Pick’s Theorem

Sage Binder and Katherine Kosaian

September 1, 2025

Abstract

We formalize Pick’s theorem for finding the area of a simple poly-
gon whose vertices are integral lattice points [1]. We are inspired by
John Harrison’s formalization of Pick’s theorem in HOL Light [2], but
tailor our proof approach to avoid a primary challenge point in his
formalization, which is proving that any polygon with more than three
vertices can be split (in its interior) by a line between some two ver-
tices. Our formalization involves augmenting the existing geometry
libraries in various foundational ways (e.g., by adding the definition of
a polygon and formalizing some key properties thereof).

Contents

1 Misc. Linear Algebra Setup 3
2 Integral Bijective Matrix Determinant 5
3 Polygon Definitions 8
4 Jordan Curve Theorem for Polygons 9

5 Properties of make polygonal path, pathstart and pathfinish

of a polygon 22
6 Loop Free Properties 30
7 Explicit Linepath Characterization of Polygonal Paths 36
8 A Triangle is a Polygon 46
9 Polygon Vertex Rotation 55
10 Translating a Polygon 84
11 Misc. properties 86

12 Properties of Sublists of Polygonal Path Vertex Lists
13 Reversing Polygonal Path Vertex List

14 Collinearity Properties

15 Linepath Properties

16 Measure of linepaths

17 Misc. Convex Polygon Properties

18 Vertices on Convex Frontier Implies Polygon is Convex
19 Polygon Splitting

20 Triangles

21 Measure Setup

22 Unit Triangle

23 Unit Square

24 Unit Triangle Area is 1/2

25 Area of Elementary Triangle is 1/2

26 Setup

26.1 Integral Points Cardinality Properties

27 Pick splitting
28 Convex Hull Has Good Linepath

29 Pick’s Theorem

29.1 Pick’s Theorem Triangle Case
29.2 Pocket properties
29.3 Arbitrary Polygon Case

theory Integral-Matrix
imports
Complex-Main
HOL— Analysis. Finite- Cartesian- Product
HOL— Analysis. Linear-Algebra
HOL— Analysis. Determinants
begin

90

116

121

125

133

136

142

156

179

188

188

193

198

201

206
206

209

222

1 Misc. Linear Algebra Setup

lemma vec-scaleR-2: (c::real) xr ((vector [a, b])::real™2) = vector [a * ¢, b * (]
proof—

have (¢ xg (vector [a, b])::real™2)$1 = a * ¢ by simp

moreover have (¢ g (vector [a, b])::real”2)$2 = ((vector [a, b])::real 2)$2 *
¢ by simp

ultimately show ?thesis by (smt (verit, best) exhaust-2 vec-eq-iff vector-2(1)
vector-2(2))
qed

definition is-int :: real = bool where
is-int T <— (Inuint. © = n)

lemma is-int-sum: is-int © A is-int y — is-int (x + y)
by (metis is-int-def of-int-add)

lemma is-int-minus: is-int © A is-int y — is-int (x — y)
by (metis is-int-def of-int-diff)

lemma is-int-mult: is-int © A is-int y — is-int (z * y)
by (metis is-int-def of-int-mult)

definition integral-vec :: real”2 = bool where
integral-vec v <— (is-int (v8$1) A is-int (v$2))

lemma integral-vec-sum: integral-vec v A integral-vec w — integral-vec (v + w)
proof(rule impl)

fix v w :: real™2

let 2 = v+ w

assume integral-vec v A\ integral-vec w

then obtain v! v2 wl w2 :: int where v81 = vi A v$82 = v2 A w$1 = wl A
w$2 = w2

using integral-vec-def is-int-def by auto

then have 7281 = v! + w! and 2232 = v2 + w2 by auto

thus integral-vec ?x using integral-vec-def is-int-def by blast
qed

lemma integral-vec-minus: integral-vec v — integral-vec (—v)
proof(rule impl)
assume integral-vec v
then obtain z y :: int where v$1 = z A v$2 = y
using integral-vec-def is-int-def by auto
then have (—v)$7/ = —z and (—v)$2 = —y
using integral-vec-def is-int-def by auto
thus integral-vec (—v)
using integral-vec-def is-int-def by blast
qed

lemma real-2-inner:
shows ((vector [a, b])::(real™2)) « ((vector [c, d])::(real™2)) = axc + bxd
(is 2v + 2w = axc + bxd)
proof—
have %v - 2w = (3. ¢ € UNIV. 2v$i - ?w$i) using inner-vec-def[of ?v ?w] by
blast
moreover have Vi. %087 - w$i = 20$i * 2w$i using inner-real-def by simp
ultimately have ?v - 2w = (3. i € UNIV. 2v$i x ?w$i) by presburger
thus ?thesis by (simp add: sum-2)
qged

lemma integral-vec-2:
fixes a b :: int
assumes v = vector [a, b]
shows integral-vec v
by (simp add: assms is-int-def integral-vec-def)

definition matriz-inv :: real 272 = real 2”2 = bool where
matriz-inv A A’ +— (A xx A’ =mat 1 N A" xx A = mat 1)

lemma mat-vec-mult-2:
fixes v :: real 2 and
T :: real 272
defines z: z = v$1 and y: y = v$2 and
a:a= T$1$1 and b: b = T$1%2 and
c:c= T$2%1 and d: d = T$2$2
shows (T *v v) = vector [zxa + yxb, xxc + yxd]
proof—
have (T xv v)$1 = zxa + yxb by (simp add: a b matriz-vector-mult-def sum-2
z y)
moreover have (T xv v)$2 = xxc + yxd by (simp add: ¢ d matriz-vector-mult-def
sum-2 x y)
ultimately show T xv v = vector [zxa + y*b, xxc + y*d]
by (smt (verit) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
qed

definition integral-mat :: real”2"2 = bool where
integral-mat T <— (Y v. integral-vec v — integral-vec (T xv v))

definition integral-mat-surj :: real 272 = bool where
integral-mat-surj T «— (Y. integral-vec v — (Fw. integral-vec w A T xv w =

v))

definition integral-mat-bij :: real 272 = bool where
integral-mat-bij T <— integral-mat T A integral-mat-surj T

lemma integral-mat-integral-vec: integral-mat A — integral-vec v — integral-vec
(A *v v)
using integral-mat-def by blast

lemma integral-mat-int-entries:
fixes T :: real 272
assumes integral-mat T
defines a: a = T$1$1 and b: b = T$1$2 and
c:c=T$2%1 and d: d = T$2$2
shows is-int a A is-int b A is-int ¢ A is-int d
proof—
let ?v = wvector [1, 0]
have integral-vec (?v) using integral-vec-2[of ?v 1 0] by auto
then have integral-vec (T *v %v) using assms integral-mat-def by blast
moreover have T xv ?v = vector [a,]
using mat-vec-mult-2[of T ?v] a b ¢ d by auto
ultimately have integral-vec (vector |a, c]) by auto
then have 1: is-int a A is-int ¢ using integral-vec-def by auto

let ?w = wvector [0, 1]
have integral-vec (?w) using integral-vec-2[of ?w 0 1] by auto
then have integral-vec (T xv ?w) using assms integral-mat-def by blast
moreover have T xv 2w = vector [b, d]
using mat-vec-mult-2[of T ?w| a b ¢ d by auto
ultimately have integral-vec (vector [b, d]) by auto
then have 2: is-int b A is-int d using integral-vec-def by auto

thus “thesis using 1 2 by auto
qed

2 Integral Bijective Matrix Determinant

lemma integral-mat-int-det:
fixes T :: real 272
assumes integral-mat T
shows is-int (det T)
proof—
obtain a b ¢ d where abed: T$1$1 = a A T$1$2 = b A T$2%1 = ¢ A T$2$2
= d by auto
have abcd-int: is-int a A is-int b A is-int ¢ A is-int d
using integral-mat-int-entries|of T] abcd assms by auto
obtain a7 bi ci di :: int where abedi: ai = a Abi=bAci=cANdi=4d
using abcd-int is-int-def by auto
have det T = axd — bxc using det-2[of T| abcd by auto

also have ... = aixdi — bixci using abcdi by auto
finally show ?thesis using is-int-def by blast
qed

lemma integral-mat-bij-inv:
fixes T :: real 272
assumes integral-mat-bij T

obtains Tinv where invertible T A integral-mat-bij Tinv A\ matriz-inv T Tinv
proof—
let ?el = vector [1, 0]
let ?e2 = vector [0, 1]
let ?I = (vector [?el, ?e2])::(real”272)
have id: I = ((mat 1)::(real”272))
unfolding vec-eq-iff
by (smt (verit, ccfv-threshold) exhaust-2 mat-def vec-lambda-beta vector-2)
have integral-vec ?el
by (simp add: integral-vec-def is-int-def)
moreover have integral-vec ?e2
by (simp add: integral-vec-def is-int-def)
ultimately obtain z y where zy: T xv z = %el A integral-vec x N T *xv y =
?e2 A integral-vec y
by (meson assms integral-mat-bij-def integral-mat-surj-def)

let ?Tinv = transpose (vector [z, yl)::(real 272)
have T xx ?Tinv = mat 1 (is ?TxTinv = mat 1)
proof—
have column 1 ?TzTinv = T v (column 1 ?Tinv)
by (metis matriz-vector-mul-assoc matriz-vector-mult-basis)
also have ... = T xv z
by (simp add: row-def)
finally have [simp]: column 1 ?TxTinv = ?el
using zy by presburger

have column 2 ?TxTinv = T *v (column 2 ?Tinv)

by (metis matriz-vector-mul-assoc matriz-vector-mult-basis)
also have ... = T xv y

by (simp add: row-def)
finally have [simp]: column 2 ?TxTinv = %e2

using zy by presburger

have Vv. ?TzTinv xv v = v
proof (rule alll)
fix v :: real™2

have (¢TzTinv xv v)$1 = (column 1 ?TzTinv)$1 * v$1 + (column 2
?TrTinv)$1 % v$2
by (metis (no-types, lifting) cart-eq-inner-axis mat-vec-mult-2 matriz-vector-mul-component
matriz-vector-mult-basis mult.commute vector-2(1))
also have ... = v$1 by simp
finally have v1: (?TzTinv v v)$1 = v$1 .

have (?TzTinv *xv v)$2 = (column 1 ?TzTinv)$2 * v$1 + (column 2
?TxTinv)$2 * v$2
by (metis (no-types, lifting) cart-eq-inner-axis mat-vec-mult-2 matriz-vector-mul-component
matriz-vector-mult-basis mult.commute vector-2(2))
also have ... = v$2 by simp

finally have v2: (?TzTinv v v)$2 = v$2 .

show ?TzTinv xv v = v using v1 v2 by (metis mat-vec-mult-2 matriz-vector-mul-lid)
qed
thus ?thesis by (simp add: matriz-eq)
qed
then have matriz-inv T ?Tinv
by (simp add: Integral-Matriz.matriz-inv-def matriz-left-right-inverse)
moreover have invertible T using calculation invertible-def matriz-inv-def by
blast
moreover have integral-mat-bij ?Tinv
by (smt (verit, del-insts) <T xx Finite-Cartesian-Product.transpose (vector
[z, y]) = mat 1> assms integral-mat-bij-def integral-mat-def integral-mat-surj-def
matriz-left-right-inverse matriz-mul-lid matriz-vector-mul-assoc)
ultimately show “thesis
using «T xx Finite-Cartesian-Product.transpose (vector [z, y]) = mat 1) in-
vertible-right-inverse that by blast
qed

lemma integral-mat-bij-det-pm1:
fixes T :: real 272
assumes integral-mat-bij T
shows det T =1 V det T = —1
proof—
obtain Tinv where Tinv: invertible T A integral-mat-bij Tinv A matriz-inv T
Tinv
using integral-mat-bij-inv[of T| assms by auto
moreover have is-int (det Tinv)
using integral-mat-bij-def integral-mat-int-det[of Tinv] calculation by auto
moreover have is-int (det T)
using integral-mat-bij-def integral-mat-int-det[of T] assms by auto
moreover have det Tinv =1 / det T
proof—
have id: Tinv xx T = mat 1 using Tinv unfolding matriz-inv-def invertible-def
by (simp add: verit-sko-ex’)
have det Tinv * det T = det (Tinv %% T) by (simp add: det-mul)
also have ... = det ((mat 1)::real”272) using id by auto
also have ... = (1::real) by auto
finally have det Tinv x det T = 1 .
thus ?thesis using invertible-det-nz nonzero-eq-divide-eq by fastforce
qed
ultimately have T-Tinv-int: is-int (det T) A is-int (1 / det T) by auto
thus det T =1V det T = —1
proof—
have abs (det T) < 1 (is YD < 1)
proof (rule ccontr)
assume — ?D < |
then have ?D > 1 by auto

moreover from this have 1 / ?D < 1 by auto
moreover from calculation have 1 / ?D > 0 by auto
ultimately have — is-int (1 / ?D) unfolding is-int-def by force
moreover from T-Tinv-int have is-int (1 / ?D)
by (smt (verit) <1 / |det T| < 1> abs-div-pos abs-divide abs-ge-self
abs-minus-cancel divide-cancel-left divide-pos-neg int-less-real-le is-int-def of-int-code(2))
ultimately show Fulse by auto
qed
then have det T > —1 Ndet T < 1
using assms by auto
moreover have det T # 0 using integral-mat-bij-inv invertible-det-nz assms
by auto
ultimately show det T = 1 V det T = —1 using is-int-def T-Tinv-int by
auto
qed
qed

end

theory Polygon-Jordan-Curve

imports
HOL— Analysis. Cartesian-Space
HOL— Analysis. Path-Connected
Poincare-Bendizson. Poincare- Bendixson
Integral-Matrix

begin

3 Polygon Definitions
type-synonym R-to-R2 = (real = real”2)

definition closed-path :: R-to-R2 = bool where
closed-path g <— path g N\ pathstart g = pathfinish g

definition path-inside :: R-to-R2 = (real”2) set where
path-inside g = inside (path-image g)

definition path-outside :: R-to-R2 = (real”2) set where
path-outside g = outside (path-image g)

fun make-polygonal-path :: (real”2) list = R-to-R2 where
make-polygonal-path || = linepath 0 0
| make-polygonal-path [a] = linepath a a
| make-polygonal-path [a,b] = linepath a b
| make-polygonal-path (a # b # xs) = (linepath a b) +++ make-polygonal-path (b
xs)

definition polygonal-path :: R-to-R2 = bool where
polygonal-path g +— g € make-polygonal-path*{xs :: (real”2) list. True}

definition all-integral :: (real”2) list = bool where
all-integral | = (VY € set l. integral-vec x)

definition polygon :: R-to-R2 = bool where
polygon g <— polygonal-path g A simple-path g A closed-path g

definition integral-polygon :: R-to-R2 = bool where
integral-polygon g +—
(polygon g N (3uts. g = make-polygonal-path vts A all-integral vts))

definition make-triangle :: real”2 = real”2 = real 2 = R-to-R2 where
make-triangle a b ¢ = make-polygonal-path [a, b, ¢, a]

definition polygon-of :: R-to-R2 = (real”2) list = bool where
polygon-of p vts <— polygon p N\ p = make-polygonal-path vts

definition good-linepath :: real ™2 = real™2 = (real”2) list = bool where
good-linepath a b vts <— (let p = make-polygonal-path vts in
a# b A {a, b} C set vts A path-image (linepath a b) C path-inside p U {a, b})

definition good-polygonal-path :: real ™2 = (real™2) list = real”2 = (real”2) list
= bool where
good-polygonal-path a cutvts b vts +— (
let p = make-polygonal-path vts in
let p-cut = make-polygonal-path ([a] @ cutvts Q [b]) in
(a # b A {a, b} C set vts A path-image (p-cut) C path-inside p U {a, b} A
loop-free p-cut))

4 Jordan Curve Theorem for Polygons

definition inside-outside :: R-to-R2 = (real”2) set = (real”"2) set = bool where
inside-outside p ins outs +—
(ins # {} N open ins N connected ins N
outs # {} N open outs A connected outs N
bounded ins N — bounded outs N
ins N outs = {} A ins U outs = — path-image p A
frontier ins = path-image p A frontier outs = path-image p)

lemma Jordan-inside-outside-real2:

fixes p :: real = real™2

assumes simple-path p pathfinish p = pathstart p

shows inside(path-image p) # {} A
open(inside(path-image p)) A
connected(inside(path-image p)) N
outside(path-image p) # {} A
open(outside(path-image p)) A
connected(outside(path-image p)) A

bounded(inside(path-image p)) A
= bounded(outside(path-image p)) A
inside(path-image p) N outside(path-image p) = {} A
inside(path-image p) U outside(path-image p) =
— path-image p N
frontier(inside(path-image p)) = path-image p A
frontier(outside(path-image p)) = path-image p

proof —

have good-type: c1-on-open-R2-azioms TYPE((real, 2) vec)

unfolding cI-on-open-R2-axioms-def by auto
have inside(path-image p) # {} A

open(inside(path-image p)) A
connected(inside(path-image p)) A
outside(path-image p) # {} A
open(outside(path-image p)) A
connected(outside(path-image p)) A
bounded(inside(path-image p)) A
= bounded(outside(path-image p)) A
inside(path-image p) N outside(path-image p) = {} A
inside(path-image p) U outside(path-image p) =
— path-image p N
frontier(inside(path-image p)) = path-image p A
frontier(outside(path-image p)) = path-image p

using assms cl-on-open-R2.Jordan-inside-outside-R2[of - - - p]
unfolding c1-on-open-R2-def c1-on-open-euclidean-def c1-on-open-def using
good-type

by (metis continuous-on-empty equals0D open-empty)
then show ?thesis unfolding inside-outside-def
using path-inside-def path-outside-def by auto
qed

lemma inside-outside-polygon:
fixes p :: R-to-R2
assumes polygon: polygon p
shows inside-outside p (path-inside p) (path-outside p)
proof—
have good-type: c1-on-open-R2-azioms TYPFE((real, 2) vec)
unfolding cI-on-open-R2-axioms-def by auto
have simple-path p pathfinish p = pathstart p using assms polygon-def closed-path-def
by auto
then show ?thesis using Jordan-inside-outside-real2 unfolding inside-outside-def
using path-inside-def path-outside-def by auto
qged

lemma inside-outside-unique:
fixes p :: R-to-R2
assumes polygon p
assumes io0l: inside-outside p insidel outsidel

10

assumes i02: inside-outside p inside2 outside2
shows insidel = inside2 A outsidel = outside2
proof —
have inner!: inside(path-image p) = insidel
using dual-order.antisym inside-subset interior-eq interior-inside-frontier
using ‘ol unfolding inside-outside-def
by metis
have inner2: inside(path-image p) = inside2
using dual-order.antisym inside-subset interior-eq interior-inside-frontier
using 702 unfolding inside-outside-def
by metis
have eql: insidel = inside2
using innerl inner2
by auto
have hi: insidel U outsidel = — path-image p
using io! unfolding inside-outside-def by auto
have h2: insidel N outsidel = {}
using iol unfolding inside-outside-def by auto
have outerl: outside(path-image p) = outsidel
using io1 inner! unfolding inside-outside-def
using h1 h2 outside-inside by auto
have h3: inside2 U outside2 = — path-image p
using 02 unfolding inside-outside-def by auto
have h{: inside2 N outside2 = {}
using (02 unfolding inside-outside-def by auto
have outer2: outside(path-image p) = outside2
using 02 inner2 unfolding inside-outside-def
using h3 h4 outside-inside by auto
then have eq2: outsidel = outside2
using outerl outer?2 by auto
then show ?thesis using eql eq2 by auto
qed

lemma polygon-jordan-curve:
fixes p :: R-to-R2
assumes polygon p
obtains inside outside where
inside-outside p inside outside
proof—
have good-type: c1-on-open-R2-azioms TYPE((real, 2) vec)
unfolding cI-on-open-R2-axioms-def by auto
have simple-path p pathfinish p = pathstart p using assms polygon-def closed-path-def
by auto
then obtain inside outside where
inside # {} open inside connected inside
outside # {} open outside connected outside
bounded inside — bounded outside inside N outside = {}
inside U outside = — path-image p
frontier inside = path-image p

11

frontier outside = path-image p
using cI-on-open-R2.Jordan-curve-R2[of - - - p]
unfolding ci-on-open-R2-def c1-on-open-euclidean-def c1-on-open-def using
good-type
by (metis continuous-on-empty equals0D open-empty)
then show ?thesis
using inside-outside-def that by auto
qed

lemma connected-component-image:
fixes [:: 'a::euclidean-space = 'b::euclidean-space
assumes linear f bij f
shows f ¢ (connected-component-set S x) = connected-component-set (f < S) (f
x)
proof —
have conn: A\S. connected S = connected (f ¢ S)
by (simp add: assms(1) connected-linear-image)
then have hi: ANT. T € {T. connected TNz € TANT C S} = f‘T e {T.
connected T N (fz) e TANT C(f*S)}
by auto
then have subsetl: f ¢ connected-component-set S © C connected-component-set
(f 9 (fz)
using connected-component-Union
by (smt (verit, ccfo-threshold) assms(2) bij-is-inj connected-component-eq-empty
connected-component-maximal connected-component-refl-eq connected-component-subset
connected-connected-component image-is-empty inj-image-mem-iff mem-Collect-eq)
have A\S. connected (f ¢ S) = connected S
using assms connected-continuous-image assms linear-continuous-on linear-conv-bounded-linear
bij-is-inj homeomorphism-def linear-homeomorphism-image
by (smt (verit, del-insts))
then have h2: ANT. f ‘T € {T. connected T A (fz) e TANT C (f‘9)} =
T € {T. connected T Nz € TNTC S}
by (simp add: assms(2) bij-is-inj image-subset-iff inj-image-mem-iff subsetl)
then have subset2: connected-component-set (f *S) (fz) C f ¢ connected-component-set
Sz
using connected-component-Union[of S x] connected-component-Union|of fS f
7]
by (smt (verit, del-insts) assms(2) bij-is-inj connected-component-eq-empty con-
nected-component-mazimal connected-component-refi-eq connected-component-subset
connected-connected-component image-mono inj-image-mem-iff mem-Collect-eq sub-
set-imageF)
show f ¢ (connected-component-set S &) = connected-component-set (f < S) (f z)
using subsetl subset2 by auto
qed

lemma bounded-map:
fixes f :: 'a::euclidean-space = 'b::euclidean-space
assumes linear f bij f
shows bounded (f *S) = bounded S

12

proof —
have h1: bounded S = bounded (f * S)
using assms
using bounded-linear-image linear-conv-bounded-linear by blast
have bounded-linear f
using linear-conv-bounded-linear assms by auto
then have bounded-linear (inv f)
using assms unfolding bij-def
by (smt (verit, ccfv-threshold) bij-betw-def bij-betw-subset dim-image-eq inv-equality
linear-conv-bounded-linear linear-surjective-isomorphism subset-UNIV)
then have h2: bounded (f ¢ S) = bounded S
using assms
by (metis bij-is-inj bounded-linear-image image-inv-f-f)
then show ?thesis
using assms h1 h2 by auto
qed

lemma inside-bijective-linear-image:
fixes [:: 'a::euclidean-space = 'b::euclidean-space
fixes ¢ :: real = a
assumes c-simple:path c
assumes linear f bij f
shows inside (f ‘ (path-image c)) = f ¢ (inside(path-image c))
proof —
have set!: {z. z ¢ f path-image ¢} = [‘{z. x ¢ path-image c}
using assms path-image-compose unfolding bij-def
by (smt (verit, best) UNIV-I imageE inj-image-mem-iff mem-Collect-eq subset]
subset-antisym)
have linear-inv: linear (inv f)
using assms
by (metis bij-imp-bij-inv bij-is-inj inv-o-cancel linear-injective-left-inverse o-inv-o-cancel)
have bij-inv: bij (inv f)
using assms
using bij-imp-bij-inv by blast
have insetl: Nz. z € {z. bounded (connected-component-set (— f path-image
¢))} = z € f ‘{x. bounded (connected-component-set (— path-image c))}
proof —
fix z
assume *: ¢ € {z. bounded (connected-component-set (— f ‘ path-image c))}
have inj f
using assms(3) bij-betw-imp-inj-on by blast
then show z € f ‘ {z. bounded (connected-component-set (— path-image c) x)}
using * connected-component-image[OF linear-inv bij-inv]
by (smt (23) <Az S. inv f ¢ connected-component-set S x = connected-component-set
(inv f©S) (inv fx)y <bij (inv f)» <linear (inv f)y <z € {z. bounded (connected-component-set
(— f ¢ path-image c) x)}> bij-image-Compl-eq bounded-map connected-component-eq-empty
image-empty image-inv-f-f mem-Collect-eq)
qged
have inset2: \z. x € f ‘ {z. bounded (connected-component-set (— path-image

13

¢) x)} = z € {z. bounded (connected-component-set (— f * path-image ¢) z)}
proof —

fix z

assume z € [‘ {z. bounded (connected-component-set (— path-image c) z)}

then obtain z! where z = fz1 1 € {z. bounded (connected-component-set
(— path-image ¢))}

by auto
then show z € {z. bounded (connected-component-set (— f * path-image ¢) x)}

using bounded-map|OF assms(2) assms(8)] connected-component-image| OF
assms(2) assms(3)]
by (metis assms(3) bij-image-Compl-eq mem-Collect-eq)
qed
have set2: f ‘ {z. bounded (connected-component-set (— path-image ¢))} = {z.
bounded (connected-component-set (— f ¢ path-image ¢) z)}
using insetl inset2 by auto
have inset!: Az. z € f ‘{z. x ¢ path-image c A bounded (connected-component-set
(— path-image ¢))} =
z€ {z. x ¢ f ° path-image ¢ A bounded (connected-component-set (— f
path-image ¢) z)}
proof —
fix x
assume z € f ‘{z. ¢ path-image ¢ A bounded (connected-component-set (—
path-image ¢) z)}
then show z€ {z. z ¢ f path-image ¢ A bounded (connected-component-set
(= f ¢ path-image c) x)}
by (metis (no-types, lifting) image-iff mem-Collect-eq setl set2)
qed
have inset2: Az. z€ {z. x ¢ f ‘ path-image ¢ A bounded (connected-component-set
(= f ¢ path-image ¢) z)} =
z € f{z. x ¢ path-image ¢ N bounded (connected-component-set (— path-image
0))}
proof —
fix z
assume z€ {z. z ¢ [‘ path-image ¢ A bounded (connected-component-set (—
f ¢ path-image c) x)}
then show z € f ‘ {z. = ¢ path-image ¢ A bounded (connected-component-set
(— path-image ¢))}
by (smt (verit, best) image-iff mem-Collect-eq set2)
qed
have same-set: {z. x ¢ f * path-image ¢ A bounded (connected-component-set (—
f ¢ path-image c) z)} =
f{z. x ¢ path-image ¢ N bounded (connected-component-set (— path-image c)
)
using inset! inset2
by blast
have insl: Az. © € inside (f © path-image ¢) => x € f ‘ inside (path-image c)
proof —
fix x

¢

14

assume x: z € inside (f ‘ path-image c)
show z € [‘ inside (path-image c)
by (metis (no-types) x same-set inside-def)
qed
then have inside (f * (path-image c)) C f ¢ (inside(path-image c))
by auto
have ins2: Aza. za € inside (path-image ¢) = f za € inside (f ¢ path-image c)
proof —
fix za
assume *: za € inside (path-image c)
show f za € inside (f ¢ path-image c)
by (metis (no-types, lifting) * same-set assms(3) bij-def inj-image-mem-iff
inside-def mem-Collect-eq)
qed
then have [¢ (inside(path-image ¢)) C inside (f © (path-image c))
by auto
show ?thesis
using ins1 ins2 by auto
qed

lemma bij-image-intersection:
assumes path-image c1 N path-image c2 = S
assumes bij f
assumes c¢ € path-image (f o c1) N path-image (f o ¢2)
shows ce f* S
proof —
have ¢ € f ‘ path-image c1 N f ¢ path-image c2
using assms path-image-compose|of f c¢1] path-image-compose[of f c2]
by auto
then obtain w where c-is: w € path-image c1 N w € path-image c2 N ¢ = f

using assms unfolding bij-def inj-def surj-def
by auto
then have w € S
using assms by auto
then show c € f* S
using c-is by auto
qged

theorem (in cI-on-open-R2) split-inside-simple-closed-curve-locale:

fixes ¢ :: real = 'a

assumes cI-simple:simple-path c1 and cl1-start: pathstart c1 = a and cl-end:
pathfinish ¢c1 = b

assumes c2-simple: simple-path c2 and c2-start: pathstart ¢2 = a and c2-end:
pathfinish c2 = b

assumes c-simple: simple-path ¢ and c-start: pathstart ¢ = a and c-end: pathfin-
ish c = b

assumes a-neq-b: a # b

15

and clc2: path-image c1 N path-image ¢2 = {a,b}
and clc: path-image c1 N path-image ¢ = {a,b}
and c2c: path-image ¢2 N path-image ¢ = {a,b}
and ne-12: path-image ¢ N inside(path-image c1 U path-image c2) # {}
obtains inside(path-image c1 U path-image ¢) N inside(path-image c2 U path-image
o) ={}
inside(path-image c1 U path-image ¢) U inside(path-image ¢2 U path-image
c) U
(path-image ¢ — {a,b}) = inside(path-image c1 U path-image c2)
proof —
let ?cc1 = (complez-of o cl1)
let %cc2 = (complex-of o c2)
let ?cc = (complez-of o c)
have cci-simple:simple-path ?ccl
using bij-betw-imp-inj-on cl-simple complex-of-bij
using simple-path-linear-image-eq[OF complex-of-linear]
by blast
have cci1-start:pathstart ?ccl1 = (complez-of a)
using cl-start by (simp add:pathstart-compose)
have ccl-end:pathfinish ?ccl = (complex-of b)
using cl-end by (simp add: pathfinish-compose)
have cc2-simple:simple-path ?cc2
using c2-simple complex-of-bij bij-betw-imp-inj-on
using simple-path-linear-image-eq|OF complezx-of-linear]
by blast
have cc2-start:pathstart ?cc2 = (complex-of a)
using c2-start by (simp add:pathstart-compose)
have cc2-end:pathfinish ?cc2 = (complez-of b)
using c2-end by (simp add: pathfinish-compose)
have cc-simple:simple-path ?cc using c-simple complex-of-bij
using bij-betw-imp-inj-on
using simple-path-linear-image-eq[OF complex-of-linear]
by blast
have cc-start:pathstart ?cc = (complez-of a)
using c-start by (simp add:pathstart-compose)
have cc-end:pathfinish ?cc = (complex-of b)
using c-end by (simp add: pathfinish-compose)
have ca-neq-cb: complezx-of a # complex-of b
using a-neq-b
by (meson bij-betw-imp-inj-on complez-of-bij inj-eq)
have image-set-eql : { complez-of a, complex-of b} C path-image ?ccl N path-image
Zcc2
using c!c2 path-image-compose[of complex-of c1] path-image-compose[of com-
plex-of c2]
by auto
have image-set-eq2: \c. ¢ € path-image ?ccl N path-image ?cc2 = ¢ €{complez-of
a, complex-of b}
using bij-image-intersection[of c¢1 ¢2 {a, b} complex-of]
using c1c2 complez-of-bij by auto

16

have cc1c2: path-image ?ccl N path-image ?cc2 = {(complez-of a),(complez-of
b}
using image-set-eql image-set-eq2 by auto
have image-set-eql : { complez-of a, complex-of b} C path-image ?ccl N path-image
Zcc
using clc path-image-compose|of complex-of c1] path-image-compose[of com-
plez-of (]
by auto
have image-set-eq2: \c. ¢ € path-image ?ccl N path-image cc = ¢ €{complez-of
a, complex-of b}
using bij-image-intersection[of c¢1 ¢ {a, b} complez-of]
using clc complex-of-bij by auto
have cclc: path-image ?ccl N path-image ?cc = {(complex-of a),(complex-of b)}

using image-set-eql image-set-eq2 by auto
have image-set-eq1 : { complez-of a, complex-of b} C path-image ?cc2 N path-image
?cc
using c2c¢ path-image-compose|of complex-of c¢2] path-image-compose[of com-
plez-of ¢
by auto
have image-set-eq2: \c. ¢ € path-image ?cc2 N path-image cc = ¢ €{complez-of
a, complez-of b}
using bij-image-intersection|[of c2 ¢ {a, b} complez-of]
using c2c complez-of-bij by auto
have cc2c: path-image ?cc2 N path-image ?cc = {(complex-of a),(complez-of b)}
using image-set-eql image-set-eq2 by auto

let %j = c1 +++ (reversepath c)
let ?cj = %ccl +++ (reversepath ?cc)
have cj-and-j: path-image ?cj = complez-of * (path-image %j)
by (metis path-compose-join path-compose-reversepath path-image-compose)
have pathstart (reversepath ¢) = b
using c-end
by auto
then have j-path: path (c1 +++ (reversepath c))
using cl-end c1-simple c-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)
then have path ?j A path-image ?j = path-image c1 U path-image ¢
using <pathstart (reversepath ¢) = by c1-end path-image-join path-image-reversepath
by blast
then have inside(path-image c1 U path-image ¢) = inside(path-image %j)
by auto
have pathstart (reversepath ?cc) = complex-of b
using cc-end
by auto
then have cj-path: path ?cj
using ccl-end ccl-simple cc-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)

17

then have path ?cj A path-image ?cj = path-image ?ccl U path-image ?cc
by (metis <pathstart (reversepath (complez-of o ¢)) = complex-of by ccl-end
path-image-join path-image-reversepath)
then have ins-cj: inside(path-image ?ccl U path-image ?cc) = inside (path-image
2
by auto
have inside(path-image ?cj) = complex-of ‘ (inside(path-image %7))
using inside-bijective-linear-image[of ?j complez-of] j-path
using cj-and-j complex-of-bij complex-of-linear by presburger
then have i1: inside(path-image ?ccl U path-image ?cc) = complez-of * (inside(path-image
¢l U path-image c)) using complez-of-real-of unfolding image-comp
using cj-and-j
by (simp add: ins-cj <inside (path-image c1 U path-image c¢) = inside (path-image
(¢l +++ reversepath c))»)

let 2j2 = c2 +++ (reversepath c)
let ?cj2 = %cc2 ++4+ (reversepath ?cc)
have c¢j2-and-j2: path-image ?cj2 = complex-of ‘ (path-image %j2)
by (metis path-compose-join path-compose-reversepath path-image-compose)
have pathstart (reversepath ¢) = b
using c-end by auto
then have j2-path: path (c2 +++ (reversepath c))
using c2-end c2-simple c-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)
then have path 92 A path-image 9j2 = path-image c2 U path-image ¢
using <pathstart (reversepath ¢) = by c2-end path-image-join path-image-reversepath
by blast
then have inside(path-image c2 U path-image ¢) = inside(path-image 2j2)
by auto
have pathstart (reversepath ?cc) = complex-of b
using cc-end by auto
then have c¢j2-path: path ?cj2
using cc2-end cc2-simple cc-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)
then have path ?cj2 N path-image ?c¢j2 = path-image ?cc2 U path-image ?cc
by (metis <pathstart (reversepath (complez-of o c)) = complez-of by cc2-end
path-image-join path-image-reversepath)
then have ins-cj2: inside(path-image ?cc2 U path-image ?cc) = inside (path-image
7cj2)
by auto
have inside(path-image ?cj2) = complex-of ¢ (inside(path-image 2j2))
using inside-bijective-linear-image[of %j2 complex-of] j2-path
using c¢j2-and-j2 complex-of-bij complex-of-linear
by presburger
then have i2: inside (path-image (complex-of o c2) U path-image (complez-of o

c))
= complez-of ¢ inside (path-image c2 U path-image c)
using c¢j2-and-j2

18

by (simp add: ins-cj2 <inside (path-image c2 U path-image ¢) = inside (path-image
(c2 +++ reversepath c))»)

let 2j3 = ¢2 +++ (reversepath c1)
let ?¢j3 = %cc2 +++ (reversepath ?ccl)
have c¢j3-and-j3: path-image ?¢j8 = complex-of ‘ (path-image %j3)
by (metis path-compose-join path-compose-reversepath path-image-compose)
have pathstart (reversepath c¢1) = b
using cl-end by auto
then have j3-path: path (c2 +++ (reversepath c1))
using c2-end c2-simple c1-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)
then have path-j3: path 2j3 N path-image 23 = path-image c2 U path-image c1
using «pathstart (reversepath c1) = by c¢2-end path-image-join path-image-reversepath
by blast
then have inside(path-image ¢2 U path-image c1) = inside(path-image ?§3)
by auto
have pathstart (reversepath ?ccl) = complex-of b
using ccl-end by auto
then have cj3-path: path ?cj3
using cc2-end cc2-simple ccl-simple unfolding simple-path-def path-def
by (metis continuous-on-joinpaths path-def path-reversepath)
then have path-cj3: path ?¢j3 N path-image ?¢j8 = path-image ?cc2 U path-image
?ccl
by (metis <pathstart (reversepath (complex-of o c1)) = complex-of b> cc2-end
path-image-join path-image-reversepath)
then have ins-cj3: inside(path-image ?cc2 U path-image ?ccl) = inside (path-image
7¢j3)
by auto
have inside(path-image ?cj3) = complex-of ¢ (inside(path-image 2j3))
using inside-bijective-linear-image[of 2j3 complex-of] j3-path
using c¢j3-and-j3 complez-of-bij complex-of-linear
by presburger
then have i3: inside (path-image (complex-of o c1) U path-image (complez-of o
c2))
= complex-of ¢ inside (path-image c1 U path-image c2)
by (simp add: path-cj3 path-j3 sup-commute)
obtain y where y-prop: y € path-image ¢ N inside (path-image c1 U path-image
c2)
using ne-12 by auto
then have y-inl: complex-of y € path-image ?cc
by (metis IntD1 image-eql path-image-compose)
have y-in2: complex-of y € complex-of ¢ (inside (path-image c1 U path-image
¢2))
using y-prop by auto
then have cne-12: path-image ?cc N inside(path-image ?ccl U path-image ?cc2)
#{}

using ne-12 y-inl y-in2 i3 by force

19

obtain for-reals: inside(path-image ?ccl U path-image ?cc) N inside(path-image
?cc2 U path-image ?cc) = {}
inside(path-image %ccl U path-image ?cc) U inside(path-image ?cc2 U
path-image ?cc) U
(path-image ?cc — {complez-of a, complex-of b}) = inside(path-image ?ccl
U path-image ?cc2)
using split-inside-simple-closed-curve| OF cc1-simple cc1-start ccl-end cc2-simple
cc2-start
cc2-end cc-simple cc-start cc-end ca-neg-cb cclc2 ccle cc2c cne-12]
by auto
let ?rinl = real-of ¢ inside(path-image ?ccl U path-image ?cc)
let ?rin2 = real-of ¢ inside(path-image ?cc2 U path-image ?cc)

have h1: inside(path-image c1 U path-image c) N inside(path-image c2 U path-image
¢) # {} = False
proof—
assume inside(path-image c1 U path-image ¢) N inside(path-image c2 U
path-image ¢) # {}
then obtain a where a-prop: a € inside(path-image c1 U path-image ¢) A a
€ inside(path-image c2 U path-image c)
by auto
have inl: complez-of a € inside (path-image (complex-of o c¢1) U path-image
(complez-of o ¢))
using a-prop il by auto
have in2: complez-of a € inside (path-image (complex-of o ¢2) U path-image
(complezx-of o ¢))
using a-prop i2 by auto
show Fulse using inl in2 for-reals(1) by auto
qed
have h: path-image (complex-of o ¢) — {complez-of a, complex-of b} = complezx-of
¢ (path-image ¢) — complex-of {a,b}
using path-image-compose by auto
have complez-of * path-image ¢ — complex-of ‘ {a, b} = complez-of * (path-image
¢ - {a, b))
proof —
have Az. z € (complez-of * path-image ¢ — complez-of “ {a, b}) +— z €
complex-of ¢ (path-image ¢ — {a, b})
using Diff-iff bij-betw-imp-inj-on complez-of-bij image-iff inj-eq by (smt (23))
then show ¢thesis by blast
qed
then have path-image (complex-of o ¢) — {complex-of a, complez-of b} = com-
plez-of (path-image ¢ — {a,b})
using h by simp
then have h2: inside(path-image c1 U path-image c¢) U inside(path-image ¢2 U
path-image ¢) U
(path-image ¢ — {a,b}) = inside(path-image c1 U path-image c2)
proof—
have Az . = € inside(path-image c1 U path-image c2) <— complez-of © €
complez-of ¢ inside (path-image c1 U path-image c2)

20

using i3 by (metis bij-betw-imp-inj-on complez-of-bij image-iff inj-eq)
then have in-iff: A\z. z € inside(path-image c1 U path-image c¢2) «— com-
plez-of © € inside (path-image (complex-of o c1) U path-image (complez-of o c))
@]
inside (path-image (complez-of o ¢2) U path-image (complez-of o ¢)) U
(path-image (complez-of o ¢) — {complex-of a, complex-of b})
using for-reals(2)
using ¢3 by presburger
have Az. complez-of © € inside (path-image (complex-of o c¢1) U path-image
(complex-of o ¢)) U
inside (path-image (complex-of o ¢2) U path-image (complex-of o ¢)) U
(path-image (complez-of o ¢) — {complex-of a, complez-of b})
«— complex-of © € inside (path-image (complez-of o c1) U path-image
(complez-of o ¢))
V' complez-of © € inside (path-image (complez-of o c2) U path-image
(complez-of o c))
V complex-of © € (path-image (complex-of o ¢) — {complex-of a, complex-of
)

by blast
then have Az. complex-of x € inside (path-image (complex-of o c¢1) U path-image
(complex-of o ¢)) U
inside (path-image (complex-of o ¢2) U path-image (complex-of o ¢)) U
(path-image (complez-of o ¢) — {complex-of a, complez-of b})
«— x € inside(path-image c1 U path-image c) U inside(path-image c¢2 U
path-image ¢) U
(path-image ¢ — {a,b})
using i1 i2 i3 Un-iff <path-image (complez-of o ¢) — {complez-of a, complex-of
b} = complez-of ‘ (path-image ¢ — {a, b})> bij-betw-imp-inj-on complex-of-bij im-
age-iff inj-def
by (smt (verit, best))
then have Az. z € inside(path-image c1 U path-image c2) +— z € (inside(path-image
¢l U path-image c¢) U inside(path-image c¢2 U path-image c¢) U
(path-image ¢ — {a,b}))
using in-iff by meson
then show f?thesis by auto
qed
show ?thesis using that h1 h2 by auto
qged

lemma split-inside-simple-closed-curve-real2:

fixes ¢ :: real = real”2

assumes cl-simple:simple-path c1 and cI-start: pathstart c1 = a and cl-end:
pathfinish ¢1 = b

assumes c2-simple: simple-path c2 and c2-start: pathstart c2 = a and c2-end:
pathfinish c2 = b

assumes c-simple: simple-path ¢ and c-start: pathstart ¢ = a and c-end: pathfin-
ishec=1»

assumes a-neq-b: a # b

and clc2: path-image c1 N path-image ¢2 = {a,b}

21

and clec: path-image c1 N path-image ¢ = {a,b}
and c2c: path-image c¢2 N path-image ¢ = {a,b}
and ne-12: path-image ¢ N inside(path-image c1 U path-image ¢2) # {}
obtains inside(path-image c1 U path-image ¢) N inside(path-image c¢2 U path-image
o) ={}
inside(path-image c1 U path-image ¢) U inside(path-image ¢2 U path-image
c) U
(path-image ¢ — {a,b}) = inside(path-image c1 U path-image c2)
proof —
have good-type: c1-on-open-R2-axioms TYPE((real, 2) vec)
unfolding cI-on-open-R2-axioms-def by auto
then show ?thesis
using cl-on-open-R2.split-inside-simple-closed-curve-locale[of - - - ¢1 a b ¢2 (]
assms
unfolding cI-on-open-R2-def c1-on-open-euclidean-def c1-on-open-def
using good-type that by blast
qed

end

theory Polygon-Lemmas

imports
Polygon-Jordan-Curve
HOL— Library.Sublist
HOL.Set-Interval
HOL.Fun

begin

5 Properties of make polygonal path, pathstart
and pathfinish of a polygon

lemma make-polygonal-path-induct|case-names Empty Single Two Multiple]:
fixes ell :: (real”2) list
assumes empty: Nell. ell = [| = P ell
and single: Nell. [length ell = 1] = P ell
and two: Aell. [length ell = 2] = P ell
and multiple: \ell.
[length ell > 2;
P ([(elll0), (ell'1)));
P ((ell'1)#(drop 2 ell))] = P ell
shows P ell
apply (induct ell rule: make-polygonal-path.induct)
using empty single two multiple by auto

lemma make-polygonal-path-gives-path:
fixes v :: (real™2) list
shows path (make-polygonal-path v)
proof (induction length v arbitrary: v)

22

case (
thus path (make-polygonal-path v)
by auto
next
case (Suc x)
show ?Zcase
by (smt (verit, best) Suc.hyps(1) Suc.hyps(2) Suc-length-conv list.distinct(1)
list.inject make-polygonal-path.elims path-join-imp path-linepath pathfinish-linepath
pathstart-join pathstart-linepath)
qed

corollary polygonal-path-is-path:
fixes g :: R-to-R2
assumes polygonal-path g
shows path g
using assms polygonal-path-def make-polygonal-path-gives-path by auto

lemma polygon-to-polygonal-path:
fixes p i1 R-to-R2
assumes polygon p
obtains ell where p = make-polygonal-path ell
using assms unfolding polygon-def polygonal-path-def
by auto

lemma polygon-pathstart:

fixes g :: R-to-R2

assumes [# ||

assumes g = make-polygonal-path [

shows pathstart g = 110

using assms make-polygonal-path.simps

by (smt (verit) list.discI list.expand make-polygonal-path.elims nth-Cons-0 path-
start-join pathstart-linepath)

lemma polygon-pathfinish:
fixes g :: R-to-R2
assumes | # [|
assumes g = make-polygonal-path [
shows pathfinish g = l!(length | — 1)
using assms
proof (induct length | arbitrary: g 1)
case ()
then show ?Zcase by auto
next
case (Suc)
{assume x: length | = 1
then obtain ¢ where I-is: | = [a]
by (metis Suc.prems(1) Suc-neq-Zero diff-Suc-1 diff-self-eq-0 length-Cons
remdups-adj.cases)

23

then have pathfinish ¢ = a
using Suc make-polygonal-path.simps
by (simp add: pathfinish-def)
then have pathfinish g = l!(length | — 1)
using Suc l-is
by auto
} moreover {assume x: length | = 2
then obtain a b where l-is: | = [a, b]
by (metis (no-types, opaque-lifting) One-nat-def Suc-eq-plusl list.size(3)
list.size(4) min-list.cases nat.simps(1) nat.simps(83) numeral-2-eq-2)

then have g-is: g = linepath a b
using Suc by auto
have pf: pathfinish ¢ = b using g-is by auto
then have pathfinish g = l!(length | — 1)
using Suc * l-is
by auto

}

moreover {assume x: length [> 2
then obtain a b ¢ where l-is: | = a # b # ¢
by (metis Suc.prems(1) Zero-neq-Suc length-Cons less-SucO list.size(3)

numeral-2-eq-2 remdups-adyj.cases)
then have g-is: ¢ = (linepath a b) +++ make-polygonal-path (b # c)
using Suc l-is
proof —
have ¢ # [|
using * [-is by auto
then show ?thesis
by (metis (full-types) Suc(4) l-is list.exhaust make-polygonal-path.simps(4))

qed
then have pf: pathfinish g = pathfinish (make-polygonal-path (b # ¢))

by auto
have len-z: length (b # ¢) = z
using Il-is Suc by auto
then have pathfinish (make-polygonal-path (b # c)) = (b # ¢)!(length | — 2)
using Suc.hyps l-is
by simp
then have pathfinish g = l!(length I — 1)
using [l-is pf
by auto

}

ultimately show ?case
using Suc
by (metis One-nat-def less-Suc-eq-0-disj less-antisym numeral-2-eq-2)

qged

lemma make-polygonal-path-image-property:

assumes length vts > 2
assumes p-is-path: x € path-image (make-polygonal-path vts)
shows 3 k < length vts — 1. x € path-image (linepath (vts ! k) (vts ! (k + 1)))

24

using assms
proof (induct vts)
case Nil
then show ?Zcase by auto
next
case (Cons a vts)
then have len-gteq: length vts > 1
by simp
{assume *: length vts = 1
then obtain b where vts-is: vts = [b]
by (metis One-nat-def <1 < length vtsy drop-eq-Nil id-take-nth-drop less-numeral-extra(1)
self-append-conv? take-eq-Nil2)
then have z € path-image (make-polygonal-path [a, b))
using Cons by auto
then have z € path-image (linepath a b)
by auto
then have z € path-image (linepath ((a#vts) ! 0) ((a#tvts) ! 1))
using Cons vts-is
by force
then have Jk<length (a # vts) — 1. x € path-image (linepath ((a # vts) | k)
(0 # vts) ! (5 + 1))
using *
by simp
} moreover {assume x: length vts > 1
then obtain b vis’ where vts-is: vts = b # vts’
by (metis One-nat-def le-zero-eq len-gteq list.exhaust list.size(8) n-not-Suc-n)
then have z € path-image ((linepath a b) +++ make-polygonal-path (b # vts’))
using Cons
by (metis (no-types, lifting) * One-nat-def length-Cons list.exhaust list.size(3)
make-polygonal-path.simps(4) nat-less-le)
then have eo: x €path-image ((linepath a b)) V x € path-image (make-polygonal-path
(b # vts'))
using not-in-path-image-join by blast
{assume xx : © €path-image ((linepath a b))
then have Jk<length (a # vts) — 1. x € path-image (linepath ((a # vts) | k)
((a # ots) ! (k + 1)))
using vts-is
by auto
} moreover {assume xx : © € path-image (make-polygonal-path (b # vts’))
then have 3 k<length vts — 1. z € path-image (linepath (vts | k) (vts ! (k +
1))
using Cons.hyps(1)
by (simp add: Suc-lel vts-is)
then have Jk<length (a # vts) — 1. x € path-image (linepath ((a # vts) ! k)
(a # vts) ! (+ 1))

using add.commute add-diff-cancel-left’ length-Cons less-diff-conv nth-Cons-Suc
plus-1-eq-Suc by auto

}

25

ultimately have Jk<length (a # vts) — 1. x € path-image (linepath ((a #
vts) ' k) ((a # vts) ! (K + 1))
using eo by auto
}

ultimately show Zcase
using len-gteq
by fastforce
qed

lemma linepaths-subset-make-polygonal-path-image:
assumes length vts > 2
assumes k < length vts — 1
shows path-image (linepath (vts ' k) (vts! (kK + 1))) C path-image (make-polygonal-path
vts)
using assms
proof (induct vts arbitrary: k)
case Nil
then show ?case by auto
next
case (Cons a vts)
{ assume *: length vts = 1
then have k-is: k = 0
using Cons.prems(2) by auto
obtain b where vts-is: vts = [b]
using *
by (metis One-nat-def drop-eq-Nil id-take-nth-drop le-numeral-extra(4) self-append-conv2
take-eq-Nil2 zero-less-one)
then have path-image (make-polygonal-path (a # vts)) = path-image (linepath
a b)
by auto
then have path-image (linepath ((a # vts) ' k) ((a # vts) | (k + 1)))
C path-image (make-polygonal-path (a # vts))
using k-is vts-is
by simp
} moreover
{ assume *: length vts > 1
then obtain b c vts’ where vts-is: vts = b#c#vts’
by (metis diff-0-eq-0 diff-Suc-1 diff-is-0-eq leD length-Cons list.exhaust list.size(3))
{ assume *x: k = 0
then have same-path-image: path-image (linepath ((a # vts) ! k) ((a # vts)
U'(k + 1))) = path-image (linepath a b)
using vts-is
by auto
have path-image (linepath a b) C path-image (make-polygonal-path (a # b
Hetpots)
using vts-is make-polygonal-path.simps path-image-join
by (metis (no-types, lifting) Un-iff list.discI nth-Cons-0 pathfinish-linepath
polygon-pathstart subsetl)
then have path-image (linepath ((a # vts) ! k) ((a # vts) ! (k + 1))) C

26

path-image (make-polygonal-path (a # vts))
using vts-is same-path-image
by presburger
} moreover {assume xx: k > 0
then have k-minus-lt: k—1 < length vts — 1
using Cons
by auto
then have path-image-is: path-image (linepath ((a # vts) ! k) ((a # vts) ! (k
+ 1))) = path-image (linepath (vts ! (k —1)) (vts | k))
using #x
by auto
then have path-im-subset!: path-image (linepath (vts ! (k—1)) (vts ! k)) C
path-image (make-polygonal-path vts)
using k-minus-lt Cons.hyps(1)[of k—1] * xx Suc-lel Suc-pred add.right-neutral
add-Suc-right nat-1-add-1 plus-1-eq-Suc
by auto
have path-im-subset?2: path-image (make-polygonal-path vts) C path-image
(make-polygonal-path (a # vts))
using vts-is make-polygonal-path.simps(4)
by (metis dual-order.refl list.distinct(1) nth-Cons-0 path-image-join pathfin-
ish-linepath polygon-pathstart sup.coboundedI2)
then have path-image (linepath ((a # vts) ! k) ((a # vts) ! (k + 1))) C
path-image (make-polygonal-path (a # vts))
using path-image-is path-im-subset! path-im-subset?
by blast

ultimately have path-image (linepath ((a # vts) ' k) ((a # vts) ! (k + 1)))
C path-image (make-polygonal-path (a # vts))
by blast
}

ultimately show ?case

by (metis Cons.prems(1) Suc-1 leD length-Cons linorder-neqE-nat nat-add-left-cancel-less
plus-1-eq-Suc)
qed

lemma vertices-on-path-image: shows set vts C path-image (make-polygonal-path
vts)
proof (induct vts rule:make-polygonal-path.induct)
case 1
then show ?case by auto
next
case (2 a)
then show ?Zcase by auto
next
case (3 ab)
then show ?case by auto
next
case (4 a b v va)
then have a-in-image: a € path-image (make-polygonal-path (a # b # v # va))

27

using make-polygonal-path.simps
by (metis list.distinct(1) nth-Cons-0 pathstart-in-path-image polygon-pathstart)

have path-image-union:
path-image (make-polygonal-path (a # b # v # va))
= path-image (linepath a b) U path-image (make-polygonal-path (b # v # va))
by (metis make-polygonal-path.simps(4) linepath-1"list.discI nth-Cons-0 path-image-join
pathfinish-def polygon-pathstart)
have set (a # b # v # va) = {a} U set(b # v # va)
by auto
then show ?case using a-in-image 4 make-polygonal-path.simps
path-image-union by auto
qed

lemma path-image-cons-union:

assumes p = make-polygonal-path vts

assumes p’ = make-polygonal-path vts’

assumes vts’ # [|

assumes vts = a # vts’ A b = vts'l0

shows path-image p = path-image (linepath a b) U path-image p’
proof—

have pathfinish (linepath a b) = pathstart p’ using assms polygon-pathstart by
auto

moreover have length vts = 2 = ?thesis

by (smt (verit) Cons-nth-drop-Suc One-nat-def Suc-1 assms(1) assms(2) assms(3)
assms(4) closed-segment-idem diff-Suc-1 drop0 drop-eq-Nil insert-subset le-iff-sup
le-numeral-extra(4) length-Cons length-greater-0-conv list.discl list.inject list.set(1)
list.set(2) make-polygonal-path.elims path-image-linepath sup-commute vertices-on-path-image)

moreover have length vts > 2 = ?thesis

by (metis (no-types, lifting) Cons-nth-drop-Suc One-nat-def Suc-1 assms(1)

assms(2) assms(3) assms(4) calculation(1) drop0 drop-Suc-Cons length-greater-0-conv
make-polygonal-path.simps(4) path-image-join)

moreover have length vts > 2 using assms by (simp add: Suc-le-eq)

ultimately show ?thesis by linarith
qed

lemma polygonal-path-image-linepath-union:
assumes p = make-polygonal-path vts
assumes n = length vts
assumes n > 2
shows path-image p = (|J {path-image (linepath (vtsli) (vtsl(i+1))) | i. i < n
_ g})
using assms
proof (induct n arbitrary: vts p)
case ()
then show ?case by linarith
next
case (Suc n)
{ assume x*: Sucn = 2

28

then obtain a b where ab: vts = [a, b]
by (metis Suc.prems(2—3) Cons-nth-drop-Suc One-nat-def Suc-1 drop0
drop-eq-Nil lessI pos2)
then have path-image p = path-image (linepath a b)
using make-polygonal-path.simps Suc.prems by presburger
moreover have ... = (|J {path-image (linepath (vtsli) (vts!(i+1))) | i. i < Suc
n - 2})
using ab Suc.prems
by (smt (verit, ccfv-threshold) Suc-eq-plusi Sup-least Sup-upper * diff-is-0-eq
diff-zero dual-order.refl mem-Collect-eq nth-Cons-0 nth-Cons-Suc subset-antisym,)
ultimately have ?case by presburger
} moreover
{ assume *: Sucn > 2
then obtain o b vts’ where vts”: vts = a # vis’ A b = visl0 A vis’ = tl vis
by (metis Suc.prems(2) list.collapse list.size(8) nat.distinct(1))

let ?p’ = make-polygonal-path vts’

let 2P’ = path-image ?p’

let ?P = path-image p

let ?P-union = (|J {path-image (linepath (vts!i) (vts!(i+1))) | i. i <n — 1})

have vts'-len: length vis’ = n using vts’ Suc.prems by fastforce
then have 7P’ = (|J {path-image (linepath (vtsé) (vts"(i+1))) | i. i < n —
2})
using Suc.prems Suc.hyps * by force
moreover have Vi < n—2. vts'li = vtsl(i+1) A vtsl(i+1) = vts!(i+2) using
vts’ by force
ultimately have 7P’ = (|J {path-image (linepath (vts!(i+1)) (vts!(i+2))) | i.
i <n— 2}
by fastforce
moreover have ... = (|J {path-image (linepath (vtsli) (vts!(i+1))) | i. 1 < i
Ni<n—1})
(is ... = ¢P’-union)
proof—
have Az i. z € {vts | Suc i——wvts ! Suc (Suc i)}
— i< n—2
— Jza. (3i. za = {vts l i——wvts ! Suc i} A Suc 0 < i ANi<n— Suc0)
Nz € za
by (metis x One-nat-def Suc-diff-Suc Suc-le-mono add-2-eq-Suc’ bot-nat-0.extremum
diff-Suc-Suc le-add-diff-inverse plus-1-eq-Suc)
moreover have Az i. z € {vts | i——uvts ! Suc i}
= Suc 0 < ¢
= 7 <n— Sucl
= Jza. (3i. za = {vts ! Suc i——vts ! Suc (Suc i)} Ni<n—2)ANzx¢€
za
by (metis x Suc-diff-Suc gr0-implies-Suc linorder-not-le not-less-eq-eq nu-
meral-2-eq-2)
ultimately show ?thesis by auto
qed

29

moreover have path-image (linepath a b) U ?P'-union = ?P-union
proof—
have Az. 2 € {a——b} = Fza. (3i. za = {vis! i——vts ! Suci} N i< n —
Suc 0) Nz € za
using vts’ by fastforce
moreover have Az i. x € {vts | i——ovts | Suc i}
= Vaza. (Vi>Suc 0. za = {vts | i——vts | Suc i} — =i < n — Suc 0)
V¢ za
= i< n— Suc0
=z € {a——b}
by (metis Suc-le-eq bot-nat-0.not-eq-extremum nth-Cons-0 nth-Cons-Suc
vts’)
ultimately show ?thesis by auto
qed
moreover have ?P = (path-image (linepath a b)) U 7P’
using Suc.prems vts’ path-image-cons-union
by (metis One-nat-def Suc-1 vts’-len bot-nat-0.extremum list.size(3) not-less-eg-eq)
ultimately have ?case by force
}
ultimately show ?case using Suc.prems by linarith
qed

6 Loop Free Properties

lemma constant-linepath-is-not-loop-free:
shows —(loop-free ((linepath a a)::real = real”2))
proof —
have all-zerol: ANz y:real. (1 — z) xg (a:real™2) + *r a = a
by auto
have all-zero2: ANz y:real. (1 — y) xg (azreal™2) + y xgr a = a
by auto
then have Jz:reale{0..1}. Jyureale{0..1} s £ yAN(z=0—y#1)A (z
=1-—y#0)
by (metis atLeastAtMost-iff field-lbound-gt-zero less-eq-real-def linorder-not-less
zero-less-one)
then show ?thesis
unfolding loop-free-def linepath-def
using all-zerol all-zero2 by auto
qed

lemma doubling-back-is-not-loop-free:
assumes g # b
shows —(loop-free ((make-polygonal-path [a, b, a))::real = real”2))
proof —
let %p1 = (1/4::real)
let ?p2 = (3/4::real)
have same-point: ((linepath a b) +++ (linepath b a)) (1/4::real) = ((linepath a
b) ++-+ (linepath b a)) (3/4::real)
unfolding linepath-def joinpaths-def by auto

30

have %p1 € {0..1} A ?p2 € {0..1} N %p1 # ?p2 A (9p] = 0 — %2 # 1) A
(%p1 =1 — 2 # 0)
by auto
then have 3ze{0..1}. 3ye{0..1}.
(linepath a b +++ linepath b a) x = (linepath a b +++ linepath b a) y
ANeA£yANz=0—y#IN(x=1—y#0)
using same-point by blast
then have —(loop-free ((linepath a b) +++ (linepath b a)))
unfolding loop-free-def by auto
then show ?thesis using make-polygonal-path.simps
by auto
qed

lemma not-loop-free-first-component:
assumes —(loop-free pl)
shows —(loop-free (p1+++p2))
proof —
obtain z y where zy-prop: 0 < za2< 10 <yy< lz#y
(2=0—y#1)(z=1-—y#0)
plz=ply
using assms unfolding loop-free-def
by auto
then have zy-prop2: 0 < z/2x/2< 1/20 < y/2y/2< 1/2z/2 # y/2
by auto
then have (pI+++p2) (z/2) = (pl+++p2) (y/2)
unfolding joinpaths-def using zy-prop(8)
by auto
then have props: (p! +++ p2) (z/2) = (p1 +++ p2) (y/2) A
(z/2) # (y/2) N ((2/2) = 0 — (y/2) # 1) A ((2/2) = 1 — (y/2) #

using zy-prop2 by auto
have z/2 € {0..1} AN y/2 € {0..1}
using zy-prop2 by auto
then have 3z€{0..1}.
Jye{0..1}.
(pl +++ p2) x = (p1 +++ p2) y A
rEyN(z=0—y#1)AN(z=1—y#0)
using props
by blast
then show ?thesis
unfolding loop-free-def by auto
qged

lemma not-loop-free-second-component:
assumes pathfinish-pathstart: pathfinish p1 = pathstart p2
assumes —(loop-free p2)
shows —(loop-free (p1+++p2))
proof —
obtain z y where zy-prop: 0 < zz< 10 <yy< lz#y

31

(t=0—yt 1) (a=1—y#0)
p2r=p2y
using assms unfolding loop-free-def
by auto
then have zy-prop2: (z + 1)/2 > 1/2 (x+ 1)/2 <1 (y+ 1)/2>1/2 (y +
/2 <1
(z+ 1)/2 £ (y + 1)/2
by auto
have z-same: 2x((z + 1)/2) — 1 =z
by (metis add.right-neutral add-diff-eq cancel-comm-monoid-add-class. diff-cancel
class-dense-linordered-field.between-same mult-1 mult-2 times-divide-eq-left times-divide-eq-right)
have y-same: 2x((y + 1)/2) — 1 =y
by (metis add.right-neutral add-diff-eq cancel-comm-monoid-add-class.diff-cancel
class-dense-linordered-field.between-same mult-1 mult-2 times-divide-eg-left times-divide-eq-right)
have p2 (2«((z + 1)/2) — 1) = p2 (2+((y + 1)/2) —1)
using zy-prop(8) z-same y-same
by auto
have relate-start-finish: p1 1 = p2 0
using pathfinish-pathstart
unfolding pathfinish-def pathstart-def
by auto
then have zhi: (z + 1)/2 = 1/2 = (pl +++ p2) ((z + 1)/2) = p2«x
unfolding joinpaths-def
by auto
have zh2: (z + 1)/2 > 1/2 = (p! +++ p2) (z + 1)/2) = p2 =z
using zy-prop2 unfolding joinpaths-def
using z-same by force
then have zh: (p! +++ p2) (z + 1)/2) = p2«x
using zhi zh?2 zy-prop2
by linarith
have yhl: (y + 1)/2 =1/2 = (pl +++ p2) ((y + 1)/2) = p2y
using relate-start-finish unfolding joinpaths-def
by auto
have yh2: (y + 1)/2 > 1/2 = (pl +++ p2) ((y+ 1)/2) = p2y
using zy-prop2 unfolding joinpaths-def
using y-same by force
then have yh: (p! +++ p2) (v + 1)/2) = p2y
using yhl yh2 xy-prop2
by linarith
then have same-eval: (pI1+++p2) ((z + 1)/2) = (p1+++p2) ((y + 1)/2)
using zh yh zy-prop(8)
by presburger
have insetl: (z + 1)/2 € {0..1}
using zy-prop?2
by simp
have inset2: (y + 1)/2 € {0..1}
using zy-prop2
by simp
have 3z€{0..1}.

32

Jye{0..1}.

(pl +++ p2) = (pl +++ p2) y A
r#FYN(z=0—y#I)AN(xz=1—9y#0)

using zy-prop2 same-eval insetl inset2

by fastforce

then show ?thesis
unfolding loop-free-def by auto
qed

lemma loop-free-subpath:
assumes path p
assumes u-and-v: v € {0..1} ve {0..1} u <
assumes — (loop-free (subpath u v p))
shows — (loop-free p)
proof —
have path (subpath u v p)
using path-subpath assms by auto
then show ?thesis using simple-path-subpath assms
unfolding simple-path-def
by blast
qed

lemma loop-free-associative:

assumes path p

assumes path ¢

assumes path r

assumes pathfinish p = pathstart q

assumes pathfinish q = pathstart r

shows — (loop-free ((p +++ q) +++ 1)) <— = (loop-free (p +++ (¢ +++ 1)))

by (metis (mono-tags, lifting) assms(1) assms(2) assms(3) assms(4) assms(5)
path-join-imp pathfinish-join pathstart-join simple-path-assoc simple-path-def)

lemma polygon-at-least-3-vertices:
assumes polygon p and
= make-polygonal-path vts
shows card (set vts) > 3
using assms
proof (induct vts rule: make-polygonal-path.induct)
case 1
then show ?case unfolding polygon-def
using constant-linepath-is-not-loop-free make-polygonal-path.simps(1)
by (metis simple-path-def)
next
case (2 a)
then show ?case unfolding polygon-def
using constant-linepath-is-not-loop-free make-polygonal-path.simps(2)
by (metis simple-path-def)
next
case (3 ab)

33

{ assume *: a = b
then have Fulse using 3 unfolding polygon-def
using constant-linepath-is-not-loop-free make-polygonal-path.simps(3)
by (metis simple-path-def)
} moreover {assume *x: a # b
then have Fulse using 3 unfolding polygon-def closed-path-def
pathstart-def pathfinish-def using make-polygonal-path.simps(8)
by (simp add: linepath-0' linepath-1")

ultimately show Zcase
by auto
next
case (4 a b v va)
have finset: finite (set (a # b # v # va))
by blast
have subset: {a, b, v} C set (a # b # v # va)
by auto
have neql: a # b
using constant-linepath-is-not-loop-free not-loop-free-first-component
by (metis 4 .prems(2) make-polygonal-path.simps(4) polygon-def assms(1) sim-
ple-path-def)
have loop-free-2: loop-free (make-polygonal-path (b # v # va))
using 4 not-loop-free-second-component
by (metis make-polygonal-path.simps(4) polygon-def list.distinct(1) nth-Cons-0
pathfinish-linepath polygon-pathstart simple-path-def)
have contra: b = v = —(loop-free (make-polygonal-path (b # v # va)))
using constant-linepath-is-not-loop-free[of b] make-polygonal-path.simps
not-loop-free-first-component
by (metis neq-Nil-conv)
then have neg2: b # v
using loop-free-2 contra
by auto

have - loop-free ((linepath a b) +++ (linepath b a))
using doubling-back-is-not-loop-free[of a b] neql
by auto
have make-path-is: make-polygonal-path (a # b # a # va) = (linepath a b) +++
((linepath b a) +++ (make-polygonal-path (a#va)))
using make-polygonal-path.simps
by (metis (no-types, opaque-lifting) 4 .prems(1) 4.prems(2) closed-path-def poly-
gon-def <= loop-free (linepath a b +++ linepath b a)» linepath-1' min-list.cases
nth-Cons-0 pathfinish-def pathfinish-join polygon-pathstart simple-path-def)
have — loop-free (((linepath a b) +++ (linepath b a)) +++ (make-polygonal-path
(attva))
using make-polygonal-path.simps not-loop-free-first-component
using «— loop-free (linepath a b +++ linepath b a)»
by auto
then have — loop-free (make-polygonal-path (a # b # a # va))
using loop-free-associative

34

by (metis make-polygonal-path-gives-path list.discI make-path-is nth-Cons-0
path-linepath pathfinish-linepath pathstart-linepath polygon-pathstart)
then have neg3: v # a
using 4
using polygon-def simple-path-def by blast
have card-3: card {a, b, v} = 3
using neql neq2 neq3
by auto
then show ?case
using subset finset
by (metis card-mono)
qed

lemma polygon-vertices-length-at-least-4 :
assumes polygon p and
p = make-polygonal-path vts
shows length vts > 4
proof —
have card-set: card (set vts) > 3
using polygon-at-least-3-vertices assms
by blast
have len-gt3: length vts > 3
using card-length local.card-set order-trans by blast
then have non-empty: vts # ||
using card-set
by auto
have eq: p 0 =p 1
using assms unfolding polygon-def closed-path-def pathstart-def pathfinish-def
by auto
have p0: p 0 = vts ! 0
using polygon-pathstart|OF non-empty|] using assms unfolding pathstart-def
by auto
have p1: p 1 = vts ! (length vts — 1)
using polygon-pathfinish| OF non-empty| using assms unfolding pathfinish-def
by auto
have vts | 0 = vts ! (length vts —1)
using assms unfolding polygon-def
using p0 p! eq by auto
then have set vts = set (drop 1 vts)
using len-gt3
by (smt (verit, best) Cons-nth-drop-Suc Suc-eq-plusl Suc-le-eq add.commute
add-0 add-leD2 drop0 dual-order.refl insert-subset last.simps last-conv-nth last-in-set
list.distinct(1) list.set(2) numeral-3-eq-3 order-antisym-conv)
then have length (drop 1 vts) > 3
using card-set
by (metis dual-order.trans length-remdups-card-conv length-remdups-leq)
then show ?thesis
using card-set
by (metis One-nat-def Suc-1 Suc-eq-plusl Suc-pred add-Suc-right length-drop

35

length-greater-0-conv non-empty not-less-eq-eq numeral-3-eq-3 numeral-Bit0)
qed

lemma linepath-loop-free:

assumes g # b

shows loop-free (linepath a b)

unfolding loop-free-def linepath-def

by (smt (23) add.assoc add.commute add-scaleR-degen assms diff-add-cancel
scaleR-left-diff-distrib)

7 Explicit Linepath Characterization of Polygonal
Paths

lemma triangle-linepath-images:
fixes z :: real
assumes vts = [a, b, (]
assumes p = make-polygonal-path vts
shows z € {0..1/2} = p x = ((linepath a b)) (2xz)
re€{1/2..1} = p z = ((linepath b ¢)) (2xx — 1)
proof—
fix = :: real
assume z € {0..1/2}
thus p z = ((linepath a b)) (2xz)
unfolding assms
using make-polygonal-path.simps(4)[of a b ¢ Nil] unfolding joinpaths-def by
presburger
next
fix z :: real
assume *: ¢ € {1/2..1}
{ assume z > 1/2
then have p x = ((linepath b ¢)) (2xx — 1)
unfolding assms
using make-polygonal-path.simps(4)[of a b ¢ Nil] unfolding joinpaths-def by
force
} moreover
{ assume z = 1/2
then have p z = b A ((linepath b ¢)) (2xz — 1) =b
unfolding assms
using make-polygonal-path.simps(4)[of a b ¢ Nil] unfolding joinpaths-def
by (simp add: linepath-def mult.commute)
}
ultimately show p z = ((linepath b ¢)) (2xx — 1) using * by fastforce
qed

lemma polygon-linepath-images1:
fixes n:: nat
assumes n > 3
assumes length ell = n

36

assumes z € {0..1/2}
shows make-polygonal-path ell x = ((linepath (ell ! 0) (ell ! 1))) (2xx)
proof —
have make-polygonal-path ell = linepath (ell! 0) (ell! 1) +++ make-polygonal-path
(drop 1 ell)
using make-polygonal-path.simps
by (smt (verit, del-insts) numeral-3-eq-3 Cons-nth-drop-Suc One-nat-def Suc-1
Suc-eq-plus1 add-Suc-right assms(1) assms(2) drop0 length-greater-0-conv less-add-Suc2
list.size(8) not-numeral-le-zero nth-Cons-0 numeral-Bit0 order-less-le-trans plus-1-eq-Suc)
then show ?thesis
using assms make-polygonal-path.simps
by (simp add: joinpaths-def)
qed

lemma sum-insert [simp):
assumes z ¢ F and finite F
shows (> yeinsert x F. Py) = (D yeF. Py) + Pz
using assms insert-def by(simp add: add.commute)

lemma sum-of-indezx-diff [simp]:
fixes f:: nat = 'a::comm-monoid-add
shows (> ie{a..<a+b}. f(i—a)) = (O ie{..<b}. f(7))
proof (induction b)
case (
then show ?Zcase by simp
next
case (Suc b)
then show ?case by simp
qed

lemma sum-of-index-diff2 [simp:
fixes [:: nat = 'a::comm-monoid-add
shows (> ie{a+c..b+c}. f(i)) = (O] ie{a..b}. f(i+c))

using Set-Interval.comm-monoid-add-class.sum.shift-bounds-cl-nat-ivl by blast

lemma sum-split [simp]:

fixes f :: nat = 'a::comm-monoid-add

assumes ¢ € {a..b}

shows (3" i € {a..b}. fi) = (3 i € {a.c}. fi)+ (Doi€ {ct1..b}. fi)

by (metis Suc-eq-plus1 Suc-le-mono assms atLeastAtMost-iff atLeastLess ThanSuc-atLeastAtMost
le-Sucl sum.atLeastLess Than-concat)

lemma summation-helper:
fixes z :: real
fixes k :: nat
assumes 1 < k
shows (2:real) x (3 i=1..k. 1 /270 —1=0_i=1..(k=1). (1 /(27%)))

37

proof—
have frac-cancel: Viznat > 1. 2 / (27%) = 2 / (2 % (2::real) (i—1))
using power.simps(2)[of 2::real] by (metis Suc-diff-le diff-Suc-1)
have (2:real) x (> i=1..k. 1/ 270) = i=1..k. (2] 27)
by (simp add: sum-distrib left)
also have ... = (D_i=1..k. (2 / (2 x 27(i—1)))) using frac-cancel by simp
also have ... = (i =1..k. (1 / (27(i—1)))) by force
also have ... = (> i = 1..<(k+1) (1 /(270i—-1))))
using Suc-eq-plusl atLeastLess ThanSuc-atLeastAtMost by presburger
also have ... = (D" i € {.<k}. (1 / (27%)))
using sum-of-index-diff [of \i. (1 / 27%) 1 k] by simp
finally have (2::real) « (3 i=1..k. 1 /2 i) =00 i=0..(k—1). (1 /] (27%)))
by (metis assms atLeastOAtMost diff-Suc-1 lessThan-Suc-atMost nat-le-iff-add
plus-1-eq-Suc)
then have (2:real) « O i=1.k. 1 /2749 —1=i=0..(k—1). (1 /
(274))) — 1
by auto
also have ... = (3 i = 1..(k—1). (1 / (27%))) + (1/270) —
using sum-insert[of 0 {1..k—1} power (1/2)]
by (simp add: Icc-eg-insert-lb-nat add.commute)
also have ... = (>_i = 1..(k—1). (1 / (27%))) by force
finally show (2:real) x (3 i=1..k. 1 /2740 —1=0i=1..(k—1).(1/
(271))) -
qed

lemma polygon-linepath-images2:
fixes n k:: nat
fixes ell:: (real™2) list
fixes f :: nat = real = real
assumes n > 3
assumes 0 < kANk<n-— 38
assumes length ell = n
assumes p: p = make-polygonal-path ell
assumes f = (M z. (x — (i € {1..k}. 1/(27%))) = (27(k+1)))
assumes z € {(d_i € {1..k}. 1/(27%)..0 i e {1..(k+ 1)}. 1/(27%))}
shows p © = ((linepath (ell 1 k) (ell ! (k+1)) (fk z)))
using assms
proof (induct n arbitrary: ell k x p)
case ()
then show ?case by auto
next
case (Suc n)
{ assume x: k = 0
have z: z € {0..1/2} using % Suc.prems(6) by simp
moreover have f k z = 2xz using * Suc.prems(5) by simp
ultimately have ?case
using polygon-linepath-images! [of Suc n ell z, OF Suc.prems(1) Suc.prems(3)
x] *
by (simp add: Suc.prems(4))

38

} moreover
{ assume *: k > 1
then have suc-n: Suc n > 3 using Suc.prems(2) by linarith
then have ell-is: ell = (elll0) # (ell'1) # (ell!2) # (drop 3 ell)
using Suc.prems(3)
by (metis Cons-nth-drop-Suc One-nat-def Suc-1 Suc-le-lessD drop0 nat-less-le
numeral-3-eq-3)
then have ell’-is: drop 1 ell = (elll1) # (ell!'2) # (drop 3 ell)
by (metis One-nat-def diff-Suc-1 drop0 drop-Cons-numeral numerals(1))
let ?ell’ = drop 1 ell
have len-ell”: length ?ell’ > 2 using suc-n Suc.prems(3) by simp
let ?p’ = make-polygonal-path ?ell’
have p-tl: p = (linepath (ell ! 0) (ell ! 1)) +++ make-polygonal-path (drop 1
ell)
using Suc.prems(4) Suc.prems(3) * make-polygonal-path.simps ell-is ell’-is
by metis

have (> i= 1.k 1 /(2 "iureal)) > D i=1..1.1 /(2 " i:real))
using Suc.prems(2) *
proof (induct k)
case (
then show ?case by auto
next
case (Suc k)
{ assume *: 1 = Suc k
then have ?case by auto
} moreover {assume x: 1 < Suc k
then have I <k Ak < Sucn — 8
using Suc.prems by auto
then have ind-h: (3 i=1..1.1 /(2 "izreal)) < O i=1..k. 1 /2 7%
using Suc.hyps Suc.prems(2) by blast
have (> i = 1..Suck. 1 /(2 "iureal)) = 1/(27(Suck)) + O i = 1.k 1
/ (2 " iureal))
using *x by simp
then have (3¢ = 1..Suc k. 1 /(2 "iureal)) > O i=1.k. 1 /(2"
i:real))
by simp
then have ?case using ind-h by linarith
}
ultimately show ?case by linarith
qed
then have (> i = 1..k. 1 /(2 " iureal)) > 1/2
by auto
then have z-gteq: x > 1/2 using Suc.prems(2,6)
by (meson atLeastAtMost-iff order-trans)
have zonehalf: p x = ?p’ (2xx — 1) if z-is: © = 1/2 using p-tl joinpaths-def
proof —
have p z = (linepath (ell ! 0) (ell ! 1)) 1
using p-tl joinpaths-def x-is

39

by (metis mult.commute nle-le nonzero-divide-eq-eq zero-neq-numeral)
then have pz = ell ! 1
using polygon-pathfinishlof [(ell ! 0), (ell ! 1)]] unfolding pathfinish-def
using make-polygonal-path.simps by simp
then have p x = make-polygonal-path (drop 1 ell) 0
using polygon-pathstart[of drop 1 ell] = len-ell’ unfolding pathstart-def
by simp
then show ?thesis using z-is by force
qed
have a-gtonehalf: x > 1/2 = p x = ?p’ (2xx — 1) using p-tl joinpaths-def
by (smt (verit, ccfo-threshold))
then have pz: p z = ?p’ (2xx — 1) using zonehalf z-gtonehalf x-gteq
by linarith
{ assume k-eq: k = 1
then have fkz=(z — O i=1..1.1/2749)) 2" 2
using Suc.prems(5) by auto
then have fkz: fhkx = j*xz — 2
by auto
have z € {1/2..3//}
using k-eq Suc.prems(6) by auto
then have 2xz — 1 € {0..1/2} by simp
then have ?p’ (2«xx — 1) = (linepath (2ell0) (?ell'1)) (4xz — 2)
using Suc.hyps[of k Zell’ ?p’ 2xx — 1] Suc.prems
by (smt (verit, ccfo-SIG) suc-n diff-Suc-1 leD le-Suc-eq length-drop poly-
gon-linepath-images1)
also have ... = (linepath (elll1) (ell!2)) (4xz — 2)
using * Suc.prems(3)
using ell’-is by fastforce
also have ... = ((linepath (ell 1 k) (ell ! (k+1)) (f k z))) using k-eq
Suc.prems(5) fkx
by (smt (verit, del-insts) nat-1-add-1)
finally have ?case using px by simp
} moreover
{ assume k-gt: k > 1
then have fkminus: f (k—1) (2xz—1)=(2x2—-1)— (D i=1..(k—1).
1/2740)*2 "k
using Suc.prems(5) by force
have fk: fko=(z — O i=1.k. 1 /2 70)«2 " (k+1)
using Suc.prems(5) by blast
have f-is: f (k—1) (2x2 —1)=fkz
proof—
have i: Viznat € {2..k}. i — 2+ 2 =1
by auto
have f (k— 1) (2x2z—1)=2*x2x—1 - i=1..k—1.1/271)
x 2 (k—1+1)
unfolding Suc.prems(5) by auto
alsohave ...=(z —1/2 - O i=1..k—1.1/27)/2)«2 (k+ 1)
using k-gt by fastforce
alsohave..=(z—-1/2 -0 i=1.k—1.(1/27%)/2)x2 (k+ 1)

40

by (simp add: sum-divide-distrib)
alsohave .. =(z —1/2 - O i=1..k—1.(1/2)7T*1/2) %2 (k
+ 1)
by (simp add: power-divide)

alsohave ... = (zt —1/2 - O i=1..k—1.(1/ 2)(i+1)) * 2 " (k+
1) by force
alsohave ... =(z —1/2 - O i=1.<1+(k—1).(1/2)(i+1))) = 2
“(k+ 1)
using Suc-eq-plusi-left atLeastLess ThanSuc-atLeastAtMost by presburger
alsohave ... = (z — 1/2 - Y i=1.<14+(k—1).(1/2)(i—1+
2))x2 " (k+ 1)
by auto
also have ... = (z — 1/2 — O i e {{.<k — 1}. (1 / 2)(i+2)))) = 2 ~
(k+ 1)

using sum-of-index-diff [of (Ax. (1/2) (xz+2)) 1 k—1] by metis
alsohave ... = (z — 1/2 — Y ie{2.<k—1+2}.((1/2)G -2+
) 2~ (k + 1)
using sum-of-indez-diff[of (A\z. (1/2) (z+2)) 2 k—1] by (smt (verit)
add.commute)
alsohave ... = (z — 1/2 — > ie{2.k}. (1 /2) i — 2+ 2)) 2"
(k+1)
using k-gt atLeastLessThanSuc-atLeastAtMost by force
also have ... = (z — 1/2 — (O i€ {2..k}. (1 / 2)7(0)) =2 " (k+ 1)
using i by force
alsohave ... = (z — (1/2 4+ O ie{2.k}. (1 / 2)7 () =2 " (k+ 1)
by argo
alsohave ... =(z — O i=1..k. (1 /2)7 ()2 " (k+ 1)
using sum-insertlof 1 {2..k} Xz. (1/2)]
by (smt (verit, ccfv-SIG) Suc-1 Suc-n-not-le-n atLeastAtMost-iff atLeast-
AtMost-insertL finite-atLeastAtMost k-gt less-imp-le-nat power-one-right)

also have ... = (z — O i=1..k. 1 /(27%)) * 2 " (k + 1) by (meson
power-one-over)
also have ... = f k z using fk by argo
finally show ?thesis .
qed

have ih1: 3 < n using suc-n by force

have ih2: 0 <k — 1 ANk — 1 <n — 3 using k-gt Suc.prems(2) Suc.prems(3)
by auto

have ih3: length ?ell’ = n using Suc.prems(3) by auto

have ih4: ?p’ = make-polygonal-path ?ell’ by blast

have 2xz — 1 > (D i e {1.k—1}. 1/(27%))
proof—
have (2:real) « O i=1..k. 1 /2 "i) — 1= i=1..(k—1). (1 /
(279)
using summation-helper k-gt by auto
moreover have z > (3¢ = 1..k. 1 / 2 i) using Suc.prems(6) by
presburger

41

ultimately show 2xz — 1 > (3" i € {1..k—1}. 1/(27%)) by linarith
qed
moreover have 2xz — 1 < (> i € {1..k}. 1/(27%))
proof—
have (2:real) * (3 i e {1..(k + 1)}. 1/(27%) — 1 = (> i € {1.k}.
1/(271))
using summation-helper|of k + 1] k-gt by auto
moreover have © < (> i € {1..(k + 1)}. 1/(27%)) using Suc.prems(6)
by presburger
ultimately show ?thesis by linarith
qed
ultimately have 2+xz — 1 € {(D" i € {1..k—1}. 1/(27%))..(0_1 € {1..k}.
1/(27%))} by presburger
then have ih5: 2xz — 1 € {(>ie {1.k—1}. 1/(27%))..0 i e {1..k—1+1}.
1/(270)}

using k-gt by auto

have p = make-polygonal-path (elll0 # elll1 # elll2 # (drop 3 ell))
using ell-is Suc.prems(4) by argo
then have p = (linepath (elll0) (ellll)) ++-+ make-polygonal-path (elll1 #
elll2 # (drop 3 ell))
using make-polygonal-path.simps by auto
then have p z = ?p’ (2+xz — 1) unfolding joinpaths-def using z-gteq px by
fastforce
also have ... = (linepath (?ell’\(k—1)) (2ell"k)) (f (k—1) (2xz — 1))
using Suc.hyps[OF ih1 ih2 ih3 ihj Suc.prems(5), of 2xx — 1, OF ih5] using
k-gt by auto
also have ... = (linepath (ell'k) (elll(k+1))) (f (k—1) (2%z — 1))
using Suc.prems(2) Suc.prems(3)
by (smt (verit, del-insts) add-implies-diff ell’-is ell-is k-gt nth-Cons-pos
order-le-less-trans trans-less-addl zero-less-one-class.zero-le-one)
also have ... = (linepath (elllk) (elll(k+1))) (f k z)
using f-is by auto
finally have ?case .

}

ultimately have ?case using Suc.prems(2) * by linarith
}
ultimately show Zcase
using Suc.prems by linarith
qed

lemma polygon-linepath-images3:
fixes n k:: nat
fixes ell:: (real™2) list
assumes n > 3
assumes length ell = n
assumes p = make-polygonal-path ell
assumes z € {3 i€ {1.n—2}. 1/(27%))..1}
assumes f = (Az. (z — O i € {1.n=2}. 1/(27%))) = (27 (n—2)))

42

shows p © = (linepath (ell ! (n—2)) (ell ! (n—1))) (f z)
using assms
proof (induct n arbitrary: ell k z p f)
case ()
then show ?case by auto
next
case (Suc n)
{ assume *: Suc n = 3
then have ell-is: ell = [ell 1 0, ell ! 1, ell ! 2]
using Suc.prems(2)
by (metis Cons-nth-drop-Suc One-nat-def Suc-1 cancel-comm-monoid-add-class. diff-cancel
drop0 length-0-conv length-drop lessl less-add-Suc2 numeral-3-eq-3 plus-1-eq-Suc
zero-less-Suc)
have (> i = 1..(Sucn)—2.1 /(2 " 9)ureal)) = (O ie{1}. 1 / ((2 ~i):real))
by (simp add: *)
then have eql: (> i = 1..(Sucn)—2. 1/ ((2 " 4)ureal)) = 1/2
by auto
then have f-is: f = (Az. (zx — (1/2)) * 2) using * Suc.prems(5) by auto
have z € {(1/2)::real..1} using eql Suc.prems(4) by metis
moreover then have p © = linepath (ell ! 1) (ell! 2) (2 x 2 — 1)
using triangle-linepath-images(2) using ell-is Suc.prems(3) by blast
moreover have fzx = 2xz — 1 using f-is by simp
ultimately have p z = (linepath (ell ! ((Suc n)—2)) (ell ! ((Suc n)—1))) (fz)
using * Suc.prems ell-is
by (metis One-nat-def Suc-1 diff-Suc-1 diff-Suc-Suc numeral-3-eq-3)
} moreover
{ assume *: Suc n > 3
let ?ell’ = drop 1 ell
let ?p’ = make-polygonal-path ?ell’
let 72/ = 2%z — 1
let 7' = (Az. (x — O i e {1.n=2}. 1/(27%))) x (27 (n—2)))
have ell-is: ell = elll0 # ell'1 # ell!2 # (drop 3 ell)
by (metis x Cons-nth-drop-Suc One-nat-def Suc.prems(2) Suc-1 drop0 le-Suc-eq
linorder-not-less numeral-3-eq-3 zero-less-Suc)
then have p-il: p = (linepath (ell ! 0) (ell ! 1)) +++ make-polygonal-path
(drop 1 ell)
using make-polygonal-path.simps(4)[of elll0 elll1 ell!2 drop 3 ell]
by (metis One-nat-def Suc.prems(3) drop-0 drop-Suc-Cons)
have sum-split: (3> i=1..Sucn — 2.1 /(2 "iureal)) = 1/(271:real) + (O 4
=2..8ucn — 2.1/ (2 i:real))
using *
by (metis Suc-1 Suc-eq-plusl Suc-lessD add-le-imp-le-diff diff-Suc-Suc eval-nat-numeral(3)
less-Suc-eq-le sum.atLeast-Suc-atMost)
let 2k = Suc n
have helper-arith: Ai. i > 0 = 1 / (2 " i:real) > 0 by simp
have k > 2 = (3 i = 2..k. 1 / (2 " iureal)) > 0 for k
proof (induct k)
case (
then show ?case by auto

43

next
case (Suc k)
{assume *: Suc k = 2
then have (> i = 2.Suck. 1 /(2 "durea)) = i =2.2.1/ (2"
i:real))
by presburger
then have ?case
using helper-arith
by (simp add: *)
} moreover {assume *: Suc k > 2
then have ind-h: 0 < (D i = 2..k. 1 /] (2 " i:real))
using Suc.hyps less-Suc-eqg-le by blast
have (> i = 2..Suc k. 1 /(2 " iureal)) = Qi = 2..k. 1/ (2 " i:real))
+ 1 /(2" (Suc k)::real)
using Suc.prems add.commute by auto
then have ?case using ind-h helper-arith
by (smt (verit) divide-less-0-1-iff zero-le-power)
}

ultimately show Zcase
using Suc.prems by linarith

qed
then have (> i = 2..Sucn — 2.1/ (2 i:real)) > 0

using * by auto
then have (3> i = 1..Sucn — 2.1 /(2 "iureal)) > 1/2

using sum-split by auto
then have z > 1/2 using Suc.prems(4)

by (smt (verit, del-insts) atLeastAtMost-iff linorder-not-le order-le-less-trans)
then have p'z’-eq-pr: ?p’ %2’ = p z unfolding joinpaths-def by (simp add:

joinpaths-def p-tl)

have 71: n > 3 using * by auto
have 2: length ?ell’ = n using Suc.prems(2) by simp
have 3: ?p’ = make-polygonal-path ?ell’ by auto
have z < 1 using Suc.prems(4) by auto
then have z'-lteq: 2%z — 1 < 1 by auto
have z > (Y i=1..S5ucn — 2.1/ 2 " 4)
using Suc.prems(4) by auto
then have z'-gteq: %2’ > O i=1.n— 2.1/ 2 ")
using summation-helper[of Suc n — 2] *
by (smt (verit) Suc.prems(1) Suc-1 Suc-diff-le Suc-leD Suc-le-mono diff-Suc-1
diff-Suc-eq-diff-pred eval-nat-numeral(3))
have /: 22’ e {di=1..n— 2.1/ 2 " i)..1} using Suc.prems(4)
using summation-helper[of Suc n — 2] x z’-lteq x'-gteq atLeastAtMost-iff by
blast
have 5: 9%/'=Az. (z — O i=1.n— 2.1/ 274) %2 (n— 2)) by auto
have fz =(z — O i=1..Suen — 2.1/ 274) %2 (n— 2)x2
proof —
have (Ar. (r — O n=1.n—1.1/2"n)x2 (n—1))=Ff
by (simp add: Suc.prems(5))

44

thenhave 2 "(n— 1) x(z — O.n=1.n—1.1/2 "n))=fx
using Groups.mult-ac(2) by blast
then have (z — O n=1.n—1.1/2"n)*x(2 " (n—Sucl)x*2)=fx
by (metis (no-types) Groups.mult-ac(2) Suc.prems(2) diff-Suc-1 diff-Suc-Suc
ell-is length-Cons power.simps(2))
then show ?thesis
by (metis (no-types) Groups.mult-ac(1) Suc-1 diff-Suc-Suc)
qed
then have fr-is: fz = (2% — 2> i=1..Sucn — 2.1/ 270))x 2 " (n —
2)
by argo
have sum-is: 1 + O i=1..n— 2.1 /(2 "dzreal)) = 2x(> i = 1..Sucn —
2.1/ (2 iureal))
proof —
have sum-ishl: (3 i = 1..Sucn — 2. 1 /(2 "izreal)) = 1/2 + > i =
2.Sucn — 2.1/ (2 i:real))
by (metis power-one-right sum-split)
haven > 2 = 2«x(>.i=2.n— 1.1/ (2 "izreal)) = (D i=1..n — 2.
1 /(2 " itreal))
proof (induct n)
case (
then show ?Zcase by auto
next
case (Suc n)
{assume *: Suc n = 2
then have ?case by auto
} moreover {assume *: Suc n > 2
then have ind-h: 2 x (3 i=2.n— 1.1/ (2 "izreal) = (O i=1.n
— 2.1 /(2 iureal))
using Suc by fastforce
have mult: 2x1/(27(Suc n — 1):real) = 1/(27(n — 1)::real)
using *
by (smt (23) One-nat-def add-diff-inverse-nat bot-nat-0.not-eq-extremum
diff-Suc-1 div-by-1 le-zero-eq less-Suc-eg-le mult. commute nonzero-mult-div-cancel-left
nonzero-mult-divide-mult-cancel-left plus-1-eq-Suc power-Suc zero-less-numeral)
have sum-prop: Na:nat. \f:nat=real.(3 i = 1..a. (fi)) + (f (a+1)) =
Soi=1.a+1.(f1))
by auto
haven — 2+ 1 =n -1
using * by auto
then have sum-same: (> i=1..n — 2.1 /(2 "izreal)) + 1 / 2 " (n
—1)=00i=1.n—1.1 /(2 "i:real))
using * sum-prop[of Xi. 1 / (2 " iureal) n—2] by metis
have 2% (3i=2..Sucn — 1.1 /(2 "ireal) = 2% (> i=2..n —
1.1 /(2 "dzreal)) + 1/(2(Suc n — 1)::real))
using *
by (smt (23) add-2-eq-Suc add-diff-inverse-nat diff-Suc-1 distrib-left-numeral
ind-h not-less-eq sum.cl-ivl-Suc)
then have 2 x (3 i=2..Sucn — 1.1 /(2 izreal)) =D i=1..n—

45

2.1 /(2 izreal)) + 2%1/(27(Suc n — 1)::real)
using ind-h by argo
then have 2 % (> i= 2..Sucn — 1.1 /(2 "iureal)) = i=1..n—
2.1 /(2 iureal)) + 1/(27(n — 1)::real)
using * mult by auto
then have ?case using sum-same by auto
}
ultimately show ?case by fastforce
qed
then have sum-ish2:2x(} i = 2.Sucn — 2. 1 / (2 "iureal)) = (> i =
I.n— 2.1 /(2 i:real))
using * by auto
show ?thesis using sum-ishl sum-ish2 by simp
qed
have ?p’ 22’ = (linepath (?ell’! (n—2)) (2ell’! (n—1))) (?f' ?z')
using Suc.hyps[OF 1 2 3 4 5] by blast
moreover have 7f' %z’ = fz
using Suc.prems(5) fr-is sum-is
by (smt (verit, best))
moreover have ?ell’ ! (n—2) = ell | ((Suc n)—2)
by (metis Nat.diff-add-assoc One-nat-def Suc.prems(1) Suc.prems(2) Suc-1
add-diff-cancel-left le-addl nth-drop numeral-3-eq-3 plus-1-eq-Suc)
moreover have Zell’! (n—1) = ell ! ((Suc n)—1)
using Suc.prems(1) Suc.prems(2) by auto
ultimately have ?case using p’z’-eq-pz by presburger
}
ultimately show ?case using Suc.prems(1) by linarith
qed

8 A Triangle is a Polygon

lemma not-collinear-linepaths-intersect-helper:
assumes not-collinear: —collinear {a,b,c}
assumes 0 < kI
assumes k1 < [
assumes 0 < k2
assumes k2 < I
assumes eo: k2 = 0 = k1 # 1
shows — ((linepath a b) k1 = (linepath b c) k2)
proof —
have a-neg-b:a # b
using not-collinear
by auto
then have nonz-1: a — b # 0
by auto
have b-neq-c: b # ¢
using not-collinear
by auto
then have nonz-2: b — ¢ # 0

46

by auto
have — collinear {a—b, 0, c—b}
using not-collinear
by (metis NO-MATCH-def collinear-3 insert-commute)
then have notcollinear: — collinear { 0, a—b, c—b}
by (simp add: insert-commute)
have (1 — k1) *xgp a+ kI xp b= (1 —k2) xp b+ k2 *p ¢ = (a — klxp a)
+ kI xgp b= (b— k2 xg b) + k2 xp c
by (metis add-diff-cancel scaleR-collapse)
then have (I — kI)xga+ kil xp b= (1 — k2) *gp b+ k2 xg ¢ = (1 — kI)
xp a0+ kIl xp b — b= —Fk2 xg b+ k2 xg c
by (metis (no-types, lifting) add-diff-cancel-left scaleR-collapse scaleR-minus-left
uminus-add-conv-diff)
then have (I — kI)xga+ kIl xpb=(1 —k2)*xg b+ k2 *p c = (1 — ki)
g a + kI xg b — b =k2 xg (c—b)
by (simp add: scaleR-right-diff-distrib)
then have rewrite: (1 — k1) xg a + kI xp b= (1 — k2) xg b + k2 xp ¢ =
(1—k1)*r(a — b) = k2 xg (c—0)
by (metis add-diff-cancel-right scaleR-collapse scaleR-right-diff-distrib)
{assume *: k2 # 0
then have (I — kl)xga+ kIl xgb=(1 —k2)*g b+ k2*xgc—=— c— b=
((1—k1)/k2)*R(a — b)
using rewrite assms(2—3)
by (smt (verit, ccfo-SIG) vector-fraction-eq-iff)
then have (1 — k1) g a + kI xg b= (1 — k2) xg b + k2 xg ¢ = collinear
{0, a—b, c—b}
using collinear-lemmalof a —b ¢—b] by auto
then have (1 — k1) *xgp a + kI *p b= (1 — k2) g b+ k2 xgp ¢ = False
using notcollinear by auto
} moreover {assume x: k2 = 0
then have k1 #1
using assms by auto
then have (I — k) *gpa+ kIl xg b= (1 —k2)*r b+ k2 *xpc= a— b=
(h2/(1—k1)) 5 (c—b)
using rewrite
by (smt (verit, ccfv-SIG) vector-fraction-eq-iff)
then have (I — k1) g a + kI g b= (1 — k2) *p b + k2 *p ¢ = collinear
{0, a—b, ¢c—b}
using collinear-lemmalof c—b a—1b]
by (simp add: insert-commute)
then have (I — kI) g a + kI g b= (1 — k2) xg b + k2 xg ¢ = False
using notcollinear by auto
}
ultimately show ?thesis
unfolding linepath-def
by blast
qed

47

lemma not-collinear-linepaths-intersect-helper-2:
assumes not-collinear: —collinear {a,b,c}
assumes 0 < kI
assumes kI < I
assumes 0 < k2
assumes k2 < I
assumes eo: kI = 0 = k2 # 1
shows — ((linepath a b) k1 = (linepath c a) k2)
using not-collinear-linepaths-intersect-helper|[of ¢ a b k2 k1] assms
by (simp add: insert-commute)

lemma not-collinear-loopfree-path: Na b c::real”2. —collinear {a,b,c} = loop-free
((linepath a b) +++ (linepath b c))
proof —
fix a b c::real™2
assume not-collinear: —collinear {a,b,c}
then have a-neg-b:a # b
by auto
have b-neg-c: b # ¢
using not-collinear
by auto
have Az y::real. (linepath a b +++ linepath b ¢) x = (linepath a b +++ linepath
be)y =
T <y =
r=0—y#1=0<zr=2<1=0<y=— y< 1= Fualse
proof —
fix z y:: real
assume same-eval: (linepath a b +++ linepath b ¢) © = (linepath a b +++
linepath b ¢) y
assume z-neq-y: © < y
assume z-zero-imp: x = 0 — y # 1
assume z-gt: 0 < x
assume z-lt: z < 1
assume y-gt: 0 < y
assume y-lt: y < 1
{assume x: z < [/2 Ny < 1/2
then have (I — 2xx2)*xga+ (2xz)*xgpb=(1 — 2xy)*xga+ (2 *y)
xp b = Fulse
using z-gt y-gt z-neg-y a-neq-b linepath-loop-free|of a b
by (smt (23) add-diff-cancel-left add-diff-cancel-right’ add-diff-eq scale R-cancel-left
scaleR-left-diff-distrib)
then have Fulse
using * same-eval unfolding joinpaths-def linepath-def
by auto
} moreover {assume x: z > 1/2 ANy > 1/2
have Fulse
using z-lt y-lt x-neg-y b-neg-c linepath-loop-free[of b c]
using * same-eval unfolding joinpaths-def linepath-def
by (smt (28) add-diff-cancel-left add-diff-cancel-right’ add-diff-eq scaleR-cancel-left

48

scaleR-collapse scaleR-left-diff-distrib)
} moreover {assume x: z < 1/2 Ay > 1/2

then have Ip-eq: (linepath a b) (2 * x) = (linepath b c) (2 x y — 1)
using * same-eval unfolding joinpaths-def
by auto
have (2 xy —1)=0 — (2xz) #1 N0 < (2xx) A (2xz) < 1T AN O < (2
xy— IAN@2*xy—1)<1
using z-lt z-gt z-neq-y * by auto
then have Fulse
using lp-eq not-collinear-linepaths-intersect-helper[of a b ¢ 2xx 2 x y — 1]
not-collinear
using * z-gt y-Iit by auto
}
ultimately show Fulse
using z-lt y-lt z-neq-y
by linarith
qed
then have Az y::real. (linepath a b +++ linepath b ¢) x = (linepath a b +++
linepath b ¢) y =
T #E Yy =
z=0—y#1=z=1—y#0=0<zrx=z<1=0<y
= y < 1 = Fulse
by (metis linorder-less-linear)
then show loop-free (linepath a b +++ linepath b c)
unfolding loop-free-def
by (metis atLeastAtMost-iff)
qed

lemma triangle-is-polygon: Na b c. —collinear {a,b,c} = polygon (make-triangle
abc)
proof —
fix a b c::real™2
assume not-coll:—collinear {a,b,c}
then have a-neg-b:a # b
by auto
have b-neq-c: b # ¢
using not-coll
by auto
have a-neg-c: ¢ # a
using not-coll
using collinear-3-eq-affine-dependent by blast
let %vts = [a, b, ¢, a)
have polygonal-path: polygonal-path (make-polygonal-path [a, b, ¢, al)
by (metis Collect-const UNIV-I image-eql polygonal-path-def)
then have path: path (make-polygonal-path [a, b, ¢, al)
by auto
then have closed-path: closed-path (make-polygonal-path [a, b, ¢, al)
unfolding closed-path-def using polygon-pathstart polygon-pathfinish

49

by auto
let %seql = (linepath a b) +++ (linepath b ¢)
have f1: loop-free ((linepath a b) +++ (linepath b c))
using not-collinear-loopfree-path not-coll
by auto
then have Vze{0..1}. Vye{0..1}. 7seqgl x = ?segl y — v =y
using a-neq-c unfolding loop-free-def
by (metis (no-types, lifting) path-defs(2) pathfinish-def pathfinish-join pathfin-
ish-linepath pathstart-join pathstart-linepath)
let ?seg2 = (linepath b ¢) +++ (linepath c a)
have If2: loop-free ((linepath b ¢) +++ (linepath ¢ a))
using not-collinear-loopfree-path not-coll
by (simp add: insert-commute)
then have Vze{0..1}. Vye{0..1}. %seg2 x = seg2 y — z =y
using a-neq-b unfolding loop-free-def
by (metis (no-types, lifting) path-defs(2) pathfinish-def pathfinish-join pathfin-
ish-linepath pathstart-join pathstart-linepath)
let ?seg3 = (linepath ¢ a) +++ (linepath a b)
have If3: loop-free ((linepath ¢ a) +++ (linepath a b))
using not-collinear-loopfree-path not-coll
by (simp add: insert-commute)
then have Vze{0..1}. Vye{0..1}. %seq3 z = 9seg3y — z =y
using b-neq-c unfolding loop-free-def
by (metis (no-types, lifting) path-defs(2) pathfinish-def pathfinish-join pathfin-
ish-linepath pathstart-join pathstart-linepath)
have mpp-is: VY x€{0..1}. make-polygonal-path [a, b, ¢, a] x = ((linepath a b)
++4+ (linepath b ¢) +++ (linepath ¢ a)) x
by auto
have z-in-int1: V2€{0..(1/2)}. make-polygonal-path [a, b, ¢, a] x = ((linepath
a b)) (2xz)
using mpp-is
unfolding joinpaths-def by auto
have z-in-int2: Vze{1/2<..(3/4)}. make-polygonal-path [a, b, ¢, a] x = ((linepath
be)) (2x(2xx — 1))
using mpp-is unfolding joinpaths-def
by auto
have z-in-int3: Vxe{3/4<..1}. make-polygonal-path [a, b, ¢, a] x = ((linepath
ca) (2% (2*xzxz—1)—1)
using mpp-is unfolding joinpaths-def
by auto
have Nz y. 0 <z A2 < IANO<yAy<IAzZyA(z=0—y#£1)A
(r =1 — y # 0) = make-polygonal-path [a, b, ¢, a] x = make-polygonal-path
[a, b, ¢, a] y = False
proof —
fix x y:: real
assume big: 0 <z ANz < IANO<yANy<IAz#yAN(z=0-—y#1)
ANz=1-—y+#0)
assume false-hyp: make-polygonal-path [a, b, ¢, a] x = make-polygonal-path |a,
b, ¢, a] y

50

{assume x: z € {0..(1/2)}
then have z-eval: make-polygonal-path [a, b, ¢, a] z = ((linepath a b)) (2xx)
using z-in-int! by auto
{assume *x: y € {0..(1/2)}
then have y-eval: make-polygonal-path [a, b, ¢, a] y = ((linepath a b))
(2xy)
using z-in-int! by auto
then have ((linepath a b)) (2xz) = ((linepath a b)) (2xy)
using false-hyp z-eval y-eval by auto
then have Fulse
using linepath-loop-free big * *x
unfolding loop-free-def
using a-neq-b add-diff-cancel-left add-diff-cancel-right’ add-diff-eq
linepath-def scaleR-cancel-left scaleR-collapse scaleR-left-diff-distrib
by (smt (verit))
} moreover {assume xx: y € {(1/2)<..(3/4)}
then have y-cval: make-polygonal-path [a, b, ¢, a] y = ((linepath b c))
(2%(2xy — 1))
using z-in-int2 by auto
then have ((linepath a b)) (2xz) = ((linepath b ¢)) (2x(2xy — 1))
using false-hyp z-eval y-eval by auto
then have Fulse
using big * *x not-collinear-linepaths-intersect-helper[of a b ¢ 2xx
(2%(2xy — 1))] not-coll
by auto
} moreover {assume xx: y € {(3/4)<..1}
then have y-eval: make-polygonal-path [a, b, ¢, a] y = ((linepath ¢ a))
(25 (2xy—1)- 1))
using z-in-int3 by auto
then have ((linepath a b)) (2xz) = ((linepath ¢ a)) ((2 * (2 xy — 1)
- 1)
using false-hyp z-eval y-eval by auto
then have Fulse
using big * xx not-collinear-linepaths-intersect-helper-2[of a b ¢ (2+*x)
(2% (2%xy—1)— 1)) not-coll
by auto
}

ultimately have Fulse
using big
by (metis atLeastAtMost-iff greater ThanAtMost-iff linorder-not-le)
} moreover {assume x: z € {(1/2)<..(3/4)}
then have z-eval: make-polygonal-path [a, b, ¢, a] © = ((linepath b c))
(2x%(2xx — 1))
using z-in-int2 by auto
{assume xx: y € {0..(1/2)}
then have y-eval: make-polygonal-path [a, b, ¢, a] y = ((linepath a b))
(2+y)
using z-in-int! by auto
then have lp-eq: ((linepath a b)) (2xy) = ((linepath b c)) (2%(2xx — 1))

o1

using false-hyp z-eval y-eval by auto
have 2 x (2 xz — 1) # 0
using * by auto
then have Fulse
using Ip-eq big * xx not-collinear-linepaths-intersect-helper[of a b ¢ 2xy
(2x(2xx — 1))] not-coll
by auto
} moreover {assume xx: y € {(1/2)<..(3/4)}
then have y-eval: make-polygonal-path [a, b, ¢, a] y = ((linepath b ¢))
(2%(2xy — 1))
using z-in-int2 by auto
then have Ip-eq: ((linepath b ¢)) (2x(2xy — 1)) = ((linepath b c))
(2%(2xx — 1))
using false-hyp z-eval y-eval by auto
then have Fulse
using linepath-loop-free[OF b-neg-c] big * *x
unfolding loop-free-def
using add-diff-cancel-left add-diff-cancel-right’ add-diff-eq linepath-def
scaleR-cancel-left scaleR-collapse scaleR-left-diff-distrib
by (smt (verit) b-neg-c)
} moreover {assume xx: y € {(3/4)<..1}
then have y-eval: make-polygonal-path [a, b, ¢, a] y = ((linepath ¢ a))
(2% (2xy—1)— 1))
using z-in-int3 by auto
then have lp-eq: ((linepath b ¢)) (2+(2xx — 1)) = ((linepath ¢ a)) ((2
x(2xy—1)—1))
using false-hyp z-eval y-eval
by auto
have not-coll2: = collinear {b, ¢, a}
using not-coll
by (simp add: insert-commute)
have 2 x (2*xx — 1) # 0
using * by auto
then have Fulse using Ip-eq
using big * *x not-collinear-linepaths-intersect-helper[of b ¢ a 2x(2xx
—1)(2*(2xy—1)— 1)] not-coll2
by auto

ultimately have Fulse
using big
by (metis atLeastAtMost-iff greaterThanAtMost-iff linorder-not-le)
} moreover {assume x: z € {(3/4)<..1}
then have z-eval: make-polygonal-path [a, b, ¢, a] x = ((linepath ¢ a)) ((2
x (2xxz—1)—1))
using z-in-int3 by auto
{assume *x: y € {0..(1/2)}
then have y-eval: make-polygonal-path [a, b, ¢, a] y = ((linepath a b))
(2xy)
using z-in-int! by auto

52

then have Ip-eq: ((linepath ¢ a)) ((2 *x (2 xx — 1) — 1)) = ((linepath
a b)) (25y)
using z-eval y-eval
using false-hyp by presburger
have not-coll2: = collinear {c, a, b}
using not-coll
by (simp add: insert-commute)
have (2 x (2xz—1)—1))# 0
using * by auto
then have Fulse
using Ip-eq big * ** not-coll2
not-collinear-linepaths-intersect-helper[of c a b (2 % (2 xx — 1) — 1)
2%y
by auto
} moreover {assume *x: y € {(1/2)<..(3/4)}
then have y-eval: make-polygonal-path [a, b, ¢, a] y = ((linepath b c))
(2%(2xy — 1))
using z-in-int2 by auto
then have [p-eq: ((linepath b c)) (2%(2xy — 1)) = ((linepath c a)) ((2
x(2xx—1)—1))
using z-eval y-eval false-hyp
using false-hyp by presburger
have not-coll2: = collinear {b, ¢, a}
using not-coll
by (simp add: insert-commute)
have ((2 *x (2xxz —1)— 1)) # 0
using * by auto
then have Fulse
using Ip-eq big * x*x not-coll2
not-collinear-linepaths-intersect-helper[of b ¢ a (2x(2xy — 1)) (2 * (2
xx— 1) — 1)
by auto
} moreover {assume *x: y € {(3/4)<..1}
then have y-eval: make-polygonal-path [a, b, ¢, a] y = ((linepath c a))
(25 (2xy—1)- 1))
using z-in-int3 by auto
then have ((linepath ¢ a)) (2 % (2 x y — 1) — 1)) = ((linepath ¢ a))
(2% (2x2x—1)—1))
using z-eval y-eval false-hyp
using false-hyp by presburger
then have Fulse
using linepath-loop-free[OF a-neg-c] big * *x
unfolding loop-free-def
using add-diff-cancel-left add-diff-cancel-right’ add-diff-eq linepath-def
scaleR-cancel-left scaleR-collapse scaleR-left-diff-distrib
by (smt (verit) a-neq-c add-diff-cancel-left’)

ultimately have Fulse
using big

93

by (metis atLeastAtMost-iff greater ThanAtMost-iff linorder-not-le)
}
ultimately show Fulse using big
by (metis atLeastAtMost-iff greaterThanAtMost-iff linorder-not-le)
qed
then have loop-free: loop-free (make-polygonal-path [a, b, ¢, a])
unfolding loop-free-def
by (meson atLeastAtMost-iff)
show polygon (make-triangle a b c)
unfolding make-triangle-def polygon-def simple-path-def
using polygonal-path closed-path loop-free by auto
qed

lemma have-wraparound-vertex:
assumes polygon p
assumes p = make-polygonal-path vts
shows vts = (take (length vts —1) vts)Q[uts | 0]
proof —
have card (set vts) > 8
using polygon-at-least-3-vertices assms by auto
then have nonempty: vts # ||
by auto
then have vts = (take (length vts —1) vts)Q[uts ! (length vts — 1)]
by (metis append-butlast-last-id butlast-conv-take last-conv-nth)
then show ?thesis
using assms(1) unfolding polygon-def closed-path-def
using polygon-pathstart] OF nonempty assms(2)] polygon-pathfinish[OF nonempty
assms(2)]
by presburger
qed

lemma polygon-at-least-3-vertices-wraparound:
assumes polygon p
assumes p = make-polygonal-path vts
shows card (set (take (length vts —1) vts)) > 3
proof —
let ?distinct-vts = take (length vis —1) vts
have card-vts: card (set vts) > 3
using polygon-at-least-3-vertices assms by auto
then have vts-is: vts = ?distinct-vtsQ[vts | 0]
using have-wraparound-vertexr assms by auto
then have ?distinct-vts # |]
using card-vts
by (metis One-nat-def append-Nil distinct-card distinct-singleton eval-nat-numeral(3)
length-append-singleton list.size(3) not-less-eq-eq one-le-numeral)
then have vts | 0 € set ?distinct-vts
by (metis <vts = take (length vts — 1) vts Q [vts | 0]y length-greater-0-conv

54

nth-append nth-mem)
then have card (set ?distinct-vts) = card (set vts)
using vts-is
by (metis Un-insert-right append.right-neutral insert-absorb list.set(2) set-append)
then show ?thesis using card-vts by auto
qed

9 Polygon Vertex Rotation

definition rotate-polygon-vertices:: 'a list = nat = 'a list
where rotate-polygon-vertices ell i =
(let elll = rotate i (butlast ell) in elll @ [elll | 0])

lemma rotate-polygon-vertices-same-set:
assumes polygon (make-polygonal-path vts)
shows set (rotate-polygon-vertices vts i) = set vts
proof —
have card-gteq: card (set vts) > 3
using polygon-at-least-3-vertices assms
by auto
then have len-gteq: length vts > 3
using card-length order-trans by blast
let %elll = rotate i (take (length vts — 1) vts)
have inset: vts | 0 = vts | (length vts — 1)
using assms polygon-pathstart polygon-pathfinish unfolding polygon-def closed-path-def
by (metis len-gteq list.size(3) not-numeral-le-zero)
have set vts = set (take (length vts — 1) wvts) U {vts ! (length vts — 1)}
by (metis Cons-nth-drop-Suc One-nat-def Un-insert-right assms card.empty
diff-zero drop-rev length-greater-0-conv list.set(1) list.set(2) not-numeral-le-zero
order.refl polygon-at-least-3-vertices rev-nth set-rev sup-bot.right-neutral take-all)
then have set vts = set (take (length vts — 1) vts)
using inset
by (metis (no-types, lifting) One-nat-def Suc-neq-Zero Suc-pred Un-insert-right
add-diff-cancel-left’ butlast-conv-take diff-is-0-eq’ insert-absorb len-gteq length-butlast
length-greater-0-conv list.size(3) nth-mem nth-take numeral-3-eq-3 plus-1-eq-Suc
sup-bot.right-neutral)
then have same-set: set vts = set ?elll
by auto
then have rotate i (take (length vts — 1) vts) | 0 € set vts
using len-gteq
by (metis card-gteq card-length le-zero-eq length-greater-0-conv list. size(8) nth-mem
numeral-3-eq-3 zero-less-Suc)
then have set vts = set (Zelll @Q [?elll ! 0])
using same-set by auto
then show ?thesis
unfolding rotate-polygon-vertices-def
using card-gteq
by (metis butlast-conv-take)
qed

95

lemma arb-rotation-as-single-rotation:

fixes 7:: nat

shows rotate-polygon-vertices vts (Suc 7) = rotate-polygon-vertices (rotate-polygon-vertices
vts i) 1

unfolding rotate-polygon-vertices-def

by (metis butlast-snoc plus-1-eq-Suc rotate-rotate)

lemma rotation-sum:

fixes i j :: nat

shows rotate-polygon-vertices vts (i + j) = rotate-polygon-vertices (rotate-polygon-vertices
vts @) j
proof (induct j)

case ()

thus ?case by (metis Nat.add-0-right butlast-snoc id-apply rotate0 rotate-polygon-vertices-def)
next

case (Suc j)

have rotate-polygon-vertices vts (i + (Suc j)) = rotate-polygon-vertices vts (Suc
(i + j)) by simp

also have ... = rotate-polygon-vertices (rotate-polygon-vertices vts (i + j)) 1
using arb-rotation-as-single-rotation by blast
also have ... = rotate-polygon-vertices (rotate-polygon-vertices (rotate-polygon-vertices
vts i) j) 1
using Suc.hyps by simp
also have ... = rotate-polygon-vertices (rotate-polygon-vertices vts i) (Suc j)

using arb-rotation-as-single-rotation by metis
finally show ?case .
qed

lemma rotated-polygon-vertices-helper:
fixes p :: R-to-R2
assumes poly-p: polygon p
assumes p-is-path: p = make-polygonal-path vts
assumes p’-is: p’ = make-polygonal-path (rotate-polygon-vertices vts 1)
shows (vts | 0) = (rotate-polygon-vertices vts 1) ! (length (rotate-polygon-vertices

vts 1) — 2)

(rotate-polygon-vertices vts 1) ! (length (rotate-polygon-vertices vts 1) — 1)
= (vts ! 1)
proof —

have len-gteq: length vts > &
using polygon-at-least-3-vertices assms
using card-length order-trans by blast
let ?rotated-vts = rotate-polygon-vertices vts 1
have same-len: length ?rotated-vts = length vts
unfolding rotate-polygon-vertices-def using length-rotate
by (metis One-nat-def Suc-pred card.empty length-append-singleton length-butlast
length-greater-0-conv list.set(1) not-numeral-le-zero p-is-path poly-p polygon-at-least-3-vertices)
then have len-rotated-gt-eq3: length ?rotated-vts > 3
using len-gteq by auto

o6

show ovtsl: vts | 0 = ?rotated-vts | (length ?rotated-vts — 2)

unfolding rotate-polygon-vertices-def

using nth-rotate[of length ?rotated-vts — 2 butlast vts 1]

Suc-diff-Suc butlast-snoc length-butlast length-greater-0-conv lessl less-nat-zero-code
list.size(8) mod-self nat-1-add-1 nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def
same-len zero-less-diff

by (smt (28) One-nat-def len-gteq length-append-singleton numeral-le-one-iff
semiring-norm(70))

have (rotate 1 (butlast vts)) ! 0 = vts ! 1

unfolding rotate-polygon-vertices-def

using nth-rotate[of 0 butlast vts 1] len-gteq len-rotated-gt-eq3

by (metis (no-types, lifting) One-nat-def Suc-le-eq length-butlast less-diff-conv
less-nat-zero-code mod-less not-gr-zero nth-butlast numeral-3-eq-3 plus-1-eq-Suc)

then show vits2: ?rotated-vts | (length ?rotated-vts — 1) = vts | 1
unfolding rotate-polygon-vertices-def
by (smt (verit, best) Suc-diff-Suc Suc-eg-plus1 butlast-snoc length-butlast length-greater-0-conv
less-nat-zero-code list.size(3) nth-append-length one-add-one rotate-polygon-vertices-def
zero-less-diff)
qed

lemma rotate-polygon-vertices-same-length:
fixes vts :: (real”2) list
assumes length vts > 1
shows length vts = length (rotate-polygon-vertices vts 1)
using assms
proof (induction length vts arbitrary: i)
case (
then show ?case by auto
next
case (Suc)
then show ?case using arb-rotation-as-single-rotation|of vts z]
by (metis diff-Suc-1 length-append-singleton length-butlast length-rotate ro-
tate-polygon-vertices-def)
qed

lemma rotated-polygon-vertices-helper2:
assumes len-gteq: length vts > 2
assumes i < length vts — 1
assumes hd vts = last vts
shows (rotate-polygon-vertices vts 1) ! i = vts ! (i+1)
proof —
let ?rotated-vts = rotate-polygon-vertices vts 1
have length (butlast vts) = length vts — 1
by auto
then have same-len: length ?rotated-vts = length vts
unfolding rotate-polygon-vertices-def using length-rotate len-gteq
by (metis dual-order.trans le-add-diff-inverse length-append-singleton one-le-numeral
plus-1-eq-Suc)
then have len-rotated-gt-eq3: length ?rotated-vts > 2

o7

using len-gteq by auto
let ?n = length vts
{assume *: { < length vts — 2
then have same-mod: (1 + i) mod length (butlast vts) = 141
using assms by simp
have i < length (butlast vts)
using assms by simp
then have rotate 1 (butlast vts) ! i = butlast vis ! (i + 1)
using nth-rotate[of © butlast vts 1] same-mod
by (metis add.commute)
then have (rotate-polygon-vertices vts 1) ! i = vts ! (i+1)
by (metis (no-types, lifting) Suc-eg-plusl <i < length (butlast vts)) butlast-snoc
length-butlast length-greater-0-conv less-nat-zero-code list.size(3) mod-less-divisor
nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def same-len same-mod)
} moreover {assume x: i = length vts — 2
then have same-mod: (1 + i) mod length (butlast vts) = 0
using assms
by (metis Suc-diff-Suc «length (butlast vts) = length vts — 1> length-greater-0-conv
less-nat-zero-code list.size(3) mod-Suc mod-if one-add-one plus-1-eq-Suc zero-less-diff)
have i < length (butlast vts)
using assms by simp
then have rotate-prop: rotate 1 (butlast vts) ! ¢ = butlast vts ! 0
using nth-rotate[of i butlast vts 1] same-mod
by metis
have butlast vts ! 0 = vts | 0
using assms(1)
by (simp add: nth-butlast)
then have butlast vts | 0 = vts | (length vts — 1)
by (metis assms(3) hd-conv-nth last-conv-nth length-0-conv zero-diff)
then have (rotate-polygon-vertices vts 1) ! i = vts ! (i+1)
by (metis * rotate-prop Suc-diff-Suc Suc-eq-plusl <butlast vts ! 0 = vts | 0>
add-2-eq-Suc’ le-add-diff-inverse2 len-gteq less-add-Suc2 one-add-one same-len but-
last-snoc length-butlast lessI nth-butlast rotate-polygon-vertices-def)
}
ultimately show ?thesis
using assms(2) by linarith
qed

lemma polygon-rotation-t-translation? :
assumes polygon-of p vts
assumes p’ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p’ = make-polygonal-path ?vts’)
assumes z' € {(d> i e {1..k}. 1/(27%)..0_ i € {1.k+1}. 1/(27%))}
assumes n = length vts
assumes 0 < kANk<n—4
assumes | =z’ — (D i € {1..k}. 1/(27%))
assumes z = /2 + (D i e {1..(k+ 1)}. 1/(27%))
shows ¢ € {(> i e {1.k+1}. 1/(27%)..0 0 € {1..k+2}. 1/(27%))}
plr'=puz

o8

proof—
let ?f = A(k:nat) (zreal). (z — (O i € {1..k}. 1/(27%))) = (27(k+1))
have z > (3 i € {1..k+1}. 1/(27%))
proof—
have | > 0 using assms(3,6) by auto
then show %thesis using assms(7) by linarith
qed
moreover have z < (> i € {1..k+2}. 1/(27%))
proof—
have 2/ < (>Ji € {1..k+1}. 1/(27%)) using assms(3) by presburger
then have | < (3"i € {1..k+1}. 1/(27%)) — (i € {1..k}. 1/(27%)) using
assms(6) by argo
also have ... = (1/27(k+1)) + (>_i € {1..k}. 1/(27%) — (> ¢ € {1..k}.
1/(2%)
using sum-insert[of k+1 {1..k} Xi. 1/(277)]
by (smt (verit) Suc-eq-plusl Suc-n-not-le-n add.commute atLeastAtMost-
Suc-conv atLeastAtMost-iff finite-atLeastAtMost le-add2 one-add-one)
also have ... = (1/27(k+1)) by argo
finally have [< (1/27(k+1)) .
then have z < (1/27(k+1))/2 + (i € {1..k+1}. 1/(27%)) using assms(7)
by simp
also have ... = 1/27(k+2) + O i € {1..k+1}. 1/(27%)) by simp
also have ... = (> i € {1..k+2}. 1/(27%))
using sum-insert[of k+2 {1..k+2} Xi. 1/(27%)] by simp
finally show ?thesis .
qged
ultimately show z: z € {(d i e {1..k+1}. 1/(27%))..0 i€ {1..k+2}. 1/(27%))}
by presburger
have 1: n > 4 using polygon-vertices-length-at-least-4 assms
using polygon-of-def by blast
then have 2: length vts = length ?vts’
using assms rotate-polygon-vertices-same-length by auto
then have 3: length ?vis’ = n using assms by auto

have p’ z’ = ((linepath (?vts’ ! k) (2vts’ ! (k+1)) (?f k z')))
using polygon-linepath-images2[of n k ?vts’ p’ ?f x| assms(2,3,5) 1 3 by
fastforce
moreover have p z = ((linepath (vts ! (k+1)) (vts ! (k+2)) (2f (k+1) z)))
using polygon-linepath-images2[of n k+1 vts p ?f x| assms(2,3,5) 1 2 3z
by (smt (verit, ccfo-threshold) Nat.diff-add-assoc add.commute add-diff-cancel-left
add-le-imp-le-left add-left-mono assms(1) nat-add-1-add-1 one-plus-numeral poly-
gon-of-def semiring-norm(2) semiring-norm(4) trans-le-add1)
moreover have %vts’ | k = vts | (k+1)
using rotated-polygon-vertices-helper2
by (smt (verit, best) 1 Nat.le-diff-conv2 Suc-pred’ add-leD1 assms(1) assms(4)
assms(5) diff-diff-cancel diff-less have-wraparound-vertez hd-conv-nth leD length-greater-0-conv
less-Suc-eq nat-less-le numeral-Bit0 numeral-eg-one-iff polygon-of-def semiring-norm(83)
snoc-eq-iff-butlast zero-less-numeral)
moreover have ?vts’ | (k+1) = vts | (k+2)

99

using rotated-polygon-vertices-helper2|of vts k+1]
by (metis (no-types, lifting) assms(1,4,5) 1 One-nat-def Suc-diff-Suc add-Suc-right
diff-zero have-wraparound-vertex hd-conv-nth le-add-diff-inverse2 less-add-Suc?2 nat-less-le
not-less-eg-eq numeral-Bit0 one-add-one plus-1-eq-Suc polygon-of-def snoc-eg-iff-butlast)
moreover have ?f k x’ = ?f (k+1) = using assms(6) assms(7) by force
ultimately show p’ z’ = p = by presburger
qed

lemma polygon-rotation-t-translationi-strict:
assumes polygon-of p vts
assumes p’ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p’ = make-polygonal-path ?vts’)
assumes z' € {(doi € {1..k}. 1/(27%).<(O i e {1..k+1}. 1/(27%))}
assumes n = length vts
assumes 0 < kAN k< n— /4
assumes | =z’ — (D i € {1..k}. 1/(27%))
assumes z = [/2 + (D i e {1..(k+ 1)}. 1/(27%))
shows z € {(D i e {1.k+1}. 1/(27%))..<(> i€ {1..k+2}. 1/(27%))}
p'r'=pux
proof —
let 2f = A(kunat) (zureal). (x — (O i € {1..k}. 1/(27%))) * (27(k+1))
have z > (3.i € {1..k+1}. 1/(27%))
proof—
have | > 0 using assms(3,6) by auto
then show %thesis using assms(7) by linarith
qged
moreover have z < (Y i € {1..k+2}. 1/(27%))
proof—
have 2/ < (>Ji € {1..k+1}. 1/(27%)) using assms(3) by auto
then have | < (3¢ € {1.k+1}. 1/(27%) — O_i € {1..k}. 1/(27%)) using
assms(6) by argo
also have ... = (1/27(k+1)) + O i € {1..k}. 1/(27%) — (O € {1..k}.
1/(27)
using sum-insert[of k+1 {1..k} Xi. 1/(27%)]
by (smt (verit) Suc-eq-plusl Suc-n-not-le-n add.commute atLeastAtMost-
Suc-conv atLeastAtMost-iff finite-atLeastAtMost le-add2 one-add-one)
also have ... = (1/27(k+1)) by argo
finally have [< (1/27(k+1)) .
then have z < (1/27(k+1))/2 + (3 i € {1..k+1}. 1/(27%)) using assms(7)

by simp
also have ... = 1/27(k+2) + (> i € {1..k+1}. 1/(27%)) by simp
also have ... = (}_i € {1..k+2}. 1/(27%))

using sum-insert[of k+2 {1..k+2} Xi. 1/(277)] by simp
finally show ?thesis .
qed
ultimately show z € {(> i e {1..k+1}. 1/(27%)).<(> ie{1..k+2}. 1/(27%))}
by auto
show p'z'=p=x
using assms(3) polygon-rotation-t-translation1[OF assms(1) assms(2) - assms(4)

60

assms(5) assms(6) assms(7)]
by (meson atLeastAtMost-iff atLeastLessThan-iff less-eq-real-def)
qed

lemma polygon-rotation-t-translation2:
assumes polygon-of p vts
assumes p’ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p’ = make-polygonal-path ?vts’)
assumes n = length vts
assumes z' € {(d> i € {1..(n=3)}. 1/(27%))..0_i e {1..(n—=2)}. 1/(27%))}
assumes ¢ = z' + 1/(27(n—2))
shows z € {(> i € {1.n—2}. 1/(27%))..1}
pla'=px
proof—
let %k = n—3
let 2f" = (A(k:nat) zureal. (x — (O_ i € {1..k}. 1/(27%))) * (27(k+1)))
have n-geq-4: n > 4 using polygon-vertices-length-at-least-4 assms
using polygon-of-def by blast
moreover then have same-len: length vts = length ?vts’
using assms rotate-polygon-vertices-same-length|of vts] by auto
moreover then have length ?vts’ = n using assms(3) by auto
ultimately have p’z” p’ ©' = ((linepath (%vts’ | 2k) (%vts’ | (?k+1)) (2f" %k
)
using polygon-linepath-images2[of n %k ?vts’ p’ ?f' z'] assms
by (smt (verit, ccfo-threshold) One-nat-def Suc-diff-Suc diff-diff-left diff-is-0-eq’
le-add? le-add-diff-inverse2 linorder-not-le nat-le-linear numeral-3-eq-3 numeral-Bit0
numeral-le-iff numeral-le-one-iff numerals(1) one-plus-numeral plus-1-eq-Suc trans-le-add2)
let ?f = (Azreal. (x — (30 € {1.n—2}. 1/(27%))) * (27 (n—2)))
have sum-prop: Ni:nat. Nfinat=real. (> i =1..0. fi)+ f i+ 1)= (14
=1.4+1. f1)
by auto
have sum-upto: (3. i=1.n— 3.1 /(2 "izreal)) + 1 /2 " (n—2)= (>4
=1.n— 2.1/ (2 i:real))
using sum-proplof Ai. 1 / (2 ~iureal) n—3] n-geq-4
by (smt (verit, del-insts) Nat.add-diff-assoc2 add-numeral-left diff-cancel2 le-add-diff-inverse
le-numeral-extra(4) nat-1-add-1 nat-add-left-cancel-le numeral-Bit1 numerals(1) semir-
ing-norm(2) semiring-norm(8) trans-le-add1)
have ' > (> i=1..2k. 1 /] 2 74)
using assms by presburger
then have z-geq: © > (> i € {1.n—2}. 1/(27%))
using assms(5) sum-upto
by linarith
have 2/ < (3>i=1.n— 2.1/ 274
using assms(4) by auto
then have z-leq: x < 1
using assms(5)
by (smt (verit, del-insts) add.left-commute add-diff-cancel-left’ diff-diff-eq le-add-diff-inverse2
le-numeral-extra(4) n-geq-4 nat-add-1-add-1 numeral-Bit0 numeral-Bitl sum-upto
summation-helper trans-le-add?2)

61

show z € {3 i e {1.n—2}. 1/(27%))..1}
using z-geq z-leq
by auto
then have pz: p x = (linepath (vts ! (n—2)) (vts ! (n—1))) (?f x)
using polygon-linepath-images3[of n vts p © ?f] n-geq-4 assms polygon-of-def
by fastforce
moreover have ?vts’ | (n — 3) = vts | (n—2)
using n-geq-4 assms(8) rotated-polygon-vertices-helper2 assms(1—3)
unfolding polygon-of-def
by (smt (verit) One-nat-def Suc-diff-Suc add.commute diff-is-0-eq diff-less
dual-order.trans have-wraparound-vertex hd-conv-nth le-add-diff-inverse length-greater-0-conv
linorder-not-le nat-1-add-1 not-add-less2 numeral-3-eq-3 plus-1-eq-Suc pos2 rotated-polygon-vertices-helper(1)
same-len snoc-eq-iff-butlast)
moreover have ?vts’ | (n — 2) = vts ! (n — 1)
using n-geq-4 assms(8) assms
unfolding polygon-of-def
by (metis closed-path-def list.size(3) not-numeral-le-zero polygon-def polygon-pathfinish
polygon-pathstart rotated-polygon-vertices-helper(1) same-len)
moreover have ?f’' %k ' = ?f z using assms(4—5) n-geq-4
by (smt (verit, del-insts) One-nat-def Suc-diff-Suc Suc-eq-plus! add-diff-cancel-right’
add-numeral-left le-antisym linorder-not-le numeral-3-eq-3 numeral-code(2) numer-
als(1) semiring-norm(2) sum-upto trans-le-add2)
ultimately show p’ 2/ = p z using pz p'z’
by (smt (verit, ccfo-SIG) Nat.add-diff-assoc2 assms(5) diff-cancel2 le-add-diff-inverse
le-add-diff-inverse2 le-numeral-extra(4) n-geq-4 nat-1-add-1 numeral-Bit0 numeral-Bit1
trans-le-add1)
qged

lemma polygon-rotation-t-translation2-strict:
assumes polygon-of p vts
assumes p’ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p’ = make-polygonal-path ?vts’)
assumes n = length vts
assumes z' € {37 € {1..(n=3)}. 1/(27%)).<(D i e {1..(n—=2)}. 1/(27%))}
assumes z = 2z’ + 1/(27(n—2))
shows ¢ € {(> i € {1.n—2}. 1/(27%))..<1}
p'r'=pa
proof —
have n-geq-4: n > 4 using polygon-vertices-length-at-least-4 assms
using polygon-of-def by blast
have sum-prop: Ni:nat. Nfinat=real. (> i=1.0.fi)+ f(i+1)= 014
= 1.i+1. fi)
by auto
have sum-upto: (> i=1.n— 3.1/ (2 "izreal)) + 1 /2 " (n—2)= (i
=1.n— 2.1/ (2 iureal))
using sum-prop[of Ai. 1 / (2 " i:real) n—3] n-geq-4
by (smt (verit, del-insts) Nat.add-diff-assoc2 add-numeral-left diff-cancel2 le-add-diff-inverse
le-numeral-extra(4) nat-1-add-1 nat-add-left-cancel-le numeral-Bit1 numerals(1) semir-

62

ing-norm(2) semiring-norm(8) trans-le-add1)
have z-geq: © > (> i € {1.n—2}. 1/(27%))
using assms(4) polygon-rotation-t-translation2[OF assms(1) assms(2) assms(3)
- assms(5)]
by simp
have 2/ < (3 i=1.n— 2.1/ 274
using assms(4) by auto
then have z-leq: < 1
using assms(5)
by (smt (verit, del-insts) add.left-commute add-diff-cancel-left’ diff-diff-eq le-add-diff-inverse2
le-numeral-extra(4) n-geq-4 nat-add-1-add-1 numeral-Bit0 numeral-Bitl sum-upto
summation-helper trans-le-add?2)
show z € {3 i e {1.n—2}. 1/(27%))..<1}
using z-geq z-leq by auto
show p’z'=pz
using assms(4) polygon-rotation-t-translation2[OF assms(1) assms(2) assms(3)
- assms(5)]
by (meson atLeastAtMost-iff atLeastLessThan-iff less-eq-real-def)
qed

lemma polygon-rotation-t-translations:

assumes polygon-of p vts

assumes p’ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p’ = make-polygonal-path ?vts’)

assumes z' € {(>_ i € {1.n—2}. 1/(27%))..1}

assumes n = length vts

assumes | =z’ — (> i € {1.n—2}. 1/(27%))

assumes z = [* (27(n—3))

shows z € {0..1/2}

p'r’'=pux
proof—

let ?f = (Azureal. (x — (30 € {1.n—2}. 1/(27%))) * (27 (n—2)))

have n-geq-4: n > 4 using polygon-vertices-length-at-least-4 assms
using polygon-of-def by blast

moreover then have same-len: length vts = length ?vts’
using assms rotate-polygon-vertices-same-length by auto

moreover have length-vts”: length ?vts’ = n
using assms(4) same-len by auto

ultimately have p'z” p’ 2’ = (linepath (2vts’! (n—2)) (%vts’! (n—1))) (?f z')
using polygon-linepath-images3[of n ?vts’ p’ z’ ?f] assms
unfolding polygon-of-def by fastforce

have z-iss = (¢ — O i=1.n—2.1/2749))*x 2 (n—3)
using assms(5—06) by auto
then have z-gt: x > 0
using assms(3) by simp
have sum-prop: k> 1 = 1 — (> i=1..k. 1 /(2 ~izreal)) = 1/(27k) for k
proof (induct k)
case (

63

then show ?case by auto
next
case (Suc k)
{ assume * :Suc k = 1
then have ?case by auto
} moreover
{ assume *: Suc k > 1
then have 1 — (Y i=1.k. 1 /(2 "dureal))=1/2"k
using Suc by linarith
then have ?case by simp
}
ultimately show ?case
by linarith
qed
have z/ < 1
using assms(3) by auto
then have z < (1 — O i=1..n— 2.1 /(2 " izreal))) * 2 " (n — 3)
using z-is
using mult-right-mono zero-le-power by fastforce
then have z < 1/(2(n—2))x2(n—3)
using sum-prop n-geq-4
by auto
then have z-lt: © < 1/2
using n-geq-4
by (smt (verit, ccfv-SIG) One-nat-def Suc-1 Suc-diff-Suc add-diff-cancel-right’
diff-is-0-eq dual-order.trans linorder-not-le nonzero-mult-divide-mult-cancel-right2
numeral-3-eq-3 numeral-code(2) power.simps(2) power-commutes power-not-zero
times-divide-eq-left zero-neg-numeral)
then show z € {0..1/2}
using z-gt z-lt by auto
moreover have n > 3 using n-geq-4 by auto
ultimately have px: p x = (linepath (vts ! 0) (vts ! 1)) (2 * x)
using polygon-linepath-images [of n vts] assms unfolding polygon-of-def by
blast

have ?vts’! (n—2) = vts | 0 A Pvts’ ! (n—1) = vts ! 1
unfolding rotate-polygon-vertices-def
by (metis length-vts’ assms(1) polygon-of-def rotate-polygon-vertices-def ro-
tated-polygon-vertices-helper(1) rotated-polygon-vertices-helper(2))
moreover have /1’ = 2 x z
proof—
have 2 x =2 x (¢' — (D i € {1.n—2}. 1/(27%))) * (27 (n—3)) using assms
by auto
moreover have ... = (z/ — (3 i € {1.n—2}. 1/(27%))) * (27(n—2))
using n-geq-4 Suc-1 Suc-diff-Suc Suc-le-eq bot-nat-0.not-eq-extremum diff-Suc-1
le-antisym mult.left-commute mult.right-neutral mult-cancel-left not-less-eq-eq num-double
numeral-3-eq-3 numeral-eq-Suc numeral-times-numeral power.simps(2) pred-numeral-simps(2)
zero-less-diff zero-neq-numeral
proof —

64

have f1: Vr ra. (ra::real) x v =1 % 10

by simp

have f2: Vrn ra. (rureal) * (r “nxra) =1~ Sucn x ra
by simp

have f3: pred-numeral (num.Bitl num.One) = Suc (Suc 0)
by simp

have f4: Suc 0 = 1
by linarith
have Suc 1 < n
using n-geq-4 by linarith
then have 2 x ((z' — O n=1.n—Sucl.1/2 " n)*2 (n—38)) =
(/= n=1.n—Sucl.1/2 n)*x2 (n— Sucl)
using f4 f3 f2 f1 Suc-diff-Suc numeral-eq-Suc by presburger
then show ?thesis
by (metis (no-types) Suc-1 mult.assoc)

qed
moreover have ... = ?f 2’ by auto
ultimately show ?thesis by presburger
qed
ultimately show p’ 2’ = p z using p’z’ pr by auto
qed

lemma polygon-rotation-t-translation3-strict:
assumes polygon-of p vts
assumes p’ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p’ = make-polygonal-path ?vts’)
assumes z’ € {3 i € {1.n—2}. 1/(27%))..<1}
assumes n = length vts
assumes | =z’ — (3 i € {1..n—2}. 1/(27%))
assumes z = | * (27(n—3))
shows z € {0..<1/2}
p'r'=pa
proof —
have n-geq-4: n > 4 using polygon-vertices-length-at-least-4 assms
using polygon-of-def by blast
have z-is: x = (' — (D i=1.n—2.1/279) %2 " (n—3)
using assms(5—6) by auto
then have z-gt: x > 0
using assms(3) by simp
have sum-prop: k> 1 = 1 — (>_i=1..k. 1 /(2 ~izreal)) = 1/(27k) for k
proof (induct k)
case (
then show ?case by auto
next
case (Suc k)
{ assume * :Suc k = 1
then have ?case by auto
} moreover
{ assume *: Suc k > 1

65

then have 1 — > i=1..k. 1 /(2 "izreal)) =1/ 2"k
using Suc by linarith
then have ?case by simp
}
ultimately show ?case
by linarith
qed
have 2’ < 1
using assms(3) by auto
then have z < (1 — O i=1.n— 2.1 /(2 "izreal))) * 2 " (n — 3)
using z-is
using mult-right-mono zero-le-power by fastforce
then have z < 1/(27(n—2))x2(n—3)
using sum-prop n-geq-4
by auto
then have z-lt: © < 1/2
using n-geq-4
by (smt (verit, ccfv-SIG) One-nat-def Suc-1 Suc-diff-Suc add-diff-cancel-right’
diff-is-0-eq dual-order.trans linorder-not-le nonzero-mult-divide-mult-cancel-right2
numeral-3-eq-8 numeral-code(2) power.simps(2) power-commutes power-not-zero
times-divide-eq-left zero-neg-numeral)
show z € {0..<1/2}
using z-lt x-gt by auto
show p'z'=pzx
using assms(3) polygon-rotation-t-translation3[OF assms(1) assms(2) - assms(4)
assms(5) assms(6)]
by simp
qed

lemma f-gteq-0-sum-gt: Af:nat = real. (Niznat. (fi) > 0) = a> b= (31
=1.a. (fi)) > (O i=1..b. (fi)) for a b :: nat
proof (induct a arbitrary: b)
case (
then show ?case by auto
next
case (Suc a)
{assume x: b = a
then have sum f {1..(Suc a)} = sum f {1.. b} + f (Suc a)
by force
then have ?case
using Suc(2)[of Suc a] * by linarith
} moreover {assume x: b < a
then have ?case using Suc
by (smt (verit, ccfo-threshold) Suc-eq-plus1 dual-order.trans le-add2 sum.nat-ivl-Suc’)

ultimately show ?case

using Suc.prems(2) less-antisym by blast
qged

66

lemma rotation-intervals-disjoint:

assumes kI # k2

shows {d i =1.kl. 1/ (2 "inrel).<> i=1.ki+1.1/2"i}n{di=
1.k2.1 /(2 Tizreal). <> i=1..k24+1. 1/ 2 i} ={}

proof —
have lambda-gt: (N\i. 0 < 1 / (2 " i:real))
by simp
have hi: ?thesis if x:k1 < k2
proof —

have eo: k1+1 < k2
using * by auto
have k14+1 =k2 = O i=1..k14+1.1 /2 ") < (> i=1..k2.1/ (2"
i::real))
by auto
have (D i =1..ki1+1.1 /2 "4 < (D i=1..k2.1 /(2 i:real)) if sx:
k1+1 < k2
using f-gteq-0-sum-gt[OF lambda-gt *x]
using less-eq-real-def by presburger
then have (> i=1..kI1+1.1/2 7)< (D i=1.k2.1 /(2 iureal))
using * eo by fastforce
then show ?thesis by auto
qed
have h2: ?thesis if x: k2 < k1
proof —
have eo: k2+1 < kI
using * by auto
have k2+1 =kl = O i=1..k2+1.1 /2 "9 < (> i=1.k1.1/(2"
i::real))
by auto
have (> i=1..k2+1.1 /2 "4 < (O i=1..k1.1 /(2 idureal)) if #x
k24+1 < ki
using f-gteq-0-sum-gt[OF lambda-gt]
using less-eq-real-def by presburger
then have (> i =1..k24+1.1 /2 "9 < (D i=1.k1.1 /(2 izreal))
using * eo by fastforce
then show %thesis by auto
qged
show ?thesis
using h1 h2 assms by linarith
qed

lemma bounding-interval-helperl:
shows (> i=1.k. 1 /(2 "dureal)) = (27k — 1)/(27k)
proof (induct k)
case ()
then show ?case by simp
next
case (Suc k)
have (3" i = 1..(Suc k). 1 / (2 "dureal)) = O i = 1..k. 1 /(2 " iureal)) +

67

1/27(Suc k)

by force
also have ... = (27k — 1)/(27k) + 1/27(Suc k) using Suc.hyps by presburger
also have ... = (27k — 1)/(27k) + 1/27(k+1) by simp
also have ... = (27(k+1) — 1)/(27(k+1))

by (smt (verit, del-insts) Suc add.commute add-diff-cancel-right’ add-divide-distrib
calculation field-sum-of-halves le-add2 plus-1-eq-Suc power-divide power-one sum-
mation-helper)

finally show ?Zcase by force
qed

lemma bounding-interval-helper2:
fixes z :: real
assumes z € {0..<1}
shows k. z < (D i=1.k. 1 /(2 " i:real))
proof—
let ?f = Akunat. (27k — 1)/(27%)
have lim: Veureal>0. k. (1 — (?fk)) <e
proof clarify
fix e::real
assume ¢ > ()
then obtain m where m > 0 AN 1 / m<e¢
by (metis Groups.mult-ac(2) divide-less-eq linordered-field-no-ub order-less-trans
zero-less-divide-1-iff)
moreover obtain £ where 27k > m using real-arch-pow by fastforce
ultimately have 1 / (27k) < & by (smt (verit) frac-less2)
moreover have (1:real) — ((27k — 1) / (27k)) = (1/(27%)) by (simp add:
diff-divide-distrib)
ultimately show 3%. 1 — (27k — 1) / (27k) < € by (smt (verit))
qed
have 3k. 2fk > x
proof—
let %=1 -1z
obtain & where 1 — (?f k) < % by (metis assms lim atLeastLess Than-iff
diff-gt-0-iff-gt)
thus ?thesis by auto
qged
thus ?thesis using bounding-interval-helperl by presburger
qed

lemma bounding-interval-for-reals-btw01 :

fixes x::real

assumes z € {0..<1}

shows 3k. x € {(O i € {1..k}. 1/(27real))..<(> i e {1..(k+ 1)} 1/(27%))}
proof —

let 25 =Xk. O i=1.k 1 /(2 i:real))

let A = {kunat. z < (3 i=1.k. 1 /(2 "iureal))}

let #m = LEAST k. k € ?4

have 3k.z < (> i=1..k. 1 /(2 "i:real)) using assms bounding-interval-helper2

68

by blast
then have ?m € 24 by (metis (mono-tags, lifting) LeastI2-wellorder mem-Collect-eq)
moreover then have ?m — 1 ¢ ?4
by (smt (verit, ccfv-SIG) One-nat-def Suc-n-not-le-n Suc-pred’ assms atLeast-
LessThan-iff atLeastatMost-empty’ bot-nat-0.not-eq-extremum linorder-not-less mem-Collect-eq
not-less-Least sum.empty)
ultimately have z < (> i=1..m. 1 / (2 "dzrea)) Nz > (D i=1..2m—1.
1/ (2 " itreal))
by simp
thus ?thesis
by (smt (verit, best) add.commute assms atLeastLess Than-iff le-add-diff-inverse
linorder-not-less sum.head-if)
qed

lemma all-rotation-intervals-between-Oand1 :
shows {(>_¢ € {1..k}. 1/(27%real)..(d i € {1..(k+1)}. 1/(27%)} C {0..<1}
proof —
have gt: Nk. 0o i € {1..k}. 1/(27%ureal)) > 0
by (simp add: sum-nonneg)
have It: Nk. O_i € {1..k}. 1/(27%ureal)) < 1
by (smt (verit, ccfv-SIG) diff-Suc-1 f-gteq-0-sum-gt less-Suc-eg-le linorder-not-le
summation-helper zero-less-divide-1-iff zero-less-power)
show ?thesis
using gt It
by (meson atLeastAtMost-subseteq-atLeastLessThan-iff)
qged

lemma all-rotation-intervals-between-Oandl-strict:
shows {(> i e {1..k}. 1/(27%real)).. <D i e {1..(k+1)}. 1/(27%)} C{0..<1}
using all-rotation-intervals-between-0and1
by (smt (verit, ccfv-SIG) atLeastAtMost-subseteq-atLeastLess Than-iff ivl-subset
nle-le order-trans)

lemma one-polygon-rotation-is-loop-free:
assumes polygon-of p vts
assumes p’ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p’ = make-polygonal-path ?vts’)
shows loop-free p’
proof (rule ccontr)
assume — loop-free p’
moreover have p’ 0 = p’ 1
using assms
by (smt (verit, ccf-SIG) assms(2) butlast-snoc length-butlast linepath-0' linepath-1"'
make-polygonal-path.simps(1) not-gr-zero nth-append-length nth-butlast path-defs(2)
path-defs(3) polygon-pathfinish polygon-pathstart rotate-polygon-vertices-def)
ultimately obtain z’ y’ where 2’y 2’ < y' A {2/, y'} C{0.<1} Ap' 2’ =p’
y/
unfolding loop-free-def
by (smt (verit, del-insts) atLeastAtMost-iff atLeastLessThan-iff bot-least in-

69

sert-subset linorder-not-le order.refl order-antisym zero-less-one)

let ?n = length vts
have n-geq-4: ?n > J using polygon-vertices-length-at-least-4 assms
using polygon-of-def by blast
obtain zk where z'-in: ' € {(>°i € {1..2k}. 1/(27%)).<(> i e {1..(zk + 1)}.
1/(27%))} using z'y’
using bounding-interval-for-reals-btw01 z'y’
by (metis insert-subset)
then have zk-gteq: zk > 0
by blast
obtain yk where y’-in: y' € {3 i € {1..yk}. 1/(27%)).<> i e {1..(yk+ 1)}.
1/(20)}
using bounding-interval-for-reals-btw01 z'y’
by (metis insert-subset)
then have yk-gteq: yk > 0
by blast

have all-pows-of-2-pos: (\i. 0 < 1 / (2 " izreal))
by simp

let %21 = (z/ — (i e {1.2k}. 1/(270))/2 + O i e {1..(zk + 1)}. 1/(27%))
have zk-lt-nminus3: 2k < n — 4 = %21 € {O i e {1.ak+1}. 1/(27%))..<(>
e{1.azk+2}. 1/(27)} Ap 221 =p' 2’
using polygon-rotation-t-translation1-strict| OF assms(1) assms(2) z'-in] zk-gteq
by metis
let 2yl = (y' — Oie{1..yk}. 1/(270)/2 + O i e {1..(yk + 1)}. 1/(27%))
have yk-lt-nminus3: yk < n — 4 = 2yl € {O_ i e {1..yk+1}. 1/(27%)).<(D>_1
e{1.yk+2}. 1/(27)} Ap 2yl =p'y’
using polygon-rotation-t-translation1-strict| OF assms(1) assms(2) y’-in] yk-gteq

by metis

let 222 = 2’/ + 1/(27(%n—2))
have 2k = n—8 = a2’ € {d i = 1..length vts — 3. 1 / (2 " iureal)..<> i =
1..length vts — 2.1 / 2~ i}
using z’-in
by (smt (verit, best) Nat.add-diff-assoc2 <4 < length vts) diff-cancel? le-add-diff-inverse
nat-add-left-cancel-le nat-le-linear numeral-Bit0 numeral-Bit1 numerals(1) trans-le-add1)
then have zk-eg-nminus8: ok = on — 8 = p 222 = p' ' N 222 € {37 €
{1..9n—2}. 1/(27%))..<1}
using polygon-rotation-t-translation2-strict| OF assms(1) assms(2), of ?n z’
2x2] z'-in xk-gteq
by presburger
let 2y2 =y’ + 1/(27(%n—2))
have yk = /n—3 = y' € {d i = 1.length vts — 3. 1 / (2 ~iureal)..<> i =
1.length vts — 2.1 / 2 " i}
using y’-in

70

by (smt (verit, best) Nat.add-diff-assoc2 <4 < length vts) diff-cancel2 le-add-diff-inverse
nat-add-left-cancel-le nat-le-linear numeral-Bit0 numeral-Bit1 numerals(1) trans-le-add1)
then have yk-eq-nminus3: yk = n — 3 = p 22 =p' y' A 2y2 € {O]i €
{1..%9n—2}. 1/(27%))..<1}
using polygon-rotation-t-translation2-strict|OF assms(1) assms(2), of ?n y’
2y2] x'-in xk-gteq
by presburger

let 228 = (' — (Di € {1..9n—2}. 1/(27%)))x(27(?n—3))
have z'-leq: ' < 1
using z'y’ by simp
have z'-geq: 2k > n — 2 = (Y i=1..2k. 1 / (2 "idureal)) > (D> i = 1..length
vts — 2.1 / (2 7 ireal))
using z'-in f-gteq-0-sum-gt[of Ai. 1 / (2 " i:real))
by (metis le-antisym less-eq-real-def linorder-not-le zero-less-divide-1-iff zero-less-numeral
zero-less-power)
have zk > n—2 = z' € {d i = 1..length vts — 2. 1 / (2 ~iureal)..<1}
using z’-leq x'-geq z'-in
by fastforce
then have zk-gt-nminus3: ok > %n — 2 = p 228 = p' ' A %23 € {0..<1/2}
using polygon-rotation-t-translation3-strict| OF assms(1) assms(2), of =’ n]
zk-gteq
by presburger
let 2y3 = (y' — Qi e {1..9n—2}. 1/(27%)))*(27(?n—3))
have y'-leq: y' < 1
using z'y’ by simp
have y'-geq: yk > n — 2 = (D i=1..yk. 1 / (2 "iureal)) > (D> i = 1..length
vts — 2.1 /(2 7 izreal))
using y'-in f-gteq-0-sum-gt[of Xi. 1 / (2 " i:real))
by (metis le-antisym less-eq-real-def linorder-not-le zero-less-divide-1-iff zero-less-numeral
zero-less-power)
have yk > n—2 = y' € {d i = 1..length vts — 2. 1 / (2 ~iureal)..<1}
using y’-leq y’-geq y'-in
by fastforce
then have yk-gt-nminus3: yk > %n — 2 = p 2y =p' y' A 2y3 € {0..<1/2}
using polygon-rotation-t-translation3-strict| OF assms(1) assms(2), of y' n]
yk-gteq
by presburger

have interval-helper: a1l > b2 Nz € {al..<a2} ANy € {bl..<b2} = y < z for
al a2 b1 b2 x y::real
by simp

{ assume zk-lt: 2k < n — 3
then have p-z”: p %21 = p' 2’
using zk-lt-nminus3 by auto
have zi-in: ?z1 € {(>i € {1..(zk + 1)}. 1/(27%))..<(i € {1..(zk + 2)}.
1/(20)}

using zk-lt zk-lt-nminus3

71

by auto
then have z1-in-01: %z1 € {0..<1}
using all-rotation-intervals-between-O0and1-strict[of zk+1]
by fastforce
{ assume yk-lt: yk < %n — 3
then have p-y”: p 2yl =p'y’
using yk-lt-nminus3 by auto
have yI-in: 2yl € {O i e {1..(yk + 1)}. 1/(277)).<> i e {1..(yk + 2)}.
1/(271))}
using yk-lt yk-lt-nminus3 by auto
then have yI-in-01: ?y1 € {0..<1}
using all-rotation-intervals-between-0and1-strict[of yk+1]
by fastforce
have {d) i=1.ak+1.1/270.<>i=1.ak+2.1/(2 izrea)} N{> ¢
=1.yk+1.1/(2 ivreal).<> i=1.yk+ 2.1/ 2 i} ={}if ak-neq:ak #
yk
using rotation-intervals-disjoint[of tk+1 yk+1] zk-neq
by fastforce
then have eq-then-eq: %1 = 2yl — zk = yk
using x1-in yI-in
by (smt (verit) Int-iff empty-iff)
have zk = yk = %21 # %yl
using z'y’ x1-in yl-in by simp
then have 7z1 # ?y1
using eq-then-eq by blast
moreover have {?z1, ?y1} C {0..<1}
using z1-in-01 y1-in-01 by fast
ultimately have ?%z1 # 2yl A {%x1, ?y1} C {0.<1} AN p %zl = p %yl
using p-z’ p-y’ z'y’ by presburger
thenhave 3 zy .z £y A {2, y} C{O0.<I} Apz=py
by auto
then have Fulse
using assms(1) unfolding polygon-of-def polygon-def simple-path-def loop-free-def
by fastforce
} moreover { assume yk = n — 3
then have y2: p 2y2 = p' y' A 2y2 € {O_i € {1..2n—2}. 1/(27%))..<1}
using yk-eqg-nminus3
by auto
then have y2-in-01: ?y2 € {0..<1}
using all-rotation-intervals-between-Oand1-strict[of n—2]
by fastforce
have xkplus-eq: ok + 2 = n — 2 = (D i € {1..(zk + 2)}. 1/(27i:real)) <
Soie{1..9n—2}. 1/(27%))
by simp
have zkplus-it: ok + 2 < n — 2 = (D_i € {1..(zk + 2)}. 1/(27%real)) <
(i e {1..2n—2}. 1/(27%))
using zk-lt f-gteq-0-sum-gt[OF all-pows-of-2-pos, of zk + 2 ?n — 2]
by (smt (verit, best) f-gteq-0-sum-gt zero-less-divide-1-iff zero-less-power)
then have (> i e {1..(ak + 2)}. 1/(270ureal)) < (O i€ {1..9n—2}. 1/(27%))

72

using zkplus-eq xkplus-lt zk-lt
using One-nat-def Suc-diff-Suc Suc-eq-plus1 Suc-le-eq add-Suc-right le-neg-implies-less
linorder-not-le nat-1-add-1 nat-diff-split numeral-3-eq-3 zk-gteq by linarith
then have ?z1 # ?y2
using z1-in y2
by (smt (verit, ccfu-SIG) interval-helper)
moreover have {?z1, 7y2} C {0..<1}
using z1-in-01 y2-in-01 by fast
ultimately have ?z1 # %y2 A {%z1, 242} C {0..<1} A p %21 = p %y2
using p-z’ y2 z'y’ by presburger
thenhave 3 zy . s #yA{z,y} C{O0.<I} Apzx=py
by auto
then have Fulse
using assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by fastforce

moreover { assume yk > n — 3
then have y3: p 7y3 = p’ y' A ?y3 € {0..<(1/2::real)}
using yk-gt-nminus3
by auto
then have y3-in-01: ?y3 € {0..<1}
by simp

have simplify-interval: (> i = 1..1. 1 /(2 "iureal)) = 1/2
by simp
then have zk-eq-0: ok = 0 = (3 i € {1..(zk + 1)}. 1/(27%real)) > 1/2
by simp
have 2k > 0 = (> i € {1..(ak + 1)}. 1/(2%:real)) > 1/2
using f-gteq-0-sum-gt[OF all-pows-of-2-pos, of 1 xk +1]
simplify-interval
by (smt (verit, ccfo-SIG) Suc-le-eq add.commute add.right-neutral all-pows-of-2-pos
J-gteq-0-sum-gt linorder-not-le plus-1-eq-Suc)
then have (> i € {1..(zk + 1)}. 1/(27%::real)) > 1/2
using zk-eq-0 zk-gteq by blast
then have ?z1 # ?y3
using z1-in y3
by (smt (verit, best) interval-helper)
moreover have {?z1, 7y3} C {0..<1}
using z1-in-01 y3-in-01 by fast
ultimately have ?z1 # ?y3 A {%z1, 248} C {0..<1} A p %21 = p %y3
using p-z’ y3 'y’
by presburger
thenhave 3 zy. 2 Ay A{z, y} C{0.<I} Apz=py
by auto
then have Fulse
using assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by fastforce

73

}

ultimately have Fulse by linarith
} moreover {assume zk-eq : 2k = n—38
then have p-z”: p 222 = p’' 2’
using zk-eg-nminus3 by auto
have z2-in: 222 € {(> i € {1..9n—2}. 1/(27%))..<1}
using zk-eq zk-eq-nminus3
by auto
then have 722 > 0
using n-geq-4
by (metis add-sign-intros(4) atLeastLessThan-iff insert-subset leD nle-le
power-one-over x'y’ zero-le-power zero-less-divide-1-iff zero-less-numeral)
then have z2-in-01: %22 € {0..<1}
using z2-in by auto
{ assume yk < n — 3
then have interval-helper-helper: (> i = 1..yk + 1. 1 /(2 "izreal)) < (D24
=1.zk. 1 /(2 i:real))
using zk-eq f-gteq-0-sum-gt
by (metis Suc-eq-plusi less-eg-real-def linorder-neqE-nat not-less-eq zero-less-divide-1-iff
zero-less-numeral zero-less-power)
then have z’ > y’
using z’-in y'-in interval-helperjof (> i = 1.yk + 1.1 / (2 ~ i:real))
Ooi= 1.2k 1/ (2 " ireal))]
by blast
then have Fualse using z'y’
by auto
} moreover { assume yk = n — 3
then have y2: p 2y2 = p' y' A y2 € {(D i e {1..9n—2}. 1/(27%))..<1}
using yk-eqg-nminus3
by auto
then have y2-in-01: ?y2 € {0..<1}
using all-rotation-intervals-between-0and1-strict[of ?n—2]
by fastforce
then have %22 # ?y2
using z'y’ by auto
moreover have { %22, ?y2} C {0..<1}
using z2-in-01 y2-in-01 by fast
ultimately have %22 # %y2 A {22, ?y2} C {0..<1} A p %22 = p %y2
using p-z’ y2 z'y’ by presburger
thenhave 3 zy . s Ay A{z, y} C{0.<I} Apz=py
by meson
then have Fulse
using assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by fastforce
} moreover { assume yk-gt: yk > n — 3
then have y3: p 2y3 = p' y’
using yk-gt-nminus3 by auto
have y3-in: ?y3 € {0..<1/2}

74

using yk-gt yk-gt-nminus3

by auto
then have y3-in-01: ?y3 € {0..<1}
by auto
have (>°i = 1.lengthvis — 2.1 /(2 "dureal)) > O i=1..1.1/ (2~
i:real))

using n-geq-4 f-gteq-0-sum-gt[OF all-pows-of-2-pos,of 1 length vis — 2]
by fastforce
then have (Y i = I..length vts — 2. 1 / (2 " iureal)) > 1/2
by simp
then have %22 # ?y3
using y3-in z2-in by auto
moreover have {722, 7y3} C {0..<1}
using z2-in-01 y3-in-01 by fast
ultimately have %22 # ?y3 A {%22, 2y3} C {0..<1} A p %22 = p %y3
using p-z’ y3 z'y’ by presburger
thenhave 3 zy. 2 £ yA{z, y} C{0.<I} Apz=py
by meson
then have Fulse
using assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by fastforce

ultimately have Fulse
using not-less-iff-gr-or-eq by auto
} moreover { assume zk-gt: zk > n — 3
then have p-z”: p 228 = p’' 2’
using zk-gt-nminus3 by auto
have z3-in: 223 € {0..<1/2}
using zk-gt zk-gt-nminus3
by auto
then have z3-in-01: %23 € {0..<1}
by auto
{ assume yk < ?n — 3
then have (3> i = 1.2k. 1 / (2 "dureal)) > O i=1.yk+ 1.1 /(2"
i:real))
using zk-gt f-gteq-0-sum-gt[of Ai. 1 / (2 " iureal) xk yk]
proof —
obtain rr :: nat = real where
fl:¥YBx.mmB-x =1/ 2" B-x
by force
then have f2: Vn. 0 < rrn
by simp
have yk < zk
using <length vts — 8 < zky <yk < length vts — &) order-le-less-trans by
blast
then show ?thesis
using f2 f1 by (metis (no-types) Suc-eq-plusl f-gteq-0-sum-gt less-eq-real-def
nat-neq-iff not-less-eq order.refl)

75

qed
then have z’ > 3’
using z'-in y'-in interval-helper[of (3 i=1..yk+ 1.1 /(2 "izreal)) (34
= 1.ak. 1 /(2 iureal))]
by blast
then have Fulse using z'y’
by auto
} moreover
{ assume yk-gt: yk > n — 8
then have p-y" p 2498 = p' ¢y’
using yk-gt-nminus3 by auto
have y3-in: ?y3 € {0..<1/2}
using yk-gt yk-gt-nminus3
by auto
then have y3-in-01: ?y3 € {0..<1}
by auto
have (z' — (3 i = I..length vts — 2. 1 | 2 " i) #
(y'— O i=1.lengthvts — 2. 1] 2 1))
using z'y’ by auto
then have ?z3 # ?y3 by auto
moreover have {?z8, ?y3} C {0..<1}
using z3-in-01 y3-in-01 by fast
ultimately have 223 # 2y3 A {%23, 2y3} C {0.<1} A p %23 = p %48
using p-z’ p-y’ z'y’
by presburger
thenhave 3 zy . 2 #yA{z,y} C{O0.<I}Apz=py
by meson
then have Fulse
using assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by fastforce

ultimately have Fulse by linarith
}
ultimately show Fulse by linarith
qed

lemma one-rotation-is-polygon:
fixes p :: R-to-R2
fixes 7 :: nat
assumes poly-p: polygon p and
p-is-path: p = make-polygonal-path vts and
p’-is: p’ = make-polygonal-path (rotate-polygon-vertices vts 1)
(is p’ = make-polygonal-path ?vts’)
shows polygon p’
proof—
have polygonal-path p’ using p’-is by (simp add: polygonal-path-def)
moreover have closed-path p’
using p’-is unfolding rotate-polygon-vertices-def closed-path-def

76

by (metis (no-types, opaque-lifting) Nil-is-append-conv append-self-conv? diff-Suc-1
hd-append2 hd-conv-nth length-append-singleton make-polygonal-path-gives-path not-Cons-self
nth-Cons-0 nth-append-length pathfinish-def pathstart-def polygon-pathfinish poly-
gon-pathstart)
moreover have simple-path p’
using one-polygon-rotation-is-loop-free
by (metis make-polygonal-path-gives-path p'-is p-is-path poly-p polygon-of-def
sitmple-path-def)
ultimately show #?thesis unfolding polygon-def by simp
qed

lemma rotation-is-polygon:

fixes p :: R-to-R2

fixes i:: nat

assumes polygon p and

p = make-polygonal-path vts

shows polygon (make-polygonal-path (rotate-polygon-vertices vts i))

using assms
proof (induct 7)

case (

then show ?case using rotate0 unfolding rotate-polygon-vertices-def

by (smt (23) assms(2) butlast.simps(1) butlast-conv-take eq-id-iff have-wraparound-vertex
hd-append2 hd-conv-nth rotate-polygon-vertices-def rotate-polygon-vertices-same-set
self-append-conv2 the-elem-set)
next

case (Suc 17)

then show ?case using one-rotation-is-polygon arb-rotation-as-single-rotation

by metis

qed

lemma polygon-rotate-mod:
fixes vts :: (real”2) list
assumes n = length vts
assumes n > 2
assumes hd vts = last vts
shows rotate-polygon-vertices vts (n — 1) = vts
proof—
let %vts’ = rotate (n — 1) (butlast vts)
have rotate-polygon-vertices vts (n — 1) = vts’ Q [uvts10]
unfolding rotate-polygon-vertices-def by metis
moreover have ?vts’ = butlast vts using assms by simp
moreover have ... = rotate 0 (butlast vts) by simp
moreover then have ... @Q [...!0] = rotate-polygon-vertices vts 0
unfolding rotate-polygon-vertices-def by metis
moreover have ... = uts
unfolding rotate-polygon-vertices-def using assms
by (metis (no-types, lifting) Suc-le-eq calculation(8) hd-conv-nth length-butlast
length-greater-0-conv nat-1-add-1 nth-butlast order-less-le-trans plus-1-eq-Suc pos2
snoc-eq-iff-butlast zero-less-diff)

77

ultimately show ¢thesis by argo
qed

lemma polygon-rotate-mod-arb:

fixes vts :: (real”2) list

assumes n = length vts

assumes n > 2

assumes hd vts = last vts

shows rotate-polygon-vertices vts ((n — 1) x i) = vts
proof (induct 7)

case (

then show ?case using polygon-rotate-mod

by (metis append.right-neutral append-Nil assms(1) assms(2) assms(3) id-apply
length-butlast mult-zero-right rotate0 rotate-append rotate-polygon-vertices-def)
next

case (Suc 17)

then have vts = rotate-polygon-vertices vts ((n — 1) * i) using Suc.prems by
argo

also have ... = rotate-polygon-vertices vts ((n — 1) * Suc 17)

using polygon-rotate-mod assms(1) assms(2) assms(3) calculation rotation-sum

by (metis mult-Suc-right)

finally show ?case by argo

qed

lemma unrotation-is-polygon:
fixes p :: R-to-R2
fixes i:: nat
assumes polygon (make-polygonal-path (rotate-polygon-vertices vts 7))
(is polygon (make-polygonal-path ?vts’))
p = make-polygonal-path vts
hd vts = last vts
shows polygon p
proof—
have len-vts: length vts > 2
using assms polygon-vertices-length-at-least-4 rotate-polygon-vertices-same-length
by (metis (no-types, opaque-lifting) Suc-1 Suc-eq-numeral Suc-le-lessD diff-is-0-eq’
eval-nat-numeral(2) gr-implies-not0 length-append-singleton length-butlast length-rotate
not-less-eq-eq rotate-polygon-vertices-def)

let ?n = length vts — 1
obtain k where k: kx%n >
using len-vts
by (metis Suc-1 Suc-le-eq add-0 div-less-iff-less-mult le-add2 less-diff-conv)
let 2j = kx?n — i
have j-i-n: 9j + ¢ = kx?n using k by simp

have rotate-polygon-vertices ?vts’ ?j = rotate-polygon-vertices vts (2j +)

using rotation-sum[of vts i ?n] by (simp add: add.commute rotation-sum)
also have ... = rotate-polygon-vertices vts (k*?n) using assms j-i-n by presburger

78

also have ... = vts using polygon-rotate-mod-arb len-vts assms by (metis mult.commute)
finally show ?thesis using rotation-is-polygon assms by metis
qed

lemma rotated-polygon-vertices:
assumes vts’ = rotate-polygon-vertices vts j
assumes hd vts = last vts
assumes length vts > 2
assumes j < i A ¢ < length vts
shows vts | i = vts’ ! (i —)
using assms
proof (induct j arbitrary: vts vts’)
case ()
then show ?case
by (metis Suc-1 Suc-le-eq diff-is-0-eq diff-zero hd-conv-nth id-apply length-butlast
linorder-not-le list.size(3) nth-butlast rotatel rotate-polygon-vertices-def snoc-eq-iff-butlast)
next
case (Suc j)
then have vts’ = rotate-polygon-vertices (rotate-polygon-vertices vts 1) j
by (metis plus-1-eq-Suc rotation-sum)
moreover have ...I(i — Suc j) = (rotate-polygon-vertices vts 1)!(i — 1)
using Suc.hyps Suc.prems(8) Suc.prems(4) Suc-1 Suc-diff-le Suc-leD diff-Suc-Suc
hd-conv-nth length-append-singleton length-butlast length-rotate nth-butlast rotate-polygon-vertices-def
snoc-eq-iff-butlast zero-less-Suc
by (smt (23) One-nat-def Suc.prems(1) Suc.prems(2) Suc-eq-plusl Suc-le-eq
arb-rotation-as-single-rotation calculation diff-diff-cancel diff-is-0-eq diff-less-mono
diff-zero not-less-eq-eq plus-1-eq-Suc rotated-polygon-vertices-helper2)
moreover have ... = vtsli using rotated-polygon-vertices-helper2
by (metis Suc.prems(2) Suc.prems(3) Suc.prems(4) add-leD1 le-add-diff-inverse2
less-diff-conv plus-1-eq-Suc)
ultimately show ?case
by presburger
qed

lemma polygon-path-image:
assumes poly-p: polygon p
assumes p-is-path: p = make-polygonal-path vts
shows path-image p = p* {0 ..< 1}
proof —
have vts-nonempty: vts # []
using polygon-at-least-3-vertices| OF poly-p p-is-path]
by auto
have at-0: p ‘ {0} = {pathstart p}
using p-is-path
by (metis image-empty image-insert pathstart-def)
have at-1: p ‘ {1} = {pathfinish p}
using p-is-path
by (simp add: pathfinish-def)
have same-point: p 0 = p 1

79

using assms unfolding polygon-def closed-path-def using polygon-pathstart| OF
vts-nonempty p-is-path]
using polygon-pathfinish|OF vts-nonempty p-is-path]
at-0 at-1 by auto
have Az. 2 € p ‘{0..1} = z € p ‘{0..<1}
proof —
fix z
assume z € p ‘{0..1}
then have 3k € {0..1}. pk ==z
by auto
then obtain k where k-prop: k € {0..1} Apk =1z
by auto
{assume *: k < 1
then have 3k € {0.<1}.pk ==z
using k-prop by auto
} moreover {assume *: k = I
then have p 0 =z
using same-point k-prop by auto
then have 3k € {0.<1}. pk ==z
by auto

ultimately have 3k € {0.<1}. pk ==
using k-prop
by (metis atLeastAtMost-iff order-less-le)
then show z € p ‘ {0..<1}
by auto
qed
then show ?thesis
unfolding path-image-def by auto
qed

lemma polygon-vts-one-rotation:
fixes p :: R-to-R2
assumes poly-p: polygon p and
p-is-path: p = make-polygonal-path vts and
p’-is: p’ = make-polygonal-path (rotate-polygon-vertices vts 1)
shows path-image p = path-image p’
proof —
let ?rotated-vts = (rotate-polygon-vertices vts 1)
have card (set vts) > 3
using polygon-at-least-3-vertices| OF poly-p p-is-path]
by auto
then have len-gt-eq3: length vts > 3
using card-length order-trans by blast
have same-len: length ?rotated-vts = length vts
unfolding rotate-polygon-vertices-def using length-rotate
by (metis One-nat-def Suc-pred card.empty length-append-singleton length-butlast
length-greater-0-conv list.set(1) not-numeral-le-zero p-is-path poly-p polygon-at-least-3-vertices)
then have len-rotated-gt-eq2: length ?rotated-vts > 2

80

using len-gt-eq3 by auto
have hi1: A\z. z € (path-image p) = z € path-image p’
proof —
fix z
assume z € (path-image p)
then have 3 k<length vts — 1. z € path-image (linepath (vts ! k) (vts ! (k +
1))
using p-is-path len-gt-eq3 make-polygonal-path-image-property|of vts x|
by auto
then obtain k& where k-prop: k < length vts — 1 N x € path-image (linepath
(vts 1 k) (vts ! (k + 1))
by auto
{assume *x: k = 0
have vts1: vts | 0 = ?rotated-vts | (length ?rotated-vts — 2)
unfolding rotate-polygon-vertices-def
using nth-rotate|of length ?rotated-vts — 2 butlast vts 1]
by (metis (no-types, lifting) * One-nat-def Suc-pred butlast-snoc diff-diff-left
k-prop length-butlast lessI mod-self nat-1-add-1 nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def
same-len)
have (rotate 1 (butlast vts)) ! 0 = vts ! 1
using nth-rotate[of 0 butlast vts 1] len-gt-eq3
by (simp add: less-diff-conv mod-if nth-butlast)
then have vts2: vts | 1 = %rotated-vts | (length ?rotated-vts — 1)
unfolding rotate-polygon-vertices-def
by (metis butlast-snoc length-butlast nth-append-length)
then have path-image (linepath (vts ! k) (vts | (k + 1))) C path-image p’
using linepaths-subset-make-polygonal-path-imagelof vts 0]
len-rotated-gt-eq2 *
by (metis (no-types, lifting) One-nat-def Suc-eq-plusl Suc-pred diff-diff-left
diff-less k-prop less-numeral-extra(1) linepaths-subset-make-polygonal-path-image nat-1-add-1
p’-is same-len vtsl)
then have = € path-image p’
using k-prop vtsl vts2
by auto
}
moreover {assume x: k > 0
then have k-minus-prop: k — 1 < length (rotate-polygon-vertices vts 1) — 1
using same-len k-prop less-imp-diff-less
by presburger
then have vtsi: vis | k = Zrotated-vts | (k—1)
using nth-rotate[of k—1 butlast vts 1] len-gt-eq3
same-len
by (metis * One-nat-def Suc-pred butlast-snoc k-prop length-butlast mod-less
nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def)
have vts2: vts | (k+1) = Zrotated-vts | k
using nth-rotate|of k butlast vts 1] len-gt-eq3 k-minus-prop
by (metis (no-types, lifting) * Suc-eq-plus1 Suc-lel butlast-snoc have-wraparound-vertex
k-prop le-imp-less-Suc length-butlast mod-less mod-self nat-less-le nth-append-length
nth-butlast p-is-path plus-1-eq-Suc poly-p rotate-polygon-vertices-def same-len)

81

have path-image (linepath (?rotated-vts ! (k—1)) (2rotated-vts ! k)) C path-image
i

p
using linepaths-subset-make-polygonal-path-image| OF len-rotated-gt-eq2
k-minus-prop| p’-is
by (simp add: *)
then have z € path-image p’
using k-prop vtsl vts2
by auto
}
ultimately show z € path-image p’
by auto
qed
have h2: A\z. z € (path-image p’) = z € path-image p
proof —
fix z
assume z € (path-image p’)
then have Jk<length ?rotated-vts — 1. x € path-image (linepath (?rotated-vts
V'k) (Protated-vts ! (k + 1)))
using p'-is len-rotated-gt-eq2 make-polygonal-path-image-property|of ?rotated-vts
z]
by auto
then obtain k£ where k-prop: k < length ?rotated-vis — 1 A x € path-image
(linepath (2rotated-vts | k) (?rotated-vts | (k + 1)))
by auto
{assume *: k = length ?rotated-vts — 2
have vtsl: vts | 0 = %rotated-vts | (length ?rotated-vts — 2)
unfolding rotate-polygon-vertices-def
using nth-rotate[of length ?rotated-vts — 2 butlast vts 1]
by (metis x Suc-diff-Suc Suc-le-eq butlast-snoc k-prop len-rotated-gt-eq2
length-butlast mod-self nat-1-add-1 nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def
same-len zero-less-Suc)
have (rotate 1 (butlast vts)) ! 0 = vts ! 1
unfolding rotate-polygon-vertices-def
using nth-rotate[of 0 butlast vts 1] len-gt-eq3 len-rotated-gt-eq2
by (metis (no-types, lifting) One-nat-def Suc-le-eq diff-diff-left length-butlast
less-nat-zero-code mod-less not-gr-zero nth-butlast numeral-3-eq-3 plus-1-eq-Suc zero-less-diff)
then have vts2: ?rotated-vts | (k+1) = vts ! 1
unfolding rotate-polygon-vertices-def
by (metis x Suc-diff-Suc Suc-eq-plus1 Suc-le-eq len-rotated-gt-eq2 length-butlast
length-rotate nat-1-add-1 nth-append-length same-len)
have path-image (linepath (vts! 0) (vts! 1)) C path-image p
using linepaths-subset-make-polygonal-path-imagelof vts 0]
len-gt-eq3 = less-diff-conv p-is-path same-len
by auto
then have z € path-image p
using * vtsl vts2 k-prop
by auto
} moreover {assume *: k < length ?rotated-vts — 2
then have vis!: ?rotated-vts | k = vts | (k+1)

82

using nth-rotate[of k butlast vts 1] len-gt-eq3 *
same-len
by (smt (23) Suc-eq-plusl butlast-snoc diff-diff-left k-prop length-butlast
less-diff-conv mod-less nat-1-add-1 nth-butlast plus-1-eq-Suc rotate-polygon-vertices-def)
have vts2: ?rotated-vts | (k+1) = vts ! (k+2)
using nth-rotate[of k+1 butlast vis 1] len-gt-eq3 *
by (smt (verit, ccfu-threshold) One-nat-def Suc-le-eq add-Suc-right but-
last-snoc diff-diff-left have-wraparound-vertex len-rotated-gt-eq2 length-butlast less-diff-conv
mod-less mod-self nat-1-add-1 nat-less-le nth-append-length nth-butlast p-is-path
plus-1-eq-Suc poly-p rotate-polygon-vertices-def same-len)
have path-image (linepath (vts ! (k+1)) (vts ! (k + 2))) C path-image p
using linepaths-subset-make-polygonal-path-image[of vts k—+1]
len-gt-eq3 = less-diff-conv p-is-path same-len
by auto
then have = € path-image p
using vts1 vts2 k-prop
by auto
}
ultimately show z € path-image p
using k-prop Suc-eq-plusl add-le-imp-le-diff diff-diff-left len-rotated-gt-eq2
less-diff-conv2 linorder-neqE-nat not-less-eq one-add-one
by linarith
qed
then show ?thesis
using hl h2 by auto
qged

lemma polygon-vts-arb-rotation:
fixes p :: R-to-R2
assumes polygon p and
p = make-polygonal-path vts
shows path-image p = path-image (make-polygonal-path (rotate-polygon-vertices
vts 1))
using assms
proof (induct 7)
case ()
then show ?case unfolding rotate-polygon-vertices-def
by (metis One-nat-def arb-rotation-as-single-rotation polygon-vts-one-rotation
rotate-polygon-vertices-def rotation-is-polygon)
next
case (Suc 1)
let ?p’ = make-polygonal-path (rotate-polygon-vertices vts (Suc 1))
{assume *: i = 0
have path-image p = path-image ?p’
using Suc polygon-vts-one-rotation[of p vts
by (simp add: *)

moreover {assume *: { > (
have path-image p = path-image ?p’

83

using polygon-vts-one-rotation arb-rotation-as-single-rotation rotation-is-polygon

by (metis Suc.hyps Suc.prems(1) assms(2))
}
ultimately show ?case by auto
qed

10 Translating a Polygon

lemma linepath-translation:
linepath (Az. z + u) a) ((Az. z + u) b) = (Az. z + u) o (linepath a b)
proof—
let 2l = linepath ((Az. ¢ + u) a) ((Az. z + u) b)
let 21’ = (A\z. z + u) o (linepath a b)
have ?l z = ?l' z for z
proof—
have 21z = (1 — z) *g (a + u) + z *g (b + u) unfolding linepath-def by
stmp
also have ... = ((1 — z) *g a + z *g b) + u by (simp add: scaleR-right-distrib)
also have ... = ?l’ r unfolding linepath-def by simp
finally show ?thesis .
qed
thus ?thesis by fast
qed

lemma make-polygonal-path-translate:
assumes length vts > 2
shows make-polygonal-path (map (A\z. + u) vts) = (Az. z + u) o (make-polygonal-path
vts)
using assms
proof (induct length vts arbitrary: u vts)
case (
then show ?case by presburger
next
case (Suc n)
let 2vts’ = map (A\z. x + u) vts
let ?p’ = make-polygonal-path ?vts’
{ assume Sucn = 2
then obtain a b where ab: vts = [a, b]
by (metis (no-types, lifting) One-nat-def Suc.hyps(2) Suc-1 Suc-length-conv
length-0-conv)
then have ?vts’ = [(Az. = + u) a, (Az. z + u) b] by simp
then have ?%p’ = linepath (A\z. z + u) a) ((Az. z + u) b)
using make-polygonal-path.simps(3) by presburger
also have ... = (Az. z + u) o (linepath a b) using linepath-translation by auto
also have ... = (Az. z + u) o (make-polygonal-path vts) using ab by auto
finally have %case .
} moreover
{ assume *: Suc n > 2

84

then obtain a b ¢ rest where abc: vis = a # b # ¢ # rest
by (metis One-nat-def Suc.hyps(2) Suc-1 Suc-lel Suc-le-length-iff)

let ?vts-tl = tl vts

let ?p-tl = make-polygonal-path ?vts-tl
let 2vts’-tl = map (A\z. © + u) Pvts-tl
let ?p’-tl = make-polygonal-path ?vts’-tl

have ?vts’-tl = tl ?vts’ by (simp add: map-tl)
then have ?p’ = (linepath (2vts"0) (?vts'1)) +++ ?p’-tl
using make-polygonal-path.simps(4) abc by force
moreover have ?p’-tl = (Az. z + u) o (?p-tl) using Suc.hyps(1) Suc.hyps(2)
x by force
moreover have (linepath (?vts"l0) (?vts"'1)) = (Az. x + u) o (linepath a b)
using abc linepath-translation by auto
ultimately have ?case by (simp add: abc path-compose-join)
}
ultimately show ?case using Suc by linarith
qed

lemma translation-is-polygon:
assumes polygon-of p vts
shows polygon-of ((Az. + u) o p) (map (Az. z + u) vts) (is polygon-of ?p’
2uts’)
proof—
have length vts > 3
by (metis One-nat-def Suc-eq-plusl Suc-le-eq add-Suc-right assms nat-less-le nu-
meral-3-eq-3 numeral-Bit0 one-add-one polygon-of-def polygon-vertices-length-at-least-4)
then have *: ?p’ = make-polygonal-path ?vts’
using make-polygonal-path-translate assms unfolding polygon-of-def by force
moreover have polygon ?p’
proof—
have polygonal-path ?p’ unfolding polygonal-path-def using * by simp
moreover have simple-path ?p’
using assms unfolding polygon-of-def polygon-def
using simple-path-translation-eq[of u p]
by (metis add.commute fun.map-cong)
moreover have closed-path ?p’
proof—
have ?p’ 0 = p 0 + u by simp
moreover have ?p’ 1 = p 1 + u by simp
moreover have p 0 = p 1
using assms
unfolding polygon-of-def polygon-def closed-path-def pathstart-def pathfin-
ish-def
by blast
moreover have path ?p’ using make-polygonal-path-gives-path * by simp
ultimately show ?thesis
unfolding closed-path-def pathstart-def pathfinish-def

85

by argo
qed
ultimately show #thesis unfolding polygon-def by blast
qed
ultimately show #thesis unfolding polygon-of-def by blast
qed

11 Misc. properties

lemma tail-of-loop-free-polygonal-path-is-loop-free:
assumes loop-free (make-polygonal-path (z#tail)) (is loop-free ?p) and
length tail > 2
shows loop-free (make-polygonal-path tail) (is loop-free ?p’)
proof—
obtain y z tail’ where tail”: tail = y # z # tail’
by (metis One-nat-def Suc-1 assms(2) length-Cons list.ezhaust-sel list.size(3)
not-less-eq-eq zero-le)
have path ?p A path ?p’ using make-polygonal-path-gives-path by auto
have loop-free ?p using assms unfolding simple-path-def by auto
moreover have ?p = (linepath z y) +++ ?p’
using tail’ make-polygonal-path.simps(4) by (simp add: tail’)
moreover from calculation have loop-free ?p’
by (metis make-polygonal-path-gives-path not-loop-free-second-component path-join-path-ends)
ultimately show ?thesis
using make-polygonal-path-gives-path simple-path-def by blast
qed

lemma tail-of-simple-polygonal-path-is-simple:
assumes simple-path (make-polygonal-path (z#tail)) (is simple-path ?p) and
length tail > 2
shows simple-path (make-polygonal-path tail) (is simple-path ?p’)
using tail-of-loop-free-polygonal-path-is-loop-free unfolding simple-path-def
using assms(1) assms(2) make-polygonal-path-gives-path simple-path-def by blast

lemma interior-vtz-in-path-image-interior:
fixes vts :: (real™2) list
assumes z € set (butlast (drop 1 vts))
shows 3t. t € {0<..<1} A (make-polygonal-path vts) t = x
using assms
proof (induct vts rule: make-polygonal-path.induct)
case I
then show ?case by simp
next
case (2 a)
then show ?case by simp
next
case (3 ab)
then show ?Zcase by simp
next

86

case ih: (4 a b ¢ tail’)
let 2vts = a # b # ¢ # tail’
let 2tl = b # c # tail’
let ?p = make-polygonal-path ?vts
let ?p-tl = make-polygonal-path ?tl
{ assume z € set (butlast (drop 1 ?il))
then obtain ¢’ where t”: t' € {0<..<1} A ?p-tl t' = z using ih by blast
then have ?p ((t'+ 1)/ 2) ==z
unfolding make-polygonal-path.simps joinpaths-def
by (smt (verit, del-insts) field-sum-of-halves greater ThanLess Than-iff mult-2-right
not-numeral-le-zero zero-le-divide-iff)
moreover have (t'+ 1) / 2 € {0<..<1} using t’ by force
ultimately have ?case
by blast
} moreover
{ assume z ¢ set (butlast (drop 1 ?tl))
then have z = b
by (metis One-nat-def butlast.simps(2) drop0 drop-Suc-Cons ih.prems list.distinct(1)
set-ConsD)
then have ?p (1/2) = z unfolding make-polygonal-path.simps joinpaths-def
by (simp add: linepath-1")
moreover have ((1/2)::(real)) € ({0<..<1}::(real set)) by simp
ultimately have ?case by blast
}
ultimately show ?case by auto
qged

lemma loop-free-polygonal-path-vts-distinct:
assumes loop-free (make-polygonal-path vts)
shows distinct (butlast vts)
using assms
proof (induct vts rule: make-polygonal-path.induct)
case I
then show ?case by simp
next
case (2 a)
then show ?case by simp
next
case (3 a b)
then show ?case by simp
next
case ih: (4 a b c tail’)
let ?vts = a # b # c # tail’
let 2tl = b # ¢ # tail’
let ?p = make-polygonal-path ?vts
let ?p-tl = make-polygonal-path ?tl

have distinct (butlast ?tl)
using ih tail-of-loop-free-polygonal-path-is-loop-free by simp

87

moreover have a ¢ set (butlast ?tl)
proof(rule ccontr)
assume a-in: - a ¢ set (butlast ?l)
then have a € set (butlast (drop 1 ?vts)) by simp
then obtain ¢ where #: t € {0<..<I} A pt=a
using vertices-on-path-image interior-vtz-in-path-image-interior by metis
then show Fulse
using ¢h.prems unfolding simple-path-def loop-free-def
by (metis atLeastAtMost-iff greater ThanLess Than-iff less-eq-real-def less-numeral-extra(3)
less-numeral-extra(4) list.distinct(1) nth-Cons-0 path-defs(2) polygon-pathstart zero-less-one-class.zero-le-one)
qed
ultimately show ?case by simp
qed

lemma loop-free-polygonal-path-vts-drop1-distinct:
assumes loop-free (make-polygonal-path vts)
shows distinct (drop 1 vts)
proof —
let ?p = make-polygonal-path vts
let ?Zlast-uts = vts | ((length vts) — 1)
have distinct (butlast vts)
using assms loop-free-polygonal-path-vts-distinct
by auto
then have distinct-butlast: distinct (butlast (drop 1 vts))
by (metis distinct-drop drop-butlast)
{assume x: length vts > 1
have len-drop1: length (drop 1 vts) = (length vts) — 1
using * by simp
have simp-len: 1 + ((length vts) — 2) = (length vts) — 1
using * by simp
then have vts-access: vts | (1 + (length vts — 2)) = vits ! ((length vts) — 1)
by argo
have drop 1 vts | ((length vts) — 2) = vts ! (1 + (length vts — 2))
using * using nth-drop[of 1 vts (length vts) — 2] by auto
then have ?last-vts = (drop 1 vts) ! ((length vts) — 2)
using * simp-len vis-access by argo
then have ?last-vts = (drop 1 vts) ! (length (drop 1 vts) — 1)
using * len-dropl
using diff-diff-left nat-1-add-1 by presburger
then have dropl-is: drop 1 vts = (butlast (drop 1 vts))Q[?last-vts]
using x
by (metis append-butlast-last-id drop-eq-Nil leD length-butlast nth-append-length)
have last-vts-not-in: ?last-vts ¢ set (butlast (drop 1 vts))
proof(rule ccontr)
assume a-in: — ?last-vts ¢ set (butlast (drop 1 vts))
then have ?Zlast-vts € set (butlast (drop 1 vts)) by simp
then obtain ¢ where ¢: t € {0<..<1} A ?p t = Zlast-vts
using vertices-on-path-image interior-vtz-in-path-image-interior by metis

88

have vts ! (length vts — 1) = %p 1
using polygon-pathfinish[of vts ?p] *
by (metis list.size(3) not-one-less-zero pathfinish-def)
then show Fulse
using ¢ assms unfolding loop-free-def
by (metis atLeastAtMost-iff greater ThanLess Than-iff leD less-eq-real-def zero-less-one-class.zero-le-one)
qed
have Ab::(real™2) list. distinct b A a ¢ set b = distinct (b Q[a]) for a:real™2
by simp
then have ?thesis using last-vts-not-in dropl-is distinct-butlast by metis
}
then show ?thesis by force
qed

lemma simple-polygonal-path-vts-distinct:
assumes simple-path (make-polygonal-path vts)
shows distinct (butlast vts)
using assms loop-free-polygonal-path-vts-distinct
unfolding simple-path-def
by blast

lemma edge-subset-path-image:
assumes p = make-polygonal-path vts and
(i:int) € {0..<((length vts) — 1)} and
x = vtsli and
y = vtsl(i+1)
shows path-image (linepath x y) C path-image p (is ?zy-img C Zp-img)
using assms
proof (induct vts arbitrary: p i rule: make-polygonal-path.induct)
case I
then show ?case by simp
next
case (2 a)
then show ?case by simp
next
case (3 a b)
then show ?case by (simp add: nth-Cons’)
next
case th: (4 a b ctl)
let 2tl =0 # c # ¢l
let ?p-tl = make-polygonal-path (?l)
{ assume ¢ = 0
then have ?case
by (metis (mono-tags, lifting) ih(2) ih(4) th(5) Suc-eq-plusl UnCI list.distinct(1)
make-polygonal-path.simps(4) nth-Cons-0 nth-Cons-Suc path-image-join pathfin-
ish-linepath polygon-pathstart subsetl)
} moreover
{ assume i > 0

89

then have z = ?tl!l(i—1) by (simp add: ih.prems(3))

moreover have y = 2Ulli by (simp add: ih.prems(4))

moreover have ¢ — 1 € {0..<(length (?tl) — 1)} using ih.prems(2) by force

ultimately have ?zy-img C path-image ?p-tl using ih(1) by (simp add: <0 <
)

then have ?case

unfolding ih(2) make-polygonal-path.simps

by (smt (verit, ccfv-SIG) UnCI make-polygonal-path.simps(4) make-polygonal-path-gives-path

path-image-join path-join-path-ends subsetl subset-iff)

ultimately show ?case by linarith
qed

12 Properties of Sublists of Polygonal Path Vertex
Lists

lemma make-polygonal-path-image-append-var:
assumes length vtsl > 2
shows path-image (make-polygonal-path (vts1 @ [v])) = path-image (make-polygonal-path
vtsl +++ (linepath (vtsl ! (length vis1 — 1)) v))
using assms
proof (induct vtsl)
case Nil
then show “case by auto
next
case (Cons a vtsl)
{assume x: length visl = 1
then obtain b where vis! = [b]
by (metis Cons-nth-drop-Suc One-nat-def drop0 drop-eq-Nil le-numeral-extra(4)
less-numeral-extra(1))
then have path-image (make-polygonal-path ((a # vtsl) Q [v])) =
path-image (make-polygonal-path (a # vtsl) +++ linepath ((a # wvtsl) !
(length (a # vts1) — 1)) v)
using make-polygonal-path.simps
by simp
} moreover {assume x : length vts! > 1
then obtain b c vts1’ where vtsl = b # c # vtsl’
by (metis One-nat-def length-0-conv length-Cons less-numeral-extra(4) not-one-less-zero
remdups-adj.cases)
then have hl: make-polygonal-path ((a # vtsl) Q [v]) = (linepath a b) +++
(make-polygonal-path (vtsl @ [v]))
using make-polygonal-path.simps(4)
by auto
have path-image (make-polygonal-path (vts1 Q [v])) =
path-image (make-polygonal-path vtsl +++ linepath (vts1 ! (length visl — 1))
v)
using x Cons by auto
then have path-image (make-polygonal-path ((a # vts1) Q [v])) =

90

path-image (make-polygonal-path (a # vtsl) +++ linepath ((a # vtsl) ! (length
(a # vts1) — 1)) v)
using hl
by (metis (no-types, lifting) Cons.prems Suc-1 Suc-le-eq Un-assoc <vtsl = b # ¢
vts1"y add-diff-cancel-left’ append-Cons length-Cons list.discI make-polygonal-path.simps(4)
nth-Cons-0 nth-Cons-pos path-image-join pathfinish-linepath pathstart-linepath plus-1-eq-Suc
polygon-pathfinish polygon-pathstart zero-less-diff)
}
ultimately show ?case
by (metis Cons.prems Suc-1 add-diff-cancel-left’ le-neg-implies-less length-Cons
not-less-eq plus-1-eq-Suc)
qed

lemma make-polygonal-path-image-append-helper:
assumes length vtsl > 1 A length vts2 > 1
shows path-image (make-polygonal-path (vts! @Q [v] @ [v] @ vts2)) = path-image
(make-polygonal-path (vts1 Q [v] Q vEs2))
using assms
proof (induct vts1)
case Nil
then show ?case by auto
next
case (Cons a vtsl)
{ assume *: length visl = 0
have path-image (make-polygonal-path ([a] @ [v] Q vts2)) =
path-image ((linepath a v) +++ make-polygonal-path (v # vts2))
using make-polygonal-path.simps
by (metis Cons.prems One-nat-def append-Cons append-Nil append-take-drop-id
linorder-not-le list.distinct(1) list.exhaust not-less-eq-eq take-hd-drop)
then have path-image (make-polygonal-path ([a] @ [v] @ vts2)) =
path-image (linepath a v) U path-image (make-polygonal-path (v # vts2))
by (metis list.discI nth-Cons-0 path-image-join pathfinish-linepath polygon-pathstart)
have image-helper1: path-image (make-polygonal-path ([a] @Q [v] Q [v] @ vis2))
= path-image (linepath a v +++ make-polygonal-path (v # v # vts2))
by simp
have path-image (make-polygonal-path (v # v # vts2)) = path-image ((linepath
v v) +++ make-polygonal-path (v # vts2))
using make-polygonal-path.simps
by (metis Cons.prems One-nat-def append-Cons append-Nil append-take-drop-id
linorder-not-le list.distinct(1) list.exhaust not-less-eq-eq take-hd-drop)
moreover have ... = path-image (linepath v v) U path-image (make-polygonal-path
(v # vts2))
by (metis list.discI nth-Cons-0 path-image-join pathfinish-linepath poly-
gon-pathstart)
ultimately have image-helper2: path-image (make-polygonal-path (v # v #
vts2)) = {v} U path-image (make-polygonal-path (v # vts2))
by auto
have v € path-image (make-polygonal-path (v # vts2))
using vertices-on-path-image by fastforce

91

then have path-image (make-polygonal-path ([a] Q [v] @ [v] @ vis2)) =
path-image (make-polygonal-path ([a] @ [v] @ vts2))
using image-helper! image-helper?2
by (metis <path-image (make-polygonal-path ([a] @Q [v] @ vts2)) = path-image
(linepath a v) U path-image (make-polygonal-path (v # vts2))y insert-absordb in-
sert-is-Un list.simps(3) nth-Cons-0 path-image-join pathfinish-linepath polygon-pathstart)
}
moreover {assume *: length visl > 0
then have ind-hyp: path-image (make-polygonal-path (vts1 Q [v] @ [v] @ vts2))

path-image (make-polygonal-path (vts1 Q [v] @ vts2))
using Cons.hyps Cons.prems by linarith
obtain b vts3 where vtsi-is: vtsl = b#Hvts3
using *
by (metis x Cons-nth-drop-Suc drop0)
then have path-imagel: path-image (make-polygonal-path ((a # vtsl) @ [v] Q
[v] @ vts2)) =
path-image ((linepath a b) +++ make-polygonal-path (vts1 @ [v] @ [v] @
vts2))
by (smt (verit, best) Cons.prems Nil-is-append-conv append-Cons length-greater-0-conv
less-numeral-extra(1) list.inject make-polygonal-path.elims order-less-le-trans)
obtain ¢ d where bed: vis! Q [v] @ vts2 = b # ¢ # d
using vts1-is
by (metis append-Cons append-Nil neq-Nil-conv)
have path-image2: path-image (make-polygonal-path ((a # vtsl) Q [v] @ vts2))
= path-image ((linepath a b) +++ make-polygonal-path (vts1 Q [v] Q vEs2))
using make-polygonal-path.simps bed
by auto
have path-image (make-polygonal-path ((a # vts1) Q [v] Q [v] Q vts2)) =
path-image (make-polygonal-path ((a # vtsl) Q@ [v] Q vts2))
using ind-hyp path-imagel path-image2
by (smt (verit, del-insts) Nil-is-append-conv append-Cons nth-Cons-0 path-image-join
pathfinish-linepath polygon-pathstart vts1-is)
}
ultimately show ?case
using Cons.prems
by blast
qed

lemma make-polygonal-path-image-append:

assumes length vtsl > 2 A length vts2 > 2

shows path-image (make-polygonal-path (vts! @ vts2)) = path-image (make-polygonal-path
vtsl +++ (linepath (vts1 ! (length vts1 — 1)) (vts2 ! 0)) +++ make-polygonal-path
vts2)

using assms
proof (induct vtsl)

case Nil

then show ?case

by simp

92

next
case (Cons a vtsl)
{assume *: length vtsl = 1
then obtain b where vtsi-is: vtsl = [b]
by (metis Cons-nth-drop-Suc One-nat-def drop0 drop-eq-Nil le-numeral-extra(4)
less-numeral-extra(1))
then have make-polygonal-path ((a # vts1) Q vts2) = make-polygonal-path (a
b # vts2)
by simp
then have make-polygonal-path ((a # vtsl) @Q vts2) = (linepath a b) +++
(make-polygonal-path (b # vts2))
by (metis Cons.prems length-0-conv make-polygonal-path.simps(4) neq-Nil-conv
not-numeral-le-zero)
then have make-polygonal-path ((a # vtsl) @ vts2) = make-polygonal-path
(a # vtsl) +++ (make-polygonal-path (b # vts2))
using vts1-is make-polygonal-path.simps(3)
by simp
then have make-polygonal-path ((a # vtsl) Q vts2) = make-polygonal-path
(a # vtsl) +++ linepath b (vts2 ! 0) +++ make-polygonal-path vts2
using Cons.prems
by (smt (verit, ccfv-SIG) x Suc-1 add-diff-cancel-left’ diff-is-0-eq’ length-greater-0-conv
list.size(4) make-polygonal-path.elims make-polygonal-path.simps(4) nth-Cons-0 or-
der-less-le-trans plus-1-eq-Suc pos2 vtsl-is zero-neq-one)
then have make-polygonal-path ((a # vts1) Q vts2) =
make-polygonal-path (a # vtsl) +++
linepath ((a # vts1) ! (length (a # vtsl) — 1)) (vts2 ! 0) +4++ make-polygonal-path
vts2
using vts1-is
by simp
} moreover {assume x: length vtsl > 1
then obtain b c vts1’ where vts1’: vtsl = b # c # vtsl’
by (metis One-nat-def length-0-conv length-Cons less-numeral-extra(4) not-one-less-zero
remdups-adj.cases)
then have h1: make-polygonal-path ((a # vts1) Q vts2) = (linepath a b) +++
(make-polygonal-path (vtsl @ vts2))
using make-polygonal-path.simps(4)
by auto
have ind-h: path-image (make-polygonal-path (vtsl @ vts2)) =
path-image (make-polygonal-path vts1 +++
linepath (vts1 ! (length vts1 — 1)) (vts2 ! 0) +++ make-polygonal-path vts2)
using Cons * by linarith
then have path-image (make-polygonal-path ((a # vtsl) Q vts2)) = path-image
((linepath a b)) U path-image((make-polygonal-path visl +++
linepath (vts1 | (length vts1 — 1)) (vts2 ! 0) +++ make-polygonal-path vis2))
by (metis h1 make-polygonal-path-gives-path path-image-join path-join-path-ends)
then have path-image (make-polygonal-path ((a # vts1) Q vts2)) = (path-image
(linepath a b) U path-image (make-polygonal-path vtsl)) U
path-image((linepath (vts1 | (length vtsl — 1)) (vts2 ! 0) +4++ make-polygonal-path
vts2))

93

by (metis (no-types, opaque-lifting) * Un-assoc not-one-less-zero linepath-0'
list.size(3)
path-image-join pathstart-def pathstart-join polygon-pathfinish)
then have image-helper: path-image (make-polygonal-path ((a # vtsl) Q vts2))
= (path-image (make-polygonal-path (a # vts1))) U
path-image((linepath (vts1 ! (length vts1 — 1)) (vts2 ! 0) +++ make-polygonal-path
vts2))
by (metis neg-Nil-conv nth-Cons’ path-image-cons-union vts1’)
have vts! | (length vtsl — 1) = (a # vtsl) ! (length (a # vtsl) — 1)
using Cons.prems
by (simp add: Suc-le-eq)
then have path-image (make-polygonal-path ((a # vtsl) @ vts2)) =
path-image
(make-polygonal-path (a # vtsl) +++
linepath ((a # vts1) ! (length (a # vtsl) — 1)) (vts2 ! 0) +++ make-polygonal-path
vts2)
using image-helper
by (metis (no-types, lifting) Cons.prems length-greater-0-conv order-less-le-trans
path-image-join pathstart-join pathstart-linepath polygon-pathfinish pos2)

ultimately show ?case using Cons.prems
by fastforce
qed

lemma make-polygonal-path-image-append-alt:

assumes p = make-polygonal-path vts

assumes p! = make-polygonal-path vtsl

assumes p2 = make-polygonal-path vts2

assumes last vtsl = hd vts2

assumes length vtsl > 2 A length vts2 > 2

assumes vts = vtsl @ (¢l vts2)

shows path-image p = path-image (p1 +++ p2)
proof—

have path-image p = path-image p1 U path-image p2

by (smt (28) Nitpick.size-list-simp(2) One-nat-def Suc-1 assms diff-Suc-1

last-conv-nth length-greater-0-conv list. collapse list.sel(3) make-polygonal-path.elims
make-polygonal-path.simps(3) make-polygonal-path-image-append make-polygonal-path-image-append-var
nat-less-le not-less-eq-eq nth-Cons-0 order-less-le-trans path-image-join polygon-pathfinish
polygon-pathstart pos2 length-Cons length-tl path-image-cons-union pathfinish-linepath
pathstart-join sup.absorb-iff1 sup.absorb-iff2)

thus ?thesis

by (metis assms(2) assms(3) assms(4) assms(5) hd-conv-nth last-conv-nth

length-greater-0-conv order-less-le-trans path-image-join polygon-pathfinish polygon-pathstart
pos2)
qed

lemma cont-incr-interval-image:

fixes f :: real = real
assumes a < b

94

assumes continuous-on {a..b} f
assumes Vz € {a..b}. Vy € {a.b}. 2 <y — fa < fy
shows f{a..b} = {f a..f b}
proof—
have f{a..b} C {fa..f b}
proof (rule subsetl)
fix z
assume z € f{a..b}
then obtain ¢ where ¢ € {a..b} A ft = z by blast
moreover then have a < t A t < b by presburger
ultimately show z € {f a..f b} using assms(3) by auto
qed
moreover have {f a..f b} C f{a..b}
proof—
obtain ¢ d where f{a..b} = {c..d} using continuous-image-closed-interval
assms by meson
moreover then have fa € {c..d} using assms(1) by auto
moreover have fb € {c..d} using assms(1) calculation by auto
moreover have {f a..f b} C {c..d} using calculation by simp
ultimately show ¢thesis by presburger
qged
ultimately show ?thesis by blast
qed

lemma two-z-minus-one-image:
assumes f = (Azureal. 2xx — 1)
assumes a < b
shows f{a..0} = {f a..f b}
proof—
have continuous-on {a..b} f
proof—
have continuous-on {a..b} (Az::real. z) by simp
then have continuous-on {a..b} (Az::real. 2+x) using continuous-on-mult-const
by blast
thus continuous-on {a..b} f
unfolding assms using continuous-on-translation-eq(of {a..b} —1 (Az::real.
2xx)] by auto
qed
thus ?thesis using cont-incr-interval-image assms by force
qed

lemma vts-split-path-image:
assumes p = make-polygonal-path vts
assumes p! = make-polygonal-path vtsl
assumes p2 = make-polygonal-path vts2
assumes vtsl = take 1 vts
assumes vts2 = drop (i—1) vts
assumes n = length vts
assumes I < i Ai<n

95

assumes z = (27(i—1) — 1)/(27(i—1))
shows path-image p! = pq{0..x} A path-image p2 = p{z..1}
using assms
proof (induct i arbitrary: p pl p2 vts vtsl vts2 n x)
case (
then show ?case by linarith
next
case (Suc 17)
{ assume *: Suc i = 1
then obtain ¢ where a: vts! = [a]
using Suc.prems
by (metis One-nat-def gr-implies-not0 list.collapse list.size(3) take-eq-Nil
take-tl zero-neg-one)
moreover have vts2 = vts using * Suc.prems by force
ultimately have p! = linepath a a A p2 = p
using Suc.prems make-polygonal-path.simps by meson
moreover have r = 0 using Suc.prems * by simp
moreover have path-image pl = {a} using calculation by simp
moreover have p{0..0} = {p 0} by auto
moreover then have p{0..0} = {a} using Suc.prems
by (metis a gr0-conv-Suc list.discI nth-Cons-0 nth-take pathstart-def poly-
gon-pathstart take-eq-Nil)
moreover have path-image p1 = p{0..2} using calculation by presburger
moreover have path-image p2 = p{z..1} using calculation unfolding path-image-def
by fast
ultimately have ?case by blast
} moreover
{ assume *: Suc i > 1

let ?a = vts!0

let 2b = wvts!1

let 21 = linepath ?a ?b

let ?L = path-image ?1

let 2t = tl vts

let 2vtsl’ = take i 2t

let ?vts2’ = drop (i—1) %t

let ?p’ = make-polygonal-path 7t

let ?p1’ = make-polygonal-path ?vis1’
let ?p2’ = make-polygonal-path ?vis2’
let %z’ = ((2:real) (i—1)—1)/(27(i—1))
let ?P1’ = path-image ?p1’

let ?P2’ = path-image ?p2’

have i: 1 < i A i < length 2t

using Suc.prems x by (metis Suc-eg-plus1 length-tl less-Suc-eg-le less-diff-conv)
then have ih: ?P1' = 2p'{0..%22'} N 2P2' = 2p'{?2'..1}

using Suc.hypslof ?p’ ?2tl ?p1’ 2vts1’ ?p2’ 2vts2’ length ?tl ?x’] by presburger

let ?f = Az:real. 2xx — 1

96

have fr: ?fz = 72/
by (metis i Suc.prems(8) bounding-interval-helperl diff-Suc-1 summation-helper)

moreover have fhalf: ?f (1/2) = 0 by simp
moreover have f1: ?f 1 = 1 by simp
ultimately have f: 2f{z..1} = {?2'..1} A 2f{1/2..2} = {0..2z'}
using two-x-minus-one-image by auto
have z: 1/2 <z ANz < 1
by (smt (verit) divide-le-eq-1-pos divide-nonneg-nonneg fhalf fr two-realpow-ge-one)

have n > 3 using Suc.prems x by linarith
then have p: p = 2] +++ %p’
proof —
have f1: Vuvs. (vs::(real, 2) vec list) # [| V = 1 < Suc (length vs)
by simp
have 1 < Sucn
using Suc.prems(7) by linarith
then show ?Zthesis
by (smt (verit) f1 Suc-le-lessD i One-nat-def Suc.prems(6) Suc.prems(7)
Suc-less-eq «p = make-polygonal-path vtsy hd-conv-nth length-Cons length-tl less-Suc-eq
list.collapse list.exhaust make-polygonal-path.simps(4) nth-Cons-Suc zero-order(3))

qed
have p-to-p " Vy > 1/2.py=(%'0 2f) y
proof clarify
fix y :: real
assume *x: y > /2
{ assume *x: y = 1/2
then have p y = %b
by (smt (verit) fhalf joinpaths-def linepath-1" p)
moreover have ?fy = 0 using *x by simp
moreover have ?p’ 0 = %b
by (metis i One-nat-def Suc.prems(6) length-greater-0-conv length-tl
list.size(8) nth-tl pathstart-def polygon-pathstart zero-order(3))
ultimately have p y = (%p’ o 2f) y by simp
} moreover
{ assume *x: y > 1/2
then have p y = ?p’ (?f y) unfolding p joinpaths-def by simp
then have p y = (%p’ o ?f) y by force
}
ultimately show p y = (%p’ o ?f) y using * by fastforce
qed

have {0..z} ={0..1/2} U{1/2..2} using z by (simp add: ivl-disj-un-two-touch(4))
then have pq{0..2} = p{0..1/2} U p{1/2..2} by blast

also have ... = 7L U p{1/2..z}

proof—

97

have ?L C pq0..1/2}
proof (rule subsetl)
fix a
assume *: a € ?L
then obtain ¢ where ¢: t € {0..1} A ?lt = a unfolding path-image-def
by blast
then have p (t/2) = a unfolding p joinpaths-def by auto
moreover have ¢/2 € {0..1/2} using ¢ by simp
ultimately show a € p{0..1/2} by blast
qed
moreover have p{0..1/2} C ?L
proof (rule subsetl)
fix a
assume *: a € pq0..1/2}
then obtain ¢ where ¢ € {0..1/2} A p t = a by blast
moreover then have ?] (2xt) = p t unfolding p joinpaths-def by presburger
moreover have 2xt € {0..1} using calculation by simp
ultimately show a € ?L unfolding path-image-def by auto
qed
ultimately have ?L = p{0..1/2} by blast
thus ?thesis by presburger

qed

also have ... = 2L U (%p' o 2f){1/2..x} using p-to-p’ by simp
also have ... = 2L U ?p’{0..%z'} using f by (metis image-comp)
also have ... = ?L U ?P1’ using ih by blast

also have ... = path-image p1

proof—

have take i (tl vts) # [] by (metis i less-zeroE list.size(3) not-one-le-zero
take-eq-Nil2)
thus ?thesis using path-image-cons-union|of p1 vtsl ?p1’ 2vts1’ 2a ?b]
by (metis * Nitpick.size-list-simp(2) One-nat-def Suc.prems(2) Suc.prems(4)
Suc.prems(6) Suc.prems(7) bot-nat-0.extremum-strict hd-conv-nth length-greater-0-conv
nth-take nth-tl take-Suc take-tl)
qed
finally have 1: path-image p1 = p{0..2} by argo

have p{z.. 1}—(9p o ?f){x..1} using p-to-p’ x by simp

also have ... = 9p’{?z'..1} using f by (metis image-comp)
also have ... = ?P2’ using ih by presburger
also have ... = path-image p2

using path image-cons-union
by (metis Suc.prems(3) Suc.prems(5) diff-Suc-1 drop-Suc grO-implies-Suc i
linorder-neqE-nat not-less-zero not-one-le-zero)
finally have 2: path-image p2 = p{z..1} by argo

have ?case using 1 2 by fast

}

ultimately show ?case using Suc.prems by linarith
qed

98

lemma drop-i-is-loop-free:
fixes vts :: (real™2) list
assumes m = length vts
assumes 1 < m — 2
assumes vts’ = drop 7 vts
assumes p = make-polygonal-path vts
assumes p’ = make-polygonal-path vts’
assumes loop-free p
shows loop-free p’
using assms
proof (induct i arbitrary: vts’ p’)
case ()
then show ?case by simp
next
case (Suc 17)

let 2vts’’ = drop i vts
let ?p’’ = make-polygonal-path ?vts’
have ih: loop-free ?p”’
using Suc.hyps Suc.prems(2) Suc.prems(6) Suc-leD assms(1) assms(4) by
blast

obtain a b where ab: 2vis’’ = a # vts’ A b= vis’! 0
by (metis Cons-nth-drop-Suc Suc.prems(3) constant-linepath-is-not-loop-free
drop-eq-Nil ih linorder-not-less make-polygonal-path.simps(1))
then have %vts’”’ = a # b # (vts’ ! 1) # (drop 2 vts')
by (smt (verit, ccfo-threshold) Cons-nth-drop-Suc Suc.prems(2) Suc.prems(3)
Suc-1 Suc-diff-Suc Suc-le-eq assms(1) diff-Suc-1 diff-is-0-eq drop-drop le-add-diff-inverse
length-drop nat-le-linear not-less-eq-eq zero-less-Suc)
then have ?p”’ = (linepath a b) +++ p’
using make-polygonal-path.simps(4)[of a b vts’ ! 1 drop 2 vts'] Suc.prems by
(simp add: ab)
moreover have pathfinish (linepath a b) = pathstart p’
using Suc.prems ab
by (metis constant-linepath-is-not-loop-free ih make-polygonal-path.simps(2)
pathfinish-linepath polygon-pathstart)
ultimately have arc p’ using simple-path-joinE
by (metis ih make-polygonal-path-gives-path simple-path-def)
then show ?case using arc-imp-simple-path simple-path-def by blast
qed

lemma joinpaths-tl-transform:
assumes f = (Az:real. 2%z — 1)
assumes pathfinish g1 = pathstart g2
assumes p = gl +++ g2
assumes z > 1/2
shows p z = g2 (f x)

proof—

99

{ assume z = 1/2
moreover then have fx = 0 using assms by fastforce
ultimately have p z = pathfinish g1 A g2 (f x) = pathfinish g1
using assms unfolding pathfinish-def pathstart-def joinpaths-def by force
then have p x = g2 (f z) using assms unfolding joinpaths-def by simp
} moreover
{ assume z > 1/2
then have p z = ¢2 (f z) using assms unfolding joinpaths-def by simp
}
ultimately show p z = g2 (f) using assms by fastforce
qed

lemma joinpaths-tl-image-transform:

assumes [= (Az:real. 2%z — 1)

assumes pathfinish g1 = pathstart g2

assumes p = gl +++ g2

assumes 1/2 <aAa<b

shows p{a..b} = g2{f a..f b}
proof—

have Vz € {a..b}. p x = g2 (f) using assms joinpaths-ti-transform[of f g1 g2
p] by force

then have p{a..b} = (g2 o f){a..b} by simp

also have ... = g2 a..f b} using two-z-minus-one-image by (metis assms(1,4)
image-comp)

finally show ?thesis .
qed

lemma vts-sublist-path-image:

assumes p = make-polygonal-path vts

assumes p’ = make-polygonal-path vts’

assumes vts’ = take j (drop i vts)

assumes m = length vts

assumes n = length vts’

assumes k =i + j

assumes k< m — 1 N2 <j

assumes z1 = (277 — 1)/(27%)

assumes z2 = (27(k—1) —)/(Tk—1))

shows path-image p’ = p{xl..22}

using assms
proof (induct i arbitrary: vts p p’ vts’ m k x1 z2)

case ()

then show ?case using vts-split-path-image|of p drop 0 vts p’ vts' - - j m x2)

by (metis (no-types, opaque-lifting) Suc-diff-le add-0 cancel-comm-monoid-add-class. diff-cancel
diff-is-0-eq div-by-1 drop.simps(1) drop-0 le-add-diff-inverse length-drop less-one
linorder-not-le plus-1-eq-Suc pos2 power.simps(1))
next

case (Suc 17)

let 2vts-tl = tl vts

100

let Zvts-tl’ = take j (drop i vts-tl)

let ?p-tl = make-polygonal-path ?vts-tl
let ?m’ = m—1

let 2k’ = i+j

let ?z1’ = (27 — 1)/(27%)

let 22" = (27(?k'—1) — 1)/(27(%'-1))
let 9f = \x. 2%z — 1

have vts’ = ?vts-tl’ using Suc.prems by (metis drop-Suc)
then have p’ = make-polygonal-path ?vts-tl’ using Suc.prems by argo
then have h: path-image p' = ?p-tl{?x1’.. 222"}
using Suc.hyps|of ?p-tl ?vts-tl p’ Pvts-tl’ ?m’ 2k’ 2x1’ 222'] Suc.prems
by (smt (verit, ccfv-SIG) Suc-eq-plusl add-diff-cancel-right’ add-leD1 diff-diff-left
diff-is-0-eq drop-Suc le-add-diff-inverse length-tl linorder-not-le not-add-less2)

let %a = vts!0
let 96 = vts!1
let 21 = linepath ?a ?b
have p: p = 2l ++4 ?p-tl
proof—
have length vts > 3 using Suc.prems by linarith
then obtain ¢ w where vis = %a # ?b # ¢ # w
by (metis Cons-nth-drop-Suc One-nat-def Suc-le-eq drop0 numeral-3-eq-3
order-less-le)
thus ?thesis
using Suc.prems make-polygonal-path.simps(4)[of ?a ?b ¢ w] by (metis
list.sel(3))
qed
moreover have z1
moreover have z2
using Suc.prems
by (smt (verit, best) Nat.diff-add-assoc2 One-nat-def add-Suc-shift add-diff-cancel-left’
add-mono-thms-linordered-semiring(2) diff-add-cancel dual-order.trans group-cancel.rule0
numeral-One one-le-numeral one-le-power plus-1-eq-Suc power-increasing real-shrink-le
trans-le-add2)
moreover have pathfinish ?l = pathstart ?p-tl
by (metis One-nat-def Suc.prems(4) Suc.prems(6) Suc.prems(7) Suc-neq-Zero
add-is-0 diff-is-0-eq’ diff-zero length-tl linorder-not-less list.size(3) nth-tl pathfin-
ish-linepath polygon-pathstart)
ultimately have p{z1..22} = %p-ti{?f z1..9f 22}
using joinpaths-tl-image-transformlof 2f 21 ?p-tl p x1 x2] by presburger
also have ... = ?p-tl{%z1'..%22'}
by (metis (no-types, lifting) Nat.add-diff-assoc Suc.prems(6—9) add.commute
add-leD1 bounding-interval-helper1 diff-Suc-1 le-add2 nat-1-add-1 plus-1-eq-Suc sum-
mation-helper)

1/2 using Suc.prems by (simp add: plus-1-eg-Suc)

>
> xl

also have ... = path-image p’ using ih by blast
finally show ?Zcase by argo
qed

101

lemma one-append-simple-path:
fixes vts :: (real™2) list
assumes vts = vts’ @Q [7]
assumes n = length vts
assumes n > 3
assumes p = make-polygonal-path vts
assumes p’ = make-polygonal-path vts’
assumes simple-path p
shows simple-path p’
using assms
proof (induct n arbitrary: vts vts’ p p’)
case ()
then show ?case by linarith
next
case (Suc n)
{ assume *: Suc n = 3
then obtain a b ¢ where abc: vis = [a, b, ¢] A vts’ = [a, b]
using Suc.prems
by (smt (28) Suc-le-length-iff Suc-length-conv append-Cons diff-Suc-1 drop0
length-0-conv length-append-singleton numeral-3-eq-3)
then have p’ = linepath a b
by (simp add: Suc.prems(5))
moreover have a # b using loop-free-polygonal-path-vts-distinct Suc.prems
by (metis abc butlast-snoc distinct-length-2-or-more simple-path-def)
ultimately have ?case by blast
} moreover
{ assume *: Suc n > 3
then obtain a b tl’ where ab: vts’ = a # I’ A b = t1"0 using Suc.prems
by (metis Suc-le-length-iff Suc-le-mono length-append-singleton numeral-3-eq-3)
moreover then have p = make-polygonal-path (a # (I’ Q [2])) using Suc.prems
by auto
moreover then have p: p = linepath a b +++ make-polygonal-path (t’ Q [2])
using make-polygonal-path.simps ab
by (smt (verit, ccfv-threshold) * Cons-nth-drop-Suc One-nat-def Suc.prems(1)
Suc.prems(2) Suc-1 Suc-less-eq append-Cons drop0 length-Cons length-append-singleton
length-greater-0-conv list.size(8) not-numeral-less-one numeral-3-eq-3)
moreover then have simple-path ... using Suc.prems by meson
ultimately have pre-ih: simple-path (make-polygonal-path (tl' Q [2]))
using Suc.prems(1) Suc.prems(2) Suc.prems(3) ab tail-of-simple-polygonal-path-is-simple
by simp
then have ih: simple-path (make-polygonal-path tl’)
using Suc.hyps * Suc.prems(1) Suc.prems(2) ab by force
have simple-path ((linepath a b) +++ make-polygonal-path t1')
proof—
let 291 = linepath a b
let 292 = make-polygonal-path tl’
let ?G1 = path-image ?g1
let ?G2 = path-image 292
have pathfinish 292 = last tl’

102

by (metis constant-linepath-is-not-loop-free ih last-conv-nth make-polygonal-path.simps(1)
polygon-pathfinish simple-path-def)
also have ... = vts | (length vts — 2)
by (metis ab Suc.prems(1) Suc-1 constant-linepath-is-not-loop-free diff-Suc-1
diff-Suc-Suc ih impossible-Cons last.simps last-conv-nth length-Cons length-append-singleton
list.discI make-polygonal-path.simps(1) nle-le nth-append order-less-le simple-path-def)
finally have pathfinish-g2: pathfinish %92 = vts ! (length vts — 2) .

have pathfinish ?2g1 = pathstart 292
by (metis ab constant-linepath-is-not-loop-free ih linepath-1' make-polygonal-path.simps(1)
pathfinish-def polygon-pathstart simple-path-def)
moreover have arc g1
by (metis Suc.prems(6) p arc-linepath constant-linepath-is-not-loop-free
not-loop-free-first-component simple-path-def)
moreover have arc 792
proof —
have pathstart g2 = b
using calculation(1) by auto
moreover have b = vts!1
by (metis ab One-nat-def Suc.prems(1) Suc.prems(2) Suc.prems(3)
Suc-le-eq length-append-singleton not-less-eq-eq nth-Cons-Suc nth-append numeral-3-eq-3)
moreover have last tl’ # vts!1
using loop-free-polygonal-path-vts-distinct Suc.prems
by (metis pre-ih ab append-Nil append-butlast-last-id butlast-conv-take but-
last-snoc calculation(2) constant-linepath-is-not-loop-free hd-conv-nth ih index-Cons
index-last list.collapse make-polygonal-path.simps(2) simple-path-def take0)
ultimately have pathfinish 292 # b
using pathfinish-g2 <pathfinish (make-polygonal-path tl') = last tly by
presburger
thus ?thesis
using <pathstart (make-polygonal-path t1") = by arc-simple-path ih by blast
qed
moreover have ?G1 N ?G2 C {pathstart %92}
proof (rule subsetl)
let 2z = ((2::real) (n—1) — 1)/(2(n—1))
have g1: ?G1 = p{0..1/2}
proof—
have take 2 vts = [a, b]
by (smt (verit) * One-nat-def Suc.prems(1) Suc.prems(2) Suc-1 ab ap-
pend-Cons butlast-snoc drop0 drop-Suc-Cons length-append-singleton less-Suc-eqg-le
not-less-eq-eq nth-butlast numeral-3-eq-3 plus-1-eq-Suc same-append-eq take-Suc-Cons
take-Suc-eq take-add take-all-iff)
then have %91 = make-polygonal-path (take 2 vts)
using make-polygonal-path.simps by presburger
moreover have I < n using * by linarith
ultimately have ?GI1 = p{0..(27(2—-1) — 1)/(27(2-1))}
using vts-split-path-image
by (metis x Suc.prems(2) Suc.prems(4) Suc-1 Suc-leD Suc-lessD
eval-nat-numeral(3) order.refl)

103

thus ?thesis by force
qged
have g2: ?G2 = p{1/2..%2}
proof—
have I’ = take (n — 1) (drop 1 vts)
using ab Suc.prems(1) Suc.prems(2) by simp
moreover then have 992 = make-polygonal-path (take (n — 1) (drop 1
vts)) by blast
ultimately have ?G2 = p{(271 — 1)/(271)..%2}
using vts-sublist-path-imagelof p vts 292 t1' n—1 1 - - n ((2::real) "1 —
1)/(271) ?7]
by (metis * Suc.prems(1) Suc.prems(2) Suc.prems(4) Suc-eq-plusi
ab add-0 add-Suc-shift add-le-imp-le-diff diff-Suc-Suc diff-zero eval-nat-numeral(8)
length-Cons length-append less-Suc-eq-le list.size(3) order.refl)
thus ?thesis by simp
qged
have 1/2 < %z
using * bounding-interval-helper|[of n—1] Suc.prems
by (smt (verit) One-nat-def diff-Suc-Suc less-diff-conv numeral-3-eq-3
one-le-power plus-1-eq-Suc power-one-right power-strict-increasing-iff real-shrink-le
add-2-eq-Suc diff-add-inverse less-trans-Suc numeral-eq-Suc pos2 self-le-power zero-less-diff)
moreover have 7z < 1 by auto
ultimately have z: 1/2 < 22 A %2 < 1 by blast

fix z
assume z € ?G1 N ?G2
then obtain tI 2 where t1t2: t1 € {0..1/2} N t2 € {1/2..22} AN p tl =
T Aptl ==
by (smt (verit, del-insts) g1 g2 Int-iff imageE path-image-def)
moreover have (11 =t2)V (I =0 ANt2=1)V (il =1 Nt2=0)
proof—
have t1 € {0..1} A t2 € {0..1}
by (meson t1t2 z atLeastAtMost-iff dual-order.trans less-eq-real-def)
thus ?thesis
using Suc.prems(6) unfolding simple-path-def loop-free-def using t1t2
by presburger
qged
moreover have t1 = 1/2 using calculation by force
ultimately have = = pathstart 292
by (metis ab constant-linepath-is-not-loop-free dual-order.refl eq-divide-eqg-numerall (1)
ih joinpaths-def make-polygonal-path.simps(1) mult.commute p pathfinish-def pathfin-
ish-linepath polygon-pathstart simple-path-def zero-neg-numeral)
thus z € {pathstart g2} by simp
qed
ultimately show ?thesis using arc-join-eq ih by (metis arc-imp-simple-path)
qed
moreover have vis’ = a # tl’ using Suc.prems ab by argo
moreover have p’ = (linepath a b) +++ make-polygonal-path tl’
proof —

104

have Suc (length tl') = length vts’ by (simp add: ab)
then show ?thesis
by (metis (no-types) * Cons-nth-drop-Suc Suc.prems(1) Suc.prems(2)
Suc.prems(5) Suc-lessD ab drop-0 length-append-singleton make-polygonal-path.simps(4)
not-less-eq numeral-3-eq-3)
qed
ultimately have ?case by blast
}
ultimately show ?case using Suc.prems by linarith
qed

lemma take-i-is-loop-free:
fixes vts :: (real™2) list
assumes n = length vts
assumes 2 < i AT <n
assumes vts’ = take 7 vts
assumes p = make-polygonal-path vts
assumes p’ = make-polygonal-path vts
assumes loop-free p
shows loop-free p’
using assms
proof (induct n—i arbitrary: vts’ i p p’)
case ()
moreover then have p = p’ by auto
ultimately show ?case by argo
next
case (Suc x)

/

let 7' = i+1
let ?q-vts = take (i+1) vts
let ?q = make-polygonal-path ?q-vts

have n— %’ = z using Suc.hyps(2) by linarith
then have loop-free ?q using Suc.hyps Suc.prems(2) Suc.prems(4) Suc.prems(6)
assms(1) by auto
moreover obtain z where ?q = make-polygonal-path (vts’ Q [2])
unfolding Suc.prems(3)
by (metis Suc.hyps(2) Suc-eg-plusl assms(1) take-Suc-conv-app-nth zero-less-Suc
zero-less-diff)
ultimately show loop-free p’
unfolding Suc.prems using one-append-simple-path unfolding simple-path-def
by (metis One-nat-def Suc.prems(2) Suc-1 add-diff-cancel-right’ append-take-drop-id
assms(1) diff-diff-cancel length-append length-append-singleton length-drop make-polygonal-path-gives-path
not-less-eq-eq numeral-3-eq-3)
qed

lemma sublist-is-loop-free:

fixes vts :: (real”2) list
assumes p = make-polygonal-path vts

105

assumes p’ = make-polygonal-path vts’
assumes loop-free p
assumes m = length vts
assumes n = length vts’
assumes sublist vts’ vts
assumes n > 2 Am > 2
shows loop-free p’
proof—
obtain pre post where vts: vts = pre Q vts’ Q post using assms(6) unfolding
sublist-def by blast
then have vts’ @ post = drop (length pre) vts using vts by simp
moreover have vts’ = take (length vts’) (vts’ @Q post) using vts by simp
moreover have loop-free (make-polygonal-path (vts’ @Q post))
using drop-i-is-loop-free assms calculation
by (smt (verit, del-insts) One-nat-def Suc-1 Suc-leD diff-diff-cancel drop-all
le-diff-iff " length-append length-drop list.size(3) nat-le-linear not-numeral-le-zero
numeral-3-eq-3 trans-le-add1)
ultimately show ?thesis
using take-i-is-loop-free assms
by (metis sublist-append-rightI sublist-length-le)
qed

lemma diff-points-path-image-set-property:
fixes a b:: real 2
assumes a # b
shows path-image (linepath a b) # {a, b}
proof —
have not-a: (linepath a b) (1/2) # a
by (smt (verit) add-diff-cancel-left’ assms divide-eq-0-iff linepath-def scaleR-cancel-left
scaleR-collapse)
have not-b: (linepath a b) (1/2) # b
by (smt (verit, ccfv-SIG) add-diff-cancel-right’ assms divide-eq-1-iff linepath-def
scaleR-cancel-left scaleR-collapse)
have (linepath a b) (1/2) € path-image (linepath a b)
unfolding path-image-def by simp
then show “thesis using not-a not-b by blast
qed

lemma polygonal-path-vertex-t:
assumes p = make-polygonal-path vts
assumes n = length vts
assumes n > I
assumes (0 <1 Ai<n— 1
assumes z = (277 — 1)/(27%)
shows vitsli = p x
using assms

proof (induct i arbitrary: p vts n x)
case (
then show ?case

106

by (metis bot-nat-0.extremum cancel-comm-monoid-add-class. diff-cancel diff-is-0-eq
div-0 less-nat-zero-code list.size(8) pathstart-def polygon-pathstart power-0)
next

case (Suc 17)

let ?vts’ = tl vis
let ?p’ = make-polygonal-path ?vts’
let 22/ = (27 — 1)/(27%)

have p z = %p’ %z’

proof—
let 2a = vts!0
let 20 = wvis!1

let 21 = linepath ?a ?b
have n > 8 using Suc.prems by linarith
then have length ?vts’ > 2 by (simp add: Suc.prems(2))
then have p = 2] +++ ?p’
using Suc.prems make-polygonal-path.simps(4)[of ?a ?b ?vts''1 drop 2 ?vts]
by (metis (no-types, opaque-lifting) Cons-nth-drop-Suc Suc-1 bot-nat-0.not-eq-extremum
diff-Suc-1 diff-is-0-eq drop-0 drop-Suc less-Suc-eq zero-less-diff)
moreover have pathfinish ?1 = pathstart ?p’
by (metis One-nat-def <2 < length (tl vts)s length-greater-0-conv nth-tl or-
der-less-le-trans pathfinish-linepath polygon-pathstart pos2)
moreover have (\z:real. 2 x x — 1) z = %z’
using Suc.prems(5) Suc-eq-plusl bounding-interval-helper! diff-Suc-1 le-add2
summation-helper
by presburger
ultimately show ?thesis using joinpaths-ti-transform[of Ax. 2xx — 1 21 %p' p
7
by (smt (verit, del-insts) divide-nonneg-nonneg half-bounded-equal two-realpow-ge-one)
qed
moreover have vts!(i+1) = %vts’li using Suc.prems by (simp add: nth-tl)
moreover have ?vtsli = ?p’ %z’ using Suc.hyps Suc.prems by force
ultimately show ?case by simp
qed

lemma loop-free-split-int:

assumes p = make-polygonal-path vts N\ loop-free p

assumes vtsl = take i vts

assumes vts2 = drop (i—1) vts

assumes c! = make-polygonal-path vtsi

assumes c2 = make-polygonal-path vts2

assumes n = length vts

assumes I < i Ai<n

shows (path-image c1) N (path-image ¢2) C {pathstart c1, pathstart c2}

(is 2C1 N 2C2 C {pathstart c1, pathstart c2})

proof (rule subsetl)

let 2t = ((2::real) (i—1) — 1)/(27(i—1))

107

fix z
assume z € ?C1 N ?2C2
moreover have clc2: ?C1 = p{0..%t} N 2C2 = p{?t..1}
using vis-split-path-image assms polygon-of-def by metis
ultimately obtain ¢I ¢2 where t1t2: t1 € {0..2t} N2 € {?t..1} Aptl =z
A p t2 = = by auto
moreover have t1 € {0..1} A t2 € {0..1} using calculation by force
moreover have (11 =t2)V (t1 =0 Nt2 =1)
using assms(1) calculation unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by fastforce
ultimately have = € {p ?t, p 0} by fastforce
moreover have p 9t = pathstart c2
using assms polygonal-path-vertex-t
by (smt (verit, ccfv-SIG) Cons-nth-drop-Suc diff-less-mono le-eq-less-or-eq
length-drop less-imp-diff-less less-trans-Suc less-zeroE linorder-neqE-nat list.size(8)
nth-Cons-0 numeral-1-eq-Suc-0 numerals(1) polygon-of-def polygon-pathstart)
moreover have p 0 = pathstart c1 using assms
by (metis One-nat-def diff-is-0-eq diff-zero linorder-not-less nth-take path-
start-def polygon-pathstart take-eq-Nil zero-less-Suc)
ultimately show z € {pathstart c1, pathstart c2} by blast
qged

lemma loop-free-arc-split-int:
assumes p = make-polygonal-path vts N loop-free p N\ arc p
assumes vtsl = take 7 vts
assumes vts2 = drop (i—1) vts
assumes cl = make-polygonal-path vtsi
assumes c2 = make-polygonal-path vts2
assumes n = length vts
assumes 1 < i Ai<n
shows (path-image c1) N (path-image c2) C {pathstart c2}
(is ?C1 N 2C2 C {pathstart c2})
proof(rule subsetl)
let 7t = ((2::real) (i—1) — 1)/(27(i—1))

fix z
assume z € ?C1 N ?2C2
moreover have c1c2: ?C1 = p{0..9t} N 2C2 = p{?..1}
using vts-split-path-image assms polygon-of-def by metis
ultimately obtain ¢I ¢2 where t1t2: t1 € {0..2t} AN t2 € {?t..1} Aptl =z
A p t2 = = by auto
moreover have t1 € {0..1} A t2 € {0..1} using calculation by force
moreover have (t1 =t2)V (t1 = 0 Nt2 = 1)
using assms(1) calculation unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by fastforce
moreover then have t1 = t2
using assms(1) unfolding arc-def using calculation(1) inj-on-contraD by

108

fastforce
ultimately have z € {p ?t} by fastforce
moreover have p 7t = pathstart c2
using assms polygonal-path-vertex-t
by (smt (verit, ccfv-SIG) Cons-nth-drop-Suc diff-less-mono le-eg-less-or-eq
length-drop less-imp-diff-less less-trans-Suc less-zeroE linorder-neqE-nat list.size(8)
nth-Cons-0 numeral-1-eq-Suc-0 numerals(1) polygon-of-def polygon-pathstart)
ultimately show z € {pathstart c2} by fast
qed

lemma loop-free-append:
assumes p = make-polygonal-path vts
assumes pl = make-polygonal-path vtsl
assumes p2 = make-polygonal-path vts2
assumes vts = vtsl @ (¢l vts2)
assumes loop-free p1 N loop-free p2
assumes path-image pl N path-image p2 C {pathstart p1, pathstart p2}
assumes last vts2 # hd vtsl — path-image pl N path-image p2 C {pathstart
p2}
assumes last vtsl = hd vts2
assumes arc pl A arc p2
shows loop-free p
using assms
proof (induct length vts1 arbitrary: p pl p2 vts vtsl vts2 rule: less-induct)
case less
have 1: length vis1 > 2
using less
by (metis Suc-1 arc-distinct-ends constant-linepath-is-not-loop-free diff-is-0-eq’
make-polygonal-path.simps(1) not-less-eq-eq polygon-pathfinish polygon-pathstart)
moreover have length vts2 > 2
using less.prems
by (metis One-nat-def Suc-1 Suc-lel arc-distinct-ends diff-Suc-1 length-greater-0-conv
make-polygonal-path.simps(1) nat-less-le pathfinish-linepath pathstart-linepath poly-
gon-pathfinish polygon-pathstart)
ultimately have length vts > 3 using less assms(4) by auto
{ assume *: length vis] = 2
then obtain « b where vts! = [a, b]
by (metis 1 Cons-nth-drop-Suc One-nat-def Suc-1 drop0 drop-eq-Nil lessl pos2)
then have pi: p! = linepath a b
using less make-polygonal-path.simps(3) by metis
have p: p = p1 +++ p2
using pl less
by (smt (verit) «vtsl = [a, b]> append-Cons assms(4) constant-linepath-is-not-loop-free
last-ConsL last-ConsR list.exhaust-sel list.inject list.simps(3) make-polygonal-path.elims
self-append-conv?2)
have b: pathstart p2 € path-image p1 N path-image p2
by (metis Intl less(3,4,6,9) constant-linepath-is-not-loop-free hd-conv-nth
last-conv-nth make-polygonal-path.simps(1) pathfinish-in-path-image pathstart-in-path-image
polygon-pathfinish polygon-pathstart)

109

{ assume pathstart pl = pathfinish p2
then have ?case using simple-path-join-loop-eqlof p2 p1] less.prems
by (metis make-polygonal-path-gives-path p path-join-eq simple-path-def)
} moreover
{ assume xx: pathstart p! # pathfinish p2
then have path-image p1 N path-image p2 = {pathstart p2}
using less.prems b
by (metis constant-linepath-is-not-loop-free empty-subsetl hd-conv-nth in-
sert-subset last-conv-nth make-polygonal-path.simps(1) polygon-pathfinish polygon-pathstart
subset-antisym)
then have ?case
using arc-join-eq[of p1 p2]
by (metis less(2,4,10) arc-imp-simple-path arc-join-eg-alt make-polygonal-path-gives-path
p path-join-path-ends simple-path-def)

ultimately have ?case by blast
} moreover
{ assume x: length visl > 2
then have len-p1: length vts1 > 3 by linarith
then obtain a b vts-tl where ab: vts = a # vts-tl A b = hd vts-tl
by (metis <3 < length vtsy length-0-conv list.collapse not-numeral-le-zero)
have vts1-char: vtsl = (vtsl | 0) # (visl | 1) # (visl | 2) # (drop 3 vtsl)
using len-p1
by (metis 1 Cons-nth-drop-Suc One-nat-def Suc-1 drop0 length-greater-0-conv
linorder-not-less list.size(3) not-less-eq-eq not-numeral-le-zero numeral-3-eq-3)
then have tail-vtsI-char: tl vtsl = (visl | 1) # (vtsl | 2) # (drop 3 vtsl)
by (metis list.sel(3))

let 2l = linepath a b

let 2vtsi-tl = tl vtsl

let ?p1-tl = make-polygonal-path ?vtsi-tl
let 2vts2-tl = tl vts2

let ?p2-tl = make-polygonal-path ?vts2-tl
let ?p-tl = make-polygonal-path vts-tl

have p: p = 21 +++ ?p-tl
unfolding less.prems(1)
by (smt (verit, ccfv-SIG) Suc-le-length-iff <3 < length vts» ab list.discl
list.sel(1) list.sel(8) make-polygonal-path.elims numeral-3-eq-3)
have pi1: p1 = 2l +4++ p1-t
using ab unfolding less.prems(2)
by (smt (verit, ccfv-SIG) x Nitpick.size-list-simp(2) One-nat-def Suc-1 Suc-le-eq
hd-append?2 less.prems(4) list.sel(1) list.sel(3) make-polygonal-path.elims nat-less-le
tl-append?)

have pI-img: path-image ?] N path-image ?p1-tl = {pathstart ?p1-tl}

by (metis arc-join-eg-alt less.prems(2) less.prems(9) make-polygonal-path-gives-path
pl path-join-path-ends)

110

have vts-tl = ?vts1-tl @ (¢l vts2)
using less.prems(4) ab
by (metis * length-greater-0-conv list.sel(3) order.strict-trans pos2 tl-append?2)
moreover have loop-free ?p1-tl N loop-free p2
using <3 < length vtsl» less.prems(2) less.prems(5) sublist-is-loop-free by
fastforce
moreover have path-image ?p1-tl N path-image p2 C {pathstart p2}
proof—
have path-image ?p1-tl C path-image pl1
by (metis (no-types, opaque-lifting) x Suc-1 Suc-lessD length-tl less.prems(2)
list.collapse list.size(3) order.refl path-image-cons-union sup.bounded-iff zero-less-diff
zero-order(3))
then have path-image ?p1-tl N path-image p2 C {pathstart p1, pathstart p2}
using less by blast
moreover have pathstart pl ¢ path-image ?p1-tl
proof (rule ccontr)
assume - pathstart p1 ¢ path-image ?p1-tl
then have pathstart p! € path-image ?p1-tl by blast
thus Fulse
by (metis (no-types, lifting) Intl arc-def arc-simple-path less(10) make-polygonal-path-gives-path
pl pl-img path-join-path-ends pathstart-in-path-image pathstart-join simple-path-joinFE
singletonD)
qed
ultimately have path-image ?p1-tl N path-image p2 C {pathstart p2} by
blast
thus “thesis by blast
qed
moreover then have last vis2 # hd ?vts1-tl
— path-image ?p1-tl N path-image p2 C {pathstart p2} by blast
moreover have last ?vts1-tl = hd vts2
by (metis * Suc-1 drop-Nil drop-Suc-Cons last-drop last-tl less.prems(8)
list.collapse)
moreover have arc ?p1-tl A arc p2
by (smt (verit, best) = Nitpick.size-list-simp(2) Suc-1 arc-imp-simple-path
constant-linepath-is-not-loop-free diff-Suc-Suc diff-is-0-eq leD length-greater-0-conv
length-tl less.prems(2) less.prems(5) less.prems(9) list.sel(3) make-polygonal-path.elims
make-polygonal-path-gives-path order.strict-trans path-join-path-ends pos2 simple-path-joinE)
ultimately have ih1: loop-free ?p-tl
using less.hyps|of vts1-tl ?p-tl vis-tl ?p1-tl p2 vis2] x less.prems(3) by
fastforce

have p-tl-img: path-image ?p-tl = path-image ?p1-tl U path-image p2

by (metis (no-types, lifting) = Suc-1 Suc-le-eq <2 < length vts2s «last (tlvtsl) =
hd vts2» <vts-tl = tl vts1 @ tl vts2» hd-conv-nth last-conv-nth length-greater-0-conv
length-tl less.prems(3) less-diff-conv make-polygonal-path-image-append-alt order-less-le-trans
path-image-join plus-1-eq-Suc polygon-pathfinish polygon-pathstart pos2)

have 1: length [a, b] < length vtsl using <3 < length vtsl» by fastforce
moreover have 2: p = make-polygonal-path vts using less.prems(1) by auto

111

moreover have 3: 7l = make-polygonal-path [a, b] by simp
moreover have /: ?p-tl = make-polygonal-path vts-tl using less by simp
moreover have 5: vts = [a, b] @ ¢l vts-tl
using ab <3 < length vts) append-eq-Cons-conv by fastforce
moreover have 6: loop-free 2l N loop-free ?p-tl
proof—
have sublist [a, b] vts!
by (metis (no-types, opaque-lifting) 1 Cons-nth-drop-Suc Suc-lessD ab ap-
pend-Cons drop0 length-Cons less.prems(4) list.sel(1) list.sel(3) list.size(3) sub-
list-take take0 take-Suc-Cons)
then have loop-free (make-polygonal-path [a, b))
using sublist-is-loop-free * less.prems(2) less.prems(5) by fastforce
then have loop-free ?] using make-polygonal-path.simps(3) by simp
thus ?thesis using ih1 by simp
qed
moreover have 9: last [a, b] = hd vts-tl by (simp add: ab)
moreover have 10: arc ?l A arc ?p-tl
proof—
have pathstart ?p-tl = b
by (metis 6 ab constant-linepath-is-not-loop-free hd-conv-nth make-polygonal-path.simps(1)
polygon-pathstart)
moreover have pathfinish ?p-tl # b
proof (rule ccontr)
assume — pathfinish ?p-tl # b
have pathfinish ?p-tl = pathfinish p2
by (smt (verit) 5 9 Nil-tl <2 < length vts2) - pathfinish (make-polygonal-path
vts-tl) # by ab arc-distinct-ends last-append last-conv-nth last-tl length-tl less.prems(3)
less.prems(4) less.prems(9) list.size(3) not-numeral-le-zero polygon-pathfinish poly-
gon-pathstart)
moreover have b € path-image p1
by (metis list.size(3) 1 Cons-nth-drop-Suc Suc-lessD UnCI ab append-eq-conv-conj
drop0 hd-append2 hd-conv-nth length-Cons less.prems(2) less.prems(4) list.distinct(1)
list.sel(3) path-image-cons-union pathstart-in-path-image polygon-pathstart ti-append2)
moreover have b # pathstart p1
by (metis (no-types, lifting) 1 6 ab constant-linepath-is-not-loop-free
dual-order.strict-trans hd-append?2 hd-conv-nth length-greater-0-conv less.prems(2)
less.prems(4) list.sel(1) list.size(3) polygon-pathstart)
moreover have b #£ pathfinish p2
by (metis (no-types, lifting) Int-insert-right-if1 arc-distinct-ends cal-
culation(2) calculation(3) insert-absorb insert-iff insert-not-empty less.prems(6)
less.prems(9) pathfinish-in-path-image subset-iff)
ultimately show Fulse
using <— pathfinish (make-polygonal-path vts-tl) # by by fastforce
qed
ultimately have pathstart ?p-tl # pathfinish ?p-tl by simp
then have arc ?p-tl
using ih1 arc-def loop-free-cases make-polygonal-path-gives-path by metis
moreover have arc ?l by (metis 6 arc-linepath constant-linepath-is-not-loop-free)
ultimately show ?thesis by blast

112

qed
moreover have 7: path-image ?l N path-image ?p-tl C {pathstart ¢, pathstart
Zp-tl}
proof—
have path-image ?l C path-image pl1
by (metis Un-iff <loop-free (make-polygonal-path (tl vts1)) A loop-free
P2y «uts-tl = tl vis1 Q tl vts2» ab constant-linepath-is-not-loop-free hd-append2
hd-conv-nth make-polygonal-path.simps(1) pl path-image-join pathfinish-linepath
polygon-pathstart subsetl)
then have path-image 2l N path-image p2 C {pathstart p1, pathstart p2}
using less.prems(6) by auto
moreover have pathstart p2 ¢ path-image ¢l
by (smt (verit, ccfo-threshold) 10 Int-insert-left-if1 <arc (make-polygonal-path
(¢l vtsl)) A arc p2» <last (tl vtsl) = hd vts2> <loop-free (make-polygonal-path (&l
vts1)) A loop-free p2» arc-def arc-distinct-ends arc-join-eq-alt constant-linepath-is-not-loop-free
hd-conv-nth insert-absorb last-conv-nth less.prems(3) less.prems(9) make-polygonal-path.simps(1)
p1 path-join-eq pathfinish-in-path-image polygon-pathfinish polygon-pathstart single-
ton-insert-inj-eq’)
ultimately have path-image 71 N path-image ?p-tl C {pathstart p1, pathstart
?p1-tl}
using pl-img p-tl-img by blast
moreover have pathstart ?p1-tl = pathstart ?p-tl
by (metis 2 less.prems(2) make-polygonal-path-gives-path p p1 path-join-path-ends)
moreover have pathstart pI = pathstart ¢l by (simp add: p1)
ultimately show ?thesis by argo
qged
moreover have 8: last vts-tl # hd [a, b]
— path-image ¢l N path-image ?p-tl C {pathstart ?p-tl}
proof clarify
fix z
assume al: last vts-tl # hd [a, b]
assume a2: ¢ € path-image ?1
assume a3: x € path-image ?p-tl

have hd vts1 # last vts2
using less.prems
by (metis al vts-tl = tl vtsl Q tlvts2> ab arc-distinct-ends constant-linepath-is-not-loop-free
hd-append?2 last-appendR last-tl length-tl list.sel(1) list.size(3) make-polygonal-path.simps(1)
polygon-pathfinish polygon-pathstart)
then have p1-p2-int: path-image p1 N path-image p2 C {pathstart p2}
using less.prems by argo

have x # pathstart ?1
proof (rule ccontr)
assume xx: — z # pathstart ?1
have pathstart 7l ¢ path-image ?p1-tl
by (metis Int-iff arc-distinct-ends arc-join-eq-alt empty-iff insertE less.prems(2)
less.prems(9) make-polygonal-path-gives-path p1 path-join-path-ends pathstart-in-path-image)
then have pathstart ?l € path-image p2 using p1-img p-tl-img *x a8 by

113

blast
then have pathstart ?1 € path-image p1 N path-image p2
by (metis Intl p1 pathstart-in-path-image pathstart-join)
moreover have pathstart ?1 # pathstart p2
by (metis arc-distinct-ends constant-linepath-is-not-loop-free hd-conv-nth
last-conv-nth less.prems(2) less.prems(3) less.prems(5) less.prems(8) less.prems(9)
make-polygonal-path.simps(1) p1 pathstart-join polygon-pathfinish polygon-pathstart)
ultimately show Fualse using p1-p2-int by blast
qed
moreover have z = pathstart ?l V © = pathstart ?p-tl using 7 a2 a3 by
blast
ultimately show = = pathstart ?p-tl by fast
qed
ultimately have ?case using less.hyps[of [a, b] p vts ?1 ?p-tl vts-tl] by blast
}
ultimately show ?case using less 1 by linarith
qed

lemma sublist-path-image-subset:

assumes sublist vtsl vts2

assumes length vtsl > 1

shows path-image (make-polygonal-path vts1) C path-image (make-polygonal-path
vts2)
proof—

let ?p1 = make-polygonal-path visl

let ?p2 = make-polygonal-path vis2

let ?m = length vtsl

let %n = length vts2

have n-geg-m: %n > ?m by (simp add: assms(1) sublist-length-le)

have ?thesis if *: length vts1 = 1
proof—
have path-image ?p1 = {vts110}
by (metis Cons-nth-drop-Suc One-nat-def closed-segment-idem drop0 drop-eq-Nil
le-numeral-extra(4) make-polygonal-path.simps(2) path-image-linepath that zero-less-one)
moreover have vts1!0 € set vts2
by (metis assms(1) less-numeral-extra(1) nth-mem set-mono-sublist subsetD
that)
ultimately show ¢thesis
using vertices-on-path-image by force
qed
moreover have ?thesis if *: length vis1 > 2
proof—
obtain pre post where sublist: vts2 = pre Q vts1 @Q post
using assms(1) unfolding sublist-def by blast
let ?¢ = length pre
let ?2j = length vtsl
let 2%k = %0 + 7§
let %21 = (27%i — 1)/27(%i)::real

114

let %22 = (27(%k—1) — 1)/(27(%k—1))::real
let 90 =(2 (% —1)— 1)/ 2 (% — 1):real
have path-image ?p1 = ?p2 * {%z1..222} if *x: length post > 1
using sublist * xx vts-sublist-path-image[of ?p2 vts2 ?p1 visl 2§ 26 ?n ?m %k
?x1 722]
by fastforce
moreover have path-image ?p1 = %p2 ‘{%z1..1} if *x: length post = 0
proof—
have sublist: vts2 = pre @ vtsl using ** sublist by blast
moreover have vts] = drop ?i vts2 using sublist * by simp
moreover have 1 < % + 1 A % + 1 < length vts2 using sublist * *x by
stmp
ultimately show ?thesis
using vts-split-path-image|of ?p2 vts2 - - ?p1 vtsl ?i + 1 ?n ?x1] add-diff-cancel-right’
by metis
qed
moreover have ?p2 ¢ {%z1..2z2} C path-image ?p2 A ?p2 ‘ {%x1..1} C
path-image ?p2
proof—
have {?x1..222} C {0..1} A {?21..1} C {0..1} by simp
thus “thesis unfolding path-image-def by blast
qed
ultimately show ?thesis by (metis less-one linorder-not-le)
qed
ultimately show ?thesis using assms by linarith
qged

lemma integral-on-edge-subset-integral-on-path:

assumes p = make-polygonal-path vts and
(i:int) € {0..<((length vts) — 1)} and
x = vtsli and
y = vts!(i+1)

shows {v. integral-vec v A v € path-image (linepath x y)}
C {w. integral-vec v A v € path-image p}

using assms edge-subset-path-image by blast

lemma sublist-pair-integral-subset-integral-on-path:
assumes p = make-polygonal-path vts and
sublist [z, y] vts
shows {v. integral-vec v A v € path-image (linepath z y)}
C {wv. integral-vec v A v € path-image p}
using assms integral-on-edge-subset-integral-on-path
proof—
obtain pre post where vts: vts = pre @ [z, y| @ post using assms(2) sublist-def
by blast
let ?¢ = length pre
have z = vts! 7] using vts by simp
moreover have y = vts!(% + 1)
by (metis vts add.right-neutral append-Cons nth-Cons-Suc nth-append-length

115

nth-append-length-plus plus-1-eg-Suc)

moreover have 7 € {0..<((length vts) — 1)} using vts by force

ultimately show ?thesis using assms(1) integral-on-edge-subset-integral-on-path
by auto
qed

lemma sublist-integral-subset-integral-on-path:
assumes length ell > 2
assumes p = make-polygonal-path vts and
sublist ell vts
shows {v. integral-vec v A v € path-image (make-polygonal-path ell)}
C {w. integral-vec v A v € path-image p}
proof—
obtain pre post where vts: vts = pre @Q ell Q post using assms(3) sublist-def
by blast
then have len-vts: length vts > 2
using assms(1)
by auto
let ?¢ = length pre
have v € path-image p if *: v € path-image (make-polygonal-path ell) for v
proof —
have Jj::nat. v € path-image (linepath (ell ! §) (ell ! (j+1))) A j+1 < length
ell
using * polygonal-path-image-linepath-union assms(1)
by (meson less-diff-conv make-polygonal-path-image-property)
then obtain j where v-in: v € path-image (linepath (ell ! §) (ell ! (j+1)))
j+1 < length ell
by auto
then have ell-at: ell | j = vts | (j + length pre) A ell ! (j+1) = vts ! (j + 1
+ length pre)
using vts
by (simp add: nth-append)
then have v-in2: v € path-image (linepath (vis! (j + length pre)) (vts ! (j +
length pre + 1)))
using v-in(1) by simp
have j + 1 + length pre < length vts
using ell-at v-in(2) vts by auto
then have j-plus: j + length pre < length vts — 1
by auto
then show ?thesis using v-in2 linepaths-subset-make-polygonal-path-image| OF
len-vts j-plus] assms(1)
assms(2) by auto
qed
then show ?thesis by blast
qed

13 Reversing Polygonal Path Vertex List

lemma rev-vts-path-image:

116

shows path-image (make-polygonal-path (rev vts)) = path-image (make-polygonal-path
vts)
proof —
{ assume length vts < 1
then have ?thesis
by (smt (verit, best) One-nat-def Suc-length-conv le-SucE le-zero-eq length-0-conv
rev.simps(1) rev-singleton-conv)
} moreover
{ fix z
assume *: x € path-image (make-polygonal-path (rev vts)) A length vts > 2
then obtain k& where k-prop: k<length (rev vts) — 1 A z € path-image (linepath
(rev vts | k) (rev vts ! (k + 1)))
using make-polygonal-path-image-property|of rev vts| by auto
have p1: rev vts | k = vts | (length vts — k — 1)
using rev-nth
by (metis Suc-lessD <k < length (rev vts) — 1 A z € path-image (linepath
(rev vts | k) (rev vts ! (k + 1)))» add.commute diff-diff-left length-rev less-diff-conv
plus-1-eq-Suc)
have p2: rev vts | (k + 1) = vts ! (length vts — k — 2)
using rev-nth[of k+1 vts] k-prop
by force
then have z € path-image (linepath (vts ! (length vts — k — 1)) (vts ! (length
vts — k — 2)))
using k-prop pl p2 by auto
then have z € path-image (linepath (vts ! (length vts — k — 2)) (vts | (length
vts — k — 1)))
using reversepath-linepath path-image-reversepath
by metis
then have z € path-image (make-polygonal-path vts)
using linepaths-subset-make-polygonal-path-image * k-prop
by (smt (verit, best) Nat.diff-add-assoc add.commute add-diff-cancel-left’
diff-le-self length-rev less-Suc-eq less-diff-conv linorder-not-less nat-1-add-1 nat-neg-iff
plus-1-eq-Suc subsetD)
} moreover
{ fix z
assume *: ¢ € path-image (make-polygonal-path vts) A length vts > 2
then obtain k where k-prop: k<length vts — 1 A x € path-image (linepath
(vts 1 k) (vts ! (k + 1))
using make-polygonal-path-image-property|of vts] by auto
have p1: vts | k = (rev vts) ! (length vts — k — 1)
using rev-nth k-prop
by (metis Suc-eq-plus1 Suc-lessD diff-diff-left length-rev less-diff-conv rev-rev-ident)
have p2: vts ! (k + 1) = (rev vts) ! (length vts — k — 2)
using rev-nth[of k+1]
by (smt (verit) Suc-eq-plusl add-2-eq-Suc’ diff-diff-left k-prop length-rev
less-diff-conv rev-rev-ident)
then have z € path-image (linepath (rev vts | (length vts — k — 2)) (rev vts !
(length vts — k — 1)))
using reversepath-linepath path-image-reversepath

117

by (metis k-prop p1)
then have z € path-image (make-polygonal-path (rev vts))
using linepaths-subset-make-polygonal-path-image k-prop *
by (smt (verit, best) Suc-1 Suc-diff-Suc Suc-eq-plusl Suc-le-eq Suc-lessD
bot-nat-0.not-eq-extremum diff-commute diff-diff-left diff-less length-rev less-numeral-extra(1)
subsetD zero-less-diff)
}
ultimately show #?thesis by force
qed

lemma rev-vts-is-loop-free:
assumes p = make-polygonal-path vts
assumes loop-free p
shows loop-free (make-polygonal-path (rev vts))
using assms
proof (induct length vts arbitrary: p vts)
case (
then show ?case by simp
next
case (Suc n)
then have Suc n > 2
by (metis One-nat-def Suc-length-conv constant-linepath-is-not-loop-free le-SucE
le-add1 le-numeral-Suc length-greater-0-conv list.size(3) make-polygonal-path.simps(2)
numeral-One plus-1-eq-Suc pred-numeral-simps(2) semiring-norm(26))
moreover
{ assume *: Suc n = 2
then obtain a b where ab: p = linepath a b
using Suc.prems make-polygonal-path.simps(8)
by (metis (no-types, opaque-lifting) Cons-nth-drop-Suc One-nat-def Suc.hyps(2)
Suc-1 diff-Suc-1 drop-0 drop-Suc length-0-conv length-tl zero-less-Suc)
moreover then have a # b using Suc.prems(2) constant-linepath-is-not-loop-free
by blast
ultimately have loop-free (linepath b a) by (simp add: linepath-loop-free)
moreover have make-polygonal-path (rev vts) = linepath b a
by (smt (23) = Cons-nth-drop-Suc One-nat-def Suc.hyps(2) Suc.prems(1)
Suc-1 Suc-diff-Suc ab butlast-snoc diff-Suc-1 drop0 hd-conv-nth hd-rev last-conv-nth
length-butlast length-rev lessI linepath-1' make-polygonal-path.simps(3) nth-append-length
pathstart-def pathstart-linepath pos2 rev.simps(2) rev-is-Nil-conv rev-take take-eq-Nil)
ultimately have ?case by simp
} moreover
{ assume *: Suc n > 2
let ?vts’ = butlast vts
let ?p’ = make-polygonal-path ?vts’
let 2vts’-rev = rev ?vts’
let ?p’-rev = make-polygonal-path ?vts’-rev

let ?vts-rev = rev vts
let ?p-rev = make-polygonal-path ?vts-rev

118

obtain y z where yz: y = last %vts’ A\ z = last vts by blast

let 2l = linepath y z

let ?l-rev = linepath z y

have loop-free ?p’

by (metis x Suc.hyps(2) Suc.prems(1) Suc.prems(2) butlast-conv-take diff-Suc-1
le-add?2 less-Suc-eq-le plus-1-eq-Suc take-i-is-loop-free)

then have loop-free-p’-rev: loop-free ?p’-rev using Suc.hyps by force

moreover have rev vts = 2 # ?vts’-rev

by (metis Suc.hyps(2) yz append-butlast-last-id length-0-conv nat.distinct(1)

rev-eq-Cons-iff rev-rev-ident)

moreover have y = hd ?vts’-rev using yz by (simp add: hd-rev)

ultimately have p-rev: ?p-rev = ?l-rev +++ ?p’-rev

by (smt (verit, best) constant-linepath-is-not-loop-free list.sel(1) make-polygonal-path.elims
make-polygonal-path.simps(4))

have [y, z] = drop (n—1) vts
using yz Suc.hyps(2)
by (metis (no-types, opaque-lifting) = Cons-nth-drop-Suc Suc-1 Suc-diff-Suc
Suc-lessD Suc-n-not-le-n append-butlast-last-id append-eq-conv-conj diff-Suc-1 last-conv-nth
length-0-conv length-butlast less-nat-zero-code linorder-not-le nth-take)
then have ¢l = make-polygonal-path (drop (n—1) vts)
using make-polygonal-path.simps by metis
moreover have ?p’' = make-polygonal-path (take n vts)
using Suc.hyps(2) by (metis butlast-conv-take diff-Suc-1)
ultimately have path-image ?I N path-image ?p’ C {pathstart ?l, pathstart
?p'}
using loop-free-split-int
by (smt (verit, ccfv-SIG) Int-commute Suc.hyps(2) Suc.prems(1) Suc.prems(2)
Suc-1 Suc-le-mono <2 < Suc ny insert-commute lessI)
moreover have path-image ?l = path-image ?l-rev by auto
moreover have path-image ?p’ = path-image ?p’-rev
using * Suc.hyps(2) rev-vts-path-image by force
moreover have pathstart ?l = pathfinish ?l-rev by simp
moreover have pathstart ?p’ = pathfinish ?p’-rev
by (metis Nil-is-rev-conv last.simps last-conv-nth last-rev list.distinct(1)
list. exhaust-sel make-polygonal-path.simps(1) make-polygonal-path.simps(2) nth-Cons-0
polygon-pathfinish polygon-pathstart)
ultimately have path-image-int:
path-image ?l-rev N path-image ?p’-rev C {pathfinish ?l-rev, pathfinish
?p’-rev}
by argo

have 1: pathfinish ?l-rev = pathstart ?p’-rev
by (metis make-polygonal-path-gives-path p-rev path-join-path-ends)
{ assume pathfinish ?p’-rev = pathstart ?l-rev
then have ?case using simple-path-join-loop 1 p-rev path-image-int
by (smt (verit, del-insts) Suc.hyps(2) Suc.prems(1) Suc.prems(2) Suc-1
linepath y z = make-polygonal-path (drop (n — 1) vts)» <loop-free (make-polygonal-path
(rev (butlast vts)))» constant-linepath-is-not-loop-free diff-Suc-Suc drop-i-is-loop-free

119

dual-order.eq-iff insert-commute linepath-loop-free make-polygonal-path-gives-path
path-linepath pathfinish-linepath pathstart-linepath simple-path-cases simple-path-def)
} moreover
{ assume pathfinish ?p’-rev # pathstart ?l-rev
then have pathstart p # pathfinish p
by (metis Suc.prems(1) <loop-free (make-polygonal-path (butlast vts))s <path-
start (make-polygonal-path (butlast vts)) = pathfinish (make-polygonal-path (rev
(butlast vts)))» butlast-conv-take constant-linepath-is-not-loop-free last-conv-nth less-nat-zero-code
make-polygonal-path.simps(1) nat-neg-iff nth-take pathstart-linepath polygon-pathfinish
polygon-pathstart take-eq-Nil yz)
then have arc p
by (metis Suc.prems(1) Suc.prems(2) arc-def loop-free-cases make-polygonal-path-gives-path)
then have path-image ?l-rev N path-image ?p’-rev C {pathstart ?p’-rev}
using loop-free-arc-split-int
by (metis 1 Int-commute Suc.hyps(2) Suc.prems(1) Suc.prems(2) <2 < Suc
ny linepath y z = make-polygonal-path (drop (n — 1) vts)y <make-polygonal-path
(butlast vts) = make-polygonal-path (take n vts)y <path-image (linepath y z) =
path-image (linepath z y)» «path-image (make-polygonal-path (butlast vts)) = path-image
(make-polygonal-path (rev (butlast vts)))» <pathstart (linepath y z) = pathfinish
(linepath z y)» le-numeral-Suc lessI numerals(1) pred-numeral-simps(2) semiring-norm(26))
moreover have arc ?l-rev
by (metis Suc.hyps(2) Suc.prems(1) Suc.prems(2) Suc-1 <[y, z] = drop (n —
1) vtsy arc-linepath constant-linepath-is-not-loop-free diff-Suc-Suc drop-i-is-loop-free
dual-order.refl make-polygonal-path.simps(3))
moreover have arc ?p’-rev
proof—
have ?p’-rev 0 = last (butlast vts) by (metis 1 pathfinish-linepath pathstart-def
yz)
moreover have ?p’-rev 1 = hd (butlast vts)
by (metis <loop-free (make-polygonal-path (butlast vts))r <pathstart (make-polygonal-path
(butlast vts)) = pathfinish (make-polygonal-path (rev (butlast vts)))» constant-linepath-is-not-loop-free
hd-conv-nth make-polygonal-path.simps(1) pathfinish-def polygon-pathstart)
moreover have last (butlast vts) # hd (butlast vts) using Suc.prems
by (metis (no-types, lifting) * Suc.hyps(2) Suc-1 diff-is-0-eq index-Cons
indez-last leD length-butlast less-diff-conv less-imp-le-nat list.collapse list.size(8)
loop-free-polygonal-path-vts-distinct not-one-le-zero plus-1-eq-Suc)
ultimately have ?p’-rev 0 # ?p’-rev 1 by simp
thus ?thesis using loop-free-p’-rev
by (metis arc-def loop-free-cases make-polygonal-path-gives-path pathfin-
ish-def pathstart-def)
qed
ultimately have ?case
using arc-join-eq[OF 1] arc-imp-simple-path p-rev simple-path-def by auto
}

ultimately have ?case by blast

}

ultimately show ?case by linarith
qed

120

lemma rev-vts-is-polygon:

assumes polygon-of p vts

shows polygon (make-polygonal-path (rev vts))

using rev-vts-is-loop-free assms

unfolding polygon-of-def polygon-def simple-path-def

using make-polygonal-path-gives-path

by (metis One-nat-def closed-path-def UNIV-def length-greater-0-conv polygon-pathfinish
polygon-pathstart polygonal-path-def rangel rev.simps(1) rev-nth rev-rev-ident)

end
theory Linepath-Collinearity
imports Polygon-Lemmas

begin

14 Collinearity Properties

lemma points-on-linepath-collinear:
assumes ezists-c: (Jc. a — b= ¢ xg u)
assumes z-in-linepath: x € path-image (linepath a b)
shows (3¢c. 2 —a=cx*gu) (Jc. b — 2= c xg u)
proof —
obtain k :: real where k-prop: 0 < kANk< 1 ANz=(1—k)*pa+ kx*pb
using z-in-linepath unfolding linepath-def path-image-def by fastforce
then have t = a — k*xg a+ k*xg b
by (simp add: eq-diff-eq)

then have t — a= — k*gpa+ kx*p b
by auto
then have zminusa: © — a = —kxg(a — b)

by (simp add: scaleR-right-diff-distrib)
obtain ¢ where c-prop: a — b = ¢ *xp u using ezists-c by blast
show (Jc. £ — a = ¢ xg u) using zminusa c-prop
by (metis scaleR-scaleR)
then show (Jc. b — z = ¢ xR u)
using exists-c
by (metis (no-types, opaque-lifting) add-diff-eq diff-add-cancel minus-diff-eq
scaleR-left-distrib)
qed

lemma three-points-collinear-property:
fixes a b:: real™2
assumes ezists-c1: (Jc. a — 21 = ¢ *g u)
assumes ezists-c2: (J¢c. a — 22 = ¢ *g u)
shows Jc. 1 — 22 = cxp u
proof —
obtain c1 where cl-prop: a — z1 = cl *g u
using exists-c1 by auto
obtain ¢2 where c2-prop: a — 22 = ¢c2 *g u
using ezists-c2 by auto

121

then have a — 22 — (a — 21) = c2 xg u — ¢l *g u
using c1-prop c2-prop by simp
then have a — 22 — (¢ — 21) = (¢2 — ¢l) *rp u
by (simp add: scaleR-left-diff-distrib)
then show ?%thesis
by auto
qed

lemma in-path-image-imp-collinear:
fixes a b:: real™2
assumes k € path-image (linepath a b)
shows collinear {a, b, k}
proof —
obtain w where w-prop: w € {0..1} ANk = (1 — w) *g a + w*g b
using assms unfolding path-image-def linepath-def by fast
have collinear {0, a—b, (1 — w) *xg a + (w—1) *g b}
using collinear
by (smt (verit) collinear-lemma diff-minus-eq-add scaleR-minus-left scaleR-right-diff-distrib)
then have collinear {0, a — b, k — b}
using w-prop
by (metis (no-types, lifting) add.commute add-diff-cancel-left collinear-lemma
scaleR-collapse scaleR-right-diff-distrib)
then show ?thesis using assms collinear-alt collinear-3[of a b k]
by auto
qed

lemma two-linepath-colinearity-property:
fixes a b ¢ d:: real 2
assumes y # z A {y, z} C (path-image (linepath a b)) N (path-image (linepath
¢ d))
shows collinear {a, b, ¢, d}
proof —
have collinear {a, b, y, 2}
using in-path-image-imp-collinear assms
by (metis (no-types, lifting) Int-closed-segment collinear-4-3 inf.boundedE inf-idem
insert-absorb2 insert-subset path-image-linepath pathstart-in-path-image pathstart-linepath)
moreover have collinear {c, d, y, z}
using in-path-image-imp-collinear assms
by (metis (no-types, lifting) Int-closed-segment collinear-4-3 inf .boundedE inf-idem
insert-absorb?2 insert-subset path-image-linepath pathstart-in-path-image pathstart-linepath)
ultimately show ?thesis
using assms collinear-3-eq-affine-dependent collinear-4-3 insert-absorb2 in-
sert-commute
by (smt (23) collinear-3-trans)
qed

lemma polygon-vts-not-collinear:

assumes polygon-of p vts
shows — collinear (set vts)

122

proof —
have len-vts: length vts > 3
using polygon-at-least-3-vertices assms unfolding polygon-of-def
using card-length dual-order.trans by blast
have compact-and-connected: compact (path-image p) N connected (path-image
p)
using inside-outside-polygon assms unfolding polygon-of-def
using compact-simple-path-image connected-simple-path-image polygon-def
by auto
have nonempty-path-image: path-image p # {}
using assms unfolding polygon-of-def
using vertices-on-path-image by simp
have collinear-imp: collinear (set vts) = (collinear (path-image p))
proof —
assume collinear (set vts)
then obtain u where u-prop: Vzeset vts. Vycset vts. 3c. ¢ — y = ¢ xgp u
unfolding collinear-def by blast
then have dc. x — y = ¢ xgr u if xy-in-pathimage: yEpath-image p A\ xE€path-image
p for z y
proof —
obtain k1 where ki-prop: k1 <length vts — 1 A x € path-image (linepath (vts
VED) (vts! (k1 + 1))
using make-polygonal-path-image-property xy-in-pathimage len-vts
by (metis One-nat-def Suc-1 Suc-leD assms numeral-3-eq-3 polygon-of-def)
then have Jc. (vts! k1) — (vts! (kI + 1)) = c*r u
by (meson add-lessD1 in-set-conv-nth less-diff-conv u-prop)
obtain k2 where k2-prop: k2<length vts — 1 A y € path-image (linepath (vts
VE2) (vts! (k2 + 1))
using make-polygonal-path-image-property xy-in-pathimage len-vts
by (metis One-nat-def Suc-1 Suc-leD assms numeral-3-eq-3 polygon-of-def)
have Jec. vts! (k2 + 1) — (vts k1) = cxg u
using u-prop k1-prop k2-prop
by (meson add-lessD1 less-diff-conv nth-mem)
have k2-vts-prop: Jc. vts ! (k2 + 1) — (vts 1 k2) = ¢ xg u
using u-prop k2-prop by fastforce
have ez-c-k2: Jc. vts | (k2 + 1) —y=cxr u
using points-on-linepath-collinear|of vts | (k2 + 1) vts | k2 u y] k2-prop
k2-vts-prop
by (meson add-lessD1 points-on-linepath-collinear(2) less-diff-conv nth-mem
u-prop)
have k1-vts-prop: Jc. vts ! (k1 + 1) — (vts ! kl) = ¢ xg u
using u-prop k1-prop by fastforce
have ez-c-k1-y: Je. vts! (kI + 1) — y=c*g u
using points-on-linepath-collinear|of vts ! (k1 + 1) vts ! kI w y] ki-prop
k1-vts-prop
by (meson <Jc. vts ! (k2 + 1) — vts ! kI = ¢ *p w Jc. vis | kI — vis !
(k1 + 1) = ¢ xg w three-points-collinear-property ex-c-k2)
have ez-c-k1-z: Jc. vts! (kI + 1) —xz = c*g u
using points-on-linepath-collinear|of vts ! (k1 + 1) vts ! kI w x] ki-prop

123

k1-vts-prop
by (meson add-lessD1 points-on-linepath-collinear(2) less-diff-conv nth-mem
u-prop)
show ?thesis
using ez-c-k1-y ex-c-k1-y three-points-collinear-property ex-c-ki-x by blast
qed
then show (collinear (path-image p)) unfolding collinear-def by auto
qed
{ assume x: collinear (set vts)
then obtain a b::real”2 where im-closed: path-image p = closed-segment a b
using collinear-imp compact-convex-collinear-segment-alt|of path-image pl
compact-and-connected nonempty-path-image
by blast
have inside (closed-segment a b) = {}
by (simp add: inside-conver)
then have path-inside p = {}
unfolding path-inside-def using im-closed by auto
then have Fulse
using inside-outside-polygon assms unfolding polygon-of-def inside-outside-def
by blast
}

then show ?thesis by blast
qed

lemma not-collinear-with-subset:
assumes collinear A
assumes — collinear (A U {z})
assumes card A > 2
assumes a € A
shows — collinear (A — {a}) U {z})
proof—
obtain u v where uv: u € ANvEAANUFAvANUFE aANvF#a
proof—
have card (A — {a}) > 2 using assms by auto
then obtain u B where u € (A — {a}) A B= (A — {a} — {u})
by (metis bot-nat-0.extremum-unique card.empty ex-in-conv zero-neg-numeral)
moreover then obtain v where v € B
by (metis Diff-iff One-nat-def Suc-1 assms(3) assms(4) card.empty card.insert
equalsOI finite.intros(1) finite-insert insert-Diff insert-commute less-irrefl)
ultimately show ¢thesis using that by blast
qed
then have z ¢ affine hull {u, v}
using assms
by (smt (verit, ccfo-threshold) Un-commute Un-upperl collinear-affine-hull-collinear
hull-insert hull-mono insert-absorb insert-is-Un insert-subset)
moreover have v € A — {a} A v € A — {a} using uv by blast
ultimately show “thesis
by (metis UnCI collinear-3-imp-in-affine-hull collinear-triples insert-absorb sin-
gletonD uw)

124

qed

lemma vec-diff-scale-collinear:
fixes a b ¢ :: real ™2
assumes b — a = m *g (¢ — a)
shows collinear {a, b, c}
proof—
{ assume m = 0
then have b = a using assms by simp
then have collinear {a, b, ¢} by auto
} moreover
{ assume m-nz: m # 0
then have c-eq: ¢ = (1/m) *r (b — a) + a using assms by simp
then have ¢ — b = (I/m — 1) xg (b — a) using m-nz by (simp add:
scaleR-left. diff)
then obtain m’ where ¢ — b = m' xg (b — a) by fast

then have ¢ — b € span({b — a}) by (simp add: span-breakdown-eq)
moreover from this have b — ¢ € span({b — a}) using span-0 span-add-eq2
by fastforce
moreover have ¢ — a € span({b — a}) using assms by (simp add: span-breakdown-eq
c-eq)
moreover from this have a — ¢ € span({b — a}) using span-0 span-add-eq2
by fastforce
moreover have b — a € span({b — a}) by (simp add: span-base)
moreover from this have o — b € span({b — a}) using span-0 span-add-eq2
by fastforce
moreover have Vv € {a, b, c}. v — v € span({b — a}) by (simp add: span-0)
ultimately have Vv € {a, b, c}. YVw € {a, b, c}. v — w € span({d — a}) by
blast
then have Vv € {a, b, ¢}. Vw € {a, b, ¢}. Ik. v — w =k x5 (b — a)
by (simp add: span-breakdown-eq)
then have collinear {a, b, ¢} using collinear-def by blast
}
ultimately show ?thesis using assms by auto
qed

15 Linepath Properties

lemma good-linepath-comm: good-linepath a b vts = good-linepath b a vts
unfolding good-linepath-def
by (metis (no-types, opaque-lifting) insert-commute path-image-linepath segment-convez-hull)

lemma finite-set-linepaths:
assumes polygon: polygon p
assumes polygonal-path: p = make-polygonal-path vts
shows finite {(a, b). (a, b) € set vts x set vis}
proof —

125

have finite (set vts)
using polygonal-path by auto
then have finite (set vts X set vts)
by blast
then show ?%thesis
by auto
qed

lemma linepaths-intersect-once-or-collinear:

fixes a b ¢ d :: real™2

assumes path-image (linepath a b) N path-image (linepath ¢ d) # {}

shows collinear {a, b, ¢, d} V (3z. path-image (linepath a b) N path-image
(linepath ¢ d) = {z})
proof safe

assume — (3 z. path-image (linepath a b) N path-image (linepath ¢ d) = {z})

then obtain z y where z # y A {z, y} C path-image (linepath a b) N path-image
(linepath ¢ d)

using assms by blast

then show collinear {a, b, ¢, d} using two-linepath-colinearity-property by
meson
qed

lemma linepaths-intersect-once-or-collinear-alt:

fixes a b ¢ d :: real™2

assumes path-image (linepath a b) N path-image (linepath ¢ d) # {}

shows collinear {a, b, ¢, d} V card (path-image (linepath a b) N path-image
(linepath ¢ d)) = 1
proof—

have card (path-image (linepath a b) N path-image (linepath ¢ d)) = 1

+— (Jz. path-image (linepath a b) N path-image (linepath ¢ d) = {z})
using is-singleton-altdef is-singleton-def by blast

thus ?thesis using linepaths-intersect-once-or-collinear assms by presburger

qed

lemma path-image-linepath-union:
fixes a b :: 'a::euclidean-space
assumes d € path-image (linepath a b)
shows path-image (linepath a b) = path-image (linepath a d) U path-image
(linepath d b)
proof—
have path-image (linepath a b) = closed-segment a b using path-image-linepath
by simp
also then have ... = closed-segment a d U closed-segment d b
using Un-closed-segment assms by blast
also have ... = path-image (linepath a d) U path-image (linepath d b)
using path-image-linepath by simp
ultimately show ¢thesis by order
qed

126

lemma path-image-linepath-split:
assumes i < (length vts) — 1
assumes z € path-image (linepath (vtsli) (vts!(i+1)))
assumes z-notin: ¢ set vts
shows path-image (make-polygonal-path vts) = path-image (make-polygonal-path
((take (i4+1) vts) @ [z] @Q (drop (i+1) vts)))
using assms
proof (induct length vts arbitrary: vts i)
case ()
then show ?case by linarith
next
case (Suc n)
let ?vts’ = (take (i+1) vts) @ [z] Q (drop (i+1) vts)
let ?p = make-polygonal-path vts
let ?p’ = make-polygonal-path ?vts’
have Suc n > 2 using Suc by linarith
then obtain v! v2 vts-tail where vts-is: vts = vl #Hv2#vts-tail
by (metis Suc(2) Cons-nth-drop-Suc One-nat-def Suc-1 Suc-le-eq drop0 zero-less-Suc)

{ assume *: i = 0
then have vts’-is: ?vts’ = [vl, x, v2] Q vts-tail
using vts-is by simp
then have z-in: = € path-image (linepath vl v2)
using * Suc.prems vts-is by simp
{ assume *: vts-tail = ||
then have p-is: path-image ?p = path-image (linepath vl v2)
using vts-is make-polygonal-path.simps(3)[of vl v2]
by simp
have path-image ?p’ = path-image (linepath vl z) U path-image (linepath x

v2)
using vts’-is * make-polygonal-path.simps(4)[of v1 z v2 []]
using make-polygonal-path.simps(3)[of x v2)
by (metis append.right-neutral list.discI nth-Cons-0 path-image-cons-union)
then have ?case
using p-is path-image-linepath-union[of x vl v2] assms(3) vts-is x-in by
blast

} moreover
{ assume x: vts-tail # ||
then have path-image ?p = path-image (linepath vl v2) U path-image
(make-polygonal-path (v24#tvts-tail))
using path-image-cons-union vts-is by (metis list.discI nth-Cons-0)
moreover have path-image (linepath vi z) U path-image (linepath © v2) =
path-image (linepath vl v2)
using path-image-linepath-union x-in by blast
ultimately have ?case
by (metis (no-types, lifting) append-Cons append-Nil inf-sup-aci(6) list.discl
nth-Cons-0 path-image-cons-union vts'-is)

ultimately have ?case by blast

127

} moreover
{ assume * :i > 0
then have Suc n > 2 using Suc by linarith

let 2vts-tl = tl vts

let 2vts-tl’ = (take @ ?vts-tl) Q [z] Q (drop i Pvts-tl)
let ?p-tl = make-polygonal-path ?vts-tl

let ?p-tl’ = make-polygonal-path ?vts-tl’

have ?vts-til(i—1) = vtsli A ?vts-tlli = vtsl(i+1) using Suc x by (simp add:
vts-is)
moreover then have z € path-image (linepath (?vts-til(i—1)) (Zvts-tili))
using Suc by presburger
ultimately have path-image ?p-tl = path-image ?p-tl’
using Suc
by (smt (verit) x One-nat-def Suc-lel diff-Suc-1 le-add-diff-inverse2 length-tl
less-diff-conv list.sel(3) list.set-intros(2) vts-is)
moreover have path-image ?p = path-image (linepath vl v2) U path-image
?p-tl
using path-image-cons-union vts-is by auto
ultimately have Zcase
by (smt (verit, ccfu-threshold) Nil-is-append-conv Suc-eq-plusl i = 0 =
path-image (make-polygonal-path vts) = path-image (make-polygonal-path (take (i
+ 1) vts @ [2] @Q drop (i + 1) vts))» append-Cons append-same-eq append-take-drop-id
drop-Suc hd-append?2 hd-conv-nth list.sel(1) list.sel(3) path-image-cons-union take-eq-Nil
vts-1s)
}
ultimately show ?case by linarith
qed

lemma linepath-split-is-loop-free:

assumes d € path-image (linepath a b)

assumes d ¢ {a, b}

shows loop-free (make-polygonal-path [a, d, b)) (is loop-free ?p)
proof—

let 211 = linepath a d

let 212 = linepath d b

have path-image ?11 N path-image 212 = {d} using Int-closed-segment assms(1)
by auto

moreover have arc ?l1 A arc 712 using assms(2) by fastforce

ultimately show ?thesis

by (metis arc-imp-simple-path arc-join-eq-alt make-polygonal-path.simps(3)

make-polygonal-path.simps(4) pathfinish-linepath pathstart-linepath simple-path-def)
qed

lemma loop-free-linepath-split-is-loop-free:
assumes p = make-polygonal-path vts
assumes loop-free p
assumes n = length vts

128

assumes 7 < n — 1
assumes z € path-image (linepath (vtsli) (vts!(i+1))) A z ¢ set vts
assumes vts’' = (take (i+1) vts) Q [z] @ (drop (i+1) vts)
assumes p’' = make-polygonal-path vts’
shows loop-free p' A path-image p’ = path-image p
using assms
proof (induct i arbitrary: p vts p’ vts’ n)
case ()
let Zvts-tl = tl vts
let ?p-tl = make-polygonal-path ?vts-tl
let 2vts’-tl = tl vts’
let ?p’-tl = make-polygonal-path ?vts’-tl
let %a = vts!0
let 96 = vts!1
let ¢l = linepath ?a ?b
let ?l' = make-polygonal-path [?a, x, D]

have vts”: vts’ = [%a, 2] @ ?vts-tl
using 0
by (metis (no-types, lifting) Suc-eq-plus! append-Cons append-eq-append-conv?
append-self-conv bot-nat-0.not-eq-extremum diff-is-0-eq drop0 drop-Suc list.collapse
nth-Cons-0 take-Suc take-all-iff take-eq-Nil)

have z ¢ {%a, ?b}

by (metis 0(3—5) One-nat-def Suc-eq-plus! bot-nat-0.not-eq-extremum diff-is-0-eq
insert-iff less-diff-conv nth-mem singletonD take-Suc-eq take-all-iff)

then have If-1" loop-free ?1’ using linepath-split-is-loop-free[of x ?a ?b] 0 by
simp

{ assume length ?vts-tl = 1
then have vts’ = [%a, z, ?b]
by (metis Cons-nth-drop-Suc One-nat-def append-eq-Cons-conv drop0 drop-eq-Nil
le-numeral-extra(4) nth-tl vis' zero-less-one)
then have ?case using linepath-split-is-loop-free path-image-linepath-split
by (metis 0.prems(1) 0.prems(3) 0.prems(4) 0.prems(5) 0.prems(6) 0.prems(7)
If-1)
} moreover
{ assume x: length ?vts-tl > 2
then have p: p = 2] +++ ?p-tl
using make-polygonal-path.simps(4)[of ?a ?b]
by (metis (no-types, opaque-lifting) 0(1) 0(8) 0(4) Cons-nth-drop-Suc
One-nat-def Suc-1 Suc-le-eq diff-is-0-eq drop-0 drop-Suc length-tl less-nat-zero-code
nat-le-linear nth-tl)

have loop-free ?p-tl
using tail-of-loop-free-polygonal-path-is-loop-free 0 *
by (metis list.exhaust-sel list.sel(2))

moreover have I-1": path-image ?l = path-image 71’
using path-image-linepath-split 0

129

by (metis One-nat-def Suc-eq-plusl list.discI make-polygonal-path.simps(8)
nth-Cons-0 path-image-cons-union path-image-linepath-union)
moreover have path-image ?l' N path-image ?p-tl C {%a, 7b}
by (metis (mono-tags, opaque-lifting) p I-1' 0.prems(1) 0.prems(2) make-polygonal-path-gives-path
path-join-path-ends pathfinish-linepath pathstart-linepath simple-path-def simple-path-joinE)
moreover have arc p — path-image ?l’ N path-image ?p-tl C {2b}
using p [-l’
by (metis arc-def arc-join-eq make-polygonal-path-gives-path path-join-eq
path-linepath pathfinish-linepath)
moreover have arc p «— hd [?a, x, ?b] # last (tl vts)
by (metis * 0.prems(1) 0.prems(2) arc-def arc-simple-path last-conv-nth last-tl
list.sel(1) list.sel(2) list.size(3) loop-free-cases make-polygonal-path-gives-path not-numeral-le-zero
polygon-pathfinish polygon-pathstart)
moreover have vts’ = [?a, z, 7b] Q ¢l Pvts-tl
by (metis drop-Suc 0.prems(3) 0.prems(4) One-nat-def append-Cons ap-
pend-Nil append-take-drop-id length-tl nth-tl take-Suc-conv-app-nth take-eq-Nil vts’)
moreover have last [?a, z, ?b] = hd ?vts-tl
by (metis 0.prems(8) 0.prems(4) One-nat-def hd-conv-nth last.simps length-greater-0-conv
length-tl list.discI nth-tl)
moreover have pathfinish ?l = pathstart ?p-tl
by (metis (no-types) 0.prems(1) make-polygonal-path.simps(3) make-polygonal-path-gives-path
p path-join-eq)
moreover have /v va vb vs. pathfinish (linepath v va) = pathstart (make-polygonal-path
(va # vb # vs))

by (metis (no-types) make-polygonal-path.simps(3) make-polygonal-path.simps(4)
make-polygonal-path-gives-path path-join-eq)
ultimately have loop-free p’
using loop-free-append|of p' vts’ 2l [?a, x, ?b] ?p-tl Pvts-tl]
by (metis (no-types) 0.prems(1) 0.prems(2) 0.prems(7) arc-simple-path If-1’
make-polygonal-path.simps(8) make-polygonal-path.simps(4) make-polygonal-path-gives-path
p pathfinish-join pathstart-linepath simple-path-def simple-path-joinE)
then have ?case
using 0(1) 0(3) 0(4) 0(5) 0(6) 0(7) path-image-linepath-split by blast

ultimately show ?case
by (metis 0(3,4) One-nat-def Suc-lessl length-tl less-eq-Suc-le nat-1-add-1

plus-1-eq-Suc)
next

case (Suc 17)

let ?uts-tl = tl vts

let ?p-tl = make-polygonal-path ?vts-tl

let 2uts’-tl = tl vts'

let ?p’-tl = make-polygonal-path ?vts’-tl

let %a = vts!0

let 96 = vts!1

let ¢l = linepath ?a ?b

have ?vts-tlli = vts!(Suc ©) A Pvts-tll(i+1) = vts!((Suc 7) + 1)

130

by (metis Suc.prems(8) Suc.prems(4) add-Suc-right add-Suc-shift diff-is-0-eq
linorder-not-le list.exhaust-sel list.size(3) not-less-zero nth-Cons-Suc)
moreover have set vts-tl C set vts
by (metis list.sel(2) list.set-sel(2) subsetl)
ultimately have z € path-image (linepath (2vts-tili) (Pvts-tll(i+1))) A © ¢ set
Zuts-tl
using Suc.prems(5) by auto
moreover have vis'-tl: ?vts’-tl = (take (i+1) %vts-t]) Q [z] Q (drop (i+1)
2uts-tl)
by (metis Suc.prems(3) Suc.prems(4) Suc.prems(6) Suc-eq-plus1 drop-Suc leD
length-tl take-all-iff take-eq-Nil take-tl tl-append?2 zero-eq-add-iff-both-eq-0 zero-neg-one)
moreover have loop-free ?p-tl
using tail-of-loop-free-polygonal-path-is-loop-free Suc.prems
by (metis Nitpick.size-list-simp(2) Suc-1 Suc-lel Suc-neq-Zero diff-0-eq-0 diff-Suc-1
less-one linorder-neqE-nat list.collapse not-less-zero)
ultimately have ih: loop-free ?p’-tl A path-image ?p’-tl = path-image ?p-tl
using Suc.prems Suc.hyps[of ?p-tl Pvts-tl - Pvts’-tl ?p’-tl] by simp

have p: p = 2l ++4 ?p-tl
proof —
have f1: Vovs. (hd (tl vs)::(real, 2) vec) = vs! 1 V[=wvsV [=t vs
by (metis (no-types) One-nat-def hd-conv-nth list.collapse nth-Cons-Suc)
have [] # tl vts A vts # [| A tl vts # [hd (H vis))
by (metis Suc.prems(1) Suc.prems(2) <loop-free (make-polygonal-path (tl vts))»
constant-linepath-is-not-loop-free make-polygonal-path.simps(1) make-polygonal-path.simps(2))
then have p = make-polygonal-path [hd vts, vts | 1] +++ make-polygonal-path
(tl vts) A wvts # []
using f1 by (metis (full-types) Suc.prems(1) list.collapse make-polygonal-path.simps(3)
make-polygonal-path.simps(4))
then show ?thesis
by (simp add: hd-conv-nth)
qed

have length vits’ > 3 using Suc.prems by force
moreover have ab: ?a = vts'l0 N ?b = vis'1
using Suc.prems
by (smt (verit, ccfv-SIG) One-nat-def Suc-eq-plusl add-Suc-right append-Cons
drop0 drop-Suc length-tl less-nat-zero-code list.exhaust-sel list.size(3) nat-diff-split
nth-Cons-0 nth-Cons-Suc take-Suc zero-less-Suc)
ultimately have p”: p’' = 2] +++ 2p’-tl
using Suc.prems(7) make-polygonal-path.simps(4)[of ?a 25
by (metis (no-types, opaque-lifting) Cons-nth-drop-Suc One-nat-def Suc-leD
Suc-le-eq drop0 drop-Suc numeral-3-eg-3)

have nonarc: path-image 2l N path-image ?p-tl C {%a, ?b}
using simple-path-join-loop-eq Suc.prems
by (smt (verit, ccfv-threshold) p One-nat-def length-tl less-zeroE make-polygonal-path-gives-path
nth-tl order.strict-iff-not order-le-less-trans path-join-eq path-linepath pathfinish-linepath
pathstart-linepath polygon-pathstart simple-path-def simple-path-joinE take-Nil take-all-iff)

131

have arc: arc p — path-image 21 N path-image ?p-tl C {?b}
using arc-join-eq
by (metis Suc.prems(1) p make-polygonal-path-gives-path path-join-eq path-linepath
pathfinish-linepath)

{ assume arc p
moreover then have path-image 9l N path-image ?p’-tl C {?b} using arc ih
by presburger
moreover have pathfinish ?1 = pathstart ?p’-tl
by (metis Suc.prems(7) make-polygonal-path-gives-path p’ path-join-path-ends)
ultimately have ?case using p’ arc-join-eq|of ?1 7p’-tl]
by (smt (verit, ccfv-SIG) Nil-is-append-conv Suc.prems(8) Suc.prems(4)
Suc-eq-plus1 vts’-tl arc-simple-path drop-eq-Nil ih last-appendR last-conv-nth last-drop
leD length-tl make-polygonal-path-gives-path p path-image-join path-join-eq path-linepath
pathfinish-linepath polygon-pathfinish simple-path-def simple-path-joinE take-all-iff
take-eq-Nil)
} moreover
{ assume — arc p
then have pathstart 21 = pathfinish ?p’-tl N\ pathfinish 2] = pathstart ?p’-tl
by (smt (verit, del-insts) Nil-is-append-conv Nil-tl One-nat-def Suc.prems(2)
Suc.prems(3) Suc.prems(4) Suc-eq-plusl vts’-tl ab arc-def drop-eq-Nil last-appendR
last-conv-nth last-drop leD length-tl list.collapse loop-free-cases make-polygonal-path-gives-path
nth-Cons-Suc p path-join-eq path-linepath pathfinish-join pathfinish-linepath path-
start-join polygon-pathfinish polygon-pathstart take-all-iff take-eq-Nil)
then have ?case using simple-path-join-loop-eq[of 71 ?p’-tl] p’ nonarc
by (smt (verit, ccfv-threshold) One-nat-def Suc.prems(2) Suc.prems(3) Suc.prems(4)
arc-def constant-linepath-is-not-loop-free dual-order.strict-trans ih leD length-tl loop-free-cases
make-polygonal-path-gives-path not-loop-free-first-component nth-tl p path-image-join
path-linepath pathfinish-linepath pathstart-linepath polygon-pathstart simple-path-def
stmple-path-join-loop-eq take-all-iff take-eq-Nil zero-less-Suc)
}
ultimately show ?case by argo
qed

lemma polygon-linepath-split-is-polygon:
assumes polygon-of p vts
assumes i < (length vts) — 1
assumes a = vtsli A b = vts!(i+1)
assumes z € path-image (linepath a b) A z ¢ set vts
assumes vts’' = (take (i+1) vts) Q [z] @ (drop (i+1) vts)
shows polygon (make-polygonal-path vts’)
proof—
let ?p’ = make-polygonal-path vts'
have path ?p’ using assms make-polygonal-path-gives-path by presburger
moreover have loop-free ?p’ using assms loop-free-linepath-split-is-loop-free
by (metis polygon-def polygon-of-def simple-path-def)
moreover have closed-path ?p’
proof—

132

have hd vts’ = hd vts
using assms
by (metis hd-append?2 hd-take le-diff-conv linorder-not-less take-all-iff take-eq-Nil2
trans-less-add?2 zero-less-one)
moreover have last vts’ = last vts
using assms linordered-semidom-class.add-diff-inverse by auto
ultimately show ¢thesis
by (metis closed-path-def <path ?p’y append-butlast-last-id append-eq-conv-conj
append-is-Nil-conv assms(1) assms(5) have-wraparound-vertex hd-conv-nth length-butlast
not-Cons-self nth-append-length polygon-of-def polygon-pathfinish polygon-pathstart)
qed
ultimately show ?thesis unfolding polygon-def polygonal-path-def simple-path-def
assms(5) by blast
qed

16 Measure of linepaths

lemma linepath-is-negligible-vertical:
fixes a b :: real™2
assumes a$1 = b$1
defines p = linepath a b
shows negligible (path-image p)
proof—
have p-t: Vit € {0..1}. (p t)$1 = a$1
using linepath-in-path p-def segment-vertical assms by blast

let %z = a$1
let el = (vector [1, 0])::real”2

have (1::real) € Basis by simp
then have azis 1 (1::real) € (4. | ue(Basis::(real set)). {axis i u}) by blast
moreover have ?el = awxis 1 (1::real)

unfolding axis-def vector-def by auto
ultimately have el-basis: ?el € (Basis::((real™2) set)) by simp
then have negligible {v. v - ?el = 2z} (is negligible 25)

using negligible-standard-hyperplane by auto
moreover have Vt € {0..1}. (pt) - %el = %z
proof clarify

fix ¢ :: real

assume t: t € {0..1}

have (p t) - %el = (p 1)$1

by (smt (verit, best) el-basis cart-eq-inner-axis vec-nth-Basis vector-2(1))

also have ... = ?z using p-t t by blast
finally show (p t) - %el = %z .
qed

moreover from this have path-image p C 25 unfolding path-image-def by
blast

ultimately show %thesis using negligible-subset by blast
qed

133

lemma linepath-is-negligible-non-vertical:
fixes a b :: real™2
assumes a$1 < b$1
defines p = linepath a b
shows negligible (path-image p)
proof—
let ?A = (vector [vector [1, b$1 — a$1], vector [0, b$2 — a$2]])::(real™272)
let 2f1 = Avzreal 2. (A xv v)
let 2id = Av:real™2. v
let ?f-a = Av::real 2. a
let 92 = \v. 2id v + 9f-a v
let ?f = 2f2 o ?f1

let 20 = (vector [0, 0])::real™2

let ?e2 = (vector [0, 1])::real”2

let ?y-unit-seg-path = linepath 20 ?e2

let ?y-unit-seq = path-image ?y-unit-seg-path

have Vit € {0..1}. ?f (?y-unit-seg-path t) = p t
proof clarify
fix t :: real
assume t: t € {0..1}
then obtain v where v: 2y-unit-seg-path t = v by auto
then have v = (I — t) *xg ?0 + ¢ xg ?e2 unfolding linepath-def by auto
then have v = t xg ?e2
by (smt (verit, best) t v exhaust-2 linepath-0 scaleR-zero-left vec-eq-iff vec-
tor-2(1) vector-2(2) vector-scaleR-component)
then have ?fv=pt
proof—
assume v = t xg vector [0, 1]
then have v = vector [t * 0, t % 1]
by (smt (verit, del-insts) exhaust-2 mult-cancel-left1 real-scaleR-def scaleR-zero-right
vec-eq-iff vector-2(1) vector-2(2) vector-scaleR-component)
then have v: v = vector [0, t] by auto

have f1: 2f1 v = vector [t * (b1 — a$1), t * (b$2 — a$2)] (is 9f1 v = ?f1-v)
by (simp add: mat-vec-mult-2 v)

have 22 ?f1-v = vector [t x (b1 — a$1), t * (b$2 — a$2)] + wvector [a$1,
a$2]
by (smt (verit) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
also have ... = vector [t * (b1 — a$1) + a$1, ¢t x (b32 — a$2) + a$2]
by (smt (verit, del-insts) vector-add-component exhaust-2 vec-eq-iff vec-

tor-2(1) vector-2(2))

also have ... = vector [t * b$1 + (1 — t) * a$1, t % b$2 + (I — t) * a$2]
by argo
also have ... =t xg b+ (I — t) *xg a

by (smt (verit, del-insts) exhaust-2 real-scaleR-def vec-eq-iff vector-2(1)

134

vector-2(2) vector-add-component vector-scaleR-component)
finally have 2f2 ?fl-v =t +p b+ (I —) *g a .
thus ?thesis using p-def f1 unfolding linepath-def by simp
qed
thus ?f (?y-unit-seg-path t) = p t using v by simp
qed

then have ?f ° ?y-unit-seg = path-image p unfolding path-image-def by force
moreover have ?f differentiable-on ?y-unit-seg
proof—
have linear ?f1 by auto
then have ?f1 differentiable-on ?y-unit-seq
using linear-imp-differentiable by (simp add: linear-imp-differentiable-on)
moreover have 22 differentiable-on (?f1 ¢ ?y-unit-seg)
proof—
have ?id differentiable-on ?f1 * 2y-unit-seg
using differentiable-const by simp
moreover have ?f-a differentiable-on ?f1 ¢ ?y-unit-seg
using differentiable-ident by simp
ultimately show 7f2 differentiable-on ?f1 ¢ ?y-unit-seg
using differentiable-compose by simp
qed
ultimately show ¢thesis using differentiable-compose
by (simp add: differentiable-chain-within differentiable-on-def)
qed
moreover have negligible ?y-unit-seg
using linepath-is-negligible-vertical[of 70 ?e2] by simp
ultimately show ?thesis
using negligible-differentiable-image-negligible by fastforce
qed

lemma linepath-is-negligible:
fixes a b :: real”2
defines p = linepath a b
shows negligible (path-image p)
proof—
{ assume a$1 = b$1
then have ?thesis using linepath-is-negligible-vertical p-def by blast
} moreover
{ assume a$1 < b$1
then have ?thesis using linepath-is-negligible-non-vertical p-def by blast
} moreover
{ assume a: a$1 > b$1
let ?p-rev = reversepath p
have path-image p = path-image ?p-rev by simp
moreover have ?p-rev = linepath b a using p-def by simp
ultimately have ?thesis using a linepath-is-negligible-non-vertical[of b a] by
simp

}

135

ultimately show ?thesis by linarith
qed

lemma linepath-has-emeasure-0:
emeasure lebesque (path-image (linepath (a::(real”2)) (b::(real™2)))) = 0
using linepath-is-negligible emeasure-notin-sets negligible-iff-emeasure0 by blast

lemma linepath-has-measure-0:

measure lebesque (path-image (linepath (a::(real™2)) (b::(real™2)))) = 0

using linepath-has-emeasure-0 linepath-is-negligible negligible-imp-measurel by
blast

end
theory Polygon-Convez-Lemmas
imports
Polygon-Lemmas
Linepath-Collinearity

begin

17 Misc. Convex Polygon Properties

lemma polygon-path-image-subset-conver:
assumes length vts > 0
shows path-image (make-polygonal-path vts) C convex hull (set vts) (is path-image
?p C 25)
using assms
proof (induct vts rule: make-polygonal-path.induct)
case I
then show ?case by simp
next
case (2 a)
then show ?case by auto
next
case (3 a b)
show ?case (is path-image ?p C 25)
proof (rule subsetl)
fix z
assume z-in-path-image: x € path-image ?p
then have = € path-image (linepath a b) by auto
thus z € 29
unfolding path-image-def linepath-def
by (smt (verit, ccfo-SIG) <z € path-image (linepath a b)) convex-alt con-
vez-convex-hull hull-subset in-mono in-segment(1) linepath-image-01 list.set-intros(1)
path-image-def set-subset-Cons)
qed
next
case (4 a b c tl)
let 2vts = a # b # c # tl

136

show ?case (is path-image ?p C 25)
proof (rule subsetl)
fix z
assume z-in-path-image: x € path-image ?p
show z € 25
proof cases
assume z € set vts
thus %thesis by (simp add: hull-inc)
next
assume z-notin: © ¢ set ?vts
obtain v where p-u: v € {0.1} AN pu==cx
using z-in-path-image unfolding path-image-def by auto
then have p-head-tail: ?p = (linepath a b) +++ make-polygonal-path (b # ¢
1)
by auto
have abc-in-S: set ?vts C convex hull (set ?vts) by (simp add: hull-subset)
{ assume u-assm: v < 1/2
then have ?p u = (I — 2 x u) xg a + (2 * u) *xg b
using p-head-tail unfolding linepath-def joinpaths-def
by presburger
hence z € 75
using abc-in-S converD-alt[of S a b 2 x u] u-assm p-u by simp
} moreover
{ assume u-assm: u > 1/2
then have z = (make-polygonal-path (b # ¢ # tl) (2 x uw — 1)) (is z =
(7" (2 u — 1))
using p-head-tail p-u unfolding linepath-def joinpaths-def by auto
moreover have 0 < (2 * u — 1) using u-assm by linarith
ultimately have z € path-image ?p’
using p-u by (simp add: path-image-def)
moreover have path-image ?p’ C convex hull (set (b # ¢ # tl)) using
4(1) by auto
moreover have ... C conver hull (set (a # b # ¢ # tl))
by (meson hull-mono set-subset-Conys)
ultimately have z € 25 by auto
}
ultimately show ¢thesis by linarith
qed
qed
qed

lemma convez-contains-simple-closed-path-imp-contains-path-inside:

assumes conver S

assumes simple-path p A closed-path p

assumes path-image p C S

shows path-inside p C S

by (metis (no-types, opaque-lifting) Compl-subset-Compl-iff Un-subset-iff assms(1)
assms(8) boolean-algebra-class.boolean-algebra.double-compl outside-subset-conver
path-inside-def union-with-inside)

137

lemma convez-polygon-is-convex-hull:
assumes polygon p
assumes convez (path-inside p U path-image p)
assumes p = make-polygonal-path vts
shows convex hull (set vts) = path-inside p U path-image p (is Zhull = ?poly)
proof—
have ?hull C ?poly
proof (rule subsetl)
fix z
assume z € Zhull
moreover have V H. (convex H A (set vts) C H) — ?hull C H by (simp
add: hull-minimal)
moreover have convex (?poly) N (set vts) C ?Zpoly
using assms(2) assms(3) vertices-on-path-image by auto
ultimately show z € ?poly by auto
qed
moreover have ?hull O Zpoly
proof(rule subsetl)
fix z
assume z € ?poly
moreover have path-image p C Zhull
using polygon-path-image-subset-convex|[of vts| polygon-at-least-3-vertices
assms
by force
moreover from calculation have path-inside p C ?hull
using convex-contains-simple-closed-path-imp-contains-path-inside polygon-def
assms(1)
by auto
ultimately show z € ?hull by auto
qed
ultimately show ?thesis by auto
qed

lemma convez-polygon-inside-is-convex-hull-interior:

assumes polygon p

assumes convez (path-inside p)

assumes p = make-polygonal-path vts

shows interior (convex hull (set vts)) = path-inside p

by (metis (no-types, lifting) assms closure- Un-frontier convez-closure convez-interior-closure
convez-polygon-is-convez-hull inside-outside-def inside-outside-polygon interior-eq)

lemma convex-polygon-inside-is-convex-hull-interior2:

assumes polygon p

assumes convez (path-inside p U path-image p)

assumes p = make-polygonal-path vts

shows interior (convex hull (set vts)) = path-inside p

using assms closure- Un-frontier convez-closure convez-interior-closure convez-polygon-is-convex-hull
inside-outside-def inside-outside-polygon interior-eq

138

by (smt (verit, best) List.finite-set compact-eg-bounded-closed finite-imp-compact-convez-hull
frontier-complement inside-frontier-eq-interior outside-inside path-inside-def path-outside-def
sup-commute)

lemma polygon-convex-iff:

assumes polygon p

shows convex (path-inside p) +— convex (path-inside p U path-image p)

using convex-polygon-inside-is-convex-hull-interior

using convex-polygon-inside-is-convex-hull-interior2

by (metis Jordan-inside-outside-real2 closed-path-def assms closure-Un-frontier
convez-closure convez-interior convex-polygon-is-convez-hull path-inside-def poly-
gon-def polygon-to-polygonal-path)

lemma convex-polygon-frontier-is-path-image:

assumes polygon-of p vts

assumes convez (path-inside p)

shows frontier (convex hull (set vts)) = path-image p

using assms

unfolding frontier-def polygon-of-def

by (metis (no-types, lifting) Jordan-inside-outside-real2 closed-path-def convex-closure-interior
convez-convez-hull convex-polygon-inside-is-convex-hull-interior frontier-def inte-
rior-interior path-inside-def polygon-def)

lemma convez-polygon-frontier-is-path-image2:

assumes polygon p

assumes convez (path-inside p)

shows frontier (path-image p U path-inside p) = path-image p

using assms

by (simp add: Jordan-inside-outside-real2 closed-path-def path-inside-def poly-
gon-def union-with-inside)

lemma convex-polygon-frontier-is-path-image3:
assumes polygon p
assumes convez (path-image p U path-inside p)
shows frontier (path-image p U path-inside p) = path-image p
using assms polygon-convez-iff
by (simp add: convex-polygon-frontier-is-path-image2 sup-commute)

lemma polygon-frontier-is-path-image:
assumes polygon p
shows frontier (path-inside p) = path-image p
using inside-outside-polygon unfolding inside-outside-def
using assms by presburger

lemma convez-path-inside-means-conver-polygon:
assumes polygon p
assumes frontier (convex hull (set vts)) = path-image p
shows convex (path-inside p)
by (metis List.finite-set assms(2) convex-convex-hull convex-interior finite-imp-bounded-convezr-hull

139

inside-frontier-eq-interior path-inside-def)

lemma convex-hull-of-polygon-is-convex-hull-of-vts:
assumes polygon-of p vts
shows convex hull (path-image p U path-inside p) = convex hull (set vts)
proof —
have len-vts: length vts > 0
by (metis assms card.empty empty-set length-greater-0-conv not-numeral-le-zero
polygon-at-least-3-vertices polygon-of-def)
have path-image p U path-inside p C convex hull (set vts)
using polygon-path-image-subset-convex| OF len-vts]
using assms convex-contains-simple-closed-path-imp-contains-path-inside poly-
gon-def polygon-of-def by auto
then have subset!: conver hull (path-image p U path-inside p) C convex hull
(set vts)
by (simp add: convex-hull-subset)
have set vts C path-image p U path-inside p using assms vertices-on-path-image

by (simp add: polygon-of-def sup.coboundedI1)
then have subset2: convex hull (set vts) C convex hull (path-image p U path-inside
p)
by (simp add: hull-mono)
show ?thesis using subset! subset2
by auto
qed

lemma convex-hull-frontier-polygon:

assumes polygon-of p vts

assumes — set vts C frontier (convex hull (set vts))

shows — convex (path-inside p)

by (metis assms(1) assms(2) convez-polygon-frontier-is-path-image polygon-of-def
vertices-on-path-image)

lemma frontier-int-subset:

assumes A C B

shows (frontier B) N A C frontier A

by (metis assms closure-Un-frontier frontier-Int inf.absorb-iff2 inf-sup-aci(1)
subset-Un-eq sup-inf-distrib2)

lemma in-frontier-in-subset:
assumes A C B
assumes z € frontier B
assumes z € A
shows z € frontier A
by (metis assms frontier-int-subset Intl in-mono)

lemma in-frontier-in-subset-convex-hull:

assumes A C B
assumes z € frontier (convex hull B)

140

assumes z € convez hull A
shows z € frontier (convex hull A)
by (metis in-frontier-in-subset assms hull-mono)

lemma convez-hull-two-extreme-points:
fixes S :: 'a::euclidean-space set
assumes finite S
assumes convez hull S # {}
assumes Vz. convex hull S # {z}
shows card {x. x extreme-point-of (convex hull S)} > 2 (is card ?ep > 2)
proof—
have compact (convex hull S) by (simp add: assms(1) finite-imp-compact-convez-hull)
then have convezr hull S = convex hull ?ep
using Krein-Milman-Minkowski[OF - convez-convez-hull] by blast
moreover then obtain z where = € ?ep using assms(2) by fastforce
moreover have ?ep # {x} using assms(3) calculation(1) by force
ultimately obtain y where z € ?ep A y € ?ep A x # y by blast
moreover have finite ep using assms(1) extreme-points-of-convez-hull finite-subset
by blast
ultimately show ?thesis
by (metis (no-types, lifting) One-nat-def Orderings.order-eq-iff Suc-1 Suc-lel
card-1-singletonE card-gt-0-iff empty-iff insert-Diff not-less-eq-eq singleton-insert-inj-eq)
qed

lemma convex-hull-two-vts-on-frontier:
fixes S :: 'a::euclidean-space set
assumes card S > 2
shows card (S N frontier (convex hull S)) > 2
proof—
have S C convez hull S by (simp add: hull-subset)
then have convex hull S # {} A card (convezx hull S) # 1
by (metis Suc-1 add-leD2 assms card.empty card-1-singletonE convex-hull-eg-empty
not-one-le-zero numeral-le-one-iff plus-1-eq-Suc semiring-norm(69) subset-singletonD)
moreover have finite S using assms by (metis Suc-1 Suc-leD card-eq-0-iff
not-one-le-zero)
ultimately have card {z. x extreme-point-of (convex hull S)} > 2
using convez-hull-two-extreme-points by fastforce
moreover have {z. z extreme-point-of (convex hull S)} C S N frontier (convex
hull S)
proof—
have {z. z extreme-point-of (convex hull S)} C S by (simp add: extreme-points-of-convez-hull)
moreover have {z. © extreme-point-of (convex hull S)} N interior (convexr hull
S)=1{}
using extreme-point-not-in-interior by blast
moreover have {z. = extreme-point-of (conver hull S)} C convex hull S
using S C convex hull S» calculation(1) by blast
moreover have convex hull S = interior (conver hull S) U frontier (convex
hull S)
by (metis (no-types, lifting) Diff-empty Suc-1 assms card.infinite closure- Un-frontier

141

closure-convez-hull convex-closure-interior convex-convez-hull empty-subsetl finite-imp-compact
frontier-def interior-interior not-less-eq-eq sup-absorb2 zero-less-one-class.zero-le-one)
ultimately show ¢thesis by blast
qed
ultimately show ?thesis
by (smt (verit, del-insts) assms extreme-points-of-convez-hull card-gt-0-iff fi-
nite-Int linorder-not-less not-numeral-le-zero order-less-le order-less-le-trans psub-
set-card-mono)
qed

18 Vertices on Convex Frontier Implies Polygon is
Convex

lemma convez-cut-auz:
assumes Vv € S. z - v < 0
shows convex hull S C {z. z - < 0}
by (simp add: assms convez-halfspace-le hull-minimal subsetl)

lemma convez-cut-aux'”:
assumes Vv e S. z-v >0
shows conver hull S C {z. z - x > 0}
using convez-cut-auxof S —z] assms by auto

lemma convex-cut:
assumes z # 0
assumes {z. z -+ x = 0} N interior (convex hull S) # {}
obtains vl v2 where vl # v2 A {vl, v2} CSAvl € {z. 2z -2 <0} ANv2 €
{z. 22> 0}
proof—
let ?P1 ={z. z -z < 0}
let P2 ={z. z -z > 0}
have frontier P1 = {z. z - x = 0}
by (simp add: assms(1) frontier-halfspace-le)
moreover have frontier P2 = {z. z - x = 0}
by (simp add: assms(1) frontier-halfspace-ge)
ultimately have — convezr hull S C ?P1 A = convex hull S C ?P2
by (smt (verit, ccfo-SIG) DiffE IntE assms(2) disjoint-iff frontier-def inf.absorb-iff2
interior-Int)
moreover have Vv € S. z - v < 0) = convezx hull S C ?P1 using con-
vex-cut-aur by blast
moreover have (Vv € S. z - v > 0) = convezx hull S C ?P2 using con-
vez-cut-auz’ by blast
ultimately obtain v! v2 where {vl, 2} C SAz-vI <O ANz-0v2>0
using linorder-not-le by auto
thus ?thesis using that by fastforce
qed

lemma affine-2-int-convez:

142

fixes S :: ‘a::euclidean-space set
assumes {a, b} C S
assumes {a, b} C frontier (convez hull S)
assumes affine hull {a, b} N interior (convex hull S) # {}
shows affine hull {a, b} N conver hull S = convex hull {a, b}
proof—
let ?H = convex hull S
let ?L = affine hull {a, b} N ?H
have 1: ?L D convez hull {a, b}
by (meson Int-greatest assms(1) convex-hull-subset-affine-hull hull-mono)
moreover have ?L C conver hull {a, b}
proof (rule subsetl)
fix
assume *: ¢ € 7L
then obtain v v where uv: x = v *p a + v xg b A v + v = 1 using
affine-hull-2 by blast

have rel-interior 2L C rel-interior ?H
using subset-rel-interior-convez|of ?L ?H)]
by (metis assms(8) convez-affine-hull convex-conver-hull conver-rel-interior-inter-two
inf-bot-right inf-le2 rel-interior-affine-hull rel-interior-nonempty-interior)
moreover have ab-frontier: a € frontier ?H N b € frontier ?H using assms
by blast
ultimately have ab-rel-frontier: a € rel-frontier ?L N\ b € rel-frontier ?L
by (metis Intl affine-affine-hull assms(3) convex-affine-rel-frontier-Int con-
vexz-convex-hull hull-subset inf-commute insert-subset)

{ assume *x: u < 0
then have b € open-segment a z
proof—
from uv have b = (1/v) *xg z — (u/v) *g a
by (smt (verit, ccfo-threshold) ** divide-inverse-commute inverse-eq-divide
real-vector-affinity-eq vector-space-assms(3) Groups.add-ac(2))
moreover from uv have 1 /v — u/v = 1
by (metis *x add.commute add-cancel-right-left diff-divide-distrib di-
vide-self-if eq-diff-eq’ not-one-less-zero)
ultimately have b = (1 — 1/v) *xg a + (1/v) *xg z by (simp add: diff-eq-eq)
moreover from uv xx have 0 < 1 /v A 1/v < 1 by simp
ultimately show ?thesis
by (metis 1 ab-rel-frontier affine-hull-sing convez-hull-singleton empty-iff
equalityl in-segment(2) inf-lel insert-absorb rel-frontier-sing scaleR-collapse sin-
gletonl)
qed
then have b € rel-interior (convex hull {a, z})
by (metis empty-iff open-segment-idem rel-interior-closed-segment seg-
ment-convez-hull)
moreover have x € ?H using * by blast
ultimately have b € interior ?H
by (smt (verit, ccfu-threshold) = IntD2 Int-empty-right 1 affine-affine-hull

143

affine-hull-affine-Int-nonempty-interior affine-hull-convez-hull assms(3) convex-Int
convez-affine-hull convex-convex-hull convex-rel-interior-inter-two hull-hull hull-redundant-eq
insert-commute insert-subsetl rel-interior-affine-hull rel-interior-mono rel-interior-nonempty-interior
rel-interior-subset subset-hull subset-iff)
then have Fulse by (metis DiffD2 ab-frontier frontier-def)
} moreover
{ assume **: v < 0
then have a € open-segment b x
proof—
from uv have a = (1/u) *g © — (v/u) *g b
by (smt (verit, ccfo-threshold) ** divide-inverse-commaute inverse-eq-divide
real-vector-affinity-eq vector-space-assms(3) Groups.add-ac(2))
moreover from wuv have 1/u — v/u = 1
by (metis *x add-cancel-right-left diff-divide-distrib divide-self-if eq-diff-eq’
not-one-less-zero)
ultimately have a = (1 — 1/u) xg b+ (1/u) xg = by (simp add: diff-eq-eq)
moreover from wv xx have 0 < I/u A 1/u < 1 by simp
ultimately show ?thesis
by (metis 1 ab-rel-frontier affine-hull-sing convez-hull-singleton empty-iff
equalityl in-segment(2) inf-lel insert-absorb rel-frontier-sing scaleR-collapse sin-
gletonl)
qed
then have a € rel-interior (convex hull {b, z})
by (metis empty-iff open-segment-idem rel-interior-closed-segment seg-
ment-convez-hull)
moreover have x € ?H using * by blast
ultimately have a € interior ?H
by (smt (verit, ccfv-threshold) = IntD2 Int-empty-right 1 affine-affine-hull
affine-hull-affine- Int-nonempty-interior affine-hull-convez-hull assms(3) convex-Int
convez-affine-hull convex-convex-hull convex-rel-interior-inter-two hull-hull hull-redundant-eq
insert-commute insert-subsetl rel-interior-affine-hull rel-interior-mono rel-interior-nonempty-interior
rel-interior-subset subset-hull subset-iff)
then have Fulse by (metis DiffD2 ab-frontier frontier-def)
}
ultimately have 0 < uAu <1 A0 <vAwv< 1 using uv by argo
thus z € convez hull {a, b} by (simp add: convexD hull-inc uv)
qged
ultimately show ?thesis by blast
qed

lemma halfplane-frontier-affine-hull:

fixes b v :: real ™2

assumes b # 0

assumes v # 0

assumes b € {z. vz = 0}

shows {z. v - z = 0} = affine hull {0, b}
proof—

let F = {z. vz =0}

let ?A = affine hull {0, b}

144

have ?F C ?A
proof (rule subsetl)
fix y
assume *: y € ¢F
have y € 24 if y = 0 by (simp add: assms(2) hull-inc that)
moreover have y € ?4 if b$1 # 0
proof—
have v + y = 0 using * by fast
moreover have v - b = (using assms by force
moreover have v - y = v$1 * y$1 + v32 x y$2 by (simp add: inner-vec-def
sum-2 real-2-inner)
moreover have v - b = v$1 * b31 + v82 x b$2 by (simp add: inner-vec-def
sum-2 real-2-inner)
ultimately have 0: v$1 * y$1 + v$2 * y$2 = 0 A 0 = v$1 * b$1 + v$2 *
b$2 by auto
moreover obtain ¢ where c¢: y$1 = ¢ * b$1 using b$1 # 0»
by (metis hyperplane-eq-Ez inner-real-def mult.commute)
ultimately have v$7 * y$1 + v$2 * y$2 = 0 A 0 = ¢ * v$1 * b$1 + ¢ *
v$2 x b$2 by algebra
then have v$1 * y$1 + v$2 * y$2 = v$1 * y$1 + ¢ * v$2 x b$2 using ¢
by algebra
then have v$2 * y$2 = ¢ * v$2 x b$2 by argo
then have y$2 = ¢ * b$2
by (smt (verit, ccfo-threshold) 0 exhaust-2 mult.commute mult.left-commute
mult-cancel-left that assms vec-eg-iff zero-indez)
then have y = ¢ *xp b using ¢
by (smt (verit) exhaust-2 real-scaleR-def vec-eq-iff vector-scaleR-component)
then have y € span {0, b} by (meson insert-subset span-mul span-superset)
thus y € 74
by (simp add: affine-hull-span-0 assms(2) hull-inc)
qed
moreover have y € 24 if 0$2 # 0
proof—
have v - y = 0 using * by fast
moreover have v - b = 0 using assms by force
moreover have v - y = v$1 x y$1 + v$2 * y$2 by (simp add: inner-vec-def
sum-2 real-2-inner)
moreover have v - b = v$1 * b31 + v82 = b$2 by (simp add: inner-vec-def
sum-2 real-2-inner)
ultimately have 0: v$1 * y$1 + v$2 * y$2 = 0 A 0 = v$1 * b$1 + v$2 *
b$2 by auto
moreover obtain ¢ where ¢: y$2 = ¢ * b$2 using b$2 # 0»
by (metis hyperplane-eq-Ez inner-real-def mult.commute)
ultimately have v$17 * y$1 + v$2 * y$2 = 0 A 0 = ¢ * v$1 * b$1 + c *
v$2 x b$2 by algebra
then have v$1 * y$1 + v$2 x y$2 = 0 A 0 = ¢ x v8$1 * b$1 + v32 * y$2
using c by algebra
then have v$1 x y$1 = ¢ * v$1 * b$1 by argo
then have y$1 = ¢ * b$1

145

by (smt (verit, ccfv-threshold) 0 exhaust-2 mult.commute mult.left-commute
mult-cancel-left that assms vec-eq-iff zero-inder)
then have y = ¢ *xp b using ¢
by (smt (verit) exhaust-2 real-scaleR-def vec-eq-iff vector-scale R-component)
then have y € span {0, b} by (meson insert-subset span-mul span-superset)
thus y € 74
by (simp add: affine-hull-span-0 assms(2) hull-inc)
qed
ultimately show y € 74
by (metis (mono-tags, opaque-lifting) assms(1) exhaust-2 vec-eq-iff zero-index)
qed
moreover have 24 C 2F
proof (rule subsetl)
fix z
assume z € 74
then obtain o 5 where x = a xg 0 + 8 xg b A a + 8 = 1 using affine-hull-2
by blast
then have v -z =a * (v 0) + 8 * (v - b) by (simp add: assms(1))
then have v - z = 0 using assms(3) by auto
thus z € ?F by fast
qged
ultimately show ?thesis by blast
qed

lemma vts-on-conves-frontier-aux:

assumes polygon-of p vts

assumes vts!0 = 0

assumes set vts C frontier (convex hull (set vts))

shows path-image (linepath (vts!0) (vts!1)) C frontier (conver hull (set vts))
proof—

let ?H = convex hull (set vts)

let %a = vts!0

let 2b = wvts!1

let 21 = linepath ?a ?b

let ?L = path-image ?1

let ?A = affine hull {?a, ?b}

let %z = %0 — %a

obtain v where v: v+ 2z =0 A v # 0
proof—
let 2v = (vector [?2$2, —22$1])::(real "2)
have %a # %b
by (smt (verit, best) Cons-nth-drop-Suc One-nat-def Suc-le-eq arc-distinct-ends
assms(1) assms(2) card.empty drop0 empty-set length-greater-0-conv list.sel(1)
list.sel(3) make-polygonal-path.elims make-polygonal-path.simps(1) make-polygonal-path.simps(2)
nth-drop pathfinish-linepath pathstart-linepath plus-1-eq-Suc polygon-at-least-3-vertices
polygon-def polygon-of-def polygon-pathstart rel-simps(28) simple-path-joinE)
then have %z # 0 by simp
then have v+ 2z =0 A 2v # 0

146

proof—
have %v « 2z = (2282 * 2281) + (— 2281 * 72$2)
by (simp add: inner-vec-def sum-2 real-2-inner)
then have ?v - %z = 0 by argo
moreover have v # 0
by (smt (verit, best) «?x # 0» exhaust-2 vec-eq-iff vector-2(1) vector-2(2)
zero-index)
ultimately show ?thesis by blast
qed
thus ?thesis using that by blast
qed

let ?P1 ={z. vz < 0}
let P2 = {z.v-2> 0}
let ?P1-int = {z. v
let ?P2-int = {z. v
let ?F = {z. v-2z =0}

have ?b # 0
by (smt (verit) Cons-nth-drop-Suc One-nat-def Suc-le-eq Suc-le-length-iff arc-distinct-ends
assms(1) assms(2) card.empty drop0 drop-eq-Nil empty-set le-numeral-extra(4)
length-greater-0-conv list.inject make-polygonal-path.elims make-polygonal-path.simps(2)
nat-less-le pathfinish-linepath pathstart-linepath polygon-at-least-3-vertices polygon-def
polygon-of-def polygon-pathstart rel-simps(28) simple-path-joinE)
moreover have ?b € ?F using assms(2) v by auto
ultimately have F: ?F = 74
using halfplane-frontier-affine-hull[of ?b v] v assms(2) by presburger
moreover have L C ?A by (simp add: convezr-hull-subset-affine-hull segment-convez-hull)
ultimately have L-subset-F: ?L C ?F by blast
have L-subset-H: ¢?L C ?H
by (metis (no-types, lifting) add-gr-0 assms(1) card.empty convex-contains-segment

convex-convex-hull diff-less empty-set hull-subset leD length-greater-0-conv less-numeral-extra(1)

nth-mem numeral-3-eq-3 path-image-linepath plus-1-eq-Suc polygon-at-least-3-vertices
polygon-of-def rotate-polygon-vertices-same-set rotated-polygon-vertices-helper(2) sub-
set-code(1))

have frontier-P1: frontier ?P1 = ?F by (simp add: v frontier-halfspace-le)
have frontier-P2: frontier P2 = ¢F by (simp add: v frontier-halfspace-ge)
have interior-P1: interior YP1 = ¢P1-int by (simp add: v)

have interior-P2: interior P2 = ?P2-int by (simp add: v)

have convez-P1: convex ?P1 by (simp add: convez-halfspace-le)

have convex-P2: convex ?P2 by (simp add: convez-halfspace-ge)

have P1-int-P2: ?P1 N ?2P2 = ?F by (simp add: halfspace-Int-eq(1))

let H1 = ?H N ?P1
let YH2 = ?H N ?P2

have — collinear (set vts) using polygon-vts-not-collinear assms(1) by simp
then have nonempty-interior-H: interior H # {}

147

by (smt (verit, ccfv-SIG) Jordan-inside-outside-real2 closed-path-def Un-Int-eq(4)
assms(1) convez-hull-of-polygon-is-convex-hull-of-vts disjoint-iff hull-subset inf.orderE
interior-Int interior-eq interior-subset path-inside-def polygon-def polygon-of-def)

have convex-H1: conver ?HI by (simp add: convez-Int convexr-P1)
have conver-H2: convexr ?H2 by (simp add: convex-Int convex-P2)

have ?H C ?P1 VvV ?H C ?2P2
proof (rule ccontr)
assume *x: - (?H C ?P1 vV ?H C ?P2)
moreover have interior YH C ?P1 — ?H C ?P1
by (metis (no-types, lifting) Int-Un-eq(3) Krein-Milman-frontier List.finite-set
P1-int-P2 closure-Un-frontier closure-convex-hull closure-mono compact-frontier con-
vex-closure-interior convex-convex-hull finite-imp-compact-convex-hull frontier-P1
nonempty-interior-H)
moreover have interior YH C P2 — ?H C ?P2
by (metis (no-types, lifting) Int-Un-eq(3) Krein-Milman-frontier List.finite-set
P1-int-P2 calculation(1) calculation(2) closure- Un-frontier closure-convez-hull clo-
sure-mono compact-frontier convez-closure-interior convex-convex-hull emptyE fi-
nite-imp-compact-convez-hull frontier-P2 inf-commute subsetl)
ultimately have interior ?H N ?P1 # {} A interior ?H N —%?P1 # {} by
force
moreover have path-connected (interior 7H) by (simp add: convez-imp-path-connected)
ultimately have F-int-interior-H: ?F N interior 7H # {}
by (metis (no-types, lifting) path-connected-frontier ComplD disjoint-eq-subset-Compl
frontier-P1 subset-eq)
then obtain v v2 where viv2: vl # v2 A {vl, v2} C set vts
A vl € interior ?P1 N v2 € interior ?P2
using convez-cut frontier-P1 interior-P1 interior-P2 v by metis
then obtain 7 j where 7j: vtsli = vl A vislj = v2
AN2<iIN2<jNANITF#GNi<lengthvts — 1 A j < length vts — 1
proof—
obtain 7 j where visli = v1 A wvtslj = v2 AN i # j A i < length vis A\ j <
length vts
by (metis in-set-conv-nth insert-subset v1v2)
moreover have 2 < g
proof—
{assume i =0V i=1
then have vtsli = %a Vv vtsli = ?b by blast
then have vtsli € ?F by (simp add: F hull-inc)
then have False using calculation(1) interior-P1 viv2 by auto
}
thus ?thesis by presburger
qed
moreover have 2 < j
proof—
{assume j=0Vj=1
then have vts!j = %a V vts!j = 2b by blast
then have vtslj € ?F by (simp add: F hull-inc)

148

then have Fualse using calculation(1) interior-P2 viv2 by auto
}
thus ?thesis by presburger
qed
moreover have Fulse if i = length vis — 1
by (metis (no-types, lifting) F assms(1) calculation(1) frontier-P1 frontier-def
have-wraparound-vertex hull-subset insertCI insert-Diff last-conv-nth last-snoc less-nat-zero-code
list.size(3) polygon-of-def subset-Diff-insert that viv2)
moreover have Fulse if j = length vis — 1
by (metis (no-types, lifting) F assms(1) calculation(1) frontier-P2 frontier-def
have-wraparound-vertex hull-subset insertCI insert-Diff last-conv-nth last-snoc less-nat-zero-code
list.size(3) polygon-of-def subset-Diff-insert that viv2)
ultimately show ?thesis using that by fastforce
qed

let 2/ = min ij

let 2}’ = mazxij

let ?vts’ = take (%' — 21’ + 1) (drop ?i’ vts)

let ?p’ = make-polygonal-path ?vts’

have vts’-sublist: sublist ?vts’ vts using sublist-order.order.trans by blast

then have vts’-sublist-tl: sublist ?vts’ (tl vts)

by (metis Suc-1 Suc-eq-plusl drop-Suc i maz-def min-def nat-minus-add-mazx

not-less-eq-eq sublist-drop sublist-order.dual-order.trans sublist-take)

have p’-start-finish: {pathstart ?p’, pathfinish ?p'} = {v1, v2}
proof—
have ?vts’l0 = vts! 2i’ using ij by force
moreover have ?uvts’l(%j' — %) = vts! %)’
using diff-is-0-eq diff-zero i less-numeral-extra(1) maz.cobounded! min-absorb2
min-def nth-drop nth-take order-less-imp-le
by fastforce
moreover have (vts! %0’ = vl A vts! %)’ = v2) V (vts! 2’ = v2 A vts!9j' = vl)
using ij by linarith
moreover have pathstart ?p’ = ?vtsl0 A pathfinish ?p’ = ?vts’\(2§’ — ?i')
using ij min-diff polygon-pathfinish polygon-pathstart
by (smt (verit, ccfv-SIG) add-diff-cancel-right” add-diff-inverse-nat length-drop
length-take less-diff-conv max.commute max-min-same(1) min.absorb nat-minus-add-maz
not-add-less2 plus-1-eq-Suc plus-nat.simps(2) take-eq-Nil zero-less-one)
ultimately show ?thesis by auto
qed
then have path-image ?p’ N interior ?P2 # {} A path-image ?p’ N interior
o1 £ {)
by (metis viv2 Intl doubleton-eq-iff empty-iff pathfinish-in-path-image path-
start-in-path-image)
then have path-image ?p’ N —?P1 # {} A path-image ?p’ N ?P1 # {}
using interior-P2
by (smt (verit, best) disjoint-iff-not-equal in-mono inf-shunt interior-P1
mem-Collect-eq)
moreover have path-connected (path-image ?p’)

149

using make-polygonal-path-gives-path path-connected-path-image by blast
ultimately obtain 2z where z: z € path-image ?p’ N ?F
by (smt (verit, del-insts) path-connected-frontier Diff E Diff-triv all-not-in-conv
frontier-P1)
moreover have path-image ?p’ C ?H
proof—
have path-image p C 7H
by (metis assms(1) insert-subset length-pos-if-in-set polygon-of-def poly-
gon-path-image-subset-convex v1v2)
moreover have path-image ?p’ C path-image p
by (metis (no-types, lifting) vts'-sublist sublist-path-image-subset One-nat-def
Suc-lel p’-start-finish assms(1) doubleton-eg-iff length-greater-0-conv make-polygonal-path.simps(1)
pathfinish-linepath pathstart-linepath polygon-of-def viv2)
ultimately show ?thesis by blast
qed
ultimately have z € path-image ?p’ N (?H N ?F) by blast
moreover have ?H N ?F = ?L
using affine-2-int-convez[of ?a ?b set vts]
by (smt (verit, best) assms(3) F F-int-interior-H inf-commute segment-convex-hull
path-image-linepath Suc-1 add-leD2 assms(1) empty-subsetl insert-subset length-greater-0-conv
lessI nat-neq-iff nth-mem numeral-Bit0 order.strict-iff-not plus-1-eq-Suc polygon-of-def
polygon-vertices-length-at-least-4 take-all-iff take-eq-Nil IntE inf.orderE)
ultimately have z € ?L N path-image ?p’ by blast
moreover have ?L N path-image ?p’ C {?%a, ?b}
proof—
let ?p-tl = make-polygonal-path (tl vts)
have p = make-polygonal-path vts A loop-free p
using assms unfolding polygon-of-def polygon-def simple-path-def by blast
moreover have [?a, ?b] = take 2 vts
by (metis Cons-nth-drop-Suc One-nat-def Suc-1 append-Cons append-Nil cal-
culation constant-linepath-is-not-loop-free drop0 drop-eq-Nil insert-subset length-pos-if-in-set
linorder-not-le make-polygonal-path.simps(2) take0 take-Suc-conv-app-nth viv2)
moreover have tl vts = drop (2 — 1) vts by (simp add: drop-Suc)
moreover have 7l = make-polygonal-path [?a, ?b] using make-polygonal-path.simps
by simp
moreover have length vts > 2 using ¢ by linarith
moreover have pathstart 21 = 2a A pathstart ?p-tl = %b
using calculation(8) calculation(5) polygon-pathstart by auto
ultimately have ?L N path-image ?p-tl C {?%a, ?b}
using loop-free-split-int[of p vts [?a, ?b] 2 tl vis 21 ?p-tl length vts| by auto
moreover have path-image ?p’ C path-image ?p-tl
using sublist-path-image-subset
by (metis add.commute ij le-add2 length-drop length-take less-diff-conv
min.absorb min.coboundedl min-def vts’-sublist-tl)
ultimately show ?thesis by blast
qed
ultimately have *: z = %a V z = ?b by blast

let %4 = 2’

150

let 9§ = %)/ — 2’ + 1

let % =%+ 9

let %21 = (279 — 1)/(27%)::real

let %22 = (27(%—1) — 1)/(27(%—1))::real

have ?%vts’ = take % (drop 9 vts) by blast
moreover have 2 < length vts — 1 N 2 < % using ij by linarith
ultimately have path-image ?p’ = p{?z1..222}

using vts-sublist-path-image assms(1) unfolding polygon-of-def by metis
moreover have z1z2: %21 > 1/2 N 722 < 1
proof—

have ?i’ > 2 using ij by linarith

then have (I:real) < 27% — 1

by (smt (28) dual-order.strict-transl linorder-le-less-linear numeral-le-one-iff

power-one-right power-strict-increasing semiring-norm(69))
thus ?thesis by simp

qed
moreover have p 0 ¢ p{?x1..%222} N p (1/2) ¢ p{?x1..%22}
proof—

have False if *: p 0 € p{?x1..722}

proof—

obtain ¢ where t: t € {%z1..922} A p t = p 0 using x by auto
then have t > %21 At < 222 by presburger
then have 1/2 < t A t < 1 using z1z2 by argo
thus Fulse
using ¢ assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by force
qed
moreover have False if *: p (1/2) € p{?x1..922}
proof—
obtain ¢ where ¢: t € {%z1..222} A pt = p (1/2) using * by auto
then have t > %21 At < 222 by presburger
then have 1/2 < t A t < 1 using z1z2 by argo
thus Fulse
using ¢ assms(1) unfolding polygon-of-def polygon-def simple-path-def
loop-free-def
by fastforce
qed
ultimately show ?thesis by fast
qed
moreover have %a = p 0
by (metis assms(1) card.empty empty-set not-numeral-le-zero pathstart-def
polygon-at-least-3-vertices polygon-of-def polygon-pathstart)
moreover have ?b = p (1/2)
proof—
have p = 2 +++ (make-polygonal-path (tl vts))
by (smt (verit, best) One-nat-def Suc-1 assms(1) ij length-Cons length-greater-0-conv
length-tl less-imp-le-nat list.sel(3) list.size(3) make-polygonal-path.elims nth-Cons-0

151

nth-tl order-less-le-trans polygon-of-def pos2 zero-less-diff)
then have p (1/2) = %l 1
unfolding joinpaths-def by simp
thus ?thesis by (simp add: linepath-1")
qed
ultimately have ?a ¢ path-image ?p’ A 2b ¢ path-image ?p’ by presburger
thus Fulse using z * by blast
qed
then have frontier ?P1 N ?H C frontier YH V frontier P2 N ?H C frontier YH
using frontier-int-subset by auto
moreover have ?L C frontier ?P1 N ?L C frontier ?P2
using frontier-P1 frontier-P2 L-subset-F by presburger
ultimately show ?thesis using L-subset-H by fast
qed

lemma vts-on-convez-frontier-auz’”:

assumes polygon-of p vts

assumes set vts C frontier (convex hull (set vts))

shows path-image (linepath (vts!0) (vts!1)) C frontier (conver hull (set vts))
proof—

let %a = vts!0

let 2f = Av. v + (—%a)

let ?vts’ = map ?f vts

let ?p’ = make-polygonal-path ?vts’

have len-vts: length vts > 2
using assms(1) polygon-of-def polygon-vertices-length-at-least-4 by fastforce
then have p %p' = 2f o p
using make-polygonal-path-translate[of vts — ?a] assms unfolding polygon-of-def
by presburger
then have 0: vts'l0 = 0
by (metis len-vts neg-eq-iff-add-eq-0 nth-map order-less-le-trans pos2)
moreover have vts”: set %vts’ = 2f “ (set vts) by simp
ultimately have convex hull (set ?vts’) = 2f * (convex hull (set vts))
using convez-hull-translation[of —%a set vts| by force
then have frontier (convex hull (set ?vts’)) = frontier (?f ¢ (convex hull (set
vts)))
by auto
then have frontier-translation:
frontier (convex hull (set ?vts’)) = 2f * (frontier ((convex hull (set vts))))
using frontier-translation[of — ?a convex hull (set vts)] by simp

have ?f (vts!0) = 2vts'0 A 2f (vtsl1) = %vts'l1 using 0 len-vts by auto
then have linepath-translation:
?f ¢ path-image (linepath (vts!0) (vts!l)) = path-image (linepath (?vts’0)
(2vts1))
using linepath-translation[of ?a —%a vts!1] by (simp add: path-image-compose)

have polygon-of ?p’ 2vts’ using translation-is-polygon assms(1) p’ by presburger

152

moreover have set ?vts’ C frontier (convex hull (set ?vts’))
proof—
have frontier (convex hull (set ?vts’)) = frontier (convex hull (?f ¢ (set vts)))
using vts’ by presburger
then have frontier (conver hull (set ?vts’)) = 2f ¢ (frontier (convex hull (set
ots)))
using frontier-translation by presburger
thus ?thesis using vts’ assms(2) by auto
qged
ultimately have path-image (linepath (2vts"0) (2vts''1)) C frontier (convex hull
(set 2vts”))
using vts-on-convex-frontier-auzr assms 0 by blast
then have ?2f ‘ path-image (linepath (vts!0) (vts!1)) C 2f “ (frontier ((convex hull
(set vts))))
using linepath-translation frontier-translation by argo
thus ?thesis by force
qed

lemma vts-on-convex-frontier:
assumes polygon-of p vts
assumes set vts C frontier (convex hull (set vts))
assumes i < length vts — 1
shows path-image (linepath (vts!i) (visl(i+1))) C frontier (convex hull (set vts))
proof—
let ?vts’ = rotate-polygon-vertices vts i
let ?p’ = make-polygonal-path ?vts’
have polygon-of ?p’ ?vts’
using assms(1) polygon-of-def rotation-is-polygon by blast
moreover have set 7vts’ C frontier (convex hull (set ?vts’))
using assms(1) assms(2) polygon-of-def rotate-polygon-vertices-same-set by
auto
ultimately have path-image (linepath (?vts"\0) (Pvts''1)) C frontier (conver hull
(set 2vts”))
using vts-on-convez-frontier-auz’ by presburger
moreover have ?vts’l0 = vtsli A 2vts'1 = vtsl(i+1)
using assms(3)
using rotated-polygon-vertices[of ?vts’ vts i i+1]
using rotated-polygon-vertices|of 2vts’ vts i i
by (smt (verit, best) Suc-lel add.commute add.right-neutral add-2-eq-Suc’
add-diff-cancel-left” add-lessD1 assms(1) have-wraparound-vertex hd-Nil-eq-last hd-conv-nth
last-snoc le-add1 less-diff-conv plus-1-eq-Suc polygon-of-def)
moreover have frontier (convex hull (set ?vts’)) = frontier (convex hull (set
vts))
by (metis assms(1) polygon-of-def rotate-polygon-vertices-same-set)
ultimately show ¢thesis by argo
qed

lemma vts-on-frontier-means-path-image-on-frontier:

153

assumes polygon-of p vts
assumes set vts C frontier (convex hull (set vts))
shows path-image p C frontier (convex hull (set vts))
proof (rule subsetl)
let ?H = convex hull (set vts)
fix z assume = € path-image p
moreover have path-image p = (|J {path-image (linepath (vts'i) (vts!(i+1))) |
i. i < (length vts) — 2})
using polygonal-path-image-linepath-union assms unfolding polygon-of-def
by (metis (no-types, lifting) add-leD2 numeral-Bit0 polygon-vertices-length-at-least-4)
ultimately obtain ¢ where i < (length vts) — 2 A x € path-image (linepath
(vtsli) (vts!(i+1)))
by blast
thus z € frontier ?H
by (smt (verit, ccfo-SIG) One-nat-def Suc-diff-Suc add.commute add-2-eq-Suc’
assms(1) assms(2) in-mono le-addl le-zero-eq less-Suc-eg-le less-diff-conv linorder-not-less
plus-1-eq-Suc vts-on-convex-frontier vts-on-convex-frontier-aux’)
qed

lemma vts-on-convez-frontier-interior:
assumes polygon-of p vts
assumes set vts C frontier (convex hull (set vts))
shows path-inside p = interior (convex hull (set vts))
proof—
let YH = convez hull (set vts)

have path-inside p C interior (convex hull (set vts))
by (metis (no-types, lifting) Un-empty assms(1) convez-contains-simple-closed-path-imp-contains-path-insid
convez-convez-hull convex-hull-eq-empty convex-hull-of-polygon-is-convez-hull-of-vts
empty-set inside-outside-def inside-outside-polygon interior-maximal length-greater-0-conv
polygon-def polygon-of-def polygon-path-image-subset-convex)
moreover have interior (conver hull (set vts)) C path-inside p
proof(rule ccontr)
assume *: — interior (convex hull (set vts)) C path-inside p
then obtain z where z: © € interior (convex hull (set vts)) — path-inside p
by blast
obtain y where y: y € path-inside p
using inside-outside-polygon assms unfolding inside-outside-def polygon-of-def
by fastforce

let 2l = linepath = y
have 1: path-image ?1 C interior ?H
by (metis (no-types, lifting) DiffE calculation convex-contains-segment con-

vex-convez-hull convex-interior in-mono linepath-image-01 path-defs(4) x y)

have path-image ¢l N frontier (path-inside p) # {}

using inside-outside-polygon assms unfolding inside-outside-def polygon-of-def

by (smt (verit) x Diff-disjoint Diff-eq-empty-iff Int-Un-eq(2) Int-assoc Un-Int-eq(3)
assms(1) calculation connected-Int-frontier convez-connected convez-convez-hull con-
vex-interior frontier-def inf.absorb-iff2 vts-on-frontier-means-path-image-on-frontier)

154

then have 2: path-image 2l N path-image p # {}
using inside-outside-polygon assms unfolding inside-outside-def polygon-of-def
by blast

show Fulse
using 1 2 vts-on-frontier-means-path-image-on-frontier
using Diff-disjoint Int-lower2 Int-subset-iff assms(1) assms(2) frontier-def
inf-lel
by fastforce
qged
ultimately show ¢thesis by blast
qed

lemma vts-subset-frontier:

assumes polygon-of p vts

assumes set vts C frontier (convex hull (set vts))

shows convez (path-image p U path-inside p)

by (metis assms(1) assms(2) vts-on-convez-frontier-interior convex-convez-hull
convez-interior polygon-convex-iff polygon-of-def sup-commute)

lemma convex-hull-of-nonconvex-polygon-strict-subset-ep:

assumes polygon-of p vts

assumes — (convex (path-image p U path-inside p))

shows {v. v extreme-point-of (convex hull (set vts))} C set vts
proof—

let Zep = {v. v extreme-point-of (convexr hull (set vts))}

let H = convex hull (set vts)

have ?ep C frontier ?H

by (metis Krein-Milman-frontier List.finite-set convex-convez-hull extreme-point-of-convez-hull
finite-imp-compact-convez-hull mem-Collect-eq subsetl)

thus ?thesis using assms vts-subset-frontier extreme-points-of-convex-hull by
force
qed

lemma convex-hull-of-nonconvex-polygon-strict-subset:
assumes polygon-of p vts
assumes — (convex (path-image p U path-inside p))
shows Jv € set vts. v € interior (conver hull (set vts))
using assms vts-subset-frontier
by (smt (verit) Diff-iff UnCI closure-Un-frontier frontier-def hull-inc subsetl)

lemma convex-polygon-means-linepaths-inside:
fixes p :: R-to-R2
assumes polygon-of p vts
assumes convez-is: convex hull (set vts) = (path-inside p U path-image p)
assumes a-in: a € (path-inside p U path-image p)
assumes b-in: b € (path-inside p U path-image p)
shows path-image (linepath a b) C (path-inside p U path-image p)
proof —

155

let ?conv = path-inside p U path-image p

have Vu>0.Vv>0. u+v=1— u*r a+ v*g b € Zconv
using convez-is a-in b-in unfolding convez-def
by (metis (no-types, lifting) convexD convez-convez-hull conver-is)

then have (I — z) *g a + = *xg b € Zconv if z-in: x € {0..1} for z
using z-in by auto

then show ?thesis unfolding linepath-def path-image-def
by fast

qed

end

theory Polygon-Splitting

imports
HOL— Analysis. Complete-Measure
Polygon-Jordan-Curve
Polygon-Convex-Lemmas

begin

19 Polygon Splitting

lemma split-up-a-list-into-3-parts:
fixes i j:: nat
assumes i < length vts A\ j < length vts A\ i < j
shows
vts = (take i vts) Q ((vts ! i) # ((take (j — ¢ — 1) (drop (Suc i) vts)) Q (vts !
§) # drop (j — %) (drop (Suc 7) vts)))
proof —
let %2 = vis ! i
let 2y = wvts!j
let 2vtsl = (take i vts)
let 2drop-list = drop (Suc ©) vts
have vts-is: vts = %vtsl @ vtsli # drop (Suc i) vts
using split-list assms
by (meson id-take-nth-drop)
then have len-vts!: length ?vtsl = i
using length-take|of i vts] assms
by auto
have gt-eq: j — i — 1 >0
using assms by auto
let ?ind =j — i — 1
have drop-is: drop (Suc i) vts! (j —i — 1) = %y
using assms by auto
then have drop-list-is: ?drop-list = take ?ind ?drop-list @ 2y # (drop (j — 1)
Zdrop-list)
by (metis Suc-diff-Suc Suc-lel assms diff-Suc-1 diff-less-mono id-take-nth-drop
length-drop)
have length (drop (Suc ?ind) ?drop-list) = length vts — j — 1
using length-drop[of Suc (j — ¢ — 1) (drop (Suc i) vts)] length-take assms
by auto

156

then show ?thesis
using vts-is drop-list-is len-vts1
by presburger
qed

definition is-polygon-cut :: (real™2) list = real 2 = real”2 = bool where
is-polygon-cut vts T y =
(z#y A
polygon (make-polygonal-path vts) N
{z, y} C set vts A
path-image (linepath © y) N path-image (make-polygonal-path vts) = {z, y} A
path-image (linepath © y) N path-inside (make-polygonal-path vts) # {})

definition is-polygon-cut-path :: (real”2) list = R-to-R2 = bool where
is-polygon-cut-path vts cutpath =
(let x = pathstart cutpath ; y = pathfinish cutpath in
(z#y A
polygon (make-polygonal-path vts) N
{z, y} C set vts A
simple-path cutpath A
path-image cutpath N path-image (make-polygonal-path vts) = {z, y} A
path-image cutpath N path-inside (make-polygonal-path vts) # {}))

definition is-polygon-split ::
(real™2) list = nat = nat = bool where
is-polygon-split vts i j =
(i < length vts N\ j < length vts N i < j A
(let vts1 = (take 7 vits) in
let vts2 = (take (j — i — 1) (drop (Suc i) vts)) in
let vts8 = drop (j — 1) (drop (Suc ©) vts) in
let x = vts ! 1 in
let y = vts ! jin
let p = make-polygonal-path (vtsQ[vts!0]) in
let p1 = make-polygonal-path (z#(vts2Q[y, z])) in
let p2 = make-polygonal-path (vtsl Q [z, y] @ vts3 Q [vts | 0]) in
let ¢c1 = make-polygonal-path (z#(vts2Q[y])) in
let ¢2 = make-polygonal-path (vtsl Q [z, y] Q vts3) in
(is-polygon-cut (vtsQ@Qluts!0]) z y A
polygon p A polygon p1 A polygon p2 N
path-inside p1 N path-inside p2 = {} A
path-inside pl U path-inside p2 U (path-image (linepath = y) — {z, y}) =
path-inside p
A ((path-image p1) — (path-image (linepath z y))) N ((path-image p2) —
(path-image (linepath z y)))
A path-image p
= ((path-image p1) — (path-image (linepath z y))) U ((path-image p2) —

157

(path-image (linepath = y))) U {z, y}

)

definition is-polygon-split-path :: (real”2) list = nat = nat = (real”2) list =

bool where
is-polygon-split-path vts © j cutvts =
(i < length vts N j < length vts N i < j A
(let vts1 = (take © vis) in
let vts2 = (take (j — i — 1) (drop (Suc i) vts)) in
let vts3 = drop (j — i) (drop (Suc i) vts) in
let x = vtsli in
let y = vts!j in
let cutpath = make-polygonal-path (z # cutvts Q [y]) in
let p = make-polygonal-path (vtsQ[uvts!0]) in
let p1 = make-polygonal-path (z#(vts2 Q [y] Q (rev cutvts) Q [z])) in

let p2 = make-polygonal-path (vts1 @ ([z] Q cutvts Q [y]) Q vEs3 Q [vts ! 0]) in

let ¢c1 = make-polygonal-path (z#(vts2Q[y])) in

let ¢2 = make-polygonal-path (vts1 Q ([z] Q cutvts Q [y]) Q vts?) in
(is-polygon-cut-path (vts@[uts!0]) cutpath A
polygon p A polygon p1 A polygon p2 A
path-inside p1 N path-inside p2 = {} A

path-inside p1 U path-inside p2 U (path-image cutpath — {z, y}) = path-inside

p

A ((path-image p1) — (path-image cutpath)) N ((path-image p2) — (path-image

cutpath)) = {}
A path-image p

= ((path-image p1) — (path-image cutpath)) U ((path-image p2) — (path-image

cutpath)) U {z, y}

)

lemma polygon-split-add-measure:
fixes p p1 p2 :: R-to-R2
assumes is-polygon-split vts i j
assumes vts! = (take i vts)
vts2 = (take (j — ¢ — 1) (drop (Suc 7) vts))
vts3 = drop (j — %) (drop (Suc ©) vts)
x=uvts i
y=uts!j
p = make-polygonal-path (vis@[uvts!0])
pl = make-polygonal-path (z#(vts2Q[y, z]))
p2 = make-polygonal-path (vtsl Q [z, y] Q vtsd Q [vts | 0])
defines M1 = measure lebesgue (path-inside p1) and
M2 = measure lebesque (path-inside p2) and
M = measure lebesgue (path-inside p)
shows M1 + M2 = M
proof—
let ?cut = linepath © y
let Zcut-open-image = (path-image ?cut) — {z, y}
let P = path-inside p

158

let ?P1 = path-inside p1
let ?P2 = path-inside p2
let ?M = space lebesgue
let ?A = sets lebesgue

let 2u = emeasure lebesque

have open ?P1
by (metis assms(1) assms(3) assms(5) assms(6) assms(8) closed-path-image
is-polygon-split-def open-inside path-inside-def polygon-def simple-path-def)
then have Pi-measurable: ?P1 € ?A by simp

have open ?P2

by (metis assms(1) assms(2) assms(4) assms(5) assms(6) assms(9) closed-path-image
is-polygon-split-def open-inside path-inside-def polygon-def simple-path-def)

then have P2-measurable: P2 € ?A by simp

have ?P1 N ?P2 = {}
by (metis assms(1) assms(2) assms(3) assms(4) assms(5) assms(6) assms(8)
assms(9) is-polygon-split-def)
then have sum-union-finite: ?u ?P1 + %u ?P2 = ?u (?P1 U ?P2)
using plus-emeasure P1-measurable P2-measurable by blast

have measure lebesque ?P1 = 2y ¢P1
by (metis assms(1) assms(3) assms(5) assms(6) assms(8) bounded-inside
bounded-set-imp-Imeasurable bounded-simple-path-image emeasure-eq-ennreal-measure
emeasure-notin-sets ennreal-0 fmeasurableD2 is-polygon-split-def measure-zero-top
path-inside-def polygon-def)
moreover have measure lebesque ?P2 = ?u ?P2
by (metis Sigma-Algebra.measure-def assms(1) assms(2) assms(4) assms(5)
assms(6) assms(9) bounded-inside bounded-path-image bounded-set-imp-lmeasurable
emeasure-eg-ennreal-measure emeasure-notin-sets enn2real-top ennreal-0 fmeasur-
ableD2 is-polygon-split-def path-inside-def polygon-def simple-path-def)
ultimately have ?u (?P1 U ?P2) = M1 + M2
using assms(10) assms(11) sum-union-finite by auto
moreover have 7y (YP1 U ?P2) = ?u 7P
proof—
have ?u (path-image ?cut) = 0 using linepath-has-emeasure-0 by blast
then have (path-image ?cut) € null-sets lebesgue by auto
moreover have {z, y} € null-sets lebesgue by simp
ultimately have ?cut-open-image € null-sets lebesque using measure-Diff-null-set
by auto
moreover have ?P = ?P] U ?P2 U ?cut-open-image
by (metis assms(1) assms(2) assms(3) assms(4) assms(5) assms(6) assms(7)
assms(8) assms(9) is-polygon-split-def)
ultimately show #thesis
by (simp add: P1-measurable P2-measurable emeasure-Un-null-set sets.Un)
qed
ultimately show ?thesis
by (smt (verit, best) M1-def M2-def M-def emeasure-eg-ennreal-measure enn2real-ennreal

159

ennreal-neg-top measure-nonneg)
qed

lemma polygonal-paths-measurable:
shows path-image (make-polygonal-path vts) € sets lebesque
proof (induct vts rule: make-polygonal-path-induct)
case (Empty ell)
then show ?case by auto
next
case (Single ell)
then obtain a where ell = [a]
by (metis Cons-nth-drop-Suc One-nat-def drop0 drop-eq-Nil le-numeral-extra(4)
zero-less-one)
then show ?case using make-polygonal-path.simps(2)[of a] by simp
next
case (Two ell)
then obtain a b where ell = [a, b]
by (metis Cons-nth-drop-Suc One-nat-def Suc-1 append-Nil drop-eq-Nil2 dual-order.refl
id-take-nth-drop lessl pos2 take()
then show ?case using make-polygonal-path.simps(3)[of a b] by simp
next
case (Multiple ell)
then have ell = (ell ! 0) # (ell ! 1) # (ell ! 2) # (drop 3 ell)
by (metis Cons-nth-drop-Suc One-nat-def Suc-1 drop0 le-Suc-eq linorder-not-less
numeral-3-eq-3)
then have make-polygonal-path ell =
linepath (ell ! 0) (ell ! 1) +++ make-polygonal-path (ell ! 1 # ell ! 2 # (drop
3 ell))
by (metis make-polygonal-path.simps(4))

then have path-image (make-polygonal-path ell) = path-image (linepath (ell ! 0)
(ell ! 1)) U path-image (make-polygonal-path (ell ! 1 # ell ! 2 # (drop 2 ell)))
using Cons-nth-drop-Suc Multiple.hyps(1) One-nat-def Suc-1 Un-assoc <ell =
ellV 0 # ellV 1 # ell! 2 # drop 3 elly list.discI make-polygonal-path.simps(2)
make-polygonal-path.simps(3) nth-Cons-0 numeral-3-eq-3 path-image-cons-union
proof—
have fi: ell = ell 1 0 # ell! 1 # ell! Suc 1 # drop 3 ell
using Suc-1 <ell = ell 1 0 # ell ! 1 # ell! 2 # drop 3 ell> by presburger
have Suc 1 < length ell
by (smt (23) Suc-1 <2 < length elly)
then have f2: drop (Suc 1) ell = ell | Suc 1 # drop (Suc (Suc 1)) ell
by (smt (23) Cons-nth-drop-Suc)
have f3: V v va vs. path-image (make-polygonal-path (v # va # vs)) = path-image
(linepath v va) U path-image (make-polygonal-path (va # vs))
by (metis (no-types) list.discI nth-Cons-0 path-image-cons-union)
have f4: VYV v va. path-image (linepath (v::(real, 2) vec) va) U (path-image
(linepath va va) U V) = path-image (linepath v va) U V
by auto
have path-image (make-polygonal-path ell) = path-image (make-polygonal-path

160

(ellV 0 # ell! 1 # drop (Suc 1) ell))
using f2 f1 by (simp add: numeral-3-eq-3)
then have path-image (make-polygonal-path ell) = path-image (linepath (ell
0) (ell'! 1)) U path-image (make-polygonal-path (ell ! 1 # ell ! Suc 1 # drop (Suc
1) ell))
using f4 f3 f2 by presburger
then show ?thesis
using Suc-1 by presburger
qed
then show ?case using Multiple(3)
by (metis (no-types, lifting) Cons-nth-drop-Suc Multiple.hyps(1) Multiple.hyps(2)
One-nat-def Suc-1 <ell = ell ! 0 # ell ! 1 # ell ! 2 # drop 8 elly list.discl
make-polygonal-path.simps(3) nth-Cons-0 numeral-3-eq-3 path-image-cons-union sets. Un)

qed

lemma polygonal-path-has-emeasure-0:

shows emeasure lebesgque (path-image (make-polygonal-path vts)) = 0
proof (induct vts)

case Nil

then show ?case by auto
next

case (Cons a vts)

then show ?case

by (metis linepath-is-negligible make-polygonal-path.simps(2) negligible-Un neg-

ligible-iff-emeasure0 path-image-cons-union polygonal-paths-measurable)
qged

lemma polygon-split-path-add-measure:

fixes p p! p2 :: R-to-R2

assumes is-polygon-split-path vts i j cutvts

assumes vts! = (take i vts)
vts2 = (take (j — ¢ — 1) (drop (Suc 7) vts))
vts3 = drop (j — %) (drop (Suc 7) vts)
x=uvts!i
y=wvts!j
p = make-polygonal-path (vtsQ[vts!0])
pl = make-polygonal-path (z#(vts2 Q [y] Q (rev cutvts) Q [z]))
p2 = make-polygonal-path (vtsl Q ([z] @ cutvts Q [y]) Q@ vts8 Q [vts ! 0])

defines M1 = measure lebesgue (path-inside p1) and
M2 = measure lebesque (path-inside p2) and
M = measure lebesque (path-inside p)

shows M1 + M2 = M

proof—

let ?cut = make-polygonal-path (x # cutvts Q [y])

let ?cut-open-image = (path-image ?cut) — {z, y}

let ?P = path-inside p

let ?P1 = path-inside pl

let ?P2 = path-inside p2

161

let M = space lebesgue
let ?A = sets lebesgue
let ?u = emeasure lebesque

have open ?P1
by (metis assms(1) assms(3) assms(5) assms(6) assms(8) closed-path-image
is-polygon-split-path-def open-inside path-inside-def polygon-def simple-path-def)
then have Pi-measurable: ?P1 € ?A by simp

have open ?P2

by (metis assms(1) assms(2) assms(4) assms(5) assms(6) assms(9) closed-path-image
is-polygon-split-path-def open-inside path-inside-def polygon-def simple-path-def)

then have P2-measurable: ?P2 € ?A by simp

have ?P1 N ?P2 = {}
by (metis assms(1) assms(2) assms(3) assms(4) assms(5) assms(6) assms(8)
assms(9) is-polygon-split-path-def)
then have sum-union-finite: %u ?P1 + %u ¢P2 = 2y (?P1 U ?P2)
using plus-emeasure P1-measurable P2-measurable by blast

have ?u (path-image q) = 0 = (path-image q) € null-sets lebesque if x:
path-image q € sets lebesgue for q::real = (real, 2) vec
using null-sets-def * by blast

have measure lebesque ?P1 = 2 ?P1
by (metis assms(1) assms(3) assms(5) assms(6) assms(8) bounded-inside
bounded-set-imp-lmeasurable bounded-simple-path-image emeasure-eq-ennreal-measure
emeasure-notin-sets ennreal-0 fmeasurableD2 is-polygon-split-path-def measure-zero-top
path-inside-def polygon-def)
moreover have measure lebesque ?P2 = 2y P2
by (metis Sigma-Algebra.measure-def assms(1) assms(2) assms(4) assms(5)
assms(6) assms(9) bounded-inside bounded-path-image bounded-set-imp-lmeasurable
emeasure-eq-ennreal-measure emeasure-notin-sets enn2real-top ennreal-0 fmeasur-
ableD2 is-polygon-split-path-def path-inside-def polygon-def simple-path-def)
ultimately have %y (?P1 U ?P2) = M1 + M2
using assms(10) assms(11) sum-union-finite by auto
moreover have ?u (YP1 U ?P2) = %u P
proof—
have ?u (path-image ?cut) = 0 using polygonal-path-has-emeasure-0
by presburger
then have (path-image ?cut) € null-sets lebesque using polygonal-paths-measurable
by blast
moreover have {z, y} € null-sets lebesque by simp
ultimately have ?cut-open-image € null-sets lebesgue using measure-Diff-null-set
by auto
moreover have ?P = ?P1 U ?P2 U ?cut-open-image
by (metis assms(1) assms(2) assms(3) assms(4) assms(5) assms(6) assms(7)
assms(8) assms(9) is-polygon-split-path-def)
ultimately show Zthesis

162

by (simp add: P1-measurable P2-measurable emeasure-Un-null-set sets.Un)
qed
ultimately show ?thesis
by (smt (verit, best) M1-def M2-def M-def emeasure-eq-ennreal-measure enn2real-ennreal
ennreal-neg-top measure-nonneq)
qed

lemma polygon-cut-path-to-split-path-vtz0:
fixes p :: R-to-R2
assumes polygon-p: polygon p and
i-gt: ¢ > 0 and
i-lt: i < length vts and
p-is: p = make-polygonal-path (vts @Q [vts ! 0]) and
cutpath: cutpath = make-polygonal-path ([vts!0] Q cutvts Q [vts!i]) and
have-cut: is-polygon-cut-path (vts @ [vts!0]) cutpath
shows is-polygon-split-path vts 0 i cutvts
proof —
let ?vts2 = take (i — 1) (drop 1 vts)
let ?vts3 = drop i (drop 1 vts)
let 92 = vis ! 0
let 2y = vts !4

let ?c3-vts = [?z] Q cutvis @ [?y]

let ?c3 = cutpath

let ?c3-rev-vts = rev ?c3-vts

let ?c3-rev = make-polygonal-path ?c3-rev-vts
let ?c8’ = reversepath ?c3

let ?p = make-polygonal-path (vts @ [vts ! 0])
let ?pil-vts = % # Pvts2 Q ?2¢3-rev-uvts

let ?p1 = make-polygonal-path ?p1-vts

let ?pi-rot-vts = ?c3-rev-vts Q Zuts2 Q [?y]
let ?p1-rot = make-polygonal-path ?p1-rot-vts
let ?p2-vts = %c3-vts Q Zuts3 Q [?x]

let ?p2 = make-polygonal-path ?p2-vts

let Zcl-vts = %u # Pvts2 Q [?y]

let ?c1 = make-polygonal-path ?cl-vts

let Zc2-vts = [?y] Q Zutsd Q [?x]

let ?c2 = reversepath (make-polygonal-path ?c2-vts)
let 2c¢2’-vts = [?y] Q Pvts3 Q [2x]

let 2¢2’ = (make-polygonal-path (2c2’-vts))

have distinct-vts: distinct vts
using polygon-p p-is
using polygon-def simple-polygonal-path-vts-distinct by force
have len-vts-gteq3: length vts > 3
using polygon-p p-is polygon-vertices-length-at-least-4 by fastforce

then have 7z # %vts2 Q [?y| = take (i+1) (vtsQ [vis ! 0])

163

by (smt (verit, ccfu-threshold) i-gt Cons-nth-drop-Suc Suc-eq-plusl Suc-pred’
add-less-cancel-left butlast-snoc drop0 drop-drop hd-drop-conv-nth i-lt length-append-singleton
length-greater-0-conv less-imp-le-nat linorder-not-less list.size(3) plus-1-eq-Suc take-Suc-Cons
take-all-iff take-butlast take-hd-drop)

have [?y] @ 2vts3 Q [?z] = drop (i) (vts Q [vts | 0])

using i-gt

by (metis (no-types, lifting) Cons-eq-appendl Cons-nth-drop-Suc Suc-eq-plus!
append-Nil diff-is-0-eq’ drop-0 drop-append drop-drop i-lt less-imp-le-nat)

have card-gteq: card (set vts) > 3
using polygon-at-least-3-vertices-wraparound polygon-p p-is
by (metis butlast-conv-take butlast-snoc)
then have vits # ||
by auto
then have vts-is: vts = %x # %vts2 Q 2y # Zvts3
using split-up-a-list-into-3-parts[of 0 vts 7] i-gt i-lt
by auto

have elem-propl: last ?c1-vts = %y
by (metis (no-types, lifting) last.simps snoc-eq-iff-butlast)
have elem-prop2: (vts | 0 # (rev ?vts3) Q [vts ! i) !
(length (vts ! 0 # drop i (drop 1 vts) Q [vts 1 4]) — 1) = vts !
by (metis diff-Suc-1 length-Cons length-append-singleton length-rev nth-Cons-Suc
nth-append-length)
have path-image cutpath = path-image ?c3’ by simp
then have path-image ?p1 = path-image (?cl +++ ?c3-rev)
using elem-propl assms make-polygonal-path-image-append-alt[of ¢p1 ?pl-vts
7c1 Pcl-vts ?c3-rev ?c3-rev-vts]
by simp
also have ... = path-image ?c1 U path-image ?c3-rev
by (metis (no-types, opaque-lifting) append-Cons append-Nil elem-prop1 hd-conv-nth
last-conv-nth list.discl list.sel(1) path-image-join polygon-pathfinish polygon-pathstart
rev.simps(2) rev-rev-ident)
finally have image-prop: path-image ?p1 = path-image ?c1 U path-image cutpath
using rev-vts-path-image cutpath by presburger
have path-image ?c3’ = path-image ?c3
using cutpath rev-vts-path-image by force
then have path-image-p1: path-image ?c1 U path-image ?c8 = path-image ?p1
using image-prop by presburger

have ?p2-vts = 2c3-vts Q (tl 2c2-vts) by simp
then have path-image ?p2 = path-image (2¢8 +++ %¢2’)
using make-polygonal-path-image-append-alt[of ?p2 ?p2-vts 9c3 2c-vts 2¢2’
?c2-vts]
unfolding assms by auto
then have path-image-p2: path-image ?c2 U path-image ?c3 = path-image ?p2
by (metis (no-types, opaque-lifting) Un-commute append-Cons append-Nil cut-
path last-conv-nth nth-Cons-0 path-image-join path-image-reversepath polygon-pathfinish

164

polygon-pathstart snoc-eq-iff-butlast)

have drop 1 vts = take (i — 1) (drop 1 vts) Q [vts ! {] @ drop i (drop 1 vts)
by (metis (no-types, lifting) Cons-eg-appendl Cons-nth-drop-Suc Suc-eq-plus!
Suc-pred’ append.simps(1) append-take-drop-id drop-drop i-gt i-lt)
then have vis-is: vts Q [vts | 0] = vts | 0 # take (i — 1) (drop 1 vts) @ [vts !
i) @ drop i (drop 1 vts) @ [vts ! 0]
by (metis (no-types, opaque-lifting) Cons-nth-drop-Suc One-nat-def append.assoc
append-Cons drop0 i-lt length-pos-if-in-set nth-mem)
let ?vts1’ = take (i — 1) (drop 1 vts)
let %vts2’ = drop i (drop 1 vts)
have path-im-p: path-image
(make-polygonal-path
((vts ! 0 # 2vts1’) @ [vts !] Q [vts | i] @ Puts2’ Q [vts | 0])) =
path-image
(make-polygonal-path
((vts ! 0 # 2vts1’) Q [vts | 9] @ Zuts2’ Q [vts ! 0]))
using make-polygonal-path-image-append-helper[of wvts | 0 # 2vtsl’ %vts2’ Q
[vts | 0]] by auto
have path-image
(make-polygonal-path
((vts ! 0 # 2vts1’) Q [vts ! 4] Q [vts | i] @ Puts2’ @ [vts ! 0])) = path-image
(make-polygonal-path ((vis ! 0 # %vtsl’) @Q [vis ! i]) +++ (linepath (vts ! i) (vts !
i)) +++ make-polygonal-path ([vts ! i] Q@ Zvts2’ @ [vts ! 0]))
using make-polygonal-path-image-append|of (vis! 0 # ?vtsl’) Q [vts ! i] [vts !
il @ 2uts2’ Q [vts | 0]

by (smt (verit) add-2-eq-Suc’ append.assoc append-Cons diff-Suc-1 le-add?2
length-Cons length-append-singleton nth-Cons-0 nth-append-length)
then have path-image p = path-image (make-polygonal-path ((ves! 0 # ?vts1’)
Q@ [vts ! i]) +++ (linepath (vts !) (vts ! i) +++ make-polygonal-path ([vts ! i) @
Puts2' Q [uts | 0]))
using path-im-p p-is vts-is
by simp
then have path-image p = path-image ?c1 U path-image (linepath (vts ! i) (vts
7)) U path-image (make-polygonal-path ([vts | i| @ 2vts2’ Q [vts | 0]))
by (metis (no-types, lifting) Un-assoc append-Cons elem-prop1 list.discI nth-Cons-0
path-image-join pathfinish-linepath pathstart-join pathstart-linepath polygon-pathfinish
polygon-pathstart last-conv-nth)

moreover have ... = path-image ?c1 U {vts! i} U path-image (make-polygonal-path
([vts ! 4] @ 2uts2’ @ [vts ! 0]))
by auto
moreover have ... = path-image ?c1 U path-image (make-polygonal-path ([vts !

i) @ 2uts2’ @ [vts ! 0]))
using vertices-on-path-image by fastforce
ultimately have path-image-p: path-image p = path-image ?c1 U path-image
7c2
using path-image-reversepath by blast

165

have simple-path-polygon: simple-path (make-polygonal-path (?z # %vts2 @Q 2y
uts3 Q [?z]))
using polygon-p p-is vts-is
using Cons-eg-appendl append-self-conv2 polygon-def by auto
then have loop-free-polygon: loop-free (make-polygonal-path (%z # %vts2 Q %y
%uts3 Q [%2]))
unfolding simple-path-def by auto

have loop-free-p: loop-free p
using polygon-p p-is unfolding polygon-def simple-path-def by auto

have sublist-c1: sublist (?x # %vts2 Q [?y]) vis
using «vts | 0 # take (i — 1) (drop 1 vts) Q [vts | 4] = take (i + 1) (vts Q [vts
1 0]) -t by auto
then have sublist-c1: sublist (?x # %vts2 Q [?y]) (vtsQ[uvts 10])
by (metis <vts | 0 # take (i — 1) (drop 1 vts) Q [vts | §] = take (i + 1) (vts
@ [vts ! 0])» sublist-take)
then have loop-free ?cl1
using sublist-is-loop-free p-is loop-free-p sublist-c1
by (metis One-nat-def Suc-1 Suc-eq-plusl Suc-lel Suc-le-mono <vts | 0 #
take (i — 1) (drop 1 vts) Q [vts | i) = take (i + 1) (vts Q [vts | 0])> i-gt i-lt
length-append-singleton less-imp-le-nat take-i-is-loop-free)
then have simple-c1: simple-path ?cl
unfolding simple-path-def
using make-polygonal-path-gives-path by blast
have start-c1: pathstart ?c1 = ?x
using polygon-pathstart
by (metis Cons-eq-appendl list.discI nth-Cons-0)
have finish-c1: pathfinish ?c1 = %y
using polygon-pathfinish
by (metis Cons-eq-appendl diff-Suc-1 length-append-singleton list.discI nth-append-length)

have sublist-c2: sublist ([?y] Q@ Zvts3 @ [?z]) (vtsQ[vts 10])
by (metis <[vts | i] @ drop i (drop 1 vts) @Q [vts | 0] = drop i (vts Q [vts ! 0])»
sublist-drop)
have ¢ < length (tl vts) using i-lt by fastforce
then have loop-free ?c2
by (metis (no-types) Suc-1 <[vts | §] @Q drop ¢ (drop 1 vts) Q [vts | 0] = drop
i (vts @ [vts | 0]) «wts # []» butlast-snoc drop-Suc drop-i-is-loop-free length-butlast
length-drop loop-free-p loop-free-reversepath p-is tl-append?2)
then have simple-c2: simple-path ?c2
unfolding simple-path-def
using make-polygonal-path-gives-path
using path-imp-reversepath by blast
have start-c2: pathstart ?c2 = %z
using polygon-pathfinish
by (metis (no-types, lifting) Nil-is-append-conv last-appendR last-conv-nth path-
start-reversepath polygon-pathfinish snoc-eq-iff-butlast)

166

have finish-c2: pathfinish ?c2 = ?y
using polygon-pathstart by auto

have path-image-int: path-image ?c1 C path-image ?p
unfolding path-image-def
by (metis Un-upperl p-is path-image-def path-image-p)
moreover have path-image ?p N path-image ?¢3 C {vts! 0, vts ! i}
using have-cut unfolding is-polygon-cut-path-def
by (metis (no-types, lifting) Int-commute append-Cons append-is-Nil-conv cut-
path last-appendR last-conv-nth last-snoc not-Cons-self2 nth-Cons-0 polygon-pathfinish
polygon-pathstart set-eq-subset)
ultimately have vts-subset-c1¢3: path-image ?c1 N path-image ?c3 C { %z, 2y}
by blast
have other-subsetl: {vts | 0, vts | i} C path-image ?cl
using vertices-on-path-image by fastforce
have other-subset2: {vts ! 0, vts | i} C path-image ?c3
unfolding assms using vertices-on-path-image by force
then have cl-inter-c3: path-image 2c1 N path-image ?2¢8 = {vts ! 0, vts ! i}
using vits-subset-c1c3 other-subsetl other-subset2 by blast
then have path-image ?c1 N path-image ?c3-rev = {pathstart ?c1, pathstart
?c3-rev}
by (metis rev-vts-path-image append-Cons append-Nil cutpath hd-conv-nth list.discI
list.sel(1) polygon-pathstart rev.simps(2) rev-rev-ident)

then have cl-inter-c3": path-image (make-polygonal-path (vis ! 0 # take (i —
1) (drop 1 vts) @Q [vts ! 4])) N
path-image (make-polygonal-path (rev ([vts | 0] Q cutvts Q [vts ! 7])))
C {pathstart (make-polygonal-path (vts | 0 # take (i — 1) (drop 1 vts) Q [vis !

),
pathstart (make-polygonal-path (rev ([vts ! 0] @ cutvts @ [vts ! i])))}
by blast
have last-is-head: last ?c3-rev-vts = hd ?c1-vts by auto
have vts-append: vts | 0 # take (i — 1) (drop 1 vts) Q rev ([vts ! 0] Q cutvts @
[vts ! 4]) =
(vts | 0 # take (i — 1) (drop 1 vts) Q [vts | i]) @
tl (rev (Juts | 0] Q cutvts Q [vts ! 4]))
by simp
have loop-free: loop-free (make-polygonal-path (vis ! 0 # take (i — 1) (drop 1
vts) @ [vts | d])) A
loop-free (make-polygonal-path (rev ([vts | 0] @ cutvts Q [vts | i])))
by (metis Suc-eg-plusl Suc-le-mono Zero-neq-Suc <vts | 0 # take (i — 1) (drop
1 vts) @ [uts |] = take (i + 1) (vts Q [vts ! 0])» cutpath diff-Suc-1 have-cut
i-gt -t is-polygon-cut-path-def length-append-singleton less-2-cases less-imp-le-nat
less-nat-zero-code linorder-le-less-linear loop-free-p p-is rev-vts-is-loop-free simple-path-def
take-i-is-loop-free)
have last-is-head?2:
last (vts ! 0 # take (i — 1) (drop 1 vts) Q [vts ! d]) =
hd (rev ([uts ! 0] @ cutvts Q [vts | i])) by simp

167

have arcs: arc (make-polygonal-path (vts | 0 # take (i — 1) (drop 1 vts) @ [vts
L)) A
arc (make-polygonal-path (rev ([vts | 0] @ cutvts @ [vts ! i])))
using Nil-is-append-conv append-Cons constant-linepath-is-not-loop-free cutpath
finish-c1 have-cut hd-conv-nth is-polygon-cut-path-def last-appendR last-conv-nth
last-is-head last-is-head2 last-snoc list.sel(1) loop-free make-polygonal-path.simps(1)
make-polygonal-path-gives-path polygon-pathfinish polygon-pathstart simple-path-def
simple-path-imp-arc loop-free
by (smt (verit, ccfv-SIG))
then have loop-free ?p1
using loop-free-append|of ?p1 ?pl-vts ?c1 cl-vts ?2c3-rev ?c3-rev-vts,

OF - - - outs-append loop-free cl-inter-c3' - last-is-head2 arcs] using
last-is-head by blast

then have simple-path ?p1
unfolding simple-path-def
using make-polygonal-path-gives-path by blast
moreover have closed-path ?p1
using polygon-pathstart polygon-pathfinish
unfolding closed-path-def
using elem-prop1 make-polygonal-path-gives-path
by (smt (verit, best) append-is-Nil-conv last-ConsR last-appendR last-conv-nth
last-snoc list.discl nth-Cons-0 rev-append singleton-rev-conv)

ultimately have polygon-p1: polygon ?p1 unfolding polygon-def polygonal-path-def
by fastforce

have path-image-int: path-image ?c2 C path-image (make-polygonal-path (vts @
[vts | 0]))
unfolding path-image-def using path-image-p
by (simp add: p-is path-image-def)
then have vts-subset-c2c3: path-image ?c2 N path-image ?¢3 C { %z, %y}
using have-cut unfolding is-polygon-cut-path-def using <path-image (make-polygonal-path
(vts Q [vts ! 0])) N path-image cutpath C {vts ! 0, vts | ip by auto
have other-subset3: {vts ! 0, vts ! i} C path-image ?c2
using vertices-on-path-image by fastforce
have other-subset4: {vts ! 0, vts ! i} C path-image ?¢8
unfolding assms using vertices-on-path-image by fastforce
have c2-inter-c3: path-image ?c2 N path-image 9c3 = {vts ! 0, vts ! i}
using vts-subset-c2c3 other-subset3 other-subsets by blast
have path-p2: path ?p2
using make-polygonal-path-gives-path by blast
have pathfinish ?p2 = vts ! 0
using polygon-pathfinish
by (metis Nil-is-append-conv last-appendR last-conv-nth last-snoc list.discl)
then have closed-p2: closed-path ?p2

unfolding closed-path-def using polygon-pathstart
using path-p2 by auto

168

have ([vts | 0] @ cutvts @ [vts ! i]) Q drop i (drop 1 vts) Q [vts | 0] =
([vts ! 0] @ cutvts Q [vts | i]) Q tl ([vts !] Q drop i (drop 1 vts) @ [vts ! 0])
by force
moreover have loop-free cutpath N
loop-free (make-polygonal-path ([vts | i) @Q drop i (drop 1 vts) Q [vts ! 0]))
by (metis <loop-free (reversepath (make-polygonal-path ([vts ! i] @ drop i
(drop 1 vts) @Q [uvts ! 0])))> cutpath loop-free loop-free-reversepath rev-rev-ident
rev-vts-is-loop-free reversepath-reversepath)
moreover have path-image cutpath N path-image (make-polygonal-path ([vts ! 4]
Q@ drop i (drop 1 vts) @Q [vts ! 0]))
C {pathstart cutpath,
pathstart (make-polygonal-path ([vts | i] @ drop i (drop 1 vts) Q [vts | 0]))}
using c2-inter-c3 cutpath polygon-pathstart by auto
moreover have last ([vts ! i) @ drop i (drop 1 vts) Q [vts ! 0]) # hd ([vts ! 0]
Q@ cutvts @ [vts ! i]) —
path-image cutpath N path-image (make-polygonal-path ([vts ! i) @ drop i (drop
1 vts) @ [vts | 0]))
C {pathstart (make-polygonal-path ([vts ! 7| @ drop i (drop 1 vts) Q [vts ! 0]))}
by simp
moreover have last ([vts ! 0] @ cutvts @ [vts ! i]) = hd ([vts ! i] Q drop i (drop
1 vts) Q [vts ! 0))
by simp
moreover have arc cutpath A arc (make-polygonal-path ([vts ! i] Q drop i (drop
1 vts) Q [vts ! 0]))
by (metis (no-types, lifting) arc-simple-path arcs calculation(2) finish-c1 fin-
ish-c2 have-cut is-polygon-cut-path-def make-polygonal-path-gives-path pathfinish-reversepath
pathstart-reversepath simple-path-def start-c1 start-c2)
ultimately have loop-free ?p2
using loop-free-append|of ?p2 ?p2-vts ?¢3 2c8-vts 2c2’ P¢2'-vts,
OF - - -] using cutpath by blast
then have polygon-p2: polygon ?p2
using path-p2 closed-p2 unfolding polygon-def simple-path-def polygonal-path-def

by blast

have simple-c8: simple-path ?c3
using have-cut unfolding is-polygon-cut-path-def by meson
have start-c3: pathstart ?c3 = ?z unfolding assms using polygon-pathstart by
simp
have finish-c3: pathfinish ?c3 = ?y unfolding assms using polygon-pathfinish
by simp
have pathstart cutpath = ?x using assms polygon-pathstart by force
moreover have pathfinish cutpath = ?y using assms polygon-pathfinish by simp
ultimately have vts-neq: vts | 0 # vts ! ¢
using have-cut unfolding is-polygon-cut-path-def by force
have ci-inter-c2: path-image ?c1 N path-image ?¢2 = {vts ! 0, vts ! i}

169

proof—
obtain ¢ where i1: (%z # %vts2 Q [?y] = take 7 (vts Q [vts!0])) and
i2: ([%y] Q@ 2uts8 Q [?z] = drop (i—1) (vts @ [vts!0]))
by (metis <[vts ! i] Q drop i (drop 1 vts) @Q [vts ! 0] = drop i (vts Q [vts | 0])»
wts | 0 # take (i — 1) (drop 1 vts) @ [vts ! i] = take (i + 1) (vts Q [vts | 0])»
add.commute add-diff-cancel-left’)
moreover have 1: { > 1 A i < length (vts Q [vts!0])
by (metis (no-types, lifting) bot-nat-0.extremum less-one Nil-is-append-conv ap-
pend-Cons calculation diff-is-0-eq drop-Cons' linorder-not-less list.inject not-Cons-self2
same-append-eq take-all vts-is vts-neq)
moreover have 2: ?p = make-polygonal-path (vts Q [vts!0]) A loop-free ?p
unfolding polygon-of-def using p-is polygon-p unfolding polygon-def sim-
ple-path-def by blast
ultimately have path-image ?c1 N path-image (make-polygonal-path ([?y] @
Puts3 @ [?z])) C {pathstart ?cl, pathstart (make-polygonal-path ([?y] @ Zvtss Q
172])}
using loop-free-split-int[of ?p vis Q [vtslO] %o # Pvts2 Q [?y] i [?y] Q@ Pvts3
@ [?z] ?c1 make-polygonal-path ([?y] @ Pvts3 Q [?z]) length (vts @ [vts!0]),
OF 2i1i2 - - - 1]
by presburger
moreover have path-image ?c2 = path-image (make-polygonal-path ([?y] Q
Zuts8 Q@ [?x])) using path-image-reversepath by fast
moreover have pathstart (make-polygonal-path ([?y] Q@ ?vts3 Q [?2])) = 2y
using polygon-pathstart by auto
moreover have pathstart ?c1 = ?z using polygon-pathstart by auto
ultimately show ¢thesis
using other-subset! other-subset3 subset-antisym by force
qed

have non-empty-inter: path-image ?c3 N inside(path-image ?c1 U path-image
7c2) # {}

using have-cut path-image-p p-is

unfolding is-polygon-cut-path-def path-inside-def

by fastforce

have p1-minus: ((path-image ?p1) — (path-image ?c3)) = path-image ?c1 — { %z,
9
7y}

using cl-inter-c3 path-image-p1 by blast
have p2-minus: ((path-image ?p2) — (path-image ?¢3)) = path-image ?c2 — { %z,
2
7y}

using c2-inter-c3 path-image-p2 by auto

then have path-im-intersect-minus: ((path-image ?p1) — (path-image 2¢3)) N
((path-image ?p2) — (path-image (linepath 2z ?y))) = {}
using cl-inter-c2 p1-minus p2-minus
by blast
have ((path-image ?p1) — (path-image ?¢3)) U ((path-image ?p2) — (path-image
7¢3)) U { %z, 2y} = ((path-image ?p1) — (path-image 2c8) U { %z, ?y}) U ((path-image
?p2) — (path-image 2¢3) U { %z, ?y})

170

by auto

then have ((path-image ?p1) — (path-image (%¢3))) U ((path-image ?p2) —
(path-image (?¢3))) U {%z, ?y} = ((path-image 2c1) — {%z, ?y} U {%z, 2y}) U
((path-image ?c2) — { %z, 2y} U { %z, ?y})

using pl-minus p2-minus by simp

then have ((path-image ?p1) — (path-image (?¢3))) U ((path-image 9p2) —
(path-image (%¢3))) U {?z, 2y} = path-image ?c1 U path-image ?c2

using other-subset! other-subset3 by auto
then have path-im-intersect-union: path-image ?p = ((path-image ?p1) — (path-image
(2¢8))) U ((path-image ?p2) — (path-image (%¢3))) U { %z, %y}

using path-image-p p-is by auto

have inside(path-image ?c1 U path-image ?¢3) N inside(path-image ?¢2 U path-image
7c3) = {}
using split-inside-simple-closed-curve-real2[OF simple-c1 start-c1 finish-c1 sim-
ple-c2 start-c2 finish-c2
simple-c8 start-c8 finish-c3 vts-neq cl-inter-c2 cl-inter-c3 c2-inter-c3
non-empty-inter]
by fast
then have empty-inter: path-inside ?p1 N path-inside ?p2 = {}
using path-image-p1 path-image-p2 unfolding path-inside-def
by force
have inside(path-image %cl1 U path-image ?¢3) U inside(path-image %c2 U
path-image ?¢3) U
(path-image ?c8 — {vts! 0, vts | i}) = inside(path-image ?c1 U path-image
2c2)
using split-inside-simple-closed-curve-real2| OF simple-c1 start-c1 finish-c1 sim-
ple-c2 start-c2 finish-c2
simple-c3 start-c3 finish-c3 vts-neq cl-inter-c2 cl-inter-c3 c2-inter-c3
non-empty-inter]
by fast
then have inside: path-inside ?p1 U path-inside ?p2 U (path-image ?c3 — { %z,
?y}) = path-inside p
using path-image-p1 path-image-p1 path-image-p unfolding path-inside-def
by (smt (23) Diff-cancel Int-Un-distrib2 c1-inter-c2 c1-inter-c3 finish-c1 inf-commaute
inf-sup-absorb nonempty-simple-path-endless path-image-p2 simple-c1 start-c1)
have first-part: 0 < length vts A
i < length vts N\
0 <i
using assms
by auto
have second-part-helper: is-polygon-cut-path (vts Q [vts ! 0]) cutpath A
polygon ?p A
polygon ?p1 A
polygon ?p2 A
path-inside ?p1 N path-inside ?p2 = {} A
path-inside ?p1 U path-inside ?p2 U (path-image (?¢3) — {%z, ?y}) =
path-inside p

171

A ((path-image ?p1) — (path-image (?c3))) N ((path-image ?p2) — (path-image
(7c3)) = {}
A path-image ?p = ((path-image ?p1) — (path-image (?¢3))) U ((path-image
?p2) — (path-image (?¢3))) U {?z, 2y}
using polygon-p p-is polygon-p1 polygon-p2 empty-inter inside have-cut path-im-intersect-minus
path-im-intersect-union
proof—
have {} = path-image cutpath U path-image (make-polygonal-path (vts ! 0 # take
(i — 1) (drop 1 vts) @ [vts | i])) N path-image (reversepath (make-polygonal-path
([vts ! 4] @Q drop i (drop 1 vts) Q [vts ! 0]))) — path-image cutpath
using cl-inter-c2 c2-inter-c8 by fastforce
then have {} = (path-image cutpath U path-image (make-polygonal-path (vts
10 # take (i — 1) (drop 1 vts) Q [vts ! §]))) N (path-image cutpath U path-image
(reversepath (make-polygonal-path ([vts | i) @ drop i (drop 1 vts) @ [vts ! 0])))) —
path-image cutpath
by blast
then show ?thesis
using empty-inter have-cut inside polygon-p1 polygon-p2 Int-Diff image-prop
p-is path-im-intersect-union path-image-p2 polygon-p
by auto
qged
have vts-relation: (let vtsl = take 0 vts; vts2 = take (i — 0 — 1) (drop (Suc 0)
vts);
vts3 = drop (i — 0) (drop (Suc 0) vts); x = vts | 0; y = vts ! i
p = make-polygonal-path (vts @ [vts | 0]); pI = make-polygonal-path (z #
vts2 Q ?c3-rev-vts);
p2 = make-polygonal-path (?c3-vts Q vts3 Q [z]) in
vtsl =[] A vts2 = Puts2 A vts8 = 2vts3 AN p = p A pl = ?pl A p2 =
p2)
by simp
have second-part: (let vis1 = take 0 vts; vis2 = take (i — 0 — 1) (drop (Suc 0)
vEs);
vts3 = drop (i — 0) (drop (Suc 0) vts); x = vis ! 0; y = vts ! i
p = make-polygonal-path (vis Q [vts | 0]); pI = make-polygonal-path (x #
vts2 Q ?c3-rev-vts);
p2 = make-polygonal-path (vtsl Q ?c3-vts @ vts3 Q [vts | 0])
in is-polygon-cut-path (vts Q [vts | 0]) cutpath A
polygon p A
polygon p1 A
polygon p2 A
path-inside p1 N path-inside p2 = {} A
path-inside p1 U path-inside p2 U (path-image cutpath — {x, y}) = path-inside
p
A ((path-image p1) — (path-image (cutpath))) N ((path-image p2) — (path-image
(cutpath)) = {} A
path-image p = ((path-image p1) — (path-image (cutpath))) U ((path-image
p2) — (path-image (cutpath))) U {z, y})
using second-part-helper vts-relation p-is
by (metis self-append-conv2)

172

show ?thesis
unfolding is-polygon-split-path-def[of vts 0 i cutvts)
using first-part second-part
by (smt (verit, ccfv-threshold) append-Cons append-Nil cutpath rev.simps(2)
rev-append rev-is-Nil-conv)
qed

lemma polygon-cut-path-to-split-path:
fixes p :: R-to-R2
assumes polygon p
p = make-polygonal-path (vts Q [vts | 0])
is-polygon-cut-path (vts @ [vts!0]) cutpath
vtsl = (take i vts)

vts2 = (take (j — i — 1) (drop (Suc i) vts))
vts3 = drop (j — %) (drop (Suc ©) vts)
r=vts!i

y=wvts!j

cutpath = make-polygonal-path ([z] @ cutvts Q [y])
i < length vts N\ j < length vis A\ i < j
pl = make-polygonal-path (x#(vts2Q([y] Q (rev cutvts) @ [z]))) and
p2 = make-polygonal-path (vtsl @Q ([z] Q cutvts Q [y]) Q vts3 Q [(vtsl] Q
[z]) ! 0])
shows is-polygon-split-path vts i j cutvts
proof—
let Zpoly-vts-rot = rotate-polygon-vertices (vts @ [vts | 0]) @
let ?vts-rot = butlast ?poly-vts-rot
let ?p-rot = make-polygonal-path ?poly-vts-rot
let 2i-rot = j — i
have rot-poly: polygon ?p-rot using assms(1) assms(2) rotation-is-polygon by
blast
have i-rot: %i-rot > 0 N %i-rot < length ?poly-vts-rot — 1
using assms(10) rotate-polygon-vertices-same-length by fastforce
have vtsi: vts | ¢ = ?poly-vts-rot | 0
using rotated-polygon-vertices|of ?poly-vts-rot vts Q [vts!0] @ i]
by (metis (no-types, lifting) One-nat-def Suc-1 assms(10) diff-self-eq-0 hd-conv-nth
last-snoc length-append-singleton less-imp-le-nat linorder-not-le not-less-eq-eq nth-append
take-all-iff take-eq-Nil)
have vtsj: vts | j = ?poly-vts-rot | Zi-rot
using rotated-polygon-vertices|of ?poly-vts-rot vts Q [vts!0] © j]
by (smt (verit, ccfv-SIG) One-nat-def Suc-1 assms(10) butlast-snoc hd-append?2
hd-conv-nth last-snoc leD length-append-singleton less-Suc-eq-le less-imp-le-nat not-less-eq-eq
nth-butlast take-all-iff take-eq-Nil)
have is-polygon-cut-path ?poly-vts-rot cutpath
proof—
have ?poly-vts-rot | 0 # ?poly-vts-rot | Zi-rot
using assms(3) unfolding is-polygon-cut-path-def using vtsi vtsj
using append-Cons append-is-Nil-conv assms(7) assms(8) assms(9) last-appendR
last-conv-nth polygon-pathfinish polygon-pathstart
by force

173

moreover have {%poly-vts-rot | 0, ?poly-vts-rot | ?i-rot} C set (?poly-vts-rot
Q@ [?poly-vts-rot | 0])
using assms(3) unfolding is-polygon-cut-path-def using i-rot vtsi visj by
fastforce
moreover have path-image cutpath N path-image ?p-rot = { ?poly-vts-rot | 0,
Zpoly-vts-rot | Zi-rot}
using polygon-vts-arb-rotation vtsi vtsj assms(3) is-polygon-cut-path-def
by (metis (no-types, lifting) append.assoc append-Cons assms(7) assms(8)
assms(9) last-conv-nth nth-Cons-0 polygon-pathfinish polygon-pathstart snoc-eg-iff-butlast)
moreover have path-image cutpath N path-inside (p-rot) # {}
using vtsi vtsj assms(3) polygon-vts-arb-rotation
unfolding is-polygon-cut-path-def path-inside-def by metis
ultimately show #thesis
unfolding is-polygon-cut-path-def
using rot-poly assms(3) is-polygon-cut-path-def rotate-polygon-vertices-same-set
vtst vtsj
by (metis polygon-vts-arb-rotation)
qed
then have rot-cut: is-polygon-cut-path (?vts-rot Q [?vts-rot!0]) cutpath
by (metis butlast-snoc rotate-polygon-vertices-def)
have rot-cut-butlast: make-polygonal-path ?poly-vts-rot = make-polygonal-path
(Puts-rot @ [?vts-rot!0])
by (metis butlast-snoc rotate-polygon-vertices-def)
have split-rot: is-polygon-split-path ?vts-rot 0 ?i-rot cutvts
using rot-cut rot-cut-butlast
by (smt (verit, ccfo-SIG) assms(7) assms(8) assms(9) dual-order.strict-trans
i-rot is-polygon-cut-path-def length-butlast nth-butlast polygon-cut-path-to-split-path-vtz0
vtsi vtsy)

let 2vtsl-rot = take 0 ?uvts-rot

let ?vts2-rot = take (j — i — 0 — 1) (drop (Suc 0) ?vts-rot)

let 2vts3-rot = drop (j — @ — 0) (drop (Suc 0) ?vts-rot)

let ?z-rot = ?vts-rot | 0

let %y-rot = %vts-rot ! (j — 1)

let ?pl-rot-vts = Zz-rot # 2uts2-rot Q [2y-rot] @ (rev cutvts) @ [Zz-rot]

let ?p1-rot = make-polygonal-path ?p1-rot-vts

let ?p2-rot-vts = ?vtsi-rot Q [Zz-rot] Q cutvts Q [?y-rot] @ Puts3-rot Q [Pvts-rot
1 0]

let ?p2-rot = make-polygonal-path ?p2-rot-vts

let ?pl-vts = z # vts2 Q [y] @ (rev cutvts) Q [z]
let ?p2-vts = vtsl Q [z] @ cutvts Q [y] @ vtsd Q [(vtsl Q [z]) ! 0]

have p2-firstlast: hd ?p2-vts = last ?p2-vts
by (metis (no-types, lifting) append-is-Nil-conv append-self-conv2 hd-append?2
hd-conv-nth last-appendR last-snoc list.discI list.sel(1))
have length (drop (Suc i) vts) = length vts — i — 1
by simp

174

then have len-prop: length (drop (Suc i) vts) > j — i — 1
using assms(9) assms(10) diff-le-mono less-or-eq-imp-le by presburger
have drop-take: rotate ¢ vts = drop i vts Q take i vts
using rotate-drop-take[of i vts] assms(10) mod-less by presburger
then have drop-take-suc: drop (Suc 0) (rotate i vts) = drop (Suc i) vts Q take
1 vts
using assms(10) by simp
then have take (j — Suc i) (drop (Suc 0) (rotate i vts)) = take (j — Suc) (drop
(Suc) vts)
using len-prop by force
then have vts2: take (j — ¢ — 0 — 1) (drop (Suc 0) (butlast (rotate-polygon-vertices
(vts @ [uts | 0]) 7))) = vts2
using assms(5) unfolding rotate-polygon-vertices-def
by (metis Suc-eq-plus1 butlast-snoc diff-diff-left diff-zero)

have zy: ?x-rot = x N\ Py-rot = y
using vtsi vtsj assms by (metis is-polygon-split-path-def nth-butlast split-rot)

moreover have path-image p = path-image ?p-rot
using assms(1) assms(2) polygon-vts-arb-rotation by auto
moreover then have path-inside p = path-inside ?p-rot unfolding path-inside-def
by simp

moreover have ?pl-rot-vts = ?pl-vts using zy vts2 by presburger
moreover then have path-image p1 = path-image ?p1-rot using assms by argo
moreover then have path-inside p1 = path-inside ?p1-rot unfolding path-inside-def
by argo
moreover have polygon p1
using calculation split-rot assms(11) unfolding is-polygon-split-path-def
by (smt (verit, ccfv-SIG) vts2)

moreover have ?p2-rot-vts = rotate-polygon-vertices ?p2-uvts i
proof—
have butlast (vis1 Q [z] Q cutvts @ [y] Q vts8 @ [(vis] Q [z]) ! 0])
= vtsl Q [z] Q cutvts @ [y] Q vis3
by (simp add: butlast-append)
also have rotate i ... = [z] Q cutvts @ [y] @ vts3 Q vist
using assms(4)
by (metis (no-types, lifting) drop-take add-diff-cancel-right’ append.assoc
assms(10) diff-diff-cancel length-append length-drop length-rotate less-imp-le-nat
rotate-append)
finally have rotate-polygon-vertices ?p2-vts i = [z] Q cutvts Q [y] Q vts3 Q
vtsl Q [z]
unfolding rotate-polygon-vertices-def by simp
moreover have ?vis3-rot = vts8 Q visl
using assms(4,6) unfolding rotate-polygon-vertices-def
by (smt (verit, del-insts) One-nat-def Suc-diff-Suc Suc-lel drop-take-suc
assms(10) butlast-snoc diff-is-0-eq diff-zero drop0 drop-append i-rot le-add-diff-inverse
len-prop length-drop nat-less-le)

175

ultimately show ?thesis by (simp add: xy)
qed
moreover then have polygon p2
using unrotation-is-polygon|[of ?p2-vts i p2] split-rot assms(12) p2-firstlast
unfolding is-polygon-split-path-def
by (smt (verit) append.assoc)
moreover then have path-image p2 = path-image (?p2-rot)
using assms(12) polygon-vts-arb-rotation calculation by auto
moreover then have path-inside p2 = path-inside ?p2-rot unfolding path-inside-def
by presburger

ultimately show is-polygon-split-path vts i j cutvts
using split-rot unfolding is-polygon-split-path-def
using One-nat-def assms bot-nat-0.not-eq-extremum butlast-snoc hd-append?2
hd-conv-nth hd-take le-add2 length-0-conv length-Cons length-append length-butlast
nth-append-length rot-cut-butlast rotate-polygon-vertices-same-length take-eq-Nil
by (smt (verit) append.assoc butlast-conv-take have-wraparound-vertex is-polygon-cut-path-def
rotate-polygon-vertices-same-set)
qed

lemma good-polygonal-path-implies-polygon-split-path:
assumes polygon p
assumes p = make-polygonal-path (vts @ [vts!0])
assumes good-polygonal-path vl cutvts v2 (vts Q [vts!0])
assumes i < length vts N\ j < length vts
assumes vts | ¢ = vl
assumes vts | j = v2
assumes ¢ < j
shows is-polygon-split-path vts i j cutvts
proof—
let Zcutpath = make-polygonal-path ([vl] @ cutvts Q [v2])
let ?p-path = make-polygonal-path (vts Q [vts!0])
have linepath-subset: path-image ?cutpath C path-inside ?p-path U {vl, v2}
using assms(3) unfolding good-polygonal-path-def by meson
have linepath-ends: pathstart ?cutpath = vl A pathfinish ?cutpath = v2
using polygon-pathfinish polygon-pathstart by force
then have vs-subsetl: {v1, v2} C path-image ?cutpath
using vertices-on-path-image by fastforce
have vs-subset2: {v1, v2} C path-image (make-polygonal-path (vts Q [vts | 0]))
using assms(4 —6) vertices-on-path-image|of vts
using vertices-on-path-image by fastforce
have path-inside ?p-path N path-image ?p-path = {}
using inside-outside-polygon[OF assms(1)] assms(2) unfolding inside-outside-def
by blast
then have linepath-path: path-image ?cutpath N path-image (make-polygonal-path
(vts Q [vts ! 0])) = {wl, v2}
using linepath-subset vs-subsetl vs-subset?
by blast
have ?Zcutpath (5 / 10) € path-image ?cutpath

176

unfolding path-image-def by auto
have vi-neq-v2: vl # v2
using assms(3) unfolding good-polygonal-path-def
by fastforce
have not-v1: ?cutpath (0.5::real) = v1 = False
proof —
assume *: Zcutpath (0.5::real) = vl
then have Zcutpath (0.5::real) = Zcutpath 0
using linepath-ends unfolding pathstart-def by simp
moreover have loop-free ?cutpath using assms unfolding good-polygonal-path-def
by metis
ultimately show Fulse unfolding loop-free-def by fastforce
qed
have not-v2: ?cutpath (0.5::real) = v2 = Fulse
proof—
assume *: Zcutpath (0.5::real) = v2
then have Zcutpath (0.5::real) = ?cutpath 1
using linepath-ends unfolding pathfinish-def by simp
moreover have loop-free ?cutpath using assms unfolding good-polygonal-path-def
by metis
ultimately show Fulse unfolding loop-free-def by fastforce
qed
then have ?cutpath (0.5::real) # v1 A ?Zcutpath (0.5:real) # v2
using not-vl not-v2 by auto
then have linepath-inside: path-image ?cutpath N path-inside (make-polygonal-path
(vts @ [uts ! 0])) # {}
using linepath-subset
using < ?cutpath (5 / 10) € path-image ?cutpath) by blast
have is-polygon-cut-path (vts Q [vts!0]) Zcutpath
using assms(3) assms(1—2) unfolding good-polygonal-path-def is-polygon-cut-path-def
using linepath-path linepath-inside
by (metis linepath-ends make-polygonal-path-gives-path simple-path-def)
then show ?thesis using polygon-cut-path-to-split-path assms by blast
qed

lemma good-path-iff:
good-linepath a b vts <— good-polygonal-path a [| b vts
unfolding good-linepath-def good-polygonal-path-def
using linepath-loop-free by auto

lemma polygon-cut-iff: is-polygon-cut (vts Q [vts!0]) (vtsli) (vtsly)
<« is-polygon-cut-path (vts Q [vts!0]) (linepath (vtsli) (vtslf))
unfolding is-polygon-cut-def is-polygon-cut-path-def
by (metis pathfinish-linepath pathstart-linepath simple-path-linepath)

lemma polygon-split-iff : is-polygon-split vts i j «— is-polygon-split-path vts i j ||
unfolding is-polygon-split-def is-polygon-split-path-def

177

by (smt (verit, ccfo-threshold) append-Cons append-Nil make-polygonal-path.simps(3)
polygon-cut-iff rev.simps(1))

lemma polygon-cut-to-split-vtz0:
fixes p :: R-to-R2
assumes polygon-p: polygon p and
i-gt: © > 0 and
i-lt: 1 < length vts and
p-is: p = make-polygonal-path (vts Q [vts | 0]) and
have-cut: is-polygon-cut (vts Q [vts!0]) (vts!0) (vtsli)
shows is-polygon-split vts 0 i
using have-cut i-gt i-lt p-is polygon-cut-path-to-split-path-vtz0 polygon-cut-iff poly-
gon-p polygon-split-iff
by force

lemma polygon-cut-to-split:
fixes p :: R-to-R2
assumes is-polygon-cut (vts Q [vts!0]) (vtsli) (vesly)
i < length vts N\ j < length vis A\ i < j
shows is-polygon-split vts i j
by (metis append-Cons append-Nil assms is-polygon-cut-def make-polygonal-path.simps(3)
polygon-cut-path-to-split-path polygon-cut-iff polygon-split-iff)

lemma good-linepath-implies-polygon-split:
assumes polygon p
assumes p = make-polygonal-path (vts Q [vts!0])
assumes good-linepath vl v2 (vts Q [vts!0])
assumes i < length vts N\ j < length vts
assumes vts | i = vl
assumes vts | j = v2
assumes i < j
shows is-polygon-split vts i j
using assms good-path-iff good-polygonal-path-implies-polygon-split-path polygon-split-iff
by auto

end

theory Triangle-Lemmas

imports
Polygon-Convex-Lemmas
Integral-Matrix
Affine-Arithmetic. Floatarith- Expression
HOL— Analysis. Topology- Fuclidean-Space
HOL— Analysis. Equivalence-Lebesgue- Henstock-Integration
HOL— Analysis.Inner-Product
HOL— Analysis. Line-Segment
HOL— Analysis. Convez- Euclidean-Space
HOL— Analysis. Change-Of-Vars

begin

178

20 Triangles

definition elem-triangle :: real™2 = real 2 = real”2 = bool where
elem-triangle a b ¢ <—
= collinear {a, b, c}
A integral-vec a A integral-vec b A integral-vec ¢
A A{z. z € convexr hull {a, b, c} A integral-vec z} = {a, b, c}

definition triangle-mat :: real”2 = real 2 = real 2 = real 2”2 where
triangle-mat a b ¢ = transpose (vector [b — a, ¢ — a])

definition triangle-linear :: real™2 = real”2 = real”2 = (real”2 = real 2)
where
triangle-linear a b ¢ = (Az. (triangle-mat a b ¢) *v x)

definition triangle-affine :: real™2 = real ™2 = real”2 = (real "2 = real”2) where
triangle-affine a b ¢ = (A\z. a + (triangle-mat a b ¢) *v x)

abbreviation unit-square =
(convex hull {vector [0, 0], vector [0, 1], vector [1, 1], vector [1, 0]})::((real™2)
set)

abbreviation unit-triangle =
(convex hull {vector [0, 0], vector [1, 0], vector [0, 1]}):((real™2) set)

abbreviation unit-triangle’ =
(convex hull {vector [1, 1], vector [1, 0], vector [0, 1]}):((real”2) set)

lemma triangle-inside-is-convex-hull-interior:
assumes polygon-of p [a, b, ¢, a]
shows path-inside p = interior (convex hull {a, b, c})
proof—
have path-image p = closed-segment a b U closed-segment b ¢ U closed-segment
ca
proof—
have path-image (linepath a b) = closed-segment a b by simp
moreover have path-image (linepath b ¢) = closed-segment b ¢ by simp
moreover have path-image (linepath ¢ a) = closed-segment ¢ a by simp
moreover have path-image p = path-image (linepath a b) U path-image (linepath
b ¢) U path-image (linepath c a)
using calculation assms(1) unfolding polygon-of-def make-polygonal-path.simps
by (simp add: path-image-join sup-assoc)
ultimately show ?thesis by simp
qged
moreover have DIM ((real, 2) vec) = 2 by simp
ultimately show ?thesis using inside-of-triangle[of a b ¢] unfolding path-inside-def
by presburger
qed

179

lemma triangle-is-convez:
assumes p = make-triangle a b ¢ and — collinear {a, b, c}
shows convez (path-inside p) (is convez ?s)
using triangle-inside-is-convex-hull-interior assms(1) assms(2)
using make-triangle-def polygon-of-def triangle-is-polygon
by auto

lemma affine-comp-linear-trans: triangle-affine a b ¢ = (Az. + a) o (triangle-linear
abc)

apply (simp add: triangle-affine-def triangle-linear-def)

by auto

lemma triangle-linear-der:
fixes a b ¢ :: real ™2
defines T = triangle-linear a b ¢
shows (T has-derivative T) (at x)
proof—
have linear T using T-def by (simp add: triangle-linear-def)
then have bounded-linear T by (simp add: linear-linear)
thus ?thesis using bounded-linear-imp-has-derivative by blast
qed

lemma triangle-affine-der:
fixes a b ¢ :: real ™2
assumes S € sets lebesgue and z € S
defines A = triangle-affine a b ¢ and T = triangle-linear a b ¢
shows z € S = (A has-derivative T) (at z within S)
proof—
assume zin: ¢ € S
let Ztrans = Az::real 2. z + a
have comp: (?trans o T) = (Az. (T z) + a)
by auto
have Vz. A x = (?trans o T') x unfolding A-def T-def using affine-comp-linear-trans
by auto
moreover then have Az-is: (Az. 2 € S = Az =(Az.z+a)o T) z)
by auto
moreover have trans-der: (?trans has-derivative id) (at z within S)
by (metis (full-types) add.commute assms(2) eq-id-iff has-derivative-transform
shift-has-derivative-id)
moreover have Tder: (T has-derivative T) (at x within S) using triangle-linear-der
by (simp add: T-def bounded-linear-imp-has-derivative triangle-linear-def)
moreover have comp-der: ((?trans o T) has-derivative T) (at x within S)
using has-derivative-add-const|OF Tder] comp
by simp
ultimately show (A has-derivative T) (at x within S)
using triangle-affine-def triangle-linear-def affine-comp-linear-trans o-apply
add.commute vector-derivative-chain-within assms(2) has-derivative-add-const has-derivative-transform
A-def T-def
by force

180

qed

lemma triangle-linear-ing:
fixes a b ¢ :: real 2
assumes — collinear {a, b, c}
defines L = triangle-linear a b c
shows inj L
proof—
let ?M = triangle-mat a b ¢
let #m-11 = (b — a)$1
let 9m-12 = (¢ — a)$1
let ?m-21 = (b — a)$2
let ?m-22 = (¢ — a)$2
have det ?M = ?m-11x?m-22 — ?m-12x?m-21
unfolding triangle-mat-def
by (metis det-2 det-transpose mult.commute vector-2(1) vector-2(2))
moreover have ?m-11x?m-22 # ?m-12%?m-21
proof(rule ccontr)
assume — m-11%?m-22 # ?m-12%?m-21
then have eq: ?m-11%%m-22 = ?m-12+?m-21 by simp
{ assume *: ?m-21 = 0 A ?m-22 # 0
then have ?m-11 = 0 using eq by simp
then have ?m-11 = 0 N m-21 = 0 using * by auto
then have b — a = 0 by (metis (no-types, opaque-lifting) exhaust-2 vec-eq-iff
zero-index)
then have collinear {a, b, c} by simp
then have Fulse using assms by fastforce
} moreover
{ assume x*: ?m-21 # 0 A ?m-22 = 0
then have ?m-12 = 0 using eq by simp
then have ?m-12 = 0 A ?m-22 = 0 using * by auto
then have ¢ — a = 0 by (metis (no-types, opaque-lifting) exhaust-2 vec-eq-iff
zero-index)
then have collinear {a, b, ¢} by (simp add: collinear-3-eq-affine-dependent)
then have Fulse using assms by fastforce
} moreover
{ assume *: #m-21 = 0 A ?m-22 = 0
{ assume ?m-11 = 0
then have b — a = 0 using x
by (metis (no-types, opaque-lifting) exhaust-2 vec-eq-iff zero-index)
then have Fulse using assms(1) by auto
} moreover
{ assume ?m-11 # 0
then obtain k where ?m-12 = k * ¢m-11 using nonzero-divide-eq-eq by
blast
moreover have ?m-22 = k x ?m-21 using * by auto
ultimately have ¢ — a = k xg (b — a)
by (smt (verit, del-insts) exhaust-2 real-scale R-def vec-eq-iff vector-scaleR-component)
then have collinear {a, b, c}

181

using vec-diff-scale-collinear|[of ¢ a k b] by (simp add: insert-commute)
then have Fulse using assms(1) by fastforce

ultimately have Fualse using assms by fastforce
} moreover
{ assume *: 9m-21 # 0 A m-22 # 0
then have ?m-11/%m-21 = ?m-12/%m-22 using eq frac-eq-eq by blast
then obtain m where ?m-11 = m+x%m-12 N\ ?m-21 = mx?m-22
using nonzero-divide-eq-eq *
by (metis (no-types, lifting) mult.commute times-divide-eq-left)
then have b — a = m xs (¢ — a)
by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-smult-component)
then have b — a = m x (¢ — a) by (simp add: scalar-mult-eg-scaleR)
then have collinear {a, b, ¢} using vec-diff-scale-collinear by auto
then have Fulse using assms by auto
}
ultimately show Fulse by fastforce
qed
ultimately have det ?M # 0 by linarith
thus ?thesis by (simp add: L-def inj-matriz-vector-mult invertible-det-nz trian-
gle-linear-def)
qged

lemma triangle-affine-ing:
fixes a b ¢ :: real 2
assumes - collinear {a, b, c}
defines A = triangle-affine a b c
shows inj A
proof—
have inj (triangle-linear a b ¢) using triangle-linear-inj[of a b c] assms by auto
moreover have inj (Az. + a) by simp
moreover have A = (A\z. z + a) o (triangle-linear a b ¢)
by (simp add: A-def affine-comp-linear-trans)
ultimately show ?thesis using inj-compose by blast
qed

lemma triangle-linear-integrable:
fixes a b ¢ :: real ™2
assumes S € [measurable
defines T = triangle-linear a b ¢
shows (Az. abs (det (matriz (T)))) integrable-on S (is (Az. ?¢) integrable-on S)
using integrable-on-const[of S ?c] assms(1) by blast

lemma measure-differentiable-image-eq-affine:
fixes a b ¢ :: real ™2
defines A = triangle-affine a b ¢ and T = triangle-linear a b ¢
assumes S € Imeasurable and — collinear {a, b, c}
shows measure lebesgue (A ¢ S) = integral S (Az. abs (det (matriz T)))
proof—

182

have Az. © € S = (A has-derivative T) (at z within S)
using triangle-affine-der A-def T-def assms(3) by blast
moreover have inj-on A S
using A-def assms(3) assms(4) triangle-affine-inj inj-on-subset by blast
moreover have (Az. abs (det (matriz (T)))) integrable-on S
by (simp add: T-def assms(3) triangle-linear-integrable)
ultimately show ?thesis
using measure-differentiable-image-eq[of - - Ax. T] assms(3) by blast
qed

lemma triangle-affine-img:

fixes a b ¢ :: real ™2

defines A = triangle-affine a b ¢

shows conver hull {a, b, ¢} = A ‘ unit-triangle
proof—

let 70 = (vector [0, 0])::real”2

let el = (vector [1, 0])::real”2

let ?e2 = (vector [0, 1])::real”2

let ?translate-a = Az. © + a
let ?T = triangle-linear a b ¢

define al where al = ?T 20
define bl where bl = ?T ?el
define ¢l where cl = ?T ?e2

have a: a = ?translate-a al
proof—
have al = 70
by (simp add: al-def mat-vec-mult-2 triangle-linear-def)
then show ?thesis
by (metis (no-types, opaque-lifting) add-0 mat-vec-mult-2 matriz-vector-mult-0
mult-zero-right zero-index)
qed
have b: b = ?Ztranslate-a bl
proof—
have coll: column 1 (triangle-mat a b ¢) =b — a
by (metis column-transpose row-def triangle-mat-def vec-lambda-eta vec-
tor-2(1))
then have bl =b — a
using bl-def unfolding triangle-linear-def triangle-mat-def matriz-vector-mult-def
using matriz-vector-mult-basis[of triangle-mat a b ¢ 1]
by (simp add: coll axis-def bl-def mat-vec-mult-2 triangle-linear-def)
then show ?thesis by simp
qed
have c: ¢ = ?translate-a cl
proof—
have col2: column 2 (triangle-mat a b ¢) = ¢ — a

183

by (metis column-transpose row-def triangle-mat-def vec-lambda-eta vec-
tor-2(2))

then have ¢l = c — a

using cl-def unfolding triangle-linear-def triangle-mat-def matriz-vector-mult-def
using matriz-vector-mult-basis[of triangle-mat a b ¢ 2]
by (simp add: col2 axis-def cl-def mat-vec-mult-2 triangle-linear-def)

then show ?thesis by simp

qed

have linear ?T using triangle-linear-def by force
then have ?T ‘ unit-triangle = convex hull {al, bl, cl}
using convex-hull-linear-image al-def bl-def cl-def by force
also have ?translate-a ... = convez hull {a, b, c}
using a b ¢ convez-hull-translation[of a {al, bl, cl}]
by (metis (no-types, lifting) add.commute image-cong image-empty image-insert)
finally have ?translate-a ‘ (¢T * unit-triangle) = convex hull {a, b, c} .
moreover have ?translate-a o ¢T = A unfolding A-def using affine-comp-linear-trans
by auto
ultimately show ?thesis by fastforce
qed

lemma triangle-affine-el-e2:
fixes a b ¢ :: real ™2
defines A = triangle-affine a b ¢
shows (triangle-affine a b c¢) (vector [0, 0]
(triangle-affine a b c) (vector [1, 0])
(triangle-affine a b c) (vector [0, 1])
proof—
let ?M = triangle-mat a b ¢
let ?L = triangle-linear a b c
let ?A = triangle-affine a b ¢
let 20 = (vector [0, 0])::(real”2)
let el = (vector [1, 0])::(real”2)
let ?e2 = (vector [0, 1])::(real™2)

=
SYRS T

show 74 720 = a
unfolding triangle-affine-def triangle-mat-def
by (metis (no-types, opaque-lifting) add.right-neutral diff-self mult-zero-right
scaleR-left-diff-distrib transpose-matriz-vector vec-scaleR-2 vector-matriz-mult-0)
show 74 %el = b
proof—
have ?L %e1 = ?M xv el unfolding triangle-linear-def by blast
also have ... = vector [1+(2M$181) + 0x(?M$182), 1x(2M$2%81) + 0x(?2M$2$2)]
unfolding triangle-linear-def triangle-mat-def
using mat-vec-mult-2 by force
also have ... = vector [1x(b — a)$1 + 0%(?M$1$2), 1x(b— a)$2 + 0x(?M$23%2)]
unfolding triangle-mat-def transpose-def by simp
also have ... = vector [(b — a)$1, (b — a)$2] by argo
also have ... = b — a

184

by (smt (verit) ezhaust-2 vec-eq-iff vector-2(1) vector-2(2))
finally show ?thesis unfolding triangle-affine-def triangle-linear-def by simp
qed
show 74 %e2 = ¢
proof—
have ?L ?e2 = ?M xv ?e2 unfolding triangle-linear-def by blast
also have ... = vector [0x(2M$1$1) + 1x(?M$182), 0x(2M$2$1) + 1x(2M$2$2)]
unfolding triangle-linear-def triangle-mat-def
using mat-vec-mult-2 by force

also have ... = vector [0x(?M$181) + 1x(c — a)$1, 0x(?M$2$1) + 1x(c —
a)$2]
unfolding triangle-mat-def transpose-def by simp
also have ... = vector [(c — a)$1, (¢ — @)$2] by argo
also have ... = c — a

by (smt (verit) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
finally show ?thesis unfolding triangle-affine-def triangle-linear-def by simp
qed
qed

lemma triangle-measure-integral-of-det:
fixes a b ¢ :: real ™2
defines S = convex hull {a, b, ¢}
assumes — collinear {a, b, c}
shows measure lebesque S =
integral unit-triangle (A(z::real”2). abs (det (matriz (triangle-linear a b
c))))

proof—
let ?A = triangle-affine a b ¢
let ?T = triangle-linear a b c

have bounded unit-triangle by (simp add: finite-imp-bounded-convez-hull)
then have Imeasurable-S: unit-triangle € Imeasurable
using bounded-set-imp-lmeasurable measurable-convex by blast

have S = 74 ¢ unit-triangle using S-def triangle-affine-img by blast
then have measure lebesgue S = measure lebesque (?A ¢ unit-triangle) by blast
moreover have
measure lebesque (YA ° unit-triangle)
= integral unit-triangle (A(z::real”2). abs (det (matriz ?T)))
using measure-differentiable-image-eq-affine| OF Imeasurable-S assms(2)] by
auto
ultimately show ¢thesis by auto
qed

lemma triangle-affine-preserves-interior:
assumes A = triangle-affine a b ¢ and L = triangle-linear a b ¢
assumes - collinear {a, b, c}
shows A ¢ (interior S) = interior (A *S)

proof—

185

let ?trans = Ax:real 2. + a
have linear L by (simp add: assms(2) triangle-linear-def)
moreover have surj L
using triangle-linear-inj[of a b c] linear-injective-imp-surjective[of L] assms
calculation
by blast
ultimately have L: interior(L ¢ S) = L ‘ (interior S)
using interior-surjective-linear-image by blast
moreover have interior(?trans ¢ S) = %trans ¢ (interior S)
using interior-translation
by (metis (no-types, lifting) add.commute image-cong)
moreover have A = ?trans o L using assms triangle-affine-def triangle-linear-def
by fastforce
ultimately show ?thesis
by (smt (verit, del-insts) add.commute image-comp image-cong interior-translation)
qed

lemma triangle-affine-preserves-affine-hull:
assumes A = triangle-affine a b ¢
assumes - collinear {a, b, c}
shows A ‘ (affine hull S) = affine hull (A ©S)
proof—
let ?L = triangle-linear a b c
have linear ?L by (simp add: triangle-linear-def)
then have ?L ‘ (affine hull S) = affine hull (L ©S)
by (simp add: affine-hull-linear-image linear-linear)
then show ?thesis
unfolding assms(1) triangle-affine-def
by (metis affine-hull-translation image-image triangle-linear-def)
qed

lemma triangle-measure-convex-hull-measure-path-inside-same:
assumes p-triangle: p = make-triangle a b ¢
assumes clem-triangle: elem-triangle a b ¢
shows measure lebesque (convex hull {a, b, c}) = measure lebesque (path-inside
p)
(is measure lebesgue 2S = measure lebesgue ?I)
proof—
have bounded S by (simp add: finite-imp-bounded-convex-hull)
then have measure lebesgue (frontier 2S) = measure lebesque 2S5 — measure
lebesgue (interior 25)
using measure-frontier[of ?S] by auto
then have ... = 0
by (metis convez-convez-hull negligible-convez-frontier negligible-imp-measure()
moreover have ?I = interior 25
using assms triangle-is-convex
by (metis (no-types, lifting) make-triangle-def convez-polygon-inside-is-convezr-hull-interior
empty-set insert-absorb2 insert-commute list.simps(15) elem-triangle-def triangle-is-polygon)
ultimately show ?thesis by auto

186

qed

lemma on-triangle-path-image-cases:
assumes p = make-triangle a b ¢
assumes d € path-image p
shows d € path-image (linepath a b) V d € path-image (linepath b ¢) V d €
path-image (linepath ¢ a)
using assms unfolding make-triangle-def
by (metis make-polygonal-path.simps(3) make-polygonal-path.simps(4) not-in-path-image-join)

lemma on-triangle-frontier-cases:
fixes a b ¢ :: real 2
assumes — collinear {a, b, c}
assumes d € frontier (convex hull {a, b, c})
shows d € path-image (linepath a b) V d € path-image (linepath b ¢) V d €
path-image (linepath ¢ a)
proof—
let ?p = make-triangle a b ¢
have polygon ?p by (simp add: assms(1) triangle-is-polygon)
then have path-image ?p = frontier (convexr hull {a, b, c})
unfolding make-triangle-def
by (smt (verit, ccfo-threshold) assms(1) convex-polygon-frontier-is-path-image2
convex-polygon-is-convex-hull empty-set insert-absorb2 insert-commute list.simps(15)
make-triangle-def polygon-convez-iff sup-commute triangle-is-convezr)
thus ?thesis using on-triangle-path-image-cases assms(2) by blast
qged

lemma triangle-path-image-subset-convex:
assumes p = make-triangle a b ¢
shows path-image p C convez hull {a, b, c}
using polygon-path-image-subset-convex polygon-at-least-3-vertices make-triangle-def
by (metis (no-types, lifting) assms empty-set insert-absorb2 insert-commute in-
sert-iff length-pos-if-in-set list.simps(15))

lemma triangle-convex-hull:

assumes p = make-triangle a b ¢ and — collinear {a, b, c}

shows convex hull {a, b, ¢} = (path-image p) U (path-inside p)

using triangle-is-convex| OF assms(1) assms(2)]

by (smt (23) Un-commute assms(1) assms(2) closure-Un-frontier convex-closure
convezx-polygon-is-convex-hull insert-absorb2 insert-commute inside-outside-def in-
side-outside-polygon list.set(1) list.set(2) make-triangle-def triangle-is-polygon)

end

theory Unit-Geometry

imports
HOL— Analysis. Polytope
Polygon-Jordan-Curve
Triangle-Lemmas

187

begin

21 Measure Setup

lemma finite-convex-is-measurable:
fixes p :: (real™2) set
assumes p = convex hull [and finite [
shows p € sets lebesgue
proof—
have polytope p
unfolding polytope-def using assms by force
hence compact p using polytope-imp-compact by auto
thus ?thesis using Imeasurable-compact by blast
qged

lemma unit-square-lebesgue: unit-square € sets lebesgue
using finite-convez-is-measurable by auto

lemma unit-triangle-lebesgue: unit-triangle € sets lebesque
using finite-convezr-is-measurable by auto

lemma unit-triangle-lmeasurable: unit-triangle € Imeasurable
by (simp add: bounded-convez-hull bounded-set-imp-lmeasurable unit-triangle-lebesgue)

22 Unit Triangle

lemma unit-triangle-vts-not-collinear:
= collinear {(vector [0, 0])::real”2, vector [1, 0], vector [0, 1]}
(is = collinear {%a, ?b, ?c})
proof(rule ccontr)
assume — - collinear {%a, 2b, c}
then have collinear {?a, ?b, ?c} by auto
then obtain v :: real”2 where u: v # 0 A
(Vze{%a, ?b, ?c}. Vye{a, ?b, ?c}. Jec. z — y = ¢ *xg u)
by (meson collinear)
then obtain cI ¢2 where c1: ?b — %a = ¢l *r u and c2: ?c — %a = c2 *r u
by blast
then have cI xg u = b
by (metis (no-types, opaque-lifting) diff-zero scaleR-eq-0-iff vector-2(1) vec-
tor-2(2) vector-minus-component vector-scaleR-component zero-neg-one)
moreover have c2 xgr u = ?c using cl ¢2 calculation by force
ultimately have u$1 = 0 A u$2 = 0
by (metis scaleR-eq-0-iff vector-2(1) vector-2(2) vector-scaleR-component zero-neg-one)
then have v = 0
by (metis (mono-tags, opaque-lifting) exhaust-2 vec-eq-iff zero-index)
moreover have u # (using u by auto
ultimately show Fulse by auto

188

qed

lemma unit-triangle-convex:
assumes p = (make-polygonal-path [vector [0, 0], vector [1, 0], vector [0, 1],
vector[0, 0]])
(is p = make-polygonal-path [?0, ?el, ?e2, ?0))
shows convez (path-inside p)
proof—
have — collinear {70, ?el, ?e2} by (simp add: unit-triangle-vts-not-collinear)
thus “thesis using triangle-is-convexr make-triangle-def assms by force
qged

lemma unit-triangle-char:
shows unit-triangle = {z. 0 <2831 N0<2$2Nz$1+z282<1}
(is unit-triangle = 25)
proof—
have unit-triangle C 25
proof (rule subsetl)
fix z assume z € unit-triangle
then obtain a b ¢ where
z = a xg (vector [0, 0]) + b xgr (vector [1, 0]) + ¢ *g (vector [0, 1])
Aa>0NANb>0Nec>0ANa+b+c=1
using convez-hull-3 by blast
thusze€{z. 0<z$1N0<z$2ANz2$1+23%2<1}bysimp
qed
moreover have 25 C unit-triangle
proof (rule subsetl)
fix r assume z € 25
then obtain b ¢ where bc: 281 = 0A2$2 =c A O <bAO<cAb+c<
1 by blast
moreover then obtain a« where ¢ > 0 A a + b + ¢ = 1 using that[of 1 —
b — ¢] by argo
moreover have a xg ((vector [0, 0])::(real2)) = vector [0, 0] by (simp add:
vec-scaleR-2)
moreover have z = (a xg vector [0, 0]) + (b g vector [1, 0]) + (¢ *r vector
0, 1))
using segment-horizontal bc by fastforce
ultimately show z € unit-triangle using convez-hull-3 by blast
qed
ultimately show ?thesis by blast
qed

lemma unit-triangle-interior-char:
shows interior unit-triangle = {z. 0 <z $ 1 N0 <z $2AN281 +2$2<
1}
(is interior unit-triangle = ?5)
proof—
have interior unit-triangle C 25
proof (rule subsetl)

189

fix assume z € interior unit-triangle
moreover have DIM (real”2) = 2 by simp
ultimately obtain a b ¢ where
z = a g (vector [0, 0]) + b xg (vector [1, 0]) + ¢ *g (vector [0, 1])
ANa>0ANb>0Ne>0Na+b+c=1
using interior-convez-hull-3-minimal[of (vector [0, 0])::(real”™2) (vector (1,
0])::(real™2) (vector [0, 1])::(real”2)]
using unit-triangle-vts-not-collinear
by auto
thusze{z. 0 <281 AN0<2$2AN281+23%2<1}bysimp
qed
moreover have 25 C interior unit-triangle
proof (rule subsetl)
fix assume z € 75
then obtain b ¢ where bc: 281 = b A 282 =c A O < DA O < cAb+c<
1 by blast
moreover then obtain a« where ¢ > 0 A a + b + ¢ = 1 using that[of 1 —
b — ¢| by argo
moreover have a =g ((vector [0, 0])::(real”2)) = vector [0, 0] by (simp add:
vec-scaleR-2)
moreover have r = (a *g vector [0, 0]) + (b *g vector [1, 0]) + (¢ *gr vector
10, 1))
using segment-horizontal bc by fastforce
moreover have DIM (real”2) = 2 by simp
ultimately show z € interior unit-triangle
using interior-convez-hull-3-minimal[of (vector [0, 0]):(real”2) (vector [1,
0])::(real™2) (wector [0, 1])::(real”2)]
using unit-triangle-vts-not-collinear
by fast
qed
ultimately show “thesis by blast
qed

lemma unit-triangle-is-elementary: elem-triangle (vector [0, 0]) (vector [1, 0])
(vector [0, 1))
(is elem-triangle ?a ?b %c)
proof—
let ?UT = unit-triangle
have — collinear {%a, ?b, ?c} using unit-triangle-vts-not-collinear by auto
moreover have integral-vec ?a A integral-vec ?b A integral-vec ?c
by (simp add: integral-vec-def is-int-def)
moreover have {z € ?UT. integral-vec z} = {%a, ?b, ?c} (is ?UT-integral =
Zabe)
proof—
have ?UT-integral 2 ?abc using calculation(2) hull-subset by fastforce
moreover have ?UT-integral C ?abc
proof —
have Az. x € unit-triangle = integral-vec © = x # vector [0, 0] = x #
vector [1, 0] = x # vector [0, 1] = False

190

proof—
fix z
assume *: z € unit-triangle
integral-vec x
x # vector [0, 0]
x # wvector [1, 0]
x # vector [0, 1]

then have z-inset: z €{z. 0 <23 I N0<2$2Nz281+z2$2<1}

using unit-triangle-char by auto
havez$ 1 =1 = 2$%$2+#0
using *
by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
thenhavez$ 1 =1 =281 4+2$2>1Vve§2<0
using *(2) unfolding integral-vec-def is-int-def
by linarith
then have z1-not-1: 281 = 1 = Fulse
using z-inset by simp
have 2 $ 1 =0=2$24A0N28$2#1
using x
by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
thenhavez$ 1 =0= 281 +2%2>1Vvz28$1+282<0
using *(2) unfolding integral-vec-def is-int-def
by auto
then have z1-not-0: x $ 1 = 0 = False
using z-inset by simp
have z1-not-lt0: © $ 1 < 0 = False
using z-inset by auto
have zl-not-gt1: x $ 1 > 1 = False
using z-inset by auto
then show Fualse using z1-not-0 z1-not-1 z1-not-lt0 x1-not-gtl
using *(2) unfolding integral-vec-def is-int-def
by force
qed
then have 3z € ?UT-integral. x ¢ ?abc A integral-vec + = False
by blast
then show ?thesis by blast
qged
ultimately show ?thesis by blast
qed
ultimately show ?thesis unfolding elem-triangle-def by auto
qed

lemma unit-triangles-same-area:

measure lebesgue unit-triangle’ = measure lebesque unit-triangle
proof—

let ?a = (vector [1, 1])::real”2

let 2b = (vector [0, 1])::real 2

let ?c = (vector [1, 0])::real™2

let ?A = triangle-affine ?a ?b %c

191

let ?L = triangle-linear ?a ?b ?c
have collinear-second-component: \c:real 2. collinear {%a, ?b, ¢} = ¢ $ 2 =
1
proof —
fix p
assume collinear {?a, ?b, p}
then obtain u where u-prop: ¥V xz€{vector [1, 1], vector [0, 1], p}.
vV ye{vector [1, 1], vector [0, 1], p}. Fe. 2 — y=c*r u
unfolding collinear-def by auto
then have c-ab: dc. %a — %0 = ¢c xgp u
by blast
then have u-2: © $ 2 = 0
using vector-2
by (metis cancel-comm-monoid-add-class.diff-cancel diff-zero scaleR-eq-0-iff
vector-minus-component vector-scaleR-component zero-neq-one)
have u-1: u$1 # 0
using c-ab vector-2
by (smt (23) scaleR-right-diff-distrib vector-minus-component vector-scaleR-component)
then have (3c. %a — p=cxg u) A (e. 26 — p = ¢ *g u)
using u-prop by blast
then show p § 2 = 1
using u-1 u-2
by (metis eq-iff-diff-eq-0 scaleR-zero-right vector-2(2) vector-minus-component
vector-scaleR-component)
qed
have unit-triangle’ = convex hull {?a, ?b, ?c} by (simp add: insert-commute)
then have ?A ‘ unit-triangle = unit-triangle’ using triangle-affine-img[of ?a ?b
?c|] by argo
moreover have abs (det (matriz ?L)) = 1
proof—
have matriz ?L = transpose (vector [?b — %a, %c — ?a])
unfolding triangle-linear-def
by (simp add: triangle-mat-def)

also have det ... = det (vector [?b — %a, ?c — %a]) using det-transpose by
blast
also have ... = (20 — ?2a)$1 * (?c — 2a)$2 — (%c — ?2a)$1 * (?b — ?a)$2

using det-2 by (metis mult.commute vector-2(1) vector-2(2))
finally show ?thesis by simp
qed
moreover have — collinear {?a, ?b, ?c} using collinear-second-component vec-
tor-2 by force
ultimately have measure lebesque unit-triangle’ = integral unit-triangle (\(x::real”2).

1)
using triangle-measure-integral-of-det[of ?a ?b ?c|
by (smt (verit, ccfo-SIG) Henstock-Kurzweil-Integration.integral-cong insert-commute)
also have ... = measure lebesque unit-triangle
by (simp add: Imeasure-integral unit-triangle-lmeasurable)
finally show ?thesis .
qed

192

23 Unit Square

lemma convez-hull-4:
convez hull {a,b,c,d} ={ usgpa+v*p b+ wsgc+t*xgd|uvvwt 0<u
ANO<SvANO<wAO<tANut+v4+w+t=1}
proof —
have fin: finite {a,b,c,d} finite {b,c,d} finite {c,d} finite {d}
by auto
have x: Azyzwuread. 2+ y+2+w=1+—zx=1—-—y—2—w
by (auto simp: field-simps)
show ?thesis
unfolding convez-hull-finite[OF fin(1)]
unfolding convez-hull-finite-step] OF fin(2)]
unfolding convez-hull-finite-step] OF fin(3)]
unfolding convez-hull-finite-step| OF fin(4)]
unfolding *
apply auto
apply (smt (verit, ccfo-threshold) add.commute diff-add-cancel diff-diff-eq)
subgoal for v w t
apply (rule exI [where z=1 — v — w — t], simp)
apply (rule exI [where z=v|, simp)
apply (rule exI [where z=uw], simp)
apply (rule exI [where z=MAz. t], simp)
done
done
qed

lemma unit-square-characterization-helper:
fixes a b :: real
assumes 0 < aANa<I1IAN0O<bAb<1and
a<b
obtains v v w t where
vector [a, b] = u *g ((vector [0, 0])::real”2)
+ v xg (vector [0, 1])
+ w *xg (vector [1, 1])
+ ¢ xg (vector [1, 0])
ANOLuANOIO<LvANODOLwAOILtANu+v+w+t=1

proof—
let %a = (vector [0, 0])::(real”2)
let ?b = (vector [0, 1])::(real™2)
let ?c = (vector [1, 1])::(real™2)
let ?d = (vector [1, 0]):(real”2)

let 2w = a

let v =b — a

let 2u = (1 — %w — %v):real

let 2t = 0::real

let T ={uxr %a+ v*g b+ wxg c+ t*p d|uvwt. 0 <uAN0<vw
ANO<wAO<tANu+v+w+t=1}

have ?u *xp %a = 0

193

by (smt (verit, del-insts) exhaust-2 scaleR-zero-right vec-eq-iff vector-2(1) vec-
tor-2(2) zero-index)
moreover have ?w xr ?c = vector [a,
proof—
have (?w xg ?c)$1 = a by simp
moreover have (7w xg ?¢)$2 = a by simp
ultimately show ?thesis by (smt (verit) vec-eq-iff exhaust-2 vector-2(1) vec-
tor-2(2))
qed
moreover have ?v xg ?b = vector [0, b — a]
proof—
have (%v xg 20)$1 = 0 by fastforce
moreover have (?v xg ?0)$2 = b — a by simp
ultimately show ?thesis by (smt (verit) vec-eq-iff exhaust-2 vector-2(1) vec-
tor-2(2))
qged
ultimately have %u xp %a + %v xg b + %w xg %c + %t xgr 2d = vector [0, b
— a] + vector [a, a]
by fastforce
also have ... = vector [a, b]
by (smt (verit, del-insts) diff-add-cancel exhaust-2 vec-eq-iff vector-2(1) vec-
tor-2(2) vector-add-component)
finally have vector [a, b] = %u xr %a + %v xp ?b + %w xr %c + 9t xg ?d by
presburger
moreover have 0 < 2u A 2u < 1 N0 < %20 A %v < 1 using assms by simp
moreover have 0 < 2w A 2w < 1 N0 < 2t AN 2t < 1 using assms by simp
moreover have ?u + v + %w + ¢t = 1 by argo
ultimately show ?thesis using that[of ?u v ?w ?t] by blast
qed

lemma unit-square-characterization:
unit-square = {x. 0 < z$1 AN 281 < 1 AN 0 < 282 A 282 < 1} (is unit-square

= 79)

proof—
let ?a = (vector [0, 0])::(real”2)
let b = (vector [0, 1])::(real™2)
let ?c = (vector [1, 1])::(real™2)
let ?2d = (vector [1, 0]):(real”2)

let T ={uxr a4+ v*g b+ wxg c+ t*p d|uvwt. 0 <uAN0<vw
ANO<wANO<tANu+v+w+t=1}
have unit-square = ?T using convez-hull-4 by blast
moreover have 2T C 29
proof (rule subsetl)
fix z
assume z € ?T
then obtain v v w t where z = u g %a + v *p b + w *g %c + t xp ?d and
0<wvand 0 <vand 0 <wand 0 <tand v+ v+ w+ t = 1 by auto
moreover from this have
23l =ux04+v*x0+w*x1+tx1AN2$2=ux0+v*x1+ w1+

194

t x 0 by simp
ultimately have 0 < 281 A 281 < 1 A 0 < 2832 A 282 < 1 by linarith
thus z € 25 by blast
qed
moreover have 25 C ¢T
proof (rule subsetl)
fix z :: real™2
assume *: £ € 25
{ assume z$1 < 2$2
then have z$1 < 2$2 by fastforce
then obtain v v w t where vector [31, 232] = u xg %a + v xg 70 + w *p
2c+txg ANO<uNO<OVANO<L<wWwANOL<tAu+v+w+t=1
using * unit-square-characterization-helper|of x$1 £$2] by blast
moreover have z = vector [2$1, 1$2]
by (smt (verit, ccfv-threshold) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
ultimately have z € ?T by force
} moreover
{ assume z$1 > 232
then obtain v v w ¢t where *x: vector [2$2, z81] = u % %a + v xg ?b +
wxp ¢+ t*xp AANO<uNO<IANOIO<WAOI<L<tANu+v+w+t=1
using * unit-square-characterization-helper|of x$2 x$1] by blast
have z1: 281 = v + w using *x
by (smt (verit, ccfo-threshold) mult-cancel-left1 real-scaleR-def scaleR-zero-right
vector-2(2) vector-add-component vector-scaleR-component)
have z2: 232 = w + ¢ using *x
by (smt (verit) mult-cancel-left1 real-scaleR-def scaleR-zero-right vector-2(1)
vector-add-component vector-scaleR-component)
have (u *p %a + t *g b + w xg %c + v xg 2d)$1 = w + v by auto
moreover have (u xg %a + t xg b + w xg %c + v xg ?d)$2 =t + w by

fastforce
ultimately have u *g %a + t *p 70 + w xg %c + v xg ?d = vector [w +
v, t + w]
by (smt (verit) vec-eq-iff exhaust-2 vector-2(1) vector-2(2))
also have ... = z using z1 22

by (smt (verit, del-insts) add.commute erhaust-2 vec-eg-iff vector-2(1)
vector-2(2))
ultimately have z € ?T
by (smt (verit, ccfv-SIG) *x mem-Collect-eq)
}
ultimately show z € ?T by argo
qed
ultimately show ?thesis by auto
qed

lemma ele2-basis:
defines el = (vector [1, 0])::(real™2) and
e2 = (vector [0, 1])::(real™2)
shows el = axis 1 (1::real) and el € (Basis:((real”2) set)) and
e2 = axis 2 (1::real) and e2 € (Basis::((real"2) set))

195

proof—
have (1:real) € Basis by simp
then have azis 1 (1:real) € (|Ji. |Ju€e(Basis::(real set)). {azis i u}) by blast
moreover show el-azis: el = axis 1 (1::real)
unfolding azis-def vector-def el-def by auto
ultimately show el-basis: el € (Basis::((real”2) set)) by simp

have (1::real) € Basis by simp
then have axis 1 (1:real) € (|Ji. |Jue(Basis::(real set)). {axis i u}) by blast
moreover show e2-azis: e2 = axis 2 (1::real)
unfolding azis-def vector-def e2-def by auto
ultimately show e2-basis: e2 € (Basis::((real”2) set)) by simp
qed

lemma unit-square-cbox: unit-square = cbox (vector [0, 0]) (vector 1, 1])
proof—

let 70 = (vector [0, 0])::(real”2)

let el = (vector [1, 0])::(real™2)

let ?e2 = (vector [0, 1]):(real”2)

let ?2I = (vector [1, 1])::(real™2)

let ?cbox = {z.Vi€Basis. 70 - i <x-iANz-i<?-i}

have unit-square = {z. 0 < 2831 A z81 <1 N0 <282 A 2$2 < 1} (is unit-square
= ?5)
using unit-square-characterization by auto
moreover have 25 C Zcbox
proof (rule subsetl)
fix z
assume *: z € 25
have 20« %el < x - %el Nx - %2el < 2] - %¢]
using ele2-basis
by (smt (verit, del-insts) x cart-eq-inner-axis mem-Collect-eq vector-2(1))
moreover have 20 - 2e2 <z - 2e2 Nz - 22 < 2] - 2e2
using ele2-basis
by (smt (verit, del-insts) x cart-eq-inner-axis mem-Collect-eq vector-2(2))
ultimately show z € ?cbox
by (smt (verit, best) * axis-index cart-eq-inner-azxis exhaust-2 mem-Collect-eq
vector-2(1) vector-2(2))
qed
moreover have ?cbor C 25
proof (rule subsetl)
fix = :: real™2
assume *: z € ?chox
then have 0 < %el - z using ele2-basis
by (metis (no-types, lifting) cart-eq-inner-axis inner-commute mem-Collect-eq
vector-2(1))
moreover have %el - ¢ < 1 using ele2-basis
by (smt (verit, ccfv-SIG) x inner-axis inner-commute mem-Collect-eq real-inner-1-right
vector-2(1))

196

moreover have 0 < %¢2 - x
by (metis (no-types, lifting) * cart-eq-inner-azis ele2-basis(8) ele2-basis(4)
inner-commute mem-Collect-eq vector-2(2))
moreover have %e2 - z < I
by (metis (no-types, lifting) * cart-eq-inner-azis ele2-basis(3) ele2-basis(4)
inner-commute mem-Collect-eq vector-2(2))
moreover have %el - x = z$1
by (simp add: cart-eq-inner-azis ele2-basis inner-commute)
moreover have %¢2 - 1 = 1$2
by (simp add: cart-eq-inner-axis ele2-basis inner-commaute)
ultimately show z € 25 by force
qed
ultimately show ¢thesis unfolding cboz-def by order
qed

lemma unit-square-area: measure lebesgue unit-square = 1
proof—
let el = (vector [1, 0])::(real™2)
let ?e2 = (vector [0, 1]):(real”2)
have unit-square = cbox (vector [0, 0]) (vector [1, 1]) (is unit-square = cbox

20 2I)
using unit-square-cbox by blast
also have emeasure lborel ... = 1 using emeasure-lborel-cboz-eq
proof—

have I - %el = (1::real)
by (simp add: ele2-basis(1) inner-azxis’ inner-commaute)
moreover have ?I - %e2 = (1::real) by (simp add: ele2-basis(3) inner-axis’
inner-commute)
ultimately have basis-dot: Vb € Basis. 2 -+ b =1
by (metis (full-types) azis-inverse ele2-basis(1) ele2-basis(8) exhaust-2)

have 70 . %e1 < 91 - %el by (simp add: ele2-basis(1) inner-axis)
moreover have 70 - ?e2 < ?I - ?e2 by (simp add: ele2-basis(8) inner-azis)
ultimately have Vb € Basis. 20 - b < 2] - b
by (smt (verit, ccfv-threshold) azis-index cart-eq-inner-azxis exhaust-2 insert-iff
vector-2(1) vector-2(2))
then have emeasure lborel (cbox ?0 ?I) = ([] b€Basis. (21 — ?0) - b)
using emeasure-lborel-cboz-eq by auto
also have ... = (][] b€ Basis. ¢I - b)
by (smt (verit, del-insts) axis-index diff-zero euclidean-all-zero-iff exhaust-2
inner-azis real-inner-1-right vector-2(1) vector-2(2))

also have ... = (][b€Basis. (1::real)) using basis-dot by fastforce
finally show ?thesis by simp
qed

finally have emeasure lborel unit-square = 1 .
moreover have emeasure lborel unit-square = measure lebesque unit-square
by (simp add: emeasure-eq-measure2 unit-square-cboz)
ultimately show %thesis by fastforce
qed

197

24 Unit Triangle Area is 1/2

lemma unit-triangle’-char:
shows unit-triangle’ = {z. 281 <1 AN2$2<1AN2$1+28$2>1}
proof —
let ?2I = (vector [1, 1])::real™2
let el = (vector [1, 0])::real”2
let ?e2 = (vector [0, 1])::real”2
have unit-triangle’ = {u xg 21 + v *g %el + w*g ?e2 |uvw. 0 < u A0 <
vAO<wAu+v+w=1}
using convez-hull-3[of ?I ?el ?e2] by auto
moreover have Au v w. u xg I + v xg el + w xg ?e2 = ((vector [u + v, u
+ w))::real"2)
proof—
fix u v w: real

let ?v-el = ((vector [v, 0])::real”2)
let ?w-e2 = ((vector [0, w])::real”2)
let ?u-I = ((vector [u, ul)::real”2)

have u xg ?I = ?u-I using vec-scaleR-2 by simp
moreover have v xp %el = ?%v-el using vec-scaleR-2 by simp
moreover have w xg %e2 = ?w-e2 using vec-scaleR-2 by simp
ultimately have 1: u xg 71 + v xg ?el + w *r ?e2 = 2u-I + Pv-el + ?w-e2
by argo
moreover have (%u-I + ?v-el + ?w-e2)$1 = u + v
using vector-add-component by simp
moreover have (?u-I + 2v-el + ?w-e2)$2 = u + w
using vector-add-component by simp
ultimately have ?u-I + %v-el + ?2w-e2 = ((vector [u + v, u + w])::real”2)
using vector-2 exhaust-2 by (smit (verit, del-insts) vec-eq-iff)
thus u xg 2 + v *g %el + w g ?e2 = ((vector [u + v, u + w])::real”2)
using 1 by argo
qed
ultimately have 1: unit-triangle’ = {(vector[u + v, v + w])::real ™2 | w v w. 0
<uNO<vAO<wAu+v+w=1}
(is unit-triangle’ = 29)
by presburger
have unit-triangle’ = {(vector[z, y])ureal ™2 | zy. 0 <z Az < I ANO0<yAy
<IANz+y>1}
(is unit-triangle’ = ¢T)
proof—
have Az yureal. Juvw. 0 <uANO<vAO<wAu+v+w=1ANz=u
+rvANy=u+w
= 0<zNz<I1INO0<yANy<1ANz+y>1 Dby force
moreover have x: Az yireal. 0 <z ANz < I ANO<yANy<I1Ahz+y>1
= dJuvw. 0 <uNO<vAOLwAut+v+w=I1IANz=u+vAy
=u+ w
proof—

198

fix z y :: real
let 2u =y +2 — 1
let 2v=1—y
let 7w =1 —=z
assume 0 <z ANz < INOLSyNy<I1IAN1I<z+y
thenhave 0 < 2Zu A0 < 2o N0 < 2wA Pu+ 20+ 2w=1ANz= %u+
v Ay = %u+ ?wby argo
thus Juvw. 0 KuANO<vAOLwAu+v4+w=1ANzxz=u+vAYy
= u + w by blast
qed
ultimately have Vz y::real. (Buovw. 0 <uANO<vAO<wAu+v+w
=1lANz=u+vAy=u-+ w)
— 0<zNz<INO<yANy<IAz+y>1))
by metis
then have Vzireal 2. (Quow. 0 <uANO0<oANO<wAu+v+w=1
ANzl =u+vA 282 =u+ w)
(0 <281 AN281 <1 ANO0<282AN282<1A281+ 282>1)) by
presburger
then have Vzireal 2. (Juovw. 0 <uANO0<vAO<wAu+v+w=1
A z = vector [u + v, u + w])
<—>(3my.0§m/\x§1/\OSy/\ySJ/\x—l—yzl/\z:vector
[z, y]))
by (smt (verit) *)
moreover have Vz:real 2. 2 € 25 +— (Juovw. 0 <uANO0<ovA0<wA
u—+ v+ w=1Az=vector [u+ v, u+ wl)
by blast
moreover have Vzireal 2. 2 € T +— (Fzy. 0 <z Az <1AN0<yAy
<I1IANz+y>1Az=vector [z, y])
by blast
ultimately have 25 = ?T by auto
then show %thesis using I by auto
qed
moreover have {z. 0 < 281 AN 281 < 1 N0 < 232 N 282 < 1 A 281 + 282
> 1} Cer
proof(rule subsetl)
fix z :: real™2
assume x: z € {z. 0 < 281 N z$1 <1 A0 <282 A 182 < 1 A x81 + 282
> 1}
then obtain z y :: real where z = vector|z, y] A 0 < z using forall-vector-2
by fastforce
moreover from this have 1 < 1 N0 < yAy <1 ANz + y > 1 using x
vector-2[of x y| by simp
ultimately show 2 € ?T by blast
qed
moreover have ?T C {z. 0 < 231 AN 281 <1 N0 <282 Nz$2 <1 Az$1+
282 > 1}
using vector-2 by force
ultimately show ?thesis
by (smt (verit, best) Collect-cong subset-antisym)

199

qed

lemma unit-square-split-diag:
shows unit-square = unit-triangle U unit-triangle’
proof—
let 25 = ({vector [0, 0], vector [0, 1], vector [1, 0]})::((real™2) set)
let 25’ = ({vector [1, 1], vector [0, 1], vector [1, 0]})::((real™2) set)
have unit-triangle U unit-triangle’ C conver hull (25 U 25') by (simp add:
hull-mono)
moreover have convex hull (S U 25') C unit-triangle U unit-triangle’
by (smt (28) Un-commute Un-left-commute Un-upperl in-mono insert-is-Un
mem-Collect-eq subset] sup.idem unit-square-characterization unit-triangle-char unit-triangle’-char)
moreover have unit-square = convez hull (25 U 257) by (simp add: insert-commute)
ultimately show ¢thesis by blast
qed

lemma unit-triangle-IN T-unit-triangle’-measure:
measure lebesque (unit-triangle N unit-triangle’) = 0
proof —
let el = (vector [1, 0])::real™2
let ?e2 = (vector [0, 1])::real”2
have unit-triangle N unit-triangle’ = {z::(real™2). 0 <z 31 ANz $ 1 <1 A0
<z$2Nnz82<1ANz$1+z$2=1}
(is unit-triangle N unit-triangle’ = 25)
using unit-triangle-char unit-triangle’-char
by auto
also have ... = path-image (linepath ?e2 %el)
(is ... = ?p)
proof—
have 25 C %p
proof (rule subsetl)
fix z :: real™2
assume z € 95
then have x: 0 < 1 — 282 A 282 =1 — 281 AN 0 < 282 A 282 < 1 by
stmp

have 182 xp ?e2 + 181 *g %el = vector[z$1, 1$2]
proof—
have (281 *p ?e1)$1 = 231 by simp
moreover have (281 xr ?e1)$2 = 0 by auto
moreover have (282 xr 2¢2)$1 = 0 by auto
moreover have (2$2 *r ?¢2)$2 = 2$2 by fastforce
ultimately have 231 xp %el = vector [z$1, 0] A 232 *p ?e2 = vector [0,
z$2]
by (smt (verit, ccfv-SIG) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
then have 2$1 xg %el + 132 xg ?e2 = vector [2$1, 0] + vector [0, x$2]
by auto
moreover from this have (81 xp ?el + 282 x5 ?e2)$1 = 231 by auto
moreover from calculation have (z$1 xp %el + 232 xp ?¢2)$2 = 2$2

200

by auto
ultimately show ?thesis
by (smt (verit) add.commute exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
qed
also have ... = z
by (smt (verit, best) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
finally have 2$2 xr %e2 + 2$1 *p %el = x .
then have © = (Az. (I — z) *g %2 + x *p %el) (2$1) A 281 € {0..1}
using * by auto
thus z € ?p unfolding path-image-def linepath-def by fast
qed
moreover have ?p C 25
proof (rule subsetl)
fix z
assume *: T € ?p
then obtain ¢t where *: © = (I — t) xg %e2 + t xg el Nt € {0..1}
unfolding path-image-def linepath-def by blast
moreover from this have z$1 = ¢ by simp
moreover from calculation have 32 = 1 — t by simp
moreover from calculation have 0 < tANt< 1T AN0< 1 —tN1—-t<1]
by simp
ultimately show z € ?S by simp
qed
ultimately show ¢thesis by blast
qed
also have measure lebesque ?p = 0 using linepath-has-measure-0 by blast
finally show ?thesis .
qed

lemma unit-triangle-area: measure lebesgue unit-triangle = 1/2
proof—
let u = measure lebesque
have ?u unit-square = ?u unit-triangle + 2 unit-triangle’
using unit-square-split-diag unit-triangle-INT-unit-triangle’-measure
by (simp add: finite-imp-bounded-convez-hull measurable-convex measure-Un3)
thus ?thesis using unit-triangles-same-area unit-square-area by simp
qed

end
theory Elementary-Triangle-Area
imports

Unit-Geometry

begin

25 Area of Elementary Triangle is 1/2

lemma nonint-in-square-img-IMP-nonint-triangle-img:
assumes A = triangle-affine a b ¢

201

assumes r € unit-square
assumes — integral-vec x
assumes integral-vec (A x)
assumes elem-triangle a b c
obtains z’ where z’ € unit-triangle A — integral-vec ©' A integral-vec (A z’)
proof—
{ assume z € unit-triangle
then have ?thesis using assms that by blast
} moreover
{ assume *: z ¢ unit-triangle
thenhave 1 ¢ {z. 0 < z$ 1 N0<z$2ANz81+2$2<1}
using unit-triangle-char by argo
then have z2x1-ge-1: 281 + 2$2 > 1 using assms(2) unit-square-characterization
by force
let 22’1 = 1 — 2$1
let 222 = 1 — 2$2
let 2’ = vector [?z'1, ?z'2]
have ?z2'1 + ?2'2 < 1 using z2x1-ge-1 by argo
then have ?z’ € unit-triangle
using unit-triangle-char assms(2) unit-square-characterization by auto
moreover have — integral-vec 7z’
proof—
have - is-int (z81) V — is-int (2$2) using assms(3) unfolding inte-
gral-vec-def by blast
then have — is-int (?2'1) V = is-int (?2'2)
using is-int-minus
by (metis diff-add-cancel is-int-def minus-diff-eq of-int-1 uminus-add-conv-diff)
thus ?thesis unfolding integral-vec-def by auto
qed
moreover have integral-vec (A ?z)
proof—
let ?L = triangle-linear a b ¢
have A-comp: A = (Az. z + a) o ?L by (simp add: affine-comp-linear-trans
assms(1))
then have Lz-int: integral-vec (?L x)
by (smt (verit, del-insts) assms(4) assms(5) comp-apply diff-add-cancel
diff-minus-eq-add integral-vec-minus integral-vec-sum elem-triangle-def)

have linear ?L by (simp add: triangle-linear-def)
moreover have ?L %z’ = ?L (vector [1, 1] — z)
by (simp add: mat-vec-mult-2 triangle-linear-def)
ultimately have ?L %z’ = ?L (vector [1, 1]) — ?L x by (simp add: linear-diff)
moreover have integral-vec (7L (vector [1, 1]))
proof—
have ?L (vector [1, 1]) = vector [(b — a)$1 + (¢ — a)$1, (b — a)$2 + (c
— a)$2]
unfolding triangle-linear-def triangle-mat-def transpose-def using mat-vec-mult-2
by simp
also have ... = (b — a) + (¢ — a)

202

by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-2(1) wvector-2(2)
vector-add-component)
finally show ?thesis using assms(5) unfolding elem-triangle-def
by (metis ab-group-add-class.ab-diff-conv-add-uminus integral-vec-minus
integral-vec-sum)
qed
ultimately have integral-vec (2L %z’)
using Lz-int integral-vec-sum integral-vec-minus by force
then show ?thesis using A-comp assms(5) integral-vec-sum elem-triangle-def
by auto
qed
ultimately have ?thesis using that by blast
}
ultimately show ¢thesis by blast
qed

lemma elem-triangle-integral-mat-bij:
fixes a b ¢ :: real ™2
assumes elem-triangle a b c
defines L = triangle-mat a b ¢
shows integral-mat-bij L

proof—
let ?A = triangle-affine a b ¢

have L: L = transpose (vector [b — a, ¢ — a]) (is L = transpose (vector [?wl,
unfolding triangle-mat-def L-def by auto

have integral-vec 2wl A integral-vec w2
by (metis ab-group-add-class. ab-diff-conv-add-uminus assms(1) integral-vec-minus
integral-vec-sum elem-triangle-def)
then have L-int-entries: Vie{1, 2}. Vje{l, 2}. is-int (L$i3j)
by (simp add: L-def triangle-mat-def Finite-Cartesian-Product.transpose-def
integral-vec-def)

have L-integral: integral-mat L unfolding integral-mat-def
proof (rule alll)
fix v :: real”™2
show integral-vec v — integral-vec (L *v v)
proof (rule impl)
assume v-int-assm: integral-vec v
let Lv =L xv v

have ?Lv$1 = L$181 * v$1 + L$132 * v$2 by (simp add: mat-vec-mult-2)
then have Lvl-int: is-int (?Lv$1)
using L-int-entries v-int-assm is-int-sum is-int-mult by (simp add: inte-

gral-vec-def)

have ?Lv$2 = L$281 * v§1 + L$2$2 * v$2 by (simp add: mat-vec-mult-2)

203

then have Lv2-int: is-int (?Lv$2)
using L-int-entries v-int-assm is-int-sum is-int-mult by (simp add: inte-
gral-vec-def)

show integral-vec (L v v)
by (simp add: Lvi-int Lv2-int integral-vec-def)
qed
qed
moreover have integral-mat-surj L
unfolding integral-mat-surj-def
proof(rule alll)
fix v :: real™2
show integral-vec v — (Jw. integral-vec w A L xv w = v)
proof (rule impl)
assume *: integral-vec v
obtain w :: real”2 where w: L xv w = v
using triangle-linear-ing assms(1) full-rank-injective full-rank-surjective
unfolding elem-triangle-def L-def triangle-linear-def surj-def
by (smt (verit, best) iso-tuple-UNIV-I)
moreover have integral-vec w
proof (rule ccontr)
assume *x*: - integral-vec w
let 2wl = w$1
let w2 = w$2
let 2wi’ = w81 — (floor (w$1))
let w2’ = w$2 — (floor (w$2))
let ?w’ = (vector [fwl’, w2])::(real 2)
have w1’ € {0..1} A w2’ € {0..1}
by (metis add.commute add.right-neutral atLeastAtMost-iff floor-correct
floor-frac frac-def of-int-0 real-of-int-floor-add-one-ge)
then have 7w’ € unit-square using unit-square-characterization by auto
moreover have — integral-vec ?w’
by (metis % eq-iff-diff-eq-0 floor-frac floor-of-int frac-def integral-vec-def
is-int-def of-int-0 vector-2(1) vector-2(2))
moreover have integral-vec (?A ?w’)

proof—
have ?w’ = vector [w$1, w$2] — vector [floor (w$1), floor (w$2)]
(is 2w’ = vector [w$1, w$2] — ?floor-w)

by (smt (verit, del-insts) exhaust-2 list.simps(8) list.simps(9) vec-eq-iff
vector-2(1) vector-2(2) vector-minus-component)
then have ?w’ = w — vector [floor (w$1), floor (w$2)]
by (smt (verit, del-insts) exhaust-2 vec-eq-iff vector-2(1) vector-2(2)
vector-minus-component)
moreover have ?A %w’ = (L xv %w’) + o unfolding triangle-affine-def
L-def by simp
ultimately have ?4 2w’ = v — (L xv ?floor-w) + a
by (simp add: matriz-vector-mult-diff-distrib w)
moreover have integral-vec v A integral-vec a A integral-vec (L xv ?floor-w)
using * assms(1) L-integral integral-mat-integral-vec integral-vec-2

204

unfolding elem-triangle-def
by blast
ultimately show #thesis
by (metis ab-group-add-class.ab-diff-conv-add-uminus integral-vec-minus
integral-vec-sum)
qged
ultimately obtain w’ where w': w' € unit-triangle A — integral-vec w’’
A integral-vec (2A w'’)
using nonint-in-square-img-IMP-nonint-triangle-img[of A a b ¢ ?w’]
assms(1) by blast
moreover have ?A w' ¢ {a, b, ¢}
proof—
have inj ?A using assms(1) elem-triangle-def triangle-affine-inj by auto
moreover have ?A (vector [0, 0]) = a
by (metis (no-types, opaque-lifting) add.commute add-0 mat-vec-mult-2 ma-
triz-vector-mult-0-right real-scale R-def scaleR-zero-right triangle-affine-def zero-inder)
moreover have ?A (vector [1, 0]) = b
unfolding triangle-affine-def triangle-mat-def transpose-def
by (metis (no-types) Finite-Cartesian-Product.transpose-def add.commute
column-transpose diff-add-cancel ele2-basis(1) matriz-vector-mult-basis row-def vec-lambda-eta
vector-2(1))
moreover have ?A (vector [0, 1]) = ¢
proof—
have (24 (vector [0, 1]))$1 = c$1
by (metis L-def L add.commute column-transpose diff-add-cancel
ele2-basis(3) matriz-vector-mult-basis row-def triangle-affine-def vec-lambda-eta vec-
tor-2(2))
moreover have (?A (vector [0, 1]))$2 = c$2
by (metis add.commute column-transpose diff-add-cancel ele2-basis(3)
matriz-vector-mult-basis row-def triangle-affine-def triangle-mat-def vec-lambda-eta
vector-2(2))
ultimately show ?¢thesis by (smt (verit, ccfv-SIG) exhaust-2 vec-eq-iff)
qed
moreover have w’ # vector [0, 0] A w'' # vector [0, 1] A w'' # vector
[, 0]
using w’’ elem-triangle-def unit-triangle-is-elementary by blast
ultimately show ?thesis by (metis inj-eq insertE singletonD)
qed
moreover have ?A ¢ unit-triangle = convezx hull {a, b, c}
using triangle-affine-img by blast
ultimately show Fulse using assms unfolding elem-triangle-def by blast

qed
ultimately show 3 w. integral-vec w A L v w = v by auto
qed
qed
ultimately show ¢thesis unfolding integral-mat-bij-def by auto

qed

lemma elem-triangle-measure-integral-of-1:

205

fixes a b ¢ :: real ™2
defines S = convezx hull {a, b, ¢}
assumes elem-triangle a b c
shows measure lebesque S = integral unit-triangle (A(z::real”2). 1)
proof—
let ?T = triangle-linear a b ¢
have integral-mat-bij (matriz ¢T) (is integral-mat-bij ¢?T-mat)
by (simp add: assms(2) elem-triangle-integral-mat-bij triangle-linear-def)
then have abs (det ?T-mat) = 1
using integral-mat-bij-det-pm1 by fastforce
thus ?thesis
using S-def assms(2) triangle-measure-integral-of-det elem-triangle-def by force
qed

lemma elem-triangle-area-is-half:
fixes a b ¢ :: real ™2
assumes elem-triangle a b ¢
defines S = convezx hull {a, b, ¢}
shows measure lebesque S = 1/2 (is ?S-area = 1/2)
proof—
have - collinear {a, b, c} using elem-triangle-def assms(1) by blast
then have measure lebesque S = integral unit-triangle (Az::real 2. 1)
using S-def assms(1) elem-triangle-measure-integral-of-1 by blast
also have ... = measure lebesgue unit-triangle
using unit-triangle-is-elementary elem-triangle-measure-integral-of-1 unit-triangle-area
by metis
finally show ?thesis by (simp add: unit-triangle-area)
qed

end
theory Pick
imports
Polygon-Splitting
Elementary-Triangle-Area
begin

26 Setup

26.1 Integral Points Cardinality Properties

lemma bounded-finite:

fixes A:: (real™2) set

assumes bounded A

shows finite {z::(real™2). integral-vec x N x € A} (is finite ?A-int)
proof—

obtain M where M:Vz € A. norm z < M using assms bounded-def by (meson
bounded-iff)

let ?M-bounded-ints = {n. n € {—M..M} A is-int n}

206

let ?M-bounded-int-vecs = {v::(real2). v81 € ?M-bounded-ints A v$2 € ?M-bounded-ints}

have V z::(real™2). norm (281) < norm z A (2$2) < norm z
by (smt (verit, ccfv-threshold) Finite-Cartesian-Product.norm-nth-le real-norm-def)
then have Vz € ?A-int. norm (281) < M A norm (2$2) < M
using M dual-order.trans Finite-Cartesian-Product.norm-nth-le by blast
then have Vz € ?A-int. 281 € ?M-bounded-ints N\ 282 € ?M-bounded-ints
using integral-vec-def intervalE by auto
then have Vz € ?4-int. © € ?M-bounded-int-vecs by blast
moreover have finite ?M-bounded-int-vecs
proof—
obtain S :: int set where S: S = {n. Im € ?M-bounded-ints. n = m} A (¥ n
€ S. normn < M)
by (simp add: abs-le-iff)
then have finite-S: finite S
by (metis infinite-int-iff-unbounded le-floor-iff linorder-not-less norm-of-int
of-int-abs)

have finite-M-bounded-ints: finite ?M-bounded-ints
proof—
let ?f = An:real. THE m:int. n = m
have Vn € ?M-bounded-ints. 3!m::int. n = m using is-int-def by force
moreover have inj-on ?f ?M-bounded-ints using inj-on-def is-int-def by
force
moreover have ?f ¢ ?M-bounded-ints C S using calculation S subsetl by
auto
ultimately show ?thesis using finite-imageD finite-S by (simp add: inj-on-finite)
qed
show ?thesis
proof—
let ?f = Ax::(real™2). (THE m:int. m = x81, THE n:int. n = 2$2)
have inj-on ?2f ?M-bounded-int-vecs
unfolding inj-on-def
proof clarify
fix x y :: real™2
assume zl-int: is-int (z$1)
assume z2-int: is-int (z$2)
assume yl-int: is-int (y$1)
assume y2-int: is-int (y$2)
assume zlyl-int-eq: (THE m. real-of-int m = z$1) = (THE m. real-of-int
m = y$1)
assume z2y2-int-eq: (THE n. real-of-int n = 2$2) = (THE n. real-of-int n
= y$2)

have 3!m. m = z$1
by blast

moreover have 3!n. n = y$1
by blast

207

moreover have (THE m. real-of-int m = z$1) = (THE m. real-of-int m =
y$1)
using z1y1-int-eq by auto
ultimately have ziyl: z$1 = y$1
using z1-int y1-int is-int-def by auto

have 3!m. m = z$2

by blast
moreover have 3!n. n = y$2
by blast
moreover have (THE m. real-of-int m = 2$2) = (THE m. real-of-int m =

y$2)
using z2y2-int-eq by auto
ultimately have z2y2: 2$2 = y$2
using z2-int y2-int is-int-def by auto

show z = y using xI1y1 z2y2
by (metis (no-types, lifting) exhaust-2 vec-eq-iff)
qed
moreover have ?f ¢ ?M-bounded-int-vecs C S x S
proof (rule subsetl)
fix mn
assume mn € ?f ¢ ?M-bounded-int-vecs
then obtain v where v:
v € 2M-bounded-int-vecs A ?f v = mn A (3!m. v81 = m) A (3!n. v82 =
n)
using is-int-def by auto
let ?m = fst mn
let 9n = snd mn

have ?m = (THE m:int. m = v$1) using v
by (meson fstl)
moreover have 3! m:int. m = v$1 using v is-int-def
by (metis (no-types, lifting) mem-Collect-eq of-int-eq-iff)
ultimately have m-in-S: m € S
by (metis (mono-tags, lifting) S mem-Collect-eq thel’ v)

have ?n = (THE n:int. n = v$2) using v

by (meson sndl)
moreover have 3! n:int. n = v$2 using v is-int-def

by (metis (no-types, lifting) mem-Collect-eq of-int-eq-iff)
ultimately have n-in-S: %n € S

by (metis (mono-tags, lifting) S mem-Collect-eq thel’ v)

show mn € § x S using m-in-S n-in-S v by auto
qed
ultimately show Zthesis
by (meson finite-S finite-Sigmal finite-imageD finite-subset)
qed

208

qed
ultimately show ?thesis
by (smt (verit) finite-subset subsetl)
qed

lemma finite-path-image:
assumes polygon p
shows finite {z. integral-vec x N\ x € path-image p}
using bounded-finite inside-outside-polygon
unfolding inside-outside-def
by (meson assms bounded-simple-path-image polygon-def)

lemma finite-path-inside:
assumes polygon p
shows finite {x. integral-vec x N\ x € path-inside p}
using bounded-finite inside-outside-polygon
unfolding inside-outside-def
using assms by presburger

lemma bounded-finite-inside:
fixes B:: (real™2) set
assumes simple-path p
shows bounded (path-inside p)
using assms
by (simp add: bounded-inside bounded-simple-path-image path-inside-def)

lemma finite-integral-points-path-image:
assumes simple-path p
shows finite {z. integral-vec z N\ = € path-image p}
using bounded-finite bounded-simple-path-image assms by blast

lemma finite-integral-points-path-inside:
assumes simple-path p
shows finite {z. integral-vec z N\ x € path-inside p}
using bounded-finite bounded-finite-inside assms by blast

27 Pick splitting

lemma pick-split-path-union-main:

assumes is-split: is-polygon-split-path vts i j cutvts

assumes vts! = (take i vts)

assumes vts2 = (take (j — ¢ — 1) (drop (Suc @) vts))

assumes vtsd = drop (j — 1) (drop (Suc) vts)

assumes z = vis!i

assumes y = vtslj

assumes cutpath = make-polygonal-path (x # cutvts Q [y])

assumes p: p = make-polygonal-path (vtsQ[vts!0]) (is p = make-polygonal-path
2p-vts)

assumes pl: pl = make-polygonal-path (z#(vts2 Q [y] Q (rev cutvts) @Q [z]))

209

(is pI = make-polygonal-path ?p1-vts)
assumes p2: p2 = make-polygonal-path (vtsl Q ([z] Q cutvts Q [y]) Q vis3 Q
[vts ! 0]) (is p2 = make-polygonal-path ?p2-vts)
assumes [11: I1 = card {x. integral-vec x N\ x € path-inside p1}
assumes BI: Bl = card {z. integral-vec © A\ x € path-image p1}
assumes 12: 12 = card {z. integral-vec x N © € path-inside p2}
assumes B2: B2 = card {z. integral-vec x N\ x € path-image p2}
assumes [: [= card {z. integral-vec x N\ z € path-inside p}
assumes B: B = card {z. integral-vec x A\ x € path-image p}
assumes all-integral-vts: all-integral vts
shows measure lebesgue (path-inside p1) = I1 + B1/2 — 1
= measure lebesque (path-inside p2) = I2 + B2/2 — 1
= measure lebesque (path-inside p) =1 + B/2 — 1
measure lebesque (path-inside p) = I + B/2 — 1
= measure lebesgque (path-inside p2) = I2 + B2/2 — 1
= measure lebesque (path-inside p1) = I1 + B1/2
measure lebesque (path-inside p) = I + B/2 — 1
= measure lebesque (path-inside p1) = 11 + B1/2 — 1
= measure lebesque (path-inside p2) = I2 + B2/2
proof —
let ?p-im = {x. integral-vec * A x € path-image p}
let ?p1-im = {x. integral-vec © A\ x € path-image p1}
let ?p2-im = {x. integral-vec © A x € path-image p2}
let ?p-int = {z. integral-vec x A x € path-inside p}
let ?pl-int = {z. integral-vec x A\ x € path-inside p1}
let ?p2-int = {x. integral-vec x A\ x € path-inside p2}

|
~

I
~

have vts: vts = vtsl Q (z # (vts2 Q y # vis3))
using assms split-up-a-list-into-3-parts
using is-polygon-split-path-def by blast
have polygon p
using finite-path-image assms(1) p unfolding is-polygon-split-path-def
by (smt (verit, best))
then have B-finite: finite ?p-im
using finite-path-image by auto
have polygon-p1: polygon pl1
using finite-path-image assms(1) p1 unfolding is-polygon-split-path-def
by (smt (23) assms(3) assms(5) assms(6))
then have BI-finite: finite ?p1-im
using finite-path-image by auto
have polygon-p2: polygon p2
using finite-path-image assms(1) pl unfolding is-polygon-split-path-def
by (smt (23) assms(2) assms(4) assms(5) assms(6) p2)
then have B2-finite: finite ?p2-im
using finite-path-image by auto

have vts-distinct: distinct vts

using simple-polygonal-path-vts-distinct
by (metis <polygon p> butlast-snoc p polygon-def)

210

then have z-neq-y: © # y
by (metis assms(1) assms(5) assms(6) index-first indez-nth-id is-polygon-split-path-def)
then have card-2: card {z, y} = 2
by auto
have polygon-split-props: (is-polygon-cut-path (vtsQ[uvts!0]) cutpath A
polygon p A polygon pl A polygon p2 A
path-inside pI N path-inside p2 = {} A
path-inside p1 U path-inside p2 U (path-image cutpath — {z, y}) = path-inside
p
A ((path-image p1) — (path-image cutpath)) N ((path-image p2) — (path-image
cutpath)) = {}
A path-image p = ((path-image p1) — (path-image cutpath)) U ((path-image p2)
— (path-image cutpath)) U {z, y})
using assms
by (meson is-polygon-split-path-def)
have measure-sum: measure lebesgue (path-inside p) = measure lebesgue (path-inside
pl) + measure lebesque (path-inside p2)
using polygon-split-path-add-measure assms
by (smt (verit, del-insts))

let 2yz-int = {k. integral-vec k A k € path-image (make-polygonal-path (y#trev
cutvtsQlz])) }
let ?zy-int = {k. integral-vec k A k € path-image cutpath}
have yx-int-is-zy-int: ?yx-int = Zxy-int
using rev-vts-path-image[of © # cutvts Q [y]] assms(7) by simp
have z # vts2 @ [y] Q rev cutvts Q [z] = (z#vis2) Q ([y] Q rev cutvts Q [z]) @
[
by simp
then have sublist ([y]Qrev cutvtsQ[z]) ?p1-vts
unfolding sublist-def by blast
then have subset?:
Zxy-int C Zpl-im
using sublist-integral-subset-integral-on-path p1 yr-int-is-zy-int
by force
have len-gteq: length (z # cutvts Q [y]) > 2
by auto
have sublist-p2: sublist (z # cutvts Q [y]) ?p2-vts
unfolding sublist-def by auto
then have subset2:
Zxy-int C Zp2-im
using sublist-integral-subset-integral-on-path|OF len-gteq p2 sublist-p2]
assms(7) by blast

let 51 = %pl-im — ?xy-int

let 952 = %p2-im — ?xy-int

have disjoint-1: 251 N 252 = {}
using polygon-split-props by blast

211

have integral-zy: integral-vec x N integral-vec y
using all-integral-vts vts
using all-integral-def by auto
have nonempty: y # rev cutvts Q [z] #]
by simp
have trivial: make-polygonal-path (y # rev cutvts @ [z]) = make-polygonal-path
(y # rev cutvts Q [z])
by auto
have pathstart (make-polygonal-path (y#rev cutvtsQ|z])) = y A pathfinish (make-polygonal-path
(y#rev cutvtsQ[z])) = z
using polygon-pathstart| OF nonempty trivial] polygon-pathfinish|OF nonempty
trivial]
by (metis last.simps last-conv-nth nonempty nth-Cons-0 snoc-eq-iff-butlast)
then have 2-in-y-in: = € path-image (make-polygonal-path (y#rev cutvtsQz]))
A y € path-image (make-polygonal-path (y#rev cutvtsQ[z]))
unfolding pathstart-def pathfinish-def path-image-def
by (metis <pathstart (make-polygonal-path (y # rev cutvts Q [z])) = y A
pathfinish (make-polygonal-path (y # rev cutvts Q [z])) = x> path-image-def pathfin-
ish-in-path-image pathstart-in-path-image)
then have {z, y} C Zyz-int
using integral-zy
by simp
then have disjoint-2: (251 U 252) N {z, y} = {}
by (simp add: yx-int-is-zy-int)
have path-image p =
path-image p1 — path-image cutpath U
(path-image p2 — path-image cutpath) U
{z, v}
using polygon-split-props by auto
then have set-union: ?p-im = (251 U 252) U {z, y}
using polygon-split-props integral-ry by auto
then have add-card: B = card (?p1-im — %zy-int) + card (?p2-im — ?xy-int)
+ card {z, y}
using B-finite using disjoint-1 disjoint-2
by (metis (no-types, lifting) B card-Un-disjoint finite-Un)
have subl: card (?pl-im — %zy-int) = Bl — card ?xy-int
using BI1-finite B1 subsetl
by (meson card-Diff-subset finite-subset)
have sub2: card (?p2-im — ?xy-int) = B2 — card ?zy-int
using B2-finite B2 subset2
by (meson card-Diff-subset finite-subset)
have B: B = (B1 — card ?zy-int) + (B2 — card ?zy-int) + card {z, y}
using add-card subl sub2
by auto
then have B-sum-h: B = Bl + B2 — 2xcard ?zy-int + 2
using card-2
by (smt (verit, best) Bl B1-finite B2 B2-finite Nat.add-diff-assoc add.commute
card-mono diff-diff-left mult-2 subsetl subset2)
then have B! + B2 = B + 2xcard ?zy-int — 2

212

by (metis (no-types, lifting) B1 B1-finite B2 B2-finite add-mono-thms-linordered-semiring(1)
card-mono diff-add-inverse2 le-add2 mult-2 ordered-cancel-comm-monoid-diff-class.add-diff-assoc2
subsetl subset2)
then have B-sum: (B! + B2)/2 = B/2 + card ?zy-int — 1
by (smt (verit) B-sum-h field-sum-of-halves le-add2 mult-2 nat-1-add-1 of-nat-1
of-nat-add of-nat-diff ordered-cancel-comm-monoid-diff-class.add-diff-assoc2)
have casting-h: \ A B:: nat. A > B = real (A — B) = real A — real B
by auto
have path-inside p1 U path-inside p2 U (path-image cutpath — {z, y}) =
path-inside p
using polygon-split-props by auto
then have interior-union: ?p-int = (xy-int — {z, y}) U #pIl-int U ?p2-int
by blast

have finite-inside-p: finite ?p-int
using bounded-finite inside-outside-polygon
by (simp add: polygon-split-props inside-outside-def)

have finite-pathimage: finite (?zy-int — {z, y})
using Bl-finite finite-subset subset! by auto

have finite-inside-p1: finite ?p1-int
using polygon-split-props bounded-finite inside-outside-polygon
using finite-Un finite-inside-p interior-union by auto

have finite-inside-p2: finite ?p2-int
using polygon-split-props bounded-finite inside-outside-polygon
using finite-Un finite-inside-p interior-union by auto

have path-image-inside-disjoint!: (?xy-int — {z, y}) N (?pl-int) = {}
using subset! inside-outside-polygon| OF polygon-p1]
unfolding inside-outside-def by auto

have path-image-inside-disjoint2: (Pzy-int — {z, y}) N (?p2-int) = {}
using subset2 inside-outside-polygon|OF polygon-p2]
unfolding inside-outside-def by auto

have (?zy-int — {z, y}) N (Ppl-int U ?p2-int) = {}
using subset?2 path-image-inside-disjoint] path-image-inside-disjoint2
by auto
then have I-is: I = card (?zy-int — {z, y}) +
card (?p1-int U ?p2-int)
using interior-union I finite-inside-p1 finite-inside-p2
by (metis (no-types, lifting) card-Un-disjoint finite-Un finite-pathimage sup-assoc)

have disjoint-4: ?p1-int N ?p2-int = {}
using polygon-split-props by auto
then have I = card (%zy-int — {z, y}) +
11 4+ 12
using [-is finite-inside-p1 finite-inside-p2
by (simp add: 11 12 card-Un-disjoint)
have interior-subset: (?zy-int — {z, y}) C ?p-int
using interior-union by auto
have z-y-subset: {z, y} C 2xy-int

213

using z-in-y-in rev-vts-path-image[of © # cutvts Q [y]] assms(7)
integral-zy
using yz-int-is-xy-int by blast
have real (card (?zy-int — {z, y})) =
real (card (Zzy-int)) — real (card {z, y})
using z-y-subset
by (metis (no-types, lifting) B2-finite card-Diff-subset card-mono finite-subset
of-nat-diff subset2)
then have card-diff: real (card (?zy-int — {z, y})) =
real (card (%ry-int)) — 2
using card-2 by auto
then have I = I1 + 12 + (card (Pzy-int — {z, y}))
using [I1 12 interior-union finite-inside-p1 finite-inside-p2
by (simp add: I-is disjoint-4 card-Un-disjoint)
then have I = I1 + I2 + real (card (?zy-int)) — 2
using card-diff
by linarith
then have I-sum: I1 + I2 = I — real (card ?xy-int) + 2
by fastforce

{assume pickl: measure lebesgue (path-inside p1) = I1 + B1/2 — 1
assume pick2: measure lebesgue (path-inside p2) = 12 + B2/2 — 1
have measure lebesque (path-inside p) = I1 + 12 + (B1+B2)/2 -2
using pickl pick2 measure-sum by auto
then have measure lebesgue (path-inside p) = I — real (card ?zy-int) + 2 +
B/2 + card ?xy-int — 1 — 2
using I-sum B-sum
by linarith
then have measure lebesque (path-inside p) = I + B/2 — 1 by auto
}
then show measure lebesque (path-inside p1) = 11 + B1/2 — 1 = measure
lebesgue (path-inside p2) = 12 + B2/2 — 1 = measure lebesgue (path-inside p)
=1+ B/2 -1
by blast

{assume pickl: measure lebesgue (path-inside p) = I + B/2 — 1
assume pick2: measure lebesque (path-inside p2) = 12 + B2/2 — 1
then have real I + real B /| 2 — 1 = (measure lebesgue (path-inside p1)) +
2 + B2/2 —1
using measure-sum pickl pick2 by auto
then have measure lebesgue (path-inside p) = I — real (card ?zy-int) + 2 +
B/2 + card ?xy-int — 1 — 2
using I-sum B-sum pickl
by linarith
then have measure lebesque (path-inside p1) = 11 + B1/2 — 1
using B-sum <real I = real (I1 + I2) + real (card {k. integral-vec k N k €
path-image cutpath}) — 2> field-sum-of-halves measure-sum of-nat-add
pickl pick2 by auto

}

214

then show measure lebesque (path-inside p) = I + B/2 — 1 = measure
lebesgue (path-inside p2) = 12 + B2/2 — 1 = measure lebesque (path-inside p1)
=11 +B1/2 — 1

by blast

{assume pickl: measure lebesque (path-inside p) =1 + B/2 — 1
assume pick2: measure lebesgue (path-inside p1) = 11 + B1/2 — 1
then have real I + real B / 2 — 1 = (measure lebesque (path-inside p2)) +
I1 + B1/2 —1
using measure-sum pickl pick2 by auto
then have measure lebesgue (path-inside p) = I — real (card ?xy-int) + 2 +
B/2 + card ?xy-int — 1 — 2
using [I-sum B-sum pickl
by linarith
then have measure lebesgue (path-inside p2) = 12 + B2/2 — 1
using B-sum «<real I = real (I1 + I2) + real (card {k. integral-vec k A k €
path-image cutpath}) — 2> field-sum-of-halves measure-sum of-nat-add
using pick2 by auto
}
then show measure lebesgue (path-inside p) = I + B/2 — 1 = measure lebesgue
(path-inside p1) = I1 + B1/2 — 1 = measure lebesgue (path-inside p2) = I2 +

B2/2 — 1
by blast
qed

lemma pick-split-union:

assumes is-split: is-polygon-split vts i j

assumes vts! = (take i vts)

assumes vts2 = (take (j — ¢ — 1) (drop (Suc i) vts))

assumes vts3 = drop (j —) (drop (Suc i) vts)

assumes z = vits ! ¢

assumes y = vts ! j

assumes p: p = make-polygonal-path (vtsQ[vts!0]) (is p = make-polygonal-path
?p-vts)

assumes pl: pl = make-polygonal-path (z#(vts2Qly, x])) (is p1 = make-polygonal-path
?p1-vts)

assumes p2: p2 = make-polygonal-path (vts! Q [z, y] Q vtsd Q [vts ! 0]) (is p2
= make-polygonal-path ?p2-vts)

assumes [1: I1 = card {z. integral-vec x N x € path-inside p1}

assumes BI: Bl = card {z. integral-vec x N\ x € path-image p1}

assumes pickl: measure lebesgue (path-inside p1) = I1 + B1/2 — 1

assumes 12: I2 = card {x. integral-vec x N\ x € path-inside p2}

assumes B2: B2 = card {z. integral-vec © A\ = € path-image p2}

assumes pick2: measure lebesgue (path-inside p2) = I2 + B2/2 — 1

assumes [I: [= card {z. integral-vec & N\ = € path-inside p}

assumes B: B = card {z. integral-vec © A\ x € path-image p}

assumes all-integral-vts: all-integral vts

shows measure lebesgue (path-inside p) = I + B/2 — 1

measure lebesque (path-inside p) = measure lebesgue (path-inside p1) +

215

measure lebesgue (path-inside p2)

proof —
let ?p-im = {z. integral-vec * N\ x € path-image p}
let ?p1-im = {x. integral-vec x A\ x € path-image p1}
let ?p2-im = {x. integral-vec x* A\ x € path-image p2}
let ?p-int = {z. integral-vec x A x € path-inside p}
let ?p1-int = {x. integral-vec z A\ x € path-inside p1}
let ?p2-int = {z. integral-vec x A\ x € path-inside p2}

have vts: vts = vtsl Q (z # (vts2 Q y # vts3))
using assms split-up-a-list-into-3-parts
using is-polygon-split-def by blast
have polygon p
using finite-path-image assms(1) p unfolding is-polygon-split-def
by (smt (verit, best))
then have B-finite: finite ?p-im
using finite-path-image by auto
have polygon-p1: polygon pl
using finite-path-image assms(1) pl unfolding is-polygon-split-def
by (smt (23) assms(8) assms(5) assms(6))
then have BI1-finite: finite ?p1-im
using finite-path-image by auto
have polygon-p2: polygon p2
using finite-path-image assms(1) pl unfolding is-polygon-split-def
by (smt (23) assms(2) assms(4) assms(5) assms(6) p2)
then have B2-finite: finite 7p2-im
using finite-path-image by auto

have vts-distinct: distinct vts
using simple-polygonal-path-vts-distinct
by (metis <polygon p> butlast-snoc p polygon-def)
then have z-neq-y: © # y
by (metis assms(1) assms(5) assms(6) index-first indez-nth-id is-polygon-split-def)
then have card-2: card {z, y} = 2
by auto
have polygon-split-props: is-polygon-cut ?p-vts © y A
polygon p A polygon pl A polygon p2 A
path-inside p1 N path-inside p2 = {} A
path-inside p1 U path-inside p2 U (path-image (linepath z y) — {z, y})
= path-inside p N ((path-image pl) — (path-image (linepath x y))) N
((path-image p2) — (path-image (linepath z y))) = {}
A path-image p = ((path-image p1) — (path-image (linepath z y))) U ((path-image
p2) — (path-image (linepath = y))) U {z, y}
using assms
by (meson is-polygon-split-def)
have measure lebesque (path-inside p) = measure lebesque (path-inside p1) +
measure lebesque (path-inside p2)
using polygon-split-add-measure assms
by (smt (verit, del-insts))

216

then have measure-sum: measure lebesgue (path-inside p) = I1 + 12 + (B1+B2)/2
-2
using pickl pick2 by auto

let ?yx-int = {k. integral-vec k N\ k € path-image (linepath y)}
let 2zy-int = {k. integral-vec k A\ k € path-image (linepath x y)}
have yx-int-is-zy-int: ?yx-int = 2xy-int

by (simp add: closed-segment-commute)

have sublist [y, x] ?p1-vts by (simp add: sublist-Cons-right)
then have subset?:

2xy-int C Zpl-im

using sublist-pair-integral-subset-integral-on-path p1 yxr-int-is-ry-int by blast
have subset2:

Zxy-int C 7p2-im

using sublist-pair-integral-subset-integral-on-path p2 by blast

let 51 = %pl-im — ?xy-int

let 952 = %p2-im — %xy-int

have disjoint-1: 251 N 252 = {}
using polygon-split-props by blast

have integral-zy: integral-vec x N integral-vec y
using all-integral-vts vts
using all-integral-def by auto
then have {z, y} C Zyz-int
by simp
then have disjoint-2: (251 U 252) N {z, y} = {}
by simp
have path-image p =
path-image pl — path-image (linepath = y) U
(path-image p2 — path-image (linepath z y)) U
{z, v}
using polygon-split-props by auto
then have set-union: ?p-im = (251 U 252) U {z, y}
using polygon-split-props integral-xy by auto
then have add-card: B = card (?pl-im — ?Zxy-int) + card (?p2-im — ?Zxy-int)
+ card {z, y}
using B-finite using disjoint-1 disjoint-2
by (metis (no-types, lifting) B card-Un-disjoint finite-Un)
have subl: card (?pl-im — %zy-int) = Bl — card ?xy-int
using BI-finite B1 subsetl
by (meson card-Diff-subset finite-subset)
have sub2: card (?p2-im — ?xy-int) = B2 — card ?zy-int
using B2-finite B2 subset2
by (meson card-Diff-subset finite-subset)
have B: B = (B1 — card ?zy-int) + (B2 — card ?zy-int) + card {z, y}
using add-card subl sub2
by auto

217

then have B-sum-h: B = Bl + B2 — 2xcard ?zy-int + 2
using card-2
by (smt (verit, best) Bl Bl-finite B2 B2-finite Nat.add-diff-assoc add.commute
card-mono diff-diff-left mult-2 subsetl subset2)
then have B! + B2 = B + 2xcard ?xy-int — 2
by (metis (no-types, lifting) B1 B1-finite B2 B2-finite add-mono-thms-linordered-semiring(1)
card-mono diff-add-inverse2 le-add2 mult-2 ordered-cancel-comm-monoid-diff-class. add-diff-assoc2
subsetl subset2)
then have B-sum: (Bl 4+ B2)/2 = B/2 + card ?zy-int — 1
by (smt (verit) B-sum-h field-sum-of-halves le-add2 mult-2 nat-1-add-1 of-nat-1
of-nat-add of-nat-diff ordered-cancel-comm-monoid-diff-class.add-diff-assoc2)
have casting-h: A\ A B:: nat. A > B = real (A — B) = real A — real B
by auto
have path-inside pl U path-inside p2 U (path-image (linepath z y) — {z, y}) =
path-inside p
using polygon-split-props by auto
then have interior-union: ?p-int = (%xy-int — {z, y}) U pl-int U ?p2-int
by blast

have finite-inside-p: finite ?p-int
using bounded-finite inside-outside-polygon
by (simp add: polygon-split-props inside-outside-def)

have finite-pathimage: finite (?zy-int — {z, y})
using Bl-finite finite-subset subset! by auto

have finite-inside-p1: finite ?p1-int
using polygon-split-props bounded-finite inside-outside-polygon
using finite-Un finite-inside-p interior-union by auto

have finite-inside-p2: finite ?p2-int
using polygon-split-props bounded-finite inside-outside-polygon
using finite-Un finite-inside-p interior-union by auto

have path-image-inside-disjoint!: (?xy-int — {z, y}) N (?pl-int) = {}
using subset! inside-outside-polygon| OF polygon-p1]
unfolding inside-outside-def by auto

have path-image-inside-disjoint2: (%zy-int — {z, y}) N (?p2-int) = {}
using subset2 inside-outside-polygon|OF polygon-p2]
unfolding inside-outside-def by auto

have (?zy-int — {z, y}) N (Ppl-int U ?p2-int) = {}
using subset?2 path-image-inside-disjoint] path-image-inside-disjoint2
by auto

then have I-is: I = card (?zy-int — {z, y}) +
card (?p1-int U ?p2-int)
using interior-union I finite-inside-p1 finite-inside-p2

by (metis (no-types, lifting) card-Un-disjoint finite-Un finite-pathimage sup-assoc)

have disjoint-4: ?p1-int N ?p2-int = {}
using polygon-split-props by auto

then have I = card (?zy-int — {z, y}) +
11 4+ 12
using I-is finite-inside-p1 finite-inside-p2

218

by (simp add: I1 I2 card-Un-disjoint)
have interior-subset: (?zxy-int — {z, y}) C ?p-int
using interior-union by auto
have z-y-subset: {z, y} C Zzy-int
using local.set-union by auto
have real (card (Zzy-int — {xz, y})) =
real (card (%zy-int)) — real (card {z, y})
using z-y-subset
by (metis (no-types, lifting) B2-finite card-Diff-subset card-mono finite-subset
of-nat-diff subset2)
then have card-diff: real (card (?zy-int — {z, y})) =
real (card (Zzy-int)) — 2
using card-2 by auto
then have I = I1 + 12 + (card (?zy-int — {z, y}))
using I I1 I2 interior-union finite-inside-p1 finite-inside-p2
by (simp add: I-is disjoint-4 card-Un-disjoint)
then have I = I1 + 12 + real (card (Pzy-int)) — 2
using card-diff
by linarith
then have I-sum: I1 + I2 = I — real (card ?xy-int) + 2
by fastforce
have measure lebesque (path-inside p) = I — real (card ?xy-int) + 2 +
B/2 + card ?xy-int — 1 — 2
using measure-sum I-sum B-sum
by linarith
then show measure lebesgue (path-inside p) = I + B/2 — 1 by auto

show measure lebesgue (path-inside p) = measure lebesque (path-inside p1) +
measure lebesque (path-inside p2)

using «Sigma-Algebra.measure lebesgue (path-inside p) = Sigma-Algebra.measure
lebesgue (path-inside p1) + Sigma-Algebra.measure lebesque (path-inside p2)» by
blast
qed

lemma pick-split-path-union:

assumes is-split: is-polygon-split-path vts i j cutvts

assumes vts! = (take i vts)

assumes vts2 = (take (j — ¢ — 1) (drop (Suc @) vts))

assumes vts3 = drop (j — i) (drop (Suc) vts)

assumes z = vts!i

assumes y = vtslj

assumes cutpath = make-polygonal-path (x # cutvts Q [y])

assumes p: p = make-polygonal-path (vtsQ[vts!0]) (is p = make-polygonal-path
Zp-vts)

assumes pl: pl = make-polygonal-path (z#(vts2 Q [y] Q (rev cutvts) Q [z]))
(is p1 = make-polygonal-path ?p1-vts)

assumes p2: p2 = make-polygonal-path (vtsl Q ([z] Q cutvts @ [y]) Q viss Q
[vts ! 0]) (is p2 = make-polygonal-path ?p2-vts)

assumes [1: I1 = card {z. integral-vec x N x € path-inside p1}

219

assumes BI: Bl = card {z. integral-vec x N\ = € path-image p1}
assumes pickl: measure lebesque (path-inside p1) = 11 + B1/2 — 1
assumes 12: I2 = card {x. integral-vec x N\ z € path-inside p2}
assumes B2: B2 = card {z. integral-vec © N\ x € path-image p2}
assumes pick2: measure lebesgue (path-inside p2) = 12 + B2/2 — 1
assumes [I: [= card {z. integral-vec © A\ x € path-inside p}
assumes B: B = card {z. integral-vec x A x € path-image p}
assumes all-integral-vts: all-integral vts

shows measure lebesgue (path-inside p) = I + B/2 — 1

using pick-split-path-union-main pickl pick2(1) assms by blast

lemma pick-triangle-basic-split:
assumes p = make-triangle a b ¢ and distinct [a, b, ¢] and — collinear {a, b,
¢} and
d-prop: d € path-image (linepath a b) A d ¢ {a, b, c}
shows good-linepath ¢ d [a, d, b, ¢, a]
A path-image (make-polygonal-path [a, d, b, ¢, a]) = path-image p
proof—
let 21 = linepath c d
let ?L = path-image ?1
let ?P = path-image p
let %vts’ = [a, d, b, ¢, a]
let ?p’ = make-polygonal-path ?vts’
let 2P’ = path-image ?p’

have h1: path-image (make-polygonal-path [a, b, ¢, a]) = path-image (linepath a
b) U path-image (linepath b ¢) U path-image (linepath ¢ a)
using polygonal-path-image-linepath-union by (simp add: path-image-join sup.assoc)
have h2: path-image (make-polygonal-path [a, d, b, ¢, a]) = path-image (linepath a
d) U path-image (linepath d b) U path-image (linepath b ¢) U path-image (linepath
ca)
using polygonal-path-image-linepath-union by (simp add: path-image-join sup.assoc)
have h3: path-image (linepath a b) = path-image (linepath a d) U path-image
(linepath d b)
using path-image-linepath-union d-prop by auto

have 1: ?P' = 2P
using hi h2 h3
using assms(1) make-triangle-def by force

have {¢, d} = ?L N 7P
proof (rule ccontr)
have subs: {c, d} C ?L N ?P
using assms(1) vertices-on-path-image unfolding make-triangle-def
by (metis IntD2 Intl assms(4) empty-subset] inf-sup-absorb insert-subset
list.discl list.simps(15) nth-Cons-0 path-image-cons-union pathfinish-in-path-image
pathfinish-linepath pathstart-in-path-image pathstart-linepath)

assume x: {c, d} # ?L N P

220

then obtain z where z: 2 # ¢ A 2z # d A z € ?L N 7P using subs by blast
then have cases:
z € path-image (linepath a b) V z € path-image (linepath b ¢) V z € path-image
(linepath ¢ a)
using 1 h2 h3 by blast
{ assume xx: z € path-image (linepath a b)
moreover have z € ?L A d € L N\ d € path-image (linepath a b) using
assms z by force
ultimately have {z, d} C ?L N path-image (linepath a b) A z # d using z
by blast
then have collinear {a, b, ¢, d} using two-linepath-colinearity-property by
fastforce
then have Fulse using assms(2) assms(3) collinear-4-3 by auto
} moreover
{ assume x*x: z € path-image (linepath b c)
then have collinear {a, b, ¢, d} using two-linepath-colinearity-property|of z
-beced
by (smt (verit) xx IntE assms(3) collinear-3-trans d-prop in-path-image-imp-collinear
insertCI insert-commute z)
then have Fulse using assms(2) assms(3) collinear-4-3 by auto
} moreover
{ assume xx: z € path-image (linepath ¢ a)
then have collinear {a, b, ¢, d} using two-linepath-colinearity-property|of z
-cacd]
by (smt (verit) IntD1 assms(3) collinear-3-trans d-prop in-path-image-imp-collinear
insert-commute insert-iff z)
then have Fulse using assms(2) assms(3) collinear-4-3 by auto
}
ultimately show Fulse using cases by argo
qed
moreover have ?L C path-inside p U 2P
proof—
have convex hull {a, b, ¢} = path-inside p U ¢P
by (simp add: Un-commute assms(1) assms(3) triangle-convezr-hull)
moreover have ?L C convez hull {a, b, c}
by (smt (verit, ccfu-threshold) assms empty-subsetl hull-insert hull-mono in-
sert-commute insert-mono insert-subset path-image-linepath segment-convez-hull)
ultimately show ?thesis by blast
qed
ultimately have ¢L C path-inside p U {¢c, d} by blast
then have ?L C path-inside ?p’ U {c, d} using 1 unfolding path-inside-def by
presburger
then have 2: good-linepath ¢ d ?vts’ using assms unfolding good-linepath-def
by auto

thus ?thesis using 1 by blast
qed

221

28 Convex Hull Has Good Linepath

lemma leq-2-extreme-points-means-collinear:

fixes vts :: 'a::euclidean-space set

assumes finite vts

assumes card {v. v extreme-point-of (conver hull vts)} < 2

shows collinear vts

using assms

by (metis Krein-Milman-polytope affine-hull-convez-hull collinear-affine-hull-collinear
collinear-small extreme-points-of-convezr-hull finite-subset)

lemma convex-hull-non-extreme-point-in-open-seg:
assumes H = convex hull vts
assumes z € H — {v. v extreme-point-of H}
shows 3ab. a € HAbe HAN z € open-segment a b
using assms unfolding extreme-point-of-def by blast

lemma convez-hull-extreme-points-vertex-split:
fixes vts :: (real”2) set
assumes H = convexr hull vts
assumes finite vts
assumes card {v. v extreme-point-of H} > 4
assumes {a, b, ¢} C {v. v extreme-point-of H} A distinct [a, b,]
shows path-image (linepath a b) N interior H # {}
V path-image (linepath b ¢) N interior H # {}
V path-image (linepath ¢ a) N interior H # {}
proof—
let Zep = {v. v extreme-point-of H}

have H: H = convex hull ?ep using Krein-Milman-polytope assms(1) assms(2)
by blast
let ?H' = convex hull {a, b, ¢}

have not-collinear: = collinear {a, b, c}
proof(rule ccontr)
assume — — collinear {a, b, c}
then have collinear {a, b, ¢} by blast
then have a € path-image (linepath b c)
V b € path-image (linepath a c)
V ¢ € path-image (linepath a b)
using collinear-between-cases unfolding between-def
by (smt (verit, del-insts) between-mem-segment closed-segment-eq collinear-between-cases
doubleton-eq-iff path-image-linepath)
moreover have a # b A b # ¢ A a # c using assms by simp
ultimately have a € open-segment b ¢ V b € open-segment a ¢ V ¢ €
open-segment a b
using closed-segment-eq-open by auto
moreover have a extreme-point-of H N\ b extreme-point-of H A ¢ extreme-point-of
H

222

using assms by blast
ultimately show Fulse unfolding extreme-point-of-def by blast
qed

have strict-subset: interior YH’ C interior H
proof—
have interior ?H' C interior H
by (metis H assms(4) hull-mono interior-mono)
moreover have ?H' C H
proof—
have card {a, b, ¢} < 3
by (metis card.empty card-insert-disjoint collinear-2 finite.emptyl finite-insert
insert-absorb nat-le-linear not-collinear numeral-3-eq-3)
then have card (%ep — {a, b, c}) > 1
using assms(3) assms(4) by auto
then obtain d where d € %ep — {a, b, ¢}
by (metis One-nat-def all-not-in-conv card.empty not-less-eq-eq zero-le)
thus ?thesis
by (metis DiffE H assms(4) extreme-point-of-convez-hull hull-mono mem-Collect-eq
order-less-le)
qed
ultimately show Zthesis
by (metis (no-types, lifting) assms(1) assms(2) closure-convez-hull con-
vez-closure-rel-interior convex-convex-hull convex-hull-eq-empty convezx-polygon-frontier-is-path-image2
dual-order. strict-iff-order finite.emptyl finite.insertl finite-imp-bounded-convex-hull
finite-imp-compact frontier-empty insert-not-empty inside-frontier-eq-interior not-collinear
path-inside-def polygon-frontier-is-path-image rel-interior-nonempty-interior sup-bot.right-neutral
triangle-convex-hull triangle-is-convez triangle-is-polygon)
qed
moreover have interior 7H’ # {}
by (metis not-collinear convez-conver-hull conver-hull-eq-empty convex-polygon-frontier-is-path-image2
finite.emptyl finite.insertl finite-imp-bounded-convex-hull frontier-empty insert-not-empty
inside-frontier-eq-interior path-inside-def polygon-frontier-is-path-image sup-bot.right-neutral
triangle-convex-hull triangle-is-convez triangle-is-polygon)
ultimately obtain z y where zy: z € interior ?H' A y € interior H — interior
?H' by blast

let ¢l = linepath x y

have z € interior ?H' N y € —(interior ?H’) using zy by blast
then have path-image 71 N interior ?H' # {} A path-image ?l N —(interior ?H’)
{} by auto
moreover have path-connected (interior 2H’) by (simp add: convez-imp-path-connected)
ultimately obtain z where z: z € path-image ?l N frontier (interior 7H’)
by (metis Diff-eq Diff-eq-empty-iff all-not-in-conv convez-convez-hull convex-imp-path-connected
path-connected-not-frontier-subset path-image-linepath segment-convex-hull)
moreover have path-image ?l C interior H using zy convez-interior|of H|
by (metis DiffD1 IntD2 strict-subset assms(1) closed-segment-subset convez-convex-hull
inf . strict-order-iff path-image-linepath)

223

ultimately have z-interior: z € interior H by blast

have z € frontier (interior ?H’) using z by blast
moreover have frontier (interior ?H’)
= path-image (linepath a b) U path-image (linepath b ¢) U path-image (linepath
¢ a)
proof—
let ?p = make-triangle a b ¢
have path-inside ?p = interior ?H'
by (metis not-collinear bounded-convex-hull bounded-empty bounded-insert con-
vex-convex-hull convex-polygon-frontier-is-path-image2 inside-frontier-eg-interior path-inside-def
triangle-convex-hull triangle-is-convez triangle-is-polygon)
then have path-image ?p = frontier (interior ?H’)
by (metis not-collinear polygon-frontier-is-path-image triangle-is-polygon)
moreover have path-image ?p
= path-image (linepath a b) U path-image (linepath b ¢) U path-image (linepath
ca
)
by (metis Un-assoc list.discI make-polygonal-path.simps(3) make-triangle-def
nth-Cons-0 path-image-cons-union)
ultimately show ¢thesis by presburger
qged
ultimately show ?thesis using z-interior by blast
qed

lemma convez-hull-has-vertex-split-helper-wlog:
assumes p = make-triangle a b ¢ and distinct [a, b,] and — collinear {a, b,
¢} and
d-prop: d € path-image (linepath a b) A d ¢ {a, b, ¢}
shows path-image (linepath ¢ d) N path-inside p # {}
proof—
have good-linepath ¢ d [a, d, b, ¢, a
A path-image (make-polygonal-path [a, d, b, ¢, a]) = path-image p
using pick-triangle-basic-split[of p a b ¢ d] assms by fast
thus ?thesis
unfolding good-linepath-def
by (smt (verit, del-insts) Int-Un-eq(4) Int-insert-right-if! Un-insert-right diff-points-path-image-set-property
le-iff-inf path-inside-def pathfinish-in-path-image pathfinish-linepath pathstart-in-path-image
pathstart-linepath)
qed

lemma convez-hull-has-vertex-split-helper:
assumes p = make-triangle a b ¢ and distinct [a, b, ¢|] and - collinear {a, b,
¢} and
d-prop: d € path-image p A\ d ¢ {a, b, ¢}
shows Jz y. {z, y} C {a, b, ¢, d} Nz # y A path-image (linepath = y) N
path-inside p # {}
proof—
{ assume d € path-image (linepath a b)
then have ?thesis

224

using convex-hull-has-vertex-split-helper-wloglof p a b ¢ d] assms(1) assms(2)
assms(3) d-prop
by fastforce
} moreover
{ assume x: d € path-image (linepath b c)
let ?p’ = make-triangle b c a
have path-image (linepath a d) N path-inside ?p’ # {}
using convez-hull-has-vertez-split-helper-wlog[of ?p’ b ¢ a d|
by (metis (no-types, opaque-lifting) x assms(3) collinear-2 d-prop distinct-length-2-or-more
distinct-singleton insert-absorb2 insert-commute)
moreover have path-inside ?p’ = path-inside p
unfolding make-triangle-def
by (smt (verit, best) assms(1) assms(8) convex-polygon-frontier-is-path-image2
insert-commute make-triangle-def path-inside-def triangle-convez-hull triangle-is-convex
triangle-is-polygon)
ultimately have ?thesis using assms by auto
} moreover
{ assume x: d € path-image (linepath ¢ a)
let ?p’ = make-triangle ¢ a b
have path-image (linepath b d) N path-inside ?p’ # {}
using convez-hull-has-vertex-split-helper-wlog[of ?p’ ¢ a b d]
by (metis (no-types, opaque-lifting) * assms(3) collinear-2 d-prop distinct-length-2-or-more
distinct-singleton insert-absorb2 insert-commute)
moreover have path-inside ?p’ = path-inside p
unfolding make-triangle-def
by (smt (verit, ccfv-SIG) assms(1) assms(3) convex-polygon-frontier-is-path-image2
insert-commute make-triangle-def path-inside-def triangle-convez-hull triangle-is-convex
triangle-is-polygon)
ultimately have ?thesis using assms by auto
}
ultimately show ?thesis using on-triangle-path-image-cases assms(1) d-prop
by fast
qed

lemma convez-hull-has-vertex-split:

fixes vts :: (real”2) set

assumes H = convez hull vts

assumes — collinear vts

assumes card vts > 3

assumes finite vts

shows Fa b. {a, b} C vts A a # b A path-image (linepath a b) N interior H #
{}
proof—

let %ep = {v. v extreme-point-of H}

have ep: Zep C vts by (simp add: assms(1) extreme-points-of-convex-hull)

have card-ep: card ?ep > 3

by (metis One-nat-def Suc-1 assms(1) assms(2) assms(8) card.infinite leq-2-extreme-points-means-collinear
not-less-eg-eq not-less-zero numeral-3-eq-3)

obtain a b ¢ where abc: {a, b, ¢} C epANa£bANbFcNa#c

225

proof—
obtain ¢ A where a € %ep AN A = %ep — {a} A card A > 2 using card-ep by
force
moreover then obtain b B where b € AN B=A — {b} A card B > 1
by (metis Suc-1 Suc-diff-le bot.extremum-uniquel bot-nat-0.extremum card-Diff-singleton
card-eq-0-iff diff-Suc-1 less-Suc-eq-le less-one linorder-not-le subset-emptyl)
moreover then obtain ¢ ¢ where c € BA C =B — {¢} A card C > 0
by (metis One-nat-def bot-nat-0.extremum card.empty equalsOI not-less-eq-eq)
ultimately have {a, b, ¢} C %ep A a # b A b# ¢ A a# c by blast
thus ?thesis using that by auto
qed
{ assume *: card %ep = 3
then have abc: Zep = {a, b, ¢}
by (metis abc card-3-iff card-gt-0-iff numeral-3-eq-3 order-less-le psubset-card-mono
zero-less-Suc)
obtain d where d: d € vtis Nd#aANd#bANdF#c
by (metis x assms(3) abc ep insertCI nat-less-le subsetl subset-antisym)
{ assume d € interior H
then have d € path-image (linepath a d) N interior H by simp
then have ?thesis using ep abc d by auto
} moreover
{ assume xxx: d ¢ interior H
let ?p = make-triangle a b ¢
have H: H = convex hull ?ep
proof—
have compact H
by (metis assms(1) assms(3) card-eg-0-iff finite-imp-compact-convex-hull
gr-implies-not0)
moreover have convex H using convez-convez-hull[of vts| assms by blast
ultimately have H = closure (convex hull ?ep) using Krein-Milman|of H|
by fast
thus ?thesis using abc by auto
qed
then have interior: path-inside ?p = interior H
using abc
by (metis assms(1,2) affine-hull-convex-hull collinear-affine-hull-collinear
convex-convex-hull convex-polygon-frontier-is-path-image2 finite.intros(1) finite-imp-bounded-convez-hull
finite-insert inside-frontier-eq-interior path-inside-def triangle-convex-hull triangle-is-convex
triangle-is-polygon)
then have d-frontier: d € frontier H
by (metis xxx Diff-iff assms(1) UnCI d closure-Un-frontier frontier-def
hull-subset in-mono)
moreover have path-image ?p = frontier H
using convez-polygon-frontier-is-path-image
by (metis assms(1,2) H abe affine-hull-convez-hull collinear-affine-hull-collinear
convex-polygon-frontier-is-path-image2 triangle-convez-hull triangle-is-convex trian-
gle-is-polygon)
ultimately have d € path-image ?p by blast
moreover have — collinear {a, b, c}

226

by (metis H assms(1,2) abe affine-hull-convez-hull collinear-affine-hull-collinear)
moreover then have distinct [a, b, (]
by (metis collinear-2 distinct.simps(2) distinct-singleton empty-set in-
sert-absorb list.simps(15))

moreover have d ¢ {a, b, ¢} using d by blast
ultimately have ?thesis

using abc d convex-hull-has-vertez-split-helper|of ?p a b ¢ d]

by (metis (no-types, lifting) insert-subset interior subset-trans ep)

ultimately have ?thesis by fast
} moreover
{ assume x: card ?ep > 4
moreover have {a, b, c} C %ep A distinct [a, b, | using abc by fastforce
ultimately have path-image (linepath a b) N interior H # {}
V path-image (linepath b ¢) N interior H # {}
V path-image (linepath ¢ a) N interior H # {}
using convez-hull-extreme-points-vertex-split|OF assms(1) assms(4) *] by
presburger
then have ?thesis
by (metis (no-types, lifting) ep abe insert-subset subset-trans)
}

ultimately show ?thesis using card-ep by fastforce
qed

lemma convez-polygon-has-good-linepath-helper:
assumes polygon-of p vts
assumes convez (path-inside p U path-image p)
assumes card (set vts) > 8
obtains a b where {a, b} C set vis A a # b A = path-image (linepath a b) C
path-image p
proof—
let H = convex hull (set vts)
obtain a b where ab: {a, b} C set vts A a # b A path-image (linepath a b) N
interior ?H # {}
using convex-hull-has-vertex-split assms polygon-vts-not-collinear unfolding
polygon-of-def
by fastforce
moreover have interior ?H = path-inside p
using assms(1) assms(2) convez-polygon-inside-is-convex-hull-interior poly-
gon-convez-iff polygon-of-def
by blast
ultimately have path-image (linepath a b) N path-inside p # {} by simp
moreover have path-inside p N path-image p = {} using path-inside-def by
auto
moreover have path-image (linepath a b) C path-image p U path-inside p
by (metis ab assms(1) assms(2) convez-polygon-is-convez-hull hull-mono path-image-linepath
polygon-of-def segment-convex-hull sup-commute)
ultimately have — path-image (linepath a b) C path-image p by fast
thus ?thesis using ab that by meson

227

qed

lemma convez-polygon-has-good-linepath:

assumes convez (path-inside p U path-image p)

assumes polygon p

assumes p = make-polygonal-path vts

assumes card (set vts) > 3

shows Ja b. good-linepath a b vts
proof—

let ?T = convex hull (set vts)

have T': path-image p U path-inside p = ¢T

by (metis Un-commute assms(1) assms(2) assms(3) convez-polygon-is-convez-hull)

obtain a b where ab: a # b A {a, b} C set vts A = path-image (linepath a b) C
path-image p

using convez-polygon-has-good-linepath-helper assms unfolding polygon-of-def

by metis

let 7S = path-image (linepath a b)

have p-is-frontier: frontier ?T = path-image p

using convez-polygon-frontier-is-path-image assms polygon-of-def polygon-convex-iff
by blast

have closure ?T = ?T by (simp add: finite-imp-compact)
then have 25 C closure ?T using ab by (simp add: hull-mono segment-convez-hull)
moreover have convex ?T using convez-convez-hull by auto
moreover have convex 25 by simp
moreover have rel-interior S = open-segment a b
by (metis ab path-image-linepath rel-interior-closed-segment)
moreover have rel-interior ¢T = interior T
by (metis p-is-frontier Diff-empty ab calculation(1) frontier-def rel-interior-nonempty-interior)
ultimately have open-segment a b C interior ?T
using subset-rel-interior-convex by (metis ab p-is-frontier frontier-def rel-frontier-def)
then have (open-segment a b) N path-image p = {}
using p-is-frontier frontier-def by auto
then have closed-segment a b N path-image p = {a, b}
by (metis (no-types, lifting) Int-Un-distrib2 Int-absorb2 Un-commute ab assms(3)
closed-segment-eq-open subset-trans sup-bot.right-neutral vertices-on-path-image)
then have path-image (linepath a b) N path-image p = {a, b} by simp
thus ?thesis
using ab unfolding good-linepath-def
by (smt (verit, ccfv-threshold) Intl UnCI UnE T assms(8) hull-mono path-image-linepath
segment-convex-hull subset-iff)
qed

29 Pick’s Theorem

definition integral-inside:
integral-inside p = {x. integral-vec x N\ = € path-inside p}

228

definition integral-boundary:
integral-boundary p = {z. integral-vec © N\ z € path-image p}

29.1 Pick’s Theorem Triangle Case

definition pick-triangle:
pick-triangle p a b ¢ +—
p = make-triangle a b ¢
A all-integral [a, b, c]
A distinct [a, b,]
A = collinear {a, b, c}

definition pick-holds:
pick-holds p <—
(let I = card {z. integral-vec x N\ x € path-inside p} in
let B = card {z. integral-vec © A\ z € path-image p} in
measure lebesque (path-inside p) = 1 + B/2 — 1)

lemma pick-triangle-wlog-helper:
assumes pick-triangle p a b ¢ and
I = card (integral-inside p) and
B = card (integral-boundary p) and
integral-inside p = {} and
integral-vec d A d € path-image (linepath a b) A d ¢ {a, b, ¢} and d ¢
{a, b, ¢} and
ih: Ap' a’ b’ ¢’. (card (integral-inside p") + card (integral-boundary p’) <
I + B) = pick-triangle p’ a’ b’ ¢’ = pick-holds p’
shows measure lebesgue (path-inside p) = I + B/2 — 1
proof—
have polygon-p: polygon p using triangle-is-polygon assms unfolding pick-triangle
by presburger
then have polygon-of: polygon-of p [a, b, ¢, d]
unfolding polygon-of-def using assms unfolding make-triangle-def pick-triangle
by auto

let ?p’ = make-polygonal-path [a, d, b, ¢, a]

have good-linepath c d [a, d, b, ¢, a] A path-image (make-polygonal-path [a, d, b,
¢, a]) = path-image p
using pick-triangle-basic-split assms unfolding pick-triangle by presburger
then have x: good-linepath d ¢ [a, d, b, ¢, a] A path-image (make-polygonal-path
la, d, b, ¢, a]) = path-image p
using good-linepath-comm by blast
have polygon-new: polygon (make-polygonal-path [a, d, b, ¢, a])
using polygon-linepath-split-is-polygon| OF polygon-of, of 0 a b d [a, d, b, ¢, a]]
assms
by force
have hl: make-polygonal-path [a, d, b, ¢, a] = make-polygonal-path ([a, d, b,]

229

Q [[a, d, b,] ! 0])
by auto
have h2: good-linepath d ¢ ([a, d, b, c] Q [[a, d, b, c] ! 0])
using * by auto
have h3: (1:nat) < length [a, d, b, c] A (3::nat) < length [a, d, b,]
by auto
then have polygon-split: is-polygon-split [a, d, b,] 1 3
using good-linepath-implies-polygon-split| OF polygon-new h1 h2 h3] by auto
let ?p1 = make-polygonal-path (d # [b] Q [c, d])
let ?p2 = make-polygonal-path ([a] @ [d, ¢] Q [] @Q [[a, d, b, c] ! 0])
let 211 = card {z. integral-vec x A x € path-inside ?p1}
let Bl = card {z. integral-vec x A z € path-image ?p1}
let 212 = card {z. integral-vec x A z € path-inside ?p2}
let ?B2 = card {x. integral-vec x A z € path-image ?p2}
have pli-triangle: ?p1 = make-triangle d b c
unfolding make-triangle-def by auto
have p2-triangle: ?p2 = make-triangle a d c
unfolding make-triangle-def by auto
have I-is: I = card {z. integral-vec z A x € path-inside (make-polygonal-path [a,
d, b, ¢, a])}
using path-image-linepath-splitjof 0 [a, b, ¢, a] d] * assms path-inside-def
integral-inside by presburger
have B-is: B = card {z. integral-vec x N\ = € path-image (make-polygonal-path
(6, d, b, ¢, a))}
using path-image-linepath-split[of 0 [a, b, ¢, a] d]
using * assms path-inside-def integral-boundary by presburger
have all-integral-assump: all-integral [a, d, b,]
using assms unfolding all-integral-def pick-triangle by force

have dist-indhl1: distinct [d, b, c]
using assms unfolding pick-triangle by auto
have coll-indh1: — collinear {d, b, c}
using assms pick-triangle
by (smt (verit) collinear-3-trans dist-indhl distinct-length-2-or-more in-path-image-imp-collinear
insert-commute)
have path-inside-inside: path-inside (make-polygonal-path (d # [b] Q [e, d])) C
path-inside p
using polygon-split unfolding is-polygon-split-def
by (smt (23) * One-nat-def Un-iff append-Cons append-Nil diff-Suc-1 drop0
drop-Suc-Cons nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-inside-def subsetl take-Suc-Cons
take-eq-Nil2)
then have indhi-cardl: card {z. integral-vec x A x € path-inside (make-polygonal-path
(d # [b] Q [c, d])}< card {z. integral-vec x N\ = € path-inside p}
by (metis (no-types, lifting) assms(4) integral-inside Collect-empty-eq card.empty
le-zero-eq subsetD)
have indhi1-card2: card {z. integral-vec z N\ x € path-image (make-polygonal-path
(d # [b] Q [c, d]))} < card {z. integral-vec © N\ x € path-image p}

230

proof—
have path-image-union: path-image (make-polygonal-path (d # [b] @ [c, d])) =
path-image (linepath d b) U path-image (linepath b ¢) U path-image (linepath ¢ d)
using path-image-cons-union pl-triangle make-triangle-def
by (metis (no-types, lifting) inf-sup-aci(6) list.discI make-polygonal-path.simps(3)
nth-Cons-0)
have path-image-db: path-image (linepath d b) C path-image p
by (metis assms(5) list.discI nth-Cons-0 path-image-cons-union path-image-linepath-union
polygon-of polygon-of-def sup.cobounded?2 sup.coboundedI1)
have path-image-be: path-image (linepath b ¢) C path-image p
using assms(1) linepaths-subset-make-polygonal-path-imagelof [a, b, ¢, a] 1]
unfolding pick-triangle make-triangle-def
by simp
have path-image-cdl: path-image (linepath ¢ d) — {¢, d} C path-inside p
using polygon-split unfolding is-polygon-split-def
by (smt (23) One-nat-def <good-linepath ¢ d [a, d, b, ¢, a] A path-image
(make-polygonal-path [a, d, b, ¢, a]) = path-image p> append-Cons append-Nil in-
sert-commute nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-image-linepath path-inside-def
segment-convez-hull sup.cobounded?)
have path-image-cd2: {c, d} C path-image p
using linepaths-subset-make-polygonal-path-image assms(1) unfolding pick-triangle
make-triangle-def
by (metis (no-types, lifting) <good-linepath ¢ d [a, d, b, ¢, a] A path-image
(make-polygonal-path [a, d, b, ¢, a]) = path-image p> good-linepath-def subset-trans
vertices-on-path-image)
have path-image (linepath ¢ d) C path-image p U path-inside p
using path-image-cd1 path-image-cd2 by auto
moreover have integral-inside p = {} using assms by force
ultimately have path-image-cd: integral-boundary (linepath ¢ d) C inte-
gral-boundary p unfolding integral-inside integral-boundary by blast
have a-neg-d: a # d
using assms(d) by auto
have a-neg-c: a # ¢
using assms(1) unfolding pick-triangle by simp
have a-in-image: a € path-image p
using assms(1) unfolding pick-triangle make-triangle-def using vertices-on-path-image
by fastforce
have path-image (linepath ¢ d) N path-image p = {c, d}
using * unfolding good-linepath-def
by (smt (verit, ccfv-SIG) One-nat-def h1 insert-commute is-polygon-cut-def
is-polygon-split-def nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-image-linepath
polygon-split segment-conver-hull)
then have a-not-inl: a ¢ path-image (linepath c d)
using a-neg-c a-neq-d a-in-image by blast
have a-not-in2: a ¢ path-image (linepath d b)
using Int-closed-segment assms(5) by auto
have a-not-in3: a ¢ path-image (linepath b c)
by (metis (no-types, lifting) assms(1) in-path-image-imp-collinear insert-commute
pick-triangle)

231

then have a ¢ path-image (linepath d b) U path-image (linepath b ¢) U
path-image (linepath ¢ d)
using a-not-inl a-not-in2 a-not-in3 by simp
then have a € integral-boundary p A a ¢ integral-boundary (make-polygonal-path
[d, b, ¢, d])
using path-image-union using integral-boundary a-in-image all-integral-assump
all-integral-def by auto
then have strict-subset: integral-boundary (make-polygonal-path [d, b, ¢, d]) C
integral-boundary p
using path-image-union path-image-db path-image-bc path-image-cd
unfolding integral-boundary by auto
have integral-inside (make-polygonal-path [d, b, ¢, d]) = {}
using path-inside-inside assms unfolding integral-inside by auto
then show ?%thesis using assms(2—3) strict-subset bounded-finite
using finite-path-inside finite-path-image
by (simp add: integral-boundary polygon-p psubset-card-mono)
qed
have fewer-points-p1: card {z. integral-vec z A\ x € path-inside (make-polygonal-path
(d # [b] @ [c, d]))} +
card {z. integral-vec x N\ x € path-image (make-polygonal-path (d # [b] Q [c,
d]))}
< card {z. integral-vec x N\ x € path-inside p} +
card {x. integral-vec x N\ x € path-image p}
using indhi-card! indhl-card2 by linarith
have indh-1: Sigma-Algebra.measure lebesque (path-inside ?p1) = real 11 + real
%B1 | 2 — 1
using assms fewer-points-p1 p1-triangle all-integral-assump dist-indhl1 coll-indh1
all-integral-def
unfolding pick-holds pick-triangle integral-inside integral-boundary by simp

have dist-indh2: distinct [a, d, c]
using assms unfolding pick-triangle by auto
have coll-indh2: = collinear {a, d, c}
using assms pick-triangle
by (smt (verit) collinear-3-trans dist-indh2 distinct-length-2-or-more in-path-image-imp-collinear
insert-commute)
have path-inside-inside: path-inside (make-polygonal-path (a # [d] Q [c, a])) C
path-inside p
using polygon-split unfolding is-polygon-split-def
by (smt (23) * One-nat-def Un-iff append-Cons append-Nil diff-Suc-1 drop0
drop-Suc-Cons nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-inside-def subsetl take-Suc-Cons
take-eq-Nil2)
then have indh2-cardl: card {z. integral-vec x N\ x € path-inside (make-polygonal-path
(a # [d] Q [c, a]))}< card {x. integral-vec x A © € path-inside p}
by (metis (no-types, lifting) assms(4) integral-inside Collect-empty-eq card.empty
le-zero-eq subsetD)
have indh2-card2: card {z. integral-vec z \ x € path-image (make-polygonal-path
(a # [d] Q [e, a]))} < card {z. integral-vec N\ x € path-image p}

232

proof—
have path-image-union: path-image (make-polygonal-path (a # [d] Q [c, a])) =
path-image (linepath a d) U path-image (linepath d ¢) U path-image (linepath ¢ a)
using path-image-cons-union p2-triangle make-triangle-def
by (metis Un-assoc append.left-neutral append-Cons list.discI make-polygonal-path.simps(3)
nth-Cons-0)
have path-image-ad: path-image (linepath o d) C path-image p
by (metis <good-linepath ¢ d [a, d, b, ¢, a] A\ path-image (make-polygonal-path
la, d, b, ¢, a]) = path-image ps inf-sup-absord le-iff-inf list.discI nth-Cons-0 path-image-cons-union)
have path-image-ca: path-image (linepath ¢ a) C path-image p
using assms(1) linepaths-subset-make-polygonal-path-image[of [a, b, ¢, a] 2]
unfolding pick-triangle make-triangle-def
by simp
have path-image-cdl: path-image (linepath d ¢) — {e¢, d} C path-inside p
using polygon-split unfolding is-polygon-split-def
by (smt (23) One-nat-def <good-linepath ¢ d [a, d, b, ¢, a] N\ path-image
(make-polygonal-path [a, d, b, ¢, a]) = path-image p> append-Cons append-Nil in-
sert-commute nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 path-image-linepath path-inside-def
segment-convez-hull sup.cobounded?)
have path-image-cd2: {c, d} C path-image p
using linepaths-subset-make-polygonal-path-image assms(1) unfolding pick-triangle
make-triangle-def
by (metis (no-types, lifting) <good-linepath ¢ d [a, d, b, ¢, a] A path-image
(make-polygonal-path [a, d, b, ¢, a]) = path-image p> good-linepath-def subset-trans
vertices-on-path-image)
have path-image (linepath d ¢) C path-image p U path-inside p
using path-image-cd1 path-image-cd2 by auto
moreover have integral-inside p = {} using assms by force
ultimately have path-image-cd: integral-boundary (linepath d c¢) C inte-
gral-boundary p unfolding integral-inside integral-boundary by blast
have b-neg-d: b # d
using assms(5) by auto
have b-neg-c: b # ¢
using assms(1) unfolding pick-triangle by simp
have b-in-image: b € path-image p
using assms(1) unfolding pick-triangle make-triangle-def using vertices-on-path-image
by fastforce
have path-image (linepath d ¢) N path-image p = {d, c}
using * unfolding good-linepath-def
by (smt (verit, ccfo-SIG) One-nat-def h1 insert-commute is-polygon-cut-def
is-polygon-split-def nth-Cons-0 nth-Cons-Suc numeral-3-eq-8 path-image-linepath
polygon-split segment-convex-hull)
then have b-not-in1: b ¢ path-image (linepath d c)
using b-neq-c b-neq-d b-in-image by blast
have b-not-in2: b ¢ path-image (linepath a d)
using Int-closed-segment assms(5) by auto
have b-not-in3: b ¢ path-image (linepath c a)
by (metis (no-types, lifting) assms(1) in-path-image-imp-collinear insert-commute

233

pick-triangle)
then have b ¢ path-image (linepath a d) U path-image (linepath d c¢) U
path-image (linepath ¢ a)
using b-not-inl b-not-in2 b-not-in3 by simp
then have b € integral-boundary p A b ¢ integral-boundary (make-polygonal-path
[a, d, ¢, a])
using path-image-union using integral-boundary b-in-image all-integral-assump
all-integral-def by auto
then have strict-subset: integral-boundary (make-polygonal-path [a, d, ¢, a]) C
integral-boundary p
using path-image-union path-image-ad path-image-ca path-image-cd
unfolding integral-boundary by auto
have integral-inside (make-polygonal-path |a, d, ¢, a]) = {}
using path-inside-inside assms unfolding integral-inside by auto
then show ?thesis using assms(2—3) strict-subset bounded-finite
using finite-path-inside finite-path-image
by (simp add: integral-boundary polygon-p psubset-card-mono)
qed
have fewer-points-p2: card {z. integral-vec x A\ x € path-inside (make-polygonal-path
(la, d, ¢, a]))} +
card {z. integral-vec © A\ x € path-image (make-polygonal-path ([a, d, ¢, a]))}
< card {z. integral-vec x N\ x € path-inside p} +
card {x. integral-vec x N\ x € path-image p}
using indh2-card! indh2-card2 by simp
have indh-2: Sigma-Algebra.measure lebesque (path-inside ?p2) = real 712 + real
?B2 | 2 — 1
using fewer-points-p2 using assms fewer-points-p2 p2-triangle all-integral-assump
dist-indh2 coll-indh2 all-integral-def
unfolding pick-holds pick-triangle integral-inside integral-boundary by simp

have Sigma-Algebra.measure lebesgue (path-inside ?p1) = real 2?11 + real ?B1 /
2 —-1=
Sigma-Algebra.measure lebesgue (path-inside ?p2) = real ?I2 + real ?B2 | 2
-1 =
I = card {z. integral-vec x N\ x € path-inside (make-polygonal-path [a, d, b, c,
al)} =
B = card {x. integral-vec © A x € path-image (make-polygonal-path [a, d, b,
¢, a))} =
all-integral [a, d, b, ¢] =
Sigma-Algebra.measure lebesque (path-inside (make-polygonal-path [a, d, b, c,
al)) =
real I + real B | 2 — 1
using pick-split-union| OF polygon-split, of [a] [b] [| d ¢ ?p’] by auto
then have Sigma-Algebra.measure lebesgue (path-inside (make-polygonal-path [a,
d, b, ¢, a])) =
real I + real B/ 2 — 1
using I-is B-is all-integral-assump indh-1 indh-2 by auto
thus measure lebesgque (path-inside p) =1 + B/2 — 1

234

using path-image-linepath-split[of 0 [a, b, ¢, a] d] by (metis path-inside-def *)
qed

lemma pick-triangle-helper:
assumes pick-triangle p a b ¢ and
I = card (integral-inside p) and
B = card (integral-boundary p) and
integral-inside p = {} and
integral-vec d A d ¢ {a, b, ¢} and d ¢ {a, b, ¢} and
d € path-image (linepath a b)
V d € path-image (linepath b c)
V d € path-image (linepath ¢ a) and
ih: Ap' a’ b’ ¢’. (card (integral-inside p") + card (integral-boundary p’) <
I + B) = pick-triangle p' a’ b’ ¢/ = pick-holds p’
shows measure lebesgue (path-inside p) = I + B/2 — 1
proof—
{ assume d € path-image (linepath a b)
then have ?thesis using pick-triangle-wlog-helper assms by blast
} moreover
{ assume *: d € path-image (linepath b c)
let ?p’ = make-polygonal-path (rotate-polygon-vertices [a, b, ¢, a] 1)
let 21’ = card (integral-inside ?p’)
let ?B’ = card (integral-boundary %p’)

have p’-p: path-image ?p’ = path-image p N path-inside ?p’ = path-inside p
unfolding path-inside-def
using assms(1) make-triangle-def pick-triangle polygon-vts-arb-rotation trian-
gle-is-polygon
by auto

have rotate-polygon-vertices [a, b, ¢, a] 1 = [b, ¢, a, b
unfolding rotate-polygon-vertices-def by simp
then have pick-triangle-p”: pick-triangle ?p’ b c a
using assms unfolding pick-triangle
by (smt (verit, best) all-integral-def distinct-length-2-or-more insert-commute
list.simps(15) make-triangle-def)
then have measure lebesgue (path-inside ?p’) = ?1' + ?B'/2 — 1
using pick-triangle-wlog-helper[of ?p’ b ¢ a 21’ ?B’ d] assms
using integral-boundary integral-inside x insert-commute pick-triangle-p’ p'-p
by auto
moreover have ?I'= I N\ ?B’ = B using p’-p integral-boundary integral-inside
assms(2) assms(3) by presburger
ultimately have ?thesis using p’-p by auto
} moreover
{ assume x: d € path-image (linepath ¢ a)
let ?p’ = make-polygonal-path (rotate-polygon-vertices [a, b, ¢, a] 2)
let 21’ = card (integral-inside ?p’)
let ?B’ = card (integral-boundary ?p’)

235

have p’-p: path-image ?p’ = path-image p A path-inside ?p’ = path-inside p
unfolding path-inside-def
using assms(1) make-triangle-def pick-triangle polygon-vts-arb-rotation trian-
gle-is-polygon

by auto
have rotate-polygon-vertices [a, b, ¢, a] 1 = [b, ¢, a, b
unfolding rotate-polygon-vertices-def by simp
also have rotate-polygon-vertices ... 1 = [c, a, b,]
unfolding rotate-polygon-vertices-def by simp
ultimately have rotate-polygon-vertices [a, b, ¢, a] 2 = [c, a, b,]

by (metis Suc-1 arb-rotation-as-single-rotation)
then have pick-triangle-p”: pick-triangle ?p’ ¢ a b
using assms unfolding pick-triangle
by (smt (verit, best) all-integral-def distinct-length-2-or-more insert-commaute
list.simps(15) make-triangle-def)
then have measure lebesgue (path-inside ?p’) = ?1' + ?B'/2 — 1
using pick-triangle-wlog-helper|of ?p’ ¢ a b 21’ ?B’ d] assms
using integral-boundary integral-inside * insert-commute pick-triangle-p’ p’-p
by auto
moreover have ?I'= I A 7B’ = B using p’-p integral-boundary integral-inside
assms(2) assms(3) by presburger
ultimately have ?thesis using p’-p by auto
}
ultimately show ¢thesis using assms by blast
qged

lemma triangle-3-split-helper:

fixes a b :: 'a::euclidean-space

assumes a € frontier S

assumes b € interior S

assumes conver S

assumes closed S

shows path-image (linepath a b) N frontier S = {a}
proof—

let ?L = path-image (linepath a b)

have a € S A b € S using assms frontier-subset-closed interior-subset by auto

then have 2L C S

using assms hull-minimal segment-convez-hull by (simp add: closed-segment-subset)

then have 7L C closure S using assms(4) by auto

moreover have convex ?L by simp

moreover have ?L N interior S # {} using assms(2) by auto

moreover then have — ?L C rel-frontier S

by (metis Diff E assms(2) interior-subset-rel-interior pathfinish-in-path-image

pathfinish-linepath rel-frontier-def subsetD)

ultimately have rel-interior ?L C rel-interior S

using subset-rel-interior-convex|[of ?L S] assms by fastforce
then have open-segment a b C interior S
by (metis all-not-in-conv assms(2) empty-subsetl open-segment-eq-empty’ path-image-linepath

236

rel-interior-closed-segment rel-interior-nonempty-interior)
moreover have ?L = closed-segment a b by auto
moreover have interior S N frontier S = {} by (simp add: frontier-def)
ultimately have ?L N frontier S C {a, b}
by (smt (verit) Diff-iff disjoint-iff inf-commute inf-lel open-segment-def subsetD
subsetl)
moreover have b ¢ frontier S by (simp add: assms(2) frontier-def)
ultimately show ?thesis using assms(1) by auto
qed

lemma unit-triangle-interior-point-not-collinear-el-e2:
assumes p = make-triangle (vector [0, 0]) (vector [1, 0]) (vector [0, 1])
(is p = make-triangle 70 %el ?e2)
assumes z € path-inside p
shows — collinear {?0, ?el, z}
proof—
have path-inside p = interior (convex hull {?0, ?el, ?e2})
by (metis assms(1) bounded-convez-hull bounded-empty bounded-insert con-
vez-convex-hull convex-polygon-frontier-is-path-image2 inside-frontier-eg-interior path-inside-def
triangle-convex-hull triangle-is-convex triangle-is-polygon unit-triangle-vts-not-collinear)
then have z € interior (convexr hull {?0, ?el, ?e2}) using assms by simp
then have z: 281 > 0 A 282 > 0
using assms(1) assms(2) unit-triangle-interior-char make-triangle-def by blast
have abc: 2081 = 0 A 2082 = 0 A 2e1832 = 0 A ?e2%81 = 0 by simp

show — collinear {20, %el, z}
proof (rule ccontr)
assume — - collinear {?0, ?el, z}
then have x: collinear {70, %el, z} by blast
then obtain u ¢! ¢2 where u: 70 — %el = ¢l xgr u N\ %el — 2z = ¢c2 *g u
unfolding collinear-def by blast
moreover have c! # 0
proof—
have (?0 — %e1)$1 = —1 by simp
moreover have (70 — %e1)$1 = (c1 *p u)$1 using u by presburger
ultimately show ?thesis by force
qged
moreover have (Y0 — %¢1)$2 = 0 by simp
moreover have (70 — 2¢1)$2 = (c1 *g w)$2 by (simp add: calculation(1))
ultimately have u$2 = 0 by auto
thus Fualse
by (smt (verit, ccfv-threshold) u abc scaleR-eq-0-iff vector-minus-component
vector-scaleR-component 2)
qed
qed

2
2

lemma triangle-interior-point-not-collinear-vertices-wlog-helper:
assumes p = make-triangle a b c
assumes polygon p

237

assumes 2z € path-inside p
shows — collinear {a, b, 2}
proof—
let 20 = (vector [0, 0])::(real™2)
let el = (vector [1, 0])::(real”2)
let %e2 = (vector [0, 1])::(real™2)
let ?M = triangle-affine a b ¢
have a: ?M 20 = a
using triangle-affine-el-e2 by blast
have b: ?M ?el = b using triangle-affine-el-e2 by simp
have c: ?M ?e2 = c using triangle-affine-e1-e2 by simp

have abc-not-collinear: — collinear {a, b, c}
using assms polygon-vts-not-collinear unfolding make-triangle-def polygon-of-def

by (metis (no-types, lifting) empty-set insertCI insert-absorb insert-commute
list.simps(15))

have convex hull {a, b, ¢} = convex hull {?M 20, ?M %el, ?M ?e2}
using a b ¢ by simp

also have ... = ?M ‘ (convex hull {70, %el, ?e2})
using calculation triangle-affine-img by blast
also have interior-preserve: interior ... = ¢M * (interior (convex hull {20, ?el,
7e2}))
using triangle-affine-preserves-interior[of ?M a b ¢ - convex hull {?0, %el,
?e2}]

using abc-not-collinear
by presburger
finally have 2: z € ?M (interior (convex hull {20, ?el, ?e2}))
using assms(1) assms(2) assms(3) make-triangle-def polygon-of-def trian-
gle-inside-is-convex-hull-interior
by auto
then obtain 2z’ where 2" 2’ € interior (conver hull {?0, %el, ?e2}) N ?M 2’
= z by fast
then have — collinear {20, ?el, 2'}
by (metis convez-convez-hull convez-polygon-frontier-is-path-image?2 finite.intros(1)
finite-imp-bounded-convex-hull finite-insert inside-frontier-eq-interior path-inside-def
triangle-convez-hull triangle-is-convex triangle-is-polygon unit-triangle-interior-point-not-collinear-el-e2
unit-triangle-vts-not-collinear)
then have z'-notin: z' ¢ affine hull {?0, ?el} using affine-hull-3-imp-collinear
by blast
then have ?M 2’ ¢ affine hull {?M 2?0, ?M ?el}
proof—
have inj ?M using triangle-affine-inj abc-not-collinear by blast
then have ?M 2’ ¢ ?M ‘ (affine hull {20, ?el}) using z’-notin by (simp add:
inj-image-mem-iff)
moreover have ?M ‘ (affine hull {20, %el}) = affine hull {?M 20, ?M ?2el}
using triangle-affine-preserves-affine-hull[of - a b c| abc-not-collinear by simp
ultimately show ?thesis by blast
qed

238

then have z ¢ affine hull {a, b} using a b 2’ by argo

thus ?thesis

by (metis interior-preserve z affine-hull-convez-hull affine-hull-nonempty-interior
collinear-2 collinear-3-affine-hull collinear-affine-hull-collinear empty-iff insert-absorb2
triangle-affine-img unit-triangle-vts-not-collinear 2')
qed

lemma triangle-interior-point-not-collinear-vertices:
assumes p = make-triangle a b ¢
assumes polygon p
assumes z € path-inside p
shows - collinear {a, b, z} N = collinear {a, ¢, z} N\ = collinear {b, ¢, z}
proof—
let ?p1 = make-triangle b ¢ a
let ?p2 = make-triangle c a b
have p1: ?pl = make-polygonal-path (rotate-polygon-vertices [a, b, ¢, a] 1)
using assms unfolding make-triangle-def rotate-polygon-vertices-def by fast-
force
have p2: ?p2 = make-polygonal-path (rotate-polygon-vertices [a, b, ¢, a] 2)
using assms unfolding make-triangle-def rotate-polygon-vertices-def by (simp
add: numeral-Bit0)

have path-inside ?p1 = path-inside p N\ path-inside ?p2 = path-inside p
using p! p2 unfolding path-inside-def
using assms(1) assms(2) make-triangle-def polygon-vts-arb-rotation by force
then have z € path-inside ?p1 A z € path-inside ?p2 using assms by force
moreover have polygon ?p1 A polygon ?p2
using assms make-triangle-def p1 p2 rotation-is-polygon by presburger
ultimately show ?thesis
using assms triangle-interior-point-not-collinear-vertices-wlog-helper
by (smt (verit, best) insert-commute)
qed

lemma triangle-3-split:
assumes p = make-triangle a b ¢
assumes polygon p
assumes z € path-inside p
shows is-polygon-split-path [a, b, c] 0 1 [7]
is-polygon-split [a, z, b, c] 1 3
a ¢ path-image (make-triangle z b ¢) U path-inside (make-triangle z b c)
b ¢ path-image (make-triangle a z ¢) U path-inside (make-triangle a z c)
¢ ¢ path-image (make-triangle a b z) U path-inside (make-triangle a b z)
proof—
let ?q = make-polygonal-path [a, z, b, ¢, a]
let Zcutpath = make-polygonal-path [a, z, b
let ?vts = [a, b, ¢, a)

—~ o~

let ?l1 = linepath a z

239

let ?12 = linepath z b
let 9S = path-inside p U path-image p
have convex (path-inside p)
using triangle-is-convex assms(1,2) polygon-vts-not-collinear unfolding make-triangle-def
by (simp add: polygon-of-def triangle-inside-is-convex-hull-interior)
then have convex: conver (path-inside p U path-image p)
using polygon-convez-iff assms(2) by simp
then have frontier: frontier 2S = path-image p
using convez-polygon-frontier-is-path-image3 by (simp add: assms(2) sup-commute)
have interior: interior 2S5 = path-inside p
by (metis Jordan-inside-outside-real2 closed-path-def <convex (path-inside p)»
assms(2) closure-Un-frontier convex-interior-closure interior-open path-inside-def

polygon-def)

have not-collinear: — collinear {a, b, z} N = collinear {a, ¢, z} N = collinear
{b, ¢, z}

using triangle-interior-point-not-collinear-vertices assms(1) assms(2) assms(3)
by blast

have a = pathstart ?cutpath A b = pathfinish ?cutpath by simp
moreover have a # b
by (metis assms(1) assms(2) constant-linepath-is-not-loop-free make-polygonal-path.simps(4)
make-triangle-def not-loop-free-first-component polygon-def simple-path-def)
moreover have polygon p by (simp add: assms(2))
moreover have {a, b} C set ?vts by force
moreover have simple-path ?cutpath
by (simp add: insert-commute not-collinear not-collinear-loopfree-path sim-
ple-path-def)
moreover have path-image ?cutpath N path-image p = {a, b}
proof—
have {a, b} C path-image ?cutpath N path-image p
by (metis (no-types, lifting) Int-subset-iff Un-subset-iff assms(1) insert-is-Un
list.simps(15) make-triangle-def vertices-on-path-image)
moreover have path-image ?cutpath N path-image p C {a, b}
proof—
have z € interior S using assms interior by fast
moreover then have a € frontier 25 A b € frontier 25
using vertices-on-path-image
using «{a, b} C path-image (make-polygonal-path [a, z, b]) N path-image p»
frontier by force
moreover have closed ¢S using frontier frontier-subset-eq by auto
ultimately have path-image ?11 N path-image p = {a} A path-image ?12 N
path-image p = {b}
using triangle-3-split-helper convex frontier
by (metis (no-types, lifting) insert-commute path-image-linepath segment-convez-hull)
moreover have path-image ?cutpath = path-image ?11 U path-image ?12
by (metis list.discI make-polygonal-path.simps(3) nth-Cons-0 path-image-cons-union)
ultimately show ?thesis by blast
qed

240

ultimately show ¢thesis by blast
qed
moreover have path-image ?cutpath N path-inside p # {}
by (metis (no-types, opaque-lifting) Int-Un-distrib2 Un-absorb2 Un-empty assms(3)
insert-disjoint(2) list.simps(15) vertices-on-path-image)
ultimately have cutpath: is-polygon-cut-path ?vts ?cutpath
using assms unfolding make-triangle-def is-polygon-cut-path-def by simp
thus 1: is-polygon-split-path [a, b, c] 0 1 [Z]
using polygon-cut-path-to-split-path assms(2) by (simp add: assms(1,2) make-triangle-def)

let 2] = linepath z c
let %vts = [a, 2, b, ¢, a

have c-noton-cutpath: ¢ ¢ path-image ?cutpath
by (smt (verit) UnE assms(1) assms(2) assms(8) in-path-image-imp-collinear
insert-commaute make-polygonal-path.simps(3) neq-Nil-conv nth-Cons-0 path-image-cons-union
triangle-interior-point-not-collinear-vertices)

have z # ¢
proof—
have ¢ € path-image p
by (metis assms(1) insert-subset list.simps(15) make-triangle-def vertices-on-path-image)
moreover have path-image p N path-inside p = {}
by (simp add: disjoint-iff inside-def path-inside-def)
ultimately show ?thesis using assms(3) by blast
qged
moreover have polygon-q: polygon ?q
using 1 unfolding is-polygon-split-path-def

by (smt (23) One-nat-def append-Cons append-Nil diff-self-eq-0 drop0 drop-append
length-Cons length-drop length-greater-0-conv list.size(8) nth-Cons-0 nth-Cons-Suc
take-0)
moreover have {z, ¢} C set ?vts by force
moreover have [-g-int: path-image 21 N path-image ?q = {z, ¢}
proof—
have {z, ¢} C path-image ?l N path-image ?q
by (metis (no-types, lifting) Int-subset-iff calculation(3) dual-order.trans
hull-subset path-image-linepath segment-convex-hull vertices-on-path-image)
moreover
{ fix z
assume x: T € path-image ?l N path-image ?q N © # 2 N x # ¢
then have z € path-image ?q by blast
then have z € path-image (linepath a 2)
V x € path-image (linepath z b)
V z € path-image (linepath b c)
V x € path-image (linepath c a)
by (metis UnkE list.discI make-polygonal-path.simps(3) nth-Cons-0 path-image-cons-union)
moreover
{ assume z € path-image (linepath a z)

241

then have z € path-image (linepath a z) A x € path-image (linepath z c)
using * by blast
moreover have z € path-image (linepath a z) A z € path-image (linepath z
¢) by simp
moreover have z # z using * by blast
ultimately have collinear {a, z, c}
by (smt (verit, best) collinear-3-trans in-path-image-imp-collinear in-
sert-commute)
then have Fulse using not-collinear by (simp add: insert-commute)
} moreover
{ assume z € path-image (linepath z b)
then have z € path-image (linepath z b) A x € path-image (linepath z c)
using x by blast
moreover have z € path-image (linepath z b) A z € path-image (linepath z
¢) by simp
moreover have z # z using * by blast
ultimately have collinear {z, b, ¢}
by (smt (verit, best) collinear-3-trans in-path-image-imp-collinear in-
sert-commute)
then have Fulse using not-collinear by (simp add: insert-commute)
} moreover
{ assume z € path-image (linepath b c)
then have z € path-image (linepath b ¢) N x € path-image (linepath z c)
using * by blast
moreover have ¢ € path-image (linepath b ¢) A z € path-image (linepath z
¢) by simp
moreover have z # ¢ using * by blast
ultimately have collinear {b, z, ¢}
by (smt (verit, best) collinear-3-trans in-path-image-imp-collinear in-
sert-commute)
then have Fulse using not-collinear by (simp add: insert-commute)
} moreover
{ assume z € path-image (linepath c a)
then have z € path-image (linepath ¢ a) N\ © € path-image (linepath z c)
using * by blast
moreover have ¢ € path-image (linepath ¢ a) A z € path-image (linepath z
¢) by simp
moreover have z # ¢ using *x by blast
ultimately have collinear {a, z, c}
by (smt (verit, best) collinear-3-trans in-path-image-imp-collinear in-
sert-commute)
then have Fulse using not-collinear by (simp add: insert-commute)

ultimately have Fulse by blast
}
ultimately show ?thesis by blast
qed
moreover have path-image ?l N path-inside ?q # {}
proof (rule ccontr)

242

let ?p’ = make-triangle a b z

assume — path-image ?1 N path-inside 2q # {}

then have path-image 2l N path-inside ?q = {} by blast

then have x: rel-interior (path-image ?1) N path-inside ?q = {}
by (meson disjoint-iff rel-interior-subset subset-eq)

have path-image ?l C path-image p U path-inside p
by (metis UnCI assms(1) assms(3) empty-subset] hull-minimal insert-subset
list.simps(15) local.convex make-triangle-def path-image-linepath segment-convex-hull
sup-commute vertices-on-path-image)
then have path-image 21 C convexr hull {a, b, ¢}
by (smt (verit, best) assms(1) convex-polygon-is-convez-hull cutpath empty-set
insertCI insert-absorb insert-commute is-polygon-cut-path-def list.simps(15) local.convex
make-triangle-def sup-commute)
then have rel-interior (path-image ?1) C interior (convex hull {a, b, c})
by (smt (verit, ccfo-threshold) Diff-disjoint IntE IntI Un-upperl assms(1)
assms(2) assms(3) calculation(4) closure-Un-frontier convex-polygon-is-convex-hull
convez-segment(1) dual-order.trans empty-iff empty-set insertCI insert-absorb2 in-
sert-commute interior list.simps(15) local.convex make-triangle-def path-image-linepath
rel-frontier-def rel-interior-nonempty-interior subsetD subset-rel-interior-conver)
then have rel-interior: rel-interior (path-image ?1) C path-inside p
by (smt (verit, best) assms(1) convex-polygon-is-convezr-hull cutpath empty-set
insertCI insert-absorb insert-commute interior is-polygon-cut-path-def list.simps(15)
local.convex make-triangle-def)

have (let vts1 = []; vts2 = [];
vtsd = [c]; = a; y = b;
cutpath = ?cutpath; p = make-polygonal-path ([a, b, c] Q [[a, b, c] ! 0]);
pl = make-polygonal-path (x # vts2 Q [y] Q rev [z] @ [z]);
p2 = make-polygonal-path (vts1 Q ([z] Q [2] Q [y]) @ wvEs3 Q [[a, b,] !

0]);
¢l = make-polygonal-path (z # vts2 Q [y]); ¢2 = make-polygonal-path
(vts1 @ ([z] @ [z] @ [y]) @ vts3)
in is-polygon-cut-path ([a, b, c] Q [[a, b, c] ! 0]) Zcutpath A
polygon p A
polygon p1 A
polygon p2 A
path-inside pI N path-inside p2 = {} A
path-inside pl1 U path-inside p2 U (path-image cutpath — {z, y}) =
path-inside p N
(path-image pl — path-image cutpath) N (path-image p2 — path-image
Zcutpath) = {} A
path-image p = path-image pl — path-image ?cutpath U (path-image p2 —
path-image ?cutpath) U {z, y})
using 1 unfolding is-polygon-split-path-def by fastforce
then have (let
p = make-polygonal-path ([a, b, c] @ [[a, b, c] ! 0]);
pl = make-polygonal-path (a # [] @Q [b] Q rev [2] Q [a]);

243

p2 = make-polygonal-path ([] @ ([a] Q [2] Q [b]) @ [¢] @Q [[a, b,] ! 0])
in path-inside p1 U path-inside p2 U (path-image ?cutpath — {a, b}) =
path-inside p
A (path-image p1 — path-image ?cutpath) N (path-image p2 — path-image
Zcutpath) = {})
by meson
moreover have ?q = make-polygonal-path ([] @ ([a] @ [2] @ [b]) @ [¢] @ [[a,
b,] ! 0])
by simp
moreover have ?p’ = make-polygonal-path (a # [] @ [b] @ rev [2] Q [a])
unfolding make-triangle-def by simp
moreover have p = make-polygonal-path ([a, b, ¢] Q [[a, b,] ! 0])
unfolding assms make-triangle-def by auto
ultimately have path-inside-p: path-inside ?p’
U path-inside ?q
U (path-image ?cutpath — {a, b}) = path-inside p
A (path-image ?p’ — path-image ?cutpath) N (path-image ?q — path-image
Zcutpath) = {}
using 1 unfolding make-triangle-def is-polygon-split-path-def by metis
moreover have a € path-image ?cutpath A\ a ¢ path-inside ?p’ U path-inside
?q
by (metis (no-types, lifting) Unll <a = pathstart (make-polygonal-path
[a, 2z, b]) A b = pathfinish (make-polygonal-path [a, z, b])> assms(1) assms(2)
collinear-2 insert-absorb?2 insert-commute path-inside-p pathstart-in-path-image tri-
angle-interior-point-not-collinear-vertices-wlog-helper)
moreover have b € path-image ?cutpath A b & path-inside ?p’ U path-inside
?q
by (metis Unll <a = pathstart (make-polygonal-path [a, z, b]) A b = pathfin-
ish (make-polygonal-path [a, z, b])> assms(1) assms(2) collinear-2 insert-absorb2
path-inside-p pathfinish-in-path-image triangle-interior-point-not-collinear-vertices-wlog-helper)
ultimately have rel-interior (path-image ?1) C
(path-inside ?p’ — path-image ?cutpath)
U (path-image ?cutpath — {a, b})
using rel-interior * by blast
then have rel-interior (path-image ?1) C path-inside ?p’ U path-image ?cutpath
by blast
moreover have path-image ?cutpath C path-image ?p’
proof—
have path-image ?cutpath = path-image (linepath a z) U path-image (linepath
z b)
by (metis list.discI make-polygonal-path.simps(3) nth-Cons-0 path-image-cons-union)
moreover have path-image (linepath a z) = path-image (linepath z a)
A path-image (linepath z b) = path-image (linepath b 2)
by (simp add: insert-commute)
moreover have path-image (linepath z a) C path-image ?p’
A path-image (linepath b z) C path-image ?p’
unfolding make-triangle-def
by (metis Un-commute Un-upper2 list.discI nth-Cons-0 path-image-cons-union
sup.coboundedI2)

244

ultimately show ?thesis by blast
qed
ultimately have rel-interior (path-image ?1) C path-inside ?p’ U path-image
?p’ by fast
then have rel-interior (path-image ?1) C convex hull {a, z, b}
unfolding make-triangle-def
by (simp add: insert-commute make-triangle-def not-collinear sup-commute
triangle-convez-hull)
then have closure (rel-interior (path-image ?1)) C closure (convezx hull {a, z,
b})
using closure-mono by blast
then have path-image 21 C convex hull {a, z, b} by (simp add: convez-closure-rel-interior)
then have c: ¢ € path-image ?p’ U path-inside ?p’
unfolding make-triangle-def
by (metis (no-types, lifting) IntE insertCI insert-commute I-q-int make-triangle-def
not-collinear subsetD triangle-conver-hull)

moreover have ¢ ¢ path-image 7p’
proof—
have ¢ € path-image ?q — path-image ?cutpath using c-noton-cutpath l-g-int
by auto
moreover have (path-image ?p’ — path-image ?cutpath) N (path-image ?q —
path-image ?cutpath) = {}
using path-inside-p by fastforce
ultimately show ?thesis by blast
qged
moreover have ¢ ¢ path-inside ?p’
by (smt (verit, ccfo-threshold) DiffI IntD1 Unl1 Unl2 path-image (make-polygonal-path
la, z, b]) N path-image p = {a, b}> <path-image (make-polygonal-path [a, z, b]) C
path-image (make-triangle a b z)» assms(1) assms(2) calculation(2) collinear-2
in-mono insert-absorb2 path-inside-p triangle-interior-point-not-collinear-vertices)
ultimately show Fulse by blast
qed
ultimately have cutpath: is-polygon-cut ?vts z c
using assms unfolding make-triangle-def is-polygon-cut-def by blast
thus 2: is-polygon-split [a, z, b, c] 1 3
using polygon-cut-to-split
by (metis One-nat-def append-Cons append-Nil diff-Suc-1 length-Cons length-greater-0-conv
lessI list.discl list.size(3) nth-Cons-0 nth-Cons-Suc numeral-3-eq-8 polygon-cut-to-split
zero-less-diff)

let ?p1 = make-triangle a z ¢
let ?p2 = make-triangle z b ¢
let ?p8 = make-triangle a b z

have (path-image ?p1 — path-image (linepath z ¢)) N (path-image ?p2 — path-image
(linepath z ¢)) = {}
using 2 unfolding make-triangle-def is-polygon-split-def
by (smt (23) Int-commute One-nat-def Suc-1 append-Cons append-Nil diff-numeral-Suc

245

diff-zero drop0 drop-Suc-Cons nth-Cons-0 nth-Cons-Suc nth-Cons-numeral pred-numeral-simps(3)
take0 take-Cons-numeral take-Suc-Cons)
moreover have a ¢ path-image (linepath z ¢) A b & path-image (linepath z c)
by (metis (no-types, lifting) assms(1) assms(2) assms(3) in-path-image-imp-collinear
insert-commute triangle-interior-point-not-collinear-vertices)
moreover have a € path-image ?p1 A b € path-image ?p2
by (metis insert-subset list.simps(15) make-triangle-def vertices-on-path-image)
ultimately have a ¢ path-image ?p2 A b ¢ path-image ?p1 by auto
moreover have a ¢ path-inside ?p2 N b ¢ path-inside ?p1
proof—
have a ¢ path-inside p
by (metis (no-types, lifting) assms(1) assms(2) collinear-2 insertCI in-
sert-absorb triangle-interior-point-not-collinear-vertices)
moreover have b ¢ path-inside p
using assms(1) assms(2) triangle-interior-point-not-collinear-vertices-wlog-helper
by fastforce
moreover have path-inside ?p2 C path-inside %q
using 2 unfolding is-polygon-split-def
by (smt (28) One-nat-def UnCI append-Cons diff-Suc-1 drop0 drop-Suc-Cons
make-triangle-def nth-Cons-0 nth-Cons-Suc numeral-3-eq-3 self-append-conv2 sub-
set] take0 take-Suc-Cons)
moreover have path-inside ?p1 C path-inside ?q
using 2 unfolding is-polygon-split-def
by (smt (23) One-nat-def Un-assoc append-Cons diff-Suc-1 drop0 drop-Suc-Cons
inf-sup-absordb le-iff-inf make-triangle-def nth-Cons-0 nth-Cons-Suc numeral-3-eq-3
self-append-conv2 sup-commute takel take-Suc-Cons)
moreover have path-inside ?q C path-inside p
using ! unfolding is-polygon-split-path-def
by (smt (23) One-nat-def Un-subset-iff Un-upperl append-Cons append-Nil
assms(1) diff-zero drop0 drop-Suc-Cons make-triangle-def nth-Cons-0 nth-Cons-Suc
take0)
ultimately show ?thesis by blast
qed
moreover show a ¢ path-image ?p2 U path-inside ?p2 using calculation by
stmp
ultimately show b ¢ path-image ?p1 U path-inside ?p1 by simp

have (path-image ?p3 — path-image ?cutpath) N (path-image ?q — path-image
Zcutpath) = {}
using 1 unfolding make-triangle-def is-polygon-split-path-def
by (smt (23) One-nat-def append-Cons append-Nil diff-self-eq-0 diff-zero drop0
drop-Suc-Cons nth-Cons-0 nth-Cons-Suc rev-singleton-conv take-0)
moreover have ¢ € path-image ?q using l-g-int by auto
ultimately have ¢ ¢ path-image ?p3 using c-noton-cutpath by blast
moreover have ¢ ¢ path-inside ?p3
proof—
have ¢ ¢ path-inside p
using assms(1) assms(2) triangle-interior-point-not-collinear-vertices by
fastforce

246

moreover have path-inside ?p8 C path-inside p
using 1 unfolding is-polygon-split-path-def
by (smt (28) One-nat-def Un-assoc Un-upperl append-Cons append-Nil
assms(1) diff-Suc-Suc diff-zero make-triangle-def nth-Cons-0 nth-Cons-Suc rev-singleton-conv
take0)
ultimately show ?thesis by blast
qed
ultimately show ¢ ¢ path-image ?p3 U path-inside ?p3 by blast
qed

lemma smaller-triangle:
assumes — collinear {a, b, ¢} A = collinear {a’, b, ¢’}
assumes p = make-triangle a b ¢
assumes p’' = make-triangle a’ b’ ¢
assumes path-inside p C path-inside p’
assumes 3 d. integral-vec d A\ d € path-image p’ U path-inside p' A d ¢ path-image
p U path-inside p
shows card (integral-inside p) + card (integral-boundary p) < card (integral-inside
p’) + card (integral-boundary p’)
proof—
have simple-path p using assms unfolding make-triangle-def
using assms(2) polygon-def triangle-is-polygon by presburger
then have finite-p: finite (integral-inside p) A finite (integral-boundary p) using
assms unfolding make-triangle-def
using integral-boundary integral-inside finite-integral-points-path-image finite-integral-points-path-inside
by metis
have simple-path p’ using assms unfolding make-triangle-def
using assms(3) polygon-def triangle-is-polygon by presburger
then have finite-p”: finite (integral-inside p’) A finite (integral-boundary p') using
assms unfolding make-triangle-def
using integral-boundary integral-inside finite-integral-points-path-image finite-integral-points-path-inside
by metis

/

have polygon p using assms(1,2) triangle-is-polygon by blast
then have 1: (integral-inside p) N (integral-boundary p) = {}
unfolding integral-inside integral-boundary using inside-outside-polygon un-
folding inside-outside-def by blast

have polygon p’ using assms(1,3) triangle-is-polygon by blast
then have 2: (integral-inside p’) N (integral-boundary p’) = {}
unfolding integral-inside integral-boundary using inside-outside-polygon un-
folding inside-outside-def by blast

have path-image-subset: path-image p C path-image p’ U path-inside p’
proof—
have p-frontier: path-image p = frontier (convezr hull {a, b, c})
by (simp add: assms(1) assms(2) convex-polygon-frontier-is-path-image2 tri-
angle-convez-hull triangle-is-convez triangle-is-polygon)
have p'-frontier: path-image p’ = frontier (convex hull {a’, b', ¢'})

247

by (simp add: assms(1) assms(3) convez-polygon-frontier-is-path-image2 tri-
angle-convez-hull triangle-is-convez triangle-is-polygon)

have p-interior: path-inside p = interior (convex hull {a, b, c})

by (simp add: bounded-convez-hull p-frontier inside-frontier-eq-interior path-inside-def)
have p'-interior: path-inside p’ = interior (convex hull {a’, b', ¢'})

by (simp add: bounded-convez-hull p’-frontier inside-frontier-eq-interior path-inside-def)

have interior (convezx hull {a, b, c}) C interior (convex hull {a’, b’, ¢'})
using assms p-interior p’-interior by argo
moreover have compact (convex hull {a, b, c}) A compact (conver hull {a’,
b,)
by (simp add: compact-convez-hull)
ultimately have frontier (convex hull {a, b, c})
C interior (convexr hull {a’, b, ¢'}) U frontier (convex hull {a’, b’, ¢'})
by (smt (verit, ccfu-threshold) Jordan-inside-outside-real2 closed-path-def
<polygon p”s <polygon p> assms(1) assms(2) closure-Un closure-Un-frontier clo-
sure-convex-hull finite.emptyl finite-imp-compact finite-insert p'-frontier p’-interior
p-interior path-inside-def polygon-def subset-trans sup.absorb-iff1 sup-commute tri-
angle-convez-hull)
then show ?thesis using p’-frontier p’-interior p-frontier by blast
qed

have card ((integral-inside p) U (integral-boundary p)) = card (integral-inside p)
+ card (integral-boundary p)
using 1 finite-p by (simp add: card-Un-disjoint)
moreover have card ((integral-inside p’) U (integral-boundary p’)) = card (integral-inside
p’) + card (integral-boundary p’)
using 2 finite-p’ by (simp add: card-Un-disjoint)
moreover have (integral-inside p) U (integral-boundary p) C (integral-inside p’)
U (integral-boundary p’)
using assms path-image-subset unfolding integral-inside integral-boundary by
blast
moreover then have (integral-inside p) U (integral-boundary p) C (integral-inside
p’) U (integral-boundary p’) using assms unfolding integral-inside integral-boundary
by blast
ultimately show ?thesis by (metis finite-Un finite-p’ psubset-card-mono)
qged

lemma pick-elem-triangle:

fixes p :: R-to-R2

assumes p-triangle: p = make-triangle a b ¢

assumes elem-triangle: elem-triangle a b c

assumes I = card {z. integral-vec x A = € path-inside p} and

B = card {z. integral-vec x A x € path-image p}

shows measure lebesgue (path-inside p) = I + B/2 — 1
proof —

have polygon-p: polygon p

using p-triangle triangle-is-polygon elem-triangle

248

unfolding elem-triangle-def by auto

then have path-inside p N path-image p = {}
using inside-outside-polygon[of p] unfolding inside-outside-def
by auto

let ?p = polygon (make-polygonal-path [a, b, ¢, al)
have a-neg-b:a # b
using elem-triangle unfolding elem-triangle-def
by auto
have b-negq-c: b # ¢
using elem-triangle unfolding elem-triangle-def
by auto
have a-neg-c: ¢ # a
using elem-triangle unfolding elem-triangle-def
using collinear-3-eq-affine-dependent by blast

have path-image p C convezx hull {a, b, c}
using triangle-path-image-subset-convex p-triangle by auto
then have
{z. integral-vec x N x € path-image p} C {z. integral-vec x A x© € conver hull
{a, b, c}}
by auto
also have ... = {a, b, ¢}
using elem-triangle unfolding elem-triangle-def by auto
finally have {z. integral-vec A\ x € path-image p} C {a, b, ¢} .
moreover have {z. integral-vec © A = € path-image p} 2 {a, b, c}

by (smt (verit) Collect-mono-iff make-triangle-def <{z. integral-vec z A x € con-
vex hull {a, b, c}} = {a, b, c}» empty-set insert-subset list.simps(15) mem-Collect-eq
p-triangle subsetD vertices-on-path-image)
ultimately have {z. integral-vec x A x € path-image p} = {a, b, ¢} by auto
then have card-2: B = 3
using a-neg-b b-neq-c a-neq-c assms(4)
by simp

have {z. integral-vec © N = € path-inside p} = {}
proof—
have path-inside p C convex hull {a, b, c}
by (smt (verit, best) Diff-insert-absorb make-triangle-def convex-polygon-inside-is-convex-hull-interior
empty-iff empty-set insert-Diff-single insert-commute interior-subset list.simps(15)
p-triangle polygon-p elem-triangle elem-triangle-def triangle-is-convez)
then have
{z. integral-vec z N\ z € path-inside p} C {x. integral-vec x A x € convex hull
{a, b, c}}
by auto
also have ... = {q, b, ¢}
using «{z. integral-vec © A © € convex hull {a, b, c}} = {a, b, c}» by auto
finally have {z. integral-vec x A x € path-inside p} C {a, b, c} .
moreover have

249

{z. integral-vec © N\ x € path-inside p} N {z. integral-vec x N = € path-image
py ={}
using <path-inside p N path-image p = {}» by auto
ultimately show ?thesis
using «{z. integral-vec © A = € path-image p} = {a, b, cp> by auto
qed
then have card-1: I = 0
using assms(3)
by (metis card.empty)

have I + B/2 — 1 =1/2
using card-1 card-2 assms
by auto
then show ?thesis
using elem-triangle-area-is-half[OF assms(2)] triangle-measure-convex-hull-measure-path-inside-same[OF
assms(1) assms(2)]
by auto
qed

lemma pick-triangle-lemma:
fixes p :: R-to-R2
assumes p = make-triangle a b ¢ and all-integral [a, b, c] and distinct [a, b, (]
and — collinear {a, b, ¢}
I = card {z. integral-vec x N\ = € path-inside p} and
B = card {z. integral-vec x A\ x € path-image p}
shows measure lebesgue (path-inside p) = I + B/2 — 1
using assms
proof (induction card {z. integral-vec x A x € path-inside p} + card {z. integral-vec
x A z € path-image p} arbitrary: p a b ¢ I B rule:less-induct)
case less
have polygon-p: polygon p using triangle-is-polygon[OF less.prems(4)] less.prems(1)
by simp
then have polygon-of: polygon-of p [a, b, ¢, d]
unfolding polygon-of-def using less.prems(1) unfolding make-triangle-def by
auto

have convez-hull-char: convex hull {a, b, ¢} = path-inside p U path-image p
using triangle-convex-hull]OF less.prems(1) less.prems(4)] by auto
then have interior-convex-hull: {z. integral-vec x N x € path-inside p} U {x.
integral-vec x A x € path-image p} = {z € convex hull {a, b, c}. integral-vec x}
by auto
have vts-in-path-image: a € path-image p A\ b € path-image p A ¢ € path-image
p
using assms(1) unfolding make-triangle-def using vertices-on-path-image
by (metis (mono-tags, lifting) insertCI less.prems(1) list.simps(15) make-triangle-def
subset-code(1))
have integral-vts: integral-vec a A integral-vec b N integral-vec c
using less.prems(2)
by (simp add: all-integral-def)

250

then have subset: {a, b, ¢} C {z. integral-vec x N = € path-image p}
using vts-in-path-image integral-vts by simp
have finite-integral-on-path-im: finite {z. integral-vec z N\ x € path-image p}
using finite-integral-points-path-image triangle-is-polygon|OF less.prems(4)]
unfolding make-triangle-def polygon-def
using less.prems(1) make-triangle-def by auto
have B-3-if: B > 3 if other-point-in-set: {x. integral-vec x A\ © € path-image p}
75 {aa b, C}
proof —
have 3d. d ¢ {a, b, ¢} N d € {z. integral-vec © A = € path-image p}
using other-point-in-set subset
by blast
then obtain d where d-prop: d ¢ {a, b, ¢} A d € {x. integral-vec x N © €
path-image p}
by auto
then have subset2: {a, b, ¢, d} C{z. integral-vec x A x € path-image p}
using d-prop subset by auto
have distinct [a, b, ¢, d]
using d-prop
using less.prems(8) by auto
then have card-is: card {a, b, ¢, d} = 4
by simp
show ?thesis using subset2 card-is finite-integral-on-path-im
by (metis (no-types, lifting) Suc-le-eq card-mono eval-nat-numeral(2) less.prems(6)
semiring-norm(26) semiring-norm(27))
qged
{ assume x: [= 0
have finite {z. integral-vec x N\ z € path-inside p}
using finite-integral-points-path-inside triangle-is-polygon[OF less.prems(4)]
unfolding make-triangle-def
by (simp add: less.prems(1) make-triangle-def polygon-def)
then have empty-inside: {z. integral-vec © A = € path-inside p} = {}
using * less.prems(5) by auto

{ assume *x: B = 3
have {z € convex hull {a, b, c}. integral-vec z} = {a, b, c}
using * xx less.prems(5—06) B-3-if interior-convex-hull empty-inside
by blast
then have elem-triangle a b ¢
unfolding elem-triangle-def using less.prems(4) integral-vts by simp
then have measure lebesgue (path-inside p) =1 + B/2 — 1
using pick-elem-triangle less.prems by auto
}

moreover
{ assume *: B > &
then obtain d where d: integral-vec d A d € path-image p A d ¢ {a, b, c}
by (smt (verit, del-insts) subset finite-integral-on-path-im less.prems(3)
card-3-iff collinear-3-eq-affine-dependent less.prems(4) less.prems(6) less-not-refl

251

mem-Collect-eq subsetl subset-antisym)
have path-image (make-polygonal-path [a, b, ¢, a]) = path-image (linepath a
b) U path-image (linepath b ¢) U path-image (linepath c a)
by (metis (no-types, lifting) list.discI make-polygonal-path.simps(3) nth-Cons-0
path-image-cons-union sup-assoc)
then have d € path-image (linepath a b)
V d € path-image (linepath b ¢)
V d € path-image (linepath ¢ a)
using d less.prems(1) unfolding make-triangle-def polygon-of-def
by blast
then have measure lebesgue (path-inside p) =1 + B/2 — 1
using pick-triangle-helper less.prems less.hyps empty-inside d
unfolding pick-holds pick-triangle integral-inside integral-boundary
apply simp by blast

ultimately have measure lebesgue (path-inside p) = I + B/2 — 1
using B-3-if
by (metis (no-types, lifting) card.empty card-insert-disjoint collinear-2 fi-
nite.emptyl finite.insertl insert-absorb less.prems(4) less.prems(6) numeral-3-eq-3)

moreover
{ assume x: [> 0
then obtain d where d-inside: integral-vec d N\ d € path-inside p
using less.prems(9)
by (metis (mono-tags, lifting) Collect-empty-eq add-0 canonically-ordered-monoid-add-class.lessE
card-0-eq card-ge-0-finite)
have a € path-image p
using vertices-on-path-image polygon-of unfolding polygon-of-def by fastforce
then have a-inset: a € path-inside p U path-image p
by fastforce
have convez-hull-set: convexr hull set [a, b, ¢, a] = path-inside p U path-image

using convex-hull-char
by (simp add: insert-commute)
then have ad-linepath-inside: path-image (linepath a d) C path-inside p U
path-image p
using d-inside convez-polygon-means-linepaths-inside[OF polygon-of con-
vez-hull-set a-inset)
by blast
have b € path-image p
using vertices-on-path-image polygon-of unfolding polygon-of-def by fastforce
then have b-inset: b € path-inside p U path-image p
by fastforce
have bd-linepath-inside: path-image (linepath b d) C path-inside p U path-image
p
using d-inside convez-polygon-means-linepaths-inside[OF polygon-of con-
vez-hull-set b-inset]
by blast
have ¢ € path-image p

252

using vertices-on-path-image polygon-of unfolding polygon-of-def by fastforce
then have c-inset: ¢ € path-inside p U path-image p
by fastforce
then have cd-linepath-inside: path-image (linepath ¢ d) C path-inside p U
path-image p

using d-inside convex-hull-char convez-polygon-means-linepaths-inside| OF

polygon-of convex-hull-set c-inset]
by blast

let ?p1 = make-triangle a d c

let
let

?p2 = make-triangle d b ¢
?p8 = make-triangle a b d

have triangle-split:

is-polygon-split-path [a, b, c] 0 1 [d]
is-polygon-split [a, d, b, c] 1 3

a ¢ path-image ?p2 U path-inside ?p2
b ¢ path-image ?p1 U path-inside ?p1
¢ ¢ path-image ?p8 U path-inside ?p3

using triangle-3-split[of p a b ¢ d] less.prems d-inside polygon-p apply fastforce
using triangle-3-split[of p a b ¢ d] less.prems d-inside polygon-p apply fastforce
using triangle-3-split[of p a b ¢ d] less.prems d-inside polygon-p apply fastforce
using triangle-3-split[of p a b ¢ d] less.prems d-inside polygon-p apply fastforce

using triangle-3-split[of p a b ¢ d] less.prems d-inside polygon-p by fastforce

let
let
let
let
let
let
let
let
let

?q = make-polygonal-path [a, d, b, ¢, a)
211 = card (integral-inside ?p1)

¢B1 = card (integral-boundary ?p1)
712 = card (integral-inside ?p2)

?B2 = card (integral-boundary ?p2)
718 = card (integral-inside ?p3)

¢B3 = card (integral-boundary ?p3)
?Iq = card (integral-inside ?q)

¢Bq = card (integral-boundary ?q)

have measure lebesgue (path-inside ?p1) = 211 + ?B1/2 — 1
proof—
have path-inside ?p1 C path-inside ?q

using triangle-split(2) unfolding is-polygon-split-def

by (smt (23) One-nat-def Un-assoc Un-upperl append-Cons append-Nil

diff-Suc-Suc diff-zero drop0 drop-Suc-Cons make-triangle-def nth-Cons-0 nth-Cons-Suc
numeral-3-eq-3 sup-commute take0 take-Suc-Cons)
moreover have path-inside ?q C path-inside p

using triangle-split(1) unfolding is-polygon-split-path-def

by (smt (23) One-nat-def Un-assoc Un-subset-iff append-Cons append-Nil

diff-zero drop0 drop-Suc-Cons less.prems(1) make-triangle-def nth-Cons-0 nth-Cons-Suc
sup.cobounded? take)
ultimately have path-inside ?p1 C path-inside p by blast
moreover have — collinear {a, d, c}
by (metis d-inside insert-commute less.prems(1) polygon-p triangle-interior-point-not-collinear-vertices)

253

moreover have — collinear {a, b, ¢} by (simp add: less.prems(4))
moreover have integral-vec b
using integral-vts by blast
moreover have b € path-image p
using vts-in-path-image by auto
ultimately have card (integral-inside ?p1) + card (integral-boundary ?p1)
< card (integral-inside p) + card (integral-boundary p)
using smaller-triangle[of a d ¢ a b ¢ ?p1 p] triangle-split(4) less.prems(1)
less-imp-le-nat
by blast
thus ?thesis
using less.hyps[of ?p1 a d c] unfolding integral-inside integral-boundary
using <— collinear {a, d, c}» all-integral-def d-inside integral-vts less.prems(1)
less.prems(3) triangle-split(3) triangle-split(5)
by fastforce
qed
moreover have measure lebesgue (path-inside ?p2) = 212 + ?B2/2 — 1
proof—
have path-inside ?p2 C path-inside ?q
using triangle-split(2) unfolding is-polygon-split-def
by (smt (23) One-nat-def Un-assoc Un-upperl append-Cons append-Nil
diff-Suc-Suc diff-zero drop0 drop-Suc-Cons make-triangle-def nth-Cons-0 nth-Cons-Suc
numeral-3-eq-3 sup-commute take0 take-Suc-Cons)
moreover have path-inside ?q C path-inside p
using triangle-split(1) unfolding is-polygon-split-path-def
by (smt (23) One-nat-def Un-assoc Un-subset-iff append-Cons append-Nil
diff-zero drop0 drop-Suc-Cons less.prems(1) make-triangle-def nth-Cons-0 nth-Cons-Suc
sup.cobounded? take0)
ultimately have path-inside ?p2 C path-inside p by blast
moreover have — collinear {d, b, c}
by (metis d-inside insert-commute less.prems(1) polygon-p triangle-interior-point-not-collinear-vertices)
moreover have — collinear {a, b, ¢} by (simp add: less.prems(4))
moreover have integral-vec a
using integral-vts by blast
moreover have a € path-image p
using vts-in-path-image by auto
ultimately have card (integral-inside ?p2) + card (integral-boundary ?p2)
< card (integral-inside p) + card (integral-boundary p)
using smaller-triangle[of d b ¢ a b ¢ ?p2 p] triangle-split(3) less.prems(1)
less-imp-le-nat
by blast
thus ?thesis
using less.hyps|of ?p2 d b c] unfolding integral-inside integral-boundary
using <— collinear {d, b, ¢}> all-integral-def d-inside integral-vts less.prems(1)
less.prems(3) triangle-split(3) triangle-split(5)
by fastforce
qed
moreover have measure lebesgue (path-inside ?p3) = 713 + ?B3/2 — 1
proof—

254

have path-inside ?p8 C path-inside p
using triangle-split(1) unfolding is-polygon-split-path-def
by (smt (23) One-nat-def Un-assoc Un-upperl append-Cons append-Nil
diff-Suc-Suc diff-zero less.prems(1) make-triangle-def nth-Cons-0 nth-Cons-Suc rev-singleton-conv
take0)
moreover have — collinear {a, b, d}
by (metis d-inside less.prems(1) polygon-p triangle-interior-point-not-collinear-vertices)
moreover have — collinear {a, b, ¢} by (simp add: less.prems(4))
moreover have integral-vec c
using integral-vts by blast
moreover have ¢ € path-image p
using vts-in-path-image by auto
ultimately have card (integral-inside ?p3) + card (integral-boundary ?p3)
< card (integral-inside p) + card (integral-boundary p)
using smaller-triangle[of a b d a b ¢ ?p3 p] triangle-split(5) less.prems(1)
less-imp-le-nat
by blast
thus ?thesis
using less.hyps[of ?p3 a b d] unfolding integral-inside integral-boundary
using - collinear {a, b, d}> all-integral-def d-inside integral-vts less.prems(1)
less.prems(3) triangle-split(3) triangle-split(5)
by fastforce
qed
moreover have measure lebesque (path-inside ?q) = ?Iq + ?Bq/2 — 1
using pick-split-union| OF triangle-split(2),
of [a] [b] [] d ¢ 2q ?p2 ?p1 212 B2 ?I1 ?B1 ?1q ?Bq|
using calculation
unfolding integral-inside integral-boundary make-triangle-def
using all-integral-def d-inside less.prems(2) by force
ultimately have ?case
using pick-split-path-union|OF triangle-split(1),
of]] [¢] a b make-polygonal-path (a # [d] @ [b]) p ?p3 ?q ?I3 ?B3 ?Iq
?Bq I B
unfolding integral-inside integral-boundary make-triangle-def less.prems
using less.prems(2) by force
}
ultimately show ?case by blast
qged

29.2 Pocket properties

definition index-not-in-set :: (real”2) list = (real”™2) set = nat = bool
where indez-not-in-set vts A i <— i € {i. i < length vis A\ vts ! i ¢ A}

definition min-indez-not-in-set:: (real”2) list = (real”2) set = nat
where min-indez-not-in-set vts A = (LEAST i. index-not-in-set vts A 1)

definition nonzero-indez-in-set :: (real”2) list = (real™2) set = nat = bool
where

255

nonzero-indez-in-set vts A i <— i € {i. 0 < i A i < length vis N\ vts | i € A}

definition min-nonzero-index-in-set :: (real”2) list = (real”2) set = nat where
min-nonzero-indez-in-set vts A = (LEAST i. nonzero-indezx-in-set vts A 7)

definition construct-pocket-0 :: (real”2) list = (real”2) set = (real™2) list where
construct-pocket-0 vts A = take ((min-nonzero-index-in-set vts A) + 1) vts

definition is-pocket-0 :: (real”2) list = (real”2) list = bool where
is-pocket-0 vts vts' <
polygon (make-polygonal-path vts)
A (Fi. vts’ = take i vis)
A 3 < length vts’ A length vts’ < length vts
A hd vts’ € frontier (convexr hull (set vts)) A last vts’ € frontier (convexr hull
(set vts))
A set (tl (butlast vts’)) C interior (convex hull (set vts))

definition fill-pocket-0 :: (real”2) list = nat = (real”2) list where
fill-pocket-0 vts i = (hd vts) # (drop (i—1) vts)

lemma min-nonzero-index-in-set-exists:
assumes set (tl vts) N A # {}
shows 3 i. nonzero-indezx-in-set vts A i
proof—
obtain v where v: v € A N set (¢ vts) using assms by blast
then obtain ¢ where (¢l vts)li = v A i < length (tl vts) by (meson IntD2
in-set-conv-nth)
then obtain j where vtslj = v A 0 < j A j < length vts using nth-tl by fastforce
thus “thesis unfolding nonzero-index-in-set-def using v by blast
qed

lemma min-nonzero-index-in-set-defined:
assumes set (tl vts) N A # {}
defines i = min-nonzero-indez-in-set vts A
shows nonzero-indez-in-set vts A i A (Vj < i. = nonzero-indez-in-set vts A j)
proof—
have 3i. nonzero-index-in-set vts A i using assms min-nonzero-index-in-set-exists
by blast
then have nonzero-indez-in-set vts A i
using assms unfolding min-nonzero-index-in-set-def
using Leastl-ex by blast
moreover have (Vj < i. = nonzero-indez-in-set vts A j)
by (metis assms(2) wellorder-Least-lemma(2) leD min-nonzero-indez-in-set-def)
ultimately show ¢thesis by blast
qed

lemma min-index-not-in-set-exists:

256

assumes set vts O A
shows Ji. index-not-in-set vts A i
proof—
obtain v where v € set vts A v ¢ A using assms by blast
then obtain ¢ where i < length vts A vts | i ¢ A by (metis in-set-conv-nth)
thus ?thesis unfolding indez-not-in-set-def by blast
qed

lemma min-index-not-in-set-defined:
assumes set vts O A
defines i = min-indez-not-in-set vts A
shows index-not-in-set vis A i A (Vj < i. = indezx-not-in-set vts A j)
proof—
have Fi. index-not-in-set vts A i using assms min-indez-not-in-set-exists by
stmp
then have index-not-in-set vts A i
using assms unfolding min-indez-not-in-set-def
using Leastl-ex by blast
moreover have (Vj < i. = indez-not-in-set vts A j)
by (metis assms(2) wellorder-Least-lemma(2) leD min-indez-not-in-set-def)
ultimately show ?thesis by blast
qged

lemma min-nonzero-indez-in-set-bound:

assumes set (tl vts) N A # {}

shows min-nonzero-index-in-set vts A < length vts

using min-nonzero-index-in-set-defined assms unfolding nonzero-indez-in-set-def
by blast

lemma construct-pocket-0-subset-uvts:

assumes set (tl vts) N A # {}

shows set (construct-pocket-0 vts A) C set vts
proof—

let 9i = min-nonzero-indez-in-set vts A

have nonzero-indez-in-set vts A ?¢ using min-nonzero-indez-in-set-defined assms
by presburger

then have ?i < length vts unfolding nonzero-indez-in-set-def by blast

thus ?thesis unfolding construct-pocket-0-def by (simp add: set-take-subset)
qed

lemma min-index-not-in-set-0:
assumes set vts O A
assumes vts!l0 € A
defines i = min-index-not-in-set vis A
defines r =i — 1
shows vtslr € A
proof—
have #: indez-not-in-set vts A i A (Vj<i. = indez-not-in-set vts A j)
using min-index-not-in-set-defined[of A vts, OF assms(1)] unfolding i-def by

257

blast

moreover then have r < i

unfolding r-def i-def min-index-not-in-set-def index-not-in-set-def

by (metis (no-types, lifting) assms(2) bot-nat-0.not-eq-extremum diff-less mem-Collect-eq
zero-less-one)

ultimately have — indez-not-in-set vts A r by blast

thus ?thesis

unfolding indez-not-in-set-def using assms * index-not-in-set-def less-imp-diff-less
by force
qed

lemma construct-pocket-0-last-in-set:
assumes set (tl vts) N A # {}
assumes vts!0) € A
defines p = construct-pocket-0 vts A
shows last p € A
proof—
let 9i = min-nonzero-indez-in-set vts A
have *: nonzero-index-in-set vts A 9 using assms(1) min-nonzero-indez-in-set-defined
by blast
then have length p = min-nonzero-indez-in-set vts A + 1
unfolding p-def construct-pocket-0-def nonzero-index-in-set-def by simp
then have last p = p!?i
by (metis add-diff-cancel-right’ last-conv-nth length-0-conv zero-eq-add-iff-both-eq-0
zero-neg-one)
also have ... = vts! %
unfolding p-def construct-pocket-0-def by simp
also have ... € A using * unfolding nonzero-indez-in-set-def by force
finally show ?thesis .
qed

lemma construct-pocket-0-first-last-distinct:
assumes card A > 2
assumes A C set vts
assumes distinct (butlast vts)
assumes hd vts = last vts
shows hd (construct-pocket-0 vts A) # last (construct-pocket-0 vts A)
proof—
let %n = min-nonzero-index-in-set vts A
have set (¢l vts) N A # {}
by (metis (no-types, lifting) Diff-cancel Int-commute Int-insert-right-if1 Nat.le-diff-conv2
Suc-1 add-leD1 assms(1) assms(2) card.empty card-Diff-singleton inf.orderE list.collapse
list.sel(2) list.set(2) not-one-le-zero plus-1-eq-Suc subset-insert)
then have n-defined: nonzero-index-in-set vts A ?n A (Vj < 9n. = nonzero-indez-in-set
vts A j)
using min-nonzero-indez-in-set-defined by presburger
obtain a b where ab: a # b A {a, b} C A by (metis assms(1) card-2-iff ex-card)
then obtain i j where 4j: vtsli = a A vtslj = b A § < length vts A j < length
vis A i # j

258

by (metis (no-types, opaque-lifting) assms(2) in-set-conv-nth insert-subset sub-

setD)

have ?thesis if *: ?n < length vts — 1
proof—
have ?n > 0 using n-defined unfolding nonzero-index-in-set-def by blast
then have n-bound”: %n > 0 N ?n < length (butlast vts) using = by fastforce
then have hd vts # vts!?n
by (metis assms(3) distinct-Exl hd-conv-nth ij in-set-conv-nth length-0-conv
length-pos-if-in-set less-nat-zero-code nth-butlast)
moreover then have vts! n # last vts using assms(4) by simp
moreover have last (construct-pocket-0 vts A) = vts!?n
using n-defined
unfolding construct-pocket-0-def
by (metis Cons-nth-drop-Suc Suc-eq-plusl n-bound’ x last-snoc less-diff-conv
list.sel(1) nth-butlast take-butlast take-hd-drop)
moreover have hd (construct-pocket-0 vts A) = hd vts
unfolding construct-pocket-0-def by force
ultimately show ?thesis by presburger
qed
moreover have ?thesis if x: ?n = length vts — 1
proof—
have {i, j} C {i. i < length vis A vts ! i € A} using j ab by simp
moreover have i # 0 V j # 0 using ij by argo
ultimately have nonzero-index-in-set vts A ¢ V nonzero-indez-in-set vts A j
unfolding nonzero-indez-in-set-def by simp
then have ?n =iV %n =
by (metis n-defined Suc-diff-1 gr-implies-not-zero ij linorder-cases not-less-eq
*
)
moreover then have last (construct-pocket-0 vts A) = vts!¥n
by (metis Suc-eq-plus1 construct-pocket-0-def hd-drop-conv-nth ij snoc-eq-iff-butlast
take-hd-drop)
ultimately show ¢thesis
by (metis (no-types, lifting) ij ab Suc-eq-plusl assms(4) bot-nat-0.not-eq-extremum
hd-conv-nth insert-subset last-conv-nth less-diff-conv list.size(3) mem-Collect-eq n-defined
nat-neg-iff nonzero-indez-in-set-def not-less-eq that)
qged
ultimately show #%thesis using n-defined unfolding nonzero-indezr-in-set-def
by fastforce
qed

lemma construct-pocket-is-pocket:

assumes polygon (make-polygonal-path vts)

assumes vtsl0 € frontier (convex hull (set vts))

assumes vits!! ¢ frontier (convex hull (set vts))

shows is-pocket-0 vts (construct-pocket-0 vts (set vts N frontier (convex hull (set
vts))))
proof—

let %vts’ = construct-pocket-0 vts (set vts N frontier (convex hull (set vts)))

259

have ez-i: 3i. ?vts’ = take i vts unfolding construct-pocket-0-def by blast
moreover have 3 < length ?vts’
by (smt (verit) Cons-nth-drop-Suc Intl Int-iff One-nat-def Suc-1 Suc-diff-Suc
Suc-lessI add-diff-cancel-right’ add-gr-0 append-Nil2 assms(1) assms(2) assms(3)
butlast.simps(1) butlast.simps(2) butlast-conv-take calculation cancel-comm-monoid-add-class. diff-cancel
card.empty construct-pocket-0-def construct-pocket-0-first-last-distinct construct-pocket-0-last-in-set
convez-hull-two-vts-on-frontier diff-diff-cancel diff-is-0-eq diff-is-0-eq’ drop0 empty-iff
empty-set have-wraparound-vertex hd-conv-nth hd-drop-conv-nth hd-take id-take-nth-drop
last.simps last-conv-nth last-drop last-in-set last-snoc lel le-add2 le-numeral-extra(4)
le-trans length-0-conv length-greater-0-conv length-take length-tl length-upt less-2-cases
less-numeral-extra(1) less-numeral-extra(8) linorder-not-less list.distinct(1) list.sel(2)
list.sel(3) list.size(3) min.absorb4 not-gr-zero not-less-eq-eq not-numeral-le-zero nth-mem
numeral-3-eq-3 plus-1-eq-Suc polygon-at-least-3-vertices polygon-at-least-3-vertices-wraparound
polygon-def pos2 rev.simps(1) self-append-conv? simple-polygonal-path-vts-distinct
snoc-eq-iff-butlast subset-iff take-all-iff take-eq-Nil take-hd-drop)
moreover have vts'-length: length ?vts’ < length vts
by (metis (no-types, lifting) One-nat-def Suc-1 assms(1) calculation(1) calcula-
tion(2) construct-pocket-0-first-last-distinct convezx-hull-two-vts-on-frontier have-wraparound-vertex
hd-conv-nth inf-lel last-snoc lel le-add2 le-trans length-take min.absorbj not-numeral-le-zero
numeral-3-eq-3 plus-1-eq-Suc polygon-at-least-3-vertices polygon-def simple-polygonal-path-vts-distinct
take-all-iff take-eq-Nil)
moreover have hd ?vts’ € frontier (convex hull (set vts))
by (metis assms(2) bot-nat-0.not-eg-extremum calculation(1) calculation(2)
hd-conv-nth hd-take list.size(3) not-numeral-le-zero take-eq-Nil)
moreover have last ?vts’ € frontier (convex hull (set vts))
by (smt (verit, ccfv-SIG) Cons-nth-drop-Suc Int-iff assms(1) assms(2) card-length
construct-pocket-0-last-in-set drop0 drop-eq-Nil empty-iff have-wraparound-vertezr
last-drop last-in-set le-add2 le-trans linorder-not-less list.sel(3) list.simps(15) not-less-eq-eq
numeral-3-eq-3 plus-1-eq-Suc polygon-at-least-3-vertices snoc-eg-iff-butlast)
moreover have set (¢ (butlast ?vts’)) C interior (convex hull (set vts))
proof—
let ?A = (set vts N frontier (convexr hull (set vts)))
let ?r = min-nonzero-index-in-set vts 2A
have nonzero-index-in-set vts ?A ?r
A (VY j<min-nonzero-indez-in-set vts ?A. = nonzero-index-in-set vts ?A j)
by (metis min-nonzero-indez-in-set-defined Intl Nitpick.size-list-simp(2) One-nat-def
add-leD1 assms(1) assms(2) calculation(2) calculation(8) empty-iff empty-set have-wraparound-vertex
last-in-set last-snoc last-tl less-one not-one-le-zero nth-mem numeral-3-eq-3 plus-1-eq-Suc)
then have Vi. (0 < i A i < ?r) — vtsli ¢ ?A unfolding nonzero-index-in-set-def
by force
then have Vi. (0 < i A i< ?r) — vtsli ¢ frontier (convex hull (set vts))
using calculation(3) construct-pocket-0-def by fastforce
then have Vi. (0 < i N i < 2r) — wvtsli € interior (convexr hull (set vts))
by (smt (verit, ccfo-threshold) Cons-nth-drop-Suc Diffl IntI One-nat-def
add-leD1 assms(1) assms(2) calculation(2) calculation(3) closure-subset drop0 dual-order.strict-trans2
empty-iff frontier-def have-wraparound-vertex hull-subset inf . strict-coboundedI2 inf .strict-order-iff
last-drop last-in-set last-snoc length-greater-0-conv list.discl list.sel(3) min-nonzero-indez-in-set-bound
nth-mem numeral-3-eq-3 plus-1-eq-Suc subset-eq)
moreover have tl (butlast ?vts’) = drop 1 (take ?r vts)

260

unfolding construct-pocket-0-def
by (metis One-nat-def add-implies-diff antisym-conv?2 butlast-take construct-pocket-0-def
drop-0 drop-Suc linorder-le-cases take-all vts'-length)
moreover have Vv € set (drop 1 (take ?r vts)). 3i. 0 < i AN i < 2r A vtsli =
v
proof
fix v assume x: v € set (drop 1 (take ?r vis))
then obtain ¢’ where i (drop 1 (take ?r vts))li’' = v AN i’ < or — 1
by (smt (28) Cons-nth-drop-Suc One-nat-def ex-i butlast-conv-take cal-
culation(2) drop0 hd-conv-nth hd-take index-less-size-conv length-drop length-take
less-imp-le-nat linorder-not-less list.collapse list.sel(2) min.absorb4 nth-index take-all-iff
take-eq-Nil vts'-length)
then have (take ?r vts)!(i’ + 1) = v
by (metis * add.commute drop-eq-Nil empty-iff empty-set nle-le nth-drop)
thus 3i¢. 0 < i A< 9r Novtsli =0
by (metis add-gr-0 i’ less-diff-conv nth-take zero-less-one)
qed
ultimately show ?thesis by fastforce
qed
ultimately show ?thesis unfolding is-pocket-0-def using assms(1) by argo
qed

lemma exists-point-above-interior:
fixes a :: real™2
assumes a € interior (convex hull S)
obtains z where z € S A 282 > a$2
proof—
have Fulse if Vo € S. 282 < a$2
proof—
have S C {z. z - (vector [0, 1]) < a$2}
proof (rule subsetl)
fix z
assume z € S
then have 2$2 < a$2 using that by blast
moreover have x - (vector [0, 1]) = 2831 x 0 + 282 = 1
by (simp add: cart-eqg-inner-axis ele2-basis(3))
ultimately show z € {z. z - (vector [0, 1]) < a$2} by simp
qed
then have *: convex hull S C {z. z - (vector [0, 1]) < a$2}
proof—
have S C {v. vector [0, 1] - v < a $ 2}
by (simp add: «S C {z. x - vector [0, 1] < a $ 2} inner-commute)
then have conver hull S C {v. vector [0, 1] - v < a $ 2}
by (simp add: convez-halfspace-le hull-minimal)
then show ?thesis
by (simp add: inner-commute)
qed
moreover have a - (vector [0, 1]) = a$2 by (simp add: cart-eg-inner-azis

261

ele2-basis(3))
moreover have frontier {z. z - ((vector [0, 1])::(real”2)) < a$2}
= {z. z - (vector [0, 1]) = a$2}
using frontier-halfspace-le[of (vector [0, 1])::(real™2) a$2]
by (smt (verit) Collect-cong inner-commute vector-2(2) zero-index)
ultimately have a € frontier {z. z - (vector [0, 1]) < a$2} by blast
thus Fulse
by (metis (mono-tags, lifting) Diff-iff * assms frontier-def in-frontier-in-subset
in-mono interior-subset)
qged
thus ?thesis using that by fastforce
qed

lemma exists-point-above-convex-hull-interior:

fixes S :: (real™2) set

assumes S # {}

assumes compact S

obtains © where z € S — (interior (convex hull S)) A (Yy € interior (convex
hull S). 282 > y$2)
proof—

let YH = convez hull S

let %e2 = (vector [0, 1])::(real™2)

let ?f = (Az. 2$2)::(real 2 = real)

have continuous-on {z. True} ?f by (simp add: continuous-on-component)

moreover have compact (convex hull S) using assms(2) compact-convez-hull
by blast

moreover from calculation have compact (?f?H)

using compact-continuous-image continuous-on-subset by blast

ultimately obtain z max where x: z € ?H A ?fz = maz A (Vy € ?H. y$2 <
mazx)

by (smt (verit) Collect-mono assms(1) convez-hull-eg-empty convez-hull-explicit
continuous-attains-sup continuous-on-subset)

have ?H N {z. %2 - x = maz} # {}
by (metis (mono-tags, lifting) cart-eg-inner-azis disjoint-iff ele2-basis(3) in-
ner-commaute mem-Collect-eq x)
moreover have ?H N {z. %2 - x = maz} = {} if (Vz € S. 282 < max)
proof—
have S C {z. %¢2 - z < maz}
using that by (simp add: cart-eq-inner-axis ele2-basis(3) inner-commute
subset-eq)
moreover have conver {x. ?e2 - © < max} by (simp add: convez-halfspace-It)
ultimately show %thesis using hull-minimal by blast
qed
ultimately have 3z € S. 282 > maz by force
moreover have ?H C {z. %2 - x < maz}
using z
by (simp add: cart-eq-inner-axis ele2-basis(3) inner-commute subsetl)
moreover then have interior 7H C {z. %e2 + z < maz}

262

by (metis (mono-tags) conver-empty empty-iff inner-zero-left interior-halfspace-le
interior-mono real-inner-1-left separating-hyperplane-set-0 vector-2(2) zero-index)

ultimately have z ¢ interior YH N (Vy € interior 7H. 232 > y$2)

by (smt (verit) cart-eq-inner-axis ele2-basis(8) in-mono inner-commute mem-Collect-eq
z)

thus ?thesis using that <3z€S. max < = $ 2> z by fastforce
qed

lemma flip-function:
defines M = (vector [vector [1, 0], vector [0, —1]]):(real”272)
defines f = Av. M *xv v
defines g = (Av. vector [v$1, —v$2])::(real ™2 = real”2)
shows inj ff = ¢
proof—
have det M = M$1$1 » M$2$2 — M$1$2 » M$2$1 using det-2 by blast
thus inj f by (simp add: inj-matriz-vector-mult invertible-det-nz f-def M-def)

have A\z. fz =gz
proof—
fix z
have fz = vector [M$1$1 x 281 + M$1$2 x 282, M$2$1 x 281 + M$2%2
* 7$2]
by (simp add: M-def f-def mat-vec-mult-2)
also have ... = vector [2$1, —282] by (simp add: M-def)
finally show fz = g = using f-def g-def by blast
qged
thus f = g by (simp add: f-def g-def)
qed

lemma exists-point-below-convex-hull-interior:

fixes S :: (real™2) set

assumes S # {}

assumes compact S

obtains © where z € S — (interior (convex hull S)) A (Yy € interior (convex
hull §). 282 < y$2)
proof—

let ?M = (wvector [vector [1, 0], vector [0, —1]])::(real™272)

let 2f = Av. ?M *v v

let 2g = (Av. vector [v$1, —v$2])::(real ™2 = real”2)

let ?H' = ?g9(convex hull S)
let 25" = ?2¢‘S

have interior: ?f{(interior (conver hull S)) = interior (convexr hull (?fS))
by (smt (verit, best) flip-function convex-hull-linear-image interior-injective-linear-image
matriz-vector-mul-linear)
have hull: ?H’ = convex hull 25’
proof—
have (xv) (vector [vector [1, 0], vector [0, — 1]]) ¢ (convex hull S) = convex

263

hull ((xv) (vector [vector [1, 0], vector [0, — 1]]) ¢ S::(real, 2) vec set)
by (simp add: convez-hull-linear-image)
then show ?thesis
by (simp add: flip-function)
qed
moreover have compact 25’
proof—
have continuous-on {z. True} ?f using matriz-vector-mult-linear-continuous-on
by blast
then have continuous-on {z. True} ?g using flip-function by simp
thus ?thesis using assms(2) compact-continuous-image continuous-on-subset
flip-function by blast
qed
moreover have 25’ # {} using assms(1) by blast
ultimately obtain z’ where z”: 2’ € 25’ — (interior ?H") AN (Vy € interior
?H'. 82 > y$2)
using exists-point-above-convex-hull-interior|[of 2S’] by auto
moreover have 25’ — (interior ?H') = ?2f{(S — (interior (convex hull S)))
proof—
have ?f{(.S — (interior (convex hull S))) = 25’ — ?f“(interior (convex hull S))
by (metis (no-types, lifting) flip-function(1) flip-function(2) image-cong im-
age-set-diff)
thus %thesis using flip-function(2) interior hull by auto
qed
ultimately obtain © where %g z = ' A x € S — interior (convex hull S)
using flip-function by auto
moreover have (Vycinterior (conver hull S). $ 2 <y $ 2)
proof clarify
fix y
assume y € interior (convexr hull S)
then have (?g 2)$2 > (%g y)$2
using z’ interior hull flip-function by (metis (no-types, lifting) calculation
image-eql)
thus z$2 < y$2 by simp
qed
ultimately show ?thesis using that by fast
qed

lemma exists-point-above-all:

fixes p q :: R-to-R2

defines H = convex hull (path-image p U path-image q)

assumes path p A path g

assumes p{0<..<1} C interior H

assumes (p 0)$2 =0 A (p 1)$2 =0

assumes Jz € p{0<..<1}. 282 > 0

obtains = where z € path-image ¢ A (Vy € path-image p. 82 > y$2)
proof—

let 2S = path-image p U path-image q

let ?H = convex hull 25

264

obtain z where z: © € 25 — (interior ?H) A (Vy € interior ?H. 282 > y$2)
by (metis exists-point-above-convez-hull-interior Un-empty assms(2) compact-Un
compact-path-image path-image-nonempty)
then have z ¢ p{0<..<1} using H-def assms(3) by blast
moreover have z € 25 using z by blast
ultimately have = € path-image q V x € (path-image p) — p{0<..<1} by blast
moreover have {0..1} — {0<..<1} = {0::real, 1} by fastforce
ultimately have z € path-image ¢ V = € p{0, 1}
by (smt (verit, best) image-diff-subset path-image-def subsetD)
moreover have 2$2 > (p 0)$2 A 282 > (p 1)$2
using H-def assms(3) assms(4) assms(5) z by fastforce
ultimately have x € path-image ¢ A 232 > (p 0)$2 N 282 > (p 1)$2 A (Vy €
p{0<..<1}. 282 > y$2)
using H-def assms(3) = by auto
moreover have path-image p = p{0<..<1} U {p 0, p 1}
proof—
have {0<..<1} U {0:real, 1} = {0..1} by force
thus ?thesis unfolding path-image-def by blast
qed
ultimately show ?thesis by (simp add: that)
qed

lemma exists-point-below-all:
fixes p q :: R-to-R2
defines H = convex hull (path-image p U path-image q)
assumes path p A path g
assumes p{0<..<1} C interior H
assumes (p 0)$2 =0 A (p 1)$2 =0
assumes 3z € path-image p U path-image q. x$2 < 0
obtains = where z € path-image ¢ A (Vy € path-image p. 32 < y$2)
proof—
let %thesis’ = 3x. x € path-image g AN Vy €
have ?thesis’ if 3z € path-image p. 282 < 0
proof—
have x: 3z € p{0<..<1}. 282 < 0
proof—
have (p 0)$2 = 0 A (p 1)$2 = 0 by (simp add: assms(4))
thus ?thesis
using that unfolding path-image-def
using atLeastAtMost-iff less-eq-real-def
by fastforce
qed
let 2S5 = path-image p U path-image q
let ?H = convex hull 28
obtain z where z: x € 25 — (interior YH) A (Vy € interior 7H. 232 < y$2)
by (metis exists-point-below-convez-hull-interior Un-empty assms(2) com-
pact-Un compact-path-image path-image-nonempty)
then have z ¢ p{0<..<1} using H-def assms(3) by blast
moreover have z € 95 using z by blast

path-image p. 82 < y$2)

265

ultimately have = € path-image q V x € (path-image p) — p{0<..<1} by
blast
moreover have {0..1} — {0<..<1} = {0:=real, 1} by fastforce
ultimately have x € path-image ¢ V z € p{0, 1}
by (smt (verit, best) image-diff-subset path-image-def subsetD)
moreover have 282 < (p 0)$2 A 2832 < (p 1)$2
by (smt (verit, ccfo-SIG) * H-def assms(3) assms(4) subset-eq x)
ultimately have 282 < (p 0)$2 A 282 < (p 1)$2 A (Vy € p{0<..<1}. 282
< y$2)
using H-def assms(3) = by blast
moreover have path-image p = p{0<.<1} U {p 0, p 1}
proof—
have {0<..<1} U {0::real, 1} = {0..1} by force
thus ?thesis unfolding path-image-def by blast
qed
ultimately have Vy € path-image p. 2$2 < y$2 by fast
thus ?thesis using x by fast
qed
moreover then have ?thesis’if - (32 € path-image p. £$2 < 0) using assms(5)
by fastforce
ultimately show %thesis using that by blast
qged

lemma pocket-fill-line-int-aux:
fixes z y z :: real™2
defines a = y$1
assumes r = (
assumes a > 0 A y$2 = 0
assumes 281 < 0V 281 > a
assumes 282 = 0
assumes conver A A compact A
assumes {z, y, 2} C A
assumes {z, y} C frontier A
shows z € frontier A A closed-segment x y C frontier A
proof(rule disjE[OF assms(4)])
assume 281 > a
moreover have zyz: 281 = 0 AN 282 = 0N y$1 =a AN y$2 =0 N 282 = 0
by (simp add: a-def assms(2) assms(3) assms(5))
ultimately have y: y € path-image (linepath = 2) (is - € L)
using segment-horizontal assms(3) by force
moreover have y-neq: y % Ay # 2z
by (metis a-def assms(2) assms(3) assms(4) not-less-iff-gr-or-eq zero-index)
ultimately have y € rel-interior 7L
by (metis UnE closed-segment-eq-open closed-segment-idem insert-Diff insert-iff
path-image-linepath rel-interior-closed-segment singleton-insert-inj-eq)
moreover have ?L C A using assms closed-segment-subset by auto
moreover have z € interior A U frontier A
by (metis Diff-iff Unl1 Unl2 assms(6) calculation(2) closure-convex-hull con-
vex-hull-eq frontier-def in-mono pathfinish-in-path-image pathfinish-linepath)

266

ultimately have z € frontier A
by (metis (no-types, lifting) Int-iff UnE y y-neq assms(6) assms(8) com-
pact-imp-closed insert-subset singletonD triangle-3-split-helper)
moreover have closed-segment x y C frontier A
proof (rule ccontr)
assume — closed-segment © y C frontier A
then obtain v where v € closed-segment x y — frontier A by blast
moreover then have v € closed-segment x y N interior A
by (metis (no-types, lifting) DiffD1 Diff D2 DiffI Int-iff assms(6) assms(7)
closed-segment-subset closure-convez-hull convez-hull-eq frontier-def insert-subset
subsetD)
moreover from calculation have v # x A v # y using assms(8) by auto
moreover from calculation have v$1 < a
by (smt (28) DiffD1 a-def assms(2) assms(3) exhaust-2 segment-horizontal
vec-eq-iff zero-index)
moreover from calculation have y € open-segment v z
by (smt (23) Diff-iff xyz insert-iff open-segment-def open-segment-idem
path-image-linepath segment-horizontal y y-neq)
ultimately have y € interior A
by (metis (no-types, lifting) IntD2 assms(6) assms(7) closure-conver-hull
convez-hull-eq in-interior-closure-convex-segment insertI2 singletonl subsetD)
thus Fualse using assms(8) frontier-def by auto
qed
ultimately show 2z € frontier A N closed-segment = y C frontier A by blast
next
assume *: 2$1 < 0
moreover have zyz: 281 = 0 AN 282 = 0N y$1 =a AN y$2 =0 N 282 =0
by (simp add: a-def assms(2) assms(8) assms(5))
ultimately have x: = € path-image (linepath y z) (is - € ?L’)
using segment-horizontal assms(3) by force
moreover have z-neq: y # z A x # 2
by (metis a-def assms(2) assms(3) assms(4) not-less-iff-gr-or-eq zero-inder)
ultimately have z € rel-interior 7L’
by (metis UnE closed-segment-eq-open closed-segment-idem insert-Diff insert-iff
path-image-linepath rel-interior-closed-segment singleton-insert-inj-eq)
moreover have 2L’ C A
proof—
have y € A A z € A using assms by blast
thus ?thesis by (simp add: assms(6) closed-segment-subset)
qed
moreover have z € interior A U frontier A
by (metis Diff-iff Unl1 Unl2 assms(6) calculation(2) closure-convex-hull con-
vex-hull-eq frontier-def in-mono pathfinish-in-path-image pathfinish-linepath)
ultimately have z € frontier A
by (metis (no-types, lifting) Int-iff UnE © z-neq assms(6) assms(8) com-
pact-imp-closed insert-subset singletonD triangle-3-split-helper)
moreover have closed-segment x y C frontier A
proof (rule ccontr)
assume - closed-segment x© y C frontier A

267

then obtain v where v € closed-segment x y — frontier A by blast
moreover then have v € closed-segment x y N interior A
by (metis (no-types, lifting) DiffD1 DiffD2 DiffI Int-iff assms(6) assms(7)
closed-segment-subset closure-convez-hull convez-hull-eq frontier-def insert-subset
subsetD)
moreover from calculation have v # x A v # y using assms(8) by auto
moreover from calculation have v$1 > 0
by (smt (28) DiffD1 a-def assms(2) assms(3) exhaust-2 segment-horizontal
vec-eq-iff zero-inder)
moreover from calculation have x € open-segment v z
by (smt (23) Diff-iff xyz insert-iff open-segment-def open-segment-idem
path-image-linepath segment-horizontal © z-neq)
ultimately have z € interior A
by (metis (no-types, lifting) IntD2 assms(6) assms(7) closure-convez-hull
convez-hull-eq in-interior-closure-convex-segment insertI2 singletonl subsetD)
thus False using assms(8) frontier-def by auto
qed
ultimately show 2z € frontier A A closed-segment x y C frontier A by blast
qed

lemma axis-dist:
fixes a b :: real”2
shows a$2 = 0$2 = dist a b = dist (a$1) (b31) a$1 = b$1 = dist a b =

dist (a$2) (b$2)

proof—
have dist a b = norm (b — a) by (metis dist-commute dist-norm,)
also have ... = sqrt ((b — a) - (b — a)) using norm-eq-sqrt-inner by blast

also have ... = sqrt (b — a)$1 * (b — a)$1 + (b — a)$2 x (b — a)$2)
by (simp add: inner-vec-def sum-2)
finally have x: dist a b = sqrt (b — a)$1 = (b — a)$1 + (b — a)$2 = (b —
a)$2) .
show a$2 = b$2 — dist a b = dist (a$1) (b$1)
a$1 = b$1 = dist a b = dist (a$2) (0$2)
apply (simp add: * dist-real-def)
by (simp add: * dist-real-def)
qed

lemma dist-bound-1:
fixes a bz :: real 2
assumes a$2 = 2$2
assumes b € ball z ¢
assumes ¢ < dist a ©
shows a$1 < 281 = b31 > a$1 a$1 > 281 = b$1 < a$1
proof—
have 1: dist a x = dist (a$1) (2$1) using axis-dist assms(1) by blast
have 2: dist (b31) (2$1) < ¢
by (metis assms(2) dist-commute dist-vec-nth-le mem-ball order-le-less-trans)
show a$1 < 281 = b$1 > a$1 a$1 > 281 = 031 < a$1
apply (smt (verit, ccfo-threshold) assms(1) assms(3) 1 2 dist-norm real-norm-def)

268

by (smt (verit, ccfo-threshold) assms(1) assms(3) 1 2 dist-norm real-norm-def)
qed

lemma dist-bound-2:
fixes a b z :: real 2
assumes a$1 = 231
assumes b € ball z ¢
assumes ¢ < dist a
shows a$2 < 282 = 082 > a$2 a$2 > 282 = 032 < a$2
proof—
have 1: dist a x = dist (a$2) (2$2) using axis-dist assms(1) by blast
have 2: dist (b32) (2$2) < ¢
by (metis assms(2) dist-commute dist-vec-nth-le mem-ball order-le-less-trans)
show a$2 < 282 = b$2 > a$2 a$2 > 282 = 0$2 < a$2
apply (smt (verit, ccfo-threshold) assms(1) assms(3) 1 2 dist-norm real-norm-def)
by (smt (verit, ccfu-threshold) assms(1) assms(3) 1 2 dist-norm real-norm-def)
qed

lemma linepath-bound-1:
fixes z y :: real 2
shows a < 281 A a < y$1 = Vv € path-image (linepath = y). a < v$1
281 < b A y$1 < b = Vv € path-image (linepath z y). v81 < b
proof—
have «: Vv € path-image (linepath z y). Ju € {0..1}. v= (1 — u) *p + u *R
)
by (simp add: image-iff linepath-def path-image-def)
have 1:Vu € {0..1}. a < (1 — u) xg z + u xg y)$1 if a < 281 A a < y$1
proof clarify
fix u assume u € {0..1::real}
then have x: w > 0 A 1 — u > 0 by simp
then show a < ((1 — u) *g = + u *g y)$1
by (smt (23) that scaleR-collapse scaleR-left-mono wvector-add-component
vector-scaleR-component)
qed
have 2: Vu € {0..1}. ((1 —u) *rp z + ux*p y)$1 < bif 281 < b A y$1 < b
proof clarify
fix v assume u € {0..1::real}
then have x: v > 0 A 1 — u > 0 by simp
then show ((I — u) *g = + u *g ¥)$1 < b
by (smt (23) that scaleR-collapse scaleR-left-mono vector-add-component
vector-scaleR-component)
qed
show a < 281 A a < y$1 = Vv € path-image (linepath = y). a < v$1 using
x 1 by fastforce
show 281 < b A y$1 < b = Vv € path-image (linepath z y). v$1 < b using
x 2 by fastforce
qed

lemma linepath-bound-2:

269

fixes z y :: real”2
shows a < 282 A a < y$2 = Vv € path-image (linepath x y). a < v$2
282 < b A y$2 < b = Vv € path-image (linepath = y). v$2 < b
proof—
have x: Vv € path-image (linepath z y). Ju € {0..1}. v= (1 — u) *g © + u *g
Y
by (simp add: image-iff linepath-def path-image-def)
have 1:Vu € {0..1}. a < (1 — u) *xg z + u xg y)$2 if a < 282 A a < y$2
proof clarify
fix v assume u € {0..1::real}
then have x: v > 0 A 1 — u > 0 by simp
then show a < ((I — u) *g = + u *g y)$2
by (smt (23) that scaleR-collapse scaleR-left-mono vector-add-component
vector-scale R-component)
qed
have 2: Vu € {0..1}. (1 — u) *r o 4+ u xg)82 < bif 282 < b A y$2 < b
proof clarify
fix u assume u € {0..1::real}
then have x: w > 0 A 1 — u > 0 by simp
then show ((1 — u) xgp = + u xg ¥)$2 < b
by (smt (23) that scaleR-collapse scaleR-left-mono vector-add-component
vector-scale R-component)
qed
show a < 282 A a < y$2 = Vv € path-image (linepath x y). a < v$2 using
x 1 by fastforce
show 282 < b A y$2 < b = Vv € path-image (linepath x y). v$2 < b using
x 2 by fastforce
qed

lemma linepath-int-corner:
fixes z y 2z :: real™2
assumes 1$2 # y$2
assumes y$2 = 2$2
shows path-image (linepath x y) N path-image (linepath y z) = {y}
(is path-image 211 N path-image 712 = {y})
proof—
have 1: y € path-image ?l1 N path-image ?12 by simp

have Vi € {0..1}. (711 ©)$2 = y$2 — ¢t = 1
proof clarify

fix t :: real

assume I: ¢t € {0..1}

assume 2: (211 t)$2 = y$2

have (211 1)$2 = ((1 — t) = (2$2) + t = (y$2)) by (simp add: linepath-def)
thus t = 1
by (smt (verit, best) assms 2 distrib-right inner-real-def mult.commute real-inner-1-right
vector-space-over-itself . scale-cancel-left)
qed

270

then have V¢ € {0..1}. (911 t)$2 = y$2 <— t = 1 by (metis linepath-1')
moreover have Vi € {0..1}. (712 1)$2 = y$2
unfolding linepath-def
by (metis (no-types, lifting) assms(2) segment-degen-1 vector-add-component
vector-scale R-component)
ultimately have 2: path-image ?11 N path-image 212 C {y}
by (smt (verit, best) 1 IntD1 IntD2 imageE path-defs(4) singleton-iff subsetl)

show ?thesis using 1 2 by fastforce
qged

lemma linepath-int-vertical:
fixes wzx y z :: real”2
assumes w31 # y$1
assumes w31 = z$1
assumes y$1 = 2$1
shows path-image (linepath w) N path-image (linepath y z) = {}
using assms segment-vertical by fastforce

lemma linepath-int-horizontal:
fixes wz y z :: real”2
assumes w$2 # y$2
assumes w$2 = 1$2
assumes y$2 = 282
shows path-image (linepath w x) N path-image (linepath y z) = {}
using assms segment-horizontal by fastforce

lemma linepath-int-columns:
fixes wzx y z :: real”2
assumes w31 < y$1 A w$! < 281
assumes z$1 < y$1 A 281 < 281
shows path-image (linepath w x) N path-image (linepath y z) = {}
(is path-image 211 N path-image 212 = {})
proof—
have V1 € {0..1}. V12 € {0..1}. (212 12)$1 > (211 t1)$1
by (smt (verit, ccfv-SIG) assms linepath-bound-1 linepath-in-path path-image-linepath)
thus ?thesis by (smt (verit, best) disjoint-iff imageE path-image-def)
qged

lemma linepath-int-rows:
fixes wz y z :: real” 2
assumes w32 < y$2 A w2 < 2$2
assumes 732 < y$2 A 282 < 282
shows path-image (linepath w) N path-image (linepath y z) = {}
(is path-image 211 N path-image 212 = {})
proof—
have V1 € {0..1}. V12 € {0..1}. (212 12)$2 > (711 t1)$2
by (smt (verit, ccfo-SIG) assms linepath-bound-2 linepath-in-path path-image-linepath)
thus ?thesis by (smt (verit, best) disjoint-iff imageE path-image-def)

271

qed

lemma horizontal-segment-at-0:
assumes a > 0
shows closed-segment ((vector [0, 0]):(real”2)) (vector [a, 0]) = {z. 282 = 0
A z81 € {0..a}}
(is 21 = %s)
proof—
have 2] C %s
proof (rule subsetl)
fix z
assume x: ¢ € ?]
then have z$2 = 0 using segment-horizontal by auto
moreover have 0 < 281 A 281 < o using x assms segment-horizontal by
force
ultimately show z € ?s by force
qed
moreover have 2s C 7]
proof(rule subsetl)
fix z
assume *: € s
then have z = (281 / a) xg (vector [a, 0]) + (I — (281 / a)) *g (vector |0,

0))
proof—
have (281 / a) *r ((vector [a, 0])::(real”2)) = vector [z$1, 0]
using vec-scaleR-2 assms by fastforce
moreover have (1 — (231 / a)) xg ((vector [0, 0])::(real”2)) = vector [0,
0]

using vec-scaleR-2 by simp
moreover have z = vector [z$1, 0]
by (smt (verit) * exhaust-2 mem-Collect-eq vec-eq-iff vector-2(1) vector-2(2))
ultimately show ?thesis
by (metis add-cancel-right-right scaleR-collapse vec-scaleR-2 vector-2(2))
qed
moreover have 281 / a € {0..1} using x assms by fastforce
ultimately show z € 7]
by (smt (verit, del-insts) add.commute atLeastAtMost-iff mem-Collect-eq
closed-segment-def)
qed
ultimately show ?thesis by blast
qed

lemma horizontal-segment-at-0":
fixes z y :: real”2
assumes a > 0
assumes 181 = 0 AN z$2 = 0 N y$1 =a A y$2 =10
shows closed-segment ©y = {z. 282 = 0 A 281 € {0..a}}
proof—
have z = vector [0, 0] A y = vector [a, 0]

272

by (smt (verit, best) assms(2) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))
thus ?thesis using horizontal-segment-at-0 assms by presburger
qed

lemma pocket-fill-line-int-auxl:
fixes p q :: R-to-R2
defines p0 = pathstart p
defines p!1 = pathfinish p
defines ¢0 = pathstart q
defines g1 = pathfinish q
defines a = p1$1
defines | = closed-segment p0 pl1
assumes simple-path p
assumes simple-path q
assumes p0$1 = 0 A p0$2 = 0 A p1$2 =0
assumes g > 0
assumes path-image ¢ N {z. 282 = 0} C
assumes path-image p N {z. 282 = 0} C
assumes Vv € path-image p. q0$2 < v$2
assumes Vv € path-image p. q1$2 > v$2
shows path-image p N path-image q¢ # {}
proof—

have p0: p0 = 0

by (metis (mono-tags, opaque-lifting) assms(9) exhaust-2 vec-eq-iff zero-indez)
moreover have pl: pl = vector [a, 0]

by (smt (verit) a-def assms(9) exhaust-2 vec-eq-iff vector-2(1) vector-2(2))

l
l

obtain a-x where a-z: Vv € path-image p U path-image q. a-z < v$1
proof—
let %a-z = Inf ((Av. v$1)“(path-image p U path-image q))
have compact (path-image p U path-image q)
by (simp add: assms(7) assms(8) compact-Un compact-simple-path-image)
moreover have continuous-on UNIV ((Av. v$1)::(real™2 = real))
by (simp add: continuous-on-component)
ultimately have x: compact ((Av. v$1)“(path-image p U path-image q))
by (meson compact-continuous-image continuous-on-subset top-greatest)
then have Vz € ((A\v. v$1) (path-image p U path-image q)). ?a-z < x
by (simp add: assms(7) assms(8) bounded-component-cart bounded-has-Inf (1)
bounded-simple-path-image)
thus ?thesis using that[of %a-z — 1] by (smt (verit, ccfv-SIG) assms(10)
imagel)
qed
obtain b-z where b-z: Vv € path-image p U path-image q. b-t > v$1
proof—
let ?b-x = Sup ((\v. v$1)‘(path-image p U path-image q))
have compact (path-image p U path-image q)
by (simp add: assms(7) assms(8) compact-Un compact-simple-path-image)
moreover have continuous-on UNIV ((Av. v$1)::(real™2 = real))
by (simp add: continuous-on-component)

273

ultimately have *: compact ((Av. v$1)‘(path-image p U path-image q))
by (meson compact-continuous-image continuous-on-subset top-greatest)
then have Vz € ((Av. v$1){(path-image p U path-image q)). ?b-z > x
by (simp add: assms(7) assms(8) bounded-component-cart bounded-has-Sup(1)
bounded-simple-path-image)
thus ?thesis using that[of ?b-x + 1] by (smt (verit, ccfv-SIG) assms(10)
imagel)
qed
obtain b-y where b-y: Vv € path-image p U path-image q. b-y > v$2
proof—
let 2b-y = Sup ((A\v. v82) {(path-image p U path-image q))
have compact (path-image p U path-image q)
by (simp add: assms(7) assms(8) compact-Un compact-simple-path-image)
moreover have continuous-on UNIV ((Av. v$2)::(real™2 = real))
by (simp add: continuous-on-component)
ultimately have x: compact ((Av. v$2) {(path-image p U path-image q))
by (meson compact-continuous-image continuous-on-subset top-greatest)
then have Vz € ((\v. v$2) {(path-image p U path-image q)). ?b-y > x
by (simp add: assms(7) assms(8) bounded-component-cart bounded-has-Sup(1)
bounded-simple-path-image)
thus ?thesis using that[of ?b-y + 1] by (smt (verit, ccfv-SIG) assms(10)
imagel)
qed

let 211 = linepath p1 (vector [b-z, 0])

let 212 = linepath (vector [b-z, 0]) ((vector [b-z, b-y]):(real”2))
let 218 = linepath (vector [b-z, b-y]) ((vector [a-z, b-y])::(real”2))
let 214 = linepath (vector [a-z, b-y]) ((vector [a-z, 0]):(real”2))
let 215 = linepath (vector [a-z, 0]) p0

let 7R’ = 211 +++ 212 +++ 213 +++ 2 +++ 715
let R = p +++ 7R’

have R-y-b: Vv € path-image ?R. v$2 < b-y
proof—
have Vv € path-image ?11. v82 < b-y
by (metis UnCI assms(9) b-y less-eg-real-def p1-def path-image-linepath pathfin-
ish-in-path-image segment-horizontal vector-2(2))
moreover have Vv € path-image ?212. v$2 < b-y
by (smt (verit, ccfv-SIG) UnCI assms(9) b-y p0-def path-image-linepath
pathstart-in-path-image segment-vertical vector-2(1) vector-2(2))
moreover have Vv € path-image ?13. v$2 < b-y
by (simp add: segment-horizontal)
moreover have Vv € path-image ?1}. v$2 < b-y
by (smt (verit, best) UnCI assms(9) b-y p0O-def path-image-linepath path-
start-in-path-image segment-vertical vector-2(1) vector-2(2))
moreover have Vv € path-image ?15. v82 < b-y
by (smt (verit) Unll assms(9) b-y linepath-image-01 pO-def path-defs(4)
pathstart-in-path-image segment-horizontal vector-2(2))

274

ultimately show ?Zthesis by (smt (verit, best) UnCI b-y not-in-path-image-join)
qed
have R-y-q0: Vv € path-image ?R. v$2 > ¢q0%2
proof—
have Vv € path-image ?11. v$2 > q0$2
using assms(13) assms(9) pl-def pathfinish-in-path-image segment-horizontal
by fastforce
moreover have Vv € path-image ?12. v82 > q0%2
by (smt (28) UnCI assms(13) assms(9) b-y p1-def path-image-linepath pathfin-
ish-in-path-image segment-vertical vector-2(1) vector-2(2))
moreover have Vv € path-image ?13. v$2 > q0%2
by (metis calculation(2) ends-in-segment(2) path-image-linepath segment-horizontal
vector-2(2))
moreover have Vv € path-image ?14. v82 > q0%2
by (smt (23) UnCI assms(13) assms(9) b-y p1-def path-image-linepath pathfin-
ish-in-path-image segment-vertical vector-2(1) vector-2(2))
moreover have Vv € path-image ?715. v$2 > ¢q0$2
by (metis assms(13) assms(9) p0-def path-image-linepath pathstart-in-path-image
segment-horizontal vector-2(2))
ultimately show ¢thesis
by (metis assms(13) not-in-path-image-join)
qed

have R-z-a: Vv € path-image ?R. v$1 > a-x
proof—
have Vv € path-image ?11. v$2 > a-x
by (metis UnCI a-z assms(9) linorder-le-cases linorder-not-less p0-def path-image-linepath
pathstart-in-path-image segment-horizontal vector-2(2))
moreover have Vv € path-image ?12. v$2 > a-z
by (smt (23) UnCI assms(9) b-y calculation p0-def path-image-linepath path-
start-in-path-image pathstart-linepath segment-vertical vector-2(1) vector-2(2))
moreover have Vv € path-image ?13. v$2 > a-x
by (metis calculation(2) ends-in-segment(2) path-image-linepath segment-horizontal
vector-2(2))
moreover have Vv € path-image ?14. v$2 > a-x
by (smt (23) assms(9) calculation(1) calculation(8) ends-in-segment(1)
path-image-linepath segment-vertical vector-2(1) vector-2(2))
moreover have Vv € path-image ?15. v$2 > a-z
by (smt (verit, del-insts) UnCI a-z assms(9) pO-def path-image-linepath
pathstart-in-path-image segment-horizontal vector-2(2))
ultimately show #thesis
by (smt (23) UnCI a-z assms(9) b-z not-in-path-image-join p1-def path-image-linepath
pathfinish-in-path-image segment-horizontal segment-vertical vector-2(1) vector-2(2))
qed

have closed: closed-path ?R using assms p0-def unfolding simple-path-def closed-path-def
by simp

have simple: simple-path ?R

proof—

275

have arc 7R’

proof—
let %2a = p1
let 2b = (vector [b-z, 0])::(real”2)
let ?c = (vector [b-z, b-y])::(real”2)
let ?d = (vector [a-z, b-y])::(real”2)
let %e = (vector [a-z, 0])::(real”2)
let 2f = p0

have arcs: arc 211 N arc 212 A arc 218 A arc 214 N arc 215
by (smt (verit, ccfv-SIG) UnCI a-z arc-linepath assms(9) b-x b-y pO-def
pl-def pathfinish-in-path-image pathstart-in-path-image vector-2(1) vector-2(2))

have 1415: path-image 21 N path-image ?15 = {pathfinish 214}
using linepath-int-corner|of ¢d ?e ?f] arc-simple-path arcs constant-linepath-is-not-loop-free
p0 simple-path-def
by auto
have [3l/: path-image ?13 N path-image ?l4 = {pathfinish 713}
using linepath-int-corner|of ?c ?d ?e]
by (metis Int-commute arc-simple-path arcs closed-segment-commute linepath-0'
linepath-int-corner path-image-linepath pathfinish-linepath pathstart-def vector-2(2))
have [213: path-image ?12 N path-image ?13 = {pathfinish 712}
using linepath-int-corner|of 2b ?c 2d]
by (metis Int-commute arc-simple-path arcs linepath-0' linepath-int-corner
pathfinish-linepath pathstart-def vector-2(2))
have 1112: path-image ?11 N path-image ?12 = {pathfinish 211}
using linepath-int-corner|of %a ?b ?c]
by (metis Int-commute arc-distinct-ends arcs assms(9) closed-segment-commute
linepath-int-corner path-image-linepath pathfinish-linepath pathstart-linepath vector-2(2))

have [315: path-image ?13 N path-image 215 = {}
using linepath-int-horizontal[of ?c ?d ?e ?f]
by (metis arc-distinct-ends arcs assms(9) linepath-int-horizontal pathfin-
ish-linepath pathstart-linepath vector-2(2))
have [2l: path-image ?12 N path-image ?l4 = {}
using linepath-int-vertical[of ?b ?c ?d ?e]
by (metis arc-distinct-ends arcs linepath-int-vertical pathfinish-linepath path-
start-linepath vector-2(1))
have [113: path-image ?11 N path-image ?13 = {}
using linepath-int-vertical[of ?a ?b ?c ?d)
by (metis arc-distinct-ends arcs assms(9) linepath-int-horizontal pathfin-
ish-linepath pathstart-linepath vector-2(2))

have [215: path-image ?12 N path-image 215 = {}
using linepath-int-columns|of ?b ¢ ?e ?f]
by (smt (verit, ccfv-threshold) Int-commute UnCI a-z b-x linepath-int-columns
p0 pO-def pathstart-in-path-image pathstart-join vector-2(1) verit-comp-simplify (3))
have [11}: path-image 211 N path-image 214 = {}
using linepath-int-columns|of ?a ?b 2d ?e]

276

by (smt (23) UnCI a-z assms(9) b-z disjoint-iff p1-def path-image-linepath
pathfinish-in-path-image segment-horizontal segment-vertical vector-2(1) vector-2(2))

have [115: path-image 711 N path-image 215 = {}
using linepath-int-columns|of %a ?b e ?f]
by (smt (28) UnCI a-def a-x assms(10) assms(9) b-z disjoint-iff p1-def
path-image-linepath pathfinish-in-path-image segment-horizontal vector-2(1) vec-
tor-2(2))

have path-image 214 N path-image 215 = {pathfinish 214}
using 1415 by blast
moreover have sf-45: pathfinish 214 = pathstart ?l5 by simp
ultimately have arc (214 +++ 215)
by (metis arc-join-eg-alt arcs)
moreover have path-image 218 N path-image (214 +++ ?215) = {pathfinish
213}
using 131} 315
by (metis (no-types, lifting) Int-Un-distrib sf-45 insert-is-Un path-image-join)
moreover have sf-345: pathfinish 213 = pathstart (?lf +++ ?15) by simp
ultimately have arc (213 +++ 71 +++ ?215)
by (metis arc-join-eg-alt arcs)
moreover have path-image ?12 N path-image (713 +++ 214 +++ ?215) =
{pathfinish 212}
using 1213 1214 1215
by (smt (verit) Int-Un-distrib sf-45 sf-845 insert-is-Un path-image-join
sup-bot-left)
moreover have sf-2345: pathfinish 212 = pathstart (213 +++ 214 +++ 915)
by simp
ultimately have arc (712 +4+ 718 ++4 214 +++ ?15)
by (metis arc-join-eg-alt arcs)
moreover have path-image 211 N path-image (712 +++ 218 +++ 714 +++
?215) = {pathfinish 211}
proof—
have path-image (212 +++ 213 +++ 2l +++ 215)
= path-image ?12 U path-image ?13 U path-image ?1} U path-image ?15
by (simp add: path-image-join sup-assoc)
thus ?thesis using (112 1113 1114 1115 by blast
qed
moreover have pathfinish ?l1 = pathstart (212 +++ 213 +++ 214 +++
215) by simp
ultimately show arc (211 +++ 212 +++ 213 +++ 2l +++ 215)
by (metis arc-join-eg-alt arcs)
qed
moreover have loop-free p using assms(1) assms(7) simple-path-def by blast
moreover have path-image ?R’ N path-image p = {p0, p1}
proof—
have path-image p N path-image 212 = {} using b-z segment-vertical by auto
moreover have path-image p N path-image 213 = {} using b-y segment-horizontal
by auto

277

moreover have path-image p N path-image ¢l = {} using a-z segment-vertical
by auto
moreover have path-image p N path-image ?11 = {p1}
proof—
have p! € path-image p using p1-def by blast
moreover have path-image p N path-image 211 C {pl}
proof(rule subsetl)
fix z assume *: = € path-image p N path-image ?11
then have z$1 < a
using a-def assms(10) assms(12) assms(9) Il-def linepath-image-01
segment-horizontal by auto
moreover have z$1 > a
by (smt (28) * Int-iff Un-iff a-def assms(9) b-z linepath-image-01
path-defs(4) segment-horizontal vector-2(1) vector-2(2))
moreover have 2$2 = 0 using * assms(9) segment-horizontal by auto
ultimately show z € {pI} using a-def assms(9) segment-vertical by
fastforce
qed
ultimately show ?thesis by auto
qed
moreover have path-image p N path-image 215 = {p0}
proof—
have p0 € path-image p using p0-def by blast
moreover have path-image p N path-image 215 C {p0}
proof (rule subsetl)
fix z assume *: € path-image p N path-image %15
then have z$1 < 0
using R-z-a assms(9) pO-def pathstart-in-path-image segment-horizontal
by fastforce
moreover have 2$1 > 0
proof—
have z € {z. 282 = 0} using * assms(9) segment-horizontal by fastforce
then have z € | using * assms(12) by auto
thus ?thesis using a-def assms(10) assms(9) I-def segment-horizontal
by auto
qed
moreover have 1$2 = 0 using * assms(9) segment-horizontal by auto
ultimately show z € {p0} using a-def assms(9) segment-vertical by
fastforce
qed
ultimately show ?thesis by auto
qed
moreover have path-image ?R’
= path-image ?l1 U path-image 212 U path-image ?13 U path-image 21} U
path-image ?15
by (simp add: Un-assoc path-image-join)
ultimately show ?thesis by fast
qed
moreover have arc p

278

using a-def arc-simple-path assms(10) assms(7) p0 p0-def p1-def by fastforce
ultimately show ¢thesis
by (metis (no-types, lifting) simple-path-join-loop-eq Int-commute dual-order.refl
pO-def p1-def pathfinish-join pathfinish-linepath pathstart-join pathstart-linepath)
qed

have inside-outside: inside-outside ?R (path-inside ?R) (path-outside ?R)
using closed simple Jordan-inside-outside-real2
by (simp add: closed-path-def inside-outside-def path-inside-def path-outside-def)

have interior-frontier: path-inside ?R = interior (path-inside ?R)
A frontier (path-inside ?R) = path-image ?R
using inside-outside interior-open unfolding inside-outside-def by auto

have path-image q N path-image ?11 C {p1}
proof (rule subsetl)
fix z assume *: © € path-image q N path-image ?11
then have 231 < a using a-def assms(10) assms(11) assms(9) Il-def seg-
ment-horizontal by auto
moreover have z$1 > a
by (smt (28) * Int-iff Un-iff a-def assms(9) b-z linepath-image-01 path-defs(4)
segment-horizontal vector-2(1) vector-2(2))
moreover have z$2 = 0 using * assms(9) segment-horizontal by auto
ultimately show z € {p1} using a-def assms(9) segment-vertical by fastforce
qed
moreover have path-image ¢ N path-image 215 C {p0}
proof (rule subsetl)
fix z assume *: © € path-image ¢ N path-image ?15
then have z$1 < 0
using R-z-a assms(9) p0-def pathstart-in-path-image segment-horizontal by
fastforce
moreover have z$1 > 0
using * a-def assms(10) assms(11) assms(9) l-def segment-horizontal by auto
moreover have 82 = 0 using * assms(9) segment-horizontal by auto
ultimately show z € {p0} using a-def assms(9) segment-vertical by fastforce
qed
moreover have ?thesis if p1 € path-image q N path-image ?11 using p1-def that
by blast
moreover have ?thesis if p0 € path-image q N path-image ?15 using p0-def that
by blast
moreover have ?thesis if
g-int-l1: path-image q N path-image ?11 = {} and
g-int-15: path-image q N path-image 715 = {}
proof—
have g¢-int-12: path-image q N path-image 212 = {}
using b-z segment-vertical by auto
moreover have ¢-int-13: path-image g N path-image 213 = {}
using UnCI b-y segment-horizontal by auto
moreover have g¢-int-l4: path-image q N path-image 21, = {}

279

using a-z segment-vertical by auto
moreover have ?thesis if g0 € path-image p using qO0-def that by blast
moreover have path-image g N path-image ?R # {} if q0 ¢ path-image p
proof—

have q0 € path-outside ?R

proof—
let ?e2’ = (vector [0, —1])::(real”2)
let ?ray = Ad. q0 + d *xp %e2’
have = (3d>0. ?ray d € path-image ?R)
proof—
have Vd>0. (?ray d)$2 < q0%2 by auto
thus ?thesis using R-y-q0 by fastforce
qed
moreover have bounded (path-inside ?R) using bounded-finite-inside simple
by blast
moreover have ?e2’ # 0 by (metis vector-2(2) zero-index zero-neg-neg-one)
ultimately have g0 ¢ path-inside ?R
using ray-to-frontier|of path-inside ?R] interior-frontier by metis
moreover have ¢0 ¢ path-image ?R
using that g-int-11 g-int-12 g-int-13 g-int-l4 g-int-15
by (simp add: disjoint-iff not-in-path-image-join pathstart-in-path-image
q0-def)
ultimately show ?thesis using inside-outside unfolding inside-outside-def
by blast
qed
then have ¢q0 € — (path-inside ?R)
by (metis Compll Intl equalsOD inside-Int-outside path-inside-def path-outside-def)
moreover have ¢! € path-inside R

proof—
let ?e = (vector [q181, b-y])::(real™2)
let 2d1 = (vector [b-z, b-y])::(real”2)
let 2d2 = (vector [a-z, b-y])::(real 2)
obtain € where e: 0 < e A e < dist 7e q1 N e < dist e ?d1 N e < dist %e
?d2
proof—
have %e # g1
by (metis UnCI b-y order-less-irrefl pathfinish-in-path-image q1-def
vector-2(2))
moreover have ?e # ?d1
by (smt (verit) UnCI b-z pathfinish-in-path-image q1-def vector-2(1))
moreover have %e # ?2d2
by (metis UnCI a-z order-less-irrefl pathfinish-in-path-image q1-def
vector-2(1))
ultimately have 0 < dist ?e q1 N 0 < dist 7e 2d1 N 0 < dist 7e ?d2 by
simp
then have 0 < Min {dist ?e q1, dist ?e ?d1, dist ?e ?d2} by auto
then obtain ¢ where 0 < ¢ A e < Min {dist %e q1, dist %e ?d1, dist e

280

2d2}
by (meson field-lbound-gt-zero)
thus ?thesis using that by auto
qed
then have ?e € path-image ?13
by (simp add: a-z b-x ql-def segment-horizontal less-eq-real-def pathfin-
ish-in-path-image)
then have %e € path-image ?R by (simp add: p1-def path-image-join)
then have ?e € frontier (path-inside ?R)
using inside-outside unfolding inside-outside-def by blast
then obtain int-p where int-p: int-p € ball ?e € N int-p € path-inside R
by (meson ¢ inside-outside frontier-straddle mem-ball)

have int-p-z: a-z < int-p$1 A int-p$1 < b-z
by (metis (mono-tags, lifting) dist-bound-1 Unl2 e a-z b-x dist-commute
int-p pathfinish-in-path-image q1-def vector-2(1) vector-2(2))
have int-p$2 < b-y
proof(rule ccontr)
have int-p$2 # b-y
proof—
have int-p$2 = b-y = int-p € path-image ?13
using int-p-z by (simp add: segment-horizontal)
moreover have int-p € path-image ?18 = int-p € path-image ?R
by (simp add: p1-def path-image-join)
moreover have path-image 7R N path-inside YR = {}
using inside-outside unfolding inside-outside-def by blast
ultimately show %thesis using int-p by fast
qed
moreover assume — nt-p$2 < b-y
ultimately have *: int-p$2 > b-y by simp

let ?e2 = (vector [0, 1])::(real”2)
let ?ray = Ad. int-p + d *xp 7e2
have - (3d>0. ?ray d € path-image ?R)
proof—
have Vd>0. (?ray d)$2 > b-y using * by auto
thus ?thesis using R-y-b by fastforce
qed
moreover have bounded (path-inside ?R) using bounded-finite-inside
simple by blast
moreover have %e2 # 0 using ele2-basis(4) by force
ultimately have int-p ¢ path-inside ?R
using ray-to-frontier|of path-inside ?R] interior-frontier by metis
thus Fulse using int-p by blast
qed
moreover have int-p$2 > q1$2
proof—
have dist int-p ?e < ¢ using ¢ dist-commute-lessl int-p mem-ball by blast
then have dist (int-p$2) (?e$2) < € by (smt (verit, best) dist-vec-nth-le)

281

then have 1: int-p$2 > %e$2 — e by (simp add: dist-real-def)

have ¢q1$1 = ?e$1 by simp
then have dist g1 %e = dist (¢1$2) (?e32) using axis-dist by blast
then have ¢1$2 < 2¢$2 — ¢
by (smt (verit) UnCI e b-y dist-commute dist-real-def pathfinish-in-path-image
q1-def vector-2(2))
moreover have ¢1$2 < ?e$2 by (simp add: b-y pathfinish-in-path-image
q1-def)
moreover have dist q1 ?e > ¢ by (metis ¢ dist-commute)
ultimately have ¢1$2 < %¢$2 — ¢ by presburger
thus ?thesis using 1 by force
qged
ultimately have int-p-y: int-p$2 < b-y A int-p$2 > q1$2 by blast

let ?int-l = linepath int-p q1

have path-image %int-l N path-image p = {}
proof—
have Vz € path-image p. (%int-1 0)$2 > z$2
by (smt (verit) int-p-y assms(14) linepath-0")
moreover have Vz € path-image p. (?int-1 1)$2 > 2$2
by (simp add: assms(14) linepath-1")
ultimately have Vz € path-image p. Vy € path-image ?int-l. y$2 > 2$2
by (metis assms(14) linepath-0" linepath-bound-2(1))
thus ?thesis by blast
ged
moreover have path-image ?int-l N path-image 911 = {}
by (smt (verit, best) assms(14) assms(9) disjoint-iff int-p-y linepath-int-rows
p0-def pathstart-in-path-image vector-2(2))
moreover have path-image ?int-l N path-image 212 = {}
by (metis UnCI b-z int-p-x linepath-int-columns pathfinish-in-path-image
q1-def vector-2(1))
moreover have path-image ?int-l N path-image 713 = {}
using int-p-y linepath-int-rows by auto
moreover have path-image ?int-l N path-image 214 = {}
by (metis UnCI a-z inf-commute int-p-z linepath-int-columns pathfin-
ish-in-path-image q1-def vector-2(1))
moreover have path-image ?int-l N path-image 215 = {}
by (smt (verit, best) assms(14) assms(9) disjoint-iff int-p-y linepath-int-rows
p0-def pathstart-in-path-image vector-2(2))
ultimately have path-image ?int-l N path-image ?R = {}
by (simp add: disjoint-iff not-in-path-image-join)
then have path-image ?int-l C path-inside ?R V path-image %int-1 C
path-outside 7R
by (smt (verit, ccfv-SIG) convex-imp-path-connected convex-segment(1) dis-
joint-insert(1) insert-Diff inside-outside-def int-p linepath-image-01 local.inside-outside
path-connected-not-frontier-subset path-defs(4) pathstart-in-path-image pathstart-linepath)
moreover have ?int-l 0 = int-p A int-p € path-inside ?R

282

using int-p by (simp add: linepath-0")
ultimately have path-image ?int-l C path-inside ?R
using inside-outside-def local.inside-outside by auto
thus “thesis by auto
qed
ultimately have path-image ¢ N — (path-inside ?R) # {} N path-image q N
(path-inside ?R) # {}
unfolding q0-def q1-def by fast
moreover have path-connected (path-image q)
by (simp add: assms(8) path-connected-path-image simple-path-imp-path)
moreover have path-image ?R = frontier (path-inside ?R)
using inside-outside unfolding inside-outside-def p0-def path-inside-def by
auto
ultimately show ?thesis by (metis Diff-eq Diff-eq-empty-iff path-connected-not-frontier-subset)
qed
ultimately show #thesis
by (smt (verit, ccfv-threshold) disjoint-iff-not-equal not-in-path-image-join
g-int-11 g-int-15)
qed
ultimately show ¢thesis by auto
qed

lemma pocket-fill-line-int-aux2:
fixes p q :: R-to-R2
fixes A :: (real™2) set
defines p0 = pathstart p
defines p!1 = pathfinish p
defines a = p1$1
defines | = closed-segment p0 pl1
assumes simple-path p
assumes p0$1 = 0 A p0$2 = 0 A p1$2 =0
assumes g > 0
assumes conver A A compact A
assumes {p0, pl} C frontier A
assumes p ‘ {0<..<1} C interior A
shows path-image p N {z. 2$2 = 0} C |
proof—
have I: | = {z. 282 = 0 A 281 € {0..a}}
using horizontal-segment-at-0' a-def assms(6) assms(7) l-def by presburger
have endpoints: (p 0)81 = 0N (p)32 =0AN(p)81 =a N (p 1)$2 =0
by (metis a-def assms(6) pO-def p1-def pathfinish-def pathstart-def)

have False if x: 3t € {0..1}. (p)82 =0 A ((p)$1 > a V (p t)$1 < 0)
proof—
obtain ¢ where t € {0<.<I} A(pt)$2 =0 A ((p t)$1 > a V (p)$1 < 0)
by (metis * assms(7) endpoints atLeastAtMost-iff greaterThanLessThan-iff
less-eq-real-def linorder-not-le)
then obtain z where z: z € p{0<.<I1} AN 2$2 =0 A (281 > a V 281 < 0)
by blast

283

thus Fulse
using pocket-fill-line-int-auz|of p0 p1 z A
by (smt (verit, del-insts) Diff-iff a-def assms(10) assms(6) assms(7) assms(8)
assms(9) empty-subset] endpoints exhaust-2 frontier-def frontier-subset-compact in-
sert-subset interior-subset p0-def pathstart-def subset-eq vec-eq-iff zero-inder)
qed
then have Vit € {0..1}. (p t)$2 = 0 — (p t)$1 € {0..a} by fastforce
then have Vv € path-image p. v82 = 0 — v$1 € {0..a} by (simp add: imageE
path-defs(4))
thus %thesis using [by blast
qged

lemma three-points-on-line:

fixes a b :: 'a::real-vector

assumes A = affine hull {a, b}

assumes a # b

assumes {z, y, z} C A

assumes t £ Yy Ay # 2 ANz # 2

shows z € open-segment y z V y € open-segment x z V z € open-segment & y
proof—

let fu =56 —a

have x: Aa 8 y:real. a € open-segment 3 ~
= a + a xg %u € open-segment (a + B xg %u) (a + v *r %u)
proof—
fix a B 7y :: real
assume *: o« € open-segment 3 vy

define = where z = a + « *g “u
define y where y = a + (8 *r “u
define z where z = a + v *xg ?u

obtain v where v: a = (I —v) xS+ vy Av e {0<.<I}
by (metis (no-types, lifting) * imageE in-segment(2) real-scaleR-def seg-
ment-image-interval(2))
then have 2 = a + ((1 — v) x 8 + v * ¥) xg ?u using z-def by blast

also have ... = a + (((1 — v) * B8) *g 2u) + ((v * 7) *r %u) by (simp add:
scaleR-left.add)

also have ... = a + ((I — v) *g (8 *r ?u)) + (v *r (v *r %u)) by simp

also have ... = a + ((1{ — v) *g (y — a)) + (v *r (2 — a)) by (simp add:
y-def z-def)

also have ... = a+y — a — vx*g (y — a) + v xg (z — a) by (simp add:
scaleR-left-diff-distrib)

also have ... =y — v *g (y — a) + v *xg (2 — a) by simp

also have ... = y — (v*g y) + (v *g a) + (v *xg 2) — (v *g a) by (simp add:
scale R-right-diff-distrib)

also have ... = (I — v) *gr y + v *r 2z by (metis add-diff-cancel diff-add-eq

scaleR-collapse)
finally have z = (I — v) *g y + v *g 2 .

284

moreover have 0 < 1 — v A 1 — v < 1 using v by fastforce

ultimately have = € closed-segment y z using in-segment(1) by auto

moreover have z # y A x # 2

by (metis x add-diff-cancel-left’ assms(2) eq-iff-diff-eq-0 in-open-segment-iff-line

open-segment-commaute open-segment-subsegment scale R-right-imp-eq x-def y-def z-def)

ultimately show a + a g %u € open-segment (a + 5 *r ?u) (a + v *g %u)

unfolding open-segment-def using z-def y-def z-def by force
qed

obtain o f v where zyz: t = a + a*xg 2u ANy=a+ B *g 2uNz=a+ 7y
*R 7u
using affine-hull-2-alt[of a b] assms(1) assms(3) by auto
then have o« # A B # v A a # v using assms by blast
moreover have a € closed-segment 5 v V B € closed-segment o v V ~ €
closed-segment o 3
by (metis atLeastAtMost-iff closed-segment-commute less-eq-real-def less-maz-iff-disj
linorder-not-less real-Icc-closed-segment)
ultimately have o € open-segment [v V [€ open-segment o v V ~ €
open-segment o 3
unfolding open-segment-def by fast
thus ?thesis using x xyz by presburger
qged

lemma pocket-fill-line-int-auz3:

fixes A :: (real™2) set

assumes conver A A compact A

assumes v % 0

assumes closed-segment 0 w C frontier A (is closed-segment %a ?b C -)

assumes w + v = 0

assumes w # 0

shows (AC{z.2-v<0}VAC{z.z-v>0}) (is4dC ?P1 Vv AC ?P2)
proof—

have frontiers: frontier ?P1 = frontier ?P2 A frontier ?P1 C ?P2 A frontier
P2 C ?P1

by (smt (verit, ccfo-threshold) Collect-mono assms(2) frontier-halfspace-component-ge
frontier-halfspace-le inner-commaute subset-antisym)

have frontier: frontier ?P1 = {z. x - v = 0}

by (simp add: assms(2) frontier-halfspace-component-ge frontiers)

have ?thesis if interior A # {}
proof—
have interior A C ?P1 V interior A C ?P2
proof (rule ccontr)
assume - (interior A C ?P1 V interior A C ?P2)
then obtain z y where zy: © € ((interior A) N ?P1) — ?P2 A y € ((interior
A)n ¢P2) — ?P1
by fastforce
moreover have z € frontier ?P1 U interior ?P1 N y € frontier ?P2 U
interior ?P2

285

by (metis DiffD1 IntD2 Un-Diff-cancel? frontiers closure-Un-frontier fron-
tier-def interior-subset sup.orderE xy)
ultimately have zy": © € (interior A) N interior ?P1 N y € (interior A) N
interior ?P2
using frontiers by blast
then have closed-segment x y N frontier ?P1 # {}
by (metis (no-types, lifting) DiffD1 DiffD2 Int-iff convez-closed-segment con-
vex-imp-path-connected empty-iff ends-in-segment(1) ends-in-segment(2) in-mono
path-connected-not-frontier-subset xy)
moreover have closed-segment © y C interior A
by (metis convez-interior Int-iff assms(1) convex-contains-segment xy’)
ultimately obtain z where z: z € interior A N frontier ?P1 by blast

have closed-segment ?a ?b C frontier ?P1
proof (rule subsetl)
fix z
assume z € closed-segment ?a ?b
then obtain u where z = (I — u) *g Pa + ux*xg 6N 0 < uAhu<lIl
unfolding closed-segment-def by blast
then have z - v = u xg (?b - v) by simp
moreover have ?b - v = 0 by (simp add: assms(4))
ultimately have z - v = 0 by simp
thus z € frontier ?P1 using frontier by blast
qed
moreover have z ¢ closed-segment ?a ?b using assms(3) frontier-def z by
fastforce
ultimately have z € frontier ?P1 — closed-segment ?a ?b using z by blast
moreover have collinear {z, %a, ?b}
proof—
have {z, %a, 20} C {z. 2z - v = 0}
using {0——w} C frontier {z. z - v < 0} frontier z by auto
moreover have {z. z - v = 0} = affine hull {?a, ?b}
by (metis (no-types, lifting) Collect-mono assms(2) assms(5) calculation
halfplane-frontier-affine-hull inner-commute insert-subset subset-antisym)
ultimately show ?thesis using collinear-affine-hull by auto
qed
ultimately have ?a € open-segment z ?b V ?b € open-segment z Za
using three-points-on-linelof {z. z - v = 0}]
by (smt (23) <z ¢ {0——w}> assms(5) collinear-3-imp-in-affine-hull ends-in-segment (1)
ends-in-segment(2) hull-redundant hull-subset insert-commute open-closed-segment
three-points-on-line)
moreover have open-segment z ?b C interior A N\ open-segment z ?a C
interior A
proof—
have closed-segment z 2b C A A closed-segment z %a C A
by (meson IntD1 assms(1) assms(3) closed-segment-subset ends-in-segment(1)
ends-in-segment(2) frontier-subset-compact in-mono interior-subset z)
then have rel-interior (closed-segment z 2b) C interior A
A rel-interior (closed-segment z ?a) C interior A

286

by (metis IntD1 <z ¢ {0——w}> assms(1) closure-convex-hull convezr-hull-eq
in-interior-closure-convexr-segment order-class.order-eq-iff rel-interior-closed-segment
subsetD subset-closed-segment z)
moreover have rel-interior (closed-segment z 2b) = open-segment z ?b
A rel-interior (closed-segment z ?a) = open-segment z ?a
by (metis <z ¢ {0——w}> closed-segment-commute ends-in-segment(1)
rel-interior-closed-segment)
ultimately show ?thesis by force
qed
ultimately have ?a € interior AV ?b € interior A by fast
thus False using assms(3) frontier-def by auto
qed
then have closure (interior A) C closure ?P1 V closure (interior A) C closure
7P2
using closure-mono by blast
moreover have closed ?P1 A closed ?P2
by (simp add: closed-halfspace-component-ge closed-halfspace-component-le)
moreover have closure (interior A) = A
using assms(1)
by (simp add: compact-imp-closed convex-closure-interior that)
ultimately show ¢thesis using closure-closed by auto
qed
moreover have ?thesis if interior A = {}
proof(rule ccontr)
assume — (A C ?P1 vV A C ?P2)
then obtain z y where zy: © € (AN 9P1) — ?P2 Ay € (AN ?P2) — ?P1
by fastforce
moreover have x € frontier P1 U interior ?P1 A y € frontier P2 U interior
7P2
by (metis DiffD1 IntD2 Un-Diff-cancel2 frontiers closure-Un-frontier fron-
tier-def interior-subset sup.orderE xy)
ultimately have zy”" = € A N interior ?P1 N y € A N interior ?P2 using
frontiers by blast
have — collinear {%a, ?b, z, y}
proof (rule ccontr)
assume — - collinear {%a, ?b, z, y}
then have x: collinear {?a, ?b, z, y} by blast
then have {%a, ?b, z, y} C affine hull {%a, ?b}
by (metis assms(5) collinear-3-imp-in-affine-hull collinear-4-8 hull-subset
insert-subset)
moreover have affine hull {?a, 20} = {z. z - v = 0}
by (smt (verit) DiffE x assms(2) assms(4) assms(5) collinear-3-imp-in-affine-hull
collinear-4-3 halfplane-frontier-affine-hull inner-commute mem-Collect-eq xy)
moreover have ... = frontier ?P1 A ... = frontier ?P2
using frontiers assms(2) frontier-halfspace-component-ge by blast
ultimately show Fulse using frontiers zy by auto
qed
then obtain ¢! ¢2 ¢3 where c123: = collinear {c1, c2, ¢3} A {c1, c2, c3}
C {%a, %, z, y}

287

by (metis assms(5) collinear-4-3 insert-mono subset-insertl)
then have interior (convex hull {c1, c2, ¢3}) # {}
by (metis Jordan-inside-outside-real? closed-path-def make-triangle-def path-inside-def
polygon-def polygon-of-def triangle-inside-is-convexr-hull-interior triangle-is-polygon)
moreover have {c1, c2, ¢3} C A
by (smt (verit, del-insts) c123 xzy’ assms(1) assms(3) empty-subset] fron-
tier-subset-compact in-mono inf.orderE insert-absorb insert-mono le-infE subsetl
subset-closed-segment)
ultimately have interior A # {}
by (metis assms(1) interior-mono subset-empty subset-hull)
thus Fulse using that by blast
qed
ultimately show ?thesis by blast
qed

lemma pocket-fill-line-int-aux4 :

fixes p q :: R-to-R2

fixes A :: (real™2) set

defines p0 = pathstart p

defines p!1 = pathfinish p

defines g0 = pathstart q

defines g1 = pathfinish q

defines a = p1$1

defines | = closed-segment p0 pl1

assumes simple-path p

assumes simple-path q

assumes path-image p N path-image ¢ = {}

assumes p0$1 = 0 A p0$2 = 0 A p1$2 =0

assumes a > 0

assumes Vv € path-image p. q0$2 < v$2

assumes Vv € path-image p. q1$2 > v$2

assumes conver A A compact A

assumes {p0, p1} C frontier A

assumes p{0<..<1} C interior A

assumes path-image ¢ C A

shows [C frontier AV z € (path-image p) U (path-image q). 32 > 0 q0$2 = 0
proof—

have I: | = {z. 282 = 0 A 281 € {0..a}}

using horizontal-segment-at-0' a-def assms(10) assms(11) I-def by presburger
have endpoints: (p 0)81 = 0N (p)32 =0AN(p)81 =a N (p 1)$2 =0
by (metis a-def assms(10) pO-def p1-def pathfinish-def pathstart-def)

have | C frontier A if — (path-image ¢ N {z. 2$2 = 0} C 1)
proof—
from that obtain z where = € path-image ¢ N {z. 282 = 0} A (281 < 0 V
z$1 > a)
by (smt (verit) Int-Collect a-def assms(10) endpoints I-def pO-def pathstart-def
segment-horizontal subsetl)
thus ?thesis

288

using pocket-fill-line-int-auz[of p0 pl1 = A] unfolding I-def
by (smt (verit, del-insts) IntD2 Int-commute a-def assms(11) assms(14)
assms(15) assms(17) assms(10) endpoints exhaust-2 frontier-subset-compact in-
sert-subset mem-Collect-eq pO-def pathstart-def subset-eq vec-eq-iff zero-index)
qged
moreover have Fualse if (path-image ¢ N {z. 282 = 0} C 1)
proof—
have (path-image p N {z. 282 = 0} C 1)
using pocket-fill-line-int-auz2
by (metis a-def assms(10) assms(11) assms(14) assms(15) assms(16) assms(7)
I-def p0O-def p1-def)
then have path-image p N path-image q # {}
using pocket-fill-line-int-auxl
by (metis (mono-tags, lifting) assms(11) assms(12) assms(13) assms(7)
assms(8) endpoints l-def pO-def pl-def pathfinish-def pathstart-def qO-def q1-def
that)
thus False by (simp add: assms(9))
qed
ultimately show *: [C frontier A by blast

show Vz € (path-image p) U (path-image q). z$2 > 0
proof(rule ccontr)
assume — (Vz € (path-image p) U (path-image q). 2$2 > 0)
then have 3z € (path-image p) U (path-image q). 282 < 0 using linorder-not-le
by blast
then obtain z where z: z € ((path-image p) U (path-image q)) N A A 2$2 <
0
using assms(12) assms(17) pathstart-in-path-image q0-def by fastforce

let 2v = (vector [0, 1])::(real”2)
have 1: ?v # 0 by (simp add: ele2-basis(3))
have 2: closed-segment 0 p1 C frontier A
by (smt (verit, del-insts) x Int-closed-segment closed-segment-eq double-
ton-eq-iff endpoints I-def p0-def pathstart-def segment-vertical zero-index)
have 3: pI - %v = 0 by (metis assms(10) cart-eq-inner-axis ele2-basis(3))
have 4: p! # 0 using a-def assms(11) by force
have x: (AC{z.z- 2w <0} VAC{z. z- % > 0})
using pocket-fill-line-int-auz3[OF assms(14) 1 2 3 4] by blast
moreover have ¢1$2 > 0 using assms(10) assms(13) p0-def pathstart-in-path-image
by fastforce
ultimately show Fulse
by (metis (no-types, lifting) IntE z assms(17) ele2-basis(3) inner-axis
linorder-not-less mem-Collect-eq pathfinish-in-path-image qI-def real-inner-1-right
subsetD)
qed
moreover have ¢032 < 0 using assms(10) assms(12) p1-def by force
moreover have ¢0 € (path-image p) U (path-image q)
by (simp add: pathstart-in-path-image q0-def)
ultimately show ¢0$2 = 0 by force

289

qed

lemma pocket-fill-line-int-auxs:
fixes p ¢ :: R-to-R2
fixes A :: (real™2) set
defines p0 = pathstart p
defines p!1 = pathfinish p
defines ¢0 = pathstart q
defines g1 = pathfinish q
defines a = p1$1
defines | = closed-segment p0 pl1
assumes simple-path p
assumes simple-path q
assumes path-image p N path-image ¢ = {q0, q1}
assumes p0$1 = 0 A p0$2 = 0 A p1$2 =0
assumes a > 0
assumes A = convex hull (path-image p U path-image q)
assumes {p0, p1} C frontier A
assumes p{0<..<1} C interior A
assumes path-image ¢ C A
assumes dz € p{0<..<1}. 282 > 0
assumes q0 = pl A ql = p0
shows | C frontier A Vx € path-image p U path-image q. 32 > 0
proof—
have 1: 1 C frontier A if Yz € path-image p U path-image q. 182 > 0
proof—
have Vz € path-image p U path-image q. = - (vector [0, 1]) > 0
by (simp add: ele2-basis(3) inner-axis that)
then have Vi € A. z - (vector [0, 1]) > 0
by (smt (verit, ccfv-threshold) convez-cut-aux’ assms(12) inner-commute
mem-Collect-eq subset-eq)
then have A C {z. z - (vector [0, 1]) > 0} by blast
moreover have frontier {z. = + ((vector [0, 1])::(real™2)) > 0} = {z. z -
(vector [0, 1]) = 0}
by (metis dual-order.refl frontier-halfspace-component-ge not-one-le-zero vec-
tor-2(2) zero-index)
moreover have | C {z. z - (vector [0, 1]) = 0}
proof—
have Vz € . 232 = 0 using assms(10) l-def segment-horizontal by presburger
thus ?thesis by (simp add: cart-eq-inner-azis ele2-basis(3) subset-eq)
qed
ultimately show Zthesis
by (smt (verit, best) Un-upperl assms(12) closed-segment-subset convez-convez-hull
hull-subset in-frontier-in-subset [-def p0-def p1-def pathfinish-in-path-image path-
start-in-path-image subset-eq)
qed
have 2: False if tht: = (Vz € (path-image p) U (path-image q). 82 > 0)
proof—

290

obtain z tr where z: tx € {0..1} A gtz =z A (Vz € path-image p. 32 <
2$2)
using ezxists-point-below-all[of p q] that
by (smt (verit, del-insts) tht assms(10) assms(12) assms(14) assms(7)
assms(8) image-iff pO-def p1-def path-image-def pathfinish-def pathstart-def sim-
ple-path-imp-path)
obtain y ty where y: ty € {0..1} A gty =y A (Vz € path-image p. y$2 >
z$2)
using exists-point-above-all[of p q]
by (smt (verit, del-insts) assms(10) assms(12) assms(14) assms(16) assms(7)
assms(8) image-iff pO-def pl-def path-image-def pathfinish-def pathstart-def sim-
ple-path-imp-path)

let 72Q) =
Aq'. simple-path ¢’ A path-image p N path-image ¢’ = {}
ANg 0=qtzANqg 1=qty
A path-image q' C path-image q
have *: A\¢’. ?Q ¢’ = Fulse
proof—
fix ¢’
assume *: 2Q) ¢’

have 2: simple-path q' by (simp add: *)
have 3: path-image p N path-image ¢’ = {} by (simp add: *)
have 6: V vepath-image p. pathstart ¢'$ 2 < v $ 2
by (simp add: x less-eq-real-def pathstart-def)
have 7: V vepath-image p. v $ 2 < pathfinish ¢’ $ 2 by (simp add: * pathfin-
ish-def y)
have 11: path-image ¢’ C A using * assms(15) by blast
have Vz € (path-image p) U (path-image q’). 282 > 0
using pocket-fill-line-int-auz (2)[of p, OF - 23 --6 7 - - - 11]
by (metis a-def assms(10) assms(11) assms(12) assms(13) assms(14)
assms(7) assms(8) compact-Un compact-convex-hull compact-simple-path-image con-
vex-convez-hull p0-def p1-def)
thus Fulse
by (smt (verit) * UnCI assms(10) p0-def pathstart-def pathstart-in-path-image

qed

have If: (Vt € {0..1}. (¢t =q0 V qt=ql) — (t =0V t=1))
using assms(8)
unfolding q0-def q1-def simple-path-def loop-free-def pathstart-def pathfin-
ish-def
by fastforce
have endpoints: q tx # q0 N qty # q0 N qtex # ql N qty # ql
by (metis z y assms(10) assms(17) order-less-le p0-def pathstart-in-path-image)

have tz-neg-ty: tr # ty using pathstart-in-path-image x y by fastforce
moreover have Fulse if tx < ty

291

proof—
have path-image p N path-image (subpath tx ty q) = {}
(is path-image p N path-image ?2q' = {})
proof—
have q0 ¢ path-image ?q' A q1 ¢ path-image ?q’
proof—
have {tz..ty} C {0..1} using z y by simp
then have (V¢ € {tz..ty}. (¢t =q0 Vgt =¢ql) — (t =0V t=1))
using If by blast
moreover have 0 ¢ {tz..ty} N 1 ¢ {tz..ty}
by (metis atLeastAtMost-iff dual-order.eq-iff endpoints pathfinish-def
pathstart-def q0-def q1-def = y)
moreover have path-image ?q' = q{tz..ty} by (simp add: path-image-subpath
that)
ultimately show ?thesis by fastforce
qged
thus ?thesis
by (smt (verit, best) Int-empty-right Int-insert-right-if0 assms(9) boolean-algebra-cancel.inf2
inf.absorb-iff1 path-image-subpath-subset y)
qed
thus ?thesis using *[of 7¢]
by (metis assms(8) tr-neg-ty path-image-subpath-subset pathfinish-def pathfin-
ish-subpath pathstart-def pathstart-subpath simple-path-subpath x y)
qed
moreover have Fulse if ty < tz
proof—
have path-image p N path-image (reversepath (subpath tx ty q)) = {}
(is path-image p N path-image ?q’ = {})
proof—
have q0 ¢ path-image ?q' A q1 ¢ path-image ?q’
proof—
have {ty..tz} C {0..1} using z y by simp
then have (Vt € {ty..tz}. (¢t =q0 V qt=ql) — (t =0V t=1))
using If by blast
moreover have 0 ¢ {ty..tz} N 1 ¢ {ty..tz}
by (metis atLeastAtMost-iff dual-order.eq-iff endpoints pathfinish-def
pathstart-def qO0-def ql1-def © y)
moreover have path-image 99’ = ¢*{ty..tx}
by (simp add: path-image-subpath reversepath-subpath that)
ultimately show ?thesis by fastforce
qed
thus ?thesis
by (smt (verit) Int-commute assms(9) inf.absorb-iff2 inf.assoc inf-bot-right
insert-disjoint(2) path-image-reversepath path-image-subpath-subset x y)
qed
thus ?thesis using *[of 7¢]
by (metis x assms(8) ta-neg-ty path-image-subpath-commute path-image-subpath-subset
pathfinish-def pathfinish-subpath pathstart-def pathstart-subpath reversepath-subpath
sitmple-path-subpath x y)

292

qed
ultimately show False by fastforce
qed
show [C frontier AV x € (path-image p) U (path-image q). 282 > 0
using 1 2 apply blast
using 1 2 by blast
qed

lemma pocket-fill-line-int-aux6:
fixes p q :: R-to-R2
defines p0 = pathstart p
defines pl1 = pathfinish p
defines g0 = pathstart q
defines g1 = pathfinish q
defines a = p1%1
assumes simple-path p
assumes simple-path q
assumes p0) = 0 A p1$2 = 0
assumes a > 0
assumes ¢0$1 € {0..a} A q0$2 = 0
assumes YV € path-image p. q1$2 > z$2
assumes YV € path-image p U path-image q. x$2 > 0
shows path-image p N path-image q # {}
proof—
let 211 = linepath p1 (vector [a, —1])
let 212 = linepath ((vector [a, —1])::(real”2)) (vector [0, —1])
let 213 = linepath ((vector [0, —1]):(real™2)) 0

let 7R’ = 2l +++ 22 +++ 23
let ?R = p +++ 7R’

have closed: closed-path ?R

proof—
have path 7R using assms(6) pI-def simple-path-imp-path by auto
moreover have pathstart R = pathstart p by simp
moreover have pathfinish ?R = pathfinish 213 by simp
moreover have pathstart p = 0 using assms(8) p0-def by fastforce
moreover have pathfinish 213 = 0 by simp
ultimately show ¢thesis unfolding closed-path-def by presburger

qed
have simple: simple-path ?R
proof—
have arc ?R’
proof—
let ?a = p1

let 2b = (vector [a, —1])::(real”2)
let ?c = (vector [0, —1])::(real”2)
let ?2d = 0::(real™2)

293

have arcs: arc 211 N arc ?12 A arc 213
by (metis arc-linepath assms(8) assms(9) vector-2(1) vector-2(2) verit-comp-simplifyl (1)
zero-index zero-neg-neg-one)

have 1213: path-image ?12 N path-image 213 = {pathfinish 212}
using linepath-int-corner|of ?b ?c 2d]
by (metis Int-commute closed-segment-commute linepath-int-corner path-image-linepath
pathfinish-linepath vector-2(2) zero-index zero-neg-neg-one)
have [112: path-image ?11 N path-image ?12 = {pathfinish 211}
using linepath-int-corner|of %a ?b ?c|] by (simp add: assms(8))
have 1113: path-image 211 N path-image 213 = {}
using linepath-int-vertical[of ?a 2b ¢ 2d] a-def assms(9) linepath-int-vertical
by auto

have path-image 712 N path-image 218 = {pathfinish 212}
using [2]3 by blast
moreover have sf-23: pathfinish ?12 = pathstart 213 by simp
ultimately have arc (212 +++ 913)
by (metis arc-join-eq-alt arcs)
moreover have path-image ?11 N path-image (212 +++ ?13) = {pathfinish
211}
using 1112 (113
by (metis (no-types, lifting) Int-Un-distrib sf-23 insert-is-Un path-image-join)
moreover have pathfinish 211 = pathstart (212 +++ ?13) by simp
ultimately show arc (211 +++ %12 +++ ?13)
by (metis arc-join-eg-alt arcs)
qed
moreover have loop-free p using assms(6) simple-path-def by blast
moreover have path-image ?R’ N path-image p = {p0, p1}
proof—
have path-image 211 N path-image p = {p1}
proof—
have Vz € path-image p. 282 > 0 by (simp add: assms(12))
moreover have Vz € path-image ?11. 232 < 0 using a-def assms(8)
segment-vertical by force
ultimately have V x € path-image p N path-image ?11. 2$2 = 0 by fastforce
moreover have Vz € path-image ?l1. 2$2 = 0 — z = pl
by (metis (mono-tags, opaque-lifting) a-def assms(8) exhaust-2 path-image-linepath
segment-vertical vec-eq-iff vector-2(1))
ultimately have Vz € path-image p N path-image ?l1. x = p1 by fast
moreover have p! € path-image ?l1 N\ pl € path-image p using pI-def
by auto
ultimately show ?thesis by blast
qed
moreover have path-image 212 N path-image p = {}
by (smt (verit, best) segment-horizontal assms(12) UnCI disjoint-iff path-image-linepath
vector-2(2))
moreover have path-image 713 N path-image p = {p0}
proof—

294

have Vz € path-image p. 282 > 0 by (simp add: assms(12))
moreover have Vz € path-image ?13. £32 < 0 using a-def assms(8)
segment-vertical by force
ultimately have V x € path-image p N path-image ?13. 2$2 = 0 by fastforce
moreover have Vz € path-image ?13. 282 = 0 — z = p0
by (metis (no-types, opaque-lifting) assms(8) exhaust-2 path-image-linepath
segment-vertical vec-eq-iff vector-2(1) zero-index)
ultimately have Vz € path-image p N path-image ?13. x = p0 by fast
moreover have p0 € path-image ?13 N p0 € path-image p using assms(8)
p0-def by fastforce
ultimately show ?thesis by blast
qed
ultimately show ?thesis
by (smt (verit, del-insts) Int-Un-distrib Int-commute Un-assoc Un-insert-right
insert-is-Un path-image-join pathfinish-linepath pathstart-join pathstart-linepath)
qed
moreover have arc p
using closed-path-def arc-distinct-ends assms(6) calculation(1) closed p1-def
simple-path-imp-arc
by force
ultimately show ?Zthesis
by (metis (no-types, opaque-lifting) Int-commute closed-path-def closed dual-order.refl
linepath-0" p0-def p1-def pathfinish-join pathstart-def pathstart-join simple-path-join-loop-eq)
qed

have inside-outside: inside-outside ?R (path-inside ?R) (path-outside ?R)
using closed simple Jordan-inside-outside-real2
by (simp add: closed-path-def inside-outside-def path-inside-def path-outside-def)

have interior-frontier: path-inside YR = interior (path-inside ?R)
A frontier (path-inside ?R) = path-image 7R
using inside-outside interior-open unfolding inside-outside-def by auto

have R-y-q1: Vz € path-image ?R. 182 < q1$2
proof—
have *: Vz € path-image p. ©$2 < q132 using assms(11) by blast
moreover have Vz € path-image ?11. 2$2 < q1$2
using a-def assms(8) * pl-def pathfinish-in-path-image segment-vertical by
fastforce
moreover have Vz € path-image ?12. 282 < q1$2
using assms(8) * pl-def pathfinish-in-path-image segment-horizontal by fast-
force
moreover have Vz € path-image ?13. 2$2 < q1$2
using assms(8) * p1-def pathfinish-in-path-image segment-vertical by fastforce
ultimately show ?thesis by (metis not-in-path-image-join)
qed
have R-y-0: Vz € path-image ?R. 282 > —1
proof—
have Vz € path-image ?11. 232 > —1 using a-def assms(8) segment-vertical

295

by fastforce
moreover have Vx € path-image ?12. £$2 > —1 using segment-horizontal by
auto
moreover have Vz € path-image ?13. 282 > —1 using segment-vertical by
auto
moreover have Vx € path-image p. 282 > —1 using assms(12) by force
ultimately show ?thesis by (metis not-in-path-image-join)
qed

have %thesis if p0 € path-image q V pl € path-image q using p0-def p1-def that
by blast
moreover have ?thesis if p0 ¢ path-image ¢ A pl ¢ path-image ¢ N q0 ¢
path-image p
proof—
have ¢-int-11: path-image g N path-image 211 = {}
proof—
have Yz € path-image q. 282 > 0 by (simp add: assms(12))
moreover have Vz € path-image ?l1. 2$2 = 0 — x = pl
by (metis (mono-tags, opaque-lifting) a-def assms(8) exhaust-2 path-image-linepath
segment-vertical vec-eq-iff vector-2(1))
ultimately show ?thesis using that a-def assms(8) segment-vertical by
fastforce
qed
moreover have g¢-int-12: path-image q¢ N path-image 212 = {}
by (smt (verit, ccfo-threshold) UnCI assms(12) disjoint-iff path-image-linepath
segment-horizontal vector-2(2))
moreover have ¢-int-13: path-image ¢ N path-image 213 = {}
proof—
have Vx € path-image q. 282 > 0 by (simp add: assms(12))
moreover have Vx € path-image ?13. 282 = 0 — z = p0
by (metis (no-types, opaque-lifting) assms(8) exhaust-2 path-image-linepath
segment-vertical vec-eq-iff vector-2(1) zero-inder)
ultimately show ?thesis using that a-def assms(8) segment-vertical by
fastforce
qed
ultimately have q0-notin-R: q0 ¢ path-image ?R
using that by (simp add: disjoint-iff not-in-path-image-join pathstart-in-path-image
q0-def)

have path-image q N path-image R # {}
proof—
have q0 € path-inside ?R
proof—
let e = (vector [q0$1, —1])::(real”2)
let 2d1 = (vector [a, —1])::(real”2)
let 2d2 = (vector [0, —1]):(real™2)

have 0 < q0$1 A q0$1 < a
by (smt (verit) a-def assms(10) assms(8) atLeastAtMost-iff exhaust-2

296

linorder-not-less pathstart-in-path-image q0-def that vec-eg-iff zero-index)

then have ¢0%1 > 0 A a — q0%1 > 0 by simp

then have min (min (¢0%$1) (a — ¢0$1)) 1 > 0 (is %’ > 0) by linarith

then have 0 < %'/2 N %/'/2 < 1 A %'/2 < q0%1 N %'/2 < a — q0$1
by argo

then obtain ¢ where e: 0 <eAe <1 Ae< q0%1 Ne < a— q0$1 by
blast

moreover have ?e € frontier (path-inside ?R)

by (smt (verit, del-insts) UnCI <0 < g0 $ 1 N0 < a — ¢g0 $ 1) in-

terior-frontier p1-def path-image-join path-image-linepath pathfinish-linepath path-
start-join pathstart-linepath segment-horizontal vector-2(1) vector-2(2))

ultimately obtain int-p where int-p: int-p € ball ?e € N path-inside ?R

by (meson inside-outside frontier-straddle mem-ball Intl)

have int-p-z: int-p$1 > 0 A int-p$1 < a
proof—
have int-p$1 > 0
proof(rule ccontr)
assume — int-p$1 > 0
moreover have dist (int-p$1) (¢0%1) < q0$1
by (smt (verit) IntE e dist-commute dist-vec-nth-le int-p mem-ball
vector-2(1))
ultimately show Fulse using dist-real-def by force
qed
moreover have int-p$1 < a
proof(rule ccontr)
assume — nt-p$1 < a
moreover have dist (int-p$1) (¢0%1) < a — q0$1
by (smt (verit) IntE e dist-commute dist-vec-nth-le int-p mem-ball
vector-2(1))
ultimately show Fulse using dist-real-def by force

qed

ultimately show ¢thesis by blast
qed
have int-p-y: int-p$2 > —1 A int-p$2 < 0
proof—

have int-p$2 > —1
proof (rule ccontr)
assume *: - int-p$2 > —1
then have int-p$2 < —1 by simp
let ?e2’ = (vector [0, —1])::(real”2)
let ?ray = Ad. int-p + d xr %e2’
have - (3d>0. ?ray d € path-image ?R)
proof—
have Vd>0. (?ray d)$2 < —1 using x by auto
thus ?thesis using R-y-0 by force
qed
moreover have bounded (path-inside ?R) using bounded-finite-inside
simple by blast

297

moreover have ?e2’# 0 by (metis vector-2(2) zero-index zero-neg-neg-one)
ultimately have int-p ¢ path-inside 7R
using ray-to-frontier|of path-inside ?R)] interior-frontier by metis
thus Fulse using int-p by blast
qed
moreover have int-p$2 < 0
proof(rule ccontr)
assume — int-p$2 < 0
then have dist int-p 7e > 1
by (smt (verit, del-insts) dist-real-def dist-vec-nth-le vector-2(2))
thus False by (smt (verit, del-insts) IntD1 e dist-commute int-p mem-ball)
qed
ultimately show ¢thesis by blast
qed

let ?int-l = linepath int-p q0

have path-image ?int-1 N path-image 711 = {}
using <0 < q0 $ 1 A q0 $ 1 < a> a-def int-p-z linepath-int-columns by
auto
moreover have path-image ?int-l N path-image 212 = {}
by (smt (verit, best) assms(10) disjoint-iff int-p-y linepath-int-rows vec-
tor-2(2))
moreover have path-image ?int-l N path-image 713 = {}
by (smt (verit, del-insts) e disjoint-iff int-p-z linepath-int-columns vec-
tor-2(1) zero-index)
moreover have path-image ?int-l N path-image p = {}
proof—
have Vit € {0..1}. (¢int-11)$2 =0 — t =1
unfolding linepath-def using assms(10) int-p-y by force
then have Vz € path-image ?int-1. 82 = 0 — z = q0
unfolding path-image-def using linepath-1' by fastforce
moreover have Vx € path-image p. 282 > 0 by (simp add: assms(12))
moreover have Vx € path-image ?int-1. 32 < 0
by (smt (verit) assms(10) int-p-y linepath-bound-2(2))
ultimately show ?thesis using that by fastforce
qged
ultimately have path-image %int-l N path-image R = {}
by (simp add: disjoint-iff not-in-path-image-join)

then have path-image ?%int-l C path-inside ?R V path-image ?int-1 C
path-outside ¢R
by (metis IntD2 Intl convex-imp-path-connected convezr-segment(1) empty-iff
int-p interior-frontier path-connected-not-frontier-subset path-image-linepath path-
start-in-path-image pathstart-linepath)
moreover have ?%int-l 0 = int-p A int-p € path-inside ?R
using int-p by (simp add: linepath-0")
ultimately have path-image ?int-l C path-inside ?R
using inside-outside-def local.inside-outside by auto

298

thus ?thesis by auto
qed
then have ¢0 € — (path-outside ?R)
by (metis Compll IntI equalsOD inside-Int-outside path-inside-def path-outside-def)
moreover have ¢! € path-outside 7R
proof—
let %e2 = (vector [0, 1])::(real™2)
let ?ray = A\d. q1 + d xg %e2
have — (3d>0. ?ray d € path-image ?R)
proof—
have V d>0. (?ray d)$2 > q1$2 by simp
thus ?thesis using R-y-q1 by fastforce
qged
moreover have bounded (path-inside ?R) using bounded-finite-inside simple
by blast
moreover have %e2 # () using ele2-basis(4) by force
ultimately have ¢! ¢ path-inside ?R
using ray-to-frontier|of path-inside ?R)] interior-frontier by metis
moreover have ¢! ¢ path-image ?R using R-y-q1 by blast
ultimately show ?thesis using inside-outside unfolding inside-outside-def
by blast
qed
ultimately have path-image ¢ N — (path-outside ?R) # {}
A path-image g N (path-outside ?R) # {}
using q0-def q1-def by blast
moreover have path-connected (path-image q)
using assms(7) path-connected-path-image simple-path-def by blast
moreover have path-image R = frontier (path-outside ?R)
using inside-outside unfolding inside-outside-def p0-def path-inside-def by
blast
ultimately show ?thesis by (metis Diff-eq Diff-eq-empty-iff path-connected-not-frontier-subset)
qed
thus ?thesis by (meson g-int-11 g-int-12 q-int-13 disjoint-iff not-in-path-image-join)
qed
ultimately show ?thesis using q0-def by blast
qed

lemma pocket-fill-line-int-aux7:
fixes p q :: R-to-R2
fixes A :: (real™2) set
defines p0 = pathstart p
defines p!1 = pathfinish p
defines g0 = pathstart q
defines g1 = pathfinish q
defines a = p1$1
defines | = open-segment p0 pl
assumes simple-path p
assumes simple-path q
assumes path-image p N path-image ¢ = {q0, q1}

299

assumes p0$1 = 0 A p0$2 = 0 A p1$2 =0
assumes a > 0
assumes A = convex hull (path-image p U path-image q)
assumes {p0, pl} C frontier A
assumes p{0<..<1} C interior A
assumes Jz € p{0<..<1}. 282 > 0
assumes q0 = pl A ql = p0
shows path-image ¢ N1 = {} closed-segment p0 p1 C frontier A
proof—
have 1: path-image p N path-image ¢ = {pathstart q, pathfinish q}
by (simp add: assms(9) q0-def q1-def)
have 2: pathstart p $ 1 = 0 A pathstart p $ 2 = 0 A pathfinishp $ 2 = 0
using assms(10) p0-def p1-def by blast
have 3: 0 < pathfinish p $ 1 using a-def assms(11) pI-def by auto
have /: A = convez hull (path-image p U path-image q) by (simp add: assms(12))
have 5: {pathstart p, pathfinish p} C frontier A using assms(13) p0-def p1-def
by blast
have 6: p ‘ {0<..<1} C interior A using assms(14) by blast
have 7: path-image ¢ C A using assms(12) hull-subset by force
have 8: 3z € p{0<..<1}. 282 > 0 using assms(15) by blast
have 9: pathstart ¢ = pathfinish p N\ pathfinish ¢ = pathstart p
using assms(16) p0-def p1-def q0-def q1-def by fastforce
have x: Vz € (path-image p) U (path-image q). 282 > 0
using pocket-fill-line-int-auz5(2)[OF assms(7) assms(8) 128 456 78 9] by
blast

show closed-segment p0 p1 C frontier A
using pocket-fill-line-int-auz5(1)[OF assms(7) assms(8) 123 45678 9]
unfolding [-def pO-def p1-def by blast
show path-image ¢ N 1 = {}
proof (rule ccontr)
assume - path-image ¢ N | = {}
then obtain z tx where z: tz € {0..1} ANqtz =z ANz €
by (metis (no-types, lifting) disjoint-iff imageE path-image-def)
obtain y ty where y: ty € {0..1} A gty = y A (Vo € path-image p. y$2 >
z$2)
using ezxists-point-above-all[of p q]
by (smt (verit, del-insts) 4 6 8 assms(10) assms(7) assms(8) pO-def p1-def
pathfinish-def pathstart-def simple-path-def image-iff path-image-def)

have If: WVt € {0..1}. (¢t =q0V qt=4ql) — (t=0V it=1))

using assms(8)

unfolding q0-def q1-def simple-path-def loop-free-def pathstart-def pathfin-
ish-def

by fastforce
have endpoints: qtx # q0 N qty # q0 N qtr # ql N qty # ql N tx # ty
proof—

have (q ty)$2 > 0 by (metis assms(10) pO-def pathstart-in-path-image y)

moreover have (¢ tx)$2 = 0

300

proof—
have ¢ tx € closed-segment q0 ql
using assms(16) l-def open-closed-segment open-segment-commute z by
blast
thus ?thesis by (simp add: assms(10) assms(16) segment-horizontal)
qed
moreover have g0 ¢ open-segment g0 q1 N ql ¢ open-segment q0 q1
by (simp add: open-segment-def)
ultimately show ?Zthesis
using assms(10) assms(16) I-def open-segment-commute x by auto
qed

let 2Q) =
Aq'. simple-path ¢’ A path-image p N path-image ¢’ = {}
ANg' 0=qtzANqg 1=qty
A path-image q' C path-image q
have xx: \¢'. Q) ¢' = False
proof—
fix ¢’
assume **: 2(Q) q’
have 1: simple-path ¢’ by (simp add: xx)
have 2: pathstart p = 0 A pathfinish p $ 2 = 0
by (metis (mono-tags, lifting) assms(10) exhaust-2 p0-def p1-def vec-eq-iff
zero-index)
have 3: 0 < pathfinish p $ 1 using a-def assms(11) p1-def by blast
have 4: pathstart ¢’ $ 1 € {0..pathfinish p $ 1} A pathstart ¢’ $ 2 = 0
proof—
have ¢’ 0 € closed-segment p0 pl1 using ** l-def open-closed-segment x by
auto
thus ?thesis
by (smt (23) 2 a-def assms(11) atLeastAtMost-iff atLeastatMost-empty
p0-def p1-def pathstart-def pathstart-subpath segment-horizontal zero-index)
qed
have 5: Vz€path-image p. z $ 2 < pathfinish ¢’ $ 2 by (simp add: *x*
pathfinish-def y)
have 6: V z€path-image p U path-image q'. 0 < z $ 2 using * x* by blast
have path-image p N path-image ¢' # {}
using pocket-fill-line-int-auz6[OF assms(7) 1 2 8 4 5 6] by simp
thus Fulse using *x by blast
qed

have Fulse if tz < ty
proof—
let ?q’ = subpath tx ty q
have q0 ¢ path-image ?q' A q1 ¢ path-image ?q’
proof—
have {tz..ty} C {0..1} using z y by simp
then have (V¢ € {tz..ty}. (¢t =q0 Vgt =9ql) — (t=0V t=1))
using If by blast

301

moreover have 0 ¢ {tz..ty} N 1 ¢ {tz..ty}
by (metis atLeastAtMost-iff dual-order.eq-iff endpoints pathfinish-def
pathstart-def q0-def q1-def = y)
moreover have path-image ?q' = ¢{tz..ty} by (simp add: path-image-subpath
that)
ultimately show ?thesis by fastforce
qed
then have ?Q ?q’
by (smt (verit, best) assms(8) assms(9) disjoint-insert(1) endpoints
inf.absorb-iff1 inf-bot-right inf-left-commute path-image-subpath-subset pathfinish-def
pathfinish-subpath pathstart-def pathstart-subpath simple-path-subpath x y)
thus Fulse using *x by auto
qed
moreover have Fulse if tx > ty
proof—
let ?q’ = reversepath (subpath ty tz q)
have ¢0 ¢ path-image ?q' N\ q1 ¢ path-image ?q’
proof—
have {ty..tz} C {0..1} using z y by simp
then have (V¢ € {ty..tz}. (¢t =q0 Vgt=gql) — (t=0Vit=1))
using If by blast
moreover have 0 ¢ {ty..tx} A 1 ¢ {ty..tz}
by (metis atLeastAtMost-iff dual-order.eq-iff endpoints pathfinish-def
pathstart-def q0-def q1-def = y)
moreover have path-image ?q' = ¢{ty..tx} by (simp add: path-image-subpath
that)
ultimately show ?thesis by fastforce
qed
then have ?Q ?q’
by (smt (verit) assms(8) assms(9) endpoints inf.absorb-iff2 inf.assoc
inf-bot-left insert-disjoint(2) path-image-subpath-subset pathstart-def pathstart-subpath
reversepath-def reversepath-subpath simple-path-subpath y)
thus Fulse using *x by blast
qed
ultimately show Fulse using endpoints by linarith
qed
qed

lemma frontier-injective-linear-image:

fixes [:: 'a::euclidean-space = 'a::euclidean-space

assumes [linear f inj f

shows f ¢ (frontier S) = frontier (f ©5)

using interior-injective-linear-image closure-injective-linear-image frontier-def
assms

by (metis image-set-diff)

lemma pocket-fill-line-int-aux8:
fixes p q :: R-to-R2

302

fixes A :: (real™2) set

defines p0 = pathstart p

defines p!1 = pathfinish p

defines ¢0 = pathstart q

defines g1 = pathfinish q

defines a = p1$1

defines | = open-segment p0 p1

assumes simple-path p

assumes simple-path q

assumes path-image p N path-image ¢ = {q0, q1}

assumes p0%1 = 0 A p0$2 = 0 A p1$2 =0

assumes a > 0

assumes A = convex hull (path-image p U path-image q)

assumes {p0, pl} C frontier A

assumes p{0<..<1} C interior A

assumes q0 = pl N ql = p0

shows path-image ¢ N1 = {} Al C frontier A
proof—

have ?thesis if ex: 3z € p{0<..<1}. 2$2 > 0

using ez a-def assms dual-order.trans l-def p0-def p1-def pocket-fill-line-int-auxz7(1)
pocket-fill-line-int-aux7(2) q0-def q1-def segment-open-subset-closed that

by (smt (verit) a-def assms dual-order.trans I-def p0-def p1-def pocket-fill-line-int-aux7(1)
pocket-fill-line-int-aux7(2) q0-def q1-def segment-open-subset-closed that)
moreover have ?thesis if = (3z € p{0<..<1}. 282 > 0)
proof—
let ?M = (vector [vector [1, 0], vector [0, —1]])::(real”272)
let 2f = Av. 2M *xv v
let %9 = (A\v. vector [v$1, —v$2))::(real™2 = real™2)
define p’ where p' = ?f o p
define ¢’ where ¢’ = 9f o ¢
define A’ where A’ = ?7f‘A

have inj: inj ?f and f-eq-g: ?f = g
using flip-function(1) apply blast
using flip-function(2) by blast

have /: pathstart p’ $ 1 = 0 A pathstart p’$ 2 = 0 A pathfinish p’ $ 2 = 0
by (smt (verit, best) assms(10) f-eq-g o-apply p'-def p0-def p1-def pathfinish-def
pathstart-def vector-2(1) vector-2(2))
have startfinish: pathstart p’ = pathstart p A\ pathfinish p’ = pathfinish p
by (metis (mono-tags, opaque-lifting) 4 assms(10) exhaust-2 f-eq-g o-apply
p’-def p0-def p1-def pathfinish-def vec-eq-iff vector-2(1))

have 1: simple-path p’ using inj by (simp add: assms(7) simple-path-linear-image-eq

p'-def)
have 2: simple-path ¢’ using inj by (simp add: assms(8) simple-path-linear-image-eq

/
q'-def)
have 3: path-image p’ N path-image q' = {pathstart q', pathfinish q'}

303

proof—
have path-image p’ N path-image ¢’ = 2f(path-image p N path-image q)
unfolding p’-def q’-def by (simp add: image-Int inj path-image-compose)
also have ... = 2f{q0, q1} using assms(9) by presburger
finally show ?thesis
by (simp add: startfinish pathfinish-compose pathstart-compose q'-def q0-def
q1-def)
qed
have 5: 0 < pathfinish p’ $ 1
by (metis (mono-tags, lifting) a-def assms(11) f-eq-g o-apply p’-def p1-def
pathfinish-def vector-2(1))
have 6: A’ = convex hull (path-image p’ U path-image ¢')
proof—
have path-image (?f o p) = ?f{(path-image p) using path-image-compose by
blast
moreover have path-image (?f o q) = ?f(path-image q) using path-image-compose
by blast
moreover have ?f‘(path-image p U path-image q) = ?f‘(path-image p) U
?f(path-image q)
by blast
moreover have A’ = convex hull (?f‘(path-image p U path-image q))
by (simp add: assms(12) conver-hull-linear-image A’-def)
ultimately show ¢thesis using p’-def q’-def A’-def by argo
qed
have 7: {pathstart p’, pathfinish p’} C frontier A’
using frontier-injective-linear-image
by (smt (verit, best) 3 A'-def assms(13) assms(15) assms(9) doubleton-eq-iff
image-Int inj inj-image-subset-iff matriz-vector-mul-linear p’-def p0-def p1-def path-image-linear-image
pathfinish-compose pathstart-compose q’-def q0-def q1-def)
have 8: p’{0<..<1} C interior A’
proof—
have ?f‘(interior A) = interior A’ by (simp add: A’-def inj interior-injective-linear-image)
thus ?thesis using assms(14) p’-def by auto
qed
have 9: 3z € p'{0<..<1}. 282 > 0
proof—
have 3z € p{0<..<1}. 282 < 0
by (metis that all-not-in-conv bot.extremum greater ThanLess Than-subseteq-greaterThanLess Than
image-is-empty verit-comp-simplifyl (3) zero-less-one)
then obtain z where z € p{0<..<1} A 282 < 0 by presburger
moreover then have (?g 2)$2 > 0 by fastforce
ultimately show ?thesis by (smt (verit, ccfo-threshold) f-eq-g image-iff
o-apply p'-def)
qed
have 10: pathstart q' = pathfinish p’ A pathfinish q' = pathstart p’
by (metis (mono-tags, lifting) assms(15) o-apply p’-def p0-def p1-def pathfin-
ish-def pathstart-def q'-def q0-def q1-def)

have path-image q' N open-segment (pathstart p') (pathfinish p’) = {}

304

using pocket-fill-line-int-auz7(1)[OF 1 2 8 4 5 6 7 8 9 10] by blast
then have path-image ¢’ N | = {} using startfinish unfolding [-def p0-def
pl-def by simp
moreover have on-l: Az. x € | = gz € 1
proof—
fix z :: real”2
assume z € [
moreover then have z$2 = 0 by (metis assms(6,10) segment-horizontal
open-closed-segment)
moreover then have (?¢g 2)$2 = 0 by simp
moreover have (?g 2)$1 = 231 by simp
ultimately show ?g z € [by (smt (verit, ccfo-SIG) exhaust-2 vec-eq-iff)
qed
ultimately have path-image ¢ N 1 = {}
by (metis (no-types, lifting) disjoint-iff f-eq-g image-eql path-image-compose
q'-def)
moreover have | C frontier A
proof—
have pathstart p’ = pathstart p A pathfinish p’ = pathfinish p
using startfinish by auto
then have ?2f‘ C frontier A’
using pocket-fill-line-int-auz7(2)[OF 1 2 8 4 5 6 7 8 9 10] on-l f-eq-g l-def
pO-def p1-def segment-open-subset-closed
by force
thus ?thesis
by (metis (no-types, lifting) A’-def frontier-injective-linear-image inj inj-image-subset-iff
matriz-vector-mul-linear)
qed
ultimately show ?thesis by fast
qed
ultimately show ¢thesis by argo
qed

lemma simple-path-linear-image:
assumes simple-path p
assumes inj f A bounded-linear f
shows simple-path (f o p)
proof—
have continuous-on {z. True} f using assms(2) linear-continuous-on by blast
then have 1: path (f o p)
by (metis Collect-cong UNIV-I assms(1) continuous-on-subset path-continuous-image
simple-path-imp-path top-empty-eq top-greatest top-set-def)

have inj-on p {0<..<1} by (simp add: assms(1) simple-path-inj-on)
then have inj-on (f o p) {0<..<1} by (meson assms(2) comp-inj-on inj-on-subset
top-greatest)
then have loop-free (f o p)
by (metis (mono-tags, lifting) assms(1) assms(2) comp-apply inj-eq loop-free-def
sitmple-path-def)

305

thus ?thesis using 1 unfolding simple-path-def by blast
qed

lemma vts-interior:

fixes vts

defines p = make-polygonal-path vts

assumes convex H

assumes Vj € {0<..<length vts — 1}. vtslj ¢ frontier H

assumes loop-free p

assumes path-image p C H

assumes length vts > 8

shows p{0<..<1} C interior H
proof(rule subsetl)

fix x assume *: z € p{0<..<1}

then obtain ¢ where ¢: z = p t A t € {0<..<1} by blast

then have z # p 0 A x # p 1 using assms(4) unfolding loop-free-def by
fastforce

then have z-neq: © # hd vts N x # last vts

by (metis assms(4) constant-linepath-is-not-loop-free hd-conv-nth last-conv-nth

make-polygonal-path.simps(1) p-def pathfinish-def pathstart-def polygon-pathfinish
polygon-pathstart)

have z € interior H if xx: 3i<length vts. © = vts!i
proof—
obtain ¢ where i: 7 < length vts N = = vtsli using *x by blast
then have i # 0 A i # length vts — 1
by (metis z-neq gr-implies-not0 hd-conv-nth last-conv-nth list.size(3))
then have i € {0<..<length vts — 1} using i by fastforce
then have vtsli ¢ frontier H using assms(3) by blast
then have vtsli € interior H
by (metis DiffI assms(5) closure-subset frontier-def i nth-mem p-def subsetD
vertices-on-path-image)
thus ?thesis using assms(3) i by blast
qed
moreover have z € interior H if xx: = (Fi<length vts. x = vtsli)
proof—
have z € path-image p using * unfolding path-image-def by force
then obtain ¢ where i: x € path-image (linepath (vtsli) (ves!(i+1))) A i <
length vts — 1
using make-polygonal-path-image-property|of vts z] assms(6) unfolding p-def
by auto
moreover then have z # visli A x # visl(i+1) using *x by force
ultimately have = € open-segment (vtsli) (vts!(i+1)) by (simp add: open-segment-def)
moreover then have z € rel-interior (path-image (linepath (vtsli) (vts!(i+1))))
by (metis empty-iff open-segment-idem path-image-linepath rel-interior-closed-segment)
moreover have interior-nonempty: vtsli € interior H V vts!(i+1) € interior
H
proof (rule ccontr)
assume - (vtsli € interior H V vtsl(i+1) € interior H)

306

then have vtsli € frontier H A vtsl(i+1) € frontier H
using assms(5) closure-subset frontier-def i p-def vertices-on-path-image by
fastforce
thus Fulse
by (metis assms(3) i Suc-1 Suc-eg-plusl add.commute add.right-neutral
assms(6) eval-nat-numeral(3) greaterThanLess Than-iff less-diff-conv linorder-not-le
not-gr-zero not-less-eq-eq)
qed
ultimately have z € rel-interior H
by (smt (verit, ccfv-SIG) add-diff-inverse-nat assms(2) assms(5) convez-same-rel-interior-closure-straddle
empty-iff © in-interior-closure-convex-segment less-diff-conv less-nat-zero-code nat-diff-split
nth-mem open-segment-commute p-def rel-interior-nonempty-interior subset-eq trans-less-add2
vertices-on-path-image)
moreover have interior H # {} using interior-nonempty by blast
ultimately show ?thesis using rel-interior-nonempty-interior by blast
qged
ultimately show z € interior H by blast
qed

lemma pocket-fill-line-int-0:
assumes polygon-of r vts
defines H = convex hull (set vts)
assumes 2 < i A 7 < length vts — 1
defines a = hd vts
defines b = vtsli
assumes {a, b} C frontier H
assumes Vj € {0<..<i}. vtslj ¢ frontier H
assumes a = 0
shows path-image (linepath a b) N path-image r = {a, b}
path-image (linepath a b) C frontier H
proof—
let 2z = (b — a)
let e = norm (b — a) xr ((vector [1, 0])::(real”2))
have norm %z = norm %e by (simp add: ele2-basis(1))
then obtain f where f: orthogonal-transformation f A det(matriz f) = 1 A f
r = %e
using rotation-exists by (metis two-le-card)

have bij: bij f A linear f
using f orthogonal-transformation-bij orthogonal-transformation-def by blast

let ?p-vts = take (i + 1) vts

let ?q-vts = drop i vts

let ?p = make-polygonal-path ?p-vts
let ?q = make-polygonal-path ?q-vts

let ?p’' = f o ?p

let 2¢' = f o ?q
let H’ = convex hull (path-image ?p’ U path-image %q")

307

have vts-split: vts = ?p-vts Q (tl ?q-vts)
by (metis Suc-eq-plus1 append-take-drop-id drop-Suc tl-drop)

have simple-path r using assms(1) unfolding polygon-of-def polygon-def by
blast

then have a-neg-b: a # b

using simple-polygonal-path-vts-distinct|of vts)

by (metis (mono-tags, lifting) a-def assms(1) assms(3) b-def bot-nat-0.extremum-strict
butlast-conv-take constant-linepath-is-not-loop-free distinct-nth-eq-iff dual-order.strict-trans2
hd-conv-nth length-butlast make-polygonal-path.simps(1) nat-neg-iff nth-take poly-
gon-of-def pos2 simple-path-def)

have H-r: H = convez hull (path-image 1)
by (metis (no-types, lifting) H-def Un-subset-iff assms(1) convex-convex-hull
convez-hull-eq convez-hull-of-polygon-is-convex-hull-of-vts hull-mono hull-subset or-
der-antisym-conv polygon-of-def vertices-on-path-image)
moreover have r-union: path-image r = (path-image ?p) U (path-image ?q)
proof—
let 96 =17+ 1
let %z = ((2ureal) ~ (2 —1)— 1)/ 2 " (% — 1)
have %z € {0..1} A path-image ?p = r{0..%x} A path-image ?q = r{%z..1}
using vts-split-path-image[of v vts ?p ?p-vts 2q ?q-vts ?i - 2]
by (smt (verit, ccfv-SIG) add.commute add-diff-cancel-left’ assms(1) assms(3)
atLeastAtMost-iff atLeastatMost-empty’ image-empty le-add1 less-diff-conv path-image-nonempty
polygon-of-def)
thus ?thesis by (metis atLeastAtMost-iff image-Un ivl-disj-un-two-touch(4)
path-image-def)
qed
moreover have f‘H = convez hull (f(path-image T))
using bij by (simp add: calculation(1) convex-hull-linear-image)
ultimately have H-image: H’ = f‘H by (simp add: image-Un path-image-compose)

have p-image: path-image ?p’ = f(path-image ?p) using path-image-compose by
blast

have g¢-image: path-image ?q' = f‘(path-image ?q) using path-image-compose by
blast

have pathstart-p: pathstart ?p = a
by (metis Suc-eq-plusl a-def assms(3) gr-implies-not0 hd-conv-nth length-tl

less-Suc-eq-0-disj list.sel(2) list.size(3) nth-take polygon-pathstart take-eq-Nil)

have pathfinish-p: pathfinish ¢p = b

by (metis (no-types, lifting) H-def H-r add-diff-cancel-right’ assms(83) b-def con-
vex-hull-eq-empty length-take less-add-one less-diff-conv min.absorb4 nth-append
one-neg-zero path-image-nonempty polygon-pathfinish set-empty take-eq-Nil vts-split
zero-eq-add-iff-both-eq-0)

then have pathstart-q: pathstart ?q = b using assms(3) b-def polygon-pathstart
by force

308

have pathstart-p”. pathstart ?p’ = f a using pathstart-compose pathstart-p by
blast

have pathfinish-p’: pathfinish ?p’ = f b using pathfinish-compose pathfinish-p by
blast

have pathstart-q”: pathstart ?q’ = f b using pathstart-compose pathstart-q by
blast

have sublist ?p-vts vts by auto
then have If-p: loop-free ?p
by (metis add.commute assms(1) assms(3) less-diff-conv less-imp-le-nat poly-
gon-def polygon-of-def simple-path-def take-i-is-loop-free trans-le-add2)
then have simple-p: simple-path ?p
using assms unfolding polygon-of-def
by (meson make-polygonal-path-gives-path simple-path-def)

have sublist ?q-vts vts by auto
then have If-q: loop-free ?q
by (metis (no-types, lifting) Suc-1 Suc-diff-Suc assms(1) assms(3) diff-is-0-eq
drop-i-is-loop-free less-Suc-eq-le less-zeroE linorder-not-less polygon-def polygon-of-def
simple-path-def)
then have simple-q: simple-path ?q
using assms unfolding polygon-of-def
by (meson make-polygonal-path-gives-path simple-path-def)

have bounded-linear: bounded-linear f using bij linear-conv-bounded-linear by
blast
have 1: simple-path ?p’
using simple-p simple-path-linear-image bij bij-is-inj bounded-linear
by blast
have 2: simple-path ?q’
using simple-q simple-path-linear-image bij bij-is-inj bounded-linear
by blast
have 3: path-image ?p’ N path-image ?q’ = {pathstart ?q’, pathfinish ?q'}
proof—
have path-image ?p N path-image ?q C {pathstart ?q, pathfinish ?2q}
using loop-free-split-int[of T vts ?p-vts i ?q-vts ?p ?q]
by (smt (verit, ccfo-threshold) a-def add-diff-cancel-right’ assms(1) assms(3)
constant-linepath-is-not-loop-free drop-eq-Nil have-wraparound-vertex hd-conv-nth
insert-commute last-conv-nth last-drop last-snoc le-add2 less-diff-conv lf-q linorder-not-less
loop-free-split-int make-polygonal-path.simps(1) pathstart-p polygon-def polygon-of-def
polygon-pathfinish simple-path-def)
moreover have pathstart ?q € path-image ?q N pathfinish ?q € path-image ?q
by blast
moreover have pathstart ?q € path-image ?p N pathfinish ?q € path-image ?p
by (smt (verit, ccfv-SIG) a-def add-diff-cancel-right’ assms(1) assms(3) b-def
constant-linepath-is-not-loop-free drop-eq-Nil have-wraparound-vertex hd-conv-nth
last-conv-nth last-drop last-snoc length-take less-add-one less-diff-conv If-q linorder-not-less
list.size(3) make-polygonal-path.simps(1) min.absorbs nth-take pathfinish-in-path-image
pathstart-in-path-image pathstart-p pathstart-q polygon-of-def polygon-pathfinish take-eq-Nil

309

zero-eq-add-iff-both-eq-0 zero-neg-one)
ultimately have path-image ?p N path-image ?q = {pathstart ?q, pathfinish
?q} by fast
moreover have path-image ?p’ N path-image 2q’ = f*(path-image ?p N path-image
?q)
by (metis bij bij-is-inj image-Int p-image g-image)
ultimately show ?thesis by (simp add: pathfinish-compose pathstart-compose)
qed
have /: (pathstart ?p")$1 = 0 A (pathstart ?p")$2 = 0 A (pathfinish 7p")$2 = 0
proof—
have f %z = ?e using f by blast
then have fb — fa = ?e
by (metis assms(8) diff-zero f norm-eq-zero orthogonal-transformation-norm)
moreover have fa = 0 by (metis assms(8) f norm-eg-zero orthogonal-transformation-norm)
moreover from calculation have f b = ?e by force
ultimately show ?thesis using pathfinish-p’ pathstart-p’ by auto
qed
have 5: (pathfinish ?p")$1 > 0
proof—
have pathfinish ?p' = f b using pathfinish-p’ by auto
moreover have f b = ?e using assms(8) f by auto
moreover have ?e$1 = norm %z by simp
ultimately show ¢thesis using a-neq-b by auto
qed
have 6: ?H' = convex hull (path-image ?p’ U path-image ?q’) by blast
have 7: {pathstart ?p’, pathfinish ?p’} C frontier ?H’
proof—
have {pathstart ?p, pathfinish ?p} C frontier H
using pathstart-p pathfinish-p assms(6) by fastforce
then have f{pathstart ?p, pathfinish ?p} C f(frontier H) by blast
moreover have f{frontier H) = frontier (f‘H)
by (simp add: bij bij-is-inj frontier-injective-linear-image)
ultimately show ?thesis using H-image by (simp add: pathfinish-compose
pathstart-compose)
qed
have 8: ?p’{0<..<1} C interior ?H’
proof—
have 1: convex H by (simp add: H-def)
have 2: Vje{0<..<length ?p-vts — 1}. ?p-vts | j & frontier H
by (simp add: add.commute assms(3) assms(7) less-diff-conv)
have 3: loop-free ?p using If-p by blast
have 4: path-image ?p C H using H-r hull-subset r-union by fastforce
have 5: length ?p-vts > 3 using assms(3) by force
have ?p{0<..<1} C interior H using vts-interior|OF 1 2 3 4 5] by argo
moreover have f{(?p{0<..<1}) = ?p’{0<..<1} by (meson image-comp)
moreover have f{(interior H) = interior ?H’
using H-image interior-injective-linear-imagelof f H] by (simp add: bij
bij-is-inj)
ultimately show ?thesis by fast

310

qed

have 9: pathstart ?q’ = pathfinish ?p’ A pathfinish ?q' = pathstart ?p’

by (metis (mono-tags, lifting) H-def H-r a-def assms(1) constant-linepath-is-not-loop-free
convez-hull-eq-empty drop-eq-Nil have-wraparound-vertex hd-conv-nth last-conv-nth
last-drop last-snoc lf-q linorder-not-less make-polygonal-path.simps(1) path-image-nonempty
pathfinish-compose pathfinish-p pathstart-compose pathstart-p pathstart-q polygon-of-def
polygon-pathfinish set-empty)

let 2l = open-segment a b
let ?l’ = open-segment (pathstart ?p’) (pathfinish ?p’)

have x: path-image ?q’ N open-segment (pathstart ?p’) (pathfinish ?p’) = {} A
21" C frontier ?H'
using pocket-fill-line-int-auz8[OF 1 2 3 4/ 5 6 7 8 9] by blast
moreover have l-image: 71’ = ‘7l
proof—
have f a = pathstart ?p’ A f b = pathfinish ?p’ using pathfinish-p’ pathstart-p’
by presburger
moreover have Aa b. f{open-segment a b) = open-segment (f a) (f b)
by (simp add: bij bij-is-inj open-segment-linear-image)
ultimately show ?thesis by presburger
qed
moreover have path-image ?q' = f{path-image ?q) using g¢-image by blast
ultimately have path-image ?q N 21 = {} by blast
moreover have path-image ?p N 21 = {}
proof—
from 8 have path-image ?p’' N 21’ = {}
proof—
have ?p'{0<.<1} N 2" = {}
by (smt (verit, ccfv-SIG) * 8 Diff-disjoint disjoint-iff frontier-def subset-iff)
moreover have ?p’ 0 ¢ 2’
by (metis x 9 Intl empty-iff pathfinish-in-path-image pathstart-def)
moreover have %p’ 1 ¢ 2’
by (metis x 9 Int-iff emptyE pathfinish-def pathstart-in-path-image)
ultimately show ?Zthesis
by (smt (verit, ccfo-SIG) * 1 3 9 Int-Un-eq(4) Un-Diff-cancel Un-iff dis-
joint-iff insert-commute simple-path-endless)
qed
thus ?thesis using Il-image bij p-image by auto
qed
ultimately have path-image r N 71 = {}
by (simp add: r-union boolean-algebra.conj-disj-distrib inf-commute)
moreover have a € path-image r using pathstart-p r-union by auto
moreover have b € path-image r using pathfinish-p r-union by auto
moreover have (path-image (linepath a b)) = ¢l U {a, b} by (simp add:
closed-segment-eq-open)
ultimately show path-image (linepath a b) N path-image r = {a, b} by auto

have [’-frontier: 21’ C frontier ?H' using x by presburger

311

have ?] C frontier H
proof—
have ¢’ = f‘?l using l-image by blast
moreover have frontier H' = ffrontier H)
by (metis H-image bij bij-is-inj frontier-injective-linear-image)
ultimately have f‘?l C f4frontier H) using l’-frontier by argo
thus %thesis by (simp add: bij bij-is-inj inj-image-subset-iff)
qed
moreover have closed-segment a b = path-image (linepath a b) by simp
moreover have closed-segment a b = ?1 U {a, b} by (simp add: closed-segment-eq-open)
moreover have a € frontier H A b € frontier H using assms(6) by auto
ultimately show path-image (linepath a b) C frontier H by simp
qed

lemma linepath-translation: (Av. v — a) o (linepath = y) = linepath ((Av. v — a)

z) (Av. v — a) y)
by (auto simp: linepath-def algebra-simps)

lemma linepath-image-translation:
path-image ((Av. v — a) o (linepath x y)) = path-image (linepath ((Av. v — a)
z) (Av. v — a) y))

using linepath-translation by metis

lemma make-polygonal-path-translate:
assumes length vts > 1
shows (Av. v — a) o (make-polygonal-path vts) = make-polygonal-path (map (Av.
v — a) vts)
using assms
proof (induct length vts arbitrary: vts a)
case ()
then show ?case by linarith
next
case (Suc n)
{ assume *: Suc n = 1
then have make-polygonal-path vts = linepath (vts!0) (vts!0)
by (metis Cons-nth-drop-Suc One-nat-def Suc.hyps(2) Suc.prems drop0 drop-eq-Nil
less-numeral-extra(1) make-polygonal-path.simps(2))
then have (Av. v — a) o (make-polygonal-path vts) = linepath ((vts!0) — a)
((vts!0) — a)
by fastforce
then have ?case
by (metis Cons-nth-drop-Suc One-nat-def Suc.hyps(2) Suc.prems x drop0
drop-eq-Nil list.map(1) list.simps(9) make-polygonal-path.simps(2) zero-less-one)
} moreover
{ assume *: Suc n = 2
then have make-polygonal-path vts = linepath (vts!0) (vts!1)
by (metis (no-types, lifting) Cons-nth-drop-Suc One-nat-def Suc.hyps(2) Suc-1
diff-Suc-1 drop0 drop-Suc drop-eq-Nil le-numeral-extra(4) length-tl less-numeral-extra(1)
make-polygonal-path.simps(3) nth-tl pos2)

312

then have (A\v. v — a) o (make-polygonal-path vts) = linepath ((vts!0) — a)
((vts'1) — a)
using linepath-translation by auto
then have ?case
by (metis (no-types, lifting) * Cons-nth-drop-Suc One-nat-def Suc.hyps(2)
Suc-1 drop0 drop-eq-Nil length-map lessI make-polygonal-path.simps(3) nat-le-linear
nth-map pos2)
} moreover
{ assume *: Suc n > 3
then obtain h h' t where vts: vis = h # h' # t
by (metis Suc.hyps(2) Suc-le-length-iff numeral-3-eq-3)
then have (Av. v — a) o (make-polygonal-path (h' # t))
= make-polygonal-path (map (Av. v — a) (b # t))
using Suc.hyps(1) Suc.hyps(2) * by auto
moreover have (Av. v — a) o (linepath h h') = linepath (h — a) (h' — a)
using linepath-translation by blast
moreover have make-polygonal-path vts = (linepath h h') +4++ (make-polygonal-path
(h 4 1))
by (metis x Suc.hyps(2) Suc-le-length-iff vts list.sel(3) make-polygonal-path.simps(4)
numeral-3-eq-3)
ultimately have Zcase
by (smt (verit) list.discl list.inject list.simps(9) make-polygonal-path.elims
path-compose-join vts)

ultimately show ?case using Suc.prems by linarith
qged

lemma pocket-fill-line-int:

assumes polygon-of r vts

defines H = convex hull (set vts)

assumes 2 < i A ¢ < length vts — 1

defines a = hd vts

defines b = vtsli

assumes {a, b} C frontier H

assumes Vj € {0<..<i}. vtslj & frontier H

shows path-image (linepath a b) N path-image r = {a, b}

path-image (linepath a b) C frontier H

proof—

let 2f = (Av. v — a)::(real™2 = real”2)

let 2r'= 2f o r

let ?vts’ = map ?f vts

let ?H' = convex hull (set ?vts’)

let %0’ = ?fa

let 2" = 2f b

have 5: hd %vts’ = 0

by (metis One-nat-def a-def assms(3) cancel-comm-monoid-add-class. diff-cancel
lessI list.map-sel(1) list.size(3) nat-diff-split-asm not-less-zero)

313

have a’b": %a’ = hd vts’ A 2b' = 2vts’li using 5 assms(3) b-def by force

have frontier-H': frontier H' = 2f ¢ (frontier H)
using frontier-translation[of —a H)|
by (metis (no-types, lifting) H-def convex-hull-translation image-cong list.set-map
uminus-add-conv-diff)

have simple-path r using assms(1) polygon-def polygon-of-def by blast
then have simple-path ?r’ using simple-path-translation-eqlof —a r] by simp
moreover have ?r’ = make-polygonal-path ?vts’
using make-polygonal-path-translate assms(1) assms(3) polygon-of-def by auto
moreover have closed-path ?r'
by (smt (verit, best) closed-path-def add-diff-inverse-nat assms(1) assms(3) cal-
culation(1) calculation(2) dual-order.refl gr-implies-not0 hd-conv-nth length-map
less-Suc-eq-le list. map-disc-iff list. map-sel(1) nat-diff-split-asm nth-map plus-1-eq-Suc
polygon-def polygon-of-def polygon-pathfinish polygon-pathstart simple-path-def)
ultimately have 1: polygon-of ?r' ?vts’
unfolding polygon-of-def polygon-def polygon-def polygonal-path-def by blast
have 2: 2 < i A i < length ?vts’ — 1 using assms(3) by auto
have 3: {hd ?vts’, 2vts"li} C frontier ?H’
using a’b’ frontier-H'
by (metis (no-types, lifting) assms(6) image-empty image-insert image-mono)
have 4: Vj € {0<..<i}. %vts'lj & frontier ?H'
proof
fix j assume *: j € {0<..<i}
then have vtslj ¢ frontier H using assms(7) by blast
then have ?f (vtslj) ¢ frontier ?H’ using frontier-H' by auto
thus %vts’lj ¢ frontier ?H’ using Nat.le-imp-diff-is-add x assms(3) by auto
qed

have path-image (linepath ?a’ ?b’) N path-image ?r' = {%a’, 7b'}
using pocket-fill-line-int-0(1)[OF 1 2 8 4 5] a’b’ by argo
moreover have {?a’, 20’} = ?f{a, b} by simp
moreover have path-image (linepath ?a’ 2b') = 2f{(path-image (linepath a b))
using linepath-image-translation path-image-compose by blast
moreover have path-image ?r’ = ?f{(path-image r) using path-image-compose
by blast
ultimately have ?f{(path-image (linepath a b)) N 2f‘(path-image r) = ?f*{a, b}
by argo
then have ?f{path-image (linepath a b) N path-image) = ?f{a, b} by (simp
add: image-Int)
moreover have bij ?f by (simp add: bij-diff-right)
ultimately show path-image (linepath a b) N path-image r = {a, b}
by (meson bij-is-inj inj-image-eq-iff’)

have path-image (linepath ?a’ 2b') C frontier ?H’
using pocket-fill-line-int-0(2)[OF 1 2 8 4 5] a’b’ by argo
thus path-image (linepath a b) C frontier H
by (metis <bij ?f> <path-image (linepath ?a’ ?b') = ?f{(path-image (linepath a

314

b))» bij-betw-imp-inj-on frontier-H' inj-image-subset-iff)
qed

lemma path-connected-simple-path-endless:
assumes simple-path p
shows path-connected (path-image p — {pathstart p, pathfinish p}) (is path-connected
25)
proof—
have continuous-on {0<..<1} p
using assms(1) unfolding simple-path-def path-def
by (meson continuous-on-path dual-order.refl greater ThanLess Than-subseteq-atLeast AtMost-iff
path-def)
moreover have path-connected {0<..<1:real} by simp
ultimately have path-connected (p{0<..<1}) using path-connected-continuous-image
by blast
thus ?thesis using simple-path-endless assms by metis
qed

lemma simple-loop-split:
assumes simple-path p N\ closed-path p
assumes simple-path q
assumes path-image q N path-image p = {q 0, q 1}
assumes path-image q N path-inside p # {}
shows ¢{0<..<1} C path-inside p
proof—
have inside-outside: inside-outside p (path-inside p) (path-outside p)
using Jordan-inside-outside-real2 closed-path-def assms(1) inside-outside-def
path-inside-def path-outside-def
by presburger

obtain z where z: z € path-image g N path-inside p using assms(4) by blast
then obtain txr where ¢tz € {0..1} A ¢ tz = z unfolding path-image-def by
fast
moreover then have tx # 0 A tx # 1
using assms(3) inside-outside x unfolding inside-outside-def by auto
ultimately have tz: tz € {0<..<1} A ¢ tz = z by simp

have connected (¢{0<..<1})

using connected-simple-path-endless simple-path-endless assms(2) by metis
then have path-connected (¢{0<..<1})

using path-connected-simple-path-endless assms(2) simple-path-endless by metis
moreover have ¢{0<..<1} N path-inside p # {} using tz = by blast
moreover have ¢{0<..<1} N frontier (path-inside p) = {}

using inside-outside unfolding inside-outside-def

by (smt (verit, del-insts) Diff-Int-distrib2 assms(2,3) diff-eq inf-compl-bot-right

inf-idem inf-sup-aci(1) pathfinish-def pathstart-def simple-path-endless)

ultimately show ?thesis

using path-connected-not-frontier-subset|of ¢{0<..<1} path-inside p] by fast

315

qed

lemma pocket-path-interior-auz:
assumes simple-path p N\ simple-path q
assumes arc p \ arc q
assumes ¢ 0 =p1 Nqgl=p0
assumes path-image p N path-image ¢ = {p 0, q 0}
defines A = convex hull (path-image p U path-image q)
defines | = linepath (p 0) (p 1)
assumes p{0<..<1} C interior A
assumes path-image | C frontier A
assumes path-image q N path-image | = {1 0, ¢ 0}
shows p{0<..<1} N path-inside (I +++ q) # {}
stmple-path (I +++ q) A closed-path (I +++ q)
path-image p N path-image (I +++ ¢) = {p 0, p 1}
proof—
let 9r =1 +++ ¢
let ?Ir = path-inside ?r
let ?0r = path-outside ?r
show closed-simple-r: simple-path ?r A closed-path ?r
using simple-path-join-loop|of | q] assms unfolding pathstart-def pathfinish-def
by (metis (no-types, opaque-lifting) closed-path-def arc-linepath arc-simple-path
dual-order.refl inf-commute linepath-0' linepath-1" pathfinish-def pathfinish-join path-
start-def pathstart-join simple-path-def)
then have inside-outside-r: inside-outside ?r ?Ir ?0r
by (simp add: Jordan-inside-outside-real2 closed-path-def inside-outside-def
path-inside-def path-outside-def)

have [-p-endpoints: 1 0 = p 0 ANl 1 = p 1 by (simp add: I-def linepath-0'
linepath-1")
have l-g-endpoints: 1 0 = g1 N1 1 = q 0 by (simp add: assms(3) I-p-endpoints)
have p-int-lI: p{0<..<1} N path-image | = {} using assms(7,8) unfolding
frontier-def by blast
have ¢-int-lI: ¢{0<..<1} N path-image | = {}
by (metis (no-types, opaque-lifting) assms(9) Diff-iff Int-Diff all-not-in-conv
assms(1) assms(3) inf-sup-aci(1) insert-commute I-def linepath-0' pathfinish-def
pathstart-def simple-path-endless)
have interval: {0..1::real} = {0<..<1} U {0, 1} by fastforce
have If-I: loop-free |
using closed-simple-r not-loop-free-first-component simple-path-def by blast

let ?p’ = reversepath p

let s = | +++ ?%p’

let ?Is = path-inside ?s

let ?Os = path-outside ?s

have arc ?p’ A arc |

by (metis assms(2) arc-linepath arc-reversepath arc-simple-path I-def pathfin-

ish-def pathstart-def)

moreover have p’-int-l: path-image ?p’ N path-image | = {%p’ 0,1 0}

316

proof—
have path-image p N path-image | = {1 0, 1 1}
proof—
have {1 0, 1 1} C path-image p N path-image |
using assms(3) assms(4) l-def linepath-0' linepath-1" by fastforce
moreover have path-image p = p{0<.<1} U{p 0, p 1}
using interval unfolding path-image-def by blast
ultimately show ?thesis using p-int-l I-p-endpoints by simp
qed
moreover have ?p’ 0 = [1 by (simp add: I-def linepath-1' reversepath-def)
moreover have path-image p = path-image ?p’ by simp
ultimately show ?thesis by (metis doubleton-eg-iff)
qed
ultimately have closed-simple-s: closed-path ?s N\ simple-path ?s
using simple-path-join-looplof | ?p’] assms unfolding pathstart-def pathfin-
ish-def
by (metis (no-types, opaque-lifting) closed-path-def dual-order.refl inf-commute
insert-commute linepath-0' linepath-1' pathfinish-def pathfinish-join pathfinish-reversepath
pathstart-def pathstart-join pathstart-reversepath simple-path-def)
then have inside-outside-s: inside-outside ?s ?Is ?0s
by (simp add: Jordan-inside-outside-real2 closed-path-def inside-outside-def
path-inside-def path-outside-def)

have r-inside-subset: path-inside ?r C interior A
proof—
have path-image | C A A path-image ¢ C A
by (metis A-def Un-upper2 assms(1) assms(8) compact-Un compact-convez-hull
compact-simple-path-image frontier-subset-compact hull-subset subset-trans)
thus ?thesis
by (metis (no-types, lifting) A-def closed-simple-r convez-contains-simple-closed-path-imp-contains-path-ins
convez-convezr-hull inside-outside-def inside-outside-r interior-eq interior-mono sub-
set-path-image-join)
qed
have s-inside-subset: path-inside ?s C interior A
proof—
have path-image | C A A path-image p C A
by (metis A-def Un-upper! assms(1) assms(8) compact-Un compact-convex-hull
compact-simple-path-image frontier-subset-compact hull-subset subset-trans)
thus ?thesis
by (metis A-def Jordan-inside-outside-real2 closed-path-def closed-simple-s
convez-contains-simple-closed-path-imp-contains-path-inside convex-convex-hull in-
terior-maximal path-image-reversepath path-inside-def subset-path-image-join)
qed

have g-outside: ¢{0<..<1} C path-outside ?s
proof(rule ccontr)
let ?ep = {v. v extreme-point-of A}
assume — ¢{0<..<1} C path-outside ?s
then have Jz € ¢{0<..<1}. z € path-inside ?s U path-image ?s

317

using inside-outside-s unfolding inside-outside-def by auto
then have ¢{0<..<1} C path-inside ?s
using simple-loop-split[of p]
by (smt (verit) DiffE Intl Int-Un-distrib2 closed-path-def UnFE <arc (reversepath
p) A arc Iy arc-imp-path assms(1) assms(2) assms(3) assms(4) closed-simple-r
closed-simple-s doubleton-eq-iff emptyE inf.commute l-def path-image-join path-image-reversepath
path-join-eq pathfinish-join pathfinish-linepath pathstart-join pathstart-linepath sim-
ple-loop-split simple-path-endless simple-path-joinE sup-absorb?2)
then have ¢{0<..<1} N frontier A = {} using frontier-def s-inside-subset by
fastforce
then have (path-image p U path-image q) N frontier A = {p 0, p 1}
by (smt (23) Diff-disjoint Int-Un-distrib Un-Diff-Int Un-Int-eq(3) assms(1)
assms(3) assms(4) assms(7) assms(8) assms(9) frontier-def inf.commute inf.orderE
inf-idem inf-left-commute insert-commute l-p-endpoints pathfinish-def pathstart-def
simple-path-endless)
moreover have ?epC path-image p U path-image q
by (simp add: extreme-points-of-conver-hull A-def)
moreover have ?ep C frontier A
using extreme-point-not-in-interior
proof—
have ?ep N interior A = {}
using extreme-point-not-in-interior by blast
thus ?thesis
by (smt (verit, ccfv-SIG) A-def Int-Un-distrib2 Un-Diff-cancel assms(1) calcu-
lation(2) closure-convez-hull compact-Un compact-simple-path-image dual-order.trans
frontier-def hull-subset inf.absorb-iff2 inf-commute sup-bot-left)
qed
ultimately have x: Zep C {p 0, p 1} by auto
have A = path-image |
proof—
have convex A A compact A
by (simp add: A-def arc-imp-path assms(2) compact-Un compact-convex-hull
compact-path-image)
then have A-ep: A = convex hull ?ep using Krein-Milman-Minkowski by
blast
moreover have finite ?ep using * infinite-super by auto
moreover have A # {} by (simp add: A-def)
moreover have Vz. A # {z} using assms(7) by fastforce
ultimately have card ?ep > 2 using convex-hull-two-extreme-points by metis
then have %ep = {p 0, p 1}
by (metis x One-nat-def Suc-1 add-leD2 card.empty card-insert-disjoint
card-seteq finite.emptyl finite.insertl insert-absorb plus-1-eq-Suc)
then have A = closed-segment (p 0) (p 1) by (metis A-ep segment-convex-hull)
thus ?thesis by (simp add: I-def)
qed
then have interior A = {}
by (metis A-def Diff-eq-empty-iff assms(1) assms(8) closure-convex-hull
compact-Un compact-simple-path-image double-diff dual-order.refl frontier-def in-
terior-subset)

318

thus False using inside-outside-def inside-outside-r r-inside-subset by auto
qed

let e =1(1/2)
have l-on-r-frontier: path-image | C frontier (path-inside ?r)
using inside-outside-r unfolding inside-outside-def
by (metis Un-upperl closed-simple-r <arc (reversepath p) A arc Iy arc-def
assms(2) path-image-join path-join-eq simple-path-def)
moreover have path-image | C frontier (path-inside ?s)
using inside-outside-s unfolding inside-outside-def
by (simp add: I-def path-image-join pathstart-def reversepath-def)
ultimately have e-frontier: ?e € frontier (path-inside ?r) N ?e € frontier
(path-inside ?s)
by (simp add: path-defs(4) subsetD)

have e-notin: e ¢ path-image p U path-image q
proof—
have %e ¢ path-image p
proof—
have %e # [0 A ?e # | 1 using If-l unfolding loop-free-def by fastforce
then have %e # p 0 A ?e # p 1 using I-p-endpoints by simp
moreover have %e ¢ p{0<..<1} using p-int-l unfolding path-image-def
by fastforce
ultimately show ?thesis using p-int-l unfolding path-image-def by fastforce
qed
moreover have ?e ¢ path-image q
proof—
have ?e # 10 N %e # [1 using [f-] unfolding loop-free-def by fastforce
then have %e # q 0 N %e # q 1 using [-g-endpoints by simp
moreover have ?e ¢ ¢{0<..<1} using g¢-int-l unfolding path-image-def
by fastforce
ultimately show ?thesis using ¢-int-l unfolding path-image-def by fastforce
qed
ultimately show ¢thesis by blast
qed
obtain € where e: € > 0 A ball ?e & N path-image p = {} A ball ?e € N path-image
q={}
proof—
have %e ¢ path-image p using e-notin by simp
moreover have compact (path-image p) by (simp add: assms(2) compact-arc-image)
moreover have ?e ¢ path-image g using e-notin by simp
moreover have compact (path-image q) by (simp add: assms(2) compact-arc-image)
ultimately obtain €1 £2 where
€l > 0 A ball 2e e1 N path-image p = {} A2 > 0 A ball ?e €2 N path-image
q=A{}
by (meson assms(1) not-on-path-ball simple-path-imp-path)
thus ?thesis using that[of min £1 2] by (simp add: disjoint-iff)
qged

319

obtain z-r where z-r: z-r € ball ?e € N path-inside ?r

by (metis e-frontier € all-not-in-conv disjoint-iff frontier-straddle mem-ball)
obtain 2-s where z-s: z-s € ball ?e € N path-inside ?s

by (metis e-frontier e all-not-in-conv disjoint-iff frontier-straddle mem-ball)

have z-s-in-r: z-s € path-inside ?r
proof—
let ?l-z = linepath z-r z-s
have z-r € interior A A\ z-s € interior A
using 7-inside-subset s-inside-subset z-r z-s by blast
then have path-image ?l-z C interior A by (simp add: A-def closed-segment-subset)
then have 1: path-image ?l-z N path-image | = {}
by (smt (verit) Diff-iff assms(8) disjoint-iff frontier-def subsetD)

have convex (ball ?e) by simp
then have path-image ?l-z C ball %e e

by (metis IntD1 closed-segment-subset path-image-linepath z-r z-s)
then have 2: path-image ?l-z N path-image ¢ = {} using ¢ by blast

show ?thesis

by (smt (verit, best) 1 2 Intl Int-Un-distrib Int-Un-distrib2 Jordan-inside-outside-real2
closed-path-def € <path-image (linepath z-r z-s) C ball (I (1 / 2)) e+ arc-def assms(2)
closed-simple-r emptyE in-mono inf.assoc le-iff-inf path-connected-not-frontier-subset
path-connected-path-image path-image-join path-inside-def path-join-path-ends path-linepath
pathfinish-in-path-image pathfinish-linepath pathstart-in-path-image pathstart-linepath
sup.order-iff z-r)

qed

let ?zq = q (1/2)
let 7z = z-s

let v = %zq — %2
let ?ray = Ad. %2 + d xp %v
let ?rayline = linepath ?z ?xq
have z-ray: 2z = ?ray 0 by simp
have zq-ray: ?zq = %ray 1 by simp
have zq-rayline: ?zq = ?rayline 1 unfolding linepath-def by simp
have ?zq € path-image r
by (metis (mono-tags, opaque-lifting) Un-iff atLeastAtMost-iff imagel l-q-endpoints
less-eq-real-def path-defs(4) path-image-join pathfinish-def pathstart-def pos-half-less
zero-less-divide-1-iff zero-less-numeral zero-less-one)
then have zq¢-frontier: ?xq € frontier (path-inside ?r)
using inside-outside-r unfolding inside-outside-def by auto
have zq-neq-z: %xq # 2
proof—
have ?zq € path-image ?r
proof—
have ¢ (1 / 2) € path-image q
by (simp add: path-defs(4))

320

thus ?thesis
by (simp add: l-g-endpoints path-image-join pathfinish-def pathstart-def)
qed
thus ?thesis using z-s-in-r inside-outside-r unfolding inside-outside-def by
blast
qed
then have v-neq-0: ?v # 0 by simp

have bounded (path-inside ?r) using inside-outside-r unfolding inside-outside-def
by blast
moreover have ?z € interior (path-inside ?r)
by (metis inside-outside-def inside-outside-r interior-eq z-s-in-r)
ultimately obtain d where d: 0 < d A ?ray d € frontier (path-inside ?r)
A (Ve € {0..<d}. ?ray e € interior (path-inside ?r))
using ray-to-frontier[of path-inside ?r ?z ?v] by (metis atLeastLessThan-iff
v-neg-0)

have interior-inside-r: interior (path-inside ?r) = path-inside ?r
by (meson inside-outside-def inside-outside-r interior-eq)
have d-leg-1: d < 1
proof (rule ccontr)
assume - d < 1
then have d > I by simp
moreover have ?ray 1 € frontier (path-inside ?r) using zq-ray xq-frontier by
argo
ultimately show Fulse using d unfolding frontier-def by fastforce
qed

have z-inside: 9z € path-inside ?s using z-s by blast
moreover have ?rayline d € path-outside ?s
proof—
have ?rayline d ¢ path-image 1 if d < 1
proof—
have ?rayline 0 € interior A
using r-inside-subset by (simp add: linepath-0' subsetD z-s-in-r)
moreover have path-image ?rayline C closure A
proof—
have closure A = A
using A-def assms(1) closure-convex-hull compact-Un compact-simple-path-image
by blast
moreover have ?rayline 0 € A using «?rayline 0 € interior A inte-
rior-subset by blast
moreover have ?rayline 1 € A
using path-image-def A-def hull-subset zq-rayline by fastforce
ultimately show ?thesis
by (metis A-def closed-segment-subset convez-convex-hull linepath-0'
linepath-1" path-image-linepath)
qed
moreover have — path-image ?rayline C rel-frontier A

321

proof—
have path-image ?rayline N interior A # {}
using «?rayline 0 € interior A unfolding path-image-def by fastforce
moreover have interior A N rel-frontier A = {}
using rel-frontier-def rel-interior-nonempty-interior by auto
ultimately show ?thesis by blast
qed
ultimately have rel-interior (path-image ?rayline) C rel-interior A
using subset-rel-interior-convez|of path-image ?rayline A] by (simp add:
A-def)
moreover have interior A = rel-interior A
using < ?rayline 0 € interior A rel-interior-nonempty-interior by auto
moreover have ?rayline d € ?rayline{0<..<1} using that d by simp
ultimately show ?thesis
by (smt (verit, del-insts) Diff D1 Diff D2 Un-iff xq-neq-z arc-linepath arc-simple-path
assms(8) closed-segment-eq-open frontier-def path-image-linepath pathfinish-linepath
pathstart-linepath rel-interior-closed-segment simple-path-endless subset-eq)
qed
moreover have ?rayline d ¢ path-image | if d = 1
using that ¢-int-l unfolding linepath-def by (simp add: disjoint-iff)
moreover have ?rayline d € path-image ?r
by (metis (no-types, lifting) add-diff-eq d diff-add-eq inside-outside-def in-
side-outside-r linepath-def scale-left-diff-distrib scale-one scale-right-diff-distrib)
ultimately show ¢thesis
by (smt (verit, ccfv-SIG) d-leg-1 Diff-iff Int-iff closed-path-def <arc (reversepath
p) A arc Iy arc-def assms(1) assms(3) assms(9) closed-simple-r insert-commute
l-def I-p-endpoints not-in-path-image-join path-join-eq pathfinish-join pathfinish-linepath
pathstart-join pathstart-linepath q-outside simple-path-def simple-path-endless sub-
setD)
qed
moreover have ?z € ?rayline{0..d}
using z-ray unfolding linepath-def
by (smt (verit, del-insts) add.commute atLeastAtMost-iff cancel-comm-monoid-add-class.diff-cancel
d diff-zero image-iff less-eq-real-def segment-degen-1)
moreover have ?rayline d € ?rayline’{0..d} by (simp add: d less-eq-real-def)
ultimately have ?rayline{0..d} N path-inside ?s # {} A rayline’{0..d} N
path-outside ?s # {}
by blast
then have Zrayline{0..d} N path-inside ?s # {} A ?rayline{0..d} N — path-inside
% # {}
using inside-outside-s unfolding inside-outside-def by (meson Compll dis-
joint-iff)
moreover have path-connected (?rayline{0..d})
proof—
have ?rayline{0..d} = path-image (subpath 0 d ?rayline) by (simp add: d
path-image-subpath)
moreover have path (subpath 0 d ?rayline) using d d-leg-1 by auto
ultimately show ?thesis by (metis path-connected-path-image)
qed

322

ultimately have ?rayline{0..d} N frontier (path-inside ?s) # {}
using path-connected-frontier[of ?rayline{0..d} path-inside ?s| by (metis dis-
joint-iff)
then have ?rayline’{0..d} N path-image ?s # {} using inside-outside-s unfold-
ing inside-outside-def by argo
moreover have ?rayline 0 ¢ path-image ?s
proof—
have ?zq £ p 0
by (metis (full-types) disjoint-iff greaterThanLess Than-iff imagel I-p-endpoints
pathstart-def pathstart-in-path-image pos-half-less q-int-1 zero-less-divide-1-iff zero-less-numeral
zero-less-one)
moreover have ?zq # p 1
by (metis (full-types) disjoint-iff greater ThanLessThan-iff imagel I-p-endpoints
pathfinish-def pathfinish-in-path-image pos-half-less g-int-1 zero-less-divide-1-iff zero-less-numeral
zero-less-one)
moreover have ?zq ¢ p{0<..<1}
proof—
have %zq € ¢{0<..<1} by fastforce
thus ?thesis by (metis assms(1,3,4) Diff-iff Int-iff pathfinish-def pathstart-def
simple-path-endless)
qed
moreover have %zq ¢ path-image [
by (metis disjoint-iff greaterThanLessThan-iff imagel pos-half-less g-int-l
zero-less-divide-1-iff zero-less-numeral zero-less-one)
ultimately show #thesis
by (metis (no-types, lifting) ComplD Unll z-inside inside-outside-def in-
side-outside-s linepath-0")
qed
moreover have ?rayline d ¢ path-image ?s
using < ?rayline d € path-outside ?sy inside-outside-def inside-outside-s by auto
moreover have {0..d} = {0<..<d} U {0, d} using d by fastforce
ultimately have ?rayline {0<..<d} N path-image ?s # {} unfolding path-image-def
by blast
moreover have ?rayline{0<..<d} = ?ray{0<..<d}
unfolding linepath-def by (auto simp: algebra-simps)
moreover have ?ray{0<..<d} C path-inside ?r using d interior-inside-r by
fastforce
ultimately have path-image ?s N path-inside ?r # {} by blast
moreover have path-image | N path-inside ¢r = {}
by (metis (no-types, opaque-lifting) Diff-disjoint Int-assoc l-on-r-frontier fron-
tier-def inf.orderE inf-bot-left inf-sup-aci(1) interior-inside-r)
moreover have p{0<..<1} = path-image ?s — path-image |
proof—
have path-image ?s = path-image p U path-image |
by (simp add: l-p-endpoints path-image-join pathfinish-def sup-commute)
moreover have p{0<..<1} = path-image p — {p 0, p 1}
by (metis assms(1) pathfinish-def pathstart-def simple-path-endless)
ultimately have path-image ?s = p{0<..<1} U {p 0, p 1} U path-image
using assms(3) assms(9) l-p-endpoints by auto

323

moreover have p 1 € path-image | A p 0 € path-image | by (simp add: I-def)
ultimately show ¢thesis using p-int-l by blast

qed

ultimately show p{0<..<1} N path-inside (I +++ q) # {} by auto

show path-image p N path-image (I +++ q) = {p 0, p 1}
by (smt (verit, best) Int-Un-distrib Un-absorb assms(1) assms(3) assms(4)
closed-simple-r insert-commute l-p-endpoints p’-int-1 path-image-join path-image-reversepath
path-join-path-ends reversepath-def simple-path-imp-path)
qged

lemma pocket-path-interior:
assumes simple-path p A simple-path q
assumes arc p A arc q
assumes q 0 =p1 Ngl=p0
assumes path-image p N path-image ¢ = {p 0, ¢ 0}
defines A = convex hull (path-image p U path-image q)
defines [= linepath (p 0) (p 1)
assumes p{0<..<1} C interior A
assumes path-image | C frontier A
assumes path-image ¢ N path-image | = {1 0, q 0}
shows p{0<..<1} C path-inside (I +++ q)
using pocket-path-interior-aux|of p q] simple-loop-split[of | +++ ¢ p] assms
by (metis (no-types, lifting) DiffE disjoint-iff simple-path-endless)

lemma pocket-path-good:
assumes polygon (make-polygonal-path vts)
assumes vtsl0 € frontier (convex hull (set vts))
assumes vits!! ¢ frontier (convex hull (set vts))
assumes — convez (path-image (make-polygonal-path vts) U path-inside (make-polygonal-path
vts))
defines pocket-path-vts = construct-pocket-0 vts (set vts N frontier (convex hull
(set vts)))
defines pocket = make-polygonal-path (pocket-path-vts @ [pocket-path-vts!0])
defines filled-vts = fill-pocket-0 vts (length pocket-path-vts)
defines filled-p = make-polygonal-path filled-vts
defines a = hd pocket-path-vts
defines b = last pocket-path-vts
defines good-pocket-path-vts = tl (butlast pocket-path-vts)
shows polygon filled-p
is-polygon-split-path (butlast filled-vts) 0 1 good-pocket-path-vts
polygon pocket
card (set pocket-path-vts) < card (set vts)
card (set filled-vts) < card (set vts)
proof—
let ?p = make-polygonal-path vts
let ?A = set vts N frontier (convex hull (set vts))
let ?filled-vts-tl = tl filled-vts
let ?filled-p-tl = make-polygonal-path ?filled-vts-tl

324

let ?pocket-vts = pocket-path-vts Q [pocket-path-vts!0]
let ?pocket-path = make-polygonal-path pocket-path-vts
let 2] = linepath a b

let 9r = min-nonzero-index-in-set vts ?A

have int-A-nonempty: set (tl vts) N 24 # {}

by (metis (mono-tags, lifting) IntI Nitpick.size-list-simp(2) Suc-eq-plus1 assms(1)
assms(2) card-length empty-iff have-wraparound-vertex last-in-set last-tl le-addl
le-trans not-less-eq-eq numeral-3-eq-3 polygon-at-least-3-vertices snoc-eq-iff-butlast)
then have r-defined: nonzero-index-in-set vts A ?r A (Vi < r. = nonzero-indez-in-set
vts ?A 1)

using min-nonzero-index-in-set-defined[of vts ?A] by fast

have two-vts-on-frontier: 2 < card ?A
by (metis convez-hull-two-vts-on-frontier One-nat-def Suc-1 add-leD2 assms(1)
numeral-3-eq-3 plus-1-eq-Suc polygon-at-least-3-vertices)
moreover have frontier-vts-subset: ?A C set vts by force
moreover have distinct-vts: distinct (butlast vts)
using assms(1) polygon-def simple-polygonal-path-vts-distinct by blast
moreover have hd-last-vts: hd vts = last vts
by (metis assms(1) have-wraparound-vertex hd-conv-nth snoc-eq-iff-butlast)
ultimately have a-neg-b: a # b
using a-def b-def construct-pocket-0-first-last-distinct pocket-path-vts-def by
presburger
have length filled-vts > 2
unfolding filled-vts-def fill-pocket-0-def
by (smt (verit, best) One-nat-def Suc-1 Suc-diff-Suc a-def a-neq-b b-def con-
struct-pocket-0-def diff-is-0-eq diff-zero hd-Nil-eq-last length-drop length-greater-0-conv
length-tl list.sel(3) not-less-eq-eq pocket-path-vts-def sublist-length-le sublist-take)
moreover have filled-vts-0: a = filled-vts!0
unfolding filled-vts-def fill-pocket-0-def a-def pocket-path-vts-def construct-pocket-0-def
by auto
moreover have filled-vts-1: b = filled-vts!1
by (smt (verit, del-insts) filled-vts-def fill-pocket-0-def b-def pocket-path-vts-def
construct-pocket-0-def Cons-nth-drop-Suc Nitpick.size-list-simp(2) a-def a-neq-b add.right-neutral
drop0 drop-eq-Nil hd-Nil-eq-last last-conv-nth length-take length-tl linorder-not-less
list.sel(3) min.absorbj nat-le-linear not-less-eq-eq nth-drop nth-take plus-1-eq-Suc
take-all-iff zero-less-diff)
ultimately have filled-vts: filled-vts = [a, b] @ ¢l ?filled-vts-t
by (metis (no-types, lifting) Nitpick.size-list-simp(2) One-nat-def Suc-1 ap-
pend-Nil append-eq-Cons-conv length-greater-0-conv list.collapse not-less-eq-eq nth-Cons-0
nth-tl order-less-le-trans pos2)

have 1: polygon-of ?p vts unfolding polygon-of-def using assms(1) by blast
have 2: 2 < ?r A ?r < length vts — 1
proof—

have 9r # 0 A 9r # 1

325

using assms(2,3) min-nonzero-index-in-set-def nonzero-index-in-set-def r-defined
by fastforce
then have 1: 9r > 2 by simp

have 37 € {0<..<length vts — 1}. vtsli € frontier (convexr hull (set vts))
proof—
have card ((set vts) N frontier (convex hull (set vts))) > 2
using two-vts-on-frontier by blast
then obtain v where v € set vts A v € frontier (convex hull set vts) A v #
hd vts
by (metis hd-last-vts Int-iff a-neq-b assms(2) b-def construct-pocket-0-last-in-set
convex-hull-empty empty-set fill-pocket-0-def filled-vts-0 filled-vts-def frontier-empty
hd-conv-nth int-A-nonempty last-in-set nth-Cons-0 pocket-path-vts-def)
thus ?thesis
by (metis hd-last-vts assms(1) in-set-conv-nth diff-Suc-1 gr0-implies-Suc
greater ThanLess Than-iff have-wraparound-vertex last-conv-nth le-eq-less-or-eq less-Suc-eq-le
less-one nat.simps(3) nat-le-linear snoc-eq-iff-butlast)
qed
then have 2: 9r < length vts — 1
using 7-defined
unfolding min-nonzero-indez-in-set-def nonzero-index-in-set-def
by (smt (verit, del-insts) Int-iff add.commute add-diff-cancel-left” add-diff-inverse-nat
greaterThanLess Than-iff less-imp-diff-less mem-Collect-eq nat-less-le nth-mem)
show ?thesis using 1 2 by blast
qed
have ab: a = hd vts N b = vts! or
by (metis (no-types, lifting) 2 Suc-1 int-A-nonempty ab-semigroup-add-class.add-ac(1)
add-Suc-right b-def construct-pocket-0-def fill-pocket-0-def filled-vts-0 filled-vts-def
hd-drop-conv-nth last-snoc le-add-diff-inverse2 min-nonzero-index-in-set-bound nth-Cons-0
plus-1-eq-Suc pocket-path-vts-def take-hd-drop)
have 3: {hd vts, vts | ?r} C frontier (convex hull set vts)
using ab assms(1) assms(2) assms(8) b-def construct-pocket-is-pocket is-pocket-0-def
pocket-path-vts-def
by fastforce
have 4: Vje{0<..<?r}. vts | j & frontier (convex hull set vts)
using r-defined unfolding nonzero-indez-in-set-def by fastforce

have l-int-p: path-image (linepath (hd vts) (vts ! 2r)) N path-image ?p = {hd vts,
vts | or}
using pocket-fill-line-int[OF 1 2 3 4] by blast
have I-frontier: path-image (linepath (hd vts) (vis ! ?r)) C frontier (convex hull
(set vts))
using pocket-fill-line-int[OF 1 2 3 4] by blast

have path-image ?filled-p-tl N path-image ?l = {a, b}
proof—
have path-image (linepath (hd vts) (vts! 2r)) N path-image ?p = {hd vts, vts |
or}

326

using pocket-fill-line-int[OF 1 2 3 /] by blast
moreover have path-image ?filled-p-tl C path-image ?p
proof—
have sublist ?filled-vts-tl vts by (simp add: fill-pocket-0-def filled-vts-def)
thus ?thesis using <2 < length filled-vts> sublist-path-image-subset by auto
qed
moreover have a € path-image ?filled-p-tl A\ b € path-image ?filled-p-tl
by (smt (verit, best) Cons-nth-drop-Suc Diff-insert-absorb One-nat-def Suc-1
<2 < length filled-vts) drop0 drop-eq-Nil fill-pocket-0-def filled-vts-0 filled-vts-1 filled-vts-def
hd-last-vts last-drop last-in-set linorder-not-le list.sel(3) not-less-eq-eq nth-Cons-0
order-less-le-trans pathstart-in-path-image polygon-pathstart pos2 subset-Diff-insert
vertices-on-path-image)
ultimately show ¢thesis using ab by auto
qed
moreover have hd-filled: hd ?filled-vts-tl = last [a, D]
unfolding filled-vts-def fill-pocket-0-def pocket-path-vts-def construct-pocket-0-def
by (metis construct-pocket-0-def fill-pocket-0-def filled-vts filled-vts-def hd-append?2
last-ConsL last-ConsR list.sel(1) list.sel(3) list.simps(3) pocket-path-vts-def ti-append?2)
moreover have last-filled: last ?filled-vts-tl = hd [a, b]
unfolding filled-vts-def fill-pocket-0-def pocket-path-vts-def construct-pocket-0-def
using r-defined a-def assms(1) assms(2) assms(3) construct-pocket-is-pocket
hd-last-vts is-pocket-0-def pocket-path-vts-def
by fastforce
moreover have loop-free ?filled-p-tl
proof—
have sublist ?filled-vts-tl vts
unfolding filled-vts-def fill-pocket-0-def pocket-path-vts-def construct-pocket-0-def
using r-defined
by force
thus ?thesis
by (smt (verit, del-insts) Nitpick.size-list-simp(2) Suc-1 <2 < length filled-vts»
<b = filled-vts ! 1> a-neq-b assms(1) diff-is-0-eq dual-order.strict-trans1 last-conv-nth
last-filled le-antisym length-greater-0-conv length-tl list.sel(1) list.size(8) not-less-eq-eq
nth-tl polygon-def pos2 simple-path-def sublist-is-loop-free sublist-length-le)
qed
moreover have loop-free ¢ using a-neg-b linepath-loop-free by blast
moreover have filled-vts: filled-vts = [a, b] @ tl ?filled-vts-tl using filled-vts by
blast
moreover have arc 7]
by (smt (verit) arc-linepath calculation(5) constant-linepath-is-not-loop-free)
moreover have arc ?filled-p-tl
by (smt (28) arc-simple-path calculation(2) calculation(3) calculation(4) cal-
culation(7) hd-Nil-eg-last hd-conv-nth last.simps last-conv-nth list.discl list.sel(1)
make-polygonal-path-gives-path pathfinish-linepath pathstart-linepath polygon-pathfinish
polygon-pathstart simple-path-def)
moreover have ?] = make-polygonal-path [a, b]
using make-polygonal-path.simps by presburger
ultimately have If-filled: loop-free filled-p
by (smt (23) Nat.add-diff-assoc One-nat-def Suc-pred’ add-Suc-shift append-butlast-last-id

327

arc-distinct-ends butlast.simps(2) filled-p-def hd-Nil-eq-last hd-conv-nth inf-sup-aci(1)
last-ConsR less-numeral-extra(1) list.sel(1) list.simps(3) list.size(3) list.size(4)
loop-free-append nth-append-length order-eq-refl plus-1-eq-Suc polygon-pathfinish poly-
gon-pathstart)
show polygon-filled-p: polygon filled-p
unfolding polygon-def

by (metis closed-path-def UNIV-def append-is-Nil-conv filled-p-def filled-vts
hd-append?2 last.simps last-conv-nth last-filled If-filled list. discl list. exhaust-sel make-polygonal-path-gives-path
nth-Cons-0 polygon-pathfinish polygon-pathstart polygonal-path-def rangel simple-path-def)

have {a, b} C set filled-vts
using filled-vts by (smt (23) UnCI empty-set list.simps(15) set-append sub-
set-iff)
moreover have pocket-path: ?pocket-path = make-polygonal-path ([a] @ good-pocket-path-vts
Q [o])
by (metis (no-types, lifting) a-def a-neg-b append-Cons append-Nil append-butlast-last-id
b-def good-pocket-path-vts-def hd-Nil-eq-last hd-conv-nth last-conv-nth length-butlast
list.collapse list.size(3) tl-append?2)
moreover have path-image ?pocket-path C path-inside filled-p U {a, b}
proof—
let ?p = ?pocket-path
let 2q = ?filled-p-tl
let ?H = convex hull (path-image ?p U path-image ?q)
have b: pocket-path-vts = take (9r + 1) vts
unfolding pocket-path-vts-def construct-pocket-0-def by blast
moreover then have ¢’ ?filled-vts-tl = drop ?r vts unfolding filled-vts-def
fill-pocket-0-def
using 2 by fastforce
ultimately have vts = pocket-path-vts @ tl ?filled-vts-tl
by (metis Suc-eq-plusl append-take-drop-id drop-Suc tl-drop)
then have path-image ?p = path-image ?p U path-image 2q
by (metis Suc-1 a-def a-negq-b b-def diff-is-0-eq hd-Nil-eq-last hd-conv-nth
hd-filled last.simps last-conv-nth last-filled list.discl list.sel(1) make-polygonal-path-image-append-alt
not-less-eq-eq path-image-join polygon-pathfinish polygon-pathstart)
moreover have convex hull (path-image ?p) = convex hull (set vts)
by (metis (no-types, lifting) 1 Un-subset-iff convezr-hull-of-polygon-is-convez-hull-of-vts
hull-Un-subset hull-mono subset-antisym vertices-on-path-image)
ultimately have H-eq: YH = convex hull (set vts) by presburger

have a: ?p = make-polygonal-path vts N loop-free ?p
using assms(1) polygon-def simple-path-def by blast
have c¢: ?filled-vts-tl = drop ((?r + 1) — 1) vts using ¢’ by simp
have h: 1 < %r + 1 A ?r + 1 < length vts using 2 by linarith
have path-image ?p N path-image ?q C {%p 0, %q 0}
using loop-free-split-int[OF a b ¢ - - - h] by (simp add: pathstart-def)
moreover have ?p 0 € path-image 7p A ?p 0 € path-image ?q
by (metis a-def a-neg-b b-def hd-Nil-eq-last hd-conv-nth hd-filled last.simps
last-conv-nth last-filled list.sel(1) pathfinish-in-path-image pathstart-def pathstart-in-path-image

328

polygon-pathfinish polygon-pathstart)
moreover have ?q 0 € path-image ?p N %q 0 € path-image %q
by (metis a-def a-neg-b b-def hd-Nil-eq-last hd-conv-nth hd-filled last.simps
last-conv-nth last-filled list.sel(1) pathfinish-in-path-image pathstart-def pathstart-in-path-image
polygon-pathfinish polygon-pathstart)
ultimately have /: path-image ?p N path-image ?q = {%p 0, %q 0} by fastforce

have 1: simple-path ?p N simple-path ?q
by (metis (no-types, lifting) One-nat-def Suc-1 Suc-le-eq <arc ?filled-p-tl»
arc-simple-path assms(1) assms(2) assms(3) construct-pocket-is-pocket is-pocket-0-def
le-add?2 make-polygonal-path-gives-path numeral-3-eq-3 order-le-less-trans plus-1-eq-Suc
pocket-path-vts-def polygon-def simple-path-def sublist-is-loop-free sublist-take)
have 2: arc %p N arc ?q
by (metis 1 <arc ?filled-p-tl> a-def a-neq-b b-def hd-Nil-eq-last hd-conv-nth
last-conv-nth polygon-pathfinish polygon-pathstart simple-path-cases)
have 8: 2q0 =% 1 N %1 =20
by (metis 1 a-def append-Cons b-def constant-linepath-is-not-loop-free filled-vts
hd-conv-nth last-conv-nth last-filled list.sel(1) list.sel(8) make-polygonal-path.simps(1)
pathfinish-def pathstart-def polygon-pathfinish polygon-pathstart simple-path-def)
have 5: ?p ‘{0<..<1} C interior ?H
proof—
have Vj € {0<..<?r}. vtslj & frontier (convex hull (set vts))
by (smt (verit, del-insts) Int-iff dual-order.strict-trans greater ThanLess Than-iff
int-A-nonempty mem-Collect-eq min-nonzero-indez-in-set-defined nonzero-indez-in-set-def
nth-mem)
moreover have ?r = length pocket-path-vts — 1 using b h by auto
moreover have Vj < ?r. vtslj = pocket-path-vts!j using b by auto
ultimately have Vj € {0<..<length pocket-path-vts — 1}. pocket-path-vts!j
¢ frontier ?H
using H-eq by simp
moreover have loop-free ?pocket-path using 1 simple-path-def by auto
ultimately show ?thesis
by (metis vts-interior Un-subset-iff assms(1) assms(2) assms(3) con-
struct-pocket-is-pocket convex-convez-hull hull-subset is-pocket-0-def pocket-path-vts-def)
qed
have 6: path-image (linepath (?p 0) (?p 1)) C frontier ?H
by (metis I-frontier H-eq 3 a-def a-neq-b ab b-def hd-Nil-eg-last hd-conv-nth
hd-filled last.simps last-filled list.discl list.sel(1) pathstart-def polygon-pathstart)
have 7: path-image ?q N path-image (linepath (?p 0) (?p 1)) = {linepath (p
0) (% 1) 0, % 0}
by (metis 8 <path-image (make-polygonal-path (tl filled-vts)) N path-image
(linepath a b) = {a, b} a-def a-neq-b b-def hd-Nil-eq-last hd-filled last.simps last-conv-nth
last-filled linepath-0' list.sel(1) pathfinish-def polygon-pathfinish)
have ?p ‘{0<..<1} C path-inside (linepath (%p 0) (%p 1) +++ %q)
using pocket-path-interior|OF 1 2 8 4 5 6 7] by blast
then have ?p{0<..<1} C path-inside filled-p
by (smt (verit) 8 <2 < length filled-vts) a-def a-neg-b b-def filled-p-def
filled-vts-0 hd-Nil-eq-last hd-filled last.simps last-filled length-greater-0-conv list.discl
list.sel(1) list.sel(3) make-polygonal-path.elims nth-Cons-0 order-less-le-trans path-

329

start-def polygon-pathstart pos2)
moreover have op 0 = a A p 1 = b
by (metis 3 a-def a-neg-b b-def hd-Nil-eq-last hd-conv-nth hd-filled last.simps
last-filled list.discl list.sel(1) pathstart-def polygon-pathstart)
ultimately show ?thesis
by (metis 1 Diff-subset-conv a-def a-neg-b b-def hd-Nil-eq-last hd-conv-nth
last-conv-nth polygon-pathfinish polygon-pathstart simple-path-endless sup-commute)
qed
moreover have loop-free-pocket-path: loop-free ?pocket-path
proof—
have sublist pocket-path-vts vts
by (simp add: construct-pocket-0-def pocket-path-vts-def)
moreover have loop-free ?p
using assms(1) polygon-def simple-path-def by blast
moreover have length pocket-path-vts > 2
by (metis Suc-1 a-def a-neq-b b-def diff-is-0-eq’ hd-Nil-eg-last hd-conv-nth
last-conv-nth not-less-eq-eq)
moreover have length vts > 2
by (meson calculation(1) calculation(3) le-trans sublist-length-le)
ultimately show ?thesis using sublist-is-loop-free by blast
qged
ultimately have good-polygonal-path: good-polygonal-path a good-pocket-path-vts
b filled-vts
by (metis a-neg-b filled-p-def good-polygonal-path-def)

have filled-vts-as-butlast: filled-vts = (butlast filled-vts) @ [(butlast filled-vts)!0]

by (metis Nitpick.size-list-simp(2) append.right-neutral butlast-conv-take filled-p-def
filled-vts have-wraparound-vertex length-butlast length-tl less-Suc-eq-0-disj list.discl
list.sel(2) list.sel(8) nth-butlast polygon-filled-p)

then have filled-p-as-butlast:

filled-p = make-polygonal-path ((butlast filled-vts) Q [(butlast filled-vts)!0])
unfolding filled-p-def filled-vts-def by argo
have le: 0 < (1::nat) by simp

have filled-0-a: (butlast filled-vts) ! 0 = a
by (metis append-Cons append-Nil butlast.simps(2) filled-vts nth-Cons-0 filled-vts-0)
have filled-1-b: (butlast filled-vts) ! 1 = b
by (metis (no-types, opaque-lifting) filled-vts-1 filled-vts-as-butlast a-neg-b ap-
pend-Cons append-Nil butlast-conv-take filled-0-a filled-vts length-butlast less-one
linorder-not-le nat-less-le nth-append-length nth-butlast take0)

have 01: 0 < length (butlast filled-vts) N 1 < length (butlast filled-vts)
by (metis One-nat-def Suc-lessI filled-vts-1 filled-vts-as-butlast a-neg-b ap-
pend-eq-Cons-conv filled-0-a length-greater-0-conv nth-Cons-Suc nth-append-length)
show is-split-path:
is-polygon-split-path (butlast filled-vts) 0 1 good-pocket-path-vts
using good-polygonal-path-implies-polygon-split-path
[OF polygon-filled-p filled-p-as-butlast - 01 filled-0-a filled-1-b le]

330

using good-polygonal-path filled-vts-as-butlast
by presburger

have polygon-pocket-rev: polygon (make-polygonal-path (a#([] @ [b] Q (rev good-pocket-path-vts)
Q [a])))
unfolding is-polygon-split-path-def
by (smt (23) 01 One-nat-def add-diff-cancel-left’ add-diff-cancel-right’ filled-0-a
filled-1-b is-polygon-split-path-def is-split-path nth-butlast plus-1-eq-Suc take0)
moreover have rev-pocket-vts: rev Zpocket-vts = a#([] @Q [b] Q (rev good-pocket-path-vts)
Q [d])
by (smt (verit) a-def a-neq-b append.left-neutral append-Cons append-butlast-last-id
b-def good-pocket-path-vts-def hd-Nil-eq-last hd-append2 hd-conv-nth last-conv-nth
length-butlast list.collapse list.size(8) rev.simps(1) rev.simps(2) rev-append)
ultimately show polygon pocket
by (metis polygon-pocket-rev rev-vts-is-polygon polygon-of-def pocket-def rev-rev-ident)

have card (set vts) = length (butlast vts)
using distinct-vts
by (smt (verit, ccfv-threshold) Suc-n-not-le-n Un-insert-right append-Nil2 assms(1)
butlast-conv-take distinct-card dual-order.strict-trans have-wraparound-vertex hd-conv-nth
hd-in-set hd-take insert-absorb length-0-conv length-butlast less-eq-Suc-le linorder-linear
list.set(2) not-numeral-le-zero numeral-3-eq-3 polygon-at-least-3-vertices-wraparound
polygon-vertices-length-at-least-4 set-append)
then have set pocket-path-vts C set vts
unfolding pocket-path-vts-def construct-pocket-0-def
using r-defined
by (smt (verit, ccfu-threshold) Cons-nth-drop-Suc One-nat-def Suc-diff-Suc
Suc-le-lessD add-diff-cancel-right’ assms(1) assms(2) assms(3) butlast-conv-take
butlast-snoc card-length construct-pocket-0-def construct-pocket-is-pocket drop0 fill-pocket-0-def
filled-vts-def is-pocket-0-def is-polygon-split-path-def is-split-path leD le-less-Suc-eq
length-butlast length-drop length-greater-0-conv list.inject numeral-3-eq-3 plus-1-eq-Suc
pocket-path-vts-def polygon-at-least-3-vertices-wraparound psubset] set-take-subset
take-eq-Nil add-eq-0-iff-both-eq-0 add-gr-0 cancel-comm-monoid-add-class. diff-cancel
diff-zero dual-order.strict-trans filled-p-def length-Cons length-tl less-imp-diff-less
list.sel(3) list.size(8) not-less-eq-eq polygon-filled-p zero-less-one zero-neg-one)
thus card (set pocket-path-vts) < card (set vts) by (simp add: psubset-card-mono)

have card (set vts) = card (set (butlast vts))
by (smt (23) Cons-nth-drop-Suc List.finite-set One-nat-def Suc-1 Suc-le-lessD
two-vts-on-frontier distinct-vts hd-last-vts frontier-vts-subset butlast.simps(1) but-
last-conv-take card-insert-if card-length card-mono distinct-card drop0 drop-eq-Nil
dual-order.trans last-in-set last-tl length-butlast length-greater-0-conv length-tl list.collapse
list.sel(8) list.simps(15) set-take-subset verit-la-disequality)
moreover have length good-pocket-path-vts > 1
unfolding good-pocket-path-vts-def pocket-path-vts-def construct-pocket-0-def
using convez-hull-of-nonconver-polygon-strict-subset| OF - assms(4), of vts]

331

using Suc-le-eq assms(1) assms(2) assms(3) construct-pocket-0-def construct-pocket-is-pocket
is-pocket-0-def numeral-3-eq-3
by auto
ultimately show card (set filled-vts) < card (set vts)

unfolding filled-vts-def fill-pocket-0-def good-pocket-path-vts-def pocket-path-vts-def

by (smt (verit) Nitpick.size-list-simp(2) Suc-1 Suc-diff-Suc Suc-n-not-le-n <2 <
length filled-vtsy distinct-vts hd-last-vts card-length diff-is-0-eq diff-less distinct-card
drop-eq-Nil fill-pocket-0-def filled-vts-def insert-absorb last-drop last-in-set le lel
le-less-Suc-eq length-Cons length-butlast length-drop length-tl less-imp-diff-less list.simps(15)
order-less-le-trans pocket-path-vts-def)
qed

29.3 Arbitrary Polygon Case

lemma pick-rotate:
assumes polygon-of p vts
assumes all-integral vts
obtains p’ vts’ where polygon-of p’ vts’
A vts'0 € frontier (convex hull (set vts’))
A path-image p’ = path-image p
A all-integral vts'
A set vts' = set vts
proof—
obtain v where v: v € set vts N frontier (convex hull (set vts))
proof—
obtain v where v € set vts A v extreme-point-of (convex hull (set vts))
using assms unfolding polygon-of-def
by (metis List.finite-set card.empty convez-conver-hull convez-hull-eg-empty ex-
treme-point-ezists-convex extreme-point-of-convezr-hull finite-imp-compact-convex-hull
not-numeral-le-zero polygon-at-least-3-vertices)
then have v € set vts A v € frontier (convex hull (set vts))
by (metis Krein-Milman-frontier List.finite-set convex-convez-hull extreme-point-of-convez-hull
finite-imp-compact-convez-hull)
thus ?thesis using that by blast
qed
obtain ¢ where i: visli = v A i < length vts by (meson IntE in-set-conv-nth v)
let ?vts-rotated = rotate-polygon-vertices vts i
let ?p-rotated = make-polygonal-path ?vts-rotated
have same-set: set vts = set ?vts-rotated
using assms unfolding polygon-of-def
using rotate-polygon-vertices-same-set
by force
moreover have x: ?vts-rotated!0 € frontier (convex hull (set ?vts-rotated))
proof—
have %uvts-rotated!0 = vtsli
using assms unfolding polygon-of-def
by (metis add-leD2 diff-self-eq-0 have-wraparound-vertex hd-conv-nth i last-snoc
less-nat-zero-code list.size(3) nat-le-linear numeral-Bit0 polygon-vertices-length-at-least-4

332

rotated-polygon-vertices)
moreover have vitsli € frontier (conver hull (set vts)) using v ¢ by blast
ultimately show ?thesis using same-set by argo
qed
moreover have polygon ?p-rotated
using rotation-is-polygon assms unfolding polygon-of-def by blast
moreover have all-integral ?vts-rotated
using rotate-polygon-vertices-same-set assms
unfolding all-integral-def polygon-of-def by blast
moreover have path-image ?p-rotated = path-image p
using assms unfolding polygon-of-def using polygon-vts-arb-rotation by force
moreover then have path-inside ?p-rotated = path-inside p unfolding path-inside-def
by simp
ultimately show #¢thesis using polygon-of-def that by blast
qed

lemma pick-unrotated:
fixes p :: R-to-R2
assumes polygon: polygon p
assumes polygonal-path: p = make-polygonal-path vts
assumes int-vertices: all-integral vts
assumes [I-is: I = card {xz. integral-vec © N\ x € path-inside p}
assumes B-is: B = card {z. integral-vec x A\ x € path-image p}
assumes vtsl0 € frontier (convex hull (set vts))
shows measure lebesgue (path-inside p) = I + B/2 — 1
using assms
proof (induct card (set vts) arbitrary: vts p I B rule: less-induct)
case less
have B-finite: finite {x. integral-vec x N\ x € path-image p}
using finite-path-image less(2) by auto
have set vts C {x. integral-vec x A\ x € path-image p}
using less(3) vertices-on-path-image[of vts] less(4)
unfolding all-integral-def
by auto
then have card-vts: card (set vts) > 3
using polygon-at-least-3-vertices| OF less(2) less(8)] card-mono order-trans
by blast
have vts-wraparound: vts ! 0 = vts ! (length vts — 1)
using less(2—3) polygon-pathstart polygon-pathfinish
unfolding polygon-def closed-path-def
by (metis diff-0-eq-0 length-0-conv)
then have vts-is: vts = (butlast vts) Q [vts ! 0]
by (metis butlast-conv-take have-wraparound-vertez less.prems(1) less.prems(2))
have same-set: set vts = set (butlast (vts))
by (metis ListMem-iff Un-insert-right append.right-neutral butlast.simps(2) con-
stant-linepath-is-not-loop-free elem hd-conv-nth insert-absorb less.prems(1) less.prems(2)
list.collapse list.simps(15) make-polygonal-path.simps(2) polygon-def set-append sim-
ple-path-def vts-is)
have distinct-butlast-vts: distinct (butlast vts)

333

using simple-polygonal-path-vts-distinct less(2—3)
unfolding polygon-def
by auto
have card-butlast-vts: card (set vts) = card (set (butlast vts))
using vits-wraparound
by (smt (verit, best) List.finite-set butlast-conv-take card-distinct card-length
card-mono card-vts diff-is-0-eq diff-less distinct-butlast-vts distinct-card drop-rev
dual-order.strict-trans1 le-SucE length-append-singleton length-greater-0-conv less-numeral-extra(1)
less-numeral-extra(4) nth-eq-iff-index-eq one-less-numeral-iff order-class.order-eq-iff
semiring-norm(77) set-drop-subset set-rev vts-is)
then have card-set-len-butlast: card (set vts) = length (butlast vts)
using distinct-butlast-vts
by (metis distinct-card)
{ assume triangle: card (set vts) = 3
then have length (butlast vts) = 3
using card-set-len-butlast
by auto
then have butlast vts = [vts | 0, vis | 1, vts | 2]
by (metis (no-types, lifting) Cons-nth-drop-Suc One-nat-def Suc-1 card-set-len-butlast
card-vts drop0 drop-eq-Nil lessI nth-append numeral-3-eq-3 one-less-numeral-iff semir-
ing-norm(77) vts-is zero-less-numeral)
then have vis-is: vis = [vts | 0, vis ! 1, vis ! 2, vts ! 0]
using vts-is by auto
then have p-make-triangle: p = make-triangle (vts! 0) (vts! 1) (vts! 2)
using less(3) unfolding make-triangle-def by simp
then have not-collinear: = collinear {vts ! 0, vts | 1, vts | 2}
using vts-is less(2) polygon-vts-not-collinear|of p vts] unfolding polygon-of-def
make-triangle-def
by (smt (verit, ccfo-threshold) insert-absorb2 insert-commute list.set(1)
list.simps(15))
have all-integral: all-integral [vts ! 0, vts ! 1, vis ! 2]
using less.prems(3) vts-is unfolding all-integral-def
by (simp add: <butlast vts = [vts ! 0, vts ! 1, vts ! 2]> in-set-butlastD)
have distinct: distinct [vts | 0, vis | 1, vts | 2]
using <butlast vts = [vts | 0, vts ! 1, vts | 2]y distinct-butlast-vts by presburger
have pick-triangle: pick-triangle p (vts ! 0) (vts ! 1) (vts ! 2)
using pick-triangle p-make-triangle less(2) not-collinear all-integral distinct
by simp
then have ?case
using pick-triangle-lemma| OF p-make-triangle all-integral distinct not-collinear]
less.prems(4—5)
by blast
} moreover
{ assume non-triangle: card (set vts) > 3
{ assume convez: convex (path-image p U path-inside p)
then obtain a b where good-linepath a b vts
using convex-polygon-has-good-linepath non-triangle
by (metis inf-sup-aci(5) less.prems(1) less.prems(2))
then have ab-prop: a # b A {a, b} C set vts A path-image (linepath a b) C

334

path-inside p U {a, b}
unfolding good-linepath-def less.prems(2) by presburger
then have ab-prop-restate: a # b A a € set (butlast vts) A b € set (butlast
vts)
using same-set
by simp
have good-linepath-ab: good-linepath a b ((butlast vts) Q [(butlast vts) ! 0])
using ab-prop vits-is unfolding good-linepath-def
using ab-prop-restate empty-set hd-append?2 hd-conv-nth insert-absorb in-
sert-not-empty less.prems(2) same-set
by (smt (23))
then have good-linepath-ba: good-linepath b a ((butlast vts) @ [(butlast vts) !
0))
using good-linepath-comm good-linepath-def by blast
obtain ¢! j1 where j-prop: il < length (butlast vts) A j1 < length (butlast
vts) A
butlast vts ! il = a A
butlast vts | j1 = b N il # j1
using ab-prop-restate
by (metis distinct-Exl distinct-butlast-vts)
have i-lt-then: il < jl1 = is-polygon-split (butlast vts) il j1
using good-linepath-implies-polygon-split[OF less(2), of butlast vts] vts-is
same-set
using ij-prop good-linepath-ab good-linepath-ba
by (metis ab-prop-restate length-pos-if-in-set less.prems(2) nth-butlast)
have j-lt-then: j1 < il = is-polygon-split (butlast vts) j1 il
using good-linepath-implies-polygon-split|OF less(2), of butlast vts] vts-is
same-set
using ij-prop good-linepath-ab good-linepath-ba
by (metis ab-prop-restate length-pos-if-in-set less.prems(2) nth-butlast)
obtain i j where polygon-split: is-polygon-split (butlast vts) i j
using i-lt-then j-lt-then ij-prop
by (meson nat-neg-iff)
then have ij-prop: i < length (butlast vts) A j < length (butlast vts) N ¢ < j
unfolding is-polygon-split-def
by blast

have p-is: p = make-polygonal-path (butlast vts Q [butlast vts ! 0])
using less(3) vts-is
by (metis length-greater-0-conv nth-butlast same-set set-empty)

let 2vts! = take i (butlast vts)
let ?vts2 = take (j — i — 1) (drop (Suc 7) (butlast vts))
let ?vts3 = drop (j — %) (drop (Suc i) (butlast vis))

let 2vtspl = (butlast vts ! i # ?vts2 Q [butlast vts | j, butlast vts ! i])

have finite-butlast: finite (set (butlast vts))
by blast

335

have vtsp1-subset: set Zvtspl C set (butlast vts)
using ij-prop
by (smt (verit, del-insts) Un-commute append-Cons append-Nil dual-order.trans
insert-subset list.simps(15) nth-mem set-append set-drop-subset set-take-subset)

let ?p1 = make-polygonal-path ?vtspl
let 211 = card {z. integral-vec x N\ © € path-inside ?p1}
let ?B1 = card {x. integral-vec x A = € path-image ?p1}
have polygon-p1: polygon ?p1
using polygon-split unfolding is-polygon-split-def by metis

let Zvtsp2 = %vtsl Q [butlast vts ! i, butlast vts | j] Q Zvts3 Q [butlast vts ! 0]
let ?p2 = make-polygonal-path ?vtsp2
have polygon-p2: polygon ?p2

using polygon-split unfolding is-polygon-split-def by metis

have j-neq: j # i + 1
by (smt (verit, ccfv-SIG) One-nat-def Suc-n-not-le-n Suc-numeral add-Suc-shift
add-implies-diff cancel-ab-semigroup-add-class. diff-right-commute length-Cons length-append
list.size(8) numeral-3-eq-3 plus-1-eq-Suc polygon-p1 polygon-vertices-length-at-least-4
semiring-norm(2) semiring-norm(8) take-eq-Nil)
have subset!: set (take i (butlast vts)) C set (butlast vts)
using #j-prop by (meson set-take-subset)
have subset2: set ([butlast vts ! i, butlast vts ! j]) C set (butlast vts)
using ij-prop by simp
have subset3: set (take i (butlast vts) Q
[butlast vis | i, butlast vts ! j]) C set (butlast vts)
using subset! subset2 by auto
have subsets: set (drop (j —) (drop (Suc 1) (butlast vts)) @ [butlast vts ! 0])
C set (butlast vts)
using ij-prop set-drop-subset
by (metis (no-types, opaque-lifting) Un-commute append-Cons append-Nil
card-set-len-butlast drop0 drop-drop drop-eq-Nil2 hd-append?2 hd-conv-nth in-set-conv-decomp
insert-subset linorder-not-less list.simps(15) non-triangle not-less-eq not-less-iff-gr-or-eq
numeral-3-eq-3 same-set set-append snoc-eg-iff-butlast vts-is)
then have main-subset: set ?vtsp2 C set (butlast vts)
using subset3 subset/ by simp

have subset-p1: set ?vtspl C set (butlast vts)
using ij-prop distinct-butlast-vts
proof—
have card (set vtsp2) > 3
using polygon-p2 polygon-at-least-3-vertices by blast
moreover have set Zvtspl N set Zvtsp2 = {wtsli, vtslj}
proof—
have set 7vts2 N set ?vts3 = {}
by (metis append-take-drop-id diff-le-self distinct-append distinct-butlast-vts
set-take-disj-set-drop-if-distinct)

336

moreover have set ?vts2 N set Zvtsl = {}
proof—
have set 7vts2 C set (drop (i + 1) vts)
by (metis add.commute drop-butlast in-set-butlastD in-set-takeD
plus-1-eq-Suc subset-code(1))
moreover have set (drop (i + 1) vts) N set ?vtsl C {last vis}
proof—
have set (drop (i + 1) (butlast vts)) N set Pvtsl = {}
by (simp add: Int-commute set-take-disj-set-drop-if-distinct dis-
tinct-butlast-vts)
moreover have set (drop (i + 1) vts) = set (drop (i + 1) (butlast
vts)) U {last vts}
proof—
have drop (i + 1) vts = (drop (i + 1) ((butlast vts) @ [last vts]))
by (metis last-snoc vts-is)
thus ?thesis using 7j-prop by force
qed
ultimately show ?thesis by blast
qed
moreover have last vts ¢ set Zvts2
by (metis card-set-len-butlast card-vts distinct-butlast-vts dual-order.strict-trans1
in-set-takeD index-nth-id last-snoc nth-butlast numeral-3-eq-3 set-drop-if-index vts-is
zero-less-Suc)
ultimately show ?thesis by force
qed
moreover have vtsli € set ?vtspl by (metis ij-prop list.set-intros(1)
nth-butlast)
moreover have vtslj € set Pvtspl using ij-prop nth-butlast by fastforce
moreover have vtsli € set Zvtsp2
by (metis UnCI ij-prop list.set-intros(1) nth-butlast set-append)
moreover have vtslj € set ?vtsp2 using ij-prop nth-butlast by force
moreover have set ?vtspl = set ?vts2 U {vtsli, vtslj}
by (smt (verit, ccfo-SIG) Un-insert-right empty-set ij-prop insert-absorb2
insert-commute list.simps(15) nth-butlast set-append)
moreover have set ?vtsp2 = set ?vtsl U set Pvts3 U {wtsli, vtslj, vts!0}
proof—
have vtsli = (butlast vts)!i by (metis ij-prop nth-butlast)
moreover have vtslj = (butlast vts)!j by (metis ij-prop nth-butlast)
moreover have vts!l0 = (butlast vts)!0
by (metis ij-prop leD length-greater-0-conv nth-butlast take-all-iff
take-eq-Nil)
ultimately show ?thesis by force
qed
moreover have vtsl0 ¢ set ?vts2
by (metis distinct-butlast-vts in-set-conv-decomp in-set-takeD index-nth-id
length-pos-if-in-set nth-butlast same-set set-drop-if-index vts-is zero-less-Suc)
ultimately show ¢thesis by blast
qged
ultimately have card (set ?vtsp2) > card (set ?vtspl N set Pvtsp2)

337

by (smt (verit, del-insts) card-length empty-set lel le-trans length-Cons
list.simps(15) list.size(3) not-less-eq-eq numeral-3-eq-3)
then have Jv. v € set Pvtsp2 A v ¢ (set Zvtspl N set Zvtsp2)
by (smt (verit) Int-lower2 Orderings.order-eq-iff less-not-refl subset-code(1))
then obtain v where v € set 2vtsp2 — set ?vtspl by blast
thus ?thesis
by (metis main-subset Diff-eq-empty-iff length-pos-if-in-set less-numeral-extra(8)
list.set(1) list.size(3) psubset] vispl-subset)
qed
then have card (set ?vtspl) < card (set (butlast vts))
using card-subset-eq[OF finite-butlast)
by (meson finite-butlast psubset-card-mono)
then have card-lt-p1: card (set ?vtspl) < card (set vts)
using same-set by argo
have set 2vtspl C set vts
using j-prop
using same-set subset-p1 by blast
then have all-integral-p1: all-integral ?vtspl
using less(4) unfolding all-integral-def
by blast

obtain p1’ vitsp1’ where pl-rot: polygon-of p1’ vtspl’
A vtspl 10 € frontier (convex hull (set vtspl'))
A path-image pl’ = path-image ?pl1
A all-integral vtspl’
A set vtspl’ = set ?vtspl
using pick-rotate less polygon-p1 unfolding polygon-of-def
using all-integral-p1
by blast

let 211" = card {z. integral-vec x A x € path-inside p1'}
let ?B1’ = card {z. integral-vec x A\ x € path-image p1'}

have measure lebesque (path-inside p1’) = real 211’ + real ¢B1’) 2 — 1
using less(1) polygon-split card-lt-p1 pI-rot unfolding polygon-of-def by
force
then have indhl: Sigma-Algebra.measure lebesque (path-inside ?p1) = real
?I1 + real YB1 | 2 — 1
using pI-rot unfolding path-inside-def by metis

have vts | (i+1) ¢ set (take i (butlast vts))
using distinct-butlast-vts j-neq ij-prop
proof—
have i + 1 < length vts — 2 using distinct-butlast-vts j-neq ij-prop by
fastforce
then have vts ! (i+1) = (butlast vts) | (i+1) by (simp add: nth-butlast)
moreover then have Vj < i + 1. (butlast vts) | j # (butlast vts) ! (i+1)
using distinct-butlast-vts distinct-nth-eq-iff 7j-prop by fastforce
moreover have set (take i (butlast vts)) = {vtslj | 7. j < i}

338

proof—
have set (take i (butlast vts)) C {wtslj | j. j < i}
by (smt (verit, ccfo-SIG) dual-order.strict-trans ij-prop in-set-conv-nth
length-take mem-Collect-eq min.absorbj nth-butlast nth-take subsetl)
moreover have {uvtslj | j. 7 < i} C set (take ¢ (butlast vts))
by (smt (verit, del-insts) dual-order.strict-trans #j-prop in-set-conv-nth
length-take mem-Collect-eq min.absorbj nth-butlast nth-take subsetl)
ultimately show ¢thesis by blast
qed
ultimately show ?thesis
by (metis (no-types, lifting) add.commaute ij-prop in-set-conv-nth length-take
min.absorbq nth-take trans-less-add2)
qed
moreover have vts | (i+1) # butlast vts ! i
by (metis (no-types, lifting) ij-prop add.commute add-cancel-right-right
distinct-butlast-vts distinct-nth-eq-iff less-trans-Suc nth-append plus-1-eq-Suc vts-is
zero-negq-one)
moreover have vts | (i+1) # butlast vts ! j
by (metis (no-types, lifting) add.commute distinct-butlast-vts distinct-nth-eq-iff
ij-prop j-neq less-trans-Suc nth-append plus-1-eq-Suc vts-is)
ultimately have vts | (i+1) ¢ set (take i (butlast vts) @Q
[butlast vis | i, butlast vts ! j]) by force
moreover have vts | (i+1) ¢ set (drop (j — i) (drop (Suc i) (butlast vts)) Q
[butlast vts ! 0])
proof—
have vts | (i+1) ¢ set (drop (j — @ + Suc i) (butlast vts))
by (metis (no-types, lifting) add.commute distinct-butlast-vts ij-prop in-
dex-nth-id less-add-same-cancel? less-trans-Suc nth-append plus-1-eq-Suc set-drop-if-index
vts-is zero-less-diff)
moreover have vts | (i+1) # butlast vts ! 0
by (metis (no-types, lifting) ij-prop Nil-is-append-conv add.commaute
distinct-butlast-vts distinct-nth-eq-iff length-greater-0-conv less-trans-Suc list.discl
nat.distinct(1) nth-append plus-1-eq-Suc same-set set-empty vts-is)
ultimately show ?thesis by simp
qed
ultimately have vts | (i+1) ¢ set (take i (butlast vts) @Q
[butlast vts | 4, butlast vts | j] Q
drop (j — i) (drop (Suc i) (butlast vts)) @ [butlast vts ! 0])
by auto
then have subset-butlast-p2: set ?vtsp2 C set (butlast vts)
using main-subset ij-prop
by (metis (no-types, lifting) antisym-conv2 length-butlast less-diff-conv
nth-mem same-set)
then have card-lt-p2: card (set ?vtsp2) < card (set vts)
using card-subset-eq[OF finite-butlast]
by (metis finite-butlast psubset-card-mono same-set)
have subset-p2: set ?vtsp2 C set vts
using subset-butlast-p2 same-set
by presburger

339

then have all-integral-p2: all-integral ?vtsp2
using less(4) unfolding all-integral-def
by blast

let ?p2 = make-polygonal-path (take i (butlast vts) Q [butlast vts ! i, butlast
vts ! j] @
drop (j — i) (drop (Suc i) (butlast vts)) Q [butlast vts ! 0])
let 212 = card {z. integral-vec x N\ z € path-inside ?p2}
let B2 = card {x. integral-vec x N\ = € path-image ?p2}
have polygon-p2: polygon ?p2
using polygon-split unfolding is-polygon-split-def by metis

have vtsp2-0: ?vtsp2!0 € frontier (convex hull (set Zvtsp2))
proof—
have ?vtsp2!0 = vts!0
by (metis (no-types, lifting) append-Cons ij-prop length-greater-0-conv
less-nat-zero-code nat-neq-iff nth-append nth-append-length nth-butlast nth-take take-eq-Nil)
then have %vtsp2!0 € frontier (convexr hull (set vts)) using less by argo
moreover have ?vtsp2!0 € (convexr hull (set ?vtsp2))
by (meson append-is-Nil-conv hull-inc length-greater-0-conv neg-Nil-conv
nth-mem)
moreover have convex hull (set 2vtsp2) C convex hull (set vts)
by (metis hull-mono main-subset same-set)
ultimately show ?thesis using in-frontier-in-subset by blast
qed

have indh2: Sigma-Algebra.measure lebesgque (path-inside ?p2) = real 212 +
real YB2 [2 — 1
using less(1)[OF card-lt-p2 polygon-p2 - all-integral-p2 - - vtsp2-0] poly-
gon-split
by blast

have all-integral (butlast vts) =
Sigma-Algebra.measure lebesgue (path-inside p) = real (card {z. integral-vec
x A x € path-inside p}) + real (card {z. integral-vec x A\ x € path-image p}) / 2
— 1
using pick-split-union
[OF polygon-split, of ?vtsl ?vts2 ?vts3 butlast vts | i butlast vts | j p ?pl1
?p2 211 ¢B1 ?12 ?B2]
using indhl indh2 p-is
by blast
then have ?case
using less(4—6) unfolding all-integral-def
using same-set by presburger
} moreover
{ assume non-convex: - (convex (path-image p U path-inside p))
let ?vts-ch = set vts N frontier (convex hull (set vts))
have finite-vts: finite (set vts)
using less

340

by force
have subset-ch: ?vts-ch C set vts

using vts-subset-frontier

using less.prems(1) less.prems(2) non-convex polygon-of-def by blast
then have card-ch: card (?vts-ch) < card (set vts)

using finite-vts

by (simp add: psubset-card-mono)

let ?vts-ch-list = filter (Av. v € Puvts-ch) vts

let ?r-ide = min-index-not-in-set vts ?vts-ch
let 2r = ?r-ide — 1

let ?rotated-vts = rotate-polygon-vertices vts ?r
let ?pr = make-polygonal-path ?rotated-vts

have subset-ch-list: set ?vts-ch-list C set vts using subset-ch by auto
then have r-defined: index-not-in-set vts ?vts-ch ?r-idz
A (Vi < r-ide. = index-not-in-set vts ?vts-ch j)
using min-indez-not-in-set-defined[of ?vts-ch vts| by fastforce

have pr-image: path-image p = path-image ?pr
using polygon-vts-arb-rotation less by blast
then have measure lebesgue (path-inside ?pr) = measure lebesgue (path-inside
p)
unfolding path-inside-def by presburger
have rotated-vts-set: set ?rotated-vts = set vts
using less.prems(1) less.prems(2) rotate-polygon-vertices-same-set by auto
then have card (set ?rotated-vts) = card (set vts) by argo
have polygon-rotation: polygon ?pr using rotation-is-polygon less by blast

let ?pocket-path-vts = construct-pocket-0 ?rotated-vts ?vts-ch

let ?a = hd ?pocket-path-vts
let 2b = last ?pocket-path-vts
let 2l = linepath ?a ?b

have vts!0 € %uvts-ch
by (metis Intl length-greater-0-conv less.prems(6) nth-mem snoc-eq-iff-butlast
vts-is)
then have vts-r: vts! ?r € ?vts-ch
using min-indez-not-in-set-0 subset-ch by presburger
moreover have rotated-0: ?rotated-vts!0 = vts! ?r
using rotated-polygon-vertices|of ?rotated-vts vts ?r ?r]
by (metis (no-types, lifting) Suc-1 Suc-lel card-gt-0-iff card-set-len-butlast
diff-is-0-eq’ finite-vts hd-conv-nth index-not-in-set-def le-refl length-butlast less-imp-diff-less
mem-Collect-eq r-defined set-empty snoc-eq-iff-butlast vts-is zero-less-diff)
ultimately have rotated-0-in: ?rotated-vts'0 € ?vts-ch by presburger

341

then have b-in: 2b € set vis
using construct-pocket-0-last-in-set[of ?rotated-vts ?vts-ch]
by (smt (verit, ccfv-threshold) Int-iff One-nat-def closed-path-def Suc-lel
card-0-eq card-set-len-butlast empty-iff finite-vts last-conv-nth last-in-set last-tl length-butlast
length-greater-0-conv length-tl list.size(8) polygon-def polygon-pathfinish polygon-pathstart
polygon-rotation rotate-polygon-vertices-same-length set-empty)

have 2 < card ?vts-ch

using convez-hull-two-vts-on-frontier

by (metis One-nat-def Suc-1 add-leD2 card-vts numeral-3-eq-3 plus-1-eq-Suc)
moreover have ?vts-ch C set ?rotated-vts

using less.prems(1) less.prems(2) rotate-polygon-vertices-same-set by force
moreover have distinct (butlast ?rotated-vts)

using polygon-def polygon-rotation simple-polygonal-path-vts-distinct by blast
moreover have hd-last-rotated: hd ?rotated-vts = last ?rotated-vts
by (metis have-wraparound-vertex hd-conv-nth polygon-rotation snoc-eq-iff-butlast)
ultimately have a-neg-b: %a # %b

using construct-pocket-0-first-last-distinct

by (smt (verit) Collect-cong Int-def mem-Collect-eq set-filter)

let ?pocket-vts = ?pocket-path-vts Q [?rotated-vts! 0]
let ?pocket-good-path-vts = tl (butlast ?pocket-path-vts)

let ?filled-vts = fill-pocket-0 ?rotated-vts (length ?pocket-path-vts)
let ?filled-vts-tl = tl ?filled-vts

let ?filled-p-tl = make-polygonal-path ?filled-vts-tl

let ?filled-p = make-polygonal-path ?filled-vts

let ?pocket-path = make-polygonal-path ?pocket-path-vts

let ?pocket = make-polygonal-path ?pocket-vts

have non-convez-rot: = convex (path-image ?pr U path-inside ?pr)
using non-convex by (simp add: path-inside-def pr-image)

have 0: ?rotated-vts!0 € frontier (convexr hull (set ?rotated-vts))
using less.prems(1) less.prems(2) rotate-polygon-vertices-same-set ro-
tated-0-in by fastforce
have 1: ?rotated-vts!1 ¢ frontier (convexr hull (set ?rotated-vts))
proof—
have ?rotated-vts!! = vts!(9r + 1)
using rotated-polygon-vertices|of ?rotated-vts vts ?r ?r + 1]
by (smt (verit, ccfv-threshold) Suc-1 Suc-lel card-gt-0-iff card-set-len-butlast
diff-is-0-eq’ finite-vts hd-conv-nth index-not-in-set-def le-refl length-butlast less-imp-diff-less
mem-Collect-eq r-defined set-empty snoc-eq-iff-butlast vts-is zero-less-diff Suc-diff-Suc
add.commute add-diff-cancel-left’ bot-nat-0.not-eq-extremum less-imp-le-nat plus-1-eq-Suc)
also have ... ¢ frontier (convex hull (set ?rotated-vts))

342

using r-defined unfolding index-not-in-set-def
by (smt (verit, best) Int-iff Suc-lel add.commute add-diff-inverse-nat
bot-nat-0.not-eq-extremum diff-is-0-eq’ mem-Collect-eq nat-less-le nth-mem plus-1-eq-Suc
rotated-vts-set vts-r zero-less-diff)
finally show ?thesis .
qed
then have split:
is-polygon-split-path (butlast ?filled-vts) 0 1 ?pocket-good-path-vts
and polygon-filled-p: polygon ?filled-p
and polygon-pocket: polygon ?pocket
and pocket-path-vts-card: card (set ?pocket-path-vts) < card (set vts)
and filled-vts-card: card (set ?filled-vts) < card (set vts)
using pocket-path-good[OF - 0 1 non-convez-rot] polygon-rotation ro-
tated-vts-set apply argo
using pocket-path-good[OF - 0 1 non-convez-rot] polygon-rotation ro-
tated-vts-set apply argo
using pocket-path-good[OF - 0 1 non-convez-rot] polygon-rotation ro-
tated-vts-set
apply (metis add-gr-0 construct-pocket-0-def nth-take zero-less-one)
using pocket-path-good[OF - 0 1 non-convez-rot] polygon-rotation ro-
tated-vts-set apply argo
using pocket-path-good[OF - 0 1 non-convez-rot] polygon-rotation ro-
tated-vts-set by argo

have vts-0-frontier: ?rotated-vts!0 € frontier (convex hull (set vts))
using rotated-0-in by simp
have filled-0: ?filled-vts!0 = ?rotated-vts!0
by (metis convez-hull-empty empty-set fill-pocket-0-def frontier-empty hd-conv-nth
length-pos-if-in-set less.prems(6) less-numeral-extra(3) list.size(3) nth-Cons-0 ro-
tated-vts-set)
have pocket-0: ?pocket-vts!0 = ?rotated-vts!0
unfolding construct-pocket-0-def
by (simp add: less-numeral-extra(1) nth-append trans-less-add2)

have subset-pocket-path-vts: set ?pocket-path-vts C set vts
using construct-pocket-0-subset-vts
by (metis construct-pocket-0-def less.prems(1) less.prems(2) rotate-polygon-vertices-same-set
set-take-subset)
moreover have set ?pocket-good-path-vts C set ?pocket-path-vts
by (smt (verit, best) butlast-conv-take list.exhaust-sel list.sel(2) set-subset-Cons
set-take-subset subset-trans)
ultimately have subset-pocket-good-path: set ?pocket-good-path-vts C set vts
by blast
then have subset-pocket: set ?pocket-vts C set vts
by (metis (mono-tags, lifting) have-wraparound-vertex less.prems(1) less.prems(2)
polygon-rotation rotate-polygon-vertices-same-set set-append subset-code(1) subset-pocket-path-vts
sup.bounded-iff)
have set ?filled-vts C set ?rotated-vts
unfolding fill-pocket-0-def

343

by (metis b-in hd-in-set insert-subset length-pos-if-in-set less-numeral-extra(3)
list.simps(15) list.size(3) rotated-vts-set set-drop-subset)
then have subset-filled: set ?filled-vts C set vts
using rotated-vts-set by blast

have taut!: ?filled-p = make-polygonal-path ?filled-vts by blast
have all-integral-filled-vts: all-integral ?filled-vts
using subset-filled less by (meson all-integral-def subset-iff)
have taut2: card (integral-inside ?filled-p) = card {z. integral-vec x N\ = €
path-inside ?filled-p}
unfolding integral-inside by blast
have taut3: card (integral-boundary ?filled-p) = card {z. integral-vec x N\ x €
path-image ?filled-p}
unfolding integral-boundary by blast
have filled-vts-0-frontier: ?filled-vts!0 € frontier (convex hull (set ?filled-vts))
proof —
have ?filled-vts!0 € frontier (convex hull set vts)
using filled-0 vts-0-frontier by presburger
moreover have ?filled-vts!0 € conver hull (set ?filled-vts)
by (metis have-wraparound-vertex hull-inc in-set-conv-decomp poly-
gon-filled-p)
moreover have set ?filled-vts C set vts using subset-filled by force
ultimately show ?thesis using in-frontier-in-subset-convez-hull by blast
qed

have ih-filled: measure lebesgue (path-inside ?filled-p)
= card (integral-inside ?filled-p) + ((card (integral-boundary ?filled-p)) /
2) — 1
using less(1)[OF filled-vts-card polygon-filled-p taut!l all-integral-filled-vts
taut2 taut3 filled-vts-0-frontier]
by blast

have set ?pocket-path-vts C set vts
using pocket-path-vts-card subset-pocket-path-vts by force
moreover have pocket-path-set: set ?pocket-path-vts = set ?pocket-vts
by (smt (verit) Nil-is-append-conv rotated-0 a-neg-b append-Cons append-Nil
hd-Nil-eg-last hd-append?2 hd-conv-nth hd-in-set insert-absorb list.simps(15) pocket-0
rev-append set-append set-rev)
ultimately have set ?pocket-vts C set vts by blast
then have pocket-vts-card: card (set ?pocket-vts) < card (set vts)
by (meson finite-vts psubset-card-mono)
have all-integral-pocket-vts: all-integral ?pocket-vts
using subset-pocket less unfolding all-integral-def by blast
have tautl: ?pocket = make-polygonal-path ?pocket-vts by blast
have taut2: card (integral-inside ?pocket) = card {z. integral-vec © N z €
path-inside ?pocket}
unfolding integral-inside by blast
have taut3: card (integral-boundary ?pocket) = card {z. integral-vec x N © €

344

path-image ?pocket}
unfolding integral-boundary by blast
have pocket-vts-0-frontier: ?pocket-vts!0 € frontier (convex hull (set ?pocket-vts))
proof—
have ?pocket-vtsl0 € frontier (convex hull set vts)
using pocket-0 vts-0-frontier by presburger
moreover have ?pocket-vts!0 € convex hull (set ?pocket-vts)
by (smt (verit, del-insts) hull-inc in-set-conv-decomp pocket-0)
moreover have set ?pocket-vts C set vts using subset-pocket by force
ultimately show ?thesis using in-frontier-in-subset-convez-hull by blast
qed

have ih-pocket: measure lebesgue (path-inside ?pocket) = card (integral-inside
?pocket) + ((card (integral-boundary ?pocket)) |/ 2) — 1
using less(1)[OF pocket-vts-card polygon-pocket tautl all-integral-pocket-vts
taut2 taut3 pocket-vts-0-frontier)
by blast

let 20 = 0:nat

let 95 = 1:nat

let 2vts = butlast ?filled-vts

let vts1 = |]

let vts2 = |]

let 2vts3 = butlast (drop 2 ?filled-vts)

let ?cutvts = ?pocket-good-path-vts

let ?p = ?filled-p

let ?p1 = make-polygonal-path (?a # %vts2 Q [?b] @ rev Zcutvts Q [?a])
let %p2 = ?pr

let 211 = card {z. integral-vec x N\ z € path-inside ?p1}
let ?B1 = card {x. integral-vec x A\ = € path-image ?pl}
let 212 = card {z. integral-vec x A x € path-inside 7p2}
let ?B2 = card {z. integral-vec © A = € path-image ?p2}
let ?I = card {z. integral-vec x N = € path-inside ?p}
let B = card {z. integral-vec x A x € path-image ?p}

have rev ?pocket-vts = (?a # ?vts2 Q [2b] @ rev Zcutvts @ [?a])
by (smt (verit) a-negq-b append-Nil append-butlast-last-id hd-Nil-eq-last
hd-append2 hd-conv-nth last-conv-nth length-butlast list.collapse list.size(8) pocket-0
rev.simps(2) rev-append rev-rev-ident snoc-eq-iff-butlast)
then have pocket-rev-image: path-image ?pocket = path-image ?pl
using polygon-at-least-3-vertices polygon-pocket card-length
by (smt (verit, best) One-nat-def Suc-1 le-add2 le-trans numeral-3-eq-3
plus-1-eq-Suc rev-vts-path-image polygon-at-least-3-vertices polygon-pocket card-length)
then have pocket-rev-inside: path-inside ?pocket = path-inside ?p1
unfolding path-inside-def by argo

have split”: is-polygon-split-path ?vts ?i 2] ?cutvts using split by blast

have 0: %vts1 = take ?i 2vts by auto
have 1: %vts2 = take (%j — % — 1) (drop (Suc ?i) ?vts) by simp

345

have 2: ?vts8 = drop (% — ?i) (drop (Suc i) ?vts)
by (metis (no-types, lifting) One-nat-def Suc-1 diff-zero drop-butlast drop-drop
plus-1-eq-Suc)
have 3: %a = %vts | %
by (smt (23) Nil-is-append-conv pocket-path-set filled-0 hd-conv-nth is-polygon-split-path-def
length-greater-0-conv list. distinct(1) nth-append nth-butlast pocket-0 set-empty split’)
have 4: %b = %vts | 2§
proof—
have ?b = ?filled-vts!1
unfolding construct-pocket-0-def fill-pocket-0-def
by (smt (23) Suc-eq-plusl a-neq-b construct-pocket-0-def diff-Suc-1
diff-is-0-eq’ drop-eq-Nil hd-conv-nth hd-drop-conv-nth hd-last-rotated last-conv-nth
length-take linorder-not-less min.absorb4 nat-le-linear not-less-eq-eq nth-Cons’ nth-take
one-neqg-zero take-all-iff take-eq-Nil)
thus ?thesis by (metis is-polygon-split-path-def nth-butlast split’)
qed
have 5: ?pocket-path = make-polygonal-path (?a # ?cutvts Q [2D])
by (smt (verit, ccfv-SIG) a-neg-b butlast.simps(2) butlast-tl hd-Cons-tl
hd-Nil-eg-last last.simps snoc-eq-iff-butlast)
have 6: ?p = make-polygonal-path (?vts Q [?vts!0])
by (metis (no-types, lifting) butlast-conv-take have-wraparound-vertex is-polygon-split-path-def
nth-butlast polygon-filled-p split’)
have 7: ?p1 = make-polygonal-path (?a # ?vts2 Q [?b] Q rev ?cutvts Q [?a))
by blast
have 8: ?p2 = make-polygonal-path (?vtsl1 Q ([?a] @ Zcutvts Q [2b]) Q Pvts3
Q [?vts!0))
proof—
have ?rotated-vts = ?vts1 Q ([?a] @ Pcutvts @ [2b]) Q Puts3 Q [?uts!O]
unfolding construct-pocket-0-def fill-pocket-0-def
by (smt (verit) 8 Suc-1 hd-last-rotated a-neq-b append-Cons append-Nil ap-
pend-butlast-last-id append-take-drop-id construct-pocket-0-def drop-Suc drop-drop
drop-eq-Nil fill-pocket-0-def hd-Nil-eq-last hd-append?2 hd-conv-nth last-conv-nth last-drop
length-Cons length-take length-tl linorder-not-less list.collapse list.sel(3) list.size(3)
min.absorbj plus-1-eq-Suc take-all-iff)
thus ?thesis by argo
qed
have 9: ?I1 = card {z. integral-vec x N\ x € path-inside ?p1} by blast
have 10: ?Bl = card {z. integral-vec x A\ x € path-image ?p1} by blast
have 11: ?I2 = card {z. integral-vec x N x € path-inside ?p2} by blast
have 12: ?B2 = card {z. integral-vec x A\ x € path-image ?p2} by blast
have 13: ?I = card {z. integral-vec © N\ = € path-inside ?p} by blast
have 1/: ?B = card {z. integral-vec x N\ x € path-image ?p} by blast
have 15: all-integral ?vts
using subset-filled less
unfolding all-integral-def
by (metis (no-types, lifting) all-integral-def all-integral-filled-vts in-set-butlastD)
have 16: measure lebesque (path-inside ?p) = ¢ + ¢B/2 — 1
using ih-filled unfolding integral-inside integral-boundary by blast
have 17: measure lebesgue (path-inside ?p1) = ?I1 + ?B1/2 — 1

346

using ih-pocket unfolding integral-inside integral-boundary using pocket-rev-image
pocket-rev-inside by force
have measure lebesque (path-inside ?p2) = 712 + ¢B2/2 — 1
using pick-split-path-union-main(3)
[OF split’ 012534 567891011121314 1516 17] less(5—6) by blast
moreover have ?I2 = [using less(5) pr-image path-inside-def by presburger
moreover have ?B2 = B using less(6) pr-image path-image-def by pres-
burger
ultimately have ?case by (simp add: path-inside-def pocket-rev-inside
pr-image)

ultimately have ?case by blast
}
ultimately show ?case using card-vts by linarith
qed

theorem pick:
fixes p :: R-to-R2
assumes polygon p
assumes p = make-polygonal-path vts
assumes all-integral vts
assumes [= card {z. integral-vec © N\ x € path-inside p}
assumes B = card {z. integral-vec x A = € path-image p}
shows measure lebesgue (path-inside p) = I + B/2 — 1
proof—
obtain p’ vts’ where polygon-of p’ vts’
A vtsl0 € frontier (convex hull (set vts’))
A path-image p’ = path-image p
A all-integral vts'
A set vts’ = set vts
using pick-rotate assms unfolding polygon-of-def by blast
thus ?thesis using assms pick-unrotated unfolding path-inside-def polygon-of-def
by fastforce
qed

end

References

[1] B. Grinbaum and G. C. Shephard. Pick’s theorem. The American
Mathematical Monthly, 100(2):150-161, 1993.

[2] J. Harrison. A formal proof of Pick’s theorem. Math. Struct. Comput.
Sci., 21(4):715-729, 2011.

347

	Misc. Linear Algebra Setup
	Integral Bijective Matrix Determinant
	Polygon Definitions
	Jordan Curve Theorem for Polygons
	Properties of make polygonal path, pathstart and pathfinish of a polygon
	Loop Free Properties
	Explicit Linepath Characterization of Polygonal Paths
	A Triangle is a Polygon
	Polygon Vertex Rotation
	Translating a Polygon
	Misc. properties
	Properties of Sublists of Polygonal Path Vertex Lists
	Reversing Polygonal Path Vertex List
	Collinearity Properties
	Linepath Properties
	Measure of linepaths
	Misc. Convex Polygon Properties
	Vertices on Convex Frontier Implies Polygon is Convex
	Polygon Splitting
	Triangles
	Measure Setup
	Unit Triangle
	Unit Square
	Unit Triangle Area is 1/2
	Area of Elementary Triangle is 1/2
	Setup
	Integral Points Cardinality Properties

	Pick splitting
	Convex Hull Has Good Linepath
	Pick's Theorem
	Pick's Theorem Triangle Case
	Pocket properties
	Arbitrary Polygon Case

