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Abstract
We formalize several undecidability results on termination for one-

rule term rewrite systems by means of simple reductions from Hilbert’s
10th problem. To be more precise, for a class C of reduction orders, we
consider the question for a given rewrite rule ` → r, whether there is
some reduction order� ∈ C such that ` � r. We include undecidability
results for each of the following classes C:

• the class of linear polynomial interpretations over the natural
numbers,

• the class of linear polynomial interpretations over the natural
numbers in the weakly monotone setting,

• the class of Knuth–Bendix orders with subterm coefficients,
• the class of non-linear polynomial interpretations over the natu-

ral numbers, and
• the class of non-linear polynomial interpretations over the ratio-

nal and real numbers.
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1 Introduction

The main part of this paper is about one of the earliest termination methods
for term rewrite systems: using a polynomial interpretation over the natural
numbers, which goes back to Lankford [1].
In a recent paper [3] it was shown that this and other related techniques
are undecidable, even for one-rule rewrite systems. This AFP entry for-
mally proves the results in [3]. These are all based on reduction from a
variant of Hilbert’s 10th problem, which was shown to be undecidable by
Matiyasevich [2].

2 Preliminaries: Extending the Library on Multi-
variate Polynomials

2.1 Part 1 – Extensions Without Importing Univariate Poly-
nomials

theory Preliminaries-on-Polynomials-1
imports

Polynomials.More-MPoly-Type
Polynomials.MPoly-Type-Class-FMap

begin

type-synonym var = nat
type-synonym monom = var ⇒0 nat

definition substitute :: (var ⇒ ′a mpoly) ⇒ ′a :: comm-semiring-1 mpoly ⇒ ′a
mpoly where

substitute σ p = insertion σ (replace-coeff Const p)

lemma Const-0 : Const 0 = 0
by (transfer , simp add: Const0-zero)

lemma Const-1 : Const 1 = 1
by (transfer , simp add: Const0-one)
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lemma insertion-Var : insertion α (Var x) = α x
apply transfer
by (metis One-nat-def Var0-def insertion.abs-eq insertion-single mapping-of-inverse

monom.rep-eq mult.right-neutral mult-1 power .simps(2 ) power-0 )

lemma insertion-Const: insertion α (Const a) = a
by (metis Const.abs-eq Const0-def insertion-single monom.abs-eq mult.right-neutral

power-0 single-zero)

lemma insertion-power : insertion α (p^n) = (insertion α p)^n
by (induct n, auto simp: insertion-mult)

lemma insertion-monom-add: insertion α (monom (f + g) a) = insertion α
(monom f 1 ) ∗ insertion α (monom g a)

by (metis insertion-mult mult-1 mult-monom)

lemma insertion-uminus: insertion α (− p) = − insertion α p
by (metis add-eq-0-iff insertion-add insertion-zero)

lemma insertion-sum-list: insertion α (sum-list ps) = sum-list (map (insertion α)
ps)

by (induct ps, auto simp: insertion-add)

lemma coeff-uminus: coeff (− p) m = − coeff p m
by (simp add: coeff-def uminus-mpoly.rep-eq)

lemma insertion-substitute: insertion α (substitute σ p) = insertion (λ x. insertion
α (σ x)) p

unfolding substitute-def
proof (induct p rule: mpoly-induct)

case (monom m a)
show ?case

apply (subst replace-coeff-monom)
subgoal by (simp add: Const-0 )
subgoal proof (induct m arbitrary: a rule: poly-mapping-induct)

case (single k v)
show ?case by (simp add: insertion-mult insertion-Const insertion-power)

next
case (sum f g k v a)
from sum(1 )[of 1 ] sum(2 )[of a] show ?case

by (simp add: insertion-monom-add insertion-mult Const-1 )
qed
done

next
case (sum p1 p2 m a)
then show ?case

apply (subst replace-coeff-add)
subgoal by (simp add: Const-0 )
subgoal by (transfer ′, simp add: Const0-def single-add)
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by (simp add: insertion-add)
qed

lemma Const-add: Const (x + y) = Const x + Const y
by (transfer , auto simp: Const0-def single-add)

lemma substitute-add[simp]: substitute σ (p + q) = substitute σ p + substitute σ
q

unfolding substitute-def insertion-add[symmetric]
by (subst replace-coeff-add, auto simp: Const-0 Const-add)

lemma Const-sum: Const (sum f A) = sum (Const o f ) A
by (metis Const-0 Const-add sum-comp-morphism)

lemma Const-sum-list: Const (sum-list (map f xs)) = sum-list (map (Const o f )
xs)

by (induct xs, auto simp: Const-0 Const-add)

lemma Const-0-eq[simp]: Const x = 0 ←→ x = 0
by (smt (verit) Const.abs-eq Const0-def coeff-monom monom.abs-eq single-zero

when-def zero-mpoly-def )

lemma Const-sum-any: Const (Sum-any f ) = Sum-any (Const o f )
unfolding Sum-any.expand-set Const-sum o-def
by (intro sum.cong[OF - refl], auto simp: Const-0 )

lemma Const-mult: Const (x ∗ y) = Const x ∗ Const y
by (metis Const.abs-eq Const0-def monom.abs-eq smult-conv-mult smult-monom)

lemma Const-power : Const (x ^ e) = Const x ^ e
by (induct e, auto simp: Const-1 Const-mult)

lemma lookup-replace-Const: lookup (mapping-of (replace-coeff Const p)) l = Const
(lookup (mapping-of p) l)

by (metis Const-0 coeff-def coeff-replace-coeff )

lemma replace-coeff-mult: replace-coeff Const (p ∗ q) = replace-coeff Const p ∗
replace-coeff Const q
apply (subst coeff-eq[symmetric], intro ext, subst coeff-replace-coeff , rule Const-0 )
apply (unfold coeff-def )
apply (unfold times-mpoly.rep-eq)
apply (unfold Poly-Mapping.lookup-mult)
apply (unfold Const-sum-any o-def Const-mult lookup-replace-Const)
apply (unfold when-def if-distrib Const-0 )
by auto

lemma substitute-mult[simp]: substitute σ (p ∗ q) = substitute σ p ∗ substitute σ
q
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unfolding substitute-def insertion-mult[symmetric] replace-coeff-mult ..

lemma replace-coeff-Var [simp]: replace-coeff Const (Var x) = Var x
by (metis Const-0 Const-1 Var .abs-eq Var0-def monom.abs-eq replace-coeff-monom)

lemma replace-coeff-Const[simp]: replace-coeff Const (Const c) = Const (Const
c)

by (metis Const.abs-eq Const0-def Const-0 monom.abs-eq replace-coeff-monom)

lemma substitute-Var [simp]: substitute σ (Var x) = σ x
unfolding substitute-def by (simp add: insertion-Var)

lemma substitute-Const[simp]: substitute σ (Const c) = Const c
unfolding substitute-def by (simp add: insertion-Const)

lemma substitute-0 [simp]: substitute σ 0 = 0
using substitute-Const[of σ 0 , unfolded Const-0 ] .

lemma substitute-1 [simp]: substitute σ 1 = 1
using substitute-Const[of σ 1 , unfolded Const-1 ] .

lemma substitute-power [simp]: substitute σ (p^e) = (substitute σ p)^e
by (induct e, auto)

lemma substitute-monom[simp]: substitute σ (monom (monomial e x) c) = Const
c ∗ (σ x)^e

by (simp add: replace-coeff-monom substitute-def )

lemma substitute-sum-list: substitute σ (sum-list (map f xs)) = sum-list (map
(substitute σ o f ) xs)

by (induct xs, auto)

lemma substitute-sum: substitute σ (sum f xs) = sum (substitute σ o f ) xs
by (induct xs rule: infinite-finite-induct, auto)

lemma substitute-prod: substitute σ (prod f xs) = prod (substitute σ o f ) xs
by (induct xs rule: infinite-finite-induct, auto)

definition vars-list where vars-list = sorted-list-of-set o vars

lemma set-vars-list[simp]: set (vars-list p) = vars p
unfolding vars-list-def o-def using vars-finite[of p] by auto

lift-definition mpoly-coeff-filter :: ( ′a :: zero ⇒ bool) ⇒ ′a mpoly ⇒ ′a mpoly is
λ f p. Poly-Mapping.mapp (λ m c. c when f c) p .

lemma mpoly-coeff-filter : coeff (mpoly-coeff-filter f p) m = (coeff p m when f (coeff
p m))

unfolding coeff-def by transfer (simp add: in-keys-iff mapp.rep-eq)
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lemma total-degree-add: assumes total-degree p ≤ d total-degree q ≤ d
shows total-degree (p + q) ≤ d
using assms

proof transfer
fix d and p q :: (nat ⇒0 nat) ⇒0

′a
let ?exp = λ p. Max (insert (0 :: nat) ((λm. sum (lookup m) (keys m)) ‘ keys

p))
assume d: ?exp p ≤ d ?exp q ≤ d
have ?exp (p + q) ≤ Max (insert (0 :: nat) ((λm. sum (lookup m) (keys m)) ‘

(keys p ∪ keys q)))
using Poly-Mapping.keys-add[of p q]
by (intro Max-mono, auto)

also have . . . = max (?exp p) (?exp q)
by (subst Max-Un[symmetric], auto simp: image-Un)

also have . . . ≤ d using d by auto
finally show ?exp (p + q) ≤ d .

qed

lemma total-degree-Var [simp]: total-degree (Var x :: ′a :: comm-semiring-1 mpoly)
= Suc 0

by (transfer , auto simp: Var0-def )

lemma total-degree-Const[simp]: total-degree (Const x) = 0
by (transfer , auto simp: Const0-def )

lemma total-degree-Const-mult: assumes total-degree p ≤ d
shows total-degree (Const x ∗ p) ≤ d
using assms

proof (transfer , goal-cases)
case (1 p d x)
have sub: keys (Const0 x ∗ p) ⊆ keys p

by (rule order .trans[OF keys-mult], auto simp: Const0-def )
show ?case

by (rule order .trans[OF - 1 ], rule Max-mono, insert sub, auto)
qed

lemma vars-0 [simp]: vars 0 = {}
unfolding vars-def by (simp add: zero-mpoly.rep-eq)

lemma vars-1 [simp]: vars 1 = {}
unfolding vars-def by (simp add: one-mpoly.rep-eq)

lemma vars-Var [simp]: vars (Var x :: ′a :: comm-semiring-1 mpoly) = {x}
unfolding vars-def by (transfer , auto simp: Var0-def )

lemma vars-Const[simp]: vars (Const c) = {}
unfolding vars-def by (transfer , auto simp: Const0-def )
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lemma coeff-sum-list: coeff (sum-list ps) m = (
∑

p←ps. coeff p m)
by (induct ps, auto simp: coeff-add[symmetric])
(metis coeff-monom monom-zero zero-when)

lemma coeff-Const-mult: coeff (Const c ∗ p) m = c ∗ coeff p m
by (metis Const.abs-eq Const0-def add-0 coeff-monom-mult monom.abs-eq)

lemma coeff-Const: coeff (Const c) m = (if m = 0 then (c :: ′a :: comm-semiring-1 )
else 0 )

by (simp add: Const.rep-eq Const0-def coeff-def lookup-single-not-eq)

lemma coeff-Var : coeff (Var x) m = (if m = monomial 1 x then 1 :: ′a ::
comm-semiring-1 else 0 )

by (simp add: Var .rep-eq Var0-def coeff-def lookup-single-not-eq)

list-based representations, so that polynomials can be converted to first-
order terms
lift-definition monom-list :: ′a :: comm-semiring-1 mpoly ⇒ (monom × ′a) list

is λ p. map (λ m. (m, lookup p m)) (sorted-list-of-set (keys p)) .

lift-definition var-list :: monom ⇒ (var × nat) list
is λ m. map (λ x. (x, lookup m x)) (sorted-list-of-set (keys m)) .

lemma monom-list: p = (
∑

(m, c) ← monom-list p. monom m c)
apply transfer
subgoal for p

apply (subst poly-mapping-sum-monomials[symmetric])
apply (subst distinct-sum-list-conv-Sum)
apply (unfold distinct-map, simp add: inj-on-def )
apply (meson in-keys-iff monomial-inj)

apply (unfold set-map image-comp o-def split)
apply (subst set-sorted-list-of-set, force)
by (smt (verit, best) finite-keys lookup-eq-zero-in-keys-contradict monomial-inj

o-def sum.cong sum.reindex-nontrivial)
done

lemma monom-list-coeff : (m,c) ∈ set (monom-list p) =⇒ coeff p m = c
unfolding coeff-def by (transfer , auto)

lemma monom-list-keys: (m,c) ∈ set (monom-list p) =⇒ keys m ⊆ vars p
unfolding vars-def by (transfer , auto)

lemma var-list: monom m c = Const (c :: ′a :: comm-semiring-1 ) ∗ (
∏

(x, e) ←
var-list m. (Var x)^e)
proof transfer

fix m :: monom and c :: ′a
have set: set (sorted-list-of-set (keys m)) = keys m

by (subst set-sorted-list-of-set, force+)
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have id: (
∏

(x, y)←map (λx. (x, lookup m x)) (sorted-list-of-set (keys m)). Var0

x ^ y)
= (

∏
x ∈ keys m. Var0 x ^ lookup m x) (is ?r1 = ?r2 )

apply (unfold map-map o-def split)
apply (subst prod.distinct-set-conv-list[symmetric])
by auto

have monomial c m = Const0 c ∗ monomial 1 m
by (simp add: Const0-one monomial-mp)

also have monomial (1 :: ′a) m = ?r1 unfolding id
proof (induction m rule: poly-mapping-induct)

case (single k v)
then show ?case by (auto simp: Var0-power mult-single)

next
case (sum f g k v)
have id: monomial (1 :: ′a) (f + g) = monomial 1 f ∗ monomial 1 g

by (simp add: mult-single)
have keys: keys (f + g) = keys f ∪ keys g keys f ∩ keys g = {}

apply (intro keys-plus-ninv-comm-monoid-add)
using sum(3−4 ) by simp

show ?case unfolding id sum(1−2 ) unfolding keys(1 )
apply (subst prod.union-disjoint, force, force, rule keys)
apply (intro arg-cong2 [of - - - - (∗)] prod.cong refl)
apply (insert keys(2 ), simp add: disjoint-iff in-keys-iff lookup-add)

by (metis add-cancel-left-left disjoint-iff-not-equal in-keys-iff plus-poly-mapping.rep-eq)
qed
finally show monomial c m = Const0 c ∗ ?r1 .

qed

lemma var-list-keys: (x,e) ∈ set (var-list m) =⇒ x ∈ keys m
by (transfer , auto)

lemma vars-substitute: assumes
∧

x. vars (σ x) ⊆ V
shows vars (substitute σ p) ⊆ V

proof −
define mcs where mcs = monom-list p
show ?thesis unfolding monom-list[of p, folded mcs-def ]
proof (induct mcs)

case (Cons mc mcs)
obtain m c where mc: mc = (m,c) by force
define xes where xes = var-list m
have monom: vars (substitute σ (monom m c)) ⊆ V unfolding var-list[of m,

folded xes-def ]
proof (induct xes)

case (Cons xe xes)
obtain x e where xe: xe = (x,e) by force
from assms have vars (σ x) ⊆ V .
hence x: vars ((σ x)^e) ⊆ V
proof (induct e)

case (Suc e)
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then show ?case
by (simp, intro order .trans[OF vars-mult], auto)

qed force
have id: substitute σ (Const c ∗ (

∏
a←xe # xes. case a of (x, a) ⇒ Var x ^

a))
= σ x ^ e ∗ (Const c ∗ substitute σ (

∏
(x, y)←xes. Var x ^ y)) unfolding

xe
by (simp add: ac-simps)

show ?case unfolding id
apply (rule order .trans[OF vars-mult])
using Cons x by auto

qed force
show ?case unfolding mc

apply simp
apply (rule order .trans[OF vars-add])
using monom Cons by auto

qed force
qed

lemma insertion-monom-nonneg: assumes
∧

x. α x ≥ 0 and c: (c :: ′a ::
{linordered-nonzero-semiring,ordered-semiring-0}) ≥ 0

shows insertion α (monom m c) ≥ 0
proof −

define xes where xes = var-list m
show ?thesis unfolding var-list[of m c, folded xes-def ]
proof (induct xes)

case Nil
thus ?case using c by (auto simp: insertion-Const)

next
case (Cons xe xes)
obtain x e where xe: xe = (x,e) by force
have id: insertion α (Const c ∗ (

∏
a←xe # xes. case a of (x, a) ⇒ Var x ^

a))
= α x ^ e ∗ insertion α (Const c ∗ (

∏
a←xes. case a of (x, a) ⇒ Var x ^ a))

unfolding xe
by (simp add: insertion-mult insertion-power insertion-Var algebra-simps)

show ?case unfolding id
proof (intro mult-nonneg-nonneg Cons)

show 0 ≤ α x ^ e using assms(1 )[of x]
by (induct e, auto)

qed
qed

qed

lemma insertion-nonneg: assumes
∧

x. α x ≥ (0 :: ′a :: linordered-idom)
and

∧
m. coeff p m ≥ 0

shows insertion α p ≥ 0
proof −
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define mcs where mcs = monom-list p
from monom-list[of p] have p: p = (

∑
(m, c)← mcs. monom m c) unfolding

mcs-def by auto
have mcs: (m,c) ∈ set mcs =⇒ c ≥ 0 for m c

using monom-list-coeff assms(2 ) unfolding mcs-def by auto
show ?thesis using mcs unfolding p
proof (induct mcs)

case Nil
thus ?case by (auto simp: insertion-Const)

next
case (Cons mc mcs)
obtain m c where mc: mc = (m,c) by force
with Cons have c ≥ 0 by auto
from insertion-monom-nonneg[OF assms(1 ) this]
have m: 0 ≤ insertion α (monom m c) by auto
from Cons(1 )[OF Cons(2 )]
have IH : 0 ≤ insertion α (

∑
a←mcs. case a of (a, b) ⇒ monom a b) by force

show ?case unfolding mc using IH m
by (auto simp: insertion-add)

qed
qed

lemma vars-sumlist: vars (sum-list ps) ⊆
⋃

(vars ‘ set ps)
by (induct ps, insert vars-add, auto)

lemma coefficients-of-linear-poly: assumes linear : total-degree (p :: ′a :: comm-semiring-1
mpoly) ≤ 1

shows ∃ c a vs. p = Const c + (
∑

i←vs. Const (a i) ∗ Var i)
∧ distinct vs ∧ set vs = vars p ∧ sorted-list-of-set (vars p) = vs ∧ (∀ v ∈ set

vs. a v 6= 0 )
∧ (∀ i. a i = coeff p (monomial 1 i)) ∧ (c = coeff p 0 )

proof −
have sum-zero: (

∧
x. x ∈ set xs =⇒ x = 0 ) =⇒ sum-list (xs :: ′a list) = 0 for

xs by (induct xs, auto)
define a :: var ⇒ ′a where a i = coeff p (monomial 1 i) for i
define vs where vs = sorted-list-of-set (vars p)
define c where c = coeff p 0
define q where q = Const c + (

∑
i← vs. Const (a i) ∗ Var i)

show ?thesis
proof (intro exI [of - vs] exI [of - a] exI [of - c] conjI ballI vs-def [symmetric] c-def

allI a-def ,
unfold q-def [symmetric])

show set vs = vars p and dist: distinct vs
using sorted-list-of-set[of vars p, folded vs-def ] vars-finite[of p] by auto

show p = q
unfolding coeff-eq[symmetric]

proof (intro ext)
fix m
have coeff q m = coeff (Const c) m + (

∑
x←vs. a x ∗ coeff (Var x) m)
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unfolding q-def coeff-add[symmetric] coeff-sum-list map-map o-def co-
eff-Const-mult ..

also have . . . = coeff p m
proof (cases m = 0 )

case True
thus ?thesis by (simp add: coeff-Const coeff-Var monomial-0-iff c-def )

next
case False
from False have coeff (Const (coeff p 0 )) m + (

∑
x←vs. a x ∗ coeff (Var

x) m)
= (

∑
x←vs. a x ∗ coeff (Var x) m) unfolding coeff-Const by simp

also have . . . = coeff p m
proof (cases ∃ i ∈ set vs. m = monomial 1 i)

case True
then obtain i where i: i ∈ set vs and m: m = monomial 1 i by auto
from split-list[OF i] obtain bef aft where id: vs = bef @ i # aft by auto
from id dist have i: i /∈ set bef i /∈ set aft by auto
have [simp]: (monomial (Suc 0 ) i = monomial (Suc 0 ) j) = (i = j) for i

j :: var
using monomial-inj by fastforce

show ?thesis
apply (subst id, unfold coeff-Var m, simp)
apply (subst sum-zero, use i in force)
apply (subst sum-zero, use i in force)
by (simp add: a-def )

next
case mon: False
hence one: (

∑
x←vs. a x ∗ coeff (Var x) m) = 0

by (intro sum-zero, auto simp: coeff-Var)
have two: coeff p m = 0
proof (rule ccontr)

assume n0 : coeff p m 6= 0
show False
proof (cases ∃ i. m = monomial 1 i)

case True
with mon obtain i where i: i /∈ set vs and m: m = monomial 1 i by

auto
from n0 m have i ∈ vars p unfolding vars-def coeff-def

by (metis UN-I in-keys-iff lookup-single-eq one-neq-zero)
with i ‹set vs = vars p› show False by auto

next
case False
have sum (lookup m) (keys m) ≤ total-degree p using n0 unfolding

coeff-def
apply transfer

by transfer (metis (no-types, lifting) Max-ge finite.insertI finite-imageI
finite-keys image-eqI in-keys-iff insertCI )

also have . . . ≤ 1 using linear .
finally have linear : sum (lookup m) (keys m) ≤ 1 by auto
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consider (single) x where keys m = {x} | (null) keys m = {} |
(two) x y k where keys m = {x,y} ∪ k and x 6= y by blast

thus False
proof cases

case null
hence m = 0 by simp
with ‹m 6= 0 › show False by simp

next
case (single x)
with linear have lookup m x ≤ 1 by auto
moreover from single have nz: lookup m x 6= 0

by (metis in-keys-iff insertI1 )
ultimately have lookup m x = 1 by auto
with single have m = monomial 1 x

by (metis Diff-cancel Diff-eq-empty-iff keys-subset-singleton-imp-monomial)
with False show False by auto

next
case (two x y k)
define k ′ where k ′ = k − {x,y}
have keys m = insert x (insert y k ′) x 6= y x /∈ k ′ y /∈ k ′ finite k ′

unfolding k ′-def using two finite-keys[of m] by auto
hence lookup m x + lookup m y ≤ sum (lookup m) (keys m) by simp
also have . . . ≤ 1 by fact
finally have lookup m x = 0 ∨ lookup m y = 0 by auto
with two show False by blast

qed
qed

qed
from one two show ?thesis by simp

qed
finally show ?thesis by (simp add: c-def )

qed
finally show coeff p m = coeff q m ..

qed

fix v
assume v: v ∈ set vs
hence v ∈ vars p using ‹set vs = vars p› by auto
hence vq: v ∈ vars q unfolding ‹p = q› .
from split-list[OF v] obtain bef aft where vs: vs = bef @ v # aft by auto
with dist have vba: v /∈ set bef v /∈ set aft by auto
show a v 6= 0
proof

assume a0 : a v = 0
have v ∈ vars p by fact
also have p = q by fact
also have vars q ⊆ vars (sum-list (map (λ x. Const (a x) ∗ Var x) bef )) ∪

vars (Const (a v) ∗ Var v)
∪ vars (sum-list (map (λ x. Const (a x) ∗ Var x) aft))
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unfolding q-def vs apply simp
apply (rule order .trans[OF vars-add], simp)
apply (rule order .trans[OF vars-add])
by (insert vars-add, blast)

also have vars (Const (a v) ∗ Var v) = {} unfolding a0 Const-0 by simp
finally obtain list where v: v ∈ vars (sum-list (map (λ x. Const (a x) ∗ Var

x) list))
and not-v: v /∈ set list using vba by auto

from set-mp[OF vars-sumlist v] obtain x where x ∈ set list and v ∈ vars
(Const (a x) ∗ Var x)

by auto
with vars-mult[of Const (a x) Var x] not-v show False by auto

qed
qed

qed

Introduce notion for degree of monom
definition degree-monom :: (var ⇒0 nat) ⇒ nat where

degree-monom m = sum (lookup m) (keys m)

lemma total-degree-alt-def : total-degree p = Max (insert 0 (degree-monom ‘ keys
(mapping-of p)))

unfolding degree-monom-def
by transfer ′ simp

lemma degree-monon-le-total-degree: assumes coeff p m 6= 0
shows degree-monom m ≤ total-degree p
using assms unfolding total-degree-alt-def by (simp add: coeff-keys)

lemma degree-monom-eq-total-degree: assumes p 6= 0
shows ∃ m. coeff p m 6= 0 ∧ degree-monom m = total-degree p

proof (cases total-degree p = 0 )
case False
thus ?thesis unfolding total-degree-alt-def
by (metis (full-types) Max-in coeff-keys empty-not-insert finite-imageI finite-insert

finite-keys image-iff insertE)
next

case True
from assms obtain m where coeff p m 6= 0

using coeff-all-0 by auto
with degree-monon-le-total-degree[OF this] True show ?thesis by auto

qed

lemma degree-add-leI : degree p x ≤ d =⇒ degree q x ≤ d =⇒ degree (p + q) x ≤
d

apply transfer
subgoal for p x d q using Poly-Mapping.keys-add[of p q]

by (intro Max.boundedI , auto)
done
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lemma degree-sum-leI : assumes
∧

i. i ∈ A =⇒ degree (p i) x ≤ d
shows degree (sum p A) x ≤ d
using assms
by (induct A rule: infinite-finite-induct, auto intro: degree-add-leI )

lemma total-degree-sum-leI : assumes
∧

i. i ∈ A =⇒ total-degree (p i) ≤ d
shows total-degree (sum p A) ≤ d
using assms
by (induct A rule: infinite-finite-induct, auto intro: total-degree-add)

lemma total-degree-monom: assumes c 6= 0
shows total-degree (monom m c) = degree-monom m
unfolding total-degree-alt-def using assms by auto

lemma degree-Var [simp]: degree (Var x :: ′a :: comm-semiring-1 mpoly) x = 1
by (transfer , unfold Var0-def , simp)

lemma Var-neq-0 [simp]: Var x 6= (0 :: ′a :: comm-semiring-1 mpoly)
proof

assume Var x = (0 :: ′a mpoly)
from arg-cong[OF this, of λ p. degree p x]
show False by simp

qed

lemma degree-Const[simp]: degree (Const c) x = 0
by transfer (auto simp: Const0-def )

lemma vars-add-subI : vars p ⊆ A =⇒ vars q ⊆ A =⇒ vars (p + q) ⊆ A
by (metis le-supI subset-trans vars-add)

lemma vars-mult-subI : vars p ⊆ A =⇒ vars q ⊆ A =⇒ vars (p ∗ q) ⊆ A
by (metis le-supI subset-trans vars-mult)

lemma vars-eqI : assumes vars (p :: ′a :: comm-ring-1 mpoly) ⊆ V∧
v. v ∈ V =⇒ ∃ a b. insertion a p 6= insertion (a(v := b)) p

shows vars p = V
proof (rule ccontr)

assume ¬ ?thesis
with assms obtain v where v ∈ V and not: v /∈ vars p by auto
from assms(2 )[OF this(1 )] obtain a b where insertion a p 6= insertion (a(v :=

b)) p by auto
moreover have insertion a p = insertion (a(v := b)) p

by (rule insertion-irrelevant-vars, insert not, auto)
ultimately show False by auto

qed

end

14



2.2 Part 2 – Extensions With Importing Univariate Polyno-
mials

theory Preliminaries-on-Polynomials-2
imports

Preliminaries-on-Polynomials-1
Factor-Algebraic-Polynomial.Poly-Connection

begin

Several definitions have the same name for univariate and multivariate poly-
nomials, so we use a prefix m for multi-variate.
hide-const (open) Symmetric-Polynomials.lead-coeff

abbreviation mdegree where mdegree ≡ MPoly-Type.degree
abbreviation mcoeff where mcoeff ≡ MPoly-Type.coeff
abbreviation mmonom where mmonom ≡ MPoly-Type.monom

lemma range-coeff-poly-to-mpoly: assumes mcoeff (poly-to-mpoly x p) m 6= 0
shows ∃ d. m = monomial d x
using assms
unfolding coeff-def poly-to-mpoly-def MPoly-inverse[OF Set.UNIV-I ] lookup-Abs-poly-mapping[OF

poly-to-mpoly-finite]
by simp (metis keys-subset-singleton-imp-monomial)

lemma degree-poly-to-mpoly[simp]: mdegree (poly-to-mpoly x p) x = degree p
proof (cases p = 0 )

case True
thus ?thesis by (simp add: poly-to-mpoly0 )

next
case p: False
let ?q = poly-to-mpoly x p
define q where q = ?q
define dp where dp = degree p
define dq where dq = mdegree q x
from p have q: ?q 6= 0

by (metis poly-to-mpoly0 poly-to-mpoly-inverse)
have pq: p = mpoly-to-poly x q unfolding q-def

by (simp add: poly-to-mpoly-inverse)
{

have 0 6= coeff p dp using p by (auto simp: dp-def )
also have coeff p dp = coeff (mpoly-to-poly x q) dp unfolding pq by simp
also have . . . = mcoeff q (monomial dp x) unfolding coeff-mpoly-to-poly by

simp
finally have mcoeff q (monomial dp x) 6= 0 by simp

}
hence first-part: dq ≥ dp unfolding dq-def by (metis degree-geI lookup-single-eq)
{

from monom-of-degree-exists[OF q, folded q-def , of x] obtain m where mc:
mcoeff q m 6= 0
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and look: lookup m x = dq by (auto simp: dq-def )
from range-coeff-poly-to-mpoly[OF mc[unfolded q-def ]] obtain d where m: m

= monomial d x by auto
from m look have m: m = monomial dq x by simp
have coeff p dq = mcoeff q (monomial dq x)

unfolding coeff-poly-to-mpoly[of x, symmetric] q-def dq-def by auto
also have . . . 6= 0 using m mc by auto
finally have dp ≥ dq unfolding dp-def by (rule le-degree)

}
with first-part have dp = dq by auto
thus ?thesis unfolding dp-def dq-def q-def by auto

qed

lemma degree-mpoly-to-poly: assumes vars p ⊆ {x}
shows degree (mpoly-to-poly x p) = mdegree p x

proof −
define q where q = mpoly-to-poly x p
from mpoly-to-poly-inverse[OF assms]
have mdegree p x = mdegree (poly-to-mpoly x (mpoly-to-poly x p)) x by simp
also have . . . = degree (mpoly-to-poly x p) by simp
finally show ?thesis ..

qed

lemma degree-partial-insertion-bound: degree (partial-insertion a x p) ≤MPoly-Type.degree
p x

using degree-partial-insertion-le-mpoly by auto

lemma insertion-partial-insertion-vars: assumes
∧

y. y 6= x =⇒ y ∈ vars p =⇒
β y = α y

shows poly (partial-insertion β x p) (α x) = insertion α p
proof −

let ?α = (λ y. if y ∈ insert x (vars p) then α y else β y)
have insertion α p = insertion ?α p

by (rule insertion-irrelevant-vars, auto)
also have . . . = poly (partial-insertion β x p) (?α x)

by (rule insertion-partial-insertion[symmetric], insert assms, auto)
finally show ?thesis by auto

qed

lemma degree-mpoly-of-poly[simp]: mdegree (mpoly-of-poly x p) x = degree p
proof −

have mdegree (mpoly-of-poly x p) x ≤ degree p
by (simp add: coeff-eq-0 coeff-mpoly-of-poly degree-leI )

moreover have degree p ≤ mdegree (mpoly-of-poly x p) x
proof (cases degree p = 0 )

case True
thus ?thesis by auto

next
case 0 : False
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hence coeff p (degree p) 6= 0 by auto
also have coeff p (degree p) = MPoly-Type.coeff (mpoly-of-poly x p) (monomial

(degree p) x)
by simp

finally show ?thesis by (metis degree-geI lookup-single-eq)
qed
ultimately show ?thesis by auto

qed

lemma mpoly-extI : assumes
∧

α. insertion α p = insertion α (q :: ′a :: {ring-char-0 ,idom}
mpoly)

shows p = q
proof −

have main: finite vs =⇒ vars p ⊆ vs =⇒ vars q ⊆ vs =⇒ (
∧

α. insertion α p
= insertion α q) =⇒ p = q for vs

proof (induction vs arbitrary: p q rule: finite-induct)
case (insert x vs p q)
have p = q ←→ mpoly-to-mpoly-poly x p = mpoly-to-mpoly-poly x q

by (metis poly-mpoly-to-mpoly-poly)
also have . . .←→ (∀ m. coeff (mpoly-to-mpoly-poly x p) m = coeff (mpoly-to-mpoly-poly

x q) m)
by (metis poly-eqI )

also have . . . using insert
proof (intro allI insert.IH )

fix m α
show vars (coeff (mpoly-to-mpoly-poly x p) m) ⊆ vs using insert.prems(1 )
by (metis Diff-eq-empty-iff Diff-insert2 dual-order .trans vars-coeff-mpoly-to-mpoly-poly)
show vars (coeff (mpoly-to-mpoly-poly x q) m) ⊆ vs using insert.prems(2 )
by (metis Diff-eq-empty-iff Diff-insert2 dual-order .trans vars-coeff-mpoly-to-mpoly-poly)
have IH : partial-insertion α x p = partial-insertion α x q
proof (intro poly-ext)

fix y
have poly (partial-insertion α x p) y = poly (partial-insertion α x q) y ←→
insertion (α(x := y)) p = insertion (α(x := y)) q
using insertion-partial-insertion[of x α α(x := y)] by simp

moreover have . . . by (intro insert)
finally show poly (partial-insertion α x p) y = poly (partial-insertion α x

q) y by blast
qed
show insertion α (coeff (mpoly-to-mpoly-poly x p) m) = insertion α (coeff

(mpoly-to-mpoly-poly x q) m)
using insert.prems(3 ) by (simp add: IH )

qed
finally show ?case .

next
case (empty p q)
hence vars: vars p = {} vars q = {} by auto
from vars-emptyE [OF vars(1 )] obtain c where p: p = Const c .
from vars-emptyE [OF vars(2 )] obtain d where q: q = Const d .
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from empty(3 )[of undefined, unfolded p q] have c = d by auto
thus ?case unfolding p q by simp

qed
show ?thesis

by (rule main[of vars p ∪ vars q], insert assms, auto simp: vars-finite)
qed

lemma vars-empty-Const: assumes vars (p :: ′a :: {ring-char-0 ,idom} mpoly) =
{}

shows ∃ c. p = Const c
proof −

{
fix α
have insertion α p = insertion (λ -. 0 ) p using assms

by (intro insertion-irrelevant-vars, auto)
also have . . . = mcoeff p 0 by simp
also have . . . = insertion α (Const (mcoeff p 0 )) unfolding insertion-Const

..
finally have insertion α p = insertion α (Const (mcoeff p 0 )) .

}
hence p = (Const (mcoeff p 0 )) by (rule mpoly-extI )
thus ?thesis by auto

qed

context
assumes ge1 :

∧
c :: ′a :: linordered-idom. c > 0 =⇒ ∃ x. c ∗ x ≥ 1

begin

lemma poly-ext-bounded:
fixes p q :: ′a poly
assumes

∧
x. x ≥ b =⇒ poly p x = poly q x shows p = q

proof −
define r where r = p − q
from assms have r : x ≥ b =⇒ poly r x = 0 for x by (auto simp: r-def )
have ?thesis ←→ r = 0 unfolding r-def by simp
also have . . .
proof (cases degree r = 0 )

case True
from degree0-coeffs[OF this] r [of b] show ?thesis by auto

next
case dr : False
define lc where lc = lead-coeff r
from dr have lc: lc 6= 0 by (auto simp: lc-def )
define d where d = degree r
define s where s = r − monom lc d
have ds: degree s < d unfolding s-def lc-def using dr

by (smt (verit, del-insts) Polynomial.coeff-diff Polynomial.coeff-monom
cancel-comm-monoid-add-class.diff-cancel coeff-eq-0 d-def degree-0
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diff-is-0-eq leading-coeff-0-iff linorder-neqE-nat linorder-not-le zero-diff )
{

fix x
have poly r x = poly (monom lc d + s) x unfolding s-def by simp
also have . . . = lc ∗ x ^ d + poly s x by (simp add: poly-monom)
finally have poly r x = lc ∗ x ^ d + poly s x .

} note eq = this
have ∃ p c. (∀ x ≥ b. (c :: ′a) ∗ x ^ d + poly p x = 0 ) ∧ c > 0 ∧ degree p <

d
proof (cases lc > 0 )

case True
show ?thesis by (rule exI [of - s], rule exI [of - lc], insert True eq r ds, auto)

next
case False
with lc have True: − lc > 0 by auto
show ?thesis
proof (rule exI [of - − s], rule exI [of - − lc], intro conjI allI True)

fix x
show b ≤ x −→ − lc ∗ x ^ d + poly (− s) x = 0 using r [of x] eq[of x] by

auto
qed (insert ds, auto)

qed
then obtain p and c :: ′a

where c: c > 0 and dp: degree p < d and 0 :
∧

x. x ≥ b =⇒ c ∗ x ^ d +
poly p x = 0

by auto
define m where m = Max (insert 1 ((λ i. abs (coeff p i)) ‘ {..degree p}))
define M where M = (1 + of-nat (degree p)) ∗ m
have m1 : m ≥ 1 unfolding m-def by auto
have mc: i ≤ degree p =⇒ m ≥ abs (coeff p i) for i unfolding m-def

by (intro Max-ge, auto)
define B where B = max b 1
{

fix x
assume x: x ≥ B
hence x1 : x ≥ 1 unfolding B-def by auto
have abs (poly p x) = abs (

∑
i≤degree p. coeff p i ∗ x ^ i)

by (simp add: poly-altdef )
also have . . . ≤ (

∑
i≤degree p. abs (coeff p i ∗ x ^ i)) by blast

also have . . . ≤ (
∑

i≤degree p. m ∗ x ^ degree p)
proof (intro sum-mono)

fix i
assume i ∈ {..degree p}
hence i: i ≤ degree p by auto
have |coeff p i ∗ x ^ i| = |coeff p i| ∗ |x ^ i| by (auto simp: abs-mult)
also have . . . ≤ m ∗ x ^ degree p
proof (intro mult-mono)

show |coeff p i| ≤ m using mc i by auto
show 0 ≤ m using m1 by auto
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have |x ^ i| = |x| ^ i unfolding power-abs ..
also have . . . = x ^ i using x1 by simp
also have . . . ≤ x ^ degree p using x1 i

using power-increasing by blast
finally show |x ^ i| ≤ x ^ degree p by auto

qed simp
finally show |coeff p i ∗ x ^ i| ≤ m ∗ x ^ degree p by simp

qed
also have . . . = M ∗ x ^ degree p by (simp add: M-def )
finally have ineq: |poly p x| ≤ M ∗ x ^ degree p .

have x ≥ b using x unfolding B-def by auto
from 0 [OF this] have abs (c ∗ x ^ d) = abs (poly p x) by auto
with ineq have ineq: c ∗ x ^ d ≤ M ∗ x ^ degree p by auto

define k where k = d − Suc (degree p)
from dp have d: d = degree p + Suc k unfolding k-def by auto
have xp: x ^ degree p ≥ 1 using x1 by simp
have c ∗ x ^ d = (c ∗ x ^ k ∗ x) ∗ x ^ degree p unfolding d

by (simp add: algebra-simps power-add)
from ineq[unfolded this] have ineq: c ∗ x ^ k ∗ x ≤ M using xp by simp
have c ∗ x ≤ c ∗ x^k ∗ x using c x1 by fastforce
also have . . . ≤ M by fact
finally have c ∗ x ≤ M .

}
hence contra: B ≤ x =⇒ c ∗ x ≤ M for x .
have ∃ x. c ∗ x ≥ 1 using c ge1 by auto
then obtain d where cd: c ∗ d ≥ 1 by auto
with c have d: d > 0

by (meson less-numeral-extra(1 ) order-less-le-trans zero-less-mult-pos)
have M1 : M ≥ 1 unfolding M-def using m1

by (simp add: order-trans)

have M < M + 1 by auto
also have . . . ≤ (c ∗ d) ∗ (M + 1 ) using cd M1 by simp
also have . . . ≤ c ∗ max B (d ∗ (M + 1 )) using M1 c d by auto
also have . . . ≤ M using contra[of max B (d ∗ (M + 1 ))] by simp
finally have False by simp
thus ?thesis ..

qed
finally show ?thesis by simp

qed

lemma mpoly-ext-bounded:
assumes

∧
α. (

∧
x. α x ≥ b) =⇒ insertion α p = insertion α (q :: ′a ::

linordered-idom mpoly)
shows p = q

proof −

20



have main: finite vs =⇒ vars p ⊆ vs =⇒ vars q ⊆ vs =⇒ (
∧

α. (
∧

x. α x ≥ b)
=⇒ insertion α p = insertion α q) =⇒ p = q for vs

proof (induction vs arbitrary: p q rule: finite-induct)
case (insert x vs p q)
have p = q ←→ mpoly-to-mpoly-poly x p = mpoly-to-mpoly-poly x q

by (metis poly-mpoly-to-mpoly-poly)
also have . . .←→ (∀ m. coeff (mpoly-to-mpoly-poly x p) m = coeff (mpoly-to-mpoly-poly

x q) m)
by (metis poly-eqI )

also have . . .
proof (intro allI insert.IH )

fix m α
show vars (coeff (mpoly-to-mpoly-poly x p) m) ⊆ vs using insert.prems(1 )
by (metis Diff-eq-empty-iff Diff-insert2 dual-order .trans vars-coeff-mpoly-to-mpoly-poly)
show vars (coeff (mpoly-to-mpoly-poly x q) m) ⊆ vs using insert.prems(2 )
by (metis Diff-eq-empty-iff Diff-insert2 dual-order .trans vars-coeff-mpoly-to-mpoly-poly)
assume alpha:

∧
x. α (x :: nat) ≥ (b :: ′a)

have IH : partial-insertion α x p = partial-insertion α x q
proof (intro poly-ext-bounded[of b])

fix y
assume y: y ≥ (b :: ′a)
have poly (partial-insertion α x p) y = poly (partial-insertion α x q) y ←→
insertion (α(x := y)) p = insertion (α(x := y)) q
using insertion-partial-insertion[of x α α(x := y)] by simp

moreover have . . . by (intro insert, insert y alpha, auto)
finally show poly (partial-insertion α x p) y = poly (partial-insertion α x

q) y by blast
qed
show insertion α (coeff (mpoly-to-mpoly-poly x p) m) = insertion α (coeff

(mpoly-to-mpoly-poly x q) m)
using insert.prems(3 ) by (simp add: IH )

qed
finally show ?case .

next
case (empty p q)
hence vars: vars p = {} vars q = {} by auto
from vars-emptyE [OF vars(1 )] obtain c where p: p = Const c .
from vars-emptyE [OF vars(2 )] obtain d where q: q = Const d .
from empty(3 )[of λ -. b, unfolded p q] have c = d

by (simp add: coeff-Const)
thus ?case unfolding p q by simp

qed
show ?thesis

by (rule main[of vars p ∪ vars q], insert assms, auto simp: vars-finite)
qed
end

lemma mpoly-ext-bounded-int:
assumes

∧
α. (

∧
x. α x ≥ b) =⇒ insertion α p = insertion α (q :: int mpoly)
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shows p = q
by (rule mpoly-ext-bounded[of b], insert assms, auto simp: exI [of - 1 ])

lemma mpoly-ext-bounded-field:
assumes

∧
α. (

∧
x. α x ≥ b) =⇒ insertion α p = insertion α (q :: ′a ::

linordered-field mpoly)
shows p = q
apply (rule mpoly-ext-bounded[of b])
subgoal for c by (intro exI [of - inverse c], auto)
subgoal using assms by auto
done

lemma mpoly-of-poly-is-poly-to-mpoly: mpoly-of-poly = poly-to-mpoly
unfolding poly-to-mpoly-def
apply transfer ′

apply (unfold mpoly-of-poly-aux-def )
apply transfer ′

apply (unfold when-def [symmetric])
by (intro ext, auto)

lemma insertion-poly-to-mpoly [simp]: insertion f (poly-to-mpoly i p) = poly p (f
i)

unfolding mpoly-of-poly-is-poly-to-mpoly[symmetric] by simp

lemma substitute-poly-to-mpoly:
assumes x: α x = poly-to-mpoly y (q :: ′a :: {ring-char-0 ,idom} poly)
shows substitute α (poly-to-mpoly x p) = poly-to-mpoly y (pcompose p q)
apply (rule mpoly-extI )
apply (unfold insertion-substitute insertion-poly-to-mpoly x)
apply (unfold poly-pcompose)
by auto

lemma total-degree-add-Const: total-degree (p + Const (c :: ′a :: comm-ring-1 ))
= total-degree p
proof −

have total-degree (p + Const c) ≤ total-degree p
by (rule total-degree-add, auto)

moreover have total-degree ((p + Const c) + Const (−c)) ≤ total-degree (p +
Const c)

by (rule total-degree-add, auto)
moreover have (p + Const c) + Const (− c) = p by (simp add: Const-add[symmetric])
ultimately show ?thesis by auto

qed

lemma mpoly-as-sum-any: (p :: ′a :: comm-ring-1 mpoly) = Sum-any (λ m. mmonom
m (mcoeff p m))
proof (induct p rule: mpoly-induct)

case (monom m a)
thus ?case
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by transfer (smt (verit) Sum-any.cong Sum-any-when-equal ′ lookup-single-eq
lookup-single-not-eq single-zero when-neq-zero when-simps(1 ))
next

case 1 : (sum p1 p2 m a)
show ?case

apply (subst 1 (1 ), subst 1 (2 ))
apply (unfold coeff-add monom-add)

by (smt (z3 ) 1 (1 ) 1 (2 ) MPoly-Type-monom-zero Sum-any.cong Sum-any.distrib
Sum-any.infinite add-cancel-left-left add-cancel-left-right mpoly-coeff-0 )
qed

lemma mpoly-as-sum: (p :: ′a :: comm-ring-1 mpoly) = sum (λ m. mmonom m
(mcoeff p m)) {m . mcoeff p m 6= 0}

apply (subst mpoly-as-sum-any)
by (smt (verit, ccfv-SIG) Collect-cong MPoly-Type-monom-0-iff Sum-any.expand-set)

lemma monom-as-prod: mmonom m c = Const (c :: ′a :: comm-semiring-1 ) ∗
prod (λ i. Var i ^ lookup m i) (keys m)

unfolding var-list
apply (intro arg-cong[of - - λ x. - ∗ x])
apply transfer ′

apply (subst prod.distinct-set-conv-list[symmetric])
subgoal unfolding distinct-map by (auto simp: inj-on-def )
subgoal unfolding set-map image-comp set-sorted-list-of-set[OF finite-keys]

by (smt (verit, best) case-prod-conv finite-keys o-def prod.cong prod.inject
prod.reindex-nontrivial)

done

lemma poly-to-mpoly-substitute-same: assumes poly-to-mpoly x q = substitute (λi.
Var x) p

shows poly q a = insertion (λx. a) p
using arg-cong[OF assms, of insertion (λ -. a), unfolded insertion-poly-to-mpoly

insertion-substitute insertion-Var ]
by simp

lemma substitute-monom: fixes c :: ′a :: comm-semiring-1
shows substitute a (mmonom m c) = Const c ∗ prod (λ i. a i ^ lookup m i) (keys

m)
by (subst monom-as-prod) (simp add: substitute-prod o-def )

lemma degree-prod: assumes prod p A 6= (0 :: ′a :: idom mpoly)
shows mdegree (prod p A) x = sum (λ i. mdegree (p i) x) A
using assms
by (induct A rule: infinite-finite-induct) (auto simp: mpoly-degree-mult-eq)

lemma degree-prod-le: fixes p :: - ⇒ ′a :: idom mpoly
shows mdegree (prod p A) x ≤ sum (λ i. mdegree (p i) x) A
using degree-prod[of p A x] by (cases prod p A = 0 ; auto)
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lemma degree-power : assumes p 6= (0 :: ′a :: idom mpoly)
shows mdegree (p^n) x = n ∗ mdegree p x
by (induct n) (insert assms, auto simp: mpoly-degree-mult-eq)

lemma mdegree-Const-mult-le: mdegree (Const (c :: ′a :: idom) ∗ p) x ≤ mdegree
p x

using mpoly-degree-mult-eq[of Const c p x]
by (cases c = 0 ; cases p = 0 ; auto)

lemma degree-substitute-const-same-var : mdegree (substitute (λi. Const (c i) ∗
Var x) (p :: ′a :: idom mpoly)) x ≤ total-degree p
proof −

{
fix i
let ?x = Var x :: ′a mpoly
assume i: mcoeff p i 6= 0
have mdegree (

∏
ia∈keys i. (Const (c ia) ∗ ?x) ^ lookup i ia) x ≤ total-degree

p
apply (intro order .trans[OF - degree-monon-le-total-degree[of p i, OF i]])
apply (intro order .trans[OF degree-prod-le])
apply (rule order .trans[OF sum-mono[of - - lookup i]])
apply (unfold power-mult-distrib Const-power [symmetric])
apply (rule order .trans[OF mdegree-Const-mult-le])
apply (subst degree-power , force)
apply (subst degree-Var)

by (auto simp add: degree-monom-def )
} note main = this
show ?thesis

apply (subst (5 ) mpoly-as-sum)
apply (unfold substitute-sum o-def substitute-monom substitute-mult)
apply (intro degree-sum-leI )
apply (rule order .trans[OF mdegree-Const-mult-le])
using main by auto

qed

lemma degree-substitute-same-var : mdegree (substitute (λi. Var x) (p :: ′a :: idom
mpoly)) x ≤ total-degree p

using degree-substitute-const-same-var [of λ -. 1 , unfolded Const-1 ] by auto

lemma poly-pinfty-ge-int: assumes 0 < lead-coeff (p :: int poly)
and degree p 6= 0
shows ∃n. ∀ x≥n. b ≤ poly p x

proof −
let ?q = of-int-poly p :: real poly
from assms have 0 < lead-coeff ?q degree ?q 6= 0 by auto
from poly-pinfty-ge[OF this, of of-int b] obtain n

where le:
∧

x. x ≥ n =⇒ real-of-int b ≤ poly ?q x by auto
show ?thesis
proof (intro exI [of - ceiling n] allI impI )
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fix x
assume x ≥ dne
hence of-int x ≥ n by linarith
from le[OF this] show b ≤ poly p x by simp

qed
qed

context
assumes poly-pinfty-ge:

∧
p b. 0 < lead-coeff (p :: ′a :: linordered-idom poly)

=⇒ degree p 6= 0 =⇒ ∃n. ∀ x≥n. b ≤ poly p x
begin
lemma degree-mono-generic: assumes pos: lead-coeff p ≥ (0 :: ′a)

and le:
∧

x. x ≥ c =⇒ poly p x ≤ poly q x
shows degree p ≤ degree q
proof (rule ccontr)

let ?lc = lead-coeff
define r where r = p − q
assume ¬ ?thesis
hence deg: degree p > degree q by auto
hence deg-eq: degree r = degree p unfolding r-def

by (metis degree-add-eq-right degree-minus uminus-add-conv-diff )
from deg have ?lc p 6= 0 by auto
with pos have pos: ?lc p > 0 by auto
have ?lc r = ?lc p unfolding r-def

using deg-eq le-degree r-def deg by fastforce
with pos have lcr : ?lc r > 0 by auto
from deg-eq deg have dr : degree r 6= 0 by auto
have x ≥ c =⇒ poly r x ≤ 0 for x using le[of x] unfolding r-def by auto
with poly-pinfty-ge[OF lcr dr ] show False

by (metis dual-order .trans nle-le not-one-le-zero)
qed

lemma degree-mono ′-generic: assumes le:
∧

x. x ≥ c =⇒ (bnd :: ′a) ≤ poly p x
∧ poly p x ≤ poly q x

shows degree p ≤ degree q
proof (cases degree p = 0 )

case deg: False
show ?thesis
proof (rule degree-mono-generic[of - c])

show
∧

x. c ≤ x =⇒ poly p x ≤ poly q x using le by auto
let ?lc = lead-coeff
show 0 ≤ ?lc p
proof (rule ccontr)

assume ¬ ?thesis
hence ?lc (− p) > 0 degree (− p) 6= 0 using deg by auto
from poly-pinfty-ge[OF this, of − bnd + 1 , simplified]
obtain n where

∧
x. x ≥ n =⇒ 1 − bnd ≤ − poly p x by auto

from le[of max n c] this[of max n c] show False by auto
qed
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qed
qed auto

end

definition nneg-poly :: ′a :: {linordered-semidom, semiring-no-zero-divisors} poly
⇒ bool where

nneg-poly p = ((∀ x. x ≥ 0 −→ poly p x ≥ 0 ) ∧ lead-coeff p ≥ 0 )

lemma nneg-poly-nneg: assumes nneg-poly p
and x ≥ 0

shows poly p x ≥ 0
using assms unfolding nneg-poly-def by auto

lemma nneg-poly-lead-coeff : assumes nneg-poly p
shows p 6= 0 =⇒ lead-coeff p > 0
using assms unfolding nneg-poly-def
by (metis antisym-conv2 leading-coeff-neq-0 )

lemma nneg-poly-add: assumes nneg-poly p nneg-poly q
shows nneg-poly (p + q) degree (p + q) = max (degree p) (degree q)

proof −
{

fix p q :: ′a poly
assume le: degree p ≤ degree q and pq: nneg-poly p nneg-poly q
have nneg-poly (p + q) ∧ degree (p + q) = max (degree p) (degree q)
proof (cases degree p = degree q)

case True
show ?thesis
proof (cases p = 0 ∨ q = 0 )

case True
thus ?thesis using pq by auto

next
case False
with nneg-poly-lead-coeff [of p] nneg-poly-lead-coeff [of q] pq
have lc: lead-coeff p > 0 lead-coeff q > 0 by auto
have degree (p + q) = degree q using lc True

by (smt (verit, del-insts) Polynomial.coeff-add add-cancel-left-left add-le-same-cancel2
le-degree leading-coeff-0-iff linorder-not-le order-less-le)

with lc pq True show ?thesis unfolding nneg-poly-def by auto
qed

next
case False
with le have lt: degree p < degree q by auto
hence 1 : degree (p + q) = degree q

by (simp add: degree-add-eq-right)
with lt have 2 : lead-coeff (p + q) = lead-coeff q

using lead-coeff-add-le by blast
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from 1 2 pq lt show ?thesis by (auto simp: nneg-poly-def )
qed

} note main = this
have degree p ≤ degree q ∨ degree q ≤ degree p by linarith
with main[of p q] main[of q p] assms
have nneg-poly (p + q) ∧ degree (p + q) = max (degree p) (degree q)

by (auto simp: ac-simps)
thus nneg-poly (p + q) degree (p + q) = max (degree p) (degree q)

by auto
qed

lemma nneg-poly-mult: assumes nneg-poly p nneg-poly q
shows nneg-poly (p ∗ q)
using assms unfolding nneg-poly-def poly-mult Polynomial.lead-coeff-mult
by (intro allI conjI mult-nonneg-nonneg impI , auto)

lemma nneg-poly-const[simp]: nneg-poly [:c:] = (c ≥ 0 )
unfolding nneg-poly-def by (auto dest: spec[of - 0 ] simp add: coeff-const)

lemma nneg-poly-pCons[simp]: a ≥ 0 ∧ nneg-poly p =⇒ nneg-poly (pCons a p)
unfolding nneg-poly-def by (auto simp: coeff-pCons split: nat.splits)

lemma nneg-poly-0 [simp]: nneg-poly 0
unfolding nneg-poly-def by auto

lemma nneg-poly-pcompose: assumes nneg-poly p nneg-poly q
shows nneg-poly (pcompose p q)

proof (cases degree q > 0 )
case True
show ?thesis unfolding nneg-poly-def poly-pcompose lead-coeff-comp[OF True]

using assms unfolding nneg-poly-def by auto
next

case False
hence degree q = 0 by auto
from degree0-coeffs[OF this] obtain c where q: q = [:c:] by auto
with assms[unfolded nneg-poly-def ] have c: c ≥ 0 by auto
have pq: p ◦p q = [: poly p c :] unfolding q
by (metis (no-types, opaque-lifting) add.right-neutral coeff-pCons-0 mult-zero-left

pcompose-0 ′ pcompose-assoc poly-pCons poly-pcompose)
show ?thesis using assms(1 ) unfolding nneg-poly-def pq using c by auto

qed

lemma nneg-poly-degree-add-1 : assumes p: nneg-poly p and a: a1 > 0 a2 > 0
shows degree (p ∗ [:b, a1 :] + [:c, a2 :]) = 1 + degree p

proof (cases degree p = 0 )
case False
thus ?thesis
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apply (subst degree-add-eq-left, insert p)
subgoal using a

by (metis One-nat-def degree-mult-eq-0 degree-pCons-eq-if irreducibled-multD
less-one linear-irreducibled linorder-neqE-nat order-less-le pCons-eq-0-iff )

subgoal using a
by (metis Suc-eq-plus1 add.commute add.right-neutral degree-mult-eq de-

gree-pCons-eq-if not-pos-poly-0 pCons-eq-0-iff pos-poly-pCons)
done

next
case True
then obtain c where p: p = [:c:] and c: c ≥ 0 using p degree0-coeffs[of p] by

auto
show ?thesis unfolding p using c a by (auto simp: add-nonneg-eq-0-iff )

qed

lemma nneg-poly-degree-add: assumes pq: nneg-poly (p :: ′a :: linordered-idom
poly) nneg-poly q

and a: a3 > 0 a2 > 0 a1 > 0
shows degree ([:a3 :] ∗ q ∗ p + ([:a2 :] ∗ q + [:a1 :] ∗ p + [:a0 :])) = degree p +
degree q
proof −

{
fix p q :: ′a poly and a2 a1 :: ′a
assume pq: nneg-poly p nneg-poly q
and dq: degree q 6= 0
and a: a2 > 0 a1 > 0

have deg0 : p 6= 0 =⇒ degree ([:a3 :] ∗ q ∗ p) = degree p + degree q using dq
‹a3 > 0 › a

by (metis (no-types, lifting) add.commute add-cancel-left-left degree-mult-eq
degree-pCons-eq-if linorder-not-le nle-le pCons-eq-0-iff )

have degmax: degree ([:a2 :] ∗ q + [:a1 :] ∗ p + [:a0 :]) ≤ max (degree q) (degree
p)

by (simp add: degree-add-le)
have deg: degree ([:a3 :] ∗ q ∗ p + ([:a2 :] ∗ q + [:a1 :] ∗ p + [:a0 :])) = degree p

+ degree q
proof (cases degree p = 0 )

case False
have id: degree ([:a3 :] ∗ q ∗ p) = degree p + degree q by (rule deg0 , insert

False, auto)
moreover have max (degree q) (degree p) < degree p + degree q using False

dq by auto
ultimately show ?thesis by (subst degree-add-eq-left, insert degmax, auto)

next
case True
with pq obtain c where p: p = [:c:] and c: c ≥ 0 using degree0-coeffs[of p]

by auto
define d where d = c ∗ a3 + a2
from a ‹a3 > 0 › c have d0 : d 6= 0

by (simp add: add-nonneg-eq-0-iff d-def )
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have id: [:a3 :] ∗ q ∗ [:c:] + ([:a2 :] ∗ q + [:a1 :] ∗ [:c:] + [:a0 :])
= [:c ∗ a1 + a0 :] + [:d:] ∗ q

by (simp add: smult-add-left d-def )
show ?thesis unfolding p unfolding id

by (subst degree-add-eq-right, insert d0 dq, auto)
qed

} note main = this
show ?thesis
proof (cases degree q = 0 )

case False
from main[OF pq False a(2 ,3 )] show ?thesis .

next
case dq: True
show ?thesis
proof (cases degree p = 0 )

case False
from main[OF pq(2 ,1 ) False a(3 ,2 )] show ?thesis by (simp add: alge-

bra-simps)
next

case dp: True
from degree0-coeffs[OF dp] degree0-coeffs[OF dq] show ?thesis by auto

qed
qed

qed

lemma poly-pinfty-gt-lc:
fixes p :: ′a :: linordered-field poly
assumes lead-coeff p > 0
shows ∃n. ∀ x ≥ n. poly p x ≥ lead-coeff p
using assms

proof (induct p)
case 0
then show ?case by auto

next
case (pCons a p)
from this(1 ) consider a 6= 0 p = 0 | p 6= 0 by auto
then show ?case
proof cases

case 1
then show ?thesis by auto

next
case 2
with pCons obtain n1 where gte-lcoeff : ∀ x≥n1 . lead-coeff p ≤ poly p x

by auto
from pCons(3 ) ‹p 6= 0 › have gt-0 : lead-coeff p > 0 by auto
define n where n = max n1 (1 + |a| / lead-coeff p)
have lead-coeff (pCons a p) ≤ poly (pCons a p) x if n ≤ x for x
proof −
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from gte-lcoeff that have lead-coeff p ≤ poly p x
by (auto simp: n-def )

with gt-0 have |a| / lead-coeff p ≥ |a| / poly p x and poly p x > 0
by (auto intro: frac-le)

with ‹n ≤ x›[unfolded n-def ] have x ≥ 1 + |a| / poly p x
by auto

with ‹lead-coeff p ≤ poly p x› ‹poly p x > 0 › ‹p 6= 0 ›
show lead-coeff (pCons a p) ≤ poly (pCons a p) x

by (auto simp: field-simps)
qed
then show ?thesis by blast

qed
qed

lemma poly-pinfty-ge:
fixes p :: ′a :: linordered-field poly
assumes lead-coeff p > 0 degree p 6= 0
shows ∃n. ∀ x ≥ n. poly p x ≥ b

proof −
let ?p = p − [:b − lead-coeff p :]
have id: lead-coeff ?p = lead-coeff p using assms(2 )

by (cases p, auto)
with assms(1 ) have lead-coeff ?p > 0 by auto
from poly-pinfty-gt-lc[OF this, unfolded id] obtain n

where
∧

x. x ≥ n =⇒ 0 ≤ poly p x − b by auto
thus ?thesis by auto

qed

lemma nneg-polyI : fixes p :: ′a::linordered-field poly
assumes

∧
x. 0 ≤ x =⇒ 0 ≤ poly p x

shows nneg-poly p
unfolding nneg-poly-def

proof (intro allI conjI impI assms)

{
assume lc: lead-coeff p < 0
hence lc0 : lead-coeff (− p) > 0 by auto
from lc assms[of 0 ] have degree p 6= 0 using degree0-coeffs[of p]

by (cases degree p = 0 ; auto)
from poly-pinfty-ge[OF lc0 , of 1 ] this obtain n where

∧
x. x ≥ n =⇒ poly p

x ≤ − 1
by auto

with assms have False
by (meson neg-0-le-iff-le nle-le not-one-le-zero order-trans)

}
thus lead-coeff p ≥ 0 by force

qed
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lemma poly-bounded: fixes x :: ′a:: linordered-idom
assumes abs x ≤ b
shows abs (poly p x) ≤ (

∑
i ≤ degree p. abs (coeff p i) ∗ b ^ i)

unfolding poly-altdef
apply (intro order .trans[OF sum-abs] sum-mono)
apply (unfold abs-mult power-abs, intro mult-left-mono power-mono assms)
by auto

lemma poly-degree-le-large-const:
assumes pq: degree (p :: ′a :: linordered-field poly) ≥ degree q
and p0 :

∧
x. x ≥ 0 =⇒ poly p x ≥ 0

shows ∃ H . ∀ h ≥ H . ∀ x ≥ 0 . h ∗ poly p x + h ≥ poly q x
proof (cases degree p = 0 )

case True
with pq p0 [of 0 ] obtain c d where p: p = [:c:] and q: q = [:d:] and c: c ≥ 0

using degree0-coeffs[of p] degree0-coeffs[of q] by auto
show ?thesis unfolding p q using c

apply (intro exI [of - max d 0 ], cases d ≤ 0 )
subgoal using order-trans by fastforce
by (simp add: add.commute add-increasing2 )

next
case False
define lc where lc = lead-coeff p
define dp where dp = degree p
have dp1 : dp ≥ 1 using False unfolding dp-def by auto
from p0 have lc ≥ 0 unfolding lc-def using poly-pinfty-ge[of −p 1 ]
by (metis (no-types, opaque-lifting) False degree-minus lead-coeff-minus linorder-not-le

neg-le-0-iff-le nle-le not-one-le-zero order-le-less-trans poly-minus)
with False have lc: lc > 0 by (cases lc = 0 , auto simp: lc-def )
define d where d = inverse lc
define dlc where dlc = d ∗ lc
have dlc: dlc ≥ 1 using lc by (auto simp: field-simps d-def dlc-def )
with lc have d: d > 0 unfolding dlc-def

by (simp add: d-def )
define h1 where h1 = d ∗ (1 + abs (coeff q dp))
define r where r = smult h1 p − q
have coeff r dp = h1 ∗ lc − coeff q dp unfolding r-def lc-def dp-def by simp
also have . . . = dlc ∗ (1 + abs (coeff q dp)) − coeff q dp unfolding h1-def

dlc-def by simp
also have − . . . ≤ − ((1 + abs (coeff q dp)) − coeff q dp)

unfolding neg-le-iff-le using dlc
by (intro diff-right-mono)
(simp add: abs-add-one-gt-zero)

also have . . . ≤ − 1 by simp
finally have coeff-r : coeff r dp > 0 by auto

have dpr : dp = degree r
proof −

have le: dp ≤ degree r using coeff-r
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by (simp add: le-degree)
have degree r ≤ dp unfolding dp-def r-def using assms(1 )

by (simp add: degree-diff-le)
with le show ?thesis by auto

qed
with coeff-r have lcr : lead-coeff r > 0 by auto
from dpr dp1 have degree r 6= 0 by auto
from poly-pinfty-ge[OF lcr this, of 0 ]
obtain n where n:

∧
x. x ≥ n =⇒ 0 ≤ poly r x by auto

define M where M = max n 0
from poly-bounded[of - M r ] obtain h2 where h2 : abs x ≤ M =⇒ abs (poly r

x) ≤ h2 for x by blast
have h20 : h2 ≥ 0 using h2 [of 0 ] unfolding M-def by auto
have h10 : h1 > 0 using d unfolding h1-def by auto
define H where H = max h1 h2
have H0 : H ≥ 0 using h10 unfolding H-def by auto
show ?thesis
proof (intro exI [of - H ] conjI allI impI )

fix h x :: ′a
assume h: h ≥ H
with H0 have h0 : h ≥ 0 by auto
assume x0 : x ≥ 0
show poly q x ≤ h ∗ poly p x + h
proof (cases x ≥ M )

case x: True
have h: h ≥ h1 using h H-def by auto
define h3 where h3 = h − h1
have h: h = h1 + h3 and h2 : h3 ≥ 0 using h unfolding h3-def by auto
have r : 0 ≤ poly r x and p: 0 ≤ poly p x

using x n[of x] p0 [of x] unfolding M-def by auto
have h ∗ poly p x = h1 ∗ poly p x + h3 ∗ poly p x unfolding h by (simp

add: algebra-simps)
also have − . . . ≤ − (h1 ∗ poly p x)

unfolding neg-le-iff-le using h2 p by auto
also have . . . ≤ − (poly q x)

unfolding neg-le-iff-le using r unfolding r-def
by simp

finally have h ∗ poly p x ≥ poly q x by simp
with h0 show ?thesis by auto

next
case False
with x0 have abs x ≤ M by auto
from h2 [OF this] have poly r x ≥ − h2 by auto
from this[unfolded r-def ]
have poly q x ≤ h1 ∗ poly p x + h2 by simp
also have . . . ≤ h ∗ poly p x + h

by (intro add-mono mult-right-mono p0 x0 )
(insert h, auto simp: H-def )

finally show ?thesis .
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qed
qed

qed

lemma degree-monom-0 [simp]: degree-monom 0 = 0
unfolding degree-monom-def by auto

lemma degree-monom-monomial[simp]: degree-monom (monomial n x) = n
unfolding degree-monom-def by auto

lemma keys-add: keys (m + n :: monom) = keys m ∪ keys n
by (rule keys-plus-ninv-comm-monoid-add)

lemma degree-monom-add[simp]: degree-monom (m + n) = degree-monom m +
degree-monom n

unfolding degree-monom-def keys-add lookup-plus-fun
proof (transfer , goal-cases)

case (1 m n)
have id: {k. m k 6= 0} ∪ {k. n k 6= 0} =
{k. m k 6= 0} ∩ {k. n k = 0} ∪ {k. n k 6= 0} ∩ {k. m k = 0}
∪ {k. m k 6= 0} ∩ {k. n k 6= 0} by auto
have id1 : sum m {k. m k 6= 0} = sum m ({k. m k 6= 0} ∩ {k. n k = 0} ∪ {k.

m k 6= 0} ∩ {k. n k 6= 0})
by (rule sum.cong, auto)

have id2 : sum n {k. n k 6= 0} = sum n ({k. n k 6= 0} ∩ {k. m k = 0} ∪ {k. m
k 6= 0} ∩ {k. n k 6= 0})

by (rule sum.cong, auto)
show ?case unfolding id

apply (subst sum.union-disjoint)
subgoal using 1 by auto
subgoal using 1 by auto
subgoal by auto
apply (subst sum.union-disjoint)
subgoal using 1 by auto
subgoal using 1 by auto
subgoal by auto
apply (unfold id1 )
apply (subst sum.union-disjoint)
subgoal using 1 by auto
subgoal using 1 by auto
subgoal by auto
apply (unfold id2 )
apply (subst sum.union-disjoint)
subgoal using 1 by auto
subgoal using 1 by auto
subgoal by auto
by (simp add: sum.distrib)

qed
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lemma degree-monom-of-set: finite xs =⇒ degree-monom (monom-of-set xs) =
card xs

unfolding degree-monom-def
by (transfer , auto)

lemma keys-singletonE : assumes keys m = {x}
shows ∃ c. m = monomial c x ∧ c = degree-monom m ∧ c 6= 0

proof −
define c where c = degree-monom m
from assms have mc: m = monomial c x unfolding c-def

by (metis degree-monom-monomial except-keys group-cancel.rule0 plus-except)
have c 6= 0 using assms unfolding mc by (simp split: if-splits)
from mc c-def this show ?thesis by blast

qed

lemma degree-monom-0-iff : degree-monom m = 0 ←→ m = 0
unfolding degree-monom-def
by transfer auto

lemma degree-0-imp-Const: fixes p :: ′a :: comm-ring-1 mpoly
assumes d0 : total-degree p = 0
shows ∃ c. p = Const c

proof −
{

fix m
assume mcoeff p m 6= 0
from degree-monon-le-total-degree[OF this, unfolded d0 ]
have m = 0 by (auto simp: degree-monom-0-iff )

}
hence {m . mcoeff p m 6= 0} = {} ∨ {m . mcoeff p m 6= 0} = {0} by auto
thus ?thesis
proof

assume id: {m . mcoeff p m 6= 0} = {}
have p = sum (λ m. mmonom m (mcoeff p m)) {m . mcoeff p m 6= 0}

by (rule mpoly-as-sum)
also have . . . = 0 unfolding id by simp
also have . . . = Const 0 by simp
finally show ?thesis by blast

next
assume id: {m. mcoeff p m 6= 0} = {0}
have p = sum (λ m. mmonom m (mcoeff p m)) {m . mcoeff p m 6= 0}

by (rule mpoly-as-sum)
also have . . . = mmonom 0 (mcoeff p 0 ) unfolding id by simp
also have . . . = Const (mcoeff p 0 )

using mpoly-monom-0-eq-Const by blast
finally show ?thesis by blast

qed
qed
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lemma binary-degree-2-poly: fixes p :: ′a :: {ring-char-0 ,idom} mpoly
assumes td: total-degree p ≤ 2
and vars: vars p = {x,y}
and xy: x 6= y

shows ∃ a b c d e f .
p = Const a + Const b ∗ Var x + Const c ∗ Var y +

Const d ∗ Var x ∗ Var x + Const e ∗ Var y ∗ Var y + Const f ∗ Var x ∗ Var
y
proof −

let ?p = mcoeff p
let ?x = monomial 1 x
let ?y = monomial 1 y
let ?a = ?p 0
let ?b = ?p ?x
let ?c = ?p ?y
let ?d = ?p (monomial 2 x)
let ?e = ?p (monomial 2 y)
let ?f = ?p (monom-of-set {x,y})
define XY where XY = {m :: nat ⇒0 nat. keys m ⊆ {x,y} ∧ degree-monom

m ≤ 2}
let ?xy = [0 ,?x,?y, monomial 2 x, monomial 2 y, monom-of-set {x,y}]
have eq: m = n =⇒ keys m = keys n for m n :: monom by auto
have xy: distinct ?xy using xy

by (auto dest: eq)
have XY : XY = set ?xy
proof
show set ?xy ⊆ XY unfolding XY-def by (simp add: keys-add degree-monom-of-set

card-insert-if )
show XY ⊆ set ?xy
proof

fix m
assume m ∈ XY

hence keys: keys m ⊆ {x,y} and deg: degree-monom m ≤ 2 unfolding
XY-def by auto

define km where km = keys m
from keys have keys m ∈ {{}, {x}, {y}, {x,y}} unfolding km-def [symmetric]

by auto
then consider (e) keys m = {} | (x) keys m = {x} | (y) keys m = {y} | (xy)

keys m = {x,y} by auto
thus m ∈ set ?xy
proof cases

case e
thus ?thesis by auto

next
case x
from keys-singletonE [OF this]
obtain c where m: m = monomial c x and c: c = degree-monom m c 6= 0

by auto
from c deg have c ∈ {1 ,2} by auto
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with m show ?thesis by auto
next

case y
from keys-singletonE [OF this]
obtain c where m: m = monomial c y and c: c = degree-monom m c 6= 0

by auto
from c deg have c ∈ {1 ,2} by auto
with m show ?thesis by auto

next
case xy
have m = monom-of-set {x, y} using xy deg ‹x 6= y›

unfolding degree-monom-def
proof (transfer , goal-cases)

case (1 m x y)
have xy: m x 6= 0 m y 6= 0 using 1 (2 ) by auto
have sum m {k. m k 6= 0} = m x + m y + sum m ({k. m k 6= 0} −

{x,y})
using xy 1 (1 ,2 ,4 ) by auto

with 1 (3 ) xy have xy: m x = 1 m y = 1 and
rest: sum m ({k. m k 6= 0} − {x,y}) = 0 by auto

from rest have rest: z /∈ {x,y} =⇒ m z = 0 for z using 1 (2 ) by blast
show ?case by (intro ext, insert xy rest, auto)

qed
thus ?thesis by auto

qed
qed

qed
have p = (

∑
m. mmonom m (mcoeff p m))

by (rule mpoly-as-sum-any)
also have . . . = (

∑
m∈{a. mmonom a (mcoeff p a) 6= 0}. mmonom m (mcoeff

p m))
unfolding Sum-any.expand-set by simp

also have . . . = (
∑

m∈{a. mmonom a (mcoeff p a) 6= 0} ∩ XY . mmonom m
(mcoeff p m))

apply (rule sum.mono-neutral-right; (intro ballI )?)
subgoal by auto
subgoal by auto
subgoal for m using vars order .trans[OF degree-monon-le-total-degree[of p m]

td] unfolding XY-def
by simp (smt (verit, best) DiffD2 MPoly-Type-monom-zero coeff-notin-vars

mem-Collect-eq)
done

also have . . . = (
∑

m∈XY . mmonom m (mcoeff p m))
apply (rule sum.mono-neutral-left)
subgoal unfolding XY by auto
subgoal by auto
subgoal by auto
done

also have . . . = (
∑

m ← ?xy. mmonom m (mcoeff p m))
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unfolding XY using xy by force
also have . . . = Const ?a + Const ?b ∗ Var x + Const ?c ∗ Var y +

Const ?d ∗ Var x ∗ Var x + Const ?e ∗ Var y ∗ Var y + Const ?f ∗ Var x ∗
Var y

apply (intro mpoly-extI )
unfolding insertion-sum-list map-map o-def insertion-add insertion-mult in-

sertion-Const insertion-Var
sum-list.Cons list.simps insertion-single insertion-monom-of-set mpoly-monom-0-eq-Const

using xy
by (simp add: power2-eq-square)

finally show ?thesis by blast
qed

lemma bounded-negative-factor : assumes
∧

x. c ≤ (x :: ′a :: linordered-field) =⇒
a ∗ x ≤ b

shows a ≤ 0
proof (rule ccontr)

assume ¬ ?thesis
hence a > 0 by auto
hence y ≥ c =⇒ y ≥ 0 =⇒ y ≤ b for y using assms[of inverse a ∗ y]
by (metis (no-types, opaque-lifting) assms dual-order .trans linorder-not-le mult.commute

mult-imp-less-div-pos nle-le)
from this[of 1 + max 0 (max c b)]
show False by linarith

qed

end

3 Definition of Monotone Algebras and Polyno-
mial Interpretations

theory Polynomial-Interpretation
imports

Preliminaries-on-Polynomials-1
First-Order-Terms.Term
First-Order-Terms.Subterm-and-Context

begin
abbreviation PVar ≡ MPoly-Type.Var
abbreviation TVar ≡ Term.Var

type-synonym ( ′f , ′v)rule = ( ′f , ′v)term × ( ′f , ′v)term

We fix the domain to the set of nonnegative numbers
lemma subterm-size[termination-simp]: x < length ts =⇒ size (ts ! x) < Suc
(size-list size ts)

by (meson Suc-n-not-le-n less-eq-Suc-le not-less-eq nth-mem size-list-estimation)
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definition assignment :: (var ⇒ ′a :: {ord,zero}) ⇒ bool where
assignment α = (∀ x. α x ≥ 0 )

lemma assignmentD: assumes assignment α
shows α x ≥ 0
using assms unfolding assignment-def by auto

definition monotone-fun-wrt :: ( ′a :: {zero,ord} ⇒ ′a ⇒ bool) ⇒ nat ⇒ ( ′a list
⇒ ′a) ⇒ bool where

monotone-fun-wrt gt n f = (∀ v ′ i vs. length vs = n −→ (∀ v ∈ set vs. v ≥ 0 )
−→ i < n −→ gt v ′ (vs ! i) −→
gt (f (vs [ i := v ′])) (f vs))

definition valid-fun :: nat ⇒ ( ′a list ⇒ ′a :: {zero,ord}) ⇒ bool where
valid-fun n f = (∀ vs. length vs = n −→ (∀ v ∈ set vs. v ≥ 0 ) −→ f vs ≥ 0 )

definition monotone-poly-wrt :: ( ′a :: {comm-semiring-1 ,zero,ord} ⇒ ′a ⇒ bool)
⇒ var set ⇒ ′a mpoly ⇒ bool where

monotone-poly-wrt gt V p = (∀ α x v. assignment α −→ x ∈ V −→ gt v (α x)
−→

gt (insertion (α(x := v)) p) (insertion α p))

definition valid-poly :: ′a :: {ord,comm-semiring-1} mpoly ⇒ bool where
valid-poly p = (∀ α. assignment α −→ insertion α p ≥ 0 )

locale term-algebra =
fixes F :: ( ′f × nat) set
and I :: ′f ⇒ ( ′a :: {ord,zero} list) ⇒ ′a
and gt :: ′a ⇒ ′a ⇒ bool

begin

abbreviation monotone-fun where monotone-fun ≡ monotone-fun-wrt gt

definition valid-monotone-fun :: ( ′f × nat) ⇒ bool where
valid-monotone-fun fn = (∀ f n p. fn = (f ,n) −→ p = I f
−→ valid-fun n p ∧ monotone-fun n p)

definition valid-monotone-inter where valid-monotone-inter = Ball F valid-monotone-fun

definition orient-rule :: ( ′f ,var)rule ⇒ bool where
orient-rule rule = (case rule of (l,r) ⇒ (∀ α. assignment α −→ gt (I [[l]]α)

(I [[r ]]α)))
end

locale omega-term-algebra = term-algebra F I (>) :: int ⇒ int ⇒ bool for F and
I :: ′f ⇒ - +

assumes vm-inter : valid-monotone-inter
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begin
definition termination-by-interpretation :: ( ′f ,var) rule set ⇒ bool where

termination-by-interpretation R = (∀ (l,r) ∈ R. orient-rule (l,r) ∧ funas-term l
∪ funas-term r ⊆ F)
end

locale poly-inter =
fixes F :: ( ′f × nat) set
and I :: ′f ⇒ ′a :: linordered-idom mpoly
and gt :: ′a ⇒ ′a ⇒ bool (infix � 50 )

begin

definition I ′ where I ′ f vs = insertion (λ i. if i < length vs then vs ! i else 0 ) (I
f )
sublocale term-algebra F I ′ gt .

abbreviation monotone-poly where monotone-poly ≡ monotone-poly-wrt gt

abbreviation weakly-monotone-poly where weakly-monotone-poly ≡ monotone-poly-wrt
(≥)

definition gt-poly :: ′a mpoly ⇒ ′a mpoly ⇒ bool (infix �p 50 ) where
(p �p q) = (∀ α. assignment α −→ insertion α p � insertion α q)

definition valid-monotone-poly :: ( ′f × nat) ⇒ bool where
valid-monotone-poly fn = (∀ f n p. fn = (f ,n) −→ p = I f
−→ valid-poly p ∧ monotone-poly {..<n} p ∧ vars p = {..<n})

definition valid-weakly-monotone-poly :: ( ′f × nat) ⇒ bool where
valid-weakly-monotone-poly fn = (∀ f n p. fn = (f ,n) −→ p = I f
−→ valid-poly p ∧ weakly-monotone-poly {..<n} p ∧ vars p ⊆ {..<n})

definition valid-monotone-poly-inter where valid-monotone-poly-inter = Ball F
valid-monotone-poly
definition valid-weakly-monotone-inter where valid-weakly-monotone-inter = Ball
F valid-weakly-monotone-poly

fun eval :: ( ′f ,var)term ⇒ ′a mpoly where
eval (TVar x) = PVar x
| eval (Fun f ts) = substitute (λ i. if i < length ts then eval (ts ! i) else 0 ) (I f )

lemma I ′-is-insertion-eval: I ′ [[t]] α = insertion α (eval t)
proof (induct t)

case (Var x)
then show ?case by (simp add: insertion-Var)

next
case (Fun f ts)
then show ?case

apply (simp add: insertion-substitute I ′-def [of f ])
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apply (intro arg-cong[of - - λ α. insertion α (I f )] ext)
subgoal for i by (cases i < length ts, auto)
done

qed

lemma orient-rule: orient-rule (l,r) = (eval l �p eval r)
unfolding orient-rule-def split I ′-is-insertion-eval gt-poly-def ..

lemma vars-eval: vars (eval t) ⊆ vars-term t
proof (induct t)

case (Fun f ts)
define V where V = vars-term (Fun f ts)
define σ where σ = (λi. if i < length ts then eval (ts ! i) else 0 )
{

fix i
have IH : vars (σ i) ⊆ V
proof (cases i < length ts)

case False
thus ?thesis unfolding σ-def by auto

next
case True
hence ts ! i ∈ set ts by auto
with Fun(1 )[OF this] have vars (eval (ts ! i)) ⊆ V by (auto simp: V-def )
thus ?thesis unfolding σ-def using True by auto

qed
} note σ-vars = this
define p where p = (I f )
show ?case unfolding eval.simps σ-def [symmetric] V-def [symmetric] p-def [symmetric]

using σ-vars
vars-substitute[of σ] by auto

qed auto

lemma monotone-imp-weakly-monotone: assumes valid: valid-monotone-poly p
and gt:

∧
x y. (x � y) = (x > y)

shows valid-weakly-monotone-poly p
unfolding valid-weakly-monotone-poly-def

proof (intro allI impI , clarify, intro conjI )
fix f n
assume p = (f ,n)
note ∗ = valid[unfolded valid-monotone-poly-def , rule-format, OF this refl]
from ∗ show valid-poly (I f ) by auto
from ∗ show vars (I f ) ⊆ {..<n} by auto
show weakly-monotone-poly {..<n} (I f )

unfolding monotone-poly-wrt-def
proof (intro allI impI , goal-cases)

case (1 α x a)
from ∗ have monotone-poly {..<n} (I f ) by auto
from this[unfolded monotone-poly-wrt-def , rule-format, OF 1 (1−2 ), of a]
show ?case unfolding gt using 1 (3 ) by force
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qed
qed

lemma valid-imp-insertion-eval-pos: assumes valid: valid-monotone-poly-inter
and funas-term t ⊆ F
and assignment α

shows insertion α (eval t) ≥ 0
using assms(2−3 )

proof (induct t arbitrary: α)
case (Var x)
thus ?case by (auto simp: assignment-def insertion-Var)

next
case (Fun f ts)
let ?n = length ts
let ?f = (f ,?n)
let ?p = I f
from Fun have ?f ∈ F by auto
from valid[unfolded valid-monotone-poly-inter-def , rule-format, OF this, unfolded

valid-monotone-poly-def ]
have valid: valid-poly ?p and vars ?p = {..<?n} by auto
from valid[unfolded valid-poly-def ]
have ins: assignment α =⇒ 0 ≤ insertion α (I f ) for α by auto
{

fix i
assume i < ?n
hence ts ! i ∈ set ts by auto
with Fun(1 )[OF this - Fun(3 )] Fun(2 ) have 0 ≤ insertion α (eval (ts ! i)) by

auto
}
note IH = this
show ?case

apply (simp add: insertion-substitute)
apply (intro ins, unfold assignment-def , intro allI )
subgoal for i using IH [of i] by auto
done

qed

end

locale delta-poly-inter = poly-inter F I (λ x y. x ≥ y + δ) for F :: ( ′f × nat) set
and I and
δ :: ′a :: {floor-ceiling,linordered-field} +
assumes valid: valid-monotone-poly-inter
and δ0 : δ > 0

begin
definition termination-by-delta-interpretation :: ( ′f ,var) rule set ⇒ bool where

termination-by-delta-interpretation R = (∀ (l,r) ∈ R. orient-rule (l,r) ∧ fu-
nas-term l ∪ funas-term r ⊆ F)
end
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locale int-poly-inter = poly-inter F I (>) :: int ⇒ int ⇒ bool for F :: ( ′f × nat)
set and I +

assumes valid: valid-monotone-poly-inter
begin

sublocale omega-term-algebra F I ′

proof (unfold-locales, unfold valid-monotone-inter-def , intro ballI )
fix fn
assume fn ∈ F
from valid[unfolded valid-monotone-poly-inter-def , rule-format, OF this]
have valid: valid-monotone-poly fn .
show valid-monotone-fun fn unfolding valid-monotone-fun-def
proof (intro allI impI conjI )

fix f n p
assume fn: fn = (f ,n) and p: p = I ′ f
from valid[unfolded valid-monotone-poly-def , rule-format, OF fn refl]
have valid: valid-poly (I f ) and mono: monotone-poly {..<n} (I f ) by auto

show valid-fun n p unfolding valid-fun-def
proof (intro allI impI )

fix vs
assume length vs = n and vs: Ball (set vs) ((≤) (0 :: int))
show 0 ≤ p vs unfolding p I ′-def

by (rule valid[unfolded valid-poly-def , rule-format], insert vs, auto simp:
assignment-def )

qed

show monotone-fun n p unfolding monotone-fun-wrt-def
proof (intro allI impI )

fix v ′ i vs
assume ∗: length vs = n Ball (set vs) ((≤) (0 :: int)) i < n vs ! i < v ′

show p vs < p (vs[i := v ′]) unfolding p I ′-def
by (rule ord-less-eq-trans[OF mono[unfolded monotone-poly-wrt-def , rule-format,

of - i v ′]
insertion-irrelevant-vars], insert ∗, auto simp: assignment-def )

qed
qed

qed

definition termination-by-poly-interpretation :: ( ′f ,var) rule set ⇒ bool where
termination-by-poly-interpretation = termination-by-interpretation

end

locale wm-int-poly-inter = poly-inter F I (>) :: int ⇒ int ⇒ bool for F :: ( ′f ×
nat) set and I +

assumes valid: valid-weakly-monotone-inter
begin
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definition oriented-by-interpretation :: ( ′f ,var) rule set ⇒ bool where
oriented-by-interpretation R = (∀ (l,r) ∈ R. orient-rule (l,r) ∧ funas-term l ∪

funas-term r ⊆ F)
end

locale linear-poly-inter = poly-inter F I gt for F I gt +
assumes linear :

∧
f n. (f ,n) ∈ F =⇒ total-degree (I f ) ≤ 1

locale linear-int-poly-inter = int-poly-inter F I + linear-poly-inter F I (>)
for F :: ( ′f × nat) set and I

locale linear-wm-int-poly-inter = wm-int-poly-inter F I + linear-poly-inter F I
(>)

for F :: ( ′f × nat) set and I

definition termination-by-linear-int-poly-interpretation :: ( ′f × nat)set ⇒ ( ′f ,var)rule
set ⇒ bool where

termination-by-linear-int-poly-interpretation F R = (∃ I . linear-int-poly-inter F
I ∧

int-poly-inter .termination-by-poly-interpretation F I R)

definition omega-termination :: ( ′f × nat)set ⇒ ( ′f ,var)rule set ⇒ bool where
omega-termination F R = (∃ I . omega-term-algebra F I ∧

omega-term-algebra.termination-by-interpretation F I R)

definition termination-by-int-poly-interpretation :: ( ′f × nat)set ⇒ ( ′f ,var)rule
set ⇒ bool where

termination-by-int-poly-interpretation F R = (∃ I . int-poly-inter F I ∧
int-poly-inter .termination-by-poly-interpretation F I R)

definition termination-by-delta-poly-interpretation :: ′a :: {floor-ceiling,linordered-field}
itself ⇒ ( ′f × nat)set ⇒ ( ′f ,var)rule set ⇒ bool where

termination-by-delta-poly-interpretation TYPE( ′a) F R = (∃ I δ. delta-poly-inter
F I (δ :: ′a) ∧

delta-poly-inter .termination-by-delta-interpretation F I δ R)

definition orientation-by-linear-wm-int-poly-interpretation :: ( ′f × nat)set ⇒ ( ′f ,var)rule
set ⇒ bool where
orientation-by-linear-wm-int-poly-interpretation F R = (∃ I . linear-wm-int-poly-inter

F I ∧
wm-int-poly-inter .oriented-by-interpretation F I R)

end

4 Hilbert’s 10th Problem to Linear Inequality
theory Hilbert10-to-Inequality

imports
Preliminaries-on-Polynomials-1
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begin

definition hilbert10-problem :: int mpoly ⇒ bool where
hilbert10-problem p = (∃ α. insertion α p = 0 )

A polynomial is positive, if every coefficient is positive. Since the @{const
coeff }-function of ′a mpoly maps a coefficient to every monomial, this means
that positiveness is expressed as coeff p m 6= (0 :: ′a) −→ (0 :: ′a) < coeff p
m for monomials m. However, this condition is equivalent to just demand
(0 :: ′a) ≤ coeff p m for all m.
This is the reason why positive polynomials are defined in the same way as
one would define non−negative polynomials.
definition positive-poly :: ′a :: linordered-idom mpoly ⇒ bool where

positive-poly p = (∀ m. coeff p m ≥ 0 )

definition positive-interpr :: (var ⇒ ′a :: linordered-idom) ⇒ bool where
positive-interpr α = (∀ x. α x > 0 )

definition positive-poly-problem :: ′a :: linordered-idom mpoly ⇒ ′a mpoly ⇒ bool
where

positive-poly p =⇒ positive-poly q =⇒ positive-poly-problem p q =
(∃ α. positive-interpr α ∧ insertion α p ≥ insertion α q)

datatype flag = Positive | Negative | Zero

fun flag-of :: ′a :: {ord,zero} ⇒ flag where
flag-of x = (if x < 0 then Negative else if x > 0 then Positive else Zero)

definition subst-flag :: var set ⇒ (var ⇒ flag) ⇒ var ⇒ ′a :: comm-ring-1 mpoly
where

subst-flag V flag x = (if x ∈ V then (case flag x of
Positive ⇒ Var x
| Negative ⇒ − Var x
| Zero ⇒ 0 )
else 0 )

definition assignment-flag :: var set ⇒ (var ⇒ flag)⇒ (var ⇒ ′a :: comm-ring-1 )
⇒ (var ⇒ ′a) where

assignment-flag V flag α x = (if x ∈ V then (case flag x of
Positive ⇒ α x
| Negative ⇒ − α x
| Zero ⇒ 1 )
else 1 )

definition correct-flags :: var set ⇒ (var ⇒ flag)⇒ (var ⇒ ′a :: ordered-comm-ring)
⇒ bool where

correct-flags V flag α = (∀ x ∈ V . flag x = flag-of (α x))
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lemma correct-flag-substitutions: fixes p :: ′a :: linordered-idom mpoly
assumes vars p ⊆ V

and beta: β = assignment-flag V flag α
and sigma: σ = subst-flag V flag
and q: q = substitute σ p
and corr : correct-flags V flag α

shows insertion β q = insertion α p positive-interpr β
proof −

show insertion β q = insertion α p unfolding q insertion-substitute
proof (rule insertion-irrelevant-vars)

fix x
assume x ∈ vars p
with assms have x: x ∈ V by auto
with corr have flag: flag x = flag-of (α x) unfolding correct-flags-def by auto

show insertion β (σ x) = α x
unfolding beta sigma assignment-flag-def subst-flag-def using x flag
by (cases flag x, auto split: if-splits simp: insertion-Var insertion-uminus)

qed
show positive-interpr β using corr

unfolding positive-interpr-def beta assignment-flag-def correct-flags-def
by auto

qed

definition hilbert-encode1 :: int mpoly ⇒ int mpoly list where
hilbert-encode1 r = (let r2 = r^2 ;

V = vars-list r2 ;
flag-lists = product-lists (map (λ x. map (λ f . (x,f )) [Positive,Negative,Zero])

V );
subst = (λ fl. subst-flag (set V ) (λ x. case map-of fl x of Some f ⇒ f | None

⇒ Zero))
in map (λ fl. substitute (subst fl) r2 ) flag-lists)

lemma hilbert-encode1 :
hilbert10-problem r ←→ (∃ p ∈ set (hilbert-encode1 r). ∃ α. positive-interpr α ∧

insertion α p ≤ 0 )
proof

define r2 where r2 = r^2
define V where V = vars-list r2
define flag-list where flag-list = product-lists (map (λ x. map (λ f . (x,f ))

[Positive,Negative,Zero]) V )
define subst where subst = (λ fl. subst-flag (set V ) (λ x. case map-of fl x of

Some f ⇒ f | None ⇒ Zero) :: var ⇒ int mpoly)
have hilb-enc: hilbert-encode1 r = map (λ fl. substitute (subst fl) r2 ) flag-list

unfolding subst-def flag-list-def V-def r2-def Let-def hilbert-encode1-def ..
have hilbert10-problem r ←→ (∃ α. insertion α r = 0 ) unfolding hilbert10-problem-def

by auto
also have . . . ←→ (∃ α. (insertion α r)^2 ≤ 0 )

by (intro ex-cong1 , auto)
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also have . . . ←→ (∃ α. insertion α r2 ≤ 0 )
by (intro ex-cong1 , auto simp: power2-eq-square insertion-mult r2-def )

finally have hilb: hilbert10-problem r = (∃α. insertion α r2 ≤ 0 ) (is ?h1 =
?h2 ) .

let ?r1 = (∃ p ∈ set (hilbert-encode1 r). ∃ α. positive-interpr α ∧ insertion α
p ≤ 0 )

{
assume ?r1
from this[unfolded hilb-enc]

show hilbert10-problem r unfolding hilb by (auto simp add: insertion-substitute)
}
{

assume ?h1
with hilb obtain α where solution: insertion α r2 ≤ 0 by auto
define fl where fl = map (λ x. (x, flag-of (α x))) V
define flag where flag = (λ x. case map-of fl x of Some f ⇒ f | None ⇒ Zero)

have vars: vars r2 ⊆ set V unfolding V-def by simp
have fl: fl ∈ set flag-list unfolding flag-list-def product-lists-set fl-def

apply (simp add: list-all2-map2 list-all2-map1 , intro list-all2-refl)
by auto

have mem: substitute (subst-flag (set V ) flag) r2 ∈ set (hilbert-encode1 r)
unfolding hilb-enc subst-def flag-def using fl by auto

have corr : correct-flags (set V ) flag α unfolding correct-flags-def flag-def fl-def
by (auto split: option.splits dest!: map-of-SomeD simp: map-of-eq-None-iff

image-comp)
show ?r1 using solution correct-flag-substitutions[OF vars refl refl refl corr ]

by (intro bexI [OF - mem], auto)
}

qed

lemma pos-neg-split: mpoly-coeff-filter (λ x. (x :: ′a :: linordered-idom) > 0 ) p +
mpoly-coeff-filter (λ x. x < 0 ) p = p (is ?l + ?r = p)
proof −

{
fix m
let ?c = coeff p m
have coeff (?l + ?r) m = coeff ?l m + coeff ?r m by (simp add: coeff-add)
also have . . . = coeff p m unfolding mpoly-coeff-filter

by (cases ?c < 0 ; cases ?c > 0 ; cases ?c = 0 , auto)
finally have coeff (?l + ?r) m = coeff p m .

}
thus ?thesis using coeff-eq by blast

qed

definition hilbert-encode2 :: int mpoly ⇒ int mpoly × int mpoly where
hilbert-encode2 p =

(− mpoly-coeff-filter (λ x. x < 0 ) p, mpoly-coeff-filter (λ x. x > 0 ) p)
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lemma hilbert-encode2 : assumes hilbert-encode2 p = (r ,s)
shows positive-poly r positive-poly s insertion α p ≤ 0 ←→ insertion α r ≥

insertion α s
proof −

from assms[unfolded hilbert-encode2-def , simplified]
have s: s = mpoly-coeff-filter (λ x. x > 0 ) p

and r : r = − mpoly-coeff-filter (λ x. x < 0 ) p (is - = − ?q) by auto
have p = s + ?q unfolding s using pos-neg-split[of p] by simp
also have . . . = s − r unfolding s r by simp
finally have insertion α p ≤ 0 ←→ insertion α (s − r) ≤ 0 by simp
also have insertion α (s − r) = insertion α s − insertion α r

by (metis add-uminus-conv-diff insertion-add insertion-uminus)
finally show insertion α p ≤ 0 ←→ insertion α r ≥ insertion α s by auto
show positive-poly s unfolding positive-poly-def s using mpoly-coeff-filter [of (λ

x. x > 0 ) p]
by (auto simp: when-def )

show positive-poly r unfolding positive-poly-def r coeff-uminus using mpoly-coeff-filter [of
(λ x. x < 0 ) p]

by (auto simp: when-def )
qed

definition hilbert-encode :: int mpoly ⇒ (int mpoly × int mpoly)list where
hilbert-encode = map hilbert-encode2 o hilbert-encode1

Lemma 2.2 in paper
lemma hilbert-encode-positive: hilbert10-problem p
←→ (∃ (r ,s) ∈ set (hilbert-encode p). positive-poly-problem r s)

proof −
have hilbert10-problem p ←→ (∃ p ′∈set (hilbert-encode1 p). ∃α. positive-interpr

α ∧ insertion α p ′ ≤ 0 )
using hilbert-encode1 [of p] by blast

also have . . . ←→ (∃ (r ,s) ∈ set (hilbert-encode p). positive-poly-problem r s) (is
?l = ?r)

proof
assume ?l

then obtain p ′ α where mem: p ′∈set (hilbert-encode1 p) and sol: posi-
tive-interpr α insertion α p ′ ≤ 0 by blast

obtain r s where 2 : hilbert-encode2 p ′ = (r ,s) by force
from mem 2 have mem: (r ,s) ∈ set (hilbert-encode p) unfolding hilbert-encode-def

o-def by force
from hilbert-encode2 [OF 2 ] sol have positive-poly-problem r s using posi-

tive-poly-problem-def [of r s] by force
with mem show ?r by blast

next
assume ?r
then obtain r s where mem: (r ,s) ∈ set (hilbert-encode p) and sol: posi-

tive-poly-problem r s by auto
from mem[unfolded hilbert-encode-def o-def ] obtain p ′ where

mem: p ′ ∈ set (hilbert-encode1 p)
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and hilbert-encode2 p ′ = (r ,s) by force
from hilbert-encode2 [OF this(2 )] sol positive-poly-problem-def [of r s]
have (∃α. positive-interpr α ∧ insertion α p ′ ≤ 0 ) by auto
with mem hilbert-encode1 [of p] show ?l by auto

qed
finally show ?thesis .

qed

end

5 Undecidability of Linear Polynomial Termina-
tion

theory Linear-Poly-Termination-Undecidable
imports

Hilbert10-to-Inequality
Polynomial-Interpretation

begin

Definition 3.1
locale poly-input =

fixes p q :: int mpoly
assumes pq: positive-poly p positive-poly q

begin

datatype symbol = a-sym | z-sym | o-sym | f-sym | v-sym var | q-sym | h-sym |
g-sym

abbreviation a-t where a-t t1 t2 ≡ Fun a-sym [t1 , t2 ]
abbreviation z-t where z-t ≡ Fun z-sym []
abbreviation o-t where o-t ≡ Fun o-sym []
abbreviation f-t where f-t t1 t2 t3 t4 ≡ Fun f-sym [t1 ,t2 ,t3 ,t4 ]
abbreviation v-t where v-t i t ≡ Fun (v-sym i) [t]

definition encode-num :: var ⇒ int ⇒ (symbol,var)term where
encode-num x n = ((λ t. a-t (Var x) t)^^(nat n)) z-t

definition encode-monom :: var ⇒ monom ⇒ int ⇒ (symbol,var)term where
encode-monom x m c = rec-list (encode-num x c) (λ (i,e) -. (λ t. v-t i t)^^e)

(var-list m)

definition encode-poly :: var ⇒ int mpoly ⇒ (symbol,var)term where
encode-poly x r = rec-list z-t (λ (m,c) - t. a-t (encode-monom x m c) t) (monom-list

r)

lemma vars-encode-num: vars-term (encode-num x n) ⊆ {x}
proof −

define m where m = nat n

48



show ?thesis
unfolding encode-num-def m-def [symmetric]
by (induct m, auto)

qed

lemma vars-encode-monom: vars-term (encode-monom x m c) ⊆ {x}
proof −

define xes where xes = var-list m
show ?thesis unfolding encode-monom-def xes-def [symmetric]
proof (induct xes)

case Nil
thus ?case using vars-encode-num by auto

next
case (Cons ye xes)
obtain y e where ye: ye = (y,e) by force
have [simp]: vars-term ((v-t y ^^ e) t) = vars-term t for t :: (symbol,var)term

by (induct e arbitrary: t, auto)
from Cons show ?case unfolding ye by auto

qed
qed

lemma vars-encode-poly: vars-term (encode-poly x r) ⊆ {x}
proof −

define mcs where mcs = monom-list r
show ?thesis unfolding encode-poly-def mcs-def [symmetric]
proof (induct mcs)

case (Cons mc mcs)
obtain m c where mc: mc = (m,c) by force
from Cons show ?case unfolding mc using vars-encode-monom[of x m c] by

auto
qed auto

qed

definition V where V = vars p ∪ vars q

definition y1 :: var where y1 = 0
definition y2 :: var where y2 = 1
definition y3 :: var where y3 = 2

lemma y-vars: y1 6= y2 y2 6= y3 y1 6= y3
unfolding y1-def y2-def y3-def by auto

Definition 3.3
definition lhs-R = f-t (Var y1 ) (Var y2 ) (a-t (encode-poly y3 p) (Var y3 )) o-t
definition rhs-R = f-t (a-t (Var y1 ) z-t) (a-t z-t (Var y2 )) (a-t (encode-poly y3
q) (Var y3 )) z-t

definition F where F = {(a-sym, 2 ), (z-sym, 0 )} ∪ (λ i. (v-sym i, 1 :: nat)) ‘
V
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definition F-R where F-R = {(f-sym,4 ), (o-sym, 0 )} ∪ F

definition R where R = {(lhs-R,rhs-R)}

definition V-list where V-list = sorted-list-of-set V

definition contexts :: (symbol × nat × nat) list
where contexts = [
(a-sym, 2 , 0 ),
(a-sym, 2 , 1 ),
(f-sym, 4 , 0 ),
(f-sym, 4 , 1 ),
(f-sym, 4 , 2 ),
(f-sym, 4 , 3 )] @
map (λ i. (v-sym i, 1 ,0 )) V-list

replace t by f(z,...z,t,z,...,z)
definition z-context :: symbol × nat × nat ⇒ (symbol, var)term ⇒ (symbol, var)
term where

z-context c t = (case c of (f ,n,i) ⇒ Fun f (replicate i z-t @ [t] @ replicate (n −
i − 1 ) z-t))

definition z-contexts where
z-contexts cs = foldr z-context cs

definition all-symbol-pos-ctxt :: (symbol,var)term ⇒ (symbol,var)term where
all-symbol-pos-ctxt = z-contexts contexts

definition lhs-R ′ = all-symbol-pos-ctxt lhs-R
definition rhs-R ′ = all-symbol-pos-ctxt rhs-R
definition R ′ where R ′ = {( lhs-R ′, rhs-R ′ )}

lemma funas-encode-num: funas-term (encode-num x n) ⊆ F
proof −

define m where m = nat n
show ?thesis

unfolding encode-num-def m-def [symmetric]
by (induct m, auto simp: F-def )

qed

lemma funas-encode-monom: assumes keys m ⊆ V
shows funas-term (encode-monom x m c) ⊆ F

proof −
define xes where xes = var-list m
show ?thesis using var-list-keys[of - - m] unfolding encode-monom-def xes-def [symmetric]
proof (induct xes)

case Nil
thus ?case using funas-encode-num by auto

next
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case (Cons ye xes)
obtain y e where ye: ye = (y,e) by force
have sub: funas-term ((v-t y ^^ e) t) ⊆ insert (v-sym y, 1 ) (funas-term t) for

t :: (symbol,var)term
by (induct e arbitrary: t, auto)

from Cons(2 )[unfolded ye] assms have y ∈ V by auto
hence inF : (v-sym y, 1 ) ∈ F unfolding F-def by auto
from Cons sub inF show ?case unfolding ye by fastforce

qed
qed

lemma funas-encode-poly: assumes vars r ⊆ V shows funas-term (encode-poly x
r) ⊆ F
proof −

define mcs where mcs = monom-list r
show ?thesis using monom-list-keys[of - - r ] unfolding encode-poly-def mcs-def [symmetric]
proof (induct mcs)

case (Cons mc mcs)
obtain m c where mc: mc = (m,c) by force
have a: (a-sym, 2 ) ∈ F unfolding F-def by auto
from Cons(2 )[unfolded mc] assms have keys m ⊆ V by auto
from funas-encode-monom[OF this, of x c] Cons(1 )[OF Cons(2 )] a
show ?case unfolding mc by (force simp: numeral-eq-Suc)

qed (auto simp: F-def )
qed

lemma funas-encode-poly-p: funas-term (encode-poly x p) ⊆ F
by (rule funas-encode-poly, auto simp: V-def )

lemma funas-encode-poly-q: funas-term (encode-poly x q) ⊆ F
by (rule funas-encode-poly, auto simp: V-def )

lemma lhs-R-F : funas-term lhs-R ⊆ F-R
proof −

from funas-encode-poly-p
show funas-term lhs-R ⊆ F-R unfolding lhs-R-def by (auto simp: F-R-def

F-def )
qed

lemma rhs-R-F : funas-term rhs-R ⊆ F-R
proof −

from funas-encode-poly-q
show funas-term rhs-R ⊆ F-R unfolding rhs-R-def by (auto simp: F-R-def

F-def )
qed

lemma finite-V : finite V unfolding V-def using vars-finite by auto
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lemma V-list: set V-list = V unfolding V-list-def using finite-V by auto

lemma contexts: assumes (f ,n,i) ∈ set contexts
shows (f ,n) ∈ F-R i < n
using assms unfolding contexts-def F-R-def F-def by (auto simp: V-list)

lemma z-contexts-append: z-contexts (cs @ ds) t = z-contexts cs (z-contexts ds t)
unfolding z-contexts-def by (induct cs, auto)

lemma z-context: assumes (f ,n) ∈ F-R i < n and funas-term t ⊆ F-R
shows funas-term (z-context (f ,n,i) t) ⊆ F-R

proof −
have z: (z-sym,0 ) ∈ F-R unfolding F-R-def F-def by auto
thus ?thesis unfolding z-context-def split using assms by auto

qed

lemma funas-all-symbol-pos-ctxt: assumes funas-term t ⊆ F-R
shows funas-term (all-symbol-pos-ctxt t) ⊆ F-R

proof −
define cs where cs = contexts
have sub: set cs ⊆ set contexts unfolding cs-def by auto
have id: all-symbol-pos-ctxt t = foldr z-context cs t unfolding cs-def all-symbol-pos-ctxt-def

z-contexts-def
by (auto simp: id-def )

show ?thesis unfolding id using sub assms(1 )
proof (induct cs arbitrary: t)

case (Cons c cs t)
obtain f n i where c: c = (f ,n,i) by (cases c, auto)
from c Cons have (f ,n,i) ∈ set contexts by auto
from z-context[OF contexts[OF this], folded c] Cons
show ?case by auto

qed auto
qed

lemma lhs-R ′-F : funas-term lhs-R ′ ⊆ F-R
unfolding lhs-R ′-def by (rule funas-all-symbol-pos-ctxt[OF lhs-R-F ])

lemma rhs-R ′-F : funas-term rhs-R ′ ⊆ F-R
unfolding rhs-R ′-def by (rule funas-all-symbol-pos-ctxt[OF rhs-R-F ])

end

lemma insertion-positive-poly: assumes
∧

x. α x ≥ (0 :: ′a :: linordered-idom)
and positive-poly p

shows insertion α p ≥ 0
by (rule insertion-nonneg, insert assms[unfolded positive-poly-def ], auto)

locale solvable-poly-problem = poly-input p q for p q +
assumes sol: positive-poly-problem p q

begin
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definition α where α = (SOME α. positive-interpr α ∧ insertion α q ≤ insertion
α p)

lemma α: positive-interpr α insertion α q ≤ insertion α p
using someI-ex[OF sol[unfolded positive-poly-problem-def [OF pq]], folded α-def ]
by auto

lemma α1 : α x > 0 using α unfolding positive-interpr-def by auto

context
fixes I :: symbol ⇒ int mpoly
assumes inter : I a-sym = PVar 0 + PVar 1

I z-sym = 0
I o-sym = 1
I (v-sym i) = Const (α i) ∗ PVar 0

begin

lemma inter-encode-num: assumes c ≥ 0
shows poly-inter .eval I (encode-num x c) = Const c ∗ PVar x

proof −
from assms obtain n where cn: c = int n by (metis nonneg-eq-int)
hence natc: nat c = n by auto
show ?thesis unfolding encode-num-def natc unfolding cn

by (induct n, auto simp: inter poly-inter .eval.simps Const-0 Const-1 alge-
bra-simps Const-add)
qed

lemma inter-v-pow-e: poly-inter .eval I ((v-t x ^^ e) t) = Const ((α x)^e) ∗
poly-inter .eval I t

by (induct e, auto simp: Const-1 Const-mult inter poly-inter .eval.simps)

lemma inter-encode-monom: assumes c: c ≥ 0
shows poly-inter .eval I (encode-monom y m c) = Const (insertion α (monom m

c)) ∗ PVar y
proof −

define xes where xes = var-list m
from var-list[of m c]
have monom: monom m c = Const c ∗ (

∏
(x, e)← xes . PVar x ^ e) unfolding

xes-def .
show ?thesis unfolding encode-monom-def monom xes-def [symmetric]
proof (induct xes)

case Nil
show ?case by (simp add: inter-encode-num[OF c] insertion-Const)

next
case (Cons xe xes)
obtain x e where xe: xe = (x,e) by force
show ?case by (simp add: xe inter-v-pow-e Cons Const-power
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insertion-Const insertion-mult insertion-power insertion-Var Const-mult)
qed

qed

lemma inter-foldr-v-t:
poly-inter .eval I (foldr v-t xs t) = Const (prod-list (map α xs)) ∗ poly-inter .eval

I t
by (induct xs arbitrary: t, auto simp: Const-1 inter poly-inter .eval.simps Const-mult)

lemma inter-encode-poly-generic: assumes positive-poly r
shows poly-inter .eval I (encode-poly x r) = Const (insertion α r) ∗ PVar x

proof −
define mcs where mcs = monom-list r
from monom-list[of r ] have r : r = (

∑
(m, c)← mcs. monom m c) unfolding

mcs-def by auto
have mcs: (m,c) ∈ set mcs =⇒ c ≥ 0 for m c

using monom-list-coeff assms unfolding mcs-def positive-poly-def by auto
note [simp] = inter poly-inter .eval.simps
show ?thesis unfolding encode-poly-def mcs-def [symmetric] unfolding r inser-

tion-sum-list map-map o-def
using mcs

proof (induct mcs)
case (Cons mc mcs)
obtain m c where mc: mc = (m,c) by force
from Cons(2 ) mc have c: c ≥ 0 by auto
note monom = inter-encode-monom[OF this, of x m]
show ?case

by (simp add: mc monom algebra-simps, subst Cons(1 ), insert Cons(2 ), auto
simp: Const-add algebra-simps)

qed simp
qed

lemma valid-monotone-inter-F : assumes positive-interpr α
and inF : fn ∈ F

shows poly-inter .valid-monotone-poly I (>) fn
proof −

obtain f n where fn: fn = (f ,n) by force
with inF have f : (f ,n) ∈ F by auto
show ?thesis unfolding poly-inter .valid-monotone-poly-def fn
proof (intro allI impI , clarify, intro conjI )

let ?valid = valid-poly
let ?mono = poly-inter .monotone-poly (>)
have [simp]: vars ((PVar 0 :: int mpoly) + PVar (Suc 0 ) + PVar 2 + PVar

3 ) = {0 ,1 ,2 ,3}
unfolding vars-def apply (transfer , simp add: Var0-def image-comp) by

code-simp
have [simp]: vars ((PVar 0 :: int mpoly) + PVar (Suc 0 )) = {0 ,1}

unfolding vars-def apply (transfer , simp add: Var0-def image-comp) by
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code-simp
note [simp] = inter poly-inter .eval.simps
{

fix i
assume i: i ∈ V and f = v-sym i and n: n = 1
hence I : I f = Const (α i) ∗ PVar 0 by simp
from assms[unfolded positive-interpr-def ] have alpha: α i > 0 by auto
have valid: ?valid (I f )

unfolding I valid-poly-def using alpha
by (auto simp: insertion-mult insertion-Const insertion-Var assignment-def

intro!: mult-nonneg-nonneg)
have mono: ?mono {..<n} (I f )

unfolding I unfolding n monotone-poly-wrt-def using alpha
by (auto simp: insertion-Const insertion-mult insertion-Var)

have vars (I f ) ⊆ {..<n} unfolding I unfolding n
by (rule order .trans[OF vars-mult], auto)

moreover have 0 ∈ vars (I f )
unfolding I unfolding n

proof (rule ccontr)
let ?p = Const (α i) ∗ PVar 0
assume not: 0 /∈ vars ?p
define β :: var ⇒ int where β x = 0 for x
have insertion β ?p = insertion (β(0 := 1 )) ?p

by (rule insertion-irrelevant-vars, insert not, auto)
thus False using alpha by (simp add: β-def insertion-mult insertion-Const

insertion-Var)
qed
ultimately have vars (I f ) = {..< n} unfolding n by auto
note this valid mono

} note v-sym = this
from f v-sym show vars (I f ) = {..< n} unfolding F-def by auto
from f v-sym show ?valid (I f ) unfolding F-def

by (auto simp: valid-poly-def insertion-add assignment-def insertion-Var)
have x4 : x < 4 =⇒ x = 0 ∨ x = Suc 0 ∨ x = 2 ∨ x = 3 for x by linarith
have x2 : x < 2 =⇒ x = 0 ∨ x = Suc 0 for x by linarith
from f v-sym show ?mono {..<n} (I f ) unfolding F-R-def F-def

by (auto simp: monotone-poly-wrt-def insertion-add insertion-Var assign-
ment-def

dest: x4 x2 )
qed

qed

end

fun I-R :: symbol ⇒ int mpoly where
I-R f-sym = PVar 0 + PVar 1 + PVar 2 + PVar 3
| I-R a-sym = PVar 0 + PVar 1
| I-R z-sym = 0
| I-R o-sym = 1
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| I-R (v-sym i) = Const (α i) ∗ PVar 0

interpretation inter-R: poly-inter F-R I-R (>) .

lemma inter-R-encode-poly: assumes positive-poly r
shows inter-R.eval (encode-poly x r) = Const (insertion α r) ∗ PVar x
by (rule inter-encode-poly-generic[OF - - - - assms], auto)

lemma valid-monotone-inter-R: inter-R.valid-monotone-poly-inter unfolding in-
ter-R.valid-monotone-poly-inter-def
proof (intro ballI )

fix fn
assume f : fn ∈ F-R
show inter-R.valid-monotone-poly fn
proof (cases fn ∈ F)

case True
show inter-R.valid-monotone-poly fn

by (rule valid-monotone-inter-F [OF - - - - α(1 ) True], auto)
next

case False
with f have f : fn ∈ F-R − F by auto
have [simp]: vars ((PVar 0 :: int mpoly) + PVar (Suc 0 ) + PVar 2 + PVar

3 ) = {0 ,1 ,2 ,3}
unfolding vars-def apply (transfer , simp add: Var0-def image-comp) by

code-simp
show ?thesis unfolding inter-R.valid-monotone-poly-def using f
proof (intro ballI impI allI , clarify, intro conjI )

fix f n
assume f : (f ,n) ∈ F-R (f ,n) /∈ F
from f show vars (I-R f ) = {..< n} unfolding F-R-def by auto
from f show valid-poly (I-R f ) unfolding F-R-def

by (auto simp: valid-poly-def insertion-add assignment-def insertion-Var)
have x4 : x < 4 =⇒ x = 0 ∨ x = Suc 0 ∨ x = 2 ∨ x = 3 for x by linarith
from f show inter-R.monotone-poly {..<n} (I-R f ) unfolding F-R-def

by (auto simp: monotone-poly-wrt-def insertion-add insertion-Var assign-
ment-def

dest: x4 )
qed

qed
qed

sublocale inter-R: linear-int-poly-inter F-R I-R
proof

show inter-R.valid-monotone-poly-inter by (rule valid-monotone-inter-R)
fix f n
assume (f ,n) ∈ F-R
thus total-degree (I-R f ) ≤ 1 by (cases f , auto simp: F-R-def F-def intro!:

total-degree-add total-degree-Const-mult)
qed
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lemma orient-R-main: assumes assignment β
shows insertion β (inter-R.eval lhs-R) > insertion β (inter-R.eval rhs-R)

proof −
have lhs-R: inter-R.eval lhs-R = PVar y1 + PVar y2 + Const (insertion α p +

1 ) ∗ PVar y3 + 1
unfolding lhs-R-def by (simp add: inter-R-encode-poly[OF pq(1 )] algebra-simps

Const-add Const-1 )
have rhs-R: inter-R.eval rhs-R = PVar y1 + PVar y2 + Const (insertion α q

+ 1 ) ∗ PVar y3
unfolding rhs-R-def by (simp add: inter-R-encode-poly[OF pq(2 )] algebra-simps

Const-add Const-1 )
show ?thesis

unfolding lhs-R rhs-R
apply (simp add: insertion-add insertion-mult insertion-Var insertion-Const)
apply (intro mult-right-mono)
subgoal using α(2 ) by simp
subgoal using assms unfolding assignment-def by auto
done

qed

The easy direction of Theorem 3.4
lemma orient-R: inter-R.termination-by-poly-interpretation R
unfolding inter-R.termination-by-poly-interpretation-def inter-R.termination-by-interpretation-def

R-def inter-R.orient-rule
proof (clarify, intro conjI )

show inter-R.gt-poly (inter-R.eval lhs-R) (inter-R.eval rhs-R)
unfolding inter-R.gt-poly-def
by (intro allI impI orient-R-main)

qed (insert lhs-R-F rhs-R-F , auto)

lemma solution-imp-linear-termination-R: termination-by-linear-int-poly-interpretation
F-R R

unfolding termination-by-linear-int-poly-interpretation-def
by (intro exI , rule conjI [OF - orient-R], unfold-locales)

end

context poly-input
begin

lemma inter-z-context:
assumes i: i < n and I : I f = Const c0 + (sum-list (map (λ j. Const (c j) ∗

PVar j) [0 ..<n]))
and Ize: I z-sym = Const d0

shows ∃ d. ∀ t. poly-inter .eval I (z-context (f ,n,i) t) = Const d + Const (c i)
∗ poly-inter .eval I t
proof −

define d where d = c0 + (
∑

x←[0 ..<i]. c x ∗ d0 ) + (
∑

x←[Suc i..<n]. c x ∗
d0 )
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show ?thesis
proof (intro exI [of - d] allI )

fix t :: (symbol, nat) term
define list where list = replicate i (Fun z-sym []) @ [t] @ replicate (n − i −

1 ) (Fun z-sym [])
have len: length list = n

using i unfolding list-def by auto
have z[simp]: poly-inter .eval I (Fun z-sym []) = Const d0 unfolding poly-inter .eval.simps

using Ize by auto
let ?xs1 = [0 ..< i]
let ?xs2 = [Suc i ..< n]
define ev where ev = (λ x. Const (c x) ∗ poly-inter .eval I (list ! x))
have poly-inter .eval I (z-context (f ,n,i) t) = Const c0 +
(
∑

x←[0 ..<n]. ev x)
unfolding z-context-def split list-def [symmetric]
unfolding poly-inter .eval.simps len I ev-def

unfolding substitute-add substitute-Const substitute-sum-list o-def substi-
tute-mult substitute-Var

apply (rule arg-cong[of - - λ xs. (+) - (sum-list xs)])
by (rule map-cong[OF refl], auto)

also have [0 ..< n] = ?xs1 @ i # ?xs2 using i
by (metis less-imp-add-positive upt-add-eq-append upt-rec zero-le)

also have sum-list (map ev . . .) = sum-list (map ev ?xs1 ) + sum-list (map ev
?xs2 ) + ev i by simp

also have map ev ?xs1 = map (λ x. (Const (c x ∗ d0 ))) ?xs1
unfolding o-def by (intro map-cong, auto simp: ev-def list-def nth-append

Const-mult)
also have sum-list . . . = Const (sum-list (map (λ x. c x ∗ d0 ) ?xs1 )) unfolding

Const-sum-list o-def ..
also have map ev ?xs2 = map (λ x. (Const (c x ∗ d0 ))) ?xs2

unfolding o-def by (intro map-cong, auto simp: ev-def list-def nth-append
Const-mult)

also have sum-list . . . = Const (sum-list (map (λ x. c x ∗ d0 ) ?xs2 )) unfolding
Const-sum-list o-def ..

also have ev i = Const (c i) ∗ poly-inter .eval I t unfolding ev-def list-def by
(auto simp: nth-append)

finally show poly-inter .eval I (z-context (f , n, i) t) = Const d + Const (c i)
∗ poly-inter .eval I t

unfolding add.assoc[symmetric] Const-add[symmetric] d-def by blast
qed

qed

lemma inter-z-contexts:
assumes cs:

∧
f n i. (f ,n,i) ∈ set cs =⇒ i < n ∧ I f = Const (c0 f ) + (sum-list

(map (λ j. Const (c f j) ∗ PVar j) [0 ..<n]))
and Ize: I z-sym = Const d0

shows ∃ d. ∀ t. poly-inter .eval I (z-contexts cs t) = Const d + Const (prod-list
(map (λ (f ,n,i). c f i) cs)) ∗ poly-inter .eval I t
proof −
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define c ′ where c ′ = (λ (f ,n :: nat,i). c f i)
have c ′: c f i = c ′ (f ,n,i) for f i n unfolding c ′-def split ..
{

fix fni
assume mem: fni ∈ set cs
obtain f n i where fni: fni = (f ,n,i) by (cases fni, auto)
from cs[OF mem[unfolded fni]]
have i: i < n and I f = Const (c0 f ) + (

∑
j←[0 ..<n]. Const (c f j) ∗ PVar

j) by auto
note inter-z-context[OF this Ize, unfolded c ′[of - - n], folded fni]

} note z-pre-ctxt = this
define p where p fni d t = (fni ∈ set cs −→ poly-inter .eval I (z-context fni t)

= Const d + Const (c ′ fni) ∗ poly-inter .eval I t)
for fni d t

from z-pre-ctxt
have ∀ fni. ∃ d. ∀ t. p fni d t by (auto simp: p-def )
from choice[OF this] obtain d ′ where

∧
fni t. p fni (d ′ fni) t by auto

hence z-ctxt:
∧

fni t. fni ∈ set cs =⇒ poly-inter .eval I (z-context fni t) = Const
(d ′ fni) + Const (c ′ fni) ∗ poly-inter .eval I t

unfolding p-def by auto
define d where d = foldr (λ fni c. d ′ fni + c ′ fni ∗ c) cs 0
show ?thesis
proof (intro exI [of - d] allI )

fix t :: (symbol,var)term
show poly-inter .eval I (z-contexts cs t) = Const d + Const (

∏
(f , n, i)←cs. c

f i) ∗ poly-inter .eval I t
unfolding d-def z-contexts-def using z-ctxt

proof (induct cs)
case Nil
show ?case by (simp add: Const-0 Const-1 )

next
case (Cons fni cs)
from Cons(2 )[of fni]
have z-ctxt: poly-inter .eval I (z-context fni t) = Const (d ′ fni) + Const (c ′

fni) ∗ poly-inter .eval I t for t by auto
from Cons(1 )[OF Cons(2 )]
have IH : poly-inter .eval I (foldr z-context cs t) =

Const (foldr (λfni c. d ′ fni + c ′ fni ∗ c) cs 0 ) + Const (
∏

(f , n, y)←cs. c
f y) ∗ poly-inter .eval I t

by auto
have [simp]: (case fni of (f , n, xa) ⇒ c f xa) = c ′ fni unfolding c ′-def ..
show ?case

by (simp add: z-ctxt IH algebra-simps Const-mult)
(simp add: Const-add[symmetric] Const-mult[symmetric])

qed
qed

qed

lemma inter-all-symbol-pos-ctxt-generic:
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assumes f : I f-sym = Const fc + Const f0 ∗ PVar 0 + Const f1 ∗ PVar 1 +
Const f2 ∗ PVar 2 + Const f3 ∗ PVar 3

and a: I a-sym = Const ac + Const a0 ∗ PVar 0 + Const a1 ∗ PVar 1
and v:

∧
i. i ∈ V =⇒ I (v-sym i) = Const (vc i) + Const (v0 i) ∗ PVar 0

and I z-sym = Const zc
shows ∃ d. ∀ t. poly-inter .eval I (all-symbol-pos-ctxt t) = Const d + Const

(prod-list ([a0 , a1 , f0 , f1 , f2 , f3 ] @ map v0 V-list))
∗ poly-inter .eval I t

proof −
define c where c = (λ f i. case f of

a-sym ⇒ if i = 0 then a0 else a1
| v-sym x ⇒ v0 x
| f-sym ⇒ if i = 0 then f0 else if i = Suc 0 then f1 else if i = 2 then f2 else f3 )
define c0 where c0 = (λ f . case f of a-sym ⇒ ac | f-sym ⇒ fc | v-sym x ⇒ vc

x)
have id: [a0 , a1 , f0 , f1 , f2 , f3 ] @ map v0 V-list = map (λ (f ,n,i). c f i) contexts

unfolding contexts-def map-append
by (auto simp: c-def )

have lists: [0 ..<2 ] = [0 ,Suc 0 ] [0 ..< 4 ] = [0 ,Suc 0 , 2 ,3 ] by code-simp+
show ?thesis unfolding id all-symbol-pos-ctxt-def
proof (rule inter-z-contexts[of - - c0 c zc])

show I z-sym = Const zc by fact
fix f n i
assume (f , n, i) ∈ set contexts
thus i < n ∧ I f = Const (c0 f ) + (

∑
j←[0 ..<n]. Const (c f j) ∗ PVar j)

unfolding contexts-def c0-def c-def by (auto simp: f a v V-list lists)
qed

qed
end

context solvable-poly-problem
begin

lemma inter-all-symbol-pos-ctxt:
∃ d e. e ≥ 1 ∧ (∀ t. inter-R.eval (all-symbol-pos-ctxt t) = Const d + Const e ∗

inter-R.eval t)
proof −

from inter-all-symbol-pos-ctxt-generic[of I-R 0 1 1 1 1 0 1 1 0 α 0 , unfolded
Const-0 Const-1 ]

obtain d where inter :
∧

t. inter-R.eval (all-symbol-pos-ctxt t) = Const d +
Const (prod-list (map α V-list)) ∗ inter-R.eval t

by auto
show ?thesis
proof (rule exI [of - d], rule exI [of - prod-list (map α V-list)], intro conjI allI

inter)
define vs where vs = V-list
show 1 ≤ prod-list (map α V-list) unfolding vs-def [symmetric]
proof (induct vs)
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case (Cons v vs)
from α(1 )[unfolded positive-interpr-def , rule-format, of v] have 1 ≤ α v by

auto
with Cons show ?case by simp (smt (verit, ccfv-threshold) mult-pos-pos)

qed auto
qed

qed

The easy direction of Theorem 3.4 for R’
lemma orient-R ′: inter-R.termination-by-poly-interpretation R ′

unfolding inter-R.termination-by-interpretation-def inter-R.termination-by-poly-interpretation-def
R ′-def inter-R.orient-rule
proof (clarify, intro conjI )

from inter-all-symbol-pos-ctxt obtain d e where
e: e ≥ 1 and

ctxt:
∧

t. inter-R.eval (all-symbol-pos-ctxt t) = Const d + Const e ∗ inter-R.eval
t

by auto
let ?ctxt = λ f . Const d + Const e ∗ f
show inter-R.gt-poly (inter-R.eval lhs-R ′) (inter-R.eval rhs-R ′)

unfolding inter-R.gt-poly-def
proof (intro allI impI )

fix β :: var ⇒ int
assume ass: assignment β
have insertion β (inter-R.eval lhs-R ′) > insertion β (inter-R.eval rhs-R ′)
←→ insertion β (inter-R.eval lhs-R) > insertion β (inter-R.eval rhs-R)
unfolding lhs-R ′-def rhs-R ′-def ctxt using e
by (simp add: insertion-add insertion-mult insertion-Var insertion-Const)

also have . . . using orient-R-main[OF ass] .
finally show insertion β (inter-R.eval rhs-R ′) < insertion β (inter-R.eval

lhs-R ′) .
qed

qed (insert lhs-R ′-F rhs-R ′-F , auto)

lemma solution-imp-linear-termination-R ′: termination-by-linear-int-poly-interpretation
F-R R ′

unfolding termination-by-linear-int-poly-interpretation-def
by (intro exI , rule conjI [OF - orient-R ′], unfold-locales)

end

Now for the other direction of Theorem 3.4
lemma monotone-linear-poly-to-coeffs: fixes p :: int mpoly

assumes linear : total-degree p ≤ 1
and poly: valid-poly p
and mono: poly-inter .monotone-poly (>) {..<n} p
and vars: vars p = {..<n}

shows ∃ c a. p = Const c + (
∑

i←[0 ..<n]. Const (a i) ∗ PVar i)
∧ c ≥ 0 ∧ (∀ i < n. a i > 0 )

proof −
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have sum-zero: (
∧

x. x ∈ set xs =⇒ x = 0 ) =⇒ sum-list (xs :: int list) = 0 for
xs by (induct xs, auto)

interpret poly-inter undefined undefined (>) :: int ⇒ - .
from coefficients-of-linear-poly[OF linear ] obtain c a vs

where p: p = Const c + (
∑

i←vs. Const (a i) ∗ PVar i)
and vsd: distinct vs set vs = vars p sorted-list-of-set (vars p) = vs
and nz:

∧
v. v ∈ set vs =⇒ a v 6= 0

and c: c = coeff p 0
and a:

∧
i. a i = coeff p (monomial 1 i) by blast

have vs: vs = [0 ..<n] unfolding vsd(3 )[symmetric] unfolding vars
by (simp add: lessThan-atLeast0 )

show ?thesis unfolding p vs
proof (intro exI conjI allI impI , rule refl)

show c: c ≥ 0 using poly[unfolded valid-poly-def , rule-format, of λ -. 0 ,
unfolded p]

by (auto simp: coeff-add[symmetric] coeff-Const coeff-sum-list o-def co-
eff-Const-mult

coeff-Var monomial-0-iff assignment-def )
fix i
assume i < n
hence i: i ∈ set vs unfolding vs by auto
from nz[OF this] have a0 : a i 6= 0 by auto
from split-list[OF i] obtain bef aft where vsi: vs = bef @ [i] @ aft by auto
with vsd(1 ) have i: i /∈ set (bef @ aft) by auto
define α where α = (λ x. if x = i then c + 1 else 0 )
have assignment α unfolding assignment-def α-def using c by auto
from poly[unfolded valid-poly-def , rule-format, OF this, unfolded p]
have 0 ≤ c + (

∑
x←bef @ aft. a x ∗ α x) + (a i ∗ α i)

unfolding insertion-add vsi map-append sum-list-append insertion-Const
insertion-sum-list

map-map o-def insertion-mult insertion-Var
by (simp add: algebra-simps)

also have (
∑

x←bef @ aft. a x ∗ α x) = 0 by (rule sum-zero, insert i, auto
simp: α-def )

also have α i = (c + 1 ) unfolding α-def by auto
finally have le: 0 ≤ c ∗ (a i + 1 ) + a i by (simp add: algebra-simps)
with c have a i ≥ 0

by (smt (verit, best) mult-le-0-iff )
with a0 show a i > 0 by simp

qed
qed

locale poly-input-to-solution-common = poly-input p q +
poly-inter F ′ I (>) :: int ⇒ int ⇒ bool for p q I and F ′ :: (poly-input.symbol ×

nat) set and argsL argsR +
assumes orient:

orient-rule (Fun f-sym ([Var y1 , Var y2 , a-t (encode-poly y3 p) (Var y3 )] @
argsL),

Fun f-sym ([a-t (Var y1 ) z-t, a-t z-t (Var y2 ), a-t (encode-poly y3 q) (Var y3 )]

62



@ argsR))
and len-args:length argsL = length argsR
and y123 : {y1 ,y2 ,y3} ∩ (

⋃
(vars-term ‘ set (argsL @ argsR))) = {}

and FF ′: insert (f-sym, 3 + length argsR) F ⊆ F ′

and linear-mono-interpretation: (g,n) ∈ insert (f-sym, 3 + length argsR) F =⇒

∃ c a. I g = Const c + (
∑

i←[0 ..<n]. Const (a i) ∗ PVar i)
∧ c ≥ 0 ∧ (∀ i < n. a i > 0 )

begin

abbreviation ff where ff ≡ (f-sym, 3 + length argsR)
abbreviation args where args ≡ [3 ..<length argsR + 3 ]

lemma extract-a-poly: ∃ a0 a1 a2 . I a-sym = Const a0 + Const a1 ∗ PVar 0 +
Const a2 ∗ PVar 1
∧ a0 ≥ 0 ∧ a1 > 0 ∧ a2 > 0

proof −
have [simp]: [0 ..<2 ] = [0 ,1 ] by code-simp
have [simp]: (∀ i<2 . P i) = (P 0 ∧ P (1 :: nat)) for P by (auto simp add:

numeral-eq-Suc less-Suc-eq)
have (a-sym,2 ) ∈ insert ff F unfolding F-def by auto
from linear-mono-interpretation[OF this]
show ?thesis by force

qed

lemma extract-f-poly: ∃ f0 f1 f2 f3 f4 . I f-sym = Const f0 + Const f1 ∗ PVar 0
+ Const f2 ∗ PVar 1

+ Const f3 ∗ PVar 2 + (
∑

i← args. Const (f4 i) ∗ PVar i)
∧ f0 ≥ 0 ∧ f1 > 0 ∧ f2 > 0 ∧ f3 > 0

proof −
have id: [0 ..<3 + length argsR] = [0 ,1 ,2 ] @ args

by (simp add: numeral-3-eq-3 upt-rec)
have ff ∈ insert ff F by auto
from linear-mono-interpretation[OF this] obtain c a

where Iff : I f-sym = Const c + (
∑

i←[0 ..<3 + length argsR]. Const (a i) ∗
PVar i)

and c: 0 ≤ c and a:
∧

i. i < 3 + length argsR =⇒ 0 < a i by blast
show ?thesis

apply (rule exI [of - c])
apply (rule exI [of - a 0 ])
apply (rule exI [of - a 1 ])
apply (rule exI [of - a 2 ])
apply (rule exI [of - a])
using c a[of 0 ] a[of 1 ] a [of 2 ] Iff id by auto

qed

lemma extract-z-poly: ∃ ze0 . I z-sym = Const ze0 ∧ ze0 ≥ 0
proof −

have (z-sym,0 ) ∈ insert ff F unfolding F-def by auto
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from linear-mono-interpretation[OF this] show ?thesis by auto
qed

lemma solution: positive-poly-problem p q
proof −

from extract-a-poly obtain a0 a1 a2 where
Ia: I a-sym = Const a0 + Const a1 ∗ PVar 0 + Const a2 ∗ PVar 1
and a: 0 ≤ a0 0 < a1 0 < a2
by auto

from extract-f-poly obtain f0 f1 f2 f3 f4 where
If : I f-sym = Const f0 + Const f1 ∗ PVar 0 + Const f2 ∗ PVar 1 + Const f3

∗ PVar 2 + (
∑

i←args. Const (f4 i) ∗ PVar i)
and f : 0 ≤ f0 0 < f1 0 < f2 0 < f3
by auto

from extract-z-poly obtain ze0 where
Iz: I z-sym = Const ze0
and z: 0 ≤ ze0
by auto

{
fix x
assume x ∈ V
hence (v-sym x, 1 ) ∈ insert ff F unfolding F-def by auto
from linear-mono-interpretation[OF this]
have ∃ c a. I (v-sym x) = Const c + Const a ∗ PVar 0 ∧ 0 < a by auto

}
hence ∀ x. ∃ c a. x ∈ V −→ I (v-sym x) = Const c + Const a ∗ PVar 0 ∧ 0

< a by auto
from choice[OF this] obtain v0 where ∀ x. ∃ a. x ∈ V −→ I (v-sym x) =

Const (v0 x) + Const a ∗ PVar 0 ∧ 0 < a by auto
from choice[OF this] obtain v1 where

Iv:
∧

x. x ∈ V =⇒ I (v-sym x) = Const (v0 x) + Const (v1 x) ∗ PVar 0 and
v:

∧
x. x ∈ V =⇒ 0 < v1 x by auto

let ?lhs = Fun f-sym ([TVar y1 , TVar y2 , Fun a-sym [encode-poly y3 p, TVar
y3 ]] @ argsL)

let ?rhs = Fun f-sym
([Fun a-sym [TVar y1 , Fun z-sym []], Fun a-sym [Fun z-sym [], TVar y2 ],

Fun a-sym [encode-poly y3 q, TVar y3 ]] @
argsR)

from orient[unfolded orient-rule]
have gt: gt-poly (eval ?lhs) (eval ?rhs) by auto
have [simp]: Suc (Suc (Suc (Suc 0 ))) = 4 by simp
have [simp]: Suc (Suc 0 ) = 2 by simp
define restL where restL = substitute

(λi. if i < length argsR + 3
then eval ((TVar y1 # TVar y2 # Fun a-sym [encode-poly y3 p, TVar y3 ]

# argsL) ! i) else 0 )
(
∑

i←local.args. PVar i ∗ Const (f4 i))
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define b0 where b0 = f3 ∗ a0 + f0
define b1 where b1 = f3 ∗ a0 + f0 + f1 ∗ a0 + f1 ∗ a2 ∗ ze0 + f2 ∗ a0 +

f2 ∗ a1 ∗ ze0
define b2 where b2 = f3 ∗ a1
define b3 where b3 = f3 ∗ a2
have b23 : b2 > 0 b3 > 0 unfolding b2-def b3-def using a f by auto
let ?pt = encode-poly y3 p
let ?qt = encode-poly y3 q
from vars-encode-poly[of y3 ]
have vars: vars-term ?pt ∪ vars-term ?qt ⊆ {y3} by auto
from vars-eval vars
have vars: vars (eval ?pt) ∪ vars (eval ?qt) ⊆ {y3} by auto
have [simp]: Suc (Suc (Suc (length argsR))) = length argsR + 3

by presburger

have lhs: eval ?lhs = Const b0 +
Const f1 ∗ PVar y1 +
Const f2 ∗ PVar y2 +
Const b2 ∗ eval ?pt + Const b3 ∗ PVar y3 + restL
using If Ia len-args by (simp add: algebra-simps Const-add Const-mult b0-def

b2-def b3-def restL-def )
define β where β z1 z2 z3 = (((λ x. 0 :: int) (y1 := z1 )) (y2 := z2 )) (y3 :=

z3 ) for z1 z2 z3
have args: args = map (λ z. z + 3 ) [0 ..<length argsR]

using map-add-upt by presburger
define rl where rl = insertion (β 0 0 0 ) restL
{

have insRestL: insertion (β z1 z2 z3 ) restL = (
∑

x←[0 ..<length
argsR]. (insertion (β z1 z2 z3 ) (eval (argsL ! x)) ∗ (f4 (x + 3 )))) for

z1 z2 z3
unfolding restL-def insertion-substitute insertion-sum-list map-map o-def

if-distrib args insertion-mult insertion-Var insertion-Const
apply (rule arg-cong[of - - sum-list])
apply (rule map-cong[OF refl]) by auto

have insRestL: insertion (β z1 z2 z3 ) restL = rl for z1 z2 z3
unfolding insRestL rl-def
apply (rule arg-cong[of - - sum-list])
apply (rule map-cong[OF refl])
apply (rule arg-cong[of - - λ x. x ∗ -])
apply (rule insertion-irrelevant-vars)
subgoal for v i unfolding len-args[symmetric] using y123 vars-eval[of argsL

! v]
by (auto simp: β-def )

done
} note ins-restL = this

define restR where restR = substitute
(λi. if i < length argsR + 3

then eval
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((Fun a-sym [TVar y1 , Fun z-sym []] #
Fun a-sym [Fun z-sym [], TVar y2 ] # Fun a-sym [encode-poly y3 q,

TVar y3 ] # argsR) !
i)

else 0 )
(
∑

i←args. PVar i ∗ Const (f4 i))
have rhs: eval ?rhs = Const b1 +

Const (f1 ∗ a1 ) ∗ PVar y1 +
Const (f2 ∗ a2 ) ∗ PVar y2 +
Const b2 ∗ eval ?qt + Const b3 ∗ PVar y3 + restR
unfolding restR-def using If Ia Iz by (simp add: algebra-simps Const-add

Const-mult b1-def b2-def b3-def )
define rr where rr = insertion (β 0 0 0 ) restR
{

have insRestR: insertion (β z1 z2 z3 ) restR = (
∑

x←[0 ..<length
argsR]. (insertion (β z1 z2 z3 ) (eval (argsR ! x)) ∗ (f4 (x + 3 )))) for

z1 z2 z3
unfolding restR-def insertion-substitute insertion-sum-list map-map o-def

if-distrib args insertion-mult insertion-Var insertion-Const
apply (rule arg-cong[of - - sum-list])
apply (rule map-cong[OF refl]) by auto

have insRestR: insertion (β z1 z2 z3 ) restR = rr for z1 z2 z3
unfolding insRestR rr-def
apply (rule arg-cong[of - - sum-list])
apply (rule map-cong[OF refl])
apply (rule arg-cong[of - - λ x. x ∗ -])
apply (rule insertion-irrelevant-vars)
subgoal for v i using y123 vars-eval[of argsR ! v]

by (auto simp: β-def )
done

} note ins-restR = this

have [simp]: β z1 z2 z3 y1 = z1 for z1 z2 z3 unfolding β-def using y-vars by
auto

have [simp]: β z1 z2 z3 y2 = z2 for z1 z2 z3 unfolding β-def using y-vars by
auto

have [simp]: β z1 z2 z3 y3 = z3 for z1 z2 z3 unfolding β-def using y-vars by
auto

have β: z1 ≥ 0 =⇒ z2 ≥ 0 =⇒ z3 ≥ 0 =⇒ assignment (β z1 z2 z3 ) for z1 z2
z3

unfolding assignment-def β-def by auto
define l1 where l1 = insertion (β 0 0 0 ) (eval ?lhs)
have ins-lhs: insertion (β z1 z2 0 ) (eval ?lhs) = f1 ∗ z1 + f2 ∗ z2 + l1 for z1

z2
unfolding lhs l1-def
apply (simp add: insertion-add insertion-mult insertion-Const insertion-Var

ins-restL)
apply (rule disjI2 )
apply (rule insertion-irrelevant-vars)

66



using vars by auto

define l2 where l2 = insertion (β 0 0 0 ) (eval ?rhs)
have ins-rhs: insertion (β z1 z2 0 ) (eval ?rhs) = f1 ∗ a1 ∗ z1 + f2 ∗ a2 ∗ z2

+ l2 for z1 z2
unfolding rhs l2-def
apply (simp add: insertion-add insertion-mult insertion-Const insertion-Var

ins-restR)
apply (rule disjI2 )
apply (rule insertion-irrelevant-vars)
using vars by auto

define l where l = l2 − l1
have gt-inst: 0 ≤ z1 =⇒ 0 ≤ z2 =⇒ f1 ∗ a1 ∗ z1 + f2 ∗ a2 ∗ z2 + l < f1 ∗

z1 + f2 ∗ z2 for z1 z2
using gt[unfolded gt-poly-def , rule-format, OF β, of z1 z2 0 , unfolded ins-lhs

ins-rhs]
by (auto simp: l-def )

{
define a1 ′ where a1 ′ = a1 − 1
define z where z = f1 ∗ a1 ′

have a1 : a1 = 1 + a1 ′ unfolding a1 ′-def by auto
have a1 ′: a1 ′ ≥ 0 using a unfolding a1 by auto
from gt-inst[of abs l 0 , unfolded a1 ]
have z ∗ |l| + l < 0

by (simp add: algebra-simps z-def )
hence z ≤ 0

by (smt (verit) mult-le-cancel-right1 )
with ‹0 < f1 › have a1 ′ ≤ 0 unfolding z-def

by (simp add: mult-le-0-iff )
with a1 ′ a1 have a1 = 1 by auto

} note a1 = this
{

define a2 ′ where a2 ′ = a2 − 1
define z where z = f2 ∗ a2 ′

have a2 : a2 = 1 + a2 ′ unfolding a2 ′-def by auto
have a2 ′: a2 ′ ≥ 0 using a unfolding a2 by auto
from gt-inst[of 0 abs l, unfolded a2 ]
have z ∗ |l| + l < 0

by (simp add: algebra-simps z-def )
hence z ≤ 0

by (smt (verit) mult-le-cancel-right1 )
with ‹0 < f2 › have a2 ′ ≤ 0 unfolding z-def

by (simp add: mult-le-0-iff )
with a2 ′ a2 have a2 = 1 by auto

} note a2 = this

have Ia: I a-sym = Const a0 + PVar 0 + PVar 1
unfolding Ia a1 a2 Const-1 by simp
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{
fix c :: int
assume c ≥ 0
then obtain n where cn: c = int n by (metis nonneg-eq-int)
hence natc: nat c = n by auto
have ∃ d. eval (encode-num y3 c) = Const d + Const c ∗ PVar y3

unfolding encode-num-def natc unfolding cn
by (induct n, auto simp: Iz Ia Const-0 Const-1 algebra-simps Const-add, auto

simp: Const-add[symmetric])
} note encode-num = this

{
fix x e f t
assume x: x ∈ V and eval: ∃ c. eval t = Const c + Const f ∗ PVar y3
have ∃ d. eval ((v-t x ^^ e) t) = Const d + Const ((v1 x)^ e ∗ f ) ∗ PVar y3
proof (induct e)

case 0
show ?case using eval by auto

next
case (Suc e)
then obtain d where IH : eval ((v-t x ^^ e) t) = Const d + Const (v1 x ^

e ∗ f ) ∗ PVar y3 by auto
show ?case by (simp add: IH Iv[OF x] algebra-simps Const-mult)

(auto simp: Const-mult[symmetric] Const-add[symmetric])
qed

} note v-pow-e = this

{
fix c :: int and m
assume c: c ≥ 0
define base where base = encode-num y3 c
define xes where xes = var-list m
assume keys: keys m ⊆ V
from encode-num[OF c] obtain d where base: eval base = Const d + Const

c ∗ PVar y3
by (auto simp: base-def )

from var-list[of m c]
have monom: monom m c = Const c ∗ (

∏
(x, e)← xes . PVar x ^ e) unfolding

xes-def .
have ∃ d. eval (encode-monom y3 m c) = Const d + Const (insertion v1

(monom m c)) ∗ PVar y3
using var-list-keys[of - - m]

unfolding encode-monom-def monom xes-def [symmetric] base-def [symmetric]
proof (induct xes)

case Nil
show ?case by (auto simp: base insertion-Const)

next
case (Cons xe xes)
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obtain x e where xe: xe = (x,e) by force
with Cons keys have x: x ∈ V by auto
from Cons
have ∃ d. eval (rec-list base (λ (i, e) -. v-t i ^^ e) xes) =
Const d + Const (c ∗ insertion v1 (

∏
(x, y)←xes. PVar x ^ y)) ∗ PVar y3

by (auto simp: insertion-mult insertion-Const)
from v-pow-e[OF x this, of e] obtain d where

id: eval ((v-t x ^^ e) (rec-list base (λ(i, e) -. v-t i ^^ e) xes)) =
Const d + Const (v1 x ^ e ∗ (c ∗ insertion v1 (

∏
(x, y)←xes. PVar x ^

y))) ∗ PVar y3
by auto

show ?case by (intro exI [of - d], simp add: xe id,
auto simp: Const-power Const-mult insertion-mult insertion-Const

insertion-power insertion-Var)
qed

} note encode-monom = this

{
fix r :: int mpoly
assume vars: vars r ⊆ V and pos: positive-poly r
define mcs where mcs = monom-list r
from monom-list[of r ] have r : r = (

∑
(m, c)← mcs. monom m c) unfolding

mcs-def by auto
have mcs-pos: (m,c) ∈ set mcs =⇒ c ≥ 0 for m c

using monom-list-coeff pos unfolding mcs-def positive-poly-def by auto
from monom-list-keys[of - - r , folded mcs-def ] vars
have mcs-V : (m,c) ∈ set mcs =⇒ keys m ⊆ V for m c by auto
have ∃ d. eval (encode-poly y3 r) = Const d + Const (insertion v1 r) ∗ PVar

y3
unfolding encode-poly-def mcs-def [symmetric] unfolding r using mcs-pos

mcs-V
unfolding insertion-sum-list map-map o-def

proof (induct mcs)
case Nil
show ?case by (auto simp add: Iz Const-0 )

next
case (Cons mc mcs)
obtain m c where mc: mc = (m,c) by force
from Cons(2 ) mc have c: c ≥ 0 by auto
from Cons(3 ) mc have keys m ⊆ V by auto
from encode-monom[OF c this]
obtain d1 where m: eval (encode-monom y3 m c) = Const d1 + Const

(insertion v1 (monom m c)) ∗ PVar y3 by auto
from Cons(1 )[OF Cons(2−3 )]
obtain d2 where IH : eval (rec-list z-t (λ (m,c)-. a-t (encode-monom y3 m

c)) mcs) =
Const d2 + Const (

∑
mc←mcs. insertion v1 (case mc of (m, c) ⇒ monom

m c)) ∗ PVar y3
by force
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show ?case unfolding mc
apply (simp add: Ia m IH )
apply (simp add: Const-add algebra-simps)
by (auto simp flip: Const-add)

qed
} note encode-poly = this

from encode-poly[OF - pq(1 )] V-def
obtain d1 where p: eval (encode-poly y3 p) = Const d1 + Const (insertion v1

p) ∗ PVar y3 by auto

from encode-poly[OF - pq(2 )] V-def
obtain d2 where q: eval (encode-poly y3 q) = Const d2 + Const (insertion v1

q) ∗ PVar y3 by auto

define d3 where d3 = b0 + b2 ∗ d1 + rl
have ins-lhs: insertion (β 0 0 z3 ) (eval ?lhs) = d3 + (b3 + b2 ∗ insertion v1 p)
∗ z3 for z3

unfolding p d3-def lhs
by (simp add: insertion-add insertion-mult insertion-Const insertion-Var alge-

bra-simps ins-restL)

define d4 where d4 = b1 + b2 ∗ d2 + rr
have ins-rhs: insertion (β 0 0 z3 ) (eval ?rhs) = d4 + (b3 + b2 ∗ insertion v1

q) ∗ z3 for z3
unfolding q d4-def rhs
by (simp add: insertion-add insertion-mult insertion-Const insertion-Var alge-

bra-simps ins-restR)

define d5 where d5 = d4 − d3

define left where left = b3 + b2 ∗ insertion v1 p
define right where right = b3 + b2 ∗ insertion v1 q
define diff where diff = left − right

have gt-inst: z3 ≥ 0 =⇒ diff ∗ z3 > d5 for z3
using gt[unfolded gt-poly-def , rule-format, OF β, of 0 0 z3 , unfolded ins-lhs

ins-rhs]
by (auto simp: d5-def left-def right-def diff-def algebra-simps)

from this[of abs d5 ]
have diff ≥ 0

by (smt (verit) Groups.mult-ac(2 ) mult-le-cancel-right1 mult-minus-right)
from this[unfolded diff-def left-def right-def ]
have b2 ∗ insertion v1 p ≥ b2 ∗ insertion v1 q by auto
with ‹b2 > 0 › have solution: insertion v1 p ≥ insertion v1 q by simp

define α where α x = (if x ∈ V then v1 x else 1 ) for x
from v have α: positive-interpr α unfolding positive-interpr-def α-def by auto
have insertion α q = insertion v1 q
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by (rule insertion-irrelevant-vars, auto simp: α-def V-def )
also have . . . ≤ insertion v1 p by fact
also have . . . = insertion α p

by (rule insertion-irrelevant-vars, auto simp: α-def V-def )
finally show positive-poly-problem p q

unfolding positive-poly-problem-def [OF pq] using α by auto
qed
end

locale solution-poly-input-R = poly-input p q + poly-inter F-R I (>) :: int ⇒ -
for p q I +

assumes orient: orient-rule (lhs-R,rhs-R)
and linear-mono-interpretation: (g,n) ∈ F-R =⇒
∃ c a. I g = Const c + (

∑
i←[0 ..<n]. Const (a i) ∗ PVar i)

∧ c ≥ 0 ∧ (∀ i < n. a i > 0 )
begin

lemma solution: positive-poly-problem p q
apply (rule poly-input-to-solution-common.solution[of - - I F-R [o-t] [z-t]])
apply (unfold-locales)
subgoal using orient unfolding lhs-R-def rhs-R-def by simp
subgoal by simp
subgoal by simp
subgoal unfolding F-R-def by auto
subgoal for g n using linear-mono-interpretation[of g n] unfolding F-R-def by

auto
done

end

locale lin-term-poly-input = poly-input p q for p q +
assumes lin-term: termination-by-linear-int-poly-interpretation F-R R

begin

definition I where I = (SOME I . linear-int-poly-inter F-R I ∧ int-poly-inter .termination-by-poly-interpretation
F-R I R)

lemma I : linear-int-poly-inter F-R I int-poly-inter .termination-by-poly-interpretation
F-R I R
using someI-ex[OF lin-term[unfolded termination-by-linear-int-poly-interpretation-def ],

folded I-def ] by auto

sublocale linear-int-poly-inter F-R I by (rule I (1 ))

lemma orient: orient-rule (lhs-R,rhs-R)
using I (2 )[unfolded termination-by-interpretation-def termination-by-poly-interpretation-def ]

unfolding R-def by auto

lemma extract-linear-poly: assumes g: (g,n) ∈ F-R
shows ∃ c a. I g = Const c + (

∑
i←[0 ..<n]. Const (a i) ∗ PVar i)
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∧ c ≥ 0 ∧ (∀ i < n. a i > 0 )
proof −

define p where p = I g
have sum-zero: (

∧
x. x ∈ set xs =⇒ x = 0 ) =⇒ sum-list (xs :: int list) = 0 for

xs by (induct xs, auto)
from valid[unfolded valid-monotone-poly-inter-def , rule-format, OF g]
have poly: valid-poly p

and mono: monotone-poly {..<n} p
and vars: vars p = {..<n}
by (auto simp: valid-monotone-poly-def p-def )

from linear [OF g] p-def
have linear : total-degree p ≤ 1 by auto
show ?thesis unfolding p-def [symmetric]

by (rule monotone-linear-poly-to-coeffs[OF linear poly mono vars])
qed

lemma solution: positive-poly-problem p q
apply (rule solution-poly-input-R.solution[of - - I ])
apply (unfold-locales)
apply (rule orient)

apply (rule extract-linear-poly)
by auto

end

locale wm-lin-orient-poly-input = poly-input p q for p q +
assumes wm-orient: orientation-by-linear-wm-int-poly-interpretation F-R R ′

begin

definition I where I = (SOME I . linear-wm-int-poly-inter F-R I ∧ wm-int-poly-inter .oriented-by-interpretation
F-R I R ′)

lemma I : linear-wm-int-poly-inter F-R I wm-int-poly-inter .oriented-by-interpretation
F-R I R ′

using someI-ex[OF wm-orient[unfolded orientation-by-linear-wm-int-poly-interpretation-def ],
folded I-def ] by auto

sublocale linear-wm-int-poly-inter F-R I by (rule I (1 ))

lemma orient-R ′: orient-rule (lhs-R ′,rhs-R ′)
using I (2 )[unfolded oriented-by-interpretation-def ] unfolding R ′-def by auto

lemma extract-linear-poly: assumes g: (g,n) ∈ F-R
shows ∃ c a. I g = Const c + (

∑
i←[0 ..<n]. Const (a i) ∗ PVar i)

∧ c ≥ 0 ∧ (∀ i < n. a i ≥ 0 )
proof −

define p where p = I g
have sum-zero: (

∧
x. x ∈ set xs =⇒ x = 0 ) =⇒ sum-list (xs :: int list) = 0 for

xs by (induct xs, auto)
from valid[unfolded valid-weakly-monotone-inter-def valid-weakly-monotone-poly-def ,
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rule-format, OF g refl p-def ]
have poly: valid-poly p

and mono: weakly-monotone-poly {..<n} p
and vars: vars p ⊆ {..<n}
by (auto simp: valid-monotone-poly-def p-def )

from linear [OF g] p-def
have linear : total-degree p ≤ 1 by auto
from coefficients-of-linear-poly[OF linear ] obtain c b vs

where p: p = Const c + (
∑

i←vs. Const (b i) ∗ PVar i)
and vsd: distinct vs set vs = vars p sorted-list-of-set (vars p) = vs
and nz:

∧
v. v ∈ set vs =⇒ b v 6= 0

and c: c = coeff p 0
and b:

∧
i. b i = coeff p (monomial 1 i) by blast

define a where a x = (if x ∈ vars p then b x else 0 ) for x
have p = Const c + (

∑
i←vs. Const (b i) ∗ PVar i) by fact

also have (
∑

i←vs. Const (b i) ∗ PVar i) = (
∑

i ∈ set vs. Const (b i) ∗ PVar
i) using vsd(1 )

by (rule sum-list-distinct-conv-sum-set)
also have . . . = (

∑
i ∈ set vs. Const (a i) ∗ PVar i) + 0 by (subst sum.cong,

auto simp: a-def vsd)
also have 0 = (

∑
i ∈ {..<n} − set vs. Const (a i) ∗ PVar i)

by (subst sum.neutral, auto simp: a-def vsd)
also have (

∑
i ∈ set vs. Const (a i) ∗ PVar i) + . . . = (

∑
i ∈ set vs ∪ ({..<n}

− set vs). Const (a i) ∗ PVar i)
by (subst sum.union-inter [symmetric], auto)

also have set vs ∪ ({..<n} − set vs) = set [0 ..<n] using vars vsd by auto
finally have pca: p = Const c + (

∑
i ← [0 ..<n]. Const (a i) ∗ PVar i)

by (subst sum-list-distinct-conv-sum-set, auto)

show ?thesis unfolding p-def [symmetric] pca
proof (intro exI conjI allI impI , rule refl)

show c: c ≥ 0 using poly[unfolded valid-poly-def , rule-format, of λ -. 0 ,
unfolded p]

by (auto simp: coeff-add[symmetric] coeff-Const coeff-sum-list o-def co-
eff-Const-mult

coeff-Var monomial-0-iff assignment-def )
fix i
assume i < n
show a i ≥ 0
proof (cases i ∈ set vs)

case False
thus ?thesis unfolding a-def using vsd by auto

next
case i: True
from nz[OF this] have a0 : a i 6= 0 b i = a i using i by (auto simp: a-def

vsd)
from split-list[OF i] obtain bef aft where vsi: vs = bef @ [i] @ aft by auto
with vsd(1 ) have i: i /∈ set (bef @ aft) by auto
define α where α = (λ x. if x = i then c + 1 else 0 )
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have assignment α unfolding assignment-def α-def using c by auto
from poly[unfolded valid-poly-def , rule-format, OF this, unfolded p]
have 0 ≤ c + (

∑
x←bef @ aft. b x ∗ α x) + (b i ∗ α i)

unfolding insertion-add vsi map-append sum-list-append insertion-Const
insertion-sum-list

map-map o-def insertion-mult insertion-Var
by (simp add: algebra-simps)

also have (
∑

x←bef @ aft. b x ∗ α x) = 0 by (rule sum-zero, insert i, auto
simp: α-def )

also have α i = (c + 1 ) unfolding α-def by auto
finally have le: 0 ≤ c ∗ (a i + 1 ) + a i using a0 by (simp add: algebra-simps)
with c show a i ≥ 0

by (smt (verit, best) mult-le-0-iff )
qed

qed
qed

lemma extract-a-poly: ∃ a0 a1 a2 . I a-sym = Const a0 + Const a1 ∗ PVar 0 +
Const a2 ∗ PVar 1
∧ a0 ≥ 0 ∧ a1 ≥ 0 ∧ a2 ≥ 0

proof −
have [simp]: [0 ..<2 ] = [0 ,1 ] by code-simp
have [simp]: (∀ i<2 . P i) = (P 0 ∧ P (1 :: nat)) for P by (auto simp add:

numeral-eq-Suc less-Suc-eq)
have (a-sym,2 ) ∈ F-R unfolding F-R-def F-def by auto
from extract-linear-poly[OF this]
show ?thesis by force

qed

lemma extract-f-poly: ∃ f0 f1 f2 f3 f4 . I f-sym = Const f0 + Const f1 ∗ PVar 0
+ Const f2 ∗ PVar 1

+ Const f3 ∗ PVar 2 + Const f4 ∗ PVar 3
∧ f0 ≥ 0 ∧ f1 ≥ 0 ∧ f2 ≥ 0 ∧ f3 ≥ 0 ∧ f4 ≥ 0

proof −
have [simp]: [0 ..<4 ] = [0 ,1 ,2 ,3 ] by code-simp
have [simp]: (∀ i<4 . P i) = (P 0 ∧ P (1 :: nat) ∧ P 2 ∧ P 3 ) for P

by (auto simp add: numeral-eq-Suc less-Suc-eq)
have (f-sym,4 ) ∈ F-R unfolding F-R-def by auto
from extract-linear-poly[OF this] obtain c f where

main: I f-sym = Const c + (
∑

i←[0 ..<4 ]. Const (f i) ∗ PVar i) ∧ 0 ≤ c ∧
(∀ i<4 . 0 ≤ f i) by auto

show ?thesis
apply (rule exI [of - c])
apply (rule exI [of - f 0 ])
apply (rule exI [of - f 1 ])
apply (rule exI [of - f 2 ])
apply (rule exI [of - f 3 ])
by (insert main, auto)

qed
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lemma solution: positive-poly-problem p q
proof −

from extract-f-poly obtain f0 f1 f2 f3 f4 where
If : I f-sym =

Const f0 + Const f1 ∗ PVar 0 + Const f2 ∗ PVar 1 + Const f3 ∗ PVar 2
+ Const f4 ∗ PVar 3

and fpos: 0 ≤ f0 0 ≤ f1 0 ≤ f2 0 ≤ f3 0 ≤ f4 by auto
from extract-a-poly obtain a0 a1 a2 where

Ia: I a-sym = Const a0 + Const a1 ∗ PVar 0 + Const a2 ∗ PVar 1
and apos: 0 ≤ a0 0 ≤ a1 0 ≤ a2 by auto

{
fix i
assume i ∈ V
hence v: (v-sym i, 1 ) ∈ F-R unfolding F-R-def F-def by auto
from extract-linear-poly[OF v] have ∃ v0 v1 . I (v-sym i) = Const v0 + Const

v1 ∗ PVar 0 ∧ v0 ≥ 0 ∧ v1 ≥ 0
by auto

}
hence ∀ i. ∃ v0 v1 . i ∈ V −→ I (v-sym i) = Const v0 + Const v1 ∗ PVar 0
∧ v0 ≥ 0 ∧ v1 ≥ 0 by auto

from choice[OF this] obtain v0 where ∀ i. ∃ v1 . i ∈ V −→ I (v-sym i) =
Const (v0 i) + Const v1 ∗ PVar 0 ∧ v0 i ≥ 0 ∧ v1 ≥ 0 by auto

from choice[OF this] obtain v1 where Iv:
∧

i. i ∈ V =⇒ I (v-sym i) = Const
(v0 i) + Const (v1 i) ∗ PVar 0

and vpos:
∧

i. i ∈ V =⇒ v0 i ≥ 0 ∧ v1 i ≥ 0 by auto

have (z-sym,0 ) ∈ F-R unfolding F-R-def F-def by auto
from extract-linear-poly[OF this] obtain z0 where

Iz: I z-sym = Const z0
and zpos: z0 ≥ 0 by auto

have (o-sym,0 ) ∈ F-R unfolding F-R-def F-def by auto
from extract-linear-poly[OF this] obtain o0 where

Io: I o-sym = Const o0
and opos: o0 ≥ 0 by auto

have prod-ge: (
∧

x. x ∈ set xs =⇒ x ≥ 0 ) =⇒ prod-list xs ≥ 0 for xs :: int list
by (induct xs, auto)

define d1 where d1 = prod-list ([a1 , a2 , f1 , f2 , f3 , f4 ] @ map v1 V-list)
have d1 : d1 ≥ 0 unfolding d1-def using apos fpos vpos

by (intro prod-ge, auto simp: V-list)
from inter-all-symbol-pos-ctxt-generic[of I , OF If Ia Iv Iz]
obtain d where ctxt:

∧
t. eval (all-symbol-pos-ctxt t) =

Const d + Const d1 ∗ eval t by (auto simp: d1-def )

{
fix β :: var ⇒ int
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assume assignment β
from orient-R ′[unfolded orient-rule split gt-poly-def , rule-format, OF this]
have insertion β (eval lhs-R ′) > insertion β (eval rhs-R ′) (is ?A) by auto
also have ?A←→ d1 ∗ insertion β (eval lhs-R) > d1 ∗ insertion β (eval rhs-R)

unfolding lhs-R ′-def rhs-R ′-def ctxt
insertion-add insertion-mult insertion-Const by auto

also have . . . ←→ (d1 > 0 ∧ insertion β (eval lhs-R) > insertion β (eval
rhs-R))

using d1 by (simp add: mult-less-cancel-left-disj)
finally have d1 > 0 insertion β (eval lhs-R) > insertion β (eval rhs-R) by

auto
}
from this(2 ) this(1 )[of λ -. 0 ]
have d1 : d1 > 0 and gt: gt-poly (eval lhs-R) (eval rhs-R)

unfolding gt-poly-def by (auto simp: assignment-def )

hence orient-R: orient-rule (lhs-R, rhs-R) unfolding orient-rule by auto

from d1 have d1 6= 0 by auto
from this[unfolded d1-def , simplified] apos fpos
have apos: a0 ≥ 0 a1 > 0 a2 > 0

and fpos: f0 ≥ 0 f1 > 0 f2 > 0 f3 > 0 f4 > 0
and prod: prod-list (map v1 V-list) 6= 0 by auto

from prod have vpos1 : i ∈ V =⇒ v0 i ≥ 0 ∧ v1 i > 0 for i using vpos[of i]
unfolding prod-list-zero-iff set-map V-list by auto

{
fix g n
assume (g,n) ∈ F-R
then consider (f ) (g,n) = (f-sym,4 ) | (a) (g,n) = (a-sym,2 ) | (z) (g,n) =

(z-sym,0 )
| (o) (g,n) = (o-sym,0 ) | (v) i where (g,n) = (v-sym i, Suc 0 ) i ∈ V
unfolding F-R-def F-def by auto

hence ∃ c a. I g = Const c + (
∑

i←[0 ..<n]. Const (a i) ∗ PVar i) ∧ 0 ≤ c ∧
(∀ i<n. 0 < a i)

proof cases
case ∗: a
have [simp]: [0 ..<2 ] = [0 ,1 ] by code-simp
thus ?thesis using ∗ apos Ia

by (intro exI [of - a0 ] exI [of - λ i. if i = 0 then a1 else a2 ], auto)
next

case ∗: f
have [simp]: [0 ..<4 ] = [0 ,1 ,2 ,3 ] by code-simp
thus ?thesis using ∗ If fpos

by (intro exI [of - f0 ]
exI [of - λ i. if i = 0 then f1 else if i = 1 then f2 else if i = 2 then f3 else

f4 ], auto)
next
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case ∗: z
show ?thesis using ∗ Iz zpos by auto

next
case ∗: o
show ?thesis using ∗ Io opos by auto

next
case ∗: (v i)
show ?thesis using ∗ Iv[OF ∗(2 )] vpos1 [OF ∗(2 )]

by (intro exI [of - v0 i] exI [of - λ -. v1 i], auto)
qed

} note main = this

show ?thesis
apply (rule solution-poly-input-R.solution[of - - I ])
apply unfold-locales
using orient-R main by auto

qed
end

context poly-input
begin

Theorem 3.4 in paper
theorem linear-polynomial-termination-with-natural-numbers-undecidable:

positive-poly-problem p q ←→ termination-by-linear-int-poly-interpretation F-R
R
proof

assume positive-poly-problem p q
interpret solvable-poly-problem

by (unfold-locales, fact)
from solution-imp-linear-termination-R
show termination-by-linear-int-poly-interpretation F-R R .

next
assume termination-by-linear-int-poly-interpretation F-R R
interpret lin-term-poly-input

by (unfold-locales, fact)
from solution show positive-poly-problem p q .

qed

Theorem 3.9
theorem orientation-by-linear-wm-int-poly-interpretation-undecidable:
positive-poly-problem p q ←→ orientation-by-linear-wm-int-poly-interpretation F-R

R ′

proof
assume positive-poly-problem p q
interpret solvable-poly-problem

by (unfold-locales, fact)
from solution-imp-linear-termination-R ′

have termination-by-linear-int-poly-interpretation F-R R ′ .
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from this[unfolded termination-by-linear-int-poly-interpretation-def ] obtain I
where lin: linear-int-poly-inter F-R I and

R ′: int-poly-inter .termination-by-poly-interpretation F-R I R ′

by auto
interpret linear-int-poly-inter F-R I by fact
show orientation-by-linear-wm-int-poly-interpretation F-R R ′

unfolding orientation-by-linear-wm-int-poly-interpretation-def
proof (intro exI conjI )

show linear-wm-int-poly-inter F-R I
proof
show valid-weakly-monotone-inter unfolding valid-weakly-monotone-inter-def
proof

fix f
assume f ∈ F-R
from valid[unfolded valid-monotone-poly-inter-def , rule-format, OF this]
have valid-monotone-poly f by auto
thus valid-weakly-monotone-poly f

by (rule monotone-imp-weakly-monotone, auto)
qed

qed
interpret linear-wm-int-poly-inter F-R I by fact
show oriented-by-interpretation R ′ unfolding oriented-by-interpretation-def
using R ′ unfolding termination-by-poly-interpretation-def termination-by-interpretation-def

.
qed

next
assume orientation-by-linear-wm-int-poly-interpretation F-R R ′

interpret wm-lin-orient-poly-input
by (unfold-locales, fact)

from solution show positive-poly-problem p q .
qed

end

Separate locale to define another interpretation, i.e., the one of Lemma 3.6
locale poly-input-non-lin-solution = poly-input
begin

Non-linear interpretation of Lemma 3.6
fun I :: symbol ⇒ int mpoly where

I f-sym = PVar 2 ∗ PVar 3 + PVar 0 + PVar 1 + PVar 2 + PVar 3
| I a-sym = PVar 0 + PVar 1
| I z-sym = 0
| I o-sym = Const (1 + insertion (λ -. 1 ) q)
| I (v-sym i) = PVar 0

sublocale inter-R: poly-inter F-R I (>) .

lemma inter-encode-num: assumes c ≥ 0
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shows inter-R.eval (encode-num x c) = Const c ∗ PVar x
proof −

from assms obtain n where cn: c = int n by (metis nonneg-eq-int)
hence natc: nat c = n by auto
show ?thesis unfolding encode-num-def natc unfolding cn

by (induct n, auto simp: Const-0 Const-1 algebra-simps Const-add)
qed

lemma inter-v-pow-e: inter-R.eval ((v-t x ^^ e) t) = inter-R.eval t
by (induct e, auto)

lemma inter-encode-monom: assumes c: c ≥ 0
shows inter-R.eval (encode-monom y m c) = Const (insertion (λ -.1 ) (monom

m c)) ∗ PVar y
proof −

define xes where xes = var-list m
from var-list[of m c]
have monom: monom m c = Const c ∗ (

∏
(x, e)← xes . PVar x ^ e) unfolding

xes-def .
show ?thesis unfolding encode-monom-def monom xes-def [symmetric]
proof (induct xes)

case Nil
show ?case by (simp add: inter-encode-num[OF c] insertion-Const)

next
case (Cons xe xes)
obtain x e where xe: xe = (x,e) by force
show ?case by (simp add: xe inter-v-pow-e Cons Const-power

insertion-Const insertion-mult insertion-power insertion-Var Const-mult)
qed

qed

lemma inter-encode-poly: assumes positive-poly r
shows inter-R.eval (encode-poly x r) = Const (insertion (λ -.1 ) r) ∗ PVar x

proof −
define mcs where mcs = monom-list r
from monom-list[of r ] have r : r = (

∑
(m, c)← mcs. monom m c) unfolding

mcs-def by auto
have mcs: (m,c) ∈ set mcs =⇒ c ≥ 0 for m c

using monom-list-coeff assms unfolding mcs-def positive-poly-def by auto
show ?thesis unfolding encode-poly-def mcs-def [symmetric] unfolding r inser-

tion-sum-list map-map o-def
using mcs

proof (induct mcs)
case (Cons mc mcs)
obtain m c where mc: mc = (m,c) by force
from Cons(2 ) mc have c: c ≥ 0 by auto
note monom = inter-encode-monom[OF this, of x m]
show ?case

by (simp add: mc monom algebra-simps, subst Cons(1 ), insert Cons(2 ), auto
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simp: Const-add algebra-simps)
qed simp

qed

lemma valid-monotone-inter : inter-R.valid-monotone-poly-inter
unfolding inter-R.valid-monotone-poly-inter-def

proof (intro ballI , unfold inter-R.valid-monotone-poly-def , clarify, intro conjI )
fix f n
assume f : (f ,n) ∈ F-R
have [simp]: vars (PVar 2 ∗ PVar 3 + (PVar 0 :: int mpoly) + PVar (Suc 0 )

+ PVar 2 + PVar 3 ) = {0 ,1 ,2 ,3}
unfolding vars-def apply (transfer , simp add: Var0-def image-comp) by

code-simp
have [simp]: vars ((PVar 0 :: int mpoly) + PVar (Suc 0 )) = {0 ,1}

unfolding vars-def apply (transfer , simp add: Var0-def image-comp) by
code-simp

from f show vars (I f ) = {..< n} unfolding F-R-def F-def by auto
have insertion (λ -. 1 ) q ≥ 0

by (rule insertion-positive-poly[OF - pq(2 )], auto)
with f show valid-poly (I f ) unfolding F-R-def F-def

by (auto simp: valid-poly-def insertion-add assignment-def insertion-Var inser-
tion-mult insertion-Const)

have x4 : x < 4 =⇒ x = 0 ∨ x = Suc 0 ∨ x = 2 ∨ x = 3 for x by linarith
have x2 : x < 2 =⇒ x = 0 ∨ x = Suc 0 for x by linarith
have tedious-case: inter-R.monotone-poly {..<4} (I f-sym) unfolding

monotone-poly-wrt-def I .simps
proof (intro allI impI , goal-cases)

case (1 α x v)
have manual: (α(x := v)) 2 ∗ (α(x := v)) 3 ≥ α 2 ∗ α 3

by (intro mult-mono, insert 1 , auto simp: assignment-def dest: spec[of - 2 ])
thus ?case unfolding insertion-add insertion-mult insertion-Var using 1 x4

by auto
qed
with f show inter-R.monotone-poly {..<n} (I f ) unfolding F-R-def F-def
by (auto simp: monotone-poly-wrt-def insertion-add insertion-mult insertion-Var

assignment-def
dest: x4 x2 )

qed

Lemma 3.6 in the paper
lemma orient-R-main: assumes assignment β

shows insertion β (inter-R.eval lhs-R) > insertion β (inter-R.eval rhs-R)
proof −

let ?α = λ -. 1
have reason: insertion ?α q + β y3 + insertion ?α p ∗ insertion ?α q ∗ β y3 +

insertion ?α p ∗ 2 ∗ β y3 ≥ 0
by (intro add-nonneg-nonneg mult-nonneg-nonneg insertion-positive-poly pq,

insert assms, auto simp: assignment-def )
show insertion β (inter-R.eval lhs-R) > insertion β (inter-R.eval rhs-R)
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unfolding lhs-R-def rhs-R-def
using reason
by (simp add: inter-encode-poly[OF pq(1 )] inter-encode-poly[OF pq(2 )]

insertion-add insertion-mult insertion-Const insertion-Var algebra-simps)
qed

lemma polynomial-termination-R: termination-by-int-poly-interpretation F-R R
unfolding termination-by-int-poly-interpretation-def

proof (intro exI conjI )
interpret int-poly-inter F-R I

by (unfold-locales, rule valid-monotone-inter)
show int-poly-inter F-R I ..
show termination-by-poly-interpretation R
unfolding termination-by-interpretation-def termination-by-poly-interpretation-def

R-def
proof (clarify, intro conjI )

show inter-R.orient-rule (lhs-R,rhs-R)
unfolding inter-R.gt-poly-def inter-R.orient-rule
by (intro allI impI orient-R-main)

qed (insert lhs-R-F rhs-R-F , auto)
qed

lemma polynomial-termination-R ′: termination-by-int-poly-interpretation F-R R ′

unfolding termination-by-int-poly-interpretation-def
proof (intro exI conjI )

interpret int-poly-inter F-R I
by (unfold-locales, rule valid-monotone-inter)

show int-poly-inter F-R I ..
show termination-by-poly-interpretation R ′

unfolding termination-by-poly-interpretation-def termination-by-interpretation-def
R ′-def

proof (clarify, intro conjI )
show inter-R.orient-rule (lhs-R ′,rhs-R ′)

unfolding inter-R.gt-poly-def inter-R.orient-rule
proof (intro allI impI )

fix β :: var ⇒ int
assume ass: assignment β
define zctxt where zctxt vs = z-contexts (map (λi. (v-sym i, 1 , 0 )) vs) for

vs
have zctxt: inter-R.eval (zctxt vs t) = inter-R.eval t for vs t

unfolding zctxt-def z-contexts-def z-context-def by (induct vs, auto)
have (insertion β (inter-R.eval lhs-R ′) > insertion β (inter-R.eval rhs-R ′))
←→ insertion β (inter-R.eval (zctxt V-list lhs-R)) > insertion β (inter-R.eval

(zctxt V-list rhs-R))
unfolding lhs-R ′-def rhs-R ′-def
unfolding all-symbol-pos-ctxt-def contexts-def
unfolding z-contexts-append zctxt-def [symmetric]
by (simp add: z-contexts-def z-context-def nth-append)

also have . . . ←→ insertion β (inter-R.eval lhs-R) > insertion β (inter-R.eval
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rhs-R)
unfolding zctxt ..

also have . . . by (rule orient-R-main[OF ass])
finally show insertion β (inter-R.eval lhs-R ′) > insertion β (inter-R.eval

rhs-R ′) .
qed

qed (insert lhs-R ′-F rhs-R ′-F , auto)
qed

end
end

6 Undecidability of KBO with Subterm Coefficients
theory KBO-Subterm-Coefficients-Undecidable

imports
Hilbert10-to-Inequality
Knuth-Bendix-Order .KBO
Linear-Poly-Termination-Undecidable

begin

lemma count-sum-list: count (sum-list ms) x = sum-list (map (λ m. count m x)
ms)

by (induct ms, auto)

lemma sum-list-scf-list-prod: sum-list (map f (scf-list scf as)) = sum-list (map (λ
i. scf i ∗ f (as ! i)) [0 ..<length as])

unfolding scf-list-def
unfolding map-concat
unfolding sum-list-concat map-map o-def
apply (subst zip-nth-conv, force)
unfolding map-map o-def split
apply (rule arg-cong[of - - sum-list])
by (intro nth-equalityI , auto simp: sum-list-replicate)

lemma count-vars-term-different-var : assumes x: x /∈ vars-term t
shows count (vars-term-ms (scf-term scf t)) x = 0

proof −
from assms have x /∈ vars-term (scf-term scf t)

using vars-term-scf-subset by fastforce
thus ?thesis

by (simp add: count-eq-zero-iff )
qed

context kbo
begin
definition kbo-orientation :: ( ′f , ′v)rule set ⇒ bool where

kbo-orientation R = (∀ (l,r) ∈ R. fst (kbo l r))
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end

definition kbo-with-sc-termination :: ( ′f , ′v)rule set ⇒ bool where
kbo-with-sc-termination R = (∃ w w0 sc least pr-strict pr-weak. admissible-kbo w

w0 pr-strict pr-weak least sc
∧ kbo.kbo-orientation w w0 sc least pr-strict pr-weak R)

context poly-input
begin

context
fixes sc
assumes sc: sc (a-sym, Suc (Suc 0 )) 0 = (1 :: nat)

sc (a-sym, Suc (Suc 0 )) (Suc 0 ) = 1
begin
lemma count-vars-term-encode-num-nat:

count (vars-term-ms (scf-term sc (encode-num x (int n)))) x = n
unfolding encode-num-def nat-int
by (induct n, auto simp add: scf-list-def sc)

lemma count-vars-term-encode-num:
c ≥ 0 =⇒ int (count (vars-term-ms (scf-term sc (encode-num x c))) x) = c
using count-vars-term-encode-num-nat[of x nat c] by auto

lemma count-vars-term-v-pow-e:
count (vars-term-ms (scf-term sc ((v-t x ^^ e) t))) y
= (sc (v-sym x,1 ) 0 )^e ∗ count (vars-term-ms (scf-term sc t)) y

proof (induct e)
case (Suc e)
thus ?case by (simp split: if-splits add: scf-list-def sum-mset-sum-list sum-list-replicate

count-sum-list sc)
qed force

lemma count-vars-term-encode-monom: assumes c: c ≥ 0
shows int (count (vars-term-ms (scf-term sc (encode-monom x m c))) x)
= insertion (λ v. int (sc (v-sym v,1 ) 0 )) (monom m c)

proof −
define xes where xes = var-list m
from var-list[of m c]
have monom: monom m c = Const c ∗ (

∏
(x, e)← xes . PVar x ^ e) unfolding

xes-def .
show ?thesis unfolding encode-monom-def monom xes-def [symmetric]
proof (induct xes)

case Nil
show ?case by (simp add: count-vars-term-encode-num[OF c] insertion-Const

sc)
next

case (Cons xe xes)
obtain x e where xe: xe = (x,e) by force
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show ?case
by (simp add: xe count-vars-term-v-pow-e Cons

insertion-Const insertion-mult insertion-power insertion-Var when-def )
qed

qed

Lemma 4.5
lemma count-vars-term-encode-poly-generic: assumes positive-poly r

shows int (count (vars-term-ms (scf-term sc (encode-poly x r))) x) =
insertion (λ v. int (sc (v-sym v,1 ) 0 )) r

proof −
define mcs where mcs = monom-list r
from monom-list[of r ] have r : r = (

∑
(m, c)← mcs. monom m c) unfolding

mcs-def by auto
have mcs: (m,c) ∈ set mcs =⇒ c ≥ 0 for m c

using monom-list-coeff assms unfolding mcs-def positive-poly-def by auto
show ?thesis unfolding encode-poly-def mcs-def [symmetric] unfolding r inser-

tion-sum-list map-map o-def
using mcs

proof (induct mcs)
case (Cons mc mcs)
obtain m c where mc: mc = (m,c) by force
from Cons(2 ) mc have c: c ≥ 0 by auto
note monom = count-vars-term-encode-monom[OF this, of x m]
show ?case

apply (simp add: mc monom scf-list-def sc)
apply (subst Cons(1 ))
using Cons(2 ) by (auto simp: when-def )

qed simp
qed
end

Theorem 4.6
theorem kbo-sc-termination-R-imp-solution:

assumes kbo-with-sc-termination R
shows positive-poly-problem p q

proof −
from assms[unfolded kbo-with-sc-termination-def ] obtain w w0 sc least pr-strict

pr-weak
where

admissible-kbo w w0 pr-strict pr-weak least sc
and orient: kbo.kbo-orientation w w0 sc least pr-strict pr-weak R
by blast

interpret admissible-kbo w w0 pr-strict pr-weak least sc by fact
define l where l i = args lhs-R ! i for i
define r where r i = args rhs-R ! i for i
define as :: nat list where as = [0 ,1 ,2 ,3 ]
have upt-as: [0 ..<length as] = as unfolding as-def by auto
have lhs: lhs-R = Fun f-sym (map l as) unfolding lhs-R-def l-def as-def by simp
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have rhs: rhs-R = Fun f-sym (map r as) unfolding rhs-R-def r-def as-def by
simp

from orient[unfolded kbo-orientation-def R-def ]
have fst (kbo lhs-R rhs-R) by auto
from this[unfolded kbo.simps[of lhs-R]]
have vars-term-ms (SCF rhs-R) ⊆# vars-term-ms (SCF lhs-R) by (auto split:

if-splits)
hence count: count (vars-term-ms (SCF rhs-R)) x ≤ count (vars-term-ms (SCF

lhs-R)) x for x
by (rule mset-subset-eq-count)

let ?f = (f-sym, length as)
{

fix i
assume i: i ∈ set as
from i have vl: vars-term (l i) ⊆ {i} unfolding l-def lhs-R-def as-def y1-def

y2-def y3-def
using vars-encode-poly[of i p] by auto

from count-vars-term-different-var [of - l i sc] vl
have count-l-diff : i 6= j =⇒ count (vars-term-ms (SCF (l i))) j = 0 for j by

auto
from i have vr : vars-term (r i) ⊆ {i} unfolding r-def rhs-R-def as-def y1-def

y2-def y3-def
using vars-encode-poly[of i q] by auto

from count-vars-term-different-var [of - r i sc] vr
have count-r-diff : i 6= j =⇒ count (vars-term-ms (SCF (r i))) j = 0 for j by

auto
{

fix x
have count (vars-term-ms (SCF rhs-R)) x
= sum-list (map (λ i. count (vars-term-ms (SCF (r i))) x) (scf-list (sc ?f )

as)) unfolding rhs
apply (simp add: o-def )
apply (unfold mset-map[symmetric] sum-mset-sum-list)
apply (unfold count-sum-list map-map o-def )
by simp
also have . . . = (

∑
i←as. sc ?f i ∗ count (vars-term-ms (SCF (r (as ! i))))

x)
unfolding sum-list-scf-list-prod upt-as ..

finally have count (vars-term-ms (SCF rhs-R)) x = (
∑

i←as. sc ?f i ∗ count
(vars-term-ms (SCF (r (as ! i)))) x) .

} note count-rhs = this
{

fix x
have count (vars-term-ms (SCF lhs-R)) x
= sum-list (map (λ i. count (vars-term-ms (SCF (l i))) x) (scf-list (sc ?f )

as)) unfolding lhs
apply (simp add: o-def )
apply (unfold mset-map[symmetric] sum-mset-sum-list)
apply (unfold count-sum-list map-map o-def )
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by simp
also have . . . = (

∑
i←as. sc ?f i ∗ count (vars-term-ms (SCF (l (as ! i))))

x)
unfolding sum-list-scf-list-prod upt-as ..

finally have count (vars-term-ms (SCF lhs-R)) x = (
∑

i←as. sc ?f i ∗ count
(vars-term-ms (SCF (l (as ! i)))) x) .

} note count-lhs = this
note count-lhs count-rhs count-l-diff count-r-diff

} note cf = this[unfolded as-def ]
let ?f = (f-sym, Suc (Suc (Suc (Suc 0 ))))

{
fix i :: nat
assume i: i ∈ {0 ,1 ,2 ,3}
have sc ?f i ∗ count (vars-term-ms (SCF (r i))) i = count (vars-term-ms (SCF

rhs-R)) i
by (subst cf (2 ), insert i, auto simp add: cf )

also have . . . ≤ count (vars-term-ms (SCF lhs-R)) i by fact
also have . . . = sc ?f i ∗ count (vars-term-ms (SCF (l i))) i

by (subst cf (1 ), insert i, auto simp add: cf )
finally have count (vars-term-ms (SCF (r i))) i ≤ count (vars-term-ms (SCF

(l i))) i
using scf [of i Suc (Suc (Suc (Suc 0 ))) f-sym] i by auto

} note count-le = this

from count-le[of 0 , unfolded r-def l-def rhs-R-def lhs-R-def y1-def ]
have sc (a-sym, Suc (Suc 0 )) 0 ≤ 1

apply simp
apply (unfold mset-map[symmetric] sum-mset-sum-list)
by (simp add: count-sum-list sum-list-scf-list-prod)

with scf [of 0 Suc (Suc 0 ) a-sym]
have a20 : sc (a-sym, Suc (Suc 0 )) 0 = 1 by auto

from count-le[of 1 , unfolded r-def l-def rhs-R-def lhs-R-def y2-def ]
have sc (a-sym, Suc (Suc 0 )) 1 ≤ 1

apply simp
apply (unfold mset-map[symmetric] sum-mset-sum-list)
by (simp add: count-sum-list sum-list-scf-list-prod)

with scf [of 1 Suc (Suc 0 ) a-sym]
have a21 : sc (a-sym, Suc (Suc 0 )) (Suc 0 ) = 1 by auto

note encode = count-vars-term-encode-poly-generic[of sc, OF a20 a21 ]

have Suc (count (vars-term-ms (SCF (encode-poly y3 q))) y3 ) = count (vars-term-ms
(SCF (r 2 ))) 2

by (simp add: r-def rhs-R-def scf-list-def a20 a21 y3-def )
also have . . . ≤ count (vars-term-ms (SCF (l 2 ))) 2 using count-le[of 2 ] by

simp
also have . . . = Suc (count (vars-term-ms (SCF (encode-poly y3 p))) y3 )
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by (simp add: l-def lhs-R-def scf-list-def a20 a21 y3-def )
finally have int (count (vars-term-ms (SCF (encode-poly y3 q))) y3 ) ≤ int

(count (vars-term-ms (SCF (encode-poly y3 p))) y3 )
by auto

from this[unfolded encode[OF pq(1 )] encode[OF pq(2 )]]
show ?thesis

unfolding positive-poly-problem-def [OF pq]
by (intro exI [of - λv. int (sc (v-sym v, 1 ) 0 )], auto simp: positive-interpr-def

scf )
qed
end

context solvable-poly-problem
begin

definition w0 :: nat where w0 = 1

fun sc :: symbol × nat ⇒ nat ⇒ nat where
sc (v-sym i, Suc 0 ) - = nat (α i)
| sc - - = 1

context fixes wr :: nat
begin
fun w-R :: symbol × nat ⇒ nat where

w-R (f-sym,n) = (if n = 4 then 0 else 1 )
| w-R (a-sym,n) = (if n = 2 then 0 else 1 )
| w-R (o-sym,0 ) = wr
| w-R - = 1
end

definition w-rhs where w-rhs = weight-fun.weight (w-R 1 ) w0 sc rhs-R

abbreviation w where w ≡ w-R w-rhs

definition least where least f = (w (f , 0 ) = w0 ∧ (∀ g. w (g, 0 ) = w0 −→ (g,
0 :: nat) = (f , 0 )))

lemma α0 : α x > 0 using α(1 ) unfolding positive-interpr-def by auto

sublocale admissible-kbo w w0 (λ - -. False) (=) least sc
apply (unfold-locales)
subgoal for f unfolding w0-def

by (cases f , auto simp add: weight-fun.weight.simps w-rhs-def rhs-R-def )
subgoal by (simp add: w0-def )
subgoal for f g n by (cases f , auto)
subgoal for f unfolding least-def by auto
subgoal for i n f by (cases f ; cases n; cases n − 1 ; auto intro: α0 )
by auto
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lemma insertion-pos: positive-poly r =⇒ insertion α r ≥ 0
unfolding positive-poly-def by (smt (verit) α0 insertion-nonneg)

lemma count-vars-term-encode-poly: assumes positive-poly r
shows count (vars-term-ms (SCF (encode-poly x r))) y = (nat (insertion α r)

when x = y)
proof (cases y = x)

case False
with count-vars-term-different-var [of y encode-poly x r sc] vars-encode-poly[of x

r ]
show ?thesis by (auto simp: when-def )

next
case y: True
from count-vars-term-encode-poly-generic[of sc - x, OF - - assms]
have int (count (vars-term-ms (SCF (encode-poly x r))) x)
= insertion (λv. int (sc (v-sym v, 1 ) 0 )) r by auto

also have (λv. int (sc (v-sym v, 1 ) 0 )) = α
by (intro ext, insert α0 , auto simp: order .order-iff-strict)

finally show ?thesis unfolding y
using insertion-pos[OF assms] by auto

qed

Theorem 4.7 in context
theorem kbo-with-sc-termination: kbo-with-sc-termination R

unfolding kbo-with-sc-termination-def
proof (intro exI conjI )

show admissible-kbo w w0 (λ - -. False) (=) least sc ..
show kbo-orientation R unfolding R-def kbo-orientation-def
proof (clarify)

{
fix t :: (symbol,var)term
assume (o-sym,0 ) /∈ funas-term t
hence weight-fun.weight (w-R (Suc 0 )) w0 sc t = weight t (is ?id t)
proof (induct t)

case (Var x)
show ?case by (auto simp: weight-fun.weight.simps)

next
case (Fun f ts)
hence t ∈ set ts =⇒ ?id t for t by auto
hence IH : map2 (λti i. weight-fun.weight (w-R (Suc 0 )) w0 sc ti ∗ sc (f ,

length ts) i) ts
[0 ..<length ts] =

map2 (λti i. weight ti ∗ sc (f , length ts) i) ts [0 ..<length ts]
by (intro nth-equalityI , auto)

have id: w-R (Suc 0 ) (f , length ts) = w (f , length ts)
using Fun(2 ) by (cases f ; cases ts, auto)

show ?case by (auto simp: id weight-fun.weight.simps Let-def IH )
qed

} note weight-switch = this
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from funas-encode-poly-q[of y3 ]
have o-q: (o-sym,0 ) /∈ funas-term (encode-poly y3 q) by (auto simp: F-def )
have weight rhs-R = 3 + 3 ∗ w0 + weight (encode-poly y3 q)

unfolding rhs-R-def by (simp add: scf-list-def )
also have . . . = w-rhs unfolding weight-switch[OF o-q, symmetric]

unfolding w-rhs-def rhs-R-def by (simp add: weight-fun.weight.simps)
also have . . . < w0 + w-rhs using w0 by auto
also have . . . ≤ weight lhs-R unfolding lhs-R-def

by (simp add: scf-list-def )
finally have weight: weight rhs-R < weight lhs-R .
from α(2 ) insertion-pos[OF pq(1 )] insertion-pos[OF pq(2 )]
have sol: nat (insertion α q) ≤ nat (insertion α p) by auto
have vars: vars-term-ms (SCF rhs-R) ⊆# vars-term-ms (SCF lhs-R)
proof (intro mset-subset-eqI )

fix x
show count (vars-term-ms (SCF rhs-R)) x ≤ count (vars-term-ms (SCF

lhs-R)) x
unfolding rhs-R-def lhs-R-def using y-vars sol

by (simp add: scf-list-def count-vars-term-encode-poly[OF pq(1 )] count-vars-term-encode-poly[OF
pq(2 )])

qed
from weight vars show fst (kbo lhs-R rhs-R)

unfolding kbo.simps[of lhs-R rhs-R] by auto
qed

qed

end

Theorem 4.7 outside solvable-context
context poly-input
begin
theorem solvable-imp-kbo-with-sc-termination:

assumes positive-poly-problem p q
shows kbo-with-sc-termination R
by (rule solvable-poly-problem.kbo-with-sc-termination, unfold-locales, fact)

Combining 4.6 and 4.7
corollary solvable-iff-kbo-with-sc-termination:

positive-poly-problem p q ←→ kbo-with-sc-termination R
using solvable-imp-kbo-with-sc-termination kbo-sc-termination-R-imp-solution by

blast
end
end
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7 Undecidability of Polynomial Termination over
Integers

theory Poly-Termination-Undecidable
imports

Linear-Poly-Termination-Undecidable
Preliminaries-on-Polynomials-2

begin

context poly-input
begin

definition y4 :: var where y4 = 3
definition y5 :: var where y5 = 4
definition y6 :: var where y6 = 5
definition y7 :: var where y7 = 6

abbreviation q-t where q-t t ≡ Fun q-sym [t]
abbreviation h-t where h-t t ≡ Fun h-sym [t]
abbreviation g-t where g-t t1 t2 ≡ Fun g-sym [t1 , t2 ]

Definition 5.1
definition lhs-S = Fun f-sym [

Var y1 ,
Var y2 ,
a-t (encode-poly y3 p) (Var y3 ),
q-t (h-t (Var y4 )),
h-t (Var y5 ),
h-t (Var y6 ),
g-t (Var y7 ) o-t]

definition rhs-S = Fun f-sym [
a-t (Var y1 ) z-t,
a-t z-t (Var y2 ),
a-t (encode-poly y3 q) (Var y3 ),
h-t (h-t (q-t (Var y4 ))),
foldr v-t V-list (a-t (Var y5 ) (Var y5 )),
Fun f-sym (replicate 7 (Var y6 )),
g-t (Var y7 ) z-t]

definition S where S = {(lhs-S , rhs-S)}

definition F-S where F-S = {(f-sym,7 ), (h-sym,1 ), (g-sym,2 ), (o-sym,0 ), (q-sym,1 )}
∪ F

lemma lhs-S-F : funas-term lhs-S ⊆ F-S
proof −

from funas-encode-poly-p
show funas-term lhs-S ⊆ F-S unfolding lhs-S-def by (auto simp: F-S-def F-def )
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qed

lemma funas-fold-vs[simp]: funas-term (foldr v-t V-list t) = (λ i. (v-sym i,1 )) ‘ V
∪ funas-term t
proof −

have id: funas-term (foldr v-t xs t) = (λ i. (v-sym i,1 )) ‘ set xs ∪ funas-term t
for xs

by (induct xs, auto)
show ?thesis unfolding id

by (auto simp: V-list)
qed

lemma vars-fold-vs[simp]: vars-term (foldr v-t vs t) = vars-term t
by (induct vs, auto)

lemma funas-term-r5 : funas-term (foldr v-t V-list (a-t (Var y5 ) (Var y5 ))) ⊆ F-S

by (auto simp: F-S-def F-def )

lemma rhs-S-F : funas-term rhs-S ⊆ F-S
proof −

from funas-encode-poly-q funas-term-r5
show funas-term rhs-S ⊆ F-S unfolding rhs-S-def by (auto simp: F-S-def F-def )

qed
end

lemma poly-inter-eval-cong: assumes
∧

f a. (f ,a) ∈ funas-term t =⇒ I f = I ′ f
shows poly-inter .eval I t = poly-inter .eval I ′ t
using assms

proof (induct t)
case (Var x)
show ?case by (simp add: poly-inter .eval.simps)

next
case (Fun f ts)
{

fix i
assume i < length ts
hence ts ! i ∈ set ts

by auto
with Fun(1 )[OF this Fun(2 )]
have poly-inter .eval I (ts ! i) = poly-inter .eval I ′ (ts ! i) by force

} note IH = this
from Fun(2 ) have I f = I ′ f by auto
thus ?case using IH

by (auto simp: poly-inter .eval.simps insertion-substitute intro!: mpoly-extI in-
sertion-irrelevant-vars)
qed

The easy direction of Theorem 5.4
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context solvable-poly-problem
begin

definition c-S where c-S = max 7 (2 ∗ prod-list (map α V-list))

lemma c-S : c-S > 0 unfolding c-S-def by auto

fun I-S :: symbol ⇒ int mpoly where
I-S f-sym = PVar 0 + PVar 1 + PVar 2 + PVar 3 + PVar 4 + PVar 5 +

PVar 6
| I-S a-sym = PVar 0 + PVar 1
| I-S z-sym = 0
| I-S o-sym = 1
| I-S (v-sym i) = Const (α i) ∗ PVar 0
| I-S q-sym = mmonom (monomial 2 0 ) c-S — c ∗ (PVar 0 )2
| I-S g-sym = PVar 0 + PVar 1
| I-S h-sym = mmonom (monomial 1 0 ) c-S — c ∗ PVar 0

declare single-numeral[simp del]
declare insertion-monom[simp del]

interpretation inter-S : poly-inter F-S I-S (>) .

lemma inter-S-encode-poly: assumes positive-poly r
shows inter-S .eval (encode-poly x r) = Const (insertion α r) ∗ PVar x
by (rule inter-encode-poly-generic[OF - - - - assms], auto)

lemma valid-monotone-inter-S : inter-S .valid-monotone-poly-inter
unfolding inter-S .valid-monotone-poly-inter-def

proof (intro ballI )
fix fn
assume f : fn ∈ F-S
show inter-S .valid-monotone-poly fn
proof (cases fn ∈ F)

case True
show inter-S .valid-monotone-poly fn

by (rule valid-monotone-inter-F [OF - - - - α(1 ) True], auto)
next

case False
with f have f : fn ∈ F-S − F by auto
have [simp]: vars ((PVar 0 :: int mpoly) + PVar (Suc 0 ) + PVar 2 + PVar 3

+ PVar 4 + PVar 5 + PVar 6 ) = {0 ,1 ,2 ,3 ,4 ,5 ,6}
unfolding vars-def apply (transfer ′, simp add: Var0-def image-comp) by

code-simp
have [simp]: vars ((PVar 0 :: int mpoly) + PVar (Suc 0 )) = {0 ,1}

unfolding vars-def apply (transfer ′, simp add: Var0-def image-comp) by
code-simp

show ?thesis unfolding inter-S .valid-monotone-poly-def using f
proof (intro ballI impI allI , clarify, intro conjI )
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fix f n
assume f : (f ,n) ∈ F-S (f ,n) /∈ F
from f show vars (I-S f ) = {..< n} unfolding F-S-def using c-S

by (auto simp: vars-monom-single-cases)
from f c-S show valid-poly (I-S f ) unfolding F-S-def

by (auto simp: valid-poly-def insertion-add assignment-def )
have x2 : x < 2 =⇒ x = 0 ∨ x = Suc 0 for x by linarith
have x7 : x < 7 =⇒ x = 0 ∨ x = Suc 0 ∨ x = 2 ∨ x = 3 ∨ x = 4 ∨ x = 5

∨ x = 6 for x by linarith
from f c-S show inter-S .monotone-poly {..<n} (I-S f ) unfolding F-S-def
by (auto simp: monotone-poly-wrt-def insertion-add assignment-def power-strict-mono

dest: x2 x7 )
qed

qed
qed

interpretation inter-S : int-poly-inter F-S I-S
proof

show inter-S .valid-monotone-poly-inter by (rule valid-monotone-inter-S)
qed

lemma orient-trs: inter-S .termination-by-poly-interpretation S
unfolding inter-S .termination-by-poly-interpretation-def

inter-S .termination-by-interpretation-def S-def inter-S .orient-rule
proof (clarify, intro conjI )

have lhs-S : inter-S .eval lhs-S =
(PVar y1 +
PVar y2 +
(Const (insertion α p) + 1 ) ∗ PVar y3 +
(Const c-S)^3 ∗ (PVar y4 )^2 +
Const c-S ∗ PVar y5 +
Const c-S ∗ PVar y6 +
PVar y7 ) +
1

unfolding lhs-S-def by (simp add: inter-S-encode-poly[OF pq(1 )]
power2-eq-square power3-eq-cube algebra-simps)

have foldr : inter-S .eval (foldr (λi t. Fun (v-sym i) [t]) V-list (Fun a-sym [TVar
y5 , TVar y5 ])) =

Const (prod-list (map α V-list)) ∗ 2 ∗ PVar y5
by (subst inter-foldr-v-t, auto)

have rhs-S : inter-S .eval rhs-S =
(PVar y1 +
PVar y2 +
(Const (insertion α q) + 1 ) ∗ PVar y3 +
(Const c-S)^3 ∗ (PVar y4 )2 +
Const (prod-list (map α V-list)) ∗ 2 ∗ PVar y5 +
7 ∗ PVar y6 +
PVar y7 ) +
0
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unfolding rhs-S-def by (simp add: inter-S-encode-poly[OF pq(2 )] Const-add
power2-eq-square power3-eq-cube algebra-simps foldr)

show inter-S .gt-poly (inter-S .eval lhs-S) (inter-S .eval rhs-S)
unfolding inter-S .gt-poly-def

proof (intro allI impI )
fix β :: var ⇒ int
assume ass: assignment β
hence β:

∧
x. β x ≥ 0 unfolding assignment-def by auto

have α0 : α x ≥ 0 for x using α(1 )[unfolded positive-interpr-def , rule-format,
of x] by auto

from c-S have c0 : c-S ≥ 0 by simp
have 7 : 7 = (Const 7 :: int mpoly) by code-simp
have 2 : 2 = (Const 2 :: int mpoly) by code-simp
have ins7 : insertion β 7 = (7 :: int) unfolding 7 insertion-Const by simp
have ins2 : insertion β 2 = (2 :: int) unfolding 2 insertion-Const by simp
show insertion β (inter-S .eval lhs-S) > insertion β (inter-S .eval rhs-S)

unfolding lhs-S rhs-S insertion-add ins7 ins2 insertion-mult insertion-Var
insertion-Const insertion-Const insertion-power

proof (intro add-le-less-mono add-mono mult-mono add-nonneg-nonneg zero-le-power
α(2 ) β c0 )

show 0 ≤ insertion α p by (intro insertion-positive-poly[OF α0 pq(1 )])
show 7 ≤ c-S unfolding c-S-def by auto
show prod-list (map α V-list) ∗ 2 ≤ c-S unfolding c-S-def by simp

qed (force+)
qed

qed (insert lhs-S-F rhs-S-F , auto)

lemma solution-imp-poly-termination: termination-by-int-poly-interpretation F-S
S

unfolding termination-by-int-poly-interpretation-def
by (intro exI , rule conjI [OF - orient-trs], unfold-locales)

end

Towards Lemma 5.2
lemma (in int-poly-inter) monotone-imp-weakly-monotone: assumes monotone-poly
xs p

shows weakly-monotone-poly xs p
unfolding monotone-poly-wrt-def

proof (intro allI impI )
fix α :: var ⇒ int and x v
assume assignment α x ∈ xs α x ≤ v
from assms[unfolded monotone-poly-wrt-def , rule-format, OF this(1−2 ), of v]

this(3 )
show insertion α p ≤ insertion (α(x := v)) p

by (cases α x < v, auto)
qed

context

94



fixes gt :: ′a :: linordered-idom ⇒ ′a ⇒ bool
assumes trans-gt: transp gt
and gt-imp-ge:

∧
x y. gt x y =⇒ x ≥ y

begin

lemma monotone-poly-wrt-insertion-main: assumes monotone-poly-wrt gt xs p
and a: assignment (a :: var ⇒ ′a :: linordered-idom)
and b:

∧
x. x ∈ xs =⇒ gt== (b x) (a x)∧

x. x /∈ xs =⇒ a x = b x
shows gt== (insertion b p) (insertion a p)

proof −
from sorted-list-of-set(1 )[OF vars-finite[of p]] sorted-list-of-set[of vars p] obtain

ys where
ysp: set ys = vars p and dist: distinct ys by auto

define c where c ys = (λ x. if x ∈ set ys then a x else b x) for ys
have ass: assignment (c ys) for ys unfolding assignment-def
proof

fix x
show 0 ≤ c ys x using b[of x] a[unfolded assignment-def , rule-format, of x]

gt-imp-ge[of b x a x]
unfolding c-def by auto linarith

qed
have id: insertion a p = insertion (c ys) p unfolding c-def ysp

by (rule insertion-irrelevant-vars, auto)
also have gt^== (insertion b p) (insertion (c ys) p) using dist
proof (induct ys)

case Nil
show ?case unfolding c-def by auto

next
case (Cons x ys)
show ?case
proof (cases x ∈ xs)

case False
from b(2 )[OF this] have c (Cons x ys) = c ys

unfolding c-def by auto
thus ?thesis using Cons by auto

next
case True
from b(1 )[OF this] have ab: gt^== (b x) (a x) by auto
let ?c = c (Cons x ys)
have id1 : c ys = ?c(x := b x)

using Cons(2 ) unfolding c-def by auto
have id2 : c (x # ys) x = a x using True unfolding c-def by auto
have IH : gt^== (insertion b p) (insertion (c ys) p) using Cons by auto
have gt^== (insertion (?c(x := b x)) p) (insertion ?c p)
proof (cases b x = a x)

case True
hence ?c(x := b x) = ?c using id1 id2

by (intro ext, auto)
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thus ?thesis by simp
next

case False
with ab have ab: gt (b x) (a x) by auto
have gt(insertion (?c(x := b x)) p) (insertion ?c p)
proof (rule assms(1 )[unfolded monotone-poly-wrt-def , rule-format, OF ass

True])
show gt (b x) (c (x # ys) x) unfolding id2 by fact

qed
thus ?thesis by auto

qed
also have insertion (?c(x := b x)) p = insertion (c ys) p unfolding id1 ..
finally have gt^== (insertion (c ys) p) (insertion (c (x # ys)) p) .
from transpE [OF trans-gt] IH this
show ?thesis by auto

qed
qed
finally show ?thesis .

qed

lemma monotone-poly-wrt-insertion: assumes monotone-poly-wrt gt (vars p) p
and a: assignment (a :: var ⇒ ′a :: linordered-idom)
and b:

∧
x. x ∈ vars p =⇒ gt== (b x) (a x)

shows gt== (insertion b p) (insertion a p)
proof −

define b ′ where b ′ x = (if x ∈ vars p then b x else a x) for x
have gt^== (insertion b ′ p) (insertion a p)

by (rule monotone-poly-wrt-insertion-main[OF assms(1−2 )], insert b, auto
simp: b ′-def )

also have insertion b ′ p = insertion b p
by (rule insertion-irrelevant-vars, auto simp: b ′-def )

finally show ?thesis .
qed

lemma partial-insertion-mono-wrt: assumes mono: monotone-poly-wrt gt (vars
p) p

and a: assignment a
and b:

∧
y. y 6= x =⇒ gt== (b y) (a y)

and d:
∧

y. y ≥ d =⇒ gt== y 0
shows ∃ c. ∀ y. y ≥ d −→ c ≤ poly (partial-insertion a x p) y
∧ poly (partial-insertion a x p) y ≤ poly (partial-insertion b x p) y

proof −
define pa where pa = partial-insertion a x p
define pb where pb = partial-insertion b x p
define c where c = insertion (a(x := 0 )) p
{

fix y :: ′a
assume y: y ≥ d
with d have gty: gt== y 0 by auto
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from a have ass: assignment (a(x := 0 )) unfolding assignment-def by auto
from monotone-poly-wrt-insertion[OF mono ass, of a(x := y)]
have gt== (insertion (a(x := y)) p) (insertion (a(x := 0 )) p) using gty by

auto
from this[folded c-def ] gt-imp-ge[of - c]
have c ≤ insertion (a(x := y)) p by auto

} note le-c = this
{

fix y :: ′a
assume y: y ≥ d
with d have gty: gt== y 0 by auto
from y a gty gt-imp-ge[of y] have ass: assignment (a(x := y)) unfolding

assignment-def by auto
from monotone-poly-wrt-insertion[OF mono this, of b(x := y)]
have gt== (insertion (b(x := y)) p) (insertion (a(x := y)) p)

using b by auto
with gt-imp-ge
have insertion (a(x := y)) p ≤ insertion (b(x := y)) p by auto

} note le-ab = this
have id: poly (partial-insertion a x p) y = insertion (a(x := y)) p for a y

using insertion-partial-insertion[of x a a(x := y) p] by auto
{

fix y :: ′a
assume y: y ≥ d
from le-ab[OF y, folded id, folded pa-def pb-def ]
have poly pa y ≤ poly pb y by auto

} note le1 = this
show ?thesis
proof (intro exI [of - c], intro allI impI conjI le1 [unfolded pa-def pb-def ])

fix y :: ′a
assume y: y ≥ d
show c ≤ poly (partial-insertion a x p) y using le-c[OF y] unfolding id .

qed
qed

context
assumes poly-pinfty-ge:

∧
p b. 0 < lead-coeff (p :: ′a poly) =⇒ degree p 6= 0

=⇒ ∃n. ∀ x≥n. b ≤ poly p x
begin

context
fixes p d
assumes mono: monotone-poly-wrt gt (vars p) p
and d:

∧
y. y ≥ d =⇒ gt== y 0

begin

lemma degree-partial-insertion-mono-generic: assumes
a: assignment a

and b:
∧

y. y 6= x =⇒ gt== (b y) (a y)
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shows degree (partial-insertion a x p) ≤ degree (partial-insertion b x p)
proof −

define qa where qa = partial-insertion a x p
define qb where qb = partial-insertion b x p
from partial-insertion-mono-wrt[OF mono a b d, of x d]
obtain c where c:

∧
y. y ≥ d =⇒ c ≤ poly qa y

and ab:
∧

y. y ≥ d =⇒ poly qa y ≤ poly qb y
by (auto simp: qa-def qb-def )

show ?thesis
proof (cases degree qa = 0 )

case True
thus ?thesis unfolding qa-def by auto

next
case False
let ?lc = lead-coeff
have lc-pos: ?lc qa > 0
proof (rule ccontr)

assume ¬ ?thesis
with False have ?lc qa < 0 using leading-coeff-neq-0 by force
hence ?lc (−qa) > 0 by simp
from poly-pinfty-ge[OF this, of − c + 2 ] False
obtain n where le:

∧
x. x ≥ n =⇒ − c + 2 ≤ − poly qa x by auto

from le[of max n d] c[of max n d] show False by auto
qed
from this ab have degree qa ≤ degree qb by (intro degree-mono-generic[OF

poly-pinfty-ge], auto)
thus ?thesis unfolding qa-def qb-def by auto

qed
qed

lemma degree-partial-insertion-stays-constant-generic:
∃ a. assignment a ∧
(∀ b. (∀ y. gt== (b y) (a y)) −→ degree (partial-insertion a x p) = degree

(partial-insertion b x p))
proof −

define n where n = mdegree p x
define pi where pi a = partial-insertion a x p for a
have n: assignment a =⇒ degree (pi a) ≤ n for a unfolding n-def pi-def

by (rule degree-partial-insertion-bound)
thus ?thesis unfolding pi-def [symmetric]
proof (induct n rule: less-induct)

case (less n)
show ?case
proof (cases ∃ a. assignment a ∧ degree (pi a) = n)

case True
then obtain a where a: assignment a and deg: degree (pi a) = n by auto
show ?thesis
proof (intro exI [of - a] conjI a allI impI )

fix b
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assume ge: ∀ y. gt== (b y) (a y)
with a gt-imp-ge[of b y a y for y] have b: assignment b unfolding assign-

ment-def
using order-trans[of 0 a y for y] by fastforce

have degree (pi a) ≤ degree (pi b)
by (rule degree-partial-insertion-mono-generic[OF a, of x b, folded pi-def ],

insert ge, auto)
with less(2 )[of b] deg b
show degree (pi a) = degree (pi b) by simp

qed
next

case False
with less(2 ) have deg: assignment b =⇒ degree (pi b) < n for b by fastforce
have ass: assignment (λ -. 0 :: ′a) unfolding assignment-def by auto
define m where m = n − 1
from deg[OF ass] have mn: m < n and less-id: x < n ←→ x ≤ m for x

unfolding m-def by auto
from less(1 )[OF mn deg[unfolded less-id]] show ?thesis by auto

qed
qed

qed
end

lemma monotone-poly-partial-insertion-generic:
assumes delta-order :

∧
x y. gt y x ←→ y ≥ x + δ

and delta: δ > 0
and eps-delta: ε ∗ δ ≥ 1
and ceil-nat:

∧
x :: ′a. of-nat (ceil-nat x) ≥ x

assumes x: x ∈ xs
and mono: monotone-poly-wrt gt xs p
and ass: assignment a

shows 0 < degree (partial-insertion a x p)
lead-coeff (partial-insertion a x p) > 0
valid-poly p =⇒ poly (partial-insertion a x p) (δ ∗ of-nat y) ≥ δ ∗ of-nat y

proof −
define q where q = partial-insertion a x p
{

fix w1 w2 :: ′a
assume w: 0 ≤ w1 gt w2 w1
from gt-imp-ge[OF w(2 )] w have w2 : w2 ≥ 0 by auto
have assw: assignment (a (x := w1 )) using ass w(1 ) w2 unfolding assign-

ment-def by auto
note main = insertion-partial-insertion[of x - - p, symmetric]
have gt (insertion (a(x := w2 )) p) (insertion (a(x := w1 )) p)

using mono[unfolded monotone-poly-wrt-def , rule-format, OF assw x, of w2 ]
by (auto simp: w)

also have insertion (a(x := w2 )) p = poly (partial-insertion a x p) w2 using
main[of a a(x := w2 )] by auto

also have insertion (a(x := w1 )) p = poly (partial-insertion a x p) w1 using
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main[of a a(x := w1 )] by auto
finally have gt (poly q w2 ) (poly q w1 ) by (auto simp: q-def )

} note gt = this
have 0 ≤ a x using ass unfolding assignment-def by auto
from gt[OF this, of a x + δ] have poly q (a x) 6= poly q (a x + δ) unfolding

delta-order using delta by auto
hence deg: degree q > 0

using degree0-coeffs[of q] by force
show 0 < degree (partial-insertion a x p) unfolding q-def [symmetric] by fact

have unbounded: poly q (δ ∗ of-nat n) ≥ poly q 0 + δ ∗ of-nat n for n
proof (induct n)

case (Suc n)
have poly q 0 + δ ∗ of-nat (Suc n) = (poly q 0 + δ ∗ of-nat n) + δ by (simp

add: algebra-simps)
also have . . . ≤ poly q (δ ∗ of-nat n) + δ using Suc by simp
also have . . . ≤ poly q (δ ∗ of-nat n + δ)

by (rule gt[unfolded delta-order ], insert delta, auto)
finally show ?case by (simp add: algebra-simps)

qed force
let ?lc = lead-coeff
have ?lc q > 0
proof (rule ccontr)

define d where d = poly q 0
assume ¬ ?thesis
hence ?lc q ≤ 0 by auto
moreover have ?lc q 6= 0 using deg by auto
ultimately have ?lc q < 0 by auto
hence ?lc (−q) > 0 by auto
from poly-pinfty-ge[OF this, of −d] deg obtain n where le:

∧
x. x ≥ n =⇒

− d ≤ − poly q x by auto
have d: x ≥ n =⇒ d ≥ poly q x for x using le[of x] by linarith
define m where m = ε ∗ (max n 0 + 1 )
from eps-delta delta have eps: ε > 0

by (metis mult.commute order-less-le-trans zero-less-mult-pos zero-less-one)
hence m: m > 0 unfolding m-def by auto
from ceil-nat[of m] m have cm: ceil-nat m > 0

using linorder-not-less by force
have poly q (δ ∗ of-nat (ceil-nat m)) ≤ d
proof (rule d)

have n ≤ max n 0 ∗ 1 by simp
also have . . . ≤ max n 0 ∗ (ε ∗ δ) using eps-delta

by (simp add: max-def )
also have . . . = δ ∗ m − δ ∗ ε unfolding m-def by (simp add: field-simps)
also have . . . ≤ δ ∗ m using eps-delta by (auto simp: ac-simps)
also have . . . ≤ δ ∗ of-nat (ceil-nat m)

by (rule mult-left-mono[OF ceil-nat], insert delta, auto)
finally show n ≤ δ ∗ of-nat (ceil-nat m) .

qed
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also have . . . < poly q 0 + δ ∗ of-nat (ceil-nat m) unfolding d-def using
delta cm by auto

also have . . . ≤ poly q (δ ∗ of-nat (ceil-nat m)) by (rule unbounded)
finally show False by simp

qed
thus lead-coeff q > 0 unfolding q-def .

assume valid: valid-poly p
{

fix y :: nat
let ?y = δ ∗ of-nat y
from unbounded[of y]
have poly q ?y ≥ poly q 0 + ?y .
moreover have poly q 0 = insertion (a(x := 0 )) p unfolding q-def

using insertion-partial-insertion[of x a a(x := 0 ) p] by auto
moreover have . . . ≥ 0

by (intro valid[unfolded valid-poly-def , rule-format], insert ass, auto simp:
assignment-def )

ultimately have poly q ?y ≥ ?y by auto
thus poly (partial-insertion a x p) ?y ≥ ?y unfolding q-def .

} note ge = this
qed
end
end

context poly-inter
begin

lemma monotone-poly-eval-generic:
assumes valid: valid-monotone-poly-inter

and trans-gt: transp (�)
and gt-imp-ge:

∧
x y. x � y =⇒ y ≤ x

and gt-exists:
∧

x. x ≥ 0 =⇒ ∃ y. y � x
and gt-irrefl:

∧
x. ¬ (x � x)

and tF : funas-term t ⊆ F
shows monotone-poly (vars-term t) (eval t) vars (eval t) = vars-term t

proof −
have monotone-poly (vars-term t) (eval t) ∧ vars (eval t) = vars-term t using

tF
proof (induct t)

case (Var x)
show ?case by (auto simp: monotone-poly-wrt-def )

next
case (Fun f ts)
{

fix t
assume t ∈ set ts
with Fun(1 )[OF this] Fun(2 )
have monotone-poly (vars-term t) (eval t)
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vars (eval t) = vars-term t
by auto

} note IH = this
let ?n = length ts
let ?f = (f ,?n)
define p where p = I f
from Fun have ?f ∈ F by auto
from valid[unfolded valid-monotone-poly-inter-def , rule-format, OF this, un-

folded valid-monotone-poly-def ]
have valid: valid-poly p and mono: monotone-poly (vars p) p and vars: vars p

= {..<?n}
unfolding p-def by auto

have wm: assignment b =⇒ (
∧

x. x ∈ vars p =⇒ (�)== (a x) (b x)) =⇒ (�)==

(insertion a p) (insertion b p)
for b a using monotone-poly-wrt-insertion[OF trans-gt gt-imp-ge mono] by

auto
have id: eval (Fun f ts) = substitute (λi. if i < length ts then eval (ts ! i) else

0 ) p
unfolding eval.simps p-def [symmetric] id by simp

have mono: monotone-poly (vars-term (Fun f ts)) (eval (Fun f ts))
unfolding monotone-poly-wrt-def

proof (intro allI impI )
fix α :: - ⇒ ′a and x v
assume α: assignment α

and x: x ∈ vars-term (Fun f ts)
and v: v � α x

define β where β = α(x := v)
define α ′ where α ′ = (λ i. if i < ?n then insertion α (eval (ts ! i)) else 0 )
define β ′ where β ′ = (λ i. if i < ?n then insertion β (eval (ts ! i)) else 0 )
{

fix i
assume n: i < ?n
hence tsi: ts ! i ∈ set ts by auto
{

assume x ∈ vars-term (ts ! i)
from IH (1 )[OF tsi, unfolded monotone-poly-wrt-def , rule-format, OF α

this v]
have ins: β ′ i � α ′ i unfolding β-def α ′-def β ′-def using n by auto

} note gt = this
{

assume x /∈ vars-term (ts ! i)
with IH (2 )[OF tsi] have x: x /∈ vars (eval (ts ! i)) by auto
hence α ′ i = β ′ i unfolding α ′-def β ′-def using n

by (auto simp: β-def intro: insertion-irrelevant-vars)
}
with gt have gt^== (β ′ i) (α ′ i) by fastforce
note gt this

} note gt-le = this
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have α ′: assignment α ′ unfolding α ′-def assignment-def using Fun(2 )
by (force intro!: valid-imp-insertion-eval-pos[OF assms(1 ) - α] set-conv-nth)

define γ where γ n i = (if i < n then β ′ i else α ′ i) for n i
have γ: n < ?n =⇒ assignment (γ n) for n unfolding γ-def using gt-le(2 )

α ′ gt-imp-ge
unfolding assignment-def using order .trans[of 0 α x β x for x]
by (smt (verit, best) dual-order .strict-trans dual-order .trans sup2E)

from x obtain i where x: x ∈ vars-term (ts ! i) and i: i < ?n by (auto
simp: set-conv-nth)

from i vars have iv: i ∈ vars p by auto
have γi: (γ (Suc i)) = (γ i)( i := β ′ i) unfolding γ-def using i by (intro

ext, auto)
have 1 : gt^== (insertion (γ i) p) (insertion α ′ p)
by (rule monotone-poly-wrt-insertion[OF trans-gt gt-imp-ge mono α ′], insert

gt-le i, auto simp: γ-def )
have 2 : gt (insertion (γ (Suc i)) p) (insertion (γ i) p)

using mono[unfolded monotone-poly-wrt-def , rule-format, OF γ[OF i] iv,
of β ′ i] gt-le(1 )[OF i x]

unfolding γi by (auto simp: γ-def )
have 3 : gt^== (insertion (γ ?n) p) (insertion (γ (Suc i)) p)
proof (cases Suc i < ?n)

case True
show ?thesis

by (rule monotone-poly-wrt-insertion[OF trans-gt gt-imp-ge mono γ[OF
True]], insert gt-le True, auto simp: γ-def )

next
case False
with i have Suc i = ?n by auto
thus ?thesis by simp

qed
have 4 : insertion β ′ p = (insertion (γ ?n) p)

unfolding γ-def by (rule insertion-irrelevant-vars, insert vars, auto)
from 1 2 3
have gt (insertion β ′ p) (insertion α ′ p) using trans-gt unfolding 4

by (metis (full-types) sup2E transp-def )
moreover have insertion α ′ p = insertion α (eval (Fun f ts)) ∧

insertion β ′ p = insertion (α(x := v)) (eval (Fun f ts))
unfolding id insertion-substitute
unfolding β ′-def α ′-def if-distrib β-def [symmetric]
by (auto intro: insertion-irrelevant-vars)

ultimately show gt (insertion (α(x := v)) (eval (Fun f ts))) (insertion α
(eval (Fun f ts))) by auto

qed
define t ′ where t ′ = Fun f ts
define α where α = (λ - :: nat. 0 :: ′a)
have ass: assignment α by (auto simp: assignment-def α-def )
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show ?case
proof (intro conjI mono, unfold t ′-def [symmetric])

have vars (eval t ′) ⊆ vars-term t ′ by (rule vars-eval)
moreover have vars-term t ′ ⊆ vars (eval t ′)
proof (rule ccontr)

assume ¬ ?thesis
then obtain x where xt: x ∈ vars-term t ′ and x: x /∈ vars (eval t ′) by

auto
from gt-exists[of α x] obtain l where l: l � α x unfolding α-def by auto

from mono[folded t ′-def , unfolded monotone-poly-wrt-def , rule-format, OF
ass xt l]

have insertion (α(x := l)) (eval t ′) � insertion α (eval t ′) by auto
also have insertion (α(x := l)) (eval t ′) = insertion α (eval t ′)

by (rule insertion-irrelevant-vars, insert x, auto)
finally show False using gt-irrefl by auto

qed
ultimately show vars (eval t ′) = vars-term t ′ by auto

qed
qed
thus monotone-poly (vars-term t) (eval t) vars (eval t) = vars-term t by auto

qed
end

context int-poly-inter
begin

lemma degree-mono: assumes pos: lead-coeff p ≥ (0 :: int)
and le:

∧
x. x ≥ c =⇒ poly p x ≤ poly q x

shows degree p ≤ degree q
by (rule degree-mono-generic[OF poly-pinfty-ge-int assms])

lemma degree-mono ′: assumes
∧

x. x ≥ c =⇒ (bnd :: int) ≤ poly p x ∧ poly p x
≤ poly q x

shows degree p ≤ degree q
by (rule degree-mono ′-generic[OF poly-pinfty-ge-int assms])

lemma weakly-monotone-insertion: assumes weakly-monotone-poly (vars p) p
and assignment (a :: - ⇒ int)
and

∧
x. x ∈ vars p =⇒ a x ≤ b x

shows insertion a p ≤ insertion b p
proof −

from monotone-poly-wrt-insertion[OF - - assms(1 ,2 ), of b] assms(3 )
show ?thesis by auto

qed

Lemma 5.2
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lemma degree-partial-insertion-stays-constant: assumes mono: monotone-poly (vars
p) p

shows ∃ a. assignment (a :: - ⇒ int) ∧
(∀ b. (∀ y. a y ≤ b y) −→ degree (partial-insertion a x p) = degree (partial-insertion

b x p))
using degree-partial-insertion-stays-constant-generic[OF - - poly-pinfty-ge-int mono,

of 0 x]
by (simp, metis le-less)

lemma degree-partial-insertion-stays-constant-wm: assumes wm: weakly-monotone-poly
(vars p) p

shows ∃ a. assignment (a :: - ⇒ int) ∧
(∀ b. (∀ y. a y ≤ b y) −→ degree (partial-insertion a x p) = degree (partial-insertion

b x p))
using degree-partial-insertion-stays-constant-generic[OF - - poly-pinfty-ge-int wm,

of 0 x]
by auto

Lemma 5.3
lemma subst-same-var-weakly-monotone-imp-same-degree:

assumes wm: weakly-monotone-poly (vars p) (p :: int mpoly)
and qp: poly-to-mpoly x q = substitute (λi. PVar x) p

shows total-degree p = degree q
proof (cases total-degree p = 0 )

case False
from False have p0 : p 6= 0 by auto
obtain d where dq: degree q = d by blast
let ?mc = (λ m. mmonom m (mcoeff p m))
let ?cfs = {m . mcoeff p m 6= 0}
let ?lc = lead-coeff
note fin = finite-coeff-support[of p]
define M where M = total-degree p
from degree-monom-eq-total-degree[OF p0 ]
obtain mM where mM : mcoeff p mM 6= 0 degree-monom mM = M unfolding

M-def by blast
from degree-substitute-same-var [of x p, folded M-def qp]
have dM : d ≤ M unfolding dq degree-poly-to-mpoly .
from False M-def have M1 : M ≥ 1 by auto
define p1 where p1 = sum ?mc (?cfs ∩ {m. degree-monom m = M})
define p2 where p2 = sum ?mc (?cfs ∩ {m. degree-monom m < M})
have p = sum ?mc ?cfs

by (rule mpoly-as-sum)
also have ?cfs = ?cfs ∩ {m. degree-monom m = M}
∪ ?cfs ∩ {m. degree-monom m 6= M} by auto

also have ?cfs ∩ {m. degree-monom m 6= M} = ?cfs ∩ {m. degree-monom m <
M}

using degree-monon-le-total-degree[of p, folded M-def ] by force
also have sum ?mc (?cfs ∩ {m. degree-monom m = M} ∪ . . .) = p1 + p2

unfolding p1-def p2-def
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using fin by (intro sum.union-disjoint, auto)
finally have p-split: p = p1 + p2 .
have total-degree p2 ≤ M − 1 unfolding p2-def

by (intro total-degree-sum-leI , subst total-degree-monom, auto)
also have . . . < M using M1 by auto
finally have deg-p ′: total-degree p2 < M by auto
have p1 6= 0
proof

assume p1 = 0
hence p = p2 unfolding p-split by auto
hence M = total-degree p2 unfolding M-def by simp
with deg-p ′ show False by auto

qed
with mpoly-ext-bounded-int[of 0 p1 0 ] obtain b

where b:
∧

v. b v ≥ 0 and bpm0 : insertion b p1 6= 0 by auto
define B where B = Max (insert 1 (b ‘ vars p))
define X where X = (0 :: nat)
define pb where pb p = mpoly-to-poly X (substitute (λ v. Const (b v) ∗ PVar

X) p) for p
have varsX : vars (substitute (λ v. Const (b v) ∗ PVar X) p) ⊆ {X} for p

by (intro vars-substitute order .trans[OF vars-mult], auto)
have pb: substitute (λ v. Const (b v) ∗ PVar X) p = poly-to-mpoly X (pb p) for

p
unfolding pb-def
by (rule mpoly-to-poly-inverse[symmetric, OF varsX ])

have poly-pb: poly (pb p) x = insertion (λv. b v ∗ x) p for x p
using arg-cong[OF pb, of insertion (λ -. x),

unfolded insertion-poly-to-mpoly]
by (auto simp: insertion-substitute insertion-mult)

define lb where lb = insertion (λ -. 0 ) p
{

fix x
have poly (pb p) x = insertion (λv. b v ∗ x) p by fact
also have . . . = insertion (λv. b v ∗ x) p1 + insertion (λv. b v ∗ x) p2

unfolding p-split
by (simp add: insertion-add)

also have insertion (λv. b v ∗ x) p1 = insertion b p1 ∗ x^M
unfolding p1-def insertion-sum insertion-mult insertion-monom sum-distrib-right

power-mult-distrib
proof (intro sum.cong[OF refl], goal-cases)

case (1 m)
from 1 have M : M = degree-monom m by auto
have { v. lookup m v 6= 0} ⊆ keys m

by (simp add: keys.rep-eq)
from finite-subset[OF this] have fin: finite { v. lookup m v 6= 0} by auto
have (

∏
v. b v ^ lookup m v ∗ x ^ lookup m v)

= (
∏

v. b v ^ lookup m v) ∗ (
∏

v. x ^ lookup m v)
by (subst (1 2 3 ) Prod-any.expand-superset[OF fin])
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(insert zero-less-iff-neq-zero, force simp: prod.distrib)+
also have (

∏
v. x ^ lookup m v) = x ^ M unfolding M degree-monom-def

by (smt (verit) Prod-any.conditionalize Prod-any.cong finite-keys in-keys-iff
power-0 power-sum)

finally show ?case by simp
qed
also have insertion (λv. b v ∗ x) p2 = poly (pb p2 ) x unfolding poly-pb ..
finally have poly (pb p) x = poly (monom (insertion b p1 ) M + pb p2 ) x by

(simp add: poly-monom)
}
hence pbp-split: pb p = monom (insertion b p1 ) M + pb p2 by blast
have degree (pb p2 ) ≤ total-degree p2 unfolding pb-def

apply (subst degree-mpoly-to-poly)
apply (simp add: varsX)

by (rule degree-substitute-const-same-var)
also have . . . < M by fact
finally have deg-pbp2 : degree (pb p2 ) < M .
have degree (monom (insertion b p1 ) M ) = M using bpm0 by (rule de-

gree-monom-eq)
with deg-pbp2 pbp-split have deg-pbp: degree (pb p) = M unfolding pbp-split

by (subst degree-add-eq-left, auto)
have ?lc (pb p) = insertion b p1 unfolding pbp-split

using deg-pbp2 bpm0 coeff-eq-0 deg-pbp pbp-split by auto
define bnd where bnd = insertion (λ -. 0 ) p

{
fix x :: int
assume x: x ≥ 0
have ass: assignment (λ v. b v ∗ x) unfolding assignment-def using x b by

auto
have poly (pb p) x = insertion (λv. b v ∗ x) p by fact
also have insertion (λ v. b v ∗ x) p ≤ insertion (λ v. B ∗ x) p
proof (rule weakly-monotone-insertion[OF wm ass])

fix v
show v ∈ vars p =⇒ b v ∗ x ≤ B ∗ x using b[of v] x unfolding B-def

by (intro mult-right-mono, auto intro!: Max-ge vars-finite)
qed
also have . . . = poly q (B ∗ x) unfolding poly-to-mpoly-substitute-same[OF

qp] ..
also have . . . = poly (q ◦p [:0 , B:]) x by (simp add: poly-pcompose ac-simps)
finally have ineq: poly (pb p) x ≤ poly (q ◦p [:0 , B:]) x .
have bnd ≤ insertion (λv. b v ∗ x) p unfolding bnd-def

by (intro weakly-monotone-insertion[OF wm], insert b x, auto simp: assign-
ment-def )

also have . . . = poly (pb p) x using poly-pb by auto
finally have bnd ≤ poly (pb p) x by auto
note this ineq

} note pb-approx = this
have M = degree (pb p) unfolding deg-pbp ..
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also have . . . ≤ degree (q ◦p [:0 , B:])
by (intro degree-mono ′[of 0 bnd], insert pb-approx, auto)

also have . . . ≤ d by (simp add: dq)
finally have deg-pbp: M ≤ d .
with dM have M = d by auto
thus ?thesis unfolding M-def dq .

next
case True
then obtain c where p: p = Const c using degree-0-imp-Const by blast
with qp have poly-to-mpoly x q = p by auto
thus ?thesis

by (metis True degree-Const degree-poly-to-mpoly p)
qed

lemma monotone-poly-partial-insertion:
assumes x: x ∈ xs
and mono: monotone-poly xs p
and ass: assignment a

shows 0 < degree (partial-insertion a x p)
lead-coeff (partial-insertion a x p) > 0
valid-poly p =⇒ y ≥ 0 =⇒ poly (partial-insertion a x p) y ≥ y
valid-poly p =⇒ insertion a p ≥ a x

proof −
have 0 : transp ((>) :: int ⇒ -) by auto
have 1 : (x < y) = (x + 1 ≤ y) for x y :: int by auto
have 2 : x ≤ int (nat x) for x by auto
note main = monotone-poly-partial-insertion-generic[of (>) 1 1 nat, OF 0 -

poly-pinfty-ge-int 1 - - 2 x mono ass, simplified]
show 0 < degree (partial-insertion a x p) 0 < lead-coeff (partial-insertion a x p)

using main by auto
assume valid: valid-poly p
{

fix y :: int
assume y ≥ 0
then obtain n where y: y = int n

by (metis int-nat-eq)
from main(3 )[OF valid, of n, folded y]
show y ≤ poly (partial-insertion a x p) y by auto

} note estimation = this
from ass have a x ≥ 0 unfolding assignment-def by auto
from estimation[OF this] show insertion a p ≥ a x

using insertion-partial-insertion[of x a a p] by auto
qed

end

context int-poly-inter
begin
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lemma insertion-eval-pos: assumes funas-term t ⊆ F
and assignment α

shows insertion α (eval t) ≥ 0
by (rule valid-imp-insertion-eval-pos[OF valid assms])

lemma monotone-poly-eval: assumes funas-term t ⊆ F
shows monotone-poly (vars-term t) (eval t) vars (eval t) = vars-term t

proof −
have ∃ y. x < y for x :: int by (intro exI [of - x + 1 ], auto)
from monotone-poly-eval-generic[OF valid - - this - assms]
show monotone-poly (vars-term t) (eval t) vars (eval t) = vars-term t by auto

qed
end

locale term-poly-input = poly-input p q for p q +
assumes terminating-poly: termination-by-int-poly-interpretation F-S S

begin

definition I where I = (SOME I . int-poly-inter F-S I ∧ int-poly-inter .termination-by-poly-interpretation
F-S I S)

lemma I : int-poly-inter F-S I int-poly-inter .termination-by-poly-interpretation F-S
I S
using someI-ex[OF terminating-poly[unfolded termination-by-int-poly-interpretation-def ],

folded I-def ] by auto

sublocale int-poly-inter F-S I by (rule I (1 ))

lemma orient: orient-rule (lhs-S ,rhs-S)
using I (2 )[unfolded termination-by-interpretation-def termination-by-poly-interpretation-def ]

unfolding S-def by auto

lemma solution: positive-poly-problem p q
proof −

from orient[unfolded orient-rule]
have gt: gt-poly (eval lhs-S) (eval rhs-S) by auto
from valid[unfolded valid-monotone-poly-inter-def ]
have valid:

∧
f . f ∈ F-S =⇒ valid-monotone-poly f by auto

let ?lc = lead-coeff
let ?f = (f-sym,7 )
have ?f ∈ F-S unfolding F-S-def by auto
from valid[OF this, unfolded valid-monotone-poly-def ] obtain f where

If : I f-sym = f and f : valid-poly f monotone-poly (vars f ) f vars f = {..< 7}
by auto
from f (2 ) have wmf : weakly-monotone-poly (vars f ) f by (rule monotone-imp-weakly-monotone)
define l where l i = args (lhs-S) ! i for i
define r where r i = args (rhs-S) ! i for i
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have list: [0 ..<7 ] = [0 ,1 ,2 ,3 ,4 ,5 ,6 :: nat] by code-simp
have lhs-S : lhs-S = Fun f-sym (map l [0 ..<7 ]) unfolding lhs-S-def l-def by

(auto simp: list)
have rhs-S : rhs-S = Fun f-sym (map r [0 ..<7 ]) unfolding rhs-S-def r-def by

(auto simp: list)
{

fix i :: var
define vs where vs = V-list
assume i < 7
hence choice: i = 0 ∨ i = 1 ∨ i = 2 ∨ i = 3 ∨ i = 4 ∨ i = 5 ∨ i = 6 by

linarith
have set: {0 ..<7 :: nat} = {0 ,1 ,2 ,3 ,4 ,5 ,6} by code-simp
from choice have vars: vars-term (l i) = {i} vars-term (r i) = {i} unfolding

l-def lhs-S-def r-def rhs-S-def
using vars-encode-poly[of 2 p] vars-encode-poly[of 2 q]

by (auto simp: y1-def y2-def y3-def y4-def y5-def y6-def y7-def vs-def [symmetric])
from choice set have funs: funas-term (l i) ∪ funas-term (r i) ⊆ F-S using

rhs-S-F lhs-S-F unfolding lhs-S rhs-S
by auto

have lr ∈ {l,r} =⇒ vars-term (lr i) = {i} lr ∈ {l,r} =⇒ funas-term (lr i) ⊆
F-S for lr

by (insert vars funs, force)+
} note signature-l-r = this
{

fix i :: var and lr
assume i: i < 7 and lr : lr ∈ {l,r}
from signature-l-r [OF i lr ] monotone-poly-eval[of lr i]
have vars: vars (eval (lr i)) = {i}

and mono: monotone-poly {i} (eval (lr i)) by auto
} note eval-l-r = this

define upoly where upoly l-or-r i = mpoly-to-poly i (eval (l-or-r i)) for l-or-r ::
var ⇒ (-,-)term and i

{
fix lr and i :: nat and a :: - ⇒ int
assume a: assignment a and i: i < 7 and lr : lr ∈ {l,r}
with eval-l-r [OF i] signature-l-r [OF i]
have vars: vars (eval (lr i)) = {i} and mono: monotone-poly {i} (eval (lr i))

and funs: funas-term (lr i) ⊆ F-S by auto
from insertion-eval-pos[OF funs]
have valid: valid-poly (eval (lr i)) unfolding valid-poly-def by auto
from monotone-poly-partial-insertion[OF - mono a, of i] valid
have deg: degree (partial-insertion a i (eval (lr i))) > 0

and lc: ?lc (partial-insertion a i (eval (lr i))) > 0
and ineq: insertion a (eval (lr i)) ≥ a i by auto
moreover have partial-insertion a i (eval (lr i)) = upoly lr i unfolding

upoly-def
using vars eval-l-r [OF i, of r , simplified]
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by (intro poly-ext)
(metis i insertion-partial-insertion-vars poly-eq-insertion poly-inter .vars-eval

signature-l-r(1 )[of - r , simplified] singletonD)
ultimately
have degree (upoly lr i) > 0 ?lc (upoly lr i) > 0

insertion a (eval (lr i)) ≥ a i by auto
} note upoly-pos-subterm = this

{
fix i :: var
assume i: i < 7
from degree-partial-insertion-stays-constant[OF f (2 ), of i] obtain a where

a: assignment a and
deg-a:

∧
b. (

∧
y. a y ≤ b y) =⇒ degree (partial-insertion a i f ) = degree

(partial-insertion b i f )
by auto

define c where c j = (if j < 7 then insertion a (eval (l j)) else a j) for j
define e where e j = (if j < 7 then insertion a (eval (r j)) else a j) for j
{

fix x :: int
assume x: x ≥ 0
have ass: assignment (a (i := x)) using x a unfolding assignment-def by

auto
from gt[unfolded gt-poly-def , rule-format, OF ass, unfolded rhs-S lhs-S ]
have insertion (a(i := x)) (eval (Fun f-sym (map r [0 ..<7 ])))
< insertion (a(i := x)) (eval (Fun f-sym (map l [0 ..<7 ]))) by simp

also have insertion (a(i := x)) (eval (Fun f-sym (map r [0 ..<7 ]))) =
insertion (λj. insertion (a(i := x)) (eval (r j))) f
by (simp add: If insertion-substitute, intro insertion-irrelevant-vars, auto

simp: f )
also have . . . = poly (partial-insertion e i f ) (poly (upoly r i) x)
proof −

let ?α = (λj. insertion (a(i := x)) (eval (r j)))
have insi: poly (upoly r i) x = insertion (a(i := x)) (eval (r i))

unfolding upoly-def using eval-l-r(1 )[OF i, of r ]
by (subst poly-eq-insertion, force)
(intro insertion-irrelevant-vars, auto)

show ?thesis unfolding insi
proof (rule insertion-partial-insertion-vars[of i f e ?α, symmetric])

fix j
show j 6= i =⇒ j ∈ vars f =⇒ e j = insertion (a(i := x)) (eval (r j))

unfolding e-def f using eval-l-r [of j] f by (auto intro!: inser-
tion-irrelevant-vars)

qed
qed
also have insertion (a(i := x)) (eval (Fun f-sym (map l [0 ..<7 ]))) =

insertion (λj. insertion (a(i := x)) (eval (l j))) f
by (simp add: If insertion-substitute, intro insertion-irrelevant-vars, auto
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simp: f )
also have . . . = poly (partial-insertion c i f ) (poly (upoly l i) x)
proof −

let ?α = (λj. insertion (a(i := x)) (eval (l j)))
have insi: poly (upoly l i) x = insertion (a(i := x)) (eval (l i))

unfolding upoly-def using eval-l-r [OF i]
by (subst poly-eq-insertion, force)
(intro insertion-irrelevant-vars, auto)

show ?thesis unfolding insi
proof (rule insertion-partial-insertion-vars[of i f c ?α, symmetric])

fix j
show j 6= i =⇒ j ∈ vars f =⇒ c j = insertion (a(i := x)) (eval (l j))

unfolding c-def f using eval-l-r [of j] f by (auto intro!: inser-
tion-irrelevant-vars)

qed
qed

finally have poly (partial-insertion c i f ) (poly (upoly l i) x)
> poly (partial-insertion e i f ) (poly (upoly r i) x) .

} note 1 = this

define er where er = partial-insertion e i f ◦p upoly r i
define cl where cl = partial-insertion c i f ◦p upoly l i
define d where d = degree (partial-insertion e i f )
{

fix x
have a x ≤ c x ∧ a x ≤ e x
proof (cases x ∈ vars f )

case False
thus ?thesis unfolding c-def e-def f by auto

next
case True
hence id: (x < 7 ) = True and x: x < 7 unfolding f by auto

show ?thesis unfolding c-def e-def id if-True using upoly-pos-subterm(3 )[OF
a x] by auto

qed
hence a x ≤ c x a x ≤ e x by auto

} note a-ce = this

have d-eq: d = degree (partial-insertion c i f ) unfolding d-def
by (subst (1 2 ) deg-a[symmetric], insert a-ce, auto)

have e: assignment e using a a-ce(2 ) unfolding assignment-def
by (smt (verit, del-insts))

have d-pos: d > 0 unfolding d-def
by (intro monotone-poly-partial-insertion[OF - f (2 ) e], insert f i, auto)

have lc-e-pos: ?lc (partial-insertion e i f ) > 0
by (intro monotone-poly-partial-insertion[OF - f (2 ) e], insert f i, auto)
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have lc-r-pos: ?lc (upoly r i) > 0 by (intro upoly-pos-subterm[OF a i], auto)
have deg-r : 0 < degree (upoly r i) by (intro upoly-pos-subterm[OF a i], auto)
have lc-er-pos: ?lc er > 0 unfolding er-def

by (subst lead-coeff-comp[OF deg-r ], insert lc-e-pos deg-r lc-r-pos, auto)

from 1 [folded poly-pcompose, folded er-def cl-def ]
have er-cl-poly: 0 ≤ x =⇒ poly er x < poly cl x for x by auto
have degree er ≤ degree cl
proof (intro degree-mono[of - 0 ])

show 0 ≤ ?lc er using lc-er-pos by auto
show 0 ≤ x =⇒ poly er x ≤ poly cl x for x using er-cl-poly[of x] by auto

qed
also have degree er = d ∗ degree (upoly r i)

unfolding er-def d-def by simp
also have degree cl = d ∗ degree (upoly l i)

unfolding cl-def d-eq by simp
finally have degree (upoly l i) ≥ degree (upoly r i) using d-pos by auto

} note deg-inequality = this

{
fix p :: int mpoly and x
assume p: monotone-poly {x} p vars p = {x}
define q where q = mpoly-to-poly x p
from mpoly-to-poly-inverse[of p x]
have pq: p = poly-to-mpoly x q using p unfolding q-def by auto
from pq p(2 ) have deg: degree q > 0

by (simp add: degree-mpoly-to-poly degree-pos-iff q-def )
from deg pq have ∃ q. p = poly-to-mpoly x q ∧ degree q > 0 unfolding q-def

by auto
} note mono-unary-poly = this

{
fix f
assume f ∈ {q-sym, h-sym} ∪ v-sym ‘ V
hence (f , 1 ) ∈ F-S unfolding F-S-def F-def by auto
from valid[OF this, unfolded valid-monotone-poly-def ] obtain p

where p: p = I f monotone-poly {..<1} p vars p = {0} by auto
have id: {..< (1 :: nat)} = {0} by auto
have ∃ q. I f = poly-to-mpoly 0 q ∧ degree q > 0 unfolding p(1 )[symmetric]

by (intro mono-unary-poly, insert p(2−3 )[unfolded id], auto)
} note unary-symbol = this

{
fix f and n :: nat and x :: var
assume f ∈ {f-sym,a-sym} f = f-sym =⇒ n = 7 f = a-sym =⇒ n = 2
hence n: n > 1 and f : (f ,n) ∈ F-S unfolding F-def F-S-def by force+
define p where p = I f
from valid[OF f , unfolded valid-monotone-poly-def , rule-format, OF refl p-def ]
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have mono: monotone-poly (vars p) p and vars: vars p = {..<n} and valid:
valid-poly p by auto

let ?t = Fun f (replicate n (TVar x))
have t-F : funas-term ?t ⊆ F-S using f by auto
have vt: vars-term ?t = {x} using n by auto
define q where q = eval ?t
from monotone-poly-eval[OF t-F , unfolded vt, folded q-def ]
have monotone-poly {x} q vars q = {x} by auto
from mono-unary-poly[OF this] obtain q ′ where

qq ′: q = poly-to-mpoly x q ′ and dq ′: degree q ′ > 0 by auto
have q ′t: poly-to-mpoly x q ′ = eval ?t unfolding qq ′[symmetric] q-def by simp
also have . . . = substitute (λi. if i < n then eval (replicate n (TVar x) ! i) else

0 ) p
by (simp add: p-def [symmetric])

also have (λi. if i < n then eval (replicate n (TVar x) ! i) else 0 ) = (λi. if i
< n then PVar x else 0 )

by (intro ext, auto)
also have substitute . . . p = substitute (λ i. PVar x) p using vars

unfolding substitute-def using vars-replace-coeff [of Const, OF Const-0 ]
by (intro insertion-irrelevant-vars, auto)

finally have eq: poly-to-mpoly x q ′ = substitute (λi. PVar x) p .
have ∃ p q. I f = p ∧ eval ?t = poly-to-mpoly x q ∧ poly-to-mpoly x q =

substitute (λi. PVar x) p ∧ degree q > 0
∧ vars p = {..<n} ∧ monotone-poly (vars p) p

by (intro exI [of - p] exI [of - q ′] conjI valid eq dq ′ p-def [symmetric] q ′t[symmetric]
mono vars)

} note f-a-sym = this

from unary-symbol[of q-sym] obtain q where Iq: I q-sym = poly-to-mpoly 0 q
and dq: degree q > 0 by auto

from unary-symbol[of h-sym] obtain h where Ih: I h-sym = poly-to-mpoly 0 h
and dh: degree h > 0 by auto

from unary-symbol[of v-sym i for i] have ∀ i. ∃ q. i ∈ V −→ I (v-sym i) =
poly-to-mpoly 0 q ∧ 0 < degree q by auto

from choice[OF this] obtain v where
Iv: i ∈ V =⇒ I (v-sym i) = poly-to-mpoly 0 (v i) and
dv: i ∈ V =⇒ degree (v i) > 0

for i by auto

have eval-pm-Var : eval (TVar y) = poly-to-mpoly y [:0 ,1 :] for y
unfolding eval.simps mpoly-of-poly-is-poly-to-mpoly[symmetric] by simp

have id: (if 0 = (0 :: nat) then eval ([t] ! 0 ) else 0 ) = eval t for t by simp
{

have y: eval (TVar y4 ) = poly-to-mpoly y4 [:0 ,1 :] (is - = poly-to-mpoly -
?poly1 ) by fact

have hy: eval (Fun h-sym [TVar y4 ]) = poly-to-mpoly y4 h using Ih
apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y4 ?poly1 ])
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apply (unfold id, intro y)
by simp

have qhy: eval (Fun q-sym [Fun h-sym [TVar y4 ]]) = poly-to-mpoly y4 (pcompose
q h) using Iq

apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y4 h])
apply (unfold id, intro hy)

by simp
hence l3 : eval (l 3 ) = poly-to-mpoly y4 (pcompose q h) unfolding l-def lhs-S-def

by simp

have qy: eval (Fun q-sym [TVar y4 ]) = poly-to-mpoly y4 q using Iq
apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y4 ?poly1 ])
apply (unfold id, intro y)

by simp
have hqy: eval (Fun h-sym [Fun q-sym [TVar y4 ]]) = poly-to-mpoly y4 (pcompose

h q) using Ih
apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y4 q])
apply (unfold id, intro qy)

by simp
have hhqy: eval (Fun h-sym [Fun h-sym [Fun q-sym [TVar y4 ]]]) = poly-to-mpoly

y4 (pcompose h (pcompose h q)) using Ih
apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y4 pcompose h q])
apply (unfold id, intro hqy)

by simp
hence r3 : eval (r 3 ) = poly-to-mpoly y4 (pcompose h (pcompose h q)) unfolding

r-def rhs-S-def by simp

from deg-inequality[of 3 ] have deg: degree (upoly r 3 ) ≤ degree (upoly l 3 ) by
simp

hence degree h ∗ (degree h ∗ degree q) ≤ degree q ∗ degree h
unfolding upoly-def l3 r3 y4-def poly-to-mpoly-inverse by simp

with dq have degree h ∗ degree h ≤ degree h by simp
with dh have degree h = 1 by auto

} note dh = this

define tayy where tayy = Fun a-sym (replicate 2 (TVar y5 ))
from f-a-sym[of a-sym 2 y5 , folded tayy-def ] obtain a ayy where

Ia: I a-sym = a
and eval-ayy: eval tayy = poly-to-mpoly y5 ayy
and dayy: degree ayy > 0 and payy: poly-to-mpoly y5 ayy = substitute (λi.

PVar y5 ) a
and monoa: monotone-poly (vars a) a and varsa: vars a = {..<2} by blast

{
define vs where vs = V-list
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have vs: set vs ⊆ V unfolding vs-def V-list by auto
have r 4 = foldr (λi t. Fun (v-sym i) [t]) vs tayy unfolding tayy-def r-def

rhs-S-def sub-def vs-def
by (simp add: numeral-eq-Suc)

also have ∃ q. eval . . . = poly-to-mpoly y5 q ∧ degree q = prod-list (map (λ i.
degree (v i)) vs) ∗ degree ayy

using vs
proof (induct vs)

case Nil
show ?case using eval-ayy by auto

next
case (Cons x vs)
from Cons obtain q where IH1 : eval (foldr (λi t. Fun (v-sym i) [t]) vs tayy)

= poly-to-mpoly y5 q
and IH2 : degree q = (

∏
i←vs. degree (v i)) ∗ degree ayy by auto

from Cons have x: x ∈ V by auto
have eval: eval (foldr (λi t. Fun (v-sym i) [t]) (x # vs) tayy) = poly-to-mpoly

y5 (v x ◦p q) using Iv[OF x]
apply simp
apply (subst substitute-poly-to-mpoly[of - - y5 q])
apply (unfold id, intro IH1 )

by simp
show ?case unfolding eval by (intro exI [of - v x ◦p q], auto simp: IH2 )

qed
finally obtain q where

r4 : eval (r 4 ) = poly-to-mpoly y5 q and
q: degree q = prod-list (map (λ i. degree (v i)) vs) ∗ degree ayy
by auto

have y: eval (TVar y5 ) = poly-to-mpoly y5 [:0 ,1 :] (is - = poly-to-mpoly -
?poly1 ) by fact

have hy: eval (Fun h-sym [TVar y5 ]) = poly-to-mpoly y5 h using Ih
apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y5 ?poly1 ])
apply (unfold id, intro y)

by simp

hence l4 : eval (l 4 ) = poly-to-mpoly y5 h unfolding l-def lhs-S-def by simp

from deg-inequality[of 4 ] have deg: degree (upoly r 4 ) ≤ degree (upoly l 4 ) by
simp

hence degree q ≤ degree h
unfolding upoly-def l4 r4 y5-def poly-to-mpoly-inverse by simp

hence degq: degree q ≤ 1 unfolding dh by simp
hence (∀ x ∈ set vs. degree (v x) = 1 ) ∧ degree ayy = 1 ∧ degree q = 1 using

vs unfolding q
proof (induct vs)

case Nil
thus ?case using dayy by auto
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next
case (Cons x vs)
define rec where rec = (

∏
i←vs. degree (v i)) ∗ degree ayy

have id: (
∏

i←x # vs. degree (v i)) ∗ degree ayy = degree (v x) ∗ rec
unfolding rec-def by auto

from Cons(2 )[unfolded id] have prems: degree (v x) ∗ rec ≤ 1 by auto
from Cons(3 ) have x: x ∈ V and sub: set vs ⊆ V by auto
from dv[OF x] have dv: degree (v x) ≥ 1 by auto
from dv prems have rec ≤ 1
by (metis dual-order .trans mult.commute mult.right-neutral mult-le-mono2 )

from Cons(1 )[folded rec-def , OF this sub]
have IH : (∀ x∈set vs. degree (v x) = 1 ) degree ayy = 1 rec = 1 by auto
from IH (3 ) dv prems have dvx: degree (v x) = 1 by simp
show ?case unfolding id using dvx IH by auto

qed
from this[unfolded vs-def V-list]
have dv:

∧
x. x ∈ V =⇒ degree (v x) = 1 and dayy: degree ayy = 1 by auto

}
hence dv:

∧
x. x ∈ V =⇒ degree (v x) = 1 and dayy: degree ayy = 1 by auto

define tfyy where tfyy = Fun f-sym (replicate 7 (TVar y6 ))
from f-a-sym[of f-sym 7 y6 , folded tfyy-def ] obtain f fyy where

If : I f-sym = f
and eval-fyy: eval tfyy = poly-to-mpoly y6 fyy
and dfyy: degree fyy > 0 and pfyy: poly-to-mpoly y6 fyy = substitute (λi. PVar

y6 ) f
and monof : monotone-poly (vars f ) f and varsf : vars f = {..<7} by blast

{
have y: eval (TVar y6 ) = poly-to-mpoly y6 [:0 ,1 :] (is - = poly-to-mpoly -

?poly1 ) by fact
have hy: eval (Fun h-sym [TVar y6 ]) = poly-to-mpoly y6 h using Ih

apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y6 ?poly1 ])
apply (unfold id, intro y)

by simp

hence l5 : eval (l 5 ) = poly-to-mpoly y6 h unfolding l-def lhs-S-def by simp
have r 5 = tfyy unfolding tfyy-def r-def rhs-S-def by simp
hence r5 : eval (r 5 ) = poly-to-mpoly y6 fyy using eval-fyy by simp

from deg-inequality[of 5 ] have deg: degree (upoly r 5 ) ≤ degree (upoly l 5 ) by
simp

from this[unfolded upoly-def l5 r5 y6-def poly-to-mpoly-inverse dh]
have degree fyy ≤ 1 .

}
with dfyy
have dfyy: degree fyy = 1 by auto
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note lemma-5-3 = subst-same-var-weakly-monotone-imp-same-degree[OF mono-
tone-imp-weakly-monotone]

from lemma-5-3 [OF monof ] dfyy pfyy have df : total-degree f = 1 by auto
from lemma-5-3 [OF monoa] dayy payy have da: total-degree a = 1 by auto

let ?argsL = [q-t (h-t (Var y4 )),
h-t (Var y5 ),
h-t (Var y6 ),
g-t (Var y7 ) o-t]

let ?argsR = [h-t (h-t (q-t (Var y4 ))),
foldr v-t V-list (a-t (Var y5 ) (Var y5 )),
Fun f-sym (replicate 7 (Var y6 )),
g-t (Var y7 ) z-t]

show ?thesis
apply (rule poly-input-to-solution-common.solution[of - - I F-S ?argsL ?argsR])
apply (unfold-locales)
subgoal using orient unfolding lhs-S-def rhs-S-def by simp
subgoal by simp
subgoal using signature-l-r(1 )[of 4 r ]
by (auto simp: y1-def y2-def y3-def y4-def y5-def y6-def y7-def r-def rhs-S-def )

subgoal unfolding F-S-def by auto
subgoal for g n
proof (goal-cases)

case 1
hence ch: (g,n) = (f-sym,7 ) ∨ (g,n) ∈ F by auto
hence (g,n) ∈ F-S unfolding F-S-def by auto

from valid[rule-format, OF this, unfolded valid-monotone-poly-def , rule-format,
OF refl refl]

have ∗: valid-poly (I g) monotone-poly {..<n} (I g) vars (I g) = {..<n}
by auto

show ?case
proof (intro monotone-linear-poly-to-coeffs ∗)

show total-degree (I g) ≤ 1
proof (rule ccontr)

assume not: ¬ ?thesis
with ch df da If Ia have (g,n) ∈ F − {(a-sym,2 )} by auto
then consider (V ) i where i ∈ V g = v-sym i n = 1 | (z) g = z-sym n

= 0
unfolding F-def by auto

thus False
proof cases

case V
have total-degree (I g) = 1 unfolding dv[OF V (1 ), symmetric]
proof (rule lemma-5-3 [OF ∗(2 )[folded ∗(3 )]])

show poly-to-mpoly 0 (v i) = substitute (λi. PVar 0 ) (I g)
unfolding V Iv[OF V (1 )]
by (intro mpoly-extI , auto simp: insertion-substitute)

qed
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with not show False by auto
next

case z
with ∗ have vars (I g) = {} by auto

from vars-empty-Const[OF this] obtain c where I g = Const c by auto
hence total-degree (I g) = 0 by simp
with not show False by auto

qed
qed

qed
qed
done

qed
end

context poly-input
begin

Theorem 5.4 in paper
theorem polynomial-termination-with-natural-numbers-undecidable:

positive-poly-problem p q ←→ termination-by-int-poly-interpretation F-S S
proof

assume positive-poly-problem p q
interpret solvable-poly-problem

by (unfold-locales, fact)
from solution-imp-poly-termination
show termination-by-int-poly-interpretation F-S S .

next
assume termination-by-int-poly-interpretation F-S S
interpret term-poly-input

by (unfold-locales, fact)
from solution show positive-poly-problem p q .

qed

end

Now head for Lemma 5.6
locale poly-input-omega-solution = poly-input
begin

fun I :: symbol ⇒ int list ⇒ int where
I o-sym xs = insertion (λ -. 1 ) q
| I z-sym xs = 0
| I a-sym xs = xs ! 0 + xs ! 1
| I g-sym xs = (xs ! 1 + 1 ) ∗ xs ! 0 + xs ! 1
| I h-sym xs = (xs ! 0 )^2 + 7 ∗ (xs ! 0 ) + 4
| I f-sym xs = xs ! 2 ∗ xs ! 6 + sum-list xs
| I q-sym xs = 5^(nat (xs ! 0 ))
| I (v-sym i) xs = xs ! 0
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lemma I-encode-num: assumes c ≥ 0
shows I [[encode-num x c]]α = c ∗ α x

proof −
from assms obtain n where cn: c = int n by (metis nonneg-eq-int)
hence natc: nat c = n by auto
show ?thesis unfolding encode-num-def natc unfolding cn

by (induct n, auto simp: algebra-simps)
qed

lemma I-v-pow-e: I [[(v-t x ^^ e) t]]α = I [[t]]α
by (induct e, auto)

lemma I-encode-monom: assumes c: c ≥ 0
shows I [[encode-monom x m c]]α = c ∗ α x

proof −
define xes where xes = var-list m
from var-list[of m c]
have monom: mmonom m c = Const c ∗ (

∏
(x, e)← xes . PVar x ^ e) unfolding

xes-def .
show ?thesis unfolding encode-monom-def monom xes-def [symmetric]

by (induct xes, auto simp: I-encode-num[OF c] I-v-pow-e)
qed

lemma I-encode-poly: assumes positive-poly r
shows I [[encode-poly x r ]]α = insertion (λ -. 1 ) r ∗ α x

proof −
define mcs where mcs = monom-list r
from monom-list[of r ] have r : r = (

∑
(m, c)← mcs. mmonom m c) unfolding

mcs-def by auto
have mcs: (m,c) ∈ set mcs =⇒ c ≥ 0 for m c

using monom-list-coeff assms unfolding mcs-def positive-poly-def by auto
show ?thesis unfolding encode-poly-def mcs-def [symmetric] unfolding r inser-

tion-sum-list map-map o-def
using mcs

proof (induct mcs)
case (Cons mc mcs)
obtain m c where mc: mc = (m,c) by force
from Cons(2 ) mc have c: c ≥ 0 by auto
note monom = I-encode-monom[OF this, of x m]
show ?case

by (simp add: mc monom algebra-simps, subst Cons(1 ), insert Cons(2 ), auto
simp: Const-add algebra-simps)

qed simp
qed
end

lemma length2-cases: length xs = 2 =⇒ ∃ x y. xs = [x,y]
by (cases xs; cases tl xs, auto)
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lemma length7-cases: length xs = 7 =⇒ ∃ x1 x2 x3 x4 x5 x6 x7 . xs = [x1 ,x2 ,x3 ,x4 ,x5 ,x6 ,x7 ]
apply (cases xs, force)
apply (cases drop 1 xs, force)
apply (cases drop 2 xs, force)
apply (cases drop 3 xs, force)
apply (cases drop 4 xs, force)
apply (cases drop 5 xs, force)
by (cases drop 6 xs, force+)

lemma length1-cases: length xs = Suc 0 =⇒ ∃ x. xs = [x]
by (cases xs; auto)

lemma less2-cases: i < 2 =⇒ i = 0 ∨ (i :: nat) = 1
by auto

lemma less7-cases: i < 7 =⇒ i = 0 ∨ (i :: nat) = 1 ∨ i = 2 ∨ i = 3 ∨ i = 4
∨ i = 5 ∨ i = 6

by auto

context poly-input-omega-solution
begin

sublocale inter-S : term-algebra F-S I (>) .
sublocale inter-S : omega-term-algebra F-S I
proof (unfold-locales, unfold inter-S .valid-monotone-inter-def , intro ballI )

fix fn
assume fn ∈ F-S
note F = this[unfolded F-S-def F-def ]
show inter-S .valid-monotone-fun fn

unfolding inter-S .valid-monotone-fun-def
proof (intro allI impI , clarify)

fix f n
assume fn: fn = (f ,n)
note defs = valid-fun-def monotone-fun-wrt-def
show valid-fun n (I f ) ∧ inter-S .monotone-fun n (I f )
proof (cases f )

case f : a-sym
with F fn have n: n = 2 by auto
show ?thesis unfolding f n

by (auto simp: defs dest!: length2-cases less2-cases)
next

case f : g-sym
with F fn have n: n = 2 by auto
show ?thesis unfolding f n

by (auto simp: defs dest!: length2-cases less2-cases)
(smt (verit, ccfv-SIG) mult-mono ′)

next
case f : z-sym
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with F fn have n: n = 0 by auto
show ?thesis unfolding f n

by (auto simp: defs)
next

case f : o-sym
with F fn have n: n = 0 by auto
show ?thesis unfolding f n

by (auto simp: defs intro!: insertion-positive-poly pq)
next

case f : f-sym
with F fn have n: n = 7 by auto
show ?thesis unfolding f n

by (auto simp: defs intro!: add-le-less-mono mult-mono
dest!: length7-cases less7-cases)

next
case f : (v-sym i)
with F fn have n: n = 1 by auto
show ?thesis unfolding f n

by (auto simp: defs)
next

case f : q-sym
with F fn have n: n = 1 by auto
show ?thesis unfolding f n

by (auto simp: defs dest: length1-cases)
next

case f : h-sym
with F fn have n: n = 1 by auto
show ?thesis unfolding f n

by (auto simp: defs power2-eq-square dest!: length1-cases)
(insert mult-strict-mono ′, fastforce)

qed
qed

qed

Lemma 5.6
lemma S-is-omega-terminating: omega-termination F-S S

unfolding omega-termination-def
proof (intro exI [of - I ] conjI )

show omega-term-algebra F-S I ..
show inter-S .termination-by-interpretation S

unfolding inter-S .termination-by-interpretation-def S-def
proof (clarify, intro conjI )

show funas-term lhs-S ∪ funas-term rhs-S ⊆ F-S using lhs-S-F rhs-S-F by
auto

show inter-S .orient-rule (lhs-S , rhs-S) unfolding inter-S .orient-rule-def split
proof (intro allI impI )

fix α :: var ⇒ int
assume assignment α
hence α: α x ≥ 0 for x unfolding assignment-def by auto
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from α[of y4 ] obtain n4 where n4 : α y4 = int n4
using nonneg-int-cases by blast

define q1 where q1 = insertion (λ-. 1 ) q
have q1 : q1 ≥ 0 unfolding q1-def using pq(2 )

by (simp add: insertion-positive-poly)
define p1 where p1 = insertion (λ-. 1 ) p
have p1 : p1 ≥ 0 unfolding p1-def using pq(1 )

by (simp add: insertion-positive-poly)
have [simp]: I [[foldr (λi t. Fun (v-sym i) [t]) xs t]]α = I [[t]]α for xs t

by (induct xs, auto)
define l where l i = args (lhs-S) ! i for i
define r where r i = args (rhs-S) ! i for i
note defs = l-def r-def lhs-S-def rhs-S-def
have 1 : I [[l 0 ]]α ≥ I [[r 0 ]]α unfolding defs by auto
have 2 : I [[l 1 ]]α ≥ I [[r 1 ]]α unfolding defs by auto
have 5 : I [[l 4 ]]α ≥ I [[r 4 ]]α unfolding defs using α[of y5 ] by auto
have 6 : I [[l 5 ]]α > I [[r 5 ]]α unfolding defs using α[of y6 ] by (auto simp:

power2-eq-square)
have 7 : I [[l 6 ]]α ≥ I [[r 6 ]]α unfolding defs using α[of y7 ] q1

by (auto simp: q1-def [symmetric] field-simps)

have n44 : n4 ∗ 4 = n4 + n4 + n4 + n4 by simp
have r3 : I [[r 3 ]]α = 1 ∗ 5^(4 ∗ n4 ) + 14 ∗ 5^(3 ∗ n4 ) + 64 ∗ 5^(2 ∗ n4 )

+ 105 ∗ 5^n4 + 48 ∗ 5^0
unfolding defs by (simp add: n4 field-simps power-mult power2-eq-square)
(simp flip: power-add power-mult add: field-simps n44 )

let ?large = 125 ∗ 5^(n4^2 + 7 ∗ n4 )
have l3 : I [[l 3 ]]α = ?large + ?large + ?large + ?large + ?large
unfolding defs by (simp add: n4 power2-eq-square nat-add-distrib nat-mult-distrib

power-add)
have 4 : I [[l 3 ]]α ≥ I [[r 3 ]]α unfolding l3 r3

by (intro add-mono mult-mono power-increasing, auto)

have I [[r 2 ]]α ∗ I [[r 6 ]]α + I [[r 2 ]]α
= ((q1 + 1 ) ∗ α y7 + q1 + 1 ) ∗ α y3
unfolding defs by (simp add: I-encode-poly[OF pq(2 )] q1-def field-simps)

also have . . . ≤ ((q1 + 1 ) ∗ α y7 + q1 + 1 ) ∗ ((p1 + 1 ) ∗ α y3 )
by (rule mult-left-mono, insert p1 q1 α, auto simp: field-simps)

also have . . . = I [[l 2 ]]α ∗ I [[l 6 ]]α + I [[l 2 ]]α
unfolding defs by (simp add: I-encode-poly[OF pq(1 )] q1-def p1-def

field-simps)
finally have 37 : I [[l 2 ]]α ∗ I [[l 6 ]]α + I [[l 2 ]]α ≥ I [[r 2 ]]α ∗ I [[r 6 ]]α + I [[r 2 ]]α

.

have lhs: lhs-S = Fun f-sym (map l [0 ,1 ,2 ,3 ,4 ,5 ,6 ]) unfolding lhs-S-def l-def
by simp

have rhs: rhs-S = Fun f-sym (map r [0 ,1 ,2 ,3 ,4 ,5 ,6 ]) unfolding rhs-S-def
r-def by simp

have I [[rhs-S ]]α = (I [[r 2 ]]α ∗ I [[r 6 ]]α + I [[r 2 ]]α) +
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(I [[r 0 ]]α + I [[r 1 ]]α + I [[r 3 ]]α + I [[r 4 ]]α + I [[r 6 ]]α) + I [[r 5 ]]α
unfolding rhs by simp

also have . . . < (I [[l 2 ]]α ∗ I [[l 6 ]]α + I [[l 2 ]]α) +
(I [[l 0 ]]α + I [[l 1 ]]α + I [[l 3 ]]α + I [[l 4 ]]α + I [[l 6 ]]α) + I [[l 5 ]]α

apply (rule add-le-less-mono[OF - 6 ])
apply (rule add-mono[OF 37 ])
by (intro add-mono 1 2 4 5 7 )

also have . . . = I [[lhs-S ]]α unfolding lhs by simp
finally show I [[lhs-S ]]α > I [[rhs-S ]]α .

qed
qed

qed
end

end

8 Undecidability of Polynomial Termination using
δ-Orders

theory Delta-Poly-Termination-Undecidable
imports

Poly-Termination-Undecidable
begin

context poly-input
begin

definition y8 :: var where y8 = 7
definition y9 :: var where y9 = 8

Definition 6.3
definition lhs-Q = Fun f-sym [

q-t (h-t (Var y1 )),
h-t (Var y2 ),
h-t (Var y3 ),
g-t (q-t (Var y4 )) (h-t (h-t (h-t (Var y4 )))),
q-t (Var y5 ),
a-t (Var y6 ) (Var y6 ),
Var y7 ,
Var y8 ,
h-t (a-t (encode-poly y9 p) (Var y9 ))]

fun g-list :: - ⇒ (symbol,var)term where
g-list [] = z-t
| g-list ((f ,n) # fs) = g-t (Fun f (replicate n z-t)) (g-list fs)

definition symbol-list where symbol-list = [(f-sym,9 ),(q-sym,1 ),(h-sym,1 ),(a-sym,2 )]
@ map (λ i. (v-sym i, 1 )) V-list
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definition t-t :: (symbol,var)term where t-t = (g-list ((z-sym,0 ) # symbol-list))

definition rhs-Q = Fun f-sym [
h-t (h-t (q-t (Var y1 ))),
g-t (Var y2 ) (Var y2 ),
Fun f-sym (replicate 9 (Var y3 )),
q-t (g-t (Var y4 ) t-t),
a-t (Var y5 ) (Var y5 ),
q-t (Var y6 ),
a-t z-t (Var y7 ),
a-t (Var y8 ) z-t,
a-t (encode-poly y9 q) (Var y9 )]

definition Q where Q = {(lhs-Q, rhs-Q)}

definition F-Q where F-Q = {(f-sym,9 ), (h-sym,1 ), (g-sym,2 ), (q-sym,1 )} ∪ F

lemma lhs-Q-F : funas-term lhs-Q ⊆ F-Q
proof −

from funas-encode-poly-p
show funas-term lhs-Q ⊆ F-Q unfolding lhs-Q-def by (auto simp: F-Q-def

F-def )
qed

lemma g-list-F : set zs ⊆ F-Q =⇒ funas-term (g-list zs) ⊆ F-Q
proof (induct zs)

case Nil
thus ?case by (auto simp: F-Q-def F-def )

next
case (Cons fa ts)
then obtain f a where fa: fa = (f ,a) and inF : (f ,a) ∈ F-Q by (cases fa, auto)
have {(g-sym,Suc (Suc 0 )),(z-sym,0 )} ⊆ F-Q by (auto simp: F-Q-def F-def )
with Cons fa inF show ?case by auto

qed

lemma symbol-list: set symbol-list ⊆ F-Q unfolding symbol-list-def F-Q-def F-def
using V-list by auto

lemma t-F : funas-term t-t ⊆ F-Q
unfolding t-t-def using g-list-F [OF symbol-list]
by (auto simp: F-Q-def F-def )

lemma vars-g-list[simp]: vars-term (g-list zs) = {}
by (induct zs, auto)

lemma vars-t: vars-term t-t = {}
unfolding t-t-def by simp
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lemma rhs-Q-F : funas-term rhs-Q ⊆ F-Q
proof −

from funas-encode-poly-q
show funas-term rhs-Q ⊆ F-Q unfolding rhs-Q-def using t-F by (auto simp:

F-Q-def F-def )
qed

context
fixes I :: symbol ⇒ ′a :: linordered-field mpoly and δ :: ′a and a3 a2 a1 a0 z0 v
assumes I : I a-sym = Const a3 ∗ PVar 0 ∗ PVar 1 + Const a2 ∗ PVar 0 +

Const a1 ∗ PVar 1 + Const a0
I z-sym = Const z0
I (v-sym i) = mpoly-of-poly 0 (v i)

and a: a3 > 0 a2 > 0 a1 > 0 a0 ≥ 0
and z: z0 ≥ 0
and v: nneg-poly (v i) degree (v i) > 0

begin

lemma nneg-combination: assumes nneg-poly r
shows nneg-poly ([:a1 , a3 :] ∗ r + [:a0 , a2 :])
by (intro nneg-poly-add nneg-poly-mult assms, insert a, auto)

lemma degree-combination: assumes nneg-poly r
shows degree ([:a1 , a3 :] ∗ r + [:a0 , a2 :]) = Suc (degree r)
using nneg-poly-degree-add-1 [OF assms, OF a(1 ) a(2 )] by auto

lemma degree-eval-encode-num: assumes c: c ≥ 0
shows ∃ p. mpoly-of-poly x p = poly-inter .eval I (encode-num x c) ∧ nneg-poly

p ∧ int (degree p) = c
proof −

interpret poly-inter UNIV I .
from assms obtain n where cn: c = int n by (metis nonneg-eq-int)
hence natc: nat c = n by auto
note [simp] = I
show ?thesis unfolding encode-num-def natc unfolding cn int-int-eq
proof (induct n)

case 0
show ?case using z by (auto simp: intro!: exI [of - [:z0 :]])

next
case (Suc n)
define t where t = (((λt. Fun a-sym [TVar x, t]) ^^ n) (Fun z-sym []))
from Suc obtain p where mp: mpoly-of-poly x p = eval t

and deg: degree p = n and p: nneg-poly p by (auto simp: t-def )
show ?case apply (simp add: t-def [symmetric])

apply (unfold deg[symmetric])
apply (intro exI [of - [: a1 , a3 :] ∗ p + [:a0 , a2 :]] conjI mpoly-extI de-

gree-combination p nneg-combination)
by (simp add: mp insertion-add insertion-mult field-simps)
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qed
qed

lemma degree-eval-encode-monom: assumes c: c > 0
and α: α = (λ i. int (degree (v i)))

shows ∃ p. mpoly-of-poly y p = poly-inter .eval I (encode-monom y m c) ∧ nneg-poly
p ∧

int (degree p) = insertion α (mmonom m c) ∧ degree p > 0
proof −

interpret poly-inter UNIV I .
define xes where xes = var-list m
from var-list[of m c]
have monom: mmonom m c = Const c ∗ (

∏
(x, e)← xes . PVar x ^ e) unfolding

xes-def .
show ?thesis unfolding encode-monom-def monom xes-def [symmetric]
proof (induct xes)

case Nil
show ?case using degree-eval-encode-num[of c y] c by auto

next
case (Cons xe xes)
obtain x e where xe: xe = (x,e) by force
define expr where expr = rec-list (encode-num y c) (λa. case a of (i, e) ⇒

λ-. (λt. Fun (v-sym i) [t]) ^^ e)
define exes where exes = expr xes
define ixes where ixes = insertion α (Const c ∗ (

∏
a← xes. case a of (x, a)

⇒ PVar x ^ a))
have step: expr (xe # xes) = ((λt. Fun (v-sym x) [t]) ^^ e) (exes)

unfolding xe expr-def exes-def by auto
have step ′: insertion α (Const c ∗ (

∏
a←xe # xes. case a of (x, a) ⇒ PVar x

^ a))
= (α x)^e ∗ ixes
unfolding xe ixes-def by (simp add: insertion-mult insertion-power)

from Cons(1 )[folded expr-def exes-def ixes-def ] obtain p where
IH : mpoly-of-poly y p = eval exes nneg-poly p
int (degree p) = ixes degree p > 0
by auto

show ?case
unfolding expr-def [symmetric]
unfolding step step ′

proof (induct e)
case 0
thus ?case using IH by auto

next
case (Suc e)
define rec where rec = ((λt. Fun (v-sym x) [t]) ^^ e) exes
from Suc[folded rec-def ] obtain p where

IH : mpoly-of-poly y p = eval rec nneg-poly p int (degree p) = α x ^ e ∗ ixes
degree p > 0 by auto

have ((λt. Fun (v-sym x) [t]) ^^ Suc e) exes = Fun (v-sym x) [rec]
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unfolding rec-def by simp
also have eval . . . = substitute (λi. if i = 0 then eval ([rec] ! i) else 0 )

(poly-to-mpoly 0 (v x))
by (simp add: I mpoly-of-poly-is-poly-to-mpoly)

also have . . . = poly-to-mpoly y (v x ◦p p)
by (rule substitute-poly-to-mpoly, auto simp: IH (1 )[symmetric] mpoly-of-poly-is-poly-to-mpoly)
finally have id: eval (((λt. Fun (v-sym x) [t]) ^^ Suc e) exes) = poly-to-mpoly

y (v x ◦p p) .
show ?case unfolding id mpoly-of-poly-is-poly-to-mpoly
proof (intro exI [of - v x ◦p p] conjI refl)

show int (degree (v x ◦p p)) = α x ^ Suc e ∗ ixes
unfolding degree-pcompose using IH (3 ) by (auto simp: α)

show nneg-poly (v x ◦p p) using IH (2 ) v[of x]
by (intro nneg-poly-pcompose, insert IH , auto)

show 0 < degree (v x ◦p p) unfolding degree-pcompose using IH (4 ) v[of
x] by auto

qed
qed

qed
qed

Lemma 6.2
lemma degree-eval-encode-poly-generic: assumes positive-poly r

and α: α = (λ i. int (degree (v i)))
shows ∃ p. poly-to-mpoly x p = poly-inter .eval I (encode-poly x r) ∧ nneg-poly p
∧

int (degree p) = insertion α r
proof −

interpret poly-inter UNIV I .
define mcs where mcs = monom-list r
from monom-list[of r ] have r : r = (

∑
(m, c)← mcs. mmonom m c) unfolding

mcs-def by auto
{

fix m c
assume mc: (m,c) ∈ set mcs
hence c ≥ 0

using monom-list-coeff assms unfolding mcs-def positive-poly-def by auto
moreover from mc have c 6= 0 unfolding mcs-def

by (transfer , auto)
ultimately have c > 0 by auto

} note mcs = this
note [simp] = I
show ?thesis unfolding encode-poly-def mcs-def [symmetric] unfolding r inser-

tion-sum-list map-map o-def
unfolding mpoly-of-poly-is-poly-to-mpoly[symmetric]
using mcs

proof (induct mcs)
case Nil
show ?case by (rule exI [of - [:z0 :]], insert z, auto)
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next
case (Cons mc mcs)
define trm where trm = rec-list (Fun z-sym []) (λa. case a of (m, c) ⇒ λ- t.

Fun a-sym [encode-monom x m c, t])
define expr where expr mcs = (

∑
x←mcs. insertion α (case x of (x, xa) ⇒

mmonom x xa)) for mcs
obtain m c where mc: mc = (m,c) by force
from Cons(2 ) mc have c: c > 0 by auto
from degree-eval-encode-monom[OF this α, of x m]
obtain q where monom: mpoly-of-poly x q = eval (encode-monom x m c)

nneg-poly q int (degree q) = insertion α (mmonom m c)
and dq: degree q > 0 by auto

from Cons(1 )[folded trm-def expr-def , OF Cons(2 )]
obtain p where IH : mpoly-of-poly x p = eval (trm mcs) nneg-poly p int (degree

p) = expr mcs by force
have step: trm (mc # mcs) = Fun a-sym [encode-monom x m c, trm mcs]

unfolding mc trm-def by simp
have step ′: expr (mc # mcs) = insertion α (mmonom m c) + expr mcs

unfolding mc expr-def by simp
have deg: degree ([:a3 :] ∗ q ∗ p + ([:a2 :] ∗ q + [:a1 :] ∗ p + [:a0 :])) = degree p

+ degree q
by (rule nneg-poly-degree-add, insert a IH monom, auto)

show ?case unfolding expr-def [symmetric] trm-def [symmetric]
unfolding step step ′

unfolding IH (3 )[symmetric] monom(3 )[symmetric]
apply (intro exI [of - [:a3 :] ∗ q ∗ p + [:a2 :] ∗ q + [:a1 :] ∗ p + [:a0 :]] conjI )

subgoal by (intro mpoly-extI , simp add: IH (1 )[symmetric] monom(1 )[symmetric]
insertion-mult insertion-add)

subgoal by (intro nneg-poly-mult nneg-poly-add IH monom, insert a, auto)
subgoal using deg by (auto simp: ac-simps)
done

qed
qed
end
end

context delta-poly-inter
begin

lemma transp-gt-delta: transp (λ x y. x ≥ y + δ) using δ0
by (auto simp: transp-def )

lemma gt-delta-imp-ge: y + δ ≤ x =⇒ y ≤ x using δ0 by auto

lemma weakly-monotone-insertion: assumes mono: monotone-poly (vars p) p
and a: assignment (a :: - ⇒ ′a)
and gt:

∧
x. x ∈ vars p =⇒ a x + δ ≤ b x

shows insertion a p ≤ insertion b p
using monotone-poly-wrt-insertion[OF transp-gt-delta gt-delta-imp-ge mono a, of
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b] gt δ0 by auto

Lemma 6.5
lemma degree-partial-insertion-stays-constant: assumes mono: monotone-poly (vars
p) p

shows ∃ a. assignment a ∧
(∀ b. (∀ y. a y + δ ≤ b y) −→ degree (partial-insertion a x p) = degree

(partial-insertion b x p))
using degree-partial-insertion-stays-constant-generic
[OF transp-gt-delta gt-delta-imp-ge poly-pinfty-ge mono, of δ x, simplified]

by metis

lemma degree-mono: assumes pos: lead-coeff p ≥ (0 :: ′a)
and le:

∧
x. x ≥ c =⇒ poly p x ≤ poly q x

shows degree p ≤ degree q
by (rule degree-mono-generic[OF poly-pinfty-ge assms])

lemma degree-mono ′: assumes
∧

x. x ≥ c =⇒ (bnd :: ′a) ≤ poly p x ∧ poly p x
≤ poly q x

shows degree p ≤ degree q
by (rule degree-mono ′-generic[OF poly-pinfty-ge assms])

Lemma 6.6
lemma subst-same-var-monotone-imp-same-degree:

assumes mono: monotone-poly (vars p) (p :: ′a mpoly)
and qp: poly-to-mpoly x q = substitute (λi. PVar x) p

shows total-degree p = degree q
proof (cases total-degree p = 0 )

case False
from False have p0 : p 6= 0 by auto
obtain d where dq: degree q = d by blast
let ?mc = (λ m. mmonom m (mcoeff p m))
let ?cfs = {m . mcoeff p m 6= 0}
let ?lc = lead-coeff
note fin = finite-coeff-support[of p]
define M where M = total-degree p
with False have M1 : M ≥ 1 by auto
from degree-monom-eq-total-degree[OF p0 ]
obtain mM where mM : mcoeff p mM 6= 0 degree-monom mM = M unfolding

M-def by blast
from degree-substitute-same-var [of x p, folded M-def qp]
have dM : d ≤ M unfolding dq degree-poly-to-mpoly .
define p1 where p1 = sum ?mc (?cfs ∩ {m. degree-monom m = M})
define p2 where p2 = sum ?mc (?cfs ∩ {m. degree-monom m < M})
have p = sum ?mc ?cfs

by (rule mpoly-as-sum)
also have ?cfs = ?cfs ∩ {m. degree-monom m = M}
∪ ?cfs ∩ {m. degree-monom m 6= M} by auto

also have ?cfs ∩ {m. degree-monom m 6= M} = ?cfs ∩ {m. degree-monom m <
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M}
using degree-monon-le-total-degree[of p, folded M-def ] by force

also have sum ?mc (?cfs ∩ {m. degree-monom m = M} ∪ . . .) = p1 + p2
unfolding p1-def p2-def

using fin by (intro sum.union-disjoint, auto)
finally have p-split: p = p1 + p2 .
have total-degree p2 ≤ M − 1 unfolding p2-def

by (intro total-degree-sum-leI , subst total-degree-monom, auto)
also have . . . < M using M1 by auto
finally have deg-p ′: total-degree p2 < M by auto
have p1 6= 0
proof

assume p1 = 0
hence p = p2 unfolding p-split by auto
hence M = total-degree p2 unfolding M-def by simp
with deg-p ′ show False by auto

qed
with mpoly-ext-bounded-field[of max 1 δ p1 0 ] obtain b

where b:
∧

v. b v ≥ max 1 δ and bpm0 : insertion b p1 6= 0 by auto
from b have b1 :

∧
v. b v ≥ 1 and bδ:

∧
v. b v ≥ δ by auto

define c where c = Max (insert 1 (b ‘ vars p)) + δ
define X where X = (0 :: nat)
define pb where pb p = mpoly-to-poly X (substitute (λ v. Const (b v) ∗ PVar

X) p) for p
have c1 : c ≥ 1 unfolding c-def using vars-finite[of p] δ0 Max-ge[of - 1 :: ′a]

by (meson add-increasing2 finite.insertI finite-imageI insertI1 nless-le)
have varsX : vars (substitute (λ v. Const (b v) ∗ PVar X) p) ⊆ {X} for p

by (intro vars-substitute order .trans[OF vars-mult], auto)
have pb: substitute (λ v. Const (b v) ∗ PVar X) p = poly-to-mpoly X (pb p) for

p
unfolding pb-def
by (rule mpoly-to-poly-inverse[symmetric, OF varsX ])

have poly-pb: poly (pb p) x = insertion (λv. b v ∗ x) p for x p
using arg-cong[OF pb, of insertion (λ -. x),

unfolded insertion-poly-to-mpoly]
by (auto simp: insertion-substitute insertion-mult)

define lb where lb = insertion (λ -. 0 ) p
{

fix x
have poly (pb p) x = insertion (λv. b v ∗ x) p by fact
also have . . . = insertion (λv. b v ∗ x) p1 + insertion (λv. b v ∗ x) p2

unfolding p-split
by (simp add: insertion-add)

also have insertion (λv. b v ∗ x) p1 = insertion b p1 ∗ x^M
unfolding p1-def insertion-sum insertion-mult insertion-monom sum-distrib-right

power-mult-distrib
proof (intro sum.cong[OF refl], goal-cases)

case (1 m)
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from 1 have M : M = degree-monom m by auto
have { v. lookup m v 6= 0} ⊆ keys m

by (simp add: keys.rep-eq)
from finite-subset[OF this] have fin: finite { v. lookup m v 6= 0} by auto
have (

∏
v. b v ^ lookup m v ∗ x ^ lookup m v)

= (
∏

v. b v ^ lookup m v) ∗ (
∏

v. x ^ lookup m v)
by (subst (1 2 3 ) Prod-any.expand-superset[OF fin])
(insert zero-less-iff-neq-zero, force simp: prod.distrib)+

also have (
∏

v. x ^ lookup m v) = x ^ M unfolding M degree-monom-def
by (smt (verit) Prod-any.conditionalize Prod-any.cong finite-keys in-keys-iff

power-0 power-sum)
finally show ?case by simp

qed
also have insertion (λv. b v ∗ x) p2 = poly (pb p2 ) x unfolding poly-pb ..
finally have poly (pb p) x = poly (monom (insertion b p1 ) M + pb p2 ) x by

(simp add: poly-monom)
}
hence pbp-split: pb p = monom (insertion b p1 ) M + pb p2 by blast
have degree (pb p2 ) ≤ total-degree p2 unfolding pb-def

apply (subst degree-mpoly-to-poly)
apply (simp add: varsX)

by (rule degree-substitute-const-same-var)
also have . . . < M by fact
finally have deg-pbp2 : degree (pb p2 ) < M .
have degree (monom (insertion b p1 ) M ) = M using bpm0 by (rule de-

gree-monom-eq)
with deg-pbp2 pbp-split have deg-pbp: degree (pb p) = M unfolding pbp-split

by (subst degree-add-eq-left, auto)
have ?lc (pb p) = insertion b p1 unfolding pbp-split

using deg-pbp2 bpm0 coeff-eq-0 deg-pbp pbp-split by auto
define bnd where bnd = insertion (λ -. 0 ) p

{
fix x :: ′a
assume x1 : x ≥ 1
hence x: x ≥ 0 by simp
have ass: assignment (λ v. b v ∗ x) unfolding assignment-def using x b1

by (meson linorder-not-le mult-le-cancel-right1 order-trans)
have poly (pb p) x = insertion (λv. b v ∗ x) p by fact
also have insertion (λ v. b v ∗ x) p ≤ insertion (λ v. c ∗ x) p
proof (rule weakly-monotone-insertion[OF mono ass])

fix v
assume v: v ∈ vars p
have b v + δ ≤ c unfolding c-def using vars-finite[of p] v Max-ge[of - b v]

by auto
thus b v ∗ x + δ ≤ c ∗ x using b[of v] x1 c1 δ0
by (smt (verit) c-def add-le-imp-le-right add-mono comm-semiring-class.distrib

mult.commute mult-le-cancel-right1 mult-right-mono order .asym x)
qed
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also have . . . = poly q (c ∗ x) unfolding poly-to-mpoly-substitute-same[OF qp]
..

also have . . . = poly (q ◦p [:0 , c:]) x by (simp add: poly-pcompose ac-simps)
finally have ineq: poly (pb p) x ≤ poly (q ◦p [:0 , c:]) x .
have bnd ≤ insertion (λv. b v ∗ x) p unfolding bnd-def

apply (intro weakly-monotone-insertion[OF mono])
subgoal by (simp add: assignment-def )
subgoal for v using bδ[of v] x1 δ0

by simp (metis dual-order .trans less-le-not-le mult-le-cancel-left1 )
done

also have . . . = poly (pb p) x using poly-pb by auto
finally have bnd ≤ poly (pb p) x by auto
note this ineq

} note pb-approx = this
have M = degree (pb p) unfolding deg-pbp ..
also have . . . ≤ degree (q ◦p [:0 , c:])

by (intro degree-mono ′[of 1 bnd], insert pb-approx, auto)
also have . . . ≤ d by (simp add: dq)
finally have deg-pbp: M ≤ d .
with dM have M = d by auto
thus ?thesis unfolding M-def dq .

next
case True
then obtain c where p: p = Const c using degree-0-imp-Const by blast
with qp have poly-to-mpoly x q = p by auto
thus ?thesis

by (metis True degree-Const degree-poly-to-mpoly p)
qed

lemma monotone-poly-partial-insertion:
assumes x: x ∈ xs
and mono: monotone-poly xs p
and ass: assignment a

shows 0 < degree (partial-insertion a x p)
lead-coeff (partial-insertion a x p) > 0
valid-poly p =⇒ y ≥ 0 =⇒ poly (partial-insertion a x p) y ≥ y − δ
valid-poly p =⇒ insertion a p ≥ a x − δ

proof −
have 0 : 1 ≤ inverse δ ∗ δ using δ0 by auto
define ceil-nat :: ′a ⇒ nat where ceil-nat x = nat (ceiling x) for x
have 1 : x ≤ of-nat (ceil-nat x) for x unfolding ceil-nat-def

by (simp add: of-nat-ceiling)
note main = monotone-poly-partial-insertion-generic[OF transp-gt-delta gt-delta-imp-ge

poly-pinfty-ge refl δ0 0 1 x mono ass, simplified]
show 0 < degree (partial-insertion a x p) 0 < lead-coeff (partial-insertion a x p)

using main by auto
assume valid: valid-poly p
from main(3 )[OF this] have estimation: δ ∗ of-nat y ≤ poly (partial-insertion a
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x p) (δ ∗ of-nat y) for y by auto
{

fix y :: ′a
assume y: y ≥ 0
with ass have ass ′: assignment (a(x := y)) unfolding assignment-def by auto
from valid[unfolded valid-poly-def , rule-format, OF ass ′]
have ge0 : insertion (a(x := y)) p ≥ 0 by auto
have id: poly (partial-insertion a x p) y = insertion (a(x := y)) p

using insertion-partial-insertion[of x a a(x:=y) p] by auto
show y − δ ≤ poly (partial-insertion a x p) y
proof (cases y ≥ δ)

case False
with ge0 [folded id] y show ?thesis by auto

next
case True
define z where z = y − δ
from True have z0 : z ≥ 0 unfolding z-def by auto
define n where n = nat (floor (z ∗ inverse δ))
have δ ∗ of-nat n ≤ z unfolding n-def using δ0 z0

by (metis field-class.field-divide-inverse mult-of-nat-commute mult-zero-left
of-nat-floor pos-le-divide-eq)

hence gt: δ ∗ of-nat n + δ ≤ y unfolding z-def by auto

define b where b = a(x := δ ∗ of-nat n)
have ass-b: assignment b using δ0 ass unfolding b-def assignment-def by

auto
from mono[unfolded monotone-poly-wrt-def , rule-format, OF ass-b x , of y] gt
have gt: insertion b p ≤ insertion (b(x := y)) p − δ by (auto simp: b-def )

have δ ∗ of-nat n + δ ≥ z unfolding n-def using δ0 z0
by (smt (verit, del-insts) comm-semiring-class.distrib field-class.field-divide-inverse

floor-divide-upper inverse-nonnegative-iff-nonnegative mult.commute mult-cancel-left2
mult-nonneg-nonneg of-nat-nat order-less-le z-def z-def z-def zero-le-floor)

hence y − 2 ∗ δ ≤ δ ∗ of-nat n unfolding z-def by auto
also have δ ∗ of-nat n ≤ poly (partial-insertion a x p) (δ ∗ of-nat n)

by fact
also have . . . = insertion b p using insertion-partial-insertion[of x a b p]

by (auto simp: b-def )
also have . . . ≤ insertion (b(x := y)) p − δ by fact
also have insertion (b(x := y)) p = poly (partial-insertion a x p) y

using insertion-partial-insertion[of x a b(x := y) p]
by (auto simp: b-def )

finally show ?thesis by simp
qed

} note estimation = this
from ass have a x ≥ 0 unfolding assignment-def by auto
from estimation[OF this] show insertion a p ≥ a x − δ

using insertion-partial-insertion[of x a a p] by auto
qed
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end

context solvable-poly-problem
begin

context
assumes SORT-CONSTRAINT ( ′a :: floor-ceiling)

begin

context
fixes h :: ′a

begin

fun IQ :: symbol ⇒ ′a mpoly where
IQ f-sym = PVar 0 + PVar 1 + PVar 2 + PVar 3 + PVar 4 + PVar 5 + PVar

6 + PVar 7 + PVar 8
| IQ a-sym = PVar 0 ∗ PVar 1 + PVar 0 + PVar 1
| IQ z-sym = 0
| IQ (v-sym i) = PVar 0 ^ (nat (α i))
| IQ q-sym = PVar 0 ∗ PVar 0 + Const 2 ∗ PVar 0
| IQ g-sym = PVar 0 + PVar 1
| IQ h-sym = Const h ∗ PVar 0 + Const h
| IQ o-sym = 0

interpretation interQ: poly-inter F-Q IQ (λx y. x ≥ y + (1 :: ′a)) .

Lemma 6.2 specialized for this interpretation
lemma degree-eval-encode-poly: assumes positive-poly r

shows ∃ p. poly-to-mpoly y9 p = interQ.eval (encode-poly y9 r) ∧ nneg-poly p ∧
int (degree p) = insertion α r
proof −

define v where v i = (monom 1 (nat (α i)) :: ′a poly) for i
define γ where γ = (λi. int (degree (v i)))
have nneg-v: nneg-poly (v i) 0 < degree (v i) for i unfolding v-def using α1 [of

i]
by (auto simp: nneg-poly-def degree-monom-eq poly-monom)

have id: int (Polynomial.degree (v i)) = α i for i unfolding v-def
using α1 [of i] by (auto simp: nneg-poly-def degree-monom-eq)

have IQ (v-sym i) = mpoly-of-poly 0 (v i) for i
unfolding v-def by (intro mpoly-extI , simp add: insertion-power poly-monom)

from degree-eval-encode-poly-generic[of IQ 1 1 1 0 0 v - γ, OF - - this, simplified,
OF nneg-v assms γ-def ,

unfolded id]
show ?thesis by auto

qed

definition pp where pp = (SOME pp. poly-to-mpoly y9 pp = interQ.eval (encode-poly
y9 p) ∧ nneg-poly pp ∧ int (degree pp) = insertion α p)
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lemma pp: interQ.eval (encode-poly y9 p) = poly-to-mpoly y9 pp
nneg-poly pp int (degree pp) = insertion α p
using someI-ex[OF degree-eval-encode-poly[OF pq(1 )], folded pp-def ] by auto

definition qq where qq = (SOME qq. poly-to-mpoly y9 qq = interQ.eval (encode-poly
y9 q) ∧ nneg-poly qq ∧ int (degree qq) = insertion α q)

lemma qq: interQ.eval (encode-poly y9 q) = poly-to-mpoly y9 qq
nneg-poly qq int (degree qq) = insertion α q
using someI-ex[OF degree-eval-encode-poly[OF pq(2 )], folded qq-def ] by auto

definition ppp = pp ∗ [:1 ,1 :] + [:0 ,1 :]
definition qqq = qq ∗ [:1 ,1 :] + [:0 ,1 :]

lemma degree-ppp: int (degree ppp) = 1 + insertion α p
unfolding ppp-def pp(3 )[symmetric]
using nneg-poly-degree-add-1 [OF pp(2 ), of 1 1 1 0 ] by simp

lemma degree-qqq: int (degree qqq) = 1 + insertion α q
unfolding qqq-def qq(3 )[symmetric]
using nneg-poly-degree-add-1 [OF qq(2 ), of 1 1 1 0 ] by simp

lemma ppp-qqq: degree ppp ≥ degree qqq
using degree-ppp degree-qqq α(2 ) by auto

lemma nneg-ppp: nneg-poly ppp
unfolding ppp-def
by (intro nneg-poly-add nneg-poly-mult pp, auto)

definition H where H = (SOME H . ∀ h ≥ H . ∀ x≥0 . poly qqq x ≤ h ∗ poly ppp
x + h)

lemma H : h ≥ H =⇒ x ≥ 0 =⇒ poly qqq x ≤ h ∗ poly ppp x + h
proof −

from poly-degree-le-large-const[OF ppp-qqq nneg-poly-nneg[OF nneg-ppp]]
have ∃H . ∀ h≥H . ∀ x≥0 . poly qqq x ≤ h ∗ poly ppp x + h by auto
from someI-ex[OF this, folded H-def ]
show h ≥ H =⇒ x ≥ 0 =⇒ poly qqq x ≤ h ∗ poly ppp x + h by auto

qed
end

definition h where h = max 9 (H 1 )

lemma h: h ≥ 1 unfolding h-def by auto

abbreviation I-Q where I-Q ≡ IQ h

interpretation inter-Q: poly-inter F-Q I-Q (λx y. x ≥ y + (1 :: ′a)) .

Well-definedness of Interpretation in Theorem 6.4
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lemma valid-monotone-inter-Q:
inter-Q.valid-monotone-poly-inter
unfolding inter-Q.valid-monotone-poly-inter-def

proof (intro ballI )
note [simp] = insertion-add insertion-mult
fix fn
assume f : fn ∈ F-Q
then consider
(a) fn = (a-sym,2 )
| (g) fn = (g-sym,2 )
| (h) fn = (h-sym,1 )
| (q) fn = (q-sym,1 )
| (f ) fn = (f-sym,9 )
| (z) fn = (z-sym,0 )
| (v) i where fn = (v-sym i, 1 ) i ∈ V
unfolding F-Q-def F-def by auto

thus inter-Q.valid-monotone-poly fn
proof cases

case ∗: a
have vars: vars (PVar 0 ∗ PVar 1 + PVar 0 + PVar 1 :: ′a mpoly) = {0 ,1}

apply (intro vars-eqI )
subgoal by (intro vars-mult-subI vars-add-subI , auto)
subgoal for v by (intro exI [of - λ -. 1 ] exI [of - 0 ], auto)
done

show ?thesis unfolding inter-Q.valid-monotone-poly-def ∗
apply (intro allI impI , clarify, unfold IQ.simps vars valid-poly-def

monotone-poly-wrt-def
insertion-mult insertion-add insertion-Var ,
intro conjI allI impI )

subgoal for α unfolding assignment-def by simp
subgoal for - - - α x v
proof goal-cases

case 1
from assignmentD[OF 1 (1 )] have 0 : α 0 ≥ 0 α 1 ≥ 0 by auto
from 1 have x = 0 ∨ x = 1 by auto
thus ?case using 0 1 (3 ) mult-right-mono[OF 1 (3 ), of α (x − 1 )]

by (auto simp: field-simps)
(smt (verit, ccfv-threshold) 1 (3 ) add.assoc add.commute add-increasing

add-le-imp-le-right add-right-mono diff-ge-0-iff-ge le-add-diff-inverse2 mult-right-mono
zero-less-one-class.zero-le-one)

qed
subgoal by auto
done

next
case ∗: f
have vars: vars (PVar 0 + PVar 1 + PVar 2 + PVar 3 + PVar 4 + PVar 5

+ PVar 6 + PVar 7 + PVar 8 :: ′a mpoly) = {0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8}
apply (intro vars-eqI )
subgoal by (intro vars-mult-subI vars-add-subI , auto)
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subgoal for v by (intro exI [of - λ -. 1 ] exI [of - 0 ], auto)
done

show ?thesis unfolding inter-Q.valid-monotone-poly-def ∗
apply (intro allI impI , clarify, unfold IQ.simps vars valid-poly-def

monotone-poly-wrt-def
insertion-mult insertion-add insertion-Var ,
intro conjI allI impI )

subgoal for α unfolding assignment-def by simp
subgoal for - - - α x v
proof goal-cases

case 1
hence x ∈ {0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8} by auto
thus ?case using 1 (3 ) by auto

qed
subgoal by auto
done

next
case ∗: h
have vars: vars (Const h ∗ PVar 0 + Const h :: ′a mpoly) = {0}

apply (intro vars-eqI )
subgoal by (intro vars-mult-subI vars-add-subI , auto)
subgoal for v using h by (intro exI [of - λ -. 1 ] exI [of - 0 ], auto)
done

show ?thesis unfolding inter-Q.valid-monotone-poly-def ∗
apply (intro allI impI , clarify, unfold IQ.simps vars valid-poly-def

monotone-poly-wrt-def
insertion-mult insertion-add insertion-Var ,
intro conjI allI impI )

subgoal for α using h unfolding assignment-def by simp
subgoal for - - - α x v
proof goal-cases

case 1
from assignmentD[OF 1 (1 ), of 0 ]
show ?case using 1 h

by (auto simp: field-simps)
(smt (verit, ccfv-threshold) add.commute add-le-cancel-left distrib-left

linordered-nonzero-semiring-class.zero-le-one mult.commute mult-cancel-left1 mult-left-mono
nle-le order-trans)

qed
subgoal by auto
done

next
case z

thus ?thesis by (auto simp: inter-Q.valid-monotone-poly-def valid-poly-def
monotone-poly-wrt-def )

next
case ∗: g
have vars: vars (PVar 0 + PVar 1 :: ′a mpoly) = {0 ,1}

apply (intro vars-eqI )
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subgoal by (intro vars-mult-subI vars-add-subI , auto)
subgoal for v by (intro exI [of - λ -. 1 ] exI [of - 0 ], auto)
done

show ?thesis unfolding inter-Q.valid-monotone-poly-def ∗
apply (intro allI impI , clarify, unfold IQ.simps vars valid-poly-def

monotone-poly-wrt-def
insertion-mult insertion-add insertion-Var ,
intro conjI allI impI )

subgoal for α unfolding assignment-def by simp
subgoal for - - - α x v
proof goal-cases

case 1
hence x ∈ {0 ,1} by auto
thus ?case using 1 (3 ) by auto

qed
subgoal by auto
done

next
case ∗: q
have vars: vars (PVar 0 ∗ PVar 0 + Const 2 ∗ PVar 0 :: ′a mpoly) = {0}

apply (intro vars-eqI )
subgoal by (intro vars-mult-subI vars-add-subI , auto)
subgoal for v by (intro exI [of - λ -. 1 ] exI [of - 2 ], auto)
done

show ?thesis unfolding inter-Q.valid-monotone-poly-def ∗
apply (intro allI impI , clarify, unfold IQ.simps vars valid-poly-def

monotone-poly-wrt-def
insertion-mult insertion-add insertion-Var ,
intro conjI allI impI )

subgoal for α unfolding assignment-def by simp
subgoal for - - - α x v
proof goal-cases

case 1
hence [simp]: x = 0 by auto
from 1 (1 ) have α 0 ≥ 0 unfolding assignment-def by simp
thus ?case using 1 (3 )

by auto
(metis (no-types, opaque-lifting) add.assoc add-mono le-add-same-cancel1

mult-2 mult-mono order-trans zero-less-one-class.zero-le-one)
qed
subgoal by auto
done

next
case ∗: (v i)
from α[unfolded positive-interpr-def ] have pos: α i > 0 by auto
have vars: vars ((PVar 0 )^(nat (α i)):: ′a mpoly) = {0}

apply (intro vars-eqI )
subgoal by (metis Preliminaries-on-Polynomials-1 .vars-Var vars-power)
subgoal for v using pos apply (intro exI [of - λ -. 2 ] exI [of - 1 ])

139



by (auto simp: insertion-power)
(metis less-numeral-extra(4 ) one-less-numeral-iff one-less-power semir-

ing-norm(76 ) zero-less-nat-eq)
done

show ?thesis unfolding inter-Q.valid-monotone-poly-def ∗
apply (intro allI impI , clarify, unfold IQ.simps vars valid-poly-def

monotone-poly-wrt-def
insertion-Var insertion-power ,
intro conjI allI impI )

subgoal for - - - β using pos unfolding assignment-def by simp
subgoal for - - - β x v
proof goal-cases

case 1
hence [simp]: x = 0 by auto
from 1 (1 ) have b0 : β 0 ≥ 0 unfolding assignment-def by simp
from pos obtain k where nik: nat (α i) = Suc k

using gr0-implies-Suc zero-less-nat-eq by presburger
define b0 where b0 = β 0
have β 0 ^ nat (α i) + 1 ≤ (β 0 + 1 ) ^ nat (α i) using b0 unfolding

nik b0-def [symmetric]
proof (induct k)

case (Suc k)
define sk where sk = Suc k
from Suc show ?case unfolding sk-def [symmetric]

by (auto simp: field-simps add-mono ordered-comm-semiring-class.comm-mult-left-mono)
qed auto
also have . . . ≤ v ^ nat (α i) using 1 (3 ) by (simp add: b0 power-mono)
finally show ?case by simp

qed
subgoal by auto
done

qed
qed

lemma I-Q-delta-poly-inter : delta-poly-inter F-Q I-Q (1 :: ′a)
by (unfold-locales, rule valid-monotone-inter-Q, auto)

interpretation inter-Q: delta-poly-inter F-Q I-Q 1 :: ′a by (rule I-Q-delta-poly-inter)

Orientation part of Theorem 6.4
lemma orient-Q: inter-Q.orient-rule (lhs-Q, rhs-Q)

unfolding inter-Q.orient-rule-def split inter-Q.I ′-is-insertion-eval
proof (intro allI impI )

fix x :: - ⇒ ′a
assume assignment x
hence x: x i ≥ 0 for i unfolding assignment-def by auto
have h9 : h ≥ 9 unfolding h-def by auto
define l where l i = args (lhs-Q) ! i for i
define r where r i = args (rhs-Q) ! i for i
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let ?e = inter-Q.eval
let ?poly = λ t. insertion x (?e t)
note defs = l-def r-def lhs-Q-def rhs-Q-def
let ?nums = [0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ] :: nat list
note [simp] = insertion-add insertion-mult y1-def y2-def y3-def y4-def y5-def

y6-def y7-def y8-def y9-def

have e-lhs: ?e lhs-Q = sum-list (map (λ i. (?e (l i))) ?nums)
unfolding defs by simp

have e-rhs: ?e rhs-Q = sum-list (map (λ i. (?e (r i))) ?nums)
unfolding defs by simp

have [simp]: 2 = (Const (2 :: ′a))
by (metis mpoly-Const-1 mpoly-Const-add one-add-one)

have ?poly (r 0 ) = h^2 ∗ ((x 0 )^2 + 2 ∗ x 0 ) + h^2 + h
by (simp add: field-simps power2-eq-square defs)

also have . . . ≤ (h ∗ x 0 + h)^2 + 2 ∗ (h ∗ x 0 + h) using h x[of 0 ]
by (simp add: field-simps power2-eq-square)

also have . . . = ?poly (l 0 )
by (simp add: field-simps power2-eq-square defs)

finally have 1 : ?poly (l 0 ) ≥ ?poly (r 0 ) .

from h9 have h2 : h ≥ 2 by auto
have ?poly (r 1 ) = 2 ∗ x 1

by (simp add: field-simps defs)
also have . . . ≤ h ∗ x 1 + h using mult-right-mono[OF h2 x[of 1 ]] h

by auto
also have . . . = ?poly (l 1 )

by (simp add: field-simps power2-eq-square defs)
finally have 2 : ?poly (l 1 ) ≥ ?poly (r 1 ) .

have ?poly (r 2 ) + 1 = 9 ∗ x 2 + 1 unfolding defs by simp
also have . . . ≤ h ∗ x 2 + h

by (intro add-mono h mult-right-mono h9 x)
also have . . . = ?poly (l 2 ) unfolding defs by simp
finally have 3 : ?poly (l 2 ) ≥ ?poly (r 2 ) + 1 .

have eval-vs: insertion x (inter-Q.eval (g-list (map (λi. (v-sym i, Suc 0 )) xs)))
= 0

for xs by (induct xs, auto simp: insertion-power α1 )
have [simp]: insertion x (inter-Q.eval t-t) = h unfolding t-t-def symbol-list-def

by (simp add: eval-vs)
have ?poly (r 3 ) = (x 3 + h)^2 + 2 ∗ (x 3 + h)

by (simp add: field-simps power2-eq-square defs)
also have . . . ≤ (x 3 )^2 + 2 ∗ x 3 + h^3∗x 3 + h^3 + h^2 + h (is ?l ≤ ?r)
proof −

have 2 ∗ 1 ≤ h ∗ h
by (intro mult-mono, insert h2 , auto)
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hence hh: h ∗ h ≥ 2 by auto
have ?l ≤ ?r ←→ 1 ∗ h + (2 ∗ h) ∗ x 3 ≤ (h ∗ h) ∗ h + ((h ∗ h) ∗ h) ∗ x 3

by (auto simp: field-simps power2-eq-square defs power3-eq-cube)
also have . . .

by (intro add-mono mult-right-mono x, insert h hh, auto)
finally show ?thesis .

qed
also have . . . = ?poly (l 3 )

by (simp add: field-simps power2-eq-square defs power3-eq-cube)
finally have 4 : ?poly (l 3 ) ≥ ?poly (r 3 ) .

have ?poly (r 4 ) = ((x 4 )^2 + 2 ∗ x 4 )
by (simp add: field-simps power2-eq-square defs)

also have . . . = ?poly (l 4 )
by (simp add: field-simps power2-eq-square defs)

finally have 5 : ?poly (l 4 ) ≥ ?poly (r 4 ) by simp

have ?poly (r 5 ) = (x 5 )^2 + 2 ∗ x 5
by (simp add: field-simps power2-eq-square defs)

also have . . . = ?poly (l 5 )
by (simp add: field-simps power2-eq-square defs)

finally have 6 : ?poly (l 5 ) ≥ ?poly (r 5 ) by simp

have 7 : ?poly (l 6 ) ≥ ?poly (r 6 ) unfolding defs using h x[of 6 ]
by (simp add: add-increasing2 linorder-not-le mult-le-cancel-right1 )

have 8 : ?poly (l 7 ) ≥ ?poly (r 7 ) unfolding defs using h x[of 7 ]
by (simp add: add-increasing2 linorder-not-le mult-le-cancel-right1 )

have 9 : ?poly (l 8 ) ≥ ?poly (r 8 )
proof −

have r : ?e (r 8 ) = poly-to-mpoly 8 (qqq h)
unfolding defs qqq-def

by (simp add: qq[unfolded y9-def ] algebra-simps smult-conv-mult-Const Const-mult
flip: mpoly-of-poly-is-poly-to-mpoly)

have l: ?e (l 8 ) = poly-to-mpoly 8 ([:h:] ∗ (ppp h) + [:h:])
unfolding defs ppp-def

by (simp add: pp[unfolded y9-def ] algebra-simps smult-conv-mult-Const Const-mult
flip: mpoly-of-poly-is-poly-to-mpoly)

{
fix r
assume r : r ∈ {p,q}
with funas-encode-poly-p funas-encode-poly-q
have funas: funas-term (encode-poly y9 r) ⊆ F by auto
have poly-inter .eval (IQ 1 ) (encode-poly y9 r) = inter-Q.eval (encode-poly y9

r)
by (rule poly-inter-eval-cong, insert funas, auto simp: F-def )

} note encode-eq = this
have pp-eq: pp h = pp 1 unfolding pp-def using encode-eq[of p] by auto
have qq-eq: qq h = qq 1 unfolding qq-def using encode-eq[of q] by auto
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have ppp-eq: ppp h = ppp 1 unfolding ppp-def pp-eq ..
have qqq-eq: qqq h = qqq 1 unfolding qqq-def qq-eq ..
have H h = H 1 unfolding H-def ppp-eq qqq-eq ..
also have . . . ≤ h unfolding h-def by auto
finally have h: h ≥ H h .
show ?thesis unfolding l r using H [OF h x[of 8 ]] by simp

qed

have ?poly rhs-Q + 1 =
?poly (r 0 ) + ?poly (r 1 ) + (?poly (r 2 ) + 1 ) + ?poly (r 3 ) + ?poly (r 4 ) +

?poly (r 5 ) + ?poly (r 6 ) + ?poly (r 7 ) + ?poly (r 8 )
unfolding e-rhs by simp

also have . . . ≤ ?poly (l 0 ) + ?poly (l 1 ) + ?poly (l 2 ) + ?poly (l 3 ) + ?poly (l
4 ) + ?poly (l 5 ) + ?poly (l 6 ) + ?poly (l 7 ) + ?poly (l 8 )

by (intro add-mono 1 2 3 4 5 6 7 8 9 )
also have . . . = ?poly lhs-Q

unfolding e-lhs by simp

finally show ?poly rhs-Q + 1 ≤ ?poly lhs-Q by auto
qed
end
end

context poly-input
begin

Theorem 6.4
theorem solution-impl-delta-termination-of-Q:

assumes positive-poly-problem p q
shows termination-by-delta-poly-interpretation (TYPE( ′a :: floor-ceiling)) F-Q

Q
proof −

interpret solvable-poly-problem
by (unfold-locales, fact)

interpret I : delta-poly-inter F-Q I-Q (1 :: ′a) by (rule I-Q-delta-poly-inter)
show ?thesis

unfolding termination-by-delta-poly-interpretation-def
proof (intro exI [of - 1 :: ′a] exI [of - I-Q] conjI I-Q-delta-poly-inter)

show I .termination-by-delta-interpretation Q
unfolding I .termination-by-delta-interpretation-def Q-def

proof (clarify, intro conjI )
show funas-term lhs-Q ∪ funas-term rhs-Q ⊆ F-Q using lhs-Q-F rhs-Q-F

by auto
show I .orient-rule (lhs-Q, rhs-Q) using orient-Q by simp

qed
qed

qed

end
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context delta-poly-inter
begin

lemma insertion-eval-pos: assumes funas-term t ⊆ F
and assignment α

shows insertion α (eval t) ≥ 0
by (rule valid-imp-insertion-eval-pos[OF valid assms])

lemma monotone-poly-eval: assumes funas-term t ⊆ F
shows monotone-poly (vars-term t) (eval t) vars (eval t) = vars-term t

proof −
have ∃ y. x + δ ≤ y for x :: ′a by (intro exI [of - x + δ], auto)
from monotone-poly-eval-generic[OF valid transp-gt-delta gt-delta-imp-ge this -

assms] δ0
show monotone-poly (vars-term t) (eval t) vars (eval t) = vars-term t by auto

qed

lemma monotone-linear-poly-to-coeffs: fixes p :: ′a mpoly
assumes linear : total-degree p ≤ 1

and poly: valid-poly p
and mono: monotone-poly {..<n} p
and vars: vars p = {..<n}

shows ∃ c a. p = Const c + (
∑

i←[0 ..<n]. Const (a i) ∗ PVar i)
∧ c ≥ 0 ∧ (∀ i < n. a i ≥ 1 )

proof −
have sum-zero: (

∧
x. x ∈ set xs =⇒ x = 0 ) =⇒ sum-list (xs :: int list) = 0 for

xs by (induct xs, auto)
from coefficients-of-linear-poly[OF linear ] obtain c a vs

where p: p = Const c + (
∑

i←vs. Const (a i) ∗ PVar i)
and vsd: distinct vs set vs = vars p sorted-list-of-set (vars p) = vs
and nz:

∧
v. v ∈ set vs =⇒ a v 6= 0

and c: c = mcoeff p 0
and a:

∧
i. a i = mcoeff p (monomial 1 i) by blast

have vs: vs = [0 ..<n] unfolding vsd(3 )[symmetric] unfolding vars
by (simp add: lessThan-atLeast0 )

show ?thesis unfolding p vs
proof (intro exI conjI allI impI , rule refl)

show c: c ≥ 0 using poly[unfolded valid-poly-def , rule-format, of λ -. 0 ,
unfolded p]

by (auto simp: coeff-add[symmetric] coeff-Const coeff-sum-list o-def co-
eff-Const-mult

coeff-Var monomial-0-iff assignment-def )
fix i
assume i < n
hence i: i ∈ set vs unfolding vs by auto
from nz[OF i] have a0 : a i 6= 0 by auto
from split-list[OF i] obtain bef aft where vsi: vs = bef @ [i] @ aft by auto
with vsd(1 ) have i: i /∈ set (bef @ aft) by auto
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define α where α = (λ x :: var . 0 :: ′a)
have assignment α unfolding assignment-def α-def using c by auto
from mono[unfolded monotone-poly-wrt-def , rule-format, OF this, of i δ] ‹i <

n›
have insertion α p + δ ≤ insertion (α(i := δ)) p by (auto simp: α-def )

from this[unfolded p vsi insertion-add insertion-sum-list insertion-Const map-map
o-def insertion-mult insertion-Var ]

have (
∑

x← bef @ aft. a x ∗ α x) + δ ≤ (
∑

x←bef @ aft. a x ∗ (α(i := δ))
x) + a i ∗ δ

by (auto simp: α-def )
also have (

∑
x←bef @ aft. a x ∗ (α(i := δ)) x) = (

∑
x←bef @ aft. a x ∗ α

x)
by (subst map-cong[OF refl, of - - λ x. a x ∗ α x], insert i, auto simp: α-def )

finally have δ ≤ a i ∗ δ by auto
with δ0 show a i ≥ 1 by simp

qed
qed

end

Lemma 6.7
lemma criterion-for-degree-2 : assumes qq-def : qq = q ◦p [:c, a:] − smult a q

and dq: degree q ≥ 2
and ineq:

∧
x :: ′a :: linordered-field. x ≥ 0 =⇒ poly qq x ≤ poly p x

and dp: degree p ≤ 1
and a1 : a ≥ 1
and lq0 : lead-coeff q > 0
and c: c > 0

shows degree q = 2 a = 1
proof −

have deg: degree (q ◦p [:c, a:]) = degree q
unfolding degree-pcompose using a1 by simp

have coeff-dq: coeff qq (degree q) = lead-coeff q ∗ (a ^ degree q − a)
apply (simp add: qq-def )
apply (subst deg[symmetric])
apply (subst lead-coeff-comp)
subgoal using a1 by simp
subgoal using a1 by (simp add: field-simps)
done

have deg-qq: degree qq ≤ degree q using deg
by (simp add: degree-diff-le qq-def )

{
assume a 6= 1
with a1 have a1 : a > 1 by auto
hence a ^ degree q > a ^ 1 using dq
by (metis add-strict-increasing linorder-not-less one-add-one power-le-imp-le-exp

zero-less-one)
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hence coeff : coeff qq (degree q) > 0
unfolding coeff-dq using dq by (auto intro!: mult-pos-pos lq0 )

hence degree qq ≥ degree q
by (simp add: le-degree)

with deg-qq have eq: degree qq = degree q by auto
from coeff [folded eq] have lcqq: lead-coeff qq > 0 by auto
from dq[folded eq] have 2 ≤ degree qq by auto
also have degree qq ≤ degree p using ineq lcqq

by (metis Preliminaries-on-Polynomials-2 .poly-pinfty-ge degree-mono-generic
linorder-le-less-linear order-less-not-sym)

also have . . . ≤ 1 by fact
finally have False by simp

}
thus a1 : a = 1 by auto
hence qq: qq = q ◦p [:c, 1 :] − q unfolding qq-def by auto
from coeff-dq[unfolded a1 ] have coeff qq (degree q) = 0 by simp
with deg-qq dq have deq-qq: degree qq < degree q

using degree-less-if-less-eqI by fastforce
define m where m = degree q
define m1 where m1 = m − 1
from dq have mm1 : m = Suc m1 unfolding m1-def m-def by auto
define qi where qi = coeff q
define cf where cf k i = (qi k ∗ of-nat (k choose i) ∗ c ^ (k − i)) for i k
define inner where inner k = (

∑
i<k. monom (cf k i) i) for k

define rem where rem = (
∑

i< m1 . monom (cf m i) i) + sum inner {..<m}
{

fix x
define e where e i k = of-nat (k choose i) ∗ x ^ i ∗ c ^ (k − i) for k i
have poly qq x = poly (q ◦p [:c, 1 :]) x − poly q x unfolding qq by simp
also have . . . = (

∑
k≤m. qi k ∗ (x + c) ^ k) − (

∑
k≤m. qi k ∗ x ^ k)

unfolding qi-def
by (subst (1 2 ) poly-as-sum-of-monoms[of q, symmetric, folded m-def ])
(simp add: poly-sum poly-pcompose poly-monom ac-simps)

also have . . . = (
∑

k≤m. qi k ∗ (
∑

i≤k. e i k)) − (
∑

k≤m. qi k ∗ x ^ k)
by (subst binomial-ring, auto simp: e-def )

also have . . . = (
∑

k≤m. qi k ∗ (e k k + (
∑

i<k. e i k))) − (
∑

k≤m. qi k ∗
x ^ k)

by (intro arg-cong[of - - λ x. x − -] sum.cong refl arg-cong2 [of - - - - (∗)])
(metis add.commute lessThan-Suc-atMost sum.lessThan-Suc)

also have . . . = (
∑

k≤m. qi k ∗ e k k) + (
∑

k≤m. qi k ∗ (
∑

i<k. e i k)) −
(
∑

k≤m. qi k ∗ x ^ k)
by (simp add: field-simps sum.distrib)

also have . . . = (
∑

k≤m. qi k ∗ (
∑

i<k. e i k))
unfolding e-def by simp

also have . . . = poly (
∑

k≤m. inner k) x unfolding e-def inner-def cf-def
by (simp add: poly-sum poly-monom ac-simps sum-distrib-left)

finally have poly qq x = poly (sum inner {..m}) x .
}
hence qq = sum inner {..m} by (intro poly-ext, auto)
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also have . . . = inner m + sum inner {..<m}
by (metis add.commute lessThan-Suc-atMost sum.lessThan-Suc)

also have inner m = monom (cf m m1 ) m1 + (
∑

i< m1 . monom (cf m i) i)
unfolding inner-def mm1 by simp

finally have qq: qq = monom (cf m m1 ) m1 + rem by (simp add: rem-def )
have cf-mm1 : cf m m1 > 0 unfolding cf-def
proof (intro mult-pos-pos)

show 0 < qi m unfolding qi-def m-def by fact
show 0 < (of-nat (m choose m1 ) :: ′a) unfolding mm1

by (simp add: add-strict-increasing)
show 0 < c ^ (m − m1 ) using c by simp

qed
{

fix k
assume k: k ≥ m1
have coeff rem k = (

∑
i<m. coeff (inner i) k) using k

by (simp add: rem-def Polynomial.coeff-sum)
also have . . . = 0
proof (intro sum.neutral ballI )

fix i
show i ∈ {..<m} =⇒ coeff (inner i) k = 0

unfolding inner-def Polynomial.coeff-sum using k mm1
by auto

qed
finally have coeff rem k = 0 .

} note zero = this
from cf-mm1 zero[of m1 ]
have qq-m1 : coeff qq m1 > 0 unfolding qq by auto
{

fix k
assume k > m1
with zero[of k] have coeff qq k = 0 unfolding qq by auto

}
with qq-m1 have deg-qq: degree qq = m1

by (metis coeff-0 le-degree leading-coeff-0-iff order-less-le)
with qq-m1 have lc-qq: lead-coeff qq > 0 by auto

from ineq lc-qq have degree qq ≤ degree p
by (metis Preliminaries-on-Polynomials-2 .poly-pinfty-ge degree-mono-generic

linorder-le-less-linear order-less-not-sym)
also have . . . ≤ 1 by fact
finally have m1 ≤ 1 unfolding deg-qq by simp
with mm1 have m ≤ 2 by auto
hence degree q ≤ 2 unfolding m-def by auto
with dq show degree q = 2 by auto

qed
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locale term-delta-poly-input = poly-input p q for p q +
fixes type-of-field :: ′a :: floor-ceiling itself
assumes terminating-delta-poly: termination-by-delta-poly-interpretation TYPE( ′a)

F-Q Q
begin

definition I where I = (SOME I . ∃ δ. delta-poly-inter F-Q I (δ :: ′a) ∧
delta-poly-inter .termination-by-delta-interpretation F-Q I δ Q)

definition δ where δ = (SOME δ. delta-poly-inter F-Q I (δ :: ′a) ∧
delta-poly-inter .termination-by-delta-interpretation F-Q I δ Q)

lemma I : delta-poly-inter F-Q I δ delta-poly-inter .termination-by-delta-interpretation
F-Q I δ Q
using someI-ex[OF someI-ex[OF terminating-delta-poly[unfolded termination-by-delta-poly-interpretation-def ],

folded I-def ], folded δ-def ]
by auto

sublocale delta-poly-inter F-Q I δ by (rule I (1 ))

lemma orient: orient-rule (lhs-Q,rhs-Q)
using I (2 )[unfolded termination-by-delta-interpretation-def ] unfolding Q-def

by auto

lemma eval-t-t-gt-0 : assumes Ig: I g-sym = Const g0 + Const g1 ∗ PVar 0 +
Const g2 ∗ PVar 1

and Iz: I z-sym = Const z0
and z0 : z0 ≥ 0
and g0 : g0 ≥ 0
and g12 : g1 > 0 g2 > 0

shows insertion β (eval t-t) > 0
proof −

define α where α = (λ - :: var . 0 :: ′a)
have α: assignment α by (auto simp: assignment-def α-def )
have id: insertion β (eval t-t) = insertion α (eval t-t)

by (rule insertion-irrelevant-vars, insert vars-t vars-eval, auto)
note pos = insertion-eval-pos[OF - α]
show ?thesis
proof (rule ccontr)

assume ‹¬ ?thesis›
from this[unfolded id] have insertion α (eval t-t) ≤ 0 by auto
with pos[OF t-F ] have 0 : insertion α (eval t-t) = 0 by auto
note [simp] = insertion-add insertion-mult insertion-substitute

define IA where IA t = insertion α (eval t) for t
note pos = pos[folded IA-def ]
let ?zz = g-list symbol-list
from pos[OF g-list-F [OF symbol-list]]
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have zz: 0 ≤ IA ?zz by auto
have 0 : 0 = IA t-t using 0 by (auto simp: IA-def )
also have . . . = g0 + g1 ∗ z0 + g2 ∗ IA ?zz unfolding t-t-def by (simp add:

Ig IA-def Iz)
finally have g0 : g0 = 0 and g1 ∗ z0 = 0 g2 ∗ IA ?zz = 0

using g0 z0 g12 zz mult-nonneg-nonneg[of g1 z0 ] mult-nonneg-nonneg[of g2
IA ?zz ]

by linarith+
with g12 have z0 : z0 = 0 and 0 : IA ?zz = 0 by auto
from Ig g0 have Ig: I g-sym = Const g1 ∗ PVar 0 + Const g2 ∗ PVar 1 by

simp
from z0 Iz have Iz: I z-sym = 0 by auto

{
fix fs f a
assume set fs ⊆ F-Q and IA (g-list fs) = 0

and (f ,a) ∈ set fs
hence mcoeff (I f ) 0 = 0
proof (induct fs)

case (Cons kb fs)
obtain k b where kb: kb = (k,b) by force
let ?t = Fun k (replicate b z-t) :: (symbol,var)term
from Cons(3 )[unfolded kb]
have 0 : g1 ∗ IA ?t + g2 ∗ IA (g-list fs) = 0

by (simp add: IA-def Ig)
from Cons(2 )[unfolded kb] have (k,b) ∈ F-Q by auto
hence funas-term ?t ⊆ F-Q by (force simp: F-Q-def F-def )
from pos[OF this] have pos1 : 0 ≤ IA ?t by auto
from Cons(2 ) have fs: set fs ⊆ F-Q by auto
from pos[OF g-list-F [OF this]] have pos2 : 0 ≤ IA (g-list fs) by auto
from 0 g12 pos1 pos2 mult-nonneg-nonneg[of g1 IA ?t]

mult-nonneg-nonneg[of g2 IA (g-list fs)]
have g1 ∗ IA ?t = 0 g2 ∗ IA (g-list fs) = 0

by linarith+
with g12 have t: IA ?t = 0 and 0 : IA (g-list fs) = 0 by auto
from Cons(1 )[OF fs 0 ] have IH : (f , a) ∈ set fs =⇒ mcoeff (I f ) 0 = 0 by

auto
show ?case
proof (cases (f ,a) = (k,b))

case False
with IH Cons(4 ) kb show ?thesis by auto

next
case True
have 0 = IA ?t using t by simp
also have . . . = insertion α (I k)

apply (simp add: IA-def )
apply (rule insertion-irrelevant-vars)
subgoal for v by (auto simp: Iz α-def )
done
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also have . . . = mcoeff (I k) 0 unfolding α-def by simp
finally show ?thesis using True by simp

qed
qed auto

} note main = this

{
fix k ka
assume (k,ka) ∈ F-Q
then consider (z) (k,ka) = (z-sym,0 ) | (g) (k,ka) = (g-sym,2 ) | (zl) (k,ka)

∈ set symbol-list
unfolding symbol-list-def F-Q-def F-def using V-list by auto

hence mcoeff (I k) 0 = 0
proof cases

case (zl)
from main[OF symbol-list 0 zl] show ?thesis .

next
case z
thus ?thesis using Iz by simp

next
case g
thus ?thesis using Ig by (simp add: coeff-Const-mult coeff-Var)

qed
} note coeff-0 = this

have ins-0 : funas-term t ⊆ F-Q =⇒ insertion α (eval t) = 0 for t
proof (induct t)

case (Var x)
show ?case by (auto simp: α-def coeff-Var)

next
case (Fun f ts)
{

fix i
assume i < length ts
hence ts ! i ∈ set ts by auto
from Fun(1 )[OF this] Fun(2 ) this
have insertion α (eval (ts ! i)) = 0 by auto

} note IH = this
have insertion α (eval (Fun f ts)) = insertion α (I f )

apply (simp)
apply (intro insertion-irrelevant-vars)
subgoal for v using IH [of v] by (auto simp: α-def )
done

also have . . . = mcoeff (I f ) 0 unfolding α-def by simp
also have . . . = 0 using Fun(2 ) coeff-0 by auto
finally show ?case by simp

qed
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from orient[unfolded orient-rule gt-poly-def , rule-format, OF α] ins-0 [OF
lhs-Q-F ] ins-0 [OF rhs-Q-F ]

show False using δ0 by auto
qed

qed

Theorem 6.8
theorem solution: positive-poly-problem p q
proof −

let ?q = q
from orient[unfolded orient-rule]
have gt: gt-poly (eval lhs-Q) (eval rhs-Q) by auto
from valid[unfolded valid-monotone-poly-inter-def ]
have valid:

∧
f . f ∈ F-Q =⇒ valid-monotone-poly f by auto

let ?lc = lead-coeff
let ?f = (f-sym,9 )
have ?f ∈ F-Q unfolding F-Q-def by auto
from valid[OF this, unfolded valid-monotone-poly-def ] obtain f where

If : I f-sym = f and f : valid-poly f monotone-poly (vars f ) f vars f = {..< 9}
by auto

note mono = f (2 )
define l where l i = args (lhs-Q) ! i for i
define r where r i = args (rhs-Q) ! i for i
have list: [0 ..<9 ] = [0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 :: nat] by code-simp
have lhs-Q: lhs-Q = Fun f-sym (map l [0 ..<9 ]) unfolding lhs-Q-def l-def by

(auto simp: list)
have rhs-Q: rhs-Q = Fun f-sym (map r [0 ..<9 ]) unfolding rhs-Q-def r-def by

(auto simp: list)
{

fix i :: var
define vs where vs = V-list
assume i < 9
hence choice: i = 0 ∨ i = 1 ∨ i = 2 ∨ i = 3 ∨ i = 4 ∨ i = 5 ∨ i = 6 ∨ i

= 7 ∨ i = 8 by linarith
have set: {0 ..<9 :: nat} = {0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8} by code-simp
from choice have vars: vars-term (l i) = {i} vars-term (r i) = {i} unfolding

l-def lhs-Q-def r-def rhs-Q-def
using vars-encode-poly[of 8 p] vars-encode-poly[of 8 q] vars-t
by (auto simp: y1-def y2-def y3-def y4-def y5-def y6-def y7-def y8-def y9-def

vs-def [symmetric])
from choice set have funs: funas-term (l i) ∪ funas-term (r i) ⊆ F-Q using

rhs-Q-F lhs-Q-F unfolding lhs-Q rhs-Q
by auto

have lr ∈ {l,r} =⇒ vars-term (lr i) = {i} lr ∈ {l,r} =⇒ funas-term (lr i) ⊆
F-Q for lr

by (insert vars funs, force)+
} note signature-l-r = this
{

fix i :: var and lr
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assume i: i < 9 and lr : lr ∈ {l,r}
from signature-l-r [OF i lr ] monotone-poly-eval[of lr i]
have vars: vars (eval (lr i)) = {i}

and mono: monotone-poly {i} (eval (lr i)) by auto
} note eval-l-r = this

define upoly where upoly l-or-r i = mpoly-to-poly i (eval (l-or-r i)) for l-or-r ::
var ⇒ (-,-)term and i

{
fix lr and i :: nat and a :: - ⇒ ′a
assume a: assignment a and i: i < 9 and lr : lr ∈ {l,r}
with eval-l-r [OF i] signature-l-r [OF i]
have vars: vars (eval (lr i)) = {i} and mono: monotone-poly {i} (eval (lr i))

and funs: funas-term (lr i) ⊆ F-Q by auto
from insertion-eval-pos[OF funs]
have valid: valid-poly (eval (lr i)) unfolding valid-poly-def by auto
from monotone-poly-partial-insertion[OF - mono a, of i] valid
have deg: degree (partial-insertion a i (eval (lr i))) > 0

and lc: ?lc (partial-insertion a i (eval (lr i))) > 0
and ineq: insertion a (eval (lr i)) ≥ a i − δ by auto
moreover have partial-insertion a i (eval (lr i)) = upoly lr i unfolding

upoly-def
using vars eval-l-r [OF i, of r , simplified]
by (intro poly-ext)
(metis i insertion-partial-insertion-vars poly-eq-insertion poly-inter .vars-eval

signature-l-r(1 )[of - r , simplified] singletonD)
ultimately
have degree (upoly lr i) > 0 ?lc (upoly lr i) > 0

insertion a (eval (lr i)) ≥ a i − δ by auto
} note upoly-pos-subterm = this

{
fix i :: var
assume i: i < 9
from degree-partial-insertion-stays-constant[OF f (2 ), of i] obtain a ′ where

a ′: assignment a ′ and
deg-a ′:

∧
b. (

∧
y. a ′ y + δ ≤ b y) =⇒ degree (partial-insertion a ′ i f ) =

degree (partial-insertion b i f )
by auto

define a where a j = a ′ j + 2 ∗ δ for j
from a ′ have a: assignment a unfolding assignment-def a-def using δ0 by

auto
{

fix b
assume le:

∧
y. a y − δ ≤ b y

have a ′ y + δ ≤ b y for y using le[of y] unfolding a-def by auto
from deg-a ′[OF this]
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have 1 : degree (partial-insertion a ′ i f ) = degree (partial-insertion b i f ) by
auto

have a ′ y + δ ≤ a y for y unfolding a-def using δ0 by auto
from deg-a ′[OF this] 1
have degree (partial-insertion a i f ) = degree (partial-insertion b i f ) by auto

} note deg-a = this

define c where c j = (if j < 9 then insertion a (eval (l j)) else a j) for j
define e where e j = (if j < 9 then insertion a (eval (r j)) else a j) for j
{

fix x :: ′a
assume x: x ≥ 0
have ass: assignment (a (i := x)) using x a unfolding assignment-def by

auto
from gt[unfolded gt-poly-def , rule-format, OF ass, unfolded rhs-Q lhs-Q]
have insertion (a(i := x)) (eval (Fun f-sym (map r [0 ..<9 ]))) + δ
≤ insertion (a(i := x)) (eval (Fun f-sym (map l [0 ..<9 ]))) by simp

also have insertion (a(i := x)) (eval (Fun f-sym (map r [0 ..<9 ]))) =
insertion (λj. insertion (a(i := x)) (eval (r j))) f
by (simp add: If insertion-substitute, intro insertion-irrelevant-vars, auto

simp: f )
also have . . . = poly (partial-insertion e i f ) (poly (upoly r i) x)
proof −

let ?α = (λj. insertion (a(i := x)) (eval (r j)))
have insi: poly (upoly r i) x = insertion (a(i := x)) (eval (r i))

unfolding upoly-def using eval-l-r(1 )[OF i, of r ]
by (subst poly-eq-insertion, force)
(intro insertion-irrelevant-vars, auto)

show ?thesis unfolding insi
proof (rule insertion-partial-insertion-vars[of i f e ?α, symmetric])

fix j
show j 6= i =⇒ j ∈ vars f =⇒ e j = insertion (a(i := x)) (eval (r j))

unfolding e-def f using eval-l-r [of j] f by (auto intro!: inser-
tion-irrelevant-vars)

qed
qed
also have insertion (a(i := x)) (eval (Fun f-sym (map l [0 ..<9 ]))) =

insertion (λj. insertion (a(i := x)) (eval (l j))) f
by (simp add: If insertion-substitute, intro insertion-irrelevant-vars, auto

simp: f )
also have . . . = poly (partial-insertion c i f ) (poly (upoly l i) x)
proof −

let ?α = (λj. insertion (a(i := x)) (eval (l j)))
have insi: poly (upoly l i) x = insertion (a(i := x)) (eval (l i))

unfolding upoly-def using eval-l-r [OF i]
by (subst poly-eq-insertion, force)
(intro insertion-irrelevant-vars, auto)

show ?thesis unfolding insi
proof (rule insertion-partial-insertion-vars[of i f c ?α, symmetric])
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fix j
show j 6= i =⇒ j ∈ vars f =⇒ c j = insertion (a(i := x)) (eval (l j))

unfolding c-def f using eval-l-r [of j] f by (auto intro!: inser-
tion-irrelevant-vars)

qed
qed

finally have poly (partial-insertion c i f ) (poly (upoly l i) x)
≥ poly (partial-insertion e i f ) (poly (upoly r i) x) + δ .

} note 1 = this

define er where er = partial-insertion e i f ◦p upoly r i
define cl where cl = partial-insertion c i f ◦p upoly l i
define d where d = degree (partial-insertion e i f )
{

fix x
have a x − δ ≤ c x ∧ a x − δ ≤ e x
proof (cases x ∈ vars f )

case False
thus ?thesis unfolding c-def e-def f using δ0 by auto

next
case True
hence id: (x < 9 ) = True and x: x < 9 unfolding f by auto

show ?thesis unfolding c-def e-def id if-True using upoly-pos-subterm(3 )[OF
a x]

by auto
qed
hence a x − δ ≤ c x a x − δ ≤ e x by auto

} note a-ce = this

have d-eq: d = degree (partial-insertion c i f ) unfolding d-def
by (subst (1 2 ) deg-a[symmetric], insert a-ce, auto)

have e: assignment e using a ′ a-ce(2 ) δ0 unfolding assignment-def a-def
by (metis (no-types, lifting) diff-ge-0-iff-ge gt-delta-imp-ge le-add-same-cancel2

linorder-not-less mult-2 order-le-less-trans)

have d-pos: d > 0 unfolding d-def
by (intro monotone-poly-partial-insertion[OF - f (2 ) e], insert f i, auto)

have lc-e-pos: ?lc (partial-insertion e i f ) > 0
by (intro monotone-poly-partial-insertion[OF - f (2 ) e], insert f i, auto)

have lc-r-pos: ?lc (upoly r i) > 0 by (intro upoly-pos-subterm[OF a i], auto)
have deg-r : 0 < degree (upoly r i) by (intro upoly-pos-subterm[OF a i], auto)
have lc-er-pos: ?lc er > 0 unfolding er-def

by (subst lead-coeff-comp[OF deg-r ], insert lc-e-pos deg-r lc-r-pos, auto)

from 1 [folded poly-pcompose, folded er-def cl-def ]
have er-cl-poly: 0 ≤ x =⇒ poly er x + δ ≤ poly cl x for x by auto
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have degree er ≤ degree cl
proof (intro degree-mono[of - 0 ])

show 0 ≤ ?lc er using lc-er-pos by auto
show 0 ≤ x =⇒ poly er x ≤ poly cl x for x using er-cl-poly[of x] δ0 by auto

qed
also have degree er = d ∗ degree (upoly r i)

unfolding er-def d-def by simp
also have degree cl = d ∗ degree (upoly l i)

unfolding cl-def d-eq by simp
finally have degree (upoly l i) ≥ degree (upoly r i) using d-pos by auto

} note deg-inequality = this

{
fix p :: ′a mpoly and x
assume p: monotone-poly {x} p vars p = {x}
define q where q = mpoly-to-poly x p
from mpoly-to-poly-inverse[of p x]
have pq: p = poly-to-mpoly x q using p unfolding q-def by auto
from pq p(2 ) have deg: degree q > 0

by (simp add: degree-mpoly-to-poly degree-pos-iff q-def )
from deg pq have ∃ q. p = poly-to-mpoly x q ∧ degree q > 0 unfolding q-def

by auto
} note mono-unary-poly = this

{
fix f
assume f ∈ {q-sym, h-sym} ∪ v-sym ‘ V
hence (f , 1 ) ∈ F-Q unfolding F-Q-def F-def by auto
from valid[OF this, unfolded valid-monotone-poly-def ] obtain p

where p: p = I f monotone-poly {..<1} p vars p = {0} by auto
have id: {..< (1 :: nat)} = {0} by auto
have ∃ q. I f = poly-to-mpoly 0 q ∧ degree q > 0 unfolding p(1 )[symmetric]

by (intro mono-unary-poly, insert p(2−3 )[unfolded id], auto)
} note unary-symbol = this

{
fix f and n :: nat and x :: var
assume f ∈ {g-sym, f-sym,a-sym} f = f-sym =⇒ n = 9 f ∈ {a-sym,g-sym}

=⇒ n = 2
hence n: n > 1 and f : (f ,n) ∈ F-Q unfolding F-def F-Q-def by force+
define p where p = I f
from valid[OF f , unfolded valid-monotone-poly-def , rule-format, OF refl p-def ]
have mono: monotone-poly (vars p) p and vars: vars p = {..<n} and valid:

valid-poly p by auto
let ?t = Fun f (replicate n (TVar x))
have t-F : funas-term ?t ⊆ F-Q using f by auto
have vt: vars-term ?t = {x} using n by auto
define q where q = eval ?t
from monotone-poly-eval[OF t-F , unfolded vt, folded q-def ]
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have monotone-poly {x} q vars q = {x} by auto
from mono-unary-poly[OF this] obtain q ′ where

qq ′: q = poly-to-mpoly x q ′ and dq ′: degree q ′ > 0 by auto
have q ′t: poly-to-mpoly x q ′ = eval ?t unfolding qq ′[symmetric] q-def by simp
also have . . . = substitute (λi. if i < n then eval (replicate n (TVar x) ! i) else

0 ) p
by (simp add: p-def [symmetric])

also have (λi. if i < n then eval (replicate n (TVar x) ! i) else 0 ) = (λi. if i
< n then PVar x else 0 )

by (intro ext, auto)
also have substitute . . . p = substitute (λ i. PVar x) p using vars

unfolding substitute-def using vars-replace-coeff [of Const, OF Const-0 ]
by (intro insertion-irrelevant-vars, auto)

finally have eq: poly-to-mpoly x q ′ = substitute (λi. PVar x) p .
have ∃ p q. I f = p ∧ eval ?t = poly-to-mpoly x q ∧ poly-to-mpoly x q =

substitute (λi. PVar x) p ∧ degree q > 0
∧ vars p = {..<n} ∧ monotone-poly (vars p) p ∧ valid-poly p

by (intro exI [of - p] exI [of - q ′] conjI valid eq dq ′ p-def [symmetric] q ′t[symmetric]
mono vars)

} note g-f-a-sym = this

from unary-symbol[of q-sym] obtain q where Iq: I q-sym = poly-to-mpoly 0 q
and dq: degree q > 0 by auto

from unary-symbol[of h-sym] obtain h where Ih: I h-sym = poly-to-mpoly 0 h
and dh: degree h > 0 by auto

from g-f-a-sym[of f-sym 9 , of y3 ] obtain f fu where
If : I f-sym = f
and eval-fyy: eval (Fun f-sym (replicate 9 (TVar y3 ))) = poly-to-mpoly y3 fu
and poly-f : poly-to-mpoly y3 fu = substitute (λi. PVar y3 ) f
and df : 0 < degree fu
and vars-f : vars f = {..<9}
and mono-f : monotone-poly (vars f ) f
and valid-f : valid-poly f by auto

from g-f-a-sym[of a-sym 2 , of y5 ] obtain a au where
Ia: I a-sym = a
and eval-ayy: eval (Fun a-sym (replicate 2 (TVar y5 ))) = poly-to-mpoly y5 au
and poly-a: poly-to-mpoly y5 au = substitute (λi. PVar y5 ) a
and da: 0 < degree au
and vars-a: vars a = {..<2}
and valid-a: valid-poly a
and mono-a: monotone-poly (vars a) a by auto

with g-f-a-sym[of a-sym 2 , of y6 ] obtain au ′ where
eval-ayy ′: eval (Fun a-sym (replicate 2 (TVar y6 ))) = poly-to-mpoly y6 au ′

and poly-a ′: poly-to-mpoly y6 au ′ = substitute (λi. PVar y6 ) a
and da ′: 0 < degree au ′

by auto
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from g-f-a-sym[of g-sym 2 , of y2 ] obtain g gu where
Ig: I g-sym = g
and eval-gyy: eval (Fun g-sym (replicate 2 (TVar y2 ))) = poly-to-mpoly y2 gu
and poly-g: poly-to-mpoly y2 gu = substitute (λi. PVar y2 ) g
and dg: 0 < degree gu
and vars-g: vars g = {..<2}
and valid-g: valid-poly g
and mono-g: monotone-poly (vars g) g by auto

from unary-symbol[of v-sym i for i] have ∀ i. ∃ q. i ∈ V −→ I (v-sym i) =
poly-to-mpoly 0 q ∧ 0 < degree q by auto

from choice[OF this] obtain v where
Iv: i ∈ V =⇒ I (v-sym i) = poly-to-mpoly 0 (v i) and
dv: i ∈ V =⇒ degree (v i) > 0

for i by auto

have eval-pm-Var : eval (TVar y) = poly-to-mpoly y [:0 ,1 :] for y
unfolding eval.simps mpoly-of-poly-is-poly-to-mpoly[symmetric] by simp

have id: (if 0 = (0 :: nat) then eval ([t] ! 0 ) else 0 ) = eval t for t by simp

{
fix y
have y: eval (TVar y) = poly-to-mpoly y [:0 ,1 :] (is - = poly-to-mpoly - ?poly1 )

by fact
have hy: eval (Fun h-sym [TVar y]) = poly-to-mpoly y h using Ih

apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y ?poly1 ])
apply (unfold id, intro y)

by simp
have qy: eval (Fun q-sym [TVar y]) = poly-to-mpoly y q using Iq

apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y ?poly1 ])
apply (unfold id, intro y)

by simp
have qhy: eval (Fun q-sym [Fun h-sym [TVar y]]) = poly-to-mpoly y (pcompose

q h) using Iq
apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y h])
apply (unfold id, intro hy)

by simp
have hqy: eval (Fun h-sym [Fun q-sym [TVar y]]) = poly-to-mpoly y (pcompose

h q) using Ih
apply (simp)
apply (subst substitute-poly-to-mpoly[of - - y q])
apply (unfold id, intro qy)

by simp
have hhqy: eval (Fun h-sym [Fun h-sym [Fun q-sym [TVar y]]]) = poly-to-mpoly

y (pcompose h (pcompose h q))
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apply (simp)
apply (subst Ih)
apply (subst substitute-poly-to-mpoly[of - - y pcompose h q])
apply (unfold id, intro hqy)

by simp
{

assume y: y = 0
have l: eval (l 0 ) = poly-to-mpoly 0 (pcompose q h) unfolding

l-def lhs-Q-def using y qhy by (simp add: Ih y1-def )
have r : eval (r 0 ) = poly-to-mpoly 0 (pcompose h (pcompose h q)) unfolding

r-def rhs-Q-def using y hhqy by (simp add: Ih y1-def )
from deg-inequality[of 0 , unfolded upoly-def l r poly-to-mpoly-inverse]
have dh: degree h = 1 using dq and dh by auto

} note hy qy this
}
hence dh: degree h = 1

and hy:
∧

y. eval (Fun h-sym [TVar y]) = poly-to-mpoly y h
and qy:

∧
y. eval (Fun q-sym [TVar y]) = poly-to-mpoly y q

by auto

{
have l: eval (l 1 ) = poly-to-mpoly 1 h unfolding

l-def lhs-Q-def using hy by (simp add: Ih y2-def )
have eval (r 1 ) = eval (Fun g-sym (replicate 2 (TVar y2 ))) unfolding r-def

rhs-Q-def
apply (simp)
apply (intro arg-cong[of - - λ x. substitute x -] ext)
subgoal for i by (cases i; cases i − 1 ; auto)
done

also have . . . = poly-to-mpoly y2 gu by fact
finally have r : eval (r 1 ) = poly-to-mpoly 1 gu by (auto simp: y2-def )
from deg-inequality[of 1 , unfolded upoly-def l r poly-to-mpoly-inverse] dh dg
have degree gu = 1 by auto
with subst-same-var-monotone-imp-same-degree[OF mono-g poly-g]
have total-degree g = 1 by auto

}
hence dg: total-degree g = 1 by auto

{
have l: eval (l 2 ) = poly-to-mpoly 2 h unfolding

l-def lhs-Q-def using hy by (simp add: Ih y3-def )
have eval (r 2 ) = eval (Fun f-sym (replicate 9 (TVar y3 ))) unfolding r-def

rhs-Q-def
by simp

also have . . . = poly-to-mpoly y3 fu by fact
finally have r : eval (r 2 ) = poly-to-mpoly 2 fu by (auto simp: y3-def )
from deg-inequality[of 2 , unfolded upoly-def l r poly-to-mpoly-inverse] df dh
have degree fu = 1 by auto
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with subst-same-var-monotone-imp-same-degree[OF mono-f poly-f ]
have total-degree f = 1 by auto

}
hence df : total-degree f = 1 by auto

{
fix gs g
assume gs: (gs,1 ) ∈ F-Q and I : I gs = poly-to-mpoly 0 g and dg: degree g =

1
from valid[OF gs, unfolded valid-monotone-poly-def , rule-format, OF refl I [symmetric]]
have valid: valid-poly (poly-to-mpoly 0 g) monotone-poly {..<1} (poly-to-mpoly

0 g)
vars (poly-to-mpoly 0 g) = {..<1}
by auto

hence mono: monotone-poly (vars (I gs)) (I gs) unfolding I by auto
have total-degree (I gs) = 1 unfolding dg[symmetric]
proof (rule subst-same-var-monotone-imp-same-degree[OF mono, of 0 ])

show poly-to-mpoly 0 g = substitute (λi. PVar 0 ) (I gs) unfolding I
by (intro mpoly-extI , auto simp: insertion-substitute)

qed
hence total-degree (I gs) ≤ 1 by auto
from monotone-linear-poly-to-coeffs[OF this valid[folded I ]]
obtain c a where I ′: I gs = Const c + Const a ∗ PVar 0 and pos: 0 ≤ c 1

≤ a
by auto

from I ′ have I gs = poly-to-mpoly 0 [:c, a:]
unfolding mpoly-of-poly-is-poly-to-mpoly[symmetric] by simp

from arg-cong[OF this[unfolded I ], of mpoly-to-poly 0 ]
have g = [:c,a:] by (simp add: poly-to-mpoly-inverse)
with I ′ pos have ∃ c a. I gs = Const c + Const a ∗ PVar 0 ∧ 0 ≤ c ∧ 1 ≤

a ∧ g = [:c,a:] by auto
} note unary-linear = this[unfolded F-Q-def F-def ]

from unary-linear [OF - Ih dh] obtain h0 h1 where
Ih ′: I h-sym = Const h0 + Const h1 ∗ PVar 0
and h0 : 0 ≤ h0
and h1 : 1 ≤ h1
and h: h = [:h0 ,h1 :]
by auto

from df have total-degree f ≤ 1 by auto
from monotone-linear-poly-to-coeffs[OF this valid-f mono-f [unfolded vars-f ] vars-f ]

obtain f0 fi where f : f = Const f0 + (
∑

i←[0 ..<9 ]. Const (fi i) ∗ PVar i)
and f0 : 0 ≤ f0 and fi:

∧
i. i<9 =⇒ 1 ≤ fi i

by auto
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from dg have total-degree g ≤ 1 by auto
from monotone-linear-poly-to-coeffs[OF this valid-g mono-g[unfolded vars-g] vars-g]

obtain g0 gi where g: g = Const g0 + (
∑

i←[0 ..<2 ]. Const (gi i) ∗ PVar i)
and g0 : 0 ≤ g0 and gi:

∧
i. i<2 =⇒ 1 ≤ gi i

by auto
define g1 where g1 = gi 0
define g2 where g2 = gi 1
have id2 : [0 ..<2 ] = [0 ,1 :: nat] by code-simp
from gi[of 0 ] gi[of 1 ] have g1 : g1 ≥ 1 and g2 : g2 ≥ 1 by (auto simp: g1-def

g2-def )
have g: g = Const g0 + Const g1 ∗ PVar 0 + Const g2 ∗ PVar 1

unfolding g g1-def g2-def by (auto simp: id2 )

define α where α = (λ x :: var . 0 :: ′a)
have α: assignment α unfolding α-def assignment-def by auto
{

fix i :: nat
assume i: i < 9
from i have i ∈ set [0 ..<9 ] by auto
from split-list[OF this] obtain bef aft where id: [0 ..<9 ] = bef @ [i] @ aft by

auto
define ba where ba = bef @ aft
have distinct [0 ..<9 ] by simp
from this[unfolded id]
have i /∈ set (bef @ aft) by auto
with id have iba: set ba = {0 ..<9} − {i} unfolding ba-def
by (metis Diff-insert-absorb Un-insert-right append-Cons append-Nil list.simps(15 )

set-append set-upt)
have len: length [0 ..<9 ] = 9 by simp
define diff where diff = (

∑
x←ba. fi x ∗ insertion α (eval (r x))) − (

∑
x←ba.

fi x ∗ insertion α (eval (l x))) + δ
{

fix x :: ′a
assume x: x ≥ 0
define a where a = α(i := x)
have a: assignment a using α unfolding a-def assignment-def using x by

auto
from gt[unfolded gt-poly-def , rule-format, OF this]
have insertion a (eval rhs-Q) + δ ≤ insertion a (eval lhs-Q) by auto
also have insertion a (eval lhs-Q) = f0 + (

∑
x←[0 ..<9 ]. fi x ∗ insertion a

(eval (l x)))
unfolding lhs-Q eval.simps If f length-map len insertion-substitute inser-

tion-add insertion-Const
insertion-sum-list insertion-mult map-map o-def insertion-Var

by (intro arg-cong[of - - λ x. (+) - (sum-list x)] map-cong refl arg-cong[of -
- (∗) -], simp)

also have (
∑

x←[0 ..<9 ]. fi x ∗ insertion a (eval (l x))) =
(
∑

x←ba. fi x ∗ insertion a (eval (l x))) + fi i ∗ insertion a (eval (l i))
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unfolding id ba-def by simp
also have (

∑
x←ba. fi x ∗ insertion a (eval (l x))) = (

∑
x←ba. fi x ∗ insertion

α (eval (l x)))
apply (intro arg-cong[of - - sum-list] map-cong refl arg-cong[of - - (∗) -]

insertion-irrelevant-vars)
subgoal for v j unfolding iba using eval-l-r [of v l] by (auto simp: a-def )

done
also have insertion a (eval rhs-Q) = f0 + (

∑
x←[0 ..<9 ]. fi x ∗ insertion a

(eval (r x)))
unfolding rhs-Q eval.simps If f length-map len insertion-substitute inser-

tion-add insertion-Const
insertion-sum-list insertion-mult map-map o-def insertion-Var

by (intro arg-cong[of - - λ x. (+) - (sum-list x)] map-cong refl arg-cong[of -
- (∗) -], simp)

also have (
∑

x←[0 ..<9 ]. fi x ∗ insertion a (eval (r x))) =
(
∑

x←ba. fi x ∗ insertion a (eval (r x))) + fi i ∗ insertion a (eval (r i))
unfolding id ba-def by simp
also have (

∑
x←ba. fi x ∗ insertion a (eval (r x))) = (

∑
x←ba. fi x ∗

insertion α (eval (r x)))
apply (intro arg-cong[of - - sum-list] map-cong refl arg-cong[of - - (∗) -]

insertion-irrelevant-vars)
subgoal for v j unfolding iba using eval-l-r [of v r ] by (auto simp: a-def )

done
finally have ineq: fi i ∗ insertion a (eval (r i)) ≤ fi i ∗ insertion a (eval (l

i)) − diff
unfolding diff-def by (simp add: algebra-simps)

from fi[OF i] have fi: fi i 6= 0 and inv: inverse (fi i) ≥ 0 by auto
from mult-left-mono[OF ineq inv]
have insertion a (eval (r i)) ≤ insertion a (eval (l i)) + (− inverse (fi i) ∗

diff )
using fi by (simp add: field-simps)

}
hence ∃ diff . ∀ x ≥ 0 . insertion (α(i := x)) (eval (r i)) ≤ insertion (α(i :=

x)) (eval (l i)) + diff
by blast

}
hence ∀ i. ∃ diff . i < 9 −→ (∀ x ≥ 0 . insertion (α(i := x)) (eval (r i)) ≤

insertion (α(i := x)) (eval (l i)) + diff )
by auto

from choice[OF this]

Inequality (2) in paper
obtain diff where inequality2 :

∧
i x. i < 9 =⇒ x ≥ 0 =⇒

insertion (α(i := x)) (eval (r i)) ≤ insertion (α(i := x)) (eval (l i)) + diff i
by auto

note [simp] = insertion-mult insertion-add insertion-substitute
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define delt2 where delt2 = h0 + diff 1 − g0
{

fix x
assume x ≥ (0 :: ′a)
from inequality2 [of 1 , OF - this]
have insertion (α(1 := x)) (eval (r 1 )) ≤ insertion (α(1 := x)) (eval (l 1 )) +

diff 1 by auto
also have insertion (α(1 := x)) (eval (r 1 )) = g0 + g1 ∗ x + g2 ∗ x

by (simp add: r-def rhs-Q-def Ig g y2-def )
also have insertion (α(1 := x)) (eval (l 1 )) = h0 + x ∗ h1

by (simp add: l-def lhs-Q-def Ih h y2-def )
finally have (g1 + g2 − h1 ) ∗ x ≤ delt2 unfolding delt2-def

by (simp add: algebra-simps)
} note ineq2 = this
from bounded-negative-factor [OF this] have g1 + g2 ≤ h1 by auto
with g1 g2 have h1 : h1 ≥ 2 by auto

{
assume degree q = 1
from unary-linear [OF - Iq this]
obtain q0 q1 where Iq ′: I q-sym = Const q0 + Const q1 ∗ PVar 0

and q0 : 0 ≤ q0 and q1 : 1 ≤ q1 and q: q = [:q0 , q1 :]
by auto

define d1 where d1 = h0 + h0 ∗ h1 + h1 ∗ h1 ∗ q0
define d2 where d2 = q0 + h0 ∗ q1
define delt1 where delt1 = d2 + diff 0 − d1
define fact1 where fact1 = (q1 ∗ h1 ∗ h1 − h1 ∗ q1 )
{

fix x :: ′a
assume x: x ≥ 0
from inequality2 [of 0 , OF - this]
have insertion (α(0 := x)) (eval (r 0 )) ≤ insertion (α(0 := x)) (eval (l 0 ))

+ diff 0 by auto
also have insertion (α(0 := x)) (eval (r 0 )) = d1 + q1 ∗ h1 ∗ h1 ∗ x

by (simp add: r-def rhs-Q-def Ih h Iq q y1-def field-simps d1-def )
also have insertion (α(0 := x)) (eval (l 0 )) = d2 + h1 ∗ q1 ∗ x

by (simp add: l-def lhs-Q-def Ih h Iq q y1-def field-simps d2-def )
finally have fact1 ∗ x ≤ delt1 by (simp add: field-simps delt1-def fact1-def )

} note ineq1 = this
from bounded-negative-factor [OF this]
have fact1 ≤ 0 .
from this[unfolded fact1-def ] h1 q1 have False by auto

}
with dq have dq: degree q ≥ 2 by (cases degree q; cases degree q − 1 ; auto)

have (z-sym, 0 ) ∈ F-Q unfolding F-def F-Q-def by auto
from valid[OF this, unfolded valid-monotone-poly-def , rule-format, OF refl refl]
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obtain z where Iz: I z-sym = z and vars-z: vars z = {} and valid-z: valid-poly
z by auto

from vars-empty-Const[OF vars-z] obtain z0 where z: z = Const z0 by auto
from valid-z[unfolded valid-poly-def , rule-format, OF α, unfolded z] have z0 : z0
≥ 0 by auto

{
fix i
assume i ∈ V
hence v-sym i ∈ {q-sym, h-sym} ∪ v-sym ‘ V by auto
note unary-symbol[OF this]

}
hence ∀ i. ∃ q. i ∈ V −→ I (v-sym i) = poly-to-mpoly 0 q ∧ 0 < degree q by

auto
from choice[OF this] obtain v where Iv:

∧
i. i ∈ V =⇒ I (v-sym i) =

poly-to-mpoly 0 (v i)
and dv:

∧
i. i ∈ V =⇒ 0 < degree (v i)

by auto

define const-t where const-t = insertion α (eval t-t)
have const-t: const-t > 0

unfolding const-t-def
by (rule eval-t-t-gt-0 [OF Ig[unfolded g] Iz[unfolded z]], insert z0 g0 g1 g2 , auto)

{
define d1 where d1 = g0 + g2 ∗ h0 + g2 ∗ h1 ∗ h0 + g2 ∗ h1 ∗ h1 ∗ h0
define c where c = g0 + g2 ∗ const-t
define delt4 where delt4 = d1 + diff 3
have [simp]: insertion a (eval t-t) = const-t for a unfolding const-t-def

by (rule insertion-irrelevant-vars, insert vars-t vars-eval, force)
let ?qq = q ◦p [:c, g1 :] − smult g1 q
define qq where qq = ?qq
define hhh where hhh = [:delt4 , g2 ∗ h1 ∗ h1 ∗ h1 :]
{

fix x :: ′a
assume x: x ≥ 0
from inequality2 [of 3 , OF - this]
have insertion (α(3 := x)) (eval (r 3 )) ≤ insertion (α(3 := x)) (eval (l 3 ))

+ diff 3 by auto
also have insertion (α(3 := x)) (eval (r 3 )) = poly q (g0 + g1 ∗ x + g2 ∗

const-t)
by (simp add: r-def rhs-Q-def y4-def Iq Ig g)

also have insertion (α(3 := x)) (eval (l 3 )) =
g1 ∗ poly q x + g2 ∗ h1 ∗ h1 ∗ h1 ∗ x + d1
by (simp add: l-def lhs-Q-def y4-def Iq Ig g Ih h field-simps d1-def )

finally have poly q (g0 + g1 ∗ x + g2 ∗ const-t) − poly (smult g1 q) x − g2
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∗ h1 ∗ h1 ∗ h1 ∗ x ≤ delt4
by (simp add: delt4-def )

also have g2 ∗ h1 ∗ h1 ∗ h1 ∗ x = poly [:0 , g2 ∗ h1 ∗ h1 ∗ h1 :] x by simp
also have poly q (g0 + g1 ∗ x + g2 ∗ const-t) = poly (pcompose q [:c, g1 :])

x
by (simp add: poly-pcompose ac-simps c-def )

finally have poly qq x ≤ poly hhh x
by (simp add: qq-def hhh-def )

} note ineq3 = this

have lq0 : lead-coeff q > 0
proof (rule ccontr)

assume ¬ ?thesis
with dq have lq: lead-coeff (− q) > 0 by (cases q = 0 , auto)
from poly-pinfty-ge[OF this, of 1 ] dq obtain n where

∧
x. x ≥ n =⇒ poly

q x ≤ −1 by auto
from this[of max n 0 ] have 1 : poly q (max n 0 ) ≤ − 1 by auto
let ?a = λ x :: var . max n 0
have a: assignment ?a unfolding assignment-def by auto
have (q-sym,1 ) ∈ F-Q unfolding F-Q-def by auto
from valid[OF this, unfolded valid-monotone-poly-def , rule-format, OF refl

Iq[symmetric]]
have valid-poly (poly-to-mpoly 0 q) by auto
from this[unfolded valid-poly-def , rule-format, OF a]
have 0 ≤ poly q (max n 0 ) by auto
with 1 show False by auto

qed

from const-t g0 g2 have c: c > 0 unfolding c-def
by (metis le-add-same-cancel2 linorder-not-le mult-less-cancel-right2 order-le-less-trans

order-less-le)

have degree hhh ≤ 1 unfolding hhh-def by simp

from criterion-for-degree-2 [OF qq-def dq ineq3 this g1 lq0 c]
have degree q = 2 g1 = 1 by auto

}
hence dq: degree q = 2 and g1 : g1 = 1 by auto

{
have l: eval (l 4 ) = poly-to-mpoly 4 q unfolding

l-def lhs-Q-def using qy by (simp add: y5-def )
have eval (r 4 ) = eval (Fun a-sym (replicate 2 (TVar y5 ))) unfolding r-def

rhs-Q-def
apply (simp)
apply (intro arg-cong[of - - λ x. substitute x -] ext)
subgoal for i by (cases i; cases i − 1 ; auto)
done
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also have . . . = poly-to-mpoly y5 au by fact
finally have r : eval (r 4 ) = poly-to-mpoly 4 au by (auto simp: y5-def )
from deg-inequality[of 4 , unfolded upoly-def l r poly-to-mpoly-inverse]
have degree au ≤ degree q by auto
with subst-same-var-monotone-imp-same-degree[OF mono-a poly-a]
have total-degree a ≤ degree q by auto

}
hence d-aq: total-degree a ≤ degree q by auto

{
have r : eval (r 5 ) = poly-to-mpoly 5 q unfolding

r-def rhs-Q-def using qy by (simp add: y6-def )
have eval (l 5 ) = eval (Fun a-sym (replicate 2 (TVar y6 ))) unfolding l-def

lhs-Q-def
apply (simp)
apply (intro arg-cong[of - - λ x. substitute x -] ext)
subgoal for i by (cases i; cases i − 1 ; auto)
done

also have . . . = poly-to-mpoly y6 au ′ by fact
finally have l: eval (l 5 ) = poly-to-mpoly 5 au ′ by (auto simp: y6-def )
from deg-inequality[of 5 , unfolded upoly-def l r poly-to-mpoly-inverse]
have degree q ≤ degree au ′ by auto
with subst-same-var-monotone-imp-same-degree[OF mono-a poly-a ′] da ′

have degree q ≤ total-degree a by auto
}

with d-aq
have d-aq: total-degree a = degree q by auto

with dq have da: total-degree a = 2 by simp
have vars a = {0 ,1} unfolding vars-a by code-simp

from binary-degree-2-poly[OF - this] da
obtain a0 a1 a2 a3 a4 a5 where a: a = Const a0 + Const a1 ∗ PVar 0 +

Const a2 ∗ PVar 1 +
Const a3 ∗ PVar 0 ∗ PVar 0 + Const a4 ∗ PVar 1 ∗ PVar 1 +
Const a5 ∗ PVar 0 ∗ PVar 1 by auto

define d1 where d1 = a0 + a1 ∗ z0 + a3 ∗ z0 ∗ z0
define d2 where d2 = (a2 + a5 ∗ z0 )
define delt7 where delt7 = diff 6 − d1
{

fix x
assume x ≥ (0 :: ′a)
from inequality2 [of 6 , OF - this]
have insertion (α(6 := x)) (eval (r 6 )) ≤ insertion (α(6 := x)) (eval (l 6 )) +

diff 6 by auto
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also have insertion (α(6 := x)) (eval (r 6 )) = a4 ∗ x ∗ x + d2 ∗ x + d1
by (simp add: r-def rhs-Q-def Ig g y7-def Ia a Iz z algebra-simps d1-def d2-def )

also have insertion (α(6 := x)) (eval (l 6 )) = x
by (simp add: l-def lhs-Q-def Ih h y7-def )

finally have 0 ≥ poly [:−delt7 ,d2 − 1 ,a4 :] x unfolding delt7-def
by (simp add: algebra-simps)

} note ineq7 = this
{

define p where p = [:−delt7 ,d2 − 1 ,a4 :]
assume a4 > 0
hence lead-coeff p > 0 degree p > 0 by (auto simp: p-def )
with poly-pinfty-ge[OF this(1 ), of 1 ] obtain n where

∧
x. x≥n =⇒ 1 ≤ poly

p x by blast
from this[of max n 0 ] ineq7 [of max n 0 ] have False unfolding p-def by auto

}
hence a4 : a4 ≤ 0 by force

note valid-a = valid-a[unfolded a valid-poly-def , rule-format]
{

define p where p = [:−a0 ,−a2 ,−a4 :]
assume a4 < 0
hence p: lead-coeff p > 0 degree p 6= 0 unfolding p-def by auto
{

fix x :: ′a
assume x ≥ 0
hence assignment (λ v. if v = 1 then x else 0 ) unfolding assignment-def by

auto
from valid-a[OF this]
have 0 ≥ poly p x by (auto simp: algebra-simps p-def )

}
with poly-pinfty-ge[OF p] have False

by (metis (no-types, opaque-lifting) dual-order .trans nle-le not-one-le-zero)
}
with a4 have a4 : a4 = 0 by force

define d1 where d1 = a0 + a2 ∗ z0
define d2 where d2 = (a5 ∗ z0 + a1 )
define delt8 where delt8 = diff 7 − d1
{

fix x
assume x ≥ (0 :: ′a)
from inequality2 [of 7 , OF - this]
have insertion (α(7 := x)) (eval (r 7 )) ≤ insertion (α(7 := x)) (eval (l 7 )) +

diff 7 by auto
also have insertion (α(7 := x)) (eval (r 7 )) = d1 + a3 ∗ (x ∗ x) + d2 ∗ x

by (simp add: r-def rhs-Q-def Ig g y8-def Ia a a4 Iz z algebra-simps d1-def
d2-def )

also have insertion (α(7 := x)) (eval (l 7 )) = x
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by (simp add: l-def lhs-Q-def Ih h y8-def )
finally have 0 ≥ poly [:−delt8 ,d2 − 1 ,a3 :] x unfolding delt8-def

by (simp add: algebra-simps)
} note ineq8 = this
{

define p where p = [:−delt8 ,d2 − 1 ,a3 :]
assume a3 > 0
hence lead-coeff p > 0 degree p > 0 by (auto simp: p-def )
with poly-pinfty-ge[OF this(1 ), of 1 ] obtain n where

∧
x. x≥n =⇒ 1 ≤ poly

p x by blast
from this[of max n 0 ] ineq8 [of max n 0 ] have False unfolding p-def by auto

}
hence a3 : a3 ≤ 0 by force
{

define p where p = [:−a0 ,−a1 ,−a3 :]
assume a3 < 0
hence p: lead-coeff p > 0 degree p 6= 0 unfolding p-def by auto
{

fix x :: ′a
assume x ≥ 0
hence assignment (λ v. if v = 0 then x else 0 ) unfolding assignment-def by

auto
from valid-a[OF this, simplified]
have 0 ≥ poly p x by (auto simp: algebra-simps p-def )

}
with poly-pinfty-ge[OF p] have False

by (metis (no-types, opaque-lifting) dual-order .trans nle-le not-one-le-zero)
}
with a3 have a3 : a3 = 0 by force

from a a3 a4 have a: a = Const a5 ∗ PVar 0 ∗ PVar 1 + Const a1 ∗ PVar 0
+ Const a2 ∗ PVar 1 + Const a0 by simp

note valid-a = valid-a[unfolded a3 a4 ]
from valid-a[OF α, simplified, unfolded α-def ]
have a0 : a0 ≥ 0 by auto

note mono-a ′ = mono-a[unfolded monotone-poly-wrt-def , rule-format, unfolded
vars-a, OF α, unfolded a, simplified,

unfolded α-def , simplified]
from mono-a ′[of 0 ] have a1 : δ ≤ x =⇒ δ ≤ a1 ∗ x for x by auto
from mono-a ′[of 1 ] have a2 : δ ≤ x =⇒ δ ≤ a2 ∗ x for x by auto
{

fix a
assume a ∈ {a1 ,a2}
with a1 a2 have δ ≤ x =⇒ δ ≤ a ∗ x for x by auto
with δ0 have a ≥ 1

using mult-le-cancel-right1 by auto
hence a > 0 by simp
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}
hence a1 : a1 > 0 and a2 : a2 > 0 by auto

{
assume a5 : a5 = 0
from da[unfolded a a5 ]
have 2 = total-degree (Const a1 ∗ PVar 0 + Const a2 ∗ PVar (Suc 0 ) +

Const a0 ) by simp
also have . . . ≤ 1

by (intro total-degree-add total-degree-Const-mult, auto)
finally have False by simp

}
hence a5 : a5 6= 0 by force
{

define p where p = [:−a0 , −a1 −a2 , − a5 :]
assume a5 : a5 < 0
hence p: lead-coeff p > 0 degree p 6= 0 by (auto simp: p-def )
{

fix x :: ′a
assume x ≥ 0
hence assignment (λ -. x) by (auto simp: assignment-def )
from valid-a[OF this]
have 0 ≥ poly p x by (simp add: p-def algebra-simps)

}
with poly-pinfty-ge[OF p] have False

by (metis (no-types, opaque-lifting) dual-order .trans nle-le not-one-le-zero)
}
with a5 have a5 : a5 > 0 by force

define I ′ where I ′ = (λ f . if f ∈ v-sym ‘ (UNIV − V ) then PVar 0 else I f )
define v ′ where v ′ = (λ i. if i ∈ V then v i else [:0 ,1 :])
have Iv ′: I ′ (v-sym i) = poly-to-mpoly 0 (v ′ i) for i
unfolding I ′-def v ′-def using Iv by (auto simp: mpoly-of-poly-is-poly-to-mpoly[symmetric])

have dv ′: 0 < degree (v ′ i) for i using dv[of i] by (auto simp: v ′-def )
have Ia ′: I ′ a-sym = a unfolding I ′-def using Ia by auto
have Iz ′: I ′ z-sym = z unfolding I ′-def using Iz by auto
{

fix i
have nneg-poly (v ′ i)
proof (cases i ∈ V )

case False
thus ?thesis by (auto simp: v ′-def )

next
case i: True
hence id: v ′ i = v i by (auto simp: v ′-def )
from i have (v-sym i, 1 ) ∈ F-Q unfolding F-Q-def F-def by auto
from valid[OF this, unfolded valid-monotone-poly-def ] Iv[OF i]
have valid: valid-poly (poly-to-mpoly 0 (v i) ) by auto
define p where p = v i
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have valid: 0 ≤ x =⇒ 0 ≤ poly p x for x unfolding p-def
using valid[unfolded valid-poly-def , rule-format, of λ -. x]
by (auto simp: assignment-def )

hence nneg-poly p by (intro nneg-polyI , auto)
thus ?thesis unfolding id p-def .

qed
} note nneg-v = this

{
fix r x
assume r ∈ {p,?q}
with pq funas-encode-poly-p[of x] funas-encode-poly-q[of x]
have pos: positive-poly r and inF : funas-term (encode-poly x r) ⊆ F by auto

from degree-eval-encode-poly-generic[of I ′, unfolded mpoly-of-poly-is-poly-to-mpoly,

OF Ia ′[unfolded a] Iz ′[unfolded z] - a5 a1 a2 a0 z0 , of v ′, OF Iv ′ nneg-v dv ′

pos refl, of x]
obtain rr where id: poly-to-mpoly x rr = poly-inter .eval I ′ (encode-poly x r)

and deg: int (degree rr) = insertion (λi. int (degree (v ′ i))) r
and nneg: nneg-poly rr
by auto

have poly-to-mpoly x rr = poly-inter .eval I (encode-poly x r) unfolding id
proof (rule poly-inter-eval-cong)

fix f a
assume (f ,a) ∈ funas-term (encode-poly x r)
hence (f ,a) ∈ F using inF by auto
thus I ′ f = I f unfolding F-def I ′-def by auto

qed
with deg nneg have ∃ p. mpoly-of-poly x p = eval (encode-poly x r) ∧

int (degree p) = insertion (λi. int (degree (v ′ i))) r ∧ nneg-poly p
by (auto simp: mpoly-of-poly-is-poly-to-mpoly)

} note encode = this
from encode[of p y9 ]
obtain pp where pp: mpoly-of-poly y9 pp = eval (encode-poly y9 p)

int (degree pp) = insertion (λi. int (degree (v ′ i))) p
nneg-poly pp by auto

from encode[of ?q y9 ]
obtain qq where qq: mpoly-of-poly y9 qq = eval (encode-poly y9 ?q)

int (degree qq) = insertion (λi. int (degree (v ′ i))) ?q
nneg-poly qq by auto

define ppp where ppp = (pp ∗ [:a1 , a5 :] + [:a0 , a2 :])
from deg-inequality[of 8 ]
have degree (upoly r 8 ) ≤ degree (upoly l 8 ) by simp
also have upoly r 8 = mpoly-to-poly 8

(mpoly-of-poly y9 [: a1 , a5 :] ∗ mpoly-of-poly y9 qq + mpoly-of-poly y9 [: a0 ,
a2 :])
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unfolding r-def rhs-Q-def by (simp add: upoly-def Ia a qq algebra-simps)
also have . . . = qq ∗ [:a1 , a5 :] + [:a0 , a2 :] unfolding mpoly-of-poly-add[symmetric]

mpoly-of-poly-mult[symmetric]
unfolding mpoly-of-poly-is-poly-to-mpoly y9-def poly-to-mpoly-inverse by simp

also have degree . . . = 1 + degree qq
by (rule nneg-poly-degree-add-1 [OF qq(3 )], insert a5 a2 , auto)

also have upoly l 8 = mpoly-to-poly 8
(mpoly-of-poly y9 [: h0 :] + mpoly-of-poly y9 [: h1 :] ∗ (mpoly-of-poly y9 [: a1 ,

a5 :] ∗ mpoly-of-poly y9 pp + mpoly-of-poly y9 [: a0 , a2 :]))
unfolding l-def lhs-Q-def by (simp add: upoly-def Ih h mpoly-of-poly-is-poly-to-mpoly[symmetric]

Ia a pp algebra-simps)
also have . . . = [:h0 :] + [: h1 :] ∗ ppp unfolding mpoly-of-poly-add[symmetric]

mpoly-of-poly-mult[symmetric] ppp-def
unfolding mpoly-of-poly-is-poly-to-mpoly y9-def poly-to-mpoly-inverse by simp

also have degree . . . = degree ([:h1 :] ∗ ppp)
by (metis degree-add-eq-right degree-add-le degree-pCons-0 le-zero-eq zero-less-iff-neq-zero)

also have . . . = degree ppp using h1 by simp
also have . . . = 1 + degree pp unfolding ppp-def

by (rule nneg-poly-degree-add-1 [OF pp(3 )], insert a5 a2 , auto)
finally have deg-qq-pp: int (degree qq) ≤ int (degree pp) by simp

show ?thesis unfolding positive-poly-problem-def [OF pq]
proof (intro exI [of - (λi. int (Polynomial.degree (v ′ i)))] conjI deg-qq-pp[unfolded

pp(2 ) qq(2 )])
show positive-interpr (λi. int (Polynomial.degree (v ′ i)))

unfolding positive-interpr-def using dv ′ by auto
qed

qed
end

context poly-input
begin

corollary polynomial-termination-with-delta-orders-undecidable:
positive-poly-problem p q ←→
termination-by-delta-poly-interpretation (TYPE( ′a :: floor-ceiling)) F-Q Q

proof
show positive-poly-problem p q =⇒ termination-by-delta-poly-interpretation TYPE( ′a)

F-Q Q
using solution-impl-delta-termination-of-Q by blast

assume termination-by-delta-poly-interpretation TYPE( ′a) F-Q Q
interpret term-delta-poly-input p q TYPE( ′a)

by (unfold-locales, fact)
from solution show positive-poly-problem p q by auto

qed

end
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