Formalization of Bachmair and Ganzinger's Ordered Resolution Prover Anders Schlichtkrull, Jasmin Christian Blanchette, Dmitriy Traytel, and Uwe Waldmann August 21, 2018 #### Abstract This Isabelle/HOL formalization covers Sections 2 to 4 of Bachmair and Ganzinger's "Resolution Theorem Proving" chapter in the *Handbook of Automated Reasoning*. This includes soundness and completeness of unordered and ordered variants of ground resolution with and without literal selection, the standard redundancy criterion, a general framework for refutational theorem proving, and soundness and completeness of an abstract first-order prover. #### Contents | 1 | Introduction | 2 | | |--------------------------------------|--|--|--| | 2 Map Function on Two Parallel Lists | | | | | 3 | B Liminf of Lazy Lists | | | | 4 5 | Clausal Logic 5.1 Literals | 6
7
15
16
16
18 | | | 6 | Herbrand Interretation | 21 | | | 7 | 7.1 Library 7.2 Substitution Operators 7.3 Substitution Lemmas 7.3.1 Identity Substitution 7.3.2 Associativity of Composition 7.3.3 Compatibility of Substitution and Composition 7.3.4 "Commutativity" of Membership and Substitution 7.3.5 Signs and Substitutions 7.3.6 Substitution on Literal(s) 7.3.7 Substitution on Empty 7.3.8 Substitution on a Union 7.3.9 Substitution on a Singleton 7.3.10 Substitution on (#) 7.3.11 Substitution on (!) 7.3.12 Substitution on Various Other Functions 7.3.14 Renamings 7.3.15 Monotonicity 7.3.16 Size after Substitution | 22
23
26
26
27
27
28
28
28
29
30
31
31
31
33
33
33 | | | | | 7.3.18 Ground Expressions and Substitutions | 33 | |----|------|---|-----------| | | | 7.3.19 Subsumption | 36 | | | | 7.3.20 Unifiers | 36 | | | | 7.3.21 Most General Unifier | 36 | | | | 7.3.22 Generalization and Subsumption | 36 | | | 7.4 | Most General Unifiers | 39 | | 8 | Ref | utational Inference Systems | 40 | | | 8.1 | Preliminaries | 40 | | | 8.2 | Refutational Completeness | 41 | | | 8.3 | Compactness | 42 | | 9 | Can | adidate Models for Ground Resolution | 44 | | 10 | Gro | ound Unordered Resolution Calculus | 50 | | | 10.1 | Inference Rule | 50 | | | 10.2 | Inference System | 51 | | 11 | Gro | ound Ordered Resolution Calculus with Selection | 52 | | | 11.1 | Inference Rule | 52 | | | 11.2 | Inference System | 59 | | 12 | The | eorem Proving Processes | 59 | | 13 | The | e Standard Redundancy Criterion | 64 | | 14 | Firs | st-Order Ordered Resolution Calculus with Selection | 69 | | | 14.1 | Library | 69 | | | 14.2 | Calculus | 70 | | | | Soundness | 71 | | | | Other Basic Properties | 73 | | | | Inference System | 74 | | | 14.6 | Lifting | 77 | | 15 | An | Ordered Resolution Prover for First-Order Clauses | 89 | ### 1 Introduction Bachmair and Ganzinger's "Resolution Theorem Proving" chapter in the *Handbook of Automated Reasoning* is the standard reference on the topic. It defines a general framework for propositional and first-order resolution-based theorem proving. Resolution forms the basis for superposition, the calculus implemented in many popular automatic theorem provers. This Isabelle/HOL formalization covers Sections 2.1, 2.2, 2.4, 2.5, 3, 4.1, 4.2, and 4.3 of Bachmair and Ganzinger's chapter. Section 2 focuses on preliminaries. Section 3 introduces unordered and ordered variants of ground resolution with and without literal selection and proves them refutationally complete. Section 4.1 presents a framework for theorem provers based on refutation and saturation. Finally, Section 4.2 generalizes the refutational completeness argument and introduces the standard redundancy criterion, which can be used in conjunction with ordered resolution. Section 4.3 lifts the result to a first-order prover, specified as a calculus. Figure 1 shows the corresponding Isabelle theory structure. # 2 Map Function on Two Parallel Lists theory Map2 imports Main begin This theory defines a map function that applies a (curried) binary function elementwise to two parallel lists. The definition is taken from https://www.isa-afp.org/browser_info/current/AFP/Jinja/Listn.html. Figure 1: Theory dependency graph ``` abbreviation map2 :: ('a \Rightarrow 'b \Rightarrow 'c) \Rightarrow 'a \ list \Rightarrow 'b \ list \Rightarrow 'c \ list where map2 f xs ys \equiv map (case_prod f) (zip xs ys) lemma map2_empty_iff[simp]: map2 f xs ys = [] \longleftrightarrow xs = [] \lor ys = [] by (metis Nil_is_map_conv list.exhaust list.simps(3) zip.simps(1) zip_Cons_Cons zip_Nil) \mathbf{lemma} \ image_map2 \colon length \ t = length \ s \Longrightarrow g \ `set \ (map2 \ f \ t \ s) = set \ (map2 \ (\lambda a \ b. \ g \ (f \ a \ b)) \ t \ s) lemma map2_tl: length t = length s \Longrightarrow map2 f (tl t) (tl s) = tl (map2 f t s) \mathbf{by}\ (\mathit{metis}\ (\mathit{no_types},\ \mathit{lifting})\ \mathit{hd_Cons_tl}\ \mathit{list.sel}(3)\ \mathit{map2_empty_iff}\ \mathit{map_tl}\ \mathit{tl_Nil}\ \mathit{zip_Cons_Cons}) lemma man_zin_assoc: map \ f \ (zip \ (zip \ xs \ ys) \ zs) = map \ (\lambda(x, y, z). \ f \ ((x, y), z)) \ (zip \ xs \ (zip \ ys \ zs)) by (induct zs arbitrary: xs ys) (auto simp add: zip.simps(2) split: list.splits) lemma set_{-}map2_{-}ex: assumes length t = length s shows set (map\ 2\ f\ s\ t) = \{x.\ \exists\ i < length\ t.\ x = f\ (s\ !\ i)\ (t\ !\ i)\} proof (rule; rule) \mathbf{fix} \ x assume x \in set (map2 f s t) then obtain i where i_p: i < length (map2 f s t) \land x = map2 f s t ! i by (metis in_set_conv_nth) from i_p have i < length t by auto moreover from this i_p have x = f(s!i)(t!i) using assms by auto ultimately show x \in \{x. \exists i < length \ t. \ x = f \ (s ! i) \ (t ! i)\} using assms by auto next \mathbf{fix} \ x assume x \in \{x. \exists i < length \ t. \ x = f \ (s ! i) \ (t ! i)\} then obtain i where i-p: i < length \ t \land x = f \ (s ! i) \ (t ! i) by auto then have i < length (map2 f s t) using assms by auto moreover from i_p have x = map2 f s t ! i using assms by auto ultimately show x \in set (map 2 f s t) by (metis in_set_conv_nth) qed end ``` # 3 Liminf of Lazy Lists ``` theory Lazy_List_Liminf imports Coinductive.Coinductive_List begin ``` Lazy lists, as defined in the *Archive of Formal Proofs*, provide finite and infinite lists in one type, defined coinductively. The present theory introduces the concept of the union of all elements of a lazy list of sets and the limit of such a lazy list. The definitions are stated more generally in terms of lattices. The basis for this theory is Section 4.1 ("Theorem Proving Processes") of Bachmair and Ganzinger's chapter. ``` definition Sup_llist :: 'a \ set \ llist \Rightarrow 'a \ set \ where Sup_llist \ Xs = (\bigcup i \in \{i. \ enat \ i < llength \ Xs\}. \ lnth \ Xs \ i) lemma \ lnth_subset_Sup_llist: \ enat \ i < llength \ xs \Longrightarrow lnth \ xs \ i \subseteq Sup_llist \ xs unfolding \ Sup_llist_def \ by \ auto lemma \ Sup_llist_LNil[simp]: \ Sup_llist \ LNil = \{\} unfolding \ Sup_llist_def \ by \ auto ``` ``` \mathbf{lemma} \ \mathit{Sup_llist_LCons}[\mathit{simp}] \colon \mathit{Sup_llist} \ (\mathit{LCons} \ \mathit{X} \ \mathit{Xs}) = \mathit{X} \ \cup \ \mathit{Sup_llist} \ \mathit{Xs} unfolding Sup_llist_def proof (intro subset_antisym subsetI) assume x \in (\bigcup i \in \{i. \ enat \ i < llength (LCons X Xs)\}. lnth (LCons X Xs) \ i) then obtain i where len: enat i < llength (LCons X Xs) and nth: x \in lnth (LCons X Xs) i from nth have x \in X \lor i > 0 \land x \in lnth Xs (i - 1) by (metis lnth_LCons' neq0_conv) then have x \in X \vee (\exists i. \ enat \ i < llength \ Xs \wedge x \in lnth \ Xs \ i) by (metis len Suc_pred' eSuc_enat iless_Suc_eq less_irrefl llength_LCons not_less order_trans) then show x \in X \cup (\bigcup i \in \{i. \ enat \ i < llength \ Xs\}. \ lnth \ Xs \ i) by blast qed ((auto)[], metis i0_lb lnth_0 zero_enat_def, metis Suc_ile_eq lnth_Suc_LCons) lemma lhd_subset_Sup_llist: \neg lnull Xs \Longrightarrow lhd Xs \subseteq Sup_llist Xs by (cases\ Xs)\ simp_all definition Sup_upto_llist :: 'a set llist \Rightarrow nat \Rightarrow 'a set where Sup_upto_llist \ Xs \ j = (\bigcup i \in \{i. \ enat \ i < llength \ Xs \ \land \ i \leq j\}. \ lnth \ Xs \ i) lemma Sup_upto_llist_mono: j \leq k \Longrightarrow Sup_upto_llist Xs j \subseteq Sup_upto_llist Xs k unfolding Sup_upto_llist_def by auto lemma Sup_upto_llist_subset_Sup_llist: j \le k \Longrightarrow Sup_upto_llist Xs \ j \subseteq Sup_llist Xs unfolding Sup_llist_def Sup_upto_llist_def by auto lemma elem_Sup_llist_imp_Sup_upto_llist: x \in Sup_llist Xs \Longrightarrow \exists j. x \in Sup_upto_llist Xs j unfolding Sup_llist_def\ Sup_upto_llist_def\ by blast \mathbf{lemma}\ finite_Sup_llist_imp_Sup_upto_llist\colon assumes finite X and X \subseteq Sup_llist Xs shows \exists k. X \subseteq Sup_upto_llist Xs k using assms proof induct case (insert x X) then have x: x \in Sup_llist Xs and X: X \subseteq Sup_llist Xs by simp+ from x obtain k where k: x \in Sup_upto_llist Xs k using elem_Sup_llist_imp_Sup_upto_llist by fast from X obtain k' where k': X \subseteq Sup_upto_llist Xs k' using insert.hyps(3) by fast have insert x \ X \subseteq
Sup_upto_llist \ Xs \ (max \ k \ ') using k k' by (metis insert_absorb insert_subset Sup_upto_llist_mono max.cobounded2 max.commute order.trans) then show ?case by fast qed simp definition Liminf_llist :: 'a \ set \ llist \Rightarrow 'a \ set \ where Liminf_llist \ Xs = (\bigcup i \in \{i. \ enat \ i < llength \ Xs\}. \bigcap j \in \{j. \ i \leq j \land enat \ j < llength \ Xs\}. \ lnth \ Xs \ j) lemma Liminf_llist_subset_Sup_llist: Liminf_llist\ Xs \subseteq Sup_llist\ Xs unfolding Liminf_llist_def Sup_llist_def by fast lemma \ Liminf_llist_LNil[simp]: \ Liminf_llist \ LNil = \{\} unfolding Liminf_llist_def by simp lemma Liminf_llist_LCons: Liminf_llist\ (LCons\ X\ Xs) = (if\ lnull\ Xs\ then\ X\ else\ Liminf_llist\ Xs)\ (is\ ?lhs = ?rhs) ``` ``` proof (cases lnull Xs) case nnull: False show ?thesis proof \mathbf{fix} \ x assume \exists i. \ enat \ i \leq llength \ Xs \land \; (\forall \, j. \; i \leq j \; \land \; enat \; j \leq \mathit{llength} \; \mathit{Xs} \; \longrightarrow x \in \mathit{lnth} \; (\mathit{LCons} \; \mathit{X} \; \mathit{Xs}) \; \mathit{j}) then have \exists i. \ enat \ (Suc \ i) \leq llength \ Xs \land (\forall j. \ Suc \ i \leq j \land \ enat \ j \leq llength \ Xs \longrightarrow x \in lnth \ (LCons \ X \ Xs) \ j) by (cases llength Xs, metis not_lnull_conv[THEN iffD1, OF nnull] Suc_le_D eSuc_enat eSuc_ile_mono llength_LCons not_less_eq_eq zero_enat_def zero_le, metis Suc_leD \ enat_ord_code(3)) then have \exists i. \ enat \ i < llength \ Xs \land (\forall j. \ i \leq j \land enat \ j < llength \ Xs \longrightarrow x \in lnth \ Xs \ j) by (metis Suc_ile_eq Suc_n_not_le_n lift_Suc_mono_le lnth_Suc_LCons nat_le_linear) then show ?lhs \subseteq ?rhs by (simp add: Liminf_llist_def nnull) (rule subsetI, simp) \mathbf{fix} \ x assume \exists i. \ enat \ i < llength \ Xs \land (\forall j. \ i \leq j \land enat \ j < llength \ Xs \longrightarrow x \in lnth \ Xs \ j) then obtain i where i: enat \ i < llength \ Xs \ {\bf and} j: \forall j. \ i \leq j \land enat \ j < llength \ Xs \longrightarrow x \in lnth \ Xs \ j \mathbf{by} blast have enat (Suc\ i) \leq llength\ Xs using i by (simp add: Suc_ile_eq) moreover have \forall j. Suc i \leq j \land enat j \leq llength Xs \longrightarrow x \in lnth (LCons X Xs) j using Suc_ile_eq Suc_le_D j by force ultimately have \exists i. \ enat \ i \leq llength \ Xs \land (\forall j. \ i \leq j \land enat \ j \leq llength \ Xs \longrightarrow x \in lnth (LCons X Xs) j) \mathbf{by} blast then show ?rhs \subseteq ?lhs by (simp add: Liminf_llist_def nnull) (rule subsetI, simp) qed (simp add: Liminf_llist_def enat_0_iff(1)) lemma lfinite_Liminf_llist: lfinite\ Xs \implies Liminf_llist\ Xs = (if\ lnull\ Xs\ then\ \{\}\ else\ llast\ Xs) proof (induction rule: lfinite_induct) case (LCons xs) then obtain y ys where xs: xs = LCons y ys by (meson not_lnull_conv) show ?case unfolding xs by (simp add: Liminf_llist_LCons LCons.IH[unfolded xs, simplified] llast_LCons) qed (simp add: Liminf_llist_def) \mathbf{lemma}\ \mathit{Liminf_llist_ltl} : \neg\ \mathit{lnull}\ (\mathit{ltl}\ \mathit{Xs}) \Longrightarrow \mathit{Liminf_llist}\ \mathit{Xs} = \mathit{Liminf_llist}\ (\mathit{ltl}\ \mathit{Xs}) by (metis Liminf_llist_LCons lhd_LCons_ltl lnull_ltlI) end ``` # 4 Relational Chains over Lazy Lists ``` theory Lazy_List_Chain imports HOL-Library.BNF_Corec\ Lazy_List_Liminf begin ``` A chain is a lazy lists of elements such that all pairs of consecutive elements are related by a given relation. A full chain is either an infinite chain or a finite chain that cannot be extended. The inspiration for this theory is Section 4.1 ("Theorem Proving Processes") of Bachmair and Ganzinger's chapter. #### 4.1 Chains ``` coinductive chain :: ('a \Rightarrow 'a \Rightarrow bool) \Rightarrow 'a \ llist \Rightarrow bool \ for \ R :: 'a \Rightarrow 'a \Rightarrow bool \ where chain_singleton: chain R (LCons x LNil) | chain_cons: chain R xs \Longrightarrow R x (lhd xs) \Longrightarrow chain R (LCons x xs) lemma chain_LNil[simp]: \neg chain R LNil and chain_not_lnull: chain R xs \Longrightarrow \neg lnull xs by (auto elim: chain.cases) lemma chain_lappend: assumes r_{-}xs: chain R xs and r_{-}ys: chain R ys and mid: R (llast xs) (lhd ys) shows chain R (lappend xs ys) proof (cases lfinite xs) case True then show ?thesis using r_{-}xs mid proof (induct rule: lfinite.induct) case (lfinite_LConsI xs x) note fin = this(1) and ih = this(2) and r_{-}xxs = this(3) and mid = this(4) show ?case proof (cases \ xs = LNil) {\bf case}\ {\it True} then show ?thesis using r_{-}ys \ mid by simp \ (rule \ chain_cons) next \mathbf{case}\ \mathit{xs_nnil} \colon \mathit{False} have r_xs: chain R xs by (metis chain.simps ltl_simps(2) r_xxs xs_nnil) have mid': R (llast xs) (lhd ys) by (metis llast_LCons lnull_def mid xs_nnil) have start: R \ x \ (lhd \ (lappend \ xs \ ys)) by (metis (no_types) chain.simps lhd_LCons lhd_lappend chain_not_lnull ltl_simps(2) r_xxs xs_nnil) show ?thesis unfolding lappend_code(2) using ih[OF r_xs mid'] start by (rule chain_cons) ged \mathbf{qed} simp qed (simp add: r_xs lappend_inf) lemma chain_length_pos: chain R xs \Longrightarrow llength xs > 0 by (cases \ xs) \ simp + lemma chain_ldropn: assumes chain R xs and enat n < llength xs shows chain R (ldropn \ n \ xs) using assms by (induct n arbitrary: xs, simp, metis chain.cases ldrop_eSuc_ltl ldropn_LNil ldropn_eq_LNil ltl_simps(2) not_less) lemma chain_lnth_rel: assumes chain: chain R xs and len: enat (Suc\ j) < llength\ xs shows R (lnth xs j) (lnth xs (Suc j)) proof - ``` ``` define ys where ys = ldropn j xs have llength ys > 1 unfolding ys_def using len by (metis One_nat_def funpow_swap1 ldropn_0 ldropn_def ldropn_eq_LNil ldropn_ltl not_less one_enat_def) obtain y\theta \ y1 \ ys' where ys: ys = LCons \ y0 \ (LCons \ y1 \ ys') unfolding ys_def by (metis Suc_ile_eq ldropn_Suc_conv_ldropn len less_imp_not_less not_less) have chain R ys {\bf unfolding} \ ys_def \ {\bf using} \ Suc_ile_eq \ chain \ chain_ldropn \ len \ less_imp_le \ {\bf by} \ blast then have R y0 y1 unfolding ys by (auto elim: chain.cases) then show ?thesis using ys_def unfolding ys by (metis ldropn_Suc_conv_ldropn ldropn_eq_LConsD llist.inject) qed \mathbf{lemma} \ infinite_chain_lnth_rel: assumes \neg lfinite c and chain r c shows r (lnth c i) (lnth c (Suc i)) using assms chain_lnth_rel lfinite_conv_llength_enat by force \mathbf{lemma}\ \mathit{lnth_rel_chain} : assumes \neg lnull xs and \forall j. \ enat \ (j+1) < llength \ xs \longrightarrow R \ (lnth \ xs \ j) \ (lnth \ xs \ (j+1)) shows chain R xs using assms proof (coinduction arbitrary: xs rule: chain.coinduct) case chain note nnul = this(1) and nth_chain = this(2) show ?case proof (cases lnull (ltl xs)) case True have xs = LCons (lhd xs) LNil using nnul True by (simp add: llist.expand) then show ?thesis \mathbf{by} blast next case nnul': False moreover have xs = LCons (lhd xs) (ltl xs) using nnul by simp moreover have \forall j. \ enat \ (j+1) < llength \ (ltl \ xs) \longrightarrow R \ (lnth \ (ltl \ xs) \ j) \ (lnth \ (ltl \ xs) \ (j+1)) using nnul nth_chain by (metis Suc_eq_plus1 ldrop_eSuc_ltl ldropn_Suc_conv_ldropn ldropn_eq_LConsD lnth_ltl) moreover have R (lhd xs) (lhd (ltl xs)) using nnul' nnul nth_chain[rule_format, of 0, simplified] \mathbf{by}\ (\mathit{metis}\ ldropn_0\ ldropn_Suc_conv_ldropn\ ldropn_eq_LConsD\ lhd_LCons_ltl\ lhd_conv_lnth) lnth_Suc_LCons\ ltl_simps(2)) ultimately show ?thesis \mathbf{by} blast qed qed lemma chain_lmap: assumes \forall x y. R x y \longrightarrow R'(fx)(fy) and chain R xs shows chain R' (lmap f xs) using assms proof (coinduction arbitrary: xs) case chain then have (\exists y. xs = LCons \ y \ LNil) \lor (\exists ys \ x. \ xs = LCons \ x \ ys \land chain \ R \ ys \land R \ x \ (lhd \ ys)) using chain.simps[of R xs] by auto ``` ``` then show ?case proof assume \exists ys \ x. \ xs = LCons \ x \ ys \land chain \ R \ ys \land R \ x \ (lhd \ ys) then have \exists ys \ x. \ lmap \ f \ xs = LCons \ x \ ys \ \land (\exists xs. \ ys = lmap \ f \ xs \ \land \ (\forall x \ y. \ R \ x \ y \longrightarrow R' \ (f \ x) \ (f \ y)) \ \land \ chain \ R \ xs) \ \land \ R' \ x \ (lhd \ ys) by (metis (no_types) lhd_LCons llist.distinct(1) llist.exhaust_sel llist.map_sel(1) lmap_eq_LNil\ chain_not_lnull\ ltl_lmap\ ltl_simps(2)) then show ?thesis by auto qed auto qed lemma chain_mono: assumes \forall x \ y. \ R \ x \ y \longrightarrow R' \ x \ y \ \text{and} \ chain \ R \ xs \mathbf{shows}\ \mathit{chain}\ \mathit{R'}\ \mathit{xs} using assms by (rule chain_lmap[of _ \lambda x. x, unfolded llist.map_ident]) lemma lfinite_chain_imp_rtranclp_lhd_llast: lfinite xs \implies chain R xs \implies R^{**} (lhd xs) (llast xs) proof (induct rule: lfinite.induct) case (lfinite_LConsI xs x) note fin_xs = this(1) and ih = this(2) and r_x_xs = this(3) show ?case proof (cases \ xs = LNil) \mathbf{case}\ \mathit{xs_nnil} \colon \mathit{False} then have r-xs: chain R xs using r_x by (blast elim: chain.cases) then show ?thesis using ih[OF r_xs] xs_nnil r_x_xs \mathbf{by}\ (metis\ chain.cases\ converse_rtranclp_into_rtranclp\ lhd_LCons\ llast_LCons\ chain_not_lnull ltl_simps(2)) qed simp qed simp lemma tranclp_imp_exists_finite_chain_list: R^{++} x y \Longrightarrow \exists xs. \ chain \ R \ (llist_of \ (x \# xs @ [y])) proof (induct rule: tranclp.induct) case (r_{-into_trancl} \ x \ y) then have chain R (llist_of (x \# [] @ [y])) by (auto intro: chain.intros) then show ?case by blast next case (trancl_into_trancl \ x \ y \ z) note rstar_xy = this(1) and ih = this(2) and r_yz = this(3) obtain xs where xs: chain \ R \ (llist_of \ (x \# xs @ [y])) using ih by blast define ys where ys = xs @ [y] have chain R (llist_of (x \# ys @ [z])) unfolding ys_def using r_yz chain_lappend[OF xs chain_singleton, of z] by (auto simp: lappend_llist_of_LCons llast_LCons) then show ?case by blast qed inductive-cases chain_consE: chain\ R\ (LCons\ x\ xs) inductive-cases chain_nontrivE: chain\ R\ (LCons\ x\ (LCons\ y\ xs)) primrec prepend
where ``` ``` prepend [] ys = ys | prepend (x \# xs) ys = LCons x (prepend xs ys) lemma lnull_prepend[simp]: lnull (prepend xs ys) = (xs = [] \land lnull ys) by (induct xs) auto lemma lhd_prepend[simp]: lhd (prepend xs ys) = (if xs \neq [] then hd xs else lhd ys) by (induct xs) auto lemma prepend_LNil[simp]: prepend xs LNil = llist_of xs by (induct xs) auto lemma lfinite_prepend[simp]: lfinite (prepend xs ys) \longleftrightarrow lfinite ys by (induct xs) auto lemma llength_prepend[simp]: llength (prepend xs ys) = length xs + llength ys by (induct xs) (auto simp: enat_0 iadd_Suc eSuc_enat[symmetric]) lemma llast_prepend[simp]: \neg lnull ys \Longrightarrow llast (prepend xs ys) = llast ys by (induct xs) (auto simp: llast_LCons) lemma prepend_prepend: prepend xs (prepend ys zs) = prepend (xs @ ys) zs \mathbf{by}\ (induct\ xs)\ auto lemma chain_prepend: chain\ R\ (llist_of\ zs) \Longrightarrow last\ zs = lhd\ xs \Longrightarrow chain\ R\ (prepend\ zs\ (ltl\ xs)) by (induct zs; cases xs) (auto split: if_splits simp: lnull_def[symmetric] intro!: chain_cons elim!: chain_consE) lemma lmap_prepend[simp]: lmap f (prepend xs ys) = prepend (map f xs) (<math>lmap f ys) by (induct xs) auto lemma lset_prepend[simp]: lset (prepend xs ys) = set xs \cup lset ys by (induct xs) auto lemma prepend_LCons: prepend xs (LCons y ys) = prepend (xs @ [y]) ys by (induct xs) auto lemma lnth_prepend: lnth (prepend xs ys) i = (if i < length xs then nth xs i else lnth ys (i - length xs)) by (induct xs arbitrary: i) (auto simp: lnth_LCons' nth_Cons') theorem lfinite_less_induct[consumes 1, case_names less]: assumes fin: lfinite xs and step: \bigwedge xs. Ifinite xs \Longrightarrow (\bigwedge zs. llength zs < llength \ xs \Longrightarrow P \ zs) \Longrightarrow P \ xs using fin proof (induct the_enat (llength xs) arbitrary: xs rule: less_induct) case (less xs) show ?case using less(2) by (intro\ step[OF\ less(2)]\ less(1)) (auto dest!: lfinite_llength_enat simp: eSuc_enat elim!: less_enatE llength_eq_enat_lfiniteD) \mathbf{qed} theorem lfinite_prepend_induct[consumes 1, case_names LNil prepend]: assumes lfinite xs and LNil: P LNil and prepend: \land xs. If in ite xs \Longrightarrow (\land zs. (\exists ys. xs = prepend ys zs \land ys \neq []) \Longrightarrow Pzs) \Longrightarrow Pxs shows P xs using assms(1) proof (induct xs rule: lfinite_less_induct) case (less xs) from less(1) show ?case by (cases xs) (force simp: LNil neq_Nil_conv dest: lfinite_llength_enat intro!: prepend[of LCons _ _] intro: less)+ ``` ``` qed ``` ``` coinductive emb :: 'a \ llist \Rightarrow 'a \ llist \Rightarrow bool \ \mathbf{where} lfinite \ xs \implies emb \ LNil \ xs | emb \ xs \ ys \implies emb \ (LCons \ x \ xs) \ (prepend \ zs \ (LCons \ x \ ys)) inductive-cases emb_LConsE: emb (LCons z zs) ys inductive-cases emb_LNil1E: emb_LNil\ ys \mathbf{inductive\text{-}cases}\ \mathit{emb_LNil2E}\colon \mathit{emb}\ \mathit{xs}\ \mathit{LNil} lemma emb_lfinite: assumes emb xs ys shows lfinite ys \longleftrightarrow lfinite xs proof assume lfinite xs then show lfinite ys using assms by (induct xs arbitrary: ys rule: lfinite_induct) (auto simp: lnull_def neq_LNil_conv elim!: emb_LNil1E emb_LConsE) next \mathbf{assume}\ \mathit{lfinite}\ \mathit{ys} then show lfinite xs using assms proof (induction ys arbitrary: xs rule: lfinite_less_induct) case (less\ ys) \textbf{from} \ \textit{less.prems} \ \langle \textit{lfinite} \ \textit{ys} \rangle \ \textbf{show} \ \textit{?case} by (cases xs) (auto simp: eSuc_enat elim!: emb_LNil1E emb_LConsE less.IH[rotated] dest!: lfinite_llength_enat) qed qed inductive prepend_cong1 for X where prepend_cong1_base: X xs \Longrightarrow prepend_cong1 X xs | prepend_cong1_prepend: prepend_cong1 \ X \ ys \implies prepend_cong1 \ X \ (prepend \ xs \ ys) lemma emb_prepend_coinduct[rotated, case_names emb]: assumes (\bigwedge x1 \ x2. \ X \ x1 \ x2 \Longrightarrow (\exists xs. \ x1 = LNil \land x2 = xs \land lfinite \ xs) \vee (\exists xs \ ys \ x \ zs. \ x1 = LCons \ x \ xs \land x2 = prepend \ zs \ (LCons \ x \ ys) \land (prepend_cong1 (X xs) ys \lor emb xs ys))) (is \landx1 x2. X x1 x2 \Longrightarrow ?bisim x1 x2) shows X x1 x2 \implies emb x1 x2 proof (erule emb.coinduct[OF prepend_cong1_base]) \mathbf{fix} \ xs \ zs assume prepend_cong1 (X xs) zs then show ?bisim xs zs by (induct zs rule: prepend_cong1.induct) (erule assms, force simp: prepend_prepend) qed context begin private coinductive chain' for R where chain' R (LCons \ x \ LNil) | chain R (llist_of (x \# zs @ [lhd xs])) \Longrightarrow chain' R xs \Longrightarrow chain' R (LCons x (prepend zs xs)) private lemma chain_imp_chain': chain\ R\ xs \Longrightarrow chain'\ R\ xs proof (coinduction arbitrary: xs rule: chain'.coinduct) case chain' then show ?case proof (cases rule: chain.cases) case (chain_cons\ zs\ z) then show ?thesis by (intro\ disjI2\ exI[of\ _\ z]\ exI[of\ _\ []]\ exI[of\ _\ zs]) (auto intro: chain.intros) ``` ``` qed simp qed private lemma chain'_imp_chain: chain' R xs \Longrightarrow chain R xs proof (coinduction arbitrary: xs rule: chain.coinduct) case chain then show ?case proof (cases rule: chain'.cases) case (2 \ y \ zs \ ys) then show ?thesis \mathbf{by}\ (\mathit{intro}\ \mathit{disjI2}\ \mathit{exI}[\mathit{of}\ _\ \mathit{prepend}\ \mathit{zs}\ \mathit{ys}]\ \mathit{exI}[\mathit{of}\ _\ \mathit{y}]) (force\ dest!:\ neq_Nil_conv[THEN\ iffD1]\ elim:\ chain.cases\ chain_nontrivE intro: chain'.intros) qed simp qed private lemma chain_chain': chain = chain' unfolding fun_eq_iff by (metis chain_imp_chain' chain'_imp_chain) \mathbf{lemma}\ chain_prepend_coinduct[case_names\ chain]: X x \Longrightarrow (\bigwedge x. \ X x \Longrightarrow (\exists z. \ x = LCons \ z \ LNil) \lor (\exists y \ xs \ zs. \ x = LCons \ y \ (prepend \ zs \ xs) \land (X xs \lor chain R xs) \land chain R (llist_of (y \# zs @ [lhd xs])))) \Longrightarrow chain R x by (subst chain_chain', erule chain'.coinduct) (force simp: chain_chain') end context fixes R :: 'a \Rightarrow 'a \Rightarrow bool begin private definition pick where pick \ x \ y = (SOME \ xs. \ chain \ R \ (llist_of \ (x \# xs @ [y]))) private lemma pick[simp]: assumes R^{++} x y shows chain R (llist_of (x \# pick \ x \ y @ [y])) unfolding pick_def using tranclp_imp_exists_finite_chain_list[THEN someI_ex, OF assms] by auto private friend-of-corec prepend where prepend xs \ ys = (case \ xs \ of \ [] \Rightarrow (case\ ys\ of\ LNil \Rightarrow LNil \mid LCons\ x\ xs \Rightarrow LCons\ x\ xs) \mid x \# xs' \Rightarrow LCons\ x\ (prepend\ xs'\ ys)) by (simp split: list.splits llist.splits) transfer_prover private corec wit where wit xs = (case \ xs \ of \ LCons \ x \ (LCons \ y \ xs) \Rightarrow LCons\ x\ (prepend\ (pick\ x\ y)\ (wit\ (LCons\ y\ xs))) \mid _ \Rightarrow xs) private lemma wit_{-}LNil[simp]: wit\ LNil = LNil\ and wit_lsingleton[simp]: wit (LCons \ x \ LNil) = LCons \ x \ LNil \ and wit_LCons2: wit (LCons x (LCons y xs)) = (LCons\ x\ (prepend\ (pick\ x\ y)\ (wit\ (LCons\ y\ xs)))) by (subst wit.code; auto)+ private lemma lnull_wit[simp]: lnull (wit xs) \longleftrightarrow lnull xs by (subst wit.code) (auto split: llist.splits simp: Let_def) private lemma lhd_wit[simp]: chain R^{++} xs \Longrightarrow lhd (wit xs) = lhd xs by (erule chain.cases; subst wit.code) (auto split: llist.splits simp: Let_def) private lemma LNil_eq_iff_lnull: LNil = xs \longleftrightarrow lnull \ xs ``` ``` by (cases xs) auto lemma emb_wit[simp]: chain R^{++} xs \Longrightarrow emb xs (wit xs) proof (coinduction arbitrary: xs rule: emb_prepend_coinduct) case (emb xs) then show ?case proof (cases rule: chain.cases) case (chain_cons\ zs\ z) then show ?thesis by (subst (2) wit.code) (auto split: llist.splits intro!: exI[of _[]] exI[of _ _ :: _ llist] prepend_cong1_prepend[OF\ prepend_cong1_base]) qed (auto intro!: exI[of _ LNil] exI[of _ []] emb.intros) qed private lemma lfinite_wit[simp]: assumes chain R^{++} xs shows lfinite (wit xs) \longleftrightarrow lfinite xs using emb_wit emb_lfinite assms by blast private lemma llast_wit[simp]: assumes chain R^{++} xs shows llast (wit xs) = llast xs proof (cases lfinite xs) {\bf case}\ {\it True} from this assms show ?thesis proof (induct rule: lfinite.induct) case (lfinite_LConsI xs x) then show ?case by (cases xs) (auto simp: wit_LCons2 llast_LCons elim: chain_nontrivE) \mathbf{qed} auto qed (auto simp: llast_linfinite assms) \mathbf{lemma}\ chain_tranclp_imp_exists_chain: chain R^{++} xs \Longrightarrow \exists ys. \ chain \ R \ ys \land emb \ xs \ ys \land lhd \ ys = lhd \ xs \land llast \ ys = llast \ xs proof (intro exI[of - wit xs] conjI, coinduction arbitrary: xs rule: chain_prepend_coinduct) {\bf case}\ chain then show ?case by (subst (12) wit.code) (erule chain.cases; force split: llist.splits dest: pick) qed auto lemma emb_lset_mono[rotated]: x \in lset \ xs \implies emb \ xs \ ys \implies x \in lset \ ys by (induct x xs arbitrary: ys rule: llist.set_induct) (auto elim!: emb_LConsE) \mathbf{lemma}\ emb_Ball_lset_antimono: assumes emb Xs Ys shows \forall Y \in lset \ Ys. \ x \in Y \Longrightarrow \forall X \in lset \ Xs. \ x \in X using emb_lset_mono[OF assms] by blast lemma emb_lfinite_antimono[rotated]: lfinite\ ys \implies emb\ xs\ ys \implies lfinite\ xs by (induct ys arbitrary: xs rule: lfinite_prepend_induct) (force\ elim!:\ emb_LNil2E\ simp:\ LNil_eq_iff_lnull\ prepend_LCons\ elim:\ emb.cases) + lemma emb_Liminf_llist_mono_aux: assumes emb Xs Ys and \neg lfinite Xs and \neg lfinite Ys and \forall j \ge i. x \in lnth Ys j shows \forall j > i. x \in lnth Xs j using assms proof (induct i arbitrary: Xs Ys rule: less_induct) case (less\ i) then show ?case proof (cases i) case \theta then show ?thesis ``` ``` using emb_Ball_lset_antimono[OF\ less(2),\ of\ x]\ less(5) unfolding Ball_def in_lset_conv_lnth simp_thms not_lfinite_llength[OF\ less(3)]\ not_lfinite_llength[OF\ less(4)]\ enat_ord_code\ subset_eq \mathbf{by} blast next case [simp]: (Suc\ nat) from less(2,3) obtain xs as b bs where [simp]: Xs =
LCons\ b\ xs\ Ys = prepend\ as\ (LCons\ b\ bs) and emb\ xs\ bs by (auto elim: emb.cases) have IH: \forall k \geq j. x \in lnth \ xs \ k \ \textbf{if} \ \forall k \geq j. x \in lnth \ bs \ k \ j < i \ \textbf{for} \ j using that less(1)[OF _ \langle emb \ xs \ bs \rangle] \ less(3,4) by auto from less(5) have \forall k \ge i - length \ as - 1. \ x \in lnth \ xs \ k by (intro IH allI) (drule spec[of _ _ + length as + 1], auto simp: lnth_prepend lnth_LCons') then show ?thesis by (auto simp: lnth_LCons') qed qed \mathbf{lemma}\ \mathit{emb_Liminf_llist_infinite} : assumes emb \ Xs \ Ys \ and \ \neg \ lfinite \ Xs \mathbf{shows}\ \mathit{Liminf_llist}\ \mathit{Ys} \subseteq \mathit{Liminf_llist}\ \mathit{Xs} proof - from assms have \neg lfinite Ys using emb_lfinite_antimono by blast with assms show ?thesis unfolding Liminf_llist_def by (auto simp: not_lfinite_llength dest: emb_Liminf_llist_mono_aux) qed lemma emb_lmap: emb xs ys \Longrightarrow emb (lmap f xs) (lmap f ys) proof (coinduction arbitrary: xs ys rule: emb.coinduct) case emb show ?case proof (cases xs) case xs: (LCons x xs') obtain ysa\theta and zs\theta where ys: ys = prepend zs\theta (LCons x ysa\theta) and emb': emb xs' ysa0 using emb_LConsE[OF emb[unfolded xs]] by metis let ?xa = f x let ?xsa = lmap f xs' let ?zs = map f zs\theta let ?ysa = lmap f ysa0 have lmap f xs = LCons ?xa ?xsa unfolding xs by simp moreover have lmap f ys = prepend ?zs (LCons ?xa ?ysa) unfolding ys by simp moreover have \exists xsa \ ysa. \ ?xsa = lmap \ f \ xsa \land ?ysa = lmap \ f \ ysa \land emb \ xsa \ ysa using emb' by blast ultimately show ?thesis by blast qed (simp add: emb_lfinite[OF emb]) qed end \mathbf{lemma}\ chain_inf_llist_if_infinite_chain_function: assumes \forall i. \ r \ (f \ (Suc \ i)) \ (f \ i) shows \neg lfinite (inf_llist f) \land chain r^{-1-1} (inf_llist f) using assms by (simp add: lnth_rel_chain) ``` ``` \mathbf{lemma} \ infinite_chain_function_iff_infinite_chain_llist: (\exists f. \ \forall i. \ r \ (f \ (Suc \ i)) \ (f \ i)) \longleftrightarrow (\exists c. \ \neg \ lfinite \ c \land chain \ r^{-1-1} \ c) using chain_inf_llist_if_infinite_chain_function infinite_chain_lnth_rel by blast lemma wfP_iff_no_infinite_down_chain_llist: wfP r \longleftrightarrow (\nexists c. \neg lfinite c \land chain r^{-1-1} c) proof - have wfP \ r \longleftrightarrow wf \ \{(x, y). \ r \ x \ y\} unfolding wfP_def by auto also have ... \longleftrightarrow (\nexists f. \forall i. (f (Suc i), f i) \in \{(x, y). r x y\}) \mathbf{using} \ \textit{wf_iff_no_infinite_down_chain} \ \mathbf{by} \ \textit{blast} also have ... \longleftrightarrow (\nexists f. \forall i. \ r \ (f \ (Suc \ i)) \ (f \ i)) by auto also have ... \longleftrightarrow (\nexists c. \neg lfinite c \land chain r^{-1-1} c) using infinite_chain_function_iff_infinite_chain_llist by blast finally show ?thesis \mathbf{by} auto qed 4.2 Full Chains coinductive full_chain :: ('a \Rightarrow 'a \Rightarrow bool) \Rightarrow 'a \ llist \Rightarrow bool \ \mathbf{for} \ R :: 'a \Rightarrow 'a \Rightarrow bool \ \mathbf{where} full_chain_singleton: (\forall y. \neg R \ x \ y) \Longrightarrow full_chain \ R \ (LCons \ x \ LNil) | full_chain_cons: full_chain R xs \Longrightarrow R x (lhd xs) \Longrightarrow full_chain R (LCons x xs) lemma full_chain_LNil[simp]: \neg full_chain R LNil and \mathit{full_chain_not_lnull:} \; \mathit{full_chain} \; R \; \mathit{xs} \implies \neg \; \mathit{lnull} \; \mathit{xs} by (auto elim: full_chain.cases) lemma full_chain_ldropn: assumes full: full_chain R xs and enat n < llength xs shows full_chain\ R\ (ldropn\ n\ xs) using assms by (induct n arbitrary: xs, simp, metis full_chain.cases ldrop_eSuc_ltl ldropn_LNil ldropn_eq_LNil ltl_simps(2) not_less) lemma full_chain_iff_chain: \mathit{full_chain} \ R \ \mathit{xs} \ \longleftrightarrow \ \mathit{chain} \ R \ \mathit{xs} \ \land \ (\mathit{lfinite} \ \mathit{xs} \ \longrightarrow \ (\forall \ \mathit{y}. \ \neg \ R \ (\mathit{llast} \ \mathit{xs}) \ \mathit{y})) \mathbf{proof}\ (\mathit{intro\ iffI\ conjI\ impI\ allI};\ (\mathit{elim\ conjE})\,?) assume full: full_chain\ R\ xs show chain: chain R xs using full by (coinduction arbitrary: xs) (auto elim: full_chain.cases) { \mathbf{fix} \ y {\bf assume}\ \mathit{lfinite}\ \mathit{xs} then obtain n where suc_n: Suc_n = llength_x by (metis chain chain_length_pos lessE less_enatE lfinite_conv_llength_enat) have full_chain\ R\ (ldropn\ n\ xs) by (rule full_chain_ldropn[OF full]) (use suc_n Suc_ile_eq in force) moreover have ldropn \ n \ xs = LCons \ (llast \ xs) \ LNil using suc_n by (metis\ enat_le_plus_same(2)\ enat_ord_simps(2)\ gen_llength_def ldropn_Suc_conv_ldropn\ ldropn_all\ lessI\ llast_ldropn\ llast_singleton\ llength_code) ultimately show \neg R (llast xs) y by (auto elim: full_chain.cases) } next assume chain\ R\ xs\ {\bf and} lfinite xs \longrightarrow (\forall y. \neg R (llast xs) y) ``` ``` then show full_chain R xs by (coinduction arbitrary: xs) (erule chain.cases, simp, metis lfinite_LConsI llast_LCons) qed lemma full_chain_imp_chain: full_chain R xs \Longrightarrow chain R xs using full_chain_iff_chain by blast lemma full_chain_length_pos: full_chain\ R\ xs \implies llength\ xs > 0 by (fact chain_length_pos[OF full_chain_imp_chain]) \mathbf{lemma}\ full_chain_lnth_rel: full_chain\ R\ xs \implies enat\ (Suc\ j) < llength\ xs \implies R\ (lnth\ xs\ j)\ (lnth\ xs\ (Suc\ j)) by (fact chain_lnth_rel[OF full_chain_imp_chain]) inductive-cases full_chain_consE: full_chain R (LCons x xs) inductive-cases full_chain_nontrivE: full_chain R (LCons x (LCons y xs)) \mathbf{lemma}\ \mathit{full_chain_tranclp_imp_exists_full_chain} : assumes full: full_chain R^{++} xs \mathbf{shows} \; \exists \, ys. \; \mathit{full_chain} \; R \; ys \; \land \; \mathit{emb} \; xs \; ys \; \land \; \mathit{lhd} \; ys \; = \; \mathit{lhd} \; xs \; \land \; \mathit{llast} \; ys \; = \; \mathit{llast} \; xs proof - obtain ys where ys: chain\ R\ ys\ emb\ xs\ ys\ lhd\ ys=lhd\ xs\ llast\ ys=llast\ xs \mathbf{using} \ \mathit{full_chain_imp_chain}[\mathit{OF} \ \mathit{full}] \ \mathit{chain_tranclp_imp_exists_chain} \ \mathbf{by} \ \mathit{blast} have full_chain\ R\ ys using ys(1,4) emb_lfinite[OF ys(2)] full unfolding full_chain_iff_chain by auto then show ?thesis using ys(2-4) by auto qed end ``` # 5 Clausal Logic ``` theory Clausal_Logic imports Nested_Multisets_Ordinals.Multiset_More begin ``` Resolution operates of clauses, which are disjunctions of literals. The material formalized here corresponds roughly to Sections 2.1 ("Formulas and Clauses") of Bachmair and Ganzinger, excluding the formula and term syntax. #### 5.1 Literals Literals consist of a polarity (positive or negative) and an atom, of type 'a. ``` datatype 'a literal = is_pos: Pos (atm_of: 'a) | Neg (atm_of: 'a) | Neg (atm_of: 'a) | abbreviation is_neg :: 'a literal \Rightarrow bool where is_neg L \equiv \neg is_pos L | lemma Pos_atm_of_iff[simp]: Pos (atm_of L) = L \longleftrightarrow is_pos L | by (cases L) simp+ | lemma Neg_atm_of_iff[simp]: Neg (atm_of L) = L \longleftrightarrow is_neg L | by (cases L) simp+ | lemma set_literal_atm_of: set_literal L = \{atm_of L\} | by (cases L) simp+ | lemma ex_lit_cases: (\exists L. P L) \longleftrightarrow (\exists A. P (Pos A) \lor P (Neg A)) ``` ``` by (metis literal.exhaust) instantiation literal :: (type) uminus begin definition uminus_literal :: 'a \ literal \Rightarrow 'a \ literal \ \mathbf{where} uminus\ L = (if\ is_pos\ L\ then\ Neg\ else\ Pos)\ (atm_of\ L) instance .. end lemma uminus_Pos[simp]: -Pos A = Neg A and uminus_Neg[simp]: - Neg A = Pos A unfolding uminus_literal_def by simp_all lemma atm_of_uminus[simp]: atm_of (-L) = atm_of L by (case_tac L, auto) lemma uminus_of_uminus_id[simp]: - (- (x :: 'v literal)) = x by (simp add: uminus_literal_def) lemma uminus_not_id[simp]: x \neq - (x:: 'v \ literal) by (case_tac \ x) auto lemma uminus_not_id'[simp]: -x \neq (x:: 'v \ literal) by (case_tac \ x, \ auto) lemma uminus_eq_inj[iff]: -(a::'v\ literal) = -b \longleftrightarrow a = b by (case_tac a; case_tac b) auto+ lemma uminus_lit_swap: (a::'a\ literal) = -b \longleftrightarrow -a = b by auto lemma is_pos_neg_not_is_pos: is_pos (-L) \longleftrightarrow \neg is_pos L by (cases L) auto instantiation literal :: (preorder) preorder begin definition less_literal :: 'a \ literal \Rightarrow 'a \ literal \Rightarrow bool \ \mathbf{where} less_literal\ L\ M \ \longleftrightarrow \ atm_of\ L < \ atm_of\ M\ \lor \ atm_of\ L \le \ atm_of\ M\ \land \ is_neg\ L < is_neg\ M definition less_eq_literal :: 'a \ literal \Rightarrow 'a \ literal \Rightarrow bool \ \mathbf{where} less_eq_literal\ L\ M \longleftrightarrow atm_of\ L < atm_of\ M\ \lor\ atm_of\ L \le atm_of\ M\ \land\ is_neg\ L \le is_neg\ M instance apply intro_classes unfolding less_literal_def less_eq_literal_def by (auto intro: order_trans simp: less_le_not_le) end instantiation \ literal :: (order) \ order begin instance by intro_classes (auto simp: less_eq_literal_def intro: literal.expand) end lemma pos_less_neg[simp]: Pos A < Neg A ``` unfolding less_literal_def by simp ``` lemma pos_less_pos_iff[simp]: Pos\ A < Pos\ B \longleftrightarrow A < B unfolding less_literal_def by simp lemma pos_less_neg_iff[simp]: Pos\ A < Neg\ B \longleftrightarrow A \leq B unfolding less_literal_def by (auto simp: less_le_not_le) \mathbf{lemma} \ \mathit{neg_less_pos_iff}[\mathit{simp}] \colon \mathit{Neg} \ \mathit{A} < \mathit{Pos} \ \mathit{B} \longleftrightarrow \mathit{A} < \mathit{B} unfolding less_literal_def by simp lemma neg_less_neg_iff[simp]: Neg\ A < Neg\ B \longleftrightarrow A < B unfolding less_literal_def by simp lemma pos_le_neg[simp]: Pos A \leq Neg A unfolding less_eq_literal_def by simp lemma pos_le_pos_iff[simp]: Pos A \leq Pos B \longleftrightarrow A \leq B \mathbf{unfolding}\ \mathit{less_eq_literal_def}\ \mathbf{by}\ (\mathit{auto}\ \mathit{simp}\colon \mathit{less_le_not_le}) lemma pos_le_neg_iff[simp]: Pos\ A \leq Neg\ B \longleftrightarrow
A \leq B unfolding less_eq_literal_def by (auto simp: less_imp_le) lemma neg_le_pos_iff[simp]: Neg A \leq Pos B \longleftrightarrow A < B \mathbf{unfolding}\ \mathit{less_eq_literal_def}\ \mathbf{by}\ \mathit{simp} lemma neg_le_neg_iff[simp]: Neg\ A \le Neg\ B \longleftrightarrow A \le B unfolding less_eq_literal_def by (auto simp: less_imp_le) lemma leq_imp_less_eq_atm_of : L \leq M \implies atm_of L \leq atm_of M unfolding less_eq_literal_def using less_imp_le by blast instantiation literal :: (linorder) linorder begin instance apply intro_classes unfolding less_eq_literal_def less_literal_def by auto end instantiation literal :: (wellorder) wellorder begin instance proof intro_classes fix P :: 'a \ literal \Rightarrow bool \ and \ L :: 'a \ literal assume ih: \bigwedge L. (\bigwedge M. M < L \Longrightarrow PM) \Longrightarrow PL have \bigwedge x. (\bigwedge y. \ y < x \Longrightarrow P \ (Pos \ y) \land P \ (Neg \ y)) \Longrightarrow P \ (Pos \ x) \land P \ (Neg \ x) by (rule conjI[OF ih ih]) (auto simp: less_literal_def atm_of_def split: literal.splits intro: ih) then have \bigwedge A. P(Pos A) \land P(Neg A) by (rule less_induct) blast then show P L by (cases L) simp + qed end 5.2 Clauses ``` Clauses are (finite) multisets of literals. type-synonym 'a clause = 'a literal multiset ``` abbreviation map_clause :: ('a \Rightarrow 'b) \Rightarrow 'a \ clause \Rightarrow 'b \ clause \ where map_clause\ f \equiv image_mset\ (map_literal\ f) abbreviation rel_clause :: ('a \Rightarrow 'b \Rightarrow bool) \Rightarrow 'a \ clause \Rightarrow 'b \ clause \Rightarrow bool \ where rel_clause R \equiv rel_mset (rel_literal R) abbreviation poss :: 'a multiset \Rightarrow 'a clause where poss AA \equiv \{\#Pos \ A. \ A \in \#AA\#\} abbreviation negs :: 'a multiset \Rightarrow 'a clause where negs AA \equiv \{ \# Neg \ A. \ A \in \# \ AA\# \} lemma Max_in_lits: C \neq \{\#\} \Longrightarrow Max_mset \ C \in \# \ C by simp lemma Max_atm_of_set_mset_commute: C \neq \{\#\} \Longrightarrow Max (atm_of 'set_mset C) = atm_of (Max_mset C) by (rule mono_Max_commute[symmetric]) (auto simp: mono_def less_eq_literal_def) \mathbf{lemma}\ \mathit{Max_pos_neg_less_multiset} \colon assumes max: Max-mset C = Pos A and neg: Neg A \in \# D shows C < D proof - have Max_mset\ C < Neg\ A using max by simp then show ?thesis using neg by (metis (no_types) Max_less_iff empty_iff ex_gt_imp_less_multiset finite_set_mset) qed lemma pos_Max_imp_neg_notin: Max_mset C = Pos A \Longrightarrow Neg A \notin \# C using Max_pos_neg_less_multiset by blast lemma less_eq_Max_lit: C \neq \{\#\} \Longrightarrow C \leq D \Longrightarrow Max_mset C \leq Max_mset D proof (unfold\ less_eq_multiset_{HO}) assume ne: C \neq \{\#\} and ex_gt: \forall x. \ count \ D \ x < count \ C \ x \longrightarrow (\exists y > x. \ count \ C \ y < count \ D \ y) from ne have Max_mset C \in \# C by (fast intro: Max_in_lits) then have \exists l. l \in \# D \land \neg l < Max_mset C using ex_gt by (metis count_greater_zero_iff count_inI less_not_sym) then have \neg Max_mset D < Max_mset C by (metis Max.coboundedI[OF finite_set_mset] le_less_trans) then show ?thesis by simp \mathbf{qed} definition atms_of :: 'a \ clause \Rightarrow 'a \ set \ \mathbf{where} atms_of\ C = atm_of\ `set_mset\ C lemma atms_of_empty[simp]: atms_of {#} = {} unfolding atms_of_def by simp lemma atms_of_singleton[simp]: atms_of {#L#} = {atm_of L} unfolding atms_of_def by auto lemma atms_of_add_mset[simp]: atms_of (add_mset\ a\ A) = insert\ (atm_of\ a)\ (atms_of\ A) unfolding atms_of_def by auto lemma atms_of_union_mset[simp]: atms_of (A \cup \# B) = atms_of A \cup atms_of B unfolding atms_of_def by auto lemma finite_atms_of[iff]: finite (atms_of C) by (simp add: atms_of_def) lemma atm_of_lit_in_atms_of: L \in \# C \Longrightarrow atm_of L \in atms_of C by (simp add: atms_of_def) ``` ``` lemma atms_of_plus[simp]: atms_of (C + D) = atms_of C \cup atms_of D unfolding atms_of_def by auto lemma in_atms_of_minusD: x \in atms_of (A - B) \Longrightarrow x \in atms_of A by (auto simp: atms_of_def dest: in_diffD) lemma pos_lit_in_atms_of : Pos \ A \in \# \ C \Longrightarrow A \in atms_of \ C unfolding atms_of_def by force lemma neg_lit_in_atms_of: Neg\ A \in \#\ C \Longrightarrow A \in atms_of\ C unfolding atms_of_def by force lemma atm_imp_pos_or_neg_lit: A \in atms_of C \Longrightarrow Pos A \in \# C \lor Neg A \in \# C unfolding atms_of_def image_def mem_Collect_eq by (metis Neg_atm_of_iff Pos_atm_of_iff) lemma atm_iff_pos_or_neg_lit: A \in atms_of L \longleftrightarrow Pos A \in \# L \lor Neg A \in \# L by (auto intro: pos_lit_in_atms_of neg_lit_in_atms_of dest: atm_imp_pos_or_neg_lit) \mathbf{lemma} \ atm_of_eq_atm_of \colon atm_of \ L = \ atm_of \ L' \longleftrightarrow (L = L' \lor L = -L') by (cases L; cases L') auto lemma atm_of_in_atm_of_set_iff_in_set_or_uminus_in_set: atm_of L \in atm_of I \longleftrightarrow (L \in I \lor -L \in I) by (auto intro: rev_image_eqI simp: atm_of_eq_atm_of) lemma lits_subseteq_imp_atms_subseteq: set_mset C \subseteq set_mset D \Longrightarrow atms_of C \subseteq atms_of D unfolding atms_of_def by blast lemma atms_empty_iff_empty[iff]: atms_of C = \{\} \longleftrightarrow C = \{\#\} unfolding atms_of_def image_def Collect_empty_eq by auto lemma atms_of_poss[simp]: atms_of\ (poss\ AA) = set_mset\ AA and atms_of_negs[simp]: atms_of\ (negs\ AA) = set_mset\ AA unfolding atms_of_def image_def by auto lemma less_eq_Max_atms_of: C \neq \{\#\} \Longrightarrow C \leq D \Longrightarrow Max \ (atms_of \ C) \leq Max \ (atms_of \ D) unfolding atms_of_def by (metis Max_atm_of_set_mset_commute leq_imp_less_eq_atm_of less_eq_Max_lit less_eq_multiset_empty_right) \mathbf{lemma}\ \mathit{le_multiset_Max_in_imp_Max}: Max\ (atms_of\ D) = A \Longrightarrow C \le D \Longrightarrow A \in atms_of\ C \Longrightarrow Max\ (atms_of\ C) = A by (metis Max.coboundedI[OF finite_atms_of] atms_of_def empty_iff eq_iff image_subsetI less_eq_Max_atms_of set_mset_empty subset_Compl_self_eq) lemma atm_of_Max_lit[simp]: C \neq \{\#\} \Longrightarrow atm_of (Max_mset C) = Max (atms_of C) unfolding atms_of_def\ Max_atm_of_set_mset_commute .. lemma Max_lit_eq_pos_or_neg_Max_atm: C \neq \{\#\} \Longrightarrow Max_mset \ C = Pos \ (Max \ (atms_of \ C)) \lor Max_mset \ C = Neg \ (Max \ (atms_of \ C)) by (metis Neg_atm_of_iff Pos_atm_of_iff atm_of_Max_lit) lemma atms_less_imp_lit_less_pos: (\land B. \ B \in atms_of \ C \Longrightarrow B < A) \Longrightarrow L \in \# \ C \Longrightarrow L < Pos \ A unfolding atms_of_def less_literal_def by force lemma atms_less_eq_imp_lit_less_eq_neq: (AB.\ B \in atms_of\ C \Longrightarrow B < A) \Longrightarrow L \in \#\ C \Longrightarrow L < Neq\ A unfolding less_eq_literal_def by (simp add: atm_of_lit_in_atms_of) ``` end # 6 Herbrand Interretation $I \models s \ CC \longleftrightarrow (\forall \ C \in CC. \ I \models C)$ **lemma** $true_clss_empty[iff]: I \models s \{\}$ ``` theory Herbrand_Interpretation imports Clausal_Logic begin The material formalized here corresponds roughly to Sections 2.2 ("Herbrand Interpretations") of Bachmair and Ganzinger, excluding the formula and term syntax. A Herbrand interpretation is a set of ground atoms that are to be considered true. type-synonym 'a interp = 'a set definition true_lit :: 'a interp \Rightarrow 'a literal \Rightarrow bool (infix <math>\models l \ 50) where I \models l L \longleftrightarrow (if is_pos \ L \ then \ (\lambda P. \ P) \ else \ Not) \ (atm_of \ L \in I) lemma true_lit_simps[simp]: I \models l \ Pos \ A \longleftrightarrow A \in I I \models l Neg A \longleftrightarrow A \notin I unfolding true_lit_def by auto lemma true_lit_iff[iff]: I \models l \ L \longleftrightarrow (\exists A. \ L = Pos \ A \land A \in I \lor L = Neg \ A \land A \notin I) by (cases L) simp+ definition true_cls :: 'a \ interp \Rightarrow 'a \ clause \Rightarrow bool \ (infix \models 50) \ where I \models C \longleftrightarrow (\exists L \in \# C. I \models l L) lemma true_cls_empty[iff]: \neg I \models \{\#\} unfolding true_cls_def by simp lemma true_cls_singleton[iff]: I \models \{\#L\#\} \longleftrightarrow I \models l L unfolding true_cls_def by simp lemma true_cls_add_mset[iff]: I \models add_mset C D \longleftrightarrow I \models l C \lor I \models D unfolding true_cls_def by auto lemma true_cls_union[iff]: I \models C + D \longleftrightarrow I \models C \lor I \models D unfolding true_cls_def by auto lemma true_cls_mono: set_mset \ C \subseteq set_mset \ D \Longrightarrow I \models C \Longrightarrow I \models D unfolding true_cls_def subset_eq by metis lemma assumes I \subseteq J shows false_to_true_imp_ex_pos: \neg I \models C \Longrightarrow J \models C \Longrightarrow \exists A \in J. \ Pos \ A \in \# \ C and true_to_false_imp_ex_neg: I \models C \Longrightarrow \neg J \models C \Longrightarrow \exists A \in J. Neg A \in \# C using assms unfolding subset_iff true_cls_def by (metis literal.collapse true_lit_simps)+ lemma true_cls_replicate_mset[iff]: I \models replicate_mset n L \longleftrightarrow n \neq 0 \land I \models l L by (simp add: true_cls_def) lemma pos_literal_in_imp_true_cls[intro]: Pos A \in \# C \Longrightarrow A \in I \Longrightarrow I \models C using true_cls_def by blast lemma neg_literal_notin_imp_true_cls[intro]: Neg A \in \# C \Longrightarrow A \notin I \Longrightarrow I \models C using true_cls_def by blast lemma pos_neg_in_imp_true: Pos A \in \# C \Longrightarrow Neg A \in \# C \Longrightarrow I \models C using true_cls_def by blast definition true_clss :: 'a \ interp \Rightarrow 'a \ clause \ set \Rightarrow bool \ (infix \models s \ 50) where ``` ``` by (simp add: true_clss_def) lemma true_clss_singleton[iff]: I \models s \{C\} \longleftrightarrow I \models C unfolding true_clss_def by blast lemma true_clss_insert[iff]: I \models s insert C DD \longleftrightarrow I \models C \land I \models s DD unfolding true_clss_def by blast lemma true_clss_union[iff]: I \models s CC \cup DD \longleftrightarrow I \models s CC \land I
\models s DD unfolding true_clss_def by blast lemma true_clss_mono: DD \subseteq CC \Longrightarrow I \models s CC \Longrightarrow I \models s DD by (simp add: set_mp true_clss_def) abbreviation satisfiable :: 'a clause set \Rightarrow bool where satisfiable CC \equiv \exists I. \ I \models s \ CC definition true_cls_mset :: 'a interp \Rightarrow 'a clause multiset \Rightarrow bool (infix <math>\models m \ 50) where I \models m \ CC \longleftrightarrow (\forall \ C \in \# \ CC. \ I \models C) lemma true_cls_mset_empty[iff]: I \models m \{\#\} unfolding true_cls_mset_def by auto lemma true_cls_mset_singleton[iff]: I \models m \{\#C\#\} \longleftrightarrow I \models C by (simp add: true_cls_mset_def) lemma true_cls_mset_union[iff]: I \models m CC + DD \longleftrightarrow I \models m CC \land I \models m DD unfolding true_cls_mset_def by auto \mathbf{lemma} \ true_cls_mset_add_mset[iff] \colon I \models m \ add_mset \ C \ CC \longleftrightarrow I \models C \land I \models m \ CC unfolding true_cls_mset_def by auto lemma true_cls_mset_image_mset[iff]: I \models m \ image_mset \ f \ A \longleftrightarrow (\forall x \in \# A. \ I \models f \ x) unfolding true_cls_mset_def by auto lemma true_cls_mset_mono: set_mset DD \subseteq set_mset CC \Longrightarrow I \models m CC \Longrightarrow I \models m DD unfolding true_cls_mset_def subset_iff by auto lemma true_clss_set_mset[iff]: I \models s \ set_mset \ CC \longleftrightarrow I \models m \ CC unfolding true_clss_def true_cls_mset_def by auto lemma true_cls_mset_true_cls: I \models m \ CC \implies C \in \# \ CC \implies I \models C using true_cls_mset_def by auto ``` #### 7 Abstract Substitutions theory Abstract_Substitution imports Clausal_Logic Map2 begin Atoms and substitutions are abstracted away behind some locales, to avoid having a direct dependency on the IsaFoR library. Conventions: 's substitutions, 'a atoms. #### 7.1 Library \mathbf{end} ``` lemma f_Suc_decr_eventually_const: fixes f :: nat \Rightarrow nat assumes leq: \forall i. f (Suc i) \leq f i shows \exists l. \forall l' \geq l. f l' = f (Suc l') ``` ``` proof (rule ccontr) assume a: \nexists l. \forall l' \geq l. f l' = f (Suc l') have \forall i. \exists i'. i' > i \land f i' < f i \mathbf{fix} i from a have \exists l' \geq i. f l' \neq f (Suc l') by auto then obtain l' where l'_{-p}: l' \geq i \wedge f l' \neq f (Suc l') by metis then have f l' > f (Suc l') \mathbf{using}\ \mathit{leq}\ \mathit{le_eq_less_or_eq}\ \mathbf{by}\ \mathit{auto} moreover have f i \ge f l using leq l'_p by (induction l' arbitrary: i) (blast intro: lift_Suc_antimono_le)+ ultimately show \exists i' > i. f i' < f i using l'_p less_le_trans by blast qed then obtain g_sm :: nat \Rightarrow nat where g_sm_p: \forall i. g_sm \ i > i \land f \ (g_sm \ i) < f \ i by metis define c :: nat \Rightarrow nat where \bigwedge n. \ c \ n = (g_{-sm} \ \hat{} \ n) \ \theta have f(c i) > f(c (Suc i)) for i by (induction i) (auto simp: c_{-}def g_{-}sm_{-}p) then have \forall i. (f \circ c) \ i > (f \circ c) \ (Suc \ i) by auto then have \exists fc :: nat \Rightarrow nat. \ \forall i. \ fc \ i > fc \ (Suc \ i) by metis then show False using wf_less_than by (simp add: wf_iff_no_infinite_down_chain) qed 7.2 Substitution Operators locale substitution_ops = fixes subst_atm :: 'a \Rightarrow 's \Rightarrow 'a and id_subst :: 's and comp_subst :: 's \Rightarrow 's \Rightarrow 's begin abbreviation subst_atm_abbrev :: 'a \Rightarrow 's \Rightarrow 'a \text{ (infixl } \cdot a \text{ } 67) \text{ where} subst_atm_abbrev \equiv subst_atm abbreviation comp_subst_abbrev :: 's \Rightarrow 's \Rightarrow 's \text{ (infixl } \odot 67) \text{ where} comp_subst_abbrev \equiv comp_subst definition comp_substs :: 's \ list \Rightarrow 's \ list \Rightarrow 's \ list \ (infixl \odot s \ 67) where \sigma s \odot s \ \tau s = \mathit{map2} \ \mathit{comp_subst} \ \sigma s \ \tau s definition subst_atms :: 'a \ set \Rightarrow 's \Rightarrow 'a \ set \ (infixl \cdot as \ 67) where AA \cdot as \ \sigma = (\lambda A. \ A \cdot a \ \sigma) \ `AA definition subst_atmss :: 'a \ set \ set \Rightarrow 's \Rightarrow 'a \ set \ set \ (infixl \cdot ass \ 67) where AAA \cdot ass \ \sigma = (\lambda AA. \ AA \cdot as \ \sigma) \ `AAA definition subst_atm_list :: 'a \ list \Rightarrow 's \Rightarrow 'a \ list \ (infixl \cdot al \ 67) where As \cdot al \ \sigma = map \ (\lambda A. \ A \cdot a \ \sigma) \ As definition subst_atm_mset :: 'a multiset \Rightarrow 's \Rightarrow 'a multiset (infixl \cdot am 67) where AA \cdot am \ \sigma = image_mset \ (\lambda A. \ A \cdot a \ \sigma) \ AA ``` ``` definition subst_atm_mset_list :: 'a multiset list \Rightarrow 's \Rightarrow 'a multiset list (infixl \cdot aml 67) AAA \cdot aml \ \sigma = map \ (\lambda AA. \ AA \cdot am \ \sigma) \ AAA definition subst_atm_mset_lists :: 'a multiset list \Rightarrow 's list \Rightarrow 'a multiset list (infixl <math>\cdot \cdot aml \ 67) AAs \cdot \cdot aml \ \sigma s = map2 \ (\cdot am) \ AAs \ \sigma s definition subst_lit :: 'a \ literal \Rightarrow 's \Rightarrow 'a \ literal \ (infixl \cdot l \ 67) where L \cdot l \ \sigma = map_literal \ (\lambda A. \ A \cdot a \ \sigma) \ L lemma atm_of_subst_lit[simp]: atm_of\ (L \cdot l\ \sigma) = atm_of\ L \cdot a\ \sigma unfolding subst_lit_def by (cases L) simp+ definition subst_cls :: 'a \ clause \Rightarrow 's \Rightarrow 'a \ clause \ (infixl \cdot 67) \ where AA \cdot \sigma = image_mset (\lambda A. A \cdot l \sigma) AA definition subst_clss :: 'a \ clause \ set \Rightarrow 's \Rightarrow 'a \ clause \ set \ (infixl \cdot cs \ 67) where AA \cdot cs \ \sigma = (\lambda A. \ A \cdot \sigma) \ `AA definition subst_cls_list :: 'a \ clause \ list \Rightarrow 's \Rightarrow 'a \ clause \ list \ (infixl \cdot cl \ 67) where Cs \cdot cl \ \sigma = map \ (\lambda A. \ A \cdot \sigma) \ Cs definition subst_cls_lists :: 'a \ clause \ list \Rightarrow 's \ list \Rightarrow 'a \ clause \ list \ (infixl \cdot \cdot cl \ 67) where Cs \cdot \cdot cl \ \sigma s = map2 \ (\cdot) \ Cs \ \sigma s definition subst_cls_mset :: 'a \ clause \ multiset \Rightarrow 's \Rightarrow 'a \ clause \ multiset \ (infixl \cdot cm \ 67) where CC \cdot cm \ \sigma = image_mset \ (\lambda A. \ A \cdot \sigma) \ CC lemma subst_cls_add_mset[simp]: add_mset\ L\ C\cdot \sigma = add_mset\ (L\cdot l\ \sigma)\ (C\cdot \sigma) unfolding subst_cls_def by simp \mathbf{lemma} \ subst_cls_mset_add_mset[simp]: \ add_mset \ C \ CC \cdot cm \ \sigma = \ add_mset \ (C \cdot \sigma) \ (CC \cdot cm \ \sigma) unfolding subst_cls_mset_def by simp definition generalizes_atm :: 'a \Rightarrow 'a \Rightarrow bool where generalizes_atm A \ B \longleftrightarrow (\exists \sigma. \ A \cdot a \ \sigma = B) definition strictly_generalizes_atm :: 'a \Rightarrow 'a \Rightarrow bool where strictly_generalizes_atm\ A\ B\ \longleftrightarrow\ generalizes_atm\ A\ B\ \land\ \neg\ generalizes_atm\ B\ A definition generalizes_lit :: 'a literal \Rightarrow 'a literal \Rightarrow bool where generalizes_lit\ L\ M\longleftrightarrow (\exists\ \sigma.\ L\cdot l\ \sigma=M) definition strictly_generalizes_lit :: 'a literal <math>\Rightarrow 'a literal \Rightarrow bool where strictly_generalizes_lit\ L\ M\ \longleftrightarrow\ generalizes_lit\ L\ M\ \land\ \neg\ generalizes_lit\ M\ L definition generalizes_cls :: 'a \ clause \Rightarrow 'a \ clause \Rightarrow bool \ \mathbf{where} generalizes_cls \ C \ D \longleftrightarrow (\exists \ \sigma. \ C \cdot \sigma = D) definition strictly_generalizes_cls :: 'a clause <math>\Rightarrow 'a clause \Rightarrow bool where strictly_generalizes_cls\ C\ D\ \longleftrightarrow\ generalizes_cls\ C\ D\ \land\ \neg\ generalizes_cls\ D\ C definition subsumes :: 'a \ clause \Rightarrow 'a \ clause \Rightarrow bool \ \mathbf{where} subsumes C D \longleftrightarrow (\exists \sigma. \ C \cdot \sigma \subseteq \# D) definition strictly_subsumes :: 'a clause <math>\Rightarrow 'a clause \Rightarrow bool where strictly_subsumes \ C \ D \longleftrightarrow subsumes \ C \ D \land \neg \ subsumes \ D \ C ``` 24 **definition** variants :: 'a clause \Rightarrow 'a clause \Rightarrow bool where ``` variants\ C\ D \longleftrightarrow generalizes_cls\ C\ D\ \land\ generalizes_cls\ D\ C definition is_renaming :: 's \Rightarrow bool where is_renaming \ \sigma \longleftrightarrow (\exists \tau. \ \sigma \odot \tau = id_subst) definition is_renaming_list :: 's \ list \Rightarrow bool \ \mathbf{where} is_renaming_list \ \sigma s \longleftrightarrow (\forall \ \sigma \in set \ \sigma s. \ is_renaming \ \sigma) definition inv_renaming :: 's \Rightarrow 's where inv_renaming \ \sigma = (SOME \ \tau. \ \sigma \odot \tau = id_subst) definition is_ground_atm :: 'a \Rightarrow bool where is_ground_atm \ A \longleftrightarrow (\forall \sigma. \ A = A \cdot a \ \sigma) definition is_ground_atms :: 'a \ set \Rightarrow bool \ \mathbf{where} is_ground_atms \ AA = (\forall A \in AA. \ is_ground_atm \ A) definition is_ground_atm_list :: 'a \ list \Rightarrow bool \ \mathbf{where} is_ground_atm_list \ As \longleftrightarrow (\forall \ A \in set \ As. \ is_ground_atm \ A) definition is_ground_atm_mset :: 'a multiset <math>\Rightarrow bool where is_ground_atm_mset \ AA \longleftrightarrow (\forall A. \ A \in \# \ AA \longrightarrow is_ground_atm \ A) definition is_ground_lit :: 'a \ literal \Rightarrow bool \ \mathbf{where} is_ground_lit \ L \longleftrightarrow is_ground_atm \ (atm_of \ L) definition is_ground_cls :: 'a \ clause \Rightarrow bool \ \mathbf{where} is_ground_cls\ C \longleftrightarrow (\forall\ L.\ L \in \#\ C \longrightarrow is_ground_lit\ L) definition is_ground_clss :: 'a \ clause \ set \Rightarrow bool \ \mathbf{where} is_ground_clss \ CC \longleftrightarrow (\forall \ C \in CC. \ is_ground_cls \ C) definition is_ground_cls_list :: 'a clause list <math>\Rightarrow bool where is_ground_cls_list\ CC \longleftrightarrow (\forall\ C \in set\ CC.\ is_ground_cls\ C) definition is_ground_subst :: 's \Rightarrow bool
where is_ground_subst \ \sigma \longleftrightarrow (\forall A. is_ground_atm \ (A \cdot a \ \sigma)) definition is_ground_subst_list :: 's \ list \Rightarrow bool \ \mathbf{where} is_ground_subst_list \ \sigma s \longleftrightarrow (\forall \ \sigma \in set \ \sigma s. \ is_ground_subst \ \sigma) definition grounding_of_cls :: 'a clause <math>\Rightarrow 'a clause set where grounding_of_cls\ C = \{C \cdot \sigma \mid \sigma.\ is_ground_subst\ \sigma\} definition grounding_of_clss :: 'a clause set \Rightarrow 'a clause set where grounding_of_clss\ CC = (\bigcup C \in CC.\ grounding_of_cls\ C) definition is_unifier :: 's \Rightarrow 'a \ set \Rightarrow bool \ \mathbf{where} is_unifier \sigma AA \longleftrightarrow card (AA \cdot as \sigma) \leq 1 definition is_unifiers :: 's \Rightarrow 'a \ set \ set \Rightarrow bool \ where is_unifiers \ \sigma \ AAA \longleftrightarrow (\forall AA \in AAA. \ is_unifier \ \sigma \ AA) definition is_mgu :: 's \Rightarrow 'a \ set \ set \Rightarrow bool \ \mathbf{where} is_mgu \ \sigma \ AAA \longleftrightarrow is_unifiers \ \sigma \ AAA \land (\forall \tau. \ is_unifiers \ \tau \ AAA \longrightarrow (\exists \gamma. \ \tau = \sigma \odot \gamma)) definition var_disjoint :: 'a clause list <math>\Rightarrow bool where var_disjoint \ Cs \longleftrightarrow (\forall \sigma s. \ length \ \sigma s = length \ Cs \longrightarrow (\exists \tau. \ \forall i < length \ Cs. \ \forall S. \ S \subseteq \# \ Cs! \ i \longrightarrow S \cdot \sigma s! \ i = S \cdot \tau)) ``` end #### 7.3 Substitution Lemmas ``` {f locale} \ substitution = substitution_ops \ subst_atm \ id_subst \ comp_subst for subst_atm :: 'a \Rightarrow 's \Rightarrow 'a and id_subst :: 's and comp_subst :: \ 's \, \Rightarrow \ 's \, \Rightarrow \ 's \, + \, fixes renamings_apart :: 'a clause list \Rightarrow 's list and atm_of_atms :: 'a \ list \Rightarrow 'a assumes subst_atm_id_subst[simp]: A \cdot a id_subst = A and subst_atm_comp_subst[simp] \colon A \cdot a \ (\sigma \ \odot \ \tau) = (A \cdot a \ \sigma) \cdot a \ \tau \ \mathbf{and} subst_ext: (\bigwedge A. \ A \cdot a \ \sigma = A \cdot a \ \tau) \Longrightarrow \sigma = \tau \ \text{and} make_qround_subst: is_qround_cls (C \cdot \sigma) \Longrightarrow \exists \tau. is_qround_subst \tau \wedge C \cdot \tau = C \cdot \sigma and wf_strictly_generalizes_atm: wfP strictly_generalizes_atm and renamings_apart_length: length (renamings_apart Cs) = length Cs and renamings_apart_renaming: \varrho \in set (renamings_apart Cs) \Longrightarrow is_renaming \varrho and renamings_apart_var_disjoint: var_disjoint (Cs \cdot \cdot cl (renamings_apart Cs)) and atm_of_atms_subst: \bigwedge As \ Bs. \ atm_of_atms \ As \cdot a \ \sigma = atm_of_atms \ Bs \longleftrightarrow map \ (\lambda A. \ A \cdot a \ \sigma) \ As = Bs begin lemma subst_ext_iff: \sigma = \tau \longleftrightarrow (\forall A. A \cdot a \ \sigma = A \cdot a \ \tau) by (blast intro: subst_ext) 7.3.1 Identity Substitution lemma id_subst_comp_subst[simp]: id_subst \odot \sigma = \sigma by (rule\ subst_ext)\ simp lemma comp_subst_id_subst[simp]: \sigma \odot id_subst = \sigma by (rule subst_ext) simp lemma id_subst_comp_substs[simp]: replicate\ (length\ \sigma s)\ id_subst\ \odot s\ \sigma s = \sigma s using comp_substs_def by (induction \ \sigma s) auto lemma comp_substs_id_subst[simp]: \sigma s \odot s replicate (length \sigma s) id_subst = \sigma s using comp_substs_def by (induction \ \sigma s) auto lemma subst_atms_id_subst[simp]: AA \cdot as id_subst = AA unfolding subst_atms_def by simp lemma subst_atmss_id_subst[simp]: AAA \cdot ass\ id_subst = AAA unfolding subst_atmss_def by simp lemma \ subst_atm_list_id_subst[simp]: As \cdot al \ id_subst = As unfolding subst_atm_list_def by auto lemma subst_atm_mset_id_subst[simp]: AA \cdot am \ id_subst = AA unfolding subst_atm_mset_def by simp lemma subst_atm_mset_list_id_subst[simp]: AAs \cdot aml \ id_subst = AAs unfolding subst_atm_mset_list_def by simp lemma\ subst_atm_mset_lists_id_subst[simp]:\ AAs\ \cdots aml\ replicate\ (length\ AAs)\ id_subst\ =\ AAs unfolding subst_atm_mset_lists_def by (induct AAs) auto lemma subst_lit_id_subst[simp]: L \cdot l \ id_subst = L unfolding subst_lit_def by (simp add: literal.map_ident) lemma subst_cls_id_subst[simp]: C \cdot id_subst = C unfolding subst_cls_def by simp ``` lemma $subst_clss_id_subst[simp]$: $CC \cdot cs \ id_subst = CC$ unfolding $subst_clss_def$ by simp lemma subst_cls_list_id_subst[simp]: Cs ·cl id_subst = Cs unfolding subst_cls_list_def by simp lemma $subst_cls_lists_id_subst[simp]$: $Cs \cdot \cdot cl$ replicate (length Cs) $id_subst = Cs$ unfolding $subst_cls_lists_def$ by (induct Cs) auto **lemma** subst_cls_mset_id_subst[simp]: CC ·cm id_subst = CC **unfolding** subst_cls_mset_def **by** simp #### 7.3.2 Associativity of Composition **lemma** $comp_subst_assoc[simp]$: $\sigma \odot (\tau \odot \gamma) = \sigma \odot \tau \odot \gamma$ **by** $(rule\ subst_ext)\ simp$ #### 7.3.3 Compatibility of Substitution and Composition lemma $subst_atms_comp_subst[simp]$: $AA \cdot as \ (\tau \odot \sigma) = AA \cdot as \ \tau \cdot as \ \sigma$ unfolding $subst_atms_def$ by auto lemma $subst_atmss_comp_subst[simp]$: $AAA \cdot ass\ (\tau\odot\sigma) = AAA \cdot ass\ \tau\cdot ass\ \sigma$ unfolding $subst_atmss_def$ by auto lemma $subst_atm_list_comp_subst[simp]$: $As \cdot al \ (\tau \odot \sigma) = As \cdot al \ \tau \cdot al \ \sigma$ unfolding $subst_atm_list_def$ by auto lemma $subst_atm_mset_comp_subst[simp]$: $AA \cdot am \ (\tau \odot \sigma) = AA \cdot am \ \tau \cdot am \ \sigma$ unfolding $subst_atm_mset_def$ by auto lemma $subst_atm_mset_list_comp_subst[simp]$: $AAs \cdot aml \ (\tau \odot \sigma) = (AAs \cdot aml \ \tau) \cdot aml \ \sigma$ unfolding $subst_atm_mset_list_def$ by auto lemma $subst_atm_mset_lists_comp_substs[simp]$: $AAs \cdots aml \ (\tau s \odot s \ \sigma s) = AAs \cdots aml \ \tau s \cdots aml \ \sigma s$ unfolding $subst_atm_mset_lists_def \ comp_substs_def \ map_zip_map \ map_zip_map \ map_zip_map \ map_zip_assoc$ by $(simp \ add: \ split_def)$ **lemma** $subst_lit_comp_subst[simp]$: $L \cdot l \ (\tau \odot \sigma) = L \cdot l \ \tau \cdot l \ \sigma$ **unfolding** $subst_lit_def$ **by** $(auto\ simp:\ literal.map_comp\ o_def)$ lemma $subst_cls_comp_subst[simp]$: $C \cdot (\tau \odot \sigma) = C \cdot \tau \cdot \sigma$ unfolding $subst_cls_def$ by auto lemma $subst_clsscomp_subst[simp]$: $CC \cdot cs \ (\tau \odot \sigma) = CC \cdot cs \ \tau \cdot cs \ \sigma$ unfolding $subst_clss_def$ by auto lemma $subst_cls_list_comp_subst[simp]$: $Cs \cdot cl \ (\tau \odot \sigma) = Cs \cdot cl \ \tau \cdot cl \ \sigma$ unfolding $subst_cls_list_def$ by auto lemma $subst_cls_lists_comp_substs[simp]$: $Cs \cdots cl \ (\tau s \odot s \ \sigma s) = Cs \cdots cl \ \tau s \cdots cl \ \sigma s$ unfolding $subst_cls_lists_def \ comp_substs_def \ map_zip_map \ map_zip_map2 \ map_zip_assoc$ by $(simp \ add: \ split_def)$ lemma $subst_cls_mset_comp_subst[simp]$: $CC \cdot cm \ (\tau \odot \sigma) = CC \cdot cm \ \tau \cdot cm \ \sigma$ unfolding $subst_cls_mset_def$ by auto #### 7.3.4 "Commutativity" of Membership and Substitution lemma $Melem_subst_atm_mset[simp]: A \in \#AA \cdot am \ \sigma \longleftrightarrow (\exists B. B \in \#AA \land A = B \cdot a \ \sigma)$ unfolding $subst_atm_mset_def$ by auto lemma $Melem_subst_cls[simp]$: $L \in \# C \cdot \sigma \longleftrightarrow (\exists M. M \in \# C \land L = M \cdot l \sigma)$ unfolding $subst_cls_def$ by auto ``` lemma Melem_subst_cls_mset[simp]: AA \in \# CC \cdot cm \ \sigma \longleftrightarrow (\exists BB. \ BB \in \# CC \land AA = BB \cdot \sigma) unfolding subst_cls_mset_def by auto 7.3.5 Signs and Substitutions lemma subst_lit_is_neg[simp]: is_neg\ (L \cdot l\ \sigma) = is_neg\ L unfolding subst_lit_def by auto lemma subst_lit_is_pos[simp]: is_pos(L \cdot l \sigma) = is_pos(L \cdot l \sigma) unfolding subst_lit_def by auto lemma subst_minus[simp]: (-L) \cdot l \ \mu = -(L \cdot l \ \mu) by (simp add: literal.map_sel subst_lit_def uminus_literal_def) 7.3.6 Substitution on Literal(s) lemma eql_neg_lit_eql_atm[simp]: (Neg A' \cdot l \eta) = Neg A \longleftrightarrow A' \cdot a \eta = A by (simp add: subst_lit_def) lemma eql_pos_lit_eql_atm[simp]: (Pos\ A' \cdot l\ \eta) = Pos\ A \longleftrightarrow A' \cdot a\ \eta = A by (simp add: subst_lit_def) lemma subst_cls_negs[simp]: (negs\ AA) \cdot \sigma = negs\ (AA \cdot am\ \sigma) unfolding subst_cls_def subst_lit_def subst_atm_mset_def by auto lemma subst_cls_poss[simp]: (poss\ AA) \cdot \sigma = poss\ (AA \cdot am\ \sigma) unfolding subst_cls_def subst_lit_def subst_atm_mset_def by auto lemma atms_of_subst_atms: atms_of C \cdot as \sigma = atms_of (C \cdot \sigma) proof - have atms_of (C \cdot \sigma) = set_mset (image_mset \ atm_of \ (image_mset \ (map_literal \ (\lambda A. \ A \cdot a \ \sigma)) \ C)) unfolding \ subst_cls_def \ subst_atms_def \ subst_lit_def \ atms_of_def \ \ \mathbf{by} \ \ auto also have ... = set_mset (image_mset (\lambda A. A \cdot a \sigma) (image_mset atm_of C)) by simp (meson literal.map_sel) finally show atms_of C \cdot as \ \sigma = atms_of \ (C \cdot \sigma) unfolding subst_atms_def atms_of_def by auto qed lemma in_image_Neg_is_neg[simp]: L \cdot l \ \sigma \in Neg \ `AA \implies is_neg \ L by (metis bex_imageD literal.disc(2) literal.map_disc_iff subst_lit_def) lemma subst_lit_in_negs_subst_is_neg: L \cdot l \ \sigma \in \# \ (negs \ AA) \cdot \tau \Longrightarrow is_neg \ L by simp lemma subst_lit_in_negs_is_neg: L \cdot l \ \sigma \in \# \ negs \ AA \implies is_neg \ L by simp 7.3.7 Substitution on Empty lemma subst_atms_empty[simp]: \{\} \cdot as \ \sigma = \{\} unfolding subst_atms_def by auto lemma subst_atmss_empty[simp]: \{\} \cdot ass \ \sigma = \{\} unfolding subst_atmss_def by auto lemma comp_substs_empty_iff[simp]: \sigma s \odot s \ \eta s = [] \longleftrightarrow \sigma s = [] \lor \eta s = [] using comp_substs_def map2_empty_iff by auto
lemma subst_atm_list_empty[simp]: [] \cdot al \ \sigma = [] unfolding subst_atm_list_def by auto ``` **lemma** $subst_atm_mset_empty[simp]: \{\#\} \cdot am \ \sigma = \{\#\}$ unfolding subst_atm_mset_def by auto ``` lemma subst_atm_mset_list_empty[simp]: [] \cdot aml \ \sigma = [] unfolding subst_atm_mset_list_def by auto ``` lemma $$subst_atm_mset_lists_empty[simp]$$: [] $\cdot \cdot \cdot aml \ \sigma s = []$ unfolding $subst_atm_mset_lists_def$ by $auto$ lemma $$subst_cls_empty[simp]$$: {#} $\cdot \sigma = \{\#\}$ unfolding $subst_cls_def$ by $auto$ lemma $$subst_clss_empty[simp]$$: {} $\cdot cs \ \sigma =$ {} unfolding $subst_clss_def$ by $auto$ lemma $$subst_cls_list_empty[simp]$$: [] $\cdot cl \ \sigma =$ [] unfolding $subst_cls_list_def$ by $auto$ lemma $$subst_cls_lists_empty[simp]$$: [] $\cdots cl \ \sigma s =$ [] unfolding $subst_cls_lists_def$ by $auto$ lemma $$subst_scls_mset_empty[simp]$$: {#} $\cdot cm \ \sigma = \{\#\}$ unfolding $subst_cls_mset_def$ by $auto$ lemma $$subst_atms_empty_iff[simp]$$: $AA \cdot as \ \eta = \{\} \longleftrightarrow AA = \{\}$ unfolding $subst_atms_def$ by $auto$ lemma $$subst_atmss_empty_iff[simp]$$: $AAA \cdot ass \ \eta = \{\} \longleftrightarrow AAA = \{\}$ unfolding $subst_atmss_def$ by $auto$ lemma $$subst_atm_list_empty_iff[simp]$$: $As \cdot al \ \eta = [] \longleftrightarrow As = []$ unfolding $subst_atm_list_def$ by $auto$ lemma $$subst_atm_mset_empty_iff[simp]: AA \cdot am \ \eta = \{\#\} \longleftrightarrow AA = \{\#\}$$ unfolding $subst_atm_mset_def$ by $auto$ lemma $$subst_atm_mset_list_empty_iff[simp]: AAs \cdot aml \ \eta = [] \longleftrightarrow AAs = []$$ unfolding $subst_atm_mset_list_def$ by $auto$ lemma $$subst_atm_mset_lists_empty_iff[simp]$$: $AAs \cdots aml \ \eta s = [] \longleftrightarrow (AAs = [] \lor \eta s = [])$ using $map2_empty_iff subst_atm_mset_lists_def$ by $auto$ lemma $$subst_cls_empty_iff[simp]: C \cdot \eta = \{\#\} \longleftrightarrow C = \{\#\}$$ unfolding $subst_cls_def$ by $auto$ lemma $$subst_clss_empty_iff[simp]$$: $CC \cdot cs \ \eta = \{\} \longleftrightarrow CC = \{\}$ unfolding $subst_clss_def$ by $auto$ lemma $$subst_cls_list_empty_iff[simp]$$: $Cs \cdot cl \ \eta = [] \longleftrightarrow Cs = []$ unfolding $subst_cls_list_def$ by $auto$ lemma $$subst_cls_lists_empty_iff[simp]$$: $Cs \cdot \cdot cl \ \eta s = [] \longleftrightarrow (Cs = [] \lor \eta s = [])$ using $map2_empty_iff \ subst_cls_lists_def$ by $auto$ lemma $$subst_cls_mset_empty_iff[simp]$$: $CC \cdot cm \ \eta = \{\#\} \longleftrightarrow CC = \{\#\}$ unfolding $subst_cls_mset_def$ by $auto$ #### 7.3.8 Substitution on a Union lemma $$subst_atms_union[simp]$$: $(AA \cup BB) \cdot as \ \sigma = AA \cdot as \ \sigma \cup BB \cdot as \ \sigma$ unfolding $subst_atms_def$ by $auto$ lemma $$subst_atmss_union[simp]$$: $(AAA \cup BBB) \cdot ass \ \sigma = AAA \cdot ass \ \sigma \cup BBB \cdot ass \ \sigma$ unfolding $subst_atmss_def$ by $auto$ lemma $$subst_atm_list_append[simp]$$: $(As @ Bs) \cdot al \ \sigma = As \cdot al \ \sigma @ Bs \cdot al \ \sigma$ ``` unfolding subst_atm_list_def by auto ``` ``` lemma subst_atm_mset_union[simp]: (AA + BB) \cdot am \ \sigma = AA \cdot am \ \sigma + BB \cdot am \ \sigma unfolding subst_atm_mset_def by auto ``` lemma $subst_atm_mset_list_append[simp]$: $(AAs @ BBs) \cdot aml \ \sigma = AAs \cdot aml \ \sigma @ BBs \cdot aml \ \sigma$ unfolding $subst_atm_mset_list_def$ by auto ``` lemma subst_cls_union[simp]: (C + D) \cdot \sigma = C \cdot \sigma + D \cdot \sigma unfolding subst_cls_def by auto ``` lemma $subst_clss_union[simp]$: $(CC \cup DD) \cdot cs \ \sigma = CC \cdot cs \ \sigma \cup DD \cdot cs \ \sigma$ unfolding $subst_clss_def$ by auto lemma $subst_cls_list_append[simp]$: $(Cs @ Ds) \cdot cl \sigma = Cs \cdot cl \sigma @ Ds \cdot cl \sigma$ unfolding $subst_cls_list_def$ by auto lemma $subst_cls_mset_union[simp]$: $(CC + DD) \cdot cm \ \sigma = CC \cdot cm \ \sigma + DD \cdot cm \ \sigma$ unfolding $subst_cls_mset_def$ by auto #### 7.3.9 Substitution on a Singleton lemma $subst_atms_single[simp]$: $\{A\} \cdot as \ \sigma = \{A \cdot a \ \sigma\}$ unfolding $subst_atms_def$ by auto lemma $subst_atmss_single[simp]$: $\{AA\} \cdot ass \ \sigma = \{AA \cdot as \ \sigma\}$ unfolding $subst_atmss_def$ by auto lemma $subst_atm_list_single[simp]$: [A] $\cdot al \ \sigma = [A \cdot a \ \sigma]$ unfolding $subst_atm_list_def$ by auto lemma $subst_atm_mset_single[simp]$: $\{\#A\#\} \cdot am \ \sigma = \{\#A \cdot a \ \sigma\#\}$ unfolding $subst_atm_mset_def$ by auto lemma $subst_atm_mset_list[simp]$: $[AA] \cdot aml \ \sigma = [AA \cdot am \ \sigma]$ unfolding $subst_atm_mset_list_def$ by auto lemma $subst_cls_single[simp]$: $\{\#L\#\} \cdot \sigma = \{\#L \cdot l \ \sigma\#\}$ by simp lemma $subst_clss_single[simp]$: $\{C\} \cdot cs \ \sigma = \{C \cdot \sigma\}$ unfolding $subst_clss_def$ by auto lemma $subst_cls_list_single[simp]$: $[C] \cdot cl \ \sigma = [C \cdot \sigma]$ unfolding $subst_cls_list_def$ by auto lemma subst_cls_mset_single[simp]: $\{\#C\#\} \cdot cm \ \sigma = \{\#C \cdot \sigma\#\}$ by simp #### 7.3.10 Substitution on (#) lemma $subst_atm_list_Cons[simp]$: $(A \# As) \cdot al \ \sigma = A \cdot a \ \sigma \# As \cdot al \ \sigma$ unfolding $subst_atm_list_def$ by auto lemma $subst_atm_mset_list_Cons[simp]$: $(A \# As) \cdot aml \ \sigma = A \cdot am \ \sigma \# As \cdot aml \ \sigma$ unfolding $subst_atm_mset_list_def$ by auto lemma $subst_atm_mset_lists_Cons[simp]$: $(C \# Cs) \cdot \cdot aml (\sigma \# \sigma s) = C \cdot am \sigma \# Cs \cdot \cdot aml \sigma s$ unfolding $subst_atm_mset_lists_def$ by auto lemma $subst_cls_list_Cons[simp]$: $(C \# Cs) \cdot cl \ \sigma = C \cdot \sigma \# Cs \cdot cl \ \sigma$ unfolding $subst_cls_list_def$ by auto lemma $subst_cls_lists_Cons[simp]$: $(C \# Cs) \cdot \cdot cl (\sigma \# \sigma s) = C \cdot \sigma \# Cs \cdot \cdot cl \sigma s$ #### 7.3.11 Substitution on tl ``` lemma subst_atm_list_tl[simp]: tl\ (As \cdot al\ \eta) = tl\ As \cdot al\ \eta by (induction\ As)\ auto ``` lemma subst_atm_mset_list_tl[simp]: tl (AAs \cdot aml η) = tl AAs \cdot aml η by (induction AAs) auto #### 7.3.12 Substitution on (!) ``` \mathbf{lemma}\ comp_substs_nth[simp] : ``` ``` length \tau s = \text{length } \sigma s \Longrightarrow i < \text{length } \tau s \Longrightarrow (\tau s \odot s \sigma s) \mid i = (\tau s \mid i) \odot (\sigma s \mid i) by (simp \ add: \ comp_substs_def) ``` lemma $subst_atm_list_nth[simp]$: $i < length \ As \Longrightarrow (As \cdot al \ \tau) \ ! \ i = As \ ! \ i \cdot a \ \tau$ unfolding $subst_atm_list_def$ using $less_Suc_eq_0_disj$ nth_map by force lemma $subst_atm_mset_list_nth[simp]$: $i < length \ AAs \Longrightarrow (AAs \cdot aml \ \eta) \ ! \ i = (AAs \ ! \ i) \cdot am \ \eta$ unfolding $subst_atm_mset_list_def$ by auto $lemma \ subst_atm_mset_lists_nth[simp]$: $$length\ AAs = length\ \sigma s \Longrightarrow i < length\ AAs \Longrightarrow (AAs\ \cdot \cdot aml\ \sigma s)\ !\ i = (AAs\ !\ i)\ \cdot am\ (\sigma s\ !\ i)$$ unfolding $subst_atm_mset_lists_def$ by $auto$ lemma $subst_cls_list_nth[simp]$: $i < length \ Cs \Longrightarrow (Cs \cdot cl \ \tau) \ ! \ i = (Cs \ ! \ i) \cdot \tau$ unfolding $subst_cls_list_def$ using $less_Suc_eq_0_disj$ nth_map by $(induction \ Cs)$ auto $\mathbf{lemma}\ subst_cls_lists_nth[simp]:$ length $$Cs = length \ \sigma s \Longrightarrow i < length \ Cs \Longrightarrow (Cs \cdot cl \ \sigma s) \ ! \ i = (Cs \ ! \ i) \cdot (\sigma s \ ! \ i)$$ unfolding $subst_cls_lists_def$ by $auto$ #### 7.3.13 Substitution on Various Other Functions ``` lemma subst_clss_image[simp]: image\ f\ X\ \cdot cs\ \sigma = \{f\ x\cdot \sigma\mid x.\ x\in X\} unfolding subst_clss_def by auto ``` lemma $subst_cls_mset_image_mset[simp]$: $image_mset\ f\ X\ \cdot cm\ \sigma = \{\#\ f\ x\ \cdot \sigma.\ x\in \#\ X\ \#\}$ unfolding $subst_cls_mset_def$ by auto lemma $mset_subst_atm_list_subst_atm_mset[simp]$: $mset~(As~\cdot al~\sigma) = mset~(As)~\cdot am~\sigma$ unfolding $subst_atm_list_def~subst_atm_mset_def~$ by auto **lemma** $mset_subst_cls_list_subst_cls_mset$: mset ($Cs \cdot cl \ \sigma$) = (mset Cs) $\cdot cm \ \sigma$ **unfolding** $subst_cls_mset_def$ $subst_cls_list_def$ **by** auto lemma $sum_list_subst_cls_list_subst_cls[simp]$: $sum_list\ (Cs \cdot cl\ \eta) = sum_list\ Cs \cdot \eta$ unfolding $subst_cls_list_def$ by $(induction\ Cs)\ auto$ lemma $Neg_Melem_subst_atm_subst_cls[simp]$: $Neg\ A \in \#\ C \Longrightarrow Neg\ (A \cdot a\ \sigma) \in \#\ C \cdot \sigma$ by $(metis\ Melem_subst_cls\ eql_neg_lit_eql_atm)$ lemma Pos_Melem_subst_atm_subst_cls[simp]: Pos $A \in \# C \Longrightarrow Pos (A \cdot a \sigma) \in \# C \cdot \sigma$ by (metis Melem_subst_cls eql_pos_lit_eql_atm) **lemma** $in_atms_of_subst[simp]$: $B \in atms_of \ C \Longrightarrow B \cdot a \ \sigma \in atms_of \ (C \cdot \sigma)$ by $(metis \ atms_of_subst_atms \ image_iff \ subst_atms_def)$ #### 7.3.14 Renamings $\mathbf{lemma} \ is_renaming_id_subst[simp] \colon is_renaming \ id_subst$ ``` unfolding is_renaming_def by simp lemma is_renamingD: is_renaming \sigma \Longrightarrow (\forall A1 \ A2. \ A1 \cdot a \ \sigma = A2 \cdot a \ \sigma \longleftrightarrow A1 = A2) \mathbf{by}\ (metis\ is_renaming_def\ subst_atm_comp_subst\ subst_atm_id_subst) lemma inv_renaming_cancel_r[simp]: is_renaming r \implies r \odot inv_renaming r = id_subst unfolding inv_renaming_def is_renaming_def by (metis (mono_tags) someI_ex) lemma inv_renaming_cancel_r_list[simp]: \textit{is_renaming_list rs} \implies \textit{rs} \ \odot \textit{s map inv_renaming rs} = \textit{replicate (length rs) id_subst} unfolding is_renaming_list_def by (induction rs) (auto simp add: comp_substs_def) lemma Nil_comp_substs[simp]: [] \odot s \ s = [] unfolding comp_substs_def by auto lemma comp_substs_Nil[simp]: s \odot s [] = [] unfolding comp_substs_def by auto lemma is_renaming_idempotent_id_subst: is_renaming r
\Longrightarrow r \odot r = r \Longrightarrow r = id_subst by (metis comp_subst_assoc comp_subst_id_subst inv_renaming_cancel_r) \mathbf{lemma}\ is_renaming_left_id_subst_right_id_subst: is_renaming \ r \Longrightarrow s \odot r = id_subst \Longrightarrow r \odot s = id_subst by (metis comp_subst_assoc comp_subst_id_subst is_renaming_def) lemma is_renaming_closure: is_renaming r1 \implies is_renaming r2 \implies is_renaming (r1 \odot r2) unfolding is_renaming_def by (metis comp_subst_assoc comp_subst_id_subst) lemma is_renaming_inv_renaming_cancel_atm[simp]: is_renaming \varrho \Longrightarrow A \cdot a \ \varrho \cdot a \ inv_renaming \ \varrho = A by (metis inv_renaming_cancel_r subst_atm_comp_subst subst_atm_id_subst) lemma is_renaming_inv_renaming_cancel_atms[simp]: is_renaming \varrho \Longrightarrow AA \cdot as \ \varrho \cdot as \ inv_renaming \ \varrho = AA \mathbf{by}\ (metis\ inv_renaming_cancel_r\ subst_atms_comp_subst\ subst_atms_id_subst) lemma is_renaming_inv_renaming_cancel_atmss[simp]: is_renaming \rho \Longrightarrow AAA \cdot ass \ \rho \cdot ass \ inv_renaming \ \rho = AAA by (metis inv_renaming_cancel_r subst_atmss_comp_subst subst_atmss_id_subst) lemma is_renaming_inv_renaming_cancel_atm_list[simp]: is_renaming \varrho \Longrightarrow As \cdot al \ \varrho \cdot al \ inv_renaming \ \varrho = As by (metis inv_renaming_cancel_r subst_atm_list_comp_subst subst_atm_list_id_subst) lemma is_renaming_inv_renaming_cancel_atm_mset[simp]: is_renaming \varrho \Longrightarrow AA \cdot am \ \varrho \cdot am \ inv_renaming \ \varrho = AA \mathbf{by}\ (\textit{metis inv_renaming_cancel_r subst_atm_mset_comp_subst subst_atm_mset_id_subst}) lemma is_renaming_inv_renaming_cancel_atm_mset_list[simp]: is_renaming \varrho \Longrightarrow (AAs \cdot aml \ \varrho) \cdot aml \ inv_renaming \ \varrho \textbf{by} \ (\textit{metis inv_renaming_cancel_r subst_atm_mset_list_comp_subst subst_atm_mset_list_id_subst)} lemma is_renaming_list_inv_renaming_cancel_atm_mset_lists[simp]: length\ AAs = length\ \varrho s \Longrightarrow is_renaming_list\ \varrho s \Longrightarrow AAs\ \cdot\cdot aml\ \varrho s\ \cdot\cdot aml\ map\ inv_renaming\ \varrho s = AAs by (metis inv_renaming_cancel_r_list subst_atm_mset_lists_comp_substs subst_atm_mset_lists_id_subst) lemma is_renaming_inv_renaming_cancel_lit[simp]: is_renaming \varrho \Longrightarrow (L \cdot l \ \varrho) \cdot l \ inv_renaming \ \varrho = L by (metis inv_renaming_cancel_r subst_lit_comp_subst subst_lit_id_subst) lemma is_renaming_inv_renaming_cancel_cls[simp]: is_renaming \rho \Longrightarrow C \cdot \rho \cdot inv_renaming \rho = C by (metis inv_renaming_cancel_r subst_cls_comp_subst subst_cls_id_subst) lemma is_renaming_inv_renaming_cancel_clss[simp]: is_renaming \rho \Longrightarrow CC \cdot cs \ \rho \cdot cs \ inv_renaming \ \rho = CC by (metis inv_renaminq_cancel_r subst_clss_id_subst subst_clsscomp_subst) ``` **lemma** is_renaming_inv_renaming_cancel_cls_list[simp]: is_renaming $\rho \Longrightarrow Cs \cdot cl \ \rho \cdot cl \ inv_renaming \ \rho = Cs$ by (metis inv_renaming_cancel_r subst_cls_list_comp_subst subst_cls_list_id_subst) ``` \mathbf{lemma}\ is_renaming_list_inv_renaming_cancel_cls_list[simp]: length\ Cs = length\ \varrho s \Longrightarrow is_renaming_list\ \varrho s \Longrightarrow Cs\ \cdot \cdot cl\ \varrho s\ \cdot \cdot cl\ map\ inv_renaming\ \varrho s = Cs \mathbf{by}\ (\textit{metis inv_renaming_cancel_r_list subst_cls_lists_comp_substs\ subst_cls_lists_id_subst}) lemma is_renaming_inv_renaming_cancel_cls_mset[simp]: is_renaming \varrho \Longrightarrow CC \cdot cm \ \varrho \cdot cm \ inv_renaming \ \varrho = CC \mathbf{by}\ (metis\ inv_renaming_cancel_r\ subst_cls_mset_comp_subst\ subst_cls_mset_id_subst) 7.3.15 Monotonicity lemma subst_cls_mono: set_mset \ C \subseteq set_mset \ D \Longrightarrow set_mset \ (C \cdot \sigma) \subseteq set_mset \ (D \cdot \sigma) by force lemma subst_cls_mono_mset: C \subseteq \# D \Longrightarrow C \cdot \sigma \subseteq \# D \cdot \sigma \mathbf{unfolding} \ \mathit{subst_clss_def} \ \mathbf{by} \ (\mathit{metis} \ \mathit{mset_subset_eq_exists_conv} \ \mathit{subst_cls_union}) lemma subst_subset_mono: D \subset \# C \Longrightarrow D \cdot \sigma \subset \# C \cdot \sigma unfolding subst_cls_def by (simp add: image_mset_subset_mono) 7.3.16 Size after Substitution lemma size_subst[simp]: size\ (D \cdot \sigma) = size\ D unfolding subst_cls_def by auto lemma subst_atm_list_length[simp]: length(As \cdot al \ \sigma) = length(As \cdot al \ \sigma) unfolding subst_atm_list_def by auto lemma length_subst_atm_mset_list[simp]: length (AAs \cdot aml \eta) = length AAs unfolding subst_atm_mset_list_def by auto lemma subst_atm_mset_lists_length[simp]: length (AAs <math>\cdot \cdot aml \ \sigma s) = min \ (length \ AAs) \ (length \ \sigma s) \mathbf{unfolding}\ \mathit{subst_atm_mset_lists_def}\ \mathbf{by}\ \mathit{auto} lemma subst_cls_list_length[simp]: length (Cs \cdot cl \sigma) = length Cs unfolding subst_cls_list_def by auto lemma comp_substs_length[simp]: length (\tau s \odot s \sigma s) = min (length \tau s) (length \sigma s) unfolding comp_substs_def by auto lemma subst_cls_lists_length[simp]: length (Cs \cdots cl \sigma s) = min (length Cs) (length \sigma s) unfolding subst_cls_lists_def by auto 7.3.17 Variable Disjointness lemma var_disjoint_clauses: assumes var_disjoint Cs shows \forall \sigma s. \ length \ \sigma s = length \ Cs \longrightarrow (\exists \tau. \ Cs \ \cdots cl \ \sigma s = Cs \ \cdot cl \ \tau) proof clarify \mathbf{fix} \ \sigma s :: 's \ \mathit{list} assume a: length \sigma s = length \ Cs then obtain \tau where \forall i < length \ Cs. \ \forall S. \ S \subseteq \# \ Cs! \ i \longrightarrow S \cdot \sigma s! \ i = S \cdot \tau using assms unfolding var_disjoint_def by blast then have \forall i < length \ Cs. \ (Cs ! i) \cdot \sigma s ! i = (Cs ! i) \cdot \tau ``` ## 7.3.18 Ground Expressions and Substitutions ``` lemma ex_ground_subst: \exists \sigma. is_ground_subst \sigma using make_ground_subst[of {#}] by (simp \ add: is_ground_cls_def) ``` then have $Cs \cdot cl \ \sigma s = Cs \cdot cl \ \tau$ using a by $(simp \ add: nth_equalityI)$ then show $\exists \tau. \ Cs \cdot cl \ \sigma s = Cs \cdot cl \ \tau$ by auto by auto qed ``` lemma is_ground_cls_list_Cons[simp]: is_ground_cls_list\ (C \# Cs) = (is_ground_cls\ C \land is_ground_cls_list\ Cs) unfolding is_ground_cls_list_def by auto Ground union lemma is_ground_atms_union[simp]: is_ground_atms (AA \cup BB) \longleftrightarrow is_ground_atms AA \wedge is around atms BB unfolding is_ground_atms_def by auto lemma is_ground_atm_mset_union[simp]: is_ground_atm_mset \ (AA + BB) \longleftrightarrow is_ground_atm_mset \ AA \land is_ground_atm_mset \ BB unfolding is_ground_atm_mset_def by auto lemma is_ground_cls_union[simp]: is_ground_cls (C + D) \longleftrightarrow is_ground_cls C \land is_ground_cls D unfolding is_ground_cls_def by auto lemma is_ground_clss_union[simp]: is_ground_clss\ (CC\ \cup\ DD) \longleftrightarrow is_ground_clss\ CC\ \wedge\ is_ground_clss\ DD unfolding is_ground_clss_def by auto lemma is_qround_cls_list_is_qround_cls_sum_list[simp]: is_ground_cls_list\ Cs \implies is_ground_cls\ (sum_list\ Cs) by (meson in_mset_sum_list2 is_ground_cls_def is_ground_cls_list_def) Ground mono lemma is_ground_cls_mono: C \subseteq \# D \implies is_ground_cls D \implies is_ground_cls C unfolding is_ground_cls_def by (metis set_mset_mono subsetD) lemma is_ground_clss_mono: CC \subseteq DD \Longrightarrow is_ground_clss DD \Longrightarrow is_ground_clss CC unfolding is_ground_clss_def by blast lemma grounding_of_clss_mono: CC \subseteq DD \Longrightarrow grounding_of_clss CC \subseteq grounding_of_clss DD \mathbf{using}\ \mathit{grounding_of_clss_def}\ \mathbf{by}\ \mathit{auto} \mathbf{lemma} \ sum_list_subseteq_mset_is_ground_cls_list[simp]: sum_list\ Cs \subseteq \#\ sum_list\ Ds \Longrightarrow is_ground_cls_list\ Ds \Longrightarrow is_ground_cls_list\ Cs \mathbf{by} \ (meson \ in_mset_sum_list \ is_ground_cls_def \ is_ground_cls_list_is_ground_cls_sum_list \ is_ground_cls_def \ is_ground_cls_list_is_ground_cls_sum_list \ is_ground_cls_def \ is_ground_cls_list_is_ground_cls_sum_list \ is_ground_cls_def \ is_ground_cls_ist_is_ground_cls_sum_list \ is_ground_cls_def \ is_ground_cls_ist_is_ground_cls_sum_list \
is_ground_cls_ist_is_ground_cls_is_ground_cls is_ground_cls_mono is_ground_cls_list_def) \textbf{Substituting on ground expression preserves ground} \quad \textbf{lemma} \ \textit{is_ground_comp_subst[simp]: is_ground_subst} \sigma \Longrightarrow is_ground_subst \ (\tau \odot \sigma) unfolding is_ground_subst_def is_ground_atm_def by auto lemma ground_subst_ground_atm[simp]: is_ground_subst \sigma \Longrightarrow is_ground_atm \ (A \cdot a \ \sigma) by (simp add: is_ground_subst_def) lemma ground_subst_ground_lit[simp]: is_ground_subst \sigma \Longrightarrow is_ground_lit (L \cdot l \sigma) unfolding is_ground_lit_def subst_lit_def by (cases L) auto lemma ground_subst_ground_cls[simp]: is_ground_subst \sigma \Longrightarrow is_ground_cls\ (C \cdot \sigma) unfolding is_ground_cls_def by auto lemma ground_subst_ground_clss[simp]: is_ground_subst \sigma \Longrightarrow is_ground_clss (CC \cdot cs \sigma) unfolding is_ground_clss_def subst_clss_def by auto lemma ground_subst_ground_cls_list[simp]: is_ground_subst <math>\sigma \Longrightarrow is_ground_cls_list (Cs \cdot cl \ \sigma) unfolding is_ground_cls_list_def subst_cls_list_def by auto lemma ground_subst_ground_cls_lists[simp]: \forall \sigma \in set \ \sigma s. \ is_ground_subst \ \sigma \Longrightarrow is_ground_cls_list \ (Cs \ \cdots cl \ \sigma s) unfolding is_ground_cls_list_def subst_cls_lists_def by (auto simp: set_zip) Substituting on ground expression has no effect lemma is_ground_subst_atm[simp]: is_ground_atm A \implies A \cdot a \ \sigma = A unfolding is_ground_atm_def by simp ``` ``` lemma is_ground_subst_atms[simp]: is_ground_atms AA \Longrightarrow AA \cdot as \sigma = AA unfolding is_ground_atms_def subst_atms_def image_def by auto lemma is_ground_subst_atm_mset[simp]: is_ground_atm_mset AA \Longrightarrow AA \cdot am \ \sigma = AA \mathbf{unfolding} \ \mathit{is_ground_atm_mset_def} \ \mathit{subst_atm_mset_def} \ \mathbf{by} \ \mathit{auto} lemma is_ground_subst_atm_list[simp]: is_ground_atm_list As \implies As \cdot al \ \sigma = As unfolding is_ground_atm_list_def subst_atm_list_def by (auto intro: nth_equalityI) \mathbf{lemma}\ is_ground_subst_atm_list_member[simp]: is_ground_atm_list \ As \implies i < length \ As \implies As \ ! \ i \cdot a \ \sigma = As \ ! \ i unfolding is_ground_atm_list_def by auto lemma is_ground_subst_lit[simp]: is_ground_lit\ L \Longrightarrow L \cdot l\ \sigma = L unfolding is_ground_lit_def subst_lit_def by (cases L) simp_all lemma is_ground_subst_cls[simp]: is_ground_cls\ C \Longrightarrow C \cdot \sigma = C unfolding is_ground_cls_def subst_cls_def by simp lemma is_ground_subst_clss[simp]: is_ground_clss CC \Longrightarrow CC \cdot cs \ \sigma = CC unfolding is_ground_clss_def subst_clss_def image_def by auto lemma is_ground_subst_cls_lists[simp]: assumes length P = length Cs and is_ground_cls_list Cs \mathbf{shows} \ \mathit{Cs} \ \cdot \cdot \mathit{cl} \ \mathit{P} = \mathit{Cs} using assms by (metis is_ground_cls_list_def is_ground_subst_cls min.idem nth_equalityI nth_mem subst_cls_lists_nth subst_cls_lists_length) lemma is_ground_subst_lit_iff: is_ground_lit\ L \longleftrightarrow (\forall \sigma.\ L = L \cdot l\ \sigma) using is_ground_atm_def is_ground_lit_def subst_lit_def by (cases L) auto lemma is_ground_subst_cls_iff: is_ground_cls\ C \longleftrightarrow (\forall\ \sigma.\ C = C \cdot \sigma) \mathbf{by}\ (\textit{metis ex_ground_subst_ground_subst_ground_cls is_ground_subst_cls}) Members of ground expressions are ground lemma is_ground_cls_as_atms: is_ground_cls C \longleftrightarrow (\forall A \in A) atms_of\ C.\ is_ground_atm\ A) \mathbf{by}\ (\mathit{auto}\ simp:\ atms_of_def\ is_ground_cls_def\ is_ground_lit_def) lemma is_ground_cls_imp_is_ground_lit: L \in \# C \Longrightarrow is_ground_cls C \Longrightarrow is_ground_lit L by (simp add: is_ground_cls_def) \mathbf{lemma}\ is_ground_cls_imp_is_ground_atm:\ A\in atms_of\ C\Longrightarrow is_ground_cls\ C\Longrightarrow is_ground_cls\ C by (simp add: is_ground_cls_as_atms) lemma is_ground_cls_is_ground_atms_atms_of[simp]: is_ground_cls C \Longrightarrow is_ground_atms (atms_of C) by (simp add: is_ground_cls_imp_is_ground_atm is_ground_atms_def) lemma grounding_ground: C \in grounding_of_clss\ M \implies is_ground_cls\ C unfolding grounding_of_clss_def grounding_of_cls_def by auto lemma in_subset_eq_grounding_of_clss_is_ground_cls[simp]: C \in CC \Longrightarrow CC \subseteq grounding_of_clss\ DD \Longrightarrow is_ground_cls\ C unfolding grounding_of_clss_def grounding_of_cls_def by auto \mathbf{lemma} \ is_ground_cls_empty[simp] \colon is_ground_cls \ \{\#\} unfolding is_ground_cls_def by simp lemma grounding_of_cls_ground: is_ground_cls C \Longrightarrow grounding_of_cls C = \{C\} unfolding grounding_of_cls_def by (simp add: ex_ground_subst) lemma grounding_of_cls_empty[simp]: grounding_of_cls {#} = {{#}} by (simp add: grounding_of_cls_ground) ``` #### 7.3.19 Subsumption proof - ``` lemma subsumes_empty_left[simp]: subsumes {#} C unfolding subsumes_def subst_cls_def by simp lemma strictly_subsumes_empty_left[simp]: strictly_subsumes {#} <math>C \longleftrightarrow C \neq \{\#\} unfolding strictly_subsumes_def subsumes_def subst_cls_def by simp 7.3.20 Unifiers lemma card_le_one_alt: finite X \Longrightarrow card \ X \le 1 \longleftrightarrow X = \{\} \lor (\exists x. \ X = \{x\}) by (induct rule: finite_induct) auto lemma is_unifier_subst_atm_eqI: assumes finite AA shows is_unifier \sigma AA \Longrightarrow A \in AA \Longrightarrow B \in AA \Longrightarrow A \cdot a \ \sigma = B \cdot a \ \sigma unfolding is_unifier_def subst_atms_def card_le_one_alt[OF finite_imageI[OF assms]] by (metis equals0D imageI insert_iff) lemma is_unifier_alt: assumes finite AA shows is_unifier \sigma AA \longleftrightarrow (\forall A \in AA. \forall B \in AA. A \cdot a \sigma = B \cdot a \sigma) unfolding \ is_unifier_def \ subst_atms_def \ card_le_one_alt[OF \ finite_imageI[OF \ assms(1)]] by (rule iffI, metis empty_iff insert_iff insert_image, blast) lemma is_unifiers_subst_atm_eqI: assumes finite AA is_unifiers \sigma AAA AA \in AAA \in AA \in AA \in AA shows A \cdot a \ \sigma = B \cdot a \ \sigma by (metis assms is_unifiers_def is_unifier_subst_atm_eqI) theorem is_unifiers_comp: is_unifiers \sigma (set_mset 'set (map2 add_mset As Bs) ·ass \eta) \longleftrightarrow is_unifiers (\eta \odot \sigma) (set_mset 'set (map2 add_mset As Bs)) unfolding {\it is_unifier_def subst_atmss_def } {\it by } {\it auto} 7.3.21 Most General Unifier lemma is_mgu_is_unifiers: is_mgu \ \sigma \ AAA \implies is_unifiers \ \sigma \ AAA using is_mqu_def by blast lemma is_mgu_is_most_general: is_mgu \ \sigma \ AAA \Longrightarrow is_unifiers \ \tau \ AAA \Longrightarrow \exists \ \gamma. \ \tau = \sigma \odot \gamma using is_mqu_def by blast lemma is_unifiers_is_unifier: is_unifiers \sigma AAA \Longrightarrow AA \in AAA \Longrightarrow is_unifier \sigma AA using is_unifiers_def by simp Generalization and Subsumption lemma variants_iff_subsumes: variants\ C\ D \longleftrightarrow subsumes\ C\ D\ \land\ subsumes\ D\ C proof assume variants \ C \ D then show subsumes C D \wedge subsumes D C unfolding variants_def generalizes_cls_def subsumes_def by (metis subset_mset.order.refl) next assume sub: subsumes C D \land subsumes D C then have size\ C = size\ D unfolding subsumes_def by (metis antisym size_mset_mono size_subst) then show variants \ C \ D \mathbf{using} \ sub \ \mathbf{unfolding} \ subsumes_def \ variants_def \ generalizes_cls_def by (metis leD mset_subset_size size_mset_mono size_subst subset_mset.order.not_eq_order_implies_strict) qed {\bf lemma}\ \textit{wf_strictly_generalizes_cls}\colon \textit{wfP}\ \textit{strictly_generalizes_cls} ``` ``` assume \exists C_at. \forall i. strictly_generalizes_cls (C_at (Suc i)) (C_at i) then obtain C_-at :: nat \Rightarrow 'a \ clause \ where sg_C: \bigwedge i. strictly_generalizes_cls (C_at (Suc i)) (C_at i) \mathbf{by} blast define n :: nat where n = size (C_at 0) have sz_{-}C: size\ (C_{-}at\ i) = n for i proof (induct i) case (Suc i) then show ?case \mathbf{using} \ sg_C[of \ i] \ \mathbf{unfolding} \ strictly_generalizes_cls_def \ generalizes_cls_def \ subst_cls_def by (metis size_image_mset) qed (simp \ add: n_def) obtain \sigma_{-}at :: nat \Rightarrow 's where C_{-\sigma}: \bigwedge i. image_mset (\lambda L. L \cdot l
\sigma_{-at} i) (C_{-at} (Suc i)) = C_{-at} i \textbf{using} \ \textit{sg_C}[\textit{unfolded strictly_generalizes_cls_def generalizes_cls_def subst_cls_def}] \ \textbf{by} \ \textit{metis} define Ls_at :: nat \Rightarrow 'a \ literal \ list \ \mathbf{where} Ls_at = rec_nat (SOME \ Ls. \ mset \ Ls = C_at \ \theta) (\lambda i \; Lsi. \; SOME \; Ls. \; mset \; Ls = C_at \; (Suc \; i) \wedge map \; (\lambda L. \; L \cdot l \; \sigma_at \; i) \; Ls = Lsi) have Ls_at_0: Ls_at 0 = (SOME \ Ls. \ mset \ Ls = C_at \ 0) and Ls_at_Suc: \land i. Ls_at (Suc i) = (SOME Ls. mset Ls = C_at (Suc i) \land map (\lambda L. L \cdot l \sigma_at i) Ls = Ls_at i) unfolding Ls_-at_-def by simp+ have mset_Lt_at_\theta: mset\ (Ls_at\ \theta) = C_at\ \theta unfolding Ls_at_0 by (rule someI_ex) (metis list_of_mset_exi) have mset\ (Ls_at\ (Suc\ i)) = C_at\ (Suc\ i) \land map\ (\lambda L.\ L\cdot l\ \sigma_at\ i)\ (Ls_at\ (Suc\ i)) = Ls_at\ i for i proof (induct i) case \theta then show ?case by (simp add: Ls_at_Suc, rule someI_ex, metis\ C_\sigma\ image_mset_of_subset_list\ mset_Lt_at_0) next case Suc then show ?case by (subst (1 2) Ls_at_Suc) (rule some I_ex, metis C_\sigma image_mset_of_subset_list) note mset_Ls = this[THEN\ conjunct1] and Ls_\sigma = this[THEN\ conjunct2] have len_LLs: \land i. length (Ls_at i) = n by (metis mset_Ls mset_Lt_at_0 not0_implies_Suc size_mset sz_C) have is_pos_Ls: \land i \ j. j < n \implies is_pos \ (Ls_at \ (Suc \ i) \ ! \ j) \longleftrightarrow is_pos \ (Ls_at \ i \ ! \ j) \mathbf{using}\ \mathit{Ls_\sigma}\ \mathit{len_Ls}\ \mathbf{by}\ (\mathit{metis}\ \mathit{literal.map_disc_iff}\ \mathit{nth_map}\ \mathit{subst_lit_def}) have Ls_\tau_strict_lit: \bigwedge i \ \tau. map (\lambda L. \ L \cdot l \ \tau) \ (Ls_at \ i) \neq Ls_at \ (Suc \ i) by (metis C_{-\sigma} mset_Ls Ls_\sigma mset_map sq_C generalizes_cls_def strictly_generalizes_cls_def subst_cls_def) have Ls_\tau_strict_tm: map\ ((\lambda t.\ t\cdot a\ \tau)\circ atm_of)\ (Ls_at\ i)\neq map\ atm_of\ (Ls_at\ (Suc\ i))\ \mathbf{for}\ i\ \tau proof - obtain j :: nat where j_{-}lt: j < n and ``` ``` j_{-}\tau: Ls_{-}at \ i \ ! \ j \cdot l \ \tau \neq Ls_{-}at \ (Suc \ i) \ ! \ j using Ls_\tau_strict_lit[of \ \tau \ i] \ len_Ls by (metis (no_types, lifting) length_map list_eq_iff_nth_eq nth_map) have atm_of (Ls_at i ! j) \cdot a \tau \neq atm_of (Ls_at (Suc i) ! j) using j_{-}\tau is_{-}pos_{-}Ls[OF\ j_{-}lt] \mathbf{by} \ (\mathit{metis} \ (\mathit{mono_guards}) \ \mathit{literal.expand} \ \mathit{literal.map_disc_iff} \ \mathit{literal.map_sel} \ \mathit{subst_lit_def}) then show ?thesis using j_{-}lt \ len_{-}Ls by (metis \ nth_{-}map \ o_{-}apply) qed define tm_{-}at :: nat \Rightarrow 'a where \bigwedge i. \ tm_at \ i = atm_of_atms \ (map \ atm_of \ (Ls_at \ i)) have \bigwedge i. generalizes_atm (tm_at (Suc i)) (tm_at i) \mathbf{unfolding}\ tm_at_def\ generalizes_atm_def\ atm_of_atms_subst using Ls_\sigma[THEN\ arg_cong,\ of\ map\ atm_of] by (auto simp:\ comp_def) moreover have \bigwedge i. \neg generalizes_atm (tm_at i) (tm_at (Suc i)) unfolding tm_at_def generalizes_atm_def atm_of_atms_subst by (simp\ add:\ Ls_\tau_strict_tm) ultimately have \bigwedge i. strictly_generalizes_atm\ (tm_at\ (Suc\ i))\ (tm_at\ i) \mathbf{unfolding} \ \mathit{strictly_generalizes_atm_def} \ \mathbf{by} \ \mathit{blast} then have False using wf_strictly_generalizes_atm[unfolded wfP_def wf_iff_no_infinite_down_chain] by blast then show wfP (strictly_generalizes_cls :: 'a clause \Rightarrow _ \Rightarrow _) unfolding wfP_def by (blast intro: wf_iff_no_infinite_down_chain[THEN iffD2]) qed \mathbf{lemma}\ strict_subset_subst_strictly_subsumes \colon assumes c\eta-sub: C \cdot \eta \subset \# D shows strictly_subsumes C D by (metis c\eta_sub leD mset_subset_size size_mset_mono size_subst strictly_subsumes_def subset_mset.dual_order.strict_implies_order\ substitution_ops.subsumes_def) lemma subsumes_trans: subsumes C D \Longrightarrow subsumes D E \Longrightarrow subsumes C E unfolding subsumes_def by (metis (no_types) subset_mset.order.trans subst_cls_comp_subst subst_cls_mono_mset) lemma subset_strictly_subsumes: C \subset \# D \Longrightarrow strictly_subsumes C D using strict_subset_subst_strictly_subsumes[of C id_subst] by auto lemma strictly_subsumes_neq: strictly_subsumes D'D \Longrightarrow D' \neq D \cdot \sigma unfolding strictly_subsumes_def subsumes_def by blast lemma strictly_subsumes_has_minimum: assumes CC \neq \{\} shows \exists C \in CC. \forall D \in CC. \neg strictly_subsumes D C proof (rule ccontr) assume \neg (\exists C \in CC. \forall D \in CC. \neg strictly_subsumes D C) then have \forall C \in CC. \exists D \in CC. strictly_subsumes D C by blast then obtain f where \textit{f_p} \colon \forall \; C \; \in \; CC. \; \textit{f} \; C \; \in \; CC \; \land \; \textit{strictly_subsumes} \; (\textit{f} \; C) \; \; C by metis from assms obtain C where C_{-p}: C \in CC by auto define c :: nat \Rightarrow 'a \ clause \ \mathbf{where} \bigwedge n. \ c \ n = (f \hat{\ } n) \ C have incc: c \ i \in CC \ \mathbf{for} \ i by (induction i) (auto simp: c_def f_p C_p) ``` ``` have ps: \forall i. strictly_subsumes (c (Suc i)) (c i) using incc f_p unfolding c_def by auto have \forall i. \ size \ (c \ i) \geq size \ (c \ (Suc \ i)) using ps unfolding strictly_subsumes_def subsumes_def by (metis size_mset_mono size_subst) then have lte: \forall i. (size \circ c) \ i \geq (size \circ c) \ (Suc \ i) unfolding comp_def. then have \exists l. \ \forall l' \geq l. \ size \ (c \ l') = size \ (c \ (Suc \ l')) using f_Suc_decr_eventually_const comp_def by auto then obtain l where l_{-}p: \forall l' \geq l. \ size \ (c \ l') = size \ (c \ (Suc \ l')) by metis then have \forall l' \geq l. strictly_generalizes_cls\ (c\ (Suc\ l'))\ (c\ l') using ps unfolding strictly_generalizes_cls_def generalizes_cls_def by (metis size_subst less_irreft strictly_subsumes_def mset_subset_size subset_mset_def subsumes_def strictly_subsumes_neq) then have \forall i. strictly_generalizes_cls (c (Suc i + l)) (c (i + l)) unfolding strictly_generalizes_cls_def generalizes_cls_def by auto then have \exists f. \ \forall i. \ strictly_generalizes_cls \ (f \ (Suc \ i)) \ (f \ i) by (rule exI[of \ \lambda x. \ c \ (x + l)]) then show False \mathbf{using}\ wf_strictly_generalizes_cls wf_iff_no_infinite_down_chain[of \{(x, y). strictly_generalizes_cls x y\}] unfolding wfP_def by auto qed end Most General Unifiers 7.4 {f locale}\ mgu=substitution\ subst_atm\ id_subst\ comp_subst\ renamings_apart\ atm_of_atms \mathbf{for} subst_atm :: 'a \Rightarrow 's \Rightarrow 'a and id_subst :: 's and comp_subst :: 's \Rightarrow 's \Rightarrow 's and atm_of_atms :: 'a \ list \Rightarrow 'a \ \mathbf{and} renamings_apart :: 'a \ literal \ multiset \ list \Rightarrow 's \ list + mgu :: 'a \ set \ set \Rightarrow 's \ option assumes mgu_sound: finite AAA \Longrightarrow (\forall AA \in AAA. finite AA) \Longrightarrow mgu\ AAA = Some\ \sigma \Longrightarrow is_mgu\ \sigma\ AAA and mqu_complete: finite AAA \Longrightarrow (\forall AA \in AAA. \text{ finite } AA) \Longrightarrow \text{is_unifiers } \sigma AAA \Longrightarrow \exists \tau. \text{ mgu } AAA = \text{Some } \tau begin lemmas is_unifiers_mgu = mgu_sound[unfolded is_mgu_def, THEN conjunct1] lemmas is_mgu_most_general = mgu_sound[unfolded is_mgu_def, THEN conjunct2] lemma mgu_unifier: assumes aslen: length As = n and aaslen: length \ AAs = n \ {\bf and} mgu: Some \ \sigma = mgu \ (set_mset \ `set \ (map2 \ add_mset \ As \ AAs)) and i_lt: i < n and a_{-}in: A \in \# AAs ! i shows A \cdot a \ \sigma = As \ ! \ i \cdot a \ \sigma proof - from mgu have is_mgu \sigma (set_mset ' set (map2 \ add_mset As AAs)) using mgu_sound by auto then have is_unifiers \sigma (set_mset 'set (map2 add_mset As AAs)) using is_mgu_is_unifiers by auto then have is_unifier \sigma (set_mset (add_mset (As ! i) (AAs ! i))) using i_lt aslen aaslen unfolding is_unifiers_def is_unifier_def by simp (metis length_zip min.idem nth_mem nth_zip prod.case set_mset_add_mset_insert) then show ?thesis ``` ``` using aslen aaslen a_in is_unifier_subst_atm_eqI by (metis finite_set_mset insertCI set_mset_add_mset_insert) qed end ``` # 8 Refutational Inference Systems ``` theory Inference_System imports Herbrand_Interpretation begin ``` This theory gathers results from Section 2.4 ("Refutational Theorem Proving"), 3 ("Standard Resolution"), and 4.2 ("Counterexample-Reducing Inference Systems") of Bachmair and Ganzinger's chapter. #### 8.1 Preliminaries ``` Inferences have one distinguished main premise, any number of side premises, and a conclusion. ``` ``` datatype 'a inference = Infer (side_prems_of: 'a clause multiset) (main_prem_of: 'a clause) (concl_of: 'a clause) abbreviation prems_of :: 'a inference \Rightarrow 'a clause multiset where prems_of \ \gamma \equiv side_prems_of \ \gamma + \{\#main_prem_of \ \gamma\#\} abbreviation concls_of :: 'a inference set \Rightarrow 'a clause set where concls_of \ \Gamma \equiv concl_of \ `\Gamma definition infer_from :: 'a \ clause \ set \Rightarrow 'a \ inference \Rightarrow bool \ \mathbf{where} infer_from \ CC \ \gamma \longleftrightarrow set_mset \ (prems_of \ \gamma) \subseteq CC locale inference_system = fixes \Gamma :: 'a inference set begin definition inferences_from :: 'a clause set \Rightarrow 'a inference set where inferences_from \ CC = \{\gamma. \ \gamma \in \Gamma \land infer_from \ CC \ \gamma\} definition inferences_between :: 'a clause set \Rightarrow 'a clause \Rightarrow 'a inference set where inferences_between\ CC\ C = \{\gamma.\ \gamma \in \Gamma \land infer_from\ (CC \cup \{C\})\ \gamma \land C \in \#\ prems_of\ \gamma\} \textbf{lemma} \ \textit{inferences_from_mono} : \textit{CC} \subseteq \textit{DD} \Longrightarrow \textit{inferences_from} \ \textit{CC} \subseteq \textit{inferences_from} \ \textit{DD} unfolding inferences_from_def infer_from_def by fast definition saturated :: 'a clause set \Rightarrow bool where saturated \ N \longleftrightarrow
concls_of \ (inferences_from \ N) \subseteq N lemma saturatedD: assumes satur: saturated N and inf: Infer\ CC\ D\ E \in \Gamma and cc_subs_n: set_mset CC \subseteq N and d_-in_-n: D \in N shows E \in N proof - have Infer\ CC\ D\ E \in inferences_from\ N {\bf unfolding} \ inferences_from_def \ infer_from_def \ {\bf using} \ inf \ cc_subs_n \ d_in_n \ {\bf by} \ simp then have E \in concls_of (inferences_from N) unfolding image_iff by (metis inference.sel(3)) then show E \in N ``` ``` \mathbf{using} \ \mathit{satur} \ \mathbf{unfolding} \ \mathit{saturated_def} \ \mathbf{by} \ \mathit{blast} qed end Satisfiability preservation is a weaker requirement than soundness. locale sat_preserving_inference_system = inference_system + assumes \Gamma-sat-preserving: satisfiable N \Longrightarrow satisfiable (N \cup concls_of (inferences_from N)) locale sound_inference_system = inference_system + assumes \Gamma-sound: Infer CC \ D \ E \in \Gamma \Longrightarrow I \models m \ CC \Longrightarrow I \models D \Longrightarrow I \models E begin lemma \Gamma-sat-preserving: assumes sat_n: satisfiable N shows satisfiable (N \cup concls_of (inferences_from N)) proof - obtain I where i: I \models s N using sat_n by blast then have \bigwedge CC \ D \ E. Infer CC \ D \ E \in \Gamma \Longrightarrow set_mset \ CC \subset N \Longrightarrow D \in N \Longrightarrow I \models E using \Gamma-sound unfolding true_clss_def true_cls_mset_def by (simp add: subset_eq) then have \Lambda \gamma. \gamma \in \Gamma \Longrightarrow infer_from \ N \ \gamma \Longrightarrow I \models concl_of \ \gamma unfolding infer_from_def by (case_tac \ \gamma) \ clarsimp then have I \models s \ concls_of \ (inferences_from \ N) unfolding inferences_from_def image_def true_clss_def infer_from_def by blast then have I \models s N \cup concls_of (inferences_from N) using i by simp then show ?thesis bv blast qed sublocale sat_preserving_inference_system by unfold_locales (erule \Gamma_sat_preserving) end locale reductive_inference_system = inference_system \Gamma for \Gamma :: ('a :: wellorder) inference set + assumes \Gamma-reductive: \gamma \in \Gamma \Longrightarrow concl_of \ \gamma < main_prem_of \ \gamma ``` ### 8.2 Refutational Completeness Refutational completeness can be established once and for all for counterexample-reducing inference systems. The material formalized here draws from both the general framework of Section 4.2 and the concrete instances of Section 3. ``` locale\ counterex_reducing_inference_system = inference_system \Gamma for \Gamma :: ('a :: wellorder) inference set + fixes I_{-}of :: 'a \ clause \ set \Rightarrow 'a \ interp assumes \Gamma_counterex_reducing: \{\#\}\notin N\Longrightarrow D\in N\Longrightarrow \neg\ \text{I-of $N\models D\Longrightarrow (\bigwedge C.\ C\in N\Longrightarrow \neg\ I$-of $N\models C\Longrightarrow D\le C)$} \exists \ CC \ E. \ set_mset \ CC \subseteq N \land I_of \ N \models m \ CC \land Infer \ CC \ D \ E \in \Gamma \land \neg \ I_of \ N \models E \land E < D begin lemma ex_min_counterex: fixes N :: ('a :: wellorder) clause set assumes \neg I \models s N shows \exists C \in \mathbb{N}. \neg I \models C \land (\forall D \in \mathbb{N}. D < C \longrightarrow I \models D) proof - obtain C where C \in N and \neg I \models C using assms unfolding true_clss_def by auto then have c_{-in}: C \in \{C \in \mathbb{N}. \neg I \models C\} by blast show ?thesis using wf_eq_minimal[THEN iffD1, rule_format, OF wf_less_multiset c_in] by blast ``` ``` theorem saturated_model: assumes satur: saturated N and ec_ni_n\colon \{\#\} \not\in N shows I-of N \models s N proof - have ec_ni_n: \{\#\} \notin N using ec_ni_n by auto assume \neg I_{-}of N \models s N then obtain D where d_-in_-n: D \in N and d_cex: \neg I_of N \models D and d-min: \bigwedge C. \ C \in N \Longrightarrow C < D \Longrightarrow I-of N \models C by (meson ex_min_counterex) then obtain CCE where cc_subs_n: set_mset CC \subseteq N and inf_e: Infer\ CC\ D\ E \in \Gamma and e_cex: \neg I_of N \models E and e_{-}lt_{-}d: E < D using \Gamma-counterex-reducing [OF ec_ni_n] not_less by metis from cc_subs_n inf_e have E \in N using d_in_n satur by (blast dest: saturatedD) then have False using e_cex e_lt_d d_min not_less by blast then show ?thesis \mathbf{by} \ satx \mathbf{qed} Cf. Corollary 3.10: corollary saturated_complete: saturated N \Longrightarrow \neg satisfiable N \Longrightarrow \{\#\} \in N using saturated_model by blast ``` ### 8.3 Compactness end Bachmair and Ganzinger claim that compactness follows from refutational completeness but leave the proof to the readers' imagination. Our proof relies on an inductive definition of saturation in terms of a base set of clauses. ``` context inference_system begin inductive-set saturate :: 'a clause set \Rightarrow 'a clause set for CC :: 'a clause set where base: C \in CC \Rightarrow C \in saturate CC | step: Infer CC' D E \in \Gamma \Rightarrow (\bigwedge C'. C' \in \# CC' \Rightarrow C' \in saturate CC) \Rightarrow D \in saturate CC \Rightarrow E \in saturate CC lemma saturate_mono: C \in saturate CC \Rightarrow CC \subseteq DD \Rightarrow C \in saturate DD by (induct rule: saturate.induct) (auto intro: saturate.intros) lemma saturated_saturate[simp, intro]: saturated (saturate N) unfolding saturated_def inferences_from_def infer_from_def image_def by clarify (rename_tac x, case_tac x, auto elim!: saturate.step) lemma saturate_finite: C \in saturate CC \Rightarrow \exists DD. DD \subseteq CC \land finite DD \land C \in saturate DD proof (induct rule: saturate.induct) ``` ``` case (base C) then have \{C\} \subseteq CC and finite \{C\} and C \in saturate \{C\} by (auto intro: saturate.intros) then show ?case by blast next case (step \ CC' \ D \ E) obtain DD_of where \bigwedge C. \ C \in \# \ CC' \Longrightarrow DD_of \ C \subseteq CC \land finite \ (DD_of \ C) \land C \in saturate \ (DD_of \ C) using step(3) by metis then have (\bigcup C \in set_mset \ CC'. \ DD_of \ C) \subseteq CC finite \ (\bigcup \ C \in set_mset \ CC'. \ DD_of \ C) \ \land \ set_mset \ CC' \subseteq saturate \ (\bigcup \ C \in set_mset \ CC'. \ DD_of \ C) by (auto intro: saturate_mono) then obtain DD where d_sub: DD \subseteq CC and d_fin: finite DD and in_sat_d: set_mset CC' \subseteq saturate DD by blast obtain EE where e_sub: EE \subseteq CC and e_fin: finite EE and in_sat_ee: D \in saturate EE using step(5) by blast have DD \cup EE \subseteq CC using d_sub\ e_sub\ step(1) by fast moreover have finite (DD \cup EE) using d_{-}fin \ e_{-}fin \ \mathbf{by} \ fast moreover have E \in saturate (DD \cup EE) using in_sat_d in_sat_ee step.hyps(1) by (blast intro: inference_system.saturate.step saturate_mono) ultimately show ?case \mathbf{by} blast qed end {f context} \ sound_inference_system begin theorem saturate_sound: C \in saturate \ CC \Longrightarrow I \models s \ CC \Longrightarrow I \models C by (induct rule: saturate.induct) (auto simp: true_cls_mset_def true_clss_def \Gamma_sound) end {\bf context} \ sat_preserving_inference_system begin This result surely holds, but we have yet to prove it. The challenge is: Every time a new clause is introduced, we also get a new interpretation (by the definition of sat_preserving_inference_system). But the interpretation we want here is then the one that exists "at the limit". Maybe we can use compactness to prove it. theorem saturate_sat_preserving: satisfiable <math>CC \Longrightarrow satisfiable (saturate CC) oops end locale sound_counterex_reducing_inference_system = counterex_reducing_inference_system \ + \ sound_inference_system begin Compactness of clausal logic is stated as Theorem 3.12 for the case of unordered ground resolution. The proof below is a generalization to any sound counterexample-reducing inference system. The actual theorem will become available once the locale has been instantiated with a concrete inference system. ``` theorem clausal_logic_compact: fixes N :: ('a :: wellorder) clause set shows \neg satisfiable $N \longleftrightarrow (\exists DD \subseteq N. finite DD \land \neg satisfiable DD)$ proof ``` assume \neg satisfiable N then have \{\#\} \in saturate \ N using saturated_complete saturated_saturate saturate.base unfolding true_clss_def by meson then have \exists DD \subseteq N. finite DD \land \{\#\} \in saturate \ DD using saturate_finite by fastforce then show \exists DD \subseteq N. finite DD \land \neg satisfiable DD using saturate_sound by auto next assume \exists DD \subseteq N. finite DD \land \neg satisfiable DD then show \neg satisfiable N by (blast\ intro:\ true_clss_mono) qed end ``` # 9 Candidate Models for Ground Resolution ``` theory Ground_Resolution_Model imports Herbrand_Interpretation begin ``` The proofs of refutational completeness for the two resolution inference systems presented in Section 3 ("Standard Resolution") of Bachmair and Ganzinger's chapter share mostly the same candidate model construction. The literal selection capability needed for the second system is ignored by the first one, by taking λ_{-} . {} as instantiation for the S parameter. ``` locale selection = fixes S :: 'a \ clause \Rightarrow 'a \ clause assumes S_selects_subseteq: S \ C \subseteq \# \ C \ and S_selects_neg_lits: L \in \# \ S \ C \implies is_neg \ L locale ground_resolution_with_selection = selection \ S for S :: ('a :: wellorder) \ clause \Rightarrow 'a \ clause begin ``` The following commands corresponds to Definition 3.14, which generalizes Definition 3.1. production C is denoted ε_C in the chapter; interp C is denoted I_C ; Interp C is denoted I^C ; and Interp_N is denoted I_N . The mutually recursive definition from the chapter is massaged to simplify the termination argument. The production_unfold lemma below gives the intended characterization. ``` context fixes N :: 'a \ clause \ set begin function production :: 'a clause \Rightarrow 'a interp where production C = \{A.\ C\in N\land C\neq \{\#\}\land Max_mset\ C=Pos\ A\land
\lnot(\bigcup D\in \{D.\ D< C\}.\ production\ D)\models C\land S\ C=\{\#\}\} by auto termination by (rule termination[OF wf, simplified]) declare production.simps [simp del] definition interp :: 'a \ clause \Rightarrow 'a \ interp \ \mathbf{where} interp C = (\bigcup D \in \{D, D < C\}, production D) lemma production_unfold: production C = \{A, C \in \mathbb{N} \land C \neq \{\#\} \land Max_mset \ C = Pos \ A \land \neg \ interp \ C \models C \land S \ C = \{\#\}\} unfolding interp_def by (rule production.simps) abbreviation productive :: 'a clause \Rightarrow bool where productive C \equiv production \ C \neq \{\} ``` ``` abbreviation produces :: 'a clause \Rightarrow 'a \Rightarrow bool where produces\ C\ A \equiv production\ C = \{A\} lemma produces C: A \Longrightarrow C \in N \land C \neq \{\#\} \land Pos A = Max.mset C \land \neg interp C \models C \land S C = \{\#\} unfolding production_unfold by auto definition Interp :: 'a clause \Rightarrow 'a interp where Interp C = interp \ C \cup production \ C lemma interp_subseteq_Interp[simp]: interp\ C \subseteq Interp\ C by (simp add: Interp_def) lemma Interp_as_UNION: Interp C = (\bigcup D \in \{D. D \leq C\}. production D) unfolding Interp_def interp_def less_eq_multiset_def by fast lemma productive_not_empty: productive C \Longrightarrow C \neq \{\#\} unfolding production_unfold by simp \mathbf{lemma} \ productive_imp_produces_Max_literal: \ productive \ C \implies produces \ C \ (atm_of \ (Max_mset \ C)) unfolding production_unfold by (auto simp del: atm_of_Max_lit) lemma productive_imp_produces_Max_atom: productive C \Longrightarrow produces\ C\ (Max\ (atms_of\ C)) unfolding atms_of_def Max_atm_of_set_mset_commute[OF productive_not_empty] by (rule productive_imp_produces_Max_literal) lemma produces_imp_Max_literal: produces\ C\ A \Longrightarrow A = atm_of\ (Max_mset\ C) using productive_imp_produces_Max_literal by auto lemma produces_imp_Max_atom: produces C A \Longrightarrow A = Max (atms_of C) using producesD produces_imp_Max_literal by auto lemma produces_imp_Pos_in_lits: produces\ C\ A \Longrightarrow Pos\ A \in \#\ C by (simp add: producesD) lemma productive_in_N: productive C \Longrightarrow C \in N unfolding production_unfold by simp lemma produces_imp_atms_leq: produces C A \Longrightarrow B \in atms_of C \Longrightarrow B \leq A using Max.coboundedI produces_imp_Max_atom by blast lemma produces_imp_neg_notin_lits: produces C A \Longrightarrow \neg Neg A \in \# C by (simp add: pos_Max_imp_neg_notin producesD) lemma less_eq_imp_interp_subseteq_interp: C \leq D \Longrightarrow interp C \subseteq interp D unfolding interp_def by auto (metis order.strict_trans2) lemma less_eq_imp_interp_subseteq_Interp: <math>C \leq D \Longrightarrow interp \ C \subseteq Interp \ D unfolding Interp_def using less_eq_imp_interp_subseteq_interp by blast lemma less_imp_production_subseteq_interp: C < D \Longrightarrow production \ C \subseteq interp \ D unfolding interp_def by fast lemma less_eq_imp_production_subseteq_Interp: C \leq D \Longrightarrow production C \subseteq Interp D unfolding Interp_def using less_imp_production_subseteq_interp by (metis le_imp_less_or_eq le_supI1 sup_ge2) lemma less_imp_Interp_subseteq_interp: C < D \Longrightarrow Interp \ C \subseteq interp \ D by (simp add: Interp_def less_eq_imp_interp_subseteq_interp less_imp_production_subseteq_interp) lemma less_eq_imp_Interp_subseteq_Interp: C \leq D \Longrightarrow Interp \ C \subseteq Interp \ D ``` using Interp_def less_eq_imp_interp_subseteq_Interp less_eq_imp_production_subseteq_Interp by auto ``` using less_eq_imp_interp_subseteq_Interp not_less by blast lemma not_interp_to_interp_imp_less: A \notin interp \ C \Longrightarrow A \in interp \ D \Longrightarrow C < D using less_eq_imp_interp_subseteq_interp not_less by blast lemma not_Interp_to_Interp_imp_less: A \notin Interp\ C \Longrightarrow A \in Interp\ D \Longrightarrow C < D \mathbf{using}\ less_eq_imp_Interp_subseteq_Interp\ not_less\ \mathbf{by}\ blast lemma not_interp_to_Interp_imp_le: A \notin interp\ C \Longrightarrow A \in Interp\ D \Longrightarrow C \le D using less_imp_Interp_subseteq_interp not_less by blast definition INTERP :: 'a interp where INTERP = (\bigcup C \in N. production C) lemma interp_subseteq_INTERP: interp\ C \subseteq INTERP unfolding interp_def INTERP_def by (auto simp: production_unfold) lemma production_subseteq_INTERP: production C \subseteq INTERP {\bf unfolding} \ {\it INTERP_def} \ {\bf using} \ {\it production_unfold} \ {\bf by} \ {\it blast} lemma Interp_subseteq_INTERP: Interp\ C \subseteq INTERP by (simp add: Interp_def interp_subseteq_INTERP production_subseteq_INTERP) lemma produces_imp_in_interp: assumes a_in_c: Neg A \in \# C and d: produces D A shows A \in interp \ C by (metis Interp_def Max_pos_neg_less_multiset UnCI a_in_c d not_interp_to_Interp_imp_le not_less producesD singletonI) \mathbf{lemma} \ \textit{neg_notin_Interp_not_produce} \colon \textit{Neg} \ A \in \# \ C \Longrightarrow A \notin \textit{Interp} \ D \Longrightarrow C \leq D \Longrightarrow \neg \ \textit{produces} \ D^{\prime\prime} \ A \mathbf{using}\ \mathit{less_eq_imp_interp_subseteq_Interp}\ \mathit{produces_imp_in_interp}\ \mathbf{by}\ \mathit{blast} lemma in_production_imp_produces: A \in production \ C \Longrightarrow produces \ C \ A using productive_imp_produces_Max_atom by fastforce lemma not_produces_imp_notin_production: \neg produces <math>C A \Longrightarrow A \notin production C using in_production_imp_produces by blast lemma not_produces_imp_notin_interp: (\bigwedge D. \neg produces D A) \Longrightarrow A \notin interp C unfolding interp_def by (fast intro!: in_production_imp_produces) The results below corresponds to Lemma 3.4. lemma Interp_imp_general: assumes c_le_d: C \le D and d_-lt_-d': D < D' and c_at_d: Interp D \models C and subs: interp D' \subseteq (\bigcup C \in \mathit{CC}.\ \mathit{production}\ C) shows (\bigcup C \in CC. production C) \models C proof (cases \exists A. Pos A \in \# C \land A \in Interp D) case True then obtain A where a_in_c: Pos A \in \# C and a_at_d: A \in Interp D by blast from a_-at_-d have A \in interp D' using d_lt_d' less_imp_Interp_subseteq_interp by blast then show ?thesis using subs a_in_c by (blast dest: contra_subsetD) next case False then obtain A where a_in_c: Neg A \in \# C and A \notin Interp D using c_at_d unfolding true_cls_def by blast then have \bigwedge D''. \neg produces D'' A ``` lemma not_Interp_to_interp_imp_less: $A \notin Interp\ C \Longrightarrow A \in interp\ D \Longrightarrow C < D$ ``` using c_le_d neg_notin_Interp_not_produce by simp then show ?thesis using a_in_c subs not_produces_imp_notin_production by auto qed lemma Interp_imp_interp: C \leq D \Longrightarrow D < D' \Longrightarrow Interp D \models C \Longrightarrow interp D' \models C using interp_def Interp_imp_general by simp lemma Interp_imp_Interp: C \leq D \Longrightarrow D \leq D' \Longrightarrow Interp \ D \models C \Longrightarrow Interp \ D' \models C using Interp_as_UNION interp_subseteq_Interp Interp_imp_general by (metis antisym_conv2) lemma Interp_imp_INTERP: C \le D \Longrightarrow Interp\ D \models C \Longrightarrow INTERP \models C using INTERP_def interp_subseteq_INTERP Interp_imp_general[OF _ le_multiset_right_total] by simp lemma interp_imp_general: assumes c_le_d: C \le D and d_{-}le_{-}d': D \leq D' and c_-at_-d: interp D \models C and subs: interp D' \subseteq (\bigcup C \in CC. production C) shows (\bigcup C \in CC. production C) \models C proof (cases \exists A. Pos A \in \# C \land A \in interp D) {f case}\ {\it True} then obtain A where a_in_c: Pos A \in \# C and a_at_d: A \in interp D by blast from a_-at_-d have A \in interp\ D' using d_le_d' less_eq_imp_interp_subseteq_interp by blast then show ?thesis using subs a_in_c by (blast dest: contra_subsetD) next case False then obtain A where a_in_c: Neg A \in \# C and A \notin interp D using c_-at_-d unfolding true_cls_def by blast then have \bigwedge D''. \neg produces D'' A using c_le_d by (auto dest: produces_imp_in_interp less_eq_imp_interp_subseteq_interp) then show ?thesis using a_in_c subs not_produces_imp_notin_production by auto qed lemma interp_imp_interp: C \leq D \Longrightarrow D \leq D' \Longrightarrow interp \ D \models C \Longrightarrow interp \ D' \models C using interp_def interp_imp_general by simp lemma interp_imp_Interp: C \leq D \Longrightarrow D \leq D' \Longrightarrow interp \ D \models C \Longrightarrow Interp \ D' \models C using Interp_as_UNION interp_subseteq_Interp[of D'] interp_imp_general by simp lemma interp_imp_INTERP: C \le D \Longrightarrow interp\ D \models C \Longrightarrow INTERP \models C using INTERP_def interp_subseteq_INTERP interp_imp_qeneral linear by metis lemma productive_imp_not_interp: productive C \Longrightarrow \neg interp C \models C unfolding production_unfold by simp This corresponds to Lemma 3.3: lemma productive_imp_Interp: assumes productive C shows Interp C \models C proof - obtain A where a: produces C A \mathbf{using} \ assms \ productive_imp_produces_Max_atom \ \mathbf{by} \ blast then have a_in_c: Pos A \in \# C by (rule produces_imp_Pos_in_lits) moreover have A \in Interp \ C using a less_eq_imp_production_subseteq_Interp by blast ultimately show ?thesis ``` ``` by fast qed lemma productive_imp_INTERP: productive C \Longrightarrow INTERP \models C by (fast intro: productive_imp_Interp_Interp_imp_INTERP) This corresponds to Lemma 3.5: lemma max_pos_imp_Interp: assumes C \in N and C \neq \{\#\} and Max_mset\ C = Pos\ A and S\ C = \{\#\} shows Interp C \models C proof (cases productive C) {\bf case}\ {\it True} then show ?thesis by (fast intro: productive_imp_Interp) \mathbf{next} case False then have interp\ C \models C using assms unfolding production_unfold by simp then show ?thesis unfolding Interp_def using False by auto qed The following results correspond to Lemma 3.6: lemma max_atm_imp_Interp: assumes c_{-in_{-}n}: C \in N and pos_in: Pos A \in \# C
\text{ and } max_atm: A = Max (atms_of C) and s_c = \{\#\} shows Interp C \models C proof (cases Neg A \in \# C) case True then show ?thesis using pos_in pos_neg_in_imp_true by metis next {\bf case}\ \mathit{False} moreover have ne: C \neq \{\#\} using pos_in by auto ultimately have Max_mset\ C = Pos\ A using max_atm using Max_in_lits Max_lit_eq_pos_or_neg_Max_atm by metis then show ?thesis using ne c_in_n s_c_e by (blast intro: max_pos_imp_Interp) qed lemma not_Interp_imp_general: assumes d'_{-}le_{-}d: D' \leq D and in_n_or_max_gt: D' \in N \land SD' = \{\#\} \lor Max (atms_of D') < Max (atms_of D) and d'_at_d: \neg Interp D \models D' and d_lt_c: D < C and subs: interp C \subseteq (\bigcup C \in CC. production C) shows \neg (\bigcup C \in CC. production C) \models D' proof - { assume cc_blw_d': (\bigcup C \in CC. production C) \models D' have Interp D \subseteq (\bigcup C \in CC. production C) using less_imp_Interp_subseteq_interp\ d_lt_c\ subs\ by\ blast then obtain A where a_in_d': Pos A \in \# D' and a_blw_cc: A \in (\bigcup C \in CC. production C) using cc_blw_d' d'_at_d false_to_true_imp_ex_pos by metis from a_in_d' have a_at_d: A \notin Interp D using d'_{-}at_{-}d by fast from a_blw_cc obtain C' where prod_c': production C' = \{A\} by (fast intro!: in_production_imp_produces) ``` ``` have max_c': Max (atms_of C') = A using prod_c' productive_imp_produces_Max_atom by force have leq_{-}dc': D \leq C' using a_at_d d'_at_d prod_c' by (auto simp: Interp_def intro: not_interp_to_Interp_imp_le) then have D' \leq C' using d'_le_d order_trans by blast then have max_d': Max (atms_of D') = A using a_in_d' max_c' by (fast intro: pos_lit_in_atms_of le_multiset_Max_in_imp_Max) assume D' \in N \wedge SD' = \{\#\} then have Interp D' \models D' using a_in_d' max_d' by (blast intro: max_atm_imp_Interp) then have Interp\ D \models D using d'_{-le_d} by (auto intro: Interp_imp_Interp simp: less_eq_multiset_def) then have False using d'_{-}at_{-}d by satx } moreover assume Max (atms_of D') < Max (atms_of D) then have False using max_d' leq_dc' max_c' d'_le_d \mathbf{by}\ (\textit{metis le_imp_less_or_eq le_multiset_empty_right less_eq_Max_atms_of less_imp_not_less}) } ultimately have False using in_n_or_max_gt by satx then show ?thesis by satx qed lemma not_Interp_imp_not_interp: D' \leq D \Longrightarrow D' \in N \land S \ D' = \{\#\} \lor \mathit{Max} \ (\mathit{atms_of} \ D') < \mathit{Max} \ (\mathit{atms_of} \ D) \Longrightarrow \neg \ \mathit{Interp} \ D \models D' \textit{D} < \textit{C} \Longrightarrow \neg \textit{ interp } \textit{C} \models \textit{D}' using interp_def not_Interp_imp_general by simp lemma not_Interp_imp_not_Interp: D' \leq D \Longrightarrow D' \in N \land S \ D' = \{\#\} \lor \textit{Max} \ (\textit{atms_of} \ D') < \textit{Max} \ (\textit{atms_of} \ D) \Longrightarrow \neg \ \textit{Interp} \ D \models D' \mathit{D} < \mathit{C} \Longrightarrow \neg \mathit{Interp} \ \mathit{C} \models \mathit{D'} \mathbf{using}\ \mathit{Interp_as_UNION}\ \mathit{interp_subseteq_Interp}\ \mathit{not_Interp_imp_general}\ \mathbf{by}\ \mathit{metis} lemma not_Interp_imp_not_INTERP: D' \leq D \Longrightarrow D' \in N \land S \ D' = \{\#\} \lor \mathit{Max} \ (\mathit{atms_of} \ D') < \mathit{Max} \ (\mathit{atms_of} \ D) \Longrightarrow \neg \ \mathit{Interp} \ D \models D' \neg INTERP \models D' \mathbf{using}\ INTERP_def\ interp_subseteq_INTERP\ not_Interp_imp_general[OF____le_multiset_right_total] Lemma 3.7 is a problem child. It is stated below but not proved; instead, a counterexample is displayed. This is not much of a problem, because it is not invoked in the rest of the chapter. assumes D \in N and \bigwedge D'. D' < D \Longrightarrow Interp D' \models C shows interp D \models C oops lemma assumes d: D = \{\#\} and n: N = \{D, C\} and c: C = \{\#Pos A\#\} shows D \in N and \bigwedge D'. D' < D \Longrightarrow Interp D' \models C and \neg interp D \models C using n unfolding d c interp_def by auto \mathbf{end} ``` end ## 10 Ground Unordered Resolution Calculus ``` theory Unordered_Ground_Resolution imports Inference_System Ground_Resolution_Model begin ``` Unordered ground resolution is one of the two inference systems studied in Section 3 ("Standard Resolution") of Bachmair and Ganzinger's chapter. #### 10.1 Inference Rule Unordered ground resolution consists of a single rule, called *unord_resolve* below, which is sound and counterexample-reducing. ``` locale ground_resolution_without_selection begin sublocale ground_resolution_with_selection where S = \lambda_-. {#} by unfold_locales auto inductive unord_resolve :: 'a clause \Rightarrow 'a clause \Rightarrow 'a clause \Rightarrow bool where unord_resolve (C + replicate_mset (Suc \ n) (Pos \ A)) (add_mset (Neg \ A) D) (C + D) lemma unord_resolve_sound: unord_resolve C \ D \ E \implies I \models C \implies I \models D \implies I \models E using unord_resolve.cases by fastforce ``` The following result corresponds to Theorem 3.8, except that the conclusion is strengthened slightly to make it fit better with the counterexample-reducing inference system framework. ${\bf theorem}\ unord_resolve_counterex_reducing:$ ``` assumes ec_ni_n: \{\#\} \notin N \text{ and } c_in_n: C \in N and c_cex: \neg INTERP N \models C and c_min: \bigwedge D. \ D \in N \Longrightarrow \neg \ INTERP \ N \models D \Longrightarrow C \leq D obtains D E where D \in N INTERP\ N \models D productive N D unord_resolve\ D\ C\ E \neg INTERP N \models E E < C proof - have c_ne: C \neq \{\#\} using c_i n_n e_{c_n} n_i by blast have \exists A. A \in atms_of \ C \land A = Max \ (atms_of \ C) using c_ne by (blast intro: Max_in_lits atm_of_Max_lit atm_of_lit_in_atms_of) then have \exists A. Neg A \in \# C using c_ne c_in_n c_cex c_min Max_in_lits Max_lit_eq_pos_or_neg_Max_atm max_pos_imp_Interp Interp_imp_INTERP by metis then obtain A where neg_a_in_c: Neg\ A \in \#\ C then obtain C' where c: C = add_mset (Neg A) C' using insert_DiffM by metis have A \in INTERP N \mathbf{using}\ \mathit{neg_a_in_c}\ \mathit{c_cex}[\mathit{unfolded}\ \mathit{true_cls_def}]\ \mathbf{by}\ \mathit{fast} then obtain D where d\theta: produces N D A \mathbf{unfolding}\ \mathit{INTERP_def}\ \mathbf{by}\ (\mathit{metis}\ \mathit{UN_E}\ \mathit{not_produces_imp_notin_production}) have prod_{-}d: productive N D unfolding d\theta by simp ``` ``` then have d_{-}in_{-}n: D \in N using productive_in_N by fast have d-true: INTERP N \models D using prod_d productive_imp_INTERP by blast obtain D' AAA where d: D = D' + AAA and d': D' = \{ \#L \in \# D. L \neq Pos A \# \} and aa: AAA = \{ \#L \in \# D. \ L = Pos \ A\# \} \mathbf{using} \ \mathit{multiset_partition} \ \mathit{union_commute} \ \mathbf{by} \ \mathit{metis} have d'_subs: set_mset\ D' \subseteq set_mset\ D unfolding d' by auto have \neg Neg A \in \# D using d0 by (blast dest: produces_imp_neg_notin_lits) then have neg_a_ni_d': \neg Neg A \in \# D' using d'_subs by auto have a_-ni_-d': A \notin atms_of D' using d' neg_a_ni_d' by (auto dest: atm_imp_pos_or_neg_lit) have \exists n. AAA = replicate_mset (Suc n) (Pos A) using as d0 not0_implies_Suc produces_imp_Pos_in_lits[of N] by (simp add: filter_eq_replicate_mset del: replicate_mset_Suc) then have res_e: unord_resolve D \ C \ (D' + C') unfolding c d by (fastforce intro: unord_resolve.intros) have d'_{-}le_{-}d: D' \leq D unfolding d by simp have a_max_d: A = Max (atms_of D) using d0 productive_imp_produces_Max_atom by auto then have D' \neq \{\#\} \Longrightarrow Max \ (atms_of \ D') \leq A using d'_le_d by (blast intro: less_eq_Max_atms_of) moreover have D' \neq \{\#\} \Longrightarrow Max \ (atms_of \ D') \neq A using a_ni_d' Max_in by (blast intro: atms_empty_iff_empty[THEN iffD1]) ultimately have max_d'_lt_a: D' \neq \{\#\} \Longrightarrow Max \ (atms_of \ D') < A using dual_order.strict_iff_order by blast have \neg interp ND \models D using d0 productive_imp_not_interp by blast then have \neg Interp ND \models D' \mathbf{unfolding}\ d0\ d'\ Interp_def\ true_cls_def\ \mathbf{by}\ (auto\ simp:\ true_lit_def\ simp\ del:\ not_gr_zero) then have \neg INTERP N \models D' using a_max_d d'_le_d max_d'_lt_a not_Interp_imp_not_INTERP by blast moreover have \neg INTERP N \models C' using c_cex unfolding c by simp ultimately have e_cex: \neg INTERP N \models D' + C' by simp have \bigwedge B. B \in atms_of D' \Longrightarrow B < A using d0 d'_subs contra_subsetD lits_subseteq_imp_atms_subseteq produces_imp_atms_leq by metis then have \bigwedge L. L \in \# D' \Longrightarrow L < Neg A using neg_a_ni_d' antisym_conv1 atms_less_eq_imp_lit_less_eq_neg by metis then have lt_cex: D' + C' < C by (force intro: add.commute simp: c \ less_multiset_{DM} intro: exI[of \ _{\#Neg} A\#]) from d_in_n d_true prod_d res_e e_cex lt_cex show ?thesis .. ged ``` ### 10.2 Inference System Theorem 3.9 and Corollary 3.10 are subsumed in the counterexample-reducing inference system framework, which is instantiated below. ``` definition unord \Gamma :: 'a inference set where unord \Gamma = \{Infer \{\#C\#\} \ D \ E \ | \ C \ D \ E. \ unord _resolve \ C \ D \ E\} ``` ``` sublocale unord_\Gamma_sound_counterex_reducing?: sound_counterex_reducing_inference_system\ unord_\Gamma\ INTERP proof unfold_locales fix D E and N :: ('b :: wellorder) clause set assume \{\#\} \notin N and D \in N and \neg INTERP \ N \models D and \bigwedge C. \ C \in N \Longrightarrow \neg INTERP \ N \models C \Longrightarrow D \le C then obtain CE where c_{-in_{-}n}: C \in N and c_true: INTERP \ N \models C \ \mathbf{and} \mathit{res_e} \colon \mathit{unord_resolve} \ C \ D \ E \ \mathbf{and} e_cex: \neg INTERP N \models E and e_{-}lt_{-}d: E < D using unord_resolve_counterex_reducing by (metis (no_types)) from c_-in_-n have set_-mset \{\#C\#\} \subseteq N by auto moreover have Infer \{\#C\#\}\ D\ E\in unord_\Gamma unfolding unord_\Gamma_def using res_e by blast ultimately show \exists \ \mathit{CC} \ \mathit{E}. \ \mathit{set_mset} \ \mathit{CC} \subseteq \mathit{N} \ \land \
\mathit{INTERP} \ \mathit{N} \models \mathit{m} \ \mathit{CC} \ \land \ \mathit{Infer} \ \mathit{CC} \ \mathit{D} \ \mathit{E} \in \mathit{unord_\Gamma} \ \land \ \neg \ \mathit{INTERP} \ \mathit{N} \models \mathit{E} \ \land \ \mathit{E} < \mathit{D} using c_i n_n c_t rue e_c ex e_l t_d by blast next fix CC D E and I :: 'b interp assume Infer CC \ D \ E \in \mathit{unord} . \Gamma and I \models m \ CC and I \models D then show I \models E by (clarsimp simp: unord_\Gamma_def true_cls_mset_def) (erule unord_resolve_sound, auto) ``` $\mathbf{lemmas}\ clausal_logic_compact = unord_\Gamma_sound_counterex_reducing.clausal_logic_compact$ end Theorem 3.12, compactness of clausal logic, has finally been derived for a concrete inference system: ${f lemmas}\ clausal_logic_compact = ground_resolution_without_selection.clausal_logic_compact$ \mathbf{end} ## 11 Ground Ordered Resolution Calculus with Selection ``` theory Ordered_Ground_Resolution imports Inference_System Ground_Resolution_Model begin ``` Ordered ground resolution with selection is the second inference system studied in Section 3 ("Standard Resolution") of Bachmair and Ganzinger's chapter. ### 11.1 Inference Rule eligible As DA Ordered ground resolution consists of a single rule, called *ord_resolve* below. Like *unord_resolve*, the rule is sound and counterexample-reducing. In addition, it is reductive. ``` context ground_resolution_with_selection begin The following inductive definition corresponds to Figure 2. definition maximal_wrt :: 'a \Rightarrow 'a literal multiset \Rightarrow bool where maximal_wrt A \ DA \equiv A = Max \ (atms_of \ DA) definition strictly_maximal_wrt :: 'a \Rightarrow 'a literal multiset \Rightarrow bool where strictly_maximal_wrt A \ CA \longleftrightarrow (\forall B \in atms_of \ CA. \ B < A) inductive eligible :: 'a list \Rightarrow 'a clause \Rightarrow bool where eligible: (S DA = negs \ (mset \ As)) \lor \ (S \ DA = \{\#\} \land length \ As = 1 \land maximal_wrt \ (As \ ! \ 0) \ DA) \Longrightarrow ``` ``` \mathbf{lemma} \ (S \ DA = negs \ (mset \ As) \ \lor \ S \ DA = \{\#\} \land \ length \ As = 1 \land maximal_wrt \ (As \ ! \ \theta) \ DA) \longleftrightarrow eligible As DA \textbf{using} \ eligible. intros\ ground_resolution_with_selection. eligible. cases\ ground_resolution_with_selection_axioms\ \textbf{by}\ blast inductive ord_resolve :: 'a \ clause \ list \Rightarrow 'a \ clause \Rightarrow 'a \ multiset \ list \Rightarrow 'a \ list \Rightarrow 'a \ clause \Rightarrow bool where ord_resolve: length \ CAs = n \Longrightarrow length \ Cs = n \Longrightarrow length \ AAs = n \Longrightarrow length \ As = n \Longrightarrow n \neq 0 \Longrightarrow (\forall i < n. \ CAs \ ! \ i = Cs \ ! \ i + poss \ (AAs \ ! \ i)) \Longrightarrow (\forall i < n. \ AAs ! i \neq \{\#\}) \Longrightarrow (\forall i < n. \ \forall A \in \# \ AAs \ ! \ i. \ A = As \ ! \ i) \Longrightarrow eligible \ As \ (D + negs \ (mset \ As)) \Longrightarrow (\forall i < n. \ strictly_maximal_wrt \ (As ! i) \ (Cs ! i)) \Longrightarrow (\forall i < n. \ S \ (CAs ! i) = \{\#\}) \Longrightarrow ord_resolve\ CAs\ (D\ +\ negs\ (mset\ As))\ AAs\ As\ (\bigcup\#\ mset\ Cs\ +\ D) lemma ord_resolve_sound: assumes res_e: ord_resolve CAs DA AAs As E and cc_true: I \models m mset CAs and d_true: I \models DA shows I \models E using res_e proof (cases rule: ord_resolve.cases) case (ord_resolve n Cs D) note DA = this(1) and e = this(2) and cas_len = this(3) and cs_len = this(4) and as_len = this(6) and cas = this(8) and aas_ne = this(9) and a_eq = this(10) show ?thesis proof (cases \forall A \in set \ As. \ A \in I) {f case}\ True then have \neg I \models negs (mset As) unfolding true_cls_def by fastforce then have I \models D using d_true DA by fast then show ?thesis unfolding e by blast next {f case}\ {\it False} then obtain i where a_i i n_i a a : i < n and a_false: As ! i \notin I using cas_len as_len by (metis in_set_conv_nth) have \neg I \models poss (AAs ! i) using a_false a_eq aas_ne a_in_aa unfolding true_cls_def by auto moreover have I \models CAs ! i \mathbf{using}\ a_in_aa\ cc_true\ \mathbf{unfolding}\ true_cls_mset_def\ \mathbf{using}\ cas_len\ \mathbf{by}\ auto ultimately have I \models Cs ! i using cas a_in_aa by auto then show ?thesis using a_in_aa cs_len unfolding e true_cls_def by (meson in_Union_mset_iff nth_mem_mset union_iff) qed qed ``` **lemma** filter_neg_atm_of_S: $\{\#Neg \ (atm_of \ L). \ L \in \#S \ C\#\} = S \ C$ ``` by (simp add: S_selects_neg_lits) This corresponds to Lemma 3.13: lemma ord_resolve_reductive: assumes ord_resolve CAs DA AAs As E shows E < DA using assms proof (cases rule: ord_resolve.cases) case (ord_resolve n Cs D) note DA = this(1) and e = this(2) and cas_len = this(3) and cs_len = this(4) and ai_len = this(6) and nz = this(7) and cas = this(8) and maxim = this(12) show ?thesis proof (cases \bigcup \# mset Cs = \{\#\}) case True have negs (mset\ As) \neq \{\#\} using nz ai_len by auto then show ?thesis unfolding True e DA by auto case False define max_A_of_Cs where max_A_of_Cs = Max (atms_of (\bigcup \# mset Cs)) have mc_in: max_A_of_Cs \in atms_of (\bigcup \# mset \ Cs) and mc_max: \land B. \ B \in atms_of \ (\bigcup \# mset \ Cs) \Longrightarrow B \leq max_A_of_Cs using max_A_of_Cs_def False by auto then have \exists C_max \in set Cs. max_A_of_Cs \in atms_of (C_max) by (metis atm_imp_pos_or_neg_lit in_Union_mset_iff neg_lit_in_atms_of pos_lit_in_atms_of set_mset_mset) then obtain max_i where cm_in_cas: max_i < length CAs and mc_in_cm: max_A_of_Cs \in atms_of (Cs ! max_i) using in_set_conv_nth[of _ CAs] by (metis cas_len cs_len in_set_conv_nth) define CA_max where CA_max = CAs ! max_i define A_{-}max where A_{-}max = As \mid max_{-}i define C_{-}max where C_{-}max = Cs ! max_{-}i have mc_lt_ma: max_A_of_Cs < A_max using maxim cm_in_cas mc_in_cm cas_len unfolding strictly_maximal_wrt_def A_max_def by auto then have ucas_ne_neg_aa: (\bigcup \# mset \ Cs) \neq negs \ (mset \ As) using mc_in\ mc_max\ mc_lt_ma\ cm_in_cas\ cas_len\ ai_len\ unfolding\ A_max_def by (metis atms_of_negs nth_mem set_mset_mset leD) moreover have ucas_lt_ma: \forall B \in atms_of (\bigcup \# mset Cs). B < A_max using mc_max mc_lt_ma by fastforce moreover have \neg Neg A_max \in \# (\bigcup \# mset Cs) using ucas_lt_ma\ neg_lit_in_atms_of[of\ A_max\ \bigcup \#\ mset\ Cs] by auto moreover have Neg\ A_max \in \#\ negs\ (mset\ As) using cm_in_cas cas_len ai_len A_max_def by auto ultimately have (\bigcup \# mset \ Cs) < negs \ (mset \ As) unfolding less_multiset_{HO} by (metis (no_types) atms_less_eq_imp_lit_less_eq_neg count_greater_zero_iff count_inI le_imp_less_or_eq less_imp_not_less not_le) then show ?thesis unfolding e DA by auto qed qed ``` This corresponds to Theorem 3.15: ``` theorem ord_resolve_counterex_reducing: assumes ec_ni_n: \{\#\} \notin N \text{ and } d_in_n: DA \in N and d-cex: \neg INTERP N \models DA and d-min: \land C. \ C \in N \Longrightarrow \neg INTERP \ N \models C \Longrightarrow DA \leq C obtains CAs AAs As E where set\ CAs\subseteq N INTERP\ N\ \models m\ mset\ CAs \bigwedge CA. CA \in set\ CAs \Longrightarrow productive\ N\ CA ord_resolve~CAs~DA~AAs~As~E \neg \ \mathit{INTERP} \ N \models E E < DA proof - have d_ne: DA \neq \{\#\} using d_-in_-n ec_-ni_-n by blast have \exists As. As \neq [] \land negs (mset As) \leq \# DA \land eligible As DA proof (cases\ S\ DA = \{\#\}) assume s_d_e: SDA = \{\#\} define A where A = Max (atms_of DA) define As where As = [A] define D where D = DA - \{\#Neg\ A\ \#\} have na_in_d: Neg\ A \in \#\ DA unfolding A_def using s_d_e d_ne d_in_n d_cex d_min by (metis Max_in_lits Max_lit_eq_pos_or_neg_Max_atm max_pos_imp_Interp_Interp_imp_INTERP) then have das: DA = D + negs (mset As) unfolding D_def As_def by auto moreover from na_in_d have negs (mset\ As) \subseteq \#\ DA by (simp \ add: As_def) moreover have As ! 0 = Max (atms_of (D + negs (mset As))) using A_def As_def das by auto then have eligible As DA using eligible s_d_e As_def das maximal_wrt_def by auto ultimately show ?thesis using As_def by blast assume s_d_e: SDA \neq \{\#\} define As :: 'a list where As = list_of_mset \{ \#atm_of L. L \in \# S DA\# \} define D :: 'a \ clause \ \mathbf{where} D = DA - negs \{ \#atm_of L. L \in \#SDA\# \} have As \neq [] unfolding As_def using s_d_e by (metis image_mset_is_empty_iff list_of_mset_empty) moreover have da_sub_as: negs {\#atm_of\ L. L \in \#S\ DA\#} \subseteq \#DA using S_selects_subseteq by (auto simp: filter_neg_atm_of_S) then have negs (mset As) \subseteq \# DA unfolding As_def by auto moreover have das: DA = D + negs (mset As) using da_sub_as unfolding D_def As_def by auto moreover have S DA = negs \{ \#atm_of L. L \in \# S DA\# \} by (auto simp: filter_neg_atm_of_S) then have S DA = negs (mset As) unfolding As_def by auto then have eliqible As DA unfolding das using eligible by auto ultimately show ?thesis by blast qed then obtain As :: 'a list where as_ne: As \neq [] and ``` ``` negs_as_le_d: negs (mset As) \leq \# DA and s_-d: eligible As DA by blast define D :: 'a \ clause \ \mathbf{where} D = DA - negs (mset As) have set \ As \subseteq INTERP \ N using d_cex\ negs_as_le_d by force then have prod_ex: \forall A \in set \ As. \ \exists \ D. \ produces \ N \ D \ A \mathbf{unfolding}\ \mathit{INTERP_def} by (metis (no_types, lifting) INTERP_def subsetCE UN_E not_produces_imp_notin_production) then have \bigwedge A. \exists D. produces NDA \longrightarrow A \in set As using ec_ni_n by (auto intro: productive_in_N) then have \bigwedge A. \exists D. produces NDA \longleftrightarrow A \in set As using prod_ex by blast then obtain CA-of where c-of0: \bigwedge A. produces N (CA-of A) A \longleftrightarrow A \in set\ As by metis then have prod_c0: \forall A \in set \ As. \ produces \ N \ (CA_of \ A) \ A \mathbf{by} blast define C-of where \bigwedge A. \ C_of \ A = \{ \#L \in \# \ CA_of \ A. \ L \neq Pos \ A\# \} define Aj_{-}of where \bigwedge A. \ Aj_of \ A = image_mset \ atm_of \ \{\#L \in \#
\ CA_of \ A. \ L = Pos \ A\#\} have pospos: \land LL \ A. \ \{\#Pos \ (atm_of \ x). \ x \in \# \ \{\#L \in \# \ LL. \ L = Pos \ A\#\}\#\} = \{\#L \in \# \ LL. \ L = Pos \ A\#\} \} by (metis (mono_tags, lifting) image_filter_cong literal.sel(1) multiset.map_ident) have ca_of_c_of_aj_of: \land A. CA_of A = C_of A + poss (Aj_of A) using pospos[of _ CA_of _] by (simp add: C_of_def Aj_of_def add.commute multiset_partition) define n :: nat where n = length As define Cs :: 'a clause list where Cs = map \ C_{-}of \ As define AAs :: 'a multiset list where AAs = map \ Aj_of \ As define CAs :: 'a literal multiset list where CAs = map \ CA_of \ As have m_nz: \bigwedge A. A \in set As \Longrightarrow Aj_of A \neq \{\#\} \mathbf{unfolding} \ Aj_of_def \ \mathbf{using} \ prod_c0 \ produces_imp_Pos_in_lits by (metis (full_types) filter_mset_empty_conv image_mset_is_empty_iff) have prod_c: productive\ N\ CA if ca_in: CA \in set\ CAs for CA proof - obtain i where i_p: i < length CAs CAs ! i = CA using ca_in by (meson in_set_conv_nth) have production N (CA_of (As! i)) = {As! i} using i_p CAs_def prod_c0 by auto then show productive N CA using i_p CAs_def by auto then have cs_subs_n: set\ CAs \subseteq N using productive_in_N by auto have cs_true: INTERP\ N \models m\ mset\ CAs unfolding true_cls_mset_def using prod_c productive_imp_INTERP by auto have \bigwedge A. A \in set \ As \Longrightarrow \neg \ Neg \ A \in \# \ CA_of \ A using prod_c0 produces_imp_neg_notin_lits by auto then have a_ni_c': \bigwedge A. A \in set \ As \implies A \notin atms_of \ (C_of \ A) unfolding C_of_def using atm_imp_pos_or_neg_lit by force have c'_le_c: \bigwedge A. C_of\ A \leq CA_of\ A ``` ``` unfolding C_of_def by (auto intro: subset_eq_imp_le_multiset) have a_max_c: \bigwedge A. \ A \in set \ As \Longrightarrow A = Max \ (atms_of \ (CA_of \ A)) using prod_c0 productive_imp_produces_Max_atom[of N] by auto then have \bigwedge A.\ A \in set\ As \Longrightarrow C_of\ A \neq \{\#\} \Longrightarrow Max\ (atms_of\ (C_of\ A)) \leq A using c'_le_c by (metis\ less_eq_Max_atms_of) moreover have \bigwedge A.\ A \in set\ As \Longrightarrow C_{-}of\ A \neq \{\#\} \Longrightarrow Max\ (atms_{-}of\ (C_{-}of\ A)) \neq A using a_ni_c' Max_in by (metis (no_types) atms_empty_iff_empty finite_atms_of) ultimately have max_c'_lt_a: \bigwedge A. \ A \in set \ As \implies C_of \ A \neq \{\#\} \implies Max \ (atms_of \ (C_of \ A)) < A by (metis order.strict_iff_order) \mathbf{have}\ \mathit{le_cs_as:}\ \mathit{length}\ \mathit{CAs} = \mathit{length}\ \mathit{As} unfolding CAs_def by simp have length CAs = n by (simp\ add: le_cs_as\ n_def) moreover have length Cs = n by (simp\ add: Cs_def\ n_def) moreover have length \ AAs = n by (simp\ add:\ AAs_def\ n_def) moreover have length As = n using n_{-}def by auto moreover have n \neq 0 by (simp add: as_ne n_def) moreover have \forall i. i < length \ AAs \longrightarrow (\forall A \in \# \ AAs \ ! \ i. \ A = As \ ! \ i) using AAs_def Aj_of_def by auto have \bigwedge x \ B. production N (CA_of \ x) = \{x\} \Longrightarrow B \in \# CA_of \ x \Longrightarrow B \neq Pos \ x \Longrightarrow atm_of \ B < x by (metis atm_of_lit_in_atms_of insert_not_empty le_imp_less_or_eq Pos_atm_of_iff Neg_atm_of_iff\ pos_neg_in_imp_true\ produces_imp_Pos_in_lits\ produces_imp_atms_leq productive_imp_not_interp) then have \bigwedge B A. A \in set As \implies B \in \# CA_of A \implies B \neq Pos A \implies atm_of B < A using prod_c\theta by auto have \forall i. i < length AAs \longrightarrow AAs ! i \neq \{\#\} unfolding AAs_def using m_nz by simp have \forall i < n. CAs! i = Cs! i + poss (AAs! i) unfolding CAs_def\ Cs_def\ AAs_def\ using\ ca_of_c_of_aj_of\ by\ (simp\ add:\ n_def) moreover have \forall i < n. \ AAs \ ! \ i \neq \{\#\} using \forall i < length \ AAs. \ AAs ! \ i \neq \{\#\} \land \ calculation(3) \ by \ blast moreover have \forall i < n. \ \forall A \in \# \ AAs ! i. \ A = As ! i by (simp add: \forall i < length \ AAs. \ \forall A \in \# \ AAs \ ! \ i. \ A = As \ ! \ i \rangle \ calculation(3)) {\bf moreover~have}~\it eligible~\it As~\it DA using s_{-}d by auto then have eligible As (D + negs (mset As)) using D_def negs_as_le_d by auto moreover have \bigwedge i. i < length \ AAs \implies strictly_maximal_wrt \ (As ! i) \ ((Cs ! i)) by (simp add: C-of-def Cs-def (\Lambda x B). [production N (CA-of x) = \{x\}; B \in \# CA-of x; B \neq Pos x] \Longrightarrow atm-of B < x atms_of_def calculation(3) n_def prod_c0 strictly_maximal_wrt_def) have \forall i < n. strictly_maximal_wrt (As ! i) (Cs ! i) by (simp\ add: \langle \bigwedge i.\ i < length\ AAs \Longrightarrow strictly_maximal_wrt\ (As!\ i)\ (Cs!\ i)\rangle\ calculation(3)) moreover have \forall CA \in set \ CAs. \ S \ CA = \{\#\} using prod_c producesD productive_imp_produces_Max_literal by blast have \forall CA \in set CAs. S CA = \{\#\} using \forall CA \in set CAs. S CA = \{\#\} \land by simp then have \forall i < n. \ S \ (CAs ! i) = \{\#\} using \langle length \ CAs = n \rangle \ nth_mem \ by \ blast ultimately have res_e: ord_resolve CAs (D + negs (mset As)) AAs As (\exists \# mset Cs + D) using ord_resolve by auto have \bigwedge A. A \in set \ As \Longrightarrow \neg interp \ N \ (CA_of \ A) \models CA_of \ A by (simp add: prod_c0 producesD) then have \bigwedge A. A \in set \ As \Longrightarrow \neg \ Interp \ N \ (CA_of \ A) \models C_of \ A ``` ``` unfolding prod_c0 C_of_def Interp_def true_cls_def using true_lit_def not_gr_zero prod_c0 by auto then have c'_at_n: \bigwedge A. A \in set \ As \Longrightarrow \neg INTERP \ N \models C_of \ A using a_max_c c'_le_c max_c'_lt_a not_Interp_imp_not_INTERP unfolding true_cls_def by (metis true_cls_def true_cls_empty) have \neg INTERP N \models \bigcup \# mset Cs unfolding Cs_def true_cls_def using c'_at_n by fastforce moreover have \neg INTERP N \models D \mathbf{using}\ d_cex\ \mathbf{by}\ (metis\ D_def\ add_diff_cancel_right'\ negs_as_le_d\ subset_mset.add_diff_assoc2 true_cls_def union_iff) ultimately have e_cex: \neg INTERP \ N \models \bigcup \# mset \ Cs + D by simp have set CAs \subseteq N by (simp add: cs_subs_n) moreover have INTERP\ N \models m\ mset\ CAs by (simp add: cs_true) moreover have \bigwedge CA. CA \in set\ CAs \Longrightarrow productive\ N\ CA by (simp\ add:\ prod_c) moreover have ord_resolve CAs DA AAs As (\bigcup \# mset \ Cs + D) using D_def negs_as_le_d res_e by auto moreover have \neg INTERP N \models \bigcup \# mset \ Cs + D using e_cex by simp moreover have (\bigcup \# mset \ Cs + D) < DA using calculation(4) ord_resolve_reductive by auto ultimately show thesis qed \mathbf{lemma} \ ord_resolve_atms_of_concl_subset: assumes ord_resolve CAs DA AAs As E shows atms_of E \subseteq (\bigcup C \in set CAs. atms_of C) \cup atms_of DA using assms proof (cases rule: ord_resolve.cases) case (ord_resolve n Cs D) note DA = this(1) and e = this(2) and cas_len = this(3) and cs_len = this(4) and cas = this(8) have \forall i < n. \ set_mset \ (Cs ! i) \subseteq set_mset \ (CAs ! i) using cas by auto then have \forall i < n. Cs! i \subseteq \# \bigcup \# mset CAs \mathbf{by}\ (\textit{metis cas cas_len mset_subset_eq_add_left nth_mem_mset sum_mset.remove\ union_assoc}) then have \forall C \in set \ Cs. \ C \subseteq \# \bigcup \# \ mset \ CAs using cs_len in_set_conv_nth[of _ Cs] by auto then have set_mset (\bigcup \# mset \ Cs) \subseteq set_mset (\bigcup \# mset \ CAs) by auto (meson in_mset_sum_list2 mset_subset_eqD) by (meson lits_subseteq_imp_atms_subseteq mset_subset_eqD subsetI) moreover have atms_of (\bigcup \# mset \ CAs) = (\bigcup CA \in set \ CAs. atms_of \ CA) by (intro\ set_eqI\ iffI,\ simp_all, met is \ in_mset_sum_list2 \ atm_imp_pos_or_neg_lit \ neg_lit_in_atms_of \ pos_lit_in_atms_of \ , metis in_mset_sum_list atm_imp_pos_or_neg_lit neg_lit_in_atms_of pos_lit_in_atms_of) ultimately have atms_of (\bigcup \# mset \ Cs) \subseteq (\bigcup CA \in set \ CAs. \ atms_of \ CA) by auto moreover have atms_of D \subseteq atms_of DA using DA by auto ultimately show ?thesis unfolding e by auto qed ``` ## 11.2 Inference System Theorem 3.16 is subsumed in the counterexample-reducing inference system framework, which is instantiated below. Unlike its unordered cousin, ordered resolution is additionally a reductive inference system. ``` definition ord \Gamma :: 'a inference set where ord. \Gamma = \{Infer \ (mset \ CAs) \ DA \ E \mid CAs \ DA \ AAs \ As \ E. \ ord_resolve \ CAs \ DA \ AAs \ As \ E\} sublocale ord_\Gamma_sound_counterex_reducing?: sound_counterex_reducinq_inference_system\ qround_resolution_with_selection.ord_\Gamma\ S ground_resolution_with_selection.INTERP\ S\ + reductive_inference_system\ ground_resolution_with_selection.ord_\Gamma\ S proof unfold_locales fix DA :: 'a \ clause \ and \ N :: 'a \ clause \ set assume \{\#\} \notin N and DA \in N and \neg INTERP N \models DA and \bigwedge C. C \in N \Longrightarrow \neg INTERP N \models C \Longrightarrow DA \le A then obtain CAs AAs As E where dd_sset_n: set\ CAs \subseteq N and dd_true: INTERP N \models m mset \ CAs \ and res_e: ord_resolve CAs DA AAs As E and e_cex: \neg INTERP N \models E and e_{-}lt_{-}c: E < DA using ord_resolve_counterex_reducing[of N DA thesis] by auto have Infer (mset CAs) DA E \in ord_\Gamma using res_e unfolding ord_\Gamma_def by (metis (mono_tags, lifting) mem_Collect_eq) then show \exists \ CC \ E. \ set_mset \ CC \subseteq N \land INTERP \ N \models m \ CC \land Infer \ CC \ DA \ E \in ord_\Gamma \land \neg \mathit{INTERP} \ N \models E \land E < \mathit{DA} using dd_sset_n dd_true e_cex e_lt_c by (metis set_mset_mset) qed (auto simp: ord_Γ_def intro: ord_resolve_sound ord_resolve_reductive) lemmas\ clausal_logic_compact = ord\Gamma_sound_counterex_reducing.clausal_logic_compact end A second proof of Theorem 3.12, compactness of clausal logic: {\bf lemmas}\ clausal_logic_compact = ground_resolution_with_selection.clausal_logic_compact ``` ## 12 Theorem Proving Processes end ``` theory Proving_Process imports
Unordered_Ground_Resolution Lazy_List_Chain begin ``` This material corresponds to Section 4.1 ("Theorem Proving Processes") of Bachmair and Ganzinger's chapter. The locale assumptions below capture conditions R1 to R3 of Definition 4.1. Rf denotes $\mathcal{R}_{\mathcal{F}}$; Ri denotes $\mathcal{R}_{\mathcal{F}}$ ``` locale redundancy_criterion = inference_system + fixes Rf :: 'a \ clause \ set \Rightarrow 'a \ clause \ set \ and Ri :: 'a \ clause \ set \Rightarrow 'a \ inference \ set assumes Ri_subset_\Gamma : Ri \ N \subseteq \Gamma \ and Rf_mono: \ N \subseteq N' \Longrightarrow Rf \ N \subseteq Rf \ N' \ and Ri_mono: \ N \subseteq N' \Longrightarrow Ri \ N \subseteq Ri \ N' \ and Rf_indep: \ N' \subseteq Rf \ N \Longrightarrow Rf \ N \subseteq Rf \ (N-N') \ and Ri_indep: \ N' \subseteq Rf \ N \Longrightarrow Ri \ N \subseteq Ri \ (N-N') \ and Rf_sat: \ satisfiable \ (N-Rf \ N) \Longrightarrow \ satisfiable \ N begin ``` ``` definition saturated_upto :: 'a clause set <math>\Rightarrow bool where saturated_upto\ N \longleftrightarrow inferences_from\ (N-Rf\ N) \subseteq Ri\ N inductive derive :: 'a clause set \Rightarrow 'a clause set \Rightarrow bool (infix \triangleright 50) where deduction_deletion: N - M \subseteq concls_of (inferences_from M) \Longrightarrow M - N \subseteq Rf N \Longrightarrow M \triangleright N lemma derive_subset: M \triangleright N \Longrightarrow N \subseteq M \cup concls_of (inferences_from M) by (meson Diff_subset_conv derive.cases) end locale sat_preserving_redundancy_criterion = sat_preserving_inference_system \ \Gamma :: ('a :: wellorder) \ inference \ set + redundancy_criterion begin lemma deriv_sat_preserving: assumes deriv: chain (\triangleright) Ns and sat_n0: satisfiable (lhd Ns) shows satisfiable (Sup_llist Ns) proof - have ns\theta: lnth Ns \theta = lhd Ns using deriv by (metis chain_not_lnull lhd_conv_lnth) have len_ns: llength Ns > 0 using deriv by (case_tac Ns) simp+ { \mathbf{fix} DD assume fin: finite DD and sset_lun: DD \subseteq Sup_llist Ns then obtain k where dd_sset: DD \subseteq Sup_upto_llist Ns k using finite_Sup_llist_imp_Sup_upto_llist by blast have satisfiable (Sup_upto_llist Ns k) proof (induct k) case \theta then show ?case using len_ns ns0 sat_n0 unfolding Sup_upto_llist_def true_clss_def by auto next case (Suc \ k) show ?case proof (cases enat (Suc k) \geq llength Ns) then have Sup_upto_llist\ Ns\ k = Sup_upto_llist\ Ns\ (Suc\ k) \mathbf{unfolding} \ \mathit{Sup_upto_llist_def} \ \mathbf{using} \ \mathit{le_Suc_eq} \ \mathit{not_less} \ \mathbf{by} \ \mathit{blast} then show ?thesis using Suc by simp next {f case} False then have lnth Ns k > lnth Ns (Suc k) using deriv by (auto simp: chain_lnth_rel) then have lnth \ Ns \ (Suc \ k) \subseteq lnth \ Ns \ k \cup concls_of \ (inferences_from \ (lnth \ Ns \ k)) by (rule derive_subset) \mathbf{moreover} \ \mathbf{have} \ \mathit{lnth} \ \mathit{Ns} \ \mathit{k} \subseteq \mathit{Sup_upto_llist} \ \mathit{Ns} \ \mathit{k} unfolding Sup_upto_llist_def using False Suc_ile_eq linear by blast ultimately have lnth Ns (Suc k) \subseteq Sup_upto_llist \ Ns \ k \cup concls_of \ (inferences_from \ (Sup_upto_llist \ Ns \ k)) by clarsimp (metis UnCI UnE image_Un inferences_from_mono le_iff_sup) moreover have Sup_upto_llist\ Ns\ (Suc\ k) = Sup_upto_llist\ Ns\ k \cup lnth\ Ns\ (Suc\ k) unfolding Sup_upto_llist_def using False by (force elim: le_SucE) moreover have satisfiable (Sup_upto_llist Ns k \cup concls_of (inferences_from (Sup_upto_llist Ns k))) using Suc \Gamma-sat-preserving unfolding sat-preserving-inference-system-def by simp ultimately show ?thesis by (metis le_iff_sup true_clss_union) qed ``` ``` qed then have satisfiable DD \mathbf{using}\ dd_sset\ \mathbf{unfolding}\ Sup_upto_llist_def\ \mathbf{by}\ (\mathit{blast\ intro:\ true_clss_mono}) } then show ?thesis using ground_resolution_without_selection.clausal_logic_compact[THEN iffD1] by metis This corresponds to Lemma 4.2: assumes deriv: chain (\triangleright) Ns shows Rf_Sup_subset_Rf_Liminf: Rf (Sup_llist Ns) \subseteq Rf (Liminf_llist Ns) and Ri_Sup_subset_Ri_Liminf: Ri (Sup_llist Ns) \subseteq Ri (Liminf_llist Ns) and sat_limit_iff: satisfiable (Liminf_llist Ns) \longleftrightarrow satisfiable (lhd Ns) proof - { \mathbf{fix} \ C \ i \ j assume c_{-in}: C \in lnth \ Ns \ i \ and c_n: C \notin Rf (Sup_llist Ns) and j: j \geq i and j': enat j < llength Ns \mathbf{from}\ c_ni\ \mathbf{have}\ c_ni': \bigwedge i.\ enat\ i < \mathit{llength}\ \mathit{Ns} \Longrightarrow \mathit{C} \notin \mathit{Rf}\ (\mathit{lnth}\ \mathit{Ns}\ i) using Rf_mono lnth_subset_Sup_llist Sup_llist_def by (blast dest: contra_subsetD) have C \in lnth \ Ns \ j using j j' proof (induct j) case \theta then show ?case using c_{-}in by blast next case (Suc \ k) then show ?case proof (cases \ i < Suc \ k) {\bf case}\ \, True have i \le k using True by linarith moreover have enat k < llength Ns using Suc.prems(2) Suc_ile_eq by (blast intro: dual_order.strict_implies_order) ultimately have c_-in_-k: C \in lnth \ Ns \ k using Suc.hyps by blast have rel: lnth \ Ns \ k > lnth \ Ns \ (Suc \ k) using Suc.prems deriv by (auto simp: chain_lnth_rel) then show ?thesis using c_i n_k c_n i' Suc.prems(2) by cases auto next {\bf case}\ \mathit{False} then show ?thesis using Suc\ c_{-}in\ \mathbf{by}\ auto qed qed then have lu_ll: Sup_llist Ns - Rf (Sup_llist Ns) \subseteq Liminf_llist Ns unfolding Sup_llist_def Liminf_llist_def by blast have rf: Rf (Sup_llist Ns - Rf (Sup_llist Ns)) \subseteq Rf (Liminf_llist Ns) using lu_ll Rf_mono by simp have ri: Ri (Sup_llist Ns - Rf (Sup_llist Ns)) \subseteq Ri (Liminf_llist Ns) using lu_ll Ri_mono by simp show Rf (Sup_llist\ Ns) \subseteq Rf (Liminf_llist\ Ns) using rf Rf_indep by blast show Ri (Sup_llist Ns) \subseteq Ri (Liminf_llist Ns) using ri Ri_indep by blast ``` ``` show satisfiable (Liminf_llist Ns) \longleftrightarrow satisfiable (lhd Ns) proof assume satisfiable (lhd Ns) then have satisfiable (Sup_llist Ns) using deriv_sat_preserving by simp then show satisfiable (Liminf_llist Ns) using true_clss_mono[OF Liminf_llist_subset_Sup_llist] by blast next assume satisfiable (Liminf_llist Ns) then have satisfiable (Sup_llist\ Ns - Rf\ (Sup_llist\ Ns)) using true_clss_mono[OF\ lu_ll] by blast then have satisfiable (Sup_llist Ns) using Rf-sat by blast then show satisfiable (lhd Ns) using deriv true_clss_mono lhd_subset_Sup_llist chain_not_lnull by metis qed qed lemma assumes chain (\triangleright) Ns shows Rf_limit_Sup: Rf \ (Liminf_llist \ Ns) = Rf \ (Sup_llist \ Ns) \ {\bf and} Ri_limit_Sup: Ri\ (Liminf_llist\ Ns) = Ri\ (Sup_llist\ Ns) using assms by (auto simp: Rf_Sup_subset_Rf_Liminf Rf_mono Ri_Sup_subset_Ri_Liminf Ri_mono Liminf_llist_subset_Sup_llist\ subset_antisym) end The assumption below corresponds to condition R4 of Definition 4.1. locale\ effective_redundancy_criterion = redundancy_criterion + assumes Ri_effective: \gamma \in \Gamma \Longrightarrow concl_of \ \gamma \in N \cup Rf \ N \Longrightarrow \gamma \in Ri \ N begin definition fair_clss_seq :: 'a \ clause \ set \ llist \Rightarrow bool \ \mathbf{where} fair_clss_seq\ Ns \longleftrightarrow (let\ N' = Liminf_llist\ Ns - Rf\ (Liminf_llist\ Ns)\ in \mathit{concls_of}\ (\mathit{inferences_from}\ \mathit{N'}-\mathit{Ri}\ \mathit{N'}) \subseteq \mathit{Sup_llist}\ \mathit{Ns} \cup \mathit{Rf}\ (\mathit{Sup_llist}\ \mathit{Ns})) end locale \ sat_preserving_effective_redundancy_criterion = sat_preserving_inference_system \ \Gamma :: ('a :: wellorder) \ inference \ set \ + effective_redundancy_criterion begin {\bf sublocale}\ sat_preserving_redundancy_criterion The result below corresponds to Theorem 4.3. {\bf theorem}\ fair_derive_saturated_upto: assumes deriv: chain (▷) Ns and fair: fair_clss_seq Ns shows saturated_upto (Liminf_llist Ns) unfolding \ saturated_upto_def proof fix \gamma let ?N' = Liminf_llist Ns - Rf (Liminf_llist Ns) assume \gamma: \gamma \in inferences_from ?N' show \gamma \in Ri \ (Liminf_llist \ Ns) proof (cases \gamma \in Ri ?N') {\bf case}\ {\it True} ``` ``` then show ?thesis using Ri_mono by blast next case False have concls_of (inferences_from ?N' - Ri ?N') \subseteq Sup_llist Ns \cup Rf (Sup_llist Ns) using fair unfolding fair_clss_seq_def Let_def . then have concl_of \ \gamma \in Sup_llist \ Ns \cup Rf \ (Sup_llist \ Ns) using False \gamma by auto moreover assume concl_of \ \gamma \in Sup_llist \ Ns then have \gamma \in Ri \ (Sup_llist \ Ns) using \gamma Ri_effective inferences_from_def by blast then have \gamma \in Ri \ (Liminf_llist \ Ns) using deriv Ri_Sup_subset_Ri_Liminf by fast } moreover { assume concl_{-}of \ \gamma \in Rf \ (Sup_{-}llist \ Ns) then have concl_of \ \gamma \in \mathit{Rf} \ (\mathit{Liminf_llist} \ \mathit{Ns}) using deriv Rf_Sup_subset_Rf_Liminf by blast then have \gamma \in Ri \ (Liminf_llist \ Ns) using \gamma Ri_effective inferences_from_def by auto ultimately show \gamma \in Ri \ (Liminf_llist \ Ns) by blast qed qed end This corresponds to the trivial redundancy criterion defined on page 36 of Section 4.1. locale trivial_redundancy_criterion = inference_system begin definition Rf :: 'a \ clause \ set \Rightarrow 'a \ clause \ set \ where Rf_{-} = \{\} definition Ri :: 'a \ clause \ set \Rightarrow 'a \ inference \ set \ where Ri\ N = \{\gamma.\ \gamma \in \Gamma \land concl_of\ \gamma \in N\} sublocale effective_redundancy_criterion \Gamma Rf Ri by unfold_locales (auto simp: Rf_def Ri_def) lemma saturated_upto_iff: saturated_upto N \longleftrightarrow concls_of (inferences_from N) \subseteq N unfolding saturated_upto_def inferences_from_def Rf_def Ri_def by auto end The following lemmas corresponds to the standard extension of a redundancy criterion defined on page 38 of Section 4.1. {\bf lemma}\ redundancy_criterion_standard_extension: assumes \Gamma \subseteq \Gamma' and redundancy_criterion \Gamma Rf Ri shows redundancy_criterion \Gamma' Rf (\lambda N. Ri N \cup (\Gamma' - \Gamma)) using assms unfolding redundancy_criterion_def by
(intro conjI) ((auto simp: rev_subsetD)[5], sat) \mathbf{lemma}\ redundancy_criterion_standard_extension_saturated_up to_iff: assumes \Gamma \subseteq \Gamma' and redundancy_criterion \Gamma Rf Ri shows redundancy_criterion.saturated_upto \Gamma Rf Ri M \longleftrightarrow redundancy_criterion.saturated_upto \ \Gamma' \ Rf \ (\lambda N. \ Ri \ N \ \cup \ (\Gamma' - \Gamma)) \ M {\bf using} \ assms \ redundancy_criterion.saturated_up to_def \ redundancy_criterion.saturated_up to_def redundancy_criterion_standard_extension unfolding inference_system.inferences_from_def by blast ``` ``` lemma redundancy_criterion_standard_extension_effective: assumes \Gamma \subseteq \Gamma' and effective_redundancy_criterion \Gamma Rf Ri shows effective_redundancy_criterion \Gamma' Rf (\lambda N. Ri N \cup (\Gamma' - \Gamma)) using assms redundancy_criterion_standard_extension[of \Gamma] unfolding effective_redundancy_criterion_def effective_redundancy_criterion_axioms_def by auto \mathbf{lemma}\ redundancy_criterion_standard_extension_fair_iff\colon assumes \Gamma \subseteq \Gamma' and effective_redundancy_criterion \Gamma Rf Ri shows effective_redundancy_criterion.fair_clss_seq \Gamma' Rf (\lambda N. Ri N \cup (\Gamma' - \Gamma)) Ns \longleftrightarrow effective_redundancy_criterion.fair_clss_seq\ \Gamma\ Rf\ Ri\ Ns using assms redundancy_criterion_standard_extension_effective[of \Gamma \Gamma' Rf Ri] effective_redundancy_criterion.fair_clss_seq_def[of \ \Gamma \ Rf \ Ri \ Ns] effective_redundancy_criterion.fair_clss_seq_def[of \Gamma' Rf (\lambda N. Ri N \cup (\Gamma' - \Gamma)) Ns] unfolding inference_system.inferences_from_def Let_def by auto {\bf theorem}\ redundancy_criterion_standard_extension_fair_derive_saturated_up to: assumes subs: \Gamma \subseteq \Gamma' and red: redundancy_criterion \Gamma Rf Ri and red': sat_preserving_effective_redundancy_criterion \Gamma' Rf (\lambda N.\ Ri\ N \cup (\Gamma' - \Gamma)) and deriv: chain (redundancy_criterion.derive \Gamma' Rf) Ns and \textit{fair: effective_redundancy_criterion.fair_clss_seq} \ \Gamma' \ \textit{Rf} \ (\lambda \textit{N. Ri} \ \textit{N} \ \cup \ (\Gamma' - \Gamma)) \ \textit{Ns} shows redundancy_criterion.saturated_up to \Gamma Rf Ri (Liminf_llist Ns) have redundancy_criterion.saturated_upto \Gamma' Rf (\lambda N. Ri N \cup (\Gamma' - \Gamma)) (Liminf_llist Ns) \mathbf{by}\ (\textit{rule sat_preserving_effective_redundancy_criterion.fair_derive_saturated_upto} [OF red' deriv fair]) then show ?thesis by (rule redundancy_criterion_standard_extension_saturated_upto_iff[THEN iffD2, OF subs red]) qed end The Standard Redundancy Criterion 13 theory Standard_Redundancy imports Proving_Process begin This material is based on Section 4.2.2 ("The Standard Redundancy Criterion") of Bachmair and Ganzinger's locale standard_redundancy_criterion = inference_system \Gamma for \Gamma :: ('a :: wellorder) inference set begin abbreviation redundant_infer :: 'a clause set \Rightarrow 'a inference \Rightarrow bool where redundant_infer N \gamma \equiv \exists \, \mathit{DD}. \, \, \mathit{set_mset} \, \, \mathit{DD} \, \subseteq \, \mathit{N} \, \wedge \, (\forall \, \mathit{I}. \, \, \mathit{I} \, \models \! \mathit{m} \, \mathit{DD} \, + \, \mathit{side_prems_of} \, \, \gamma \, \longrightarrow \, \mathit{I} \, \models \, \mathit{concl_of} \, \, \gamma) \land (\forall D. D \in \# DD \longrightarrow D < main_prem_of \gamma) definition Rf :: 'a \ clause \ set \Rightarrow 'a \ clause \ set \ where Rf\ N = \{C.\ \exists\ DD.\ set_mset\ DD \subseteq N \land (\forall\ I.\ I \models m\ DD \longrightarrow I \models C) \land (\forall\ D.\ D \in \#\ DD \longrightarrow D < C)\} definition Ri :: 'a \ clause \ set \Rightarrow 'a \ inference \ set \ \mathbf{where} Ri\ N = \{ \gamma \in \Gamma.\ redundant_infer\ N\ \gamma \} lemma tautology_redundant: assumes Pos A \in \# C assumes Neg A \in \# C shows C \in Rf N proof - ``` ``` \mathbf{have} \ \mathit{set_mset} \ \{\#\} \subseteq N \ \land \ (\forall \, I. \ I \models m \ \{\#\} \longrightarrow I \models C) \ \land \ (\forall \, D. \ D \in \# \ \{\#\} \longrightarrow D < C) using assms by auto then show C \in Rf N unfolding Rf_{-}def by blast qed lemma contradiction_Rf: \{\#\} \in N \Longrightarrow Rf N = UNIV - \{\{\#\}\} unfolding Rf_def by force The following results correspond to Lemma 4.5. The lemma wlog_non_Rf generalizes the core of the argu- lemma Rf_mono: N \subseteq N' \Longrightarrow Rf N \subseteq Rf N' unfolding Rf_def by auto lemma wlog_non_Rf: assumes ex: \exists DD. \ set_mset \ DD \subseteq N \land (\forall I. \ I \models m \ DD + CC \longrightarrow I \models E) \land (\forall D'. \ D' \in \# \ DD \longrightarrow D' < D) shows \exists DD. \ set_mset \ DD \subseteq N - Rf \ N \land (\forall I. \ I \models m \ DD + CC \longrightarrow I \models E) \land (\forall D'. \ D' \in \# \ DD \longrightarrow D' < D) proof - from ex obtain DD\theta where dd0 \colon DD0 \in \{DD. \ set_mset \ DD \subseteq N \ \land \ (\forall \ I. \ I \models m \ DD \ + \ CC \longrightarrow I \models E) \ \land \ (\forall \ D'. \ D' \in \# \ DD \longrightarrow D' < D)\} have \exists DD. set_mset DD \subseteq N \land (\forall I. \ I \models m \ DD + CC \longrightarrow I \models E) \land (\forall D'. \ D' \in \# \ DD \longrightarrow D' < D) \land (\forall DD'. set_mset DD' \subseteq N \land (\forall I. I \models m DD' + CC \longrightarrow I \models E) \land (\forall D'. D' \in \# DD' \longrightarrow D' < D) \longrightarrow using wf_eq_minimal[THEN iffD1, rule_format, OF wf_less_multiset dd0] unfolding not_le[symmetric] by blast then obtain DD where dd_subs_n: set_mset\ DD \subseteq N and ddcc_imp_e: \forall I. \ I \models m \ DD + CC \longrightarrow I \models E \ \text{and} dd_{-}lt_{-}d: \forall D'. D' \in \# DD \longrightarrow D' < D and d_min: \forall DD'. \ set_mset \ DD' \subseteq N \land (\forall I. \ I \models m \ DD' + CC \longrightarrow I \models E) \land (\forall D'. \ D' \in \# \ DD' \longrightarrow D' < D) \longrightarrow I \models E DD < DD' by blast have \forall Da. \ Da \in \# \ DD \longrightarrow Da \notin Rf \ N proof clarify \mathbf{fix} \ Da assume da_in_dd: Da \in \# DD and da_rf: Da \in Rf N from da_rf obtain DD' where dd'_subs_n: set_mset DD' \subseteq N and dd'_imp_da: \forall I. I \models m DD' \longrightarrow I \models Da and dd'_lt_-da: \forall D'. D' \in \# DD' \longrightarrow D' < Da unfolding Rf_{-}def by blast define DDa where DDa = DD - \{\#Da\#\} + DD' have set_mset\ DDa \subseteq N unfolding DDa_def using dd_subs_n dd'_subs_n by (meson contra_subsetD in_diffD subsetI union_iff) moreover have \forall I. \ I \models m \ DDa + CC \longrightarrow I \models E using dd'_imp_da ddcc_imp_e da_in_dd unfolding DDa_def true_cls_mset_def by (metis in_remove1_mset_neq union_iff) moreover have \forall D'. D' \in \# DDa \longrightarrow D' < D using dd_lt_d dd'_lt_da da_in_dd unfolding DDa_def by (metis insert_DiffM2 order.strict_trans union_iff) moreover have DDa < DD unfolding DDa_{-}def by (meson da_in_dd dd'_lt_da mset_lt_single_right_iff single_subset_iff union_le_diff_plus) ultimately show False ``` ``` using d_min unfolding less_eq_multiset_def by (auto\ intro!:\ antisym) qed then show ?thesis using dd_subs_n ddcc_imp_e dd_lt_d by auto qed lemma Rf_{-imp_ex_non_Rf}: assumes C \in Rf N shows \exists CC. set_mset \ CC \subseteq N - Rf \ N \land (\forall I. \ I \models m \ CC \longrightarrow I \models C) \land (\forall C'. \ C' \in \# \ CC \longrightarrow C' < C) using assms by (auto simp: Rf_def intro: wlog_non_Rf[of _ {#}, simplified]) lemma Rf_subs_Rf_diff_Rf: Rf N \subseteq Rf (N - Rf N) proof \mathbf{fix} \ C assume c_rf: C \in Rf N then obtain CC where cc_subs: set_mset CC \subseteq N - Rf N and cc_imp_c: \forall I. \ I \models m \ CC \longrightarrow I \models C \ \mathbf{and} cc_lt_c: \forall C'. C' \in \# CC \longrightarrow C' < C using Rf_imp_ex_non_Rf by blast have \forall D. D \in \# CC \longrightarrow D \notin Rf N using cc_subs by (simp add: subset_iff) then have cc_nr: unfolding Rf_def by auto metis have set_mset\ CC\subseteq N using cc_subs by auto then have set_mset\ CC\subseteq N - \{C. \exists DD. set_mset DD \subseteq N \land (\forall I. I \models m DD \longrightarrow I \models C) \land (\forall D. D \in \# DD \longrightarrow D < C)\} using cc_-nr by auto then show C \in Rf(N - RfN) using cc_imp_c cc_lt_c unfolding Rf_def by auto qed lemma Rf_{-}eq_{-}Rf_{-}diff_{-}Rf: Rf N = Rf (N - Rf N) by (metis Diff_subset Rf_mono Rf_subs_Rf_diff_Rf subset_antisym) The following results correspond to Lemma 4.6. lemma Ri_mono: N \subseteq N' \Longrightarrow Ri \ N \subseteq Ri \ N' unfolding Ri_def by auto lemma Ri_subs_Ri_diff_Rf: Ri \ N \subseteq Ri \ (N - Rf \ N) proof fix \gamma assume \gamma-ri: \gamma \in Ri N then obtain CC D E where \gamma: \gamma = Infer CC D E by (cases \gamma) have cc: CC = side_prems_of \ \gamma \ and \ d: D = main_prem_of \ \gamma \ and \ e: E = concl_of \ \gamma unfolding \gamma by simp_all obtain DD where set_mset\ DD \subseteq N\ and \forall\ I.\ I \models m\ DD + CC \longrightarrow I \models E\ and \forall\ C.\ C \in \#\ DD \longrightarrow C < D using \gamma_{-}ri unfolding Ri_{-}def cc d e by blast then obtain DD' where set_mset\ DD' \subseteq N - Rf\ N\ and \forall\ I.\ I \models m\ DD' + CC \longrightarrow I \models E\ and \forall\ D'.\ D' \in \#\ DD' \longrightarrow D' < D using wlog_non_Rf by atomize_elim blast then show \gamma \in Ri (N - Rf N) using \gamma_r i unfolding Ri_def d cc e by blast qed lemma Ri_{-}eq_{-}Ri_{-}diff_{-}Rf: Ri\ N = Ri\ (N - Rf\ N) by (metis Diff_subset Ri_mono Ri_subs_Ri_diff_Rf subset_antisym) lemma Ri_subset_\Gamma: Ri \ N \subseteq \Gamma ``` ``` unfolding Ri_def by blast lemma Rf_{-}indep: N' \subseteq Rf N \Longrightarrow Rf N \subseteq Rf (N - N') by (metis Diff_cancel Diff_eq_empty_iff Diff_mono Rf_eq_Rf_diff_Rf Rf_mono) lemma Ri_indep: N' \subseteq Rf N \Longrightarrow Ri N \subseteq Ri (N - N') by (metis Diff_mono Ri_eq_Ri_diff_Rf Ri_mono order_refl) lemma
Rf_model: assumes I \models s N - Rf N shows I \models s N proof - have I \models s Rf (N - Rf N) unfolding true_clss_def by (subst Rf_def, simp add: true_cls_mset_def, metis assms subset_eq true_clss_def) then have I \models s Rf N using Rf_subs_Rf_diff_Rf true_clss_mono by blast then show ?thesis using assms by (metis Un_Diff_cancel true_clss_union) qed lemma Rf-sat: satisfiable (N - Rf N) \Longrightarrow satisfiable N by (metis Rf_model) The following corresponds to Theorem 4.7: sublocale redundancy_criterion \Gamma Rf Ri by unfold_locales (rule Ri_subset_Γ, (elim Rf_mono Ri_mono Rf_indep Ri_indep Rf_sat)+) end locale\ standard_redundancy_criterion_reductive = standard_redundancy_criterion + reductive_inference_system begin The following corresponds to Theorem 4.8: lemma Ri_effective: assumes in_{-}\gamma: \gamma \in \Gamma and concl_of_in_n_un_rf_n: concl_of \ \gamma \in N \cup Rf \ N shows \gamma \in Ri N proof - obtain CCDE where \gamma: \gamma = Infer\ CC\ D\ E by (cases \gamma) then have cc: CC = side_prems_of \ \gamma \ {\bf and} \ d: D = main_prem_of \ \gamma \ {\bf and} \ e: E = concl_of \ \gamma unfolding \gamma by simp_all note e_i n_n u n_r f_n = concl_o f_i n_n u n_r f_n [folded e] { \mathbf{assume}\ E\in \mathit{N} moreover have E < D using \Gamma-reductive e d in-\gamma by auto ultimately have set_mset \ \{\#E\#\} \subseteq N \ \text{and} \ \forall I. \ I \models m \ \{\#E\#\} + CC \longrightarrow I \models E \ \text{and} \ \forall D'. \ D' \in \# \ \{\#E\#\} \longrightarrow D' < D \ \text{one of the property by simp_{-}all then have redundant_infer N \gamma using cc d e by blast } moreover { assume E \in Rf N then obtain DD where dd_sset: set_mset DD \subseteq N and ``` ``` dd_imp_e: \forall I. I \models m DD \longrightarrow I \models E and dd_{-}lt_{-}e: \forall C'. C' \in \# DD \longrightarrow C' < E unfolding Rf_{-}def by blast from dd_{-}lt_{-}e have \forall Da. Da \in \# DD \longrightarrow Da < D using d e in_{\gamma} \Gamma_{reductive less_trans} by blast then have redundant_infer\ N\ \gamma using dd_sset \ dd_imp_e \ cc \ d \ e \ by \ blast } ultimately show \gamma \in Ri N using in_\gamma e_in_n_un_rf_n unfolding Ri_def by blast qed sublocale effective_redundancy_criterion \Gamma Rf Ri unfolding effective_redundancy_criterion_def by (intro conjI redundancy_criterion_axioms, unfold_locales, rule Ri_effective) lemma contradiction_Rf: \{\#\} \in N \Longrightarrow Ri N = \Gamma unfolding Ri_def using \Gamma_reductive\ le_multiset_empty_right by (force intro: exI[of_{-}\{\#\{\#\}\#\}] le_multiset_empty_left) end locale\ standard_redundancy_criterion_counterex_reducing = standard_redundancy_criterion + counterex_reducing_inference_system The following result corresponds to Theorem 4.9. lemma saturated_upto_complete_if: assumes satur: saturated_upto N and unsat: \neg \ satisfiable \ N shows \{\#\} \in N proof (rule ccontr) assume ec_-ni_-n: \{\#\} \notin N define M where M = N - Rf N have ec_-ni_-m: \{\#\} \notin M unfolding M_{-}def using ec_{-}ni_{-}n by fast have I_{-}of M \models s M proof (rule ccontr) assume \neg I of M \models s M then obtain {\cal D} where d_in_m: D \in M and d_cex: \neg I_of M \models D and d-min: \bigwedge C. C \in M \Longrightarrow C < D \Longrightarrow I-of M \models C using ex_min_counterex by meson then obtain \gamma CC E where \gamma: \gamma = Infer \ CC \ D \ E and cc_subs_m: set_mset CC \subseteq M and cc_true: I_of M \models m CC and \gamma_{-}in: \gamma \in \Gamma and e_cex: \neg I_of M \models E and e_{-}lt_{-}d: E < D using \Gamma_counterex_reducing[OF ec_ni_m] not_less by metis have cc: CC = side_prems_of \ \gamma \ \text{and} \ d: D = main_prem_of \ \gamma \ \text{and} \ e: E = concl_of \ \gamma unfolding \gamma by simp_all have \gamma \in Ri\ N by (rule set_mp[OF satur[unfolded saturated_upto_def inferences_from_def infer_from_def]]) (simp\ add: \gamma_in\ d_in_m\ cc_subs_m\ cc[symmetric]\ d[symmetric]\ M_def[symmetric]) then have \gamma \in Ri M ``` ``` unfolding M_{-}def using Ri_{-}indep by fast then obtain DD where dd_subs_m: set_mset DD \subseteq M and dd_cc_imp_d: \forall I. I \models m DD + CC \longrightarrow I \models E and dd_{-}lt_{-}d: \forall C. C \in \# DD \longrightarrow C < D unfolding Ri_def\ cc\ d\ e\ \mathbf{by}\ blast from dd_subs_m dd_lt_d have I_of M \models m DD using d_min unfolding true_cls_mset_def by (metis contra_subsetD) then have I-of M \models E using dd_cc_imp_d cc_true by auto then show False using e_cex by auto qed then have I-of M \models s N using M_{-}def Rf_{-}model by blast then show False using unsat by blast qed {\bf theorem}\ saturated_up to_complete: assumes saturated_upto N shows \neg satisfiable N \longleftrightarrow \{\#\} \in N using assms saturated_upto_complete_if true_clss_def by auto end ``` ## 14 First-Order Ordered Resolution Calculus with Selection ``` {\bf theory}\ FO_Ordered_Resolution \\ {\bf imports}\ Abstract_Substitution\ Ordered_Ground_Resolution\ Standard_Redundancy \\ {\bf begin} ``` end This material is based on Section 4.3 ("A Simple Resolution Prover for First-Order Clauses") of Bachmair and Ganzinger's chapter. Specifically, it formalizes the ordered resolution calculus for first-order standard clauses presented in Figure 4 and its related lemmas and theorems, including soundness and Lemma 4.12 (the lifting lemma). The following corresponds to pages 41–42 of Section 4.3, until Figure 5 and its explanation. ``` locale FO_resolution = mgu subst_atm id_subst comp_subst atm_of_atms renamings_apart mgu for subst_atm :: 'a :: wellorder \Rightarrow 's \Rightarrow 'a and id_subst :: 's and comp_subst :: 's \Rightarrow 's \Rightarrow 's and renamings_apart :: 'a literal multiset list \Rightarrow 's list and atm_of_atms :: 'a list \Rightarrow 'a and mgu :: 'a set set \Rightarrow 's option + fixes less_atm :: 'a \Rightarrow 'a \Rightarrow bool assumes less_atm_stable: less_atm A B \implies less_atm (A \cdot a \sigma) (B \cdot a \sigma) begin 14.1 Library lemma Bex_cartesian_product: (\exists xy \in A \times B. P xy) \equiv (\exists x \in A. \exists y \in B. P (x, y)) by simp ``` ``` lemma length_sorted_list_of_multiset[simp]: length (sorted_list_of_multiset A) = size A by (metis mset_sorted_list_of_multiset size_mset) ``` ``` lemma eql_map_neg_lit_eql_atm: assumes map (\lambda L. L \cdot l \eta) (map Neg As') = map Neg As shows As' \cdot al \ \eta = As using assms by (induction As' arbitrary: As) auto lemma instance_list: assumes negs (mset As) = SDA' \cdot \eta shows \exists As'. negs (mset As') = SDA' \land As' \cdot al \ \eta = As proof - from assms have negL: \forall L \in \# SDA'. is_neg L using Melem_subst_cls subst_lit_in_negs_is_neg by metis from assms have \{\#L \cdot l \ \eta. \ L \in \# \ SDA'\#\} = mset \ (map \ Neg \ As) using subst_cls_def by auto then have \exists NAs'. map (\lambda L. \ L \cdot l \ \eta) \ NAs' = map \ Neg \ As \land mset \ NAs' = SDA' using image_mset_of_subset_list[of \ \lambda L. \ L \cdot l \ \eta \ SDA' \ map \ Neg \ As] by auto then obtain As' where As'_-p: map\ (\lambda L.\ L\cdot l\ \eta)\ (map\ Neg\ As') = map\ Neg\ As\ \land\ mset\ (map\ Neg\ As') = SDA' \mathbf{by}\ (\mathit{metis}\ (\mathit{no_types},\ \mathit{lifting})\ \mathit{Neg_atm_of_iff}\ \mathit{negL}\ \mathit{ex_map_conv}\ \mathit{set_mset_mset}) have negs (mset As') = SDA' using As'_p by auto moreover have map (\lambda L. L \cdot l \eta) (map Neg As') = map Neg As using As'_{-}p by auto then have As' \cdot al \ \eta = As using eql_map_neg_lit_eql_atm by auto ultimately show ?thesis by blast qed context fixes S :: 'a \ clause \Rightarrow 'a \ clause begin 14.2 Calculus The following corresponds to Figure 4. definition maximal_wrt :: 'a \Rightarrow 'a \ literal \ multiset \Rightarrow bool \ \mathbf{where} maximal_wrt \ A \ C \longleftrightarrow (\forall B \in atms_of \ C. \ \neg \ less_atm \ A \ B) definition strictly_maximal_wrt :: 'a \Rightarrow 'a \ literal \ multiset \Rightarrow bool \ \mathbf{where} strictly_maximal_wrt \ A \ C \equiv \forall \ B \in atms_of \ C. \ A \neq B \land \neg \ less_atm \ A \ B \mathbf{lemma}\ strictly_maximal_wrt_maximal_wrt:\ strictly_maximal_wrt\ A\ C \Longrightarrow maximal_wrt\ A\ C unfolding maximal_wrt_def strictly_maximal_wrt_def by auto inductive eligible :: s \Rightarrow a list \Rightarrow a clause \Rightarrow bool where eligible: S \ DA = negs \ (mset \ As) \lor S \ DA = \{\#\} \land length \ As = 1 \land maximal_wrt \ (As \ ! \ \theta \cdot a \ \sigma) \ (DA \cdot \sigma) \Longrightarrow eligible \sigma As DA inductive ord_resolve :: 'a \ clause \ list \Rightarrow 'a \ clause \Rightarrow 'a \ multiset \ list \Rightarrow 'a \ list \Rightarrow 'a \ clause \Rightarrow bool where ord_resolve: length \ CAs = n \Longrightarrow length \ Cs = n \Longrightarrow length \ AAs = n \Longrightarrow length \ As = n \Longrightarrow ``` ``` n \neq 0 \Longrightarrow (\forall i < n. \ CAs \ ! \ i = Cs \ ! \ i + poss \ (AAs \ ! \ i)) \Longrightarrow (\forall i < n. \ AAs ! i \neq \{\#\}) \Longrightarrow Some \sigma = mgu \ (set_mset \ `set \ (map2 \ add_mset \ As \ AAs)) \Longrightarrow eligible \sigma As (D + negs (mset As)) \Longrightarrow (\forall i < n. \ strictly_maximal_wrt \ (As ! \ i \cdot a \ \sigma) \ (Cs ! \ i \cdot \sigma)) \Longrightarrow (\forall i < n. \ S \ (CAs ! \ i) = \{\#\}) \Longrightarrow ord_resolve CAs (D + negs \ (mset \ As)) AAs As \sigma \ (((\bigcup \# mset \ Cs) + D) \cdot \sigma) inductive ord_resolve_rename :: 'a \ clause \ list \Rightarrow 'a \ clause \Rightarrow 'a \ multiset \ list \Rightarrow 'a \ list \Rightarrow 'a \ clause \Rightarrow bool where ord_resolve_rename: length \ CAs = n \Longrightarrow length \ AAs = n \Longrightarrow length \ As = n \Longrightarrow (\forall i < n. \ poss \ (AAs ! \ i) \subseteq \# \ CAs ! \ i) \Longrightarrow negs (mset As) \subseteq \# DA \Longrightarrow \varrho = hd \ (renamings_apart \ (DA \ \# \ CAs)) \Longrightarrow \varrho s = tl \ (renamings_apart \ (DA \# CAs)) \Longrightarrow ord_resolve \ (CAs
\ \cdots cl \ \varrho s) \ (DA \ \cdot \ \varrho) \ (AAs \ \cdots aml \ \varrho s) \ (As \ \cdot al \ \varrho) \ \sigma \ E \Longrightarrow ord_resolve_rename~CAs~DA~AAs~As~\sigma~E lemma ord_resolve_empty_main_prem: \neg ord_resolve Cs {#} AAs As \sigma E by (simp add: ord_resolve.simps) ``` Soundness Soundness is not discussed in the chapter, but it is an important property. **by** (simp add: ord_resolve_empty_main_prem ord_resolve_rename.simps) lemma ord_resolve_rename_empty_main_prem: \neg ord_resolve_rename Cs $\{\#\}$ AAs As σ E **lemma** ord_resolve_ground_inst_sound: ``` assumes ``` 14.3 ``` res_e: ord_resolve CAs DA AAs As \sigma E and cc_inst_true: I \models m \ mset \ CAs \cdot cm \ \sigma \cdot cm \ \eta \ and d_{-}inst_{-}true: I \models DA \cdot \sigma \cdot \eta and ground_subst_\eta: is_ground_subst \eta shows I \models E \cdot \eta using res_-e proof (cases rule: ord_resolve.cases) case (ord_resolve n Cs D) note da = this(1) and e = this(2) and cas_len = this(3) and cs_len = this(4) and aas_len = this(5) and as_len = this(6) and cas = this(8) and mgu = this(10) and len = this(1) have len: length CAs = length As using as_len cas_len by auto have is_ground_subst (\sigma \odot \eta) using ground_subst_η by (rule is_ground_comp_subst) then have cc_true: I \models m \text{ mset } CAs \cdot cm \ \sigma \cdot cm \ \eta \text{ and } d_true: I \models DA \cdot \sigma \cdot \eta using cc_inst_true d_inst_true by auto from mgu have unif: \forall i < n. \ \forall A \in \#AAs \ ! \ i. \ A \cdot a \ \sigma = As \ ! \ i \cdot a \ \sigma using mgu_unifier as_len aas_len by blast show I \models E \cdot \eta proof (cases \forall A \in set \ As. \ A \cdot a \ \sigma \cdot a \ \eta \in I) {\bf case}\ \mathit{True} then have \neg I \models negs (mset As) \cdot \sigma \cdot \eta unfolding true_cls_def[of\ I] by auto then have I \models D \cdot \sigma \cdot \eta ``` ``` using d_true da by auto then show ?thesis unfolding e by auto next case False then obtain i where a_in_aa: i < length \ CAs \ and \ a_false: (As ! i) \cdot a \ \sigma \cdot a \ \eta \notin I using da len by (metis in_set_conv_nth) define C where C \equiv Cs ! i define BB where BB \equiv AAs ! i have c_cf': C \subseteq \# \bigcup \# mset CAs unfolding C_def using a_in_aa cas cas_len \mathbf{by}\ (\mathit{metis}\ \mathit{less_subset_eq_Union_mset}\ \mathit{mset_subset_eq_add_left}\ \mathit{subset_mset.order.trans}) have c_in_cc: C + poss BB \in \# mset CAs using C_def BB_def a_in_aa cas_len in_set_conv_nth cas by fastforce \mathbf{fix} \ B assume B \in \#BB then have B \cdot a \sigma = (As ! i) \cdot a \sigma using unif a_in_aa cas_len unfolding BB_def by auto then have \neg I \models poss BB \cdot \sigma \cdot \eta \mathbf{using}\ a_false\ \mathbf{by}\ (\mathit{auto\ simp:\ true_cls_def}) moreover have I \models (C + poss BB) \cdot \sigma \cdot \eta using c_in_cc cc_true true_cls_mset_true_cls[of I mset CAs \cdotcm \sigma \cdotcm \eta] by force ultimately have I \models C \cdot \sigma \cdot \eta by simp then show ?thesis unfolding e subst_cls_union using c_cf' C_def a_in_aa cas_len cs_len \textbf{by} \; (\textit{metis} \; (\textit{no_types}, \, \textit{lifting}) \; \textit{mset_subset_eq_add_left} \; \textit{nth_mem_mset} \; \textit{set_mset_mono} \; \textit{sum_mset} \; . \\ \textit{remove} \; \textit{true_cls_mono} \; \textit{lifting}) \; \textit{mset_subset_eq_add_left} \; \textit{nth_mem_mset} \; \textit{set_mset_mono} \; \textit{sum_mset} \; . \\ \textit{remove} \; \textit{true_cls_mono} \; \textit{lifting}) \; \textit{mset_subset_eq_add_left} \; \textit{nth_mem_mset} \; . \\ \textit{lifting}) \; \textit{lifting}) \; \textit{mset_subset_eq_add_left} \; \textit{lifting}) \; \textit{lifting}) \; \textit{mset_subset_eq_add_left} \; \textit{lifting}) \; \textit{lifting}) \; \textit{lifting}) \; \textit{mset_subset_eq_add_left} \; \textit{lifting}) \textit{ subst_cls_mono) qed qed The previous lemma is not only used to prove soundness, but also the following lemma which is used to prove Lemma 4.10. lemma ord_resolve_rename_ground_inst_sound: assumes ord_resolve_rename\ CAs\ DA\ AAs\ As\ \sigma\ E\ {\bf and} \varrho s = tl \ (renamings_apart \ (DA \ \# \ CAs)) and \varrho = hd \ (renamings_apart \ (DA \ \# \ CAs)) and I \models m \ (mset \ (CAs \ \cdots cl \ \varrho s)) \ \cdot cm \ \sigma \ \cdot cm \ \eta \ \mathbf{and} I \models DA \cdot \rho \cdot \sigma \cdot \eta and is_ground_subst \eta shows I \models E \cdot \eta using assms by (cases rule: ord_resolve_rename.cases) (fast intro: ord_resolve_ground_inst_sound) Here follows the soundness theorem for the resolution rule. theorem ord_resolve_sound: assumes res_e: ord_resolve CAs DA AAs As \sigma E and cc_d_true: \land \sigma. is_ground_subst \ \sigma \Longrightarrow I \models m \ (mset \ CAs + \{\#DA\#\}) \cdot cm \ \sigma \ and ground_subst_\eta: is_ground_subst \eta shows I \models E \cdot \eta proof (use res_e in \(cases rule: ord_resolve.cases \)) case (ord_resolve n Cs D) note da = this(1) and e = this(2) and cas_len = this(3) and cs_len = this(4) and aas_len = this(5) and as_len = this(6) and cas = this(8) and mgu = this(10) have ground_subst_\sigma_\eta: is_ground_subst (\sigma \odot \eta) using ground_subst_η by (rule is_ground_comp_subst) have cas_true: I \models m mset CAs \cdot cm \sigma \cdot cm \eta using cc_d_true\ ground_subst_\sigma_\eta by fastforce have da_true: I \models DA \cdot \sigma \cdot \eta using cc_d_true\ ground_subst_\sigma_\eta by fastforce ``` ``` show I \models E \cdot \eta using ord_resolve_ground_inst_sound[OF res_e cas_true da_true] ground_subst_n by auto qed lemma subst_sound: assumes \land \sigma. is_ground_subst \ \sigma \Longrightarrow I \models (C \cdot \sigma) \ \mathbf{and} is_ground_subst \eta shows I \models (C \cdot \varrho) \cdot \eta \mathbf{using}\ assms\ is_ground_comp_subst\ subst_cls_comp_subst\ \mathbf{by}\ met is lemma subst_sound_scl: assumes len: length P = length CAs and true_cas: \land \sigma. is_ground_subst \ \sigma \Longrightarrow I \models m \ (mset \ CAs) \cdot cm \ \sigma \ and ground_subst_\eta: is_ground_subst \eta shows I \models m \ mset \ (CAs \ \cdots cl \ P) \ \cdot cm \ \eta proof - from true_cas have \bigwedge CA. CA \in \# mset CAs \Longrightarrow (\bigwedge \sigma. is_ground_subst \sigma \Longrightarrow I \models CA \cdot \sigma) \mathbf{unfolding} \ \mathit{true_cls_mset_def} \ \mathbf{by} \ \mathit{force} then have \forall i < length \ CAs. \ \forall \sigma. \ is_ground_subst \ \sigma \longrightarrow (I \models CAs! \ i \cdot \sigma) using in_set_conv_nth by auto then have true_cp: \forall i < length \ CAs. \ \forall \sigma. \ is_ground_subst \ \sigma \longrightarrow I \models CAs! \ i \cdot P! \ i \cdot \sigma using subst_sound len by auto { \mathbf{fix} CA assume CA \in \# mset (CAs \cdot \cdot cl P) then obtain i where i-x: i < length (CAs ··cl P) CA = (CAs ··cl P) ! <math>i by (metis in_mset_conv_nth) then have \forall \sigma. is_ground_subst \sigma \longrightarrow I \models CA \cdot \sigma using true_cp unfolding subst_cls_lists_def by (simp add: len) then show ?thesis using assms unfolding true_cls_mset_def by auto Here follows the soundness theorem for the resolution rule with renaming. lemma ord_resolve_rename_sound: res_e: ord_resolve_rename CAs DA AAs As \sigma E and ground_subst_\eta: is_ground_subst \eta shows I \models E \cdot \eta using res_e proof (cases rule: ord_resolve_rename.cases) case (ord_resolve_rename \ n \ \rho \ \rho s) note \rho s = this(7) and res = this(8) have len: length \rho s = length \ CAs using os renamings_apart_length by auto have \Lambda \sigma. is_ground_subst \sigma \Longrightarrow I \models m \ (mset \ (CAs \ \cdots cl \ \varrho s) + \{\#DA \cdot \varrho \#\}) \cdot cm \ \sigma using subst_sound_scl[OF len, of I] subst_sound cc_d_true by auto then show I \models E \cdot \eta \mathbf{using} \ ground_subst_\eta \ ord_resolve_sound[\mathit{OF} \ res] \ \mathbf{by} \ simp qed 14.4 Other Basic Properties lemma ord_resolve_unique: assumes ord_resolve\ CAs\ DA\ AAs\ As\ \sigma\ E\ {\bf and} ord_resolve\ CAs\ DA\ AAs\ As\ \sigma'\ E' shows \sigma = \sigma' \wedge E = E' ``` ``` using assms proof (cases rule: ord_resolve.cases[case_product ord_resolve.cases], intro conjI) \textbf{case} \; (\textit{ord_resolve_ord_resolve} \; \textit{CAs} \; \textit{n} \; \textit{Cs} \; \textit{AAs} \; \textit{As} \; \sigma'' \; \textit{DA} \; \textit{CAs'} \; \textit{n'} \; \textit{Cs'} \; \textit{AAs'} \; \textit{As'} \; \sigma''' \; \textit{DA'}) note res = this(1-17) and res' = this(18-34) show \sigma: \sigma = \sigma' using res(3-5,14) res'(3-5,14) by (metis option.inject) have Cs = Cs' using res(1,3,7,8,12) res'(1,3,7,8,12) by (metis\ add_right_imp_eq\ nth_equalityI) moreover have DA = DA' using res(2,4) res'(2,4) by fastforce ultimately show E = E' using res(5,6) res'(5,6) \sigma by blast qed lemma ord_resolve_rename_unique: assumes ord_resolve_rename\ CAs\ DA\ AAs\ As\ \sigma\ E\ {\bf and} ord_resolve_rename\ CAs\ DA\ AAs\ As\ \sigma'\ E' shows \sigma = \sigma' \wedge E = E' \mathbf{using}\ \mathit{assms}\ \mathbf{unfolding}\ \mathit{ord_resolve_rename.simps}\ \mathbf{using}\ \mathit{ord_resolve_unique}\ \mathbf{by}\ \mathit{meson} lemma ord_resolve_max_side_prems: ord_resolve CAs DA AAs As \sigma E \Longrightarrow length CAs \leq size DA by (auto elim!: ord_resolve.cases) lemma ord_resolve_rename_max_side_prems: ord_resolve_rename\ CAs\ DA\ AAs\ As\ \sigma\ E \Longrightarrow length\ CAs \le size\ DA by (elim ord_resolve_rename.cases, drule ord_resolve_max_side_prems, simp add: renamings_apart_length) 14.5 Inference System definition ord_FO_\Gamma :: 'a inference set where ord_FO_\Gamma = \{Infer \ (mset \ CAs) \ DA \ E \mid CAs \ DA \ AAs \ As \ \sigma \ E. \ ord_resolve_rename \ CAs \ DA \ AAs \ As \ \sigma \ E\} interpretation ord_FO_resolution: inference_system ord_FO_\Gamma . lemma exists_compose: \exists x. P (f x) \Longrightarrow \exists y. P y by meson \mathbf{lemma}\
finite_ord_FO_resolution_inferences_between: assumes fin_cc: finite CC shows finite (ord_FO_resolution.inferences_between CC C) proof - let ?CCC = CC \cup \{C\} define all_AA where all_AA = (\bigcup D \in ?CCC. atms_of D) define max_ary where max_ary = Max (size '?CCC) define CAS where CAS = \{CAs. CAs \in lists ?CCC \land length CAs \leq max_ary\} define AS where AS = \{As. As \in lists \ all_AA \land length \ As \leq max_ary\} define AAS where AAS = \{AAs. \ AAs \in lists \ (mset \ `AS) \land length \ AAs \leq max_ary\} note defs = all_AA_def max_ary_def CAS_def AS_def AAS_def let ?infer_of = \lambda CAs DA AAs As. Infer (mset CAs) DA (THE E. \exists \sigma. ord_resolve_rename CAs DA AAs As \sigma E) let ?Z = \{\gamma \mid CAs \ DA \ AAs \ As \ \sigma \ E \ \gamma. \ \gamma = Infer \ (mset \ CAs) \ DA \ E \land ord_resolve_rename CAs DA AAs As \sigma E \land infer_from ?CCC \gamma \land C \in# prems_of \gamma} let ?Y = \{Infer \ (mset \ CAs) \ DA \ E \mid CAs \ DA \ AAs \ As \ \sigma \ E. \mathit{ord_resolve_rename}\ \mathit{CAs}\ \mathit{DA}\ \mathit{AAs}\ \mathit{As}\ \sigma\ \mathit{E}\ \land\ \mathit{set}\ \mathit{CAs}\ \cup\ \{\mathit{DA}\}\subseteq\ ?\mathit{CCC}\} \textbf{let} \ ?X = \{ ?infer_of \ CAs \ DA \ AAs \ As \ | \ CAs \ DA \ AAs \ As. \ CAs \in CAS \land DA \in ?CCC \land AAs \in AAS \land As \in AS \} let ?W = CAS \times ?CCC \times AAS \times AS ``` ``` have fin_{-}w: finite ?W unfolding defs using fin_cc by (simp add: finite_lists_length_le lists_eq_set) have ?Z \subseteq ?Y by (force simp: infer_from_def) also have \ldots \subseteq ?X proof - \mathbf{fix}\ \mathit{CAs}\ \mathit{DA}\ \mathit{AAs}\ \mathit{As}\ \sigma\ \mathit{E} assume res_e: ord_resolve_rename CAs DA AAs As \sigma E and da_in: DA \in ?CCC and cas_sub: set CAs \subseteq ?CCC have E = (THE \ E. \ \exists \ \sigma. \ ord_resolve_rename \ CAs \ DA \ AAs \ As \ \sigma \ E) \land CAs \in CAS \land AAs \in AAS \land As \in AS (is ?e \land ?cas \land ?aas \land ?as) proof (intro conjI) show ?e using res_e ord_resolve_rename_unique by (blast intro: the_equality[symmetric]) next show ?cas \mathbf{unfolding}\ \mathit{CAS_def}\ \mathit{max_ary_def}\ \mathbf{using}\ \mathit{cas_sub} ord_resolve_rename_max_side_prems[OF\ res_e]\ da_in\ fin_cc by (auto simp add: Max_ge_iff) next \mathbf{show} ?aas using res_-e proof (cases rule: ord_resolve_rename.cases) case (ord_resolve_rename \ n \ \varrho \ \varrho s) note len_cas = this(1) and len_aas = this(2) and len_as = this(3) and aas_sub = this(4) and as_sub = this(5) and res_e' = this(8) show ?thesis unfolding AAS_{-}def proof (clarify, intro conjI) show AAs \in lists (mset 'AS) unfolding AS_def\ image_def proof clarsimp \mathbf{fix} AA assume AA \in set \ AAs then obtain i where i_lt: i < n and aa: AA = AAs ! i by (metis in_set_conv_nth len_aas) have casi_in: CAs ! i \in ?CCC using i_lt\ len_cas\ cas_sub\ nth_mem\ by\ blast have pos_aa_sub: poss\ AA \subseteq \#\ CAs \ !\ i using aa aas_sub i_lt by blast then have set_mset \ AA \subseteq atms_of \ (CAs ! i) by (metis atms_of_poss lits_subseteq_imp_atms_subseteq set_mset_mono) also have aa_sub: \ldots \subseteq all_AA unfolding all_AA_def using casi_in by force finally have aa_sub: set_mset AA \subseteq all_AA have size AA = size (poss AA) by simp also have ... \le size (CAs ! i) by (rule size_mset_mono[OF pos_aa_sub]) also have ... \le max_ary unfolding max_ary_def using fin_cc casi_in by auto ``` ``` finally have sz_aa: size\ AA \leq max_ary let ?As' = sorted_list_of_multiset AA have ?As' \in lists \ all_AA using aa_sub by auto moreover have length ?As' \leq max_ary using sz_aa by simp moreover have AA = mset ?As' by simp ultimately show \exists xa. xa \in lists \ all_AA \land length \ xa \leq max_ary \land AA = mset \ xa by blast qed next have length \ AAs = length \ As unfolding len_aas len_as .. also have \dots \leq size DA using as_sub size_mset_mono by fastforce also have \ldots \leq max_ary unfolding max_ary_def using fin_cc da_in by auto finally show length AAs \leq max_ary qed qed next show ?as unfolding AS_{-}def proof (clarify, intro conjI) have set \ As \subseteq atms_of \ DA using res_e[simplified ord_resolve_rename.simps] \mathbf{by}\ (\mathit{metis}\ \mathit{atms_of_negs}\ \mathit{lits_subseteq_imp_atms_subseteq}\ \mathit{set_mset_mono}\ \mathit{set_mset_mset}) also have \ldots \subseteq all_AA unfolding all_AA_def using da_in by blast finally show As \in lists \ all_AA unfolding lists_eq_set by simp have length As \leq size DA using res_e[simplified ord_resolve_rename.simps] ord_resolve_rename_max_side_prems[OF res_e] by auto also have size DA \leq max_ary \mathbf{unfolding}\ \mathit{max_ary_def}\ \mathbf{using}\ \mathit{fin_cc}\ \mathit{da_in}\ \mathbf{by}\ \mathit{auto} finally show length As \leq max_ary qed qed then show ?thesis by simp fast also have ... \subseteq (\lambda(CAs, DA, AAs, As). ?infer_of CAs DA AAs As) '?W unfolding image_def Bex_cartesian_product by fast finally show ?thesis \mathbf{unfolding} \ inference_system.inferences_between_def \ ord_FO_\Gamma_def \ mem_Collect_eq by (fast intro: rev_finite_subset[OF finite_imageI[OF fin_w]]) \mathbf{qed} lemma ord_FO_resolution_inferences_between_empty_empty: ord_FO_resolution.inferences_between \{\} \{\#\} = \{\} unfolding ord_FO_resolution.inferences_between_def inference_system.inferences_between_def infer_from_def \ ord_FO_\Gamma_def using ord_resolve_rename_empty_main_prem by auto ``` ## 14.6 Lifting The following corresponds to the passage between Lemmas 4.11 and 4.12. fixes M :: 'a clause setassumes select: selection Sbegin interpretation selection by (rule select) **definition** $S_{-}M$:: 'a literal multiset \Rightarrow 'a literal multiset where $S_{-}M C =$ (if $C \in grounding_of_clss\ M\ then$ $(\textit{SOME } C'. \ \exists \ D \ \sigma. \ D \in \textit{M} \ \land \ C = \textit{D} \cdot \sigma \ \land \ C' = \textit{S} \ \textit{D} \cdot \sigma \ \land \ \textit{is_ground_subst} \ \sigma)$ elseS(C)**lemma** $S_-M_-grounding_of_clss$: assumes $C \in grounding_of_clss\ M$ obtains $D \sigma$ where $D \in M \land C = D \cdot \sigma \land S_M C = S D \cdot \sigma \land is_ground_subst \sigma$ **proof** (atomize_elim, unfold S_M_def eqTrueI[OF assms] if_True, rule someI_ex) $\textbf{from} \ \textit{assms} \ \textbf{show} \ \exists \ C' \ D \ \sigma. \ D \in M \ \land \ C = D \cdot \sigma \ \land \ C' = S \ D \cdot \sigma \ \land \ \textit{is_ground_subst} \ \sigma$ **by** (auto simp: grounding_of_clss_def grounding_of_cls_def) \mathbf{qed} lemma $S_M_not_grounding_of_clss$: $C \notin grounding_of_clss M \Longrightarrow S_M C = S C$ unfolding S_-M_-def by simplemma $S_M_selects_subseteq$: S_M C $\subseteq \#$ Cby (metis S_M_grounding_of_clss S_M_not_grounding_of_clss S_selects_subseteq subst_cls_mono_mset) lemma S_M_selects_neg_lits: L $\in \#$ S_M C \Longrightarrow is_neg L $\textbf{by} \ (\textit{metis Melem_subst_cls S_M_grounding_of_clss S_M_not_grounding_of_clss S_selects_neg_lits S_mather a subst_cls subs_cls S_mather a subs_cls S_mather a sub$ $subst_lit_is_neg)$ end end The following corresponds to Lemma 4.12: **lemma** $map2_add_mset_map$: assumes length AAs' = n and length As' = nshows map2 add_mset $(As' \cdot al \ \eta) \ (AAs' \cdot aml \ \eta) = map2 \ add_mset \ As' \ AAs' \cdot aml \ \eta$ using assms **proof** (induction n arbitrary: AAs' As') case $(Suc \ n)$ then have map2 add_mset $(tl (As' \cdot al \eta))$ $(tl (AAs' \cdot aml \eta)) = map2$ add_mset (tl As') $(tl AAs') \cdot aml \eta$ by simp moreover have Succ: length $(As' \cdot al \ \eta) = Suc \ n \ length \ (AAs' \cdot aml \ \eta) = Suc \ n$ using Suc(3) Suc(2) by auto then have length $(tl (As' \cdot al \eta)) = n \ length (tl (AAs' \cdot aml \eta)) = n$ then have length $(map2 \ add_mset \ (tl \ (As' \cdot al \ \eta)) \ (tl \ (AAs' \cdot aml \ \eta))) = n$ length (map2 add_mset (tl As') (tl AAs') \cdot aml η) = n using Suc(2,3) by auto ultimately have $\forall i < n$. $tl \ (map2 \ add_mset \ (\ (As' \cdot all \ \eta)) \ ((AAs' \cdot aml \ \eta))) \ ! \ i =$ $tl \ (map2 \ add_mset \ (As') \ (AAs') \cdot aml \ \eta) \ ! \ i$ $\mathbf{using} \ \mathit{Suc}(2,3) \ \mathit{Succ} \ \mathbf{by} \ (\mathit{simp} \ \mathit{add}: \ \mathit{map2_tl} \ \mathit{map_tl} \ \mathit{subst_atm_mset_list_def} \ \mathit{del}: \ \mathit{subst_atm_list_tl})$ **moreover have** $nn: length (map2 \ add_mset ((As' \cdot al \ \eta)) ((AAs' \cdot aml \ \eta))) = Suc \ n$ length (map2 add_mset (As') (AAs') \cdot aml η) = Suc n ``` using Succ Suc by auto ultimately have \forall i. i < Suc \ n \longrightarrow i > 0 \longrightarrow map2\ add_mset\ (As'\cdot al\ \eta)\ (AAs'\cdot aml\ \eta)\ !\ i=(map2\ add_mset\ As'\ AAs'\cdot aml\ \eta)\ !\ i by (auto simp: subst_atm_mset_list_def gr0_conv_Suc subst_atm_mset_def) moreover have add_mset (hd As' \cdot a \eta) (hd AAs' \cdot a \eta) = add_mset (hd As') (hd AAs') · am \eta unfolding \ subst_atm_mset_def \ by \ auto then have (map2 \ add_mset \ (As' \cdot al \ \eta) \ (AAs' \cdot aml \ \eta)) \ ! \ \theta = (map2 \ add_mset \ (As') \ (AAs') \cdot aml \ \eta) \ ! \ \theta using Suc by (simp add: Succ(2) subst_atm_mset_def) ultimately have \forall i < Suc \ n. \ (map2 \ add_mset \ (As' \cdot al \ \eta) \ (AAs' \cdot aml \ \eta)) \ ! \ i = (map2\ add_mset\ (As')\ (AAs')\cdot aml\ \eta)\ !\ i using Suc by auto then show ?case using nn\ list_eq_iff_nth_eq by metis qed auto lemma maximal_wrt_subst: maximal_wrt (A \cdot a \sigma) (C \cdot \sigma) \Longrightarrow maximal_wrt A C unfolding \ maximal_wrt_def \ using \ in_atms_of_subst \ less_atm_stable \ by \ blast lemma strictly_maximal_wrt_subst: strictly_maximal_wrt (A \cdot a \ \sigma) (C \cdot \sigma) \Longrightarrow strictly_maximal_wrt A \ C \mathbf{unfolding}\ strictly_maximal_wrt_def\ \mathbf{using}\ in_atms_of_subst\ less_atm_stable\ \mathbf{by}\ blast \mathbf{lemma}\ ground_resolvent_subset: assumes gr_cas: is_ground_cls_list CAs and gr_da: is_ground_cls \ DA and res_e:
ord_resolve S CAs DA AAs As \sigma E shows E \subseteq \# (\bigcup \# mset \ CAs) + DA using res_e proof (cases rule: ord_resolve.cases) case (ord_resolve \ n \ Cs \ D) note da = this(1) and e = this(2) and cas_len = this(3) and cs_len = this(4) and aas_len = this(5) and as_len = this(6) and cas = this(8) and mgu = this(10) then have cs_sub_cas: \bigcup \# mset \ Cs \subseteq \# \bigcup \# mset \ CAs using subseteq_list_Union_mset cas_len cs_len by force then have cs_sub_cas: \bigcup \# mset \ Cs \subseteq \# \bigcup \# mset \ CAs using subseteq_list_Union_mset cas_len cs_len by force then have gr_cs: is_ground_cls_list Cs using gr_cas by simp have d_sub_da: D \subseteq \# DA by (simp \ add: \ da) then have gr_d: is_ground_cls D using gr_da is_ground_cls_mono by auto have is_ground_cls (\bigcup \# mset \ Cs + D) using gr_cs gr_d by auto with e have E = (\bigcup \# mset \ Cs + D) then show ?thesis using cs_sub_cas d_sub_da by (auto simp: subset_mset.add_mono) qed {f lemma}\ ord_resolve_obtain_clauses: assumes res_e: ord_resolve (S_M S M) CAs DA AAs As \sigma E and select: selection S and grounding: \{DA\} \cup set\ CAs \subseteq grounding_of_clss\ M and n: length CAs = n and d: DA = D + negs (mset As) and c: (\forall i < n. \ CAs \ ! \ i = Cs \ ! \ i + poss \ (AAs \ ! \ i)) \ length \ Cs = n \ length \ AAs = n obtains DAO \etaO CAsO \etasO AsO AAsO DO CsO where length CAs0 = n length \eta s0 = n DA0 \in M ``` ``` DA\theta \cdot \eta\theta = DA S DA0 \cdot \eta 0 = S_{-}M S M DA \forall CA0 \in set CAs0. CA0 \in M CAs\theta \cdot \cdot cl \eta s\theta = CAs map \ S \ CAs0 \ \cdots cl \ \eta s0 = map \ (S_M \ S \ M) \ CAs is_ground_subst \eta \theta is_ground_subst_list \eta s0 As\theta \cdot al \ \eta\theta = As AAs\theta \cdot \cdot aml \ \eta s\theta = AAs length As0 = n D\theta \cdot \eta \theta = D DA\theta = D\theta + (negs (mset As\theta)) S_M \ S \ M \ (D + negs \ (mset \ As)) \neq \{\#\} \Longrightarrow negs \ (mset \ As0) = S \ DA0 length \ Cs0 = n Cs\theta \cdot \cdot cl \eta s\theta = Cs \forall i < n. \ CAs0 \ ! \ i = Cs0 \ ! \ i + poss \ (AAs0 \ ! \ i) length\ AAs0 = n using res_{-}e proof (cases rule: ord_resolve.cases) \mathbf{case} \ (\mathit{ord_resolve} \ \mathit{n_twin} \ \mathit{Cs_twins} \ \mathit{D_twin}) note da = this(1) and e = this(2) and cas = this(8) and mgu = this(10) and eligible = this(11) \mathbf{from} \ \mathit{ord_resolve} \ \mathbf{have} \ \mathit{n_twin} = \mathit{n} \ \mathit{D_twin} = \mathit{D} using n \ d by auto moreover have Cs_twins = Cs using c cas n calculation(1) (length Cs_twins = n_twin) by (auto simp add: nth_equalityI) ultimately have nz: n \neq 0 and cs_len: length Cs = n and aas_len: length AAs = n and as_len: length As = n and da: DA = D + negs \ (mset \ As) and eligible: eligible (S_M \ S \ M) \ \sigma \ As \ (D + negs \ (mset \ As)) and cas: \forall i < n. CAs! i = Cs! i + poss (AAs! i) using ord_resolve by force+ \mathbf{note}\ n = \langle n \neq 0 \rangle\ \langle \mathit{length}\ \mathit{CAs} = n \rangle\ \langle \mathit{length}\ \mathit{CS} = n \rangle\ \langle \mathit{length}\ \mathit{AAs} = n \rangle\ \langle \mathit{length}\ \mathit{As} = n \rangle interpret S: selection S by (rule select) Obtain FO side premises \mathbf{have} \ \forall \ CA \in set \ CAs. \ \exists \ CA0 \ \eta c0. \ CA0 \in M \ \land \ CA0 \ \cdot \eta c0 = CA \land S \ CA0 \ \cdot \eta c0 = S_M \ S \ M \ CA \land \ is_ground_subst \eta c\theta using grounding S₋M₋grounding₋of₋clss select by (metis (no₋types) le₋supE subset₋iff) then have \forall i < n. \exists \ CA0 \ \eta c0. CA0 \in M \land CA0 \cdot \eta c0 = (CAs \ ! \ i) \land S \ CA0 \cdot \eta c0 = S \bot M \ S \ M \ (CAs \ ! \ l) \land S \ CA0 \cdot \eta c0 = S \bot M \ S \ M \ (CAs \ ! \ l) \land S \ CA0 \cdot \eta c0 = S \bot M \ S \ M \ (CAs \ ! \ l) \land S \ CA0 \cdot \eta c0 = S \bot M \ S \ M \ (CAs \ ! \ l) \land S \ CA is_ground_subst \ \eta c \theta using n by force then obtain \eta s0f CAs0f where f_-p: \forall i < n. \ \mathit{CAs0f} \ i \in \mathit{M} \forall i < n. (CAs0f i) \cdot (\eta s0f i) = (CAs ! i) \forall i < n. \ S \ (CAs0f \ i) \cdot (\eta s0f \ i) = S_M \ S \ M \ (CAs \ ! \ i) \forall i < n. is_ground_subst (\eta s0f i) using n by (metis\ (no_types)) define \eta s\theta where \eta s\theta = map \ \eta s\theta f \ [\theta ... < n] define CAs\theta where CAs\theta = map \ CAs\theta f \ [\theta ... < n] have length \eta s\theta = n length CAs\theta = n unfolding \eta s0_def\ CAs0_def\ by auto note n = \langle length \ \eta s \theta = n \rangle \langle length \ CAs \theta = n \rangle \ n — The properties we need of the FO side premises have CAs0_in_M: \forall CA0 \in set\ CAs0. CA0 \in M unfolding CAs0_def using f_p(1) by auto have CAs0_to_CAs: CAs0 \cdot \cdot cl \eta s0 = CAs unfolding CAs0_def \eta s0_def using f_p(2) by (auto simp: n intro: nth_equalityI) ``` ``` have SCAs0_to_SMCAs: (map\ S\ CAs0)\ \cdots cl\ \eta s0 = map\ (S_M\ S\ M)\ CAs unfolding CAs0_def \eta s0_def using f_p(3) n by (force intro: nth_equalityI) have sub_ground: \forall \eta c\theta \in set \eta s\theta. is_ground_subst \eta c\theta unfolding \eta s \theta_- def using f_- p n by force then have is_ground_subst_list \eta s\theta using n unfolding is_ground_subst_list_def by auto — Split side premises CAs0 into Cs0 and AAs0 obtain AAs0\ Cs0 where AAs0_Cs0_p: AAs0 \cdot \cdot aml \eta s0 = AAs length Cs0 = n Cs0 \cdot \cdot cl \eta s0 = Cs \forall i < n. \ CAs0 \ ! \ i = Cs0 \ ! \ i + poss \ (AAs0 \ ! \ i) \ length \ AAs0 = n proof - have \forall i < n. \exists AA0. AA0 \cdot am \ \eta s0 \ ! \ i = AAs \ ! \ i \land \ poss \ AA0 \subseteq \# \ CAs0 \ ! \ i proof (rule, rule) \mathbf{fix} i assume i < n have CAs0 ! i \cdot \eta s0 ! i = CAs ! i using \langle i < n \rangle \langle CAs\theta \cdot cl \ \eta s\theta = CAs \rangle \ n \ \textbf{by} \ force moreover have poss (AAs ! i) \subseteq \# CAs ! i \mathbf{using} \ \langle i < n \rangle \ cas \ \mathbf{by} \ auto ultimately obtain poss_AA\theta where nn: poss_AA0 · \etas0 ! i = poss (AAs ! i) \wedge poss_AA0 \subseteq# CAs0 ! i using cas image_mset_of_subset unfolding subst_cls_def by metis then have l: \forall L \in \# poss_AA0. is_pos L unfolding subst_cls_def by (metis Melem_subst_cls imageE literal.disc(1) literal.map_disc_iff\ set_image_mset\ subst_cls_def\ subst_lit_def) define AA\theta where AA0 = image_mset \ atm_of \ poss_AA0 have na: poss AA0 = poss_AA0 using l unfolding AA0_def by auto then have AA0 \cdot am \eta s0 ! i = AAs ! i using nn by (metis (mono_tags) literal.inject(1) multiset.inj_map_strong subst_cls_poss) moreover have poss AA0 \subseteq \# CAs0 ! i using na nn by auto ultimately show \exists AA0. \ AA0 \cdot am \ \eta s0 \ ! \ i = AAs \ ! \ i \wedge \ poss \ AA0 \subseteq \# \ CAs0 \ ! \ i by blast qed then obtain AAs0f where AAs0f_p: \forall i < n. \ AAs0f \ i \cdot am \ \eta s0 \ ! \ i = AAs \ ! \ i \land (poss \ (AAs0f \ i)) \subseteq \# \ CAs0 \ ! \ i by metis define AAs\theta where AAs\theta = map \ AAs\theta f \ [\theta ... < n] then have length \ AAs0 = n bv auto note n = n \langle length | AAs\theta = n \rangle from AAs0_def have \forall i < n. AAs0 ! i \cdot am \eta s0 ! i = AAs ! i using AAs0f_{-}p by auto then have AAs0_AAs: AAs0 \cdot \cdot \cdot aml \eta s0 = AAs using n by (auto intro: nth_equalityI) from AAs0_def have AAs0_in_CAs0: \forall i < n. poss (AAs0!i) \subseteq \# CAs0!i using AAs0f_{-}p by auto define Cs\theta where Cs0 = map2 \ (-) \ CAs0 \ (map \ poss \ AAs0) have length \ Cs\theta = n using Cs\theta_def n by auto note n = n \langle length | Cs\theta = n \rangle ``` ``` have \forall i < n. CAs0! i = Cs0! i + poss (AAs0! i) using AAs0_in_CAs0 Cs0_def n by auto then have Cs\theta \cdot \cdot cl \eta
s\theta = Cs using \langle CAs\theta \cdot cl \mid \eta s\theta = CAs \rangle AAs\theta_AAs \ cas \ n \ by \ (auto intro: nth_equalityI) show ?thesis using that \langle AAs0 \cdot \cdot \cdot aml \mid \eta s0 = AAs \rangle \ \langle Cs0 \cdot \cdot \cdot cl \mid \eta s0 = Cs \rangle \ \langle \forall \mid i < n. \ CAs0 \mid i = Cs0 \mid i + poss \ (AAs0 \mid i) \rangle \langle length \ AAs0 = n \rangle \langle length \ Cs0 = n \rangle by blast qed — Obtain FO main premise have \exists DA0 \ \eta 0. \ DA0 \in M \land DA = DA0 \cdot \eta 0 \land S \ DA0 \cdot \eta 0 = S_M \ S \ M \ DA \land is_ground_subst \ \eta 0 using grounding S_M_grounding_of_clss select by (metis le_supE singletonI subsetCE) then obtain DA\theta \eta \theta where DA0 - \eta 0 - p: DA0 \in M \land DA = DA0 \cdot \eta 0 \land SDA0 \cdot \eta 0 = S - MSMDA \land is_ground_subst \eta 0 by auto — The properties we need of the FO main premise have DA0_in_M: DA0 \in M using DA \theta_- \eta \theta_- p by auto have DA0_to_DA: DA0 \cdot \eta 0 = DA using DA \theta_- \eta \theta_- p by auto have SDA0_to_SMDA: SDA0 \cdot \eta 0 = S_MSMDA using DA\theta_{-}\eta\theta_{-}p by auto have is_ground_subst \eta \theta using DA\theta_{-}\eta\theta_{-}p by auto — Split main premise DA0 into D0 and As0 obtain D\theta As\theta where D\theta As\theta p: As0 \cdot al \ \eta 0 = As \ length \ As0 = n \ D0 \cdot \eta 0 = D \ DA0 = D0 + (negs \ (mset \ As0)) S_M S M (D + negs (mset As)) \neq \{\#\} \Longrightarrow negs (mset As0) = S DA0 proof - assume a: S_M S M (D + negs (mset As)) = \{\#\} \land length As = (Suc 0) \land maximal_wrt \ (As ! \ 0 \cdot a \ \sigma) \ ((D + negs \ (mset \ As)) \cdot \sigma) then have as: mset As = \{\#As \mid 0\#\} by (auto intro: nth_{-}equalityI) then have negs (mset As) = {\#Neg (As ! 0)\#} by (simp add: \langle mset \ As = \{ \#As \ ! \ 0 \# \} \rangle) then have DA = D + \{ \#Neg \ (As ! \ \theta) \# \} using da by auto then obtain L where L \in \# DA0 \land L \cdot l \ \eta 0 = Neg \ (As \ ! \ 0) using DAO_to_DA by (metis Melem_subst_cls mset_subset_eq_add_right single_subset_iff) then have Neg\ (atm_of\ L) \in \#\ DA0 \land Neg\ (atm_of\ L) \cdot l\ \eta0 = Neg\ (As\ !\ 0) by (metis Neq_atm_of_iff literal.sel(2) subst_lit_is_pos) then have [atm_of L] \cdot al \ \eta \theta = As \land negs \ (mset \ [atm_of L]) \subseteq \# DA\theta using as subst_lit_def by auto then have \exists As0. \ As0 \cdot al \ \eta 0 = As \land negs \ (mset \ As0) \subseteq \# \ DA0 \land (S_M \ S \ M \ (D + negs \ (mset \ As)) \neq \{\#\} \longrightarrow negs \ (mset \ As0) = S \ DA0) using a by blast moreover assume S_{-}M S M (D + negs (mset As)) = negs (mset As) then have negs (mset As) = SDA0 \cdot \eta 0 using da \langle S DA\theta \cdot \eta\theta = S_{-}M S M DA \rangle by auto then have \exists As\theta. negs (mset As\theta) = S DA\theta \land As\theta \cdot al \ \eta\theta = As using instance_list[of As S DA0 \eta 0] S.S_selects_neg_lits by auto then have \exists As0. \ As0 \cdot al \ \eta 0 = As \land negs \ (mset \ As0) \subseteq \# \ DA0 \land (S_M \ S \ M \ (D + negs \ (mset \ As)) \neq \{\#\} \longrightarrow negs \ (mset \ As0) = S \ DA0) using S.S_selects_subseteq by auto ``` ``` ultimately have \exists As0. \ As0 \cdot al \ \eta 0 = As \land (negs \ (mset \ As0)) \subseteq \# \ DA0 \land (S_M \ S \ M \ (D + negs \ (mset \ As)) \neq \{\#\} \longrightarrow negs \ (mset \ As0) = S \ DA0) using eligible unfolding eligible.simps by auto then obtain As\theta where As0_p: As0 \cdot al \ \eta 0 = As \land negs \ (mset \ As0) \subseteq \# \ DA0 \land (S_M \ S \ M \ (D + negs \ (mset \ As)) \neq \{\#\} \longrightarrow negs \ (mset \ As0) = S \ DA0) then have length As0 = n using as_len by auto \mathbf{note}\ n = n\ this have As\theta \cdot al \ \eta\theta = As using As\theta_{-}p by auto define D\theta where D0 = DA0 - negs (mset As0) then have DA0 = D0 + negs (mset As0) using As\theta_p by auto then have D\theta \cdot \eta \theta = D using DA0_to_DA da As0_p by auto have S_{-}M S M (D + negs (mset As)) \neq \{\#\} \Longrightarrow negs (mset As0) = S DA0 using As\theta_p by blast then show ?thesis using that \langle As\theta \cdot al \ \eta\theta = As \rangle \ \langle D\theta \cdot \eta\theta = D \rangle \ \langle DA\theta = D\theta + (negs (mset \ As\theta)) \rangle \ \langle length \ As\theta = n \rangle by metis qed show ?thesis using that [OF n(2,1) DA0-in_M DA0-to_DA SDA0-to_SMDA CAs0-in_M CAs0-to_CAs SCAs0-to_SMCAs \langle is_ground_subst\ \eta\theta\rangle\ \langle is_ground_subst_list\ \eta s\theta\rangle\ \langle As\theta\ \cdot al\ \eta\theta=As\rangle \langle AAs0 \cdot \cdot aml \ \eta s0 = AAs \rangle \langle length \ As0 = n \rangle \langle D\theta \cdot \eta\theta = D \rangle \langle DA\theta = D\theta + (negs (mset As\theta)) \rangle \langle S_M \ S \ M \ (D + negs \ (mset \ As)) \neq \{\#\} \Longrightarrow negs \ (mset \ As0) = S \ DA0 \rangle \langle length \ Cs0 = n \rangle \langle Cs\theta \cdot \cdot cl \eta s\theta = Cs \rangle \langle \forall i < n. \ CAs\theta \ ! \ i = Cs\theta \ ! \ i + poss \ (AAs\theta \ ! \ i) \rangle \langle length \ AAs0 = n \rangle \mathbf{by} auto qed lemma assumes Pos A \in \# C shows A \in atms_of C using assms by (simp add: atm_iff_pos_or_neg_lit) lemma ord_resolve_rename_lifting: assumes sel_stable: \bigwedge \varrho \ C. \ is_renaming \ \varrho \Longrightarrow S \ (C \cdot \varrho) = S \ C \cdot \varrho \ {\bf and} res_e: ord_resolve (S_M S M) CAs DA AAs As \sigma E and select: selection S and \textit{grounding} \colon \{\textit{DA}\} \, \cup \, \textit{set CAs} \, \subseteq \, \textit{grounding_of_clss} \, \, \textit{M} obtains \eta s \eta \eta 2 CAs0 DA0 AAs0 As0 E0 \tau where is_ground_subst \eta is_ground_subst_list\ \eta s is_ground_subst \eta 2 ord_resolve_rename\ S\ CAs0\ DA0\ AAs0\ As0\ au\ E0 CAs0 \cdot cl \eta s = CAs DA0 \cdot \eta = DA E0 \cdot \eta 2 = E ``` ``` \{DA\theta\} \cup set\ CAs\theta \subseteq M using res_e proof (cases rule: ord_resolve.cases) case (ord_resolve \ n \ Cs \ D) note da = this(1) and e = this(2) and cas_len = this(3) and cs_len = this(4) and aas_len = this(5) and as_len = this(6) and nz = this(7) and cas = this(8) and aas_not_empt = this(9) and mgu = this(10) and eligible = this(11) and str_max = this(12) and sel_empt = this(13) have sel_ren_list_inv: using sel_stable unfolding is_renaming_list_def by (auto intro: nth_equalityI) \mathbf{note}\ n = \langle n \neq 0 \rangle\ \langle length\ CAs = n \rangle\ \langle length\ CS = n \rangle\ \langle length\ AAs = n \rangle\ \langle length\ AS = n \rangle interpret S: selection S by (rule select) obtain DA0 \eta0 CAs0 \etas0 As0 AAs0 D0 Cs0 where as0: length \ CAs0 = n \mathit{length}\ \eta s\theta \,=\, n DA0 \in M DA\theta \cdot \eta\theta = DA S DA0 \cdot \eta 0 = S_{-}M S M DA \forall \ \mathit{CA0} \in \mathit{set} \ \mathit{CAs0}. \ \mathit{CA0} \in \mathit{M} CAs\theta \cdot cl \eta s\theta = CAs map \ S \ CAs0 \ \cdots cl \ \eta s0 = map \ (S_M \ S \ M) \ CAs is_ground_subst \eta\theta is_ground_subst_list \eta s0 As\theta \cdot al \ \eta\theta = As AAs0 \cdot \cdot aml \eta s0 = AAs length As0 = n D\theta \cdot \eta \theta = D DA\theta = D\theta + (negs (mset As\theta)) S_M \ S \ M \ (D + negs \ (mset \ As)) \neq \{\#\} \Longrightarrow negs \ (mset \ As0) = S \ DA0 length \ Cs0 = n Cs\theta \cdot cl \eta s\theta = Cs \forall i < n. \ CAs0 \ ! \ i = Cs0 \ ! \ i + poss \ (AAs0 \ ! \ i) length \ AAs0 = n using ord_resolve_obtain_clauses[of S M CAs DA, OF res_e select grounding <math>n(2) \land DA = D + negs \ (mset \ As) \land \forall i < n. \ \mathit{CAs} \ ! \ i = \mathit{Cs} \ ! \ i + \mathit{poss} \ (\mathit{AAs} \ ! \ i) \rangle \ \langle \mathit{length} \ \mathit{Cs} = \mathit{n} \rangle \ \langle \mathit{length} \ \mathit{AAs} = \mathit{n} \rangle, \ \mathit{of} \ \mathit{thesis}] \ \mathbf{by} \ \mathit{blast} \mathbf{note} \ \ n = \langle length \ CAs\theta = n \rangle \ \langle length \ \eta s\theta = n \rangle \ \langle length \ As\theta = n \rangle \ \langle length \ Cs\theta = n \rangle \ n \rangle have length (renamings_apart (DA0 \# CAs0)) = Suc n using n renamings_apart_length by auto note n = this n define \varrho where \varrho = hd \ (renamings_apart \ (DA0 \ \# \ CAs0)) define \varrho s where \varrho s = tl \ (renamings_apart \ (DA0 \ \# \ CAs0)) define DA\theta' where DA\theta' = DA\theta \cdot \varrho define D\theta' where D\theta' = D\theta \cdot \varrho define As\theta' where As\theta' = As\theta \cdot al \ \varrho define CAs\theta' where CAs\theta' = CAs\theta \cdot cl \rho s define Cs\theta' where Cs\theta' = Cs\theta \cdot \cdot cl \varrho s define AAs0' where ``` ``` AAs0' = AAs0 \cdot \cdot aml \ \varrho s define \eta \theta' where \eta \theta' = inv_renaming \ \varrho \odot \eta \theta define \eta s\theta' where \eta s\theta' = map \ inv_renaming \ \varrho s \odot s \ \eta s\theta have renames_DA0: is_renaming \varrho using renamings_apart_length renamings_apart_renaming unfolding \varrho_def by (metis length_greater_0_conv list.exhaust_sel list.set_intros(1) list.simps(3)) have renames_CAs0: is_renaming_list \ \varrho s using renamings_apart_length renamings_apart_renaming unfolding \varrho s_def by (metis is_renaming_list_def length_greater_0_conv list.set_sel(2) list.simps(3)) have length \ \varrho s = n unfolding \varrho s_def using n by auto \mathbf{note}\ n=n\ \langle \mathit{length}\ \varrho s=n\rangle have length As0' = n unfolding As0'_def using n by auto have length \ CAs0' = n using asO(1) n unfolding CAsO'_def by auto have length Cs\theta' = n unfolding Cs\theta'_def using n by auto have length AAs0' = n unfolding AAs0'_-def using n by auto have length \eta s\theta' = n using as\theta(2) n unfolding \eta s\theta' def by auto \mathbf{note}\ n = \langle \mathit{length}\ \mathit{CAs0}' = \mathit{n} \rangle\ \langle \mathit{length}\ \mathit{\etas0}' = \mathit{n} \rangle\ \langle \mathit{length}\ \mathit{As0}' = \mathit{n} \rangle\ \langle \mathit{length}\
\mathit{Cs0}' = \mathit{n} \rangle\ n \rangle have DA\theta'-DA: DA\theta' \cdot \eta\theta' = DA using as\theta(4) unfolding \eta\theta'_def DA\theta'_def using renames_DA\theta by simp have D\theta' D: D\theta' \cdot \eta\theta' = D using as\theta(14) unfolding \eta\theta'_def D\theta'_def using renames_DA0 by simp have As\theta' As: As\theta' \cdot al \ \eta\theta' = As using as\theta(11) unfolding \eta\theta'-def As\theta'-def using renames_DA0 by auto have S DA\theta' \cdot \eta\theta' = S_{-}M S M DA using as0(5) unfolding \eta0'_def DA0'_def using renames_DA0 sel_stable by auto have CAs\theta'_CAs: CAs\theta' \cdot \cdot cl \eta s\theta' = CAs using asO(7) unfolding CAsO'_def \eta sO'_def using renames_CAsO n by auto have Cs\theta' Cs: Cs\theta' cl \eta s\theta' = Cs using as0(18) unfolding Cs0'_def \eta s0'_def using renames_CAs0 n by auto have AAs0'_AAs: AAs0' \cdot \cdot aml \eta s0' = AAs using as\theta(12) unfolding \eta s\theta' def AAs\theta' def using renames_CAs\theta using n by auto have map S CAs\theta' \cdot \cdot cl \eta s\theta' = map (S_M S_M) CAs unfolding CAs0'_def \(\eta s0'\) def using as0(8) n renames_CAs0 sel_ren_list_inv by auto have DA0'-split: DA0' = D0' + negs (mset As0') using as0(15) DA0'_def D0'_def As0'_def by auto then have D0'_subset_DA0': D0' \subseteq \# DA0' by auto from DA0'-split have negs_As0'-subset_DA0': negs (mset As0') \subseteq \# DA0' by auto have CAs0'_split: \forall i < n. CAs0' ! i = Cs0' ! i + poss (AAs0' ! i) using as0(19) CAs0'_def Cs0'_def AAs0'_def n by auto then have \forall i < n. Cs\theta' ! i \subseteq \# CAs\theta' ! i by auto from CAs0'-split have poss_AAs0'-subset_CAs0': \forall i < n. poss (AAs0' ! i) \subseteq \# CAs0' ! i by auto then have AAs0'_in_atms_of_CAs0': \forall i < n. \ \forall A \in \#AAs0'! i. \ A \in atms_of\ (CAs0' ! i) by (auto simp add: atm_iff_pos_or_neg_lit) have as\theta': ``` ``` S_M \ S \ M \ (D + negs \ (mset \ As)) \neq \{\#\} \Longrightarrow negs \ (mset \ As0') = S \ DA0' proof - assume a: S_M S M (D + negs (mset As)) \neq \{\#\} then have negs (mset As0) \cdot \varrho = S DA0 \cdot \varrho using as\theta(16) unfolding \varrho_{-}def by metis then show negs (mset As0') = SDA0' using As0'_def\ DA0'_def\ using\ sel_stable[of\ \varrho\ DA0]\ renames_DA0\ by\ auto \mathbf{qed} have vd: var_disjoint (DA0' \# CAs0') \mathbf{unfolding}\ DA0'_def\ CAs0'_def\ \mathbf{using}\ renamings_apart_var_disjoint unfolding \varrho_{-}def \varrho s_{-}def by (metis length_greater_0_conv list.exhaust_sel n(6) substitution.subst_cls_lists_Cons substitution_axioms zero_less_Suc) — Introduce ground substitution from vd\ DA0'_DA\ CAs0'_CAs\ have\ \exists\ \eta.\ \forall\ i< Suc\ n.\ \forall\ S.\ S\subseteq\#\ (DA0'\ \#\ CAs0')\ !\ i\longrightarrow S\cdot(\eta0'\#\eta s0')\ !\ i= S · \eta unfolding var_disjoint_def using n by auto then obtain \eta where \eta_-p: \forall i < Suc \ n. \ \forall S. \ S \subseteq \# \ (DA0' \# \ CAs0') \ ! \ i \longrightarrow S \cdot (\eta 0' \# \eta s0') \ ! \ i = S \cdot \eta by auto have \eta_{-p_lit}: \forall i < Suc \ n. \forall L. L \in \# (DA0' \# CAs0') ! i \longrightarrow L \cdot l (\eta 0' \# \eta s0') ! i = L \cdot l \eta proof (rule, rule, rule, rule) fix i :: nat and L :: 'a literal assume a: i < Suc n L \in \# (DA0' \# CAs0') ! i then have \forall S. S \subseteq \# (DA\theta' \# CAs\theta') ! i \longrightarrow S \cdot (\eta\theta' \# \eta s\theta') ! i = S \cdot \eta using \eta_{-}p by auto then have \{\#\ L\ \#\}\cdot(\eta\theta'\ \#\ \eta s\theta')\ !\ i=\{\#\ L\ \#\}\cdot\eta using a by (meson single_subset_iff) then show L \cdot l \ (\eta \theta' \ \# \ \eta s \theta') \ ! \ i = L \cdot l \ \eta \ {\bf by} \ {\it auto} qed have \eta_{-p-atm}: \forall i < Suc \ n. \forall A. A \in atms_of ((DA0' \# CAs0') ! i) \longrightarrow A \cdot a (\eta 0' \# \eta s0') ! i = A \cdot a \eta proof (rule, rule, rule, rule) fix i :: nat and A :: 'a assume a: i < Suc n A \in atms_of ((DA0' \# CAs0') ! i) then obtain L where L_p: atm_{-}of L = A \wedge L \in \# (DA0' \# CAs0') ! i \mathbf{unfolding}\ atms_of_def\ \mathbf{by}\ auto then have L \cdot l (\eta \theta' \# \eta s \theta') ! i = L \cdot l \eta using \eta_-p_-lit\ a by auto then show A \cdot a (\eta \theta' \# \eta s \theta') ! i = A \cdot a \eta using L_p unfolding subst_lit_def by (cases L) auto qed have DA\theta' DA: DA\theta' \cdot \eta = DA using DA\theta'_{-}DA \eta_{-}p by auto have D\theta' \cdot \eta = D using \eta_p D\theta'_D n D\theta'_s ubset_D A\theta' by auto have As\theta' \cdot al \ \eta = As proof (rule nth_equalityI) show length (As0' \cdot al \ \eta) = length \ As using n by auto next show \forall i < length (As0' \cdot al \eta). (As0' \cdot al \eta) ! i = As! i proof (rule, rule) \mathbf{fix} \ i :: nat assume a: i < length (As0' \cdot al \eta) have A_{-}eq: \forall A. A \in atms_of DA0' \longrightarrow A \cdot a \eta0' = A \cdot a \eta using \eta_{-}p_{-}atm \ n by force have As\theta'! i \in atms_of DA\theta' using negs_As\theta '_subset_DA\theta ' unfolding atms_of_def ``` ``` using a n by force then have As\theta' ! i \cdot a \eta\theta' = As\theta' ! i \cdot a \eta using A_{-}eq by simp then show (As0' \cdot al \ \eta) ! i = As ! i using As\theta' As \langle length As\theta' = n \rangle a by auto qed have S DAO' \cdot \eta = S_-M S M DA using \langle S \; DA0' \cdot \eta 0' = S_M \; S \; M \; DA \rangle \; \eta_p \; S.S_selects_subseteq by auto from \eta_{-p} have \eta_{-p} CAs0': \forall i < n. (CAs0'!i) \cdot (\eta s0'!i) = (CAs0'!i) \cdot \eta using n by auto then have CAs\theta' \cdot cl \eta s\theta' = CAs\theta' \cdot cl \eta using n by (auto intro: nth_equalityI) then have CAs0' - \eta - fo - CAs: CAs0' \cdot cl \eta = CAs using CAs0'-CAs \eta-p n by auto from \eta_{-p} have \forall i < n. S(CAs\theta'! i) \cdot \eta s\theta'! i = S(CAs\theta'! i) \cdot \eta \mathbf{using}\ S.S_selects_subseteq\ n\ \mathbf{by}\ auto then have map S CAs0' \cdot cl \eta s0' = map S CAs0' \cdot cl \eta using n by (auto intro: nth_equalityI) then have SCAs0' - \eta - fo - SMCAs: map SCAs0' \cdot cl \ \eta = map \ (S - MSM) \ CAs using \langle map \ S \ CAs\theta' \cdots cl \ \eta s\theta' = map \ (S_M \ S \ M) \ CAs \rangle by auto have Cs\theta' \cdot cl \ \eta = Cs proof (rule nth_equalityI) show length (Cs0' \cdot cl \ \eta) = length \ Cs using n by auto next show \forall i < length (Cs0' \cdot cl \eta). (Cs0' \cdot cl \eta) ! i = Cs ! i proof (rule, rule) \mathbf{fix} i assume i < length (Cs0' \cdot cl \eta) then have a: i < n using n by force have (Cs\theta' \cdot cl \eta s\theta') ! i = Cs ! i using Cs0'_Cs a n by force moreover have \eta_{-p}CAs\theta': \forall S. S \subseteq \# CAs\theta' ! i \longrightarrow S \cdot \eta s\theta' ! i = S \cdot \eta using \eta_- p a by force have Cs\theta' ! i \cdot \eta s\theta' ! i = (Cs\theta' \cdot cl \eta) ! i using \eta_{-p}-CAs0' \forall i < n. Cs0'! i \subseteq \# CAs0'! i \rangle a n by force then have (Cs\theta' \cdot cl \eta s\theta') ! i = (Cs\theta' \cdot cl \eta) ! i using a n by force ultimately show (Cs\theta' \cdot cl \eta) ! i = Cs ! i by auto qed qed have AAs0'-AAs: AAs0' \cdot aml \eta = AAs proof (rule nth_equalityI) show length (AAs0' \cdot aml \ \eta) = length \ AAs using n by auto next show \forall i < length (AAs0' \cdot aml \eta). (AAs0' \cdot aml \eta) ! i = AAs! i proof (rule, rule) \mathbf{fix} \ i :: nat assume a: i < length (AAs0' \cdot aml \eta) then have i < n using n by force then have \forall A.\ A \in atms_of\ ((DA0' \# CAs0') ! Suc\ i) \longrightarrow A \cdot a\ (\eta 0' \# \eta s0') ! Suc\ i = A \cdot a\ \eta using \eta_{-}p_{-}atm \ n by force ``` ``` then have A_{-eq}: \forall A. A \in atms_of (CAs\theta'! i) \longrightarrow A \cdot a \eta s\theta'! i = A \cdot a \eta have AAs_CAs\theta': \forall A \in \# AAs\theta' ! i. A \in atms_of (CAs\theta' ! i) using AAs0'_in_atms_of_CAs0' unfolding atms_of_def using a n by force then have AAs0'! i \cdot am \eta s0'! i = AAs0'! i \cdot am \eta unfolding subst_atm_mset_def using A_eq unfolding subst_atm_mset_def by auto then show (AAs0' \cdot aml \ \eta) ! i = AAs! i using AAs0'-AAs \langle length \ AAs0' = n \rangle \langle length \ \eta s0' = n \rangle \ a by auto \mathbf{qed} qed — Obtain MGU and substitution obtain \tau \varphi where \tau \varphi: Some \tau = mgu \ (set_mset \ `set \ (map2 \ add_mset \ As0' \ AAs0')) \tau\odot\varphi=\eta\odot\sigma proof - have uu: is_unifiers\ \sigma\ (set_mset\ `set\ (map2\ add_mset\ (As0'\cdot al\ \eta)\ (AAs0'\cdot aml\ \eta))) using mgu mgu_sound is_mgu_def unfolding \langle AAs\theta' \cdot aml | \eta = AAs \rangle using \langle As\theta' \cdot al | \eta = As \rangle by auto have \eta \sigma uni: is_unifiers (\eta \odot \sigma) (set_mset 'set (map2 add_mset As0' AAs0')) proof - have set_mset 'set (map2 add_mset As0' AAs0' \cdot aml \eta) = set_mset 'set (map2 add_mset As0' AAs0') ·ass \eta unfolding subst_atms_def subst_atm_mset_list_def using subst_atm_mset_def subst_atms_def by (simp add: image_image subst_atm_mset_def subst_atms_def) then have is_unifiers \sigma (set_mset 'set (map2 add_mset As0' AAs0') ·ass \eta) using uu by (auto simp: n map2_add_mset_map) then show ?thesis using is_unifiers_comp by auto qed then obtain \tau where \tau_{-p}: Some \tau = mgu \ (set_mset \ 'set \ (map2 \ add_mset \ As0' \ AAs0')) using mgu_complete by (metis (mono_tags, hide_lams) List.finite_set finite_imageI finite_set_mset image_iff) moreover then obtain \varphi where \varphi_{-}p: \tau \odot \varphi = \eta \odot \sigma by (metis (mono_tags, hide_lams) finite_set ησuni finite_imageI finite_set_mset image_iff mgu_sound\ set_mset_mset\ substitution_ops.is_mgu_def) ultimately show thesis using that by auto qed — Lifting eligibility have eligible 0': eligible S \tau As 0' (D0' + negs (mset As 0')) proof - have S_M \ S \ M \ (D + negs \ (mset \ As)) = negs \ (mset \ As) \lor S_M \ S \ M \ (D + negs \ (mset \ As)) = \{\#\} \land M \ (D + negs \ (mset \ As)) = \{\#\} \land M \ (D + negs \ (mset \
As)) = \{\#\} \land M \ (D + negs \ (mset \ As)) = \{\#\} \land M \ (D length As = 1 \land maximal_wrt (As ! 0 \cdot a \sigma) ((D + negs (mset As)) \cdot \sigma) using eliqible unfolding eliqible.simps by auto then show ?thesis proof assume S_M S M (D + negs (mset As)) = negs (mset As) then have S_{-}M S M (D + negs (mset As)) \neq \{\#\} using n by force then have S (D0' + negs (mset As0')) = negs (mset As0') using as0' DA0'_split by auto then show ?thesis unfolding eligible.simps[simplified] by auto assume asm: S_M S M (D + negs (mset As)) = \{\#\} \land length As = 1 \land M S M (D + negs (mset As)) = \{\#\} \land length As = 1 \land M S M (D + negs (mset As)) = \{\#\} \land length As = 1 \land M S M (D + negs (mset As)) = \{\#\} \land length As = 1 \land M S M (D + negs (mset As)) = \{\#\} \land length As = 1 \land M S M (D + negs (mset As)) = \{\#\} \land length As = 1 \land M S M (D + negs (mset As)) = \{\#\} \land length As = 1 \land M S M (D + negs (mset As)) = \{\#\} \land length As = 1 \land M S M (D + negs (mset As)) = \{\#\} \land length As = 1 \land M S M (D + negs (mset As)) = \{\#\} \land length As = 1 \land M S M (D + negs (mset As)) = \{\#\} \land length As = 1 \land M S M (D + negs (mset As)) = \{\#\} \land length As = 1 \land M S M (D + negs (mset As)) = \{\#\} \land length As = 1 \land M S M (D + negs (mset As)) = \{\#\} \land length As = 1 \land M S M (D + negs (mset As)) = \{\#\} \land M (D + n maximal_wrt \ (As ! \ 0 \cdot a \ \sigma) \ ((D + negs \ (mset \ As)) \cdot \sigma) then have S(D\theta' + negs(mset As\theta')) = \{\#\} using \langle D0' \cdot \eta = D \rangle [symmetric] \langle As0' \cdot al \ \eta = As \rangle [symmetric] \langle S \ (DA0') \cdot \eta = S M \ S \ M \ (DA) \rangle da DAO'_split subst_cls_empty_iff by metis moreover from asm have l: length As0' = 1 ``` ``` using \langle As\theta' \cdot al \ \eta = As \rangle by auto moreover from asm have maximal_wrt (As0'!\ 0 \cdot a\ (\tau\odot\varphi))\ ((D0' + negs\ (mset\ As0'))\cdot (\tau\odot\varphi)) using \langle As\theta' \cdot al \ \eta = As \rangle \langle D\theta' \cdot \eta = D \rangle using l \ \tau \varphi by auto then have maximal_wrt (As0'! \ 0 \cdot a \ \tau \cdot a \ \varphi) \ ((D0' + negs \ (mset \ As0')) \cdot \tau \cdot \varphi) then have maximal_wrt \ (As0'!\ 0 \cdot a\ \tau) \ ((D0' + negs\ (mset\ As0')) \cdot \tau) using maximal_wrt_subst by blast ultimately show ?thesis unfolding eligible.simps[simplified] by auto qed qed — Lifting maximality have maximality: \forall i < n. strictly_maximal_wrt (As0'! i \cdot a \tau) (Cs0'! i \cdot \tau) proof - from str_max have \forall i < n. strictly_maximal_wrt ((As\theta' \cdot al \ \eta) ! i \cdot a \ \sigma) ((Cs\theta' \cdot cl \ \eta) ! i \cdot \sigma) using \langle As\theta' \cdot al \ \eta = As \rangle \ \langle Cs\theta' \cdot cl \ \eta = Cs \rangle by simp then have \forall i < n. strictly_maximal_wrt (As0'! i \cdot a (\tau \odot \varphi)) (Cs0'! i \cdot (\tau \odot \varphi)) using n \tau \varphi by simp then have \forall i < n. strictly_maximal_wrt (As0'! i \cdot a \tau \cdot a \varphi) (Cs0'! i \cdot \tau \cdot \varphi) by auto then show \forall i < n. strictly_maximal_wrt \ (As0'! \ i \cdot a \ \tau) \ (Cs0'! \ i \cdot \tau) using strictly_maximal_wrt_subst \ \tau \varphi \ by \ blast qed — Lifting nothing being selected have nothing_selected: \forall i < n. \ S \ (CAs0'!i) = \{\#\} proof - have \forall i < n. \ (map \ S \ CAs0' \cdot cl \ \eta) \ ! \ i = map \ (S M \ S \ M) \ CAs \ ! \ i by (simp add: \langle map \ S \ CAs0' \cdot cl \ \eta = map \ (S_M \ S \ M) \ CAs \rangle) then have \forall i < n. S(CAs0'!i) \cdot \eta = S_-MSM(CAs!i) using n by auto then have \forall i < n. \ S \ (CAs0'!i) \cdot \eta = \{\#\} using sel_empt \forall i < n. S(CAs0'!i) \cdot \eta = S_-MSM(CAs!i) by auto then show \forall i < n. S(CAs\theta'! i) = \{\#\} using subst_cls_empty_iff by blast qed — Lifting AAs0's non-emptiness have \forall i < n. \ AAs0'! \ i \neq \{\#\} using n aas_not_empt \langle AAs\theta' \cdot aml | \eta = AAs \rangle by auto — Resolve the lifted clauses define E\theta' where E0' = ((\bigcup \# mset \ Cs0') + D0') \cdot \tau have res_e0': ord_resolve\ S\ CAs0'\ DA0'\ AAs0'\ As0'\ \tau\ E0' using ord_resolve.intros[of\ CAs0'\ n\ Cs0'\ AAs0'\ As0'\ \tau\ S\ D0', OF_{----} \langle \forall i < n. \ AAs0' ! \ i \neq \{\#\} \rangle \ \tau \varphi(1) \ eligible0' \forall i < n. \ strictly_maximal_wrt \ (As0'! \ i \cdot a \ \tau) \ (Cs0'! \ i \cdot \tau) \rangle \ \forall i < n. \ S \ (CAs0'! \ i) = \{\#\}\} unfolding E0'-def using DA0'-split n \ \forall i < n. CAs0'! i = Cs0'! i + poss (AAs0'! i) \ by blast — Prove resolvent instantiates to ground resolvent have e\theta'\varphi e: E\theta' \cdot \varphi = E proof - have E0' \cdot \varphi = ((| \# mset Cs0') + D0') \cdot (\tau \odot \varphi) unfolding E0'_def by auto also have ... = (\bigcup \# mset \ Cs\theta' + D\theta') \cdot (\eta \odot \sigma) using \tau \varphi by auto also have ... = (\bigcup \# mset \ Cs + D) \cdot \sigma using \langle Cs\theta' \cdot cl | \eta = Cs \rangle \langle D\theta' \cdot \eta = D \rangle by auto also have \dots = E ``` ``` using e by auto finally show e\theta'\varphi e: E\theta'\cdot\varphi=E qed — Replace \varphi with a true ground substitution obtain \eta 2 where ground_{-}\eta 2: is_ground_subst \eta 2 E0' \cdot \eta 2 = E proof - {\bf have} \ is_ground_cls_list \ CAs \ is_ground_cls \ DA \mathbf{using} \ \mathit{grounding_ground} \ \mathbf{unfolding} \ \mathit{is_ground_cls_list_def} \ \mathbf{by} \ \mathit{auto} then have is_ground_cls\ E using res_e ground_resolvent_subset by (force intro: is_ground_cls_mono) then show thesis using that e\theta'\varphi e make_ground_subst by auto — Wrap up the proof have ord_resolve S (CAs0 \cdot \cdot cl \varrho s) (DA0 \cdot \cdot \varrho) (AAs0 \cdot \cdot aml \varrho s) (As0 \cdot al \varrho) \tau E0' using res_e0' As0'_def \(\rho_def\) \(\rho_def\) \(\rho_def\) \(\rho_s_def\) DA0'_def \(\rho_def\) \(\rho_def\) \(\rho_def\) \(\rho_s_def\) by simp moreover have \forall i < n. poss (AAs0!i) \subseteq \# CAs0!i using as\theta(19) by auto moreover have negs (mset As0) \subseteq \# DA0 using local.as\theta(15) by auto ultimately have ord_resolve_rename S CAs0 DA0 AAs0 As0 \tau E0' using
ord_resolve_rename[of CAs0 n AAs0 As0 DA0 \varrho \varrhos S \tau E0 \uparrow \varrho_def \varrhos_def n by auto then show thesis \mathbf{using} \ that [of \ \eta 0 \ \eta s 0 \ \eta 2 \ CAs 0 \ DA 0] \ \langle is_ground_subst \ \eta 0 \rangle \ \langle is_ground_subst_list \ \eta s 0 \rangle \\ \langle is_ground_subst \ \eta 2 \rangle \ \langle CAs0 \ \cdots cl \ \eta s0 \ = \ CAs \rangle \ \langle DA0 \ \cdot \ \eta 0 \ = \ DA \rangle \ \langle E0' \ \cdot \ \eta 2 \ = \ E \rangle \ \langle DA0 \ \in \ M \rangle \forall CA \in set\ CAs0.\ CA \in M \land \ \mathbf{by}\ blast ged end end ``` ## 15 An Ordered Resolution Prover for First-Order Clauses ``` theory FO_Ordered_Resolution_Prover imports FO_Ordered_Resolution begin ``` **definition** $is_least :: (nat \Rightarrow bool) \Rightarrow nat \Rightarrow bool$ where This material is based on Section 4.3 ("A Simple Resolution Prover for First-Order Clauses") of Bachmair and Ganzinger's chapter. Specifically, it formalizes the RP prover defined in Figure 5 and its related lemmas and theorems, including Lemmas 4.10 and 4.11 and Theorem 4.13 (completeness). ``` lemma least_exists: P \ n \implies \exists \ n. is_least P \ n using exists_least_iff unfolding is_least_def by auto The following corresponds to page 42 and 43 of Section 4.3, from the explanation of RP to Lemma 4.10. type-synonym 'a state = 'a clause set \times 'a clause set \times 'a clause set locale FO_resolution_prover = FO_resolution subst_atm id_subst comp_subst renamings_apart atm_of_atms mgu less_atm + selection S for S :: ('a :: wellorder) \ clause \Rightarrow 'a \ clause \ and subst_atm :: 'a \Rightarrow 's \Rightarrow 'a \ and id_subst :: 's \ and ``` ``` comp_subst :: 's \Rightarrow 's \Rightarrow 's and renamings_apart :: 'a clause list \Rightarrow 's list and atm_of_atms :: 'a \ list \Rightarrow 'a \ \mathbf{and} mgu :: 'a \ set \ set \Rightarrow 's \ option \ and less_atm :: 'a \Rightarrow 'a \Rightarrow bool + assumes sel_stable: \bigwedge \varrho \ C. \ is_renaming \ \varrho \Longrightarrow S \ (C \cdot \varrho) = S \ C \cdot \varrho \ {\bf and} less_atm_ground: is_ground_atm \ A \implies is_ground_atm \ B \implies less_atm \ A \ B \implies A < B begin fun N_{-}of_{-}state :: 'a state \Rightarrow 'a clause set where N_{-}of_{-}state\ (N,\ P,\ Q)=N fun P-of_state :: 'a state \Rightarrow 'a clause set where P_of_state\ (N,\ P,\ Q) = P O denotes relation composition in Isabelle, so the formalization uses Q instead. fun Q-of-state :: 'a state \Rightarrow 'a clause set where Q-of_state (N, P, Q) = Q definition clss_of_state :: 'a \ state \Rightarrow 'a \ clause \ set \ \mathbf{where} clss_of_state\ St\ =\ N_of_state\ St\ \cup\ P_of_state\ St\ \cup\ Q_of_state\ St abbreviation grounding_of_state :: 'a state \Rightarrow 'a clause set where grounding_of_state\ St\ \equiv\ grounding_of_clss\ (clss_of_state\ St) interpretation ord_FO_resolution: inference_system \ ord_FO_\Gamma \ S. The following inductive predicate formalizes the resolution prover in Figure 5. inductive RP :: 'a \ state \Rightarrow 'a \ state \Rightarrow bool \ (infix \leadsto 50) \ where tautology_deletion: Neg \ A \in \# \ C \Longrightarrow Pos \ A \in \# \ C \Longrightarrow (N \cup \{C\}, \ P, \ Q) \leadsto (N, \ P, \ Q) forward_subsumption: D \in P \cup Q \Longrightarrow subsumes \ D \ C \Longrightarrow (N \cup \{C\}, P, Q) \leadsto (N, P, Q) backward_subsumption_P: D \in N \Longrightarrow strictly_subsumes D \ C \Longrightarrow (N, P \cup \{C\}, Q) \leadsto (N, P, Q) backward_subsumption_Q: D \in N \Longrightarrow strictly_subsumes D \ C \Longrightarrow (N, P, Q \cup \{C\}) \leadsto (N, P, Q) | forward_reduction: D + \{\#L'\#\} \in P \cup Q \Longrightarrow -L = L' \cdot l \ \sigma \Longrightarrow D \cdot \sigma \subseteq \#C \Longrightarrow (N \cup \{C + \{\#L\#\}\}, P, Q) \leadsto (N \cup \{C\}, P, Q) | backward_reduction_P: D + \{\#L'\#\} \in N \Longrightarrow -L = L' \cdot l \ \sigma \Longrightarrow D \cdot \sigma \subseteq \#C \Longrightarrow (N, P \cup \{C + \{\#L\#\}\}, Q) \rightsquigarrow (N, P \cup \{C\}, Q) \mid backward_reduction_Q: D + \{\#L'\#\} \in N \Longrightarrow -L = L' \cdot l \ \sigma \Longrightarrow D \cdot \sigma \subseteq \#C \Longrightarrow (N, P, Q \cup \{C + \{\#L\#\}\}) \leadsto (N, P \cup \{C\}, Q) clause_processing: (N \cup \{C\}, P, Q) \rightsquigarrow (N, P \cup \{C\}, Q) | \textit{inference_computation: } N = \textit{concls_of (ord_FO_resolution.inferences_between } Q \ C) \Longrightarrow (\{\}, P \cup \{C\}, Q) \leadsto (N, P, Q \cup \{C\}) lemma final_RP: \neg (\{\}, \{\}, Q) \leadsto St by (auto elim: RP.cases) definition Sup_state :: 'a state llist \Rightarrow 'a state where Sup_state\ Sts = (Sup_llist (lmap N_of_state Sts), Sup_llist (lmap P_of_state Sts), Sup_llist (lmap Q_of_state Sts)) definition Liminf_state :: 'a state llist <math>\Rightarrow 'a state where Liminf_state\ Sts = (Liminf_llist (lmap N_of_state Sts), Liminf_llist (lmap P_of_state Sts), Liminf_llist (lmap Q_of_state Sts)) context fixes Sts Sts' :: 'a state llist assumes Sts: lfinite Sts lfinite Sts' ¬ <math>lnull Sts ¬ lnull Sts' llast <math>Sts' = llast Sts begin ``` lemma ``` N_{-}of_{-}Liminf_{-}state_{-}fin: N_{-}of_{-}state_{-}(Liminf_{-}state_{-}Sts') = N_{-}of_{-}state_{-}(Liminf_{-}state_{-}Sts) and P_{-}of_{-}Liminf_{-}state_{-}fin: P_{-}of_{-}state_{-}(Liminf_{-}state_{-}Sts) = P_{-}of_{-}state_{-}(Liminf_{-}state_{-}Sts) and Q_{-}of_{-}Liminf_{-}state_{-}fin: Q_{-}of_{-}state_{-}(Liminf_{-}state_{-}Sts') = Q_{-}of_{-}state_{-}(Liminf_{-}state_{-}Sts) using Sts by (simp_all add: Liminf_state_def lfinite_Liminf_llist llast_lmap) \mathbf{lemma}\ \mathit{Liminf_state_fin:}\ \mathit{Liminf_state}\ \mathit{Sts'} = \mathit{Liminf_state}\ \mathit{Sts} \mathbf{using}\ N_of_Liminf_state_fin\ P_of_Liminf_state_fin\ Q_of_Liminf_state_fin by (simp add: Liminf_state_def) end context fixes Sts Sts' :: 'a state llist assumes Sts: ¬ lfinite Sts emb Sts Sts' begin lemma N_{-}of_{-}Liminf_{-}state_inf: N_{-}of_{-}state \ (Liminf_{-}state \ Sts') \subseteq N_{-}of_{-}state \ (Liminf_{-}state \ Sts) and P_of_Liminf_state_inf: P_of_state (Liminf_state Sts') \subseteq P_of_state (Liminf_state Sts) and Q_of_Liminf_state_inf: Q_of_state (Liminf_state Sts') \subseteq Q_of_state (Liminf_state Sts) using Sts by (simp_all add: Liminf_state_def emb_Liminf_llist_infinite emb_lmap) lemma clss_of_Liminf_state_inf: clss_of_state \ (Liminf_state \ Sts') \subseteq clss_of_state \ (Liminf_state \ Sts) \mathbf{unfolding}\ \mathit{clss_of_state_def} using N_-of_-Liminf_-state_inf P_-of_-Liminf_-state_inf Q_-of_-Liminf_-state_inf by blast end definition fair_state_seq :: 'a state llist <math>\Rightarrow bool where fair_state_seg\ Sts \longleftrightarrow N_of_state\ (Liminf_state\ Sts) = \{\} \land P_of_state\ (Liminf_state\ Sts) = \{\} The following formalizes Lemma 4.10. context fixes Sts:: 'a\ state\ llist assumes deriv: chain (\leadsto) Sts and empty_Q0: Q_of_state (lhd Sts) = \{\} begin lemmas lhd_lmap_Sts = llist.map_sel(1)[OF\ chain_not_lnull[OF\ deriv]] definition S_{-}Q :: 'a \ clause \Rightarrow 'a \ clause \ \mathbf{where} S_{-}Q = S_{-}M S (Q_{-}of_{-}state (Liminf_{-}state Sts)) interpretation sq: selection S_{-}Q unfolding S_-Q_-def using S_-M_-selects_subseteq S_-M_-selects_neg_lits selection_axioms by unfold_locales auto interpretation gr: ground_resolution_with_selection S_Q by unfold_locales interpretation sr: standard_redundancy_criterion_reductive\ gr.ord_\Gamma by unfold_locales interpretation sr: standard_redundancy_criterion_counterex_reducing gr.ord_\Gamma ground_resolution_with_selection.INTERP\ S_Q by unfold_locales The extension of ordered resolution mentioned in 4.10. We let it consist of all sound rules. ``` **definition** $ground_sound_\Gamma$:: 'a inference set where ``` \mathit{ground_sound_\Gamma} = \{\mathit{Infer}\ \mathit{CC}\ \mathit{D}\ \mathit{E}\ |\ \mathit{CC}\ \mathit{D}\ \mathit{E}.\ (\forall\,\mathit{I}.\ \mathit{I}\ \models \!\mathit{m}\ \mathit{CC} \longrightarrow \mathit{I}\ \models \mathit{D} \longrightarrow \mathit{I}\ \models \mathit{E})\} We prove that we indeed defined an extension. lemma gd_ord_\Gamma_ngd_ord_\Gamma: gr.ord_\Gamma \subseteq ground_sound_\Gamma unfolding ground_sound_\Gamma_def using gr.ord_\Gamma_def gr.ord_resolve_sound by fastforce lemma sound_ground_sound_\Gamma: sound_inference_system\ ground_sound_\Gamma unfolding sound_inference_system_def ground_sound_\Gamma_def by auto lemma sat_preserving_ground_sound_\Gamma: sat_preserving_inference_system ground_sound_\Gamma using sound_ground_sound_\Gamma sat_preserving_inference_system.intro sound_inference_system.\Gamma_sat_preserving by blast definition sr_ext_Ri :: 'a \ clause \ set \Rightarrow 'a \ inference \ set \ \mathbf{where} sr_ext_Ri\ N = sr.Ri\ N \cup (ground_sound_\Gamma - gr.ord_\Gamma) interpretation sr_-ext: sat_preserving_redundancy_criterion\ ground_sound_\Gamma\ sr.Rf\ sr_ext_Ri unfolding sat_preserving_redundancy_criterion_def sr_ext_Ri_def using sat_preserving_ground_sound_\Gamma redundancy_criterion_standard_extension gd_ord_\Gamma_ngd_ord_\Gamma sr.redundancy_criterion_axioms by auto \mathbf{lemma}\ strict_subset_subsumption_redundant_clause: assumes sub: D \cdot \sigma \subset \# C \text{ and } ground_\sigma: is_ground_subst \sigma shows C \in sr.Rf (grounding_of_cls D) proof - from sub have \forall I. I \models D \cdot \sigma \longrightarrow I \models C unfolding true_cls_def by blast moreover have C > D \cdot \sigma using sub by (simp add: subset_imp_less_mset) moreover have D \cdot \sigma \in grounding_of_cls D using ground_{-}\sigma by (metis\ (mono_tags,\ lifting)\ mem_Collect_eq\ substitution_ops.grounding_of_cls_def) ultimately have set_mset \{\#D \cdot \sigma\#\} \subseteq grounding_of_cls\ D (\forall I. \ I \models m \ \{\#D \cdot \sigma\#\} \longrightarrow I \models C) (\forall D'. D' \in \# \{\#D \cdot \sigma\#\} \longrightarrow D' < C) by auto then show ?thesis using sr.Rf_def by blast qed
\mathbf{lemma}\ strict_subset_subsumption_redundant_clss: assumes D \cdot \sigma \subset \# C and is_ground_subst\ \sigma\ \mathbf{and} D \in CC shows C \in sr.Rf (grounding_of_clss CC) using assms proof have C \in sr.Rf (grounding_of_cls D) using strict_subset_subsumption_redundant_clause assms by auto \mathbf{using} \ assms \ \mathbf{unfolding} \ clss_of_state_def \ grounding_of_clss_def by (metis (no_types) sr.Rf_mono sup_ge1 SUP_absorb contra_subsetD) qed \mathbf{lemma} \ strict_subset_subsumption_grounding_redundant_clss: assumes D\sigma_subset_C : D \cdot \sigma \subset \# C \text{ and } D_in_St: D \in CC shows grounding_of_cls C \subseteq sr.Rf (grounding_of_clss CC) proof ``` ``` fix C\mu assume C\mu \in grounding_of_cls\ C then obtain \mu where \mu-p: C\mu = C \cdot \mu \wedge is_ground_subst <math>\mu unfolding grounding_of_cls_def by auto have D\sigma\mu C\mu: D\cdot\sigma\cdot\mu\subset\#C\cdot\mu using D\sigma_subset_C\ subst_subset_mono\ by\ auto then show C\mu \in sr.Rf (grounding_of_clss CC) using \mu-p strict_subset_subsumption_redundant_clss[of D \sigma \odot \mu \ C \cdot \mu] \ D_in_St \mathbf{unfolding}\ \mathit{clss_of_state_def}\ \mathbf{by}\ \mathit{auto} qed \mathbf{lemma}\ subst_cls_eq_grounding_of_cls_subset_eq: assumes D \cdot \sigma = C shows grounding_of_cls\ C\subseteq grounding_of_cls\ D proof fix C\sigma' assume C\sigma' \in grounding_of_cls\ C then obtain \sigma' where C\sigma': C \cdot \sigma' = C\sigma' is_ground_subst \sigma' \mathbf{unfolding} \ \mathit{grounding_of_cls_def} \ \mathbf{by} \ \mathit{auto} then have C \cdot \sigma' = D \cdot \sigma \cdot \sigma' \wedge is_ground_subst (\sigma \odot \sigma') using assms by auto then show C\sigma' \in grounding_of_cls\ D unfolding grounding_of_cls_def using C\sigma'(1) by force qed \mathbf{lemma}\ \mathit{derive_if_remove_subsumed} \colon assumes D \in \mathit{clss_of_state}\ \mathit{St}\ \mathbf{and} subsumes\ D\ C shows sr_ext.derive (grounding_of_state St \cup grounding_of_cls \ C) (grounding_of_state St) proof - from assms obtain \sigma where D \cdot \sigma = C \vee D \cdot \sigma \subset \# C by (auto simp: subsumes_def subset_mset_def) then have D \cdot \sigma = C \vee D \cdot \sigma \subset \# C by (simp add: subset_mset_def) then show ?thesis proof assume D \cdot \sigma = C then have grounding_of_cls\ C\subseteq grounding_of_cls\ D using subst_cls_eq_grounding_of_cls_subset_eq by simp then have (grounding_of_state\ St\ \cup\ grounding_of_cls\ C) = grounding_of_state\ St using assms unfolding clss_of_state_def grounding_of_clss_def by auto then show ?thesis by (auto intro: sr_ext.derive.intros) assume a: D \cdot \sigma \subset \# C \textbf{then have} \ \textit{grounding_of_cls} \ C \subseteq \textit{sr.Rf} \ (\textit{grounding_of_state} \ \textit{St}) using strict_subset_subsumption_grounding_redundant_clss assms by auto then show ?thesis unfolding clss_of_state_def grounding_of_clss_def by (force intro: sr_ext.derive.intros) qed qed lemma reduction_in_concls_of: assumes C\mu \in \mathit{grounding_of_cls}\ C and D + \{\#L'\#\} \in CC and -L = L' \cdot l \sigma and D\,\cdot\,\sigma\subseteq \#\ C ``` ``` shows C\mu \in concls_of (sr_ext.inferences_from (grounding_of_clss (CC \cup \{C + \{\#L\#\}\}))) proof - from \ assms obtain \mu where \mu-p: C\mu = C \cdot \mu \wedge is_ground_subst <math>\mu unfolding grounding_of_cls_def by auto define \gamma where \gamma = Infer \{ \#(C + \{\#L\#\}) \cdot \mu \# \} ((D + \{\#L'\#\}) \cdot \sigma \cdot \mu) (C \cdot \mu) have (D + \{\#L'\#\}) \cdot \sigma \cdot \mu \in grounding_of_clss (CC \cup \{C + \{\#L\#\}\}) \mathbf{unfolding} \ \textit{grounding_of_clss_def} \ \textit{grounding_of_cls_def} by (rule UN_I[of D + \{\#L'\#\}], use assms(2) clss_of_state_def in simp, metis~(mono_tags,~lifting)~\mu_p~is_ground_comp_subst~mem_Collect_eq~subst_cls_comp_subst) moreover have (C + \{\#L\#\}) \cdot \mu \in grounding_of_clss (CC \cup \{C + \{\#L\#\}\}) using \mu_p unfolding grounding_of_clss_def grounding_of_cls_def by auto \mathbf{moreover\ have}\ \forall\,I.\ I\models D\cdot\sigma\cdot\mu + \{\#-(L\cdot l\ \mu)\#\} \longrightarrow I\models C\cdot\mu + \{\#L\cdot l\ \mu\#\} \longrightarrow I\models D\cdot\sigma\cdot\mu + C\cdot\mu by auto then have \forall I.\ I \models (D + \{\#L'\#\}) \cdot \sigma \cdot \mu \longrightarrow I \models (C + \{\#L\#\}) \cdot \mu \longrightarrow I \models D \cdot \sigma \cdot \mu + C \cdot \mu using assms \mathbf{by}\ (metis\ add_mset_add_single\ subst_cls_add_mset\ subst_cls_union\ subst_minus) then have \forall I. \ I \models (D + \{\#L'\#\}) \cdot \sigma \cdot \mu \longrightarrow I \models (C + \{\#L\#\}) \cdot \mu \longrightarrow I \models C \cdot \mu using assms by (metis (no_types, lifting) subset_mset.le_iff_add subst_cls_union true_cls_union) then have \forall I. \ I \models m \ \{\#(D + \{\#L'\#\}) \cdot \sigma \cdot \mu\#\} \longrightarrow I \models (C + \{\#L\#\}) \cdot \mu \longrightarrow I \models C \cdot \mu by (meson true_cls_mset_singleton) ultimately have \gamma \in sr_ext.inferences_from\ (grounding_of_clss\ (CC \cup \{C + \{\#L\#\}\})) unfolding sr_-ext.inferences_from_def unfolding ground_sound_\Gamma_def infer_from_def \gamma_def by auto then have C \cdot \mu \in concls_of (sr_ext.inferences_from (grounding_of_clss (CC \cup \{C + \{\#L\#\}\}))) using image_iff unfolding \gamma_def by fastforce then show C\mu \in concls_of (sr_ext.inferences_from (grounding_of_clss (CC \cup \{C + \{\#L\#\}\}))) using \mu_{-}p by auto qed lemma reduction_derivable: assumes D + \{\#L'\#\} \in CC \text{ and } -L = L' \cdot l \sigma and D \cdot \sigma \subseteq \# C shows sr_ext.derive (grounding_of_clss (CC \cup \{C + \#L\#\}\})) (grounding_of_clss (CC \cup \{C\})) proof - from assms have grounding_of_clss (CC \cup \{C\}) - grounding_of_clss (CC \cup \{C + \{\#L\#\}\}) \subseteq concls_of (sr_ext.inferences_from (grounding_of_clss (CC \cup \{C + \{\#L\#\}\}))) using reduction_in_concls_of unfolding grounding_of_clss_def clss_of_state_def by auto moreover have grounding_of_cls (C + \{\#L\#\}) \subseteq sr.Rf (grounding_of_clss (CC \cup \{C\})) using strict_subset_subsumption_grounding_redundant_clss[of C id_subst] by auto then have grounding_of_clss (CC \cup \{C + \#L\#\}\}) - grounding_of_clss (CC \cup \{C\}) \subseteq sr.Rf \ (grounding_of_clss \ (CC \cup \{C\})) unfolding clss_of_state_def grounding_of_clss_def by auto ultimately show sr_{ext.derive} (grounding_of_clss (CC \cup \{C + \#L\#\}\})) (grounding_of_clss (CC \cup \{C\})) using sr_ext.derive.intros[of\ grounding_of_clss\ (CC \cup \{C\})] grounding_of_clss\ (CC \cup \{C + \{\#L\#\}\})] by auto qed The following corresponds the part of Lemma 4.10 that states we have a theorem proving process: lemma RP_ground_derive: St \rightsquigarrow St' \Longrightarrow sr_ext.derive (grounding_of_state St) (grounding_of_state St') proof (induction rule: RP.induct) case (tautology_deletion \ A \ C \ N \ P \ Q) { ``` ``` fix C\sigma assume C\sigma \in grounding_of_cls\ C then obtain \sigma where C\sigma = C \cdot \sigma unfolding grounding_of_cls_def by auto then have Neg (A \cdot a \sigma) \in \# C\sigma \wedge Pos (A \cdot a \sigma) \in \# C\sigma using tautology_deletion Neg_Melem_subst_atm_subst_cls Pos_Melem_subst_atm_subst_cls by auto then have C\sigma \in sr.Rf (grounding_of_state (N, P, Q)) using sr.tautology_redundant by auto then have grounding_of_state (N \cup \{C\}, P, Q) - grounding_of_state (N, P, Q) \subseteq sr.Rf \ (grounding_of_state \ (N, P, Q)) unfolding clss_of_state_def grounding_of_clss_def by auto \textbf{moreover have} \ \textit{grounding_of_state} \ (N, \ P, \ Q) - \textit{grounding_of_state} \ (N \cup \{\ C\}, \ P, \ Q) = \{\} unfolding clss_of_state_def grounding_of_clss_def by auto ultimately show ?case using sr_ext.derive.intros[of\ grounding_of_state\ (N,\ P,\ Q)\ grounding_of_state\ (N\cup\{C\},\ P,\ Q)] by auto \mathbf{next} \mathbf{case}\ (\textit{forward_subsumption}\ D\ P\ Q\ C\ N) then show ?case using derive_if_remove_subsumed[of\ D\ (N,\ P,\ Q)\ C] unfolding grounding_of_clss_def\ clss_of_state_def by (simp add: sup_commute sup_left_commute) next case (backward_subsumption_P D N C P Q) then show ?case using derive_if_remove_subsumed[of\ D\ (N,\ P,\ Q)\ C]\ strictly_subsumes_def\ unfolding\ grounding_of_clss_def clss_of_state_def by (simp add: sup_commute sup_left_commute) next case (backward_subsumption_Q \ D \ N \ C \ P \ Q) then show ?case clss_of_state_def by (simp add: sup_commute sup_left_commute) \mathbf{case} \ (\textit{forward_reduction} \ D \ L' \ P \ Q \ L \ \sigma \ C \ N) then show ?case using reduction_derivable[of _ _ N \cup P \cup Q] unfolding clss_of_state_def by force next case (backward_reduction_P D L' N L \sigma C P Q) then show ?case using reduction_derivable [of _ _ N \cup P \cup Q] unfolding clss_of_state_def by force next case (backward_reduction_Q \ D \ L' \ N \ L \ \sigma \ C \ P \ Q) then show ?case using reduction_derivable [of _ N \cup P \cup Q] unfolding clss_of_state_def by force case (clause_processing\ N\ C\ P\ Q) then show ?case unfolding clss_of_state_def using sr_ext.derive.intros by auto next case (inference_computation N \ Q \ C \ P) { fix E\mu assume E\mu \in grounding_of_clss\ N then obtain \mu E where E_{\mu}: E\mu = E \cdot \mu \wedge E \in N \wedge is_ground_subst \mu unfolding grounding_of_clss_def grounding_of_cls_def by auto then have E_concl: E \in concls_of (ord_FO_resolution.inferences_between Q C) using inference_computation by auto then obtain \gamma where \gamma_{-p}: \gamma \in ord_FO_\Gamma \ S \land infer_from \ (Q \cup \{C\}) \ \gamma \land C \in \# \ prems_of \ \gamma \land concl_of \ \gamma = E ``` ``` unfolding ord_FO_resolution.inferences_between_def by auto then obtain CC CAs D AAs As \sigma where \gamma_p2: \gamma = Infer CC D E \wedge ord_resolve_rename S CAs D AAs As \sigma E \wedge mset CAs = CC unfolding ord_FO_\Gamma_def by auto define \varrho where \varrho = hd \ (renamings_apart \ (D \ \# \ CAs)) define
\varrho s where \varrho s = tl \ (renamings_apart \ (D \ \# \ CAs)) define \gamma-ground where \gamma-ground = Infer (mset (CAs \cdot \cdot cl \ \varrho s) \cdot cm \ \sigma \cdot cm \ \mu) (D \cdot \ \varrho \cdot \sigma \cdot \mu) (E \cdot \ \mu) have \forall I. \ I \models m \ mset \ (CAs \ \cdot \cdot cl \ \varrho s) \ \cdot cm \ \sigma \ \cdot cm \ \mu \longrightarrow I \models D \cdot \varrho \cdot \sigma \cdot \mu \longrightarrow I \models E \cdot \mu using ord_resolve_rename_ground_inst_sound[of _ _ _ _ _ _ \mu] \rho_def \rho_s_def \rho_p2 by auto then have \gamma-ground \in \{Infer\ cc\ d\ e \mid cc\ d\ e.\ \forall\ I.\ I \models m\ cc \longrightarrow I \models d \longrightarrow I \models e\} unfolding \gamma-ground_def by auto moreover have set_mset (prems_of \gamma_ground) \subseteq grounding_of_state ({}, P \cup {C}, Q) proof - have D = C \lor D \in Q unfolding \gamma_{-ground_def} using E_{-\mu-p} \gamma_{-p} 2 \gamma_{-p} unfolding infer_from_def \mathbf{unfolding}\ \mathit{clss_of_state_def}\ \mathit{grounding_of_clss_def} \mathbf{unfolding} \ \mathit{grounding_of_cls_def} by simp then have D \cdot \varrho \cdot \sigma \cdot \mu \in grounding_of_cls\ C \lor (\exists x \in Q.\ D \cdot \varrho \cdot \sigma \cdot \mu \in grounding_of_cls\ x) using E_{-}\mu_{-}p {\bf unfolding} \ grounding_of_cls_def by (metis (mono_tags, lifting) is_ground_comp_subst mem_Collect_eq subst_cls_comp_subst) then have (D \cdot \varrho \cdot \sigma \cdot \mu \in grounding_of_cls \ C \lor (\exists x \in P. D \cdot \varrho \cdot \sigma \cdot \mu \in grounding_of_cls \ x) \lor (\exists x \in Q. \ D \cdot \varrho \cdot \sigma \cdot \mu \in grounding_of_cls \ x)) by metis moreover have \forall i < length (CAs \cdot cl \ \varrho s \cdot cl \ \sigma \cdot cl \ \mu). ((CAs \cdot cl \ \varrho s \cdot cl \ \sigma \cdot cl \ \mu)! i) \in \{C \cdot \sigma \mid \sigma. is_ground_subst \sigma\} \cup ((\bigcup C \in P. \{C \cdot \sigma \mid \sigma. is_ground_subst \sigma\})) \cup (\bigcup C \in Q. \{C \cdot \sigma \mid \sigma. is_ground_subst \sigma\})) proof (rule, rule) assume i < length (CAs \cdot cl \ \varrho s \cdot cl \ \sigma \cdot cl \ \mu) then have a: i < length \ CAs \land i < length \ \varrho s by simp moreover from a have CAs ! i \in \{C\} \cup Q using \gamma_{-}p2 \gamma_{-}p unfolding infer_{-}from_{-}def by (metis (no_types, lifting) Un_subset_iff inference.sel(1) set_mset_union sup_commute\ nth_mem_mset\ subsetCE) ultimately have (CAs \cdot cl \ \varrho s \cdot cl \ \sigma \cdot cl \ \mu) \mid i \in \{C \cdot \sigma \mid \sigma. is_ground_subst \sigma\} \lor ((CAs \cdot cl \ \varrho s \cdot cl \ \sigma \cdot cl \ \mu) \ ! \ i \in (\bigcup C \in P. \{C \cdot \sigma \ | \sigma. \ is_ground_subst \ \sigma\}) \ \lor (CAs \cdot cl \ \varrho s \cdot cl \ \sigma \cdot cl \ \mu) \ ! \ i \in (\bigcup C \in Q. \ \{C \cdot \sigma \mid \sigma. \ is_ground_subst \ \sigma\})) unfolding \gamma_{-qround_def} using E_{-\mu-p} \gamma_{-p}2 \gamma_{-p} unfolding infer_from_def unfolding clss_of_state_def grounding_of_clss_def unfolding grounding_of_cls_def apply - apply (cases CAs ! i = C) subgoal apply (rule disjI1) apply (rule Set.CollectI) apply (rule_tac x = (\rho s ! i) \odot \sigma \odot \mu in exI) using os_def using renamings_apart_length apply (auto;fail) done subgoal apply (rule disjI2) apply (rule disjI2) apply (rule_tac \ a=CAs \ ! \ i \ in \ UN_I) subgoal apply blast ``` ``` done subgoal apply (rule Set.CollectI) apply (rule_tac \ x = (\varrho s \ ! \ i) \odot \sigma \odot \mu \ in \ exI) using os_def using renamings_apart_length apply (auto;fail) done done then show (CAs \cdot cl \ \varrho s \cdot cl \ \sigma \cdot cl \ \mu) \ ! \ i \in \{C \cdot \sigma \ | \sigma. \ is_ground_subst \ \sigma\} \cup \{CAs \cdot cl \ \varrho s \cdot cl \ \sigma \cdot cl \ \mu\} ((\bigcup C \in P. \{C \cdot \sigma \mid \sigma. is_ground_subst \sigma\}) \cup (\bigcup C \in Q. \{C \cdot \sigma \mid \sigma. is_ground_subst \sigma\})) by blast qed then have \forall x \in \# mset \ (CAs \ \cdot cl \ \varrho s \ \cdot cl \ \sigma \ \cdot cl \ \mu). \ x \in \{C \ \cdot \ \sigma \ | \sigma. \ is_ground_subst \ \sigma\} \ \cup ((\bigcup C \in P. \{C \cdot \sigma \mid \sigma. is_ground_subst \sigma\}) \cup (\bigcup C \in Q. \{C \cdot \sigma \mid \sigma. is_ground_subst \sigma\})) by (metis (lifting) in_set_conv_nth set_mset_mset) then have set_mset\ (mset\ (CAs\ \cdots cl\ \varrho s)\ \cdot cm\ \sigma\ \cdot cm\ \mu)\subseteq grounding_of_cls\ C\ \cup\ grounding_of_clss\ P\ \cup\ grounding_of_clss\ Q unfolding grounding_of_cls_def grounding_of_clss_def using mset_subst_cls_list_subst_cls_mset by auto ultimately show ?thesis unfolding \gamma_{ground_def} clss_of_state_def grounding_of_clss_def by auto qed ultimately have E \cdot \mu \in concls_of (sr_ext.inferences_from (grounding_of_state (\{\}, P \cup \{C\}, Q))) unfolding sr_ext.inferences_from_def inference_system.inferences_from_def ground_sound_\Gamma_def infer_from_def using \gamma_{ground_def} by (metis (no_types, lifting) imageI inference.sel(3) mem_Collect_eq) then have E\mu \in concls_of (sr_ext.inferences_from (grounding_of_state ({}, P \cup {}, Q))) using E_{-}\mu_{-}p by auto then have grounding_of_state (N, P, Q \cup \{C\}) - grounding_of_state (\{\}, P \cup \{C\}, Q) \subseteq concls_of (sr_ext.inferences_from (grounding_of_state (\{\}, P \cup \{C\}, Q))) unfolding clss_of_state_def grounding_of_clss_def by auto moreover have grounding_of_state (\{\}, P \cup \{C\}, Q\}) - grounding_of_state (N, P, Q \cup \{C\}) = \{\} unfolding clss_of_state_def grounding_of_clss_def by auto ultimately show ?case using sr_{ext.derive.intros}[of (grounding_of_state (N, P, Q \cup \{C\}))] (grounding_of_state\ (\{\},\ P\cup\{C\},\ Q))] by auto qed A useful consequence: theorem RP_model: St \rightsquigarrow St' \Longrightarrow I \models s \ grounding_of_state \ St' \longleftrightarrow I \models s \ grounding_of_state \ St proof (drule RP_ground_derive, erule sr_ext.derive.cases, hypsubst) ?gSt = grounding_of_state\ St\ and ?gSt' = grounding_of_state\ St' deduct: ?gSt' - ?gSt \subseteq concls_of (sr_ext.inferences_from ?gSt) (is _ \subseteq ?concls) and delete: ?gSt - ?gSt' \subseteq sr.Rf ?gSt show I \models s ?qSt' \longleftrightarrow I \models s ?qSt proof assume bef: I \models s ?gSt then have I \models s ?concls {\bf unfolding}~ground_sound_\Gamma_def~inference_system.inferences_from_def~true_clss_def~true_cls_mset_def by (auto simp add: image_def infer_from_def dest!: spec[of _ I]) then have diff: I \models s ?gSt' - ?gSt using deduct by (blast intro: true_clss_mono) then show I \models s ?gSt' using bef unfolding true_clss_def by blast assume aft: I \models s ?gSt' have I \models s ?gSt' \cup sr.Rf ?gSt' ``` ``` \mathbf{by} \ (\mathit{rule} \ \mathit{sr.Rf_model}) \ (\mathit{metis} \ \mathit{aft} \ \mathit{sr.Rf_mono}[\mathit{OF} \ \mathit{Un_upper1}] \ \mathit{Diff_eq_empty_iff} \ \mathit{Diff_subset} Un_Diff\ true_clss_mono\ true_clss_union) then have I \models s \ sr.Rf \ ?gSt' using true_clss_union by blast then have diff: I \models s ?gSt - ?gSt' using delete by (blast intro: true_clss_mono) then show I \models s ?gSt using aft unfolding true_clss_def by blast qed qed Another formulation of the part of Lemma 4.10 that states we have a theorem proving process: lemma RP_ground_derive_chain: chain sr_ext.derive (lmap grounding_of_state Sts) using deriv\ RP_ground_derive\ by (simp\ add:\ chain_lmap[of\ (\leadsto)]) The following is used prove to Lemma 4.11: lemma in_Sup_llist_in_nth: C \in Sup_llist Gs \Longrightarrow \exists j. enat j < llength Gs <math>\land C \in lnth Gs j unfolding Sup_llist_def by auto — Note: Gs is called Ns in the chapter lemma Sup_llist_grounding_of_state_ground: assumes C \in Sup_llist (lmap grounding_of_state Sts) shows is_ground_cls C proof - have \exists j. \ enat \ j < llength \ (lmap \ grounding_of_state \ Sts) \land C \in lnth \ (lmap \ grounding_of_state \ Sts) \ j using assms in_Sup_llist_in_nth by metis then obtain j where enat j < llength (lmap grounding_of_state Sts) C \in lnth \ (lmap \ grounding_of_state \ Sts) \ j by blast then show ?thesis unfolding grounding_of_clss_def grounding_of_cls_def by auto qed lemma Liminf_grounding_of_state_ground: C \in Liminf_llist (lmap grounding_of_state Sts) \Longrightarrow is_ground_cls C using Liminf_llist_subset_Sup_llist[of lmap grounding_of_state Sts] Sup_llist_grounding_of_state_ground \mathbf{by} blast \mathbf{lemma}\ in_Sup_llist_in_Sup_state: assumes C \in Sup_llist (lmap grounding_of_state Sts) shows \exists D \sigma. D \in clss_of_state (Sup_state Sts) \land D \cdot \sigma = C \land is_ground_subst \sigma proof - from assms obtain i where i-p: enat i < llength Sts <math>\land C \in lnth \ (lmap \ grounding_of_state \ Sts) \ i using in_Sup_llist_in_nth by fastforce then obtain D \sigma where D \in clss_of_state (lnth Sts i) \land D \cdot \sigma = C \land is_ground_subst \sigma using assms unfolding grounding_of_clss_def grounding_of_cls_def by fastforce then have D \in \mathit{clss_of_state} (Sup_state Sts) \land D \cdot \sigma = C \land \mathit{is_ground_subst} \sigma using i_p unfolding Sup_state_def clss_of_state_def by (metis (no-types, lifting) UnCI UnE contra_subsetD N_of_state.simps P_of_state.simps Q_of_state.simps\ llength_lmap\ lnth_lmap\ lnth_subset_Sup_llist) then show ?thesis by auto qed lemma N_{-} of_state_Liminf: N_{-} of_state (Liminf_state Sts) = Liminf_llist (lmap N_{-} of_state Sts) and P_of_state_Liminf: P_of_state (Liminf_state Sts) = Liminf_llist (lmap P_of_state Sts) unfolding Liminf_state_def by auto ``` ``` lemma eventually_removed_from_N: assumes d_in: D \in N_of_state (lnth Sts i) and fair: fair_state_seq Sts and i_Sts: enat\ i\ <\ llength\ Sts shows \exists l. \ D \in N-of-state (lnth Sts l) \land D \notin N-of-state (lnth Sts (Suc l)) \land i \leq l \land enat (Suc l) < lllength Sts proof (rule ccontr) assume a: \neg ?thesis have i \leq l \Longrightarrow enat \ l < llength \ Sts
\Longrightarrow D \in N_of_state \ (lnth \ Sts \ l) for l using d_in by (induction l, blast, metis a Suc_ile_eq le_SucE less_imp_le) then have D \in Liminf_llist (lmap N_of_state Sts) unfolding Liminf_llist_def using i_Sts by auto then show False using fair unfolding fair_state_seq_def by (simp add: N_of_state_Liminf) lemma eventually_removed_from_P: assumes d_in: D \in P_of_state (lnth Sts i) and fair: fair_state_seq \ Sts \ {\bf and} i_Sts: enat i < llength Sts shows \exists l. \ D \in P_of_state (lnth \ Sts \ l) \land D \notin P_of_state (lnth \ Sts \ (Suc \ l)) \land i \leq l \land enat \ (Suc \ l) < llength \ Sts proof (rule ccontr) assume a: \neg ?thesis have i \leq l \Longrightarrow enat \ l < llength \ Sts \Longrightarrow D \in P_of_state \ (lnth \ Sts \ l) for l using d_in by (induction l, blast, metis a Suc_ile_eq le_SucE less_imp_le) then have D \in Liminf_llist (lmap P_of_state Sts) unfolding Liminf_llist_def using i_Sts by auto then show False using fair unfolding fair_state_seq_def by (simp add: P_of_state_Liminf) qed \mathbf{lemma}\ instance_if_subsumed_and_in_limit: assumes ns: Gs = lmap \ grounding_of_state \ Sts \ \mathbf{and} c: C \in Liminf_llist \ Gs - sr.Rf \ (Liminf_llist \ Gs) \ and d: D \in N-of-state (lnth Sts i) \cup P-of-state (lnth Sts i) \cup Q-of-state (lnth Sts i) enat\ i\ <\ llength\ Sts\ subsumes\ D\ C shows \exists \sigma. D \cdot \sigma = C \land is_ground_subst \sigma let ?Ps = \lambda i. P_of_state (lnth Sts i) let ?Qs = \lambda i. Q_{-}of_{-}state (lnth Sts i) have ground_C: is_ground_cls C using c using Liminf_grounding_of_state_ground ns by auto have derivns: chain sr_ext.derive Gs using RP_ground_derive_chain deriv ns by auto have \exists \sigma. D \cdot \sigma = C proof (rule ccontr) assume \not\equiv \sigma. D \cdot \sigma = C moreover from d(3) obtain \tau-proto where D \cdot \tau_proto \subseteq \# C \text{ unfolding } subsumes_def by blast then obtain \tau where \tau_{-p}: D \cdot \tau \subseteq \# C \wedge is_ground_subst \tau using ground_C by (metis is_ground_cls_mono make_ground_subst subset_mset.order_reft) ultimately have subsub: D \cdot \tau \subset \# C using subset_mset.le_imp_less_or_eq by auto ``` ``` moreover have is_ground_subst \tau using \tau_{-}p by auto moreover have D \in clss_of_state (lnth Sts i) using d unfolding clss_of_state_def by auto ultimately have C \in sr.Rf (grounding_of_state (lnth Sts i)) \mathbf{using}\ strict_subset_subsumption_redundant_clss\ \mathbf{by}\ auto then have C \in sr.Rf (Sup_llist Gs) using d ns by (metis contra_subsetD llength_lmap lnth_lmap lnth_subset_Sup_llist sr.Rf_mono) then have C \in sr.Rf (Liminf_llist Gs) \mathbf{unfolding} \ ns \ \mathbf{using} \ local.sr_ext.Rf_Sup_subset_Rf_Liminf \ derivns \ ns \ \mathbf{by} \ auto then show False using c by auto qed then obtain \sigma where D \cdot \sigma = C \wedge is_ground_subst \sigma using ground_C by (metis make_ground_subst) then show ?thesis by auto qed lemma from_{-}Q_{-}to_{-}Q_{-}inf: assumes fair: fair_state_seq Sts and ns: Gs = lmap \ grounding_of_state \ Sts \ \mathbf{and} c: C \in Liminf_llist \ Gs - sr.Rf \ (Liminf_llist \ Gs) and d: D \in Q-of-state (lnth Sts i) enat i < llength Sts subsumes D \in C and d_least: \forall E \in \{E.\ E \in (clss_of_state\ (Sup_state\ Sts)) \land subsumes\ E\ C\}. \neg\ strictly_subsumes\ E\ D shows D \in Q-of-state (Liminf-state Sts) proof - let ?Ps = \lambda i. P_of_state (lnth Sts i) let ?Qs = \lambda i. Q_of_state (lnth Sts i) have ground_C: is_ground_cls C using c using Liminf_grounding_of_state_ground ns by auto have derivns: chain sr_ext.derive Gs using RP_ground_derive_chain deriv ns by auto have \exists \sigma. D \cdot \sigma = C \land is_ground_subst \sigma using instance_if_subsumed_and_in_limit ns c d by blast then obtain \sigma where \sigma{:}\ D\ \cdot\ \sigma\ =\ C\ is_ground_subst\ \sigma by auto have in_Sts_in_Sts_Suc: \forall l \geq i. \ enat \ (Suc \ l) < llength \ Sts \longrightarrow D \in Q_of_state \ (lnth \ Sts \ l) \longrightarrow D \in Q_of_state \ (lnth \ Sts \ (Suc \ l)) proof (rule, rule, rule, rule) \mathbf{fix} l assume len: i \leq l and llen: enat (Suc \ l) < llength \ Sts \ and d_-in_-q: D \in Q_-of_-state (lnth Sts l) have lnth Sts l \rightsquigarrow lnth Sts (Suc l) using llen deriv chain_lnth_rel by blast then show D \in Q-of-state (lnth Sts (Suc l)) proof (cases rule: RP.cases) case (backward_subsumption_Q D' N D_removed P Q) moreover assume D-removed = D then obtain D_subsumes where D_subsumes_p:\ D_subsumes\ \in\ N\ \land\ strictly_subsumes\ D_subsumes\ D ``` ``` using backward_subsumption_Q by auto moreover from D_subsumes_p have subsumes D_subsumes C using d subsumes_trans unfolding strictly_subsumes_def by blast moreover from backward_subsumption_Q have D_subsumes \in clss_of_state (Sup_state Sts) using D_subsumes_p llen by (metis (no_types) UnI1 clss_of_state_def N_of_state.simps llength_lmap lnth_lmap lnth_subset_Sup_llist rev_subsetD Sup_state_def) ultimately have False using d_least unfolding subsumes_def by auto ultimately show ?thesis using d_-in_-q by auto next case (backward_reduction_Q E L' N L \sigma D' P Q) assume D' + \{\#L\#\} = D then have D'_{-p}: strictly_subsumes\ D'\ D\ \land\ D'\in\ ?Ps\ (Suc\ l) \mathbf{using} \ \mathit{subset_strictly_subsumes}[\mathit{of}\ \mathit{D'}\ \mathit{D}] \ \mathit{backward_reduction_Q} \ \mathbf{by} \ \mathit{auto} then have subc: subsumes D' C using d(3) subsumes_trans unfolding strictly_subsumes_def by auto from D'_{-p} have D' \in clss_of_state (Sup_state Sts) using llen by (metis (no_types) UnI1 clss_of_state_def P_of_state.simps llength_lmap lnth_lmap lnth_subset_Sup_llist subsetCE sup_ge2 Sup_state_def) then have False using d_least D'_p subc by auto } then show ?thesis using backward_reduction_Q d_in_q by auto \mathbf{qed} (use d_in_q in auto) qed have D_-in_-Sts: D \in Q_-of_-state (lnth Sts l) and D_-in_-Sts_-Suc: D \in Q_-of_-state (lnth Sts (Suc l)) if l_i: l \geq i and enat: enat (Suc l) < llength Sts for l proof - show D \in Q-of-state (lnth Sts l) using l_{-}i enat apply (induction \ l - i \ arbitrary: \ l) subgoal using d by auto subgoal using d(1) in_Sts_in_Sts_Suc \mathbf{by}\ (\mathit{metis}\ (\mathit{no_types},\ \mathit{lifting})\ \mathit{Suc_ile_eq}\ \mathit{add_Suc_right}\ \mathit{add_diff_cancel_left'}\ \mathit{le_SucE} le_Suc_ex\ less_imp_le) done then show D \in Q-of-state (lnth Sts (Suc l)) using l_{-i} enat in_{-}Sts_{-}in_{-}Sts_{-}Suc by blast aed have i \le x \Longrightarrow enat \ x < llength \ Sts \Longrightarrow D \in Q_of_state \ (lnth \ Sts \ x) for x apply (cases x) subgoal using d(1) by (auto intro!: exI[of \ i] simp: less_Suc_eq) subgoal for x using d(1) D_{in_Sts_Suc[of x']} by (cases \langle i \leq x' \rangle) (auto simp: not_less_eq_eq) done then have D \in Liminf_llist (lmap Q_of_state\ Sts) unfolding Liminf_llist_def by (auto intro!: exI[of _ i] simp: d) then show ?thesis unfolding Liminf_state_def by auto qed lemma from_P_{to}Q: assumes fair: fair_state_seq Sts and ns: Gs = lmap \ grounding_of_state \ Sts \ and c: C \in Liminf_llist \ Gs - sr.Rf \ (Liminf_llist \ Gs) \ and d: D \in P_of_state (lnth Sts i) enat i < llength Sts subsumes D C and d_least: \forall E \in \{E.\ E \in (clss_of_state\ (Sup_state\ Sts)) \land subsumes\ E\ C\}. \neg\ strictly_subsumes\ E\ D ``` ``` shows \exists l. D \in Q_of_state (lnth Sts l) \land enat l < llength Sts proof - let ?Ns = \lambda i. N_of_state (lnth Sts i) let ?Ps = \lambda i. P_of_state (lnth Sts i) let ?Qs = \lambda i. Q_{-}of_{-}state (lnth Sts i) have ground_C: is_ground_cls C using c using Liminf_grounding_of_state_ground ns by auto have derivns: chain sr_ext.derive Gs using RP_ground_derive_chain deriv ns by auto have \exists \sigma. D \cdot \sigma = C \land is_ground_subst \sigma using instance_if_subsumed_and_in_limit ns c d by blast then obtain \sigma where \sigma: D \cdot \sigma = C \text{ is_ground_subst } \sigma by auto obtain l where l-p: D \in P-of-state (lnth Sts l) \wedge D \notin P-of-state (lnth Sts (Suc l)) \wedge i \leq l \wedge enat (Suc l) < llength Sts using fair using eventually_removed_from_P d unfolding ns by auto then have l_Gs: enat (Suc l) < llength Gs using ns by auto from l_p have lnth Sts l \rightsquigarrow lnth Sts (Suc l) using deriv using chain_lnth_rel by auto then show ?thesis proof (cases rule: RP.cases) case (backward_subsumption_P D' N D_twin P Q) note lrhs = this(1,2) and D'_{-}p = this(3,4) then have twins: D_{-}twin = D ?Ns (Suc\ l) = N ?Ns l = N ?Ps (Suc\ l) = P ?Ps\ l = P \cup \{D_twin\}\ ?Qs\ (Suc\ l) = Q\ ?Qs\ l = Q using l_-p by auto note D'_{-}p = D'_{-}p[unfolded\ twins(1)] then have subc: subsumes D' C unfolding strictly_subsumes_def subsumes_def using \sigma by (metis subst_cls_comp_subst subst_cls_mono_mset) from D'_{-p} have D' \in clss_of_state (Sup_state Sts) unfolding twins(2)[symmetric] using l_{-}p \mathbf{by} \ (\textit{metis} \ (\textit{no_types}) \ \textit{UnI1} \ \textit{clss_of_state_def} \ \textit{N_of_state_simps} \ \textit{llength_lmap} \ \textit{lnth_lmap} lnth_subset_Sup_llist\ subsetCE\ Sup_state_def) then have False using d_least D'_p subc by auto then show ?thesis by auto case (backward_reduction_P \ E \ L' \ N \ L \ \sigma \ D' \ P \ Q) then have twins: D' + \{\#L\#\} = D? Ns (Suc\ l) = N? Ns l = N? Ps (Suc\ l) = P \cup \{D'\} ?Ps \ l = P \cup \{D' + \{\#L\#\}\}\ ?Qs \ (Suc \ l) = Q \ ?Qs \ l = Q using l_{-}p by auto then have D'_{-p}: strictly_subsumes\ D'\ D\ \wedge\ D' \in ?Ps\ (Suc\ l) using subset_strictly_subsumes[of D' D] by auto then have subc: subsumes D' C using d(3) subsumes_trans unfolding strictly_subsumes_def by auto from D'_{p} have D' \in clss_of_state (Sup_state Sts) using l-p by (metis (no-types) UnI1 clss_of_state_def P_of_state.simps llength_lmap lnth_lmap lnth_subset_Sup_llist subsetCE sup_ge2 Sup_state_def) then have False using d_least D'_p subc by auto then show ?thesis by auto next {\bf case}\ (inference_computation\ N\ Q\ D_twin\ P) then have twins:
D_twin = D ?Ps (Suc\ l) = P ?Ps l = P \cup \{D_twin\} ``` ``` ?Qs (Suc \ l) = Q \cup \{D_twin\} ?Qs \ l = Q using l_p by auto then show ?thesis using d \sigma l_p by auto \mathbf{qed} (use l_{-}p in auto) lemma variants_sym: variants D D' \longleftrightarrow variants D' D unfolding variants_def by auto lemma variants_imp_exists_subtitution: variants\ D\ D' \Longrightarrow \exists\ \sigma.\ D\cdot\sigma = D' unfolding variants_iff_subsumes subsumes_def by (meson strictly_subsumes_def subset_mset_def strict_subset_subst_strictly_subsumes subsumes_def) lemma properly_subsume_variants: assumes strictly_subsumes E D and variants D D' shows strictly_subsumes E D' proof - from assms obtain \sigma \sigma' where \sigma_{-}\sigma'_{-}p: D \cdot \sigma = D' \wedge D' \cdot \sigma' = D using variants_imp_exists_subtitution variants_sym by metis from assms obtain \sigma'' where E \cdot \sigma'' \subseteq \# D {\bf unfolding} \ strictly_subsumes_def \ subsumes_def \ {\bf by} \ auto then have E \cdot \sigma'' \cdot \sigma \subseteq \#D \cdot \sigma using subst_cls_mono_mset by blast then have E \cdot (\sigma'' \odot \sigma) \subseteq \# D' using \sigma_{-}\sigma'_{-}p by auto moreover from assms have n: (\nexists \sigma. \ D \cdot \sigma \subseteq \# E) {\bf unfolding} \ strictly_subsumes_def \ subsumes_def \ {\bf by} \ auto have \not\equiv \sigma. \bar{D}' \cdot \sigma \subseteq \# E proof assume \exists \sigma'''. D' \cdot \sigma''' \subseteq \# E then obtain \sigma''' where D' \cdot \sigma''' \subseteq \# E by auto then have D \cdot (\sigma \odot \sigma''') \subseteq \# E using \sigma_{-}\sigma'_{-}p by auto then show False using n by metis qed ultimately show ?thesis unfolding strictly_subsumes_def subsumes_def by metis qed lemma neq_properly_subsume_variants: assumes \neg strictly_subsumes E D and variants D D' shows \neg strictly_subsumes ED' using assms properly_subsume_variants variants_sym by auto lemma from_N_to_P_or_Q: assumes fair: fair_state_seq Sts and ns: Gs = lmap grounding_of_state Sts and c: C \in Liminf_llist \ Gs - sr.Rf \ (Liminf_llist \ Gs) \ and d: D \in N_{-}of_{-}state (lnth Sts i) enat i < llength Sts subsumes D C and d_least: \forall E \in \{E. E \in (clss_of_state (Sup_state Sts)) \land subsumes E C\}. \neg strictly_subsumes E D shows \exists l \ D' \ \sigma'. \ D' \in P_of_state (lnth \ Sts \ l) \cup Q_of_state (lnth \ Sts \ l) \land enat\ l < llength\ Sts\ \land (\forall E \in \{E.\ E \in (clss_of_state\ (Sup_state\ Sts)) \land subsumes\ E\ C\}. \neg\ strictly_subsumes\ E\ D') \land D' \cdot \sigma' = C \wedge is_ground_subst \ \sigma' \wedge subsumes \ D' \ C ``` proof - ``` let ?Ns = \lambda i. N_{-}of_{-}state (lnth Sts i) let ?Ps = \lambda i. P_of_state (lnth Sts i) let ?Qs = \lambda i. Q_of_state\ (lnth\ Sts\ i) have ground_{-}C: is_ground_cls C using c using Liminf_grounding_of_state_ground ns by auto have derivns: chain sr_ext.derive Gs using RP_ground_derive_chain deriv ns by auto have \exists \sigma. D \cdot \sigma = C \land is_ground_subst \sigma using instance_if_subsumed_and_in_limit ns c d by blast then obtain \sigma where \sigma: D \cdot \sigma = C is_ground_subst \sigma by auto from c have no_taut: \neg (\exists A. Pos A \in \# C \land Neg A \in \# C) \mathbf{using}\ sr.tautology_redundant\ \mathbf{by}\ auto \mathbf{have} \ \exists \ l. \ D \in N_of_state \ (lnth \ Sts \ l) \land D \notin N_of_state \ (lnth \ Sts \ (Suc \ l)) \land i \leq l \land \ enat \ (Suc \ l) < llength \ Sts \mathbf{using} \ \mathit{fair} \ \mathbf{using} \ \mathit{eventually_removed_from_N} \ \mathit{d} \ \mathbf{unfolding} \ \mathit{ns} \ \mathbf{by} \ \mathit{auto} then obtain l where l-p: D \in N-of-state (lnth Sts l) \wedge D \notin N-of-state (lnth Sts (Suc l)) \wedge i \leq l \wedge enat (Suc l) < lllength Sts by auto then have l_Gs: enat (Suc l) < llength Gs using ns by auto from l_p have lnth Sts l \rightsquigarrow lnth Sts (Suc l) using deriv using chain_lnth_rel by auto then show ?thesis proof (cases rule: RP.cases) case (tautology_deletion \ A \ D_twin \ N \ P \ Q) then have D_{-}twin = D using l_{-}p by auto then have Pos (A \cdot a \ \sigma) \in \# \ C \land Neg \ (A \cdot a \ \sigma) \in \# \ C using tautology_deletion(3,4) \sigma by (metis Melem_subst_cls eql_neg_lit_eql_atm eql_pos_lit_eql_atm) then have False using no_taut by metis then show ?thesis by blast \mathbf{next} case (forward_subsumption D' P Q D_twin N) note lrhs = this(1,2) and D'_{-}p = this(3,4) then have twins: D_{-}twin = D ?Ns (Suc\ l) = N ?Ns l = N \cup \{D_{-}twin\} ?Ps (Suc\ l) = P ?Ps \ l = P \ ?Qs \ (Suc \ l) = Q \ ?Qs \ l = Q using l_{-}p by auto note D'_{-p} = D'_{-p}[unfolded\ twins(1)] from D'_{-}p(2) have subs: subsumes D' C using d(3) by (blast intro: subsumes_trans) moreover have D' \in clss_of_state (Sup_state Sts) using twins D'_p l_p unfolding clss_of_state_def Sup_state_def by simp (metis (no_types) contra_subsetD llength_lmap lnth_lmap lnth_subset_Sup_llist) ultimately have \neg strictly_subsumes D'D using d_least by auto then have subsumes D D' unfolding strictly_subsumes_def using D'_p by auto then have v: variants D D using D'_{-p} unfolding variants_iff_subsumes by auto then have mini: \forall E \in \{E \in clss_of_state \ (Sup_state \ Sts). \ subsumes \ E \ C\}. \ \neg \ strictly_subsumes \ E \ D' using d_least D'_p neg_properly_subsume_variants[of _ D D'] by auto from v have \exists \sigma'. D' \cdot \sigma' = C using \sigma variants_imp_exists_subtitution variants_sym by (metis subst_cls_comp_subst) ``` ``` then have \exists \sigma'. D' \cdot \sigma' = C \land is_ground_subst \sigma' using ground_C by (meson make_ground_subst refl) then obtain \sigma' where \sigma'_{p}: D' \cdot \sigma' = C \wedge is_ground_subst \sigma' by metis show ?thesis using D'_{-p} twins l_{-p} subs mini \sigma'_{-p} by auto \mathbf{case} \ (\textit{forward_reduction} \ E \ L' \ P \ Q \ L \ \sigma \ D' \ N) then have twins: D' + \{\#L\#\} = D ?Ns (Suc \ l) = N \cup \{D'\} ?Ns \ l = N \cup \{D' + \{\#L\#\}\} ?Ps (Suc \ l) = P \ ?Ps \ l = P \ ?Qs (Suc \ l) = Q \ ?Qs \ l = Q using l_{-}p by auto then have D'_{-p}: strictly_subsumes\ D'\ D\ \land\ D'\in\ ?Ns\ (Suc\ l) using subset_strictly_subsumes[of D' D] by auto then have subc: subsumes D' C using d(3) subsumes_trans unfolding strictly_subsumes_def by blast from D'_{-p} have D' \in clss_of_state (Sup_state Sts) using l-p by (metis (no_types) UnI1 clss_of_state_def N_of_state.simps llength_lmap lnth_lmap lnth_subset_Sup_llist subsetCE Sup_state_def) then have False using d_least D'_p \ subc \ \mathbf{by} \ auto then show ?thesis by auto case (clause_processing\ N\ D_twin\ P\ Q) then have twins: D-twin = D ?Ns (Suc\ l) = N ?Ns l = N \cup \{D\} ?Ps (Suc\ l) = P \cup \{D\} ?Ps \ l = P \ ?Qs \ (Suc \ l) = Q \ ?Qs \ l = Q using l_{-}p by auto then show ?thesis using d \sigma l_p d_l east by blast \mathbf{qed} (use l_{-}p in auto) qed lemma eventually_in_Qinf: assumes D_p: D \in clss_of_state (Sup_state Sts) subsumes D \ C \ \forall E \in \{E. \ E \in (clss_of_state \ (Sup_state \ Sts)) \land subsumes \ E \ C\}. \ \neg \ strictly_subsumes \ E \ D \ and fair: fair_state_seq Sts and ns: Gs = lmap \ grounding_of_state \ Sts \ and c{:}\ C \in \mathit{Liminf_llist}\ \mathit{Gs}\ -\ \mathit{sr.Rf}\ (\mathit{Liminf_llist}\ \mathit{Gs}) and ground_C \colon is_ground_cls \ C shows \exists D' \sigma'. D' \in Q_of_state (Liminf_state Sts) \land D' \cdot \sigma' = C \land is_ground_subst \sigma' proof - let ?Ns = \lambda i. N_{-}of_{-}state (lnth Sts i) let ?Ps = \lambda i. P_of_state (lnth Sts i) let ?Qs = \lambda i. Q_{-}of_{-}state (lnth Sts i) from D_{-}p obtain i where i-p: i < llength Sts D \in ?Ns i \lor D \in ?Ps i \lor D \in ?Qs i unfolding clss_of_state_def Sup_state_def \mathbf{by}\ simp_all\ (metis\ (no_types)\ in_Sup_llist_in_nth\ llength_lmap\ lnth_lmap) have derivns: chain sr_ext.derive Gs using RP_ground_derive_chain deriv ns by auto have \exists \sigma. \ D \cdot \sigma = C \land is_ground_subst \ \sigma using instance_if_subsumed_and_in_limit[OF ns c] D_p i_p by blast then obtain \sigma where \sigma: D \cdot \sigma = C is_ground_subst \sigma by blast { ``` ``` assume a:D\in ?Ns\ i then obtain D' \sigma' l where D'_{-}p: D' \in ?Ps \ l \cup ?Qs \ l D' \cdot \sigma' = C enat\ l < llength\ Sts is_ground_subst \sigma' \forall E \in \{E.\ E \in (clss_of_state\ (Sup_state\ Sts)) \land subsumes\ E\ C\}. \neg\ strictly_subsumes\ E\ D' subsumes\ D'\ C using from_N_{to}P_{or}Q deriv fair ns c i_p(1) D_p(2) D_p(3) by blast then obtain l' where l'_{-p}: D' \in ?Qs \ l' \ l' < llength \ Sts using from_P_{to}Q[OF\ fair\ ns\ c\ _D'_{p}(3)\ D'_{p}(6)\ D'_{p}(5)] by blast then have D' \in Q-of-state (Liminf-state Sts) using from_Q_to_Q_inf[OF \ fair \ ns \ c \ _l'_p(2)] \ D'_p \ \mathbf{by} \ auto then have ?thesis using D'_p by auto } moreover { assume a: D \in ?Ps i then obtain l' where l'-p: D \in ?Qs \ l' \ l' < llength Sts using from_P_{to}Q[OF fair ns \ c \ a \ i_p(1) \ D_p(2) \ D_p(3)] by auto then have D \in Q-of-state (Liminf-state Sts) using from_Q_to_Q_tinf[OF\ fair\ ns\ c\ l'_p(1)\ l'_p(2)]\ D_p(3)\ \sigma(1)\ \sigma(2)\ D_p(2) by auto then have ?thesis using D_{-}p \sigma by auto } moreover { assume a:D\in ?Qs\ i then have D \in Q-of-state (Liminf-state Sts) using from_Q_{to}Q_{inf}[OF fair ns \ c \ a \ i_p(1)] \ \sigma \ D_p(2,3) by auto then have ?thesis using D_{-}p \sigma by auto ultimately show ?thesis using i_p by auto The following corresponds to Lemma 4.11: \mathbf{lemma}\ fair_imp_Liminf_minus_Rf_subset_ground_Liminf_state: assumes fair: fair_state_seq Sts and ns: \ Gs = lmap \ grounding_of_state \ Sts shows Liminf_llist\ Gs - sr.Rf\ (Liminf_llist\ Gs) \subseteq grounding_of_clss\ (Q_of_state\ (Liminf_state\ Sts)) proof let ?Ns = \lambda i. N_of_state (lnth Sts i) let ?Ps = \lambda i. P_of_state (lnth Sts i) let ?Qs = \lambda i. Q_{-}of_{-}state (lnth Sts i) have SQinf: clss_of_state (Liminf_state Sts) = Liminf_llist (lmap Q_of_state Sts) using fair unfolding
fair_state_seq_def Liminf_state_def clss_of_state_def by auto assume C_p: C \in Liminf_llist Gs - sr.Rf (Liminf_llist Gs) then have C \in Sup_llist Gs using Liminf_llist_subset_Sup_llist[of Gs] by blast then obtain D_{-}proto where D_proto \in clss_of_state (Sup_state Sts) \land subsumes D_proto C using in_Sup_llist_in_Sup_state unfolding ns subsumes_def by blast then obtain D where D_p: D \in clss_of_state (Sup_state Sts) ``` ``` subsumes D C \forall E \in \{E. \ E \in clss_of_state \ (Sup_state \ Sts) \land subsumes \ E \ C\}. \ \neg \ strictly_subsumes \ E \ D using strictly_subsumes_has_minimum[of \{E. E \in clss_of_state (Sup_state Sts) \land subsumes E C\}] have ground_C: is_ground_cls C using C_p using Liminf_grounding_of_state_ground ns by auto have \exists D' \sigma'. D' \in Q-of_state (Liminf_state Sts) \land D' \cdot \sigma' = C \land is_ground_subst \sigma' using eventually_in_Qinf[of D C Gs] using D_-p(1) D_-p(2) D_-p(3) fair ns C_-p ground_C by auto then obtain D' \sigma' where D'_p:\ D'\in\ Q_of_state\ (Liminf_state\ Sts)\ \land\ D'\cdot\sigma'=\ C\ \land\ is_ground_subst\ \sigma' by blast then have D' \in clss_of_state (Liminf_state Sts) by (simp add: clss_of_state_def) then have C \in grounding_of_state (Liminf_state Sts) unfolding grounding_of_clss_def grounding_of_cls_def using D'_p by auto then show C \in grounding_of_clss (Q_of_state (Liminf_state Sts)) {\bf using} \ SQinf \ clss_of_state_def \ fair \ fair_state_seq_def \ {\bf by} \ auto qed The following corresponds to (one direction of) Theorem 4.13: lemma ground_subclauses: assumes \forall i < length \ CAs. \ CAs \ ! \ i = Cs \ ! \ i + poss \ (AAs \ ! \ i) and length Cs = length CAs and is_ground_cls_list CAs shows is_ground_cls_list Cs unfolding is_ground_cls_list_def by (metis assms in_set_conv_nth is_ground_cls_list_def is_ground_cls_union) lemma\ subseteq_Liminf_state_eventually_always: fixes CC assumes finite CC and CC \neq \{\} and CC \subseteq Q_of_state (Liminf_state Sts) shows \exists j.\ enat\ j < llength\ Sts \land (\forall j' \geq enat\ j.\ j' < llength\ Sts \longrightarrow CC \subseteq Q_of_state\ (lnth\ Sts\ j') proof - from assms(3) have \forall C \in CC. \exists j. enat j < llength Sts <math>\land (\forall j' \geq enat \ j. \ j' < llength \ Sts \longrightarrow C \in Q_of_state \ (lnth \ Sts \ j')) unfolding Liminf_state_def Liminf_llist_def by force then obtain f where f_-p: \forall C \in CC. \ f \ C < llength \ Sts \land (\forall j' \geq enat \ (f \ C). \ j' < llength \ Sts \longrightarrow C \in Q_of_state \ (lnth \ Sts \ j') by moura \mathbf{define}\ j\ ::\ nat\ \mathbf{where} j = Max (f 'CC) have enat j < llength Sts unfolding j_-def using f_-p assms(1) by (metis (mono_tags) Max_in assms(2) finite_imageI imageE image_is_empty) moreover have \forall C j'. C \in CC \longrightarrow enat j \leq j' \longrightarrow j' < llength Sts \longrightarrow C \in Q_of_state (lnth Sts j') proof (intro allI impI) fix C :: 'a \ clause \ \mathbf{and} \ j' :: nat assume a: C \in CC \ enat \ j \leq enat \ j' \ enat \ j' < llength \ Sts then have f C \leq j' unfolding j_def using assms(1) Max.bounded_iff by auto then show C \in Q-of-state (lnth Sts j') using f_-p a by auto qed ultimately show ?thesis by auto ``` ## qed ``` \mathbf{lemma}\ empty_clause_in_Q_of_Liminf_state \colon empty_in: \{\#\} \in Liminf_illist (lmap grounding_of_state Sts) and fair: fair_state_seq\ Sts shows \{\#\} \in Q_of_state (Liminf_state Sts) proof - define Gs :: 'a clause set llist where ns: Gs = lmap \ grounding_of_state \ Sts from empty_in have in_Liminf_not_Rf: \{\#\} \in Liminf_llist\ Gs - sr.Rf\ (Liminf_llist\ Gs) unfolding ns sr.Rf_def by auto then have \{\#\} \in grounding_of_clss\ (Q_of_state\ (Liminf_state\ Sts)) using fair_imp_Liminf_minus_Rf_subset_ground_Liminf_state[OF fair ns] by auto then show ?thesis \mathbf{unfolding} \ grounding_of_cls_def \ \mathbf{by} \ auto qed \mathbf{lemma} \ grounding_of_state_Liminf_state_subseteq: grounding_of_state\ (Liminf_state\ Sts) \subseteq Liminf_llist\ (lmap\ grounding_of_state\ Sts) proof \mathbf{fix}\ C::\ 'a\ clause assume C \in grounding_of_state (Liminf_state Sts) then obtain D \sigma where D_\sigma_p: D \in clss_of_state (Liminf_state Sts) D \cdot \sigma = C is_ground_subst \sigma unfolding clss_of_state_def grounding_of_clss_def grounding_of_cls_def by auto then have ii: D \in Liminf_llist (lmap N_of_state Sts) \lor D \in Liminf_llist (lmap P_of_state Sts) \lor D \in Liminf_llist (lmap Q_of_state Sts) unfolding \ clss_of_state_def \ \ Liminf_state_def \ \ by \ simp then have C \in Liminf_llist (lmap grounding_of_clss (lmap N_of_state Sts)) \lor C \in Liminf_llist (lmap grounding_of_clss (lmap P_of_state Sts)) \lor C \in Liminf_llist (lmap grounding_of_clss (lmap Q_of_state Sts)) \mathbf{unfolding}\ \mathit{Liminf_llist_def}\ \mathit{grounding_of_clss_def}\ \mathit{grounding_of_cls_def} apply - apply (erule disjE) subgoal apply (rule disjI1) using D_{-}\sigma_{-}p by auto subgoal apply (erule HOL.disjE) subgoal apply (rule disjI2) apply (rule disjI1) using D_\sigma_p by auto subgoal apply (rule disjI2) apply (rule disjI2) using D_{-}\sigma_{-}p by auto done done then show C \in Liminf_llist (lmap grounding_of_state Sts) unfolding Liminf_llist_def clss_of_state_def grounding_of_clss_def by auto qed theorem RP-sound: assumes \{\#\} \in clss_of_state \ (Liminf_state \ Sts) shows ¬ satisfiable (grounding_of_state (lhd Sts)) proof - from assms have \{\#\} \in grounding_of_state\ (Liminf_state\ Sts) unfolding grounding_of_clss_def by (force intro: ex_ground_subst) then have \{\#\} \in Liminf_llist (lmap grounding_of_state Sts) \mathbf{using} \ \textit{grounding_of_state_Liminf_state_subseteq} \ \mathbf{by} \ \textit{auto} ``` ``` then have ¬ satisfiable (Liminf_llist (lmap grounding_of_state Sts)) using true_clss_def by auto then have ¬ satisfiable (lhd (lmap grounding_of_state Sts)) using sr_ext.sat_limit_iff RP_ground_derive_chain by metis then show ?thesis unfolding lhd_lmap_Sts. qed \mathbf{lemma} \ \mathit{ground_ord_resolve_ground} \colon assumes CAs_p: gr.ord_resolve CAs DA AAs As E and ground_cas: is_ground_cls_list \ CAs \ \mathbf{and} ground_da: is_ground_cls \ DA shows is_ground_cls\ E proof - have a1: atms_of E \subseteq (\bigcup CA \in set CAs. atms_of CA) \cup atms_of DA using gr.ord_resolve_atms_of_concl_subset[of CAs DA _ _ E] CAs_p by auto \mathbf{fix} \ L :: 'a \ literal assume L \in \# E then have atm_of\ L\in\ atms_of\ E by (meson atm_of_lit_in_atms_of) then have is_ground_atm\ (atm_of\ L) \mathbf{using}\ a1\ ground_cas\ ground_da\ is_ground_cls_imp_is_ground_atm\ is_ground_cls_list_def by auto } then show ?thesis unfolding is_ground_cls_def is_ground_lit_def by simp qed theorem RP_saturated_if_fair: assumes fair: fair_state_seq Sts shows sr.saturated_upto (Liminf_llist (lmap grounding_of_state Sts)) proof - define Gs: 'a clause set llist where ns: Gs = lmap \ grounding_of_state \ Sts let ?N = \lambda i. grounding_of_state (lnth Sts i) let ?Ns = \lambda i. N_of_state (lnth Sts i) let ?Ps = \lambda i. P_of_state (lnth Sts i) let ?Qs = \lambda i. Q_{-}of_{-}state (lnth Sts i) \mathbf{have}\ ground_ns_in_ground_limit_st\colon Liminf_llist\ Gs - sr.Rf\ (Liminf_llist\ Gs) \subseteq grounding_of_clss\ (Q_of_state\ (Liminf_state\ Sts)) using fair deriv fair_imp_Liminf_minus_Rf_subset_ground_Liminf_state ns by blast have derivns: chain sr_ext.derive Gs using RP_ground_derive_chain deriv ns by auto \mathbf{fix} \ \gamma :: \ 'a \ inference assume \gamma_p: \gamma \in gr.ord\Gamma let ?CC = side_prems_of \gamma let ?DA = main_prem_of \gamma let ?E = concl_{-}of \gamma assume a: set_mset ?CC \cup \{?DA\} \subseteq Liminf_llist (lmap grounding_of_state Sts) - sr.Rf (Liminf_llist (lmap grounding_of_state Sts)) have ground_ground_Liminf: is_ground_clss (Liminf_llist (lmap grounding_of_state Sts)) using Liminf_grounding_of_state_ground unfolding is_ground_clss_def by auto have ground_cc: is_ground_clss (set_mset ?CC) ``` ``` using a ground_ground_Liminf is_ground_clss_def by auto have ground_da: is_ground_cls ?DA {\bf using}~a~grounding_ground~singletonI~ground_ground_Liminf by (simp add: Liminf_grounding_of_state_ground) from \gamma_{-}p obtain CAs \ AAs \ As where CAs_p: gr.ord_resolve \ CAs \ ?DA \ AAs \ As \ ?E \land mset \ CAs = ?CC unfolding gr.ord-\Gamma-def by auto have DA_CAs_in_ground_Liminf: \{?DA\} \cup set\ CAs \subseteq grounding_of_clss\ (Q_of_state\ (Liminf_state\ Sts)) using a CAs_p unfolding clss_of_state_def using fair unfolding fair_state_seq_def by (metis (no_types, lifting) Un_empty_left ground_ns_in_ground_limit_st a clss_of_state_def ns set_mset_mset subset_trans sup_commute) then have ground_cas: is_ground_cls_list \ CAs using CAs_p unfolding is_ground_cls_list_def by auto then have ground_e: is_ground_cls ?E \mathbf{using} \ \mathit{ground_ord_resolve_ground} \ \mathit{CAs_p} \ \mathit{ground_da} \ \mathbf{by} \ \mathit{auto} have \exists AAs \ As \ \sigma. ord_resolve (S_M S (Q_of_state (Liminf_state Sts))) CAs ?DA AAs As \sigma ?E using CAs_p[THEN conjunct1] proof (cases rule: gr.ord_resolve.cases) case (ord_resolve n Cs D) note DA = this(1) and e = this(2) and cas_len = this(3) and cs_len = this(4) and aas_len = this(5) and as_len = this(6) and nz = this(7) and cas = this(8) and aas_not_empt = this(9) and as_aas = this(10) and eligibility = this(11) and str_max = this(12) and sel_empt = this(13) have len_aas_len_as: length\ AAs = length\ As using aas_len as_len by auto from as_aas have \forall i < n. \forall A \in \# add_mset (As ! i) (AAs ! i). A = As ! i using ord_resolve by simp then have \forall i < n. \ card \ (set_mset \ (add_mset \ (As ! i) \ (AAs ! i))) \leq Suc \ 0 using all_the_same by metis then have \forall i < length \ AAs. \ card \ (set_mset \ (add_mset \ (As ! i) \ (AAs ! i))) \leq Suc \ \theta using aas_len by auto then have \forall AA \in set \ (map2 \ add_mset \ As \ AAs). \ card \ (set_mset \ AA) \leq Suc \ 0 using set_map2_ex[of AAs As add_mset, OF
len_aas_len_as] by auto then have is_unifiers id_subst (set_mset 'set (map2 add_mset As AAs)) unfolding is_unifiers_def is_unifier_def by auto moreover have finite (set_mset 'set (map2 add_mset As AAs)) moreover have \forall AA \in set_mset 'set (map2 add_mset As AAs). finite AA by auto ultimately obtain \sigma where \sigma_p: Some \sigma = mgu (set_mset 'set (map2 add_mset As AAs)) using mgu_complete by metis have ground_elig: gr.eligible As (D + negs (mset As)) using ord_resolve by simp have ground_cs: \forall i < n. is_ground_cls (Cs!i) using ord_resolve(8) ord_resolve(3,4) ground_cas using qround_subclauses[of CAs Cs AAs] unfolding is_qround_cls_list_def by auto have ground_set_as: is_ground_atms (set As) using ord_resolve(1) ground_da by (metis atms_of_negs is_ground_cls_union set_mset_mset is_ground_cls_is_ground_atms_atms_of) then have ground_mset_as: is_ground_atm_mset (mset As) unfolding is_ground_atm_mset_def is_ground_atms_def by auto \mathbf{have}\ ground_as\colon is_ground_atm_list\ As ``` ``` using \ ground_set_as \ is_ground_atm_list_def \ is_ground_atms_def \ by \ auto have ground_d: is_ground_cls D using ground_da ord_resolve by simp from as_len nz have atms_of D \cup set \ As \neq \{\} finite (atms_of D \cup set \ As) then have Max\ (atms_of\ D\ \cup\ set\ As) \in atms_of\ D\ \cup\ set\ As using Max_in by metis then have is_ground_Max: is_ground_atm (Max (atms_of D \cup set As)) \mathbf{using}\ ground_d\ ground_mset_as\ is_ground_cls_imp_is_ground_atm unfolding is_ground_atm_mset_def by auto then have Max\sigma_is_Max: \forall \sigma. Max (atms_of D \cup set As) \cdot a \sigma = Max (atms_of D \cup set As) by auto have ann1: maximal_wrt \ (Max \ (atms_of \ D \cup set \ As)) \ (D + negs \ (mset \ As)) unfolding maximal_wrt_def by clarsimp (metis Max_less_iff UnCI \langle atms_of D \cup set As \neq \{\} \rangle \langle finite\ (atms_of\ D\ \cup\ set\ As) \rangle\ ground_d\ ground_set_as\ infinite_growing\ is_ground_Max is_ground_atms_def\ is_ground_cls_imp_is_ground_atm\ less_atm_ground) from ground_elig have ann2: \mathit{Max} \ (\mathit{atms_of} \ D \ \cup \ \mathit{set} \ \mathit{As}) \ \cdot \mathit{a} \ \sigma = \mathit{Max} \ (\mathit{atms_of} \ D \ \cup \ \mathit{set} \ \mathit{As}) D \cdot \sigma + negs \ (mset \ As \cdot am \ \sigma) = D + negs \ (mset \ As) using is_ground_Max ground_mset_as ground_d by auto from ground_elig have fo_elig: eligible (S_M S (Q_of_state (Liminf_state Sts))) \sigma As (D + negs (mset As)) unfolding gr.eligible.simps eligible.simps gr.maximal_wrt_def using ann1 ann2 by (auto simp: S_{-}Q_{-}def) have l: \forall i < n. \ gr.strictly_maximal_wrt \ (As ! i) \ (Cs ! i) using ord_resolve by simp then have \forall i < n. strictly_maximal_wrt (As ! i) (Cs ! i) \mathbf{unfolding} \ gr.strictly_maximal_wrt_def \ strictly_maximal_wrt_def using ground_as[unfolded is_ground_atm_list_def] ground_cs as_len less_atm_ground by clarsimp (fastforce simp: is_ground_cls_as_atms)+ then have ll: \forall i < n. \ strictly_maximal_wrt \ (As ! i \cdot a \ \sigma) \ (Cs ! i \cdot \sigma) by (simp add: ground_as ground_cs as_len) have m: \forall i < n. S_{-}Q \ (CAs ! i) = \{\#\} using ord_resolve by simp have ground_e: is_ground_cls (\bigcup \#mset \ Cs + D) using ground_d ground_cs ground_e e by simp show ?thesis using ord_resolve.intros[OF cas_len cs_len as_len as_len nz cas aas_not_empt \u03c3_p fo_eliq ll] m DA e ground_e unfolding S_-Q_-def by auto then obtain AAs As \sigma where \sigma_{-p}: ord_resolve (S_M S (Q_of_state (Liminf_state Sts))) CAs ?DA AAs As \sigma ?E by auto then obtain \eta s' \eta' \eta 2' CAs' DA' AAs' As' \tau' E' where s_p: is_ground_subst \eta' is_ground_subst_list \ \eta s' is_ground_subst \eta 2' ord_resolve_rename S CAs' DA' AAs' As' \tau' E' CAs' \cdot \cdot cl \eta s' = CAs DA' \cdot \eta' = ?DA E' \cdot \eta 2' = ?E \{DA'\} \cup set\ CAs' \subseteq Q_of_state\ (Liminf_state\ Sts) using ord_resolve_rename_lifting[OF sel_stable, of Q_of_state (Liminf_state Sts) CAs ?DA] \sigma_p\ selection_axioms\ DA_CAs_in_ground_Liminf\ \mathbf{by}\ metis ``` ``` from this(8) have \exists j. enat j < llength Sts \land (set CAs' \cup \{DA'\} \subseteq ?Qs j) unfolding Liminf_llist_def using subseteq_Liminf_state_eventually_always[of \{DA'\} \cup set CAs'] by auto then obtain j where j_-p: is_least\ (\lambda j.\ enat\ j < llength\ Sts \land set\ CAs' \cup \{DA'\} \subseteq ?Qs\ j)\ j using least_exists[of \lambda j. enat j < llength Sts \wedge set CAs' \cup \{DA'\} \subseteq ?Qs j] by force then have j_p': enat j < llength Sts set <math>CAs' \cup \{DA'\} \subseteq ?Qs \ j unfolding is_least_def by auto then have jn\theta: j \neq \theta \mathbf{using}\ empty_Q0\ \mathbf{by}\ (metis\ bot_eq_sup_iff\ gr_implies_not_zero\ insert_not_empty\ llength_lnull lnth_0_conv_lhd sup.orderE) then have j_adds_CAs': \neg set CAs' \cup \{DA'\} \subseteq ?Qs \ (j-1) set CAs' \cup \{DA'\} \subseteq ?Qs \ j using j_-p unfolding is_least_def apply (metis (no_types) One_nat_def Suc_diff_Suc Suc_ile_eq diff_diff_cancel diff_zero less_imp_le less_one neq0_conv zero_less_diff) using j_-p'(2) by blast have lnth Sts (j - 1) \rightsquigarrow lnth Sts j using j_p'(1) jn0 deriv chain_lnth_rel[of _ _ j - 1] by force then obtain C' where C'_{-}p: ?Ns (j - 1) = \{\} ?Ps (j - 1) = ?Ps j \cup \{C'\} ?Qs \ j = ?Qs \ (j - 1) \cup \{C'\} ?Ns j = concls_of (ord_FO_resolution.inferences_between (?Qs (j - 1)) C') C' \in set\ CAs' \cup \{DA'\} C' \notin ?Qs (j-1) using j_-adds_-CAs' by (induction rule: RP.cases) auto have E' \in ?Ns j proof - have E' \in concls_of (ord_FO_resolution.inferences_between (Q_of_state (lnth Sts (j-1))) C') {\bf unfolding} \ infer_from_def \ ord_FO_\Gamma_def \ {\bf unfolding} \ inference_system.inferences_between_def apply (rule_tac \ x = Infer \ (mset \ CAs') \ DA' \ E' \ in \ image_eqI) subgoal by auto subgoal using s_-p(4) unfolding infer_from_def apply (rule ord_resolve_rename.cases) using s_p(4) using C'_{-p}(3) C'_{-p}(5) j_{-p}'(2) apply force done done then show ?thesis using C'_{-}p(4) by auto then have E' \in clss_of_state (lnth Sts j) using j_p' unfolding clss_of_state_def by auto then have ?E \in grounding_of_state\ (lnth\ Sts\ j) using s_{-}p(7) s_{-}p(3) unfolding grounding_of_clss_def grounding_of_cls_def by force then have \gamma \in sr.Ri (grounding_of_state (lnth Sts j)) using sr.Ri_effective \gamma_p by auto then have \gamma \in sr_ext_Ri \ (?N \ j) unfolding sr_-ext_-Ri_-def by auto then have \gamma \in sr_ext_Ri \ (Sup_llist \ (lmap \ grounding_of_state \ Sts)) \mathbf{using}\ j_p'\ contra_subsetD\ llength_lmap\ lnth_lmap\ lnth_subset_Sup_llist\ sr_ext.Ri_mono\ \mathbf{by}\ met is then have \gamma \in sr_ext_Ri (Liminf_llist (lmap grounding_of_state Sts)) using sr_ext.Ri_Sup_subset_Ri_Liminf[of Gs] derivns ns by blast then have sr_ext.saturated_upto (Liminf_llist (lmap grounding_of_state Sts)) unfolding sr_ext.saturated_upto_def sr_ext.inferences_from_def infer_from_def sr_ext_Ri_def by auto then show ?thesis using gd_ord_\Gamma_ngd_ord_\Gamma sr.redundancy_criterion_axioms redundancy_criterion_standard_extension_saturated_upto_iff[of\ gr.ord_\Gamma] unfolding sr_ext_Ri_def by auto ``` ``` \mathbf{qed} \textbf{corollary} \ \textit{RP_complete_if_fair}: assumes fair: fair_state_seq Sts and unsat: \neg \ satisfiable \ (grounding_of_state \ (lhd \ Sts)) shows \{\#\} \in Q_of_state (Liminf_state Sts) proof - \mathbf{have} \neg satisfiable (Liminf_llist (lmap grounding_of_state Sts)) \mathbf{unfolding} \ \mathit{sr_ext.sat_limit_iff} \ [\mathit{OF} \ \mathit{RP_ground_derive_chain}] by (rule unsat[folded lhd_lmap_Sts[of grounding_of_state]]) moreover have sr.saturated_upto (Liminf_llist (lmap grounding_of_state Sts)) by (rule RP_saturated_if_fair[OF fair, simplified]) ultimately have \{\#\} \in Liminf_llist (lmap grounding_of_state Sts) \mathbf{using} \ sr.saturated_upto_complete_if \ \mathbf{by} \ auto then show ?thesis using empty_clause_in_Q_of_Liminf_state fair by auto \mathbf{qed} \mathbf{end} ``` end end