vts ′-sublist: sublist ?vts ′ vts using sublist-order .order .trans by blast
then have vts ′-sublist-tl: sublist ?vts ′ (tl vts)

by (metis Suc-1 Suc-eq-plus1 drop-Suc ij max-def min-def nat-minus-add-max
not-less-eq-eq sublist-drop sublist-order .dual-order .trans sublist-take)

have p ′-start-finish: {pathstart ?p ′, pathfinish ?p ′} = {v1 , v2}
proof−

have ?vts ′!0 = vts!?i ′ using ij by force
moreover have ?vts ′!(?j ′ − ?i ′) = vts!?j ′
using diff-is-0-eq diff-zero ij less-numeral-extra(1) max.cobounded1 min-absorb2

min-def nth-drop nth-take order-less-imp-le
by fastforce

moreover have (vts!?i ′ = v1 ∧ vts!?j ′ = v2) ∨ (vts!?i ′ = v2 ∧ vts!?j ′ = v1)
using ij by linarith

moreover have pathstart ?p ′ = ?vts ′!0 ∧ pathfinish ?p ′ = ?vts ′!(?j ′ − ?i ′)
using ij min-diff polygon-pathfinish polygon-pathstart

by (smt (verit, ccfv-SIG) add-diff-cancel-right ′ add-diff-inverse-nat length-drop
length-take less-diff-conv max.commute max-min-same(1) min.absorb4 nat-minus-add-max
not-add-less2 plus-1-eq-Suc plus-nat.simps(2) take-eq-Nil zero-less-one)

ultimately show ?thesis by auto
qed
then have path-image ?p ′ ∩ interior ?P2 6= {} ∧ path-image ?p ′ ∩ interior

?P1 6= {}
by (metis v1v2 IntI doubleton-eq-iff empty-iff pathfinish-in-path-image path-

start-in-path-image)
then have path-image ?p ′ ∩ −?P1 6= {} ∧ path-image ?p ′ ∩ ?P1 6= {}

using interior-P2
by (smt (verit, best) disjoint-iff-not-equal in-mono inf-shunt interior-P1

mem-Collect-eq)
moreover have path-connected (path-image ?p ′)

149

using make-polygonal-path-gives-path path-connected-path-image by blast
ultimately obtain z where z: z ∈ path-image ?p ′ ∩ ?F
by (smt (verit, del-insts) path-connected-frontier DiffE Diff-triv all-not-in-conv

frontier-P1)
moreover have path-image ?p ′ ⊆ ?H
proof−

have path-image p ⊆ ?H
by (metis assms(1) insert-subset length-pos-if-in-set polygon-of-def poly-

gon-path-image-subset-convex v1v2)
moreover have path-image ?p ′ ⊆ path-image p
by (metis (no-types, lifting) vts ′-sublist sublist-path-image-subset One-nat-def

Suc-leI p ′-start-finish assms(1) doubleton-eq-iff length-greater-0-conv make-polygonal-path.simps(1)
pathfinish-linepath pathstart-linepath polygon-of-def v1v2)

ultimately show ?thesis by blast
qed
ultimately have z ∈ path-image ?p ′ ∩ (?H ∩ ?F) by blast
moreover have ?H ∩ ?F = ?L

using affine-2-int-convex[of ?a ?b set vts]
by (smt (verit, best) assms(3) F F-int-interior-H inf-commute segment-convex-hull

path-image-linepath Suc-1 add-leD2 assms(1) empty-subsetI insert-subset length-greater-0-conv
lessI nat-neq-iff nth-mem numeral-Bit0 order .strict-iff-not plus-1-eq-Suc polygon-of-def
polygon-vertices-length-at-least-4 take-all-iff take-eq-Nil IntE inf .orderE)

ultimately have z ∈ ?L ∩ path-image ?p ′ by blast
moreover have ?L ∩ path-image ?p ′ ⊆ {?a, ?b}
proof−

let ?p-tl = make-polygonal-path (tl vts)
have p = make-polygonal-path vts ∧ loop-free p

using assms unfolding polygon-of-def polygon-def simple-path-def by blast
moreover have [?a, ?b] = take 2 vts
by (metis Cons-nth-drop-Suc One-nat-def Suc-1 append-Cons append-Nil cal-

culation constant-linepath-is-not-loop-free drop0 drop-eq-Nil insert-subset length-pos-if-in-set
linorder-not-le make-polygonal-path.simps(2) take0 take-Suc-conv-app-nth v1v2)

moreover have tl vts = drop (2 − 1) vts by (simp add: drop-Suc)
moreover have ?l = make-polygonal-path [?a, ?b] using make-polygonal-path.simps

by simp
moreover have length vts > 2 using ij by linarith
moreover have pathstart ?l = ?a ∧ pathstart ?p-tl = ?b

using calculation(3) calculation(5) polygon-pathstart by auto
ultimately have ?L ∩ path-image ?p-tl ⊆ {?a, ?b}

using loop-free-split-int[of p vts [?a, ?b] 2 tl vts ?l ?p-tl length vts] by auto
moreover have path-image ?p ′ ⊆ path-image ?p-tl

using sublist-path-image-subset
by (metis add.commute ij le-add2 length-drop length-take less-diff-conv

min.absorb4 min.cobounded1 min-def vts ′-sublist-tl)
ultimately show ?thesis by blast

qed
ultimately have ∗: z = ?a ∨ z = ?b by blast

let ?i = ?i ′

150

let ?j = ?j ′ − ?i ′ + 1
let ?k = ?i + ?j
let ?x1 = (2^?i − 1)/(2^?i)::real
let ?x2 = (2^(?k−1) − 1)/(2^(?k−1))::real

have ?vts ′ = take ?j (drop ?i vts) by blast
moreover have ?k ≤ length vts − 1 ∧ 2 ≤ ?j using ij by linarith
ultimately have path-image ?p ′ = p‘{?x1 ..?x2}

using vts-sublist-path-image assms(1) unfolding polygon-of-def by metis
moreover have x1x2 : ?x1 > 1/2 ∧ ?x2 < 1
proof−

have ?i ′ ≥ 2 using ij by linarith
then have (1 ::real) < 2^?i ′ − 1
by (smt (z3) dual-order .strict-trans1 linorder-le-less-linear numeral-le-one-iff

power-one-right power-strict-increasing semiring-norm(69))
thus ?thesis by simp

qed
moreover have p 0 /∈ p‘{?x1 ..?x2} ∧ p (1/2) /∈ p‘{?x1 ..?x2}
proof−

have False if ∗: p 0 ∈ p‘{?x1 ..?x2}
proof−

obtain t where t: t ∈ {?x1 ..?x2} ∧ p t = p 0 using ∗ by auto
then have t ≥ ?x1 ∧ t ≤ ?x2 by presburger
then have 1/2 < t ∧ t < 1 using x1x2 by argo
thus False

using t assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def

by force
qed
moreover have False if ∗: p (1/2) ∈ p‘{?x1 ..?x2}
proof−

obtain t where t: t ∈ {?x1 ..?x2} ∧ p t = p (1/2) using ∗ by auto
then have t ≥ ?x1 ∧ t ≤ ?x2 by presburger
then have 1/2 < t ∧ t < 1 using x1x2 by argo
thus False

using t assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def

by fastforce
qed
ultimately show ?thesis by fast

qed
moreover have ?a = p 0

by (metis assms(1) card.empty empty-set not-numeral-le-zero pathstart-def
polygon-at-least-3-vertices polygon-of-def polygon-pathstart)

moreover have ?b = p (1/2)
proof−

have p = ?l +++ (make-polygonal-path (tl vts))
by (smt (verit, best) One-nat-def Suc-1 assms(1) ij length-Cons length-greater-0-conv

length-tl less-imp-le-nat list.sel(3) list.size(3) make-polygonal-path.elims nth-Cons-0

151

nth-tl order-less-le-trans polygon-of-def pos2 zero-less-diff)
then have p (1/2) = ?l 1

unfolding joinpaths-def by simp
thus ?thesis by (simp add: linepath-1 ′)

qed
ultimately have ?a /∈ path-image ?p ′ ∧ ?b /∈ path-image ?p ′ by presburger
thus False using z ∗ by blast

qed
then have frontier ?P1 ∩ ?H ⊆ frontier ?H ∨ frontier ?P2 ∩ ?H ⊆ frontier ?H

using frontier-int-subset by auto
moreover have ?L ⊆ frontier ?P1 ∧ ?L ⊆ frontier ?P2

using frontier-P1 frontier-P2 L-subset-F by presburger
ultimately show ?thesis using L-subset-H by fast

qed

lemma vts-on-convex-frontier-aux ′:
assumes polygon-of p vts
assumes set vts ⊆ frontier (convex hull (set vts))
shows path-image (linepath (vts!0) (vts!1)) ⊆ frontier (convex hull (set vts))

proof−
let ?a = vts!0
let ?f = λv. v + (−?a)
let ?vts ′ = map ?f vts
let ?p ′ = make-polygonal-path ?vts ′

have len-vts: length vts ≥ 2
using assms(1) polygon-of-def polygon-vertices-length-at-least-4 by fastforce

then have p ′: ?p ′ = ?f ◦ p
using make-polygonal-path-translate[of vts −?a] assms unfolding polygon-of-def

by presburger
then have 0 : ?vts ′!0 = 0

by (metis len-vts neg-eq-iff-add-eq-0 nth-map order-less-le-trans pos2)
moreover have vts ′: set ?vts ′ = ?f ‘ (set vts) by simp
ultimately have convex hull (set ?vts ′) = ?f ‘ (convex hull (set vts))

using convex-hull-translation[of −?a set vts] by force
then have frontier (convex hull (set ?vts ′)) = frontier (?f ‘ (convex hull (set

vts)))
by auto

then have frontier-translation:
frontier (convex hull (set ?vts ′)) = ?f ‘ (frontier ((convex hull (set vts))))

using frontier-translation[of −?a convex hull (set vts)] by simp

have ?f (vts!0) = ?vts ′!0 ∧ ?f (vts!1) = ?vts ′!1 using 0 len-vts by auto
then have linepath-translation:

?f ‘ path-image (linepath (vts!0) (vts!1)) = path-image (linepath (?vts ′!0)
(?vts ′!1))

using linepath-translation[of ?a −?a vts!1] by (simp add: path-image-compose)

have polygon-of ?p ′ ?vts ′ using translation-is-polygon assms(1) p ′ by presburger

152

moreover have set ?vts ′ ⊆ frontier (convex hull (set ?vts ′))
proof−

have frontier (convex hull (set ?vts ′)) = frontier (convex hull (?f ‘ (set vts)))
using vts ′ by presburger

then have frontier (convex hull (set ?vts ′)) = ?f ‘ (frontier (convex hull (set
vts)))

using frontier-translation by presburger
thus ?thesis using vts ′ assms(2) by auto

qed
ultimately have path-image (linepath (?vts ′!0) (?vts ′!1)) ⊆ frontier (convex hull

(set ?vts ′))
using vts-on-convex-frontier-aux assms 0 by blast

then have ?f ‘ path-image (linepath (vts!0) (vts!1)) ⊆ ?f ‘ (frontier ((convex hull
(set vts))))

using linepath-translation frontier-translation by argo
thus ?thesis by force

qed

lemma vts-on-convex-frontier :
assumes polygon-of p vts
assumes set vts ⊆ frontier (convex hull (set vts))
assumes i < length vts − 1
shows path-image (linepath (vts!i) (vts!(i+1))) ⊆ frontier (convex hull (set vts))

proof−
let ?vts ′ = rotate-polygon-vertices vts i
let ?p ′ = make-polygonal-path ?vts ′

have polygon-of ?p ′ ?vts ′

using assms(1) polygon-of-def rotation-is-polygon by blast
moreover have set ?vts ′ ⊆ frontier (convex hull (set ?vts ′))

using assms(1) assms(2) polygon-of-def rotate-polygon-vertices-same-set by
auto

ultimately have path-image (linepath (?vts ′!0) (?vts ′!1)) ⊆ frontier (convex hull
(set ?vts ′))

using vts-on-convex-frontier-aux ′ by presburger
moreover have ?vts ′!0 = vts!i ∧ ?vts ′!1 = vts!(i+1)

using assms(3)
using rotated-polygon-vertices[of ?vts ′ vts i i+1]
using rotated-polygon-vertices[of ?vts ′ vts i i]

by (smt (verit, best) Suc-leI add.commute add.right-neutral add-2-eq-Suc ′

add-diff-cancel-left ′ add-lessD1 assms(1) have-wraparound-vertex hd-Nil-eq-last hd-conv-nth
last-snoc le-add1 less-diff-conv plus-1-eq-Suc polygon-of-def)

moreover have frontier (convex hull (set ?vts ′)) = frontier (convex hull (set
vts))

by (metis assms(1) polygon-of-def rotate-polygon-vertices-same-set)
ultimately show ?thesis by argo

qed

lemma vts-on-frontier-means-path-image-on-frontier :

153

assumes polygon-of p vts
assumes set vts ⊆ frontier (convex hull (set vts))
shows path-image p ⊆ frontier (convex hull (set vts))

proof(rule subsetI)
let ?H = convex hull (set vts)
fix x assume x ∈ path-image p
moreover have path-image p = (

⋃
{path-image (linepath (vts!i) (vts!(i+1))) |

i. i ≤ (length vts) − 2})
using polygonal-path-image-linepath-union assms unfolding polygon-of-def

by (metis (no-types, lifting) add-leD2 numeral-Bit0 polygon-vertices-length-at-least-4)
ultimately obtain i where i ≤ (length vts) − 2 ∧ x ∈ path-image (linepath

(vts!i) (vts!(i+1)))
by blast

thus x ∈ frontier ?H
by (smt (verit, ccfv-SIG) One-nat-def Suc-diff-Suc add.commute add-2-eq-Suc ′

assms(1) assms(2) in-mono le-add1 le-zero-eq less-Suc-eq-le less-diff-conv linorder-not-less
plus-1-eq-Suc vts-on-convex-frontier vts-on-convex-frontier-aux ′)
qed

lemma vts-on-convex-frontier-interior :
assumes polygon-of p vts
assumes set vts ⊆ frontier (convex hull (set vts))
shows path-inside p = interior (convex hull (set vts))

proof−
let ?H = convex hull (set vts)

have path-inside p ⊆ interior (convex hull (set vts))
by (metis (no-types, lifting) Un-empty assms(1) convex-contains-simple-closed-path-imp-contains-path-inside

convex-convex-hull convex-hull-eq-empty convex-hull-of-polygon-is-convex-hull-of-vts
empty-set inside-outside-def inside-outside-polygon interior-maximal length-greater-0-conv
polygon-def polygon-of-def polygon-path-image-subset-convex)

moreover have interior (convex hull (set vts)) ⊆ path-inside p
proof(rule ccontr)

assume ∗: ¬ interior (convex hull (set vts)) ⊆ path-inside p
then obtain x where x: x ∈ interior (convex hull (set vts)) − path-inside p

by blast
obtain y where y: y ∈ path-inside p
using inside-outside-polygon assms unfolding inside-outside-def polygon-of-def

by fastforce

let ?l = linepath x y
have 1 : path-image ?l ⊆ interior ?H

by (metis (no-types, lifting) DiffE calculation convex-contains-segment con-
vex-convex-hull convex-interior in-mono linepath-image-01 path-defs(4) x y)

have path-image ?l ∩ frontier (path-inside p) 6= {}
using inside-outside-polygon assms unfolding inside-outside-def polygon-of-def
by (smt (verit) ∗ Diff-disjoint Diff-eq-empty-iff Int-Un-eq(2) Int-assoc Un-Int-eq(3)

assms(1) calculation connected-Int-frontier convex-connected convex-convex-hull con-
vex-interior frontier-def inf .absorb-iff2 vts-on-frontier-means-path-image-on-frontier)

154

then have 2 : path-image ?l ∩ path-image p 6= {}
using inside-outside-polygon assms unfolding inside-outside-def polygon-of-def

by blast

show False
using 1 2 vts-on-frontier-means-path-image-on-frontier
using Diff-disjoint Int-lower2 Int-subset-iff assms(1) assms(2) frontier-def

inf-le1
by fastforce

qed
ultimately show ?thesis by blast

qed

lemma vts-subset-frontier :
assumes polygon-of p vts
assumes set vts ⊆ frontier (convex hull (set vts))
shows convex (path-image p ∪ path-inside p)
by (metis assms(1) assms(2) vts-on-convex-frontier-interior convex-convex-hull

convex-interior polygon-convex-iff polygon-of-def sup-commute)

lemma convex-hull-of-nonconvex-polygon-strict-subset-ep:
assumes polygon-of p vts
assumes ¬ (convex (path-image p ∪ path-inside p))
shows {v. v extreme-point-of (convex hull (set vts))} ⊂ set vts

proof−
let ?ep = {v. v extreme-point-of (convex hull (set vts))}
let ?H = convex hull (set vts)
have ?ep ⊆ frontier ?H
by (metis Krein-Milman-frontier List.finite-set convex-convex-hull extreme-point-of-convex-hull

finite-imp-compact-convex-hull mem-Collect-eq subsetI)
thus ?thesis using assms vts-subset-frontier extreme-points-of-convex-hull by

force
qed

lemma convex-hull-of-nonconvex-polygon-strict-subset:
assumes polygon-of p vts
assumes ¬ (convex (path-image p ∪ path-inside p))
shows ∃ v ∈ set vts. v ∈ interior (convex hull (set vts))
using assms vts-subset-frontier
by (smt (verit) Diff-iff UnCI closure-Un-frontier frontier-def hull-inc subsetI)

lemma convex-polygon-means-linepaths-inside:
fixes p :: R-to-R2
assumes polygon-of p vts
assumes convex-is: convex hull (set vts) = (path-inside p ∪ path-image p)
assumes a-in: a ∈ (path-inside p ∪ path-image p)
assumes b-in: b ∈ (path-inside p ∪ path-image p)
shows path-image (linepath a b) ⊆ (path-inside p ∪ path-image p)

proof −

155

let ?conv = path-inside p ∪ path-image p
have ∀ u≥0 . ∀ v≥0 . u + v = 1 −→ u ∗R a + v ∗R b ∈ ?conv

using convex-is a-in b-in unfolding convex-def
by (metis (no-types, lifting) convexD convex-convex-hull convex-is)

then have (1 − x) ∗R a + x ∗R b ∈ ?conv if x-in: x ∈ {0 ..1} for x
using x-in by auto

then show ?thesis unfolding linepath-def path-image-def
by fast

qed

end
theory Polygon-Splitting
imports

HOL−Analysis.Complete-Measure
Polygon-Jordan-Curve
Polygon-Convex-Lemmas

begin

19 Polygon Splitting
lemma split-up-a-list-into-3-parts:

fixes i j:: nat
assumes i < length vts ∧ j < length vts ∧ i < j
shows
vts = (take i vts) @ ((vts ! i) # ((take (j − i − 1) (drop (Suc i) vts)) @ (vts !

j) # drop (j − i) (drop (Suc i) vts)))
proof −

let ?x = vts ! i
let ?y = vts ! j
let ?vts1 = (take i vts)
let ?drop-list = drop (Suc i) vts
have vts-is: vts = ?vts1 @ vts!i # drop (Suc i) vts

using split-list assms
by (meson id-take-nth-drop)

then have len-vts1 : length ?vts1 = i
using length-take[of i vts] assms
by auto

have gt-eq: j − i − 1 ≥ 0
using assms by auto

let ?ind = j − i − 1
have drop-is: drop (Suc i) vts ! (j − i − 1) = ?y

using assms by auto
then have drop-list-is: ?drop-list = take ?ind ?drop-list @ ?y # (drop (j − i)

?drop-list)
by (metis Suc-diff-Suc Suc-leI assms diff-Suc-1 diff-less-mono id-take-nth-drop

length-drop)
have length (drop (Suc ?ind) ?drop-list) = length vts − j − 1

using length-drop[of Suc (j − i − 1) (drop (Suc i) vts)] length-take assms
by auto

156

then show ?thesis
using vts-is drop-list-is len-vts1
by presburger

qed

definition is-polygon-cut :: (real^2) list ⇒ real^2 ⇒ real^2 ⇒ bool where
is-polygon-cut vts x y =

(x 6= y ∧
polygon (make-polygonal-path vts) ∧
{x, y} ⊆ set vts ∧
path-image (linepath x y) ∩ path-image (make-polygonal-path vts) = {x, y} ∧
path-image (linepath x y) ∩ path-inside (make-polygonal-path vts) 6= {})

definition is-polygon-cut-path :: (real^2) list ⇒ R-to-R2 ⇒ bool where
is-polygon-cut-path vts cutpath =
(let x = pathstart cutpath ; y = pathfinish cutpath in
(x 6= y ∧
polygon (make-polygonal-path vts) ∧
{x, y} ⊆ set vts ∧
simple-path cutpath ∧
path-image cutpath ∩ path-image (make-polygonal-path vts) = {x, y} ∧
path-image cutpath ∩ path-inside (make-polygonal-path vts) 6= {}))

definition is-polygon-split ::
(real^2) list ⇒ nat ⇒ nat ⇒ bool where
is-polygon-split vts i j =
(i < length vts ∧ j < length vts ∧ i < j ∧
(let vts1 = (take i vts) in
let vts2 = (take (j − i − 1) (drop (Suc i) vts)) in
let vts3 = drop (j − i) (drop (Suc i) vts) in
let x = vts ! i in
let y = vts ! j in
let p = make-polygonal-path (vts@[vts!0]) in
let p1 = make-polygonal-path (x#(vts2@[y, x])) in
let p2 = make-polygonal-path (vts1 @ [x, y] @ vts3 @ [vts ! 0]) in
let c1 = make-polygonal-path (x#(vts2@[y])) in
let c2 = make-polygonal-path (vts1 @ [x, y] @ vts3) in
(is-polygon-cut (vts@[vts!0]) x y ∧
polygon p ∧ polygon p1 ∧ polygon p2 ∧
path-inside p1 ∩ path-inside p2 = {} ∧
path-inside p1 ∪ path-inside p2 ∪ (path-image (linepath x y) − {x, y}) =

path-inside p
∧ ((path-image p1) − (path-image (linepath x y))) ∩ ((path-image p2) −

(path-image (linepath x y)))
= {}
∧ path-image p

= ((path-image p1) − (path-image (linepath x y))) ∪ ((path-image p2) −

157

(path-image (linepath x y))) ∪ {x, y}
)))

definition is-polygon-split-path :: (real^2) list ⇒ nat ⇒ nat ⇒ (real^2) list ⇒
bool where

is-polygon-split-path vts i j cutvts =
(i < length vts ∧ j < length vts ∧ i < j ∧
(let vts1 = (take i vts) in
let vts2 = (take (j − i − 1) (drop (Suc i) vts)) in
let vts3 = drop (j − i) (drop (Suc i) vts) in
let x = vts!i in
let y = vts!j in
let cutpath = make-polygonal-path (x # cutvts @ [y]) in
let p = make-polygonal-path (vts@[vts!0]) in
let p1 = make-polygonal-path (x#(vts2 @ [y] @ (rev cutvts) @ [x])) in
let p2 = make-polygonal-path (vts1 @ ([x] @ cutvts @ [y]) @ vts3 @ [vts ! 0]) in
let c1 = make-polygonal-path (x#(vts2@[y])) in
let c2 = make-polygonal-path (vts1 @ ([x] @ cutvts @ [y]) @ vts3) in
(is-polygon-cut-path (vts@[vts!0]) cutpath ∧
polygon p ∧ polygon p1 ∧ polygon p2 ∧
path-inside p1 ∩ path-inside p2 = {} ∧
path-inside p1 ∪ path-inside p2 ∪ (path-image cutpath − {x, y}) = path-inside

p
∧ ((path-image p1) − (path-image cutpath)) ∩ ((path-image p2) − (path-image

cutpath)) = {}
∧ path-image p
= ((path-image p1) − (path-image cutpath)) ∪ ((path-image p2) − (path-image

cutpath)) ∪ {x, y}
)))

lemma polygon-split-add-measure:
fixes p p1 p2 :: R-to-R2
assumes is-polygon-split vts i j
assumes vts1 = (take i vts)

vts2 = (take (j − i − 1) (drop (Suc i) vts))
vts3 = drop (j − i) (drop (Suc i) vts)
x = vts ! i
y = vts ! j
p = make-polygonal-path (vts@[vts!0])
p1 = make-polygonal-path (x#(vts2@[y, x]))
p2 = make-polygonal-path (vts1 @ [x, y] @ vts3 @ [vts ! 0])

defines M1 ≡ measure lebesgue (path-inside p1) and
M2 ≡ measure lebesgue (path-inside p2) and
M ≡ measure lebesgue (path-inside p)

shows M1 + M2 = M
proof−

let ?cut = linepath x y
let ?cut-open-image = (path-image ?cut) − {x, y}
let ?P = path-inside p

158

let ?P1 = path-inside p1
let ?P2 = path-inside p2
let ?M = space lebesgue
let ?A = sets lebesgue
let ?µ = emeasure lebesgue

have open ?P1
by (metis assms(1) assms(3) assms(5) assms(6) assms(8) closed-path-image

is-polygon-split-def open-inside path-inside-def polygon-def simple-path-def)
then have P1-measurable: ?P1 ∈ ?A by simp

have open ?P2
by (metis assms(1) assms(2) assms(4) assms(5) assms(6) assms(9) closed-path-image

is-polygon-split-def open-inside path-inside-def polygon-def simple-path-def)
then have P2-measurable: ?P2 ∈ ?A by simp

have ?P1 ∩ ?P2 = {}
by (metis assms(1) assms(2) assms(3) assms(4) assms(5) assms(6) assms(8)

assms(9) is-polygon-split-def)
then have sum-union-finite: ?µ ?P1 + ?µ ?P2 = ?µ (?P1 ∪ ?P2)

using plus-emeasure P1-measurable P2-measurable by blast

have measure lebesgue ?P1 = ?µ ?P1
by (metis assms(1) assms(3) assms(5) assms(6) assms(8) bounded-inside

bounded-set-imp-lmeasurable bounded-simple-path-image emeasure-eq-ennreal-measure
emeasure-notin-sets ennreal-0 fmeasurableD2 is-polygon-split-def measure-zero-top
path-inside-def polygon-def)

moreover have measure lebesgue ?P2 = ?µ ?P2
by (metis Sigma-Algebra.measure-def assms(1) assms(2) assms(4) assms(5)

assms(6) assms(9) bounded-inside bounded-path-image bounded-set-imp-lmeasurable
emeasure-eq-ennreal-measure emeasure-notin-sets enn2real-top ennreal-0 fmeasur-
ableD2 is-polygon-split-def path-inside-def polygon-def simple-path-def)

ultimately have ?µ (?P1 ∪ ?P2) = M1 + M2
using assms(10) assms(11) sum-union-finite by auto

moreover have ?µ (?P1 ∪ ?P2) = ?µ ?P
proof−

have ?µ (path-image ?cut) = 0 using linepath-has-emeasure-0 by blast
then have (path-image ?cut) ∈ null-sets lebesgue by auto
moreover have {x, y} ∈ null-sets lebesgue by simp

ultimately have ?cut-open-image ∈ null-sets lebesgue using measure-Diff-null-set
by auto

moreover have ?P = ?P1 ∪ ?P2 ∪ ?cut-open-image
by (metis assms(1) assms(2) assms(3) assms(4) assms(5) assms(6) assms(7)

assms(8) assms(9) is-polygon-split-def)
ultimately show ?thesis

by (simp add: P1-measurable P2-measurable emeasure-Un-null-set sets.Un)
qed
ultimately show ?thesis
by (smt (verit, best) M1-def M2-def M-def emeasure-eq-ennreal-measure enn2real-ennreal

159

ennreal-neq-top measure-nonneg)
qed

lemma polygonal-paths-measurable:
shows path-image (make-polygonal-path vts) ∈ sets lebesgue

proof (induct vts rule: make-polygonal-path-induct)
case (Empty ell)
then show ?case by auto

next
case (Single ell)
then obtain a where ell = [a]
by (metis Cons-nth-drop-Suc One-nat-def drop0 drop-eq-Nil le-numeral-extra(4)

zero-less-one)
then show ?case using make-polygonal-path.simps(2)[of a] by simp

next
case (Two ell)
then obtain a b where ell = [a, b]
by (metis Cons-nth-drop-Suc One-nat-def Suc-1 append-Nil drop-eq-Nil2 dual-order .refl

id-take-nth-drop lessI pos2 take0)
then show ?case using make-polygonal-path.simps(3)[of a b] by simp

next
case (Multiple ell)
then have ell = (ell ! 0) # (ell ! 1) # (ell ! 2) # (drop 3 ell)
by (metis Cons-nth-drop-Suc One-nat-def Suc-1 drop0 le-Suc-eq linorder-not-less

numeral-3-eq-3)
then have make-polygonal-path ell =

linepath (ell ! 0) (ell ! 1) +++ make-polygonal-path (ell ! 1 # ell ! 2 # (drop
3 ell))

by (metis make-polygonal-path.simps(4))

then have path-image (make-polygonal-path ell) = path-image (linepath (ell ! 0)
(ell ! 1)) ∪ path-image (make-polygonal-path (ell ! 1 # ell ! 2 # (drop 2 ell)))

using Cons-nth-drop-Suc Multiple.hyps(1) One-nat-def Suc-1 Un-assoc ‹ell =
ell ! 0 # ell ! 1 # ell ! 2 # drop 3 ell› list.discI make-polygonal-path.simps(2)
make-polygonal-path.simps(3) nth-Cons-0 numeral-3-eq-3 path-image-cons-union

proof−
have f1 : ell = ell ! 0 # ell ! 1 # ell ! Suc 1 # drop 3 ell

using Suc-1 ‹ell = ell ! 0 # ell ! 1 # ell ! 2 # drop 3 ell› by presburger
have Suc 1 < length ell

by (smt (z3) Suc-1 ‹2 < length ell›)
then have f2 : drop (Suc 1) ell = ell ! Suc 1 # drop (Suc (Suc 1)) ell

by (smt (z3) Cons-nth-drop-Suc)
have f3 : ∀ v va vs. path-image (make-polygonal-path (v # va # vs)) = path-image

(linepath v va) ∪ path-image (make-polygonal-path (va # vs))
by (metis (no-types) list.discI nth-Cons-0 path-image-cons-union)

have f4 : ∀V v va. path-image (linepath (v::(real, 2) vec) va) ∪ (path-image
(linepath va va) ∪ V) = path-image (linepath v va) ∪ V

by auto
have path-image (make-polygonal-path ell) = path-image (make-polygonal-path

160

(ell ! 0 # ell ! 1 # drop (Suc 1) ell))
using f2 f1 by (simp add: numeral-3-eq-3)

then have path-image (make-polygonal-path ell) = path-image (linepath (ell !
0) (ell ! 1)) ∪ path-image (make-polygonal-path (ell ! 1 # ell ! Suc 1 # drop (Suc
1) ell))

using f4 f3 f2 by presburger
then show ?thesis

using Suc-1 by presburger
qed

then show ?case using Multiple(3)
by (metis (no-types, lifting) Cons-nth-drop-Suc Multiple.hyps(1) Multiple.hyps(2)

One-nat-def Suc-1 ‹ell = ell ! 0 # ell ! 1 # ell ! 2 # drop 3 ell› list.discI
make-polygonal-path.simps(3) nth-Cons-0 numeral-3-eq-3 path-image-cons-union sets.Un)

qed

lemma polygonal-path-has-emeasure-0 :
shows emeasure lebesgue (path-image (make-polygonal-path vts)) = 0

proof (induct vts)
case Nil
then show ?case by auto

next
case (Cons a vts)
then show ?case

by (metis linepath-is-negligible make-polygonal-path.simps(2) negligible-Un neg-
ligible-iff-emeasure0 path-image-cons-union polygonal-paths-measurable)
qed

lemma polygon-split-path-add-measure:
fixes p p1 p2 :: R-to-R2
assumes is-polygon-split-path vts i j cutvts
assumes vts1 = (take i vts)

vts2 = (take (j − i − 1) (drop (Suc i) vts))
vts3 = drop (j − i) (drop (Suc i) vts)
x = vts ! i
y = vts ! j
p = make-polygonal-path (vts@[vts!0])
p1 = make-polygonal-path (x#(vts2 @ [y] @ (rev cutvts) @ [x]))
p2 = make-polygonal-path (vts1 @ ([x] @ cutvts @ [y]) @ vts3 @ [vts ! 0])

defines M1 ≡ measure lebesgue (path-inside p1) and
M2 ≡ measure lebesgue (path-inside p2) and
M ≡ measure lebesgue (path-inside p)

shows M1 + M2 = M
proof−

let ?cut = make-polygonal-path (x # cutvts @ [y])
let ?cut-open-image = (path-image ?cut) − {x, y}
let ?P = path-inside p
let ?P1 = path-inside p1
let ?P2 = path-inside p2

161

let ?M = space lebesgue
let ?A = sets lebesgue
let ?µ = emeasure lebesgue

have open ?P1
by (metis assms(1) assms(3) assms(5) assms(6) assms(8) closed-path-image

is-polygon-split-path-def open-inside path-inside-def polygon-def simple-path-def)
then have P1-measurable: ?P1 ∈ ?A by simp

have open ?P2
by (metis assms(1) assms(2) assms(4) assms(5) assms(6) assms(9) closed-path-image

is-polygon-split-path-def open-inside path-inside-def polygon-def simple-path-def)
then have P2-measurable: ?P2 ∈ ?A by simp

have ?P1 ∩ ?P2 = {}
by (metis assms(1) assms(2) assms(3) assms(4) assms(5) assms(6) assms(8)

assms(9) is-polygon-split-path-def)
then have sum-union-finite: ?µ ?P1 + ?µ ?P2 = ?µ (?P1 ∪ ?P2)

using plus-emeasure P1-measurable P2-measurable by blast

have ?µ (path-image q) = 0 =⇒ (path-image q) ∈ null-sets lebesgue if ∗:
path-image q ∈ sets lebesgue for q::real ⇒ (real, 2) vec

using null-sets-def ∗ by blast

have measure lebesgue ?P1 = ?µ ?P1
by (metis assms(1) assms(3) assms(5) assms(6) assms(8) bounded-inside

bounded-set-imp-lmeasurable bounded-simple-path-image emeasure-eq-ennreal-measure
emeasure-notin-sets ennreal-0 fmeasurableD2 is-polygon-split-path-def measure-zero-top
path-inside-def polygon-def)

moreover have measure lebesgue ?P2 = ?µ ?P2
by (metis Sigma-Algebra.measure-def assms(1) assms(2) assms(4) assms(5)

assms(6) assms(9) bounded-inside bounded-path-image bounded-set-imp-lmeasurable
emeasure-eq-ennreal-measure emeasure-notin-sets enn2real-top ennreal-0 fmeasur-
ableD2 is-polygon-split-path-def path-inside-def polygon-def simple-path-def)

ultimately have ?µ (?P1 ∪ ?P2) = M1 + M2
using assms(10) assms(11) sum-union-finite by auto

moreover have ?µ (?P1 ∪ ?P2) = ?µ ?P
proof−

have ?µ (path-image ?cut) = 0 using polygonal-path-has-emeasure-0
by presburger

then have (path-image ?cut) ∈ null-sets lebesgue using polygonal-paths-measurable
by blast

moreover have {x, y} ∈ null-sets lebesgue by simp
ultimately have ?cut-open-image ∈ null-sets lebesgue using measure-Diff-null-set

by auto
moreover have ?P = ?P1 ∪ ?P2 ∪ ?cut-open-image
by (metis assms(1) assms(2) assms(3) assms(4) assms(5) assms(6) assms(7)

assms(8) assms(9) is-polygon-split-path-def)
ultimately show ?thesis

162

by (simp add: P1-measurable P2-measurable emeasure-Un-null-set sets.Un)
qed
ultimately show ?thesis
by (smt (verit, best) M1-def M2-def M-def emeasure-eq-ennreal-measure enn2real-ennreal

ennreal-neq-top measure-nonneg)
qed

lemma polygon-cut-path-to-split-path-vtx0 :
fixes p :: R-to-R2
assumes polygon-p: polygon p and

i-gt: i > 0 and
i-lt: i < length vts and
p-is: p = make-polygonal-path (vts @ [vts ! 0]) and
cutpath: cutpath = make-polygonal-path ([vts!0] @ cutvts @ [vts!i]) and
have-cut: is-polygon-cut-path (vts @ [vts!0]) cutpath

shows is-polygon-split-path vts 0 i cutvts
proof −

let ?vts2 = take (i − 1) (drop 1 vts)
let ?vts3 = drop i (drop 1 vts)
let ?x = vts ! 0
let ?y = vts ! i

let ?c3-vts = [?x] @ cutvts @ [?y]
let ?c3 = cutpath
let ?c3-rev-vts = rev ?c3-vts
let ?c3-rev = make-polygonal-path ?c3-rev-vts
let ?c3 ′ = reversepath ?c3

let ?p = make-polygonal-path (vts @ [vts ! 0])
let ?p1-vts = ?x # ?vts2 @ ?c3-rev-vts
let ?p1 = make-polygonal-path ?p1-vts
let ?p1-rot-vts = ?c3-rev-vts @ ?vts2 @ [?y]
let ?p1-rot = make-polygonal-path ?p1-rot-vts
let ?p2-vts = ?c3-vts @ ?vts3 @ [?x]
let ?p2 = make-polygonal-path ?p2-vts
let ?c1-vts = ?x # ?vts2 @ [?y]
let ?c1 = make-polygonal-path ?c1-vts
let ?c2-vts = [?y] @ ?vts3 @ [?x]
let ?c2 = reversepath (make-polygonal-path ?c2-vts)
let ?c2 ′-vts = [?y] @ ?vts3 @ [?x]
let ?c2 ′ = (make-polygonal-path (?c2 ′-vts))

have distinct-vts: distinct vts
using polygon-p p-is
using polygon-def simple-polygonal-path-vts-distinct by force

have len-vts-gteq3 : length vts ≥ 3
using polygon-p p-is polygon-vertices-length-at-least-4 by fastforce

then have ?x # ?vts2 @ [?y] = take (i+1) (vts@ [vts ! 0])

163

by (smt (verit, ccfv-threshold) i-gt Cons-nth-drop-Suc Suc-eq-plus1 Suc-pred ′

add-less-cancel-left butlast-snoc drop0 drop-drop hd-drop-conv-nth i-lt length-append-singleton
length-greater-0-conv less-imp-le-nat linorder-not-less list.size(3) plus-1-eq-Suc take-Suc-Cons
take-all-iff take-butlast take-hd-drop)

have [?y] @ ?vts3 @ [?x] = drop (i) (vts @ [vts ! 0])
using i-gt
by (metis (no-types, lifting) Cons-eq-appendI Cons-nth-drop-Suc Suc-eq-plus1

append-Nil diff-is-0-eq ′ drop-0 drop-append drop-drop i-lt less-imp-le-nat)

have card-gteq: card (set vts) ≥ 3
using polygon-at-least-3-vertices-wraparound polygon-p p-is
by (metis butlast-conv-take butlast-snoc)

then have vts 6= []
by auto

then have vts-is: vts = ?x # ?vts2 @ ?y # ?vts3
using split-up-a-list-into-3-parts[of 0 vts i] i-gt i-lt
by auto

have elem-prop1 : last ?c1-vts = ?y
by (metis (no-types, lifting) last.simps snoc-eq-iff-butlast)

have elem-prop2 : (vts ! 0 # (rev ?vts3) @ [vts ! i]) !
(length (vts ! 0 # drop i (drop 1 vts) @ [vts ! i]) − 1) = vts ! i

by (metis diff-Suc-1 length-Cons length-append-singleton length-rev nth-Cons-Suc
nth-append-length)

have path-image cutpath = path-image ?c3 ′ by simp
then have path-image ?p1 = path-image (?c1 +++ ?c3-rev)

using elem-prop1 assms make-polygonal-path-image-append-alt[of ?p1 ?p1-vts
?c1 ?c1-vts ?c3-rev ?c3-rev-vts]

by simp
also have ... = path-image ?c1 ∪ path-image ?c3-rev
by (metis (no-types, opaque-lifting) append-Cons append-Nil elem-prop1 hd-conv-nth

last-conv-nth list.discI list.sel(1) path-image-join polygon-pathfinish polygon-pathstart
rev.simps(2) rev-rev-ident)

finally have image-prop: path-image ?p1 = path-image ?c1 ∪ path-image cutpath
using rev-vts-path-image cutpath by presburger

have path-image ?c3 ′ = path-image ?c3
using cutpath rev-vts-path-image by force

then have path-image-p1 : path-image ?c1 ∪ path-image ?c3 = path-image ?p1
using image-prop by presburger

have ?p2-vts = ?c3-vts @ (tl ?c2-vts) by simp
then have path-image ?p2 = path-image (?c3 +++ ?c2 ′)

using make-polygonal-path-image-append-alt[of ?p2 ?p2-vts ?c3 ?c3-vts ?c2 ′

?c2-vts]
unfolding assms by auto

then have path-image-p2 : path-image ?c2 ∪ path-image ?c3 = path-image ?p2
by (metis (no-types, opaque-lifting) Un-commute append-Cons append-Nil cut-

path last-conv-nth nth-Cons-0 path-image-join path-image-reversepath polygon-pathfinish

164

polygon-pathstart snoc-eq-iff-butlast)

have drop 1 vts = take (i − 1) (drop 1 vts) @ [vts ! i] @ drop i (drop 1 vts)
by (metis (no-types, lifting) Cons-eq-appendI Cons-nth-drop-Suc Suc-eq-plus1

Suc-pred ′ append.simps(1) append-take-drop-id drop-drop i-gt i-lt)
then have vts-is: vts @ [vts ! 0] = vts ! 0 # take (i − 1) (drop 1 vts) @ [vts !

i] @ drop i (drop 1 vts) @ [vts ! 0]
by (metis (no-types, opaque-lifting) Cons-nth-drop-Suc One-nat-def append.assoc

append-Cons drop0 i-lt length-pos-if-in-set nth-mem)
let ?vts1 ′ = take (i − 1) (drop 1 vts)
let ?vts2 ′ = drop i (drop 1 vts)
have path-im-p: path-image

(make-polygonal-path
((vts ! 0 # ?vts1 ′) @ [vts ! i] @ [vts ! i] @ ?vts2 ′ @ [vts ! 0])) =

path-image
(make-polygonal-path
((vts ! 0 # ?vts1 ′) @ [vts ! i] @ ?vts2 ′ @ [vts ! 0]))

using make-polygonal-path-image-append-helper [of vts ! 0 # ?vts1 ′ ?vts2 ′ @
[vts ! 0]] by auto

have path-image
(make-polygonal-path
((vts ! 0 # ?vts1 ′) @ [vts ! i] @ [vts ! i] @ ?vts2 ′ @ [vts ! 0])) = path-image

(make-polygonal-path ((vts ! 0 # ?vts1 ′) @ [vts ! i]) +++ (linepath (vts ! i) (vts !
i)) +++ make-polygonal-path ([vts ! i] @ ?vts2 ′ @ [vts ! 0]))

using make-polygonal-path-image-append[of (vts ! 0 # ?vts1 ′) @ [vts ! i] [vts !
i] @ ?vts2 ′ @ [vts ! 0]]

by (smt (verit) add-2-eq-Suc ′ append.assoc append-Cons diff-Suc-1 le-add2
length-Cons length-append-singleton nth-Cons-0 nth-append-length)

then have path-image p = path-image (make-polygonal-path ((vts ! 0 # ?vts1 ′)
@ [vts ! i]) +++ (linepath (vts ! i) (vts ! i)) +++ make-polygonal-path ([vts ! i] @
?vts2 ′ @ [vts ! 0]))

using path-im-p p-is vts-is
by simp

then have path-image p = path-image ?c1 ∪ path-image (linepath (vts ! i) (vts
! i)) ∪ path-image (make-polygonal-path ([vts ! i] @ ?vts2 ′ @ [vts ! 0]))

by (metis (no-types, lifting) Un-assoc append-Cons elem-prop1 list.discI nth-Cons-0
path-image-join pathfinish-linepath pathstart-join pathstart-linepath polygon-pathfinish
polygon-pathstart last-conv-nth)
moreover have ... = path-image ?c1 ∪ {vts ! i} ∪ path-image (make-polygonal-path

([vts ! i] @ ?vts2 ′ @ [vts ! 0]))
by auto

moreover have ... = path-image ?c1 ∪ path-image (make-polygonal-path ([vts !
i] @ ?vts2 ′ @ [vts ! 0]))

using vertices-on-path-image by fastforce
ultimately have path-image-p: path-image p = path-image ?c1 ∪ path-image

?c2
using path-image-reversepath by blast

165

have simple-path-polygon: simple-path (make-polygonal-path (?x # ?vts2 @ ?y
?vts3 @ [?x]))

using polygon-p p-is vts-is
using Cons-eq-appendI append-self-conv2 polygon-def by auto

then have loop-free-polygon: loop-free (make-polygonal-path (?x # ?vts2 @ ?y
?vts3 @ [?x]))

unfolding simple-path-def by auto

have loop-free-p: loop-free p
using polygon-p p-is unfolding polygon-def simple-path-def by auto

have sublist-c1 : sublist (?x # ?vts2 @ [?y]) vts
using ‹vts ! 0 # take (i − 1) (drop 1 vts) @ [vts ! i] = take (i + 1) (vts @ [vts

! 0])› i-lt by auto
then have sublist-c1 : sublist (?x # ?vts2 @ [?y]) (vts@[vts !0])

by (metis ‹vts ! 0 # take (i − 1) (drop 1 vts) @ [vts ! i] = take (i + 1) (vts
@ [vts ! 0])› sublist-take)

then have loop-free ?c1
using sublist-is-loop-free p-is loop-free-p sublist-c1

by (metis One-nat-def Suc-1 Suc-eq-plus1 Suc-leI Suc-le-mono ‹vts ! 0 #
take (i − 1) (drop 1 vts) @ [vts ! i] = take (i + 1) (vts @ [vts ! 0])› i-gt i-lt
length-append-singleton less-imp-le-nat take-i-is-loop-free)

then have simple-c1 : simple-path ?c1
unfolding simple-path-def
using make-polygonal-path-gives-path by blast

have start-c1 : pathstart ?c1 = ?x
using polygon-pathstart
by (metis Cons-eq-appendI list.discI nth-Cons-0)

have finish-c1 : pathfinish ?c1 = ?y
using polygon-pathfinish

by (metis Cons-eq-appendI diff-Suc-1 length-append-singleton list.discI nth-append-length)

have sublist-c2 : sublist ([?y] @ ?vts3 @ [?x]) (vts@[vts !0])
by (metis ‹[vts ! i] @ drop i (drop 1 vts) @ [vts ! 0] = drop i (vts @ [vts ! 0])›

sublist-drop)
have i ≤ length (tl vts) using i-lt by fastforce
then have loop-free ?c2

by (metis (no-types) Suc-1 ‹[vts ! i] @ drop i (drop 1 vts) @ [vts ! 0] = drop
i (vts @ [vts ! 0])› ‹vts 6= []› butlast-snoc drop-Suc drop-i-is-loop-free length-butlast
length-drop loop-free-p loop-free-reversepath p-is tl-append2)

then have simple-c2 : simple-path ?c2
unfolding simple-path-def
using make-polygonal-path-gives-path
using path-imp-reversepath by blast

have start-c2 : pathstart ?c2 = ?x
using polygon-pathfinish
by (metis (no-types, lifting) Nil-is-append-conv last-appendR last-conv-nth path-

start-reversepath polygon-pathfinish snoc-eq-iff-butlast)

166

have finish-c2 : pathfinish ?c2 = ?y
using polygon-pathstart by auto

have path-image-int: path-image ?c1 ⊆ path-image ?p
unfolding path-image-def
by (metis Un-upper1 p-is path-image-def path-image-p)

moreover have path-image ?p ∩ path-image ?c3 ⊆ {vts ! 0 , vts ! i}
using have-cut unfolding is-polygon-cut-path-def
by (metis (no-types, lifting) Int-commute append-Cons append-is-Nil-conv cut-

path last-appendR last-conv-nth last-snoc not-Cons-self2 nth-Cons-0 polygon-pathfinish
polygon-pathstart set-eq-subset)

ultimately have vts-subset-c1c3 : path-image ?c1 ∩ path-image ?c3 ⊆ {?x, ?y}
by blast

have other-subset1 : {vts ! 0 , vts ! i} ⊆ path-image ?c1
using vertices-on-path-image by fastforce

have other-subset2 : {vts ! 0 , vts ! i} ⊆ path-image ?c3
unfolding assms using vertices-on-path-image by force

then have c1-inter-c3 : path-image ?c1 ∩ path-image ?c3 = {vts ! 0 , vts ! i}
using vts-subset-c1c3 other-subset1 other-subset2 by blast

then have path-image ?c1 ∩ path-image ?c3-rev = {pathstart ?c1 , pathstart
?c3-rev}

by (metis rev-vts-path-image append-Cons append-Nil cutpath hd-conv-nth list.discI
list.sel(1) polygon-pathstart rev.simps(2) rev-rev-ident)

then have c1-inter-c3 ′: path-image (make-polygonal-path (vts ! 0 # take (i −
1) (drop 1 vts) @ [vts ! i])) ∩

path-image (make-polygonal-path (rev ([vts ! 0] @ cutvts @ [vts ! i])))
⊆ {pathstart (make-polygonal-path (vts ! 0 # take (i − 1) (drop 1 vts) @ [vts !

i])),
pathstart (make-polygonal-path (rev ([vts ! 0] @ cutvts @ [vts ! i])))}

by blast
have last-is-head: last ?c3-rev-vts = hd ?c1-vts by auto
have vts-append: vts ! 0 # take (i − 1) (drop 1 vts) @ rev ([vts ! 0] @ cutvts @

[vts ! i]) =
(vts ! 0 # take (i − 1) (drop 1 vts) @ [vts ! i]) @
tl (rev ([vts ! 0] @ cutvts @ [vts ! i]))
by simp

have loop-free: loop-free (make-polygonal-path (vts ! 0 # take (i − 1) (drop 1
vts) @ [vts ! i])) ∧

loop-free (make-polygonal-path (rev ([vts ! 0] @ cutvts @ [vts ! i])))
by (metis Suc-eq-plus1 Suc-le-mono Zero-neq-Suc ‹vts ! 0 # take (i − 1) (drop

1 vts) @ [vts ! i] = take (i + 1) (vts @ [vts ! 0])› cutpath diff-Suc-1 have-cut
i-gt i-lt is-polygon-cut-path-def length-append-singleton less-2-cases less-imp-le-nat
less-nat-zero-code linorder-le-less-linear loop-free-p p-is rev-vts-is-loop-free simple-path-def
take-i-is-loop-free)

have last-is-head2 :
last (vts ! 0 # take (i − 1) (drop 1 vts) @ [vts ! i]) =
hd (rev ([vts ! 0] @ cutvts @ [vts ! i])) by simp

167

have arcs: arc (make-polygonal-path (vts ! 0 # take (i − 1) (drop 1 vts) @ [vts
! i])) ∧

arc (make-polygonal-path (rev ([vts ! 0] @ cutvts @ [vts ! i])))
using Nil-is-append-conv append-Cons constant-linepath-is-not-loop-free cutpath

finish-c1 have-cut hd-conv-nth is-polygon-cut-path-def last-appendR last-conv-nth
last-is-head last-is-head2 last-snoc list.sel(1) loop-free make-polygonal-path.simps(1)
make-polygonal-path-gives-path polygon-pathfinish polygon-pathstart simple-path-def
simple-path-imp-arc loop-free

by (smt (verit, ccfv-SIG))
then have loop-free ?p1

using loop-free-append[of ?p1 ?p1-vts ?c1 ?c1-vts ?c3-rev ?c3-rev-vts,
OF - - - vts-append loop-free c1-inter-c3 ′ - last-is-head2 arcs] using

last-is-head by blast

then have simple-path ?p1
unfolding simple-path-def
using make-polygonal-path-gives-path by blast

moreover have closed-path ?p1
using polygon-pathstart polygon-pathfinish
unfolding closed-path-def
using elem-prop1 make-polygonal-path-gives-path
by (smt (verit, best) append-is-Nil-conv last-ConsR last-appendR last-conv-nth

last-snoc list.discI nth-Cons-0 rev-append singleton-rev-conv)
ultimately have polygon-p1 : polygon ?p1 unfolding polygon-def polygonal-path-def

by fastforce

have path-image-int: path-image ?c2 ⊆ path-image (make-polygonal-path (vts @
[vts ! 0]))

unfolding path-image-def using path-image-p
by (simp add: p-is path-image-def)

then have vts-subset-c2c3 : path-image ?c2 ∩ path-image ?c3 ⊆ {?x, ?y}
using have-cut unfolding is-polygon-cut-path-def using ‹path-image (make-polygonal-path

(vts @ [vts ! 0])) ∩ path-image cutpath ⊆ {vts ! 0 , vts ! i}› by auto
have other-subset3 : {vts ! 0 , vts ! i} ⊆ path-image ?c2

using vertices-on-path-image by fastforce
have other-subset4 : {vts ! 0 , vts ! i} ⊆ path-image ?c3

unfolding assms using vertices-on-path-image by fastforce
have c2-inter-c3 : path-image ?c2 ∩ path-image ?c3 = {vts ! 0 , vts ! i}

using vts-subset-c2c3 other-subset3 other-subset4 by blast
have path-p2 : path ?p2

using make-polygonal-path-gives-path by blast
have pathfinish ?p2 = vts ! 0

using polygon-pathfinish
by (metis Nil-is-append-conv last-appendR last-conv-nth last-snoc list.discI)

then have closed-p2 : closed-path ?p2
unfolding closed-path-def using polygon-pathstart
using path-p2 by auto

168

have ([vts ! 0] @ cutvts @ [vts ! i]) @ drop i (drop 1 vts) @ [vts ! 0] =
([vts ! 0] @ cutvts @ [vts ! i]) @ tl ([vts ! i] @ drop i (drop 1 vts) @ [vts ! 0])

by force
moreover have loop-free cutpath ∧

loop-free (make-polygonal-path ([vts ! i] @ drop i (drop 1 vts) @ [vts ! 0]))
by (metis ‹loop-free (reversepath (make-polygonal-path ([vts ! i] @ drop i

(drop 1 vts) @ [vts ! 0])))› cutpath loop-free loop-free-reversepath rev-rev-ident
rev-vts-is-loop-free reversepath-reversepath)

moreover have path-image cutpath ∩ path-image (make-polygonal-path ([vts ! i]
@ drop i (drop 1 vts) @ [vts ! 0]))

⊆ {pathstart cutpath,
pathstart (make-polygonal-path ([vts ! i] @ drop i (drop 1 vts) @ [vts ! 0]))}

using c2-inter-c3 cutpath polygon-pathstart by auto
moreover have last ([vts ! i] @ drop i (drop 1 vts) @ [vts ! 0]) 6= hd ([vts ! 0]

@ cutvts @ [vts ! i]) −→
path-image cutpath ∩ path-image (make-polygonal-path ([vts ! i] @ drop i (drop

1 vts) @ [vts ! 0]))
⊆ {pathstart (make-polygonal-path ([vts ! i] @ drop i (drop 1 vts) @ [vts ! 0]))}

by simp
moreover have last ([vts ! 0] @ cutvts @ [vts ! i]) = hd ([vts ! i] @ drop i (drop

1 vts) @ [vts ! 0])
by simp

moreover have arc cutpath ∧ arc (make-polygonal-path ([vts ! i] @ drop i (drop
1 vts) @ [vts ! 0]))

by (metis (no-types, lifting) arc-simple-path arcs calculation(2) finish-c1 fin-
ish-c2 have-cut is-polygon-cut-path-def make-polygonal-path-gives-path pathfinish-reversepath
pathstart-reversepath simple-path-def start-c1 start-c2)

ultimately have loop-free ?p2
using loop-free-append[of ?p2 ?p2-vts ?c3 ?c3-vts ?c2 ′ ?c2 ′-vts,

OF - - -] using cutpath by blast
then have polygon-p2 : polygon ?p2
using path-p2 closed-p2 unfolding polygon-def simple-path-def polygonal-path-def

by blast

have simple-c3 : simple-path ?c3
using have-cut unfolding is-polygon-cut-path-def by meson

have start-c3 : pathstart ?c3 = ?x unfolding assms using polygon-pathstart by
simp

have finish-c3 : pathfinish ?c3 = ?y unfolding assms using polygon-pathfinish
by simp

have pathstart cutpath = ?x using assms polygon-pathstart by force
moreover have pathfinish cutpath = ?y using assms polygon-pathfinish by simp
ultimately have vts-neq: vts ! 0 6= vts ! i

using have-cut unfolding is-polygon-cut-path-def by force
have c1-inter-c2 : path-image ?c1 ∩ path-image ?c2 = {vts ! 0 , vts ! i}

169

proof−
obtain i where i1 : (?x # ?vts2 @ [?y] = take i (vts @ [vts!0])) and

i2 : ([?y] @ ?vts3 @ [?x] = drop (i−1) (vts @ [vts!0]))
by (metis ‹[vts ! i] @ drop i (drop 1 vts) @ [vts ! 0] = drop i (vts @ [vts ! 0])›

‹vts ! 0 # take (i − 1) (drop 1 vts) @ [vts ! i] = take (i + 1) (vts @ [vts ! 0])›
add.commute add-diff-cancel-left ′)

moreover have 1 : i ≥ 1 ∧ i < length (vts @ [vts!0])
by (metis (no-types, lifting) bot-nat-0 .extremum less-one Nil-is-append-conv ap-

pend-Cons calculation diff-is-0-eq drop-Cons ′ linorder-not-less list.inject not-Cons-self2
same-append-eq take-all vts-is vts-neq)

moreover have 2 : ?p = make-polygonal-path (vts @ [vts!0]) ∧ loop-free ?p
unfolding polygon-of-def using p-is polygon-p unfolding polygon-def sim-

ple-path-def by blast
ultimately have path-image ?c1 ∩ path-image (make-polygonal-path ([?y] @

?vts3 @ [?x])) ⊆ {pathstart ?c1 , pathstart (make-polygonal-path ([?y] @ ?vts3 @
[?x]))}

using loop-free-split-int[of ?p vts @ [vts!0] ?x # ?vts2 @ [?y] i [?y] @ ?vts3
@ [?x] ?c1 make-polygonal-path ([?y] @ ?vts3 @ [?x]) length (vts @ [vts!0]),

OF 2 i1 i2 - - - 1]
by presburger

moreover have path-image ?c2 = path-image (make-polygonal-path ([?y] @
?vts3 @ [?x])) using path-image-reversepath by fast

moreover have pathstart (make-polygonal-path ([?y] @ ?vts3 @ [?x])) = ?y
using polygon-pathstart by auto

moreover have pathstart ?c1 = ?x using polygon-pathstart by auto
ultimately show ?thesis

using other-subset1 other-subset3 subset-antisym by force
qed

have non-empty-inter : path-image ?c3 ∩ inside(path-image ?c1 ∪ path-image
?c2) 6= {}

using have-cut path-image-p p-is
unfolding is-polygon-cut-path-def path-inside-def
by fastforce

have p1-minus: ((path-image ?p1) − (path-image ?c3)) = path-image ?c1 − {?x,
?y}

using c1-inter-c3 path-image-p1 by blast
have p2-minus: ((path-image ?p2) − (path-image ?c3)) = path-image ?c2 − {?x,

?y}
using c2-inter-c3 path-image-p2 by auto

then have path-im-intersect-minus: ((path-image ?p1) − (path-image ?c3)) ∩
((path-image ?p2) − (path-image (linepath ?x ?y))) = {}

using c1-inter-c2 p1-minus p2-minus
by blast

have ((path-image ?p1) − (path-image ?c3)) ∪ ((path-image ?p2) − (path-image
?c3)) ∪ {?x, ?y} = ((path-image ?p1) − (path-image ?c3) ∪ {?x, ?y}) ∪ ((path-image
?p2) − (path-image ?c3) ∪ {?x, ?y})

170

by auto
then have ((path-image ?p1) − (path-image (?c3))) ∪ ((path-image ?p2) −

(path-image (?c3))) ∪ {?x, ?y} = ((path-image ?c1) − {?x, ?y} ∪ {?x, ?y}) ∪
((path-image ?c2) − {?x, ?y} ∪ {?x, ?y})

using p1-minus p2-minus by simp
then have ((path-image ?p1) − (path-image (?c3))) ∪ ((path-image ?p2) −

(path-image (?c3))) ∪ {?x, ?y} = path-image ?c1 ∪ path-image ?c2
using other-subset1 other-subset3 by auto

then have path-im-intersect-union: path-image ?p = ((path-image ?p1) − (path-image
(?c3))) ∪ ((path-image ?p2) − (path-image (?c3))) ∪ {?x, ?y}

using path-image-p p-is by auto

have inside(path-image ?c1 ∪ path-image ?c3) ∩ inside(path-image ?c2 ∪ path-image
?c3) = {}
using split-inside-simple-closed-curve-real2 [OF simple-c1 start-c1 finish-c1 sim-

ple-c2 start-c2 finish-c2
simple-c3 start-c3 finish-c3 vts-neq c1-inter-c2 c1-inter-c3 c2-inter-c3

non-empty-inter]
by fast
then have empty-inter : path-inside ?p1 ∩ path-inside ?p2 = {}

using path-image-p1 path-image-p2 unfolding path-inside-def
by force

have inside(path-image ?c1 ∪ path-image ?c3) ∪ inside(path-image ?c2 ∪
path-image ?c3) ∪

(path-image ?c3 − {vts ! 0 , vts ! i}) = inside(path-image ?c1 ∪ path-image
?c2)

using split-inside-simple-closed-curve-real2 [OF simple-c1 start-c1 finish-c1 sim-
ple-c2 start-c2 finish-c2

simple-c3 start-c3 finish-c3 vts-neq c1-inter-c2 c1-inter-c3 c2-inter-c3
non-empty-inter]

by fast
then have inside: path-inside ?p1 ∪ path-inside ?p2 ∪ (path-image ?c3 − {?x,

?y}) = path-inside p
using path-image-p1 path-image-p1 path-image-p unfolding path-inside-def

by (smt (z3) Diff-cancel Int-Un-distrib2 c1-inter-c2 c1-inter-c3 finish-c1 inf-commute
inf-sup-absorb nonempty-simple-path-endless path-image-p2 simple-c1 start-c1)

have first-part: 0 < length vts ∧
i < length vts ∧
0 < i
using assms
by auto

have second-part-helper : is-polygon-cut-path (vts @ [vts ! 0]) cutpath ∧
polygon ?p ∧
polygon ?p1 ∧
polygon ?p2 ∧
path-inside ?p1 ∩ path-inside ?p2 = {} ∧

path-inside ?p1 ∪ path-inside ?p2 ∪ (path-image (?c3) − {?x, ?y}) =
path-inside p

171

∧ ((path-image ?p1) − (path-image (?c3))) ∩ ((path-image ?p2) − (path-image
(?c3))) = {}
∧ path-image ?p = ((path-image ?p1) − (path-image (?c3))) ∪ ((path-image

?p2) − (path-image (?c3))) ∪ {?x, ?y}
using polygon-p p-is polygon-p1 polygon-p2 empty-inter inside have-cut path-im-intersect-minus

path-im-intersect-union
proof−
have {} = path-image cutpath ∪ path-image (make-polygonal-path (vts ! 0 # take

(i − 1) (drop 1 vts) @ [vts ! i])) ∩ path-image (reversepath (make-polygonal-path
([vts ! i] @ drop i (drop 1 vts) @ [vts ! 0]))) − path-image cutpath

using c1-inter-c2 c2-inter-c3 by fastforce
then have {} = (path-image cutpath ∪ path-image (make-polygonal-path (vts

! 0 # take (i − 1) (drop 1 vts) @ [vts ! i]))) ∩ (path-image cutpath ∪ path-image
(reversepath (make-polygonal-path ([vts ! i] @ drop i (drop 1 vts) @ [vts ! 0])))) −
path-image cutpath

by blast
then show ?thesis

using empty-inter have-cut inside polygon-p1 polygon-p2 Int-Diff image-prop
p-is path-im-intersect-union path-image-p2 polygon-p

by auto
qed
have vts-relation: (let vts1 = take 0 vts; vts2 = take (i − 0 − 1) (drop (Suc 0)

vts);
vts3 = drop (i − 0) (drop (Suc 0) vts); x = vts ! 0 ; y = vts ! i;
p = make-polygonal-path (vts @ [vts ! 0]); p1 = make-polygonal-path (x #

vts2 @ ?c3-rev-vts);
p2 = make-polygonal-path (?c3-vts @ vts3 @ [x]) in
vts1 = [] ∧ vts2 = ?vts2 ∧ vts3 = ?vts3 ∧ p = ?p ∧ p1 = ?p1 ∧ p2 =

?p2)
by simp

have second-part: (let vts1 = take 0 vts; vts2 = take (i − 0 − 1) (drop (Suc 0)
vts);

vts3 = drop (i − 0) (drop (Suc 0) vts); x = vts ! 0 ; y = vts ! i;
p = make-polygonal-path (vts @ [vts ! 0]); p1 = make-polygonal-path (x #

vts2 @ ?c3-rev-vts);
p2 = make-polygonal-path (vts1 @ ?c3-vts @ vts3 @ [vts ! 0])

in is-polygon-cut-path (vts @ [vts ! 0]) cutpath ∧
polygon p ∧
polygon p1 ∧
polygon p2 ∧
path-inside p1 ∩ path-inside p2 = {} ∧

path-inside p1 ∪ path-inside p2 ∪ (path-image cutpath − {x, y}) = path-inside
p
∧ ((path-image p1) − (path-image (cutpath))) ∩ ((path-image p2) − (path-image

(cutpath))) = {} ∧
path-image p = ((path-image p1) − (path-image (cutpath))) ∪ ((path-image

p2) − (path-image (cutpath))) ∪ {x, y})
using second-part-helper vts-relation p-is
by (metis self-append-conv2)

172

show ?thesis
unfolding is-polygon-split-path-def [of vts 0 i cutvts]
using first-part second-part
by (smt (verit, ccfv-threshold) append-Cons append-Nil cutpath rev.simps(2)

rev-append rev-is-Nil-conv)
qed

lemma polygon-cut-path-to-split-path:
fixes p :: R-to-R2
assumes polygon p

p = make-polygonal-path (vts @ [vts ! 0])
is-polygon-cut-path (vts @ [vts!0]) cutpath
vts1 ≡ (take i vts)
vts2 ≡ (take (j − i − 1) (drop (Suc i) vts))
vts3 ≡ drop (j − i) (drop (Suc i) vts)
x ≡ vts ! i
y ≡ vts ! j
cutpath = make-polygonal-path ([x] @ cutvts @ [y])
i < length vts ∧ j < length vts ∧ i < j
p1 ≡ make-polygonal-path (x#(vts2@([y] @ (rev cutvts) @ [x]))) and
p2 ≡ make-polygonal-path (vts1 @ ([x] @ cutvts @ [y]) @ vts3 @ [(vts1 @

[x]) ! 0])
shows is-polygon-split-path vts i j cutvts

proof−
let ?poly-vts-rot = rotate-polygon-vertices (vts @ [vts ! 0]) i
let ?vts-rot = butlast ?poly-vts-rot
let ?p-rot = make-polygonal-path ?poly-vts-rot
let ?i-rot = j − i
have rot-poly: polygon ?p-rot using assms(1) assms(2) rotation-is-polygon by

blast
have i-rot: ?i-rot > 0 ∧ ?i-rot < length ?poly-vts-rot − 1

using assms(10) rotate-polygon-vertices-same-length by fastforce
have vtsi: vts ! i = ?poly-vts-rot ! 0

using rotated-polygon-vertices[of ?poly-vts-rot vts @ [vts!0] i i]
by (metis (no-types, lifting) One-nat-def Suc-1 assms(10) diff-self-eq-0 hd-conv-nth

last-snoc length-append-singleton less-imp-le-nat linorder-not-le not-less-eq-eq nth-append
take-all-iff take-eq-Nil)

have vtsj: vts ! j = ?poly-vts-rot ! ?i-rot
using rotated-polygon-vertices[of ?poly-vts-rot vts @ [vts!0] i j]
by (smt (verit, ccfv-SIG) One-nat-def Suc-1 assms(10) butlast-snoc hd-append2

hd-conv-nth last-snoc leD length-append-singleton less-Suc-eq-le less-imp-le-nat not-less-eq-eq
nth-butlast take-all-iff take-eq-Nil)

have is-polygon-cut-path ?poly-vts-rot cutpath
proof−

have ?poly-vts-rot ! 0 6= ?poly-vts-rot ! ?i-rot
using assms(3) unfolding is-polygon-cut-path-def using vtsi vtsj

using append-Cons append-is-Nil-conv assms(7) assms(8) assms(9) last-appendR
last-conv-nth polygon-pathfinish polygon-pathstart

by force

173

moreover have {?poly-vts-rot ! 0 , ?poly-vts-rot ! ?i-rot} ⊆ set (?poly-vts-rot
@ [?poly-vts-rot ! 0])

using assms(3) unfolding is-polygon-cut-path-def using i-rot vtsi vtsj by
fastforce

moreover have path-image cutpath ∩ path-image ?p-rot = {?poly-vts-rot ! 0 ,
?poly-vts-rot ! ?i-rot}

using polygon-vts-arb-rotation vtsi vtsj assms(3) is-polygon-cut-path-def
by (metis (no-types, lifting) append.assoc append-Cons assms(7) assms(8)

assms(9) last-conv-nth nth-Cons-0 polygon-pathfinish polygon-pathstart snoc-eq-iff-butlast)
moreover have path-image cutpath ∩ path-inside (?p-rot) 6= {}

using vtsi vtsj assms(3) polygon-vts-arb-rotation
unfolding is-polygon-cut-path-def path-inside-def by metis

ultimately show ?thesis
unfolding is-polygon-cut-path-def

using rot-poly assms(3) is-polygon-cut-path-def rotate-polygon-vertices-same-set
vtsi vtsj

by (metis polygon-vts-arb-rotation)
qed
then have rot-cut: is-polygon-cut-path (?vts-rot @ [?vts-rot!0]) cutpath

by (metis butlast-snoc rotate-polygon-vertices-def)
have rot-cut-butlast: make-polygonal-path ?poly-vts-rot = make-polygonal-path

(?vts-rot @ [?vts-rot!0])
by (metis butlast-snoc rotate-polygon-vertices-def)

have split-rot: is-polygon-split-path ?vts-rot 0 ?i-rot cutvts
using rot-cut rot-cut-butlast
by (smt (verit, ccfv-SIG) assms(7) assms(8) assms(9) dual-order .strict-trans

i-rot is-polygon-cut-path-def length-butlast nth-butlast polygon-cut-path-to-split-path-vtx0
vtsi vtsj)

let ?vts1-rot = take 0 ?vts-rot
let ?vts2-rot = take (j − i − 0 − 1) (drop (Suc 0) ?vts-rot)
let ?vts3-rot = drop (j − i − 0) (drop (Suc 0) ?vts-rot)
let ?x-rot = ?vts-rot ! 0
let ?y-rot = ?vts-rot ! (j − i)
let ?p1-rot-vts = ?x-rot # ?vts2-rot @ [?y-rot] @ (rev cutvts) @ [?x-rot]
let ?p1-rot = make-polygonal-path ?p1-rot-vts
let ?p2-rot-vts = ?vts1-rot @ [?x-rot] @ cutvts @ [?y-rot] @ ?vts3-rot @ [?vts-rot

! 0]
let ?p2-rot = make-polygonal-path ?p2-rot-vts

let ?p1-vts = x # vts2 @ [y] @ (rev cutvts) @ [x]
let ?p2-vts = vts1 @ [x] @ cutvts @ [y] @ vts3 @ [(vts1 @ [x]) ! 0]

have p2-firstlast: hd ?p2-vts = last ?p2-vts
by (metis (no-types, lifting) append-is-Nil-conv append-self-conv2 hd-append2

hd-conv-nth last-appendR last-snoc list.discI list.sel(1))

have length (drop (Suc i) vts) = length vts − i − 1
by simp

174

then have len-prop: length (drop (Suc i) vts) ≥ j − i − 1
using assms(9) assms(10) diff-le-mono less-or-eq-imp-le by presburger

have drop-take: rotate i vts = drop i vts @ take i vts
using rotate-drop-take[of i vts] assms(10) mod-less by presburger

then have drop-take-suc: drop (Suc 0) (rotate i vts) = drop (Suc i) vts @ take
i vts

using assms(10) by simp
then have take (j − Suc i) (drop (Suc 0) (rotate i vts)) = take (j − Suc i) (drop

(Suc i) vts)
using len-prop by force

then have vts2 : take (j − i − 0 − 1) (drop (Suc 0) (butlast (rotate-polygon-vertices
(vts @ [vts ! 0]) i))) = vts2

using assms(5) unfolding rotate-polygon-vertices-def
by (metis Suc-eq-plus1 butlast-snoc diff-diff-left diff-zero)

have xy: ?x-rot = x ∧ ?y-rot = y
using vtsi vtsj assms by (metis is-polygon-split-path-def nth-butlast split-rot)

moreover have path-image p = path-image ?p-rot
using assms(1) assms(2) polygon-vts-arb-rotation by auto

moreover then have path-inside p = path-inside ?p-rot unfolding path-inside-def
by simp

moreover have ?p1-rot-vts = ?p1-vts using xy vts2 by presburger
moreover then have path-image p1 = path-image ?p1-rot using assms by argo
moreover then have path-inside p1 = path-inside ?p1-rot unfolding path-inside-def

by argo
moreover have polygon p1

using calculation split-rot assms(11) unfolding is-polygon-split-path-def
by (smt (verit, ccfv-SIG) vts2)

moreover have ?p2-rot-vts = rotate-polygon-vertices ?p2-vts i
proof−

have butlast (vts1 @ [x] @ cutvts @ [y] @ vts3 @ [(vts1 @ [x]) ! 0])
= vts1 @ [x] @ cutvts @ [y] @ vts3

by (simp add: butlast-append)
also have rotate i ... = [x] @ cutvts @ [y] @ vts3 @ vts1

using assms(4)
by (metis (no-types, lifting) drop-take add-diff-cancel-right ′ append.assoc

assms(10) diff-diff-cancel length-append length-drop length-rotate less-imp-le-nat
rotate-append)

finally have rotate-polygon-vertices ?p2-vts i = [x] @ cutvts @ [y] @ vts3 @
vts1 @ [x]

unfolding rotate-polygon-vertices-def by simp
moreover have ?vts3-rot = vts3 @ vts1

using assms(4 ,6) unfolding rotate-polygon-vertices-def
by (smt (verit, del-insts) One-nat-def Suc-diff-Suc Suc-leI drop-take-suc

assms(10) butlast-snoc diff-is-0-eq diff-zero drop0 drop-append i-rot le-add-diff-inverse
len-prop length-drop nat-less-le)

175

ultimately show ?thesis by (simp add: xy)
qed
moreover then have polygon p2

using unrotation-is-polygon[of ?p2-vts i p2] split-rot assms(12) p2-firstlast
unfolding is-polygon-split-path-def
by (smt (verit) append.assoc)

moreover then have path-image p2 = path-image (?p2-rot)
using assms(12) polygon-vts-arb-rotation calculation by auto

moreover then have path-inside p2 = path-inside ?p2-rot unfolding path-inside-def
by presburger

ultimately show is-polygon-split-path vts i j cutvts
using split-rot unfolding is-polygon-split-path-def
using One-nat-def assms bot-nat-0 .not-eq-extremum butlast-snoc hd-append2

hd-conv-nth hd-take le-add2 length-0-conv length-Cons length-append length-butlast
nth-append-length rot-cut-butlast rotate-polygon-vertices-same-length take-eq-Nil

by (smt (verit) append.assoc butlast-conv-take have-wraparound-vertex is-polygon-cut-path-def
rotate-polygon-vertices-same-set)
qed

lemma good-polygonal-path-implies-polygon-split-path:
assumes polygon p
assumes p = make-polygonal-path (vts @ [vts!0])
assumes good-polygonal-path v1 cutvts v2 (vts @ [vts!0])
assumes i < length vts ∧ j < length vts
assumes vts ! i = v1
assumes vts ! j = v2
assumes i < j
shows is-polygon-split-path vts i j cutvts

proof−
let ?cutpath = make-polygonal-path ([v1] @ cutvts @ [v2])
let ?p-path = make-polygonal-path (vts @ [vts!0])
have linepath-subset: path-image ?cutpath ⊆ path-inside ?p-path ∪ {v1 , v2}

using assms(3) unfolding good-polygonal-path-def by meson
have linepath-ends: pathstart ?cutpath = v1 ∧ pathfinish ?cutpath = v2

using polygon-pathfinish polygon-pathstart by force
then have vs-subset1 : {v1 , v2} ⊆ path-image ?cutpath

using vertices-on-path-image by fastforce
have vs-subset2 : {v1 , v2} ⊆ path-image (make-polygonal-path (vts @ [vts ! 0]))

using assms(4−6) vertices-on-path-image[of vts]
using vertices-on-path-image by fastforce

have path-inside ?p-path ∩ path-image ?p-path = {}
using inside-outside-polygon[OF assms(1)] assms(2) unfolding inside-outside-def
by blast

then have linepath-path: path-image ?cutpath ∩ path-image (make-polygonal-path
(vts @ [vts ! 0])) = {v1 , v2}

using linepath-subset vs-subset1 vs-subset2
by blast

have ?cutpath (5 / 10) ∈ path-image ?cutpath

176

unfolding path-image-def by auto
have v1-neq-v2 : v1 6= v2

using assms(3) unfolding good-polygonal-path-def
by fastforce

have not-v1 : ?cutpath (0 .5 ::real) = v1 =⇒ False
proof −

assume ∗: ?cutpath (0 .5 ::real) = v1
then have ?cutpath (0 .5 ::real) = ?cutpath 0

using linepath-ends unfolding pathstart-def by simp
moreover have loop-free ?cutpath using assms unfolding good-polygonal-path-def

by metis
ultimately show False unfolding loop-free-def by fastforce

qed
have not-v2 : ?cutpath (0 .5 ::real) = v2 =⇒ False
proof−

assume ∗: ?cutpath (0 .5 ::real) = v2
then have ?cutpath (0 .5 ::real) = ?cutpath 1

using linepath-ends unfolding pathfinish-def by simp
moreover have loop-free ?cutpath using assms unfolding good-polygonal-path-def

by metis
ultimately show False unfolding loop-free-def by fastforce

qed
then have ?cutpath (0 .5 ::real) 6= v1 ∧ ?cutpath (0 .5 ::real) 6= v2

using not-v1 not-v2 by auto
then have linepath-inside: path-image ?cutpath ∩ path-inside (make-polygonal-path

(vts @ [vts ! 0])) 6= {}
using linepath-subset
using ‹?cutpath (5 / 10) ∈ path-image ?cutpath› by blast

have is-polygon-cut-path (vts @ [vts!0]) ?cutpath
using assms(3) assms(1−2) unfolding good-polygonal-path-def is-polygon-cut-path-def
using linepath-path linepath-inside
by (metis linepath-ends make-polygonal-path-gives-path simple-path-def)

then show ?thesis using polygon-cut-path-to-split-path assms by blast
qed

lemma good-path-iff :
good-linepath a b vts ←→ good-polygonal-path a [] b vts
unfolding good-linepath-def good-polygonal-path-def
using linepath-loop-free by auto

lemma polygon-cut-iff : is-polygon-cut (vts @ [vts!0]) (vts!i) (vts!j)
←→ is-polygon-cut-path (vts @ [vts!0]) (linepath (vts!i) (vts!j))

unfolding is-polygon-cut-def is-polygon-cut-path-def
by (metis pathfinish-linepath pathstart-linepath simple-path-linepath)

lemma polygon-split-iff : is-polygon-split vts i j ←→ is-polygon-split-path vts i j []
unfolding is-polygon-split-def is-polygon-split-path-def

177

by (smt (verit, ccfv-threshold) append-Cons append-Nil make-polygonal-path.simps(3)
polygon-cut-iff rev.simps(1))

lemma polygon-cut-to-split-vtx0 :
fixes p :: R-to-R2
assumes polygon-p: polygon p and

i-gt: i > 0 and
i-lt: i < length vts and
p-is: p = make-polygonal-path (vts @ [vts ! 0]) and
have-cut: is-polygon-cut (vts @ [vts!0]) (vts!0) (vts!i)

shows is-polygon-split vts 0 i
using have-cut i-gt i-lt p-is polygon-cut-path-to-split-path-vtx0 polygon-cut-iff poly-

gon-p polygon-split-iff
by force

lemma polygon-cut-to-split:
fixes p :: R-to-R2
assumes is-polygon-cut (vts @ [vts!0]) (vts!i) (vts!j)

i < length vts ∧ j < length vts ∧ i < j
shows is-polygon-split vts i j
by (metis append-Cons append-Nil assms is-polygon-cut-def make-polygonal-path.simps(3)

polygon-cut-path-to-split-path polygon-cut-iff polygon-split-iff)

lemma good-linepath-implies-polygon-split:
assumes polygon p
assumes p = make-polygonal-path (vts @ [vts!0])
assumes good-linepath v1 v2 (vts @ [vts!0])
assumes i < length vts ∧ j < length vts
assumes vts ! i = v1
assumes vts ! j = v2
assumes i < j
shows is-polygon-split vts i j
using assms good-path-iff good-polygonal-path-implies-polygon-split-path polygon-split-iff
by auto

end
theory Triangle-Lemmas
imports

Polygon-Convex-Lemmas
Integral-Matrix
Affine-Arithmetic.Floatarith-Expression
HOL−Analysis.Topology-Euclidean-Space
HOL−Analysis.Equivalence-Lebesgue-Henstock-Integration
HOL−Analysis.Inner-Product
HOL−Analysis.Line-Segment
HOL−Analysis.Convex-Euclidean-Space
HOL−Analysis.Change-Of-Vars

begin

178

20 Triangles
definition elem-triangle :: real^2 ⇒ real^2 ⇒ real^2 ⇒ bool where

elem-triangle a b c ←→
¬ collinear {a, b, c}
∧ integral-vec a ∧ integral-vec b ∧ integral-vec c
∧ {x. x ∈ convex hull {a, b, c} ∧ integral-vec x} = {a, b, c}

definition triangle-mat :: real^2 ⇒ real^2 ⇒ real^2 ⇒ real^2^2 where
triangle-mat a b c = transpose (vector [b − a, c − a])

definition triangle-linear :: real^2 ⇒ real^2 ⇒ real^2 ⇒ (real^2 ⇒ real^2)
where

triangle-linear a b c = (λx. (triangle-mat a b c) ∗v x)

definition triangle-affine :: real^2 ⇒ real^2 ⇒ real^2 ⇒ (real^2 ⇒ real^2) where
triangle-affine a b c = (λx. a + (triangle-mat a b c) ∗v x)

abbreviation unit-square ≡
(convex hull {vector [0 , 0], vector [0 , 1], vector [1 , 1], vector [1 , 0]})::((real^2)

set)

abbreviation unit-triangle ≡
(convex hull {vector [0 , 0], vector [1 , 0], vector [0 , 1]})::((real^2) set)

abbreviation unit-triangle ′ ≡
(convex hull {vector [1 , 1], vector [1 , 0], vector [0 , 1]})::((real^2) set)

lemma triangle-inside-is-convex-hull-interior :
assumes polygon-of p [a, b, c, a]
shows path-inside p = interior (convex hull {a, b, c})

proof−
have path-image p = closed-segment a b ∪ closed-segment b c ∪ closed-segment

c a
proof−

have path-image (linepath a b) = closed-segment a b by simp
moreover have path-image (linepath b c) = closed-segment b c by simp
moreover have path-image (linepath c a) = closed-segment c a by simp

moreover have path-image p = path-image (linepath a b) ∪ path-image (linepath
b c) ∪ path-image (linepath c a)

using calculation assms(1) unfolding polygon-of-def make-polygonal-path.simps
by (simp add: path-image-join sup-assoc)

ultimately show ?thesis by simp
qed
moreover have DIM ((real, 2) vec) = 2 by simp
ultimately show ?thesis using inside-of-triangle[of a b c] unfolding path-inside-def

by presburger
qed

179

lemma triangle-is-convex:
assumes p = make-triangle a b c and ¬ collinear {a, b, c}
shows convex (path-inside p) (is convex ?s)
using triangle-inside-is-convex-hull-interior assms(1) assms(2)
using make-triangle-def polygon-of-def triangle-is-polygon
by auto

lemma affine-comp-linear-trans: triangle-affine a b c = (λx. x + a) ◦ (triangle-linear
a b c)

apply (simp add: triangle-affine-def triangle-linear-def)
by auto

lemma triangle-linear-der :
fixes a b c :: real^2
defines T ≡ triangle-linear a b c
shows (T has-derivative T) (at x)

proof−
have linear T using T-def by (simp add: triangle-linear-def)
then have bounded-linear T by (simp add: linear-linear)
thus ?thesis using bounded-linear-imp-has-derivative by blast

qed

lemma triangle-affine-der :
fixes a b c :: real^2
assumes S ∈ sets lebesgue and x ∈ S
defines A ≡ triangle-affine a b c and T ≡ triangle-linear a b c
shows x ∈ S =⇒ (A has-derivative T) (at x within S)

proof−
assume xin: x ∈ S
let ?trans = λx::real^2 . x + a
have comp: (?trans ◦ T) = (λx. (T x) + a)

by auto
have ∀ x. A x = (?trans ◦ T) x unfolding A-def T-def using affine-comp-linear-trans

by auto
moreover then have Ax-is: (

∧
x. x ∈ S =⇒ A x = ((λx. x + a) ◦ T) x)

by auto
moreover have trans-der : (?trans has-derivative id) (at x within S)

by (metis (full-types) add.commute assms(2) eq-id-iff has-derivative-transform
shift-has-derivative-id)
moreover have Tder : (T has-derivative T) (at x within S) using triangle-linear-der

by (simp add: T-def bounded-linear-imp-has-derivative triangle-linear-def)
moreover have comp-der : ((?trans ◦ T) has-derivative T) (at x within S)

using has-derivative-add-const[OF Tder] comp
by simp

ultimately show (A has-derivative T) (at x within S)
using triangle-affine-def triangle-linear-def affine-comp-linear-trans o-apply

add.commute vector-derivative-chain-within assms(2) has-derivative-add-const has-derivative-transform
A-def T-def

by force

180

qed

lemma triangle-linear-inj:
fixes a b c :: real^2
assumes ¬ collinear {a, b, c}
defines L ≡ triangle-linear a b c
shows inj L

proof−
let ?M = triangle-mat a b c
let ?m-11 = (b − a)$1
let ?m-12 = (c − a)$1
let ?m-21 = (b − a)$2
let ?m-22 = (c − a)$2
have det ?M = ?m-11∗?m-22 − ?m-12∗?m-21

unfolding triangle-mat-def
by (metis det-2 det-transpose mult.commute vector-2 (1) vector-2 (2))

moreover have ?m-11∗?m-22 6= ?m-12∗?m-21
proof(rule ccontr)

assume ¬ ?m-11∗?m-22 6= ?m-12∗?m-21
then have eq: ?m-11∗?m-22 = ?m-12∗?m-21 by simp
{ assume ∗: ?m-21 = 0 ∧ ?m-22 6= 0

then have ?m-11 = 0 using eq by simp
then have ?m-11 = 0 ∧ ?m-21 = 0 using ∗ by auto
then have b − a = 0 by (metis (no-types, opaque-lifting) exhaust-2 vec-eq-iff

zero-index)
then have collinear {a, b, c} by simp
then have False using assms by fastforce

} moreover
{ assume ∗: ?m-21 6= 0 ∧ ?m-22 = 0

then have ?m-12 = 0 using eq by simp
then have ?m-12 = 0 ∧ ?m-22 = 0 using ∗ by auto
then have c − a = 0 by (metis (no-types, opaque-lifting) exhaust-2 vec-eq-iff

zero-index)
then have collinear {a, b, c} by (simp add: collinear-3-eq-affine-dependent)
then have False using assms by fastforce

} moreover
{ assume ∗: ?m-21 = 0 ∧ ?m-22 = 0

{ assume ?m-11 = 0
then have b − a = 0 using ∗

by (metis (no-types, opaque-lifting) exhaust-2 vec-eq-iff zero-index)
then have False using assms(1) by auto

} moreover
{ assume ?m-11 6= 0

then obtain k where ?m-12 = k ∗ ?m-11 using nonzero-divide-eq-eq by
blast

moreover have ?m-22 = k ∗ ?m-21 using ∗ by auto
ultimately have c − a = k ∗R (b − a)

by (smt (verit, del-insts) exhaust-2 real-scaleR-def vec-eq-iff vector-scaleR-component)
then have collinear {a, b, c}

181

using vec-diff-scale-collinear [of c a k b] by (simp add: insert-commute)
then have False using assms(1) by fastforce

}
ultimately have False using assms by fastforce

} moreover
{ assume ∗: ?m-21 6= 0 ∧ ?m-22 6= 0

then have ?m-11/?m-21 = ?m-12/?m-22 using eq frac-eq-eq by blast
then obtain m where ?m-11 = m∗?m-12 ∧ ?m-21 = m∗?m-22

using nonzero-divide-eq-eq ∗
by (metis (no-types, lifting) mult.commute times-divide-eq-left)

then have b − a = m ∗s (c − a)
by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-smult-component)

then have b − a = m ∗R (c − a) by (simp add: scalar-mult-eq-scaleR)
then have collinear {a, b, c} using vec-diff-scale-collinear by auto
then have False using assms by auto

}
ultimately show False by fastforce

qed
ultimately have det ?M 6= 0 by linarith
thus ?thesis by (simp add: L-def inj-matrix-vector-mult invertible-det-nz trian-

gle-linear-def)
qed

lemma triangle-affine-inj:
fixes a b c :: real^2
assumes ¬ collinear {a, b, c}
defines A ≡ triangle-affine a b c
shows inj A

proof−
have inj (triangle-linear a b c) using triangle-linear-inj[of a b c] assms by auto
moreover have inj (λx. x + a) by simp
moreover have A = (λx. x + a) ◦ (triangle-linear a b c)

by (simp add: A-def affine-comp-linear-trans)
ultimately show ?thesis using inj-compose by blast

qed

lemma triangle-linear-integrable:
fixes a b c :: real^2
assumes S ∈ lmeasurable
defines T ≡ triangle-linear a b c
shows (λx. abs (det (matrix (T)))) integrable-on S (is (λx. ?c) integrable-on S)
using integrable-on-const[of S ?c] assms(1) by blast

lemma measure-differentiable-image-eq-affine:
fixes a b c :: real^2
defines A ≡ triangle-affine a b c and T ≡ triangle-linear a b c
assumes S ∈ lmeasurable and ¬ collinear {a, b, c}
shows measure lebesgue (A ‘ S) = integral S (λx. abs (det (matrix T)))

proof−

182

have
∧

x. x ∈ S =⇒ (A has-derivative T) (at x within S)
using triangle-affine-der A-def T-def assms(3) by blast

moreover have inj-on A S
using A-def assms(3) assms(4) triangle-affine-inj inj-on-subset by blast

moreover have (λx. abs (det (matrix (T)))) integrable-on S
by (simp add: T-def assms(3) triangle-linear-integrable)

ultimately show ?thesis
using measure-differentiable-image-eq[of - - λx. T] assms(3) by blast

qed

lemma triangle-affine-img:
fixes a b c :: real^2
defines A ≡ triangle-affine a b c
shows convex hull {a, b, c} = A ‘ unit-triangle

proof−
let ?O = (vector [0 , 0])::real^2
let ?e1 = (vector [1 , 0])::real^2
let ?e2 = (vector [0 , 1])::real^2

let ?translate-a = λx. x + a

let ?T = triangle-linear a b c

define al where al = ?T ?O
define bl where bl = ?T ?e1
define cl where cl = ?T ?e2

have a: a = ?translate-a al
proof−

have al = ?O
by (simp add: al-def mat-vec-mult-2 triangle-linear-def)

then show ?thesis
by (metis (no-types, opaque-lifting) add-0 mat-vec-mult-2 matrix-vector-mult-0

mult-zero-right zero-index)
qed
have b: b = ?translate-a bl
proof−

have col1 : column 1 (triangle-mat a b c) = b − a
by (metis column-transpose row-def triangle-mat-def vec-lambda-eta vec-

tor-2 (1))
then have bl = b − a
using bl-def unfolding triangle-linear-def triangle-mat-def matrix-vector-mult-def

using matrix-vector-mult-basis[of triangle-mat a b c 1]
by (simp add: col1 axis-def bl-def mat-vec-mult-2 triangle-linear-def)

then show ?thesis by simp
qed
have c: c = ?translate-a cl
proof−

have col2 : column 2 (triangle-mat a b c) = c − a

183

by (metis column-transpose row-def triangle-mat-def vec-lambda-eta vec-
tor-2 (2))

then have cl = c − a
using cl-def unfolding triangle-linear-def triangle-mat-def matrix-vector-mult-def

using matrix-vector-mult-basis[of triangle-mat a b c 2]
by (simp add: col2 axis-def cl-def mat-vec-mult-2 triangle-linear-def)

then show ?thesis by simp
qed

have linear ?T using triangle-linear-def by force
then have ?T ‘ unit-triangle = convex hull {al, bl, cl}

using convex-hull-linear-image al-def bl-def cl-def by force
also have ?translate-a ‘ ... = convex hull {a, b, c}

using a b c convex-hull-translation[of a {al, bl, cl}]
by (metis (no-types, lifting) add.commute image-cong image-empty image-insert)

finally have ?translate-a ‘ (?T ‘ unit-triangle) = convex hull {a, b, c} .
moreover have ?translate-a ◦ ?T = A unfolding A-def using affine-comp-linear-trans

by auto
ultimately show ?thesis by fastforce

qed

lemma triangle-affine-e1-e2 :
fixes a b c :: real^2
defines A ≡ triangle-affine a b c
shows (triangle-affine a b c) (vector [0 , 0]) = a

(triangle-affine a b c) (vector [1 , 0]) = b
(triangle-affine a b c) (vector [0 , 1]) = c

proof−
let ?M = triangle-mat a b c
let ?L = triangle-linear a b c
let ?A = triangle-affine a b c
let ?O = (vector [0 , 0])::(real^2)
let ?e1 = (vector [1 , 0])::(real^2)
let ?e2 = (vector [0 , 1])::(real^2)

show ?A ?O = a
unfolding triangle-affine-def triangle-mat-def
by (metis (no-types, opaque-lifting) add.right-neutral diff-self mult-zero-right

scaleR-left-diff-distrib transpose-matrix-vector vec-scaleR-2 vector-matrix-mult-0)
show ?A ?e1 = b
proof−

have ?L ?e1 = ?M ∗v ?e1 unfolding triangle-linear-def by blast
also have ... = vector [1∗(?M$1$1) + 0∗(?M$1$2), 1∗(?M$2$1) + 0∗(?M$2$2)]

unfolding triangle-linear-def triangle-mat-def
using mat-vec-mult-2 by force

also have ... = vector [1∗(b − a)$1 + 0∗(?M$1$2), 1∗(b − a)$2 + 0∗(?M$2$2)]
unfolding triangle-mat-def transpose-def by simp

also have ... = vector [(b − a)$1 , (b − a)$2] by argo
also have ... = b − a

184

by (smt (verit) exhaust-2 vec-eq-iff vector-2 (1) vector-2 (2))
finally show ?thesis unfolding triangle-affine-def triangle-linear-def by simp

qed
show ?A ?e2 = c
proof−

have ?L ?e2 = ?M ∗v ?e2 unfolding triangle-linear-def by blast
also have ... = vector [0∗(?M$1$1) + 1∗(?M$1$2), 0∗(?M$2$1) + 1∗(?M$2$2)]

unfolding triangle-linear-def triangle-mat-def
using mat-vec-mult-2 by force

also have ... = vector [0∗(?M$1$1) + 1∗(c − a)$1 , 0∗(?M$2$1) + 1∗(c −
a)$2]

unfolding triangle-mat-def transpose-def by simp
also have ... = vector [(c − a)$1 , (c − a)$2] by argo
also have ... = c − a

by (smt (verit) exhaust-2 vec-eq-iff vector-2 (1) vector-2 (2))
finally show ?thesis unfolding triangle-affine-def triangle-linear-def by simp

qed
qed

lemma triangle-measure-integral-of-det:
fixes a b c :: real^2
defines S ≡ convex hull {a, b, c}
assumes ¬ collinear {a, b, c}
shows measure lebesgue S =

integral unit-triangle (λ(x::real^2). abs (det (matrix (triangle-linear a b
c))))
proof−

let ?A = triangle-affine a b c
let ?T = triangle-linear a b c

have bounded unit-triangle by (simp add: finite-imp-bounded-convex-hull)
then have lmeasurable-S : unit-triangle ∈ lmeasurable

using bounded-set-imp-lmeasurable measurable-convex by blast

have S = ?A ‘ unit-triangle using S-def triangle-affine-img by blast
then have measure lebesgue S = measure lebesgue (?A ‘ unit-triangle) by blast
moreover have

measure lebesgue (?A ‘ unit-triangle)
= integral unit-triangle (λ(x::real^2). abs (det (matrix ?T)))
using measure-differentiable-image-eq-affine[OF lmeasurable-S assms(2)] by

auto
ultimately show ?thesis by auto

qed

lemma triangle-affine-preserves-interior :
assumes A = triangle-affine a b c and L = triangle-linear a b c
assumes ¬ collinear {a, b, c}
shows A ‘ (interior S) = interior (A ‘ S)

proof−

185

let ?trans = λx::real^2 . x + a
have linear L by (simp add: assms(2) triangle-linear-def)
moreover have surj L

using triangle-linear-inj[of a b c] linear-injective-imp-surjective[of L] assms
calculation

by blast
ultimately have L: interior(L ‘ S) = L ‘ (interior S)

using interior-surjective-linear-image by blast
moreover have interior(?trans ‘ S) = ?trans ‘ (interior S)

using interior-translation
by (metis (no-types, lifting) add.commute image-cong)

moreover have A = ?trans ◦ L using assms triangle-affine-def triangle-linear-def
by fastforce

ultimately show ?thesis
by (smt (verit, del-insts) add.commute image-comp image-cong interior-translation)

qed

lemma triangle-affine-preserves-affine-hull:
assumes A = triangle-affine a b c
assumes ¬ collinear {a, b, c}
shows A ‘ (affine hull S) = affine hull (A ‘ S)

proof−
let ?L = triangle-linear a b c
have linear ?L by (simp add: triangle-linear-def)
then have ?L ‘ (affine hull S) = affine hull (?L ‘ S)

by (simp add: affine-hull-linear-image linear-linear)
then show ?thesis

unfolding assms(1) triangle-affine-def
by (metis affine-hull-translation image-image triangle-linear-def)

qed

lemma triangle-measure-convex-hull-measure-path-inside-same:
assumes p-triangle: p = make-triangle a b c
assumes elem-triangle: elem-triangle a b c
shows measure lebesgue (convex hull {a, b, c}) = measure lebesgue (path-inside

p)
(is measure lebesgue ?S = measure lebesgue ?I)

proof−
have bounded ?S by (simp add: finite-imp-bounded-convex-hull)
then have measure lebesgue (frontier ?S) = measure lebesgue ?S − measure

lebesgue (interior ?S)
using measure-frontier [of ?S] by auto

then have ... = 0
by (metis convex-convex-hull negligible-convex-frontier negligible-imp-measure0)

moreover have ?I = interior ?S
using assms triangle-is-convex

by (metis (no-types, lifting) make-triangle-def convex-polygon-inside-is-convex-hull-interior
empty-set insert-absorb2 insert-commute list.simps(15) elem-triangle-def triangle-is-polygon)

ultimately show ?thesis by auto

186

qed

lemma on-triangle-path-image-cases:
assumes p = make-triangle a b c
assumes d ∈ path-image p
shows d ∈ path-image (linepath a b) ∨ d ∈ path-image (linepath b c) ∨ d ∈

path-image (linepath c a)
using assms unfolding make-triangle-def
by (metis make-polygonal-path.simps(3) make-polygonal-path.simps(4) not-in-path-image-join)

lemma on-triangle-frontier-cases:
fixes a b c :: real^2
assumes ¬ collinear {a, b, c}
assumes d ∈ frontier (convex hull {a, b, c})
shows d ∈ path-image (linepath a b) ∨ d ∈ path-image (linepath b c) ∨ d ∈

path-image (linepath c a)
proof−

let ?p = make-triangle a b c
have polygon ?p by (simp add: assms(1) triangle-is-polygon)
then have path-image ?p = frontier (convex hull {a, b, c})

unfolding make-triangle-def
by (smt (verit, ccfv-threshold) assms(1) convex-polygon-frontier-is-path-image2

convex-polygon-is-convex-hull empty-set insert-absorb2 insert-commute list.simps(15)
make-triangle-def polygon-convex-iff sup-commute triangle-is-convex)

thus ?thesis using on-triangle-path-image-cases assms(2) by blast
qed

lemma triangle-path-image-subset-convex:
assumes p = make-triangle a b c
shows path-image p ⊆ convex hull {a, b, c}
using polygon-path-image-subset-convex polygon-at-least-3-vertices make-triangle-def
by (metis (no-types, lifting) assms empty-set insert-absorb2 insert-commute in-

sert-iff length-pos-if-in-set list.simps(15))

lemma triangle-convex-hull:
assumes p = make-triangle a b c and ¬ collinear {a, b, c}
shows convex hull {a, b, c} = (path-image p) ∪ (path-inside p)
using triangle-is-convex[OF assms(1) assms(2)]
by (smt (z3) Un-commute assms(1) assms(2) closure-Un-frontier convex-closure

convex-polygon-is-convex-hull insert-absorb2 insert-commute inside-outside-def in-
side-outside-polygon list.set(1) list.set(2) make-triangle-def triangle-is-polygon)

end
theory Unit-Geometry
imports

HOL−Analysis.Polytope
Polygon-Jordan-Curve
Triangle-Lemmas

187

begin

21 Measure Setup
lemma finite-convex-is-measurable:

fixes p :: (real^2) set
assumes p = convex hull l and finite l
shows p ∈ sets lebesgue

proof−
have polytope p

unfolding polytope-def using assms by force
hence compact p using polytope-imp-compact by auto
thus ?thesis using lmeasurable-compact by blast

qed

lemma unit-square-lebesgue: unit-square ∈ sets lebesgue
using finite-convex-is-measurable by auto

lemma unit-triangle-lebesgue: unit-triangle ∈ sets lebesgue
using finite-convex-is-measurable by auto

lemma unit-triangle-lmeasurable: unit-triangle ∈ lmeasurable
by (simp add: bounded-convex-hull bounded-set-imp-lmeasurable unit-triangle-lebesgue)

22 Unit Triangle
lemma unit-triangle-vts-not-collinear :
¬ collinear {(vector [0 , 0])::real^2 , vector [1 , 0], vector [0 , 1]}
(is ¬ collinear {?a, ?b, ?c})

proof(rule ccontr)
assume ¬ ¬ collinear {?a, ?b, ?c}
then have collinear {?a, ?b, ?c} by auto
then obtain u :: real^2 where u: u 6= 0 ∧

(∀ x∈{?a, ?b, ?c}. ∀ y∈{?a, ?b, ?c}. ∃ c. x − y = c ∗R u)
by (meson collinear)

then obtain c1 c2 where c1 : ?b − ?a = c1 ∗R u and c2 : ?c − ?a = c2 ∗R u
by blast

then have c1 ∗R u = ?b
by (metis (no-types, opaque-lifting) diff-zero scaleR-eq-0-iff vector-2 (1) vec-

tor-2 (2) vector-minus-component vector-scaleR-component zero-neq-one)
moreover have c2 ∗R u = ?c using c1 c2 calculation by force
ultimately have u$1 = 0 ∧ u$2 = 0
by (metis scaleR-eq-0-iff vector-2 (1) vector-2 (2) vector-scaleR-component zero-neq-one)

then have u = 0
by (metis (mono-tags, opaque-lifting) exhaust-2 vec-eq-iff zero-index)

moreover have u 6= 0 using u by auto
ultimately show False by auto

188

qed

lemma unit-triangle-convex:
assumes p = (make-polygonal-path [vector [0 , 0], vector [1 , 0], vector [0 , 1],

vector [0 , 0]])
(is p = make-polygonal-path [?O, ?e1 , ?e2 , ?O])

shows convex (path-inside p)
proof−

have ¬ collinear {?O, ?e1 , ?e2} by (simp add: unit-triangle-vts-not-collinear)
thus ?thesis using triangle-is-convex make-triangle-def assms by force

qed

lemma unit-triangle-char :
shows unit-triangle = {x. 0 ≤ x $ 1 ∧ 0 ≤ x $ 2 ∧ x $ 1 + x $ 2 ≤ 1}
(is unit-triangle = ?S)

proof−
have unit-triangle ⊆ ?S
proof(rule subsetI)

fix x assume x ∈ unit-triangle
then obtain a b c where

x = a ∗R (vector [0 , 0]) + b ∗R (vector [1 , 0]) + c ∗R (vector [0 , 1])
∧ a ≥ 0 ∧ b ≥ 0 ∧ c ≥ 0 ∧ a + b + c = 1

using convex-hull-3 by blast
thus x ∈ {x. 0 ≤ x $ 1 ∧ 0 ≤ x $ 2 ∧ x $ 1 + x $ 2 ≤ 1} by simp

qed
moreover have ?S ⊆ unit-triangle
proof(rule subsetI)

fix x assume x ∈ ?S
then obtain b c where bc: x$1 = b ∧ x$2 = c ∧ 0 ≤ b ∧ 0 ≤ c ∧ b + c ≤

1 by blast
moreover then obtain a where a ≥ 0 ∧ a + b + c = 1 using that[of 1 −

b − c] by argo
moreover have a ∗R ((vector [0 , 0])::(real^2)) = vector [0 , 0] by (simp add:

vec-scaleR-2)
moreover have x = (a ∗R vector [0 , 0]) + (b ∗R vector [1 , 0]) + (c ∗R vector

[0 , 1])
using segment-horizontal bc by fastforce

ultimately show x ∈ unit-triangle using convex-hull-3 by blast
qed
ultimately show ?thesis by blast

qed

lemma unit-triangle-interior-char :
shows interior unit-triangle = {x. 0 < x $ 1 ∧ 0 < x $ 2 ∧ x $ 1 + x $ 2 <

1}
(is interior unit-triangle = ?S)

proof−
have interior unit-triangle ⊆ ?S
proof(rule subsetI)

189

fix x assume x ∈ interior unit-triangle
moreover have DIM (real^2) = 2 by simp
ultimately obtain a b c where

x = a ∗R (vector [0 , 0]) + b ∗R (vector [1 , 0]) + c ∗R (vector [0 , 1])
∧ a > 0 ∧ b > 0 ∧ c > 0 ∧ a + b + c = 1

using interior-convex-hull-3-minimal[of (vector [0 , 0])::(real^2) (vector [1 ,
0])::(real^2) (vector [0 , 1])::(real^2)]

using unit-triangle-vts-not-collinear
by auto

thus x ∈ {x. 0 < x $ 1 ∧ 0 < x $ 2 ∧ x $ 1 + x $ 2 < 1} by simp
qed
moreover have ?S ⊆ interior unit-triangle
proof(rule subsetI)

fix x assume x ∈ ?S
then obtain b c where bc: x$1 = b ∧ x$2 = c ∧ 0 < b ∧ 0 < c ∧ b + c <

1 by blast
moreover then obtain a where a > 0 ∧ a + b + c = 1 using that[of 1 −

b − c] by argo
moreover have a ∗R ((vector [0 , 0])::(real^2)) = vector [0 , 0] by (simp add:

vec-scaleR-2)
moreover have x = (a ∗R vector [0 , 0]) + (b ∗R vector [1 , 0]) + (c ∗R vector

[0 , 1])
using segment-horizontal bc by fastforce

moreover have DIM (real^2) = 2 by simp
ultimately show x ∈ interior unit-triangle

using interior-convex-hull-3-minimal[of (vector [0 , 0])::(real^2) (vector [1 ,
0])::(real^2) (vector [0 , 1])::(real^2)]

using unit-triangle-vts-not-collinear
by fast

qed
ultimately show ?thesis by blast

qed

lemma unit-triangle-is-elementary: elem-triangle (vector [0 , 0]) (vector [1 , 0])
(vector [0 , 1])
(is elem-triangle ?a ?b ?c)

proof−
let ?UT = unit-triangle
have ¬ collinear {?a, ?b, ?c} using unit-triangle-vts-not-collinear by auto
moreover have integral-vec ?a ∧ integral-vec ?b ∧ integral-vec ?c

by (simp add: integral-vec-def is-int-def)
moreover have {x ∈ ?UT . integral-vec x} = {?a, ?b, ?c} (is ?UT-integral =

?abc)
proof−

have ?UT-integral ⊇ ?abc using calculation(2) hull-subset by fastforce
moreover have ?UT-integral ⊆ ?abc
proof −

have
∧

x. x ∈ unit-triangle =⇒ integral-vec x =⇒ x 6= vector [0 , 0] =⇒ x 6=
vector [1 , 0] =⇒ x 6= vector [0 , 1] =⇒ False

190

proof−
fix x
assume ∗: x ∈ unit-triangle

integral-vec x
x 6= vector [0 , 0]

x 6= vector [1 , 0]
x 6= vector [0 , 1]

then have x-inset: x ∈{x. 0 ≤ x $ 1 ∧ 0 ≤ x $ 2 ∧ x $ 1 + x $ 2 ≤ 1}
using unit-triangle-char by auto

have x $ 1 = 1 =⇒ x $ 2 6= 0
using ∗
by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-2 (1) vector-2 (2))

then have x $ 1 = 1 =⇒ x $ 1 + x $ 2 > 1 ∨ x $ 2 < 0
using ∗(2) unfolding integral-vec-def is-int-def
by linarith

then have x1-not-1 : x$1 = 1 =⇒ False
using x-inset by simp

have x $ 1 = 0 =⇒ x $ 2 6= 0 ∧ x $ 2 6= 1
using ∗
by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-2 (1) vector-2 (2))

then have x $ 1 = 0 =⇒ x $ 1 + x $ 2 > 1 ∨ x $ 1 + x $ 2 < 0
using ∗(2) unfolding integral-vec-def is-int-def
by auto

then have x1-not-0 : x $ 1 = 0 =⇒ False
using x-inset by simp

have x1-not-lt0 : x $ 1 < 0 =⇒ False
using x-inset by auto

have x1-not-gt1 : x $ 1 > 1 =⇒ False
using x-inset by auto

then show False using x1-not-0 x1-not-1 x1-not-lt0 x1-not-gt1
using ∗(2) unfolding integral-vec-def is-int-def
by force

qed
then have ∃ x ∈ ?UT-integral. x /∈ ?abc ∧ integral-vec x =⇒ False

by blast
then show ?thesis by blast

qed
ultimately show ?thesis by blast

qed
ultimately show ?thesis unfolding elem-triangle-def by auto

qed

lemma unit-triangles-same-area:
measure lebesgue unit-triangle ′ = measure lebesgue unit-triangle

proof−
let ?a = (vector [1 , 1])::real^2
let ?b = (vector [0 , 1])::real^2
let ?c = (vector [1 , 0])::real^2
let ?A = triangle-affine ?a ?b ?c

191

let ?L = triangle-linear ?a ?b ?c
have collinear-second-component:

∧
c::real^2 . collinear {?a, ?b, c} =⇒ c $ 2 =

1
proof −

fix p
assume collinear {?a, ?b, p}
then obtain u where u-prop: ∀ x∈{vector [1 , 1], vector [0 , 1], p}.

∀ y∈{vector [1 , 1], vector [0 , 1], p}. ∃ c. x − y = c ∗R u
unfolding collinear-def by auto

then have c-ab: ∃ c. ?a − ?b = c ∗R u
by blast

then have u-2 : u $ 2 = 0
using vector-2
by (metis cancel-comm-monoid-add-class.diff-cancel diff-zero scaleR-eq-0-iff

vector-minus-component vector-scaleR-component zero-neq-one)
have u-1 : u$1 6= 0

using c-ab vector-2
by (smt (z3) scaleR-right-diff-distrib vector-minus-component vector-scaleR-component)
then have (∃ c. ?a − p = c ∗R u) ∧ (∃ c. ?b − p = c ∗R u)

using u-prop by blast
then show p $ 2 = 1

using u-1 u-2
by (metis eq-iff-diff-eq-0 scaleR-zero-right vector-2 (2) vector-minus-component

vector-scaleR-component)
qed
have unit-triangle ′ = convex hull {?a, ?b, ?c} by (simp add: insert-commute)
then have ?A ‘ unit-triangle = unit-triangle ′ using triangle-affine-img[of ?a ?b

?c] by argo
moreover have abs (det (matrix ?L)) = 1
proof−

have matrix ?L = transpose (vector [?b − ?a, ?c − ?a])
unfolding triangle-linear-def
by (simp add: triangle-mat-def)

also have det ... = det (vector [?b − ?a, ?c − ?a]) using det-transpose by
blast

also have ... = (?b − ?a)$1 ∗ (?c − ?a)$2 − (?c − ?a)$1 ∗ (?b − ?a)$2
using det-2 by (metis mult.commute vector-2 (1) vector-2 (2))

finally show ?thesis by simp
qed
moreover have ¬ collinear {?a, ?b, ?c} using collinear-second-component vec-

tor-2 by force
ultimately have measure lebesgue unit-triangle ′= integral unit-triangle (λ(x::real^2).

1)
using triangle-measure-integral-of-det[of ?a ?b ?c]

by (smt (verit, ccfv-SIG) Henstock-Kurzweil-Integration.integral-cong insert-commute)
also have ... = measure lebesgue unit-triangle

by (simp add: lmeasure-integral unit-triangle-lmeasurable)
finally show ?thesis .

qed

192

23 Unit Square
lemma convex-hull-4 :

convex hull {a,b,c,d} = { u ∗R a + v ∗R b + w ∗R c + t ∗R d | u v w t. 0 ≤ u
∧ 0 ≤ v ∧ 0 ≤ w ∧ 0 ≤ t ∧ u + v + w + t = 1}
proof −

have fin: finite {a,b,c,d} finite {b,c,d} finite {c,d} finite {d}
by auto

have ∗:
∧

x y z w ::real. x + y + z + w = 1 ←→ x = 1 − y − z − w
by (auto simp: field-simps)

show ?thesis
unfolding convex-hull-finite[OF fin(1)]
unfolding convex-hull-finite-step[OF fin(2)]
unfolding convex-hull-finite-step[OF fin(3)]
unfolding convex-hull-finite-step[OF fin(4)]
unfolding ∗
apply auto
apply (smt (verit, ccfv-threshold) add.commute diff-add-cancel diff-diff-eq)

subgoal for v w t
apply (rule exI [where x=1 − v − w − t], simp)
apply (rule exI [where x=v], simp)
apply (rule exI [where x=w], simp)
apply (rule exI [where x=λx. t], simp)
done

done
qed

lemma unit-square-characterization-helper :
fixes a b :: real
assumes 0 ≤ a ∧ a ≤ 1 ∧ 0 ≤ b ∧ b ≤ 1 and

a ≤ b
obtains u v w t where

vector [a, b] = u ∗R ((vector [0 , 0])::real^2)
+ v ∗R (vector [0 , 1])
+ w ∗R (vector [1 , 1])
+ t ∗R (vector [1 , 0])
∧ 0 ≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧ 0 ≤ t ∧ u + v + w + t = 1

proof−
let ?a = (vector [0 , 0])::(real^2)
let ?b = (vector [0 , 1])::(real^2)
let ?c = (vector [1 , 1])::(real^2)
let ?d = (vector [1 , 0])::(real^2)
let ?w = a
let ?v = b − a
let ?u = (1 − ?w − ?v)::real
let ?t = 0 ::real
let ?T = {u ∗R ?a + v ∗R ?b + w ∗R ?c + t ∗R ?d | u v w t. 0 ≤ u ∧ 0 ≤ v
∧ 0 ≤ w ∧ 0 ≤ t ∧ u + v + w + t = 1}

have ?u ∗R ?a = 0

193

by (smt (verit, del-insts) exhaust-2 scaleR-zero-right vec-eq-iff vector-2 (1) vec-
tor-2 (2) zero-index)

moreover have ?w ∗R ?c = vector [a, a]
proof−

have (?w ∗R ?c)$1 = a by simp
moreover have (?w ∗R ?c)$2 = a by simp
ultimately show ?thesis by (smt (verit) vec-eq-iff exhaust-2 vector-2 (1) vec-

tor-2 (2))
qed
moreover have ?v ∗R ?b = vector [0 , b − a]
proof−

have (?v ∗R ?b)$1 = 0 by fastforce
moreover have (?v ∗R ?b)$2 = b − a by simp
ultimately show ?thesis by (smt (verit) vec-eq-iff exhaust-2 vector-2 (1) vec-

tor-2 (2))
qed
ultimately have ?u ∗R ?a + ?v ∗R ?b + ?w ∗R ?c + ?t ∗R ?d = vector [0 , b
− a] + vector [a, a]

by fastforce
also have ... = vector [a, b]

by (smt (verit, del-insts) diff-add-cancel exhaust-2 vec-eq-iff vector-2 (1) vec-
tor-2 (2) vector-add-component)

finally have vector [a, b] = ?u ∗R ?a + ?v ∗R ?b + ?w ∗R ?c + ?t ∗R ?d by
presburger

moreover have 0 ≤ ?u ∧ ?u ≤ 1 ∧ 0 ≤ ?v ∧ ?v ≤ 1 using assms by simp
moreover have 0 ≤ ?w ∧ ?w ≤ 1 ∧ 0 ≤ ?t ∧ ?t ≤ 1 using assms by simp
moreover have ?u + ?v + ?w + ?t = 1 by argo
ultimately show ?thesis using that[of ?u ?v ?w ?t] by blast

qed

lemma unit-square-characterization:
unit-square = {x. 0 ≤ x$1 ∧ x$1 ≤ 1 ∧ 0 ≤ x$2 ∧ x$2 ≤ 1} (is unit-square

= ?S)
proof−

let ?a = (vector [0 , 0])::(real^2)
let ?b = (vector [0 , 1])::(real^2)
let ?c = (vector [1 , 1])::(real^2)
let ?d = (vector [1 , 0])::(real^2)
let ?T = {u ∗R ?a + v ∗R ?b + w ∗R ?c + t ∗R ?d | u v w t. 0 ≤ u ∧ 0 ≤ v
∧ 0 ≤ w ∧ 0 ≤ t ∧ u + v + w + t = 1}

have unit-square = ?T using convex-hull-4 by blast
moreover have ?T ⊆ ?S
proof(rule subsetI)

fix x
assume x ∈ ?T
then obtain u v w t where x = u ∗R ?a + v ∗R ?b + w ∗R ?c + t ∗R ?d and

0 ≤ u and 0 ≤ v and 0 ≤ w and 0 ≤ t and u + v + w + t = 1 by auto
moreover from this have

x$1 = u ∗ 0 + v ∗ 0 + w ∗ 1 + t ∗ 1 ∧ x$2 = u ∗ 0 + v ∗ 1 + w ∗ 1 +

194

t ∗ 0 by simp
ultimately have 0 ≤ x$1 ∧ x$1 ≤ 1 ∧ 0 ≤ x$2 ∧ x$2 ≤ 1 by linarith
thus x ∈ ?S by blast

qed
moreover have ?S ⊆ ?T
proof(rule subsetI)

fix x :: real^2
assume ∗: x ∈ ?S
{ assume x$1 < x$2

then have x$1 ≤ x$2 by fastforce
then obtain u v w t where vector [x$1 , x$2] = u ∗R ?a + v ∗R ?b + w ∗R

?c + t ∗R ?d ∧ 0 ≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧ 0 ≤ t ∧ u + v + w + t = 1
using ∗ unit-square-characterization-helper [of x$1 x$2] by blast

moreover have x = vector [x$1 , x$2]
by (smt (verit, ccfv-threshold) exhaust-2 vec-eq-iff vector-2 (1) vector-2 (2))

ultimately have x ∈ ?T by force
} moreover
{ assume x$1 ≥ x$2

then obtain u v w t where ∗∗: vector [x$2 , x$1] = u ∗R ?a + v ∗R ?b +
w ∗R ?c + t ∗R ?d ∧ 0 ≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧ 0 ≤ t ∧ u + v + w + t = 1

using ∗ unit-square-characterization-helper [of x$2 x$1] by blast
have x1 : x$1 = v + w using ∗∗
by (smt (verit, ccfv-threshold) mult-cancel-left1 real-scaleR-def scaleR-zero-right

vector-2 (2) vector-add-component vector-scaleR-component)
have x2 : x$2 = w + t using ∗∗
by (smt (verit) mult-cancel-left1 real-scaleR-def scaleR-zero-right vector-2 (1)

vector-add-component vector-scaleR-component)
have (u ∗R ?a + t ∗R ?b + w ∗R ?c + v ∗R ?d)$1 = w + v by auto
moreover have (u ∗R ?a + t ∗R ?b + w ∗R ?c + v ∗R ?d)$2 = t + w by

fastforce
ultimately have u ∗R ?a + t ∗R ?b + w ∗R ?c + v ∗R ?d = vector [w +

v, t + w]
by (smt (verit) vec-eq-iff exhaust-2 vector-2 (1) vector-2 (2))

also have ... = x using x1 x2
by (smt (verit, del-insts) add.commute exhaust-2 vec-eq-iff vector-2 (1)

vector-2 (2))
ultimately have x ∈ ?T

by (smt (verit, ccfv-SIG) ∗∗ mem-Collect-eq)
}
ultimately show x ∈ ?T by argo

qed
ultimately show ?thesis by auto

qed

lemma e1e2-basis:
defines e1 ≡ (vector [1 , 0])::(real^2) and

e2 ≡ (vector [0 , 1])::(real^2)
shows e1 = axis 1 (1 ::real) and e1 ∈ (Basis::((real^2) set)) and

e2 = axis 2 (1 ::real) and e2 ∈ (Basis::((real^2) set))

195

proof−
have (1 ::real) ∈ Basis by simp
then have axis 1 (1 ::real) ∈ (

⋃
i.

⋃
u∈(Basis::(real set)). {axis i u}) by blast

moreover show e1-axis: e1 = axis 1 (1 ::real)
unfolding axis-def vector-def e1-def by auto

ultimately show e1-basis: e1 ∈ (Basis::((real^2) set)) by simp

have (1 ::real) ∈ Basis by simp
then have axis 1 (1 ::real) ∈ (

⋃
i.

⋃
u∈(Basis::(real set)). {axis i u}) by blast

moreover show e2-axis: e2 = axis 2 (1 ::real)
unfolding axis-def vector-def e2-def by auto

ultimately show e2-basis: e2 ∈ (Basis::((real^2) set)) by simp
qed

lemma unit-square-cbox: unit-square = cbox (vector [0 , 0]) (vector [1 , 1])
proof−

let ?O = (vector [0 , 0])::(real^2)
let ?e1 = (vector [1 , 0])::(real^2)
let ?e2 = (vector [0 , 1])::(real^2)
let ?I = (vector [1 , 1])::(real^2)
let ?cbox = {x. ∀ i∈Basis. ?O · i ≤ x · i ∧ x · i ≤ ?I · i}

have unit-square = {x. 0 ≤ x$1 ∧ x$1 ≤ 1 ∧ 0 ≤ x$2 ∧ x$2 ≤ 1} (is unit-square
= ?S)

using unit-square-characterization by auto
moreover have ?S ⊆ ?cbox
proof(rule subsetI)

fix x
assume ∗: x ∈ ?S
have ?O · ?e1 ≤ x · ?e1 ∧ x · ?e1 ≤ ?I · ?e1

using e1e2-basis
by (smt (verit, del-insts) ∗ cart-eq-inner-axis mem-Collect-eq vector-2 (1))

moreover have ?O · ?e2 ≤ x · ?e2 ∧ x · ?e2 ≤ ?I · ?e2
using e1e2-basis
by (smt (verit, del-insts) ∗ cart-eq-inner-axis mem-Collect-eq vector-2 (2))

ultimately show x ∈ ?cbox
by (smt (verit, best) ∗ axis-index cart-eq-inner-axis exhaust-2 mem-Collect-eq

vector-2 (1) vector-2 (2))
qed
moreover have ?cbox ⊆ ?S
proof(rule subsetI)

fix x :: real^2
assume ∗: x ∈ ?cbox
then have 0 ≤ ?e1 · x using e1e2-basis
by (metis (no-types, lifting) cart-eq-inner-axis inner-commute mem-Collect-eq

vector-2 (1))
moreover have ?e1 · x ≤ 1 using e1e2-basis
by (smt (verit, ccfv-SIG) ∗ inner-axis inner-commute mem-Collect-eq real-inner-1-right

vector-2 (1))

196

moreover have 0 ≤ ?e2 · x
by (metis (no-types, lifting) ∗ cart-eq-inner-axis e1e2-basis(3) e1e2-basis(4)

inner-commute mem-Collect-eq vector-2 (2))
moreover have ?e2 · x ≤ 1

by (metis (no-types, lifting) ∗ cart-eq-inner-axis e1e2-basis(3) e1e2-basis(4)
inner-commute mem-Collect-eq vector-2 (2))

moreover have ?e1 · x = x$1
by (simp add: cart-eq-inner-axis e1e2-basis inner-commute)

moreover have ?e2 · x = x$2
by (simp add: cart-eq-inner-axis e1e2-basis inner-commute)

ultimately show x ∈ ?S by force
qed
ultimately show ?thesis unfolding cbox-def by order

qed

lemma unit-square-area: measure lebesgue unit-square = 1
proof−

let ?e1 = (vector [1 , 0])::(real^2)
let ?e2 = (vector [0 , 1])::(real^2)
have unit-square = cbox (vector [0 , 0]) (vector [1 , 1]) (is unit-square = cbox

?O ?I)
using unit-square-cbox by blast

also have emeasure lborel ... = 1 using emeasure-lborel-cbox-eq
proof−

have ?I · ?e1 = (1 ::real)
by (simp add: e1e2-basis(1) inner-axis ′ inner-commute)

moreover have ?I · ?e2 = (1 ::real) by (simp add: e1e2-basis(3) inner-axis ′

inner-commute)
ultimately have basis-dot: ∀ b ∈ Basis. ?I · b = 1

by (metis (full-types) axis-inverse e1e2-basis(1) e1e2-basis(3) exhaust-2)

have ?O · ?e1 ≤ ?I · ?e1 by (simp add: e1e2-basis(1) inner-axis)
moreover have ?O · ?e2 ≤ ?I · ?e2 by (simp add: e1e2-basis(3) inner-axis)
ultimately have ∀ b ∈ Basis. ?O · b ≤ ?I · b
by (smt (verit, ccfv-threshold) axis-index cart-eq-inner-axis exhaust-2 insert-iff

vector-2 (1) vector-2 (2))
then have emeasure lborel (cbox ?O ?I) = (

∏
b∈Basis. (?I − ?O) · b)

using emeasure-lborel-cbox-eq by auto
also have ... = (

∏
b∈Basis. ?I · b)

by (smt (verit, del-insts) axis-index diff-zero euclidean-all-zero-iff exhaust-2
inner-axis real-inner-1-right vector-2 (1) vector-2 (2))

also have ... = (
∏

b∈Basis. (1 ::real)) using basis-dot by fastforce
finally show ?thesis by simp

qed
finally have emeasure lborel unit-square = 1 .
moreover have emeasure lborel unit-square = measure lebesgue unit-square

by (simp add: emeasure-eq-measure2 unit-square-cbox)
ultimately show ?thesis by fastforce

qed

197

24 Unit Triangle Area is 1/2
lemma unit-triangle ′-char :

shows unit-triangle ′ = {x. x $ 1 ≤ 1 ∧ x $ 2 ≤ 1 ∧ x $ 1 + x $ 2 ≥ 1}
proof −

let ?I = (vector [1 , 1])::real^2
let ?e1 = (vector [1 , 0])::real^2
let ?e2 = (vector [0 , 1])::real^2
have unit-triangle ′ = {u ∗R ?I + v ∗R ?e1 + w ∗R ?e2 | u v w. 0 ≤ u ∧ 0 ≤

v ∧ 0 ≤ w ∧ u + v + w = 1}
using convex-hull-3 [of ?I ?e1 ?e2] by auto

moreover have
∧

u v w. u ∗R ?I + v ∗R ?e1 + w ∗R ?e2 = ((vector [u + v, u
+ w])::real^2)

proof−
fix u v w :: real

let ?v-e1 = ((vector [v, 0])::real^2)
let ?w-e2 = ((vector [0 , w])::real^2)
let ?u-I = ((vector [u, u])::real^2)

have u ∗R ?I = ?u-I using vec-scaleR-2 by simp
moreover have v ∗R ?e1 = ?v-e1 using vec-scaleR-2 by simp
moreover have w ∗R ?e2 = ?w-e2 using vec-scaleR-2 by simp
ultimately have 1 : u ∗R ?I + v ∗R ?e1 + w ∗R ?e2 = ?u-I + ?v-e1 + ?w-e2

by argo
moreover have (?u-I + ?v-e1 + ?w-e2)$1 = u + v

using vector-add-component by simp
moreover have (?u-I + ?v-e1 + ?w-e2)$2 = u + w

using vector-add-component by simp
ultimately have ?u-I + ?v-e1 + ?w-e2 = ((vector [u + v, u + w])::real^2)

using vector-2 exhaust-2 by (smt (verit, del-insts) vec-eq-iff)
thus u ∗R ?I + v ∗R ?e1 + w ∗R ?e2 = ((vector [u + v, u + w])::real^2)

using 1 by argo
qed
ultimately have 1 : unit-triangle ′ = {(vector [u + v, u + w])::real^2 | u v w. 0
≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧ u + v + w = 1}

(is unit-triangle ′ = ?S)
by presburger

have unit-triangle ′ = {(vector [x, y])::real^2 | x y. 0 ≤ x ∧ x ≤ 1 ∧ 0 ≤ y ∧ y
≤ 1 ∧ x + y ≥ 1}

(is unit-triangle ′ = ?T)
proof−

have
∧

x y::real. ∃ u v w. 0 ≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧ u + v + w = 1 ∧ x = u
+ v ∧ y = u + w

=⇒ 0 ≤ x ∧ x ≤ 1 ∧ 0 ≤ y ∧ y ≤ 1 ∧ x + y ≥ 1 by force
moreover have ∗:

∧
x y::real. 0 ≤ x ∧ x ≤ 1 ∧ 0 ≤ y ∧ y ≤ 1 ∧ x + y ≥ 1

=⇒ ∃ u v w. 0 ≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧ u + v + w = 1 ∧ x = u + v ∧ y
= u + w

proof−

198

fix x y :: real
let ?u = y + x − 1
let ?v = 1 − y
let ?w = 1 − x
assume 0 ≤ x ∧ x ≤ 1 ∧ 0 ≤ y ∧ y ≤ 1 ∧ 1 ≤ x + y
then have 0 ≤ ?u ∧ 0 ≤ ?v ∧ 0 ≤ ?w ∧ ?u + ?v + ?w = 1 ∧ x = ?u +

?v ∧ y = ?u + ?w by argo
thus ∃ u v w. 0 ≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧ u + v + w = 1 ∧ x = u + v ∧ y

= u + w by blast
qed
ultimately have ∀ x y::real. ((∃ u v w. 0 ≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧ u + v + w

= 1 ∧ x = u + v ∧ y = u + w)
←→ (0 ≤ x ∧ x ≤ 1 ∧ 0 ≤ y ∧ y ≤ 1 ∧ x + y ≥ 1))

by metis
then have ∀ z::real^2 . ((∃ u v w. 0 ≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧ u + v + w = 1

∧ z$1 = u + v ∧ z$2 = u + w)
←→ (0 ≤ z$1 ∧ z$1 ≤ 1 ∧ 0 ≤ z$2 ∧ z$2 ≤ 1 ∧ z$1 + z$2 ≥ 1)) by

presburger
then have ∀ z::real^2 . ((∃ u v w. 0 ≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧ u + v + w = 1

∧ z = vector [u + v, u + w])
←→ (∃ x y. 0 ≤ x ∧ x ≤ 1 ∧ 0 ≤ y ∧ y ≤ 1 ∧ x + y ≥ 1 ∧ z = vector

[x, y]))
by (smt (verit) ∗)

moreover have ∀ z::real^2 . z ∈ ?S ←→ (∃ u v w. 0 ≤ u ∧ 0 ≤ v ∧ 0 ≤ w ∧
u + v + w = 1 ∧ z = vector [u + v, u + w])

by blast
moreover have ∀ z::real^2 . z ∈ ?T ←→ (∃ x y. 0 ≤ x ∧ x ≤ 1 ∧ 0 ≤ y ∧ y

≤ 1 ∧ x + y ≥ 1 ∧ z = vector [x, y])
by blast

ultimately have ?S = ?T by auto
then show ?thesis using 1 by auto

qed
moreover have {x. 0 ≤ x$1 ∧ x$1 ≤ 1 ∧ 0 ≤ x$2 ∧ x$2 ≤ 1 ∧ x$1 + x$2
≥ 1} ⊆ ?T

proof(rule subsetI)
fix z :: real^2
assume ∗: z ∈ {x. 0 ≤ x$1 ∧ x$1 ≤ 1 ∧ 0 ≤ x$2 ∧ x$2 ≤ 1 ∧ x$1 + x$2

≥ 1}
then obtain x y :: real where z = vector [x, y] ∧ 0 ≤ x using forall-vector-2

by fastforce
moreover from this have x ≤ 1 ∧ 0 ≤ y ∧ y ≤ 1 ∧ x + y ≥ 1 using ∗

vector-2 [of x y] by simp
ultimately show z ∈ ?T by blast

qed
moreover have ?T ⊆ {x. 0 ≤ x$1 ∧ x$1 ≤ 1 ∧ 0 ≤ x$2 ∧ x$2 ≤ 1 ∧ x$1 +

x$2 ≥ 1}
using vector-2 by force

ultimately show ?thesis
by (smt (verit, best) Collect-cong subset-antisym)

199

qed

lemma unit-square-split-diag:
shows unit-square = unit-triangle ∪ unit-triangle ′

proof−
let ?S = ({vector [0 , 0], vector [0 , 1], vector [1 , 0]})::((real^2) set)
let ?S ′ = ({vector [1 , 1], vector [0 , 1], vector [1 , 0]})::((real^2) set)
have unit-triangle ∪ unit-triangle ′ ⊆ convex hull (?S ∪ ?S ′) by (simp add:

hull-mono)
moreover have convex hull (?S ∪ ?S ′) ⊆ unit-triangle ∪ unit-triangle ′

by (smt (z3) Un-commute Un-left-commute Un-upper1 in-mono insert-is-Un
mem-Collect-eq subsetI sup.idem unit-square-characterization unit-triangle-char unit-triangle ′-char)
moreover have unit-square = convex hull (?S ∪ ?S ′) by (simp add: insert-commute)
ultimately show ?thesis by blast

qed

lemma unit-triangle-INT-unit-triangle ′-measure:
measure lebesgue (unit-triangle ∩ unit-triangle ′) = 0

proof −
let ?e1 = (vector [1 , 0])::real^2
let ?e2 = (vector [0 , 1])::real^2
have unit-triangle ∩ unit-triangle ′ = {x::(real^2). 0 ≤ x $ 1 ∧ x $ 1 ≤ 1 ∧ 0
≤ x $ 2 ∧ x $ 2 ≤ 1 ∧ x $ 1 + x $ 2 = 1}

(is unit-triangle ∩ unit-triangle ′ = ?S)
using unit-triangle-char unit-triangle ′-char
by auto

also have ... = path-image (linepath ?e2 ?e1)
(is ... = ?p)

proof−
have ?S ⊆ ?p
proof(rule subsetI)

fix x :: real^2
assume x ∈ ?S
then have ∗: 0 ≤ 1 − x$2 ∧ x$2 = 1 − x$1 ∧ 0 ≤ x$2 ∧ x$2 ≤ 1 by

simp

have x$2 ∗R ?e2 + x$1 ∗R ?e1 = vector [x$1 , x$2]
proof−

have (x$1 ∗R ?e1)$1 = x$1 by simp
moreover have (x$1 ∗R ?e1)$2 = 0 by auto
moreover have (x$2 ∗R ?e2)$1 = 0 by auto
moreover have (x$2 ∗R ?e2)$2 = x$2 by fastforce
ultimately have x$1 ∗R ?e1 = vector [x$1 , 0] ∧ x$2 ∗R ?e2 = vector [0 ,

x$2]
by (smt (verit, ccfv-SIG) exhaust-2 vec-eq-iff vector-2 (1) vector-2 (2))

then have x$1 ∗R ?e1 + x$2 ∗R ?e2 = vector [x$1 , 0] + vector [0 , x$2]
by auto

moreover from this have (x$1 ∗R ?e1 + x$2 ∗R ?e2)$1 = x$1 by auto
moreover from calculation have (x$1 ∗R ?e1 + x$2 ∗R ?e2)$2 = x$2

200

by auto
ultimately show ?thesis
by (smt (verit) add.commute exhaust-2 vec-eq-iff vector-2 (1) vector-2 (2))

qed
also have ... = x

by (smt (verit, best) exhaust-2 vec-eq-iff vector-2 (1) vector-2 (2))
finally have x$2 ∗R ?e2 + x$1 ∗R ?e1 = x .
then have x = (λx. (1 − x) ∗R ?e2 + x ∗R ?e1) (x$1) ∧ x$1 ∈ {0 ..1}

using ∗ by auto
thus x ∈ ?p unfolding path-image-def linepath-def by fast

qed
moreover have ?p ⊆ ?S
proof(rule subsetI)

fix x
assume ∗: x ∈ ?p
then obtain t where ∗: x = (1 − t) ∗R ?e2 + t ∗R ?e1 ∧ t ∈ {0 ..1}

unfolding path-image-def linepath-def by blast
moreover from this have x$1 = t by simp
moreover from calculation have x$2 = 1 − t by simp
moreover from calculation have 0 ≤ t ∧ t ≤ 1 ∧ 0 ≤ 1 − t ∧ 1 − t ≤ 1

by simp
ultimately show x ∈ ?S by simp

qed
ultimately show ?thesis by blast

qed
also have measure lebesgue ?p = 0 using linepath-has-measure-0 by blast
finally show ?thesis .

qed

lemma unit-triangle-area: measure lebesgue unit-triangle = 1/2
proof−

let ?µ = measure lebesgue
have ?µ unit-square = ?µ unit-triangle + ?µ unit-triangle ′

using unit-square-split-diag unit-triangle-INT-unit-triangle ′-measure
by (simp add: finite-imp-bounded-convex-hull measurable-convex measure-Un3)

thus ?thesis using unit-triangles-same-area unit-square-area by simp
qed

end
theory Elementary-Triangle-Area
imports

Unit-Geometry

begin

25 Area of Elementary Triangle is 1/2
lemma nonint-in-square-img-IMP-nonint-triangle-img:

assumes A = triangle-affine a b c

201

assumes x ∈ unit-square
assumes ¬ integral-vec x
assumes integral-vec (A x)
assumes elem-triangle a b c
obtains x ′ where x ′ ∈ unit-triangle ∧ ¬ integral-vec x ′ ∧ integral-vec (A x ′)

proof−
{ assume x ∈ unit-triangle

then have ?thesis using assms that by blast
} moreover
{ assume ∗: x /∈ unit-triangle

then have x /∈ {x. 0 ≤ x $ 1 ∧ 0 ≤ x $ 2 ∧ x $ 1 + x $ 2 ≤ 1}
using unit-triangle-char by argo

then have x2x1-ge-1 : x$1 + x$2 > 1 using assms(2) unit-square-characterization
by force

let ?x ′1 = 1 − x$1
let ?x ′2 = 1 − x$2
let ?x ′ = vector [?x ′1 , ?x ′2]
have ?x ′1 + ?x ′2 ≤ 1 using x2x1-ge-1 by argo
then have ?x ′ ∈ unit-triangle

using unit-triangle-char assms(2) unit-square-characterization by auto
moreover have ¬ integral-vec ?x ′

proof−
have ¬ is-int (x$1) ∨ ¬ is-int (x$2) using assms(3) unfolding inte-

gral-vec-def by blast
then have ¬ is-int (?x ′1) ∨ ¬ is-int (?x ′2)

using is-int-minus
by (metis diff-add-cancel is-int-def minus-diff-eq of-int-1 uminus-add-conv-diff)
thus ?thesis unfolding integral-vec-def by auto

qed
moreover have integral-vec (A ?x ′)
proof−

let ?L = triangle-linear a b c
have A-comp: A = (λx. x + a) ◦ ?L by (simp add: affine-comp-linear-trans

assms(1))
then have Lx-int: integral-vec (?L x)

by (smt (verit, del-insts) assms(4) assms(5) comp-apply diff-add-cancel
diff-minus-eq-add integral-vec-minus integral-vec-sum elem-triangle-def)

have linear ?L by (simp add: triangle-linear-def)
moreover have ?L ?x ′ = ?L (vector [1 , 1] − x)

by (simp add: mat-vec-mult-2 triangle-linear-def)
ultimately have ?L ?x ′ = ?L (vector [1 , 1]) − ?L x by (simp add: linear-diff)
moreover have integral-vec (?L (vector [1 , 1]))
proof−

have ?L (vector [1 , 1]) = vector [(b − a)$1 + (c − a)$1 , (b − a)$2 + (c
− a)$2]

unfolding triangle-linear-def triangle-mat-def transpose-def using mat-vec-mult-2
by simp

also have ... = (b − a) + (c − a)

202

by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-2 (1) vector-2 (2)
vector-add-component)

finally show ?thesis using assms(5) unfolding elem-triangle-def
by (metis ab-group-add-class.ab-diff-conv-add-uminus integral-vec-minus

integral-vec-sum)
qed
ultimately have integral-vec (?L ?x ′)

using Lx-int integral-vec-sum integral-vec-minus by force
then show ?thesis using A-comp assms(5) integral-vec-sum elem-triangle-def

by auto
qed
ultimately have ?thesis using that by blast

}
ultimately show ?thesis by blast

qed

lemma elem-triangle-integral-mat-bij:
fixes a b c :: real^2
assumes elem-triangle a b c
defines L ≡ triangle-mat a b c
shows integral-mat-bij L

proof−
let ?A = triangle-affine a b c

have L: L = transpose (vector [b − a, c − a]) (is L = transpose (vector [?w1 ,
?w2]))

unfolding triangle-mat-def L-def by auto

have integral-vec ?w1 ∧ integral-vec ?w2
by (metis ab-group-add-class.ab-diff-conv-add-uminus assms(1) integral-vec-minus

integral-vec-sum elem-triangle-def)
then have L-int-entries: ∀ i∈{1 , 2}. ∀ j∈{1 , 2}. is-int (Lij)

by (simp add: L-def triangle-mat-def Finite-Cartesian-Product.transpose-def
integral-vec-def)

have L-integral: integral-mat L unfolding integral-mat-def
proof(rule allI)

fix v :: real^2
show integral-vec v −→ integral-vec (L ∗v v)
proof(rule impI)

assume v-int-assm: integral-vec v
let ?Lv = L ∗v v

have ?Lv$1 = L$1$1 ∗ v$1 + L$1$2 ∗ v$2 by (simp add: mat-vec-mult-2)
then have Lv1-int: is-int (?Lv$1)

using L-int-entries v-int-assm is-int-sum is-int-mult by (simp add: inte-
gral-vec-def)

have ?Lv$2 = L$2$1 ∗ v$1 + L$2$2 ∗ v$2 by (simp add: mat-vec-mult-2)

203

then have Lv2-int: is-int (?Lv$2)
using L-int-entries v-int-assm is-int-sum is-int-mult by (simp add: inte-

gral-vec-def)

show integral-vec (L ∗v v)
by (simp add: Lv1-int Lv2-int integral-vec-def)

qed
qed
moreover have integral-mat-surj L

unfolding integral-mat-surj-def
proof(rule allI)

fix v :: real^2
show integral-vec v −→ (∃w. integral-vec w ∧ L ∗v w = v)
proof(rule impI)

assume ∗: integral-vec v
obtain w :: real^2 where w: L ∗v w = v

using triangle-linear-inj assms(1) full-rank-injective full-rank-surjective
unfolding elem-triangle-def L-def triangle-linear-def surj-def
by (smt (verit, best) iso-tuple-UNIV-I)

moreover have integral-vec w
proof(rule ccontr)

assume ∗∗: ¬ integral-vec w
let ?w1 = w$1
let ?w2 = w$2
let ?w1 ′ = w$1 − (floor (w$1))
let ?w2 ′ = w$2 − (floor (w$2))
let ?w ′ = (vector [?w1 ′, ?w2 ′])::(real^2)
have ?w1 ′ ∈ {0 ..1} ∧ ?w2 ′ ∈ {0 ..1}

by (metis add.commute add.right-neutral atLeastAtMost-iff floor-correct
floor-frac frac-def of-int-0 real-of-int-floor-add-one-ge)

then have ?w ′ ∈ unit-square using unit-square-characterization by auto
moreover have ¬ integral-vec ?w ′

by (metis ∗∗ eq-iff-diff-eq-0 floor-frac floor-of-int frac-def integral-vec-def
is-int-def of-int-0 vector-2 (1) vector-2 (2))

moreover have integral-vec (?A ?w ′)
proof−

have ?w ′ = vector [w$1 , w$2] − vector [floor (w$1), floor (w$2)]
(is ?w ′ = vector [w$1 , w$2] − ?floor-w)

by (smt (verit, del-insts) exhaust-2 list.simps(8) list.simps(9) vec-eq-iff
vector-2 (1) vector-2 (2) vector-minus-component)

then have ?w ′ = w − vector [floor (w$1), floor (w$2)]
by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-2 (1) vector-2 (2)

vector-minus-component)
moreover have ?A ?w ′ = (L ∗v ?w ′) + a unfolding triangle-affine-def

L-def by simp
ultimately have ?A ?w ′ = v − (L ∗v ?floor-w) + a

by (simp add: matrix-vector-mult-diff-distrib w)
moreover have integral-vec v ∧ integral-vec a ∧ integral-vec (L ∗v ?floor-w)

using ∗ assms(1) L-integral integral-mat-integral-vec integral-vec-2

204

unfolding elem-triangle-def
by blast

ultimately show ?thesis
by (metis ab-group-add-class.ab-diff-conv-add-uminus integral-vec-minus

integral-vec-sum)
qed
ultimately obtain w ′′ where w ′′: w ′′ ∈ unit-triangle ∧ ¬ integral-vec w ′′

∧ integral-vec (?A w ′′)
using nonint-in-square-img-IMP-nonint-triangle-img[of ?A a b c ?w ′]

assms(1) by blast
moreover have ?A w ′′ /∈ {a, b, c}
proof−

have inj ?A using assms(1) elem-triangle-def triangle-affine-inj by auto
moreover have ?A (vector [0 , 0]) = a

by (metis (no-types, opaque-lifting) add.commute add-0 mat-vec-mult-2 ma-
trix-vector-mult-0-right real-scaleR-def scaleR-zero-right triangle-affine-def zero-index)

moreover have ?A (vector [1 , 0]) = b
unfolding triangle-affine-def triangle-mat-def transpose-def

by (metis (no-types) Finite-Cartesian-Product.transpose-def add.commute
column-transpose diff-add-cancel e1e2-basis(1) matrix-vector-mult-basis row-def vec-lambda-eta
vector-2 (1))

moreover have ?A (vector [0 , 1]) = c
proof−

have (?A (vector [0 , 1]))$1 = c$1
by (metis L-def L add.commute column-transpose diff-add-cancel

e1e2-basis(3) matrix-vector-mult-basis row-def triangle-affine-def vec-lambda-eta vec-
tor-2 (2))

moreover have (?A (vector [0 , 1]))$2 = c$2
by (metis add.commute column-transpose diff-add-cancel e1e2-basis(3)

matrix-vector-mult-basis row-def triangle-affine-def triangle-mat-def vec-lambda-eta
vector-2 (2))

ultimately show ?thesis by (smt (verit, ccfv-SIG) exhaust-2 vec-eq-iff)
qed
moreover have w ′′ 6= vector [0 , 0] ∧ w ′′ 6= vector [0 , 1] ∧ w ′′ 6= vector

[1 , 0]
using w ′′ elem-triangle-def unit-triangle-is-elementary by blast

ultimately show ?thesis by (metis inj-eq insertE singletonD)
qed
moreover have ?A ‘ unit-triangle = convex hull {a, b, c}

using triangle-affine-img by blast
ultimately show False using assms unfolding elem-triangle-def by blast

qed
ultimately show ∃w. integral-vec w ∧ L ∗v w = v by auto

qed
qed
ultimately show ?thesis unfolding integral-mat-bij-def by auto

qed

lemma elem-triangle-measure-integral-of-1 :

205

fixes a b c :: real^2
defines S ≡ convex hull {a, b, c}
assumes elem-triangle a b c
shows measure lebesgue S = integral unit-triangle (λ(x::real^2). 1)

proof−
let ?T = triangle-linear a b c
have integral-mat-bij (matrix ?T) (is integral-mat-bij ?T-mat)

by (simp add: assms(2) elem-triangle-integral-mat-bij triangle-linear-def)
then have abs (det ?T-mat) = 1

using integral-mat-bij-det-pm1 by fastforce
thus ?thesis
using S-def assms(2) triangle-measure-integral-of-det elem-triangle-def by force

qed

lemma elem-triangle-area-is-half :
fixes a b c :: real^2
assumes elem-triangle a b c
defines S ≡ convex hull {a, b, c}
shows measure lebesgue S = 1/2 (is ?S-area = 1/2)

proof−
have ¬ collinear {a, b, c} using elem-triangle-def assms(1) by blast
then have measure lebesgue S = integral unit-triangle (λx::real^2 . 1)

using S-def assms(1) elem-triangle-measure-integral-of-1 by blast
also have ... = measure lebesgue unit-triangle
using unit-triangle-is-elementary elem-triangle-measure-integral-of-1 unit-triangle-area
by metis

finally show ?thesis by (simp add: unit-triangle-area)
qed

end
theory Pick
imports

Polygon-Splitting
Elementary-Triangle-Area

begin

26 Setup
26.1 Integral Points Cardinality Properties
lemma bounded-finite:

fixes A:: (real^2) set
assumes bounded A
shows finite {x::(real^2). integral-vec x ∧ x ∈ A} (is finite ?A-int)

proof−
obtain M where M : ∀ x ∈ A. norm x ≤ M using assms bounded-def by (meson

bounded-iff)

let ?M-bounded-ints = {n. n ∈ {−M ..M} ∧ is-int n}

206

let ?M-bounded-int-vecs = {v::(real^2). v$1 ∈ ?M-bounded-ints ∧ v$2 ∈ ?M-bounded-ints}

have ∀ x::(real^2). norm (x$1) ≤ norm x ∧ (x$2) ≤ norm x
by (smt (verit, ccfv-threshold) Finite-Cartesian-Product.norm-nth-le real-norm-def)

then have ∀ x ∈ ?A-int. norm (x$1) ≤ M ∧ norm (x$2) ≤ M
using M dual-order .trans Finite-Cartesian-Product.norm-nth-le by blast

then have ∀ x ∈ ?A-int. x$1 ∈ ?M-bounded-ints ∧ x$2 ∈ ?M-bounded-ints
using integral-vec-def intervalE by auto

then have ∀ x ∈ ?A-int. x ∈ ?M-bounded-int-vecs by blast
moreover have finite ?M-bounded-int-vecs
proof−

obtain S :: int set where S : S = {n. ∃m ∈ ?M-bounded-ints. n = m} ∧ (∀n
∈ S . norm n ≤ M)

by (simp add: abs-le-iff)
then have finite-S : finite S

by (metis infinite-int-iff-unbounded le-floor-iff linorder-not-less norm-of-int
of-int-abs)

have finite-M-bounded-ints: finite ?M-bounded-ints
proof−

let ?f = λn::real. THE m::int. n = m
have ∀n ∈ ?M-bounded-ints. ∃ !m::int. n = m using is-int-def by force
moreover have inj-on ?f ?M-bounded-ints using inj-on-def is-int-def by

force
moreover have ?f ‘ ?M-bounded-ints ⊆ S using calculation S subsetI by

auto
ultimately show ?thesis using finite-imageD finite-S by (simp add: inj-on-finite)
qed
show ?thesis
proof−

let ?f = λx::(real^2). (THE m::int. m = x$1 , THE n::int. n = x$2)
have inj-on ?f ?M-bounded-int-vecs

unfolding inj-on-def
proof clarify

fix x y :: real^2
assume x1-int: is-int (x$1)
assume x2-int: is-int (x$2)
assume y1-int: is-int (y$1)
assume y2-int: is-int (y$2)
assume x1y1-int-eq: (THE m. real-of-int m = x$1) = (THE m. real-of-int

m = y$1)
assume x2y2-int-eq: (THE n. real-of-int n = x$2) = (THE n. real-of-int n

= y$2)

have ∃ !m. m = x$1
by blast

moreover have ∃ !n. n = y$1
by blast

207

moreover have (THE m. real-of-int m = x$1) = (THE m. real-of-int m =
y$1)

using x1y1-int-eq by auto
ultimately have x1y1 : x$1 = y$1

using x1-int y1-int is-int-def by auto

have ∃ !m. m = x$2
by blast

moreover have ∃ !n. n = y$2
by blast

moreover have (THE m. real-of-int m = x$2) = (THE m. real-of-int m =
y$2)

using x2y2-int-eq by auto
ultimately have x2y2 : x$2 = y$2

using x2-int y2-int is-int-def by auto

show x = y using x1y1 x2y2
by (metis (no-types, lifting) exhaust-2 vec-eq-iff)

qed
moreover have ?f ‘ ?M-bounded-int-vecs ⊆ S × S
proof(rule subsetI)

fix mn
assume mn ∈ ?f ‘ ?M-bounded-int-vecs
then obtain v where v:

v ∈ ?M-bounded-int-vecs ∧ ?f v = mn ∧ (∃ !m. v$1 = m) ∧ (∃ !n. v$2 =
n)

using is-int-def by auto
let ?m = fst mn
let ?n = snd mn

have ?m = (THE m::int. m = v$1) using v
by (meson fstI)

moreover have ∃ ! m::int. m = v$1 using v is-int-def
by (metis (no-types, lifting) mem-Collect-eq of-int-eq-iff)

ultimately have m-in-S : ?m ∈ S
by (metis (mono-tags, lifting) S mem-Collect-eq theI ′ v)

have ?n = (THE n::int. n = v$2) using v
by (meson sndI)

moreover have ∃ ! n::int. n = v$2 using v is-int-def
by (metis (no-types, lifting) mem-Collect-eq of-int-eq-iff)

ultimately have n-in-S : ?n ∈ S
by (metis (mono-tags, lifting) S mem-Collect-eq theI ′ v)

show mn ∈ S × S using m-in-S n-in-S v by auto
qed
ultimately show ?thesis

by (meson finite-S finite-SigmaI finite-imageD finite-subset)
qed

208

qed
ultimately show ?thesis

by (smt (verit) finite-subset subsetI)
qed

lemma finite-path-image:
assumes polygon p
shows finite {x. integral-vec x ∧ x ∈ path-image p}
using bounded-finite inside-outside-polygon
unfolding inside-outside-def
by (meson assms bounded-simple-path-image polygon-def)

lemma finite-path-inside:
assumes polygon p
shows finite {x. integral-vec x ∧ x ∈ path-inside p}
using bounded-finite inside-outside-polygon
unfolding inside-outside-def
using assms by presburger

lemma bounded-finite-inside:
fixes B:: (real^2) set
assumes simple-path p
shows bounded (path-inside p)
using assms
by (simp add: bounded-inside bounded-simple-path-image path-inside-def)

lemma finite-integral-points-path-image:
assumes simple-path p
shows finite {x. integral-vec x ∧ x ∈ path-image p}
using bounded-finite bounded-simple-path-image assms by blast

lemma finite-integral-points-path-inside:
assumes simple-path p
shows finite {x. integral-vec x ∧ x ∈ path-inside p}
using bounded-finite bounded-finite-inside assms by blast

27 Pick splitting
lemma pick-split-path-union-main:

assumes is-split: is-polygon-split-path vts i j cutvts
assumes vts1 = (take i vts)
assumes vts2 = (take (j − i − 1) (drop (Suc i) vts))
assumes vts3 = drop (j − i) (drop (Suc i) vts)
assumes x = vts!i
assumes y = vts!j
assumes cutpath = make-polygonal-path (x # cutvts @ [y])
assumes p: p = make-polygonal-path (vts@[vts!0]) (is p = make-polygonal-path

?p-vts)
assumes p1 : p1 = make-polygonal-path (x#(vts2 @ [y] @ (rev cutvts) @ [x]))

209

(is p1 = make-polygonal-path ?p1-vts)
assumes p2 : p2 = make-polygonal-path (vts1 @ ([x] @ cutvts @ [y]) @ vts3 @

[vts ! 0]) (is p2 = make-polygonal-path ?p2-vts)
assumes I1 : I1 = card {x. integral-vec x ∧ x ∈ path-inside p1}
assumes B1 : B1 = card {x. integral-vec x ∧ x ∈ path-image p1}
assumes I2 : I2 = card {x. integral-vec x ∧ x ∈ path-inside p2}
assumes B2 : B2 = card {x. integral-vec x ∧ x ∈ path-image p2}
assumes I : I = card {x. integral-vec x ∧ x ∈ path-inside p}
assumes B: B = card {x. integral-vec x ∧ x ∈ path-image p}
assumes all-integral-vts: all-integral vts
shows measure lebesgue (path-inside p1) = I1 + B1/2 − 1

=⇒ measure lebesgue (path-inside p2) = I2 + B2/2 − 1
=⇒ measure lebesgue (path-inside p) = I + B/2 − 1

measure lebesgue (path-inside p) = I + B/2 − 1
=⇒ measure lebesgue (path-inside p2) = I2 + B2/2 − 1
=⇒ measure lebesgue (path-inside p1) = I1 + B1/2 − 1

measure lebesgue (path-inside p) = I + B/2 − 1
=⇒ measure lebesgue (path-inside p1) = I1 + B1/2 − 1
=⇒ measure lebesgue (path-inside p2) = I2 + B2/2 − 1

proof −
let ?p-im = {x. integral-vec x ∧ x ∈ path-image p}
let ?p1-im = {x. integral-vec x ∧ x ∈ path-image p1}
let ?p2-im = {x. integral-vec x ∧ x ∈ path-image p2}
let ?p-int = {x. integral-vec x ∧ x ∈ path-inside p}
let ?p1-int = {x. integral-vec x ∧ x ∈ path-inside p1}
let ?p2-int = {x. integral-vec x ∧ x ∈ path-inside p2}

have vts: vts = vts1 @ (x # (vts2 @ y # vts3))
using assms split-up-a-list-into-3-parts
using is-polygon-split-path-def by blast

have polygon p
using finite-path-image assms(1) p unfolding is-polygon-split-path-def
by (smt (verit, best))

then have B-finite: finite ?p-im
using finite-path-image by auto

have polygon-p1 : polygon p1
using finite-path-image assms(1) p1 unfolding is-polygon-split-path-def
by (smt (z3) assms(3) assms(5) assms(6))

then have B1-finite: finite ?p1-im
using finite-path-image by auto

have polygon-p2 : polygon p2
using finite-path-image assms(1) p1 unfolding is-polygon-split-path-def
by (smt (z3) assms(2) assms(4) assms(5) assms(6) p2)

then have B2-finite: finite ?p2-im
using finite-path-image by auto

have vts-distinct: distinct vts
using simple-polygonal-path-vts-distinct
by (metis ‹polygon p› butlast-snoc p polygon-def)

210

then have x-neq-y: x 6= y
by (metis assms(1) assms(5) assms(6) index-first index-nth-id is-polygon-split-path-def)

then have card-2 : card {x, y} = 2
by auto

have polygon-split-props: (is-polygon-cut-path (vts@[vts!0]) cutpath ∧
polygon p ∧ polygon p1 ∧ polygon p2 ∧
path-inside p1 ∩ path-inside p2 = {} ∧
path-inside p1 ∪ path-inside p2 ∪ (path-image cutpath − {x, y}) = path-inside

p
∧ ((path-image p1) − (path-image cutpath)) ∩ ((path-image p2) − (path-image

cutpath)) = {}
∧ path-image p = ((path-image p1) − (path-image cutpath)) ∪ ((path-image p2)

− (path-image cutpath)) ∪ {x, y})
using assms
by (meson is-polygon-split-path-def)

have measure-sum: measure lebesgue (path-inside p) = measure lebesgue (path-inside
p1) + measure lebesgue (path-inside p2)

using polygon-split-path-add-measure assms
by (smt (verit, del-insts))

let ?yx-int = {k. integral-vec k ∧ k ∈ path-image (make-polygonal-path (y#rev
cutvts@[x]))}

let ?xy-int = {k. integral-vec k ∧ k ∈ path-image cutpath}
have yx-int-is-xy-int: ?yx-int = ?xy-int

using rev-vts-path-image[of x # cutvts @ [y]] assms(7) by simp
have x # vts2 @ [y] @ rev cutvts @ [x] = (x#vts2) @ ([y] @ rev cutvts @ [x]) @

[]
by simp

then have sublist ([y]@rev cutvts@[x]) ?p1-vts
unfolding sublist-def by blast

then have subset1 :
?xy-int ⊆ ?p1-im
using sublist-integral-subset-integral-on-path p1 yx-int-is-xy-int
by force

have len-gteq: length (x # cutvts @ [y]) ≥ 2
by auto

have sublist-p2 : sublist (x # cutvts @ [y]) ?p2-vts
unfolding sublist-def by auto

then have subset2 :
?xy-int ⊆ ?p2-im
using sublist-integral-subset-integral-on-path[OF len-gteq p2 sublist-p2]
assms(7) by blast

let ?S1 = ?p1-im − ?xy-int
let ?S2 = ?p2-im − ?xy-int
have disjoint-1 : ?S1 ∩ ?S2 = {}

using polygon-split-props by blast

211

have integral-xy: integral-vec x ∧ integral-vec y
using all-integral-vts vts
using all-integral-def by auto

have nonempty: y # rev cutvts @ [x] 6= []
by simp

have trivial: make-polygonal-path (y # rev cutvts @ [x]) = make-polygonal-path
(y # rev cutvts @ [x])

by auto
have pathstart (make-polygonal-path (y#rev cutvts@[x])) = y ∧ pathfinish (make-polygonal-path

(y#rev cutvts@[x])) = x
using polygon-pathstart[OF nonempty trivial] polygon-pathfinish[OF nonempty

trivial]
by (metis last.simps last-conv-nth nonempty nth-Cons-0 snoc-eq-iff-butlast)

then have x-in-y-in: x ∈ path-image (make-polygonal-path (y#rev cutvts@[x]))
∧ y ∈ path-image (make-polygonal-path (y#rev cutvts@[x]))

unfolding pathstart-def pathfinish-def path-image-def
by (metis ‹pathstart (make-polygonal-path (y # rev cutvts @ [x])) = y ∧

pathfinish (make-polygonal-path (y # rev cutvts @ [x])) = x› path-image-def pathfin-
ish-in-path-image pathstart-in-path-image)

then have {x, y} ⊆ ?yx-int
using integral-xy
by simp

then have disjoint-2 : (?S1 ∪ ?S2) ∩ {x, y} = {}
by (simp add: yx-int-is-xy-int)

have path-image p =
path-image p1 − path-image cutpath ∪
(path-image p2 − path-image cutpath) ∪
{x, y}

using polygon-split-props by auto
then have set-union: ?p-im = (?S1 ∪ ?S2) ∪ {x, y}

using polygon-split-props integral-xy by auto
then have add-card: B = card (?p1-im − ?xy-int) + card (?p2-im − ?xy-int)

+ card {x, y}
using B-finite using disjoint-1 disjoint-2
by (metis (no-types, lifting) B card-Un-disjoint finite-Un)

have sub1 : card (?p1-im − ?xy-int) = B1 − card ?xy-int
using B1-finite B1 subset1
by (meson card-Diff-subset finite-subset)

have sub2 : card (?p2-im − ?xy-int) = B2 − card ?xy-int
using B2-finite B2 subset2
by (meson card-Diff-subset finite-subset)

have B: B = (B1 − card ?xy-int) + (B2 − card ?xy-int) + card {x, y}
using add-card sub1 sub2
by auto

then have B-sum-h: B = B1 + B2 − 2∗card ?xy-int + 2
using card-2
by (smt (verit, best) B1 B1-finite B2 B2-finite Nat.add-diff-assoc add.commute

card-mono diff-diff-left mult-2 subset1 subset2)
then have B1 + B2 = B + 2∗card ?xy-int − 2

212

by (metis (no-types, lifting) B1 B1-finite B2 B2-finite add-mono-thms-linordered-semiring(1)
card-mono diff-add-inverse2 le-add2 mult-2 ordered-cancel-comm-monoid-diff-class.add-diff-assoc2
subset1 subset2)

then have B-sum: (B1 + B2)/2 = B/2 + card ?xy-int − 1
by (smt (verit) B-sum-h field-sum-of-halves le-add2 mult-2 nat-1-add-1 of-nat-1

of-nat-add of-nat-diff ordered-cancel-comm-monoid-diff-class.add-diff-assoc2)
have casting-h:

∧
A B:: nat. A ≥ B =⇒ real (A − B) = real A − real B

by auto
have path-inside p1 ∪ path-inside p2 ∪ (path-image cutpath − {x, y}) =

path-inside p
using polygon-split-props by auto

then have interior-union: ?p-int = (?xy-int − {x, y}) ∪ ?p1-int ∪ ?p2-int
by blast

have finite-inside-p: finite ?p-int
using bounded-finite inside-outside-polygon
by (simp add: polygon-split-props inside-outside-def)

have finite-pathimage: finite (?xy-int − {x, y})
using B1-finite finite-subset subset1 by auto

have finite-inside-p1 : finite ?p1-int
using polygon-split-props bounded-finite inside-outside-polygon
using finite-Un finite-inside-p interior-union by auto

have finite-inside-p2 : finite ?p2-int
using polygon-split-props bounded-finite inside-outside-polygon
using finite-Un finite-inside-p interior-union by auto

have path-image-inside-disjoint1 : (?xy-int − {x, y}) ∩ (?p1-int) = {}
using subset1 inside-outside-polygon[OF polygon-p1]
unfolding inside-outside-def by auto

have path-image-inside-disjoint2 : (?xy-int − {x, y}) ∩ (?p2-int) = {}
using subset2 inside-outside-polygon[OF polygon-p2]
unfolding inside-outside-def by auto

have (?xy-int − {x, y}) ∩ (?p1-int ∪ ?p2-int) = {}
using subset2 path-image-inside-disjoint1 path-image-inside-disjoint2
by auto

then have I-is: I = card (?xy-int − {x, y}) +
card (?p1-int ∪ ?p2-int)
using interior-union I finite-inside-p1 finite-inside-p2

by (metis (no-types, lifting) card-Un-disjoint finite-Un finite-pathimage sup-assoc)

have disjoint-4 : ?p1-int ∩ ?p2-int = {}
using polygon-split-props by auto

then have I = card (?xy-int − {x, y}) +
I1 + I2
using I-is finite-inside-p1 finite-inside-p2
by (simp add: I1 I2 card-Un-disjoint)

have interior-subset: (?xy-int − {x, y}) ⊆ ?p-int
using interior-union by auto

have x-y-subset: {x, y} ⊆ ?xy-int

213

using x-in-y-in rev-vts-path-image[of x # cutvts @ [y]] assms(7)
integral-xy
using yx-int-is-xy-int by blast

have real (card (?xy-int − {x, y})) =
real (card (?xy-int)) − real (card {x, y})

using x-y-subset
by (metis (no-types, lifting) B2-finite card-Diff-subset card-mono finite-subset

of-nat-diff subset2)
then have card-diff : real (card (?xy-int − {x, y})) =
real (card (?xy-int)) − 2

using card-2 by auto
then have I = I1 + I2 + (card (?xy-int − {x, y}))

using I I1 I2 interior-union finite-inside-p1 finite-inside-p2
by (simp add: I-is disjoint-4 card-Un-disjoint)

then have I = I1 + I2 + real (card (?xy-int)) − 2
using card-diff
by linarith

then have I-sum: I1 + I2 = I − real (card ?xy-int) + 2
by fastforce

{assume pick1 : measure lebesgue (path-inside p1) = I1 + B1/2 − 1
assume pick2 : measure lebesgue (path-inside p2) = I2 + B2/2 − 1

have measure lebesgue (path-inside p) = I1 + I2 + (B1+B2)/2 −2
using pick1 pick2 measure-sum by auto

then have measure lebesgue (path-inside p) = I − real (card ?xy-int) + 2 +
B/2 + card ?xy-int − 1 − 2
using I-sum B-sum
by linarith

then have measure lebesgue (path-inside p) = I + B/2 − 1 by auto
}
then show measure lebesgue (path-inside p1) = I1 + B1/2 − 1 =⇒ measure

lebesgue (path-inside p2) = I2 + B2/2 − 1 =⇒ measure lebesgue (path-inside p)
= I + B/2 − 1

by blast

{assume pick1 : measure lebesgue (path-inside p) = I + B/2 − 1
assume pick2 : measure lebesgue (path-inside p2) = I2 + B2/2 − 1
then have real I + real B / 2 − 1 = (measure lebesgue (path-inside p1)) +

I2 + B2/2 −1
using measure-sum pick1 pick2 by auto

then have measure lebesgue (path-inside p) = I − real (card ?xy-int) + 2 +
B/2 + card ?xy-int − 1 − 2
using I-sum B-sum pick1
by linarith

then have measure lebesgue (path-inside p1) = I1 + B1/2 − 1
using B-sum ‹real I = real (I1 + I2) + real (card {k. integral-vec k ∧ k ∈

path-image cutpath}) − 2 › field-sum-of-halves measure-sum of-nat-add
pick1 pick2 by auto

}

214

then show measure lebesgue (path-inside p) = I + B/2 − 1 =⇒ measure
lebesgue (path-inside p2) = I2 + B2/2 − 1 =⇒ measure lebesgue (path-inside p1)
= I1 + B1/2 − 1

by blast

{assume pick1 : measure lebesgue (path-inside p) = I + B/2 − 1
assume pick2 : measure lebesgue (path-inside p1) = I1 + B1/2 − 1
then have real I + real B / 2 − 1 = (measure lebesgue (path-inside p2)) +

I1 + B1/2 −1
using measure-sum pick1 pick2 by auto

then have measure lebesgue (path-inside p) = I − real (card ?xy-int) + 2 +
B/2 + card ?xy-int − 1 − 2
using I-sum B-sum pick1
by linarith

then have measure lebesgue (path-inside p2) = I2 + B2/2 − 1
using B-sum ‹real I = real (I1 + I2) + real (card {k. integral-vec k ∧ k ∈

path-image cutpath}) − 2 › field-sum-of-halves measure-sum of-nat-add
using pick2 by auto

}
then show measure lebesgue (path-inside p) = I + B/2 − 1 =⇒ measure lebesgue

(path-inside p1) = I1 + B1/2 − 1 =⇒ measure lebesgue (path-inside p2) = I2 +
B2/2 − 1

by blast
qed

lemma pick-split-union:
assumes is-split: is-polygon-split vts i j
assumes vts1 = (take i vts)
assumes vts2 = (take (j − i − 1) (drop (Suc i) vts))
assumes vts3 = drop (j − i) (drop (Suc i) vts)
assumes x = vts ! i
assumes y = vts ! j
assumes p: p = make-polygonal-path (vts@[vts!0]) (is p = make-polygonal-path

?p-vts)
assumes p1 : p1 = make-polygonal-path (x#(vts2@[y, x])) (is p1 = make-polygonal-path

?p1-vts)
assumes p2 : p2 = make-polygonal-path (vts1 @ [x, y] @ vts3 @ [vts ! 0]) (is p2

= make-polygonal-path ?p2-vts)
assumes I1 : I1 = card {x. integral-vec x ∧ x ∈ path-inside p1}
assumes B1 : B1 = card {x. integral-vec x ∧ x ∈ path-image p1}
assumes pick1 : measure lebesgue (path-inside p1) = I1 + B1/2 − 1
assumes I2 : I2 = card {x. integral-vec x ∧ x ∈ path-inside p2}
assumes B2 : B2 = card {x. integral-vec x ∧ x ∈ path-image p2}
assumes pick2 : measure lebesgue (path-inside p2) = I2 + B2/2 − 1
assumes I : I = card {x. integral-vec x ∧ x ∈ path-inside p}
assumes B: B = card {x. integral-vec x ∧ x ∈ path-image p}
assumes all-integral-vts: all-integral vts
shows measure lebesgue (path-inside p) = I + B/2 − 1

measure lebesgue (path-inside p) = measure lebesgue (path-inside p1) +

215

measure lebesgue (path-inside p2)
proof −

let ?p-im = {x. integral-vec x ∧ x ∈ path-image p}
let ?p1-im = {x. integral-vec x ∧ x ∈ path-image p1}
let ?p2-im = {x. integral-vec x ∧ x ∈ path-image p2}
let ?p-int = {x. integral-vec x ∧ x ∈ path-inside p}
let ?p1-int = {x. integral-vec x ∧ x ∈ path-inside p1}
let ?p2-int = {x. integral-vec x ∧ x ∈ path-inside p2}

have vts: vts = vts1 @ (x # (vts2 @ y # vts3))
using assms split-up-a-list-into-3-parts
using is-polygon-split-def by blast

have polygon p
using finite-path-image assms(1) p unfolding is-polygon-split-def
by (smt (verit, best))

then have B-finite: finite ?p-im
using finite-path-image by auto

have polygon-p1 : polygon p1
using finite-path-image assms(1) p1 unfolding is-polygon-split-def
by (smt (z3) assms(3) assms(5) assms(6))

then have B1-finite: finite ?p1-im
using finite-path-image by auto

have polygon-p2 : polygon p2
using finite-path-image assms(1) p1 unfolding is-polygon-split-def
by (smt (z3) assms(2) assms(4) assms(5) assms(6) p2)

then have B2-finite: finite ?p2-im
using finite-path-image by auto

have vts-distinct: distinct vts
using simple-polygonal-path-vts-distinct
by (metis ‹polygon p› butlast-snoc p polygon-def)

then have x-neq-y: x 6= y
by (metis assms(1) assms(5) assms(6) index-first index-nth-id is-polygon-split-def)

then have card-2 : card {x, y} = 2
by auto

have polygon-split-props: is-polygon-cut ?p-vts x y ∧
polygon p ∧ polygon p1 ∧ polygon p2 ∧
path-inside p1 ∩ path-inside p2 = {} ∧
path-inside p1 ∪ path-inside p2 ∪ (path-image (linepath x y) − {x, y})

= path-inside p ∧ ((path-image p1) − (path-image (linepath x y))) ∩
((path-image p2) − (path-image (linepath x y))) = {}
∧ path-image p = ((path-image p1) − (path-image (linepath x y))) ∪ ((path-image

p2) − (path-image (linepath x y))) ∪ {x, y}
using assms
by (meson is-polygon-split-def)

have measure lebesgue (path-inside p) = measure lebesgue (path-inside p1) +
measure lebesgue (path-inside p2)

using polygon-split-add-measure assms
by (smt (verit, del-insts))

216

then have measure-sum: measure lebesgue (path-inside p) = I1 + I2 + (B1+B2)/2
−2

using pick1 pick2 by auto

let ?yx-int = {k. integral-vec k ∧ k ∈ path-image (linepath y x)}
let ?xy-int = {k. integral-vec k ∧ k ∈ path-image (linepath x y)}
have yx-int-is-xy-int: ?yx-int = ?xy-int

by (simp add: closed-segment-commute)

have sublist [y, x] ?p1-vts by (simp add: sublist-Cons-right)
then have subset1 :

?xy-int ⊆ ?p1-im
using sublist-pair-integral-subset-integral-on-path p1 yx-int-is-xy-int by blast

have subset2 :
?xy-int ⊆ ?p2-im
using sublist-pair-integral-subset-integral-on-path p2 by blast

let ?S1 = ?p1-im − ?xy-int
let ?S2 = ?p2-im − ?xy-int
have disjoint-1 : ?S1 ∩ ?S2 = {}

using polygon-split-props by blast

have integral-xy: integral-vec x ∧ integral-vec y
using all-integral-vts vts
using all-integral-def by auto

then have {x, y} ⊆ ?yx-int
by simp

then have disjoint-2 : (?S1 ∪ ?S2) ∩ {x, y} = {}
by simp

have path-image p =
path-image p1 − path-image (linepath x y) ∪
(path-image p2 − path-image (linepath x y)) ∪
{x, y}

using polygon-split-props by auto
then have set-union: ?p-im = (?S1 ∪ ?S2) ∪ {x, y}

using polygon-split-props integral-xy by auto
then have add-card: B = card (?p1-im − ?xy-int) + card (?p2-im − ?xy-int)

+ card {x, y}
using B-finite using disjoint-1 disjoint-2
by (metis (no-types, lifting) B card-Un-disjoint finite-Un)

have sub1 : card (?p1-im − ?xy-int) = B1 − card ?xy-int
using B1-finite B1 subset1
by (meson card-Diff-subset finite-subset)

have sub2 : card (?p2-im − ?xy-int) = B2 − card ?xy-int
using B2-finite B2 subset2
by (meson card-Diff-subset finite-subset)

have B: B = (B1 − card ?xy-int) + (B2 − card ?xy-int) + card {x, y}
using add-card sub1 sub2
by auto

217

then have B-sum-h: B = B1 + B2 − 2∗card ?xy-int + 2
using card-2
by (smt (verit, best) B1 B1-finite B2 B2-finite Nat.add-diff-assoc add.commute

card-mono diff-diff-left mult-2 subset1 subset2)
then have B1 + B2 = B + 2∗card ?xy-int − 2
by (metis (no-types, lifting) B1 B1-finite B2 B2-finite add-mono-thms-linordered-semiring(1)

card-mono diff-add-inverse2 le-add2 mult-2 ordered-cancel-comm-monoid-diff-class.add-diff-assoc2
subset1 subset2)

then have B-sum: (B1 + B2)/2 = B/2 + card ?xy-int − 1
by (smt (verit) B-sum-h field-sum-of-halves le-add2 mult-2 nat-1-add-1 of-nat-1

of-nat-add of-nat-diff ordered-cancel-comm-monoid-diff-class.add-diff-assoc2)
have casting-h:

∧
A B:: nat. A ≥ B =⇒ real (A − B) = real A − real B

by auto
have path-inside p1 ∪ path-inside p2 ∪ (path-image (linepath x y) − {x, y}) =

path-inside p
using polygon-split-props by auto

then have interior-union: ?p-int = (?xy-int − {x, y}) ∪ ?p1-int ∪ ?p2-int
by blast

have finite-inside-p: finite ?p-int
using bounded-finite inside-outside-polygon
by (simp add: polygon-split-props inside-outside-def)

have finite-pathimage: finite (?xy-int − {x, y})
using B1-finite finite-subset subset1 by auto

have finite-inside-p1 : finite ?p1-int
using polygon-split-props bounded-finite inside-outside-polygon
using finite-Un finite-inside-p interior-union by auto

have finite-inside-p2 : finite ?p2-int
using polygon-split-props bounded-finite inside-outside-polygon
using finite-Un finite-inside-p interior-union by auto

have path-image-inside-disjoint1 : (?xy-int − {x, y}) ∩ (?p1-int) = {}
using subset1 inside-outside-polygon[OF polygon-p1]
unfolding inside-outside-def by auto

have path-image-inside-disjoint2 : (?xy-int − {x, y}) ∩ (?p2-int) = {}
using subset2 inside-outside-polygon[OF polygon-p2]
unfolding inside-outside-def by auto

have (?xy-int − {x, y}) ∩ (?p1-int ∪ ?p2-int) = {}
using subset2 path-image-inside-disjoint1 path-image-inside-disjoint2
by auto

then have I-is: I = card (?xy-int − {x, y}) +
card (?p1-int ∪ ?p2-int)
using interior-union I finite-inside-p1 finite-inside-p2

by (metis (no-types, lifting) card-Un-disjoint finite-Un finite-pathimage sup-assoc)

have disjoint-4 : ?p1-int ∩ ?p2-int = {}
using polygon-split-props by auto

then have I = card (?xy-int − {x, y}) +
I1 + I2
using I-is finite-inside-p1 finite-inside-p2

218

by (simp add: I1 I2 card-Un-disjoint)
have interior-subset: (?xy-int − {x, y}) ⊆ ?p-int

using interior-union by auto
have x-y-subset: {x, y} ⊆ ?xy-int

using local.set-union by auto
have real (card (?xy-int − {x, y})) =
real (card (?xy-int)) − real (card {x, y})

using x-y-subset
by (metis (no-types, lifting) B2-finite card-Diff-subset card-mono finite-subset

of-nat-diff subset2)
then have card-diff : real (card (?xy-int − {x, y})) =
real (card (?xy-int)) − 2

using card-2 by auto
then have I = I1 + I2 + (card (?xy-int − {x, y}))

using I I1 I2 interior-union finite-inside-p1 finite-inside-p2
by (simp add: I-is disjoint-4 card-Un-disjoint)

then have I = I1 + I2 + real (card (?xy-int)) − 2
using card-diff
by linarith

then have I-sum: I1 + I2 = I − real (card ?xy-int) + 2
by fastforce

have measure lebesgue (path-inside p) = I − real (card ?xy-int) + 2 +
B/2 + card ?xy-int − 1 − 2
using measure-sum I-sum B-sum
by linarith

then show measure lebesgue (path-inside p) = I + B/2 − 1 by auto

show measure lebesgue (path-inside p) = measure lebesgue (path-inside p1) +
measure lebesgue (path-inside p2)

using ‹Sigma-Algebra.measure lebesgue (path-inside p) = Sigma-Algebra.measure
lebesgue (path-inside p1) + Sigma-Algebra.measure lebesgue (path-inside p2)› by
blast
qed

lemma pick-split-path-union:
assumes is-split: is-polygon-split-path vts i j cutvts
assumes vts1 = (take i vts)
assumes vts2 = (take (j − i − 1) (drop (Suc i) vts))
assumes vts3 = drop (j − i) (drop (Suc i) vts)
assumes x = vts!i
assumes y = vts!j
assumes cutpath = make-polygonal-path (x # cutvts @ [y])
assumes p: p = make-polygonal-path (vts@[vts!0]) (is p = make-polygonal-path

?p-vts)
assumes p1 : p1 = make-polygonal-path (x#(vts2 @ [y] @ (rev cutvts) @ [x]))

(is p1 = make-polygonal-path ?p1-vts)
assumes p2 : p2 = make-polygonal-path (vts1 @ ([x] @ cutvts @ [y]) @ vts3 @

[vts ! 0]) (is p2 = make-polygonal-path ?p2-vts)
assumes I1 : I1 = card {x. integral-vec x ∧ x ∈ path-inside p1}

219

assumes B1 : B1 = card {x. integral-vec x ∧ x ∈ path-image p1}
assumes pick1 : measure lebesgue (path-inside p1) = I1 + B1/2 − 1
assumes I2 : I2 = card {x. integral-vec x ∧ x ∈ path-inside p2}
assumes B2 : B2 = card {x. integral-vec x ∧ x ∈ path-image p2}
assumes pick2 : measure lebesgue (path-inside p2) = I2 + B2/2 − 1
assumes I : I = card {x. integral-vec x ∧ x ∈ path-inside p}
assumes B: B = card {x. integral-vec x ∧ x ∈ path-image p}
assumes all-integral-vts: all-integral vts
shows measure lebesgue (path-inside p) = I + B/2 − 1
using pick-split-path-union-main pick1 pick2 (1) assms by blast

lemma pick-triangle-basic-split:
assumes p = make-triangle a b c and distinct [a, b, c] and ¬ collinear {a, b,

c} and
d-prop: d ∈ path-image (linepath a b) ∧ d /∈ {a, b, c}

shows good-linepath c d [a, d, b, c, a]
∧ path-image (make-polygonal-path [a, d, b, c, a]) = path-image p

proof−
let ?l = linepath c d
let ?L = path-image ?l
let ?P = path-image p
let ?vts ′ = [a, d, b, c, a]
let ?p ′ = make-polygonal-path ?vts ′

let ?P ′ = path-image ?p ′

have h1 : path-image (make-polygonal-path [a, b, c, a]) = path-image (linepath a
b) ∪ path-image (linepath b c) ∪ path-image (linepath c a)

using polygonal-path-image-linepath-union by (simp add: path-image-join sup.assoc)
have h2 : path-image (make-polygonal-path [a, d, b, c, a]) = path-image (linepath a

d) ∪ path-image (linepath d b) ∪ path-image (linepath b c) ∪ path-image (linepath
c a)

using polygonal-path-image-linepath-union by (simp add: path-image-join sup.assoc)
have h3 : path-image (linepath a b) = path-image (linepath a d) ∪ path-image

(linepath d b)
using path-image-linepath-union d-prop by auto

have 1 : ?P ′ = ?P
using h1 h2 h3
using assms(1) make-triangle-def by force

have {c, d} = ?L ∩ ?P
proof(rule ccontr)

have subs: {c, d} ⊆ ?L ∩ ?P
using assms(1) vertices-on-path-image unfolding make-triangle-def

by (metis IntD2 IntI assms(4) empty-subsetI inf-sup-absorb insert-subset
list.discI list.simps(15) nth-Cons-0 path-image-cons-union pathfinish-in-path-image
pathfinish-linepath pathstart-in-path-image pathstart-linepath)

assume ∗: {c, d} 6= ?L ∩ ?P

220

then obtain z where z: z 6= c ∧ z 6= d ∧ z ∈ ?L ∩ ?P using subs by blast
then have cases:

z ∈ path-image (linepath a b) ∨ z ∈ path-image (linepath b c) ∨ z ∈ path-image
(linepath c a)

using 1 h2 h3 by blast
{ assume ∗∗: z ∈ path-image (linepath a b)

moreover have z ∈ ?L ∧ d ∈ ?L ∧ d ∈ path-image (linepath a b) using
assms z by force

ultimately have {z, d} ⊆ ?L ∩ path-image (linepath a b) ∧ z 6= d using z
by blast

then have collinear {a, b, c, d} using two-linepath-colinearity-property by
fastforce

then have False using assms(2) assms(3) collinear-4-3 by auto
} moreover
{ assume ∗∗: z ∈ path-image (linepath b c)

then have collinear {a, b, c, d} using two-linepath-colinearity-property[of z
- b c c d]

by (smt (verit) ∗∗ IntE assms(3) collinear-3-trans d-prop in-path-image-imp-collinear
insertCI insert-commute z)

then have False using assms(2) assms(3) collinear-4-3 by auto
} moreover
{ assume ∗∗: z ∈ path-image (linepath c a)

then have collinear {a, b, c, d} using two-linepath-colinearity-property[of z
- c a c d]

by (smt (verit) IntD1 assms(3) collinear-3-trans d-prop in-path-image-imp-collinear
insert-commute insert-iff z)

then have False using assms(2) assms(3) collinear-4-3 by auto
}
ultimately show False using cases by argo

qed
moreover have ?L ⊆ path-inside p ∪ ?P
proof−

have convex hull {a, b, c} = path-inside p ∪ ?P
by (simp add: Un-commute assms(1) assms(3) triangle-convex-hull)

moreover have ?L ⊆ convex hull {a, b, c}
by (smt (verit, ccfv-threshold) assms empty-subsetI hull-insert hull-mono in-

sert-commute insert-mono insert-subset path-image-linepath segment-convex-hull)
ultimately show ?thesis by blast

qed
ultimately have ?L ⊆ path-inside p ∪ {c, d} by blast
then have ?L ⊆ path-inside ?p ′ ∪ {c, d} using 1 unfolding path-inside-def by

presburger
then have 2 : good-linepath c d ?vts ′ using assms unfolding good-linepath-def

by auto

thus ?thesis using 1 by blast
qed

221

28 Convex Hull Has Good Linepath
lemma leq-2-extreme-points-means-collinear :

fixes vts :: ′a::euclidean-space set
assumes finite vts
assumes card {v. v extreme-point-of (convex hull vts)} ≤ 2
shows collinear vts
using assms
by (metis Krein-Milman-polytope affine-hull-convex-hull collinear-affine-hull-collinear

collinear-small extreme-points-of-convex-hull finite-subset)

lemma convex-hull-non-extreme-point-in-open-seg:
assumes H = convex hull vts
assumes x ∈ H − {v. v extreme-point-of H}
shows ∃ a b. a ∈ H ∧ b ∈ H ∧ x ∈ open-segment a b
using assms unfolding extreme-point-of-def by blast

lemma convex-hull-extreme-points-vertex-split:
fixes vts :: (real^2) set
assumes H = convex hull vts
assumes finite vts
assumes card {v. v extreme-point-of H} ≥ 4
assumes {a, b, c} ⊆ {v. v extreme-point-of H} ∧ distinct [a, b, c]
shows path-image (linepath a b) ∩ interior H 6= {}
∨ path-image (linepath b c) ∩ interior H 6= {}
∨ path-image (linepath c a) ∩ interior H 6= {}

proof−
let ?ep = {v. v extreme-point-of H}

have H : H = convex hull ?ep using Krein-Milman-polytope assms(1) assms(2)
by blast

let ?H ′ = convex hull {a, b, c}

have not-collinear : ¬ collinear {a, b, c}
proof(rule ccontr)

assume ¬ ¬ collinear {a, b, c}
then have collinear {a, b, c} by blast
then have a ∈ path-image (linepath b c)
∨ b ∈ path-image (linepath a c)
∨ c ∈ path-image (linepath a b)

using collinear-between-cases unfolding between-def
by (smt (verit, del-insts) between-mem-segment closed-segment-eq collinear-between-cases

doubleton-eq-iff path-image-linepath)
moreover have a 6= b ∧ b 6= c ∧ a 6= c using assms by simp

ultimately have a ∈ open-segment b c ∨ b ∈ open-segment a c ∨ c ∈
open-segment a b

using closed-segment-eq-open by auto
moreover have a extreme-point-of H ∧ b extreme-point-of H ∧ c extreme-point-of

H

222

using assms by blast
ultimately show False unfolding extreme-point-of-def by blast

qed

have strict-subset: interior ?H ′ ⊂ interior H
proof−

have interior ?H ′ ⊆ interior H
by (metis H assms(4) hull-mono interior-mono)

moreover have ?H ′ ⊂ H
proof−

have card {a, b, c} ≤ 3
by (metis card.empty card-insert-disjoint collinear-2 finite.emptyI finite-insert

insert-absorb nat-le-linear not-collinear numeral-3-eq-3)
then have card (?ep − {a, b, c}) ≥ 1

using assms(3) assms(4) by auto
then obtain d where d ∈ ?ep − {a, b, c}

by (metis One-nat-def all-not-in-conv card.empty not-less-eq-eq zero-le)
thus ?thesis
by (metis DiffE H assms(4) extreme-point-of-convex-hull hull-mono mem-Collect-eq

order-less-le)
qed
ultimately show ?thesis

by (metis (no-types, lifting) assms(1) assms(2) closure-convex-hull con-
vex-closure-rel-interior convex-convex-hull convex-hull-eq-empty convex-polygon-frontier-is-path-image2
dual-order .strict-iff-order finite.emptyI finite.insertI finite-imp-bounded-convex-hull
finite-imp-compact frontier-empty insert-not-empty inside-frontier-eq-interior not-collinear
path-inside-def polygon-frontier-is-path-image rel-interior-nonempty-interior sup-bot.right-neutral
triangle-convex-hull triangle-is-convex triangle-is-polygon)

qed
moreover have interior ?H ′ 6= {}
by (metis not-collinear convex-convex-hull convex-hull-eq-empty convex-polygon-frontier-is-path-image2

finite.emptyI finite.insertI finite-imp-bounded-convex-hull frontier-empty insert-not-empty
inside-frontier-eq-interior path-inside-def polygon-frontier-is-path-image sup-bot.right-neutral
triangle-convex-hull triangle-is-convex triangle-is-polygon)

ultimately obtain x y where xy: x ∈ interior ?H ′ ∧ y ∈ interior H − interior
?H ′ by blast

let ?l = linepath x y

have x ∈ interior ?H ′ ∧ y ∈ −(interior ?H ′) using xy by blast
then have path-image ?l ∩ interior ?H ′ 6= {} ∧ path-image ?l ∩ −(interior ?H ′)
6= {} by auto
moreover have path-connected (interior ?H ′) by (simp add: convex-imp-path-connected)
ultimately obtain z where z: z ∈ path-image ?l ∩ frontier (interior ?H ′)
by (metis Diff-eq Diff-eq-empty-iff all-not-in-conv convex-convex-hull convex-imp-path-connected

path-connected-not-frontier-subset path-image-linepath segment-convex-hull)
moreover have path-image ?l ⊆ interior H using xy convex-interior [of H]
by (metis DiffD1 IntD2 strict-subset assms(1) closed-segment-subset convex-convex-hull

inf .strict-order-iff path-image-linepath)

223

ultimately have z-interior : z ∈ interior H by blast

have z ∈ frontier (interior ?H ′) using z by blast
moreover have frontier (interior ?H ′)

= path-image (linepath a b) ∪ path-image (linepath b c) ∪ path-image (linepath
c a)

proof−
let ?p = make-triangle a b c
have path-inside ?p = interior ?H ′

by (metis not-collinear bounded-convex-hull bounded-empty bounded-insert con-
vex-convex-hull convex-polygon-frontier-is-path-image2 inside-frontier-eq-interior path-inside-def
triangle-convex-hull triangle-is-convex triangle-is-polygon)

then have path-image ?p = frontier (interior ?H ′)
by (metis not-collinear polygon-frontier-is-path-image triangle-is-polygon)

moreover have path-image ?p
= path-image (linepath a b) ∪ path-image (linepath b c) ∪ path-image (linepath

c a)
by (metis Un-assoc list.discI make-polygonal-path.simps(3) make-triangle-def

nth-Cons-0 path-image-cons-union)
ultimately show ?thesis by presburger

qed
ultimately show ?thesis using z-interior by blast

qed

lemma convex-hull-has-vertex-split-helper-wlog:
assumes p = make-triangle a b c and distinct [a, b, c] and ¬ collinear {a, b,

c} and
d-prop: d ∈ path-image (linepath a b) ∧ d /∈ {a, b, c}

shows path-image (linepath c d) ∩ path-inside p 6= {}
proof−

have good-linepath c d [a, d, b, c, a]
∧ path-image (make-polygonal-path [a, d, b, c, a]) = path-image p

using pick-triangle-basic-split[of p a b c d] assms by fast
thus ?thesis

unfolding good-linepath-def
by (smt (verit, del-insts) Int-Un-eq(4) Int-insert-right-if1 Un-insert-right diff-points-path-image-set-property

le-iff-inf path-inside-def pathfinish-in-path-image pathfinish-linepath pathstart-in-path-image
pathstart-linepath)
qed

lemma convex-hull-has-vertex-split-helper :
assumes p = make-triangle a b c and distinct [a, b, c] and ¬ collinear {a, b,

c} and
d-prop: d ∈ path-image p ∧ d /∈ {a, b, c}

shows ∃ x y. {x, y} ⊆ {a, b, c, d} ∧ x 6= y ∧ path-image (linepath x y) ∩
path-inside p 6= {}
proof−

{ assume d ∈ path-image (linepath a b)
then have ?thesis

224

using convex-hull-has-vertex-split-helper-wlog[of p a b c d] assms(1) assms(2)
assms(3) d-prop

by fastforce
} moreover
{ assume ∗: d ∈ path-image (linepath b c)

let ?p ′ = make-triangle b c a
have path-image (linepath a d) ∩ path-inside ?p ′ 6= {}

using convex-hull-has-vertex-split-helper-wlog[of ?p ′ b c a d]
by (metis (no-types, opaque-lifting) ∗ assms(3) collinear-2 d-prop distinct-length-2-or-more

distinct-singleton insert-absorb2 insert-commute)
moreover have path-inside ?p ′ = path-inside p

unfolding make-triangle-def
by (smt (verit, best) assms(1) assms(3) convex-polygon-frontier-is-path-image2

insert-commute make-triangle-def path-inside-def triangle-convex-hull triangle-is-convex
triangle-is-polygon)

ultimately have ?thesis using assms by auto
} moreover
{ assume ∗: d ∈ path-image (linepath c a)

let ?p ′ = make-triangle c a b
have path-image (linepath b d) ∩ path-inside ?p ′ 6= {}

using convex-hull-has-vertex-split-helper-wlog[of ?p ′ c a b d]
by (metis (no-types, opaque-lifting) ∗ assms(3) collinear-2 d-prop distinct-length-2-or-more

distinct-singleton insert-absorb2 insert-commute)
moreover have path-inside ?p ′ = path-inside p

unfolding make-triangle-def
by (smt (verit, ccfv-SIG) assms(1) assms(3) convex-polygon-frontier-is-path-image2

insert-commute make-triangle-def path-inside-def triangle-convex-hull triangle-is-convex
triangle-is-polygon)

ultimately have ?thesis using assms by auto
}
ultimately show ?thesis using on-triangle-path-image-cases assms(1) d-prop

by fast
qed

lemma convex-hull-has-vertex-split:
fixes vts :: (real^2) set
assumes H = convex hull vts
assumes ¬ collinear vts
assumes card vts > 3
assumes finite vts
shows ∃ a b. {a, b} ⊆ vts ∧ a 6= b ∧ path-image (linepath a b) ∩ interior H 6=
{}
proof−

let ?ep = {v. v extreme-point-of H}
have ep: ?ep ⊆ vts by (simp add: assms(1) extreme-points-of-convex-hull)
have card-ep: card ?ep ≥ 3
by (metis One-nat-def Suc-1 assms(1) assms(2) assms(3) card.infinite leq-2-extreme-points-means-collinear

not-less-eq-eq not-less-zero numeral-3-eq-3)
obtain a b c where abc: {a, b, c} ⊆ ?ep ∧ a 6= b ∧ b 6= c ∧ a 6= c

225

proof−
obtain a A where a ∈ ?ep ∧ A = ?ep − {a} ∧ card A ≥ 2 using card-ep by

force
moreover then obtain b B where b ∈ A ∧ B = A − {b} ∧ card B ≥ 1
by (metis Suc-1 Suc-diff-le bot.extremum-uniqueI bot-nat-0 .extremum card-Diff-singleton

card-eq-0-iff diff-Suc-1 less-Suc-eq-le less-one linorder-not-le subset-emptyI)
moreover then obtain c C where c ∈ B ∧ C = B − {c} ∧ card C ≥ 0
by (metis One-nat-def bot-nat-0 .extremum card.empty equals0I not-less-eq-eq)

ultimately have {a, b, c} ⊆ ?ep ∧ a 6= b ∧ b 6= c ∧ a 6= c by blast
thus ?thesis using that by auto

qed
{ assume ∗: card ?ep = 3

then have abc: ?ep = {a, b, c}
by (metis abc card-3-iff card-gt-0-iff numeral-3-eq-3 order-less-le psubset-card-mono

zero-less-Suc)
obtain d where d: d ∈ vts ∧ d 6= a ∧ d 6= b ∧ d 6= c

by (metis ∗ assms(3) abc ep insertCI nat-less-le subsetI subset-antisym)
{ assume d ∈ interior H

then have d ∈ path-image (linepath a d) ∩ interior H by simp
then have ?thesis using ep abc d by auto

} moreover
{ assume ∗∗∗: d /∈ interior H

let ?p = make-triangle a b c
have H : H = convex hull ?ep
proof−

have compact H
by (metis assms(1) assms(3) card-eq-0-iff finite-imp-compact-convex-hull

gr-implies-not0)
moreover have convex H using convex-convex-hull[of vts] assms by blast
ultimately have H = closure (convex hull ?ep) using Krein-Milman[of H]

by fast
thus ?thesis using abc by auto

qed
then have interior : path-inside ?p = interior H

using abc
by (metis assms(1 ,2) affine-hull-convex-hull collinear-affine-hull-collinear

convex-convex-hull convex-polygon-frontier-is-path-image2 finite.intros(1) finite-imp-bounded-convex-hull
finite-insert inside-frontier-eq-interior path-inside-def triangle-convex-hull triangle-is-convex
triangle-is-polygon)

then have d-frontier : d ∈ frontier H
by (metis ∗∗∗ Diff-iff assms(1) UnCI d closure-Un-frontier frontier-def

hull-subset in-mono)
moreover have path-image ?p = frontier H

using convex-polygon-frontier-is-path-image
by (metis assms(1 ,2) H abc affine-hull-convex-hull collinear-affine-hull-collinear

convex-polygon-frontier-is-path-image2 triangle-convex-hull triangle-is-convex trian-
gle-is-polygon)

ultimately have d ∈ path-image ?p by blast
moreover have ¬ collinear {a, b, c}

226

by (metis H assms(1 ,2) abc affine-hull-convex-hull collinear-affine-hull-collinear)
moreover then have distinct [a, b, c]

by (metis collinear-2 distinct.simps(2) distinct-singleton empty-set in-
sert-absorb list.simps(15))

moreover have d /∈ {a, b, c} using d by blast
ultimately have ?thesis

using abc d convex-hull-has-vertex-split-helper [of ?p a b c d]
by (metis (no-types, lifting) insert-subset interior subset-trans ep)

}
ultimately have ?thesis by fast

} moreover
{ assume ∗: card ?ep ≥ 4

moreover have {a, b, c} ⊆ ?ep ∧ distinct [a, b, c] using abc by fastforce
ultimately have path-image (linepath a b) ∩ interior H 6= {}
∨ path-image (linepath b c) ∩ interior H 6= {}
∨ path-image (linepath c a) ∩ interior H 6= {}
using convex-hull-extreme-points-vertex-split[OF assms(1) assms(4) ∗] by

presburger
then have ?thesis

by (metis (no-types, lifting) ep abc insert-subset subset-trans)
}
ultimately show ?thesis using card-ep by fastforce

qed

lemma convex-polygon-has-good-linepath-helper :
assumes polygon-of p vts
assumes convex (path-inside p ∪ path-image p)
assumes card (set vts) > 3
obtains a b where {a, b} ⊆ set vts ∧ a 6= b ∧ ¬ path-image (linepath a b) ⊆

path-image p
proof−

let ?H = convex hull (set vts)
obtain a b where ab: {a, b} ⊆ set vts ∧ a 6= b ∧ path-image (linepath a b) ∩

interior ?H 6= {}
using convex-hull-has-vertex-split assms polygon-vts-not-collinear unfolding

polygon-of-def
by fastforce

moreover have interior ?H = path-inside p
using assms(1) assms(2) convex-polygon-inside-is-convex-hull-interior poly-

gon-convex-iff polygon-of-def
by blast

ultimately have path-image (linepath a b) ∩ path-inside p 6= {} by simp
moreover have path-inside p ∩ path-image p = {} using path-inside-def by

auto
moreover have path-image (linepath a b) ⊆ path-image p ∪ path-inside p
by (metis ab assms(1) assms(2) convex-polygon-is-convex-hull hull-mono path-image-linepath

polygon-of-def segment-convex-hull sup-commute)
ultimately have ¬ path-image (linepath a b) ⊆ path-image p by fast
thus ?thesis using ab that by meson

227

qed

lemma convex-polygon-has-good-linepath:
assumes convex (path-inside p ∪ path-image p)
assumes polygon p
assumes p = make-polygonal-path vts
assumes card (set vts) > 3
shows ∃ a b. good-linepath a b vts

proof−
let ?T = convex hull (set vts)
have T : path-image p ∪ path-inside p = ?T
by (metis Un-commute assms(1) assms(2) assms(3) convex-polygon-is-convex-hull)

obtain a b where ab: a 6= b ∧ {a, b} ⊆ set vts ∧ ¬ path-image (linepath a b) ⊆
path-image p

using convex-polygon-has-good-linepath-helper assms unfolding polygon-of-def
by metis

let ?S = path-image (linepath a b)

have p-is-frontier : frontier ?T = path-image p
using convex-polygon-frontier-is-path-image assms polygon-of-def polygon-convex-iff

by blast

have closure ?T = ?T by (simp add: finite-imp-compact)
then have ?S ⊆ closure ?T using ab by (simp add: hull-mono segment-convex-hull)
moreover have convex ?T using convex-convex-hull by auto
moreover have convex ?S by simp
moreover have rel-interior ?S = open-segment a b

by (metis ab path-image-linepath rel-interior-closed-segment)
moreover have rel-interior ?T = interior ?T
by (metis p-is-frontier Diff-empty ab calculation(1) frontier-def rel-interior-nonempty-interior)

ultimately have open-segment a b ⊆ interior ?T
using subset-rel-interior-convex by (metis ab p-is-frontier frontier-def rel-frontier-def)

then have (open-segment a b) ∩ path-image p = {}
using p-is-frontier frontier-def by auto

then have closed-segment a b ∩ path-image p = {a, b}
by (metis (no-types, lifting) Int-Un-distrib2 Int-absorb2 Un-commute ab assms(3)

closed-segment-eq-open subset-trans sup-bot.right-neutral vertices-on-path-image)
then have path-image (linepath a b) ∩ path-image p = {a, b} by simp
thus ?thesis

using ab unfolding good-linepath-def
by (smt (verit, ccfv-threshold) IntI UnCI UnE T assms(3) hull-mono path-image-linepath

segment-convex-hull subset-iff)
qed

29 Pick’s Theorem
definition integral-inside:

integral-inside p = {x. integral-vec x ∧ x ∈ path-inside p}

228

definition integral-boundary:
integral-boundary p = {x. integral-vec x ∧ x ∈ path-image p}

29.1 Pick’s Theorem Triangle Case
definition pick-triangle:

pick-triangle p a b c ←→
p = make-triangle a b c
∧ all-integral [a, b, c]
∧ distinct [a, b, c]
∧ ¬ collinear {a, b, c}

definition pick-holds:
pick-holds p ←→
(let I = card {x. integral-vec x ∧ x ∈ path-inside p} in
let B = card {x. integral-vec x ∧ x ∈ path-image p} in

measure lebesgue (path-inside p) = I + B/2 − 1)

lemma pick-triangle-wlog-helper :
assumes pick-triangle p a b c and

I = card (integral-inside p) and
B = card (integral-boundary p) and
integral-inside p = {} and
integral-vec d ∧ d ∈ path-image (linepath a b) ∧ d /∈ {a, b, c} and d /∈

{a, b, c} and
ih:

∧
p ′ a ′ b ′ c ′. (card (integral-inside p ′) + card (integral-boundary p ′) <

I + B) =⇒ pick-triangle p ′ a ′ b ′ c ′ =⇒ pick-holds p ′

shows measure lebesgue (path-inside p) = I + B/2 − 1
proof−
have polygon-p: polygon p using triangle-is-polygon assms unfolding pick-triangle

by presburger
then have polygon-of : polygon-of p [a, b, c, a]
unfolding polygon-of-def using assms unfolding make-triangle-def pick-triangle

by auto

let ?p ′ = make-polygonal-path [a, d, b, c, a]

have good-linepath c d [a, d, b, c, a] ∧ path-image (make-polygonal-path [a, d, b,
c, a]) = path-image p

using pick-triangle-basic-split assms unfolding pick-triangle by presburger
then have ∗: good-linepath d c [a, d, b, c, a] ∧ path-image (make-polygonal-path

[a, d, b, c, a]) = path-image p
using good-linepath-comm by blast

have polygon-new: polygon (make-polygonal-path [a, d, b, c, a])
using polygon-linepath-split-is-polygon[OF polygon-of , of 0 a b d [a, d, b, c, a]]

assms
by force

have h1 : make-polygonal-path [a, d, b, c, a] = make-polygonal-path ([a, d, b, c]

229

@ [[a, d, b, c] ! 0])
by auto

have h2 : good-linepath d c ([a, d, b, c] @ [[a, d, b, c] ! 0])
using ∗ by auto

have h3 : (1 ::nat) < length [a, d, b, c] ∧ (3 ::nat) < length [a, d, b, c]
by auto

then have polygon-split: is-polygon-split [a, d, b, c] 1 3
using good-linepath-implies-polygon-split[OF polygon-new h1 h2 h3] by auto

let ?p1 = make-polygonal-path (d # [b] @ [c, d])
let ?p2 = make-polygonal-path ([a] @ [d, c] @ [] @ [[a, d, b, c] ! 0])
let ?I1 = card {x. integral-vec x ∧ x ∈ path-inside ?p1}
let ?B1 = card {x. integral-vec x ∧ x ∈ path-image ?p1}
let ?I2 = card {x. integral-vec x ∧ x ∈ path-inside ?p2}
let ?B2 = card {x. integral-vec x ∧ x ∈ path-image ?p2}
have p1-triangle: ?p1 = make-triangle d b c

unfolding make-triangle-def by auto
have p2-triangle: ?p2 = make-triangle a d c

unfolding make-triangle-def by auto
have I-is: I = card {x. integral-vec x ∧ x ∈ path-inside (make-polygonal-path [a,

d, b, c, a])}
using path-image-linepath-split[of 0 [a, b, c, a] d] ∗ assms path-inside-def

integral-inside by presburger
have B-is: B = card {x. integral-vec x ∧ x ∈ path-image (make-polygonal-path

[a, d, b, c, a])}
using path-image-linepath-split[of 0 [a, b, c, a] d]
using ∗ assms path-inside-def integral-boundary by presburger

have all-integral-assump: all-integral [a, d, b, c]
using assms unfolding all-integral-def pick-triangle by force

have dist-indh1 : distinct [d, b, c]
using assms unfolding pick-triangle by auto

have coll-indh1 : ¬ collinear {d, b, c}
using assms pick-triangle

by (smt (verit) collinear-3-trans dist-indh1 distinct-length-2-or-more in-path-image-imp-collinear
insert-commute)

have path-inside-inside: path-inside (make-polygonal-path (d # [b] @ [c, d])) ⊆
path-inside p

using polygon-split unfolding is-polygon-split-def
by (smt (z3) ∗ One-nat-def Un-iff append-Cons append-Nil diff-Suc-1 drop0

drop-Suc-Cons nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-inside-def subsetI take-Suc-Cons
take-eq-Nil2)
then have indh1-card1 : card {x. integral-vec x ∧ x ∈ path-inside (make-polygonal-path

(d # [b] @ [c, d]))}≤ card {x. integral-vec x ∧ x ∈ path-inside p}
by (metis (no-types, lifting) assms(4) integral-inside Collect-empty-eq card.empty

le-zero-eq subsetD)
have indh1-card2 : card {x. integral-vec x ∧ x ∈ path-image (make-polygonal-path

(d # [b] @ [c, d]))} < card {x. integral-vec x ∧ x ∈ path-image p}

230

proof−
have path-image-union: path-image (make-polygonal-path (d # [b] @ [c, d])) =

path-image (linepath d b) ∪ path-image (linepath b c) ∪ path-image (linepath c d)
using path-image-cons-union p1-triangle make-triangle-def

by (metis (no-types, lifting) inf-sup-aci(6) list.discI make-polygonal-path.simps(3)
nth-Cons-0)

have path-image-db: path-image (linepath d b) ⊆ path-image p
by (metis assms(5) list.discI nth-Cons-0 path-image-cons-union path-image-linepath-union

polygon-of polygon-of-def sup.cobounded2 sup.coboundedI1)
have path-image-bc: path-image (linepath b c) ⊆ path-image p

using assms(1) linepaths-subset-make-polygonal-path-image[of [a, b, c, a] 1]
unfolding pick-triangle make-triangle-def

by simp
have path-image-cd1 : path-image (linepath c d) − {c, d} ⊆ path-inside p

using polygon-split unfolding is-polygon-split-def
by (smt (z3) One-nat-def ‹good-linepath c d [a, d, b, c, a] ∧ path-image

(make-polygonal-path [a, d, b, c, a]) = path-image p› append-Cons append-Nil in-
sert-commute nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-image-linepath path-inside-def
segment-convex-hull sup.cobounded2)

have path-image-cd2 : {c, d} ⊆ path-image p
using linepaths-subset-make-polygonal-path-image assms(1) unfolding pick-triangle

make-triangle-def
by (metis (no-types, lifting) ‹good-linepath c d [a, d, b, c, a] ∧ path-image

(make-polygonal-path [a, d, b, c, a]) = path-image p› good-linepath-def subset-trans
vertices-on-path-image)

have path-image (linepath c d) ⊆ path-image p ∪ path-inside p
using path-image-cd1 path-image-cd2 by auto

moreover have integral-inside p = {} using assms by force
ultimately have path-image-cd: integral-boundary (linepath c d) ⊆ inte-

gral-boundary p unfolding integral-inside integral-boundary by blast
have a-neq-d: a 6= d

using assms(5) by auto
have a-neq-c: a 6= c

using assms(1) unfolding pick-triangle by simp
have a-in-image: a ∈ path-image p
using assms(1) unfolding pick-triangle make-triangle-def using vertices-on-path-image

by fastforce
have path-image (linepath c d) ∩ path-image p = {c, d}

using ∗ unfolding good-linepath-def
by (smt (verit, ccfv-SIG) One-nat-def h1 insert-commute is-polygon-cut-def

is-polygon-split-def nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-image-linepath
polygon-split segment-convex-hull)

then have a-not-in1 : a /∈ path-image (linepath c d)
using a-neq-c a-neq-d a-in-image by blast

have a-not-in2 : a /∈ path-image (linepath d b)
using Int-closed-segment assms(5) by auto

have a-not-in3 : a /∈ path-image (linepath b c)
by (metis (no-types, lifting) assms(1) in-path-image-imp-collinear insert-commute

pick-triangle)

231

then have a /∈ path-image (linepath d b) ∪ path-image (linepath b c) ∪
path-image (linepath c d)

using a-not-in1 a-not-in2 a-not-in3 by simp
then have a ∈ integral-boundary p ∧ a /∈ integral-boundary (make-polygonal-path

[d, b, c, d])
using path-image-union using integral-boundary a-in-image all-integral-assump

all-integral-def by auto
then have strict-subset: integral-boundary (make-polygonal-path [d, b, c, d]) ⊂

integral-boundary p
using path-image-union path-image-db path-image-bc path-image-cd
unfolding integral-boundary by auto

have integral-inside (make-polygonal-path [d, b, c, d]) = {}
using path-inside-inside assms unfolding integral-inside by auto

then show ?thesis using assms(2−3) strict-subset bounded-finite
using finite-path-inside finite-path-image
by (simp add: integral-boundary polygon-p psubset-card-mono)

qed
have fewer-points-p1 : card {x. integral-vec x ∧ x ∈ path-inside (make-polygonal-path

(d # [b] @ [c, d]))} +
card {x. integral-vec x ∧ x ∈ path-image (make-polygonal-path (d # [b] @ [c,

d]))}
< card {x. integral-vec x ∧ x ∈ path-inside p} +
card {x. integral-vec x ∧ x ∈ path-image p}

using indh1-card1 indh1-card2 by linarith
have indh-1 : Sigma-Algebra.measure lebesgue (path-inside ?p1) = real ?I1 + real

?B1 / 2 − 1
using assms fewer-points-p1 p1-triangle all-integral-assump dist-indh1 coll-indh1

all-integral-def
unfolding pick-holds pick-triangle integral-inside integral-boundary by simp

have dist-indh2 : distinct [a, d, c]
using assms unfolding pick-triangle by auto

have coll-indh2 : ¬ collinear {a, d, c}
using assms pick-triangle

by (smt (verit) collinear-3-trans dist-indh2 distinct-length-2-or-more in-path-image-imp-collinear
insert-commute)

have path-inside-inside: path-inside (make-polygonal-path (a # [d] @ [c, a])) ⊆
path-inside p

using polygon-split unfolding is-polygon-split-def
by (smt (z3) ∗ One-nat-def Un-iff append-Cons append-Nil diff-Suc-1 drop0

drop-Suc-Cons nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-inside-def subsetI take-Suc-Cons
take-eq-Nil2)
then have indh2-card1 : card {x. integral-vec x ∧ x ∈ path-inside (make-polygonal-path

(a # [d] @ [c, a]))}≤ card {x. integral-vec x ∧ x ∈ path-inside p}
by (metis (no-types, lifting) assms(4) integral-inside Collect-empty-eq card.empty

le-zero-eq subsetD)
have indh2-card2 : card {x. integral-vec x ∧ x ∈ path-image (make-polygonal-path

(a # [d] @ [c, a]))} < card {x. integral-vec x ∧ x ∈ path-image p}

232

proof−
have path-image-union: path-image (make-polygonal-path (a # [d] @ [c, a])) =

path-image (linepath a d) ∪ path-image (linepath d c) ∪ path-image (linepath c a)
using path-image-cons-union p2-triangle make-triangle-def

by (metis Un-assoc append.left-neutral append-Cons list.discI make-polygonal-path.simps(3)
nth-Cons-0)

have path-image-ad: path-image (linepath a d) ⊆ path-image p
by (metis ‹good-linepath c d [a, d, b, c, a] ∧ path-image (make-polygonal-path

[a, d, b, c, a]) = path-image p› inf-sup-absorb le-iff-inf list.discI nth-Cons-0 path-image-cons-union)
have path-image-ca: path-image (linepath c a) ⊆ path-image p

using assms(1) linepaths-subset-make-polygonal-path-image[of [a, b, c, a] 2]
unfolding pick-triangle make-triangle-def

by simp
have path-image-cd1 : path-image (linepath d c) − {c, d} ⊆ path-inside p

using polygon-split unfolding is-polygon-split-def
by (smt (z3) One-nat-def ‹good-linepath c d [a, d, b, c, a] ∧ path-image

(make-polygonal-path [a, d, b, c, a]) = path-image p› append-Cons append-Nil in-
sert-commute nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-image-linepath path-inside-def
segment-convex-hull sup.cobounded2)

have path-image-cd2 : {c, d} ⊆ path-image p
using linepaths-subset-make-polygonal-path-image assms(1) unfolding pick-triangle

make-triangle-def
by (metis (no-types, lifting) ‹good-linepath c d [a, d, b, c, a] ∧ path-image

(make-polygonal-path [a, d, b, c, a]) = path-image p› good-linepath-def subset-trans
vertices-on-path-image)

have path-image (linepath d c) ⊆ path-image p ∪ path-inside p
using path-image-cd1 path-image-cd2 by auto

moreover have integral-inside p = {} using assms by force
ultimately have path-image-cd: integral-boundary (linepath d c) ⊆ inte-

gral-boundary p unfolding integral-inside integral-boundary by blast
have b-neq-d: b 6= d

using assms(5) by auto
have b-neq-c: b 6= c

using assms(1) unfolding pick-triangle by simp
have b-in-image: b ∈ path-image p
using assms(1) unfolding pick-triangle make-triangle-def using vertices-on-path-image

by fastforce
have path-image (linepath d c) ∩ path-image p = {d, c}

using ∗ unfolding good-linepath-def
by (smt (verit, ccfv-SIG) One-nat-def h1 insert-commute is-polygon-cut-def

is-polygon-split-def nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-image-linepath
polygon-split segment-convex-hull)

then have b-not-in1 : b /∈ path-image (linepath d c)
using b-neq-c b-neq-d b-in-image by blast

have b-not-in2 : b /∈ path-image (linepath a d)
using Int-closed-segment assms(5) by auto

have b-not-in3 : b /∈ path-image (linepath c a)
by (metis (no-types, lifting) assms(1) in-path-image-imp-collinear insert-commute

233

pick-triangle)
then have b /∈ path-image (linepath a d) ∪ path-image (linepath d c) ∪

path-image (linepath c a)
using b-not-in1 b-not-in2 b-not-in3 by simp

then have b ∈ integral-boundary p ∧ b /∈ integral-boundary (make-polygonal-path
[a, d, c, a])

using path-image-union using integral-boundary b-in-image all-integral-assump
all-integral-def by auto

then have strict-subset: integral-boundary (make-polygonal-path [a, d, c, a]) ⊂
integral-boundary p

using path-image-union path-image-ad path-image-ca path-image-cd
unfolding integral-boundary by auto

have integral-inside (make-polygonal-path [a, d, c, a]) = {}
using path-inside-inside assms unfolding integral-inside by auto

then show ?thesis using assms(2−3) strict-subset bounded-finite
using finite-path-inside finite-path-image
by (simp add: integral-boundary polygon-p psubset-card-mono)

qed
have fewer-points-p2 : card {x. integral-vec x ∧ x ∈ path-inside (make-polygonal-path

([a, d, c, a]))} +
card {x. integral-vec x ∧ x ∈ path-image (make-polygonal-path ([a, d, c, a]))}
< card {x. integral-vec x ∧ x ∈ path-inside p} +
card {x. integral-vec x ∧ x ∈ path-image p}

using indh2-card1 indh2-card2 by simp
have indh-2 : Sigma-Algebra.measure lebesgue (path-inside ?p2) = real ?I2 + real

?B2 / 2 − 1
using fewer-points-p2 using assms fewer-points-p2 p2-triangle all-integral-assump

dist-indh2 coll-indh2 all-integral-def
unfolding pick-holds pick-triangle integral-inside integral-boundary by simp

have Sigma-Algebra.measure lebesgue (path-inside ?p1) = real ?I1 + real ?B1 /
2 − 1 =⇒

Sigma-Algebra.measure lebesgue (path-inside ?p2) = real ?I2 + real ?B2 / 2
− 1 =⇒

I = card {x. integral-vec x ∧ x ∈ path-inside (make-polygonal-path [a, d, b, c,
a])} =⇒

B = card {x. integral-vec x ∧ x ∈ path-image (make-polygonal-path [a, d, b,
c, a])} =⇒

all-integral [a, d, b, c] =⇒
Sigma-Algebra.measure lebesgue (path-inside (make-polygonal-path [a, d, b, c,

a])) =
real I + real B / 2 − 1

using pick-split-union[OF polygon-split, of [a] [b] [] d c ?p ′] by auto
then have Sigma-Algebra.measure lebesgue (path-inside (make-polygonal-path [a,

d, b, c, a])) =
real I + real B / 2 − 1

using I-is B-is all-integral-assump indh-1 indh-2 by auto
thus measure lebesgue (path-inside p) = I + B/2 − 1

234

using path-image-linepath-split[of 0 [a, b, c, a] d] by (metis path-inside-def ∗)
qed

lemma pick-triangle-helper :
assumes pick-triangle p a b c and

I = card (integral-inside p) and
B = card (integral-boundary p) and
integral-inside p = {} and
integral-vec d ∧ d /∈ {a, b, c} and d /∈ {a, b, c} and
d ∈ path-image (linepath a b)
∨ d ∈ path-image (linepath b c)
∨ d ∈ path-image (linepath c a) and

ih:
∧

p ′ a ′ b ′ c ′. (card (integral-inside p ′) + card (integral-boundary p ′) <
I + B) =⇒ pick-triangle p ′ a ′ b ′ c ′ =⇒ pick-holds p ′

shows measure lebesgue (path-inside p) = I + B/2 − 1
proof−

{ assume d ∈ path-image (linepath a b)
then have ?thesis using pick-triangle-wlog-helper assms by blast

} moreover
{ assume ∗: d ∈ path-image (linepath b c)

let ?p ′ = make-polygonal-path (rotate-polygon-vertices [a, b, c, a] 1)
let ?I ′ = card (integral-inside ?p ′)
let ?B ′ = card (integral-boundary ?p ′)

have p ′-p: path-image ?p ′ = path-image p ∧ path-inside ?p ′ = path-inside p
unfolding path-inside-def
using assms(1) make-triangle-def pick-triangle polygon-vts-arb-rotation trian-

gle-is-polygon
by auto

have rotate-polygon-vertices [a, b, c, a] 1 = [b, c, a, b]
unfolding rotate-polygon-vertices-def by simp

then have pick-triangle-p ′: pick-triangle ?p ′ b c a
using assms unfolding pick-triangle
by (smt (verit, best) all-integral-def distinct-length-2-or-more insert-commute

list.simps(15) make-triangle-def)
then have measure lebesgue (path-inside ?p ′) = ?I ′ + ?B ′/2 − 1

using pick-triangle-wlog-helper [of ?p ′ b c a ?I ′ ?B ′ d] assms
using integral-boundary integral-inside ∗ insert-commute pick-triangle-p ′ p ′-p
by auto

moreover have ?I ′ = I ∧ ?B ′ = B using p ′-p integral-boundary integral-inside
assms(2) assms(3) by presburger

ultimately have ?thesis using p ′-p by auto
} moreover
{ assume ∗: d ∈ path-image (linepath c a)

let ?p ′ = make-polygonal-path (rotate-polygon-vertices [a, b, c, a] 2)
let ?I ′ = card (integral-inside ?p ′)
let ?B ′ = card (integral-boundary ?p ′)

235

have p ′-p: path-image ?p ′ = path-image p ∧ path-inside ?p ′ = path-inside p
unfolding path-inside-def
using assms(1) make-triangle-def pick-triangle polygon-vts-arb-rotation trian-

gle-is-polygon
by auto

have rotate-polygon-vertices [a, b, c, a] 1 = [b, c, a, b]
unfolding rotate-polygon-vertices-def by simp

also have rotate-polygon-vertices ... 1 = [c, a, b, c]
unfolding rotate-polygon-vertices-def by simp

ultimately have rotate-polygon-vertices [a, b, c, a] 2 = [c, a, b, c]
by (metis Suc-1 arb-rotation-as-single-rotation)

then have pick-triangle-p ′: pick-triangle ?p ′ c a b
using assms unfolding pick-triangle
by (smt (verit, best) all-integral-def distinct-length-2-or-more insert-commute

list.simps(15) make-triangle-def)
then have measure lebesgue (path-inside ?p ′) = ?I ′ + ?B ′/2 − 1

using pick-triangle-wlog-helper [of ?p ′ c a b ?I ′ ?B ′ d] assms
using integral-boundary integral-inside ∗ insert-commute pick-triangle-p ′ p ′-p
by auto

moreover have ?I ′ = I ∧ ?B ′ = B using p ′-p integral-boundary integral-inside
assms(2) assms(3) by presburger

ultimately have ?thesis using p ′-p by auto
}
ultimately show ?thesis using assms by blast

qed

lemma triangle-3-split-helper :
fixes a b :: ′a::euclidean-space
assumes a ∈ frontier S
assumes b ∈ interior S
assumes convex S
assumes closed S
shows path-image (linepath a b) ∩ frontier S = {a}

proof−
let ?L = path-image (linepath a b)
have a ∈ S ∧ b ∈ S using assms frontier-subset-closed interior-subset by auto
then have ?L ⊆ S
using assms hull-minimal segment-convex-hull by (simp add: closed-segment-subset)

then have ?L ⊆ closure S using assms(4) by auto
moreover have convex ?L by simp
moreover have ?L ∩ interior S 6= {} using assms(2) by auto
moreover then have ¬ ?L ⊆ rel-frontier S

by (metis DiffE assms(2) interior-subset-rel-interior pathfinish-in-path-image
pathfinish-linepath rel-frontier-def subsetD)

ultimately have rel-interior ?L ⊆ rel-interior S
using subset-rel-interior-convex[of ?L S] assms by fastforce

then have open-segment a b ⊆ interior S
by (metis all-not-in-conv assms(2) empty-subsetI open-segment-eq-empty ′ path-image-linepath

236

rel-interior-closed-segment rel-interior-nonempty-interior)
moreover have ?L = closed-segment a b by auto
moreover have interior S ∩ frontier S = {} by (simp add: frontier-def)
ultimately have ?L ∩ frontier S ⊆ {a, b}
by (smt (verit) Diff-iff disjoint-iff inf-commute inf-le1 open-segment-def subsetD

subsetI)
moreover have b /∈ frontier S by (simp add: assms(2) frontier-def)
ultimately show ?thesis using assms(1) by auto

qed

lemma unit-triangle-interior-point-not-collinear-e1-e2 :
assumes p = make-triangle (vector [0 , 0]) (vector [1 , 0]) (vector [0 , 1])
(is p = make-triangle ?O ?e1 ?e2)

assumes z ∈ path-inside p
shows ¬ collinear {?O, ?e1 , z}

proof−
have path-inside p = interior (convex hull {?O, ?e1 , ?e2})

by (metis assms(1) bounded-convex-hull bounded-empty bounded-insert con-
vex-convex-hull convex-polygon-frontier-is-path-image2 inside-frontier-eq-interior path-inside-def
triangle-convex-hull triangle-is-convex triangle-is-polygon unit-triangle-vts-not-collinear)

then have z ∈ interior (convex hull {?O, ?e1 , ?e2}) using assms by simp
then have z: z$1 > 0 ∧ z$2 > 0
using assms(1) assms(2) unit-triangle-interior-char make-triangle-def by blast

have abc: ?O$1 = 0 ∧ ?O$2 = 0 ∧ ?e1$2 = 0 ∧ ?e2$1 = 0 by simp

show ¬ collinear {?O, ?e1 , z}
proof(rule ccontr)

assume ¬ ¬ collinear {?O, ?e1 , z}
then have ∗: collinear {?O, ?e1 , z} by blast
then obtain u c1 c2 where u: ?O − ?e1 = c1 ∗R u ∧ ?e1 − z = c2 ∗R u

unfolding collinear-def by blast
moreover have c1 6= 0
proof−

have (?O − ?e1)$1 = −1 by simp
moreover have (?O − ?e1)$1 = (c1 ∗R u)$1 using u by presburger
ultimately show ?thesis by force

qed
moreover have (?O − ?e1)$2 = 0 by simp
moreover have (?O − ?e1)$2 = (c1 ∗R u)$2 by (simp add: calculation(1))
ultimately have u$2 = 0 by auto
thus False

by (smt (verit, ccfv-threshold) u abc scaleR-eq-0-iff vector-minus-component
vector-scaleR-component z)

qed
qed

lemma triangle-interior-point-not-collinear-vertices-wlog-helper :
assumes p = make-triangle a b c
assumes polygon p

237

assumes z ∈ path-inside p
shows ¬ collinear {a, b, z}

proof−
let ?O = (vector [0 , 0])::(real^2)
let ?e1 = (vector [1 , 0])::(real^2)
let ?e2 = (vector [0 , 1])::(real^2)
let ?M = triangle-affine a b c
have a: ?M ?O = a

using triangle-affine-e1-e2 by blast
have b: ?M ?e1 = b using triangle-affine-e1-e2 by simp
have c: ?M ?e2 = c using triangle-affine-e1-e2 by simp

have abc-not-collinear : ¬ collinear {a, b, c}
using assms polygon-vts-not-collinear unfolding make-triangle-def polygon-of-def

by (metis (no-types, lifting) empty-set insertCI insert-absorb insert-commute
list.simps(15))

have convex hull {a, b, c} = convex hull {?M ?O, ?M ?e1 , ?M ?e2}
using a b c by simp

also have ... = ?M ‘ (convex hull {?O, ?e1 , ?e2})
using calculation triangle-affine-img by blast

also have interior-preserve: interior ... = ?M ‘ (interior (convex hull {?O, ?e1 ,
?e2}))

using triangle-affine-preserves-interior [of ?M a b c - convex hull {?O, ?e1 ,
?e2}]

using abc-not-collinear
by presburger

finally have z: z ∈ ?M ‘ (interior (convex hull {?O, ?e1 , ?e2}))
using assms(1) assms(2) assms(3) make-triangle-def polygon-of-def trian-

gle-inside-is-convex-hull-interior
by auto

then obtain z ′ where z ′: z ′ ∈ interior (convex hull {?O, ?e1 , ?e2}) ∧ ?M z ′

= z by fast
then have ¬ collinear {?O, ?e1 , z ′}
by (metis convex-convex-hull convex-polygon-frontier-is-path-image2 finite.intros(1)

finite-imp-bounded-convex-hull finite-insert inside-frontier-eq-interior path-inside-def
triangle-convex-hull triangle-is-convex triangle-is-polygon unit-triangle-interior-point-not-collinear-e1-e2
unit-triangle-vts-not-collinear)

then have z ′-notin: z ′ /∈ affine hull {?O, ?e1} using affine-hull-3-imp-collinear
by blast

then have ?M z ′ /∈ affine hull {?M ?O, ?M ?e1}
proof−

have inj ?M using triangle-affine-inj abc-not-collinear by blast
then have ?M z ′ /∈ ?M ‘ (affine hull {?O, ?e1}) using z ′-notin by (simp add:

inj-image-mem-iff)
moreover have ?M ‘ (affine hull {?O, ?e1}) = affine hull {?M ?O, ?M ?e1}
using triangle-affine-preserves-affine-hull[of - a b c] abc-not-collinear by simp

ultimately show ?thesis by blast
qed

238

then have z /∈ affine hull {a, b} using a b z ′ by argo
thus ?thesis
by (metis interior-preserve z affine-hull-convex-hull affine-hull-nonempty-interior

collinear-2 collinear-3-affine-hull collinear-affine-hull-collinear empty-iff insert-absorb2
triangle-affine-img unit-triangle-vts-not-collinear z ′)
qed

lemma triangle-interior-point-not-collinear-vertices:
assumes p = make-triangle a b c
assumes polygon p
assumes z ∈ path-inside p
shows ¬ collinear {a, b, z} ∧ ¬ collinear {a, c, z} ∧ ¬ collinear {b, c, z}

proof−
let ?p1 = make-triangle b c a
let ?p2 = make-triangle c a b
have p1 : ?p1 = make-polygonal-path (rotate-polygon-vertices [a, b, c, a] 1)

using assms unfolding make-triangle-def rotate-polygon-vertices-def by fast-
force

have p2 : ?p2 = make-polygonal-path (rotate-polygon-vertices [a, b, c, a] 2)
using assms unfolding make-triangle-def rotate-polygon-vertices-def by (simp

add: numeral-Bit0)

have path-inside ?p1 = path-inside p ∧ path-inside ?p2 = path-inside p
using p1 p2 unfolding path-inside-def
using assms(1) assms(2) make-triangle-def polygon-vts-arb-rotation by force

then have z ∈ path-inside ?p1 ∧ z ∈ path-inside ?p2 using assms by force
moreover have polygon ?p1 ∧ polygon ?p2

using assms make-triangle-def p1 p2 rotation-is-polygon by presburger
ultimately show ?thesis

using assms triangle-interior-point-not-collinear-vertices-wlog-helper
by (smt (verit, best) insert-commute)

qed

lemma triangle-3-split:
assumes p = make-triangle a b c
assumes polygon p
assumes z ∈ path-inside p
shows is-polygon-split-path [a, b, c] 0 1 [z]

is-polygon-split [a, z, b, c] 1 3
a /∈ path-image (make-triangle z b c) ∪ path-inside (make-triangle z b c)
b /∈ path-image (make-triangle a z c) ∪ path-inside (make-triangle a z c)
c /∈ path-image (make-triangle a b z) ∪ path-inside (make-triangle a b z)

proof−
let ?q = make-polygonal-path [a, z, b, c, a]
let ?cutpath = make-polygonal-path [a, z, b]
let ?vts = [a, b, c, a]

let ?l1 = linepath a z

239

let ?l2 = linepath z b
let ?S = path-inside p ∪ path-image p
have convex (path-inside p)
using triangle-is-convex assms(1 ,2) polygon-vts-not-collinear unfolding make-triangle-def
by (simp add: polygon-of-def triangle-inside-is-convex-hull-interior)

then have convex: convex (path-inside p ∪ path-image p)
using polygon-convex-iff assms(2) by simp

then have frontier : frontier ?S = path-image p
using convex-polygon-frontier-is-path-image3 by (simp add: assms(2) sup-commute)

have interior : interior ?S = path-inside p
by (metis Jordan-inside-outside-real2 closed-path-def ‹convex (path-inside p)›

assms(2) closure-Un-frontier convex-interior-closure interior-open path-inside-def
polygon-def)

have not-collinear : ¬ collinear {a, b, z} ∧ ¬ collinear {a, c, z} ∧ ¬ collinear
{b, c, z}

using triangle-interior-point-not-collinear-vertices assms(1) assms(2) assms(3)
by blast

have a = pathstart ?cutpath ∧ b = pathfinish ?cutpath by simp
moreover have a 6= b
by (metis assms(1) assms(2) constant-linepath-is-not-loop-free make-polygonal-path.simps(4)

make-triangle-def not-loop-free-first-component polygon-def simple-path-def)
moreover have polygon p by (simp add: assms(2))
moreover have {a, b} ⊆ set ?vts by force
moreover have simple-path ?cutpath

by (simp add: insert-commute not-collinear not-collinear-loopfree-path sim-
ple-path-def)

moreover have path-image ?cutpath ∩ path-image p = {a, b}
proof−

have {a, b} ⊆ path-image ?cutpath ∩ path-image p
by (metis (no-types, lifting) Int-subset-iff Un-subset-iff assms(1) insert-is-Un

list.simps(15) make-triangle-def vertices-on-path-image)
moreover have path-image ?cutpath ∩ path-image p ⊆ {a, b}
proof−

have z ∈ interior ?S using assms interior by fast
moreover then have a ∈ frontier ?S ∧ b ∈ frontier ?S

using vertices-on-path-image
using ‹{a, b} ⊆ path-image (make-polygonal-path [a, z, b]) ∩ path-image p›

frontier by force
moreover have closed ?S using frontier frontier-subset-eq by auto
ultimately have path-image ?l1 ∩ path-image p = {a} ∧ path-image ?l2 ∩

path-image p = {b}
using triangle-3-split-helper convex frontier

by (metis (no-types, lifting) insert-commute path-image-linepath segment-convex-hull)
moreover have path-image ?cutpath = path-image ?l1 ∪ path-image ?l2
by (metis list.discI make-polygonal-path.simps(3) nth-Cons-0 path-image-cons-union)
ultimately show ?thesis by blast

qed

240

ultimately show ?thesis by blast
qed
moreover have path-image ?cutpath ∩ path-inside p 6= {}
by (metis (no-types, opaque-lifting) Int-Un-distrib2 Un-absorb2 Un-empty assms(3)

insert-disjoint(2) list.simps(15) vertices-on-path-image)
ultimately have cutpath: is-polygon-cut-path ?vts ?cutpath

using assms unfolding make-triangle-def is-polygon-cut-path-def by simp
thus 1 : is-polygon-split-path [a, b, c] 0 1 [z]
using polygon-cut-path-to-split-path assms(2) by (simp add: assms(1 ,2) make-triangle-def)

let ?l = linepath z c
let ?vts = [a, z, b, c, a]

have c-noton-cutpath: c /∈ path-image ?cutpath
by (smt (verit) UnE assms(1) assms(2) assms(3) in-path-image-imp-collinear

insert-commute make-polygonal-path.simps(3) neq-Nil-conv nth-Cons-0 path-image-cons-union
triangle-interior-point-not-collinear-vertices)

have z 6= c
proof−

have c ∈ path-image p
by (metis assms(1) insert-subset list.simps(15) make-triangle-def vertices-on-path-image)
moreover have path-image p ∩ path-inside p = {}

by (simp add: disjoint-iff inside-def path-inside-def)
ultimately show ?thesis using assms(3) by blast

qed
moreover have polygon-q: polygon ?q

using 1 unfolding is-polygon-split-path-def

by (smt (z3) One-nat-def append-Cons append-Nil diff-self-eq-0 drop0 drop-append
length-Cons length-drop length-greater-0-conv list.size(3) nth-Cons-0 nth-Cons-Suc
take-0)

moreover have {z, c} ⊆ set ?vts by force
moreover have l-q-int: path-image ?l ∩ path-image ?q = {z, c}
proof−

have {z, c} ⊆ path-image ?l ∩ path-image ?q
by (metis (no-types, lifting) Int-subset-iff calculation(3) dual-order .trans

hull-subset path-image-linepath segment-convex-hull vertices-on-path-image)
moreover
{ fix x

assume ∗: x ∈ path-image ?l ∩ path-image ?q ∧ x 6= z ∧ x 6= c
then have x ∈ path-image ?q by blast
then have x ∈ path-image (linepath a z)
∨ x ∈ path-image (linepath z b)
∨ x ∈ path-image (linepath b c)
∨ x ∈ path-image (linepath c a)

by (metis UnE list.discI make-polygonal-path.simps(3) nth-Cons-0 path-image-cons-union)
moreover
{ assume x ∈ path-image (linepath a z)

241

then have x ∈ path-image (linepath a z) ∧ x ∈ path-image (linepath z c)
using ∗ by blast

moreover have z ∈ path-image (linepath a z) ∧ z ∈ path-image (linepath z
c) by simp

moreover have x 6= z using ∗ by blast
ultimately have collinear {a, z, c}

by (smt (verit, best) collinear-3-trans in-path-image-imp-collinear in-
sert-commute)

then have False using not-collinear by (simp add: insert-commute)
} moreover
{ assume x ∈ path-image (linepath z b)

then have x ∈ path-image (linepath z b) ∧ x ∈ path-image (linepath z c)
using ∗ by blast

moreover have z ∈ path-image (linepath z b) ∧ z ∈ path-image (linepath z
c) by simp

moreover have x 6= z using ∗ by blast
ultimately have collinear {z, b, c}

by (smt (verit, best) collinear-3-trans in-path-image-imp-collinear in-
sert-commute)

then have False using not-collinear by (simp add: insert-commute)
} moreover
{ assume x ∈ path-image (linepath b c)

then have x ∈ path-image (linepath b c) ∧ x ∈ path-image (linepath z c)
using ∗ by blast

moreover have c ∈ path-image (linepath b c) ∧ z ∈ path-image (linepath z
c) by simp

moreover have x 6= c using ∗ by blast
ultimately have collinear {b, z, c}

by (smt (verit, best) collinear-3-trans in-path-image-imp-collinear in-
sert-commute)

then have False using not-collinear by (simp add: insert-commute)
} moreover
{ assume x ∈ path-image (linepath c a)

then have x ∈ path-image (linepath c a) ∧ x ∈ path-image (linepath z c)
using ∗ by blast

moreover have c ∈ path-image (linepath c a) ∧ z ∈ path-image (linepath z
c) by simp

moreover have x 6= c using ∗ by blast
ultimately have collinear {a, z, c}

by (smt (verit, best) collinear-3-trans in-path-image-imp-collinear in-
sert-commute)

then have False using not-collinear by (simp add: insert-commute)
}
ultimately have False by blast

}
ultimately show ?thesis by blast

qed
moreover have path-image ?l ∩ path-inside ?q 6= {}
proof(rule ccontr)

242

let ?p ′ = make-triangle a b z

assume ¬ path-image ?l ∩ path-inside ?q 6= {}
then have path-image ?l ∩ path-inside ?q = {} by blast
then have ∗: rel-interior (path-image ?l) ∩ path-inside ?q = {}

by (meson disjoint-iff rel-interior-subset subset-eq)

have path-image ?l ⊆ path-image p ∪ path-inside p
by (metis UnCI assms(1) assms(3) empty-subsetI hull-minimal insert-subset

list.simps(15) local.convex make-triangle-def path-image-linepath segment-convex-hull
sup-commute vertices-on-path-image)

then have path-image ?l ⊆ convex hull {a, b, c}
by (smt (verit, best) assms(1) convex-polygon-is-convex-hull cutpath empty-set

insertCI insert-absorb insert-commute is-polygon-cut-path-def list.simps(15) local.convex
make-triangle-def sup-commute)

then have rel-interior (path-image ?l) ⊆ interior (convex hull {a, b, c})
by (smt (verit, ccfv-threshold) Diff-disjoint IntE IntI Un-upper1 assms(1)

assms(2) assms(3) calculation(4) closure-Un-frontier convex-polygon-is-convex-hull
convex-segment(1) dual-order .trans empty-iff empty-set insertCI insert-absorb2 in-
sert-commute interior list.simps(15) local.convex make-triangle-def path-image-linepath
rel-frontier-def rel-interior-nonempty-interior subsetD subset-rel-interior-convex)

then have rel-interior : rel-interior (path-image ?l) ⊆ path-inside p
by (smt (verit, best) assms(1) convex-polygon-is-convex-hull cutpath empty-set

insertCI insert-absorb insert-commute interior is-polygon-cut-path-def list.simps(15)
local.convex make-triangle-def)

have (let vts1 = []; vts2 = [];
vts3 = [c]; x = a; y = b;
cutpath = ?cutpath; p = make-polygonal-path ([a, b, c] @ [[a, b, c] ! 0]);
p1 = make-polygonal-path (x # vts2 @ [y] @ rev [z] @ [x]);
p2 = make-polygonal-path (vts1 @ ([x] @ [z] @ [y]) @ vts3 @ [[a, b, c] !

0]);
c1 = make-polygonal-path (x # vts2 @ [y]); c2 = make-polygonal-path

(vts1 @ ([x] @ [z] @ [y]) @ vts3)
in is-polygon-cut-path ([a, b, c] @ [[a, b, c] ! 0]) ?cutpath ∧

polygon p ∧
polygon p1 ∧
polygon p2 ∧
path-inside p1 ∩ path-inside p2 = {} ∧

path-inside p1 ∪ path-inside p2 ∪ (path-image cutpath − {x, y}) =
path-inside p ∧

(path-image p1 − path-image cutpath) ∩ (path-image p2 − path-image
?cutpath) = {} ∧

path-image p = path-image p1 − path-image ?cutpath ∪ (path-image p2 −
path-image ?cutpath) ∪ {x, y})

using 1 unfolding is-polygon-split-path-def by fastforce
then have (let

p = make-polygonal-path ([a, b, c] @ [[a, b, c] ! 0]);
p1 = make-polygonal-path (a # [] @ [b] @ rev [z] @ [a]);

243

p2 = make-polygonal-path ([] @ ([a] @ [z] @ [b]) @ [c] @ [[a, b, c] ! 0])
in path-inside p1 ∪ path-inside p2 ∪ (path-image ?cutpath − {a, b}) =

path-inside p
∧ (path-image p1 − path-image ?cutpath) ∩ (path-image p2 − path-image

?cutpath) = {})
by meson

moreover have ?q = make-polygonal-path ([] @ ([a] @ [z] @ [b]) @ [c] @ [[a,
b, c] ! 0])

by simp
moreover have ?p ′ = make-polygonal-path (a # [] @ [b] @ rev [z] @ [a])

unfolding make-triangle-def by simp
moreover have p = make-polygonal-path ([a, b, c] @ [[a, b, c] ! 0])

unfolding assms make-triangle-def by auto
ultimately have path-inside-p: path-inside ?p ′

∪ path-inside ?q
∪ (path-image ?cutpath − {a, b}) = path-inside p
∧ (path-image ?p ′ − path-image ?cutpath) ∩ (path-image ?q − path-image

?cutpath) = {}
using 1 unfolding make-triangle-def is-polygon-split-path-def by metis

moreover have a ∈ path-image ?cutpath ∧ a /∈ path-inside ?p ′ ∪ path-inside
?q

by (metis (no-types, lifting) UnI1 ‹a = pathstart (make-polygonal-path
[a, z, b]) ∧ b = pathfinish (make-polygonal-path [a, z, b])› assms(1) assms(2)
collinear-2 insert-absorb2 insert-commute path-inside-p pathstart-in-path-image tri-
angle-interior-point-not-collinear-vertices-wlog-helper)

moreover have b ∈ path-image ?cutpath ∧ b /∈ path-inside ?p ′ ∪ path-inside
?q

by (metis UnI1 ‹a = pathstart (make-polygonal-path [a, z, b]) ∧ b = pathfin-
ish (make-polygonal-path [a, z, b])› assms(1) assms(2) collinear-2 insert-absorb2
path-inside-p pathfinish-in-path-image triangle-interior-point-not-collinear-vertices-wlog-helper)

ultimately have rel-interior (path-image ?l) ⊆
(path-inside ?p ′ − path-image ?cutpath)
∪ (path-image ?cutpath − {a, b})

using rel-interior ∗ by blast
then have rel-interior (path-image ?l) ⊆ path-inside ?p ′ ∪ path-image ?cutpath

by blast
moreover have path-image ?cutpath ⊆ path-image ?p ′

proof−
have path-image ?cutpath = path-image (linepath a z) ∪ path-image (linepath

z b)
by (metis list.discI make-polygonal-path.simps(3) nth-Cons-0 path-image-cons-union)
moreover have path-image (linepath a z) = path-image (linepath z a)
∧ path-image (linepath z b) = path-image (linepath b z)

by (simp add: insert-commute)
moreover have path-image (linepath z a) ⊆ path-image ?p ′

∧ path-image (linepath b z) ⊆ path-image ?p ′

unfolding make-triangle-def
by (metis Un-commute Un-upper2 list.discI nth-Cons-0 path-image-cons-union

sup.coboundedI2)

244

ultimately show ?thesis by blast
qed
ultimately have rel-interior (path-image ?l) ⊆ path-inside ?p ′ ∪ path-image

?p ′ by fast
then have rel-interior (path-image ?l) ⊆ convex hull {a, z, b}

unfolding make-triangle-def
by (simp add: insert-commute make-triangle-def not-collinear sup-commute

triangle-convex-hull)
then have closure (rel-interior (path-image ?l)) ⊆ closure (convex hull {a, z,

b})
using closure-mono by blast

then have path-image ?l ⊆ convex hull {a, z, b} by (simp add: convex-closure-rel-interior)
then have c: c ∈ path-image ?p ′ ∪ path-inside ?p ′

unfolding make-triangle-def
by (metis (no-types, lifting) IntE insertCI insert-commute l-q-int make-triangle-def

not-collinear subsetD triangle-convex-hull)

moreover have c /∈ path-image ?p ′

proof−
have c ∈ path-image ?q − path-image ?cutpath using c-noton-cutpath l-q-int

by auto
moreover have (path-image ?p ′ − path-image ?cutpath) ∩ (path-image ?q −

path-image ?cutpath) = {}
using path-inside-p by fastforce

ultimately show ?thesis by blast
qed
moreover have c /∈ path-inside ?p ′

by (smt (verit, ccfv-threshold) DiffI IntD1 UnI1 UnI2 ‹path-image (make-polygonal-path
[a, z, b]) ∩ path-image p = {a, b}› ‹path-image (make-polygonal-path [a, z, b]) ⊆
path-image (make-triangle a b z)› assms(1) assms(2) calculation(2) collinear-2
in-mono insert-absorb2 path-inside-p triangle-interior-point-not-collinear-vertices)

ultimately show False by blast
qed
ultimately have cutpath: is-polygon-cut ?vts z c

using assms unfolding make-triangle-def is-polygon-cut-def by blast
thus 2 : is-polygon-split [a, z, b, c] 1 3

using polygon-cut-to-split
by (metis One-nat-def append-Cons append-Nil diff-Suc-1 length-Cons length-greater-0-conv

lessI list.discI list.size(3) nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 polygon-cut-to-split
zero-less-diff)

let ?p1 = make-triangle a z c
let ?p2 = make-triangle z b c
let ?p3 = make-triangle a b z

have (path-image ?p1 − path-image (linepath z c)) ∩ (path-image ?p2 − path-image
(linepath z c)) = {}

using 2 unfolding make-triangle-def is-polygon-split-def
by (smt (z3) Int-commute One-nat-def Suc-1 append-Cons append-Nil diff-numeral-Suc

245

diff-zero drop0 drop-Suc-Cons nth-Cons-0 nth-Cons-Suc nth-Cons-numeral pred-numeral-simps(3)
take0 take-Cons-numeral take-Suc-Cons)

moreover have a /∈ path-image (linepath z c) ∧ b /∈ path-image (linepath z c)
by (metis (no-types, lifting) assms(1) assms(2) assms(3) in-path-image-imp-collinear

insert-commute triangle-interior-point-not-collinear-vertices)
moreover have a ∈ path-image ?p1 ∧ b ∈ path-image ?p2
by (metis insert-subset list.simps(15) make-triangle-def vertices-on-path-image)

ultimately have a /∈ path-image ?p2 ∧ b /∈ path-image ?p1 by auto
moreover have a /∈ path-inside ?p2 ∧ b /∈ path-inside ?p1
proof−

have a /∈ path-inside p
by (metis (no-types, lifting) assms(1) assms(2) collinear-2 insertCI in-

sert-absorb triangle-interior-point-not-collinear-vertices)
moreover have b /∈ path-inside p
using assms(1) assms(2) triangle-interior-point-not-collinear-vertices-wlog-helper

by fastforce
moreover have path-inside ?p2 ⊆ path-inside ?q

using 2 unfolding is-polygon-split-def
by (smt (z3) One-nat-def UnCI append-Cons diff-Suc-1 drop0 drop-Suc-Cons

make-triangle-def nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 self-append-conv2 sub-
setI take0 take-Suc-Cons)

moreover have path-inside ?p1 ⊆ path-inside ?q
using 2 unfolding is-polygon-split-def

by (smt (z3) One-nat-def Un-assoc append-Cons diff-Suc-1 drop0 drop-Suc-Cons
inf-sup-absorb le-iff-inf make-triangle-def nth-Cons-0 nth-Cons-Suc numeral-3-eq-3
self-append-conv2 sup-commute take0 take-Suc-Cons)

moreover have path-inside ?q ⊆ path-inside p
using 1 unfolding is-polygon-split-path-def
by (smt (z3) One-nat-def Un-subset-iff Un-upper1 append-Cons append-Nil

assms(1) diff-zero drop0 drop-Suc-Cons make-triangle-def nth-Cons-0 nth-Cons-Suc
take0)

ultimately show ?thesis by blast
qed
moreover show a /∈ path-image ?p2 ∪ path-inside ?p2 using calculation by

simp
ultimately show b /∈ path-image ?p1 ∪ path-inside ?p1 by simp

have (path-image ?p3 − path-image ?cutpath) ∩ (path-image ?q − path-image
?cutpath) = {}

using 1 unfolding make-triangle-def is-polygon-split-path-def
by (smt (z3) One-nat-def append-Cons append-Nil diff-self-eq-0 diff-zero drop0

drop-Suc-Cons nth-Cons-0 nth-Cons-Suc rev-singleton-conv take-0)
moreover have c ∈ path-image ?q using l-q-int by auto
ultimately have c /∈ path-image ?p3 using c-noton-cutpath by blast
moreover have c /∈ path-inside ?p3
proof−

have c /∈ path-inside p
using assms(1) assms(2) triangle-interior-point-not-collinear-vertices by

fastforce

246

moreover have path-inside ?p3 ⊆ path-inside p
using 1 unfolding is-polygon-split-path-def

by (smt (z3) One-nat-def Un-assoc Un-upper1 append-Cons append-Nil
assms(1) diff-Suc-Suc diff-zero make-triangle-def nth-Cons-0 nth-Cons-Suc rev-singleton-conv
take0)

ultimately show ?thesis by blast
qed
ultimately show c /∈ path-image ?p3 ∪ path-inside ?p3 by blast

qed

lemma smaller-triangle:
assumes ¬ collinear {a, b, c} ∧ ¬ collinear {a ′, b ′, c ′}
assumes p = make-triangle a b c
assumes p ′ = make-triangle a ′ b ′ c ′

assumes path-inside p ⊆ path-inside p ′

assumes ∃ d. integral-vec d ∧ d ∈ path-image p ′ ∪ path-inside p ′ ∧ d /∈ path-image
p ∪ path-inside p
shows card (integral-inside p) + card (integral-boundary p) < card (integral-inside

p ′) + card (integral-boundary p ′)
proof−

have simple-path p using assms unfolding make-triangle-def
using assms(2) polygon-def triangle-is-polygon by presburger

then have finite-p: finite (integral-inside p) ∧ finite (integral-boundary p) using
assms unfolding make-triangle-def

using integral-boundary integral-inside finite-integral-points-path-image finite-integral-points-path-inside
by metis

have simple-path p ′ using assms unfolding make-triangle-def
using assms(3) polygon-def triangle-is-polygon by presburger

then have finite-p ′: finite (integral-inside p ′) ∧ finite (integral-boundary p ′) using
assms unfolding make-triangle-def

using integral-boundary integral-inside finite-integral-points-path-image finite-integral-points-path-inside
by metis

have polygon p using assms(1 ,2) triangle-is-polygon by blast
then have 1 : (integral-inside p) ∩ (integral-boundary p) = {}

unfolding integral-inside integral-boundary using inside-outside-polygon un-
folding inside-outside-def by blast

have polygon p ′ using assms(1 ,3) triangle-is-polygon by blast
then have 2 : (integral-inside p ′) ∩ (integral-boundary p ′) = {}

unfolding integral-inside integral-boundary using inside-outside-polygon un-
folding inside-outside-def by blast

have path-image-subset: path-image p ⊆ path-image p ′ ∪ path-inside p ′

proof−
have p-frontier : path-image p = frontier (convex hull {a, b, c})

by (simp add: assms(1) assms(2) convex-polygon-frontier-is-path-image2 tri-
angle-convex-hull triangle-is-convex triangle-is-polygon)

have p ′-frontier : path-image p ′ = frontier (convex hull {a ′, b ′, c ′})

247

by (simp add: assms(1) assms(3) convex-polygon-frontier-is-path-image2 tri-
angle-convex-hull triangle-is-convex triangle-is-polygon)

have p-interior : path-inside p = interior (convex hull {a, b, c})
by (simp add: bounded-convex-hull p-frontier inside-frontier-eq-interior path-inside-def)
have p ′-interior : path-inside p ′ = interior (convex hull {a ′, b ′, c ′})
by (simp add: bounded-convex-hull p ′-frontier inside-frontier-eq-interior path-inside-def)

have interior (convex hull {a, b, c}) ⊆ interior (convex hull {a ′, b ′, c ′})
using assms p-interior p ′-interior by argo

moreover have compact (convex hull {a, b, c}) ∧ compact (convex hull {a ′,
b ′, c ′})

by (simp add: compact-convex-hull)
ultimately have frontier (convex hull {a, b, c})
⊆ interior (convex hull {a ′, b ′, c ′}) ∪ frontier (convex hull {a ′, b ′, c ′})
by (smt (verit, ccfv-threshold) Jordan-inside-outside-real2 closed-path-def

‹polygon p ′› ‹polygon p› assms(1) assms(2) closure-Un closure-Un-frontier clo-
sure-convex-hull finite.emptyI finite-imp-compact finite-insert p ′-frontier p ′-interior
p-interior path-inside-def polygon-def subset-trans sup.absorb-iff1 sup-commute tri-
angle-convex-hull)

then show ?thesis using p ′-frontier p ′-interior p-frontier by blast
qed

have card ((integral-inside p) ∪ (integral-boundary p)) = card (integral-inside p)
+ card (integral-boundary p)

using 1 finite-p by (simp add: card-Un-disjoint)
moreover have card ((integral-inside p ′) ∪ (integral-boundary p ′)) = card (integral-inside

p ′) + card (integral-boundary p ′)
using 2 finite-p ′ by (simp add: card-Un-disjoint)

moreover have (integral-inside p) ∪ (integral-boundary p) ⊆ (integral-inside p ′)
∪ (integral-boundary p ′)

using assms path-image-subset unfolding integral-inside integral-boundary by
blast
moreover then have (integral-inside p) ∪ (integral-boundary p) ⊂ (integral-inside

p ′) ∪ (integral-boundary p ′) using assms unfolding integral-inside integral-boundary
by blast

ultimately show ?thesis by (metis finite-Un finite-p ′ psubset-card-mono)
qed

lemma pick-elem-triangle:
fixes p :: R-to-R2
assumes p-triangle: p = make-triangle a b c
assumes elem-triangle: elem-triangle a b c
assumes I = card {x. integral-vec x ∧ x ∈ path-inside p} and

B = card {x. integral-vec x ∧ x ∈ path-image p}
shows measure lebesgue (path-inside p) = I + B/2 − 1

proof −
have polygon-p: polygon p

using p-triangle triangle-is-polygon elem-triangle

248

unfolding elem-triangle-def by auto
then have path-inside p ∩ path-image p = {}

using inside-outside-polygon[of p] unfolding inside-outside-def
by auto

let ?p = polygon (make-polygonal-path [a, b, c, a])
have a-neq-b:a 6= b

using elem-triangle unfolding elem-triangle-def
by auto

have b-neq-c: b 6= c
using elem-triangle unfolding elem-triangle-def
by auto

have a-neq-c: c 6= a
using elem-triangle unfolding elem-triangle-def
using collinear-3-eq-affine-dependent by blast

have path-image p ⊆ convex hull {a, b, c}
using triangle-path-image-subset-convex p-triangle by auto

then have
{x. integral-vec x ∧ x ∈ path-image p} ⊆ {x. integral-vec x ∧ x ∈ convex hull

{a, b, c}}
by auto

also have ... = {a, b, c}
using elem-triangle unfolding elem-triangle-def by auto

finally have {x. integral-vec x ∧ x ∈ path-image p} ⊆ {a, b, c} .
moreover have {x. integral-vec x ∧ x ∈ path-image p} ⊇ {a, b, c}

by (smt (verit) Collect-mono-iff make-triangle-def ‹{x. integral-vec x ∧ x ∈ con-
vex hull {a, b, c}} = {a, b, c}› empty-set insert-subset list.simps(15) mem-Collect-eq
p-triangle subsetD vertices-on-path-image)

ultimately have {x. integral-vec x ∧ x ∈ path-image p} = {a, b, c} by auto
then have card-2 : B = 3

using a-neq-b b-neq-c a-neq-c assms(4)
by simp

have {x. integral-vec x ∧ x ∈ path-inside p} = {}
proof−

have path-inside p ⊆ convex hull {a, b, c}
by (smt (verit, best) Diff-insert-absorb make-triangle-def convex-polygon-inside-is-convex-hull-interior

empty-iff empty-set insert-Diff-single insert-commute interior-subset list.simps(15)
p-triangle polygon-p elem-triangle elem-triangle-def triangle-is-convex)

then have
{x. integral-vec x ∧ x ∈ path-inside p} ⊆ {x. integral-vec x ∧ x ∈ convex hull

{a, b, c}}
by auto

also have ... = {a, b, c}
using ‹{x. integral-vec x ∧ x ∈ convex hull {a, b, c}} = {a, b, c}› by auto

finally have {x. integral-vec x ∧ x ∈ path-inside p} ⊆ {a, b, c} .
moreover have

249

{x. integral-vec x ∧ x ∈ path-inside p} ∩ {x. integral-vec x ∧ x ∈ path-image
p} = {}

using ‹path-inside p ∩ path-image p = {}› by auto
ultimately show ?thesis

using ‹{x. integral-vec x ∧ x ∈ path-image p} = {a, b, c}› by auto
qed
then have card-1 : I = 0

using assms(3)
by (metis card.empty)

have I + B/2 − 1 = 1/2
using card-1 card-2 assms
by auto

then show ?thesis
using elem-triangle-area-is-half [OF assms(2)] triangle-measure-convex-hull-measure-path-inside-same[OF

assms(1) assms(2)]
by auto

qed

lemma pick-triangle-lemma:
fixes p :: R-to-R2
assumes p = make-triangle a b c and all-integral [a, b, c] and distinct [a, b, c]

and ¬ collinear {a, b, c}
I = card {x. integral-vec x ∧ x ∈ path-inside p} and
B = card {x. integral-vec x ∧ x ∈ path-image p}

shows measure lebesgue (path-inside p) = I + B/2 − 1
using assms

proof(induction card {x. integral-vec x ∧ x ∈ path-inside p} + card {x. integral-vec
x ∧ x ∈ path-image p} arbitrary: p a b c I B rule:less-induct)

case less
have polygon-p: polygon p using triangle-is-polygon[OF less.prems(4)] less.prems(1)

by simp
then have polygon-of : polygon-of p [a, b, c, a]
unfolding polygon-of-def using less.prems(1) unfolding make-triangle-def by

auto

have convex-hull-char : convex hull {a, b, c} = path-inside p ∪ path-image p
using triangle-convex-hull[OF less.prems(1) less.prems(4)] by auto

then have interior-convex-hull: {x. integral-vec x ∧ x ∈ path-inside p} ∪ {x.
integral-vec x ∧ x ∈ path-image p} = {x ∈ convex hull {a, b, c}. integral-vec x}

by auto
have vts-in-path-image: a ∈ path-image p ∧ b ∈ path-image p ∧ c ∈ path-image

p
using assms(1) unfolding make-triangle-def using vertices-on-path-image

by (metis (mono-tags, lifting) insertCI less.prems(1) list.simps(15) make-triangle-def
subset-code(1))

have integral-vts: integral-vec a ∧ integral-vec b ∧ integral-vec c
using less.prems(2)
by (simp add: all-integral-def)

250

then have subset: {a, b, c} ⊆ {x. integral-vec x ∧ x ∈ path-image p}
using vts-in-path-image integral-vts by simp

have finite-integral-on-path-im: finite {x. integral-vec x ∧ x ∈ path-image p}
using finite-integral-points-path-image triangle-is-polygon[OF less.prems(4)]
unfolding make-triangle-def polygon-def
using less.prems(1) make-triangle-def by auto

have B-3-if : B > 3 if other-point-in-set: {x. integral-vec x ∧ x ∈ path-image p}
6= {a, b, c}

proof −
have ∃ d. d /∈ {a, b, c} ∧ d ∈ {x. integral-vec x ∧ x ∈ path-image p}

using other-point-in-set subset
by blast

then obtain d where d-prop: d /∈ {a, b, c} ∧ d ∈ {x. integral-vec x ∧ x ∈
path-image p}

by auto
then have subset2 : {a, b, c, d} ⊆{x. integral-vec x ∧ x ∈ path-image p}

using d-prop subset by auto
have distinct [a, b, c, d]

using d-prop
using less.prems(3) by auto

then have card-is: card {a, b, c, d} = 4
by simp

show ?thesis using subset2 card-is finite-integral-on-path-im
by (metis (no-types, lifting) Suc-le-eq card-mono eval-nat-numeral(2) less.prems(6)

semiring-norm(26) semiring-norm(27))
qed
{ assume ∗: I = 0

have finite {x. integral-vec x ∧ x ∈ path-inside p}
using finite-integral-points-path-inside triangle-is-polygon[OF less.prems(4)]
unfolding make-triangle-def
by (simp add: less.prems(1) make-triangle-def polygon-def)

then have empty-inside: {x. integral-vec x ∧ x ∈ path-inside p} = {}
using ∗ less.prems(5) by auto

{ assume ∗∗: B = 3
have {x ∈ convex hull {a, b, c}. integral-vec x} = {a, b, c}

using ∗ ∗∗ less.prems(5−6) B-3-if interior-convex-hull empty-inside
by blast

then have elem-triangle a b c
unfolding elem-triangle-def using less.prems(4) integral-vts by simp

then have measure lebesgue (path-inside p) = I + B/2 − 1
using pick-elem-triangle less.prems by auto

}
moreover
{ assume ∗: B > 3

then obtain d where d: integral-vec d ∧ d ∈ path-image p ∧ d /∈ {a, b, c}
by (smt (verit, del-insts) subset finite-integral-on-path-im less.prems(3)

card-3-iff collinear-3-eq-affine-dependent less.prems(4) less.prems(6) less-not-refl

251

mem-Collect-eq subsetI subset-antisym)
have path-image (make-polygonal-path [a, b, c, a]) = path-image (linepath a

b) ∪ path-image (linepath b c) ∪ path-image (linepath c a)
by (metis (no-types, lifting) list.discI make-polygonal-path.simps(3) nth-Cons-0

path-image-cons-union sup-assoc)
then have d ∈ path-image (linepath a b)
∨ d ∈ path-image (linepath b c)
∨ d ∈ path-image (linepath c a)

using d less.prems(1) unfolding make-triangle-def polygon-of-def
by blast

then have measure lebesgue (path-inside p) = I + B/2 − 1
using pick-triangle-helper less.prems less.hyps empty-inside d
unfolding pick-holds pick-triangle integral-inside integral-boundary
apply simp by blast

}
ultimately have measure lebesgue (path-inside p) = I + B/2 − 1

using B-3-if
by (metis (no-types, lifting) card.empty card-insert-disjoint collinear-2 fi-

nite.emptyI finite.insertI insert-absorb less.prems(4) less.prems(6) numeral-3-eq-3)
}
moreover
{ assume ∗: I > 0

then obtain d where d-inside: integral-vec d ∧ d ∈ path-inside p
using less.prems(5)

by (metis (mono-tags, lifting) Collect-empty-eq add-0 canonically-ordered-monoid-add-class.lessE
card-0-eq card-ge-0-finite)

have a ∈ path-image p
using vertices-on-path-image polygon-of unfolding polygon-of-def by fastforce
then have a-inset: a ∈ path-inside p ∪ path-image p

by fastforce
have convex-hull-set: convex hull set [a, b, c, a] = path-inside p ∪ path-image

p
using convex-hull-char
by (simp add: insert-commute)
then have ad-linepath-inside: path-image (linepath a d) ⊆ path-inside p ∪

path-image p
using d-inside convex-polygon-means-linepaths-inside[OF polygon-of con-

vex-hull-set a-inset]
by blast

have b ∈ path-image p
using vertices-on-path-image polygon-of unfolding polygon-of-def by fastforce
then have b-inset: b ∈ path-inside p ∪ path-image p

by fastforce
have bd-linepath-inside: path-image (linepath b d) ⊆ path-inside p ∪ path-image

p
using d-inside convex-polygon-means-linepaths-inside[OF polygon-of con-

vex-hull-set b-inset]
by blast

have c ∈ path-image p

252

using vertices-on-path-image polygon-of unfolding polygon-of-def by fastforce
then have c-inset: c ∈ path-inside p ∪ path-image p

by fastforce
then have cd-linepath-inside: path-image (linepath c d) ⊆ path-inside p ∪

path-image p
using d-inside convex-hull-char convex-polygon-means-linepaths-inside[OF

polygon-of convex-hull-set c-inset]
by blast

let ?p1 = make-triangle a d c
let ?p2 = make-triangle d b c
let ?p3 = make-triangle a b d

have triangle-split:
is-polygon-split-path [a, b, c] 0 1 [d]
is-polygon-split [a, d, b, c] 1 3
a /∈ path-image ?p2 ∪ path-inside ?p2
b /∈ path-image ?p1 ∪ path-inside ?p1
c /∈ path-image ?p3 ∪ path-inside ?p3

using triangle-3-split[of p a b c d] less.prems d-inside polygon-p apply fastforce
using triangle-3-split[of p a b c d] less.prems d-inside polygon-p apply fastforce
using triangle-3-split[of p a b c d] less.prems d-inside polygon-p apply fastforce
using triangle-3-split[of p a b c d] less.prems d-inside polygon-p apply fastforce
using triangle-3-split[of p a b c d] less.prems d-inside polygon-p by fastforce

let ?q = make-polygonal-path [a, d, b, c, a]
let ?I1 = card (integral-inside ?p1)
let ?B1 = card (integral-boundary ?p1)
let ?I2 = card (integral-inside ?p2)
let ?B2 = card (integral-boundary ?p2)
let ?I3 = card (integral-inside ?p3)
let ?B3 = card (integral-boundary ?p3)
let ?Iq = card (integral-inside ?q)
let ?Bq = card (integral-boundary ?q)
have measure lebesgue (path-inside ?p1) = ?I1 + ?B1/2 − 1
proof−

have path-inside ?p1 ⊆ path-inside ?q
using triangle-split(2) unfolding is-polygon-split-def

by (smt (z3) One-nat-def Un-assoc Un-upper1 append-Cons append-Nil
diff-Suc-Suc diff-zero drop0 drop-Suc-Cons make-triangle-def nth-Cons-0 nth-Cons-Suc
numeral-3-eq-3 sup-commute take0 take-Suc-Cons)

moreover have path-inside ?q ⊆ path-inside p
using triangle-split(1) unfolding is-polygon-split-path-def
by (smt (z3) One-nat-def Un-assoc Un-subset-iff append-Cons append-Nil

diff-zero drop0 drop-Suc-Cons less.prems(1) make-triangle-def nth-Cons-0 nth-Cons-Suc
sup.cobounded2 take0)

ultimately have path-inside ?p1 ⊆ path-inside p by blast
moreover have ¬ collinear {a, d, c}
by (metis d-inside insert-commute less.prems(1) polygon-p triangle-interior-point-not-collinear-vertices)

253

moreover have ¬ collinear {a, b, c} by (simp add: less.prems(4))
moreover have integral-vec b

using integral-vts by blast
moreover have b ∈ path-image p

using vts-in-path-image by auto
ultimately have card (integral-inside ?p1) + card (integral-boundary ?p1)

< card (integral-inside p) + card (integral-boundary p)
using smaller-triangle[of a d c a b c ?p1 p] triangle-split(4) less.prems(1)

less-imp-le-nat
by blast

thus ?thesis
using less.hyps[of ?p1 a d c] unfolding integral-inside integral-boundary

using ‹¬ collinear {a, d, c}› all-integral-def d-inside integral-vts less.prems(1)
less.prems(3) triangle-split(3) triangle-split(5)

by fastforce
qed
moreover have measure lebesgue (path-inside ?p2) = ?I2 + ?B2/2 − 1
proof−

have path-inside ?p2 ⊆ path-inside ?q
using triangle-split(2) unfolding is-polygon-split-def

by (smt (z3) One-nat-def Un-assoc Un-upper1 append-Cons append-Nil
diff-Suc-Suc diff-zero drop0 drop-Suc-Cons make-triangle-def nth-Cons-0 nth-Cons-Suc
numeral-3-eq-3 sup-commute take0 take-Suc-Cons)

moreover have path-inside ?q ⊆ path-inside p
using triangle-split(1) unfolding is-polygon-split-path-def
by (smt (z3) One-nat-def Un-assoc Un-subset-iff append-Cons append-Nil

diff-zero drop0 drop-Suc-Cons less.prems(1) make-triangle-def nth-Cons-0 nth-Cons-Suc
sup.cobounded2 take0)

ultimately have path-inside ?p2 ⊆ path-inside p by blast
moreover have ¬ collinear {d, b, c}
by (metis d-inside insert-commute less.prems(1) polygon-p triangle-interior-point-not-collinear-vertices)
moreover have ¬ collinear {a, b, c} by (simp add: less.prems(4))
moreover have integral-vec a

using integral-vts by blast
moreover have a ∈ path-image p

using vts-in-path-image by auto
ultimately have card (integral-inside ?p2) + card (integral-boundary ?p2)

< card (integral-inside p) + card (integral-boundary p)
using smaller-triangle[of d b c a b c ?p2 p] triangle-split(3) less.prems(1)

less-imp-le-nat
by blast

thus ?thesis
using less.hyps[of ?p2 d b c] unfolding integral-inside integral-boundary

using ‹¬ collinear {d, b, c}› all-integral-def d-inside integral-vts less.prems(1)
less.prems(3) triangle-split(3) triangle-split(5)

by fastforce
qed
moreover have measure lebesgue (path-inside ?p3) = ?I3 + ?B3/2 − 1
proof−

254

have path-inside ?p3 ⊆ path-inside p
using triangle-split(1) unfolding is-polygon-split-path-def

by (smt (z3) One-nat-def Un-assoc Un-upper1 append-Cons append-Nil
diff-Suc-Suc diff-zero less.prems(1) make-triangle-def nth-Cons-0 nth-Cons-Suc rev-singleton-conv
take0)

moreover have ¬ collinear {a, b, d}
by (metis d-inside less.prems(1) polygon-p triangle-interior-point-not-collinear-vertices)
moreover have ¬ collinear {a, b, c} by (simp add: less.prems(4))
moreover have integral-vec c

using integral-vts by blast
moreover have c ∈ path-image p

using vts-in-path-image by auto
ultimately have card (integral-inside ?p3) + card (integral-boundary ?p3)

< card (integral-inside p) + card (integral-boundary p)
using smaller-triangle[of a b d a b c ?p3 p] triangle-split(5) less.prems(1)

less-imp-le-nat
by blast

thus ?thesis
using less.hyps[of ?p3 a b d] unfolding integral-inside integral-boundary

using ‹¬ collinear {a, b, d}› all-integral-def d-inside integral-vts less.prems(1)
less.prems(3) triangle-split(3) triangle-split(5)

by fastforce
qed
moreover have measure lebesgue (path-inside ?q) = ?Iq + ?Bq/2 − 1

using pick-split-union[OF triangle-split(2),
of [a] [b] [] d c ?q ?p2 ?p1 ?I2 ?B2 ?I1 ?B1 ?Iq ?Bq]

using calculation
unfolding integral-inside integral-boundary make-triangle-def
using all-integral-def d-inside less.prems(2) by force

ultimately have ?case
using pick-split-path-union[OF triangle-split(1),

of [] [] [c] a b make-polygonal-path (a # [d] @ [b]) p ?p3 ?q ?I3 ?B3 ?Iq
?Bq I B]

unfolding integral-inside integral-boundary make-triangle-def less.prems
using less.prems(2) by force

}
ultimately show ?case by blast

qed

29.2 Pocket properties
definition index-not-in-set :: (real^2) list ⇒ (real^2) set ⇒ nat ⇒ bool

where index-not-in-set vts A i ←→ i ∈ {i. i < length vts ∧ vts ! i /∈ A}

definition min-index-not-in-set:: (real^2) list ⇒ (real^2) set ⇒ nat
where min-index-not-in-set vts A = (LEAST i. index-not-in-set vts A i)

definition nonzero-index-in-set :: (real^2) list ⇒ (real^2) set ⇒ nat ⇒ bool
where

255

nonzero-index-in-set vts A i ←→ i ∈ {i. 0 < i ∧ i < length vts ∧ vts ! i ∈ A}

definition min-nonzero-index-in-set :: (real^2) list ⇒ (real^2) set ⇒ nat where
min-nonzero-index-in-set vts A = (LEAST i. nonzero-index-in-set vts A i)

definition construct-pocket-0 :: (real^2) list ⇒ (real^2) set ⇒ (real^2) list where
construct-pocket-0 vts A = take ((min-nonzero-index-in-set vts A) + 1) vts

definition is-pocket-0 :: (real^2) list ⇒ (real^2) list ⇒ bool where
is-pocket-0 vts vts ′←→

polygon (make-polygonal-path vts)
∧ (∃ i. vts ′ = take i vts)
∧ 3 ≤ length vts ′ ∧ length vts ′ < length vts
∧ hd vts ′ ∈ frontier (convex hull (set vts)) ∧ last vts ′ ∈ frontier (convex hull

(set vts))
∧ set (tl (butlast vts ′)) ⊆ interior (convex hull (set vts))

definition fill-pocket-0 :: (real^2) list ⇒ nat ⇒ (real^2) list where
fill-pocket-0 vts i = (hd vts) # (drop (i−1) vts)

lemma min-nonzero-index-in-set-exists:
assumes set (tl vts) ∩ A 6= {}
shows ∃ i. nonzero-index-in-set vts A i

proof−
obtain v where v: v ∈ A ∩ set (tl vts) using assms by blast
then obtain i where (tl vts)!i = v ∧ i < length (tl vts) by (meson IntD2

in-set-conv-nth)
then obtain j where vts!j = v ∧ 0 < j ∧ j < length vts using nth-tl by fastforce
thus ?thesis unfolding nonzero-index-in-set-def using v by blast

qed

lemma min-nonzero-index-in-set-defined:
assumes set (tl vts) ∩ A 6= {}
defines i ≡ min-nonzero-index-in-set vts A
shows nonzero-index-in-set vts A i ∧ (∀ j < i. ¬ nonzero-index-in-set vts A j)

proof−
have ∃ i. nonzero-index-in-set vts A i using assms min-nonzero-index-in-set-exists

by blast
then have nonzero-index-in-set vts A i

using assms unfolding min-nonzero-index-in-set-def
using LeastI-ex by blast

moreover have (∀ j < i. ¬ nonzero-index-in-set vts A j)
by (metis assms(2) wellorder-Least-lemma(2) leD min-nonzero-index-in-set-def)

ultimately show ?thesis by blast
qed

lemma min-index-not-in-set-exists:

256

assumes set vts ⊃ A
shows ∃ i. index-not-in-set vts A i

proof−
obtain v where v ∈ set vts ∧ v /∈ A using assms by blast
then obtain i where i < length vts ∧ vts ! i /∈ A by (metis in-set-conv-nth)
thus ?thesis unfolding index-not-in-set-def by blast

qed

lemma min-index-not-in-set-defined:
assumes set vts ⊃ A
defines i ≡ min-index-not-in-set vts A
shows index-not-in-set vts A i ∧ (∀ j < i. ¬ index-not-in-set vts A j)

proof−
have ∃ i. index-not-in-set vts A i using assms min-index-not-in-set-exists by

simp
then have index-not-in-set vts A i

using assms unfolding min-index-not-in-set-def
using LeastI-ex by blast

moreover have (∀ j < i. ¬ index-not-in-set vts A j)
by (metis assms(2) wellorder-Least-lemma(2) leD min-index-not-in-set-def)

ultimately show ?thesis by blast
qed

lemma min-nonzero-index-in-set-bound:
assumes set (tl vts) ∩ A 6= {}
shows min-nonzero-index-in-set vts A < length vts
using min-nonzero-index-in-set-defined assms unfolding nonzero-index-in-set-def

by blast

lemma construct-pocket-0-subset-vts:
assumes set (tl vts) ∩ A 6= {}
shows set (construct-pocket-0 vts A) ⊆ set vts

proof−
let ?i = min-nonzero-index-in-set vts A
have nonzero-index-in-set vts A ?i using min-nonzero-index-in-set-defined assms

by presburger
then have ?i < length vts unfolding nonzero-index-in-set-def by blast
thus ?thesis unfolding construct-pocket-0-def by (simp add: set-take-subset)

qed

lemma min-index-not-in-set-0 :
assumes set vts ⊃ A
assumes vts!0 ∈ A
defines i ≡ min-index-not-in-set vts A
defines r ≡ i − 1
shows vts!r ∈ A

proof−
have ∗: index-not-in-set vts A i ∧ (∀ j<i. ¬ index-not-in-set vts A j)

using min-index-not-in-set-defined[of A vts, OF assms(1)] unfolding i-def by

257

blast
moreover then have r < i

unfolding r-def i-def min-index-not-in-set-def index-not-in-set-def
by (metis (no-types, lifting) assms(2) bot-nat-0 .not-eq-extremum diff-less mem-Collect-eq

zero-less-one)
ultimately have ¬ index-not-in-set vts A r by blast
thus ?thesis
unfolding index-not-in-set-def using assms ∗ index-not-in-set-def less-imp-diff-less

by force
qed

lemma construct-pocket-0-last-in-set:
assumes set (tl vts) ∩ A 6= {}
assumes vts!0 ∈ A
defines p ≡ construct-pocket-0 vts A
shows last p ∈ A

proof−
let ?i = min-nonzero-index-in-set vts A
have ∗: nonzero-index-in-set vts A ?i using assms(1) min-nonzero-index-in-set-defined

by blast
then have length p = min-nonzero-index-in-set vts A + 1

unfolding p-def construct-pocket-0-def nonzero-index-in-set-def by simp
then have last p = p!?i
by (metis add-diff-cancel-right ′ last-conv-nth length-0-conv zero-eq-add-iff-both-eq-0

zero-neq-one)
also have ... = vts!?i

unfolding p-def construct-pocket-0-def by simp
also have ... ∈ A using ∗ unfolding nonzero-index-in-set-def by force
finally show ?thesis .

qed

lemma construct-pocket-0-first-last-distinct:
assumes card A ≥ 2
assumes A ⊆ set vts
assumes distinct (butlast vts)
assumes hd vts = last vts
shows hd (construct-pocket-0 vts A) 6= last (construct-pocket-0 vts A)

proof−
let ?n = min-nonzero-index-in-set vts A
have set (tl vts) ∩ A 6= {}
by (metis (no-types, lifting) Diff-cancel Int-commute Int-insert-right-if1 Nat.le-diff-conv2

Suc-1 add-leD1 assms(1) assms(2) card.empty card-Diff-singleton inf .orderE list.collapse
list.sel(2) list.set(2) not-one-le-zero plus-1-eq-Suc subset-insert)
then have n-defined: nonzero-index-in-set vts A ?n ∧ (∀ j < ?n. ¬ nonzero-index-in-set

vts A j)
using min-nonzero-index-in-set-defined by presburger

obtain a b where ab: a 6= b ∧ {a, b} ⊆ A by (metis assms(1) card-2-iff ex-card)
then obtain i j where ij: vts!i = a ∧ vts!j = b ∧ i < length vts ∧ j < length

vts ∧ i 6= j

258

by (metis (no-types, opaque-lifting) assms(2) in-set-conv-nth insert-subset sub-
setD)

have ?thesis if ∗: ?n < length vts − 1
proof−

have ?n > 0 using n-defined unfolding nonzero-index-in-set-def by blast
then have n-bound ′: ?n > 0 ∧ ?n < length (butlast vts) using ∗ by fastforce
then have hd vts 6= vts!?n

by (metis assms(3) distinct-Ex1 hd-conv-nth ij in-set-conv-nth length-0-conv
length-pos-if-in-set less-nat-zero-code nth-butlast)

moreover then have vts!?n 6= last vts using assms(4) by simp
moreover have last (construct-pocket-0 vts A) = vts!?n

using n-defined
unfolding construct-pocket-0-def
by (metis Cons-nth-drop-Suc Suc-eq-plus1 n-bound ′ ∗ last-snoc less-diff-conv

list.sel(1) nth-butlast take-butlast take-hd-drop)
moreover have hd (construct-pocket-0 vts A) = hd vts

unfolding construct-pocket-0-def by force
ultimately show ?thesis by presburger

qed
moreover have ?thesis if ∗: ?n = length vts − 1
proof−

have {i, j} ⊆ {i. i < length vts ∧ vts ! i ∈ A} using ij ab by simp
moreover have i 6= 0 ∨ j 6= 0 using ij by argo
ultimately have nonzero-index-in-set vts A i ∨ nonzero-index-in-set vts A j

unfolding nonzero-index-in-set-def by simp
then have ?n = i ∨ ?n = j

by (metis n-defined Suc-diff-1 gr-implies-not-zero ij linorder-cases not-less-eq
∗)

moreover then have last (construct-pocket-0 vts A) = vts!?n
by (metis Suc-eq-plus1 construct-pocket-0-def hd-drop-conv-nth ij snoc-eq-iff-butlast

take-hd-drop)
ultimately show ?thesis
by (metis (no-types, lifting) ij ab Suc-eq-plus1 assms(4) bot-nat-0 .not-eq-extremum

hd-conv-nth insert-subset last-conv-nth less-diff-conv list.size(3) mem-Collect-eq n-defined
nat-neq-iff nonzero-index-in-set-def not-less-eq that)

qed
ultimately show ?thesis using n-defined unfolding nonzero-index-in-set-def

by fastforce
qed

lemma construct-pocket-is-pocket:
assumes polygon (make-polygonal-path vts)
assumes vts!0 ∈ frontier (convex hull (set vts))
assumes vts!1 /∈ frontier (convex hull (set vts))
shows is-pocket-0 vts (construct-pocket-0 vts (set vts ∩ frontier (convex hull (set

vts))))
proof−

let ?vts ′ = construct-pocket-0 vts (set vts ∩ frontier (convex hull (set vts)))

259

have ex-i: ∃ i. ?vts ′ = take i vts unfolding construct-pocket-0-def by blast
moreover have 3 ≤ length ?vts ′

by (smt (verit) Cons-nth-drop-Suc IntI Int-iff One-nat-def Suc-1 Suc-diff-Suc
Suc-lessI add-diff-cancel-right ′ add-gr-0 append-Nil2 assms(1) assms(2) assms(3)
butlast.simps(1) butlast.simps(2) butlast-conv-take calculation cancel-comm-monoid-add-class.diff-cancel
card.empty construct-pocket-0-def construct-pocket-0-first-last-distinct construct-pocket-0-last-in-set
convex-hull-two-vts-on-frontier diff-diff-cancel diff-is-0-eq diff-is-0-eq ′ drop0 empty-iff
empty-set have-wraparound-vertex hd-conv-nth hd-drop-conv-nth hd-take id-take-nth-drop
last.simps last-conv-nth last-drop last-in-set last-snoc leI le-add2 le-numeral-extra(4)
le-trans length-0-conv length-greater-0-conv length-take length-tl length-upt less-2-cases
less-numeral-extra(1) less-numeral-extra(3) linorder-not-less list.distinct(1) list.sel(2)
list.sel(3) list.size(3) min.absorb4 not-gr-zero not-less-eq-eq not-numeral-le-zero nth-mem
numeral-3-eq-3 plus-1-eq-Suc polygon-at-least-3-vertices polygon-at-least-3-vertices-wraparound
polygon-def pos2 rev.simps(1) self-append-conv2 simple-polygonal-path-vts-distinct
snoc-eq-iff-butlast subset-iff take-all-iff take-eq-Nil take-hd-drop)

moreover have vts ′-length: length ?vts ′ < length vts
by (metis (no-types, lifting) One-nat-def Suc-1 assms(1) calculation(1) calcula-

tion(2) construct-pocket-0-first-last-distinct convex-hull-two-vts-on-frontier have-wraparound-vertex
hd-conv-nth inf-le1 last-snoc leI le-add2 le-trans length-take min.absorb4 not-numeral-le-zero
numeral-3-eq-3 plus-1-eq-Suc polygon-at-least-3-vertices polygon-def simple-polygonal-path-vts-distinct
take-all-iff take-eq-Nil)

moreover have hd ?vts ′ ∈ frontier (convex hull (set vts))
by (metis assms(2) bot-nat-0 .not-eq-extremum calculation(1) calculation(2)

hd-conv-nth hd-take list.size(3) not-numeral-le-zero take-eq-Nil)
moreover have last ?vts ′ ∈ frontier (convex hull (set vts))
by (smt (verit, ccfv-SIG) Cons-nth-drop-Suc Int-iff assms(1) assms(2) card-length

construct-pocket-0-last-in-set drop0 drop-eq-Nil empty-iff have-wraparound-vertex
last-drop last-in-set le-add2 le-trans linorder-not-less list.sel(3) list.simps(15) not-less-eq-eq
numeral-3-eq-3 plus-1-eq-Suc polygon-at-least-3-vertices snoc-eq-iff-butlast)

moreover have set (tl (butlast ?vts ′)) ⊆ interior (convex hull (set vts))
proof−

let ?A = (set vts ∩ frontier (convex hull (set vts)))
let ?r = min-nonzero-index-in-set vts ?A
have nonzero-index-in-set vts ?A ?r
∧ (∀ j<min-nonzero-index-in-set vts ?A. ¬ nonzero-index-in-set vts ?A j)

by (metis min-nonzero-index-in-set-defined IntI Nitpick.size-list-simp(2) One-nat-def
add-leD1 assms(1) assms(2) calculation(2) calculation(3) empty-iff empty-set have-wraparound-vertex
last-in-set last-snoc last-tl less-one not-one-le-zero nth-mem numeral-3-eq-3 plus-1-eq-Suc)

then have ∀ i. (0 < i ∧ i < ?r) −→ vts!i /∈ ?A unfolding nonzero-index-in-set-def
by force

then have ∀ i. (0 < i ∧ i < ?r) −→ vts!i /∈ frontier (convex hull (set vts))
using calculation(3) construct-pocket-0-def by fastforce

then have ∀ i. (0 < i ∧ i < ?r) −→ vts!i ∈ interior (convex hull (set vts))
by (smt (verit, ccfv-threshold) Cons-nth-drop-Suc DiffI IntI One-nat-def

add-leD1 assms(1) assms(2) calculation(2) calculation(3) closure-subset drop0 dual-order .strict-trans2
empty-iff frontier-def have-wraparound-vertex hull-subset inf .strict-coboundedI2 inf .strict-order-iff
last-drop last-in-set last-snoc length-greater-0-conv list.discI list.sel(3) min-nonzero-index-in-set-bound
nth-mem numeral-3-eq-3 plus-1-eq-Suc subset-eq)

moreover have tl (butlast ?vts ′) = drop 1 (take ?r vts)

260

unfolding construct-pocket-0-def
by (metis One-nat-def add-implies-diff antisym-conv2 butlast-take construct-pocket-0-def

drop-0 drop-Suc linorder-le-cases take-all vts ′-length)
moreover have ∀ v ∈ set (drop 1 (take ?r vts)). ∃ i. 0 < i ∧ i < ?r ∧ vts!i =

v
proof

fix v assume ∗: v ∈ set (drop 1 (take ?r vts))
then obtain i ′ where i ′: (drop 1 (take ?r vts))!i ′ = v ∧ i ′ < ?r − 1

by (smt (z3) Cons-nth-drop-Suc One-nat-def ex-i butlast-conv-take cal-
culation(2) drop0 hd-conv-nth hd-take index-less-size-conv length-drop length-take
less-imp-le-nat linorder-not-less list.collapse list.sel(2) min.absorb4 nth-index take-all-iff
take-eq-Nil vts ′-length)

then have (take ?r vts)!(i ′ + 1) = v
by (metis ∗ add.commute drop-eq-Nil empty-iff empty-set nle-le nth-drop)

thus ∃ i. 0 < i ∧ i < ?r ∧ vts!i = v
by (metis add-gr-0 i ′ less-diff-conv nth-take zero-less-one)

qed
ultimately show ?thesis by fastforce

qed
ultimately show ?thesis unfolding is-pocket-0-def using assms(1) by argo

qed

lemma exists-point-above-interior :
fixes a :: real^2
assumes a ∈ interior (convex hull S)
obtains x where x ∈ S ∧ x$2 > a$2

proof−
have False if ∀ x ∈ S . x$2 ≤ a$2
proof−

have S ⊆ {x. x · (vector [0 , 1]) ≤ a$2}
proof(rule subsetI)

fix x
assume x ∈ S
then have x$2 ≤ a$2 using that by blast
moreover have x · (vector [0 , 1]) = x$1 ∗ 0 + x$2 ∗ 1

by (simp add: cart-eq-inner-axis e1e2-basis(3))
ultimately show x ∈ {x. x · (vector [0 , 1]) ≤ a$2} by simp

qed
then have ∗: convex hull S ⊆ {x. x · (vector [0 , 1]) ≤ a$2}
proof−

have S ⊆ {v. vector [0 , 1] · v ≤ a $ 2}
by (simp add: ‹S ⊆ {x. x · vector [0 , 1] ≤ a $ 2}› inner-commute)

then have convex hull S ⊆ {v. vector [0 , 1] · v ≤ a $ 2}
by (simp add: convex-halfspace-le hull-minimal)

then show ?thesis
by (simp add: inner-commute)

qed
moreover have a · (vector [0 , 1]) = a$2 by (simp add: cart-eq-inner-axis

261

e1e2-basis(3))
moreover have frontier {x. x · ((vector [0 , 1])::(real^2)) ≤ a$2}

= {x. x · (vector [0 , 1]) = a$2}
using frontier-halfspace-le[of (vector [0 , 1])::(real^2) a$2]
by (smt (verit) Collect-cong inner-commute vector-2 (2) zero-index)

ultimately have a ∈ frontier {x. x · (vector [0 , 1]) ≤ a$2} by blast
thus False
by (metis (mono-tags, lifting) Diff-iff ∗ assms frontier-def in-frontier-in-subset

in-mono interior-subset)
qed
thus ?thesis using that by fastforce

qed

lemma exists-point-above-convex-hull-interior :
fixes S :: (real^2) set
assumes S 6= {}
assumes compact S
obtains x where x ∈ S − (interior (convex hull S)) ∧ (∀ y ∈ interior (convex

hull S). x$2 > y$2)
proof−

let ?H = convex hull S
let ?e2 = (vector [0 , 1])::(real^2)
let ?f = (λx. x$2)::(real^2 ⇒ real)
have continuous-on {x. True} ?f by (simp add: continuous-on-component)
moreover have compact (convex hull S) using assms(2) compact-convex-hull

by blast
moreover from calculation have compact (?f‘?H)

using compact-continuous-image continuous-on-subset by blast
ultimately obtain x max where x: x ∈ ?H ∧ ?f x = max ∧ (∀ y ∈ ?H . y$2 ≤

max)
by (smt (verit) Collect-mono assms(1) convex-hull-eq-empty convex-hull-explicit

continuous-attains-sup continuous-on-subset)

have ?H ∩ {x. ?e2 · x = max} 6= {}
by (metis (mono-tags, lifting) cart-eq-inner-axis disjoint-iff e1e2-basis(3) in-

ner-commute mem-Collect-eq x)
moreover have ?H ∩ {x. ?e2 · x = max} = {} if (∀ x ∈ S . x$2 < max)
proof−

have S ⊆ {x. ?e2 · x < max}
using that by (simp add: cart-eq-inner-axis e1e2-basis(3) inner-commute

subset-eq)
moreover have convex {x. ?e2 · x < max} by (simp add: convex-halfspace-lt)
ultimately show ?thesis using hull-minimal by blast

qed
ultimately have ∃ x ∈ S . x$2 ≥ max by force
moreover have ?H ⊆ {x. ?e2 · x ≤ max}

using x
by (simp add: cart-eq-inner-axis e1e2-basis(3) inner-commute subsetI)

moreover then have interior ?H ⊆ {x. ?e2 · x < max}

262

by (metis (mono-tags) convex-empty empty-iff inner-zero-left interior-halfspace-le
interior-mono real-inner-1-left separating-hyperplane-set-0 vector-2 (2) zero-index)

ultimately have x /∈ interior ?H ∧ (∀ y ∈ interior ?H . x$2 > y$2)
by (smt (verit) cart-eq-inner-axis e1e2-basis(3) in-mono inner-commute mem-Collect-eq

x)
thus ?thesis using that ‹∃ x∈S . max ≤ x $ 2 › x by fastforce

qed

lemma flip-function:
defines M ≡ (vector [vector [1 , 0], vector [0 , −1]])::(real^2^2)
defines f ≡ λv. M ∗v v
defines g ≡ (λv. vector [v$1 , −v$2])::(real^2 ⇒ real^2)
shows inj f f = g

proof−
have det M = M$1$1 ∗ M$2$2 − M$1$2 ∗ M$2$1 using det-2 by blast
thus inj f by (simp add: inj-matrix-vector-mult invertible-det-nz f-def M-def)

have
∧

x. f x = g x
proof−

fix x
have f x = vector [M$1$1 ∗ x$1 + M$1$2 ∗ x$2 , M$2$1 ∗ x$1 + M$2$2

∗ x$2]
by (simp add: M-def f-def mat-vec-mult-2)

also have ... = vector [x$1 , −x$2] by (simp add: M-def)
finally show f x = g x using f-def g-def by blast

qed
thus f = g by (simp add: f-def g-def)

qed

lemma exists-point-below-convex-hull-interior :
fixes S :: (real^2) set
assumes S 6= {}
assumes compact S
obtains x where x ∈ S − (interior (convex hull S)) ∧ (∀ y ∈ interior (convex

hull S). x$2 < y$2)
proof−

let ?M = (vector [vector [1 , 0], vector [0 , −1]])::(real^2^2)
let ?f = λv. ?M ∗v v
let ?g = (λv. vector [v$1 , −v$2])::(real^2 ⇒ real^2)

let ?H ′ = ?g‘(convex hull S)
let ?S ′ = ?g‘S

have interior : ?f‘(interior (convex hull S)) = interior (convex hull (?f‘S))
by (smt (verit, best) flip-function convex-hull-linear-image interior-injective-linear-image

matrix-vector-mul-linear)
have hull: ?H ′ = convex hull ?S ′

proof−
have (∗v) (vector [vector [1 , 0], vector [0 , − 1]]) ‘ (convex hull S) = convex

263

hull ((∗v) (vector [vector [1 , 0], vector [0 , − 1]]) ‘ S ::(real, 2) vec set)
by (simp add: convex-hull-linear-image)

then show ?thesis
by (simp add: flip-function)

qed
moreover have compact ?S ′

proof−
have continuous-on {x. True} ?f using matrix-vector-mult-linear-continuous-on

by blast
then have continuous-on {x. True} ?g using flip-function by simp
thus ?thesis using assms(2) compact-continuous-image continuous-on-subset

flip-function by blast
qed
moreover have ?S ′ 6= {} using assms(1) by blast
ultimately obtain x ′ where x ′: x ′ ∈ ?S ′ − (interior ?H ′) ∧ (∀ y ∈ interior

?H ′. x ′$2 > y$2)
using exists-point-above-convex-hull-interior [of ?S ′] by auto

moreover have ?S ′ − (interior ?H ′) = ?f‘(S − (interior (convex hull S)))
proof−

have ?f‘(S − (interior (convex hull S))) = ?S ′ − ?f‘(interior (convex hull S))
by (metis (no-types, lifting) flip-function(1) flip-function(2) image-cong im-

age-set-diff)
thus ?thesis using flip-function(2) interior hull by auto

qed
ultimately obtain x where ?g x = x ′ ∧ x ∈ S − interior (convex hull S)

using flip-function by auto
moreover have (∀ y∈interior (convex hull S). x $ 2 < y $ 2)
proof clarify

fix y
assume y ∈ interior (convex hull S)
then have (?g x)$2 > (?g y)$2

using x ′ interior hull flip-function by (metis (no-types, lifting) calculation
image-eqI)

thus x$2 < y$2 by simp
qed
ultimately show ?thesis using that by fast

qed

lemma exists-point-above-all:
fixes p q :: R-to-R2
defines H ≡ convex hull (path-image p ∪ path-image q)
assumes path p ∧ path q
assumes p‘{0<..<1} ⊆ interior H
assumes (p 0)$2 = 0 ∧ (p 1)$2 = 0
assumes ∃ x ∈ p‘{0<..<1}. x$2 ≥ 0
obtains x where x ∈ path-image q ∧ (∀ y ∈ path-image p. x$2 > y$2)

proof−
let ?S = path-image p ∪ path-image q
let ?H = convex hull ?S

264

obtain x where x: x ∈ ?S − (interior ?H) ∧ (∀ y ∈ interior ?H . x$2 > y$2)
by (metis exists-point-above-convex-hull-interior Un-empty assms(2) compact-Un

compact-path-image path-image-nonempty)
then have x /∈ p‘{0<..<1} using H-def assms(3) by blast
moreover have x ∈ ?S using x by blast
ultimately have x ∈ path-image q ∨ x ∈ (path-image p) − p‘{0<..<1} by blast
moreover have {0 ..1} − {0<..<1} = {0 ::real, 1} by fastforce
ultimately have x ∈ path-image q ∨ x ∈ p‘{0 , 1}

by (smt (verit, best) image-diff-subset path-image-def subsetD)
moreover have x$2 > (p 0)$2 ∧ x$2 > (p 1)$2

using H-def assms(3) assms(4) assms(5) x by fastforce
ultimately have x ∈ path-image q ∧ x$2 > (p 0)$2 ∧ x$2 > (p 1)$2 ∧ (∀ y ∈

p‘{0<..<1}. x$2 > y$2)
using H-def assms(3) x by auto

moreover have path-image p = p‘{0<..<1} ∪ {p 0 , p 1}
proof−

have {0<..<1} ∪ {0 ::real, 1} = {0 ..1} by force
thus ?thesis unfolding path-image-def by blast

qed
ultimately show ?thesis by (simp add: that)

qed

lemma exists-point-below-all:
fixes p q :: R-to-R2
defines H ≡ convex hull (path-image p ∪ path-image q)
assumes path p ∧ path q
assumes p‘{0<..<1} ⊆ interior H
assumes (p 0)$2 = 0 ∧ (p 1)$2 = 0
assumes ∃ x ∈ path-image p ∪ path-image q. x$2 < 0
obtains x where x ∈ path-image q ∧ (∀ y ∈ path-image p. x$2 < y$2)

proof−
let ?thesis ′ = ∃ x. x ∈ path-image q ∧ (∀ y ∈ path-image p. x$2 < y$2)
have ?thesis ′ if ∃ x ∈ path-image p. x$2 < 0
proof−

have ∗: ∃ x ∈ p‘{0<..<1}. x$2 < 0
proof−

have (p 0)$2 = 0 ∧ (p 1)$2 = 0 by (simp add: assms(4))
thus ?thesis

using that unfolding path-image-def
using atLeastAtMost-iff less-eq-real-def
by fastforce

qed
let ?S = path-image p ∪ path-image q
let ?H = convex hull ?S
obtain x where x: x ∈ ?S − (interior ?H) ∧ (∀ y ∈ interior ?H . x$2 < y$2)

by (metis exists-point-below-convex-hull-interior Un-empty assms(2) com-
pact-Un compact-path-image path-image-nonempty)

then have x /∈ p‘{0<..<1} using H-def assms(3) by blast
moreover have x ∈ ?S using x by blast

265

ultimately have x ∈ path-image q ∨ x ∈ (path-image p) − p‘{0<..<1} by
blast

moreover have {0 ..1} − {0<..<1} = {0 ::real, 1} by fastforce
ultimately have x ∈ path-image q ∨ x ∈ p‘{0 , 1}

by (smt (verit, best) image-diff-subset path-image-def subsetD)
moreover have x$2 < (p 0)$2 ∧ x$2 < (p 1)$2

by (smt (verit, ccfv-SIG) ∗ H-def assms(3) assms(4) subset-eq x)
ultimately have x$2 < (p 0)$2 ∧ x$2 < (p 1)$2 ∧ (∀ y ∈ p‘{0<..<1}. x$2

< y$2)
using H-def assms(3) x by blast

moreover have path-image p = p‘{0<..<1} ∪ {p 0 , p 1}
proof−

have {0<..<1} ∪ {0 ::real, 1} = {0 ..1} by force
thus ?thesis unfolding path-image-def by blast

qed
ultimately have ∀ y ∈ path-image p. x$2 < y$2 by fast
thus ?thesis using x by fast

qed
moreover then have ?thesis ′ if ¬ (∃ x ∈ path-image p. x$2 < 0) using assms(5)

by fastforce
ultimately show ?thesis using that by blast

qed

lemma pocket-fill-line-int-aux:
fixes x y z :: real^2
defines a ≡ y$1
assumes x = 0
assumes a > 0 ∧ y$2 = 0
assumes z$1 < 0 ∨ z$1 > a
assumes z$2 = 0
assumes convex A ∧ compact A
assumes {x, y, z} ⊆ A
assumes {x, y} ⊆ frontier A
shows z ∈ frontier A ∧ closed-segment x y ⊆ frontier A

proof(rule disjE [OF assms(4)])
assume z$1 > a
moreover have xyz: x$1 = 0 ∧ x$2 = 0 ∧ y$1 = a ∧ y$2 = 0 ∧ z$2 = 0

by (simp add: a-def assms(2) assms(3) assms(5))
ultimately have y: y ∈ path-image (linepath x z) (is - ∈ ?L)

using segment-horizontal assms(3) by force
moreover have y-neq: y 6= x ∧ y 6= z

by (metis a-def assms(2) assms(3) assms(4) not-less-iff-gr-or-eq zero-index)
ultimately have y ∈ rel-interior ?L
by (metis UnE closed-segment-eq-open closed-segment-idem insert-Diff insert-iff

path-image-linepath rel-interior-closed-segment singleton-insert-inj-eq)
moreover have ?L ⊆ A using assms closed-segment-subset by auto
moreover have z ∈ interior A ∪ frontier A

by (metis Diff-iff UnI1 UnI2 assms(6) calculation(2) closure-convex-hull con-
vex-hull-eq frontier-def in-mono pathfinish-in-path-image pathfinish-linepath)

266

ultimately have z ∈ frontier A
by (metis (no-types, lifting) Int-iff UnE y y-neq assms(6) assms(8) com-

pact-imp-closed insert-subset singletonD triangle-3-split-helper)
moreover have closed-segment x y ⊆ frontier A
proof(rule ccontr)

assume ¬ closed-segment x y ⊆ frontier A
then obtain v where v ∈ closed-segment x y − frontier A by blast
moreover then have v ∈ closed-segment x y ∩ interior A

by (metis (no-types, lifting) DiffD1 DiffD2 DiffI Int-iff assms(6) assms(7)
closed-segment-subset closure-convex-hull convex-hull-eq frontier-def insert-subset
subsetD)

moreover from calculation have v 6= x ∧ v 6= y using assms(8) by auto
moreover from calculation have v$1 < a

by (smt (z3) DiffD1 a-def assms(2) assms(3) exhaust-2 segment-horizontal
vec-eq-iff zero-index)

moreover from calculation have y ∈ open-segment v z
by (smt (z3) Diff-iff xyz insert-iff open-segment-def open-segment-idem

path-image-linepath segment-horizontal y y-neq)
ultimately have y ∈ interior A

by (metis (no-types, lifting) IntD2 assms(6) assms(7) closure-convex-hull
convex-hull-eq in-interior-closure-convex-segment insertI2 singletonI subsetD)

thus False using assms(8) frontier-def by auto
qed
ultimately show z ∈ frontier A ∧ closed-segment x y ⊆ frontier A by blast

next
assume ∗: z$1 < 0
moreover have xyz: x$1 = 0 ∧ x$2 = 0 ∧ y$1 = a ∧ y$2 = 0 ∧ z$2 = 0

by (simp add: a-def assms(2) assms(3) assms(5))
ultimately have x: x ∈ path-image (linepath y z) (is - ∈ ?L ′)

using segment-horizontal assms(3) by force
moreover have x-neq: y 6= x ∧ x 6= z

by (metis a-def assms(2) assms(3) assms(4) not-less-iff-gr-or-eq zero-index)
ultimately have x ∈ rel-interior ?L ′

by (metis UnE closed-segment-eq-open closed-segment-idem insert-Diff insert-iff
path-image-linepath rel-interior-closed-segment singleton-insert-inj-eq)

moreover have ?L ′ ⊆ A
proof−

have y ∈ A ∧ z ∈ A using assms by blast
thus ?thesis by (simp add: assms(6) closed-segment-subset)

qed
moreover have z ∈ interior A ∪ frontier A

by (metis Diff-iff UnI1 UnI2 assms(6) calculation(2) closure-convex-hull con-
vex-hull-eq frontier-def in-mono pathfinish-in-path-image pathfinish-linepath)

ultimately have z ∈ frontier A
by (metis (no-types, lifting) Int-iff UnE x x-neq assms(6) assms(8) com-

pact-imp-closed insert-subset singletonD triangle-3-split-helper)
moreover have closed-segment x y ⊆ frontier A
proof(rule ccontr)

assume ¬ closed-segment x y ⊆ frontier A

267

then obtain v where v ∈ closed-segment x y − frontier A by blast
moreover then have v ∈ closed-segment x y ∩ interior A

by (metis (no-types, lifting) DiffD1 DiffD2 DiffI Int-iff assms(6) assms(7)
closed-segment-subset closure-convex-hull convex-hull-eq frontier-def insert-subset
subsetD)

moreover from calculation have v 6= x ∧ v 6= y using assms(8) by auto
moreover from calculation have v$1 > 0

by (smt (z3) DiffD1 a-def assms(2) assms(3) exhaust-2 segment-horizontal
vec-eq-iff zero-index)

moreover from calculation have x ∈ open-segment v z
by (smt (z3) Diff-iff xyz insert-iff open-segment-def open-segment-idem

path-image-linepath segment-horizontal x x-neq)
ultimately have x ∈ interior A

by (metis (no-types, lifting) IntD2 assms(6) assms(7) closure-convex-hull
convex-hull-eq in-interior-closure-convex-segment insertI2 singletonI subsetD)

thus False using assms(8) frontier-def by auto
qed
ultimately show z ∈ frontier A ∧ closed-segment x y ⊆ frontier A by blast

qed

lemma axis-dist:
fixes a b :: real^2
shows a$2 = b$2 =⇒ dist a b = dist (a$1) (b$1) a$1 = b$1 =⇒ dist a b =

dist (a$2) (b$2)
proof−

have dist a b = norm (b − a) by (metis dist-commute dist-norm)
also have ... = sqrt ((b − a) · (b − a)) using norm-eq-sqrt-inner by blast
also have ... = sqrt ((b − a)$1 ∗ (b − a)$1 + (b − a)$2 ∗ (b − a)$2)

by (simp add: inner-vec-def sum-2)
finally have ∗: dist a b = sqrt ((b − a)$1 ∗ (b − a)$1 + (b − a)$2 ∗ (b −

a)$2) .
show a$2 = b$2 =⇒ dist a b = dist (a$1) (b$1)

a$1 = b$1 =⇒ dist a b = dist (a$2) (b$2)
apply (simp add: ∗ dist-real-def)
by (simp add: ∗ dist-real-def)

qed

lemma dist-bound-1 :
fixes a b x :: real^2
assumes a$2 = x$2
assumes b ∈ ball x ε
assumes ε < dist a x
shows a$1 < x$1 =⇒ b$1 > a$1 a$1 > x$1 =⇒ b$1 < a$1

proof−
have 1 : dist a x = dist (a$1) (x$1) using axis-dist assms(1) by blast
have 2 : dist (b$1) (x$1) < ε

by (metis assms(2) dist-commute dist-vec-nth-le mem-ball order-le-less-trans)
show a$1 < x$1 =⇒ b$1 > a$1 a$1 > x$1 =⇒ b$1 < a$1
apply (smt (verit, ccfv-threshold) assms(1) assms(3) 1 2 dist-norm real-norm-def)

268

by (smt (verit, ccfv-threshold) assms(1) assms(3) 1 2 dist-norm real-norm-def)
qed

lemma dist-bound-2 :
fixes a b x :: real^2
assumes a$1 = x$1
assumes b ∈ ball x ε
assumes ε < dist a x
shows a$2 < x$2 =⇒ b$2 > a$2 a$2 > x$2 =⇒ b$2 < a$2

proof−
have 1 : dist a x = dist (a$2) (x$2) using axis-dist assms(1) by blast
have 2 : dist (b$2) (x$2) < ε

by (metis assms(2) dist-commute dist-vec-nth-le mem-ball order-le-less-trans)
show a$2 < x$2 =⇒ b$2 > a$2 a$2 > x$2 =⇒ b$2 < a$2
apply (smt (verit, ccfv-threshold) assms(1) assms(3) 1 2 dist-norm real-norm-def)
by (smt (verit, ccfv-threshold) assms(1) assms(3) 1 2 dist-norm real-norm-def)

qed

lemma linepath-bound-1 :
fixes x y :: real^2
shows a < x$1 ∧ a < y$1 =⇒ ∀ v ∈ path-image (linepath x y). a < v$1

x$1 < b ∧ y$1 < b =⇒ ∀ v ∈ path-image (linepath x y). v$1 < b
proof−

have ∗: ∀ v ∈ path-image (linepath x y). ∃ u ∈ {0 ..1}. v = (1 − u) ∗R x + u ∗R
y

by (simp add: image-iff linepath-def path-image-def)
have 1 : ∀ u ∈ {0 ..1}. a < ((1 − u) ∗R x + u ∗R y)$1 if a < x$1 ∧ a < y$1
proof clarify

fix u assume u ∈ {0 ..1 ::real}
then have ∗: u ≥ 0 ∧ 1 − u ≥ 0 by simp
then show a < ((1 − u) ∗R x + u ∗R y)$1

by (smt (z3) that scaleR-collapse scaleR-left-mono vector-add-component
vector-scaleR-component)

qed
have 2 : ∀ u ∈ {0 ..1}. ((1 − u) ∗R x + u ∗R y)$1 < b if x$1 < b ∧ y$1 < b
proof clarify

fix u assume u ∈ {0 ..1 ::real}
then have ∗: u ≥ 0 ∧ 1 − u ≥ 0 by simp
then show ((1 − u) ∗R x + u ∗R y)$1 < b

by (smt (z3) that scaleR-collapse scaleR-left-mono vector-add-component
vector-scaleR-component)

qed
show a < x$1 ∧ a < y$1 =⇒ ∀ v ∈ path-image (linepath x y). a < v$1 using
∗ 1 by fastforce

show x$1 < b ∧ y$1 < b =⇒ ∀ v ∈ path-image (linepath x y). v$1 < b using
∗ 2 by fastforce
qed

lemma linepath-bound-2 :

269

fixes x y :: real^2
shows a < x$2 ∧ a < y$2 =⇒ ∀ v ∈ path-image (linepath x y). a < v$2

x$2 < b ∧ y$2 < b =⇒ ∀ v ∈ path-image (linepath x y). v$2 < b
proof−

have ∗: ∀ v ∈ path-image (linepath x y). ∃ u ∈ {0 ..1}. v = (1 − u) ∗R x + u ∗R
y

by (simp add: image-iff linepath-def path-image-def)
have 1 : ∀ u ∈ {0 ..1}. a < ((1 − u) ∗R x + u ∗R y)$2 if a < x$2 ∧ a < y$2
proof clarify

fix u assume u ∈ {0 ..1 ::real}
then have ∗: u ≥ 0 ∧ 1 − u ≥ 0 by simp
then show a < ((1 − u) ∗R x + u ∗R y)$2

by (smt (z3) that scaleR-collapse scaleR-left-mono vector-add-component
vector-scaleR-component)

qed
have 2 : ∀ u ∈ {0 ..1}. ((1 − u) ∗R x + u ∗R y)$2 < b if x$2 < b ∧ y$2 < b
proof clarify

fix u assume u ∈ {0 ..1 ::real}
then have ∗: u ≥ 0 ∧ 1 − u ≥ 0 by simp
then show ((1 − u) ∗R x + u ∗R y)$2 < b

by (smt (z3) that scaleR-collapse scaleR-left-mono vector-add-component
vector-scaleR-component)

qed
show a < x$2 ∧ a < y$2 =⇒ ∀ v ∈ path-image (linepath x y). a < v$2 using
∗ 1 by fastforce

show x$2 < b ∧ y$2 < b =⇒ ∀ v ∈ path-image (linepath x y). v$2 < b using
∗ 2 by fastforce
qed

lemma linepath-int-corner :
fixes x y z :: real^2
assumes x$2 6= y$2
assumes y$2 = z$2
shows path-image (linepath x y) ∩ path-image (linepath y z) = {y}
(is path-image ?l1 ∩ path-image ?l2 = {y})

proof−
have 1 : y ∈ path-image ?l1 ∩ path-image ?l2 by simp

have ∀ t ∈ {0 ..1}. (?l1 t)$2 = y$2 −→ t = 1
proof clarify

fix t :: real
assume 1 : t ∈ {0 ..1}
assume 2 : (?l1 t)$2 = y$2

have (?l1 t)$2 = ((1 − t) ∗ (x$2) + t ∗ (y$2)) by (simp add: linepath-def)
thus t = 1
by (smt (verit, best) assms 2 distrib-right inner-real-def mult.commute real-inner-1-right

vector-space-over-itself .scale-cancel-left)
qed

270

then have ∀ t ∈ {0 ..1}. (?l1 t)$2 = y$2 ←→ t = 1 by (metis linepath-1 ′)
moreover have ∀ t ∈ {0 ..1}. (?l2 t)$2 = y$2

unfolding linepath-def
by (metis (no-types, lifting) assms(2) segment-degen-1 vector-add-component

vector-scaleR-component)
ultimately have 2 : path-image ?l1 ∩ path-image ?l2 ⊆ {y}

by (smt (verit, best) 1 IntD1 IntD2 imageE path-defs(4) singleton-iff subsetI)

show ?thesis using 1 2 by fastforce
qed

lemma linepath-int-vertical:
fixes w x y z :: real^2
assumes w$1 6= y$1
assumes w$1 = x$1
assumes y$1 = z$1
shows path-image (linepath w x) ∩ path-image (linepath y z) = {}
using assms segment-vertical by fastforce

lemma linepath-int-horizontal:
fixes w x y z :: real^2
assumes w$2 6= y$2
assumes w$2 = x$2
assumes y$2 = z$2
shows path-image (linepath w x) ∩ path-image (linepath y z) = {}
using assms segment-horizontal by fastforce

lemma linepath-int-columns:
fixes w x y z :: real^2
assumes w$1 < y$1 ∧ w$1 < z$1
assumes x$1 < y$1 ∧ x$1 < z$1
shows path-image (linepath w x) ∩ path-image (linepath y z) = {}
(is path-image ?l1 ∩ path-image ?l2 = {})

proof−
have ∀ t1 ∈ {0 ..1}. ∀ t2 ∈ {0 ..1}. (?l2 t2)$1 > (?l1 t1)$1
by (smt (verit, ccfv-SIG) assms linepath-bound-1 linepath-in-path path-image-linepath)

thus ?thesis by (smt (verit, best) disjoint-iff imageE path-image-def)
qed

lemma linepath-int-rows:
fixes w x y z :: real^2
assumes w$2 < y$2 ∧ w$2 < z$2
assumes x$2 < y$2 ∧ x$2 < z$2
shows path-image (linepath w x) ∩ path-image (linepath y z) = {}
(is path-image ?l1 ∩ path-image ?l2 = {})

proof−
have ∀ t1 ∈ {0 ..1}. ∀ t2 ∈ {0 ..1}. (?l2 t2)$2 > (?l1 t1)$2
by (smt (verit, ccfv-SIG) assms linepath-bound-2 linepath-in-path path-image-linepath)

thus ?thesis by (smt (verit, best) disjoint-iff imageE path-image-def)

271

qed

lemma horizontal-segment-at-0 :
assumes a > 0
shows closed-segment ((vector [0 , 0])::(real^2)) (vector [a, 0]) = {x. x$2 = 0
∧ x$1 ∈ {0 ..a}}

(is ?l = ?s)
proof−

have ?l ⊆ ?s
proof(rule subsetI)

fix x
assume ∗: x ∈ ?l
then have x$2 = 0 using segment-horizontal by auto
moreover have 0 ≤ x$1 ∧ x$1 ≤ a using ∗ assms segment-horizontal by

force
ultimately show x ∈ ?s by force

qed
moreover have ?s ⊆ ?l
proof(rule subsetI)

fix x
assume ∗: x ∈ ?s
then have x = (x$1 / a) ∗R (vector [a, 0]) + (1 − (x$1 / a)) ∗R (vector [0 ,

0])
proof−

have (x$1 / a) ∗R ((vector [a, 0])::(real^2)) = vector [x$1 , 0]
using vec-scaleR-2 assms by fastforce

moreover have (1 − (x$1 / a)) ∗R ((vector [0 , 0])::(real^2)) = vector [0 ,
0]

using vec-scaleR-2 by simp
moreover have x = vector [x$1 , 0]
by (smt (verit) ∗ exhaust-2 mem-Collect-eq vec-eq-iff vector-2 (1) vector-2 (2))
ultimately show ?thesis

by (metis add-cancel-right-right scaleR-collapse vec-scaleR-2 vector-2 (2))
qed
moreover have x$1 / a ∈ {0 ..1} using ∗ assms by fastforce
ultimately show x ∈ ?l

by (smt (verit, del-insts) add.commute atLeastAtMost-iff mem-Collect-eq
closed-segment-def)

qed
ultimately show ?thesis by blast

qed

lemma horizontal-segment-at-0 ′:
fixes x y :: real^2
assumes a > 0
assumes x$1 = 0 ∧ x$2 = 0 ∧ y$1 = a ∧ y$2 = 0
shows closed-segment x y = {x. x$2 = 0 ∧ x$1 ∈ {0 ..a}}

proof−
have x = vector [0 , 0] ∧ y = vector [a, 0]

272

by (smt (verit, best) assms(2) exhaust-2 vec-eq-iff vector-2 (1) vector-2 (2))
thus ?thesis using horizontal-segment-at-0 assms by presburger

qed

lemma pocket-fill-line-int-aux1 :
fixes p q :: R-to-R2
defines p0 ≡ pathstart p
defines p1 ≡ pathfinish p
defines q0 ≡ pathstart q
defines q1 ≡ pathfinish q
defines a ≡ p1$1
defines l ≡ closed-segment p0 p1
assumes simple-path p
assumes simple-path q
assumes p0$1 = 0 ∧ p0$2 = 0 ∧ p1$2 = 0
assumes a > 0
assumes path-image q ∩ {x. x$2 = 0} ⊆ l
assumes path-image p ∩ {x. x$2 = 0} ⊆ l
assumes ∀ v ∈ path-image p. q0$2 ≤ v$2
assumes ∀ v ∈ path-image p. q1$2 > v$2
shows path-image p ∩ path-image q 6= {}

proof−
have p0 : p0 = 0

by (metis (mono-tags, opaque-lifting) assms(9) exhaust-2 vec-eq-iff zero-index)
moreover have p1 : p1 = vector [a, 0]

by (smt (verit) a-def assms(9) exhaust-2 vec-eq-iff vector-2 (1) vector-2 (2))

obtain a-x where a-x: ∀ v ∈ path-image p ∪ path-image q. a-x < v$1
proof−

let ?a-x = Inf ((λv. v$1)‘(path-image p ∪ path-image q))
have compact (path-image p ∪ path-image q)

by (simp add: assms(7) assms(8) compact-Un compact-simple-path-image)
moreover have continuous-on UNIV ((λv. v$1)::(real^2 ⇒ real))

by (simp add: continuous-on-component)
ultimately have ∗: compact ((λv. v$1)‘(path-image p ∪ path-image q))

by (meson compact-continuous-image continuous-on-subset top-greatest)
then have ∀ x ∈ ((λv. v$1)‘(path-image p ∪ path-image q)). ?a-x ≤ x
by (simp add: assms(7) assms(8) bounded-component-cart bounded-has-Inf (1)

bounded-simple-path-image)
thus ?thesis using that[of ?a-x − 1] by (smt (verit, ccfv-SIG) assms(10)

imageI)
qed
obtain b-x where b-x: ∀ v ∈ path-image p ∪ path-image q. b-x > v$1
proof−

let ?b-x = Sup ((λv. v$1)‘(path-image p ∪ path-image q))
have compact (path-image p ∪ path-image q)

by (simp add: assms(7) assms(8) compact-Un compact-simple-path-image)
moreover have continuous-on UNIV ((λv. v$1)::(real^2 ⇒ real))

by (simp add: continuous-on-component)

273

ultimately have ∗: compact ((λv. v$1)‘(path-image p ∪ path-image q))
by (meson compact-continuous-image continuous-on-subset top-greatest)

then have ∀ x ∈ ((λv. v$1)‘(path-image p ∪ path-image q)). ?b-x ≥ x
by (simp add: assms(7) assms(8) bounded-component-cart bounded-has-Sup(1)

bounded-simple-path-image)
thus ?thesis using that[of ?b-x + 1] by (smt (verit, ccfv-SIG) assms(10)

imageI)
qed
obtain b-y where b-y: ∀ v ∈ path-image p ∪ path-image q. b-y > v$2
proof−

let ?b-y = Sup ((λv. v$2)‘(path-image p ∪ path-image q))
have compact (path-image p ∪ path-image q)

by (simp add: assms(7) assms(8) compact-Un compact-simple-path-image)
moreover have continuous-on UNIV ((λv. v$2)::(real^2 ⇒ real))

by (simp add: continuous-on-component)
ultimately have ∗: compact ((λv. v$2)‘(path-image p ∪ path-image q))

by (meson compact-continuous-image continuous-on-subset top-greatest)
then have ∀ x ∈ ((λv. v$2)‘(path-image p ∪ path-image q)). ?b-y ≥ x
by (simp add: assms(7) assms(8) bounded-component-cart bounded-has-Sup(1)

bounded-simple-path-image)
thus ?thesis using that[of ?b-y + 1] by (smt (verit, ccfv-SIG) assms(10)

imageI)
qed

let ?l1 = linepath p1 (vector [b-x, 0])
let ?l2 = linepath (vector [b-x, 0]) ((vector [b-x, b-y])::(real^2))
let ?l3 = linepath (vector [b-x, b-y]) ((vector [a-x, b-y])::(real^2))
let ?l4 = linepath (vector [a-x, b-y]) ((vector [a-x, 0])::(real^2))
let ?l5 = linepath (vector [a-x, 0]) p0

let ?R ′ = ?l1 +++ ?l2 +++ ?l3 +++ ?l4 +++ ?l5
let ?R = p +++ ?R ′

have R-y-b: ∀ v ∈ path-image ?R. v$2 ≤ b-y
proof−

have ∀ v ∈ path-image ?l1 . v$2 ≤ b-y
by (metis UnCI assms(9) b-y less-eq-real-def p1-def path-image-linepath pathfin-

ish-in-path-image segment-horizontal vector-2 (2))
moreover have ∀ v ∈ path-image ?l2 . v$2 ≤ b-y

by (smt (verit, ccfv-SIG) UnCI assms(9) b-y p0-def path-image-linepath
pathstart-in-path-image segment-vertical vector-2 (1) vector-2 (2))

moreover have ∀ v ∈ path-image ?l3 . v$2 ≤ b-y
by (simp add: segment-horizontal)

moreover have ∀ v ∈ path-image ?l4 . v$2 ≤ b-y
by (smt (verit, best) UnCI assms(9) b-y p0-def path-image-linepath path-

start-in-path-image segment-vertical vector-2 (1) vector-2 (2))
moreover have ∀ v ∈ path-image ?l5 . v$2 ≤ b-y

by (smt (verit) UnI1 assms(9) b-y linepath-image-01 p0-def path-defs(4)
pathstart-in-path-image segment-horizontal vector-2 (2))

274

ultimately show ?thesis by (smt (verit, best) UnCI b-y not-in-path-image-join)
qed
have R-y-q0 : ∀ v ∈ path-image ?R. v$2 ≥ q0$2
proof−

have ∀ v ∈ path-image ?l1 . v$2 ≥ q0$2
using assms(13) assms(9) p1-def pathfinish-in-path-image segment-horizontal

by fastforce
moreover have ∀ v ∈ path-image ?l2 . v$2 ≥ q0$2
by (smt (z3) UnCI assms(13) assms(9) b-y p1-def path-image-linepath pathfin-

ish-in-path-image segment-vertical vector-2 (1) vector-2 (2))
moreover have ∀ v ∈ path-image ?l3 . v$2 ≥ q0$2
by (metis calculation(2) ends-in-segment(2) path-image-linepath segment-horizontal

vector-2 (2))
moreover have ∀ v ∈ path-image ?l4 . v$2 ≥ q0$2
by (smt (z3) UnCI assms(13) assms(9) b-y p1-def path-image-linepath pathfin-

ish-in-path-image segment-vertical vector-2 (1) vector-2 (2))
moreover have ∀ v ∈ path-image ?l5 . v$2 ≥ q0$2
by (metis assms(13) assms(9) p0-def path-image-linepath pathstart-in-path-image

segment-horizontal vector-2 (2))
ultimately show ?thesis

by (metis assms(13) not-in-path-image-join)
qed

have R-x-a: ∀ v ∈ path-image ?R. v$1 ≥ a-x
proof−

have ∀ v ∈ path-image ?l1 . v$2 ≥ a-x
by (metis UnCI a-x assms(9) linorder-le-cases linorder-not-less p0-def path-image-linepath

pathstart-in-path-image segment-horizontal vector-2 (2))
moreover have ∀ v ∈ path-image ?l2 . v$2 ≥ a-x

by (smt (z3) UnCI assms(9) b-y calculation p0-def path-image-linepath path-
start-in-path-image pathstart-linepath segment-vertical vector-2 (1) vector-2 (2))

moreover have ∀ v ∈ path-image ?l3 . v$2 ≥ a-x
by (metis calculation(2) ends-in-segment(2) path-image-linepath segment-horizontal

vector-2 (2))
moreover have ∀ v ∈ path-image ?l4 . v$2 ≥ a-x

by (smt (z3) assms(9) calculation(1) calculation(3) ends-in-segment(1)
path-image-linepath segment-vertical vector-2 (1) vector-2 (2))

moreover have ∀ v ∈ path-image ?l5 . v$2 ≥ a-x
by (smt (verit, del-insts) UnCI a-x assms(9) p0-def path-image-linepath

pathstart-in-path-image segment-horizontal vector-2 (2))
ultimately show ?thesis
by (smt (z3) UnCI a-x assms(9) b-x not-in-path-image-join p1-def path-image-linepath

pathfinish-in-path-image segment-horizontal segment-vertical vector-2 (1) vector-2 (2))
qed

have closed: closed-path ?R using assms p0-def unfolding simple-path-def closed-path-def
by simp

have simple: simple-path ?R
proof−

275

have arc ?R ′

proof−
let ?a = p1
let ?b = (vector [b-x, 0])::(real^2)
let ?c = (vector [b-x, b-y])::(real^2)
let ?d = (vector [a-x, b-y])::(real^2)
let ?e = (vector [a-x, 0])::(real^2)
let ?f = p0

have arcs: arc ?l1 ∧ arc ?l2 ∧ arc ?l3 ∧ arc ?l4 ∧ arc ?l5
by (smt (verit, ccfv-SIG) UnCI a-x arc-linepath assms(9) b-x b-y p0-def

p1-def pathfinish-in-path-image pathstart-in-path-image vector-2 (1) vector-2 (2))

have l4l5 : path-image ?l4 ∩ path-image ?l5 = {pathfinish ?l4}
using linepath-int-corner [of ?d ?e ?f] arc-simple-path arcs constant-linepath-is-not-loop-free

p0 simple-path-def
by auto

have l3l4 : path-image ?l3 ∩ path-image ?l4 = {pathfinish ?l3}
using linepath-int-corner [of ?c ?d ?e]

by (metis Int-commute arc-simple-path arcs closed-segment-commute linepath-0 ′

linepath-int-corner path-image-linepath pathfinish-linepath pathstart-def vector-2 (2))
have l2l3 : path-image ?l2 ∩ path-image ?l3 = {pathfinish ?l2}

using linepath-int-corner [of ?b ?c ?d]
by (metis Int-commute arc-simple-path arcs linepath-0 ′ linepath-int-corner

pathfinish-linepath pathstart-def vector-2 (2))
have l1l2 : path-image ?l1 ∩ path-image ?l2 = {pathfinish ?l1}

using linepath-int-corner [of ?a ?b ?c]
by (metis Int-commute arc-distinct-ends arcs assms(9) closed-segment-commute

linepath-int-corner path-image-linepath pathfinish-linepath pathstart-linepath vector-2 (2))

have l3l5 : path-image ?l3 ∩ path-image ?l5 = {}
using linepath-int-horizontal[of ?c ?d ?e ?f]

by (metis arc-distinct-ends arcs assms(9) linepath-int-horizontal pathfin-
ish-linepath pathstart-linepath vector-2 (2))

have l2l4 : path-image ?l2 ∩ path-image ?l4 = {}
using linepath-int-vertical[of ?b ?c ?d ?e]
by (metis arc-distinct-ends arcs linepath-int-vertical pathfinish-linepath path-

start-linepath vector-2 (1))
have l1l3 : path-image ?l1 ∩ path-image ?l3 = {}

using linepath-int-vertical[of ?a ?b ?c ?d]
by (metis arc-distinct-ends arcs assms(9) linepath-int-horizontal pathfin-

ish-linepath pathstart-linepath vector-2 (2))

have l2l5 : path-image ?l2 ∩ path-image ?l5 = {}
using linepath-int-columns[of ?b ?c ?e ?f]

by (smt (verit, ccfv-threshold) Int-commute UnCI a-x b-x linepath-int-columns
p0 p0-def pathstart-in-path-image pathstart-join vector-2 (1) verit-comp-simplify1 (3))

have l1l4 : path-image ?l1 ∩ path-image ?l4 = {}
using linepath-int-columns[of ?a ?b ?d ?e]

276

by (smt (z3) UnCI a-x assms(9) b-x disjoint-iff p1-def path-image-linepath
pathfinish-in-path-image segment-horizontal segment-vertical vector-2 (1) vector-2 (2))

have l1l5 : path-image ?l1 ∩ path-image ?l5 = {}
using linepath-int-columns[of ?a ?b ?e ?f]

by (smt (z3) UnCI a-def a-x assms(10) assms(9) b-x disjoint-iff p1-def
path-image-linepath pathfinish-in-path-image segment-horizontal vector-2 (1) vec-
tor-2 (2))

have path-image ?l4 ∩ path-image ?l5 = {pathfinish ?l4}
using l4l5 by blast

moreover have sf-45 : pathfinish ?l4 = pathstart ?l5 by simp
ultimately have arc (?l4 +++ ?l5)

by (metis arc-join-eq-alt arcs)
moreover have path-image ?l3 ∩ path-image (?l4 +++ ?l5) = {pathfinish

?l3}
using l3l4 l3l5

by (metis (no-types, lifting) Int-Un-distrib sf-45 insert-is-Un path-image-join)
moreover have sf-345 : pathfinish ?l3 = pathstart (?l4 +++ ?l5) by simp
ultimately have arc (?l3 +++ ?l4 +++ ?l5)

by (metis arc-join-eq-alt arcs)
moreover have path-image ?l2 ∩ path-image (?l3 +++ ?l4 +++ ?l5) =

{pathfinish ?l2}
using l2l3 l2l4 l2l5

by (smt (verit) Int-Un-distrib sf-45 sf-345 insert-is-Un path-image-join
sup-bot-left)

moreover have sf-2345 : pathfinish ?l2 = pathstart (?l3 +++ ?l4 +++ ?l5)
by simp

ultimately have arc (?l2 +++ ?l3 +++ ?l4 +++ ?l5)
by (metis arc-join-eq-alt arcs)

moreover have path-image ?l1 ∩ path-image (?l2 +++ ?l3 +++ ?l4 +++
?l5) = {pathfinish ?l1}

proof−
have path-image (?l2 +++ ?l3 +++ ?l4 +++ ?l5)

= path-image ?l2 ∪ path-image ?l3 ∪ path-image ?l4 ∪ path-image ?l5
by (simp add: path-image-join sup-assoc)

thus ?thesis using l1l2 l1l3 l1l4 l1l5 by blast
qed
moreover have pathfinish ?l1 = pathstart (?l2 +++ ?l3 +++ ?l4 +++

?l5) by simp
ultimately show arc (?l1 +++ ?l2 +++ ?l3 +++ ?l4 +++ ?l5)

by (metis arc-join-eq-alt arcs)
qed
moreover have loop-free p using assms(1) assms(7) simple-path-def by blast
moreover have path-image ?R ′ ∩ path-image p = {p0 , p1}
proof−
have path-image p ∩ path-image ?l2 = {} using b-x segment-vertical by auto

moreover have path-image p ∩ path-image ?l3 = {} using b-y segment-horizontal
by auto

277

moreover have path-image p ∩ path-image ?l4 = {} using a-x segment-vertical
by auto

moreover have path-image p ∩ path-image ?l1 = {p1}
proof−

have p1 ∈ path-image p using p1-def by blast
moreover have path-image p ∩ path-image ?l1 ⊆ {p1}
proof(rule subsetI)

fix x assume ∗: x ∈ path-image p ∩ path-image ?l1
then have x$1 ≤ a

using a-def assms(10) assms(12) assms(9) l-def linepath-image-01
segment-horizontal by auto

moreover have x$1 ≥ a
by (smt (z3) ∗ Int-iff Un-iff a-def assms(9) b-x linepath-image-01

path-defs(4) segment-horizontal vector-2 (1) vector-2 (2))
moreover have x$2 = 0 using ∗ assms(9) segment-horizontal by auto

ultimately show x ∈ {p1} using a-def assms(9) segment-vertical by
fastforce

qed
ultimately show ?thesis by auto

qed
moreover have path-image p ∩ path-image ?l5 = {p0}
proof−

have p0 ∈ path-image p using p0-def by blast
moreover have path-image p ∩ path-image ?l5 ⊆ {p0}
proof(rule subsetI)

fix x assume ∗: x ∈ path-image p ∩ path-image ?l5
then have x$1 ≤ 0

using R-x-a assms(9) p0-def pathstart-in-path-image segment-horizontal
by fastforce

moreover have x$1 ≥ 0
proof−
have x ∈ {x. x$2 = 0} using ∗ assms(9) segment-horizontal by fastforce

then have x ∈ l using ∗ assms(12) by auto
thus ?thesis using a-def assms(10) assms(9) l-def segment-horizontal

by auto
qed
moreover have x$2 = 0 using ∗ assms(9) segment-horizontal by auto

ultimately show x ∈ {p0} using a-def assms(9) segment-vertical by
fastforce

qed
ultimately show ?thesis by auto

qed
moreover have path-image ?R ′

= path-image ?l1 ∪ path-image ?l2 ∪ path-image ?l3 ∪ path-image ?l4 ∪
path-image ?l5

by (simp add: Un-assoc path-image-join)
ultimately show ?thesis by fast

qed
moreover have arc p

278

using a-def arc-simple-path assms(10) assms(7) p0 p0-def p1-def by fastforce
ultimately show ?thesis
by (metis (no-types, lifting) simple-path-join-loop-eq Int-commute dual-order .refl

p0-def p1-def pathfinish-join pathfinish-linepath pathstart-join pathstart-linepath)
qed

have inside-outside: inside-outside ?R (path-inside ?R) (path-outside ?R)
using closed simple Jordan-inside-outside-real2

by (simp add: closed-path-def inside-outside-def path-inside-def path-outside-def)

have interior-frontier : path-inside ?R = interior (path-inside ?R)
∧ frontier (path-inside ?R) = path-image ?R

using inside-outside interior-open unfolding inside-outside-def by auto

have path-image q ∩ path-image ?l1 ⊆ {p1}
proof(rule subsetI)

fix x assume ∗: x ∈ path-image q ∩ path-image ?l1
then have x$1 ≤ a using a-def assms(10) assms(11) assms(9) l-def seg-

ment-horizontal by auto
moreover have x$1 ≥ a
by (smt (z3) ∗ Int-iff Un-iff a-def assms(9) b-x linepath-image-01 path-defs(4)

segment-horizontal vector-2 (1) vector-2 (2))
moreover have x$2 = 0 using ∗ assms(9) segment-horizontal by auto
ultimately show x ∈ {p1} using a-def assms(9) segment-vertical by fastforce

qed
moreover have path-image q ∩ path-image ?l5 ⊆ {p0}
proof(rule subsetI)

fix x assume ∗: x ∈ path-image q ∩ path-image ?l5
then have x$1 ≤ 0

using R-x-a assms(9) p0-def pathstart-in-path-image segment-horizontal by
fastforce

moreover have x$1 ≥ 0
using ∗ a-def assms(10) assms(11) assms(9) l-def segment-horizontal by auto

moreover have x$2 = 0 using ∗ assms(9) segment-horizontal by auto
ultimately show x ∈ {p0} using a-def assms(9) segment-vertical by fastforce

qed
moreover have ?thesis if p1 ∈ path-image q ∩ path-image ?l1 using p1-def that

by blast
moreover have ?thesis if p0 ∈ path-image q ∩ path-image ?l5 using p0-def that

by blast
moreover have ?thesis if

q-int-l1 : path-image q ∩ path-image ?l1 = {} and
q-int-l5 : path-image q ∩ path-image ?l5 = {}

proof−
have q-int-l2 : path-image q ∩ path-image ?l2 = {}

using b-x segment-vertical by auto
moreover have q-int-l3 : path-image q ∩ path-image ?l3 = {}

using UnCI b-y segment-horizontal by auto
moreover have q-int-l4 : path-image q ∩ path-image ?l4 = {}

279

using a-x segment-vertical by auto
moreover have ?thesis if q0 ∈ path-image p using q0-def that by blast
moreover have path-image q ∩ path-image ?R 6= {} if q0 /∈ path-image p
proof−

have q0 ∈ path-outside ?R

proof−
let ?e2 ′ = (vector [0 , −1])::(real^2)
let ?ray = λd. q0 + d ∗R ?e2 ′

have ¬ (∃ d>0 . ?ray d ∈ path-image ?R)
proof−

have ∀ d>0 . (?ray d)$2 < q0$2 by auto
thus ?thesis using R-y-q0 by fastforce

qed
moreover have bounded (path-inside ?R) using bounded-finite-inside simple

by blast
moreover have ?e2 ′ 6= 0 by (metis vector-2 (2) zero-index zero-neq-neg-one)

ultimately have q0 /∈ path-inside ?R
using ray-to-frontier [of path-inside ?R] interior-frontier by metis

moreover have q0 /∈ path-image ?R
using that q-int-l1 q-int-l2 q-int-l3 q-int-l4 q-int-l5
by (simp add: disjoint-iff not-in-path-image-join pathstart-in-path-image

q0-def)
ultimately show ?thesis using inside-outside unfolding inside-outside-def

by blast
qed
then have q0 ∈ − (path-inside ?R)
by (metis ComplI IntI equals0D inside-Int-outside path-inside-def path-outside-def)
moreover have q1 ∈ path-inside ?R

proof−
let ?e = (vector [q1$1 , b-y])::(real^2)
let ?d1 = (vector [b-x, b-y])::(real^2)
let ?d2 = (vector [a-x, b-y])::(real^2)
obtain ε where ε: 0 < ε ∧ ε < dist ?e q1 ∧ ε < dist ?e ?d1 ∧ ε < dist ?e

?d2
proof−

have ?e 6= q1
by (metis UnCI b-y order-less-irrefl pathfinish-in-path-image q1-def

vector-2 (2))
moreover have ?e 6= ?d1

by (smt (verit) UnCI b-x pathfinish-in-path-image q1-def vector-2 (1))
moreover have ?e 6= ?d2

by (metis UnCI a-x order-less-irrefl pathfinish-in-path-image q1-def
vector-2 (1))

ultimately have 0 < dist ?e q1 ∧ 0 < dist ?e ?d1 ∧ 0 < dist ?e ?d2 by
simp

then have 0 < Min {dist ?e q1 , dist ?e ?d1 , dist ?e ?d2} by auto
then obtain ε where 0 < ε ∧ ε < Min {dist ?e q1 , dist ?e ?d1 , dist ?e

280

?d2}
by (meson field-lbound-gt-zero)

thus ?thesis using that by auto
qed
then have ?e ∈ path-image ?l3

by (simp add: a-x b-x q1-def segment-horizontal less-eq-real-def pathfin-
ish-in-path-image)

then have ?e ∈ path-image ?R by (simp add: p1-def path-image-join)
then have ?e ∈ frontier (path-inside ?R)

using inside-outside unfolding inside-outside-def by blast
then obtain int-p where int-p: int-p ∈ ball ?e ε ∧ int-p ∈ path-inside ?R

by (meson ε inside-outside frontier-straddle mem-ball)

have int-p-x: a-x < int-p$1 ∧ int-p$1 < b-x
by (metis (mono-tags, lifting) dist-bound-1 UnI2 ε a-x b-x dist-commute

int-p pathfinish-in-path-image q1-def vector-2 (1) vector-2 (2))
have int-p$2 < b-y
proof(rule ccontr)

have int-p$2 6= b-y
proof−

have int-p$2 = b-y =⇒ int-p ∈ path-image ?l3
using int-p-x by (simp add: segment-horizontal)

moreover have int-p ∈ path-image ?l3 =⇒ int-p ∈ path-image ?R
by (simp add: p1-def path-image-join)

moreover have path-image ?R ∩ path-inside ?R = {}
using inside-outside unfolding inside-outside-def by blast

ultimately show ?thesis using int-p by fast
qed
moreover assume ¬ int-p$2 < b-y
ultimately have ∗: int-p$2 > b-y by simp

let ?e2 = (vector [0 , 1])::(real^2)
let ?ray = λd. int-p + d ∗R ?e2
have ¬ (∃ d>0 . ?ray d ∈ path-image ?R)
proof−

have ∀ d>0 . (?ray d)$2 > b-y using ∗ by auto
thus ?thesis using R-y-b by fastforce

qed
moreover have bounded (path-inside ?R) using bounded-finite-inside

simple by blast
moreover have ?e2 6= 0 using e1e2-basis(4) by force
ultimately have int-p /∈ path-inside ?R

using ray-to-frontier [of path-inside ?R] interior-frontier by metis
thus False using int-p by blast

qed
moreover have int-p$2 > q1$2
proof−
have dist int-p ?e < ε using ε dist-commute-lessI int-p mem-ball by blast
then have dist (int-p$2) (?e$2) < ε by (smt (verit, best) dist-vec-nth-le)

281

then have 1 : int-p$2 > ?e$2 − ε by (simp add: dist-real-def)

have q1$1 = ?e$1 by simp
then have dist q1 ?e = dist (q1$2) (?e$2) using axis-dist by blast
then have q1$2 < ?e$2 − ε

by (smt (verit) UnCI ε b-y dist-commute dist-real-def pathfinish-in-path-image
q1-def vector-2 (2))

moreover have q1$2 < ?e$2 by (simp add: b-y pathfinish-in-path-image
q1-def)

moreover have dist q1 ?e > ε by (metis ε dist-commute)
ultimately have q1$2 < ?e$2 − ε by presburger
thus ?thesis using 1 by force

qed
ultimately have int-p-y: int-p$2 < b-y ∧ int-p$2 > q1$2 by blast

let ?int-l = linepath int-p q1

have path-image ?int-l ∩ path-image p = {}
proof−

have ∀ x ∈ path-image p. (?int-l 0)$2 > x$2
by (smt (verit) int-p-y assms(14) linepath-0 ′)

moreover have ∀ x ∈ path-image p. (?int-l 1)$2 > x$2
by (simp add: assms(14) linepath-1 ′)

ultimately have ∀ x ∈ path-image p. ∀ y ∈ path-image ?int-l. y$2 > x$2
by (metis assms(14) linepath-0 ′ linepath-bound-2 (1))

thus ?thesis by blast
qed
moreover have path-image ?int-l ∩ path-image ?l1 = {}
by (smt (verit, best) assms(14) assms(9) disjoint-iff int-p-y linepath-int-rows

p0-def pathstart-in-path-image vector-2 (2))
moreover have path-image ?int-l ∩ path-image ?l2 = {}

by (metis UnCI b-x int-p-x linepath-int-columns pathfinish-in-path-image
q1-def vector-2 (1))

moreover have path-image ?int-l ∩ path-image ?l3 = {}
using int-p-y linepath-int-rows by auto

moreover have path-image ?int-l ∩ path-image ?l4 = {}
by (metis UnCI a-x inf-commute int-p-x linepath-int-columns pathfin-

ish-in-path-image q1-def vector-2 (1))
moreover have path-image ?int-l ∩ path-image ?l5 = {}
by (smt (verit, best) assms(14) assms(9) disjoint-iff int-p-y linepath-int-rows

p0-def pathstart-in-path-image vector-2 (2))
ultimately have path-image ?int-l ∩ path-image ?R = {}

by (simp add: disjoint-iff not-in-path-image-join)
then have path-image ?int-l ⊆ path-inside ?R ∨ path-image ?int-l ⊆

path-outside ?R
by (smt (verit, ccfv-SIG) convex-imp-path-connected convex-segment(1) dis-

joint-insert(1) insert-Diff inside-outside-def int-p linepath-image-01 local.inside-outside
path-connected-not-frontier-subset path-defs(4) pathstart-in-path-image pathstart-linepath)

moreover have ?int-l 0 = int-p ∧ int-p ∈ path-inside ?R

282

using int-p by (simp add: linepath-0 ′)
ultimately have path-image ?int-l ⊆ path-inside ?R

using inside-outside-def local.inside-outside by auto
thus ?thesis by auto

qed
ultimately have path-image q ∩ − (path-inside ?R) 6= {} ∧ path-image q ∩

(path-inside ?R) 6= {}
unfolding q0-def q1-def by fast

moreover have path-connected (path-image q)
by (simp add: assms(8) path-connected-path-image simple-path-imp-path)

moreover have path-image ?R = frontier (path-inside ?R)
using inside-outside unfolding inside-outside-def p0-def path-inside-def by

auto
ultimately show ?thesis by (metis Diff-eq Diff-eq-empty-iff path-connected-not-frontier-subset)
qed
ultimately show ?thesis

by (smt (verit, ccfv-threshold) disjoint-iff-not-equal not-in-path-image-join
q-int-l1 q-int-l5)

qed
ultimately show ?thesis by auto

qed

lemma pocket-fill-line-int-aux2 :
fixes p q :: R-to-R2
fixes A :: (real^2) set
defines p0 ≡ pathstart p
defines p1 ≡ pathfinish p
defines a ≡ p1$1
defines l ≡ closed-segment p0 p1
assumes simple-path p
assumes p0$1 = 0 ∧ p0$2 = 0 ∧ p1$2 = 0
assumes a > 0
assumes convex A ∧ compact A
assumes {p0 , p1} ⊆ frontier A
assumes p ‘ {0<..<1} ⊆ interior A
shows path-image p ∩ {x. x$2 = 0} ⊆ l

proof−
have l: l = {x. x$2 = 0 ∧ x$1 ∈ {0 ..a}}

using horizontal-segment-at-0 ′ a-def assms(6) assms(7) l-def by presburger
have endpoints: (p 0)$1 = 0 ∧ (p 0)$2 = 0 ∧ (p 1)$1 = a ∧ (p 1)$2 = 0

by (metis a-def assms(6) p0-def p1-def pathfinish-def pathstart-def)

have False if ∗: ∃ t ∈ {0 ..1}. (p t)$2 = 0 ∧ ((p t)$1 > a ∨ (p t)$1 < 0)
proof−

obtain t where t ∈ {0<..<1} ∧ (p t)$2 = 0 ∧ ((p t)$1 > a ∨ (p t)$1 < 0)
by (metis ∗ assms(7) endpoints atLeastAtMost-iff greaterThanLessThan-iff

less-eq-real-def linorder-not-le)
then obtain x where x: x ∈ p‘{0<..<1} ∧ x$2 = 0 ∧ (x$1 > a ∨ x$1 < 0)

by blast

283

thus False
using pocket-fill-line-int-aux[of p0 p1 x A]

by (smt (verit, del-insts) Diff-iff a-def assms(10) assms(6) assms(7) assms(8)
assms(9) empty-subsetI endpoints exhaust-2 frontier-def frontier-subset-compact in-
sert-subset interior-subset p0-def pathstart-def subset-eq vec-eq-iff zero-index)

qed
then have ∀ t ∈ {0 ..1}. (p t)$2 = 0 −→ (p t)$1 ∈ {0 ..a} by fastforce
then have ∀ v ∈ path-image p. v$2 = 0 −→ v$1 ∈ {0 ..a} by (simp add: imageE

path-defs(4))
thus ?thesis using l by blast

qed

lemma three-points-on-line:
fixes a b :: ′a::real-vector
assumes A = affine hull {a, b}
assumes a 6= b
assumes {x, y, z} ⊆ A
assumes x 6= y ∧ y 6= z ∧ x 6= z
shows x ∈ open-segment y z ∨ y ∈ open-segment x z ∨ z ∈ open-segment x y

proof−
let ?u = b − a

have ∗:
∧
α β γ::real. α ∈ open-segment β γ

=⇒ a + α ∗R ?u ∈ open-segment (a + β ∗R ?u) (a + γ ∗R ?u)
proof−

fix α β γ :: real
assume ∗: α ∈ open-segment β γ

define x where x ≡ a + α ∗R ?u
define y where y ≡ a + β ∗R ?u
define z where z ≡ a + γ ∗R ?u

obtain v where v: α = (1 − v) ∗ β + v ∗ γ ∧ v ∈ {0<..<1}
by (metis (no-types, lifting) ∗ imageE in-segment(2) real-scaleR-def seg-

ment-image-interval(2))
then have x = a + ((1 − v) ∗ β + v ∗ γ) ∗R ?u using x-def by blast
also have ... = a + (((1 − v) ∗ β) ∗R ?u) + ((v ∗ γ) ∗R ?u) by (simp add:

scaleR-left.add)
also have ... = a + ((1 − v) ∗R (β ∗R ?u)) + (v ∗R (γ ∗R ?u)) by simp
also have ... = a + ((1 − v) ∗R (y − a)) + (v ∗R (z − a)) by (simp add:

y-def z-def)
also have ... = a + y − a − v ∗R (y − a) + v ∗R (z − a) by (simp add:

scaleR-left-diff-distrib)
also have ... = y − v ∗R (y − a) + v ∗R (z − a) by simp
also have ... = y − (v ∗R y) + (v ∗R a) + (v ∗R z) − (v ∗R a) by (simp add:

scaleR-right-diff-distrib)
also have ... = (1 − v) ∗R y + v ∗R z by (metis add-diff-cancel diff-add-eq

scaleR-collapse)
finally have x = (1 − v) ∗R y + v ∗R z .

284

moreover have 0 ≤ 1 − v ∧ 1 − v ≤ 1 using v by fastforce
ultimately have x ∈ closed-segment y z using in-segment(1) by auto
moreover have x 6= y ∧ x 6= z
by (metis ∗ add-diff-cancel-left ′ assms(2) eq-iff-diff-eq-0 in-open-segment-iff-line

open-segment-commute open-segment-subsegment scaleR-right-imp-eq x-def y-def z-def)
ultimately show a + α ∗R ?u ∈ open-segment (a + β ∗R ?u) (a + γ ∗R ?u)

unfolding open-segment-def using x-def y-def z-def by force
qed

obtain α β γ where xyz: x = a + α ∗R ?u ∧ y = a + β ∗R ?u ∧ z = a + γ
∗R ?u

using affine-hull-2-alt[of a b] assms(1) assms(3) by auto
then have α 6= β ∧ β 6= γ ∧ α 6= γ using assms by blast
moreover have α ∈ closed-segment β γ ∨ β ∈ closed-segment α γ ∨ γ ∈

closed-segment α β
by (metis atLeastAtMost-iff closed-segment-commute less-eq-real-def less-max-iff-disj

linorder-not-less real-Icc-closed-segment)
ultimately have α ∈ open-segment β γ ∨ β ∈ open-segment α γ ∨ γ ∈

open-segment α β
unfolding open-segment-def by fast

thus ?thesis using ∗ xyz by presburger
qed

lemma pocket-fill-line-int-aux3 :
fixes A :: (real^2) set
assumes convex A ∧ compact A
assumes v 6= 0
assumes closed-segment 0 w ⊆ frontier A (is closed-segment ?a ?b ⊆ -)
assumes w · v = 0
assumes w 6= 0
shows (A ⊆ {x. x · v ≤ 0} ∨ A ⊆ {x. x · v ≥ 0}) (is A ⊆ ?P1 ∨ A ⊆ ?P2)

proof−
have frontiers: frontier ?P1 = frontier ?P2 ∧ frontier ?P1 ⊆ ?P2 ∧ frontier

?P2 ⊆ ?P1
by (smt (verit, ccfv-threshold) Collect-mono assms(2) frontier-halfspace-component-ge

frontier-halfspace-le inner-commute subset-antisym)
have frontier : frontier ?P1 = {x. x · v = 0}

by (simp add: assms(2) frontier-halfspace-component-ge frontiers)

have ?thesis if interior A 6= {}
proof−

have interior A ⊆ ?P1 ∨ interior A ⊆ ?P2
proof(rule ccontr)

assume ¬ (interior A ⊆ ?P1 ∨ interior A ⊆ ?P2)
then obtain x y where xy: x ∈ ((interior A) ∩ ?P1) − ?P2 ∧ y ∈ ((interior

A) ∩ ?P2) − ?P1
by fastforce
moreover have x ∈ frontier ?P1 ∪ interior ?P1 ∧ y ∈ frontier ?P2 ∪

interior ?P2

285

by (metis DiffD1 IntD2 Un-Diff-cancel2 frontiers closure-Un-frontier fron-
tier-def interior-subset sup.orderE xy)

ultimately have xy ′: x ∈ (interior A) ∩ interior ?P1 ∧ y ∈ (interior A) ∩
interior ?P2

using frontiers by blast
then have closed-segment x y ∩ frontier ?P1 6= {}
by (metis (no-types, lifting) DiffD1 DiffD2 Int-iff convex-closed-segment con-

vex-imp-path-connected empty-iff ends-in-segment(1) ends-in-segment(2) in-mono
path-connected-not-frontier-subset xy)

moreover have closed-segment x y ⊆ interior A
by (metis convex-interior Int-iff assms(1) convex-contains-segment xy ′)

ultimately obtain z where z: z ∈ interior A ∩ frontier ?P1 by blast

have closed-segment ?a ?b ⊆ frontier ?P1
proof(rule subsetI)

fix x
assume x ∈ closed-segment ?a ?b
then obtain u where x = (1 − u) ∗R ?a + u ∗R ?b ∧ 0 ≤ u ∧ u ≤ 1

unfolding closed-segment-def by blast
then have x · v = u ∗R (?b · v) by simp
moreover have ?b · v = 0 by (simp add: assms(4))
ultimately have x · v = 0 by simp
thus x ∈ frontier ?P1 using frontier by blast

qed
moreover have z /∈ closed-segment ?a ?b using assms(3) frontier-def z by

fastforce
ultimately have z ∈ frontier ?P1 − closed-segment ?a ?b using z by blast
moreover have collinear {z, ?a, ?b}
proof−

have {z, ?a, ?b} ⊆ {x. x · v = 0}
using ‹{0−−w} ⊆ frontier {x. x · v ≤ 0}› frontier z by auto

moreover have {x. x · v = 0} = affine hull {?a, ?b}
by (metis (no-types, lifting) Collect-mono assms(2) assms(5) calculation

halfplane-frontier-affine-hull inner-commute insert-subset subset-antisym)
ultimately show ?thesis using collinear-affine-hull by auto

qed
ultimately have ?a ∈ open-segment z ?b ∨ ?b ∈ open-segment z ?a

using three-points-on-line[of {x. x · v = 0}]
by (smt (z3) ‹z /∈ {0−−w}› assms(5) collinear-3-imp-in-affine-hull ends-in-segment(1)

ends-in-segment(2) hull-redundant hull-subset insert-commute open-closed-segment
three-points-on-line)

moreover have open-segment z ?b ⊆ interior A ∧ open-segment z ?a ⊆
interior A

proof−
have closed-segment z ?b ⊆ A ∧ closed-segment z ?a ⊆ A

by (meson IntD1 assms(1) assms(3) closed-segment-subset ends-in-segment(1)
ends-in-segment(2) frontier-subset-compact in-mono interior-subset z)

then have rel-interior (closed-segment z ?b) ⊆ interior A
∧ rel-interior (closed-segment z ?a) ⊆ interior A

286

by (metis IntD1 ‹z /∈ {0−−w}› assms(1) closure-convex-hull convex-hull-eq
in-interior-closure-convex-segment order-class.order-eq-iff rel-interior-closed-segment
subsetD subset-closed-segment z)

moreover have rel-interior (closed-segment z ?b) = open-segment z ?b
∧ rel-interior (closed-segment z ?a) = open-segment z ?a
by (metis ‹z /∈ {0−−w}› closed-segment-commute ends-in-segment(1)

rel-interior-closed-segment)
ultimately show ?thesis by force

qed
ultimately have ?a ∈ interior A ∨ ?b ∈ interior A by fast
thus False using assms(3) frontier-def by auto

qed
then have closure (interior A) ⊆ closure ?P1 ∨ closure (interior A) ⊆ closure

?P2
using closure-mono by blast

moreover have closed ?P1 ∧ closed ?P2
by (simp add: closed-halfspace-component-ge closed-halfspace-component-le)

moreover have closure (interior A) = A
using assms(1)
by (simp add: compact-imp-closed convex-closure-interior that)

ultimately show ?thesis using closure-closed by auto
qed
moreover have ?thesis if interior A = {}
proof(rule ccontr)

assume ¬ (A ⊆ ?P1 ∨ A ⊆ ?P2)
then obtain x y where xy: x ∈ (A ∩ ?P1) − ?P2 ∧ y ∈ (A ∩ ?P2) − ?P1

by fastforce
moreover have x ∈ frontier ?P1 ∪ interior ?P1 ∧ y ∈ frontier ?P2 ∪ interior

?P2
by (metis DiffD1 IntD2 Un-Diff-cancel2 frontiers closure-Un-frontier fron-

tier-def interior-subset sup.orderE xy)
ultimately have xy ′: x ∈ A ∩ interior ?P1 ∧ y ∈ A ∩ interior ?P2 using

frontiers by blast
have ¬ collinear {?a, ?b, x, y}
proof(rule ccontr)

assume ¬ ¬ collinear {?a, ?b, x, y}
then have ∗: collinear {?a, ?b, x, y} by blast
then have {?a, ?b, x, y} ⊆ affine hull {?a, ?b}

by (metis assms(5) collinear-3-imp-in-affine-hull collinear-4-3 hull-subset
insert-subset)

moreover have affine hull {?a, ?b} = {x. x · v = 0}
by (smt (verit) DiffE ∗ assms(2) assms(4) assms(5) collinear-3-imp-in-affine-hull

collinear-4-3 halfplane-frontier-affine-hull inner-commute mem-Collect-eq xy)
moreover have ... = frontier ?P1 ∧ ... = frontier ?P2

using frontiers assms(2) frontier-halfspace-component-ge by blast
ultimately show False using frontiers xy by auto

qed
then obtain c1 c2 c3 where c123 : ¬ collinear {c1 , c2 , c3} ∧ {c1 , c2 , c3}

⊆ {?a, ?b, x, y}

287

by (metis assms(5) collinear-4-3 insert-mono subset-insertI)
then have interior (convex hull {c1 , c2 , c3}) 6= {}
by (metis Jordan-inside-outside-real2 closed-path-def make-triangle-def path-inside-def

polygon-def polygon-of-def triangle-inside-is-convex-hull-interior triangle-is-polygon)
moreover have {c1 , c2 , c3} ⊆ A

by (smt (verit, del-insts) c123 xy ′ assms(1) assms(3) empty-subsetI fron-
tier-subset-compact in-mono inf .orderE insert-absorb insert-mono le-infE subsetI
subset-closed-segment)

ultimately have interior A 6= {}
by (metis assms(1) interior-mono subset-empty subset-hull)

thus False using that by blast
qed
ultimately show ?thesis by blast

qed

lemma pocket-fill-line-int-aux4 :
fixes p q :: R-to-R2
fixes A :: (real^2) set
defines p0 ≡ pathstart p
defines p1 ≡ pathfinish p
defines q0 ≡ pathstart q
defines q1 ≡ pathfinish q
defines a ≡ p1$1
defines l ≡ closed-segment p0 p1
assumes simple-path p
assumes simple-path q
assumes path-image p ∩ path-image q = {}
assumes p0$1 = 0 ∧ p0$2 = 0 ∧ p1$2 = 0
assumes a > 0
assumes ∀ v ∈ path-image p. q0$2 ≤ v$2
assumes ∀ v ∈ path-image p. q1$2 > v$2
assumes convex A ∧ compact A
assumes {p0 , p1} ⊆ frontier A
assumes p‘{0<..<1} ⊆ interior A
assumes path-image q ⊆ A
shows l ⊆ frontier A ∀ x ∈ (path-image p) ∪ (path-image q). x$2 ≥ 0 q0$2 = 0

proof−
have l: l = {x. x$2 = 0 ∧ x$1 ∈ {0 ..a}}

using horizontal-segment-at-0 ′ a-def assms(10) assms(11) l-def by presburger
have endpoints: (p 0)$1 = 0 ∧ (p 0)$2 = 0 ∧ (p 1)$1 = a ∧ (p 1)$2 = 0

by (metis a-def assms(10) p0-def p1-def pathfinish-def pathstart-def)

have l ⊆ frontier A if ¬ (path-image q ∩ {x. x$2 = 0} ⊆ l)
proof−

from that obtain x where x ∈ path-image q ∩ {x. x$2 = 0} ∧ (x$1 < 0 ∨
x$1 > a)

by (smt (verit) Int-Collect a-def assms(10) endpoints l-def p0-def pathstart-def
segment-horizontal subsetI)

thus ?thesis

288

using pocket-fill-line-int-aux[of p0 p1 x A] unfolding l-def
by (smt (verit, del-insts) IntD2 Int-commute a-def assms(11) assms(14)

assms(15) assms(17) assms(10) endpoints exhaust-2 frontier-subset-compact in-
sert-subset mem-Collect-eq p0-def pathstart-def subset-eq vec-eq-iff zero-index)

qed
moreover have False if (path-image q ∩ {x. x$2 = 0} ⊆ l)
proof−

have (path-image p ∩ {x. x$2 = 0} ⊆ l)
using pocket-fill-line-int-aux2

by (metis a-def assms(10) assms(11) assms(14) assms(15) assms(16) assms(7)
l-def p0-def p1-def)

then have path-image p ∩ path-image q 6= {}
using pocket-fill-line-int-aux1

by (metis (mono-tags, lifting) assms(11) assms(12) assms(13) assms(7)
assms(8) endpoints l-def p0-def p1-def pathfinish-def pathstart-def q0-def q1-def
that)

thus False by (simp add: assms(9))
qed
ultimately show ∗: l ⊆ frontier A by blast

show ∀ x ∈ (path-image p) ∪ (path-image q). x$2 ≥ 0
proof(rule ccontr)

assume ¬ (∀ x ∈ (path-image p) ∪ (path-image q). x$2 ≥ 0)
then have ∃ x ∈ (path-image p) ∪ (path-image q). x$2 < 0 using linorder-not-le

by blast
then obtain x where x: x ∈ ((path-image p) ∪ (path-image q)) ∩ A ∧ x$2 <

0
using assms(12) assms(17) pathstart-in-path-image q0-def by fastforce

let ?v = (vector [0 , 1])::(real^2)
have 1 : ?v 6= 0 by (simp add: e1e2-basis(3))
have 2 : closed-segment 0 p1 ⊆ frontier A

by (smt (verit, del-insts) ∗ Int-closed-segment closed-segment-eq double-
ton-eq-iff endpoints l-def p0-def pathstart-def segment-vertical zero-index)

have 3 : p1 · ?v = 0 by (metis assms(10) cart-eq-inner-axis e1e2-basis(3))
have 4 : p1 6= 0 using a-def assms(11) by force
have ∗: (A ⊆ {x. x · ?v ≤ 0} ∨ A ⊆ {x. x · ?v ≥ 0})

using pocket-fill-line-int-aux3 [OF assms(14) 1 2 3 4] by blast
moreover have q1$2 > 0 using assms(10) assms(13) p0-def pathstart-in-path-image

by fastforce
ultimately show False

by (metis (no-types, lifting) IntE x assms(17) e1e2-basis(3) inner-axis
linorder-not-less mem-Collect-eq pathfinish-in-path-image q1-def real-inner-1-right
subsetD)

qed
moreover have q0$2 ≤ 0 using assms(10) assms(12) p1-def by force
moreover have q0 ∈ (path-image p) ∪ (path-image q)

by (simp add: pathstart-in-path-image q0-def)
ultimately show q0$2 = 0 by force

289

qed

lemma pocket-fill-line-int-aux5 :
fixes p q :: R-to-R2
fixes A :: (real^2) set
defines p0 ≡ pathstart p
defines p1 ≡ pathfinish p
defines q0 ≡ pathstart q
defines q1 ≡ pathfinish q
defines a ≡ p1$1
defines l ≡ closed-segment p0 p1
assumes simple-path p
assumes simple-path q
assumes path-image p ∩ path-image q = {q0 , q1}
assumes p0$1 = 0 ∧ p0$2 = 0 ∧ p1$2 = 0
assumes a > 0
assumes A = convex hull (path-image p ∪ path-image q)
assumes {p0 , p1} ⊆ frontier A
assumes p‘{0<..<1} ⊆ interior A
assumes path-image q ⊆ A
assumes ∃ x ∈ p‘{0<..<1}. x$2 ≥ 0
assumes q0 = p1 ∧ q1 = p0
shows l ⊆ frontier A ∀ x ∈ path-image p ∪ path-image q. x$2 ≥ 0

proof−
have 1 : l ⊆ frontier A if ∀ x ∈ path-image p ∪ path-image q. x$2 ≥ 0
proof−

have ∀ x ∈ path-image p ∪ path-image q. x · (vector [0 , 1]) ≥ 0
by (simp add: e1e2-basis(3) inner-axis that)

then have ∀ x ∈ A. x · (vector [0 , 1]) ≥ 0
by (smt (verit, ccfv-threshold) convex-cut-aux ′ assms(12) inner-commute

mem-Collect-eq subset-eq)
then have A ⊆ {x. x · (vector [0 , 1]) ≥ 0} by blast
moreover have frontier {x. x · ((vector [0 , 1])::(real^2)) ≥ 0} = {x. x ·

(vector [0 , 1]) = 0}
by (metis dual-order .refl frontier-halfspace-component-ge not-one-le-zero vec-

tor-2 (2) zero-index)
moreover have l ⊆ {x. x · (vector [0 , 1]) = 0}
proof−
have ∀ x ∈ l. x$2 = 0 using assms(10) l-def segment-horizontal by presburger
thus ?thesis by (simp add: cart-eq-inner-axis e1e2-basis(3) subset-eq)

qed
ultimately show ?thesis
by (smt (verit, best) Un-upper1 assms(12) closed-segment-subset convex-convex-hull

hull-subset in-frontier-in-subset l-def p0-def p1-def pathfinish-in-path-image path-
start-in-path-image subset-eq)

qed
have 2 : False if tht: ¬ (∀ x ∈ (path-image p) ∪ (path-image q). x$2 ≥ 0)
proof−

290

obtain x tx where x: tx ∈ {0 ..1} ∧ q tx = x ∧ (∀ z ∈ path-image p. x$2 <
z$2)

using exists-point-below-all[of p q] that
by (smt (verit, del-insts) tht assms(10) assms(12) assms(14) assms(7)

assms(8) image-iff p0-def p1-def path-image-def pathfinish-def pathstart-def sim-
ple-path-imp-path)

obtain y ty where y: ty ∈ {0 ..1} ∧ q ty = y ∧ (∀ x ∈ path-image p. y$2 >
x$2)

using exists-point-above-all[of p q]
by (smt (verit, del-insts) assms(10) assms(12) assms(14) assms(16) assms(7)

assms(8) image-iff p0-def p1-def path-image-def pathfinish-def pathstart-def sim-
ple-path-imp-path)

let ?Q =
λq ′. simple-path q ′ ∧ path-image p ∩ path-image q ′ = {}
∧ q ′ 0 = q tx ∧ q ′ 1 = q ty
∧ path-image q ′ ⊆ path-image q

have ∗:
∧

q ′. ?Q q ′ =⇒ False
proof−

fix q ′

assume ∗: ?Q q ′

have 2 : simple-path q ′ by (simp add: ∗)
have 3 : path-image p ∩ path-image q ′ = {} by (simp add: ∗)
have 6 : ∀ v∈path-image p. pathstart q ′ $ 2 ≤ v $ 2

by (simp add: ∗ less-eq-real-def pathstart-def x)
have 7 : ∀ v∈path-image p. v $ 2 < pathfinish q ′ $ 2 by (simp add: ∗ pathfin-

ish-def y)
have 11 : path-image q ′ ⊆ A using ∗ assms(15) by blast
have ∀ x ∈ (path-image p) ∪ (path-image q ′). x$2 ≥ 0

using pocket-fill-line-int-aux4 (2)[of p, OF - 2 3 - - 6 7 - - - 11]
by (metis a-def assms(10) assms(11) assms(12) assms(13) assms(14)

assms(7) assms(8) compact-Un compact-convex-hull compact-simple-path-image con-
vex-convex-hull p0-def p1-def)

thus False
by (smt (verit) ∗ UnCI assms(10) p0-def pathstart-def pathstart-in-path-image

x)
qed

have lf : (∀ t ∈ {0 ..1}. (q t = q0 ∨ q t = q1) −→ (t = 0 ∨ t = 1))
using assms(8)

unfolding q0-def q1-def simple-path-def loop-free-def pathstart-def pathfin-
ish-def

by fastforce
have endpoints: q tx 6= q0 ∧ q ty 6= q0 ∧ q tx 6= q1 ∧ q ty 6= q1
by (metis x y assms(10) assms(17) order-less-le p0-def pathstart-in-path-image)

have tx-neq-ty: tx 6= ty using pathstart-in-path-image x y by fastforce
moreover have False if tx < ty

291

proof−
have path-image p ∩ path-image (subpath tx ty q) = {}
(is path-image p ∩ path-image ?q ′ = {})

proof−
have q0 /∈ path-image ?q ′ ∧ q1 /∈ path-image ?q ′

proof−
have {tx..ty} ⊆ {0 ..1} using x y by simp
then have (∀ t ∈ {tx..ty}. (q t = q0 ∨ q t = q1) −→ (t = 0 ∨ t = 1))

using lf by blast
moreover have 0 /∈ {tx..ty} ∧ 1 /∈ {tx..ty}

by (metis atLeastAtMost-iff dual-order .eq-iff endpoints pathfinish-def
pathstart-def q0-def q1-def x y)

moreover have path-image ?q ′= q‘{tx..ty} by (simp add: path-image-subpath
that)

ultimately show ?thesis by fastforce
qed
thus ?thesis

by (smt (verit, best) Int-empty-right Int-insert-right-if0 assms(9) boolean-algebra-cancel.inf2
inf .absorb-iff1 path-image-subpath-subset x y)

qed
thus ?thesis using ∗[of ?q ′]
by (metis assms(8) tx-neq-ty path-image-subpath-subset pathfinish-def pathfin-

ish-subpath pathstart-def pathstart-subpath simple-path-subpath x y)
qed
moreover have False if ty < tx
proof−

have path-image p ∩ path-image (reversepath (subpath tx ty q)) = {}
(is path-image p ∩ path-image ?q ′ = {})

proof−
have q0 /∈ path-image ?q ′ ∧ q1 /∈ path-image ?q ′

proof−
have {ty..tx} ⊆ {0 ..1} using x y by simp
then have (∀ t ∈ {ty..tx}. (q t = q0 ∨ q t = q1) −→ (t = 0 ∨ t = 1))

using lf by blast
moreover have 0 /∈ {ty..tx} ∧ 1 /∈ {ty..tx}

by (metis atLeastAtMost-iff dual-order .eq-iff endpoints pathfinish-def
pathstart-def q0-def q1-def x y)

moreover have path-image ?q ′ = q‘{ty..tx}
by (simp add: path-image-subpath reversepath-subpath that)

ultimately show ?thesis by fastforce
qed
thus ?thesis
by (smt (verit) Int-commute assms(9) inf .absorb-iff2 inf .assoc inf-bot-right

insert-disjoint(2) path-image-reversepath path-image-subpath-subset x y)
qed
thus ?thesis using ∗[of ?q ′]
by (metis ∗ assms(8) tx-neq-ty path-image-subpath-commute path-image-subpath-subset

pathfinish-def pathfinish-subpath pathstart-def pathstart-subpath reversepath-subpath
simple-path-subpath x y)

292

qed
ultimately show False by fastforce

qed
show l ⊆ frontier A ∀ x ∈ (path-image p) ∪ (path-image q). x$2 ≥ 0

using 1 2 apply blast
using 1 2 by blast

qed

lemma pocket-fill-line-int-aux6 :
fixes p q :: R-to-R2
defines p0 ≡ pathstart p
defines p1 ≡ pathfinish p
defines q0 ≡ pathstart q
defines q1 ≡ pathfinish q
defines a ≡ p1$1
assumes simple-path p
assumes simple-path q
assumes p0 = 0 ∧ p1$2 = 0
assumes a > 0
assumes q0$1 ∈ {0 ..a} ∧ q0$2 = 0
assumes ∀ x ∈ path-image p. q1$2 > x$2
assumes ∀ x ∈ path-image p ∪ path-image q. x$2 ≥ 0
shows path-image p ∩ path-image q 6= {}

proof−
let ?l1 = linepath p1 (vector [a, −1])
let ?l2 = linepath ((vector [a, −1])::(real^2)) (vector [0 , −1])
let ?l3 = linepath ((vector [0 , −1])::(real^2)) 0

let ?R ′ = ?l1 +++ ?l2 +++ ?l3
let ?R = p +++ ?R ′

have closed: closed-path ?R
proof−

have path ?R using assms(6) p1-def simple-path-imp-path by auto
moreover have pathstart ?R = pathstart p by simp
moreover have pathfinish ?R = pathfinish ?l3 by simp
moreover have pathstart p = 0 using assms(8) p0-def by fastforce
moreover have pathfinish ?l3 = 0 by simp
ultimately show ?thesis unfolding closed-path-def by presburger

qed
have simple: simple-path ?R
proof−

have arc ?R ′

proof−
let ?a = p1
let ?b = (vector [a, −1])::(real^2)
let ?c = (vector [0 , −1])::(real^2)
let ?d = 0 ::(real^2)

293

have arcs: arc ?l1 ∧ arc ?l2 ∧ arc ?l3
by (metis arc-linepath assms(8) assms(9) vector-2 (1) vector-2 (2) verit-comp-simplify1 (1)

zero-index zero-neq-neg-one)

have l2l3 : path-image ?l2 ∩ path-image ?l3 = {pathfinish ?l2}
using linepath-int-corner [of ?b ?c ?d]

by (metis Int-commute closed-segment-commute linepath-int-corner path-image-linepath
pathfinish-linepath vector-2 (2) zero-index zero-neq-neg-one)

have l1l2 : path-image ?l1 ∩ path-image ?l2 = {pathfinish ?l1}
using linepath-int-corner [of ?a ?b ?c] by (simp add: assms(8))

have l1l3 : path-image ?l1 ∩ path-image ?l3 = {}
using linepath-int-vertical[of ?a ?b ?c ?d] a-def assms(9) linepath-int-vertical

by auto

have path-image ?l2 ∩ path-image ?l3 = {pathfinish ?l2}
using l2l3 by blast

moreover have sf-23 : pathfinish ?l2 = pathstart ?l3 by simp
ultimately have arc (?l2 +++ ?l3)

by (metis arc-join-eq-alt arcs)
moreover have path-image ?l1 ∩ path-image (?l2 +++ ?l3) = {pathfinish

?l1}
using l1l2 l1l3

by (metis (no-types, lifting) Int-Un-distrib sf-23 insert-is-Un path-image-join)
moreover have pathfinish ?l1 = pathstart (?l2 +++ ?l3) by simp
ultimately show arc (?l1 +++ ?l2 +++ ?l3)

by (metis arc-join-eq-alt arcs)
qed
moreover have loop-free p using assms(6) simple-path-def by blast
moreover have path-image ?R ′ ∩ path-image p = {p0 , p1}
proof−

have path-image ?l1 ∩ path-image p = {p1}
proof−

have ∀ x ∈ path-image p. x$2 ≥ 0 by (simp add: assms(12))
moreover have ∀ x ∈ path-image ?l1 . x$2 ≤ 0 using a-def assms(8)

segment-vertical by force
ultimately have ∀ x ∈ path-image p ∩ path-image ?l1 . x$2 = 0 by fastforce
moreover have ∀ x ∈ path-image ?l1 . x$2 = 0 −→ x = p1

by (metis (mono-tags, opaque-lifting) a-def assms(8) exhaust-2 path-image-linepath
segment-vertical vec-eq-iff vector-2 (1))

ultimately have ∀ x ∈ path-image p ∩ path-image ?l1 . x = p1 by fast
moreover have p1 ∈ path-image ?l1 ∧ p1 ∈ path-image p using p1-def

by auto
ultimately show ?thesis by blast

qed
moreover have path-image ?l2 ∩ path-image p = {}
by (smt (verit, best) segment-horizontal assms(12) UnCI disjoint-iff path-image-linepath

vector-2 (2))
moreover have path-image ?l3 ∩ path-image p = {p0}
proof−

294

have ∀ x ∈ path-image p. x$2 ≥ 0 by (simp add: assms(12))
moreover have ∀ x ∈ path-image ?l3 . x$2 ≤ 0 using a-def assms(8)

segment-vertical by force
ultimately have ∀ x ∈ path-image p ∩ path-image ?l3 . x$2 = 0 by fastforce
moreover have ∀ x ∈ path-image ?l3 . x$2 = 0 −→ x = p0
by (metis (no-types, opaque-lifting) assms(8) exhaust-2 path-image-linepath

segment-vertical vec-eq-iff vector-2 (1) zero-index)
ultimately have ∀ x ∈ path-image p ∩ path-image ?l3 . x = p0 by fast
moreover have p0 ∈ path-image ?l3 ∧ p0 ∈ path-image p using assms(8)

p0-def by fastforce
ultimately show ?thesis by blast

qed
ultimately show ?thesis
by (smt (verit, del-insts) Int-Un-distrib Int-commute Un-assoc Un-insert-right

insert-is-Un path-image-join pathfinish-linepath pathstart-join pathstart-linepath)
qed
moreover have arc p

using closed-path-def arc-distinct-ends assms(6) calculation(1) closed p1-def
simple-path-imp-arc

by force
ultimately show ?thesis
by (metis (no-types, opaque-lifting) Int-commute closed-path-def closed dual-order .refl

linepath-0 ′ p0-def p1-def pathfinish-join pathstart-def pathstart-join simple-path-join-loop-eq)
qed

have inside-outside: inside-outside ?R (path-inside ?R) (path-outside ?R)
using closed simple Jordan-inside-outside-real2

by (simp add: closed-path-def inside-outside-def path-inside-def path-outside-def)

have interior-frontier : path-inside ?R = interior (path-inside ?R)
∧ frontier (path-inside ?R) = path-image ?R

using inside-outside interior-open unfolding inside-outside-def by auto

have R-y-q1 : ∀ x ∈ path-image ?R. x$2 < q1$2
proof−

have ∗: ∀ x ∈ path-image p. x$2 < q1$2 using assms(11) by blast
moreover have ∀ x ∈ path-image ?l1 . x$2 < q1$2

using a-def assms(8) ∗ p1-def pathfinish-in-path-image segment-vertical by
fastforce

moreover have ∀ x ∈ path-image ?l2 . x$2 < q1$2
using assms(8) ∗ p1-def pathfinish-in-path-image segment-horizontal by fast-

force
moreover have ∀ x ∈ path-image ?l3 . x$2 < q1$2
using assms(8) ∗ p1-def pathfinish-in-path-image segment-vertical by fastforce

ultimately show ?thesis by (metis not-in-path-image-join)
qed
have R-y-0 : ∀ x ∈ path-image ?R. x$2 ≥ −1
proof−

have ∀ x ∈ path-image ?l1 . x$2 ≥ −1 using a-def assms(8) segment-vertical

295

by fastforce
moreover have ∀ x ∈ path-image ?l2 . x$2 ≥ −1 using segment-horizontal by

auto
moreover have ∀ x ∈ path-image ?l3 . x$2 ≥ −1 using segment-vertical by

auto
moreover have ∀ x ∈ path-image p. x$2 ≥ −1 using assms(12) by force
ultimately show ?thesis by (metis not-in-path-image-join)

qed

have ?thesis if p0 ∈ path-image q ∨ p1 ∈ path-image q using p0-def p1-def that
by blast

moreover have ?thesis if p0 /∈ path-image q ∧ p1 /∈ path-image q ∧ q0 /∈
path-image p

proof−
have q-int-l1 : path-image q ∩ path-image ?l1 = {}
proof−

have ∀ x ∈ path-image q. x$2 ≥ 0 by (simp add: assms(12))
moreover have ∀ x ∈ path-image ?l1 . x$2 = 0 −→ x = p1
by (metis (mono-tags, opaque-lifting) a-def assms(8) exhaust-2 path-image-linepath

segment-vertical vec-eq-iff vector-2 (1))
ultimately show ?thesis using that a-def assms(8) segment-vertical by

fastforce
qed
moreover have q-int-l2 : path-image q ∩ path-image ?l2 = {}
by (smt (verit, ccfv-threshold) UnCI assms(12) disjoint-iff path-image-linepath

segment-horizontal vector-2 (2))
moreover have q-int-l3 : path-image q ∩ path-image ?l3 = {}
proof−

have ∀ x ∈ path-image q. x$2 ≥ 0 by (simp add: assms(12))
moreover have ∀ x ∈ path-image ?l3 . x$2 = 0 −→ x = p0

by (metis (no-types, opaque-lifting) assms(8) exhaust-2 path-image-linepath
segment-vertical vec-eq-iff vector-2 (1) zero-index)

ultimately show ?thesis using that a-def assms(8) segment-vertical by
fastforce

qed
ultimately have q0-notin-R: q0 /∈ path-image ?R
using that by (simp add: disjoint-iff not-in-path-image-join pathstart-in-path-image

q0-def)

have path-image q ∩ path-image ?R 6= {}
proof−

have q0 ∈ path-inside ?R
proof−

let ?e = (vector [q0$1 , −1])::(real^2)
let ?d1 = (vector [a, −1])::(real^2)
let ?d2 = (vector [0 , −1])::(real^2)

have 0 < q0$1 ∧ q0$1 < a
by (smt (verit) a-def assms(10) assms(8) atLeastAtMost-iff exhaust-2

296

linorder-not-less pathstart-in-path-image q0-def that vec-eq-iff zero-index)
then have q0$1 > 0 ∧ a − q0$1 > 0 by simp
then have min (min (q0$1) (a − q0$1)) 1 > 0 (is ?ε ′ > 0) by linarith
then have 0 < ?ε ′/2 ∧ ?ε ′/2 < 1 ∧ ?ε ′/2 < q0$1 ∧ ?ε ′/2 < a − q0$1

by argo
then obtain ε where ε: 0 < ε ∧ ε < 1 ∧ ε < q0$1 ∧ ε < a − q0$1 by

blast
moreover have ?e ∈ frontier (path-inside ?R)

by (smt (verit, del-insts) UnCI ‹0 < q0 $ 1 ∧ 0 < a − q0 $ 1 › in-
terior-frontier p1-def path-image-join path-image-linepath pathfinish-linepath path-
start-join pathstart-linepath segment-horizontal vector-2 (1) vector-2 (2))

ultimately obtain int-p where int-p: int-p ∈ ball ?e ε ∩ path-inside ?R
by (meson inside-outside frontier-straddle mem-ball IntI)

have int-p-x: int-p$1 > 0 ∧ int-p$1 < a
proof−

have int-p$1 > 0
proof(rule ccontr)

assume ¬ int-p$1 > 0
moreover have dist (int-p$1) (q0$1) < q0$1

by (smt (verit) IntE ε dist-commute dist-vec-nth-le int-p mem-ball
vector-2 (1))

ultimately show False using dist-real-def by force
qed
moreover have int-p$1 < a
proof(rule ccontr)

assume ¬ int-p$1 < a
moreover have dist (int-p$1) (q0$1) < a − q0$1

by (smt (verit) IntE ε dist-commute dist-vec-nth-le int-p mem-ball
vector-2 (1))

ultimately show False using dist-real-def by force
qed
ultimately show ?thesis by blast

qed
have int-p-y: int-p$2 > −1 ∧ int-p$2 < 0
proof−

have int-p$2 > −1
proof(rule ccontr)

assume ∗: ¬ int-p$2 > −1
then have int-p$2 ≤ −1 by simp
let ?e2 ′ = (vector [0 , −1])::(real^2)
let ?ray = λd. int-p + d ∗R ?e2 ′

have ¬ (∃ d>0 . ?ray d ∈ path-image ?R)
proof−

have ∀ d>0 . (?ray d)$2 < −1 using ∗ by auto
thus ?thesis using R-y-0 by force

qed
moreover have bounded (path-inside ?R) using bounded-finite-inside

simple by blast

297

moreover have ?e2 ′ 6= 0 by (metis vector-2 (2) zero-index zero-neq-neg-one)
ultimately have int-p /∈ path-inside ?R

using ray-to-frontier [of path-inside ?R] interior-frontier by metis
thus False using int-p by blast

qed
moreover have int-p$2 < 0
proof(rule ccontr)

assume ¬ int-p$2 < 0
then have dist int-p ?e ≥ 1

by (smt (verit, del-insts) dist-real-def dist-vec-nth-le vector-2 (2))
thus False by (smt (verit, del-insts) IntD1 ε dist-commute int-p mem-ball)
qed
ultimately show ?thesis by blast

qed

let ?int-l = linepath int-p q0

have path-image ?int-l ∩ path-image ?l1 = {}
using ‹0 < q0 $ 1 ∧ q0 $ 1 < a› a-def int-p-x linepath-int-columns by

auto
moreover have path-image ?int-l ∩ path-image ?l2 = {}

by (smt (verit, best) assms(10) disjoint-iff int-p-y linepath-int-rows vec-
tor-2 (2))

moreover have path-image ?int-l ∩ path-image ?l3 = {}
by (smt (verit, del-insts) ε disjoint-iff int-p-x linepath-int-columns vec-

tor-2 (1) zero-index)
moreover have path-image ?int-l ∩ path-image p = {}
proof−

have ∀ t ∈ {0 ..1}. (?int-l t)$2 = 0 −→ t = 1
unfolding linepath-def using assms(10) int-p-y by force

then have ∀ x ∈ path-image ?int-l. x$2 = 0 −→ x = q0
unfolding path-image-def using linepath-1 ′ by fastforce

moreover have ∀ x ∈ path-image p. x$2 ≥ 0 by (simp add: assms(12))
moreover have ∀ x ∈ path-image ?int-l. x$2 ≤ 0

by (smt (verit) assms(10) int-p-y linepath-bound-2 (2))
ultimately show ?thesis using that by fastforce

qed
ultimately have path-image ?int-l ∩ path-image ?R = {}

by (simp add: disjoint-iff not-in-path-image-join)

then have path-image ?int-l ⊆ path-inside ?R ∨ path-image ?int-l ⊆
path-outside ?R

by (metis IntD2 IntI convex-imp-path-connected convex-segment(1) empty-iff
int-p interior-frontier path-connected-not-frontier-subset path-image-linepath path-
start-in-path-image pathstart-linepath)

moreover have ?int-l 0 = int-p ∧ int-p ∈ path-inside ?R
using int-p by (simp add: linepath-0 ′)

ultimately have path-image ?int-l ⊆ path-inside ?R
using inside-outside-def local.inside-outside by auto

298

thus ?thesis by auto
qed
then have q0 ∈ − (path-outside ?R)
by (metis ComplI IntI equals0D inside-Int-outside path-inside-def path-outside-def)
moreover have q1 ∈ path-outside ?R
proof−

let ?e2 = (vector [0 , 1])::(real^2)
let ?ray = λd. q1 + d ∗R ?e2
have ¬ (∃ d>0 . ?ray d ∈ path-image ?R)
proof−

have ∀ d>0 . (?ray d)$2 > q1$2 by simp
thus ?thesis using R-y-q1 by fastforce

qed
moreover have bounded (path-inside ?R) using bounded-finite-inside simple

by blast
moreover have ?e2 6= 0 using e1e2-basis(4) by force
ultimately have q1 /∈ path-inside ?R

using ray-to-frontier [of path-inside ?R] interior-frontier by metis
moreover have q1 /∈ path-image ?R using R-y-q1 by blast

ultimately show ?thesis using inside-outside unfolding inside-outside-def
by blast

qed
ultimately have path-image q ∩ − (path-outside ?R) 6= {}
∧ path-image q ∩ (path-outside ?R) 6= {}

using q0-def q1-def by blast
moreover have path-connected (path-image q)

using assms(7) path-connected-path-image simple-path-def by blast
moreover have path-image ?R = frontier (path-outside ?R)
using inside-outside unfolding inside-outside-def p0-def path-inside-def by

blast
ultimately show ?thesis by (metis Diff-eq Diff-eq-empty-iff path-connected-not-frontier-subset)
qed

thus ?thesis by (meson q-int-l1 q-int-l2 q-int-l3 disjoint-iff not-in-path-image-join)
qed
ultimately show ?thesis using q0-def by blast

qed

lemma pocket-fill-line-int-aux7 :
fixes p q :: R-to-R2
fixes A :: (real^2) set
defines p0 ≡ pathstart p
defines p1 ≡ pathfinish p
defines q0 ≡ pathstart q
defines q1 ≡ pathfinish q
defines a ≡ p1$1
defines l ≡ open-segment p0 p1
assumes simple-path p
assumes simple-path q
assumes path-image p ∩ path-image q = {q0 , q1}

299

assumes p0$1 = 0 ∧ p0$2 = 0 ∧ p1$2 = 0
assumes a > 0
assumes A = convex hull (path-image p ∪ path-image q)
assumes {p0 , p1} ⊆ frontier A
assumes p‘{0<..<1} ⊆ interior A
assumes ∃ x ∈ p‘{0<..<1}. x$2 ≥ 0
assumes q0 = p1 ∧ q1 = p0
shows path-image q ∩ l = {} closed-segment p0 p1 ⊆ frontier A

proof−
have 1 : path-image p ∩ path-image q = {pathstart q, pathfinish q}

by (simp add: assms(9) q0-def q1-def)
have 2 : pathstart p $ 1 = 0 ∧ pathstart p $ 2 = 0 ∧ pathfinish p $ 2 = 0

using assms(10) p0-def p1-def by blast
have 3 : 0 < pathfinish p $ 1 using a-def assms(11) p1-def by auto
have 4 : A = convex hull (path-image p ∪ path-image q) by (simp add: assms(12))
have 5 : {pathstart p, pathfinish p} ⊆ frontier A using assms(13) p0-def p1-def

by blast
have 6 : p ‘ {0<..<1} ⊆ interior A using assms(14) by blast
have 7 : path-image q ⊆ A using assms(12) hull-subset by force
have 8 : ∃ x ∈ p‘{0<..<1}. x$2 ≥ 0 using assms(15) by blast
have 9 : pathstart q = pathfinish p ∧ pathfinish q = pathstart p

using assms(16) p0-def p1-def q0-def q1-def by fastforce
have ∗: ∀ x ∈ (path-image p) ∪ (path-image q). x$2 ≥ 0

using pocket-fill-line-int-aux5 (2)[OF assms(7) assms(8) 1 2 3 4 5 6 7 8 9] by
blast

show closed-segment p0 p1 ⊆ frontier A
using pocket-fill-line-int-aux5 (1)[OF assms(7) assms(8) 1 2 3 4 5 6 7 8 9]
unfolding l-def p0-def p1-def by blast

show path-image q ∩ l = {}
proof(rule ccontr)

assume ¬ path-image q ∩ l = {}
then obtain x tx where x: tx ∈ {0 ..1} ∧ q tx = x ∧ x ∈ l

by (metis (no-types, lifting) disjoint-iff imageE path-image-def)
obtain y ty where y: ty ∈ {0 ..1} ∧ q ty = y ∧ (∀ x ∈ path-image p. y$2 >

x$2)
using exists-point-above-all[of p q]
by (smt (verit, del-insts) 4 6 8 assms(10) assms(7) assms(8) p0-def p1-def

pathfinish-def pathstart-def simple-path-def image-iff path-image-def)

have lf : (∀ t ∈ {0 ..1}. (q t = q0 ∨ q t = q1) −→ (t = 0 ∨ t = 1))
using assms(8)

unfolding q0-def q1-def simple-path-def loop-free-def pathstart-def pathfin-
ish-def

by fastforce
have endpoints: q tx 6= q0 ∧ q ty 6= q0 ∧ q tx 6= q1 ∧ q ty 6= q1 ∧ tx 6= ty
proof−

have (q ty)$2 > 0 by (metis assms(10) p0-def pathstart-in-path-image y)
moreover have (q tx)$2 = 0

300

proof−
have q tx ∈ closed-segment q0 q1

using assms(16) l-def open-closed-segment open-segment-commute x by
blast

thus ?thesis by (simp add: assms(10) assms(16) segment-horizontal)
qed
moreover have q0 /∈ open-segment q0 q1 ∧ q1 /∈ open-segment q0 q1

by (simp add: open-segment-def)
ultimately show ?thesis

using assms(10) assms(16) l-def open-segment-commute x by auto
qed

let ?Q =
λq ′. simple-path q ′ ∧ path-image p ∩ path-image q ′ = {}
∧ q ′ 0 = q tx ∧ q ′ 1 = q ty
∧ path-image q ′ ⊆ path-image q

have ∗∗:
∧

q ′. ?Q q ′ =⇒ False
proof−

fix q ′

assume ∗∗: ?Q q ′

have 1 : simple-path q ′ by (simp add: ∗∗)
have 2 : pathstart p = 0 ∧ pathfinish p $ 2 = 0

by (metis (mono-tags, lifting) assms(10) exhaust-2 p0-def p1-def vec-eq-iff
zero-index)

have 3 : 0 < pathfinish p $ 1 using a-def assms(11) p1-def by blast
have 4 : pathstart q ′ $ 1 ∈ {0 ..pathfinish p $ 1} ∧ pathstart q ′ $ 2 = 0
proof−

have q ′ 0 ∈ closed-segment p0 p1 using ∗∗ l-def open-closed-segment x by
auto

thus ?thesis
by (smt (z3) 2 a-def assms(11) atLeastAtMost-iff atLeastatMost-empty

p0-def p1-def pathstart-def pathstart-subpath segment-horizontal zero-index)
qed

have 5 : ∀ x∈path-image p. x $ 2 < pathfinish q ′ $ 2 by (simp add: ∗∗
pathfinish-def y)

have 6 : ∀ x∈path-image p ∪ path-image q ′. 0 ≤ x $ 2 using ∗ ∗∗ by blast
have path-image p ∩ path-image q ′ 6= {}

using pocket-fill-line-int-aux6 [OF assms(7) 1 2 3 4 5 6] by simp
thus False using ∗∗ by blast

qed

have False if tx < ty
proof−

let ?q ′ = subpath tx ty q
have q0 /∈ path-image ?q ′ ∧ q1 /∈ path-image ?q ′

proof−
have {tx..ty} ⊆ {0 ..1} using x y by simp
then have (∀ t ∈ {tx..ty}. (q t = q0 ∨ q t = q1) −→ (t = 0 ∨ t = 1))

using lf by blast

301

moreover have 0 /∈ {tx..ty} ∧ 1 /∈ {tx..ty}
by (metis atLeastAtMost-iff dual-order .eq-iff endpoints pathfinish-def

pathstart-def q0-def q1-def x y)
moreover have path-image ?q ′= q‘{tx..ty} by (simp add: path-image-subpath

that)
ultimately show ?thesis by fastforce

qed
then have ?Q ?q ′

by (smt (verit, best) assms(8) assms(9) disjoint-insert(1) endpoints
inf .absorb-iff1 inf-bot-right inf-left-commute path-image-subpath-subset pathfinish-def
pathfinish-subpath pathstart-def pathstart-subpath simple-path-subpath x y)

thus False using ∗∗ by auto
qed
moreover have False if tx > ty
proof−

let ?q ′ = reversepath (subpath ty tx q)
have q0 /∈ path-image ?q ′ ∧ q1 /∈ path-image ?q ′

proof−
have {ty..tx} ⊆ {0 ..1} using x y by simp
then have (∀ t ∈ {ty..tx}. (q t = q0 ∨ q t = q1) −→ (t = 0 ∨ t = 1))

using lf by blast
moreover have 0 /∈ {ty..tx} ∧ 1 /∈ {ty..tx}

by (metis atLeastAtMost-iff dual-order .eq-iff endpoints pathfinish-def
pathstart-def q0-def q1-def x y)

moreover have path-image ?q ′= q‘{ty..tx} by (simp add: path-image-subpath
that)

ultimately show ?thesis by fastforce
qed
then have ?Q ?q ′

by (smt (verit) assms(8) assms(9) endpoints inf .absorb-iff2 inf .assoc
inf-bot-left insert-disjoint(2) path-image-subpath-subset pathstart-def pathstart-subpath
reversepath-def reversepath-subpath simple-path-subpath x y)

thus False using ∗∗ by blast
qed
ultimately show False using endpoints by linarith

qed
qed

lemma frontier-injective-linear-image:
fixes f :: ′a::euclidean-space ⇒ ′a::euclidean-space
assumes linear f inj f
shows f ‘ (frontier S) = frontier (f ‘ S)
using interior-injective-linear-image closure-injective-linear-image frontier-def

assms
by (metis image-set-diff)

lemma pocket-fill-line-int-aux8 :
fixes p q :: R-to-R2

302

fixes A :: (real^2) set
defines p0 ≡ pathstart p
defines p1 ≡ pathfinish p
defines q0 ≡ pathstart q
defines q1 ≡ pathfinish q
defines a ≡ p1$1
defines l ≡ open-segment p0 p1
assumes simple-path p
assumes simple-path q
assumes path-image p ∩ path-image q = {q0 , q1}
assumes p0$1 = 0 ∧ p0$2 = 0 ∧ p1$2 = 0
assumes a > 0
assumes A = convex hull (path-image p ∪ path-image q)
assumes {p0 , p1} ⊆ frontier A
assumes p‘{0<..<1} ⊆ interior A
assumes q0 = p1 ∧ q1 = p0
shows path-image q ∩ l = {} ∧ l ⊆ frontier A

proof−
have ?thesis if ex: ∃ x ∈ p‘{0<..<1}. x$2 ≥ 0
using ex a-def assms dual-order .trans l-def p0-def p1-def pocket-fill-line-int-aux7 (1)

pocket-fill-line-int-aux7 (2) q0-def q1-def segment-open-subset-closed that

by (smt (verit) a-def assms dual-order .trans l-def p0-def p1-def pocket-fill-line-int-aux7 (1)
pocket-fill-line-int-aux7 (2) q0-def q1-def segment-open-subset-closed that)

moreover have ?thesis if ¬ (∃ x ∈ p‘{0<..<1}. x$2 ≥ 0)
proof−

let ?M = (vector [vector [1 , 0], vector [0 , −1]])::(real^2^2)
let ?f = λv. ?M ∗v v
let ?g = (λv. vector [v$1 , −v$2])::(real^2 ⇒ real^2)
define p ′ where p ′ ≡ ?f ◦ p
define q ′ where q ′ ≡ ?f ◦ q
define A ′ where A ′ ≡ ?f‘A

have inj: inj ?f and f-eq-g: ?f = ?g
using flip-function(1) apply blast
using flip-function(2) by blast

have 4 : pathstart p ′ $ 1 = 0 ∧ pathstart p ′ $ 2 = 0 ∧ pathfinish p ′ $ 2 = 0
by (smt (verit, best) assms(10) f-eq-g o-apply p ′-def p0-def p1-def pathfinish-def

pathstart-def vector-2 (1) vector-2 (2))
have startfinish: pathstart p ′ = pathstart p ∧ pathfinish p ′ = pathfinish p

by (metis (mono-tags, opaque-lifting) 4 assms(10) exhaust-2 f-eq-g o-apply
p ′-def p0-def p1-def pathfinish-def vec-eq-iff vector-2 (1))

have 1 : simple-path p ′ using inj by (simp add: assms(7) simple-path-linear-image-eq
p ′-def)

have 2 : simple-path q ′ using inj by (simp add: assms(8) simple-path-linear-image-eq
q ′-def)

have 3 : path-image p ′ ∩ path-image q ′ = {pathstart q ′, pathfinish q ′}

303

proof−
have path-image p ′ ∩ path-image q ′ = ?f‘(path-image p ∩ path-image q)

unfolding p ′-def q ′-def by (simp add: image-Int inj path-image-compose)
also have ... = ?f‘{q0 , q1} using assms(9) by presburger
finally show ?thesis

by (simp add: startfinish pathfinish-compose pathstart-compose q ′-def q0-def
q1-def)

qed
have 5 : 0 < pathfinish p ′ $ 1

by (metis (mono-tags, lifting) a-def assms(11) f-eq-g o-apply p ′-def p1-def
pathfinish-def vector-2 (1))

have 6 : A ′ = convex hull (path-image p ′ ∪ path-image q ′)
proof−

have path-image (?f ◦ p) = ?f‘(path-image p) using path-image-compose by
blast

moreover have path-image (?f ◦ q) = ?f‘(path-image q) using path-image-compose
by blast

moreover have ?f‘(path-image p ∪ path-image q) = ?f‘(path-image p) ∪
?f‘(path-image q)

by blast
moreover have A ′ = convex hull (?f‘(path-image p ∪ path-image q))

by (simp add: assms(12) convex-hull-linear-image A ′-def)
ultimately show ?thesis using p ′-def q ′-def A ′-def by argo

qed
have 7 : {pathstart p ′, pathfinish p ′} ⊆ frontier A ′

using frontier-injective-linear-image
by (smt (verit, best) 3 A ′-def assms(13) assms(15) assms(9) doubleton-eq-iff

image-Int inj inj-image-subset-iff matrix-vector-mul-linear p ′-def p0-def p1-def path-image-linear-image
pathfinish-compose pathstart-compose q ′-def q0-def q1-def)

have 8 : p ′‘{0<..<1} ⊆ interior A ′

proof−
have ?f‘(interior A) = interior A ′ by (simp add: A ′-def inj interior-injective-linear-image)

thus ?thesis using assms(14) p ′-def by auto
qed
have 9 : ∃ x ∈ p ′‘{0<..<1}. x$2 ≥ 0
proof−

have ∃ x ∈ p‘{0<..<1}. x$2 < 0
by (metis that all-not-in-conv bot.extremum greaterThanLessThan-subseteq-greaterThanLessThan

image-is-empty verit-comp-simplify1 (3) zero-less-one)
then obtain x where x ∈ p‘{0<..<1} ∧ x$2 < 0 by presburger
moreover then have (?g x)$2 > 0 by fastforce

ultimately show ?thesis by (smt (verit, ccfv-threshold) f-eq-g image-iff
o-apply p ′-def)

qed
have 10 : pathstart q ′ = pathfinish p ′ ∧ pathfinish q ′ = pathstart p ′

by (metis (mono-tags, lifting) assms(15) o-apply p ′-def p0-def p1-def pathfin-
ish-def pathstart-def q ′-def q0-def q1-def)

have path-image q ′ ∩ open-segment (pathstart p ′) (pathfinish p ′) = {}

304

using pocket-fill-line-int-aux7 (1)[OF 1 2 3 4 5 6 7 8 9 10] by blast
then have path-image q ′ ∩ l = {} using startfinish unfolding l-def p0-def

p1-def by simp
moreover have on-l:

∧
x. x ∈ l =⇒ ?g x ∈ l

proof−
fix x :: real^2
assume x ∈ l
moreover then have x$2 = 0 by (metis assms(6 ,10) segment-horizontal

open-closed-segment)
moreover then have (?g x)$2 = 0 by simp
moreover have (?g x)$1 = x$1 by simp
ultimately show ?g x ∈ l by (smt (verit, ccfv-SIG) exhaust-2 vec-eq-iff)

qed
ultimately have path-image q ∩ l = {}

by (metis (no-types, lifting) disjoint-iff f-eq-g image-eqI path-image-compose
q ′-def)

moreover have l ⊆ frontier A
proof−

have pathstart p ′ = pathstart p ∧ pathfinish p ′ = pathfinish p
using startfinish by auto

then have ?f‘l ⊆ frontier A ′

using pocket-fill-line-int-aux7 (2)[OF 1 2 3 4 5 6 7 8 9 10] on-l f-eq-g l-def
p0-def p1-def segment-open-subset-closed

by force
thus ?thesis
by (metis (no-types, lifting) A ′-def frontier-injective-linear-image inj inj-image-subset-iff

matrix-vector-mul-linear)
qed
ultimately show ?thesis by fast

qed
ultimately show ?thesis by argo

qed

lemma simple-path-linear-image:
assumes simple-path p
assumes inj f ∧ bounded-linear f
shows simple-path (f ◦ p)

proof−
have continuous-on {x. True} f using assms(2) linear-continuous-on by blast
then have 1 : path (f ◦ p)
by (metis Collect-cong UNIV-I assms(1) continuous-on-subset path-continuous-image

simple-path-imp-path top-empty-eq top-greatest top-set-def)

have inj-on p {0<..<1} by (simp add: assms(1) simple-path-inj-on)
then have inj-on (f ◦ p) {0<..<1} by (meson assms(2) comp-inj-on inj-on-subset

top-greatest)
then have loop-free (f ◦ p)
by (metis (mono-tags, lifting) assms(1) assms(2) comp-apply inj-eq loop-free-def

simple-path-def)

305

thus ?thesis using 1 unfolding simple-path-def by blast
qed

lemma vts-interior :
fixes vts
defines p ≡ make-polygonal-path vts
assumes convex H
assumes ∀ j ∈ {0<..<length vts − 1}. vts!j /∈ frontier H
assumes loop-free p
assumes path-image p ⊆ H
assumes length vts ≥ 3
shows p‘{0<..<1} ⊆ interior H

proof(rule subsetI)
fix x assume ∗: x ∈ p‘{0<..<1}
then obtain t where t: x = p t ∧ t ∈ {0<..<1} by blast
then have x 6= p 0 ∧ x 6= p 1 using assms(4) unfolding loop-free-def by

fastforce
then have x-neq: x 6= hd vts ∧ x 6= last vts

by (metis assms(4) constant-linepath-is-not-loop-free hd-conv-nth last-conv-nth
make-polygonal-path.simps(1) p-def pathfinish-def pathstart-def polygon-pathfinish
polygon-pathstart)

have x ∈ interior H if ∗∗: ∃ i<length vts. x = vts!i
proof−

obtain i where i: i < length vts ∧ x = vts!i using ∗∗ by blast
then have i 6= 0 ∧ i 6= length vts − 1

by (metis x-neq gr-implies-not0 hd-conv-nth last-conv-nth list.size(3))
then have i ∈ {0<..<length vts − 1} using i by fastforce
then have vts!i /∈ frontier H using assms(3) by blast
then have vts!i ∈ interior H

by (metis DiffI assms(5) closure-subset frontier-def i nth-mem p-def subsetD
vertices-on-path-image)

thus ?thesis using assms(3) i by blast
qed
moreover have x ∈ interior H if ∗∗: ¬ (∃ i<length vts. x = vts!i)
proof−

have x ∈ path-image p using ∗ unfolding path-image-def by force
then obtain i where i: x ∈ path-image (linepath (vts!i) (vts!(i+1))) ∧ i <

length vts − 1
using make-polygonal-path-image-property[of vts x] assms(6) unfolding p-def

by auto
moreover then have x 6= vts!i ∧ x 6= vts!(i+1) using ∗∗ by force

ultimately have x ∈ open-segment (vts!i) (vts!(i+1)) by (simp add: open-segment-def)
moreover then have x ∈ rel-interior (path-image (linepath (vts!i) (vts!(i+1))))
by (metis empty-iff open-segment-idem path-image-linepath rel-interior-closed-segment)
moreover have interior-nonempty: vts!i ∈ interior H ∨ vts!(i+1) ∈ interior

H
proof(rule ccontr)

assume ¬ (vts!i ∈ interior H ∨ vts!(i+1) ∈ interior H)

306

then have vts!i ∈ frontier H ∧ vts!(i+1) ∈ frontier H
using assms(5) closure-subset frontier-def i p-def vertices-on-path-image by

fastforce
thus False

by (metis assms(3) i Suc-1 Suc-eq-plus1 add.commute add.right-neutral
assms(6) eval-nat-numeral(3) greaterThanLessThan-iff less-diff-conv linorder-not-le
not-gr-zero not-less-eq-eq)

qed
ultimately have x ∈ rel-interior H
by (smt (verit, ccfv-SIG) add-diff-inverse-nat assms(2) assms(5) convex-same-rel-interior-closure-straddle

empty-iff i in-interior-closure-convex-segment less-diff-conv less-nat-zero-code nat-diff-split
nth-mem open-segment-commute p-def rel-interior-nonempty-interior subset-eq trans-less-add2
vertices-on-path-image)

moreover have interior H 6= {} using interior-nonempty by blast
ultimately show ?thesis using rel-interior-nonempty-interior by blast

qed
ultimately show x ∈ interior H by blast

qed

lemma pocket-fill-line-int-0 :
assumes polygon-of r vts
defines H ≡ convex hull (set vts)
assumes 2 ≤ i ∧ i < length vts − 1
defines a ≡ hd vts
defines b ≡ vts!i
assumes {a, b} ⊆ frontier H
assumes ∀ j ∈ {0<..<i}. vts!j /∈ frontier H
assumes a = 0
shows path-image (linepath a b) ∩ path-image r = {a, b}

path-image (linepath a b) ⊆ frontier H
proof−

let ?x = (b − a)
let ?e = norm (b − a) ∗R ((vector [1 , 0])::(real^2))
have norm ?x = norm ?e by (simp add: e1e2-basis(1))
then obtain f where f : orthogonal-transformation f ∧ det(matrix f) = 1 ∧ f

?x = ?e
using rotation-exists by (metis two-le-card)

have bij: bij f ∧ linear f
using f orthogonal-transformation-bij orthogonal-transformation-def by blast

let ?p-vts = take (i + 1) vts
let ?q-vts = drop i vts
let ?p = make-polygonal-path ?p-vts
let ?q = make-polygonal-path ?q-vts

let ?p ′ = f ◦ ?p
let ?q ′ = f ◦ ?q
let ?H ′ = convex hull (path-image ?p ′ ∪ path-image ?q ′)

307

have vts-split: vts = ?p-vts @ (tl ?q-vts)
by (metis Suc-eq-plus1 append-take-drop-id drop-Suc tl-drop)

have simple-path r using assms(1) unfolding polygon-of-def polygon-def by
blast

then have a-neq-b: a 6= b
using simple-polygonal-path-vts-distinct[of vts]

by (metis (mono-tags, lifting) a-def assms(1) assms(3) b-def bot-nat-0 .extremum-strict
butlast-conv-take constant-linepath-is-not-loop-free distinct-nth-eq-iff dual-order .strict-trans2
hd-conv-nth length-butlast make-polygonal-path.simps(1) nat-neq-iff nth-take poly-
gon-of-def pos2 simple-path-def)

have H-r : H = convex hull (path-image r)
by (metis (no-types, lifting) H-def Un-subset-iff assms(1) convex-convex-hull

convex-hull-eq convex-hull-of-polygon-is-convex-hull-of-vts hull-mono hull-subset or-
der-antisym-conv polygon-of-def vertices-on-path-image)

moreover have r-union: path-image r = (path-image ?p) ∪ (path-image ?q)
proof−

let ?i = i + 1
let ?x = ((2 ::real) ^ (?i − 1) − 1) / 2 ^ (?i − 1)
have ?x ∈ {0 ..1} ∧ path-image ?p = r‘{0 ..?x} ∧ path-image ?q = r‘{?x..1}

using vts-split-path-image[of r vts ?p ?p-vts ?q ?q-vts ?i - ?x]
by (smt (verit, ccfv-SIG) add.commute add-diff-cancel-left ′ assms(1) assms(3)

atLeastAtMost-iff atLeastatMost-empty ′ image-empty le-add1 less-diff-conv path-image-nonempty
polygon-of-def)

thus ?thesis by (metis atLeastAtMost-iff image-Un ivl-disj-un-two-touch(4)
path-image-def)

qed
moreover have f‘H = convex hull (f‘(path-image r))

using bij by (simp add: calculation(1) convex-hull-linear-image)
ultimately have H-image: ?H ′= f‘H by (simp add: image-Un path-image-compose)

have p-image: path-image ?p ′ = f‘(path-image ?p) using path-image-compose by
blast

have q-image: path-image ?q ′ = f‘(path-image ?q) using path-image-compose by
blast

have pathstart-p: pathstart ?p = a
by (metis Suc-eq-plus1 a-def assms(3) gr-implies-not0 hd-conv-nth length-tl

less-Suc-eq-0-disj list.sel(2) list.size(3) nth-take polygon-pathstart take-eq-Nil)
have pathfinish-p: pathfinish ?p = b
by (metis (no-types, lifting) H-def H-r add-diff-cancel-right ′ assms(3) b-def con-

vex-hull-eq-empty length-take less-add-one less-diff-conv min.absorb4 nth-append
one-neq-zero path-image-nonempty polygon-pathfinish set-empty take-eq-Nil vts-split
zero-eq-add-iff-both-eq-0)

then have pathstart-q: pathstart ?q = b using assms(3) b-def polygon-pathstart
by force

308

have pathstart-p ′: pathstart ?p ′ = f a using pathstart-compose pathstart-p by
blast

have pathfinish-p ′: pathfinish ?p ′ = f b using pathfinish-compose pathfinish-p by
blast

have pathstart-q ′: pathstart ?q ′ = f b using pathstart-compose pathstart-q by
blast

have sublist ?p-vts vts by auto
then have lf-p: loop-free ?p

by (metis add.commute assms(1) assms(3) less-diff-conv less-imp-le-nat poly-
gon-def polygon-of-def simple-path-def take-i-is-loop-free trans-le-add2)

then have simple-p: simple-path ?p
using assms unfolding polygon-of-def
by (meson make-polygonal-path-gives-path simple-path-def)

have sublist ?q-vts vts by auto
then have lf-q: loop-free ?q

by (metis (no-types, lifting) Suc-1 Suc-diff-Suc assms(1) assms(3) diff-is-0-eq
drop-i-is-loop-free less-Suc-eq-le less-zeroE linorder-not-less polygon-def polygon-of-def
simple-path-def)

then have simple-q: simple-path ?q
using assms unfolding polygon-of-def
by (meson make-polygonal-path-gives-path simple-path-def)

have bounded-linear : bounded-linear f using bij linear-conv-bounded-linear by
blast

have 1 : simple-path ?p ′

using simple-p simple-path-linear-image bij bij-is-inj bounded-linear
by blast

have 2 : simple-path ?q ′

using simple-q simple-path-linear-image bij bij-is-inj bounded-linear
by blast

have 3 : path-image ?p ′ ∩ path-image ?q ′ = {pathstart ?q ′, pathfinish ?q ′}
proof−

have path-image ?p ∩ path-image ?q ⊆ {pathstart ?q, pathfinish ?q}
using loop-free-split-int[of r vts ?p-vts i ?q-vts ?p ?q]
by (smt (verit, ccfv-threshold) a-def add-diff-cancel-right ′ assms(1) assms(3)

constant-linepath-is-not-loop-free drop-eq-Nil have-wraparound-vertex hd-conv-nth
insert-commute last-conv-nth last-drop last-snoc le-add2 less-diff-conv lf-q linorder-not-less
loop-free-split-int make-polygonal-path.simps(1) pathstart-p polygon-def polygon-of-def
polygon-pathfinish simple-path-def)

moreover have pathstart ?q ∈ path-image ?q ∧ pathfinish ?q ∈ path-image ?q
by blast

moreover have pathstart ?q ∈ path-image ?p ∧ pathfinish ?q ∈ path-image ?p
by (smt (verit, ccfv-SIG) a-def add-diff-cancel-right ′ assms(1) assms(3) b-def

constant-linepath-is-not-loop-free drop-eq-Nil have-wraparound-vertex hd-conv-nth
last-conv-nth last-drop last-snoc length-take less-add-one less-diff-conv lf-q linorder-not-less
list.size(3) make-polygonal-path.simps(1) min.absorb4 nth-take pathfinish-in-path-image
pathstart-in-path-image pathstart-p pathstart-q polygon-of-def polygon-pathfinish take-eq-Nil

309

zero-eq-add-iff-both-eq-0 zero-neq-one)
ultimately have path-image ?p ∩ path-image ?q = {pathstart ?q, pathfinish

?q} by fast
moreover have path-image ?p ′∩ path-image ?q ′= f‘(path-image ?p ∩ path-image

?q)
by (metis bij bij-is-inj image-Int p-image q-image)

ultimately show ?thesis by (simp add: pathfinish-compose pathstart-compose)
qed
have 4 : (pathstart ?p ′)$1 = 0 ∧ (pathstart ?p ′)$2 = 0 ∧ (pathfinish ?p ′)$2 = 0
proof−

have f ?x = ?e using f by blast
then have f b − f a = ?e

by (metis assms(8) diff-zero f norm-eq-zero orthogonal-transformation-norm)
moreover have f a = 0 by (metis assms(8) f norm-eq-zero orthogonal-transformation-norm)
moreover from calculation have f b = ?e by force
ultimately show ?thesis using pathfinish-p ′ pathstart-p ′ by auto

qed
have 5 : (pathfinish ?p ′)$1 > 0
proof−

have pathfinish ?p ′ = f b using pathfinish-p ′ by auto
moreover have f b = ?e using assms(8) f by auto
moreover have ?e$1 = norm ?x by simp
ultimately show ?thesis using a-neq-b by auto

qed
have 6 : ?H ′ = convex hull (path-image ?p ′ ∪ path-image ?q ′) by blast
have 7 : {pathstart ?p ′, pathfinish ?p ′} ⊆ frontier ?H ′

proof−
have {pathstart ?p, pathfinish ?p} ⊆ frontier H

using pathstart-p pathfinish-p assms(6) by fastforce
then have f‘{pathstart ?p, pathfinish ?p} ⊆ f‘(frontier H) by blast
moreover have f‘(frontier H) = frontier (f‘H)

by (simp add: bij bij-is-inj frontier-injective-linear-image)
ultimately show ?thesis using H-image by (simp add: pathfinish-compose

pathstart-compose)
qed
have 8 : ?p ′‘{0<..<1} ⊆ interior ?H ′

proof−
have 1 : convex H by (simp add: H-def)
have 2 : ∀ j∈{0<..<length ?p-vts − 1}. ?p-vts ! j /∈ frontier H

by (simp add: add.commute assms(3) assms(7) less-diff-conv)
have 3 : loop-free ?p using lf-p by blast
have 4 : path-image ?p ⊆ H using H-r hull-subset r-union by fastforce
have 5 : length ?p-vts ≥ 3 using assms(3) by force
have ?p‘{0<..<1} ⊆ interior H using vts-interior [OF 1 2 3 4 5] by argo
moreover have f‘(?p‘{0<..<1}) = ?p ′‘{0<..<1} by (meson image-comp)
moreover have f‘(interior H) = interior ?H ′

using H-image interior-injective-linear-image[of f H] by (simp add: bij
bij-is-inj)

ultimately show ?thesis by fast

310

qed
have 9 : pathstart ?q ′ = pathfinish ?p ′ ∧ pathfinish ?q ′ = pathstart ?p ′

by (metis (mono-tags, lifting) H-def H-r a-def assms(1) constant-linepath-is-not-loop-free
convex-hull-eq-empty drop-eq-Nil have-wraparound-vertex hd-conv-nth last-conv-nth
last-drop last-snoc lf-q linorder-not-less make-polygonal-path.simps(1) path-image-nonempty
pathfinish-compose pathfinish-p pathstart-compose pathstart-p pathstart-q polygon-of-def
polygon-pathfinish set-empty)

let ?l = open-segment a b
let ?l ′ = open-segment (pathstart ?p ′) (pathfinish ?p ′)

have ∗: path-image ?q ′ ∩ open-segment (pathstart ?p ′) (pathfinish ?p ′) = {} ∧
?l ′ ⊆ frontier ?H ′

using pocket-fill-line-int-aux8 [OF 1 2 3 4 5 6 7 8 9] by blast
moreover have l-image: ?l ′ = f‘?l
proof−

have f a = pathstart ?p ′ ∧ f b = pathfinish ?p ′ using pathfinish-p ′ pathstart-p ′

by presburger
moreover have

∧
a b. f‘(open-segment a b) = open-segment (f a) (f b)

by (simp add: bij bij-is-inj open-segment-linear-image)
ultimately show ?thesis by presburger

qed
moreover have path-image ?q ′ = f‘(path-image ?q) using q-image by blast
ultimately have path-image ?q ∩ ?l = {} by blast
moreover have path-image ?p ∩ ?l = {}
proof−

from 8 have path-image ?p ′ ∩ ?l ′ = {}
proof−

have ?p ′‘{0<..<1} ∩ ?l ′ = {}
by (smt (verit, ccfv-SIG) ∗ 8 Diff-disjoint disjoint-iff frontier-def subset-iff)

moreover have ?p ′ 0 /∈ ?l ′
by (metis ∗ 9 IntI empty-iff pathfinish-in-path-image pathstart-def)

moreover have ?p ′ 1 /∈ ?l ′
by (metis ∗ 9 Int-iff emptyE pathfinish-def pathstart-in-path-image)

ultimately show ?thesis
by (smt (verit, ccfv-SIG) ∗ 1 3 9 Int-Un-eq(4) Un-Diff-cancel Un-iff dis-

joint-iff insert-commute simple-path-endless)
qed
thus ?thesis using l-image bij p-image by auto

qed
ultimately have path-image r ∩ ?l = {}

by (simp add: r-union boolean-algebra.conj-disj-distrib inf-commute)
moreover have a ∈ path-image r using pathstart-p r-union by auto
moreover have b ∈ path-image r using pathfinish-p r-union by auto
moreover have (path-image (linepath a b)) = ?l ∪ {a, b} by (simp add:

closed-segment-eq-open)
ultimately show path-image (linepath a b) ∩ path-image r = {a, b} by auto

have l ′-frontier : ?l ′ ⊆ frontier ?H ′ using ∗ by presburger

311

have ?l ⊆ frontier H
proof−

have ?l ′ = f‘?l using l-image by blast
moreover have frontier ?H ′ = f‘(frontier H)

by (metis H-image bij bij-is-inj frontier-injective-linear-image)
ultimately have f‘?l ⊆ f‘(frontier H) using l ′-frontier by argo
thus ?thesis by (simp add: bij bij-is-inj inj-image-subset-iff)

qed
moreover have closed-segment a b = path-image (linepath a b) by simp
moreover have closed-segment a b = ?l ∪ {a, b} by (simp add: closed-segment-eq-open)
moreover have a ∈ frontier H ∧ b ∈ frontier H using assms(6) by auto
ultimately show path-image (linepath a b) ⊆ frontier H by simp

qed

lemma linepath-translation: (λv. v − a) ◦ (linepath x y) = linepath ((λv. v − a)
x) ((λv. v − a) y)

by (auto simp: linepath-def algebra-simps)

lemma linepath-image-translation:
path-image ((λv. v − a) ◦ (linepath x y)) = path-image (linepath ((λv. v − a)

x) ((λv. v − a) y))
using linepath-translation by metis

lemma make-polygonal-path-translate:
assumes length vts ≥ 1
shows (λv. v − a) ◦ (make-polygonal-path vts) = make-polygonal-path (map (λv.

v − a) vts)
using assms

proof(induct length vts arbitrary: vts a)
case 0
then show ?case by linarith

next
case (Suc n)
{ assume ∗: Suc n = 1

then have make-polygonal-path vts = linepath (vts!0) (vts!0)
by (metis Cons-nth-drop-Suc One-nat-def Suc.hyps(2) Suc.prems drop0 drop-eq-Nil

less-numeral-extra(1) make-polygonal-path.simps(2))
then have (λv. v − a) ◦ (make-polygonal-path vts) = linepath ((vts!0) − a)

((vts!0) − a)
by fastforce

then have ?case
by (metis Cons-nth-drop-Suc One-nat-def Suc.hyps(2) Suc.prems ∗ drop0

drop-eq-Nil list.map(1) list.simps(9) make-polygonal-path.simps(2) zero-less-one)
} moreover
{ assume ∗: Suc n = 2

then have make-polygonal-path vts = linepath (vts!0) (vts!1)
by (metis (no-types, lifting) Cons-nth-drop-Suc One-nat-def Suc.hyps(2) Suc-1

diff-Suc-1 drop0 drop-Suc drop-eq-Nil le-numeral-extra(4) length-tl less-numeral-extra(1)
make-polygonal-path.simps(3) nth-tl pos2)

312

then have (λv. v − a) ◦ (make-polygonal-path vts) = linepath ((vts!0) − a)
((vts!1) − a)

using linepath-translation by auto
then have ?case

by (metis (no-types, lifting) ∗ Cons-nth-drop-Suc One-nat-def Suc.hyps(2)
Suc-1 drop0 drop-eq-Nil length-map lessI make-polygonal-path.simps(3) nat-le-linear
nth-map pos2)

} moreover
{ assume ∗: Suc n ≥ 3

then obtain h h ′ t where vts: vts = h # h ′ # t
by (metis Suc.hyps(2) Suc-le-length-iff numeral-3-eq-3)

then have (λv. v − a) ◦ (make-polygonal-path (h ′ # t))
= make-polygonal-path (map (λv. v − a) (h ′ # t))

using Suc.hyps(1) Suc.hyps(2) ∗ by auto
moreover have (λv. v − a) ◦ (linepath h h ′) = linepath (h − a) (h ′ − a)

using linepath-translation by blast
moreover have make-polygonal-path vts = (linepath h h ′) +++ (make-polygonal-path

(h ′ # t))
by (metis ∗ Suc.hyps(2) Suc-le-length-iff vts list.sel(3) make-polygonal-path.simps(4)

numeral-3-eq-3)
ultimately have ?case

by (smt (verit) list.discI list.inject list.simps(9) make-polygonal-path.elims
path-compose-join vts)

}
ultimately show ?case using Suc.prems by linarith

qed

lemma pocket-fill-line-int:
assumes polygon-of r vts
defines H ≡ convex hull (set vts)
assumes 2 ≤ i ∧ i < length vts − 1
defines a ≡ hd vts
defines b ≡ vts!i
assumes {a, b} ⊆ frontier H
assumes ∀ j ∈ {0<..<i}. vts!j /∈ frontier H
shows path-image (linepath a b) ∩ path-image r = {a, b}

path-image (linepath a b) ⊆ frontier H
proof−

let ?f = (λv. v − a)::(real^2 ⇒ real^2)
let ?r ′ = ?f ◦ r
let ?vts ′ = map ?f vts
let ?H ′ = convex hull (set ?vts ′)
let ?a ′ = ?f a
let ?b ′ = ?f b

have 5 : hd ?vts ′ = 0
by (metis One-nat-def a-def assms(3) cancel-comm-monoid-add-class.diff-cancel

lessI list.map-sel(1) list.size(3) nat-diff-split-asm not-less-zero)

313

have a ′b ′: ?a ′ = hd ?vts ′ ∧ ?b ′ = ?vts ′!i using 5 assms(3) b-def by force

have frontier-H ′: frontier ?H ′ = ?f ‘ (frontier H)
using frontier-translation[of −a H]

by (metis (no-types, lifting) H-def convex-hull-translation image-cong list.set-map
uminus-add-conv-diff)

have simple-path r using assms(1) polygon-def polygon-of-def by blast
then have simple-path ?r ′ using simple-path-translation-eq[of −a r] by simp
moreover have ?r ′ = make-polygonal-path ?vts ′

using make-polygonal-path-translate assms(1) assms(3) polygon-of-def by auto
moreover have closed-path ?r ′

by (smt (verit, best) closed-path-def add-diff-inverse-nat assms(1) assms(3) cal-
culation(1) calculation(2) dual-order .refl gr-implies-not0 hd-conv-nth length-map
less-Suc-eq-le list.map-disc-iff list.map-sel(1) nat-diff-split-asm nth-map plus-1-eq-Suc
polygon-def polygon-of-def polygon-pathfinish polygon-pathstart simple-path-def)

ultimately have 1 : polygon-of ?r ′ ?vts ′

unfolding polygon-of-def polygon-def polygon-def polygonal-path-def by blast
have 2 : 2 ≤ i ∧ i < length ?vts ′ − 1 using assms(3) by auto
have 3 : {hd ?vts ′, ?vts ′!i} ⊆ frontier ?H ′

using a ′b ′ frontier-H ′

by (metis (no-types, lifting) assms(6) image-empty image-insert image-mono)
have 4 : ∀ j ∈ {0<..<i}. ?vts ′!j /∈ frontier ?H ′

proof
fix j assume ∗: j ∈ {0<..<i}
then have vts!j /∈ frontier H using assms(7) by blast
then have ?f (vts!j) /∈ frontier ?H ′ using frontier-H ′ by auto
thus ?vts ′!j /∈ frontier ?H ′ using Nat.le-imp-diff-is-add ∗ assms(3) by auto

qed

have path-image (linepath ?a ′ ?b ′) ∩ path-image ?r ′ = {?a ′, ?b ′}
using pocket-fill-line-int-0 (1)[OF 1 2 3 4 5] a ′b ′ by argo

moreover have {?a ′, ?b ′} = ?f‘{a, b} by simp
moreover have path-image (linepath ?a ′ ?b ′) = ?f‘(path-image (linepath a b))

using linepath-image-translation path-image-compose by blast
moreover have path-image ?r ′ = ?f‘(path-image r) using path-image-compose

by blast
ultimately have ?f‘(path-image (linepath a b)) ∩ ?f‘(path-image r) = ?f‘{a, b}

by argo
then have ?f‘(path-image (linepath a b) ∩ path-image r) = ?f‘{a, b} by (simp

add: image-Int)
moreover have bij ?f by (simp add: bij-diff-right)
ultimately show path-image (linepath a b) ∩ path-image r = {a, b}

by (meson bij-is-inj inj-image-eq-iff)

have path-image (linepath ?a ′ ?b ′) ⊆ frontier ?H ′

using pocket-fill-line-int-0 (2)[OF 1 2 3 4 5] a ′b ′ by argo
thus path-image (linepath a b) ⊆ frontier H

by (metis ‹bij ?f › ‹path-image (linepath ?a ′ ?b ′) = ?f‘(path-image (linepath a

314

b))› bij-betw-imp-inj-on frontier-H ′ inj-image-subset-iff)
qed

lemma path-connected-simple-path-endless:
assumes simple-path p
shows path-connected (path-image p − {pathstart p, pathfinish p}) (is path-connected

?S)
proof−

have continuous-on {0<..<1} p
using assms(1) unfolding simple-path-def path-def

by (meson continuous-on-path dual-order .refl greaterThanLessThan-subseteq-atLeastAtMost-iff
path-def)

moreover have path-connected {0<..<1 ::real} by simp
ultimately have path-connected (p‘{0<..<1}) using path-connected-continuous-image

by blast
thus ?thesis using simple-path-endless assms by metis

qed

lemma simple-loop-split:
assumes simple-path p ∧ closed-path p
assumes simple-path q
assumes path-image q ∩ path-image p = {q 0 , q 1}
assumes path-image q ∩ path-inside p 6= {}
shows q‘{0<..<1} ⊆ path-inside p

proof−
have inside-outside: inside-outside p (path-inside p) (path-outside p)

using Jordan-inside-outside-real2 closed-path-def assms(1) inside-outside-def
path-inside-def path-outside-def

by presburger

obtain x where x: x ∈ path-image q ∩ path-inside p using assms(4) by blast
then obtain tx where tx ∈ {0 ..1} ∧ q tx = x unfolding path-image-def by

fast
moreover then have tx 6= 0 ∧ tx 6= 1

using assms(3) inside-outside x unfolding inside-outside-def by auto
ultimately have tx: tx ∈ {0<..<1} ∧ q tx = x by simp

have connected (q‘{0<..<1})
using connected-simple-path-endless simple-path-endless assms(2) by metis

then have path-connected (q‘{0<..<1})
using path-connected-simple-path-endless assms(2) simple-path-endless by metis

moreover have q‘{0<..<1} ∩ path-inside p 6= {} using tx x by blast
moreover have q‘{0<..<1} ∩ frontier (path-inside p) = {}

using inside-outside unfolding inside-outside-def
by (smt (verit, del-insts) Diff-Int-distrib2 assms(2 ,3) diff-eq inf-compl-bot-right

inf-idem inf-sup-aci(1) pathfinish-def pathstart-def simple-path-endless)
ultimately show ?thesis

using path-connected-not-frontier-subset[of q‘{0<..<1} path-inside p] by fast

315

qed

lemma pocket-path-interior-aux:
assumes simple-path p ∧ simple-path q
assumes arc p ∧ arc q
assumes q 0 = p 1 ∧ q 1 = p 0
assumes path-image p ∩ path-image q = {p 0 , q 0}
defines A ≡ convex hull (path-image p ∪ path-image q)
defines l ≡ linepath (p 0) (p 1)
assumes p‘{0<..<1} ⊆ interior A
assumes path-image l ⊆ frontier A
assumes path-image q ∩ path-image l = {l 0 , q 0}
shows p‘{0<..<1} ∩ path-inside (l +++ q) 6= {}

simple-path (l +++ q) ∧ closed-path (l +++ q)
path-image p ∩ path-image (l +++ q) = {p 0 , p 1}

proof−
let ?r = l +++ q
let ?Ir = path-inside ?r
let ?Or = path-outside ?r
show closed-simple-r : simple-path ?r ∧ closed-path ?r

using simple-path-join-loop[of l q] assms unfolding pathstart-def pathfinish-def
by (metis (no-types, opaque-lifting) closed-path-def arc-linepath arc-simple-path

dual-order .refl inf-commute linepath-0 ′ linepath-1 ′ pathfinish-def pathfinish-join path-
start-def pathstart-join simple-path-def)

then have inside-outside-r : inside-outside ?r ?Ir ?Or
by (simp add: Jordan-inside-outside-real2 closed-path-def inside-outside-def

path-inside-def path-outside-def)

have l-p-endpoints: l 0 = p 0 ∧ l 1 = p 1 by (simp add: l-def linepath-0 ′

linepath-1 ′)
have l-q-endpoints: l 0 = q 1 ∧ l 1 = q 0 by (simp add: assms(3) l-p-endpoints)
have p-int-l: p‘{0<..<1} ∩ path-image l = {} using assms(7 ,8) unfolding

frontier-def by blast
have q-int-l: q‘{0<..<1} ∩ path-image l = {}

by (metis (no-types, opaque-lifting) assms(9) Diff-iff Int-Diff all-not-in-conv
assms(1) assms(3) inf-sup-aci(1) insert-commute l-def linepath-0 ′ pathfinish-def
pathstart-def simple-path-endless)

have interval: {0 ..1 ::real} = {0<..<1} ∪ {0 , 1} by fastforce
have lf-l: loop-free l

using closed-simple-r not-loop-free-first-component simple-path-def by blast

let ?p ′ = reversepath p
let ?s = l +++ ?p ′

let ?Is = path-inside ?s
let ?Os = path-outside ?s
have arc ?p ′ ∧ arc l

by (metis assms(2) arc-linepath arc-reversepath arc-simple-path l-def pathfin-
ish-def pathstart-def)

moreover have p ′-int-l: path-image ?p ′ ∩ path-image l = {?p ′ 0 , l 0}

316

proof−
have path-image p ∩ path-image l = {l 0 , l 1}
proof−

have {l 0 , l 1} ⊆ path-image p ∩ path-image l
using assms(3) assms(4) l-def linepath-0 ′ linepath-1 ′ by fastforce

moreover have path-image p = p‘{0<..<1} ∪ {p 0 , p 1}
using interval unfolding path-image-def by blast

ultimately show ?thesis using p-int-l l-p-endpoints by simp
qed
moreover have ?p ′ 0 = l 1 by (simp add: l-def linepath-1 ′ reversepath-def)
moreover have path-image p = path-image ?p ′ by simp
ultimately show ?thesis by (metis doubleton-eq-iff)

qed
ultimately have closed-simple-s: closed-path ?s ∧ simple-path ?s

using simple-path-join-loop[of l ?p ′] assms unfolding pathstart-def pathfin-
ish-def

by (metis (no-types, opaque-lifting) closed-path-def dual-order .refl inf-commute
insert-commute linepath-0 ′ linepath-1 ′ pathfinish-def pathfinish-join pathfinish-reversepath
pathstart-def pathstart-join pathstart-reversepath simple-path-def)

then have inside-outside-s: inside-outside ?s ?Is ?Os
by (simp add: Jordan-inside-outside-real2 closed-path-def inside-outside-def

path-inside-def path-outside-def)

have r-inside-subset: path-inside ?r ⊆ interior A
proof−

have path-image l ⊆ A ∧ path-image q ⊆ A
by (metis A-def Un-upper2 assms(1) assms(8) compact-Un compact-convex-hull

compact-simple-path-image frontier-subset-compact hull-subset subset-trans)
thus ?thesis
by (metis (no-types, lifting) A-def closed-simple-r convex-contains-simple-closed-path-imp-contains-path-inside

convex-convex-hull inside-outside-def inside-outside-r interior-eq interior-mono sub-
set-path-image-join)

qed
have s-inside-subset: path-inside ?s ⊆ interior A
proof−

have path-image l ⊆ A ∧ path-image p ⊆ A
by (metis A-def Un-upper1 assms(1) assms(8) compact-Un compact-convex-hull

compact-simple-path-image frontier-subset-compact hull-subset subset-trans)
thus ?thesis

by (metis A-def Jordan-inside-outside-real2 closed-path-def closed-simple-s
convex-contains-simple-closed-path-imp-contains-path-inside convex-convex-hull in-
terior-maximal path-image-reversepath path-inside-def subset-path-image-join)

qed

have q-outside: q‘{0<..<1} ⊆ path-outside ?s
proof(rule ccontr)

let ?ep = {v. v extreme-point-of A}
assume ¬ q‘{0<..<1} ⊆ path-outside ?s
then have ∃ x ∈ q‘{0<..<1}. x ∈ path-inside ?s ∪ path-image ?s

317

using inside-outside-s unfolding inside-outside-def by auto
then have q‘{0<..<1} ⊆ path-inside ?s

using simple-loop-split[of p q]
by (smt (verit) DiffE IntI Int-Un-distrib2 closed-path-def UnE ‹arc (reversepath

p) ∧ arc l› arc-imp-path assms(1) assms(2) assms(3) assms(4) closed-simple-r
closed-simple-s doubleton-eq-iff emptyE inf .commute l-def path-image-join path-image-reversepath
path-join-eq pathfinish-join pathfinish-linepath pathstart-join pathstart-linepath sim-
ple-loop-split simple-path-endless simple-path-joinE sup-absorb2)

then have q‘{0<..<1} ∩ frontier A = {} using frontier-def s-inside-subset by
fastforce

then have (path-image p ∪ path-image q) ∩ frontier A = {p 0 , p 1}
by (smt (z3) Diff-disjoint Int-Un-distrib Un-Diff-Int Un-Int-eq(3) assms(1)

assms(3) assms(4) assms(7) assms(8) assms(9) frontier-def inf .commute inf .orderE
inf-idem inf-left-commute insert-commute l-p-endpoints pathfinish-def pathstart-def
simple-path-endless)

moreover have ?ep⊆ path-image p ∪ path-image q
by (simp add: extreme-points-of-convex-hull A-def)

moreover have ?ep ⊆ frontier A
using extreme-point-not-in-interior

proof−
have ?ep ∩ interior A = {}

using extreme-point-not-in-interior by blast
thus ?thesis
by (smt (verit, ccfv-SIG) A-def Int-Un-distrib2 Un-Diff-cancel assms(1) calcu-

lation(2) closure-convex-hull compact-Un compact-simple-path-image dual-order .trans
frontier-def hull-subset inf .absorb-iff2 inf-commute sup-bot-left)

qed
ultimately have ∗: ?ep ⊆ {p 0 , p 1} by auto
have A = path-image l
proof−

have convex A ∧ compact A
by (simp add: A-def arc-imp-path assms(2) compact-Un compact-convex-hull

compact-path-image)
then have A-ep: A = convex hull ?ep using Krein-Milman-Minkowski by

blast
moreover have finite ?ep using ∗ infinite-super by auto
moreover have A 6= {} by (simp add: A-def)
moreover have ∀ x. A 6= {x} using assms(7) by fastforce

ultimately have card ?ep ≥ 2 using convex-hull-two-extreme-points by metis
then have ?ep = {p 0 , p 1}

by (metis ∗ One-nat-def Suc-1 add-leD2 card.empty card-insert-disjoint
card-seteq finite.emptyI finite.insertI insert-absorb plus-1-eq-Suc)

then have A = closed-segment (p 0) (p 1) by (metis A-ep segment-convex-hull)
thus ?thesis by (simp add: l-def)

qed
then have interior A = {}

by (metis A-def Diff-eq-empty-iff assms(1) assms(8) closure-convex-hull
compact-Un compact-simple-path-image double-diff dual-order .refl frontier-def in-
terior-subset)

318

thus False using inside-outside-def inside-outside-r r-inside-subset by auto
qed

let ?e = l (1/2)
have l-on-r-frontier : path-image l ⊆ frontier (path-inside ?r)

using inside-outside-r unfolding inside-outside-def
by (metis Un-upper1 closed-simple-r ‹arc (reversepath p) ∧ arc l› arc-def

assms(2) path-image-join path-join-eq simple-path-def)
moreover have path-image l ⊆ frontier (path-inside ?s)

using inside-outside-s unfolding inside-outside-def
by (simp add: l-def path-image-join pathstart-def reversepath-def)

ultimately have e-frontier : ?e ∈ frontier (path-inside ?r) ∧ ?e ∈ frontier
(path-inside ?s)

by (simp add: path-defs(4) subsetD)

have e-notin: ?e /∈ path-image p ∪ path-image q
proof−

have ?e /∈ path-image p
proof−

have ?e 6= l 0 ∧ ?e 6= l 1 using lf-l unfolding loop-free-def by fastforce
then have ?e 6= p 0 ∧ ?e 6= p 1 using l-p-endpoints by simp
moreover have ?e /∈ p‘{0<..<1} using p-int-l unfolding path-image-def

by fastforce
ultimately show ?thesis using p-int-l unfolding path-image-def by fastforce
qed
moreover have ?e /∈ path-image q
proof−

have ?e 6= l 0 ∧ ?e 6= l 1 using lf-l unfolding loop-free-def by fastforce
then have ?e 6= q 0 ∧ ?e 6= q 1 using l-q-endpoints by simp
moreover have ?e /∈ q‘{0<..<1} using q-int-l unfolding path-image-def

by fastforce
ultimately show ?thesis using q-int-l unfolding path-image-def by fastforce

qed
ultimately show ?thesis by blast

qed
obtain ε where ε: ε > 0 ∧ ball ?e ε ∩ path-image p = {} ∧ ball ?e ε ∩ path-image

q = {}
proof−

have ?e /∈ path-image p using e-notin by simp
moreover have compact (path-image p) by (simp add: assms(2) compact-arc-image)
moreover have ?e /∈ path-image q using e-notin by simp

moreover have compact (path-image q) by (simp add: assms(2) compact-arc-image)
ultimately obtain ε1 ε2 where
ε1 > 0 ∧ ball ?e ε1 ∩ path-image p = {} ∧ ε2 > 0 ∧ ball ?e ε2 ∩ path-image

q = {}
by (meson assms(1) not-on-path-ball simple-path-imp-path)

thus ?thesis using that[of min ε1 ε2] by (simp add: disjoint-iff)
qed

319

obtain z-r where z-r : z-r ∈ ball ?e ε ∩ path-inside ?r
by (metis e-frontier ε all-not-in-conv disjoint-iff frontier-straddle mem-ball)

obtain z-s where z-s: z-s ∈ ball ?e ε ∩ path-inside ?s
by (metis e-frontier ε all-not-in-conv disjoint-iff frontier-straddle mem-ball)

have z-s-in-r : z-s ∈ path-inside ?r
proof−

let ?l-z = linepath z-r z-s
have z-r ∈ interior A ∧ z-s ∈ interior A

using r-inside-subset s-inside-subset z-r z-s by blast
then have path-image ?l-z ⊆ interior A by (simp add: A-def closed-segment-subset)
then have 1 : path-image ?l-z ∩ path-image l = {}

by (smt (verit) Diff-iff assms(8) disjoint-iff frontier-def subsetD)

have convex (ball ?e ε) by simp
then have path-image ?l-z ⊆ ball ?e ε

by (metis IntD1 closed-segment-subset path-image-linepath z-r z-s)
then have 2 : path-image ?l-z ∩ path-image q = {} using ε by blast

show ?thesis
by (smt (verit, best) 1 2 IntI Int-Un-distrib Int-Un-distrib2 Jordan-inside-outside-real2

closed-path-def ε ‹path-image (linepath z-r z-s) ⊆ ball (l (1 / 2)) ε› arc-def assms(2)
closed-simple-r emptyE in-mono inf .assoc le-iff-inf path-connected-not-frontier-subset
path-connected-path-image path-image-join path-inside-def path-join-path-ends path-linepath
pathfinish-in-path-image pathfinish-linepath pathstart-in-path-image pathstart-linepath
sup.order-iff z-r)

qed

let ?xq = q (1/2)
let ?z = z-s

let ?v = ?xq − ?z
let ?ray = λd. ?z + d ∗R ?v
let ?rayline = linepath ?z ?xq
have z-ray: ?z = ?ray 0 by simp
have xq-ray: ?xq = ?ray 1 by simp
have xq-rayline: ?xq = ?rayline 1 unfolding linepath-def by simp
have ?xq ∈ path-image ?r
by (metis (mono-tags, opaque-lifting) Un-iff atLeastAtMost-iff imageI l-q-endpoints

less-eq-real-def path-defs(4) path-image-join pathfinish-def pathstart-def pos-half-less
zero-less-divide-1-iff zero-less-numeral zero-less-one)

then have xq-frontier : ?xq ∈ frontier (path-inside ?r)
using inside-outside-r unfolding inside-outside-def by auto

have xq-neq-z: ?xq 6= ?z
proof−

have ?xq ∈ path-image ?r
proof−

have q (1 / 2) ∈ path-image q
by (simp add: path-defs(4))

320

thus ?thesis
by (simp add: l-q-endpoints path-image-join pathfinish-def pathstart-def)

qed
thus ?thesis using z-s-in-r inside-outside-r unfolding inside-outside-def by

blast
qed
then have v-neq-0 : ?v 6= 0 by simp

have bounded (path-inside ?r) using inside-outside-r unfolding inside-outside-def
by blast

moreover have ?z ∈ interior (path-inside ?r)
by (metis inside-outside-def inside-outside-r interior-eq z-s-in-r)

ultimately obtain d where d: 0 < d ∧ ?ray d ∈ frontier (path-inside ?r)
∧ (∀ e ∈ {0 ..<d}. ?ray e ∈ interior (path-inside ?r))
using ray-to-frontier [of path-inside ?r ?z ?v] by (metis atLeastLessThan-iff

v-neq-0)

have interior-inside-r : interior (path-inside ?r) = path-inside ?r
by (meson inside-outside-def inside-outside-r interior-eq)

have d-leq-1 : d ≤ 1
proof(rule ccontr)

assume ¬ d ≤ 1
then have d > 1 by simp
moreover have ?ray 1 ∈ frontier (path-inside ?r) using xq-ray xq-frontier by

argo
ultimately show False using d unfolding frontier-def by fastforce

qed

have z-inside: ?z ∈ path-inside ?s using z-s by blast
moreover have ?rayline d ∈ path-outside ?s
proof−

have ?rayline d /∈ path-image l if d < 1
proof−

have ?rayline 0 ∈ interior A
using r-inside-subset by (simp add: linepath-0 ′ subsetD z-s-in-r)

moreover have path-image ?rayline ⊆ closure A
proof−

have closure A = A
using A-def assms(1) closure-convex-hull compact-Un compact-simple-path-image

by blast
moreover have ?rayline 0 ∈ A using ‹?rayline 0 ∈ interior A› inte-

rior-subset by blast
moreover have ?rayline 1 ∈ A

using path-image-def A-def hull-subset xq-rayline by fastforce
ultimately show ?thesis

by (metis A-def closed-segment-subset convex-convex-hull linepath-0 ′

linepath-1 ′ path-image-linepath)
qed
moreover have ¬ path-image ?rayline ⊆ rel-frontier A

321

proof−
have path-image ?rayline ∩ interior A 6= {}

using ‹?rayline 0 ∈ interior A› unfolding path-image-def by fastforce
moreover have interior A ∩ rel-frontier A = {}

using rel-frontier-def rel-interior-nonempty-interior by auto
ultimately show ?thesis by blast

qed
ultimately have rel-interior (path-image ?rayline) ⊆ rel-interior A

using subset-rel-interior-convex[of path-image ?rayline A] by (simp add:
A-def)

moreover have interior A = rel-interior A
using ‹?rayline 0 ∈ interior A› rel-interior-nonempty-interior by auto

moreover have ?rayline d ∈ ?rayline‘{0<..<1} using that d by simp
ultimately show ?thesis
by (smt (verit, del-insts) DiffD1 DiffD2 Un-iff xq-neq-z arc-linepath arc-simple-path

assms(8) closed-segment-eq-open frontier-def path-image-linepath pathfinish-linepath
pathstart-linepath rel-interior-closed-segment simple-path-endless subset-eq)

qed
moreover have ?rayline d /∈ path-image l if d = 1

using that q-int-l unfolding linepath-def by (simp add: disjoint-iff)
moreover have ?rayline d ∈ path-image ?r

by (metis (no-types, lifting) add-diff-eq d diff-add-eq inside-outside-def in-
side-outside-r linepath-def scale-left-diff-distrib scale-one scale-right-diff-distrib)

ultimately show ?thesis
by (smt (verit, ccfv-SIG) d-leq-1 Diff-iff Int-iff closed-path-def ‹arc (reversepath

p) ∧ arc l› arc-def assms(1) assms(3) assms(9) closed-simple-r insert-commute
l-def l-p-endpoints not-in-path-image-join path-join-eq pathfinish-join pathfinish-linepath
pathstart-join pathstart-linepath q-outside simple-path-def simple-path-endless sub-
setD)

qed
moreover have ?z ∈ ?rayline‘{0 ..d}

using z-ray unfolding linepath-def
by (smt (verit, del-insts) add.commute atLeastAtMost-iff cancel-comm-monoid-add-class.diff-cancel

d diff-zero image-iff less-eq-real-def segment-degen-1)
moreover have ?rayline d ∈ ?rayline‘{0 ..d} by (simp add: d less-eq-real-def)
ultimately have ?rayline‘{0 ..d} ∩ path-inside ?s 6= {} ∧ ?rayline‘{0 ..d} ∩

path-outside ?s 6= {}
by blast

then have ?rayline‘{0 ..d} ∩ path-inside ?s 6= {} ∧ ?rayline‘{0 ..d} ∩ − path-inside
?s 6= {}

using inside-outside-s unfolding inside-outside-def by (meson ComplI dis-
joint-iff)

moreover have path-connected (?rayline‘{0 ..d})
proof−

have ?rayline‘{0 ..d} = path-image (subpath 0 d ?rayline) by (simp add: d
path-image-subpath)

moreover have path (subpath 0 d ?rayline) using d d-leq-1 by auto
ultimately show ?thesis by (metis path-connected-path-image)

qed

322

ultimately have ?rayline‘{0 ..d} ∩ frontier (path-inside ?s) 6= {}
using path-connected-frontier [of ?rayline‘{0 ..d} path-inside ?s] by (metis dis-

joint-iff)
then have ?rayline‘{0 ..d} ∩ path-image ?s 6= {} using inside-outside-s unfold-

ing inside-outside-def by argo
moreover have ?rayline 0 /∈ path-image ?s
proof−

have ?xq 6= p 0
by (metis (full-types) disjoint-iff greaterThanLessThan-iff imageI l-p-endpoints

pathstart-def pathstart-in-path-image pos-half-less q-int-l zero-less-divide-1-iff zero-less-numeral
zero-less-one)

moreover have ?xq 6= p 1
by (metis (full-types) disjoint-iff greaterThanLessThan-iff imageI l-p-endpoints

pathfinish-def pathfinish-in-path-image pos-half-less q-int-l zero-less-divide-1-iff zero-less-numeral
zero-less-one)

moreover have ?xq /∈ p‘{0<..<1}
proof−

have ?xq ∈ q‘{0<..<1} by fastforce
thus ?thesis by (metis assms(1 ,3 ,4) Diff-iff Int-iff pathfinish-def pathstart-def

simple-path-endless)
qed
moreover have ?xq /∈ path-image l

by (metis disjoint-iff greaterThanLessThan-iff imageI pos-half-less q-int-l
zero-less-divide-1-iff zero-less-numeral zero-less-one)

ultimately show ?thesis
by (metis (no-types, lifting) ComplD UnI1 z-inside inside-outside-def in-

side-outside-s linepath-0 ′)
qed
moreover have ?rayline d /∈ path-image ?s

using ‹?rayline d ∈ path-outside ?s› inside-outside-def inside-outside-s by auto
moreover have {0 ..d} = {0<..<d} ∪ {0 , d} using d by fastforce
ultimately have ?rayline‘{0<..<d} ∩ path-image ?s 6= {} unfolding path-image-def

by blast
moreover have ?rayline‘{0<..<d} = ?ray‘{0<..<d}

unfolding linepath-def by (auto simp: algebra-simps)
moreover have ?ray‘{0<..<d} ⊆ path-inside ?r using d interior-inside-r by

fastforce
ultimately have path-image ?s ∩ path-inside ?r 6= {} by blast
moreover have path-image l ∩ path-inside ?r = {}

by (metis (no-types, opaque-lifting) Diff-disjoint Int-assoc l-on-r-frontier fron-
tier-def inf .orderE inf-bot-left inf-sup-aci(1) interior-inside-r)

moreover have p‘{0<..<1} = path-image ?s − path-image l
proof−

have path-image ?s = path-image p ∪ path-image l
by (simp add: l-p-endpoints path-image-join pathfinish-def sup-commute)

moreover have p‘{0<..<1} = path-image p − {p 0 , p 1}
by (metis assms(1) pathfinish-def pathstart-def simple-path-endless)

ultimately have path-image ?s = p‘{0<..<1} ∪ {p 0 , p 1} ∪ path-image l
using assms(3) assms(9) l-p-endpoints by auto

323

moreover have p 1 ∈ path-image l ∧ p 0 ∈ path-image l by (simp add: l-def)
ultimately show ?thesis using p-int-l by blast

qed
ultimately show p‘{0<..<1} ∩ path-inside (l +++ q) 6= {} by auto

show path-image p ∩ path-image (l +++ q) = {p 0 , p 1}
by (smt (verit, best) Int-Un-distrib Un-absorb assms(1) assms(3) assms(4)

closed-simple-r insert-commute l-p-endpoints p ′-int-l path-image-join path-image-reversepath
path-join-path-ends reversepath-def simple-path-imp-path)
qed

lemma pocket-path-interior :
assumes simple-path p ∧ simple-path q
assumes arc p ∧ arc q
assumes q 0 = p 1 ∧ q 1 = p 0
assumes path-image p ∩ path-image q = {p 0 , q 0}
defines A ≡ convex hull (path-image p ∪ path-image q)
defines l ≡ linepath (p 0) (p 1)
assumes p‘{0<..<1} ⊆ interior A
assumes path-image l ⊆ frontier A
assumes path-image q ∩ path-image l = {l 0 , q 0}
shows p‘{0<..<1} ⊆ path-inside (l +++ q)
using pocket-path-interior-aux[of p q] simple-loop-split[of l +++ q p] assms
by (metis (no-types, lifting) DiffE disjoint-iff simple-path-endless)

lemma pocket-path-good:
assumes polygon (make-polygonal-path vts)
assumes vts!0 ∈ frontier (convex hull (set vts))
assumes vts!1 /∈ frontier (convex hull (set vts))
assumes ¬ convex (path-image (make-polygonal-path vts) ∪ path-inside (make-polygonal-path

vts))
defines pocket-path-vts ≡ construct-pocket-0 vts (set vts ∩ frontier (convex hull

(set vts)))
defines pocket ≡ make-polygonal-path (pocket-path-vts @ [pocket-path-vts!0])
defines filled-vts ≡ fill-pocket-0 vts (length pocket-path-vts)
defines filled-p ≡ make-polygonal-path filled-vts
defines a ≡ hd pocket-path-vts
defines b ≡ last pocket-path-vts
defines good-pocket-path-vts ≡ tl (butlast pocket-path-vts)
shows polygon filled-p

is-polygon-split-path (butlast filled-vts) 0 1 good-pocket-path-vts
polygon pocket
card (set pocket-path-vts) < card (set vts)
card (set filled-vts) < card (set vts)

proof−
let ?p = make-polygonal-path vts
let ?A = set vts ∩ frontier (convex hull (set vts))
let ?filled-vts-tl = tl filled-vts
let ?filled-p-tl = make-polygonal-path ?filled-vts-tl

324

let ?pocket-vts = pocket-path-vts @ [pocket-path-vts!0]
let ?pocket-path = make-polygonal-path pocket-path-vts
let ?l = linepath a b

let ?r = min-nonzero-index-in-set vts ?A
have int-A-nonempty: set (tl vts) ∩ ?A 6= {}
by (metis (mono-tags, lifting) IntI Nitpick.size-list-simp(2) Suc-eq-plus1 assms(1)

assms(2) card-length empty-iff have-wraparound-vertex last-in-set last-tl le-add1
le-trans not-less-eq-eq numeral-3-eq-3 polygon-at-least-3-vertices snoc-eq-iff-butlast)
then have r-defined: nonzero-index-in-set vts ?A ?r ∧ (∀ i < ?r . ¬ nonzero-index-in-set

vts ?A i)
using min-nonzero-index-in-set-defined[of vts ?A] by fast

have two-vts-on-frontier : 2 ≤ card ?A
by (metis convex-hull-two-vts-on-frontier One-nat-def Suc-1 add-leD2 assms(1)

numeral-3-eq-3 plus-1-eq-Suc polygon-at-least-3-vertices)
moreover have frontier-vts-subset: ?A ⊆ set vts by force
moreover have distinct-vts: distinct (butlast vts)

using assms(1) polygon-def simple-polygonal-path-vts-distinct by blast
moreover have hd-last-vts: hd vts = last vts

by (metis assms(1) have-wraparound-vertex hd-conv-nth snoc-eq-iff-butlast)
ultimately have a-neq-b: a 6= b

using a-def b-def construct-pocket-0-first-last-distinct pocket-path-vts-def by
presburger

have length filled-vts ≥ 2
unfolding filled-vts-def fill-pocket-0-def
by (smt (verit, best) One-nat-def Suc-1 Suc-diff-Suc a-def a-neq-b b-def con-

struct-pocket-0-def diff-is-0-eq diff-zero hd-Nil-eq-last length-drop length-greater-0-conv
length-tl list.sel(3) not-less-eq-eq pocket-path-vts-def sublist-length-le sublist-take)

moreover have filled-vts-0 : a = filled-vts!0
unfolding filled-vts-def fill-pocket-0-def a-def pocket-path-vts-def construct-pocket-0-def
by auto

moreover have filled-vts-1 : b = filled-vts!1
by (smt (verit, del-insts) filled-vts-def fill-pocket-0-def b-def pocket-path-vts-def

construct-pocket-0-def Cons-nth-drop-Suc Nitpick.size-list-simp(2) a-def a-neq-b add.right-neutral
drop0 drop-eq-Nil hd-Nil-eq-last last-conv-nth length-take length-tl linorder-not-less
list.sel(3) min.absorb4 nat-le-linear not-less-eq-eq nth-drop nth-take plus-1-eq-Suc
take-all-iff zero-less-diff)

ultimately have filled-vts: filled-vts = [a, b] @ tl ?filled-vts-tl
by (metis (no-types, lifting) Nitpick.size-list-simp(2) One-nat-def Suc-1 ap-

pend-Nil append-eq-Cons-conv length-greater-0-conv list.collapse not-less-eq-eq nth-Cons-0
nth-tl order-less-le-trans pos2)

have 1 : polygon-of ?p vts unfolding polygon-of-def using assms(1) by blast
have 2 : 2 ≤ ?r ∧ ?r < length vts − 1
proof−

have ?r 6= 0 ∧ ?r 6= 1

325

using assms(2 ,3) min-nonzero-index-in-set-def nonzero-index-in-set-def r-defined
by fastforce

then have 1 : ?r ≥ 2 by simp

have ∃ i ∈ {0<..<length vts − 1}. vts!i ∈ frontier (convex hull (set vts))
proof−

have card ((set vts) ∩ frontier (convex hull (set vts))) ≥ 2
using two-vts-on-frontier by blast

then obtain v where v ∈ set vts ∧ v ∈ frontier (convex hull set vts) ∧ v 6=
hd vts

by (metis hd-last-vts Int-iff a-neq-b assms(2) b-def construct-pocket-0-last-in-set
convex-hull-empty empty-set fill-pocket-0-def filled-vts-0 filled-vts-def frontier-empty
hd-conv-nth int-A-nonempty last-in-set nth-Cons-0 pocket-path-vts-def)

thus ?thesis
by (metis hd-last-vts assms(1) in-set-conv-nth diff-Suc-1 gr0-implies-Suc

greaterThanLessThan-iff have-wraparound-vertex last-conv-nth le-eq-less-or-eq less-Suc-eq-le
less-one nat.simps(3) nat-le-linear snoc-eq-iff-butlast)

qed
then have 2 : ?r < length vts − 1

using r-defined
unfolding min-nonzero-index-in-set-def nonzero-index-in-set-def

by (smt (verit, del-insts) Int-iff add.commute add-diff-cancel-left ′ add-diff-inverse-nat
greaterThanLessThan-iff less-imp-diff-less mem-Collect-eq nat-less-le nth-mem)

show ?thesis using 1 2 by blast
qed
have ab: a = hd vts ∧ b = vts!?r
by (metis (no-types, lifting) 2 Suc-1 int-A-nonempty ab-semigroup-add-class.add-ac(1)

add-Suc-right b-def construct-pocket-0-def fill-pocket-0-def filled-vts-0 filled-vts-def
hd-drop-conv-nth last-snoc le-add-diff-inverse2 min-nonzero-index-in-set-bound nth-Cons-0
plus-1-eq-Suc pocket-path-vts-def take-hd-drop)

have 3 : {hd vts, vts ! ?r} ⊆ frontier (convex hull set vts)
using ab assms(1) assms(2) assms(3) b-def construct-pocket-is-pocket is-pocket-0-def

pocket-path-vts-def
by fastforce

have 4 : ∀ j∈{0<..<?r}. vts ! j /∈ frontier (convex hull set vts)
using r-defined unfolding nonzero-index-in-set-def by fastforce

have l-int-p: path-image (linepath (hd vts) (vts ! ?r)) ∩ path-image ?p = {hd vts,
vts ! ?r}

using pocket-fill-line-int[OF 1 2 3 4] by blast
have l-frontier : path-image (linepath (hd vts) (vts ! ?r)) ⊆ frontier (convex hull

(set vts))
using pocket-fill-line-int[OF 1 2 3 4] by blast

have path-image ?filled-p-tl ∩ path-image ?l = {a, b}
proof−

have path-image (linepath (hd vts) (vts ! ?r)) ∩ path-image ?p = {hd vts, vts !
?r}

326

using pocket-fill-line-int[OF 1 2 3 4] by blast
moreover have path-image ?filled-p-tl ⊆ path-image ?p
proof−

have sublist ?filled-vts-tl vts by (simp add: fill-pocket-0-def filled-vts-def)
thus ?thesis using ‹2 ≤ length filled-vts› sublist-path-image-subset by auto

qed
moreover have a ∈ path-image ?filled-p-tl ∧ b ∈ path-image ?filled-p-tl

by (smt (verit, best) Cons-nth-drop-Suc Diff-insert-absorb One-nat-def Suc-1
‹2 ≤ length filled-vts› drop0 drop-eq-Nil fill-pocket-0-def filled-vts-0 filled-vts-1 filled-vts-def
hd-last-vts last-drop last-in-set linorder-not-le list.sel(3) not-less-eq-eq nth-Cons-0
order-less-le-trans pathstart-in-path-image polygon-pathstart pos2 subset-Diff-insert
vertices-on-path-image)

ultimately show ?thesis using ab by auto
qed
moreover have hd-filled: hd ?filled-vts-tl = last [a, b]
unfolding filled-vts-def fill-pocket-0-def pocket-path-vts-def construct-pocket-0-def
by (metis construct-pocket-0-def fill-pocket-0-def filled-vts filled-vts-def hd-append2

last-ConsL last-ConsR list.sel(1) list.sel(3) list.simps(3) pocket-path-vts-def tl-append2)
moreover have last-filled: last ?filled-vts-tl = hd [a, b]
unfolding filled-vts-def fill-pocket-0-def pocket-path-vts-def construct-pocket-0-def

using r-defined a-def assms(1) assms(2) assms(3) construct-pocket-is-pocket
hd-last-vts is-pocket-0-def pocket-path-vts-def

by fastforce
moreover have loop-free ?filled-p-tl
proof−

have sublist ?filled-vts-tl vts
unfolding filled-vts-def fill-pocket-0-def pocket-path-vts-def construct-pocket-0-def

using r-defined
by force

thus ?thesis
by (smt (verit, del-insts) Nitpick.size-list-simp(2) Suc-1 ‹2 ≤ length filled-vts›

‹b = filled-vts ! 1 › a-neq-b assms(1) diff-is-0-eq dual-order .strict-trans1 last-conv-nth
last-filled le-antisym length-greater-0-conv length-tl list.sel(1) list.size(3) not-less-eq-eq
nth-tl polygon-def pos2 simple-path-def sublist-is-loop-free sublist-length-le)

qed
moreover have loop-free ?l using a-neq-b linepath-loop-free by blast
moreover have filled-vts: filled-vts = [a, b] @ tl ?filled-vts-tl using filled-vts by

blast
moreover have arc ?l

by (smt (verit) arc-linepath calculation(5) constant-linepath-is-not-loop-free)
moreover have arc ?filled-p-tl

by (smt (z3) arc-simple-path calculation(2) calculation(3) calculation(4) cal-
culation(7) hd-Nil-eq-last hd-conv-nth last.simps last-conv-nth list.discI list.sel(1)
make-polygonal-path-gives-path pathfinish-linepath pathstart-linepath polygon-pathfinish
polygon-pathstart simple-path-def)

moreover have ?l = make-polygonal-path [a, b]
using make-polygonal-path.simps by presburger

ultimately have lf-filled: loop-free filled-p
by (smt (z3) Nat.add-diff-assoc One-nat-def Suc-pred ′ add-Suc-shift append-butlast-last-id

327

arc-distinct-ends butlast.simps(2) filled-p-def hd-Nil-eq-last hd-conv-nth inf-sup-aci(1)
last-ConsR less-numeral-extra(1) list.sel(1) list.simps(3) list.size(3) list.size(4)
loop-free-append nth-append-length order-eq-refl plus-1-eq-Suc polygon-pathfinish poly-
gon-pathstart)

show polygon-filled-p: polygon filled-p
unfolding polygon-def

by (metis closed-path-def UNIV-def append-is-Nil-conv filled-p-def filled-vts
hd-append2 last.simps last-conv-nth last-filled lf-filled list.discI list.exhaust-sel make-polygonal-path-gives-path
nth-Cons-0 polygon-pathfinish polygon-pathstart polygonal-path-def rangeI simple-path-def)

have {a, b} ⊆ set filled-vts
using filled-vts by (smt (z3) UnCI empty-set list.simps(15) set-append sub-

set-iff)
moreover have pocket-path: ?pocket-path = make-polygonal-path ([a] @ good-pocket-path-vts

@ [b])
by (metis (no-types, lifting) a-def a-neq-b append-Cons append-Nil append-butlast-last-id

b-def good-pocket-path-vts-def hd-Nil-eq-last hd-conv-nth last-conv-nth length-butlast
list.collapse list.size(3) tl-append2)

moreover have path-image ?pocket-path ⊆ path-inside filled-p ∪ {a, b}
proof−

let ?p = ?pocket-path
let ?q = ?filled-p-tl
let ?H = convex hull (path-image ?p ∪ path-image ?q)
have b: pocket-path-vts = take (?r + 1) vts

unfolding pocket-path-vts-def construct-pocket-0-def by blast
moreover then have c ′: ?filled-vts-tl = drop ?r vts unfolding filled-vts-def

fill-pocket-0-def
using 2 by fastforce

ultimately have vts = pocket-path-vts @ tl ?filled-vts-tl
by (metis Suc-eq-plus1 append-take-drop-id drop-Suc tl-drop)

then have path-image ?p = path-image ?p ∪ path-image ?q
by (metis Suc-1 a-def a-neq-b b-def diff-is-0-eq hd-Nil-eq-last hd-conv-nth

hd-filled last.simps last-conv-nth last-filled list.discI list.sel(1) make-polygonal-path-image-append-alt
not-less-eq-eq path-image-join polygon-pathfinish polygon-pathstart)

moreover have convex hull (path-image ?p) = convex hull (set vts)
by (metis (no-types, lifting) 1 Un-subset-iff convex-hull-of-polygon-is-convex-hull-of-vts

hull-Un-subset hull-mono subset-antisym vertices-on-path-image)
ultimately have H-eq: ?H = convex hull (set vts) by presburger

have a: ?p = make-polygonal-path vts ∧ loop-free ?p
using assms(1) polygon-def simple-path-def by blast

have c: ?filled-vts-tl = drop ((?r + 1) − 1) vts using c ′ by simp
have h: 1 ≤ ?r + 1 ∧ ?r + 1 < length vts using 2 by linarith
have path-image ?p ∩ path-image ?q ⊆ {?p 0 , ?q 0}

using loop-free-split-int[OF a b c - - - h] by (simp add: pathstart-def)
moreover have ?p 0 ∈ path-image ?p ∧ ?p 0 ∈ path-image ?q

by (metis a-def a-neq-b b-def hd-Nil-eq-last hd-conv-nth hd-filled last.simps
last-conv-nth last-filled list.sel(1) pathfinish-in-path-image pathstart-def pathstart-in-path-image

328

polygon-pathfinish polygon-pathstart)
moreover have ?q 0 ∈ path-image ?p ∧ ?q 0 ∈ path-image ?q

by (metis a-def a-neq-b b-def hd-Nil-eq-last hd-conv-nth hd-filled last.simps
last-conv-nth last-filled list.sel(1) pathfinish-in-path-image pathstart-def pathstart-in-path-image
polygon-pathfinish polygon-pathstart)

ultimately have 4 : path-image ?p ∩ path-image ?q = {?p 0 , ?q 0} by fastforce

have 1 : simple-path ?p ∧ simple-path ?q
by (metis (no-types, lifting) One-nat-def Suc-1 Suc-le-eq ‹arc ?filled-p-tl›

arc-simple-path assms(1) assms(2) assms(3) construct-pocket-is-pocket is-pocket-0-def
le-add2 make-polygonal-path-gives-path numeral-3-eq-3 order-le-less-trans plus-1-eq-Suc
pocket-path-vts-def polygon-def simple-path-def sublist-is-loop-free sublist-take)

have 2 : arc ?p ∧ arc ?q
by (metis 1 ‹arc ?filled-p-tl› a-def a-neq-b b-def hd-Nil-eq-last hd-conv-nth

last-conv-nth polygon-pathfinish polygon-pathstart simple-path-cases)
have 3 : ?q 0 = ?p 1 ∧ ?q 1 = ?p 0
by (metis 1 a-def append-Cons b-def constant-linepath-is-not-loop-free filled-vts

hd-conv-nth last-conv-nth last-filled list.sel(1) list.sel(3) make-polygonal-path.simps(1)
pathfinish-def pathstart-def polygon-pathfinish polygon-pathstart simple-path-def)

have 5 : ?p ‘ {0<..<1} ⊆ interior ?H
proof−

have ∀ j ∈ {0<..<?r}. vts!j /∈ frontier (convex hull (set vts))
by (smt (verit, del-insts) Int-iff dual-order .strict-trans greaterThanLessThan-iff

int-A-nonempty mem-Collect-eq min-nonzero-index-in-set-defined nonzero-index-in-set-def
nth-mem)

moreover have ?r = length pocket-path-vts − 1 using b h by auto
moreover have ∀ j < ?r . vts!j = pocket-path-vts!j using b by auto
ultimately have ∀ j ∈ {0<..<length pocket-path-vts − 1}. pocket-path-vts!j

/∈ frontier ?H
using H-eq by simp

moreover have loop-free ?pocket-path using 1 simple-path-def by auto
ultimately show ?thesis

by (metis vts-interior Un-subset-iff assms(1) assms(2) assms(3) con-
struct-pocket-is-pocket convex-convex-hull hull-subset is-pocket-0-def pocket-path-vts-def)

qed
have 6 : path-image (linepath (?p 0) (?p 1)) ⊆ frontier ?H

by (metis l-frontier H-eq 3 a-def a-neq-b ab b-def hd-Nil-eq-last hd-conv-nth
hd-filled last.simps last-filled list.discI list.sel(1) pathstart-def polygon-pathstart)

have 7 : path-image ?q ∩ path-image (linepath (?p 0) (?p 1)) = {linepath (?p
0) (?p 1) 0 , ?q 0}

by (metis 3 ‹path-image (make-polygonal-path (tl filled-vts)) ∩ path-image
(linepath a b) = {a, b}› a-def a-neq-b b-def hd-Nil-eq-last hd-filled last.simps last-conv-nth
last-filled linepath-0 ′ list.sel(1) pathfinish-def polygon-pathfinish)

have ?p ‘ {0<..<1} ⊆ path-inside (linepath (?p 0) (?p 1) +++ ?q)
using pocket-path-interior [OF 1 2 3 4 5 6 7] by blast

then have ?p‘{0<..<1} ⊆ path-inside filled-p
by (smt (verit) 3 ‹2 ≤ length filled-vts› a-def a-neq-b b-def filled-p-def

filled-vts-0 hd-Nil-eq-last hd-filled last.simps last-filled length-greater-0-conv list.discI
list.sel(1) list.sel(3) make-polygonal-path.elims nth-Cons-0 order-less-le-trans path-

329

start-def polygon-pathstart pos2)
moreover have ?p 0 = a ∧ ?p 1 = b

by (metis 3 a-def a-neq-b b-def hd-Nil-eq-last hd-conv-nth hd-filled last.simps
last-filled list.discI list.sel(1) pathstart-def polygon-pathstart)

ultimately show ?thesis
by (metis 1 Diff-subset-conv a-def a-neq-b b-def hd-Nil-eq-last hd-conv-nth

last-conv-nth polygon-pathfinish polygon-pathstart simple-path-endless sup-commute)
qed
moreover have loop-free-pocket-path: loop-free ?pocket-path
proof−

have sublist pocket-path-vts vts
by (simp add: construct-pocket-0-def pocket-path-vts-def)

moreover have loop-free ?p
using assms(1) polygon-def simple-path-def by blast

moreover have length pocket-path-vts ≥ 2
by (metis Suc-1 a-def a-neq-b b-def diff-is-0-eq ′ hd-Nil-eq-last hd-conv-nth

last-conv-nth not-less-eq-eq)
moreover have length vts ≥ 2

by (meson calculation(1) calculation(3) le-trans sublist-length-le)
ultimately show ?thesis using sublist-is-loop-free by blast

qed
ultimately have good-polygonal-path: good-polygonal-path a good-pocket-path-vts

b filled-vts
by (metis a-neq-b filled-p-def good-polygonal-path-def)

have filled-vts-as-butlast: filled-vts = (butlast filled-vts) @ [(butlast filled-vts)!0]
by (metis Nitpick.size-list-simp(2) append.right-neutral butlast-conv-take filled-p-def

filled-vts have-wraparound-vertex length-butlast length-tl less-Suc-eq-0-disj list.discI
list.sel(2) list.sel(3) nth-butlast polygon-filled-p)

then have filled-p-as-butlast:
filled-p = make-polygonal-path ((butlast filled-vts) @ [(butlast filled-vts)!0])

unfolding filled-p-def filled-vts-def by argo
have le: 0 < (1 ::nat) by simp

have filled-0-a: (butlast filled-vts) ! 0 = a
by (metis append-Cons append-Nil butlast.simps(2) filled-vts nth-Cons-0 filled-vts-0)

have filled-1-b: (butlast filled-vts) ! 1 = b
by (metis (no-types, opaque-lifting) filled-vts-1 filled-vts-as-butlast a-neq-b ap-

pend-Cons append-Nil butlast-conv-take filled-0-a filled-vts length-butlast less-one
linorder-not-le nat-less-le nth-append-length nth-butlast take0)

have 01 : 0 < length (butlast filled-vts) ∧ 1 < length (butlast filled-vts)
by (metis One-nat-def Suc-lessI filled-vts-1 filled-vts-as-butlast a-neq-b ap-

pend-eq-Cons-conv filled-0-a length-greater-0-conv nth-Cons-Suc nth-append-length)
show is-split-path:

is-polygon-split-path (butlast filled-vts) 0 1 good-pocket-path-vts
using good-polygonal-path-implies-polygon-split-path

[OF polygon-filled-p filled-p-as-butlast - 01 filled-0-a filled-1-b le]

330

using good-polygonal-path filled-vts-as-butlast
by presburger

have polygon-pocket-rev: polygon (make-polygonal-path (a#([] @ [b] @ (rev good-pocket-path-vts)
@ [a])))

unfolding is-polygon-split-path-def
by (smt (z3) 01 One-nat-def add-diff-cancel-left ′ add-diff-cancel-right ′ filled-0-a

filled-1-b is-polygon-split-path-def is-split-path nth-butlast plus-1-eq-Suc take0)
moreover have rev-pocket-vts: rev ?pocket-vts = a#([] @ [b] @ (rev good-pocket-path-vts)

@ [a])
by (smt (verit) a-def a-neq-b append.left-neutral append-Cons append-butlast-last-id

b-def good-pocket-path-vts-def hd-Nil-eq-last hd-append2 hd-conv-nth last-conv-nth
length-butlast list.collapse list.size(3) rev.simps(1) rev.simps(2) rev-append)

ultimately show polygon pocket
by (metis polygon-pocket-rev rev-vts-is-polygon polygon-of-def pocket-def rev-rev-ident)

have card (set vts) = length (butlast vts)
using distinct-vts

by (smt (verit, ccfv-threshold) Suc-n-not-le-n Un-insert-right append-Nil2 assms(1)
butlast-conv-take distinct-card dual-order .strict-trans have-wraparound-vertex hd-conv-nth
hd-in-set hd-take insert-absorb length-0-conv length-butlast less-eq-Suc-le linorder-linear
list.set(2) not-numeral-le-zero numeral-3-eq-3 polygon-at-least-3-vertices-wraparound
polygon-vertices-length-at-least-4 set-append)

then have set pocket-path-vts ⊂ set vts
unfolding pocket-path-vts-def construct-pocket-0-def
using r-defined

by (smt (verit, ccfv-threshold) Cons-nth-drop-Suc One-nat-def Suc-diff-Suc
Suc-le-lessD add-diff-cancel-right ′ assms(1) assms(2) assms(3) butlast-conv-take
butlast-snoc card-length construct-pocket-0-def construct-pocket-is-pocket drop0 fill-pocket-0-def
filled-vts-def is-pocket-0-def is-polygon-split-path-def is-split-path leD le-less-Suc-eq
length-butlast length-drop length-greater-0-conv list.inject numeral-3-eq-3 plus-1-eq-Suc
pocket-path-vts-def polygon-at-least-3-vertices-wraparound psubsetI set-take-subset
take-eq-Nil add-eq-0-iff-both-eq-0 add-gr-0 cancel-comm-monoid-add-class.diff-cancel
diff-zero dual-order .strict-trans filled-p-def length-Cons length-tl less-imp-diff-less
list.sel(3) list.size(3) not-less-eq-eq polygon-filled-p zero-less-one zero-neq-one)

thus card (set pocket-path-vts) < card (set vts) by (simp add: psubset-card-mono)

have card (set vts) = card (set (butlast vts))
by (smt (z3) Cons-nth-drop-Suc List.finite-set One-nat-def Suc-1 Suc-le-lessD

two-vts-on-frontier distinct-vts hd-last-vts frontier-vts-subset butlast.simps(1) but-
last-conv-take card-insert-if card-length card-mono distinct-card drop0 drop-eq-Nil
dual-order .trans last-in-set last-tl length-butlast length-greater-0-conv length-tl list.collapse
list.sel(3) list.simps(15) set-take-subset verit-la-disequality)

moreover have length good-pocket-path-vts ≥ 1
unfolding good-pocket-path-vts-def pocket-path-vts-def construct-pocket-0-def
using convex-hull-of-nonconvex-polygon-strict-subset[OF - assms(4), of vts]

331

using Suc-le-eq assms(1) assms(2) assms(3) construct-pocket-0-def construct-pocket-is-pocket
is-pocket-0-def numeral-3-eq-3

by auto
ultimately show card (set filled-vts) < card (set vts)

unfolding filled-vts-def fill-pocket-0-def good-pocket-path-vts-def pocket-path-vts-def
by (smt (verit) Nitpick.size-list-simp(2) Suc-1 Suc-diff-Suc Suc-n-not-le-n ‹2 ≤

length filled-vts› distinct-vts hd-last-vts card-length diff-is-0-eq diff-less distinct-card
drop-eq-Nil fill-pocket-0-def filled-vts-def insert-absorb last-drop last-in-set le leI
le-less-Suc-eq length-Cons length-butlast length-drop length-tl less-imp-diff-less list.simps(15)
order-less-le-trans pocket-path-vts-def)
qed

29.3 Arbitrary Polygon Case
lemma pick-rotate:

assumes polygon-of p vts
assumes all-integral vts
obtains p ′ vts ′ where polygon-of p ′ vts ′

∧ vts ′!0 ∈ frontier (convex hull (set vts ′))
∧ path-image p ′ = path-image p
∧ all-integral vts ′

∧ set vts ′ = set vts
proof−

obtain v where v: v ∈ set vts ∩ frontier (convex hull (set vts))
proof−

obtain v where v ∈ set vts ∧ v extreme-point-of (convex hull (set vts))
using assms unfolding polygon-of-def

by (metis List.finite-set card.empty convex-convex-hull convex-hull-eq-empty ex-
treme-point-exists-convex extreme-point-of-convex-hull finite-imp-compact-convex-hull
not-numeral-le-zero polygon-at-least-3-vertices)

then have v ∈ set vts ∧ v ∈ frontier (convex hull (set vts))
by (metis Krein-Milman-frontier List.finite-set convex-convex-hull extreme-point-of-convex-hull

finite-imp-compact-convex-hull)
thus ?thesis using that by blast

qed
obtain i where i: vts!i = v ∧ i < length vts by (meson IntE in-set-conv-nth v)
let ?vts-rotated = rotate-polygon-vertices vts i
let ?p-rotated = make-polygonal-path ?vts-rotated
have same-set: set vts = set ?vts-rotated

using assms unfolding polygon-of-def
using rotate-polygon-vertices-same-set
by force

moreover have ∗: ?vts-rotated!0 ∈ frontier (convex hull (set ?vts-rotated))
proof−

have ?vts-rotated!0 = vts!i
using assms unfolding polygon-of-def

by (metis add-leD2 diff-self-eq-0 have-wraparound-vertex hd-conv-nth i last-snoc
less-nat-zero-code list.size(3) nat-le-linear numeral-Bit0 polygon-vertices-length-at-least-4

332

rotated-polygon-vertices)
moreover have vts!i ∈ frontier (convex hull (set vts)) using v i by blast
ultimately show ?thesis using same-set by argo

qed
moreover have polygon ?p-rotated

using rotation-is-polygon assms unfolding polygon-of-def by blast
moreover have all-integral ?vts-rotated

using rotate-polygon-vertices-same-set assms
unfolding all-integral-def polygon-of-def by blast

moreover have path-image ?p-rotated = path-image p
using assms unfolding polygon-of-def using polygon-vts-arb-rotation by force

moreover then have path-inside ?p-rotated = path-inside p unfolding path-inside-def
by simp

ultimately show ?thesis using polygon-of-def that by blast
qed

lemma pick-unrotated:
fixes p :: R-to-R2
assumes polygon: polygon p
assumes polygonal-path: p = make-polygonal-path vts
assumes int-vertices: all-integral vts
assumes I-is: I = card {x. integral-vec x ∧ x ∈ path-inside p}
assumes B-is: B = card {x. integral-vec x ∧ x ∈ path-image p}
assumes vts!0 ∈ frontier (convex hull (set vts))
shows measure lebesgue (path-inside p) = I + B/2 − 1
using assms

proof (induct card (set vts) arbitrary: vts p I B rule: less-induct)
case less
have B-finite: finite {x. integral-vec x ∧ x ∈ path-image p}

using finite-path-image less(2) by auto
have set vts ⊆ {x. integral-vec x ∧ x ∈ path-image p}

using less(3) vertices-on-path-image[of vts] less(4)
unfolding all-integral-def
by auto

then have card-vts: card (set vts) ≥ 3
using polygon-at-least-3-vertices[OF less(2) less(3)] card-mono order-trans
by blast

have vts-wraparound: vts ! 0 = vts ! (length vts − 1)
using less(2−3) polygon-pathstart polygon-pathfinish
unfolding polygon-def closed-path-def
by (metis diff-0-eq-0 length-0-conv)

then have vts-is: vts = (butlast vts) @ [vts ! 0]
by (metis butlast-conv-take have-wraparound-vertex less.prems(1) less.prems(2))

have same-set: set vts = set (butlast (vts))
by (metis ListMem-iff Un-insert-right append.right-neutral butlast.simps(2) con-

stant-linepath-is-not-loop-free elem hd-conv-nth insert-absorb less.prems(1) less.prems(2)
list.collapse list.simps(15) make-polygonal-path.simps(2) polygon-def set-append sim-
ple-path-def vts-is)

have distinct-butlast-vts: distinct (butlast vts)

333

using simple-polygonal-path-vts-distinct less(2−3)
unfolding polygon-def
by auto

have card-butlast-vts: card (set vts) = card (set (butlast vts))
using vts-wraparound
by (smt (verit, best) List.finite-set butlast-conv-take card-distinct card-length

card-mono card-vts diff-is-0-eq diff-less distinct-butlast-vts distinct-card drop-rev
dual-order .strict-trans1 le-SucE length-append-singleton length-greater-0-conv less-numeral-extra(1)
less-numeral-extra(4) nth-eq-iff-index-eq one-less-numeral-iff order-class.order-eq-iff
semiring-norm(77) set-drop-subset set-rev vts-is)

then have card-set-len-butlast: card (set vts) = length (butlast vts)
using distinct-butlast-vts
by (metis distinct-card)

{ assume triangle: card (set vts) = 3
then have length (butlast vts) = 3

using card-set-len-butlast
by auto

then have butlast vts = [vts ! 0 , vts ! 1 , vts ! 2]
by (metis (no-types, lifting) Cons-nth-drop-Suc One-nat-def Suc-1 card-set-len-butlast

card-vts drop0 drop-eq-Nil lessI nth-append numeral-3-eq-3 one-less-numeral-iff semir-
ing-norm(77) vts-is zero-less-numeral)

then have vts-is: vts = [vts ! 0 , vts ! 1 , vts ! 2 , vts ! 0]
using vts-is by auto

then have p-make-triangle: p = make-triangle (vts ! 0) (vts ! 1) (vts ! 2)
using less(3) unfolding make-triangle-def by simp

then have not-collinear : ¬ collinear {vts ! 0 , vts ! 1 , vts ! 2}
using vts-is less(2) polygon-vts-not-collinear [of p vts] unfolding polygon-of-def

make-triangle-def
by (smt (verit, ccfv-threshold) insert-absorb2 insert-commute list.set(1)

list.simps(15))
have all-integral: all-integral [vts ! 0 , vts ! 1 , vts ! 2]

using less.prems(3) vts-is unfolding all-integral-def
by (simp add: ‹butlast vts = [vts ! 0 , vts ! 1 , vts ! 2]› in-set-butlastD)

have distinct: distinct [vts ! 0 , vts ! 1 , vts ! 2]
using ‹butlast vts = [vts ! 0 , vts ! 1 , vts ! 2]› distinct-butlast-vts by presburger

have pick-triangle: pick-triangle p (vts ! 0) (vts ! 1) (vts ! 2)
using pick-triangle p-make-triangle less(2) not-collinear all-integral distinct
by simp

then have ?case
using pick-triangle-lemma[OF p-make-triangle all-integral distinct not-collinear]

less.prems(4−5)
by blast

} moreover
{ assume non-triangle: card (set vts) > 3

{ assume convex: convex (path-image p ∪ path-inside p)
then obtain a b where good-linepath a b vts

using convex-polygon-has-good-linepath non-triangle
by (metis inf-sup-aci(5) less.prems(1) less.prems(2))

then have ab-prop: a 6= b ∧ {a, b} ⊆ set vts ∧ path-image (linepath a b) ⊆

334

path-inside p ∪ {a, b}
unfolding good-linepath-def less.prems(2) by presburger

then have ab-prop-restate: a 6= b ∧ a ∈ set (butlast vts) ∧ b ∈ set (butlast
vts)

using same-set
by simp

have good-linepath-ab: good-linepath a b ((butlast vts) @ [(butlast vts) ! 0])
using ab-prop vts-is unfolding good-linepath-def
using ab-prop-restate empty-set hd-append2 hd-conv-nth insert-absorb in-

sert-not-empty less.prems(2) same-set
by (smt (z3))

then have good-linepath-ba: good-linepath b a ((butlast vts) @ [(butlast vts) !
0])

using good-linepath-comm good-linepath-def by blast
obtain i1 j1 where ij-prop: i1 < length (butlast vts) ∧ j1 < length (butlast

vts) ∧
butlast vts ! i1 = a ∧
butlast vts ! j1 = b ∧ i1 6= j1

using ab-prop-restate
by (metis distinct-Ex1 distinct-butlast-vts)

have i-lt-then: i1 < j1 =⇒ is-polygon-split (butlast vts) i1 j1
using good-linepath-implies-polygon-split[OF less(2), of butlast vts] vts-is

same-set
using ij-prop good-linepath-ab good-linepath-ba
by (metis ab-prop-restate length-pos-if-in-set less.prems(2) nth-butlast)

have j-lt-then: j1 < i1 =⇒ is-polygon-split (butlast vts) j1 i1
using good-linepath-implies-polygon-split[OF less(2), of butlast vts] vts-is

same-set
using ij-prop good-linepath-ab good-linepath-ba
by (metis ab-prop-restate length-pos-if-in-set less.prems(2) nth-butlast)

obtain i j where polygon-split: is-polygon-split (butlast vts) i j
using i-lt-then j-lt-then ij-prop
by (meson nat-neq-iff)

then have ij-prop: i < length (butlast vts) ∧ j < length (butlast vts) ∧ i < j
unfolding is-polygon-split-def
by blast

have p-is: p = make-polygonal-path (butlast vts @ [butlast vts ! 0])
using less(3) vts-is
by (metis length-greater-0-conv nth-butlast same-set set-empty)

let ?vts1 = take i (butlast vts)
let ?vts2 = take (j − i − 1) (drop (Suc i) (butlast vts))
let ?vts3 = drop (j − i) (drop (Suc i) (butlast vts))

let ?vtsp1 = (butlast vts ! i # ?vts2 @ [butlast vts ! j, butlast vts ! i])
have finite-butlast: finite (set (butlast vts))

by blast

335

have vtsp1-subset: set ?vtsp1 ⊆ set (butlast vts)
using ij-prop

by (smt (verit, del-insts) Un-commute append-Cons append-Nil dual-order .trans
insert-subset list.simps(15) nth-mem set-append set-drop-subset set-take-subset)

let ?p1 = make-polygonal-path ?vtsp1
let ?I1 = card {x. integral-vec x ∧ x ∈ path-inside ?p1}
let ?B1 = card {x. integral-vec x ∧ x ∈ path-image ?p1}
have polygon-p1 : polygon ?p1

using polygon-split unfolding is-polygon-split-def by metis

let ?vtsp2 = ?vts1 @ [butlast vts ! i, butlast vts ! j] @ ?vts3 @ [butlast vts ! 0]
let ?p2 = make-polygonal-path ?vtsp2
have polygon-p2 : polygon ?p2

using polygon-split unfolding is-polygon-split-def by metis

have j-neq: j 6= i + 1
by (smt (verit, ccfv-SIG) One-nat-def Suc-n-not-le-n Suc-numeral add-Suc-shift

add-implies-diff cancel-ab-semigroup-add-class.diff-right-commute length-Cons length-append
list.size(3) numeral-3-eq-3 plus-1-eq-Suc polygon-p1 polygon-vertices-length-at-least-4
semiring-norm(2) semiring-norm(8) take-eq-Nil)

have subset1 : set (take i (butlast vts)) ⊆ set (butlast vts)
using ij-prop by (meson set-take-subset)

have subset2 : set ([butlast vts ! i, butlast vts ! j]) ⊆ set (butlast vts)
using ij-prop by simp

have subset3 : set (take i (butlast vts) @
[butlast vts ! i, butlast vts ! j]) ⊆ set (butlast vts)

using subset1 subset2 by auto
have subset4 : set (drop (j − i) (drop (Suc i) (butlast vts)) @ [butlast vts ! 0])

⊆ set (butlast vts)
using ij-prop set-drop-subset
by (metis (no-types, opaque-lifting) Un-commute append-Cons append-Nil

card-set-len-butlast drop0 drop-drop drop-eq-Nil2 hd-append2 hd-conv-nth in-set-conv-decomp
insert-subset linorder-not-less list.simps(15) non-triangle not-less-eq not-less-iff-gr-or-eq
numeral-3-eq-3 same-set set-append snoc-eq-iff-butlast vts-is)

then have main-subset: set ?vtsp2 ⊆ set (butlast vts)
using subset3 subset4 by simp

have subset-p1 : set ?vtsp1 ⊂ set (butlast vts)
using ij-prop distinct-butlast-vts

proof−
have card (set ?vtsp2) ≥ 3

using polygon-p2 polygon-at-least-3-vertices by blast
moreover have set ?vtsp1 ∩ set ?vtsp2 = {vts!i, vts!j}
proof−

have set ?vts2 ∩ set ?vts3 = {}
by (metis append-take-drop-id diff-le-self distinct-append distinct-butlast-vts

set-take-disj-set-drop-if-distinct)

336

moreover have set ?vts2 ∩ set ?vts1 = {}
proof−

have set ?vts2 ⊆ set (drop (i + 1) vts)
by (metis add.commute drop-butlast in-set-butlastD in-set-takeD

plus-1-eq-Suc subset-code(1))
moreover have set (drop (i + 1) vts) ∩ set ?vts1 ⊆ {last vts}
proof−

have set (drop (i + 1) (butlast vts)) ∩ set ?vts1 = {}
by (simp add: Int-commute set-take-disj-set-drop-if-distinct dis-

tinct-butlast-vts)
moreover have set (drop (i + 1) vts) = set (drop (i + 1) (butlast

vts)) ∪ {last vts}
proof−

have drop (i + 1) vts = (drop (i + 1) ((butlast vts) @ [last vts]))
by (metis last-snoc vts-is)

thus ?thesis using ij-prop by force
qed
ultimately show ?thesis by blast

qed
moreover have last vts /∈ set ?vts2

by (metis card-set-len-butlast card-vts distinct-butlast-vts dual-order .strict-trans1
in-set-takeD index-nth-id last-snoc nth-butlast numeral-3-eq-3 set-drop-if-index vts-is
zero-less-Suc)

ultimately show ?thesis by force
qed

moreover have vts!i ∈ set ?vtsp1 by (metis ij-prop list.set-intros(1)
nth-butlast)

moreover have vts!j ∈ set ?vtsp1 using ij-prop nth-butlast by fastforce
moreover have vts!i ∈ set ?vtsp2

by (metis UnCI ij-prop list.set-intros(1) nth-butlast set-append)
moreover have vts!j ∈ set ?vtsp2 using ij-prop nth-butlast by force
moreover have set ?vtsp1 = set ?vts2 ∪ {vts!i, vts!j}
by (smt (verit, ccfv-SIG) Un-insert-right empty-set ij-prop insert-absorb2

insert-commute list.simps(15) nth-butlast set-append)
moreover have set ?vtsp2 = set ?vts1 ∪ set ?vts3 ∪ {vts!i, vts!j, vts!0}
proof−

have vts!i = (butlast vts)!i by (metis ij-prop nth-butlast)
moreover have vts!j = (butlast vts)!j by (metis ij-prop nth-butlast)
moreover have vts!0 = (butlast vts)!0

by (metis ij-prop leD length-greater-0-conv nth-butlast take-all-iff
take-eq-Nil)

ultimately show ?thesis by force
qed
moreover have vts!0 /∈ set ?vts2
by (metis distinct-butlast-vts in-set-conv-decomp in-set-takeD index-nth-id

length-pos-if-in-set nth-butlast same-set set-drop-if-index vts-is zero-less-Suc)
ultimately show ?thesis by blast

qed
ultimately have card (set ?vtsp2) > card (set ?vtsp1 ∩ set ?vtsp2)

337

by (smt (verit, del-insts) card-length empty-set leI le-trans length-Cons
list.simps(15) list.size(3) not-less-eq-eq numeral-3-eq-3)

then have ∃ v. v ∈ set ?vtsp2 ∧ v /∈ (set ?vtsp1 ∩ set ?vtsp2)
by (smt (verit) Int-lower2 Orderings.order-eq-iff less-not-refl subset-code(1))
then obtain v where v ∈ set ?vtsp2 − set ?vtsp1 by blast
thus ?thesis

by (metis main-subset Diff-eq-empty-iff length-pos-if-in-set less-numeral-extra(3)
list.set(1) list.size(3) psubsetI vtsp1-subset)

qed
then have card (set ?vtsp1) < card (set (butlast vts))

using card-subset-eq[OF finite-butlast]
by (meson finite-butlast psubset-card-mono)

then have card-lt-p1 : card (set ?vtsp1) < card (set vts)
using same-set by argo

have set ?vtsp1 ⊆ set vts
using ij-prop
using same-set subset-p1 by blast

then have all-integral-p1 : all-integral ?vtsp1
using less(4) unfolding all-integral-def
by blast

obtain p1 ′ vtsp1 ′ where p1-rot: polygon-of p1 ′ vtsp1 ′

∧ vtsp1 ′!0 ∈ frontier (convex hull (set vtsp1 ′))
∧ path-image p1 ′ = path-image ?p1
∧ all-integral vtsp1 ′

∧ set vtsp1 ′ = set ?vtsp1
using pick-rotate less polygon-p1 unfolding polygon-of-def
using all-integral-p1
by blast

let ?I1 ′ = card {x. integral-vec x ∧ x ∈ path-inside p1 ′}
let ?B1 ′ = card {x. integral-vec x ∧ x ∈ path-image p1 ′}

have measure lebesgue (path-inside p1 ′) = real ?I1 ′ + real ?B1 ′ / 2 − 1
using less(1) polygon-split card-lt-p1 p1-rot unfolding polygon-of-def by

force
then have indh1 : Sigma-Algebra.measure lebesgue (path-inside ?p1) = real

?I1 + real ?B1 / 2 − 1
using p1-rot unfolding path-inside-def by metis

have vts ! (i+1) /∈ set (take i (butlast vts))
using distinct-butlast-vts j-neq ij-prop

proof−
have i + 1 < length vts − 2 using distinct-butlast-vts j-neq ij-prop by

fastforce
then have vts ! (i+1) = (butlast vts) ! (i+1) by (simp add: nth-butlast)
moreover then have ∀ j < i + 1 . (butlast vts) ! j 6= (butlast vts) ! (i+1)

using distinct-butlast-vts distinct-nth-eq-iff ij-prop by fastforce
moreover have set (take i (butlast vts)) = {vts!j | j. j < i}

338

proof−
have set (take i (butlast vts)) ⊆ {vts!j | j. j < i}

by (smt (verit, ccfv-SIG) dual-order .strict-trans ij-prop in-set-conv-nth
length-take mem-Collect-eq min.absorb4 nth-butlast nth-take subsetI)

moreover have {vts!j | j. j < i} ⊆ set (take i (butlast vts))
by (smt (verit, del-insts) dual-order .strict-trans ij-prop in-set-conv-nth

length-take mem-Collect-eq min.absorb4 nth-butlast nth-take subsetI)
ultimately show ?thesis by blast

qed
ultimately show ?thesis
by (metis (no-types, lifting) add.commute ij-prop in-set-conv-nth length-take

min.absorb4 nth-take trans-less-add2)
qed
moreover have vts ! (i+1) 6= butlast vts ! i

by (metis (no-types, lifting) ij-prop add.commute add-cancel-right-right
distinct-butlast-vts distinct-nth-eq-iff less-trans-Suc nth-append plus-1-eq-Suc vts-is
zero-neq-one)

moreover have vts ! (i+1) 6= butlast vts ! j
by (metis (no-types, lifting) add.commute distinct-butlast-vts distinct-nth-eq-iff

ij-prop j-neq less-trans-Suc nth-append plus-1-eq-Suc vts-is)
ultimately have vts ! (i+1) /∈ set (take i (butlast vts) @

[butlast vts ! i, butlast vts ! j]) by force
moreover have vts ! (i+1) /∈ set (drop (j − i) (drop (Suc i) (butlast vts)) @

[butlast vts ! 0])
proof−

have vts ! (i+1) /∈ set (drop (j − i + Suc i) (butlast vts))
by (metis (no-types, lifting) add.commute distinct-butlast-vts ij-prop in-

dex-nth-id less-add-same-cancel2 less-trans-Suc nth-append plus-1-eq-Suc set-drop-if-index
vts-is zero-less-diff)

moreover have vts ! (i+1) 6= butlast vts ! 0
by (metis (no-types, lifting) ij-prop Nil-is-append-conv add.commute

distinct-butlast-vts distinct-nth-eq-iff length-greater-0-conv less-trans-Suc list.discI
nat.distinct(1) nth-append plus-1-eq-Suc same-set set-empty vts-is)

ultimately show ?thesis by simp
qed
ultimately have vts ! (i+1) /∈ set (take i (butlast vts) @

[butlast vts ! i, butlast vts ! j] @
drop (j − i) (drop (Suc i) (butlast vts)) @ [butlast vts ! 0])

by auto
then have subset-butlast-p2 : set ?vtsp2 ⊂ set (butlast vts)

using main-subset ij-prop
by (metis (no-types, lifting) antisym-conv2 length-butlast less-diff-conv

nth-mem same-set)
then have card-lt-p2 : card (set ?vtsp2) < card (set vts)

using card-subset-eq[OF finite-butlast]
by (metis finite-butlast psubset-card-mono same-set)

have subset-p2 : set ?vtsp2 ⊂ set vts
using subset-butlast-p2 same-set
by presburger

339

then have all-integral-p2 : all-integral ?vtsp2
using less(4) unfolding all-integral-def
by blast

let ?p2 = make-polygonal-path (take i (butlast vts) @ [butlast vts ! i, butlast
vts ! j] @

drop (j − i) (drop (Suc i) (butlast vts)) @ [butlast vts ! 0])
let ?I2 = card {x. integral-vec x ∧ x ∈ path-inside ?p2}
let ?B2 = card {x. integral-vec x ∧ x ∈ path-image ?p2}
have polygon-p2 : polygon ?p2

using polygon-split unfolding is-polygon-split-def by metis

have vtsp2-0 : ?vtsp2 !0 ∈ frontier (convex hull (set ?vtsp2))
proof−

have ?vtsp2 !0 = vts!0
by (metis (no-types, lifting) append-Cons ij-prop length-greater-0-conv

less-nat-zero-code nat-neq-iff nth-append nth-append-length nth-butlast nth-take take-eq-Nil)
then have ?vtsp2 !0 ∈ frontier (convex hull (set vts)) using less by argo
moreover have ?vtsp2 !0 ∈ (convex hull (set ?vtsp2))

by (meson append-is-Nil-conv hull-inc length-greater-0-conv neq-Nil-conv
nth-mem)

moreover have convex hull (set ?vtsp2) ⊆ convex hull (set vts)
by (metis hull-mono main-subset same-set)

ultimately show ?thesis using in-frontier-in-subset by blast
qed

have indh2 : Sigma-Algebra.measure lebesgue (path-inside ?p2) = real ?I2 +
real ?B2 / 2 − 1

using less(1)[OF card-lt-p2 polygon-p2 - all-integral-p2 - - vtsp2-0] poly-
gon-split

by blast

have all-integral (butlast vts) =⇒
Sigma-Algebra.measure lebesgue (path-inside p) = real (card {x. integral-vec

x ∧ x ∈ path-inside p}) + real (card {x. integral-vec x ∧ x ∈ path-image p}) / 2
− 1

using pick-split-union
[OF polygon-split, of ?vts1 ?vts2 ?vts3 butlast vts ! i butlast vts ! j p ?p1

?p2 ?I1 ?B1 ?I2 ?B2]
using indh1 indh2 p-is
by blast

then have ?case
using less(4−6) unfolding all-integral-def
using same-set by presburger

} moreover
{ assume non-convex: ¬ (convex (path-image p ∪ path-inside p))

let ?vts-ch = set vts ∩ frontier (convex hull (set vts))
have finite-vts: finite (set vts)

using less

340

by force
have subset-ch: ?vts-ch ⊂ set vts

using vts-subset-frontier
using less.prems(1) less.prems(2) non-convex polygon-of-def by blast

then have card-ch: card (?vts-ch) < card (set vts)
using finite-vts
by (simp add: psubset-card-mono)

let ?vts-ch-list = filter (λv. v ∈ ?vts-ch) vts

let ?r-idx = min-index-not-in-set vts ?vts-ch
let ?r = ?r-idx − 1
let ?rotated-vts = rotate-polygon-vertices vts ?r
let ?pr = make-polygonal-path ?rotated-vts

have subset-ch-list: set ?vts-ch-list ⊂ set vts using subset-ch by auto
then have r-defined: index-not-in-set vts ?vts-ch ?r-idx
∧ (∀ j < ?r-idx. ¬ index-not-in-set vts ?vts-ch j)

using min-index-not-in-set-defined[of ?vts-ch vts] by fastforce

have pr-image: path-image p = path-image ?pr
using polygon-vts-arb-rotation less by blast

then have measure lebesgue (path-inside ?pr) = measure lebesgue (path-inside
p)

unfolding path-inside-def by presburger
have rotated-vts-set: set ?rotated-vts = set vts

using less.prems(1) less.prems(2) rotate-polygon-vertices-same-set by auto
then have card (set ?rotated-vts) = card (set vts) by argo
have polygon-rotation: polygon ?pr using rotation-is-polygon less by blast

let ?pocket-path-vts = construct-pocket-0 ?rotated-vts ?vts-ch

let ?a = hd ?pocket-path-vts
let ?b = last ?pocket-path-vts
let ?l = linepath ?a ?b

have vts!0 ∈ ?vts-ch
by (metis IntI length-greater-0-conv less.prems(6) nth-mem snoc-eq-iff-butlast

vts-is)
then have vts-r : vts!?r ∈ ?vts-ch

using min-index-not-in-set-0 subset-ch by presburger
moreover have rotated-0 : ?rotated-vts!0 = vts!?r

using rotated-polygon-vertices[of ?rotated-vts vts ?r ?r]
by (metis (no-types, lifting) Suc-1 Suc-leI card-gt-0-iff card-set-len-butlast

diff-is-0-eq ′ finite-vts hd-conv-nth index-not-in-set-def le-refl length-butlast less-imp-diff-less
mem-Collect-eq r-defined set-empty snoc-eq-iff-butlast vts-is zero-less-diff)

ultimately have rotated-0-in: ?rotated-vts!0 ∈ ?vts-ch by presburger

341

then have b-in: ?b ∈ set vts
using construct-pocket-0-last-in-set[of ?rotated-vts ?vts-ch]

by (smt (verit, ccfv-threshold) Int-iff One-nat-def closed-path-def Suc-leI
card-0-eq card-set-len-butlast empty-iff finite-vts last-conv-nth last-in-set last-tl length-butlast
length-greater-0-conv length-tl list.size(3) polygon-def polygon-pathfinish polygon-pathstart
polygon-rotation rotate-polygon-vertices-same-length set-empty)

have 2 ≤ card ?vts-ch
using convex-hull-two-vts-on-frontier

by (metis One-nat-def Suc-1 add-leD2 card-vts numeral-3-eq-3 plus-1-eq-Suc)
moreover have ?vts-ch ⊆ set ?rotated-vts

using less.prems(1) less.prems(2) rotate-polygon-vertices-same-set by force
moreover have distinct (butlast ?rotated-vts)
using polygon-def polygon-rotation simple-polygonal-path-vts-distinct by blast
moreover have hd-last-rotated: hd ?rotated-vts = last ?rotated-vts
by (metis have-wraparound-vertex hd-conv-nth polygon-rotation snoc-eq-iff-butlast)
ultimately have a-neq-b: ?a 6= ?b

using construct-pocket-0-first-last-distinct
by (smt (verit) Collect-cong Int-def mem-Collect-eq set-filter)

let ?pocket-vts = ?pocket-path-vts @ [?rotated-vts!0]

let ?pocket-good-path-vts = tl (butlast ?pocket-path-vts)

let ?filled-vts = fill-pocket-0 ?rotated-vts (length ?pocket-path-vts)
let ?filled-vts-tl = tl ?filled-vts
let ?filled-p-tl = make-polygonal-path ?filled-vts-tl
let ?filled-p = make-polygonal-path ?filled-vts
let ?pocket-path = make-polygonal-path ?pocket-path-vts
let ?pocket = make-polygonal-path ?pocket-vts

have non-convex-rot: ¬ convex (path-image ?pr ∪ path-inside ?pr)
using non-convex by (simp add: path-inside-def pr-image)

have 0 : ?rotated-vts!0 ∈ frontier (convex hull (set ?rotated-vts))
using less.prems(1) less.prems(2) rotate-polygon-vertices-same-set ro-

tated-0-in by fastforce
have 1 : ?rotated-vts!1 /∈ frontier (convex hull (set ?rotated-vts))
proof−

have ?rotated-vts!1 = vts!(?r + 1)
using rotated-polygon-vertices[of ?rotated-vts vts ?r ?r + 1]

by (smt (verit, ccfv-threshold) Suc-1 Suc-leI card-gt-0-iff card-set-len-butlast
diff-is-0-eq ′ finite-vts hd-conv-nth index-not-in-set-def le-refl length-butlast less-imp-diff-less
mem-Collect-eq r-defined set-empty snoc-eq-iff-butlast vts-is zero-less-diff Suc-diff-Suc
add.commute add-diff-cancel-left ′ bot-nat-0 .not-eq-extremum less-imp-le-nat plus-1-eq-Suc)

also have ... /∈ frontier (convex hull (set ?rotated-vts))

342

using r-defined unfolding index-not-in-set-def
by (smt (verit, best) Int-iff Suc-leI add.commute add-diff-inverse-nat

bot-nat-0 .not-eq-extremum diff-is-0-eq ′ mem-Collect-eq nat-less-le nth-mem plus-1-eq-Suc
rotated-vts-set vts-r zero-less-diff)

finally show ?thesis .
qed
then have split:

is-polygon-split-path (butlast ?filled-vts) 0 1 ?pocket-good-path-vts
and polygon-filled-p: polygon ?filled-p
and polygon-pocket: polygon ?pocket
and pocket-path-vts-card: card (set ?pocket-path-vts) < card (set vts)
and filled-vts-card: card (set ?filled-vts) < card (set vts)

using pocket-path-good[OF - 0 1 non-convex-rot] polygon-rotation ro-
tated-vts-set apply argo

using pocket-path-good[OF - 0 1 non-convex-rot] polygon-rotation ro-
tated-vts-set apply argo

using pocket-path-good[OF - 0 1 non-convex-rot] polygon-rotation ro-
tated-vts-set

apply (metis add-gr-0 construct-pocket-0-def nth-take zero-less-one)
using pocket-path-good[OF - 0 1 non-convex-rot] polygon-rotation ro-

tated-vts-set apply argo
using pocket-path-good[OF - 0 1 non-convex-rot] polygon-rotation ro-

tated-vts-set by argo

have vts-0-frontier : ?rotated-vts!0 ∈ frontier (convex hull (set vts))
using rotated-0-in by simp

have filled-0 : ?filled-vts!0 = ?rotated-vts!0
by (metis convex-hull-empty empty-set fill-pocket-0-def frontier-empty hd-conv-nth

length-pos-if-in-set less.prems(6) less-numeral-extra(3) list.size(3) nth-Cons-0 ro-
tated-vts-set)

have pocket-0 : ?pocket-vts!0 = ?rotated-vts!0
unfolding construct-pocket-0-def
by (simp add: less-numeral-extra(1) nth-append trans-less-add2)

have subset-pocket-path-vts: set ?pocket-path-vts ⊆ set vts
using construct-pocket-0-subset-vts

by (metis construct-pocket-0-def less.prems(1) less.prems(2) rotate-polygon-vertices-same-set
set-take-subset)

moreover have set ?pocket-good-path-vts ⊆ set ?pocket-path-vts
by (smt (verit, best) butlast-conv-take list.exhaust-sel list.sel(2) set-subset-Cons

set-take-subset subset-trans)
ultimately have subset-pocket-good-path: set ?pocket-good-path-vts ⊆ set vts

by blast
then have subset-pocket: set ?pocket-vts ⊆ set vts
by (metis (mono-tags, lifting) have-wraparound-vertex less.prems(1) less.prems(2)

polygon-rotation rotate-polygon-vertices-same-set set-append subset-code(1) subset-pocket-path-vts
sup.bounded-iff)

have set ?filled-vts ⊆ set ?rotated-vts
unfolding fill-pocket-0-def

343

by (metis b-in hd-in-set insert-subset length-pos-if-in-set less-numeral-extra(3)
list.simps(15) list.size(3) rotated-vts-set set-drop-subset)

then have subset-filled: set ?filled-vts ⊆ set vts
using rotated-vts-set by blast

have taut1 : ?filled-p = make-polygonal-path ?filled-vts by blast
have all-integral-filled-vts: all-integral ?filled-vts

using subset-filled less by (meson all-integral-def subset-iff)
have taut2 : card (integral-inside ?filled-p) = card {x. integral-vec x ∧ x ∈

path-inside ?filled-p}
unfolding integral-inside by blast

have taut3 : card (integral-boundary ?filled-p) = card {x. integral-vec x ∧ x ∈
path-image ?filled-p}

unfolding integral-boundary by blast
have filled-vts-0-frontier : ?filled-vts!0 ∈ frontier (convex hull (set ?filled-vts))
proof−

have ?filled-vts!0 ∈ frontier (convex hull set vts)
using filled-0 vts-0-frontier by presburger

moreover have ?filled-vts!0 ∈ convex hull (set ?filled-vts)
by (metis have-wraparound-vertex hull-inc in-set-conv-decomp poly-

gon-filled-p)
moreover have set ?filled-vts ⊆ set vts using subset-filled by force
ultimately show ?thesis using in-frontier-in-subset-convex-hull by blast

qed

have ih-filled: measure lebesgue (path-inside ?filled-p)
= card (integral-inside ?filled-p) + ((card (integral-boundary ?filled-p)) /

2) − 1
using less(1)[OF filled-vts-card polygon-filled-p taut1 all-integral-filled-vts

taut2 taut3 filled-vts-0-frontier]
by blast

have set ?pocket-path-vts ⊂ set vts
using pocket-path-vts-card subset-pocket-path-vts by force

moreover have pocket-path-set: set ?pocket-path-vts = set ?pocket-vts
by (smt (verit) Nil-is-append-conv rotated-0 a-neq-b append-Cons append-Nil

hd-Nil-eq-last hd-append2 hd-conv-nth hd-in-set insert-absorb list.simps(15) pocket-0
rev-append set-append set-rev)

ultimately have set ?pocket-vts ⊂ set vts by blast
then have pocket-vts-card: card (set ?pocket-vts) < card (set vts)

by (meson finite-vts psubset-card-mono)
have all-integral-pocket-vts: all-integral ?pocket-vts

using subset-pocket less unfolding all-integral-def by blast
have taut1 : ?pocket = make-polygonal-path ?pocket-vts by blast
have taut2 : card (integral-inside ?pocket) = card {x. integral-vec x ∧ x ∈

path-inside ?pocket}
unfolding integral-inside by blast

have taut3 : card (integral-boundary ?pocket) = card {x. integral-vec x ∧ x ∈

344

path-image ?pocket}
unfolding integral-boundary by blast

have pocket-vts-0-frontier : ?pocket-vts!0 ∈ frontier (convex hull (set ?pocket-vts))
proof−

have ?pocket-vts!0 ∈ frontier (convex hull set vts)
using pocket-0 vts-0-frontier by presburger

moreover have ?pocket-vts!0 ∈ convex hull (set ?pocket-vts)
by (smt (verit, del-insts) hull-inc in-set-conv-decomp pocket-0)

moreover have set ?pocket-vts ⊆ set vts using subset-pocket by force
ultimately show ?thesis using in-frontier-in-subset-convex-hull by blast

qed

have ih-pocket: measure lebesgue (path-inside ?pocket) = card (integral-inside
?pocket) + ((card (integral-boundary ?pocket)) / 2) − 1

using less(1)[OF pocket-vts-card polygon-pocket taut1 all-integral-pocket-vts
taut2 taut3 pocket-vts-0-frontier]

by blast

let ?i = 0 ::nat
let ?j = 1 ::nat
let ?vts = butlast ?filled-vts
let ?vts1 = []
let ?vts2 = []
let ?vts3 = butlast (drop 2 ?filled-vts)
let ?cutvts = ?pocket-good-path-vts
let ?p = ?filled-p
let ?p1 = make-polygonal-path (?a # ?vts2 @ [?b] @ rev ?cutvts @ [?a])
let ?p2 = ?pr
let ?I1 = card {x. integral-vec x ∧ x ∈ path-inside ?p1}
let ?B1 = card {x. integral-vec x ∧ x ∈ path-image ?p1}
let ?I2 = card {x. integral-vec x ∧ x ∈ path-inside ?p2}
let ?B2 = card {x. integral-vec x ∧ x ∈ path-image ?p2}
let ?I = card {x. integral-vec x ∧ x ∈ path-inside ?p}
let ?B = card {x. integral-vec x ∧ x ∈ path-image ?p}

have rev ?pocket-vts = (?a # ?vts2 @ [?b] @ rev ?cutvts @ [?a])
by (smt (verit) a-neq-b append-Nil append-butlast-last-id hd-Nil-eq-last

hd-append2 hd-conv-nth last-conv-nth length-butlast list.collapse list.size(3) pocket-0
rev.simps(2) rev-append rev-rev-ident snoc-eq-iff-butlast)

then have pocket-rev-image: path-image ?pocket = path-image ?p1
using polygon-at-least-3-vertices polygon-pocket card-length

by (smt (verit, best) One-nat-def Suc-1 le-add2 le-trans numeral-3-eq-3
plus-1-eq-Suc rev-vts-path-image polygon-at-least-3-vertices polygon-pocket card-length)

then have pocket-rev-inside: path-inside ?pocket = path-inside ?p1
unfolding path-inside-def by argo

have split ′: is-polygon-split-path ?vts ?i ?j ?cutvts using split by blast
have 0 : ?vts1 = take ?i ?vts by auto
have 1 : ?vts2 = take (?j − ?i − 1) (drop (Suc ?i) ?vts) by simp

345

have 2 : ?vts3 = drop (?j − ?i) (drop (Suc ?i) ?vts)
by (metis (no-types, lifting) One-nat-def Suc-1 diff-zero drop-butlast drop-drop

plus-1-eq-Suc)
have 3 : ?a = ?vts ! ?i
by (smt (z3) Nil-is-append-conv pocket-path-set filled-0 hd-conv-nth is-polygon-split-path-def

length-greater-0-conv list.distinct(1) nth-append nth-butlast pocket-0 set-empty split ′)
have 4 : ?b = ?vts ! ?j
proof−

have ?b = ?filled-vts!1
unfolding construct-pocket-0-def fill-pocket-0-def

by (smt (z3) Suc-eq-plus1 a-neq-b construct-pocket-0-def diff-Suc-1
diff-is-0-eq ′ drop-eq-Nil hd-conv-nth hd-drop-conv-nth hd-last-rotated last-conv-nth
length-take linorder-not-less min.absorb4 nat-le-linear not-less-eq-eq nth-Cons ′ nth-take
one-neq-zero take-all-iff take-eq-Nil)

thus ?thesis by (metis is-polygon-split-path-def nth-butlast split ′)
qed
have 5 : ?pocket-path = make-polygonal-path (?a # ?cutvts @ [?b])

by (smt (verit, ccfv-SIG) a-neq-b butlast.simps(2) butlast-tl hd-Cons-tl
hd-Nil-eq-last last.simps snoc-eq-iff-butlast)

have 6 : ?p = make-polygonal-path (?vts @ [?vts!0])
by (metis (no-types, lifting) butlast-conv-take have-wraparound-vertex is-polygon-split-path-def

nth-butlast polygon-filled-p split ′)
have 7 : ?p1 = make-polygonal-path (?a # ?vts2 @ [?b] @ rev ?cutvts @ [?a])

by blast
have 8 : ?p2 = make-polygonal-path (?vts1 @ ([?a] @ ?cutvts @ [?b]) @ ?vts3

@ [?vts!0])
proof−

have ?rotated-vts = ?vts1 @ ([?a] @ ?cutvts @ [?b]) @ ?vts3 @ [?vts!0]
unfolding construct-pocket-0-def fill-pocket-0-def

by (smt (verit) 3 Suc-1 hd-last-rotated a-neq-b append-Cons append-Nil ap-
pend-butlast-last-id append-take-drop-id construct-pocket-0-def drop-Suc drop-drop
drop-eq-Nil fill-pocket-0-def hd-Nil-eq-last hd-append2 hd-conv-nth last-conv-nth last-drop
length-Cons length-take length-tl linorder-not-less list.collapse list.sel(3) list.size(3)
min.absorb4 plus-1-eq-Suc take-all-iff)

thus ?thesis by argo
qed
have 9 : ?I1 = card {x. integral-vec x ∧ x ∈ path-inside ?p1} by blast
have 10 : ?B1 = card {x. integral-vec x ∧ x ∈ path-image ?p1} by blast
have 11 : ?I2 = card {x. integral-vec x ∧ x ∈ path-inside ?p2} by blast
have 12 : ?B2 = card {x. integral-vec x ∧ x ∈ path-image ?p2} by blast
have 13 : ?I = card {x. integral-vec x ∧ x ∈ path-inside ?p} by blast
have 14 : ?B = card {x. integral-vec x ∧ x ∈ path-image ?p} by blast
have 15 : all-integral ?vts

using subset-filled less
unfolding all-integral-def

by (metis (no-types, lifting) all-integral-def all-integral-filled-vts in-set-butlastD)
have 16 : measure lebesgue (path-inside ?p) = ?I + ?B/2 − 1

using ih-filled unfolding integral-inside integral-boundary by blast
have 17 : measure lebesgue (path-inside ?p1) = ?I1 + ?B1/2 − 1

346

using ih-pocket unfolding integral-inside integral-boundary using pocket-rev-image
pocket-rev-inside by force

have measure lebesgue (path-inside ?p2) = ?I2 + ?B2/2 − 1
using pick-split-path-union-main(3)
[OF split ′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17] less(5−6) by blast

moreover have ?I2 = I using less(5) pr-image path-inside-def by presburger
moreover have ?B2 = B using less(6) pr-image path-image-def by pres-

burger
ultimately have ?case by (simp add: path-inside-def pocket-rev-inside

pr-image)
}
ultimately have ?case by blast

}
ultimately show ?case using card-vts by linarith

qed

theorem pick:
fixes p :: R-to-R2
assumes polygon p
assumes p = make-polygonal-path vts
assumes all-integral vts
assumes I = card {x. integral-vec x ∧ x ∈ path-inside p}
assumes B = card {x. integral-vec x ∧ x ∈ path-image p}
shows measure lebesgue (path-inside p) = I + B/2 − 1

proof−
obtain p ′ vts ′ where polygon-of p ′ vts ′

∧ vts ′!0 ∈ frontier (convex hull (set vts ′))
∧ path-image p ′ = path-image p
∧ all-integral vts ′

∧ set vts ′ = set vts
using pick-rotate assms unfolding polygon-of-def by blast

thus ?thesis using assms pick-unrotated unfolding path-inside-def polygon-of-def
by fastforce
qed

end

References
[1] B. Grünbaum and G. C. Shephard. Pick’s theorem. The American

Mathematical Monthly, 100(2):150–161, 1993.

[2] J. Harrison. A formal proof of Pick’s theorem. Math. Struct. Comput.
Sci., 21(4):715–729, 2011.

347

	Misc. Linear Algebra Setup
	Integral Bijective Matrix Determinant
	Polygon Definitions
	Jordan Curve Theorem for Polygons
	Properties of make polygonal path, pathstart and pathfinish of a polygon
	Loop Free Properties
	Explicit Linepath Characterization of Polygonal Paths
	A Triangle is a Polygon
	Polygon Vertex Rotation
	Translating a Polygon
	Misc. properties
	Properties of Sublists of Polygonal Path Vertex Lists
	Reversing Polygonal Path Vertex List
	Collinearity Properties
	Linepath Properties
	Measure of linepaths
	Misc. Convex Polygon Properties
	Vertices on Convex Frontier Implies Polygon is Convex
	Polygon Splitting
	Triangles
	Measure Setup
	Unit Triangle
	Unit Square
	Unit Triangle Area is 1/2
	Area of Elementary Triangle is 1/2
	Setup
	Integral Points Cardinality Properties

	Pick splitting
	Convex Hull Has Good Linepath
	Pick's Theorem
	Pick's Theorem Triangle Case
	Pocket properties
	Arbitrary Polygon Case

