Perfect Fields

Manuel Eberl, Katharina Kreuzer

April 18, 2024

Abstract

This entry provides a type class for perfect fields. A perfect field K can be characterized by one of the following equivalent conditions [2]: 1. Any irreducible polynomial p is separable, i.e. $\operatorname{gcd}\left(p, p^{\prime}\right)=1$, or, equivalently, $p^{\prime} \neq 0$. 2. Either $\operatorname{char}(K)=0$ or $\operatorname{char}(K)=p>0$ and the Frobenius endomorphism $x \mapsto x^{p}$ is surjective (i.e. every element of K has a p-th root). We define perfect fields using the second characterization and show the equivalence to the first characterization. The implication " $2 \Rightarrow 1$ " is relatively straightforward using the injectivity of the Frobenius homomorphism.

Examples for perfect fields are [2]: - any field of characteristic 0 (e.g. \mathbb{R} and \mathbb{C}) - any finite field (i.e. \mathbb{F}_{q} for $q=p^{n}, n>0$ and p prime) - any algebraically closed field (for example the formal Puiseux series over finite fields)

Contents

1 Perfect Fields 3
1.1 The Freshman's Dream in rings of non-zero characteristic 4
1.2 The Frobenius endomorphism 6
1.3 Inverting the Frobenius endomorphism on polynomials 9
1.4 Code generation 14
1.5 Perfect fields 16
1.6 Alternative definition of perfect fields 19

1 Perfect Fields

```
theory Perfect_Fields
imports
    "HOL-Computational_Algebra.Computational_Algebra"
    "Berlekamp_Zassenhaus.Finite_Field"
begin
lemma (in vector_space) bij_betw_representation:
    assumes [simp]: "independent B" "finite B"
    shows "bij_betw (\lambdav. \sumb\inB. scale (v b) b) (B -> E UNIV) (span B)"
proof (rule bij_betwI)
    show "(\lambdav. \sumb\inB. v b *s b) \in (B -> ( UNIV) -> local.span B"
        (is "?f \in _")
        by (auto intro: span_sum span_scale span_base)
    show "(\lambdax. restrict (representation B x) B) \in local.span B ->B 勆
UNIV"
            (is "?g \in _") by auto
    show "?g (?f v) = v" if "v \in B ->E UNIV" for v
    proof
        fix b :: 'b
        show "?g (?f v) b = v b"
        proof (cases "b \in B")
            case b: True
            have "?g (?f v) b = (\sum i\inB. local.representation B (v i *s i) b)"
                using b by (subst representation_sum) (auto intro: span_scale
span_base)
            also have "... = (\sumi\inB. v i * local.representation B i b)"
                by (intro sum.cong) (auto simp: representation_scale span_base)
                also have "... = (\sumi\in{b}. v i * local.representation B i b)"
                    by (intro sum.mono_neutral_right) (auto simp: representation_basis
b)
                also have "... = v b"
                    by (simp add: representation_basis b)
                finally show "?g (?f v) b = v b" .
            qed (use that in auto)
    qed
    show "?f (?g v) = v" if "v \in span B" for v
        using that by (simp add: sum_representation_eq)
qed
lemma (in vector_space) card_span:
    assumes [simp]: "independent B" "finite B"
    shows "card (span B) = CARD('a) ~ card B"
proof -
    have "card (B ->e (UNIV :: 'a set)) = card (span B)"
        by (rule bij_betw_same_card, rule bij_betw_representation) fact+
    thus ?thesis
        by (simp add: card_PiE dim_span_eq_card_independent)
```


qed

```
lemma (in zero_neq_one) CARD_neq_1: "CARD('a) \not= Suc 0"
proof
    assume "CARD('a) = Suc 0"
    have "{0, 1}\subseteq (UNIV :: 'a set)"
        by simp
    also have "is_singleton (UNIV :: 'a set)"
        by (simp add: is_singleton_altdef <CARD('a) = _>)
    then obtain x :: 'a where "UNIV = {x}"
        by (elim is_singletonE)
    finally have "O = (1 :: 'a)"
        by blast
    thus False
        using zero_neq_one by contradiction
qed
theorem CARD_finite_field_is_CHAR_power: "\existsn>0. CARD('a :: finite_field)
= CHAR('a) - n'
proof -
    define s :: "'a ring_char mod_ring => 'a # 'a" where
        "s = (\lambdax y. of_int (to_int_mod_ring x) * y)"
    interpret vector_space s
        by unfold_locales (auto simp: s_def algebra_simps to_int_mod_ring_add
to_int_mod_ring_mult)
    obtain B where B: "independent B" "span B = UNIV"
        by (rule basis_exists[of UNIV]) auto
    have [simp]: "finite B"
        by simp
    have "card (span B) = CHAR('a) ~ card B"
        using B by (subst card_span) auto
    hence *: "CARD('a) = CHAR('a) ^ card B"
        using B by simp
    from * have "card B f=0"
        by (auto simp: B(2) CARD_neq_1)
    with * show ?thesis
        by blast
qed
```


1.1 The Freshman's Dream in rings of non-zero characteristic

lemma (in comm_semiring_1) freshmans_dream:
fixes x y :: 'a and $n::$ nat
assumes "prime CHAR('a)"
assumes $n_{-} d e f: ~ " n=\operatorname{CHAR}(' a) "$
shows " $(x+y){ }^{\wedge} n=x{ }^{\wedge} n+y$ - $n "$
proof -
interpret comm_semiring_prime_char by standard (auto intro!: exI[of _ "CHAR('a)"] assms)

```
    have "n > 0"
            unfolding n_def by simp
    have "(x + y) ^ n = (\sumk\leqn. of_nat (n choose k) * x ^ k * y ^ (n -
k))"
            by (rule binomial_ring)
    also have "... = (\sumk\in{0,n}. of_nat (n choose k) * x ^ k * y ^ (n -
k))"
    proof (intro sum.mono_neutral_right ballI)
        fix k assume "k { {..n} - {0, n}"
        hence k: "k > 0" "k < n"
            by auto
        have "CHAR('a) dvd (n choose k)"
            unfolding n_def
            by (rule dvd_choose_prime) (use k in <auto simp: n_def>)
        hence "of_nat (n choose k) = (0 :: 'a)"
            using of_nat_eq_O_iff_char_dvd by blast
        thus "of_nat (n choose k) * x ^ k * y ^ (n - k) = 0"
            by simp
    qed auto
    finally show ?thesis
        using <n > 0> by (simp add: add_ac)
qed
lemma (in comm_semiring_1) freshmans_dream':
    assumes [simp]: "prime CHAR('a)" and "m = CHAR('a) ^ n"
    shows "(x + y :: 'a) ^ m = x ^ m + y ^ m"
    unfolding assms(2)
proof (induction n)
    case (Suc n)
    have "(x + y) ~ (CHAR('a) ^ n * CHAR('a)) = ((x + y) ^ (CHAR('a) ^ n))
    - CHAR('a)"
        by (rule power_mult)
    thus ?case
        by (simp add: Suc.IH freshmans_dream Groups.mult_ac flip: power_mult)
qed auto
lemma (in comm_semiring_1) freshmans_dream_sum:
    fixes f :: "'b = 'a"
    assumes "prime CHAR('a)" and "n = CHAR('a)"
    shows "sum f A ^ n = sum (\lambdai. f i ^ n) A"
    using assms
    by (induct A rule: infinite_finite_induct)
        (auto simp add: power_O_left freshmans_dream)
lemma (in comm_semiring_1) freshmans_dream_sum':
    fixes f :: "'b = 'a"
    assumes "prime CHAR('a)" "m = CHAR('a) ~ n"
    shows "sum f A ^ m = sum (\lambdai. f i ^ m) A"
    using assms
```

```
by (induction A rule: infinite_finite_induct)
    (auto simp: freshmans_dream' power_O_left)
```


1.2 The Frobenius endomorphism

```
definition (in semiring_1) frob :: "'a \(\Rightarrow\) 'a" where
    "frob \(\mathrm{x}=\mathrm{x}\) - \(\operatorname{CHAR}(\mathrm{a})\) "
definition (in semiring_1) inv_frob :: "'a \(\Rightarrow\) 'a" where
    "inv_frob \(x=\) (if \(x \in\{0,1\}\) then \(x\) else if \(x \in\) range frob then inv_into
```

UNIV frob x else x)"
lemma (in semiring_1) inv_frob_0 [simp]: "inv_frob $0=0 "$
and inv_frob_1 [simp]: "inv_frob $1=1 "$
by (simp_all add: inv_frob_def)
lemma (in semiring_prime_char) frob_0 [simp]: "frob (0 :: 'a) = 0"
by (simp add: frob_def power_O_left)
lemma (in semiring_1) frob_1 [simp]: "frob 1 = 1"
by (simp add: frob_def)
lemma (in comm_semiring_1) frob_mult: "frob (x * y) = frob x * frob (y
:: 'a)"
by (simp add: frob_def power_mult_distrib)
lemma (in comm_semiring_1)
frob_add: "prime CHAR('a) \Longrightarrow frob ($\mathrm{x}+\mathrm{y}:: \mathrm{a}$) $=$ frob $\mathrm{x}+\mathrm{frob}$ (y
:: 'a)"
by (simp add: frob_def freshmans_dream)
lemma (in comm_ring_1) frob_uminus: "prime CHAR('a) \Longrightarrow frob (-x :: 'a)
= -frob $x^{\prime \prime}$
proof -
assume "prime CHAR('a)"
hence "frob (-x) + frob $x=0 "$
by (subst frob_add [symmetric]) (auto simp: frob_def power_O_left)
thus ?thesis
by (simp add: add_eq_0_iff)
qed
lemma (in comm_ring_prime_char) frob_diff:

using frob_add[of x "-y"] by (simp add: frob_uminus)
interpretation frob_sr: semiring_hom "frob :: 'a :: \{comm_semiring_prime_char\}
\Rightarrow 'a"
by standard (auto simp: frob_add frob_mult)

```
interpretation frob: ring_hom "frob :: 'a :: {comm_ring_prime_char} =>
'a"
    by standard auto
interpretation frob: field_hom "frob :: 'a :: {field_prime_char} = 'a"
    by standard auto
lemma frob_mod_ring' [simp]: "(x :: 'a :: prime_card mod_ring) ~ CARD('a)
= x"
    by (metis CARD_mod_ring finite_field_power_card_eq_same)
lemma frob_mod_ring [simp]: "frob (x :: 'a :: prime_card mod_ring) =
x"
    by (simp add: frob_def)
context semiring_1_no_zero_divisors
begin
lemma frob_eq_OD:
    "frob (x :: 'a) = 0 \Longrightarrow x = 0"
    by (auto simp: frob_def)
lemma frob_eq_0_iff [simp]:
    "frob (x :: 'a) = 0 \longleftrightarrow x = 0 ^ CHAR('a) > 0"
    by (auto simp: frob_def)
end
context idom_prime_char
begin
lemma inj_frob: "inj (frob :: 'a = 'a)"
proof
    fix x y :: 'a
    assume "frob x = frob y"
    hence "frob (x - y) = 0"
        by (simp add: frob_diff del: frob_eq_O_iff)
    thus "x = y"
        by simp
qed
lemma frob_eq_frob_iff [simp]:
    "frob (x :: 'a) = frob y \longleftrightarrow x = y"
    using inj_frob by (auto simp: inj_def)
lemma frob_eq_1_iff [simp]: "frob (x :: 'a) = 1 \longleftrightarrow x = 1"
    using frob_eq_frob_iff by fastforce
```

```
lemma inv_frob_frob [simp]: "inv_frob (frob (x :: 'a)) = x"
    by (simp add: inj_frob inv_frob_def)
lemma frob_inv_frob [simp]:
    assumes "x f range frob"
    shows "frob (inv_frob x) = (x :: 'a)"
    using assms by (auto simp: inj_frob inv_frob_def)
lemma inv_frob_eqI: "frob y = x \Longrightarrow inv_frob x = y"
    using inv_frob_frob local.frob_def by force
lemma inv_frob_eq_0_iff [simp]: "inv_frob (x :: 'a) = 0 \longleftrightarrow x = 0"
    using inj_frob by (auto simp: inv_frob_def split: if_splits)
end
```

```
class surj_frob = field_prime_char +
```

class surj_frob = field_prime_char +
assumes surj_frob [simp]: "surj (frob :: 'a = 'a)"
assumes surj_frob [simp]: "surj (frob :: 'a = 'a)"
begin
begin
lemma in_range_frob [simp, intro]: "(x :: 'a) \in range frob"
lemma in_range_frob [simp, intro]: "(x :: 'a) \in range frob"
using surj_frob by blast
using surj_frob by blast
lemma inv_frob_eq_iff [simp]: "inv_frob (x :: 'a) = y \longleftrightarrow frob y = x"
using frob_inv_frob inv_frob_frob by blast
using frob_inv_frob inv_frob_frob by blast
end
end
context alg_closed_field
context alg_closed_field
begin
begin
lemma alg_closed_surj_frob:
lemma alg_closed_surj_frob:
assumes "CHAR('a) > 0"
assumes "CHAR('a) > 0"
shows "surj (frob :: 'a = 'a)"
shows "surj (frob :: 'a = 'a)"
proof -
proof -
show "surj (frob :: 'a = 'a)"
show "surj (frob :: 'a = 'a)"
proof safe
proof safe
fix x :: 'a
fix x :: 'a
obtain y where "y ^ CHAR('a) = x"
obtain y where "y ^ CHAR('a) = x"
using nth_root_exists CHAR_pos assms by blast
using nth_root_exists CHAR_pos assms by blast
hence "frob y = x"
hence "frob y = x"
using CHAR_pos by (simp add: frob_def)
using CHAR_pos by (simp add: frob_def)
thus "x\in range frob"
thus "x\in range frob"
by (metis rangeI)
by (metis rangeI)
qed auto

```
    qed auto
```

qed
end
The following type class describes a field with a surjective Frobenius endomorphism that is effectively computable. This includes all finite fields.

```
class inv_frob = surj_frob +
    fixes inv_frob_code :: "'a = 'a"
    assumes inv_frob_code: "inv_frob x = inv_frob_code x"
lemmas [code] = inv_frob_code
context finite_field
begin
subclass surj_frob
proof
    show "surj (frob :: 'a m 'a)"
        using inj_frob finite_UNIV by (simp add: finite_UNIV_inj_surj)
qed
end
lemma inv_frob_mod_ring [simp]: "inv_frob (x :: 'a :: prime_card mod_ring)
= x"
    by (auto simp: frob_def)
instantiation mod_ring :: (prime_card) inv_frob
begin
definition inv_frob_code_mod_ring :: "'a mod_ring => 'a mod_ring" where
    "inv_frob_code_mod_ring x = x"
instance
    by standard (auto simp: inv_frob_code_mod_ring_def)
end
```


1.3 Inverting the Frobenius endomorphism on polynomials

If K is a field of prime characteristic p with a surjective Frobenius endomorphism, every polynomial P with $P^{\prime}=0$ has a p-th root.
To see that, let $\phi(a)=a^{p}$ denote the Frobenius endomorphism of K and its extension to $K[X]$.

If $P^{\prime}=0$ for some $P \in K[X]$, then P must be of the form

$$
P=a_{0}+a_{p} x^{p}+a_{2 p} x^{2 p}+\ldots+a_{k p} x^{k p}
$$

If we now set

$$
Q:=\phi^{-1}\left(a_{0}\right)+\phi^{-1}\left(a_{p}\right) x+\phi^{-1}\left(a_{2 p}\right) x^{2}+\ldots+\phi^{-1}\left(a_{k p}\right) x^{k}
$$

we get $\phi(Q)=P$, i.e. Q is the p-th root of $P(x)$.

```
lift__definition inv_frob_poly :: "'a :: field poly \(\Rightarrow\) 'a poly" is
    " \(\lambda\) p i. if CHAR ('a) = 0 then \(p\) i else inv_frob ( \(p(i * \operatorname{CHAR}(' a)\) ) :: 'a)"
proof goal_cases
    case (1 f)
    show ?case
    proof (cases "CHAR('a) > 0 ")
        case True
        from 1 obtain \(N\) where \(N\) : "f \(i=0 "\) if " \(i \geq N\) " for \(i\)
            using cofinite_eq_sequentially eventually_sequentially by auto
        have "inv_frob ( \(f\) (i * CHAR('a))) = 0" if "i \(\geq N "\) for \(i\)
        proof -
            have "f (i * CHAR('a)) = 0"
            proof (rule N)
                show "N \(\leq\) i ( CHAR('a)"
                using that True
                    by (metis One_nat_def Suc_leI le_trans mult.right_neutral mult_le_mono2)
            qed
            thus "inv_frob (f (i * CHAR('a))) = 0"
                by (auto simp: power_O_left)
        qed
        thus ?thesis using True
            unfolding cofinite_eq_sequentially eventually_sequentially by auto
    qed (use 1 in auto)
qed
lemma coeff_inv_frob_poly [simp]:
    fixes \(p\) :: "'a :: field poly"
    assumes "CHAR('a) > 0"
    shows "poly.coeff (inv_frob_poly p) i = inv_frob (poly.coeff p (i *
CHAR('a)))"
    using assms by transfer auto
lemma inv_frob_poly_0 [simp]: "inv_frob_poly \(0=0 "\)
    by transfer (auto simp: fun_eq_iff power_O_left)
lemma inv_frob_poly_1 [simp]: "inv_frob_poly 1 = 1"
    by transfer (auto simp: fun_eq_iff power_O_left)
lemma degree_inv_frob_poly_le:
    fixes \(p\) :: "'a :: field poly"
```

```
    assumes "CHAR('a) > 0"
    shows "Polynomial.degree (inv_frob_poly p) \leq Polynomial.degree p div
CHAR('a)"
proof (intro degree_le allI impI)
    fix i assume "Polynomial.degree p div CHAR('a) < i"
    hence "i * CHAR('a) > Polynomial.degree p"
        using assms div_less_iff_less_mult by blast
    thus "Polynomial.coeff (inv_frob_poly p) i = 0"
        by (simp add: coeff_eq_O power_O_left assms)
qed
context
    assumes "SORT_CONSTRAINT('a :: comm_ring_1)"
    assumes prime_char: "prime CHAR('a)"
begin
lemma poly_power_prime_char_as_sum_of_monoms:
    fixes h :: "'a poly"
    shows "h ~ CHAR('a) = (\sumi\leqPolynomial.degree h. Polynomial.monom (Polynomial.coeff
h i ` CHAR('a)) (CHAR('a)*i))"
proof -
    have "h ~ CHAR('a) = (\sum i\leqPolynomial.degree h. Polynomial.monom (Polynomial.coeff
h i) i) ^ CHAR('a)"
            by (simp add: poly_as_sum_of_monoms)
    also have "... = (\sumi\leqPolynomial.degree h. (Polynomial.monom (Polynomial.coeff
h i) i) " CHAR('a))"
            by (simp add: freshmans_dream_sum prime_char)
    also have "... = (\sumi\leqPolynomial.degree h. Polynomial.monom (Polynomial.coeff
h i ` CHAR('a)) (CHAR('a)*i))"
    proof (rule sum.cong, rule)
            fix x assume x: "x \in {..Polynomial.degree h}"
            show "Polynomial.monom (Polynomial.coeff h x) x ^ CHAR('a) = Polynomial.monom
(Polynomial.coeff h x ` CHAR('a)) (CHAR('a) * x)"
            by (unfold poly_eq_iff, auto simp add: monom_power)
    qed
    finally show ?thesis .
qed
lemma coeff_of_prime_char_power [simp]:
    fixes y :: "'a poly"
    shows "poly.coeff (y ~ CHAR('a)) (i * CHAR('a)) = poly.coeff y i ~ CHAR('a)"
    using prime_char
    by (subst poly_power_prime_char_as_sum_of_monoms, subst Polynomial.coeff_sum)
        (auto intro: le_degree simp: power_O_left)
lemma coeff_of_prime_char_power':
    fixes y :: "'a poly"
    shows "poly.coeff (y ^ CHAR('a)) i =
        (if CHAR('a) dvd i then poly.coeff y (i div CHAR('a)) ^ CHAR('a)
```

```
else 0)"
proof -
    have "poly.coeff (y ~ CHAR('a)) i =
                            (\sumj\leqPolynomial.degree y. Polynomial.coeff (Polynomial.monom
(Polynomial.coeff y j ^ CHAR('a)) (CHAR('a) * j)) i)"
        by (subst poly_power_prime_char_as_sum_of_monoms, subst Polynomial.coeff_sum)
auto
    also have "... = (\sumj\in(if CHAR('a) dvd i ^ i div CHAR('a) \leq Polynomial.degree
y then {i div CHAR('a)} else {}).
                Polynomial.coeff (Polynomial.monom (Polynomial.coeff
y j ~ CHAR('a)) (CHAR('a) * j)) i)"
        by (intro sum.mono_neutral_right) (use prime_char in auto)
    also have "... = (if CHAR('a) dvd i then poly.coeff y (i div CHAR('a))
- CHAR('a) else 0)"
    proof (cases "CHAR('a) dvd i ^ i div CHAR('a) > Polynomial.degree y")
        case True
        hence "Polynomial.coeff y (i div CHAR('a)) ^ CHAR('a) = 0"
                using prime_char by (simp add: coeff_eq_O zero_power power_0_left)
            thus ?thesis
                by auto
    qed auto
    finally show ?thesis .
qed
end
```

context
assumes "SORT_CONSTRAINT('a :: field)"
assumes pos_char: "CHAR('a) > 0"
begin
interpretation field_prime_char "(/)" inverse "(*)" "1 :: 'a" "(+)" 0 "(-)"
uminus
rewrites "semiring_1.frob 1 (*) (+) (0 :: 'a) = frob" and
"semiring_1.inv_frob 1 (*) (+) (0 :: 'a) = inv_frob" and
"semiring_1.semiring_char 1 (+) $0 \operatorname{TYPE}(' a)=\operatorname{CHAR}(' a) "$
proof unfold_locales
have *: "class.semiring_1 (1 :: 'a) (*) (+) 0" ..
have [simp]: "semiring_1.of_nat (1 :: 'a) (+) $0=0 f_{-} n a t "$
by (auto simp: of_nat_def semiring_1.of_nat_def[0F *])
thus $\quad \exists \mathrm{n}>0$. semiring_1.of_nat (1 : : 'a) (+) $0 n=0 "$
by (intro exI[of _ "CHAR('a)"]) (use pos_char in auto)
show "semiring_1.semiring_char 1 (+) $0 \operatorname{TYPE}(' a)=C H A R(' a) "$
by (simp add: fun_eq_iff semiring_char_def semiring_1.semiring_char_def [OF
*])
show [simp]: "semiring_1.frob (1 :: 'a) (*) (+) 0 = frob"
by (simp add: frob_def semiring_1.frob_def[0F *] fun_eq_iff
power.power_def power_def semiring_char_def semiring_1.semiring_char_def[

```
*])
    show "semiring_1.inv_frob (1 :: 'a) (*) (+) 0 = inv_frob"
    by (simp add: inv_frob_def semiring_1.inv_frob_def[OF *] fun_eq_iff)
qed
lemma inv_frob_poly_power': "inv_frob_poly (p ^ CHAR('a) :: 'a poly)
= p"
    using prime_CHAR_semidom[OF pos_char] pos_char
    by (auto simp: poly_eq_iff simp flip: frob_def)
lemma inv_frob_poly_power:
    fixes p :: "'a poly"
    assumes "is_nth_power CHAR('a) p" and "n = CHAR('a)"
    shows "inv_frob_poly p - CHAR('a) = p"
proof -
    from assms(1) obtain q where q: "p = q ^ CHAR('a)"
        by (elim is_nth_powerE)
    thus ?thesis using assms
        by (simp add: q inv_frob_poly_power')
qed
theorem pderiv_eq_0_imp_nth_power:
    assumes "pderiv (p :: 'a poly) = 0"
    assumes [simp]: "surj (frob :: 'a # 'a)"
    shows "is_nth_power CHAR('a) p"
proof -
    have *: "poly.coeff p n = 0" if n: "\negCHAR('a) dvd n" for n
    proof (cases "n = 0")
        case False
        have "poly.coeff (pderiv p) (n - 1) = of_nat n * poly.coeff p n"
            using False by (auto simp: coeff_pderiv)
            with assms and n show "poly.coeff p n = 0"
                by (auto simp: of_nat_eq_0_iff_char_dvd)
    qed (use that in auto)
    have **: "inv_frob_poly p - CHAR('a) = p"
    proof (rule poly_eqI)
        fix n :: nat
        show "poly.coeff (inv_frob_poly p ~ CHAR('a)) n = poly.coeff p n"
            using * CHAR_dvd_CARD[where ?'a = 'a]
            by (subst coeff_of_prime_char_power')
                (auto simp: poly_eq_iff frob_def [symmetric]
                        coeff_of_prime_char_power'[where ?'a = 'a] simp
flip: power_mult)
    qed
    show ?thesis
        by (subst **[symmetric]) auto
qed
```

end

1.4 Code generation

We now also make this notion of "taking the p-th root of a polynomial" executable. For this, we need an auxiliary function that takes a list $\left[x_{0}, \ldots, x_{m}\right]$ and returns the list of every n-th element, i.e. it throws away all elements except those x_{i} where i is a multiple of n.

```
fun take_every :: "nat }=>\mathrm{ 'a list }=>\mathrm{ ' 'a list" where
    "take_every _ [] = []"
l "take_every n (x # xs) = x # take_every n (drop (n - 1) xs)"
lemma take_every_0 [simp]: "take_every 0 xs = xs"
    by (induction xs) auto
lemma take_every_1 [simp]: "take_every (Suc 0) xs = xs"
    by (induction xs) auto
lemma int_length_take_every: "n > 0 \Longrightarrow int (length (take_every n xs))
= ceiling (length xs / n)"
proof (induction n xs rule: take_every.induct)
    case (2 n x xs)
    show ?case
    proof (cases "Suc (length xs) \geq n")
        case True
        thus ?thesis using 2
            by (auto simp: dvd_imp_le of_nat_diff diff_divide_distrib split:
if_splits)
    next
        case False
        hence "\lceil(1 + real (length xs)) / real n\rceil = 1"
            by (intro ceiling_unique) auto
        thus ?thesis using False
            by auto
    qed
qed auto
lemma length_take_every:
    "n > 0 \Longrightarrow length (take_every n xs) = nat (ceiling (length xs / n))"
    using int_length_take_every[of n xs] by simp
lemma take_every_nth [simp]:
    "n > 0 \Longrightarrow i < length (take_every n xs) \Longrightarrow take_every n xs ! i = xs
! (n * i)"
proof (induction n xs arbitrary: i rule: take_every.induct)
    case (2 n x xs i)
    show ?case
```

```
    proof (cases i)
    case (Suc j)
    have "n - Suc 0 \leq length xs"
        using Suc "2.prems" nat_le_linear by force
    hence "drop (n - Suc 0) xs ! (n * j) = xs ! (n - 1 + n * j)"
        using Suc by (subst nth_drop) auto
    also have "n - 1 + n* j=n + n* j-1"
        using <n > 0> by linarith
    finally show ?thesis
        using "2.IH"[of j] "2.prems" Suc by simp
    qed auto
qed auto
lemma coeffs_eq_strip_whileI:
    assumes "\i. i < length xs \Longrightarrow Polynomial.coeff p i = xs ! i"
    assumes " }p\not=0\Longrightarrow\mathrm{ length xs > Polynomial.degree p"
    shows "Polynomial.coeffs p = strip_while ((=) 0) xs"
proof (rule coeffs_eqI)
    fix n :: nat
    show "Polynomial.coeff p n = nth_default O (strip_while ((=) 0) xs)
n"
        using assms
        by (metis coeff_0 coeff_Poly_eq coeff\mp@subsup{s}{_}{\prime}Poly le_degree nth_default_coeffs_eq
            nth_default_eq_dflt_iff nth_default_nth order_le_less_trans)
qed auto
This implements the code equation for inv_frob_poly.
```

```
lemma inv_frob_poly_code [code]:
```

lemma inv_frob_poly_code [code]:
"Polynomial.coeffs (inv_frob_poly (p :: 'a :: field_prime_char poly))
"Polynomial.coeffs (inv_frob_poly (p :: 'a :: field_prime_char poly))
=
=
(if CHAR('a) = O then Polynomial.coeffs p else
(if CHAR('a) = O then Polynomial.coeffs p else
map inv_frob (strip_while ((=) 0) (take_every CHAR('a) (Polynomial.coeffs
map inv_frob (strip_while ((=) 0) (take_every CHAR('a) (Polynomial.coeffs
p))))"
p))))"
(is "_ = If _ _ ?rhs")
(is "_ = If _ _ ?rhs")
proof (cases "CHAR('a) = O \vee p = O")
proof (cases "CHAR('a) = O \vee p = O")
case False
case False
from False have "p}\not=0
from False have "p}\not=0
by auto
by auto
have "Polynomial.coeffs (inv_frob_poly p) =
have "Polynomial.coeffs (inv_frob_poly p) =
strip_while ((=) 0) (map inv_frob (take_every CHAR('a) (Polynomial.coeffs
strip_while ((=) 0) (map inv_frob (take_every CHAR('a) (Polynomial.coeffs
p)))"
p)))"
proof (rule coeffs_eq_strip_whileI)
proof (rule coeffs_eq_strip_whileI)
fix i assume i: "i < length (map inv_frob (take_every CHAR('a) (Polynomial.coeffs
fix i assume i: "i < length (map inv_frob (take_every CHAR('a) (Polynomial.coeffs
p)))"
p)))"
show "Polynomial.coeff (inv_frob_poly p) i = map inv_frob (take_every
show "Polynomial.coeff (inv_frob_poly p) i = map inv_frob (take_every
CHAR('a) (Polynomial.coeffs p)) ! i"
CHAR('a) (Polynomial.coeffs p)) ! i"
proof -
proof -
have "i < length (take_every CHAR('a) (Polynomial.coeffs p))"

```
        have "i < length (take_every CHAR('a) (Polynomial.coeffs p))"
```

```
            using i by simp
            also have "length (take_every CHAR('a) (Polynomial.coeffs p)) =
                        nat \lceil(Polynomial.degree p + 1) / real CHAR('a) \"
                        using False CHAR_pos[where ?'a = 'a]
                by (simp add: length_take_every length_coeffs)
            finally have "i < real (Polynomial.degree p + 1) / real CHAR('a)"
                by linarith
            hence "real i * real CHAR('a) < real (Polynomial.degree p + 1)"
                using False CHAR_pos[where ?'a = 'a] by (simp add: field_simps)
            hence "i * CHAR('a) \leq Polynomial.degree p"
                        unfolding of_nat_mult [symmetric] by linarith
                            hence "Polynomial.coeffs p ! (i * CHAR('a)) = Polynomial.coeff p
(i * CHAR('a))"
            using False by (intro coeffs_nth) (auto simp: length_take_every)
            thus ?thesis using False i CHAR_pos[where ?'a = 'a]
                by (auto simp: nth_default_def mult.commute)
    qed
    next
    assume nz: "inv_frob_poly p f= 0"
    have "Polynomial.degree (inv_frob_poly p) \leq Polynomial.degree p div
CHAR('a)"
            by (rule degree_inv_frob_poly_le) (fact CHAR_pos)
    also have "... < nat 「(real (Polynomial.degree p) + 1) / real CHAR('a)\rceil"
            using CHAR_pos[where ?'a = 'a]
            by (metis div_less_iff_less_mult linorder_not_le nat_le_real_less
of_nat_O_less_iff
                    of_nat_ceiling of_nat_mult pos_less_divide_eq)
    also have "... = length (take_every CHAR('a) (Polynomial.coeffs p))"
            using CHAR_pos[where ?'a = 'a] <p f 0> by (simp add: length_take_every
length_coeffs add_ac)
            finally show "length (map inv_frob (take_every CHAR('a) (Polynomial.coeffs
p))) > Polynomial.degree (inv_frob_poly p)"
            by simp_all
    qed
    also have "strip_while ((=) 0) (map inv_frob (take_every CHAR('a) (Polynomial.coeffs
p))) =
                        map inv_frob (strip_while ((=) 0 o inv_frob) (take_every
CHAR('a) (Polynomial.coeffs p)))"
    by (rule strip_while_map)
    also have "(=) 0 ○ inv_frob = (=) (0 :: 'a)"
            by (auto simp: fun_eq_iff)
    finally show ?thesis
            using False by metis
qed auto
```


1.5 Perfect fields

We now introduce perfect fields. The textbook definition of a perfect field is that every irreducible polynomial is separable, i.e. if a polynomial P has
no non-trivial divisors then $\operatorname{gcd}\left(P, P^{\prime}\right)=0$.
For technical reasons, this is somewhat difficult to express in Isabelle/HOL's typeclass system. We therefore use the following much simpler equivalent definition (and prove equivalence later): a field is perfect if it either has characteristic 0 or its Frobenius endomorphism is surjective.

```
class perfect_field = field +
    assumes perfect_field: "CHAR('a) = O V surj (frob :: 'a = 'a)"
context field_char_0
begin
subclass perfect_field
    by standard auto
end
context surj_frob
begin
subclass perfect_field
    by standard auto
end
context alg_closed_field
begin
subclass perfect_field
    by standard (use alg_closed_surj_frob in auto)
end
theorem irreducible_imp_pderiv_nonzero:
    assumes "irreducible (p :: 'a :: perfect_field poly)"
    shows "pderiv p f=0"
proof (cases "CHAR('a) = 0")
    case True
    interpret A: semiring_1 "1 :: 'a" "(*)" "(+)" "0 :: 'a" ..
    have *: "class.semiring_1 (1 :: 'a) (*) (+) 0" ..
    interpret A: field_char_0 "(/)" inverse "(*)" "1 :: 'a" "(+)" 0 "(-)"
uminus
    proof
            have "inj (of_nat :: nat # 'a)"
                by (auto simp: inj_on_def of_nat_eq_iff_cong_CHAR True)
            also have "of_nat = semiring_1.of_nat (1 :: 'a) (+) 0"
                by (simp add: of_nat_def [abs_def] semiring_1.of_nat_def [OF *,
abs_def])
            finally show "inj ...".
        qed
    show ?thesis
    proof
        assume "pderiv p = 0"
        hence **: "poly.coeff p (Suc n) = 0" for n
```

by (auto simp: poly_eq_iff coeff_pderiv of_nat_eq_0_iff_char_dvd True simp del: of_nat_Suc)
have "poly. coeff $p n=0$ " if " $n>0$ " for n using **[of "n - 1"] that by (cases n) auto
hence "Polynomial.degree $p=0$ " by force
thus False using assms by force
qed

next

case False
hence [simp]: "surj (frob :: 'a \Rightarrow 'a)" by (meson perfect_field)
interpret A: field_prime_char "(/)" inverse "(*)" "1 : : 'a" "(+)" 0 "(-)" uminus
proof
have *: "class.semiring_1 1 (*) (+) (0 :: 'a)" ..
have "semiring_1.of_nat 1 (+) ($0:: \quad$ 'a) = of_nat" by (simp add: fun_eq_iff of_nat_def semiring_1.of_nat_def[0F *])
thus " $\exists \mathrm{n}>0$. semiring_1.of_nat 1 (+) $0 n=(0:: ~ ' a) "$ by (intro exI[of _ "CHAR('a)"]) (use False in auto)
qed
show ?thesis
proof
assume "pderiv $p=0 "$
hence "is_nth_power CHAR('a) p"
using pderiv_eq_o_imp_nth_power[of p] surj_frob False by simp
then obtain q where $" p=q$ - $\operatorname{CHAR}(' a) "$ by (elim is_nth_powerE)
with assms show False by auto
qed
qed
corollary irreducible_imp_separable:
assumes "irreducible ($p::$ 'a :: perfect_field poly)"
shows "coprime p (pderiv p)"
proof (rule coprimeI)
fix q assume q : " $q d v d p$ " " q dvd pderiv p "
have " $\neg p$ dvd q "
proof
assume "p dvd q"
hence "p dvd pderiv p "
using q dvd_trans by blast
hence "Polynomial.degree $p \leq$ Polynomial.degree (pderiv p)" by (rule dvd_imp_degree_le) (use assms irreducible_imp_pderiv_nonzero

```
in auto)
    also have "... \leq Polynomial.degree p - 1"
        using degree_pderiv_le by auto
    finally have "Polynomial.degree p = 0"
        by simp
    with assms show False
        using irreducible_imp_pderiv_nonzero is_unit_iff_degree by blast
    qed
    with <q dvd p> show "is_unit q"
    using assms comm_semiring_1_class.irreducibleD' by blast
qed
end
```


1.6 Alternative definition of perfect fields

```
theory Perfect_Field_Altdef
imports
    "HOL-Algebra.Algebraic_Closure_Type"
    Perfect_Fields
begin
```

In the following, we will show that our definition of perfect fields is equivalent to the usual textbook one (for example [1]). That is: a field in which every irreducible polynomial is separable (or, equivalently, has non-zero derivative) either has characteristic 0 or a surjective Frobenius endomorphism.
The proof works like this:
Let's call our field K with prime characteristic p. Suppose there were some $c \in K$ that is not a p-th root. The polynomial $P:=X^{p}-c$ in $K[X]$ clearly has a zero derivative and is therefore not separable. By our assumption, it must then have a monic non-trivial factor $Q \in K[X]$.
Let L be some field extension of K where c does have a p-th root α (in our case, we choose L to be the algebraic closure of K).
Clearly, Q is also a non-trivial factor of P in L. However, we also have $P=X^{\wedge} p$ - $c=X^{\wedge} p-\alpha^{\wedge} p=(X-\alpha)^{\wedge} p$, so we must have $Q=(X-\alpha)^{m}$ for some 0 $\leq m<p$ since $X-\alpha$ is prime.
However, the coefficient of X^{m-1} in $(X-\alpha)^{m}$ is $-m \alpha$, and since $Q \in K[X]$ we must have $-m \alpha \in K$ and therefore $\alpha \in K$.

```
theorem perfect_field_alt:
    assumes "\p :: 'a :: field_gcd poly. Factorial_Ring.irreducible p \Longrightarrow
pderiv p = 0"
    shows "CHAR('a) = O V surj (frob :: 'a = 'a)"
proof (cases "CHAR('a) = O")
    case False
    let ?p = "CHAR('a)"
    from False have "Factorial_Ring.prime ?p"
```

```
    by (simp add: prime_CHAR_semidom)
    hence "?p > 1"
    using prime_gt_1_nat by blast
    note p = <Factorial_Ring.prime ?p> <?p > 1>
    interpret to_ac: map_poly_inj_comm_ring_hom "to_ac :: 'a # 'a alg_closure"
    by unfold_locales auto
    have "surj (frob :: 'a # 'a)"
    proof safe
    fix c :: 'a
    obtain \alpha :: "'a alg_closure" where \alpha: " \alpha ~ ?p = to_ac c"
        using p nth_root_exists[of ?p "to_ac c"] by auto
    define P where "P = Polynomial.monom 1 ?p + [:-c:]"
    define P' where "P' = map_poly to_ac P"
    have deg: "Polynomial.degree P = ?p"
        unfolding P_def using p by (subst degree_add_eq_left) (auto simp:
degree_monom_eq)
    have "[:-\alpha, 1:] - ?p = ([:0, 1:] + [:-\alpha:]) - ?p"
        by (simp add: one_pCons)
    also have "... = [:0, 1:] ~ ?p - [:\alpha^?p:]"
        using p by (subst freshmans_dream) (auto simp: poly_const_pow minus_power_prime_CHAR)
    also have " }\alpha\mathrm{ - ?p = to_ac c"
        by (simp add: \alpha)
    also have "[:0, 1:] ~ CHAR('a) - [:to_ac c:] = P'"
        by (simp add: P_def P'_def to_ac.hom_add to_ac.hom_power
                    to_ac.base.map_poly_pCons_hom monom_altdef)
    finally have eq: "P' = [:-\alpha, 1:] ~ ?p" ..
    have "\negis_unit P" "P = 0"
        using deg p by auto
    then obtain Q where Q: "Factorial_Ring.prime Q" "Q dvd P"
        by (metis prime_divisor_exists)
    have "monic Q"
        using unit_factor_prime[OF Q(1)] by (auto simp: unit_factor_poly_def
one_pCons)
from \(Q(2)\) have "map_poly to_ac \(Q d v d P^{\prime \prime}\) by (auto simp: \(P^{\prime} \_\)def)
hence "map_poly to_ac \(Q\) dvd [:- \(\alpha, 1:]\) ~ ?p" by (simp add: < \(P^{\prime}=[:-\alpha, 1:]\) ~ ?p>)
moreover have "Factorial_Ring.prime_elem [:- \(\alpha\), 1:]" by (intro prime_elem_linear_field_poly) auto
hence "Factorial_Ring.prime [:- \(\alpha, 1:] "\)
        unfolding Factorial_Ring.prime_def by (auto simp: normalize_monic)
    ultimately obtain m where "m \leq ?p" "normalize (map_poly to_ac Q)
= [:-\alpha, 1:] " m"
        using divides_primepow by blast
```

```
    hence "map_poly to_ac Q = [:-\alpha, 1:] ~ m"
        using <monic Q> by (subst (asm) normalize_monic) auto
    moreover from this have "m > 0"
        using Q by (intro Nat.grOI) auto
    moreover have "m f= ?p"
    proof
        assume "m = ?p"
        hence "Q = P"
            using <map_poly to_ac Q = [:-\alpha, 1:] ~ m> eq
            by (simp add: P'_def to_ac.injectivity)
        with Q have "Factorial_Ring.irreducible P"
            using idom_class.prime_elem_imp_irreducible by blast
    with assms have "pderiv P}\not=0\mathrm{ "
        by blast
        thus False
        by (auto simp: P_def pderiv_add pderiv_monom of_nat_eq_O_iff_char_dvd)
    qed
    ultimately have m: "m \in {0<..<?p}" "map_poly to_ac Q = [:-\alpha, 1:]
~ m"
        using <m S ?p> by auto
    from m(1) have "\neg?p dvd m"
        using p by auto
    have "poly.coeff ([:-\alpha, 1:] ~ m) (m - 1) = - of_nat (m choose (m -
1)) * \alpha"
        using m(1) by (subst coeff_linear_poly_power) auto
    also have "m choose (m - 1) = m"
        using <0 < m> by (subst binomial_symmetric) auto
    also have "[:-\alpha, 1:] ~ m = map_poly to_ac Q"
        using m(2) ..
    also have "poly.coeff ... (m - 1) = to_ac (poly.coeff Q (m - 1))"
        by simp
    finally have " }\alpha=\mathrm{ to_ac (-poly.coeff Q (m - 1) / of_nat m)"
        using m(1) p <\neg?p dvd m> by (auto simp: field_simps of_nat_eq_O_iff_char_dvd)
    hence "(- poly.coeff Q (m - 1) / of_nat m) ~ ?p = c"
        using \alpha by (metis to_ac.base.eq_iff to_ac.base.hom_power)
    thus "c \in range frob"
        unfolding frob_def by blast
    qed auto
    thus ?thesis ..
qed auto
corollary perfect_field_alt':
    assumes "\p :: 'a :: field_gcd poly. Factorial_Ring.irreducible p \Longrightarrow
Rings.coprime p (pderiv p)"
    shows "CHAR('a) = 0 V surj (frob :: 'a = 'a)"
proof (rule perfect_field_alt)
    fix p :: "'a poly"
    assume p: "Factorial_Ring.irreducible p"
```

```
    with assms[OF p] show "pderiv p f=0"
    by auto
qed
end
```


References

[1] K. Conrad. Perfect fields. Online at https://kconrad.math.uconn.edu/blurbs/galoistheory/perfect.pdf, 2021. Course notes, University of Connecticut.
[2] Wikipedia contributors. Perfect field - Wikipedia, the free encyclopedia, 2023. [Online; accessed 3-November-2023].

