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Abstract

We formalize Pick’s theorem for finding the area of a simple poly-
gon whose vertices are integral lattice points [1]. We are inspired by
John Harrison’s formalization of Pick’s theorem in HOL Light [2], but
tailor our proof approach to avoid a primary challenge point in his
formalization, which is proving that any polygon with more than three
vertices can be split (in its interior) by a line between some two ver-
tices. Our formalization involves augmenting the existing geometry
libraries in various foundational ways (e.g., by adding the definition of
a polygon and formalizing some key properties thereof).
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1 Misc. Linear Algebra Setup

lemma vec-scaleR-2: (c::real) xr ((vector [a, b])::real™2) = vector [a * ¢, b * (]
proof—

have (¢ xg (vector [a, b])::real™2)$1 = a * ¢ by simp

moreover have (¢ g (vector [a, b])::real”2)$2 = ((vector [a, b])::real 2)$2 *
¢ by simp

ultimately show ?thesis by (smt (verit, best) exhaust-2 vec-eq-iff vector-2(1)
vector-2(2))
qed

definition is-int :: real = bool where
is-int T <— (Inuint. © = n)

lemma is-int-sum: is-int © A is-int y — is-int (x + y)
by (metis is-int-def of-int-add)

lemma is-int-minus: is-int © A is-int y — is-int (x — y)
by (metis is-int-def of-int-diff)

lemma is-int-mult: is-int © A is-int y — is-int (z * y)
by (metis is-int-def of-int-mult)

definition integral-vec :: real”2 = bool where
integral-vec v <— (is-int (v8$1) A is-int (v$2))

lemma integral-vec-sum: integral-vec v A integral-vec w — integral-vec (v + w)
proof(rule impl)

fix v w :: real™2

let 2 = v+ w

assume integral-vec v A\ integral-vec w

then obtain v! v2 wl w2 :: int where v81 = vi A v$82 = v2 A w$1 = wl A
w$2 = w2

using integral-vec-def is-int-def by auto

then have 7281 = v! + w! and 2232 = v2 + w2 by auto

thus integral-vec ?x using integral-vec-def is-int-def by blast
qed

lemma integral-vec-minus: integral-vec v — integral-vec (—v)
proof(rule impl)
assume integral-vec v
then obtain z y :: int where v$1 = z A v$2 = y
using integral-vec-def is-int-def by auto
then have (—v)$7/ = —z and (—v)$2 = —y
using integral-vec-def is-int-def by auto
thus integral-vec (—v)
using integral-vec-def is-int-def by blast
qed



lemma real-2-inner:
shows ((vector [a, b])::(real™2)) « ((vector [c, d])::(real™2)) = axc + bxd
(is 2v + 2w = axc + bxd)
proof—
have %v - 2w = (3. ¢ € UNIV. 2v$i - ?w$i) using inner-vec-def[of ?v ?w] by
blast
moreover have Vi. %087 - w$i = 20$i * 2w$i using inner-real-def by simp
ultimately have ?v - 2w = (3. i € UNIV. 2v$i x ?w$i) by presburger
thus ?thesis by (simp add: sum-2)
qged

lemma integral-vec-2:
fixes a b :: int
assumes v = vector [a, b]
shows integral-vec v
by (simp add: assms is-int-def integral-vec-def)

definition matriz-inv :: real 272 = real 2”2 = bool where
matriz-inv A A’ +— (A xx A’ =mat 1 N A" xx A = mat 1)

lemma mat-vec-mult-2:
fixes v :: real 2 and
T :: real 272
defines z: z = v$1 and y: y = v$2 and
a:a= T$1$1 and b: b = T$1%2 and
c:c= T$2%1 and d: d = T$2$2
shows (T *v v) = vector [zxa + yxb, xxc + yxd]
proof—
have (T xv v)$1 = zxa + yxb by (simp add: a b matriz-vector-mult-def sum-2
z y)
moreover have (T xv v)$2 = xxc + yxd by (simp add: ¢ d matriz-vector-mult-def
sum-2 x y)
ultimately show T xv v = vector [zxa + y*b, xxc + y*d]
by (smt (verit) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
qed

definition integral-mat :: real”2"2 = bool where
integral-mat T <— (Y v. integral-vec v — integral-vec (T xv v))

definition integral-mat-surj :: real 272 = bool where
integral-mat-surj T «— (Y. integral-vec v — (Fw. integral-vec w A T xv w =

v))

definition integral-mat-bij :: real 272 = bool where
integral-mat-bij T <— integral-mat T A integral-mat-surj T

lemma integral-mat-integral-vec: integral-mat A — integral-vec v — integral-vec
(A *v v)
using integral-mat-def by blast



lemma integral-mat-int-entries:
fixes T :: real 272
assumes integral-mat T
defines a: a = T$1$1 and b: b = T$1$2 and
c:c=T$2%1 and d: d = T$2$2
shows is-int a A is-int b A is-int ¢ A is-int d
proof—
let ?v = wvector [1, 0]
have integral-vec (?v) using integral-vec-2[of ?v 1 0] by auto
then have integral-vec (T *v %v) using assms integral-mat-def by blast
moreover have T xv ?v = vector [a, ]
using mat-vec-mult-2[of T ?v] a b ¢ d by auto
ultimately have integral-vec (vector |a, c]) by auto
then have 1: is-int a A is-int ¢ using integral-vec-def by auto

let ?w = wvector [0, 1]
have integral-vec (?w) using integral-vec-2[of ?w 0 1] by auto
then have integral-vec (T xv ?w) using assms integral-mat-def by blast
moreover have T xv 2w = vector [b, d]
using mat-vec-mult-2[of T ?w| a b ¢ d by auto
ultimately have integral-vec (vector [b, d]) by auto
then have 2: is-int b A is-int d using integral-vec-def by auto

thus “thesis using 1 2 by auto
qed

2 Integral Bijective Matrix Determinant

lemma integral-mat-int-det:
fixes T :: real 272
assumes integral-mat T
shows is-int (det T)
proof—
obtain a b ¢ d where abed: T$1$1 = a A T$1$2 = b A T$2%1 = ¢ A T$2$2
= d by auto
have abcd-int: is-int a A is-int b A is-int ¢ A is-int d
using integral-mat-int-entries|of T] abcd assms by auto
obtain a7 bi ci di :: int where abedi: ai = a Abi=bAci=cANdi=4d
using abcd-int is-int-def by auto
have det T = axd — bxc using det-2[of T| abcd by auto

also have ... = aixdi — bixci using abcdi by auto
finally show ?thesis using is-int-def by blast
qed

lemma integral-mat-bij-inv:
fixes T :: real 272
assumes integral-mat-bij T



obtains Tinv where invertible T A integral-mat-bij Tinv A\ matriz-inv T Tinv
proof—
let ?el = vector [1, 0]
let ?e2 = vector [0, 1]
let ?I = (vector [?el, ?e2])::(real”272)
have id: I = ((mat 1)::(real”272))
unfolding vec-eq-iff
by (smt (verit, ccfv-threshold) exhaust-2 mat-def vec-lambda-beta vector-2)
have integral-vec ?el
by (simp add: integral-vec-def is-int-def)
moreover have integral-vec ?e2
by (simp add: integral-vec-def is-int-def)
ultimately obtain z y where zy: T xv z = %el A integral-vec x N T *xv y =
?e2 A integral-vec y
by (meson assms integral-mat-bij-def integral-mat-surj-def)

let ?Tinv = transpose (vector [z, yl)::(real 272)
have T xx ?Tinv = mat 1 (is ?TxTinv = mat 1)
proof—
have column 1 ?TzTinv = T v (column 1 ?Tinv)
by (metis matriz-vector-mul-assoc matriz-vector-mult-basis)
also have ... = T xv z
by (simp add: row-def)
finally have [simp]: column 1 ?TxTinv = ?el
using zy by presburger

have column 2 ?TxTinv = T *v (column 2 ?Tinv)

by (metis matriz-vector-mul-assoc matriz-vector-mult-basis)
also have ... = T xv y

by (simp add: row-def)
finally have [simp]: column 2 ?TxTinv = %e2

using zy by presburger

have Vv. ?TzTinv xv v = v
proof (rule alll)
fix v :: real™2

have (¢TzTinv xv v)$1 = (column 1 ?TzTinv)$1 * v$1 + (column 2
?TrTinv)$1 % v$2
by (metis (no-types, lifting) cart-eq-inner-axis mat-vec-mult-2 matriz-vector-mul-component
matriz-vector-mult-basis mult.commute vector-2(1))
also have ... = v$1 by simp
finally have v1: (?TzTinv v v)$1 = v$1 .

have (?TzTinv *xv v)$2 = (column 1 ?TzTinv)$2 * v$1 + (column 2
?TxTinv)$2 * v$2
by (metis (no-types, lifting) cart-eq-inner-axis mat-vec-mult-2 matriz-vector-mul-component
matriz-vector-mult-basis mult.commute vector-2(2))
also have ... = v$2 by simp



finally have v2: (?TzTinv v v)$2 = v$2 .

show ?TzTinv xv v = v using v1 v2 by (metis mat-vec-mult-2 matriz-vector-mul-lid)
qed
thus ?thesis by (simp add: matriz-eq)
qed
then have matriz-inv T ?Tinv
by (simp add: Integral-Matriz.matriz-inv-def matriz-left-right-inverse)
moreover have invertible T using calculation invertible-def matriz-inv-def by
blast
moreover have integral-mat-bij ?Tinv
by (smt (verit, del-insts) <T xx Finite-Cartesian-Product.transpose (vector
[z, y]) = mat 1> assms integral-mat-bij-def integral-mat-def integral-mat-surj-def
matriz-left-right-inverse matriz-mul-lid matriz-vector-mul-assoc)
ultimately show “thesis
using «T xx Finite-Cartesian-Product.transpose (vector [z, y]) = mat 1) in-
vertible-right-inverse that by blast
qed

lemma integral-mat-bij-det-pm1:
fixes T :: real 272
assumes integral-mat-bij T
shows det T =1 V det T = —1
proof—
obtain Tinv where Tinv: invertible T A integral-mat-bij Tinv A matriz-inv T
Tinv
using integral-mat-bij-inv[of T| assms by auto
moreover have is-int (det Tinv)
using integral-mat-bij-def integral-mat-int-det[of Tinv] calculation by auto
moreover have is-int (det T)
using integral-mat-bij-def integral-mat-int-det[of T] assms by auto
moreover have det Tinv =1 / det T
proof—
have id: Tinv xx T = mat 1 using Tinv unfolding matriz-inv-def invertible-def
by (simp add: verit-sko-ex’)
have det Tinv * det T = det (Tinv %% T) by (simp add: det-mul)
also have ... = det ((mat 1)::real”272) using id by auto
also have ... = (1::real) by auto
finally have det Tinv x det T = 1 .
thus ?thesis using invertible-det-nz nonzero-eq-divide-eq by fastforce
qed
ultimately have T-Tinv-int: is-int (det T) A is-int (1 / det T) by auto
thus det T =1V det T = —1
proof—
have abs (det T) < 1 (is YD < 1)
proof (rule ccontr)
assume — ?D < |
then have ?D > 1 by auto



moreover from this have 1 / ?D < 1 by auto
moreover from calculation have 1 / ?D > 0 by auto
ultimately have — is-int (1 / ?D) unfolding is-int-def by force
moreover from T-Tinv-int have is-int (1 / ?D)
by (smt (verit) <1 / |det T| < 1> abs-div-pos abs-divide abs-ge-self
abs-minus-cancel divide-cancel-left divide-pos-neg int-less-real-le is-int-def of-int-code(2))
ultimately show Fulse by auto
qed
then have det T > —1 Ndet T < 1
using assms by auto
moreover have det T # 0 using integral-mat-bij-inv invertible-det-nz assms
by auto
ultimately show det T = 1 V det T = —1 using is-int-def T-Tinv-int by
auto
qed
qed

end

theory Polygon-Jordan-Curve

imports
HOL— Analysis. Cartesian-Space
HOL— Analysis. Path-Connected
Poincare-Bendizson. Poincare- Bendixson
Integral-Matrix

begin

3 Polygon Definitions
type-synonym R-to-R2 = (real = real”2)

definition closed-path :: R-to-R2 = bool where
closed-path g <— path g N\ pathstart g = pathfinish g

definition path-inside :: R-to-R2 = (real”2) set where
path-inside g = inside (path-image g)

definition path-outside :: R-to-R2 = (real”2) set where
path-outside g = outside (path-image g)

fun make-polygonal-path :: (real”2) list = R-to-R2 where
make-polygonal-path || = linepath 0 0
| make-polygonal-path [a] = linepath a a
| make-polygonal-path [a,b] = linepath a b
| make-polygonal-path (a # b # xs) = (linepath a b) +++ make-polygonal-path (b
# xs)

definition polygonal-path :: R-to-R2 = bool where
polygonal-path g +— g € make-polygonal-path*{xs :: (real”2) list. True}



definition all-integral :: (real”2) list = bool where
all-integral | = (VY € set l. integral-vec x)

definition polygon :: R-to-R2 = bool where
polygon g <— polygonal-path g A simple-path g A closed-path g

definition integral-polygon :: R-to-R2 = bool where
integral-polygon g +—
(polygon g N (3uts. g = make-polygonal-path vts A all-integral vts))

definition make-triangle :: real”2 = real”2 = real 2 = R-to-R2 where
make-triangle a b ¢ = make-polygonal-path [a, b, ¢, a]

definition polygon-of :: R-to-R2 = (real”2) list = bool where
polygon-of p vts <— polygon p N\ p = make-polygonal-path vts

definition good-linepath :: real ™2 = real™2 = (real”2) list = bool where
good-linepath a b vts <— (let p = make-polygonal-path vts in
a# b A {a, b} C set vts A path-image (linepath a b) C path-inside p U {a, b})

definition good-polygonal-path :: real ™2 = (real™2) list = real”2 = (real”2) list
= bool where
good-polygonal-path a cutvts b vts +— (
let p = make-polygonal-path vts in
let p-cut = make-polygonal-path ([a] @ cutvts Q [b]) in
(a # b A {a, b} C set vts A path-image (p-cut) C path-inside p U {a, b} A
loop-free p-cut))

4 Jordan Curve Theorem for Polygons

definition inside-outside :: R-to-R2 = (real”2) set = (real”"2) set = bool where
inside-outside p ins outs +—
(ins # {} N open ins N connected ins N
outs # {} N open outs A connected outs N
bounded ins N — bounded outs N
ins N outs = {} A ins U outs = — path-image p A
frontier ins = path-image p A frontier outs = path-image p)

lemma Jordan-inside-outside-real2:

fixes p :: real = real™2

assumes simple-path p pathfinish p = pathstart p

shows inside(path-image p) # {} A
open(inside(path-image p)) A
connected(inside(path-image p)) N
outside(path-image p) # {} A
open(outside(path-image p)) A
connected(outside(path-image p)) A



bounded(inside(path-image p)) A
= bounded(outside(path-image p)) A
inside(path-image p) N outside(path-image p) = {} A
inside(path-image p) U outside(path-image p) =
— path-image p N
frontier(inside(path-image p)) = path-image p A
frontier(outside(path-image p)) = path-image p

proof —

have good-type: c1-on-open-R2-azioms TYPE((real, 2) vec)

unfolding cI-on-open-R2-axioms-def by auto
have inside(path-image p) # {} A

open(inside(path-image p)) A
connected(inside(path-image p)) A
outside(path-image p) # {} A
open(outside(path-image p)) A
connected(outside(path-image p)) A
bounded(inside(path-image p)) A
= bounded(outside(path-image p)) A
inside(path-image p) N outside(path-image p) = {} A
inside(path-image p) U outside(path-image p) =
— path-image p N
frontier(inside(path-image p)) = path-image p A
frontier(outside(path-image p)) = path-image p

using assms cl-on-open-R2.Jordan-inside-outside-R2[of - - - p]
unfolding c1-on-open-R2-def c1-on-open-euclidean-def c1-on-open-def using
good-type

by (metis continuous-on-empty equals0D open-empty)
then show ?thesis unfolding inside-outside-def
using path-inside-def path-outside-def by auto
qed

lemma inside-outside-polygon:
fixes p :: R-to-R2
assumes polygon: polygon p
shows inside-outside p (path-inside p) (path-outside p)
proof—
have good-type: c1-on-open-R2-azioms TYPFE((real, 2) vec)
unfolding cI-on-open-R2-axioms-def by auto
have simple-path p pathfinish p = pathstart p using assms polygon-def closed-path-def
by auto
then show ?thesis using Jordan-inside-outside-real2 unfolding inside-outside-def
using path-inside-def path-outside-def by auto
qged

lemma inside-outside-unique:
fixes p :: R-to-R2
assumes polygon p
assumes io0l: inside-outside p insidel outsidel
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assumes i02: inside-outside p inside2 outside2
shows insidel = inside2 A outsidel = outside2
proof —
have inner!: inside(path-image p) = insidel
using dual-order.antisym inside-subset interior-eq interior-inside-frontier
using ‘ol unfolding inside-outside-def
by metis
have inner2: inside(path-image p) = inside2
using dual-order.antisym inside-subset interior-eq interior-inside-frontier
using 702 unfolding inside-outside-def
by metis
have eql: insidel = inside2
using innerl inner2
by auto
have hi: insidel U outsidel = — path-image p
using io! unfolding inside-outside-def by auto
have h2: insidel N outsidel = {}
using iol unfolding inside-outside-def by auto
have outerl: outside(path-image p) = outsidel
using io1 inner! unfolding inside-outside-def
using h1 h2 outside-inside by auto
have h3: inside2 U outside2 = — path-image p
using 02 unfolding inside-outside-def by auto
have h{: inside2 N outside2 = {}
using (02 unfolding inside-outside-def by auto
have outer2: outside(path-image p) = outside2
using 02 inner2 unfolding inside-outside-def
using h3 h4 outside-inside by auto
then have eq2: outsidel = outside2
using outerl outer?2 by auto
then show ?thesis using eql eq2 by auto
qed

lemma polygon-jordan-curve:
fixes p :: R-to-R2
assumes polygon p
obtains inside outside where
inside-outside p inside outside
proof—
have good-type: c1-on-open-R2-azioms TYPE((real, 2) vec)
unfolding cI-on-open-R2-axioms-def by auto
have simple-path p pathfinish p = pathstart p using assms polygon-def closed-path-def
by auto
then obtain inside outside where
inside # {} open inside connected inside
outside # {} open outside connected outside
bounded inside — bounded outside inside N outside = {}
inside U outside = — path-image p
frontier inside = path-image p

11



frontier outside = path-image p
using cI-on-open-R2.Jordan-curve-R2[of - - - p]
unfolding ci-on-open-R2-def c1-on-open-euclidean-def c1-on-open-def using
good-type
by (metis continuous-on-empty equals0D open-empty)
then show ?thesis
using inside-outside-def that by auto
qed

lemma connected-component-image:
fixes [ :: 'a::euclidean-space = 'b::euclidean-space
assumes linear f bij f
shows f ¢ (connected-component-set S x) = connected-component-set (f < S) (f
x)
proof —
have conn: A\S. connected S = connected (f ¢ S)
by (simp add: assms(1) connected-linear-image)
then have hi: ANT. T € {T. connected TNz € TANT C S} = f‘T e {T.
connected T N (fz) e TANT C(f*S)}
by auto
then have subsetl: f ¢ connected-component-set S © C connected-component-set
(f 9 (fz)
using connected-component-Union
by (smt (verit, ccfo-threshold) assms(2) bij-is-inj connected-component-eq-empty
connected-component-maximal connected-component-refl-eq connected-component-subset
connected-connected-component image-is-empty inj-image-mem-iff mem-Collect-eq)
have A\S. connected (f ¢ S) = connected S
using assms connected-continuous-image assms linear-continuous-on linear-conv-bounded-linear
bij-is-inj homeomorphism-def linear-homeomorphism-image
by (smt (verit, del-insts))
then have h2: ANT. f ‘T € {T. connected T A (fz) e TANT C (f‘9)} =
T € {T. connected T Nz € TNTC S}
by (simp add: assms(2) bij-is-inj image-subset-iff inj-image-mem-iff subsetl)
then have subset2: connected-component-set (f *S) (fz) C f ¢ connected-component-set
Sz
using connected-component-Union[of S x] connected-component-Union|of fS f
7]
by (smt (verit, del-insts) assms(2) bij-is-inj connected-component-eq-empty con-
nected-component-mazimal connected-component-refi-eq connected-component-subset
connected-connected-component image-mono inj-image-mem-iff mem-Collect-eq sub-
set-imageF)
show f ¢ (connected-component-set S &) = connected-component-set (f < S) (f z)
using subsetl subset2 by auto
qed

lemma bounded-map:
fixes f :: 'a::euclidean-space = 'b::euclidean-space
assumes linear f bij f
shows bounded (f *S) = bounded S

12



proof —
have h1: bounded S = bounded (f * S)
using assms
using bounded-linear-image linear-conv-bounded-linear by blast
have bounded-linear f
using linear-conv-bounded-linear assms by auto
then have bounded-linear (inv f)
using assms unfolding bij-def
by (smt (verit, ccfv-threshold) bij-betw-def bij-betw-subset dim-image-eq inv-equality
linear-conv-bounded-linear linear-surjective-isomorphism subset-UNIV)
then have h2: bounded (f ¢ S) = bounded S
using assms
by (metis bij-is-inj bounded-linear-image image-inv-f-f)
then show ?thesis
using assms h1 h2 by auto
qed

lemma inside-bijective-linear-image:
fixes [ :: 'a::euclidean-space = 'b::euclidean-space
fixes ¢ :: real = a
assumes c-simple:path c
assumes linear f bij f
shows inside (f ‘ (path-image c)) = f ¢ (inside(path-image c))
proof —
have set!: {z. z ¢ f  path-image ¢} = [ ‘{z. x ¢ path-image c}
using assms path-image-compose unfolding bij-def
by (smt (verit, best) UNIV-I imageE inj-image-mem-iff mem-Collect-eq subset]
subset-antisym)
have linear-inv: linear (inv f)
using assms
by (metis bij-imp-bij-inv bij-is-inj inv-o-cancel linear-injective-left-inverse o-inv-o-cancel)
have bij-inv: bij (inv f)
using assms
using bij-imp-bij-inv by blast
have insetl: Nz. z € {z. bounded (connected-component-set (— f  path-image
¢) )} = z € f ‘{x. bounded (connected-component-set (— path-image c) )}
proof —
fix z
assume *: ¢ € {z. bounded (connected-component-set (— f ‘ path-image c) )}
have inj f
using assms(3) bij-betw-imp-inj-on by blast
then show z € f ‘ {z. bounded (connected-component-set (— path-image c) x)}
using * connected-component-image[OF linear-inv bij-inv]
by (smt (23) <Az S. inv f ¢ connected-component-set S x = connected-component-set
(inv f©S) (inv fx)y <bij (inv f)» <linear (inv f)y <z € {z. bounded (connected-component-set
(— f ¢ path-image c) x)}> bij-image-Compl-eq bounded-map connected-component-eq-empty
image-empty image-inv-f-f mem-Collect-eq)
qged
have inset2: \z. x € f ‘ {z. bounded (connected-component-set (— path-image

13



¢) x)} = z € {z. bounded (connected-component-set (— f * path-image ¢) z)}
proof —

fix z

assume z € [ ‘ {z. bounded (connected-component-set (— path-image c) z)}

then obtain z! where z = fz1 1 € {z. bounded (connected-component-set
(— path-image ¢) )}

by auto
then show z € {z. bounded (connected-component-set (— f * path-image ¢) x)}

using bounded-map|OF assms(2) assms(8)] connected-component-image| OF
assms(2) assms(3)]
by (metis assms(3) bij-image-Compl-eq mem-Collect-eq)
qed
have set2: f ‘ {z. bounded (connected-component-set (— path-image ¢) )} = {z.
bounded (connected-component-set (— f ¢ path-image ¢) z)}
using insetl inset2 by auto
have inset!: Az. z € f ‘{z. x ¢ path-image c A bounded (connected-component-set
(— path-image ¢) )} =
z€ {z. x ¢ f ° path-image ¢ A bounded (connected-component-set (— f
path-image ¢) z)}
proof —
fix x
assume z € f ‘{z. ¢ path-image ¢ A bounded (connected-component-set (—
path-image ¢) z)}
then show z€ {z. z ¢ f  path-image ¢ A bounded (connected-component-set
(= f ¢ path-image c) x)}
by (metis (no-types, lifting) image-iff mem-Collect-eq setl set2)
qed
have inset2: Az. z€ {z. x ¢ f ‘ path-image ¢ A bounded (connected-component-set
(= f ¢ path-image ¢) z)} =
z € f{z. x ¢ path-image ¢ N bounded (connected-component-set (— path-image
0) )}
proof —
fix z
assume z€ {z. z ¢ [ ‘ path-image ¢ A bounded (connected-component-set (—
f ¢ path-image c) x)}
then show z € f ‘ {z. = ¢ path-image ¢ A bounded (connected-component-set
(— path-image ¢) )}
by (smt (verit, best) image-iff mem-Collect-eq set2)
qed
have same-set: {z. x ¢ f * path-image ¢ A bounded (connected-component-set (—
f ¢ path-image c) z)} =
f{z. x ¢ path-image ¢ N bounded (connected-component-set (— path-image c)
)
using inset! inset2
by blast
have insl: Az. © € inside (f © path-image ¢) => x € f ‘ inside (path-image c)
proof —
fix x

¢
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assume x: z € inside (f ‘ path-image c)
show z € [ ‘ inside (path-image c)
by (metis (no-types) x same-set inside-def)
qed
then have inside (f * (path-image c)) C f ¢ (inside(path-image c))
by auto
have ins2: Aza. za € inside (path-image ¢) = f za € inside (f ¢ path-image c)
proof —
fix za
assume *: za € inside (path-image c)
show f za € inside (f ¢ path-image c)
by (metis (no-types, lifting) * same-set assms(3) bij-def inj-image-mem-iff
inside-def mem-Collect-eq)
qed
then have [ ¢ (inside(path-image ¢)) C inside (f © (path-image c))
by auto
show ?thesis
using ins1 ins2 by auto
qed

lemma bij-image-intersection:
assumes path-image c1 N path-image c2 = S
assumes bij f
assumes c¢ € path-image (f o c1) N path-image (f o ¢2)
shows ce f* S
proof —
have ¢ € f ‘ path-image c1 N f ¢ path-image c2
using assms path-image-compose|of f c¢1] path-image-compose[of f c2]
by auto
then obtain w where c-is: w € path-image c1 N w € path-image c2 N ¢ = f

using assms unfolding bij-def inj-def surj-def
by auto
then have w € S
using assms by auto
then show c € f* S
using c-is by auto
qged

theorem (in cI-on-open-R2) split-inside-simple-closed-curve-locale:

fixes ¢ :: real = 'a

assumes cI-simple:simple-path c1 and cl1-start: pathstart c1 = a and cl-end:
pathfinish ¢c1 = b

assumes c2-simple: simple-path c2 and c2-start: pathstart ¢2 = a and c2-end:
pathfinish c2 = b

assumes c-simple: simple-path ¢ and c-start: pathstart ¢ = a and c-end: pathfin-
ish c = b

assumes a-neq-b: a # b
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and clc2: path-image c1 N path-image ¢2 = {a,b}
and clc: path-image c1 N path-image ¢ = {a,b}
and c2c: path-image ¢2 N path-image ¢ = {a,b}
and ne-12: path-image ¢ N inside(path-image c1 U path-image c2) # {}
obtains inside(path-image c1 U path-image ¢) N inside(path-image c2 U path-image
o) ={}
inside(path-image c1 U path-image ¢) U inside(path-image ¢2 U path-image
c) U
(path-image ¢ — {a,b}) = inside(path-image c1 U path-image c2)
proof —
let ?cc1 = (complez-of o cl1)
let %cc2 = (complex-of o c2)
let ?cc = (complez-of o c)
have cci-simple:simple-path ?ccl
using bij-betw-imp-inj-on cl-simple complex-of-bij
using simple-path-linear-image-eq[OF complex-of-linear]
by blast
have cci1-start:pathstart ?ccl1 = (complez-of a)
using cl-start by (simp add:pathstart-compose)
have ccl-end:pathfinish ?ccl = (complex-of b)
using cl-end by (simp add: pathfinish-compose)
have cc2-simple:simple-path ?cc2
using c2-simple complex-of-bij bij-betw-imp-inj-on
using simple-path-linear-image-eq|OF complezx-of-linear]
by blast
have cc2-start:pathstart ?cc2 = (complex-of a)
using c2-start by (simp add:pathstart-compose)
have cc2-end:pathfinish ?cc2 = (complez-of b)
using c2-end by (simp add: pathfinish-compose)
have cc-simple:simple-path ?cc using c-simple complex-of-bij
using bij-betw-imp-inj-on
using simple-path-linear-image-eq[OF complex-of-linear]
by blast
have cc-start:pathstart ?cc = (complez-of a)
using c-start by (simp add:pathstart-compose)
have cc-end:pathfinish ?cc = (complex-of b)
using c-end by (simp add: pathfinish-compose)
have ca-neq-cb: complezx-of a # complex-of b
using a-neq-b
by (meson bij-betw-imp-inj-on complez-of-bij inj-eq)
have image-set-eql : { complez-of a, complex-of b} C path-image ?ccl N path-image
Zcc2
using c!c2 path-image-compose[of complex-of c1] path-image-compose[of com-
plex-of c2]
by auto
have image-set-eq2: \c. ¢ € path-image ?ccl N path-image ?cc2 = ¢ €{complez-of
a, complex-of b}
using bij-image-intersection[of c¢1 ¢2 {a, b} complex-of]
using c1c2 complez-of-bij by auto
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have cc1c2: path-image ?ccl N path-image ?cc2 = {(complez-of a),(complez-of
b}
using image-set-eql image-set-eq2 by auto
have image-set-eql : { complez-of a, complex-of b} C path-image ?ccl N path-image
Zcc
using clc path-image-compose|of complex-of c1] path-image-compose[of com-
plez-of (]
by auto
have image-set-eq2: \c. ¢ € path-image ?ccl N path-image cc = ¢ €{complez-of
a, complex-of b}
using bij-image-intersection[of c¢1 ¢ {a, b} complez-of]
using clc complex-of-bij by auto
have cclc: path-image ?ccl N path-image ?cc = {(complex-of a),(complex-of b)}

using image-set-eql image-set-eq2 by auto
have image-set-eq1 : { complez-of a, complex-of b} C path-image ?cc2 N path-image
?cc
using c2c¢ path-image-compose|of complex-of c¢2] path-image-compose[of com-
plez-of ¢
by auto
have image-set-eq2: \c. ¢ € path-image ?cc2 N path-image cc = ¢ €{complez-of
a, complez-of b}
using bij-image-intersection|[of c2 ¢ {a, b} complez-of]
using c2c complez-of-bij by auto
have cc2c: path-image ?cc2 N path-image ?cc = {(complex-of a),(complez-of b)}
using image-set-eql image-set-eq2 by auto

let %j = c1 +++ (reversepath c)
let ?cj = %ccl +++ (reversepath ?cc)
have cj-and-j: path-image ?cj = complez-of * (path-image %j)
by (metis path-compose-join path-compose-reversepath path-image-compose)
have pathstart (reversepath ¢) = b
using c-end
by auto
then have j-path: path (c1 +++ (reversepath c))
using cl-end c1-simple c-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)
then have path ?j A path-image ?j = path-image c1 U path-image ¢
using <pathstart (reversepath ¢) = by c1-end path-image-join path-image-reversepath
by blast
then have inside(path-image c1 U path-image ¢) = inside(path-image %j)
by auto
have pathstart (reversepath ?cc) = complex-of b
using cc-end
by auto
then have cj-path: path ?cj
using ccl-end ccl-simple cc-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)
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then have path ?cj A path-image ?cj = path-image ?ccl U path-image ?cc
by (metis <pathstart (reversepath (complez-of o ¢)) = complex-of by ccl-end
path-image-join path-image-reversepath)
then have ins-cj: inside(path-image ?ccl U path-image ?cc) = inside (path-image
2
by auto
have inside(path-image ?cj) = complex-of ‘ (inside(path-image %7))
using inside-bijective-linear-image[of ?j complez-of] j-path
using cj-and-j complex-of-bij complex-of-linear by presburger
then have i1: inside(path-image ?ccl U path-image ?cc) = complez-of * (inside(path-image
¢l U path-image c)) using complez-of-real-of unfolding image-comp
using cj-and-j
by (simp add: ins-cj <inside (path-image c1 U path-image c¢) = inside (path-image
(¢l +++ reversepath c))»)

let 2j2 = c2 +++ (reversepath c)
let ?cj2 = %cc2 ++4+ (reversepath ?cc)
have c¢j2-and-j2: path-image ?cj2 = complex-of ‘ (path-image %j2)
by (metis path-compose-join path-compose-reversepath path-image-compose)
have pathstart (reversepath ¢) = b
using c-end by auto
then have j2-path: path (c2 +++ (reversepath c))
using c2-end c2-simple c-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)
then have path 92 A path-image 9j2 = path-image c2 U path-image ¢
using <pathstart (reversepath ¢) = by c2-end path-image-join path-image-reversepath
by blast
then have inside(path-image c2 U path-image ¢) = inside(path-image 2j2)
by auto
have pathstart (reversepath ?cc) = complex-of b
using cc-end by auto
then have c¢j2-path: path ?cj2
using cc2-end cc2-simple cc-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)
then have path ?cj2 N path-image ?c¢j2 = path-image ?cc2 U path-image ?cc
by (metis <pathstart (reversepath (complez-of o c)) = complez-of by cc2-end
path-image-join path-image-reversepath)
then have ins-cj2: inside(path-image ?cc2 U path-image ?cc) = inside (path-image
7cj2)
by auto
have inside(path-image ?cj2) = complex-of ¢ (inside(path-image 2j2))
using inside-bijective-linear-image[of %j2 complex-of] j2-path
using c¢j2-and-j2 complex-of-bij complex-of-linear
by presburger
then have i2: inside (path-image (complex-of o c2) U path-image (complez-of o

c))
= complez-of ¢ inside (path-image c2 U path-image c)
using c¢j2-and-j2
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by (simp add: ins-cj2 <inside (path-image c2 U path-image ¢) = inside (path-image
(c2 +++ reversepath c))»)

let 2j3 = ¢2 +++ (reversepath c1)
let ?¢j3 = %cc2 +++ (reversepath ?ccl)
have c¢j3-and-j3: path-image ?¢j8 = complex-of ‘ (path-image %j3)
by (metis path-compose-join path-compose-reversepath path-image-compose)
have pathstart (reversepath c¢1) = b
using cl-end by auto
then have j3-path: path (c2 +++ (reversepath c1))
using c2-end c2-simple c1-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)
then have path-j3: path 2j3 N path-image 23 = path-image c2 U path-image c1
using «pathstart (reversepath c1) = by c¢2-end path-image-join path-image-reversepath
by blast
then have inside(path-image ¢2 U path-image c1) = inside(path-image ?§3)
by auto
have pathstart (reversepath ?ccl) = complex-of b
using ccl-end by auto
then have cj3-path: path ?cj3
using cc2-end cc2-simple ccl-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)
then have path-cj3: path ?¢j3 N path-image ?¢j8 = path-image ?cc2 U path-image
?ccl
by (metis <pathstart (reversepath (complex-of o c1)) = complex-of b> cc2-end
path-image-join path-image-reversepath)
then have ins-cj3: inside(path-image ?cc2 U path-image ?ccl) = inside (path-image
7¢j3)
by auto
have inside(path-image ?cj3) = complex-of ¢ (inside(path-image 2j3))
using inside-bijective-linear-image[of 2j3 complex-of] j3-path
using c¢j3-and-j3 complez-of-bij complex-of-linear
by presburger
then have i3: inside (path-image (complex-of o c1) U path-image (complez-of o
c2))
= complex-of ¢ inside (path-image c1 U path-image c2)
by (simp add: path-cj3 path-j3 sup-commute)
obtain y where y-prop: y € path-image ¢ N inside (path-image c1 U path-image
c2)
using ne-12 by auto
then have y-inl: complex-of y € path-image ?cc
by (metis IntD1 image-eql path-image-compose)
have y-in2: complex-of y € complex-of ¢ (inside (path-image c1 U path-image
¢2))
using y-prop by auto
then have cne-12: path-image ?cc N inside(path-image ?ccl U path-image ?cc2)
#{}

using ne-12 y-inl y-in2 i3 by force
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obtain for-reals: inside(path-image ?ccl U path-image ?cc) N inside(path-image
?cc2 U path-image ?cc) = {}
inside(path-image %ccl U path-image ?cc) U inside(path-image ?cc2 U
path-image ?cc) U
(path-image ?cc — {complez-of a, complex-of b}) = inside(path-image ?ccl
U path-image ?cc2)
using split-inside-simple-closed-curve| OF cc1-simple cc1-start ccl-end cc2-simple
cc2-start
cc2-end cc-simple cc-start cc-end ca-neg-cb cclc2 ccle cc2c cne-12]
by auto
let ?rinl = real-of ¢ inside(path-image ?ccl U path-image ?cc)
let ?rin2 = real-of ¢ inside(path-image ?cc2 U path-image ?cc)

have h1: inside(path-image c1 U path-image c) N inside(path-image c2 U path-image
¢) # {} = False
proof—
assume inside(path-image c1 U path-image ¢) N inside(path-image c2 U
path-image ¢) # {}
then obtain a where a-prop: a € inside(path-image c1 U path-image ¢) A a
€ inside(path-image c2 U path-image c)
by auto
have inl: complez-of a € inside (path-image (complex-of o c¢1) U path-image
(complez-of o ¢))
using a-prop il by auto
have in2: complez-of a € inside (path-image (complex-of o ¢2) U path-image
(complezx-of o ¢))
using a-prop i2 by auto
show Fulse using inl in2 for-reals(1) by auto
qed
have h: path-image (complex-of o ¢) — {complez-of a, complex-of b} = complezx-of
¢ (path-image ¢) — complex-of {a,b}
using path-image-compose by auto
have complez-of * path-image ¢ — complex-of ‘ {a, b} = complez-of * (path-image
¢ - {a, b))
proof —
have Az. z € (complez-of * path-image ¢ — complez-of “ {a, b}) +— z €
complex-of ¢ (path-image ¢ — {a, b})
using Diff-iff bij-betw-imp-inj-on complez-of-bij image-iff inj-eq by (smt (23))
then show ¢thesis by blast
qed
then have path-image (complex-of o ¢) — {complex-of a, complez-of b} = com-
plez-of  (path-image ¢ — {a,b})
using h by simp
then have h2: inside(path-image c1 U path-image c¢) U inside(path-image ¢2 U
path-image ¢) U
(path-image ¢ — {a,b}) = inside(path-image c1 U path-image c2)
proof—
have Az . = € inside(path-image c1 U path-image c2) <— complez-of © €
complez-of ¢ inside (path-image c1 U path-image c2)
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using i3 by (metis bij-betw-imp-inj-on complez-of-bij image-iff inj-eq)
then have in-iff: A\z. z € inside(path-image c1 U path-image c¢2) «— com-
plez-of © € inside (path-image (complex-of o c1) U path-image (complez-of o c))
@]
inside (path-image (complez-of o ¢2) U path-image (complez-of o ¢)) U
(path-image (complez-of o ¢) — {complex-of a, complex-of b})
using for-reals(2)
using ¢3 by presburger
have Az. complez-of © € inside (path-image (complex-of o c¢1) U path-image
(complex-of o ¢)) U
inside (path-image (complex-of o ¢2) U path-image (complex-of o ¢)) U
(path-image (complez-of o ¢) — {complex-of a, complez-of b})
«— complex-of © € inside (path-image (complez-of o c1) U path-image
(complez-of o ¢))
V' complez-of © € inside (path-image (complez-of o c2) U path-image
(complez-of o c))
V complex-of © € (path-image (complex-of o ¢) — {complex-of a, complex-of
)

by blast
then have Az. complex-of x € inside (path-image (complex-of o c¢1) U path-image
(complex-of o ¢)) U
inside (path-image (complex-of o ¢2) U path-image (complex-of o ¢)) U
(path-image (complez-of o ¢) — {complex-of a, complez-of b})
«— x € inside(path-image c1 U path-image c) U inside(path-image c¢2 U
path-image ¢) U
(path-image ¢ — {a,b})
using i1 i2 i3 Un-iff <path-image (complez-of o ¢) — {complez-of a, complex-of
b} = complez-of ‘ (path-image ¢ — {a, b})> bij-betw-imp-inj-on complex-of-bij im-
age-iff inj-def
by (smt (verit, best))
then have Az. z € inside(path-image c1 U path-image c2) +— z € (inside(path-image
¢l U path-image c¢) U inside(path-image c¢2 U path-image c¢) U
(path-image ¢ — {a,b}))
using in-iff by meson
then show f?thesis by auto
qed
show ?thesis using that h1 h2 by auto
qged

lemma split-inside-simple-closed-curve-real2:

fixes ¢ :: real = real”2

assumes cl-simple:simple-path c1 and cI-start: pathstart c1 = a and cl-end:
pathfinish ¢1 = b

assumes c2-simple: simple-path c2 and c2-start: pathstart c2 = a and c2-end:
pathfinish c2 = b

assumes c-simple: simple-path ¢ and c-start: pathstart ¢ = a and c-end: pathfin-
ishec=1»

assumes a-neq-b: a # b

and clc2: path-image c1 N path-image ¢2 = {a,b}
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and clec: path-image c1 N path-image ¢ = {a,b}
and c2c: path-image c¢2 N path-image ¢ = {a,b}
and ne-12: path-image ¢ N inside(path-image c1 U path-image ¢2) # {}
obtains inside(path-image c1 U path-image ¢) N inside(path-image c¢2 U path-image
o) ={}
inside(path-image c1 U path-image ¢) U inside(path-image ¢2 U path-image
c) U
(path-image ¢ — {a,b}) = inside(path-image c1 U path-image c2)
proof —
have good-type: c1-on-open-R2-axioms TYPE((real, 2) vec)
unfolding cI-on-open-R2-axioms-def by auto
then show ?thesis
using cl-on-open-R2.split-inside-simple-closed-curve-locale[of - - - ¢1 a b ¢2 (]
assms
unfolding cI-on-open-R2-def c1-on-open-euclidean-def c1-on-open-def
using good-type that by blast
qed

end

theory Polygon-Lemmas

imports
Polygon-Jordan-Curve
HOL— Library.Sublist
HOL.Set-Interval
HOL.Fun

begin

5 Properties of make polygonal path, pathstart
and pathfinish of a polygon

lemma make-polygonal-path-induct|case-names Empty Single Two Multiple]:
fixes ell :: (real”2) list
assumes empty: Nell. ell = [| = P ell
and single: Nell. [length ell = 1] = P ell
and two: Aell. [length ell = 2] = P ell
and multiple: \ell.
[length ell > 2;
P ([(elll0), (ell'1)));
P ((ell'1)#(drop 2 ell))] = P ell
shows P ell
apply (induct ell rule: make-polygonal-path.induct)
using empty single two multiple by auto

lemma make-polygonal-path-gives-path:
fixes v :: (real™2) list
shows path (make-polygonal-path v)
proof (induction length v arbitrary: v)
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case (
thus path (make-polygonal-path v)
by auto
next
case (Suc x)
show ?Zcase
by (smt (verit, best) Suc.hyps(1) Suc.hyps(2) Suc-length-conv list.distinct(1)
list.inject make-polygonal-path.elims path-join-imp path-linepath pathfinish-linepath
pathstart-join pathstart-linepath)
qed

corollary polygonal-path-is-path:
fixes g :: R-to-R2
assumes polygonal-path g
shows path g
using assms polygonal-path-def make-polygonal-path-gives-path by auto

lemma polygon-to-polygonal-path:
fixes p i1 R-to-R2
assumes polygon p
obtains ell where p = make-polygonal-path ell
using assms unfolding polygon-def polygonal-path-def
by auto

lemma polygon-pathstart:

fixes g :: R-to-R2

assumes [ # ||

assumes g = make-polygonal-path [

shows pathstart g = 110

using assms make-polygonal-path.simps

by (smt (verit) list.discI list.expand make-polygonal-path.elims nth-Cons-0 path-
start-join pathstart-linepath)

lemma polygon-pathfinish:
fixes g :: R-to-R2
assumes | # [|
assumes g = make-polygonal-path [
shows pathfinish g = l!(length | — 1)
using assms
proof (induct length | arbitrary: g 1)
case ()
then show ?Zcase by auto
next
case (Suc )
{assume x: length | = 1
then obtain ¢ where I-is: | = [a]
by (metis Suc.prems(1) Suc-neq-Zero diff-Suc-1 diff-self-eq-0 length-Cons
remdups-adj.cases)
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then have pathfinish ¢ = a
using Suc make-polygonal-path.simps
by (simp add: pathfinish-def)
then have pathfinish g = l!(length | — 1)
using Suc l-is
by auto
} moreover {assume x: length | = 2
then obtain a b where l-is: | = [a, b]
by (metis (no-types, opaque-lifting) One-nat-def Suc-eq-plusl list.size(3)
list.size(4) min-list.cases nat.simps(1) nat.simps(83) numeral-2-eq-2)

then have g-is: g = linepath a b
using Suc by auto
have pf: pathfinish ¢ = b using g-is by auto
then have pathfinish g = l!(length | — 1)
using Suc * l-is
by auto

}

moreover {assume x: length [ > 2
then obtain a b ¢ where l-is: | = a # b # ¢
by (metis Suc.prems(1) Zero-neq-Suc length-Cons less-SucO list.size(3)

numeral-2-eq-2 remdups-adyj.cases)
then have g-is: ¢ = (linepath a b) +++ make-polygonal-path (b # c)
using Suc l-is
proof —
have ¢ # [|
using * [-is by auto
then show ?thesis
by (metis (full-types) Suc(4) l-is list.exhaust make-polygonal-path.simps(4))

qed
then have pf: pathfinish g = pathfinish (make-polygonal-path (b # ¢))

by auto
have len-z: length (b # ¢) = z
using Il-is Suc by auto
then have pathfinish (make-polygonal-path (b # c)) = (b # ¢)!(length | — 2)
using Suc.hyps l-is
by simp
then have pathfinish g = l!(length I — 1)
using [l-is pf
by auto

}

ultimately show ?case
using Suc
by (metis One-nat-def less-Suc-eq-0-disj less-antisym numeral-2-eq-2)

qged

lemma make-polygonal-path-image-property:

assumes length vts > 2
assumes p-is-path: x € path-image (make-polygonal-path vts)
shows 3 k < length vts — 1. x € path-image (linepath (vts ! k) (vts ! (k + 1)))
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using assms
proof (induct vts)
case Nil
then show ?Zcase by auto
next
case (Cons a vts)
then have len-gteq: length vts > 1
by simp
{assume *: length vts = 1
then obtain b where vts-is: vts = [b]
by (metis One-nat-def <1 < length vtsy drop-eq-Nil id-take-nth-drop less-numeral-extra(1)
self-append-conv? take-eq-Nil2)
then have z € path-image (make-polygonal-path [a, b))
using Cons by auto
then have z € path-image (linepath a b)
by auto
then have z € path-image (linepath ((a#vts) ! 0) ((a#tvts) ! 1))
using Cons vts-is
by force
then have Jk<length (a # vts) — 1. x € path-image (linepath ((a # vts) | k)
(0 # vts) ! (5 + 1))
using *
by simp
} moreover {assume x: length vts > 1
then obtain b vis’ where vts-is: vts = b # vts’
by (metis One-nat-def le-zero-eq len-gteq list.exhaust list.size(8) n-not-Suc-n)
then have z € path-image ((linepath a b) +++ make-polygonal-path (b # vts’))
using Cons
by (metis (no-types, lifting) * One-nat-def length-Cons list.exhaust list.size(3)
make-polygonal-path.simps(4) nat-less-le)
then have eo: x €path-image ((linepath a b)) V x € path-image (make-polygonal-path
(b # vts'))
using not-in-path-image-join by blast
{assume xx : © €path-image ((linepath a b))
then have Jk<length (a # vts) — 1. x € path-image (linepath ((a # vts) | k)
((a # ots) ! (k + 1)))
using vts-is
by auto
} moreover {assume xx : © € path-image (make-polygonal-path (b # vts’))
then have 3 k<length vts — 1. z € path-image (linepath (vts | k) (vts ! (k +
1))
using Cons.hyps(1)
by (simp add: Suc-lel vts-is)
then have Jk<length (a # vts) — 1. x € path-image (linepath ((a # vts) ! k)
(a # vts) ! ( + 1))

using add.commute add-diff-cancel-left’ length-Cons less-diff-conv nth-Cons-Suc
plus-1-eq-Suc by auto

}
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ultimately have Jk<length (a # vts) — 1. x € path-image (linepath ((a #
vts) ' k) ((a # vts) ! (K + 1))
using eo by auto
}

ultimately show Zcase
using len-gteq
by fastforce
qed

lemma linepaths-subset-make-polygonal-path-image:
assumes length vts > 2
assumes k < length vts — 1
shows path-image (linepath (vts ' k) (vts! (kK + 1))) C path-image (make-polygonal-path
vts)
using assms
proof (induct vts arbitrary: k)
case Nil
then show ?case by auto
next
case (Cons a vts)
{ assume *: length vts = 1
then have k-is: k = 0
using Cons.prems(2) by auto
obtain b where vts-is: vts = [b]
using *
by (metis One-nat-def drop-eq-Nil id-take-nth-drop le-numeral-extra(4) self-append-conv2
take-eq-Nil2 zero-less-one)
then have path-image (make-polygonal-path (a # vts)) = path-image (linepath
a b)
by auto
then have path-image (linepath ((a # vts) ' k) ((a # vts) | (k + 1)))
C path-image (make-polygonal-path (a # vts))
using k-is vts-is
by simp
} moreover
{ assume *: length vts > 1
then obtain b c vts’ where vts-is: vts = b#c#vts’
by (metis diff-0-eq-0 diff-Suc-1 diff-is-0-eq leD length-Cons list.exhaust list.size(3))
{ assume *x: k = 0
then have same-path-image: path-image (linepath ((a # vts) ! k) ((a # vts)
U'(k + 1))) = path-image (linepath a b)
using vts-is
by auto
have path-image (linepath a b) C path-image (make-polygonal-path (a # b
Hetpots)
using vts-is make-polygonal-path.simps path-image-join
by (metis (no-types, lifting) Un-iff list.discI nth-Cons-0 pathfinish-linepath
polygon-pathstart subsetl)
then have path-image (linepath ((a # vts) ! k) ((a # vts) ! (k + 1))) C
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path-image (make-polygonal-path (a # vts))
using vts-is same-path-image
by presburger
} moreover {assume xx: k > 0
then have k-minus-lt: k—1 < length vts — 1
using Cons
by auto
then have path-image-is: path-image (linepath ((a # vts) ! k) ((a # vts) ! (k
+ 1))) = path-image (linepath (vts ! (k —1)) (vts | k))
using #x
by auto
then have path-im-subset!: path-image (linepath (vts ! (k—1)) (vts ! k)) C
path-image (make-polygonal-path vts)
using k-minus-lt Cons.hyps(1)[of k—1] * xx Suc-lel Suc-pred add.right-neutral
add-Suc-right nat-1-add-1 plus-1-eq-Suc
by auto
have path-im-subset?2: path-image (make-polygonal-path vts) C path-image
(make-polygonal-path (a # vts))
using vts-is make-polygonal-path.simps(4)
by (metis dual-order.refl list.distinct(1) nth-Cons-0 path-image-join pathfin-
ish-linepath polygon-pathstart sup.coboundedI2)
then have path-image (linepath ((a # vts) ! k) ((a # vts) ! (k + 1))) C
path-image (make-polygonal-path (a # vts))
using path-image-is path-im-subset! path-im-subset?
by blast

ultimately have path-image (linepath ((a # vts) ' k) ((a # vts) ! (k + 1)))
C path-image (make-polygonal-path (a # vts))
by blast
}

ultimately show ?case

by (metis Cons.prems(1) Suc-1 leD length-Cons linorder-neqE-nat nat-add-left-cancel-less
plus-1-eq-Suc)
qed

lemma vertices-on-path-image: shows set vts C path-image (make-polygonal-path
vts)
proof (induct vts rule:make-polygonal-path.induct)
case 1
then show ?case by auto
next
case (2 a)
then show ?Zcase by auto
next
case (3 ab)
then show ?case by auto
next
case (4 a b v va)
then have a-in-image: a € path-image (make-polygonal-path (a # b # v # va))
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using make-polygonal-path.simps
by (metis list.distinct(1) nth-Cons-0 pathstart-in-path-image polygon-pathstart)

have path-image-union:
path-image (make-polygonal-path (a # b # v # va))
= path-image (linepath a b) U path-image (make-polygonal-path (b # v # va))
by (metis make-polygonal-path.simps(4) linepath-1"list.discI nth-Cons-0 path-image-join
pathfinish-def polygon-pathstart)
have set (a # b # v # va) = {a} U set( b # v # va)
by auto
then show ?case using a-in-image 4 make-polygonal-path.simps
path-image-union by auto
qed

lemma path-image-cons-union:

assumes p = make-polygonal-path vts

assumes p’ = make-polygonal-path vts’

assumes vts’ # [|

assumes vts = a # vts’ A b = vts'l0

shows path-image p = path-image (linepath a b) U path-image p’
proof—

have pathfinish (linepath a b) = pathstart p’ using assms polygon-pathstart by
auto

moreover have length vts = 2 = ?thesis

by (smt (verit) Cons-nth-drop-Suc One-nat-def Suc-1 assms(1) assms(2) assms(3)
assms(4) closed-segment-idem diff-Suc-1 drop0 drop-eq-Nil insert-subset le-iff-sup
le-numeral-extra(4) length-Cons length-greater-0-conv list.discl list.inject list.set(1)
list.set(2) make-polygonal-path.elims path-image-linepath sup-commute vertices-on-path-image)

moreover have length vts > 2 = ?thesis

by (metis (no-types, lifting) Cons-nth-drop-Suc One-nat-def Suc-1 assms(1)

assms(2) assms(3) assms(4) calculation(1) drop0 drop-Suc-Cons length-greater-0-conv
make-polygonal-path.simps(4) path-image-join)

moreover have length vts > 2 using assms by (simp add: Suc-le-eq)

ultimately show ?thesis by linarith
qed

lemma polygonal-path-image-linepath-union:
assumes p = make-polygonal-path vts
assumes n = length vts
assumes n > 2
shows path-image p = (|J {path-image (linepath (vtsli) (vtsl(i+1))) | i. i < n
_ g})
using assms
proof (induct n arbitrary: vts p)
case ()
then show ?case by linarith
next
case (Suc n)
{ assume x*: Sucn = 2
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then obtain a b where ab: vts = [a, b]
by (metis Suc.prems(2—3) Cons-nth-drop-Suc One-nat-def Suc-1 drop0
drop-eq-Nil lessI pos2)
then have path-image p = path-image (linepath a b)
using make-polygonal-path.simps Suc.prems by presburger
moreover have ... = (|J {path-image (linepath (vtsli) (vts!(i+1))) | i. i < Suc
n - 2})
using ab Suc.prems
by (smt (verit, ccfv-threshold) Suc-eq-plusi Sup-least Sup-upper * diff-is-0-eq
diff-zero dual-order.refl mem-Collect-eq nth-Cons-0 nth-Cons-Suc subset-antisym,)
ultimately have ?case by presburger
} moreover
{ assume *: Sucn > 2
then obtain o b vts’ where vts”: vts = a # vis’ A b = visl0 A vis’ = tl vis
by (metis Suc.prems(2) list.collapse list.size(8) nat.distinct(1))

let ?p’ = make-polygonal-path vts’

let 2P’ = path-image ?p’

let ?P = path-image p

let ?P-union = (|J {path-image (linepath (vts!i) (vts!(i+1))) | i. i <n — 1})

have vts'-len: length vis’ = n using vts’ Suc.prems by fastforce
then have 7P’ = (|J {path-image (linepath (vtsé) (vts"(i+1))) | i. i < n —
2})
using Suc.prems Suc.hyps * by force
moreover have Vi < n—2. vts'li = vtsl(i+1) A vtsl(i+1) = vts!(i+2) using
vts’ by force
ultimately have 7P’ = (|J {path-image (linepath (vts!(i+1)) (vts!(i+2))) | i.
i <n— 2}
by fastforce
moreover have ... = (|J {path-image (linepath (vtsli) (vts!(i+1))) | i. 1 < i
Ni<n—1})
(is ... = ¢P’-union)
proof—
have Az i. z € {vts | Suc i——wvts ! Suc (Suc i)}
— i< n—2
— Jza. (3i. za = {vts l i——wvts ! Suc i} A Suc 0 < i ANi<n— Suc0)
Nz € za
by (metis x One-nat-def Suc-diff-Suc Suc-le-mono add-2-eq-Suc’ bot-nat-0.extremum
diff-Suc-Suc le-add-diff-inverse plus-1-eq-Suc)
moreover have Az i. z € {vts | i——uvts ! Suc i}
= Suc 0 < ¢
= 7 <n— Sucl
= Jza. (3i. za = {vts ! Suc i——vts ! Suc (Suc i)} Ni<n—2)ANzx¢€
za
by (metis x Suc-diff-Suc gr0-implies-Suc linorder-not-le not-less-eq-eq nu-
meral-2-eq-2)
ultimately show ?thesis by auto
qed
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moreover have path-image (linepath a b) U ?P'-union = ?P-union
proof—
have Az. 2 € {a——b} = Fza. (3i. za = {vis! i——vts ! Suci} N i< n —
Suc 0) Nz € za
using vts’ by fastforce
moreover have Az i. x € {vts | i——ovts | Suc i}
= Vaza. (Vi>Suc 0. za = {vts | i——vts | Suc i} — =i < n — Suc 0)
V¢ za
= i< n— Suc0
=z € {a——b}
by (metis Suc-le-eq bot-nat-0.not-eq-extremum nth-Cons-0 nth-Cons-Suc
vts’)
ultimately show ?thesis by auto
qed
moreover have ?P = (path-image (linepath a b)) U 7P’
using Suc.prems vts’ path-image-cons-union
by (metis One-nat-def Suc-1 vts’-len bot-nat-0.extremum list.size(3) not-less-eg-eq)
ultimately have ?case by force
}
ultimately show ?case using Suc.prems by linarith
qed

6 Loop Free Properties

lemma constant-linepath-is-not-loop-free:
shows —(loop-free ((linepath a a)::real = real”2))
proof —
have all-zerol: ANz y:real. (1 — z) xg (a:real™2) +  *r a = a
by auto
have all-zero2: ANz y:real. (1 — y) xg (azreal™2) + y xgr a = a
by auto
then have Jz:reale{0..1}. Jyureale{0..1} s £ yAN(z=0—y#1)A (z
=1-—y#0)
by (metis atLeastAtMost-iff field-lbound-gt-zero less-eq-real-def linorder-not-less
zero-less-one)
then show ?thesis
unfolding loop-free-def linepath-def
using all-zerol all-zero2 by auto
qed

lemma doubling-back-is-not-loop-free:
assumes g # b
shows —(loop-free ((make-polygonal-path [a, b, a))::real = real”2))
proof —
let %p1 = (1/4::real)
let ?p2 = (3/4::real)
have same-point: ((linepath a b) +++ (linepath b a)) (1/4::real) = ((linepath a
b) ++-+ (linepath b a)) (3/4::real)
unfolding linepath-def joinpaths-def by auto
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have %p1 € {0..1} A ?p2 € {0..1} N %p1 # ?p2 A (9p] = 0 — %2 # 1) A
(%p1 =1 — 2 # 0)
by auto
then have 3ze{0..1}. 3ye{0..1}.
(linepath a b +++ linepath b a) x = (linepath a b +++ linepath b a) y
ANeA£yANz=0—y#IN(x=1—y#0)
using same-point by blast
then have —(loop-free ((linepath a b) +++ (linepath b a)))
unfolding loop-free-def by auto
then show ?thesis using make-polygonal-path.simps
by auto
qed

lemma not-loop-free-first-component:
assumes —(loop-free pl)
shows —(loop-free (p1+++p2))
proof —
obtain z y where zy-prop: 0 < za2< 10 <yy< lz#y
(2=0—y#1)(z=1-—y#0)
plz=ply
using assms unfolding loop-free-def
by auto
then have zy-prop2: 0 < z/2x/2< 1/20 < y/2y/2< 1/2z/2 # y/2
by auto
then have (pI+++p2) (z/2) = (pl+++p2) (y/2)
unfolding joinpaths-def using zy-prop(8)
by auto
then have props: (p! +++ p2) (z/2) = (p1 +++ p2) (y/2) A
(z/2) # (y/2) N ((2/2) = 0 — (y/2) # 1) A ((2/2) = 1 — (y/2) #

using zy-prop2 by auto
have z/2 € {0..1} AN y/2 € {0..1}
using zy-prop2 by auto
then have 3z€{0..1}.
Jye{0..1}.
(pl +++ p2) x = (p1 +++ p2) y A
rEyN(z=0—y#1)AN(z=1—y#0)
using props
by blast
then show ?thesis
unfolding loop-free-def by auto
qged

lemma not-loop-free-second-component:
assumes pathfinish-pathstart: pathfinish p1 = pathstart p2
assumes —(loop-free p2)
shows —(loop-free (p1+++p2))
proof —
obtain z y where zy-prop: 0 < zz< 10 <yy< lz#y
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(t=0—yt 1) (a=1—y#0)
p2r=p2y
using assms unfolding loop-free-def
by auto
then have zy-prop2: (z + 1)/2 > 1/2 (x+ 1)/2 <1 (y+ 1)/2>1/2 (y +
/2 <1
(z+ 1)/2 £ (y + 1)/2
by auto
have z-same: 2x((z + 1)/2) — 1 =z
by (metis add.right-neutral add-diff-eq cancel-comm-monoid-add-class. diff-cancel
class-dense-linordered-field.between-same mult-1 mult-2 times-divide-eq-left times-divide-eq-right)
have y-same: 2x((y + 1)/2) — 1 =y
by (metis add.right-neutral add-diff-eq cancel-comm-monoid-add-class.diff-cancel
class-dense-linordered-field.between-same mult-1 mult-2 times-divide-eg-left times-divide-eq-right)
have p2 (2«((z + 1)/2) — 1) = p2 (2+((y + 1)/2) —1)
using zy-prop(8) z-same y-same
by auto
have relate-start-finish: p1 1 = p2 0
using pathfinish-pathstart
unfolding pathfinish-def pathstart-def
by auto
then have zhi: (z + 1)/2 = 1/2 = (pl +++ p2) ((z + 1)/2) = p2«x
unfolding joinpaths-def
by auto
have zh2: (z + 1)/2 > 1/2 = (p! +++ p2) (z + 1)/2) = p2 =z
using zy-prop2 unfolding joinpaths-def
using z-same by force
then have zh: (p! +++ p2) (z + 1)/2) = p2«x
using zhi zh?2 zy-prop2
by linarith
have yhl: (y + 1)/2 =1/2 = (pl +++ p2) ((y + 1)/2) = p2y
using relate-start-finish unfolding joinpaths-def
by auto
have yh2: (y + 1)/2 > 1/2 = (pl +++ p2) ((y+ 1)/2) = p2y
using zy-prop2 unfolding joinpaths-def
using y-same by force
then have yh: (p! +++ p2) (v + 1)/2) = p2y
using yhl yh2 xy-prop2
by linarith
then have same-eval: (pI1+++p2) ((z + 1)/2) = (p1+++p2) ((y + 1)/2)
using zh yh zy-prop(8)
by presburger
have insetl: (z + 1)/2 € {0..1}
using zy-prop?2
by simp
have inset2: (y + 1)/2 € {0..1}
using zy-prop2
by simp
have 3z€{0..1}.
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Jye{0..1}.

(pl +++ p2) = (pl +++ p2) y A
r#FYN(z=0—y#I)AN(xz=1—9y#0)

using zy-prop2 same-eval insetl inset2

by fastforce

then show ?thesis
unfolding loop-free-def by auto
qed

lemma loop-free-subpath:
assumes path p
assumes u-and-v: v € {0..1} ve {0..1} u <
assumes — (loop-free (subpath u v p))
shows — (loop-free p)
proof —
have path (subpath u v p)
using path-subpath assms by auto
then show ?thesis using simple-path-subpath assms
unfolding simple-path-def
by blast
qed

lemma loop-free-associative:

assumes path p

assumes path ¢

assumes path r

assumes pathfinish p = pathstart q

assumes pathfinish q = pathstart r

shows — (loop-free ((p +++ q) +++ 1)) <— = (loop-free (p +++ (¢ +++ 1)))

by (metis (mono-tags, lifting) assms(1) assms(2) assms(3) assms(4) assms(5)
path-join-imp pathfinish-join pathstart-join simple-path-assoc simple-path-def)

lemma polygon-at-least-3-vertices:
assumes polygon p and
= make-polygonal-path vts
shows card (set vts) > 3
using assms
proof (induct vts rule: make-polygonal-path.induct)
case 1
then show ?case unfolding polygon-def
using constant-linepath-is-not-loop-free make-polygonal-path.simps(1)
by (metis simple-path-def)
next
case (2 a)
then show ?case unfolding polygon-def
using constant-linepath-is-not-loop-free make-polygonal-path.simps(2)
by (metis simple-path-def)
next
case (3 ab)
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{ assume *: a = b
then have Fulse using 3 unfolding polygon-def
using constant-linepath-is-not-loop-free make-polygonal-path.simps(3)
by (metis simple-path-def)
} moreover {assume *x: a # b
then have Fulse using 3 unfolding polygon-def closed-path-def
pathstart-def pathfinish-def using make-polygonal-path.simps(8)
by (simp add: linepath-0' linepath-1")

ultimately show Zcase
by auto
next
case (4 a b v va)
have finset: finite (set (a # b # v # va))
by blast
have subset: {a, b, v} C set (a # b # v # va)
by auto
have neql: a # b
using constant-linepath-is-not-loop-free not-loop-free-first-component
by (metis 4 .prems(2) make-polygonal-path.simps(4) polygon-def assms(1) sim-
ple-path-def)
have loop-free-2: loop-free (make-polygonal-path (b # v # va))
using 4 not-loop-free-second-component
by (metis make-polygonal-path.simps(4) polygon-def list.distinct(1) nth-Cons-0
pathfinish-linepath polygon-pathstart simple-path-def)
have contra: b = v = —(loop-free (make-polygonal-path (b # v # va)))
using constant-linepath-is-not-loop-free[of b] make-polygonal-path.simps
not-loop-free-first-component
by (metis neq-Nil-conv)
then have neg2: b # v
using loop-free-2 contra
by auto

have - loop-free ((linepath a b) +++ (linepath b a))
using doubling-back-is-not-loop-free[of a b] neql
by auto
have make-path-is: make-polygonal-path (a # b # a # va) = (linepath a b) +++
((linepath b a) +++ (make-polygonal-path (a#va)))
using make-polygonal-path.simps
by (metis (no-types, opaque-lifting) 4 .prems(1) 4.prems(2) closed-path-def poly-
gon-def <= loop-free (linepath a b +++ linepath b a)» linepath-1' min-list.cases
nth-Cons-0 pathfinish-def pathfinish-join polygon-pathstart simple-path-def)
have — loop-free (((linepath a b) +++ (linepath b a)) +++ (make-polygonal-path
(attva))
using make-polygonal-path.simps not-loop-free-first-component
using «— loop-free (linepath a b +++ linepath b a)»
by auto
then have — loop-free (make-polygonal-path (a # b # a # va))
using loop-free-associative
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by (metis make-polygonal-path-gives-path list.discI make-path-is nth-Cons-0
path-linepath pathfinish-linepath pathstart-linepath polygon-pathstart)
then have neg3: v # a
using 4
using polygon-def simple-path-def by blast
have card-3: card {a, b, v} = 3
using neql neq2 neq3
by auto
then show ?case
using subset finset
by (metis card-mono)
qed

lemma polygon-vertices-length-at-least-4 :
assumes polygon p and
p = make-polygonal-path vts
shows length vts > 4
proof —
have card-set: card (set vts) > 3
using polygon-at-least-3-vertices assms
by blast
have len-gt3: length vts > 3
using card-length local.card-set order-trans by blast
then have non-empty: vts # ||
using card-set
by auto
have eq: p 0 =p 1
using assms unfolding polygon-def closed-path-def pathstart-def pathfinish-def
by auto
have p0: p 0 = vts ! 0
using polygon-pathstart|OF non-empty|] using assms unfolding pathstart-def
by auto
have p1: p 1 = vts ! (length vts — 1)
using polygon-pathfinish| OF non-empty| using assms unfolding pathfinish-def
by auto
have vts | 0 = vts ! (length vts —1)
using assms unfolding polygon-def
using p0 p! eq by auto
then have set vts = set (drop 1 vts)
using len-gt3
by (smt (verit, best) Cons-nth-drop-Suc Suc-eq-plusl Suc-le-eq add.commute
add-0 add-leD2 drop0 dual-order.refl insert-subset last.simps last-conv-nth last-in-set
list.distinct(1) list.set(2) numeral-3-eq-3 order-antisym-conv)
then have length (drop 1 vts) > 3
using card-set
by (metis dual-order.trans length-remdups-card-conv length-remdups-leq)
then show ?thesis
using card-set
by (metis One-nat-def Suc-1 Suc-eq-plusl Suc-pred add-Suc-right length-drop
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length-greater-0-conv non-empty not-less-eq-eq numeral-3-eq-3 numeral-Bit0)
qed

lemma linepath-loop-free:

assumes g # b

shows loop-free (linepath a b)

unfolding loop-free-def linepath-def

by (smt (23) add.assoc add.commute add-scaleR-degen assms diff-add-cancel
scaleR-left-diff-distrib)

7 Explicit Linepath Characterization of Polygonal
Paths

lemma triangle-linepath-images:
fixes z :: real
assumes vts = [a, b, (]
assumes p = make-polygonal-path vts
shows z € {0..1/2} = p x = ((linepath a b)) (2xz)
re€{1/2..1} = p z = ((linepath b ¢)) (2xx — 1)
proof—
fix = :: real
assume z € {0..1/2}
thus p z = ((linepath a b)) (2xz)
unfolding assms
using make-polygonal-path.simps(4)[of a b ¢ Nil] unfolding joinpaths-def by
presburger
next
fix z :: real
assume *: ¢ € {1/2..1}
{ assume z > 1/2
then have p x = ((linepath b ¢)) (2xx — 1)
unfolding assms
using make-polygonal-path.simps(4)[of a b ¢ Nil] unfolding joinpaths-def by
force
} moreover
{ assume z = 1/2
then have p z = b A ((linepath b ¢)) (2xz — 1) =b
unfolding assms
using make-polygonal-path.simps(4)[of a b ¢ Nil] unfolding joinpaths-def
by (simp add: linepath-def mult.commute)
}
ultimately show p z = ((linepath b ¢)) (2xx — 1) using * by fastforce
qed

lemma polygon-linepath-images1:
fixes n:: nat
assumes n > 3
assumes length ell = n
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assumes z € {0..1/2}
shows make-polygonal-path ell x = ((linepath (ell ! 0) (ell ! 1))) (2xx)
proof —
have make-polygonal-path ell = linepath (ell! 0) (ell! 1) +++ make-polygonal-path
(drop 1 ell)
using make-polygonal-path.simps
by (smt (verit, del-insts) numeral-3-eq-3 Cons-nth-drop-Suc One-nat-def Suc-1
Suc-eq-plus1 add-Suc-right assms(1) assms(2) drop0 length-greater-0-conv less-add-Suc2
list.size(8) not-numeral-le-zero nth-Cons-0 numeral-Bit0 order-less-le-trans plus-1-eq-Suc)
then show ?thesis
using assms make-polygonal-path.simps
by (simp add: joinpaths-def)
qed

lemma sum-insert [simp):
assumes z ¢ F and finite F
shows (> yeinsert x F. Py) = (D yeF. Py) + Pz
using assms insert-def by(simp add: add.commute)

lemma sum-of-indezx-diff [simp]:
fixes f:: nat = 'a::comm-monoid-add
shows (> ie{a..<a+b}. f(i—a)) = (O ie{..<b}. f(7))
proof (induction b)
case (
then show ?Zcase by simp
next
case (Suc b)
then show ?case by simp
qed

lemma sum-of-index-diff2 [simp:
fixes [ :: nat = 'a::comm-monoid-add
shows (> ie{a+c..b+c}. f(i)) = (O] ie{a..b}. f(i+c))

using Set-Interval.comm-monoid-add-class.sum.shift-bounds-cl-nat-ivl by blast

lemma sum-split [simp]:

fixes f :: nat = 'a::comm-monoid-add

assumes ¢ € {a..b}

shows (3" i € {a..b}. fi) = (3 i € {a.c}. fi)+ (Doi€ {ct1..b}. fi)

by (metis Suc-eq-plus1 Suc-le-mono assms atLeastAtMost-iff atLeastLess ThanSuc-atLeastAtMost
le-Sucl sum.atLeastLess Than-concat)

lemma summation-helper:
fixes z :: real
fixes k :: nat
assumes 1 < k
shows (2:real) x (3 i=1..k. 1 /270 —1=0_i=1..(k=1). (1 /(27%)))
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proof—
have frac-cancel: Viznat > 1. 2 / (27%) = 2 / (2 % (2::real) (i—1))
using power.simps(2)[of 2::real] by (metis Suc-diff-le diff-Suc-1)
have (2:real) x (> i=1..k. 1/ 270) = i=1..k. (2] 27)
by (simp add: sum-distrib left)
also have ... = (D_i=1..k. (2 / (2 x 27(i—1)))) using frac-cancel by simp
also have ... = (i =1..k. (1 / (27(i—1)))) by force
also have ... = (> i = 1..<(k+1) (1 /(270i—-1))))
using Suc-eq-plusl atLeastLess ThanSuc-atLeastAtMost by presburger
also have ... = (D" i € {.<k}. (1 / (27%)))
using sum-of-index-diff [of \i. (1 / 27%) 1 k] by simp
finally have (2::real) « (3 i=1..k. 1 /2 i) =00 i=0..(k—1). (1 /] (27%)))
by (metis assms atLeastOAtMost diff-Suc-1 lessThan-Suc-atMost nat-le-iff-add
plus-1-eq-Suc)
then have (2:real) « O i=1.k. 1 /2749 —1=i=0..(k—1). (1 /
(274))) — 1
by auto
also have ... = (3 i = 1..(k—1). (1 / (27%))) + (1/270) —
using sum-insert[of 0 {1..k—1} power (1/2)]
by (simp add: Icc-eg-insert-lb-nat add.commute)
also have ... = (>_i = 1..(k—1). (1 / (27%))) by force
finally show (2:real) x (3 i=1..k. 1 /2740 —1=0i=1..(k—1).(1/
(271))) -
qed

lemma polygon-linepath-images2:
fixes n k:: nat
fixes ell:: (real™2) list
fixes f :: nat = real = real
assumes n > 3
assumes 0 < kANk<n-— 38
assumes length ell = n
assumes p: p = make-polygonal-path ell
assumes f = (M z. (x — (i € {1..k}. 1/(27%))) = (27(k+1)))
assumes z € {(d_i € {1..k}. 1/(27%)..0 i e {1..(k+ 1)}. 1/(27%))}
shows p © = ((linepath (ell 1 k) (ell ! (k+1)) (fk z)))
using assms
proof (induct n arbitrary: ell k x p)
case ()
then show ?case by auto
next
case (Suc n)
{ assume x: k = 0
have z: z € {0..1/2} using % Suc.prems(6) by simp
moreover have f k z = 2xz using * Suc.prems(5) by simp
ultimately have ?case
using polygon-linepath-images! [of Suc n ell z, OF Suc.prems(1) Suc.prems(3)
x] *
by (simp add: Suc.prems(4))
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} moreover
{ assume *: k > 1
then have suc-n: Suc n > 3 using Suc.prems(2) by linarith
then have ell-is: ell = (elll0) # (ell'1) # (ell!2) # (drop 3 ell)
using Suc.prems(3)
by (metis Cons-nth-drop-Suc One-nat-def Suc-1 Suc-le-lessD drop0 nat-less-le
numeral-3-eq-3)
then have ell’-is: drop 1 ell = (elll1) # (ell!'2) # (drop 3 ell)
by (metis One-nat-def diff-Suc-1 drop0 drop-Cons-numeral numerals(1))
let ?ell’ = drop 1 ell
have len-ell”: length ?ell’ > 2 using suc-n Suc.prems(3) by simp
let ?p’ = make-polygonal-path ?ell’
have p-tl: p = (linepath (ell ! 0) (ell ! 1)) +++ make-polygonal-path (drop 1
ell)
using Suc.prems(4) Suc.prems(3) * make-polygonal-path.simps ell-is ell’-is
by metis

have (> i= 1.k 1 /(2 "iureal)) > D i=1..1.1 /(2 " i:real))
using Suc.prems(2) *
proof (induct k)
case (
then show ?case by auto
next
case (Suc k)
{ assume *: 1 = Suc k
then have ?case by auto
} moreover {assume x: 1 < Suc k
then have I <k Ak < Sucn — 8
using Suc.prems by auto
then have ind-h: (3 i=1..1.1 /(2 "izreal)) < O i=1..k. 1 /2 7%
using Suc.hyps Suc.prems(2) by blast
have (> i = 1..Suck. 1 /( 2 "iureal)) = 1/(27(Suck)) + O i = 1.k 1
/ (2 " iureal))
using *x by simp
then have (3¢ = 1..Suc k. 1 /( 2 "iureal)) > O i=1.k. 1 /(2"
i:real))
by simp
then have ?case using ind-h by linarith
}
ultimately show ?case by linarith
qed
then have (> i = 1..k. 1 /(2 " iureal)) > 1/2
by auto
then have z-gteq: x > 1/2 using Suc.prems(2,6)
by (meson atLeastAtMost-iff order-trans)
have zonehalf: p x = ?p’ (2xx — 1) if z-is: © = 1/2 using p-tl joinpaths-def
proof —
have p z = (linepath (ell ! 0) (ell ! 1)) 1
using p-tl joinpaths-def x-is
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by (metis mult.commute nle-le nonzero-divide-eq-eq zero-neq-numeral)
then have pz = ell ! 1
using polygon-pathfinishlof [(ell ! 0), (ell ! 1)]] unfolding pathfinish-def
using make-polygonal-path.simps by simp
then have p x = make-polygonal-path (drop 1 ell) 0
using polygon-pathstart[of drop 1 ell] = len-ell’ unfolding pathstart-def
by simp
then show ?thesis using z-is by force
qed
have a-gtonehalf: x > 1/2 = p x = ?p’ (2xx — 1) using p-tl joinpaths-def
by (smt (verit, ccfo-threshold))
then have pz: p z = ?p’ (2xx — 1) using zonehalf z-gtonehalf x-gteq
by linarith
{ assume k-eq: k = 1
then have fkz=(z — O i=1..1.1/2749)) 2" 2
using Suc.prems(5) by auto
then have fkz: fhkx = j*xz — 2
by auto
have z € {1/2..3//}
using k-eq Suc.prems(6) by auto
then have 2xz — 1 € {0..1/2} by simp
then have ?p’ (2«xx — 1) = (linepath (2ell0) (?ell'1)) (4xz — 2)
using Suc.hyps[of k Zell’ ?p’ 2xx — 1] Suc.prems
by (smt (verit, ccfo-SIG) suc-n diff-Suc-1 leD le-Suc-eq length-drop poly-
gon-linepath-images1)
also have ... = (linepath (elll1) (ell!2)) (4xz — 2)
using * Suc.prems(3)
using ell’-is by fastforce
also have ... = ((linepath (ell 1 k) (ell ! (k+1)) (f k z))) using k-eq
Suc.prems(5) fkx
by (smt (verit, del-insts) nat-1-add-1)
finally have ?case using px by simp
} moreover
{ assume k-gt: k > 1
then have fkminus: f (k—1) (2xz—1)=(2x2—-1)— (D i=1..(k—1).
1/2740)*2 "k
using Suc.prems(5) by force
have fk: fko=(z — O i=1.k. 1 /2 70)«2 " (k+1)
using Suc.prems(5) by blast
have f-is: f (k—1) (2x2 —1)=fkz
proof—
have i: Viznat € {2..k}. i — 2+ 2 =1
by auto
have f (k— 1) (2x2z—1)=2*x2x—1 - i=1..k—1.1/271)
x 2 (k—1+1)
unfolding Suc.prems(5) by auto
alsohave ...=(z —1/2 - O i=1..k—1.1/27)/2)«2 (k+ 1)
using k-gt by fastforce
alsohave..=(z—-1/2 -0 i=1.k—1.(1/27%)/2)x2 (k+ 1)
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by (simp add: sum-divide-distrib)
alsohave .. =(z —1/2 - O i=1..k—1.(1/2)7T*1/2) %2 (k
+ 1)
by (simp add: power-divide)

alsohave ... = (zt —1/2 - O i=1..k—1.(1/ 2)(i+1)) * 2 " (k+
1) by force
alsohave ... =(z —1/2 - O i=1.<1+(k—1).(1/2)(i+1))) = 2
“(k+ 1)
using Suc-eq-plusi-left atLeastLess ThanSuc-atLeastAtMost by presburger
alsohave ... = (z — 1/2 - Y i=1.<14+(k—1).(1/2)(i—1+
2))x2 " (k+ 1)
by auto
also have ... = (z — 1/2 — O i e {{.<k — 1}. (1 / 2)(i+2)))) = 2 ~
(k+ 1)

using sum-of-index-diff [of (Ax. (1/2) (xz+2)) 1 k—1] by metis
alsohave ... = (z — 1/2 — Y ie{2.<k—1+2}.((1/2)G -2+
) 2~ (k + 1)
using sum-of-indez-diff[of (A\z. (1/2) (z+2)) 2 k—1] by (smt (verit)
add.commute)
alsohave ... = (z — 1/2 — > ie{2.k}. (1 /2) i — 2+ 2)) 2"
(k+1)
using k-gt atLeastLessThanSuc-atLeastAtMost by force
also have ... = (z — 1/2 — (O i€ {2..k}. (1 / 2)7(0)) =2 " (k+ 1)
using i by force
alsohave ... = (z — (1/2 4+ O ie{2.k}. (1 / 2)7 () =2 " (k+ 1)
by argo
alsohave ... =(z — O i=1..k. (1 /2)7 ()2 " (k+ 1)
using sum-insertlof 1 {2..k} Xz. (1/2) ]
by (smt (verit, ccfv-SIG) Suc-1 Suc-n-not-le-n atLeastAtMost-iff atLeast-
AtMost-insertL finite-atLeastAtMost k-gt less-imp-le-nat power-one-right)

also have ... = (z — O i=1..k. 1 /(27%)) * 2 " (k + 1) by (meson
power-one-over)
also have ... = f k z using fk by argo
finally show ?thesis .
qed

have ih1: 3 < n using suc-n by force

have ih2: 0 <k — 1 ANk — 1 <n — 3 using k-gt Suc.prems(2) Suc.prems(3)
by auto

have ih3: length ?ell’ = n using Suc.prems(3) by auto

have ih4: ?p’ = make-polygonal-path ?ell’ by blast

have 2xz — 1 > (D i e {1.k—1}. 1/(27%))
proof—
have (2:real) « O i=1..k. 1 /2 "i) — 1= i=1..(k—1). (1 /
(279)
using summation-helper k-gt by auto
moreover have z > (3¢ = 1..k. 1 / 2 i) using Suc.prems(6) by
presburger
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ultimately show 2xz — 1 > (3" i € {1..k—1}. 1/(27%)) by linarith
qed
moreover have 2xz — 1 < (> i € {1..k}. 1/(27%))
proof—
have (2:real) * (3 i e {1..(k + 1)}. 1/(27%) — 1 = (> i € {1.k}.
1/(271))
using summation-helper|of k + 1] k-gt by auto
moreover have © < (> i € {1..(k + 1)}. 1/(27%)) using Suc.prems(6)
by presburger
ultimately show ?thesis by linarith
qed
ultimately have 2+xz — 1 € {(D" i € {1..k—1}. 1/(27%))..(0_1 € {1..k}.
1/(27%))} by presburger
then have ih5: 2xz — 1 € {(>ie {1.k—1}. 1/(27%))..0 i e {1..k—1+1}.
1/(270)}

using k-gt by auto

have p = make-polygonal-path (elll0 # elll1 # elll2 # (drop 3 ell))
using ell-is Suc.prems(4) by argo
then have p = (linepath (elll0) (ellll)) ++-+ make-polygonal-path (elll1 #
elll2 # (drop 3 ell))
using make-polygonal-path.simps by auto
then have p z = ?p’ (2+xz — 1) unfolding joinpaths-def using z-gteq px by
fastforce
also have ... = (linepath (?ell’\(k—1)) (2ell"k)) (f (k—1) (2xz — 1))
using Suc.hyps[OF ih1 ih2 ih3 ihj Suc.prems(5), of 2xx — 1, OF ih5] using
k-gt by auto
also have ... = (linepath (ell'k) (elll(k+1))) (f (k—1) (2%z — 1))
using Suc.prems(2) Suc.prems(3)
by (smt (verit, del-insts) add-implies-diff ell’-is ell-is k-gt nth-Cons-pos
order-le-less-trans trans-less-addl zero-less-one-class.zero-le-one)
also have ... = (linepath (elllk) (elll(k+1))) (f k z)
using f-is by auto
finally have ?case .

}

ultimately have ?case using Suc.prems(2) * by linarith
}
ultimately show Zcase
using Suc.prems by linarith
qed

lemma polygon-linepath-images3:
fixes n k:: nat
fixes ell:: (real™2) list
assumes n > 3
assumes length ell = n
assumes p = make-polygonal-path ell
assumes z € {3 i€ {1.n—2}. 1/(27%))..1}
assumes f = (Az. (z — O i € {1.n=2}. 1/(27%))) = (27 (n—2)))
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shows p © = (linepath (ell ! (n—2)) (ell ! (n—1))) (f z)
using assms
proof (induct n arbitrary: ell k z p f)
case ()
then show ?case by auto
next
case (Suc n)
{ assume *: Suc n = 3
then have ell-is: ell = [ell 1 0, ell ! 1, ell ! 2]
using Suc.prems(2)
by (metis Cons-nth-drop-Suc One-nat-def Suc-1 cancel-comm-monoid-add-class. diff-cancel
drop0 length-0-conv length-drop lessl less-add-Suc2 numeral-3-eq-3 plus-1-eq-Suc
zero-less-Suc)
have (> i = 1..(Sucn)—2.1 /(2 " 9)ureal)) = (O ie{1}. 1 / ((2 ~i):real))
by (simp add: *)
then have eql: (> i = 1..(Sucn)—2. 1/ ((2 " 4)ureal)) = 1/2
by auto
then have f-is: f = (Az. (zx — (1/2)) * 2) using * Suc.prems(5) by auto
have z € {(1/2)::real..1} using eql Suc.prems(4) by metis
moreover then have p © = linepath (ell ! 1) (ell! 2) (2 x 2 — 1)
using triangle-linepath-images(2) using ell-is Suc.prems(3) by blast
moreover have fzx = 2xz — 1 using f-is by simp
ultimately have p z = (linepath (ell ! ((Suc n)—2)) (ell ! ((Suc n)—1))) (fz)
using * Suc.prems ell-is
by (metis One-nat-def Suc-1 diff-Suc-1 diff-Suc-Suc numeral-3-eq-3)
} moreover
{ assume *: Suc n > 3
let ?ell’ = drop 1 ell
let ?p’ = make-polygonal-path ?ell’
let 72/ = 2%z — 1
let 7' = (Az. (x — O i e {1.n=2}. 1/(27%))) x (27 (n—2)))
have ell-is: ell = elll0 # ell'1 # ell!2 # (drop 3 ell)
by (metis x Cons-nth-drop-Suc One-nat-def Suc.prems(2) Suc-1 drop0 le-Suc-eq
linorder-not-less numeral-3-eq-3 zero-less-Suc)
then have p-il: p = (linepath (ell ! 0) (ell ! 1)) +++ make-polygonal-path
(drop 1 ell)
using make-polygonal-path.simps(4 )[of elll0 elll1 ell!2 drop 3 ell]
by (metis One-nat-def Suc.prems(3) drop-0 drop-Suc-Cons)
have sum-split: (3> i=1..Sucn — 2.1 /(2 "iureal)) = 1/(271:real) + (O 4
=2..8ucn — 2.1/ (2 i:real))
using *
by (metis Suc-1 Suc-eq-plusl Suc-lessD add-le-imp-le-diff diff-Suc-Suc eval-nat-numeral(3)
less-Suc-eq-le sum.atLeast-Suc-atMost)
let 2k = Suc n
have helper-arith: Ai. i > 0 = 1 / (2 " i:real) > 0 by simp
have k > 2 = (3 i = 2..k. 1 / (2 " iureal)) > 0 for k
proof (induct k)
case (
then show ?case by auto
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next
case (Suc k)
{assume *: Suc k = 2
then have (> i = 2.Suck. 1 /(2 "durea)) = i =2.2.1/ (2"
i:real))
by presburger
then have ?case
using helper-arith
by (simp add: *)
} moreover {assume *: Suc k > 2
then have ind-h: 0 < (D i = 2..k. 1 /] (2 " i:real))
using Suc.hyps less-Suc-eqg-le by blast
have (> i = 2..Suc k. 1 /(2 " iureal)) = Qi = 2..k. 1/ (2 " i:real))
+ 1 /(2" (Suc k)::real)
using Suc.prems add.commute by auto
then have ?case using ind-h helper-arith
by (smt (verit) divide-less-0-1-iff zero-le-power)
}

ultimately show Zcase
using Suc.prems by linarith

qed
then have (> i = 2..Sucn — 2.1/ (2 i:real)) > 0

using * by auto
then have (3> i = 1..Sucn — 2.1 /(2 "iureal)) > 1/2

using sum-split by auto
then have z > 1/2 using Suc.prems(4)

by (smt (verit, del-insts) atLeastAtMost-iff linorder-not-le order-le-less-trans)
then have p'z’-eq-pr: ?p’ %2’ = p z unfolding joinpaths-def by (simp add:

joinpaths-def p-tl)

have 71: n > 3 using * by auto
have 2: length ?ell’ = n using Suc.prems(2) by simp
have 3: ?p’ = make-polygonal-path ?ell’ by auto
have z < 1 using Suc.prems(4) by auto
then have z'-lteq: 2%z — 1 < 1 by auto
have z > (Y i=1..S5ucn — 2.1/ 2 " 4)
using Suc.prems(4) by auto
then have z'-gteq: %2’ > O i=1.n— 2.1/ 2 ")
using summation-helper[of Suc n — 2] *
by (smt (verit) Suc.prems(1) Suc-1 Suc-diff-le Suc-leD Suc-le-mono diff-Suc-1
diff-Suc-eq-diff-pred eval-nat-numeral(3))
have /: 22’ e {di=1..n— 2.1/ 2 " i)..1} using Suc.prems(4)
using summation-helper[of Suc n — 2] x z’-lteq x'-gteq atLeastAtMost-iff by
blast
have 5: 9%/'=Az. (z — O i=1.n— 2.1/ 274) %2 (n— 2)) by auto
have fz =(z — O i=1..Suen — 2.1/ 274) %2 (n— 2)x2
proof —
have (Ar. (r — O n=1.n—1.1/2"n)x2 (n—1))=Ff
by (simp add: Suc.prems(5))
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thenhave 2 "(n— 1) x(z — O.n=1.n—1.1/2 "n))=fx
using Groups.mult-ac(2) by blast
then have (z — O n=1.n—1.1/2"n)*x(2 " (n—Sucl)x*2)=fx
by (metis (no-types) Groups.mult-ac(2) Suc.prems(2) diff-Suc-1 diff-Suc-Suc
ell-is length-Cons power.simps(2))
then show ?thesis
by (metis (no-types) Groups.mult-ac(1) Suc-1 diff-Suc-Suc)
qed
then have fr-is: fz = (2% — 2> i=1..Sucn — 2.1/ 270))x 2 " (n —
2)
by argo
have sum-is: 1 + O i=1..n— 2.1 /( 2 "dzreal)) = 2x(> i = 1..Sucn —
2.1/ (2  iureal))
proof —
have sum-ishl: (3 i = 1..Sucn — 2. 1 /(2 "izreal)) = 1/2 + > i =
2.Sucn — 2.1/ (2 i:real))
by (metis power-one-right sum-split)
haven > 2 = 2«x(>.i=2.n— 1.1/ (2 "izreal)) = (D i=1..n — 2.
1 /(2 " itreal))
proof (induct n)
case (
then show ?Zcase by auto
next
case (Suc n)
{assume *: Suc n = 2
then have ?case by auto
} moreover {assume *: Suc n > 2
then have ind-h: 2 x (3 i=2.n— 1.1/ (2 "izreal) = (O i=1.n
— 2.1 /(2 iureal))
using Suc by fastforce
have mult: 2x1/(27(Suc n — 1):real) = 1/(27(n — 1)::real)
using *
by (smt (23) One-nat-def add-diff-inverse-nat bot-nat-0.not-eq-extremum
diff-Suc-1 div-by-1 le-zero-eq less-Suc-eg-le mult. commute nonzero-mult-div-cancel-left
nonzero-mult-divide-mult-cancel-left plus-1-eq-Suc power-Suc zero-less-numeral)
have sum-prop: Na:nat. \f:nat=real.(3 i = 1..a. (fi)) + (f (a+1)) =
Soi=1.a+1.(f1))
by auto
haven — 2+ 1 =n -1
using * by auto
then have sum-same: (> i=1..n — 2.1 /(2 "izreal)) + 1 / 2 " (n
—1)=00i=1.n—1.1 /(2 "i:real))
using * sum-prop[of Xi. 1 / (2 " iureal) n—2] by metis
have 2% (3i=2..Sucn — 1.1 /(2 "ireal) = 2% (> i=2..n —
1.1 /(2 "dzreal)) + 1/(2(Suc n — 1)::real))
using *
by (smt (23) add-2-eq-Suc add-diff-inverse-nat diff-Suc-1 distrib-left-numeral
ind-h not-less-eq sum.cl-ivl-Suc)
then have 2 x (3 i=2..Sucn — 1.1 /(2 izreal)) =D i=1..n—
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2.1 /(2  izreal)) + 2%1/(27(Suc n — 1)::real)
using ind-h by argo
then have 2 % (> i= 2..Sucn — 1.1 /(2 "iureal)) = i=1..n—
2.1 /(2 iureal)) + 1/(27(n — 1)::real)
using * mult by auto
then have ?case using sum-same by auto
}
ultimately show ?case by fastforce
qed
then have sum-ish2:2x(} i = 2.Sucn — 2. 1 / (2 "iureal)) = (> i =
I.n— 2.1 /(2 i:real))
using * by auto
show ?thesis using sum-ishl sum-ish2 by simp
qed
have ?p’ 22’ = (linepath (?ell’! (n—2)) (2ell’! (n—1))) (?f' ?z')
using Suc.hyps[OF 1 2 3 4 5] by blast
moreover have 7f' %z’ = fz
using Suc.prems(5) fr-is sum-is
by (smt (verit, best))
moreover have ?ell’ ! (n—2) = ell | ((Suc n)—2)
by (metis Nat.diff-add-assoc One-nat-def Suc.prems(1) Suc.prems(2) Suc-1
add-diff-cancel-left le-addl nth-drop numeral-3-eq-3 plus-1-eq-Suc)
moreover have Zell’! (n—1) = ell ! ((Suc n)—1)
using Suc.prems(1) Suc.prems(2) by auto
ultimately have ?case using p’z’-eq-pz by presburger
}
ultimately show ?case using Suc.prems(1) by linarith
qed

8 A Triangle is a Polygon

lemma not-collinear-linepaths-intersect-helper:
assumes not-collinear: —collinear {a,b,c}
assumes 0 < kI
assumes k1 < [
assumes 0 < k2
assumes k2 < I
assumes eo: k2 = 0 = k1 # 1
shows — ((linepath a b) k1 = (linepath b c) k2)
proof —
have a-neg-b:a # b
using not-collinear
by auto
then have nonz-1: a — b # 0
by auto
have b-neq-c: b # ¢
using not-collinear
by auto
then have nonz-2: b — ¢ # 0
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by auto
have — collinear {a—b, 0, c—b}
using not-collinear
by (metis NO-MATCH-def collinear-3 insert-commute)
then have notcollinear: — collinear { 0, a—b, c—b}
by (simp add: insert-commute)
have (1 — k1) *xgp a+ kI xp b= (1 —k2) xp b+ k2 *p ¢ = (a — klxp a)
+ kI xgp b= (b— k2 xg b) + k2 xp c
by (metis add-diff-cancel scaleR-collapse)
then have (I — kI)xga+ kil xp b= (1 — k2) *gp b+ k2 xg ¢ = (1 — kI)
xp a0+ kIl xp b — b= —Fk2 xg b+ k2 xg c
by (metis (no-types, lifting) add-diff-cancel-left scaleR-collapse scaleR-minus-left
uminus-add-conv-diff)
then have (I — kI)xga+ kIl xpb=(1 —k2)*xg b+ k2 *p c = (1 — ki)
g a + kI xg b — b =k2 xg (c—b)
by (simp add: scaleR-right-diff-distrib)
then have rewrite: (1 — k1) xg a + kI xp b= (1 — k2) xg b + k2 xp ¢ =
(1—k1)*r(a — b) = k2 xg (c—0)
by (metis add-diff-cancel-right scaleR-collapse scaleR-right-diff-distrib)
{assume *: k2 # 0
then have (I — kl)xga+ kIl xgb=(1 —k2)*g b+ k2*xgc—=— c— b=
((1—k1)/k2)*R(a — b)
using rewrite assms(2—3)
by (smt (verit, ccfo-SIG) vector-fraction-eq-iff)
then have (1 — k1) g a + kI xg b= (1 — k2) xg b + k2 xg ¢ = collinear
{0, a—b, c—b}
using collinear-lemmalof a —b ¢—b] by auto
then have (1 — k1) *xgp a + kI *p b= (1 — k2) g b+ k2 xgp ¢ = False
using notcollinear by auto
} moreover {assume x: k2 = 0
then have k1 #1
using assms by auto
then have (I — k) *gpa+ kIl xg b= (1 —k2)*r b+ k2 *xpc= a— b=
(h2/(1—k1)) 5 (c—b)
using rewrite
by (smt (verit, ccfv-SIG) vector-fraction-eq-iff)
then have (I — k1) g a + kI g b= (1 — k2) *p b + k2 *p ¢ = collinear
{0, a—b, ¢c—b}
using collinear-lemmalof c—b a—1b]
by (simp add: insert-commute)
then have (I — kI) g a + kI g b= (1 — k2) xg b + k2 xg ¢ = False
using notcollinear by auto
}
ultimately show ?thesis
unfolding linepath-def
by blast
qed
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lemma not-collinear-linepaths-intersect-helper-2:
assumes not-collinear: —collinear {a,b,c}
assumes 0 < kI
assumes kI < I
assumes 0 < k2
assumes k2 < I
assumes eo: kI = 0 = k2 # 1
shows — ((linepath a b) k1 = (linepath c a) k2)
using not-collinear-linepaths-intersect-helper|[of ¢ a b k2 k1] assms
by (simp add: insert-commute)

lemma not-collinear-loopfree-path: Na b c::real”2. —collinear {a,b,c} = loop-free
((linepath a b) +++ (linepath b c))
proof —
fix a b c::real™2
assume not-collinear: —collinear {a,b,c}
then have a-neg-b:a # b
by auto
have b-neg-c: b # ¢
using not-collinear
by auto
have Az y::real. (linepath a b +++ linepath b ¢) x = (linepath a b +++ linepath
be)y =
T <y =
r=0—y#1=0<zr=2<1=0<y=— y< 1= Fualse
proof —
fix z y:: real
assume same-eval: (linepath a b +++ linepath b ¢) © = (linepath a b +++
linepath b ¢) y
assume z-neq-y: © < y
assume z-zero-imp: x = 0 — y # 1
assume z-gt: 0 < x
assume z-lt: z < 1
assume y-gt: 0 < y
assume y-lt: y < 1
{assume x: z < [ /2 Ny < 1/2
then have (I — 2xx2)*xga+ (2xz)*xgpb=(1 — 2xy)*xga+ (2 *y)
xp b = Fulse
using z-gt y-gt z-neg-y a-neq-b linepath-loop-free|of a b
by (smt (23) add-diff-cancel-left add-diff-cancel-right’ add-diff-eq scale R-cancel-left
scaleR-left-diff-distrib)
then have Fulse
using * same-eval unfolding joinpaths-def linepath-def
by auto
} moreover {assume x: z > 1/2 ANy > 1/2
have Fulse
using z-lt y-lt x-neg-y b-neg-c linepath-loop-free[of b c]
using * same-eval unfolding joinpaths-def linepath-def
by (smt (28) add-diff-cancel-left add-diff-cancel-right’ add-diff-eq scaleR-cancel-left
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scaleR-collapse scaleR-left-diff-distrib)
} moreover {assume x: z < 1/2 Ay > 1/2

then have Ip-eq: (linepath a b) (2 * x) = (linepath b c) (2 x y — 1)
using * same-eval unfolding joinpaths-def
by auto
have (2 xy —1)=0 — (2xz) #1 N0 < (2xx) A (2xz) < 1T AN O < (2
xy— IAN@2*xy—1)<1
using z-lt z-gt z-neq-y * by auto
then have Fulse
using lp-eq not-collinear-linepaths-intersect-helper[of a b ¢ 2xx 2 x y — 1]
not-collinear
using * z-gt y-Iit by auto
}
ultimately show Fulse
using z-lt y-lt z-neq-y
by linarith
qed
then have Az y::real. (linepath a b +++ linepath b ¢) x = (linepath a b +++
linepath b ¢) y =
T #E Yy =
z=0—y#1=z=1—y#0=0<zrx=z<1=0<y
= y < 1 = Fulse
by (metis linorder-less-linear)
then show loop-free (linepath a b +++ linepath b c)
unfolding loop-free-def
by (metis atLeastAtMost-iff)
qed

lemma triangle-is-polygon: Na b c. —collinear {a,b,c} = polygon (make-triangle
abc)
proof —
fix a b c::real™2
assume not-coll:—collinear {a,b,c}
then have a-neg-b:a # b
by auto
have b-neq-c: b # ¢
using not-coll
by auto
have a-neg-c: ¢ # a
using not-coll
using collinear-3-eq-affine-dependent by blast
let %vts = [a, b, ¢, a)
have polygonal-path: polygonal-path (make-polygonal-path [a, b, ¢, al)
by (metis Collect-const UNIV-I image-eql polygonal-path-def)
then have path: path (make-polygonal-path [a, b, ¢, al)
by auto
then have closed-path: closed-path (make-polygonal-path [a, b, ¢, al)
unfolding closed-path-def using polygon-pathstart polygon-pathfinish
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by auto
let %seql = (linepath a b) +++ (linepath b ¢)
have f1: loop-free ((linepath a b) +++ (linepath b c))
using not-collinear-loopfree-path not-coll
by auto
then have Vze{0..1}. Vye{0..1}. 7seqgl x = ?segl y — v =y
using a-neq-c unfolding loop-free-def
by (metis (no-types, lifting) path-defs(2) pathfinish-def pathfinish-join pathfin-
ish-linepath pathstart-join pathstart-linepath)
let ?seg2 = (linepath b ¢) +++ (linepath c a)
have If2: loop-free ((linepath b ¢) +++ (linepath ¢ a))
using not-collinear-loopfree-path not-coll
by (simp add: insert-commute)
then have Vze{0..1}. Vye{0..1}. %seg2 x = seg2 y — z =y
using a-neq-b unfolding loop-free-def
by (metis (no-types, lifting) path-defs(2) pathfinish-def pathfinish-join pathfin-
ish-linepath pathstart-join pathstart-linepath)
let ?seg3 = (linepath ¢ a) +++ (linepath a b)
have If3: loop-free ((linepath ¢ a) +++ (linepath a b))
using not-collinear-loopfree-path not-coll
by (simp add: insert-commute)
then have Vze{0..1}. Vye{0..1}. %seq3 z = 9seg3y — z =y
using b-neq-c unfolding loop-free-def
by (metis (no-types, lifting) path-defs(2) pathfinish-def pathfinish-join pathfin-
ish-linepath pathstart-join pathstart-linepath)
have mpp-is: VY x€{0..1}. make-polygonal-path [a, b, ¢, a] x = ((linepath a b)
++4+ (linepath b ¢) +++ (linepath ¢ a)) x
by auto
have z-in-int1: V2€{0..(1/2)}. make-polygonal-path [a, b, ¢, a] x = ((linepath
a b)) (2xz)
using mpp-is
unfolding joinpaths-def by auto
have z-in-int2: Vze{1/2<..(3/4)}. make-polygonal-path [a, b, ¢, a] x = ((linepath
be)) (2x(2xx — 1))
using mpp-is unfolding joinpaths-def
by auto
have z-in-int3: Vxe{3/4<..1}. make-polygonal-path [a, b, ¢, a] x = ((linepath
ca) (2% (2*xzxz—1)—1)
using mpp-is unfolding joinpaths-def
by auto
have Nz y. 0 <z A2 < IANO<yAy<IAzZyA(z=0—y#£1)A
(r =1 — y # 0) = make-polygonal-path [a, b, ¢, a] x = make-polygonal-path
[a, b, ¢, a] y = False
proof —
fix x y:: real
assume big: 0 <z ANz < IANO<yANy<IAz#yAN(z=0-—y#1)
ANz=1-—y+#0)
assume false-hyp: make-polygonal-path [a, b, ¢, a] x = make-polygonal-path |a,
b, ¢, a] y
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{assume x: z € {0..(1/2)}
then have z-eval: make-polygonal-path [a, b, ¢, a] z = ((linepath a b)) (2xx)
using z-in-int! by auto
{assume *x: y € {0..(1/2)}
then have y-eval: make-polygonal-path [a, b, ¢, a] y = ((linepath a b))
(2xy)
using z-in-int! by auto
then have ((linepath a b)) (2xz) = ((linepath a b)) (2xy)
using false-hyp z-eval y-eval by auto
then have Fulse
using linepath-loop-free big * *x
unfolding loop-free-def
using a-neq-b add-diff-cancel-left add-diff-cancel-right’ add-diff-eq
linepath-def scaleR-cancel-left scaleR-collapse scaleR-left-diff-distrib
by (smt (verit))
} moreover {assume xx: y € {(1/2)<..(3/4)}
then have y-cval: make-polygonal-path [a, b, ¢, a] y = ((linepath b c))
(2%(2xy — 1))
using z-in-int2 by auto
then have ((linepath a b)) (2xz) = ((linepath b ¢)) (2x(2xy — 1))
using false-hyp z-eval y-eval by auto
then have Fulse
using big * *x not-collinear-linepaths-intersect-helper[of a b ¢ 2xx
(2%(2xy — 1))] not-coll
by auto
} moreover {assume xx: y € {(3/4)<..1}
then have y-eval: make-polygonal-path [a, b, ¢, a] y = ((linepath ¢ a))
(25 (2xy—1)- 1))
using z-in-int3 by auto
then have ((linepath a b)) (2xz) = ((linepath ¢ a)) ((2 * (2 xy — 1)
- 1)
using false-hyp z-eval y-eval by auto
then have Fulse
using big * xx not-collinear-linepaths-intersect-helper-2[of a b ¢ (2+*x)
(2% (2%xy—1)— 1)) not-coll
by auto
}

ultimately have Fulse
using big
by (metis atLeastAtMost-iff greater ThanAtMost-iff linorder-not-le)
} moreover {assume x: z € {(1/2)<..(3/4)}
then have z-eval: make-polygonal-path [a, b, ¢, a] © = ((linepath b c))
(2x%(2xx — 1))
using z-in-int2 by auto
{assume xx: y € {0..(1/2)}
then have y-eval: make-polygonal-path [a, b, ¢, a] y = ((linepath a b))
(2+y)
using z-in-int! by auto
then have lp-eq: ((linepath a b)) (2xy) = ((linepath b c)) (2%(2xx — 1))
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using false-hyp z-eval y-eval by auto
have 2 x (2 xz — 1) # 0
using * by auto
then have Fulse
using Ip-eq big * xx not-collinear-linepaths-intersect-helper[of a b ¢ 2xy
(2x(2xx — 1))] not-coll
by auto
} moreover {assume xx: y € {(1/2)<..(3/4)}
then have y-eval: make-polygonal-path [a, b, ¢, a] y = ((linepath b ¢))
(2%(2xy — 1))
using z-in-int2 by auto
then have Ip-eq: ((linepath b ¢)) (2x(2xy — 1)) = ((linepath b c))
(2%(2xx — 1))
using false-hyp z-eval y-eval by auto
then have Fulse
using linepath-loop-free[OF b-neg-c] big * *x
unfolding loop-free-def
using add-diff-cancel-left add-diff-cancel-right’ add-diff-eq linepath-def
scaleR-cancel-left scaleR-collapse scaleR-left-diff-distrib
by (smt (verit) b-neg-c)
} moreover {assume xx: y € {(3/4)<..1}
then have y-eval: make-polygonal-path [a, b, ¢, a] y = ((linepath ¢ a))
(2% (2xy—1)— 1))
using z-in-int3 by auto
then have lp-eq: ((linepath b ¢)) (2+(2xx — 1)) = ((linepath ¢ a)) ((2
x(2xy—1)—1))
using false-hyp z-eval y-eval
by auto
have not-coll2: = collinear {b, ¢, a}
using not-coll
by (simp add: insert-commute)
have 2 x (2*xx — 1) # 0
using * by auto
then have Fulse using Ip-eq
using big * *x not-collinear-linepaths-intersect-helper[of b ¢ a 2x(2xx
—1)(2*(2xy—1)— 1)] not-coll2
by auto

ultimately have Fulse
using big
by (metis atLeastAtMost-iff greaterThanAtMost-iff linorder-not-le)
} moreover {assume x: z € {(3/4)<..1}
then have z-eval: make-polygonal-path [a, b, ¢, a] x = ((linepath ¢ a)) ((2
x (2xxz—1)—1))
using z-in-int3 by auto
{assume *x: y € {0..(1/2)}
then have y-eval: make-polygonal-path [a, b, ¢, a] y = ((linepath a b))
(2xy)
using z-in-int! by auto

52



then have Ip-eq: ((linepath ¢ a)) ((2 *x (2 xx — 1) — 1)) = ((linepath
a b)) (25y)
using z-eval y-eval
using false-hyp by presburger
have not-coll2: = collinear {c, a, b}
using not-coll
by (simp add: insert-commute)
have (2 x (2xz—1)—1))# 0
using * by auto
then have Fulse
using Ip-eq big * ** not-coll2
not-collinear-linepaths-intersect-helper[of c a b (2 % (2 xx — 1) — 1)
2%y
by auto
} moreover {assume *x: y € {(1/2)<..(3/4)}
then have y-eval: make-polygonal-path [a, b, ¢, a] y = ((linepath b c))
(2%(2xy — 1))
using z-in-int2 by auto
then have [p-eq: ((linepath b c)) (2%(2xy — 1)) = ((linepath c a)) ((2
x(2xx—1)—1))
using z-eval y-eval false-hyp
using false-hyp by presburger
have not-coll2: = collinear {b, ¢, a}
using not-coll
by (simp add: insert-commute)
have ((2 *x (2xxz —1)— 1)) # 0
using * by auto
then have Fulse
using Ip-eq big * x*x not-coll2
not-collinear-linepaths-intersect-helper[of b ¢ a (2x(2xy — 1)) (2 * (2
xx— 1) — 1)
by auto
} moreover {assume *x: y € {(3/4)<..1}
then have y-eval: make-polygonal-path [a, b, ¢, a] y = ((linepath c a))
(25 (2xy—1)- 1))
using z-in-int3 by auto
then have ((linepath ¢ a)) (2 % (2 x y — 1) — 1)) = ((linepath ¢ a))
(2% (2x2x—1)—1))
using z-eval y-eval false-hyp
using false-hyp by presburger
then have Fulse
using linepath-loop-free[OF a-neg-c] big * *x
unfolding loop-free-def
using add-diff-cancel-left add-diff-cancel-right’ add-diff-eq linepath-def
scaleR-cancel-left scaleR-collapse scaleR-left-diff-distrib
by (smt (verit) a-neq-c add-diff-cancel-left’)

ultimately have Fulse
using big
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by (metis atLeastAtMost-iff greater ThanAtMost-iff linorder-not-le)
}
ultimately show Fulse using big
by (metis atLeastAtMost-iff greaterThanAtMost-iff linorder-not-le)
qed
then have loop-free: loop-free (make-polygonal-path [a, b, ¢, a])
unfolding loop-free-def
by (meson atLeastAtMost-iff)
show polygon (make-triangle a b c)
unfolding make-triangle-def polygon-def simple-path-def
using polygonal-path closed-path loop-free by auto
qed

lemma have-wraparound-vertex:
assumes polygon p
assumes p = make-polygonal-path vts
shows vts = (take (length vts —1) vts)Q[uts | 0]
proof —
have card (set vts) > 8
using polygon-at-least-3-vertices assms by auto
then have nonempty: vts # ||
by auto
then have vts = (take (length vts —1) vts)Q[uts ! (length vts — 1)]
by (metis append-butlast-last-id butlast-conv-take last-conv-nth)
then show ?thesis
using assms(1) unfolding polygon-def closed-path-def
using polygon-pathstart] OF nonempty assms(2)] polygon-pathfinish[ OF nonempty
assms(2)]
by presburger
qed

lemma polygon-at-least-3-vertices-wraparound:
assumes polygon p
assumes p = make-polygonal-path vts
shows card (set (take (length vts —1) vts)) > 3
proof —
let ?distinct-vts = take (length vis —1) vts
have card-vts: card (set vts) > 3
using polygon-at-least-3-vertices assms by auto
then have vts-is: vts = ?distinct-vtsQ[vts | 0]
using have-wraparound-vertexr assms by auto
then have ?distinct-vts # |]
using card-vts
by (metis One-nat-def append-Nil distinct-card distinct-singleton eval-nat-numeral(3)
length-append-singleton list.size(3) not-less-eq-eq one-le-numeral)
then have vts | 0 € set ?distinct-vts
by (metis <vts = take (length vts — 1) vts Q [vts | 0]y length-greater-0-conv
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nth-append nth-mem)
then have card (set ?distinct-vts) = card (set vts)
using vts-is
by (metis Un-insert-right append.right-neutral insert-absorb list.set(2) set-append)
then show ?thesis using card-vts by auto
qed

9 Polygon Vertex Rotation

definition rotate-polygon-vertices:: 'a list = nat = 'a list
where rotate-polygon-vertices ell i =
(let elll = rotate i (butlast ell) in elll @ [elll | 0])

lemma rotate-polygon-vertices-same-set:
assumes polygon (make-polygonal-path vts)
shows set (rotate-polygon-vertices vts i) = set vts
proof —
have card-gteq: card (set vts) > 3
using polygon-at-least-3-vertices assms
by auto
then have len-gteq: length vts > 3
using card-length order-trans by blast
let %elll = rotate i (take (length vts — 1) vts)
have inset: vts | 0 = vts | (length vts — 1)
using assms polygon-pathstart polygon-pathfinish unfolding polygon-def closed-path-def
by (metis len-gteq list.size(3) not-numeral-le-zero)
have set vts = set (take (length vts — 1) wvts) U {vts ! (length vts — 1)}
by (metis Cons-nth-drop-Suc One-nat-def Un-insert-right assms card.empty
diff-zero drop-rev length-greater-0-conv list.set(1) list.set(2) not-numeral-le-zero
order.refl polygon-at-least-3-vertices rev-nth set-rev sup-bot.right-neutral take-all)
then have set vts = set (take (length vts — 1) vts)
using inset
by (metis (no-types, lifting) One-nat-def Suc-neq-Zero Suc-pred Un-insert-right
add-diff-cancel-left’ butlast-conv-take diff-is-0-eq’ insert-absorb len-gteq length-butlast
length-greater-0-conv list.size(3) nth-mem nth-take numeral-3-eq-3 plus-1-eq-Suc
sup-bot.right-neutral)
then have same-set: set vts = set ?elll
by auto
then have rotate i (take (length vts — 1) vts) | 0 € set vts
using len-gteq
by (metis card-gteq card-length le-zero-eq length-greater-0-conv list. size(8) nth-mem
numeral-3-eq-3 zero-less-Suc)
then have set vts = set (Zelll @Q [?elll ! 0])
using same-set by auto
then show ?thesis
unfolding rotate-polygon-vertices-def
using card-gteq
by (metis butlast-conv-take)
qed
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lemma arb-rotation-as-single-rotation:

fixes 7:: nat

shows rotate-polygon-vertices vts (Suc 7) = rotate-polygon-vertices (rotate-polygon-vertices
vts i) 1

unfolding rotate-polygon-vertices-def

by (metis butlast-snoc plus-1-eq-Suc rotate-rotate)

lemma rotation-sum:

fixes i j :: nat

shows rotate-polygon-vertices vts (i + j) = rotate-polygon-vertices (rotate-polygon-vertices
vts @) j
proof (induct j)

case ()

thus ?case by (metis Nat.add-0-right butlast-snoc id-apply rotate0 rotate-polygon-vertices-def)
next

case (Suc j)

have rotate-polygon-vertices vts (i + (Suc j)) = rotate-polygon-vertices vts (Suc
(i + j)) by simp

also have ... = rotate-polygon-vertices (rotate-polygon-vertices vts (i + j)) 1
using arb-rotation-as-single-rotation by blast
also have ... = rotate-polygon-vertices (rotate-polygon-vertices (rotate-polygon-vertices
vts i) j) 1
using Suc.hyps by simp
also have ... = rotate-polygon-vertices (rotate-polygon-vertices vts i) (Suc j)

using arb-rotation-as-single-rotation by metis
finally show ?case .
qed

lemma rotated-polygon-vertices-helper:
fixes p :: R-to-R2
assumes poly-p: polygon p
assumes p-is-path: p = make-polygonal-path vts
assumes p’-is: p’ = make-polygonal-path (rotate-polygon-vertices vts 1)
shows (vts | 0) = (rotate-polygon-vertices vts 1) ! (length (rotate-polygon-vertices

vts 1) — 2)

(rotate-polygon-vertices vts 1) ! (length (rotate-polygon-vertices vts 1) — 1)
= (vts ! 1)
proof —

have len-gteq: length vts > &
using polygon-at-least-3-vertices assms
using card-length order-trans by blast
let ?rotated-vts = rotate-polygon-vertices vts 1
have same-len: length ?rotated-vts = length vts
unfolding rotate-polygon-vertices-def using length-rotate
by (metis One-nat-def Suc-pred card.empty length-append-singleton length-butlast
length-greater-0-conv list.set(1) not-numeral-le-zero p-is-path poly-p polygon-at-least-3-vertices)
then have len-rotated-gt-eq3: length ?rotated-vts > 3
using len-gteq by auto

o6



show ovtsl: vts | 0 = ?rotated-vts | (length ?rotated-vts — 2)

unfolding rotate-polygon-vertices-def

using nth-rotate[of length ?rotated-vts — 2 butlast vts 1]

Suc-diff-Suc butlast-snoc length-butlast length-greater-0-conv lessl less-nat-zero-code
list.size(8) mod-self nat-1-add-1 nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def
same-len zero-less-diff

by (smt (28) One-nat-def len-gteq length-append-singleton numeral-le-one-iff
semiring-norm(70))

have (rotate 1 (butlast vts)) ! 0 = vts ! 1

unfolding rotate-polygon-vertices-def

using nth-rotate[of 0 butlast vts 1] len-gteq len-rotated-gt-eq3

by (metis (no-types, lifting) One-nat-def Suc-le-eq length-butlast less-diff-conv
less-nat-zero-code mod-less not-gr-zero nth-butlast numeral-3-eq-3 plus-1-eq-Suc)

then show vits2: ?rotated-vts | (length ?rotated-vts — 1) = vts | 1
unfolding rotate-polygon-vertices-def
by (smt (verit, best) Suc-diff-Suc Suc-eg-plus1 butlast-snoc length-butlast length-greater-0-conv
less-nat-zero-code list.size(3) nth-append-length one-add-one rotate-polygon-vertices-def
zero-less-diff)
qed

lemma rotate-polygon-vertices-same-length:
fixes vts :: (real”2) list
assumes length vts > 1
shows length vts = length (rotate-polygon-vertices vts 1)
using assms
proof (induction length vts arbitrary: i)
case (
then show ?case by auto
next
case (Suc )
then show ?case using arb-rotation-as-single-rotation|of vts z]
by (metis diff-Suc-1 length-append-singleton length-butlast length-rotate ro-
tate-polygon-vertices-def)
qed

lemma rotated-polygon-vertices-helper2:
assumes len-gteq: length vts > 2
assumes i < length vts — 1
assumes hd vts = last vts
shows (rotate-polygon-vertices vts 1) ! i = vts ! (i+1)
proof —
let ?rotated-vts = rotate-polygon-vertices vts 1
have length (butlast vts) = length vts — 1
by auto
then have same-len: length ?rotated-vts = length vts
unfolding rotate-polygon-vertices-def using length-rotate len-gteq
by (metis dual-order.trans le-add-diff-inverse length-append-singleton one-le-numeral
plus-1-eq-Suc)
then have len-rotated-gt-eq3: length ?rotated-vts > 2
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using len-gteq by auto
let ?n = length vts
{assume *: { < length vts — 2
then have same-mod: (1 + i) mod length (butlast vts) = 141
using assms by simp
have i < length (butlast vts)
using assms by simp
then have rotate 1 (butlast vts) ! i = butlast vis ! (i + 1)
using nth-rotate[of © butlast vts 1] same-mod
by (metis add.commute)
then have (rotate-polygon-vertices vts 1) ! i = vts ! (i+1)
by (metis (no-types, lifting) Suc-eg-plusl <i < length (butlast vts)) butlast-snoc
length-butlast length-greater-0-conv less-nat-zero-code list.size(3) mod-less-divisor
nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def same-len same-mod)
} moreover {assume x: i = length vts — 2
then have same-mod: (1 + i) mod length (butlast vts) = 0
using assms
by (metis Suc-diff-Suc «length (butlast vts) = length vts — 1> length-greater-0-conv
less-nat-zero-code list.size(3) mod-Suc mod-if one-add-one plus-1-eq-Suc zero-less-diff)
have i < length (butlast vts)
using assms by simp
then have rotate-prop: rotate 1 (butlast vts) ! ¢ = butlast vts ! 0
using nth-rotate[of i butlast vts 1] same-mod
by metis
have butlast vts ! 0 = vts | 0
using assms(1)
by (simp add: nth-butlast)
then have butlast vts | 0 = vts | (length vts — 1)
by (metis assms(3) hd-conv-nth last-conv-nth length-0-conv zero-diff)
then have (rotate-polygon-vertices vts 1) ! i = vts ! (i+1)
by (metis * rotate-prop Suc-diff-Suc Suc-eq-plusl <butlast vts ! 0 = vts | 0>
add-2-eq-Suc’ le-add-diff-inverse2 len-gteq less-add-Suc2 one-add-one same-len but-
last-snoc length-butlast lessI nth-butlast rotate-polygon-vertices-def)
}
ultimately show ?thesis
using assms(2) by linarith
qed

lemma polygon-rotation-t-translation? :
assumes polygon-of p vts
assumes p’ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p’ = make-polygonal-path ?vts’)
assumes z' € {(d> i e {1..k}. 1/(27%)..0_ i € {1.k+1}. 1/(27%))}
assumes n = length vts
assumes 0 < kANk<n—4
assumes | =z’ — (D i € {1..k}. 1/(27%))
assumes z = /2 + (D i e {1..(k+ 1)}. 1/(27%))
shows ¢ € {(> i e {1.k+1}. 1/(27%)..0 0 € {1..k+2}. 1/(27%))}
plr'=puz
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proof—
let ?f = A(k:nat) (zreal). (z — (O i € {1..k}. 1/(27%))) = (27(k+1))
have z > (3 i € {1..k+1}. 1/(27%))
proof—
have | > 0 using assms(3,6) by auto
then show %thesis using assms(7) by linarith
qed
moreover have z < (> i € {1..k+2}. 1/(27%))
proof—
have 2/ < (>Ji € {1..k+1}. 1/(27%)) using assms(3) by presburger
then have | < (3"i € {1..k+1}. 1/(27%)) — (i € {1..k}. 1/(27%)) using
assms(6) by argo
also have ... = (1/27(k+1)) + (>_i € {1..k}. 1/(27%) — (> ¢ € {1..k}.
1/(2%)
using sum-insert[of k+1 {1..k} Xi. 1/(277)]
by (smt (verit) Suc-eq-plusl Suc-n-not-le-n add.commute atLeastAtMost-
Suc-conv atLeastAtMost-iff finite-atLeastAtMost le-add2 one-add-one)
also have ... = (1/27(k+1)) by argo
finally have [ < (1/27(k+1)) .
then have z < (1/27(k+1))/2 + (i € {1..k+1}. 1/(27%)) using assms(7)
by simp
also have ... = 1/27(k+2) + O i € {1..k+1}. 1/(27%)) by simp
also have ... = (> i € {1..k+2}. 1/(27%))
using sum-insert[of k+2 {1..k+2} Xi. 1/(27%)] by simp
finally show ?thesis .
qged
ultimately show z: z € {(d i e {1..k+1}. 1/(27%))..0 i€ {1..k+2}. 1/(27%))}
by presburger
have 1: n > 4 using polygon-vertices-length-at-least-4 assms
using polygon-of-def by blast
then have 2: length vts = length ?vts’
using assms rotate-polygon-vertices-same-length by auto
then have 3: length ?vis’ = n using assms by auto

have p’ z’ = ((linepath (?vts’ ! k) (2vts’ ! (k+1)) (?f k z')))
using polygon-linepath-images2[of n k ?vts’ p’ ?f x| assms(2,3,5) 1 3 by
fastforce
moreover have p z = ((linepath (vts ! (k+1)) (vts ! (k+2)) (2f (k+1) z)))
using polygon-linepath-images2[of n k+1 vts p ?f x| assms(2,3,5) 1 2 3z
by (smt (verit, ccfo-threshold) Nat.diff-add-assoc add.commute add-diff-cancel-left
add-le-imp-le-left add-left-mono assms(1) nat-add-1-add-1 one-plus-numeral poly-
gon-of-def semiring-norm(2) semiring-norm(4) trans-le-add1)
moreover have %vts’ | k = vts | (k+1)
using rotated-polygon-vertices-helper2
by (smt (verit, best) 1 Nat.le-diff-conv2 Suc-pred’ add-leD1 assms(1) assms(4)
assms(5) diff-diff-cancel diff-less have-wraparound-vertez hd-conv-nth leD length-greater-0-conv
less-Suc-eq nat-less-le numeral-Bit0 numeral-eg-one-iff polygon-of-def semiring-norm(83)
snoc-eq-iff-butlast zero-less-numeral)
moreover have ?vts’ | (k+1) = vts | (k+2)
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using rotated-polygon-vertices-helper2|of vts k+1]
by (metis (no-types, lifting) assms(1,4,5) 1 One-nat-def Suc-diff-Suc add-Suc-right
diff-zero have-wraparound-vertex hd-conv-nth le-add-diff-inverse2 less-add-Suc?2 nat-less-le
not-less-eg-eq numeral-Bit0 one-add-one plus-1-eq-Suc polygon-of-def snoc-eg-iff-butlast)
moreover have ?f k x’ = ?f (k+1) = using assms(6) assms(7) by force
ultimately show p’ z’ = p = by presburger
qed

lemma polygon-rotation-t-translationi-strict:
assumes polygon-of p vts
assumes p’ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p’ = make-polygonal-path ?vts’)
assumes z' € {(doi € {1..k}. 1/(27%).<(O i e {1..k+1}. 1/(27%))}
assumes n = length vts
assumes 0 < kAN k< n— /4
assumes | =z’ — (D i € {1..k}. 1/(27%))
assumes z = [/2 + (D i e {1..(k+ 1)}. 1/(27%))
shows z € {(D i e {1.k+1}. 1/(27%))..<(> i€ {1..k+2}. 1/(27%))}
p'r'=pux
proof —
let 2f = A(kunat) (zureal). (x — (O i € {1..k}. 1/(27%))) * (27(k+1))
have z > (3.i € {1..k+1}. 1/(27%))
proof—
have | > 0 using assms(3,6) by auto
then show %thesis using assms(7) by linarith
qged
moreover have z < (Y i € {1..k+2}. 1/(27%))
proof—
have 2/ < (>Ji € {1..k+1}. 1/(27%)) using assms(3) by auto
then have | < (3¢ € {1.k+1}. 1/(27%) — O_i € {1..k}. 1/(27%)) using
assms(6) by argo
also have ... = (1/27(k+1)) + O i € {1..k}. 1/(27%) — (O € {1..k}.
1/(27)
using sum-insert[of k+1 {1..k} Xi. 1/(27%)]
by (smt (verit) Suc-eq-plusl Suc-n-not-le-n add.commute atLeastAtMost-
Suc-conv atLeastAtMost-iff finite-atLeastAtMost le-add2 one-add-one)
also have ... = (1/27(k+1)) by argo
finally have [ < (1/27(k+1)) .
then have z < (1/27(k+1))/2 + (3 i € {1..k+1}. 1/(27%)) using assms(7)

by simp
also have ... = 1/27(k+2) + (> i € {1..k+1}. 1/(27%)) by simp
also have ... = (}_i € {1..k+2}. 1/(27%))

using sum-insert[of k+2 {1..k+2} Xi. 1/(277)] by simp
finally show ?thesis .
qed
ultimately show z € {(> i e {1..k+1}. 1/(27%)).<(> ie{1..k+2}. 1/(27%))}
by auto
show p'z'=p=x
using assms(3) polygon-rotation-t-translation1[OF assms(1) assms(2) - assms(4)
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assms(5) assms(6) assms(7)]
by (meson atLeastAtMost-iff atLeastLessThan-iff less-eq-real-def)
qed

lemma polygon-rotation-t-translation2:
assumes polygon-of p vts
assumes p’ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p’ = make-polygonal-path ?vts’)
assumes n = length vts
assumes z' € {(d> i € {1..(n=3)}. 1/(27%))..0_i e {1..(n—=2)}. 1/(27%))}
assumes ¢ = z' + 1/(27(n—2))
shows z € {(> i € {1.n—2}. 1/(27%))..1}
pla'=px
proof—
let %k = n—3
let 2f" = (A(k:nat) zureal. (x — (O_ i € {1..k}. 1/(27%))) * (27(k+1)))
have n-geq-4: n > 4 using polygon-vertices-length-at-least-4 assms
using polygon-of-def by blast
moreover then have same-len: length vts = length ?vts’
using assms rotate-polygon-vertices-same-length|of vts] by auto
moreover then have length ?vts’ = n using assms(3) by auto
ultimately have p’z” p’ ©' = ((linepath (%vts’ | 2k) (%vts’ | (?k+1)) (2f" %k
)
using polygon-linepath-images2[of n %k ?vts’ p’ ?f' z'] assms
by (smt (verit, ccfo-threshold) One-nat-def Suc-diff-Suc diff-diff-left diff-is-0-eq’
le-add? le-add-diff-inverse2 linorder-not-le nat-le-linear numeral-3-eq-3 numeral-Bit0
numeral-le-iff numeral-le-one-iff numerals(1) one-plus-numeral plus-1-eq-Suc trans-le-add2)
let ?f = (Azreal. (x — (30 € {1.n—2}. 1/(27%))) * (27 (n—2)))
have sum-prop: Ni:nat. Nfinat=real. (> i =1..0. fi)+ f i+ 1)= (14
=1.4+1. f1)
by auto
have sum-upto: (3. i=1.n— 3.1 /(2 "izreal)) + 1 /2 " (n—2)= (>4
=1.n— 2.1/ (2  i:real))
using sum-proplof Ai. 1 / (2 ~iureal) n—3] n-geq-4
by (smt (verit, del-insts) Nat.add-diff-assoc2 add-numeral-left diff-cancel2 le-add-diff-inverse
le-numeral-extra(4 ) nat-1-add-1 nat-add-left-cancel-le numeral-Bit1 numerals(1) semir-
ing-norm(2) semiring-norm(8) trans-le-add1)
have ' > (> i=1..2k. 1 /] 2 74)
using assms by presburger
then have z-geq: © > (> i € {1.n—2}. 1/(27%))
using assms(5) sum-upto
by linarith
have 2/ < (3>i=1.n— 2.1/ 274
using assms(4) by auto
then have z-leq: x < 1
using assms(5)
by (smt (verit, del-insts) add.left-commute add-diff-cancel-left’ diff-diff-eq le-add-diff-inverse2
le-numeral-extra(4) n-geq-4 nat-add-1-add-1 numeral-Bit0 numeral-Bitl sum-upto
summation-helper trans-le-add?2)
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show z € {3 i e {1.n—2}. 1/(27%))..1}
using z-geq z-leq
by auto
then have pz: p x = (linepath (vts ! (n—2)) (vts ! (n—1))) (?f x)
using polygon-linepath-images3[of n vts p © ?f] n-geq-4 assms polygon-of-def
by fastforce
moreover have ?vts’ | (n — 3) = vts | (n—2)
using n-geq-4 assms(8) rotated-polygon-vertices-helper2 assms(1—3)
unfolding polygon-of-def
by (smt (verit) One-nat-def Suc-diff-Suc add.commute diff-is-0-eq diff-less
dual-order.trans have-wraparound-vertex hd-conv-nth le-add-diff-inverse length-greater-0-conv
linorder-not-le nat-1-add-1 not-add-less2 numeral-3-eq-3 plus-1-eq-Suc pos2 rotated-polygon-vertices-helper(1)
same-len snoc-eq-iff-butlast)
moreover have ?vts’ | (n — 2) = vts ! (n — 1)
using n-geq-4 assms(8) assms
unfolding polygon-of-def
by (metis closed-path-def list.size(3) not-numeral-le-zero polygon-def polygon-pathfinish
polygon-pathstart rotated-polygon-vertices-helper(1) same-len)
moreover have ?f’' %k ' = ?f z using assms(4—5) n-geq-4
by (smt (verit, del-insts) One-nat-def Suc-diff-Suc Suc-eq-plus! add-diff-cancel-right’
add-numeral-left le-antisym linorder-not-le numeral-3-eq-3 numeral-code(2) numer-
als(1) semiring-norm(2) sum-upto trans-le-add2)
ultimately show p’ 2/ = p z using pz p'z’
by (smt (verit, ccfo-SIG) Nat.add-diff-assoc2 assms(5) diff-cancel2 le-add-diff-inverse
le-add-diff-inverse2 le-numeral-extra(4) n-geq-4 nat-1-add-1 numeral-Bit0 numeral-Bit1
trans-le-add1)
qged

lemma polygon-rotation-t-translation2-strict:
assumes polygon-of p vts
assumes p’ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p’ = make-polygonal-path ?vts’)
assumes n = length vts
assumes z' € {37 € {1..(n=3)}. 1/(27%)).<(D i e {1..(n—=2)}. 1/(27%))}
assumes z = 2z’ + 1/(27(n—2))
shows ¢ € {(> i € {1.n—2}. 1/(27%))..<1}
p'r'=pa
proof —
have n-geq-4: n > 4 using polygon-vertices-length-at-least-4 assms
using polygon-of-def by blast
have sum-prop: Ni:nat. Nfinat=real. (> i=1.0.fi)+ f(i+1)= 014
= 1.i+1. fi)
by auto
have sum-upto: (> i=1.n— 3.1/ (2 "izreal)) + 1 /2 " (n—2)= (i
=1.n— 2.1/ (2  iureal))
using sum-prop[of Ai. 1 / (2 " i:real) n—3] n-geq-4
by (smt (verit, del-insts) Nat.add-diff-assoc2 add-numeral-left diff-cancel2 le-add-diff-inverse
le-numeral-extra(4 ) nat-1-add-1 nat-add-left-cancel-le numeral-Bit1 numerals(1) semir-
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ing-norm(2) semiring-norm(8) trans-le-add1)
have z-geq: © > (> i € {1.n—2}. 1/(27%))
using assms(4) polygon-rotation-t-translation2[OF assms(1) assms(2) assms(3)
- assms(5)]
by simp
have 2/ < (3 i=1.n— 2.1/ 274
using assms(4) by auto
then have z-leq: < 1
using assms(5)
by (smt (verit, del-insts) add.left-commute add-diff-cancel-left’ diff-diff-eq le-add-diff-inverse2
le-numeral-extra(4) n-geq-4 nat-add-1-add-1 numeral-Bit0 numeral-Bitl sum-upto
summation-helper trans-le-add?2)
show z € {3 i e {1.n—2}. 1/(27%))..<1}
using z-geq z-leq by auto
show p’z'=pz
using assms(4) polygon-rotation-t-translation2[OF assms(1) assms(2) assms(3)
- assms(5)]
by (meson atLeastAtMost-iff atLeastLessThan-iff less-eq-real-def)
qed

lemma polygon-rotation-t-translations:

assumes polygon-of p vts

assumes p’ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p’ = make-polygonal-path ?vts’)

assumes z' € {(>_ i € {1.n—2}. 1/(27%))..1}

assumes n = length vts

assumes | =z’ — (> i € {1.n—2}. 1/(27%))

assumes z = [ * (27(n—3))

shows z € {0..1/2}

p'r’'=pux
proof—

let ?f = (Azureal. (x — (30 € {1.n—2}. 1/(27%))) * (27 (n—2)))

have n-geq-4: n > 4 using polygon-vertices-length-at-least-4 assms
using polygon-of-def by blast

moreover then have same-len: length vts = length ?vts’
using assms rotate-polygon-vertices-same-length by auto

moreover have length-vts”: length ?vts’ = n
using assms(4) same-len by auto

ultimately have p'z” p’ 2’ = (linepath (2vts’! (n—2)) (%vts’! (n—1))) (?f z')
using polygon-linepath-images3[of n ?vts’ p’ z’ ?f] assms
unfolding polygon-of-def by fastforce

have z-iss = (¢ — O i=1.n—2.1/2749))*x 2 (n—3)
using assms(5—06) by auto
then have z-gt: x > 0
using assms(3) by simp
have sum-prop: k> 1 = 1 — (> i=1..k. 1 /(2 ~izreal)) = 1/(27k) for k
proof (induct k)
case (

63



then show ?case by auto
next
case (Suc k)
{ assume * :Suc k = 1
then have ?case by auto
} moreover
{ assume *: Suc k > 1
then have 1 — (Y i=1.k. 1 /(2 "dureal))=1/2"k
using Suc by linarith
then have ?case by simp
}
ultimately show ?case
by linarith
qed
have z/ < 1
using assms(3) by auto
then have z < (1 — O i=1..n— 2.1 /(2 " izreal))) * 2 " (n — 3)
using z-is
using mult-right-mono zero-le-power by fastforce
then have z < 1/(2(n—2))x2(n—3)
using sum-prop n-geq-4
by auto
then have z-lt: © < 1/2
using n-geq-4
by (smt (verit, ccfv-SIG) One-nat-def Suc-1 Suc-diff-Suc add-diff-cancel-right’
diff-is-0-eq dual-order.trans linorder-not-le nonzero-mult-divide-mult-cancel-right2
numeral-3-eq-3 numeral-code(2) power.simps(2) power-commutes power-not-zero
times-divide-eq-left zero-neg-numeral)
then show z € {0..1/2}
using z-gt z-lt by auto
moreover have n > 3 using n-geq-4 by auto
ultimately have px: p x = (linepath (vts ! 0) (vts ! 1)) (2 * x)
using polygon-linepath-images [of n vts] assms unfolding polygon-of-def by
blast

have ?vts’! (n—2) = vts | 0 A Pvts’ ! (n—1) = vts ! 1
unfolding rotate-polygon-vertices-def
by (metis length-vts’ assms(1) polygon-of-def rotate-polygon-vertices-def ro-
tated-polygon-vertices-helper(1) rotated-polygon-vertices-helper(2))
moreover have /1’ = 2 x z
proof—
have 2 x =2 x (¢' — (D i € {1.n—2}. 1/(27%))) * (27 (n—3)) using assms
by auto
moreover have ... = (z/ — (3 i € {1.n—2}. 1/(27%))) * (27(n—2))
using n-geq-4 Suc-1 Suc-diff-Suc Suc-le-eq bot-nat-0.not-eq-extremum diff-Suc-1
le-antisym mult.left-commute mult.right-neutral mult-cancel-left not-less-eq-eq num-double
numeral-3-eq-3 numeral-eq-Suc numeral-times-numeral power.simps(2) pred-numeral-simps(2)
zero-less-diff zero-neq-numeral
proof —
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have f1: Vr ra. (ra::real) x v =1 % 10

by simp

have f2: Vrn ra. (rureal) * (r “nxra) =1~ Sucn x ra
by simp

have f3: pred-numeral (num.Bitl num.One) = Suc (Suc 0)
by simp

have f4: Suc 0 = 1
by linarith
have Suc 1 < n
using n-geq-4 by linarith
then have 2 x ((z' — O n=1.n—Sucl.1/2 " n)*2 (n—38)) =
(/= n=1.n—Sucl.1/2 n)*x2 (n— Sucl)
using f4 f3 f2 f1 Suc-diff-Suc numeral-eq-Suc by presburger
then show ?thesis
by (metis (no-types) Suc-1 mult.assoc)

qed
moreover have ... = ?f 2’ by auto
ultimately show ?thesis by presburger
qed
ultimately show p’ 2’ = p z using p’z’ pr by auto
qed

lemma polygon-rotation-t-translation3-strict:
assumes polygon-of p vts
assumes p’ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p’ = make-polygonal-path ?vts’)
assumes z’ € {3 i € {1.n—2}. 1/(27%))..<1}
assumes n = length vts
assumes | =z’ — (3 i € {1..n—2}. 1/(27%))
assumes z = | * (27(n—3))
shows z € {0..<1/2}
p'r'=pa
proof —
have n-geq-4: n > 4 using polygon-vertices-length-at-least-4 assms
using polygon-of-def by blast
have z-is: x = (' — (D i=1.n—2.1/279) %2 " (n—3)
using assms(5—6) by auto
then have z-gt: x > 0
using assms(3) by simp
have sum-prop: k> 1 = 1 — (>_i=1..k. 1 /(2 ~izreal)) = 1/(27k) for k
proof (induct k)
case (
then show ?case by auto
next
case (Suc k)
{ assume * :Suc k = 1
then have ?case by auto
} moreover
{ assume *: Suc k > 1
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then have 1 — > i=1..k. 1 /(2 "izreal)) =1/ 2"k
using Suc by linarith
then have ?case by simp
}
ultimately show ?case
by linarith
qed
have 2’ < 1
using assms(3) by auto
then have z < (1 — O i=1.n— 2.1 /(2 "izreal))) * 2 " (n — 3)
using z-is
using mult-right-mono zero-le-power by fastforce
then have z < 1/(27(n—2))x2(n—3)
using sum-prop n-geq-4
by auto
then have z-lt: © < 1/2
using n-geq-4
by (smt (verit, ccfv-SIG) One-nat-def Suc-1 Suc-diff-Suc add-diff-cancel-right’
diff-is-0-eq dual-order.trans linorder-not-le nonzero-mult-divide-mult-cancel-right2
numeral-3-eq-8 numeral-code(2) power.simps(2) power-commutes power-not-zero
times-divide-eq-left zero-neg-numeral)
show z € {0..<1/2}
using z-lt x-gt by auto
show p'z'=pzx
using assms(3) polygon-rotation-t-translation3[OF assms(1) assms(2) - assms(4)
assms(5) assms(6)]
by simp
qed

lemma f-gteq-0-sum-gt: Af:nat = real. (Niznat. (fi) > 0) = a> b= (31
=1.a. (fi)) > (O i=1..b. (fi)) for a b :: nat
proof (induct a arbitrary: b)
case (
then show ?case by auto
next
case (Suc a)
{assume x: b = a
then have sum f {1..(Suc a)} = sum f {1.. b} + f (Suc a)
by force
then have ?case
using Suc(2)[of Suc a] * by linarith
} moreover {assume x: b < a
then have ?case using Suc
by (smt (verit, ccfo-threshold) Suc-eq-plus1 dual-order.trans le-add2 sum.nat-ivl-Suc’)

ultimately show ?case

using Suc.prems(2) less-antisym by blast
qged

66



lemma rotation-intervals-disjoint:

assumes kI # k2

shows {d i =1.kl. 1/ (2 "inrel).<> i=1.ki+1.1/2"i}n{di=
1.k2.1 /(2 Tizreal). <> i=1..k24+1. 1/ 2 i} ={}

proof —
have lambda-gt: (N\i. 0 < 1 / (2 " i:real))
by simp
have hi: ?thesis if x:k1 < k2
proof —

have eo: k1+1 < k2
using * by auto
have k14+1 =k2 = O i=1..k14+1.1 /2 ") < (> i=1..k2.1/ (2"
i::real))
by auto
have (D i =1..ki1+1.1 /2 "4 < (D i=1..k2.1 /(2 i:real)) if sx:
k1+1 < k2
using f-gteq-0-sum-gt[OF lambda-gt *x]
using less-eq-real-def by presburger
then have (> i=1..kI1+1.1/2 7)< (D i=1.k2.1 /(2  iureal))
using * eo by fastforce
then show ?thesis by auto
qed
have h2: ?thesis if x: k2 < k1
proof —
have eo: k2+1 < kI
using * by auto
have k2+1 =kl = O i=1..k2+1.1 /2 "9 < (> i=1.k1.1/(2"
i::real))
by auto
have (> i=1..k2+1.1 /2 "4 < (O i=1..k1.1 /(2 idureal)) if #x
k24+1 < ki
using f-gteq-0-sum-gt[OF lambda-gt ]
using less-eq-real-def by presburger
then have (> i =1..k24+1.1 /2 "9 < (D i=1.k1.1 /(2  izreal))
using * eo by fastforce
then show %thesis by auto
qged
show ?thesis
using h1 h2 assms by linarith
qed

lemma bounding-interval-helperl:
shows (> i=1.k. 1 /(2 "dureal)) = (27k — 1)/(27k)
proof (induct k)
case ()
then show ?case by simp
next
case (Suc k)
have (3" i = 1..(Suc k). 1 / (2 "dureal)) = O i = 1..k. 1 /(2 " iureal)) +
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1/27(Suc k)

by force
also have ... = (27k — 1)/(27k) + 1/27(Suc k) using Suc.hyps by presburger
also have ... = (27k — 1)/(27k) + 1/27(k+1) by simp
also have ... = (27(k+1) — 1)/(27(k+1))

by (smt (verit, del-insts) Suc add.commute add-diff-cancel-right’ add-divide-distrib
calculation field-sum-of-halves le-add2 plus-1-eq-Suc power-divide power-one sum-
mation-helper)

finally show ?Zcase by force
qed

lemma bounding-interval-helper2:
fixes z :: real
assumes z € {0..<1}
shows k. z < (D i=1.k. 1 /(2 " i:real))
proof—
let ?f = Akunat. (27k — 1)/(27%)
have lim: Veureal>0. k. (1 — (?fk)) <e
proof clarify
fix e::real
assume ¢ > ()
then obtain m where m > 0 AN 1 / m<e¢
by (metis Groups.mult-ac(2) divide-less-eq linordered-field-no-ub order-less-trans
zero-less-divide-1-iff)
moreover obtain £ where 27k > m using real-arch-pow by fastforce
ultimately have 1 / (27k) < & by (smt (verit) frac-less2)
moreover have (1:real) — ((27k — 1) / (27k)) = (1/(27%)) by (simp add:
diff-divide-distrib)
ultimately show 3%. 1 — (27k — 1) / (27k) < € by (smt (verit))
qed
have 3k. 2fk > x
proof—
let %=1 -1z
obtain & where 1 — (?f k) < % by (metis assms lim atLeastLess Than-iff
diff-gt-0-iff-gt)
thus ?thesis by auto
qged
thus ?thesis using bounding-interval-helperl by presburger
qed

lemma bounding-interval-for-reals-btw01 :

fixes x::real

assumes z € {0..<1}

shows 3k. x € {(O i € {1..k}. 1/(27real))..<(> i e {1..(k+ 1)} 1/(27%))}
proof —

let 25 =Xk. O i=1.k 1 /(2 i:real))

let A = {kunat. z < (3 i=1.k. 1 /(2 "iureal))}

let #m = LEAST k. k € ?4

have 3k.z < (> i=1..k. 1 /(2 "i:real)) using assms bounding-interval-helper2
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by blast
then have ?m € 24 by (metis (mono-tags, lifting) LeastI2-wellorder mem-Collect-eq)
moreover then have ?m — 1 ¢ ?4
by (smt (verit, ccfv-SIG) One-nat-def Suc-n-not-le-n Suc-pred’ assms atLeast-
LessThan-iff atLeastatMost-empty’ bot-nat-0.not-eq-extremum linorder-not-less mem-Collect-eq
not-less-Least sum.empty)
ultimately have z < (> i=1..m. 1 / (2 "dzrea)) Nz > (D i=1..2m—1.
1/ (2 " itreal))
by simp
thus ?thesis
by (smt (verit, best) add.commute assms atLeastLess Than-iff le-add-diff-inverse
linorder-not-less sum.head-if)
qed

lemma all-rotation-intervals-between-Oand1 :
shows {(>_¢ € {1..k}. 1/(27%real)..(d i € {1..(k+1)}. 1/(27%)} C {0..<1}
proof —
have gt: Nk. 0o i € {1..k}. 1/(27%ureal)) > 0
by (simp add: sum-nonneg)
have It: Nk. O_i € {1..k}. 1/(27%ureal)) < 1
by (smt (verit, ccfv-SIG) diff-Suc-1 f-gteq-0-sum-gt less-Suc-eg-le linorder-not-le
summation-helper zero-less-divide-1-iff zero-less-power)
show ?thesis
using gt It
by (meson atLeastAtMost-subseteq-atLeastLessThan-iff)
qged

lemma all-rotation-intervals-between-Oandl-strict:
shows {(> i e {1..k}. 1/(27%real)).. <D i e {1..(k+1)}. 1/(27%)} C{0..<1}
using all-rotation-intervals-between-0and1
by (smt (verit, ccfv-SIG) atLeastAtMost-subseteq-atLeastLess Than-iff ivl-subset
nle-le order-trans)

lemma one-polygon-rotation-is-loop-free:
assumes polygon-of p vts
assumes p’ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p’ = make-polygonal-path ?vts’)
shows loop-free p’
proof (rule ccontr)
assume — loop-free p’
moreover have p’ 0 = p’ 1
using assms
by (smt (verit, ccf-SIG) assms(2) butlast-snoc length-butlast linepath-0' linepath-1"'
make-polygonal-path.simps(1) not-gr-zero nth-append-length nth-butlast path-defs(2)
path-defs(3) polygon-pathfinish polygon-pathstart rotate-polygon-vertices-def)
ultimately obtain z’ y’ where 2’y 2’ < y' A {2/, y'} C{0.<1} Ap' 2’ =p’
y/
unfolding loop-free-def
by (smt (verit, del-insts) atLeastAtMost-iff atLeastLessThan-iff bot-least in-
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sert-subset linorder-not-le order.refl order-antisym zero-less-one)

let ?n = length vts
have n-geq-4: ?n > J using polygon-vertices-length-at-least-4 assms
using polygon-of-def by blast
obtain zk where z'-in: ' € {(>°i € {1..2k}. 1/(27%)).<(> i e {1..(zk + 1)}.
1/(27%))} using z'y’
using bounding-interval-for-reals-btw01 z'y’
by (metis insert-subset )
then have zk-gteq: zk > 0
by blast
obtain yk where y’-in: y' € {3 i € {1..yk}. 1/(27%)).<> i e {1..(yk+ 1)}.
1/(20)}
using bounding-interval-for-reals-btw01 z'y’
by (metis insert-subset)
then have yk-gteq: yk > 0
by blast

have all-pows-of-2-pos: (\i. 0 < 1 / (2 " izreal))
by simp

let %21 = (z/ — (i e {1.2k}. 1/(270))/2 + O i e {1..(zk + 1)}. 1/(27%))
have zk-lt-nminus3: 2k < n — 4 = %21 € {O i e {1.ak+1}. 1/(27%))..<(>
e{1.azk+2}. 1/(27)} Ap 221 =p' 2’
using polygon-rotation-t-translation1-strict| OF assms(1) assms(2) z'-in] zk-gteq
by metis
let 2yl = (y' — Oie{1..yk}. 1/(270)/2 + O i e {1..(yk + 1)}. 1/(27%))
have yk-lt-nminus3: yk < n — 4 = 2yl € {O_ i e {1..yk+1}. 1/(27%)).<(D>_1
e{1.yk+2}. 1/(27)} Ap 2yl =p'y’
using polygon-rotation-t-translation1-strict| OF assms(1) assms(2) y’-in] yk-gteq

by metis

let 222 = 2’/ + 1/(27(%n—2))
have 2k = n—8 = a2’ € {d i = 1..length vts — 3. 1 / (2 " iureal)..<> i =
1..length vts — 2.1 / 2~ i}
using z’-in
by (smt (verit, best) Nat.add-diff-assoc2 <4 < length vts) diff-cancel? le-add-diff-inverse
nat-add-left-cancel-le nat-le-linear numeral-Bit0 numeral-Bit1 numerals(1) trans-le-add1)
then have zk-eg-nminus8: ok = on — 8 = p 222 = p' ' N 222 € {37 €
{1..9n—2}. 1/(27%))..<1}
using polygon-rotation-t-translation2-strict| OF assms(1) assms(2), of ?n z’
2x2] z'-in xk-gteq
by presburger
let 2y2 =y’ + 1/(27(%n—2))
have yk = /n—3 = y' € {d i = 1.length vts — 3. 1 / (2 ~iureal)..<> i =
1.length vts — 2.1 / 2 " i}
using y’-in
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by (smt (verit, best) Nat.add-diff-assoc2 <4 < length vts) diff-cancel2 le-add-diff-inverse
nat-add-left-cancel-le nat-le-linear numeral-Bit0 numeral-Bit1 numerals(1) trans-le-add1)
then have yk-eq-nminus3: yk = n — 3 = p 22 =p' y' A 2y2 € {O]i €
{1..%9n—2}. 1/(27%))..<1}
using polygon-rotation-t-translation2-strict|OF assms(1) assms(2), of ?n y’
2y2] x'-in xk-gteq
by presburger

let 228 = (' — (Di € {1..9n—2}. 1/(27%)))x(27(?n—3))
have z'-leq: ' < 1
using z'y’ by simp
have z'-geq: 2k > n — 2 = (Y i=1..2k. 1 / (2 "idureal)) > (D> i = 1..length
vts — 2.1 / (2 7 ireal))
using z'-in f-gteq-0-sum-gt[of Ai. 1 / (2 " i:real))
by (metis le-antisym less-eq-real-def linorder-not-le zero-less-divide-1-iff zero-less-numeral
zero-less-power)
have zk > n—2 = z' € {d i = 1..length vts — 2. 1 / (2 ~iureal)..<1}
using z’-leq x'-geq z'-in
by fastforce
then have zk-gt-nminus3: ok > %n — 2 = p 228 = p' ' A %23 € {0..<1/2}
using polygon-rotation-t-translation3-strict| OF assms(1) assms(2), of =’ n]
zk-gteq
by presburger
let 2y3 = (y' — Qi e {1..9n—2}. 1/(27%)))*(27(?n—3))
have y'-leq: y' < 1
using z'y’ by simp
have y'-geq: yk > n — 2 = (D i=1..yk. 1 / (2 "iureal)) > (D> i = 1..length
vts — 2.1 /(2 7 izreal))
using y'-in f-gteq-0-sum-gt[of Xi. 1 / (2 " i:real))
by (metis le-antisym less-eq-real-def linorder-not-le zero-less-divide-1-iff zero-less-numeral
zero-less-power)
have yk > n—2 = y' € {d i = 1..length vts — 2. 1 / (2 ~iureal)..<1}
using y’-leq y’-geq y'-in
by fastforce
then have yk-gt-nminus3: yk > %n — 2 = p 2y =p' y' A 2y3 € {0..<1/2}
using polygon-rotation-t-translation3-strict| OF assms(1) assms(2), of y' n]
yk-gteq
by presburger

have interval-helper: a1l > b2 Nz € {al..<a2} ANy € {bl..<b2} = y < z for
al a2 b1 b2 x y::real
by simp

{ assume zk-lt: 2k < n — 3
then have p-z”: p %21 = p' 2’
using zk-lt-nminus3 by auto
have zi-in: ?z1 € {(>i € {1..(zk + 1)}. 1/(27%))..<( i € {1..(zk + 2)}.
1/(20)}

using zk-lt zk-lt-nminus3
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by auto
then have z1-in-01: %z1 € {0..<1}
using all-rotation-intervals-between-O0and1-strict[of zk+1]
by fastforce
{ assume yk-lt: yk < %n — 3
then have p-y”: p 2yl =p'y’
using yk-lt-nminus3 by auto
have yI-in: 2yl € {O i e {1..(yk + 1)}. 1/(277)).<> i e {1..(yk + 2)}.
1/(271))}
using yk-lt yk-lt-nminus3 by auto
then have yI-in-01: ?y1 € {0..<1}
using all-rotation-intervals-between-0and1-strict[of yk+1]
by fastforce
have {d) i=1.ak+1.1/270.<>i=1.ak+2.1/(2 izrea)} N{> ¢
=1.yk+1.1/(2 ivreal).<> i=1.yk+ 2.1/ 2 i} ={}if ak-neq:ak #
yk
using rotation-intervals-disjoint[of tk+1 yk+1] zk-neq
by fastforce
then have eq-then-eq: %1 = 2yl — zk = yk
using x1-in yI-in
by (smt (verit) Int-iff empty-iff)
have zk = yk = %21 # %yl
using z'y’ x1-in yl-in by simp
then have 7z1 # ?y1
using eq-then-eq by blast
moreover have {?z1, ?y1} C {0..<1}
using z1-in-01 y1-in-01 by fast
ultimately have ?%z1 # 2yl A {%x1, ?y1} C {0.<1} AN p %zl = p %yl
using p-z’ p-y’ z'y’ by presburger
thenhave 3 zy .z £y A {2, y} C{O0.<I} Apz=py
by auto
then have Fulse
using assms(1) unfolding polygon-of-def polygon-def simple-path-def loop-free-def
by fastforce
} moreover { assume yk = n — 3
then have y2: p 2y2 = p' y' A 2y2 € {O_i € {1..2n—2}. 1/(27%))..<1}
using yk-eqg-nminus3
by auto
then have y2-in-01: ?y2 € {0..<1}
using all-rotation-intervals-between-Oand1-strict[of n—2]
by fastforce
have xkplus-eq: ok + 2 = n — 2 = (D i € {1..(zk + 2)}. 1/(27i:real)) <
Soie{1..9n—2}. 1/(27%))
by simp
have zkplus-it: ok + 2 < n — 2 = (D_i € {1..(zk + 2)}. 1/(27%real)) <
(i e {1..2n—2}. 1/(27%))
using zk-lt f-gteq-0-sum-gt[OF all-pows-of-2-pos, of zk + 2 ?n — 2]
by (smt (verit, best) f-gteq-0-sum-gt zero-less-divide-1-iff zero-less-power)
then have (> i e {1..(ak + 2)}. 1/(270ureal)) < (O i€ {1..9n—2}. 1/(27%))
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using zkplus-eq xkplus-lt zk-lt
using One-nat-def Suc-diff-Suc Suc-eq-plus1 Suc-le-eq add-Suc-right le-neg-implies-less
linorder-not-le nat-1-add-1 nat-diff-split numeral-3-eq-3 zk-gteq by linarith
then have ?z1 # ?y2
using z1-in y2
by (smt (verit, ccfu-SIG) interval-helper)
moreover have {?z1, 7y2} C {0..<1}
using z1-in-01 y2-in-01 by fast
ultimately have ?z1 # %y2 A {%z1, 242} C {0..<1} A p %21 = p %y2
using p-z’ y2 z'y’ by presburger
thenhave 3 zy . s #yA{z,y} C{O0.<I} Apzx=py
by auto
then have Fulse
using assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by fastforce

moreover { assume yk > n — 3
then have y3: p 7y3 = p’ y' A ?y3 € {0..<(1/2::real)}
using yk-gt-nminus3
by auto
then have y3-in-01: ?y3 € {0..<1}
by simp

have simplify-interval: (> i = 1..1. 1 /(2 "iureal)) = 1/2
by simp
then have zk-eq-0: ok = 0 = (3 i € {1..(zk + 1)}. 1/(27%real)) > 1/2
by simp
have 2k > 0 = (> i € {1..(ak + 1)}. 1/(2%:real)) > 1/2
using f-gteq-0-sum-gt[OF all-pows-of-2-pos, of 1 xk +1]
simplify-interval
by (smt (verit, ccfo-SIG) Suc-le-eq add.commute add.right-neutral all-pows-of-2-pos
J-gteq-0-sum-gt linorder-not-le plus-1-eq-Suc)
then have (> i € {1..(zk + 1)}. 1/(27%::real)) > 1/2
using zk-eq-0 zk-gteq by blast
then have ?z1 # ?y3
using z1-in y3
by (smt (verit, best) interval-helper)
moreover have {?z1, 7y3} C {0..<1}
using z1-in-01 y3-in-01 by fast
ultimately have ?z1 # ?y3 A {%z1, 248} C {0..<1} A p %21 = p %y3
using p-z’ y3 'y’
by presburger
thenhave 3 zy. 2 Ay A{z, y} C{0.<I} Apz=py
by auto
then have Fulse
using assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by fastforce
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}

ultimately have Fulse by linarith
} moreover {assume zk-eq : 2k = n—38
then have p-z”: p 222 = p’' 2’
using zk-eg-nminus3 by auto
have z2-in: 222 € {(> i € {1..9n—2}. 1/(27%))..<1}
using zk-eq zk-eq-nminus3
by auto
then have 722 > 0
using n-geq-4
by (metis add-sign-intros(4) atLeastLessThan-iff insert-subset leD nle-le
power-one-over x'y’ zero-le-power zero-less-divide-1-iff zero-less-numeral)
then have z2-in-01: %22 € {0..<1}
using z2-in by auto
{ assume yk < n — 3
then have interval-helper-helper: (> i = 1..yk + 1. 1 /(2 "izreal)) < (D24
=1.zk. 1 /(2 i:real))
using zk-eq f-gteq-0-sum-gt
by (metis Suc-eq-plusi less-eg-real-def linorder-neqE-nat not-less-eq zero-less-divide-1-iff
zero-less-numeral zero-less-power)
then have z’ > y’
using z’-in y'-in interval-helperjof (> i = 1.yk + 1.1 / (2 ~ i:real))
Ooi= 1.2k 1/ (2 " ireal))]
by blast
then have Fualse using z'y’
by auto
} moreover { assume yk = n — 3
then have y2: p 2y2 = p' y' A y2 € {(D i e {1..9n—2}. 1/(27%))..<1}
using yk-eqg-nminus3
by auto
then have y2-in-01: ?y2 € {0..<1}
using all-rotation-intervals-between-0and1-strict[of ?n—2]
by fastforce
then have %22 # ?y2
using z'y’ by auto
moreover have { %22, ?y2} C {0..<1}
using z2-in-01 y2-in-01 by fast
ultimately have %22 # %y2 A {22, ?y2} C {0..<1} A p %22 = p %y2
using p-z’ y2 z'y’ by presburger
thenhave 3 zy . s Ay A{z, y} C{0.<I} Apz=py
by meson
then have Fulse
using assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by fastforce
} moreover { assume yk-gt: yk > n — 3
then have y3: p 2y3 = p' y’
using yk-gt-nminus3 by auto
have y3-in: ?y3 € {0..<1/2}
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using yk-gt yk-gt-nminus3

by auto
then have y3-in-01: ?y3 € {0..<1}
by auto
have (>°i = 1.lengthvis — 2.1 /(2 "dureal)) > O i=1..1.1/ (2~
i:real))

using n-geq-4 f-gteq-0-sum-gt[OF all-pows-of-2-pos,of 1 length vis — 2]
by fastforce
then have (Y i = I..length vts — 2. 1 / (2 " iureal)) > 1/2
by simp
then have %22 # ?y3
using y3-in z2-in by auto
moreover have {722, 7y3} C {0..<1}
using z2-in-01 y3-in-01 by fast
ultimately have %22 # ?y3 A {%22, 2y3} C {0..<1} A p %22 = p %y3
using p-z’ y3 z'y’ by presburger
thenhave 3 zy. 2 £ yA{z, y} C{0.<I} Apz=py
by meson
then have Fulse
using assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by fastforce

ultimately have Fulse
using not-less-iff-gr-or-eq by auto
} moreover { assume zk-gt: zk > n — 3
then have p-z”: p 228 = p’' 2’
using zk-gt-nminus3 by auto
have z3-in: 223 € {0..<1/2}
using zk-gt zk-gt-nminus3
by auto
then have z3-in-01: %23 € {0..<1}
by auto
{ assume yk < ?n — 3
then have (3> i = 1.2k. 1 / (2 "dureal)) > O i=1.yk+ 1.1 /(2"
i:real))
using zk-gt f-gteq-0-sum-gt[of Ai. 1 / (2 " iureal) xk yk]
proof —
obtain rr :: nat = real where
fl:¥YBx.mmB-x =1/ 2" B-x
by force
then have f2: Vn. 0 < rrn
by simp
have yk < zk
using <length vts — 8 < zky <yk < length vts — &) order-le-less-trans by
blast
then show ?thesis
using f2 f1 by (metis (no-types) Suc-eq-plusl f-gteq-0-sum-gt less-eq-real-def
nat-neq-iff not-less-eq order.refl)
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qed
then have z’ > 3’
using z'-in y'-in interval-helper[of (3 i=1..yk+ 1.1 /(2 "izreal)) (34
= 1.ak. 1 /(2 iureal))]
by blast
then have Fulse using z'y’
by auto
} moreover
{ assume yk-gt: yk > n — 8
then have p-y" p 2498 = p' ¢y’
using yk-gt-nminus3 by auto
have y3-in: ?y3 € {0..<1/2}
using yk-gt yk-gt-nminus3
by auto
then have y3-in-01: ?y3 € {0..<1}
by auto
have (z' — (3 i = I..length vts — 2. 1 | 2 " i) #
(y'— O i=1.lengthvts — 2. 1 ] 2 1))
using z'y’ by auto
then have ?z3 # ?y3 by auto
moreover have {?z8, ?y3} C {0..<1}
using z3-in-01 y3-in-01 by fast
ultimately have 223 # 2y3 A {%23, 2y3} C {0.<1} A p %23 = p %48
using p-z’ p-y’ z'y’
by presburger
thenhave 3 zy . 2 #yA{z,y} C{O0.<I}Apz=py
by meson
then have Fulse
using assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by fastforce

ultimately have Fulse by linarith
}
ultimately show Fulse by linarith
qed

lemma one-rotation-is-polygon:
fixes p :: R-to-R2
fixes 7 :: nat
assumes poly-p: polygon p and
p-is-path: p = make-polygonal-path vts and
p’-is: p’ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p’ = make-polygonal-path ?vts’)
shows polygon p’
proof—
have polygonal-path p’ using p’-is by (simp add: polygonal-path-def)
moreover have closed-path p’
using p’-is unfolding rotate-polygon-vertices-def closed-path-def
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by (metis (no-types, opaque-lifting) Nil-is-append-conv append-self-conv? diff-Suc-1
hd-append2 hd-conv-nth length-append-singleton make-polygonal-path-gives-path not-Cons-self
nth-Cons-0 nth-append-length pathfinish-def pathstart-def polygon-pathfinish poly-
gon-pathstart)
moreover have simple-path p’
using one-polygon-rotation-is-loop-free
by (metis make-polygonal-path-gives-path p'-is p-is-path poly-p polygon-of-def
sitmple-path-def)
ultimately show #?thesis unfolding polygon-def by simp
qed

lemma rotation-is-polygon:

fixes p :: R-to-R2

fixes i:: nat

assumes polygon p and

p = make-polygonal-path vts

shows polygon (make-polygonal-path (rotate-polygon-vertices vts i))

using assms
proof (induct 7)

case (

then show ?case using rotate0 unfolding rotate-polygon-vertices-def

by (smt (23) assms(2) butlast.simps(1) butlast-conv-take eq-id-iff have-wraparound-vertex
hd-append2 hd-conv-nth rotate-polygon-vertices-def rotate-polygon-vertices-same-set
self-append-conv2 the-elem-set)
next

case (Suc 17)

then show ?case using one-rotation-is-polygon arb-rotation-as-single-rotation

by metis

qed

lemma polygon-rotate-mod:
fixes vts :: (real”2) list
assumes n = length vts
assumes n > 2
assumes hd vts = last vts
shows rotate-polygon-vertices vts (n — 1) = vts
proof—
let %vts’ = rotate (n — 1) (butlast vts)
have rotate-polygon-vertices vts (n — 1) = vts’ Q [uvts10]
unfolding rotate-polygon-vertices-def by metis
moreover have ?vts’ = butlast vts using assms by simp
moreover have ... = rotate 0 (butlast vts) by simp
moreover then have ... @Q [...!0] = rotate-polygon-vertices vts 0
unfolding rotate-polygon-vertices-def by metis
moreover have ... = uts
unfolding rotate-polygon-vertices-def using assms
by (metis (no-types, lifting) Suc-le-eq calculation(8) hd-conv-nth length-butlast
length-greater-0-conv nat-1-add-1 nth-butlast order-less-le-trans plus-1-eq-Suc pos2
snoc-eq-iff-butlast zero-less-diff)
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ultimately show ¢thesis by argo
qed

lemma polygon-rotate-mod-arb:

fixes vts :: (real”2) list

assumes n = length vts

assumes n > 2

assumes hd vts = last vts

shows rotate-polygon-vertices vts ((n — 1) x i) = vts
proof (induct 7)

case (

then show ?case using polygon-rotate-mod

by (metis append.right-neutral append-Nil assms(1) assms(2) assms(3) id-apply
length-butlast mult-zero-right rotate0 rotate-append rotate-polygon-vertices-def)
next

case (Suc 17)

then have vts = rotate-polygon-vertices vts ((n — 1) * i) using Suc.prems by
argo

also have ... = rotate-polygon-vertices vts ((n — 1) * Suc 17)

using polygon-rotate-mod assms(1) assms(2) assms(3) calculation rotation-sum

by (metis mult-Suc-right)

finally show ?case by argo

qed

lemma unrotation-is-polygon:
fixes p :: R-to-R2
fixes i:: nat
assumes polygon (make-polygonal-path (rotate-polygon-vertices vts 7))
(is polygon (make-polygonal-path ?vts’))
p = make-polygonal-path vts
hd vts = last vts
shows polygon p
proof—
have len-vts: length vts > 2
using assms polygon-vertices-length-at-least-4 rotate-polygon-vertices-same-length
by (metis (no-types, opaque-lifting) Suc-1 Suc-eq-numeral Suc-le-lessD diff-is-0-eq’
eval-nat-numeral(2) gr-implies-not0 length-append-singleton length-butlast length-rotate
not-less-eq-eq rotate-polygon-vertices-def)

let ?n = length vts — 1
obtain k where k: kx%n >
using len-vts
by (metis Suc-1 Suc-le-eq add-0 div-less-iff-less-mult le-add2 less-diff-conv)
let 2j = kx?n — i
have j-i-n: 9j + ¢ = kx?n using k by simp

have rotate-polygon-vertices ?vts’ ?j = rotate-polygon-vertices vts (2j + )

using rotation-sum[of vts i ?n] by (simp add: add.commute rotation-sum)
also have ... = rotate-polygon-vertices vts (k*?n) using assms j-i-n by presburger
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also have ... = vts using polygon-rotate-mod-arb len-vts assms by (metis mult.commute)
finally show ?thesis using rotation-is-polygon assms by metis
qed

lemma rotated-polygon-vertices:
assumes vts’ = rotate-polygon-vertices vts j
assumes hd vts = last vts
assumes length vts > 2
assumes j < i A ¢ < length vts
shows vts | i = vts’ ! (i — )
using assms
proof (induct j arbitrary: vts vts’)
case ()
then show ?case
by (metis Suc-1 Suc-le-eq diff-is-0-eq diff-zero hd-conv-nth id-apply length-butlast
linorder-not-le list.size(3) nth-butlast rotatel rotate-polygon-vertices-def snoc-eq-iff-butlast)
next
case (Suc j)
then have vts’ = rotate-polygon-vertices (rotate-polygon-vertices vts 1) j
by (metis plus-1-eq-Suc rotation-sum)
moreover have ...I(i — Suc j) = (rotate-polygon-vertices vts 1)!(i — 1)
using Suc.hyps Suc.prems(8) Suc.prems(4) Suc-1 Suc-diff-le Suc-leD diff-Suc-Suc
hd-conv-nth length-append-singleton length-butlast length-rotate nth-butlast rotate-polygon-vertices-def
snoc-eq-iff-butlast zero-less-Suc
by (smt (23) One-nat-def Suc.prems(1) Suc.prems(2) Suc-eq-plusl Suc-le-eq
arb-rotation-as-single-rotation calculation diff-diff-cancel diff-is-0-eq diff-less-mono
diff-zero not-less-eq-eq plus-1-eq-Suc rotated-polygon-vertices-helper2)
moreover have ... = vtsli using rotated-polygon-vertices-helper2
by (metis Suc.prems(2) Suc.prems(3) Suc.prems(4) add-leD1 le-add-diff-inverse2
less-diff-conv plus-1-eq-Suc)
ultimately show ?case
by presburger
qed

lemma polygon-path-image:
assumes poly-p: polygon p
assumes p-is-path: p = make-polygonal-path vts
shows path-image p = p* {0 ..< 1}
proof —
have vts-nonempty: vts # []
using polygon-at-least-3-vertices| OF poly-p p-is-path]
by auto
have at-0: p ‘ {0} = {pathstart p}
using p-is-path
by (metis image-empty image-insert pathstart-def)
have at-1: p ‘ {1} = {pathfinish p}
using p-is-path
by (simp add: pathfinish-def)
have same-point: p 0 = p 1
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using assms unfolding polygon-def closed-path-def using polygon-pathstart| OF
vts-nonempty p-is-path]
using polygon-pathfinish|OF vts-nonempty p-is-path]
at-0 at-1 by auto
have Az. 2 € p ‘{0..1} = z € p ‘{0..<1}
proof —
fix z
assume z € p ‘{0..1}
then have 3k € {0..1}. pk ==z
by auto
then obtain k where k-prop: k € {0..1} Apk =1z
by auto
{assume *: k < 1
then have 3k € {0.<1}.pk ==z
using k-prop by auto
} moreover {assume *: k = I
then have p 0 =z
using same-point k-prop by auto
then have 3k € {0.<1}. pk ==z
by auto

ultimately have 3k € {0.<1}. pk ==
using k-prop
by (metis atLeastAtMost-iff order-less-le)
then show z € p ‘ {0..<1}
by auto
qed
then show ?thesis
unfolding path-image-def by auto
qed

lemma polygon-vts-one-rotation:
fixes p :: R-to-R2
assumes poly-p: polygon p and
p-is-path: p = make-polygonal-path vts and
p’-is: p’ = make-polygonal-path (rotate-polygon-vertices vts 1)
shows path-image p = path-image p’
proof —
let ?rotated-vts = (rotate-polygon-vertices vts 1)
have card (set vts) > 3
using polygon-at-least-3-vertices| OF poly-p p-is-path]
by auto
then have len-gt-eq3: length vts > 3
using card-length order-trans by blast
have same-len: length ?rotated-vts = length vts
unfolding rotate-polygon-vertices-def using length-rotate
by (metis One-nat-def Suc-pred card.empty length-append-singleton length-butlast
length-greater-0-conv list.set(1) not-numeral-le-zero p-is-path poly-p polygon-at-least-3-vertices)
then have len-rotated-gt-eq2: length ?rotated-vts > 2
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using len-gt-eq3 by auto
have hi1: A\z. z € (path-image p) = z € path-image p’
proof —
fix z
assume z € (path-image p)
then have 3 k<length vts — 1. z € path-image (linepath (vts ! k) (vts ! (k +
1))
using p-is-path len-gt-eq3 make-polygonal-path-image-property|of vts x|
by auto
then obtain k& where k-prop: k < length vts — 1 N x € path-image (linepath
(vts 1 k) (vts ! (k + 1))
by auto
{assume *x: k = 0
have vts1: vts | 0 = ?rotated-vts | (length ?rotated-vts — 2)
unfolding rotate-polygon-vertices-def
using nth-rotate|of length ?rotated-vts — 2 butlast vts 1]
by (metis (no-types, lifting) * One-nat-def Suc-pred butlast-snoc diff-diff-left
k-prop length-butlast lessI mod-self nat-1-add-1 nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def
same-len)
have (rotate 1 (butlast vts)) ! 0 = vts ! 1
using nth-rotate[of 0 butlast vts 1] len-gt-eq3
by (simp add: less-diff-conv mod-if nth-butlast)
then have vts2: vts | 1 = %rotated-vts | (length ?rotated-vts — 1)
unfolding rotate-polygon-vertices-def
by (metis butlast-snoc length-butlast nth-append-length)
then have path-image (linepath (vts ! k) (vts | (k + 1))) C path-image p’
using linepaths-subset-make-polygonal-path-imagelof vts 0]
len-rotated-gt-eq2 *
by (metis (no-types, lifting) One-nat-def Suc-eq-plusl Suc-pred diff-diff-left
diff-less k-prop less-numeral-extra(1) linepaths-subset-make-polygonal-path-image nat-1-add-1
p’-is same-len vtsl)
then have = € path-image p’
using k-prop vtsl vts2
by auto
}
moreover {assume x: k > 0
then have k-minus-prop: k — 1 < length (rotate-polygon-vertices vts 1) — 1
using same-len k-prop less-imp-diff-less
by presburger
then have vtsi: vis | k = Zrotated-vts | (k—1)
using nth-rotate[of k—1 butlast vts 1] len-gt-eq3
same-len
by (metis * One-nat-def Suc-pred butlast-snoc k-prop length-butlast mod-less
nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def)
have vts2: vts | (k+1) = Zrotated-vts | k
using nth-rotate|of k butlast vts 1] len-gt-eq3 k-minus-prop
by (metis (no-types, lifting) * Suc-eq-plus1 Suc-lel butlast-snoc have-wraparound-vertex
k-prop le-imp-less-Suc length-butlast mod-less mod-self nat-less-le nth-append-length
nth-butlast p-is-path plus-1-eq-Suc poly-p rotate-polygon-vertices-def same-len)

81



have path-image (linepath ( ?rotated-vts ! (k—1)) (2rotated-vts ! k)) C path-image
i

p
using linepaths-subset-make-polygonal-path-image| OF len-rotated-gt-eq2
k-minus-prop| p’-is
by (simp add: *)
then have z € path-image p’
using k-prop vtsl vts2
by auto
}
ultimately show z € path-image p’
by auto
qed
have h2: A\z. z € (path-image p’) = z € path-image p
proof —
fix z
assume z € (path-image p’)
then have Jk<length ?rotated-vts — 1. x € path-image (linepath (?rotated-vts
V'k) (Protated-vts ! (k + 1)))
using p'-is len-rotated-gt-eq2 make-polygonal-path-image-property|of ?rotated-vts
z]
by auto
then obtain k£ where k-prop: k < length ?rotated-vis — 1 A x € path-image
(linepath (2rotated-vts | k) (?rotated-vts | (k + 1)))
by auto
{assume *: k = length ?rotated-vts — 2
have vtsl: vts | 0 = %rotated-vts | (length ?rotated-vts — 2)
unfolding rotate-polygon-vertices-def
using nth-rotate[of length ?rotated-vts — 2 butlast vts 1]
by (metis x Suc-diff-Suc Suc-le-eq butlast-snoc k-prop len-rotated-gt-eq2
length-butlast mod-self nat-1-add-1 nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def
same-len zero-less-Suc)
have (rotate 1 (butlast vts)) ! 0 = vts ! 1
unfolding rotate-polygon-vertices-def
using nth-rotate[of 0 butlast vts 1] len-gt-eq3 len-rotated-gt-eq2
by (metis (no-types, lifting) One-nat-def Suc-le-eq diff-diff-left length-butlast
less-nat-zero-code mod-less not-gr-zero nth-butlast numeral-3-eq-3 plus-1-eq-Suc zero-less-diff)
then have vts2: ?rotated-vts | (k+1) = vts ! 1
unfolding rotate-polygon-vertices-def
by (metis x Suc-diff-Suc Suc-eq-plus1 Suc-le-eq len-rotated-gt-eq2 length-butlast
length-rotate nat-1-add-1 nth-append-length same-len)
have path-image (linepath (vts! 0) (vts! 1)) C path-image p
using linepaths-subset-make-polygonal-path-imagelof vts 0]
len-gt-eq3 = less-diff-conv p-is-path same-len
by auto
then have z € path-image p
using * vtsl vts2 k-prop
by auto
} moreover {assume *: k < length ?rotated-vts — 2
then have vis!: ?rotated-vts | k = vts | (k+1)
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using nth-rotate[of k butlast vts 1] len-gt-eq3 *
same-len
by (smt (23) Suc-eq-plusl butlast-snoc diff-diff-left k-prop length-butlast
less-diff-conv mod-less nat-1-add-1 nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def)
have vts2: ?rotated-vts | (k+1) = vts ! (k+2)
using nth-rotate[of k+1 butlast vis 1] len-gt-eq3 *
by (smt (verit, ccfu-threshold) One-nat-def Suc-le-eq add-Suc-right but-
last-snoc diff-diff-left have-wraparound-vertex len-rotated-gt-eq2 length-butlast less-diff-conv
mod-less mod-self nat-1-add-1 nat-less-le nth-append-length nth-butlast p-is-path
plus-1-eq-Suc poly-p rotate-polygon-vertices-def same-len)
have path-image (linepath (vts ! (k+1)) (vts ! (k + 2))) C path-image p
using linepaths-subset-make-polygonal-path-image[of vts k—+1]
len-gt-eq3 = less-diff-conv p-is-path same-len
by auto
then have = € path-image p
using vts1 vts2 k-prop
by auto
}
ultimately show z € path-image p
using k-prop Suc-eq-plusl add-le-imp-le-diff diff-diff-left len-rotated-gt-eq2
less-diff-conv2 linorder-neqE-nat not-less-eq one-add-one
by linarith
qed
then show ?thesis
using hl h2 by auto
qged

lemma polygon-vts-arb-rotation:
fixes p :: R-to-R2
assumes polygon p and
p = make-polygonal-path vts
shows path-image p = path-image (make-polygonal-path (rotate-polygon-vertices
vts 1))
using assms
proof (induct 7)
case ()
then show ?case unfolding rotate-polygon-vertices-def
by (metis One-nat-def arb-rotation-as-single-rotation polygon-vts-one-rotation
rotate-polygon-vertices-def rotation-is-polygon)
next
case (Suc 1)
let ?p’ = make-polygonal-path (rotate-polygon-vertices vts (Suc 1))
{assume *: i = 0
have path-image p = path-image ?p’
using Suc polygon-vts-one-rotation[of p vts
by (simp add: *)

moreover {assume *: { > (
have path-image p = path-image ?p’
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using polygon-vts-one-rotation arb-rotation-as-single-rotation rotation-is-polygon

by (metis Suc.hyps Suc.prems(1) assms(2))
}
ultimately show ?case by auto
qed

10 Translating a Polygon

lemma linepath-translation:
linepath (Az. z + u) a) ((Az. z + u) b) = (Az. z + u) o (linepath a b)
proof—
let 2l = linepath ((Az. ¢ + u) a) ((Az. z + u) b)
let 21’ = (A\z. z + u) o (linepath a b)
have ?l z = ?l' z for z
proof—
have 21z = (1 — z) *g (a + u) + z *g (b + u) unfolding linepath-def by
stmp
also have ... = ((1 — z) *g a + z *g b) + u by (simp add: scaleR-right-distrib)
also have ... = ?l’ r unfolding linepath-def by simp
finally show ?thesis .
qed
thus ?thesis by fast
qed

lemma make-polygonal-path-translate:
assumes length vts > 2
shows make-polygonal-path (map (A\z.  + u) vts) = (Az. z + u) o (make-polygonal-path
vts)
using assms
proof (induct length vts arbitrary: u vts)
case (
then show ?case by presburger
next
case (Suc n)
let 2vts’ = map (A\z. x + u) vts
let ?p’ = make-polygonal-path ?vts’
{ assume Sucn = 2
then obtain a b where ab: vts = [a, b]
by (metis (no-types, lifting) One-nat-def Suc.hyps(2) Suc-1 Suc-length-conv
length-0-conv)
then have ?vts’ = [(Az. = + u) a, (Az. z + u) b] by simp
then have ?%p’ = linepath (A\z. z + u) a) ((Az. z + u) b)
using make-polygonal-path.simps(3) by presburger
also have ... = (Az. z + u) o (linepath a b) using linepath-translation by auto
also have ... = (Az. z + u) o (make-polygonal-path vts) using ab by auto
finally have %case .
} moreover
{ assume *: Suc n > 2
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then obtain a b ¢ rest where abc: vis = a # b # ¢ # rest
by (metis One-nat-def Suc.hyps(2) Suc-1 Suc-lel Suc-le-length-iff)

let ?vts-tl = tl vts

let ?p-tl = make-polygonal-path ?vts-tl
let 2vts’-tl = map (A\z. © + u) Pvts-tl
let ?p’-tl = make-polygonal-path ?vts’-tl

have ?vts’-tl = tl ?vts’ by (simp add: map-tl)
then have ?p’ = (linepath (2vts"0) (?vts'1)) +++ ?p’-tl
using make-polygonal-path.simps(4) abc by force
moreover have ?p’-tl = (Az. z + u) o (?p-tl) using Suc.hyps(1) Suc.hyps(2)
x by force
moreover have (linepath (?vts"l0) (?vts"'1)) = (Az. x + u) o (linepath a b)
using abc linepath-translation by auto
ultimately have ?case by (simp add: abc path-compose-join)
}
ultimately show ?case using Suc by linarith
qed

lemma translation-is-polygon:
assumes polygon-of p vts
shows polygon-of ((Az.  + u) o p) (map (Az. z + u) vts) (is polygon-of ?p’
2uts’)
proof—
have length vts > 3
by (metis One-nat-def Suc-eq-plusl Suc-le-eq add-Suc-right assms nat-less-le nu-
meral-3-eq-3 numeral-Bit0 one-add-one polygon-of-def polygon-vertices-length-at-least-4 )
then have *: ?p’ = make-polygonal-path ?vts’
using make-polygonal-path-translate assms unfolding polygon-of-def by force
moreover have polygon ?p’
proof—
have polygonal-path ?p’ unfolding polygonal-path-def using * by simp
moreover have simple-path ?p’
using assms unfolding polygon-of-def polygon-def
using simple-path-translation-eq[of u p]
by (metis add.commute fun.map-cong)
moreover have closed-path ?p’
proof—
have ?p’ 0 = p 0 + u by simp
moreover have ?p’ 1 = p 1 + u by simp
moreover have p 0 = p 1
using assms
unfolding polygon-of-def polygon-def closed-path-def pathstart-def pathfin-
ish-def
by blast
moreover have path ?p’ using make-polygonal-path-gives-path * by simp
ultimately show ?thesis
unfolding closed-path-def pathstart-def pathfinish-def

85



by argo
qed
ultimately show #thesis unfolding polygon-def by blast
qed
ultimately show #thesis unfolding polygon-of-def by blast
qed

11 Misc. properties

lemma tail-of-loop-free-polygonal-path-is-loop-free:
assumes loop-free (make-polygonal-path (z#tail)) (is loop-free ?p) and
length tail > 2
shows loop-free (make-polygonal-path tail) (is loop-free ?p’)
proof—
obtain y z tail’ where tail”: tail = y # z # tail’
by (metis One-nat-def Suc-1 assms(2) length-Cons list.ezhaust-sel list.size(3)
not-less-eq-eq zero-le)
have path ?p A path ?p’ using make-polygonal-path-gives-path by auto
have loop-free ?p using assms unfolding simple-path-def by auto
moreover have ?p = (linepath z y) +++ ?p’
using tail’ make-polygonal-path.simps(4) by (simp add: tail’)
moreover from calculation have loop-free ?p’
by (metis make-polygonal-path-gives-path not-loop-free-second-component path-join-path-ends)
ultimately show ?thesis
using make-polygonal-path-gives-path simple-path-def by blast
qed

lemma tail-of-simple-polygonal-path-is-simple:
assumes simple-path (make-polygonal-path (z#tail)) (is simple-path ?p) and
length tail > 2
shows simple-path (make-polygonal-path tail) (is simple-path ?p’)
using tail-of-loop-free-polygonal-path-is-loop-free unfolding simple-path-def
using assms(1) assms(2) make-polygonal-path-gives-path simple-path-def by blast

lemma interior-vtz-in-path-image-interior:
fixes vts :: (real™2) list
assumes z € set (butlast (drop 1 vts))
shows 3t. t € {0<..<1} A (make-polygonal-path vts) t = x
using assms
proof (induct vts rule: make-polygonal-path.induct)
case I
then show ?case by simp
next
case (2 a)
then show ?case by simp
next
case (3 ab)
then show ?Zcase by simp
next
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case ih: (4 a b ¢ tail’)
let 2vts = a # b # ¢ # tail’
let 2tl = b # c # tail’
let ?p = make-polygonal-path ?vts
let ?p-tl = make-polygonal-path ?tl
{ assume z € set (butlast (drop 1 ?il))
then obtain ¢’ where t”: t' € {0<..<1} A ?p-tl t' = z using ih by blast
then have ?p ((t'+ 1)/ 2) ==z
unfolding make-polygonal-path.simps joinpaths-def
by (smt (verit, del-insts) field-sum-of-halves greater ThanLess Than-iff mult-2-right
not-numeral-le-zero zero-le-divide-iff)
moreover have (t'+ 1) / 2 € {0<..<1} using t’ by force
ultimately have ?case
by blast
} moreover
{ assume z ¢ set (butlast (drop 1 ?tl))
then have z = b
by (metis One-nat-def butlast.simps(2) drop0 drop-Suc-Cons ih.prems list.distinct(1)
set-ConsD)
then have ?p (1/2) = z unfolding make-polygonal-path.simps joinpaths-def
by (simp add: linepath-1")
moreover have ((1/2)::(real)) € ({0<..<1}::(real set)) by simp
ultimately have ?case by blast
}
ultimately show ?case by auto
qged

lemma loop-free-polygonal-path-vts-distinct:
assumes loop-free (make-polygonal-path vts)
shows distinct (butlast vts)
using assms
proof (induct vts rule: make-polygonal-path.induct)
case I
then show ?case by simp
next
case (2 a)
then show ?case by simp
next
case (3 a b)
then show ?case by simp
next
case ih: (4 a b c tail’)
let ?vts = a # b # c # tail’
let 2tl = b # ¢ # tail’
let ?p = make-polygonal-path ?vts
let ?p-tl = make-polygonal-path ?tl

have distinct (butlast ?tl)
using ih tail-of-loop-free-polygonal-path-is-loop-free by simp
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moreover have a ¢ set (butlast ?tl)
proof(rule ccontr)
assume a-in: - a ¢ set (butlast ?l)
then have a € set (butlast (drop 1 ?vts)) by simp
then obtain ¢ where #: t € {0<..<I} A pt=a
using vertices-on-path-image interior-vtz-in-path-image-interior by metis
then show Fulse
using ¢h.prems unfolding simple-path-def loop-free-def
by (metis atLeastAtMost-iff greater ThanLess Than-iff less-eq-real-def less-numeral-extra(3)
less-numeral-extra(4) list.distinct(1) nth-Cons-0 path-defs(2) polygon-pathstart zero-less-one-class.zero-le-one)
qed
ultimately show ?case by simp
qed

lemma loop-free-polygonal-path-vts-drop1-distinct:
assumes loop-free (make-polygonal-path vts)
shows distinct (drop 1 vts)
proof —
let ?p = make-polygonal-path vts
let ?Zlast-uts = vts | ((length vts) — 1)
have distinct (butlast vts)
using assms loop-free-polygonal-path-vts-distinct
by auto
then have distinct-butlast: distinct (butlast (drop 1 vts))
by (metis distinct-drop drop-butlast)
{assume x: length vts > 1
have len-drop1: length (drop 1 vts) = (length vts) — 1
using * by simp
have simp-len: 1 + ((length vts) — 2) = (length vts) — 1
using * by simp
then have vts-access: vts | (1 + (length vts — 2)) = vits ! ((length vts) — 1)
by argo
have drop 1 vts | ((length vts) — 2) = vts ! (1 + (length vts — 2))
using * using nth-drop[of 1 vts (length vts) — 2] by auto
then have ?last-vts = (drop 1 vts) ! ((length vts) — 2)
using * simp-len vis-access by argo
then have ?last-vts = (drop 1 vts) ! (length (drop 1 vts) — 1)
using * len-dropl
using diff-diff-left nat-1-add-1 by presburger
then have dropl-is: drop 1 vts = (butlast (drop 1 vts))Q[?last-vts]
using x
by (metis append-butlast-last-id drop-eq-Nil leD length-butlast nth-append-length)
have last-vts-not-in: ?last-vts ¢ set (butlast (drop 1 vts))
proof(rule ccontr)
assume a-in: — ?last-vts ¢ set (butlast (drop 1 vts))
then have ?Zlast-vts € set (butlast (drop 1 vts)) by simp
then obtain ¢ where ¢: t € {0<..<1} A ?p t = Zlast-vts
using vertices-on-path-image interior-vtz-in-path-image-interior by metis

88



have vts ! (length vts — 1) = %p 1
using polygon-pathfinish[of vts ?p] *
by (metis list.size(3) not-one-less-zero pathfinish-def)
then show Fulse
using ¢ assms unfolding loop-free-def
by (metis atLeastAtMost-iff greater ThanLess Than-iff leD less-eq-real-def zero-less-one-class.zero-le-one)
qed
have Ab::(real™2) list. distinct b A a ¢ set b = distinct (b Q[a]) for a:real™2
by simp
then have ?thesis using last-vts-not-in dropl-is distinct-butlast by metis
}
then show ?thesis by force
qed

lemma simple-polygonal-path-vts-distinct:
assumes simple-path (make-polygonal-path vts)
shows distinct (butlast vts)
using assms loop-free-polygonal-path-vts-distinct
unfolding simple-path-def
by blast

lemma edge-subset-path-image:
assumes p = make-polygonal-path vts and
(i:int) € {0..<((length vts) — 1)} and
x = vtsli and
y = vtsl(i+1)
shows path-image (linepath x y) C path-image p (is ?zy-img C Zp-img)
using assms
proof (induct vts arbitrary: p i rule: make-polygonal-path.induct)
case I
then show ?case by simp
next
case (2 a)
then show ?case by simp
next
case (3 a b)
then show ?case by (simp add: nth-Cons’)
next
case th: (4 a b ctl)
let 2tl =0 # c # ¢l
let ?p-tl = make-polygonal-path (?l)
{ assume ¢ = 0
then have ?case
by (metis (mono-tags, lifting) ih(2) ih(4) th(5) Suc-eq-plusl UnCI list.distinct(1)
make-polygonal-path.simps(4) nth-Cons-0 nth-Cons-Suc path-image-join pathfin-
ish-linepath polygon-pathstart subsetl)
} moreover
{ assume i > 0

89



then have z = ?tl!l(i—1) by (simp add: ih.prems(3))

moreover have y = 2Ulli by (simp add: ih.prems(4))

moreover have ¢ — 1 € {0..<(length (?tl) — 1)} using ih.prems(2) by force

ultimately have ?zy-img C path-image ?p-tl using ih(1) by (simp add: <0 <
)

then have ?case

unfolding ih(2) make-polygonal-path.simps

by (smt (verit, ccfv-SIG) UnCI make-polygonal-path.simps(4 ) make-polygonal-path-gives-path

path-image-join path-join-path-ends subsetl subset-iff)

ultimately show ?case by linarith
qed

12 Properties of Sublists of Polygonal Path Vertex
Lists

lemma make-polygonal-path-image-append-var:
assumes length vtsl > 2
shows path-image (make-polygonal-path (vts1 @ [v])) = path-image (make-polygonal-path
vtsl +++ (linepath (vtsl ! (length vis1 — 1)) v))
using assms
proof (induct vtsl)
case Nil
then show “case by auto
next
case (Cons a vtsl)
{assume x: length visl = 1
then obtain b where vis! = [b]
by (metis Cons-nth-drop-Suc One-nat-def drop0 drop-eq-Nil le-numeral-extra(4)
less-numeral-extra(1))
then have path-image (make-polygonal-path ((a # vtsl) Q [v])) =
path-image (make-polygonal-path (a # vtsl) +++ linepath ((a # wvtsl) !
(length (a # vts1) — 1)) v)
using make-polygonal-path.simps
by simp
} moreover {assume x : length vts! > 1
then obtain b c vts1’ where vtsl = b # c # vtsl’
by (metis One-nat-def length-0-conv length-Cons less-numeral-extra(4) not-one-less-zero
remdups-adj.cases)
then have hl: make-polygonal-path ((a # vtsl) Q [v]) = (linepath a b) +++
(make-polygonal-path (vtsl @ [v]))
using make-polygonal-path.simps(4)
by auto
have path-image (make-polygonal-path (vts1 Q [v])) =
path-image (make-polygonal-path vtsl +++ linepath (vts1 ! (length visl — 1))
v)
using x Cons by auto
then have path-image (make-polygonal-path ((a # vts1) Q [v])) =
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path-image (make-polygonal-path (a # vtsl) +++ linepath ((a # vtsl) ! (length
(a # vts1) — 1)) v)
using hl
by (metis (no-types, lifting) Cons.prems Suc-1 Suc-le-eq Un-assoc <vtsl = b # ¢
# vts1"y add-diff-cancel-left’ append-Cons length-Cons list.discI make-polygonal-path.simps(4)
nth-Cons-0 nth-Cons-pos path-image-join pathfinish-linepath pathstart-linepath plus-1-eq-Suc
polygon-pathfinish polygon-pathstart zero-less-diff)
}
ultimately show ?case
by (metis Cons.prems Suc-1 add-diff-cancel-left’ le-neg-implies-less length-Cons
not-less-eq plus-1-eq-Suc)
qed

lemma make-polygonal-path-image-append-helper:
assumes length vtsl > 1 A length vts2 > 1
shows path-image (make-polygonal-path (vts! @Q [v] @ [v] @ vts2)) = path-image
(make-polygonal-path (vts1 Q [v] Q vEs2))
using assms
proof (induct vts1)
case Nil
then show ?case by auto
next
case (Cons a vtsl)
{ assume *: length visl = 0
have path-image (make-polygonal-path ([a] @ [v] Q vts2)) =
path-image ((linepath a v) +++ make-polygonal-path (v # vts2))
using make-polygonal-path.simps
by (metis Cons.prems One-nat-def append-Cons append-Nil append-take-drop-id
linorder-not-le list.distinct(1) list.exhaust not-less-eq-eq take-hd-drop)
then have path-image (make-polygonal-path ([a] @ [v] @ vts2)) =
path-image (linepath a v) U path-image (make-polygonal-path (v # vts2))
by (metis list.discI nth-Cons-0 path-image-join pathfinish-linepath polygon-pathstart)
have image-helper1: path-image (make-polygonal-path ([a] @Q [v] Q [v] @ vis2))
= path-image (linepath a v +++ make-polygonal-path (v # v # vts2))
by simp
have path-image (make-polygonal-path (v # v # vts2)) = path-image ((linepath
v v) +++ make-polygonal-path (v # vts2))
using make-polygonal-path.simps
by (metis Cons.prems One-nat-def append-Cons append-Nil append-take-drop-id
linorder-not-le list.distinct(1) list.exhaust not-less-eq-eq take-hd-drop)
moreover have ... = path-image (linepath v v) U path-image (make-polygonal-path
(v # vts2))
by (metis list.discI nth-Cons-0 path-image-join pathfinish-linepath poly-
gon-pathstart)
ultimately have image-helper2: path-image (make-polygonal-path (v # v #
vts2)) = {v} U path-image (make-polygonal-path (v # vts2))
by auto
have v € path-image (make-polygonal-path (v # vts2))
using vertices-on-path-image by fastforce
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then have path-image (make-polygonal-path ([a] Q [v] @ [v] @ vis2)) =
path-image (make-polygonal-path ([a] @ [v] @ vts2))
using image-helper! image-helper?2
by (metis <path-image (make-polygonal-path ([a] @Q [v] @ vts2)) = path-image
(linepath a v) U path-image (make-polygonal-path (v # vts2))y insert-absordb in-
sert-is-Un list.simps(3) nth-Cons-0 path-image-join pathfinish-linepath polygon-pathstart)
}
moreover {assume *: length visl > 0
then have ind-hyp: path-image (make-polygonal-path (vts1 Q [v] @ [v] @ vts2))

path-image (make-polygonal-path (vts1 Q [v] @ vts2))
using Cons.hyps Cons.prems by linarith
obtain b vts3 where vtsi-is: vtsl = b#Hvts3
using *
by (metis x Cons-nth-drop-Suc drop0)
then have path-imagel: path-image (make-polygonal-path ((a # vtsl) @ [v] Q
[v] @ vts2)) =
path-image ((linepath a b) +++ make-polygonal-path (vts1 @ [v] @ [v] @
vts2))
by (smt (verit, best) Cons.prems Nil-is-append-conv append-Cons length-greater-0-conv
less-numeral-extra(1) list.inject make-polygonal-path.elims order-less-le-trans)
obtain ¢ d where bed: vis! Q [v] @ vts2 = b # ¢ # d
using vts1-is
by (metis append-Cons append-Nil neq-Nil-conv)
have path-image2: path-image (make-polygonal-path ((a # vtsl) Q [v] @ vts2))
= path-image ((linepath a b) +++ make-polygonal-path (vts1 Q [v] Q vEs2))
using make-polygonal-path.simps bed
by auto
have path-image (make-polygonal-path ((a # vts1) Q [v] Q [v] Q vts2)) =
path-image (make-polygonal-path ((a # vtsl) Q@ [v] Q vts2))
using ind-hyp path-imagel path-image2
by (smt (verit, del-insts) Nil-is-append-conv append-Cons nth-Cons-0 path-image-join
pathfinish-linepath polygon-pathstart vts1-is)
}
ultimately show ?case
using Cons.prems
by blast
qed

lemma make-polygonal-path-image-append:

assumes length vtsl > 2 A length vts2 > 2

shows path-image (make-polygonal-path (vts! @ vts2)) = path-image (make-polygonal-path
vtsl +++ (linepath (vts1 ! (length vts1 — 1)) (vts2 ! 0)) +++ make-polygonal-path
vts2)

using assms
proof (induct vtsl)

case Nil

then show ?case

by simp
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next
case (Cons a vtsl)
{assume *: length vtsl = 1
then obtain b where vtsi-is: vtsl = [b]
by (metis Cons-nth-drop-Suc One-nat-def drop0 drop-eq-Nil le-numeral-extra(4 )
less-numeral-extra(1))
then have make-polygonal-path ((a # vts1) Q vts2) = make-polygonal-path (a
# b # vts2)
by simp
then have make-polygonal-path ((a # vtsl) @Q vts2) = (linepath a b) +++
(make-polygonal-path (b # vts2))
by (metis Cons.prems length-0-conv make-polygonal-path.simps(4) neq-Nil-conv
not-numeral-le-zero)
then have make-polygonal-path ((a # vtsl) @ vts2) = make-polygonal-path
(a # vtsl) +++ (make-polygonal-path (b # vts2))
using vts1-is make-polygonal-path.simps(3)
by simp
then have make-polygonal-path ((a # vtsl) Q vts2) = make-polygonal-path
(a # vtsl) +++ linepath b (vts2 ! 0) +++ make-polygonal-path vts2
using Cons.prems
by (smt (verit, ccfv-SIG) x Suc-1 add-diff-cancel-left’ diff-is-0-eq’ length-greater-0-conv
list.size(4) make-polygonal-path.elims make-polygonal-path.simps(4) nth-Cons-0 or-
der-less-le-trans plus-1-eq-Suc pos2 vtsl-is zero-neq-one)
then have make-polygonal-path ((a # vts1) Q vts2) =
make-polygonal-path (a # vtsl) +++
linepath ((a # vts1) ! (length (a # vtsl) — 1)) (vts2 ! 0) +4++ make-polygonal-path
vts2
using vts1-is
by simp
} moreover {assume x: length vtsl > 1
then obtain b c vts1’ where vts1’: vtsl = b # c # vtsl’
by (metis One-nat-def length-0-conv length-Cons less-numeral-extra(4) not-one-less-zero
remdups-adj.cases)
then have h1: make-polygonal-path ((a # vts1) Q vts2) = (linepath a b) +++
(make-polygonal-path (vtsl @ vts2))
using make-polygonal-path.simps(4)
by auto
have ind-h: path-image (make-polygonal-path (vtsl @ vts2)) =
path-image (make-polygonal-path vts1 +++
linepath (vts1 ! (length vts1 — 1)) (vts2 ! 0) +++ make-polygonal-path vts2)
using Cons * by linarith
then have path-image (make-polygonal-path ((a # vtsl) Q vts2)) = path-image
((linepath a b)) U path-image((make-polygonal-path visl +++
linepath (vts1 | (length vts1 — 1)) (vts2 ! 0) +++ make-polygonal-path vis2))
by (metis h1 make-polygonal-path-gives-path path-image-join path-join-path-ends)
then have path-image (make-polygonal-path ((a # vts1) Q vts2)) = (path-image
(linepath a b) U path-image (make-polygonal-path vtsl)) U
path-image((linepath (vts1 | (length vtsl — 1)) (vts2 ! 0) +4++ make-polygonal-path
vts2))
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by (metis (no-types, opaque-lifting) * Un-assoc not-one-less-zero linepath-0'
list.size(3)
path-image-join pathstart-def pathstart-join polygon-pathfinish)
then have image-helper: path-image (make-polygonal-path ((a # vtsl) Q vts2))
= (path-image (make-polygonal-path (a # vts1))) U
path-image((linepath (vts1 ! (length vts1 — 1)) (vts2 ! 0) +++ make-polygonal-path
vts2))
by (metis neg-Nil-conv nth-Cons’ path-image-cons-union vts1’)
have vts! | (length vtsl — 1) = (a # vtsl) ! (length (a # vtsl) — 1)
using Cons.prems
by (simp add: Suc-le-eq)
then have path-image (make-polygonal-path ((a # vtsl) @ vts2)) =
path-image
(make-polygonal-path (a # vtsl) +++
linepath ((a # vts1) ! (length (a # vtsl) — 1)) (vts2 ! 0) +++ make-polygonal-path
vts2)
using image-helper
by (metis (no-types, lifting) Cons.prems length-greater-0-conv order-less-le-trans
path-image-join pathstart-join pathstart-linepath polygon-pathfinish pos2)

ultimately show ?case using Cons.prems
by fastforce
qed

lemma make-polygonal-path-image-append-alt:

assumes p = make-polygonal-path vts

assumes p! = make-polygonal-path vtsl

assumes p2 = make-polygonal-path vts2

assumes last vtsl = hd vts2

assumes length vtsl > 2 A length vts2 > 2

assumes vts = vtsl @ (¢l vts2)

shows path-image p = path-image (p1 +++ p2)
proof—

have path-image p = path-image p1 U path-image p2

by (smt (28) Nitpick.size-list-simp(2) One-nat-def Suc-1 assms diff-Suc-1

last-conv-nth length-greater-0-conv list. collapse list.sel(3) make-polygonal-path.elims
make-polygonal-path.simps(3) make-polygonal-path-image-append make-polygonal-path-image-append-var
nat-less-le not-less-eq-eq nth-Cons-0 order-less-le-trans path-image-join polygon-pathfinish
polygon-pathstart pos2 length-Cons length-tl path-image-cons-union pathfinish-linepath
pathstart-join sup.absorb-iff1 sup.absorb-iff2)

thus ?thesis

by (metis assms(2) assms(3) assms(4) assms(5) hd-conv-nth last-conv-nth

length-greater-0-conv order-less-le-trans path-image-join polygon-pathfinish polygon-pathstart
pos2)
qed

lemma cont-incr-interval-image:

fixes f :: real = real
assumes a < b
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assumes continuous-on {a..b} f
assumes Vz € {a..b}. Vy € {a.b}. 2 <y — fa < fy
shows f{a..b} = {f a..f b}
proof—
have f{a..b} C {fa..f b}
proof (rule subsetl)
fix z
assume z € f{a..b}
then obtain ¢ where ¢ € {a..b} A ft = z by blast
moreover then have a < t A t < b by presburger
ultimately show z € {f a..f b} using assms(3) by auto
qed
moreover have {f a..f b} C f{a..b}
proof—
obtain ¢ d where f{a..b} = {c..d} using continuous-image-closed-interval
assms by meson
moreover then have fa € {c..d} using assms(1) by auto
moreover have fb € {c..d} using assms(1) calculation by auto
moreover have {f a..f b} C {c..d} using calculation by simp
ultimately show ¢thesis by presburger
qged
ultimately show ?thesis by blast
qed

lemma two-z-minus-one-image:
assumes f = (Azureal. 2xx — 1)
assumes a < b
shows f{a..0} = {f a..f b}
proof—
have continuous-on {a..b} f
proof—
have continuous-on {a..b} (Az::real. z) by simp
then have continuous-on {a..b} (Az::real. 2+x) using continuous-on-mult-const
by blast
thus continuous-on {a..b} f
unfolding assms using continuous-on-translation-eq(of {a..b} —1 (Az::real.
2xx)] by auto
qed
thus ?thesis using cont-incr-interval-image assms by force
qed

lemma vts-split-path-image:
assumes p = make-polygonal-path vts
assumes p! = make-polygonal-path vtsl
assumes p2 = make-polygonal-path vts2
assumes vtsl = take 1 vts
assumes vts2 = drop (i—1) vts
assumes n = length vts
assumes I < i Ai<n
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assumes z = (27(i—1) — 1)/(27(i—1))
shows path-image p! = pq{0..x} A path-image p2 = p{z..1}
using assms
proof (induct i arbitrary: p pl p2 vts vtsl vts2 n x)
case (
then show ?case by linarith
next
case (Suc 17)
{ assume *: Suc i = 1
then obtain ¢ where a: vts! = [a]
using Suc.prems
by (metis One-nat-def gr-implies-not0 list.collapse list.size(3) take-eq-Nil
take-tl zero-neg-one)
moreover have vts2 = vts using * Suc.prems by force
ultimately have p! = linepath a a A p2 = p
using Suc.prems make-polygonal-path.simps by meson
moreover have r = 0 using Suc.prems * by simp
moreover have path-image pl = {a} using calculation by simp
moreover have p{0..0} = {p 0} by auto
moreover then have p{0..0} = {a} using Suc.prems
by (metis a gr0-conv-Suc list.discI nth-Cons-0 nth-take pathstart-def poly-
gon-pathstart take-eq-Nil)
moreover have path-image p1 = p{0..2} using calculation by presburger
moreover have path-image p2 = p{z..1} using calculation unfolding path-image-def
by fast
ultimately have ?case by blast
} moreover
{ assume *: Suc i > 1

let ?a = vts!0

let 2b = wvts!1

let 21 = linepath ?a ?b

let ?L = path-image ?1

let 2t = tl vts

let 2vtsl’ = take i 2t

let ?vts2’ = drop (i—1) %t

let ?p’ = make-polygonal-path 7t

let ?p1’ = make-polygonal-path ?vis1’
let ?p2’ = make-polygonal-path ?vis2’
let %z’ = ((2:real) (i—1)—1)/(27(i—1))
let ?P1’ = path-image ?p1’

let ?P2’ = path-image ?p2’

have i: 1 < i A i < length 2t

using Suc.prems x by (metis Suc-eg-plus1 length-tl less-Suc-eg-le less-diff-conv)
then have ih: ?P1' = 2p'{0..%22'} N 2P2' = 2p'{?2'..1}

using Suc.hypslof ?p’ ?2tl ?p1’ 2vts1’ ?p2’ 2vts2’ length ?tl ?x’] by presburger

let ?f = Az:real. 2xx — 1
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have fr: ?fz = 72/
by (metis i Suc.prems(8) bounding-interval-helperl diff-Suc-1 summation-helper)

moreover have fhalf: ?f (1/2) = 0 by simp
moreover have f1: ?f 1 = 1 by simp
ultimately have f: 2f{z..1} = {?2'..1} A 2f{1/2..2} = {0..2z'}
using two-x-minus-one-image by auto
have z: 1/2 <z ANz < 1
by (smt (verit) divide-le-eq-1-pos divide-nonneg-nonneg fhalf fr two-realpow-ge-one)

have n > 3 using Suc.prems x by linarith
then have p: p = 2] +++ %p’
proof —
have f1: Vuvs. (vs::(real, 2) vec list) # [| V = 1 < Suc (length vs)
by simp
have 1 < Sucn
using Suc.prems(7) by linarith
then show ?Zthesis
by (smt (verit) f1 Suc-le-lessD i One-nat-def Suc.prems(6) Suc.prems(7)
Suc-less-eq «p = make-polygonal-path vtsy hd-conv-nth length-Cons length-tl less-Suc-eq
list.collapse list.exhaust make-polygonal-path.simps(4) nth-Cons-Suc zero-order(3))

qed
have p-to-p " Vy > 1/2.py=(%'0 2f) y
proof clarify
fix y :: real
assume *x: y > /2
{ assume *x: y = 1/2
then have p y = %b
by (smt (verit) fhalf joinpaths-def linepath-1" p)
moreover have ?fy = 0 using *x by simp
moreover have ?p’ 0 = %b
by (metis i One-nat-def Suc.prems(6) length-greater-0-conv length-tl
list.size(8) nth-tl pathstart-def polygon-pathstart zero-order(3))
ultimately have p y = (%p’ o 2f) y by simp
} moreover
{ assume *x: y > 1/2
then have p y = ?p’ (?f y) unfolding p joinpaths-def by simp
then have p y = (%p’ o ?f) y by force
}
ultimately show p y = (%p’ o ?f) y using * by fastforce
qed

have {0..z} ={0..1/2} U{1/2..2} using z by (simp add: ivl-disj-un-two-touch(4))
then have pq{0..2} = p{0..1/2} U p{1/2..2} by blast

also have ... = 7L U p{1/2..z}

proof—
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have ?L C pq0..1/2}
proof (rule subsetl)
fix a
assume *: a € ?L
then obtain ¢ where ¢: t € {0..1} A ?lt = a unfolding path-image-def
by blast
then have p (t/2) = a unfolding p joinpaths-def by auto
moreover have ¢/2 € {0..1/2} using ¢ by simp
ultimately show a € p{0..1/2} by blast
qed
moreover have p{0..1/2} C ?L
proof (rule subsetl)
fix a
assume *: a € pq0..1/2}
then obtain ¢ where ¢ € {0..1/2} A p t = a by blast
moreover then have ?] (2xt) = p t unfolding p joinpaths-def by presburger
moreover have 2xt € {0..1} using calculation by simp
ultimately show a € ?L unfolding path-image-def by auto
qed
ultimately have ?L = p{0..1/2} by blast
thus ?thesis by presburger

qed

also have ... = 2L U (%p' o 2f){1/2..x} using p-to-p’ by simp
also have ... = 2L U ?p’{0..%z'} using f by (metis image-comp)
also have ... = ?L U ?P1’ using ih by blast

also have ... = path-image p1

proof—

have take i (tl vts) # [] by (metis i less-zeroE list.size(3) not-one-le-zero
take-eq-Nil2)
thus ?thesis using path-image-cons-union|of p1 vtsl ?p1’ 2vts1’ 2a ?b]
by (metis * Nitpick.size-list-simp(2) One-nat-def Suc.prems(2) Suc.prems(4)
Suc.prems(6) Suc.prems(7) bot-nat-0.extremum-strict hd-conv-nth length-greater-0-conv
nth-take nth-tl take-Suc take-tl)
qed
finally have 1: path-image p1 = p{0..2} by argo

have p{z.. 1}—(9p o ?f){x..1} using p-to-p’ x by simp

also have ... = 9p’{?z'..1} using f by (metis image-comp)
also have ... = ?P2’ using ih by presburger
also have ... = path-image p2

using path image-cons-union
by (metis Suc.prems(3) Suc.prems(5) diff-Suc-1 drop-Suc grO-implies-Suc i
linorder-neqE-nat not-less-zero not-one-le-zero)
finally have 2: path-image p2 = p{z..1} by argo

have ?case using 1 2 by fast

}

ultimately show ?case using Suc.prems by linarith
qed
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lemma drop-i-is-loop-free:
fixes vts :: (real™2) list
assumes m = length vts
assumes 1 < m — 2
assumes vts’ = drop 7 vts
assumes p = make-polygonal-path vts
assumes p’ = make-polygonal-path vts’
assumes loop-free p
shows loop-free p’
using assms
proof (induct i arbitrary: vts’ p’)
case ()
then show ?case by simp
next
case (Suc 17)

let 2vts’’ = drop i vts
let ?p’’ = make-polygonal-path ?vts’
have ih: loop-free ?p”’
using Suc.hyps Suc.prems(2) Suc.prems(6) Suc-leD assms(1) assms(4) by
blast

obtain a b where ab: 2vis’’ = a # vts’ A b= vis’! 0
by (metis Cons-nth-drop-Suc Suc.prems(3) constant-linepath-is-not-loop-free
drop-eq-Nil ih linorder-not-less make-polygonal-path.simps(1))
then have %vts’”’ = a # b # (vts’ ! 1) # (drop 2 vts')
by (smt (verit, ccfo-threshold) Cons-nth-drop-Suc Suc.prems(2) Suc.prems(3)
Suc-1 Suc-diff-Suc Suc-le-eq assms(1) diff-Suc-1 diff-is-0-eq drop-drop le-add-diff-inverse
length-drop nat-le-linear not-less-eq-eq zero-less-Suc)
then have ?p”’ = (linepath a b) +++ p’
using make-polygonal-path.simps(4)[of a b vts’ ! 1 drop 2 vts'] Suc.prems by
(simp add: ab)
moreover have pathfinish (linepath a b) = pathstart p’
using Suc.prems ab
by (metis constant-linepath-is-not-loop-free ih make-polygonal-path.simps(2)
pathfinish-linepath polygon-pathstart)
ultimately have arc p’ using simple-path-joinE
by (metis ih make-polygonal-path-gives-path simple-path-def)
then show ?case using arc-imp-simple-path simple-path-def by blast
qed

lemma joinpaths-tl-transform:
assumes f = (Az:real. 2%z — 1)
assumes pathfinish g1 = pathstart g2
assumes p = gl +++ g2
assumes z > 1/2
shows p z = g2 (f x)

proof—
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{ assume z = 1/2
moreover then have fx = 0 using assms by fastforce
ultimately have p z = pathfinish g1 A g2 (f x) = pathfinish g1
using assms unfolding pathfinish-def pathstart-def joinpaths-def by force
then have p x = g2 (f z) using assms unfolding joinpaths-def by simp
} moreover
{ assume z > 1/2
then have p z = ¢2 (f z) using assms unfolding joinpaths-def by simp
}
ultimately show p z = g2 (f ) using assms by fastforce
qed

lemma joinpaths-tl-image-transform:

assumes [ = (Az:real. 2%z — 1)

assumes pathfinish g1 = pathstart g2

assumes p = gl +++ g2

assumes 1/2 <aAa<b

shows p{a..b} = g2{f a..f b}
proof—

have Vz € {a..b}. p x = g2 (f ) using assms joinpaths-ti-transform[of f g1 g2
p] by force

then have p{a..b} = (g2 o f){a..b} by simp

also have ... = g2 a..f b} using two-z-minus-one-image by (metis assms(1,4)
image-comp)

finally show ?thesis .
qed

lemma vts-sublist-path-image:

assumes p = make-polygonal-path vts

assumes p’ = make-polygonal-path vts’

assumes vts’ = take j (drop i vts)

assumes m = length vts

assumes n = length vts’

assumes k =i + j

assumes k< m — 1 N2 <j

assumes z1 = (277 — 1)/(27%)

assumes z2 = (27(k—1) — )/( Tk—1))

shows path-image p’ = p{xl..22}

using assms
proof (induct i arbitrary: vts p p’ vts’ m k x1 z2)

case ()

then show ?case using vts-split-path-image|of p drop 0 vts p’ vts' - - j m x2)

by (metis (no-types, opaque-lifting) Suc-diff-le add-0 cancel-comm-monoid-add-class. diff-cancel
diff-is-0-eq div-by-1 drop.simps(1) drop-0 le-add-diff-inverse length-drop less-one
linorder-not-le plus-1-eq-Suc pos2 power.simps(1))
next

case (Suc 17)

let 2vts-tl = tl vts
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let Zvts-tl’ = take j (drop i vts-tl)

let ?p-tl = make-polygonal-path ?vts-tl
let ?m’ = m—1

let 2k’ = i+j

let ?z1’ = (27 — 1)/(27%)

let 22" = (27(?k'—1) — 1)/(27(%'-1))
let 9f = \x. 2%z — 1

have vts’ = ?vts-tl’ using Suc.prems by (metis drop-Suc)
then have p’ = make-polygonal-path ?vts-tl’ using Suc.prems by argo
then have h: path-image p' = ?p-tl{?x1’.. 222"}
using Suc.hyps|of ?p-tl ?vts-tl p’ Pvts-tl’ ?m’ 2k’ 2x1’ 222'] Suc.prems
by (smt (verit, ccfv-SIG) Suc-eq-plusl add-diff-cancel-right’ add-leD1 diff-diff-left
diff-is-0-eq drop-Suc le-add-diff-inverse length-tl linorder-not-le not-add-less2)

let %a = vts!0
let 96 = vts!1
let 21 = linepath ?a ?b
have p: p = 2l ++4 ?p-tl
proof—
have length vts > 3 using Suc.prems by linarith
then obtain ¢ w where vis = %a # ?b # ¢ # w
by (metis Cons-nth-drop-Suc One-nat-def Suc-le-eq drop0 numeral-3-eq-3
order-less-le)
thus ?thesis
using Suc.prems make-polygonal-path.simps(4)[of ?a ?b ¢ w] by (metis
list.sel(3))
qed
moreover have z1
moreover have z2
using Suc.prems
by (smt (verit, best) Nat.diff-add-assoc2 One-nat-def add-Suc-shift add-diff-cancel-left’
add-mono-thms-linordered-semiring(2) diff-add-cancel dual-order.trans group-cancel.rule0
numeral-One one-le-numeral one-le-power plus-1-eq-Suc power-increasing real-shrink-le
trans-le-add2)
moreover have pathfinish ?l = pathstart ?p-tl
by (metis One-nat-def Suc.prems(4) Suc.prems(6) Suc.prems(7) Suc-neq-Zero
add-is-0 diff-is-0-eq’ diff-zero length-tl linorder-not-less list.size(3) nth-tl pathfin-
ish-linepath polygon-pathstart)
ultimately have p{z1..22} = %p-ti{?f z1..9f 22}
using joinpaths-tl-image-transformlof 2f 21 ?p-tl p x1 x2] by presburger
also have ... = ?p-tl{%z1'..%22'}
by (metis (no-types, lifting) Nat.add-diff-assoc Suc.prems(6—9) add.commute
add-leD1 bounding-interval-helper1 diff-Suc-1 le-add2 nat-1-add-1 plus-1-eq-Suc sum-
mation-helper)

1/2 using Suc.prems by (simp add: plus-1-eg-Suc)

>
> xl

also have ... = path-image p’ using ih by blast
finally show ?Zcase by argo
qed
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lemma one-append-simple-path:
fixes vts :: (real™2) list
assumes vts = vts’ @Q [7]
assumes n = length vts
assumes n > 3
assumes p = make-polygonal-path vts
assumes p’ = make-polygonal-path vts’
assumes simple-path p
shows simple-path p’
using assms
proof (induct n arbitrary: vts vts’ p p’)
case ()
then show ?case by linarith
next
case (Suc n)
{ assume *: Suc n = 3
then obtain a b ¢ where abc: vis = [a, b, ¢] A vts’ = [a, b]
using Suc.prems
by (smt (28) Suc-le-length-iff Suc-length-conv append-Cons diff-Suc-1 drop0
length-0-conv length-append-singleton numeral-3-eq-3)
then have p’ = linepath a b
by (simp add: Suc.prems(5))
moreover have a # b using loop-free-polygonal-path-vts-distinct Suc.prems
by (metis abc butlast-snoc distinct-length-2-or-more simple-path-def)
ultimately have ?case by blast
} moreover
{ assume *: Suc n > 3
then obtain a b tl’ where ab: vts’ = a # I’ A b = t1"0 using Suc.prems
by (metis Suc-le-length-iff Suc-le-mono length-append-singleton numeral-3-eq-3)
moreover then have p = make-polygonal-path (a # (I’ Q [2])) using Suc.prems
by auto
moreover then have p: p = linepath a b +++ make-polygonal-path (t’ Q [2])
using make-polygonal-path.simps ab
by (smt (verit, ccfv-threshold) * Cons-nth-drop-Suc One-nat-def Suc.prems(1)
Suc.prems(2) Suc-1 Suc-less-eq append-Cons drop0 length-Cons length-append-singleton
length-greater-0-conv list.size(8) not-numeral-less-one numeral-3-eq-3)
moreover then have simple-path ... using Suc.prems by meson
ultimately have pre-ih: simple-path (make-polygonal-path (tl' Q [2]))
using Suc.prems(1) Suc.prems(2) Suc.prems(3) ab tail-of-simple-polygonal-path-is-simple
by simp
then have ih: simple-path (make-polygonal-path tl’)
using Suc.hyps * Suc.prems(1) Suc.prems(2) ab by force
have simple-path ((linepath a b) +++ make-polygonal-path t1')
proof—
let 291 = linepath a b
let 292 = make-polygonal-path tl’
let ?G1 = path-image ?g1
let ?G2 = path-image 292
have pathfinish 292 = last tl’
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by (metis constant-linepath-is-not-loop-free ih last-conv-nth make-polygonal-path.simps(1)
polygon-pathfinish simple-path-def)
also have ... = vts | (length vts — 2)
by (metis ab Suc.prems(1) Suc-1 constant-linepath-is-not-loop-free diff-Suc-1
diff-Suc-Suc ih impossible-Cons last.simps last-conv-nth length-Cons length-append-singleton
list.discI make-polygonal-path.simps(1) nle-le nth-append order-less-le simple-path-def)
finally have pathfinish-g2: pathfinish %92 = vts ! (length vts — 2) .

have pathfinish ?2g1 = pathstart 292
by (metis ab constant-linepath-is-not-loop-free ih linepath-1' make-polygonal-path.simps(1)
pathfinish-def polygon-pathstart simple-path-def)
moreover have arc g1
by (metis Suc.prems(6) p arc-linepath constant-linepath-is-not-loop-free
not-loop-free-first-component simple-path-def)
moreover have arc 792
proof —
have pathstart g2 = b
using calculation(1) by auto
moreover have b = vts!1
by (metis ab One-nat-def Suc.prems(1) Suc.prems(2) Suc.prems(3)
Suc-le-eq length-append-singleton not-less-eq-eq nth-Cons-Suc nth-append numeral-3-eq-3)
moreover have last tl’ # vts!1
using loop-free-polygonal-path-vts-distinct Suc.prems
by (metis pre-ih ab append-Nil append-butlast-last-id butlast-conv-take but-
last-snoc calculation(2) constant-linepath-is-not-loop-free hd-conv-nth ih index-Cons
index-last list.collapse make-polygonal-path.simps(2) simple-path-def take0)
ultimately have pathfinish 292 # b
using pathfinish-g2 <pathfinish (make-polygonal-path tl') = last tly by
presburger
thus ?thesis
using <pathstart (make-polygonal-path t1") = by arc-simple-path ih by blast
qed
moreover have ?G1 N ?G2 C {pathstart %92}
proof (rule subsetl)
let 2z = ((2::real) (n—1) — 1)/(2(n—1))
have g1: ?G1 = p{0..1/2}
proof—
have take 2 vts = [a, b]
by (smt (verit) * One-nat-def Suc.prems(1) Suc.prems(2) Suc-1 ab ap-
pend-Cons butlast-snoc drop0 drop-Suc-Cons length-append-singleton less-Suc-eqg-le
not-less-eq-eq nth-butlast numeral-3-eq-3 plus-1-eq-Suc same-append-eq take-Suc-Cons
take-Suc-eq take-add take-all-iff)
then have %91 = make-polygonal-path (take 2 vts)
using make-polygonal-path.simps by presburger
moreover have I < n using * by linarith
ultimately have ?GI1 = p{0..(27(2—-1) — 1)/(27(2-1))}
using vts-split-path-image
by (metis x Suc.prems(2) Suc.prems(4) Suc-1 Suc-leD Suc-lessD
eval-nat-numeral(3) order.refl)
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thus ?thesis by force
qged
have g2: ?G2 = p{1/2..%2}
proof—
have I’ = take (n — 1) (drop 1 vts)
using ab Suc.prems(1) Suc.prems(2) by simp
moreover then have 992 = make-polygonal-path (take (n — 1) (drop 1
vts)) by blast
ultimately have ?G2 = p{(271 — 1)/(271)..%2}
using vts-sublist-path-imagelof p vts 292 t1' n—1 1 - - n ((2::real) "1 —
1)/(271) ?7]
by (metis * Suc.prems(1) Suc.prems(2) Suc.prems(4) Suc-eq-plusi
ab add-0 add-Suc-shift add-le-imp-le-diff diff-Suc-Suc diff-zero eval-nat-numeral(8)
length-Cons length-append less-Suc-eq-le list.size(3) order.refl)
thus ?thesis by simp
qged
have 1/2 < %z
using * bounding-interval-helper|[of n—1] Suc.prems
by (smt (verit) One-nat-def diff-Suc-Suc less-diff-conv numeral-3-eq-3
one-le-power plus-1-eq-Suc power-one-right power-strict-increasing-iff real-shrink-le
add-2-eq-Suc diff-add-inverse less-trans-Suc numeral-eq-Suc pos2 self-le-power zero-less-diff)
moreover have 7z < 1 by auto
ultimately have z: 1/2 < 22 A %2 < 1 by blast

fix z
assume z € ?G1 N ?G2
then obtain tI 2 where t1t2: t1 € {0..1/2} N t2 € {1/2..22} AN p tl =
T Aptl ==
by (smt (verit, del-insts) g1 g2 Int-iff imageE path-image-def)
moreover have (11 =t2)V (I =0 ANt2=1)V (il =1 Nt2=0)
proof—
have t1 € {0..1} A t2 € {0..1}
by (meson t1t2 z atLeastAtMost-iff dual-order.trans less-eq-real-def)
thus ?thesis
using Suc.prems(6) unfolding simple-path-def loop-free-def using t1t2
by presburger
qged
moreover have t1 = 1/2 using calculation by force
ultimately have = = pathstart 292
by (metis ab constant-linepath-is-not-loop-free dual-order.refl eq-divide-eqg-numerall (1)
ih joinpaths-def make-polygonal-path.simps(1) mult.commute p pathfinish-def pathfin-
ish-linepath polygon-pathstart simple-path-def zero-neg-numeral)
thus z € {pathstart g2} by simp
qed
ultimately show ?thesis using arc-join-eq ih by (metis arc-imp-simple-path)
qed
moreover have vis’ = a # tl’ using Suc.prems ab by argo
moreover have p’ = (linepath a b) +++ make-polygonal-path tl’
proof —
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have Suc (length tl') = length vts’ by (simp add: ab)
then show ?thesis
by (metis (no-types) * Cons-nth-drop-Suc Suc.prems(1) Suc.prems(2)
Suc.prems(5) Suc-lessD ab drop-0 length-append-singleton make-polygonal-path.simps(4)
not-less-eq numeral-3-eq-3)
qed
ultimately have ?case by blast
}
ultimately show ?case using Suc.prems by linarith
qed

lemma take-i-is-loop-free:
fixes vts :: (real™2) list
assumes n = length vts
assumes 2 < i AT <n
assumes vts’ = take 7 vts
assumes p = make-polygonal-path vts
assumes p’ = make-polygonal-path vts
assumes loop-free p
shows loop-free p’
using assms
proof (induct n—i arbitrary: vts’ i p p’)
case ()
moreover then have p = p’ by auto
ultimately show ?case by argo
next
case (Suc x)

/

let 7' = i+1
let ?q-vts = take (i+1) vts
let ?q = make-polygonal-path ?q-vts

have n— %’ = z using Suc.hyps(2) by linarith
then have loop-free ?q using Suc.hyps Suc.prems(2) Suc.prems(4) Suc.prems(6)
assms(1) by auto
moreover obtain z where ?q = make-polygonal-path (vts’ Q [2])
unfolding Suc.prems(3)
by (metis Suc.hyps(2) Suc-eg-plusl assms(1) take-Suc-conv-app-nth zero-less-Suc
zero-less-diff)
ultimately show loop-free p’
unfolding Suc.prems using one-append-simple-path unfolding simple-path-def
by (metis One-nat-def Suc.prems(2) Suc-1 add-diff-cancel-right’ append-take-drop-id
assms(1) diff-diff-cancel length-append length-append-singleton length-drop make-polygonal-path-gives-path
not-less-eq-eq numeral-3-eq-3)
qed

lemma sublist-is-loop-free:

fixes vts :: (real”2) list
assumes p = make-polygonal-path vts
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assumes p’ = make-polygonal-path vts’
assumes loop-free p
assumes m = length vts
assumes n = length vts’
assumes sublist vts’ vts
assumes n > 2 Am > 2
shows loop-free p’
proof—
obtain pre post where vts: vts = pre Q vts’ Q post using assms(6) unfolding
sublist-def by blast
then have vts’ @ post = drop (length pre) vts using vts by simp
moreover have vts’ = take (length vts’) (vts’ @Q post) using vts by simp
moreover have loop-free (make-polygonal-path (vts’ @Q post))
using drop-i-is-loop-free assms calculation
by (smt (verit, del-insts) One-nat-def Suc-1 Suc-leD diff-diff-cancel drop-all
le-diff-iff " length-append length-drop list.size(3) nat-le-linear not-numeral-le-zero
numeral-3-eq-3 trans-le-add1)
ultimately show ?thesis
using take-i-is-loop-free assms
by (metis sublist-append-rightI sublist-length-le)
qed

lemma diff-points-path-image-set-property:
fixes a b:: real 2
assumes a # b
shows path-image (linepath a b) # {a, b}
proof —
have not-a: (linepath a b) (1/2) # a
by (smt (verit) add-diff-cancel-left’ assms divide-eq-0-iff linepath-def scaleR-cancel-left
scaleR-collapse)
have not-b: (linepath a b) (1/2) # b
by (smt (verit, ccfv-SIG) add-diff-cancel-right’ assms divide-eq-1-iff linepath-def
scaleR-cancel-left scaleR-collapse)
have (linepath a b) (1/2) € path-image (linepath a b)
unfolding path-image-def by simp
then show “thesis using not-a not-b by blast
qed

lemma polygonal-path-vertex-t:
assumes p = make-polygonal-path vts
assumes n = length vts
assumes n > I
assumes (0 <1 Ai<n— 1
assumes z = (277 — 1)/(27%)
shows vitsli = p x
using assms

proof (induct i arbitrary: p vts n x)
case (
then show ?case
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by (metis bot-nat-0.extremum cancel-comm-monoid-add-class. diff-cancel diff-is-0-eq
div-0 less-nat-zero-code list.size(8) pathstart-def polygon-pathstart power-0)
next

case (Suc 17)

let ?vts’ = tl vis
let ?p’ = make-polygonal-path ?vts’
let 22/ = (27 — 1)/(27%)

have p z = %p’ %z’

proof—
let 2a = vts!0
let 20 = wvis!1

let 21 = linepath ?a ?b
have n > 8 using Suc.prems by linarith
then have length ?vts’ > 2 by (simp add: Suc.prems(2))
then have p = 2] +++ ?p’
using Suc.prems make-polygonal-path.simps(4)[of ?a ?b ?vts''1 drop 2 ?vts]
by (metis (no-types, opaque-lifting) Cons-nth-drop-Suc Suc-1 bot-nat-0.not-eq-extremum
diff-Suc-1 diff-is-0-eq drop-0 drop-Suc less-Suc-eq zero-less-diff)
moreover have pathfinish ?1 = pathstart ?p’
by (metis One-nat-def <2 < length (tl vts)s length-greater-0-conv nth-tl or-
der-less-le-trans pathfinish-linepath polygon-pathstart pos2)
moreover have (\z:real. 2 x x — 1) z = %z’
using Suc.prems(5) Suc-eq-plusl bounding-interval-helper! diff-Suc-1 le-add2
summation-helper
by presburger
ultimately show ?thesis using joinpaths-ti-transform[of Ax. 2xx — 1 21 %p' p
7
by (smt (verit, del-insts) divide-nonneg-nonneg half-bounded-equal two-realpow-ge-one)
qed
moreover have vts!(i+1) = %vts’li using Suc.prems by (simp add: nth-tl)
moreover have ?vtsli = ?p’ %z’ using Suc.hyps Suc.prems by force
ultimately show ?case by simp
qed

lemma loop-free-split-int:

assumes p = make-polygonal-path vts N\ loop-free p

assumes vtsl = take i vts

assumes vts2 = drop (i—1) vts

assumes c! = make-polygonal-path vtsi

assumes c2 = make-polygonal-path vts2

assumes n = length vts

assumes I < i Ai<n

shows (path-image c1) N (path-image ¢2) C {pathstart c1, pathstart c2}

(is 2C1 N 2C2 C {pathstart c1, pathstart c2})

proof (rule subsetl)

let 2t = ((2::real) (i—1) — 1)/(27(i—1))
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fix z
assume z € ?C1 N ?2C2
moreover have clc2: ?C1 = p{0..%t} N 2C2 = p{?t..1}
using vis-split-path-image assms polygon-of-def by metis
ultimately obtain ¢I ¢2 where t1t2: t1 € {0..2t} N2 € {?t..1} Aptl =z
A p t2 = = by auto
moreover have t1 € {0..1} A t2 € {0..1} using calculation by force
moreover have (11 =t2)V (t1 =0 Nt2 =1)
using assms(1) calculation unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by fastforce
ultimately have = € {p ?t, p 0} by fastforce
moreover have p 9t = pathstart c2
using assms polygonal-path-vertex-t
by (smt (verit, ccfv-SIG) Cons-nth-drop-Suc diff-less-mono le-eq-less-or-eq
length-drop less-imp-diff-less less-trans-Suc less-zeroE linorder-neqE-nat list.size(8)
nth-Cons-0 numeral-1-eq-Suc-0 numerals(1) polygon-of-def polygon-pathstart)
moreover have p 0 = pathstart c1 using assms
by (metis One-nat-def diff-is-0-eq diff-zero linorder-not-less nth-take path-
start-def polygon-pathstart take-eq-Nil zero-less-Suc)
ultimately show z € {pathstart c1, pathstart c2} by blast
qged

lemma loop-free-arc-split-int:
assumes p = make-polygonal-path vts N loop-free p N\ arc p
assumes vtsl = take 7 vts
assumes vts2 = drop (i—1) vts
assumes cl = make-polygonal-path vtsi
assumes c2 = make-polygonal-path vts2
assumes n = length vts
assumes 1 < i Ai<n
shows (path-image c1) N (path-image c2) C {pathstart c2}
(is ?C1 N 2C2 C {pathstart c2})
proof(rule subsetl)
let 7t = ((2::real) (i—1) — 1)/(27(i—1))

fix z
assume z € ?C1 N ?2C2
moreover have c1c2: ?C1 = p{0..9t} N 2C2 = p{?..1}
using vts-split-path-image assms polygon-of-def by metis
ultimately obtain ¢I ¢2 where t1t2: t1 € {0..2t} AN t2 € {?t..1} Aptl =z
A p t2 = = by auto
moreover have t1 € {0..1} A t2 € {0..1} using calculation by force
moreover have (t1 =t2)V (t1 = 0 Nt2 = 1)
using assms(1) calculation unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by fastforce
moreover then have t1 = t2
using assms(1) unfolding arc-def using calculation(1) inj-on-contraD by
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fastforce
ultimately have z € {p ?t} by fastforce
moreover have p 7t = pathstart c2
using assms polygonal-path-vertex-t
by (smt (verit, ccfv-SIG) Cons-nth-drop-Suc diff-less-mono le-eg-less-or-eq
length-drop less-imp-diff-less less-trans-Suc less-zeroE linorder-neqE-nat list.size(8)
nth-Cons-0 numeral-1-eq-Suc-0 numerals(1) polygon-of-def polygon-pathstart)
ultimately show z € {pathstart c2} by fast
qed

lemma loop-free-append:
assumes p = make-polygonal-path vts
assumes pl = make-polygonal-path vtsl
assumes p2 = make-polygonal-path vts2
assumes vts = vtsl @ (¢l vts2)
assumes loop-free p1 N loop-free p2
assumes path-image pl N path-image p2 C {pathstart p1, pathstart p2}
assumes last vts2 # hd vtsl — path-image pl N path-image p2 C {pathstart
p2}
assumes last vtsl = hd vts2
assumes arc pl A arc p2
shows loop-free p
using assms
proof (induct length vts1 arbitrary: p pl p2 vts vtsl vts2 rule: less-induct)
case less
have 1: length vis1 > 2
using less
by (metis Suc-1 arc-distinct-ends constant-linepath-is-not-loop-free diff-is-0-eq’
make-polygonal-path.simps(1) not-less-eq-eq polygon-pathfinish polygon-pathstart)
moreover have length vts2 > 2
using less.prems
by (metis One-nat-def Suc-1 Suc-lel arc-distinct-ends diff-Suc-1 length-greater-0-conv
make-polygonal-path.simps(1) nat-less-le pathfinish-linepath pathstart-linepath poly-
gon-pathfinish polygon-pathstart)
ultimately have length vts > 3 using less assms(4) by auto
{ assume *: length vis] = 2
then obtain « b where vts! = [a, b]
by (metis 1 Cons-nth-drop-Suc One-nat-def Suc-1 drop0 drop-eq-Nil lessl pos2)
then have pi: p! = linepath a b
using less make-polygonal-path.simps(3) by metis
have p: p = p1 +++ p2
using pl less
by (smt (verit) «vtsl = [a, b]> append-Cons assms(4) constant-linepath-is-not-loop-free
last-ConsL last-ConsR list.exhaust-sel list.inject list.simps(3) make-polygonal-path.elims
self-append-conv?2)
have b: pathstart p2 € path-image p1 N path-image p2
by (metis Intl less(3,4,6,9) constant-linepath-is-not-loop-free hd-conv-nth
last-conv-nth make-polygonal-path.simps(1) pathfinish-in-path-image pathstart-in-path-image
polygon-pathfinish polygon-pathstart)
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{ assume pathstart pl = pathfinish p2
then have ?case using simple-path-join-loop-eqlof p2 p1] less.prems
by (metis make-polygonal-path-gives-path p path-join-eq simple-path-def)
} moreover
{ assume xx: pathstart p! # pathfinish p2
then have path-image p1 N path-image p2 = {pathstart p2}
using less.prems b
by (metis constant-linepath-is-not-loop-free empty-subsetl hd-conv-nth in-
sert-subset last-conv-nth make-polygonal-path.simps(1) polygon-pathfinish polygon-pathstart
subset-antisym)
then have ?case
using arc-join-eq[of p1 p2]
by (metis less(2,4,10) arc-imp-simple-path arc-join-eg-alt make-polygonal-path-gives-path
p path-join-path-ends simple-path-def)

ultimately have ?case by blast
} moreover
{ assume x: length visl > 2
then have len-p1: length vts1 > 3 by linarith
then obtain a b vts-tl where ab: vts = a # vts-tl A b = hd vts-tl
by (metis <3 < length vtsy length-0-conv list.collapse not-numeral-le-zero)
have vts1-char: vtsl = (vtsl | 0) # (visl | 1) # (visl | 2) # (drop 3 vtsl)
using len-p1
by (metis 1 Cons-nth-drop-Suc One-nat-def Suc-1 drop0 length-greater-0-conv
linorder-not-less list.size(3) not-less-eq-eq not-numeral-le-zero numeral-3-eq-3)
then have tail-vtsI-char: tl vtsl = (visl | 1) # (vtsl | 2) # (drop 3 vtsl)
by (metis list.sel(3))

let 2l = linepath a b

let 2vtsi-tl = tl vtsl

let ?p1-tl = make-polygonal-path ?vtsi-tl
let 2vts2-tl = tl vts2

let ?p2-tl = make-polygonal-path ?vts2-tl
let ?p-tl = make-polygonal-path vts-tl

have p: p = 21 +++ ?p-tl
unfolding less.prems(1)
by (smt (verit, ccfv-SIG) Suc-le-length-iff <3 < length vts» ab list.discl
list.sel(1) list.sel(8) make-polygonal-path.elims numeral-3-eq-3)
have pi1: p1 = 2l +4++ p1-t
using ab unfolding less.prems(2)
by (smt (verit, ccfv-SIG) x Nitpick.size-list-simp(2) One-nat-def Suc-1 Suc-le-eq
hd-append?2 less.prems(4) list.sel(1) list.sel(3) make-polygonal-path.elims nat-less-le
tl-append?)

have pI-img: path-image ?] N path-image ?p1-tl = {pathstart ?p1-tl}

by (metis arc-join-eg-alt less.prems(2) less.prems(9) make-polygonal-path-gives-path
pl path-join-path-ends)
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have vts-tl = ?vts1-tl @ (¢l vts2)
using less.prems(4) ab
by (metis * length-greater-0-conv list.sel(3) order.strict-trans pos2 tl-append?2)
moreover have loop-free ?p1-tl N loop-free p2
using <3 < length vtsl» less.prems(2) less.prems(5) sublist-is-loop-free by
fastforce
moreover have path-image ?p1-tl N path-image p2 C {pathstart p2}
proof—
have path-image ?p1-tl C path-image pl1
by (metis (no-types, opaque-lifting) x Suc-1 Suc-lessD length-tl less.prems(2)
list.collapse list.size(3) order.refl path-image-cons-union sup.bounded-iff zero-less-diff
zero-order(3))
then have path-image ?p1-tl N path-image p2 C {pathstart p1, pathstart p2}
using less by blast
moreover have pathstart pl ¢ path-image ?p1-tl
proof (rule ccontr)
assume - pathstart p1 ¢ path-image ?p1-tl
then have pathstart p! € path-image ?p1-tl by blast
thus Fulse
by (metis (no-types, lifting) Intl arc-def arc-simple-path less(10) make-polygonal-path-gives-path
pl pl-img path-join-path-ends pathstart-in-path-image pathstart-join simple-path-joinFE
singletonD)
qed
ultimately have path-image ?p1-tl N path-image p2 C {pathstart p2} by
blast
thus “thesis by blast
qed
moreover then have last vis2 # hd ?vts1-tl
— path-image ?p1-tl N path-image p2 C {pathstart p2} by blast
moreover have last ?vts1-tl = hd vts2
by (metis * Suc-1 drop-Nil drop-Suc-Cons last-drop last-tl less.prems(8)
list.collapse)
moreover have arc ?p1-tl A arc p2
by (smt (verit, best) = Nitpick.size-list-simp(2) Suc-1 arc-imp-simple-path
constant-linepath-is-not-loop-free diff-Suc-Suc diff-is-0-eq leD length-greater-0-conv
length-tl less.prems(2) less.prems(5) less.prems(9) list.sel(3) make-polygonal-path.elims
make-polygonal-path-gives-path order.strict-trans path-join-path-ends pos2 simple-path-joinE)
ultimately have ih1: loop-free ?p-tl
using less.hyps|of vts1-tl ?p-tl vis-tl ?p1-tl p2 vis2] x less.prems(3) by
fastforce

have p-tl-img: path-image ?p-tl = path-image ?p1-tl U path-image p2

by (metis (no-types, lifting) = Suc-1 Suc-le-eq <2 < length vts2s «last (tlvtsl) =
hd vts2» <vts-tl = tl vts1 @ tl vts2» hd-conv-nth last-conv-nth length-greater-0-conv
length-tl less.prems(3) less-diff-conv make-polygonal-path-image-append-alt order-less-le-trans
path-image-join plus-1-eq-Suc polygon-pathfinish polygon-pathstart pos2)

have 1: length [a, b] < length vtsl using <3 < length vtsl» by fastforce
moreover have 2: p = make-polygonal-path vts using less.prems(1) by auto
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moreover have 3: 7l = make-polygonal-path [a, b] by simp
moreover have /: ?p-tl = make-polygonal-path vts-tl using less by simp
moreover have 5: vts = [a, b] @ ¢l vts-tl
using ab <3 < length vts) append-eq-Cons-conv by fastforce
moreover have 6: loop-free 2l N loop-free ?p-tl
proof—
have sublist [a, b] vts!
by (metis (no-types, opaque-lifting) 1 Cons-nth-drop-Suc Suc-lessD ab ap-
pend-Cons drop0 length-Cons less.prems(4) list.sel(1) list.sel(3) list.size(3) sub-
list-take take0 take-Suc-Cons)
then have loop-free (make-polygonal-path [a, b))
using sublist-is-loop-free * less.prems(2) less.prems(5) by fastforce
then have loop-free ?] using make-polygonal-path.simps(3) by simp
thus ?thesis using ih1 by simp
qed
moreover have 9: last [a, b] = hd vts-tl by (simp add: ab)
moreover have 10: arc ?l A arc ?p-tl
proof—
have pathstart ?p-tl = b
by (metis 6 ab constant-linepath-is-not-loop-free hd-conv-nth make-polygonal-path.simps(1)
polygon-pathstart)
moreover have pathfinish ?p-tl # b
proof (rule ccontr)
assume — pathfinish ?p-tl # b
have pathfinish ?p-tl = pathfinish p2
by (smt (verit) 5 9 Nil-tl <2 < length vts2) - pathfinish (make-polygonal-path
vts-tl) # by ab arc-distinct-ends last-append last-conv-nth last-tl length-tl less.prems(3)
less.prems(4) less.prems(9) list.size(3) not-numeral-le-zero polygon-pathfinish poly-
gon-pathstart)
moreover have b € path-image p1
by (metis list.size(3) 1 Cons-nth-drop-Suc Suc-lessD UnCI ab append-eq-conv-conj
drop0 hd-append2 hd-conv-nth length-Cons less.prems(2) less.prems(4) list.distinct(1)
list.sel(3) path-image-cons-union pathstart-in-path-image polygon-pathstart ti-append2)
moreover have b # pathstart p1
by (metis (no-types, lifting) 1 6 ab constant-linepath-is-not-loop-free
dual-order.strict-trans hd-append?2 hd-conv-nth length-greater-0-conv less.prems(2)
less.prems(4) list.sel(1) list.size(3) polygon-pathstart)
moreover have b #£ pathfinish p2
by (metis (no-types, lifting) Int-insert-right-if1 arc-distinct-ends cal-
culation(2) calculation(3) insert-absorb insert-iff insert-not-empty less.prems(6)
less.prems(9) pathfinish-in-path-image subset-iff)
ultimately show Fulse
using <— pathfinish (make-polygonal-path vts-tl) # by by fastforce
qed
ultimately have pathstart ?p-tl # pathfinish ?p-tl by simp
then have arc ?p-tl
using ih1 arc-def loop-free-cases make-polygonal-path-gives-path by metis
moreover have arc ?l by (metis 6 arc-linepath constant-linepath-is-not-loop-free)
ultimately show ?thesis by blast
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qed
moreover have 7: path-image ?l N path-image ?p-tl C {pathstart ¢, pathstart
Zp-tl}
proof—
have path-image ?l C path-image pl1
by (metis Un-iff <loop-free (make-polygonal-path (tl vts1)) A loop-free
P2y «uts-tl = tl vis1 Q tl vts2» ab constant-linepath-is-not-loop-free hd-append2
hd-conv-nth make-polygonal-path.simps(1) pl path-image-join pathfinish-linepath
polygon-pathstart subsetl)
then have path-image 2l N path-image p2 C {pathstart p1, pathstart p2}
using less.prems(6) by auto
moreover have pathstart p2 ¢ path-image ¢l
by (smt (verit, ccfo-threshold) 10 Int-insert-left-if1 <arc (make-polygonal-path
(¢l vtsl)) A arc p2» <last (tl vtsl) = hd vts2> <loop-free (make-polygonal-path (&l
vts1)) A loop-free p2» arc-def arc-distinct-ends arc-join-eq-alt constant-linepath-is-not-loop-free
hd-conv-nth insert-absorb last-conv-nth less.prems(3) less.prems(9) make-polygonal-path.simps(1)
p1 path-join-eq pathfinish-in-path-image polygon-pathfinish polygon-pathstart single-
ton-insert-inj-eq’)
ultimately have path-image 71 N path-image ?p-tl C {pathstart p1, pathstart
?p1-tl}
using pl-img p-tl-img by blast
moreover have pathstart ?p1-tl = pathstart ?p-tl
by (metis 2 less.prems(2) make-polygonal-path-gives-path p p1 path-join-path-ends)
moreover have pathstart pI = pathstart ¢l by (simp add: p1)
ultimately show ?thesis by argo
qged
moreover have 8: last vts-tl # hd [a, b]
— path-image ¢l N path-image ?p-tl C {pathstart ?p-tl}
proof clarify
fix z
assume al: last vts-tl # hd [a, b]
assume a2: ¢ € path-image ?1
assume a3: x € path-image ?p-tl

have hd vts1 # last vts2
using less.prems
by (metis al vts-tl = tl vtsl Q tlvts2> ab arc-distinct-ends constant-linepath-is-not-loop-free
hd-append?2 last-appendR last-tl length-tl list.sel(1) list.size(3) make-polygonal-path.simps(1)
polygon-pathfinish polygon-pathstart)
then have p1-p2-int: path-image p1 N path-image p2 C {pathstart p2}
using less.prems by argo

have x # pathstart ?1
proof (rule ccontr)
assume xx: — z # pathstart ?1
have pathstart 7l ¢ path-image ?p1-tl
by (metis Int-iff arc-distinct-ends arc-join-eq-alt empty-iff insertE less.prems(2)
less.prems(9) make-polygonal-path-gives-path p1 path-join-path-ends pathstart-in-path-image)
then have pathstart ?l € path-image p2 using p1-img p-tl-img *x a8 by
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blast
then have pathstart ?1 € path-image p1 N path-image p2
by (metis Intl p1 pathstart-in-path-image pathstart-join)
moreover have pathstart ?1 # pathstart p2
by (metis arc-distinct-ends constant-linepath-is-not-loop-free hd-conv-nth
last-conv-nth less.prems(2) less.prems(3) less.prems(5) less.prems(8) less.prems(9)
make-polygonal-path.simps(1) p1 pathstart-join polygon-pathfinish polygon-pathstart)
ultimately show Fualse using p1-p2-int by blast
qed
moreover have z = pathstart ?l V © = pathstart ?p-tl using 7 a2 a3 by
blast
ultimately show = = pathstart ?p-tl by fast
qed
ultimately have ?case using less.hyps[of [a, b] p vts ?1 ?p-tl vts-tl] by blast
}
ultimately show ?case using less 1 by linarith
qed

lemma sublist-path-image-subset:

assumes sublist vtsl vts2

assumes length vtsl > 1

shows path-image (make-polygonal-path vts1) C path-image (make-polygonal-path
vts2)
proof—

let ?p1 = make-polygonal-path visl

let ?p2 = make-polygonal-path vis2

let ?m = length vtsl

let %n = length vts2

have n-geg-m: %n > ?m by (simp add: assms(1) sublist-length-le)

have ?thesis if *: length vts1 = 1
proof—
have path-image ?p1 = {vts110}
by (metis Cons-nth-drop-Suc One-nat-def closed-segment-idem drop0 drop-eq-Nil
le-numeral-extra(4) make-polygonal-path.simps(2) path-image-linepath that zero-less-one)
moreover have vts1!0 € set vts2
by (metis assms(1) less-numeral-extra(1) nth-mem set-mono-sublist subsetD
that)
ultimately show ¢thesis
using vertices-on-path-image by force
qed
moreover have ?thesis if *: length vis1 > 2
proof—
obtain pre post where sublist: vts2 = pre Q vts1 @Q post
using assms(1) unfolding sublist-def by blast
let ?¢ = length pre
let ?2j = length vtsl
let 2%k = %0 + 7§
let %21 = (27%i — 1)/27(%i)::real
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let %22 = (27(%k—1) — 1)/(27(%k—1))::real
let 90 =(2 (% —1)— 1)/ 2 (% — 1):real
have path-image ?p1 = ?p2 * {%z1..222} if *x: length post > 1
using sublist * xx vts-sublist-path-image[of ?p2 vts2 ?p1 visl 2§ 26 ?n ?m %k
?x1 722]
by fastforce
moreover have path-image ?p1 = %p2 ‘{%z1..1} if *x: length post = 0
proof—
have sublist: vts2 = pre @ vtsl using ** sublist by blast
moreover have vts] = drop ?i vts2 using sublist * by simp
moreover have 1 < % + 1 A % + 1 < length vts2 using sublist * *x by
stmp
ultimately show ?thesis
using vts-split-path-image|of ?p2 vts2 - - ?p1 vtsl ?i + 1 ?n ?x1] add-diff-cancel-right’
by metis
qed
moreover have ?p2 ¢ {%z1..2z2} C path-image ?p2 A ?p2 ‘ {%x1..1} C
path-image ?p2
proof—
have {?x1..222} C {0..1} A {?21..1} C {0..1} by simp
thus “thesis unfolding path-image-def by blast
qed
ultimately show ?thesis by (metis less-one linorder-not-le)
qed
ultimately show ?thesis using assms by linarith
qged

lemma integral-on-edge-subset-integral-on-path:

assumes p = make-polygonal-path vts and
(i:int) € {0..<((length vts) — 1)} and
x = vtsli and
y = vts!(i+1)

shows {v. integral-vec v A v € path-image (linepath x y)}
C {w. integral-vec v A v € path-image p}

using assms edge-subset-path-image by blast

lemma sublist-pair-integral-subset-integral-on-path:
assumes p = make-polygonal-path vts and
sublist [z, y] vts
shows {v. integral-vec v A v € path-image (linepath z y)}
C {wv. integral-vec v A v € path-image p}
using assms integral-on-edge-subset-integral-on-path
proof—
obtain pre post where vts: vts = pre @ [z, y| @ post using assms(2) sublist-def
by blast
let ?¢ = length pre
have z = vts! 7] using vts by simp
moreover have y = vts!(% + 1)
by (metis vts add.right-neutral append-Cons nth-Cons-Suc nth-append-length
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nth-append-length-plus plus-1-eg-Suc)

moreover have 7 € {0..<((length vts) — 1)} using vts by force

ultimately show ?thesis using assms(1) integral-on-edge-subset-integral-on-path
by auto
qed

lemma sublist-integral-subset-integral-on-path:
assumes length ell > 2
assumes p = make-polygonal-path vts and
sublist ell vts
shows {v. integral-vec v A v € path-image (make-polygonal-path ell)}
C {w. integral-vec v A v € path-image p}
proof—
obtain pre post where vts: vts = pre @Q ell Q post using assms(3) sublist-def
by blast
then have len-vts: length vts > 2
using assms(1)
by auto
let ?¢ = length pre
have v € path-image p if *: v € path-image (make-polygonal-path ell) for v
proof —
have Jj::nat. v € path-image (linepath (ell ! §) (ell ! (j+1))) A j+1 < length
ell
using * polygonal-path-image-linepath-union assms(1)
by (meson less-diff-conv make-polygonal-path-image-property)
then obtain j where v-in: v € path-image (linepath (ell ! §) (ell ! (j+1)))
j+1 < length ell
by auto
then have ell-at: ell | j = vts | (j + length pre) A ell ! (j+1) = vts ! (j + 1
+ length pre)
using vts
by (simp add: nth-append)
then have v-in2: v € path-image (linepath (vis! (j + length pre)) (vts ! (j +
length pre + 1)))
using v-in(1) by simp
have j + 1 + length pre < length vts
using ell-at v-in(2) vts by auto
then have j-plus: j + length pre < length vts — 1
by auto
then show ?thesis using v-in2 linepaths-subset-make-polygonal-path-image| OF
len-vts j-plus] assms(1)
assms(2) by auto
qed
then show ?thesis by blast
qed

13 Reversing Polygonal Path Vertex List

lemma rev-vts-path-image:
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shows path-image (make-polygonal-path (rev vts)) = path-image (make-polygonal-path
vts)
proof —
{ assume length vts < 1
then have ?thesis
by (smt (verit, best) One-nat-def Suc-length-conv le-SucE le-zero-eq length-0-conv
rev.simps(1) rev-singleton-conv)
} moreover
{ fix z
assume *: x € path-image (make-polygonal-path (rev vts)) A length vts > 2
then obtain k& where k-prop: k<length (rev vts) — 1 A z € path-image (linepath
(rev vts | k) (rev vts ! (k + 1)))
using make-polygonal-path-image-property|of rev vts| by auto
have p1: rev vts | k = vts | (length vts — k — 1)
using rev-nth
by (metis Suc-lessD <k < length (rev vts) — 1 A z € path-image (linepath
(rev vts | k) (rev vts ! (k + 1)))» add.commute diff-diff-left length-rev less-diff-conv
plus-1-eq-Suc)
have p2: rev vts | (k + 1) = vts ! (length vts — k — 2)
using rev-nth[of k+1 vts] k-prop
by force
then have z € path-image (linepath (vts ! (length vts — k — 1)) (vts ! (length
vts — k — 2)))
using k-prop pl p2 by auto
then have z € path-image (linepath (vts ! (length vts — k — 2)) (vts | (length
vts — k — 1)))
using reversepath-linepath path-image-reversepath
by metis
then have z € path-image (make-polygonal-path vts)
using linepaths-subset-make-polygonal-path-image * k-prop
by (smt (verit, best) Nat.diff-add-assoc add.commute add-diff-cancel-left’
diff-le-self length-rev less-Suc-eq less-diff-conv linorder-not-less nat-1-add-1 nat-neg-iff
plus-1-eq-Suc subsetD)
} moreover
{ fix z
assume *: ¢ € path-image (make-polygonal-path vts) A length vts > 2
then obtain k where k-prop: k<length vts — 1 A x € path-image (linepath
(vts 1 k) (vts ! (k + 1))
using make-polygonal-path-image-property|of vts] by auto
have p1: vts | k = (rev vts) ! (length vts — k — 1)
using rev-nth k-prop
by (metis Suc-eq-plus1 Suc-lessD diff-diff-left length-rev less-diff-conv rev-rev-ident)
have p2: vts ! (k + 1) = (rev vts) ! (length vts — k — 2)
using rev-nth[of k+1]
by (smt (verit) Suc-eq-plusl add-2-eq-Suc’ diff-diff-left k-prop length-rev
less-diff-conv rev-rev-ident)
then have z € path-image (linepath (rev vts | (length vts — k — 2)) (rev vts !
(length vts — k — 1)))
using reversepath-linepath path-image-reversepath
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by (metis k-prop p1)
then have z € path-image (make-polygonal-path (rev vts))
using linepaths-subset-make-polygonal-path-image k-prop *
by (smt (verit, best) Suc-1 Suc-diff-Suc Suc-eq-plusl Suc-le-eq Suc-lessD
bot-nat-0.not-eq-extremum diff-commute diff-diff-left diff-less length-rev less-numeral-extra(1)
subsetD zero-less-diff)
}
ultimately show #?thesis by force
qed

lemma rev-vts-is-loop-free:
assumes p = make-polygonal-path vts
assumes loop-free p
shows loop-free (make-polygonal-path (rev vts))
using assms
proof (induct length vts arbitrary: p vts)
case (
then show ?case by simp
next
case (Suc n)
then have Suc n > 2
by (metis One-nat-def Suc-length-conv constant-linepath-is-not-loop-free le-SucE
le-add1 le-numeral-Suc length-greater-0-conv list.size(3) make-polygonal-path.simps(2)
numeral-One plus-1-eq-Suc pred-numeral-simps(2) semiring-norm(26))
moreover
{ assume *: Suc n = 2
then obtain a b where ab: p = linepath a b
using Suc.prems make-polygonal-path.simps(8)
by (metis (no-types, opaque-lifting) Cons-nth-drop-Suc One-nat-def Suc.hyps(2)
Suc-1 diff-Suc-1 drop-0 drop-Suc length-0-conv length-tl zero-less-Suc)
moreover then have a # b using Suc.prems(2) constant-linepath-is-not-loop-free
by blast
ultimately have loop-free (linepath b a) by (simp add: linepath-loop-free)
moreover have make-polygonal-path (rev vts) = linepath b a
by (smt (23) = Cons-nth-drop-Suc One-nat-def Suc.hyps(2) Suc.prems(1)
Suc-1 Suc-diff-Suc ab butlast-snoc diff-Suc-1 drop0 hd-conv-nth hd-rev last-conv-nth
length-butlast length-rev lessI linepath-1' make-polygonal-path.simps(3) nth-append-length
pathstart-def pathstart-linepath pos2 rev.simps(2) rev-is-Nil-conv rev-take take-eq-Nil)
ultimately have ?case by simp
} moreover
{ assume *: Suc n > 2
let ?vts’ = butlast vts
let ?p’ = make-polygonal-path ?vts’
let 2vts’-rev = rev ?vts’
let ?p’-rev = make-polygonal-path ?vts’-rev

let ?vts-rev = rev vts
let ?p-rev = make-polygonal-path ?vts-rev
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obtain y z where yz: y = last %vts’ A\ z = last vts by blast

let 2l = linepath y z

let ?l-rev = linepath z y

have loop-free ?p’

by (metis x Suc.hyps(2) Suc.prems(1) Suc.prems(2) butlast-conv-take diff-Suc-1
le-add?2 less-Suc-eq-le plus-1-eq-Suc take-i-is-loop-free)

then have loop-free-p’-rev: loop-free ?p’-rev using Suc.hyps by force

moreover have rev vts = 2 # ?vts’-rev

by (metis Suc.hyps(2) yz append-butlast-last-id length-0-conv nat.distinct(1)

rev-eq-Cons-iff rev-rev-ident)

moreover have y = hd ?vts’-rev using yz by (simp add: hd-rev)

ultimately have p-rev: ?p-rev = ?l-rev +++ ?p’-rev

by (smt (verit, best) constant-linepath-is-not-loop-free list.sel(1) make-polygonal-path.elims
make-polygonal-path.simps(4))

have [y, z] = drop (n—1) vts
using yz Suc.hyps(2)
by (metis (no-types, opaque-lifting) = Cons-nth-drop-Suc Suc-1 Suc-diff-Suc
Suc-lessD Suc-n-not-le-n append-butlast-last-id append-eq-conv-conj diff-Suc-1 last-conv-nth
length-0-conv length-butlast less-nat-zero-code linorder-not-le nth-take)
then have ¢l = make-polygonal-path (drop (n—1) vts)
using make-polygonal-path.simps by metis
moreover have ?p’' = make-polygonal-path (take n vts)
using Suc.hyps(2) by (metis butlast-conv-take diff-Suc-1)
ultimately have path-image ?I N path-image ?p’ C {pathstart ?l, pathstart
?p'}
using loop-free-split-int
by (smt (verit, ccfv-SIG) Int-commute Suc.hyps(2) Suc.prems(1) Suc.prems(2)
Suc-1 Suc-le-mono <2 < Suc ny insert-commute lessI)
moreover have path-image ?l = path-image ?l-rev by auto
moreover have path-image ?p’ = path-image ?p’-rev
using * Suc.hyps(2) rev-vts-path-image by force
moreover have pathstart ?l = pathfinish ?l-rev by simp
moreover have pathstart ?p’ = pathfinish ?p’-rev
by (metis Nil-is-rev-conv last.simps last-conv-nth last-rev list.distinct(1)
list. exhaust-sel make-polygonal-path.simps(1) make-polygonal-path.simps(2) nth-Cons-0
polygon-pathfinish polygon-pathstart)
ultimately have path-image-int:
path-image ?l-rev N path-image ?p’-rev C {pathfinish ?l-rev, pathfinish
?p’-rev}
by argo

have 1: pathfinish ?l-rev = pathstart ?p’-rev
by (metis make-polygonal-path-gives-path p-rev path-join-path-ends)
{ assume pathfinish ?p’-rev = pathstart ?l-rev
then have ?case using simple-path-join-loop 1 p-rev path-image-int
by (smt (verit, del-insts) Suc.hyps(2) Suc.prems(1) Suc.prems(2) Suc-1
linepath y z = make-polygonal-path (drop (n — 1) vts)» <loop-free (make-polygonal-path
(rev (butlast vts)))» constant-linepath-is-not-loop-free diff-Suc-Suc drop-i-is-loop-free
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dual-order.eq-iff insert-commute linepath-loop-free make-polygonal-path-gives-path
path-linepath pathfinish-linepath pathstart-linepath simple-path-cases simple-path-def)
} moreover
{ assume pathfinish ?p’-rev # pathstart ?l-rev
then have pathstart p # pathfinish p
by (metis Suc.prems(1) <loop-free (make-polygonal-path (butlast vts))s <path-
start (make-polygonal-path (butlast vts)) = pathfinish (make-polygonal-path (rev
(butlast vts)))» butlast-conv-take constant-linepath-is-not-loop-free last-conv-nth less-nat-zero-code
make-polygonal-path.simps(1) nat-neg-iff nth-take pathstart-linepath polygon-pathfinish
polygon-pathstart take-eq-Nil yz)
then have arc p
by (metis Suc.prems(1) Suc.prems(2) arc-def loop-free-cases make-polygonal-path-gives-path)
then have path-image ?l-rev N path-image ?p’-rev C {pathstart ?p’-rev}
using loop-free-arc-split-int
by (metis 1 Int-commute Suc.hyps(2) Suc.prems(1) Suc.prems(2) <2 < Suc
ny linepath y z = make-polygonal-path (drop (n — 1) vts)y <make-polygonal-path
(butlast vts) = make-polygonal-path (take n vts)y <path-image (linepath y z) =
path-image (linepath z y)» «path-image (make-polygonal-path (butlast vts)) = path-image
(make-polygonal-path (rev (butlast vts)))» <pathstart (linepath y z) = pathfinish
(linepath z y)» le-numeral-Suc lessI numerals(1) pred-numeral-simps(2) semiring-norm(26))
moreover have arc ?l-rev
by (metis Suc.hyps(2) Suc.prems(1) Suc.prems(2) Suc-1 <[y, z] = drop (n —
1) vtsy arc-linepath constant-linepath-is-not-loop-free diff-Suc-Suc drop-i-is-loop-free
dual-order.refl make-polygonal-path.simps(3))
moreover have arc ?p’-rev
proof—
have ?p’-rev 0 = last (butlast vts) by (metis 1 pathfinish-linepath pathstart-def
yz)
moreover have ?p’-rev 1 = hd (butlast vts)
by (metis <loop-free (make-polygonal-path (butlast vts))r <pathstart (make-polygonal-path
(butlast vts)) = pathfinish (make-polygonal-path (rev (butlast vts)))» constant-linepath-is-not-loop-free
hd-conv-nth make-polygonal-path.simps(1) pathfinish-def polygon-pathstart)
moreover have last (butlast vts) # hd (butlast vts) using Suc.prems
by (metis (no-types, lifting) * Suc.hyps(2) Suc-1 diff-is-0-eq index-Cons
indez-last leD length-butlast less-diff-conv less-imp-le-nat list.collapse list.size(8)
loop-free-polygonal-path-vts-distinct not-one-le-zero plus-1-eq-Suc)
ultimately have ?p’-rev 0 # ?p’-rev 1 by simp
thus ?thesis using loop-free-p’-rev
by (metis arc-def loop-free-cases make-polygonal-path-gives-path pathfin-
ish-def pathstart-def)
qed
ultimately have ?case
using arc-join-eq[OF 1] arc-imp-simple-path p-rev simple-path-def by auto
}

ultimately have ?case by blast

}

ultimately show ?case by linarith
qed
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lemma rev-vts-is-polygon:

assumes polygon-of p vts

shows polygon (make-polygonal-path (rev vts))

using rev-vts-is-loop-free assms

unfolding polygon-of-def polygon-def simple-path-def

using make-polygonal-path-gives-path

by (metis One-nat-def closed-path-def UNIV-def length-greater-0-conv polygon-pathfinish
polygon-pathstart polygonal-path-def rangel rev.simps(1) rev-nth rev-rev-ident)

end
theory Linepath-Collinearity
imports Polygon-Lemmas

begin

14 Collinearity Properties

lemma points-on-linepath-collinear:
assumes ezists-c: (Jc. a — b= ¢ xg u)
assumes z-in-linepath: x € path-image (linepath a b)
shows (3¢c. 2 —a=cx*gu) (Jc. b — 2= c xg u)
proof —
obtain k :: real where k-prop: 0 < kANk< 1 ANz=(1—k)*pa+ kx*pb
using z-in-linepath unfolding linepath-def path-image-def by fastforce
then have t = a — k*xg a+ k*xg b
by (simp add: eq-diff-eq)

then have t — a= — k*gpa+ kx*p b
by auto
then have zminusa: © — a = —kxg(a — b)

by (simp add: scaleR-right-diff-distrib)
obtain ¢ where c-prop: a — b = ¢ *xp u using ezists-c by blast
show (Jc. £ — a = ¢ xg u) using zminusa c-prop
by (metis scaleR-scaleR)
then show (Jc. b — z = ¢ xR u)
using exists-c
by (metis (no-types, opaque-lifting) add-diff-eq diff-add-cancel minus-diff-eq
scaleR-left-distrib)
qed

lemma three-points-collinear-property:
fixes a b:: real™2
assumes ezists-c1: (Jc. a — 21 = ¢ *g u)
assumes ezists-c2: (J¢c. a — 22 = ¢ *g u)
shows Jc. 1 — 22 = cxp u
proof —
obtain c1 where cl-prop: a — z1 = cl *g u
using exists-c1 by auto
obtain ¢2 where c2-prop: a — 22 = ¢c2 *g u
using ezists-c2 by auto
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then have a — 22 — (a — 21) = c2 xg u — ¢l *g u
using c1-prop c2-prop by simp
then have a — 22 — (¢ — 21) = (¢2 — ¢l) *rp u
by (simp add: scaleR-left-diff-distrib)
then show ?%thesis
by auto
qed

lemma in-path-image-imp-collinear:
fixes a b:: real™2
assumes k € path-image (linepath a b)
shows collinear {a, b, k}
proof —
obtain w where w-prop: w € {0..1} ANk = (1 — w) *g a + w*g b
using assms unfolding path-image-def linepath-def by fast
have collinear {0, a—b, (1 — w) *xg a + (w—1) *g b}
using collinear
by (smt (verit) collinear-lemma diff-minus-eq-add scaleR-minus-left scaleR-right-diff-distrib)
then have collinear {0, a — b, k — b}
using w-prop
by (metis (no-types, lifting) add.commute add-diff-cancel-left collinear-lemma
scaleR-collapse scaleR-right-diff-distrib)
then show ?thesis using assms collinear-alt collinear-3[of a b k]
by auto
qed

lemma two-linepath-colinearity-property:
fixes a b ¢ d:: real 2
assumes y # z A {y, z} C (path-image (linepath a b)) N (path-image (linepath
¢ d))
shows collinear {a, b, ¢, d}
proof —
have collinear {a, b, y, 2}
using in-path-image-imp-collinear assms
by (metis (no-types, lifting) Int-closed-segment collinear-4-3 inf.boundedE inf-idem
insert-absorb2 insert-subset path-image-linepath pathstart-in-path-image pathstart-linepath)
moreover have collinear {c, d, y, z}
using in-path-image-imp-collinear assms
by (metis (no-types, lifting) Int-closed-segment collinear-4-3 inf .boundedE inf-idem
insert-absorb?2 insert-subset path-image-linepath pathstart-in-path-image pathstart-linepath)
ultimately show ?thesis
using assms collinear-3-eq-affine-dependent collinear-4-3 insert-absorb2 in-
sert-commute
by (smt (23) collinear-3-trans)
qed

lemma polygon-vts-not-collinear:

assumes polygon-of p vts
shows — collinear (set vts)
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proof —
have len-vts: length vts > 3
using polygon-at-least-3-vertices assms unfolding polygon-of-def
using card-length dual-order.trans by blast
have compact-and-connected: compact (path-image p) N connected (path-image
p)
using inside-outside-polygon assms unfolding polygon-of-def
using compact-simple-path-image connected-simple-path-image polygon-def
by auto
have nonempty-path-image: path-image p # {}
using assms unfolding polygon-of-def
using vertices-on-path-image by simp
have collinear-imp: collinear (set vts) = (collinear (path-image p))
proof —
assume collinear (set vts)
then obtain u where u-prop: Vzeset vts. Vycset vts. 3c. ¢ — y = ¢ xgp u
unfolding collinear-def by blast
then have dc. x — y = ¢ xgr u if xy-in-pathimage: yEpath-image p A\ xE€path-image
p for z y
proof —
obtain k1 where ki-prop: k1 <length vts — 1 A x € path-image (linepath (vts
VED) (vts! (k1 + 1))
using make-polygonal-path-image-property xy-in-pathimage len-vts
by (metis One-nat-def Suc-1 Suc-leD assms numeral-3-eq-3 polygon-of-def)
then have Jc. (vts! k1) — (vts! (kI + 1)) = c*r u
by (meson add-lessD1 in-set-conv-nth less-diff-conv u-prop)
obtain k2 where k2-prop: k2<length vts — 1 A y € path-image (linepath (vts
VE2) (vts! (k2 + 1))
using make-polygonal-path-image-property xy-in-pathimage len-vts
by (metis One-nat-def Suc-1 Suc-leD assms numeral-3-eq-3 polygon-of-def)
have Jec. vts! (k2 + 1) — (vts k1) = cxg u
using u-prop k1-prop k2-prop
by (meson add-lessD1 less-diff-conv nth-mem)
have k2-vts-prop: Jc. vts ! (k2 + 1) — (vts 1 k2) = ¢ xg u
using u-prop k2-prop by fastforce
have ez-c-k2: Jc. vts | (k2 + 1) —y=cxr u
using points-on-linepath-collinear|of vts | (k2 + 1) vts | k2 u y] k2-prop
k2-vts-prop
by (meson add-lessD1 points-on-linepath-collinear(2) less-diff-conv nth-mem
u-prop)
have k1-vts-prop: Jc. vts ! (k1 + 1) — (vts ! kl) = ¢ xg u
using u-prop k1-prop by fastforce
have ez-c-k1-y: Je. vts! (kI + 1) — y=c*g u
using points-on-linepath-collinear|of vts ! (k1 + 1) vts ! kI w y] ki-prop
k1-vts-prop
by (meson <Jc. vts ! (k2 + 1) — vts ! kI = ¢ *p w Jc. vis | kI — vis !
(k1 + 1) = ¢ xg w three-points-collinear-property ex-c-k2)
have ez-c-k1-z: Jc. vts! (kI + 1) —xz = c*g u
using points-on-linepath-collinear|of vts ! (k1 + 1) vts ! kI w x] ki-prop
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k1-vts-prop
by (meson add-lessD1 points-on-linepath-collinear(2) less-diff-conv nth-mem
u-prop)
show ?thesis
using ez-c-k1-y ex-c-k1-y three-points-collinear-property ex-c-ki-x by blast
qed
then show (collinear (path-image p)) unfolding collinear-def by auto
qed
{ assume x: collinear (set vts)
then obtain a b::real”2 where im-closed: path-image p = closed-segment a b
using collinear-imp compact-convex-collinear-segment-alt|of path-image pl
compact-and-connected nonempty-path-image
by blast
have inside (closed-segment a b) = {}
by (simp add: inside-conver)
then have path-inside p = {}
unfolding path-inside-def using im-closed by auto
then have Fulse
using inside-outside-polygon assms unfolding polygon-of-def inside-outside-def
by blast
}

then show ?thesis by blast
qed

lemma not-collinear-with-subset:
assumes collinear A
assumes — collinear (A U {z})
assumes card A > 2
assumes a € A
shows — collinear (A — {a}) U {z})
proof—
obtain u v where uv: u € ANvEAANUFAvANUFE aANvF#a
proof—
have card (A — {a}) > 2 using assms by auto
then obtain u B where u € (A — {a}) A B= (A — {a} — {u})
by (metis bot-nat-0.extremum-unique card.empty ex-in-conv zero-neg-numeral)
moreover then obtain v where v € B
by (metis Diff-iff One-nat-def Suc-1 assms(3) assms(4) card.empty card.insert
equalsOI finite.intros(1) finite-insert insert-Diff insert-commute less-irrefl)
ultimately show ¢thesis using that by blast
qed
then have z ¢ affine hull {u, v}
using assms
by (smt (verit, ccfo-threshold) Un-commute Un-upperl collinear-affine-hull-collinear
hull-insert hull-mono insert-absorb insert-is-Un insert-subset)
moreover have v € A — {a} A v € A — {a} using uv by blast
ultimately show “thesis
by (metis UnCI collinear-3-imp-in-affine-hull collinear-triples insert-absorb sin-
gletonD uw)
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qed

lemma vec-diff-scale-collinear:
fixes a b ¢ :: real ™2
assumes b — a = m *g (¢ — a)
shows collinear {a, b, c}
proof—
{ assume m = 0
then have b = a using assms by simp
then have collinear {a, b, ¢} by auto
} moreover
{ assume m-nz: m # 0
then have c-eq: ¢ = (1/m) *r (b — a) + a using assms by simp
then have ¢ — b = (I/m — 1) xg (b — a) using m-nz by (simp add:
scaleR-left. diff)
then obtain m’ where ¢ — b = m' xg (b — a) by fast

then have ¢ — b € span({b — a}) by (simp add: span-breakdown-eq)
moreover from this have b — ¢ € span({b — a}) using span-0 span-add-eq2
by fastforce
moreover have ¢ — a € span({b — a}) using assms by (simp add: span-breakdown-eq
c-eq)
moreover from this have a — ¢ € span({b — a}) using span-0 span-add-eq2
by fastforce
moreover have b — a € span({b — a}) by (simp add: span-base)
moreover from this have o — b € span({b — a}) using span-0 span-add-eq2
by fastforce
moreover have Vv € {a, b, c}. v — v € span({b — a}) by (simp add: span-0)
ultimately have Vv € {a, b, c}. YVw € {a, b, c}. v — w € span({d — a}) by
blast
then have Vv € {a, b, ¢}. Vw € {a, b, ¢}. Ik. v — w =k x5 (b — a)
by (simp add: span-breakdown-eq)
then have collinear {a, b, ¢} using collinear-def by blast
}
ultimately show ?thesis using assms by auto
qed

15 Linepath Properties

lemma good-linepath-comm: good-linepath a b vts = good-linepath b a vts
unfolding good-linepath-def
by (metis (no-types, opaque-lifting) insert-commute path-image-linepath segment-convez-hull)

lemma finite-set-linepaths:
assumes polygon: polygon p
assumes polygonal-path: p = make-polygonal-path vts
shows finite {(a, b). (a, b) € set vts x set vis}
proof —
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have finite (set vts)
using polygonal-path by auto
then have finite (set vts X set vts)
by blast
then show ?%thesis
by auto
qed

lemma linepaths-intersect-once-or-collinear:

fixes a b ¢ d :: real™2

assumes path-image (linepath a b) N path-image (linepath ¢ d) # {}

shows collinear {a, b, ¢, d} V (3z. path-image (linepath a b) N path-image
(linepath ¢ d) = {z})
proof safe

assume — (3 z. path-image (linepath a b) N path-image (linepath ¢ d) = {z})

then obtain z y where z # y A {z, y} C path-image (linepath a b) N path-image
(linepath ¢ d)

using assms by blast

then show collinear {a, b, ¢, d} using two-linepath-colinearity-property by
meson
qed

lemma linepaths-intersect-once-or-collinear-alt:

fixes a b ¢ d :: real™2

assumes path-image (linepath a b) N path-image (linepath ¢ d) # {}

shows collinear {a, b, ¢, d} V card (path-image (linepath a b) N path-image
(linepath ¢ d)) = 1
proof—

have card (path-image (linepath a b) N path-image (linepath ¢ d)) = 1

+— (Jz. path-image (linepath a b) N path-image (linepath ¢ d) = {z})
using is-singleton-altdef is-singleton-def by blast

thus ?thesis using linepaths-intersect-once-or-collinear assms by presburger

qed

lemma path-image-linepath-union:
fixes a b :: 'a::euclidean-space
assumes d € path-image (linepath a b)
shows path-image (linepath a b) = path-image (linepath a d) U path-image
(linepath d b)
proof—
have path-image (linepath a b) = closed-segment a b using path-image-linepath
by simp
also then have ... = closed-segment a d U closed-segment d b
using Un-closed-segment assms by blast
also have ... = path-image (linepath a d) U path-image (linepath d b)
using path-image-linepath by simp
ultimately show ¢thesis by order
qed
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lemma path-image-linepath-split:
assumes i < (length vts) — 1
assumes z € path-image (linepath (vtsli) (vts!(i+1)))
assumes z-notin: ¢ set vts
shows path-image (make-polygonal-path vts) = path-image (make-polygonal-path
((take (i4+1) vts) @ [z] @Q (drop (i+1) vts)))
using assms
proof (induct length vts arbitrary: vts i )
case ()
then show ?case by linarith
next
case (Suc n)
let ?vts’ = (take (i+1) vts) @ [z] Q (drop (i+1) vts)
let ?p = make-polygonal-path vts
let ?p’ = make-polygonal-path ?vts’
have Suc n > 2 using Suc by linarith
then obtain v! v2 vts-tail where vts-is: vts = vl #Hv2#vts-tail
by (metis Suc(2) Cons-nth-drop-Suc One-nat-def Suc-1 Suc-le-eq drop0 zero-less-Suc)

{ assume *: i = 0
then have vts’-is: ?vts’ = [vl, x, v2] Q vts-tail
using vts-is by simp
then have z-in: = € path-image (linepath vl v2)
using * Suc.prems vts-is by simp
{ assume *: vts-tail = ||
then have p-is: path-image ?p = path-image (linepath vl v2)
using vts-is make-polygonal-path.simps(3)[of vl v2]
by simp
have path-image ?p’ = path-image (linepath vl z) U path-image (linepath x

v2)
using vts’-is * make-polygonal-path.simps(4)[of v1 z v2 []]
using make-polygonal-path.simps(3)[of x v2)
by (metis append.right-neutral list.discI nth-Cons-0 path-image-cons-union)
then have ?case
using p-is path-image-linepath-union[of x vl v2] assms(3) vts-is x-in by
blast

} moreover
{ assume x: vts-tail # ||
then have path-image ?p = path-image (linepath vl v2) U path-image
(make-polygonal-path (v24#tvts-tail))
using path-image-cons-union vts-is by (metis list.discI nth-Cons-0)
moreover have path-image (linepath vi z) U path-image (linepath © v2) =
path-image (linepath vl v2)
using path-image-linepath-union x-in by blast
ultimately have ?case
by (metis (no-types, lifting) append-Cons append-Nil inf-sup-aci(6) list.discl
nth-Cons-0 path-image-cons-union vts'-is)

ultimately have ?case by blast
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} moreover
{ assume * :i > 0
then have Suc n > 2 using Suc by linarith

let 2vts-tl = tl vts

let 2vts-tl’ = (take @ ?vts-tl) Q [z] Q (drop i Pvts-tl)
let ?p-tl = make-polygonal-path ?vts-tl

let ?p-tl’ = make-polygonal-path ?vts-tl’

have ?vts-til(i—1) = vtsli A ?vts-tlli = vtsl(i+1) using Suc x by (simp add:
vts-is)
moreover then have z € path-image (linepath (?vts-til(i—1)) (Zvts-tili))
using Suc by presburger
ultimately have path-image ?p-tl = path-image ?p-tl’
using Suc
by (smt (verit) x One-nat-def Suc-lel diff-Suc-1 le-add-diff-inverse2 length-tl
less-diff-conv list.sel(3) list.set-intros(2) vts-is)
moreover have path-image ?p = path-image (linepath vl v2) U path-image
?p-tl
using path-image-cons-union vts-is by auto
ultimately have Zcase
by (smt (verit, ccfu-threshold) Nil-is-append-conv Suc-eq-plusl i = 0 =
path-image (make-polygonal-path vts) = path-image (make-polygonal-path (take (i
+ 1) vts @ [2] @Q drop (i + 1) vts))» append-Cons append-same-eq append-take-drop-id
drop-Suc hd-append?2 hd-conv-nth list.sel(1) list.sel(3) path-image-cons-union take-eq-Nil
vts-1s)
}
ultimately show ?case by linarith
qed

lemma linepath-split-is-loop-free:

assumes d € path-image (linepath a b)

assumes d ¢ {a, b}

shows loop-free (make-polygonal-path [a, d, b)) (is loop-free ?p)
proof—

let 211 = linepath a d

let 212 = linepath d b

have path-image ?11 N path-image 212 = {d} using Int-closed-segment assms(1)
by auto

moreover have arc ?l1 A arc 712 using assms(2) by fastforce

ultimately show ?thesis

by (metis arc-imp-simple-path arc-join-eq-alt make-polygonal-path.simps(3)

make-polygonal-path.simps(4) pathfinish-linepath pathstart-linepath simple-path-def)
qed

lemma loop-free-linepath-split-is-loop-free:
assumes p = make-polygonal-path vts
assumes loop-free p
assumes n = length vts
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assumes 7 < n — 1
assumes z € path-image (linepath (vtsli) (vts!(i+1))) A z ¢ set vts
assumes vts’' = (take (i+1) vts) Q [z] @ (drop (i+1) vts)
assumes p’' = make-polygonal-path vts’
shows loop-free p' A path-image p’ = path-image p
using assms
proof (induct i arbitrary: p vts p’ vts’ n)
case ()
let Zvts-tl = tl vts
let ?p-tl = make-polygonal-path ?vts-tl
let 2vts’-tl = tl vts’
let ?p’-tl = make-polygonal-path ?vts’-tl
let %a = vts!0
let 96 = vts!1
let ¢l = linepath ?a ?b
let ?l' = make-polygonal-path [?a, x, D]

have vts”: vts’ = [%a, 2] @ ?vts-tl
using 0
by (metis (no-types, lifting) Suc-eq-plus! append-Cons append-eq-append-conv?
append-self-conv bot-nat-0.not-eq-extremum diff-is-0-eq drop0 drop-Suc list.collapse
nth-Cons-0 take-Suc take-all-iff take-eq-Nil)

have z ¢ {%a, ?b}

by (metis 0(3—5) One-nat-def Suc-eq-plus! bot-nat-0.not-eq-extremum diff-is-0-eq
insert-iff less-diff-conv nth-mem singletonD take-Suc-eq take-all-iff)

then have If-1" loop-free ?1’ using linepath-split-is-loop-free[of x ?a ?b] 0 by
simp

{ assume length ?vts-tl = 1
then have vts’ = [%a, z, ?b]
by (metis Cons-nth-drop-Suc One-nat-def append-eq-Cons-conv drop0 drop-eq-Nil
le-numeral-extra(4) nth-tl vis' zero-less-one)
then have ?case using linepath-split-is-loop-free path-image-linepath-split
by (metis 0.prems(1) 0.prems(3) 0.prems(4) 0.prems(5) 0.prems(6) 0.prems(7)
If-1)
} moreover
{ assume x: length ?vts-tl > 2
then have p: p = 2] +++ ?p-tl
using make-polygonal-path.simps(4)[of ?a ?b]
by (metis (no-types, opaque-lifting) 0(1) 0(8) 0(4) Cons-nth-drop-Suc
One-nat-def Suc-1 Suc-le-eq diff-is-0-eq drop-0 drop-Suc length-tl less-nat-zero-code
nat-le-linear nth-tl)

have loop-free ?p-tl
using tail-of-loop-free-polygonal-path-is-loop-free 0 *
by (metis list.exhaust-sel list.sel(2))

moreover have I-1": path-image ?l = path-image 71’
using path-image-linepath-split 0
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by (metis One-nat-def Suc-eq-plusl list.discI make-polygonal-path.simps(8)
nth-Cons-0 path-image-cons-union path-image-linepath-union)
moreover have path-image ?l' N path-image ?p-tl C {%a, 7b}
by (metis (mono-tags, opaque-lifting) p I-1' 0.prems(1) 0.prems(2) make-polygonal-path-gives-path
path-join-path-ends pathfinish-linepath pathstart-linepath simple-path-def simple-path-joinE)
moreover have arc p — path-image ?l’ N path-image ?p-tl C {2b}
using p [-l’
by (metis arc-def arc-join-eq make-polygonal-path-gives-path path-join-eq
path-linepath pathfinish-linepath)
moreover have arc p «— hd [?a, x, ?b] # last (tl vts)
by (metis * 0.prems(1) 0.prems(2) arc-def arc-simple-path last-conv-nth last-tl
list.sel(1) list.sel(2) list.size(3) loop-free-cases make-polygonal-path-gives-path not-numeral-le-zero
polygon-pathfinish polygon-pathstart)
moreover have vts’ = [?a, z, 7b] Q ¢l Pvts-tl
by (metis drop-Suc 0.prems(3) 0.prems(4) One-nat-def append-Cons ap-
pend-Nil append-take-drop-id length-tl nth-tl take-Suc-conv-app-nth take-eq-Nil vts’)
moreover have last [?a, z, ?b] = hd ?vts-tl
by (metis 0.prems(8) 0.prems(4) One-nat-def hd-conv-nth last.simps length-greater-0-conv
length-tl list.discI nth-tl)
moreover have pathfinish ?l = pathstart ?p-tl
by (metis (no-types) 0.prems(1) make-polygonal-path.simps(3) make-polygonal-path-gives-path
p path-join-eq)
moreover have /v va vb vs. pathfinish (linepath v va) = pathstart (make-polygonal-path
(va # vb # vs))

by (metis (no-types) make-polygonal-path.simps(3) make-polygonal-path.simps(4)
make-polygonal-path-gives-path path-join-eq)
ultimately have loop-free p’
using loop-free-append|of p' vts’ 2l [?a, x, ?b] ?p-tl Pvts-tl]
by (metis (no-types) 0.prems(1) 0.prems(2) 0.prems(7) arc-simple-path If-1’
make-polygonal-path.simps(8) make-polygonal-path.simps(4) make-polygonal-path-gives-path
p pathfinish-join pathstart-linepath simple-path-def simple-path-joinE)
then have ?case
using 0(1) 0(3) 0(4) 0(5) 0(6) 0(7) path-image-linepath-split by blast

ultimately show ?case
by (metis 0(3,4) One-nat-def Suc-lessl length-tl less-eq-Suc-le nat-1-add-1

plus-1-eq-Suc)
next

case (Suc 17)

let ?uts-tl = tl vts

let ?p-tl = make-polygonal-path ?vts-tl

let 2uts’-tl = tl vts'

let ?p’-tl = make-polygonal-path ?vts’-tl

let %a = vts!0

let 96 = vts!1

let ¢l = linepath ?a ?b

have ?vts-tlli = vts!(Suc ©) A Pvts-tll(i+1) = vts!((Suc 7) + 1)
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by (metis Suc.prems(8) Suc.prems(4) add-Suc-right add-Suc-shift diff-is-0-eq
linorder-not-le list.exhaust-sel list.size(3) not-less-zero nth-Cons-Suc)
moreover have set vts-tl C set vts
by (metis list.sel(2) list.set-sel(2) subsetl)
ultimately have z € path-image (linepath (2vts-tili) (Pvts-tll(i+1))) A © ¢ set
Zuts-tl
using Suc.prems(5) by auto
moreover have vis'-tl: ?vts’-tl = (take (i+1) %vts-t]) Q [z] Q (drop (i+1)
2uts-tl)
by (metis Suc.prems(3) Suc.prems(4) Suc.prems(6) Suc-eq-plus1 drop-Suc leD
length-tl take-all-iff take-eq-Nil take-tl tl-append?2 zero-eq-add-iff-both-eq-0 zero-neg-one)
moreover have loop-free ?p-tl
using tail-of-loop-free-polygonal-path-is-loop-free Suc.prems
by (metis Nitpick.size-list-simp(2) Suc-1 Suc-lel Suc-neq-Zero diff-0-eq-0 diff-Suc-1
less-one linorder-neqE-nat list.collapse not-less-zero)
ultimately have ih: loop-free ?p’-tl A path-image ?p’-tl = path-image ?p-tl
using Suc.prems Suc.hyps[of ?p-tl Pvts-tl - Pvts’-tl ?p’-tl] by simp

have p: p = 2l ++4 ?p-tl
proof —
have f1: Vovs. (hd (tl vs)::(real, 2) vec) = vs! 1 V[ =wvsV [ =t vs
by (metis (no-types) One-nat-def hd-conv-nth list.collapse nth-Cons-Suc)
have [] # tl vts A vts # [| A tl vts # [hd (H vis))
by (metis Suc.prems(1) Suc.prems(2) <loop-free (make-polygonal-path (tl vts))»
constant-linepath-is-not-loop-free make-polygonal-path.simps(1) make-polygonal-path.simps(2))
then have p = make-polygonal-path [hd vts, vts | 1] +++ make-polygonal-path
(tl vts) A wvts # []
using f1 by (metis (full-types) Suc.prems(1) list.collapse make-polygonal-path.simps(3)
make-polygonal-path.simps(4))
then show ?thesis
by (simp add: hd-conv-nth)
qed

have length vits’ > 3 using Suc.prems by force
moreover have ab: ?a = vts'l0 N ?b = vis'1
using Suc.prems
by (smt (verit, ccfv-SIG) One-nat-def Suc-eq-plusl add-Suc-right append-Cons
drop0 drop-Suc length-tl less-nat-zero-code list.exhaust-sel list.size(3) nat-diff-split
nth-Cons-0 nth-Cons-Suc take-Suc zero-less-Suc)
ultimately have p”: p’' = 2] +++ 2p’-tl
using Suc.prems(7) make-polygonal-path.simps(4)[of ?a 25
by (metis (no-types, opaque-lifting) Cons-nth-drop-Suc One-nat-def Suc-leD
Suc-le-eq drop0 drop-Suc numeral-3-eg-3)

have nonarc: path-image 2l N path-image ?p-tl C {%a, ?b}
using simple-path-join-loop-eq Suc.prems
by (smt (verit, ccfv-threshold) p One-nat-def length-tl less-zeroE make-polygonal-path-gives-path
nth-tl order.strict-iff-not order-le-less-trans path-join-eq path-linepath pathfinish-linepath
pathstart-linepath polygon-pathstart simple-path-def simple-path-joinE take-Nil take-all-iff)

131



have arc: arc p — path-image 21 N path-image ?p-tl C {?b}
using arc-join-eq
by (metis Suc.prems(1) p make-polygonal-path-gives-path path-join-eq path-linepath
pathfinish-linepath)

{ assume arc p
moreover then have path-image 9l N path-image ?p’-tl C {?b} using arc ih
by presburger
moreover have pathfinish ?1 = pathstart ?p’-tl
by (metis Suc.prems(7) make-polygonal-path-gives-path p’ path-join-path-ends)
ultimately have ?case using p’ arc-join-eq|of ?1 7p’-tl]
by (smt (verit, ccfv-SIG) Nil-is-append-conv Suc.prems(8) Suc.prems(4)
Suc-eq-plus1 vts’-tl arc-simple-path drop-eq-Nil ih last-appendR last-conv-nth last-drop
leD length-tl make-polygonal-path-gives-path p path-image-join path-join-eq path-linepath
pathfinish-linepath polygon-pathfinish simple-path-def simple-path-joinE take-all-iff
take-eq-Nil)
} moreover
{ assume — arc p
then have pathstart 21 = pathfinish ?p’-tl N\ pathfinish 2] = pathstart ?p’-tl
by (smt (verit, del-insts) Nil-is-append-conv Nil-tl One-nat-def Suc.prems(2)
Suc.prems(3) Suc.prems(4) Suc-eq-plusl vts’-tl ab arc-def drop-eq-Nil last-appendR
last-conv-nth last-drop leD length-tl list.collapse loop-free-cases make-polygonal-path-gives-path
nth-Cons-Suc p path-join-eq path-linepath pathfinish-join pathfinish-linepath path-
start-join polygon-pathfinish polygon-pathstart take-all-iff take-eq-Nil)
then have ?case using simple-path-join-loop-eq[of 71 ?p’-tl] p’ nonarc
by (smt (verit, ccfv-threshold) One-nat-def Suc.prems(2) Suc.prems(3) Suc.prems(4)
arc-def constant-linepath-is-not-loop-free dual-order.strict-trans ih leD length-tl loop-free-cases
make-polygonal-path-gives-path not-loop-free-first-component nth-tl p path-image-join
path-linepath pathfinish-linepath pathstart-linepath polygon-pathstart simple-path-def
stmple-path-join-loop-eq take-all-iff take-eq-Nil zero-less-Suc)
}
ultimately show ?case by argo
qed

lemma polygon-linepath-split-is-polygon:
assumes polygon-of p vts
assumes i < (length vts) — 1
assumes a = vtsli A b = vts!(i+1)
assumes z € path-image (linepath a b) A z ¢ set vts
assumes vts’' = (take (i+1) vts) Q [z] @ (drop (i+1) vts)
shows polygon (make-polygonal-path vts’)
proof—
let ?p’ = make-polygonal-path vts'
have path ?p’ using assms make-polygonal-path-gives-path by presburger
moreover have loop-free ?p’ using assms loop-free-linepath-split-is-loop-free
by (metis polygon-def polygon-of-def simple-path-def)
moreover have closed-path ?p’
proof—

132



have hd vts’ = hd vts
using assms
by (metis hd-append?2 hd-take le-diff-conv linorder-not-less take-all-iff take-eq-Nil2
trans-less-add?2 zero-less-one)
moreover have last vts’ = last vts
using assms linordered-semidom-class.add-diff-inverse by auto
ultimately show ¢thesis
by (metis closed-path-def <path ?p’y append-butlast-last-id append-eq-conv-conj
append-is-Nil-conv assms(1) assms(5) have-wraparound-vertex hd-conv-nth length-butlast
not-Cons-self nth-append-length polygon-of-def polygon-pathfinish polygon-pathstart)
qed
ultimately show ?thesis unfolding polygon-def polygonal-path-def simple-path-def
assms(5) by blast
qed

16 Measure of linepaths

lemma linepath-is-negligible-vertical:
fixes a b :: real™2
assumes a$1 = b$1
defines p = linepath a b
shows negligible (path-image p)
proof—
have p-t: Vit € {0..1}. (p t)$1 = a$1
using linepath-in-path p-def segment-vertical assms by blast

let %z = a$1
let el = (vector [1, 0])::real”2

have (1::real) € Basis by simp
then have azis 1 (1::real) € (4. | ue(Basis::(real set)). {axis i u}) by blast
moreover have ?el = awxis 1 (1::real)

unfolding axis-def vector-def by auto
ultimately have el-basis: ?el € (Basis::((real™2) set)) by simp
then have negligible {v. v - ?el = 2z} (is negligible 25)

using negligible-standard-hyperplane by auto
moreover have Vt € {0..1}. (pt) - %el = %z
proof clarify

fix ¢ :: real

assume t: t € {0..1}

have (p t) - %el = (p 1)$1

by (smt (verit, best) el-basis cart-eq-inner-axis vec-nth-Basis vector-2(1))

also have ... = ?z using p-t t by blast
finally show (p t) - %el = %z .
qed

moreover from this have path-image p C 25 unfolding path-image-def by
blast

ultimately show %thesis using negligible-subset by blast
qed
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lemma linepath-is-negligible-non-vertical:
fixes a b :: real™2
assumes a$1 < b$1
defines p = linepath a b
shows negligible (path-image p)
proof—
let ?A = (vector [vector [1, b$1 — a$1], vector [0, b$2 — a$2]])::(real™272)
let 2f1 = Avzreal 2. (A xv v)
let 2id = Av:real™2. v
let ?f-a = Av::real 2. a
let 92 = \v. 2id v + 9f-a v
let ?f = 2f2 o ?f1

let 20 = (vector [0, 0])::real™2

let ?e2 = (vector [0, 1])::real”2

let ?y-unit-seg-path = linepath 20 ?e2

let ?y-unit-seq = path-image ?y-unit-seg-path

have Vit € {0..1}. ?f (?y-unit-seg-path t) = p t
proof clarify
fix t :: real
assume t: t € {0..1}
then obtain v where v: 2y-unit-seg-path t = v by auto
then have v = (I — t) *xg ?0 + ¢ xg ?e2 unfolding linepath-def by auto
then have v = t xg ?e2
by (smt (verit, best) t v exhaust-2 linepath-0 scaleR-zero-left vec-eq-iff vec-
tor-2(1) vector-2(2) vector-scaleR-component)
then have ?fv=pt
proof—
assume v = t xg vector [0, 1]
then have v = vector [t * 0, t % 1]
by (smt (verit, del-insts) exhaust-2 mult-cancel-left1 real-scaleR-def scaleR-zero-right
vec-eq-iff vector-2(1) vector-2(2) vector-scaleR-component)
then have v: v = vector [0, t] by auto

have f1: 2f1 v = vector [t * (b1 — a$1), t * (b$2 — a$2)] (is 9f1 v = ?f1-v)
by (simp add: mat-vec-mult-2 v)

have 22 ?f1-v = vector [t x (b1 — a$1), t * (b$2 — a$2)] + wvector [a$1,
a$2]
by (smt (verit) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
also have ... = vector [t * (b1 — a$1) + a$1, ¢t x (b32 — a$2) + a$2]
by (smt (verit, del-insts) vector-add-component exhaust-2 vec-eq-iff vec-

tor-2(1) vector-2(2))

also have ... = vector [t * b$1 + (1 — t) * a$1, t % b$2 + (I — t) * a$2]
by argo
also have ... =t xg b+ (I — t) *xg a

by (smt (verit, del-insts) exhaust-2 real-scaleR-def vec-eq-iff vector-2(1)
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vector-2(2) vector-add-component vector-scaleR-component)
finally have 2f2 ?fl-v =t +p b+ (I — ) *g a .
thus ?thesis using p-def f1 unfolding linepath-def by simp
qed
thus ?f (?y-unit-seg-path t) = p t using v by simp
qed

then have ?f ° ?y-unit-seg = path-image p unfolding path-image-def by force
moreover have ?f differentiable-on ?y-unit-seg
proof—
have linear ?f1 by auto
then have ?f1 differentiable-on ?y-unit-seq
using linear-imp-differentiable by (simp add: linear-imp-differentiable-on)
moreover have 22 differentiable-on (?f1 ¢ ?y-unit-seg)
proof—
have ?id differentiable-on ?f1 * 2y-unit-seg
using differentiable-const by simp
moreover have ?f-a differentiable-on ?f1 ¢ ?y-unit-seg
using differentiable-ident by simp
ultimately show 7f2 differentiable-on ?f1 ¢ ?y-unit-seg
using differentiable-compose by simp
qed
ultimately show ¢thesis using differentiable-compose
by (simp add: differentiable-chain-within differentiable-on-def)
qed
moreover have negligible ?y-unit-seg
using linepath-is-negligible-vertical[of 70 ?e2] by simp
ultimately show ?thesis
using negligible-differentiable-image-negligible by fastforce
qed

lemma linepath-is-negligible:
fixes a b :: real”2
defines p = linepath a b
shows negligible (path-image p)
proof—
{ assume a$1 = b$1
then have ?thesis using linepath-is-negligible-vertical p-def by blast
} moreover
{ assume a$1 < b$1
then have ?thesis using linepath-is-negligible-non-vertical p-def by blast
} moreover
{ assume a: a$1 > b$1
let ?p-rev = reversepath p
have path-image p = path-image ?p-rev by simp
moreover have ?p-rev = linepath b a using p-def by simp
ultimately have ?thesis using a linepath-is-negligible-non-vertical[of b a] by
simp

}
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ultimately show ?thesis by linarith
qed

lemma linepath-has-emeasure-0:
emeasure lebesque (path-image (linepath (a::(real”2)) (b::(real™2)))) = 0
using linepath-is-negligible emeasure-notin-sets negligible-iff-emeasure0 by blast

lemma linepath-has-measure-0:

measure lebesque (path-image (linepath (a::(real™2)) (b::(real™2)))) = 0

using linepath-has-emeasure-0 linepath-is-negligible negligible-imp-measurel by
blast

end
theory Polygon-Convez-Lemmas
imports
Polygon-Lemmas
Linepath-Collinearity

begin

17 Misc. Convex Polygon Properties

lemma polygon-path-image-subset-conver:
assumes length vts > 0
shows path-image (make-polygonal-path vts) C convex hull (set vts) (is path-image
?p C 25)
using assms
proof (induct vts rule: make-polygonal-path.induct)
case I
then show ?case by simp
next
case (2 a)
then show ?case by auto
next
case (3 a b)
show ?case (is path-image ?p C 25)
proof (rule subsetl)
fix z
assume z-in-path-image: x € path-image ?p
then have = € path-image (linepath a b) by auto
thus z € 29
unfolding path-image-def linepath-def
by (smt (verit, ccfo-SIG) <z € path-image (linepath a b)) convex-alt con-
vez-convex-hull hull-subset in-mono in-segment(1) linepath-image-01 list.set-intros(1)
path-image-def set-subset-Cons)
qed
next
case (4 a b c tl)
let 2vts = a # b # c # tl
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show ?case (is path-image ?p C 25)
proof (rule subsetl)
fix z
assume z-in-path-image: x € path-image ?p
show z € 25
proof cases
assume z € set vts
thus %thesis by (simp add: hull-inc)
next
assume z-notin: © ¢ set ?vts
obtain v where p-u: v € {0.1} AN pu==cx
using z-in-path-image unfolding path-image-def by auto
then have p-head-tail: ?p = (linepath a b) +++ make-polygonal-path (b # ¢
# 1)
by auto
have abc-in-S: set ?vts C convex hull (set ?vts) by (simp add: hull-subset)
{ assume u-assm: v < 1/2
then have ?p u = (I — 2 x u) xg a + (2 * u) *xg b
using p-head-tail unfolding linepath-def joinpaths-def
by presburger
hence z € 75
using abc-in-S converD-alt[of S a b 2 x u] u-assm p-u by simp
} moreover
{ assume u-assm: u > 1/2
then have z = (make-polygonal-path (b # ¢ # tl) (2 x uw — 1)) (is z =
(7" (2 u — 1))
using p-head-tail p-u unfolding linepath-def joinpaths-def by auto
moreover have 0 < (2 * u — 1) using u-assm by linarith
ultimately have z € path-image ?p’
using p-u by (simp add: path-image-def)
moreover have path-image ?p’ C convex hull (set (b # ¢ # tl)) using
4(1) by auto
moreover have ... C conver hull (set (a # b # ¢ # tl))
by (meson hull-mono set-subset-Conys)
ultimately have z € 25 by auto
}
ultimately show ¢thesis by linarith
qed
qed
qed

lemma convez-contains-simple-closed-path-imp-contains-path-inside:

assumes conver S

assumes simple-path p A closed-path p

assumes path-image p C S

shows path-inside p C S

by (metis (no-types, opaque-lifting) Compl-subset-Compl-iff Un-subset-iff assms(1)
assms(8) boolean-algebra-class.boolean-algebra.double-compl outside-subset-conver
path-inside-def union-with-inside)
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lemma convez-polygon-is-convex-hull:
assumes polygon p
assumes convez (path-inside p U path-image p)
assumes p = make-polygonal-path vts
shows convex hull (set vts) = path-inside p U path-image p (is Zhull = ?poly)
proof—
have ?hull C ?poly
proof (rule subsetl)
fix z
assume z € Zhull
moreover have V H. (convex H A (set vts) C H) — ?hull C H by (simp
add: hull-minimal)
moreover have convex (?poly) N (set vts) C ?Zpoly
using assms(2) assms(3) vertices-on-path-image by auto
ultimately show z € ?poly by auto
qed
moreover have ?hull O Zpoly
proof(rule subsetl)
fix z
assume z € ?poly
moreover have path-image p C Zhull
using polygon-path-image-subset-convex|[of vts| polygon-at-least-3-vertices
assms
by force
moreover from calculation have path-inside p C ?hull
using convex-contains-simple-closed-path-imp-contains-path-inside polygon-def
assms(1)
by auto
ultimately show z € ?hull by auto
qed
ultimately show ?thesis by auto
qed

lemma convez-polygon-inside-is-convex-hull-interior:

assumes polygon p

assumes convez (path-inside p)

assumes p = make-polygonal-path vts

shows interior (convex hull (set vts)) = path-inside p

by (metis (no-types, lifting) assms closure- Un-frontier convez-closure convez-interior-closure
convez-polygon-is-convez-hull inside-outside-def inside-outside-polygon interior-eq)

lemma convex-polygon-inside-is-convex-hull-interior2:

assumes polygon p

assumes convez (path-inside p U path-image p)

assumes p = make-polygonal-path vts

shows interior (convex hull (set vts)) = path-inside p

using assms closure- Un-frontier convez-closure convez-interior-closure convez-polygon-is-convex-hull
inside-outside-def inside-outside-polygon interior-eq
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by (smt (verit, best) List.finite-set compact-eg-bounded-closed finite-imp-compact-convez-hull
frontier-complement inside-frontier-eq-interior outside-inside path-inside-def path-outside-def
sup-commute)

lemma polygon-convex-iff:

assumes polygon p

shows convex (path-inside p) +— convex (path-inside p U path-image p)

using convex-polygon-inside-is-convex-hull-interior

using convex-polygon-inside-is-convex-hull-interior2

by (metis Jordan-inside-outside-real2 closed-path-def assms closure-Un-frontier
convez-closure convez-interior convex-polygon-is-convez-hull path-inside-def poly-
gon-def polygon-to-polygonal-path)

lemma convex-polygon-frontier-is-path-image:

assumes polygon-of p vts

assumes convez (path-inside p)

shows frontier (convex hull (set vts)) = path-image p

using assms

unfolding frontier-def polygon-of-def

by (metis (no-types, lifting) Jordan-inside-outside-real2 closed-path-def convex-closure-interior
convez-convez-hull convex-polygon-inside-is-convex-hull-interior frontier-def inte-
rior-interior path-inside-def polygon-def)

lemma convez-polygon-frontier-is-path-image2:

assumes polygon p

assumes convez (path-inside p)

shows frontier (path-image p U path-inside p) = path-image p

using assms

by (simp add: Jordan-inside-outside-real2 closed-path-def path-inside-def poly-
gon-def union-with-inside)

lemma convex-polygon-frontier-is-path-image3:
assumes polygon p
assumes convez (path-image p U path-inside p)
shows frontier (path-image p U path-inside p) = path-image p
using assms polygon-convez-iff
by (simp add: convex-polygon-frontier-is-path-image2 sup-commute)

lemma polygon-frontier-is-path-image:
assumes polygon p
shows frontier (path-inside p) = path-image p
using inside-outside-polygon unfolding inside-outside-def
using assms by presburger

lemma convez-path-inside-means-conver-polygon:
assumes polygon p
assumes frontier (convex hull (set vts)) = path-image p
shows convex (path-inside p)
by (metis List.finite-set assms(2) convex-convex-hull convex-interior finite-imp-bounded-convezr-hull
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inside-frontier-eq-interior path-inside-def)

lemma convex-hull-of-polygon-is-convex-hull-of-vts:
assumes polygon-of p vts
shows convex hull (path-image p U path-inside p) = convex hull (set vts)
proof —
have len-vts: length vts > 0
by (metis assms card.empty empty-set length-greater-0-conv not-numeral-le-zero
polygon-at-least-3-vertices polygon-of-def)
have path-image p U path-inside p C convex hull (set vts)
using polygon-path-image-subset-convex| OF len-vts]
using assms convex-contains-simple-closed-path-imp-contains-path-inside poly-
gon-def polygon-of-def by auto
then have subset!: conver hull (path-image p U path-inside p) C convex hull
(set vts)
by (simp add: convex-hull-subset)
have set vts C path-image p U path-inside p using assms vertices-on-path-image

by (simp add: polygon-of-def sup.coboundedI1)
then have subset2: convex hull (set vts) C convex hull (path-image p U path-inside
p)
by (simp add: hull-mono)
show ?thesis using subset! subset2
by auto
qed

lemma convex-hull-frontier-polygon:

assumes polygon-of p vts

assumes — set vts C frontier (convex hull (set vts))

shows — convex (path-inside p)

by (metis assms(1) assms(2) convez-polygon-frontier-is-path-image polygon-of-def
vertices-on-path-image)

lemma frontier-int-subset:

assumes A C B

shows (frontier B) N A C frontier A

by (metis assms closure-Un-frontier frontier-Int inf.absorb-iff2 inf-sup-aci(1)
subset-Un-eq sup-inf-distrib2)

lemma in-frontier-in-subset:
assumes A C B
assumes z € frontier B
assumes z € A
shows z € frontier A
by (metis assms frontier-int-subset Intl in-mono)

lemma in-frontier-in-subset-convex-hull:

assumes A C B
assumes z € frontier (convex hull B)
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assumes z € convez hull A
shows z € frontier (convex hull A)
by (metis in-frontier-in-subset assms hull-mono)

lemma convez-hull-two-extreme-points:
fixes S :: 'a::euclidean-space set
assumes finite S
assumes convez hull S # {}
assumes Vz. convex hull S # {z}
shows card {x. x extreme-point-of (convex hull S)} > 2 (is card ?ep > 2)
proof—
have compact (convex hull S) by (simp add: assms(1) finite-imp-compact-convez-hull)
then have convezr hull S = convex hull ?ep
using Krein-Milman-Minkowski[OF - convez-convez-hull] by blast
moreover then obtain z where = € ?ep using assms(2) by fastforce
moreover have ?ep # {x} using assms(3) calculation(1) by force
ultimately obtain y where z € ?ep A y € ?ep A x # y by blast
moreover have finite ep using assms(1) extreme-points-of-convez-hull finite-subset
by blast
ultimately show ?thesis
by (metis (no-types, lifting) One-nat-def Orderings.order-eq-iff Suc-1 Suc-lel
card-1-singletonE card-gt-0-iff empty-iff insert-Diff not-less-eq-eq singleton-insert-inj-eq)
qed

lemma convex-hull-two-vts-on-frontier:
fixes S :: 'a::euclidean-space set
assumes card S > 2
shows card (S N frontier (convex hull S)) > 2
proof—
have S C convez hull S by (simp add: hull-subset)
then have convex hull S # {} A card (convezx hull S) # 1
by (metis Suc-1 add-leD2 assms card.empty card-1-singletonE convex-hull-eg-empty
not-one-le-zero numeral-le-one-iff plus-1-eq-Suc semiring-norm(69) subset-singletonD)
moreover have finite S using assms by (metis Suc-1 Suc-leD card-eq-0-iff
not-one-le-zero)
ultimately have card {z. x extreme-point-of (convex hull S)} > 2
using convez-hull-two-extreme-points by fastforce
moreover have {z. z extreme-point-of (convex hull S)} C S N frontier (convex
hull S)
proof—
have {z. z extreme-point-of (convex hull S)} C S by (simp add: extreme-points-of-convez-hull)
moreover have {z. © extreme-point-of (convex hull S)} N interior (convexr hull
S)=1{}
using extreme-point-not-in-interior by blast
moreover have {z. = extreme-point-of (conver hull S)} C convex hull S
using S C convex hull S» calculation(1) by blast
moreover have convex hull S = interior (conver hull S) U frontier (convex
hull S)
by (metis (no-types, lifting) Diff-empty Suc-1 assms card.infinite closure- Un-frontier
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closure-convez-hull convex-closure-interior convex-convez-hull empty-subsetl finite-imp-compact
frontier-def interior-interior not-less-eq-eq sup-absorb2 zero-less-one-class.zero-le-one)
ultimately show ¢thesis by blast
qed
ultimately show ?thesis
by (smt (verit, del-insts) assms extreme-points-of-convez-hull card-gt-0-iff fi-
nite-Int linorder-not-less not-numeral-le-zero order-less-le order-less-le-trans psub-
set-card-mono)
qed

18 Vertices on Convex Frontier Implies Polygon is
Convex

lemma convez-cut-auz:
assumes Vv € S. z - v < 0
shows convex hull S C {z. z - < 0}
by (simp add: assms convez-halfspace-le hull-minimal subsetl)

lemma convez-cut-aux'”:
assumes Vv e S. z-v >0
shows conver hull S C {z. z - x > 0}
using convez-cut-auxof S —z] assms by auto

lemma convex-cut:
assumes z # 0
assumes {z. z -+ x = 0} N interior (convex hull S) # {}
obtains vl v2 where vl # v2 A {vl, v2} CSAvl € {z. 2z -2 <0} ANv2 €
{z. 22> 0}
proof—
let ?P1 ={z. z -z < 0}
let P2 ={z. z -z > 0}
have frontier P1 = {z. z - x = 0}
by (simp add: assms(1) frontier-halfspace-le)
moreover have frontier P2 = {z. z - x = 0}
by (simp add: assms(1) frontier-halfspace-ge)
ultimately have — convezr hull S C ?P1 A = convex hull S C ?P2
by (smt (verit, ccfo-SIG) DiffE IntE assms(2) disjoint-iff frontier-def inf.absorb-iff2
interior-Int)
moreover have Vv € S. z - v < 0) = convezx hull S C ?P1 using con-
vex-cut-aur by blast
moreover have (Vv € S. z - v > 0) = convezx hull S C ?P2 using con-
vez-cut-auz’ by blast
ultimately obtain v! v2 where {vl, 2} C SAz-vI <O ANz-0v2>0
using linorder-not-le by auto
thus ?thesis using that by fastforce
qed

lemma affine-2-int-convez:
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fixes S :: ‘a::euclidean-space set
assumes {a, b} C S
assumes {a, b} C frontier (convez hull S)
assumes affine hull {a, b} N interior (convex hull S) # {}
shows affine hull {a, b} N conver hull S = convex hull {a, b}
proof—
let ?H = convex hull S
let ?L = affine hull {a, b} N ?H
have 1: ?L D convez hull {a, b}
by (meson Int-greatest assms(1) convex-hull-subset-affine-hull hull-mono)
moreover have ?L C conver hull {a, b}
proof (rule subsetl)
fix
assume *: ¢ € 7L
then obtain v v where uv: x = v *p a + v xg b A v + v = 1 using
affine-hull-2 by blast

have rel-interior 2L C rel-interior ?H
using subset-rel-interior-convez|of ?L ?H)]
by (metis assms(8) convez-affine-hull convex-conver-hull conver-rel-interior-inter-two
inf-bot-right inf-le2 rel-interior-affine-hull rel-interior-nonempty-interior)
moreover have ab-frontier: a € frontier ?H N b € frontier ?H using assms
by blast
ultimately have ab-rel-frontier: a € rel-frontier ?L N\ b € rel-frontier ?L
by (metis Intl affine-affine-hull assms(3) convex-affine-rel-frontier-Int con-
vexz-convex-hull hull-subset inf-commute insert-subset)

{ assume *x: u < 0
then have b € open-segment a z
proof—
from uv have b = (1/v) *xg z — (u/v) *g a
by (smt (verit, ccfo-threshold) ** divide-inverse-commute inverse-eq-divide
real-vector-affinity-eq vector-space-assms(3) Groups.add-ac(2))
moreover from uv have 1 /v — u/v = 1
by (metis *x add.commute add-cancel-right-left diff-divide-distrib di-
vide-self-if eq-diff-eq’ not-one-less-zero)
ultimately have b = (1 — 1/v) *xg a + (1/v) *xg z by (simp add: diff-eq-eq)
moreover from uv xx have 0 < 1 /v A 1/v < 1 by simp
ultimately show ?thesis
by (metis 1 ab-rel-frontier affine-hull-sing convez-hull-singleton empty-iff
equalityl in-segment(2) inf-lel insert-absorb rel-frontier-sing scaleR-collapse sin-
gletonl)
qed
then have b € rel-interior (convex hull {a, z})
by (metis empty-iff open-segment-idem rel-interior-closed-segment seg-
ment-convez-hull)
moreover have x € ?H using * by blast
ultimately have b € interior ?H
by (smt (verit, ccfu-threshold) = IntD2 Int-empty-right 1 affine-affine-hull
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affine-hull-affine-Int-nonempty-interior affine-hull-convez-hull assms(3) convex-Int
convez-affine-hull convex-convex-hull convex-rel-interior-inter-two hull-hull hull-redundant-eq
insert-commute insert-subsetl rel-interior-affine-hull rel-interior-mono rel-interior-nonempty-interior
rel-interior-subset subset-hull subset-iff)
then have Fulse by (metis DiffD2 ab-frontier frontier-def)
} moreover
{ assume **: v < 0
then have a € open-segment b x
proof—
from uv have a = (1/u) *g © — (v/u) *g b
by (smt (verit, ccfo-threshold) ** divide-inverse-commaute inverse-eq-divide
real-vector-affinity-eq vector-space-assms(3) Groups.add-ac(2))
moreover from wuv have 1/u — v/u = 1
by (metis *x add-cancel-right-left diff-divide-distrib divide-self-if eq-diff-eq’
not-one-less-zero)
ultimately have a = (1 — 1/u) xg b+ (1/u) xg = by (simp add: diff-eq-eq)
moreover from wv xx have 0 < I/u A 1/u < 1 by simp
ultimately show ?thesis
by (metis 1 ab-rel-frontier affine-hull-sing convez-hull-singleton empty-iff
equalityl in-segment(2) inf-lel insert-absorb rel-frontier-sing scaleR-collapse sin-
gletonl)
qed
then have a € rel-interior (convex hull {b, z})
by (metis empty-iff open-segment-idem rel-interior-closed-segment seg-
ment-convez-hull)
moreover have x € ?H using * by blast
ultimately have a € interior ?H
by (smt (verit, ccfv-threshold) = IntD2 Int-empty-right 1 affine-affine-hull
affine-hull-affine- Int-nonempty-interior affine-hull-convez-hull assms(3) convex-Int
convez-affine-hull convex-convex-hull convex-rel-interior-inter-two hull-hull hull-redundant-eq
insert-commute insert-subsetl rel-interior-affine-hull rel-interior-mono rel-interior-nonempty-interior
rel-interior-subset subset-hull subset-iff)
then have Fulse by (metis DiffD2 ab-frontier frontier-def)
}
ultimately have 0 < uAu <1 A0 <vAwv< 1 using uv by argo
thus z € convez hull {a, b} by (simp add: convexD hull-inc uv)
qged
ultimately show ?thesis by blast
qed

lemma halfplane-frontier-affine-hull:

fixes b v :: real ™2

assumes b # 0

assumes v # 0

assumes b € {z. vz = 0}

shows {z. v - z = 0} = affine hull {0, b}
proof—

let F = {z. vz =0}

let ?A = affine hull {0, b}
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have ?F C ?A
proof (rule subsetl)
fix y
assume *: y € ¢F
have y € 24 if y = 0 by (simp add: assms(2) hull-inc that)
moreover have y € ?4 if b$1 # 0
proof—
have v + y = 0 using * by fast
moreover have v - b = ( using assms by force
moreover have v - y = v$1 * y$1 + v32 x y$2 by (simp add: inner-vec-def
sum-2 real-2-inner)
moreover have v - b = v$1 * b31 + v82 x b$2 by (simp add: inner-vec-def
sum-2 real-2-inner)
ultimately have 0: v$1 * y$1 + v$2 * y$2 = 0 A 0 = v$1 * b$1 + v$2 *
b$2 by auto
moreover obtain ¢ where c¢: y$1 = ¢ * b$1 using b$1 # 0»
by (metis hyperplane-eq-Ez inner-real-def mult.commute)
ultimately have v$7 * y$1 + v$2 * y$2 = 0 A 0 = ¢ * v$1 * b$1 + ¢ *
v$2 x b$2 by algebra
then have v$1 * y$1 + v$2 * y$2 = v$1 * y$1 + ¢ * v$2 x b$2 using ¢
by algebra
then have v$2 * y$2 = ¢ * v$2 x b$2 by argo
then have y$2 = ¢ * b$2
by (smt (verit, ccfo-threshold) 0 exhaust-2 mult.commute mult.left-commute
mult-cancel-left that assms vec-eg-iff zero-indez)
then have y = ¢ *xp b using ¢
by (smt (verit) exhaust-2 real-scaleR-def vec-eq-iff vector-scaleR-component)
then have y € span {0, b} by (meson insert-subset span-mul span-superset)
thus y € 74
by (simp add: affine-hull-span-0 assms(2) hull-inc)
qed
moreover have y € 24 if 0$2 # 0
proof—
have v - y = 0 using * by fast
moreover have v - b = 0 using assms by force
moreover have v - y = v$1 x y$1 + v$2 * y$2 by (simp add: inner-vec-def
sum-2 real-2-inner)
moreover have v - b = v$1 * b31 + v82 = b$2 by (simp add: inner-vec-def
sum-2 real-2-inner)
ultimately have 0: v$1 * y$1 + v$2 * y$2 = 0 A 0 = v$1 * b$1 + v$2 *
b$2 by auto
moreover obtain ¢ where ¢: y$2 = ¢ * b$2 using b$2 # 0»
by (metis hyperplane-eq-Ez inner-real-def mult.commute)
ultimately have v$17 * y$1 + v$2 * y$2 = 0 A 0 = ¢ * v$1 * b$1 + c *
v$2 x b$2 by algebra
then have v$1 * y$1 + v$2 x y$2 = 0 A 0 = ¢ x v8$1 * b$1 + v32 * y$2
using c by algebra
then have v$1 x y$1 = ¢ * v$1 * b$1 by argo
then have y$1 = ¢ * b$1
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by (smt (verit, ccfv-threshold) 0 exhaust-2 mult.commute mult.left-commute
mult-cancel-left that assms vec-eq-iff zero-inder)
then have y = ¢ *xp b using ¢
by (smt (verit) exhaust-2 real-scaleR-def vec-eq-iff vector-scale R-component)
then have y € span {0, b} by (meson insert-subset span-mul span-superset)
thus y € 74
by (simp add: affine-hull-span-0 assms(2) hull-inc)
qed
ultimately show y € 74
by (metis (mono-tags, opaque-lifting) assms(1) exhaust-2 vec-eq-iff zero-index)
qed
moreover have 24 C 2F
proof (rule subsetl)
fix z
assume z € 74
then obtain o 5 where x = a xg 0 + 8 xg b A a + 8 = 1 using affine-hull-2
by blast
then have v -z =a * (v 0) + 8 * (v - b) by (simp add: assms(1))
then have v - z = 0 using assms(3) by auto
thus z € ?F by fast
qged
ultimately show ?thesis by blast
qed

lemma vts-on-conves-frontier-aux:

assumes polygon-of p vts

assumes vts!0 = 0

assumes set vts C frontier (convex hull (set vts))

shows path-image (linepath (vts!0) (vts!1)) C frontier (conver hull (set vts))
proof—

let ?H = convex hull (set vts)

let %a = vts!0

let 2b = wvts!1

let 21 = linepath ?a ?b

let ?L = path-image ?1

let ?A = affine hull {?a, ?b}

let %z = %0 — %a

obtain v where v: v+ 2z =0 A v # 0
proof—
let 2v = (vector [?2$2, —22$1])::(real "2)
have %a # %b
by (smt (verit, best) Cons-nth-drop-Suc One-nat-def Suc-le-eq arc-distinct-ends
assms(1) assms(2) card.empty drop0 empty-set length-greater-0-conv list.sel(1)
list.sel(3) make-polygonal-path.elims make-polygonal-path.simps(1) make-polygonal-path.simps(2)
nth-drop pathfinish-linepath pathstart-linepath plus-1-eq-Suc polygon-at-least-3-vertices
polygon-def polygon-of-def polygon-pathstart rel-simps(28) simple-path-joinE)
then have %z # 0 by simp
then have v+ 2z =0 A 2v # 0
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proof—
have %v « 2z = (2282 * 2281) + (— 2281 * 72$2)
by (simp add: inner-vec-def sum-2 real-2-inner)
then have ?v - %z = 0 by argo
moreover have v # 0
by (smt (verit, best) «?x # 0» exhaust-2 vec-eq-iff vector-2(1) vector-2(2)
zero-index)
ultimately show ?thesis by blast
qed
thus ?thesis using that by blast
qed

let ?P1 ={z. vz < 0}
let P2 = {z.v-2> 0}
let ?P1-int = {z. v
let ?P2-int = {z. v
let ?F = {z. v-2z =0}

have ?b # 0
by (smt (verit) Cons-nth-drop-Suc One-nat-def Suc-le-eq Suc-le-length-iff arc-distinct-ends
assms(1) assms(2) card.empty drop0 drop-eq-Nil empty-set le-numeral-extra(4)
length-greater-0-conv list.inject make-polygonal-path.elims make-polygonal-path.simps(2)
nat-less-le pathfinish-linepath pathstart-linepath polygon-at-least-3-vertices polygon-def
polygon-of-def polygon-pathstart rel-simps(28) simple-path-joinE)
moreover have ?b € ?F using assms(2) v by auto
ultimately have F: ?F = 74
using halfplane-frontier-affine-hull[of ?b v] v assms(2) by presburger
moreover have L C ?A by (simp add: convezr-hull-subset-affine-hull segment-convez-hull)
ultimately have L-subset-F: ?L C ?F by blast
have L-subset-H: ¢?L C ?H
by (metis (no-types, lifting) add-gr-0 assms(1) card.empty convex-contains-segment

convex-convex-hull diff-less empty-set hull-subset leD length-greater-0-conv less-numeral-extra(1)

nth-mem numeral-3-eq-3 path-image-linepath plus-1-eq-Suc polygon-at-least-3-vertices
polygon-of-def rotate-polygon-vertices-same-set rotated-polygon-vertices-helper(2) sub-
set-code(1))

have frontier-P1: frontier ?P1 = ?F by (simp add: v frontier-halfspace-le)
have frontier-P2: frontier P2 = ¢F by (simp add: v frontier-halfspace-ge)
have interior-P1: interior YP1 = ¢P1-int by (simp add: v)

have interior-P2: interior P2 = ?P2-int by (simp add: v)

have convez-P1: convex ?P1 by (simp add: convez-halfspace-le)

have convex-P2: convex ?P2 by (simp add: convez-halfspace-ge)

have P1-int-P2: ?P1 N ?2P2 = ?F by (simp add: halfspace-Int-eq(1))

let H1 = ?H N ?P1
let YH2 = ?H N ?P2

have — collinear (set vts) using polygon-vts-not-collinear assms(1) by simp
then have nonempty-interior-H: interior H # {}
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by (smt (verit, ccfv-SIG) Jordan-inside-outside-real2 closed-path-def Un-Int-eq(4)
assms(1) convez-hull-of-polygon-is-convex-hull-of-vts disjoint-iff hull-subset inf.orderE
interior-Int interior-eq interior-subset path-inside-def polygon-def polygon-of-def)

have convex-H1: conver ?HI by (simp add: convez-Int convexr-P1)
have conver-H2: convexr ?H2 by (simp add: convex-Int convex-P2)

have ?H C ?P1 VvV ?H C ?2P2
proof (rule ccontr)
assume *x: - (?H C ?P1 vV ?H C ?P2)
moreover have interior YH C ?P1 — ?H C ?P1
by (metis (no-types, lifting) Int-Un-eq(3) Krein-Milman-frontier List.finite-set
P1-int-P2 closure-Un-frontier closure-convex-hull closure-mono compact-frontier con-
vex-closure-interior convex-convex-hull finite-imp-compact-convex-hull frontier-P1
nonempty-interior-H )
moreover have interior YH C P2 — ?H C ?P2
by (metis (no-types, lifting) Int-Un-eq(3) Krein-Milman-frontier List.finite-set
P1-int-P2 calculation(1) calculation(2) closure- Un-frontier closure-convez-hull clo-
sure-mono compact-frontier convez-closure-interior convex-convex-hull emptyE fi-
nite-imp-compact-convez-hull frontier-P2 inf-commute subsetl)
ultimately have interior ?H N ?P1 # {} A interior ?H N —%?P1 # {} by
force
moreover have path-connected (interior 7H) by (simp add: convez-imp-path-connected)
ultimately have F-int-interior-H: ?F N interior 7H # {}
by (metis (no-types, lifting) path-connected-frontier ComplD disjoint-eq-subset-Compl
frontier-P1 subset-eq)
then obtain v v2 where viv2: vl # v2 A {vl, v2} C set vts
A vl € interior ?P1 N v2 € interior ?P2
using convez-cut frontier-P1 interior-P1 interior-P2 v by metis
then obtain 7 j where 7j: vtsli = vl A vislj = v2
AN2<iIN2<jNANITF#GNi<lengthvts — 1 A j < length vts — 1
proof—
obtain 7 j where visli = v1 A wvtslj = v2 AN i # j A i < length vis A\ j <
length vts
by (metis in-set-conv-nth insert-subset v1v2)
moreover have 2 < g
proof—
{assume i =0V i=1
then have vtsli = %a Vv vtsli = ?b by blast
then have vtsli € ?F by (simp add: F hull-inc)
then have False using calculation(1) interior-P1 viv2 by auto
}
thus ?thesis by presburger
qed
moreover have 2 < j
proof—
{assume j=0Vj=1
then have vts!j = %a V vts!j = 2b by blast
then have vtslj € ?F by (simp add: F hull-inc)
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then have Fualse using calculation(1) interior-P2 viv2 by auto
}
thus ?thesis by presburger
qed
moreover have Fulse if i = length vis — 1
by (metis (no-types, lifting) F assms(1) calculation(1) frontier-P1 frontier-def
have-wraparound-vertex hull-subset insertCI insert-Diff last-conv-nth last-snoc less-nat-zero-code
list.size(3) polygon-of-def subset-Diff-insert that viv2)
moreover have Fulse if j = length vis — 1
by (metis (no-types, lifting) F assms(1) calculation(1) frontier-P2 frontier-def
have-wraparound-vertex hull-subset insertCI insert-Diff last-conv-nth last-snoc less-nat-zero-code
list.size(3) polygon-of-def subset-Diff-insert that viv2)
ultimately show ?thesis using that by fastforce
qed

let 2/ = min ij

let 2}’ = mazxij

let ?vts’ = take (%' — 21’ + 1) (drop ?i’ vts)

let ?p’ = make-polygonal-path ?vts’

have vts’-sublist: sublist ?vts’ vts using sublist-order.order.trans by blast

then have vts’-sublist-tl: sublist ?vts’ (tl vts)

by (metis Suc-1 Suc-eq-plusl drop-Suc i maz-def min-def nat-minus-add-mazx

not-less-eq-eq sublist-drop sublist-order.dual-order.trans sublist-take)

have p’-start-finish: {pathstart ?p’, pathfinish ?p'} = {v1, v2}
proof—
have ?vts’l0 = vts! 2i’ using ij by force
moreover have ?uvts’l(%j' — %) = vts! %)’
using diff-is-0-eq diff-zero i less-numeral-extra(1) maz.cobounded! min-absorb2
min-def nth-drop nth-take order-less-imp-le
by fastforce
moreover have (vts! %0’ = vl A vts! %)’ = v2) V (vts! 2’ = v2 A vts!9j' = vl)
using ij by linarith
moreover have pathstart ?p’ = ?vtsl0 A pathfinish ?p’ = ?vts’\( 2§’ — ?i')
using ij min-diff polygon-pathfinish polygon-pathstart
by (smt (verit, ccfv-SIG) add-diff-cancel-right” add-diff-inverse-nat length-drop
length-take less-diff-conv max.commute max-min-same(1) min.absorb nat-minus-add-maz
not-add-less2 plus-1-eq-Suc plus-nat.simps(2) take-eq-Nil zero-less-one)
ultimately show ?thesis by auto
qed
then have path-image ?p’ N interior ?P2 # {} A path-image ?p’ N interior
o1 £ {)
by (metis viv2 Intl doubleton-eq-iff empty-iff pathfinish-in-path-image path-
start-in-path-image)
then have path-image ?p’ N —?P1 # {} A path-image ?p’ N ?P1 # {}
using interior-P2
by (smt (verit, best) disjoint-iff-not-equal in-mono inf-shunt interior-P1
mem-Collect-eq)
moreover have path-connected (path-image ?p’)
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using make-polygonal-path-gives-path path-connected-path-image by blast
ultimately obtain 2z where z: z € path-image ?p’ N ?F
by (smt (verit, del-insts) path-connected-frontier Diff E Diff-triv all-not-in-conv
frontier-P1)
moreover have path-image ?p’ C ?H
proof—
have path-image p C 7H
by (metis assms(1) insert-subset length-pos-if-in-set polygon-of-def poly-
gon-path-image-subset-convex v1v2)
moreover have path-image ?p’ C path-image p
by (metis (no-types, lifting) vts'-sublist sublist-path-image-subset One-nat-def
Suc-lel p’-start-finish assms(1) doubleton-eg-iff length-greater-0-conv make-polygonal-path.simps(1)
pathfinish-linepath pathstart-linepath polygon-of-def viv2)
ultimately show ?thesis by blast
qed
ultimately have z € path-image ?p’ N (?H N ?F) by blast
moreover have ?H N ?F = ?L
using affine-2-int-convez[of ?a ?b set vts]
by (smt (verit, best) assms(3) F F-int-interior-H inf-commute segment-convex-hull
path-image-linepath Suc-1 add-leD2 assms(1) empty-subsetl insert-subset length-greater-0-conv
lessI nat-neq-iff nth-mem numeral-Bit0 order.strict-iff-not plus-1-eq-Suc polygon-of-def
polygon-vertices-length-at-least-4 take-all-iff take-eq-Nil IntE inf.orderE)
ultimately have z € ?L N path-image ?p’ by blast
moreover have ?L N path-image ?p’ C {?%a, ?b}
proof—
let ?p-tl = make-polygonal-path (tl vts)
have p = make-polygonal-path vts A loop-free p
using assms unfolding polygon-of-def polygon-def simple-path-def by blast
moreover have [?a, ?b] = take 2 vts
by (metis Cons-nth-drop-Suc One-nat-def Suc-1 append-Cons append-Nil cal-
culation constant-linepath-is-not-loop-free drop0 drop-eq-Nil insert-subset length-pos-if-in-set
linorder-not-le make-polygonal-path.simps(2) take0 take-Suc-conv-app-nth viv2)
moreover have tl vts = drop (2 — 1) vts by (simp add: drop-Suc)
moreover have 7l = make-polygonal-path [?a, ?b] using make-polygonal-path.simps
by simp
moreover have length vts > 2 using ¢ by linarith
moreover have pathstart 21 = 2a A pathstart ?p-tl = %b
using calculation(8) calculation(5) polygon-pathstart by auto
ultimately have ?L N path-image ?p-tl C {?%a, ?b}
using loop-free-split-int[of p vts [?a, ?b] 2 tl vis 21 ?p-tl length vts| by auto
moreover have path-image ?p’ C path-image ?p-tl
using sublist-path-image-subset
by (metis add.commute ij le-add2 length-drop length-take less-diff-conv
min.absorb min.coboundedl min-def vts’-sublist-tl)
ultimately show ?thesis by blast
qed
ultimately have *: z = %a V z = ?b by blast

let %4 = 2’

150



let 9§ = %)/ — 2’ + 1

let % =%+ 9

let %21 = (279 — 1)/(27%)::real

let %22 = (27(%—1) — 1)/(27(%—1))::real

have ?%vts’ = take % (drop 9 vts) by blast
moreover have 2 < length vts — 1 N 2 < % using ij by linarith
ultimately have path-image ?p’ = p{?z1..222}

using vts-sublist-path-image assms(1) unfolding polygon-of-def by metis
moreover have z1z2: %21 > 1/2 N 722 < 1
proof—

have ?i’ > 2 using ij by linarith

then have (I:real) < 27% — 1

by (smt (28) dual-order.strict-transl linorder-le-less-linear numeral-le-one-iff

power-one-right power-strict-increasing semiring-norm(69))
thus ?thesis by simp

qed
moreover have p 0 ¢ p{?x1..%222} N p (1/2) ¢ p{?x1..%22}
proof—

have False if *: p 0 € p{?x1..722}

proof—

obtain ¢ where t: t € {%z1..922} A p t = p 0 using x by auto
then have t > %21 At < 222 by presburger
then have 1/2 < t A t < 1 using z1z2 by argo
thus Fulse
using ¢ assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by force
qed
moreover have False if *: p (1/2) € p{?x1..922}
proof—
obtain ¢ where ¢: t € {%z1..222} A pt = p (1/2) using * by auto
then have t > %21 At < 222 by presburger
then have 1/2 < t A t < 1 using z1z2 by argo
thus Fulse
using ¢ assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by fastforce
qed
ultimately show ?thesis by fast
qed
moreover have %a = p 0
by (metis assms(1) card.empty empty-set not-numeral-le-zero pathstart-def
polygon-at-least-3-vertices polygon-of-def polygon-pathstart)
moreover have ?b = p (1/2)
proof—
have p = 2 +++ (make-polygonal-path (tl vts))
by (smt (verit, best) One-nat-def Suc-1 assms(1) ij length-Cons length-greater-0-conv
length-tl less-imp-le-nat list.sel(3) list.size(3) make-polygonal-path.elims nth-Cons-0
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nth-tl order-less-le-trans polygon-of-def pos2 zero-less-diff)
then have p (1/2) = %l 1
unfolding joinpaths-def by simp
thus ?thesis by (simp add: linepath-1")
qed
ultimately have ?a ¢ path-image ?p’ A 2b ¢ path-image ?p’ by presburger
thus Fulse using z * by blast
qed
then have frontier ?P1 N ?H C frontier YH V frontier P2 N ?H C frontier YH
using frontier-int-subset by auto
moreover have ?L C frontier ?P1 N ?L C frontier ?P2
using frontier-P1 frontier-P2 L-subset-F by presburger
ultimately show ?thesis using L-subset-H by fast
qed

lemma vts-on-convez-frontier-auz’”:

assumes polygon-of p vts

assumes set vts C frontier (convex hull (set vts))

shows path-image (linepath (vts!0) (vts!1)) C frontier (conver hull (set vts))
proof—

let %a = vts!0

let 2f = Av. v + (—%a)

let ?vts’ = map ?f vts

let ?p’ = make-polygonal-path ?vts’

have len-vts: length vts > 2
using assms(1) polygon-of-def polygon-vertices-length-at-least-4 by fastforce
then have p %p' = 2f o p
using make-polygonal-path-translate[of vts — ?a] assms unfolding polygon-of-def
by presburger
then have 0: vts'l0 = 0
by (metis len-vts neg-eq-iff-add-eq-0 nth-map order-less-le-trans pos2)
moreover have vts”: set %vts’ = 2f “ (set vts) by simp
ultimately have convex hull (set ?vts’) = 2f * (convex hull (set vts))
using convez-hull-translation[of —%a set vts| by force
then have frontier (convex hull (set ?vts’)) = frontier (?f ¢ (convex hull (set
vts)))
by auto
then have frontier-translation:
frontier (convex hull (set ?vts’)) = 2f * (frontier ((convex hull (set vts))))
using frontier-translation[of — ?a convex hull (set vts)] by simp

have ?f (vts!0) = 2vts'0 A 2f (vtsl1) = %vts'l1 using 0 len-vts by auto
then have linepath-translation:
?f ¢ path-image (linepath (vts!0) (vts!l)) = path-image (linepath (?vts’0)
(2vts1))
using linepath-translation[of ?a —%a vts!1] by (simp add: path-image-compose)

have polygon-of ?p’ 2vts’ using translation-is-polygon assms(1) p’ by presburger
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moreover have set ?vts’ C frontier (convex hull (set ?vts’))
proof—
have frontier (convex hull (set ?vts’)) = frontier (convex hull (?f ¢ (set vts)))
using vts’ by presburger
then have frontier (conver hull (set ?vts’)) = 2f ¢ (frontier (convex hull (set
ots)))
using frontier-translation by presburger
thus ?thesis using vts’ assms(2) by auto
qged
ultimately have path-image (linepath (2vts"0) (2vts''1)) C frontier (convex hull
(set 2vts”))
using vts-on-convex-frontier-auzr assms 0 by blast
then have ?2f ‘ path-image (linepath (vts!0) (vts!1)) C 2f “ (frontier ((convex hull
(set vts))))
using linepath-translation frontier-translation by argo
thus ?thesis by force
qed

lemma vts-on-convex-frontier:
assumes polygon-of p vts
assumes set vts C frontier (convex hull (set vts))
assumes i < length vts — 1
shows path-image (linepath (vts!i) (visl(i+1))) C frontier (convex hull (set vts))
proof—
let ?vts’ = rotate-polygon-vertices vts i
let ?p’ = make-polygonal-path ?vts’
have polygon-of ?p’ ?vts’
using assms(1) polygon-of-def rotation-is-polygon by blast
moreover have set 7vts’ C frontier (convex hull (set ?vts’))
using assms(1) assms(2) polygon-of-def rotate-polygon-vertices-same-set by
auto
ultimately have path-image (linepath (?vts"\0) (Pvts''1)) C frontier (conver hull
(set 2vts”))
using vts-on-convez-frontier-auz’ by presburger
moreover have ?vts’l0 = vtsli A 2vts'1 = vtsl(i+1)
using assms(3)
using rotated-polygon-vertices[of ?vts’ vts i i+1]
using rotated-polygon-vertices|of 2vts’ vts i i
by (smt (verit, best) Suc-lel add.commute add.right-neutral add-2-eq-Suc’
add-diff-cancel-left” add-lessD1 assms(1) have-wraparound-vertex hd-Nil-eq-last hd-conv-nth
last-snoc le-add1 less-diff-conv plus-1-eq-Suc polygon-of-def)
moreover have frontier (convex hull (set ?vts’)) = frontier (convex hull (set
vts))
by (metis assms(1) polygon-of-def rotate-polygon-vertices-same-set)
ultimately show ¢thesis by argo
qed

lemma vts-on-frontier-means-path-image-on-frontier:
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assumes polygon-of p vts
assumes set vts C frontier (convex hull (set vts))
shows path-image p C frontier (convex hull (set vts))
proof (rule subsetl)
let ?H = convex hull (set vts)
fix z assume = € path-image p
moreover have path-image p = (|J {path-image (linepath (vts'i) (vts!(i+1))) |
i. i < (length vts) — 2})
using polygonal-path-image-linepath-union assms unfolding polygon-of-def
by (metis (no-types, lifting) add-leD2 numeral-Bit0 polygon-vertices-length-at-least-4)
ultimately obtain ¢ where i < (length vts) — 2 A x € path-image (linepath
(vtsli) (vts!(i+1)))
by blast
thus z € frontier ?H
by (smt (verit, ccfo-SIG) One-nat-def Suc-diff-Suc add.commute add-2-eq-Suc’
assms(1) assms(2) in-mono le-addl le-zero-eq less-Suc-eg-le less-diff-conv linorder-not-less
plus-1-eq-Suc vts-on-convex-frontier vts-on-convex-frontier-aux’)
qed

lemma vts-on-convez-frontier-interior:
assumes polygon-of p vts
assumes set vts C frontier (convex hull (set vts))
shows path-inside p = interior (convex hull (set vts))
proof—
let YH = convez hull (set vts)

have path-inside p C interior (convex hull (set vts))
by (metis (no-types, lifting) Un-empty assms(1) convez-contains-simple-closed-path-imp-contains-path-insid
convez-convez-hull convex-hull-eq-empty convex-hull-of-polygon-is-convez-hull-of-vts
empty-set inside-outside-def inside-outside-polygon interior-maximal length-greater-0-conv
polygon-def polygon-of-def polygon-path-image-subset-convex)
moreover have interior (conver hull (set vts)) C path-inside p
proof(rule ccontr)
assume *: — interior (convex hull (set vts)) C path-inside p
then obtain z where z: © € interior (convex hull (set vts)) — path-inside p
by blast
obtain y where y: y € path-inside p
using inside-outside-polygon assms unfolding inside-outside-def polygon-of-def
by fastforce

let 2l = linepath = y
have 1: path-image ?1 C interior ?H
by (metis (no-types, lifting) DiffE calculation convex-contains-segment con-

vex-convez-hull convex-interior in-mono linepath-image-01 path-defs(4) x y)

have path-image ¢l N frontier (path-inside p) # {}

using inside-outside-polygon assms unfolding inside-outside-def polygon-of-def

by (smt (verit) x Diff-disjoint Diff-eq-empty-iff Int-Un-eq(2) Int-assoc Un-Int-eq(3)
assms(1) calculation connected-Int-frontier convez-connected convez-convez-hull con-
vex-interior frontier-def inf.absorb-iff2 vts-on-frontier-means-path-image-on-frontier)
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then have 2: path-image 2l N path-image p # {}
using inside-outside-polygon assms unfolding inside-outside-def polygon-of-def
by blast

show Fulse
using 1 2 vts-on-frontier-means-path-image-on-frontier
using Diff-disjoint Int-lower2 Int-subset-iff assms(1) assms(2) frontier-def
inf-lel
by fastforce
qged
ultimately show ¢thesis by blast
qed

lemma vts-subset-frontier:

assumes polygon-of p vts

assumes set vts C frontier (convex hull (set vts))

shows convez (path-image p U path-inside p)

by (metis assms(1) assms(2) vts-on-convez-frontier-interior convex-convez-hull
convez-interior polygon-convex-iff polygon-of-def sup-commute)

lemma convex-hull-of-nonconvex-polygon-strict-subset-ep:

assumes polygon-of p vts

assumes — (convex (path-image p U path-inside p))

shows {v. v extreme-point-of (convex hull (set vts))} C set vts
proof—

let Zep = {v. v extreme-point-of (convexr hull (set vts))}

let H = convex hull (set vts)

have ?ep C frontier ?H

by (metis Krein-Milman-frontier List.finite-set convex-convez-hull extreme-point-of-convez-hull
finite-imp-compact-convez-hull mem-Collect-eq subsetl)

thus ?thesis using assms vts-subset-frontier extreme-points-of-convex-hull by
force
qed

lemma convex-hull-of-nonconvex-polygon-strict-subset:
assumes polygon-of p vts
assumes — (convex (path-image p U path-inside p))
shows Jv € set vts. v € interior (conver hull (set vts))
using assms vts-subset-frontier
by (smt (verit) Diff-iff UnCI closure-Un-frontier frontier-def hull-inc subsetl)

lemma convex-polygon-means-linepaths-inside:
fixes p :: R-to-R2
assumes polygon-of p vts
assumes convez-is: convex hull (set vts) = (path-inside p U path-image p)
assumes a-in: a € (path-inside p U path-image p)
assumes b-in: b € (path-inside p U path-image p)
shows path-image (linepath a b) C (path-inside p U path-image p)
proof —
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let ?conv = path-inside p U path-image p

have Vu>0.Vv>0. u+v=1— u*r a+ v*g b € Zconv
using convez-is a-in b-in unfolding convez-def
by (metis (no-types, lifting) convexD convez-convez-hull conver-is)

then have (I — z) *g a + = *xg b € Zconv if z-in: x € {0..1} for z
using z-in by auto

then show ?thesis unfolding linepath-def path-image-def
by fast

qed

end

theory Polygon-Splitting

imports
HOL— Analysis. Complete-Measure
Polygon-Jordan-Curve
Polygon-Convex-Lemmas

begin

19 Polygon Splitting

lemma split-up-a-list-into-3-parts:
fixes i j:: nat
assumes i < length vts A\ j < length vts A\ i < j
shows
vts = (take i vts) Q ((vts ! i) # ((take (j — ¢ — 1) (drop (Suc i) vts)) Q (vts !
§) # drop (j — %) (drop (Suc 7) vts)))
proof —
let %2 = vis ! i
let 2y = wvts!j
let 2vtsl = (take i vts)
let 2drop-list = drop (Suc ©) vts
have vts-is: vts = %vtsl @ vtsli # drop (Suc i) vts
using split-list assms
by (meson id-take-nth-drop)
then have len-vts!: length ?vtsl = i
using length-take|of i vts] assms
by auto
have gt-eq: j — i — 1 >0
using assms by auto
let ?ind =j — i — 1
have drop-is: drop (Suc i) vts! (j —i — 1) = %y
using assms by auto
then have drop-list-is: ?drop-list = take ?ind ?drop-list @ 2y # (drop (j — 1)
Zdrop-list)
by (metis Suc-diff-Suc Suc-lel assms diff-Suc-1 diff-less-mono id-take-nth-drop
length-drop)
have length (drop (Suc ?ind) ?drop-list) = length vts — j — 1
using length-drop[of Suc (j — ¢ — 1) (drop (Suc i) vts)] length-take assms
by auto
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then show ?thesis
using vts-is drop-list-is len-vts1
by presburger
qed

definition is-polygon-cut :: (real™2) list = real 2 = real”2 = bool where
is-polygon-cut vts T y =
(z#y A
polygon (make-polygonal-path vts) N
{z, y} C set vts A
path-image (linepath © y) N path-image (make-polygonal-path vts) = {z, y} A
path-image (linepath © y) N path-inside (make-polygonal-path vts) # {})

definition is-polygon-cut-path :: (real”2) list = R-to-R2 = bool where
is-polygon-cut-path vts cutpath =
(let x = pathstart cutpath ; y = pathfinish cutpath in
(z#y A
polygon (make-polygonal-path vts) N
{z, y} C set vts A
simple-path cutpath A
path-image cutpath N path-image (make-polygonal-path vts) = {z, y} A
path-image cutpath N path-inside (make-polygonal-path vts) # {}))

definition is-polygon-split ::
(real™2) list = nat = nat = bool where
is-polygon-split vts i j =
(i < length vts N\ j < length vts N i < j A
(let vts1 = (take 7 vits) in
let vts2 = (take (j — i — 1) (drop (Suc i) vts)) in
let vts8 = drop (j — 1) (drop (Suc ©) vts) in
let x = vts ! 1 in
let y = vts ! jin
let p = make-polygonal-path (vtsQ[vts!0]) in
let p1 = make-polygonal-path (z#(vts2Q[y, z])) in
let p2 = make-polygonal-path (vtsl Q [z, y] @ vts3 Q [vts | 0]) in
let ¢c1 = make-polygonal-path (z#(vts2Q[y])) in
let ¢2 = make-polygonal-path (vtsl Q [z, y] Q vts3) in
(is-polygon-cut (vtsQ@Qluts!0]) z y A
polygon p A polygon p1 A polygon p2 N
path-inside p1 N path-inside p2 = {} A
path-inside pl U path-inside p2 U (path-image (linepath = y) — {z, y}) =
path-inside p
A ((path-image p1) — (path-image (linepath z y))) N ((path-image p2) —
(path-image (linepath z y)))
A path-image p
= ((path-image p1) — (path-image (linepath z y))) U ((path-image p2) —
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(path-image (linepath = y))) U {z, y}

)

definition is-polygon-split-path :: (real”2) list = nat = nat = (real”2) list =

bool where
is-polygon-split-path vts © j cutvts =
(i < length vts N j < length vts N i < j A
(let vts1 = (take © vis) in
let vts2 = (take (j — i — 1) (drop (Suc i) vts)) in
let vts3 = drop (j — i) (drop (Suc i) vts) in
let x = vtsli in
let y = vts!j in
let cutpath = make-polygonal-path (z # cutvts Q [y]) in
let p = make-polygonal-path (vtsQ[uvts!0]) in
let p1 = make-polygonal-path (z#(vts2 Q [y] Q (rev cutvts) Q [z])) in

let p2 = make-polygonal-path (vts1 @ ([z] Q cutvts Q [y]) Q vEs3 Q [vts ! 0]) in

let ¢c1 = make-polygonal-path (z#(vts2Q[y])) in

let ¢2 = make-polygonal-path (vts1 Q ([z] Q cutvts Q [y]) Q vts?) in
(is-polygon-cut-path (vts@[uts!0]) cutpath A
polygon p A polygon p1 A polygon p2 A
path-inside p1 N path-inside p2 = {} A

path-inside p1 U path-inside p2 U (path-image cutpath — {z, y}) = path-inside

p

A ((path-image p1) — (path-image cutpath)) N ((path-image p2) — (path-image

cutpath)) = {}
A path-image p

= ((path-image p1) — (path-image cutpath)) U ((path-image p2) — (path-image

cutpath)) U {z, y}

)

lemma polygon-split-add-measure:
fixes p p1 p2 :: R-to-R2
assumes is-polygon-split vts i j
assumes vts! = (take i vts)
vts2 = (take (j — ¢ — 1) (drop (Suc 7) vts))
vts3 = drop (j — %) (drop (Suc ©) vts)
x=uvts i
y=uts!j
p = make-polygonal-path (vis@[uvts!0])
pl = make-polygonal-path (z#(vts2Q[y, z]))
p2 = make-polygonal-path (vtsl Q [z, y] Q vtsd Q [vts | 0])
defines M1 = measure lebesgue (path-inside p1) and
M2 = measure lebesque (path-inside p2) and
M = measure lebesgue (path-inside p)
shows M1 + M2 = M
proof—
let ?cut = linepath © y
let Zcut-open-image = (path-image ?cut) — {z, y}
let P = path-inside p
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let ?P1 = path-inside p1
let ?P2 = path-inside p2
let ?M = space lebesgue
let ?A = sets lebesgue

let 2u = emeasure lebesque

have open ?P1
by (metis assms(1) assms(3) assms(5) assms(6) assms(8) closed-path-image
is-polygon-split-def open-inside path-inside-def polygon-def simple-path-def)
then have Pi-measurable: ?P1 € ?A by simp

have open ?P2

by (metis assms(1) assms(2) assms(4) assms(5) assms(6) assms(9) closed-path-image
is-polygon-split-def open-inside path-inside-def polygon-def simple-path-def)

then have P2-measurable: P2 € ?A by simp

have ?P1 N ?P2 = {}
by (metis assms(1) assms(2) assms(3) assms(4) assms(5) assms(6) assms(8)
assms(9) is-polygon-split-def)
then have sum-union-finite: ?u ?P1 + %u ?P2 = ?u (?P1 U ?P2)
using plus-emeasure P1-measurable P2-measurable by blast

have measure lebesque ?P1 = 2y ¢P1
by (metis assms(1) assms(3) assms(5) assms(6) assms(8) bounded-inside
bounded-set-imp-Imeasurable bounded-simple-path-image emeasure-eq-ennreal-measure
emeasure-notin-sets ennreal-0 fmeasurableD2 is-polygon-split-def measure-zero-top
path-inside-def polygon-def)
moreover have measure lebesque ?P2 = ?u ?P2
by (metis Sigma-Algebra.measure-def assms(1) assms(2) assms(4) assms(5)
assms(6) assms(9) bounded-inside bounded-path-image bounded-set-imp-lmeasurable
emeasure-eg-ennreal-measure emeasure-notin-sets enn2real-top ennreal-0 fmeasur-
ableD2 is-polygon-split-def path-inside-def polygon-def simple-path-def)
ultimately have ?u (?P1 U ?P2) = M1 + M2
using assms(10) assms(11) sum-union-finite by auto
moreover have 7y (YP1 U ?P2) = ?u 7P
proof—
have ?u (path-image ?cut) = 0 using linepath-has-emeasure-0 by blast
then have (path-image ?cut) € null-sets lebesgue by auto
moreover have {z, y} € null-sets lebesgue by simp
ultimately have ?cut-open-image € null-sets lebesque using measure-Diff-null-set
by auto
moreover have ?P = ?P] U ?P2 U ?cut-open-image
by (metis assms(1) assms(2) assms(3) assms(4) assms(5) assms(6) assms(7)
assms(8) assms(9) is-polygon-split-def)
ultimately show #thesis
by (simp add: P1-measurable P2-measurable emeasure-Un-null-set sets.Un)
qed
ultimately show ?thesis
by (smt (verit, best) M1-def M2-def M-def emeasure-eg-ennreal-measure enn2real-ennreal

159



ennreal-neg-top measure-nonneg)
qed

lemma polygonal-paths-measurable:
shows path-image (make-polygonal-path vts) € sets lebesque
proof (induct vts rule: make-polygonal-path-induct)
case (Empty ell)
then show ?case by auto
next
case (Single ell)
then obtain a where ell = [a]
by (metis Cons-nth-drop-Suc One-nat-def drop0 drop-eq-Nil le-numeral-extra(4)
zero-less-one)
then show ?case using make-polygonal-path.simps(2)[of a] by simp
next
case (Two ell)
then obtain a b where ell = [a, b]
by (metis Cons-nth-drop-Suc One-nat-def Suc-1 append-Nil drop-eq-Nil2 dual-order.refl
id-take-nth-drop lessl pos2 take()
then show ?case using make-polygonal-path.simps(3)[of a b] by simp
next
case (Multiple ell)
then have ell = (ell ! 0) # (ell ! 1) # (ell ! 2) # (drop 3 ell)
by (metis Cons-nth-drop-Suc One-nat-def Suc-1 drop0 le-Suc-eq linorder-not-less
numeral-3-eq-3)
then have make-polygonal-path ell =
linepath (ell ! 0) (ell ! 1) +++ make-polygonal-path (ell ! 1 # ell ! 2 # (drop
3 ell))
by (metis make-polygonal-path.simps(4))

then have path-image (make-polygonal-path ell) = path-image (linepath (ell ! 0)
(ell ! 1)) U path-image (make-polygonal-path (ell ! 1 # ell ! 2 # (drop 2 ell)))
using Cons-nth-drop-Suc Multiple.hyps(1) One-nat-def Suc-1 Un-assoc <ell =
ellV 0 # ellV 1 # ell! 2 # drop 3 elly list.discI make-polygonal-path.simps(2)
make-polygonal-path.simps(3) nth-Cons-0 numeral-3-eq-3 path-image-cons-union
proof—
have fi: ell = ell 1 0 # ell! 1 # ell! Suc 1 # drop 3 ell
using Suc-1 <ell = ell 1 0 # ell ! 1 # ell! 2 # drop 3 ell> by presburger
have Suc 1 < length ell
by (smt (23) Suc-1 <2 < length elly)
then have f2: drop (Suc 1) ell = ell | Suc 1 # drop (Suc (Suc 1)) ell
by (smt (23) Cons-nth-drop-Suc)
have f3: V v va vs. path-image (make-polygonal-path (v # va # vs)) = path-image
(linepath v va) U path-image (make-polygonal-path (va # vs))
by (metis (no-types) list.discI nth-Cons-0 path-image-cons-union)
have f4: VYV v va. path-image (linepath (v::(real, 2) vec) va) U (path-image
(linepath va va) U V) = path-image (linepath v va) U V
by auto
have path-image (make-polygonal-path ell) = path-image (make-polygonal-path
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(ellV 0 # ell! 1 # drop (Suc 1) ell))
using f2 f1 by (simp add: numeral-3-eq-3)
then have path-image (make-polygonal-path ell) = path-image (linepath (ell
0) (ell'! 1)) U path-image (make-polygonal-path (ell ! 1 # ell ! Suc 1 # drop (Suc
1) ell))
using f4 f3 f2 by presburger
then show ?thesis
using Suc-1 by presburger
qed
then show ?case using Multiple(3)
by (metis (no-types, lifting) Cons-nth-drop-Suc Multiple.hyps(1) Multiple.hyps(2)
One-nat-def Suc-1 <ell = ell ! 0 # ell ! 1 # ell ! 2 # drop 8 elly list.discl
make-polygonal-path.simps(3) nth-Cons-0 numeral-3-eq-3 path-image-cons-union sets. Un)

qed

lemma polygonal-path-has-emeasure-0:

shows emeasure lebesgque (path-image (make-polygonal-path vts)) = 0
proof (induct vts)

case Nil

then show ?case by auto
next

case (Cons a vts)

then show ?case

by (metis linepath-is-negligible make-polygonal-path.simps(2) negligible-Un neg-

ligible-iff-emeasure0 path-image-cons-union polygonal-paths-measurable)
qged

lemma polygon-split-path-add-measure:

fixes p p! p2 :: R-to-R2

assumes is-polygon-split-path vts i j cutvts

assumes vts! = (take i vts)
vts2 = (take (j — ¢ — 1) (drop (Suc 7) vts))
vts3 = drop (j — %) (drop (Suc 7) vts)
x=uvts!i
y=wvts!j
p = make-polygonal-path (vtsQ[vts!0])
pl = make-polygonal-path (z#(vts2 Q [y] Q (rev cutvts) Q [z]))
p2 = make-polygonal-path (vtsl Q ([z] @ cutvts Q [y]) Q@ vts8 Q [vts ! 0])

defines M1 = measure lebesgue (path-inside p1) and
M2 = measure lebesque (path-inside p2) and
M = measure lebesque (path-inside p)

shows M1 + M2 = M

proof—

let ?cut = make-polygonal-path (x # cutvts Q [y])

let ?cut-open-image = (path-image ?cut) — {z, y}

let ?P = path-inside p

let ?P1 = path-inside pl

let ?P2 = path-inside p2
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let M = space lebesgue
let ?A = sets lebesgue
let ?u = emeasure lebesque

have open ?P1
by (metis assms(1) assms(3) assms(5) assms(6) assms(8) closed-path-image
is-polygon-split-path-def open-inside path-inside-def polygon-def simple-path-def)
then have Pi-measurable: ?P1 € ?A by simp

have open ?P2

by (metis assms(1) assms(2) assms(4) assms(5) assms(6) assms(9) closed-path-image
is-polygon-split-path-def open-inside path-inside-def polygon-def simple-path-def)

then have P2-measurable: ?P2 € ?A by simp

have ?P1 N ?P2 = {}
by (metis assms(1) assms(2) assms(3) assms(4) assms(5) assms(6) assms(8)
assms(9) is-polygon-split-path-def)
then have sum-union-finite: %u ?P1 + %u ¢P2 = 2y (?P1 U ?P2)
using plus-emeasure P1-measurable P2-measurable by blast

have ?u (path-image q) = 0 = (path-image q) € null-sets lebesque if x:
path-image q € sets lebesgue for q::real = (real, 2) vec
using null-sets-def * by blast

have measure lebesque ?P1 = 2 ?P1
by (metis assms(1) assms(3) assms(5) assms(6) assms(8) bounded-inside
bounded-set-imp-lmeasurable bounded-simple-path-image emeasure-eq-ennreal-measure
emeasure-notin-sets ennreal-0 fmeasurableD2 is-polygon-split-path-def measure-zero-top
path-inside-def polygon-def)
moreover have measure lebesque ?P2 = 2y P2
by (metis Sigma-Algebra.measure-def assms(1) assms(2) assms(4) assms(5)
assms(6) assms(9) bounded-inside bounded-path-image bounded-set-imp-lmeasurable
emeasure-eq-ennreal-measure emeasure-notin-sets enn2real-top ennreal-0 fmeasur-
ableD2 is-polygon-split-path-def path-inside-def polygon-def simple-path-def)
ultimately have %y (?P1 U ?P2) = M1 + M2
using assms(10) assms(11) sum-union-finite by auto
moreover have ?u (YP1 U ?P2) = %u P
proof—
have ?u (path-image ?cut) = 0 using polygonal-path-has-emeasure-0
by presburger
then have (path-image ?cut) € null-sets lebesque using polygonal-paths-measurable
by blast
moreover have {z, y} € null-sets lebesque by simp
ultimately have ?cut-open-image € null-sets lebesgue using measure-Diff-null-set
by auto
moreover have ?P = ?P1 U ?P2 U ?cut-open-image
by (metis assms(1) assms(2) assms(3) assms(4) assms(5) assms(6) assms(7)
assms(8) assms(9) is-polygon-split-path-def)
ultimately show Zthesis
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by (simp add: P1-measurable P2-measurable emeasure-Un-null-set sets.Un)
qed
ultimately show ?thesis
by (smt (verit, best) M1-def M2-def M-def emeasure-eq-ennreal-measure enn2real-ennreal
ennreal-neg-top measure-nonneq)
qed

lemma polygon-cut-path-to-split-path-vtz0:
fixes p :: R-to-R2
assumes polygon-p: polygon p and
i-gt: ¢ > 0 and
i-lt: i < length vts and
p-is: p = make-polygonal-path (vts @Q [vts ! 0]) and
cutpath: cutpath = make-polygonal-path ([vts!0] Q cutvts Q [vts!i]) and
have-cut: is-polygon-cut-path (vts @ [vts!0]) cutpath
shows is-polygon-split-path vts 0 i cutvts
proof —
let ?vts2 = take (i — 1) (drop 1 vts)
let ?vts3 = drop i (drop 1 vts)
let 92 = vis ! 0
let 2y = vts !4

let ?c3-vts = [?z] Q cutvis @ [?y]

let ?c3 = cutpath

let ?c3-rev-vts = rev ?c3-vts

let ?c3-rev = make-polygonal-path ?c3-rev-vts
let ?c8’ = reversepath ?c3

let ?p = make-polygonal-path (vts @ [vts ! 0])
let ?pil-vts = % # Pvts2 Q ?2¢3-rev-uvts

let ?p1 = make-polygonal-path ?p1-vts

let ?pi-rot-vts = ?c3-rev-vts Q Zuts2 Q [?y]
let ?p1-rot = make-polygonal-path ?p1-rot-vts
let ?p2-vts = %c3-vts Q Zuts3 Q [?x]

let ?p2 = make-polygonal-path ?p2-vts

let Zcl-vts = %u # Pvts2 Q [?y]

let ?c1 = make-polygonal-path ?cl-vts

let Zc2-vts = [?y] Q Zutsd Q [?x]

let ?c2 = reversepath (make-polygonal-path ?c2-vts)
let 2c¢2’-vts = [?y] Q Pvts3 Q [2x]

let 2¢2’ = (make-polygonal-path (2c2’-vts))

have distinct-vts: distinct vts
using polygon-p p-is
using polygon-def simple-polygonal-path-vts-distinct by force
have len-vts-gteq3: length vts > 3
using polygon-p p-is polygon-vertices-length-at-least-4 by fastforce

then have 7z # %vts2 Q [?y| = take (i+1) (vtsQ [vis ! 0])
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by (smt (verit, ccfu-threshold) i-gt Cons-nth-drop-Suc Suc-eq-plusl Suc-pred’
add-less-cancel-left butlast-snoc drop0 drop-drop hd-drop-conv-nth i-lt length-append-singleton
length-greater-0-conv less-imp-le-nat linorder-not-less list.size(3) plus-1-eq-Suc take-Suc-Cons
take-all-iff take-butlast take-hd-drop)

have [?y] @ 2vts3 Q [?z] = drop (i) (vts Q [vts | 0])

using i-gt

by (metis (no-types, lifting) Cons-eq-appendl Cons-nth-drop-Suc Suc-eq-plus!
append-Nil diff-is-0-eq’ drop-0 drop-append drop-drop i-lt less-imp-le-nat)

have card-gteq: card (set vts) > 3
using polygon-at-least-3-vertices-wraparound polygon-p p-is
by (metis butlast-conv-take butlast-snoc)
then have vits # ||
by auto
then have vts-is: vts = %x # %vts2 Q 2y # Zvts3
using split-up-a-list-into-3-parts[of 0 vts 7] i-gt i-lt
by auto

have elem-propl: last ?c1-vts = %y
by (metis (no-types, lifting) last.simps snoc-eq-iff-butlast)
have elem-prop2: (vts | 0 # (rev ?vts3) Q [vts ! i) !
(length (vts ! 0 # drop i (drop 1 vts) Q [vts 1 4]) — 1) = vts !
by (metis diff-Suc-1 length-Cons length-append-singleton length-rev nth-Cons-Suc
nth-append-length)
have path-image cutpath = path-image ?c3’ by simp
then have path-image ?p1 = path-image (?cl +++ ?c3-rev)
using elem-propl assms make-polygonal-path-image-append-alt[of ¢p1 ?pl-vts
7c1 Pcl-vts ?c3-rev ?c3-rev-vts]
by simp
also have ... = path-image ?c1 U path-image ?c3-rev
by (metis (no-types, opaque-lifting) append-Cons append-Nil elem-prop1 hd-conv-nth
last-conv-nth list.discl list.sel(1) path-image-join polygon-pathfinish polygon-pathstart
rev.simps(2) rev-rev-ident)
finally have image-prop: path-image ?p1 = path-image ?c1 U path-image cutpath
using rev-vts-path-image cutpath by presburger
have path-image ?c3’ = path-image ?c3
using cutpath rev-vts-path-image by force
then have path-image-p1: path-image ?c1 U path-image ?c8 = path-image ?p1
using image-prop by presburger

have ?p2-vts = 2c3-vts Q (tl 2c2-vts) by simp
then have path-image ?p2 = path-image (2¢8 +++ %¢2’)
using make-polygonal-path-image-append-alt[of ?p2 ?p2-vts 9c3 2c-vts 2¢2’
?c2-vts]
unfolding assms by auto
then have path-image-p2: path-image ?c2 U path-image ?c3 = path-image ?p2
by (metis (no-types, opaque-lifting) Un-commute append-Cons append-Nil cut-
path last-conv-nth nth-Cons-0 path-image-join path-image-reversepath polygon-pathfinish
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polygon-pathstart snoc-eq-iff-butlast)

have drop 1 vts = take (i — 1) (drop 1 vts) Q [vts ! {] @ drop i (drop 1 vts)
by (metis (no-types, lifting) Cons-eg-appendl Cons-nth-drop-Suc Suc-eq-plus!
Suc-pred’ append.simps(1) append-take-drop-id drop-drop i-gt i-lt)
then have vis-is: vts Q [vts | 0] = vts | 0 # take (i — 1) (drop 1 vts) @ [vts !
i) @ drop i (drop 1 vts) @ [vts ! 0]
by (metis (no-types, opaque-lifting) Cons-nth-drop-Suc One-nat-def append.assoc
append-Cons drop0 i-lt length-pos-if-in-set nth-mem)
let ?vts1’ = take (i — 1) (drop 1 vts)
let %vts2’ = drop i (drop 1 vts)
have path-im-p: path-image
(make-polygonal-path
((vts ! 0 # 2vts1’) @ [vts ! ] Q [vts | i] @ Puts2’ Q [vts | 0])) =
path-image
(make-polygonal-path
((vts ! 0 # 2vts1’) Q [vts | 9] @ Zuts2’ Q [vts ! 0]))
using make-polygonal-path-image-append-helper[of wvts | 0 # 2vtsl’ %vts2’ Q
[vts | 0]] by auto
have path-image
(make-polygonal-path
((vts ! 0 # 2vts1’) Q [vts ! 4] Q [vts | i] @ Puts2’ @ [vts ! 0])) = path-image
(make-polygonal-path ((vis ! 0 # %vtsl’) @Q [vis ! i]) +++ (linepath (vts ! i) (vts !
i)) +++ make-polygonal-path ([vts ! i] Q@ Zvts2’ @ [vts ! 0]))
using make-polygonal-path-image-append|of (vis! 0 # ?vtsl’) Q [vts ! i] [vts !
il @ 2uts2’ Q [vts | 0]

by (smt (verit) add-2-eq-Suc’ append.assoc append-Cons diff-Suc-1 le-add?2
length-Cons length-append-singleton nth-Cons-0 nth-append-length)
then have path-image p = path-image (make-polygonal-path ((ves! 0 # ?vts1’)
Q@ [vts ! i]) +++ (linepath (vts ! ) (vts ! i) +++ make-polygonal-path ([vts ! i) @
Puts2' Q [uts | 0]))
using path-im-p p-is vts-is
by simp
then have path-image p = path-image ?c1 U path-image (linepath (vts ! i) (vts
7)) U path-image (make-polygonal-path ([vts | i| @ 2vts2’ Q [vts | 0]))
by (metis (no-types, lifting) Un-assoc append-Cons elem-prop1 list.discI nth-Cons-0
path-image-join pathfinish-linepath pathstart-join pathstart-linepath polygon-pathfinish
polygon-pathstart last-conv-nth)

moreover have ... = path-image ?c1 U {vts! i} U path-image (make-polygonal-path
([vts ! 4] @ 2uts2’ @ [vts ! 0]))
by auto
moreover have ... = path-image ?c1 U path-image (make-polygonal-path ([vts !

i) @ 2uts2’ @ [vts ! 0]))
using vertices-on-path-image by fastforce
ultimately have path-image-p: path-image p = path-image ?c1 U path-image
7c2
using path-image-reversepath by blast
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have simple-path-polygon: simple-path (make-polygonal-path (?z # %vts2 @Q 2y
# uts3 Q [?z]))
using polygon-p p-is vts-is
using Cons-eg-appendl append-self-conv2 polygon-def by auto
then have loop-free-polygon: loop-free (make-polygonal-path (%z # %vts2 Q %y
# %uts3 Q [%2]))
unfolding simple-path-def by auto

have loop-free-p: loop-free p
using polygon-p p-is unfolding polygon-def simple-path-def by auto

have sublist-c1: sublist (?x # %vts2 Q [?y]) vis
using «vts | 0 # take (i — 1) (drop 1 vts) Q [vts | 4] = take (i + 1) (vts Q [vts
1 0]) -t by auto
then have sublist-c1: sublist (?x # %vts2 Q [?y]) (vtsQ[uvts 10])
by (metis <vts | 0 # take (i — 1) (drop 1 vts) Q [vts | §] = take (i + 1) (vts
@ [vts ! 0])» sublist-take)
then have loop-free ?cl1
using sublist-is-loop-free p-is loop-free-p sublist-c1
by (metis One-nat-def Suc-1 Suc-eq-plusl Suc-lel Suc-le-mono <vts | 0 #
take (i — 1) (drop 1 vts) Q [vts | i) = take (i + 1) (vts Q [vts | 0])> i-gt i-lt
length-append-singleton less-imp-le-nat take-i-is-loop-free)
then have simple-c1: simple-path ?cl
unfolding simple-path-def
using make-polygonal-path-gives-path by blast
have start-c1: pathstart ?c1 = ?x
using polygon-pathstart
by (metis Cons-eq-appendl list.discI nth-Cons-0 )
have finish-c1: pathfinish ?c1 = %y
using polygon-pathfinish
by (metis Cons-eq-appendl diff-Suc-1 length-append-singleton list.discI nth-append-length)

have sublist-c2: sublist ([?y] Q@ Zvts3 @ [?z]) (vtsQ[vts 10])
by (metis <[vts | i] @ drop i (drop 1 vts) @Q [vts | 0] = drop i (vts Q [vts ! 0])»
sublist-drop)
have ¢ < length (tl vts) using i-lt by fastforce
then have loop-free ?c2
by (metis (no-types) Suc-1 <[vts | §] @Q drop ¢ (drop 1 vts) Q [vts | 0] = drop
i (vts @ [vts | 0]) «wts # []» butlast-snoc drop-Suc drop-i-is-loop-free length-butlast
length-drop loop-free-p loop-free-reversepath p-is tl-append?2)
then have simple-c2: simple-path ?c2
unfolding simple-path-def
using make-polygonal-path-gives-path
using path-imp-reversepath by blast
have start-c2: pathstart ?c2 = %z
using polygon-pathfinish
by (metis (no-types, lifting) Nil-is-append-conv last-appendR last-conv-nth path-
start-reversepath polygon-pathfinish snoc-eq-iff-butlast)
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have finish-c2: pathfinish ?c2 = ?y
using polygon-pathstart by auto

have path-image-int: path-image ?c1 C path-image ?p
unfolding path-image-def
by (metis Un-upperl p-is path-image-def path-image-p)
moreover have path-image ?p N path-image ?¢3 C {vts! 0, vts ! i}
using have-cut unfolding is-polygon-cut-path-def
by (metis (no-types, lifting) Int-commute append-Cons append-is-Nil-conv cut-
path last-appendR last-conv-nth last-snoc not-Cons-self2 nth-Cons-0 polygon-pathfinish
polygon-pathstart set-eq-subset)
ultimately have vts-subset-c1¢3: path-image ?c1 N path-image ?c3 C { %z, 2y}
by blast
have other-subsetl: {vts | 0, vts | i} C path-image ?cl
using vertices-on-path-image by fastforce
have other-subset2: {vts ! 0, vts | i} C path-image ?c3
unfolding assms using vertices-on-path-image by force
then have cl-inter-c3: path-image 2c1 N path-image ?2¢8 = {vts ! 0, vts ! i}
using vits-subset-c1c3 other-subsetl other-subset2 by blast
then have path-image ?c1 N path-image ?c3-rev = {pathstart ?c1, pathstart
?c3-rev}
by (metis rev-vts-path-image append-Cons append-Nil cutpath hd-conv-nth list.discI
list.sel(1) polygon-pathstart rev.simps(2) rev-rev-ident)

then have cl-inter-c3": path-image (make-polygonal-path (vis ! 0 # take (i —
1) (drop 1 vts) @Q [vts ! 4])) N
path-image (make-polygonal-path (rev ([vts | 0] Q cutvts Q [vts ! 7])))
C {pathstart (make-polygonal-path (vts | 0 # take (i — 1) (drop 1 vts) Q [vis !

),
pathstart (make-polygonal-path (rev ([vts ! 0] @ cutvts @ [vts ! i])))}
by blast
have last-is-head: last ?c3-rev-vts = hd ?c1-vts by auto
have vts-append: vts | 0 # take (i — 1) (drop 1 vts) Q rev ([vts ! 0] Q cutvts @
[vts ! 4]) =
(vts | 0 # take (i — 1) (drop 1 vts) Q [vts | i]) @
tl (rev (Juts | 0] Q cutvts Q [vts ! 4]))
by simp
have loop-free: loop-free (make-polygonal-path (vis ! 0 # take (i — 1) (drop 1
vts) @ [vts | d])) A
loop-free (make-polygonal-path (rev ([vts | 0] @ cutvts Q [vts | i])))
by (metis Suc-eg-plusl Suc-le-mono Zero-neq-Suc <vts | 0 # take (i — 1) (drop
1 vts) @ [uts | ] = take (i + 1) (vts Q [vts ! 0])» cutpath diff-Suc-1 have-cut
i-gt -t is-polygon-cut-path-def length-append-singleton less-2-cases less-imp-le-nat
less-nat-zero-code linorder-le-less-linear loop-free-p p-is rev-vts-is-loop-free simple-path-def
take-i-is-loop-free)
have last-is-head?2:
last (vts ! 0 # take (i — 1) (drop 1 vts) Q [vts ! d]) =
hd (rev ([uts ! 0] @ cutvts Q [vts | i])) by simp
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have arcs: arc (make-polygonal-path (vts | 0 # take (i — 1) (drop 1 vts) @ [vts
L)) A
arc (make-polygonal-path (rev ([vts | 0] @ cutvts @ [vts ! i])))
using Nil-is-append-conv append-Cons constant-linepath-is-not-loop-free cutpath
finish-c1 have-cut hd-conv-nth is-polygon-cut-path-def last-appendR last-conv-nth
last-is-head last-is-head2 last-snoc list.sel(1) loop-free make-polygonal-path.simps(1)
make-polygonal-path-gives-path polygon-pathfinish polygon-pathstart simple-path-def
simple-path-imp-arc loop-free
by (smt (verit, ccfv-SIG))
then have loop-free ?p1
using loop-free-append|of ?p1 ?pl-vts ?c1 cl-vts ?2c3-rev ?c3-rev-vts,

OF - - - outs-append loop-free cl-inter-c3' - last-is-head2 arcs] using
last-is-head by blast

then have simple-path ?p1
unfolding simple-path-def
using make-polygonal-path-gives-path by blast
moreover have closed-path ?p1
using polygon-pathstart polygon-pathfinish
unfolding closed-path-def
using elem-prop1 make-polygonal-path-gives-path
by (smt (verit, best) append-is-Nil-conv last-ConsR last-appendR last-conv-nth
last-snoc list.discl nth-Cons-0 rev-append singleton-rev-conv)

ultimately have polygon-p1: polygon ?p1 unfolding polygon-def polygonal-path-def
by fastforce

have path-image-int: path-image ?c2 C path-image (make-polygonal-path (vts @
[vts | 0]))
unfolding path-image-def using path-image-p
by (simp add: p-is path-image-def)
then have vts-subset-c2c3: path-image ?c2 N path-image ?¢3 C { %z, %y}
using have-cut unfolding is-polygon-cut-path-def using <path-image (make-polygonal-path
(vts Q [vts ! 0])) N path-image cutpath C {vts ! 0, vts | ip by auto
have other-subset3: {vts ! 0, vts ! i} C path-image ?c2
using vertices-on-path-image by fastforce
have other-subset4: {vts ! 0, vts ! i} C path-image ?¢8
unfolding assms using vertices-on-path-image by fastforce
have c2-inter-c3: path-image ?c2 N path-image 9c3 = {vts ! 0, vts ! i}
using vts-subset-c2c3 other-subset3 other-subsets by blast
have path-p2: path ?p2
using make-polygonal-path-gives-path by blast
have pathfinish ?p2 = vts ! 0
using polygon-pathfinish
by (metis Nil-is-append-conv last-appendR last-conv-nth last-snoc list.discl)
then have closed-p2: closed-path ?p2

unfolding closed-path-def using polygon-pathstart
using path-p2 by auto
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have ([vts | 0] @ cutvts @ [vts ! i]) Q drop i (drop 1 vts) Q [vts | 0] =
([vts ! 0] @ cutvts Q [vts | i]) Q tl ([vts ! ] Q drop i (drop 1 vts) @ [vts ! 0])
by force
moreover have loop-free cutpath N
loop-free (make-polygonal-path ([vts | i) @Q drop i (drop 1 vts) Q [vts ! 0]))
by (metis <loop-free (reversepath (make-polygonal-path ([vts ! i] @ drop i
(drop 1 vts) @Q [uvts ! 0])))> cutpath loop-free loop-free-reversepath rev-rev-ident
rev-vts-is-loop-free reversepath-reversepath)
moreover have path-image cutpath N path-image (make-polygonal-path ([vts ! 4]
Q@ drop i (drop 1 vts) @Q [vts ! 0]))
C {pathstart cutpath,
pathstart (make-polygonal-path ([vts | i] @ drop i (drop 1 vts) Q [vts | 0]))}
using c2-inter-c3 cutpath polygon-pathstart by auto
moreover have last ([vts ! i) @ drop i (drop 1 vts) Q [vts ! 0]) # hd ([vts ! 0]
Q@ cutvts @ [vts ! i]) —
path-image cutpath N path-image (make-polygonal-path ([vts ! i) @ drop i (drop
1 vts) @ [vts | 0]))
C {pathstart (make-polygonal-path ([vts ! 7| @ drop i (drop 1 vts) Q [vts ! 0]))}
by simp
moreover have last ([vts ! 0] @ cutvts @ [vts ! i]) = hd ([vts ! i] Q drop i (drop
1 vts) Q [vts ! 0))
by simp
moreover have arc cutpath A arc (make-polygonal-path ([vts ! i] Q drop i (drop
1 vts) Q [vts ! 0]))
by (metis (no-types, lifting) arc-simple-path arcs calculation(2) finish-c1 fin-
ish-c2 have-cut is-polygon-cut-path-def make-polygonal-path-gives-path pathfinish-reversepath
pathstart-reversepath simple-path-def start-c1 start-c2)
ultimately have loop-free ?p2
using loop-free-append|of ?p2 ?p2-vts ?¢3 2c8-vts 2c2’ P¢2'-vts,
OF - - -] using cutpath by blast
then have polygon-p2: polygon ?p2
using path-p2 closed-p2 unfolding polygon-def simple-path-def polygonal-path-def

by blast

have simple-c8: simple-path ?c3
using have-cut unfolding is-polygon-cut-path-def by meson
have start-c3: pathstart ?c3 = ?z unfolding assms using polygon-pathstart by
simp
have finish-c3: pathfinish ?c3 = ?y unfolding assms using polygon-pathfinish
by simp
have pathstart cutpath = ?x using assms polygon-pathstart by force
moreover have pathfinish cutpath = ?y using assms polygon-pathfinish by simp
ultimately have vts-neq: vts | 0 # vts ! ¢
using have-cut unfolding is-polygon-cut-path-def by force
have ci-inter-c2: path-image ?c1 N path-image ?¢2 = {vts ! 0, vts ! i}
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proof—
obtain ¢ where i1: (%z # %vts2 Q [?y] = take 7 (vts Q [vts!0])) and
i2: ([%y] Q@ 2uts8 Q [?z] = drop (i—1) (vts @ [vts!0]))
by (metis <[vts ! i] Q drop i (drop 1 vts) @Q [vts ! 0] = drop i (vts Q [vts | 0])»
wts | 0 # take (i — 1) (drop 1 vts) @ [vts ! i] = take (i + 1) (vts Q [vts | 0])»
add.commute add-diff-cancel-left’)
moreover have 1: { > 1 A i < length (vts Q [vts!0])
by (metis (no-types, lifting) bot-nat-0.extremum less-one Nil-is-append-conv ap-
pend-Cons calculation diff-is-0-eq drop-Cons' linorder-not-less list.inject not-Cons-self2
same-append-eq take-all vts-is vts-neq)
moreover have 2: ?p = make-polygonal-path (vts Q [vts!0]) A loop-free ?p
unfolding polygon-of-def using p-is polygon-p unfolding polygon-def sim-
ple-path-def by blast
ultimately have path-image ?c1 N path-image (make-polygonal-path ([?y] @
Puts3 @ [?z])) C {pathstart ?cl, pathstart (make-polygonal-path ([?y] @ Zvtss Q
172])}
using loop-free-split-int[of ?p vis Q [vtslO] %o # Pvts2 Q [?y] i [?y] Q@ Pvts3
@ [?z] ?c1 make-polygonal-path ([?y] @ Pvts3 Q [?z]) length (vts @ [vts!0]),
OF 2i1i2 - - - 1]
by presburger
moreover have path-image ?c2 = path-image (make-polygonal-path ([?y] Q
Zuts8 Q@ [?x])) using path-image-reversepath by fast
moreover have pathstart (make-polygonal-path ([?y] Q@ ?vts3 Q [?2])) = 2y
using polygon-pathstart by auto
moreover have pathstart ?c1 = ?z using polygon-pathstart by auto
ultimately show ¢thesis
using other-subset! other-subset3 subset-antisym by force
qed

have non-empty-inter: path-image ?c3 N inside(path-image ?c1 U path-image
7c2) # {}

using have-cut path-image-p p-is

unfolding is-polygon-cut-path-def path-inside-def

by fastforce

have p1-minus: ((path-image ?p1) — (path-image ?c3)) = path-image ?c1 — { %z,
9
7y}

using cl-inter-c3 path-image-p1 by blast
have p2-minus: ((path-image ?p2) — (path-image ?¢3)) = path-image ?c2 — { %z,
2
7y}

using c2-inter-c3 path-image-p2 by auto

then have path-im-intersect-minus: ((path-image ?p1) — (path-image 2¢3)) N
((path-image ?p2) — (path-image (linepath 2z ?y))) = {}
using cl-inter-c2 p1-minus p2-minus
by blast
have ((path-image ?p1) — (path-image ?¢3)) U ((path-image ?p2) — (path-image
7¢3)) U { %z, 2y} = ((path-image ?p1) — (path-image 2c8) U { %z, ?y}) U ((path-image
?p2) — (path-image 2¢3) U { %z, ?y})
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by auto

then have ((path-image ?p1) — (path-image (%¢3))) U ((path-image ?p2) —
(path-image (?¢3))) U {%z, ?y} = ((path-image 2c1) — {%z, ?y} U {%z, 2y}) U
((path-image ?c2) — { %z, 2y} U { %z, ?y})

using pl-minus p2-minus by simp

then have ((path-image ?p1) — (path-image (?¢3))) U ((path-image 9p2) —
(path-image (%¢3))) U {?z, 2y} = path-image ?c1 U path-image ?c2

using other-subset! other-subset3 by auto
then have path-im-intersect-union: path-image ?p = ((path-image ?p1) — (path-image
(2¢8))) U ((path-image ?p2) — (path-image (%¢3))) U { %z, %y}

using path-image-p p-is by auto

have inside(path-image ?c1 U path-image ?¢3) N inside(path-image ?¢2 U path-image
7c3) = {}
using split-inside-simple-closed-curve-real2[OF simple-c1 start-c1 finish-c1 sim-
ple-c2 start-c2 finish-c2
simple-c8 start-c8 finish-c3 vts-neq cl-inter-c2 cl-inter-c3 c2-inter-c3
non-empty-inter]
by fast
then have empty-inter: path-inside ?p1 N path-inside ?p2 = {}
using path-image-p1 path-image-p2 unfolding path-inside-def
by force
have inside(path-image %cl1 U path-image ?¢3) U inside(path-image %c2 U
path-image ?¢3) U
(path-image ?c8 — {vts! 0, vts | i}) = inside(path-image ?c1 U path-image
2c2)
using split-inside-simple-closed-curve-real2| OF simple-c1 start-c1 finish-c1 sim-
ple-c2 start-c2 finish-c2
simple-c3 start-c3 finish-c3 vts-neq cl-inter-c2 cl-inter-c3 c2-inter-c3
non-empty-inter]
by fast
then have inside: path-inside ?p1 U path-inside ?p2 U (path-image ?c3 — { %z,
?y}) = path-inside p
using path-image-p1 path-image-p1 path-image-p unfolding path-inside-def
by (smt (23) Diff-cancel Int-Un-distrib2 c1-inter-c2 c1-inter-c3 finish-c1 inf-commaute
inf-sup-absorb nonempty-simple-path-endless path-image-p2 simple-c1 start-c1)
have first-part: 0 < length vts A
i < length vts N\
0 <i
using assms
by auto
have second-part-helper: is-polygon-cut-path (vts Q [vts ! 0]) cutpath A
polygon ?p A
polygon ?p1 A
polygon ?p2 A
path-inside ?p1 N path-inside ?p2 = {} A
path-inside ?p1 U path-inside ?p2 U (path-image (?¢3) — {%z, ?y}) =
path-inside p
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A ((path-image ?p1) — (path-image (?c3))) N ((path-image ?p2) — (path-image
(7c3)) = {}
A path-image ?p = ((path-image ?p1) — (path-image (?¢3))) U ((path-image
?p2) — (path-image (?¢3))) U {?z, 2y}
using polygon-p p-is polygon-p1 polygon-p2 empty-inter inside have-cut path-im-intersect-minus
path-im-intersect-union
proof—
have {} = path-image cutpath U path-image (make-polygonal-path (vts ! 0 # take
(i — 1) (drop 1 vts) @ [vts | i])) N path-image (reversepath (make-polygonal-path
([vts ! 4] @Q drop i (drop 1 vts) Q [vts ! 0]))) — path-image cutpath
using cl-inter-c2 c2-inter-c8 by fastforce
then have {} = (path-image cutpath U path-image (make-polygonal-path (vts
10 # take (i — 1) (drop 1 vts) Q [vts ! §]))) N (path-image cutpath U path-image
(reversepath (make-polygonal-path ([vts | i) @ drop i (drop 1 vts) @ [vts ! 0])))) —
path-image cutpath
by blast
then show ?thesis
using empty-inter have-cut inside polygon-p1 polygon-p2 Int-Diff image-prop
p-is path-im-intersect-union path-image-p2 polygon-p
by auto
qged
have vts-relation: (let vtsl = take 0 vts; vts2 = take (i — 0 — 1) (drop (Suc 0)
vts);
vts3 = drop (i — 0) (drop (Suc 0) vts); x = vts | 0; y = vts ! i
p = make-polygonal-path (vts @ [vts | 0]); pI = make-polygonal-path (z #
vts2 Q ?c3-rev-vts);
p2 = make-polygonal-path (?c3-vts Q vts3 Q [z]) in
vtsl =[] A vts2 = Puts2 A vts8 = 2vts3 AN p = p A pl = ?pl A p2 =
p2)
by simp
have second-part: (let vis1 = take 0 vts; vis2 = take (i — 0 — 1) (drop (Suc 0)
vEs);
vts3 = drop (i — 0) (drop (Suc 0) vts); x = vis ! 0; y = vts ! i
p = make-polygonal-path (vis Q [vts | 0]); pI = make-polygonal-path (x #
vts2 Q ?c3-rev-vts);
p2 = make-polygonal-path (vtsl Q ?c3-vts @ vts3 Q [vts | 0])
in is-polygon-cut-path (vts Q [vts | 0]) cutpath A
polygon p A
polygon p1 A
polygon p2 A
path-inside p1 N path-inside p2 = {} A
path-inside p1 U path-inside p2 U (path-image cutpath — {x, y}) = path-inside
p
A ((path-image p1) — (path-image (cutpath))) N ((path-image p2) — (path-image
(cutpath)) = {} A
path-image p = ((path-image p1) — (path-image (cutpath))) U ((path-image
p2) — (path-image (cutpath))) U {z, y})
using second-part-helper vts-relation p-is
by (metis self-append-conv2)
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show ?thesis
unfolding is-polygon-split-path-def[of vts 0 i cutvts)
using first-part second-part
by (smt (verit, ccfv-threshold) append-Cons append-Nil cutpath rev.simps(2)
rev-append rev-is-Nil-conv)
qed

lemma polygon-cut-path-to-split-path:
fixes p :: R-to-R2
assumes polygon p
p = make-polygonal-path (vts Q [vts | 0])
is-polygon-cut-path (vts @ [vts!0]) cutpath
vtsl = (take i vts)

vts2 = (take (j — i — 1) (drop (Suc i) vts))
vts3 = drop (j — %) (drop (Suc ©) vts)
r=vts!i

y=wvts!j

cutpath = make-polygonal-path ([z] @ cutvts Q [y])
i < length vts N\ j < length vis A\ i < j
pl = make-polygonal-path (x#(vts2Q([y] Q (rev cutvts) @ [z]))) and
p2 = make-polygonal-path (vtsl @Q ([z] Q cutvts Q [y]) Q vts3 Q [(vtsl] Q
[z]) ! 0])
shows is-polygon-split-path vts i j cutvts
proof—
let Zpoly-vts-rot = rotate-polygon-vertices (vts @ [vts | 0]) @
let ?vts-rot = butlast ?poly-vts-rot
let ?p-rot = make-polygonal-path ?poly-vts-rot
let 2i-rot = j — i
have rot-poly: polygon ?p-rot using assms(1) assms(2) rotation-is-polygon by
blast
have i-rot: %i-rot > 0 N %i-rot < length ?poly-vts-rot — 1
using assms(10) rotate-polygon-vertices-same-length by fastforce
have vtsi: vts | ¢ = ?poly-vts-rot | 0
using rotated-polygon-vertices|of ?poly-vts-rot vts Q [vts!0] @ i]
by (metis (no-types, lifting) One-nat-def Suc-1 assms(10) diff-self-eq-0 hd-conv-nth
last-snoc length-append-singleton less-imp-le-nat linorder-not-le not-less-eq-eq nth-append
take-all-iff take-eq-Nil)
have vtsj: vts | j = ?poly-vts-rot | Zi-rot
using rotated-polygon-vertices|of ?poly-vts-rot vts Q [vts!0] © j]
by (smt (verit, ccfv-SIG) One-nat-def Suc-1 assms(10) butlast-snoc hd-append?2
hd-conv-nth last-snoc leD length-append-singleton less-Suc-eq-le less-imp-le-nat not-less-eq-eq
nth-butlast take-all-iff take-eq-Nil)
have is-polygon-cut-path ?poly-vts-rot cutpath
proof—
have ?poly-vts-rot | 0 # ?poly-vts-rot | Zi-rot
using assms(3) unfolding is-polygon-cut-path-def using vtsi vtsj
using append-Cons append-is-Nil-conv assms(7) assms(8) assms(9) last-appendR
last-conv-nth polygon-pathfinish polygon-pathstart
by force
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moreover have {%poly-vts-rot | 0, ?poly-vts-rot | ?i-rot} C set (?poly-vts-rot
Q@ [?poly-vts-rot | 0])
using assms(3) unfolding is-polygon-cut-path-def using i-rot vtsi visj by
fastforce
moreover have path-image cutpath N path-image ?p-rot = { ?poly-vts-rot | 0,
Zpoly-vts-rot | Zi-rot}
using polygon-vts-arb-rotation vtsi vtsj assms(3) is-polygon-cut-path-def
by (metis (no-types, lifting) append.assoc append-Cons assms(7) assms(8)
assms(9) last-conv-nth nth-Cons-0 polygon-pathfinish polygon-pathstart snoc-eg-iff-butlast)
moreover have path-image cutpath N path-inside (p-rot) # {}
using vtsi vtsj assms(3) polygon-vts-arb-rotation
unfolding is-polygon-cut-path-def path-inside-def by metis
ultimately show #thesis
unfolding is-polygon-cut-path-def
using rot-poly assms(3) is-polygon-cut-path-def rotate-polygon-vertices-same-set
vtst vtsj
by (metis polygon-vts-arb-rotation)
qed
then have rot-cut: is-polygon-cut-path (?vts-rot Q [?vts-rot!0]) cutpath
by (metis butlast-snoc rotate-polygon-vertices-def)
have rot-cut-butlast: make-polygonal-path ?poly-vts-rot = make-polygonal-path
(Puts-rot @ [?vts-rot!0])
by (metis butlast-snoc rotate-polygon-vertices-def)
have split-rot: is-polygon-split-path ?vts-rot 0 ?i-rot cutvts
using rot-cut rot-cut-butlast
by (smt (verit, ccfo-SIG) assms(7) assms(8) assms(9) dual-order.strict-trans
i-rot is-polygon-cut-path-def length-butlast nth-butlast polygon-cut-path-to-split-path-vtz0
vtsi vtsy)

let 2vtsl-rot = take 0 ?uvts-rot

let ?vts2-rot = take (j — i — 0 — 1) (drop (Suc 0) ?vts-rot)

let 2vts3-rot = drop (j — @ — 0) (drop (Suc 0) ?vts-rot)

let ?z-rot = ?vts-rot | 0

let %y-rot = %vts-rot ! (j — 1)

let ?pl-rot-vts = Zz-rot # 2uts2-rot Q [2y-rot] @ (rev cutvts) @ [Zz-rot]

let ?p1-rot = make-polygonal-path ?p1-rot-vts

let ?p2-rot-vts = ?vtsi-rot Q [Zz-rot] Q cutvts Q [?y-rot] @ Puts3-rot Q [Pvts-rot
1 0]

let ?p2-rot = make-polygonal-path ?p2-rot-vts

let ?pl-vts = z # vts2 Q [y] @ (rev cutvts) Q [z]
let ?p2-vts = vtsl Q [z] @ cutvts Q [y] @ vtsd Q [(vtsl Q [z]) ! 0]

have p2-firstlast: hd ?p2-vts = last ?p2-vts
by (metis (no-types, lifting) append-is-Nil-conv append-self-conv2 hd-append?2
hd-conv-nth last-appendR last-snoc list.discI list.sel(1))
have length (drop (Suc i) vts) = length vts — i — 1
by simp
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then have len-prop: length (drop (Suc i) vts) > j — i — 1
using assms(9) assms(10) diff-le-mono less-or-eq-imp-le by presburger
have drop-take: rotate ¢ vts = drop i vts Q take i vts
using rotate-drop-take[of i vts] assms(10) mod-less by presburger
then have drop-take-suc: drop (Suc 0) (rotate i vts) = drop (Suc i) vts Q take
1 vts
using assms(10) by simp
then have take (j — Suc i) (drop (Suc 0) (rotate i vts)) = take (j — Suc ) (drop
(Suc ) vts)
using len-prop by force
then have vts2: take (j — ¢ — 0 — 1) (drop (Suc 0) (butlast (rotate-polygon-vertices
(vts @ [uts | 0]) 7))) = vts2
using assms(5) unfolding rotate-polygon-vertices-def
by (metis Suc-eq-plus1 butlast-snoc diff-diff-left diff-zero)

have zy: ?x-rot = x N\ Py-rot = y
using vtsi vtsj assms by (metis is-polygon-split-path-def nth-butlast split-rot)

moreover have path-image p = path-image ?p-rot
using assms(1) assms(2) polygon-vts-arb-rotation by auto
moreover then have path-inside p = path-inside ?p-rot unfolding path-inside-def
by simp

moreover have ?pl-rot-vts = ?pl-vts using zy vts2 by presburger
moreover then have path-image p1 = path-image ?p1-rot using assms by argo
moreover then have path-inside p1 = path-inside ?p1-rot unfolding path-inside-def
by argo
moreover have polygon p1
using calculation split-rot assms(11) unfolding is-polygon-split-path-def
by (smt (verit, ccfv-SIG) vts2)

moreover have ?p2-rot-vts = rotate-polygon-vertices ?p2-uvts i
proof—
have butlast (vis1 Q [z] Q cutvts @ [y] Q vts8 @ [(vis] Q [z]) ! 0])
= vtsl Q [z] Q cutvts @ [y] Q vis3
by (simp add: butlast-append)
also have rotate i ... = [z] Q cutvts @ [y] @ vts3 Q vist
using assms(4)
by (metis (no-types, lifting) drop-take add-diff-cancel-right’ append.assoc
assms(10) diff-diff-cancel length-append length-drop length-rotate less-imp-le-nat
rotate-append)
finally have rotate-polygon-vertices ?p2-vts i = [z] Q cutvts Q [y] Q vts3 Q
vtsl Q [z]
unfolding rotate-polygon-vertices-def by simp
moreover have ?vis3-rot = vts8 Q visl
using assms(4,6) unfolding rotate-polygon-vertices-def
by (smt (verit, del-insts) One-nat-def Suc-diff-Suc Suc-lel drop-take-suc
assms(10) butlast-snoc diff-is-0-eq diff-zero drop0 drop-append i-rot le-add-diff-inverse
len-prop length-drop nat-less-le)
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ultimately show ?thesis by (simp add: xy)
qed
moreover then have polygon p2
using unrotation-is-polygon|[of ?p2-vts i p2] split-rot assms(12) p2-firstlast
unfolding is-polygon-split-path-def
by (smt (verit) append.assoc)
moreover then have path-image p2 = path-image (?p2-rot)
using assms(12) polygon-vts-arb-rotation calculation by auto
moreover then have path-inside p2 = path-inside ?p2-rot unfolding path-inside-def
by presburger

ultimately show is-polygon-split-path vts i j cutvts
using split-rot unfolding is-polygon-split-path-def
using One-nat-def assms bot-nat-0.not-eq-extremum butlast-snoc hd-append?2
hd-conv-nth hd-take le-add2 length-0-conv length-Cons length-append length-butlast
nth-append-length rot-cut-butlast rotate-polygon-vertices-same-length take-eq-Nil
by (smt (verit) append.assoc butlast-conv-take have-wraparound-vertex is-polygon-cut-path-def
rotate-polygon-vertices-same-set)
qed

lemma good-polygonal-path-implies-polygon-split-path:
assumes polygon p
assumes p = make-polygonal-path (vts @ [vts!0])
assumes good-polygonal-path vl cutvts v2 (vts Q [vts!0])
assumes i < length vts N\ j < length vts
assumes vts | ¢ = vl
assumes vts | j = v2
assumes ¢ < j
shows is-polygon-split-path vts i j cutvts
proof—
let Zcutpath = make-polygonal-path ([vl] @ cutvts Q [v2])
let ?p-path = make-polygonal-path (vts Q [vts!0])
have linepath-subset: path-image ?cutpath C path-inside ?p-path U {vl, v2}
using assms(3) unfolding good-polygonal-path-def by meson
have linepath-ends: pathstart ?cutpath = vl A pathfinish ?cutpath = v2
using polygon-pathfinish polygon-pathstart by force
then have vs-subsetl: {v1, v2} C path-image ?cutpath
using vertices-on-path-image by fastforce
have vs-subset2: {v1, v2} C path-image (make-polygonal-path (vts Q [vts | 0]))
using assms(4 —6) vertices-on-path-image|of vts
using vertices-on-path-image by fastforce
have path-inside ?p-path N path-image ?p-path = {}
using inside-outside-polygon[OF assms(1)] assms(2) unfolding inside-outside-def
by blast
then have linepath-path: path-image ?cutpath N path-image (make-polygonal-path
(vts Q [vts ! 0])) = {wl, v2}
using linepath-subset vs-subsetl vs-subset?
by blast
have ?Zcutpath (5 / 10) € path-image ?cutpath
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unfolding path-image-def by auto
have vi-neq-v2: vl # v2
using assms(3) unfolding good-polygonal-path-def
by fastforce
have not-v1: ?cutpath (0.5::real) = v1 = False
proof —
assume *: Zcutpath (0.5::real) = vl
then have Zcutpath (0.5::real) = Zcutpath 0
using linepath-ends unfolding pathstart-def by simp
moreover have loop-free ?cutpath using assms unfolding good-polygonal-path-def
by metis
ultimately show Fulse unfolding loop-free-def by fastforce
qed
have not-v2: ?cutpath (0.5::real) = v2 = Fulse
proof—
assume *: Zcutpath (0.5::real) = v2
then have Zcutpath (0.5::real) = ?cutpath 1
using linepath-ends unfolding pathfinish-def by simp
moreover have loop-free ?cutpath using assms unfolding good-polygonal-path-def
by metis
ultimately show Fulse unfolding loop-free-def by fastforce
qed
then have ?cutpath (0.5::real) # v1 A ?Zcutpath (0.5:real) # v2
using not-vl not-v2 by auto
then have linepath-inside: path-image ?cutpath N path-inside (make-polygonal-path
(vts @ [uts ! 0])) # {}
using linepath-subset
using < ?cutpath (5 / 10) € path-image ?cutpath) by blast
have is-polygon-cut-path (vts Q [vts!0]) Zcutpath
using assms(3) assms(1—2) unfolding good-polygonal-path-def is-polygon-cut-path-def
using linepath-path linepath-inside
by (metis linepath-ends make-polygonal-path-gives-path simple-path-def)
then show ?thesis using polygon-cut-path-to-split-path assms by blast
qed

lemma good-path-iff:
good-linepath a b vts <— good-polygonal-path a [| b vts
unfolding good-linepath-def good-polygonal-path-def
using linepath-loop-free by auto

lemma polygon-cut-iff: is-polygon-cut (vts Q [vts!0]) (vtsli) (vtsly)
<« is-polygon-cut-path (vts Q [vts!0]) (linepath (vtsli) (vtslf))
unfolding is-polygon-cut-def is-polygon-cut-path-def
by (metis pathfinish-linepath pathstart-linepath simple-path-linepath)

lemma polygon-split-iff : is-polygon-split vts i j «— is-polygon-split-path vts i j ||
unfolding is-polygon-split-def is-polygon-split-path-def
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by (smt (verit, ccfo-threshold) append-Cons append-Nil make-polygonal-path.simps(3)
polygon-cut-iff rev.simps(1))

lemma polygon-cut-to-split-vtz0:
fixes p :: R-to-R2
assumes polygon-p: polygon p and
i-gt: © > 0 and
i-lt: 1 < length vts and
p-is: p = make-polygonal-path (vts Q [vts | 0]) and
have-cut: is-polygon-cut (vts Q [vts!0]) (vts!0) (vtsli)
shows is-polygon-split vts 0 i
using have-cut i-gt i-lt p-is polygon-cut-path-to-split-path-vtz0 polygon-cut-iff poly-
gon-p polygon-split-iff
by force

lemma polygon-cut-to-split:
fixes p :: R-to-R2
assumes is-polygon-cut (vts Q [vts!0]) (vtsli) (vesly)
i < length vts N\ j < length vis A\ i < j
shows is-polygon-split vts i j
by (metis append-Cons append-Nil assms is-polygon-cut-def make-polygonal-path.simps(3)
polygon-cut-path-to-split-path polygon-cut-iff polygon-split-iff)

lemma good-linepath-implies-polygon-split:
assumes polygon p
assumes p = make-polygonal-path (vts Q [vts!0])
assumes good-linepath vl v2 (vts Q [vts!0])
assumes i < length vts N\ j < length vts
assumes vts | i = vl
assumes vts | j = v2
assumes i < j
shows is-polygon-split vts i j
using assms good-path-iff good-polygonal-path-implies-polygon-split-path polygon-split-iff
by auto

end

theory Triangle-Lemmas

imports
Polygon-Convex-Lemmas
Integral-Matrix
Affine-Arithmetic. Floatarith- Expression
HOL— Analysis. Topology- Fuclidean-Space
HOL— Analysis. Equivalence-Lebesgue- Henstock-Integration
HOL— Analysis.Inner-Product
HOL— Analysis. Line-Segment
HOL— Analysis. Convez- Euclidean-Space
HOL— Analysis. Change-Of-Vars

begin
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20 Triangles

definition elem-triangle :: real™2 = real 2 = real”2 = bool where
elem-triangle a b ¢ <—
= collinear {a, b, c}
A integral-vec a A integral-vec b A integral-vec ¢
A A{z. z € convexr hull {a, b, c} A integral-vec z} = {a, b, c}

definition triangle-mat :: real”2 = real 2 = real 2 = real 2”2 where
triangle-mat a b ¢ = transpose (vector [b — a, ¢ — a])

definition triangle-linear :: real™2 = real”2 = real”2 = (real”2 = real 2)
where
triangle-linear a b ¢ = (Az. (triangle-mat a b ¢) *v x)

definition triangle-affine :: real™2 = real ™2 = real”2 = (real "2 = real”2) where
triangle-affine a b ¢ = (A\z. a + (triangle-mat a b ¢) *v x)

abbreviation unit-square =
(convex hull {vector [0, 0], vector [0, 1], vector [1, 1], vector [1, 0]})::((real™2)
set)

abbreviation unit-triangle =
(convex hull {vector [0, 0], vector [1, 0], vector [0, 1]}):((real™2) set)

abbreviation unit-triangle’ =
(convex hull {vector [1, 1], vector [1, 0], vector [0, 1]}):((real”2) set)

lemma triangle-inside-is-convex-hull-interior:
assumes polygon-of p [a, b, ¢, a]
shows path-inside p = interior (convex hull {a, b, c})
proof—
have path-image p = closed-segment a b U closed-segment b ¢ U closed-segment
ca
proof—
have path-image (linepath a b) = closed-segment a b by simp
moreover have path-image (linepath b ¢) = closed-segment b ¢ by simp
moreover have path-image (linepath ¢ a) = closed-segment ¢ a by simp
moreover have path-image p = path-image (linepath a b) U path-image (linepath
b ¢) U path-image (linepath c a)
using calculation assms(1) unfolding polygon-of-def make-polygonal-path.simps
by (simp add: path-image-join sup-assoc)
ultimately show ?thesis by simp
qged
moreover have DIM ((real, 2) vec) = 2 by simp
ultimately show ?thesis using inside-of-triangle[of a b ¢] unfolding path-inside-def
by presburger
qed
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lemma triangle-is-convez:
assumes p = make-triangle a b ¢ and — collinear {a, b, c}
shows convez (path-inside p) (is convez ?s)
using triangle-inside-is-convex-hull-interior assms(1) assms(2)
using make-triangle-def polygon-of-def triangle-is-polygon
by auto

lemma affine-comp-linear-trans: triangle-affine a b ¢ = (Az.  + a) o (triangle-linear
abc)

apply (simp add: triangle-affine-def triangle-linear-def)

by auto

lemma triangle-linear-der:
fixes a b ¢ :: real ™2
defines T = triangle-linear a b ¢
shows (T has-derivative T) (at x)
proof—
have linear T using T-def by (simp add: triangle-linear-def)
then have bounded-linear T by (simp add: linear-linear)
thus ?thesis using bounded-linear-imp-has-derivative by blast
qed

lemma triangle-affine-der:
fixes a b ¢ :: real ™2
assumes S € sets lebesgue and z € S
defines A = triangle-affine a b ¢ and T = triangle-linear a b ¢
shows z € S = (A has-derivative T) (at z within S)
proof—
assume zin: ¢ € S
let Ztrans = Az::real 2. z + a
have comp: (?trans o T) = (Az. (T z) + a)
by auto
have Vz. A x = (?trans o T') x unfolding A-def T-def using affine-comp-linear-trans
by auto
moreover then have Az-is: (Az. 2 € S = Az =(Az.z+a)o T) z)
by auto
moreover have trans-der: (?trans has-derivative id) (at z within S)
by (metis (full-types) add.commute assms(2) eq-id-iff has-derivative-transform
shift-has-derivative-id)
moreover have Tder: (T has-derivative T) (at x within S) using triangle-linear-der
by (simp add: T-def bounded-linear-imp-has-derivative triangle-linear-def)
moreover have comp-der: ((?trans o T) has-derivative T) (at x within S)
using has-derivative-add-const|OF Tder] comp
by simp
ultimately show (A has-derivative T) (at x within S)
using triangle-affine-def triangle-linear-def affine-comp-linear-trans o-apply
add.commute vector-derivative-chain-within assms(2) has-derivative-add-const has-derivative-transform
A-def T-def
by force
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qed

lemma triangle-linear-ing:
fixes a b ¢ :: real 2
assumes — collinear {a, b, c}
defines L = triangle-linear a b c
shows inj L
proof—
let ?M = triangle-mat a b ¢
let #m-11 = (b — a)$1
let 9m-12 = (¢ — a)$1
let ?m-21 = (b — a)$2
let ?m-22 = (¢ — a)$2
have det ?M = ?m-11x?m-22 — ?m-12x?m-21
unfolding triangle-mat-def
by (metis det-2 det-transpose mult.commute vector-2(1) vector-2(2))
moreover have ?m-11x?m-22 # ?m-12%?m-21
proof(rule ccontr)
assume — m-11%?m-22 # ?m-12%?m-21
then have eq: ?m-11%%m-22 = ?m-12+?m-21 by simp
{ assume *: ?m-21 = 0 A ?m-22 # 0
then have ?m-11 = 0 using eq by simp
then have ?m-11 = 0 N m-21 = 0 using * by auto
then have b — a = 0 by (metis (no-types, opaque-lifting) exhaust-2 vec-eq-iff
zero-index)
then have collinear {a, b, c} by simp
then have Fulse using assms by fastforce
} moreover
{ assume x*: ?m-21 # 0 A ?m-22 = 0
then have ?m-12 = 0 using eq by simp
then have ?m-12 = 0 A ?m-22 = 0 using * by auto
then have ¢ — a = 0 by (metis (no-types, opaque-lifting) exhaust-2 vec-eq-iff
zero-index)
then have collinear {a, b, ¢} by (simp add: collinear-3-eq-affine-dependent)
then have Fulse using assms by fastforce
} moreover
{ assume *: #m-21 = 0 A ?m-22 = 0
{ assume ?m-11 = 0
then have b — a = 0 using x
by (metis (no-types, opaque-lifting) exhaust-2 vec-eq-iff zero-index)
then have Fulse using assms(1) by auto
} moreover
{ assume ?m-11 # 0
then obtain k where ?m-12 = k * ¢m-11 using nonzero-divide-eq-eq by
blast
moreover have ?m-22 = k x ?m-21 using * by auto
ultimately have ¢ — a = k xg (b — a)
by (smt (verit, del-insts) exhaust-2 real-scale R-def vec-eq-iff vector-scaleR-component)
then have collinear {a, b, c}
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using vec-diff-scale-collinear|[of ¢ a k b] by (simp add: insert-commute)
then have Fulse using assms(1) by fastforce

ultimately have Fualse using assms by fastforce
} moreover
{ assume *: 9m-21 # 0 A m-22 # 0
then have ?m-11/%m-21 = ?m-12/%m-22 using eq frac-eq-eq by blast
then obtain m where ?m-11 = m+x%m-12 N\ ?m-21 = mx?m-22
using nonzero-divide-eq-eq *
by (metis (no-types, lifting) mult.commute times-divide-eq-left)
then have b — a = m xs (¢ — a)
by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-smult-component)
then have b — a = m x (¢ — a) by (simp add: scalar-mult-eg-scaleR)
then have collinear {a, b, ¢} using vec-diff-scale-collinear by auto
then have Fulse using assms by auto
}
ultimately show Fulse by fastforce
qed
ultimately have det ?M # 0 by linarith
thus ?thesis by (simp add: L-def inj-matriz-vector-mult invertible-det-nz trian-
gle-linear-def)
qged

lemma triangle-affine-ing:
fixes a b ¢ :: real 2
assumes - collinear {a, b, c}
defines A = triangle-affine a b c
shows inj A
proof—
have inj (triangle-linear a b ¢) using triangle-linear-inj[of a b c] assms by auto
moreover have inj (Az.  + a) by simp
moreover have A = (A\z. z + a) o (triangle-linear a b ¢)
by (simp add: A-def affine-comp-linear-trans)
ultimately show ?thesis using inj-compose by blast
qed

lemma triangle-linear-integrable:
fixes a b ¢ :: real ™2
assumes S € [measurable
defines T = triangle-linear a b ¢
shows (Az. abs (det (matriz (T)))) integrable-on S (is (Az. ?¢) integrable-on S)
using integrable-on-const[of S ?c] assms(1) by blast

lemma measure-differentiable-image-eq-affine:
fixes a b ¢ :: real ™2
defines A = triangle-affine a b ¢ and T = triangle-linear a b ¢
assumes S € Imeasurable and — collinear {a, b, c}
shows measure lebesgue (A ¢ S) = integral S (Az. abs (det (matriz T)))
proof—
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have Az. © € S = (A has-derivative T) (at z within S)
using triangle-affine-der A-def T-def assms(3) by blast
moreover have inj-on A S
using A-def assms(3) assms(4) triangle-affine-inj inj-on-subset by blast
moreover have (Az. abs (det (matriz (T)))) integrable-on S
by (simp add: T-def assms(3) triangle-linear-integrable)
ultimately show ?thesis
using measure-differentiable-image-eq[of - - Ax. T] assms(3) by blast
qed

lemma triangle-affine-img:

fixes a b ¢ :: real ™2

defines A = triangle-affine a b ¢

shows conver hull {a, b, ¢} = A ‘ unit-triangle
proof—

let 70 = (vector [0, 0])::real”2

let el = (vector [1, 0])::real”2

let ?e2 = (vector [0, 1])::real”2

let ?translate-a = Az. © + a
let ?T = triangle-linear a b ¢

define al where al = ?T 20
define bl where bl = ?T ?el
define ¢l where cl = ?T ?e2

have a: a = ?translate-a al
proof—
have al = 70
by (simp add: al-def mat-vec-mult-2 triangle-linear-def)
then show ?thesis
by (metis (no-types, opaque-lifting) add-0 mat-vec-mult-2 matriz-vector-mult-0
mult-zero-right zero-index)
qed
have b: b = ?Ztranslate-a bl
proof—
have coll: column 1 (triangle-mat a b ¢) =b — a
by (metis column-transpose row-def triangle-mat-def vec-lambda-eta vec-
tor-2(1))
then have bl =b — a
using bl-def unfolding triangle-linear-def triangle-mat-def matriz-vector-mult-def
using matriz-vector-mult-basis[of triangle-mat a b ¢ 1]
by (simp add: coll axis-def bl-def mat-vec-mult-2 triangle-linear-def)
then show ?thesis by simp
qed
have c: ¢ = ?translate-a cl
proof—
have col2: column 2 (triangle-mat a b ¢) = ¢ — a
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by (metis column-transpose row-def triangle-mat-def vec-lambda-eta vec-
tor-2(2))

then have ¢l = c — a

using cl-def unfolding triangle-linear-def triangle-mat-def matriz-vector-mult-def
using matriz-vector-mult-basis[of triangle-mat a b ¢ 2]
by (simp add: col2 axis-def cl-def mat-vec-mult-2 triangle-linear-def)

then show ?thesis by simp

qed

have linear ?T using triangle-linear-def by force
then have ?T ‘ unit-triangle = convex hull {al, bl, cl}
using convex-hull-linear-image al-def bl-def cl-def by force
also have ?translate-a ... = convez hull {a, b, c}
using a b ¢ convez-hull-translation[of a {al, bl, cl}]
by (metis (no-types, lifting) add.commute image-cong image-empty image-insert)
finally have ?translate-a ‘ (¢T * unit-triangle) = convex hull {a, b, c} .
moreover have ?translate-a o ¢T = A unfolding A-def using affine-comp-linear-trans
by auto
ultimately show ?thesis by fastforce
qed

lemma triangle-affine-el-e2:
fixes a b ¢ :: real ™2
defines A = triangle-affine a b ¢
shows (triangle-affine a b c¢) (vector [0, 0]
(triangle-affine a b c) (vector [1, 0])
(triangle-affine a b c) (vector [0, 1])
proof—
let ?M = triangle-mat a b ¢
let ?L = triangle-linear a b c
let ?A = triangle-affine a b ¢
let 20 = (vector [0, 0])::(real”2)
let el = (vector [1, 0])::(real”2)
let ?e2 = (vector [0, 1])::(real™2)

=
SYRS T

show 74 720 = a
unfolding triangle-affine-def triangle-mat-def
by (metis (no-types, opaque-lifting) add.right-neutral diff-self mult-zero-right
scaleR-left-diff-distrib transpose-matriz-vector vec-scaleR-2 vector-matriz-mult-0)
show 74 %el = b
proof—
have ?L %e1 = ?M xv el unfolding triangle-linear-def by blast
also have ... = vector [1+(2M$181) + 0x(?M$182), 1x(2M$2%81) + 0x(?2M$2$2)]
unfolding triangle-linear-def triangle-mat-def
using mat-vec-mult-2 by force
also have ... = vector [1x(b — a)$1 + 0%(?M$1$2), 1x(b— a)$2 + 0x(?M$23%2)]
unfolding triangle-mat-def transpose-def by simp
also have ... = vector [(b — a)$1, (b — a)$2] by argo
also have ... = b — a
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by (smt (verit) ezhaust-2 vec-eq-iff vector-2(1) vector-2(2))
finally show ?thesis unfolding triangle-affine-def triangle-linear-def by simp
qed
show 74 %e2 = ¢
proof—
have ?L ?e2 = ?M xv ?e2 unfolding triangle-linear-def by blast
also have ... = vector [0x(2M$1$1) + 1x(?M$182), 0x(2M$2$1) + 1x(2M$2$2)]
unfolding triangle-linear-def triangle-mat-def
using mat-vec-mult-2 by force

also have ... = vector [0x(?M$181) + 1x(c — a)$1, 0x(?M$2$1) + 1x(c —
a)$2]
unfolding triangle-mat-def transpose-def by simp
also have ... = vector [(c — a)$1, (¢ — @)$2] by argo
also have ... = c — a

by (smt (verit) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
finally show ?thesis unfolding triangle-affine-def triangle-linear-def by simp
qed
qed

lemma triangle-measure-integral-of-det:
fixes a b ¢ :: real ™2
defines S = convex hull {a, b, ¢}
assumes — collinear {a, b, c}
shows measure lebesque S =
integral unit-triangle (A(z::real”2). abs (det (matriz (triangle-linear a b
c))))

proof—
let ?A = triangle-affine a b ¢
let ?T = triangle-linear a b c

have bounded unit-triangle by (simp add: finite-imp-bounded-convez-hull)
then have Imeasurable-S: unit-triangle € Imeasurable
using bounded-set-imp-lmeasurable measurable-convex by blast

have S = 74 ¢ unit-triangle using S-def triangle-affine-img by blast
then have measure lebesgue S = measure lebesque (?A ¢ unit-triangle) by blast
moreover have
measure lebesque (YA ° unit-triangle)
= integral unit-triangle (A(z::real”2). abs (det (matriz ?T)))
using measure-differentiable-image-eq-affine| OF Imeasurable-S assms(2)] by
auto
ultimately show ¢thesis by auto
qed

lemma triangle-affine-preserves-interior:
assumes A = triangle-affine a b ¢ and L = triangle-linear a b ¢
assumes - collinear {a, b, c}
shows A ¢ (interior S) = interior (A *S)

proof—
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let ?trans = Ax:real 2.  + a
have linear L by (simp add: assms(2) triangle-linear-def)
moreover have surj L
using triangle-linear-inj[of a b c] linear-injective-imp-surjective[of L] assms
calculation
by blast
ultimately have L: interior(L ¢ S) = L ‘ (interior S)
using interior-surjective-linear-image by blast
moreover have interior(?trans ¢ S) = %trans ¢ (interior S)
using interior-translation
by (metis (no-types, lifting) add.commute image-cong)
moreover have A = ?trans o L using assms triangle-affine-def triangle-linear-def
by fastforce
ultimately show ?thesis
by (smt (verit, del-insts) add.commute image-comp image-cong interior-translation)
qed

lemma triangle-affine-preserves-affine-hull:
assumes A = triangle-affine a b ¢
assumes - collinear {a, b, c}
shows A ‘ (affine hull S) = affine hull (A ©S)
proof—
let ?L = triangle-linear a b c
have linear ?L by (simp add: triangle-linear-def)
then have ?L ‘ (affine hull S) = affine hull (L ©S)
by (simp add: affine-hull-linear-image linear-linear)
then show ?thesis
unfolding assms(1) triangle-affine-def
by (metis affine-hull-translation image-image triangle-linear-def)
qed

lemma triangle-measure-convex-hull-measure-path-inside-same:
assumes p-triangle: p = make-triangle a b ¢
assumes clem-triangle: elem-triangle a b ¢
shows measure lebesque (convex hull {a, b, c}) = measure lebesque (path-inside
p)
(is measure lebesgue 2S = measure lebesgue ?I)
proof—
have bounded S by (simp add: finite-imp-bounded-convex-hull)
then have measure lebesgue (frontier 2S) = measure lebesque 2S5 — measure
lebesgue (interior 25)
using measure-frontier[of ?S] by auto
then have ... = 0
by (metis convez-convez-hull negligible-convez-frontier negligible-imp-measure()
moreover have ?I = interior 25
using assms triangle-is-convex
by (metis (no-types, lifting) make-triangle-def convez-polygon-inside-is-convezr-hull-interior
empty-set insert-absorb2 insert-commute list.simps(15) elem-triangle-def triangle-is-polygon)
ultimately show ?thesis by auto
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qed

lemma on-triangle-path-image-cases:
assumes p = make-triangle a b ¢
assumes d € path-image p
shows d € path-image (linepath a b) V d € path-image (linepath b ¢) V d €
path-image (linepath ¢ a)
using assms unfolding make-triangle-def
by (metis make-polygonal-path.simps(3) make-polygonal-path.simps(4 ) not-in-path-image-join)

lemma on-triangle-frontier-cases:
fixes a b ¢ :: real 2
assumes — collinear {a, b, c}
assumes d € frontier (convex hull {a, b, c})
shows d € path-image (linepath a b) V d € path-image (linepath b ¢) V d €
path-image (linepath ¢ a)
proof—
let ?p = make-triangle a b ¢
have polygon ?p by (simp add: assms(1) triangle-is-polygon)
then have path-image ?p = frontier (convexr hull {a, b, c})
unfolding make-triangle-def
by (smt (verit, ccfo-threshold) assms(1) convex-polygon-frontier-is-path-image2
convex-polygon-is-convex-hull empty-set insert-absorb2 insert-commute list.simps(15)
make-triangle-def polygon-convez-iff sup-commute triangle-is-convezr)
thus ?thesis using on-triangle-path-image-cases assms(2) by blast
qged

lemma triangle-path-image-subset-convex:
assumes p = make-triangle a b ¢
shows path-image p C convez hull {a, b, c}
using polygon-path-image-subset-convex polygon-at-least-3-vertices make-triangle-def
by (metis (no-types, lifting) assms empty-set insert-absorb2 insert-commute in-
sert-iff length-pos-if-in-set list.simps(15))

lemma triangle-convex-hull:

assumes p = make-triangle a b ¢ and — collinear {a, b, c}

shows convex hull {a, b, ¢} = (path-image p) U (path-inside p)

using triangle-is-convex| OF assms(1) assms(2)]

by (smt (23) Un-commute assms(1) assms(2) closure-Un-frontier convex-closure
convezx-polygon-is-convex-hull insert-absorb2 insert-commute inside-outside-def in-
side-outside-polygon list.set(1) list.set(2) make-triangle-def triangle-is-polygon)

end

theory Unit-Geometry

imports
HOL— Analysis. Polytope
Polygon-Jordan-Curve
Triangle-Lemmas
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begin

21 Measure Setup

lemma finite-convex-is-measurable:
fixes p :: (real™2) set
assumes p = convex hull [ and finite [
shows p € sets lebesgue
proof—
have polytope p
unfolding polytope-def using assms by force
hence compact p using polytope-imp-compact by auto
thus ?thesis using Imeasurable-compact by blast
qged

lemma unit-square-lebesgue: unit-square € sets lebesgue
using finite-convez-is-measurable by auto

lemma unit-triangle-lebesgue: unit-triangle € sets lebesque
using finite-convezr-is-measurable by auto

lemma unit-triangle-lmeasurable: unit-triangle € Imeasurable
by (simp add: bounded-convez-hull bounded-set-imp-lmeasurable unit-triangle-lebesgue)

22 Unit Triangle

lemma unit-triangle-vts-not-collinear:
= collinear {(vector [0, 0])::real”2, vector [1, 0], vector [0, 1]}
(is = collinear {%a, ?b, ?c})
proof(rule ccontr)
assume — - collinear {%a, 2b, c}
then have collinear {?a, ?b, ?c} by auto
then obtain v :: real”2 where u: v # 0 A
(Vze{%a, ?b, ?c}. Vye{a, ?b, ?c}. Jec. z — y = ¢ *xg u)
by (meson collinear)
then obtain cI ¢2 where c1: ?b — %a = ¢l *r u and c2: ?c — %a = c2 *r u
by blast
then have cI xg u = b
by (metis (no-types, opaque-lifting) diff-zero scaleR-eq-0-iff vector-2(1) vec-
tor-2(2) vector-minus-component vector-scaleR-component zero-neg-one)
moreover have c2 xgr u = ?c using cl ¢2 calculation by force
ultimately have u$1 = 0 A u$2 = 0
by (metis scaleR-eq-0-iff vector-2(1) vector-2(2) vector-scaleR-component zero-neg-one)
then have v = 0
by (metis (mono-tags, opaque-lifting) exhaust-2 vec-eq-iff zero-index)
moreover have u # ( using u by auto
ultimately show Fulse by auto
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qed

lemma unit-triangle-convex:
assumes p = (make-polygonal-path [vector [0, 0], vector [1, 0], vector [0, 1],
vector[0, 0]])
(is p = make-polygonal-path [?0, ?el, ?e2, ?0))
shows convez (path-inside p)
proof—
have — collinear {70, ?el, ?e2} by (simp add: unit-triangle-vts-not-collinear)
thus “thesis using triangle-is-convexr make-triangle-def assms by force
qged

lemma unit-triangle-char:
shows unit-triangle = {z. 0 <2831 N0<2$2Nz$1+z282<1}
(is unit-triangle = 25)
proof—
have unit-triangle C 25
proof (rule subsetl)
fix z assume z € unit-triangle
then obtain a b ¢ where
z = a xg (vector [0, 0]) + b xgr (vector [1, 0]) + ¢ *g (vector [0, 1])
Aa>0NANb>0Nec>0ANa+b+c=1
using convez-hull-3 by blast
thusze€{z. 0<z$1N0<z$2ANz2$1+23%2<1}bysimp
qed
moreover have 25 C unit-triangle
proof (rule subsetl)
fix r assume z € 25
then obtain b ¢ where bc: 281 = 0A2$2 =c A O <bAO<cAb+c<
1 by blast
moreover then obtain a« where ¢ > 0 A a + b + ¢ = 1 using that[of 1 —
b — ¢] by argo
moreover have a xg ((vector [0, 0])::(real2)) = vector [0, 0] by (simp add:
vec-scaleR-2)
moreover have z = (a xg vector [0, 0]) + (b g vector [1, 0]) + (¢ *r vector
0, 1))
using segment-horizontal bc by fastforce
ultimately show z € unit-triangle using convez-hull-3 by blast
qed
ultimately show ?thesis by blast
qed

lemma unit-triangle-interior-char:
shows interior unit-triangle = {z. 0 <z $ 1 N0 <z $2AN281 +2$2<
1}
(is interior unit-triangle = ?5)
proof—
have interior unit-triangle C 25
proof (rule subsetl)
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fix  assume z € interior unit-triangle
moreover have DIM (real”2) = 2 by simp
ultimately obtain a b ¢ where
z = a g (vector [0, 0]) + b xg (vector [1, 0]) + ¢ *g (vector [0, 1])
ANa>0ANb>0Ne>0Na+b+c=1
using interior-convez-hull-3-minimal[of (vector [0, 0])::(real”™2) (vector (1,
0])::(real™2) (vector [0, 1])::(real”2)]
using unit-triangle-vts-not-collinear
by auto
thusze{z. 0 <281 AN0<2$2AN281+23%2<1}bysimp
qed
moreover have 25 C interior unit-triangle
proof (rule subsetl)
fix  assume z € 75
then obtain b ¢ where bc: 281 = b A 282 =c A O < DA O < cAb+c<
1 by blast
moreover then obtain a« where ¢ > 0 A a + b + ¢ = 1 using that[of 1 —
b — ¢| by argo
moreover have a =g ((vector [0, 0])::(real”2)) = vector [0, 0] by (simp add:
vec-scaleR-2)
moreover have r = (a *g vector [0, 0]) + (b *g vector [1, 0]) + (¢ *gr vector
10, 1))
using segment-horizontal bc by fastforce
moreover have DIM (real”2) = 2 by simp
ultimately show z € interior unit-triangle
using interior-convez-hull-3-minimal[of (vector [0, 0]):(real”2) (vector [1,
0])::(real™2) (wector [0, 1])::(real”2)]
using unit-triangle-vts-not-collinear
by fast
qed
ultimately show “thesis by blast
qed

lemma unit-triangle-is-elementary: elem-triangle (vector [0, 0]) (vector [1, 0])
(vector [0, 1))
(is elem-triangle ?a ?b %c)
proof—
let ?UT = unit-triangle
have — collinear {%a, ?b, ?c} using unit-triangle-vts-not-collinear by auto
moreover have integral-vec ?a A integral-vec ?b A integral-vec ?c
by (simp add: integral-vec-def is-int-def)
moreover have {z € ?UT. integral-vec z} = {%a, ?b, ?c} (is ?UT-integral =
Zabe)
proof—
have ?UT-integral 2 ?abc using calculation(2) hull-subset by fastforce
moreover have ?UT-integral C ?abc
proof —
have Az. x € unit-triangle = integral-vec © = x # vector [0, 0] = x #
vector [1, 0] = x # vector [0, 1] = False
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proof—
fix z
assume *: z € unit-triangle
integral-vec x
x # vector [0, 0]
x # wvector [1, 0]
x # vector [0, 1]

then have z-inset: z €{z. 0 <23 I N0<2$2Nz281+z2$2<1}

using unit-triangle-char by auto
havez$ 1 =1 = 2$%$2+#0
using *
by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
thenhavez$ 1 =1 =281 4+2$2>1Vve§2<0
using *(2) unfolding integral-vec-def is-int-def
by linarith
then have z1-not-1: 281 = 1 = Fulse
using z-inset by simp
have 2 $ 1 =0=2$24A0N28$2#1
using x
by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
thenhavez$ 1 =0= 281 +2%2>1Vvz28$1+282<0
using *(2) unfolding integral-vec-def is-int-def
by auto
then have z1-not-0: x $ 1 = 0 = False
using z-inset by simp
have z1-not-lt0: © $ 1 < 0 = False
using z-inset by auto
have zl-not-gt1: x $ 1 > 1 = False
using z-inset by auto
then show Fualse using z1-not-0 z1-not-1 z1-not-lt0 x1-not-gtl
using *(2) unfolding integral-vec-def is-int-def
by force
qed
then have 3z € ?UT-integral. x ¢ ?abc A integral-vec + = False
by blast
then show ?thesis by blast
qged
ultimately show ?thesis by blast
qed
ultimately show ?thesis unfolding elem-triangle-def by auto
qed

lemma unit-triangles-same-area:

measure lebesgue unit-triangle’ = measure lebesque unit-triangle
proof—

let ?a = (vector [1, 1])::real”2

let 2b = (vector [0, 1])::real 2

let ?c = (vector [1, 0])::real™2

let ?A = triangle-affine ?a ?b %c
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let ?L = triangle-linear ?a ?b ?c
have collinear-second-component: \c:real 2. collinear {%a, ?b, ¢} = ¢ $ 2 =
1
proof —
fix p
assume collinear {?a, ?b, p}
then obtain u where u-prop: ¥V xz€{vector [1, 1], vector [0, 1], p}.
vV ye{vector [1, 1], vector [0, 1], p}. Fe. 2 — y=c*r u
unfolding collinear-def by auto
then have c-ab: dc. %a — %0 = ¢c xgp u
by blast
then have u-2: © $ 2 = 0
using vector-2
by (metis cancel-comm-monoid-add-class.diff-cancel diff-zero scaleR-eq-0-iff
vector-minus-component vector-scaleR-component zero-neq-one)
have u-1: u$1 # 0
using c-ab vector-2
by (smt (23) scaleR-right-diff-distrib vector-minus-component vector-scaleR-component)
then have (3c. %a — p=cxg u) A (e. 26 — p = ¢ *g u)
using u-prop by blast
then show p § 2 = 1
using u-1 u-2
by (metis eq-iff-diff-eq-0 scaleR-zero-right vector-2(2) vector-minus-component
vector-scaleR-component)
qed
have unit-triangle’ = convex hull {?a, ?b, ?c} by (simp add: insert-commute)
then have ?A ‘ unit-triangle = unit-triangle’ using triangle-affine-img[of ?a ?b
?c|] by argo
moreover have abs (det (matriz ?L)) = 1
proof—
have matriz ?L = transpose (vector [?b — %a, %c — ?a])
unfolding triangle-linear-def
by (simp add: triangle-mat-def)

also have det ... = det (vector [?b — %a, ?c — %a]) using det-transpose by
blast
also have ... = (20 — ?2a)$1 * (?c — 2a)$2 — (%c — ?2a)$1 * (?b — ?a)$2

using det-2 by (metis mult.commute vector-2(1) vector-2(2))
finally show ?thesis by simp
qed
moreover have — collinear {?a, ?b, ?c} using collinear-second-component vec-
tor-2 by force
ultimately have measure lebesque unit-triangle’ = integral unit-triangle (\(x::real”2).

1)
using triangle-measure-integral-of-det[of ?a ?b ?c|
by (smt (verit, ccfo-SIG) Henstock-Kurzweil-Integration.integral-cong insert-commute)
also have ... = measure lebesque unit-triangle
by (simp add: Imeasure-integral unit-triangle-lmeasurable)
finally show ?thesis .
qed
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23 Unit Square

lemma convez-hull-4:
convez hull {a,b,c,d} ={ usgpa+v*p b+ wsgc+t*xgd|uvvwt 0<u
ANO<SvANO<wAO<tANut+v4+w+t=1}
proof —
have fin: finite {a,b,c,d} finite {b,c,d} finite {c,d} finite {d}
by auto
have x: Azyzwuread. 2+ y+2+w=1+—zx=1—-—y—2—w
by (auto simp: field-simps)
show ?thesis
unfolding convez-hull-finite[OF fin(1)]
unfolding convez-hull-finite-step] OF fin(2)]
unfolding convez-hull-finite-step] OF fin(3)]
unfolding convez-hull-finite-step| OF fin(4)]
unfolding *
apply auto
apply (smt (verit, ccfo-threshold) add.commute diff-add-cancel diff-diff-eq)
subgoal for v w t
apply (rule exI [where z=1 — v — w — t], simp)
apply (rule exI [where z=v|, simp)
apply (rule exI [where z=uw], simp)
apply (rule exI [where z=MAz. t], simp)
done
done
qed

lemma unit-square-characterization-helper:
fixes a b :: real
assumes 0 < aANa<I1IAN0O<bAb<1and
a<b
obtains v v w t where
vector [a, b] = u *g ((vector [0, 0])::real”2)
+ v xg (vector [0, 1])
+ w *xg (vector [1, 1])
+ ¢ xg (vector [1, 0])
ANOLuANOIO<LvANODOLwAOILtANu+v+w+t=1

proof—
let %a = (vector [0, 0])::(real”2)
let ?b = (vector [0, 1])::(real™2)
let ?c = (vector [1, 1])::(real™2)
let ?d = (vector [1, 0]):(real”2)

let 2w = a

let v =b — a

let 2u = (1 — %w — %v):real

let 2t = 0::real

let T ={uxr %a+ v*g b+ wxg c+ t*p d|uvwt. 0 <uAN0<vw
ANO<wAO<tANu+v+w+t=1}

have ?u *xp %a = 0
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by (smt (verit, del-insts) exhaust-2 scaleR-zero-right vec-eq-iff vector-2(1) vec-
tor-2(2) zero-index)
moreover have ?w xr ?c = vector [a,
proof—
have (?w xg ?c)$1 = a by simp
moreover have (7w xg ?¢)$2 = a by simp
ultimately show ?thesis by (smt (verit) vec-eq-iff exhaust-2 vector-2(1) vec-
tor-2(2))
qed
moreover have ?v xg ?b = vector [0, b — a]
proof—
have (%v xg 20)$1 = 0 by fastforce
moreover have (?v xg ?0)$2 = b — a by simp
ultimately show ?thesis by (smt (verit) vec-eq-iff exhaust-2 vector-2(1) vec-
tor-2(2))
qged
ultimately have %u xp %a + %v xg b + %w xg %c + %t xgr 2d = vector [0, b
— a] + vector [a, a]
by fastforce
also have ... = vector [a, b]
by (smt (verit, del-insts) diff-add-cancel exhaust-2 vec-eq-iff vector-2(1) vec-
tor-2(2) vector-add-component)
finally have vector [a, b] = %u xr %a + %v xp ?b + %w xr %c + 9t xg ?d by
presburger
moreover have 0 < 2u A 2u < 1 N0 < %20 A %v < 1 using assms by simp
moreover have 0 < 2w A 2w < 1 N0 < 2t AN 2t < 1 using assms by simp
moreover have ?u + v + %w + ¢t = 1 by argo
ultimately show ?thesis using that[of ?u v ?w ?t] by blast
qed

lemma unit-square-characterization:
unit-square = {x. 0 < z$1 AN 281 < 1 AN 0 < 282 A 282 < 1} (is unit-square

= 79)

proof—
let ?a = (vector [0, 0])::(real”2)
let b = (vector [0, 1])::(real™2)
let ?c = (vector [1, 1])::(real™2)
let ?2d = (vector [1, 0]):(real”2)

let T ={uxr a4+ v*g b+ wxg c+ t*p d|uvwt. 0 <uAN0<vw
ANO<wANO<tANu+v+w+t=1}
have unit-square = ?T using convez-hull-4 by blast
moreover have 2T C 29
proof (rule subsetl)
fix z
assume z € ?T
then obtain v v w t where z = u g %a + v *p b + w *g %c + t xp ?d and
0<wvand 0 <vand 0 <wand 0 <tand v+ v+ w+ t = 1 by auto
moreover from this have
23l =ux04+v*x0+w*x1+tx1AN2$2=ux0+v*x1+ w1+
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t x 0 by simp
ultimately have 0 < 281 A 281 < 1 A 0 < 2832 A 282 < 1 by linarith
thus z € 25 by blast
qed
moreover have 25 C ¢T
proof (rule subsetl)
fix z :: real™2
assume *: £ € 25
{ assume z$1 < 2$2
then have z$1 < 2$2 by fastforce
then obtain v v w t where vector [31, 232] = u xg %a + v xg 70 + w *p
2c+txg ANO<uNO<OVANO<L<wWwANOL<tAu+v+w+t=1
using * unit-square-characterization-helper|of x$1 £$2] by blast
moreover have z = vector [2$1, 1$2]
by (smt (verit, ccfv-threshold) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
ultimately have z € ?T by force
} moreover
{ assume z$1 > 232
then obtain v v w ¢t where *x: vector [2$2, z81] = u % %a + v xg ?b +
wxp ¢+ t*xp AANO<uNO<IANOIO<WAOI<L<tANu+v+w+t=1
using * unit-square-characterization-helper|of x$2 x$1] by blast
have z1: 281 = v + w using *x
by (smt (verit, ccfo-threshold) mult-cancel-left1 real-scaleR-def scaleR-zero-right
vector-2(2) vector-add-component vector-scaleR-component)
have z2: 232 = w + ¢ using *x
by (smt (verit) mult-cancel-left1 real-scaleR-def scaleR-zero-right vector-2(1)
vector-add-component vector-scaleR-component)
have (u *p %a + t *g b + w xg %c + v xg 2d)$1 = w + v by auto
moreover have (u xg %a + t xg b + w xg %c + v xg ?d)$2 =t + w by

fastforce
ultimately have u *g %a + t *p 70 + w xg %c + v xg ?d = vector [w +
v, t + w]
by (smt (verit) vec-eq-iff exhaust-2 vector-2(1) vector-2(2))
also have ... = z using z1 22

by (smt (verit, del-insts) add.commute erhaust-2 vec-eg-iff vector-2(1)
vector-2(2))
ultimately have z € ?T
by (smt (verit, ccfv-SIG) *x mem-Collect-eq)
}
ultimately show z € ?T by argo
qed
ultimately show ?thesis by auto
qed

lemma ele2-basis:
defines el = (vector [1, 0])::(real™2) and
e2 = (vector [0, 1])::(real™2)
shows el = axis 1 (1::real) and el € (Basis:((real”2) set)) and
e2 = axis 2 (1::real) and e2 € (Basis::((real"2) set))
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proof—
have (1:real) € Basis by simp
then have azis 1 (1:real) € (|Ji. |Ju€e(Basis::(real set)). {azis i u}) by blast
moreover show el-azis: el = axis 1 (1::real)
unfolding azis-def vector-def el-def by auto
ultimately show el-basis: el € (Basis::((real”2) set)) by simp

have (1::real) € Basis by simp
then have axis 1 (1:real) € (|Ji. |Jue(Basis::(real set)). {axis i u}) by blast
moreover show e2-azis: e2 = axis 2 (1::real)
unfolding azis-def vector-def e2-def by auto
ultimately show e2-basis: e2 € (Basis::((real”2) set)) by simp
qed

lemma unit-square-cbox: unit-square = cbox (vector [0, 0]) (vector 1, 1])
proof—

let 70 = (vector [0, 0])::(real”2)

let el = (vector [1, 0])::(real™2)

let ?e2 = (vector [0, 1]):(real”2)

let ?2I = (vector [1, 1])::(real™2)

let ?cbox = {z.Vi€Basis. 70 - i <x-iANz-i<?-i}

have unit-square = {z. 0 < 2831 A z81 <1 N0 <282 A 2$2 < 1} (is unit-square
= ?5)
using unit-square-characterization by auto
moreover have 25 C Zcbox
proof (rule subsetl)
fix z
assume *: z € 25
have 20« %el < x - %el Nx - %2el < 2] - %¢]
using ele2-basis
by (smt (verit, del-insts) x cart-eq-inner-axis mem-Collect-eq vector-2(1))
moreover have 20 - 2e2 <z - 2e2 Nz - 22 < 2] - 2e2
using ele2-basis
by (smt (verit, del-insts) x cart-eq-inner-axis mem-Collect-eq vector-2(2))
ultimately show z € ?cbox
by (smt (verit, best) * axis-index cart-eq-inner-azxis exhaust-2 mem-Collect-eq
vector-2(1) vector-2(2))
qed
moreover have ?cbor C 25
proof (rule subsetl)
fix = :: real™2
assume *: z € ?chox
then have 0 < %el - z using ele2-basis
by (metis (no-types, lifting) cart-eq-inner-axis inner-commute mem-Collect-eq
vector-2(1))
moreover have %el - ¢ < 1 using ele2-basis
by (smt (verit, ccfv-SIG) x inner-axis inner-commute mem-Collect-eq real-inner-1-right
vector-2(1))
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moreover have 0 < %¢2 - x
by (metis (no-types, lifting) * cart-eq-inner-azis ele2-basis(8) ele2-basis(4)
inner-commute mem-Collect-eq vector-2(2))
moreover have %e2 - z < I
by (metis (no-types, lifting) * cart-eq-inner-azis ele2-basis(3) ele2-basis(4)
inner-commute mem-Collect-eq vector-2(2))
moreover have %el - x = z$1
by (simp add: cart-eq-inner-azis ele2-basis inner-commute)
moreover have %¢2 - 1 = 1$2
by (simp add: cart-eq-inner-axis ele2-basis inner-commaute)
ultimately show z € 25 by force
qed
ultimately show ¢thesis unfolding cboz-def by order
qed

lemma unit-square-area: measure lebesgue unit-square = 1
proof—
let el = (vector [1, 0])::(real™2)
let ?e2 = (vector [0, 1]):(real”2)
have unit-square = cbox (vector [0, 0]) (vector [1, 1]) (is unit-square = cbox

20 2I)
using unit-square-cbox by blast
also have emeasure lborel ... = 1 using emeasure-lborel-cboz-eq
proof—

have I - %el = (1::real)
by (simp add: ele2-basis(1) inner-azxis’ inner-commaute)
moreover have ?I - %e2 = (1::real) by (simp add: ele2-basis(3) inner-axis’
inner-commute)
ultimately have basis-dot: Vb € Basis. 2 -+ b =1
by (metis (full-types) azis-inverse ele2-basis(1) ele2-basis(8) exhaust-2)

have 70 . %e1 < 91 - %el by (simp add: ele2-basis(1) inner-axis)
moreover have 70 - ?e2 < ?I - ?e2 by (simp add: ele2-basis(8) inner-azis)
ultimately have Vb € Basis. 20 - b < 2] - b
by (smt (verit, ccfv-threshold) azis-index cart-eq-inner-azxis exhaust-2 insert-iff
vector-2(1) vector-2(2))
then have emeasure lborel (cbox ?0 ?I) = ([] b€Basis. (21 — ?0) - b)
using emeasure-lborel-cboz-eq by auto
also have ... = (][] b€ Basis. ¢I - b)
by (smt (verit, del-insts) axis-index diff-zero euclidean-all-zero-iff exhaust-2
inner-azis real-inner-1-right vector-2(1) vector-2(2))

also have ... = (][ b€Basis. (1::real)) using basis-dot by fastforce
finally show ?thesis by simp
qed

finally have emeasure lborel unit-square = 1 .
moreover have emeasure lborel unit-square = measure lebesque unit-square
by (simp add: emeasure-eq-measure2 unit-square-cboz)
ultimately show %thesis by fastforce
qed
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24 Unit Triangle Area is 1/2

lemma unit-triangle’-char:
shows unit-triangle’ = {z. 281 <1 AN2$2<1AN2$1+28$2>1}
proof —
let ?2I = (vector [1, 1])::real™2
let el = (vector [1, 0])::real”2
let ?e2 = (vector [0, 1])::real”2
have unit-triangle’ = {u xg 21 + v *g %el + w*g ?e2 |uvw. 0 < u A0 <
vAO<wAu+v+w=1}
using convez-hull-3[of ?I ?el ?e2] by auto
moreover have Au v w. u xg I + v xg el + w xg ?e2 = ((vector [u + v, u
+ w))::real"2)
proof—
fix u v w: real

let ?v-el = ((vector [v, 0])::real”2)
let ?w-e2 = ((vector [0, w])::real”2)
let ?u-I = ((vector [u, ul)::real”2)

have u xg ?I = ?u-I using vec-scaleR-2 by simp
moreover have v xp %el = ?%v-el using vec-scaleR-2 by simp
moreover have w xg %e2 = ?w-e2 using vec-scaleR-2 by simp
ultimately have 1: u xg 71 + v xg ?el + w *r ?e2 = 2u-I + Pv-el + ?w-e2
by argo
moreover have (%u-I + ?v-el + ?w-e2)$1 = u + v
using vector-add-component by simp
moreover have (?u-I + 2v-el + ?w-e2)$2 = u + w
using vector-add-component by simp
ultimately have ?u-I + %v-el + ?2w-e2 = ((vector [u + v, u + w])::real”2)
using vector-2 exhaust-2 by (smit (verit, del-insts) vec-eq-iff)
thus u xg 2 + v *g %el + w g ?e2 = ((vector [u + v, u + w])::real”2)
using 1 by argo
qed
ultimately have 1: unit-triangle’ = {(vector[u + v, v + w])::real ™2 | w v w. 0
<uNO<vAO<wAu+v+w=1}
(is unit-triangle’ = 29)
by presburger
have unit-triangle’ = {(vector[z, y])ureal ™2 | zy. 0 <z Az < I ANO0<yAy
<IANz+y>1}
(is unit-triangle’ = ¢T)
proof—
have Az yureal. Juvw. 0 <uANO<vAO<wAu+v+w=1ANz=u
+rvANy=u+w
= 0<zNz<I1INO0<yANy<1ANz+y>1 Dby force
moreover have x: Az yireal. 0 <z ANz < I ANO<yANy<I1Ahz+y>1
= dJuvw. 0 <uNO<vAOLwAut+v+w=I1IANz=u+vAy
=u+ w
proof—
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fix z y :: real
let 2u =y +2 — 1
let 2v=1—y
let 7w =1 —=z
assume 0 <z ANz < INOLSyNy<I1IAN1I<z+y
thenhave 0 < 2Zu A0 < 2o N0 < 2wA Pu+ 20+ 2w=1ANz= %u+
v Ay = %u+ ?wby argo
thus Juvw. 0 KuANO<vAOLwAu+v4+w=1ANzxz=u+vAYy
= u + w by blast
qed
ultimately have Vz y::real. (Buovw. 0 <uANO<vAO<wAu+v+w
=1lANz=u+vAy=u-+ w)
— 0<zNz<INO<yANy<IAz+y>1))
by metis
then have Vzireal 2. (Quow. 0 <uANO0<oANO<wAu+v+w=1
ANzl =u+vA 282 =u+ w)
(0 <281 AN281 <1 ANO0<282AN282<1A281+ 282>1)) by
presburger
then have Vzireal 2. (Juovw. 0 <uANO0<vAO<wAu+v+w=1
A z = vector [u + v, u + w])
<—>(3my.0§m/\x§1/\OSy/\ySJ/\x—l—yzl/\z:vector
[z, y]))
by (smt (verit) *)
moreover have Vz:real 2. 2 € 25 +— (Juovw. 0 <uANO0<ovA0<wA
u—+ v+ w=1Az=vector [u+ v, u+ wl)
by blast
moreover have Vzireal 2. 2 € T +— (Fzy. 0 <z Az <1AN0<yAy
<I1IANz+y>1Az=vector [z, y])
by blast
ultimately have 25 = ?T by auto
then show %thesis using I by auto
qed
moreover have {z. 0 < 281 AN 281 < 1 N0 < 232 N 282 < 1 A 281 + 282
> 1} Cer
proof(rule subsetl)
fix z :: real™2
assume x: z € {z. 0 < 281 N z$1 <1 A0 <282 A 182 < 1 A x81 + 282
> 1}
then obtain z y :: real where z = vector|z, y] A 0 < z using forall-vector-2
by fastforce
moreover from this have 1 < 1 N0 < yAy <1 ANz + y > 1 using x
vector-2[of x y| by simp
ultimately show 2 € ?T by blast
qed
moreover have ?T C {z. 0 < 231 AN 281 <1 N0 <282 Nz$2 <1 Az$1+
282 > 1}
using vector-2 by force
ultimately show ?thesis
by (smt (verit, best) Collect-cong subset-antisym)
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qed

lemma unit-square-split-diag:
shows unit-square = unit-triangle U unit-triangle’
proof—
let 25 = ({vector [0, 0], vector [0, 1], vector [1, 0]})::((real™2) set)
let 25’ = ({vector [1, 1], vector [0, 1], vector [1, 0]})::((real™2) set)
have unit-triangle U unit-triangle’ C conver hull (25 U 25') by (simp add:
hull-mono)
moreover have convex hull (S U 25') C unit-triangle U unit-triangle’
by (smt (28) Un-commute Un-left-commute Un-upperl in-mono insert-is-Un
mem-Collect-eq subset] sup.idem unit-square-characterization unit-triangle-char unit-triangle’-char)
moreover have unit-square = convez hull (25 U 257) by (simp add: insert-commute)
ultimately show ¢thesis by blast
qed

lemma unit-triangle-IN T-unit-triangle’-measure:
measure lebesque (unit-triangle N unit-triangle’) = 0
proof —
let el = (vector [1, 0])::real™2
let ?e2 = (vector [0, 1])::real”2
have unit-triangle N unit-triangle’ = {z::(real™2). 0 <z 31 ANz $ 1 <1 A0
<z$2Nnz82<1ANz$1+z$2=1}
(is unit-triangle N unit-triangle’ = 25)
using unit-triangle-char unit-triangle’-char
by auto
also have ... = path-image (linepath ?e2 %el)
(is ... = ?p)
proof—
have 25 C %p
proof (rule subsetl)
fix z :: real™2
assume z € 95
then have x: 0 < 1 — 282 A 282 =1 — 281 AN 0 < 282 A 282 < 1 by
stmp

have 182 xp ?e2 + 181 *g %el = vector[z$1, 1$2]
proof—
have (281 *p ?e1)$1 = 231 by simp
moreover have (281 xr ?e1)$2 = 0 by auto
moreover have (282 xr 2¢2)$1 = 0 by auto
moreover have (2$2 *r ?¢2)$2 = 2$2 by fastforce
ultimately have 231 xp %el = vector [z$1, 0] A 232 *p ?e2 = vector [0,
z$2]
by (smt (verit, ccfv-SIG) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
then have 2$1 xg %el + 132 xg ?e2 = vector [2$1, 0] + vector [0, x$2]
by auto
moreover from this have (81 xp ?el + 282 x5 ?e2)$1 = 231 by auto
moreover from calculation have (z$1 xp %el + 232 xp ?¢2)$2 = 2$2
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by auto
ultimately show ?thesis
by (smt (verit) add.commute exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
qed
also have ... = z
by (smt (verit, best) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
finally have 2$2 xr %e2 + 2$1 *p %el = x .
then have © = (Az. (I — z) *g %2 + x *p %el) (2$1) A 281 € {0..1}
using * by auto
thus z € ?p unfolding path-image-def linepath-def by fast
qed
moreover have ?p C 25
proof (rule subsetl)
fix z
assume *: T € ?p
then obtain ¢t where *: © = (I — t) xg %e2 + t xg el Nt € {0..1}
unfolding path-image-def linepath-def by blast
moreover from this have z$1 = ¢ by simp
moreover from calculation have 32 = 1 — t by simp
moreover from calculation have 0 < tANt< 1T AN0< 1 —tN1—-t<1]
by simp
ultimately show z € ?S by simp
qed
ultimately show ¢thesis by blast
qed
also have measure lebesque ?p = 0 using linepath-has-measure-0 by blast
finally show ?thesis .
qed

lemma unit-triangle-area: measure lebesgue unit-triangle = 1/2
proof—
let u = measure lebesque
have ?u unit-square = ?u unit-triangle + 2 unit-triangle’
using unit-square-split-diag unit-triangle-INT-unit-triangle’-measure
by (simp add: finite-imp-bounded-convez-hull measurable-convex measure-Un3)
thus ?thesis using unit-triangles-same-area unit-square-area by simp
qed

end
theory Elementary-Triangle-Area
imports

Unit-Geometry

begin

25 Area of Elementary Triangle is 1/2

lemma nonint-in-square-img-IMP-nonint-triangle-img:
assumes A = triangle-affine a b ¢
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assumes r € unit-square
assumes — integral-vec x
assumes integral-vec (A x)
assumes elem-triangle a b c
obtains z’ where z’ € unit-triangle A — integral-vec ©' A integral-vec (A z’)
proof—
{ assume z € unit-triangle
then have ?thesis using assms that by blast
} moreover
{ assume *: z ¢ unit-triangle
thenhave 1 ¢ {z. 0 < z$ 1 N0<z$2ANz81+2$2<1}
using unit-triangle-char by argo
then have z2x1-ge-1: 281 + 2$2 > 1 using assms(2) unit-square-characterization
by force
let 22’1 = 1 — 2$1
let 222 = 1 — 2$2
let 2’ = vector [?z'1, ?z'2]
have ?z2'1 + ?2'2 < 1 using z2x1-ge-1 by argo
then have ?z’ € unit-triangle
using unit-triangle-char assms(2) unit-square-characterization by auto
moreover have — integral-vec 7z’
proof—
have - is-int (z81) V — is-int (2$2) using assms(3) unfolding inte-
gral-vec-def by blast
then have — is-int (?2'1) V = is-int (?2'2)
using is-int-minus
by (metis diff-add-cancel is-int-def minus-diff-eq of-int-1 uminus-add-conv-diff)
thus ?thesis unfolding integral-vec-def by auto
qed
moreover have integral-vec (A ?z)
proof—
let ?L = triangle-linear a b ¢
have A-comp: A = (Az. z + a) o ?L by (simp add: affine-comp-linear-trans
assms(1))
then have Lz-int: integral-vec (?L x)
by (smt (verit, del-insts) assms(4) assms(5) comp-apply diff-add-cancel
diff-minus-eq-add integral-vec-minus integral-vec-sum elem-triangle-def)

have linear ?L by (simp add: triangle-linear-def)
moreover have ?L %z’ = ?L (vector [1, 1] — z)
by (simp add: mat-vec-mult-2 triangle-linear-def)
ultimately have ?L %z’ = ?L (vector [1, 1]) — ?L x by (simp add: linear-diff)
moreover have integral-vec (7L (vector [1, 1]))
proof—
have ?L (vector [1, 1]) = vector [(b — a)$1 + (¢ — a)$1, (b — a)$2 + (c
— a)$2]
unfolding triangle-linear-def triangle-mat-def transpose-def using mat-vec-mult-2
by simp
also have ... = (b — a) + (¢ — a)
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by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-2(1) wvector-2(2)
vector-add-component)
finally show ?thesis using assms(5) unfolding elem-triangle-def
by (metis ab-group-add-class.ab-diff-conv-add-uminus integral-vec-minus
integral-vec-sum)
qed
ultimately have integral-vec (2L %z’)
using Lz-int integral-vec-sum integral-vec-minus by force
then show ?thesis using A-comp assms(5) integral-vec-sum elem-triangle-def
by auto
qed
ultimately have ?thesis using that by blast
}
ultimately show ¢thesis by blast
qed

lemma elem-triangle-integral-mat-bij:
fixes a b ¢ :: real ™2
assumes elem-triangle a b c
defines L = triangle-mat a b ¢
shows integral-mat-bij L

proof—
let ?A = triangle-affine a b ¢

have L: L = transpose (vector [b — a, ¢ — a]) (is L = transpose (vector [?wl,
unfolding triangle-mat-def L-def by auto

have integral-vec 2wl A integral-vec w2
by (metis ab-group-add-class. ab-diff-conv-add-uminus assms(1) integral-vec-minus
integral-vec-sum elem-triangle-def)
then have L-int-entries: Vie{1, 2}. Vje{l, 2}. is-int (L$i3j)
by (simp add: L-def triangle-mat-def Finite-Cartesian-Product.transpose-def
integral-vec-def)

have L-integral: integral-mat L unfolding integral-mat-def
proof (rule alll)
fix v :: real”™2
show integral-vec v — integral-vec (L *v v)
proof (rule impl)
assume v-int-assm: integral-vec v
let Lv =L xv v

have ?Lv$1 = L$181 * v$1 + L$132 * v$2 by (simp add: mat-vec-mult-2)
then have Lvl-int: is-int (?Lv$1)
using L-int-entries v-int-assm is-int-sum is-int-mult by (simp add: inte-

gral-vec-def)

have ?Lv$2 = L$281 * v§1 + L$2$2 * v$2 by (simp add: mat-vec-mult-2)
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then have Lv2-int: is-int (?Lv$2)
using L-int-entries v-int-assm is-int-sum is-int-mult by (simp add: inte-
gral-vec-def)

show integral-vec (L v v)
by (simp add: Lvi-int Lv2-int integral-vec-def)
qed
qed
moreover have integral-mat-surj L
unfolding integral-mat-surj-def
proof(rule alll)
fix v :: real™2
show integral-vec v — (Jw. integral-vec w A L xv w = v)
proof (rule impl)
assume *: integral-vec v
obtain w :: real”2 where w: L xv w = v
using triangle-linear-ing assms(1) full-rank-injective full-rank-surjective
unfolding elem-triangle-def L-def triangle-linear-def surj-def
by (smt (verit, best) iso-tuple-UNIV-I)
moreover have integral-vec w
proof (rule ccontr)
assume *x*: - integral-vec w
let 2wl = w$1
let w2 = w$2
let 2wi’ = w81 — (floor (w$1))
let w2’ = w$2 — (floor (w$2))
let ?w’ = (vector [fwl’, w2])::(real 2)
have w1’ € {0..1} A w2’ € {0..1}
by (metis add.commute add.right-neutral atLeastAtMost-iff floor-correct
floor-frac frac-def of-int-0 real-of-int-floor-add-one-ge)
then have 7w’ € unit-square using unit-square-characterization by auto
moreover have — integral-vec ?w’
by (metis % eq-iff-diff-eq-0 floor-frac floor-of-int frac-def integral-vec-def
is-int-def of-int-0 vector-2(1) vector-2(2))
moreover have integral-vec (?A ?w’)

proof—
have ?w’ = vector [w$1, w$2] — vector [floor (w$1), floor (w$2)]
(is 2w’ = vector [w$1, w$2] — ?floor-w)

by (smt (verit, del-insts) exhaust-2 list.simps(8) list.simps(9) vec-eq-iff
vector-2(1) vector-2(2) vector-minus-component)
then have ?w’ = w — vector [floor (w$1), floor (w$2)]
by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-2(1) vector-2(2)
vector-minus-component)
moreover have ?A %w’ = (L xv %w’) + o unfolding triangle-affine-def
L-def by simp
ultimately have ?4 2w’ = v — (L xv ?floor-w) + a
by (simp add: matriz-vector-mult-diff-distrib w)
moreover have integral-vec v A integral-vec a A integral-vec (L xv ?floor-w)
using * assms(1) L-integral integral-mat-integral-vec integral-vec-2
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unfolding elem-triangle-def
by blast
ultimately show #thesis
by (metis ab-group-add-class.ab-diff-conv-add-uminus integral-vec-minus
integral-vec-sum)
qged
ultimately obtain w’ where w': w' € unit-triangle A — integral-vec w’’
A integral-vec (2A w'’)
using nonint-in-square-img-IMP-nonint-triangle-img[of A a b ¢ ?w’]
assms(1) by blast
moreover have ?A w' ¢ {a, b, ¢}
proof—
have inj ?A using assms(1) elem-triangle-def triangle-affine-inj by auto
moreover have ?A (vector [0, 0]) = a
by (metis (no-types, opaque-lifting) add.commute add-0 mat-vec-mult-2 ma-
triz-vector-mult-0-right real-scale R-def scaleR-zero-right triangle-affine-def zero-inder)
moreover have ?A (vector [1, 0]) = b
unfolding triangle-affine-def triangle-mat-def transpose-def
by (metis (no-types) Finite-Cartesian-Product.transpose-def add.commute
column-transpose diff-add-cancel ele2-basis(1) matriz-vector-mult-basis row-def vec-lambda-eta
vector-2(1))
moreover have ?A (vector [0, 1]) = ¢
proof—
have (24 (vector [0, 1]))$1 = c$1
by (metis L-def L add.commute column-transpose diff-add-cancel
ele2-basis(3) matriz-vector-mult-basis row-def triangle-affine-def vec-lambda-eta vec-
tor-2(2))
moreover have (?A (vector [0, 1]))$2 = c$2
by (metis add.commute column-transpose diff-add-cancel ele2-basis(3)
matriz-vector-mult-basis row-def triangle-affine-def triangle-mat-def vec-lambda-eta
vector-2(2))
ultimately show ?¢thesis by (smt (verit, ccfv-SIG) exhaust-2 vec-eq-iff)
qed
moreover have w’ # vector [0, 0] A w'' # vector [0, 1] A w'' # vector
[, 0]
using w’’ elem-triangle-def unit-triangle-is-elementary by blast
ultimately show ?thesis by (metis inj-eq insertE singletonD)
qed
moreover have ?A ¢ unit-triangle = convezx hull {a, b, c}
using triangle-affine-img by blast
ultimately show Fulse using assms unfolding elem-triangle-def by blast

qed
ultimately show 3 w. integral-vec w A L v w = v by auto
qed
qed
ultimately show ¢thesis unfolding integral-mat-bij-def by auto

qed

lemma elem-triangle-measure-integral-of-1:
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fixes a b ¢ :: real ™2
defines S = convezx hull {a, b, ¢}
assumes elem-triangle a b c
shows measure lebesque S = integral unit-triangle (A(z::real”2). 1)
proof—
let ?T = triangle-linear a b ¢
have integral-mat-bij (matriz ¢T) (is integral-mat-bij ¢?T-mat)
by (simp add: assms(2) elem-triangle-integral-mat-bij triangle-linear-def)
then have abs (det ?T-mat) = 1
using integral-mat-bij-det-pm1 by fastforce
thus ?thesis
using S-def assms(2) triangle-measure-integral-of-det elem-triangle-def by force
qed

lemma elem-triangle-area-is-half:
fixes a b ¢ :: real ™2
assumes elem-triangle a b ¢
defines S = convezx hull {a, b, ¢}
shows measure lebesque S = 1/2 (is ?S-area = 1/2)
proof—
have - collinear {a, b, c} using elem-triangle-def assms(1) by blast
then have measure lebesque S = integral unit-triangle (Az::real 2. 1)
using S-def assms(1) elem-triangle-measure-integral-of-1 by blast
also have ... = measure lebesgue unit-triangle
using unit-triangle-is-elementary elem-triangle-measure-integral-of-1 unit-triangle-area
by metis
finally show ?thesis by (simp add: unit-triangle-area)
qed

end
theory Pick
imports
Polygon-Splitting
Elementary-Triangle-Area
begin

26 Setup

26.1 Integral Points Cardinality Properties

lemma bounded-finite:

fixes A:: (real™2) set

assumes bounded A

shows finite {z::(real™2). integral-vec x N x € A} (is finite ?A-int)
proof—

obtain M where M:Vz € A. norm z < M using assms bounded-def by (meson
bounded-iff)

let ?M-bounded-ints = {n. n € {—M..M} A is-int n}
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let ?M-bounded-int-vecs = {v::(real2). v81 € ?M-bounded-ints A v$2 € ?M-bounded-ints}

have V z::(real™2). norm (281) < norm z A (2$2) < norm z
by (smt (verit, ccfv-threshold) Finite-Cartesian-Product.norm-nth-le real-norm-def)
then have Vz € ?A-int. norm (281) < M A norm (2$2) < M
using M dual-order.trans Finite-Cartesian-Product.norm-nth-le by blast
then have Vz € ?A-int. 281 € ?M-bounded-ints N\ 282 € ?M-bounded-ints
using integral-vec-def intervalE by auto
then have Vz € ?4-int. © € ?M-bounded-int-vecs by blast
moreover have finite ?M-bounded-int-vecs
proof—
obtain S :: int set where S: S = {n. Im € ?M-bounded-ints. n = m} A (¥ n
€ S. normn < M)
by (simp add: abs-le-iff)
then have finite-S: finite S
by (metis infinite-int-iff-unbounded le-floor-iff linorder-not-less norm-of-int
of-int-abs)

have finite-M-bounded-ints: finite ?M-bounded-ints
proof—
let ?f = An:real. THE m:int. n = m
have Vn € ?M-bounded-ints. 3!m::int. n = m using is-int-def by force
moreover have inj-on ?f ?M-bounded-ints using inj-on-def is-int-def by
force
moreover have ?f ¢ ?M-bounded-ints C S using calculation S subsetl by
auto
ultimately show ?thesis using finite-imageD finite-S by (simp add: inj-on-finite)
qed
show ?thesis
proof—
let ?f = Ax::(real™2). (THE m:int. m = x81, THE n:int. n = 2$2)
have inj-on ?2f ?M-bounded-int-vecs
unfolding inj-on-def
proof clarify
fix x y :: real™2
assume zl-int: is-int (z$1)
assume z2-int: is-int (z$2)
assume yl-int: is-int (y$1)
assume y2-int: is-int (y$2)
assume zlyl-int-eq: (THE m. real-of-int m = z$1) = (THE m. real-of-int
m = y$1)
assume z2y2-int-eq: (THE n. real-of-int n = 2$2) = (THE n. real-of-int n
= y$2)

have 3!m. m = z$1
by blast

moreover have 3!n. n = y$1
by blast
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moreover have (THE m. real-of-int m = z$1) = (THE m. real-of-int m =
y$1)
using z1y1-int-eq by auto
ultimately have ziyl: z$1 = y$1
using z1-int y1-int is-int-def by auto

have 3!m. m = z$2

by blast
moreover have 3!n. n = y$2
by blast
moreover have (THE m. real-of-int m = 2$2) = (THE m. real-of-int m =

y$2)
using z2y2-int-eq by auto
ultimately have z2y2: 2$2 = y$2
using z2-int y2-int is-int-def by auto

show z = y using xI1y1 z2y2
by (metis (no-types, lifting) exhaust-2 vec-eq-iff)
qed
moreover have ?f ¢ ?M-bounded-int-vecs C S x S
proof (rule subsetl)
fix mn
assume mn € ?f ¢ ?M-bounded-int-vecs
then obtain v where v:
v € 2M-bounded-int-vecs A ?f v = mn A (3!m. v81 = m) A (3!n. v82 =
n)
using is-int-def by auto
let ?m = fst mn
let 9n = snd mn

have ?m = (THE m:int. m = v$1) using v
by (meson fstl)
moreover have 3! m:int. m = v$1 using v is-int-def
by (metis (no-types, lifting) mem-Collect-eq of-int-eq-iff)
ultimately have m-in-S: m € S
by (metis (mono-tags, lifting) S mem-Collect-eq thel’ v)

have ?n = (THE n:int. n = v$2) using v

by (meson sndl)
moreover have 3! n:int. n = v$2 using v is-int-def

by (metis (no-types, lifting) mem-Collect-eq of-int-eq-iff)
ultimately have n-in-S: %n € S

by (metis (mono-tags, lifting) S mem-Collect-eq thel’ v)

show mn € § x S using m-in-S n-in-S v by auto
qed
ultimately show Zthesis
by (meson finite-S finite-Sigmal finite-imageD finite-subset)
qed
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qed
ultimately show ?thesis
by (smt (verit) finite-subset subsetl)
qed

lemma finite-path-image:
assumes polygon p
shows finite {z. integral-vec x N\ x € path-image p}
using bounded-finite inside-outside-polygon
unfolding inside-outside-def
by (meson assms bounded-simple-path-image polygon-def)

lemma finite-path-inside:
assumes polygon p
shows finite {x. integral-vec x N\ x € path-inside p}
using bounded-finite inside-outside-polygon
unfolding inside-outside-def
using assms by presburger

lemma bounded-finite-inside:
fixes B:: (real™2) set
assumes simple-path p
shows bounded (path-inside p)
using assms
by (simp add: bounded-inside bounded-simple-path-image path-inside-def)

lemma finite-integral-points-path-image:
assumes simple-path p
shows finite {z. integral-vec z N\ = € path-image p}
using bounded-finite bounded-simple-path-image assms by blast

lemma finite-integral-points-path-inside:
assumes simple-path p
shows finite {z. integral-vec z N\ x € path-inside p}
using bounded-finite bounded-finite-inside assms by blast

27 Pick splitting

lemma pick-split-path-union-main:

assumes is-split: is-polygon-split-path vts i j cutvts

assumes vts! = (take i vts)

assumes vts2 = (take (j — ¢ — 1) (drop (Suc @) vts))

assumes vtsd = drop (j — 1) (drop (Suc ) vts)

assumes z = vis!i

assumes y = vtslj

assumes cutpath = make-polygonal-path (x # cutvts Q [y])

assumes p: p = make-polygonal-path (vtsQ[vts!0]) (is p = make-polygonal-path
2p-vts)

assumes pl: pl = make-polygonal-path (z#(vts2 Q [y] Q (rev cutvts) @Q [z]))
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(is pI = make-polygonal-path ?p1-vts)
assumes p2: p2 = make-polygonal-path (vtsl Q ([z] Q cutvts Q [y]) Q vis3 Q
[vts ! 0]) (is p2 = make-polygonal-path ?p2-vts)
assumes [11: I1 = card {x. integral-vec x N\ x € path-inside p1}
assumes BI: Bl = card {z. integral-vec © A\ x € path-image p1}
assumes 12: 12 = card {z. integral-vec x N © € path-inside p2}
assumes B2: B2 = card {z. integral-vec x N\ x € path-image p2}
assumes [: [ = card {z. integral-vec x N\ z € path-inside p}
assumes B: B = card {z. integral-vec x A\ x € path-image p}
assumes all-integral-vts: all-integral vts
shows measure lebesgue (path-inside p1) = I1 + B1/2 — 1
= measure lebesque (path-inside p2) = I2 + B2/2 — 1
= measure lebesque (path-inside p) =1 + B/2 — 1
measure lebesque (path-inside p) = I + B/2 — 1
= measure lebesgque (path-inside p2) = I2 + B2/2 — 1
= measure lebesque (path-inside p1) = I1 + B1/2
measure lebesque (path-inside p) = I + B/2 — 1
= measure lebesque (path-inside p1) = 11 + B1/2 — 1
= measure lebesque (path-inside p2) = I2 + B2/2
proof —
let ?p-im = {x. integral-vec * A x € path-image p}
let ?p1-im = {x. integral-vec © A\ x € path-image p1}
let ?p2-im = {x. integral-vec © A x € path-image p2}
let ?p-int = {z. integral-vec x A x € path-inside p}
let ?pl-int = {z. integral-vec x A\ x € path-inside p1}
let ?p2-int = {x. integral-vec x A\ x € path-inside p2}

|
~

I
~

have vts: vts = vtsl Q (z # (vts2 Q y # vis3))
using assms split-up-a-list-into-3-parts
using is-polygon-split-path-def by blast
have polygon p
using finite-path-image assms(1) p unfolding is-polygon-split-path-def
by (smt (verit, best))
then have B-finite: finite ?p-im
using finite-path-image by auto
have polygon-p1: polygon pl1
using finite-path-image assms(1) p1 unfolding is-polygon-split-path-def
by (smt (23) assms(3) assms(5) assms(6))
then have BI-finite: finite ?p1-im
using finite-path-image by auto
have polygon-p2: polygon p2
using finite-path-image assms(1) pl unfolding is-polygon-split-path-def
by (smt (23) assms(2) assms(4) assms(5) assms(6) p2)
then have B2-finite: finite ?p2-im
using finite-path-image by auto

have vts-distinct: distinct vts

using simple-polygonal-path-vts-distinct
by (metis <polygon p> butlast-snoc p polygon-def)
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then have z-neq-y: © # y
by (metis assms(1) assms(5) assms(6) index-first indez-nth-id is-polygon-split-path-def)
then have card-2: card {z, y} = 2
by auto
have polygon-split-props: (is-polygon-cut-path (vtsQ[uvts!0]) cutpath A
polygon p A polygon pl A polygon p2 A
path-inside pI N path-inside p2 = {} A
path-inside p1 U path-inside p2 U (path-image cutpath — {z, y}) = path-inside
p
A ((path-image p1) — (path-image cutpath)) N ((path-image p2) — (path-image
cutpath)) = {}
A path-image p = ((path-image p1) — (path-image cutpath)) U ((path-image p2)
— (path-image cutpath)) U {z, y})
using assms
by (meson is-polygon-split-path-def)
have measure-sum: measure lebesgue (path-inside p) = measure lebesgue (path-inside
pl) + measure lebesque (path-inside p2)
using polygon-split-path-add-measure assms
by (smt (verit, del-insts))

let 2yz-int = {k. integral-vec k A k € path-image (make-polygonal-path (y#trev
cutvtsQlz])) }
let ?zy-int = {k. integral-vec k A k € path-image cutpath}
have yx-int-is-zy-int: ?yx-int = Zxy-int
using rev-vts-path-image[of © # cutvts Q [y]] assms(7) by simp
have z # vts2 @ [y] Q rev cutvts Q [z] = (z#vis2) Q ([y] Q rev cutvts Q [z]) @
[
by simp
then have sublist ([y]Qrev cutvtsQ[z]) ?p1-vts
unfolding sublist-def by blast
then have subset?:
Zxy-int C Zpl-im
using sublist-integral-subset-integral-on-path p1 yr-int-is-zy-int
by force
have len-gteq: length (z # cutvts Q [y]) > 2
by auto
have sublist-p2: sublist (z # cutvts Q [y]) ?p2-vts
unfolding sublist-def by auto
then have subset2:
Zxy-int C Zp2-im
using sublist-integral-subset-integral-on-path|OF len-gteq p2 sublist-p2]
assms(7) by blast

let 51 = %pl-im — ?xy-int

let 952 = %p2-im — ?xy-int

have disjoint-1: 251 N 252 = {}
using polygon-split-props by blast
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have integral-zy: integral-vec x N integral-vec y
using all-integral-vts vts
using all-integral-def by auto
have nonempty: y # rev cutvts Q [z] # ]
by simp
have trivial: make-polygonal-path (y # rev cutvts @ [z]) = make-polygonal-path
(y # rev cutvts Q [z])
by auto
have pathstart (make-polygonal-path (y#rev cutvtsQ|z])) = y A pathfinish (make-polygonal-path
(y#rev cutvtsQ[z])) = z
using polygon-pathstart| OF nonempty trivial] polygon-pathfinish|OF nonempty
trivial]
by (metis last.simps last-conv-nth nonempty nth-Cons-0 snoc-eq-iff-butlast)
then have 2-in-y-in: = € path-image (make-polygonal-path (y#rev cutvtsQz]))
A y € path-image (make-polygonal-path (y#rev cutvtsQ[z]))
unfolding pathstart-def pathfinish-def path-image-def
by (metis <pathstart (make-polygonal-path (y # rev cutvts Q [z])) = y A
pathfinish (make-polygonal-path (y # rev cutvts Q [z])) = x> path-image-def pathfin-
ish-in-path-image pathstart-in-path-image)
then have {z, y} C Zyz-int
using integral-zy
by simp
then have disjoint-2: (251 U 252) N {z, y} = {}
by (simp add: yx-int-is-zy-int)
have path-image p =
path-image p1 — path-image cutpath U
(path-image p2 — path-image cutpath) U
{z, v}
using polygon-split-props by auto
then have set-union: ?p-im = (251 U 252) U {z, y}
using polygon-split-props integral-ry by auto
then have add-card: B = card (?p1-im — %zy-int) + card (?p2-im — ?xy-int)
+ card {z, y}
using B-finite using disjoint-1 disjoint-2
by (metis (no-types, lifting) B card-Un-disjoint finite-Un)
have subl: card (?pl-im — %zy-int) = Bl — card ?xy-int
using BI1-finite B1 subsetl
by (meson card-Diff-subset finite-subset)
have sub2: card (?p2-im — ?xy-int) = B2 — card ?zy-int
using B2-finite B2 subset2
by (meson card-Diff-subset finite-subset)
have B: B = (B1 — card ?zy-int) + (B2 — card ?zy-int) + card {z, y}
using add-card subl sub2
by auto
then have B-sum-h: B = Bl + B2 — 2xcard ?zy-int + 2
using card-2
by (smt (verit, best) Bl B1-finite B2 B2-finite Nat.add-diff-assoc add.commute
card-mono diff-diff-left mult-2 subsetl subset2)
then have B! + B2 = B + 2xcard ?zy-int — 2
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by (metis (no-types, lifting) B1 B1-finite B2 B2-finite add-mono-thms-linordered-semiring(1)
card-mono diff-add-inverse2 le-add2 mult-2 ordered-cancel-comm-monoid-diff-class.add-diff-assoc2
subsetl subset2)
then have B-sum: (B! + B2)/2 = B/2 + card ?zy-int — 1
by (smt (verit) B-sum-h field-sum-of-halves le-add2 mult-2 nat-1-add-1 of-nat-1
of-nat-add of-nat-diff ordered-cancel-comm-monoid-diff-class.add-diff-assoc2)
have casting-h: \ A B:: nat. A > B = real (A — B) = real A — real B
by auto
have path-inside p1 U path-inside p2 U (path-image cutpath — {z, y}) =
path-inside p
using polygon-split-props by auto
then have interior-union: ?p-int = (xy-int — {z, y}) U #pIl-int U ?p2-int
by blast

have finite-inside-p: finite ?p-int
using bounded-finite inside-outside-polygon
by (simp add: polygon-split-props inside-outside-def)

have finite-pathimage: finite (?zy-int — {z, y})
using Bl-finite finite-subset subset! by auto

have finite-inside-p1: finite ?p1-int
using polygon-split-props bounded-finite inside-outside-polygon
using finite-Un finite-inside-p interior-union by auto

have finite-inside-p2: finite ?p2-int
using polygon-split-props bounded-finite inside-outside-polygon
using finite-Un finite-inside-p interior-union by auto

have path-image-inside-disjoint!: (?xy-int — {z, y}) N (?pl-int) = {}
using subset! inside-outside-polygon| OF polygon-p1]
unfolding inside-outside-def by auto

have path-image-inside-disjoint2: (Pzy-int — {z, y}) N (?p2-int) = {}
using subset2 inside-outside-polygon|OF polygon-p2]
unfolding inside-outside-def by auto

have (?zy-int — {z, y}) N (Ppl-int U ?p2-int) = {}
using subset?2 path-image-inside-disjoint] path-image-inside-disjoint2
by auto
then have I-is: I = card (?zy-int — {z, y}) +
card (?p1-int U ?p2-int)
using interior-union I finite-inside-p1 finite-inside-p2
by (metis (no-types, lifting) card-Un-disjoint finite-Un finite-pathimage sup-assoc)

have disjoint-4: ?p1-int N ?p2-int = {}
using polygon-split-props by auto
then have I = card (%zy-int — {z, y}) +
11 4+ 12
using [-is finite-inside-p1 finite-inside-p2
by (simp add: 11 12 card-Un-disjoint)
have interior-subset: (?zy-int — {z, y}) C ?p-int
using interior-union by auto
have z-y-subset: {z, y} C 2xy-int
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using z-in-y-in rev-vts-path-image[of © # cutvts Q [y]] assms(7)
integral-zy
using yz-int-is-xy-int by blast
have real (card (?zy-int — {z, y})) =
real (card (Zzy-int )) — real (card {z, y})
using z-y-subset
by (metis (no-types, lifting) B2-finite card-Diff-subset card-mono finite-subset
of-nat-diff subset2)
then have card-diff: real (card (?zy-int — {z, y})) =
real (card (%ry-int )) — 2
using card-2 by auto
then have I = I1 + 12 + (card (Pzy-int — {z, y}))
using [ I1 12 interior-union finite-inside-p1 finite-inside-p2
by (simp add: I-is disjoint-4 card-Un-disjoint)
then have I = I1 + I2 + real (card (?zy-int)) — 2
using card-diff
by linarith
then have I-sum: I1 + I2 = I — real (card ?xy-int) + 2
by fastforce

{assume pickl: measure lebesgue (path-inside p1) = I1 + B1/2 — 1
assume pick2: measure lebesgue (path-inside p2) = 12 + B2/2 — 1
have measure lebesque (path-inside p) = I1 + 12 + (B1+B2)/2 -2
using pickl pick2 measure-sum by auto
then have measure lebesgue (path-inside p) = I — real (card ?zy-int) + 2 +
B/2 + card ?xy-int — 1 — 2
using I-sum B-sum
by linarith
then have measure lebesque (path-inside p) = I + B/2 — 1 by auto
}
then show measure lebesque (path-inside p1) = 11 + B1/2 — 1 = measure
lebesgue (path-inside p2) = 12 + B2/2 — 1 = measure lebesgue (path-inside p)
=1+ B/2 -1
by blast

{assume pickl: measure lebesgue (path-inside p) = I + B/2 — 1
assume pick2: measure lebesque (path-inside p2) = 12 + B2/2 — 1
then have real I + real B /| 2 — 1 = (measure lebesgue (path-inside p1)) +
2 + B2/2 —1
using measure-sum pickl pick2 by auto
then have measure lebesgue (path-inside p) = I — real (card ?zy-int) + 2 +
B/2 + card ?xy-int — 1 — 2
using I-sum B-sum pickl
by linarith
then have measure lebesque (path-inside p1) = 11 + B1/2 — 1
using B-sum <real I = real (I1 + I2) + real (card {k. integral-vec k N k €
path-image cutpath}) — 2> field-sum-of-halves measure-sum of-nat-add
pickl pick2 by auto

}
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then show measure lebesque (path-inside p) = I + B/2 — 1 = measure
lebesgue (path-inside p2) = 12 + B2/2 — 1 = measure lebesque (path-inside p1)
=11 +B1/2 — 1

by blast

{assume pickl: measure lebesque (path-inside p) =1 + B/2 — 1
assume pick2: measure lebesgue (path-inside p1) = 11 + B1/2 — 1
then have real I + real B / 2 — 1 = (measure lebesque (path-inside p2)) +
I1 + B1/2 —1
using measure-sum pickl pick2 by auto
then have measure lebesgue (path-inside p) = I — real (card ?xy-int) + 2 +
B/2 + card ?xy-int — 1 — 2
using [I-sum B-sum pickl
by linarith
then have measure lebesgue (path-inside p2) = 12 + B2/2 — 1
using B-sum «<real I = real (I1 + I2) + real (card {k. integral-vec k A k €
path-image cutpath}) — 2> field-sum-of-halves measure-sum of-nat-add
using pick2 by auto
}
then show measure lebesgue (path-inside p) = I + B/2 — 1 = measure lebesgue
(path-inside p1) = I1 + B1/2 — 1 = measure lebesgue (path-inside p2) = I2 +

B2/2 — 1
by blast
qed

lemma pick-split-union:

assumes is-split: is-polygon-split vts i j

assumes vts! = (take i vts)

assumes vts2 = (take (j — ¢ — 1) (drop (Suc i) vts))

assumes vts3 = drop (j — ) (drop (Suc i) vts)

assumes z = vits ! ¢

assumes y = vts ! j

assumes p: p = make-polygonal-path (vtsQ[vts!0]) (is p = make-polygonal-path
?p-vts)

assumes pl: pl = make-polygonal-path (z#(vts2Qly, x])) (is p1 = make-polygonal-path
?p1-vts)

assumes p2: p2 = make-polygonal-path (vts! Q [z, y] Q vtsd Q [vts ! 0]) (is p2
= make-polygonal-path ?p2-vts)

assumes [1: I1 = card {z. integral-vec x N x € path-inside p1}

assumes BI: Bl = card {z. integral-vec x N\ x € path-image p1}

assumes pickl: measure lebesgue (path-inside p1) = I1 + B1/2 — 1

assumes 12: I2 = card {x. integral-vec x N\ x € path-inside p2}

assumes B2: B2 = card {z. integral-vec © A\ = € path-image p2}

assumes pick2: measure lebesgue (path-inside p2) = I2 + B2/2 — 1

assumes [I: [ = card {z. integral-vec & N\ = € path-inside p}

assumes B: B = card {z. integral-vec © A\ x € path-image p}

assumes all-integral-vts: all-integral vts

shows measure lebesgue (path-inside p) = I + B/2 — 1

measure lebesque (path-inside p) = measure lebesgue (path-inside p1) +
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measure lebesgue (path-inside p2)

proof —
let ?p-im = {z. integral-vec * N\ x € path-image p}
let ?p1-im = {x. integral-vec x A\ x € path-image p1}
let ?p2-im = {x. integral-vec x* A\ x € path-image p2}
let ?p-int = {z. integral-vec x A x € path-inside p}
let ?p1-int = {x. integral-vec z A\ x € path-inside p1}
let ?p2-int = {z. integral-vec x A\ x € path-inside p2}

have vts: vts = vtsl Q (z # (vts2 Q y # vts3))
using assms split-up-a-list-into-3-parts
using is-polygon-split-def by blast
have polygon p
using finite-path-image assms(1) p unfolding is-polygon-split-def
by (smt (verit, best))
then have B-finite: finite ?p-im
using finite-path-image by auto
have polygon-p1: polygon pl
using finite-path-image assms(1) pl unfolding is-polygon-split-def
by (smt (23) assms(8) assms(5) assms(6))
then have BI1-finite: finite ?p1-im
using finite-path-image by auto
have polygon-p2: polygon p2
using finite-path-image assms(1) pl unfolding is-polygon-split-def
by (smt (23) assms(2) assms(4) assms(5) assms(6) p2)
then have B2-finite: finite 7p2-im
using finite-path-image by auto

have vts-distinct: distinct vts
using simple-polygonal-path-vts-distinct
by (metis <polygon p> butlast-snoc p polygon-def)
then have z-neq-y: © # y
by (metis assms(1) assms(5) assms(6) index-first indez-nth-id is-polygon-split-def)
then have card-2: card {z, y} = 2
by auto
have polygon-split-props: is-polygon-cut ?p-vts © y A
polygon p A polygon pl A polygon p2 A
path-inside p1 N path-inside p2 = {} A
path-inside p1 U path-inside p2 U (path-image (linepath z y) — {z, y})
= path-inside p N ((path-image pl) — (path-image (linepath x y))) N
((path-image p2) — (path-image (linepath z y))) = {}
A path-image p = ((path-image p1) — (path-image (linepath z y))) U ((path-image
p2) — (path-image (linepath = y))) U {z, y}
using assms
by (meson is-polygon-split-def)
have measure lebesque (path-inside p) = measure lebesque (path-inside p1) +
measure lebesque (path-inside p2)
using polygon-split-add-measure assms
by (smt (verit, del-insts))
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then have measure-sum: measure lebesgue (path-inside p) = I1 + 12 + (B1+B2)/2
-2
using pickl pick2 by auto

let ?yx-int = {k. integral-vec k N\ k € path-image (linepath y )}
let 2zy-int = {k. integral-vec k A\ k € path-image (linepath x y)}
have yx-int-is-zy-int: ?yx-int = 2xy-int

by (simp add: closed-segment-commute)

have sublist [y, x] ?p1-vts by (simp add: sublist-Cons-right)
then have subset?:

2xy-int C Zpl-im

using sublist-pair-integral-subset-integral-on-path p1 yxr-int-is-ry-int by blast
have subset2:

Zxy-int C 7p2-im

using sublist-pair-integral-subset-integral-on-path p2 by blast

let 51 = %pl-im — ?xy-int

let 952 = %p2-im — %xy-int

have disjoint-1: 251 N 252 = {}
using polygon-split-props by blast

have integral-zy: integral-vec x N integral-vec y
using all-integral-vts vts
using all-integral-def by auto
then have {z, y} C Zyz-int
by simp
then have disjoint-2: (251 U 252) N {z, y} = {}
by simp
have path-image p =
path-image pl — path-image (linepath = y) U
(path-image p2 — path-image (linepath z y)) U
{z, v}
using polygon-split-props by auto
then have set-union: ?p-im = (251 U 252) U {z, y}
using polygon-split-props integral-xy by auto
then have add-card: B = card (?pl-im — ?Zxy-int) + card (?p2-im — ?Zxy-int)
+ card {z, y}
using B-finite using disjoint-1 disjoint-2
by (metis (no-types, lifting) B card-Un-disjoint finite-Un)
have subl: card (?pl-im — %zy-int) = Bl — card ?xy-int
using BI-finite B1 subsetl
by (meson card-Diff-subset finite-subset)
have sub2: card (?p2-im — ?xy-int) = B2 — card ?zy-int
using B2-finite B2 subset2
by (meson card-Diff-subset finite-subset)
have B: B = (B1 — card ?zy-int) + (B2 — card ?zy-int) + card {z, y}
using add-card subl sub2
by auto
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then have B-sum-h: B = Bl + B2 — 2xcard ?zy-int + 2
using card-2
by (smt (verit, best) Bl Bl-finite B2 B2-finite Nat.add-diff-assoc add.commute
card-mono diff-diff-left mult-2 subsetl subset2)
then have B! + B2 = B + 2xcard ?xy-int — 2
by (metis (no-types, lifting) B1 B1-finite B2 B2-finite add-mono-thms-linordered-semiring(1)
card-mono diff-add-inverse2 le-add2 mult-2 ordered-cancel-comm-monoid-diff-class. add-diff-assoc2
subsetl subset2)
then have B-sum: (Bl 4+ B2)/2 = B/2 + card ?zy-int — 1
by (smt (verit) B-sum-h field-sum-of-halves le-add2 mult-2 nat-1-add-1 of-nat-1
of-nat-add of-nat-diff ordered-cancel-comm-monoid-diff-class.add-diff-assoc2)
have casting-h: A\ A B:: nat. A > B = real (A — B) = real A — real B
by auto
have path-inside pl U path-inside p2 U (path-image (linepath z y) — {z, y}) =
path-inside p
using polygon-split-props by auto
then have interior-union: ?p-int = (%xy-int — {z, y}) U pl-int U ?p2-int
by blast

have finite-inside-p: finite ?p-int
using bounded-finite inside-outside-polygon
by (simp add: polygon-split-props inside-outside-def)

have finite-pathimage: finite (?zy-int — {z, y})
using Bl-finite finite-subset subset! by auto

have finite-inside-p1: finite ?p1-int
using polygon-split-props bounded-finite inside-outside-polygon
using finite-Un finite-inside-p interior-union by auto

have finite-inside-p2: finite ?p2-int
using polygon-split-props bounded-finite inside-outside-polygon
using finite-Un finite-inside-p interior-union by auto

have path-image-inside-disjoint!: (?xy-int — {z, y}) N (?pl-int) = {}
using subset! inside-outside-polygon| OF polygon-p1]
unfolding inside-outside-def by auto

have path-image-inside-disjoint2: (%zy-int — {z, y}) N (?p2-int) = {}
using subset2 inside-outside-polygon|OF polygon-p2]
unfolding inside-outside-def by auto

have (?zy-int — {z, y}) N (Ppl-int U ?p2-int) = {}
using subset?2 path-image-inside-disjoint] path-image-inside-disjoint2
by auto

then have I-is: I = card (?zy-int — {z, y}) +
card (?p1-int U ?p2-int)
using interior-union I finite-inside-p1 finite-inside-p2

by (metis (no-types, lifting) card-Un-disjoint finite-Un finite-pathimage sup-assoc)

have disjoint-4: ?p1-int N ?p2-int = {}
using polygon-split-props by auto

then have I = card (?zy-int — {z, y}) +
11 4+ 12
using I-is finite-inside-p1 finite-inside-p2
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by (simp add: I1 I2 card-Un-disjoint)
have interior-subset: (?zxy-int — {z, y}) C ?p-int
using interior-union by auto
have z-y-subset: {z, y} C Zzy-int
using local.set-union by auto
have real (card (Zzy-int — {xz, y})) =
real (card (%zy-int )) — real (card {z, y})
using z-y-subset
by (metis (no-types, lifting) B2-finite card-Diff-subset card-mono finite-subset
of-nat-diff subset2)
then have card-diff: real (card (?zy-int — {z, y})) =
real (card (Zzy-int )) — 2
using card-2 by auto
then have I = I1 + 12 + (card (?zy-int — {z, y}))
using I I1 I2 interior-union finite-inside-p1 finite-inside-p2
by (simp add: I-is disjoint-4 card-Un-disjoint)
then have I = I1 + 12 + real (card (Pzy-int)) — 2
using card-diff
by linarith
then have I-sum: I1 + I2 = I — real (card ?xy-int) + 2
by fastforce
have measure lebesque (path-inside p) = I — real (card ?xy-int) + 2 +
B/2 + card ?xy-int — 1 — 2
using measure-sum I-sum B-sum
by linarith
then show measure lebesgue (path-inside p) = I + B/2 — 1 by auto

show measure lebesgue (path-inside p) = measure lebesque (path-inside p1) +
measure lebesque (path-inside p2)

using «Sigma-Algebra.measure lebesgue (path-inside p) = Sigma-Algebra.measure
lebesgue (path-inside p1) + Sigma-Algebra.measure lebesque (path-inside p2)» by
blast
qed

lemma pick-split-path-union:

assumes is-split: is-polygon-split-path vts i j cutvts

assumes vts! = (take i vts)

assumes vts2 = (take (j — ¢ — 1) (drop (Suc @) vts))

assumes vts3 = drop (j — i) (drop (Suc ) vts)

assumes z = vts!i

assumes y = vtslj

assumes cutpath = make-polygonal-path (x # cutvts Q [y])

assumes p: p = make-polygonal-path (vtsQ[vts!0]) (is p = make-polygonal-path
Zp-vts)

assumes pl: pl = make-polygonal-path (z#(vts2 Q [y] Q (rev cutvts) Q [z]))
(is p1 = make-polygonal-path ?p1-vts)

assumes p2: p2 = make-polygonal-path (vtsl Q ([z] Q cutvts @ [y]) Q viss Q
[vts ! 0]) (is p2 = make-polygonal-path ?p2-vts)

assumes [1: I1 = card {z. integral-vec x N x € path-inside p1}
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assumes BI: Bl = card {z. integral-vec x N\ = € path-image p1}
assumes pickl: measure lebesque (path-inside p1) = 11 + B1/2 — 1
assumes 12: I2 = card {x. integral-vec x N\ z € path-inside p2}
assumes B2: B2 = card {z. integral-vec © N\ x € path-image p2}
assumes pick2: measure lebesgue (path-inside p2) = 12 + B2/2 — 1
assumes [I: [ = card {z. integral-vec © A\ x € path-inside p}
assumes B: B = card {z. integral-vec x A x € path-image p}
assumes all-integral-vts: all-integral vts

shows measure lebesgue (path-inside p) = I + B/2 — 1

using pick-split-path-union-main pickl pick2(1) assms by blast

lemma pick-triangle-basic-split:
assumes p = make-triangle a b ¢ and distinct [a, b, ¢] and — collinear {a, b,
¢} and
d-prop: d € path-image (linepath a b) A d ¢ {a, b, c}
shows good-linepath ¢ d [a, d, b, ¢, a]
A path-image (make-polygonal-path [a, d, b, ¢, a]) = path-image p
proof—
let 21 = linepath c d
let ?L = path-image ?1
let ?P = path-image p
let %vts’ = [a, d, b, ¢, a]
let ?p’ = make-polygonal-path ?vts’
let 2P’ = path-image ?p’

have h1: path-image (make-polygonal-path [a, b, ¢, a]) = path-image (linepath a
b) U path-image (linepath b ¢) U path-image (linepath ¢ a)
using polygonal-path-image-linepath-union by (simp add: path-image-join sup.assoc)
have h2: path-image (make-polygonal-path [a, d, b, ¢, a]) = path-image (linepath a
d) U path-image (linepath d b) U path-image (linepath b ¢) U path-image (linepath
ca)
using polygonal-path-image-linepath-union by (simp add: path-image-join sup.assoc)
have h3: path-image (linepath a b) = path-image (linepath a d) U path-image
(linepath d b)
using path-image-linepath-union d-prop by auto

have 1: ?P' = 2P
using hi h2 h3
using assms(1) make-triangle-def by force

have {¢, d} = ?L N 7P
proof (rule ccontr)
have subs: {c, d} C ?L N ?P
using assms(1) vertices-on-path-image unfolding make-triangle-def
by (metis IntD2 Intl assms(4) empty-subset] inf-sup-absorb insert-subset
list.discl list.simps(15) nth-Cons-0 path-image-cons-union pathfinish-in-path-image
pathfinish-linepath pathstart-in-path-image pathstart-linepath)

assume x: {c, d} # ?L N P
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then obtain z where z: 2 # ¢ A 2z # d A z € ?L N 7P using subs by blast
then have cases:
z € path-image (linepath a b) V z € path-image (linepath b ¢) V z € path-image
(linepath ¢ a)
using 1 h2 h3 by blast
{ assume xx: z € path-image (linepath a b)
moreover have z € ?L A d € L N\ d € path-image (linepath a b) using
assms z by force
ultimately have {z, d} C ?L N path-image (linepath a b) A z # d using z
by blast
then have collinear {a, b, ¢, d} using two-linepath-colinearity-property by
fastforce
then have Fulse using assms(2) assms(3) collinear-4-3 by auto
} moreover
{ assume x*x: z € path-image (linepath b c)
then have collinear {a, b, ¢, d} using two-linepath-colinearity-property|of z
-beced
by (smt (verit) xx IntE assms(3) collinear-3-trans d-prop in-path-image-imp-collinear
insertCI insert-commute z)
then have Fulse using assms(2) assms(3) collinear-4-3 by auto
} moreover
{ assume xx: z € path-image (linepath ¢ a)
then have collinear {a, b, ¢, d} using two-linepath-colinearity-property|of z
-cacd]
by (smt (verit) IntD1 assms(3) collinear-3-trans d-prop in-path-image-imp-collinear
insert-commute insert-iff z)
then have Fulse using assms(2) assms(3) collinear-4-3 by auto
}
ultimately show Fulse using cases by argo
qed
moreover have ?L C path-inside p U 2P
proof—
have convex hull {a, b, ¢} = path-inside p U ¢P
by (simp add: Un-commute assms(1) assms(3) triangle-convezr-hull)
moreover have ?L C convez hull {a, b, c}
by (smt (verit, ccfu-threshold) assms empty-subsetl hull-insert hull-mono in-
sert-commute insert-mono insert-subset path-image-linepath segment-convez-hull)
ultimately show ?thesis by blast
qed
ultimately have ¢L C path-inside p U {¢c, d} by blast
then have ?L C path-inside ?p’ U {c, d} using 1 unfolding path-inside-def by
presburger
then have 2: good-linepath ¢ d ?vts’ using assms unfolding good-linepath-def
by auto

thus ?thesis using 1 by blast
qed
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28 Convex Hull Has Good Linepath

lemma leq-2-extreme-points-means-collinear:

fixes vts :: 'a::euclidean-space set

assumes finite vts

assumes card {v. v extreme-point-of (conver hull vts)} < 2

shows collinear vts

using assms

by (metis Krein-Milman-polytope affine-hull-convez-hull collinear-affine-hull-collinear
collinear-small extreme-points-of-convezr-hull finite-subset)

lemma convex-hull-non-extreme-point-in-open-seg:
assumes H = convex hull vts
assumes z € H — {v. v extreme-point-of H}
shows 3ab. a € HAbe HAN z € open-segment a b
using assms unfolding extreme-point-of-def by blast

lemma convez-hull-extreme-points-vertex-split:
fixes vts :: (real”2) set
assumes H = convexr hull vts
assumes finite vts
assumes card {v. v extreme-point-of H} > 4
assumes {a, b, ¢} C {v. v extreme-point-of H} A distinct [a, b, ]
shows path-image (linepath a b) N interior H # {}
V path-image (linepath b ¢) N interior H # {}
V path-image (linepath ¢ a) N interior H # {}
proof—
let Zep = {v. v extreme-point-of H}

have H: H = convex hull ?ep using Krein-Milman-polytope assms(1) assms(2)
by blast
let ?H' = convex hull {a, b, ¢}

have not-collinear: = collinear {a, b, c}
proof(rule ccontr)
assume — — collinear {a, b, c}
then have collinear {a, b, ¢} by blast
then have a € path-image (linepath b c)
V b € path-image (linepath a c)
V ¢ € path-image (linepath a b)
using collinear-between-cases unfolding between-def
by (smt (verit, del-insts) between-mem-segment closed-segment-eq collinear-between-cases
doubleton-eq-iff path-image-linepath)
moreover have a # b A b # ¢ A a # c using assms by simp
ultimately have a € open-segment b ¢ V b € open-segment a ¢ V ¢ €
open-segment a b
using closed-segment-eq-open by auto
moreover have a extreme-point-of H N\ b extreme-point-of H A ¢ extreme-point-of
H
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using assms by blast
ultimately show Fulse unfolding extreme-point-of-def by blast
qed

have strict-subset: interior YH’ C interior H
proof—
have interior ?H' C interior H
by (metis H assms(4) hull-mono interior-mono)
moreover have ?H' C H
proof—
have card {a, b, ¢} < 3
by (metis card.empty card-insert-disjoint collinear-2 finite.emptyl finite-insert
insert-absorb nat-le-linear not-collinear numeral-3-eq-3)
then have card (%ep — {a, b, c}) > 1
using assms(3) assms(4) by auto
then obtain d where d € %ep — {a, b, ¢}
by (metis One-nat-def all-not-in-conv card.empty not-less-eq-eq zero-le)
thus ?thesis
by (metis DiffE H assms(4) extreme-point-of-convez-hull hull-mono mem-Collect-eq
order-less-le)
qed
ultimately show Zthesis
by (metis (no-types, lifting) assms(1) assms(2) closure-convez-hull con-
vez-closure-rel-interior convex-convex-hull convex-hull-eq-empty convezx-polygon-frontier-is-path-image2
dual-order. strict-iff-order finite.emptyl finite.insertl finite-imp-bounded-convex-hull
finite-imp-compact frontier-empty insert-not-empty inside-frontier-eq-interior not-collinear
path-inside-def polygon-frontier-is-path-image rel-interior-nonempty-interior sup-bot.right-neutral
triangle-convex-hull triangle-is-convez triangle-is-polygon)
qed
moreover have interior 7H’ # {}
by (metis not-collinear convez-conver-hull conver-hull-eq-empty convex-polygon-frontier-is-path-image2
finite.emptyl finite.insertl finite-imp-bounded-convex-hull frontier-empty insert-not-empty
inside-frontier-eq-interior path-inside-def polygon-frontier-is-path-image sup-bot.right-neutral
triangle-convex-hull triangle-is-convez triangle-is-polygon)
ultimately obtain z y where zy: z € interior ?H' A y € interior H — interior
?H' by blast

let ¢l = linepath x y

have z € interior ?H' N y € —(interior ?H’) using zy by blast
then have path-image 71 N interior ?H' # {} A path-image ?l N —(interior ?H’)
# {} by auto
moreover have path-connected (interior 2H’) by (simp add: convez-imp-path-connected)
ultimately obtain z where z: z € path-image ?l N frontier (interior 7H’)
by (metis Diff-eq Diff-eq-empty-iff all-not-in-conv convez-convez-hull convex-imp-path-connected
path-connected-not-frontier-subset path-image-linepath segment-convex-hull)
moreover have path-image ?l C interior H using zy convez-interior|of H|
by (metis DiffD1 IntD2 strict-subset assms(1) closed-segment-subset convez-convex-hull
inf . strict-order-iff path-image-linepath)
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ultimately have z-interior: z € interior H by blast

have z € frontier (interior ?H’) using z by blast
moreover have frontier (interior ?H’)
= path-image (linepath a b) U path-image (linepath b ¢) U path-image (linepath
¢ a)
proof—
let ?p = make-triangle a b ¢
have path-inside ?p = interior ?H'
by (metis not-collinear bounded-convex-hull bounded-empty bounded-insert con-
vex-convex-hull convex-polygon-frontier-is-path-image2 inside-frontier-eg-interior path-inside-def
triangle-convex-hull triangle-is-convez triangle-is-polygon)
then have path-image ?p = frontier (interior ?H’)
by (metis not-collinear polygon-frontier-is-path-image triangle-is-polygon)
moreover have path-image ?p
= path-image (linepath a b) U path-image (linepath b ¢) U path-image (linepath
ca
)
by (metis Un-assoc list.discI make-polygonal-path.simps(3) make-triangle-def
nth-Cons-0 path-image-cons-union)
ultimately show ¢thesis by presburger
qged
ultimately show ?thesis using z-interior by blast
qed

lemma convez-hull-has-vertex-split-helper-wlog:
assumes p = make-triangle a b ¢ and distinct [a, b, ] and — collinear {a, b,
¢} and
d-prop: d € path-image (linepath a b) A d ¢ {a, b, ¢}
shows path-image (linepath ¢ d) N path-inside p # {}
proof—
have good-linepath ¢ d [a, d, b, ¢, a
A path-image (make-polygonal-path [a, d, b, ¢, a]) = path-image p
using pick-triangle-basic-split[of p a b ¢ d] assms by fast
thus ?thesis
unfolding good-linepath-def
by (smt (verit, del-insts) Int-Un-eq(4) Int-insert-right-if! Un-insert-right diff-points-path-image-set-property
le-iff-inf path-inside-def pathfinish-in-path-image pathfinish-linepath pathstart-in-path-image
pathstart-linepath)
qed

lemma convez-hull-has-vertex-split-helper:
assumes p = make-triangle a b ¢ and distinct [a, b, ¢|] and - collinear {a, b,
¢} and
d-prop: d € path-image p A\ d ¢ {a, b, ¢}
shows Jz y. {z, y} C {a, b, ¢, d} Nz # y A path-image (linepath = y) N
path-inside p # {}
proof—
{ assume d € path-image (linepath a b)
then have ?thesis
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using convex-hull-has-vertex-split-helper-wloglof p a b ¢ d] assms(1) assms(2)
assms(3) d-prop
by fastforce
} moreover
{ assume x: d € path-image (linepath b c)
let ?p’ = make-triangle b c a
have path-image (linepath a d) N path-inside ?p’ # {}
using convez-hull-has-vertez-split-helper-wlog[of ?p’ b ¢ a d|
by (metis (no-types, opaque-lifting) x assms(3) collinear-2 d-prop distinct-length-2-or-more
distinct-singleton insert-absorb2 insert-commute)
moreover have path-inside ?p’ = path-inside p
unfolding make-triangle-def
by (smt (verit, best) assms(1) assms(8) convex-polygon-frontier-is-path-image2
insert-commute make-triangle-def path-inside-def triangle-convez-hull triangle-is-convex
triangle-is-polygon)
ultimately have ?thesis using assms by auto
} moreover
{ assume x: d € path-image (linepath ¢ a)
let ?p’ = make-triangle ¢ a b
have path-image (linepath b d) N path-inside ?p’ # {}
using convez-hull-has-vertex-split-helper-wlog[of ?p’ ¢ a b d]
by (metis (no-types, opaque-lifting) * assms(3) collinear-2 d-prop distinct-length-2-or-more
distinct-singleton insert-absorb2 insert-commute)
moreover have path-inside ?p’ = path-inside p
unfolding make-triangle-def
by (smt (verit, ccfv-SIG) assms(1) assms(3) convex-polygon-frontier-is-path-image2
insert-commute make-triangle-def path-inside-def triangle-convez-hull triangle-is-convex
triangle-is-polygon)
ultimately have ?thesis using assms by auto
}
ultimately show ?thesis using on-triangle-path-image-cases assms(1) d-prop
by fast
qed

lemma convez-hull-has-vertex-split:

fixes vts :: (real”2) set

assumes H = convez hull vts

assumes — collinear vts

assumes card vts > 3

assumes finite vts

shows Fa b. {a, b} C vts A a # b A path-image (linepath a b) N interior H #
{}
proof—

let %ep = {v. v extreme-point-of H}

have ep: Zep C vts by (simp add: assms(1) extreme-points-of-convex-hull)

have card-ep: card ?ep > 3

by (metis One-nat-def Suc-1 assms(1) assms(2) assms(8) card.infinite leq-2-extreme-points-means-collinear
not-less-eg-eq not-less-zero numeral-3-eq-3)

obtain a b ¢ where abc: {a, b, ¢} C epANa£bANbFcNa#c
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proof—
obtain ¢ A where a € %ep AN A = %ep — {a} A card A > 2 using card-ep by
force
moreover then obtain b B where b € AN B=A — {b} A card B > 1
by (metis Suc-1 Suc-diff-le bot.extremum-uniquel bot-nat-0.extremum card-Diff-singleton
card-eq-0-iff diff-Suc-1 less-Suc-eq-le less-one linorder-not-le subset-emptyl)
moreover then obtain ¢ ¢ where c € BA C =B — {¢} A card C > 0
by (metis One-nat-def bot-nat-0.extremum card.empty equalsOI not-less-eq-eq)
ultimately have {a, b, ¢} C %ep A a # b A b# ¢ A a# c by blast
thus ?thesis using that by auto
qed
{ assume *: card %ep = 3
then have abc: Zep = {a, b, ¢}
by (metis abc card-3-iff card-gt-0-iff numeral-3-eq-3 order-less-le psubset-card-mono
zero-less-Suc)
obtain d where d: d € vtis Nd#aANd#bANdF#c
by (metis x assms(3) abc ep insertCI nat-less-le subsetl subset-antisym)
{ assume d € interior H
then have d € path-image (linepath a d) N interior H by simp
then have ?thesis using ep abc d by auto
} moreover
{ assume xxx: d ¢ interior H
let ?p = make-triangle a b ¢
have H: H = convex hull ?ep
proof—
have compact H
by (metis assms(1) assms(3) card-eg-0-iff finite-imp-compact-convex-hull
gr-implies-not0)
moreover have convex H using convez-convez-hull[of vts| assms by blast
ultimately have H = closure (convex hull ?ep) using Krein-Milman|of H|
by fast
thus ?thesis using abc by auto
qed
then have interior: path-inside ?p = interior H
using abc
by (metis assms(1,2) affine-hull-convex-hull collinear-affine-hull-collinear
convex-convex-hull convex-polygon-frontier-is-path-image2 finite.intros(1) finite-imp-bounded-convez-hull
finite-insert inside-frontier-eq-interior path-inside-def triangle-convex-hull triangle-is-convex
triangle-is-polygon)
then have d-frontier: d € frontier H
by (metis xxx Diff-iff assms(1) UnCI d closure-Un-frontier frontier-def
hull-subset in-mono)
moreover have path-image ?p = frontier H
using convez-polygon-frontier-is-path-image
by (metis assms(1,2) H abe affine-hull-convez-hull collinear-affine-hull-collinear
convex-polygon-frontier-is-path-image2 triangle-convez-hull triangle-is-convex trian-
gle-is-polygon)
ultimately have d € path-image ?p by blast
moreover have — collinear {a, b, c}
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by (metis H assms(1,2) abe affine-hull-convez-hull collinear-affine-hull-collinear)
moreover then have distinct [a, b, (]
by (metis collinear-2 distinct.simps(2) distinct-singleton empty-set in-
sert-absorb list.simps(15))

moreover have d ¢ {a, b, ¢} using d by blast
ultimately have ?thesis

using abc d convex-hull-has-vertez-split-helper|of ?p a b ¢ d]

by (metis (no-types, lifting) insert-subset interior subset-trans ep)

ultimately have ?thesis by fast
} moreover
{ assume x: card ?ep > 4
moreover have {a, b, c} C %ep A distinct [a, b, | using abc by fastforce
ultimately have path-image (linepath a b) N interior H # {}
V path-image (linepath b ¢) N interior H # {}
V path-image (linepath ¢ a) N interior H # {}
using convez-hull-extreme-points-vertex-split|OF assms(1) assms(4) *] by
presburger
then have ?thesis
by (metis (no-types, lifting) ep abe insert-subset subset-trans)
}

ultimately show ?thesis using card-ep by fastforce
qed

lemma convez-polygon-has-good-linepath-helper:
assumes polygon-of p vts
assumes convez (path-inside p U path-image p)
assumes card (set vts) > 8
obtains a b where {a, b} C set vis A a # b A = path-image (linepath a b) C
path-image p
proof—
let H = convex hull (set vts)
obtain a b where ab: {a, b} C set vts A a # b A path-image (linepath a b) N
interior ?H # {}
using convex-hull-has-vertex-split assms polygon-vts-not-collinear unfolding
polygon-of-def
by fastforce
moreover have interior ?H = path-inside p
using assms(1) assms(2) convez-polygon-inside-is-convex-hull-interior poly-
gon-convez-iff polygon-of-def
by blast
ultimately have path-image (linepath a b) N path-inside p # {} by simp
moreover have path-inside p N path-image p = {} using path-inside-def by
auto
moreover have path-image (linepath a b) C path-image p U path-inside p
by (metis ab assms(1) assms(2) convez-polygon-is-convez-hull hull-mono path-image-linepath
polygon-of-def segment-convex-hull sup-commute)
ultimately have — path-image (linepath a b) C path-image p by fast
thus ?thesis using ab that by meson
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qed

lemma convez-polygon-has-good-linepath:

assumes convez (path-inside p U path-image p)

assumes polygon p

assumes p = make-polygonal-path vts

assumes card (set vts) > 3

shows Ja b. good-linepath a b vts
proof—

let ?T = convex hull (set vts)

have T': path-image p U path-inside p = ¢T

by (metis Un-commute assms(1) assms(2) assms(3) convez-polygon-is-convez-hull)

obtain a b where ab: a # b A {a, b} C set vts A = path-image (linepath a b) C
path-image p

using convez-polygon-has-good-linepath-helper assms unfolding polygon-of-def

by metis

let 7S = path-image (linepath a b)

have p-is-frontier: frontier ?T = path-image p

using convez-polygon-frontier-is-path-image assms polygon-of-def polygon-convex-iff
by blast

have closure ?T = ?T by (simp add: finite-imp-compact)
then have 25 C closure ?T using ab by (simp add: hull-mono segment-convez-hull)
moreover have convex ?T using convez-convez-hull by auto
moreover have convex 25 by simp
moreover have rel-interior S = open-segment a b
by (metis ab path-image-linepath rel-interior-closed-segment)
moreover have rel-interior ¢T = interior T
by (metis p-is-frontier Diff-empty ab calculation(1) frontier-def rel-interior-nonempty-interior)
ultimately have open-segment a b C interior ?T
using subset-rel-interior-convex by (metis ab p-is-frontier frontier-def rel-frontier-def)
then have (open-segment a b) N path-image p = {}
using p-is-frontier frontier-def by auto
then have closed-segment a b N path-image p = {a, b}
by (metis (no-types, lifting) Int-Un-distrib2 Int-absorb2 Un-commute ab assms(3)
closed-segment-eq-open subset-trans sup-bot.right-neutral vertices-on-path-image)
then have path-image (linepath a b) N path-image p = {a, b} by simp
thus ?thesis
using ab unfolding good-linepath-def
by (smt (verit, ccfv-threshold) Intl UnCI UnE T assms(8) hull-mono path-image-linepath
segment-convex-hull subset-iff)
qed

29 Pick’s Theorem

definition integral-inside:
integral-inside p = {x. integral-vec x N\ = € path-inside p}
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definition integral-boundary:
integral-boundary p = {z. integral-vec © N\ z € path-image p}

29.1 Pick’s Theorem Triangle Case

definition pick-triangle:
pick-triangle p a b ¢ +—
p = make-triangle a b ¢
A all-integral [a, b, c]
A distinct [a, b, ]
A = collinear {a, b, c}

definition pick-holds:
pick-holds p <—
(let I = card {z. integral-vec x N\ x € path-inside p} in
let B = card {z. integral-vec © A\ z € path-image p} in
measure lebesque (path-inside p) = 1 + B/2 — 1)

lemma pick-triangle-wlog-helper:
assumes pick-triangle p a b ¢ and
I = card (integral-inside p) and
B = card (integral-boundary p) and
integral-inside p = {} and
integral-vec d A d € path-image (linepath a b) A d ¢ {a, b, ¢} and d ¢
{a, b, ¢} and
ih: Ap' a’ b’ ¢’. (card (integral-inside p") + card (integral-boundary p’) <
I + B) = pick-triangle p’ a’ b’ ¢’ = pick-holds p’
shows measure lebesgue (path-inside p) = I + B/2 — 1
proof—
have polygon-p: polygon p using triangle-is-polygon assms unfolding pick-triangle
by presburger
then have polygon-of: polygon-of p [a, b, ¢, d]
unfolding polygon-of-def using assms unfolding make-triangle-def pick-triangle
by auto

let ?p’ = make-polygonal-path [a, d, b, ¢, a]

have good-linepath c d [a, d, b, ¢, a] A path-image (make-polygonal-path [a, d, b,
¢, a]) = path-image p
using pick-triangle-basic-split assms unfolding pick-triangle by presburger
then have x: good-linepath d ¢ [a, d, b, ¢, a] A path-image (make-polygonal-path
la, d, b, ¢, a]) = path-image p
using good-linepath-comm by blast
have polygon-new: polygon (make-polygonal-path [a, d, b, ¢, a])
using polygon-linepath-split-is-polygon| OF polygon-of, of 0 a b d [a, d, b, ¢, a]]
assms
by force
have hl: make-polygonal-path [a, d, b, ¢, a] = make-polygonal-path ([a, d, b, ]
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Q [[a, d, b, ] ! 0])
by auto
have h2: good-linepath d ¢ ([a, d, b, c] Q [[a, d, b, c] ! 0])
using * by auto
have h3: (1:nat) < length [a, d, b, c] A (3::nat) < length [a, d, b, ]
by auto
then have polygon-split: is-polygon-split [a, d, b, ] 1 3
using good-linepath-implies-polygon-split| OF polygon-new h1 h2 h3] by auto
let ?p1 = make-polygonal-path (d # [b] Q [c, d])
let ?p2 = make-polygonal-path ([a] @ [d, ¢] Q [] @Q [[a, d, b, c] ! 0])
let 211 = card {z. integral-vec x A x € path-inside ?p1}
let Bl = card {z. integral-vec x A z € path-image ?p1}
let 212 = card {z. integral-vec x A z € path-inside ?p2}
let ?B2 = card {x. integral-vec x A z € path-image ?p2}
have pli-triangle: ?p1 = make-triangle d b c
unfolding make-triangle-def by auto
have p2-triangle: ?p2 = make-triangle a d c
unfolding make-triangle-def by auto
have I-is: I = card {z. integral-vec z A x € path-inside (make-polygonal-path [a,
d, b, ¢, a])}
using path-image-linepath-splitjof 0 [a, b, ¢, a] d] * assms path-inside-def
integral-inside by presburger
have B-is: B = card {z. integral-vec x N\ = € path-image (make-polygonal-path
(6, d, b, ¢, a))}
using path-image-linepath-split[of 0 [a, b, ¢, a] d]
using * assms path-inside-def integral-boundary by presburger
have all-integral-assump: all-integral [a, d, b, ]
using assms unfolding all-integral-def pick-triangle by force

have dist-indhl1: distinct [d, b, c]
using assms unfolding pick-triangle by auto
have coll-indh1: — collinear {d, b, c}
using assms pick-triangle
by (smt (verit) collinear-3-trans dist-indhl distinct-length-2-or-more in-path-image-imp-collinear
insert-commute)
have path-inside-inside: path-inside (make-polygonal-path (d # [b] Q [e, d])) C
path-inside p
using polygon-split unfolding is-polygon-split-def
by (smt (23) * One-nat-def Un-iff append-Cons append-Nil diff-Suc-1 drop0
drop-Suc-Cons nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-inside-def subsetl take-Suc-Cons
take-eq-Nil2)
then have indhi-cardl: card {z. integral-vec x A x € path-inside (make-polygonal-path
(d # [b] Q [c, d])}< card {z. integral-vec x N\ = € path-inside p}
by (metis (no-types, lifting) assms(4) integral-inside Collect-empty-eq card.empty
le-zero-eq subsetD)
have indhi1-card2: card {z. integral-vec z N\ x € path-image (make-polygonal-path
(d # [b] Q [c, d]))} < card {z. integral-vec © N\ x € path-image p}
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proof—
have path-image-union: path-image (make-polygonal-path (d # [b] @ [c, d])) =
path-image (linepath d b) U path-image (linepath b ¢) U path-image (linepath ¢ d)
using path-image-cons-union pl-triangle make-triangle-def
by (metis (no-types, lifting) inf-sup-aci(6) list.discI make-polygonal-path.simps(3)
nth-Cons-0)
have path-image-db: path-image (linepath d b) C path-image p
by (metis assms(5) list.discI nth-Cons-0 path-image-cons-union path-image-linepath-union
polygon-of polygon-of-def sup.cobounded?2 sup.coboundedI1)
have path-image-be: path-image (linepath b ¢) C path-image p
using assms(1) linepaths-subset-make-polygonal-path-imagelof [a, b, ¢, a] 1]
unfolding pick-triangle make-triangle-def
by simp
have path-image-cdl: path-image (linepath ¢ d) — {¢, d} C path-inside p
using polygon-split unfolding is-polygon-split-def
by (smt (23) One-nat-def <good-linepath ¢ d [a, d, b, ¢, a] A path-image
(make-polygonal-path [a, d, b, ¢, a]) = path-image p> append-Cons append-Nil in-
sert-commute nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-image-linepath path-inside-def
segment-convez-hull sup.cobounded?)
have path-image-cd2: {c, d} C path-image p
using linepaths-subset-make-polygonal-path-image assms(1) unfolding pick-triangle
make-triangle-def
by (metis (no-types, lifting) <good-linepath ¢ d [a, d, b, ¢, a] A path-image
(make-polygonal-path [a, d, b, ¢, a]) = path-image p> good-linepath-def subset-trans
vertices-on-path-image)
have path-image (linepath ¢ d) C path-image p U path-inside p
using path-image-cd1 path-image-cd2 by auto
moreover have integral-inside p = {} using assms by force
ultimately have path-image-cd: integral-boundary (linepath ¢ d) C inte-
gral-boundary p unfolding integral-inside integral-boundary by blast
have a-neg-d: a # d
using assms(d) by auto
have a-neg-c: a # ¢
using assms(1) unfolding pick-triangle by simp
have a-in-image: a € path-image p
using assms(1) unfolding pick-triangle make-triangle-def using vertices-on-path-image
by fastforce
have path-image (linepath ¢ d) N path-image p = {c, d}
using * unfolding good-linepath-def
by (smt (verit, ccfv-SIG) One-nat-def h1 insert-commute is-polygon-cut-def
is-polygon-split-def nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-image-linepath
polygon-split segment-conver-hull)
then have a-not-inl: a ¢ path-image (linepath c d)
using a-neg-c a-neq-d a-in-image by blast
have a-not-in2: a ¢ path-image (linepath d b)
using Int-closed-segment assms(5) by auto
have a-not-in3: a ¢ path-image (linepath b c)
by (metis (no-types, lifting) assms(1) in-path-image-imp-collinear insert-commute
pick-triangle)
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then have a ¢ path-image (linepath d b) U path-image (linepath b ¢) U
path-image (linepath ¢ d)
using a-not-inl a-not-in2 a-not-in3 by simp
then have a € integral-boundary p A a ¢ integral-boundary (make-polygonal-path
[d, b, ¢, d])
using path-image-union using integral-boundary a-in-image all-integral-assump
all-integral-def by auto
then have strict-subset: integral-boundary (make-polygonal-path [d, b, ¢, d]) C
integral-boundary p
using path-image-union path-image-db path-image-bc path-image-cd
unfolding integral-boundary by auto
have integral-inside (make-polygonal-path [d, b, ¢, d]) = {}
using path-inside-inside assms unfolding integral-inside by auto
then show ?%thesis using assms(2—3) strict-subset bounded-finite
using finite-path-inside finite-path-image
by (simp add: integral-boundary polygon-p psubset-card-mono)
qed
have fewer-points-p1: card {z. integral-vec z A\ x € path-inside (make-polygonal-path
(d # [b] @ [c, d]))} +
card {z. integral-vec x N\ x € path-image (make-polygonal-path (d # [b] Q [c,
d]))}
< card {z. integral-vec x N\ x € path-inside p} +
card {x. integral-vec x N\ x € path-image p}
using indhi-card! indhl-card2 by linarith
have indh-1: Sigma-Algebra.measure lebesque (path-inside ?p1) = real 11 + real
%B1 | 2 — 1
using assms fewer-points-p1 p1-triangle all-integral-assump dist-indhl1 coll-indh1
all-integral-def
unfolding pick-holds pick-triangle integral-inside integral-boundary by simp

have dist-indh2: distinct [a, d, c]
using assms unfolding pick-triangle by auto
have coll-indh2: = collinear {a, d, c}
using assms pick-triangle
by (smt (verit) collinear-3-trans dist-indh2 distinct-length-2-or-more in-path-image-imp-collinear
insert-commute)
have path-inside-inside: path-inside (make-polygonal-path (a # [d] Q [c, a])) C
path-inside p
using polygon-split unfolding is-polygon-split-def
by (smt (23) * One-nat-def Un-iff append-Cons append-Nil diff-Suc-1 drop0
drop-Suc-Cons nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-inside-def subsetl take-Suc-Cons
take-eq-Nil2)
then have indh2-cardl: card {z. integral-vec x N\ x € path-inside (make-polygonal-path
(a # [d] Q [c, a]))}< card {x. integral-vec x A © € path-inside p}
by (metis (no-types, lifting) assms(4) integral-inside Collect-empty-eq card.empty
le-zero-eq subsetD)
have indh2-card2: card {z. integral-vec z \ x € path-image (make-polygonal-path
(a # [d] Q [e, a]))} < card {z. integral-vec N\ x € path-image p}
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proof—
have path-image-union: path-image (make-polygonal-path (a # [d] Q [c, a])) =
path-image (linepath a d) U path-image (linepath d ¢) U path-image (linepath ¢ a)
using path-image-cons-union p2-triangle make-triangle-def
by (metis Un-assoc append.left-neutral append-Cons list.discI make-polygonal-path.simps(3)
nth-Cons-0)
have path-image-ad: path-image (linepath o d) C path-image p
by (metis <good-linepath ¢ d [a, d, b, ¢, a] A\ path-image (make-polygonal-path
la, d, b, ¢, a]) = path-image ps inf-sup-absord le-iff-inf list.discI nth-Cons-0 path-image-cons-union)
have path-image-ca: path-image (linepath ¢ a) C path-image p
using assms(1) linepaths-subset-make-polygonal-path-image[of [a, b, ¢, a] 2]
unfolding pick-triangle make-triangle-def
by simp
have path-image-cdl: path-image (linepath d ¢) — {e¢, d} C path-inside p
using polygon-split unfolding is-polygon-split-def
by (smt (23) One-nat-def <good-linepath ¢ d [a, d, b, ¢, a] N\ path-image
(make-polygonal-path [a, d, b, ¢, a]) = path-image p> append-Cons append-Nil in-
sert-commute nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-image-linepath path-inside-def
segment-convez-hull sup.cobounded?)
have path-image-cd2: {c, d} C path-image p
using linepaths-subset-make-polygonal-path-image assms(1) unfolding pick-triangle
make-triangle-def
by (metis (no-types, lifting) <good-linepath ¢ d [a, d, b, ¢, a] A path-image
(make-polygonal-path [a, d, b, ¢, a]) = path-image p> good-linepath-def subset-trans
vertices-on-path-image)
have path-image (linepath d ¢) C path-image p U path-inside p
using path-image-cd1 path-image-cd2 by auto
moreover have integral-inside p = {} using assms by force
ultimately have path-image-cd: integral-boundary (linepath d c¢) C inte-
gral-boundary p unfolding integral-inside integral-boundary by blast
have b-neg-d: b # d
using assms(5) by auto
have b-neg-c: b # ¢
using assms(1) unfolding pick-triangle by simp
have b-in-image: b € path-image p
using assms(1) unfolding pick-triangle make-triangle-def using vertices-on-path-image
by fastforce
have path-image (linepath d ¢) N path-image p = {d, c}
using * unfolding good-linepath-def
by (smt (verit, ccfo-SIG) One-nat-def h1 insert-commute is-polygon-cut-def
is-polygon-split-def nth-Cons-0 nth-Cons-Suc numeral-3-eq-8 path-image-linepath
polygon-split segment-convex-hull)
then have b-not-in1: b ¢ path-image (linepath d c)
using b-neq-c b-neq-d b-in-image by blast
have b-not-in2: b ¢ path-image (linepath a d)
using Int-closed-segment assms(5) by auto
have b-not-in3: b ¢ path-image (linepath c a)
by (metis (no-types, lifting) assms(1) in-path-image-imp-collinear insert-commute
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pick-triangle)
then have b ¢ path-image (linepath a d) U path-image (linepath d c¢) U
path-image (linepath ¢ a)
using b-not-inl b-not-in2 b-not-in3 by simp
then have b € integral-boundary p A b ¢ integral-boundary (make-polygonal-path
[a, d, ¢, a])
using path-image-union using integral-boundary b-in-image all-integral-assump
all-integral-def by auto
then have strict-subset: integral-boundary (make-polygonal-path [a, d, ¢, a]) C
integral-boundary p
using path-image-union path-image-ad path-image-ca path-image-cd
unfolding integral-boundary by auto
have integral-inside (make-polygonal-path |a, d, ¢, a]) = {}
using path-inside-inside assms unfolding integral-inside by auto
then show ?thesis using assms(2—3) strict-subset bounded-finite
using finite-path-inside finite-path-image
by (simp add: integral-boundary polygon-p psubset-card-mono)
qed
have fewer-points-p2: card {z. integral-vec x A\ x € path-inside (make-polygonal-path
(la, d, ¢, a]))} +
card {z. integral-vec © A\ x € path-image (make-polygonal-path ([a, d, ¢, a]))}
< card {z. integral-vec x N\ x € path-inside p} +
card {x. integral-vec x N\ x € path-image p}
using indh2-card! indh2-card2 by simp
have indh-2: Sigma-Algebra.measure lebesque (path-inside ?p2) = real 712 + real
?B2 | 2 — 1
using fewer-points-p2 using assms fewer-points-p2 p2-triangle all-integral-assump
dist-indh2 coll-indh2 all-integral-def
unfolding pick-holds pick-triangle integral-inside integral-boundary by simp

have Sigma-Algebra.measure lebesgue (path-inside ?p1) = real 2?11 + real ?B1 /
2 —-1=
Sigma-Algebra.measure lebesgue (path-inside ?p2) = real ?I2 + real ?B2 | 2
-1 =
I = card {z. integral-vec x N\ x € path-inside (make-polygonal-path [a, d, b, c,
al)} =
B = card {x. integral-vec © A x € path-image (make-polygonal-path [a, d, b,
¢, a))} =
all-integral [a, d, b, ¢] =
Sigma-Algebra.measure lebesque (path-inside (make-polygonal-path [a, d, b, c,
al)) =
real I + real B | 2 — 1
using pick-split-union| OF polygon-split, of [a] [b] [| d ¢ ?p’] by auto
then have Sigma-Algebra.measure lebesgue (path-inside (make-polygonal-path [a,
d, b, ¢, a])) =
real I + real B/ 2 — 1
using I-is B-is all-integral-assump indh-1 indh-2 by auto
thus measure lebesgque (path-inside p) =1 + B/2 — 1
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using path-image-linepath-split[of 0 [a, b, ¢, a] d] by (metis path-inside-def *)
qed

lemma pick-triangle-helper:
assumes pick-triangle p a b ¢ and
I = card (integral-inside p) and
B = card (integral-boundary p) and
integral-inside p = {} and
integral-vec d A d ¢ {a, b, ¢} and d ¢ {a, b, ¢} and
d € path-image (linepath a b)
V d € path-image (linepath b c)
V d € path-image (linepath ¢ a) and
ih: Ap' a’ b’ ¢’. (card (integral-inside p") + card (integral-boundary p’) <
I + B) = pick-triangle p' a’ b’ ¢/ = pick-holds p’
shows measure lebesgue (path-inside p) = I + B/2 — 1
proof—
{ assume d € path-image (linepath a b)
then have ?thesis using pick-triangle-wlog-helper assms by blast
} moreover
{ assume *: d € path-image (linepath b c)
let ?p’ = make-polygonal-path (rotate-polygon-vertices [a, b, ¢, a] 1)
let 21’ = card (integral-inside ?p’)
let ?B’ = card (integral-boundary %p’)

have p’-p: path-image ?p’ = path-image p N path-inside ?p’ = path-inside p
unfolding path-inside-def
using assms(1) make-triangle-def pick-triangle polygon-vts-arb-rotation trian-
gle-is-polygon
by auto

have rotate-polygon-vertices [a, b, ¢, a] 1 = [b, ¢, a, b
unfolding rotate-polygon-vertices-def by simp
then have pick-triangle-p”: pick-triangle ?p’ b c a
using assms unfolding pick-triangle
by (smt (verit, best) all-integral-def distinct-length-2-or-more insert-commute
list.simps(15) make-triangle-def)
then have measure lebesgue (path-inside ?p’) = ?1' + ?B'/2 — 1
using pick-triangle-wlog-helper[of ?p’ b ¢ a 21’ ?B’ d] assms
using integral-boundary integral-inside x insert-commute pick-triangle-p’ p'-p
by auto
moreover have ?I'= I N\ ?B’ = B using p’-p integral-boundary integral-inside
assms(2) assms(3) by presburger
ultimately have ?thesis using p’-p by auto
} moreover
{ assume x: d € path-image (linepath ¢ a)
let ?p’ = make-polygonal-path (rotate-polygon-vertices [a, b, ¢, a] 2)
let 21’ = card (integral-inside ?p’)
let ?B’ = card (integral-boundary ?p’)
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have p’-p: path-image ?p’ = path-image p A path-inside ?p’ = path-inside p
unfolding path-inside-def
using assms(1) make-triangle-def pick-triangle polygon-vts-arb-rotation trian-
gle-is-polygon

by auto
have rotate-polygon-vertices [a, b, ¢, a] 1 = [b, ¢, a, b
unfolding rotate-polygon-vertices-def by simp
also have rotate-polygon-vertices ... 1 = [c, a, b, ]
unfolding rotate-polygon-vertices-def by simp
ultimately have rotate-polygon-vertices [a, b, ¢, a] 2 = [c, a, b, ]

by (metis Suc-1 arb-rotation-as-single-rotation)
then have pick-triangle-p”: pick-triangle ?p’ ¢ a b
using assms unfolding pick-triangle
by (smt (verit, best) all-integral-def distinct-length-2-or-more insert-commaute
list.simps(15) make-triangle-def)
then have measure lebesgue (path-inside ?p’) = ?1' + ?B'/2 — 1
using pick-triangle-wlog-helper|of ?p’ ¢ a b 21’ ?B’ d] assms
using integral-boundary integral-inside * insert-commute pick-triangle-p’ p’-p
by auto
moreover have ?I'= I A 7B’ = B using p’-p integral-boundary integral-inside
assms(2) assms(3) by presburger
ultimately have ?thesis using p’-p by auto
}
ultimately show ¢thesis using assms by blast
qged

lemma triangle-3-split-helper:

fixes a b :: 'a::euclidean-space

assumes a € frontier S

assumes b € interior S

assumes conver S

assumes closed S

shows path-image (linepath a b) N frontier S = {a}
proof—

let ?L = path-image (linepath a b)

have a € S A b € S using assms frontier-subset-closed interior-subset by auto

then have 2L C S

using assms hull-minimal segment-convez-hull by (simp add: closed-segment-subset)

then have 7L C closure S using assms(4) by auto

moreover have convex ?L by simp

moreover have ?L N interior S # {} using assms(2) by auto

moreover then have — ?L C rel-frontier S

by (metis Diff E assms(2) interior-subset-rel-interior pathfinish-in-path-image

pathfinish-linepath rel-frontier-def subsetD)

ultimately have rel-interior ?L C rel-interior S

using subset-rel-interior-convex|[of ?L S] assms by fastforce
then have open-segment a b C interior S
by (metis all-not-in-conv assms(2) empty-subsetl open-segment-eq-empty’ path-image-linepath
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rel-interior-closed-segment rel-interior-nonempty-interior)
moreover have ?L = closed-segment a b by auto
moreover have interior S N frontier S = {} by (simp add: frontier-def)
ultimately have ?L N frontier S C {a, b}
by (smt (verit) Diff-iff disjoint-iff inf-commute inf-lel open-segment-def subsetD
subsetl)
moreover have b ¢ frontier S by (simp add: assms(2) frontier-def)
ultimately show ?thesis using assms(1) by auto
qed

lemma unit-triangle-interior-point-not-collinear-el-e2:
assumes p = make-triangle (vector [0, 0]) (vector [1, 0]) (vector [0, 1])
(is p = make-triangle 70 %el ?e2)
assumes z € path-inside p
shows — collinear {?0, ?el, z}
proof—
have path-inside p = interior (convex hull {?0, ?el, ?e2})
by (metis assms(1) bounded-convez-hull bounded-empty bounded-insert con-
vez-convex-hull convex-polygon-frontier-is-path-image2 inside-frontier-eg-interior path-inside-def
triangle-convex-hull triangle-is-convex triangle-is-polygon unit-triangle-vts-not-collinear)
then have z € interior (convexr hull {?0, ?el, ?e2}) using assms by simp
then have z: 281 > 0 A 282 > 0
using assms(1) assms(2) unit-triangle-interior-char make-triangle-def by blast
have abc: 2081 = 0 A 2082 = 0 A 2e1832 = 0 A ?e2%81 = 0 by simp

show — collinear {20, %el, z}
proof (rule ccontr)
assume — - collinear {?0, ?el, z}
then have x: collinear {70, %el, z} by blast
then obtain u ¢! ¢2 where u: 70 — %el = ¢l xgr u N\ %el — 2z = ¢c2 *g u
unfolding collinear-def by blast
moreover have c! # 0
proof—
have (?0 — %e1)$1 = —1 by simp
moreover have (70 — %e1)$1 = (c1 *p u)$1 using u by presburger
ultimately show ?thesis by force
qged
moreover have (Y0 — %¢1)$2 = 0 by simp
moreover have (70 — 2¢1)$2 = (c1 *g w)$2 by (simp add: calculation(1))
ultimately have u$2 = 0 by auto
thus Fualse
by (smt (verit, ccfv-threshold) u abc scaleR-eq-0-iff vector-minus-component
vector-scaleR-component 2)
qed
qed

2
2

lemma triangle-interior-point-not-collinear-vertices-wlog-helper:
assumes p = make-triangle a b c
assumes polygon p
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assumes 2z € path-inside p
shows — collinear {a, b, 2}
proof—
let 20 = (vector [0, 0])::(real™2)
let el = (vector [1, 0])::(real”2)
let %e2 = (vector [0, 1])::(real™2)
let ?M = triangle-affine a b ¢
have a: ?M 20 = a
using triangle-affine-el-e2 by blast
have b: ?M ?el = b using triangle-affine-el-e2 by simp
have c: ?M ?e2 = c using triangle-affine-e1-e2 by simp

have abc-not-collinear: — collinear {a, b, c}
using assms polygon-vts-not-collinear unfolding make-triangle-def polygon-of-def

by (metis (no-types, lifting) empty-set insertCI insert-absorb insert-commute
list.simps(15))

have convex hull {a, b, ¢} = convex hull {?M 20, ?M %el, ?M ?e2}
using a b ¢ by simp

also have ... = ?M ‘ (convex hull {70, %el, ?e2})
using calculation triangle-affine-img by blast
also have interior-preserve: interior ... = ¢M * (interior (convex hull {20, ?el,
7e2}))
using triangle-affine-preserves-interior[of ?M a b ¢ - convex hull {?0, %el,
?e2}]

using abc-not-collinear
by presburger
finally have 2: z € ?M  (interior (convex hull {20, ?el, ?e2}))
using assms(1) assms(2) assms(3) make-triangle-def polygon-of-def trian-
gle-inside-is-convex-hull-interior
by auto
then obtain 2z’ where 2" 2’ € interior (conver hull {?0, %el, ?e2}) N ?M 2’
= z by fast
then have — collinear {20, ?el, 2'}
by (metis convez-convez-hull convez-polygon-frontier-is-path-image?2 finite.intros(1)
finite-imp-bounded-convex-hull finite-insert inside-frontier-eq-interior path-inside-def
triangle-convez-hull triangle-is-convex triangle-is-polygon unit-triangle-interior-point-not-collinear-el-e2
unit-triangle-vts-not-collinear)
then have z'-notin: z' ¢ affine hull {?0, ?el} using affine-hull-3-imp-collinear
by blast
then have ?M 2’ ¢ affine hull {?M 2?0, ?M ?el}
proof—
have inj ?M using triangle-affine-inj abc-not-collinear by blast
then have ?M 2’ ¢ ?M ‘ (affine hull {20, ?el}) using z’-notin by (simp add:
inj-image-mem-iff )
moreover have ?M ‘ (affine hull {20, %el}) = affine hull {?M 20, ?M ?2el}
using triangle-affine-preserves-affine-hull[of - a b c| abc-not-collinear by simp
ultimately show ?thesis by blast
qed
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then have z ¢ affine hull {a, b} using a b 2’ by argo

thus ?thesis

by (metis interior-preserve z affine-hull-convez-hull affine-hull-nonempty-interior
collinear-2 collinear-3-affine-hull collinear-affine-hull-collinear empty-iff insert-absorb2
triangle-affine-img unit-triangle-vts-not-collinear 2')
qed

lemma triangle-interior-point-not-collinear-vertices:
assumes p = make-triangle a b ¢
assumes polygon p
assumes z € path-inside p
shows - collinear {a, b, z} N = collinear {a, ¢, z} N\ = collinear {b, ¢, z}
proof—
let ?p1 = make-triangle b ¢ a
let ?p2 = make-triangle c a b
have p1: ?pl = make-polygonal-path (rotate-polygon-vertices [a, b, ¢, a] 1)
using assms unfolding make-triangle-def rotate-polygon-vertices-def by fast-
force
have p2: ?p2 = make-polygonal-path (rotate-polygon-vertices [a, b, ¢, a] 2)
using assms unfolding make-triangle-def rotate-polygon-vertices-def by (simp
add: numeral-Bit0)

have path-inside ?p1 = path-inside p N\ path-inside ?p2 = path-inside p
using p! p2 unfolding path-inside-def
using assms(1) assms(2) make-triangle-def polygon-vts-arb-rotation by force
then have z € path-inside ?p1 A z € path-inside ?p2 using assms by force
moreover have polygon ?p1 A polygon ?p2
using assms make-triangle-def p1 p2 rotation-is-polygon by presburger
ultimately show ?thesis
using assms triangle-interior-point-not-collinear-vertices-wlog-helper
by (smt (verit, best) insert-commute)
qed

lemma triangle-3-split:
assumes p = make-triangle a b ¢
assumes polygon p
assumes z € path-inside p
shows is-polygon-split-path [a, b, c] 0 1 [7]
is-polygon-split [a, z, b, c] 1 3
a ¢ path-image (make-triangle z b ¢) U path-inside (make-triangle z b c)
b ¢ path-image (make-triangle a z ¢) U path-inside (make-triangle a z c)
¢ ¢ path-image (make-triangle a b z) U path-inside (make-triangle a b z)
proof—
let ?q = make-polygonal-path [a, z, b, ¢, a]
let Zcutpath = make-polygonal-path [a, z, b
let ?vts = [a, b, ¢, a)

—~ o~

let ?l1 = linepath a z
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let ?12 = linepath z b
let 9S = path-inside p U path-image p
have convex (path-inside p)
using triangle-is-convex assms(1,2) polygon-vts-not-collinear unfolding make-triangle-def
by (simp add: polygon-of-def triangle-inside-is-convex-hull-interior)
then have convex: conver (path-inside p U path-image p)
using polygon-convez-iff assms(2) by simp
then have frontier: frontier 2S = path-image p
using convez-polygon-frontier-is-path-image3 by (simp add: assms(2) sup-commute)
have interior: interior 2S5 = path-inside p
by (metis Jordan-inside-outside-real2 closed-path-def <convex (path-inside p)»
assms(2) closure-Un-frontier convex-interior-closure interior-open path-inside-def

polygon-def)

have not-collinear: — collinear {a, b, z} N = collinear {a, ¢, z} N = collinear
{b, ¢, z}

using triangle-interior-point-not-collinear-vertices assms(1) assms(2) assms(3)
by blast

have a = pathstart ?cutpath A b = pathfinish ?cutpath by simp
moreover have a # b
by (metis assms(1) assms(2) constant-linepath-is-not-loop-free make-polygonal-path.simps(4)
make-triangle-def not-loop-free-first-component polygon-def simple-path-def)
moreover have polygon p by (simp add: assms(2))
moreover have {a, b} C set ?vts by force
moreover have simple-path ?cutpath
by (simp add: insert-commute not-collinear not-collinear-loopfree-path sim-
ple-path-def)
moreover have path-image ?cutpath N path-image p = {a, b}
proof—
have {a, b} C path-image ?cutpath N path-image p
by (metis (no-types, lifting) Int-subset-iff Un-subset-iff assms(1) insert-is-Un
list.simps(15) make-triangle-def vertices-on-path-image)
moreover have path-image ?cutpath N path-image p C {a, b}
proof—
have z € interior S using assms interior by fast
moreover then have a € frontier 25 A b € frontier 25
using vertices-on-path-image
using «{a, b} C path-image (make-polygonal-path [a, z, b]) N path-image p»
frontier by force
moreover have closed ¢S using frontier frontier-subset-eq by auto
ultimately have path-image ?11 N path-image p = {a} A path-image ?12 N
path-image p = {b}
using triangle-3-split-helper convex frontier
by (metis (no-types, lifting) insert-commute path-image-linepath segment-convez-hull)
moreover have path-image ?cutpath = path-image ?11 U path-image ?12
by (metis list.discI make-polygonal-path.simps(3) nth-Cons-0 path-image-cons-union)
ultimately show ?thesis by blast
qed
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ultimately show ¢thesis by blast
qed
moreover have path-image ?cutpath N path-inside p # {}
by (metis (no-types, opaque-lifting) Int-Un-distrib2 Un-absorb2 Un-empty assms(3)
insert-disjoint(2) list.simps(15) vertices-on-path-image)
ultimately have cutpath: is-polygon-cut-path ?vts ?cutpath
using assms unfolding make-triangle-def is-polygon-cut-path-def by simp
thus 1: is-polygon-split-path [a, b, c] 0 1 [Z]
using polygon-cut-path-to-split-path assms(2) by (simp add: assms(1,2) make-triangle-def)

let 2] = linepath z c
let %vts = [a, 2, b, ¢, a

have c-noton-cutpath: ¢ ¢ path-image ?cutpath
by (smt (verit) UnE assms(1) assms(2) assms(8) in-path-image-imp-collinear
insert-commaute make-polygonal-path.simps(3) neq-Nil-conv nth-Cons-0 path-image-cons-union
triangle-interior-point-not-collinear-vertices)

have z # ¢
proof—
have ¢ € path-image p
by (metis assms(1) insert-subset list.simps(15) make-triangle-def vertices-on-path-image)
moreover have path-image p N path-inside p = {}
by (simp add: disjoint-iff inside-def path-inside-def)
ultimately show ?thesis using assms(3) by blast
qged
moreover have polygon-q: polygon ?q
using 1 unfolding is-polygon-split-path-def

by (smt (23) One-nat-def append-Cons append-Nil diff-self-eq-0 drop0 drop-append
length-Cons length-drop length-greater-0-conv list.size(8) nth-Cons-0 nth-Cons-Suc
take-0)
moreover have {z, ¢} C set ?vts by force
moreover have [-g-int: path-image 21 N path-image ?q = {z, ¢}
proof—
have {z, ¢} C path-image ?l N path-image ?q
by (metis (no-types, lifting) Int-subset-iff calculation(3) dual-order.trans
hull-subset path-image-linepath segment-convex-hull vertices-on-path-image)
moreover
{ fix z
assume x: T € path-image ?l N path-image ?q N © # 2 N x # ¢
then have z € path-image ?q by blast
then have z € path-image (linepath a 2)
V x € path-image (linepath z b)
V z € path-image (linepath b c)
V x € path-image (linepath c a)
by (metis UnkE list.discI make-polygonal-path.simps(3) nth-Cons-0 path-image-cons-union)
moreover
{ assume z € path-image (linepath a z)
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then have z € path-image (linepath a z) A x € path-image (linepath z c)
using * by blast
moreover have z € path-image (linepath a z) A z € path-image (linepath z
¢) by simp
moreover have z # z using * by blast
ultimately have collinear {a, z, c}
by (smt (verit, best) collinear-3-trans in-path-image-imp-collinear in-
sert-commute)
then have Fulse using not-collinear by (simp add: insert-commute)
} moreover
{ assume z € path-image (linepath z b)
then have z € path-image (linepath z b) A x € path-image (linepath z c)
using x by blast
moreover have z € path-image (linepath z b) A z € path-image (linepath z
¢) by simp
moreover have z # z using * by blast
ultimately have collinear {z, b, ¢}
by (smt (verit, best) collinear-3-trans in-path-image-imp-collinear in-
sert-commute)
then have Fulse using not-collinear by (simp add: insert-commute)
} moreover
{ assume z € path-image (linepath b c)
then have z € path-image (linepath b ¢) N x € path-image (linepath z c)
using * by blast
moreover have ¢ € path-image (linepath b ¢) A z € path-image (linepath z
¢) by simp
moreover have z # ¢ using * by blast
ultimately have collinear {b, z, ¢}
by (smt (verit, best) collinear-3-trans in-path-image-imp-collinear in-
sert-commute)
then have Fulse using not-collinear by (simp add: insert-commute)
} moreover
{ assume z € path-image (linepath c a)
then have z € path-image (linepath ¢ a) N\ © € path-image (linepath z c)
using * by blast
moreover have ¢ € path-image (linepath ¢ a) A z € path-image (linepath z
¢) by simp
moreover have z # ¢ using *x by blast
ultimately have collinear {a, z, c}
by (smt (verit, best) collinear-3-trans in-path-image-imp-collinear in-
sert-commute)
then have Fulse using not-collinear by (simp add: insert-commute)

ultimately have Fulse by blast
}
ultimately show ?thesis by blast
qed
moreover have path-image ?l N path-inside ?q # {}
proof (rule ccontr)
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let ?p’ = make-triangle a b z

assume — path-image ?1 N path-inside 2q # {}

then have path-image 2l N path-inside ?q = {} by blast

then have x: rel-interior (path-image ?1) N path-inside ?q = {}
by (meson disjoint-iff rel-interior-subset subset-eq)

have path-image ?l C path-image p U path-inside p
by (metis UnCI assms(1) assms(3) empty-subset] hull-minimal insert-subset
list.simps(15) local.convex make-triangle-def path-image-linepath segment-convex-hull
sup-commute vertices-on-path-image)
then have path-image 21 C convexr hull {a, b, ¢}
by (smt (verit, best) assms(1) convex-polygon-is-convez-hull cutpath empty-set
insertCI insert-absorb insert-commute is-polygon-cut-path-def list.simps(15) local.convex
make-triangle-def sup-commute)
then have rel-interior (path-image ?1) C interior (convex hull {a, b, c})
by (smt (verit, ccfo-threshold) Diff-disjoint IntE IntI Un-upperl assms(1)
assms(2) assms(3) calculation(4) closure-Un-frontier convex-polygon-is-convex-hull
convez-segment(1) dual-order.trans empty-iff empty-set insertCI insert-absorb2 in-
sert-commute interior list.simps(15) local.convex make-triangle-def path-image-linepath
rel-frontier-def rel-interior-nonempty-interior subsetD subset-rel-interior-conver)
then have rel-interior: rel-interior (path-image ?1) C path-inside p
by (smt (verit, best) assms(1) convex-polygon-is-convezr-hull cutpath empty-set
insertCI insert-absorb insert-commute interior is-polygon-cut-path-def list.simps(15)
local.convex make-triangle-def)

have (let vts1 = []; vts2 = [];
vtsd = [c]; = a; y = b;
cutpath = ?cutpath; p = make-polygonal-path ([a, b, c] Q [[a, b, c] ! 0]);
pl = make-polygonal-path (x # vts2 Q [y] Q rev [z] @ [z]);
p2 = make-polygonal-path (vts1 Q ([z] Q [2] Q [y]) @ wvEs3 Q [[a, b, ] !

0]);
¢l = make-polygonal-path (z # vts2 Q [y]); ¢2 = make-polygonal-path
(vts1 @ ([z] @ [z] @ [y]) @ vts3)
in is-polygon-cut-path ([a, b, c] Q [[a, b, c] ! 0]) Zcutpath A
polygon p A
polygon p1 A
polygon p2 A
path-inside pI N path-inside p2 = {} A
path-inside pl1 U path-inside p2 U (path-image cutpath — {z, y}) =
path-inside p N
(path-image pl — path-image cutpath) N (path-image p2 — path-image
Zcutpath) = {} A
path-image p = path-image pl — path-image ?cutpath U (path-image p2 —
path-image ?cutpath) U {z, y})
using 1 unfolding is-polygon-split-path-def by fastforce
then have (let
p = make-polygonal-path ([a, b, c] @ [[a, b, c] ! 0]);
pl = make-polygonal-path (a # [] @Q [b] Q rev [2] Q [a]);
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p2 = make-polygonal-path ([] @ ([a] Q [2] Q [b]) @ [¢] @Q [[a, b, ] ! 0])
in path-inside p1 U path-inside p2 U (path-image ?cutpath — {a, b}) =
path-inside p
A (path-image p1 — path-image ?cutpath) N (path-image p2 — path-image
Zcutpath) = {})
by meson
moreover have ?q = make-polygonal-path ([] @ ([a] @ [2] @ [b]) @ [¢] @ [[a,
b, ] ! 0])
by simp
moreover have ?p’ = make-polygonal-path (a # [] @ [b] @ rev [2] Q [a])
unfolding make-triangle-def by simp
moreover have p = make-polygonal-path ([a, b, ¢] Q [[a, b, ] ! 0])
unfolding assms make-triangle-def by auto
ultimately have path-inside-p: path-inside ?p’
U path-inside ?q
U (path-image ?cutpath — {a, b}) = path-inside p
A (path-image ?p’ — path-image ?cutpath) N (path-image ?q — path-image
Zcutpath) = {}
using 1 unfolding make-triangle-def is-polygon-split-path-def by metis
moreover have a € path-image ?cutpath A\ a ¢ path-inside ?p’ U path-inside
?q
by (metis (no-types, lifting) Unll <a = pathstart (make-polygonal-path
[a, 2z, b]) A b = pathfinish (make-polygonal-path [a, z, b])> assms(1) assms(2)
collinear-2 insert-absorb?2 insert-commute path-inside-p pathstart-in-path-image tri-
angle-interior-point-not-collinear-vertices-wlog-helper)
moreover have b € path-image ?cutpath A b & path-inside ?p’ U path-inside
?q
by (metis Unll <a = pathstart (make-polygonal-path [a, z, b]) A b = pathfin-
ish (make-polygonal-path [a, z, b])> assms(1) assms(2) collinear-2 insert-absorb2
path-inside-p pathfinish-in-path-image triangle-interior-point-not-collinear-vertices-wlog-helper)
ultimately have rel-interior (path-image ?1) C
(path-inside ?p’ — path-image ?cutpath)
U (path-image ?cutpath — {a, b})
using rel-interior * by blast
then have rel-interior (path-image ?1) C path-inside ?p’ U path-image ?cutpath
by blast
moreover have path-image ?cutpath C path-image ?p’
proof—
have path-image ?cutpath = path-image (linepath a z) U path-image (linepath
z b)
by (metis list.discI make-polygonal-path.simps(3) nth-Cons-0 path-image-cons-union)
moreover have path-image (linepath a z) = path-image (linepath z a)
A path-image (linepath z b) = path-image (linepath b 2)
by (simp add: insert-commute)
moreover have path-image (linepath z a) C path-image ?p’
A path-image (linepath b z) C path-image ?p’
unfolding make-triangle-def
by (metis Un-commute Un-upper2 list.discI nth-Cons-0 path-image-cons-union
sup.coboundedI2)
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ultimately show ?thesis by blast
qed
ultimately have rel-interior (path-image ?1) C path-inside ?p’ U path-image
?p’ by fast
then have rel-interior (path-image ?1) C convex hull {a, z, b}
unfolding make-triangle-def
by (simp add: insert-commute make-triangle-def not-collinear sup-commute
triangle-convez-hull)
then have closure (rel-interior (path-image ?1)) C closure (convezx hull {a, z,
b})
using closure-mono by blast
then have path-image 21 C convex hull {a, z, b} by (simp add: convez-closure-rel-interior)
then have c: ¢ € path-image ?p’ U path-inside ?p’
unfolding make-triangle-def
by (metis (no-types, lifting) IntE insertCI insert-commute I-q-int make-triangle-def
not-collinear subsetD triangle-conver-hull)

moreover have ¢ ¢ path-image 7p’
proof—
have ¢ € path-image ?q — path-image ?cutpath using c-noton-cutpath l-g-int
by auto
moreover have (path-image ?p’ — path-image ?cutpath) N (path-image ?q —
path-image ?cutpath) = {}
using path-inside-p by fastforce
ultimately show ?thesis by blast
qged
moreover have ¢ ¢ path-inside ?p’
by (smt (verit, ccfo-threshold) DiffI IntD1 Unl1 Unl2 path-image (make-polygonal-path
la, z, b]) N path-image p = {a, b}> <path-image (make-polygonal-path [a, z, b]) C
path-image (make-triangle a b z)» assms(1) assms(2) calculation(2) collinear-2
in-mono insert-absorb2 path-inside-p triangle-interior-point-not-collinear-vertices)
ultimately show Fulse by blast
qed
ultimately have cutpath: is-polygon-cut ?vts z c
using assms unfolding make-triangle-def is-polygon-cut-def by blast
thus 2: is-polygon-split [a, z, b, c] 1 3
using polygon-cut-to-split
by (metis One-nat-def append-Cons append-Nil diff-Suc-1 length-Cons length-greater-0-conv
lessI list.discl list.size(3) nth-Cons-0 nth-Cons-Suc numeral-3-eq-8 polygon-cut-to-split
zero-less-diff)

let ?p1 = make-triangle a z ¢
let ?p2 = make-triangle z b ¢
let ?p8 = make-triangle a b z

have (path-image ?p1 — path-image (linepath z ¢)) N (path-image ?p2 — path-image
(linepath z ¢)) = {}
using 2 unfolding make-triangle-def is-polygon-split-def
by (smt (23) Int-commute One-nat-def Suc-1 append-Cons append-Nil diff-numeral-Suc
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diff-zero drop0 drop-Suc-Cons nth-Cons-0 nth-Cons-Suc nth-Cons-numeral pred-numeral-simps(3)
take0 take-Cons-numeral take-Suc-Cons)
moreover have a ¢ path-image (linepath z ¢) A b & path-image (linepath z c)
by (metis (no-types, lifting) assms(1) assms(2) assms(3) in-path-image-imp-collinear
insert-commute triangle-interior-point-not-collinear-vertices)
moreover have a € path-image ?p1 A b € path-image ?p2
by (metis insert-subset list.simps(15) make-triangle-def vertices-on-path-image)
ultimately have a ¢ path-image ?p2 A b ¢ path-image ?p1 by auto
moreover have a ¢ path-inside ?p2 N b ¢ path-inside ?p1
proof—
have a ¢ path-inside p
by (metis (no-types, lifting) assms(1) assms(2) collinear-2 insertCI in-
sert-absorb triangle-interior-point-not-collinear-vertices)
moreover have b ¢ path-inside p
using assms(1) assms(2) triangle-interior-point-not-collinear-vertices-wlog-helper
by fastforce
moreover have path-inside ?p2 C path-inside %q
using 2 unfolding is-polygon-split-def
by (smt (28) One-nat-def UnCI append-Cons diff-Suc-1 drop0 drop-Suc-Cons
make-triangle-def nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 self-append-conv2 sub-
set] take0 take-Suc-Cons)
moreover have path-inside ?p1 C path-inside ?q
using 2 unfolding is-polygon-split-def
by (smt (23) One-nat-def Un-assoc append-Cons diff-Suc-1 drop0 drop-Suc-Cons
inf-sup-absordb le-iff-inf make-triangle-def nth-Cons-0 nth-Cons-Suc numeral-3-eq-3
self-append-conv2 sup-commute takel take-Suc-Cons)
moreover have path-inside ?q C path-inside p
using ! unfolding is-polygon-split-path-def
by (smt (23) One-nat-def Un-subset-iff Un-upperl append-Cons append-Nil
assms(1) diff-zero drop0 drop-Suc-Cons make-triangle-def nth-Cons-0 nth-Cons-Suc
take0)
ultimately show ?thesis by blast
qed
moreover show a ¢ path-image ?p2 U path-inside ?p2 using calculation by
stmp
ultimately show b ¢ path-image ?p1 U path-inside ?p1 by simp

have (path-image ?p3 — path-image ?cutpath) N (path-image ?q — path-image
Zcutpath) = {}
using 1 unfolding make-triangle-def is-polygon-split-path-def
by (smt (23) One-nat-def append-Cons append-Nil diff-self-eq-0 diff-zero drop0
drop-Suc-Cons nth-Cons-0 nth-Cons-Suc rev-singleton-conv take-0)
moreover have ¢ € path-image ?q using l-g-int by auto
ultimately have ¢ ¢ path-image ?p3 using c-noton-cutpath by blast
moreover have ¢ ¢ path-inside ?p3
proof—
have ¢ ¢ path-inside p
using assms(1) assms(2) triangle-interior-point-not-collinear-vertices by
fastforce
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moreover have path-inside ?p8 C path-inside p
using 1 unfolding is-polygon-split-path-def
by (smt (28) One-nat-def Un-assoc Un-upperl append-Cons append-Nil
assms(1) diff-Suc-Suc diff-zero make-triangle-def nth-Cons-0 nth-Cons-Suc rev-singleton-conv
take0)
ultimately show ?thesis by blast
qed
ultimately show ¢ ¢ path-image ?p3 U path-inside ?p3 by blast
qed

lemma smaller-triangle:
assumes — collinear {a, b, ¢} A = collinear {a’, b, ¢’}
assumes p = make-triangle a b ¢
assumes p’' = make-triangle a’ b’ ¢
assumes path-inside p C path-inside p’
assumes 3 d. integral-vec d A\ d € path-image p’ U path-inside p' A d ¢ path-image
p U path-inside p
shows card (integral-inside p) + card (integral-boundary p) < card (integral-inside
p’) + card (integral-boundary p’)
proof—
have simple-path p using assms unfolding make-triangle-def
using assms(2) polygon-def triangle-is-polygon by presburger
then have finite-p: finite (integral-inside p) A finite (integral-boundary p) using
assms unfolding make-triangle-def
using integral-boundary integral-inside finite-integral-points-path-image finite-integral-points-path-inside
by metis
have simple-path p’ using assms unfolding make-triangle-def
using assms(3) polygon-def triangle-is-polygon by presburger
then have finite-p”: finite (integral-inside p’) A finite (integral-boundary p') using
assms unfolding make-triangle-def
using integral-boundary integral-inside finite-integral-points-path-image finite-integral-points-path-inside
by metis

/

have polygon p using assms(1,2) triangle-is-polygon by blast
then have 1: (integral-inside p) N (integral-boundary p) = {}
unfolding integral-inside integral-boundary using inside-outside-polygon un-
folding inside-outside-def by blast

have polygon p’ using assms(1,3) triangle-is-polygon by blast
then have 2: (integral-inside p’) N (integral-boundary p’) = {}
unfolding integral-inside integral-boundary using inside-outside-polygon un-
folding inside-outside-def by blast

have path-image-subset: path-image p C path-image p’ U path-inside p’
proof—
have p-frontier: path-image p = frontier (convezr hull {a, b, c})
by (simp add: assms(1) assms(2) convex-polygon-frontier-is-path-image2 tri-
angle-convez-hull triangle-is-convez triangle-is-polygon)
have p'-frontier: path-image p’ = frontier (convex hull {a’, b', ¢'})
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by (simp add: assms(1) assms(3) convez-polygon-frontier-is-path-image2 tri-
angle-convez-hull triangle-is-convez triangle-is-polygon)

have p-interior: path-inside p = interior (convex hull {a, b, c})

by (simp add: bounded-convez-hull p-frontier inside-frontier-eq-interior path-inside-def)
have p'-interior: path-inside p’ = interior (convex hull {a’, b', ¢'})

by (simp add: bounded-convez-hull p’-frontier inside-frontier-eq-interior path-inside-def)

have interior (convezx hull {a, b, c}) C interior (convex hull {a’, b’, ¢'})
using assms p-interior p’-interior by argo
moreover have compact (convex hull {a, b, c}) A compact (conver hull {a’,
b, )
by (simp add: compact-convez-hull)
ultimately have frontier (convex hull {a, b, c})
C interior (convexr hull {a’, b, ¢'}) U frontier (convex hull {a’, b’, ¢'})
by (smt (verit, ccfu-threshold) Jordan-inside-outside-real2 closed-path-def
<polygon p”s <polygon p> assms(1) assms(2) closure-Un closure-Un-frontier clo-
sure-convex-hull finite.emptyl finite-imp-compact finite-insert p'-frontier p’-interior
p-interior path-inside-def polygon-def subset-trans sup.absorb-iff1 sup-commute tri-
angle-convez-hull)
then show ?thesis using p’-frontier p’-interior p-frontier by blast
qed

have card ((integral-inside p) U (integral-boundary p)) = card (integral-inside p)
+ card (integral-boundary p)
using 1 finite-p by (simp add: card-Un-disjoint)
moreover have card ((integral-inside p’) U (integral-boundary p’)) = card (integral-inside
p’) + card (integral-boundary p’)
using 2 finite-p’ by (simp add: card-Un-disjoint)
moreover have (integral-inside p) U (integral-boundary p) C (integral-inside p’)
U (integral-boundary p’)
using assms path-image-subset unfolding integral-inside integral-boundary by
blast
moreover then have (integral-inside p) U (integral-boundary p) C (integral-inside
p’) U (integral-boundary p’) using assms unfolding integral-inside integral-boundary
by blast
ultimately show ?thesis by (metis finite-Un finite-p’ psubset-card-mono)
qged

lemma pick-elem-triangle:

fixes p :: R-to-R2

assumes p-triangle: p = make-triangle a b ¢

assumes elem-triangle: elem-triangle a b c

assumes I = card {z. integral-vec x A = € path-inside p} and

B = card {z. integral-vec x A x € path-image p}

shows measure lebesgue (path-inside p) = I + B/2 — 1
proof —

have polygon-p: polygon p

using p-triangle triangle-is-polygon elem-triangle
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unfolding elem-triangle-def by auto

then have path-inside p N path-image p = {}
using inside-outside-polygon[of p] unfolding inside-outside-def
by auto

let ?p = polygon (make-polygonal-path [a, b, ¢, al)
have a-neg-b:a # b
using elem-triangle unfolding elem-triangle-def
by auto
have b-negq-c: b # ¢
using elem-triangle unfolding elem-triangle-def
by auto
have a-neg-c: ¢ # a
using elem-triangle unfolding elem-triangle-def
using collinear-3-eq-affine-dependent by blast

have path-image p C convezx hull {a, b, c}
using triangle-path-image-subset-convex p-triangle by auto
then have
{z. integral-vec x N x € path-image p} C {z. integral-vec x A x© € conver hull
{a, b, c}}
by auto
also have ... = {a, b, ¢}
using elem-triangle unfolding elem-triangle-def by auto
finally have {z. integral-vec A\ x € path-image p} C {a, b, ¢} .
moreover have {z. integral-vec © A = € path-image p} 2 {a, b, c}

by (smt (verit) Collect-mono-iff make-triangle-def <{z. integral-vec z A x € con-
vex hull {a, b, c}} = {a, b, c}» empty-set insert-subset list.simps(15) mem-Collect-eq
p-triangle subsetD vertices-on-path-image)
ultimately have {z. integral-vec x A x € path-image p} = {a, b, ¢} by auto
then have card-2: B = 3
using a-neg-b b-neq-c a-neq-c assms(4)
by simp

have {z. integral-vec © N = € path-inside p} = {}
proof—
have path-inside p C convex hull {a, b, c}
by (smt (verit, best) Diff-insert-absorb make-triangle-def convex-polygon-inside-is-convex-hull-interior
empty-iff empty-set insert-Diff-single insert-commute interior-subset list.simps(15)
p-triangle polygon-p elem-triangle elem-triangle-def triangle-is-convez)
then have
{z. integral-vec z N\ z € path-inside p} C {x. integral-vec x A x € convex hull
{a, b, c}}
by auto
also have ... = {q, b, ¢}
using «{z. integral-vec © A © € convex hull {a, b, c}} = {a, b, c}» by auto
finally have {z. integral-vec x A x € path-inside p} C {a, b, c} .
moreover have
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{z. integral-vec © N\ x € path-inside p} N {z. integral-vec x N = € path-image
py ={}
using <path-inside p N path-image p = {}» by auto
ultimately show ?thesis
using «{z. integral-vec © A = € path-image p} = {a, b, cp> by auto
qed
then have card-1: I = 0
using assms(3)
by (metis card.empty)

have I + B/2 — 1 =1/2
using card-1 card-2 assms
by auto
then show ?thesis
using elem-triangle-area-is-half[OF assms(2)] triangle-measure-convex-hull-measure-path-inside-same[ OF
assms(1) assms(2)]
by auto
qed

lemma pick-triangle-lemma:
fixes p :: R-to-R2
assumes p = make-triangle a b ¢ and all-integral [a, b, c] and distinct [a, b, (]
and — collinear {a, b, ¢}
I = card {z. integral-vec x N\ = € path-inside p} and
B = card {z. integral-vec x A\ x € path-image p}
shows measure lebesgue (path-inside p) = I + B/2 — 1
using assms
proof (induction card {z. integral-vec x A x € path-inside p} + card {z. integral-vec
x A z € path-image p} arbitrary: p a b ¢ I B rule:less-induct)
case less
have polygon-p: polygon p using triangle-is-polygon[OF less.prems(4)] less.prems(1)
by simp
then have polygon-of: polygon-of p [a, b, ¢, d]
unfolding polygon-of-def using less.prems(1) unfolding make-triangle-def by
auto

have convez-hull-char: convex hull {a, b, ¢} = path-inside p U path-image p
using triangle-convex-hull]OF less.prems(1) less.prems(4)] by auto
then have interior-convex-hull: {z. integral-vec x N x € path-inside p} U {x.
integral-vec x A x € path-image p} = {z € convex hull {a, b, c}. integral-vec x}
by auto
have vts-in-path-image: a € path-image p A\ b € path-image p A ¢ € path-image
p
using assms(1) unfolding make-triangle-def using vertices-on-path-image
by (metis (mono-tags, lifting) insertCI less.prems(1) list.simps(15) make-triangle-def
subset-code(1))
have integral-vts: integral-vec a A integral-vec b N integral-vec c
using less.prems(2)
by (simp add: all-integral-def)
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then have subset: {a, b, ¢} C {z. integral-vec x N = € path-image p}
using vts-in-path-image integral-vts by simp
have finite-integral-on-path-im: finite {z. integral-vec z N\ x € path-image p}
using finite-integral-points-path-image triangle-is-polygon|OF less.prems(4)]
unfolding make-triangle-def polygon-def
using less.prems(1) make-triangle-def by auto
have B-3-if: B > 3 if other-point-in-set: {x. integral-vec x A\ © € path-image p}
75 {aa b, C}
proof —
have 3d. d ¢ {a, b, ¢} N d € {z. integral-vec © A = € path-image p}
using other-point-in-set subset
by blast
then obtain d where d-prop: d ¢ {a, b, ¢} A d € {x. integral-vec x N © €
path-image p}
by auto
then have subset2: {a, b, ¢, d} C{z. integral-vec x A x € path-image p}
using d-prop subset by auto
have distinct [a, b, ¢, d]
using d-prop
using less.prems(8) by auto
then have card-is: card {a, b, ¢, d} = 4
by simp
show ?thesis using subset2 card-is finite-integral-on-path-im
by (metis (no-types, lifting) Suc-le-eq card-mono eval-nat-numeral(2) less.prems(6)
semiring-norm(26) semiring-norm(27))
qged
{ assume x: [ = 0
have finite {z. integral-vec x N\ z € path-inside p}
using finite-integral-points-path-inside triangle-is-polygon[OF less.prems(4)]
unfolding make-triangle-def
by (simp add: less.prems(1) make-triangle-def polygon-def)
then have empty-inside: {z. integral-vec © A = € path-inside p} = {}
using * less.prems(5) by auto

{ assume *x: B = 3
have {z € convex hull {a, b, c}. integral-vec z} = {a, b, c}
using * xx less.prems(5—06) B-3-if interior-convex-hull empty-inside
by blast
then have elem-triangle a b ¢
unfolding elem-triangle-def using less.prems(4) integral-vts by simp
then have measure lebesgue (path-inside p) =1 + B/2 — 1
using pick-elem-triangle less.prems by auto
}

moreover
{ assume *: B > &
then obtain d where d: integral-vec d A d € path-image p A d ¢ {a, b, c}
by (smt (verit, del-insts) subset finite-integral-on-path-im less.prems(3)
card-3-iff collinear-3-eq-affine-dependent less.prems(4) less.prems(6) less-not-refl
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mem-Collect-eq subsetl subset-antisym)
have path-image (make-polygonal-path [a, b, ¢, a]) = path-image (linepath a
b) U path-image (linepath b ¢) U path-image (linepath c a)
by (metis (no-types, lifting) list.discI make-polygonal-path.simps(3) nth-Cons-0
path-image-cons-union sup-assoc)
then have d € path-image (linepath a b)
V d € path-image (linepath b ¢)
V d € path-image (linepath ¢ a)
using d less.prems(1) unfolding make-triangle-def polygon-of-def
by blast
then have measure lebesgue (path-inside p) =1 + B/2 — 1
using pick-triangle-helper less.prems less.hyps empty-inside d
unfolding pick-holds pick-triangle integral-inside integral-boundary
apply simp by blast

ultimately have measure lebesgue (path-inside p) = I + B/2 — 1
using B-3-if
by (metis (no-types, lifting) card.empty card-insert-disjoint collinear-2 fi-
nite.emptyl finite.insertl insert-absorb less.prems(4) less.prems(6) numeral-3-eq-3)

moreover
{ assume x: [ > 0
then obtain d where d-inside: integral-vec d N\ d € path-inside p
using less.prems(9)
by (metis (mono-tags, lifting) Collect-empty-eq add-0 canonically-ordered-monoid-add-class.lessE
card-0-eq card-ge-0-finite)
have a € path-image p
using vertices-on-path-image polygon-of unfolding polygon-of-def by fastforce
then have a-inset: a € path-inside p U path-image p
by fastforce
have convez-hull-set: convexr hull set [a, b, ¢, a] = path-inside p U path-image

using convex-hull-char
by (simp add: insert-commute)
then have ad-linepath-inside: path-image (linepath a d) C path-inside p U
path-image p
using d-inside convez-polygon-means-linepaths-inside[OF polygon-of con-
vez-hull-set a-inset)
by blast
have b € path-image p
using vertices-on-path-image polygon-of unfolding polygon-of-def by fastforce
then have b-inset: b € path-inside p U path-image p
by fastforce
have bd-linepath-inside: path-image (linepath b d) C path-inside p U path-image
p
using d-inside convez-polygon-means-linepaths-inside[OF polygon-of con-
vez-hull-set b-inset]
by blast
have ¢ € path-image p
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using vertices-on-path-image polygon-of unfolding polygon-of-def by fastforce
then have c-inset: ¢ € path-inside p U path-image p
by fastforce
then have cd-linepath-inside: path-image (linepath ¢ d) C path-inside p U
path-image p

using d-inside convex-hull-char convez-polygon-means-linepaths-inside| OF

polygon-of convex-hull-set c-inset]
by blast

let ?p1 = make-triangle a d c

let
let

?p2 = make-triangle d b ¢
?p8 = make-triangle a b d

have triangle-split:

is-polygon-split-path [a, b, c] 0 1 [d]
is-polygon-split [a, d, b, c] 1 3

a ¢ path-image ?p2 U path-inside ?p2
b ¢ path-image ?p1 U path-inside ?p1
¢ ¢ path-image ?p8 U path-inside ?p3

using triangle-3-split[of p a b ¢ d] less.prems d-inside polygon-p apply fastforce
using triangle-3-split[of p a b ¢ d] less.prems d-inside polygon-p apply fastforce
using triangle-3-split[of p a b ¢ d] less.prems d-inside polygon-p apply fastforce
using triangle-3-split[of p a b ¢ d] less.prems d-inside polygon-p apply fastforce

using triangle-3-split[of p a b ¢ d] less.prems d-inside polygon-p by fastforce

let
let
let
let
let
let
let
let
let

?q = make-polygonal-path [a, d, b, ¢, a)
211 = card (integral-inside ?p1)

¢B1 = card (integral-boundary ?p1)
712 = card (integral-inside ?p2)

?B2 = card (integral-boundary ?p2)
718 = card (integral-inside ?p3)

¢B3 = card (integral-boundary ?p3)
?Iq = card (integral-inside ?q)

¢Bq = card (integral-boundary ?q)

have measure lebesgue (path-inside ?p1) = 211 + ?B1/2 — 1
proof—
have path-inside ?p1 C path-inside ?q

using triangle-split(2) unfolding is-polygon-split-def

by (smt (23) One-nat-def Un-assoc Un-upperl append-Cons append-Nil

diff-Suc-Suc diff-zero drop0 drop-Suc-Cons make-triangle-def nth-Cons-0 nth-Cons-Suc
numeral-3-eq-3 sup-commute take0 take-Suc-Cons)
moreover have path-inside ?q C path-inside p

using triangle-split(1) unfolding is-polygon-split-path-def

by (smt (23) One-nat-def Un-assoc Un-subset-iff append-Cons append-Nil

diff-zero drop0 drop-Suc-Cons less.prems(1) make-triangle-def nth-Cons-0 nth-Cons-Suc
sup.cobounded? take)
ultimately have path-inside ?p1 C path-inside p by blast
moreover have — collinear {a, d, c}
by (metis d-inside insert-commute less.prems(1) polygon-p triangle-interior-point-not-collinear-vertices)
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moreover have — collinear {a, b, ¢} by (simp add: less.prems(4))
moreover have integral-vec b
using integral-vts by blast
moreover have b € path-image p
using vts-in-path-image by auto
ultimately have card (integral-inside ?p1) + card (integral-boundary ?p1)
< card (integral-inside p) + card (integral-boundary p)
using smaller-triangle[of a d ¢ a b ¢ ?p1 p] triangle-split(4) less.prems(1)
less-imp-le-nat
by blast
thus ?thesis
using less.hyps[of ?p1 a d c] unfolding integral-inside integral-boundary
using <— collinear {a, d, c}» all-integral-def d-inside integral-vts less.prems(1)
less.prems(3) triangle-split(3) triangle-split(5)
by fastforce
qed
moreover have measure lebesgue (path-inside ?p2) = 212 + ?B2/2 — 1
proof—
have path-inside ?p2 C path-inside ?q
using triangle-split(2) unfolding is-polygon-split-def
by (smt (23) One-nat-def Un-assoc Un-upperl append-Cons append-Nil
diff-Suc-Suc diff-zero drop0 drop-Suc-Cons make-triangle-def nth-Cons-0 nth-Cons-Suc
numeral-3-eq-3 sup-commute take0 take-Suc-Cons)
moreover have path-inside ?q C path-inside p
using triangle-split(1) unfolding is-polygon-split-path-def
by (smt (23) One-nat-def Un-assoc Un-subset-iff append-Cons append-Nil
diff-zero drop0 drop-Suc-Cons less.prems(1) make-triangle-def nth-Cons-0 nth-Cons-Suc
sup.cobounded? take0)
ultimately have path-inside ?p2 C path-inside p by blast
moreover have — collinear {d, b, c}
by (metis d-inside insert-commute less.prems(1) polygon-p triangle-interior-point-not-collinear-vertices)
moreover have — collinear {a, b, ¢} by (simp add: less.prems(4))
moreover have integral-vec a
using integral-vts by blast
moreover have a € path-image p
using vts-in-path-image by auto
ultimately have card (integral-inside ?p2) + card (integral-boundary ?p2)
< card (integral-inside p) + card (integral-boundary p)
using smaller-triangle[of d b ¢ a b ¢ ?p2 p] triangle-split(3) less.prems(1)
less-imp-le-nat
by blast
thus ?thesis
using less.hyps|of ?p2 d b c] unfolding integral-inside integral-boundary
using <— collinear {d, b, ¢}> all-integral-def d-inside integral-vts less.prems(1)
less.prems(3) triangle-split(3) triangle-split(5)
by fastforce
qed
moreover have measure lebesgue (path-inside ?p3) = 713 + ?B3/2 — 1
proof—
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have path-inside ?p8 C path-inside p
using triangle-split(1) unfolding is-polygon-split-path-def
by (smt (23) One-nat-def Un-assoc Un-upperl append-Cons append-Nil
diff-Suc-Suc diff-zero less.prems(1) make-triangle-def nth-Cons-0 nth-Cons-Suc rev-singleton-conv
take0)
moreover have — collinear {a, b, d}
by (metis d-inside less.prems(1) polygon-p triangle-interior-point-not-collinear-vertices)
moreover have — collinear {a, b, ¢} by (simp add: less.prems(4))
moreover have integral-vec c
using integral-vts by blast
moreover have ¢ € path-image p
using vts-in-path-image by auto
ultimately have card (integral-inside ?p3) + card (integral-boundary ?p3)
< card (integral-inside p) + card (integral-boundary p)
using smaller-triangle[of a b d a b ¢ ?p3 p] triangle-split(5) less.prems(1)
less-imp-le-nat
by blast
thus ?thesis
using less.hyps[of ?p3 a b d] unfolding integral-inside integral-boundary
using - collinear {a, b, d}> all-integral-def d-inside integral-vts less.prems(1)
less.prems(3) triangle-split(3) triangle-split(5)
by fastforce
qed
moreover have measure lebesque (path-inside ?q) = ?Iq + ?Bq/2 — 1
using pick-split-union| OF triangle-split(2),
of [a] [b] [] d ¢ 2q ?p2 ?p1 212 B2 ?I1 ?B1 ?1q ?Bq|
using calculation
unfolding integral-inside integral-boundary make-triangle-def
using all-integral-def d-inside less.prems(2) by force
ultimately have ?case
using pick-split-path-union|OF triangle-split(1),
of ] ] [¢] a b make-polygonal-path (a # [d] @ [b]) p ?p3 ?q ?I3 ?B3 ?Iq
?Bq I B
unfolding integral-inside integral-boundary make-triangle-def less.prems
using less.prems(2) by force
}
ultimately show ?case by blast
qged

29.2 Pocket properties

definition index-not-in-set :: (real”2) list = (real”™2) set = nat = bool
where indez-not-in-set vts A i <— i € {i. i < length vis A\ vts ! i ¢ A}

definition min-indez-not-in-set:: (real”2) list = (real”2) set = nat
where min-indez-not-in-set vts A = (LEAST i. index-not-in-set vts A 1)

definition nonzero-indez-in-set :: (real”2) list = (real™2) set = nat = bool
where
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nonzero-indez-in-set vts A i <— i € {i. 0 < i A i < length vis N\ vts | i € A}

definition min-nonzero-index-in-set :: (real”2) list = (real”2) set = nat where
min-nonzero-indez-in-set vts A = (LEAST i. nonzero-indezx-in-set vts A 7)

definition construct-pocket-0 :: (real”2) list = (real”2) set = (real™2) list where
construct-pocket-0 vts A = take ((min-nonzero-index-in-set vts A) + 1) vts

definition is-pocket-0 :: (real”2) list = (real”2) list = bool where
is-pocket-0 vts vts' <
polygon (make-polygonal-path vts)
A (Fi. vts’ = take i vis)
A 3 < length vts’ A length vts’ < length vts
A hd vts’ € frontier (convexr hull (set vts)) A last vts’ € frontier (convexr hull
(set vts))
A set (tl (butlast vts’)) C interior (convex hull (set vts))

definition fill-pocket-0 :: (real”2) list = nat = (real”2) list where
fill-pocket-0 vts i = (hd vts) # (drop (i—1) vts)

lemma min-nonzero-index-in-set-exists:
assumes set (tl vts) N A # {}
shows 3 i. nonzero-indezx-in-set vts A i
proof—
obtain v where v: v € A N set (¢ vts) using assms by blast
then obtain ¢ where (¢l vts)li = v A i < length (tl vts) by (meson IntD2
in-set-conv-nth)
then obtain j where vtslj = v A 0 < j A j < length vts using nth-tl by fastforce
thus “thesis unfolding nonzero-index-in-set-def using v by blast
qed

lemma min-nonzero-index-in-set-defined:
assumes set (tl vts) N A # {}
defines i = min-nonzero-indez-in-set vts A
shows nonzero-indez-in-set vts A i A (Vj < i. = nonzero-indez-in-set vts A j)
proof—
have 3i. nonzero-index-in-set vts A i using assms min-nonzero-index-in-set-exists
by blast
then have nonzero-indez-in-set vts A i
using assms unfolding min-nonzero-index-in-set-def
using Leastl-ex by blast
moreover have (Vj < i. = nonzero-indez-in-set vts A j)
by (metis assms(2) wellorder-Least-lemma(2) leD min-nonzero-indez-in-set-def)
ultimately show ¢thesis by blast
qed

lemma min-index-not-in-set-exists:
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assumes set vts O A
shows Ji. index-not-in-set vts A i
proof—
obtain v where v € set vts A v ¢ A using assms by blast
then obtain ¢ where i < length vts A vts | i ¢ A by (metis in-set-conv-nth)
thus ?thesis unfolding indez-not-in-set-def by blast
qed

lemma min-index-not-in-set-defined:
assumes set vts O A
defines i = min-indez-not-in-set vts A
shows index-not-in-set vis A i A (Vj < i. = indezx-not-in-set vts A j)
proof—
have Fi. index-not-in-set vts A i using assms min-indez-not-in-set-exists by
stmp
then have index-not-in-set vts A i
using assms unfolding min-indez-not-in-set-def
using Leastl-ex by blast
moreover have (Vj < i. = indez-not-in-set vts A j)
by (metis assms(2) wellorder-Least-lemma(2) leD min-indez-not-in-set-def)
ultimately show ?thesis by blast
qged

lemma min-nonzero-indez-in-set-bound:

assumes set (tl vts) N A # {}

shows min-nonzero-index-in-set vts A < length vts

using min-nonzero-index-in-set-defined assms unfolding nonzero-indez-in-set-def
by blast

lemma construct-pocket-0-subset-uvts:

assumes set (tl vts) N A # {}

shows set (construct-pocket-0 vts A) C set vts
proof—

let 9i = min-nonzero-indez-in-set vts A

have nonzero-indez-in-set vts A ?¢ using min-nonzero-indez-in-set-defined assms
by presburger

then have ?i < length vts unfolding nonzero-indez-in-set-def by blast

thus ?thesis unfolding construct-pocket-0-def by (simp add: set-take-subset)
qed

lemma min-index-not-in-set-0:
assumes set vts O A
assumes vts!l0 € A
defines i = min-index-not-in-set vis A
defines r =i — 1
shows vtslr € A
proof—
have #: indez-not-in-set vts A i A (Vj<i. = indez-not-in-set vts A j)
using min-index-not-in-set-defined[of A vts, OF assms(1)] unfolding i-def by
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blast

moreover then have r < i

unfolding r-def i-def min-index-not-in-set-def index-not-in-set-def

by (metis (no-types, lifting) assms(2) bot-nat-0.not-eq-extremum diff-less mem-Collect-eq
zero-less-one)

ultimately have — indez-not-in-set vts A r by blast

thus ?thesis

unfolding indez-not-in-set-def using assms * index-not-in-set-def less-imp-diff-less
by force
qed

lemma construct-pocket-0-last-in-set:
assumes set (tl vts) N A # {}
assumes vts!0) € A
defines p = construct-pocket-0 vts A
shows last p € A
proof—
let 9i = min-nonzero-indez-in-set vts A
have *: nonzero-index-in-set vts A 9 using assms(1) min-nonzero-indez-in-set-defined
by blast
then have length p = min-nonzero-indez-in-set vts A + 1
unfolding p-def construct-pocket-0-def nonzero-index-in-set-def by simp
then have last p = p!?i
by (metis add-diff-cancel-right’ last-conv-nth length-0-conv zero-eq-add-iff-both-eq-0
zero-neg-one)
also have ... = vts! %
unfolding p-def construct-pocket-0-def by simp
also have ... € A using * unfolding nonzero-indez-in-set-def by force
finally show ?thesis .
qed

lemma construct-pocket-0-first-last-distinct:
assumes card A > 2
assumes A C set vts
assumes distinct (butlast vts)
assumes hd vts = last vts
shows hd (construct-pocket-0 vts A) # last (construct-pocket-0 vts A)
proof—
let %n = min-nonzero-index-in-set vts A
have set (¢l vts) N A # {}
by (metis (no-types, lifting) Diff-cancel Int-commute Int-insert-right-if1 Nat.le-diff-conv2
Suc-1 add-leD1 assms(1) assms(2) card.empty card-Diff-singleton inf.orderE list.collapse
list.sel(2) list.set(2) not-one-le-zero plus-1-eq-Suc subset-insert)
then have n-defined: nonzero-index-in-set vts A ?n A (Vj < 9n. = nonzero-indez-in-set
vts A j)
using min-nonzero-indez-in-set-defined by presburger
obtain a b where ab: a # b A {a, b} C A by (metis assms(1) card-2-iff ex-card)
then obtain i j where 4j: vtsli = a A vtslj = b A § < length vts A j < length
vis A i # j
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by (metis (no-types, opaque-lifting) assms(2) in-set-conv-nth insert-subset sub-

setD)

have ?thesis if *: ?n < length vts — 1
proof—
have ?n > 0 using n-defined unfolding nonzero-index-in-set-def by blast
then have n-bound”: %n > 0 N ?n < length (butlast vts) using = by fastforce
then have hd vts # vts!?n
by (metis assms(3) distinct-Exl hd-conv-nth ij in-set-conv-nth length-0-conv
length-pos-if-in-set less-nat-zero-code nth-butlast)
moreover then have vts! n # last vts using assms(4) by simp
moreover have last (construct-pocket-0 vts A) = vts!?n
using n-defined
unfolding construct-pocket-0-def
by (metis Cons-nth-drop-Suc Suc-eq-plusl n-bound’ x last-snoc less-diff-conv
list.sel(1) nth-butlast take-butlast take-hd-drop)
moreover have hd (construct-pocket-0 vts A) = hd vts
unfolding construct-pocket-0-def by force
ultimately show ?thesis by presburger
qed
moreover have ?thesis if x: ?n = length vts — 1
proof—
have {i, j} C {i. i < length vis A vts ! i € A} using j ab by simp
moreover have i # 0 V j # 0 using ij by argo
ultimately have nonzero-index-in-set vts A ¢ V nonzero-indez-in-set vts A j
unfolding nonzero-indez-in-set-def by simp
then have ?n =iV %n =
by (metis n-defined Suc-diff-1 gr-implies-not-zero ij linorder-cases not-less-eq
*
)
moreover then have last (construct-pocket-0 vts A) = vts!¥n
by (metis Suc-eq-plus1 construct-pocket-0-def hd-drop-conv-nth ij snoc-eq-iff-butlast
take-hd-drop)
ultimately show ¢thesis
by (metis (no-types, lifting) ij ab Suc-eq-plusl assms(4) bot-nat-0.not-eq-extremum
hd-conv-nth insert-subset last-conv-nth less-diff-conv list.size(3) mem-Collect-eq n-defined
nat-neg-iff nonzero-indez-in-set-def not-less-eq that)
qged
ultimately show #%thesis using n-defined unfolding nonzero-indezr-in-set-def
by fastforce
qed

lemma construct-pocket-is-pocket:

assumes polygon (make-polygonal-path vts)

assumes vtsl0 € frontier (convex hull (set vts))

assumes vits!! ¢ frontier (convex hull (set vts))

shows is-pocket-0 vts (construct-pocket-0 vts (set vts N frontier (convex hull (set
vts))))
proof—

let %vts’ = construct-pocket-0 vts (set vts N frontier (convex hull (set vts)))
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have ez-i: 3i. ?vts’ = take i vts unfolding construct-pocket-0-def by blast
moreover have 3 < length ?vts’
by (smt (verit) Cons-nth-drop-Suc Intl Int-iff One-nat-def Suc-1 Suc-diff-Suc
Suc-lessI add-diff-cancel-right’ add-gr-0 append-Nil2 assms(1) assms(2) assms(3)
butlast.simps(1) butlast.simps(2) butlast-conv-take calculation cancel-comm-monoid-add-class. diff-cancel
card.empty construct-pocket-0-def construct-pocket-0-first-last-distinct construct-pocket-0-last-in-set
convez-hull-two-vts-on-frontier diff-diff-cancel diff-is-0-eq diff-is-0-eq’ drop0 empty-iff
empty-set have-wraparound-vertex hd-conv-nth hd-drop-conv-nth hd-take id-take-nth-drop
last.simps last-conv-nth last-drop last-in-set last-snoc lel le-add2 le-numeral-extra(4)
le-trans length-0-conv length-greater-0-conv length-take length-tl length-upt less-2-cases
less-numeral-extra(1) less-numeral-extra(8) linorder-not-less list.distinct(1) list.sel(2)
list.sel(3) list.size(3) min.absorb4 not-gr-zero not-less-eq-eq not-numeral-le-zero nth-mem
numeral-3-eq-3 plus-1-eq-Suc polygon-at-least-3-vertices polygon-at-least-3-vertices-wraparound
polygon-def pos2 rev.simps(1) self-append-conv? simple-polygonal-path-vts-distinct
snoc-eq-iff-butlast subset-iff take-all-iff take-eq-Nil take-hd-drop)
moreover have vts'-length: length ?vts’ < length vts
by (metis (no-types, lifting) One-nat-def Suc-1 assms(1) calculation(1) calcula-
tion(2) construct-pocket-0-first-last-distinct convezx-hull-two-vts-on-frontier have-wraparound-vertex
hd-conv-nth inf-lel last-snoc lel le-add2 le-trans length-take min.absorbj not-numeral-le-zero
numeral-3-eq-3 plus-1-eq-Suc polygon-at-least-3-vertices polygon-def simple-polygonal-path-vts-distinct
take-all-iff take-eq-Nil)
moreover have hd ?vts’ € frontier (convex hull (set vts))
by (metis assms(2) bot-nat-0.not-eg-extremum calculation(1) calculation(2)
hd-conv-nth hd-take list.size(3) not-numeral-le-zero take-eq-Nil)
moreover have last ?vts’ € frontier (convex hull (set vts))
by (smt (verit, ccfv-SIG) Cons-nth-drop-Suc Int-iff assms(1) assms(2) card-length
construct-pocket-0-last-in-set drop0 drop-eq-Nil empty-iff have-wraparound-vertezr
last-drop last-in-set le-add2 le-trans linorder-not-less list.sel(3) list.simps(15) not-less-eq-eq
numeral-3-eq-3 plus-1-eq-Suc polygon-at-least-3-vertices snoc-eg-iff-butlast)
moreover have set (¢ (butlast ?vts’)) C interior (convex hull (set vts))
proof—
let ?A = (set vts N frontier (convexr hull (set vts)))
let ?r = min-nonzero-index-in-set vts 2A
have nonzero-index-in-set vts ?A ?r
A (VY j<min-nonzero-indez-in-set vts ?A. = nonzero-index-in-set vts ?A j)
by (metis min-nonzero-indez-in-set-defined Intl Nitpick.size-list-simp(2) One-nat-def
add-leD1 assms(1) assms(2) calculation(2) calculation(8) empty-iff empty-set have-wraparound-vertex
last-in-set last-snoc last-tl less-one not-one-le-zero nth-mem numeral-3-eq-3 plus-1-eq-Suc)
then have Vi. (0 < i A i < ?r) — vtsli ¢ ?A unfolding nonzero-index-in-set-def
by force
then have Vi. (0 < i A i< ?r) — vtsli ¢ frontier (convex hull (set vts))
using calculation(3) construct-pocket-0-def by fastforce
then have Vi. (0 < i N i < 2r) — wvtsli € interior (convexr hull (set vts))
by (smt (verit, ccfo-threshold) Cons-nth-drop-Suc Diffl IntI One-nat-def
add-leD1 assms(1) assms(2) calculation(2) calculation(3) closure-subset drop0 dual-order.strict-trans2
empty-iff frontier-def have-wraparound-vertex hull-subset inf . strict-coboundedI2 inf .strict-order-iff
last-drop last-in-set last-snoc length-greater-0-conv list.discl list.sel(3) min-nonzero-indez-in-set-bound
nth-mem numeral-3-eq-3 plus-1-eq-Suc subset-eq)
moreover have tl (butlast ?vts’) = drop 1 (take ?r vts)
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unfolding construct-pocket-0-def
by (metis One-nat-def add-implies-diff antisym-conv?2 butlast-take construct-pocket-0-def
drop-0 drop-Suc linorder-le-cases take-all vts'-length)
moreover have Vv € set (drop 1 (take ?r vts)). 3i. 0 < i AN i < 2r A vtsli =
v
proof
fix v assume x: v € set (drop 1 (take ?r vis))
then obtain ¢’ where i (drop 1 (take ?r vts))li’' = v AN i’ < or — 1
by (smt (28) Cons-nth-drop-Suc One-nat-def ex-i butlast-conv-take cal-
culation(2) drop0 hd-conv-nth hd-take index-less-size-conv length-drop length-take
less-imp-le-nat linorder-not-less list.collapse list.sel(2) min.absorb4 nth-index take-all-iff
take-eq-Nil vts'-length)
then have (take ?r vts)!(i’ + 1) = v
by (metis * add.commute drop-eq-Nil empty-iff empty-set nle-le nth-drop)
thus 3i¢. 0 < i A< 9r Novtsli =0
by (metis add-gr-0 i’ less-diff-conv nth-take zero-less-one)
qed
ultimately show ?thesis by fastforce
qed
ultimately show ?thesis unfolding is-pocket-0-def using assms(1) by argo
qed

lemma exists-point-above-interior:
fixes a :: real™2
assumes a € interior (convex hull S)
obtains z where z € S A 282 > a$2
proof—
have Fulse if Vo € S. 282 < a$2
proof—
have S C {z. z - (vector [0, 1]) < a$2}
proof (rule subsetl)
fix z
assume z € S
then have 2$2 < a$2 using that by blast
moreover have x - (vector [0, 1]) = 2831 x 0 + 282 = 1
by (simp add: cart-eqg-inner-axis ele2-basis(3))
ultimately show z € {z. z - (vector [0, 1]) < a$2} by simp
qed
then have *: convex hull S C {z. z - (vector [0, 1]) < a$2}
proof—
have S C {v. vector [0, 1] - v < a $ 2}
by (simp add: «S C {z. x - vector [0, 1] < a $ 2} inner-commute)
then have conver hull S C {v. vector [0, 1] - v < a $ 2}
by (simp add: convez-halfspace-le hull-minimal)
then show ?thesis
by (simp add: inner-commute)
qed
moreover have a - (vector [0, 1]) = a$2 by (simp add: cart-eg-inner-azis
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ele2-basis(3))
moreover have frontier {z. z - ((vector [0, 1])::(real”2)) < a$2}
= {z. z - (vector [0, 1]) = a$2}
using frontier-halfspace-le[of (vector [0, 1])::(real™2) a$2]
by (smt (verit) Collect-cong inner-commute vector-2(2) zero-index)
ultimately have a € frontier {z. z - (vector [0, 1]) < a$2} by blast
thus Fulse
by (metis (mono-tags, lifting) Diff-iff * assms frontier-def in-frontier-in-subset
in-mono interior-subset)
qged
thus ?thesis using that by fastforce
qed

lemma exists-point-above-convex-hull-interior:

fixes S :: (real™2) set

assumes S # {}

assumes compact S

obtains © where z € S — (interior (convex hull S)) A (Yy € interior (convex
hull S). 282 > y$2)
proof—

let YH = convez hull S

let %e2 = (vector [0, 1])::(real™2)

let ?f = (Az. 2$2)::(real 2 = real)

have continuous-on {z. True} ?f by (simp add: continuous-on-component)

moreover have compact (convex hull S) using assms(2) compact-convez-hull
by blast

moreover from calculation have compact (?f?H)

using compact-continuous-image continuous-on-subset by blast

ultimately obtain z max where x: z € ?H A ?fz = maz A (Vy € ?H. y$2 <
mazx)

by (smt (verit) Collect-mono assms(1) convez-hull-eg-empty convez-hull-explicit
continuous-attains-sup continuous-on-subset)

have ?H N {z. %2 - x = maz} # {}
by (metis (mono-tags, lifting) cart-eg-inner-azis disjoint-iff ele2-basis(3) in-
ner-commaute mem-Collect-eq x)
moreover have ?H N {z. %2 - x = maz} = {} if (Vz € S. 282 < max)
proof—
have S C {z. %¢2 - z < maz}
using that by (simp add: cart-eq-inner-axis ele2-basis(3) inner-commute
subset-eq)
moreover have conver {x. ?e2 - © < max} by (simp add: convez-halfspace-It)
ultimately show %thesis using hull-minimal by blast
qed
ultimately have 3z € S. 282 > maz by force
moreover have ?H C {z. %2 - x < maz}
using z
by (simp add: cart-eq-inner-axis ele2-basis(3) inner-commute subsetl)
moreover then have interior 7H C {z. %e2 + z < maz}
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by (metis (mono-tags) conver-empty empty-iff inner-zero-left interior-halfspace-le
interior-mono real-inner-1-left separating-hyperplane-set-0 vector-2(2) zero-index)

ultimately have z ¢ interior YH N (Vy € interior 7H. 232 > y$2)

by (smt (verit) cart-eq-inner-axis ele2-basis(8) in-mono inner-commute mem-Collect-eq
z)

thus ?thesis using that <3z€S. max < = $ 2> z by fastforce
qed

lemma flip-function:
defines M = (vector [vector [1, 0], vector [0, —1]]):(real”272)
defines f = Av. M *xv v
defines g = (Av. vector [v$1, —v$2])::(real ™2 = real”2)
shows inj ff = ¢
proof—
have det M = M$1$1 » M$2$2 — M$1$2 » M$2$1 using det-2 by blast
thus inj f by (simp add: inj-matriz-vector-mult invertible-det-nz f-def M-def)

have A\z. fz =gz
proof—
fix z
have fz = vector [M$1$1 x 281 + M$1$2 x 282, M$2$1 x 281 + M$2%2
* 7$2]
by (simp add: M-def f-def mat-vec-mult-2)
also have ... = vector [2$1, —282] by (simp add: M-def)
finally show fz = g = using f-def g-def by blast
qged
thus f = g by (simp add: f-def g-def)
qed

lemma exists-point-below-convex-hull-interior:

fixes S :: (real™2) set

assumes S # {}

assumes compact S

obtains © where z € S — (interior (convex hull S)) A (Yy € interior (convex
hull §). 282 < y$2)
proof—

let ?M = (wvector [vector [1, 0], vector [0, —1]])::(real™272)

let 2f = Av. ?M *v v

let 2g = (Av. vector [v$1, —v$2])::(real ™2 = real”2)

let ?H' = ?g9(convex hull S)
let 25" = ?2¢‘S

have interior: ?f{(interior (conver hull S)) = interior (convexr hull (?fS))
by (smt (verit, best) flip-function convex-hull-linear-image interior-injective-linear-image
matriz-vector-mul-linear)
have hull: ?H’ = convex hull 25’
proof—
have (xv) (vector [vector [1, 0], vector [0, — 1]]) ¢ (convex hull S) = convex
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hull ((xv) (vector [vector [1, 0], vector [0, — 1]]) ¢ S::(real, 2) vec set)
by (simp add: convez-hull-linear-image)
then show ?thesis
by (simp add: flip-function)
qed
moreover have compact 25’
proof—
have continuous-on {z. True} ?f using matriz-vector-mult-linear-continuous-on
by blast
then have continuous-on {z. True} ?g using flip-function by simp
thus ?thesis using assms(2) compact-continuous-image continuous-on-subset
flip-function by blast
qed
moreover have 25’ # {} using assms(1) by blast
ultimately obtain z’ where z”: 2’ € 25’ — (interior ?H") AN (Vy € interior
?H'. 82 > y$2)
using exists-point-above-convex-hull-interior|[of 2S’] by auto
moreover have 25’ — (interior ?H') = ?2f{(S — (interior (convex hull S)))
proof—
have ?f{(.S — (interior (convex hull S))) = 25’ — ?f“(interior (convex hull S))
by (metis (no-types, lifting) flip-function(1) flip-function(2) image-cong im-
age-set-diff)
thus %thesis using flip-function(2) interior hull by auto
qed
ultimately obtain © where %g z = ' A x € S — interior (convex hull S)
using flip-function by auto
moreover have (Vycinterior (conver hull S). $ 2 <y $ 2)
proof clarify
fix y
assume y € interior (convexr hull S)
then have (?g 2)$2 > (%g y)$2
using z’ interior hull flip-function by (metis (no-types, lifting) calculation
image-eql )
thus z$2 < y$2 by simp
qed
ultimately show ?thesis using that by fast
qed

lemma exists-point-above-all:

fixes p q :: R-to-R2

defines H = convex hull (path-image p U path-image q)

assumes path p A path g

assumes p{0<..<1} C interior H

assumes (p 0)$2 =0 A (p 1)$2 =0

assumes Jz € p{0<..<1}. 282 > 0

obtains = where z € path-image ¢ A (Vy € path-image p. 82 > y$2)
proof—

let 2S = path-image p U path-image q

let ?H = convex hull 25
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obtain z where z: © € 25 — (interior ?H) A (Vy € interior ?H. 282 > y$2)
by (metis exists-point-above-convez-hull-interior Un-empty assms(2) compact-Un
compact-path-image path-image-nonempty)
then have z ¢ p{0<..<1} using H-def assms(3) by blast
moreover have z € 25 using z by blast
ultimately have = € path-image q V x € (path-image p) — p{0<..<1} by blast
moreover have {0..1} — {0<..<1} = {0::real, 1} by fastforce
ultimately have z € path-image ¢ V = € p{0, 1}
by (smt (verit, best) image-diff-subset path-image-def subsetD)
moreover have 2$2 > (p 0)$2 A 282 > (p 1)$2
using H-def assms(3) assms(4) assms(5) z by fastforce
ultimately have x € path-image ¢ A 232 > (p 0)$2 N 282 > (p 1)$2 A (Vy €
p{0<..<1}. 282 > y$2)
using H-def assms(3) = by auto
moreover have path-image p = p{0<..<1} U {p 0, p 1}
proof—
have {0<..<1} U {0:real, 1} = {0..1} by force
thus ?thesis unfolding path-image-def by blast
qed
ultimately show ?thesis by (simp add: that)
qed

lemma exists-point-below-all:
fixes p q :: R-to-R2
defines H = convex hull (path-image p U path-image q)
assumes path p A path g
assumes p{0<..<1} C interior H
assumes (p 0)$2 =0 A (p 1)$2 =0
assumes 3z € path-image p U path-image q. x$2 < 0
obtains = where z € path-image ¢ A (Vy € path-image p. 32 < y$2)
proof—
let %thesis’ = 3x. x € path-image g AN Vy €
have ?thesis’ if 3z € path-image p. 282 < 0
proof—
have x: 3z € p{0<..<1}. 282 < 0
proof—
have (p 0)$2 = 0 A (p 1)$2 = 0 by (simp add: assms(4))
thus ?thesis
using that unfolding path-image-def
using atLeastAtMost-iff less-eq-real-def
by fastforce
qed
let 2S5 = path-image p U path-image q
let ?H = convex hull 28
obtain z where z: x € 25 — (interior YH) A (Vy € interior 7H. 232 < y$2)
by (metis exists-point-below-convez-hull-interior Un-empty assms(2) com-
pact-Un compact-path-image path-image-nonempty)
then have z ¢ p{0<..<1} using H-def assms(3) by blast
moreover have z € 95 using z by blast

path-image p. 82 < y$2)
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ultimately have = € path-image q V x € (path-image p) — p{0<..<1} by
blast
moreover have {0..1} — {0<..<1} = {0:=real, 1} by fastforce
ultimately have x € path-image ¢ V z € p{0, 1}
by (smt (verit, best) image-diff-subset path-image-def subsetD)
moreover have 282 < (p 0)$2 A 2832 < (p 1)$2
by (smt (verit, ccfo-SIG) * H-def assms(3) assms(4) subset-eq x)
ultimately have 282 < (p 0)$2 A 282 < (p 1)$2 A (Vy € p{0<..<1}. 282
< y$2)
using H-def assms(3) = by blast
moreover have path-image p = p{0<.<1} U {p 0, p 1}
proof—
have {0<..<1} U {0::real, 1} = {0..1} by force
thus ?thesis unfolding path-image-def by blast
qed
ultimately have Vy € path-image p. 2$2 < y$2 by fast
thus ?thesis using x by fast
qed
moreover then have ?thesis’if - (32 € path-image p. £$2 < 0) using assms(5)
by fastforce
ultimately show %thesis using that by blast
qged

lemma pocket-fill-line-int-aux:
fixes z y z :: real™2
defines a = y$1
assumes r = (
assumes a > 0 A y$2 = 0
assumes 281 < 0V 281 > a
assumes 282 = 0
assumes conver A A compact A
assumes {z, y, 2} C A
assumes {z, y} C frontier A
shows z € frontier A A closed-segment x y C frontier A
proof(rule disjE[OF assms(4)])
assume 281 > a
moreover have zyz: 281 = 0 AN 282 = 0N y$1 =a AN y$2 =0 N 282 = 0
by (simp add: a-def assms(2) assms(3) assms(5))
ultimately have y: y € path-image (linepath = 2) (is - € L)
using segment-horizontal assms(3) by force
moreover have y-neq: y % Ay # 2z
by (metis a-def assms(2) assms(3) assms(4) not-less-iff-gr-or-eq zero-index)
ultimately have y € rel-interior 7L
by (metis UnE closed-segment-eq-open closed-segment-idem insert-Diff insert-iff
path-image-linepath rel-interior-closed-segment singleton-insert-inj-eq)
moreover have ?L C A using assms closed-segment-subset by auto
moreover have z € interior A U frontier A
by (metis Diff-iff Unl1 Unl2 assms(6) calculation(2) closure-convex-hull con-
vex-hull-eq frontier-def in-mono pathfinish-in-path-image pathfinish-linepath)
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ultimately have z € frontier A
by (metis (no-types, lifting) Int-iff UnE y y-neq assms(6) assms(8) com-
pact-imp-closed insert-subset singletonD triangle-3-split-helper)
moreover have closed-segment x y C frontier A
proof (rule ccontr)
assume — closed-segment © y C frontier A
then obtain v where v € closed-segment x y — frontier A by blast
moreover then have v € closed-segment x y N interior A
by (metis (no-types, lifting) DiffD1 Diff D2 DiffI Int-iff assms(6) assms(7)
closed-segment-subset closure-convez-hull convez-hull-eq frontier-def insert-subset
subsetD)
moreover from calculation have v # x A v # y using assms(8) by auto
moreover from calculation have v$1 < a
by (smt (28) DiffD1 a-def assms(2) assms(3) exhaust-2 segment-horizontal
vec-eq-iff zero-index)
moreover from calculation have y € open-segment v z
by (smt (23) Diff-iff xyz insert-iff open-segment-def open-segment-idem
path-image-linepath segment-horizontal y y-neq)
ultimately have y € interior A
by (metis (no-types, lifting) IntD2 assms(6) assms(7) closure-conver-hull
convez-hull-eq in-interior-closure-convex-segment insertI2 singletonl subsetD)
thus Fualse using assms(8) frontier-def by auto
qed
ultimately show 2z € frontier A N closed-segment = y C frontier A by blast
next
assume *: 2$1 < 0
moreover have zyz: 281 = 0 AN 282 = 0N y$1 =a AN y$2 =0 N 282 =0
by (simp add: a-def assms(2) assms(8) assms(5))
ultimately have x: = € path-image (linepath y z) (is - € ?L’)
using segment-horizontal assms(3) by force
moreover have z-neq: y # z A x # 2
by (metis a-def assms(2) assms(3) assms(4) not-less-iff-gr-or-eq zero-inder)
ultimately have z € rel-interior 7L’
by (metis UnE closed-segment-eq-open closed-segment-idem insert-Diff insert-iff
path-image-linepath rel-interior-closed-segment singleton-insert-inj-eq)
moreover have 2L’ C A
proof—
have y € A A z € A using assms by blast
thus ?thesis by (simp add: assms(6) closed-segment-subset)
qed
moreover have z € interior A U frontier A
by (metis Diff-iff Unl1 Unl2 assms(6) calculation(2) closure-convex-hull con-
vex-hull-eq frontier-def in-mono pathfinish-in-path-image pathfinish-linepath)
ultimately have z € frontier A
by (metis (no-types, lifting) Int-iff UnE © z-neq assms(6) assms(8) com-
pact-imp-closed insert-subset singletonD triangle-3-split-helper)
moreover have closed-segment x y C frontier A
proof (rule ccontr)
assume - closed-segment x© y C frontier A
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then obtain v where v € closed-segment x y — frontier A by blast
moreover then have v € closed-segment x y N interior A
by (metis (no-types, lifting) DiffD1 DiffD2 DiffI Int-iff assms(6) assms(7)
closed-segment-subset closure-convez-hull convez-hull-eq frontier-def insert-subset
subsetD)
moreover from calculation have v # x A v # y using assms(8) by auto
moreover from calculation have v$1 > 0
by (smt (28) DiffD1 a-def assms(2) assms(3) exhaust-2 segment-horizontal
vec-eq-iff zero-inder)
moreover from calculation have x € open-segment v z
by (smt (23) Diff-iff xyz insert-iff open-segment-def open-segment-idem
path-image-linepath segment-horizontal © z-neq)
ultimately have z € interior A
by (metis (no-types, lifting) IntD2 assms(6) assms(7) closure-convez-hull
convez-hull-eq in-interior-closure-convex-segment insertI2 singletonl subsetD)
thus False using assms(8) frontier-def by auto
qed
ultimately show 2z € frontier A A closed-segment x y C frontier A by blast
qed

lemma axis-dist:
fixes a b :: real”2
shows a$2 = 0$2 = dist a b = dist (a$1) (b31) a$1 = b$1 = dist a b =

dist (a$2) (b$2)

proof—
have dist a b = norm (b — a) by (metis dist-commute dist-norm,)
also have ... = sqrt ((b — a) - (b — a)) using norm-eq-sqrt-inner by blast

also have ... = sqrt (b — a)$1 * (b — a)$1 + (b — a)$2 x (b — a)$2)
by (simp add: inner-vec-def sum-2)
finally have x: dist a b = sqrt (b — a)$1 = (b — a)$1 + (b — a)$2 = (b —
a)$2) .
show a$2 = b$2 — dist a b = dist (a$1) (b$1)
a$1 = b$1 = dist a b = dist (a$2) (0$2)
apply (simp add: * dist-real-def)
by (simp add: * dist-real-def)
qed

lemma dist-bound-1:
fixes a bz :: real 2
assumes a$2 = 2$2
assumes b € ball z ¢
assumes ¢ < dist a ©
shows a$1 < 281 = b31 > a$1 a$1 > 281 = b$1 < a$1
proof—
have 1: dist a x = dist (a$1) (2$1) using axis-dist assms(1) by blast
have 2: dist (b31) (2$1) < ¢
by (metis assms(2) dist-commute dist-vec-nth-le mem-ball order-le-less-trans)
show a$1 < 281 = b$1 > a$1 a$1 > 281 = 031 < a$1
apply (smt (verit, ccfo-threshold) assms(1) assms(3) 1 2 dist-norm real-norm-def)
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by (smt (verit, ccfo-threshold) assms(1) assms(3) 1 2 dist-norm real-norm-def)
qed

lemma dist-bound-2:
fixes a b z :: real 2
assumes a$1 = 231
assumes b € ball z ¢
assumes ¢ < dist a
shows a$2 < 282 = 082 > a$2 a$2 > 282 = 032 < a$2
proof—
have 1: dist a x = dist (a$2) (2$2) using axis-dist assms(1) by blast
have 2: dist (b32) (2$2) < ¢
by (metis assms(2) dist-commute dist-vec-nth-le mem-ball order-le-less-trans)
show a$2 < 282 = b$2 > a$2 a$2 > 282 = 0$2 < a$2
apply (smt (verit, ccfo-threshold) assms(1) assms(3) 1 2 dist-norm real-norm-def)
by (smt (verit, ccfu-threshold) assms(1) assms(3) 1 2 dist-norm real-norm-def)
qed

lemma linepath-bound-1:
fixes z y :: real 2
shows a < 281 A a < y$1 = Vv € path-image (linepath = y). a < v$1
281 < b A y$1 < b = Vv € path-image (linepath z y). v81 < b
proof—
have «: Vv € path-image (linepath z y). Ju € {0..1}. v= (1 — u) *p  + u *R
)
by (simp add: image-iff linepath-def path-image-def)
have 1:Vu € {0..1}. a < (1 — u) xg z + u xg y)$1 if a < 281 A a < y$1
proof clarify
fix u assume u € {0..1::real}
then have x: w > 0 A 1 — u > 0 by simp
then show a < ((1 — u) *g = + u *g y)$1
by (smt (23) that scaleR-collapse scaleR-left-mono wvector-add-component
vector-scaleR-component)
qed
have 2: Vu € {0..1}. ((1 —u) *rp z + ux*p y)$1 < bif 281 < b A y$1 < b
proof clarify
fix v assume u € {0..1::real}
then have x: v > 0 A 1 — u > 0 by simp
then show ((I — u) *g = + u *g ¥)$1 < b
by (smt (23) that scaleR-collapse scaleR-left-mono vector-add-component
vector-scaleR-component)
qed
show a < 281 A a < y$1 = Vv € path-image (linepath = y). a < v$1 using
x 1 by fastforce
show 281 < b A y$1 < b = Vv € path-image (linepath z y). v$1 < b using
x 2 by fastforce
qed

lemma linepath-bound-2:
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fixes z y :: real”2
shows a < 282 A a < y$2 = Vv € path-image (linepath x y). a < v$2
282 < b A y$2 < b = Vv € path-image (linepath = y). v$2 < b
proof—
have x: Vv € path-image (linepath z y). Ju € {0..1}. v= (1 — u) *g © + u *g
Y
by (simp add: image-iff linepath-def path-image-def)
have 1:Vu € {0..1}. a < (1 — u) *xg z + u xg y)$2 if a < 282 A a < y$2
proof clarify
fix v assume u € {0..1::real}
then have x: v > 0 A 1 — u > 0 by simp
then show a < ((I — u) *g = + u *g y)$2
by (smt (23) that scaleR-collapse scaleR-left-mono vector-add-component
vector-scale R-component)
qed
have 2: Vu € {0..1}. (1 — u) *r o 4+ u xg )82 < bif 282 < b A y$2 < b
proof clarify
fix u assume u € {0..1::real}
then have x: w > 0 A 1 — u > 0 by simp
then show ((1 — u) xgp = + u xg ¥)$2 < b
by (smt (23) that scaleR-collapse scaleR-left-mono vector-add-component
vector-scale R-component)
qed
show a < 282 A a < y$2 = Vv € path-image (linepath x y). a < v$2 using
x 1 by fastforce
show 282 < b A y$2 < b = Vv € path-image (linepath x y). v$2 < b using
x 2 by fastforce
qed

lemma linepath-int-corner:
fixes z y 2z :: real™2
assumes 1$2 # y$2
assumes y$2 = 2$2
shows path-image (linepath x y) N path-image (linepath y z) = {y}
(is path-image 211 N path-image 712 = {y})
proof—
have 1: y € path-image ?l1 N path-image ?12 by simp

have Vi € {0..1}. (711 ©)$2 = y$2 — ¢t = 1
proof clarify

fix t :: real

assume I: ¢t € {0..1}

assume 2: (211 t)$2 = y$2

have (211 1)$2 = ((1 — t) = (2$2) + t = (y$2)) by (simp add: linepath-def)
thus t = 1
by (smt (verit, best) assms 2 distrib-right inner-real-def mult.commute real-inner-1-right
vector-space-over-itself . scale-cancel-left)
qed
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then have V¢ € {0..1}. (911 t)$2 = y$2 <— t = 1 by (metis linepath-1')
moreover have Vi € {0..1}. (712 1)$2 = y$2
unfolding linepath-def
by (metis (no-types, lifting) assms(2) segment-degen-1 vector-add-component
vector-scale R-component)
ultimately have 2: path-image ?11 N path-image 212 C {y}
by (smt (verit, best) 1 IntD1 IntD2 imageE path-defs(4) singleton-iff subsetl)

show ?thesis using 1 2 by fastforce
qged

lemma linepath-int-vertical:
fixes wzx y z :: real”2
assumes w31 # y$1
assumes w31 = z$1
assumes y$1 = 2$1
shows path-image (linepath w ) N path-image (linepath y z) = {}
using assms segment-vertical by fastforce

lemma linepath-int-horizontal:
fixes wz y z :: real”2
assumes w$2 # y$2
assumes w$2 = 1$2
assumes y$2 = 282
shows path-image (linepath w x) N path-image (linepath y z) = {}
using assms segment-horizontal by fastforce

lemma linepath-int-columns:
fixes wzx y z :: real”2
assumes w31 < y$1 A w$! < 281
assumes z$1 < y$1 A 281 < 281
shows path-image (linepath w x) N path-image (linepath y z) = {}
(is path-image 211 N path-image 212 = {})
proof—
have V1 € {0..1}. V12 € {0..1}. (212 12)$1 > (211 t1)$1
by (smt (verit, ccfv-SIG) assms linepath-bound-1 linepath-in-path path-image-linepath)
thus ?thesis by (smt (verit, best) disjoint-iff imageE path-image-def)
qged

lemma linepath-int-rows:
fixes wz y z :: real” 2
assumes w32 < y$2 A w2 < 2$2
assumes 732 < y$2 A 282 < 282
shows path-image (linepath w ) N path-image (linepath y z) = {}
(is path-image 211 N path-image 212 = {})
proof—
have V1 € {0..1}. V12 € {0..1}. (212 12)$2 > (711 t1)$2
by (smt (verit, ccfo-SIG) assms linepath-bound-2 linepath-in-path path-image-linepath)
thus ?thesis by (smt (verit, best) disjoint-iff imageE path-image-def)
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qed

lemma horizontal-segment-at-0:
assumes a > 0
shows closed-segment ((vector [0, 0]):(real”2)) (vector [a, 0]) = {z. 282 = 0
A z81 € {0..a}}
(is 21 = %s)
proof—
have 2] C %s
proof (rule subsetl)
fix z
assume x: ¢ € ?]
then have z$2 = 0 using segment-horizontal by auto
moreover have 0 < 281 A 281 < o using x assms segment-horizontal by
force
ultimately show z € ?s by force
qed
moreover have 2s C 7]
proof(rule subsetl)
fix z
assume *: € s
then have z = (281 / a) xg (vector [a, 0]) + (I — (281 / a)) *g (vector |0,

0))
proof—
have (281 / a) *r ((vector [a, 0])::(real”2)) = vector [z$1, 0]
using vec-scaleR-2 assms by fastforce
moreover have (1 — (231 / a)) xg ((vector [0, 0])::(real”2)) = vector [0,
0]

using vec-scaleR-2 by simp
moreover have z = vector [z$1, 0]
by (smt (verit) * exhaust-2 mem-Collect-eq vec-eq-iff vector-2(1) vector-2(2))
ultimately show ?thesis
by (metis add-cancel-right-right scaleR-collapse vec-scaleR-2 vector-2(2))
qed
moreover have 281 / a € {0..1} using x assms by fastforce
ultimately show z € 7]
by (smt (verit, del-insts) add.commute atLeastAtMost-iff mem-Collect-eq
closed-segment-def)
qed
ultimately show ?thesis by blast
qed

lemma horizontal-segment-at-0":
fixes z y :: real”2
assumes a > 0
assumes 181 = 0 AN z$2 = 0 N y$1 =a A y$2 =10
shows closed-segment ©y = {z. 282 = 0 A 281 € {0..a}}
proof—
have z = vector [0, 0] A y = vector [a, 0]

272



by (smt (verit, best) assms(2) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
thus ?thesis using horizontal-segment-at-0 assms by presburger
qed

lemma pocket-fill-line-int-auxl:
fixes p q :: R-to-R2
defines p0 = pathstart p
defines p!1 = pathfinish p
defines ¢0 = pathstart q
defines g1 = pathfinish q
defines a = p1$1
defines | = closed-segment p0 pl1
assumes simple-path p
assumes simple-path q
assumes p0$1 = 0 A p0$2 = 0 A p1$2 =0
assumes g > 0
assumes path-image ¢ N {z. 282 = 0} C
assumes path-image p N {z. 282 = 0} C
assumes Vv € path-image p. q0$2 < v$2
assumes Vv € path-image p. q1$2 > v$2
shows path-image p N path-image q¢ # {}
proof—

have p0: p0 = 0

by (metis (mono-tags, opaque-lifting) assms(9) exhaust-2 vec-eq-iff zero-indez)
moreover have pl: pl = vector [a, 0]

by (smt (verit) a-def assms(9) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))

l
l

obtain a-x where a-z: Vv € path-image p U path-image q. a-z < v$1
proof—
let %a-z = Inf ((Av. v$1)“(path-image p U path-image q))
have compact (path-image p U path-image q)
by (simp add: assms(7) assms(8) compact-Un compact-simple-path-image)
moreover have continuous-on UNIV ((Av. v$1)::(real™2 = real))
by (simp add: continuous-on-component)
ultimately have x: compact ((Av. v$1)“(path-image p U path-image q))
by (meson compact-continuous-image continuous-on-subset top-greatest)
then have Vz € ((A\v. v$1) (path-image p U path-image q)). ?a-z < x
by (simp add: assms(7) assms(8) bounded-component-cart bounded-has-Inf (1)
bounded-simple-path-image)
thus ?thesis using that[of %a-z — 1] by (smt (verit, ccfv-SIG) assms(10)
imagel)
qed
obtain b-z where b-z: Vv € path-image p U path-image q. b-t > v$1
proof—
let ?b-x = Sup ((\v. v$1)‘(path-image p U path-image q))
have compact (path-image p U path-image q)
by (simp add: assms(7) assms(8) compact-Un compact-simple-path-image)
moreover have continuous-on UNIV ((Av. v$1)::(real™2 = real))
by (simp add: continuous-on-component)
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ultimately have *: compact ((Av. v$1)‘(path-image p U path-image q))
by (meson compact-continuous-image continuous-on-subset top-greatest)
then have Vz € ((Av. v$1){(path-image p U path-image q)). ?b-z > x
by (simp add: assms(7) assms(8) bounded-component-cart bounded-has-Sup(1)
bounded-simple-path-image)
thus ?thesis using that[of ?b-x + 1] by (smt (verit, ccfv-SIG) assms(10)
imagel)
qed
obtain b-y where b-y: Vv € path-image p U path-image q. b-y > v$2
proof—
let 2b-y = Sup ((A\v. v82) {(path-image p U path-image q))
have compact (path-image p U path-image q)
by (simp add: assms(7) assms(8) compact-Un compact-simple-path-image)
moreover have continuous-on UNIV ((Av. v$2)::(real™2 = real))
by (simp add: continuous-on-component)
ultimately have x: compact ((Av. v$2) {(path-image p U path-image q))
by (meson compact-continuous-image continuous-on-subset top-greatest)
then have Vz € ((\v. v$2) {(path-image p U path-image q)). ?b-y > x
by (simp add: assms(7) assms(8) bounded-component-cart bounded-has-Sup(1)
bounded-simple-path-image)
thus ?thesis using that[of ?b-y + 1] by (smt (verit, ccfv-SIG) assms(10)
imagel)
qed

let 211 = linepath p1 (vector [b-z, 0])

let 212 = linepath (vector [b-z, 0]) ((vector [b-z, b-y]):(real”2))
let 218 = linepath (vector [b-z, b-y]) ((vector [a-z, b-y])::(real”2))
let 214 = linepath (vector [a-z, b-y]) ((vector [a-z, 0]):(real”2))
let 215 = linepath (vector [a-z, 0]) p0

let 7R’ = 211 +++ 212 +++ 213 +++ 2 +++ 715
let R = p +++ 7R’

have R-y-b: Vv € path-image ?R. v$2 < b-y
proof—
have Vv € path-image ?11. v82 < b-y
by (metis UnCI assms(9) b-y less-eg-real-def p1-def path-image-linepath pathfin-
ish-in-path-image segment-horizontal vector-2(2))
moreover have Vv € path-image ?212. v$2 < b-y
by (smt (verit, ccfv-SIG) UnCI assms(9) b-y p0-def path-image-linepath
pathstart-in-path-image segment-vertical vector-2(1) vector-2(2))
moreover have Vv € path-image ?13. v$2 < b-y
by (simp add: segment-horizontal)
moreover have Vv € path-image ?1}. v$2 < b-y
by (smt (verit, best) UnCI assms(9) b-y p0O-def path-image-linepath path-
start-in-path-image segment-vertical vector-2(1) vector-2(2))
moreover have Vv € path-image ?15. v82 < b-y
by (smt (verit) Unll assms(9) b-y linepath-image-01 pO-def path-defs(4)
pathstart-in-path-image segment-horizontal vector-2(2))
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ultimately show ?Zthesis by (smt (verit, best) UnCI b-y not-in-path-image-join)
qed
have R-y-q0: Vv € path-image ?R. v$2 > ¢q0%2
proof—
have Vv € path-image ?11. v$2 > q0$2
using assms(13) assms(9) pl-def pathfinish-in-path-image segment-horizontal
by fastforce
moreover have Vv € path-image ?12. v82 > q0%2
by (smt (28) UnCI assms(13) assms(9) b-y p1-def path-image-linepath pathfin-
ish-in-path-image segment-vertical vector-2(1) vector-2(2))
moreover have Vv € path-image ?13. v$2 > q0%2
by (metis calculation(2) ends-in-segment(2) path-image-linepath segment-horizontal
vector-2(2))
moreover have Vv € path-image ?14. v82 > q0%2
by (smt (23) UnCI assms(13) assms(9) b-y p1-def path-image-linepath pathfin-
ish-in-path-image segment-vertical vector-2(1) vector-2(2))
moreover have Vv € path-image ?715. v$2 > ¢q0$2
by (metis assms(13) assms(9) p0-def path-image-linepath pathstart-in-path-image
segment-horizontal vector-2(2))
ultimately show ¢thesis
by (metis assms(13) not-in-path-image-join)
qed

have R-z-a: Vv € path-image ?R. v$1 > a-x
proof—
have Vv € path-image ?11. v$2 > a-x
by (metis UnCI a-z assms(9) linorder-le-cases linorder-not-less p0-def path-image-linepath
pathstart-in-path-image segment-horizontal vector-2(2))
moreover have Vv € path-image ?12. v$2 > a-z
by (smt (23) UnCI assms(9) b-y calculation p0-def path-image-linepath path-
start-in-path-image pathstart-linepath segment-vertical vector-2(1) vector-2(2))
moreover have Vv € path-image ?13. v$2 > a-x
by (metis calculation(2) ends-in-segment(2) path-image-linepath segment-horizontal
vector-2(2))
moreover have Vv € path-image ?14. v$2 > a-x
by (smt (23) assms(9) calculation(1) calculation(8) ends-in-segment(1)
path-image-linepath segment-vertical vector-2(1) vector-2(2))
moreover have Vv € path-image ?15. v$2 > a-z
by (smt (verit, del-insts) UnCI a-z assms(9) pO-def path-image-linepath
pathstart-in-path-image segment-horizontal vector-2(2))
ultimately show #thesis
by (smt (23) UnCI a-z assms(9) b-z not-in-path-image-join p1-def path-image-linepath
pathfinish-in-path-image segment-horizontal segment-vertical vector-2(1) vector-2(2))
qed

have closed: closed-path ?R using assms p0-def unfolding simple-path-def closed-path-def
by simp

have simple: simple-path ?R

proof—
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have arc 7R’

proof—
let %2a = p1
let 2b = (vector [b-z, 0])::(real”2)
let ?c = (vector [b-z, b-y])::(real”2)
let ?d = (vector [a-z, b-y])::(real”2)
let %e = (vector [a-z, 0])::(real”2)
let 2f = p0

have arcs: arc 211 N arc 212 A arc 218 A arc 214 N arc 215
by (smt (verit, ccfv-SIG) UnCI a-z arc-linepath assms(9) b-x b-y pO-def
pl-def pathfinish-in-path-image pathstart-in-path-image vector-2(1) vector-2(2))

have 1415: path-image 21 N path-image ?15 = {pathfinish 214}
using linepath-int-corner|of ¢d ?e ?f] arc-simple-path arcs constant-linepath-is-not-loop-free
p0 simple-path-def
by auto
have [3l/: path-image ?13 N path-image ?l4 = {pathfinish 713}
using linepath-int-corner|of ?c ?d ?e]
by (metis Int-commute arc-simple-path arcs closed-segment-commute linepath-0'
linepath-int-corner path-image-linepath pathfinish-linepath pathstart-def vector-2(2))
have [213: path-image ?12 N path-image ?13 = {pathfinish 712}
using linepath-int-corner|of 2b ?c 2d]
by (metis Int-commute arc-simple-path arcs linepath-0' linepath-int-corner
pathfinish-linepath pathstart-def vector-2(2))
have 1112: path-image ?11 N path-image ?12 = {pathfinish 211}
using linepath-int-corner|of %a ?b ?c]
by (metis Int-commute arc-distinct-ends arcs assms(9) closed-segment-commute
linepath-int-corner path-image-linepath pathfinish-linepath pathstart-linepath vector-2(2))

have [315: path-image ?13 N path-image 215 = {}
using linepath-int-horizontal[of ?c ?d ?e ?f]
by (metis arc-distinct-ends arcs assms(9) linepath-int-horizontal pathfin-
ish-linepath pathstart-linepath vector-2(2))
have [2l: path-image ?12 N path-image ?l4 = {}
using linepath-int-vertical[of ?b ?c ?d ?e]
by (metis arc-distinct-ends arcs linepath-int-vertical pathfinish-linepath path-
start-linepath vector-2(1))
have [113: path-image ?11 N path-image ?13 = {}
using linepath-int-vertical[of ?a ?b ?c ?d)
by (metis arc-distinct-ends arcs assms(9) linepath-int-horizontal pathfin-
ish-linepath pathstart-linepath vector-2(2))

have [215: path-image ?12 N path-image 215 = {}
using linepath-int-columns|of ?b ¢ ?e ?f]
by (smt (verit, ccfv-threshold) Int-commute UnCI a-z b-x linepath-int-columns
p0 pO-def pathstart-in-path-image pathstart-join vector-2(1) verit-comp-simplify (3))
have [11}: path-image 211 N path-image 214 = {}
using linepath-int-columns|of ?a ?b 2d ?e]
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by (smt (23) UnCI a-z assms(9) b-z disjoint-iff p1-def path-image-linepath
pathfinish-in-path-image segment-horizontal segment-vertical vector-2(1) vector-2(2))

have [115: path-image 711 N path-image 215 = {}
using linepath-int-columns|of %a ?b e ?f]
by (smt (28) UnCI a-def a-x assms(10) assms(9) b-z disjoint-iff p1-def
path-image-linepath pathfinish-in-path-image segment-horizontal vector-2(1) vec-
tor-2(2))

have path-image 214 N path-image 215 = {pathfinish 214}
using 1415 by blast
moreover have sf-45: pathfinish 214 = pathstart ?l5 by simp
ultimately have arc (214 +++ 215)
by (metis arc-join-eg-alt arcs)
moreover have path-image 218 N path-image (214 +++ ?215) = {pathfinish
213}
using 131} 315
by (metis (no-types, lifting) Int-Un-distrib sf-45 insert-is-Un path-image-join)
moreover have sf-345: pathfinish 213 = pathstart (?lf +++ ?15) by simp
ultimately have arc (213 +++ 71 +++ ?215)
by (metis arc-join-eg-alt arcs)
moreover have path-image ?12 N path-image (713 +++ 214 +++ ?215) =
{pathfinish 212}
using 1213 1214 1215
by (smt (verit) Int-Un-distrib sf-45 sf-845 insert-is-Un path-image-join
sup-bot-left)
moreover have sf-2345: pathfinish 212 = pathstart (213 +++ 214 +++ 915)
by simp
ultimately have arc (712 +4+ 718 ++4 214 +++ ?15)
by (metis arc-join-eg-alt arcs)
moreover have path-image 211 N path-image (712 +++ 218 +++ 714 +++
?215) = {pathfinish 211}
proof—
have path-image (212 +++ 213 +++ 2l +++ 215)
= path-image ?12 U path-image ?13 U path-image ?1} U path-image ?15
by (simp add: path-image-join sup-assoc)
thus ?thesis using (112 1113 1114 1115 by blast
qed
moreover have pathfinish ?l1 = pathstart (212 +++ 213 +++ 214 +++
215) by simp
ultimately show arc (211 +++ 212 +++ 213 +++ 2l +++ 215)
by (metis arc-join-eg-alt arcs)
qed
moreover have loop-free p using assms(1) assms(7) simple-path-def by blast
moreover have path-image ?R’ N path-image p = {p0, p1}
proof—
have path-image p N path-image 212 = {} using b-z segment-vertical by auto
moreover have path-image p N path-image 213 = {} using b-y segment-horizontal
by auto

277



moreover have path-image p N path-image ¢l = {} using a-z segment-vertical
by auto
moreover have path-image p N path-image ?11 = {p1}
proof—
have p! € path-image p using p1-def by blast
moreover have path-image p N path-image 211 C {pl}
proof(rule subsetl)
fix z assume *: = € path-image p N path-image ?11
then have z$1 < a
using a-def assms(10) assms(12) assms(9) Il-def linepath-image-01
segment-horizontal by auto
moreover have z$1 > a
by (smt (28) * Int-iff Un-iff a-def assms(9) b-z linepath-image-01
path-defs(4) segment-horizontal vector-2(1) vector-2(2))
moreover have 2$2 = 0 using * assms(9) segment-horizontal by auto
ultimately show z € {pI} using a-def assms(9) segment-vertical by
fastforce
qed
ultimately show ?thesis by auto
qed
moreover have path-image p N path-image 215 = {p0}
proof—
have p0 € path-image p using p0-def by blast
moreover have path-image p N path-image 215 C {p0}
proof (rule subsetl)
fix z assume *: € path-image p N path-image %15
then have z$1 < 0
using R-z-a assms(9) pO-def pathstart-in-path-image segment-horizontal
by fastforce
moreover have 2$1 > 0
proof—
have z € {z. 282 = 0} using * assms(9) segment-horizontal by fastforce
then have z € | using * assms(12) by auto
thus ?thesis using a-def assms(10) assms(9) I-def segment-horizontal
by auto
qed
moreover have 1$2 = 0 using * assms(9) segment-horizontal by auto
ultimately show z € {p0} using a-def assms(9) segment-vertical by
fastforce
qed
ultimately show ?thesis by auto
qed
moreover have path-image ?R’
= path-image ?l1 U path-image 212 U path-image ?13 U path-image 21} U
path-image ?15
by (simp add: Un-assoc path-image-join)
ultimately show ?thesis by fast
qed
moreover have arc p
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using a-def arc-simple-path assms(10) assms(7) p0 p0-def p1-def by fastforce
ultimately show ¢thesis
by (metis (no-types, lifting) simple-path-join-loop-eq Int-commute dual-order.refl
pO-def p1-def pathfinish-join pathfinish-linepath pathstart-join pathstart-linepath)
qed

have inside-outside: inside-outside ?R (path-inside ?R) (path-outside ?R)
using closed simple Jordan-inside-outside-real2
by (simp add: closed-path-def inside-outside-def path-inside-def path-outside-def)

have interior-frontier: path-inside ?R = interior (path-inside ?R)
A frontier (path-inside ?R) = path-image ?R
using inside-outside interior-open unfolding inside-outside-def by auto

have path-image q N path-image ?11 C {p1}
proof (rule subsetl)
fix z assume *: © € path-image q N path-image ?11
then have 231 < a using a-def assms(10) assms(11) assms(9) Il-def seg-
ment-horizontal by auto
moreover have z$1 > a
by (smt (28) * Int-iff Un-iff a-def assms(9) b-z linepath-image-01 path-defs(4)
segment-horizontal vector-2(1) vector-2(2))
moreover have z$2 = 0 using * assms(9) segment-horizontal by auto
ultimately show z € {p1} using a-def assms(9) segment-vertical by fastforce
qed
moreover have path-image ¢ N path-image 215 C {p0}
proof (rule subsetl)
fix z assume *: © € path-image ¢ N path-image ?15
then have z$1 < 0
using R-z-a assms(9) p0-def pathstart-in-path-image segment-horizontal by
fastforce
moreover have z$1 > 0
using * a-def assms(10) assms(11) assms(9) l-def segment-horizontal by auto
moreover have 82 = 0 using * assms(9) segment-horizontal by auto
ultimately show z € {p0} using a-def assms(9) segment-vertical by fastforce
qed
moreover have ?thesis if p1 € path-image q N path-image ?11 using p1-def that
by blast
moreover have ?thesis if p0 € path-image q N path-image ?15 using p0-def that
by blast
moreover have ?thesis if
g-int-l1: path-image q N path-image ?11 = {} and
g-int-15: path-image q N path-image 715 = {}
proof—
have g¢-int-12: path-image q N path-image 212 = {}
using b-z segment-vertical by auto
moreover have ¢-int-13: path-image g N path-image 213 = {}
using UnCI b-y segment-horizontal by auto
moreover have g¢-int-l4: path-image q N path-image 21, = {}
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using a-z segment-vertical by auto
moreover have ?thesis if g0 € path-image p using qO0-def that by blast
moreover have path-image g N path-image ?R # {} if q0 ¢ path-image p
proof—

have q0 € path-outside ?R

proof—
let ?e2’ = (vector [0, —1])::(real”2)
let ?ray = Ad. q0 + d *xp %e2’
have = (3d>0. ?ray d € path-image ?R)
proof—
have Vd>0. (?ray d)$2 < q0%2 by auto
thus ?thesis using R-y-q0 by fastforce
qed
moreover have bounded (path-inside ?R) using bounded-finite-inside simple
by blast
moreover have ?e2’ # 0 by (metis vector-2(2) zero-index zero-neg-neg-one)
ultimately have g0 ¢ path-inside ?R
using ray-to-frontier|of path-inside ?R] interior-frontier by metis
moreover have ¢0 ¢ path-image ?R
using that g-int-11 g-int-12 g-int-13 g-int-l4 g-int-15
by (simp add: disjoint-iff not-in-path-image-join pathstart-in-path-image
q0-def)
ultimately show ?thesis using inside-outside unfolding inside-outside-def
by blast
qed
then have ¢q0 € — (path-inside ?R)
by (metis Compll Intl equalsOD inside-Int-outside path-inside-def path-outside-def)
moreover have ¢! € path-inside R

proof—
let ?e = (vector [q181, b-y])::(real™2)
let 2d1 = (vector [b-z, b-y])::(real”2)
let 2d2 = (vector [a-z, b-y])::(real 2)
obtain € where e: 0 < e A e < dist 7e q1 N e < dist e ?d1 N e < dist %e
?d2
proof—
have %e # g1
by (metis UnCI b-y order-less-irrefl pathfinish-in-path-image q1-def
vector-2(2))
moreover have ?e # ?d1
by (smt (verit) UnCI b-z pathfinish-in-path-image q1-def vector-2(1))
moreover have %e # ?2d2
by (metis UnCI a-z order-less-irrefl pathfinish-in-path-image q1-def
vector-2(1))
ultimately have 0 < dist ?e q1 N 0 < dist 7e 2d1 N 0 < dist 7e ?d2 by
simp
then have 0 < Min {dist ?e q1, dist ?e ?d1, dist ?e ?d2} by auto
then obtain ¢ where 0 < ¢ A e < Min {dist %e q1, dist %e ?d1, dist e
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2d2}
by (meson field-lbound-gt-zero)
thus ?thesis using that by auto
qed
then have ?e € path-image ?13
by (simp add: a-z b-x ql-def segment-horizontal less-eq-real-def pathfin-
ish-in-path-image)
then have %e € path-image ?R by (simp add: p1-def path-image-join)
then have ?e € frontier (path-inside ?R)
using inside-outside unfolding inside-outside-def by blast
then obtain int-p where int-p: int-p € ball ?e € N int-p € path-inside R
by (meson ¢ inside-outside frontier-straddle mem-ball)

have int-p-z: a-z < int-p$1 A int-p$1 < b-z
by (metis (mono-tags, lifting) dist-bound-1 Unl2 e a-z b-x dist-commute
int-p pathfinish-in-path-image q1-def vector-2(1) vector-2(2))
have int-p$2 < b-y
proof(rule ccontr)
have int-p$2 # b-y
proof—
have int-p$2 = b-y = int-p € path-image ?13
using int-p-z by (simp add: segment-horizontal)
moreover have int-p € path-image ?18 = int-p € path-image ?R
by (simp add: p1-def path-image-join)
moreover have path-image 7R N path-inside YR = {}
using inside-outside unfolding inside-outside-def by blast
ultimately show %thesis using int-p by fast
qed
moreover assume — nt-p$2 < b-y
ultimately have *: int-p$2 > b-y by simp

let ?e2 = (vector [0, 1])::(real”2)
let ?ray = Ad. int-p + d *xp 7e2
have - (3d>0. ?ray d € path-image ?R)
proof—
have Vd>0. (?ray d)$2 > b-y using * by auto
thus ?thesis using R-y-b by fastforce
qed
moreover have bounded (path-inside ?R) using bounded-finite-inside
simple by blast
moreover have %e2 # 0 using ele2-basis(4) by force
ultimately have int-p ¢ path-inside ?R
using ray-to-frontier|of path-inside ?R] interior-frontier by metis
thus Fulse using int-p by blast
qed
moreover have int-p$2 > q1$2
proof—
have dist int-p ?e < ¢ using ¢ dist-commute-lessl int-p mem-ball by blast
then have dist (int-p$2) (?e$2) < € by (smt (verit, best) dist-vec-nth-le)
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then have 1: int-p$2 > %e$2 — e by (simp add: dist-real-def)

have ¢q1$1 = ?e$1 by simp
then have dist g1 %e = dist (¢1$2) (?e32) using axis-dist by blast
then have ¢1$2 < 2¢$2 — ¢
by (smt (verit) UnCI e b-y dist-commute dist-real-def pathfinish-in-path-image
q1-def vector-2(2))
moreover have ¢1$2 < ?e$2 by (simp add: b-y pathfinish-in-path-image
q1-def)
moreover have dist q1 ?e > ¢ by (metis ¢ dist-commute)
ultimately have ¢1$2 < %¢$2 — ¢ by presburger
thus ?thesis using 1 by force
qged
ultimately have int-p-y: int-p$2 < b-y A int-p$2 > q1$2 by blast

let ?int-l = linepath int-p q1

have path-image %int-l N path-image p = {}
proof—
have Vz € path-image p. (%int-1 0)$2 > z$2
by (smt (verit) int-p-y assms(14) linepath-0")
moreover have Vz € path-image p. (?int-1 1)$2 > 2$2
by (simp add: assms(14) linepath-1")
ultimately have Vz € path-image p. Vy € path-image ?int-l. y$2 > 2$2
by (metis assms(14) linepath-0" linepath-bound-2(1))
thus ?thesis by blast
ged
moreover have path-image ?int-l N path-image 911 = {}
by (smt (verit, best) assms(14) assms(9) disjoint-iff int-p-y linepath-int-rows
p0-def pathstart-in-path-image vector-2(2))
moreover have path-image ?int-l N path-image 212 = {}
by (metis UnCI b-z int-p-x linepath-int-columns pathfinish-in-path-image
q1-def vector-2(1))
moreover have path-image ?int-l N path-image 713 = {}
using int-p-y linepath-int-rows by auto
moreover have path-image ?int-l N path-image 214 = {}
by (metis UnCI a-z inf-commute int-p-z linepath-int-columns pathfin-
ish-in-path-image q1-def vector-2(1))
moreover have path-image ?int-l N path-image 215 = {}
by (smt (verit, best) assms(14) assms(9) disjoint-iff int-p-y linepath-int-rows
p0-def pathstart-in-path-image vector-2(2))
ultimately have path-image ?int-l N path-image ?R = {}
by (simp add: disjoint-iff not-in-path-image-join)
then have path-image ?int-l C path-inside ?R V path-image %int-1 C
path-outside 7R
by (smt (verit, ccfv-SIG) convex-imp-path-connected convex-segment(1) dis-
joint-insert(1) insert-Diff inside-outside-def int-p linepath-image-01 local.inside-outside
path-connected-not-frontier-subset path-defs(4) pathstart-in-path-image pathstart-linepath)
moreover have ?int-l 0 = int-p A int-p € path-inside ?R
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using int-p by (simp add: linepath-0")
ultimately have path-image ?int-l C path-inside ?R
using inside-outside-def local.inside-outside by auto
thus “thesis by auto
qed
ultimately have path-image ¢ N — (path-inside ?R) # {} N path-image q N
(path-inside ?R) # {}
unfolding q0-def q1-def by fast
moreover have path-connected (path-image q)
by (simp add: assms(8) path-connected-path-image simple-path-imp-path)
moreover have path-image ?R = frontier (path-inside ?R)
using inside-outside unfolding inside-outside-def p0-def path-inside-def by
auto
ultimately show ?thesis by (metis Diff-eq Diff-eq-empty-iff path-connected-not-frontier-subset)
qed
ultimately show #thesis
by (smt (verit, ccfv-threshold) disjoint-iff-not-equal not-in-path-image-join
g-int-11 g-int-15)
qed
ultimately show ¢thesis by auto
qed

lemma pocket-fill-line-int-aux2:
fixes p q :: R-to-R2
fixes A :: (real™2) set
defines p0 = pathstart p
defines p!1 = pathfinish p
defines a = p1$1
defines | = closed-segment p0 pl1
assumes simple-path p
assumes p0$1 = 0 A p0$2 = 0 A p1$2 =0
assumes g > 0
assumes conver A A compact A
assumes {p0, pl} C frontier A
assumes p ‘ {0<..<1} C interior A
shows path-image p N {z. 2$2 = 0} C |
proof—
have I: | = {z. 282 = 0 A 281 € {0..a}}
using horizontal-segment-at-0' a-def assms(6) assms(7) l-def by presburger
have endpoints: (p 0)81 = 0N (p )32 =0AN(p )81 =a N (p 1)$2 =0
by (metis a-def assms(6) pO-def p1-def pathfinish-def pathstart-def)

have False if x: 3t € {0..1}. (p )82 =0 A ((p )$1 > a V (p t)$1 < 0)
proof—
obtain ¢ where t € {0<.<I} A(pt)$2 =0 A ((p t)$1 > a V (p )$1 < 0)
by (metis * assms(7) endpoints atLeastAtMost-iff greaterThanLessThan-iff
less-eq-real-def linorder-not-le)
then obtain z where z: z € p{0<.<I1} AN 2$2 =0 A (281 > a V 281 < 0)
by blast
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thus Fulse
using pocket-fill-line-int-auz|of p0 p1 z A
by (smt (verit, del-insts) Diff-iff a-def assms(10) assms(6) assms(7) assms(8)
assms(9) empty-subset] endpoints exhaust-2 frontier-def frontier-subset-compact in-
sert-subset interior-subset p0-def pathstart-def subset-eq vec-eq-iff zero-inder)
qed
then have Vit € {0..1}. (p t)$2 = 0 — (p t)$1 € {0..a} by fastforce
then have Vv € path-image p. v82 = 0 — v$1 € {0..a} by (simp add: imageE
path-defs(4))
thus %thesis using [ by blast
qged

lemma three-points-on-line:

fixes a b :: 'a::real-vector

assumes A = affine hull {a, b}

assumes a # b

assumes {z, y, z} C A

assumes t £ Yy Ay # 2 ANz # 2

shows z € open-segment y z V y € open-segment x z V z € open-segment & y
proof—

let fu =56 —a

have x: Aa 8 y:real. a € open-segment 3 ~
= a + a xg %u € open-segment (a + B xg %u) (a + v *r %u)
proof—
fix a B 7y :: real
assume *: o« € open-segment 3 vy

define = where z = a + « *g “u
define y where y = a + (8 *r “u
define z where z = a + v *xg ?u

obtain v where v: a = (I —v) xS+ vy Av e {0<.<I}
by (metis (no-types, lifting) * imageE in-segment(2) real-scaleR-def seg-
ment-image-interval(2))
then have 2 = a + ((1 — v) x 8 + v * ¥) xg ?u using z-def by blast

also have ... = a + (((1 — v) * B8) *g 2u) + ((v * 7) *r %u) by (simp add:
scaleR-left.add)

also have ... = a + ((I — v) *g (8 *r ?u)) + (v *r (v *r %u)) by simp

also have ... = a + ((1{ — v) *g (y — a)) + (v *r (2 — a)) by (simp add:
y-def z-def)

also have ... = a+y — a — vx*g (y — a) + v xg (z — a) by (simp add:
scaleR-left-diff-distrib)

also have ... =y — v *g (y — a) + v *xg (2 — a) by simp

also have ... = y — (v*g y) + (v *g a) + (v *xg 2) — (v *g a) by (simp add:
scale R-right-diff-distrib)

also have ... = (I — v) *gr y + v *r 2z by (metis add-diff-cancel diff-add-eq

scaleR-collapse)
finally have z = (I — v) *g y + v *g 2 .
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moreover have 0 < 1 — v A 1 — v < 1 using v by fastforce

ultimately have = € closed-segment y z using in-segment(1) by auto

moreover have z # y A x # 2

by (metis x add-diff-cancel-left’ assms(2) eq-iff-diff-eq-0 in-open-segment-iff-line

open-segment-commaute open-segment-subsegment scale R-right-imp-eq x-def y-def z-def)

ultimately show a + a g %u € open-segment (a + 5 *r ?u) (a + v *g %u)

unfolding open-segment-def using z-def y-def z-def by force
qed

obtain o f v where zyz: t = a + a*xg 2u ANy=a+ B *g 2uNz=a+ 7y
*R 7u
using affine-hull-2-alt[of a b] assms(1) assms(3) by auto
then have o« # A B # v A a # v using assms by blast
moreover have a € closed-segment 5 v V B € closed-segment o v V ~ €
closed-segment o 3
by (metis atLeastAtMost-iff closed-segment-commute less-eq-real-def less-maz-iff-disj
linorder-not-less real-Icc-closed-segment)
ultimately have o € open-segment [ v V [ € open-segment o v V ~ €
open-segment o 3
unfolding open-segment-def by fast
thus ?thesis using x xyz by presburger
qged

lemma pocket-fill-line-int-auz3:

fixes A :: (real™2) set

assumes conver A A compact A

assumes v % 0

assumes closed-segment 0 w C frontier A (is closed-segment %a ?b C -)

assumes w + v = 0

assumes w # 0

shows (AC{z.2-v<0}VAC{z.z-v>0}) (is4dC ?P1 Vv AC ?P2)
proof—

have frontiers: frontier ?P1 = frontier ?P2 A frontier ?P1 C ?P2 A frontier
P2 C ?P1

by (smt (verit, ccfo-threshold) Collect-mono assms(2) frontier-halfspace-component-ge
frontier-halfspace-le inner-commaute subset-antisym)

have frontier: frontier ?P1 = {z. x - v = 0}

by (simp add: assms(2) frontier-halfspace-component-ge frontiers)

have ?thesis if interior A # {}
proof—
have interior A C ?P1 V interior A C ?P2
proof (rule ccontr)
assume - (interior A C ?P1 V interior A C ?P2)
then obtain z y where zy: © € ((interior A) N ?P1) — ?P2 A y € ((interior
A)n ¢P2) — ?P1
by fastforce
moreover have z € frontier ?P1 U interior ?P1 N y € frontier ?P2 U
interior ?P2
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by (metis DiffD1 IntD2 Un-Diff-cancel? frontiers closure-Un-frontier fron-
tier-def interior-subset sup.orderE xy)
ultimately have zy": © € (interior A) N interior ?P1 N y € (interior A) N
interior ?P2
using frontiers by blast
then have closed-segment x y N frontier ?P1 # {}
by (metis (no-types, lifting) DiffD1 DiffD2 Int-iff convez-closed-segment con-
vex-imp-path-connected empty-iff ends-in-segment(1) ends-in-segment(2) in-mono
path-connected-not-frontier-subset xy)
moreover have closed-segment © y C interior A
by (metis convez-interior Int-iff assms(1) convex-contains-segment xy’)
ultimately obtain z where z: z € interior A N frontier ?P1 by blast

have closed-segment ?a ?b C frontier ?P1
proof (rule subsetl)
fix z
assume z € closed-segment ?a ?b
then obtain u where z = (I — u) *g Pa + ux*xg 6N 0 < uAhu<lIl
unfolding closed-segment-def by blast
then have z - v = u xg (?b - v) by simp
moreover have ?b - v = 0 by (simp add: assms(4))
ultimately have z - v = 0 by simp
thus z € frontier ?P1 using frontier by blast
qed
moreover have z ¢ closed-segment ?a ?b using assms(3) frontier-def z by
fastforce
ultimately have z € frontier ?P1 — closed-segment ?a ?b using z by blast
moreover have collinear {z, %a, ?b}
proof—
have {z, %a, 20} C {z. 2z - v = 0}
using {0——w} C frontier {z. z - v < 0} frontier z by auto
moreover have {z. z - v = 0} = affine hull {?a, ?b}
by (metis (no-types, lifting) Collect-mono assms(2) assms(5) calculation
halfplane-frontier-affine-hull inner-commute insert-subset subset-antisym)
ultimately show ?thesis using collinear-affine-hull by auto
qed
ultimately have ?a € open-segment z ?b V ?b € open-segment z Za
using three-points-on-linelof {z. z - v = 0}]
by (smt (23) <z ¢ {0——w}> assms(5) collinear-3-imp-in-affine-hull ends-in-segment (1)
ends-in-segment(2) hull-redundant hull-subset insert-commute open-closed-segment
three-points-on-line)
moreover have open-segment z ?b C interior A N\ open-segment z ?a C
interior A
proof—
have closed-segment z 2b C A A closed-segment z %a C A
by (meson IntD1 assms(1) assms(3) closed-segment-subset ends-in-segment(1)
ends-in-segment(2) frontier-subset-compact in-mono interior-subset z)
then have rel-interior (closed-segment z 2b) C interior A
A rel-interior (closed-segment z ?a) C interior A
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by (metis IntD1 <z ¢ {0——w}> assms(1) closure-convex-hull convezr-hull-eq
in-interior-closure-convexr-segment order-class.order-eq-iff rel-interior-closed-segment
subsetD subset-closed-segment z)
moreover have rel-interior (closed-segment z 2b) = open-segment z ?b
A rel-interior (closed-segment z ?a) = open-segment z ?a
by (metis <z ¢ {0——w}> closed-segment-commute ends-in-segment(1)
rel-interior-closed-segment)
ultimately show ?thesis by force
qed
ultimately have ?a € interior AV ?b € interior A by fast
thus False using assms(3) frontier-def by auto
qed
then have closure (interior A) C closure ?P1 V closure (interior A) C closure
7P2
using closure-mono by blast
moreover have closed ?P1 A closed ?P2
by (simp add: closed-halfspace-component-ge closed-halfspace-component-le)
moreover have closure (interior A) = A
using assms(1)
by (simp add: compact-imp-closed convex-closure-interior that)
ultimately show ¢thesis using closure-closed by auto
qed
moreover have ?thesis if interior A = {}
proof(rule ccontr)
assume — (A C ?P1 vV A C ?P2)
then obtain z y where zy: © € (AN 9P1) — ?P2 Ay € (AN ?P2) — ?P1
by fastforce
moreover have x € frontier P1 U interior ?P1 A y € frontier P2 U interior
7P2
by (metis DiffD1 IntD2 Un-Diff-cancel2 frontiers closure-Un-frontier fron-
tier-def interior-subset sup.orderE xy)
ultimately have zy”" = € A N interior ?P1 N y € A N interior ?P2 using
frontiers by blast
have — collinear {%a, ?b, z, y}
proof (rule ccontr)
assume — - collinear {%a, ?b, z, y}
then have x: collinear {?a, ?b, z, y} by blast
then have {%a, ?b, z, y} C affine hull {%a, ?b}
by (metis assms(5) collinear-3-imp-in-affine-hull collinear-4-8 hull-subset
insert-subset)
moreover have affine hull {?a, 20} = {z. z - v = 0}
by (smt (verit) DiffE x assms(2) assms(4) assms(5) collinear-3-imp-in-affine-hull
collinear-4-3 halfplane-frontier-affine-hull inner-commute mem-Collect-eq xy)
moreover have ... = frontier ?P1 A ... = frontier ?P2
using frontiers assms(2) frontier-halfspace-component-ge by blast
ultimately show Fulse using frontiers zy by auto
qed
then obtain ¢! ¢2 ¢3 where c123: = collinear {c1, c2, ¢3} A {c1, c2, c3}
C {%a, %, z, y}
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by (metis assms(5) collinear-4-3 insert-mono subset-insertl)
then have interior (convex hull {c1, c2, ¢3}) # {}
by (metis Jordan-inside-outside-real? closed-path-def make-triangle-def path-inside-def
polygon-def polygon-of-def triangle-inside-is-convexr-hull-interior triangle-is-polygon)
moreover have {c1, c2, ¢3} C A
by (smt (verit, del-insts) c123 xzy’ assms(1) assms(3) empty-subset] fron-
tier-subset-compact in-mono inf.orderE insert-absorb insert-mono le-infE subsetl
subset-closed-segment)
ultimately have interior A # {}
by (metis assms(1) interior-mono subset-empty subset-hull)
thus Fulse using that by blast
qed
ultimately show ?thesis by blast
qed

lemma pocket-fill-line-int-aux4 :

fixes p q :: R-to-R2

fixes A :: (real™2) set

defines p0 = pathstart p

defines p!1 = pathfinish p

defines g0 = pathstart q

defines g1 = pathfinish q

defines a = p1$1

defines | = closed-segment p0 pl1

assumes simple-path p

assumes simple-path q

assumes path-image p N path-image ¢ = {}

assumes p0$1 = 0 A p0$2 = 0 A p1$2 =0

assumes a > 0

assumes Vv € path-image p. q0$2 < v$2

assumes Vv € path-image p. q1$2 > v$2

assumes conver A A compact A

assumes {p0, p1} C frontier A

assumes p{0<..<1} C interior A

assumes path-image ¢ C A

shows [ C frontier AV z € (path-image p) U (path-image q). 32 > 0 q0$2 = 0
proof—

have I: | = {z. 282 = 0 A 281 € {0..a}}

using horizontal-segment-at-0' a-def assms(10) assms(11) I-def by presburger
have endpoints: (p 0)81 = 0N (p )32 =0AN(p )81 =a N (p 1)$2 =0
by (metis a-def assms(10) pO-def p1-def pathfinish-def pathstart-def)

have | C frontier A if — (path-image ¢ N {z. 2$2 = 0} C 1)
proof—
from that obtain z where = € path-image ¢ N {z. 282 = 0} A (281 < 0 V
z$1 > a)
by (smt (verit) Int-Collect a-def assms(10) endpoints I-def pO-def pathstart-def
segment-horizontal subsetl)
thus ?thesis

288



using pocket-fill-line-int-auz[of p0 pl1 = A] unfolding I-def
by (smt (verit, del-insts) IntD2 Int-commute a-def assms(11) assms(14)
assms(15) assms(17) assms(10) endpoints exhaust-2 frontier-subset-compact in-
sert-subset mem-Collect-eq pO-def pathstart-def subset-eq vec-eq-iff zero-index)
qged
moreover have Fualse if (path-image ¢ N {z. 282 = 0} C 1)
proof—
have (path-image p N {z. 282 = 0} C 1)
using pocket-fill-line-int-auz2
by (metis a-def assms(10) assms(11) assms(14) assms(15) assms(16) assms(7)
I-def p0O-def p1-def)
then have path-image p N path-image q # {}
using pocket-fill-line-int-auxl
by (metis (mono-tags, lifting) assms(11) assms(12) assms(13) assms(7)
assms(8) endpoints l-def pO-def pl-def pathfinish-def pathstart-def qO-def q1-def
that)
thus False by (simp add: assms(9))
qed
ultimately show *: [ C frontier A by blast

show Vz € (path-image p) U (path-image q). z$2 > 0
proof(rule ccontr)
assume — (Vz € (path-image p) U (path-image q). 2$2 > 0)
then have 3z € (path-image p) U (path-image q). 282 < 0 using linorder-not-le
by blast
then obtain z where z: z € ((path-image p) U (path-image q)) N A A 2$2 <
0
using assms(12) assms(17) pathstart-in-path-image q0-def by fastforce

let 2v = (vector [0, 1])::(real”2)
have 1: ?v # 0 by (simp add: ele2-basis(3))
have 2: closed-segment 0 p1 C frontier A
by (smt (verit, del-insts) x Int-closed-segment closed-segment-eq double-
ton-eq-iff endpoints I-def p0-def pathstart-def segment-vertical zero-index)
have 3: pI - %v = 0 by (metis assms(10) cart-eq-inner-axis ele2-basis(3))
have 4: p! # 0 using a-def assms(11) by force
have x: (AC{z.z- 2w <0} VAC{z. z- % > 0})
using pocket-fill-line-int-auz3[OF assms(14) 1 2 3 4] by blast
moreover have ¢1$2 > 0 using assms(10) assms(13) p0-def pathstart-in-path-image
by fastforce
ultimately show Fulse
by (metis (no-types, lifting) IntE z assms(17) ele2-basis(3) inner-axis
linorder-not-less mem-Collect-eq pathfinish-in-path-image qI-def real-inner-1-right
subsetD)
qed
moreover have ¢032 < 0 using assms(10) assms(12) p1-def by force
moreover have ¢0 € (path-image p) U (path-image q)
by (simp add: pathstart-in-path-image q0-def)
ultimately show ¢0$2 = 0 by force
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qed

lemma pocket-fill-line-int-auxs:
fixes p ¢ :: R-to-R2
fixes A :: (real™2) set
defines p0 = pathstart p
defines p!1 = pathfinish p
defines ¢0 = pathstart q
defines g1 = pathfinish q
defines a = p1$1
defines | = closed-segment p0 pl1
assumes simple-path p
assumes simple-path q
assumes path-image p N path-image ¢ = {q0, q1}
assumes p0$1 = 0 A p0$2 = 0 A p1$2 =0
assumes a > 0
assumes A = convex hull (path-image p U path-image q)
assumes {p0, p1} C frontier A
assumes p{0<..<1} C interior A
assumes path-image ¢ C A
assumes dz € p{0<..<1}. 282 > 0
assumes q0 = pl A ql = p0
shows | C frontier A Vx € path-image p U path-image q. 32 > 0
proof—
have 1: 1 C frontier A if Yz € path-image p U path-image q. 182 > 0
proof—
have Vz € path-image p U path-image q. = - (vector [0, 1]) > 0
by (simp add: ele2-basis(3) inner-axis that)
then have Vi € A. z - (vector [0, 1]) > 0
by (smt (verit, ccfv-threshold) convez-cut-aux’ assms(12) inner-commute
mem-Collect-eq subset-eq)
then have A C {z. z - (vector [0, 1]) > 0} by blast
moreover have frontier {z. = + ((vector [0, 1])::(real™2)) > 0} = {z. z -
(vector [0, 1]) = 0}
by (metis dual-order.refl frontier-halfspace-component-ge not-one-le-zero vec-
tor-2(2) zero-index)
moreover have | C {z. z - (vector [0, 1]) = 0}
proof—
have Vz € . 232 = 0 using assms(10) l-def segment-horizontal by presburger
thus ?thesis by (simp add: cart-eq-inner-azis ele2-basis(3) subset-eq)
qed
ultimately show Zthesis
by (smt (verit, best) Un-upperl assms(12) closed-segment-subset convez-convez-hull
hull-subset in-frontier-in-subset [-def p0-def p1-def pathfinish-in-path-image path-
start-in-path-image subset-eq)
qed
have 2: False if tht: = (Vz € (path-image p) U (path-image q). 82 > 0)
proof—
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obtain z tr where z: tx € {0..1} A gtz =z A (Vz € path-image p. 32 <
2$2)
using ezxists-point-below-all[of p q] that
by (smt (verit, del-insts) tht assms(10) assms(12) assms(14) assms(7)
assms(8) image-iff pO-def p1-def path-image-def pathfinish-def pathstart-def sim-
ple-path-imp-path)
obtain y ty where y: ty € {0..1} A gty =y A (Vz € path-image p. y$2 >
z$2)
using exists-point-above-all[of p q]
by (smt (verit, del-insts) assms(10) assms(12) assms(14) assms(16) assms(7)
assms(8) image-iff pO-def pl-def path-image-def pathfinish-def pathstart-def sim-
ple-path-imp-path)

let 72Q) =
Aq'. simple-path ¢’ A path-image p N path-image ¢’ = {}
ANg 0=qtzANqg 1=qty
A path-image q' C path-image q
have *: A\¢’. ?Q ¢’ = Fulse
proof—
fix ¢’
assume *: 2Q) ¢’

have 2: simple-path q' by (simp add: *)
have 3: path-image p N path-image ¢’ = {} by (simp add: *)
have 6: V vepath-image p. pathstart ¢'$ 2 < v $ 2
by (simp add: x less-eq-real-def pathstart-def )
have 7: V vepath-image p. v $ 2 < pathfinish ¢’ $ 2 by (simp add: * pathfin-
ish-def y)
have 11: path-image ¢’ C A using * assms(15) by blast
have Vz € (path-image p) U (path-image q’). 282 > 0
using pocket-fill-line-int-auz (2)[of p, OF - 23 --6 7 - - - 11]
by (metis a-def assms(10) assms(11) assms(12) assms(13) assms(14)
assms(7) assms(8) compact-Un compact-convex-hull compact-simple-path-image con-
vex-convez-hull p0-def p1-def)
thus Fulse
by (smt (verit) * UnCI assms(10) p0-def pathstart-def pathstart-in-path-image

qed

have If: (Vt € {0..1}. (¢t =q0 V qt=ql) — (t =0V t=1))
using assms(8)
unfolding q0-def q1-def simple-path-def loop-free-def pathstart-def pathfin-
ish-def
by fastforce
have endpoints: q tx # q0 N qty # q0 N qtex # ql N qty # ql
by (metis z y assms(10) assms(17) order-less-le p0-def pathstart-in-path-image)

have tz-neg-ty: tr # ty using pathstart-in-path-image x y by fastforce
moreover have Fulse if tx < ty
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proof—
have path-image p N path-image (subpath tx ty q) = {}
(is path-image p N path-image ?2q' = {})
proof—
have q0 ¢ path-image ?q' A q1 ¢ path-image ?q’
proof—
have {tz..ty} C {0..1} using z y by simp
then have (V¢ € {tz..ty}. (¢t =q0 Vgt =¢ql) — (t =0V t=1))
using If by blast
moreover have 0 ¢ {tz..ty} N 1 ¢ {tz..ty}
by (metis atLeastAtMost-iff dual-order.eq-iff endpoints pathfinish-def
pathstart-def q0-def q1-def = y)
moreover have path-image ?q' = q{tz..ty} by (simp add: path-image-subpath
that)
ultimately show ?thesis by fastforce
qged
thus ?thesis
by (smt (verit, best) Int-empty-right Int-insert-right-if0 assms(9) boolean-algebra-cancel.inf2
inf.absorb-iff1 path-image-subpath-subset  y)
qed
thus ?thesis using *[of 7¢]
by (metis assms(8) tr-neg-ty path-image-subpath-subset pathfinish-def pathfin-
ish-subpath pathstart-def pathstart-subpath simple-path-subpath x y)
qed
moreover have Fulse if ty < tz
proof—
have path-image p N path-image (reversepath (subpath tx ty q)) = {}
(is path-image p N path-image ?q’ = {})
proof—
have q0 ¢ path-image ?q' A q1 ¢ path-image ?q’
proof—
have {ty..tz} C {0..1} using z y by simp
then have (Vt € {ty..tz}. (¢t =q0 V qt=ql) — (t =0V t=1))
using If by blast
moreover have 0 ¢ {ty..tz} N 1 ¢ {ty..tz}
by (metis atLeastAtMost-iff dual-order.eq-iff endpoints pathfinish-def
pathstart-def qO0-def ql1-def © y)
moreover have path-image 99’ = ¢*{ty..tx}
by (simp add: path-image-subpath reversepath-subpath that)
ultimately show ?thesis by fastforce
qed
thus ?thesis
by (smt (verit) Int-commute assms(9) inf.absorb-iff2 inf.assoc inf-bot-right
insert-disjoint(2) path-image-reversepath path-image-subpath-subset x y)
qed
thus ?thesis using *[of 7¢]
by (metis x assms(8) ta-neg-ty path-image-subpath-commute path-image-subpath-subset
pathfinish-def pathfinish-subpath pathstart-def pathstart-subpath reversepath-subpath
sitmple-path-subpath x y)
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qed
ultimately show False by fastforce
qed
show [ C frontier AV x € (path-image p) U (path-image q). 282 > 0
using 1 2 apply blast
using 1 2 by blast
qed

lemma pocket-fill-line-int-aux6:
fixes p q :: R-to-R2
defines p0 = pathstart p
defines pl1 = pathfinish p
defines g0 = pathstart q
defines g1 = pathfinish q
defines a = p1%1
assumes simple-path p
assumes simple-path q
assumes p0) = 0 A p1$2 = 0
assumes a > 0
assumes ¢0$1 € {0..a} A q0$2 = 0
assumes YV € path-image p. q1$2 > z$2
assumes YV € path-image p U path-image q. x$2 > 0
shows path-image p N path-image q # {}
proof—
let 211 = linepath p1 (vector [a, —1])
let 212 = linepath ((vector [a, —1])::(real”2)) (vector [0, —1])
let 213 = linepath ((vector [0, —1]):(real™2)) 0

let 7R’ = 2l +++ 22 +++ 23
let ?R = p +++ 7R’

have closed: closed-path ?R

proof—
have path 7R using assms(6) pI-def simple-path-imp-path by auto
moreover have pathstart R = pathstart p by simp
moreover have pathfinish ?R = pathfinish 213 by simp
moreover have pathstart p = 0 using assms(8) p0-def by fastforce
moreover have pathfinish 213 = 0 by simp
ultimately show ¢thesis unfolding closed-path-def by presburger

qed
have simple: simple-path ?R
proof—
have arc ?R’
proof—
let ?a = p1

let 2b = (vector [a, —1])::(real”2)
let ?c = (vector [0, —1])::(real”2)
let ?2d = 0::(real™2)
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have arcs: arc 211 N arc ?12 A arc 213
by (metis arc-linepath assms(8) assms(9) vector-2(1) vector-2(2) verit-comp-simplifyl (1)
zero-index zero-neg-neg-one)

have 1213: path-image ?12 N path-image 213 = {pathfinish 212}
using linepath-int-corner|of ?b ?c 2d]
by (metis Int-commute closed-segment-commute linepath-int-corner path-image-linepath
pathfinish-linepath vector-2(2) zero-index zero-neg-neg-one)
have [112: path-image ?11 N path-image ?12 = {pathfinish 211}
using linepath-int-corner|of %a ?b ?c|] by (simp add: assms(8))
have 1113: path-image 211 N path-image 213 = {}
using linepath-int-vertical[of ?a 2b ¢ 2d] a-def assms(9) linepath-int-vertical
by auto

have path-image 712 N path-image 218 = {pathfinish 212}
using [2]3 by blast
moreover have sf-23: pathfinish ?12 = pathstart 213 by simp
ultimately have arc (212 +++ 913)
by (metis arc-join-eq-alt arcs)
moreover have path-image ?11 N path-image (212 +++ ?13) = {pathfinish
211}
using 1112 (113
by (metis (no-types, lifting) Int-Un-distrib sf-23 insert-is-Un path-image-join)
moreover have pathfinish 211 = pathstart (212 +++ ?13) by simp
ultimately show arc (211 +++ %12 +++ ?13)
by (metis arc-join-eg-alt arcs)
qed
moreover have loop-free p using assms(6) simple-path-def by blast
moreover have path-image ?R’ N path-image p = {p0, p1}
proof—
have path-image 211 N path-image p = {p1}
proof—
have Vz € path-image p. 282 > 0 by (simp add: assms(12))
moreover have Vz € path-image ?11. 232 < 0 using a-def assms(8)
segment-vertical by force
ultimately have V x € path-image p N path-image ?11. 2$2 = 0 by fastforce
moreover have Vz € path-image ?l1. 2$2 = 0 — z = pl
by (metis (mono-tags, opaque-lifting) a-def assms(8) exhaust-2 path-image-linepath
segment-vertical vec-eq-iff vector-2(1))
ultimately have Vz € path-image p N path-image ?l1. x = p1 by fast
moreover have p! € path-image ?l1 N\ pl € path-image p using pI-def
by auto
ultimately show ?thesis by blast
qed
moreover have path-image 212 N path-image p = {}
by (smt (verit, best) segment-horizontal assms(12) UnCI disjoint-iff path-image-linepath
vector-2(2))
moreover have path-image 713 N path-image p = {p0}
proof—
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have Vz € path-image p. 282 > 0 by (simp add: assms(12))
moreover have Vz € path-image ?13. £32 < 0 using a-def assms(8)
segment-vertical by force
ultimately have V x € path-image p N path-image ?13. 2$2 = 0 by fastforce
moreover have Vz € path-image ?13. 282 = 0 — z = p0
by (metis (no-types, opaque-lifting) assms(8) exhaust-2 path-image-linepath
segment-vertical vec-eq-iff vector-2(1) zero-index)
ultimately have Vz € path-image p N path-image ?13. x = p0 by fast
moreover have p0 € path-image ?13 N p0 € path-image p using assms(8)
p0-def by fastforce
ultimately show ?thesis by blast
qed
ultimately show ?thesis
by (smt (verit, del-insts) Int-Un-distrib Int-commute Un-assoc Un-insert-right
insert-is-Un path-image-join pathfinish-linepath pathstart-join pathstart-linepath)
qed
moreover have arc p
using closed-path-def arc-distinct-ends assms(6) calculation(1) closed p1-def
simple-path-imp-arc
by force
ultimately show ?Zthesis
by (metis (no-types, opaque-lifting) Int-commute closed-path-def closed dual-order.refl
linepath-0" p0-def p1-def pathfinish-join pathstart-def pathstart-join simple-path-join-loop-eq)
qed

have inside-outside: inside-outside ?R (path-inside ?R) (path-outside ?R)
using closed simple Jordan-inside-outside-real2
by (simp add: closed-path-def inside-outside-def path-inside-def path-outside-def)

have interior-frontier: path-inside YR = interior (path-inside ?R)
A frontier (path-inside ?R) = path-image 7R
using inside-outside interior-open unfolding inside-outside-def by auto

have R-y-q1: Vz € path-image ?R. 182 < q1$2
proof—
have *: Vz € path-image p. ©$2 < q132 using assms(11) by blast
moreover have Vz € path-image ?11. 2$2 < q1$2
using a-def assms(8) * pl-def pathfinish-in-path-image segment-vertical by
fastforce
moreover have Vz € path-image ?12. 282 < q1$2
using assms(8) * pl-def pathfinish-in-path-image segment-horizontal by fast-
force
moreover have Vz € path-image ?13. 2$2 < q1$2
using assms(8) * p1-def pathfinish-in-path-image segment-vertical by fastforce
ultimately show ?thesis by (metis not-in-path-image-join)
qed
have R-y-0: Vz € path-image ?R. 282 > —1
proof—
have Vz € path-image ?11. 232 > —1 using a-def assms(8) segment-vertical
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by fastforce
moreover have Vx € path-image ?12. £$2 > —1 using segment-horizontal by
auto
moreover have Vz € path-image ?13. 282 > —1 using segment-vertical by
auto
moreover have Vx € path-image p. 282 > —1 using assms(12) by force
ultimately show ?thesis by (metis not-in-path-image-join)
qed

have %thesis if p0 € path-image q V pl € path-image q using p0-def p1-def that
by blast
moreover have ?thesis if p0 ¢ path-image ¢ A pl ¢ path-image ¢ N q0 ¢
path-image p
proof—
have ¢-int-11: path-image g N path-image 211 = {}
proof—
have Yz € path-image q. 282 > 0 by (simp add: assms(12))
moreover have Vz € path-image ?l1. 2$2 = 0 — x = pl
by (metis (mono-tags, opaque-lifting) a-def assms(8) exhaust-2 path-image-linepath
segment-vertical vec-eq-iff vector-2(1))
ultimately show ?thesis using that a-def assms(8) segment-vertical by
fastforce
qed
moreover have g¢-int-12: path-image q¢ N path-image 212 = {}
by (smt (verit, ccfo-threshold) UnCI assms(12) disjoint-iff path-image-linepath
segment-horizontal vector-2(2))
moreover have ¢-int-13: path-image ¢ N path-image 213 = {}
proof—
have Vx € path-image q. 282 > 0 by (simp add: assms(12))
moreover have Vx € path-image ?13. 282 = 0 — z = p0
by (metis (no-types, opaque-lifting) assms(8) exhaust-2 path-image-linepath
segment-vertical vec-eq-iff vector-2(1) zero-inder)
ultimately show ?thesis using that a-def assms(8) segment-vertical by
fastforce
qed
ultimately have q0-notin-R: q0 ¢ path-image ?R
using that by (simp add: disjoint-iff not-in-path-image-join pathstart-in-path-image
q0-def)

have path-image q N path-image R # {}
proof—
have q0 € path-inside ?R
proof—
let e = (vector [q0$1, —1])::(real”2)
let 2d1 = (vector [a, —1])::(real”2)
let 2d2 = (vector [0, —1]):(real™2)

have 0 < q0$1 A q0$1 < a
by (smt (verit) a-def assms(10) assms(8) atLeastAtMost-iff exhaust-2
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linorder-not-less pathstart-in-path-image q0-def that vec-eg-iff zero-index)

then have ¢0%1 > 0 A a — q0%1 > 0 by simp

then have min (min (¢0%$1) (a — ¢0$1)) 1 > 0 (is %’ > 0) by linarith

then have 0 < %'/2 N %/'/2 < 1 A %'/2 < q0%1 N %'/2 < a — q0$1
by argo

then obtain ¢ where e: 0 <eAe <1 Ae< q0%1 Ne < a— q0$1 by
blast

moreover have ?e € frontier (path-inside ?R)

by (smt (verit, del-insts) UnCI <0 < g0 $ 1 N0 < a — ¢g0 $ 1) in-

terior-frontier p1-def path-image-join path-image-linepath pathfinish-linepath path-
start-join pathstart-linepath segment-horizontal vector-2(1) vector-2(2))

ultimately obtain int-p where int-p: int-p € ball ?e € N path-inside ?R

by (meson inside-outside frontier-straddle mem-ball Intl)

have int-p-z: int-p$1 > 0 A int-p$1 < a
proof—
have int-p$1 > 0
proof(rule ccontr)
assume — int-p$1 > 0
moreover have dist (int-p$1) (¢0%1) < q0$1
by (smt (verit) IntE e dist-commute dist-vec-nth-le int-p mem-ball
vector-2(1))
ultimately show Fulse using dist-real-def by force
qed
moreover have int-p$1 < a
proof(rule ccontr)
assume — nt-p$1 < a
moreover have dist (int-p$1) (¢0%1) < a — q0$1
by (smt (verit) IntE e dist-commute dist-vec-nth-le int-p mem-ball
vector-2(1))
ultimately show Fulse using dist-real-def by force

qed

ultimately show ¢thesis by blast
qed
have int-p-y: int-p$2 > —1 A int-p$2 < 0
proof—

have int-p$2 > —1
proof (rule ccontr)
assume *: - int-p$2 > —1
then have int-p$2 < —1 by simp
let ?e2’ = (vector [0, —1])::(real”2)
let ?ray = Ad. int-p + d xr %e2’
have - (3d>0. ?ray d € path-image ?R)
proof—
have Vd>0. (?ray d)$2 < —1 using x by auto
thus ?thesis using R-y-0 by force
qed
moreover have bounded (path-inside ?R) using bounded-finite-inside
simple by blast

297



moreover have ?e2’# 0 by (metis vector-2(2) zero-index zero-neg-neg-one)
ultimately have int-p ¢ path-inside 7R
using ray-to-frontier|of path-inside ?R)] interior-frontier by metis
thus Fulse using int-p by blast
qed
moreover have int-p$2 < 0
proof(rule ccontr)
assume — int-p$2 < 0
then have dist int-p 7e > 1
by (smt (verit, del-insts) dist-real-def dist-vec-nth-le vector-2(2))
thus False by (smt (verit, del-insts) IntD1 e dist-commute int-p mem-ball)
qed
ultimately show ¢thesis by blast
qed

let ?int-l = linepath int-p q0

have path-image ?int-1 N path-image 711 = {}
using <0 < q0 $ 1 A q0 $ 1 < a> a-def int-p-z linepath-int-columns by
auto
moreover have path-image ?int-l N path-image 212 = {}
by (smt (verit, best) assms(10) disjoint-iff int-p-y linepath-int-rows vec-
tor-2(2))
moreover have path-image ?int-l N path-image 713 = {}
by (smt (verit, del-insts) e disjoint-iff int-p-z linepath-int-columns vec-
tor-2(1) zero-index)
moreover have path-image ?int-l N path-image p = {}
proof—
have Vit € {0..1}. (¢int-11)$2 =0 — t =1
unfolding linepath-def using assms(10) int-p-y by force
then have Vz € path-image ?int-1. 82 = 0 — z = q0
unfolding path-image-def using linepath-1' by fastforce
moreover have Vx € path-image p. 282 > 0 by (simp add: assms(12))
moreover have Vx € path-image ?int-1. 32 < 0
by (smt (verit) assms(10) int-p-y linepath-bound-2(2))
ultimately show ?thesis using that by fastforce
qged
ultimately have path-image %int-l N path-image R = {}
by (simp add: disjoint-iff not-in-path-image-join)

then have path-image ?%int-l C path-inside ?R V path-image ?int-1 C
path-outside ¢R
by (metis IntD2 Intl convex-imp-path-connected convezr-segment(1) empty-iff
int-p interior-frontier path-connected-not-frontier-subset path-image-linepath path-
start-in-path-image pathstart-linepath)
moreover have ?%int-l 0 = int-p A int-p € path-inside ?R
using int-p by (simp add: linepath-0")
ultimately have path-image ?int-l C path-inside ?R
using inside-outside-def local.inside-outside by auto
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thus ?thesis by auto
qed
then have ¢0 € — (path-outside ?R)
by (metis Compll IntI equalsOD inside-Int-outside path-inside-def path-outside-def)
moreover have ¢! € path-outside 7R
proof—
let %e2 = (vector [0, 1])::(real™2)
let ?ray = A\d. q1 + d xg %e2
have — (3d>0. ?ray d € path-image ?R)
proof—
have V d>0. (?ray d)$2 > q1$2 by simp
thus ?thesis using R-y-q1 by fastforce
qged
moreover have bounded (path-inside ?R) using bounded-finite-inside simple
by blast
moreover have %e2 # () using ele2-basis(4) by force
ultimately have ¢! ¢ path-inside ?R
using ray-to-frontier|of path-inside ?R)] interior-frontier by metis
moreover have ¢! ¢ path-image ?R using R-y-q1 by blast
ultimately show ?thesis using inside-outside unfolding inside-outside-def
by blast
qed
ultimately have path-image ¢ N — (path-outside ?R) # {}
A path-image g N (path-outside ?R) # {}
using q0-def q1-def by blast
moreover have path-connected (path-image q)
using assms(7) path-connected-path-image simple-path-def by blast
moreover have path-image R = frontier (path-outside ?R)
using inside-outside unfolding inside-outside-def p0-def path-inside-def by
blast
ultimately show ?thesis by (metis Diff-eq Diff-eq-empty-iff path-connected-not-frontier-subset)
qed
thus ?thesis by (meson g-int-11 g-int-12 q-int-13 disjoint-iff not-in-path-image-join)
qed
ultimately show ?thesis using q0-def by blast
qed

lemma pocket-fill-line-int-aux7:
fixes p q :: R-to-R2
fixes A :: (real™2) set
defines p0 = pathstart p
defines p!1 = pathfinish p
defines g0 = pathstart q
defines g1 = pathfinish q
defines a = p1$1
defines | = open-segment p0 pl
assumes simple-path p
assumes simple-path q
assumes path-image p N path-image ¢ = {q0, q1}

299



assumes p0$1 = 0 A p0$2 = 0 A p1$2 =0
assumes a > 0
assumes A = convex hull (path-image p U path-image q)
assumes {p0, pl} C frontier A
assumes p{0<..<1} C interior A
assumes Jz € p{0<..<1}. 282 > 0
assumes q0 = pl A ql = p0
shows path-image ¢ N1 = {} closed-segment p0 p1 C frontier A
proof—
have 1: path-image p N path-image ¢ = {pathstart q, pathfinish q}
by (simp add: assms(9) q0-def q1-def)
have 2: pathstart p $ 1 = 0 A pathstart p $ 2 = 0 A pathfinishp $ 2 = 0
using assms(10) p0-def p1-def by blast
have 3: 0 < pathfinish p $ 1 using a-def assms(11) pI-def by auto
have /: A = convez hull (path-image p U path-image q) by (simp add: assms(12))
have 5: {pathstart p, pathfinish p} C frontier A using assms(13) p0-def p1-def
by blast
have 6: p ‘ {0<..<1} C interior A using assms(14) by blast
have 7: path-image ¢ C A using assms(12) hull-subset by force
have 8: 3z € p{0<..<1}. 282 > 0 using assms(15) by blast
have 9: pathstart ¢ = pathfinish p N\ pathfinish ¢ = pathstart p
using assms(16) p0-def p1-def q0-def q1-def by fastforce
have x: Vz € (path-image p) U (path-image q). 282 > 0
using pocket-fill-line-int-auz5(2)[OF assms(7) assms(8) 128 456 78 9] by
blast

show closed-segment p0 p1 C frontier A
using pocket-fill-line-int-auz5(1)[OF assms(7) assms(8) 123 45678 9]
unfolding [-def pO-def p1-def by blast
show path-image ¢ N 1 = {}
proof (rule ccontr)
assume - path-image ¢ N | = {}
then obtain z tx where z: tz € {0..1} ANqtz =z ANz €
by (metis (no-types, lifting) disjoint-iff imageE path-image-def)
obtain y ty where y: ty € {0..1} A gty = y A (Vo € path-image p. y$2 >
z$2)
using ezxists-point-above-all[of p q]
by (smt (verit, del-insts) 4 6 8 assms(10) assms(7) assms(8) pO-def p1-def
pathfinish-def pathstart-def simple-path-def image-iff path-image-def)

have If: WVt € {0..1}. (¢t =q0V qt=4ql) — (t=0V it=1))

using assms(8)

unfolding q0-def q1-def simple-path-def loop-free-def pathstart-def pathfin-
ish-def

by fastforce
have endpoints: qtx # q0 N qty # q0 N qtr # ql N qty # ql N tx # ty
proof—

have (q ty)$2 > 0 by (metis assms(10) pO-def pathstart-in-path-image y)

moreover have (¢ tx)$2 = 0
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proof—
have ¢ tx € closed-segment q0 ql
using assms(16) l-def open-closed-segment open-segment-commute z by
blast
thus ?thesis by (simp add: assms(10) assms(16) segment-horizontal)
qed
moreover have g0 ¢ open-segment g0 q1 N ql ¢ open-segment q0 q1
by (simp add: open-segment-def)
ultimately show ?Zthesis
using assms(10) assms(16) I-def open-segment-commute x by auto
qed

let 2Q) =
Aq'. simple-path ¢’ A path-image p N path-image ¢’ = {}
ANg' 0=qtzANqg 1=qty
A path-image q' C path-image q
have xx: \¢'. Q) ¢' = False
proof—
fix ¢’
assume **: 2(Q) q’
have 1: simple-path ¢’ by (simp add: xx)
have 2: pathstart p = 0 A pathfinish p $ 2 = 0
by (metis (mono-tags, lifting) assms(10) exhaust-2 p0-def p1-def vec-eq-iff
zero-index)
have 3: 0 < pathfinish p $ 1 using a-def assms(11) p1-def by blast
have 4: pathstart ¢’ $ 1 € {0..pathfinish p $ 1} A pathstart ¢’ $ 2 = 0
proof—
have ¢’ 0 € closed-segment p0 pl1 using ** l-def open-closed-segment x by
auto
thus ?thesis
by (smt (23) 2 a-def assms(11) atLeastAtMost-iff atLeastatMost-empty
p0-def p1-def pathstart-def pathstart-subpath segment-horizontal zero-index)
qed
have 5: Vz€path-image p. z $ 2 < pathfinish ¢’ $ 2 by (simp add: *x*
pathfinish-def y)
have 6: V z€path-image p U path-image q'. 0 < z $ 2 using * x* by blast
have path-image p N path-image ¢' # {}
using pocket-fill-line-int-auz6[OF assms(7) 1 2 8 4 5 6] by simp
thus Fulse using *x by blast
qed

have Fulse if tz < ty
proof—
let ?q’ = subpath tx ty q
have q0 ¢ path-image ?q' A q1 ¢ path-image ?q’
proof—
have {tz..ty} C {0..1} using z y by simp
then have (V¢ € {tz..ty}. (¢t =q0 Vgt =9ql) — (t=0V t=1))
using If by blast
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moreover have 0 ¢ {tz..ty} N 1 ¢ {tz..ty}
by (metis atLeastAtMost-iff dual-order.eq-iff endpoints pathfinish-def
pathstart-def q0-def q1-def = y)
moreover have path-image ?q' = ¢{tz..ty} by (simp add: path-image-subpath
that)
ultimately show ?thesis by fastforce
qed
then have ?Q ?q’
by (smt (verit, best) assms(8) assms(9) disjoint-insert(1) endpoints
inf.absorb-iff1 inf-bot-right inf-left-commute path-image-subpath-subset pathfinish-def
pathfinish-subpath pathstart-def pathstart-subpath simple-path-subpath x y)
thus Fulse using *x by auto
qed
moreover have Fulse if tx > ty
proof—
let ?q’ = reversepath (subpath ty tz q)
have ¢0 ¢ path-image ?q' N\ q1 ¢ path-image ?q’
proof—
have {ty..tz} C {0..1} using z y by simp
then have (V¢ € {ty..tz}. (¢t =q0 Vgt=gql) — (t=0Vit=1))
using If by blast
moreover have 0 ¢ {ty..tx} A 1 ¢ {ty..tz}
by (metis atLeastAtMost-iff dual-order.eq-iff endpoints pathfinish-def
pathstart-def q0-def q1-def = y)
moreover have path-image ?q' = ¢{ty..tx} by (simp add: path-image-subpath
that)
ultimately show ?thesis by fastforce
qed
then have ?Q ?q’
by (smt (verit) assms(8) assms(9) endpoints inf.absorb-iff2 inf.assoc
inf-bot-left insert-disjoint(2) path-image-subpath-subset pathstart-def pathstart-subpath
reversepath-def reversepath-subpath simple-path-subpath  y)
thus Fulse using *x by blast
qed
ultimately show Fulse using endpoints by linarith
qed
qed

lemma frontier-injective-linear-image:

fixes [ :: 'a::euclidean-space = 'a::euclidean-space

assumes [linear f inj f

shows f ¢ (frontier S) = frontier (f ©5)

using interior-injective-linear-image closure-injective-linear-image frontier-def
assms

by (metis image-set-diff)

lemma pocket-fill-line-int-aux8:
fixes p q :: R-to-R2
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fixes A :: (real™2) set

defines p0 = pathstart p

defines p!1 = pathfinish p

defines ¢0 = pathstart q

defines g1 = pathfinish q

defines a = p1$1

defines | = open-segment p0 p1

assumes simple-path p

assumes simple-path q

assumes path-image p N path-image ¢ = {q0, q1}

assumes p0%1 = 0 A p0$2 = 0 A p1$2 =0

assumes a > 0

assumes A = convex hull (path-image p U path-image q)

assumes {p0, pl} C frontier A

assumes p{0<..<1} C interior A

assumes q0 = pl N ql = p0

shows path-image ¢ N1 = {} Al C frontier A
proof—

have ?thesis if ex: 3z € p{0<..<1}. 2$2 > 0

using ez a-def assms dual-order.trans l-def p0-def p1-def pocket-fill-line-int-auxz7(1)
pocket-fill-line-int-aux7(2) q0-def q1-def segment-open-subset-closed that

by (smt (verit) a-def assms dual-order.trans I-def p0-def p1-def pocket-fill-line-int-aux7(1)
pocket-fill-line-int-aux7(2) q0-def q1-def segment-open-subset-closed that)
moreover have ?thesis if = (3z € p{0<..<1}. 282 > 0)
proof—
let ?M = (vector [vector [1, 0], vector [0, —1]])::(real”272)
let 2f = Av. 2M *xv v
let %9 = (A\v. vector [v$1, —v$2))::(real™2 = real™2)
define p’ where p' = ?f o p
define ¢’ where ¢’ = 9f o ¢
define A’ where A’ = ?7f‘A

have inj: inj ?f and f-eq-g: ?f = g
using flip-function(1) apply blast
using flip-function(2) by blast

have /: pathstart p’ $ 1 = 0 A pathstart p’$ 2 = 0 A pathfinish p’ $ 2 = 0
by (smt (verit, best) assms(10) f-eq-g o-apply p'-def p0-def p1-def pathfinish-def
pathstart-def vector-2(1) vector-2(2))
have startfinish: pathstart p’ = pathstart p A\ pathfinish p’ = pathfinish p
by (metis (mono-tags, opaque-lifting) 4 assms(10) exhaust-2 f-eq-g o-apply
p’-def p0-def p1-def pathfinish-def vec-eq-iff vector-2(1))

have 1: simple-path p’ using inj by (simp add: assms(7) simple-path-linear-image-eq

p'-def)
have 2: simple-path ¢’ using inj by (simp add: assms(8) simple-path-linear-image-eq

/
q'-def)
have 3: path-image p’ N path-image q' = {pathstart q', pathfinish q'}
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proof—
have path-image p’ N path-image ¢’ = 2f(path-image p N path-image q)
unfolding p’-def q’-def by (simp add: image-Int inj path-image-compose)
also have ... = 2f{q0, q1} using assms(9) by presburger
finally show ?thesis
by (simp add: startfinish pathfinish-compose pathstart-compose q'-def q0-def
q1-def)
qed
have 5: 0 < pathfinish p’ $ 1
by (metis (mono-tags, lifting) a-def assms(11) f-eq-g o-apply p’-def p1-def
pathfinish-def vector-2(1))
have 6: A’ = convex hull (path-image p’ U path-image ¢')
proof—
have path-image (?f o p) = ?f{(path-image p) using path-image-compose by
blast
moreover have path-image (?f o q) = ?f(path-image q) using path-image-compose
by blast
moreover have ?f‘(path-image p U path-image q) = ?f‘(path-image p) U
?f(path-image q)
by blast
moreover have A’ = convex hull (?f‘(path-image p U path-image q))
by (simp add: assms(12) conver-hull-linear-image A’-def)
ultimately show ¢thesis using p’-def q’-def A’-def by argo
qed
have 7: {pathstart p’, pathfinish p’} C frontier A’
using frontier-injective-linear-image
by (smt (verit, best) 3 A'-def assms(13) assms(15) assms(9) doubleton-eq-iff
image-Int inj inj-image-subset-iff matriz-vector-mul-linear p’-def p0-def p1-def path-image-linear-image
pathfinish-compose pathstart-compose q’-def q0-def q1-def)
have 8: p’{0<..<1} C interior A’
proof—
have ?f‘(interior A) = interior A’ by (simp add: A’-def inj interior-injective-linear-image)
thus ?thesis using assms(14) p’-def by auto
qed
have 9: 3z € p'{0<..<1}. 282 > 0
proof—
have 3z € p{0<..<1}. 282 < 0
by (metis that all-not-in-conv bot.extremum greater ThanLess Than-subseteq-greaterThanLess Than
image-is-empty verit-comp-simplifyl (3) zero-less-one)
then obtain z where z € p{0<..<1} A 282 < 0 by presburger
moreover then have (?g 2)$2 > 0 by fastforce
ultimately show ?thesis by (smt (verit, ccfo-threshold) f-eq-g image-iff
o-apply p'-def)
qed
have 10: pathstart q' = pathfinish p’ A pathfinish q' = pathstart p’
by (metis (mono-tags, lifting) assms(15) o-apply p’-def p0-def p1-def pathfin-
ish-def pathstart-def q'-def q0-def q1-def)

have path-image q' N open-segment (pathstart p') (pathfinish p’) = {}
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using pocket-fill-line-int-auz7(1)[OF 1 2 8 4 5 6 7 8 9 10] by blast
then have path-image ¢’ N | = {} using startfinish unfolding [-def p0-def
pl-def by simp
moreover have on-l: Az. x € | = gz € 1
proof—
fix z :: real”2
assume z € [
moreover then have z$2 = 0 by (metis assms(6,10) segment-horizontal
open-closed-segment)
moreover then have (?¢g 2)$2 = 0 by simp
moreover have (?g 2)$1 = 231 by simp
ultimately show ?g z € [ by (smt (verit, ccfo-SIG) exhaust-2 vec-eq-iff)
qed
ultimately have path-image ¢ N 1 = {}
by (metis (no-types, lifting) disjoint-iff f-eq-g image-eql path-image-compose
q'-def)
moreover have | C frontier A
proof—
have pathstart p’ = pathstart p A pathfinish p’ = pathfinish p
using startfinish by auto
then have ?2f‘ C frontier A’
using pocket-fill-line-int-auz7(2)[OF 1 2 8 4 5 6 7 8 9 10] on-l f-eq-g l-def
pO-def p1-def segment-open-subset-closed
by force
thus ?thesis
by (metis (no-types, lifting) A’-def frontier-injective-linear-image inj inj-image-subset-iff
matriz-vector-mul-linear)
qed
ultimately show ?thesis by fast
qed
ultimately show ¢thesis by argo
qed

lemma simple-path-linear-image:
assumes simple-path p
assumes inj f A bounded-linear f
shows simple-path (f o p)
proof—
have continuous-on {z. True} f using assms(2) linear-continuous-on by blast
then have 1: path (f o p)
by (metis Collect-cong UNIV-I assms(1) continuous-on-subset path-continuous-image
simple-path-imp-path top-empty-eq top-greatest top-set-def)

have inj-on p {0<..<1} by (simp add: assms(1) simple-path-inj-on)
then have inj-on (f o p) {0<..<1} by (meson assms(2) comp-inj-on inj-on-subset
top-greatest)
then have loop-free (f o p)
by (metis (mono-tags, lifting) assms(1) assms(2) comp-apply inj-eq loop-free-def
sitmple-path-def)
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thus ?thesis using 1 unfolding simple-path-def by blast
qed

lemma vts-interior:

fixes vts

defines p = make-polygonal-path vts

assumes convex H

assumes Vj € {0<..<length vts — 1}. vtslj ¢ frontier H

assumes loop-free p

assumes path-image p C H

assumes length vts > 8

shows p{0<..<1} C interior H
proof(rule subsetl)

fix x assume *: z € p{0<..<1}

then obtain ¢ where ¢: z = p t A t € {0<..<1} by blast

then have z # p 0 A x # p 1 using assms(4) unfolding loop-free-def by
fastforce

then have z-neq: © # hd vts N x # last vts

by (metis assms(4) constant-linepath-is-not-loop-free hd-conv-nth last-conv-nth

make-polygonal-path.simps(1) p-def pathfinish-def pathstart-def polygon-pathfinish
polygon-pathstart)

have z € interior H if xx: 3i<length vts. © = vts!i
proof—
obtain ¢ where i: 7 < length vts N = = vtsli using *x by blast
then have i # 0 A i # length vts — 1
by (metis z-neq gr-implies-not0 hd-conv-nth last-conv-nth list.size(3))
then have i € {0<..<length vts — 1} using i by fastforce
then have vtsli ¢ frontier H using assms(3) by blast
then have vtsli € interior H
by (metis DiffI assms(5) closure-subset frontier-def i nth-mem p-def subsetD
vertices-on-path-image)
thus ?thesis using assms(3) i by blast
qed
moreover have z € interior H if xx: = (Fi<length vts. x = vtsli)
proof—
have z € path-image p using * unfolding path-image-def by force
then obtain ¢ where i: x € path-image (linepath (vtsli) (ves!(i+1))) A i <
length vts — 1
using make-polygonal-path-image-property|of vts z] assms(6) unfolding p-def
by auto
moreover then have z # visli A x # visl(i+1) using *x by force
ultimately have = € open-segment (vtsli) (vts!(i+1)) by (simp add: open-segment-def)
moreover then have z € rel-interior (path-image (linepath (vtsli) (vts!(i+1))))
by (metis empty-iff open-segment-idem path-image-linepath rel-interior-closed-segment)
moreover have interior-nonempty: vtsli € interior H V vts!(i+1) € interior
H
proof (rule ccontr)
assume - (vtsli € interior H V vtsl(i+1) € interior H)
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then have vtsli € frontier H A vtsl(i+1) € frontier H
using assms(5) closure-subset frontier-def i p-def vertices-on-path-image by
fastforce
thus Fulse
by (metis assms(3) i Suc-1 Suc-eg-plusl add.commute add.right-neutral
assms(6) eval-nat-numeral(3) greaterThanLess Than-iff less-diff-conv linorder-not-le
not-gr-zero not-less-eq-eq)
qed
ultimately have z € rel-interior H
by (smt (verit, ccfv-SIG) add-diff-inverse-nat assms(2) assms(5) convez-same-rel-interior-closure-straddle
empty-iff © in-interior-closure-convex-segment less-diff-conv less-nat-zero-code nat-diff-split
nth-mem open-segment-commute p-def rel-interior-nonempty-interior subset-eq trans-less-add2
vertices-on-path-image)
moreover have interior H # {} using interior-nonempty by blast
ultimately show ?thesis using rel-interior-nonempty-interior by blast
qged
ultimately show z € interior H by blast
qed

lemma pocket-fill-line-int-0:
assumes polygon-of r vts
defines H = convex hull (set vts)
assumes 2 < i A 7 < length vts — 1
defines a = hd vts
defines b = vtsli
assumes {a, b} C frontier H
assumes Vj € {0<..<i}. vtslj ¢ frontier H
assumes a = 0
shows path-image (linepath a b) N path-image r = {a, b}
path-image (linepath a b) C frontier H
proof—
let 2z = (b — a)
let e = norm (b — a) xr ((vector [1, 0])::(real”2))
have norm %z = norm %e by (simp add: ele2-basis(1))
then obtain f where f: orthogonal-transformation f A det(matriz f) = 1 A f
r = %e
using rotation-exists by (metis two-le-card)

have bij: bij f A linear f
using f orthogonal-transformation-bij orthogonal-transformation-def by blast

let ?p-vts = take (i + 1) vts

let ?q-vts = drop i vts

let ?p = make-polygonal-path ?p-vts
let ?q = make-polygonal-path ?q-vts

let ?p’' = f o ?p

let 2¢' = f o ?q
let H’ = convex hull (path-image ?p’ U path-image %q")
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have vts-split: vts = ?p-vts Q (tl ?q-vts)
by (metis Suc-eq-plus1 append-take-drop-id drop-Suc tl-drop)

have simple-path r using assms(1) unfolding polygon-of-def polygon-def by
blast

then have a-neg-b: a # b

using simple-polygonal-path-vts-distinct|of vts)

by (metis (mono-tags, lifting) a-def assms(1) assms(3) b-def bot-nat-0.extremum-strict
butlast-conv-take constant-linepath-is-not-loop-free distinct-nth-eq-iff dual-order.strict-trans2
hd-conv-nth length-butlast make-polygonal-path.simps(1) nat-neg-iff nth-take poly-
gon-of-def pos2 simple-path-def)

have H-r: H = convez hull (path-image 1)
by (metis (no-types, lifting) H-def Un-subset-iff assms(1) convex-convex-hull
convez-hull-eq convez-hull-of-polygon-is-convex-hull-of-vts hull-mono hull-subset or-
der-antisym-conv polygon-of-def vertices-on-path-image)
moreover have r-union: path-image r = (path-image ?p) U (path-image ?q)
proof—
let 96 =17+ 1
let %z = ((2ureal) ~ (2 —1)— 1)/ 2 " (% — 1)
have %z € {0..1} A path-image ?p = r{0..%x} A path-image ?q = r{%z..1}
using vts-split-path-image[of v vts ?p ?p-vts 2q ?q-vts ?i - 2]
by (smt (verit, ccfv-SIG) add.commute add-diff-cancel-left’ assms(1) assms(3)
atLeastAtMost-iff atLeastatMost-empty’ image-empty le-add1 less-diff-conv path-image-nonempty
polygon-of-def)
thus ?thesis by (metis atLeastAtMost-iff image-Un ivl-disj-un-two-touch(4)
path-image-def)
qed
moreover have f‘H = convez hull (f(path-image T))
using bij by (simp add: calculation(1) convex-hull-linear-image)
ultimately have H-image: H’ = f‘H by (simp add: image-Un path-image-compose)

have p-image: path-image ?p’ = f(path-image ?p) using path-image-compose by
blast

have g¢-image: path-image ?q' = f‘(path-image ?q) using path-image-compose by
blast

have pathstart-p: pathstart ?p = a
by (metis Suc-eq-plusl a-def assms(3) gr-implies-not0 hd-conv-nth length-tl

less-Suc-eq-0-disj list.sel(2) list.size(3) nth-take polygon-pathstart take-eq-Nil)

have pathfinish-p: pathfinish ¢p = b

by (metis (no-types, lifting) H-def H-r add-diff-cancel-right’ assms(83) b-def con-
vex-hull-eq-empty length-take less-add-one less-diff-conv min.absorb4 nth-append
one-neg-zero path-image-nonempty polygon-pathfinish set-empty take-eq-Nil vts-split
zero-eq-add-iff-both-eq-0)

then have pathstart-q: pathstart ?q = b using assms(3) b-def polygon-pathstart
by force
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have pathstart-p”. pathstart ?p’ = f a using pathstart-compose pathstart-p by
blast

have pathfinish-p’: pathfinish ?p’ = f b using pathfinish-compose pathfinish-p by
blast

have pathstart-q”: pathstart ?q’ = f b using pathstart-compose pathstart-q by
blast

have sublist ?p-vts vts by auto
then have If-p: loop-free ?p
by (metis add.commute assms(1) assms(3) less-diff-conv less-imp-le-nat poly-
gon-def polygon-of-def simple-path-def take-i-is-loop-free trans-le-add2)
then have simple-p: simple-path ?p
using assms unfolding polygon-of-def
by (meson make-polygonal-path-gives-path simple-path-def)

have sublist ?q-vts vts by auto
then have If-q: loop-free ?q
by (metis (no-types, lifting) Suc-1 Suc-diff-Suc assms(1) assms(3) diff-is-0-eq
drop-i-is-loop-free less-Suc-eq-le less-zeroE linorder-not-less polygon-def polygon-of-def
simple-path-def)
then have simple-q: simple-path ?q
using assms unfolding polygon-of-def
by (meson make-polygonal-path-gives-path simple-path-def)

have bounded-linear: bounded-linear f using bij linear-conv-bounded-linear by
blast
have 1: simple-path ?p’
using simple-p simple-path-linear-image bij bij-is-inj bounded-linear
by blast
have 2: simple-path ?q’
using simple-q simple-path-linear-image bij bij-is-inj bounded-linear
by blast
have 3: path-image ?p’ N path-image ?q’ = {pathstart ?q’, pathfinish ?q'}
proof—
have path-image ?p N path-image ?q C {pathstart ?q, pathfinish ?2q}
using loop-free-split-int[of T vts ?p-vts i ?q-vts ?p ?q]
by (smt (verit, ccfo-threshold) a-def add-diff-cancel-right’ assms(1) assms(3)
constant-linepath-is-not-loop-free drop-eq-Nil have-wraparound-vertex hd-conv-nth
insert-commute last-conv-nth last-drop last-snoc le-add2 less-diff-conv lf-q linorder-not-less
loop-free-split-int make-polygonal-path.simps(1) pathstart-p polygon-def polygon-of-def
polygon-pathfinish simple-path-def)
moreover have pathstart ?q € path-image ?q N pathfinish ?q € path-image ?q
by blast
moreover have pathstart ?q € path-image ?p N pathfinish ?q € path-image ?p
by (smt (verit, ccfv-SIG) a-def add-diff-cancel-right’ assms(1) assms(3) b-def
constant-linepath-is-not-loop-free drop-eq-Nil have-wraparound-vertex hd-conv-nth
last-conv-nth last-drop last-snoc length-take less-add-one less-diff-conv If-q linorder-not-less
list.size(3) make-polygonal-path.simps(1) min.absorbs nth-take pathfinish-in-path-image
pathstart-in-path-image pathstart-p pathstart-q polygon-of-def polygon-pathfinish take-eq-Nil
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zero-eq-add-iff-both-eq-0 zero-neg-one)
ultimately have path-image ?p N path-image ?q = {pathstart ?q, pathfinish
?q} by fast
moreover have path-image ?p’ N path-image 2q’ = f*(path-image ?p N path-image
?q)
by (metis bij bij-is-inj image-Int p-image g-image)
ultimately show ?thesis by (simp add: pathfinish-compose pathstart-compose)
qed
have /: (pathstart ?p")$1 = 0 A (pathstart ?p")$2 = 0 A (pathfinish 7p")$2 = 0
proof—
have f %z = ?e using f by blast
then have fb — fa = ?e
by (metis assms(8) diff-zero f norm-eq-zero orthogonal-transformation-norm)
moreover have fa = 0 by (metis assms(8) f norm-eg-zero orthogonal-transformation-norm)
moreover from calculation have f b = ?e by force
ultimately show ?thesis using pathfinish-p’ pathstart-p’ by auto
qed
have 5: (pathfinish ?p")$1 > 0
proof—
have pathfinish ?p' = f b using pathfinish-p’ by auto
moreover have f b = ?e using assms(8) f by auto
moreover have ?e$1 = norm %z by simp
ultimately show ¢thesis using a-neq-b by auto
qed
have 6: ?H' = convex hull (path-image ?p’ U path-image ?q’) by blast
have 7: {pathstart ?p’, pathfinish ?p’} C frontier ?H’
proof—
have {pathstart ?p, pathfinish ?p} C frontier H
using pathstart-p pathfinish-p assms(6) by fastforce
then have f{pathstart ?p, pathfinish ?p} C f(frontier H) by blast
moreover have f{frontier H) = frontier (f‘H)
by (simp add: bij bij-is-inj frontier-injective-linear-image)
ultimately show ?thesis using H-image by (simp add: pathfinish-compose
pathstart-compose)
qed
have 8: ?p’{0<..<1} C interior ?H’
proof—
have 1: convex H by (simp add: H-def)
have 2: Vje{0<..<length ?p-vts — 1}. ?p-vts | j & frontier H
by (simp add: add.commute assms(3) assms(7) less-diff-conv)
have 3: loop-free ?p using If-p by blast
have 4: path-image ?p C H using H-r hull-subset r-union by fastforce
have 5: length ?p-vts > 3 using assms(3) by force
have ?p{0<..<1} C interior H using vts-interior|OF 1 2 3 4 5] by argo
moreover have f{(?p{0<..<1}) = ?p’{0<..<1} by (meson image-comp)
moreover have f{(interior H) = interior ?H’
using H-image interior-injective-linear-imagelof f H] by (simp add: bij
bij-is-inj)
ultimately show ?thesis by fast
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qed

have 9: pathstart ?q’ = pathfinish ?p’ A pathfinish ?q' = pathstart ?p’

by (metis (mono-tags, lifting) H-def H-r a-def assms(1) constant-linepath-is-not-loop-free
convez-hull-eq-empty drop-eq-Nil have-wraparound-vertex hd-conv-nth last-conv-nth
last-drop last-snoc lf-q linorder-not-less make-polygonal-path.simps(1) path-image-nonempty
pathfinish-compose pathfinish-p pathstart-compose pathstart-p pathstart-q polygon-of-def
polygon-pathfinish set-empty)

let 2l = open-segment a b
let ?l’ = open-segment (pathstart ?p’) (pathfinish ?p’)

have x: path-image ?q’ N open-segment (pathstart ?p’) (pathfinish ?p’) = {} A
21" C frontier ?H'
using pocket-fill-line-int-auz8[OF 1 2 3 4/ 5 6 7 8 9] by blast
moreover have l-image: 71’ = ‘7l
proof—
have f a = pathstart ?p’ A f b = pathfinish ?p’ using pathfinish-p’ pathstart-p’
by presburger
moreover have Aa b. f{open-segment a b) = open-segment (f a) (f b)
by (simp add: bij bij-is-inj open-segment-linear-image)
ultimately show ?thesis by presburger
qed
moreover have path-image ?q' = f{path-image ?q) using g¢-image by blast
ultimately have path-image ?q N 21 = {} by blast
moreover have path-image ?p N 21 = {}
proof—
from 8 have path-image ?p’' N 21’ = {}
proof—
have ?p'{0<.<1} N 2" = {}
by (smt (verit, ccfv-SIG) * 8 Diff-disjoint disjoint-iff frontier-def subset-iff)
moreover have ?p’ 0 ¢ 2’
by (metis x 9 Intl empty-iff pathfinish-in-path-image pathstart-def)
moreover have %p’ 1 ¢ 2’
by (metis x 9 Int-iff emptyE pathfinish-def pathstart-in-path-image)
ultimately show ?Zthesis
by (smt (verit, ccfo-SIG) * 1 3 9 Int-Un-eq(4) Un-Diff-cancel Un-iff dis-
joint-iff insert-commute simple-path-endless)
qed
thus ?thesis using Il-image bij p-image by auto
qed
ultimately have path-image r N 71 = {}
by (simp add: r-union boolean-algebra.conj-disj-distrib inf-commute)
moreover have a € path-image r using pathstart-p r-union by auto
moreover have b € path-image r using pathfinish-p r-union by auto
moreover have (path-image (linepath a b)) = ¢l U {a, b} by (simp add:
closed-segment-eq-open)
ultimately show path-image (linepath a b) N path-image r = {a, b} by auto

have [’-frontier: 21’ C frontier ?H' using x by presburger
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have ?] C frontier H
proof—
have ¢’ = f‘?l using l-image by blast
moreover have frontier H' = ffrontier H)
by (metis H-image bij bij-is-inj frontier-injective-linear-image)
ultimately have f‘?l C f4frontier H) using l’-frontier by argo
thus %thesis by (simp add: bij bij-is-inj inj-image-subset-iff)
qed
moreover have closed-segment a b = path-image (linepath a b) by simp
moreover have closed-segment a b = ?1 U {a, b} by (simp add: closed-segment-eq-open)
moreover have a € frontier H A b € frontier H using assms(6) by auto
ultimately show path-image (linepath a b) C frontier H by simp
qed

lemma linepath-translation: (Av. v — a) o (linepath = y) = linepath ((Av. v — a)

z) (Av. v — a) y)
by (auto simp: linepath-def algebra-simps)

lemma linepath-image-translation:
path-image ((Av. v — a) o (linepath x y)) = path-image (linepath ((Av. v — a)
z) (Av. v — a) y))

using linepath-translation by metis

lemma make-polygonal-path-translate:
assumes length vts > 1
shows (Av. v — a) o (make-polygonal-path vts) = make-polygonal-path (map (Av.
v — a) vts)
using assms
proof (induct length vts arbitrary: vts a)
case ()
then show ?case by linarith
next
case (Suc n)
{ assume *: Suc n = 1
then have make-polygonal-path vts = linepath (vts!0) (vts!0)
by (metis Cons-nth-drop-Suc One-nat-def Suc.hyps(2) Suc.prems drop0 drop-eq-Nil
less-numeral-extra(1) make-polygonal-path.simps(2))
then have (Av. v — a) o (make-polygonal-path vts) = linepath ((vts!0) — a)
((vts!0) — a)
by fastforce
then have ?case
by (metis Cons-nth-drop-Suc One-nat-def Suc.hyps(2) Suc.prems x drop0
drop-eq-Nil list.map(1) list.simps(9) make-polygonal-path.simps(2) zero-less-one)
} moreover
{ assume *: Suc n = 2
then have make-polygonal-path vts = linepath (vts!0) (vts!1)
by (metis (no-types, lifting) Cons-nth-drop-Suc One-nat-def Suc.hyps(2) Suc-1
diff-Suc-1 drop0 drop-Suc drop-eq-Nil le-numeral-extra(4) length-tl less-numeral-extra(1)
make-polygonal-path.simps(3) nth-tl pos2)
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then have (A\v. v — a) o (make-polygonal-path vts) = linepath ((vts!0) — a)
((vts'1) — a)
using linepath-translation by auto
then have ?case
by (metis (no-types, lifting) * Cons-nth-drop-Suc One-nat-def Suc.hyps(2)
Suc-1 drop0 drop-eq-Nil length-map lessI make-polygonal-path.simps(3) nat-le-linear
nth-map pos2)
} moreover
{ assume *: Suc n > 3
then obtain h h' t where vts: vis = h # h' # t
by (metis Suc.hyps(2) Suc-le-length-iff numeral-3-eq-3)
then have (Av. v — a) o (make-polygonal-path (h' # t))
= make-polygonal-path (map (Av. v — a) (b # t))
using Suc.hyps(1) Suc.hyps(2) * by auto
moreover have (Av. v — a) o (linepath h h') = linepath (h — a) (h' — a)
using linepath-translation by blast
moreover have make-polygonal-path vts = (linepath h h') +4++ (make-polygonal-path
(h 4 1))
by (metis x Suc.hyps(2) Suc-le-length-iff vts list.sel(3) make-polygonal-path.simps(4)
numeral-3-eq-3)
ultimately have Zcase
by (smt (verit) list.discl list.inject list.simps(9) make-polygonal-path.elims
path-compose-join vts)

ultimately show ?case using Suc.prems by linarith
qged

lemma pocket-fill-line-int:

assumes polygon-of r vts

defines H = convex hull (set vts)

assumes 2 < i A ¢ < length vts — 1

defines a = hd vts

defines b = vtsli

assumes {a, b} C frontier H

assumes Vj € {0<..<i}. vtslj & frontier H

shows path-image (linepath a b) N path-image r = {a, b}

path-image (linepath a b) C frontier H

proof—

let 2f = (Av. v — a)::(real™2 = real”2)

let 2r'= 2f o r

let ?vts’ = map ?f vts

let ?H' = convex hull (set ?vts’)

let %0’ = ?fa

let 2" = 2f b

have 5: hd %vts’ = 0

by (metis One-nat-def a-def assms(3) cancel-comm-monoid-add-class. diff-cancel
lessI list.map-sel(1) list.size(3) nat-diff-split-asm not-less-zero)
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have a’b": %a’ = hd vts’ A 2b' = 2vts’li using 5 assms(3) b-def by force

have frontier-H': frontier H' = 2f ¢ (frontier H)
using frontier-translation[of —a H)|
by (metis (no-types, lifting) H-def convex-hull-translation image-cong list.set-map
uminus-add-conv-diff)

have simple-path r using assms(1) polygon-def polygon-of-def by blast
then have simple-path ?r’ using simple-path-translation-eqlof —a r] by simp
moreover have ?r’ = make-polygonal-path ?vts’
using make-polygonal-path-translate assms(1) assms(3) polygon-of-def by auto
moreover have closed-path ?r'
by (smt (verit, best) closed-path-def add-diff-inverse-nat assms(1) assms(3) cal-
culation(1) calculation(2) dual-order.refl gr-implies-not0 hd-conv-nth length-map
less-Suc-eq-le list. map-disc-iff list. map-sel(1) nat-diff-split-asm nth-map plus-1-eq-Suc
polygon-def polygon-of-def polygon-pathfinish polygon-pathstart simple-path-def)
ultimately have 1: polygon-of ?r' ?vts’
unfolding polygon-of-def polygon-def polygon-def polygonal-path-def by blast
have 2: 2 < i A i < length ?vts’ — 1 using assms(3) by auto
have 3: {hd ?vts’, 2vts"li} C frontier ?H’
using a’b’ frontier-H'
by (metis (no-types, lifting) assms(6) image-empty image-insert image-mono)
have 4: Vj € {0<..<i}. %vts'lj & frontier ?H'
proof
fix j assume *: j € {0<..<i}
then have vtslj ¢ frontier H using assms(7) by blast
then have ?f (vtslj) ¢ frontier ?H’ using frontier-H' by auto
thus %vts’lj ¢ frontier ?H’ using Nat.le-imp-diff-is-add x assms(3) by auto
qed

have path-image (linepath ?a’ ?b’) N path-image ?r' = {%a’, 7b'}
using pocket-fill-line-int-0(1)[OF 1 2 8 4 5] a’b’ by argo
moreover have {?a’, 20’} = ?f{a, b} by simp
moreover have path-image (linepath ?a’ 2b') = 2f{(path-image (linepath a b))
using linepath-image-translation path-image-compose by blast
moreover have path-image ?r’ = ?f{(path-image r) using path-image-compose
by blast
ultimately have ?f{(path-image (linepath a b)) N 2f‘(path-image r) = ?f*{a, b}
by argo
then have ?f{path-image (linepath a b) N path-image ) = ?f{a, b} by (simp
add: image-Int)
moreover have bij ?f by (simp add: bij-diff-right)
ultimately show path-image (linepath a b) N path-image r = {a, b}
by (meson bij-is-inj inj-image-eq-iff’)

have path-image (linepath ?a’ 2b') C frontier ?H’
using pocket-fill-line-int-0(2)[OF 1 2 8 4 5] a’b’ by argo
thus path-image (linepath a b) C frontier H
by (metis <bij ?f> <path-image (linepath ?a’ ?b') = ?f{(path-image (linepath a
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b))» bij-betw-imp-inj-on frontier-H' inj-image-subset-iff)
qed

lemma path-connected-simple-path-endless:
assumes simple-path p
shows path-connected (path-image p — {pathstart p, pathfinish p}) (is path-connected
25)
proof—
have continuous-on {0<..<1} p
using assms(1) unfolding simple-path-def path-def
by (meson continuous-on-path dual-order.refl greater ThanLess Than-subseteq-atLeast AtMost-iff
path-def)
moreover have path-connected {0<..<1:real} by simp
ultimately have path-connected (p{0<..<1}) using path-connected-continuous-image
by blast
thus ?thesis using simple-path-endless assms by metis
qed

lemma simple-loop-split:
assumes simple-path p N\ closed-path p
assumes simple-path q
assumes path-image q N path-image p = {q 0, q 1}
assumes path-image q N path-inside p # {}
shows ¢{0<..<1} C path-inside p
proof—
have inside-outside: inside-outside p (path-inside p) (path-outside p)
using Jordan-inside-outside-real2 closed-path-def assms(1) inside-outside-def
path-inside-def path-outside-def
by presburger

obtain z where z: z € path-image g N path-inside p using assms(4) by blast
then obtain txr where ¢tz € {0..1} A ¢ tz = z unfolding path-image-def by
fast
moreover then have tx # 0 A tx # 1
using assms(3) inside-outside x unfolding inside-outside-def by auto
ultimately have tz: tz € {0<..<1} A ¢ tz = z by simp

have connected (¢{0<..<1})

using connected-simple-path-endless simple-path-endless assms(2) by metis
then have path-connected (¢{0<..<1})

using path-connected-simple-path-endless assms(2) simple-path-endless by metis
moreover have ¢{0<..<1} N path-inside p # {} using tz = by blast
moreover have ¢{0<..<1} N frontier (path-inside p) = {}

using inside-outside unfolding inside-outside-def

by (smt (verit, del-insts) Diff-Int-distrib2 assms(2,3) diff-eq inf-compl-bot-right

inf-idem inf-sup-aci(1) pathfinish-def pathstart-def simple-path-endless)

ultimately show ?thesis

using path-connected-not-frontier-subset|of ¢{0<..<1} path-inside p] by fast
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qed

lemma pocket-path-interior-auz:
assumes simple-path p N\ simple-path q
assumes arc p \ arc q
assumes ¢ 0 =p1 Nqgl=p0
assumes path-image p N path-image ¢ = {p 0, q 0}
defines A = convex hull (path-image p U path-image q)
defines | = linepath (p 0) (p 1)
assumes p{0<..<1} C interior A
assumes path-image | C frontier A
assumes path-image q N path-image | = {1 0, ¢ 0}
shows p{0<..<1} N path-inside (I +++ q) # {}
stmple-path (I +++ q) A closed-path (I +++ q)
path-image p N path-image (I +++ ¢) = {p 0, p 1}
proof—
let 9r =1 +++ ¢
let ?Ir = path-inside ?r
let ?0r = path-outside ?r
show closed-simple-r: simple-path ?r A closed-path ?r
using simple-path-join-loop|of | q] assms unfolding pathstart-def pathfinish-def
by (metis (no-types, opaque-lifting) closed-path-def arc-linepath arc-simple-path
dual-order.refl inf-commute linepath-0' linepath-1" pathfinish-def pathfinish-join path-
start-def pathstart-join simple-path-def)
then have inside-outside-r: inside-outside ?r ?Ir ?0r
by (simp add: Jordan-inside-outside-real2 closed-path-def inside-outside-def
path-inside-def path-outside-def)

have [-p-endpoints: 1 0 = p 0 ANl 1 = p 1 by (simp add: I-def linepath-0'
linepath-1")
have l-g-endpoints: 1 0 = g1 N1 1 = q 0 by (simp add: assms(3) I-p-endpoints)
have p-int-lI: p{0<..<1} N path-image | = {} using assms(7,8) unfolding
frontier-def by blast
have ¢-int-lI: ¢{0<..<1} N path-image | = {}
by (metis (no-types, opaque-lifting) assms(9) Diff-iff Int-Diff all-not-in-conv
assms(1) assms(3) inf-sup-aci(1) insert-commute I-def linepath-0' pathfinish-def
pathstart-def simple-path-endless)
have interval: {0..1::real} = {0<..<1} U {0, 1} by fastforce
have If-I: loop-free |
using closed-simple-r not-loop-free-first-component simple-path-def by blast

let ?p’ = reversepath p

let s = | +++ ?%p’

let ?Is = path-inside ?s

let ?Os = path-outside ?s

have arc ?p’ A arc |

by (metis assms(2) arc-linepath arc-reversepath arc-simple-path I-def pathfin-

ish-def pathstart-def)

moreover have p’-int-l: path-image ?p’ N path-image | = {%p’ 0,1 0}
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proof—
have path-image p N path-image | = {1 0, 1 1}
proof—
have {1 0, 1 1} C path-image p N path-image |
using assms(3) assms(4) l-def linepath-0' linepath-1" by fastforce
moreover have path-image p = p{0<.<1} U{p 0, p 1}
using interval unfolding path-image-def by blast
ultimately show ?thesis using p-int-l I-p-endpoints by simp
qed
moreover have ?p’ 0 = [ 1 by (simp add: I-def linepath-1' reversepath-def)
moreover have path-image p = path-image ?p’ by simp
ultimately show ?thesis by (metis doubleton-eg-iff)
qed
ultimately have closed-simple-s: closed-path ?s N\ simple-path ?s
using simple-path-join-looplof | ?p’] assms unfolding pathstart-def pathfin-
ish-def
by (metis (no-types, opaque-lifting) closed-path-def dual-order.refl inf-commute
insert-commute linepath-0' linepath-1' pathfinish-def pathfinish-join pathfinish-reversepath
pathstart-def pathstart-join pathstart-reversepath simple-path-def)
then have inside-outside-s: inside-outside ?s ?Is ?0s
by (simp add: Jordan-inside-outside-real2 closed-path-def inside-outside-def
path-inside-def path-outside-def)

have r-inside-subset: path-inside ?r C interior A
proof—
have path-image | C A A path-image ¢ C A
by (metis A-def Un-upper2 assms(1) assms(8) compact-Un compact-convez-hull
compact-simple-path-image frontier-subset-compact hull-subset subset-trans)
thus ?thesis
by (metis (no-types, lifting) A-def closed-simple-r convez-contains-simple-closed-path-imp-contains-path-ins
convez-convezr-hull inside-outside-def inside-outside-r interior-eq interior-mono sub-
set-path-image-join)
qed
have s-inside-subset: path-inside ?s C interior A
proof—
have path-image | C A A path-image p C A
by (metis A-def Un-upper! assms(1) assms(8) compact-Un compact-convex-hull
compact-simple-path-image frontier-subset-compact hull-subset subset-trans)
thus ?thesis
by (metis A-def Jordan-inside-outside-real2 closed-path-def closed-simple-s
convez-contains-simple-closed-path-imp-contains-path-inside convex-convex-hull in-
terior-maximal path-image-reversepath path-inside-def subset-path-image-join)
qed

have g-outside: ¢{0<..<1} C path-outside ?s
proof(rule ccontr)
let ?ep = {v. v extreme-point-of A}
assume — ¢{0<..<1} C path-outside ?s
then have Jz € ¢{0<..<1}. z € path-inside ?s U path-image ?s
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using inside-outside-s unfolding inside-outside-def by auto
then have ¢{0<..<1} C path-inside ?s
using simple-loop-split[of p ]
by (smt (verit) DiffE Intl Int-Un-distrib2 closed-path-def UnFE <arc (reversepath
p) A arc Iy arc-imp-path assms(1) assms(2) assms(3) assms(4) closed-simple-r
closed-simple-s doubleton-eq-iff emptyE inf.commute l-def path-image-join path-image-reversepath
path-join-eq pathfinish-join pathfinish-linepath pathstart-join pathstart-linepath sim-
ple-loop-split simple-path-endless simple-path-joinE sup-absorb?2)
then have ¢{0<..<1} N frontier A = {} using frontier-def s-inside-subset by
fastforce
then have (path-image p U path-image q) N frontier A = {p 0, p 1}
by (smt (23) Diff-disjoint Int-Un-distrib Un-Diff-Int Un-Int-eq(3) assms(1)
assms(3) assms(4) assms(7) assms(8) assms(9) frontier-def inf.commute inf.orderE
inf-idem inf-left-commute insert-commute l-p-endpoints pathfinish-def pathstart-def
simple-path-endless)
moreover have ?epC path-image p U path-image q
by (simp add: extreme-points-of-conver-hull A-def)
moreover have ?ep C frontier A
using extreme-point-not-in-interior
proof—
have ?ep N interior A = {}
using extreme-point-not-in-interior by blast
thus ?thesis
by (smt (verit, ccfv-SIG) A-def Int-Un-distrib2 Un-Diff-cancel assms(1) calcu-
lation(2) closure-convez-hull compact-Un compact-simple-path-image dual-order.trans
frontier-def hull-subset inf.absorb-iff2 inf-commute sup-bot-left)
qed
ultimately have x: Zep C {p 0, p 1} by auto
have A = path-image |
proof—
have convex A A compact A
by (simp add: A-def arc-imp-path assms(2) compact-Un compact-convex-hull
compact-path-image)
then have A-ep: A = convex hull ?ep using Krein-Milman-Minkowski by
blast
moreover have finite ?ep using * infinite-super by auto
moreover have A # {} by (simp add: A-def)
moreover have Vz. A # {z} using assms(7) by fastforce
ultimately have card ?ep > 2 using convex-hull-two-extreme-points by metis
then have %ep = {p 0, p 1}
by (metis x One-nat-def Suc-1 add-leD2 card.empty card-insert-disjoint
card-seteq finite.emptyl finite.insertl insert-absorb plus-1-eq-Suc)
then have A = closed-segment (p 0) (p 1) by (metis A-ep segment-convex-hull)
thus ?thesis by (simp add: I-def)
qed
then have interior A = {}
by (metis A-def Diff-eq-empty-iff assms(1) assms(8) closure-convex-hull
compact-Un compact-simple-path-image double-diff dual-order.refl frontier-def in-
terior-subset)
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thus False using inside-outside-def inside-outside-r r-inside-subset by auto
qed

let e =1(1/2)
have l-on-r-frontier: path-image | C frontier (path-inside ?r)
using inside-outside-r unfolding inside-outside-def
by (metis Un-upperl closed-simple-r <arc (reversepath p) A arc Iy arc-def
assms(2) path-image-join path-join-eq simple-path-def)
moreover have path-image | C frontier (path-inside ?s)
using inside-outside-s unfolding inside-outside-def
by (simp add: I-def path-image-join pathstart-def reversepath-def)
ultimately have e-frontier: ?e € frontier (path-inside ?r) N ?e € frontier
(path-inside ?s)
by (simp add: path-defs(4) subsetD)

have e-notin: e ¢ path-image p U path-image q
proof—
have %e ¢ path-image p
proof—
have %e # [ 0 A ?e # | 1 using If-l unfolding loop-free-def by fastforce
then have %e # p 0 A ?e # p 1 using I-p-endpoints by simp
moreover have %e ¢ p{0<..<1} using p-int-l unfolding path-image-def
by fastforce
ultimately show ?thesis using p-int-l unfolding path-image-def by fastforce
qed
moreover have ?e ¢ path-image q
proof—
have ?e # 10 N %e # [ 1 using [f-] unfolding loop-free-def by fastforce
then have %e # q 0 N %e # q 1 using [-g-endpoints by simp
moreover have ?e ¢ ¢{0<..<1} using g¢-int-l unfolding path-image-def
by fastforce
ultimately show ?thesis using ¢-int-l unfolding path-image-def by fastforce
qed
ultimately show ¢thesis by blast
qed
obtain € where e: € > 0 A ball ?e & N path-image p = {} A ball ?e € N path-image
q={}
proof—
have %e ¢ path-image p using e-notin by simp
moreover have compact (path-image p) by (simp add: assms(2) compact-arc-image)
moreover have ?e ¢ path-image g using e-notin by simp
moreover have compact (path-image q) by (simp add: assms(2) compact-arc-image)
ultimately obtain €1 £2 where
€l > 0 A ball 2e e1 N path-image p = {} A2 > 0 A ball ?e €2 N path-image
q=A{}
by (meson assms(1) not-on-path-ball simple-path-imp-path)
thus ?thesis using that[of min £1 2] by (simp add: disjoint-iff)
qged
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obtain z-r where z-r: z-r € ball ?e € N path-inside ?r

by (metis e-frontier € all-not-in-conv disjoint-iff frontier-straddle mem-ball)
obtain 2-s where z-s: z-s € ball ?e € N path-inside ?s

by (metis e-frontier e all-not-in-conv disjoint-iff frontier-straddle mem-ball)

have z-s-in-r: z-s € path-inside ?r
proof—
let ?l-z = linepath z-r z-s
have z-r € interior A A\ z-s € interior A
using 7-inside-subset s-inside-subset z-r z-s by blast
then have path-image ?l-z C interior A by (simp add: A-def closed-segment-subset)
then have 1: path-image ?l-z N path-image | = {}
by (smt (verit) Diff-iff assms(8) disjoint-iff frontier-def subsetD)

have convex (ball ?e ) by simp
then have path-image ?l-z C ball %e e

by (metis IntD1 closed-segment-subset path-image-linepath z-r z-s)
then have 2: path-image ?l-z N path-image ¢ = {} using ¢ by blast

show ?thesis

by (smt (verit, best) 1 2 Intl Int-Un-distrib Int-Un-distrib2 Jordan-inside-outside-real2
closed-path-def € <path-image (linepath z-r z-s) C ball (I (1 / 2)) e+ arc-def assms(2)
closed-simple-r emptyE in-mono inf.assoc le-iff-inf path-connected-not-frontier-subset
path-connected-path-image path-image-join path-inside-def path-join-path-ends path-linepath
pathfinish-in-path-image pathfinish-linepath pathstart-in-path-image pathstart-linepath
sup.order-iff z-r)

qed

let ?zq = q (1/2)
let 7z = z-s

let v = %zq — %2
let ?ray = Ad. %2 + d xp %v
let ?rayline = linepath ?z ?xq
have z-ray: 2z = ?ray 0 by simp
have zq-ray: ?zq = %ray 1 by simp
have zq-rayline: ?zq = ?rayline 1 unfolding linepath-def by simp
have ?zq € path-image r
by (metis (mono-tags, opaque-lifting) Un-iff atLeastAtMost-iff imagel l-q-endpoints
less-eq-real-def path-defs(4) path-image-join pathfinish-def pathstart-def pos-half-less
zero-less-divide-1-iff zero-less-numeral zero-less-one)
then have zq¢-frontier: ?xq € frontier (path-inside ?r)
using inside-outside-r unfolding inside-outside-def by auto
have zq-neq-z: %xq # 2
proof—
have ?zq € path-image ?r
proof—
have ¢ (1 / 2) € path-image q
by (simp add: path-defs(4))
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thus ?thesis
by (simp add: l-g-endpoints path-image-join pathfinish-def pathstart-def)
qed
thus ?thesis using z-s-in-r inside-outside-r unfolding inside-outside-def by
blast
qed
then have v-neq-0: ?v # 0 by simp

have bounded (path-inside ?r) using inside-outside-r unfolding inside-outside-def
by blast
moreover have ?z € interior (path-inside ?r)
by (metis inside-outside-def inside-outside-r interior-eq z-s-in-r)
ultimately obtain d where d: 0 < d A ?ray d € frontier (path-inside ?r)
A (Ve € {0..<d}. ?ray e € interior (path-inside ?r))
using ray-to-frontier[of path-inside ?r ?z ?v] by (metis atLeastLessThan-iff
v-neg-0)

have interior-inside-r: interior (path-inside ?r) = path-inside ?r
by (meson inside-outside-def inside-outside-r interior-eq)
have d-leg-1: d < 1
proof (rule ccontr)
assume - d < 1
then have d > I by simp
moreover have ?ray 1 € frontier (path-inside ?r) using zq-ray xq-frontier by
argo
ultimately show Fulse using d unfolding frontier-def by fastforce
qed

have z-inside: 9z € path-inside ?s using z-s by blast
moreover have ?rayline d € path-outside ?s
proof—
have ?rayline d ¢ path-image 1 if d < 1
proof—
have ?rayline 0 € interior A
using r-inside-subset by (simp add: linepath-0' subsetD z-s-in-r)
moreover have path-image ?rayline C closure A
proof—
have closure A = A
using A-def assms(1) closure-convex-hull compact-Un compact-simple-path-image
by blast
moreover have ?rayline 0 € A using «?rayline 0 € interior A inte-
rior-subset by blast
moreover have ?rayline 1 € A
using path-image-def A-def hull-subset zq-rayline by fastforce
ultimately show ?thesis
by (metis A-def closed-segment-subset convez-convex-hull linepath-0'
linepath-1" path-image-linepath)
qed
moreover have — path-image ?rayline C rel-frontier A
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proof—
have path-image ?rayline N interior A # {}
using «?rayline 0 € interior A unfolding path-image-def by fastforce
moreover have interior A N rel-frontier A = {}
using rel-frontier-def rel-interior-nonempty-interior by auto
ultimately show ?thesis by blast
qed
ultimately have rel-interior (path-image ?rayline) C rel-interior A
using subset-rel-interior-convez|of path-image ?rayline A] by (simp add:
A-def)
moreover have interior A = rel-interior A
using < ?rayline 0 € interior A rel-interior-nonempty-interior by auto
moreover have ?rayline d € ?rayline{0<..<1} using that d by simp
ultimately show ?thesis
by (smt (verit, del-insts) Diff D1 Diff D2 Un-iff xq-neq-z arc-linepath arc-simple-path
assms(8) closed-segment-eq-open frontier-def path-image-linepath pathfinish-linepath
pathstart-linepath rel-interior-closed-segment simple-path-endless subset-eq)
qed
moreover have ?rayline d ¢ path-image | if d = 1
using that ¢-int-l unfolding linepath-def by (simp add: disjoint-iff)
moreover have ?rayline d € path-image ?r
by (metis (no-types, lifting) add-diff-eq d diff-add-eq inside-outside-def in-
side-outside-r linepath-def scale-left-diff-distrib scale-one scale-right-diff-distrib)
ultimately show ¢thesis
by (smt (verit, ccfv-SIG) d-leg-1 Diff-iff Int-iff closed-path-def <arc (reversepath
p) A arc Iy arc-def assms(1) assms(3) assms(9) closed-simple-r insert-commute
l-def I-p-endpoints not-in-path-image-join path-join-eq pathfinish-join pathfinish-linepath
pathstart-join pathstart-linepath q-outside simple-path-def simple-path-endless sub-
setD)
qed
moreover have ?z € ?rayline{0..d}
using z-ray unfolding linepath-def
by (smt (verit, del-insts) add.commute atLeastAtMost-iff cancel-comm-monoid-add-class.diff-cancel
d diff-zero image-iff less-eq-real-def segment-degen-1)
moreover have ?rayline d € ?rayline’{0..d} by (simp add: d less-eq-real-def)
ultimately have ?rayline{0..d} N path-inside ?s # {} A rayline’{0..d} N
path-outside ?s # {}
by blast
then have Zrayline{0..d} N path-inside ?s # {} A ?rayline{0..d} N — path-inside
% # {}
using inside-outside-s unfolding inside-outside-def by (meson Compll dis-
joint-iff)
moreover have path-connected (?rayline{0..d})
proof—
have ?rayline{0..d} = path-image (subpath 0 d ?rayline) by (simp add: d
path-image-subpath)
moreover have path (subpath 0 d ?rayline) using d d-leg-1 by auto
ultimately show ?thesis by (metis path-connected-path-image)
qed
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ultimately have ?rayline{0..d} N frontier (path-inside ?s) # {}
using path-connected-frontier[of ?rayline{0..d} path-inside ?s| by (metis dis-
joint-iff)
then have ?rayline’{0..d} N path-image ?s # {} using inside-outside-s unfold-
ing inside-outside-def by argo
moreover have ?rayline 0 ¢ path-image ?s
proof—
have ?zq £ p 0
by (metis (full-types) disjoint-iff greaterThanLess Than-iff imagel I-p-endpoints
pathstart-def pathstart-in-path-image pos-half-less q-int-1 zero-less-divide-1-iff zero-less-numeral
zero-less-one)
moreover have ?zq # p 1
by (metis (full-types) disjoint-iff greater ThanLessThan-iff imagel I-p-endpoints
pathfinish-def pathfinish-in-path-image pos-half-less g-int-1 zero-less-divide-1-iff zero-less-numeral
zero-less-one)
moreover have ?zq ¢ p{0<..<1}
proof—
have %zq € ¢{0<..<1} by fastforce
thus ?thesis by (metis assms(1,3,4) Diff-iff Int-iff pathfinish-def pathstart-def
simple-path-endless)
qed
moreover have %zq ¢ path-image [
by (metis disjoint-iff greaterThanLessThan-iff imagel pos-half-less g-int-l
zero-less-divide-1-iff zero-less-numeral zero-less-one)
ultimately show #thesis
by (metis (no-types, lifting) ComplD Unll z-inside inside-outside-def in-
side-outside-s linepath-0")
qed
moreover have ?rayline d ¢ path-image ?s
using < ?rayline d € path-outside ?sy inside-outside-def inside-outside-s by auto
moreover have {0..d} = {0<..<d} U {0, d} using d by fastforce
ultimately have ?rayline {0<..<d} N path-image ?s # {} unfolding path-image-def
by blast
moreover have ?rayline{0<..<d} = ?ray{0<..<d}
unfolding linepath-def by (auto simp: algebra-simps)
moreover have ?ray{0<..<d} C path-inside ?r using d interior-inside-r by
fastforce
ultimately have path-image ?s N path-inside ?r # {} by blast
moreover have path-image | N path-inside ¢r = {}
by (metis (no-types, opaque-lifting) Diff-disjoint Int-assoc l-on-r-frontier fron-
tier-def inf.orderE inf-bot-left inf-sup-aci(1) interior-inside-r)
moreover have p{0<..<1} = path-image ?s — path-image |
proof—
have path-image ?s = path-image p U path-image |
by (simp add: l-p-endpoints path-image-join pathfinish-def sup-commute)
moreover have p{0<..<1} = path-image p — {p 0, p 1}
by (metis assms(1) pathfinish-def pathstart-def simple-path-endless)
ultimately have path-image ?s = p{0<..<1} U {p 0, p 1} U path-image
using assms(3) assms(9) l-p-endpoints by auto
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moreover have p 1 € path-image | A p 0 € path-image | by (simp add: I-def)
ultimately show ¢thesis using p-int-l by blast

qed

ultimately show p{0<..<1} N path-inside (I +++ q) # {} by auto

show path-image p N path-image (I +++ q) = {p 0, p 1}
by (smt (verit, best) Int-Un-distrib Un-absorb assms(1) assms(3) assms(4)
closed-simple-r insert-commute l-p-endpoints p’-int-1 path-image-join path-image-reversepath
path-join-path-ends reversepath-def simple-path-imp-path)
qged

lemma pocket-path-interior:
assumes simple-path p A simple-path q
assumes arc p A arc q
assumes q 0 =p1 Ngl=p0
assumes path-image p N path-image ¢ = {p 0, ¢ 0}
defines A = convex hull (path-image p U path-image q)
defines [ = linepath (p 0) (p 1)
assumes p{0<..<1} C interior A
assumes path-image | C frontier A
assumes path-image ¢ N path-image | = {1 0, q 0}
shows p{0<..<1} C path-inside (I +++ q)
using pocket-path-interior-aux|of p q] simple-loop-split[of | +++ ¢ p] assms
by (metis (no-types, lifting) DiffE disjoint-iff simple-path-endless)

lemma pocket-path-good:
assumes polygon (make-polygonal-path vts)
assumes vtsl0 € frontier (convex hull (set vts))
assumes vits!! ¢ frontier (convex hull (set vts))
assumes — convez (path-image (make-polygonal-path vts) U path-inside (make-polygonal-path
vts))
defines pocket-path-vts = construct-pocket-0 vts (set vts N frontier (convex hull
(set vts)))
defines pocket = make-polygonal-path (pocket-path-vts @ [pocket-path-vts!0])
defines filled-vts = fill-pocket-0 vts (length pocket-path-vts)
defines filled-p = make-polygonal-path filled-vts
defines a = hd pocket-path-vts
defines b = last pocket-path-vts
defines good-pocket-path-vts = tl (butlast pocket-path-vts)
shows polygon filled-p
is-polygon-split-path (butlast filled-vts) 0 1 good-pocket-path-vts
polygon pocket
card (set pocket-path-vts) < card (set vts)
card (set filled-vts) < card (set vts)
proof—
let ?p = make-polygonal-path vts
let ?A = set vts N frontier (convex hull (set vts))
let ?filled-vts-tl = tl filled-vts
let ?filled-p-tl = make-polygonal-path ?filled-vts-tl
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let ?pocket-vts = pocket-path-vts Q [pocket-path-vts!0]
let ?pocket-path = make-polygonal-path pocket-path-vts
let 2] = linepath a b

let 9r = min-nonzero-index-in-set vts ?A

have int-A-nonempty: set (tl vts) N 24 # {}

by (metis (mono-tags, lifting) IntI Nitpick.size-list-simp(2) Suc-eq-plus1 assms(1)
assms(2) card-length empty-iff have-wraparound-vertex last-in-set last-tl le-addl
le-trans not-less-eq-eq numeral-3-eq-3 polygon-at-least-3-vertices snoc-eq-iff-butlast)
then have r-defined: nonzero-index-in-set vts A ?r A (Vi < r. = nonzero-indez-in-set
vts ?A 1)

using min-nonzero-index-in-set-defined[of vts ?A] by fast

have two-vts-on-frontier: 2 < card ?A
by (metis convez-hull-two-vts-on-frontier One-nat-def Suc-1 add-leD2 assms(1)
numeral-3-eq-3 plus-1-eq-Suc polygon-at-least-3-vertices)
moreover have frontier-vts-subset: ?A C set vts by force
moreover have distinct-vts: distinct (butlast vts)
using assms(1) polygon-def simple-polygonal-path-vts-distinct by blast
moreover have hd-last-vts: hd vts = last vts
by (metis assms(1) have-wraparound-vertex hd-conv-nth snoc-eq-iff-butlast)
ultimately have a-neg-b: a # b
using a-def b-def construct-pocket-0-first-last-distinct pocket-path-vts-def by
presburger
have length filled-vts > 2
unfolding filled-vts-def fill-pocket-0-def
by (smt (verit, best) One-nat-def Suc-1 Suc-diff-Suc a-def a-neq-b b-def con-
struct-pocket-0-def diff-is-0-eq diff-zero hd-Nil-eq-last length-drop length-greater-0-conv
length-tl list.sel(3) not-less-eq-eq pocket-path-vts-def sublist-length-le sublist-take)
moreover have filled-vts-0: a = filled-vts!0
unfolding filled-vts-def fill-pocket-0-def a-def pocket-path-vts-def construct-pocket-0-def
by auto
moreover have filled-vts-1: b = filled-vts!1
by (smt (verit, del-insts) filled-vts-def fill-pocket-0-def b-def pocket-path-vts-def
construct-pocket-0-def Cons-nth-drop-Suc Nitpick.size-list-simp(2) a-def a-neq-b add.right-neutral
drop0 drop-eq-Nil hd-Nil-eq-last last-conv-nth length-take length-tl linorder-not-less
list.sel(3) min.absorbj nat-le-linear not-less-eq-eq nth-drop nth-take plus-1-eq-Suc
take-all-iff zero-less-diff)
ultimately have filled-vts: filled-vts = [a, b] @ ¢l ?filled-vts-t
by (metis (no-types, lifting) Nitpick.size-list-simp(2) One-nat-def Suc-1 ap-
pend-Nil append-eq-Cons-conv length-greater-0-conv list.collapse not-less-eq-eq nth-Cons-0
nth-tl order-less-le-trans pos2)

have 1: polygon-of ?p vts unfolding polygon-of-def using assms(1) by blast
have 2: 2 < ?r A ?r < length vts — 1
proof—

have 9r # 0 A 9r # 1
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using assms(2,3) min-nonzero-index-in-set-def nonzero-index-in-set-def r-defined
by fastforce
then have 1: 9r > 2 by simp

have 37 € {0<..<length vts — 1}. vtsli € frontier (convexr hull (set vts))
proof—
have card ((set vts) N frontier (convex hull (set vts))) > 2
using two-vts-on-frontier by blast
then obtain v where v € set vts A v € frontier (convex hull set vts) A v #
hd vts
by (metis hd-last-vts Int-iff a-neq-b assms(2) b-def construct-pocket-0-last-in-set
convex-hull-empty empty-set fill-pocket-0-def filled-vts-0 filled-vts-def frontier-empty
hd-conv-nth int-A-nonempty last-in-set nth-Cons-0 pocket-path-vts-def)
thus ?thesis
by (metis hd-last-vts assms(1) in-set-conv-nth diff-Suc-1 gr0-implies-Suc
greater ThanLess Than-iff have-wraparound-vertex last-conv-nth le-eq-less-or-eq less-Suc-eq-le
less-one nat.simps(3) nat-le-linear snoc-eq-iff-butlast)
qed
then have 2: 9r < length vts — 1
using 7-defined
unfolding min-nonzero-indez-in-set-def nonzero-index-in-set-def
by (smt (verit, del-insts) Int-iff add.commute add-diff-cancel-left” add-diff-inverse-nat
greaterThanLess Than-iff less-imp-diff-less mem-Collect-eq nat-less-le nth-mem)
show ?thesis using 1 2 by blast
qed
have ab: a = hd vts N b = vts! or
by (metis (no-types, lifting) 2 Suc-1 int-A-nonempty ab-semigroup-add-class.add-ac(1)
add-Suc-right b-def construct-pocket-0-def fill-pocket-0-def filled-vts-0 filled-vts-def
hd-drop-conv-nth last-snoc le-add-diff-inverse2 min-nonzero-index-in-set-bound nth-Cons-0
plus-1-eq-Suc pocket-path-vts-def take-hd-drop)
have 3: {hd vts, vts | ?r} C frontier (convex hull set vts)
using ab assms(1) assms(2) assms(8) b-def construct-pocket-is-pocket is-pocket-0-def
pocket-path-vts-def
by fastforce
have 4: Vje{0<..<?r}. vts | j & frontier (convex hull set vts)
using r-defined unfolding nonzero-indez-in-set-def by fastforce

have l-int-p: path-image (linepath (hd vts) (vts ! 2r)) N path-image ?p = {hd vts,
vts | or}
using pocket-fill-line-int[OF 1 2 3 4] by blast
have I-frontier: path-image (linepath (hd vts) (vis ! ?r)) C frontier (convex hull
(set vts))
using pocket-fill-line-int[OF 1 2 3 4] by blast

have path-image ?filled-p-tl N path-image ?l = {a, b}
proof—
have path-image (linepath (hd vts) (vts! 2r)) N path-image ?p = {hd vts, vts |
or}
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using pocket-fill-line-int[OF 1 2 3 /] by blast
moreover have path-image ?filled-p-tl C path-image ?p
proof—
have sublist ?filled-vts-tl vts by (simp add: fill-pocket-0-def filled-vts-def)
thus ?thesis using <2 < length filled-vts> sublist-path-image-subset by auto
qed
moreover have a € path-image ?filled-p-tl A\ b € path-image ?filled-p-tl
by (smt (verit, best) Cons-nth-drop-Suc Diff-insert-absorb One-nat-def Suc-1
<2 < length filled-vts) drop0 drop-eq-Nil fill-pocket-0-def filled-vts-0 filled-vts-1 filled-vts-def
hd-last-vts last-drop last-in-set linorder-not-le list.sel(3) not-less-eq-eq nth-Cons-0
order-less-le-trans pathstart-in-path-image polygon-pathstart pos2 subset-Diff-insert
vertices-on-path-image)
ultimately show ¢thesis using ab by auto
qed
moreover have hd-filled: hd ?filled-vts-tl = last [a, D]
unfolding filled-vts-def fill-pocket-0-def pocket-path-vts-def construct-pocket-0-def
by (metis construct-pocket-0-def fill-pocket-0-def filled-vts filled-vts-def hd-append?2
last-ConsL last-ConsR list.sel(1) list.sel(3) list.simps(3) pocket-path-vts-def ti-append?2)
moreover have last-filled: last ?filled-vts-tl = hd [a, b]
unfolding filled-vts-def fill-pocket-0-def pocket-path-vts-def construct-pocket-0-def
using r-defined a-def assms(1) assms(2) assms(3) construct-pocket-is-pocket
hd-last-vts is-pocket-0-def pocket-path-vts-def
by fastforce
moreover have loop-free ?filled-p-tl
proof—
have sublist ?filled-vts-tl vts
unfolding filled-vts-def fill-pocket-0-def pocket-path-vts-def construct-pocket-0-def
using r-defined
by force
thus ?thesis
by (smt (verit, del-insts) Nitpick.size-list-simp(2) Suc-1 <2 < length filled-vts»
<b = filled-vts ! 1> a-neq-b assms(1) diff-is-0-eq dual-order.strict-trans1 last-conv-nth
last-filled le-antisym length-greater-0-conv length-tl list.sel(1) list.size(8) not-less-eq-eq
nth-tl polygon-def pos2 simple-path-def sublist-is-loop-free sublist-length-le)
qed
moreover have loop-free ¢ using a-neg-b linepath-loop-free by blast
moreover have filled-vts: filled-vts = [a, b] @ tl ?filled-vts-tl using filled-vts by
blast
moreover have arc 7]
by (smt (verit) arc-linepath calculation(5) constant-linepath-is-not-loop-free)
moreover have arc ?filled-p-tl
by (smt (28) arc-simple-path calculation(2) calculation(3) calculation(4) cal-
culation(7) hd-Nil-eg-last hd-conv-nth last.simps last-conv-nth list.discl list.sel(1)
make-polygonal-path-gives-path pathfinish-linepath pathstart-linepath polygon-pathfinish
polygon-pathstart simple-path-def)
moreover have ?] = make-polygonal-path [a, b]
using make-polygonal-path.simps by presburger
ultimately have If-filled: loop-free filled-p
by (smt (23) Nat.add-diff-assoc One-nat-def Suc-pred’ add-Suc-shift append-butlast-last-id
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arc-distinct-ends butlast.simps(2) filled-p-def hd-Nil-eq-last hd-conv-nth inf-sup-aci(1)
last-ConsR less-numeral-extra(1) list.sel(1) list.simps(3) list.size(3) list.size(4)
loop-free-append nth-append-length order-eq-refl plus-1-eq-Suc polygon-pathfinish poly-
gon-pathstart)
show polygon-filled-p: polygon filled-p
unfolding polygon-def

by (metis closed-path-def UNIV-def append-is-Nil-conv filled-p-def filled-vts
hd-append?2 last.simps last-conv-nth last-filled If-filled list. discl list. exhaust-sel make-polygonal-path-gives-path
nth-Cons-0 polygon-pathfinish polygon-pathstart polygonal-path-def rangel simple-path-def)

have {a, b} C set filled-vts
using filled-vts by (smt (23) UnCI empty-set list.simps(15) set-append sub-
set-iff)
moreover have pocket-path: ?pocket-path = make-polygonal-path ([a] @ good-pocket-path-vts
Q [o])
by (metis (no-types, lifting) a-def a-neg-b append-Cons append-Nil append-butlast-last-id
b-def good-pocket-path-vts-def hd-Nil-eq-last hd-conv-nth last-conv-nth length-butlast
list.collapse list.size(3) tl-append?2)
moreover have path-image ?pocket-path C path-inside filled-p U {a, b}
proof—
let ?p = ?pocket-path
let 2q = ?filled-p-tl
let ?H = convex hull (path-image ?p U path-image ?q)
have b: pocket-path-vts = take (9r + 1) vts
unfolding pocket-path-vts-def construct-pocket-0-def by blast
moreover then have ¢’ ?filled-vts-tl = drop ?r vts unfolding filled-vts-def
fill-pocket-0-def
using 2 by fastforce
ultimately have vts = pocket-path-vts @ tl ?filled-vts-tl
by (metis Suc-eq-plusl append-take-drop-id drop-Suc tl-drop)
then have path-image ?p = path-image ?p U path-image 2q
by (metis Suc-1 a-def a-negq-b b-def diff-is-0-eq hd-Nil-eq-last hd-conv-nth
hd-filled last.simps last-conv-nth last-filled list.discl list.sel(1) make-polygonal-path-image-append-alt
not-less-eq-eq path-image-join polygon-pathfinish polygon-pathstart)
moreover have convex hull (path-image ?p) = convex hull (set vts)
by (metis (no-types, lifting) 1 Un-subset-iff convezr-hull-of-polygon-is-convez-hull-of-vts
hull-Un-subset hull-mono subset-antisym vertices-on-path-image)
ultimately have H-eq: YH = convex hull (set vts) by presburger

have a: ?p = make-polygonal-path vts N loop-free ?p
using assms(1) polygon-def simple-path-def by blast
have c¢: ?filled-vts-tl = drop ((?r + 1) — 1) vts using ¢’ by simp
have h: 1 < %r + 1 A ?r + 1 < length vts using 2 by linarith
have path-image ?p N path-image ?q C {%p 0, %q 0}
using loop-free-split-int[OF a b ¢ - - - h] by (simp add: pathstart-def)
moreover have ?p 0 € path-image 7p A ?p 0 € path-image ?q
by (metis a-def a-neg-b b-def hd-Nil-eq-last hd-conv-nth hd-filled last.simps
last-conv-nth last-filled list.sel(1) pathfinish-in-path-image pathstart-def pathstart-in-path-image
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polygon-pathfinish polygon-pathstart)
moreover have ?q 0 € path-image ?p N %q 0 € path-image %q
by (metis a-def a-neg-b b-def hd-Nil-eq-last hd-conv-nth hd-filled last.simps
last-conv-nth last-filled list.sel(1) pathfinish-in-path-image pathstart-def pathstart-in-path-image
polygon-pathfinish polygon-pathstart)
ultimately have /: path-image ?p N path-image ?q = {%p 0, %q 0} by fastforce

have 1: simple-path ?p N simple-path ?q
by (metis (no-types, lifting) One-nat-def Suc-1 Suc-le-eq <arc ?filled-p-tl»
arc-simple-path assms(1) assms(2) assms(3) construct-pocket-is-pocket is-pocket-0-def
le-add?2 make-polygonal-path-gives-path numeral-3-eq-3 order-le-less-trans plus-1-eq-Suc
pocket-path-vts-def polygon-def simple-path-def sublist-is-loop-free sublist-take)
have 2: arc %p N arc ?q
by (metis 1 <arc ?filled-p-tl> a-def a-neq-b b-def hd-Nil-eq-last hd-conv-nth
last-conv-nth polygon-pathfinish polygon-pathstart simple-path-cases)
have 8: 2q0 =% 1 N %1 =20
by (metis 1 a-def append-Cons b-def constant-linepath-is-not-loop-free filled-vts
hd-conv-nth last-conv-nth last-filled list.sel(1) list.sel(8) make-polygonal-path.simps(1)
pathfinish-def pathstart-def polygon-pathfinish polygon-pathstart simple-path-def)
have 5: ?p ‘{0<..<1} C interior ?H
proof—
have Vj € {0<..<?r}. vtslj & frontier (convex hull (set vts))
by (smt (verit, del-insts) Int-iff dual-order.strict-trans greater ThanLess Than-iff
int-A-nonempty mem-Collect-eq min-nonzero-indez-in-set-defined nonzero-indez-in-set-def
nth-mem)
moreover have ?r = length pocket-path-vts — 1 using b h by auto
moreover have Vj < ?r. vtslj = pocket-path-vts!j using b by auto
ultimately have Vj € {0<..<length pocket-path-vts — 1}. pocket-path-vts!j
¢ frontier ?H
using H-eq by simp
moreover have loop-free ?pocket-path using 1 simple-path-def by auto
ultimately show ?thesis
by (metis vts-interior Un-subset-iff assms(1) assms(2) assms(3) con-
struct-pocket-is-pocket convex-convez-hull hull-subset is-pocket-0-def pocket-path-vts-def)
qed
have 6: path-image (linepath (?p 0) (?p 1)) C frontier ?H
by (metis I-frontier H-eq 3 a-def a-neq-b ab b-def hd-Nil-eg-last hd-conv-nth
hd-filled last.simps last-filled list.discl list.sel(1) pathstart-def polygon-pathstart)
have 7: path-image ?q N path-image (linepath (?p 0) (?p 1)) = {linepath (p
0) (% 1) 0, % 0}
by (metis 8 <path-image (make-polygonal-path (tl filled-vts)) N path-image
(linepath a b) = {a, b} a-def a-neq-b b-def hd-Nil-eq-last hd-filled last.simps last-conv-nth
last-filled linepath-0' list.sel(1) pathfinish-def polygon-pathfinish)
have ?p ‘{0<..<1} C path-inside (linepath (%p 0) (%p 1) +++ %q)
using pocket-path-interior|OF 1 2 8 4 5 6 7] by blast
then have ?p{0<..<1} C path-inside filled-p
by (smt (verit) 8 <2 < length filled-vts) a-def a-neg-b b-def filled-p-def
filled-vts-0 hd-Nil-eq-last hd-filled last.simps last-filled length-greater-0-conv list.discl
list.sel(1) list.sel(3) make-polygonal-path.elims nth-Cons-0 order-less-le-trans path-
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start-def polygon-pathstart pos2)
moreover have op 0 = a A p 1 = b
by (metis 3 a-def a-neg-b b-def hd-Nil-eq-last hd-conv-nth hd-filled last.simps
last-filled list.discl list.sel(1) pathstart-def polygon-pathstart)
ultimately show ?thesis
by (metis 1 Diff-subset-conv a-def a-neg-b b-def hd-Nil-eq-last hd-conv-nth
last-conv-nth polygon-pathfinish polygon-pathstart simple-path-endless sup-commute)
qed
moreover have loop-free-pocket-path: loop-free ?pocket-path
proof—
have sublist pocket-path-vts vts
by (simp add: construct-pocket-0-def pocket-path-vts-def)
moreover have loop-free ?p
using assms(1) polygon-def simple-path-def by blast
moreover have length pocket-path-vts > 2
by (metis Suc-1 a-def a-neq-b b-def diff-is-0-eq’ hd-Nil-eg-last hd-conv-nth
last-conv-nth not-less-eq-eq)
moreover have length vts > 2
by (meson calculation(1) calculation(3) le-trans sublist-length-le)
ultimately show ?thesis using sublist-is-loop-free by blast
qged
ultimately have good-polygonal-path: good-polygonal-path a good-pocket-path-vts
b filled-vts
by (metis a-neg-b filled-p-def good-polygonal-path-def)

have filled-vts-as-butlast: filled-vts = (butlast filled-vts) @ [(butlast filled-vts)!0]

by (metis Nitpick.size-list-simp(2) append.right-neutral butlast-conv-take filled-p-def
filled-vts have-wraparound-vertex length-butlast length-tl less-Suc-eq-0-disj list.discl
list.sel(2) list.sel(8) nth-butlast polygon-filled-p)

then have filled-p-as-butlast:

filled-p = make-polygonal-path ((butlast filled-vts) Q [(butlast filled-vts)!0])
unfolding filled-p-def filled-vts-def by argo
have le: 0 < (1::nat) by simp

have filled-0-a: (butlast filled-vts) ! 0 = a
by (metis append-Cons append-Nil butlast.simps(2) filled-vts nth-Cons-0 filled-vts-0)
have filled-1-b: (butlast filled-vts) ! 1 = b
by (metis (no-types, opaque-lifting) filled-vts-1 filled-vts-as-butlast a-neg-b ap-
pend-Cons append-Nil butlast-conv-take filled-0-a filled-vts length-butlast less-one
linorder-not-le nat-less-le nth-append-length nth-butlast take0)

have 01: 0 < length (butlast filled-vts) N 1 < length (butlast filled-vts)
by (metis One-nat-def Suc-lessI filled-vts-1 filled-vts-as-butlast a-neg-b ap-
pend-eq-Cons-conv filled-0-a length-greater-0-conv nth-Cons-Suc nth-append-length)
show is-split-path:
is-polygon-split-path (butlast filled-vts) 0 1 good-pocket-path-vts
using good-polygonal-path-implies-polygon-split-path
[OF polygon-filled-p filled-p-as-butlast - 01 filled-0-a filled-1-b le]
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using good-polygonal-path filled-vts-as-butlast
by presburger

have polygon-pocket-rev: polygon (make-polygonal-path (a#([] @ [b] Q (rev good-pocket-path-vts)
Q [a])))
unfolding is-polygon-split-path-def
by (smt (23) 01 One-nat-def add-diff-cancel-left’ add-diff-cancel-right’ filled-0-a
filled-1-b is-polygon-split-path-def is-split-path nth-butlast plus-1-eq-Suc take0)
moreover have rev-pocket-vts: rev Zpocket-vts = a#([] @Q [b] Q (rev good-pocket-path-vts)
Q [d])
by (smt (verit) a-def a-neq-b append.left-neutral append-Cons append-butlast-last-id
b-def good-pocket-path-vts-def hd-Nil-eq-last hd-append2 hd-conv-nth last-conv-nth
length-butlast list.collapse list.size(8) rev.simps(1) rev.simps(2) rev-append)
ultimately show polygon pocket
by (metis polygon-pocket-rev rev-vts-is-polygon polygon-of-def pocket-def rev-rev-ident)

have card (set vts) = length (butlast vts)
using distinct-vts
by (smt (verit, ccfv-threshold) Suc-n-not-le-n Un-insert-right append-Nil2 assms(1)
butlast-conv-take distinct-card dual-order.strict-trans have-wraparound-vertex hd-conv-nth
hd-in-set hd-take insert-absorb length-0-conv length-butlast less-eq-Suc-le linorder-linear
list.set(2) not-numeral-le-zero numeral-3-eq-3 polygon-at-least-3-vertices-wraparound
polygon-vertices-length-at-least-4 set-append)
then have set pocket-path-vts C set vts
unfolding pocket-path-vts-def construct-pocket-0-def
using r-defined
by (smt (verit, ccfu-threshold) Cons-nth-drop-Suc One-nat-def Suc-diff-Suc
Suc-le-lessD add-diff-cancel-right’ assms(1) assms(2) assms(3) butlast-conv-take
butlast-snoc card-length construct-pocket-0-def construct-pocket-is-pocket drop0 fill-pocket-0-def
filled-vts-def is-pocket-0-def is-polygon-split-path-def is-split-path leD le-less-Suc-eq
length-butlast length-drop length-greater-0-conv list.inject numeral-3-eq-3 plus-1-eq-Suc
pocket-path-vts-def polygon-at-least-3-vertices-wraparound psubset] set-take-subset
take-eq-Nil add-eq-0-iff-both-eq-0 add-gr-0 cancel-comm-monoid-add-class. diff-cancel
diff-zero dual-order.strict-trans filled-p-def length-Cons length-tl less-imp-diff-less
list.sel(3) list.size(8) not-less-eq-eq polygon-filled-p zero-less-one zero-neg-one)
thus card (set pocket-path-vts) < card (set vts) by (simp add: psubset-card-mono)

have card (set vts) = card (set (butlast vts))
by (smt (23) Cons-nth-drop-Suc List.finite-set One-nat-def Suc-1 Suc-le-lessD
two-vts-on-frontier distinct-vts hd-last-vts frontier-vts-subset butlast.simps(1) but-
last-conv-take card-insert-if card-length card-mono distinct-card drop0 drop-eq-Nil
dual-order.trans last-in-set last-tl length-butlast length-greater-0-conv length-tl list.collapse
list.sel(8) list.simps(15) set-take-subset verit-la-disequality)
moreover have length good-pocket-path-vts > 1
unfolding good-pocket-path-vts-def pocket-path-vts-def construct-pocket-0-def
using convez-hull-of-nonconver-polygon-strict-subset| OF - assms(4), of vts]
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using Suc-le-eq assms(1) assms(2) assms(3) construct-pocket-0-def construct-pocket-is-pocket
is-pocket-0-def numeral-3-eq-3
by auto
ultimately show card (set filled-vts) < card (set vts)

unfolding filled-vts-def fill-pocket-0-def good-pocket-path-vts-def pocket-path-vts-def

by (smt (verit) Nitpick.size-list-simp(2) Suc-1 Suc-diff-Suc Suc-n-not-le-n <2 <
length filled-vtsy distinct-vts hd-last-vts card-length diff-is-0-eq diff-less distinct-card
drop-eq-Nil fill-pocket-0-def filled-vts-def insert-absorb last-drop last-in-set le lel
le-less-Suc-eq length-Cons length-butlast length-drop length-tl less-imp-diff-less list.simps(15)
order-less-le-trans pocket-path-vts-def)
qed

29.3 Arbitrary Polygon Case

lemma pick-rotate:
assumes polygon-of p vts
assumes all-integral vts
obtains p’ vts’ where polygon-of p’ vts’
A vts'0 € frontier (convex hull (set vts’))
A path-image p’ = path-image p
A all-integral vts'
A set vts' = set vts
proof—
obtain v where v: v € set vts N frontier (convex hull (set vts))
proof—
obtain v where v € set vts A v extreme-point-of (convex hull (set vts))
using assms unfolding polygon-of-def
by (metis List.finite-set card.empty convez-conver-hull convez-hull-eg-empty ex-
treme-point-ezists-convex extreme-point-of-convezr-hull finite-imp-compact-convex-hull
not-numeral-le-zero polygon-at-least-3-vertices)
then have v € set vts A v € frontier (convex hull (set vts))
by (metis Krein-Milman-frontier List.finite-set convex-convez-hull extreme-point-of-convez-hull
finite-imp-compact-convez-hull)
thus ?thesis using that by blast
qed
obtain ¢ where i: visli = v A i < length vts by (meson IntE in-set-conv-nth v)
let ?vts-rotated = rotate-polygon-vertices vts i
let ?p-rotated = make-polygonal-path ?vts-rotated
have same-set: set vts = set ?vts-rotated
using assms unfolding polygon-of-def
using rotate-polygon-vertices-same-set
by force
moreover have x: ?vts-rotated!0 € frontier (convex hull (set ?vts-rotated))
proof—
have %uvts-rotated!0 = vtsli
using assms unfolding polygon-of-def
by (metis add-leD2 diff-self-eq-0 have-wraparound-vertex hd-conv-nth i last-snoc
less-nat-zero-code list.size(3) nat-le-linear numeral-Bit0 polygon-vertices-length-at-least-4
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rotated-polygon-vertices)
moreover have vitsli € frontier (conver hull (set vts)) using v ¢ by blast
ultimately show ?thesis using same-set by argo
qed
moreover have polygon ?p-rotated
using rotation-is-polygon assms unfolding polygon-of-def by blast
moreover have all-integral ?vts-rotated
using rotate-polygon-vertices-same-set assms
unfolding all-integral-def polygon-of-def by blast
moreover have path-image ?p-rotated = path-image p
using assms unfolding polygon-of-def using polygon-vts-arb-rotation by force
moreover then have path-inside ?p-rotated = path-inside p unfolding path-inside-def
by simp
ultimately show #¢thesis using polygon-of-def that by blast
qed

lemma pick-unrotated:
fixes p :: R-to-R2
assumes polygon: polygon p
assumes polygonal-path: p = make-polygonal-path vts
assumes int-vertices: all-integral vts
assumes [I-is: I = card {xz. integral-vec © N\ x € path-inside p}
assumes B-is: B = card {z. integral-vec x A\ x € path-image p}
assumes vtsl0 € frontier (convex hull (set vts))
shows measure lebesgue (path-inside p) = I + B/2 — 1
using assms
proof (induct card (set vts) arbitrary: vts p I B rule: less-induct)
case less
have B-finite: finite {x. integral-vec x N\ x € path-image p}
using finite-path-image less(2) by auto
have set vts C {x. integral-vec x A\ x € path-image p}
using less(3) vertices-on-path-image[of vts] less(4)
unfolding all-integral-def
by auto
then have card-vts: card (set vts) > 3
using polygon-at-least-3-vertices| OF less(2) less(8)] card-mono order-trans
by blast
have vts-wraparound: vts ! 0 = vts ! (length vts — 1)
using less(2—3) polygon-pathstart polygon-pathfinish
unfolding polygon-def closed-path-def
by (metis diff-0-eq-0 length-0-conv)
then have vts-is: vts = (butlast vts) Q [vts ! 0]
by (metis butlast-conv-take have-wraparound-vertez less.prems(1) less.prems(2))
have same-set: set vts = set (butlast (vts))
by (metis ListMem-iff Un-insert-right append.right-neutral butlast.simps(2) con-
stant-linepath-is-not-loop-free elem hd-conv-nth insert-absorb less.prems(1) less.prems(2)
list.collapse list.simps(15) make-polygonal-path.simps(2) polygon-def set-append sim-
ple-path-def vts-is)
have distinct-butlast-vts: distinct (butlast vts)
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using simple-polygonal-path-vts-distinct less(2—3)
unfolding polygon-def
by auto
have card-butlast-vts: card (set vts) = card (set (butlast vts))
using vits-wraparound
by (smt (verit, best) List.finite-set butlast-conv-take card-distinct card-length
card-mono card-vts diff-is-0-eq diff-less distinct-butlast-vts distinct-card drop-rev
dual-order.strict-trans1 le-SucE length-append-singleton length-greater-0-conv less-numeral-extra(1)
less-numeral-extra(4 ) nth-eq-iff-index-eq one-less-numeral-iff order-class.order-eq-iff
semiring-norm(77) set-drop-subset set-rev vts-is)
then have card-set-len-butlast: card (set vts) = length (butlast vts)
using distinct-butlast-vts
by (metis distinct-card)
{ assume triangle: card (set vts) = 3
then have length (butlast vts) = 3
using card-set-len-butlast
by auto
then have butlast vts = [vts | 0, vis | 1, vts | 2]
by (metis (no-types, lifting) Cons-nth-drop-Suc One-nat-def Suc-1 card-set-len-butlast
card-vts drop0 drop-eq-Nil lessI nth-append numeral-3-eq-3 one-less-numeral-iff semir-
ing-norm(77) vts-is zero-less-numeral)
then have vis-is: vis = [vts | 0, vis ! 1, vis ! 2, vts ! 0]
using vts-is by auto
then have p-make-triangle: p = make-triangle (vts! 0) (vts! 1) (vts! 2)
using less(3) unfolding make-triangle-def by simp
then have not-collinear: = collinear {vts ! 0, vts | 1, vts | 2}
using vts-is less(2) polygon-vts-not-collinear|of p vts] unfolding polygon-of-def
make-triangle-def
by (smt (verit, ccfo-threshold) insert-absorb2 insert-commute list.set(1)
list.simps(15))
have all-integral: all-integral [vts ! 0, vts ! 1, vis ! 2]
using less.prems(3) vts-is unfolding all-integral-def
by (simp add: <butlast vts = [vts ! 0, vts ! 1, vts ! 2]> in-set-butlastD)
have distinct: distinct [vts | 0, vis | 1, vts | 2]
using <butlast vts = [vts | 0, vts ! 1, vts | 2]y distinct-butlast-vts by presburger
have pick-triangle: pick-triangle p (vts ! 0) (vts ! 1) (vts ! 2)
using pick-triangle p-make-triangle less(2) not-collinear all-integral distinct
by simp
then have ?case
using pick-triangle-lemma| OF p-make-triangle all-integral distinct not-collinear]
less.prems(4—5)
by blast
} moreover
{ assume non-triangle: card (set vts) > 3
{ assume convez: convex (path-image p U path-inside p)
then obtain a b where good-linepath a b vts
using convex-polygon-has-good-linepath non-triangle
by (metis inf-sup-aci(5) less.prems(1) less.prems(2))
then have ab-prop: a # b A {a, b} C set vts A path-image (linepath a b) C
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path-inside p U {a, b}
unfolding good-linepath-def less.prems(2) by presburger
then have ab-prop-restate: a # b A a € set (butlast vts) A b € set (butlast
vts)
using same-set
by simp
have good-linepath-ab: good-linepath a b ((butlast vts) Q [(butlast vts) ! 0])
using ab-prop vits-is unfolding good-linepath-def
using ab-prop-restate empty-set hd-append?2 hd-conv-nth insert-absorb in-
sert-not-empty less.prems(2) same-set
by (smt (23))
then have good-linepath-ba: good-linepath b a ((butlast vts) @ [(butlast vts) !
0))
using good-linepath-comm good-linepath-def by blast
obtain ¢! j1 where j-prop: il < length (butlast vts) A j1 < length (butlast
vts) A
butlast vts ! il = a A
butlast vts | j1 = b N il # j1
using ab-prop-restate
by (metis distinct-Exl distinct-butlast-vts)
have i-lt-then: il < jl1 = is-polygon-split (butlast vts) il j1
using good-linepath-implies-polygon-split[OF less(2), of butlast vts] vts-is
same-set
using ij-prop good-linepath-ab good-linepath-ba
by (metis ab-prop-restate length-pos-if-in-set less.prems(2) nth-butlast)
have j-lt-then: j1 < il = is-polygon-split (butlast vts) j1 il
using good-linepath-implies-polygon-split|OF less(2), of butlast vts] vts-is
same-set
using ij-prop good-linepath-ab good-linepath-ba
by (metis ab-prop-restate length-pos-if-in-set less.prems(2) nth-butlast)
obtain i j where polygon-split: is-polygon-split (butlast vts) i j
using i-lt-then j-lt-then ij-prop
by (meson nat-neg-iff)
then have ij-prop: i < length (butlast vts) A j < length (butlast vts) N ¢ < j
unfolding is-polygon-split-def
by blast

have p-is: p = make-polygonal-path (butlast vts Q [butlast vts ! 0])
using less(3) vts-is
by (metis length-greater-0-conv nth-butlast same-set set-empty)

let 2vts! = take i (butlast vts)
let ?vts2 = take (j — i — 1) (drop (Suc 7) (butlast vts))
let ?vts3 = drop (j — %) (drop (Suc i) (butlast vis))

let 2vtspl = (butlast vts ! i # ?vts2 Q [butlast vts | j, butlast vts ! i])

have finite-butlast: finite (set (butlast vts))
by blast
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have vtsp1-subset: set Zvtspl C set (butlast vts)
using ij-prop
by (smt (verit, del-insts) Un-commute append-Cons append-Nil dual-order.trans
insert-subset list.simps(15) nth-mem set-append set-drop-subset set-take-subset)

let ?p1 = make-polygonal-path ?vtspl
let 211 = card {z. integral-vec x N\ © € path-inside ?p1}
let ?B1 = card {x. integral-vec x A = € path-image ?p1}
have polygon-p1: polygon ?p1
using polygon-split unfolding is-polygon-split-def by metis

let Zvtsp2 = %vtsl Q [butlast vts ! i, butlast vts | j] Q Zvts3 Q [butlast vts ! 0]
let ?p2 = make-polygonal-path ?vtsp2
have polygon-p2: polygon ?p2

using polygon-split unfolding is-polygon-split-def by metis

have j-neq: j # i + 1
by (smt (verit, ccfv-SIG) One-nat-def Suc-n-not-le-n Suc-numeral add-Suc-shift
add-implies-diff cancel-ab-semigroup-add-class. diff-right-commute length-Cons length-append
list.size(8) numeral-3-eq-3 plus-1-eq-Suc polygon-p1 polygon-vertices-length-at-least-4
semiring-norm(2) semiring-norm(8) take-eq-Nil)
have subset!: set (take i (butlast vts)) C set (butlast vts)
using #j-prop by (meson set-take-subset)
have subset2: set ([butlast vts ! i, butlast vts ! j]) C set (butlast vts)
using ij-prop by simp
have subset3: set (take i (butlast vts) Q
[butlast vis | i, butlast vts ! j]) C set (butlast vts)
using subset! subset2 by auto
have subsets: set (drop (j — ) (drop (Suc 1) (butlast vts)) @ [butlast vts ! 0])
C set (butlast vts)
using ij-prop set-drop-subset
by (metis (no-types, opaque-lifting) Un-commute append-Cons append-Nil
card-set-len-butlast drop0 drop-drop drop-eq-Nil2 hd-append?2 hd-conv-nth in-set-conv-decomp
insert-subset linorder-not-less list.simps(15) non-triangle not-less-eq not-less-iff-gr-or-eq
numeral-3-eq-3 same-set set-append snoc-eg-iff-butlast vts-is)
then have main-subset: set ?vtsp2 C set (butlast vts)
using subset3 subset/ by simp

have subset-p1: set ?vtspl C set (butlast vts)
using ij-prop distinct-butlast-vts
proof—
have card (set vtsp2) > 3
using polygon-p2 polygon-at-least-3-vertices by blast
moreover have set Zvtspl N set Zvtsp2 = {wtsli, vtslj}
proof—
have set 7vts2 N set ?vts3 = {}
by (metis append-take-drop-id diff-le-self distinct-append distinct-butlast-vts
set-take-disj-set-drop-if-distinct)
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moreover have set ?vts2 N set Zvtsl = {}
proof—
have set 7vts2 C set (drop (i + 1) vts)
by (metis add.commute drop-butlast in-set-butlastD in-set-takeD
plus-1-eq-Suc subset-code(1))
moreover have set (drop (i + 1) vts) N set ?vtsl C {last vis}
proof—
have set (drop (i + 1) (butlast vts)) N set Pvtsl = {}
by (simp add: Int-commute set-take-disj-set-drop-if-distinct dis-
tinct-butlast-vts)
moreover have set (drop (i + 1) vts) = set (drop (i + 1) (butlast
vts)) U {last vts}
proof—
have drop (i + 1) vts = (drop (i + 1) ((butlast vts) @ [last vts]))
by (metis last-snoc vts-is)
thus ?thesis using 7j-prop by force
qed
ultimately show ?thesis by blast
qed
moreover have last vts ¢ set Zvts2
by (metis card-set-len-butlast card-vts distinct-butlast-vts dual-order.strict-trans1
in-set-takeD index-nth-id last-snoc nth-butlast numeral-3-eq-3 set-drop-if-index vts-is
zero-less-Suc)
ultimately show ?thesis by force
qed
moreover have vtsli € set ?vtspl by (metis ij-prop list.set-intros(1)
nth-butlast)
moreover have vtslj € set Pvtspl using ij-prop nth-butlast by fastforce
moreover have vtsli € set Zvtsp2
by (metis UnCI ij-prop list.set-intros(1) nth-butlast set-append)
moreover have vtslj € set ?vtsp2 using ij-prop nth-butlast by force
moreover have set ?vtspl = set ?vts2 U {vtsli, vtslj}
by (smt (verit, ccfo-SIG) Un-insert-right empty-set ij-prop insert-absorb2
insert-commute list.simps(15) nth-butlast set-append)
moreover have set ?vtsp2 = set ?vtsl U set Pvts3 U {wtsli, vtslj, vts!0}
proof—
have vtsli = (butlast vts)!i by (metis ij-prop nth-butlast)
moreover have vtslj = (butlast vts)!j by (metis ij-prop nth-butlast)
moreover have vts!l0 = (butlast vts)!0
by (metis ij-prop leD length-greater-0-conv nth-butlast take-all-iff
take-eq-Nil)
ultimately show ?thesis by force
qed
moreover have vtsl0 ¢ set ?vts2
by (metis distinct-butlast-vts in-set-conv-decomp in-set-takeD index-nth-id
length-pos-if-in-set nth-butlast same-set set-drop-if-index vts-is zero-less-Suc)
ultimately show ¢thesis by blast
qged
ultimately have card (set ?vtsp2) > card (set ?vtspl N set Pvtsp2)
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by (smt (verit, del-insts) card-length empty-set lel le-trans length-Cons
list.simps(15) list.size(3) not-less-eq-eq numeral-3-eq-3)
then have Jv. v € set Pvtsp2 A v ¢ (set Zvtspl N set Zvtsp2)
by (smt (verit) Int-lower2 Orderings.order-eq-iff less-not-refl subset-code(1))
then obtain v where v € set 2vtsp2 — set ?vtspl by blast
thus ?thesis
by (metis main-subset Diff-eq-empty-iff length-pos-if-in-set less-numeral-extra(8)
list.set(1) list.size(3) psubset] vispl-subset)
qed
then have card (set ?vtspl) < card (set (butlast vts))
using card-subset-eq[OF finite-butlast)
by (meson finite-butlast psubset-card-mono)
then have card-lt-p1: card (set ?vtspl) < card (set vts)
using same-set by argo
have set 2vtspl C set vts
using j-prop
using same-set subset-p1 by blast
then have all-integral-p1: all-integral ?vtspl
using less(4) unfolding all-integral-def
by blast

obtain p1’ vitsp1’ where pl-rot: polygon-of p1’ vtspl’
A vtspl 10 € frontier (convex hull (set vtspl'))
A path-image pl’ = path-image ?pl1
A all-integral vtspl’
A set vtspl’ = set ?vtspl
using pick-rotate less polygon-p1 unfolding polygon-of-def
using all-integral-p1
by blast

let 211" = card {z. integral-vec x A x € path-inside p1'}
let ?B1’ = card {z. integral-vec x A\ x € path-image p1'}

have measure lebesque (path-inside p1’) = real 211’ + real ¢B1’ ) 2 — 1
using less(1) polygon-split card-lt-p1 pI-rot unfolding polygon-of-def by
force
then have indhl: Sigma-Algebra.measure lebesque (path-inside ?p1) = real
?I1 + real YB1 | 2 — 1
using pI-rot unfolding path-inside-def by metis

have vts | (i+1) ¢ set (take i (butlast vts))
using distinct-butlast-vts j-neq ij-prop
proof—
have i + 1 < length vts — 2 using distinct-butlast-vts j-neq ij-prop by
fastforce
then have vts ! (i+1) = (butlast vts) | (i+1) by (simp add: nth-butlast)
moreover then have Vj < i + 1. (butlast vts) | j # (butlast vts) ! (i+1)
using distinct-butlast-vts distinct-nth-eq-iff 7j-prop by fastforce
moreover have set (take i (butlast vts)) = {vtslj | 7. j < i}
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proof—
have set (take i (butlast vts)) C {wtslj | j. j < i}
by (smt (verit, ccfo-SIG) dual-order.strict-trans ij-prop in-set-conv-nth
length-take mem-Collect-eq min.absorbj nth-butlast nth-take subsetl)
moreover have {uvtslj | j. 7 < i} C set (take ¢ (butlast vts))
by (smt (verit, del-insts) dual-order.strict-trans #j-prop in-set-conv-nth
length-take mem-Collect-eq min.absorbj nth-butlast nth-take subsetl)
ultimately show ¢thesis by blast
qed
ultimately show ?thesis
by (metis (no-types, lifting) add.commaute ij-prop in-set-conv-nth length-take
min.absorbq nth-take trans-less-add2)
qed
moreover have vts | (i+1) # butlast vts ! i
by (metis (no-types, lifting) ij-prop add.commute add-cancel-right-right
distinct-butlast-vts distinct-nth-eq-iff less-trans-Suc nth-append plus-1-eq-Suc vts-is
zero-negq-one)
moreover have vts | (i+1) # butlast vts ! j
by (metis (no-types, lifting) add.commute distinct-butlast-vts distinct-nth-eq-iff
ij-prop j-neq less-trans-Suc nth-append plus-1-eq-Suc vts-is)
ultimately have vts | (i+1) ¢ set (take i (butlast vts) @Q
[butlast vis | i, butlast vts ! j]) by force
moreover have vts | (i+1) ¢ set (drop (j — i) (drop (Suc i) (butlast vts)) Q
[butlast vts ! 0])
proof—
have vts | (i+1) ¢ set (drop (j — @ + Suc i) (butlast vts))
by (metis (no-types, lifting) add.commute distinct-butlast-vts ij-prop in-
dex-nth-id less-add-same-cancel? less-trans-Suc nth-append plus-1-eq-Suc set-drop-if-index
vts-is zero-less-diff)
moreover have vts | (i+1) # butlast vts ! 0
by (metis (no-types, lifting) ij-prop Nil-is-append-conv add.commaute
distinct-butlast-vts distinct-nth-eq-iff length-greater-0-conv less-trans-Suc list.discl
nat.distinct(1) nth-append plus-1-eq-Suc same-set set-empty vts-is)
ultimately show ?thesis by simp
qed
ultimately have vts | (i+1) ¢ set (take i (butlast vts) @Q
[butlast vts | 4, butlast vts | j] Q
drop (j — i) (drop (Suc i) (butlast vts)) @ [butlast vts ! 0])
by auto
then have subset-butlast-p2: set ?vtsp2 C set (butlast vts)
using main-subset ij-prop
by (metis (no-types, lifting) antisym-conv2 length-butlast less-diff-conv
nth-mem same-set)
then have card-lt-p2: card (set ?vtsp2) < card (set vts)
using card-subset-eq[OF finite-butlast]
by (metis finite-butlast psubset-card-mono same-set)
have subset-p2: set ?vtsp2 C set vts
using subset-butlast-p2 same-set
by presburger
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then have all-integral-p2: all-integral ?vtsp2
using less(4) unfolding all-integral-def
by blast

let ?p2 = make-polygonal-path (take i (butlast vts) Q [butlast vts ! i, butlast
vts ! j] @
drop (j — i) (drop (Suc i) (butlast vts)) Q [butlast vts ! 0])
let 212 = card {z. integral-vec x N\ z € path-inside ?p2}
let B2 = card {x. integral-vec x N\ = € path-image ?p2}
have polygon-p2: polygon ?p2
using polygon-split unfolding is-polygon-split-def by metis

have vtsp2-0: ?vtsp2!0 € frontier (convex hull (set Zvtsp2))
proof—
have ?vtsp2!0 = vts!0
by (metis (no-types, lifting) append-Cons ij-prop length-greater-0-conv
less-nat-zero-code nat-neq-iff nth-append nth-append-length nth-butlast nth-take take-eq-Nil)
then have %vtsp2!0 € frontier (convexr hull (set vts)) using less by argo
moreover have ?vtsp2!0 € (convexr hull (set ?vtsp2))
by (meson append-is-Nil-conv hull-inc length-greater-0-conv neg-Nil-conv
nth-mem)
moreover have convex hull (set 2vtsp2) C convex hull (set vts)
by (metis hull-mono main-subset same-set)
ultimately show ?thesis using in-frontier-in-subset by blast
qed

have indh2: Sigma-Algebra.measure lebesgque (path-inside ?p2) = real 212 +
real YB2 [ 2 — 1
using less(1)[OF card-lt-p2 polygon-p2 - all-integral-p2 - - vtsp2-0] poly-
gon-split
by blast

have all-integral (butlast vts) =
Sigma-Algebra.measure lebesgue (path-inside p) = real (card {z. integral-vec
x A x € path-inside p}) + real (card {z. integral-vec x A\ x € path-image p}) / 2
— 1
using pick-split-union
[OF polygon-split, of ?vtsl ?vts2 ?vts3 butlast vts | i butlast vts | j p ?pl1
?p2 211 ¢B1 ?12 ?B2]
using indhl indh2 p-is
by blast
then have ?case
using less(4—6) unfolding all-integral-def
using same-set by presburger
} moreover
{ assume non-convex: - (convex (path-image p U path-inside p))
let ?vts-ch = set vts N frontier (convex hull (set vts))
have finite-vts: finite (set vts)
using less
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by force
have subset-ch: ?vts-ch C set vts

using vts-subset-frontier

using less.prems(1) less.prems(2) non-convex polygon-of-def by blast
then have card-ch: card (?vts-ch) < card (set vts)

using finite-vts

by (simp add: psubset-card-mono)

let ?vts-ch-list = filter (Av. v € Puvts-ch) vts

let ?r-ide = min-index-not-in-set vts ?vts-ch
let 2r = ?r-ide — 1

let ?rotated-vts = rotate-polygon-vertices vts ?r
let ?pr = make-polygonal-path ?rotated-vts

have subset-ch-list: set ?vts-ch-list C set vts using subset-ch by auto
then have r-defined: index-not-in-set vts ?vts-ch ?r-idz
A (Vi < r-ide. = index-not-in-set vts ?vts-ch j)
using min-indez-not-in-set-defined[of ?vts-ch vts| by fastforce

have pr-image: path-image p = path-image ?pr
using polygon-vts-arb-rotation less by blast
then have measure lebesgue (path-inside ?pr) = measure lebesgue (path-inside
p)
unfolding path-inside-def by presburger
have rotated-vts-set: set ?rotated-vts = set vts
using less.prems(1) less.prems(2) rotate-polygon-vertices-same-set by auto
then have card (set ?rotated-vts) = card (set vts) by argo
have polygon-rotation: polygon ?pr using rotation-is-polygon less by blast

let ?pocket-path-vts = construct-pocket-0 ?rotated-vts ?vts-ch

let ?a = hd ?pocket-path-vts
let 2b = last ?pocket-path-vts
let 2l = linepath ?a ?b

have vts!0 € %uvts-ch
by (metis Intl length-greater-0-conv less.prems(6) nth-mem snoc-eq-iff-butlast
vts-is)
then have vts-r: vts! ?r € ?vts-ch
using min-indez-not-in-set-0 subset-ch by presburger
moreover have rotated-0: ?rotated-vts!0 = vts! ?r
using rotated-polygon-vertices|of ?rotated-vts vts ?r ?r]
by (metis (no-types, lifting) Suc-1 Suc-lel card-gt-0-iff card-set-len-butlast
diff-is-0-eq’ finite-vts hd-conv-nth index-not-in-set-def le-refl length-butlast less-imp-diff-less
mem-Collect-eq r-defined set-empty snoc-eq-iff-butlast vts-is zero-less-diff)
ultimately have rotated-0-in: ?rotated-vts'0 € ?vts-ch by presburger
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then have b-in: 2b € set vis
using construct-pocket-0-last-in-set[of ?rotated-vts ?vts-ch]
by (smt (verit, ccfv-threshold) Int-iff One-nat-def closed-path-def Suc-lel
card-0-eq card-set-len-butlast empty-iff finite-vts last-conv-nth last-in-set last-tl length-butlast
length-greater-0-conv length-tl list.size(8) polygon-def polygon-pathfinish polygon-pathstart
polygon-rotation rotate-polygon-vertices-same-length set-empty)

have 2 < card ?vts-ch

using convez-hull-two-vts-on-frontier

by (metis One-nat-def Suc-1 add-leD2 card-vts numeral-3-eq-3 plus-1-eq-Suc)
moreover have ?vts-ch C set ?rotated-vts

using less.prems(1) less.prems(2) rotate-polygon-vertices-same-set by force
moreover have distinct (butlast ?rotated-vts)

using polygon-def polygon-rotation simple-polygonal-path-vts-distinct by blast
moreover have hd-last-rotated: hd ?rotated-vts = last ?rotated-vts
by (metis have-wraparound-vertex hd-conv-nth polygon-rotation snoc-eq-iff-butlast)
ultimately have a-neg-b: %a # %b

using construct-pocket-0-first-last-distinct

by (smt (verit) Collect-cong Int-def mem-Collect-eq set-filter)

let ?pocket-vts = ?pocket-path-vts Q [?rotated-vts! 0]
let ?pocket-good-path-vts = tl (butlast ?pocket-path-vts)

let ?filled-vts = fill-pocket-0 ?rotated-vts (length ?pocket-path-vts)
let ?filled-vts-tl = tl ?filled-vts

let ?filled-p-tl = make-polygonal-path ?filled-vts-tl

let ?filled-p = make-polygonal-path ?filled-vts

let ?pocket-path = make-polygonal-path ?pocket-path-vts

let ?pocket = make-polygonal-path ?pocket-vts

have non-convez-rot: = convex (path-image ?pr U path-inside ?pr)
using non-convex by (simp add: path-inside-def pr-image)

have 0: ?rotated-vts!0 € frontier (convexr hull (set ?rotated-vts))
using less.prems(1) less.prems(2) rotate-polygon-vertices-same-set ro-
tated-0-in by fastforce
have 1: ?rotated-vts!1 ¢ frontier (convexr hull (set ?rotated-vts))
proof—
have ?rotated-vts!! = vts!(9r + 1)
using rotated-polygon-vertices|of ?rotated-vts vts ?r ?r + 1]
by (smt (verit, ccfv-threshold) Suc-1 Suc-lel card-gt-0-iff card-set-len-butlast
diff-is-0-eq’ finite-vts hd-conv-nth index-not-in-set-def le-refl length-butlast less-imp-diff-less
mem-Collect-eq r-defined set-empty snoc-eq-iff-butlast vts-is zero-less-diff Suc-diff-Suc
add.commute add-diff-cancel-left’ bot-nat-0.not-eq-extremum less-imp-le-nat plus-1-eq-Suc)
also have ... ¢ frontier (convex hull (set ?rotated-vts))
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using r-defined unfolding index-not-in-set-def
by (smt (verit, best) Int-iff Suc-lel add.commute add-diff-inverse-nat
bot-nat-0.not-eq-extremum diff-is-0-eq’ mem-Collect-eq nat-less-le nth-mem plus-1-eq-Suc
rotated-vts-set vts-r zero-less-diff)
finally show ?thesis .
qed
then have split:
is-polygon-split-path (butlast ?filled-vts) 0 1 ?pocket-good-path-vts
and polygon-filled-p: polygon ?filled-p
and polygon-pocket: polygon ?pocket
and pocket-path-vts-card: card (set ?pocket-path-vts) < card (set vts)
and filled-vts-card: card (set ?filled-vts) < card (set vts)
using pocket-path-good[OF - 0 1 non-convez-rot] polygon-rotation ro-
tated-vts-set apply argo
using pocket-path-good[OF - 0 1 non-convez-rot] polygon-rotation ro-
tated-vts-set apply argo
using pocket-path-good[OF - 0 1 non-convez-rot] polygon-rotation ro-
tated-vts-set
apply (metis add-gr-0 construct-pocket-0-def nth-take zero-less-one)
using pocket-path-good[OF - 0 1 non-convez-rot] polygon-rotation ro-
tated-vts-set apply argo
using pocket-path-good[OF - 0 1 non-convez-rot] polygon-rotation ro-
tated-vts-set by argo

have vts-0-frontier: ?rotated-vts!0 € frontier (convex hull (set vts))
using rotated-0-in by simp
have filled-0: ?filled-vts!0 = ?rotated-vts!0
by (metis convez-hull-empty empty-set fill-pocket-0-def frontier-empty hd-conv-nth
length-pos-if-in-set less.prems(6) less-numeral-extra(3) list.size(3) nth-Cons-0 ro-
tated-vts-set)
have pocket-0: ?pocket-vts!0 = ?rotated-vts!0
unfolding construct-pocket-0-def
by (simp add: less-numeral-extra(1) nth-append trans-less-add2)

have subset-pocket-path-vts: set ?pocket-path-vts C set vts
using construct-pocket-0-subset-vts
by (metis construct-pocket-0-def less.prems(1) less.prems(2) rotate-polygon-vertices-same-set
set-take-subset)
moreover have set ?pocket-good-path-vts C set ?pocket-path-vts
by (smt (verit, best) butlast-conv-take list.exhaust-sel list.sel(2) set-subset-Cons
set-take-subset subset-trans)
ultimately have subset-pocket-good-path: set ?pocket-good-path-vts C set vts
by blast
then have subset-pocket: set ?pocket-vts C set vts
by (metis (mono-tags, lifting) have-wraparound-vertex less.prems(1) less.prems(2)
polygon-rotation rotate-polygon-vertices-same-set set-append subset-code(1) subset-pocket-path-vts
sup.bounded-iff)
have set ?filled-vts C set ?rotated-vts
unfolding fill-pocket-0-def
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by (metis b-in hd-in-set insert-subset length-pos-if-in-set less-numeral-extra(3)
list.simps(15) list.size(3) rotated-vts-set set-drop-subset)
then have subset-filled: set ?filled-vts C set vts
using rotated-vts-set by blast

have taut!: ?filled-p = make-polygonal-path ?filled-vts by blast
have all-integral-filled-vts: all-integral ?filled-vts
using subset-filled less by (meson all-integral-def subset-iff)
have taut2: card (integral-inside ?filled-p) = card {z. integral-vec x N\ = €
path-inside ?filled-p}
unfolding integral-inside by blast
have taut3: card (integral-boundary ?filled-p) = card {z. integral-vec x N\ x €
path-image ?filled-p}
unfolding integral-boundary by blast
have filled-vts-0-frontier: ?filled-vts!0 € frontier (convex hull (set ?filled-vts))
proof —
have ?filled-vts!0 € frontier (convex hull set vts)
using filled-0 vts-0-frontier by presburger
moreover have ?filled-vts!0 € conver hull (set ?filled-vts)
by (metis have-wraparound-vertex hull-inc in-set-conv-decomp poly-
gon-filled-p)
moreover have set ?filled-vts C set vts using subset-filled by force
ultimately show ?thesis using in-frontier-in-subset-convez-hull by blast
qed

have ih-filled: measure lebesgue (path-inside ?filled-p)
= card (integral-inside ?filled-p) + ((card (integral-boundary ?filled-p)) /
2) — 1
using less(1)[OF filled-vts-card polygon-filled-p taut!l all-integral-filled-vts
taut2 taut3 filled-vts-0-frontier]
by blast

have set ?pocket-path-vts C set vts
using pocket-path-vts-card subset-pocket-path-vts by force
moreover have pocket-path-set: set ?pocket-path-vts = set ?pocket-vts
by (smt (verit) Nil-is-append-conv rotated-0 a-neg-b append-Cons append-Nil
hd-Nil-eg-last hd-append?2 hd-conv-nth hd-in-set insert-absorb list.simps(15) pocket-0
rev-append set-append set-rev)
ultimately have set ?pocket-vts C set vts by blast
then have pocket-vts-card: card (set ?pocket-vts) < card (set vts)
by (meson finite-vts psubset-card-mono)
have all-integral-pocket-vts: all-integral ?pocket-vts
using subset-pocket less unfolding all-integral-def by blast
have tautl: ?pocket = make-polygonal-path ?pocket-vts by blast
have taut2: card (integral-inside ?pocket) = card {z. integral-vec © N z €
path-inside ?pocket}
unfolding integral-inside by blast
have taut3: card (integral-boundary ?pocket) = card {z. integral-vec x N © €
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path-image ?pocket}
unfolding integral-boundary by blast
have pocket-vts-0-frontier: ?pocket-vts!0 € frontier (convex hull (set ?pocket-vts))
proof—
have ?pocket-vtsl0 € frontier (convex hull set vts)
using pocket-0 vts-0-frontier by presburger
moreover have ?pocket-vts!0 € convex hull (set ?pocket-vts)
by (smt (verit, del-insts) hull-inc in-set-conv-decomp pocket-0)
moreover have set ?pocket-vts C set vts using subset-pocket by force
ultimately show ?thesis using in-frontier-in-subset-convez-hull by blast
qed

have ih-pocket: measure lebesgue (path-inside ?pocket) = card (integral-inside
?pocket) + ((card (integral-boundary ?pocket)) |/ 2) — 1
using less(1)[OF pocket-vts-card polygon-pocket tautl all-integral-pocket-vts
taut2 taut3 pocket-vts-0-frontier)
by blast

let 20 = 0:nat

let 95 = 1:nat

let 2vts = butlast ?filled-vts

let vts1 = |]

let vts2 = |]

let 2vts3 = butlast (drop 2 ?filled-vts)

let ?cutvts = ?pocket-good-path-vts

let ?p = ?filled-p

let ?p1 = make-polygonal-path (?a # %vts2 Q [?b] @ rev Zcutvts Q [?a])
let %p2 = ?pr

let 211 = card {z. integral-vec x N\ z € path-inside ?p1}
let ?B1 = card {x. integral-vec x A\ = € path-image ?pl}
let 212 = card {z. integral-vec x A x € path-inside 7p2}
let ?B2 = card {z. integral-vec © A = € path-image ?p2}
let ?I = card {z. integral-vec x N = € path-inside ?p}
let B = card {z. integral-vec x A x € path-image ?p}

have rev ?pocket-vts = (?a # ?vts2 Q [2b] @ rev Zcutvts @ [?a])
by (smt (verit) a-negq-b append-Nil append-butlast-last-id hd-Nil-eq-last
hd-append2 hd-conv-nth last-conv-nth length-butlast list.collapse list.size(8) pocket-0
rev.simps(2) rev-append rev-rev-ident snoc-eq-iff-butlast)
then have pocket-rev-image: path-image ?pocket = path-image ?pl
using polygon-at-least-3-vertices polygon-pocket card-length
by (smt (verit, best) One-nat-def Suc-1 le-add2 le-trans numeral-3-eq-3
plus-1-eq-Suc rev-vts-path-image polygon-at-least-3-vertices polygon-pocket card-length)
then have pocket-rev-inside: path-inside ?pocket = path-inside ?p1
unfolding path-inside-def by argo

have split”: is-polygon-split-path ?vts ?i 2] ?cutvts using split by blast

have 0: %vts1 = take ?i 2vts by auto
have 1: %vts2 = take (%j — % — 1) (drop (Suc ?i) ?vts) by simp
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have 2: ?vts8 = drop (% — ?i) (drop (Suc i) ?vts)
by (metis (no-types, lifting) One-nat-def Suc-1 diff-zero drop-butlast drop-drop
plus-1-eq-Suc)
have 3: %a = %vts | %
by (smt (23) Nil-is-append-conv pocket-path-set filled-0 hd-conv-nth is-polygon-split-path-def
length-greater-0-conv list. distinct(1) nth-append nth-butlast pocket-0 set-empty split’)
have 4: %b = %vts | 2§
proof—
have ?b = ?filled-vts!1
unfolding construct-pocket-0-def fill-pocket-0-def
by (smt (23) Suc-eq-plusl a-neq-b construct-pocket-0-def diff-Suc-1
diff-is-0-eq’ drop-eq-Nil hd-conv-nth hd-drop-conv-nth hd-last-rotated last-conv-nth
length-take linorder-not-less min.absorb4 nat-le-linear not-less-eq-eq nth-Cons’ nth-take
one-neqg-zero take-all-iff take-eq-Nil)
thus ?thesis by (metis is-polygon-split-path-def nth-butlast split’)
qed
have 5: ?pocket-path = make-polygonal-path (?a # ?cutvts Q [2D])
by (smt (verit, ccfv-SIG) a-neg-b butlast.simps(2) butlast-tl hd-Cons-tl
hd-Nil-eg-last last.simps snoc-eq-iff-butlast)
have 6: ?p = make-polygonal-path (?vts Q [?vts!0])
by (metis (no-types, lifting) butlast-conv-take have-wraparound-vertex is-polygon-split-path-def
nth-butlast polygon-filled-p split’)
have 7: ?p1 = make-polygonal-path (?a # ?vts2 Q [?b] Q rev ?cutvts Q [?a))
by blast
have 8: ?p2 = make-polygonal-path (?vtsl1 Q ([?a] @ Zcutvts Q [2b]) Q Pvts3
Q [?vts!0))
proof—
have ?rotated-vts = ?vts1 Q ([?a] @ Pcutvts @ [2b]) Q Puts3 Q [?uts!O]
unfolding construct-pocket-0-def fill-pocket-0-def
by (smt (verit) 8 Suc-1 hd-last-rotated a-neq-b append-Cons append-Nil ap-
pend-butlast-last-id append-take-drop-id construct-pocket-0-def drop-Suc drop-drop
drop-eq-Nil fill-pocket-0-def hd-Nil-eq-last hd-append?2 hd-conv-nth last-conv-nth last-drop
length-Cons length-take length-tl linorder-not-less list.collapse list.sel(3) list.size(3)
min.absorbj plus-1-eq-Suc take-all-iff)
thus ?thesis by argo
qed
have 9: ?I1 = card {z. integral-vec x N\ x € path-inside ?p1} by blast
have 10: ?Bl = card {z. integral-vec x A\ x € path-image ?p1} by blast
have 11: ?I2 = card {z. integral-vec x N x € path-inside ?p2} by blast
have 12: ?B2 = card {z. integral-vec x A\ x € path-image ?p2} by blast
have 13: ?I = card {z. integral-vec © N\ = € path-inside ?p} by blast
have 1/: ?B = card {z. integral-vec x N\ x € path-image ?p} by blast
have 15: all-integral ?vts
using subset-filled less
unfolding all-integral-def
by (metis (no-types, lifting) all-integral-def all-integral-filled-vts in-set-butlastD)
have 16: measure lebesque (path-inside ?p) = ¢ + ¢B/2 — 1
using ih-filled unfolding integral-inside integral-boundary by blast
have 17: measure lebesgue (path-inside ?p1) = ?I1 + ?B1/2 — 1
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using ih-pocket unfolding integral-inside integral-boundary using pocket-rev-image
pocket-rev-inside by force
have measure lebesque (path-inside ?p2) = 712 + ¢B2/2 — 1
using pick-split-path-union-main(3)
[OF split’ 012534 567891011121314 1516 17] less(5—6) by blast
moreover have ?I2 = [ using less(5) pr-image path-inside-def by presburger
moreover have ?B2 = B using less(6) pr-image path-image-def by pres-
burger
ultimately have ?case by (simp add: path-inside-def pocket-rev-inside
pr-image)

ultimately have ?case by blast
}
ultimately show ?case using card-vts by linarith
qed

theorem pick:
fixes p :: R-to-R2
assumes polygon p
assumes p = make-polygonal-path vts
assumes all-integral vts
assumes [ = card {z. integral-vec © N\ x € path-inside p}
assumes B = card {z. integral-vec x A = € path-image p}
shows measure lebesgue (path-inside p) = I + B/2 — 1
proof—
obtain p’ vts’ where polygon-of p’ vts’
A vtsl0 € frontier (convex hull (set vts’))
A path-image p’ = path-image p
A all-integral vts'
A set vts’ = set vts
using pick-rotate assms unfolding polygon-of-def by blast
thus ?thesis using assms pick-unrotated unfolding path-inside-def polygon-of-def
by fastforce
qed

end
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